SETI, Newslettexr & 154 ' Ed Schonberqg
) July 24, 1975
Timing conside

Jrregee vt

BETL translatery system. -

I. Introduction.

We repor’ here on a series of measurements whichk compars
the SETL interpretive system (SETLA} with the translator tystam
{TSETL), TSETL haz succassfully ekaC? 1
the SETL test packacs {which consg
tegt” for this new SETL systemn )

reasonably complete (i . e., as having reached

"debugging” becomes "maintenancs”,
decrease yet in the fregquency ol bu qwf nding .}

Timing tects were performed o provide an estimate
of the relative efficieanclies of SETL and LITTLE. The rat:c

in execution speed between the two represents the maxin
t

1
4
4
b
[
[

attainable by an optimizer, and these fiﬁur
rient some of our work on the gl

mizer currentiy
?lanned for the next SETL system.

Five algorithms were used for these tests. Coded first in
SETL, they wers then ratner crraﬁully hand-transcribed into
LITTLE. This tr a 2

sorhistication

short-cuts wers fal o BAMDLAXY the coding (for example, no
3 H wres g e ol g o é N
hashing was wsed, an te welre gncoded as arrays, soried ov
urntvesr el L Uiy exercise in “two-ztsoe ovosrapming” went

wles sven S Mg e v b . L g
remarkably smootrly (oconsidering the fumu,ehitg oL some
of ths algorithms irncluded) . and gives cornfidence in the

language to create a oro-




i s |

SETL~154-2

IXI. Algorithms used.

1) As a "worst case" comparison, matrix multiplication was
chosen. In the SETL version of the algerithm, two alternate

representations were used for meirices:

&) A set of orderad triples.
k) A& tuple of tuples,.

This i8 clearly an algorithm for which SETL is particularly

ili-suited: in a) because of the way

long tuples in sets

are represented internallv in SRTL (a3ddinc 2 levels of indirect

addressing);: in b) because of tha number of uvseless copy

operations triggereé by retrieval

of each row of the matrix.

In contrast, the LITTLE version benefits from the excellent

register allocator of the LITILE compiler and produces high-

quality code for tight loups.

2) Hoare's "heapsort® algorgithm. Thig algorithm is totally

static 1i.e., makes nc space allocation and leads %o no

garbage collection; the codes in SETL

and LITTLE are idantical,

The ratico SETLA/TSETL is a ¢ocod measure of the "interpretive
overhead" of SETLA. The ratio TSETL/LITTLE reflects the cost
of indirect addressing and off-line SKTL invocation inherent

in the LITTLE code produced by TSETL.

c) The Huffman encoding algorithm {See 9n Programming

I, p. 148). The coded message was represented internally as
a packed bit-string both in SETL and LITTLE. In the LITTLE
version, the internal representation of individual characters

was used to index directly into the map of codes, a machine level

cptimization which i3 probably bevend
optinmizey. A separate test of the
ugad by the Huffman algorithm affords

of SETL recursive linkages vs, LITTLE

the reach of any avtomatic
tree~building procedure
a measure of the expense

hand-coded stack manipulatior.




s

I I_iqkl-l‘q 1 ‘:)"' = *

a) An algorithum to transform an arbitrary BNF grammar

o me

3 g » b @ ;
tn Chomsgky normal form {gee O P 177

& t
X

Q
P
(0]

version, productions, temminal,and won“*“vmlsal gyl

kept as arrays, and membership tests were simply linear

searches, A simple compaction procedure was used to ramove

erasable productions from the nrormalized grammar.

e} An algoerithm for sclving the maxflow croblenm (see
O.P. II, ».120). The LITTLE version rapresented sets of edges
as ordered avrrays, on which membership tests were perfocrmed

as binary searches.

‘ R sgults: ' .

Timings {in CPU. secs)

Algorithm LITTLE SETLL
Matrix multiplication 08 &) 20
(15 x1%j {10 secs.garbage
collection;
b) 34

{ 15 secs,

TSETL

garbage collection)

Heapsort 022 5 (1.7 sec,
{100 elements garbage colle

Huffman encoding .21 14
{ 10 lines)
coellection)

buildinyg Huffiran tree fur 4§ 7 87
258 random f agyuencies

Chomsky normalizor A 14
(17 productions + 74

Maxficw i.04 2.4
(10C¢ nodesg; 1372 adges)

(2 secs garbage

tion)

6.7



e e

Digoussion

The Following order of magnitude figures emarge:
a} TSETL is 2 to 5 times fasmter than SETLA. This factor
corresponds to the interpretive overhea
It is no larger than 5 (as might be expected at f.
for all but the zimplest programs, both systems spepnd mMost
of their time executing SRTL procedures. This is clearly the

csse in programs involving large amcunts of set manipulation.

)
(0]
el
U
et
E

Sata
[
172}
(+
ty
(14
¢}
2T}
=
m
[+

et

b} SETLA is 24~200 times glowey than LITTLE. For TSEIL the
figure is ¥-%0., The larger figure coincides with earlier
egtinates of system efficlency. The lower one is surprisingly
favorable to the SETL system, and obtains in cases where set
manipulations {membership tests, inclusion. ete.! are used
heavily {(the lasgt three algorithms tested). This reflects

the very careful coding of SRTL, and indizates that, for
*one-shot” programs of sufficient complaxity, it is alreadv
reasonable to use SETL and avoid the tedious debmgging that
the equivalent LITTLE program would entail.

<} The range of improvement which can he expected from za
global optimizer is therefore surprisingly narrow. In many
cases, determining i@t a set can be treated as z static arrey
{i.e., that it need not bhe accessible to the garbage collector ,
or that it can be allocated on the stack ) will provide the
greatest pay-ocff. (This reguires of course full type-deter-
mination; to ascertain that 2ll members nf the get are “Yshort"
objects zontaining no heap pointers). The elimination of
redundant copy operations (which requires full value flo
analysist will provide the other inportant inprovement.

Better peephcle optimization, global optimization of SRTL,

@
PN

us: of membership and inclusior relaticns among program variables

to produce optinal dzta-structures, and other such sophisticated

devices may have little effect on system compared

o

with that of the Ffirst two manticoned.




SETL-154-5

trvarall TSETYL pesformance

The figures given above correspond o execution time.
The compilation time overhead of the current TSETL systex
mzkes it actually less interesting to the SETL user whae is
not running “production® programs in SETL, ie. program with
execution times >300 cpu mecs. The reason for the compllation
overhead are twofcld:

a) Tha "compiier® itgely, i.w., the «ode generator
which emit LITFLE source coda,are written in 21K 20d sxe
themselves executed interpretively {in faut by the same
intexpreter which runs SETLA: . Because of the high semantic

level of the MBALM primitives vis-a~vis of LITTLE, sevaral

IS
u

iines of LITTLE are produced In TSETL for each eguivalent

MBALH opcode. The formatting «f thess lines and the nsed to

refer explicitly to stack leosations (while MBALM opcodes work
2
-

times slowexr in TSETL than in SETLA.

b} The LITTLE cods profuced nust be compiled with the
MACRC and START decks of SRTL, adding 1500 card images o
every compilation., In additior, code expansion i3 of the
order of 50 lines of LITTLE/iine of SETL source, so that
typically thousands of lines of LIYTLE must be complled. The
code expansion factor mentioned ahove is to b2 expectszl,
given the difference in senantle lavels between the ©wo
languages; in faclt ¢he LITTLD ende euegrently producsd by TIETL
igs of reasonable vuality, i.z., has .o obvious vedundayoias o

wasteful register manipulationsz,

LITTLE 13 in a ganse too nigh-ievel a language to bo fhe farget
of the vresent cole qgenerator {which uses a small scheel
of the LITTLE language featurent . Howewer, St would Lo oa

mator tagh o yvedesgicn the ircerface beitwesn TSETL and LIVILE.



SETL~154~6

In the meaniime, it will bs mors vracticsl to use SETLA for
debugging runs, small experiments,and language learning,and
to reserve TSETL for sizable "production" runs.

Typical compilation rates. {(cpu secs)

SETLA TSETL

matrix multiplication i1 LITTLE generation: 23
LITTLE compilation: 22

Chomsky normalizer 50 5. generaticn: 127
L. compilation: 62

(\,



