
•

0

SE'TL Newslet:ter. f l.55

· I:n~~~~~. 1te-~!:~ 'Re-eord~an<!_
· Other 'lechni:gt.f~,1 ·tor !:)Pti.X!,iz<in:L

·· ~CUJ:'s1:!!_ne ·aud a•cktr~ck ProS(_Z'mn!,•

J .. '!. Schum~t~
October 7 , 1·9 'l 5

1. ~9ra-l Exp~!i:ion: ·of _:,the · 0~emo ·runction' -rechni"gue ••

lt&caraive routines will sometimes calculate required
intermediate results repeatedly,and-this inefficiency can
lunre catastrophic effects on their performance. A well-known

instat'ice of this is the Fibona.cci routine, which if written

recursively as
def inef fibon (n) ; /* n-th P'ibonacci.:.number P n * /
return if n·E{l.,2) ttien l elee fibon(n-1) + fibon(n-2)1
en4 fibon;

reqUlre& approximately 211 -mteps to c~lculate 'n· This loaa
of efficiency can ba avoided, at the cost of carrying more
datau· by recording intermediate results as they are calculated.,
In the preceeding example, this can be done by introducing a

_map gotf{..'b~ initialieed to null, and by revising the preceeding
algo~ithm aa follows:

definef fibon(n); /* improved Fibonacci calculation*/
if gotfib(n) is val ne n then r.etu:rn valH

' - -
/* if the value desired is not availablep it must be calculated*/
gotfib (n) • (if n e { 1., 2} t.hen 1 else fibon (n-1) + fibon (n-2))

r

~turn val:
end fibon;

!! val;

This improved algo.ri thm. requ.ir€:$Z only en steps to calculate

P n.. The transformation (which we shall call traneformat·ion
by intermediate P68Ul.t PBCO?'din.g} that leads from the first
of the two precedi~g functions to the second can clearly
be applied mechanically.

SETL-155-2

One can indicate. that it has been applied simply by l:!,ttrt.ching
the keyword ·rentembe3:. to the header line o~ the function, i.e.,
by writin.g exactly the first a;tgorithm with the sb1gle change

def~ef fibon(n)· ~~!£.1 /* .. n-.th F.µ,c,~~cci nnnber Pn */

in ita first line.
_lf-ranaformation by intemediate result recording can

{ ac~l:l.N be appliad. mor~ . generally than simply to functions
free of side effects. To do this, one can, e.g., introduce ,.
gener~l ren1ember blocks having tha form

. 'r'ellleln'b;!£~

bloak /*this-.can be any block .of code*/ . .-
end: :remember 1

The semantics of this construction are-as follows: on entry

to the'bl~ck, the value of every variable that will be used •
in it :.is saved. Let infoin denote all this information ..
When the block is exited, either by a jump.or by a normal
exit, \:the final values of all variables clianged wi.thin the

block are recorded, and the target point of the exit jwnp or

uansition is recorded, alsoe Let infout denote all tbis

information. A map btockeffeot should be associated with

each remember block RBi bZockeffeot will be initialised to
null, and each time RB is exited b1.ockeffect will he extended

by executing blockeffect (info in} = infout ._. Subsequently, beforf:~
entering RB, one can construct infoin, retrieve the value of

infout = blockeffect(infoin), and if infout is not n, simply

execute a series of assignments that modify all variables in
the same way that RB would modify them, and then jump to the
same exit that RB would ultimately take.

0

I ,
I
I
i

•

0

SETL-155-3

The technique just outlined applies to both deterministic
an4 nondet.erminiatic programs. Let ua agree to support non-

. t:arminism by add~ the two customary primitiveS' 2,! and!!!!,
to S1ft'L -(cf. SBTL newsletter 153) •. Then in the :first- place,
the b-Z.ook•ff•ot mapp~ga associated with the variou.- ·remember
block• RB.in a program become multiple-valued (since one· may
!1ftt.8r ··u several _times, always with the same relevant entry
information package i.nfoi.n, and exit with several different
exit: 1.nformation packages i.nfoii-ts, which will reflect the·

. .

•eYeral·different sequences of values that can be supplied
at the .. (-dynamic) occurrences of ok within RB (and· within

. - .
procedures called within RB}). To take account of this:
situation, it is appropriate to associate an environment-valued

.IIUbsidiaty mapping iaetenviPonment(lnfotnJ with lU3 (here we
use the term envi~onmsnt, short for data snvironment (of a
process), in th~ sense explained in Newsletter 153). The
value e •. laatenviroment(infoin) is the environment saved
at the last evaluation of 2! (which, s'ince it leads to the
saving of an environment, must yield the value true) before
exit from RB, and after RB has been entered with infoin as
its (relevant) entry information package. Suppose that we let

weld (environment1, environment2, RB)

deaignate the operation of :modifying environment1 by giving
every v~riable (including the program instruction location
counter) which is accessed within RB the value which it has
in environment2 (while other variables retain their environment1
values). Let pePform.(infout) designate the operation of
executi~g a series of assignments in the manner designated by

one of RB's· exit information packages infout, and then of
transferring{past RB} to the RB-exit point tha.t inout specifies~
(As explained above, this duplicates·the effect which actual
execution of RB would have.)

1-:J~t.~•~-C•~ -(!nVi,f,cQ,nmon.t 1/ deua~9nate the ·operation.of ~nl3fe:rring

.. -;pi:J;9~, ,.~ ~PJV-&.?to,~en t 1 , .}md then :le1:t.ing. ex~cuti~ll p_~ceed (at
.. ,, . .-·l+••t:,'llntil t:~e ,l)ext dynami'-= '()CCurrence o_f · an ~ Q~ £!!!..), Then

,"•~Y:·:~·-•.Pan be-~_ndied ~•··followss: .;

• :: .. (a) i .. ,Let tbe rel;evant ~t of .the environm.~t-,flt -~e
..... :: . • . .~!. . ~ ~ . ~· . · •. ·, .,\.,.._ ..

~¥ iPt- .entry .. ~ RJ3 ba i.nf oi.n. As J.o~g. as tl!-ere:;~~•t
. untried. exit i11fo=ation packages i.nfqut belongiJ?,g i.to ·. -~ • .. ~

1> took.•f f 114:t (i,nf ai.,-J . ., psl'f o:Fm ~ A new .·exit informatiq~ .
packaw~ will be,p1,1rformsd whenever,_ ii.& a _consequen~ of a

' . ' . -. '

fail~•,. control is return to the point (immedia~ly before

en~to RB)· at which an unaucessful prior exit i~ormation
paokagEt was 1:ried..

, . _ . .,i(pl .J:f .a~ prior information packages have been tried,

~-and .. ll -t.fil#:t«n-11lPon11u11&t (inf oi.n) is no~ n, ,then, im:Aediately
. . ~ .

t,efore:,-91\~, to:.lU3, generate.-

DfMinv --~ld(currantenv,lastenviroriment(infol~);RB).
•• a \sisce'ndent _: of OU~l"Gnten'v (th~ curr~~tly executing
• • .·'1.··'. '. . • • :

emri~nment) and ·11ntel'(newanv) ~ Subsequently, wh~n exit
fran t:RS occurs, we add a description of the exit s·tatus of

a11·Jariables 'mentioned in, RB to (the end of) b1,ockeffect(i,nfoin),
and also as'sign tlle parent. en'l!1h:onment p of the exit
environment as the new value of lastsnvil'onment(infoin).

It is also reasonable either to attach an implicit

remember action to each occurr£nce of~ in a nondeterminist:.lc
program, or to allow such an action to be attached explicitly

. ·,
to selected occurrences of ok,perhaps by writing ok remember
instead of 2!.. Then the p~s of the dat_a enviro;;ent re

levant to the code following an ok can be remembered when -.
the ,2!s. is first· executed in a sets. attached to the ok

(call this set~ fall.ea). l.f this set" is available, then before
an ok is executed, its current data environment E can be - . .

tested for membership in fai. tede If E e failed, then: -~15.

0

can rflt.urn tlte value !~;,!! instead of the customary -~~ e Q
. - . .

•

•· w

0

SBTL-155-5

This ~bnique •uppresses _both re-exploration of known dead
mid'!. ana attempts to re-enter an environment that is.· al.i:'eady
under exploration. Th~a·, for. example, it allows a 110lution

. .

of ~ well-known· 'bucket• and welli • problem to be written
in t;be followi~g nicely 'rnhbleized' form:

./• the follGY~ 'main' program is standard, and could be iJaplJ.cit .,!
· (while ~ ~ v !!!. target) improve (v) ; ;

if v ne target then ·fa·11, 1 --- . ---.

/* in the particular problem- at hand,~/
/*vis a vector of bucket eontents */

/* now we uae the fact that· in~ nondeterministic language,*/
/* many routines all with the a.a.me name can be employed ll * /
4efine improve(v);
(l < Vn < fv) - -it ok then -

v(n) • O,

elae if ok then -
· Eint 'pourout', n,

v(n) • C (n); /* c iu &_ global vector giving the */
/*capacities of the various buckets*/

erint 'fillup', n;
end if;

end Vn,
return;-
end improve;
define improve(v)

if l ! . 3 n ~ t v, 1 ! :J m ~ t v · 1 p!, then.

v(n) • (v-(n) + v(m)) . !!.!! c (n) ;

v(m) • (v(m) ... C(n) + v(n))· !!!!. O;

print I p0U%' O, m, f iilt.O l I n;

end if1·

return;
end improve;

l
SETL-155-6

· ,Az-faj!ical .intell~gence algoritlmus .which use heunstics

are useful if they suceeed with h~gh probability (even if
they do not work' in every came). The following trick:,· 1s
·avai-lable .. ~or hanal-ing •~gorithlt\s of· this class. At occurrences
of~, save a hash of the relevant data environment ~(e_ .. g.,
a 64-bit hash) rathez·, than a complete copy of the environment.

• , l

~ Before executing the ·ok, recalculate this hash h, arid check
- ?

· it for identity with ·some previously sa,red hash. If h
• • . i •: C : • 0

occw:red previously, let the :2!s return false rather than •·.
the customary initial ·true. If we use this trick, which can - ..
aave very large a.mount.a of memory, then calculations that might

f

have ,succeeded will fail occasiona.lly,but only very rarely.
. ·A. varicmt of this tecimique; .. suggested by M~ Harrison,, . ~ . .

is to diecard !old' hashes, eeg., by throwing away the oldezt,
i.e., least recently consulted element on each bash chain
that grows to be more than one or two elements long. This
latter variant is somewhat more reliable (i.e., likely to
succeed if s11ccess is posaible} than the technique suggested

in the preceding paragraph~ but will of course make certain
computations that the former technique.would avoid. In some

. . ~ .

cases, e.g .. ., i:n the'Fibonacci' example with which we begin,
it will reduce the amount of required calculation very greatly.
In other cases, e.g. r in calcula·ting tl1e function defined
recursively by

f(n) ~ f(n-1) + ••o + £{2) + f(l),

it is.clear that keepfng a complete record of prior fwwtlon
values will -be much more effective than keepi!}g a partial recorc- ..

In many caaes it will be inappropriate· to save every
detail of the (relevant portion of) the data environment at

·entry to a remember block or occtirrence of ok, since · 1:here

may be some mathematical reaso~, too deep for a compiler to
' discover~ which ensures· that only some limited aspect of the

environment is relevant to the outcome of the block or to

the success of t..he ok.

•

0

t: .

~

0

, 1i2·.,g .. , 1:tap:1rtant problem tJymmetries or loeal:isationa may be
in'lrifl:ible 1:.a a compiler) • For handling such situations.
one UJUi.Y. wish t.o allow reme.mbe~ to_ have a parameter, i.e.•
to aJ~low . the optimal font· ·r•einber e, where e is a SBTL
value atDMarising all the environmental information which
it is necessary to retain. ~en btook•.ff•ot can be·a ,,

· f'Qnotion of e .rather than of · the whole (formally relevant)-
data enviro~mant. on bloot•entry.

In non,:{~te1,111inistic situations allowing a heuristic
treatment, one c.,n. retain a condensed hash of e rather than
a full l:"epreaentat.ion of e if e occurs in the context~
remember e, i.f!., i.f e · is asraociated with an occurrence
of ok. ·As a Datt.er. of fact, a modification of this same -technique can be used even. if the inaccuracies implied by
. . .

a heuristic treat:taent are not acceptable. The technique

as modified can appropriately be called statistioai •t••nng"
and has t:he following description:

(i) Associate a one-parameter mapping pastsq,•~i•no• with
every occurrence of ok remember and ok remember e in a - ---- - ~---·· program P .. The parameter h of this mapping is an appropriately
·4efined hash of e (or in the case of a simple~ remember
of the (relevant) data environ.~ent of the ok). The value of

. -
paste:pa~ienoe is a paix of integers ni 1 n2 , which respectively
give the nwnber of times (in the prior execution of P) that
the same instance of ok has occur.red(dynamically), with the --same environment hash parameter h, and has been given the
respective values ·true and fal·s.e. -

(ii) To assign~ value to a newly encountered instance

of· 2!:,, calculate·· its haah, and. retrieve <n1 ~n2> = pastexperience(h).
If n2 > n1 ·try the valu~ ·false for~ first1 otherwise try
-~ first. (Here note that an environment mu~t be saved
at the-~ no matter what value of~ is tried first).

SETL-155-8

The tables of val·uee past#.:rpsl'ience (h) ac~ulated du.ring

aucceaaive runs of a_given program P might .also be allowed
to,quintlate, whi.ch .. can improve the performance of Pas it is

u~·ovu~;a,fper~oa. of time.. > .

. , • , :%f: .one tries , j:C)·.:'.u•e _tile u.ick; of · ••~g. only e hash h .. ··.· .

of· the1. rele~t envirooment e at the start. of 0c·r.~er blockg
vhicb·are not cases of·ok ·rem~r, one runs the.risk of - ----. · havinf~-• program execute (rather than simply ·failing unn,cetJsuily) ,,
but of executing wrongly 9 In such a case_ the program can
actµally come .to. a no:au.1 ur:nd.nation and. print output:, but

the output ca.n be wrong. At first sight it seems undesirablf~
..

to perai t calculations to proceed ix1 this erroneous way J but.
in fact there is no compelling reason to take such an

attitude.. Suppose, e.g., ·chat 32-bit hashes are used, and

that: ••eh prog_ram is run t..'1ree ·times (different !ash function.:e
beingi~secl each t~e) to give the effect of a 96-bit bash •

. , ft~: even a. p:rpgram that makes 106 remember-block entries
before completing shouid execute with apparent success except

in one•caae out-of 10-21, a false-result rate which seems
. qui~ ·acceptable.

'!he semantic mechanimns s1.1t9gested in the preced~g

pa9est 11erve nicely for the description of comprehensive searches
of arbitrarily complex spaces, and ensure that pruning of

these searches by programmed detection of search-path failure
remains easy and conven:i_ ent. •However, in some cases, more
general control mechanisms may be desirable .. For example,
even after well-programmed i'5ear.ch-space pruning,
spaces may re.main to be searched, and investigation o~ these
spaces may be ~possible unles~search is guided by some

. heuristice Various heuristics have been considered in the
. literature:. ·

i.. Depth-first 6e·a1'tdi, which is guided by some con-

0

jectured estimate of the distance beiween nodes y Qf a graph G O'
being ~ear(:hed and the target node x. Such a search will
prefer to examine the neighbors of that particular previously
reached node which is felt to b~ closest to x before examinh1q
any other points,,

•

C··

0

SftL-155-9

BPcadth-fi~•t search i• a variant of depth-first search in
~eh one assumes ~at. the atarti?9' point _x

0
of the search

U... near~• search's t~g~t point :x, and therefore eaU!l&tets
. .

the distance of y from_ x simply to be y•• (known) distance ·

fral ~~- ft.i• aort of aear_ch will •~mi1u1 all ymar x0 before
:. any nodes y• farther from x

0
are ezam.nea·. ·,

it. · Br111111stJ111- pl'Mnlng. In •••rahing a graph G, 'it ia
iiaportant to avoi4. red~ant r~md.nation· of nodes 1:hat

have already been examined. ·If bath G and the predicate C(x)
that one is attempting t:o satisfy ha~ certain symmetries v,
i:ben one should. not examine 11 pointy if a symmetriaal point

-ay, has already been examined, since if there exists a path
fran y to an x satisfying C(x) there will also exist a.path
from ay to x.

'1'IM! ~ remember mechanism described in the precedJ.?9
•pages allows redundant node examination to be avoided, and
the more general ok remember • diction allows one to prune

. -----
.away nodes symmetric- t~ a nod.e· already under examination.
To allow expreesi&n of depth-first aearches in a nondeterministic
language, one can simply ·replace the fail statement that . . -
would otherwise be used by a statement estimate «·, where ,

ia real-valued and defines the amount of work that one expects
to have to do before calculation f(?rward from the node (i.e.,
environment) under examination leads to an x satisfying Ct(x).
(Then£!!! comes to be equiv&lent to estimate~.)

2. ~neral Backtrack Me,£ha?;!sms·, · ·some r·1ius·trations ·of Thei·r u111e.,

To allow the semantic mechanisms ok remember, ·estilnate . - ---- _______ ,
and other similar constructs t:o be defined by programs, it
is convenient (following Suseman•s CONNIVER) to introduce

. general primitives allowing data environments to be treated
as semantic objects. An adequate se~ ~f rules for thi~ ~urpoae
is as follows (see NL 153): .

(a) Environments become SETL objects which are treated
·., rather like blank atoms. These objects can be set members

and tuple components, and can be. te$ted for equality. A copy

e' of an environment e can be created by writing e' • copy(e).

SETL-155·-10

..
(b) ·only one environment•is e.xecuting at any. given moment ..

Intu·-.. ehvironment transition is E.ccomplished usi~g the
·······'·• f_f';·· ,.,, . . '

t:oroutitle-~all-like prilllitive
,;: -~· -~· • -· < ,,

(l)· valuei'.eturned m cocali (nnenvironment, valuesent). . .· .. - . ' .',, .
This aooatt. exiu from the· current environment·. ce, enters .
n"w•ni,i:ronment, and leavee 011 ·suspended 'halfway thru' the

aooat.Z.,· ready to recelvea.-val.ue back when and if control is

eventually returned to '"'. Note accordingly that, with the
ezceptibri·; of the one environment that is currently executing;

all other environments represent processes which are suspended
awaiti.ng'.a• .value to be returned by a oocall. The value trans

mitted by oe:,to n•»envil'onment via the cocall (l)is the pair
<ce, valuesent>.

(cj .The apecial·coca11.
- '~ .

(2) cocall (n, v&luesent)

. generat•s a copy s~v of the currently running environment ce,
and trabsfers control to env.

'l'h•·system of primitives which have just been explained
embcdio~ the follo~i-ng semantic appreciations: to allow one

environment A to manage· other environments B, it must be
possible for information to be transmitted from A to Band

vice-versa. On the other hand, +~~e internal structure of an
environment can b•·opaque, and thus it is not reasonable to
let A ~'Jld •B _write~~irectly into each other. Hence we insist
that intormation passed between A·a:nd B be 'packaged' as a

J,.,_ • - '

standaro-form Sw:'L object. The receiving environment, wh:!Lch

knows its own structure, is responsible for installing this
infonna~ion into itself. 1.ic create new environ..-nents, the copy

operation ie. provided, in an. actt'ial implementation, thi·s operat:ioa
should be implemonted in a hi.ghly ef f°icient way. The ope1:ation . {:?)

-. gives an env·ircinru~nt an appropriately standardised way of

referri~g to itself.

•

0

•

e

SETL-155-ll

We shall now describe anothex useful control structure,
• . • ' I

resembling that defined by the simple 2,!£ and·-~ primitive•~--

previous.ly dilCQssed, but suppox-ting several additional features,

this structure can easily be represented in terms of the w-ery

. general-c~oatt primitives ~ich_ gave just been reviewed. The

prinu.tives of this control structure are as follows:
(1) A new primit:J.ve· ·tr.ia:ls,intended for use in iterators

~•ing the.form

·,v !t e 't:riala (tabot., •qn)) bl.ook;

(2) A generalised variant of the•.!!!!, statement, with the

· !!:!1:, t1::pn1

(3) A_ generalised ~·statement, hav~g the form

The intended semantics of these three primitives are as
follows: wheneiver a ~ials iterator i& (dynamically) encountered,
a new sequence of backtracking explorations (or 'trials') is
opened. Whenever a. ·•fail szpnt statement (2) is executed during - .

this exploraticn,e~pn is evaluated, the value which results is
assigned tot (cf. (1)),and control is returned to the beginning
of the bZock of (l). Before the sta.1·t of the next iteration of (1) r

control is returned to the 21';, point which would normally have
received control f:rom·· the J.!il statement {2} (if 1his statement
were a simpl& fail). But in cases ir, which this last rule -
implies that control would revert to an environment established
prior to entry into the ·trials iterator (1), one simply falls ... __
out of the iteration.

Explicit exit from a ·trial.,! loop (l}, whether via a quit

statement or by a go-to whose target label lies outside the
loop, terminates the loop and <:!rases all env.irorunents created

O in support of· it.

The initial environment. for .th.t;, sE;q,em.ce of trials sttL-::~t.ed

by (1). is obtained by copying the •:?nv.i ron1uen't in which (l) :hi

execu_t~«. --~P~ ~,bY:.~aJASfex:r~g, in ~113 copied envirOl1ID.0lA'C,,
.. -.. • -'~-...:. ,_\, ;.. ..;. .. _.. .. -~ · .. ·'-.. . . · ... : . . . ' ' - '. ',_

to tabs·z .• ,. · --- .. , . . . ,._. . .. , ,r-,1,., i.1 -·· .
.. J.:;• : <> ! . . <' ., , ••• (\.,{,.. ,4 ' 1

~f_ter,. control has be~ ret~l!!d . to tl\~ start <?f. b Zook

(in (l)) by a fail and. block has been. (,xec~t~d, t:J,:ie_ .Yalue ·tJ
..... _:·'"•: ·•.-:~ ·.:)-~·(:• •. ::f :· -~--- . t·;:' ·.·.-:-_..;, '·• •.' ·.· .

t'i!i of the eqn of (1) will be calculated. ~hen_, when a.t the
start.o~ tjle next ite~atio~ (l) control 'retu~s to.an olc point,

I '•· ' -

the calculated value v is made available, and if ok ,.has th~~ """''"
extended form (3.), i.e., if it involves a name. list., the

: ;!\ .: .. ·,.· ' . •.! \

multiple assignment "'· · · ·. _..,

ia executed immediately before anyt..•dng else. happens in th,(r

environment·containing the~-.

The set of primitives· just irrtrOdu~•:,;s~ays 5lllo'se in

concept to the easily comprehensible kind of backtracking defined
. .

by ok and!!_!.! in their simplest form, but a\[lows a substantially

greater measure of interaction between_ ¥,.iw. -:lb(r:i

It is convenient to allow :, ·, :, · ·,:i .1).

(l ') <Vt e •trials (label)} bl;ok~:
as an abbreviation for . , , ~- '

<'Vt e ·tria•1s (label, n)) l> 1.o:ok;

To represent the primitiv;es (1} ~ .(2), •(3) in t~pns of the

~re general cocalt operations introducea, previousj;y, it i.~;

convenient to begin by introduc:f.ng an a~ili.ary cQn~ol co,1struct

hav~g the fo;m .. ·; · .. :'

(4) <env,val> • try llabel); c:.> .-
The intended semantics of this construct,: are as follows: it

forms a new environment i.i, whose iriternal state is -a; copy :1£ the

internal state of the environment ,::.e within which (l) is m:ecuted. ..

0

0

•

0

0

Cont;rol paaaee to., which imm6ldi.ately transfers to 1.abet.,

fran wh.i.ch its execution continues.... In e, env has the

value o•• and vaZ the value n~ Later, by executing ooaatt(•nv,v),
•~return to·os, tranamitt4>,g <e,v> aii the value of the
function tze11 in (1). The following code represents this h~dy

control construct in terms of the· cooaii primitive.
~

<xenv,xval> • cocall (O;n) 1 /* form a and transmit ae to it * /
if xval !!,i Q then /"' we are in e */

<env, junk>• cocall (xenv,-true); /* return control to""*/
'. ~ .

. _go to labelr /* when control given back, go at once.to Zab•Z */
else/* we are J.n 011, having received control back from•*/

<env, yal> • cocall(xenv,0)1 /* return control to•*/
end if1

Usin~ thia construct, we can represent the primitive•
.(1), (2), (3) as follows. Prom an initially given environment
init, we split off the first of a family of experimental
environments a:p by exeC'Jting the statement

<master, val> • try (start)1

Here, ma•t~~ is a global variable, which will have the value init
in all'experimental'environments. The pri.mitives (1), (2), and
(3), which will be executed only in'experimental' environments,
but not in init, are then represented a~ follows:

{a) The 2}i (name1 , ••• ,namek) priri1itive is represented as

[if~ <M (coc:all(master.10) (2) !! response) is okv~l}_ then

<name1 , ••• ,namek> • response (2); end if1

return okvals]

Rote that ~••ponas i• here expected to have either the fonr:
<i, '1> 9r ,the· form -~!, v> ..

(b) The fail· s:r:pn ·primitiv~ i"s repre_aen~ as

:··.;, jWlk cocall(mast:er, ··<ta:lse,· expn>) 1 ··

{c) The cVt e trials (lab•i# expn)) btcak; primitive iti
• WiO- ==

.represented aa

retry:

enter:

. • £--,:·:-- s~ . . .
if aoc:all (master,1) (2) !! save ~ n then_ go._t.o, 'tabeln

. • ~,.f ·· 11.• J • ·l

/* when the 0maater I environmant in~ t'~'is calle.d_· with ·.* /
/* parameter 1 by an experimental· ~nvironment e;q , it */

, ~ ~ a• 0• • • I,. > • \ •

i• will form two copies of s:z:p, · and ,pass' n ba.ck to the * /
./" first of these, when dont~ol is'r~turned to the oth~r */
/"' copy, either a value of the form ·<·false, t> .(for final * /
/* iterations) :0~ <oJcenv~:, t>·. (fo~ f.tera.t'ions -~hich aro to •;

/* pas·• CO!iti'Ol to an: ~nv!ro~eJt ~~-- is in the mid•t ·.,,, O
. . :~ ' ·?:)' ,.·: .. _: .

/* of executing the ok primitive) will be transmitted.*/
. go to. enter; /* j1.1mp tot f ir.st iriti1s "ioop i tera:tion 'ii I
<junk, save> s cocall (okenv, e,q,n)1 /* give control to okenv fl/
<okenv, t> u save, /* d;6ode p~r~e't:~r :*/
b took i /* execute block * / .,
1f oken,? ·ne false then go_· to ret~,.1 ./ "fi,·-;.tb attempt next trials; *1

:, . :r -~·., tr.£: f .

. ~:-~_;j;..:,:·:-r:>~~: . A~..,

(d) The code prologue ~ecuted wi thil} . ~t·tle~yiro~E:~t i.ni t
is as follows:

control:

<mas·~r, val> ~ try {start):

exp = lllB.St'.er; ' /* within lnit tile ~alue of the variable */
I* ma·stezo is :t,he initial .exper~ental ~,nvircmu:,nt; -,. ;

/ 11 within ~periment~l ~n~iro~ent,s ·it .is iwtt- ~/

envstack • ~~:/*initialise stack of environments'~/
if val !:.9: O then /* w~ d~a.1· with, ~~. J call * /:- .

en,rstack (t: envstack+ l) •·iir:f',·copy (~p)>:

<exp,v~l> =-i coca.ll (exp, <~, O>); /* return t~:ue to e:.p ,.O
else if va.l !S. l then

•

•

0

••• •, 'lj,

p we de&l with the coca.ll whJ.ch lnit.iates a new family of t ... -e-alg */
envstnek (i el'lVSt.ack + l) m "<!, copy (exp)>;

/* note that: the" .1 fl~g distinguJ .. shes ,an environment in * I
/* which &·- -~~-~!! loop is being exeC1.1ted. * /
<exp,val> .. coca.11 (m:p, 0)1 /* ret.urn Oto eq,. thus*/

·/* start~~ trials*/
else if val ·Ga 2 t.'1-ien --/* we deal with an explie.i.t exit from the last trial loop en:teril!d 11 /

if I emvstack .?. j n ~ l r !}! envatack (n) then

/* drop all environments since liist !,rials loop entry * /
envetack • envatack (l: n-1);

end if t envatackj

<exp,val> • coca.11 {exp., O)'; /"' now re-enter environment tM,p w/
else /* a f~il opera tio11 has just been. executed * /

if envstaek 5 ~ then
print •attempted run results in total failure•;
stopr

6lse /* pop env_ironment of :f er.vstack · * /
<fl~g, env> IU envstack (t envstack)t

envstack (f. envstack:) !Ill n 1

if flag thel'l /1' trial!, ert .. J>ironment. pass parameter * /
/~ indicating imminent loop exit*/

<exp, -.,·al> :ns coc&.ll (env,va.l); /* note that M val is ~~l-.!.!. •/
else if i envstctck :,. 3 n ~ 1.1 ~ envstack (n) then

alse

trier Ill: envstack(n) (2)·J /* last precaling. tri,g_! */
/*environment*/

-<exp, V!!.l> = cocz,.11 {t;r le:i: 1 <e.nv; ,ral (:i~) >} ;

/* this passes data from fail operation to •tri.a:15 * / - - -----
I*
/11

/*
/*

~nvironment and also passes the envi.ronment whi.ch is · ·31 /

B~aequeritly to recei.:ve control*/
there is no pxecedil'\9 t~als environment1 control * /
returns to last prece:U.ng ordinary environmen1~ * /

<expr val> = cocall (enveval):
end if flag;

~
I

r.

r
l

SETL-155-16

end if va.li

90 to control;

at.art:... /* the envu·onment init begin& to execute here */
Hct.e that it is as~ed in ~,a precedi~g code that

explicit exits from a: ~i:als loop, whether by quit or by

go-to statements, are compiled ~s

jWllc. • eoeall (ma.ster,2); quit;

and as
junk• coca11 (master,2); go to label;

respectively~ If Z.abot. is a variable, then the somewhat more

-COllplicated code pattern

if label riot e labelset then junk• cocall (master,2;;;
.1 ---~ .

go to label;
ia required~ Here Zabetset is the collection of all labels

which are internal to the· •trial!! loop in which the go-to appears.
;'.

To handle nested tri!!! loops, at yet more complicated treatmeut, C,
which we leave it to t.lie reader to work out, is required.

0

•

.0

SB'l'L-155-17

, As'· a:,i example illustrati~g the use of the semantic and
syntactic mechanisms sketched in the preceedi~g p~gea, we

ahall now_give a number of parsi~g a~gorithms. We begin

with e variant: of the. 'nodal spans• a~_gorithm, for which
n aaauma that ve are given a grammar of Chomsky normal

· form F.odUCti6ns Cl + ft IS I represented as a set gram Of

t -~ triples <a;s;as, plus a set 'tll2'1'1p~o of terminal produ~tions
G + A, represented as pairs <a,A>.

definef splitapan (i,a,j)" remenfber1
return· if· j 5 i + 1 ·then

if input(i) E termpro{a}then i else 0
/* here O is simply used to mark spans •not present.in the i.nput'*/

·.1 .. if i < 311 < j, <a,t;> ·e gram"{~} '

aplit:apan (i, 8,n)· ne o· and splitspan (n,6 ,j) ·ne O - ~
then <8,n,.S> else O;

end·splitspan;

It i~ interesting that this algorithm very much resembles
a top-down parsing algorithm in form.

The usual nodal span algorithm determines ambiguity,
which the preceding algorithm does not; of course, an easy
modification of the preceding will determine ambiguity alsoa
Note that the preceding algorithm, like Earley's improved
variant of the nodal span parse, never comes to consider any
apan (i,-a,j) which is not.relevant to -the parse tree of same
continuation of the left-hand context string input(l: i-1) of
(i,a,j).

Next we &hall use·our gener&l semantic mechanisms to
reprf.!aent··an interesting, highly generalised variant of the
bottom:..up parae. In writi~g this algorithm, it is important

_to keep the fo1lowing issues in sight.

(a) We want our a~gorithm to be able to deal with illformed
inp·ut.

Si1'1'L-15.5-18

t~ius it will have to distiµgu:tsh between ij tempera~' failures

c,ccur-ring _during exploration of a parse tree,and 'r~al' failures

-caused b;, illform~ inp~t. In case of a 'real' failure, .it .,, ..

should be able to pinpoint an error ~9cat.ion, and sp~:Lfy a
di~gnosif~-· message;. . : '·· ,-;

·. (b)
1We do not want our a;tgori thm to be grossly .~n~:~ficient.

In_part.icular 8 we want it to be linea:ic in cases wher'7:a· 1inear
parse ~i:iits. · · · · .. :J.

To ensure that condition (b) ie met, we shall make use of
the fact (discussed at greater length in Phil OWen's 1;h~sis, .
Courant. Computer Science Report t 4} . that the collection JC. ·
of all potentially handle-free sentential strings of a context
free language Lis a regular language, and may therefore be

·:. ,, .

recognised by a finite state automaton AC. By using this

automat~n in our algorithm, we can ensure that we will not

.carry our exploratio~ past any point at which the _presence
of a syntactic error can definitely be asserted. Th~, implies
·that our algorithm, although general and nondeterministic,

. will in most cases be linear if the gra.mmar with which it is
~ -~

working is LR (k) for some k. '· ·

We handle errors as followso
by generating new environmente.

j."·

Possible parses are explored
.-, ·'-< ·'.

During this exploratlon,·we
.

keep a r~cord of the maxi.mum number of input symbols accepted
in each environment.. If a def i:ni te fa ih1re: is detected, · i.e. ,

. . "
if in every environment a failure occurs before -the 'input is

fully parsed,. we use the emriron:ment E .in which the max~um
n.umber of input symbols has been ,accepted to define an error

location. A diagnoztic messe.ge is then emitted, the parttcular

1Ti.essage chosen being & functi.on of the· first symbol in the

environment E .. and also of th,e state a of the automaton AC in
this environment at the moment of rejection.

0

0

••

·•·

SftL ... 155-19

· When a diagnostic is emitted, the part of the input which
has been. scanned in E ia deleted, and analysis of the r_emainder
U of the input continueaj of course, RI ·must be analysed
uing the graaaar G'which ~ascribes tails of sentences rather
than complete sent6nces. If the productions of the original

. grammar are ·a + a1 •• . 8n, then G • includes not 01ly these prpductions
bJ: alse> all productions of the form a + n Bj ••• en, where
2 < j < n and n is a dummy •start of sentence'· symbol. In the

. -- - .
algorithm shown below, which has the standard 'shift/reduce' . . .

at:ruct~e, we treat the etaok vector (on which shifted symbols
are placed) as ~fit had two copies of n appended to its left,
provided that an error bas . alr.:eady occurred. Likewise, since an error ·

may oceur,·the automaton AC should be replaced by an automaton
AC' whose atates a are subsets of the set of all states of AC.
The transition and ~ejection rules for AC' are derived in an
obvious way from those for A£1 AC can be regarded as having
a uet of states identical with the set of all _singleton states
a •·{a} belonging to AC'. The initial st~te al of AC' .is.simply
the set of all states of AC.. If ·an error ·11as occurred, we

start AC' in the state 011 if no error has occurred, we start
it in the sute {a

0
},· where a

0
is the initial state.of AC. In

this latter case, AC' simply mimics the action of AC. If no
error has occurred, the stack vector is initialised with two

copies of a sentence.start ~ymbol I-- instead of two n's. The

extended grammar G' is always used for·parsing, but none of the .
productiQns belonging to G'-G can be relevant unless an error
has occurred and the $tack initialised with n's. We assume
that every input etring is terminated ·with an end-of-input
~rk ..,,

SETL-155-20

Detailed oon'i1ent.i.ona. are Ii).~ J.:oli<>Ws. The_ g:rammar, i~, gtven

••>tei se~o·t·patrs <~,<81, an~~ whi9~_..corr7spond "t<> PJ:10~

~uc,tio~ ~.; ·...: · tf1 ~. •'.~ !B-nf., t;tail.;~ of s,~.t~nce' __ productions.-..

Cl ~ltUIJ; ! ·r ~ ~ s~· '_ are a'!so_' re~~ef!Je!;t:ed ~n ,rra!71,,.,ar • . The.:, !J~ial
syml,ols~!:,anif .. n are·'called ais~sta!!~ and e:r~o:retart- r~pectively ..

t :,·. 'fJulf::automatdri AC' desc:tibed in the pr,cedi~g •,. p~ragraph ~s
· .raprese~ed by a mapping tl"ansi.t-lon(a~~t:•~1111.;,,b); th_e _irµ~ial

state ofAc•·fs called olsansta;tetat~~ and,tjle state_ i,;i.~o
,. ., I ~ ~.. . • . •

which ~passes each time an error fs detected.and dia~osed_

We assume that we have .av~ilable ·. a table
. ~ ' ' ~ ' .

e:ri-oz-niesitage(etate~n•ztsy,,,bol), which sele.c.ts message, depending

on the siite of AC' at the momen:~ at whic;h a~ error. is ~etected

and on tiie symbol following the point of'.· error. : ::: t:
•• - • • • • • ' > •

. Sinci it suggests a technique allowing the efficiency of·

the follbwing.algorit.hm to be improved~ ~e have written°the ok
oper~tioKs · appea~iricj in the algo~i thm .as ·ok ~emember; 1h trh£r;- 0

• • . ·:•·4 f ,, _... : !, ,__,

c ii;:·;a pair· ·consisting of the current state of the aut;omaton

AC'',' together with ·a few symbols· (more precisely, ao:nte=:Zength

symbols-) r-of 'right-hand. context. ,This is essentially ~e· in

·t~rmatiorf which an LR-parser would Ulrle in making cond~st!ino-conaer:s,s;

decision/;. The ·remember feature which is thereby assuped-

could be \mplernented·using a paetezpe?tience mapping in: ~e
manner sketched on page 7 above. (Note howev~r that t!Jet,code

given above to implement ·the t:rio of control primitives 2!:,· !!!,!_.,
·t,:ials does in fact not support any ok rem.ember featur~). It i~

interesting to observe that, if the -~- reme."itber construct ,were
supported in this manner, the efficiency cf the pirser which
now follows would improve steadily as it processed a stream of

te..~t, and in most cases would becom0 asymptotically proportional.

to the efficiency of a deterministic LR paraer~

0

•
SETL-155-21

/"1 g-:-a.mmar,. zeo,,t· &nd oonts.=tiengt.b.. aze. global quantities of thi~ */• ,
/* a;Lgord.thffl.lnitjaliae a-ta:z-t11ym1>ot .aJ:'ld 11tartstats to indicate */
/* that .~o error has yet occurred~ */
<11tart.9Jlllb~,:startst.ate> • <t;Jleanst:art, ~leanstartstate>,
!pointer • l; /* initialise inout pointer * /
statefar • startstat:e; /* note that auxiliary
farthest • ,, /* in .initial state·
(while ipoin.ter ·1.t-·i"" input)

<Vt e· tri••l;-(start) I t(l) -~ farthest)

<farthest,. statefar> • t;
em. Vt, .

automaton begins· ti I
*/

print. errormessage (statefar, input (farthest));

ipointer • farthest + l 1 /* bypass bad input * /
/* reset •ta~tBNmbot and startBtate to show error*/

<sta.rtsymbol, startstate> • <errorstart, errorst~tstate>1
statefar • startatate1

0 end while;
erint 'all syntactic errors have now been diagnosed';
•top,

at.art:. /" entry point to begin each sequence of trials */
atack • <startsymbol, startsymbol>;

0

atateatack • <startstate, startstate>;

(while !pointer ~et input and - -·
stack!!! <startsymbol, startsymbol, root>)

if 3pair e grammar I (t stack) 9.!. (i (pair(2) !!. rtside) i!i n)

· andd stack ~ (t stack -n) !,! ileng·th + 1:) · !S. rtside
· al1dd tr&nsi tion (statestack (ilength) · is oldstate, . -

· pair(l)) · is newstate ·ne n - -
·andd· ~ remember •i:oldstate,input(ipointer:contextlength) >

then /* perform condensati.on action * /
stack a stack (1: ilength) +

if ilength g,_~ l then <pair(l)> else
<startsymbol, pair {1)>;

statestack ~ statestack (1: ilength) +.
if ilength qt l then <newstate> -else <startstate, newstate>:

..
·•.

el.se /~ check legality of shift action.*/
if .tranaitiQn (statestack(tstatestack)· •is· oldstata,.

' ----
input. (ipointer)) •is I!ewstate ne O _ ---- -.-:

. . · ·anOd . "Ok :re11te'mb·er <oldstate, input (ipointer:· 00.ntextlen;tth) > .. · ,,_._

then-.. /* perform shiift .action */
stack• stack+ <input(ipointer)>;:

states tack = st.atestack + <newstate> f

else/* neither condense or shift action is possible*/
/* t..~erefore we fail 1 returning· input p<?sition and ata.te~·./

!!!!, <ipointerr; oldstate>;

end if;

end while,
/* if we fall out of this loop, then tail of input is acceptable -t:j

e-int if startstate_5.cleanstartstate then

· stop,

.. "':/string is syntactically acceptable~ else ,
'remainder of string is syntactically acceptable•,

An optimi~ation, based on global analysis, which'a~plies
in the semantic context defined by the three primitives~,

!!!!,,and trials can be described as follows. Call an occurrence
p of~ bounding if no occurrence of!!!!, can be reached from

p when~ is gi.ven the value false,or more generally and
recursive.J.y if no such occurrence c,f :f.ail can be reached without

. ~

first passing through some othe:e hounding occurrence of~-
Wow uo~e that, if an occurrence of ~ i.s bounding then whereas

failure ca.n propagate bacl~ to it, thereby requiring retrieval
of the environment logically saved when th<? ?k is first

evaluated and given the value El!!, it can never fail completely~

· i.~.,. failure can never be propagated back to an environment
saved before eitaluation of a. bounding occurrence of ok •. •rhereforo

on evaluating a bounding~, one can destroy all the envstack

entries ancestral to it, back to the last preceding occurrence

of a trials entry on •nvstaok •

0

•

0

SETL-155-23

. .
This will_generally save space, and, in implementations which
represeri~ ltn'1ironmenta different::lall, .y, may al so speed up

execution.
cil\:tain_·global.' SE'l'L-level optimizations carry over from

the 4.e&bninistic to the nondeterministic case without
difficulty-. ,. Consiaer, for example, relationships .of incl~s~on and

mmnber~p iRo' and oRo• of the sort studied in Newsletter 130.
In.the:presence of primitives permitting multi-ple environments,
but whe~e we assume that all these environments share the same
ivariabl-e•· mJd ovariables {this·will be tbe case for all the
systems of·control primitives that we have discussed) we
consider iRo' (rasp. oRo') to hold if it holds in every en
vixonment. Since the variables internal to an environment e
are· modlfi~ only by statements executed within e, relationships
of inclusion and membership oan be deduced by fixing attention
on aome single environment and treating- its cocalls to other

0 environments:a• :L~ they were J-ead statements.
Sim'llarly, if we assume that values transmitted by cocalls

are always copied (this assumption is reasonable since to
define-most of the control structures considered above only
boolean and. integer values need to be transmitted by cocalls),
then_giobal value-flow analysis can be carried out siltply by
fixing ::attention on a single envirorune~t e. This same remark
then carries over to copy optimization, operator-operand
analysis, etc. However, to· decide on the implications of all
of this for data-structure.choice, a closer study of data
structure.choice issues in backtracking environments is required~

SftL·-155-24

3. An a<lcli'tional. comment ·on ·the ppt:l.nltz·a·tioli .• of. searches.
'i· ' ' .

, ;,• :lll-•~~i~•; sµ9ges,ed in -the J;>r~~i~g:··:· P!1ge1t-~e: it ,11
easy to dt?.~cribe ~oth comp~ehensive. a1¥1.-.,dep~ "'."_, ~4,rst. :sa,rch~s,

"w•• C•,•,,., • ,• w• • '-• •• ' _. •

~,f. ~¥,;~ar-~~y. ~~plex sp~ges, ~nd to -~e~su;~ :that -prl-µlll,19· Q.f": :'? ,: : .

~~•• ,,'fcl_le.1' ,by •. pn,,gr~ed detectioi:i of · se~rch-pa:th · ~~lur_~ ..

r~ i~-~,!•Y and convenient. · Moreovex•, .,tJ:leS!e _,;;ame inech~iSlll'9

a1;ow ~,try .,pruning, which i• ano~he;- important and . g~neral

techniqy.e.of search optimization, to_-be ex:pressed easily'! We

shall n~ d~~cribe a third technique .. for guiding searches

over ~~~e set•, ~hich can be quite powerfu~ '.in certain cases
in whic~--- ·. _ . simp~, depth first and ~ymmetry: ,prun_ing tegmiques

~!~1¥1::lt!ici':nt. JThia tedmique c~:~st ~~adily ~: CQqt

P~~~~--if :C?~e•cct~•idera ._the proJ;>l~ of s4;9~ching a. prpduc~
graph 1G~1•.G1 xo2 ~0- find a target elmnent X}!: ~x1 ,x:2 :ir~,. s~t~sfying

a predicate C(x) of_ the fo;m c1 (x1) ,5!! s2,(_~2) •,: I_f G;. is:,-,earched O·•
wi~out taking,account of its product space structure, ,then ... , . . '
n1 xn2 ,.el4anlents may have ~o be ex~n~d, wh;ere G1 contatns
n1 'and q2 ,Pontaina n2 elements._- On the other hand, 5iuppPse

~a.t one first searches for an element x • -:<x1 , x2> satisfying
the simple predicate c1 cx1), treating _elements as equivalent.

during t:,his search if they have the 9.ame second compo,.~enti an?

then starting from i searches for th~ desired x, now _;taking . . ,,_ ~-

second 9omponents into account l::>ut con~ining the search to

elements. y ,. <y1 ,y2> satisfying c 1 (y1) .• Then it may ,potibe

necessary: to ~xam~~, more than n1 + n2 :-elements. :r , ,_

It is clear that the same ra~ark applies in searching
product graphs G = G1x •• .,xGn_ involving several factors. What
is more interesting is that this remark can be generalised to

apply when one searches graphs that are_ almost but not q;t:ite

products. We shall. assume that the 'almost product' structure

of such a graph is defined by a m~quence <1> 1 , ~2,. ~., <j)n of mapping~

(which in the prod.uet graph case would be the projections of Q
G on Gl >< G2 x ••• ,.; Gn) ..

•
SftL-155-25

Suppose first that the pred.1.eate C d.efini~g the ta~et
point x of our search has the form c (x) • c1 (~} ·!n!! •• .- -~
~ (x) • · Then we might uae d (y) • t · { j f · -~~t cj (y) } as an

approximate measure of the distance between a given pointy
and the search target x. Let f(D) be a -monotone decreasin~
~unction of the distance variable o, and suppose that f(l) • n
~le f(klis substantially small.er, e.g., f(k) •l. Suppose

that a ·remember clause is ~dded· to each occurrence of ok in a -program searching G, and specifically that we always write

· ok remember t(l: f(D)} -----
at occurenees of ~J where i • <♦1 , ••• , ♦n>' and where as above
D counts the numbe~ of target predicates cj which fail to hold .

in a particular environment (i.e., graph node) under exploration.

Thia will have the _effect of limiting the number of environments
which are e.xplored1 e.go, we will never examine two environments
• 1 ,_e2 unless e~ther ♦1 (e1) and ♦1 (e2) differ or one of e 1 , e 2
satisfies at least one of _the target predicates cj. In general,
the more target predicates are satisfied in an environment e,
the more detailed a view we take of it, i.e., the more of the
.~ctions ~j we are willing to regard as'significant• attributes.

(The.feature tj(e) is 'significant' if we are willing to examine
both e and an enviromnent e' whenever $.(e') are different.) Note

. ' J
that by using the'scheme just outlined and the auxiliary function

f(D) • n - D + 1, we solve t~e prototzye probl_em of connecting
two points

difficulty, whereas more c:on~,.rentional search techniques, whether
depth first or breadth-firstr can be expected to fail when

applied to this problem. Ob~erve also·that this scheme can
remain useful even in connection with'searches whose target
predicate C is not a conjucti.on, ··provided that we use a distance

Q heuristic function D having the pr·operty that i { x E G I D (x) < ~}

diminishes suitably with diminishing 6~

References
1$.,. .,.......

l. James R •. Bitr,er. a.nd Edwa.1.·d M • .Reingold, •Back~rack

P7~_ramming T_echni<Jl1e~", Crnnm$ ACM (nov. 1975), 65l-fi55,

2. Donald E$ J.nutt11 "Estimating the Efficlency of

Backtrack Programs'" t Tech .. l~Ap. St:an-CS-74-4,42,

~om.puter Science Depa:ctment, Sti'!t.u":ord University,

~gust 1974.

()

0

0

