SETL Newsletter Number 156 ' Bugust 1, 1975
The Next Phase of Our Woxk - Jd. Schwartz

The fully compiled version of the SETL system (SETLC) is
now functioning adequately (though problems still exist;
see below). Our main effort from now on will be directed
at the global optimization of SETL. Toward this end the
following has already been done:

(a) A large variety of peephole optimizations have been
installed. Our experieﬁce with these is'disappointing;

_apeed gain is small. This makes it clear that purely local

optimization of SETL cannct improve its speed much.

{(b) Extensive, but still quite unpolished, SETL code for
the various forms of global analysis described in ‘'Optimization
of Very High Level Languages' (Jour. Prog. Langs., v. 1, # 2,3)
has been developed.

(c) Dave Shields' work on globhal optimization of LITTLE is
going forward. When complete, this should improve the speed
of our whole system by about 20 %.
~ (d) A semi-automatic data structure choice scheme has been
outlined in NL 151.

Two related but distinct possibilities now lie open to us:

i. To implement the various 'easy' fully automatic
optimizations which can be based on the analysis (b). The

- main opportunities here are: test elision based on typefind-

ing, elimination of unnecessary copying, a better treatment

of integers based on 'short integer' detection, and various
subroutine linkage optimizations. This should improve system
speed by about 50% on the average, and give us a svstem
which runs between 4 and 40 times more slowly than LITTLE.
ii. To work out the data structure choice scheme fully,
and to implement it. This should double, or in some cases

- even triple, system speed.

It seems to me best to push implementation of (i} ir parallel
with the development of SETL aigorithms for (ii).

SETL~156-2

The reason is that much of the work involved in (i), speci-
fically typefinding, destructive use finding, and detection
of non-recursive subprocedures,will have to he done eoven after
data structure declarationsg are provided, and annther maior
part of (i), namely inclusion/membership analyvsis, shouié also
- be performed sincevit will help check the validity of a user's
data structure declarations. Given these facts, it seems
appropriate to let the relatively well defined parts cf the
optimizer move ahead ‘to implementation even though other
parts of it still await detailed definition.

Implementing the optimizations (i) will involve the following
steps:

(1) Revision and cleanup of the present set of global
analysis algorithms.

(2) Transcription of these algorithms into MIDL. As output,
the MIDL codes should produce intermediate text in which the
types of variables are made explicit, 'short' integers are noted
as such, and cases in which operations can be performed destruc-
tively are noted. Dead set-valued variables should bhe set to Q
to facilitate garbage collection. Cases in which SETLT performs
an operation destructively without the legitimacy of doing seo
being confirmed by global analysis should be flagged and should
cause the emission of warning diagnostics. Subroutine linkage
optimizations should include detection of nonrecursive routines,
which can eliminate considerable amounts of stack manipulation
and simplify access to temporary variables; and should also
detect parameters—-not-read/parameters-not-written, for which
some of the ordinary parameter transmission overhead can he
elided.

Inclusion and membership information gathered by the global
_ analysis routines should be made available in the form of
‘Program annotations.

(3) The present SETL run-time library must then be extended

to include rcoutines which perform existing SRTL functions, but

SETL-156-3

perform them more efficiently hy exploiting krowledge conzerning

types. The simplest of these routinss can in fact D maoros
intended for in-line compilstion,
(4) Routines which tranzform intermediate text inte LITTLE

)

code (which of course will consist largely of stack manigualation
code and of calls to the extendad run time library) nust be

ccded.

The gsteps invelved in development and subsequent implesentation
of the data structure choice system {ii) are a3 follows:

(1) pefinition of a set of routines, or rather 'routine

skeletons®, which realize the operations of SETL for objects
represernited in all possible hkasings. Versions of these routines
ghowing the effects of all useful elisicns must alsc be
‘prepared, and ‘'time formulae', which give the exmected ewecuticn
time of each routine must be developed. This material, when
complete, will extend the present SETL specification of &R7TL
considerably.

(:) (2) The 'routine skeletons' that we have must mentioned are
skeletal rather than complete because the skeleton rokel invoked,

to handle an object © of given representation will contain

o)
eA)
2]

{
e

i1

calls to SETL primitives whose actual form wii ApeEn:

%
)

on the manner in which the subparts of o are represented. IRy
substituting appropriate, specific routine calls for thess
'generic’ calis to primitives one can produce actual routinas
from routine skeletons. Algorithms governing these subatitubions
need to be worked out.

(3) When the algorithms needed for steps (1) and (2) are
complete, they should be implemented. Once this is done, a
mechanism which can generate indefinitely many codes that
perform set~theoretic operations (on objects with
different representations) will be availlable. Then these

routines, and the whele system which produces them, will necod

to be debugged. Once debugged, thegse routines can be tirved. tha tind
(;) figures thus obtained will tell us how much speed gain our Gata

structure choice system can possihly attain.

- SETL-156-4

e

{4) A detailed syntax for data structure declarations will
have to be derigned and installed in the front end of the
optimizing SETL systen. A%gﬂrtfhﬁs wriich check declarations
for consistency with glchally gathered type and inclusion/
menbership information will have to be huilt up also.
Inconsistencies should be treated as fatal errors producing
diagnostics; cases in which data structure declarations go
beyond the global information gathered hy the compiler
sbould be flagged with warning diasgnostics,

(5) To complete the system, .one will need to construct
algoxlthms which deduve the representation of every object
appearing in a program, which buiid up appropriate routines
for‘each SETI: primitive which the program invokes, and which
compile calls to these rcutines (or which insert them in-line

vhere this is more appropriate).

Deficiencies of the present SETLC system

SETLC is no bulkier than SETLZ, but compiles programs,
especially short programs. much more slowly. To develop an
optimizer the present SETL front end will.pave to be redesigned,
and this makes any heavy interim front end reconstruction
unlikely. However, a few easy patches 4o the present
gsystem can probably increase its compile speed significantly,
and it is probably worth making these. One very easy patch is
to use a version of the run-time library with the SRTL macro-
decks predigested., which for short programs will save ‘
congiderable time in the final (LITTLE) compile phase.

