
l

•

0

SETL Newsletter Nunber 156

The Next Phas_~of Our Work

A.ugust 1 I' 1975

,J. Schwa.rt: z

The fully compiled version of the SETL system (SETLC) is

now functioning adequately (though problems still exist;

see below). Our main· effort from now on will be directed

at the global optimization of SETL. TCMard this end the

following has already been done:
(a) A large variety of peephole optimizations have been

installed. Our experience with these is disappointing;

_speed gain is small. This ma~es it clear that purely local

optimization of SETL cannot improve its speed much.
(b) Extensive, but still quite unpolished, SETL code for

the various forms of global· an_alysis described in 'Optimi zat:i.on

of Very High Level Languages' (Jour. Prog. Langs.i v. 1, t 2,3)

has been developed.

(c) Dave Shields' work on global optimization of LJT•rLE is

going forward. When complete, this should improve the speed

of our whole system by about 20 %.

(d) A semi-automatic data structure choice scheme has been

outlined in NL 151.

Two related but distinct possi.bilities now lie open to us:

i. To implement the various 'easy' fully automatic

optimizations which can be based on the analysis (b} . The

- main opportunities here are: test elision based on type find

ing, elimination of unnecessary copying, a better treatment

of integers based on • short integer' detection, and various

subroutine linkage optimizations. Th.is should improw~ system

speed by about 50% on the ave:r·age, and give us a system

which runs between 4 and 40 times more slowly than LITTI.E.

ii. To work out the data structure d1oice scheme fully,

and to implemE:nt it. This sh!:mld double, or ir1 some cases

even triple, system speed.
It seems to me best to push .imple:,nen tat ion ".Jf (i.; .in ·parallel

with the development of SETL algorithms for (ii).

SETL-156-2

The reason :i.s that much of the work i.nvol ved in { i) , speci- (')

fically type finding; de~tructi ve use finding, and det~ct.ion

of non-recursive subprocedures ,will ha.Ve to h':' di.'.'.tr!e cvE=~n after

data structure declarations are provided, and. another major

part of (i) , namely inclusion/mernbershi p analysis, sh0,ild also

be performed since it will help check the validity of a user's

data structure declarations. Given these facts, it seems
appropriate to let the relatively well defined parts of the

optimizer move ahead to implementation even though other

parts of it still ~wait detailed definition.

Implementing the optimizations (i) will involve the following

stepaa

(1) Revlsion and cleanup of the present set of global

analysis algorithms.

(2) Transcription of these algorithms into MIDL. As output,

the MIDL codes should produce intermediate text in which the

types of variables are made explicit, 'short' integers are noted

as such,and cases in which operations can be performed destruc

tively are noted. Dead set-valued variables should he set to 0

to facilitate garbage collection. Cases in which SBTL~ performs

an operation destructively without the legitimacy of doing so

being confirmed by global analysis should· be flagged and should

cause the emission of warning diagnostics. Subroutine linkage
optimizations should include detection of nonr~cursive routines,

which can eliminate considerable amounts of stack manipulation

and simplify access to temporary variables; and should also

detect paraneters-not-read/parameters-not-wri tten, for which

some of the ordinary parameter transmission overhead can he

elided.

Inclusion and membership information gathered by the global
analysis routines should be made available in the form nf

·program annotations.

(3) The present SETL run-time library must then be extended

to include routines which perform existinq SR'T'L funrtic,ns, but

•

0

SETL-156-3

• perform the.rn more efficiently by exploiting knowledge concenl.ing

types. The ~,implest of th<e5~ :tr.iUt.ines can ir: fact b;:- :-!,,'<.:'.Jr~

intended fo.r in-line compi 1c'..t::ion ..

0

0

(4) Routines which tram=1fo.nn intenoodiate t.ext i:1to LI'T''!'LE

code (which of course will consist largely of star:k rnarilp'...1l.s.t.i-:n

code and of calls to the extended run timl'.! library) must be

coded.

The st.eps involved in development and subsequent implement: atio:1

f th d t h . ("') ~ .,1 o e a a st:r-ncture c tOJ.ce system \ i.1. are as ,1._0.1. ows:

(1) Definition of a set of routines, or r.ather 'routine

skeletons', which realize the operations of SETL for. •."Jb jcicts

represented in all possibl~ bas:i ngs ~ Ver::d or..s of these r~.)L,tl.n.;::s

showing the effects of al 1 useful elisions .must also be

· ~repared, and 'time formulae i, whi.ch 9ive the P.XPected execution

time of each routine must be developed. This riiate:rial, v;hen

complete, will e,ct:end the present. SETL specifi,:::ati.nn of r:~'r-L

-considerably.

(2} The 'routine skeletons' that we have must mentioned are

skeletal rat:her than complete· because the skeJ Pton rr !.:e 7 ir:voked,

to handle an object o of gi. ven :representation wi. 11 ccm t: c1 in

calls to SETL pr:i.rnitives whose act.ual form wi 11 depe:.,d

on the manner in which the subparts of o are represe:ntec:, Py

substituting appropriate, specific routine calls for thP-s.,.:;

'generic' calls to primitives one Gan producP- net ,1a 1 roud nes

from routine skeletons. Algorithms governing these :;;ub;;,:·lt-t1Lior,.s

need to be worked out.

(3) When the algorithms needed for steps (1) and (2) are

complete, they should be ii:l4-,lemented, Once U is is -:'3.one i a

mechanism which can generate indefinitely many cocles t.:h:-:it

perform set-ti:'1eoreti c operations (on ohje,::ts with

different representations) wi 11 be a~n;i lab'.! e. Then these

routines, and the whole system which produces tJ1em, wi 1 l. N:>:c·d

to be debugged. Once debu9ged, ther,e ro'._:tine:e: C,ln bt" t"i:r,,,d· thr· um· i 0

figures thus obtained will tfJll us ho1,,,1 much speed gain our ,-J,H ,'!.

structure choice system can poss:i.bJ.,Y attain.

SE'l'L-156-4

(4) Jot detailed syntax for data structurF:? declarations will

have t.t:, be deeigned and inst.a11ed in th!-'. front end of the

optimizing SETL system. AlgorJ.thro.s wrt:ich c:heck decJ.a;:-v_tJ.ons

for consistency wi. t.h global Jy gatherP:d type and i:1r.:-lusion/

menib~rship informa.tion will have to be bl1ilt up also.

Inconsistencies should be treated as fatal f--:rro.r.s producing

diagnostics; cases in whim data st:cucture declarations go

beyond the. global information gathered by the compiler
should be f lagge,:1 with ~arning diaqnostics.

(5) To complete the system, ,one will need to construct

algor.i thrns whi.(".h deduce the representation of every object

appeari1,g· in a pr.ogram; whi(",h bui. ld up appropr.i.ate routines

for each SETL primitlve which the program invok.es I and which

compile calls to th~se routines (c,r which insert t..hera in-line

where this is more appropriate).

DtJficienoiee of th8 present SETLC system

SETLC is no bulkier than SETLA, but compiles programs,

especially short programs. much more slowly. To develop an

optimizer the present SETL front end will ~ave to he redesigned,

and t.his makes any heavy inte:rim front enf1. reconstruction

~nlikely. However, a few easy patches ~o the present

system can probably increase its compile speed significantly,

a.T\d it is probably worth making these. One very easy pat.eh :i $

to use a v'ersion of the run-time library with the SRTL macro

decks predigested, which for short programs will save

consider;_ble t.ime in the final (LITTLE) compile phase.

-•

G

