
•

•

0

SETL Newsletter f· 157

'W'henever' .Dictions

1,. !Jltroduction, Specification.

J.T. Schwartz
August 7, 1975

Dictions of the 'whenever' typo are of much potential interest,

since they facilitate description and simulation of very general

oystem models without requiring heavy use of ordinary procedural

dictfons. This newsletter will propose a family of dictions of .
this kind as supplements to SETL, and will give a few examples

ahowing the use of the dictions proposed.

When the dictions in which we are interested are used, an

enviromnent of (pseudo-) parallel processes will come into beinge

For this reaaon, we begin ·by determining some important facts

concerning the semantics -of processes •
1. Processes are introduced as additional semantic objects

within SETL~ These objects' are treated essentially as ato~s;

th~y do have internal components whose significance it is

i1l.portant to understand, but most of these compo::ients are not

dia:ectly' acces~ible. Basically a process can execute, and can

fl),:zit for particular conditions to arise before it executes •

.ii. The components of a prc.,cess are

a. a blank atom 6 the proaesa identifie1", ,v-hich identifies

the process uniquely.
1:r~. its int,~rnal staak, which at any given moment will

show l30me chain of procedure invodations, bindinqs of the

v-atriables in these procedures to abstract addresses, return locations,

a current instruction location, etc.

c. an integer priority.

d. an abstra;::t address, the e1'ror address of the process

(see below) #

~~i\:: ;
--~! :; '

'"·

',.·.

. i.

· e1rrt:-1s1-2

·· iilo · To create a new pa:0cess p, use the exp:.:ession

•(l} newprocess (f, e, x1 , ,xn).

':tie" the value of f must be a procedure, and e must be a

variable~ · We c&ll. f the initial pl'oceduPe of the process p.

~he abstract address bound to the variable e when (1) is

evaluated be,comes the error address of the process p. The
procedure f must haven parameters .. When p first begins to
execute,-·the pr·ocedure f will be called, and the creation-time

values of x1 , •• ~,xn will then be transmitted to fas its initial

argumen~ values.

When p ts first ~1:eated, its priority ir; zero and its

internal state ifJ! null. If a SETL error occurs while a process

p is executing~ the value bound to the error address of the
procesa becomes n.

Processes can be set members an(!»-tuple components.

iv. Nam~scoping rules very much like those of SE•rL

co11tinue · to be used. Note that dynamic compilation is not being

supported, &o that we ca.n continue to assume, as in SETL, that

all the program. text entering into a group of processes is

presented for t~ompilation at one time, and· that ➔his text is

oz:·ganised into a set S of namescopes and- proceduras; cf.O.P. II,

pp. 69-89. Each vcn:-iable in this text 'belongs tov, i.e., is

:owned b~t' SOIW:; pr.ccedure (in the standard SE'TL sense; cf. O.P. II,

pp. &S',-39) .. The creation of a process will -create a base-level r

process-local coi?Y of (the variables owned by:i each procedure of

·the set S, and r2ct:,rsion will create addi tio:1,11 copies of these

VP..riables.

To mak~ it porsible for p:t·ocesses to interact, we al:.ow

processes to a-:;,;:~s::-, cmd to write into each o the1. 's var ic.lbl.es.

For t.r..is purpoF;e e 'process qua·lif.ied' vad.2.bles are made

,P available. Su::-!h a vari.able is written

pe:;::pn ~ varname

0

•

0

•

•

0

SETL-157-3

wher€: pe:.epn is: a process-valued a"<pression, and varname is a

variable name~ The process-qualified variable (2) is at any

given moment bound to precisely the abstract address to which

Va~name is bound in the process d&s~gnated by pe~pn. The

_operator'•' appearing in (2) has maximal priority and associates

to the left.
It will often be the case that certain of the variables

frequently used in some gr.oup of routines should be taken to

refer, not to the data environment of th·e process p in whica

they are accessed, but to the copy of v that exists in some

·other process qo J:t is inconvenient in such cases to have to

write q~v instead of v repeatedly. To make this unnecessary,

we make available a declaration of the fonn

sul:>grdinate ·
"
" Here v1 , •.• ,vn,vi'r~•·v~~,••· are variable names, and pexpn, pexpn'

are expressions (which, when evaluated, should have processes

as values). This declaration acts much like a macro, substituting

pexpn.vj. for each occurence of vj within the zone in which the

declaration is active .. Note that a suborainate. declaration,

like a macro, belongs -to some particul&r SETL scope and is active

there.

v. When the primitive nulladic operator

self

is executed within a process p, the value p is returned.

The monadic p,r.imi t.i ve

. pr1or1 ... y.p

retrieves the priorit.y of the process p, and can be used in

sinister position ~.:o set the priority of p.

vi. A process can wait for a given condition to be satisfied
by executing the statement

where C iia a boolean expression. This boolean expression can

iit1volve function calls, but is not allowed to have any side

effects, and should not involve any constructicH! which could

possibly loop., A process for which c evaluates to ~ is said
to be ready; of all the pr.ocesses ready at a_ given moment, some
process of maximum priority is chosen- to actually execute., It
is intended that awa~,..!:. should be implemented efficiently, and
actually as a 'nonbusy' wait.

A process which executes an ·!!_wait statement will often be

attaiting on.e of several disjoint events; depending on the event

which occurs first, it will then take one or another action.

Fc,r use: in such situations, we provide a generalised await

statement, having the following syntactic form:

·await: (c1 ,c2 , •• _.,cn) 11 ,.e. 2 , ,.tn;

.Here c1 11••·,Cn are boolean conditions, and .11. 1 , •.• ,x.n. labels .. This

generalised await. staten,ent is equivalent to the statement group: •

await: ••• or C; - n /* ctnd then; * /

g~ to if c1 t.hen 11 else if c2 then t 2 else if •.. else tn;
vii. We shall now mention a useful extension of ordinary

SETL that can. be particularly useful when SETL is extended in

t...hE manner decscribed in the preceeding pages. This has to do

with the return o:£ argument values after a procedure call

(1)

S1,.tp.pose that an argu."l"ent of such a call is, aH shown, an expression

e:cpn. Let the principc:i.l operator of e.:cpn, i.P.., the opeTato-r

i;-.xe-:::uted first when expn is evaluated, be f. The:·1 if a standard

ainister meanins is defined for f (this will be ~1e case for

CETtain primitive operators f I' and cim also be th<: cas'=~ for user~d~f ined

f} , and if subi• chc.nges the value of the formal parame-t:er

cc:.n:-::esponding tc. fr then we can let this chan9e of value be
propagated back upc~ return, i.e., can treat (1) a~ if it w0re

tem:;:, ,:: expn r

scn::: (temp, ... : ::

0

•
SETL-J.57-5

If such an expression must be applied to several of the arguments

of a call, a left-to-right rule ,will govern.

From our present point of view the most significant thing

in all of this is that it allows us to pass 'process qualified'

variables to subprocedures which will change them. I.e., if

we write

(3) subr (p • v, •. *) ;

then the value ~f p.v will be transmitted to subr and if subr

changes its first param~ter a corresponding change to p.v wil:l.

be made after :return from subr.. Note however that the call (3)

behave:is like

(4) temp = p. v;

subr (temp, .•.);

p.v = temp;

C) so that subr will continue to use the parameter value transmitted

to it even if an await is executed in subr and the value of the

0

variable v r:>f the process p is then changed by p or by some
other processo

viii. The body of code constituting a single 'job' or

'program' c:<>nsist.s of a 'main program' and a group of subprocedures.
Execution ~tarts with a single process in existence, just

b,:?ginning t.o execute the main program.

2. How to 1:.~~ent_otl:i-_~- usefy.1 parallel-processing constructs.

•:erm.ina te. This can be represented as

await false:

ii. Suspend_, resume. To give each process a 'ready flag'

which pre1;ents process execution when not set~ introduce an

addi.tJ.onaJl variable l'eady.flag, and ~interpret

as await: readyflag and C;

then

and resume P;

- .•

SETL-157-6

are ;ces:pect:i.vely

(p l:! ptemp) • :r.eadyflag = fa·lse;

if ·ptemp !.st. p~lf: t~ian await -~.readyfl~g ~ ·~;

and (for resume:) Cwww,cA--

(p) • ready flag = ,E:Ue;.

..

Note however that the suspend and resume operations thus
i.ntroduced can be implemented (as primitives) more efficiently

t11an the general ~ai.t ape.ration. In particular, it is never

n~~cessary to re-evaluate a condition. c awaited by a process

whose ready flag is not set. However, we choose not to consider
suspend and resume as primitives since we are concentrating, in

confonnity with the SETL spirit, on logical power rather than
cptimization of this kind .•

0

0

0

0

l)

SETL-157-7

2. Examples •

. It is now appropriate to give a few examples showing the use

of the dictions that have just been described. Our first example

is a simulation, which we shall write in a way indicating how

more general: simulatlonf could be handled. In m1r example,

ct1stomers appear at a first service window at which ka servers

are present,, join the shortest one of ka service queues there,

receive service, and th~n proceed to a second window to receive

service, this time from one of kb servers. The arrival and

service-time distributions are poissonian with respective mean

inter-event times ta, tsa, tsb. The simulation runs for a

time tlim; time average queue lengths are produced as output.

/* start of main program, which will also function as a master*/

/* timer~create servers, which will initialise their queues to null*/

serversa = {newprocess{server,comervar, tsa,self), l< n < ka};

serversb i: {newprocess('server, cometvar,tsb,self), l< n < kb};

/* comevazt is a common error variable, which should never be used*/

currentime· m O; /* simulated time*/

timealarmset e nt; /* set of critical times*/

/* create customer arrival generator-*/

p = newprocess(starter, comervar, ta,self);

/* drop to lower priority and enter event-management loop*/

EEJ.or_i ty self = - 1;
(while timealarrnset ~ nt and time tt tlim)

([m.in: t E timealarmset] t) is nextime) out tirnealarmset;

if nextime ~ tlim then quit;; currentime == nextime;

end while;

/* now ca.lculate wai tinq time sums and print out averages * /
<V~E(serversa. + servers~)) updateq (serverr currentime);;
suma. =· [+: s e serversa] qtime(s),

smnb =-· [+: s E serversb] qtime(s);

Er:i.nt: 'avera.ge w;iiting time -·--
in first queue', suma/tlirn;

)2t"int_, __ eaverage w::1.iting time in second queue 1
, sumb/tlim;

/-t! end of main prog:ram ~1

SETL-157-8

/-m next follow a group of routines for queue mai.ntainance */

defi.:nef time (s); /* retrieves accumulated queue .time. * /
return s.queue(l) (1); /*sis the queue's server */

end time,
d.efinef update (s, timen); /* updates accumulated queue time */
s.,queue(l) {1) = s .. queue(l) (1) + (timen-s.queue(l) (2)) * (#s.queue-1)

&.queue(l) (2) ~ timen;
return;

end upda~e;

define x ~ s, /* makes qu.eue insertion * /
update(s,· currentime. master)

e .queue rie s .queue + <x>

return;
end j

definef g;hea~c~ ~:
update I q, currentirne. maste:t·) ;

head= -q{2);
...

q m <q(l)> + q(3:);

return head; end s_r,eadou"t;,;

/~' ne>{t follow the 1 ser,rer ' and

dt~fine server (tserv, master} ~

queue= <<O,O>>; /* initialise

the w customer·, procedures * /
/* master is master time.r: process*/

queue. first component is

C'

•
< time-accumulated, time-,J.astchanqe:\c·~ * /

wrd.t; await(~ queue) !LC l; /* queue is lo~al to this routine and

process*/

customr: = qh~3adout queue; ... _______ ,

holdfor - tserv * log (E_.tmdom) ;

/ 1t note that random generates a. randcm real in the interval (0,1]

/;: the 1ogarit'.'1m convex·ts thiH to a poisso:1ian rctndom quantity

cnsto:mr • g,::\ = true; i* resume customer activity * /
90 to ~it;
2md server;

-J,.· /

0

~.

:it.,~

. SETL-157-9

define customer (master) 1

s • [minaerv: a e serversa.master) s; /* find minimum lengt..h queu€ */

. !!.!!·'1s·~i
'

,.,;, .go • false; awa-it ~o !SI~'
J s .; · [minserv:, ·-. e, ae;rve.rsb. master] s1 /* proceed to second window * /

,.

,
,!

.
~

t.

0

self !n5.s1

go • false; await go ·5 !rue;
terminate;
end customer;

·definef sa minserv sb1
return if f(sa. queue)
end minserv;

/* auxiliary function-selects shortest queue

~ t (sb.queue) then sa else sb;

/* next follows the routine for generating new customers,i */
. /* together with e I hold for specified period' fu1!-ction. * I

define starter (timst, master);
start:. p ~ newprocess (cu~tomer, comervar, master);

/* cf. earlier comment concerning comervar */
holdfor - timst * log (E1ndom); /* to secure Poissonian arrivals*/ .
~J~ to start;
end starter;
define holdfor tim~,

(currentime + time is timewant) in master.timea.larmset;
~wait master. currentime ~ timewant:
return;
end tiol,dfo;:,

Our next. exam:9le is a consider"'bly more· complex· simulation,

namely a va:ria.nt of t.he 'Stanford elevator' simnlation described

in Kr.iuth, v. I, pp~ 280-293. Thit: involves a single elevator
s,en'f'ing a buildi.ng of n.f'lao.ra + 1 floors, where floor O is the

basement, ~.nd floor 1 is the elevatort s homing position, , For

this simulation we use si:x:. classes of processes: a master timer. an

elevator, passenge::· processes, a passenger starter, and two

e.~iliary p:rocessef1; one of which repushes dropped buttons for
1w .. ti ting passen.gers who have. not been able to get on an elevator.

'II/
J

,1,.

SE'l'L-157-10

:neem.use it waii full, the other of which can set the elevator I s

direotion c,f motion before anyone gets into it if it has been

waiti~g with doors open for a sufficiently lon~ time (because

of numerous people exiting).• The master timer and passenger - .J,j;,

starters have quite conventional structures, and the two

auxiliary processes are simple also •. The elevator acts as

follows: initially, it wa1. ts, empty, with doors dosed, at

floor 1,

pressed.
waiting

If the

for an external call button (up or down} to be

first button pressed is on another floor, it

prepares to move in the appropriate direction: otherwise, it"

pr:epnres to open its doors. Once the elevator starts to movE!

j_n a given di~ectlon it will continue to do so c!S long as a.ny

call remains to be serviced in that direction (at any given

w1ome11t the elevator is goingup or goingdoum state, or in

neither state, i~e .. 11 in a neutral state.) When preparing to

open its doors, the elevator first sees if it has more calls

to service in the direction in which it has been moving, and,

if not, reverses its state of motion if it has work to reach

in the opposite direction. Otherwise, it passes into ne~tral

state. Then the doors begin to open, and are fully open 2 sec.

later~ At this poj_nt, an afl_xilia.ry resolver process is started;

if the elevator is still in neutral condition with its doors

riot closed 28 sec. later, th.is process will send it in the

di:n?{!tion ;:if the lowest floor oh which a call has been signalled.

/d:ter the doors ha<Je been open for 5. 6 sec., or 2. 5 sec. after

;1. pasaenge.r steps into• cc_ neutra.1 elevator if this is earlier,

the '-'oors ':liI 1,, if th12:y ha.ve been unblockec, become partly

::losed: but j f bl?.-~ked 6.uring this time they will have sprung

~pen, and will only reach the partly closed condition 4.0 sec.

,~ft.E=ff the blockage: was :cr:moved. Or,ce partly closed, the doors

·w:U.l become fully closed in 2 seG. more; but if a pass:~nge:c

seeking entry appears in this· period, they wilI open again,

returning to the fully open condition after 2 sec.

0

0

0

0

SETL-157-11

When t..b.e doors are closed,the in•·elevator call light for.' the

floor just serviced is dropped, and also the call button for

the direction .i.n which the elevator will now move, unless the

elevator is in its neutral state. But if the elevator .i.s in
its neutral· state, a decision is taken as to its next direction

of motion: toward the call on the lowest floor, if any call

exists; otherwise, toward floor l (if the elevator is in

neutral on floor 1, it merely waits). When the doors close,

the auxiliary resolver process is capcelled. The elevator ,,

then accelerates for 1.5 sec. (if goingup; a little longer

if gc,ingdown), after which it proceeds to the nearest floor

at which it has r·e.ason to stop. The inter-floor transit time

i.s 5.1 sec. {if goingup; slightly longer if goingdown). On

approacqing its target_floor, the elevator takes l.4·sec. to
decelerate, and then returns to the start of its door opening

procedure.

The passenger procedure acts as follows: a passenger

entering the .system records his entry ti.'11e and establishes

a deadline after which he will leave the system ~nless the

elevator is on his floor, doors opening, proceeding in the

desired direction). Suppose that the passenger wishes to

go up. If at the moment of the passenger's arrival the doors
are partly b~t not fully open, he will signal the door for

i.nt<:n.ediate openi.ng (possibly reopening) and join a queue of

persons wishing to proceed upward. When he has advanced to

the front of thii:; queue, and provided that the elevator doors

are fully oprmf that the elevator is proceeding in the direction

desired ~nd not full, that all these wishing to get off the

elevator at its present position have done so, and that the

elevator. doer is not blocked by another person, he steps on

the elevator, presses a button indicating his current floor,

leaves the queue of persons waiting ut his service floor, and

joins the st.ack of persons who ,dll leave the elevator at his

destination floor.

•

•

.SET.1'.,-157-12

The elevator door is blocked for 2.5 sec. as ench passenger

get~ on or off. Note that if the elevator is in a neutral

cor.dit.ion when a passenger.t p reaches the head of his waiting

qu-eue.1 p will step on if either no passenger is proceeding in

the opposite direction from the same floor or if p has arrived

in the system before the first passe:riger (at the same floor)
proceeding in the opposite direction. In this neutral case, the firs·-:

passenger Gni:ering. thei elevator determines the direction in whic:h it

t,;;ill move,. Howevr:.,r: if this determination. in not made socr enoilgh, ti1:}

c'.in:ction of mot:i.on will be determined by the pattern of ca}.l

hutt:ons pi:ess•'!!d m> other floors.)

If a pasF.;engeir t::a.nnot get on the elevator by his perscmal

<J.eadline, he wi.11 leave the system, (and walk) if confronted

hy a closed ele,,ator door, a full elevator, or an elevator

proceeding in the wrong direction.
Once c.'l. p1:,1men,ger ,gets on the el8'vator, he r8mains on it

until his destination floor is reached, and the~ gets off,

lt':a.vinq the system, :PeopJ.e with a given desi.:.ina ti.on floor

Btep off the eleva t:c)r in inverse order of their elevator entry.

An i:,1depE~ndent process is used to ensure that an apr,rc:•priai:e

call button will ba pressed whenever a passenger is standinl

befc,re clog,ed doors waiting for an eleva. to:c.

The ~l-ev?.tor simulation runs for somE,' prf~ ~::;pee if ied p,-:rio-J

cf tim:-2:,. hs eutpi:tt, we record the average i.i.rne: th2.0 t pass,:H:;er:~; re-

11ire to be carried to t~eir Bestination, ~he n~~ter of p0sse~gers

carried,. the a"-.rer!.l.qe time w.-s.sted before ~d vi n~1 rn; rind walk i_··:cr,

,,;n.d th~= mm,her cf ,-,ould·-be pa·1~sEn~}e~s who a,·, :;ri '-'i~ up ;~j:1d \-va :,.k.

J.
' f'

&~·

SETL-157-13

/fJt main. prc,g!.'.'am of elemat.o:r rdmulation; aJ..,30 ·:unctions a.s * /
/* master timer~in.itialisation, creation of processes. */
currentime • O; /* simulated time*/
servicetime == O; /* accllr.lulated time spent getting elevator service*/

aervicenumber -01 /* nurr~er of passengers serviced*/

wasted time -
wastednumber

O;
Ill O;

/* accUinulated time wasted waiting for service*/

/* numher'of passenger who have given up*/

master a !2.!!1 /* this will be the master process */

£:1:"~21:'itI master = -1, /* this will run at low priority*/
/w create elevator process*/

.silevator = newprocess (relevator, comervar ,. master) ;

/* oomervar is a error variable which is formally required but*/

/* which should never be used.
/* create auxiliary resolv~r process . '

resolver= newprocess (rresolver, comervar, master, elevator);

*/

*/

/* create au..'tiliary button-push process, which operates at * /
/* higher priority */

pusher= newprocess {rpusher, comervar, elevator, master);

priorit_x pusher= 1:
/t'< initialise button settings and waiting queues · * I
,xpcall -= nult; down.call = ~; upqueue = nult; downqueue -- ?\.:.lt;

f O ~ Vn < ni°J~oors)
upcall(n) ~ f~~J /* no up - calls*/

downcmll(n) .. , !~_!.se;

Upq'.leue(n) ::i ~,lt;

dow:nqueue (n) -~

an,; \ifn;

/* no down - calls*/

/* no up-waiting passenge:rn * /
/* no down-wai tinq passenge1~s * /

,~ ~reate passengn~ starter precess*/

0

0

CJ

•

•

/r.1 at this point. simulation is over. print r,~sults * /
.E~: 'a,.rer.a.ge time: spent in waiting and elevator transit',

servicetime/servicemunbex;

2!~ r a't .. erag-~ number of persons who gbre up and walk, ';

per unit time', wastednumber/tlim;

~~~ 8 a'".rer~ge time wasted before giving up', wastedtime/wastednumbf::q 

/': end · of main program * / 
/

1
-.: ht1re foll.ow v.nrioua amdliary routines * / ' 

j,c3finef critical {time) J· /* designates ti.rne as critical r,.nment ii:/ 
t:bne i~ ti:meal1'!.rmset; 

:r •~tu:::n t:1.me 1 

and c:riticaJ.; 

/"'' nosw follow varlous quev.e and ~tack manipulating routi1v.?s * / 

/-l· the queue - mani.pulating routines are, like the queues they * / 
/~ manipulate, associated with the 'master' process; the 

mani..pulating routinea ,"3.nd the stacks they handle are 

a.:;sociated with th~ elevator 
d,~fine im~pqueue (p, inflrJor) ; 

jtt i11iSert& a passenger in an up queue * / 

stack-*/ 

;.itiater.upqueue (infJ.oor) "" ma.ster.upqueue 
.return; 

( inf loor) + <p> .~ 

2d1d: 

d~fit1e indownqueue (p, inflo<."ilr)·· 

,n1'tster. downqueue \ il,.floor) = n1aste:::.·. downquen.1e ( in floor) + <p>; 

r;',:<:?fixi.c~f fi.rotinupque { ifloor} , 

I:atu.rn 111.;;;;sb~r.·~ipqut'!1.1e (.ifloor) {.l;; 

o:1:·1c!, 

ci.,~f i:.e:': ::lrBt1.n..down.queu.e ( ifloorj 

:r·~b;tr:-n master.d.ctm ~Ut?:Ue ( iflocr} (l}; 

,t'ind; 



define f i.:r·e1.ou·r.'U!pqueue i ifleor) r / 1'de1etes first member of upq1!('-!th:: 

master a 'llpg:u«me ( ifloor) ,.,,,. master. upqueu.e ( ifloor) ( 2:) , 

return;· 
end; 

define f:t:rstoutdownqueue {ifloor); /* deletes first member of 
downqueue ·1< I 

mast.i?r .downqueue.( ifloor) · = master ;downqucue ( ifloor) ( 2:) ; 

re.tu::-n; 

end; 
defi:H~ iw'.'tut:stack { ifloor, p) 1 

/ 1c add:3 r.1.,~mber t-::i stack of pa.s.sengers wi tb g:i ven destination "/ 

/* outata.~:lc and -il.tJvator are assumed to bE.: global */ 
subordin~~- el~vator (outetack); 

outs tack { ifloor) = ,:,utstack ( ifloor) + <p>; 

return; 
end; 

definc1 outotitsta,~k (ifloor): 

~!'o~int~ ele·vator (outstack); 
0 

/* deletes m~mber :from stack of p:1ssengerf. with given destin-3.U.on * / 
/to: out a tc:ck and e: :i'.eva tor are assu;ned to be global * / 
outstack fifloor) (I outstack(ifloor)) ~ O; 

ret.u:::-'l'1; 

end: 

retm,:n s: . .c~vt :::or~ c:•t·,tst.c.ck{:l f 1ocr) ( ff ou!:stack ( if looor) ) ; · 

end ~iretoutatac~; 

/r. now 'fol1c ·.1 t:.T:;. ··: l:~.roce::dures whi.,~h define the main procer~nes of 

~he simulation 1 / 

dnfine rele~Jtor 

st1bordina t{,~ ruastBr (currenti~a, nfl00rs); 

floor 

0 



• 

• 

, .. :,."::'" .... "ltll ll;.'. ·n .. "i<-• C-·"·!-•9 t;'l· ... '· -........... " \r,.- __.!.!.:,;.:,::, ~u. ...... o ....,,\.,.J...., 

(0 :;. Vn. 5;. nflooi:s) 

carcall(n).: falsei 
outstack(n) = ~; 

end Vn 1 

/ * ' ' t l J t 1 ·, d * / 1n1 a--Yu. car no· ea ie 

/* initially, no passengers*/ 

waitingposn: ~ O < '3 n < nfloors I (upcall {n) or downcall (n)) : 

if£'?~~ {upccill(l) !~ downcall(l)) th,,m 

de~isioni /* call decision routine to set dirccti.on of m~ti2° 

,Jo to ~,:::-epa.remove 1 

end if; 
pr,~par_etoope~u /t :EL:tsl: adjust elevator state * / 

ish:f. 13hercall = floor < _:l n < nfloors [ (upcall (n) or 

""- downcall (n) ~E ca:ccaJ..1 (n} \ 

islowe:rcall = floor > '3 n · !_ 0 I (upcal1 (n) 2E downcall (n) or 

carcall(n)); 

if goingup ~ ~2.! ishighercall then 

goinqup = !_a~1 

if ialowercall then goingdown = !~~~;; 

else if goir1gdown imd ~! islowercall then 

~~oingdcwn =. fa~: 

if ish::.gerca.11 then goingup = }-n~; ; 

if !!.9...! {go.ir.,qup £!, goingdown) then nentra.l = true; ; 

dooropen : .!::::.:.~~; /* nc•w door starts ·:o op-:!n * / 
open.ing~ ho.ldfm· 20; 

do-orfullopen ~•· true; /* now dco::· :is fully open ~ / 

/* s~art dirsction - resolution process*/ 

reisc.lvm~.p:,:-oc~ed - _tr~~; resolver.rin,Jtir,1e = c-urreDb.;:1e + 280: 

startclosetime = critical (currentime + 15); 

:~'!~~:: currentime ~e.. starl:closetime; 

startclos~: closetim2 • critic~l (currentirne ~ 40); 

gc t t ir·s .:i. r,.t)U t) 

almos: i:lo,-; ed, 



I 
.alir.ostclosedi: clcn:;,€ti.me .:, critical {current:_me + 20); 

await: (OUZ'rerlti:me 5,!e clorwtime 1 hold.it; prepare;-nove, opE!n1nq;A _ _._N__ "-' 

caraall(floor} = falae1 
---- •-1 

i.f. !!2.!-:. goingdawn then upcall 

:tf not go.trlgup then downc,3.11 

(floor) n: 

f .f:l ) ~-a.. oor == 

false;; 

!2.~E.~; ; 
:lf. neu.trEal ths;1 decision; J /t:i call t:outine to set direction 

;tf neutral t}'k?n /* must be sitting at floor 1 * / 

go ~o waitingpoan; 

and i.f.; 

!!£!.<?:!£.'£ if gc,i.ng-..ip t:hen 15 els€< 23; /* period of acct~lcrat.:.or: ·:,/ 

.rf:-ving: floor =.11 floor + if g 1:;ingup then 1 e}.se - 1; 

hq__ld.J.S:!£ if goi.ngup then ~il t~lse 61; /* inL~:cf loor tran'.;i t time ;_./ 

reasont.o::,;top :: caroall ( floor} £E. goingup a:_1,~ upcal l ( f lr)or) 

.£E goi~gdown ~-~ dm--mca:.1 (f:i.oor) ?.E 

o:,!' gc:Lna-down and :not. floor :,. ..,. ,_ 0 I (upc:il1 (n) O·,~ d,o-:7nr~:,,'.., tr.·i ...;__":., ,; ... '-'~, •.. L.,,., 

carca1l(n})) 

ruMi (:7:lO<)Z' eq l or upcall(flocr} or dmvncall(fJ.oor.)); --=- _...... -- -· 

deceleration time*/ 
0~ tn pxeparetoopen; 

' z:.c1 t.o t:G,,. .. ,, .. ii;g; 

:, ; ::t..: t. :J < ] j ~ nf .too.rs I j E":~. f lcor ?.:£!.~ (:~areal 1 ( j) ~?E ur,::a1 .. : '. i) 

d6v·:icd11 {:j)) thsn if f locr nr: 1 then j ·-- ·:; -: nd:,. c; 



• 

• 

f,ETL-157-18 

if goingdcwn or goingup then neutral 

.1:etu:n1; 

= false;; -~--

dt~firn! rpaase.nger {:myfloor, mypatience, destfloor, 

/* passenger proc~dure */ 

rnasterrelevator), 

9UOOi:dinate 
. 

ma.:st.er ( currentime r upcall, downcall, 

aervicenurnber, wastednumber, service time, was'.iedtime) , 

el3vator(dooropen,doorfullopen,g~ingdown, goingup, 

ne•.1tral, holdit, floor, outEt:acl<, gettingd.nout, 

carcallr startclcse~ime); 

elapsadtime m O; .a.'l:rivedtime = currentime; 

deadline = critic.:?,l (arrivedtime + mypatience) 1 

if dt!~~tfloo:r !,t myfl.oor then go to down;: 

if doo;ropen !1-2:!2. floor ~ myfloor and ~ docrfulJ.open and ~'.ot_ 

goingdown then holdit = _!:rue;; 

irmpqueue (self, myfJ.oor); /* join queue of up waiters */ - ' 

waitmoreup: /* main waiting point for up waiters*/ 

.~wait.: (currentime ~ deadline, 

docrfullopen ,!_,nd £_ot goingdown ancl floor e~ myfl:Jor ;,me! 
· f:b:stin\1.p,gueue (royfloor)) ~ self and not full I ) ~1d 

(f outatack(myfloor)) ~!l 0) expi:i-edup, amfirstup; 

ex!;, ir~c u.p: 

~.we,it: 
/* if miss this turn then leave system*/ 

(~. doo:r:·open ~ floor !l.!:. myf:~oor .£E_ no_!: goinrJUl? 

2-!: {doorfullopen. -~ rn outst ick (myfloor)) ~-g· J and f\.:.J.J ( 

door.f1..illopen !).;;!!.'! (i outstack (rnyfloor)} ~_g O a~,:~ 

flocr ~:SI. rnyfloo~:- ~nd !}Ot full ( ) and :2..'?t 90.irvidown c•.n-3. 

fir:::tinupqueue (myflc•1::>r) et1 .~.:~~i) giveup, i.mf::.rstup; 

a:mLi.rntup: /* h€•!.f:.:! c,.re at head of upgoing grcup - * / 
/* cc,mpare w!th priority of first downgoer .,, / 

cangc• i= if firE:tindownqueue(myfloor) js fdown ~ ri then true 

elis;e arrivedtime _it: fdown.arrivedtime; 

if ZJ.O t c:a ngo the.r, 

fdm.rr: !'~.::~ f.-:.rstindownqueue (rny f'..oc,r) ; 

:J? t.c. wt:i. t..moreup; 



/,. at t.his .. pcdnt paHsenger will be abl,~ t'.) get on e].ev21 tor .,, / 0 
~~; ~f: gett5.nqinout; ;~ nobody els,2 getting ir: ()r out 1

/ 

firstcutupquE:ue (myf J.oor); ;n leave qu ~iue "/ 

e.nt~red: ·. gettinginout =· ~t. 

inouti:;t.ack(destfl.oo:r.,~,!_) ~ /* join gr::mp in elevator ''/ 

carcall (destfloor) = ·truer /* press button * I 
if 11eutral then 

neutral = _!~lse_; 

s;ta.i:tclcsetime = startclosetime min cri tica.l ( cur-rc=:nt.J:,-.-1,-:2 ·· ;: ::. ·; 

i.f destfloor 1"1:_ myfloor. then 

901. ng·up = ~!:; 

e11d if; 
end if n~utral; 

holdfor 25; 

qettinginout -- fa_l~_E=') 

~.t floor f-:S. destfloor and firstoutstac:1< (destfloor) ,;::o sE:H:' 

and door~ullopen and not gettingi~out; 
c. ... - -....-- -----.. 

gettix1g .inou.t. "" ~r,.xe .t 

outoutsta.ck(dcst.floor); holdfo~ 25; 

se-~icetime = servicetime + cu:t·renttimE'!-a..rrivedt.ime;' 

servicenum:Oei: .:, servicenumber + 1; getting i:-1ou t = fa.l !°:c.; 

~~3:.; 
qi veup: w·as·:ed.tirr,e =- wastedt.i.rrie ;- cu.n.:ent ime·-a rr .ivedt :i.r t":c. • 

wasted.number ~: was b:idni.;.mber ,;. J.; 

!!~!!~.±!:;.i:~::::.; 

/ "~ Fi. t:.h the c.::(e for thr:~ Ul,l9'0.ing ))i.'tS s:en9er s * / 
if d'tc,e,xope1: ~~~t £Joc,r .~.St my.f:Lco:r. an.1 nu·1: c·:1·,:irfnllop{)r :in:'. ··:c,t 

0 



• 
.... 

r)·aitrnon~down.: /* ma.Jn waiting pr:dnt for down wai.te.:-s */ 

await: (currentime 9:!:. deadline, 

doorfullopen -~ ~ goingup· an.a floor ~ myflcor ~nc! 

firstindownqueue{myfloor) ~ ~~-f and not full( } an<l 

(t outstack (myfloor)) ~ O} expiredown,amfirstdo'v:n; 

expiredown: /* if miss thi.s turn then leave system*/ 

.awai,!:;: (~! dooropen £!: floor ~ myfloor £.E. ~ _go:i.ngup 

or (doorfullopen ~ (# outstack(myfloor)) ~ O and fu1J( }} 

.:~ '.:,: __ _gcd.ngup and doorfullopen !!.'.!!d ( # outs tack (myfloor) ) ~ O ~nd floor ~9. 

111yfloor §1.Ild ~ full ( ) ~.!~~ f irstinupqueue (1nyfloor) eq se1:::; 

giveup, amfirstdown; 

amfi.rstdownt /* here are at head of downgoing group - */ 

/* compare with priority of first upgoer */ 

cango = 5.f firstinupqueue (myfloor) is fup ~ n then t.rue 

else a.rrivedtilne !e fup.arrivedtime; 

if !!!2!, cango then 

await fup ne firstindownqueu2 (myfloor); -- ·-
go to waitmoredown; 

end. if; 
/* at this point passenger will be able to get on elevator 

~ill !!-~ gett.ir:qinout; /* nobody else 9etting in or out * / 
fir.stoutdownqu.e1J.~(rnyfloo.r); /* leave queue*/ 

., go t:o entered; 

end rpa.ss,engeri 

define rresolver (rnaster, elevator); 

/* process forcin~ decision about state from first call ~1 

/ff if dom: .2tc,y~; open for J.on~I tirne / ' 

·1ff-.it.~ ~!:°:.i ~- rin.9t:.w~ 51!:. maste,r. currentim~ and proceed,. 

proc~etl ;-;: f:i.J.p~; 
decision; I* call docisi~n routine to d~te~pt 

to set direction of motion*/ 

await: {ele~ratcr, state ne neu+.:ral 1 

(,<·::in_< nfloors 1
1 (upca:i.l(n) )J.· r:~c;\,,'nc~,lJ(;1))} ':.'::tit,c.1:•\.·jj::· 

_, ~~looi 

end 1:reso J .. '1er ~ 



define rpusher ( clf~·vt, tor, mi!.ster) ; 

/* process to push button if passengers are.waiting*/ 

wait: await:(not elevator.doorooen and --- __,, •· -----

pushup; 

master.first:inupqu.e(ele:vator.floor} ne Q anci 

not elevator.upcall(elevator.floor), 

not eleva.tor .dooropen and master. f irsti.ndownqu,:.:0 :~e 

(elevator.floor) ne n and not elevator.dow~call 

(elevator.floor) pushup, pushdown 

upcall{olevator.floor) = !; go to wa~t; 

und rpuehetr: 

d~fine rstart(elevator,master); /* creates passengers for entry 

in s:rste:m * I 
new'i:ime '-" er. itica1 (rnaster. current5.me-tbetween * log,: ranoc,ri} ) 

/* tht~ 'log' serves to generate Poisso:1ian arrivals. tbet,,;)eer: '"/ 

/* is an exte~nal parameter which sets the mean inter-arrival tJ~~, 

awa.it master.cur:centirne ~ newtime; 

/* now generate random source and destination flooxs 

/* a more realistic,traffic p&ttern might be better) and use*;' 

/* a fixed time-to-exhaustion of patience for each passeng~r. ~1· 

so:ircefl.,)or ,::: i:,1tpa~~·t(~!!_d'E!.r master .nfloors) 

(whil'S' (intpart(f~~~.~,maste.r.nfloors) is ciestfloor) e.g_' 

sourcefloo=) no~p:: 

p ;,: n,r-n·r.::n::·oc~:_:::::. ( rpES',f:Tig!.~I'. c-:::.m(::rv2.r, sou:-:ce i) oor, pa tif~nc:0.co:r ,,; Li.;: t, 

destfl0or, master,elevatGr); 

end :r.-~,ta.r:t;: 

def inef full.; 

/* pa:r·e.mc;;ter.:.,:,85 fu:c".ction t•::• cif~terr:,ine w·hcther clevi, to:::: is : '.~ U. 

/·,- t:h,1: q.:antitie:::: e\e~,at:or.'i rntlsi;ey•.) ma:rt:cn;r:-:flocn•.s~ a"1d out::i·:'.'-'-. .. · , I 

0 



• 

SE'l'L·· 15 7 ~· 2 2 

try: 

/* f.r.om x, ,,;'hid:. is a. random real between (; a.na 3 ~ / 

if' bot (x * 
go tc. try; 

end intpart.1 

(n + 1) _i.;.~ m) f:. t (n 

/*note that the hold~o~ routine is precisely as in the 

1~ preceeding simulation • */ 



SETL-157-23 

3. Im2lementation and effic:.~ency cost estimo te. 

We shall now sketch. an implementation of the semantic 

mechanisms that have bean described in the preceeding pages, and 

estimate the efficiency cost of providing these mechanisms. !•le 

propose to provide the basic 'monitoring' capability needed to 

suppor:t the await diction as follows: With each (name resoJ.ved) 

variable v in a process p, we will associate a list of processes 

q, na1n~ly those processes currently awaiting conditions involvin•; 

v. We call this list the monitoring Ziet of v. We will also 

maintain- a ready· list of processes, hamely +-hose processes av1ai ting 

a condition that might be true since one of the variables 

invc,lved in it has cha.nged since the condition was la.st tested. 

Each a~it condition will reference all the variables upon 

which it depends. At any given moment, the highest priority . 

process on the active list will be executed. A process which 

executes an await whose condition fails is enqueued on the 

monitoring list of each variable appearing in the ~ait, and 

control is then passed to the highest priority process on the 

active list. A process which has been waiting, but ·which 

has moved to the active list by virtue of a change in some 

variable v,is logically dequeued from the monitor list of v 

when it becomes active, and dequeued from the lists of all 

remaining variables involved in the await if the await condition 

is satisfied; othendse it is logically requeued on any monitor 

1ists from which it may have been removed. 

Whenever the priority of a process p is changed, its ~ew 
priority is compared to that of the process q currently exE,cuting, e.nc'• 

also t-:> the highest priority process r ££ the active list; th'::n 

the pr.-ocess with hi.ghest·pxiority executes while the others a:re 

returned to the active list. 

The internal 11¼nvironment of a process is def irn~d by its 

invo:::ation stack and a tabie which gives the nu.mber of times 

each-subprocedure has been invoked within the process; of course, 
th ' ' . e invocation stack entries, each of which rcpr8sents a gener&tion 
of some va:riab:t.e, point to variable values stored i r; a co1Tc:10n J·ie<'1r,. 

0 

0 



• 
SETL-157-24 

.... 
A process stack will be maintained as a list of stack segrn~nts, 

each segment corre~ponding-_ to the iocal environment of or.e . . 
p~rticular process. This imposes a call/return overhead ... 
which is ~lightly, but not significantly, larger than the 
correspondi~g·overhead-in ordinary SETL. 

The implementation j~st outlined does not impose any 
overhead on load operations, but·when a var~able is changed 

its m?,riif:t.?ring list must be checked, and processes of higher 

priority found o·n this list must be moved to the active list. 

Honn.ally there will be no such processes, so the store operation 

will simply stretch out to S machine cycles from 1. ·rhe • 

.. overhead cost of this should be :rnod~t both for SETL and for 

program.a in a more arr:ay oriented language: probably less 

.- than 50%. Note that stm~es to compiier temporaries need not 

he checked, and that 9lohal analysis can be used to detect 

variables which.never appear in an await statement; stores to 

9uch variables clearly do not need to be checked either. 


