SETL Newsletter ¥ 157 J.T. Schwartz
‘ : August: 7, 1975

"Whenever' Dictions

1, Introduction, Specification.

Dictions of the 'whenever' type are of much potential interest,
gince they facilitate description and simulation of very generall
system models without requiring heavy use of ordinary procedural
dicticns. This newsletter will propose a family of dictions of
this kind as supplements to SETL, and will give a few exampleé
showing the use of the dictions proposed.

When the dictions in which we are interested are used, an
environment of (pseudo -) barallel prbcesses will come into being.

+ Por this reason, we begin by determining some important facts

concerning the semantics of processes. .

‘%’ 1. Processes are introduced as additicnal semantic objects
within S8ETL. These objects are treated essentially as atoms;
thay do have internal components whose significance it is
impogt&nt to understand, but most of these components are not
directly acecessible. Basically a process can ezecute, and can
witt for particular conditions to arise before it executes.

ii. The components of a ﬁrocess are
a. a blank atom, the process identifier, which identifies
tha process uniquely., ‘
Be its internal stack, which at any given moment will
show some chain of procedure invocations, bindings of the
variables in these procedures to abstract addresses,return locations,

a current iastruction location, etc.

c. an integer vriority.
d. an abstract address, the error address of the process
{see bhelow) ¢



e

Ty

= f

#*;iio' To craate a new process P, use the expression

‘5>§1§7T - * newprocess (f, e, HyemoorXpy ).

'wkeza,the value of £ must be a procedure, and e must be 2

variable. We call £ the initial procedure of the process p
The abstract address bound to the variable e when (1) is
evaluated becomeg the errcr addregss of the process p. The
procedure £ must have n parameters. When p first¢ begins to
execute, the proceduore f will be called, and the creation-time

- valuves of Koy poeosihy will then be transmitted to £ as its initial

axrgument values.

¥When p i8 first created, its priority is zero and its
internal state is null. If a SETL error occurs while a process
p is executing, the value bound to the error address of the
pBrocess becomes .

Processes can be set members ané~tuple components.

iv. Namascoping rules very much like thcose of SETL
continue - t¢ be usad. Note that dynamic compilation is not being
supported, so that we can continue to assume, as in SETYL, that
all the prograr text entering into a group of processes is
presented for compilation at one time, and that this text is
organised into a set $§ of namescopes and procedurzss; cf.0.P. II,
Pp. 6%-89. Bach veriable in this text 'belongs to', i.e., is

‘cwaned by' some procedwre {in the standard SETL sense; cf. O.P. II,
. 88-892). The creation of 2 process will create a base-level,
nrocess-local copny of{the variables owned by: each procedure of
the set 8, and recursion will create additicnal copies of these
variables.

To maks it poesible for processes to interact, we allow

gser Lo aac&sﬁ‘ané to write into each other's variables.
For this purpese, 'process qualified' variables are made

availahle, Such a variable is written

£2) . pexpn.varname




SETL~157~3

where pexpn i& a process-valued expression, and varname is a

.'v: variable namén Tha process—-qualified variable {2) is at any

given moment bound to precisely the abstract address to which
varname is bouad in the process designated by pexpn. The
_cperator '.' appearing in (2) has maximal priority and associates
0 the left.

It will often be the case that certain of the variables

frequently used in some group of routines should be taken to
?.refer,vnot to the data environment of the process p in which
they are accessed, but to the copy of v that exists in some

‘other process g. IXi is inconvenient in such cases to have to
write q.v instead of v repeatedly. To make this unnecessary,

we make available a declaration of the form

subgrdinate - pexpn (vl,...vn), pexpn' (vl'...vn'),...;

;,,... are variable names, and pexpn, pexpn'

are expressions (which, when evaluated, should have processes

»
Here vl,...,vn,vl'g«o.v

as values). This declaration acts much like a macro, substituting
pexpn.vj. for each occurence of Vj within the zone in which the
declaration is active. Note that a suborgjpate declaration,

like a macro, belongs to some particular SETL scope and is active
there.

V. When the primitive nulladic operator

" self

is executed within a process p, the value p is returned.

The monadic primitive

£
priority.p
retrieves the priority of the process p, and can be used in
sinister position to set the priority of p. .
vi. A process can wait for a given condition to be satisfied
by executing the s*atement

“await C;



possibly loop, A process for which C evaluates to true is said

GETL-15H7-4

where C i3 a boclean expression. This boolean expressicn can
iavolve function calls, but is not allowed to have any side
effects, and should no% invelve any construction which could

- to bea ready; of all the processes ready at a given moment, some

process of maximum priority is chosen to actually execute. It

gs_intended that await should be implemented efficiently, and
actually a$ a ‘nonbusy’ wait.
- A process which executes an await statement will often be

°

awaiting one of several disjoint events; depending on the event
vhich occurs first, it will then take one or another action.
For use in such situations, we provide a generalised await
statement, having the focllowing syntactic form:

awai't: (Cl'c2'oo'gpcn) £1’22'..0’zn;

Here Cly.,.,cn are boolean conditions, and zl,...,zn labels. This

generalised await statement is equivalent to the statement group: °
~await: €y or C, or ... or C; /* and then: %/

go to if C, then £; else if ¢, then L, else if ... else Lo
vii. We ghall now mention a wuseful extension of ordinary
SETL that can be particularly useful when SETI is extended in
the manner described in the preceeding pages. This has tc do
with the return of argument values after a procedure call

£

(1) suby {exph....}s

¥

Suppose that an argurent of such a cail is, as shown, an expression
g¢xpn. Let the princ¢ipal operatcr of expn, i.e., the operator

sxezated firet when expn is evaluated, be f. Then if a standard
ginister meaninc is defined for £ (this will be the case for

certain primitive operators £, and can also be the case for user-dafined
£y, ané if sudr chenges the value of the formal parameter

corvesponéing toe £, then we'can let this change of value be

propagated back upon return, i.e., c¢an treat (1) az if 1t were ‘:)
{2} “ e

temp = expng;

suDr {(temo, .. .);



SETL~157-5

f such an expression must be applied to several of the arguments

0 H
N

a call, a left-to-right rule will govern.

From our present point of view the most significant thing
in all of this is that it allows us to pass 'process qualified!'
variables to subprocedures which will change them. I.e., if '
we write

(3) subr (p.v,...};

then the value of p.v will be +fansmitted to subr and if subr
changes 1ts first parameter a correspondlng change to p.p will
be made after return from subr. Note however that the call (3)

behaves like

(4) temp = p. V;
subr (temp,...);:

r

p-v = temp;

so that subr will continue to use the parameter value transmitted
to it even if an await is executed in subr and the value of the
variable v of the process P is then changed by p or by scme
other process. _

viii. The body of code ceonstituting a single 'job' or
'prcgramf congists of a 'main program' and a group of subprocedures.
BExecution gtarts with a single process in existence, just

beginning {0 execute tlie main program.
o

2. How to represent other useful parallel-processing constructs.
i “erminate. This can be represented as

await false;

ii. Suspend, resume. To give each process & 'ready flag'
which prevents process execution when not set, introduce an
additional variable readyfleg, and reinterpret

await'C; - as await: readyflag and C;
then
guspend  p; and resume P;




SETL-157-6

ave respectively (for suspend:)
(p is ptemp) ., readyflag = false;

4% “ptemp eq eqlf then await self,readyflag eg true;
and (for resume:) a

{p). readyflag = true; ’

Note however that the suspend and resume operations thus
introduced can be implemented (as primitives) more efficiently
than the general await operation. In particular, it is never
nacessary to re-evaiuate a condition C awaited by a process
whose ready flag is not set. However, we choose not to consider
suspend and resume as primitives since we are concentrating, in
conformity with the SETL spirit, on logical power rather than
cptimization of this kind,



SETL-157~-7

2. Examples.

It is now appropriate to give a few examples showing the use
of the dictions that have just been described. Our first example

'is a simulation, which we shall write in a way indicating how

more general simulationg could be handled. In our example,
customers appear at a first service window at which ka servers

&re present, join the shortest one of ka service queues there,

receive service, and then proceed to a second window to receive
service, this time from one of kb servers. The arrival and

service-time distributions are poissonian with respective mean

inter-event times ta, tsa, tsb. The simulation runs for a
time tlim; time average queue lengths are prcduced as output.
/* start of main program, which will also function as a master */

/* timer.create servers, which will initialise their queues to null */

serversa = {newprocess(server,comervar, tsa,self), 1< n < kal;

gerversb = {newprocess(server, cometvar,tsb,self), 1< n < kb};

/% comevar is a common error variable, which should never be used */

currentime = 0 /* simulated time */

timealarmset = ni; /* set of critical times */

/* create customer arrival generator */

p = newprocess{starter, comervar, ta,self);

/* drop to lower priority and enter event-management loop */
priority self = - 1;

(while timealarmset ne nf and time £t tlim)
({min: t € timealarmset] t) is nextime)out timealarmset;
if nextime gt tlim then quit;; currentime = nextime;
and while;
/* now calculate wéiting time sums and print out averages */
(VEE(serversa + serverspP)) updateq (server. currentime);;
suma = [+: s € serversa] qgtime(s);
sumb = [+: 8 € serversh] qtime(s);
Efiﬂﬁ ‘average waiting time in first queue', suma/tlim;
Print ‘*average waiting time in second gquene', sumb/tlim;

/* end of main program */



SETL~157-8

/* next follow a group of routines for queue maintainance */
definef time(s); /¥ retrieves accumulated queue time. */
return s.queuve(l)(l); /* s is the queue's server */
end time;
definef update (s, timen); /* updates accumulated queue time */
g,queué(l)(l) = g.queue(l) (1) + {timen-s.queue(l) (2))* (#s.queue-l)
s.quene(l) {(2) = timen;
return;
end update:
define x ing 8’ /* makes queue inser;ion */ ' .
update(s, currentime. master)
S.gueue = g.qusue + <xX>
return;
end 4§
definef gheadout €
update ( g, ‘currc-:n-time. master) ;
head = g(2); ' ‘
g = <g{l)> ¢+ ql3:};
return head; end gheadout:
/¥ next follow the 'server' and the f‘customer' procedures */
define server (tserv, master); /* master is master timer process */
queue = <«<0,0>>; /* initialise gueuve., first component is
<time-~accumulated, time-lastchanged>*/
walt: éwait {§ queue} gt 1; /* queue is local to this routine and
process */
customr = gheadout Juene;
holdfor ~ tserv * log (random);

/* note that random generates a randcm real in the intexval [0,1] */

/% the lcgaritihm converts this to a poissonian random quantity */
customy . go = true; /% resume customer activity */
o to wait;

2nd server;



Go

 SETL-157-9

define customer (master):;
s = [minserv: 8 € serversa.master} s; /% £ind minimum length queue %/

| pelf ipgs
|~ 7 go = false; await go eg true;
1 . g = [minserv: ‘g € merversb. master] s; /* proceed to second window */
 self ing s; '
go = false; await go eq true;
terminate; ‘
end@ customer;
- -definef sa minsgrv sb; /* auxiliary function-selects shorteét gueue */

return if’Q(sa. queue) fe # (sb.gueue) then sa else sb;

? end minserv;
J-ﬁ. /* next follows the routine for generating new customers,,  */
- /* together with & 'hold for spe01fied period' function. x/
_ define starter (timst, master );
start: p = newprccess (cubtomer, comervar, master); :
/* c£, earlier comment concerning comervar */
holdfor - timst * log (random); /* to secure Poissonian arrivals */
ad to start;
) and starter;
d2fine holdfor timaz;
{currentime + time is timewant) in master.timealarmset;
- await master. currentime ge timewant;
raturn; '
end holdfor; .

Our next example is a considerably more complex simulation:
namely a variant of the 'Stanford elevator' similation described
in Knuth, v. I, pp. 280-293. This involves a single elevator
serving a building of nflaoore + I floors, where floor 0 is the
hasement, and flcor 1 is the elevator's homing position. :For
this simulation we use six,classes of processes: a master timer, an

(:) elevator, passenger processes, a passenger starter, and two

auxiliary processes, one of which repushes dropped buttons for

walting passengers who have not bheen able toc get on an elevator



SETL~157~1¢

pecause it was full, the other of which can set the elevator's
éirection of moticn before anyone gets into it if it has been
waiting with doors open for a sufficiently ionag time (because

- of numerous people exiting). The master timer and passenger = g

starters have quite conventional structures, and the two
auxiliary processes are simple also.. The elevator acts es
follows: initially, it walits, empty, with doors dosed, at
floor 1, walting for an external call button (up or down) to be
pressed. If the first button pressed is on ancther floor, it
prapares to move in the appropriate direction; otherwise, it
prepares to open its doors. Once the elevator starts to move
in a given direction it will continue to do so as long as any
call remains to be serviced in that direction (at any given
moment the elevator is goingup or goingdown state, or in
neither stafe, i.6., in & neutral state.) When preparing to
open its doors, the elevator first sees if it has more calls

#¢ service in the direction in whichvit has been moving, and,
if not, reverses its state of motion if it has work to reach
in the opposite direction. Otherwise, it passes into neutral
state. Then the dcors begin to open, and are fully open 2 sec.
later. At this point, an anxiliary resolver process is started;
if the elevator is still in neutral condition with its doors
not clogsed 28 sec. later, this precess will send it in the
direction of the lowest floor on which a call has been signalled.
After the doers have been open for 5.6 sec., or 2.5 sec. after
A p&sgenger steps into«a neutral elevator if this is earlier,
the doors will, if they have been unblocked, hecome partly
closed; but if blocked during this time they will have sprung
men, and will oniy reach the partly closed condition 4.0 =sec.
after the blockage was rvemoved. Once partly closed, the doors
wi1l1l become fully closed in 2 sec. moré; but if a passanger
seeking entry appears in this period, they will open again,

returning to the fully cpen condition after 2 sec.

&



SETL-157-11 .

When the doors are closed,the in-elevator call light for the
fleor just serviced is dropped, and also the call button for
the direction in which the elevator will now move, unless the
alevator ig in its neutral state. But if the elevator is in

" its neutral state, a decision is taken as to its next direction

of wmotion: +oward the call on the lowest floor, if any call
exists; otherwise, toward floor 1 (if the elevator is in
neutral on floor 1, it merely waits). When the doors close,
the auxiliary regolver process is capncelled, The elevator
then accelerates for 1.5 sec. (if goingup; a little longer
3if goingdown), after which it proceeds to the nearest floor
at which it has reason to stcp. The intexr-floor transit time
is 5.1 sec. {if goingup; slightly longer if goingdown}. On
approaching its target floor, the elevator takes 1.4 sec. to
decelerate, and then returns to the start of its door opening
procedure.

The passenger procedure acts as follows: a passenger
entering the system records hisg entry time and establishes
a deadline after which he will leave the system funless the
elevator is on his floor, doors opening, proceeding in the
desired direction). Suppose that the passenger wishes to
go up. If at the moment of the passenger's arrival the doors
are partly but not fully open, he will signal the door for
imvediate opening {(possibly reopening) and ijoin a queue of
persons wishing to proceed upward. When he has advanced to
the front of thie gueue, and provided that the elevator doors

are fully open, that the elevator is proceeding in the direction

desired and nct full, that all these wishing to get off the
elevator at its present‘position have done so, and that the
elevator dovr is not bhlocked by another person, he steps on
the elevator, presses a button indicating his current floor,
leaves the gueue of persons waiting at his service floor, and
joins the stack of persons wno will leave the elevator at his

destinatior floor.

Mo



B e e

i, 7 o

s o,

SETL=-157-12

The elevater door 18 blocked for 2.5 sec. as each passenger
gets on or off. Note that if the elevator is in a neutral
conditior when a passenger:p reaches the head of his waiting
queue, P will step on if either no passenger is proceeding in
the opposite direction from the same floor or if p has arrived
in the system before the first passenger (at the same floor)
proceeding in the opposite direction. In this neutral case, the firss
passenger entering. the elevator determines the direction in whizh it
will mowe. However, if this determinaticn.is not made socr enoagh, tha
Cirection of moticn will be determined by the pattern of cal%
butcons pxessad'omgOﬁher floors.)

'If a passenger cannot get on the elevator by his personal
deadline, he will leave the system, (and walk) if confronted
ny a closed elevator door., a full elevator, or an elevator
oroceeding in the wrong direction.

Once & passenger gets on the elé@vator, he remains on it
until his destination fleoor is reachad, and then gets off,
iesaving the system. People with a given destination floor
stepr off tha elevatsr in inverse corder of their elevator entry.

An independent vrocess is used to ensure that an appropriaie

call button will b2 rressed whenever a rassenger is standinc

befcore closed dosrs waiting for an elevator.,

The zlavator simulatior runs for some pre-specified period
cf time. As cutput, we record the average iime thst pass:incers re-
diire to be carrizd to thedir destination, the nurler of gacsengers

carried, the gverdge time wasted before ¢ivinag vu and walkiw

= Q

-

and the nurber of wonld-he passencers who de give up and wa.

“



« S it Siuesaiian

-
Ty

o

" currentime = 0;
servicetime = 0; /* accunmulated time spent getting elevator service*/

SETL~1587-13

/% main proeegram of elevator simmlation; also Tunctions as */

/* master timar.initialisation, creation of processes, *x/

/* simulated time */

gervicenumber = 0; /* number of passengers serviced */

wastedtime = 0; /* accumulated +ime wasted waiting for service */

wagtednumber = (; /* number of passenger who have given up */

master = self{ /* this will be the master process

priority master = -1; /* this will run at low priority */

/% create elevator process */ .

@&levator = newprocess({relevator, comervar, master);

“

*/

/* ocomervar is & error variable which is formally required but

/% which should never be used.
#* ctreate auxiliary resolver process

. .
resolver = newprocess (rresolver, comervar, master, elevator):

/* create auxiliary button~push process, which operates at

/* hicher priority

pusher = newprocess {rpusher, comervar, elevator, master);

priority pusher = 1;

/% initialise button settings and waiting queues

upcall = nults downcall = nult; upqueue
{0 i\fn < nflocrs) 7
vpcall(ny = f£alse; /* no up - calls */

gowncalil{n) = false; /* no down - calls %/

e

upqaeve(n) = nulg; /* no up-waiting passengers */

downgqueuz{n! = nult; /% no down-waiting passengers */
2l Vn; ! /* oend of initizlisation loop */
£ create passenynr BLartey grooass ¥/

gLarcer = nevprosess {(rotart, comesrvar, elevator,

zset of critic

¥

a1 times ¥/

NEXTLTE OT LY i

N ant

timealarvmset ne nl and time o+ tiim) " cimd

nult; downqueue = nul

*/
*/
*/

*/
*/

O



/% at this point simulation is over. print results */

print ‘azverage time spent in waiting and elevator transit®,
servicetime/servicenunber;

ﬁgggf 'average runber of parsona who give up and walk,

per unit time', wastednumber/tlim;

print ‘average time wasted before giving up', wastedtime/wastednunhber;

/% end of main program */

/* here follow varicus auxiliary routines */ *

dafinef critical (time); /* designates time as critical moment #*/

time ir timealarmset;

return times

and aritical;

/* now foilew wvarious queuwe and stack manipulating routines */f

/* the gueus =~ manipulating routines are,like the queues they */
/% manipulate, associated with the 'master' process; the stzck- #/

¥

i manipu}atxna routines 2nd the stacks they handle are Yy
/% associated with the elavator ®/
define inupgqueue (p, infloor); |

/¥ inserts a passenger in an up queue */

@azter.upgueve (infloor) = master.upgueue (infloor) + <p»;
raturn;
gad;

singtex ownqueuez;‘fl DIt} = uagta:.downqueue(infloor) + <p>s

dafine! firstinupgne (ificor);

~

aturn master.apgquene {(ifloor) (1
2 s
vafined firstindowngueune(iflos

raturn mabiurguc’inxaue (iflOCT}\L);

A



A A o, Sy b i £

€ —Ads Sra 7 1 kB e amin i oA o it S £ AR Aot e+ ) e RS 1. B AY < L

SETL-157-15%

define firetcutupqueuve!ifloory: /*deletes first member of upqueus *77
master.upgueue (ifloor) = master.upguese (ifloor) (2:);
return; -
end; ‘
define firstoutdownqueune {ifliscor); /* deletes first member of
. downguens %/

master.downgueve{ifloor) = master.downgueue (ifloor) (2:);

return;

end;

define inculstacs {iflcor,p): .
/* adds member to> stack of passengers with given destination */
/* outstask and zlevator are assumed to be glocbal */
subordinate elavator {outstack);

outstack {ifloorj = outstack (ifloor) + <p>;

return;

endy

define ouvtoutstack (ifloor); | (:)
gubordinate elevator (outstack); )

/* deletes member from stack of passengers with given destination */
/% outetcck and clievator are assumed to be global */
outstack {ifloor! (§ outstack{ifioor)) = {;

ratiing
JE elevstor and suistack arve assuned to be global %/
retuarn elavecor. cubstackiflocr) {(# outstack{ifioocor));’

W 4
14

f’ now follcw th: procedures which define the main processes o

4
~

+he simulation *,

define relevator ‘master): /¥ elevetor procedure ¥

subordinate master (currentimz, nfloors);

D

regoliver = matster.rescelver; /* cobtain regelver process pointer foom

/
JUoinitialice elarator state and stacks of ridems */ (:)
doorepan = fulse; doorfullopen = fadse; floor = ligyettingino: Lonan;




@)

SETL»1537~16

carchll = nuif; cutsgtack = nult;

(¢ 5,V% < nfloors)
carcali(n) = false;
outstack(n} = nult;

end Vﬁ;

waltingposn: await 0 < Jn < nfleors | (upcall{n) or downcall(n));

/% initally, car not called */

/* initially, no passengers */

if not {upcall(l) ox downcall(l)) then

decision; /* call decision

go 0 nreparenove;
end 1f;
praparetoopen: % first adijus
ishighercall = ¢

looxr < 3r1< nfleors
R downcall(n) cor carcai

islowercall = floor > 3&;3_0 | (upcali(n) or downcellin) or

t elavator state */

! (upcall(n) or

carcall{n));

if goingup and not ishighercall then

goinqup = false;

if islowercall then goingdown = true;:

else if goingdown and not islowercall then

goingdewn = falses

if ishigercall then goingup

o
ent T

if not igoirngup or goingdownj

dooropenr = tuues /¥ now

S —

opanings holdfor 20;
ppeneds doorfullopen = true;
holdit = false;

et LY
N

/% ghart dirsction ~ resolution process ¥/
x

txrue;

Q
[$}
i
~
oot
il

rascives ,p

e amin o -

3 i
startcelosatime = ¢ritical (currentime + 1%}

Eﬂﬁiﬂ currentime ge startc

stertoioss: pioe

o

door starts o cpen ¥/

rasolver.ring

Bime = critic

= j:rue; H

ther neutral = itrue;:;

/¥ now dcor is fullyv open %/

J* drop hcldit 1f ot has bheen set Y/

losetime;

hi \

zl (currentime + 40);

await: (cuzrentime ge closetime, gettincinout) ]

deorfaliopen = false;

almostclosed,

7

routine to set direction of motiocs

n}



it S A A AN

pov

w>

HEY:

1571

almostclosed: closetime = criticsl {currentime + 20);

s e T

await:s {currentime ge closetime, holdit} preparemove, opening;f:)

preparemove: dooropen = false:

carcall{floor) = false;

<

if not goingdown then upcall (floor) = false;:

Pt

if not golingup then downcail (floor) = false;;
if neutral then decision;; /% call routire to set direction

of motion */

if neutral than /% must be sitting at floor 1 */

4o o waitingposn; .
end ii; o .

-

i
resolvar.procsad = false:r /% cancel avtomatic resolver.process @7

heldfor if goingup then 15 else 23; /* period of acceluration */

‘*v ing: floor = £lzor + 1f goingup then 1 else = 1

holdfor if goincup then &1 eise €1l; /% interfloor transit time 7/
reasontostop = carcall{flioor] or goingup and upcall{flinor)
or goingdown and downcail(fiocor} or

(goingingup and not floor < Hn < nfloors | {upcall{n) or

3 — ’ - - P .
or goingdown and not floer » FIn > 0 |{upcali{n) oxr downcallin} o

and (flooz eg 1 or upcall(fleer) or downcall(floor));
i€ reasontoztop then
holdfor 1é: /% deceleration time */

Y AT TR a2

aa to prxeparetocopern:

elae 4 TGRD sovin

FYoend of elevator procedura ¥/

in neutral staks ¥.
v{upnell.downcall) ,eleva tex (carcall, woincup

gi/‘.‘: AOUSWI. . NEeNUIRe, 7

=
T
jop
(0
=]
e
(13}
by
bt
(s}
“\
=
4.\
-2
~+
o
T
o
y)
1
E\

az 1 thes 1f % i1 Froor then goingdown = Y:ie else



A e i

-

SETL=-157-18

if geingdown Or gocingup then neutral = false;; .

et

retayn;

and ;

dafine rpassenger {myfloor, mypatience, destfloor, master, elevator);

/* pagsenger procadure %/ : .
. subordinate master (currentime, ypcall, downcall,

servicenumber, wastednumber, servicetime,wastedtime),
elevator(dooropen,doorfullopen,gdingdown, gelngup,
neutral, holdit, floor, outstack, gettingdnout,

' carcall, startclesecimal;
elapsedtime = (¢; zrrivedtime = currentime; )
deadline = critical (arrivedtime + mypatience);
if destfloor At myfloor then go to down;
if dooropen and ficor eq myZlooxr and not doorful]open and not

goingdown then holdit = true;;
invpqueve (self, myfloor); /* join queue of up waiters */
walitmoreup: /% main waiting point for up waiters */
await: {(currentime ge deadline,
docrfullopen snd not goingdown and floor eg myflvor and
firstinupgueue(nyfloor)) eg self and not full( } and

(& ou?a?ack{nvf‘oor,) eq 0) expiredup, amfirstup:
expiredup: /* if miss this turn then leave system */
await: (not dooropen or floor ne myfloor or not goingup

oxr (doorfullopen and (# outstack(myfloor))eg o and ful

doorfullopan and (# outstack(Gayfloor)leg 0 ani

flocr eg myflcooxr and not full! ) and not goincdown an?

firstinupgueue {myficor) eq s21f; giveup, amfirstup;
aniirstup: /* here are at head of upgoing gr

cup - */
/* coipare with priority of first downgoer ¥/

cangc = if firstindownqueuve{myfloor) is fdown eq © then true

g
-

elge arrivedtime Lt foown.arrivedtime;

1f 0ot cango thern
gvaits £dowr ne firstindowngueue (myfloor):

Snrer e s

go to waltmoreunp:

&
o
jah
[
fety
e

1¢

1
4



CEDL- 0705

/* at this point passenger will be abl2 to get on elevator */ (T)
awalit not gettinginout; /% nobody elss getting in or out v/
firstoutupgueve (myfloor); /* leave guzne ¥/
ent&redé'_getﬁinginout = Lruey
inoutstack (destfloox,self); /* join group in elevator */
carcall(destfloor) = true; /* press button */
if neutral then
neuitral = false;
stavtclcsstime = startclosetime min critical (currentims - 2355
if destfleor 4% myfloor then
golngup = true:
elga
goingdown = true;
end if;
end if neutral;
holdfor 25;
gettinginout = false; :
avalt floor eq destfloor and firstoutstack{destflcor) (??

-ecncih

and dooriullopen and not gettinginout;

gettinginout = true:

outoutstagk{destfloor); holdfor 25;

servicetime = servicetime + currenttime-arrivedtime;

gervicenumser = servicenumber + 1l; gettinginout = felse;
giveup: wasteldtine = wuﬁtedtimg + currentime~arrivedtine:

wagtednumber = wasteaednumber + 1;

terminate;

-

Loy £* nohe that the onde which starts here is gyrmmerric

7

pn

/% with the code for the upooing passencers */

if dooropen and floor eg myficor and nos dosrfullopern and not
goingup then hoeldit = trues;
indownguane (selfavficor)



SETL-~157-50

LN
‘ wvaltmoredown: /% main waiting point for down walters */
await: (currentime ge deadline,

doorfullecpen and not goingup and floor eq myflcor and

first{hdownqueue(myfloor)‘gg self and not fulli{ } and

s o

(# outstack({myfloor)) egq 0} expiredown,amfirstdown;

expiredown: /* if miss this turn then leave system */
await: (not dooropen or flcor ne myfloor or net goingup

or (doorfullopen and (# outstack(myfloor)) egq 0 and full(
noe yoingup and doorfullo?en and (# outstack(myfloor)) eq 0 and floor eg
nyfloor and not full( )and firstinupqueue (ryfloor) eqg sell;
giveup, amfirstdown;
amfirstdown: /% here are at head of dowﬁgoing greup - */
/* compare with priority of first upgoer */
cango = if firstinupqueue (myfloox) is fup eg { then true
| else érrivedtime Le fup.arrivedtime;

if not cango then

%- await fup ne firstindownqueu= (myfloor):
go to waitmoredown; .
end if;

/* at this point paséenger will be able to get on elevator */
await not gettinginout; /* nobody else getting in or out */
firstoutdownqueus (nyflioor): /* leave Jueuve */
. go to entered;
end rpasgsenger;

define rresolver {(master, elevator);

/% precesg forcing decision about state from first call */
/¥ if door steys epen for iong tine /
walte awail ringtinme ge master.currentimz and proceed;

procsed = false;

decide: decision; /* call decision routine to attempt

to zet direction of moticon */

await: {elevatcer.state ae neutral,

)

o< In ¢ afl
O —

-

($/; end presglver;

OIS E(upcall{n} Sy dcwncalliny)) wait,docide:



define
/* process

rpusher (glevater,
to push button ix

B

end rpusher:
define ratart{elevator,ma

again: newtime = critical
/* the ‘'log!

/* is an extarnal parameter

gter:;

{(master.currentime-tbetween *
serves to generate Poissonian arrivals.

which

master) ;

passengers are walting */

/* creates passengers for
in system */
logi

sets the mean i

awa@& master.curcrentime ge newtime;

/* now generate random source and destination floors

a nore realistic/traffic

f@

/* a fixed time-to~sxhausticn of patience for

gourcefloor =

{whils

P o= newprocess {rpassencer, CONervar ., saurcci;cor,pat;entecor<tant
destilcor, master,elevatnr);

g to againg

end rstarts

detinelf Full:

A% paramsteriess funcihion to Jdetermine whether elevator ig il
/v the guantities elevator, muster, mazcab f?oarc} and owuisrosh

ars azsumed to be olobsil */

seturn {4 fan<

7.
E3
.

ani fui

define? tis,nl;

\.’—H

r4s au¢i1¢ary zoutinag

- o &
wattern

intpart(randoen

(intpart(random,master.nfloors) i

mgsher.nflo

to genarate a

(thoug
might be better)
. master.nflocreg}

& destflcor) eg*

sourcefloc)

tor.outs

elow

ors] eleva

4. - 7 N -~
vack{n) Se

TATOX LA

[P | . e
TANOOM LLTedanr

entry

el

and use

each passengar

Fancon)

thetuween

ter-arrival

RCop:

wait: await:(not elevator.dcoropen and
master.firstinupque(elevator.floor) ne Q and
not elevator.upcall(elevator.floor},
. not elevator.dooropen and master.firstindownguzue
o (elevator.floor} ne O &nd not elevator.downcal
{elevator.flocr) pushup, pushdown
pusiups upcall jelevator.floor) = t; go to wa;t;
pughdéown: dowmaall {elevater.flcoey) = £ ge to wait; ,

/

Y-

PERY



SETL-157~22

/* from x, which is a random real between § and 1 v/
txy: if bot (x * (n + L} ig m} ftin + 1) then return

9o to try;

end intpart:

/*note that the holdfor routine is precisely as in the

/* preceeding simulation,

t



SETL~-157-23

1]
A4

3. Implementation and efficiency cost estimate.

We shall now sketch an implementation of the semantic
mechanisms that have been described in the preceeding pages, and
estimate the efficiency cost of providing these mechanisms. We
propose to provide the basic 'monitoring' capability needed to
suppoft the await diction as follows: With each (name resolved;
variable v in a process p, we will associate a list of processes
g, namely those processes currently awaiting conditions involving
v. We call this list the monitoring list of v. We will ailso
maintain a ready -iist of processes, hamely those processes awaiting

a2 condition that might be true since one of the variables
involved in it has changed since the condition was last tested.
Eacn await condition will reference all the variables upon
which it depends. At any given moment, the hichest priority
process on the active list will be executed. A process which
executes an await whose condition fails is engueued on the
honitoring list of each variable appearing in the await, and
control is then passed to the highest priority process on the
active list. B process which has been waiting, but which

has moved to the active list by virtue of a change in sone

variable v.is logically dequeued from the monitor list of v

when it becomes active, and dequeued from the lists of all
remaining variables involved in the await if the await condition
is satisfied;otherwise it is logically regueued on any monitor
lists from which it may have been removed.

Whenever the priority of a process p is changed, its rew

priority is compared to that of the process g currently executing, and

also o the highest priority process r or the active list: then
the process with highest pricrity executes while the others are
returned tc the active list.

Thé internal environment of a process is defined by its
invocation stack and a table which gives the rnumber of times
each«subprocedure has been invoked within the process; of course,
the invocatioh stack entries, each of which represents a generation
of some variable, point to variable valiues stored in a comnon hean.

O



TR

SETL-157-24

A process stack will be maintained.as a list of stack segments,
each ségment corresponding to the local environment of one

‘particular process. This imposes a call/return overhead

which is élightly, but not significantly, larger than the

éorrespondiné'overhead-in ordinary SETL.
The implementation just outlined does not impose any

overhead on load operations, but when a variable is changed

~ its moriitoring list must be checked, and processes of higher

prioriﬁy found on this list must be moved to the active list.

Hormally there will Le no such processes, so the store operation

°

will simply stretch ovi to 5 machine cycles from 1. The
overhead cost of this should be modgst both for SETL and for
programs .in a more érray criented language: prchably less
than SG%;»_Note that stores to compiler temporaries need not

be checked, ard that ¢lohal analysis can be used to detect

variables which never appear in an await statement; stores to
gsuch variables clearly do not need to be checked either.

Y
N



