i

SETL Newslatter 159 J. Schwartz

November 6, 1975

“On the 'Base Form' of Algorifhms

1. Introduction, Examples.

Tke ‘*base form' of an algorithm is that 'simplest’
representation which it can be given if it is written in
& way deliberately excluding all 'non-creative' or 'routine’
cptimizations: we mean to exciude optimizations even if they
lde b@ybnd the range of present-day automatic optimization
rechnique, profided only that the manual application of these
optimizations i3 a truly routine matter not invelving any
invention at the mathematical level. Of course, optimizations
of this'essentially routine® class should ultimately become
amenable to automatic treatm:nt. Among the optimizations to
which we allude are almost all matters related to data structure
choice, procedure inte¢ration, recursion removal, 'formal
differentiztion' (which Earley calls "iterator inversion'),
conversion of programs using various useful non-standard
contrel estructures (such as backtracking) to programs envolving
standayrd control striuctures only, use of ‘memo functicons'
fef, HL 155}, etc.

Juae rough bus plausible way of describing these optimizations
18 %to gay that thay can bhe characterised in a few words to a
sxilled programmer, who <can then apply them with little dount
as to what is meant. Of course, the wvariant of any particuler
algorithm which we call its base form will change as our
understanding of high level program structure and optimization
becomes mere profmind. Moreover, an algerithm's base form will
depend on the class- of opera;ions which we are willing to
regard as “primitive’.)

A algorithm wiitzen in base form can and should make
uge: of programmed subprocedures or nacrog where these clarify

Ca i e
1ty logical grtruchura,

T owte

The following examples of algorithms written in base form
will clarify what is meant. TeA
(a) Bubble Sort of a vector v:

(Whiie 1< dn <8 w é.V'(n) > virdl)) <v(n+i);v(r})>=<v(n), vin+l) >y,

The more cohventional forxrm of bubble zoxt is obtained
Zrce this by tuwrning the existential into a search loop, and by
ﬁoting that daring search the rsnge of indices within which
~an ill-ordered pair can exist wili only decrease when a swap
i8 performed, and then only by i. 'This is essentially a type
of fumal differentiation (as applied to wvectors rather than sets,)
{b} Heap sort of a vector v:

(% ? 3(%% > 1) makeheap{c,n); <vi{n),v(1l)> = <V(n),v(l?>; end Vﬂ (j

definuef makeheapi{v.n);

{while 1 < Ezm <mn ?v(m/2)<v(m)) <v{m} ,vim/2)> = <v(m/2), vi(m)>;;

return;
and makehsayp: g

This is optinssed by noting that on ail but the first {outer)
iteration, there cin be at most one m/2 such that v(n/2) > v(m);
20 opitimise the #irst iteration we keep track of the m for which

vim/2) > wim) can wid (this is a type of formal differentiatioa.)

{¢) " Transforuation of a grammar to Greibach normal form.

A ooyntaxt-lree orzioenr G isrqiv&n a3 a set of palrs p with

o componenta fhs and rag, where Lhs is a symbol and rhs &

4

saple 0f symbolsy dntsymds denotes ths set of all intermadiate

gaymncls which eppeosr as left-hand sides.

SETL-159~3

Ona way of ¢ransforming G to an equivalent - grammar is to take
some production x » £,%, ..;ln of G such that %€ intsymbs, and
to raplace it by all the productions r-+ ml...mklz...zn, where
£, * my...m belongs to G. Another transformation is as follows:.

if v € intsymbs and G contains productions r + r a and r *+ §,
wher@'a ani B are strings of symbols, all = the terminal strings
generated by v are zll generated from the class of strings
which are sither a 8 or a 8 followed by a sequence of a's.

Kence we can replaée the productions whose Zhs is r by the
following productions, in which r' is a new intermediate symbol:
i1+ B, r+Br’,and '+ ar, r’ +a. As a formal algorithm
in base fornm this is

definef sulst (gram,p); /* replaces the production p: r + 2l.a.1n

_ _ by 'expanding' 21 x/
. gram = gram less p + {<ihs p. g + rhs(2:)>,g€ gram{(rhs p is rhs)(1)}};
<:v and subst:

J* and pow the algorithm proper, first number the elements of intsymbs, *.
7% in soue arbitrary order */
place = g&; (Vx € intsymbs) place (x) = # place + 1;;
{while Eip € gram | Flace((xbs p) (1)) <place {Lhs p)) subst(gram,p);;
iwhile Tp € graw [(rhs p) (1) eq (&hs p is %))

¥prime = newakt;

gzam {x} = gram {x} - ({v € gram {x}, v(1} eq x} is deleted)
+ {v + <xprime> v € gram {x}, v(1) ne x}:
~gram {xprime} = {v(2:) + <xprime>, v € deleted}+ {v{2:),veleletes;
snd while;

iwhile Eﬂp € gramn | {rhs p) (1) not € termsymbs) subst(cram,p);;

Yhis algorithm is optimized by conducting the seavch over
gram implied by the three preceeding while loopg in an ordered
vanper: for the first two loops uoward according to place{ths p};
for the last loop, downward accerding to place(ihs p). These
L imp rovenents amount essentially to three applications of foraal

Ziftarentiation.

{d) Decomposition of z program graph into intervals. The program :’

e,

qraph ig defined by a set mnodes, an entry node exit,and a
node~to-node map cssor. | e
definef intexval(nades,X);_ /* calculates the interval with head x */
int = <x>; |
(while Jy € range (int) | {z € (nodes-int) | y € cesor{z}} eg-ni)

int = int + <y>;
end while;
raturnp inf;
end interval:
definef intervals(ncdes, ent); /* ent is the program graph entry node ¥,
ints = {interval (nodes,ent}};
fwhile JInd € cegor [[+: int & lnts]:ange(lnt) is intnds]-intnds)

_ interval (nodes, ndjin iats;;

return inté; ' ' ’ - g
ené intervals;

'More efficient versions of this algorithm can be derived (:)
by formal'differentiation and procedure integration.

(e) Ford-Johnson Tournament Sort. An informal explanation of
this algorithun can be found in 0.P.IXI, p. 66-67, with a SETL
representation of it, unfortunately not in base form. A base
form of the algoritim is as follows:

/% we are given a sat of items to sdrt according to a transitive ¥,

/% binary relation Le.To exclude duplicates we suppose that the =/
/* n elements of <{tems ave pairs with integer second components, ¥/
% '

£% a1l of whict are distinct, and that Le is Getermined fraom the */

/* f£irst comporent of a pair only. *J

definaf ford: JLeMQE

if #ivems eg 1 then rekturn <itemg>;:

f

ftemcopy = if {4 iuemu//2) eq 0 then items else items with

{<rnd & iters, ma.: item € items,] item(2)+1>) is newcopy

e i

/* this forees {-emeapy 0 have an even nunber of elements %/ (

map = nk; i
(while itemcopy ne nf)
x from itemcopy; Y from itemcopy:
if 2e (y,c) then map(x) = y else map(y) = x;;
end while;
halfsoxted = fordj (hd [map]) /* recursively sort half the elements */

allsorted = <map(halfsorted(l)), halfsorted(l)>;
halfsorted = halfsorted(2:):;

—

pow2 = 2; , .
{while halfsorted ne nult) /* until all elements digested */
pow2 = 2 * powd; /* double length for insertion */

allsorted = allsorted + halfsorted(l: (pow2 - % allsorted)

. min # halfsorted is ntaken);

{ntaken > Vn > 1) ' .
mergein{allsorted, pow2 - 1, map(halfsorted(n))):

end Vh;' ' '

halfsorted = halfsorted(ntaken + 1:);)

/* remove elements that have been passed to allsorted?*/

end while;

~xeturn if (§ item//2) eq 0 then allsorted else
) /* drop added element */ [+: elt(n) € allsorted elt(2) ne newcomp]

<alt>:

end fordj:;
dafine margein (vect,lem, elt};
f* this routine takes a sorted vector vest and mexges the slement eii *

/% into its proper position among the first Iim elements of veet. #/
/* after optimization,this.would be & 'binary search' based inserticn
wust = 1 < E}k < 1im [if 2e (elt,v(l)} then k eg 1 else if
Le(v{lim) , elt) the k eglim else
“fe{elt, vik)) and e (v(k - 1}, elt);
vact = vect(l: kK ~ 1) + | ‘
if fe (elt, vecil(k)) then <elt, vect(k)> else <vecti{k), elt>
+ vect (k + Ll:);
veturn; '
end margeing
As can be seen, this is a constructiocn of nontrivial mathematical

sompiexity.

T LY e
SETL 155§

4. A Commeni. an Corxrectness Proofs.

e

When an algoerithm BF in hase form is redeveloped in some
ﬁmrq highly optimized form, additional code details will appéé%,
8ince the eptimizations applied to BF will generally be of
some relatisrely stereotyped form, the details which appear
after cptimization will themselves tend to be stereotyped.

Por this reason, 1% will generally be the case that, whereas

the *¥lovd assertiors' needed to prove the correctness of BF

can only be derived by a relatively deep analysis of algorithm
remantics, the additional assertions needed to prove the
correctness of *he optimized form of BF can be set up in a
gstereotvred wav. given that the optimizations applied to BF

s1e known. We may also hope to prove general lemmas characterising
he mannay in which the optimising transformations applied

to BF transform the asgertions associated with RF's original

form, Becanse of the importance of these possibilities, it (\
seaems reasonadlie to - assert that proofs of algorithm correctress
gnovid bagin with the base form of an algorithm rather than

with any more highly detailed algorithm form.

Zxanipation of a few of the algorithms considersd above
wall confirm this view.

(a} Bubble Sort.. It is apparent that if the bubble sort

terninates then the vector v will satisfy wv(n) < v(nt+l) for
21l n. The fact that the comrorents of v are not being changsz

cen be expragsed by stating that the algorithm leaves every

et ﬁa = (n, via)l 24 ar invariant. This fact follows from tha
fact that esxch of the elesmentacy 'swap® operations appli to

AS pxewiaualy rooted, “whe bubble-scrt algerithm can be

yprzindzad by tvening the existential into a search loop, and by
“iﬁ?q Taat the rance of indices in which no ill-ordeved pnis

arizes Lacrszases when a propelly ordered peir is examined, and

se s by al most one when & swap is performed. ~

\ _
(fi The optimized algorithm is then the familar

n=1;
(while n 2t & V) ,
if v(n) < v(n+l) then
<v(n}, v(ntl)> = <v(n+l), v(n)>;
| n=43if n ggli - then 2 else .-1;
else
n=n+1;
end if;
eénd while;

(b Heap Sort. It is evident from the ::xm of the makeheap
subroutine that on return from makeheap the ausertion
1 <‘ﬁn|§ n 'V(m/Z)Z,V(m) must hold. From this it follows
mathematically that 1 E_V% i n | v(1) > v(m). Moreover,
nakeheap (v,n) leaves invariant all components of v with
indices larger than n. Hence the following assertions can

9

be added to the main loop of heapsort:

(¢ v 3_Vh > 1)
Ve<tvo1<Vi<ni v < v

agsert n <
and n < Wk < #v | vik) < v(k+l);

makeh2an (v,n); <v{n), v(1)> = <v{1l}, .v(n)>;
end ‘Q’;

The :assertion hcelds initially because it is vacuous; at the
end >f the Jloop, we have 1 i'Vﬁ < n | vin) i v{m) and
n j_@ﬁ i‘#v | vin} < v{m), confirming the assertion on the
leop path., It follews that on exit from the loop we have
1<%k < #v | vik) < vik+l) and 1 < Yk < #v | v(1) < v(k), so
that on loop exit v is sorted. The fact that during sorting
the comporents ¢f v are not changed can be shown as in the

bukble sart case.

SETL- 1598

{e) Grelibssch normal form of a grammar. Let L(gram} be

the language gsnerxted by gram. Then L(gram} = L(subst{gram,p))
iz one of the two fundamental mathematical facts on which the
correctness of algorithm (c)rests. This asseartion concerning the
two infinite sets L{gram)and L(subst(gram,p)) is not really
decoxposable intc mcere elementary facts at the algorithm-
theoretic level, since the body of the subst procedure is
aimply one singie set-theoretical assignment. The equality
cf these two sets is rather to be regarded as a directly
methematical. fact. The fact thatmkransformation of gram by

rprime = newat;

‘gram {p{l1} = gram {p(l1)} - {v € gram{p(1)}|{v(1) eg p(1}}}

+ {v + <xprime>, v € gram{p(1l)}, v(1) ne p(l)};
gram {xprime}l = {v(2:) + <xprime>, v € gram{p(1j} |
v(l) eq p(1) 1],

a3 in the gsecond while loop of algorithm (c¢), is in much the ﬁ
same sense primitive and set-theoretic. Given these facts, (;
the fact that algorithm (c) does not change L{gram) is clear.
It is alzo clear that the transformations of gram effected by
elgorithia (¢) never enlarge the set s = {(rhs p) (1) p € gram}.
1rhus, if we sat termsymbs = s - intsymbs at the beginning of
the alccrithm, 1% is clear from the form of the final while
Yoop ef algorivim {¢} that {(rhs p)(l), p € gram} C termsymbs

eH
#t the and af the algorithm.

{&) Decompogition of a program graph into intervals. It is

thnat on roturn “Yrom intaervzls that the set
g = [+: ‘nt Einte] renve(int)satisfies cesoris] C s. Mocrzsover,

g 2 rangae{ictarval {pedes.ent)) . The while loop in the routine

g2t iz initially {xi, it follows that x € interval (nodes.x)

giwavs holds. Phus we can cornclude that ent € s, Since it

iz alway: assumned of program grapihs that the transitive closure L
of ent under cescr Inciuvdes all rodee. we may deduce that

f4e dnt & ints] rancelint) = nodes.

BE T~ 50~3

The -a.sserf:imm

" mgsert - ¥ xn) « int|n eq 1 or (x € cesor{z} implies |

1< dm<n | z = int(m));

" can-be inserted irmediately following the vhile ,"statement'o'f the

interval procedura. Indeed, it holds on the first iteration

- of the while loop since int is of length (1); and in virtue

of the while condition it is clearly preserved during subsequent
iteration. Therefore any tuple returned by the interval function
will only admit forward branches (sxcept to its first component)

and can only be entered through its first component. We can

ghow in the same way that each int returned by intervals satisfiz

(*) assert Vx(n} € int | neglor (1 < dm < n | x € cesor {int{mi}

It follows mathe.ﬁatically that if int1 = interval(nodes, xl)
and :E.nt2 = interval(nodes, x2) , then range (i ntl)and rangegint;:g)
are disjoint unless %, € range (intz)or X, € mnge (intl) . We
may therefore attach the assertions

Yint, € ints, int2 € ints|int, eq int, or

range(lnb * range(int,)) eg n?

)

(8) v& € [+: imt € ints) range(int)ix eq énf or
dy € [+: int €ints] range(int)|x € cescr {y}}

to the whkile loop of the interval routine. These assertions

hold by initialisation when the lcoop is first entered. The

geoond assertion is nreservpd by (*) since the first component

of each int added to inta belongs to cesoxr[{+: x € ints] rangsixi].

It is clear that for each int added to ints we have

Vx € ints | int.{l) not € range(x); moreover, by (*) and (8),

y & {(range(int) * {+: x € ints] range(x)) implies v eq ent.

If as i3 customary w2 assume that ent has no predecessor in the

program graph, it follows that the assertion (8) is true for all

itexatlions of the while loop of the internals routine.

%

{e} . Pord-Johngon Sor%. Because of the assumption that

the elements of items are integers it follows that

<hd Ditems, (max: item € items] item(2) + 1> does not belong

to {tems,. 80 that itemeopy must have an,eveh number of elements.
Thus, after the axecution of the first while-loop of the

,for&j Algeriﬁhm, we will have '

(¢} - {domain (map} + range (map)) eq iteﬁcopy,
ani also
{(#3 %ﬂfé dowain(tzp) | fLe (map{x), x).

Moreover, map is easily seen tc be 1 - 1.

Taking

{y) (v eq fordj {items)) implies range(v) eq items and _
| 1< Vi < # v | te (vin), vintl)

an an inductive asgsertion, it follows that after the first
recursive call to fordj we have

{3} range(halfsorted; ey domain(map) and

1.§,V§ < # halfsorted | Le (halfsorited(n),halfsorted(n+l)}.

Ag asvertions fo' the while loop which follows we use

{€: ‘zemcopy ag (ranye{allsorted) + range(halfsorted) +

map{range(halfsortec):};

and the assertions
. s
{ni %ﬁﬁ range {slliscrted) ! fe {x, halfsorted{l))
irmedistely cefore the statement just preceeding the while loo),
and

e

. - . o 3 £ _ 3
(n") ntaken 4t § halfsorted lqgllgg‘Vx& rangef{allsorted) |

e {x, halfsorted{ntaiten -+

irmediately after this statemert; we also use

SETL-159-11

assertion (B) and the second clause of asgertion (6) within
thig loop. hagsertion: {B) is invariant, and the second clause
of (8) will continve to hold since halfsorted is only being
disdpished. It is clear that (n”) follows from (n), and (n)
from {n°) on the naxt iteration.

Within the Vh—iteration imbedded in this while loop we
continue to make use of assertions (¢), (n) and (B), but re-
place (€) by

{&} itemcopy eq (range (allsorted) + range (halfsorted(ntaken + 1:))
+ map (range(halfsorted(n:)))

+ range{allsorted(# allsorted-ntaken + n:))};
and

{AY (#{x(k) € allsorted | not fe (map(halfsorted(n)),x)}} < pow2-1.

Hote that one statement after the point at which we exit from

the V%—iteration, assertion (k) reduces to (€). On entry to the
iteration (k) followeg from (€), since allsorted=allsorted +
halfsorted (1: ntaken) will just have been executed. Only the
last statement of the mergein routine changes its veet argument,
und from the form of this statement it is evident that on exit
rangé(vect} has become the union of the entry value of range(vect),

plug {elt}, i.e., 2llssrted has become allsorted + {map(halfsorted(:})}.

Thus (<) holds during every cycle of the V%-iteration. For

the same reason, (n”) holds during every cycle. It is clear from
the statement immediataly preceseding the thiterator that on
antry to the'V%-iteration # allsortdd is pow2, and that
ranga{alisorted) includes halfsorted (ataken). Thus assertion (A:
holds on entry teo the‘vliteration, Each time we iterate at

post one element is added to range (allsorted), but for ary given
valve of r at least ntaken-n+l elements of rangye (allscrted) ,
nanely raage (halfsortedin: ntaken-ntl)), belong to the component
of the set appearing in assertion (2).. Hence {1) holds
threughout the vnw iteration. "

FET~159=12

By (¢} the veet srgument to margefn is in sorted crder
ghern mergevr i3 ctlled. By (A), on each subsequent iteration
‘every component x of allsorted such that not fe (map (halfsort@ﬁ&p))gﬂ
has an index less than pow?. Hence the k found by the existentiny
in the first statewmsnt of mergein will satisfy fLe (elt, v{i + 1}}
each time mergein i3 called {with v = allsorted and elt = .
map(hailfsorted (nj); and thus since only the second statement of

. mergein wodifren itz firgt argument v = allsorted, it is apparent
that this argument ramains sorted after return from mergein,
We can now coaciude that (¢) remains true for all iteraticns
=£ the Vn«loop,.
Within the while-loop WL containing the\',’n ~loop, eéssertion
{€) can be seen from (a), (§), and the way in which alleorted ancd
‘halfsorted are initialised just before the loop to hold on
initial locp entry; since (k) reduces to (€) on exit from the
%%wloop (€ holds dvring every iteration of WL. Assertion (¢)
holds by initialication on entry to WL. Using (n) and the
gecond clauvse of (3), it follows that (¢) holds immediztely
after e¢illsorted it nodified by the second statement of WL.
aince we have seer that :he‘#nvloop preserves (¢), it follcws
that (¢) helds thresghou: WL, It is also clear that (B8) and the
second clause of (51 hold throughout WL, since map 1s not
modified and haifeorted is only decreased,
We ma/; theverore conciude that (¢} nholds on exit from WLy

note also thav on exit from . halfsorted eq nult, so that (€)

e

reduces to itedmcopy eg range {allsorted). Because cf (¢) it is
clear that v = [+: elt(n) € allsorted | elt{2) ne newcompl satisfies

(¢} {1 < %% < #v) fe (vin), v{n+tl)),

ama;

Horeover, it s clisir that

itemccpy eq 1L (# items /2) eq © then iltems else ilzews + {newzrcio
g that

range (aligor =l] = rangelv) + I1f (§ items //2) 2g O then n:

PETL~1E%~13

We have already ncted that newcomp not € items. Thus in all
paées range (v} eg ltemcopy; so that inductive assertion’(ﬁ)
is verified.

-3, Debugging of Proofs.

-

To develop a verified correctness proof for an algorithm

”5infbase form we will ordinarily have to

‘(a) Attach zgsertions tc the formal text T of the
&1qarithm, and verify a number cf relationships which tie
these assertions to the statements of T and which have the form
if &j can be asserted at point Pj of a program PR, then A can

e asserted at point P'. The verification of propositions of
this sort will generally be rather routine, as the rglaﬁionships

being verified are all récursive. All that will ordinarily be
involved is symbolic manipulation of a conventional sort,which
must however be guided by a semantic knowiedge of the programming
lancuage which is employed. ‘

(b) Step (a) will yield a family of set-theoretic prcpositions A,
one such proposition bsing attached to each (significant) point
in PR. These propositions A will have the form 'if A (which by
step (a) is. a consequence of assertions attached to other points
<f FR) ﬁolds, ther B (a Floyd productior. directly attached to
this point of PR) is implied'. The propositions A &re of

Ul

standard set~theoretic form, i.e., are mathematical object
¢ lenger having any explicit tie to the details of PR's
dtaztemsnte. To verify PR one must then prove all of the
zropositions A. The proof which here becomes necessary should
itegelf be checked by an automatic proof-checker (if indeed it
i not constructed by an automatic theorem prover), Since
merely manual procf elaboration {(in something like the style
illustrated in section 2 above) leaves open the possibility
that a erucial (if persaps marginal] case is being glossed
SVar érron&wuglyg ¢

Of the ateps just outlined, it is the last one, construction (.§
of » series of proofs in a form aceceptable to an automatic
~wrocf checker, that is apt to ke the most onerous. Two reasons
buttress this expectation. In the first'place, proof-checker -
tachnology is still only weakly developed; proof checkers
.can take only very small steps themselves, and must therefore
’bukgui&e& in great detail. Moreover, step (a) above will generally
trransform the assertionsg P originally eattachaed to a program
in sach a way as to obscure any intuitive [lavor which these
assertions wnight originally have possesged,

For thig reason, it will be gquite important in developing
procfs of program correctness to ensure that the Floyd assertions
¢ith which such & proef begins are in fact correct. However,
a3 oricinally =et up these asseriions, which will often be
roughly equivalent in lmik to the programs to which they
at.tach, are just ac likely to attract numerous small ercors as
programs are. Of course, this objection falls away for any =~
get of asgertions to which we are ultimately able to give a (1‘
secharically verified proof. However, in most cases we wili
not want even ©o try generating a formal procf until the set
il asgertions ©c ba proved has been subjacted to a preliminary
sheoii for plamsibility. Thus we expect informal technigues
. ke these present.y used in debugging to be useful in the
gy gvages of devzlopment of fully detailed program correciness

argols,

One tempring way of chécking a set of Floyd assertions
rurpurting Lo constitute the beginﬂinq of a correctness proct
Jeosipdy wo verify chat the asssrtions do in fact remain tyve
ad ag run the program FRfo whiceh they are attached. Dynanic
vesertion checring coan be guite expensive in the not uncommon

o8 in which the sssertion being checked contains cne or wmure

7o peducy the cost of dynamic checking in such cases, Earley's
‘iavator invergion' method (set theoretic strength reduction,
whadeth m@g&t alao b2 called ‘iterator reduction't can be used,

Th@'grﬂcaﬁdigg considerations suggest that the following
Qxbjaet night be useful: Build dp n partial proof system
within which step {(a) of a formal correctness proof system is
ﬁétu&lly implement2é, and which also incorporates facilities
2alowing programe ¢ which Floyd assertions have been :attached
t0 be ron and the agsertions to be checked at run-time. Where
fnasikle, lat the tun~time checking mechanism incorporate
&@&imimatiané'af tae Eaxley type. Then use thig system to
sumotate a falrly extensive libraxy of base-form SETL algorithms
with debugged Ployd assertions. An effort of this kind would
throw @ good deal of Llight on the formal proof-checking task
which it left az & residue. -

