
SETL Newsletter# 162

Improved Target Code Forms

J.T. Schwartz
January 20, 1976

Available in the Presence of Global Information

Concerning a SETL Program.

This newsletter is a preliminary attempt to define the

target code which will be generated by our first optimizing

SETL compiler, i.e., on the assumption that information derived

from global analysis is available, but that directives for

elaborate data structure reorganization is not. The principal

forms of information that will be available are as follows:

i. variable types known ;

ii. unnecessary copy operations flagged;

iii. 'reoccurences 1 of _objects known through cPthis

and crpart functions;

iv. single valued maps known;

v. strict positivity of integers know in some cases;

vi. relationships of inclusion and membership determined.

Some significant operations for which improved code can be

generated are as fol} 0::::-.1s =

1. Tuple Indexing.

(a) In the case v (constant_integer), where the length
\

of vis known to excee<l the constant, direct retrieval can be used.

(b) In the case v (j) , where the types are knm·m, we can

combine the test 'j as short and non-negative' with the test

that j < # v. (It is assumed that short integers hLlve a

displaced sign bit on.) The co<le, in schematic, 6600-like

SETL-162-2

machine code, is

cycles oplength

load Rl, vpointer; 1 2

load R2, jvalue; 1 2

load R3, vinfmask, 1 2

mask R4, vinfo; 1 1

R3 = R3 and R4; /* R3 is vlen */ 1 1 --
R4 = R3 - R2; 1 1

if R4 < 0 go to longroutine; 2 2

if R2 -- 0 go to longroutine; 2 2

Rl = Rl + R2; 1 1

load Rl, desiredcomponent; 1 2

12 cycles 16

FOR'l,RAN cycles 3 6

FORTRAN factor 4 X 3 X

MIDL cycles 11 14
MIDL factor 1.2 X 1.2 X

If this code is generated offline, 4 cycles will be added,

but the code expansion factor will shrink to 1. A reasonable

strategy is to compile inline within innermost loops, otherwise

compile offline calls. The second test can be omitted if the

index is shown to be strictly positive.

The basic typechecking sequence is

load Rl, pointer;

load R2, info;

mask R3, type;

R3 = R3 and R2;

shift R3;

load address indexed by R3;

index0d jump ;

total checking

extra cycles

0

0

1

1-

1

1

2

6

SETL-162-3

For some operations two types will have to checked. But

in cases like the present, in which there is a 'likely' second

operand type which can be implicitly checked, the added work

of checking is only 10 cycles (counting 4 cycles for call and

return.) The overall timings to be expected should be roughly

as follows:

cycles

offline, with typechecking 22

online, no typechecking 12

compiled MIDL, with overflow check 12

FORTRAN 3·

2. Arithmetic, Iteration.

FORT. Factor

7. 5 X

4 X

3. 5 X

(a) Integer addition. Here the case worth treating

as frequent is addition of short positive integers. We can in

fact test for the 'extra-short' case (1 guard bit) to exclude

overflow in the addition. The code sequence is

load Rl, ival;

load R2, jval;

R3 = R3 or R2;

mask R4;

R3 = R3 and R4;

ifnonzero R3 go to longro~~in~;
\

Rl = Rl + R2;

FORTRAN cycles

FORTRAN factor

MIDL cycles, factor

Overall timings are then:

off line, with typccho,-:;}:ing

online, no typechecking

FORTRAN and MIDL

cycles oplength

1 2

1 2

1 1

1 1

1 1

2 2

1 -i

8 cycles 10

3 5

3 X 2 X

same as FORTRAN

FORT factor

18 6 X

8 3 X

3

SETL-162-4

(b) Integer subtraction. This resembles addition,

except that a test must be made for a negative result, adding

two cycles. Overall timings are

Offline, with typcchecking 20 7 X

Online, no typechecking 10 3 X

FORTRA.i.'\J and MIDL 3

(c) Equality test. The following sequence can be used

load Rl, i;

load R2, J;

R3 = Rl exor R2;

loadmask R4, typeandvalue;

R3 = Rl and R4;

if zero R3 goto equa~

R3 = Rl and R2;

shift R3, longbit;

freg R3 goto longroutine;

Rl = false;

FORTRAN

Overall timings are as follows:

Online

Cycles

1

l
1

1

1

2

1

1

2

1

12 cycles

5

12

FORTRAN and MIDL 5

Code

2

2

1

2

1

2

1

1

2

2

16 (+4)

8

2.5 X

(d) Integer iteration. The range limits should be

checked'outside the loop to verify that they are short. If this

is done, the iteration overhead will reduce to that of FORTRAN.

(c) Iteration over a set not used as mapping. If

as set is not used as a mapping, its elements, including tuple

elements, will be stored without application of the transformation

of tuples used in the standard SETL representation. An address

in the set will then be sin:?lY c:tn inyeger inde>: (into its h2.sht:;0,blc)

and a pointer (to the current li~d::. elcYLent). The next elcFlent

procedure is then

SETL-162-5

loop:

advanceindex:

/* start of iteration */

... /* loop body */
ptr == nextfield. ptr;

if ptr eq nil go to advanceindex;

load element (ptr);

go to loop;

index= index+ l;

if index gt hashsize go to outofloop;

load e = hashelt (index);

if e not void go to loop;

go to advanceindex;

The speed of this is within a factor of two of the ordinary

fast iteration over a list.

3. Single valued mappings of one parc1.rneter, sets used onlv for

membership testing.

(a) Suppose that f is a single-valued mapping, and

that it is the value of a variable which is never either assigned

to another variable or made part of another composite, so that

the only operations addressing fare f =, f(x) =, and= f(x).

Then we can proceed as follows:

(i) Determine all the ovariabl~s oat which elements

x that can eventually appear in the context f(x)= or =f(x)

are created. Any other one-parameter map g for which an x

created'at one of these same o can appear in the context

g(x)= or =g(x) may be called cousin to f. Using the transitive

closure of this relationship, we can divide the set of all

single-valued maps appearing in our program into equivalence

classes C. If an ovariable o is one at which we create an

element x that can eventually appear in the.context f(x) =
or= f(x), where f is some reerilier of the equivRlcnce class c,
then we cc.111 ~,uy that o is an;;ocdated 1,ii-lt1 C.

SETL-162-6

(ii) Create a standardised implicit fuses for all the objects

x created at an ovariable associated (in the sense just explained)

with the equivalence class c. This sets is represented by

a hashtable into which objects x created at such o are inserted

(or within which they are located) as soon as they are created.

We represent each such objecb x by an auxiliary block B, which

will consist of 2 n + 1 machine words (or more precisely, of

2 n + 1 fields packed within some appropriate number of

machine words, where n is the nurn,½er of maps fin the equivalence

class C. The first word of B will contain the standa~d SETL

representation of x; the next n fields contain the values of

f(x) for each of then fin C; the remaining n words will

contain validating serial numbers for the stored values f(x)

(the way in which these serial numbers are used wi..11 be explained

immediately below.) A pointer to the auxiliary block representing x

is allocated as soon as x is created by evaluation of one of

the ovariables o associated with C; this pointer is then used

everywhere else as the representation of x.

(iii) Let us write the f-value stored in the block

associated with x as~ fvaZ, and write the associated serial

number as x.fvaZ-seriaZ. We use x.fval-serial fu conjuction

with a global serial number f.serioZ that we associate with f

itself, as follows. The ir1t~ger £.serial is incremented wherever

an assignment f = e::;pn is made to f. (But indexed assignments

to f do not change f.serial.) The lookup operation y = f(x) is

perform~d as follows:

if x.fval-serial eo f.serial then return x.fval --
else y = of(f,x); /* i.e., perform normal SETL hashed lookup*

x.fval-serial = £.serial;

x.fval = y; return y;

end if;

SETL-162-7

The assignment operation f(x) = y is performed as follows:

x.fval = y;

x.fval-serial = £.serial;

(iv) When an ovariable associated with the equivalence

class C is encountered and'a new value x is created, the

auxiliary block B associated with x must be allocated. Whenever

this is done, x.fval-seriaJ should be initialised to zero for

each fin C; this will force the hashed lookup operation of

<f,x> to be performed the first time that the value f(x) is

subsequently required. (However, if x is a blank atom, we may

instead initialise x.fval-serial to £.serial, and x.fval ton,

when x is created.)

The machine - level code sequence required for calculation

of f(x) is then approximately

Cycles Code

load Rl, X i 1 2

load R2, x.fval-serial; 1 2

load R3, £.serial; 1 2

R3 = R3 ~R2; 1 1
if notzero R3 goto longroutine; 2 2

load R2, x.fval; ·~J·~ 2

Total cycles 7 11

FORTRAN cycles 2 4

FORTRJ:i,.N factor 3.5 X 3
\

MIDL cycles (without overflow check) 3 6

MIDL factor 3 X 2 X

Overall timings to be expected are therefore as follows:

Cycles F0RT. factor

Offlinc 11 5. 5 X

Online 7 3. 5 X

Corrpliled MIDL, with ()Verf l OW check 12 6 ~(

Compiled MIDL, no overflow check 3 1. 5 "

SETL-162-8

It appears reasonable to compile online code in inner loops,

offline code elsewhere.

The machine level sequence for the store operation is

even more favorable, namely

Cycles Code

load Rl, x; 1 2

load R2, y; 1 2

lead R3, £.serial; 1 2

store R2, x.fval; 1 2

store R3, x.fval-serial; 1 2

Total cycles 5 10

FORTRAN cycles 3 6

.FORTRAN factor 2 X 2

MIDL cycles (without overflow check) 4 8

X

MIDL factor 1.3 X 1.3 X

It appears reasonable to compile this code online in all cases.

(v) Implicit bases s (cf. point (iii) above) should

be treated somewhat differently from other sets during garbage

collection: they should not be used as starting points for

garbage collector marking. (To ensure this, we have only to

ensure that the garbage· collector ignores the existence of s

during the marklng phase.) At the end of the marking phase,

all dead (unmarked) elements x should be deleted from every

implicit bases. During the garbage collectors relocation phase,

it shou~d no longer ignore the existence of the bases s.

This ensures that all elements x which can no longer

be referenced and all the associated map values f(x) are deleted

from all implicit bases each time that garbage collection occurs.

(vi) If a variable st has a value which is a set used

only for insertion and for membership testing, and which is

never assigned to any other variable or made part of a large

composite, then st may be treated in much the sawe way as the

map f of the preceeding discussion.

SE'I'L-· 16 2-9

Essentially, we treat st as a boolean-valued map which assigns

t to· each of its elements, but assigns f to non-elements. . -
Any set treated in this way will be a member of some appropriate

equivalence class C (cf. paragraph (i) above), and if x is

produced at an ovariable associated with C, then the auxiliary

block used to represent x will contain both a 1 - bit field

which is set to 1 if x belongs to st, and a serial number used

to test the validity of this 1 - bit field.

If in additinn to insertion and variable testing the set

st must support iteration, or if st is addressed by the 3 or

from operators, then among the st-representing fields of x

we must include a pointer field allowing the elements of st

to be grouped together in a 1-way linked list. 'Ib delete an

element x from st, we can simply drop the at-associated bit in

the representation of x, leaving x temporarily linked into the

st-representing list; then, when we iterate over st, all ele~ents

x with dropped st-associated bits can be removed from this list.

A straightforward list representation of the sort just

described is only qVailable i~ all direct assignments to st

have the form st = nf; or, somewhat more generally, st = {y};

since this latter assignment can be treated as the combination

st = nt; yin st.

If more general assignments st = expn appear, then to represent

st we might have to use a dual structure one part of which was

a list while the other represented the value of expn; this would

be clumsier and less efficient, and is not clearly worth while.

(vii) Space can be saved at the expense of speed by

using short serial number fields. Whenever a serial number

overflows its field, a garbage-collection-like operation must

examine all items containing serial nurnhers, reduce all non

currc11t serial numbers to zero, and reduce 0vcry current serial

number to 1.

SETL-162-10

(viii) Input operations can be handled in the following

way, provided that we suppose that the structure of the object

read is known. Represent the input operation, in a formal

way, using a collection of formal ovariables which represent

the various structural levels and components of the object x

actually read. That is, use several formal ovariables to represent

the 'formation' of the elementary parts of x,several more to

represent the parts of x involving these first level sets/tuples

as members or components, etc. Then global analysis will

associate each one of these formally introduced ovariables

with some equivalence class c. Immediately.after x is read,

its representation should be modified so as to ensure that each

part in the total structure that is x is represented by an

auxiliary block of appropriate size.

{b) Next suppose that f is a single-valued mapping which

is used for assignrnent to another variable, or which is Made

an element of some larger composite. Then the following approach,

which is not much less advantageous than the treatment just

sketched for case (a), can be used. As in case (a), use an

auxiliary block B to represent each x which can appear in a

context f(x) = .•. or •.. = f(x). However, in this case the

word x. fval of B will. contai.n not ti~e value f (x) 1 but rather

will contain a pointer to the pair <x, f(x)> in the standard

SETL representation of f. The lookup .operation = f (x)

can then be performed much as in case (a), except that an extra

step of\indirection is involved, adding 1 cycle and a double

length instruction to the case (a) code sequence. The overall

machine level timings associated with calculations of f(x)

are therefore ap?roximately

offline

online

Cycles

12

8

FORT. fccctor

6 X

4 x.

SETL-162-11

It appears reasonable to compile online code in inner loops,

offline code elsewhere.

In performing the store operation f(x) = y, we must

remember to update the pair <x, f(x)> in the standard SETL

representation of f. This is necessary, since a standard

representation off must always be available, in case f is

either assigned to some other variable or made part of a

composite. The machine_level sequence for the store operation is

load Rl, x;

load R2, y;

load R3, x.fval-serial;

if R3 = 0 then go to longroutine;

/*note that R3 = 0 if <x, f(x)>

/* must be allocated*/

load R3, £serial;

store R3, x.fval-serial;

load R3, x.val

store R2, (x.val + 1}

Tota.l r7cles

FORTRAN cycles

FOR'l1 RAN factor

MIDL cycles (wi l:hout overflow check)

MIDL factor

*/

Cycles

1

1

1

2

1

1

1

1

9

3

3 X

4

2 X

Code

2

2

2

2

2

2

2

2

16

6

3 X

8

2 X

This code could be compiled online in inner bops, offline

in other cases. Overall timings would then be as follows:

Offline

Online

Compiled MIDL, with overflow check

Compiled MIDL, no overflow check

Cycles

13

9

12

4

FORT. factor

4 X

3 X

4 X

L.3 x

SETL-162-12

(c) Next suppose that f'is a possibly multivalued map of

one parameter. If this is the case, we expect f to be addressed

by the following operations, and only by these:

= f(x), = f{x}, f (x) = y, <x,y> in f, <x,y> Ef.

Maps of this sort can be treated in a manner closely paralleling

the treatment of single-valued sets as already

outlined. More specifically, we introduce a single-valued map

ff such that ff(x) = f{x} for all x such that f{x} ne n£, and

treat the five operations in the preceeding list as

= if ff(x) ne n and (~ ff(x)) eq 1 then 3ff(x) else n;
= if ff(x) ne n then ff(x) else n£;

ff(x) = {y};

ff(x) = ff(x) with y;

if ff(x) eq n then false else y E ff{x);

respectively. The sets ff(x). will be represented in their

ordinary SETL form.

SETL-162-13

2. The program-graph deri vu. tion sequence alc!orithm as an

example of the foregoing.

As an example illustrating the power of the opti:rd.zation

procedures outlined in the p,receeding paragraphs, we shall

consider a program-graph derivation sequence algorithm like

that considered in O.P. II, pp. 269-270; cf. also NL 130,

pp. 33 ff, and NL 159, item (d) ~ We take our graph to be

defined by a set nodes, an entry node ent, and a node-to-set-of-nodes

map cesor. The following is a base form of the algorithm:

define£ interval (nodes,x); /* calculates the interval with head x */
int = <x>;

(while j y E cesor [range (int)] -range (int) I { z E (nodes-range (int)) I
int = int + <y>;

y E cesor(z)} eq nt)

end while;

cVy(n) E int) intov(y) = int;; /* intov is global*/

return int;

end interval;

definef intervals (nodes, ent); /* ent is the program graph entry node~

ints = {interval (nodes, ent)};

(while =J nd E cesor [[+: int E ints] range (i nt) is intnds] -intnds)

interval (nodes,n~) in ints;

end while;
\

return ints;

end intervals;

definef dg (nodes, entry);

intov = ni; /* intov is global*/

(\-{l... E (. y: intervals (nodes, entry) is ints))

cesor(i) = intov [[+: z(n) E i] cesor(z)-range(int)];

return ints;

end dg;

/* cecor is global*/

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

SETL-162-14

definef dseq (nodes, entry);

<n,e> = <nodes, entry>

seq = <<n,e>>;

(while (~f(dg(n,e) isder)) it# ndoing<n,e> =seq (~[seg);)

seq (# seq + 1) = <der, intov(e)>;

end while;

return seq;

end dseq;

It is reasonable to suppose that formal differe~tiation

will be applied manually to the first three of these routines,

giving them the following form (after fusion of the second

and third routines.)

define£ interval (nodes, x) ;

int = nult; followsint = n9J;

null count = {x};

(while nullcount ne ni)

y from nullcount; y in allintnodes; -- /* all int nodes is golbal */
y out followsint; y out allfollows; /* allfoZlows is global*/

int = int + <y>;

cVz E cesor (y) y not E allintnodes)

z in followsint; z in allfollows;

count(z) = count(z) - 1; /* count is global*/

if count(z) ea O then z in nullcount;; -e.nd Vz;
end while;

cVy(n) E int) intov(y) = int;;

cVz E followsint) count(z) = count(z) + l;;

follm..-s (int) = followsint; /* f o Z Zo1Js is global * /
return int;

end interval;

SETL-162-15

1 definef dg (nodes, ent);

2 allfollows = { ent}; ints = n9,; follows - nfl; allintnodes = n£;

3 count= {<y,O>, n E nodes};

4 cVz E nodes, z E cesor(y)) count(z) = count(z) + l;;

5 (while allfollows E.,£ ni)

6 nd from allfollows; interval(nodes, nd) in ints;

7 end while;

8 c'Vi E ints)

9 cesor(i) = intov [follows(i)];

10 end Vi;

11 return ints;

12 end dg;

The maps (all single-valued) which appears in this code

are cesor, intov, follows, and count; the sets are .followsint,

aZZintnodes, allfollows, nullcount, and ints. ~e set followsint

becomes part of a composite, so (as far as can be told by the

crude methods described in the present newsletter) the sets

nullcount, allfollows, and ints must all support iterations,

and the first two of these sets are arguments of tests s ~ 2:1£.

Moreover, all direct assignments to these variables have one

of the forms s = n£ or· s = {x}. Therefore,as indicated in (vi),

p. 8, elements of nullcount, allfollows, and ints will be

linked together in 1-way lists, and counts of the total number

of elements of nulleount and allfollows will be kept.
\

All the elements x which appear either as indices of

cesor, intov, follows, or count are either created by execution

of line 7 of the interval routine appearing above, or are

elements of the set nodes, created befo~e the outermost routine

dseq of our group of routines is called. Wherever these

elements x are created, we will want to allocate a block large

enough to hold fields representing the values ccsor(x), intov(x),

follows (x), count():) , plus linl: f iclds for holding toge;thor

lists representing nullcount, allfollows, and intsJ plus a bit

flagging mcmbcrsl1ip in alZintnodes; plus validating serial

nrnnbers as required.

SETL-162-16

The efficiency-crucial inner loop which appears as lines

8 thru 12 of the interval routine contains six instructions.

The data structure and target code choices that we have outlined

will allow four of these to execute at roughl~r 1/4 of FORTRAN

speeds, while two more will execute in the normal compiled

SETL manner, which we estimate as 1/30 of FORTRAN speed ■

The overall speed of the loop should therefore be substantially

better than 1/13 of the speed of a carefully worked out,

logically equivalent optimized FORTRhN loop.

An optimization possibility missed by the procedures

outlined in this newsletter, but one which would be caught by

the more elaborate semi-manual data structure choice system

being developed is that of representing the sets follows(irit),

followsint, and cesor(z) as lists. After this is done no

operations of a fully SETL inefficiency level will remain in

the inner loop that we have been discussing, and this loop

might run at something like 1/4 the speed of a corresponding

FORTRAN loop.

3. Bitvectorinq

Optimiza ... ion by the use of bi tvectors can be an important

_technique for the representation of small sets, sets dense in

some numerical range, and families of sets on which boolean

operations will be performed frequently, provided that all

these sets are subsets of some common base. Although this

sort o! optimization can be handled quite nicely if appropriate

structure declarations are used, it does not seem to fit

comfortably into the more fully automatic optimization scheme

outlined in the preceeding pages. IIowever, a few relatively

easy revisions of the present SETL semantic of bitstrings

could make direct programming of algorithP1S using bitvectors

relatively easy. Dhnt we want arc bitstring operations directly

analogous to the opcr~tions on sets of integers which they

would be used to represcnf, and cnsy ways of converting between

bit and set versions of sets of integers.

SETL-162-17

The following conventions seem appropriate:

s + s' denotes booleans 'or' of bitstrings

(changes existing convention)

s * s' 11 II 'and' II (II)

s/s' II II 'exor' II (new convention)

s (n) is 0 if n > length(s) (changes existing convention)

n E s denotes s (n) (new convention

s with n forms same bitstring as s(n) = 1 II

s + iset, where s is a bi tstring and ise t. a set of integers

forms same set as

cVn E iset) s (r.) = l;; (new convention)

s denotes the number of 1-bits in the bitstring s

}

}

(changes existing convention)

denotes the length of s (new convention)

denotes the concatenation of s 1 and s 2
(new convention; should probably be adopted for

character strings also)

iterates over then for which s(n) = 1.

f[s] forms {f(n), n Es} for n a bit-string;

f must be either a tuple or a map (new convention).

More generally, the operations s + s', s * s', s/s' should

be allowed for all cases in which one of the operands is a

bit-string and the other is a set of integers he r~sult being

either set or a bit-string, depending on the type of the

first ~rgument s. Note that, if these conventions are adopted,

a set st of integers can be converted to a bit-string by

writing nulb + st (for which we may prefer to write 'bstring st'),

and that a bit-string b may be converted to a set of integers

by writing nt + b.

SETL-162-18

4. A Note on Hardware Implementation:· Rough Estimates of the

Speed of a 'SETL Machine'.

When a language like SETL is implemented, and assuming

that some reasonable degree of optimization has been performed,

the code present at run-time will consist of two main parts:

(a) A code text, consisting either of items to be

interpreted, or of fully expand~d machine level sequences, to

be interpreted directly by the hardware. The operations

represented directly in this code text will generally be

housekeeping operations (such as stack manipulation, and

counting operations) which implement the space allocation

and call semantics of the language, plus a series of 'elementary'

calls to the routines of:

(b) A sizeable run-time library. The routines of this

library implement the primitives of the language in all the

important variants which an.optimizer distinguishes. For

efficiency, i.e., to save c~ll overhead, important short

fragments of this library may be compiled in-line.

In order for an operation to be worth putting into

hardware (or loop-free microcode) it must meet the following

requirement:

(i) The body of (ordinary assembly-language) code needed

to realise the operation must be small~

(ii) The number of parameters of the operation, the size
\

of the result or results which it produces, and the amount of

intermediate data which it requires must all be small.

As may be seen from the code fragments outlined in the

preceeding pages, many of the most important routines of the

SETL run-time library will consist of short initial sections

which test for and dispose of common casec"; of important operatic::-:s,

and longer 'bc1cking' sectio1ts which dispose of more cor.,plc:x

but rarer cases.

SETL-162-19

A reasona.ble convention for linking hardware implementations

of efficiency-critical code sections to longer, less critical

sections implemented in software is the following. The

parameters of an operation will be loaded into registers

(which can either be standard, or can be designated in the

operatio~ code); the results will likewise appear in registers.

Suppose that the operation can either fail inme of n

possible ways, or can succeed. Then execution of the operation

will cause a forward skip of n + l locations if the operation

succeeds; but if it fails in the j-th possible way the address

of this skip target will be loaded into a (standard or designated)

register, and a skip forward of j locations will be caused.

The internal parallelism of hardware will generally allow

any amount of processing consistent with constraints (i) and (ii)

above to be performed in one or two hardware cycles. If the

number of loads of non-contiguous data required to set up for

an operation is n, then the total operation time should be

n + 2 cycles (assuming that the operation does not fail.)

This implies the following comparisons in the case of the

operations considered above.

\

SETL-162-20

vector indexing

integer addition, subtraction

equality test, short quantities

map value retrieval

map value store

SETL roach.

cycles

4

3

3

5

5

FORTRA..~

cycles

3

3

3

2

3

This implies that optimized SETL codes in which operation

failure cases were almost totally avoided could run well

within a factor of 2 of the speed of their FORTRAN counterparts.

Of course, this factor would be cut down seriously if the

more complex operation failure had to be executed with any

substantial frequency. Of course, intelligently chosen

spacial hardware would speed up the execution of these subsidiary

sequences also. Overall, a 1/4 SETL/FORTRAN speed ratio does

not seem too much to hope·for.

By instrumenting our optimized SETL system suitably, we

should be able to make a farly accurate ~sti~ate of the

percentage of operation failure cases which are typically

encountered, and thus to estimate the speed of SETL running

on specially designed hardware.

