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This newsl~tter will outline an easy scheme allowing 

backtracking to be incorporated in the presently planned 

new (optjmized) SETL implementation. The scheme to be outlined 

can handle either simple ('PLANNER type') or full ('CONNIVER type') 

backtracking. To simplify our initial exposition, we will 
at first consider only simple backtracking. 

Simple Bcicktrc.tcking: Let the two basic implementation level 

clata areas be culled HEAP and STACK. We introduce two macros 

HEEP and STAK which will always be used in writing stores 

into these arrays (whereas in loads we will always write 

HEAP and STACK direct.ly.) In the non-backtracking case, these 

macros ~re simply 

+ * HEE~P = HEAP **; + * STAK = STACK ** 

In the simple backtracking case, the following macros are 

used instead: 

+* HEEP(I) = HEAP(H(I))** 

+ * STAK(I) = STACK(IT(I)) ** . 

The routine II thereby introduced operates ::..s follows: 

'l'wo auxiliary data structures CELLINX and RESTORE will be 

maintained by the routine H. CELLINX is a table of roughly 

byte-size entries containing two fields. The first of these, 

ENVNO, gives for each cell in the HEAP (equivalently, STACK), the 

inc1cx of' the J,u.-;t prior data environment in which the value of 

the cell was ci1nnged. 
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•rhe second, IlASPO I wr, indicates whether or not the cell has 

Dewar's stanc1arc1 '~,pccif ier' format. RES'J~ORE is an array, 

having entric~; somewhat in excess of 1'70RDSIZE, divided into 

three fields: 

OLDVAL: 

OLDINX: 

PLACE: 

a WORDSIZE field, saving old-environment HEAP and 

STACK values; 

a field approximately 1 byte in si~e, saving the 

old CELLINX value associated with the word held 

in the OLDVAL field; 

an INDEXSIZE field, giving the address in HEAP 

(or equivalently, STACK) from which the wore! held 

in the OLDVAL field comes. 

The action of H(I) is as follows: 

If ENVNO CELLINX (I) <CURRENTENVIRONMENTLEVEL THEN 

OLDVAL RESTORE (RESTORETOP) = HEAP(I); 

PLACE 

OLDINX 

RESTORJ.:: (RCSTORETOP) = I; 

RESTORE (RESTORETOP) = CELLINX(I); 

ENVNO CELLINX(I) = CURRENTENVIRONMENTLEVEL; 

RES'l1 0RETOP = RESTORETOP + l; 

END IF; 

RE'I'URN I; 

If necessary for efficiency, H can be made an in-line LITTLE 

primitive. 

The CELLINX table should be maintained packed, e.g., on 

the 6600 we can pack 8 7-bit bytes to a word; thus only 12% 

of the space otherwise available for HEAP+ STACK will be 

lost owing to the necessary to maintain the CELLINX table. 
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In this s.-::·heme, the ok c1.nc1 f.::d.l primitive of simple 

back tr.c1ck inq have the followiri9 represent.a tions: 

i. The ok primi_tiv_c.::_ 

OLDINX RESTORE (RESTORETOP) = OLDRESTORETOP; 

$ ALSO SIi.VE THl: CURRENT INS'rRTJCTION LOCATION COUNTER 

OLDRESTO/rnTOP = RESTORETOP + 1; 

RESTORE'I'OP = OLDRESTORETOP; 

IF CURRENTENVIRONMENTLEVEL > MAXLEVEL THEN 

ERROR; 

END IF; 

CURRENTENVIRONMENTLEVEL = 
CURRENTENVIRONMENTLEVEL + l; 

RETURN TRUE; 

1,.1.,. The fail prirni ti ve 

DO J = OLDRESTORETOP TO RESTORETOP - l; 

HEAP(PLACE RESTORE(J)) = OLDVAL RESTORE(J); 

CELLINX (PLACE RESTORE(J)) = OLDINX RESTORE(J); 

END DO; 

RESTORETOP = OLDRESTORE'rOP - 1; 

OLDRESTORETOP = OLDINX RESTORE(RESTORETOP}; 

$ ALSO RESET 'J.'HE INSTRUCTION LOCATION COUNTER 'I'O ITS SAVED VALUE 

RETURN FALSE; 

The garbage collector must make Rppropriate adjustments 

in the indices OLDINX RESTORE(J) and any pointers held in 

PLACE RJ.::STORE ( J} when it moves words in memory. Moreover, 

the occupied portion of RESTORE, i.e., the entries 1 thru 

RESTORETOP - 1 must be treated by the garbage collector just 

as if they were heilp words, i.e., items referenced by pointers 

held in these entries cnnnot be treated as garbage, and tracing 

must proceed thru them. 



SE'l'L-166-4 

(Note: excess tr~cinq can be suppressed by keeping note of 

the lowest RESTORE entry changed after each garbage collection, 

which defines a part of RESTORE through which tracing need 

not proceed. The same remark applies to the stack.) 

For the above conditions to be met, it must be known 

for every HEJ\P word and RESTORE word whether the word contains 

a pointer (in which case it will be in standard,typed 

descriptor format) or whether it is pointer free (e.g., an 

untyped real or an internal part of a bit or character string.) 

This information can be kept in the HASPOINT flag of CELLINX 

(for HEAP+ STACK words) and in the OLDINX field of RESTORE 

(for OLDVAL RESTORE words). It is also necessary that the 

length of each block that can be located by a 'LINK' pointer 

should be available in the block itself. Since all link 

pointers reference set elements, we can ensure this by including 

a two bit field in each element descriptor: this field will 

characterize the descriptor as being either a 1-word block, 

a two-word block, or a long block whose full length is shown 

in a standard field within the immediately following word. 

When a block of HEAP space is allocated,its length and 

the distribution of pointers within it can always be made 

known; thus CELLINX entries reflecting this factcan always 
• 

be set. When STACK space is allocated (always in initializing 

the parameters and internal variables of a recursive call) 

the same is true, and appropriate CELLINX modifications can 

be made. Such modifications should always set ENVNO CELLINX 

to CURRENTENVIRONMENTLEVEL. 

Extended Backtrocking (i.e., support of environment manipulation). 

This con be provided by using a scheme closely :related to the 

scheme just outlined. As in NL 153 we assume an environment 

tree ET. With each environment we shall associate a restore 

ve c- I,, 1' huvin~r the f iclds OLDVl,L, OLDINX, PLACE already explained. 



SE'fL-16 G-5 

We distinCJuis~1 two cases dynz_tr'.1ically. If an environment e 

is momcnt,irily not the ances l:or of the particular environment 

that is executing, then its associated RESTORE vector records 

oll the modifications that must be applied toe's immediate 

ancestor environment to produce e. If e is the ancestor of 

an executing environment, or is itself an executing environment, 

then its associated RESTORE vector records the modifications 

that must be applied toe in order to produce its immediate 

ancestor. 

The environment-manipulation primitives that we propose 

to support are the following: 

i. env copy_ cnv'. IIere env and env' must be environments, 

neither of which is the currently active environment. Moreover, 

env must be an ancestor of env'. This introduces a new node 

into the environment tree, as an immediate descendant of env. 

The environment is a logical copy of env', and is returned as 

the value of the CC2.E_Y operation. 

ii. destroy env. This operation will check that env is neither 

the currently executing environment nor an ancestor of the 

currently active environment. It will then detach env and all 

its descendants from the environment tree, which will make 

several RESTORE vectors, and possibly also many other objects 

whose access chain leads through tl1ese restore vectors,garbage 

collectible. 

iii. fix env. This operation, which has the flavor of 'success', 

checks l.hu.t cnv is either the currently executing environment 

or some oncostor thereof, and destroy all environments which 

arc not descendants of cnv; cnv becomes the root of the 

environment tree. 

1'.v. cm, .!"I:.Y va l. 'I'his is a somewhat generalized version of the 

~ocall function of NL 155. It transfers control to env , which, 

J ikc cvc•ry 0nvironrn(•nt othor U1an th2t which is currently 

cxccuti11q, is waiting 'halfway through' an earlier try operation. 
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'l'he quantity va l is received by em>' as the value of this 

earlier t~y_ operation. If env' is not a twig of the environment 

tree, then it is made a twig, specifically by destroving all 

its descendant environments. 

The try operation can also be used monadically; the 

monadic operation try val creates a new environment env', 

which becomes an immediate descendant (in the environment tree) 

of the currently executing environment; then env' try vaz· is 

executed at once. 

v. The nulladic special quantity self has the currently 

executing environment as its value. The monadic operator 

parent env has the parent environment of env as its value. 

The monadic operator descenvs env has the set of descendant 

environments of env as its value. 

The generalized backtracking primitives _just introduced 

will normally be used only within a few utility macros, functions, 

and subroutines, which will be used to realize backtracking 

control structures of somewhat higher level than the primitives 

themselves. These utility macros and functions will have 

access (probably exclusive access) to whatever auxiliary tables 

arc needed to realize any desired control regime. We give a 

few significant examples to illustrate the style of programming 

that can be used: 

A. The simple backtracking primitives can be defined as follows: 

macro ok; try true endmacro; 

macro fail; (12.:.~~0nt self) try false endmacro; 

B. Creating n sibling environment. 

'I'he monadic !ry primitive creates a descendant en-iironment. 

for creation of sibling environments, we shall introduce a 

nulladic function cibling which when called will return a 

pair <.tr.u.c., mw '>, whc~re e,w' is a newly created sibling 

cnv.i n.1t11nen L that can Le~ considc,rec1 to be suspended within the 

function :;.z:l)Z/11g. 
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Any value vnl except its o~n parent can subsequently be 

pas:;cd to ,?nV' using the try_ primitive, at which time erw' 

will receive <false, vaZ> ~s the value of the function sibling 

within which it has been suspended. A typical use of this 

function might be in the combination 

if hd {sibling ( ) is sib) then go to label; else <junk,val>=sib;; 

the code for aibling is as follows: 

definef sibling; 

x = self; /* remember originally calling process*/ 

if !ry self is sib eq (parent self is par) 

$ this condition will be satisfied only in a strictly 

temporary auxiliary 

$ descendunt environment created by the monadic !2:J: 
then 

junk= par try (parent par) copy pax , 

$ the copl creates the sibling environment; the binary 

$ try return to the environment in which sibling 

$ was originally called 

end if; if x eq self then return <true, sib>; ; /* else * / 
return <false, sib>; $ this return is taken when the 

$ sibling environment is entered 

end sibling; 

C. An 'estimate' primitive. The estimate primitive replaces 

the simple back trucking f,d.l with a more flexible estimate t, 

which estimates the amount of work needed to attain success (in 

some appropriate sense) by continuing calculation in the 

current environment. It is used in combination with a nulladic 

function ok. The definitions of these two functions are as 

follows: 

define estimate t; 

estimates (~elf) = t; 

$ ,·;; / ,·.n,11!.:'D if~ a rio.p which records the estin1uted time to 

$ completion of c1ll existing environments 

must= 3este: estimates (env) I 
est~ [max: est' = estimates(env")J est' 
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junk= env try £~is~; 
return; 

end estirna.te; 

definef ok; 

if try tru~ is val then $ create copy of parent as sibling 

sib = (parent self) copy (parent self is par); 

estimates (self) = estimates (par); 

estimates (sib) = estimates (par); 

estimates (par) = n; $ since par can no longer execute 

end if; 

return val; 

end ok; 

3. Additional details concerning implementation. 

Implementation of most of the primitives described 

in the preceeding section is unproblematical. The 

self, ~rent,and descenvs primitives simply deliver informatie,n 

about the environment tree. The destroy primitive merely 

removes a portion of this tree. The fix primitive is almost 

as unproblematical, except that it may have the effect of giving 

the root of the environment tree a level different from 1. 

This is essentially harmless, but one wants to avoid an un

controlled rise in environment level numbers. These numbers 

can be kept under control by lowering them systematically 

within CELLINX during garbage collection. Whenever the 

current environment level number would otherwise rise above 

the limit of acceptability, this same lowering operation can 

be applied. 

'l'o execute cnv' try vaZ, which is potentially the most 

expensive of our primitives, we proceed as follows. Suppose 

that the current environment is env. Then we locate anv' in 

the environment tree., giving c1n appropriate diagnostic if it 

cannot be located (e.g., if it has been destroyed). 
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Otherwise we determine the (hi9hest level) common ancestor 

c11va of cnv and cnv' by a chain-bo.cJ~ process. Let the chain 

of ancestors leading back from env to enva be env= env1 , •.• ,env, =enva. 
K 

Then the RESTORE iriformation. associated with each of these 

cnvirorn11ents is used in turn, to rebuild the environment 

associated with cnva. Following this, the chain of environments 

leading from cnv' to cnva is traversed in the reverse direction 

to reconstruct the environment cnv',and execution continues 

with env'. If env' is not an environment-tree twig, then all 

its descendant environments must first be erased. 

The monadic try operation has a simpler and more efficient 

implementation. A new environment env', with an initially 

empty RESTORE vector, is created and made an environment-tree 

descendant of the currently executing env~ then execution 

continues with env. 

Store and load operations are treated in the same way 

as the simple bncl:tracking case, with levels contained in 

CELLINX being checked on each store operation. Information 

that needs to be added to RESTORE should always be appended to 

the RESTORE vector associated with the currently executing 

environment. The environment-switching costs associated 

with generalized backtracking are plainly higher than those 

associated with simple backtracking, but the intra-environment 

running costs are the same. 

To implement the primitive env copy env' we can proceed 

as follows. Let the chain of environment tree nodes leading 

from env to cnv' be env=env1 , .•. ,envk = env'. First suppose 

that r1zv' is not an ancestor nf the currently active environment. 

Then we make a backward pnss over envk'" .• ,env
2

, building 

up c1 HJ :'.-:TOHE vcc i_.or v, for the new environment to be created, 

from the separntc RESTORE vectors v. of these environments. 
J 
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This is done by toking all itens from vk, vk_ 1 , .•• ,v2 in 

turn, and installing them into v. Each time an item x is 

about to be made part of v, ti11e PLACE field of x will be 

extractcd,yielding an integer I, and an auxiliary quantity 

AUX(I) calculated using a hash table built up temporarily 

during execution of copy operations. If J = AUX(I) is 
undofinecl, then x is appended to the end of the vector v, 

and AUX(I) is set equal to the component position of x 

within v. If J is defined, then we simply set the OLDINX 

field of v(J) equal to the OLDINX field of x. When all of 

vk, •.• ,v2 have been processed, we create a new node in the 

environment tree; v becomes its.RESTORE vector. 

Next suppose that env' is an ancestor of the currently 

executing environment envcur. Then, by processing the 

RESTORE vectors v
2

, ••• ,vk in forward sequence in the manner 

just indicated, but ignoring all fields other than PLACE, 

we can obtain a vector v which shows all the corrections 

that need to be applied to env' to yield the value env. 

By traversing the path from envcur to env', we can reconstruct 

env'. Next, we make a pass over all the components x of v. 

Let J be the PLACE field of such an x; then we set OLDVAL 

and OLDINX of x to the current values of the J-th cell of 

memory and of CELLINX(J) respectively. This builds up the 

RES'l'ORE vector associated with env co-12.,y_ env '. Once this is 

done, we traverse the path from envcur to env' in the re

verse direction, to restore the current environment envcur, and 

create a new environment tree node as an immediate descendant 

of env'. 

4. How to imitate some of the facilities of SNOBOL. 

Griswold has rcmnrkcd, and indeed it is not hard to see, 

that n language providing strings, a good set of string 

prirnitive;~;, ;:_,nd hticl:trnckincJ cun ec1sily imita.te the string 

matching facilities of SNOBOL. The following conventions 

accomplish exactly this imitation in a convenient way. 
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( 0 ) A r,o. t t.,, Pn P is a proccc1m:-e ,fnnction or code sequence 

which :,cccs~:;c,s ,1 public 9loh1.l vt1.ric:1blc ( call it <J Z.obu tI1 ing) 

and eiLhcr successfully performs some sort of (prj_mitjvc or 

non-primitive) matching operation, or executes fail. If p 

does not fail, it modifies globstring, changing it from its 

origin;:11 value to who.tever part of globstring remains unmatched. 

(b) Given a collection of patterns p 1 , •.• ,pn' we can 

combine them in various useful ways: 

i. sequentially: p 1 ; p
2

; 

ii. as al terna ti vcs; 

if ok then p
1

; elseif ok then p
2

; elseif ok then pn; else fail;; 

syntactically, it is better to introduce the macros 

eo(p) = if ok then p; o(p) = elseif ~then. p; 

oe = else fail; 

and write this as 

eo (p1 ) o(p 2) .•. o(pn) oe; 

another useful construction is: 

iii. repetition: 

a.:dmo (p) = (while not ok) p;, 

Patterns may have explicit parameters in addition to the 

implicit quantity globstring which they all access. This enables 

us to write patterns such as length(n), exactly('string'), 

approximately ('string') (which allows for some degree of 

misspelling), etc. Note that 0ny executable statement can be 

inserteJ into a sequence of patterns, making it easy to 

determine if suhparts of a string occur repeatedly, if a 

string suhpart matches two or more separate patterns, etc. 

Moreover, by grouping the parts of a composite pattern together 

and making a procedure or function out of them, we can create 

new pattern objects, which can then be passed to other 

patterns as pnramcters. 
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For integrating all this into the SETL system, the 

following conventions might be appropriate: define a 'system' 

module called, e.g., stringproc, to which the public variable 

globr.tring belongs. Provide a library of string primitives, 

treating them as procedures which access this variable, and 

which only become available within another module M if globstring 

is included into m; in which case it may also be appropriate 

to make the macros o, and oe available in m. 

Since in addition to the unmatched string portions which 

patterns will return (in globstring) we will often wish to 

make use of a matched string portion, it may be worth in

troducing the abbreviation string1 - string
2 

for 

stringl (1: # stringl - # string2). 

5. Some remarks on optimization. 

Any store to a variable that must necessarily have been 

written in the current environment can be performed in a 

specially efficient way, since its CELLINX field need not be 

checked. Since environments are always entered (and exited) 

at try operators, this remark will always apply to a store I= ••• 

if there is no path from a try to the store operation which 

does not pass thru another I= •.•. This remark shows that 

assignments I= •.• can sometimes be made more efficient 

within loops not containing any try operation by prefixing 

I= I to the loop entry. 

In the simple backtracking case, the criterion for 

suppressing CELLINX checks that we have just stated can be 

relaxed significantly. Consider an assignment a of the form 

I= .•. , and let S' be the set of all ok operations with a 

true outcome that can prececd this assignment without some 

other assignment to the same variable I intervening. This 

set can be calculated by the standard dataflow technique used 

to calculate the 'reaches' function,cxcept that forward tracing 

should begin with occurences of ok, and that in addition to 

the 'kills' which naturally occur at each occurcnce of an 
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assiqnmcnt I= ... , we insert~ 'kill' immediately.following 

each le~~ t II if ok thc~n .•• 11 along the o½_ == false branch. Then 

if I i~, dcacl along the ok = fn lse branch forward from each 

occurcncc of ok in the sets, the assignment x can be executed 

without checking CELLINX. The proof is as follows: any 

environrnQnt to which one can return after fail· is executed 

will have been generated at some ok yielding the value true; 

after executing fail, this environment will be re-entered 

with an ok value of false. Thus it is clear from our assumption 

that since the moment at which we generated any stacked 

environment in which I will not be dead after return, some 

other assignment must have updated CELLINX. 

'l'his remark applies in a useful way to a wide variety 

of selection iterators of the form 

if 3 I E list ok then a else b;; 

whose expansion is 

I= first(list); 

(while I ne m 
if ok then 

a; quit; 

else 

I= next(I); 

end if; 

end while; 

The optimization principle that we have encountered shows 

that CELLINX(I) need not be checked at the assignment to I 

within the loop. 

l 
ll 




