wl

SETL‘Newsletter $ 167

}1’

‘A Variant SETL mpl'ementa'ti“o‘n :

ORI "’"ﬂ AN

J.T. Schwartz
April 14, 1976

) Incorporat{;gr'Whenever' Dictidns. _

This?newsletter will outline a way of implementing
simulation-oriented dictions like those described in NL 157
in a fairly straightforward extension of the planned new

’ (optimized) SETL implementation. At the same time, some

dictional revisions will be'suggéated.

The (revised) semantics to be

supported are as follows:

i. Process objects are introduced. These are treated

essentially as pointers to internal environments, which can
execute, and which can waeit for particular conditions to arise
bgﬁbteﬁgggy,execute. The components of a’'process are its

internal stack, instruction location index, and termination flag.

ii. . Static variables of one process may be modified by

_another_v-Specifically, if p. is a process~valued expression, and

v isva static variable, then p.v can be used within any other

process .to access the gurrent value of v in the process p.

Three special static variables,initialvariable, proceesspriority

and errorprocess present in every process, will play special

roles. As a syntactic convention, we assume these to be public -

variables of a module processystem;
for convenience of reference.

- o9

tit. Processes can be copied.

thus they can be aliased

The operator which does this is

) 'co.E! p. . -

The value of copy p is a new process p' all ofvhose variables

(including internal stack and instruction location index) have

the same value as they have in p.

' Copy p is equal to p.

If p is terminated, then

SETL=167-2

If p executes copy self the p' it creates will appear to have
just completed the copy operation, and to have received p' as
the value of this operation. If the ‘jprocess p is executing
an await operation (see below), then Lts ©opY P! owill be ready
to execute, and will appear to’ be just about to &xecute the
await operation. ' ' :

iv. - Two foims of aWait dictxon are provided. The simple
* await hag thé form’ ' : o h

anqhis anvexecutable statemeﬁt.‘ The’componént‘await has the form
(2 " await (C;, CpyeenfCp)

and is a funétiony Here C, Cl' CZ""'C are boolean-valued
expressions whose evaluation should have no side effects, and

. which should ‘aédéess no global variables not'appearlng expliciting

in C, Ci,..;,c " These statements suspend execution of the
- process ‘executing them until C (resp. one of Cl,...,c) is
satisfied.

v. ~ The nulladic primltive self returns the value of the
process executing it.

- vi. The primitive destroy erases the internal environment
of a process (which may release other objects for garbage
collection), and sets the process termination flag.

vit, The primitive restart p resets the instruction location
counter of p to the first location of p's 'main program' code,
and clear p's internal stack. Moreover, p is made ready
(see below). This primitive cannot be applied to p if the
- terminate bit of p has been set. Note that this primitive is
provided only for efficiency; it provides no essential semantic
capability that cannot be duplicated using the ‘copy primitive.
viii. The ptimitive eval acts on a vector <f, XyreosoXp?
whose first component is a function of n parameters, and returns

f(xl,...,xn) as its value,

e ——

SETL~-167-3

iz, If an error occurs duriﬁg the execution of a process
p whose érrorproccss variable has as its value a process .,
then the termination flag of p is set, and the value of

' qe zmtcalvamable is set to p.

& The (purely syntactic) subordtnate dxctions introduced
in NL 157 are retained.

' Badktr‘a’cki"ng" ai'éti'ousf ‘ 'ca-ﬁ ‘b‘e" 'reéresentéd .

It is worth noting that the semantic mechanisms that have
just been described can be used to realise the generalized
backﬁracking primitives match these of NL 166 closely enough.

The monadic and dyadid txy primitives of NL 166 can be répresented
as follows: Introduce a global variable called flagvariable

(so that a call with this name will be present in every process)
the dyadic try is |

definef env try val;
flagvariable = false;

env, initialvariable = val; .
env. flagvariable = true;
await flagvariable eq true:
return initialvariable;

end try;

The monadic try operator is

definef try val; .
flagvariable = false;

‘env = copy * self;

‘env. initialvariable = val;

env. flagvariable = true;

"avait flagvariable eq true;
return initialvariable;

end try; |

SETL~167-4

The addxtxcnal ‘environment tree' related mechanisms of
NL 166 are not necessary here, though of course they can be
- provided simply by’ includlng appropr:ate code in an appropriate
.group of routines used to represent the NL 166 prlmitlves. '

1 -Phug the’ prlmitives described in the preceeding pages are

. more powerful than those of NL 166. However, it must be

noted that the NL 166 primitives are designed to be eff1c1ent1y
implementable in the- context for ‘which they are intended,

. nemely one in which new environments are fregquently generated

- and then abandoned after a few cycles of exploratory execution
- when they are seen to represent dead ends. 1In such a situation,
. one wants to minimize environment entry/exit costs, which is
.done by relating each environment env to a ‘parent' env', and

- ¥epresenting env: as a set of differential changes to env’.

The efficient realization of this idea imposes semantic
restrictions, in particular, we assume in NL 166 that the
parent env' cannot be executed while it still has undestroyed
descehdants env. In the more general semantic framework
described in the present newsletter all envircnments are in-
dependent, which at the implementation level probably implies
that the internal stack of an environment env will be copied
completely whenever we execute the primitive copy env.

" Implementation Considerations.

The semantic structure that has just bteen described can
be implemented in much the same way as standard SETL, except
- that process stacks must be kept as vectors in a garbage-
collected erea; moreover, stores to variables that appear in
" await statements (we shall call these ‘await variables') must
be handled in a special way. A plausible implementation is
as follows: the'system will maintain a recdy list of processes
able to execute (in the sense that they are not currently poised
-at an unsatisfiable await). :

-

SETL~167-5

The ready list will he always kept sorted into order of

- diminishing priorities, and may consequently he represented

52 some data structure, e.g., balanced'tgees,'particularly
suitable for this purpose. With every await variable a
process list will be asécciétéd; every process not on the
ready 1ist which is awaiting a change in the value of the
variable will appear on this list. With each prccess p we
will associate a referemcing item list; all process list
items representing p will be referenced on this list.
Conversely, each proceés list item £ will point back to
the referencing item i which refers to &.

Whenever the value of an await variable v is changed,
all the non-ready processes p appearing on its process list

‘N,wiilfbe made ready; a ready bit will be set in each such p,

the process list of v will be made null, and the referencing
item of p's referencing item list which points to the

_process list item that points back at p will be deleted.
;’Exgcption will then continue with the ready process of highest
: 'prib;ity.. When a process begins to execute, its referencing

‘item list ril will be examined, all process list items located

by the items. of this list will be deleted, and ril will be

" cleared.

The restart primitive has an obvious implementation.

None of these interpretation rules are particularly
problematical. The garbage collector's marking activity
should begin with the stackﬁygctors of all the processes on
the system ready list; to make all other processes easily
available, it may be worth maintaining a more comprehensive

non~terminated proccess list.

.......

Objects will have to be copied more often in the multiple
process environment that haz been described than would be
necessary in a monoprocess environment.

SETL-167-6

A reagonable scheme migﬁt be to copyﬁr on each assignment
b, = x (or. 'incorporation', e.g., b ='{k},_for;which the
;. variable b Qelongs.to a different environmeatihan x. If
this ruletis folloved, copying on.other assignments and
\incorporations will be governed by.standard monoprocess .
yrules.r,goweger,,lt would be interesting to derive more
. efficient. copy. rules, which it is probably not hard to
ﬁpbtaip:usiggfstandard.Qlobal.optimization techniques.'

- Lanquages Of Mechanism

It is worth noting that the semantic primitiﬁes outlined
~ above can be used to capture much of the semantics of what
:might be called 'language of mechanlsm‘, albext in a way
:saﬁewhat lacking in polish. More specxflcally, we ‘can re-
present mechanisms thh active parts by u31ng a separate
process to represent each of the elementary parts of the
mechanism* interconnectlons between parts can be establlshed
'by transmitting appropriate groups {pl,...,p } of processes ‘as
A parameters to other processes P which need to be conneﬂted
to Pl"f"Pn’ 'Subassemblies' out of whlch more elaborate'
mechanisms are to be created can be represented by subroutines
which accept external connections as parameters and which
_generate thelprocesses which represent thelinternal elementary
parts of'a'sﬁbassembly. ‘The folloWing linkage convention can
be employed by a process p wishing to make use of avﬁechanism
(e.g., to calculate some quantity which p requires):
a. p will call an 'activatipg’ subroutine ar.
" ar will transmit parameters to appropriate entry
processes of the mechanism. '
b. ar will then await the appearance of the desired
result within the mechanism; note that this activates
. the mechanism, whose component processes can axecute
at lower priority than p.

a
]

SETL-167-7

When thea result hag appreared; ar will call a

Pr 5
mechanism-asaociated rastart routine. which will
re-initialize all the partas of the mochanisy for

-

gubsequent use. Then gr will retfurn.

