
C)

I

'---

StTL··Newsletter I 167

· :A va:r'ia:rrei ~sETii rmp1emema~i'on

Inc:ore~rlti:ri9: . iWh:en~vet·•:· . D'i:dti~; •
::· ·,:: ~:!.::f'U:>~:~~ .. · ·~ -- l ' ·: ~-. :.*. ;. ' .. · ·'

J.T. Schwartz
April 14, 1976

T¥~-newsletter w1;1 outline a way of implementi~g

simulatidn-·oriented dictions like those described in NL 157

in a fairly straightf~rward extension of the planned new
(optimized) SETL implemenuation. At the same time, some
dictional revisions will be suggested.

{ .

The· (revised) semantics to be supported are as follows:
i. Pl'ocess obje~ts are introduced. These are treated

essentially as pointers to internal environments, which can
ez~oute ,. ,and which can '111ai t for particular conditions to arise

b~~ore~ :i~,~ execute. The componel)ts of a . proc~ss are its
int_el'nat. staoka instruction Zocati.on indez$ and tePmination flag.

. ·' . •..

. ii • .. Static variables of one process may be modified by . ~. •. . ' .

another,. ~. Spee if ically, if p. is a process-valued expression, and
~ \ ~ ·.' . . -·

vis a static variable, then p.v can be used within any other

_proc~ss .tc:> access the current value of ·v in the process p.
Three special static variables,initialvariabte~ proceespriority
and errorprooess present in every process,.will play special

roles. _As a syntactic convention,,we assume these to be public
variables of a moq.ule pz-ocessystem1 thus they can be aliased
for convenience of reference.

iii. Processes can be copied. The operator which does this is

·The value of ·£2EY p is a new proc~ss p' all of\those variables
(including internal stack and instruction location index) have

the same value as they have in p. If p is terminated, then

· ~ p is e<I?al to p.

SETL-167-2

If p executes~-~ the p' it creates will appear to have
~ .

just _<;:_ompleted the copy operation, and to have received p' as
the value of this operation.. If ,the ;p-ro_cess· p i_s: execu ti!}g

an ·awa"it operation (see below), then its copy,p' will_ be _ready
to execute, and will appear t~· b~ just. 'ab~tit to. eit:ecute\· ·the

·await operation.
iv. · Two'·£6:rins of ·aiwa:it diction are provided. The simple

awai•t ha~ · the ,·.form: '

(1)

and is an executable statement. The component ·await has the form

(2)

and is a function,J -_Here c! c1 , c2 , •• ~ ,en a.re boolean-valued

expressions whose evaluation should have no sideeffectsr and
which should -''ac!!cess ·no global variables not appekring explici ting ('-­

in C, c1 , •• ~ ,en · . These statements suspend execution of the

process exe'cuting 'them until e (resp. one of c 1 , ••• ,en) is

Etatisfied.
v. · The nulladic primitive!!!!, returns the value of the

process executing it.
vi. The primi_ti ve· ·destroy erases the internal environment

of a process (which may release other objects for garbage

collection}, and sets the process termination flag.
vi.i. The primitive· ·restart p resets the instruction location

counter of p to the first location of p's 'main pr~gram' code,

and clear p's internal stack. Moreover, p is made ready
(see below). This primitive cannot be applied top if the

terminate bit of p has been set. Note that this primitive is
provided only for efficiency; it provides no essential sE-1nantic
capability that cannot be duplicated using the: :££EY primitive.

viii. The primitive~ acts on a vector <f, X11••~,xn> LI
whose first component is a function of n parameters, ·and returns

f(x1 , ••• ,xn) as its valueo

0

l

SETL-167-3

i~. If an error occurs durina the execution of a process . ~ ~

p whose erro~pztocoss variable has as its value a process q,

then the termination fl~g of p is set, and the val.ue of
. q. i.niti.aiv,Bltabt.e is set to p.

:,:. .- .1l'he (purely . syntactic) euboztdinate dictions introduced
in NL 157 1 are retained~ ,,

· Ba~tra:cki:ng. dicti'o'n:S'. ·c~ii be ·raeresen:ted.

It is worth noti?g that the semantic mechanisms that have
just been described can be used to realise the generalized
backtracking primitives match these of NL 166 closely enough.
The monadic and dyadic~ primitives of NL 166 can be represented
as follows: Introduce a global variable called flagvariable
(so that.a call with this name will be present in every process)
the dyadic ,!=.l is

def inef env · ~ val;
flagvariable = fal·se;
env. initialvariable a valJ
env. flagvariable = ·true; --
·await flagvariable· ~ ~;
return initialvariable;
end ~J

The monadie !!:I. operator is

define£ ·try val;
flagvariable = ·fa•l'!ie;

:env=·~·~;

· env. initialvariable = val;
. ~nv. fl~gvari~ble = ~; _
· ·await f lagvariable ~ true;

return initialvariable;
end ·try;

SETL-167·-4

The additional 'environment tree' related mechanisms of
NL 166 are not · riecesaa'.ry here, _tho~gh of course :they can be

· provided· simply by' inciludi~g approprlate code .i~: an appropriate
. group of routines used to represent the NL 166· primitives.

:',•~<(, Thus the·_::pri.lliitives dE!s·crlbed· i~ 'the pr'eceeding pages are

more powerful than those of NL 166. However, it must be
noted that the NL 166 primitives are designed to be efficiently

implementable in the conte~t.:for~which they are intended,

: -namely· ope in which new environments· are frequently generated

and then abandoned after a·few cycles of exploratory execution

:when they are se~n to represent dead ends. In such a si.tuation,
. one wants to minimize environment entry/exit costs, which is

:, done by relating each- env·ironment env to a •parent' env ', and

: -~~presenting env as a set of differential changes to env ' •

The efficient realization of this idea imposes semantic

restrictions, in particular, we assume in NL 166 that the
parent env' cannot be ·executed while it still has undestroyed
descendants env. · In the m9re·general semantic framework
described in the present newsietter all environments are in­
dependent, which at the impiementation level probably implies
that the internal stack of an environment env will be copied

completely whenever we exe~ute the primitive c~py env.

· · Implementation con:sid•erati'ons •

The semantic structure that has just been described can

be implemented in much the same way as standard SETL, except
that process stacks must be kept as vectors in a_ garb~ge­

collected area; moreover, stores to variables that appear in

await statements (we shall call these •awai~ variables') must
be handled in a special way. A plausible implementation is
as follows: the system will maintain a ready Ziat of processes
able to e>:ecute (in the sense that they are not currently poised

at an unsatisfiable· ·awa•it) •

., - -

0

L

SETL-167-5

The ready list will he always kept sorted into order of
. diminishi~g prioritiea, and may con~equently bf.'!. represented
by some data structure,> .e_.-g~, balanced· t~ees, · particularly
suitable for this purpose.·· With ·every ·al'lait variable a

p~ooess tlst will be associated1 every process not on the
ready list:which is awaiti~g a cha~ge ~n the value of the
variable will app.ear on this ·list. With each process p we

will associate a refer-enci.ng item list: all process list
items representing p will be referenced on•thi.s list.
Conversely, each process list item 1 will point back to
the referenci~g item i which refers tot.

Whenever the value of an ·aiwatt variable vis cha~ged,
all the non-ready processes p appeari~g on its process list
-~ill be made ready: a· ready bi.t will be set in each such p,
the process list of v will be made null,· and the referencing
item of p's referencing item list which points to the
process list item that points back at p will be deleted.

Execution will then continue with the ready process of highest
','

priority •. When a process begins to execute, its referencing
item list ~it will be examined, all process list items located .
by the items-of this list will be deleted, and ril will be
cleared.

The restart primitive has an obvious implementation.
None of these interpretation rules are particularly

problematical. The_ garb~ge collector•s marki~g activity
should b~gin with the stack~~ctors of· all the processes on
the system ready list; to make all other processes easily
available, it may be worth maintaini~g a more comprehensive
non-terminated process list.

· A ·remark ·ort optimtz·a ti"on.

Objects will have to be copied more often in the multiple

process environment that hae. been described than would be
necessary in a monoprocess envi:ronment.

' -·

SETL-167-6

A reasonable , scheme m~ght be to copy x on each ass~gnment

• ,:t:>, = x __ (or.,!i~co~rc1tion' 1 . e_;g., b :· {x}, _f~r which the

~; varic\I?le._,1l J?~lo9gs; to a· dlf.fEaf~nt environment tha,n ,x. If

tJu.s_ ~l~\:.Js~,fo~l.owed," .ce>py~~g on-~ther- a:Jf:l~gn,ment~ and
.,:tncq~orat~o,~s. w;11 be_ 90.verned, l)y.,.sta,ndard ~s;mop:i::(?cess

· .rul$s •. ,, However, it would be interesting to derive more
- •,.' r- ..,I • • . •. ••. , : '. • •. • • •

. effip~ent._cppy., rules, which it is probably no~ hard to
. . .

,-~bta_in: usi~g · standard_ glc;>bal optimization te9hniqu,s.

Languages· ·of Meeh:ani'sm.-

It is worth noti~g that the semantic primitives outlined

~ove can be used to capture much oft.he semantics of what
· might be · c~lled • langµage of mech~ism' , · albeit• in a way

': \: ~ ' -~ .: .~ •,· t :;:' : . ' . ·. . . . : "'· ..
som~hat l~cking in polish. More specifically, we can re-
pres~nt m~chanlsms with active parts by using a separate

·~••". - ·;~·~--::1.~ . .'. ,'- . :,._ ·: .. .

pro~~rs to:::' rrpresent each of the elementary parts of the (---:;
mechanism: interconnec~ions between parts can be established
~y· :tf~nSJlli~t~~g app~opri~te groups· {p1 ,: •. _-,p~} of processes :-as

parameters ·to other processes p which need to be connected
to p

1
~ •• ~,Pn• 'Subassernblies' -~ut of which, more elaborate

mechanisms are to be created can be represented by subroutines

which accept external connections as parameters and wnich

. generate the.processes which represent the internal elementary
parts of a subassembly. The following linkage convention can
be employed by a process p wishi~g to make use of a mechanism

(e_.g., to calculate some quantity which p requires):

a. p will call an 'activati~g' subroutine aPe

· $%~ will transmit parameters to appropriate entry

processes of the mechanism•

b. ar will then· ·awa•i t the appearance of the desired

result within the mechanism; note that this activates

the mechanism, whose component processes can execute

at lower priority than p. L ·

0

L

SETL-.167-7

c. When the result has appearefl r ar wU.1. cal 1 et

mechanism-asaociat<~d 't'"~Shirt r.:-.,.tln,~,. whi.('h wi.1.1

re-ini ti-:il:i.ze al 1 the parts of thn· v,i)ch.-ud :::·: f.~:rr

subsequent use. Then a!' wi.11 .:rettn·n.

