
SETL Newsletter# 174 

Relaxation of Basing Restrictions. 

Robert Dewar 
July 19, 1976 

The current scheme for basings involves some significant 

restriction on programs using basings and implies the existence 

of time and space consuming tests to ensure that these restrictions 

are met. For example 

DCL 

DCL 

DCL 

• 
b (c) ; 

a base; 

C : E a; 

involves testing a to see if it has been diminisher1 and i:: to see 

if its corresponding base block has been deleted. This newsletter 

proposes relaxing these restrictions and discusses the implementation 

consequences. 

Language changes 

In the language as proposed, basing declarations would be 

purely advisory;and no harm, except possible unnecessary space 

(more rarely time} wastage, would result from 'bad' declarations. 

Even the following program is legal: 

DCL 

DCL 

DCL 

a= nt; 

a: base; 

b: smap (Ea) int; 

C : E a; 

b = {< 1,2>, <3,4>, <5,6>}; 

read (c) ; 

print (a, b(c)); 

finish; 



SETL-17 4-~~ 

this program would print ni followed by 2, 4, 6 or om depending 

on the value of c. Note that as far as the programmer is concerned 

the basing "violations" have no effect, in particular a is 

always nt. 

The only remaining restrictions are those concerned with 

the passing of bases to routines. These restrictions will not 

be removed. 

Another addition to the l~nguage allows the extended use 

of virtual bases. In the sample program given, a has no function 

except to serve as a common base for band c in their declarations. 

Such a base may be declared to be virtual. A variable declared 

to be a virtual base may only be used as a base in other de­

clarations, no other uses are legal. 

Implementation 

If an object x based on a base y is assigned a value 

which implies the addition of an element to the set y, then 

the element will actually be added to the set, but marked as 

deleted. This deleted element carries an index and a local map 

block like any other element of the base, but is invisible to 

operations on y itself. 

Thus each base really is two values: the value expected 

from SETL semantics and visible to a SETL program, and a superset 

value large enough to maintain the validity of all basings. 

This secures the advantages of the basing without introducting 

dreaded 'pointer semantics'. 

A potential problem is that sets get cluttered with obsolete 

basing garbage which the program cannot remove. An analog of the 

problem is the possib~lity of the streets of New York being covered 

with invisible garbage which cannot be removed even after a 

strike is over. 



SETL-174-3 

The solution to the invisible garbage problem is to 

trace all blocks which are deleted and not referenced by any 

remote map. This sounds difficult (and is difficult) but 

it is no worse than the proplem of compacting indices, which 

is essential in any case under the original scheme. The basic 

approach is as follows: 

1) Link all remote maps to the base blo,ck by pointer 

reversal in pass 1. 

2) Construct a bit map (indexed by element index values) 

which shows which blocks are referenced by remote 

maps (or alive and well in the base). 

3) Compact indices on the basis of the bit map of (2). 

Adjust remote maps accordingly. 

4) Remove all elements in the set whose index is not 

marked in the bit map. 

The bit map manipulations are similar to those used by the main 

storage compaction scheme so code can be shared. 

Since the loading of the table is known, this procedure 

need only be carried out for sets with many deleted elements. 

Execution Advantages 

Since basings are always "true", no checks need be made 

which reduces the space and time for many important code sequences. 

Optimization Advantages 

The optimizer need only guess relationships, not guarantee 

them. For example if the construction 

f(x) 

appears and f is known to be a map, then declaring f, x to be 

based on some virtual base is unlikely to substantially slow down 
the program (no matter what it is), but may well give a sub­

stantial speed-up. 




