
SETL Newsletter# 175 

More on Copy Optimization. 

S.C. Liu 
E. Schonberg 
July 21, 1976 

SETL newsletter# 164 remarks that the copy instruction 
required by the value semantics of SETL can be inserted either 

on assignment, or upon modification of a composite object; 

and that copying only on modification as done in the current 

system and as implied by the destructive use condition (see O.V.H.L.I) 

can be inefficient in some cases. The example: 

A= B; CV x Es) A(x) = f(x);; (1) 

makes this plain:if A is copied before modification, it will be 

copied (#s) times within the loop, unless some dynamic scheme 

(reference counts or shared bits) indicates to the processor 

that only the first copy is required. However, if we write: 

A = B; cv X E s) A = copy (A) ; A (x) = f (x) ; ; 

then it is clear that the copy operation can be moved out of 

the loop: 
A = B; A = copy (A) ; (>./ x E s) A (x) = f (x) ; ; 

( 2) 

( 3) 

If a static analysis can determine safe instances of copy motion, 

then we can retain the analysis of OVHL, insert copies only on 

modification, and perform the safe code motion in a separate 

optimization pass. 

Let us consider again the code sequence (2): 

Ll: A = B; 

L2: (\/ x E s) 

L3: A = copy (A) ; 

L4: A(x) = f(x);; 



SETL-175-2 

Note first that a dynamic system for copy optimization will 

perform a conditional copy at L3, based on the shared-bit of 

Ai3 (i.e. the ivariable occurrence of A at line L3). It is 

only on the first pass through the loop that this bis is s·et, 

and the copy must be performed. A static analysis can recover 

this result by noting that within the loop, A does not become 

part of any other live variable, so that the copy made on the 

first pass and subsequently modified at L4 is a stand-alone 

value, modifiable in place. This is the condition we want: 

to fonr:alize. 

Another remark: the code fragment (3): 

Ll: A = B; 

L2: A= copy(A); 

L3: ('r/ X E s) 

L4: A {x) = f {x) ; ; 

is easier to analyze: Ai4 can be used destructively because 

and both these values are dead before executing L4. (The copy 

at L2 means that crthis(A02 ) = {A02}). Because of the expense 

of calculating the mappings crpart, etc., it is out of the 

question to insert a copy outside of the loop for a variables 

which are modified within it, and then verify whether the inner 

occurrencei of these variables still satisfy the destructive use 

condition. Rather, we want to perform a static analysis on the 

original code {2), with a copy assumed on modification. 

An exact condition for copy motion. 

The destructive use condition tells us that if the ivariable 

ai must be copied, then the set crpart-l [crthis(ai)] ~ ni, and 

its elements are not dead at the point of destructive use (i.e., at 

the point where a copy becomes necessary). 



SETL-175-3 

The condition we seek depends on the elements of crthis{ai) 

and in particular on whether a. is a value created inside or 
l. 

outside the loop. 

a) If ai is (a pointer to) a value acquired outside 

the loop, then on entrance to the loop several variables 

refer to that value. If the copy is performed before entering 

the loop, the variable a point to a new {unshared) block. 

It can be used destructively within the loop if it is dead at 

the point of use, regardless of the fate of the outside variables 

which transmitted a value to it. ·· For example, in 

a= b; CV x Es) a(x) = f(x);; b with z; 

a can be copied outside the loop {it is dead before execu~ing 

a(x) = ••• ) while in the code fragment: 

a= b; CV x Es) t = a with f(x) ;; 

a is live at the point of destructive use, and the copy cannot 

be moved. 

(4) 

b) If a. is (a pointer to) a value acquired within the 
l. 

loop, then each iteration through the loop produces a new pointer 

(not necessarily distinct from its value on previous or sub

sequent iterations) and the full destructive use condition must 

be applied to these values, i.e., they must notm.ve become part 

of any live object between the time they were created and the 

point of destructive use. 

Let us designate by Lp the set of instructions within the 

loop, and by instr(o) the instruction which creates the 

ovariable o. We then define: 

crthis. (i) = [+: o E ud(i) I instr(o) in Lp] crthis(o); 
in 



SETL-175-4 

The copy motion condition can then be written as: 

move(i) = live (crpart-l [crthis. (i)] +{ovar(i)}) ~ ni 
. in 

Note that ovar(i) must appear explicitly in this expression, 
to cover the case where crthisin(i) is empty, as in (4) above. 

Some simple examples. 

a) a = b; <V x E s) a with x; c with a;; 

the move condition is false, because a is live at the point 

of destructive use. 

b} a = b; (\/ x E s) a with f (x) ; b less g (x) ; ; 

the move condition is true for both a and b. 

c) a = b; (\/ x E s) a (x) = f (x) • • • • a = t (x) ; ; $ t is a map. 

The move condition is false because crthis(ai) at the 

point of copy includes t(x) 

d) a= b; <V x Es) a(x) = f(x) ••• a= g(x);; 
$ g is a function. 

The move condition cannot be ascertained without inter

procedural analysis, because the function g might return a 

shared object. 


