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A LIMITED FORft OF COftftON SUBEXPRESSION ELIMINATION 

FOa SETL PROGRAMS 

Although the co■plicated algebraic expressions which 

are the source of the usually-studied for■ of co■mon 

subexpression elimination do not appear frequently in SETL 

code, there is an area in which greater efficiency can be 

acbieved if common subexpressions are re■ oved. · In fact,. it 

turns out that at the source level the cause of the original 

inefficiency is analogous to the cause of ■ost 

inefficiencies in algebraic languages. For exa ■ple, in 

FORTRAN the most troublesome redundant expressions are those 

used to compute array displace ■ents from lists of 

subscripts. The analogue to this type of co ■ putation in 

SE?L is the operation of hashing to find the value of a map. 

Consider the flllloving SETL code, which is taken from 

actual code written for part of the SETL optimizer. 

If not crthis(fcomoi} subset crthis{i} then 

crthis(i} = crthis(i} + crthis(fco ■oi}; 

changed= true; 

end if; 



SETL Newsletter t188 2 

With unoptimized code, the expressions crthis(fro■oi} and 

crthis(i} must each be evaluated twice. However, by saving 

• 
the temporary from the first evaluations, we can avoid 

repeating the expensive hashing operations. 

In order to have a relatively fast common subexpression 

detection algorithm, we will not try to locate all co■■on 

subexpressions, but merely those which are most likely to 

appear and which the program■er aight be tempted to remove 

by explicitly saving the value in a progra ■mer-defined 

te■ porary. These expressions are essentiallT just those 

that are identical in the source code, although the 

algorithm may catch a few others as well. 

The_Kethod 

Unlike Kildall's algorith ■ [Ki], which detects common 

subexpressions by building up equivalence classes of 

expressions which are.equal in value at each point in the 

program, this algorithm construcbs equivalence classes of 

variable occurrences. The immediate motivation for this 

approach is that the SETL optimizer uses the occurrence 

chaining ■ap (ffro■ or its transitive closure, du) [Va] 

[Ki] Kildall, G.A., A Unified Approach to Global Program 
Opti ■ization, First ACM symposium on Principles of 
Programming Languages, 1973. 

[Ya] Vanek, L.I., Global Analysis Techniques for the 
Optimizing SETL Compiler, Proceedings of the First 
Moscow Conference on Very High Level Languages, 
September 1977. 
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instead of the 

of the program 

about Yariable 

flov graph to represent the 

being analyzed; thus. it 

occurrences but difficult 

points in the progra■• Furthermore, this 

only one partition for the entire progra ■, 

for every block as Kildall's does. 

J 

flow of control 

is easy to talk 

to talk about 

sche■e requires 

not a partition 

For completeness, we review the following preli■inary 

definitions. 

Definition 1 -

The 

sets of 

sets !!!!g~f~ 

all definitions 

and ~!!Ye~§ are, respectively, the 

(occurrences of variables used as 

outputs in an instruction} and all uses (input occurrences.) 

Definition 2 -

For any occurrence, oi, of a variable v, !!£Q.!12!L is 

the set of uses of v which can be reached fro■ oi on a path 

containing no intervening occurrences of v. 

Definition 3 -

The map ~!£Q! is the inverse of ffro ■• 

Definition 4 -

The ■ap ~~ is the transitive closure of ffro■ with its 

domain restricted to alldefs. 

Definition 5 -

The ■ap yg is the transitive closure of bfro■ vith its 

range restricted to alldefs. 
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our algorithm initially puts each occurrence into an 

eqoiYalence class by itself, and t~en ■erges classes when it 

finds tvo that ■ ust have the sa■e value. If this merging 

procedure is done just once, exa ■ining the occurrences in 

the order of a topological sort of the flow graph (or the 

or1~r of the code vector, if 

sorting the graph), ■ost 

computations will be found. 

you prefer not to 

of the re■ovable 

spend time 

redundant 

This is by no ■ eans an optimal 

strategy because it does not trace the looping structure of 

the program, but since the kind of situat~ons we are 

interested in do not involve loopiqg it does quite well. 

The initial partition consists of equivalence classes 

containing a single definition and all the uses which have 

only that definition linked to them via the ud ■ ap. Also in 

the same class are uses which have ■ore than one definition 

in common but which, for. any execution path passing through 

both uses, ■ ust have been created by the sa■e definition. 

Clearly in both cases the occurrences in a class must 

represent the same value - na■ ely the value assigned at the 

definition. Two examples of sue~ equivalence classes are 

illustrated in Figure 1. The initializations are 

accomplished by the following for■ulas: 
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ROLE 1 -

(¥ o e alldefs) 

egclass(o) = (o}' • (i € d11(0) I lud(i) eg 1}; 

(.Y i € alluses) 

eqclass(i) = if tud(i) eq 1 then eqclass(arb ud(i)) 

else (i • e d11( ud (i) ] I ud (i) eg ud (i •) and 

i reaches instof(i') and 

i • reaches instof (i) } ; 

The predicate reaches is defined as follows: 

Definition 6 -

5 

An occurrence oi reaches an instr11ction q iff there 

exists no path to q fro■ the instructioa containing oi (but 

not including either 

redefinition of var(oi). 

no path from oi to q. 

Subsequently, the 

end point) vhich contains a 

It is vacuo11sly true if there is 

equivalence classes of two 

definitions, o 
1 

and o, are merged if the following three 
2 

conditions are satisfied: 

RULE 2 -

1. The quadruples defining the occurrences 'are -
0 = 8(i , i , ••• i ) 

1 1 1 12 1D 

0 = 8 (i , i , .•. i ) 
2 21 22 2D 



SETL Newsletter 1188 

2. 8 is a deter■ inistic operator with no side effects. 

3. 

This means that outputs of operators such as read, 

rando■, function call/return, next ele ■ent of set, and 

incre■ent cannot have their equivalence classes merged. 

¥ j=l, 2 ••• n: i 
lj 

e eqclass(i ) 
2j 

Figure 2 illustrates hov this class merging procedure 

works. 

Removing Redundant o~erations 

If tvo definitions are in the same equivalence class it 

■ay or may not be possible to eli ■inate the co ■putation of 

one of the ■• For exa■ple, co~idering the quadruples 

discussed in (1.) above, the instruction defining o can be 
2 

replaced by the simple assignment o = o only if all paths 
2 1 

in the program which lead too pass through the instruction 
2 

defining o, and 
1 

var(o) is not redefined on any of the 
1 

paths between the definition of o and the definition of o. 
1 2 

This condition is guaranteed to to be satisfied if o and o 
1 2 

are in the sa ■e procedure and var(o) is a temporary 
1 

variable. 
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Before making a more precise statement of the 

conditions necessary for re■oving redundant subexpressions, 

another predicate must be defined. 

Definition 6 -

An instructioij q dominates 
1 

another instruction q iff 
2 

all execution paths from the entry of the progra ■ to q must 
2 

pass through q • 
1 

A quadruple is a 

following conditio~ holds. 

RULE 3 -

redundaqt subexpression if the 

Leto 
1 

and o be definitions in the same equivalence 
2 

class. If i nstof (o ) 
1 

dominates instof (o ) 
2 

and 

o reaches instof(o) then the quadruple defining o can be 
2 1 2 

replaced by either 

1. the assign ■ent var(o) 
2 

= var(o) - if the variables of 
1 

the tvo occurrences are disti,nct, or 

2. a no-op instruction - if the variables are the sa ■e. 

This code eli■ination will be carried out on an 

intraprocedural basis because it is not possible to keep a 
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local variable of one procedure available for copying within 

another procedure. 

Reducing Storage Reguire ■ents 

Because the reaches predicate is a function of botb the 

occurrences and the instructions in a program, it requires a 

very large amount of storage. I~ fact, it requires more 

than is generally feasible for it to be granted for any 

reasonably large program. Hence, a version of the above 

formalation which does not depend on reaches would be more 

useful. Unfortunately, without reaches the algorith ■ will 

not be as powerful, but it is still possible to devise such 

an algorithm. 

If we restrict ourselves to o~ly reusing subexpressions 

which are stored in temporaries, the second use of the 

predicate can be eliminated. Since temporaries are never 

reused there is no need to check that a variable has not 

been killed on the path fro ■ where the subexpression is 

first computed to the instruction where it is recoaputed. 

All that is necessary is that the first instruction dominate 

the second. 

The other application of reaches is less easily done 

away with and can be accomplished by using a more refined 

initial partition. With this initialization not as ■any 
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classes vill end up being merged. but the merging procedure 

will be much less costly. 

The classes of occurrences constructed vill no longer 

create a partition of the set of all occurrences. With the 

new initialization it aay happen t~at tvo occurrences i' and 

i are both in class(i) but are not in each other's class. 

This vill happen. for example. when i• and i• are in 

different alternatives of an "if" state ■ent but can both be 

reached from i. The new initialization is accomplished by 

the following SETL code: 

RULE 1A -

(¥ oi e alluses + alldefs) 

class(oi) = (oi}; i = oi; 

(while tffrom(i) eq 1 and i notin bfromdead) 
$ Trace unique path forward. ignoring merges. 

$ and stopping at the first fork 
i = arb ffro ■ (i); classti) = class(i) with i; 

end; 

fchain = ffrom(i); use workpile after path diverges 

(while fchain ne nl) 
$ Trace all forward paths, but pass merges only if 

S all predecesors to the targets of aerges are 
$ already in class(oi) 

i from fchain; 
if bfrom(i) subset iclass then 

class(oi) = class(oi) with i; 
fchain = fcaain + ffro ■ (i) - class(oi): 

end if; 
end while; 

i = oi; 
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$ The preceding two loops are repeated with the 
$ forward and backward directions, as well as 
$ references to ■erges and forks, interchanged. 
$ The reference to bf~o■dead can be eli■inated. 

end ¥; 

10 

Since the classes defined by rule 11 are not 

equivalence classes, it ■ ight see ■ that the third part of 

role 2 may require some modifications. For equivalence 

classes, x e eqclass(y) i■ plies that eqclass(x} = eqclass(y) 

and, hence, that ye eqclass(x). But for the nev classes, 

it is not necessarily true that x € class (y) i ■ plies 

y s class (x). Figure J illustrates this. The first two 

parts of rule 2 remain the same in Dule 2A, but part 3 now 

beco ■es 

3. ¥ j=1, 2 • • • n: i 
1j 

e class (i ) 
2j 

or i 
2j 

e class(i ) 
1j 

Also, although it is clear vhat is meant by merging 

equivalence classes, it is necessary to define precisely 

what it means to merge value classes. The following rule 

accomplishes this. 

RULE 4 -

The proceduce for ■er ging value classes is 

(.Y oi € class (o )) class (oi) = class (oi) ♦ class (o ) ; 
1 2 

(-¥ oi € class(o )) class (oi) = class (oi) ♦ class(o ) ; 
2 1 

This rule pceserves the property that occurrences in 
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the same value class (and lying oa the same path of 

execution) must represent the sa ■e value. 

Finally, rule 3 si ■plifies to beco■ e the following: 

RULE 3A -

Leto and 
1 

o be definitions in tbe 
2 

sa ■e value class. 

If instof (o ) 
1 

do■inates instof,o) 
2 

and var (o ) 
1 

is a 

temporary variable, then the quadruple defining o can be 
2 

replaced by 

var(o) 
2 

= varfo ). 
1 

If we allow ourselves the ability to insert code and 

create new temporaries, it is possible to further liberalize 

rule 3A. Ila ther t ban insist that var (o ) be a te ■ porary, we 
1 

create nev temporaries when needed to hold the value of a 

common subexpression until it is again needed. 

rule 3A ve add the following: 

RULE 3B -

Thus, to 

Let o and 
1 

o be definitions in the 
2 

sa ■e value class. 

If instof(o) dominates 
1 

inst of (o ) 
2 

and var (o ) 
1 

is not a 
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temporary variable, then if the following quadruple is 

inserted after instof(o) on all possible paths from that 
1 

instruction 

newteap = varto) 
1 

then the quadruple defining o can be replaced by 
2 

var(o) = nevbemp. 
2 
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(a) All Occurrences of x in the same eqivalence class 

= 

(b) Definitions in Different Classes from Uses 

FIGURE 1: INITIAL EQUIVALENCE CLASSES USING RULE 1 
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x = f 1 (gl (h 1 (y) )) 

z = f2(g2(h2(y))) 

(a) Source Code - corresponding arguments are equivalent 

t1 = hl(y) 
t2=gl(t1) 
X = f 1 (t 2) 

• 
t3 = h 2 (y) 
t4 = g2 (t3) 
z = f 2 (t4) 

tJ = tl 
t4 = t2 
Z = X 

tJ € class (t 1) 
therefore t4 € class (t2) 

therefore z e class(x) 

(b) Ql Quadruples - classes are merged 

useless since t3 and t4 are never used. 
both quads can be removed (replaced by no-op.) 
assumes that x reaches z and that 
instof(x) dominates instof(Z)u 

(c) Best Possible Replacement for Second Computation 

FIGURE 2: CLASS ftEBGEB and REDUNDANT CODE REftOVAL 
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1. 
2. 
l. 

"· 5. 

X = ••• 
if P1 then return ftx); 
elseif P2 then y = g(x); 

else y = ~(xt; 
return x+y; 

(a) Prograa Segment 

5 

(b) "ffro■" Grap~ for x 

class(x ) = {X • X , X • X • X } 

1 1 2 3 4 5 

class(x ) = {x , X } 
2 1 2 

class(x ) = .{X. o X , X } 

3 1 3 5 

class(x ) = {x , X , X J 

" 1 4 5 

class(x ) = {x ,, X , X } 
5 3 4 5 

end if; 

(c) Value Classes from Rule 11 

FIGURE 3: INITIAL VALUE CLASSES 

1 5 


