SETL Newsletter No. 188

Leonard Vanek

May 31, 1977

A LIMITED FORM OF COMMON SUBEXPRESSION ELIMINATION

FOR SETL PROGRAMS

Although the complicated algebraic expressions which
are the source of the usually-studied form ‘of coamon
subexpression elimination do not appear frequently in SETL
code, there 1is an area in which greater efficiency can be
achieved if common subexpressions are removed. ' In fact, it
turns out that at the source level the cause of the original
inefficiency is analogous to the cause of most
inefficiencies in algebraic languages. For example, 1in
FORTRAN the most troublesome redundant expressions are those
used to compute array displaceaments from lists of
subscripts. The analogue to this type of <computation in

SETL is the operation of hashing to find the value of a mape.

Consider the fallowing SETL code, which is taken from

actual code written for part of the SETL optimizer.

If not crthis (fromoi} subset crthis{i} ‘then
crthis{i} = crthis (i} + ctthis{fronoi};
changed = true;

end if;

SETL Newsletter #188 2

With wunoptimized code, the expressions crthis{fromoi} and

crthis {i} must each be evaluated twice. However, by saving
1

the temporary from the first evaluations, e can avoid

repeating the expensive hashing operations.

In order to have a relatively fast common subexpression
detection algorithm, we will not ¢try to locate all common
subexpressions, but merely those which are nost_ likely to
appear and which the programmer might be tempted to remove
by explicitly saving the value imn a programamer-defined
temporary. These expressions are essentially just those
that are identical in the source code, although the

algorithm may catch a fewv others as well.

The Method

Unlike Kildall's algorithm [Ki], which detects common
subexpressions by building up equivalence classes of
expressions which are equal in value at each point in the
program, this algorithm constructs equivalence classes of
variable occurrences. The immediate w@otivation for this
approach 1is that the SETL optimizer uses the occurrence

chaining map (ffrom or its tramsitive closure, du) [Va]

(Ki] Kildall, G.A., A Unified Approach to Global Program
Optimization, FPirst ACM Symposium on Principles of
Programming Languages, 1973.

[va] vanek, L.I., Global Analysis Techniques for the
Optimizing SETL Compiler, Proceedings of the PFirst
Moscow Conference on Very High Level Languages,
September 1977.

SETL Newsletter #188 3

instead of the flow graph to represent the flow of control
of the program being analyzed; thus, it is easy to talk
about variable occurreances but difficult to talk about
points in the prograsm. Furthermore, this scheme requires
only one partition for the entire program, not a partition

for every block as Kildall's does.

For completeness, ve review the following preliaminary
definitions.
Definition 1 -

The sets alldefs and alluses are, respectively, the
sets of all definitions (occurremces of variables used as
outputs in an instruction) and all uses (input occurrences.)
Definition 2 -

Por any occurrence, oi, of a variable v, ffromfoi) is
the set of uses of v which can be reached from oi on a path
containing no intervening occurrences of v.

Definition 3 -
Definition 4 -

The map du is the transitive <closure of ffrom with its

domain restricted to alldefs.
Definition 5 -
The map ud is the transitive closure of bfrom with its

range restricted to alldefs.

SETL Newsletter #188 4

Our algorithm initially puts each occurrence into an
equivalence class by itself, and then merges classes when it
finds tvo that must have the same value. If this merging
procedure is done just once, examining the occurrences in
the order of a topological sort of the flow graph (or the
ordar of the code vector, if you prefer not to spend time
sorting the graph), most of the removable redundant
computations will he found. This is by no means an optimal
strategy because it does not trace the looping structure of
the program, but since the kind of situations we are

interested in do not involve looping it does quite well.

The initial partition consists of equivalence classes
containing a single definition and all the uses which have
only that definition linked to them via the ud map. Also in
the same class are uses which have more than one definition
in common but which, for. any execution path passing through
both uses, wmust have been created by the same definition.
Clearly in both cases the occurremces in a class must
represent the same value - namely the value assigned at the
definition. Two examples of such equivalgnce classes are
illustrated in Figure 1. The initializations are

accoaplished by the following formulas:

W

SETL Newsletter #188

ROLE 1 -
(¥ o € alldefs)
eqclass(o) = (o} ¢+ {1 € du(o) | #ud(i) eq 1};
(¥ i € alluses)
eqclass (i) = if #ud(i) eq 1 then eqclass(arb ud(i))
else {i* € dufud(i)] | ud (1) eq ud(i®) and
i reaches instof(i?) and

i' reaches instof (i) }:;

The predicate reaches is defimed as follows:
Definition 6 -

An occurrence oi reaches an instruction q iff there
exists no path to q from the instructiom containing oi (but
not including either end point) which contains a
redefinition of var (oi). It is vacuously true if there is

no path from oi to q.

Subsequently, the equivalence classes of tvwo

definitions, o and o , are merged if the following three
1 2

conditions are satisfied:
RULE 2 -

1. The guadruples defining the occurrences ‘are -

]

B(i 4 1 seeel)
1 11 12 1n

o)

0O = 08(i , 1 geeesl)
2 21 22 2n

SETL Newsletter #188

2. © is a deterministic operator with no side effects.
This means that outputs of operators such as read,
random, function call/return, next element of set, and
increment cannot have their equivalence classes merged.

3. ¥ j=1, 2 ee. n:z i € eqclass(i)

13 2]
Figure 2 illustrates how this class merging procedure
works.

If two definitions are in
may or may

one of then. For example,

discussed in (1.) above, the

replaced by the simple assignment

in the program which léad to o

defining o , and var(o) is
1 1

paths between the definition of o

This condition is guaranteed to to be satisfied if o

are 1in the same

variable.

not be possible to eliminate

instruction defining o

procedure and

the same equivalence class it
the computation of

considering the quadruples
can be

2

o = o only if all paths

2 1

pass through the instruction

not redefined on any of the

and the definition of o .
1 2

and o
1 2
var(o) is a
1

temporary

SETL Newsletter #188 7

Before wmaking a more precise statement of the
conditions necessary for removing redundant subexpressions,

another predicate must be defined.

Definition 6 -

An instruction q dominates another instruction q iff
1 2

all execution paths from the entry of the program to q must
‘ 2

pass through q .
1

A quadruple is a redundant subexpression 1if the

following condition holds.

RULE 3 -
Let o and o be definitions in the same equivalence
1 2
class. 1f instof (o) dominates instof (o) and

1 2

0 reaches instof (o) fhen the quadruple defining 0 can be
1 2 2

replaced by either

1. the assignment var(o) = var(o) - if the variables of
2 1

the two occurrences are distinct, or

2. a no-op instruction - if the variables are the same.

This code eliamination will be <carried out omn an

intraprocedural basis because it is not possible to keep a

SETL Newsletter #188 8

local variable of one procedure available for copying within

another procedure.

—— el e - P A Pt} PP

Because the reaches predicate is a function of both the
occurrences and the instructions in a program, it requires a
very large amount of storage. In fact, it requires more
than 1is generally feasible for it to be grantéd for any
reasonably large program. Hence, a version of the above
formulation which does not depend on reaches would be more
useful. Unfortunately, without reaches the algorithm will
not be as powerful, but it is still possible to devise such

an algorithm.

If we restrict ourselves to omly reusing subexpressions
vhich are stored in temporaries, the second use of the
predicate can be eliminated. Since temporaries are never
reused there 1is no neéd. to check that a variable has not
been killed on the path from where the subexpression is
first computed to the instruction where it is recomputed.
All that is necessary is that the first instruction doainate

the second.

The other application of reaches is less easily done

away with and can be accomplished by using a more refined

initial partition. With this initialization not as many

SETL Nevsletter #188 9

classes will end up being merged, but the merging procedure

will be much less costly.

The classes of occurrences constructed will no longer
create a partition of the set of all occurrences. With the
nevw initialization it may happen that two occurrences i' and
i are both in class(i) but are not in each other's class.
This will happen, for example, when i®* and i' are in
different alternatives of an "if" statement but can both be
reached from 1i. The newv 1initialization 1is accomplished by

the following SETL code:
RULE 1A -

(¥ oi € alluses + alldefs)
class(oi) = (oi}: i = oi;
(vhile #ffrom(i) eq 1 and i notin bfromdead)

$ Trace unique path forward, ignoring merges,
$ and stopping at the first fork

i = arb ffrom(i); . class§l) = class (i) with i;
end;
fchain = ffrom (i) $ use workpile after path diverges

(vhile fchain ne nl)
$ Trace all forward paths, but pass merges only if
$ all predecesors to the targets of merges are

$ already in class (oi)

i from fchain;

if bfrom(i) subset iclass then

class(ol) = class(oi) with i;
fchain = fchain + ffrom(i) - class(oi);
end if;

end while;

i = oi;

SETL Newsletter #188 10

The preceding two loops are repeated with the
forward and backward directions, as well as

references to merges and forks, interchanged.
The reference to bfromdead can be eliminated.

Ky w

end ¥;

Since the classes defined by rule 1A are not
equivalence classes, it might seem that the third part of
rule 2 may require some modifications. For equivalence
classes, x € eqclass(y) implies that eqclass(x) ='eqc1ass(y)
and, hence, that y € eqclass(x). But for the newvw classes,
it is not necessarily true that x € class{y) implies
Yy € class(x). Figure 3 illustrates this. The first two
parts of rule 2 remain the same in pule 2A, but part 3 now
becomes
3. ¥ j=1, 2 ee. n: i € class (i .) or i € class(i)

13 23 2j 13

Also, although it is <clear what 1is meant by merging
equivalence classes, it 1is necessary to define precisely
what it means to merge value classes. The following rule

accomplishes this.
RULE 4 -

The procedure for merging value classes is

(¥ oi € class (0)) class(oi) class (oi) ¢ class(o);
1 2

(¥ oi € class (o)) class(oi) class (ol) + class(o);
2 1

This rule preserves the property that occurrences in

SETL Newsletter #188 11

the same value <c¢lass (and lying om the same path of

execution) must represent the same value.

Finally, rule 3 simplifies to become the following:

RULE 3A -~
Let o and o be definitions in the same value class.
1 2
If instof(o) dominates instof¢o) and var(o) is a
1 2 1

temporary variable, then the gquadruple defimning o can be
2

replaced by

var(o) = varfo).

Further Improvements

If we allow ourselves the ability to insert code and
create new temporaries, it is possible to further liberalize

rule 3A. Rather than insist that var(o) be a teaporary, we
1

create new temporaries when needed to hold the value of a
comaon subexpression until it is again needed. Thus, to

rule 3A we add the following:

RULE 3B -

Let o and o be definitions in the same value class.
1 2

If instof(o) dominates instof{(o) and var(o) 1is not a
1 2 1

SETL Newsletter #188 12

temporary variable, then if the following quadruple 1is

inserted after instof(o) om all possible paths from that
1

instruction

nevtemp = var ¢o)
1

then the quadruple defining o <can be replaced by
2

var{(o) = newtemp.
2

SETL Newsletter #188 13

(a) All Occurrences of x in the same eqivalence class

{(b) Definitions in Different Classes from Uses

FIGURE 1: INITIAL EQUIVALENCE CLASSES USING RULE 1

SE

t3

t4 =

TL Newsletter #1188 14

£1(g1 (b1 (M)

»
]

£2(92(h2(y)))

N
1

(a) Source Code - corresponding arguments are egquivalent

= h1(y)
= gl(ty)
= £1(t2)
= h2(y) t3 € class(tl)
= g2(t3) therefore t4 € class(t2)
= f2(t4) therefore z € class{x)

{b) Q01 Quadruples - classes are merged

= t1 - useless since t3 and t4 are never used.
t2 - both quads can be removed (replaced by no-op.)
= x - assumes that x reaches z and that

instof (x) dominates imnstof (z).
(c) Best Possible Replacement for Second Computation

FIGURE 2: CLASS MERGER and REDUNDANT CODE RENOVAL

SETL Nevsletter #188

X T ewee

N & W N =
.

(@)

ANC

(b) "f

class(x)
1

{x

class{(x) = {x
2
class(x) = {(x.
3
class{x) = {x
4
class(x) = {x
5

(c) Value

FIGURE 3:

if P1 then return f §x);
elseif P2 them y = g(x).

else y h(x) ; end if;

return x+y;

Program Segment

X

\lu

5
from® Graph for x

e X o X 4 X, X}
e X}

o X , X}

¢ X 4, X}

e X , X}

Classes from Rule 1A

INITIAL VALUE CLASSES

15

