
SETL Newsletter No. 188

Leonard Vanek

May 31, 1977

A LIMITED FORft OF COftftON SUBEXPRESSION ELIMINATION

FOa SETL PROGRAMS

Although the co■plicated algebraic expressions which

are the source of the usually-studied for■ of co■mon

subexpression elimination do not appear frequently in SETL

code, there is an area in which greater efficiency can be

acbieved if common subexpressions are re■ oved. · In fact,. it

turns out that at the source level the cause of the original

inefficiency is analogous to the cause of ■ost

inefficiencies in algebraic languages. For exa ■ple, in

FORTRAN the most troublesome redundant expressions are those

used to compute array displace ■ents from lists of

subscripts. The analogue to this type of co ■ putation in

SE?L is the operation of hashing to find the value of a map.

Consider the flllloving SETL code, which is taken from

actual code written for part of the SETL optimizer.

If not crthis(fcomoi} subset crthis{i} then

crthis(i} = crthis(i} + crthis(fco ■oi};

changed= true;

end if;

SETL Newsletter t188 2

With unoptimized code, the expressions crthis(fro■oi} and

crthis(i} must each be evaluated twice. However, by saving

•
the temporary from the first evaluations, we can avoid

repeating the expensive hashing operations.

In order to have a relatively fast common subexpression

detection algorithm, we will not try to locate all co■■on

subexpressions, but merely those which are most likely to

appear and which the program■er aight be tempted to remove

by explicitly saving the value in a progra ■mer-defined

te■ porary. These expressions are essentiallT just those

that are identical in the source code, although the

algorithm may catch a few others as well.

The_Kethod

Unlike Kildall's algorith ■ [Ki], which detects common

subexpressions by building up equivalence classes of

expressions which are.equal in value at each point in the

program, this algorithm construcbs equivalence classes of

variable occurrences. The immediate motivation for this

approach is that the SETL optimizer uses the occurrence

chaining ■ap (ffro■ or its transitive closure, du) [Va]

[Ki] Kildall, G.A., A Unified Approach to Global Program
Opti ■ization, First ACM symposium on Principles of
Programming Languages, 1973.

[Ya] Vanek, L.I., Global Analysis Techniques for the
Optimizing SETL Compiler, Proceedings of the First
Moscow Conference on Very High Level Languages,
September 1977.

SETL Newsletter 1188

instead of the

of the program

about Yariable

flov graph to represent the

being analyzed; thus. it

occurrences but difficult

points in the progra■• Furthermore, this

only one partition for the entire progra ■,

for every block as Kildall's does.

J

flow of control

is easy to talk

to talk about

sche■e requires

not a partition

For completeness, we review the following preli■inary

definitions.

Definition 1 -

The

sets of

sets !!!!g~f~

all definitions

and ~!!Ye~§ are, respectively, the

(occurrences of variables used as

outputs in an instruction} and all uses (input occurrences.)

Definition 2 -

For any occurrence, oi, of a variable v, !!£Q.!12!L is

the set of uses of v which can be reached fro■ oi on a path

containing no intervening occurrences of v.

Definition 3 -

The map ~!£Q! is the inverse of ffro ■•

Definition 4 -

The ■ap ~~ is the transitive closure of ffro■ with its

domain restricted to alldefs.

Definition 5 -

The ■ap yg is the transitive closure of bfro■ vith its

range restricted to alldefs.

SETL Newsletter 1188 4

our algorithm initially puts each occurrence into an

eqoiYalence class by itself, and t~en ■erges classes when it

finds tvo that ■ ust have the sa■e value. If this merging

procedure is done just once, exa ■ining the occurrences in

the order of a topological sort of the flow graph (or the

or1~r of the code vector, if

sorting the graph), ■ost

computations will be found.

you prefer not to

of the re■ovable

spend time

redundant

This is by no ■ eans an optimal

strategy because it does not trace the looping structure of

the program, but since the kind of situat~ons we are

interested in do not involve loopiqg it does quite well.

The initial partition consists of equivalence classes

containing a single definition and all the uses which have

only that definition linked to them via the ud ■ ap. Also in

the same class are uses which have ■ore than one definition

in common but which, for. any execution path passing through

both uses, ■ ust have been created by the sa■e definition.

Clearly in both cases the occurrences in a class must

represent the same value - na■ ely the value assigned at the

definition. Two examples of sue~ equivalence classes are

illustrated in Figure 1. The initializations are

accomplished by the following for■ulas:

SETL Newsletter 1188

ROLE 1 -

(¥ o e alldefs)

egclass(o) = (o}' • (i € d11(0) I lud(i) eg 1};

(.Y i € alluses)

eqclass(i) = if tud(i) eq 1 then eqclass(arb ud(i))

else (i • e d11(ud (i)] I ud (i) eg ud (i •) and

i reaches instof(i') and

i • reaches instof (i) } ;

The predicate reaches is defined as follows:

Definition 6 -

5

An occurrence oi reaches an instr11ction q iff there

exists no path to q fro■ the instructioa containing oi (but

not including either

redefinition of var(oi).

no path from oi to q.

Subsequently, the

end point) vhich contains a

It is vacuo11sly true if there is

equivalence classes of two

definitions, o
1

and o, are merged if the following three
2

conditions are satisfied:

RULE 2 -

1. The quadruples defining the occurrences 'are -
0 = 8(i , i , ••• i)

1 1 1 12 1D

0 = 8 (i , i , .•. i)
2 21 22 2D

SETL Newsletter 1188

2. 8 is a deter■ inistic operator with no side effects.

3.

This means that outputs of operators such as read,

rando■, function call/return, next ele ■ent of set, and

incre■ent cannot have their equivalence classes merged.

¥ j=l, 2 ••• n: i
lj

e eqclass(i)
2j

Figure 2 illustrates hov this class merging procedure

works.

Removing Redundant o~erations

If tvo definitions are in the same equivalence class it

■ay or may not be possible to eli ■inate the co ■putation of

one of the ■• For exa■ple, co~idering the quadruples

discussed in (1.) above, the instruction defining o can be
2

replaced by the simple assignment o = o only if all paths
2 1

in the program which lead too pass through the instruction
2

defining o, and
1

var(o) is not redefined on any of the
1

paths between the definition of o and the definition of o.
1 2

This condition is guaranteed to to be satisfied if o and o
1 2

are in the sa ■e procedure and var(o) is a temporary
1

variable.

SETL Newsletter #188 7

Before making a more precise statement of the

conditions necessary for re■oving redundant subexpressions,

another predicate must be defined.

Definition 6 -

An instructioij q dominates
1

another instruction q iff
2

all execution paths from the entry of the progra ■ to q must
2

pass through q •
1

A quadruple is a

following conditio~ holds.

RULE 3 -

redundaqt subexpression if the

Leto
1

and o be definitions in the same equivalence
2

class. If i nstof (o)
1

dominates instof (o)
2

and

o reaches instof(o) then the quadruple defining o can be
2 1 2

replaced by either

1. the assign ■ent var(o)
2

= var(o) - if the variables of
1

the tvo occurrences are disti,nct, or

2. a no-op instruction - if the variables are the sa ■e.

This code eli■ination will be carried out on an

intraprocedural basis because it is not possible to keep a

SETL Newsletter 1188

local variable of one procedure available for copying within

another procedure.

Reducing Storage Reguire ■ents

Because the reaches predicate is a function of botb the

occurrences and the instructions in a program, it requires a

very large amount of storage. I~ fact, it requires more

than is generally feasible for it to be granted for any

reasonably large program. Hence, a version of the above

formalation which does not depend on reaches would be more

useful. Unfortunately, without reaches the algorith ■ will

not be as powerful, but it is still possible to devise such

an algorithm.

If we restrict ourselves to o~ly reusing subexpressions

which are stored in temporaries, the second use of the

predicate can be eliminated. Since temporaries are never

reused there is no need to check that a variable has not

been killed on the path fro ■ where the subexpression is

first computed to the instruction where it is recoaputed.

All that is necessary is that the first instruction dominate

the second.

The other application of reaches is less easily done

away with and can be accomplished by using a more refined

initial partition. With this initialization not as ■any

SETL Newsletter 1188

classes vill end up being merged. but the merging procedure

will be much less costly.

The classes of occurrences constructed vill no longer

create a partition of the set of all occurrences. With the

new initialization it aay happen t~at tvo occurrences i' and

i are both in class(i) but are not in each other's class.

This vill happen. for example. when i• and i• are in

different alternatives of an "if" state ■ent but can both be

reached from i. The new initialization is accomplished by

the following SETL code:

RULE 1A -

(¥ oi e alluses + alldefs)

class(oi) = (oi}; i = oi;

(while tffrom(i) eq 1 and i notin bfromdead)
$ Trace unique path forward. ignoring merges.

$ and stopping at the first fork
i = arb ffro ■ (i); classti) = class(i) with i;

end;

fchain = ffrom(i); use workpile after path diverges

(while fchain ne nl)
$ Trace all forward paths, but pass merges only if

S all predecesors to the targets of aerges are
$ already in class(oi)

i from fchain;
if bfrom(i) subset iclass then

class(oi) = class(oi) with i;
fchain = fcaain + ffro ■ (i) - class(oi):

end if;
end while;

i = oi;

SETL Newsletter 1188

$ The preceding two loops are repeated with the
$ forward and backward directions, as well as
$ references to ■erges and forks, interchanged.
$ The reference to bf~o■dead can be eli■inated.

end ¥;

10

Since the classes defined by rule 11 are not

equivalence classes, it ■ ight see ■ that the third part of

role 2 may require some modifications. For equivalence

classes, x e eqclass(y) i■ plies that eqclass(x} = eqclass(y)

and, hence, that ye eqclass(x). But for the nev classes,

it is not necessarily true that x € class (y) i ■ plies

y s class (x). Figure J illustrates this. The first two

parts of rule 2 remain the same in Dule 2A, but part 3 now

beco ■es

3. ¥ j=1, 2 • • • n: i
1j

e class (i)
2j

or i
2j

e class(i)
1j

Also, although it is clear vhat is meant by merging

equivalence classes, it is necessary to define precisely

what it means to merge value classes. The following rule

accomplishes this.

RULE 4 -

The proceduce for ■er ging value classes is

(.Y oi € class (o)) class (oi) = class (oi) ♦ class (o) ;
1 2

(-¥ oi € class(o)) class (oi) = class (oi) ♦ class(o) ;
2 1

This rule pceserves the property that occurrences in

sErL Newsletter 1188 1 1

the same value class (and lying oa the same path of

execution) must represent the sa ■e value.

Finally, rule 3 si ■plifies to beco■ e the following:

RULE 3A -

Leto and
1

o be definitions in tbe
2

sa ■e value class.

If instof (o)
1

do■inates instof,o)
2

and var (o)
1

is a

temporary variable, then the quadruple defining o can be
2

replaced by

var(o)
2

= varfo).
1

If we allow ourselves the ability to insert code and

create new temporaries, it is possible to further liberalize

rule 3A. Ila ther t ban insist that var (o) be a te ■ porary, we
1

create nev temporaries when needed to hold the value of a

common subexpression until it is again needed.

rule 3A ve add the following:

RULE 3B -

Thus, to

Let o and
1

o be definitions in the
2

sa ■e value class.

If instof(o) dominates
1

inst of (o)
2

and var (o)
1

is not a

SETL Nevsletter 1188 12

temporary variable, then if the following quadruple is

inserted after instof(o) on all possible paths from that
1

instruction

newteap = varto)
1

then the quadruple defining o can be replaced by
2

var(o) = nevbemp.
2

SETL Newsletter 1188 1 J

(a) All Occurrences of x in the same eqivalence class

=

(b) Definitions in Different Classes from Uses

FIGURE 1: INITIAL EQUIVALENCE CLASSES USING RULE 1

SETL Newsletter 1188 14

x = f 1 (gl (h 1 (y)))

z = f2(g2(h2(y)))

(a) Source Code - corresponding arguments are equivalent

t1 = hl(y)
t2=gl(t1)
X = f 1 (t 2)

•
t3 = h 2 (y)
t4 = g2 (t3)
z = f 2 (t4)

tJ = tl
t4 = t2
Z = X

tJ € class (t 1)
therefore t4 € class (t2)

therefore z e class(x)

(b) Ql Quadruples - classes are merged

useless since t3 and t4 are never used.
both quads can be removed (replaced by no-op.)
assumes that x reaches z and that
instof(x) dominates instof(Z)u

(c) Best Possible Replacement for Second Computation

FIGURE 2: CLASS ftEBGEB and REDUNDANT CODE REftOVAL

SETL Newsletter #188

1.
2.
l.

"· 5.

X = •••
if P1 then return ftx);
elseif P2 then y = g(x);

else y = ~(xt;
return x+y;

(a) Prograa Segment

5

(b) "ffro■" Grap~ for x

class(x) = {X • X , X • X • X }

1 1 2 3 4 5

class(x) = {x , X }
2 1 2

class(x) = .{X. o X , X }

3 1 3 5

class(x) = {x , X , X J

" 1 4 5

class(x) = {x ,, X , X }
5 3 4 5

end if;

(c) Value Classes from Rule 11

FIGURE 3: INITIAL VALUE CLASSES

1 5

