o o O o0

Q

SETL Nevsletter 192 May 13, 1977
6600, 370, and PUMA Microcode RWubbins R. Dewvar
‘ ‘ A. Grand

R. Kenner
J. Schvartz

This newsletter discusses compiled SETL code syle for the 6600 and the

.370 and the microcode for the PUMA by defining the 1library linkages and

general code style and giving rough timing estimates. The code is in
assembler (or ricrocode in the case of the PUOHMA). Since access to
different words and fields can be done quite differently at this level,
to give symbolic names to offsets in the code would misleadingly imply
that to change fields involves just a change in the definitions of the
names. We will assume the SETL data structures as of the beglnnlng of
May and write the field names in the comments.

@ 0 @

@

o

)

VY e e e @ ¢ o

e

o 00

q

s 3

6600, 370, and PUMA Microcode Nubbins 2
6600 nubbins :

R. 6600 Nubbins.

This case 1is the simplest. The basic design considerations are as
follows:

@ o ©

i) Xot all nubbins are inline since some are too large.

ii) PFor offline nubbins at least a Jump offline and a Jump back are
required and a certain amount of load-store wvork can be done in parallel -~
with these jumps. (Actually, we will not be able to avoid a third jump.)

iij) since 1library calls can occur, only registers that are used in .

F 4

" highly stereotyped ways in the LITTLE SRTL code can be used for other -

1

®"short fora®™ call which is either: 2
SAL ARG1T or SAS ARG2 o
RJ NUB1 ' RJ RUB2 <
This occupies one wvord and takes about 1.5 microseconds. QD
Since most of the time is spent in the RJ instruction, in a few
" favorable cases of short nubbins inline code may be generated. 3
A typical example of an offline nubbin is the following multiplication
sequence: ‘ ‘ '
RULT BSS 1 ' Entry word.
* BX1 -X0*x4 Get type, value for first arg. P
: ‘ Sx?7 3777771B Get largest short integer.
BX2 -~X0*x5 Get type, value for second arg.
o
o
) D

Y S TP e O g w0

‘compiler but the compiler can be modified to use that register when the

than very temporary uses.

The last consideration will be addressed first. We can use X0 to 3
contain TVALEASK. This register is normally unused by the LITTLE

ot

appropriate mask is required. BT will, as required by the LITTLE system, -
contain the constant one. B2 will contain the address of the heap.
(Actually HEAP-1.) ,
The first two considerations suggest a 3-address style. The inputs of 3
the operation will normally be loaded into X4 and X5 and the output will
be placed into X6. This gives the following form for a call to an
offline nubbin: 3

SAa ARG1 Load first arg.
SAS ARG2 Load second arg.

R4 - SA6 RESULT - Store previous result.
RJ = NUB Call nubbin.

This occupies 2 words and takes about 2.3 microseconds.

o

If the result of the first operation is a "“temporary™ to be used
immediately it need not be stored and reloaded; instead we can jump to a
point at which an appropriate copy is performed. This leads to the

]
H
1
i
H
-

+

<~ 6600, 370, and PUMA Microcode Nubbins

o

© 6 v @ © ©

@

© 0 O ©

~*" " 6600 Nubbins

S IX3 X1-X7 See if arg. 1 too large.

‘ IX6 X1%X2 Do multiply.

’ IX2 xX2-x7 See if arg. 2 too large.

-~ Ix7 X6-Xx7 - See if result is too- large.

- + BX3 X3#x2 Now AND together the ...

BX3 . X3%X7 ee« three test values.

e NG X3,MULT Done if all in range.

- + SB3 =XLIBMULT ©Else get library address.

= : RJ LIBLIRK Branch to library.

: +) {4] MULT Return upon exit fromr library.

T This takes about 8.7 microseconds.

g The LIBLINK sequence vwhich is used to link to the LITTLE-written

#=»° library is as follows:

c - LIBLINK BSS L Entry wvord.

o + BX6) ¢ Copy first argurment.

” ' Si1 P1 Point to parm. list and first parnm.

o BX7 X5 Copy second argument.

- + "SA2 LIBLIEK Get entry word.

Cf‘ SA6 X1 Store first argument.

" SA7 X1+B1 Store second argument.

- + BX6 X2 Copy entry word.
< SA6 B3 Store at branch location.

C- ‘ JP B3+1 Branch to library routine.

' P1 CO¥ T First arqument address.

- ' (o4) | T1+1 Second argument address.

C- 1 BSS 2 Space for the twvo arguments.

Cf" " This takes about 3.7 microseconds to call the library..

o Op-codes that nmerely call a library routine can have the following
<§" three-word inline "™long fora®™:

T SA4 ARG? Get first arqument.

C ‘ SAS ARG2 Get second argument.

) SA6 RESULT Store previous result.

N SB3 =Xentry Get appropriate entry point.

C RJ LIBLINK Go call library.

o Thus, nubbins are not required for these cases, which are fairly
-~ numerous. Of course, two-word foras are available if X6 need not be
k’ stored.

Cg“ The simplest SETL jumps are compiled as inline tests. Tests, such as
‘ the general equality test, which may involve library code, can have the
" following treatment:

f:“ B SAL ARG1 Load first argument.

SAS ARG2 Load second argument.

N

St o e e o o o s e

‘;

W

 © & o

~~ 6600, 370, and PUMA Microcode Nubbins ' g
bt 6600 Xubbins
+ BX1 Xa8-X5 Get exclusive OR.
SA6 RESULT Store previous result.
BX2 -X0*X7 Get value and type.
= + ZR X2,JUOMPADR Jump if equal.
~ AXx1 51 Get type alone for ARG1.
o + SX3 7 T_LATOM + 1.
. RX2 51 Get type alone for ARG2.
~ IX1 X1-X3 Check type of first argument.
o e 2 SB3 =XLIBEQUV Get library address in case needed.
= IX2 X2-X3 Check type of second argument.
~ BX1 X1%X2 Ensure both short.
‘ + RG X1,LAB If so, not equal.
- ' RJ LIBLINK Else, use library code.
~ +). ¥4 X6 ,JUMPADR Jump if was equal.
o LAB
i -
~ This in-line code sequence is 7 words long and takes about 6.5

" "microseconds in the worst case in which the library is not called. Rote

a few minor cycles) can be saved if X6 was an argument

Leave just type and value.
Make copy to check type.

Else call library routine ...
ees to do the addition.

Prepare to check both types.

Store previous result.

See if result of subtract is negative.
Get result type and value.

Get check type and value.

Nov get just check type.

Get library entry point.

If OK, skip library call.

¢ that a word (and
~ vhich did not have to be stored.
¢ ‘ In-line addition is as followvs:
SAL ARG1 Load first argument.
C: SAS5 KRG2 Load second argument.
C + SA6 RESULT Store last result.
N - IX3 X3+X5 Do addition.
(, BX6 -X0*x3
+ BX7 X6
Tt AX7 51 Leave just type.
(j ZR X7,LAB Branch if inline add.
- + SB3 =XLIBADD
o RJ LIBLINK
C LAB
- This is four wvords long and takes about 8.8 microseconds.
C - The inline subtraction nubbin is as follows:
2 SAQ ARG? Load first argument.
(;“ " SAS ARG2 Load second argument.
: + BX1 Xa+X5
(}? IXx2 X43-X5 Do subtraction.
.. SA6 RESULT
B & BX1 X1+X2
Cj” o BX6 = -X0%Xx2
a -BX1 -X0*X1
T Ax1 51
Cj N SB3 =XLIBSUB
. ‘ ZR X1,LAB
o K 2 RJ LIBLINK Blse, call library.
C

O

O

e e g i

W@

O

L

-

@ e © 6 © © © 9o ¢ ©

I

F

=~ 6600, 370, and PUMA Microcode Nubbins ' 5
~ " ° 6600 Nubbins et
LAB

Liid " This occupies 5 words and takes about 5.1 microseconds.

~ As a final example, we consider the case of remote map retrieval by a E
; quantity known to be a pointer to the relevant base. This can be done in

an inline sequence as follows:)
+ , SAS ARG2 Load second argument.
N ' SAL ARG1 Load first argument. o~
R & SBL X5+B1 Prepare HEAP (VALUE (ARG2) +OI’F _EBINDX) o hd
B Sk1 B3+B2 Load the above vworde.
S . SBS X442 Prepare to get MHAXIRDX. S
s + ' SA2 B5+4B2 -~ Load maximum index word..
e LX1 -18 Extract EBINDX field.

~0 T : Sk6 RESULT Store last result.

Al + nx3 -85 Get mask. o
e BX3 -X3*Xx1 Get EBINDX (RRG2) .

C;‘ LX2 -18 Position MAXINDX.

T SB3 X3+B1 Copy index to B-register. %
R - §B2 X2+B1. Extract MAXIRDX.

C; LE B3,B2,SKIP Skip next set if index in range. .
SR SB3 B Else set index to zero. 3
- SKIP SB3 B34BS Prepare to load result.

C‘ s SB3 B3+B2 Get HEAP address - 1.

T ' Sk1 B3+B1 Add tuple header length; load result.
' BX6) § | Get result.
C " This occupies 7 words and takes about 6.5 microseconds. This, in
' fact, may be too long to do inline. If it wvere done offline, the code

C; would be modified to put the SKIP label before the entry word.

~ Note that 4-6 microseconds is a typical time for these important 3

nubbins. Thus, code that never needs to enter the library should run at

C: approximately 1/5 - 1/10 the speed of corresponding code dJenerated by a .
o reasonably good PORTRAN compiler. 2

C o

C o

O @

C v

O v

C ' @

Q o
5 2

~.

(—\?(\

-~

O 0 00

O,

(‘\

-

‘nubbins.

6600, 370, and PUMA Bicrocode lnbbins. 6 <
370 Hubbins. ;
BN
B. 370 Rubbins. S
The structure of these nubbins is different from those for the 6600
for tvo major reasons: 3
i) Jumps are a lot less expensive than on the 6600. .
ii) Registers are saved across library calls so a simple register»a
allocator comld be used. '
This leads to the following design: o
i) 211 nubbins are offline and entered with a BAL instruction.
ii) . Some registers will be reserved for scratch registers within the:Q

iii) Other registers will be used to contain needed constants and base

" ‘locators.

iv) The rest of the available registers can be allocated by the 2
generated code to reduce the number of loads and stores.

The register usage is as follows: @
RO (A1) Pirst input to nubbin and return value. a3
RT (R2) Second input to nubbin.
""R2 (AM) Address mask (XYO00FFFFFC?)
R3 (TVH) Type/value mask (X"FFFFFFFC?)
R& (HEAP) Base register pointing to HEAP-1.
RS Base register for offline nubbins.
R6 Base registers for labels.
" R7 (LBL) Allocatable but used for jump address in tests.
R8-R12 Allocatable.
R13 (W1) Scratch for nubbins. o
R1% , Return address from nubbins.
R15 (WB) Scratch for nubbins.

A "vorst case®™ call to a nubbin when everything must be 1loaded and 2

' gtored would be as follows:

ST R1,RESULT Store last result. o
L A1,ARG1 Load first argument.

L A2,ARG2 Load second argument. o
BAL R143,NUB Call the nubbin.

This occupies 16 bytes. (Note that we will not attempt to give timings)
because of the large number of models and submodels.)

In a better (and more typical) case vwhere items are in registers, the 3

- code is as follovs:

LR A2,R1 Second arg. (first was output)
o BAL RI13,NUB Go call nubbin.

®@ 6 o ¢

")

(';
H

o0

C

~

O

;“J

(A
' . .

-LAULT . L

00 0:0-0

370 Nubbins.

Thus requires only 6 bytes.

- 6600, 370, and PUMAR Microcode Nubbins.

BAL®s are to the same location.

Note that, unlike in the 6600 case, both .

To call a library routine, a nubbin sets R15 to the entry point of the
routine and branches to LIBLINK which is shown belov.

' LIBLINK - sTH
LA
, LA
- BR
PLIST pC
" ARGS DS
" SAVEAREA DS

A1,A2,ARGS
R13,SAVEAREA
R1,PLIST

R15

A {(ARGS,ARGS+R)
2F

11:3 4

Store arguments.

Point to save area. ,

Point to pararmeter list.

Call routine; it returns inline.
Paraeeter list.

Space for arguments.

Standard 0S save areae.

We will nov-present the 370 code for the nubbins shown in the 6600

section.

Pirst, multiplication:

ROLT HR
LTR
BRZ
SLDL
NR
CLR
BRHR

B

For the branch cases, tﬂe

A1,A7

31,11

LMULT

k1,30

A1,TVNM

Al,AN

R18

R15,=A (LIBNULT)
LIBLIKK

Do the multiply.

See if too large or not integers.
Go offline if so.

Else position result.

Mask out junk bits.

See if too large.

Return if not.

Else get library address.

Now call library.

inline code must load the address of the
"®true® label into register LBL and then call the nubbin. We will show

the case of the equality test nubbin below.

"BQUV ' NR

NR
CLR

SRL
SRL
La
CR
BH
CR
BRHR

LEQUY STH

LA
LA
ST
L
BALR
LTR

At,TVN
A2,TVH

R1,12

LBL

A1,28

12,24

W1,6

R1,¥WA

LEQUV

12,¥A

R18
21,12,ARGS
R1,PLIST
R13,SAVEAREA
R14,RET
R15,=A (LIBEQUV)
R18,R15
RO,RO

Remove junk from ...
e«+ both inputs.
Compare both inputs.
Branch if equal.

Now .get type codes ...
«»« for both inputs.
T_LATON.

If greater, go offline.
Go call library.

If other type is OK, not equal.
So return PALSE.

 Else save arguments.

Point to parameter list.
Point to save area.

Save return address.

Get library routine address.
Call library.

Test return valne.

'3

9

é«v*

Y ©® 0 & v v e O o ¢

~

c 0 ¢ o0

O

6600, 370, and PUOMA Microcode Nubbins.

370 Rubdbins. -

BNZR

L

BR
RET DS

¥ext, addition:

" ADD AR

KR
CLR
BNHR
L

B

¥ext, subtraction.

LBL
R14 ,RET
R18
F

AT,A2

A1,TVA i
A1,AN P
R4

R15,=A (LIBADD)
LIBLIRK

Return if equal.

Else load o0ld return address.

Return FALSE.

Save location for return address.

Do addition.

Remove junk bits.

See if type still OK.
Return if OK.

Else get library routine.
Go call library.

This is similar to addition except that the types

must also be checked before the actual operation.

'SUB NR
' ‘ NR

- CLR

BH

) CLR

' ' BH

SR

BNMR

LSUB L
B

A1, TVH
A2,TVN

A1,AN

LSUB

A2,AN

LSUB

A1,12

R18

¥5,=A (LIBSUB)
LIBLIKK

Remove junk bits ...
-+« from both inputs.
See if in range.

Go offline if not.
Check second input.
Branch if not in range.
Row subtract.

Return if not negative.
Get library address.
Go call library.

Finally, ve present the case of remote map retrieval below.

OFRSH ' NR
LB
LR
KR
CH
BNH
SR

SKIP SLL
AR
L
BR

22,AN

WA,16 (12,HEAP)
22,21

A2,AN
¥2,12(22,HEAP)
SKIP

WA,WA

Wa,2

A2,WA

11,16 (A2,HEAP)
R1b

Get offset from start of heap.

Load EBINDX.

Get first arg. addressable.
Get value only.

Compare with MAXINDX.

Index in range.

Else set index to zero.

Get correct offset.

Get REAP offset - 8.

Load result value.

Nov return.

@©

e ¢ @ @ <

1

¢ ¢ 0 @

£

o

V & © @ 0 v © v W

0
SR

o 6600, 370, and PUMA Ricrocode Nubbins.
~ ' ~"PUMR BMicrocode Nubbins.

-~ Ce PUNMA Microcode Fubbinms. -

2

This case is entirely different because ve are dealing with a
microprogarable machine. Grossly described, what we intend to do is to .
~ emulate both the ®normal® 6600 instructions (and maybe add a few for -
- efficiency) and special SETL instructions and have the microcode handle
& ‘the state switching.
- These SETL instructions will correspond to calls to nubbins in the
- above two cases. If the nubbins do not require a call to the library,
< they can be done by the microcode in a manner similar to the way the ..
~ microcode would execute a 6600 instruction. If the nubbin required a
o library call, a microcode sequence would be entered to call the library.
-~ The library would execute a spec1a1 instruction to return to the SETI.;3
-~ - mode and set the result.
o The PUMA has, in addition to the X, A, and B registers, 8 60-bit Y
- - registers. These registers are used in the normal 6600 emulation as .
~ scratch registers but if we could restrict their usage as scratch -
" ' registers, they could be used as registers in the "SETL machine™ mode.
¢ In fact, the only place wvhere more than one or two of the Y registers are ..
- currently used is in the =multiply routine. If wve were to accept a ~*
™ multiply which is 3 times slover, ve could have the rest of the Y
(?“‘ registers free for the SETL 1nstrnctions and they would persist over the
- LITTLE-written library. ~
- © In addition, we need a register to hold, in 6600 mode, the return
. point to SETL mode. We can use Y1 for this register. That means that YO0
C- ‘can be used as the scratch register in 6600 mode and those few places
vhere a second scratch register is needed can be re-written to use only
C one. That leaves Y2-Y7 as registers for the SETL instructions which will
persist over the library calls. We can use the X registers as scratch in
’ SETL mode so that YO and Y1 can be used for data that need not persist
over library calls. o

w

P
S’

Wi

™

[}

The SETL instructions will have a format similar to the noreal 6600
instructions. The op-code and I fields of the 6600 instruction will be
used for the SETL op-code and the J and K fields will be used as usual.
Bit 1 of the op~code will be the library flag. If it is on, it means
that this operation is merely a call to the library and no processing can
be done by microcode. This means that the microcode can simply call the
library directly without having to have special code for that operation.
The low-order bit of the op—code is used for operation sub-types. PFor .
binary operations which return an output this bit is used to indicate -~
vhich register receives the output. If it is on, Y7 receives the output;
‘otherwise, Y6. In other cases, it is used to differentiate such things
as branch TRUE/FLASE, load/store, and give two related op-codes when -~
‘there is no need for three registers. Note that branches, loads, and

" stores will use the long form of the instructions which is the same as
for 6600 instructions.

Y
&

«

o

NellNeNNe!

&

Oy

We will have the global register usage over both 6600 and SETL modes
the same as for the 6600 nubbins above. Namely, X0 will hold TVALMASK,
B? will hold the constant 1, and B2 will contain the address of HEAP(0) .

< | -

("

- O

)
O @ v

(“4

’

6600, 370, and PUMA Hicrocode Rubbins. 10
PUMA Microcode Nubbins.

There will be a table of entry points to the 1library at memory
locations knovn to the microcode. At each entry point will be a special

program-stop instruction which will return control to SETL mode in a case .

vhere the library routine would normally return. This instruction can be
placed at the entry word by an initialization routine. Rote that it is

‘assumed that the called routine does not do funny things with its entry

word other that branch to it to return. This is the case in
LITTLE-written code and COMPASS routines are not supposed to do things
with this word in any event.

When the microcode vants to call the library, it places into E1 the
main storage address of the entry point to which it desires to branch and
Jomps to micro-instruction LIBLINK which is is shown below. It builds,
in Y1, a value containing the parcel count into the current instruction
wvord, the address of the current word (wvhich is P+1 by this time), and
the value to wvhich it will branch. The latter is used for safety as
follows. When a ®"return to SETL" instruction is encountered, it must
only occur at one minus the last Jump point taken to the library. Thus,
the P value at that time must agree with the branch address stored in Yt.
LIBLIRK will also save the two input arguments into a parameter list and
set A1 and X1 according to the normal calling conventions (A1 contains

‘the address of the parameter list and X7 contains the address of the

first parameter).

LIBLINK P=P-1; BO=E1; IP -NIVENPTY THE LLOKWRD

" '# An instruction fetch is in progress. Wait it out.
" LLEWAIT NIW=CHRD; IF ~CHDONE THEN LLNWAIT * Read to next inst. vword.

LLONWRD CLEAR; AC=E0; EO0O=PLISTaddr; IF CHDONE THER LLONWRD
: MA=AC; READ; AC=E0; EO=T1laddr; * Read up branch address.
A1=AC; AC=E0 * Set parm. list address; set store address.
- X1=AC; AC:MQ=SHIFT (P:MQ, R16) * Start shifting P value.
BQ=SHIFT (AC:HQ, R16) * Continue shift.
MQ=AC; AC=MQ; E2=7; NEWPARCEL #* Shift; start parcel counting.

LLEPLP X2=AC; E2=E2+1[F]; NEWPARCEL; IF -LASTPARCEL THEN LLRPLP

LLREAD AC=CHRD; BUT=YJ; IF ~CHDONE THEN LLREAD * Wait for data.

"LLWTY CLEAR; P=AC; AC=EO; E0=E1; IF CHDONE THEN LLNT1?

MA=AC; AC=BUF; WRITE; P=P+1 * Start parm. write; set branch adr.:
LLWT2 BUP=X2; IP ~CMDORE THER LLWT2 * Wait for store accept.:
» CLEAR; AC=P * Reset nerory: get branch address.
AC=AC|BUF; BUP=YK * Insert branch location; get parm. 2
Y1=R2:AC; EO=T2addr #* Set save word; get parm. 2 store addr.

LLWT3 AC=E0; IF CMDOKE THEN LLRT3 #* Wait for memory.

HA=AC; AC=BUF; WRITE * Start write of second parm.

. LLWTA4 "IP ~CHDONE THBEN LLWT& * Wait for accept.

CLEAR; GO LBRANCH #* Reset memory;: enter LITTLE mode.

This takes about 1.31 ricroseconds. We will assume in timing
estimates for the PUMA that a cycle is 45ns and memory cycle is 870ns.

We will nowv present the new microcode for the program stop instruction
vhich will ©process the special "return to SETL® instruction. Ve will

)

D

R

3

3

i

A

3

v W v e @

D

ud

O 6 G

gt

M)

\.’
!
1

G ()2 Cv:

o~

L/

%0 040,

SUB BOP=YJ * Get first input.

OOy

6600, 370, and PUMA Microcode Rubbins.. 11
PUNA Microcode Nubbins.

assume that we are using an I field of one to indicate this instruction
and that, for clarity, no other sub-types of program stop exist.

100 E0=2000; IF -~I(0) THEN ERROR * ProcCess normal PS.
ET1:BUP=Y1; AC=P:; IP I (1) THEN ERROR #* Get return word.
(RC) =AC-BUP[{ 18]; IF I(2) THEN ERROR * Start address check.
AC=AC-BUF[18]; IF -~RIWENPTY THEN LOOSK * Continue test.

LOOWT1 IP -~CHNDONE THEH LOOWT? #* Wait out instruction fetch.
NIW=CHRD: CLEAR * Clear out instruction fetch.

"LOOSK IP -~AC=0 THEN ERROR * FPinish validity check.

AC=SHIFT (BUF:MQ, R16); BUP=X6; E0=2; CIW=RIW
LOOSLP AC=SHIPT (AC:MQ,R8); EO=RO-1F]: IF EALU(O)EEALU (1} THEN LOOSLP
LOOWT2 P=AC; IP CHDONE THEN LOOWT2 * Wait for free memory.
LOOWT3 MA=P; READ; NIW=CHMRD; IF ~CMDONE THEN LOOWT3
CIW=NIW; AC=BUF; CLEAR; P=P+1; LATCH I * Get to return vord.
=3-E1: MA=P; READ; IF EALU THEN RETOUT * RNI; test pos.
LOOPLP VNEWPARCEL; LATCH I; E1=E1+1[P] #* Get to correct position.
o =3-E1; IP EALUP THER RETOUT ELSE LOOPLP * See if done.

This takes about 1.35 microsecondse.

Next we vwill present the microcode vhich handles the return from a

" binary operation with a result to give an idea of the type of

housekeeping needed.

RETOUT NEWPARCEL:; LATCH I; IF I (0) THEN ROUT?

"ROUT6 Y6=AC; IP ICHECK THEN SICHECK ELSE SOPCODEBRANCH

ROUT? Y7=AC; IP ICHECK THEN SICHECK ELSE SOPCODEBRANCH

This takes 90ns and will be included in the timings of the nubbins
vhich jump to it (although the other overhead operations will not be
included) . '

¥ext wve present the microcode for some of the simpler operations.
Pirst, addition and subtraction:

ADD BUOF=YJ * Get first input.
AC=BUF; BOP=YK * Copy first; get second input.
(AC) =AC+BOP * Start addition.

AC=AC+BUF; BUP=X0; E1=LIBADD * Finish add; get mask
AC=ACE-BUF; E0:X6=AC * Do mask and set to check type.
=370+E0; IF EALUP THEN RETOUT ELSE LIBLIRK * Complete.

AC=BUF; BUFP=YK * Copy first; get second input.

(AC) =AC-BUP; E0:X6=AC % Start subtract; get check type.
AC=KQ; MQ=AC-BUOP; =370+4E0; IF ~EALUP THEN LIBLINK .
AC=BUF; BUF=X0 * Get second input; get TVALMASK.
RO:X6=AC; AC=MQ * Check second type:; get subtract result.
AC=ACE-BUF; =3704E0; IF -~EALUP THEN LIBLINK * Mask; check.

e @ @& @ © € o

w

© © 9 ® @ € & ¢ o

(4

N

1

el

{

PR

€3;; C§

LS

3
1

® 9

o

. T)

6600, 370, and PUMA Nicrocode Nubbins.

PUNMA BMicrocode Nubbins.

Addition takes «36 microseconds and subtraction takes © .50

RO :X6=AC * Get check type for output.
=370+4E0; IF EALUP THEN RETOUT ELSE LIBLINK * Done.

microseconds.

Next, wve present the case of remote nmap retreival showvn above. It

| will be

CONMPASS
SOFRSH

SOFRNWNTO
SOFRWT1

* SOFRWS2

SOFRHWT3

' SOPRWTA

SOFRSKP

SOPRWTS

SOFRWT6

This

AC=SHIFT (AC:MQ,R7)

very helpful in understanding the microcode below to refer to the
code for the same routine above.

BUP=YK; AC=MQ; NO=0 * Get second input; clear NQ.

AC=BUOF: BUF=B2: E0=2:; IF ~NIWEMPTY THEN SOFRWT1?

NIW=CHRD: IF -~CHDONE THEN SOFRWTO * Wait for fetch.

CLEAR; (AC)=AC+BUF[1B8][NOP]; IP CHMDONE THEN SOFRWT?
AC=AC+BUP[18 JTNOP]; BUFYJ * Get addr. EBINDX; get first arge.
MA=AC;:; READ; AC=E0 #* Read EBINDX word; set AC to 2.
(AC)=AC+BUF[18] =* Prepare to get HEAP offset of MAXINDX.
AC=AC+BUF[18]; BUF=B2 #* Finish add; get HEAP address.
(AC)=RC+BUF[18]; IP ~CHDONE THEN SOPRWT2 * Wait for read.
AC=AC+BUPF[18] * Get address for MAXINDX.

CLEAR: MA=AC;:; X6=AC: IF CMDONE THEN SOFPRWT3 * Wait for men.
AC=CMRD; READ #* Get EBINDX word; start read of MAXINDX.
X5=AC; AC:MQ=SHIPT (—-1:MQ,R16) Save word; build mask.
AC:MQ=SHIPT(AC:MQ,L1): BUP=XS5 Cont. with mask; get word.
X5=AC; AC=SHIFT (BUF:MQ,R16) Save mask; shift data.
AC=SHIFT (AC:MQ,RT) ; BUP=X5 Cont. shift; get mask.
Pinish shift.

Extract EBINDX.

Save EBIRDX:; wait MAXINDX.
Position HAXINDX,

Continue shift.

Pinish shift.

Mask out MAXINDX.

AC=AC+40[18]; BUP=X5 Complete; get EBINDX

(AC) =AC-BUF[18] Start range test. -
(AC)=AC-BUP[18]J; IF -~EALU(59) THEN SOFRSKP * In range.

AC=ACEBUP

X5=AC; IF ~CNDONE THEN SOFRWT4
AC=SHIPT (CERD:NQ,R16)'; CLEAR
AC=SHIFT (AC:MQ,R1)

AC=SHIPT (AC:MQ,R17)

(AC) =AC+0[18]

LA K 2K 2R BN 2N 2 O 2% BN N N

BUOP=B0 * Else use index of zero.
AC=BUF; BUP=X6 * Get index and addresse.

(AC) =AC+BUF[18 [NOP] * Get address to load from.
AC=AC+BUF[18][NOP]; BUF=B2 * Pinish add; get HEAP address.
(AC) =AC+BUF{ 18 J{ ¥OP]; IF CHNDONE THEN SOFRWT5

AC=AC+BUP[18 JINOP] * Get address to load.

MA=AC; READ * Read resul? value.

IP ~CHADONE THER SOFRWT6 * Wait for read to complete.

AC=CMRD; CLEAR; NEWPARCEL; LATCH I; IF I(0) THEN ROUT7 ELSE ROUT6

takes about 2.61 microsecondse.

Por tests of one input that input is given in the J field of the
branch instruction. PFor tests of tvo inputs, a "compare®™ instruction is

used and

a "condition code® is saved in the output register. Then, a

12

O

Q0O 0

»)

Cnw

m?

& n

At

© © o6 o o

e o

e

6600, 370, and PUMA Microcode Rubbins.
PUEA Bicrocode Rubbins.

»branch on condition® is used to branch TRUE or FALSE depending on the
®condition code® stored in its input register. As an example of the
tvo-input test, ve present the equality test wvhich was shown earlier in

6600 and 370 assembly code.

EQUY

TRUE

BUP=YJ * Get first input.

AC=BUF; BUF=YK * Copy first input; get second input.
AC=AC/BUF: BUF=X0 * Do exclusive OR; get TVALMASK.
AC=ACE-BUF; E0:BUFP=YK; E2=1 #* Mask;:; get type; get TRUE.
=67-E0; E1:BUP=YK; IF AC=0 THEN TRUE * Check; get type;

=67-E0; IF EALU(11) THEN LIBLINK * This is long type.

=67-E1; BUFP=BO * Start other test; get PALSE.
=67-E1; AC=BUP; IF EALU(11) THEN LIBLINK ELSE RETOUT
AC=E2; NEWPARCEL:; LATCH I; IF I(0) THEN ROUT7 ELSE ROUT6

This takes about .30 micoseconds.

Therefore, ve see that the simpler nubbins wvhich do not do memory
accesses are about 10-11 times faster than those running on the 6600 and

those whicp access amemory or involve library linkages are about 3 times

faster.

true

