
C

(

C

(

C

C

C

C

0

0

0

C

0

SETL Bevsletter 192
6600, 370, and PU!l !icrocode Wubbins

Bay 13, 1977
R. Dewar
l. Grand
R. Kenner
J. Schwartz l3

This newsletter discusses compiled SETL code syle for the 6600 and the
.370 and the microcode for the PU!l by defining the library linkages and ~
general code style and giYing rough timing estimates. The code is in :..'
asse■bler (or aicrocode in the case of the PUMA). Since access to
different words and fields can be done quite differently at this level, ""'>

to give symbolic names to offsets in the code would ■isleadingly imply J

that to change fields involves just a change in the definitions of the
na■es. We will assume the SETL data structures as of the beginning of"~
flay and write the field names in the comments. "'

~

C,

•
•
•
•

l

l

C

C

C

C

C

o.

C

0

0

6600, 370, and PU!fl Bicrocode lfubbins
6600 !fubbins

l. 6600 Bubbins.

This case
follows:·

is the si■plest. The basic design considerations are as

i) Wot all nubbins are inline since some are too large.
ii) For offline nubbins at least a jump offline and a jump back are ~

required and a certain a■ount of load-store vork can be done in parallel .✓
with these jumps. (Actually, ve vill not be able to avoid a third jump.)

iii) Since library calls can occur, only registers that are used in ~
highly stereotyped vays in the LIT'l'LE SRTL code can be used for other _;
than Terr te■porary uses.

The last consideration vill be addressed first. We can use XO to:')
contain TVALBASI. This register is normally unused by the LITTLE
compiler but the compiler can be modified to use that register vhen the ~
appropriate ■ask is required. B1 vill, as required by the .LITTLE system, _..;
contain the constant one. B2 vill contain the address of the heap.
(Actually H!AP-1 .J ")

The first two considerations suggest a 3-address style. The inputs of
the operation will normally be loaded into X4 and XS and the output vill
be placed into 16. This gives the following fora for a call to an ,·_~
offline nubbin: ""'

♦

S111
S15
S16
RJ

1RG1
1RG2
RESULT
BUB

Load first arg.
Load second arg.
Store previous result.
Call nubbin.

This occupies 2 vords and takes about 2.3 ■icroseconds.

Xf the result of the first operation is a •temporary" to be used·:)
ia■ediately it need not be stored and reloaded; instead we can jump to a
point at vhich an appropriate copy is performed. This leads to the.~
•short fora• call which is either: '..#

S14
RJ

1RG1
WUB1

or S15
BJ

1RG2
!fUB2

This occupies one word and takes about 1.5 aicroseconds.

Since ■ost of the time is spent in the RJ instruction,
faYorable cases of short nubbins inline code ■ay be generated.

in a few

1 typical exa■ple of an offline nubbin is the following multiplication
sequence:

lltJLT
♦

BSS
BJ:1
S17
BJ:2

1
-xo•x•
377777B
-xo•xs

Entry word.
Get type, value for first arg.
Get largest short integer.
Get type, value for second arg.

•
•

....

(_

C,.

C

C

C

C

6600, 370, and PU!l !icrocode Bubbins
6600 Wubbins

+

•

•
♦

IX3
IX6
:IX2
II7
BX3
BX3
BG
SB3
RJ
EQ

I1-X7
I1*X2
X2-X7
X6-I7
13*12
X3•X7
13,!ULT
=XLIB!ULT
LIBLIRlt
BULT

See if arg. 1 too large.
Do ■ultiply.
See if arg. 2 too large.
See if result is too large.
Bow ARD together the •••
••• three test values.
Done if all in range.
Else get library address.
Branch to library.
Return upon exit fro■ library.

This takes about 4.7 aicroseconds.

')

3 .,
(1

0

•
9

The LIBLIBK sequence which is used to link to the LITTLE-written'.'.)
library is as follows:

LIBLIBK BSS 1 Entry word. •
+ BX6 14 Copy first argument.

S11 P1 Point to parm. list and first parm.
~ BI7 15 Copy second argument.

♦ . S12 LIBLl:IUt Get entry word •
S16 11 Store first argument. et S17 11+B1 Store second argument.

+ B16 12 Copy entry vord.
S16 B3 Store at branch location.
JP B3+1 Branch to library routine.

P1 COB T1 First argu■ent address.
COB T1+1 Second argument address.

Tl BSS 2 Space for the two arguments.

This takes about 3.7 ■icroseconds to call the library.

Op-codes that aerely call a library routine can have
three-vord inline •long fora•:

the following

S111
S15
S16
5B3
RJ

1RG1
1RG2
RESULT
=Xentry
LIBLilllt

Get first argument.
Get second argument.
Store previous result.
Get appropriate entry point.
Go call library.

Thus, nubbins are not required for these cases, which are
nu■erous. Of course, tvo-vord for■s are available if I6 need
stored.

0

• fairly
not be~

6'.. The simplest: SETL ju■ps are compiled as inline tests. Tests, such as
the general equality test, vhich aay inYolYe library code, can haye the J
following treataent:

c.
,,.., .

Slit
S15

1RG1
IRG2

Load first arguaent.
Load second arguaent. •

•
•

....,.

C

C

..
C

...
<;, -

c.

Q,.
.,...... ...

'

0-

C

0

•:)

6600, 370, and PU!l fticrocode Jubbins
6600 Bubbins

♦ BX1
Sl6
BX2

♦ ZR
111

• SX3
112
IX1

·+ SB3
IX2
BX1

♦ JIG
BJ

♦ BZ
LIB

IIS-15
RESULT
-I0*X1
12 ,JOPIPIDR
51
7
51
X1-I3
=ILIBEQOY
12-13
X1*X2
X1,LAB
LIBLINK
16 ,JUP.JPADR

Get exclusive OR.
Store previous result.
Get value and type.
Juap if equal.
Get type alone for ARG1.
T LATO!! ♦ 1.
Get type alone for 1RG2.
Check type of first arguaent.
Get library address in case needed.
Check type of second argument.
Ensure both short.
If so, not equal.
Else, use library code.
Jump if was equal.

--:
. .J

4 ()

()

0

0

This in-line code sequence is 7 words
'aicroseconds in the worst case in which the
that a word (and a fev minor cycles) can be
which did not have to be stored.

long and takes about 6.5 ')
library is not called. Jote
saved if X6 was an argument .:)

I

In-line addition is as follows:

SlQ J.RG1 Load first argument.
SAS IRG2 Load second argument.

♦ S16 RESOLT Store last result.
113 Ill+IS Do addition.
B16 -xo•xJ Leave just type and value.

• BX7 16 Bake copy to check type •
117 51 Leave just type.
ZR 17,LAB Branch if inline add.

♦ SB3 =ILIBADD Else call library routine •·--RJ LIBLllflt ••• to do the addition •
LAB

This is four words long and takes about 4.11 aicroseconds.

The inline subtraction nubbin is as follows:

SAil 1RG1 Load first argument.
S15 1RG2 Load second argument.

♦ BX1 Xll+XS Prepare to check both types.
IX2 X4-I5 Do subtraction.
S16 RESULT Store previous result.

♦ BI1 X1+I2 See if result of subtract is
BX6 -10•12 Get result type and value.
BX1 -xo•11 Get check type and value.
111 51 Wow get just check type.

• SB3 =XLIBSUB Get library entry point.
ZR X1,LAB :tf Olt, skip library call.

♦ RJ LIBL:IJK Else, call library.

- ~-•• ...,... ~ p g-

negative.

0

0

•
•
•
•

.._,,,, --~

c.

C

C

C

C

0

0

0

'-

0

6600, 370, and PU!l Bicrocode Bubbins
6600 Jlubbins

LIB

This occupies 5 words and takes about 5.1 ■icroseconds.

5 '.)

ls a final exaaple, we consider the case of remote ■ ap retrieYal by a J
quantity known to be a pointer to the relevant base. This can be done in
an inline sequence as follows: 0

♦ S15 1RG2 Load second argu■ent.

+
S.llJ ARG1 Load first argument. •'1°\\
SB4 X5+B1 Prepare HEAP (VALUE (ARG2) +oPP' _EBINDX} -· '-..,/1

S11 Bll+B2 Load the above word.

♦

SBS X4+2 Prepare to get MAXINDX. 0 S12 B5+B2 Load maxiaum index word.
LX1 -18 Extract EBINDX field.

♦

S16 RESULT Store last result. e l!X3 -45 Get ■ask.
BX3 -I3*I1 Get EBINDX(ARG2J.
LX2 -18 Position l!lIINDX.

() SB3 I3+B1 Copy index to B-register.
♦ SB2 X2+B1. Extract !AXINDX.

LE B3,B2,SK:tP Skip next set if index in range.
0 5B3 B1 Else set index to zero.

SKIP SB3 B3+B5 Prepare to load result.
SB3 B3-+B2 Get HEAP address - 1.
S11 B3+B1 ldd tuple header length; load result.
BX6 X1 Get result.

· This occupies 7 vords and takes about 6.5 aicroseconds. This, in
· fact, aay be too long to do inline. If it were done offline, the code

would be aodified to put the SKIP label before the entry vord.
Bote that 4-6 aicroseconds is a typical time for these important')

nubbins. Thus, code that never needs to enter the library should run at
approxi■ately 1/5 - 1/10 the speed of corresponding code generated by a,:)
reasonably good PORTRlB coapiler.

0

Cl

· 6600, 370, and PU!l Bicrocode Wubbins.
-·· 370 Bubbins.

6Q

c

C

C

C

C
,.,

a
0.

C

0

B. 370 Bubbins.

The structure- of these nubbins is different fro• those for the 6600
for tvo ■ajor reasons: C)

iJ Juaps are a lot less expensive than on the 6600.
ii) Registers are saved across library calls so a si~ple register::)

allocator coald be used.

This leads to the following design:

i) All nubbins are offline and entered with a BAL instruction.
iiJ .soae registers will b~ reserved for scratch registers within the:)

·nubbins.
iii) Other registers will be used to contain needed constants and base

'locators.
iv) The rest of the available registers can be allocated by the:,

generated code to reduce the nuaber of loads and stores.

The register usage is as follows:

RO (11)
R1 (A2)

· 12 (11!)
R3 (TV!!)
Bfl (HBlP)
R5
B6

· B7 (LBL)
R8-R12
113 (Vl)
1111
115 (VB)

A •worst
· stored would

First input to nubbin and return value.
Second input to nubbin.
Address ■ask (I 1 0QFP.PF.l'C 1)

Type/Value ■ask (X'PF.FF.FF.PC 1)

Base register pointing to HEAP-1.
Base register for offline nubbins.
Base registers for labels.
Allocatable but used for juap address in tests.
Allocatable.
Scratch for nubbins.
Return address fro■ nubbins.
Scratch for nubbins.

case• call to a nubbin when eYerything aust: be
be as follows:

ST 11,RESULT Store last result.
L .l 1,.lRG1 Load first argument •
L l2,lRG2 Load second argument.
BAL R14,ROB Call the nubbin.

loaded and 0

0

0

This occupies 16 bytes. (Bote that we will not atteapt to give timings.)
because of the large nu■ber of ■odels and sub■odels.J

In a better {and ■ore typical} case where ite■s are in registers, the 3 code is as follows:

LB
BlL

A2,R11
B1Q,11UB

Second arg. (first was output)
Go call nubbin.

•
, .
•

6600, 370, and PO!l Bicrocode lubbins.
370 Bobbins.

Thus requires only 6 bytes. Wote that, unlike in the 6600 case, both
BlL•s are to the saae location.)

~ To call a library routine, a nubbin sets R15 to the entry point of the~

C

c.

C

C
·•.

C
i".

c .. ,.

0

c.

0

C

0

""1
-_j

routine and branches to LIBLIIK which is shown belov. J

LIBLIIK

PLYST
lRGS
SlYElREl

ST!!
LA
Ll
BR
DC
DS
DS

11,12,ARGS
R13,SlYElREl
R1,PLIST
R15
l (lRGS ,ARGS+II)
2F
18P

Store argu■ents.
Point to save area.
Point to parameter list.
Call routine; it returns inline.
Para■eter list.
Space for arguments.
Standard OS save area.

Ve will now-present the 370 code for the nubbins shovn in
section.

the 6600

Pirst, aultiplication:

BULT

· LIIUI.T

BR
LTR
BIZ
SLDL
BR
CLR
BlfHR
L
B

11,11
11,11
L!IULT
11,30
11,T1'l!
11,1!
R11J
115,=1 (LIBl'IULT)
LIBLilflC

_Do the aultiply.
See if too large or not integers.
Go offline if so.
Else position result.
Bask out junk bits.
See if too large.
Return if not.
Else get library address.
Bov call library.

Por the branch cases, the inline code aust load the address of the
-true• label into register LBL and then call the nubbin. We vill show

::) the case of the equality test·nubbin belov.

· EQUV •• 1.1,TVl!I Be■oYe junk fro■ •••
0 IB 12,TV!! ••• both inputs.

CLR 11,12 Coapare both inputs.
BER LBL Branch if equal.

0 SRL 1.1,24 Wow.get type codes •••
SRL 12,24 ••• for both inputs.
LA lfl,6 T_LITOft.

0 CB 11,Vl Yf greater, go offline.
B8 LEQUV Go call library •
CB .12,lfl Xf other type is OK, not equal.

:J BlfHR R14 So return FALSE. .

LBQUY ST!! 11,12,ARGS Else saYe arguments.
Ll R1 ,PL:IST Point to paraaeter list.

" Ll R13,S1VE1REA Point to save area.
ST B14,BET Save return address.
L B15,=l (Ll:BEQUV) Get library routine address.

3 BlLR R14,R15 Call library.
LTR RO,RO Test return value.

c.,

•
~

C

C··

C

C

C

C

6600, 370, and PU!!& fticrocode lubbins.
370 Nubbins.

RBT

BRZR
L
BR
DS

•ext, addition:

ADD lR
•R
CLR
BNBR
L
B

LBL
R14,RBT
1111
1P

11,12
11,T'l!I ;
11,l!I ,,/
R14
R 15, =l (LIBIDD)
LIBLillt

Return if equal.
Else load old return address.
Return P'lLSE.

89

Sa•e location for return address. O

Do addition.
Re■oYe junk bits.
See if type still OK.
Return if OK.
Else get library routine.
Go call library.

Wext, subtra~tion. This is si■ilar to addition except that the types
aust also be checked before the actual operation. e't

'SOB

LSUB

BR
BR
CLR
BB
CLR
BR
SR
BBl!R
L
B

11,TY!I
12,TVI!
11,1!
LSUB
12,1!!
LSUB
11,12
R14
Jils ,=l (LIBSUB)
LIBLDlt

Re■ove junk bits •••
••• fro■ both inputs.
See if in range.
Go offline if not.
Check second input.
Branch if not in range.
Bov subtract.
Return if not negative.
Get library address.
Go call library.

Finally, ve present the case of re■ote ■ap retrieval below.

OFRSI!

Slt:tP

IR
LB
LR
WR
CB
BWB
SR
SLL
lR
L
BR

12,l!!
Ill, 16 (12,BEIPJ
12,11
12,11!
lfl, 12 (12 ,BEIPJ
SltIP
lll,lfl
Wl,2
.l2,Wl
11, 16 (12 ,BBIP)
R14

Get offset fro■ start of heap.
Load BBI1'DX.
Get first arg. addressable.
Get value only.
Compare with !!lXINDX.
Index in range.
Else set index to zero.
Get correct offset.
Get HEAP offset - 4.
Load result value.
Wov return.

0

.)

,,t·

C

C

6600, 370, and PU!!l fticrocode lubbins.
PUBl Bicrocode Wubbins.

c. Ptl!!l !!icrococle tlubbins.

This case is entirely different because ve are dealing vith a
■icroproga■able ■achine. Grossly described, what ve intend to do is to "
e■ulate both the •nor■al• 6600 instructions (and maybe add a few.for •'
efficiency) and special SETL instructions and have the ■icrocode handle
the state switching. .·"'

These SBTL instructions vill correspond to calls to nubbins in the ~
aboYe tvo cases. If the nubbins do not reguire a call to the library,
they can be done by the ■icrocode in a aanner similar to the vay the -,
■icrocode vould execute a 6600 instruction. If the nubbin required a ,,
library call, a ■icrocode sequence would be entered to call the library.
The library vould execute a special instruction to return to the SETL:)
■ode and set the result.

The PU!l has, in addition to the I, 1, and B registers, 8 60-bit Y
registers. These registers are used in the nor■al 6600 emulation as
scratch registers but if we could restrict their usage as scratch)
registers, they could be used as registers in the •SETL machine• mode.
In fact, the only place vhere ■ore than one or tvo of the Y registers are
currently used is in the aultiply routine. If ve vere to accept a
■ultiply which is 3 ti■es slower, we could have the rest of the Y
registers free for the SETL instructions and they vould persist over the .-,,.,
LiftLE-vri tten library. "j

1

In addition, ve need a register to hold, in 6600 ■ode, the return
point to SETL ■ode. We can use t1 for this register. That ■eans that YO
can be used as the scratch register in 6600 aode and those fev places
where a second scratch register is needed can be re-written to use only
one. That leaves Y2-Y7 as registers for the SETL instructions vhich vill
persist over the library calls. We can use the X registers as scratch in
SETL ■ode so that YO and Y1 can be used for.data that need not persist
over library calls.

0
The SETL instructions will haYe a for■at si■ilar to the nor■al 6600

instructions. The op-code and I fields of the 6600 instruction vill be ;
{,.,. used for the SE'l'L op-code and the J and IC fields will be used as usual • ..,

Bit 1 of the op-code vill be the library flag. rf it is on, it ■eans
C that this operation is ■erely a call to the library and no processing can

be done by microcode. This ■eans that the ■icrocode can siaply call the)
library directly without having to have special code for that operation.

C The lov-order bit of the op-code is used for operation sub-types. For ,
binary operations which return an output this bit is used to indicate ~
which register receives the output. If it is on, Y7 receives the output;
otherwise, Y6. In other cases, it is used to differentiate such things -.

C.· as branch TRlJE/l'LlSE, load/store, and give two related op-codes vhen _,
there is no need for three registers. Wote that branches, loads, and

C..,,_ ~ ,. stores vill use the long for■ of the instructions vbich is the sa■e as ,
· · for 6600 instructions. ...;

C.

\..

Ve will have the global register usage over both 6600 and SETL ■odes)
the saae as for the 6600 nubbins above. Baaely, XO will hold TVAL~ASK,
B1 will hold the constant 1, and B2 vill contain the address of HEAP(O).

()

-

(

C

C

.C

-
C

c.

L

C

)

6600, 370, and PUftl nicrocode lubbins.
PU!l Bicrocode Wnbbins.

There vill be a table of entry points to the library at memory
")

locations known to the aicrocode. It each entry point vill be a special
prograa-stop instruction which vill return control to SETL mode in a case ·-,
vhere the library routine would nonally return. This instruction can be ;
placed at the entry word by an initialization routine. Note that it is
assuaed that the called routine does not do funny things vith its entry
word other that branch to it to return. This is the case in.)
LITTLE-written code and CO!PASS routines are not supposed to do things
with this vord in any eYent. ')

When the ■icrocode wants to call the library, it places into E1 the · ·
aain storage address of the entry point to vhich it desires to branch and
ju■ps to aicro-instruction LIBLIBK which is is shown below. It builds,)
in Y1, a ~alue containing the parcel count into the current instruction
vord, the address of the current word (which is P+1 by this time), and
the value to which it will branch. The latter is used for safety as ·~
follows. When a •return to SETL" instruction is encountered, it must ;;
only occur at one ■inus the last ju■p point taken to the library. Thus,
the P value at that time ■ust agree with the branch address stored in Y1. ,
LIBLINK vill also save the tvo input arguments into a parameter list and ✓
set 11 and X1 according to the noraal calling conventions (11 contains
'the address of the para■eter list and X1 contains the address of the:,
first paraaeter). ,..,

LIBLIWK P=P-1; EO=E1; IF ,NIWE!PTY THE LLONWRD
• In instruction fetch is in progress. Wait it out.
LLBWlIT BIW=CDRD; IF -.C!DOHE THEN LLNWlIT • Read to next inst. word.
LLOHWRD CLEAR; AC=EO; EO=PLISTaddr; IF CKDOHE THEN LLONWRD

LLWPLP
LLREIJ>

·LLWT1

ftl=AC; READ; lC=EO; EO=T1addr; • Read up branch address.
l1=1C; lC=EO • Set parm. list a.ddress; set store address.
X1=1C; lC:ftQ=SHIFT(P:!Q, R16) * Start shifting P value.
ftQ=SHIFT(AC:ftQ, R16} * Continue shift.
ftQ=lC; lC=KQ; E2=7; NEWPlRCEL • Shift; start parcel counting.
X2=AC; E2=E2+1[F]; IfEVPlRCEL; IF -.LlSTPlRCEL THEN LLNPLP
lC=C!RD; BUT=YJ; IF -.C!DOHE THEN LLREAD. Wait for data.
CLEAR; P=AC; lC=EO; EO=E1; IF C!DONE THEN LLWT1

LLWT2
ftl=lC; lC=BUF; WRITE; P=P+1 * Start para. write; set branch adr.
BUF=X2; IF -.CftDOHE THEN LLWT2 * Wait for store accept. .:)

LLVT3

CLEAR; lC=P • Reset ueaory; get branch address.
lC=lCIBUF; BUF=YK • Insert branch location; get par■• 2
Y1=E2:AC; EO=T2addr • Set save word; get par■• 2 store addr.
AC=EO; IF C!IDONE THEN LLWT3 • Wait for memory.
ftl=AC; AC=BUF; WRITE• Start write of second para.

LLWT4 "IF -<!!DONE THEN LLWT4 * Wait for accept.
CLEAR; GO LBRARCB * Reset ■eaory; enter LIT'l'LB aode.

This takes about 1.31 microseconds. We will assume in ti■ing)
esU■ates for the PU!l that a cycle is 45ns and ■e■ory cycle is 470ns.

Ve will now present the new ■icrocode for the progra■ stop instruction~
which will process the special •return to SETL• instruction. We vill

,j

,it-...

. .:.

,,~

.~.'
·---., " .-.

C

C-

C--

C

C

0

C

(

0

6600, 370, and PUftl fticrocode lubbins~
POftl fticrocode Bubbins.

11 a

assuae that ve are using an I field of one to indicate thi~ instruction:)
and that, for clarity, no other sub-types of program stop exist. ·

LOO

LOOWT1

LOOSIC

LOOSLP
LOOVT2
LOOVT3

E0=2000; IP -I(O) THEN ERROR• Process nonal PS.
B1:BUP=Y1; lC=P; IP 1(1) THEN ERROR * Get return word.
(lC) =IC-BUF[18]; IP I (2) THEll ERROR * Start address check.
1C=AC-BUF[18J; IP ,BIWE!P'TY THEN LOOSK * Continue test •
IP ,C!DOKB THEI LOOWTl • Wait out instruction fetch.
WIW=C!RD; CLEAR • Clear out instruction fetch.
IP ,AC=O THEN ERROR * Finish validity check.
AC=SHIFT(BUF:"Q, R16); BUF=X6; E0=2; CYW=NIW
1C=SHIPT(AC:!Q,R4); EO=E0-1[FJ; IF EALU(O)&E1LU(1J THEW LOOSLP
P=IC; IP C1!DONE THEN LOOWT2 • Wait for free ■eaory.
ftl=P; REID; BIW=C!RD; IF ,CftDONE THEW LOOWT3
CIV=NIW; IC=BUP; CLEAR; P=P+1; LATCH I *Getto return word.
=3-E1; ftl=P; READ; IF EILU THEN RETOUT • RNI; test pos.

LOOPLP WEWPARCEL; LATCH I; B1=E1+1(P] •Getto correct position.
=3-E1; IP EILUP THEW RETOUT ELSE LOOPLP • See if done.

This takes about 1.35 aicroseconds. •
Jext ve vill present the aicrocode which

· · binary operation with a result to· giYe
housekeeping needed.

handles the return fro■ a
an idea of the type of j

RETOUT
ROUT6
ROUT7

WEVPlRCEL; LATCH I; IP I(O) THEW ROUT7
Y6=AC; IP lCHECK THEN SICHECK ELSE SOPCODEBRAWCB
Y7=1C; IF ICBECIC THEN SICHECK ELSE SOPCODEBRIBCH

· This takes 90ns and vil1 be included in the ti■ings of the nubbins
which juap to it (although the other overhead operations will not be
included). ,.)

Wext ve present the ■icrocode for soae of the siapler operations • ..J
Pirst, _addition and subtraction:

ADD

SUB

BUF=YJ • Get first input.
lC=BUP; BUP=YK • Copy first; get second input.
(lC)=lC+BUl" • Start addition.
lC=AC+BUP; BUP=XO; E1=LIB1DD * Finish add;
lC=AC&-BUP; EO:X6=1C * Do aask and set to
=370+EO; IP EALUP THEW RETOUT ELSE LIBLINK

BUP=YJ * Get first input.

get aask
check type.
• Co■plete.

lC=BUP; BOP=YK * Copy first; get second input.
(IC)=IC-BOP; EO:X6=1C * Start subtract; get check type.
IC=!Q; ftQ=lC-BUP; =370+EO; IF ,EALUP THEB LIBLIBI
AC=BUF; BUF=XO * Get second input; get TVALftASK.
EO:X6=1C; AC=ftQ • Check second type; get subtract result.
lC=lC&-BUF; =370-tEO; IP -..ElLUP THEW LIBLIBIC * !!ask; check.

C,

Gt

I 'Ill -· I C • I

•
e

e

()

c.

C·

C

·' c.
r

C

C

C

e

6600, 370, and PU!l !icrocode Bubbins.
PO!l fticrocode Wubbins.

EO:X6•1C • Get check type for output •
•370+EO; IF ElLUP TREW RETOUT ELSE LIBLllK • Done. 0

Addition t:ates
aicroseconds.

.36 aicroseconds and subtraction takes· .50 ,-,
J

Wext:, ve present the case of reaote aap retreival shown aboye. It:-.
will be very helpful in understanding the aicrocode below to refer to the~;
CO!IPISS code for the saae routine above.

SOFRSft BUF=YK; lC=ftO; BQ=O * Get second input; clear BQ.
lC=BUF; BUF=B2; E0=2; IP ~NIWE!!PTY TBEB SOPRWT1 .

SOFRWTO BIW=CBRD; IP ~!DOBE THEW SOFRWTO .• Wait for fetch.
SOPRWT1 CLEAR; (IC) =AC+BUP[18][BOP]; IP C!!DOIIE THEIi SOFRWT1

lC=lC+BUP(18)[BOPJ; BOFYJ • Get addr. EBINDX; get first arg.
!!l=lC; REID; IC=EO * Read BBINDX word; set IC to 2.
(IC) =AC+BUF(18 J * Prepare to get HEAP offset of !llXllDX.

1C=IC+BU!'[18]; BUF=B2 • Finish add; get HEAP address.
SOFRWS2 (1C)=1C+BUF[18J; IP ~ftDOBE THEB SOPRWT2 • Wait for read.

1C=lC+BU!'[18J * Get address for ftlXIBDX.
SOFRWT3 CLEAR; !!l=lC; I6=1C; IF CBDOllE THEIi SOFRWT3 • Wait for ■ea.

lC=C!!RD; REID * Get EBllDX word; start read of ftlIIBDI.
XS=lC; 1C:!!Q=SHIPT(-1:ftQ,R16) • Save word; build ■ask.
lC:!!Q=SBIFT(lC:!Q,L1); BOF=X5 *Cont.with ■ask; get vord.
XS=lC; lC=SHIFT(BUF:ftQ,R16) • Save ■ask; shift data.
lC=SBIPT(IC:!0,11); BOF=XS *Cont.shift; get aask.
IC=SHil'T (1C:!!Q,R1) • Finish shift.
IC=AC&BOF • Extract EBIBDX.

'SOFRWTQ I5=1C; IP -,CJ!DOWE TBEB SOFRVT4 * Save EBIWDX; vait ftlXIWDX.
1C=SHIFT(CftRD:l!Q,R16); CLEAR • Position !AXIIIDX.
lC=SHIFT(lC:ftO,R1J • Continue shift.
1C=SHIPT(1C:l!Q,R1) • Finish shift.
(IC)=1C+0(18J • ftask out ftAIIWDX.
lC=lC+0[18]; BUF=XS * Coaplete; get EBIIDX
(IC) =lC-BUF[18 J • Start range test. ·
(1C)=lC-BUP[18]; IP ~E1LU(59J THEW SOFBSKP • In range.

BUP=BO • Else use index of zero.
SOFRSKP AC=BUF; BUP=X6 * Get index and address.

(AC) =I.C+BUP[18][WOP] * Get address to load fro■•
I.C=AC♦BUF(18)[BOP]; BUF==B2 * Finish add; get HEAP address.

SOFR1fT5 (AC) =lC+BUl'[18][•oPJ; IP Cl!DOWE THEIi SOFRVT5
lC=AC+BUP(18][BOP] • Get address to load.
!l=AC; REID * Read result value.

SOFRWT6 IP ,canon THEW SOPRWT6 • Wait for read to co■plete.
lC=CftRD; CLEAR; BEWPIRCEL; LlTC~ I; IP 1(0) THEW ROOT7 ELSE ROOT6

This takes about 2.61 aicroseconds.

For tests of one input that input is given in the J field of the
branch instruction. For tests of tvo inputs, a •c9■pare• instruction is
used and a •condition code• is saved in the output register. Then, a

0

•
C

C

•

•
•
•

•

6600, 370, and.PUl!l !icrocode labbins.
PUBl Bicrocode lubbins.

•branch on condition• is usea to branch TRUE or FALSE depending on the-~
•condition code• stored in its input register. ls an exa■ple of the -~
two-input test, ve present the equality test which vas shown earlier in
6600 and 370 asse■bly code.

EQUY

TRUE

BUF=YJ • Get first input.
lC=BU?'; BUF=YK • Copy first input; get second input.
lC=lC/BUF; BUF=IO * Do exclusiYe OR; get TVALftlSK.
IC=lc&-BUP; EO:BUF=YK; B2=1 • Bask; get type; get TRUE.
=67-EO; Et:BUP=YK; IF AC=O THEB TRUE * Check; get type; true
=67-EO; IP EILU(11) THEN LIBLIBK • This is long type.
=67-Et; BUP=BO * Start other test; get FALSE.
=67-E1; AC=BUF; IF EILU(11) THEN LIBLINK ELSE RETOUT
1C=E2; BEWPlRCEL; LATCH I; IP I(0J THEW ROUT7 ELSE ROUT6

This takes about .QO ■icoseconds.

Therefore, we
accesses are about
those vhicp access
faster •

see that the si■pler nubbins which do not do ■eaory
10-11 tiaes faster than those running on the 6600 and
aeaory or inYolYe library linkages are about 3 tiaes

'- ;

