
St~ina Prireitives

I-?.obe~r-·t B ,.}(~ De1,,12.r

January 18, 1978

This newsletter contains a suggestion for introduction

of string primitives into SETL.

The suggestions derive from SNOBOL-4, but lack (deliberately)

the complexity of this language's pattern matching facility.

In particular, they do not contain any imbedded backtracking.

In those rare cases where backtracking matches are desired,

the suggested functions can be used in conjuction with the

existing backtracking prinitives to provide the required effect.

The basic notion is a set of function calls of the form:

function(subject, parameter)

this call performs a match at the start of the subject string

using the supplied parameter. The value returned is a pair:

[Newsubject, Matched string]

Newsubject is the string r:-esulting after removing the matched

substring, and matchedstring is a copy of the matched substring.

If the match fails, then newsubject is the sa:;:ne as subject

and raatched string is set to om.

The set of functions is as follows, the semantics being

those obvious from their SNOBOL-4 ancestry:

SPAN (subj, strins)

BREI\.'"~ (subj, string) /* also breaks oa end of string * /
L2N(subj, integer)

fu'ff (subj, str in<J)

NOT?i.:'1Y (subj, stri:19)

The follo~ing addi~io~al matching functions are avail2bl~:

STR(subj, string) /* matches for literal string*/

NSPAN(subj, string) /* like SPAN but allows null*/

RLEN(subj, string) /* takes chars frow end of subject*/

/* also RSPAN, RBREAK, RANY, Ri."\JOTfu"\iY, filTSPAN, RSTR * /

The following additional functions are also provided

DUPL(string, integer)

RPAD(string, integer, char)

LPAD(string, integer, char)

These are implemented as in SPITBOL.

Some examples:

1) Read fixed length numeric fields

MACRO FLD(CARD, N);

EXPR

ENDM;

[CARD, TEMP] .

YIELD DEC TEMP;

RE.ADC (CARD} ;

N 1 == FLD (CARD, 3} ;

N2 == FLD(CARD, 5);

LEN(CARD, N);

END;

Perhaps FLD should be a predefined macro

3)

[card]

: == bre2.}((car'.i,

span(c2.rd, ",.,.");

If /'~ 1•) i

[card, opcode] break(c2rd, "A'');

[card] span (ea rd, 11
,,,.") ;

[card, operands] .- break(carc., It ff) •
,.._ I

A SNOBOL pattern to recognize an bn en

S(SPAN('A') $ A

d

SPAN('B') $ B * EQ (SIZE (.P..), SIZE(B))

SPAN ('C I) $ C

SPAN('D'))

In SETL

bracktrack s;

if ok then

if ok then

[s, a] . span

[s, b] . - span

if ll. a ...1. JJ. b r. r tr -

* EQ(SIZE(A), SIZE(C))

RPOS (0) : F (L'IOGOOD)

/*

/*

(s,

(s,

then

opens match*/

alternative*/

"a") ; i,f a = om

"b") ; • .c
l.1. b = om

fail; end;

then

then

*

fail; end;

fail; end;

[s,c] . - span (s, "c 11
); if c = om then fail; end;

if# a f # c then fail; end; succeed;

else

end;

else

end;

[s , d] : = span (s , "d") ; if d

ifs f nulc then fail; end;

succeed;

goto nogood;

om then fail; end;

endm;

macro

endm;

macro

endm;

macro

endm;

try (fun2, subj, param)

[subj, temp] := func(subj, param);

if temp= orn then fail; end;

yield temp;

end;

match;

if ok then;

endmatch;

end;

alternatives;

if ok then; -----

macro or;

endm;

macro

endm;

macro

endm;

succeed;

ok then;

elseif

endalts;

succeed;

else fail; --- ----

failure;

succeed;

else

rna ·tch

alternatives

a . -- try (span, s, U=ilt) c.. ;

b . - try (span, s / "b,,) ;

if !L a =I-
,,

b then fail; -r.- r:' ---
C . -- try (span, s, II C")

if .I!. a --.l " C then fail; 1T r ---
or

try (span, s, "d");

endalts;

ifs=/- nulc then fail; end;

failure

goto nogood;

endmatch;

;

end;

end;

There

prini-t:ives, nar;-;21y

coc1ir1g style for tl1e

matched string.- function(subjcct, parameter);

Here we assume that the function r:iodifies its first argument.

There is considerable debate at the moment as to ·whether

procedures should be allowed to modify their arguments. The

two possibilities being considered are:

1. Call by value: In this case the formal parameters of

a procedure are treated like read only variables.

2. Call by value with value return: This is similar to

call by value except that the parameter are assigned

back to the arguments after the call.

The call

A := P(B, C) with value return is equivlent to

[A, B, C] p (BT C) i

without value return.

Value return is somewhat more elegent however it can be

very costly for procedures which do not modify their arguments.

For example

y sin(f(g(x)));

is very expensive if value return is allowed. One might provide

a repr "read only parameter" however this repr is hard to check.

For the Roment we are impleraenting call by value. However

the string primitives will change if value return is added.

