TN QT mmmm Ty L 0o T, oty b
L NEWILETTER = 200 O T E S5 A LT B S

LT S C e
Fehyuary 12, 1973

Possible 2dditional RZP2s

for the Yew SETL System

The new SETL system is now beginning to approach operational
status. As the present library of data representations,and the
routines which support them become opsrational, it may become
feasible to add wvarious significant new representations, with
corresponding code, to the library. Some of these representations
mey be easily implementable by short routines which invoke existing
facilities. This note will comment on two potentially significant
representations not currently provided: 1list and B-trees.

1. List revresentations

Sets can be represented as lists with bitvector supplements,
and tuples can be represented by lists. For sets, we can begin

by introducing two new REPRs

local list (€b)

and . " remote list (Eb).

A set s having the first of these representations would be
represented by a one-way list of its elements, supplemented by
one-bit fields in the base (these are exactly the bits that

would represent s as a loczl set.) Similarly, if s has remot

3
it

list representation, then it is represented by a list, and also

]

a
by a bit-vector of exactly the sort that would represent s if

it were remote set (€b).

The bits associated with a set support

from operation. The operation s less x can

by dropping the bit associated with x; but

. S " oy e v e oy~ -
cnerelora be appropny

listed tuple mode,

this represented t as a l-way list. Such lists support efficient
iteration, and also concatenation and adjunciion of elements.
The indexing operation t(i) and indexed assignment t(i):=x
one very expensive, but their expense can be reduced by
storing the index value 1 associated with the last list component
examined, plus a pointer to the preceeding component, as part

of the representation of a listed tuple. Then indexed retrievals

t(i) can be performed by comparing i to the current component
index, and proceeding forward as many list elements as necessary
from the current position. This technigque can be especially
effective if we use the trick of storing the exclusive or of a
backward and a forward pointer in each list element; then
either t(i+l) or t(i-1l) can be retrieved rapidly once t(i)
has been accessed.

It is conceivable that an automatic analyser may be able
to detect cases in which. the elements added to a set s
having'ligg REPR are known (statically) to be outside s, and
in which s can always be used destructively. The necessary
analysis will not be easy, but will be facilitated by the fact
that attempts to establish this kind of disjointness can be.
focused on sets for which a list REPR has been declared. When
these conditions can be established, the bit-flag or bit-vector
part of the representation df s can be abandoned, and s can
represented as a simple list. In some cases 1t may even be
possible to show that two lists s and s' represent disjoint
sets, allowing the union operation s + s' to be implemented,

in maximally efficient fashion, simply by concatenating lists.

If a tunle t freguantly addressed by insarviions and/ox

cdeletions, then it may be advantageous to use a B-tree represenk-
ation for t. If destruc S
o

ooy

tive use is permissible, concatenation
£ tuples and separation of

tuples into two parts can also be
handled effectively in this representation. Acceptable syntactic

representations for these operations are already available:

for element insertion: t(1:0):= [x];
for subtuple insertion: t£(i:0):= t°';
for subtuple déletion: t(i:) = t(i+j:);
for concatenation: t |] &' (or t+t');

for separation into two parts: [t, t'}:= [t(l:i), t(i+l:)1]1.
It is possible for the parser to special—-case these situations
for objects t declared to have B-~tree representation. -

A plausible declaration form is

tree tuple mode.

We must also provide an effective way of searching a tuple
having B-tree representation. A plausible approach is to store
the index i of the last two components accessed, together with
a pointer to the last component accessed, as part of each tuple
t having B-tree representation. Then we can provide three

additional primitives

right ¢, left t, and mid t.

Our aim in defining these primitives is to allow an efficient

binary search of a sorted vector t having B-~tree representation

to be written as follows:

i := mid t;
{while 1 # Q)
if keyv—-field (t(i)) = = then

£

ound */

cl
Fh

quit; /% elemnani

0]
j—t
]
(0]

ST

and i1 F

LiNh e

end while;

/¥ now the conditicn i # O determines whather a kev-field */
/* with value x has been found or not, and the value */
h

.
/* t(i) is inmedlatelv accessible if x has been found * /

The 1ogi¢al advantage of proceeding in this way is that no
notion of sorted order need be inherent in the B-tree REPR itself.
If we assume a 2-3 tree representation for t, the
primitives right and left will act as follows. Suppose that
the last addressed éomponent of t 1s stored as the k-th element
a node N of the tree representing t, and that N stores a total
of K components of t. (0f course, K has either the value
2 or the value 3, and 1 < k £ K. Then
(a) If k < K, then right t is the k + 1l'st element stored
in N, unless this was the last component but one accessed, in
which case right t is the middle element of the k-th child
node N' of N. (But if in this latter case N is a twig, then
“rightt is §; if N' exists but stores only two elements. of t, then

right t is the first of these élementsJ

(b) If k = k, then right t is the middle item stored
in N' (as in (a)), or, if N' stores only two elements, is the
first of these two elements. If N is a twig, so that N' does

not exist, then right t is Q.
(c) The rules for the primitive left t are symmetric
to those for right t.
(d) The primitive mid t returns the middle element stored

in the topmost node N of the tree representing t (or the first

element in N, 1f N stores only two elemesnts.)

) ATy P i PR P v . A
D . siOrD SULeoiALLoDon X7 GIJL 2520

objects have cone to play a large r
particular classes of high-efficiency algorithms. Some of
these might be made available as REPRs. The common obstacle
to doing so is that the pattern of operations that these REPRs
support can be somewhat Iragmentary, and may involve several
objects in combination. Here we shall only consider one such
specialized REPR, the 'compressed balanced virtual tree re-
presentation' for mappings that gives a highly advantageous
way of handling equivalence classes. (This structure and its
use 1s described by Aho Hopcroft-Ullman.)
We can put the essential facts connected with this data
structure as follows. Let £ be a single-valued map, defined
on all or part of a set s. We suppese that no sequence of
values x, f(x), fz(x),... will ever cycle; thus every such
sequence will end with a unique y = £ (x) such that £(y) = Q.
Introduce the notation fw(x) for this y (an infix notation
for fm(x) might be £ 1lim x.) The REPR we have in mind makes
the calculation of fw(x) very fast (essentially, a fixed number
of machine cycles), and also supports the following operations:
Retrieval of f(x).
Assignment or reassignment f(x) := y, subject to restrictions
described below. »
Overall reassignment £ := nl or £ := h.
The technique is to store both a standard form map representation
of £, and a subsidiary ‘compressed virtual tree' representation.
This subsidiary representation involves the following objects:
(i) A map Ff whose domain includes that of £, which is
essentially the parent mapping in an auxiliary trea T.
(i1i) 2An integer-valued map ndsses Wwith the same domain
as £, which is the number oi descendants function for T.
(iii) A boolean valuad function Fizz, which defines the

xact significance of values of ff.

o]
A

..... raZarnind

&

they are traversed: Each node

s made a direct child of

i
reached.

encountered such a

o
the ancestor node £

z := X; s 1= nl;
(while flag (2)):
S HiEE z: =z := f£f (z);
end while;
(Yues) £f(u) == z;;

An assignment £ (x)

{so that no element z with £(z) =

x # £(y) (so that the

effect of this assignment on £f is to cause either ff(x) := £
operat

The

or ff(fm(y)) = x to be

we choose that one which will keep the tree T balanced.

procedure is simply:

if £(x) # 2 or (z

f(x) == y; /*

ff(x) := z; /* keep value
if ndescs(x) > ndescs(z) then

ndescs(x) + ndescs(z);

ff(z) := x; flag(z) := true;
else
ndescs(z) + ndescs({x); /* make ¥ a T~child of z */
flag(x) := true; /* z is now the T—-parent of x */
end if;
To make this representation available as a RIPR, we can

simply use

limit smav (

tree

x) ultimately

<D
The full procedure used to evaluate £ (x) 1s therefore

/* and now return if ff(z)# @ then £f(z) else z*,
= §]

:= y will only be accepted if £ (x)
X can have ff(z)# x) and

assignment creates no cycles) .

executed; of these two possible

c= fm(y)) = x then error;;
keep the map up to date */

fm(x) up to date */

mode) mole

if

The

(o o]

(y
io

)

+

ns

/* make z a T-child cZ x */
/* here take © as a code for 1 */

/* x is now the T-parent of

*/

oo -~ P e P ~ Iy oy ey e ey TITEYTY 8 b ey o
O DT LA I1Lon CD ThE DXzt STan ML, A wyorcal casa

Linit smap (Eh) €bh.

’

We can also allow the (sparse) form

limit sparsa smap (mode) mode.

Generalizations of the compressed balanced tree data
structure are also very useful for cases in which values v(x)
belonging to an associative semigroup are defined on the nodes

x of T, and in which products

vi{x) . v(f(x))v(fm(x))

need to be calculated with very high efficiency. However, since here
three distinct logical objects, namely £, the map v, and the

binary operation which combines values v(x) are involved,

it is less clear that a situation of this kind can be described

simply by a REPR.

