
SETL NEWSLETTER# 201 

On Compaction on RC-Paths 

Micha Sharir 
February 16, 1978 

If space and time required for manipulation of RC-paths 

is expected to create significant problems, we can use an approach 

which has not been sketched previously, which will enable us to 

drastically reduce the size of RC-paths, and to make their 

manipulation quite rapid. The ?~2sent note will sketch this 

approach. Specifically: 

After call-graph analysis, we can introduce a new data-flow 

problem, which might be termed RC-path analysis. Its purpose is 

to compute all possible RC-paths in the program, compact them in 

an appropriate way, and pre-compute certain operations of 

combination between them, as needed in the later phases of the 

optimizer. 

This analysis requires the following inputs: 

{l) The call graph (CALLPATHS), as computed by the call 

graph analysis. 

(2) The set of internal paths (INPATHS), presently used in 

data-flow analysis. This is defined as a set of pairs 

[Il,I2], where Il is an entry or a call, I2 is a call or 

an exit, and there exists an intra-procedural execution 

path from Il to I2. 

Our algorithm will compute a map REACH, defined on all 

entries and call instructions. For each such instruction I, 

REACH(I) is the set of all RC-paths which describe some execution 

path terminating at I. A recursive equation for REACH is: 

(1) REACH(I) = {RCP : [Il,I,F] £ CALL PATHS, [I2,Il] e:INPATHS, 

RCP £ REACH(I2) and RCP := RCP I IF~errorpath} 
0 0 

+ {F : [Il,I,F]e:CALLPATHS} with nullpath 

{This equation is justified in much the same way as the 

equation used to compute BFROM.) If N denotes the maximum number 



SETL-201-2 

of cyclic repetitions that we shall later need to trace within 

any execution path (in the current optimizer, N is the nesting 

level limit of types), then the RC-path concatenation yields 

errorpath if a component repeats itself more than N times in 

the concatenated path. 

As already noted in other similar contexts, equation (1) 

can be solved in a straight forward way by an iterative pro

pagation algorithm. 

Next, let f be a compacting map on the set of all RC-paths, 
k mapping each such path to some integer in W := [0,1 .•. 2 -1), for 

some small number of bits k. It will be quite advantageous to 

have f- 1 {o} = {nullpath} and let us assume also that f(errorpath} 

is undefined. 

For each operation OP between RC-paths we will compute a 

(possibly multi-valued) map OPCOMP :WxW ➔ W, and for each 

relation R between RC-paths we compute a relation RCOMP C WxW, 

as follows: 

OPCOMP := RCOMP := nt; RCPATHS := range REACH; 

(forall RCPl in RCPATHS, RCP2 in RCPATHS) 

wl := f(RCPl); w2 := f(RCP2); 

RCP ·:= OP(RCPl, RCP2);· w := f(RCP); 

OPCOMP.{[wl, w2]} with w; 

if R(RCPl, RCP2)· then·RcOMP with [wl, w2]; end: 

end forall; 

An appropriate repr for these new objects is as follows: 

B1 ; base (int (0 ..• 2k-1)); 

B2 : base ([£B1 , £B
1
]); 

RCOMP: local set (£B 2); 

OPCOMP: local map (sB 2) remote set (£B1 ); 

If we use these reprs, the space required to store RCOMP 

and OPCOMP should be very modest, since in effect we are using 

bit-matrix representations. 



SETL-201-3 

After this preparatory phase, we proceed with optimization, 

using Was the set of all (compacted) Re-paths, and the RCOMPts 

and OPCOMP's as (pre-calculated) RC-path operations. The only 

effect of this on optimization algorithms suggested earlier, is 

that some previously single-valued operations (such as maximum 

and concatenation) can now be ~ulti-valued, so that slight 

modifications of the subsequent algorithms will be required. 

Remarks: 

(1) It may be advantageous to either combine RC-path analysis 

with the computation of BFROM, or perform RC-path analysis 

after BFROM has been calculated, for two reasons: 

(a) Since BFROM is used heavily in all subsequent 

optimization algorithms, we wish to compute it very precisely, 

using non-compacted RC-paths. 

(b) Parts of the mechanism needed to perform RC-path 

analysis are used in the computation of BFROM. 

Note, however, that in this approach, after BFROM has 

been calculated, we ought to replace the RC-paths in it by 

their compactions. 

(2) Some algorithms, such as copy optimization and name splitting, 

do not require all the RC-path information that might be stored in 

BFROM, but only need to know the last call or entry instruction 

through which a BFROM link has materialized. However, there may 

not be a well defined way to retrieve this information from a 

compacted RC-path, and therefore this last component of an RC-path 

ought to be stored in BFROM, alongside with the compacted path. 

This is possible, even if Re-paths are compacted before the 

computation of BFROM. Indeed, the first phase in the BFROM 

computation produces an intra procedural approximation to BFROM, 

in which any possible interprocedural link is stored as a link 

from an occurence back to a du.~~y occurence of the same variable 

in some call or entry instruction. This suffices to determine 

the last component of the RC-path of the final link. 


