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In this newsletter we suggest an algorithm to detect dis

jointness among SETL program objects. This algorithm can be 

applied toward detection of single-valued maps and detection 

of cases in which sets can be represented as simple linked lists 

(without hashing support}. The algorithm that we suggest here 

resembles in some points Schwartz' approach toward detection of 

inclusion and membership relationships between SETL program ob

jects, but due to its limited goals, our approach tends to be 

somewhat simpler and easier to implement. 

We start by giving some.rules indicating when a linked list 

representation for sets and tuples can be expected to be an 

efficient one. These rules will motivate the algorithm to be 

proposed later. 

Lett be a homogeneous tuple in a SETL program. t is appro

priately represented as a linked list if it is only subject to 

the following Ql operations: ADD, WITH, ASN, NEXTD, and to com

ponent retrieval and storage operations of the form t(l}, t(#t}, 

t(#t+l} := • (We assume that the last element in the list struc

ture can be accessed rapidly via a pointer from the first element.) 

The preceeding criterion can be checked easily simply by scanning 

all occurrences oft in the program. (Note that the construct 

t (#t), e.g., can be easily detected if the code to b'e analyzed 

makes use of the present unique naming scheme for temporaries.} 

Thus, finding tuple candidates for a linked-list representation 

is a relatively simple task, which involves no particular problems. 

The situation is more complex if we consider sets instead of 

tuples. Let S be a set in a SETL program. Sis appropriately 

represented as a linked list _if it is only subject to the following 
. ' 

Ql operations: 

ARB, FROM, NEXT, ASN, 

S with x, where x is known not to belong to S just before any execu

tion of this instruction, 

S + T, where sand Tare known to be disjoint and T is also to be 

represented as a list. 
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In this set case we see that to detect_such a representa

tion we need some disjointness information concerning sets and 

their potential elements. Interestingly enough, similar dis

jointness information can be used to detect single-valued maps. 

Specifically, a map f is single-valued if it appears only in 

the following contexts: 

f := g, where g is known to be single valued (typically g is 

the null map), 

f (x) := 

as an argument to the operations DOMAIN, RANGE, NELT, OF, etc., 

f with [x,y], where domain f and x are known to be disjoint 

just before any execution of this instruction. 

It follows that disjointness detection analysis can aid 

in selecting appropriate data structures. Specifically we sug

gest that such an analysis be performed only after the name

splitting phase, as it is more convenient to assu.rne that all 

program objects have unique type and representation (which is 

the case after the name splitting phase). The algorithm to 

be described below is therefore intended to be part of the re

finement phase of the automatic data structure choice, in which 

the basic relationships between program objects and their repre

sentation in terms of program bases have already been established, 

and in which it remains to decide which kind of based representa

tion (local, remote, sparse or list) is most efficient for indivi

dual sets and maps. 

An additional advantage of performing our algorithm at this 

stage is that we can restrict disjointness detection to sets, 

map domains and elements known to be based on the same base. This 

will decrease significantly the number of possible candidates £.or 

disjointness and will make o~r alg~rithm quite a practical one. 

Our algorithm· is a kind. 'of global data-flow analysis. It 

will be described simply by defining the data-flow framework in

volved, from which the precise details of implementation can be 

worked out in a routine manner, using any convenient data-flow 

analysis technique. 

We first define a semilattice L of possible data values to 
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be collected during our analysis. Each element A of Lis a 

set of unordered pairs. A pair {s1 ,s2 } is in A iff s1 and s2 
denote two_ sets appearing in a SETL program which are based on 

the same base and are known to be disjoint~ The meet in Lis 

set intersection. To incorporate elements and map domains into 

our disjointness scheme, we also maintain two abstract maps: 

SETOF, which maps each element x of a base to an atom designating 

the singleton set {x}, and DOMOF, which maps each map f which 

is domain-based on some base to an atom designating the domain 

set of f. Thus, for example, if t is a pair Iu,v], then 

DOMOF(SETOF(t)) designates the set {u}. Also, if 

{SETOF(x),S} EA EL, then A indicates that x ~ S. Similarly, 

if {SETOF(x),DOMOF(f)} EA then A indicates that x ~ domain f. 

The set F of data-propagation maps of our framework is 

best described by first defining, for each program instruction r, 

a map fr which describes the information change effected by 

execution of I. F can then be constructed by appropriate com

positions and meets of these elementary maps. 

We will describe below fr for several typical SETL instruc

tions r. Let A EL denote information-known just before executing 

I. Then: 

(1) I: S := nR.; for a based set S. f
1

(A) is obtained by adding 

to A all pairs {S,T}, where Tisa set based on the same base B 

of S, or T = SETOF {x), where x is an element of B, or T = DOMOF {_f}, 

where f is a map which is domain-based on B, or T = DOMOF(SETOF(p)), 

where p is a pair whose first component is an element of B. lWe 

omit in this description details pertaining to more efficient 

implementation of this algorithm, such as possibly maintaining 

sets known to be null separately in a disjointness data, thereby 

expediting the application of f 1 (A) for the above I.) 

(2) I: f := nR.; for a dornairl-based map f. Proceed as in (1)', 

using DOMOF(f) instead of s. 

(3) I: x from S; fI(A) is obtained by deleting all pairs 

{SETOF{x),T} from A, and then adding the pair {SETOF{x),S} as 

well as all the pairs {SETOF(x),T}, where {S,T} EA. 

(4) I: x := next S; (i.e. iteration over a based set S). Here 



SETL-205-4 

we make use of the semantic translation of iterations, in 

which Sis first assigned to a 'shadow' set s1 and then iteration 

is performed on s1 . We can thus interpret I as 'x from s 1 • and 

act as in (3) above. 

(5) I: x := arb S; Proceed as in (3), only do not add {SETOF(x),S} 

to A. 

(6) I: S with x; Remove from A {SETOF(x),S}; leave pairs {S,T} 

in A only if {SETOF(x),T} is also in A. 

(7) I: S less x; Add to A the pair {SETOF(x),S}. 

(8) I: S := {x1 ,x 2 , ... ,xn}; Interpret this as the sequence 

S := ni; S with x 1 ; ... S with x; - -- -- n 

(9) I: S := s1 + s 2 ; Delete.all pairs {S,T} from A; add pairs 

{S,T} to A for which both {s1 ,T} and {s 2 ,T} are in A. 

(10) I: S := s
1 

- s 2 ; Delete all pairs {S,T} from A; add pairs 

{S,T} to A if {s1 ,T} EA. 

(11) I: S := s1 * s 2 ; Delete all pairs {S,T} from A; add {S,T} 

to A if either {Si,T} EA or {S 2 ,T} EA. However, if {S1,s
2

} EA, 

interpret I as S := ni; 

(12) I: f (x) . -.- y; Interpret as 'DOMOF(f) with x', using ( 6) • 

{13) I: f{x} with y; Sarne as (12) • 

{14) I: f lessf x; Interpret as 'DOMOF(f) less x', using ( 7) • 

{15) I: s ·- domain f; Interpret as 'S ·- DOMOF (f) I, using (19) .- .-
below. 

(16) I: f with t; for a domain-based map f. Since f is a map, 

t must be a pair~ Interpret I as 

DOMOF(f) := DOMOF(f) + DOMOF(SETOF(t)); 
, 

This calls for proper handling of instructions manipulating pairs. 

For example: 

(17) I: t := [x,y]; Interpret as 'DOMOF(SETOF(t)) := {x}'. 

(18) If I is a retrieval of a pair t from a domain-based map f, 

then interpret I as if DOMOF(SETOF(t)) has been retrieved (as a 
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subset) from DOMOF(f), using (3), (4) or (5) with the above 

-,. sets replacing SETOF (x} and S respectively. 

(19) I: x· := y; 

(a) If x,y are based sets, remove all pairs {x,T} from A; 

add pairs {x,T} to A if Tix and {T,y} EA. 

(b) If x,y are domain-based maps, interpret as 

'DOMOF(x) := DOMOF(y) ', using (a) above. 

{c) If x,y are pairs whose first components are base pointers, 

interpret as 'DOMOF(SETOF(x)) := DOMOF(SETOF(y)) '. 

(d) If x,y are base pointers, interpret as 

'SETOF (x) := SETOF (y) '. 

(20) Our scheme excludes (split) variables which are subject to 

arithmetic operations, are read in, etc. Each conversion from an 

unbased split variable to a based one is considered as a creation 

of a new value for the based variable, which removes any disjoint

ness information concerning this variable from A. 

These rules swnmarize the effect on L of execution of the 

most common SETL instructions having based arguments. We have 

thus defined a data-flow framework (L,F). It is not distributive, 

as the following example indicates: Let A1 = {{S,T}}, 

A 2 = {{S,U}} EL, and let I: V := T * U; Then both fI(A1 ) and 

fI(A 2 ) contain {v,s}, but fI(A 1 A A2 ) does not. Nevertheless, 

our framework is defined for any flow-graph (or program), and 

yields a data-flow problem solvable by any convenient standard 

technique. 

Let us demonstrate the way in which our algorithm applies to 

several typical examples: 

Example 1: Consider the following expansion of the set-former 

T := nR.; 

s
1 

:= S; 

("tfx E s1 ) 

if c(x) 

T := {x e,slc(x)} .. 

then 

T with x; 
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r 6 end if; 

1
7 

end \j; 

Let A1 denote the data known just before executing an in

struction I. We assume that there is one underlying base B 

such that T,s,s1 and Sx = SETOF(x) are all sets based on B. If 

we propagate information in the order of the code, we obtain, 

after each propagation step: 

AI = JS 
1 

Ar = {{T,S},{T,Sl},{T,Sx}}, using rule (1). 
2 

A
13 

= AI
2 

({T,s1 } is removed and then added back, by rule (19)) 

AI = {{T,S},{T,s
1

} ,{Sx,s
1

} ,{Sx,T}} 
4 

(remove {T,Sx} and then add it back with the pair {Sx,s1 }, 

using rule (4)) 

AI = A1 (I 4 does not change any value) 
5 4 

AI = {{T,s1 },{Sx,s1 }} 
6 

(the pair {T,Sx} is removed, and from all the other 

pairs containing T, only {T,s
1

} is left, sirice {sx,s1 } 

is also in A, by rule (6)) 

{{T,s1 },{Sx,s1 },{Sx,T}}, using rule {4) 

are unchanged 

The propagation stabilizes as shown above, yielding the informa

tion that T and {x} are disjoint before any insertion of x into T. 

Thus T can be represented by a linked list (as far as the above 

code fragment is concerned). 

Example 2: Consider the following expansion of the map-former 

f :=:=-:{[x,e(x)]: xE SJ 
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Il f := nt; 

I2 Sl := S; 

I3 (Vx E Sl) 

I4 y := e (x); 

IS t := [x, y] ; 

I6 f with t; 

I7 end 'Ji 

Again we assume that there is only one underlying base B such 

that DF = DOMOF(f), S, sl, Sx = SETOF(x) and 

DST= DOMOF(SETOF(t)) are all sets based on B. The propagation 

steps will yield 

JI.I = ~ 
1 

AI = {{DF,S},{DF,s1 },{DF,Sx},{DF,DST}}, by rule (1) 
2 

AI = AI (as in example 1) 
3 2 

A1 = {{DF,S},{DF,S
1

},{DF,Sx},{DF,DST},{Sx,S
1
}} 

4 
(remove {DF,Sx} and then add it back and add {Sx,s1 }, 

by rule (4)) 

A1 = AI (I4 is an unbased instruction which does not yield 
S 4 

any disjointness information) 

AI = {{DF,S},{DF,S
1

},{DF,Sx},{DF,DST},{Sx,S
1

},{DST,S
1
}} 

6 
(interpret IS as 'DST:= Sx', applying rule (18)) 

AI = {{Sx,s1 },{DST,S
1

},{DF,S
1

}} 
7 

(interpret r 6 as DF := DF + DST, applying rule (16)) 

AI = { {DF, sl}, {DF ,Sx}, {_sx, Sl}} 
4 . ( 

AI = AI 
5 4 

AI = {{DF,s1 },{DF,Sx},{Sx,S
1

},{DST,DF},{DST,S
1

}} 
6 

A
17 

=_ {{DF,s1 },{Sx,s1 },{DST,Sl}} ._ (unchanged) 

This stabilizes the propagation. We thus obtain that whenever 
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r
6 

is executed, the domain off and {x} are -disjoint, so that 

f is a single-valued map. 

Remarks: ·(l) Note that our algorithm treats potential disjoint 

sets as sets of abstract elements (base pointers) for which no 

special properties are assumed or explored. Thus, e.g., our 

algorithm will not detect the fact that the set {x + 1 : x ES} 

can be constructed as a list, a property which can be deduced 

only if we use the fact that addition of a constant integer is 

a one-one operation. Thus any disjointness information that 

our algorithm can collect is based only on assignment, retrieval 

and embedding operations. 

(2) Our algorithm is much more modest than the approaches 

set by Schwartz and Tsui, which aim at detection of various in

clusion and membership relations, of which disjointness is only 

one special case. Their methods are indeed more powerful. For 

example, consi,er the transitive-closure code given in Schwartz's 

"Optimization of Very High Level Languages II". Our algorithm 

will not detect the fact that 'new' can be represented as a linked 

list, a fact that can be deduced only by noting that new call 

throughout the code, a property which we do not aim to detect. 

However, their algorithms (especially Schwartz') are much more 

complicated, may require several pre-processings of the code, in

cluding insertion of dummy instructions, and are much more space

consuming. We believe that the algorithm suggested above is a 

reasonably implementable one, which will detect most of the 

common single-valued maps and possible linked.list representations. 


