
•
•

•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
•
•

SETL NEWSLETTER NO. 207

A SECOND SIMPLIFIED APPROACH TO AUTOMATIC DATA STRUCTURE CHOICE

MICHA SHARIR
8 MAR 1978

THIS NOTE FOLLOWS SETL NEWSLETTER NO. 203, WHERE A NEW
APPROACH TO AUTOMATIC DATA-STRUCTURE SELECTION HAS BEEN
DESCRIBED. THE APPROACH SUGGESTED THERE, ALTHOUGH IT HAS A
RATHER SIM~LE STRUCTURE, SUFFERS FROM SEVERAL DEFFICIENCIES WHICH
HAVE LED US TO LOOK FOR AN ALTERNATIVE APPROACH. THE NEW ANO
PROBABLY IMPROVED APPROACH, TO BE DESCRIBED IN THIS NEWSLETTER,
IS CLOSER TO ED SCHONBERG~$ ALGORITHM CTO BE DESCRIBED IN A
COMING NEWSLETTER> AND SEEMS TO BE FASTER THAN THE FIRST APPROACH •
IN SPITE OF THE DIFFERENCES BETWEEN THESE TWO METHODS, THEY STILL
HAVE A SIMILAR OVERALL LOGIC WHICH IS MUCH SIMPLER THAN THAT OF
PREVIOUSLY SUGGESTED ALGORITHMS. AMONG THESE SIMPLIFICATIONS
ARE: USING THE BFROM AND FFROM MAPS INSTEAD Of VALUE-FLOW
MAPS ANO DISPENSING ALTOGETHER WITH A PHASE WHICH INSERTS
~LOCATE~ INSTRUCTIONS INTO THE CODE •

WE SHALL FIRST DESCRIBE THE NEW AUTOMATIC DATA-STRUCTURE SELECTION
ALGORITHM HEURISTICALLY:

Cl) INITIALLY, All INSTRUCTIONS I IN THE CODE TO BE PROCESSED ARE
ANALYZEO SEPARATELY. IN THIS ANALYSIS WE PROCEED IN A MANNER
DEPENDING ON THE OPCODE OF I ANO THE TYPES OF IT5 ARGUMENTS,
ANO GENERATE BASES 81, B2 ••• BN, SUCH THAT SOME OR ALL OF THE
OCCURENCES IN I CAN BE REPREO IN SUCH A WAY THAT EACH OF THE'
ABOVE BASES APPEAR IN AT LEAST ONE SUCH REPR, AND SUCH THAT IF
THESE REPRS ARE USED THE EXECUTION TIME OF I WILL EITHER REMAIN
SUBSTANTIALLY THE SAME, OR ELSE BECOME FASTER •

IN OTHER WORDS, A BASE BI IS GENERATED ONLY IF AT LEAST ONE
OCCURENCE IN I ACCESSES ITS ELEMENTS, AND INTRODUCTION OF THIS
BASE ODES NOT SLOW I DOWN. I COULD SLOW DOWN IF HASHING OF A
VALUE INTO 81 IS NEWLY REQUIRED CE.G. IF A NEW VALUE OF AN
ELEMENT OF BI MAY HAVE BEEN CREATED IN EXECUTING I>, OR IF
BASE CONVERSIONS MAY BE NEWLY REQUIRED <E.G. IF DIFFERENT BASES
ARE ASSIGNED TO THE ARGUMENTS IN A SET UNION INSTRUCTION) •

A SECOND PROPERTY THAT WE REQUIRE THt GENERATED BASES TO
POSSESS, IS THAT EVEN AFTER THE INTRODUCTION OF REPRED ARGUMENTS,
THE INSTRUCTION I SHOULD BE EQUIVALENT TO I WITH ITS ARGUMENTS
HAVING THEIR ORIGINAL FORMS. THUS, IN AN INSTRUCTION ~c :=A+ a;~,
IF A IS A SET OF INTEGERS, BIS A SET OF CHARACTERS ANO C IS
(NECESSARILY) A SET OF GENERAL ELEMENTS, NO BASES ARE GENERATED,
FOR IN ORDER FOR THAT INSTRUCTION NOT TO SLOW DOWN, ALL THREE
ARGUMENTS MUST BE BASED ON THE SAME BASE, WHOSE ELEMENTS MUST
THEREFORE BE OF GENERAL TYPE. THUS, A AND B BECOME SETS OF
GENERAL ELEMENTS, CONFLICTING WITH THEIR PREVIOUS TYPtS •

•
•

•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
•
• -

SETL - 207 - 2

THIS RESTRICTION REFLECTS ONE OF THE UNDERLYING PRINCIPLES IN
OUR APPROACH, NAMELY: THE TYPES OF VARIABLE OCCURENCES, AS
PRODUCED BY THE TYPE FINDER, SHOULD NOT BE MODIFIED DURING
AUTOMATIC DATA-STRUCTURE SELECTION. SUCH MODIFICATIONS
ARE POSSIBLE IN TWO CASES: <I> DURING THE PRE-PASS, IF TYPES
ARE CONVERTED INTO BASED REPRS WHICH ARE NOT EQUIVALENT TO
THE ORIGINAL TYPES (AS IN THE ABOVE SET UNION EXAMPLE).
CII) BY MERGING BASED REPRS OF TWO OCCURENCES HAVING DIFFERENT
TYPES. SUCH A MERGE MAY CAUSE EQUIVALENCING OF TWO BASES
81, 82, WHOSE ELEMENT-MODES ARE NOT EQUAL, SO THAT THE NEW
BASE WILL NOT BE REALLY EQUIVALENT NEITHER TO Bl NOR TO BZ,
AND CONSEQUENTLY THE TYPES OF REPRS BASED ON Bl OR 62 WILL
HAVE CHANGED •

IN BOTH CASES, TYPES BECOME MORE GENERAL, AND NEVER MORE
RESTRICTED. HENCE, THE NEW TYPES WILL STILL Bt AN OVER­
ESTIMATION TO THE ACTUAL TYPES, SO THAT THE CODE WILL STILL
BE SAFE. HOWEVER, BECAUSE TYPES MAY BECOME LESS SPECIFIC,
WE ARE APT TO GENERATE LESS EFFICIENT CODE, IN THE SENSE THAT
SOME Q2 INSTRUCTIONS MAY BECOME MORE GENERAL (ANO THEREFORE
MORE TIME CONSUMING), ANO EXTRA TYPE CHECKS AND CONVERSIONS
MAY BE REQUIRED •

FOR THESE REASONS, WE PREFER TO MAKE SURE THAT CASES <I> ANO <II)
WILL NOT OCCUR IN OUR ALGORITHM, ANO SO KEEP THE TYPE OF OCCURENCES
UNCHANGED (SEE ALSO REMARK (1) AT THE END OF THE ALGORITHM) •

NOT ALL GENERATED BASES ACTUALLY SPEED UP THE PROGRAM
EXECUTION. THOSE THAT DO NOT ARE USELESS, AND, UNLESS
WE CAN LATER MERGE THEM WITH MORE USEFUL BASES, WILL BE
SUPPRESSED <SEE (4) BELOW>. HOWEVER, THE REASON FOR PROVISIONALLY
INTRODUCING THESE EXTRA BASES IS TO ELIMINATE THE NECESSITY
TO PROPAGATE BASINGS ACROSS INSTRUCTIONS (SEE (3) BELOW).

GENERATED BASES WHOSE INTRODUCTION SPEED UP THE EXECUTIO~ OF THE
INSTRUCTION IN CONNECTION WITH WHICH THEY WERE INTRODUCED WILL
BE CALLED EFFECTIVE BASES AND ALL OTHER GENERATED BASES WILL
BE CALLEO NEUTRAL BASES •

EXAMPLESz

(A) T := S WITH X;

IF T AND SARE SETS WITH ELEMENTS OF THE SAME TYPE,
WHICH IS ALSO EQUAL TO THE TYPE OF X, GENERATE ONE EFFECTIVE
BASE B, REPR SANDT AS SET(~B>, AND X AS ~B •

IFS AND TARE HOMOGENEOUS TUPLES HAVING THE SAME ELE~ENT­
TYPE, WHICH IS ALSO EQUAL TO THE TYPE OF X, GENERATE ONE
NEUTRAL BASE 8, WITH REPRS ANALOGOUS TO THE ABOVE •

•
•

•
•
••
•
•
•
•
• -•
•
•
•
•
•
•
•

•
•

SETL - 207 - 3

(B) Y Z• F(X);

IF FIS A HAP, WITH A DOMAIN TYPE EQUAL TO THE TYPE OF X,
AND A RANGE TYPE EQUAL TO THE TYPE OF Y, GENERATE ONE
EFFECTIVE BASE 81 AND ONE NEUTRAL BASE 82, ANO PRODUCE
THE FOLLOWING REPRS: F: MAP(PSl) PB2; x: ~Bl; Y: PB2;

IF THE TYPE OF Y IS NOT EQUAL TO THE RANGE TYPE OFF, -DO
NOT GENERATE B2, AND IF THE TYPE OF X IS NOT EQUAL TO THE
DOMAIN TYPE OFF, DO NOT GENERATE Bl •

IF FIS A HOMOGENEOUS TUPLE, AND THE TYPE OF Y IS EQUAL
TO THE COMPONENT TYPE OFF, GENERATE ONE NEUTRAL BASE B
AND REPR FAS TUP(~B) ANDY AS PB•

IF FIS A STRING OR OF AN AMBIGUOUS TYPE, NO BASES ARE TO BE
GENERATED •

(C) Y :• X;

UNLESS THE TYPES OF X ANDY ARE UNEQUAL, GENERATE ONE NEUTRAL
BASE a; AND REPR X ANDY AS ~B •

NOTE THAT MOST OF THE RESTRICTIONS IMPOSED IN THE ABOVE EXAMPLES
ARE AUTOMATICALLY FULFILLED BY THE FINAL PHASE OF THE TYPE
FINDER, WHICH ASSIGNS TO EACH □ VARIABLE THE ~FORWARD, TYPE OF
ITS !VARIABLES. FOR EXAMPLE, IN (A) ABOVE, IFS IS A SET AND
THE TYPE OF ITS ELEMENTS IS EQUAL TO THE TYPE OF X, THEN THE
TYPE OFT WILL BE EQUAL TO THAT OF S; SIMILARLY, IN (C) ABOVE,
THE TYPE OF Y WILL ALWAYS BE EQUAL TO THE TYPE OF X. HOWEVER,
THESE RESTRICTIONS HAVE BEEN STATED ABOVE IN ORDER TO MAKE
OUR ALGORITHM AS INDEPENDENT OF THE TYPE FINDER AS POSSIBLE •

(2) AFTER THIS INITIAL BASE GENERATION PHASE, VARIABLE
OCCURENCES WILL BE BASED ON EFFECTIVE BASES ANO/OR NEUTRAL BASES.
OUR ALGORITHM NOW ASSUMES THAT EFFECTIVE BASES, AS WELL AS BASES
THAT CAN BE MERGED WITH EFFECTIVE BASES, ARE ADVANTAGEOUS.
BASE MERGING WILL BE PERFORMED BY PASSING BASING INFORMATION
BETWEEN INSTRUCTIONS ACCORDING TO THE FOLLOWING HEURISTICS:

LET VOl, V02 BE TWO OCCURENCES OF THE SAME VARIABLE WHICH ARE
LINKED BY THE BFROM MAP, AND SUPPOSE THAT WE WANT TO MERGE
THE BASE INFORMATION OF VOl WITH THAT OF vo2. LET
REPRl, REPR2 BE THE GENERATED REPRS OF VOl, V02 RESPECTIVELY;
IN ORDER TO MERGE THESE REPRS, VOl AND VD2 MUST HAVE THE SAME TYPE •
IF THIS IS THE CASE, THEN RcPRl AND REPR2 BOTH DESCRIBE OBJECTS
HAVING THE SAME TYPE ANO BY COMPARING THEIR STRUCTURES WE CAN
EQUIVALENCE BASES OR FIND OTHER RELATIONS BETWEEN THEM.
A MORE DETAILED DESCRIPTION IS GIVEN IN PHASE 2 OF OUR ALGORITHM
BELOW •

i -~) 'I ,,
•
•
•
•
•
•
•
•
• -•
•
•
•
•
•
•
, ,.,
.,
•

SETL - 207 - 4

(3) THE BASE GENERATION PRE-PASS DESCRIBED ABOVE ENABLES US
TO AVOID PROPAGATION OF BASE INFORMATION BETWEEN ARGUMENTS OF
THE SAME INSTRUCTION, A TASK wHICH WOULD CALL FOR SOME MESSY
ROUTINES, RESEMBLING THE ~FORWARD~ AND ~BACKWARD, ROUTINES OF
THE TYPE FINDER, AND WOULD ALSO INCREASE THE TIME COMPLEXITY
OF OUR ALGORITHM <CF. NL. 203).

BASE PROPAGATION ACROSS INSTRUCTIONS IS ALREADY PERFORMED
IMPLICITLY WITHIN THE INITIAL BASE GENERATION PHASE. LATER BASE
MERGING NEED BE PERFORMED ONLY ALONG BFROM LINKS. TO CONVINCE
OURSELVES THAT THIS IS INDEED THE CASE, WE SHALL CONSIDER FIRST
SEVERAL EXAMPLES:

EXAMPLE A •

(I l)
(12)
(13)
(14)

S WITH X;
V(l) := X;
y := V<J>;
Z :• F(Y);

$SIS A SET
$VIS A TUPLE

SF IS A MAP

ASSUME THAT VIS A HOMOGENEOUS TUPLE. THEN THE PRE-PASS WILL
COME UP WITH THE FOLLOWING BASINGS (WHERE ONLY Bl, B4 ARE
EFFECTIVE>:

Sla SET(i+Bl>;
V2: TUP(i+B2);
Y3: i+B3; V3:
Y4: .+84; F4:

Xl: i+Bl;
X2: i+B2;

TUP(.+B3);
MAP(.+84) .+B5; z4: .+B5;

THEN, WHEN BASINGS ARE MERGED ALONG BFROM LINKS, 81 AND B2
WILL BE MERGED (USING THE X-LINK FROM 11 TO 12); 82 AND 83
WILL BE MERGED <VIA THE V-LINK); B3 AND 84 WILL BE MERGED
(VIA THEY LINK). IF WE DID NOT INTRODUCE NEUTRAL BASES FOR I2
AND I3, WE WOULD HAVE TO PROPAGATE BASING$ ACROSS I2 AND 13
IN ORDER TO DEDUCE THAT Bl AND B4 SHOULD BE MERGED •

NOTE ALSO THAT IN THE STEPS WE HAVE JUST DESCRIBED 85 HAS NOT
BEEN MERGED WITH AN EFFECTIVE BASE. IF THIS CONDITION
PERSISTED, 85 WOULD BE DROPPED DURING THE BASE ADJUSTMENT
PHASE •

EXAMPLE B. <S, U AND TARE ASSUMED TO BE SETS)

(Il> s WITH X;
(12) u WITH S;
(13) T FROM u;
(14) y FROM T;

HERE, AFTER THE PRE-PASS, WE WOULD HAVE:

•
•
•
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
e
•
•

SETL - 207 - 5

Sll SET(PBl); Xll PBl;
u2: SET(P82); s2: PB2;
T31 PB3; U3: SET(P83);
Y41 P84; T41 SETCPB4);

THEN, USING THE BFROM LINKS, WE WOULD FIRST MERGE THE TWO REPRS
PB2 AND SETCPBl) OF THE S OCCURENCES; THIS WILL GIVE US
INFORMATION ABOUT THE ELEMENT-MODE OF 82, I.E •
PB2 = SET(PBl). THEN WE EQUIVALENCE 82 AND 83 VIA THE U-LINK,
AND FINALLY, USING THE T-LINK, WE DEDUCE THAT P83 = SET(P64).
THIS EXAMPLE SHOWS THAT REPR MERGING HAS TD BE DONE IN SOME
RECURSIVE OR TRANSITIVE MANNER, FROM WHICH WE CAN DEDUCE THAT
Bl AND 84 OUGHT TO BE EQUIVALENCED ONCE B2 ANO 83 ARE EQUIVALENCED,
SINCE THE MERGING OF B2 AND 83 CALLS FOR THE MERGING OF THE
REPRS SET(PBl> AND SET(PB4). THIS WILL BE TAKEN CARE OF
DURING THE BASE ADJUSTMENT PHASE OF OUR ALGORITHM •

(4) AFTER MERGING, (EQUIVALENCE CLASSES OF) BASES SHOULD BE
SUPPRESSED, IF ALL THE EFFECTIVE BASES IN SUCH A CLASS SUPPORT
OCCURENCES OF ONLY ONE COMPOSITE OBJECT (THIS REMARK APPLIES
ALSO TO THE CASE IN WHICH THE CLASS CONTAINS NO EFFECTIVE BASES>.

(5) A VERY DELICATE ISSUE ARISING IN PREVIOUS DATA-STRUCTURE
CHOICE ALGORITHMS WAS THE INSERTION OF #LOCATE~ OPERATIONS INTO
THE CODE BEING PROCESSED. THESE OPERATIONS COMPUTE BASE
POINTERS FOR ELEMENTS OF A BASE, INSERTING THEM INTO THE
BASE IF NECESSARY. THIS PROBLEM IS STILL DELICATE, BUT
WE HAVE SHIFTED IT TO THE NAME-SPLITING PHASE OF THE
OPTIMIZER (TO BE DESCRIBED IN A COMING NEWSLETTER), WHERE IT IS
TREATED AS A SPECIAL CASE OF A GENERAL CONVERSION INSERTION
ALGORITHM. WE CAN THEREFORE IGNORE THIS PROBLEM COMPLETELY IN
THE PRESENT ALGORITHM, SIMPLIFYING THE ALGORITHM CONSIDERABLY •

(6) A FINAL PHASE OF REPRESENTATION REFINEMENT CHOOSES
REMOTE, LOCAL OR SPARSE REPRESENTATIONS FO~ BASED OBJECTS. THIS
PHASE IS NOT YET FULLY ELABORATED, AND AT THIS MOMENT WE 00 NOT
SUGGEST ANY NEW IDEAS, BUT CONTINUE TO USE COARSE HEURISTICS
PREVIOUSLY SUGGESTED, TO DETERMINE THE DETAILED REPRESENTATION
BASED OBJECTS.

THE ABOVE REMARKS SUGGEST A RATHER SIMPLE AUTOMATIC DATA­
STRUCTURE SELECTION ALGORITHM. A SKETCH OF SUCH AN ALGORITHM
IS GIVEN BELOW •

THE INPUT TO THIS ALGORITHM CONSISTS OF THE DATA FLOW MAPS BFROM
AND FFROM, ANO THE TYPE MAP ~TYP~, WHICH GIVES THE COMPUTED TYPE.
OF EACH VARIABLE OCCURENCE •

THE OUTPUT OF THE ALGORITHM IS ANOTHER MAP ON OCCURENCES, CALLED
~oI,REPR~, MAPPING EACH OCCURENCE TO A SUGGESTED REPR. THE
SYMBOL TABLE IS ALSO UPDATED BY ADDING NE~ BASE DEFINITIONS, BUT THE
ACTUAL FORM OF REPRED VARIABLES IS NOT MODIFIED TILL THE NAME­
SPLITTING PHASE •

•
•
(t

•
$

• $
$
$

• $
$

•
•
•
•

$

• s

• $
$

• s

•
• s

$
$

• $
$
s

•
• $

s
s

• $

$

s

• $

-
•
•

SETL - 207 - 6

1. INITIALIZATION

UNTIL THE BASE ADJUSTMENT PHASE, REPRS ARE REPRESENTED IN
A PROVISIONAL FASHION, ANO CARRY A FLAG WHICH INDICATES WHETHER
THEY ARE BASED OR NOT. THIS IS DONE IN ORDER TO BYPASS
MANIPULATION OF UNBASED REPRS. THUS REPRS ARE REPRESENTED
AS PAIRS CREPR~PART, IS~BASEDJ, AND ACCESSED BY THE
FOLLOWING MACROS:

REPR{l) ENDM;
REPR(2) = BASED ENDM;

REPR(2) = UNBASED ENDM;
REPR Cl> ENDM;

REPR(2) ENDM;
COMPTYP(REPR)(N) ENDM;

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

REPR~PART(REPR);
IS~BASED(REPR);
rs~UNBASED(REPR);
GROSS TY P (REP R) ;
COMPTYP(REPR);
CTYPN(REPR, N);
DOMTYP(REPR);
RANGETYP (REPR);
BASE~OF(REPR);

· CTYPN(COMPTYP(REPR>, 1) ENOM;
CTYPN(COMPTYP(REPR>, 2) ENDM;

REPR(2) ENDM;

CONST BASED; UNBASED; END CONST; $ AUXILIARY REPR MNEMONICS
NOTE THAT A REAL REPR IS REPRESENTED IN MUCH THE SAME WAY AS A
TYPE, BUT MAY INVOLVE THE ADDITIONAL ~GROSS TYPEt ELEMENT-OF-A-BASE
(DENOTED BY TELMT> WHOSE COMPONENT TYPE IS THE BASE NAME,
WHICH CAN BE RETRIEVED BY THE ~BASE~OF~ MACRO GIVEN ABOVE
(SEE THE TYPE FINDER FOR MORE INFORMATION).

AUX~REPR := ~ CVO, (TYPE, UNBASEOJJ : CVO, TYPE] ~ TYP~;
BASES :• NL; $ SET OF ALL BASES .
ELMT~MODE := NL; $ A MAP FROM BASES TO THEIR ELEMENT-MODE.
IS~EFFECTIVE I• NL; $ A MAP ON BASES INDICATING HOW EFFECTIVE

A BASE IS. IT CAN HAVE THREE KINDS OF VALUES:
<I> FALSE, If THE BASE IS NEUTRAL.
<II) A VARIABLE NAME V, If THE BASE IS EFFECTIVE, 6UT THE ONLY
COMPOSITE OBJECT (SET OR MAP) IT SUPPORTS IS V •
<III> TRUE, IF AT LEAST TWO COKPOSITE OBJECTS ARE EFFECTIVELY
SUPPORTED BY THAT BASE.

(v I~ CODE~INSTS>
GENBASES<I>;

FOR EACH INSTRUCTION I GENERATE BASES AS IN Cl> ABOVc.
THIS IS DONE USING A CASE STATEMENT ON THE OPCODE OF I
AND ON THE TYPE OF ITS ARGUMENTS. FOR EACH GENERATED
BASE, COMPUTE THE FORM OF ITS ELEMENTS FROM THE TYPES
OF THE ARGUMENTS OF I. MODIFY THE AUX~REPR MAP OF THE BASED
ARGUMENTS OF I TO SHOW THE APPROPRIATE BASED REPRESENTATIONS.
CLASSIFY EACH GENERATED BASE AS EFFECTIVE OR NEUTRAL •

END v I;

BASEDOCCS :=~VO : VO IS A BASED OCCURENCE ~;

•
•
-
• $

$

• $
$
$

•
•
•
•
• $

$
$

• -•
•
•
e

• $

$

•
•
•
•
• ..

SETL - 207 - 7

PROC GENBASES<I>;

THIS ROUTINE ANALYZES AN INSTRUCTION I, GENERATES INITIAL
BASES FOR I AND SETS UP APPROPRIATE BASING$ FOR THE OCCURENCES
IN I. THIS IS DONE USING A CASE STATEMENT ON THE OPCODE OF I
AND THE TYPES OF ITS ARGUMENTS. WE WILL GIVE BELOW ONLY
A FEW TYPICAL CASES

aces :• TUPLE OF OCCURENCES IN I;
[VOl, V02, V03] := aces; $ GET FIRST FEW ARGUMENTS

CASE OPCODE(l) OF

CASE GROSSTYP(TYP(V □ l)) OF

(TSET)Z

GENERATE AN EFFECTIVE BASE IF THE ELEMENT-TYPE OF BOTH THE
COMPOSITE OCCURENCES IN I ARE EQUAL TO THE TYPE OF THE THIRD
OCCURENCE.

IF TYPl := TYP(VOl) = TYP(V02) AND
COMPTYP<TYPl) = TYP(V03) THEN

B := .NEWAT;
BASES WITH B;
ELMT~MODE(B) := CTYP(V03>, UNBASEOJ;
IS~EFFECTIVE := $ 8 IS EFFECTIVE

IF □ I~NAME(VOl) = □ I~NAME<V02)
THEN □ I~NAME(VOl) ELSE TRUE END;

ELMTB := [TELMT, BJ; $ ELEMENT-OF-8 REPR
AUX~REPR(VOl) := or~REPR(V02) :=

CMAKEREPR(TSET, ELMTB>, BASED];
AUX~REPRCV03) :• CELMTB, BASED];

END IF;

(UNT> : $ HOMOGENEOUS TUPLE

THE TREATMENT IS COMPLETELY ANALOGOUS TD THE SET CASE, EXCEPT
A NEUTRAL BASE RATHER THAN AN EFFECTIVE BASE IS GENERATED.

IF TYPl := TYP<V□ l) = TYP(V02) AND
COMPTYP(TYPl) = TYPCV03) THEN

B :• .NEWAT;
BASES WITH B;
ELMT~MODECB> := CTYP<V03), UNBASEDJ;
IS~EFFECTIVE = FALSE; $BIS NEUTRAL
ELMTB I• [TELMT, BJ; $ ELEMENT-OF-8 REPR
AUX~REPR(VOl) == or~REPR(V02) ==

[MAKEREPR(UNT, ELMTB>, BASED];
AUX~REPR(V03) := CELMTB, BASED];

END IF;

•
•
-
•
•
•
•
•
•
•
• • •
•
•
•
•
•
•
•
-
•
•

$

$
$

$

s
$

SETL - 207 - 8

(KNT): $ A MIXED, KNOWN LENGTH TUPLE

IN THIS CASE WE GENERATE A NEUTRAL BASE FOR EACH COMPONENT
IN THE LARGER TUPLE, PROVIDED ELEMENT TYPES ARE THE SAME
COMPONENTWISE.

ALTHOUGH THIS CASE IS VERY ATYPICAL FOR THE Ql,WITH OPCODE,
IT DEMONSTRATES HOW MIXED TUPLES SHOULD BE PROCESSED IN
THIS PRE-PASS.

$ GET THE INDEX OF THE BIGGER TUPLE

$

$

$

s
$

$

$

JBIG I• IF OPCODE(I) • 01,wITH THEN 1 ELSE 2 END;
COMPS := COMPTYP(TYP(OCCS(JB!G)));
IF COMPS(+COMPS) = TYP (V03) THEN

(v K := 1 ••• +COMPS)
B := .NEWAT;
BASES WITH B;
ELMT,MODE(B) := [COMPS(K), UNSASEDJ;
IS,EFFECTIVE(B) := FALSE; $BIS NEUTRAL
ELMTB :• (TELMT, BJ; $ ELEMENT-OF-B REPR
COMPS(K) := ELMTB;

END v;

Aux,REPR(V03) := (COMPS(+COMPS), BASED];
Aux,REPR(OCCS(JBlG)) := (MAKEREPR(KNT, COMPS), BASED];
Aux,REPR(OCCS(3-JBIG)) ==

CMAKEREPR<KNT, COMPS(l:+COMPS-1>>, BASED];
END IF;

WE HAVE NOT INCLUDED THE CASE OF TMAP, SINCE IT IS NOT
CLEAR AS YET HOW TO HANDLE THE ,wITH, OPERATION ON MAPS
IN THE TYPE FINDER (CONCEIVABLY, THE □ VARIABLE NEED NOT
BE A MAP UNLESS WE CAN ASSERT THAT THE !VARIABLE IS A PAIR,
BOTH OF WHICH COMPONENTS ARE DEFINED). THIS IS ONE OF THE
MAIN PROBLEMS CONCERNING MAPS THAT WE HAVE TO RESOLVE,
AND WE USE THIS OPPORTUNITY TO DRAW ATTENTION TO IT.

END CASE;

• • • • •
END CASE;

RETURN;
END PROC GENBASES;

•
0

0

C

0

0

C

C

0

0

C

0

e
0

SETL - 207 - 9

2. BASE MERGING AND ADJUSTMENT

$ IN THIS PHASE WE MERGE BASED REPRS OF ANY TWO DCCURENCES
$ LINKED BY A BFROM LINK. THIS MERGE CAN BE DESCRIBED
$ APPROXIMATELY AS FOLLOWS:

$ LET VO AND VOl BE TWO OCCURENCES WHICH HAVE THE SAME
$ TYPE AND WHICH ARE LINKED BY BFROM.

$ IT FOLLOWS FROM THE MECHANISM OF THE BASE GENERATION PRE-PASS
$ THAT ANY REPR GENERATED AT THIS PHASE CAN ONLY HAVE ONE OF
S THE FOLLOWING THREE FORMS:

$ <I> IT IS UNBASED.

$ <II) IT HAS THE FORM ~B.

S (III) IT HAS THE FORM COMPOSITE(~B) (FOR SETS ANO
$ HOMOGENEOUS TUPLES) OR THE FORM COMPOSITE(~Bl, ~B2
$ (FOR MIXED TUPLES AND MAPS>.

• • •

S THESE INITIAL REPRS WILL NOT BE MODIFIED DURING THIS
$PHASE.CONSEQUENTLY, THE FOLLOWING CASES MAY ARISE WHE~
$ MERGING THE REPRS OF VO AND VOl:

SA) IF ONE OF THESE REPRS IS UNBASED, DO NOTHING.

SB) IF BOTH REPRS ARE OF THE SECOND CATEGORY, THE MERGE
$ SIMPLY EQUIVALENCES THE CORRESPONDING BASES. THIS
$ EQUIVALENCING ACTION CALLS FOR THE MERGING OF THE
$ ELEMENT-MODES OF THE BASES, SO TrlAT REPR MERGING IS
$ INDEED A RECURSIVE (OR TRANSITIVE> PROCESS. FOR MORE DETAILS,
S SEE BELOWe

SC) IF BOTH REPRS ARE OF THE THIRD CATEGORY, THE~ THEIR
$ STRUCTURES MUST BE IDENTICAL, WITH POSSIBLY DIFFERENT BASES.
$ IN THIS CASE THE MERGE EQUIVALENCES ALL PAIRS OF
S CORRESPONDING BASES IN THESE REPRS, AS lS DONE IN B).

$ D) IF ONE REPR IS ~B, AND THE OTHER IS OF THE THIRD
S CATEGORY, THEN IF ELMT~MOOE(B) IS UNBASEO WE REPLACE IT
S BY THE SECOND REPR, AND IF IT IS BASED, WE MERGE IT WITH
$ THE SECOND REPR (THIS IS AN □ TrlER SOURCE OF RECURSION, OR
$ OF TRANSITIVE CLOSURE IN THE MERGING PROCESS).

S WE SUGGEST THE FOLLOWING IMPLEMENTATION:
$ REPRESENT THE SET ~BASES~ OF ALL GENERATED BASES AS A
$ FOREST WHERE EACH EQUIVALENCE CLASS OF BASES IS A TRtE WHOSE
$ ROOT IS THE REPRESENTING BASE FOR THAT CLASS. WE CAN THEN USE
$ AN ULTRA-EFFICIENT COMPRESSED BALANCED TREE REPRESENTATION

•
•
-
•
•
·8

•
•
8

e

• • 8

e

•
•
•
•

•

$
$
$
$
$
$
$
$
$
$

$
$
$
$
$
$
$

$

$

$

$
$

SETL - 207 - 10

TO MANIPULATE THIS FO~fST. FOR THIS PURPOSE LET ~REPBASE~
DENOTE THE FATHER MAPPING IN THIS FOREST, AND LET
REPBASE eLIM B DENOTE THE ROOT MAPPING <SEE NL. 204).
IN ~DDITION TO ~REPBASE~ WE ALSO MAINTAIN AN AUXILIARY MAP ~NBASES~
GIVING THE NUMBER OF DESCENDANTS OF EACH ROOT IN THE FOREST,
ANO THE MAP ~ELMT~MODE~, WHICH HAS TO BE KEPT ONLY FOR THE
ROOTS OF THE FOREST. SINCE ELMT~MODE(B) HAS TO BE KEPT IFF
REPBASE(B) IS UNDEFINED, THESE TWO MAPS CAN BE MERGED INTO
ONE, TO OBTAIN A COMPACT DATA-STRUCTURE. HOWEVER, FOR CLARITY,
WE SHALL DISTINGUISH BETWEEN THESE MAPS IN WHAT FOLLOWS.

FOR THE SUPPRESSION OF USELESS BASES WE ALSO NEED MAINTAIN
THE ~rs~EFFECTIVE~ MAP AT THE ROOTS OF THE FOREST, COMBINING
ITS VALUES AT THE ROOTS OF TWO TREES WHICH ARE TO BE MERGED
IN ORDER TO DETERMINE THE EFFECTIVITY OF THE MERGED TREE.
THIS MAP CAN ONLY HAVE THE THREE KINDS OF VALUES OUTLINED
AT THE PREVIOUS PHASE, AND ACCORDING TO OUR HEURISTIC
PRINCIPLE (4), ALL CLASSES FOR WHICH IS~EFFECTIVE OF THEIR
ROOT IS NOT TRUE WILL BE SUPPRESSED IN THE NEXT PHASE
OF OUR ALGORITHM. SEE THE CODE BELOW FOR DETAILS.

INITIALLY,

REPBASE := NL;
NBASES . - ~ CB, ll . 8 ~ BASES? . - .

ESSENTIALLY, THERE ARE TWO OPERATIONS TO BE PERFORMED ON THIS
FOREST:

$ (A) COMPUTATION OF THE ROOT OF A GIVEN BASE. THIS IS THE .LIM
S OPERATOR, AND IS COMPUTED AS EXPLAINED IN NL. 204, EXCEPT TrlAT
$ HERE THE ~VIRTUAL FOREST~ MENTIONED IN NL. 204 CAN BE IDENTICAL
$ WITH THE ACTUAL ONE, SO THAT PATH COMPRESSION CAN BE APPLIED
S DIRECTLY TO ,REPBASE,.

$ (8) BASE EQUIVALENCING. THIS IS ACCOMPLISHED BY A BALANCED
$ LINKING OF TWO TREES INTO ONE, BUT WITH AN ADDITIONAL
S OPERATION WHICH MERGES THE ELMT~M □ DE ENTRIES OF THE ROOTS
$ OF THE LINKED TREES. WHILE DOING SO, WE MAY HAVE TO UPDATE
$ THE ELMT~MO0E ENTRY OF THE NEW ROOT. THIS IS REQUIRED WHEN
$ ELMT~MODE(ROOT OF LARGER TREE) IS UNBASED, AND
$ ELMT~MODE(R00T OF SMALLER TREE> IS BASED. IN THIS CASE WE
$ REPLACE THE UNBASED MOOE BY THE BASED ONE, SO THAT FURTHER
S MERGING$ WITH THIS EQUIVALENCE CLASS OF BASES COULD INDUCE
$ HORE BASE EQUIVALENCES. THE CODE FOR BASE E0UJVALENCING IS
$ AS FOLLOWS:

PROC EQUIBASE(Bl, BZ);
$ HOST OF THE CODE GIVEN BELOW IS THE STANDARD BALANCED LINKING
$ OF TWO TREES. WE GIVE IT TO SrlOW THE ADDITIONAL MANIPULATION
$ OF ,ELMT~MODE~ ANO ,Is~EFFECTIVE, •

,.
e

-
e

e

e

e

e

e

e

e

e

e

e

0

$

SETL - 207 - 11

WORKPILE IS GLOBAL

RBl I• REPBASE .LIM Bl;
RB2 . - REPBASE .LIM B2; . -
IF RBl /• RB2 THEN

EFFl := IS--EFFECTIVE(RBl);
EFF2 :• IS-.EFFECTIVE<RB2);

$ COMPUTE THE EFFECTIVITY OF THE NEW CLASS
EFF :• CASE EFFl OF

(FALSE): EFF2
(TRUE>: TRUE
ELSE $ EFFl IS NOW A VARIABLE NAME

CASE EFF2 OF

END;

<FALSE): EFFl
(TRUE): TRUE
ELSE $ BOTH ARE VARIABLE NAMES

IF EFFl = EFF2 THEN EFFl ELSE TRUE END
END

IF NBASES(RBl) > NBASES(RB2) THEN $ PERFORM tBALANCING~
REPBASE<RB2) := RBl;

ELSE

NBASES(RBl) : ■ NBASES(RBl) + NBASES(RB2);
IS--EFFECTIVE(RBl) := EFF;
IF IS-.BASEDCELMT--MODEC~B2)) THEN

IF IS-.UNBASEDCELMT--MODECRBl)) THEN
ELMT--MODE(RBl) :• ELMT~MODE(RB2);

ELSE
WORKPILE WITH [ELMT--MODE(RBl), ELMT~MODE(RBZ)J;

END IF;
ENO IF;

• • •
$ASYMMETRIC CODE, INTERCHANGING RBl AND RB2.

END IF;
ENO IF;

E NO P RO C E Q U IBA S E ;

$ HERE IS THE CODE FOR PHASE 2:

(v VO~ BASEDOCCS, VOl ~ BFROM5VO~ t VOl IN BASEDOCCS AND
TYPCVO) = TYPCVOl))

$ LET US EMPHASIZE AGAIN THAT OUR ALGORITHM INSISTS ON MERGING
$ BASINGS ONLY BETWEEN OCCURENCES OF THE SAME TYPE. THIS IS A
$ RESTRICTION WHICH SIMPllFIES THE LOGIC OF THE ALGORITHM,
$ AVOIDING SEVERAL ISSUES THAT OTHERWISE WILL ARISE. SEE ALSO
$ REMARK (1) AT THE END OF THt ALGORITHM.

•
•
•
•
•
•
•
•
•
•
• -•
•
•
•
•
•
•
•

•
•

$

$

$
$
s
$

$

$

$

SETL - 207 - 12

WORKPILE :• ~ (AUX,REPR(VO), AUX,REPR(VOl)J~;

(WHILE WORKPILE /= NL)
CAUX,REPRl, AUX,REPR2J FROM WORKPILE;

IF 1s,uNBASED(Aux,REPRl) OR 1s,uNBASED(AUX,REPR2) THEN
CONTINUE WHILE;

END IF;
NOW BOTH REPRS ARE BASED, SO THAT THEIR CONJUNCTION MIGHT
YIELD ADDITIONAL MERGING ACTIONS.

REPRl := REPR,PART(AUX,REPRl);
REPR2 := REPR,PART(AUX,REPR2);
GRSTYPl := GROSSTYP<REPRl>;
GRSTYP2 Z• GROSSTYP(REPR2);

IF GRSTYPl = GRSTYP2 THEN

IF GRSTYPl = TELMT THEN
BOTH REPRS ARE ELEMENT-OF-BASE. EQUIVALENCE THEIR BASES
WHICH ARE THE COMPONENT-TYPE OF THESE REPRS. THIS
EQUIVALENCING MAY TRIGGER THE MERGING OF THE ELEMENT-MODES
OF THESE BASES.

EQUIBASE(BASE,□ F(REPRl), BASE,OF(REPR2))];
ELSEIF GRSTYPl • TMAP THEN

IF A MAP IS REPRED AS A BASED MAP, ITS DOMAIN TYPE AND RANGE
TYPE ARE BOTH BASE-ELEMENT TYPES, SO THAT WE HAVE TD
EQUIVALENCE THESE BASES.

EQUIBASE(BASE,oF(OOMTYP<REPRl)),
BASE,OF(OOMTYP(REPR2)));

EQUIBASE<BASE, □F(RANGETYP(REPRl)),
BASE,OF(RANGETYP(REPR2)));

ELSEIF GRSTYPl = KNT THEN
$ASIMILAR PROPERTY IS POSSESSED BY MIXED TUPLES.

ELSE

(v I :• 1 ••• ~COMPTYP(REPRl))
EQUIBASE(BASE,QF(CTYPN(REPRl, I>>,

BASE~ □F(CTYPN(REPR2, I>>>;
ENO v;

$ FOR SETS ANO HOMOGENEOUS TUPLES, ONLY ONE BASE EQUIVALENCING
$ NEED BE PERFORMED.

EQUIBASE(BASE~OF(COMPTYP(REPRl)),
BASE,OF<COMPTYPCREPR2)));

ENO IF;

ELSEIF GRSTYPl: TELMT THEN
RBl := BAse, □ F(REPRl)j

IF 1s,uNBASED(ELMT,MODE(RBl)) THEN
ELHT,MODECRBl) := REPR2;

ELS£
WORKPILE WITH CELMT,MODE(RBl>, AUX,REPR2l;

END IF;

~

~

~

•
•
•
•
•
•
•
• e
•
•
•
•
•
•
•
•
•
•
•

$

$

SETL - 207 - 13

ELSE $ NOW GRSTYP2 MUST BE TELMT
RB2 := BASE~ □F(REPR2);

IF IS~UNBASED<ELMT~MODE<RB2)) T~EN
ELMT~MODE(RB2) :• REPRl;

ELSE
WDRKPILE WITH CELMT~M □DE(RB2), AUX~REPRll;

END IF;
END IF;

ENO WHILE;
END v;

3. BASE AND REPR ADJUSTMENT

THIS PHASE IS A ,CLEAN-UP# PHASE WHICH SUPPRESS USELESS BASES,
COMPUTES THE OI~REPR MAP FOR ALL OCCURENCES, ANO ENTERS THE
SURVIVING BASES INTO THE SYMBOL TABLE. IT THUS CONSISTS OF
THE FOLLOWING THREE SUBPHASES:

(A) WE FIRST SUPPRESS (EQUIVALENCE CLASSES OF) BASES THAT
HAVE NOT TURNED OUT TO BE USEFUL, ACCORDING TO THE HEURISTIC
PRINCIPLE (4) ABOVE. EACH DROPPABLE EQUIVALENCE CLASS IS
FLAGGED AS SUCH, ANO ANY REPR CONTAINING A BASE 81 IN SUCH
A CLASS SHOULD BE MODIFIED SO THAT EACH ~Bl APPEARANCE IN IT
IS REPLACED BY ELMT~MODE<REPBASE .LIM Bl). THE OUTPUT OF THIS
PHASE IS A SET ~DROPPABLESt CONTAINING ALL REPRESENTING
DROPPABLE BASES.

REPBASES := BASES - DOM REPBASE; $ SET OF ALL ROOT BASES
DROPPABLES :=~RB ~ REPBASES t IS~EFFECTIVE(RB> I= TRUE~;

(B) NEXT, WE ITERATE OVER ALL OCCURENCES, COMPUTING THE
□ I~REPR MAP. FOR EACH OCCURENCE VO, OI~REPRCVO> IS A REAL
REPR WHICH IS OBTAINED FROM AUX~REPRCVO) BY REPLACING
BASES BY THEIR REPRESENTATIVES, DR DROPPING THEM AS
DESCRIBED IN (A) ABOVE. THE CODE IS:

SEENDRDPS := NL;
A GLOBAL SET OF ALL DROPPABLE BASES B FOR WHICH THE REAL
ELMT~M□ DE(B) HAS ALREADY BEEN COMPUTED.

(v VO~ BASEOOCCS)
REPR := REPR~PART(AUX~REPR(VO));
or~REPR(VO) := REAL~REPR(REPR);

END v;

•
•
e
•
•
•
•
•
•
•
• -•
•
•
•
•
•

•
•
•

SETL - 207 - 14

PRDC REAL~REPRCREPR>;
$ AT THIS POINT, REPR IS BASED

GRS := GROSSTYPCREPR);
CASE GRS OF

<TELMT):
RB :• REPBASE .LIM BASE~OF(REPR);
IF RB IN DROPPABLES THEN

ELSE

IF RB IN SEENDROPS THEN
RETURN ELMT~MODECRB);

ELSE
SEENDROPS WITH RB;
REPRX := ELMT~M□DE(RB);
IF IS~UNBASED(REPRX) THEN

RETURN ELMT~MODE(RB) :s REPR~PART(REPRX);
ELSE

RETURN ELMT~M□ DE(RB) :=
REAL~REPR<REPR~PARTCREPRX));

END IF;
END IF;

RETURN CTELMT, RBJ;
END IF;

(KNT):
RETURN MAKEREPR(KNT,

CREAL~REPR(COMPTYP(REPR)(l))
I := 1 ••• ~COMPTYPCREPR)l);

(TMAP):
RETURN MAKEREPR(TMAP,

MAKEREPR(KNT, CREAL~REPR(DOMTYP(REPR>>,
REAL~R£PR(RANGETYPCREPR))]));

ELSE $ SAME TREATMENT FOR SETS AND HOMOGENEOUS TUPLES
RETURN MAKEREPR(GRS, REAL~REPRCCOMPTYP(REPR)));

END IF;

END PROC REAL~REPR;

(C) THE THIRD STEP, ENTERING THE SURVIVING REPRESENTATIVE BASES
(I.E. ALL ELEMENTS OF THE SET REPBASES - OROPPASLES) INTO THE
SYMBOL TABLE, IS SIMPLE AND TECHNICAL ANO WE OMIT ITS DESCRIPTION
HERE •

•

•

•

•

•

SETL - 207 - 15

REMARKS:

Cl> THE TRANSITIVE CLOSURE OR RECURSION IN THE MERGING PROCEDURE
IS ALWAYS FROM ~MORE COMPOSITE~ BASES TO ~MORE PRIMITIVE~ ONES. I.E.
EQUIVALENCING TWO BASES WHOSE ELEMENT-MODES ARE COMPOSITE
CAN CAUSE BASES APPEARING IN THESE MODES TD BE EQUIVALENCED
TOO, AS IN EXAMPLE B ABOVE. HOWEVER, EQUIVALENCING
IS NOT INDUCED IN THE OPPOSITE WAY. FOR EXAMPLE:

EXAMPLE C.

S WITH X; $ S: SETCPBl); x: PSl;
U WITH S; $ U: SETCPB2); S: PB2;

• • • •

T WITH x; $ r: SET(PB3)j x: PB3;
V WITH T; $ V: SETCP84); Ts PB4;

IN THIS EXAMPLE, 81 AND B3 ARE EQUIVALENCED IN VIEW OF THE X-LINK,
BUT 82 ANO B4 ARE NOT MERGED. THIS APPROACH IS PROBABLY
DESIRABLE, SINCE SUCH A MERGING WILL NOT IMPROVE THE
EXECUTION OF THE ABOVE CODE FRAGMENT, BUT MAY MAKE U AND V
SPARSE OVER THE MERGED BASE (OF COURSE, FURTHER INFORMATION
HAY MAKE US MERGE 82 AND 84, E.G. AN INSTRUCTION SUCH AS
~IFS INV THEN ••• ~>.

(2) AS FOR ANY RECURSIVE OR TRANSITIVE-CLOSURE MECHANISM, WE
MUST GUARANTEE CONVERGENCE OF THE MERGING PROCESS. SINCE THE
NUMBER OF GENERATED BASES IS FINITE, DIVERGENCE CAN OCCUR ONLY If
THERE EXIST CYCLIC DEPENDENCIES BETWEEN BASES, THE SIMPLEST
OF WHICH COULD BE: 81: BASECSET<~Bl)). IF SUCH A CONFIGURATION
OCCURS AND Bl IS EQUIVALENCED WITH B2: BASECSET(PBZJJ, THEN
THE MERGING PROCESS MIGHT REPEAT EQUIVALENCING OPERATIONS
INVOLVING Bl AND 82 INFINITELY MANY TIMES. ALSO, DURING THE BASE­
DROPPING PHASE, IF 81 IS DROPPABLE THEN WE MIGHT ATTEMPT TO REPLACE
EACH PBl APPEARANCE IN A REPR BY SET(PBl), WHICH OBVIOUSLY
LEADS TO DIVERGENCE.

WE CLAIM, HOWEVER, THAT SUCH SITUATIONS WILL NEVER OCCUR,
PROVIDED THAT THE TYPE FINDER FUNCTIONS PROPERLY. INDEED,
A CYCLIC DEPENDENCY CAN BE DERIVED ONLY BY BASE MERGING
ALONG A CYCLIC EXECUTION PATH, AND ONLY IF THERE IS A CYCLIC
TYPE DEPENDENCY ALONG THIS PATH, AS IN THE LOOP
(v) X WITH X; END; BUT IN THIS SITUATION THE TYPE FINDER
WILL PRODUCE DIFFERENT TYPES FOR THE □ VARIABLE AND THE
!VARIABLE OF THE STATEMENT IN THE LOOP, NAMELY - SET<GENERAL)
ANO GENERAL RESPECTIVELY (RECALL THAT □VARIABLES ARE ASSIGNED
THE FORWARD TYPE OF THEIR !VARIABLES IN THE FINAL PHASE OF
THE TYPE FINDER). HENCE, NO BASE MERGING WILL TAKE PLACE
ALONG THIS LOOP.

•

•

•

•

•

•

-

SETL - 207 - 16

IT MAY ALSO BE NOTED THAT IF THE BASE GENERATED FOR THIS
STATEMENT IS NOT DROPPED (CALL IT 81), THEN THE NAME-SPLITTING
PHASE WILL TRANSFORM THE ABOVE LOOP INTO

(v) XB := XA; XA WITH XB; END;

WHERE WE HAVE B1: BASE(GENERAL); xa: ~B1; XA: SET(~B1);
AND THE ASSIGNMENT XB t= XA; IS A #LOCATE~ OF THE VALUE
OF XA IN Bl.

IT SHOULD ALSO BE NOTED THAT IN ORDER TO ENSURE SUCH A PROPER
OPERATION OF THE TYPE FINDER, ITS ABOVE-MENTIONED FINAL PHASE
SHOULD COMPUTE THE □ VARIABLES# TYPES WITH NO NESTING-LEVEL
LIMIT, SO AS TO BREAK ANY POSSIBLE TYPE DEPENDENCY •

FOR EXAMPLE, IF WE PROCESS THE LOOP (v} X := ~X~; END;
BOTH X OCCURENCES MAY GET THE TYPE SET(SET(••• SET(GEN) ••• >>
WITH A MAXIMAL NESSTING LEVEL, UNLESS WE INCREASE, IN THE
FINAL PHASE, THE NESTING LEVEL OF THE □ VARIABLE BY 1.

(3) RETURN FOR THE MOMENT TO EXAMPLE B ABOVE. IN IT THERE OCCUR
TWO LINKED OCCURENCES OF S, ONE OF WHICH IS REPRED SET<~Bl)
ANO THE OTHER ~B2. AT A FIRST GLANCE IT SEEMS THAT WE OUGHT
TO PRODUCE A COMMON REPR FOR THESE OCCURENCES, BUT A BETTER
CHOICE WOULD HAVE BEEN TO LEAVE THESE REPRS AS THEY ARE.
THEN, AFTER BASE MERGING AND NAME-SPLITTING, THE CODE WILL
BE TRANSFORMED INTO:

SA WITH X; $ SA: SET(~BlJ; x: ~81;
(Al) SB . - SA; . -

u WITH SB; $ u: SET(~B2); SB: ~B2;
TB FROM u; $ u: SET(~B2>; TB: ~B2;

(A2) TA . - TB; ·-
Y FROM TA; $ TA: SET<~Bl); y: ~81;

WHERE Al IS A BASE ~LOCATE# OF THE VALUE OF SA IN 82 AND
A2 IS ESSENTIALLY DEREFERENCING THE VALUE OF TB FROM A POINTER
TO AN ELEMENT OF 62 TO A POINTER TO THE ScT VALUE OF TA (NO
TYPE CHECKING IS NECESSARY).

THIS CODE HANDLING REFLECTS ONCE MORE THE BASIC PHILOSOPHY
OF THE FINAL PHASES OF THE OPTIMIZER, NAMELY: REPRS AND TYPES
SHOULD BE ASSIGNED TO OCCURENCES IN SUCH A WAY THAT EACH
INSTRUCTION WILL BE EXECUTED IN THE MOST EFFICIENT MANNER,
AND ANY TYPE OR REPR CHECKS AND CONVERSIONS SHOULD BE MOVED
ANO INSERTED INTO THE CODE IN SOME OPTIMAL PLACE PRECEEDING
THAT INSTRUCTION.

•
•

•

•

•
•
•
•
•
•
• -

SETL - 207 - 17

4. BASING REFINEMENT

THIS PHASE CAN ALSO BE TAKEN FROM SCHONBERG,s ALGORITHM. AS
NOTED BEFORE, WE HAVE NOT YET ATTEMPTED TO IMPROVE THIS PHASE.

FINAL REMARKS:

(1) OUR ALGORITHM MERGES REPRS ONLY IF THEY HAVE THE SAME TYPE,
AND COSEQUENTLY EQUIVALENCES BASES ONLY IF THEY HAVE THE SAME
ELEMENT-TYPE. FOR EXAMPLE, ,sET OF INTEGERS, AND ,SET OF GENERALS,
ARE CONSIDERED AS DISTINCT TYPES. HENCE, IF THERE IS A LINK B~TWcEN
TWO OCCURENCES HAVlNG SUCH TYPES, THEIR BASES wILL NOT BE MERGED,
AND EVENTUALLY WE SHALL HAVE TO CONVERT FROM ONE BASE TO THE
OTHER. IT IS NOT CLEAR WHETHER THIS APPROACH IS TO BE PREFERRED,
AND THERE MAY BE A POINT IN MERGING BASES OF THIS KIND, EVEN
THOUGH THIS MAY LEAD TO CREATION OF ADDITIONAL TYPE CHECKS AND
CONVERSIONS WHICH WOULD NOT HAVE BEEN OTHERWISE NEEDED. AT ANY
RATE, OUR APPROACH IS THE SIMPLEST OF ALL SUCH ALTERNATIVES,
AND SHOULD BE QUITE ACCEPTABLE IN MOST CASES.

(2) USER-SUPPLIED BASINGS APPEAR ALREADY IN THE TYP MAP, AND SO
ARE PART OF THE INPUT TO THE ALGORITHM. HOWEVER, THEY RAISE
SEVERAL PROBLEMS. FOR EXAMPLE, IT IS NOT CLEAR WHETHER WE WANT
TO MERGE TWO USER-SUPPLIED BASES, OR ALWAYS KEEP THEM DISTINCT.
AN ARGUMENT FOR NOT MERGING THEM IS THAT BY DOING SO WE MAY
CAUSE SOME BASED OBJECTS TO BECOME SPARSE OVER THE MERGED
BASE, WHICH MAY WELL HAVE BEEN THE REASON WHY THE USER SUPPLltD
TWO DISTINCT BASES INSTEAD OF ONE.

NOTE THAT THIS APPROACH CALLS FOR MAINTAINING YET ANOTHER MAP
AT THE ROOTS OF OUR FOREST, INDICATING WHICH USER-SUPPLIED
BASE, IF ANY, IS A MEMBER OF THE CORRESPONDING CLASS. IN
THIS WAY, WE CAN AVOID LINKING TWO CLASSES TOGETHER IF THEY
CONTAIN DIFFERENT USER-SUPPLIED BASES. THIS ALSO CALLS FOR
SOME MODIFICATIONS OF THE BASE GENERATION PRE-PASS. HOWEVER,
FOR THE SAKE OF CLARITY, WE LEAVE OUT THE DETAILS OF SUCH
MODIFICATIONS •

(3J THE RUNNING TIME OF OUR NEW ALGORITHM SHOULD BE SHORTER
THAN THAT OF THE ALGORITHM DESCRIBED IN NL. 203. IN THE NE~
ALGORITHM, BASE PROPAGATION IS ACCOMPLISHED BY A SINGLE PASS
THROUGH THE BFROM LINKS BETWEEN BASED OCCURENCES, WITH VERY
EFFICIENT PROCESSING OF EACH SUCH LINK. THE ONLY TIME CONSUMING
PART OF OUR ALGORITHM IS THE MANIPULATION OF COMPLETELY USELESS
DROPPABLE BASES ANO CORRESPONDING BASED OCCURENCES. IT IS NOT
CLEAR HOW TO ESTIMATE THIS ADDITIONAL TIME USAGE, WHICH DEPENDS
HEAVILY ON THE NATURE OF THE PROGRAM BEING ANALYZED. IN THE EXAMPLE
SHOWN BELOW, MOST OF THE GENERATED BASES EITHER ARE MtRGtD wITH

•
•
•
•

•
•
•
•
•
• •

SETL - 207 - 18

EFFECTIVE BASES, OR ARE NEEDED TO EQUlVALENCE OTHER
BASES. IN ANOTHER PROGRAM, MORE ORIENTED TOWARD CREATION
OF NEW PRIMITIVE VALUES, THE NUMBER OF USELESS BASES MIGHT
INCREASE SIGNIFICANTLY.

SINCE MANY MORE BASES ARE GENERATED, THE PRESENT ALGORITHM
CONSUMES MORE SPACE THAN THE PREVIOUS ONE. THIS SPACE USAGE CAN
BE REDUCED BY PAINSTAKINGLY CAREFUL PROGRAMMING (E.G. BY FOLDING
THE PRE-PASS INTO THE BASE MERGING PHASE IN AN APPROPRIATE
MANNER>, BUT THEN THE ALGORITHM WOULD LOSE ITS CLARITY AND
WOULD TEND TO RESEMBLE THE PREVIOUS ALGORITHM •

NOTE, HOWEVER, THAT THE SPACE COMPLEXITY OF THE OLDER DATA­
STRUCTURE CHOICE ALGORITHMS (OF SCHONBERG, SCHWARTZ AND LIU)
WHICH USE VALUE-FLOW, IS AT LEAST THE CARDINALITY OF
ALL THE VALUE-FLOW MAPS, IN COMPARISON WITH WHICH THE
SPACE COMPLEXITY OF OUR ALGORITHM IS RATHER MODEST •

EXAMPLE:

CONSIDER THE FOLLOWING TOPOLOGICAL SORT PROGRAM:

• PROGRAM SAMPLE;
· $ TOPOLOGICAL SORT OF A GIVEN GRAPH, ASSUMING THERE ARE NO CYCLES.

1 NODES a• NL i

• 2 CESOR :=.NL;

3 (DOING READ A,B; WHILE A /= OM)

• 4 NODES WITH A;
5 NODES WITH B;
6 C ESOR WI TH CA, Bl;

• ENO;

7 PRINT TOPSORT(NOOES, CESOR);

• STOP;
END PROGRAM SAMPLE;

• 8 PROC TOPSORT(NOOES, CESOR);

• 9 NUMPREV &c S [N, Ol l N r+ NODES~;
10 (V CN, Ml r+ CESOR)
11 NUMPREV(M) + 1;

• ENO v;

12 NOPREV I• ~ N r+ NODES t NUMPREV(N) = Q>• _,
.13 SORTED . - NULT; . -

•

• (.
,e

14

• 15
16
17

• 18
19
20

•
• 21

•
•
• l

2
3

• 4

- 5
6

•
•
• 7

8

• 9
10 ,.
11

•
12

• 13
14
15

• 16
17
18 • 19
20

• 21 ,.

SETL - 207 - 19

(WHILE NOPREV /: NL>
N FROM NOPREV;
SORTED WITH N;
(v Mr+ CESOR:SN~)

NUMPREVCM> - 1;
IF NUMPREV(M) : 0 THEN

NOPREV WITH M;
END IF;

END v;
END WHILE;

RETURN SORTED;
END PROC TOPSORT;

AFTER THE BASE GENERATION PHASE, WE OBTAIN THE FOLLOWING
INITIAL BASINGS:

N OD ES z S E T(r+ B 1) ;
CESOR: SET<r+B2);
A,B: UNBASED;
NODES: SET(i+B4); AS .+B4;
NODES: SET(i+ B 5) ; B : r+B 5;
CESOR: SET<Ci+B61, i+B62l); A: .+B61; s: .+862;
(THIS IS A FOLDING OF THE REPRS ACTUALLY PRODUCED. THIS
INSTRUCTION EXPANDS IN THE Ql CODE INTO (6A) T := CA, BJ;
(68) CESOR WITH T; FROM WHICH THE FOLL □ wING REPRS WILL BE
PRODUCED: (6A) A: r+B61; a: i+B62i T: Cr+B61, r+862li
(68) CES □ Rz SET(r+B6J; Ts r+B6; USING THE T LINK BETWEEN THESE
TWO INSTRUCTIONS, WE OBTAIN THE REPRS GIVEN Aa □ vE.)
(IMPLIED ARGOUT): □ VARIABLE, !VARIABLE (RETURN-VALUE): r+B7;
(IMPLIED ARGINS): NODES<FORMAL), NODES(ACTUAL): r+B81;

CESOR(FORMAL), CESOR(ACTUAL): r+B82;
NUMPREV: SET([.+B91, r+B92l); N: .+B91; NODES: SET<.+B91);
NZ r+BlOl; MZ .+B102; CES □Rs SET([r+BlOl, r+Bl02l);
(A SIMILAR REMARK TO THE ONE MADE AT LINE 6 ABOVE APPLIES HtRE,
WITH AN ADDITIONAL GENERATED BASE B10).
THIS INSTRUCTION IS EXPANDED AS FOLLOWS:
T :: NUMPREV(M); $ NUMPREV: MAP(i+Blll) .+8112; M: .+B111; T: r+Bll2;
T :• T + l; $ BOTH TARE UNBASED
NUMPREV(M) :: T; $ NUMPREV: MAP(.+8113) .+B114; M: .+B113; T: r+Bll4;
NODES, NOPREV: SET(.+B121); NUMPREV: MAP(.+B121) r+Bl22i N: r+Bl2l;
SORTED& TUP(.+813); (I.E. A HOMOGENEOUS TUPLE)
NOPREV: SETC.+814);
NOPREV: SET(.+815); N: .+815;
SORTED: TUP(.+B16); N: .+816;
CESOR: MAP(.+8171) .+8172; M: .+B172; N: r+Bl71;
EXPANDS AS LINE 11, BUT ESSENTIALLY WE HAVE:
NUMPREV: MAP(r+Bl81) r+Bl82; M: .+8181;
NUMPREVs MAP(.+B191) .+B192; M: .+8191;
NOPREV: SET(.+B20); M: r+B20;
RETURN VALUE, SORTED: r+B21;

•
•
•
•
•
•
•
•
•
•
• -•
•
•
•
•
•
•
•

•

SETL - 207 - 20

NOW, IF MERGING IS PERFORMED ROUGHLY IN THE ORDER OF THE CODE,
THE FOLLOWING MERGING ACTIONS WILL TAKE PLACE:

81, 84, 85, 861, 862 ARE EQUIVALENCED, IN VIRTUE OF VARIOUS LINKS
BETWEEN INSTRUCTIONS 1,4,5,6. LET 81 BE THE BASE REPRESENTING
THIS CLASS.

ELMT~MOOE(B2) I• [P81, PBll; IN VIEW OF THE CESOR2-CESOR6 LINK •

IN VIEW OF THE LINK OF #NODES# TO LINE 8, WE PUT ELMT~MODE(BBl) :=
SET(PBl) (ACTUALLY, THERE ARE TWO LINKS TO NDOESCACTUAL) AT LINE 8,
ONE FROM NODES! AND ONE FROM NDOES5. HENCE, wE FIRST PUT
ELMT~MODE(B81) := SET(PBl> AND THEN MERGE IT WITH SET(PB5),
THIS REDISCOVERING AN EQUIVALENCE OF 81 ANO 85 •

SIMILARLY, USING THE CESOR LINKS TO LINE 8, WE PUT
ELMT~M □ OE(B82) :• SET(P82) •

USING THE NODES8-NODES9 LINK, WE MERGE ELMT~M □ DE(B81) WITH SET(PB91)
AND THUS EQUIVALENCE 891 WITH Bl •

USING THE CESOR8-CESOR10 LINK, WE MERGE ELMT~MOOE(PB82) WITH
SET([P8101, P8102l) AND EQUIVALENCE B101, B102 WITH Bl
(NOTE THAT THIS EQUIVALENCE IS DERIVED RECURSIVELY: THE
INITIAL MERGING OF SET(PBlO) wITH PB82 LEADS TO MERGING
SET(~BlO) WITH SET(P82), WHICH LEADS TO EQUIVALENCING
B101 ANO 8102 WITH 81).

USING THE MlO-Mll LINK AND THE NUMPREV9-NUMPREV11 LINK, WE
EQUIVALENCE 8111, 8113 WITH Bl AND B112, 8114 WITH B92.

SIMILARLY, USING THE NODES AND NUMPREV LINKS TO LINE 12, WE
EQUIVALENCE 8121 WITH Bl AND 8122 wlTH B92.

FOLLOWING FURTHER LINKS, wE EQUIVALENCt 813, 814, 815, B16, 8171,
8172, 8181, B191, 820 WITH Bl, AND 8182, B192 wlTH 892.

USING THE LINKS OF ~SORTED~ TO LINE 21 AND THE IMPLICIT RETURN-VALUt
LINK TO LINE 7, wE EQUIVALENCE B7 WITH 821, AND PUT
ELMT~MODE(B7> := TUP(PBl) •

THUS, AT THE END OF THE BASE MERGING PHASE, WE WILL BE LEFT WITH
SIX EQUIVALENCE CLASSES, HAVING 81, B2, 881, 882, d92 AND 87
AS THEIR REPRESENTATIVES, WITH THE FOLLOWING ELEMENT-MODES:

ELMT~M□ OE(Bl) = GENERAL;
ELMT~MODE(B2) • [PBl, P8ll;
ELMT~MODE(B81) = SET(P81);
ELMT~MODE(B82) = SET(PB2>;
ELMT~M □ DE(B92) a INTEGER;
ELMT~MOOE(B7) = TUP(PBl);

e

•

•
•
•
• • •
•
•
•
•
•
•
•

•

SETL - 207 - 21

ALL BASES EXCEPT 81 ARE THEN SUPPRESSED, BECAUSE NONE OF
THE BASES IN THEIR EQUIVALENCE CLASSES ARE EFFECTIVE. 892
IS THE ONLY COMPLETELY USELESS BASE; THE OTHER FOUR DROPPABLE
BASES SERVED AS ~TRANSMITTERS~ OF BASING INFORMATION, ANO
PHASE 3 WILL REPLACE All REFERENCES TO_THESE BASES BY APPROPRIATE
SUBSTITUTIONS OF THEIR ELEMENT-MODES, ALL OF WHICH ARE BASED
(NOTE THAT TWO SUCH SUBSTITUTIONS ARE REQUIRED WHEN REPLACING
~882 BY AN APPROPRIATE ELEMENT-MODE; THE FIRST ONE YIELDS
SETC~B2), BUT SINCE 82 IS ALSO DROPPABLE, WE NEED A SECOND
SUBSTITUTION, YIELDING SET(C~B1, ~BllJ J.

IT SHOULD BE OBSERVED THAT NO USER SUPPLIED REPR DECLARATIONS
WERE USED TO DERIVE ALL THIS INFORMATION. THE BEST THAT SUCH A
DECLARATION COULD DO IS TO CHANGE THE FORM OF Bl FROM BASE OF
GENERALS (WHICH IS THE FORM OUR ALGORITHM WOULD USE> TO BASE OF
ATOMS, SAY, BUT THIS CHANGE WILL HAVE LITTLE OR NO EFFECT ON
EXECUTION EFFICIENCY •

