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In his paper "Iterative algorithms for global flow analysis," 

R. E. Tarjan describes a hierarchy of data-flow analysis frame

works, with an iterative algorithm to solve them. Tarjan defines 

a k-bounded data-flow framework as a framework (L,F) (where L 

is a semilattice of data information, and Fis a space of 

information-propagating maps) in which for each f E F, x EL 

fk(x) ~ X A f(x) A ••• A fk-l(x) A f(l) 

where 1 is the largest element of L. He also defines a 

ks-bounded framework as a framework in which for each f E F, xEL, 

> X A 
k-1 f (x) A • • • A f (x) 

and, in addition, the associated data-flow problem involves data

propagation from the entry block only. 

For example, available expressions analysis is 1-bounded 

(but not ls-bounded). Indeed, in this case L consists of sets 

of available expressions and the meet is set-intersection. 

Each f E F can be represented as a pair (GEN,KILL) where GEN 

is the set of expressions which are unconditionally generated 

(without being later killed) during the propagation described 

by f, and KILL is the set of expressions which might get killed 

(and not recomputed later) during that propagation, and for 

each a EL 

f(a) = GEN u (a n KILLC) 

so that 

f(a) ~an (GEN U KILLc) = a A f(l) 

Unfortunately, if we examine the major optimizations to be 

performed in our optimizer, we arrive at the following results: 

Proposition 1. Constant propagation is not ks-bounded for 

any k ~ 1. 

Proof: Let k > 1 be given, and consider the following code: 
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A:= 1; 

B := k; 

A:= A+l; 

B := max(A,k); 

The standard semilattice Lin constant propagation is the set of 

all partially defined single-valued maps from the set of program 

variables to the set of values, with set-intersection as a meet. 

Let f E F represent the effect of propagation along the loop 

starting and ending at the start of n 2 • Then, Ya EL, 

f (a} (A) = a(A) + 1 

f(a) (B) = max(a(A)+l, k) 

f(a) (V} = a(V) for all other variables v. 

Now, let a= { [A,1], [B,k]} which is the result of propagating 

from the start of n1 to the start of n 2 . Then it is easy to see 

that 

so that 

f(a) = { [A,2] ,. [B,k]} 

f 2
(a} = { [A,3], [B,k]} . . 

fk-l (a) ,:, { [A,k], [B,k]} 

fk(a) = { [A,k+ll, [B,k+ll} 

Q.E.D. 

Remark. In the above example, if we perform constant propagation 

by an iterat_ive propagation algorithm of Kildall 's type, we 

arrive, as an under-estimation, at the conclusion that Bis not 
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constant, but come to this conclusion in a relatively small number 

of iterations as follows: 

Let a(n) denote the lattice information,gathered so far at the 

start of node n. lnitially a(n1 ) = ~; • Then, propagating 

from to yields 

nl n2 a(n2 ) = { [A, 1), [B,k]} 

n2 n2 a(n
2

) = { [B,k]} 

n2 n2 a(n2 ) = ~ 
(in the third propagation, the value of A is unknown upon the begin-

n·ing of the loop, so that the value of B also becor.1es unknown) . Thus, 

the algorithm stabilizes after two iterations. However, we have 

Proposition 2. The number of iterations required by an iterative 

algorithm of Kildall's type to perform constant propagation, cannot 

be bounded by a function of the graph-theoretic parameters of the 

flow graph. 

Proof: Let k > 1 be given. The following code, whose flow graph 

is independent of k, requires k+l iterations to achieve stabilization. 

A ·-.- O; 

xl := l; 

nl x2 ·-.- 2; . . 
~ := k; 

A ·-.- A+l; 

xk ·-.- xk-1+1; 

n2 ~ ... 1 := xk-2+1; . . 
x2 ·-.- x 1+1; 

X ·- A; 1 .-
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Here, after j iterations through the loop, we have: 

j = 0 a(n
2

) = { [A,0], [x
11

l], ••• , [xk,k] }; 

j = 1 a(n2 ) = { [x1 ,1J, [x2 ,2], ... , [xk,k] }; 

j = 2 a(n2 ) = { [x
2

,2J, • • • I [xk, k] } ; . . . 
j = k Cl (n2 } = { [xk ,kl}; 

j = k+l a(n
2

) = ~ 
Q.E~D. 

Remark. Constant propagation is not a typical case for Tarjan's 

analysis, since he assumes that the data-flow framework is 

distributive, which is not the case for constant propagation. 

We have used constant propagation as an introductory example, 

showing what can happen in the class of attribute flow analyses. 

It will be shown below that similar counterexamples also exist 

for other flow analyses in this class .. 

It should first be noted that the standard frameworks of many 

attribute flow analyses are not distributive. As an important 

example, we have 

Lemma 3. The standard framework of type finding analysis is not 

distributive. 

Proof: Consider the following code: 

S ·-.- character string S ·-.- tuple of integers 

x := atom x := integer 

y := s (x) ; 
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Let 

a
1 

= { [s,char], [x,atom]} 

and 
a

2 
=· { [s, tuple of ints], [x, int]} 

denote the information propagated to n 3 from n 1 and n 2 respectively, 

and let f denote the effect of propagation through n 3 • Then 

f(a1 ) {y) = error 

f(a
2

) (y) = int 

and 

so that the framework is not distributive. 

Proposition 3. {a) Type finding analysis is not ks-bounded for 

any k ~ 1. 

Q.E.D. 

(b) The number of iterations required by an iterative algorithm 

of Kildall's type to perform type analysis cannot be bounded by a 

function of the graph-theoretic parameters of the flow graph. 

Proof: Let k > l be given, and consider the following code: 

A:= l; 

A ·-.- {A}; 

~ := xk-1; 

xk-1 --.- xk-2; 
·• 

x2 := xl; 

xl ·-.- arb A; 
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As in constant propagation, the semilattice Lin the type-finder 

framework consists of maps from program variables to types, but 

the meet of two such maps ~1 ,~2 is defined as 

for all variables V. 

Let f denote the effect of propagation through the loop, and let 

a = { [A,int], [x1 ,int], ••. , [xk,int]} E L be the initial informa

t1on at the start of the loop. Then we have 

f(a) = { [A,{int}], [x1 ,int], ... , [xn,int]} 

t 2
(a) = { [A,{{ int}}], [x

1
,{ int}], [x2 , int], ..• , [xk,int]} . . . 

N N-1 
~ 

= {[A,{ •.• { int}. •• }] , [x
1

:{ : . . { int} ... }] , 

~ •• , [ ~, in t [ • . . . [ xk , in t] } , 

where N = maximal nesting level 
N 

of types, and we assume k > N. 
N-1 N-1 

N+l ----f (a) = { [A, { ••• {gen} ••• }], 
~ 

[x1 ,C.{gen}. •• }], [x2 ,{ ••• {int}. •• }] 

• N N-1 
--.,. ~ 

= { [A,{ ••• {gen} ••• }], [x
1 

,{ ••• {gen} ••• }], 

••• , [xk ,{ •.• {gen~]} , 

N_-1 
so that the framework is not (N+k)s-bounded, for any k ~ ~-

The same example shows that it takes N+k iterations through the 

loop before all types stabilize. 
Q.E.D. 
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Corollary 4. Proposition 3 is also true for value-flow analysis. 

Proof: Use the same example as in Proposition 3, and note that 

it takes k iterations through the loop to find that A at line 1 

of the loop is in CRTHIS(Xk at line 2 of loop). (It also 

takes k iterations of the loop for this link to materialze 

at run-time!) 

Q.E.D. 

What are the consequences of the above results? One such 

consequence is that there does not exist a graph-theoretic bound 

on the number of iterations required by the type finder, or by 

the value-flow analysis. Note that even though the actual imple

mentations of these analyses use an "optimized" approach of 

propagating data only along bfrom links and across instructions, 

this does not reduce the number of iterations required in the 

above example. Thus there exist codes which will cause the 

type-finder to iterate arbitrarily many times before types are 

stabilized. This is, however, not of major concern to us, since 

such cases will be extremely rare, and in any case, convergence 

is ensured. 

A second, more important consequence relates to inter-procedural 

analysis, and implies that unless formulated carefully our 

currently implemented algorithms could either diverge, or provide 

us with wrong information. To see this, consider the case of the 

code given in Proposition 3, slightly modified as follows: 

/* all variables are global*/ 

A:= l; 

·iterate ( ) ; 

~; 

proc iterate; 

if cond then return; 

else 
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end 

end 

A := {A}; 

~: = xk-1; 

. 
x2 := xl; 

xl := arb A; 

iterate ( ) ; 

return; 

if; 

proc; 

In the above code, we will have to generate the RC-paths 

L, LL, LLL, ••• , LL•••L (where L denotes the recursive call 

N+k 
to iterate), and assign to each of them different type information 

2 N+k (i.e. f (a.), f (a.), ••• , f (a.) respectively). 

Thus we cannot simply ignore RC-paths containing more than a 

given number of repetitions, since this would lose information 

(in the sense of obtaining under-estimated types rather than over

estimated). However, if we keep track of all generated RC-paths, 

we may run into problems of divergence. 

Two approaches to solve this problem are possihle: 

I. Modify the algorithm so that it will keep track of all 

generated RC-paths, but will be able to realize when information 

has stabilized, in the sense that even though more RC paths can be 

generated, tracing information along them will not change the 

already available information. This approach is likely to compli

cate the algorithm. 

II. Compromise, and define the space of RC-paths in such a 

way that information might be traced also along non-interprocedurally 

valid execution paths (hopefully much fewer than all static paths), 

but will definitely be traced along all interprocedurally valid 

paths. NL 201 describes such an approach, but even it has to be 

modified, since we now must avoid involvement with infinitely many 



SETL-208-9 

RC-paths, before compacting them into only finitely many possible 

values. 

Finally, we conjecture that the above problems that our inter

procedural analysis algorithms face do not stem from the special 

structure of these algorithms, but are of a more intrinsic nature, 

and that it is undecidable to find a solution to the (forward) 

type-finding analysis in which information is traced along all 

static inter-procedurally valid execution paths, and only along 

those paths. 




