
SETL Newsletter No. 208

A Few Cautionary Notes on the Convergence of

Iterative Data-Flow Analysis Algorithms

Micha Sharir

April 7, 1978

In his paper "Iterative algorithms for global flow analysis,"

R. E. Tarjan describes a hierarchy of data-flow analysis frame

works, with an iterative algorithm to solve them. Tarjan defines

a k-bounded data-flow framework as a framework (L,F) (where L

is a semilattice of data information, and Fis a space of

information-propagating maps) in which for each f E F, x EL

fk(x) ~ X A f(x) A ••• A fk-l(x) A f(l)

where 1 is the largest element of L. He also defines a

ks-bounded framework as a framework in which for each f E F, xEL,

> X A
k-1 f (x) A • • • A f (x)

and, in addition, the associated data-flow problem involves data

propagation from the entry block only.

For example, available expressions analysis is 1-bounded

(but not ls-bounded). Indeed, in this case L consists of sets

of available expressions and the meet is set-intersection.

Each f E F can be represented as a pair (GEN,KILL) where GEN

is the set of expressions which are unconditionally generated

(without being later killed) during the propagation described

by f, and KILL is the set of expressions which might get killed

(and not recomputed later) during that propagation, and for

each a EL

f(a) = GEN u (a n KILLC)

so that

f(a) ~an (GEN U KILLc) = a A f(l)

Unfortunately, if we examine the major optimizations to be

performed in our optimizer, we arrive at the following results:

Proposition 1. Constant propagation is not ks-bounded for

any k ~ 1.

Proof: Let k > 1 be given, and consider the following code:

SETL- 208-2

A:= 1;

B := k;

A:= A+l;

B := max(A,k);

The standard semilattice Lin constant propagation is the set of

all partially defined single-valued maps from the set of program

variables to the set of values, with set-intersection as a meet.

Let f E F represent the effect of propagation along the loop

starting and ending at the start of n 2 • Then, Ya EL,

f (a} (A) = a(A) + 1

f(a) (B) = max(a(A)+l, k)

f(a) (V} = a(V) for all other variables v.

Now, let a= { [A,1], [B,k]} which is the result of propagating

from the start of n1 to the start of n 2 . Then it is easy to see

that

so that

f(a) = { [A,2] ,. [B,k]}

f 2
(a} = { [A,3], [B,k]} . .

fk-l (a) ,:, { [A,k], [B,k]}

fk(a) = { [A,k+ll, [B,k+ll}

Q.E.D.

Remark. In the above example, if we perform constant propagation

by an iterat_ive propagation algorithm of Kildall 's type, we

arrive, as an under-estimation, at the conclusion that Bis not

SETlr 208-3

constant, but come to this conclusion in a relatively small number

of iterations as follows:

Let a(n) denote the lattice information,gathered so far at the

start of node n. lnitially a(n1) = ~; • Then, propagating

from to yields

nl n2 a(n2) = { [A, 1), [B,k]}

n2 n2 a(n
2

) = { [B,k]}

n2 n2 a(n2) = ~
(in the third propagation, the value of A is unknown upon the begin-

n·ing of the loop, so that the value of B also becor.1es unknown) . Thus,

the algorithm stabilizes after two iterations. However, we have

Proposition 2. The number of iterations required by an iterative

algorithm of Kildall's type to perform constant propagation, cannot

be bounded by a function of the graph-theoretic parameters of the

flow graph.

Proof: Let k > 1 be given. The following code, whose flow graph

is independent of k, requires k+l iterations to achieve stabilization.

A ·-.- O;

xl := l;

nl x2 ·-.- 2; . .
~ := k;

A ·-.- A+l;

xk ·-.- xk-1+1;

n2 ~ ... 1 := xk-2+1; . .
x2 ·-.- x 1+1;

X ·- A; 1 .-

SETL- 208-4

Here, after j iterations through the loop, we have:

j = 0 a(n
2

) = { [A,0], [x
11

l], ••• , [xk,k] };

j = 1 a(n2) = { [x1 ,1J, [x2 ,2], ... , [xk,k] };

j = 2 a(n2) = { [x
2

,2J, • • • I [xk, k] } ; . . .
j = k Cl (n2 } = { [xk ,kl};

j = k+l a(n
2

) = ~
Q.E~D.

Remark. Constant propagation is not a typical case for Tarjan's

analysis, since he assumes that the data-flow framework is

distributive, which is not the case for constant propagation.

We have used constant propagation as an introductory example,

showing what can happen in the class of attribute flow analyses.

It will be shown below that similar counterexamples also exist

for other flow analyses in this class ..

It should first be noted that the standard frameworks of many

attribute flow analyses are not distributive. As an important

example, we have

Lemma 3. The standard framework of type finding analysis is not

distributive.

Proof: Consider the following code:

S ·-.- character string S ·-.- tuple of integers

x := atom x := integer

y := s (x) ;

SETL- 208-5

Let

a
1

= { [s,char], [x,atom]}

and
a

2
=· { [s, tuple of ints], [x, int]}

denote the information propagated to n 3 from n 1 and n 2 respectively,

and let f denote the effect of propagation through n 3 • Then

f(a1) {y) = error

f(a
2

) (y) = int

and

so that the framework is not distributive.

Proposition 3. {a) Type finding analysis is not ks-bounded for

any k ~ 1.

Q.E.D.

(b) The number of iterations required by an iterative algorithm

of Kildall's type to perform type analysis cannot be bounded by a

function of the graph-theoretic parameters of the flow graph.

Proof: Let k > l be given, and consider the following code:

A:= l;

A ·-.- {A};

~ := xk-1;

xk-1 --.- xk-2;
·•

x2 := xl;

xl ·-.- arb A;

SETL 208-6

As in constant propagation, the semilattice Lin the type-finder

framework consists of maps from program variables to types, but

the meet of two such maps ~1 ,~2 is defined as

for all variables V.

Let f denote the effect of propagation through the loop, and let

a = { [A,int], [x1 ,int], ••. , [xk,int]} E L be the initial informa

t1on at the start of the loop. Then we have

f(a) = { [A,{int}], [x1 ,int], ... , [xn,int]}

t 2
(a) = { [A,{{ int}}], [x

1
,{ int}], [x2 , int], ..• , [xk,int]} . . .

N N-1
~

= {[A,{ •.• { int}. •• }] , [x
1

:{ : . . { int} ... }] ,

~ •• , [~, in t [• . . . [xk , in t] } ,

where N = maximal nesting level
N

of types, and we assume k > N.
N-1 N-1

N+l ----f (a) = { [A, { ••• {gen} ••• }],
~

[x1 ,C.{gen}. •• }], [x2 ,{ ••• {int}. •• }]

• N N-1
--.,. ~

= { [A,{ ••• {gen} ••• }], [x
1

,{ ••• {gen} ••• }],

••• , [xk ,{ •.• {gen~]} ,

N_-1
so that the framework is not (N+k)s-bounded, for any k ~ ~-

The same example shows that it takes N+k iterations through the

loop before all types stabilize.
Q.E.D.

SETL-208-7

Corollary 4. Proposition 3 is also true for value-flow analysis.

Proof: Use the same example as in Proposition 3, and note that

it takes k iterations through the loop to find that A at line 1

of the loop is in CRTHIS(Xk at line 2 of loop). (It also

takes k iterations of the loop for this link to materialze

at run-time!)

Q.E.D.

What are the consequences of the above results? One such

consequence is that there does not exist a graph-theoretic bound

on the number of iterations required by the type finder, or by

the value-flow analysis. Note that even though the actual imple

mentations of these analyses use an "optimized" approach of

propagating data only along bfrom links and across instructions,

this does not reduce the number of iterations required in the

above example. Thus there exist codes which will cause the

type-finder to iterate arbitrarily many times before types are

stabilized. This is, however, not of major concern to us, since

such cases will be extremely rare, and in any case, convergence

is ensured.

A second, more important consequence relates to inter-procedural

analysis, and implies that unless formulated carefully our

currently implemented algorithms could either diverge, or provide

us with wrong information. To see this, consider the case of the

code given in Proposition 3, slightly modified as follows:

/* all variables are global*/

A:= l;

·iterate () ;

~;

proc iterate;

if cond then return;

else

SETL-208-8

end

end

A := {A};

~: = xk-1;

.
x2 := xl;

xl := arb A;

iterate () ;

return;

if;

proc;

In the above code, we will have to generate the RC-paths

L, LL, LLL, ••• , LL•••L (where L denotes the recursive call

N+k
to iterate), and assign to each of them different type information

2 N+k (i.e. f (a.), f (a.), ••• , f (a.) respectively).

Thus we cannot simply ignore RC-paths containing more than a

given number of repetitions, since this would lose information

(in the sense of obtaining under-estimated types rather than over

estimated). However, if we keep track of all generated RC-paths,

we may run into problems of divergence.

Two approaches to solve this problem are possihle:

I. Modify the algorithm so that it will keep track of all

generated RC-paths, but will be able to realize when information

has stabilized, in the sense that even though more RC paths can be

generated, tracing information along them will not change the

already available information. This approach is likely to compli

cate the algorithm.

II. Compromise, and define the space of RC-paths in such a

way that information might be traced also along non-interprocedurally

valid execution paths (hopefully much fewer than all static paths),

but will definitely be traced along all interprocedurally valid

paths. NL 201 describes such an approach, but even it has to be

modified, since we now must avoid involvement with infinitely many

SETL-208-9

RC-paths, before compacting them into only finitely many possible

values.

Finally, we conjecture that the above problems that our inter

procedural analysis algorithms face do not stem from the special

structure of these algorithms, but are of a more intrinsic nature,

and that it is undecidable to find a solution to the (forward)

type-finding analysis in which information is traced along all

static inter-procedurally valid execution paths, and only along

those paths.

