
SETL Newsletter i 210 

Remarks on Debugging 

J. T. Schwartz 
February 6, 1979 

Debugging always starts with evidence that a program error 

has occured somewhere in the history of a run. The problem in 

debugging is to work one's way back from the visible syrnpton to 

this program error. What one seeks can be called the error sources 

or primal anomalies, which are those wrongly stated operations 

or tests whose immediate consequence is the transformation of 

a collection of reasonable inputs into an output 

which is unreasonable in some regard. Of course, the history 

of an extensive computation constitutes a vast mass of data, 

impossible to survey comprehensively. The debugging process 

therefore aims at the exploration of as narrow a path as possible, 

with the aim of finding one's way back to one or more primal 

anomalies. 

Here it is interesting to compare the two quite different 

processes of syntactic and semantic debugging. Even if we 

assume that raw program text (carefully desk-checked but never 

compiled) may contain as many as 1/10 syntax error per line 

on the average, the syntactic debugging of a thousand line 

program normally proceeds routinely and rapidly. The tool that 

allows this is a compiler with fairly good syntactic debugging 

aids, among which the following are particularly desirable: 

(a) Unambiguous, easy-to-comprehend error messages; 

(b) Suppression of spurious error messages generated 

by prior errors; 

(c} A diagnostic capability which does not decay during 

the parsing of a lengthy, error-rich text. 



SETL-210-2 

· These capabilities lie well within the present state of the 

art of parsing. If a compiler with these capabilities is 

available, the normal syntactic history of a 1000-line text 

initially containing 100 errors would normally be something 

like the following: 

Compilation 1: 125 error messages generated, of which 75 

are genuine; 75 errors corrected, of which 10 are corrected 

wrongly. 

Compilation 2: 70 error messages of which 30 are genuine; 

30 errors corrected, of which 5 are wrongly corrected. 

Compilation 3: 20 error messages of which 7 are valid; 

7 errors corrected, of which 1 is corrected wrongly. 

Compilation 4: 10 error messages, of which 4 are genuine. 

All 4 errors successfully corrected. 

Compilation 5: No errors. 

In a system providing rapid turn-around, this need not be 

more than the work of a day or two. Note the important role 

played by the ability to uncover multiple faults during a single 

run. 

Next consider the process of semantic (i.e.'logical' or 

'execution') debugging of the same program. Here we make the 

more favorable assumption that, owing to careful desk 

checking and to the elimination of some logical errors during 

syntax checking, only 50 errors are present in the originallOOO-line 

program. Now the typical iteration is approximately as follows: 

(a) The program runs and bombs. Assuming that a miscellany 

of print statements was included for debugging purposes, the 

programmer then forms an idea of what has happened (e.g. certain 

code never reached, wrong argument values passed to certain 

procedures, unreasonable values detected for certain variables.) 

(b} This evidAn~P: considered, will in favorable cases 

point the finger of suspicion at certain narrow program sections. 

However, in unfavorable cases, the available evidence may be 



SETL-210-3 

quite ambiguous, and may simply lead the programmer to_ generate 

considerably more extensive traces and dumps. It is worth de­

scribing three possible points along the spectrum of possibilities 

typically encountered: 

(b.i) Within a region of code described as suspicious, at 

least one visibly incorrect instruction may be spotted and 

corrected. 

(b.ii) A program region containing the error may be correctly 

described, but no specific error located. In this case, one 

more run with denser tracing in the error region may locate 

the anomaly. 

(b.iii) The program region first suspected may in fact~ 

contain no error. In this case denser tracing will simply 

confirm the good behavior of the suspected region, after 

which reconsideration may lead to suspicion being cast, this 

time more correctly, on some other region. 

The following are reasonably typical sequences of steps 

to uncovering a logical error: 

Step 1: 

Step 2: 

Step 3: 

Alternatively: 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Suspect region R, insert traces. 

Locate and fix bug. 

Correct syntax error in step 2. {Bug is now fixed). 

Suspect region R, insert traces. 

Region R ok, suspect region R', insert new traces. 

Correct syntax error in step 2, obtain new traces. 

Locate and fix bug from new traces. 

Overall it can be hard to fix more than 1/3 bug per run, as 

compared to the estimated average of 25 bugs fixed per run in 

our hypothetical account of syntactic debugging. Thus 150 runs, 

which might represent as many as 30 days work, can be required 

to fix the 50 logical bugs which might very typically be prAsP.nt 

in a new, 1000-line program. 



SETL-210-4 

To alleviate this vexing but all-too fimiliar situation, 

we must aim to increase the probability of finding at least one 

logic bug per run(if any is present) and, still better, must 

make it possible to find more than one bug per run. The 

following considerations are directed toward this end. 

(I) It is best that programs should not run for long after 

they have begun to generate erroneous quantities, since the 

longer they run the more remote the primal anomalies will 

become. SETL strives for this desideratum in two ways: 

(I'.A) Erroneous programs will often generate n quantities, 

and attempts to use n•s will cause blowup. 

(I.B) A program being debugged should be thickly larded 

with ASSERT statements. If this is well done, the probability 

of a logical error leading to quick blowup should become quite 

large. 

II. Enough information to make it possible to trace back 

to a primal anomaly should be dumped routinely upon program 

blowup. What seems desirable here is to dump the last value 

assigned to each variable X by every statement that modifies X. 

If this is done, a primal anomaly will only be hidden if the 

instructions I which constitute it generate an erroneous result 

R, pass R along as inputs to the instructions which will eventually 

(and probably soon) develop an error symptom from R, following 

which I is somehow re-executed, this time producing a correct-

looking result which hides the erroneous character of I. Such 

tricky situations are of course possible, but unlikely. 

To generate such a comprensive dump of last values assigned, 

we can proceed as follows: As a program P runs, a count can be 

kept of the number of times that each basic block within it is 

executed. If and when P fails, these counts will be available. 

The program can then be incremented, and these counts decremented 

as execution proceeds. Each time a count reaches zero we know 



SETL-210-5 

that we are entering a block for the last time. Wherever this 

happens, we can switch the block into an alternate mode in which 

variables are printed each time they are modified (along with 

an indication of the statement which is effecting the modification.) 

The cost of this is only a doubling of the normal execution time 

of an erroneous run, which is probably a smaller cost than 

would be incurred by the less systematic process of ordinary 

debugging. 

On failure it is also appropriate to dump an indication 

of routines currently called, with the values of their parameters, 

and of control-flow history. This history can consist of a 

statement of all branches recently taken, with an indication 

of number of times taken if a given branch is taken repeatedly 

in the same way. 

III. Next we turn to the question of how to discover more 

than one bug per run. Here a simple but attractive proposal 

can be based upon the subprocedure structure of a program, which 

will normally be a directed graph, though in recursive cases 

a few simple mutually recursive loops of programs can be present. 

When this is the case, subprocedures can be debugged by a 

proceeding up the directed call-graph, from invoked procedures 

to the procedures which invoke them. Whenever a layer of 

mutually independent procedures is encountered, they can be 

debugged in parallel by invoking each of them with plausible 

test data. To facilitate this, it may be worth using one 

special syntactic construct, e.g. ERROR. 



SETL-210-6 

We suppose that the ERROR quantity (syntactically a Boolean value) 

can only be used in the main part of a SETL program, and originally 

has the value 'false'. Then, if the SETL machine detects an 

error during execution of some subprocedure, it will force 

return from all aubroutines, and transfer to the last point 

at which ERROR was evaluated, there resuming execution, and 

giving ERROR the value 'true'. Using this construct, a 

_debugging plan for a program involving two level 1 procedures 

and two level two procedures might be as follows: 
~ 

(here set up parameters A.l) 

if ERROR goto TRYBl; 

PROC LEVl A (parameters A.l) 

TRYBl: if ERROR stop; 

(here set up parameters B.l) 

PROC LEVl_B (parameters B.l) 

if ERROR goto TRYB2; 

(here set up parameters A.2) 

PROC LEV2 A (parameters A.2) 

TRYB2: if ERROR stop; 

(here set up parameters B.2) 

PROC LEV2 B (parameters B.2); 

This could double the number of anomalies found per run, 

assuming that each subprocedure tested shows at least one anomaly. 

Of course, error dumps should be generated each time an error 

is found. 



SETL-210-7 

It is worth noting that very high level languages have a 

real advantage here, since the inherent data structuring which 

they provide reduces the number of procedures which need to 

receive elaborate argument values having special, non-standard 

structures. This should make argument setup very much easier. 

Another more sophisticated approach to discovery of more 

than one anomaly per test run is worth suggesting. Ordinarily, 

quite a few features of programs are generated by an implicit 

optimising process of 'set theoretic strength reduction' or 

'iteratator inversion' in the manner described by Paige. 

This optimization introduces variables x which carry the values 

of expressions e(y1 , ... ,yn) that would otherwise have to be 

calculated repeatedly, but makes it necessary to update the 

value of x whenever y
1

, •.. ,yn are modified, a requirement 

that can easily lead to error either because an update operation 

is forgotten or because it is wrongly expressed. In this 

situation, there will naturally arise assertions of the form 

ASSERT: 

We can then change the syntax of such assertions to 

ASSERT: 

and agree that assertions having this latter form which fail 

will generate appropriate dumps but assign expn to x and continue 

execution. In many cases, this will allow defective programs 

to continue correct execution, up to the point at which one 



SETL-210-8 

or more additional anomalies are uncovered. To generate the 

necessary dumps without increasing execution costs significantly, 

an execution count technique generalizing that outlined above 

can be used. 

-


