
SETL Newsletter# 212 

· A Note on Proaram Genesis 

J. Schwartz 
September 30, 1979 

Where subtle algorithmic inventions are not in question, 

the process of programming is experienced as having a straight

forward manipulative character (somewhat like algebraic manipulation, 

but perhaps even less dependent on strict use of a formalism.) 

It is interesting to speculate on the reason for this, and to 

attempt capture, in some semi-formal 'ultra-high level' language, 

of the implicit structures which guide the elaboration of programs 

at SETL-like levels. If such a language can be outlined clearly 

enough, it might become possible to use it systematically as a 

language of specification for the SETL programmer, or even to 

execute some useful subpart of it. 

As a central statement of the desired ultra-high level 

language, we propose 

(1) force C keeping V, 

where C is boolean condition depending on the variables of a 

program, and where Vis some other condition, or more generally 

some combination of conditions and values to be preserved. 

Semantically, statement (1) is a (highly nonprocedural) directive 

to modify the values of variables in such a way that C becomes 

true, but without changing V. Any predicates comprised in V are 

assumed to be true immediately before (1) is executed. 

Statements of the form (1) can be compounded. To see this, 

suppose for simplicity th2t Vis a p~edicate- Then after the 

execution of (1) the condition C & Vis true; thus if (C & V) ➔ ~ 2 , 

we can embed (1) in the longer program 
, 

(2) force C keeping V; force c 2 keeping y2 : ... 

and c2 & v2 will then be true after the second statement of (2). 



SETL-212-2 

Thus (2) . considered to arise from a chain of implications may oe 

(3) (C & V) -+ V 2, (C2 & V2) -+ V3, •• ·~ (Ck & Vk) ➔ Vk+l' 
,r 

where Vis an assumed input condition and vk+l is a desired 

output condition. 

A statement (1) can be •expanded' or 'implemented' in 

various ways, leading to various familiar program structures. 

Suppose that the variables of C and V fall into two classes a 

and b. Then (1) can be expanded as 

(4) (while not C) 

a := a; 5 := b; 

a:= a.(a,b); 

force V(a, b) = V(a, b) keeping [a,o]; 
end while; 

Here a can be any expression, but should be chosen to advance the 

loop (4) to termination. (The force statement imbedded within 

the preceding loop is formulated in the manner appropriate for 

a function V; if instead Vis a predicate it should be 

force V(a, b) -+ V(a, b) keeping [a,b] 

instead.) This imbedded force statement can of course be 

implemented in any desired fashion, perhaps by an imbedded loop 

which might force C' (a, 5, b) keeping [a, b],where (C' (a,o,b) & 

V(a, 5))-+ V(a.(a,E), b), or perhaps more simply by an assignment 

b: = S(a,b), where 

(5) V(a,b)-+ V(a.(a,b), S(a(a,b),b)). 

In this last case the auxiliary variables ~.5 will be dead 

and need never appear in the loop (4) at all. ' . 



SETL-212-3 

Note that the manner in which we have written the expansion 

(4) of (1) captures an interesting distinction, which any self

observant progranu-;i.er..-will have noticed: that between 'primary' 

or 'motive' statements, which move loops like (4) in a direction 

leading to termination, and 'compensatory' statements or 'adjust

ments' which, by repairing the damage caused by a 'primary' state

ment, restores the value or condition V. (Adjustments arising in 

set-theoretic strength reduction are of course a prime example of 

this.) We consider in this connection that a major if humdrum 

part of programming skill is wide enough knowledge of such 

'adjustments' to cover most cases arising in cornmon practice. 

A particularly easy case is that in which the variable b 

of (4) is absent and the assignment a := a(a) itself preserves 

V. An example of this is bubblesort, which we can write as 

(while ,3n: in [2 .. #f]- I f(n-1) < f(n)) 

[f(ri-1), f(n)] := [f(n), f(n-1)]; 

end while; 

Conditional constructions will arise if one of the parts 

of V (say for simplicity V itsel~) is a disjunction, since 

(6) 

can expand as 

(7) 

force C keeping (v1 or v2 ) 

if Vl force C keeping v1 
elseif V2 force c keeping v 2 . 

The two· ·force statements appearing on the ·two branches of 

this if can of course expand either into simple statements or into 

further loops, etc. Of course,. they may expand quite differently.,. 

·, 



SETL-212-4 

A higher level form in which expanded loops like (4) might 

conceivably be written is ,.. 

(8} force C keeping V by a := a(a, b) 

Here we mean to imply that only the 'motive' statement need be 

given explicitly, the 'adjustments' then being supplied automatically. 

In this sense we might then express the essence of bubblesort 

by writing something like 

(9) force (Vn in [2 .. #f] I f(n-1) ~ f(n)) 

keeping range f by [f (k-1), f (k) J = [f (k, f (k-1) J. 

' . 


