
Optimisation of Case Statements

by

Stefan M. Freudenberger

SETL Newsletter #215
Courant Institute of Mathematical Sciences

New York University

15 ■ April 1981

Several significant and straight-forward code optimisations are
omitted in the current optimiser. This note explores one such
optimisation, and outlines its implementation. This optimisation is
case map optimisation, and encompasses the following:

The SETL case statement is currently implemented by creating a
(necessarily constant and single-valued) map from case tags to code
addresses. Since this map is undeclared, it is currently
represented as an unbased map from GENERAL to GENERAL, and thus
requires a hashing operation to find the branch address for a given
value of the case expression. (It would in fact be easy to give
this map an implicit SMAP(GENERAL) LABEL declaration, in which case
the Code Generator would detect the existence of case tag
duplicates, an error not picked up in the current system.)

This crude approach can be improved significantly ·in
important cases, namely:

(1) when the case tags form a dense range of positive integers

(2) when the case tags form a subset of a base

two

More formally, these optimisations amount to
whether one of the following conditions is met, and if
the implementation suggested. These conditions are:

determining
so, to choose

(1) If a case map's domain consists of positive integers only,
the size of the domain compares favorably to the maximum element
that domain, then we can represent the case map as a tuple:

and
of

:!
11', ,,
I,'

J.
'I

if forall X in domain CASE_MAP I
is_integer X and
1 <a X and X <= C * H domain CASE MAP then

/* Represent the case map as a tuple */
'* The constant C should have a plausible value,

e.g. HL_EBM (see NL. 189B.) */
end if;

Page 2

(2a) If the case map is based on a constant base B, then we can
first remove all case tags which are n~t in B since these case
choices represent unreachable code:

CASE_MAP := { [X, Y] in CASE_MAP I X in B };

If the resulting case map is very sparse with respect to B, we might
still prefer to represent it as an unbased map:

if# domain CASE MAP<# B div C then
/* Represent the case map as a unbased smap */

else
/* Represent the case map as a local smap */

end if;
/* Again, the constant C might be HL_EBM */

(2b) If the case map is based on a base B, but B is not constant,
then a REMOTE SMAP(ELMT B) LABEL representation is appropriate for
the case map, for the following reasons:

Storage for locally based objects is statically allocated
within each base element block, and hence these objects will require
storage for elements added to the base at run-time even though we
know a priori that a constant map will never be defined at a point
added to the base during execution. Also, constant elements of a
base are live throughout the execution of a program, and their
element indices never change, and so a remotely based constant never
needs to be re-allocated during run-time. (The proofs for these
claims are trivial.) Thus, whereas the storage required for a
locally based constant quantity depends on the dynamic size of its
base, the size of a remotely based constant depends only on its
initial number of elements.

The suggestions advanced above can be implemented as follows.

Assume first that no global optimisation will be performed. In
this case we suggest the following implementation, beginning with
the first case discussed above (dense range of integers).

When we are about to allocate the case map constant in the
Semantic Pass, and before we call the routine which actually creates
this map, we will have collected N pairs of the form

[<case tag value>, <label>]

on the semantic pass stack. Rather then calling the set former
routine immediately, we first iterate over these stack entries and

.......

Page 3

check the <case tag value>'s to determine whether they are all
positive integers, and at the same time determine their largest
e1ement M. If they all are positive integers, and if Mis not too
large, then we sort the pairs in ascending order of their first
Components. After this, we insert the proper number of omegas
between them, giving us M entries altogether. Then we replace each
pair by its <label>, allocate a tuple instead of a map, generate the
form TUPLE(LABEL), and give the case 'map' this representation.
When we delete the original case pairs from the stack, we also mark
the corresponding symbol table entries as dead.

In the second (based)
follows:

case described above, we proceed as

In the Semantic Pass, when we encounter the <exp> in a case
statement, we check to see if it has an ELMT B representation, and
if so, declare the case map to be a LOCAL SMAP(ELMT B) LABEL (if the
base B is constant and local to the current scope) or a
REMOTE SMAP(ELMT B) LABEL. (In all remaining cases, we declare the
map to be a SMAP(GENERAL) LABEL.)

The Code Generator can mark based case maps during the
preliminary fixup phase, and then take special action when
initialising the run-time representation of the case map. There are
two cases where such special attention is necessary, both to produce
intelligent warning messages and to allocate correct constants. The
first case arises if a tag value present in the CASE statement
cannot be converted to the element mode declared for the case map's
base. In this situation, the case labelled by this tag can never be
reached during execution (this follows from the mode conflict
between the case expression and the tag value) and thus represents
unreachable code. The second case arises if the base B appearing in
the declaration for the CASE variable is constant, but some case tag
Value is not an element of B. As before, this case can never be
reached. In both situations, the proper action to take is to print
a warning message, and to eliminate the offending case tag from the
case map. This eliminates error messages which would otherwise be
issued by the run-time conversion routines, which would be confusing
to inexperienced SETL users.

To implement case optimisation in our global optimiser, we can
modify the pre-pass of the Automatic Data-Structure Selection phase
so that we exanine each Ql_CASE instruction for the conditions
stated above, and introduce the cor~esponding declarations as
appropriate.

