
Simple Type Inference and Unification∗

Fritz Henglein†

Courant Institute of Mathematical Sciences
New York University

715 Broadway, 7th floor
New York, N.Y. 10012, USA

Internet: henglein@nyu.edu or henglein@paul.rutgers.edu

October 12, 1988

Abstract

Kanellakis and Mitchell [KM89] have shown that a form of ex-
tended unification can be encoded as a typing problem in the pro-
gramming language ML. We flesh out in detail their construction
for ordinary unification and simple type inference and show that
unification is reducible to simple type inference by a one-way finite
state transducer. This implies that lower bounds for unification
extend to simple inference and, in particular, that simple type in-
ference is log-space hard for P .

1 Introduction

It has long been known that simple type inference and unification are
closely related. Morris [Mor68] showed that simple type inference —
type inference in the (Simply) Typed λ-calculus [Hin69, Cur69] — can be
efficiently reduced to solving a set of equations over a free term algebra
(see also [Han87]). Apparently not aware of Robinson’s work on unifica-
tion [Rob65], Morris laid out an ad hoc algorithm for solving the derived
equations. Hindley [Hin69] and Curry [Cur69] built on Robinson’s uni-
fication lemma to prove that the Simply Typed λ-calculus admits most
general typings for every typable expression, a characteristic that is gen-
erally known as the Principal Typing property. The exponential running
∗New York University, SETL Newsletter 232, Oct. 1988
†This research has been supported by the ONR under contract number N00014-

85-K-0413. Part of this work was done while the author was a summer visitor at IBM
T. J. Watson Research Center.

1

time of Robinson’s original unification algorithm (and Morris’s ad hoc al-
gorithm) was improved to almost linear [HK71] and finally to linear time
[PW78, MM82] over a compact directed acyclic graph (dag) representa-
tion of first-order terms. It is apparently also generally known that the
reduction from type inference to unification can be done efficiently, which
usually means in linear time on a random access machine (RAM).

With the advent of parallel processing and a robust definition of prob-
lems amenable to fast parallel processing, namely the class NC [Coo80],
the quest for a fast parallel unification algorithm culminated in a result
that presented strong evidence that no such algorithm exists. More pre-
cisely, Dwork, Kanellakis, and Mitchell [DKM84] showed that unifiability
is hard for P with respect to log-space reductions. Under the generally
accepted assumption that NC 6= P this implies that unifiability is not
in NC. Since, with the exception of [KM89], only reductions from type
inference to unification have been considered, this does not preclude the
existence of a fast parallel algorithm for simple type inference.

In this paper we show that unification is efficiently reducible, in a
very strong sense, to simple type inference. More specifically, we prove
that unifiability is 1FSM-reducible [Yap86] (reducible by a finite state
transducer with a one-way input head) to typability in the Simply Typed
λ-calculus. As a corollary, this proves that simple type inference is hard
for P with respect to log-space reductions. Note that a somewhat terse
description of this reduction has already appeared in [KM89] where it
was used to show that type checking for ML, even for its functional core
only, is PSPACE-hard. We provide some technical details and present
some refined results in this paper.

The reduction is rather straightforward, even though some care is
required to prove the reduction correct and even though an attempt at
a naive translation of terms into type expressions would be hopeless due
to the Howard-Curry isomorphism of types and theorems in intuitionistic
propositional calculus [How80].

The “real-time reducibility” of unification to simple type inference can
be viewed as expressing that unification is a subproblem of simple type
inference, but not vice versa.1

The outline of this paper is as follows. In section 2 we quickly review
unification, in section 3 simple type inference. We present a quick descrip-
tion of the standard problem representations in section 4, and show, in
section 5, a preliminary simplification of the unification problem. Section
6 contains the reduction from the simplified unification problem to simple
type inference. In section 7 we briefly address the reducibility of simple
type inference to unification and compact directed acyclic graph repre-

1This is an attempt at putting the reducibility results into an intuitive form; it is
not to be construed as a formal definition of “subproblem”.

2

sentations. Finally, section 8 presents some conclusions and an outlook
on other close connections between type checking and unification-style
problems.

2 Unification

Unification is the problem of solving equations between first-order terms
with variables. For a thorough investigation of the elementary theory of
unification, see [LMM87]. We only present the definitions of importance
to us here.

Let F , C, and V be three pairwise disjoint denumberable infinite
sets, called functors, constants, and variables, respectively. The set of
(first-order) terms T (F,C, V) (or simply T whenever F , C, and V are
understood) consists of all strings derivable from M in

M ::= x|c|f(M, . . . ,M)

where f , c, and x range over F , C, and V , respectively.
Two terms M1,M2 are equal, denoted M1 = M2, if and only if M1

and M2 are identical as strings. A substitution is a mapping from V to
T that is the identity almost everywhere. Every substitution σ can be
applied to terms by recursively defining

σ(c) = c, if c ∈ C
σ(f(M1, . . . ,Mn)) = f(σ(M1), . . . , σ(Mn)).

Two terms M1,M2 are unifiable if there is a substitution σ, called unifier,
such that σ(M1) = σ(M2). The unifiability problem is the problem of
deciding whether or not two input terms are unifiable.

If M1 = g(x, g(x, y)), M2 = g(f(y), z), and M3 = g(f(x), c), then M1

and M2 are unifiable, but M1 and M3 are not.

3 Simple Type Inference

Simple type inference is the problem of checking for type correctness in a
monomorphic language that admits elision of type declarations for pro-
gram variables. This problem is formalized in [CF58], [Mor68], [Hin69],
and [Cur69], and is treated from a (functional) programming language
point of view in [Han87]. We only present the definitions necessary for
our problem.

A λ-expression is any string derivable from e in

3

e ::= x|λx.e|ee|(e)

where x ranges over a denumberable set I of program variables. A λ-
expression of the form e1e2e3 associates to the left; i.e., it is equivalent
to (e1e2)e3. The free program variables in λ-expression e are denoted by
FV (e). A type expression is any string derivable from τ in

τ ::= t|τ → τ |(τ)

where t ranges over a denumerable set T of type variables. Whereas jux-
taposition in λ-expressions associates to the left, the → type construc-
tor associates to the right. A type environment (type assumption) is a
mapping from a finite subset of I to type expressions. If A is a type
environment and Θ is a subset of I then A|Θ is the restriction of A to the
domain Θ and A{x : τ} denotes the type environment defined by

A{x : τ}(y) =
{
A(y), x 6= y
τ, x = y

There are also substitutions (on type variables) that map type variables to
type expressions and, by extension, type expressions to type expressions
and type environments to type environments.

A typing is a triple, written A ⊃ e : τ , where A is a type environment,
e a λ-expression, and τ a type expression. Typings are the logical state-
ments in a type inference system that syntactically characterizes type
correctness. In this sense A ⊃ e : τ should be pronounced “Expression
e has type τ in type environment A”. The type inference rules of the
Simply Typed λ-calculus are presented below. Here we assume that all
parentheses in λ-expressions and type expressions are present to make
associativity explicit.

(TAUT) A{x : τ} ⊃ x : τ

(APPL) A ⊃ e1 : τ1 → τ2
A ⊃ e2 : τ1
A ⊃ (e1e2) : τ2

(ABS) A{x : τ1} ⊃ e : τ2
A ⊃ λx.e : τ1 → τ2

A typing is valid if it is derivable by application of instances of the
axiom schema TAUT and the two rule schemas APPL and ABS. A λ-
expression e is (simply) typable if and only if there exists a type envi-
ronment A and a type expression τ such that A ⊃ e : τ is valid. The

4

typability problem is the problem of deciding whether a given λ-expression
is typable.

Theorem 1 (Principal Typing Property)
For every simply typable λ-expression e there are Ae and τe such that

• Ae ⊃ e : τe is valid, and

• for every valid typing A ⊃ e : τ there exists a substitution σ (on
type variables) such that σ(Ae) = A|FV (e) and σ(τe) = τ .

The typing Ae ⊃ e : τe, if it exists, is called principal for e.

Proof: See [Hin69].

If e1 = λx.λy.(xy) and e2 = λx.(xx), then e1 is typable, but e2 is not.
With Ae1 = {}, the everywhere-undefined mapping, and τe1 = (t1 →
t2)→ (t1 → t2), a principal typing for e1 is Ae1 ⊃ e1 : τe1 .

4 Standard Representations

Representations of problems are usually left implicit or considered part
of the problem itself. This is acceptable in those cases where different
representations can be transformed into each other in, say, logarithmic
space and the complexity classes considered are closed with respect to
such transformations [Yap86]. Since we will be dealing with extremely
resource-bounded computations — finite state machines — the repre-
sentations of terms and λ-expressions have to be carefully defined. We
present here what we consider the standard string representations. The
more compact, “preprocessed” directed-acyclic-graph representations are
addressed in section 7.

4.1 Standard Representation of Terms

To describe instances of the unifiability problem, let ΣI = { ‘(’, ‘)’, ‘,’,
‘f’, ‘x’, ‘0’, ‘1’, ‘=’ } be the input alphabet. Without loss of general-
ity we assume that the set of functors F is {f1, . . . , fi, . . .} and the set
of variables V is {x1, . . . , xi, . . .}. A functor fi is then represented by
the string “f ī” ∈ Σ∗I where ī is the binary representation of i. Simi-
larly the representation of a variable xi is “x ī” ∈ Σ∗I . Terms are repre-
sented in a straightforward fashion. The representation of f5(f2(x1), x2)
is “f101(f10(x1),x10)” ∈ Σ∗I . An instance of the unifiability problem con-
sists of the representations of two terms separated by the character ‘=’;
for example, “f101(f10(x1),x10)=f101(x10,x11)” ∈ Σ∗I .

5

4.2 Standard Representation of λ-expressions

To describe instances of the simple typability problem, viz. λ-expressions,
let ΣO = { ‘(’, ‘)’, ‘λ’, ‘.’, ‘f’, ‘g’, ‘x’, ‘0’, ‘1’ } be the output alphabet.
We assume that the set of program variables is {f, g, x1, . . . , xi, . . .}2.
The representation of program variables is the same as for variables
in terms. The λ-expression λf.λx6.(x4x6) is represented by the string
“λf.λx110.(x100x110)” ∈ Σ∗O.

5 Simplification of the Unifiability Problem

We will reduce the unifiability problem in little steps of 1FSM-reductions.
Since 1FSM-reductions are proper [Yap86], their composition is also a
1FSM-reduction. In this section we show that unification problems can
be “normalized” by restricting F and C to a single functor [. . .] and two
constants 0, 1.

5.1 Elimination of Functors

Let T = T (F,C, V) as before and let T ′ = T ({[. . .]}, F ∪C, V) where [. . .]
is a new functor not already in F . Define the transformation function
µ1 : T → T ′,

µ1(x) = x, if x ∈ V
µ1(c) = c, if c ∈ C
µ1(f(M1, . . . ,Mn)) = [f, [µ1(M1), . . . , µ1(Mn)]], otherwise

We have the following lemma.

Lemma 1 For all M1,M2 ∈ T , M1 and M2 are unifiable if and only if
µ1(M1), µ1(M2) ∈ T ′ are unifiable.

Proof: By structural induction on T .

The translation of f5(f2(x1), x2) via µ1 returns [f5, [[f2, [x1]], x2]]. It
is easy to see that µ1 can be implemented by a one-way finite state trans-
ducer (1FSM-reduction).

5.2 Elimination of Constants

Without loss of generality we can assume now that F ∪ C, the set of
constants in T ({[. . .]}, F ∪ C, V), is represented by the binary numerals
{0, 1}∗. The numerals can also be eliminated by encoding them as lists

2Note that the program variables comprise V , the variables, and the extra elements
f and g.

6

— with the constructor [. . .] — over the binary alphabet {0, 1}. Let
T ′′ = T ({[. . .]}, {0, 1}, V).

µ2(x) = x, x ∈ V
µ2(c) = [b1, . . . , bk], c = b1 . . . bk ∈ {0, 1}∗
µ2([M1, . . . ,Mn]) = [µ2(M1), . . . , µ2(Mn)]

The correctness of this transformation is guaranteed by the next
lemma.

Lemma 2 For all M1,M2 ∈ T ′, M1 and M2 are unifiable if and only if
µ2(M1), µ2(M2) ∈ T ′′ are unifiable.

Proof: By structural induction on T ′.

The encoding of [c5, [[c2, [x1]], x2]] via µ2 is [[1, 0, 1], [[[1, 0], [x1]], x2]].
Again, this translation can be implemented by a one-way finite state
machine.

6 Reduction of Unification to Simple Type
Inference

The basic idea behind the reduction of unifiability to simple typability
is to establish a correspondence of terms with type expressions that are
the principal types of some λ-expressions, and to encode the equality of
terms with the typing rules of the Simply Typed λ-calculus. Some care is
necessary to make this idea work since the Howard-Curry isomorphism of
types and theorems in intuitionistic propositional calculus [How80] shows
that not every type expression is a principal (or nonprincipal) type of
some λ-expression. For example, consider the term f(f(x, x), x). We
might feel tempted to try to construct a λ-expression with principal type
(x → x) → x. But no such λ-expression exists since (x → x) → x
is not a theorem in the intuitionistic propositional calculus, not even
in the classical propositional calculus. Instead, we will use a standard
construction for encoding lists in the λ-calculus that has principal type
(((x→ x→ α1)→ α1)→ x→ α2)→ α2. After the simplifications above
we can assume that instances of the unifiability problem are drawn from
terms in T ′′ = T ({[. . .]}, {0, 1}, V).

6.1 The Encoding of Terms by λ-expressions

We shall now define an encoding ρ of terms by λ-exressions.

7

ρ(x) = x, if x ∈ V
ρ(0) = λx.λy.x
ρ(1) = λx.λy.λz.x
ρ([M1, . . . ,Mn]) = λf.(fρ(M1) . . . ρ(Mn))

For example, the encoding of term [[1, 0, 1], [[[1, 0], [x1]], x2]] via ρ
yields

λf.(f λf.(fλx.λy.λz.xλx.λy.xλx.λy.λz.x)
λf.(fλf.(fλf.(fλx.λy.λz.xλx.λy.x)λf.(fx1))x2))

6.2 The Encoding of Equality

Now that we know how to represent terms it remains to show how the
equational constraint in a unification problem can be captured by a λ-
expression. This is where the typing rules of the Simply Typed λ-calculus
come in. Let us first note that the structure of a λ-encoding ρ(M) is
directly reflected in the valid typings for ρ(M) since ρ(M) contains only λ-
abstractions, no applications. For example, the term [[1], [x1]], originally
representing f1(x1), would give rise to the principal typing

{x1 : t1} ⊃ λf.(fλf.(λx.λy.λz.x)λf.(fx1)) :
((u1 → u2 → u3 → u1)→ ((t1 → u)→ u)→ u′)→ u′

The typing rules of the Simply Typed λ-calculus stipulate that all oc-
currences of a λ-bound variable have the same type in any typing deriva-
tion. This constraint is exploited to characterize the equational constraint
in the underlying unification problem. More precisely, we extend ρ to map
unifiability problem instances to λ-expressions as follows.

ρ(M1 = M2) = λg.λf.(f(gρ(M1))(gρ(M2)))

For example, f1(x1) = x2 is mapped to

λg.λf.(f(gλf.(fλf.(λx.λy.λz.x)λf.(fx1)))(gx2)).

6.3 Correctness

It is easy to see that ρ can be computed by a one-way finite state trans-
ducer. To complete the reduction from unifiability to simple typability,
it remains to be shown that ρ is indeed a problem reduction; that is,
for all M1,M2 ∈ T ({[. . .]}, {0, 1}, V) it holds that M1,M2 are unifiable if

8

and only if there is a valid typing for ρ(M1 = M2) in the Simply Typed
λ-calculus.

The intuition is quite simple: the definitions of ρ(0), ρ(1) and ρ([M1, . . . ,Mk])
guarantee that no two types of these representations are unifiable. Con-
sequently, we expect that if the types of two λ-encodings indeed unify
then this unifier can be translated back to a unifier of the underlying
terms. This is indeed the case, but the formalization of this idea is more
cumbersome than enlightening.

There are many possible proofs of correctness. For example, we can
try to show that the principal typings of ρ(M1) and ρ(M2) are unifiable
if and only if M1,M2 are unifiable. This is technically rather messy since
there are in general many more variables in the principal typings than in
the underlying terms. We take a slightly different route.

6.3.1 Unifiability Implies Typability

First we show that if a pair of terms is unifiable then the λ-representation
of this unifiability problem is simply typable.

Define the canonical type mapping τ that maps type environments
and terms to type expressions as follows.

τ(A, x) = A(x), x ∈ V
τ(A, 0) = α→ β → α
τ(A, 1) = α→ β → γ → α
τ(A, [M1, . . . ,Mk]) = (τ(A,M1)→ . . .→ τ(A,Mk)→ α)→ α

Here α, β, γ denote fixed type variables. The following proposition is easy
to prove by structural induction over terms.

Proposition 3 Let A,A′ be type environments, and M,N1, . . . , Nk terms
whose variables are contained in the domain of A.

1. τ(A,M) is well-defined and unique.

2. If A is injective then τ is injective with respect to its second argu-
ment; i.e., τ(A,N1) = τ(A,N2) implies N1 = N2.

3. The typing A ⊃ ρ(M) : τ(A,M) is valid.

4. If {x1, . . . , xn} is the domain of A then A = {x1 : τ(A, x1), . . . , xn :
τ(A, xn)}

Given a substitution σ on terms (not type expressions) we define σ(A),
the application of σ to a type environment A = {x1 : τ1, . . . , xn : τn}, as
follows.

σ(A) = {x1 : τ(A, σ(x1)), . . . , xn : τ(A, σ(xn))}.

9

Note that according to proposition 3, part 4, ι(A) = A for all A where
ι denotes the identity (“empty”) substitution.

Lemma 4 For all terms M , type environments A, and term substitutions
σ,

τ(A, σ(M)) = τ(σ(A),M)

or both τ(A, σ(M)) and τ(σ(A),M) are undefined.

Proof: We prove this lemma by structural induction on M ,
assuming τ(A, σ(M)) and τ(σ(A),M) are defined.

• (Base cases) If M is a variable, xi, then

τ(σ(A),M) = τ(σ(A), xi)
= σ(A)(xi)
= τ(A, σ(xi)) (by definition of σ(A))
= τ(A, σ(M))

The cases for M = 0 and M = 1 are trivial.

• (Inductive case) If M = [N1, . . . , Nk] for some terms
N1, . . . , Nk, then

τ(σ(A),M) = τ(σ(A), [N1, . . . , Nk])
= (τ(σ(A), N1)→ . . .→ τ(σ(A), Nk)→ α)→ α

= (τ(A, σ(N1))→ . . .→ τ(A, σ(Nk))→ α)→ α (ind. hyp.)
= τ(A, [σ(N1), . . . , σ(Nk)])
= τ(A, σ([N1, . . . , Nk]))
= τ(A, σ(M))

This completes the proof.

Lemma 5 For all M1,M2 ∈ T ′′, if M1 and M2 are unifiable then ρ(M1 =
M2) is simply typable.

Proof: By assumption of the lemma there is a unifier υ
of M1,M2; i.e., υ(M1) = υ(M2). Let A be a type envi-
ronment whose domain contains sufficiently many variables.
By proposition 3, part 3, both υ(A) ⊃ ρ(M1) : τ(υ(A),M1)

10

and υ(A) ⊃ ρ(M2) : τ(υ(A),M2) are valid typings. Accord-
ing to lemma 4 and by the fact that υ is a unifier we have
τ(υ(A),M1) = τ(A, υ(M1)) = τ(A, υ(M2)) = τ(υ(A),M2).
Call this type τ ′. Consequently,

A′{g : τ ′ → α′} ⊃ λf.(f(gρ(M1))(gρ(M2))) : (α′ → α′ → α)→ α

and

A′ ⊃ ρ(M1 = M2) : (τ ′ → α′)→ (α′ → α′ → α)→ α

are valid typings, the latter of which shows that ρ(M1 = M2)
is simply typable.

6.3.2 Typability Implies Unifiability

We now proceed to prove that if ρ(M1 = M2), for given terms M1 and
M2, is typable then M1 and M2 are unifiable.

Some preliminary results on the normalization of typings are helpful
in facilitating a translation of types to terms and from typings to substi-
tutions. The normalization function ν on types is defined as follows.

ν(τ) =



τ, τ is a type variable
α→ β → α, τ = τ1 → τ2 → τ1 for some τ1, τ2
α→ β → γ → α, τ = τ1 → τ2 → τ3 → τ1 for some τ1, τ2, τ3
(ν(τ1)→ . . .→ ν(τn)→ α)→ α, τ = (τ1 → . . .→ τn → τ ′)→ τ ′

for some τ1, . . . , τn, τ ′

α→ β → α, otherwise

Proposition 6 1. ν is well-defined and unique.

2. For any set of type expressions τ1, . . . , τk there is an injective type
environment A and terms N1, . . . , Nk such that ν(τi) = τ(A,Ni)
for all i such that 1 ≤ i ≤ k.

The mapping ν can be extended to type enironments in the standard
way: ν(A) = {x1 : ν(τ1), . . . , xn : ν(τn)} if A = {x1 : τ1, . . . , xn : τn}.

Lemma 7 For any valid typing A ⊃ ρ(M) : τ , the typing ν(A) ⊃ ρ(M) :
ν(τ) is also valid, and ν(τ) = τ(ν(A),M).

Proof: This can be shown by simple induction on the struc-
ture of M .

Lemma 8 For all M1,M2 ∈ T ′′, if ρ(M1 = M2) is typable in the Simply
Typed λ-calculus then M1 and M2 are unifiable.

11

Proof: By assumption, there is a valid typing A ⊃ ρ(M1 =
M2) : τ for ρ(M1 = M2). By the definition of ρ this expands
to

A ⊃ λg.λf.(f(gρ(M1))(gρ(M2))) : τ.

Since the typing rules of the Simply Typed λ-calculus are
syntax-directed, we can conclude, by “backwards reasoning”,
that there are type expressions τ ′, τ2, τ3 such that τ = (τ ′ →
τ2)→ (τ2 → τ2 → τ3)→ τ3 and, with A′ = A{g : τ ′ → τ2, f :
τ2 → τ2 → τ3}, both

A′ ⊃ ρ(M1) : τ ′

and

A′ ⊃ ρ(M2) : τ ′

are valid. Let us define A′′ = ν(A′) and τ ′′ = ν(τ ′). By
lemma 7, the typings

A′′ ⊃ ρ(M1) : τ ′′

and

A′′ ⊃ ρ(M2) : τ ′′

are both valid. If A′′ = {x1 : τ ′′1 , . . . , xk : τ ′′k }, proposi-
tion 6, part 2, implies that there are terms M,N1, . . . , Nk

and an injective type environment A0 such that τ(A0,M) =
τ ′′, τ(A0, N1) = τ ′′1 , . . . , τ(A0, Nk) = τ ′′k . If we define σ =
{x1 → N1, . . . , xk → Nk}, the previous two typings can be
rephrased as

σ(A0) ⊃M1 : τ(σ(A0),M)

and

{x1 : τ(A0, σ(x1)), . . . , xk : τ(A0, σ(xk))} ⊃ ρ(M2) : τ(A0,M)

Also by lemma 7 we can conclude τ(σ(A0),M1) = τ(A0,M) =
τ(σ(A0),M2). Finally, this yields τ(A0, σ(M1)) = τ(A0, σ(M2))
by lemma 4 and, since A0 is injective, by proposition 3, part
2, σ(M1) = σ(M2). Consequently, M1 and M2 are unifiable.

Theorem 2 For all M1,M2 ∈ T ′′, M1 and M2 are unifiable if and only
if ρ(M1 = M2) is simply typable.

Proof: Lemma 5 shows one direction, lemma 8 the other.

12

7 Reductions and Directed Acyclic Graph
Representations

Dwork, Mitchell, and Kanellakis [DKM84] proved that unifiability is hard
for P with respect to log-space reductions. Their problem, however, as-
sumes that the input is presented in the form of directed acyclic (labelled)
dags. Similarly, λ-expressions can be represented by their abstract syntax
trees with all occurrences of a program identifier merged with their cor-
responding binding. As an implication of [DKM84] and the above results
we get the following theorem.

Theorem 3 The problems of simple typability and unifiability are hard
for P with respect to log-space reductions, for both the standard and the
graph-based representations.

Consequently all these problem/representation combinations are log-
space interreducible, which shows that, in this sense, we are justified in
speaking of “the” simple typability and unifiability problems irrespective
of their specific respresentation.

Linear-time reductions are in practice of more importance than log-
space reductions since speed is apparently higher valued than space. Since
the log-space reduction in [DKM84] doesn’t preserve space — i.e., it gen-
erates superlinear amount of output — it cannot possibly be executed in
linear time, even on a (logarithmic-cost) RAM [AHU74]. Note that our
reduction of unifiability to simple typability executes in linear time and
no auxiliary space on any reasonable (sequential) computational model.
Yet the linear-time reduction used to extract a unifiability problem from
a λ-expression [Han87] uses more than logarithmic extra space. It is thus
an open question whether there is a loglin-reduction from typability to
unifiability; that is, a log-space reduction whose output size is O(n) where
n is the input size. Furthermore, the linear-time reduction is only linear
time over the dag representation, since the standard representation of
λ-expressions permits reuse of variable names. It can be shown that, in
general, the bit-size of the output is Θ(n log n) if the input bit-size is n
and the representations are the standard ones.

It appears to be impossible for there to be a 1FSM-reduction from
typability to unifiability in general, no matter what representation. Even
if all variables in the input are disjoint and the expressions are fully
parenthesized, it seems impossible to devise such a reduction since the
recognition problem of a nonregular context-free language lurks in the
background.

13

8 Conclusion and Outlook

It is commonly known that simple type inference is reducible to unifi-
cation. We have shown that, conversely, unification is reducible, in a
very strong sense, to simple type inference. Thus lower bounds for uni-
fication extend immediately to type inference. In particular, this implies
that type inference is hard for P with respect to log-space reductions.
The encodings we have used can be used to provide similar reductions of
unification-like problems to typing problems. A case of this is the reduc-
tion of semi-unification [Hen88b] to type inference in the Simply Typed
λ-calculus extended with a single additional, polymorphically typed fixed-
point combinator [Hen88a]. This is a subproblem of type inference in
the Milner-Mycroft Calculus, which permits arbitrary use of polymorphi-
cally typed fixed-point combinators and let-bindings and was shown to
be reducible to semi-unification in [Hen88c]. The PSPACE lower bound
of [KM89] on type inference in ML consequently extends to this sub-
problem of the Milner-Mycroft Calculus and, trivially, to typing in the
Milner-Mycroft Calculus itself.

9 Acknowledgements

I wish express my thanks to Eric Allender for always lending an ear
to my questions about computational complexity and for being such a
treasure trove of knowledge and to Ken Perry for numerous discussions
on unification and unification-like problems.

References

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, 1974.

[CF58] H. Curry and R. Feys. Combinatory Logic. Volume I of Studies
in Logic and the Foundations of Mathematics, North-Holland,
1958.

[Coo80] S. Cook. Towards a complexity theory of synchronous parallel
computation. In Proc. Symposium ueber Logic und Algorith-
mik in honor of Ernst Specker, Zuerich, Switzerland, February
1980.

[Cur69] H. Curry. Modified basic functionality in combinatory logic.
Dialectica, 23:83–92, 1969.

[DKM84] C. Dwork, P. Kanellakis, and J. Mitchell. On the sequential
nature of unification. J. Logic Programming, 1:35–50, 1984.

14

[Han87] P. Hancock. Polymorphic type checking. In S. Peyton-Jones,
editor, The Implementation of Functional Programming Lan-
guages, chapter 8, Prentice-Hall, 1987.

[Hen88a] F. Henglein. Polymorphic Type Inference is Semi-Unification.
Technical Report (SETL Newsletter) 229, New York Univer-
sity, October 1988.

[Hen88b] F. Henglein. Semi-Unification. Technical Report (SETL
Newsletter) 222, New York University, April 1988.

[Hen88c] F. Henglein. Type inference and semi-unification. In Proc.
ACM Conf. on LISP and Functional Programming, ACM,
ACM Press, July 1988.

[Hin69] R. Hindley. The principal type-scheme of an object in combi-
natory logic. Trans. Amer. Math. Soc., 146:29–60, Dec. 1969.

[HK71] J. Hopcroft and R. Karp. An Algorithm for Testing the Equiv-
alence of Finite Automata. Technical Report TR-71-114, Dept.
of Computer Science, Cornell U., 1971.

[How80] W. Howard. The formulae-as-types notion of construction.
In J. Seldin and J. Hindley, editors, To H. B. Curry: Es-
says on Combinatory Logic, Lambda Calculus and Formalism,
pages 479–490, Academic Press, 1980.

[KM89] P. Kanellakis and J. Mitchell. Polymorphic unification and ML
typing (extended abstract). In Proc. 16th Annual ACM Symp.
on Principles of Programming Languages, ACM, January 1989.

[LMM87] J. Lassez, M. Maher, and K. Marriott. Unification revisited.
In J. Minker, editor, Foundations of Deductive Databases and
Logic Programming, Morgan Kauffman, 1987.

[MM82] A. Martelli and U. Montanari. An efficient unification algo-
rithm. ACM TOPLAS, 4(2):258–282, Apr. 1982.

[Mor68] J. Morris. Lambda-Calculus Models of Programming Lan-
guages. PhD thesis, MIT, 1968.

[PW78] M. Paterson and M. Wegman. Linear unification. J. of Com-
puter and System Sciences, 16:158–167, 1978.

[Rob65] J. Robinson. A machine-oriented logic based on the resolution
principle. J. Assoc. Comput. Mach., 12(1):23–41, 1965.

[Yap86] C. Yap. Lecture notes on computational complexity theory.
1986. Unpublished manuscript.

15

