
Constructing Quality Software. P.G. Hibbard/S.A. Schann (eds.) 
CIFIP. North-Holland Publishing Company, (1978) 

SETL AS A TOOL FOR GENERATION OF QUALITY SOFTWARE* 

Robert B. IC. Dewar 
Arthur Grand 
Ssu-Cheng Liu 

Edmond Schonberg 
Jacob T. Schwartz 

Computer Science Department 
Courant Institute of Mathematical Sciences 

New York University 

'Pure' SETL is a language of very high level, allowing 
algorithms to be programmed rapidly and concisely with 
minimum attention to specification of detailed data 
structures. A representation sublanguage adds a system 
of declarations which allow the user of the language to 
specify the data structures that will be used to implement 
an algorithm which has already been written in pure SETL, 
without necessitating any rewriting of the algorithm itself. 

To the extent that programming tools can aid in the development of 
quality software, there seem to be two possible approaches to their 
design: 

1) Make it harder to write bad programs 

2) Make it easier to write good programs' 

Much of the work in development of very strongly typed languages 
(e.g. ALPEARD, [11) which emphasize aids for proof of correctness 
approaches seems to focus on the first aim of making it hard to write 
bad programs. The difficulty with this approach is that the 
syntactic complexity imposed on the programmer often conflicts with 
the goal of making it easier to write good programs. Thus we may 
observe that even simple programs in ALPEARD are long and involve a 
large proportion of text which is not part of the algorithm, proper, 
but rather represents redundant semantic information whose sole 
purpose is to facilitate formal proofs of program correctness. 

who approach of SETL [21 is to focus almost exclusively on the aim 
of making it easier to write good programs, realizing that this 
involves omitting some of the built-in redundancy which is 
characteristic of strongly typed languages. It is interesting to 
note that two other languages taking a similar approach, APL and 
SN0DOL9, are proving to be extremly popular despite minimal manu-
fncturer support and despite the fact that both these languages can 
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only be dismissed as jokes by proponents of structured programming 
concepts. We believe that the success of these two languages is a 
reflection o£ the fact that the emphasis on ease of programming is 
an important one. The SETL language attempts to capitalize on this 
point, and at the same time demonstrate that this goal can be 
achieved without sacrificing the basic notions of modularity and 
structure which are essential to the production of large programs. 

To illustrate the SETL approach, we give in Fig. 1 a complete 
example of a SETL program. This program performs a topological sort 
using the familiar algorithm which keeps track of the number of 
predecessors of each node in the graph. The input data consists of 
pairs of strings, representing the ordering relatiohship. The out-
put is a list of strings giving one possible linear ordering. For 
the sake of simplicity, a test for cycles has been omitted. 

module main; 

/* names is set of names involved */ 
/* succ is a map giving the ordering */ 

names ml; 
succ

/* loop reading pairs giving ordering 

loop doing read(a,b) until a = on do 

names with a; 

names with b; 

succ with (a,b); 

end; 

*/ 

/* numpred(x) = number o£ predecessors of x */ 

/* nopred is list of nodes with numpred = 0 */ 

numpred :_ {[n,0) n in names}; 

(forall [a,li) in succ) numpred(b) + 1; end; 

nopred {n in names I numpred(n) = 0); 
/* this loop, picks elements from nopred and */ 
/* removes them, adjusting numpred properly */ 

(while nopred /= a) 

print(next from nopred, newline); 

(forall f in succ{next}) 

numpred(f) - 1; 

i£ numpred(f) = 0 then nopred with f; end 

end;

end; 

end; 

FIGURE 1. TOPOLOGICAL SORT IN SETL 
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This example shows how SETL allows specification o£ an algorithm of 
this type with a minimum of extraneous details. No declarations 
are required, all typing being weak, and it is not even necessary 
to, specify the data structures which will be used for the various 
maps and sets involved. However, the basic details of the algorithm 
must be provided. SETL makes no attempt to derive clever algorithms 
automatically from high level specification statements. To illus-
trate this point, we give another program for the topological sort 
in Fig. 2. SETL regards this as an (inefficient) algorithm in its 
own. right. The problem of deriving the algorithm of Fig. 1 automa-
tically from that of Fig. 2 is an interesting one, but is not 
attempted in the current version of SETL, nor envisioned as an 
integral part of the language. For an approach to this problem 
using techniques of formal differentiation, see [3). 

module main; 

names
succ .= inl; 

loop doing read(a,b) until a = on do 

names with a; 

names with b; 

succ with [a,b); 

end; 

(while is n in names j not(is x in names [x,n) in succ)) 

print Cu from names, newline); 

end; 

end; 

FIGURE 2. SLOW TOPOLOGICAL SORT IN SETL 

Returning to Fig. 1, this program may be submitted to the SETL com-
piler and win run as it stands, using a standard hash table struc-
ture for all maps and sets. The execution will be efficient in the 
sense that the algorithm is linear in the number of pairs in succ, 
and its execution time will be linear when expressed in this manner 

in SETL, i.e., no hidden 'order N' or worse inefficiencies creep in. 
However, the running time will be worse (by some constant £actor) 
than the low level expression of the same algorithm due to the basic 
overhead of accessing hashed structures. 

One possible approach to improving the efficiency of the algorithm 
in Fig. 1 is to recode it in some lower level language where ex-
plicit data structure choices, which are more efficient for the 
problem at hand than hash tables, can be made. To illustrate this 
we show just the last part o£ the algorithm (the loop which outputs 
successive elements) coded in ALGOL-SS with two different data 
structure choices: 

Fig. 3 shows the result of using linked lists to represent the map 
nuoa and the set nopred. This data structure choice ensures linear 
time behaviour of the algorithm. 
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Fig. 4 shows the result of using a bit matrix to represent the map 

succ, and a bit string to represent the set nopred. This represent-
ation is more efficient in terms of storage use, at the expense of 
added execution time and a departure from linear behaviour. 

mode node = struct (string name, 

int nunipred, 

ref link succ); 

mode link = struct (ref node node, 

ref link link); 

ref link nopred; 

comment (while nopred /= at) co;maent 

while nopred :/_: ref link (nil) do 

comm=ent print (next from nopred, newline); comment 

ref node next = node of nopred; 

nopred := link of nopred; 

print ((string of next, newline)); 

comment (forall f in succ{next}) con¢nent 

ref node fn :- succ of next; 

while fn :/_: ref link (nil) do 

ref node f = node of fn; 

fn next of fn; 

comment numpred(f)-1; comment 

numpred of f -.= 1; 

comment if numpred(f) = 0 then nopred with f; end; comment

if numpred of f - 0 

then

nopred := heap link :_ (f, nopred) 

fi 

od 

od 

FIGURE 3. ALGOL-68 TRANSLATION (LINKED LISTS) 

int n $ number of items involved @; 

[n,n) bool succ; 

[n) int numpred; 

[n) string name; 

[n} bool nopred; 

continent (while nopred /= ni) comment
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while 

'jut next; 

bool found false;

for j to n while not found do 

if nopred(j) then found := true fi 

od;

found 

do; 

comment print(next from nopred, newline); comment 

nopred[next] := false;

print((name [next], newline)l; 

comment (forall f in suce{next)) comment 

for f to n do 

if succ[next, f] then 

comment numpred(f)-1; comment

numpred[£] 1; 

comment if numpred(f)=0 then nopred with f; end; comment

if numpred[f]-0 then nopred[f] true fi; 

fi 

od 

od 

FIGURE 4. ALGOL-68 TRANSLATION (HIT STRINGS) 

From these examples we note two important points. First, the ex-
pression o£ the algorithm in ALGOL-68 is greatly affected, by the 
choice of data structures. It is quite difficult to see, from the 
ALGOL-68 text alone, that the underlying algorithm is identical 
since its logical structure has been obscured by different data 
structure choices in the two cases. 

Secondly, the derivation o£ these examples from the basic algorithm 
as expressed in SETL is essentially mechanical once the data 
structure choice has been made. To emphasize this point, we have 
included as co;mnents in the ALGOL-68 text the SETL statements to 
which sections of the ALGOL-68 text correspond.. 

The fact that this translation is mechanical suggests that it should 
be automated, and this is the central idea behind the SETL represent-
ation sublanguage, whose purpose is to allow the programmer to gain 
the efficiency made possible by detailed specification of data 
structures, without requiring the time consuming and error prone 
process of translating the entire algorithm. 

The declarations o£ the representation sublanguage are completely 
separate from the SETL program itself, which is not modified in any 
way. The normal procedure is to create these declarations as a 
noparato file, which the compiler merges with the original program 
by matching up module and procedure names. 
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At its simplest level, the representation language allows datatype 
declarations which are syntactically similar to the ordinary 
declarations of an ALGOL like language. The intention is however 
focused on gaining efficiency, rather than obtaining the compile 
time checking available with strong typing. The resulting program 
will run faster simply because some type checks may be eliminated, 
and hard code generated for some sequences which required library 
calls in the original form. However, the program still contains a 
sufficient number of type checks to ensure its integrity. If there 
is an assignment statement A: = B; and A has been declared to be an 
integer, and B has been left undeclared, then if it is not possible 
to determine by global flow tracing that B has an integer value at 
the point of the assignment, a type check is made and an execution 
error occurs if H is not an integer. This ensures that the only 
possible adverse effect of making such datatype declarations is to 
cause the resulting program to terminate with an error message. 
It is never possible to introduce a type error which is undetected 
and causes erroneous results. 

The more complex part of the representation sublanguage is concern-
ed with specifying the data structures for maps and sets. The im-
portant concept here is that of a base set. A base set is an 
auxiliary set which may not appear explicitly as a variable in the 
program, and in terms of which actual program variables are de-
scribed. 

In the case of the topological cart, the significant base set is 
the set of names, and a statement: 

base nodes : string;

identifies the base and gives it the name nodes. This name does 
not appear in the algorithm itself, but will be referenced in 
other declarations in the representation section. 

We then identify the program variable names as a set whose elements 
are elements of this base set: 

repr names : local set {elmt nodes};

The base set will be stored as a linked hash table at run time. The 
repr declaration for names causes it to be represented using a 
single bit associated with each element of the base set, the bit 
being on if the element of the base is in names. In this particular 
case, all such bits will be on, since the base nodes is identical 
to the set names. However, this is a property o£ the algorithm on 
which we do not depend when constructing these declarations. 

Two other representation are available for sets, and are illustrat-
ed by the following possible declarations for the set nopred: 

repr nopred : sparse set feint nodes}; 

repr nopred : remote set {elmt nodes};

The sparse representation causes nopred to be stored as a hashed 
linked list of pointers into the base set. Normally SETL does nob 
use pointers to values (an assignment of a set or map value causon 
the map to be copied, rather than generating a pointer to the same 
value), however this introduction of pointers is entirely trann-
parent, since the base set is not a program variable. Thus uvory 
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time a value is added to the set nopred, it will be added to the 
base set nodes if it is not there already, but this side effect is 
transparent because the value of the base set nodes cannot be in-
spected by the program. Again it is a property of the algorithm, 
not used in the construction of the declarations, that whenever a 
value is added to nopred, it is already in the base set. The re-
presentation obtained for nopred by this declaration is similar to 
that chosen in the linked lists ALGOL-68 version of the algorithm. 

The remote representation causes nopred to be stored as a bit 
string. As a base set is constructed, unique (but arbitrary) in-
teger index values are assigned to its elements. These index 
values are used to select the bit corresponding to a particular 
base element from the bit string. This representation corresponds 
to that chosen for the second ALGOL-68 version. It should be noted 
that this representation is particularly effective if set union or 
intersection operations are to be performed on sets stored in this 
manner, since these operations reduce to bit vector logical 
operations. 

We now turn our attention to the maps numpred and succ. There are 
three representations available for maps where the domain o£ the 
map corresponds to a base set/analogous to the three representat-
ions for sets: 

local map Represented by storing the range value in a 
dedicated field allocated in each element of 
the base set. 

remote map Represented by storing a vector of range values, 
indexed by the index values associated with 
base elements. 

sparse map Represented by a separate hashed linked list, 
where the domain value of each entry is a 
pointer to the corresponding base element. 

In addition, the representation declaration distinguish between 
single valued maps (snap) and multiple valued maps (mmap).

We may now choose representations for the maps numpred and suce as 
follows: 

repr numpred : local smap (elmt nodes) ,int; 

repr succ : local m ap {elmt nodes} sparse set (elmt nodes); 

repr succ : remote n®ap (elmt nodes) remote set {elmt nodes); 

The two declarations for euoe correspond to the two possible choices 
illustrated by the.ALGOL-68 programs. As can be seen, the difference 
is obtained by altering a single word in the declaration text; no 
changes whatever are made to the original SETL algorithm, in contrast 
with the extensive differences in the ALGOL-68 programs. Finally, 
we have 

repr n, a, b, f : elmt nodes;

This causes these variables to be stored as pointers to the corres-
ponding base elements. Indexing a local map with such a variable 
corresponds to picking up the appropriate field of the base element 
using thin pointer, which is analogous to a structure selection in 
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ALGOL-68. Indexing a remote map with such a variable is a vector 
indexing operation. 

The two sets of declarations, corresponding to the two ALGOL-68 
examples, are given in their entirely, as they would be submitted 
to the SETL compiler, in figure 5. 

Module main; 

/* repr section for list representations */ 
base 

nodes string; 

end• 

•repr 

names local set {elmt nodes}, 

succ local nmeap {elmt nodes} sparse set feint nodes}, 

numpred: local E (elmt nodes) int, 

nopred : sparse set feint nodes}, 

n,a,b,f: eimt nodes;

end• 

end; 

Module main; 

/* repr section for bit string representation */ 

base 

nodes :  string;

end• 

repr

names : local set feint nodes}, 

succ remote mmap feint nodes} remote set feint nodes), 
numpred: local map (elmt nodes) int, 

nopred : remote set {elmt nodes},

n,a,b,f: elmt nodes; 

end•

end; 

FIGURE 5. SETL REPR SECTIONS FOR TOPOLOGICAL SORT 

By submitting the original SETL program together with one of the two 
possible reQr sections to the SETL compiler, a resulting program is 
obtained which closely resembles the corresponding ALGOL-68 program 
in execution style and efficiency. 

The word 'closely' in the above paragraph is worth examining in more: 
detail since it illustrates at the same time the power o₹ the SETL 
approach and the danger of manual translations such as those given 
in ALGOL-68 earlier. 
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The bit string representation in SETL is a. very close match for its 
ALGOL-68 counterpart. The only difference is that the SETL 
structure for suce is a vector of vectors, rather than the two 
dimensional array which will be obtained from most ALGOL-68 
compilers (i.e., it corresponds to declaring suce as {] ref (] bool
rather than (,] boo].). 

The 'linked list' representation in SETL is a different matter. 
SETL will store nopred, as a hashed linked list, the hashing being 
required by the fact that nopred is a set and sets may not contain 
duplicate elements. This means that the statement: 

nopred with f; 

involves a hashing operation, even in the presence of all the repr 
statements, causing the program to run more slowly. What went wrong? 

The, answer is that the ALGOL-68 program is not an exact translation 
of the SETL algorithm as given. It translates the offending state-
ment without any attempt to eliminate possible duplicate elements. 
However, it is a fairly subtle property of the algorithm as stated 
that there never arises a case in which an attempt to insert 
duplicate elements is made. Thus the ALGOL-68 translator was either 
clever 'or lucky, but was in any case doing much more than tran-
slating the original algorithm. This is good example of the kind 
of potential error which can be introduced by manual refinement of 
algorithms. The correctness of the translation depending on an 
unstated assumption whose validity, even once stated, is far from 
obvious. Many program bugs are introduced in similar fashion by 
basing program transformations on similar assumptions which are 
not valid in all cases. 

The SETL approach guarantees that the program resulting from use of 
the repr statements is semantically equivalent to tha original. In 
the absence of datatype errors, which will result in error ter-
mination, the results obtained will be identical to those obtained 
from the original program. Therefore it was impossible to use repr
statements to convert the SETL program into the (potentially 
different) version represented by the ALGOL-68 program. It is 
possible that a clever optimizer could note that such a translation 
was possible, but this is outside the scope of the current work. 

In SETL terms, the approach embodied in the ALGOL=68 linked list 
translation represents a (slightly) different algorithm, and this 
difference must be reflected in the original statement. If we use 
a tuple rather than a set for nopred, then the desired semantics 
(of ignoring equal elements) are obtained. This is achieved simply 
by changing one statement in the original program: 

nopred {n in names I numpred(n) = 0]; 
becomes 

nopred tuple_ (n in names I numpred(n) 07; 

Ropr statements can now be given to generate the linked lists of 
the ALGOL-68 example essentially exactly. However, the bit string 
representation for nopred is no longer valid and the second ALGOL-
60 translation is now "incorrect". Therefore it is no longer 
pouuible to gunorate thin translation using repr statements, 
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although the map succ could still be represented as a bit matrix. 

In conclusion, the SETL approach allows algorithms to be written in 
a maximally concise manner, without concern for selecting the data 
structures to be used. A reasonably efficient execution can be 
obtained from this initial statement. If greater efficiency is 
desired, then repr statements may be added to the SETL program at 
selected points to enhance its efficiency without any danger of in-
troducing errors by subtle departures from the semantics of the 
original program. The resulting program will execute with efficiency 
comparable to that attainable from a lower level language without 
the need to entirely recode the algorithm at the lower level. We 
believe that this approach will be effective in meeting the de-
clared goal of making it easier to write good programs. 
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Ifolager: It seems to Inc that sets in the mathematical sense are too rrnornl 
for use in programming. What I think we need is a limited form of sets, In order 
to get more discipline In the programming process. Have you any comments on 
that? 

Dewar: To some extent, i am put in the position of someone clefendlnr APL, 
trying to argue that the whole world consists of vectors of varying length. I 
think I have a more secure basis in claiminci that all the world Is made up of 
sets and maps, but seriously, I think the test is whether It works in practice. 
It's certainly not the case that maps are an immediately natural way of 
thinking, but our experience Is that, with some small level of exposure, it 
quickly becomes a way of thinking which effectively meets the criterion of 
producing programs In a clear form. I think that it Is very hard to demonstrate 
by any abstract arguments. I'd rather demonstrate it by concrete experionce. 

Holager: My point was that a set of some limited kind of elements might be a 
better concept than just a general set of anything. 

Dewar: That comment seems related to the question of strong typing in 
general. There is a very simple answer to that.11ow can you ever have a set of 
specific elements without having to say what kind of elements they are? it is a 
nuisance which does not achieve anything from the point of view of making it 
easier to write good programs. It may achieve something from the point of view 
of making it hard to write bad programs, but as I have said, this Is not the focos 
of our objectives. 

Wichmann: I don't quite understand how you can clmnge the representation or 

a procedure parameter, since the representation of the actual parameter may 
change from call to call. Could you explain please? 

Dewar: Each variable that appears In the program has some specific 
declaration. If there arises a case where you want to give multiple declarations 
of something, there Is a facility for obtaining multiple representations 
throughout, but there Is no facility for saying dynamically represent it 
sometimes one way and sometimes another way. in most programs a given 
variable has one use throughout the program. Strong typing does not severely 
restrict the power of expression. It is, after all, not the case that all variables 
in an ALGOL 68 program are unions. Although you can construct examples where 
the latter possibility is wanted, looking et the considerable library of programs 
which we have collected, that's certainly not a problem. 

ICos ter. If you choose a dif b runt representation for your underlying data 
s trim lures, them you have to ohnnge the. ALGOL fi8 program rn dicaily. Ilnwevor, 
I oonsldnr tho Inct that this program is not hivnrlart under thn, chnicrm of 
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representation to be a programming error in the original program. The program, in 
tact, does not have a sufficient degree of uniformity of referents. If you want 
to change your representation in this way, you have to separate your program 
out into a functional part and a representational part, and take care that the 
changes in the representation are all confined to the layer where this 
representation Is defined. 

Ross: Could yen compare. the SETL approach to other forms of abstract data 
types, as In CLU or ALPRARD? They all seek to raise the abstraction level. in 
the early 60's we chose not to extend the syntax in those areas, but only to 
work with the semantic level in terns of hierarchies of functions. Ilinh level 
functional instructions stayed cxactiy the same in the face of radical changes 
of the basic functions which effectively implemented them. 

Dewar: First of all, I find it strange to put SETT. in the snnie class as ALPIlARD 
because I find them to be two sides of a coin. We are very interested to know 
which way that coin will fall. [Ross shows that the coin falls on its side. 0] I 
would like to take the example from the ALPRARD paper presented here. I 
wrote the symbol table from that paper as an exercise. It's about 12 lines of 
SETL which I considered to be very clear. In fact, the level of clarity is, I think, 
very similar to, or an improvement on, the level of clarity of the ALPIIARD 
specification section. Unfortunately, there Is a lot left to do in AI,PIIARD after 
writing the specification section, which is itself twice as long. Now, I am willing 
to believe that the 150 lines that represent the symbol table example In 
ALPIIARD are correct, after much effort In verifying them. But I am also, with 
much less effort, willing to believe that my 12 lines are correct. I think we have 
two very different approaches. I consider ALPRARD to be a crystallization of 
the approach of dninq extra work to avoid errors. The reason that I didn't treat 
a symbol table example In my talk is because its native implemeota tion in SETi 
was perfectly efficient and didn't require any use of the data structuring 
mechanism. The Important point in SETL is that these mechanisms would ho 
applied in a very Ilmlted manner, only where they were needed to improve 
efficiency. 

Correll: 1 would come back to the comparison with CLIi and ALPIIARD. What I 
like about SETT. Is that it Is easier to write programs in this language; It was 
very hard for me to write programs in CLU and ALPNARD. The reason Is that the 
approach is different. SETL tries to be a high-level language and tries to 
support automatic translation to lower levels. CLU and ALPRARD leave tills 
translation process to the user and hope that the user can prove that lilt 

implementation is correct. 

Dewar: Yes, I certainly agree with that. I night say that In preparing my slides, 
I found the task of translating into ALGOL 66 more difficult than I expec ted 
and, in fact, when I showed the slides to someone who knows ALGOL 06 very 
well, the one with linked lists and references had to be examined very 
carefully to make sure that It was correct. 

Fuksman: Do you have any experience in writ big system programs u:;lull ShT 13 
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Dewar: The tenh "system progrnnniing" seams to cover a number 
possibilities. Certainly for such system components as compilers, SETT. Is , 
appropriate choice. The global optimizer for SETT. is being written in SETL at 
we expect It to be adequately of Violent. Now if systems pror.Iranns men, 
operating systems, I think that raises entirely different issues, for exampl 
the question of protection. It is one thing to talk about bad programs: it's gtli' 
another to talk about protection in the presence of malicious systc 
components. That problem is not addrossed by the current design of tl 
language. 




