Constructing Quality Software, P.G. Hibbard/S.A. Schuman {eds.)
©IFIP, North-Holland Publishing Company, {1978)

SETL AS A TOOL FOR GENERATION OF QUALITY SOFTWARE *

Robert B. K. Dewar
Arthur Grand
Ssu—Cheng Liu

Edmond Schonberg
Jacob T. Schwartz

Computer Science Department
Courant Institute of Mathematical Sciences
New York University

'Pure’ SBEPL is a language of very high level, allowing
algorithms to be programmed rapidly and concisely with
minimum attention to specification of detailed data
structures. A representation sublanguage adds a system

of declarations which allow the user of the language to
specify the data structures that will be used to implement
an algorithm which has already been written in pure SETL,
without necessitating any rewriting of the algorithm itself.

To the extent that programming tools can aid in the development of
quality software, there seem to be two possible approaches to their
design:

1) Make it harder to write bad programs ®
2) Make it easier ‘o write good programs®

tuch of the work in development of very strongly typed languages
(e.g. ALPHARD, [1]} which emphasize aids for proof of correctness
approaches seems to focus on the first aim of making it hard to write
bad programs. The difficulty with this approach is that the
syntactic complexity imposed on the programmer often conflicts with
the goal of making it easier to write good programs. Thus we may
observe that even simple programs in ALPHARD are long and involve a
large proportion of text which is not part of the algorithm proper,
but rather represents redundant semantic information whose sole
purpose is to facilitate formal proofs of program correctness.

'he approach of SETL [2] is to focus almost exclusively on the aim
of making it easier to write good programs, realizing that this
involves omitting some of the bullt-in redundancy which is
characteristic of strongly typed languages. It is interesting to
note that two other languages taking a similar approach, APL and
HSNOBOL4, are proving td be extremly popular despite minimal manu-
Incturer support and despite the fact that both these languages can

* This work was supported by: The National Science Foundation Grant
MC5-76-00)6, and ERDPA Admingtration Agency Contract E¥Y-76-C-02-
J37TTN Q00 .

354 _ DEWAR et al.

only be dismissed as jokes by proponents of structured programming
concepts, We believe that the success of these two languages is a
reflection of the fact that the emphasis on ease of programming is
an important one. The SETL language attempts to capitalize on this
point, and at the same time demonstrate that this goal can he
achieved without sacrificing the basic notions of modularity and
structure which are essential to the production of large programs,

To illustrate the SETL appzroach, we give in Fig. 1 a complete
example of a SEYL program. This program performs a topological sort
vsing the familiar algorithm which keeps track of the number of
predecessors of each node in the graph. The input data consists of
pairs of strings, representing the ordering relatiohship. The out-
put is a lisgt of strings giving one possible linear ordering. For
the sake of simplicity, a test for cycles has been omitted.

nodule main;

/* names is set of names involved */
/* suce is a map giving the ordering */
names

1= n&;
succ 3= ni;
/* loop reading pairs giving ordering L4

loop doing read(a,b) until a = om do
names with a;
names with b;
suce with [a,b];

endy

/* numpred(x) = nunmber of predecessors of x */
/* nopred is 1ist of nodes with numpred = 0 */

numpred := {[n,0] : n in names};
{forall “{a,b] irn succ) numpred(b) + 1; end;
nopred := {n in names | numpred(n) = 0};
/* this loop. picks elements from nopred and */
/* removes them, adjusting numpred properly */
(while nopred /= nk)
print(next from nopred, newline};
(forall £ in succ{next})
nunpred{£} - 1;
iﬁ numpred{£) = 0 Eggg_nopred with f; end

end;

end;

FIGURE 1. TOPOLOGICAL SORT IN SETL

SETL AS A TOOL 356

This example shows how SETL allows specification of an algorithm of
this type with a minimum of extraneous details. No declarations

are required, all typing being weak, and it is not even necessary
to, specify the data structures which will be used for the various
maps and sets involved. However, the basic details of the algorithm
must be provided. SETL makes no attempt to derive clever algorithms
automatically from high level specificaticon statements. To illus-—
trate this point, we give anocther program for the topolegical sort
in #ig. 2. SETL regards this as an (inefficient) algorithm in its
own right. The problem of deriving the algorithm of Pig. 1 automa-
tically from that of Fig. 2 is an interesting one, but is not
atfempted in the current version of SETL, nor envisioned as an
integral part of the language. For an appxroach to this problem
using techniques of formal differentiation, see [3].

module main;
module

names := ni;
succ := H

loop doing read({a,b) until a = om do
names with a;
names with bj
succ with {a,bl;
end;
{(while is n in names | not(is x in names | [x,n] in suce))
print(n from names, newline);
end;

end ;

FIGURE 2. SLOW TOPOLOGICAL SORT IN SETL .

Returning to Fig. 1, this program may be submitted to the SETL com-—
piler and will run as it stands, using & standard hash table struc-
ture for all maps and sets, The execution will be efficient in the
sense that the algorithm is linear in the number of pairs in succ,
and its execution time will be linear when expressed in this manner
in SETL, i.e., no hidden 'order X' or worse inefficiencies creep in.
However, the running time will be worse (by some c¢ongtant factor) .
than the low level expression of the same algorithm due to the basic
overhead of accessing hashed structures.

One possible approach to improving the efficiency of the algorithm
in Fig.) is to recode it in some lower level language where ex-—
plicit data structure choices, which are more efficient for the
problem at hand than hash tables, can be made, To illustrate this
we show just the last part of the algorithm {the loop which outputs
successive elements) coded in ALGOL-68 with two different data
structure choices:

Pig. 3 shows the result of using linked lists to represent the map
auca and the set popred, This data structure choice ensures linear
timo behaviour of the algorithm.

356 DEWAR et al.

Pig. 4 shows the result of using a bit matrix to repres?nt the map
guce, and a bit string to represent the set ngpred. This represent-
ation is more efficient in terms of storage use, at the expense of
added execution time and a departure from linear behaviour.
mode node = gtruct (string name,
int numpred,
ref link succ);
mode link = struct (ref node node,
ref link link);

ref link nopred;
comment (while nopred /= nf)} comment
while nopred :/=: ref link {(mil) do
comment pri:nt(naxt from nopred, newline); comment
ref node next = node of nopred:
nopred := link of nopred:;
print ((string of next, newline});
comment {forall f in succ{next}) comment
ref node fn := succ of next;
while £n :/=: ref link (ni1)} do
ref node £ = node _:_)E_fn;
fn := next of fn;
comment numpred{£)-1; comment
numpred of £ —:= 1;
comment if numpred(f) = 0 then nopred with f; end; comment
if numpred of f = 01
then
nopred := heap link := (f, nopred)
£i
od
od

FIGURE 3. ALGOL-58 TRANSLATION (LINKED LISTS)

int n := § number of items involved #;
In,n] bool succs
[n] int numpred;
[n] string name;
{n] bool nopred:
comment (while nopred /= nf) comment

-

SETL AS A TOOL . 357

while
int next;
bool found := false;
for j to n while not found do
if nopred(j) then found == true fi
od;
found
dos
comment print(next from nopred, newline); comment
nopred[next] := false;
print{(name [next], newline));
comment (forall f in succ{next}) comment
for £ to n do
if sncelnext, £] then
comment numpred(£)-1l; comment
numpred[£] —-:= 1;
comment if numpred(f)=0 then nopred with £; end; comment
if numpred[£]=0 then nopred[f] := true £i;
£
od
od

FIGURE 4. ALGOL-68 TRANSLATION (BIT STRINGS) .

From these examples we note two important peints. First, the ex-
pression of the algorithm in ALGOL-68 is greatly affected by the
choice of data structures., It is quite difficult to see, from the
ALGOL-68 text alone, that the underlying algorithm is identical
since its logical structure has been obscured by different data
structure choices in the two cases,

Secondly, the-derivation of these examples from the basic algorithm
as expressed in SETI is essentially mechanical once the data
structure cholce has been made. To emphasize this point, we have
included as comments in the ALGOL—68 text the SETL statements to
which sections of the ALGOL-68 text correspond,

The fact that this translation is mechanical suggests that it should
be avtcmated, and this is the central idea behind the SETL represent-
ation sublanguage, whose purpose is to allow the programmer to gain
the efficiency made possible by detailed specification of data
structures, without requiring the time consuming and error prone
process of translating the entire algorithm.

The declarations of the representation sublanguage are completely
poparate from the SETL program itself, which is not modified in any
way. The normal procedure is to create these declarations as a
peparate file, which the compiler merges with the original program
by matehing up module and procedure names.

358 DEWAR et al.

At its simplest level, ,the representation language allows datatype
declarations which are syntactically similar to the ordinary
declarations of an ALGOL like language. The intention is however
focused on gaining efficiency, rather than obtaining the compile
time checking available with strong typing. The resulting program
will run faster simply because some type checks may be eliminated,
and hard code generated for some seguences which required libzrary
calls in the original form. However, the program still contains a
sufficient number of type checks to ensure its integrity. Ef there
is an assignment statement A: = B; and A has been declared to be an
integer, and B has been left undeclared, then if it is not possible
to determine by global flow tracing that B has an integer value at
the point. of the assignment, a type check 1s made and an execution
error occurs if B is not an integer., This ensures that the only
possible adverse effect of making such datatype declarations is to
cause the resulting program to terminate with an error message.

It is never possible to introduce a type error which is undetected
and causes erroneous results.

The more complex part of the representation sublanguage is concern-
ed with specifying the data structures for maps and sets. The im-
portant concept here is that of a base set. A base set is an
auxiliary set which may not appear explicitly as a variable in the
program, and in terms of which actual program variables are de-~
scribed.

In the case of the topological sort, the significant base set is
the set of names, and a statement:

base nodes : string;

identifies the base and gives it the name nodes. ‘This name does
not appear in the algorithm itself, but will be referenced in
other declarations in the representation section.

We then identify the program variable names as a set whose elements
are elements of this base set:

repr names : local gset {elmt nodesl;

The base set will bé stored as a linked hash table at run time. Thg
repr declaration for names causes it to be represented using a
51§gle bit assouciated with each element of the base set, the bhit
being on if the element of the base is in names. In this particular
case, all such bits will be on, since the base nodes is identical

to the set names. However, this is a property of the algozrithm on
which we do not depend when constructing these declarations.

Two other representation are available for sets, and are illustrat-
ed by the following possible declarations for the set noprad:

repr nopred : sparse set {elmt nodesl;
repr nopred : remote set {elmt nodes}:

The ssarse representation causes nopred to be stored as a hashed
linke ,1ist of pointers into the base set., MNormally SETL does nol
use pointers to values (an assignment of a set or map value caucan
the map to be copied, rather than generating a pointer to the samag
value), however this introduction of pointers is entirely Urzanan-
parent, since the base set i¥ not a program variable. Thus avary

SETL AS A TOOL 359

time a value is added to the set nopred, it will be added to the
base set nodes if it is not there already, but this side effect is
transparent because the value of the base set nodes cannot be in-
spacted by the program, Again it is a property of the algorjthm,
not used in the construction of the declarations, that whenever a
value is added to nopred, it is already in the base set. The re-
presentation obtained for nepred by this declaration is similar to
that chosen in the linked lists ALGOL-68 version of the algorithm.

The remote representation causes nopred to be stored as a hit
string, &As a base set is conskiructed, unigue (but arbitrary) in-
teger index values are assigned to its elementg, These index
values are used to select the bit corresponding to a particular
base -element from the bit string. This representation corresponds
t& that chosen for the second ALGOL-68 version. It should be noted
that' this representation is particularly effective if set union or
intersection operations are to be performed on sets stored in this
manner, since these operations reduce to bit vector logical
operations.

We now turn our attention to the maps numpred and succ. There are
three representations available for maps where the domain of the
map corresponds to a base set, analogous to the three representat-
iona for sets:

local nmap Represented by storing the range value in a
dedicated field allocated in each element of
the base set,

remote map Represented by storing a vector of range values,
indexed by the index values associated with
base elements.

sparse map Represented by a separate hashed linked list,
where the domain value of each entry is a
pointer to the corresponding base element.

‘In addition, the representation declaration distinguish between
single valued maps (smap) and multiple valued maps (mmap).

We may now choose representations for the maps numpred and suece as
follows:
repr numpred : local smap (eimt nodes) int;
repr succ : local mmap {elmt rodeg} sparse set {elmt nodes};
‘repr succ : remote mmap {elmt nodes} remote set {elmt nodes}:

The two declarations for eued correspond to the two possible choices
illustrated by the ALGOL-6B programs. As can be seen, the difference
iz obtained by altering a single word in the declaration text; no
changes whatever are made to the original SETL algorithm, in contrast
wit% the extensive differences in the ALGOL-68 programs. Finally,

we bave

repr n, a, b, £ : elmt nodes;

This causes these variables to be stored as pointers to the corres-—
ponding base elements. Indexing a local map with such a variable

corresponds to picking up the appropriate field of the base element
using this pointer, which 1ls analogous to o structure selection in

360 DEWAR et al.

ALGOL-68. Indexing a remote map with such a variable is a vector
indexing operation.

The two sets of declarations, corresponding to the two ALGOL-68
examples, are given in their entirely, as they would be submitted
to the SETL compiler, in figure 3.

Module main;
/* repr section for list representations */

base

nodes : string;
end;
‘TEepr

names : local set {elmt nodes},

suce : local mmap {elmt nodes} sparse set {elmt nodes},
numpred: local map {elmt nodes) int,
nopred : sparse set {elmt nodes},

n,a,b,f: elmt nodes;
end;

end ;

Module main:
/* repr section for bit string representation */

o
a
%]
1]

nodes : string:

m
=)
[3]]

H
{D
R

names : local set {elm: neodes},
suce : remote mmap {elmt nodes} remote set {elmt nodes),

numpred: local map {elmi nodes} int,
nopred : remote set {elmt nodes},

n,a,b,£f: elmt nodes;
end;
end;-
F¥IGURE 5. SETL REPR SECTIONS FOR TOPOLOGICAL SORT

By submitting the origimal SETL program together with one of the two
possible repr sections to the SETL compiler, a resulting program inp
obtained which closely resembles the corresponding ALGOL-68 program
in execution style and efficiency.

The word ‘closely' in the above paragraph is worth examining in moroe
detail since it illustrates at the seme time the power of the BETL
approach and the danger of manual translations such as those given
in ALGOL~68 earlier.

SETL AS A 7001 361

The bit string representation in SETL is a very close match for its
ALGOL-68 counterpart. The only difference is that the EETL
structure for suce is a vector of vectors, rather than the two
dimensional array which will be obtained from most ALGOL-68
compilers (i.e., it corresponds to declaring suec as [l ref [] bool
rather than [,] bool).

The 'linked list' representation in SETL is a different matter.
SETL will store nopred as a hashed linked list, the hashing being
required by the fact that nopred is a set and seis may not contain
duplicate elements. This means that the statement:

nopred with f£;

involves a hashlng operation, even in the presence of all the repr
statements, causing the program to run more slowly. What went wrong?

The. answer is that the ALGOL-68 program is not an exact translation
of the SETL algorithm as given. It translates the offending state-—
ment without any attempt to eliminate possible dupllcate elements.
However, it is a famrly subtle property of the algorithm as stated
that there never arises a case in which an attempt to insert
duplicate elements is made. Thus the ALGOL- 68 translator was either
clever 'or lucky, but was in any case 601ng much moxre than tran-
glating the original algorithm. This is good example of the kind
of potential error which can be introduced by manual refinement of
algorithms. The correctness of the translation dependlng on an
unstated assumption whose wvalidity, even once stated, is far from
obvicus. Many program bugs are introduced in similar fashion by
basing program transformations on similar assumptions which are

not valid in all cases.

The SETL approach guaranteea that the program resulting f£rom use of
the xepr statements is semantically equivalent to the original. In
the absence of datatype errors, which will result in error ter-
mination, the results obtained will be identical to those ebtained
from the original program. Therefore it was impossible to use repr
statements to convert the SETL program intc the (potentially
different) version represented by the ALGOL-68 program. It is
possible that a clever optimizer could note that such a translation
was possible, but this is outside the scope of the current work.

In SETL terms, the approach embodied in the ALGOL-68 linked list
transiation represents a (sl;ghtly) different algorithm, and this
difference must be reflected in the original statement. If we use
a tuple rather than a set for nopraed, then the desired semantics
(oF iIgnoring equal elements) are obtained. This is achieved simply
by changing one statement in the original program:

nopred := {n in names | numpred{(n) = 0};
becomes
nopred t= tuple [n in names [numpred(n) = 01;
Re statements can now be given to generate the linked lists of
the ALGOL—GB exanple essentlally exactly. However, the bit string
rapregentation for nopred is no longer valid and the second ALGOL-

60 translation is now "incorrect". Therefore it is no longer
posaible to guncrate this branslation using repr statements,

362 DEWAR et al.

although the map suce could still be xepresented as a bit matrix,

In conclusion, the SETL approach allows algorithms to be written in
a maximally concise manner, without concern for selecting the data
structures to be used. A reasonably efficient execution can be
obtained from this initial statement. If greater efficiency is
desired, then repr statements may be added to the SETL program at
selected points to enhance its efficiency without any danger of in-
troducing errcors by subtle departures from the semantics of the
original program. The resulting program will execute with efficiency
comparable to that attainable from a lower level language without
the need to entirely recode the algorithm at the lower level. We
believe that this approach will be effective in meeting the de-~
clared goal-of making it easier to write good programs.

REFERENCES

; [11 HWualf, W.A., R.L. London & M. Shaw, Abstraction and verifi-
| cation in Alphard: 1in New Directions in Algorithmic Languages
' 1975 S.A. Schuman {ed.) IRIA, Rocquencourt, 1976.

{21 schwartz, J,.T., On Programming: An Interim Report on the SETL
Project: Part I: Generalitieg: Part II: The SETPL Language
and Exzamplee of ite Use: Revised June 1975 Computer Science
Department, Courant Institute Of Mathematical Sciences, New

. York University.

| [3}] ©Paige, R. and Schwartz, J.T., Expression Continuity and the
' Formal Differentiation of Algorithms: Proc. Fourth ACM
Symposium on Principles of Programming Language, Jan, 1977,

Dewar et al. : Discussion

Holager: It seems to me that sets in the mathematical sense are oo general
for use in programming. What | think we need is a limited form of sels, n order
to get more discipline In the programming process. Have you ahy commeits on
that?

Dewar: To some extent, 1 am put in the position of someone defending APL,
trying to argue that the whole world consists of vectors of varying length. |
think 1 have a mare secure basis In clalming that all the world Is made up of
sets and maps, but serlously, 1 think the test is whether it works in practlice.
" H's coertainly not the case that maps are an immediately natural way of
thinking, but our experience is that, with some small levei of exposure, it
cuickly becomes a way of thinking which effectively meels the criterion of
producing programs in a clear form. | think that it Is very hard to demonstrate
by any ahstract arguments. I'd rather demonstrate it by concrete experience.

Holager: My point was that a set of some limited kind of elements might be a
hetler concept than Just a general set of anything.

Dewar: That comment seems related to the question of strong typing in
general. There Is a very sinple answer to that. tlow can you ever have a sct of
speclfic elements without having to say what kind of elements they are? it is a
nuisance which does not achieve anything from the point of view of making it
easier to write good programs. It may achieve something from the point of view
of making it hard to write bad programs, but as | have said, this is not the focus
of our objectives.

Wichmann: | don't quite undersland how you can change {he representation of
a procedure parameter, since the reprosentlation of the actual parameter may
change from call to call. Could you explaitt please?

Dewar: Each varlable that appears in the program has some specific
declaration. If there arises a case where you want to give multiple declarations
of something, there Is o facility for obtaining mulliple representations
throughout, but there Is no faclity for saying dynamically ropresent it
sometimes one way and sometimes another way. In most programs a given
variable has one use throughout the program. Strong typing does not severely
rasirict the power of expression. It is, after all, rot the case that all variables
In an ALGOL 68 program are unlons. Although you can construct examples where
lhe latter possibility is wanted, looking at the considerable library of programs
which we have collected, that's cerlainly not a problem.

Koster: If you choose a different representation for your underlying data
slructures, o you havoe to change the ALGOL 68 pragram radicaily, llowever,
I consldar Who Inct thal this progrom Js not invarlant undler the cholees of

364 Dewar et al, : Discusslon

representation to be a programming error in the original program. The program, in
fact, does not have a sufficient degree of uniformity of referents. If you want
to change your representation In this way, you have to separate your program
out into a functional part and a representational part, and take care that the
changes in the representation are all confined to the layer where this
representation is defined.

Ross: Could you compare the SETL approach to olher forms of abstract cdata
types, as In CLU or ALPHARD? They all seek to raise the abstraction level. In
the early 60’s we chose not {0 extend the syntax in these arcas, hut only to
work with the semantic level in ternis of hierarchies of functions. ligh level
functional instructions slayed exactly the same in the face of radical changoes
of the basic functions which effectively implementad them,

Dewar: First of all, | find it strange to put SETL in the same cinss as ALPIIARD
because] find thom to be two sides of a coin. We are very interested 1o know
which way hat coin will fall. [Ross shows that the coin falls on ils side. (3] |
would like to take the example from the ALPHARD paper' presented here. |
wrote the symhol table from that paper as an exercise. It's about 12 lines of
SETL which | considered to be very clear, In fact, the level of clarily is, i think,
very similar to, or an improvement on, the level of clarity of the ALPHARD
specification section. Unfortunately, there Is a lol lelt to do in ALPIHARD after
writing the specification section, which is itsclf iwice as long. Now, | am willing
to believe that the 150 lines that represont lhe symbol table example in
ALPUARD arc correct, after much effort In verifying them. But | am also, with
much less effort, willing to belicve that my 12 lines are correct. | lhink we have
two very different approaches. | consider ALPHARD to be a crystlallization of
tho approach of doing extra work to avoid errors. The reason that [didn't treat
a symbol table example in my tatk is because its native implementation in SETL
was perfectly officient and didn't require any use of lhe data structuring
mechanism. The Important polnt in SETL is that these mechanisms would he
applied i a very limited manner, only where they were hecded lo improvo
efficlency.

Correil: | would coma back te the comparison with CLU and ALPHARD. What i
like about SETL is that it Is easier to write programs in this language; 1t was
very hard for me to write programs in CLU and ALPHARD. The reason is that tha
approach is different. SETL tries to be a high-level language and tries 1o
support automatic translatlon to lower levels. CLU and ALPHARD leave ihis
translation process 1o the user and hope that the user can prove that his
implementation is correct.

Dewar; Yes, | certainly agree with that. | might say that In preparing my slidos,
I found the task of trenslating into ALGOL G8 more difficult than | expecled
and, in fact, when | showed the slides to somecone who khows ALGOL, GO vary
well, the one with linked lists and references had to be examined vory
carefully to make sure that it was correct.

Fuksman: Do you have any exporlonce in wriling system programs asiog SETLT

Dewar et al. : Discussion 3l

Dewar: The term “syslem programning” seems lo cover a number o
possibilities. Certainly for such system components as compilers, SETL s ¢
appropiiate choice. The global oplinizer for SETL is heing written in SETL ar
we expect It lo be adequalely efficlent. Now if systoms programs meat
oporaling systems, | think that roises entirely diffarent issnes, For exampl
the question of protection. It is one thing to talk aboul bad programs: il's qui!
anolher 1o talk about proleclion in the presonce of malicious systco
componenis. That problem Is not addressced by the current design of U
language.

