
Fasc. 1- ·II Volume XLlll 1988

LE

MATEMATICHE
Direttore

ROSARIO STRANO

Consiglio direttivo

ANGELO M. ANILE - ALFREDO FERRO
MARIO GIONFRIDDO - GIUSEPPE PUL VIRENTI

Segretario

MICHELE FRASCA

VOLUME XLTII

1988

Proceedings of the 1st Catania Workshop on:
"Artificial Intelligence" Catania, may 15-19, 1989

Edited by Angelo Marcello Anile and Alfredo Ferro

DIPARTIMENTO DI MATEMATICA DELL'UNIVERSITA DI CATANIA

«LE MATEMATICHE· 5R
Vol. XLIII (1988) '. Fasc. I, pp. 79{!,ff

META-INTERPRETING SETL

D. ALIFF! - D. MONTANARI - E.G. OMODEO - M. PELLEGRINI (Bologna)

This paper describes a SETL interpreter written in SETL.
This module may be reused as a basis to build debuggers, type
checkers, symbolic executers, tracers, and many other general purpose
programming tools. Other more advanced uses include experimenting
with altered semantics for SETL and building interpreters for multi
paradigm languages, as in the SetLog project, which aims at constructing
a language integrating logic programming and set-oriented programming.

1. Introduction

SETL ([8]) is a very-high-level language developed at the New
York University in the Seventies. It is a classical imperative language
whose main data types are hereditarily finite sets, as well as functions
defined on them, and ordered tuples. These data types, combined
with a notation very close to the usual mathematical one, give the
language a great expressivity. Recently SETL has been the subject of
the Esprit project SED(1), whose aim was to build a programming
environment which could make SETL a useful language for application

(1) Esprit Project No. 1227.

80 D. ALIFF! • D. MONTANARI - E.G.OMODEO - M. PELLEGRINI

prototyping. Among others, SED has led to the implementation of a
fairly complete interactive and/or batch SETL meta-interpreter, which
is described in this paper.

The use of meta-interpreters has a long tradition in LISP and
Prolog programming. It could be equally useful to SETL programmers,
but the implementation of a SETL meta-interpreter is a considerably
harder task. A minimum requirement is that the meta-interpreter
ought to be able to prevent the occurrence of any kind of run-time error.
More generally, the meta-interpreter should provide flexibt means
of controlling the execution. Some exploitations of a meta-interpreter
are:

• the collection of global information about execution. In the present
implementation, a dynamic type-finding facility is already present,
allowing the recording of the types taken by a variable during
the execution, and the determination of the (complex) type
of the variable. Statistics on the operations involving complex
data objects can guide a heuristic choice of an optimal internal
representation;

• the amalgamation of procedural programming with other pro
gramming paradigms. For example, the SetLog Project ([7]) aims
at an integration of set-oriented and logic-oriented programming,
and uses the SETL meta-interpreter as one of the main building
blocks (see section 6);

• as a starting point for the development of tools for the static
analysis of SETL programs, like type checkers, data flow

'l..
analyzers, and program transformes;

. • the experimentation with altered semantics or with new types or
representations. During the development of the meta-interpreter,
many semantic obscurities of the original SETL specification have
been recognized and solved;

• as a basic to support higher level debugging facilities for SETL.

Our meta-interpreter is able to treat input/output statements,
assignments and ~ instructions, structured control constructs, and

META-INTERPRETING SETL 81

procedure calls, where procedures are either «hardwired» into the
meta-interpreter or created at run time as «ephemeral» lambda
expressions.

Besides the goals mentioned above, within the SED project we
had the following aims:

• to clarify the semantics of SETL, in particular for what concerns
the run-time type model and the conception of an abstract
machine;

• to have a fully blown scheme on which to base the construction
of several meta-interpreters;

• to have a script command language homogeneous with the imple
mentation language, to be exploited in testing and demonstrating
SETL libraries.

2. Meta-Interpreter Architecture

The meta-interpreter has three main units, which:

• parse the input and manipulate the resulting abstract syntax
trees (ASTs);

• build the symbol tables taking into account type, variable, and
procedure declarations;

• interpret the ASTs, and modify the symbol tables accordingly.

The detailed structure of these components and their dependencies
are shown in the appendix.

The meta-interpreter works on ASTs, represented by nested
SETL tuples. These are fed to the meta-interpretation modules ,by
the parser (written in SETL). The parser itself is a widely reusable
library, which may be adapted to parse input following any operator
precedence grammar (actually, it can handle operators with double
precedences as in Prolog [1 OJ).

The treatment of control structures is still slightly incomplete; at

11

82 D. ALIFFI - D. MONTANARI - E.G.OMODEO - M. PELLEGRINI

present, in fact, only the structured constructs if, while and until

can be meta-interpreted, whereas no provisions have been made
concerning forall, quit, continue and goto. Control constructs
are not expressed in their ordinary form, but are supplied to the
meta-interpreter in a conventional syntax, closer to the structure of
an AST than· to the concrete syntax of SETL.

The symbol table handler holds two tables: orie contains the
definitions of programmer-defined types; the other one contains the
variable and procedure declarations. The main program initializes
the symbol tables, and calls the declaration interpreter to accept
declarations from the user. During the execution phase, the evalua
tor I interpreter calls the symbol tables handler to check the consistency
between a value and the declared type of a variable, before the latter
is assigned the value.

The actual interpretation of ASTs supplied by the parser is
performed using the pattern matching machine to recognize the
instructions. Each internal instruction is then processed by the
language extender and the type disambiguator to reduce it to a
simpler form, accepted by the meta-SETL machine. The control-flow
graph constructor builds a control-flow graph of a program (or an
ephemeral procedure); the control-flow graph navigator traverses this
graph during the execution.

A few basic components of the meta-interpreter deserve a brief
description. Since an accurate description of a non-redundant abstatct . ~

SETL machine is hard to find in the literature - if it exists at all -,
we have put particular care in the design of a

• Meta-SETL machine

This module emulates a small kernel of fundamental SETL
operations (union, intersection etc.) and assignment instructions
which, with the addition of control alone, are adequate to support
the definition of all the other SETL constructs. As a rule, the
operations implemented at this level are not overloaded, except
=, type, and some minor ones.

l

META-INTERPRETING SETL 83

A rather unusual feature of SETL is the heavy overloading of its
operators. This justifies the existence of a

• Types disambiguator

This module receives as input the name of a SETL operation
along with its operands, which are already fully evaluated, but
under anomalous circumstances may require a type coercion.
After resolving the overloading of the operator and performing
type coercion whenever necessary, this module triggers the
appropriate action of the meta-SETL machine. It also determines
the type of the result. Only nullary, unary, and binary operations
are implemented at this level, including assignment operations.

Control instructions are not present at this level, and only gross
types are taken into account. These are:

om, nuls, (singleton scalar types);

atom, boolean, integer, real, string,

(remaining scalars);

tuple, smap, mmap, set, set3,

(aggregate types);

plus an error mark, named error, and a wild-card, named
general, which stands for any gross type. set3 is a representation
for sets which makes it easier to extend the semantics of operations
typical of (single- or multi-valued) maps to sets of any kind.
Inclusions among gross types are as follows:

om, atom, boolean, integer, string< general;

integer ~ real;

tuple ~ smap < mmap < set ~ set3 ~ general;

nuls < smap; string~ smap;

where inclusioJ denoted by ~. unlike others, require type coercion.
Thus, to translate a smap to an mmap or to a set, no coercion is
required, whereas one coercion is needed to translate a tuple to an
mmap, and two coercions would be necessary to translate a tuple to

84 D. ALIFF! - D. MONTANARI - E.G.OMODEO - M. PELLEGRINI

a set3 (if this translation were ever needed). We add direct inclusion
set < general, tuple < general, to bypass type coercions in
these two cases.

This is just one aspect - not very problematic indeed, since it
refers to gross types exclusively - of the run-time type model of SETL.
Other more intricate issues concerning types in SETL are examined
later in this paper.

We stress again that our meta-interpreter is mainly meant to be
a scheme to be followed in the implementation of fancier (and more
useful) meta-interpreters. Nonetheless, even in its present form, it
has «hooks» enabling extensions and modifications of the language
surface. The following component plays an essential role in this
respect.

• The language extender The language extender is a layer placed
between the evaluator/interpreter and the types disambiguator,
in order to increase the number of language constructs, or to
strengthen the semantics of some of the constructs in the kernel.
Examples of language enrichments typically supported by this
layer are:

- notin, range, and other constructs that can be expressed
as simple combinations of other constructs provided by
the kernel (e.g. range= (f) stands for f [domain f]); the
alternated relators <=, >=, / =, are here too;

-:--(gross) type testing operations, such as is_atom, is_smap,

etc.; enhanced implementations of the operations with,

f (x).

The connectives and and or are not implemented at this level,
nor at the meta-SETL machine level. In fact, since the evaluation
of these constructs is optimized in the SETL semantics, they
must reside at the level of all control .constructs.

Another opening in the existing meta-interpreter is the possibility
of hardwiring any new construct implemented as a SETL procedure
(e.g. a prime predicate based on a fast primality test) into it. In

META-INTERPRETING SETL 85

addition to these procedures, that constitute the initial endowment of
the meta-interpreter, the end-user can define his own procedures «on
the fly», as we will explain in the section on ephemeral procedures.

3. Manipulating abstract syntax trees in SETL

In this section we describe some of the components of the meta
interpreter for their own sake, as reusable libraries and modules.
From this perspective, it makes sense to hint at pieces of software
that are still in our mind or that have been developed independently
of the meta-interpreter, to make the assembly of the various pieces
in several different contexts easier.

• The all-purpose parser

The parse generates ASTs from strings. Trees are raw in the
sense that they are encoded by «nested tuples», and identifiers
and keywords inside them are kept in their native string form.

The programmable parser has several features:

- the concrete grammar accepted by the parser contains virtually
no «syntactic sugar» and its variety of constructs should faithfully
reflect the taxonomy of the ASTs;

- concessions to common practice can be made, to avoid cumbersome
amounts of parenthese. These are: infix, prefix and postfix use of
some operators, and the use of priorities;

- for efficiency reasons, the syntactic analyzer is, by and large, an
operator precedence parser; but nonetheless it is able to support
grammars richer than:

* Prolog's grammar, including its widespread list notation
(which will be internally brought into the usual «vineyard
tree» representation, but without fully enforcing the
identification between lists and nested uses of a binary cons
operator);

, ,

86 D. ALIFF! - D. MONTANARI - E.G.OMODEO - M. PELLEGRINI

* the grammar of the expressions of SETL, including constructs
for restricted quantifications and set- and tuple- formers of
the usual richness, but· not including constructs, such as the
if. .. then ... else expressions, that are too remote from
an operator-precedence parsing approach;

* the language of first-order predicate logic, including quanti
fication constructs, extended with constructs typical • of the
theory of sets and classes, among which abstraction terms
of various kinds;

* a minimal grammar into which Mentor's trees could be
unparsed in the most «universal» and trivial manner.
Essentially, this new requirement only imposes deviating
from Prolog's ordinary list notation to accept head-less lists
of the form [IH]).

• The synthesizer

The synthesizer constructs a raw AST whose subtrees are given
and whose root has specified characteristics.

• The evaluators

The evaluators carry out computations of many different kinds,
driven by systematic exploration<2) of the raw AST. The series of
conceivable evaluators is open-ended. Already available are:

- An unparser that converts an AST into a string concretely
representing the same expression.

- A meta-evaluator of trees that represent ground SETL
terms involving, in addition to integer, boolean, and string
constants, only the constructs [-, ... , -], {-, ... , - }.

When combined with a meta-parser which is an instance
of the all-purpose parser mentioned above, this evaluator
provides a «meta-read», which is preferable to ordinary read

of SETL, because it can never cause a run-time error.

(2) «Systematic exploration» actually means structural recursion based upon
the analyzer.

META-INTERPRETING SETL 87

- An evaluator which constructs an internal table of mode
declarations from a forest of syntax trees that represent
such declarations expressed in a simplified DRSL (Data
Representation SubLanguage) of SETL, called mini-DRSL.
Variable declarations are also evaluated, and the results of
the evaluation are stored in a symbol table for variables.

- A meta-interpre!er for straight SETL code consisting of
assignments and input/output statements. This has been
combined with the mini-DRSL evaluator just described, to
form an executable specification of the run-time type model or
SETL enhanced to deal with recursive ~ types on the one
hand and to perform «wild» type coercions (e.g. conversions
of tuples and strings into smaps) on the other hand.

The meta-interpreter has also been «married» to a control
flow graph constructor which is able to treat if, while,

and until constructs. This marriage gave birth to a meta
interpreter for a restricted, but functionally complete, version
of SETL, which emulates well-structured forms of control.

- The pattern-matching machine is a particularly useful
evaluator, which performs high-level pattern matching on
raw ASTs, taking a base of tree pattern definitions into
account. Gives a yes/no answer to reflect success or failure.
The response can be used to reject expressions that would
otherwise be acceptable on purely syntactic grounds.

• The analyzer

This module performs low-level pattern matching on raw ASTs,
based on a rather rich taxonomy of nodes. In case of success,
supplies the «neighborhood» of the analyzed node (e.g. associate&
operator, arity, sons).

• The AST transformer<3)

Syntactic transformations of AST take place very 'frequently
in programs, and most of the time they take the form of

(3) This module has yet to be designed.

88 D. ALIFF! - D. MONTANARI - E.G.OMODEO - M. PELLEGRINI

quite straightforward structural recursions. Performing one such
transformation amounts to «evaluating» a tree to produce
another tree, by systematic calls to the tree synthesizer. A
language in which simple syntactic transformations can be
succinctly expressed in the form of «rewrite rules», and an
interpreter for such language must be designed, on top of
both the synthesizer and the analyzer (calls to the analyzer
drive the construction of the transformed tree, while calls to
the synthesizer perform the construction). The transformation
language ought to be declarative in style, similar to the language
of the pattern-matching machine on one side, and inspired
by Prolog on the other side. Inspiration for the conception of
this module may come from the RAFTS system ([6]), but we
have something much simpler than RAFTS in mind here. !&"act,

,\

RAFTS works on a much less naive representation of AST, and
carries out higher-level, semantics-sensitive transformations.

It is remarkable that a system of the complexity of a SETL
meta-interpreter can be based on a simple-minded representation
of ASTs like the raw trees hinted at above. Efficiency concerns,
or subtler implementations than an interpreter for an imperative
language, may require more sophisticated representations of abstract
syntax trees. To provide support for a more general setting, SETL
libraries have been implemented to perform the following tasks:

• The equalities detector

Determines equal sub-expressioJ given in the form of raw abstract
syntax trel A

" • Well-done abstract syntax tree generator

Obtains from the raw representation of an abstract syntax tree a
more explicit representation where each syntax node is encoded
as a SETL atom, and suitable maps defined on such nodes take
the place of «nesting». This representation is more convenient in
cases when one has to perform complex «evaluations» of syntax
trees such as unification or data-flow analysis of some kind.

By exploiting the equalities detector, it is possible to represent

META-INTERPRETING SETL 89

equal expressions by the same atom, so that the abst/h syntax
tree becomes, in fact, a directed acyclic graph.

The Prolog interpreter implemented as part of SetLog exploits an
even more refined representation of ASTs. However, this representation
is too much ad hoc and, as a consequence, less reusable than the
rest.

4. Modeling SETL types in SETL

The work described in this section is aimed at providing answers
to the following questions:

• What is a recursive type in SETL?

• What is the type of a SETL value?

• When is a SETL value compatible with a type defined in the Data
Representation Sub Language (DRSL), extended with alternated
and recursive type definition [11, 3]?

A SETL program has been implemented in an effort to come
out with satisfactory answers to these questions, and to experiment
with an internal SETL representation of DRSL statements (both
type declarations and variable declarations). This representation
has been designed independently to be the support, inside SETL
meta-interpreters, of a well-understood run-time type model.

Partial answers indeed came from the implementation of this
program_ The answers given are, in fact, an adaptation to the
multi-sorted universe of SETL values of the notion of rank, classically
referring to the framework of von Neumann's type-free hierarchy of
sets [5].

The question «what is the type of a SETL value» still remains
partially open due to two reasons:

• the ambiguous status of maps, which are sets subject to certain
restrictions, where the restrictions are hard to frame in type

90 D. ALIFF! - D. MONTANARI - E.G.OMODEO - M. PELLEGRINI

theory;

• the interference of pragmatic concerns (efficiency of a type-finder
for SETL) with the hope of obtaining a very sound - although
reasonably simple - mathematical answer.

To see other problematic aspects of the type notion, notice that
the «history» of how a value has been calculated may affect his type
or - better to say - the type of a target variable. For example, in

x 1 := {[1,2],[3,4],5,6} less [1,2] less 5 less 6

x2 := {[1,2], [3,4]p,f>} less [1,2] less 5 less 6

x 1 and x2 are assigned the same value, but it makes sense to regard
x 1 as a set and x2 as a single valu~ap. Even the way a computation
is specified may interfere with type determination. For instance, the
instructions:

x:={1};

(for i in [L.O])x := x with x; end;

suggest that x has the recursive type

mode type_x: set (INTEGER) I set (type_x);

while the «equivalent» instruction

x:={1};

suggesl that x has the simpler type

mode type_x: set (INTEGER)

The following subsections briefly describe some details of the
implementation. The first one provides the formal description of the
declarations language actually used, while the following two describe
which type coercions and consistency checks on type declarations are
performed.

META-INTERPRETING SETL 91

4.1. Declarations language.

Type definitions, variable and procedure declarations are supplied
during the first phase of the meta-interpreter, and are expressed
in a language similar but not identical to DRSL. This language is
called mini-DRSL, because in some respects it is more restricted than
ordinary DRSL, although'rt is richer in that it provides alternated

d
. !"

an recursive types.

In extended Backus-Naur formalism, mini-DRSL can be specified
as follows:

(Deel)
!
(mode_decl)
(var_decl)
(proc_decl)

!(base_decl)
(alternand_list_tuple)

(alternands_list_list)

(alternands _list)

(alternand)

(mode_id)
(progr_var)
(proc_id)

!(base_id)

::= (mode_decl) I (var_decl) I (proc_decl)
I (base_ decl)

::= mod(~ifiode_id)':' (alternands_list)
::= (progr_var)':' (alternand)
::= (progr_id)':'proc (alternands_list_tuple)

I (proc_id)':' (alternands_list_tuple) proc
I (al ternands _list)

::= base (base_id)':' (alternand)
::= (alternand_list)

j'[' (alternands_list_list) ']'
::= (alternand_list)

I (alternands _list _list)',' (alternands _list)
::= (alternand)

I (alternands_list)' ,' I (alternand)
: := boolean I atom I integer I real I string I '*'

I set (alternands_list)!tuple (alternands_list)
I (alternand) smap (alternands_list)
I (alternand) mmap (alternands_list)
I elmt (base_id)
I (mode_id)

::=ID
::=ID
::=ID
::=ID

where the production rules preceded by an exclamation mark are
unimplemented yet, and'*' means .'general'.

92 D. ALIFF! - D. MONTANARI - E.G.OMODEO - M. PELLEGRINI

4.2. Type coercions.

The SETL meta-interpreter is able to perform - under request -
type coercions well beyond the capabilities of the standard interpreter.
Three levels of type coercion are available. Ordinary type coercions
transform integers to reals, smaps to mmaps, mmaps to sets. Mild
type coercions extend to arbitrary sets the applicability of any
operation normally applicable to maps: domain, range, lessf, f(-. •),

f[· • •], f{· • •}, etc.; in particular, smap operations become applicable
to mmaps; wtld type coercions may transform strings and tuples into
maps in order to apply certain operations. For instance, the block of
instructions

[s := ' a' , s(3) := 9]

will yield the smap value {[1, 'a'], [3, 9]} for s.

4.3. Symbol-tables handler.

After the trans(ation of the declarations into a suitable internal
form, the following global consistency checks are performed:

• every mode identifier occurring in the declaration of another
mode is itseld defined;

• no mode identifier is defined more than once;

• recursive mode declarations are non-circular.

When a SETL value is about to be assigned to a variable or to
a procedure parameter, a compatibility check is performed with the
declarations. Note that type declarations may be recursive (which is
not allowed in ordinary SETL); for instance

mode a : b smap a

mode b: a~~map b,

which makes the compatibility checks non-trivial. Nonetheless any

META-INTERPRETING SETL 93

such check always terminates. For example, given the declarations,

mode hJ: set hJ

mode hJ_i: set hJ_i I integer

the following (in) compatibilities will be recognized:

VALUE
{#T}
{ {}, {2, {3} }, 3}
{{},{{}}}

hJ
NO
NO
YES

hJ_i
NO
YES
YES

This component of the meta-interpreter also has the ability
to determine the type of any SETL value, without taking into
consideration any type declaration.

For example, {0,{},{[1,2]},{[1,2],[3,4]}} will be assigned the
type

set (integer I (integer smap integer));

{{[1,2,]},{[1,2],[1,a]}} will be assigned the type

set (integer mmap (integer I string))'};

{{[1,2],[3,4]},{[*,3]}} will be assigned the type

set set tuple integer.

An ability that the program is currently lacking, is the following:
given e.g. the value {{1},{{3,1},1},2}, it should be able to define
the type

mode hJ_i: set (hJ_i) I integer

and to assign it to the given value.

5. Ephemeral procedures.

Expressions and control flow graphs are treated by the meta
interpreter as special values that can be assigned to program

94 D. ALIFFI - D. MONTANARI - E.G.OMODEO - M. PELLEGRINI

variables. After a control flow graph has been assigned to a variable;
the latter becomes executable in a way similar to the way a procedure
is invoked; for this reason, and since it is as «volatile» as any
other SETL value, a control flow graph which has been stored in a
program variable is called an «ephemeral procedure». An ephemeral
procedure contains straight-code blocks connected by (conditional or
unconditional) jumps, and a header formed by its formal parameters.
In the current implementation, ephemeral procedures cannot be
recursive.

Expressions of the form

_L(var1), (var2), ... , (varN) (expr)

where each (varr) is an (optional) identifier, are called lambda
expressions. Such an expression denotes an ephemeral procedure,
whose formal parameters are denoted by the (vaq)'s, and whose

body is denoted by (expr).

A lambda-expression can be translated into an ephemeral
procedure by means of a Compile function.

Currently, an ephemeral procedure can only be executed after
it has been compiled; eventually, it will be executable even in its
expressions form.

6. Mixing Prolog and SETL in SetLog.

SetLog is the name of a Logic Programming system which has
been implemented in SETL to combine Prolog with various meta
SETL interpreters. The goal is to originate a spectrum of bi-paradigm
programming languages enhancing both SETL and Prolog, at least
with respect to the expressive power of both. This extended Prolog
ought to be compatible with C-Prolog (and perhaps with MU-Prolog
too), because one first use of SetLog is the design of tools for the
semantic analysis of SETL. Such tools have been designed in Typol
[1], a language for semantics specifications, which is automatically
translated into a version of C-or MU-Prolog. Once SetLog is sufficiently

META-INTERPRETING SETL 95

developed to be a surrogate for C- or MU-Prolog in a Typol application,
the entire world of reusable SETL softwere would be disclosed to the
Typol programmer. Basically, we intend to produce various hybrids
of SETL and Prolog, which in tum may be the basis for producing
SETL-Typol hybrids able to support tools for the semantic analysis
of SETL whose sophistication is beyond reach of today's Typol.

Furthermore, SetLog can be the framework in which to design
extensions to the Prolog interpreter in directions that may facilitate
modularity, meta-programming, knowledge representation, etc .. It is
quite hard, in general, to modify Prolog interpreters written in C,
and therefore a language for quick prototyping, such as SETL, looks
very useful in the specifications of a new Prolog interpreter/compile"!.
endowed with all desired features. Interpreting Prolog in Prolog is
a fairly easy task because of the equivalence between data and
programs, while it is certainly prohibitive to simulate SETL using
Prolog since SETL is based on side effects. The decision to use SETL
for interpreting both SETL and Prolog gives us a reasonable trade-off
between ease of implementation of the two main components of the
system.

The Prolog interpreter developed for SetLog consists of a kernel,
constituted by those system predicated which are directly implemented
inside the interpreter, and one or several Prolog libraries that extend
this initial endowment of Prolog. For compatibility with C-Prolog, it
is planned that the Prolog interpreter part of SetLog contains the
SETL implementation of the following familiar Prolog primitives:

fail true halt abort
see seeing seen tell telling
told save/1 assert clause/3
functor arg integer nl
read write protect break/exit
trace notrace
is =\= < =< > >'b

The primitive save/2 and dbreference [9] are important for
an effective use of the system and will be included in the above list.
All other primitives and application oriented predicates are defined
as Prolog procedures.

-

96 D. ALIFF! - D. MONTANARI - E.G.OMODEO - M. PELLEGRINI

Prolog's bagof and setof and «lazy» variants of these will be
implemented more easily and effectively than in ordinary Prolog,
thanks to extensions with SETL constructs.

A Prolog interpreter in SETL is useful in advanced research
projects based on logic programming for which an high level easily
modifiable Prolog engine is needed.

The following is an example of use of the new primitives
integrating Prolog and SETL:

edges := {[g, h], [g, d], ... , [e, d]}.

reach(V, V).

reach(V, W) : -

[V, U] E edges,

reach(U, W).

We use the set edges to describe a directed graph; the reachability
predicate reach uses a membership test on this set.

7. Conclusions.

One • of the original goals of the Esprit project SED was to
implement an enhanced Typol in SETL. Later on, it was decided to
design specific semantic analysis tool for SETL, making direct use of
SETL itself. However, most tools of this kind have been designed to
work on quadruple code, while it was our belief that many advantages 1,'ll>JJ.

ensue from working directly at the level of AST. This project has
confirmed that working on AST in SETL is simpler than in most of
the traditional programming languages. The only missing feature of
the existing SETL is the unification mechanism. Prolog is the natural
candidate to enhance SETL in this respect, and SetLog is an attempt
to pursue this goal.

META-INTERPRETING SETI, 97

8. Acknowledgements.

Thanks are due to Ph.Facon, who participated in stimulating
conversations about type models for SET4 F. Jean contributed to the
characterization of sound recursive type declarations. The usefulness
of meta-interpreting SETL emerged from discussions with J.P. Keller.

9. Appendix.

____ I _____ . , ____________ ~ . ______ l ________ -,
' ' '
: parser

~----1 lexical :----: identifier

; analyzer 1 : classifier L---------

control flow graph

navigator

evaluator/

interpreter

'
L------------ I I_ - - - - - - - - - - - - - - - ..J

.----------------,
,- - - - - - -- - -- - - - - - -- - -- -, : ' I •

: pattern matching 1 syntax trees ----~ .__._,

machine
,_ - - - - - - - - - - - - - - - - --- - - .,J

control flow graph

constructor

declarations

interpreter

1----------------ymbol tables

handler

diagnostic table
handler

language

, extender ,
,_ - - - - - - - - - - - - - t

types

disambiguator

meta-SETL

machine

Figure 1 - Meta-interpreter dependency graph.

r 98 D. ALIFF! - D. MONTANARI - E.G.OMODEO - M. PELLEGRINI

REFERENCES

[1] Despeyroux T., Typol a Formalism to Implement Natural Semantics,
INRIA Tech. Rep. Draf Version, April 28, (1987).

[2] Donzeau-Gouge V., Kahn G., Lang B., Melese B., Documents structure
and modularity in Mentor, Proc. ACM SIGSOFT-SIGPLAN Software
Eng. Symp. Prac. Software Develop. Env., Apr. 1984 (141-148).

[3] Omodeo E., Facon Ph., Preliminary considerations regarding type
checking and type-finding for SETL within SED, SED internal report,
1987.

[4] Ghezzi C., Jazayeri M., Programming Languages Concepts, John Wiley
& Sons, (1982).

[5] Manin Yu.I., A Course in Mathematical Logic, Springer Verlag, 1977.
[6] Paige R., Transformational programming - applications to algorithms

and systems, Proc. 10th ACM Sym. on Principles of Programming
Languages, 1983.

[7] Pellegrini M., Sepe R., SetLog,a logic tool in a SETL environment,
submitted tch. rep., University of Rome, DIS, 1989.

[8] Schwartz J.T., Dewar R.B.K., Dubinsky E., Shanberg E., Programming
with Sets an introduction to SETL, Springer Verlag, 1986.

[9] C-prolog User's Manual, University of Edinburgh, Edinburgh.
[10] ~ Kluzniak F., Szpakowick S., Bien J.S., Prolog for programmers,

Academic Press, 1985.
[11].Recursiue Data Types in SETL: Automatic Determination, Data

Language Description and Efficient Implementation, Tech. Rep. 201,
Courant Institute of Mathematical Sciences, New York, 1984.

Enidata
Bologna (Italy)

