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META-INTERPRETING SETL 

D. ALIFF! - D. MONTANARI - E.G. OMODEO - M. PELLEGRINI (Bologna) 

This paper describes a SETL interpreter written in SETL. 
This module may be reused as a basis to build debuggers, type 
checkers, symbolic executers, tracers, and many other general purpose 
programming tools. Other more advanced uses include experimenting 
with altered semantics for SETL and building interpreters for multi
paradigm languages, as in the SetLog project, which aims at constructing 
a language integrating logic programming and set-oriented programming. 

1. Introduction 

SETL ([8]) is a very-high-level language developed at the New 
York University in the Seventies. It is a classical imperative language 
whose main data types are hereditarily finite sets, as well as functions 
defined on them, and ordered tuples. These data types, combined 
with a notation very close to the usual mathematical one, give the 
language a great expressivity. Recently SETL has been the subject of 
the Esprit project SED( 1), whose aim was to build a programming 
environment which could make SETL a useful language for application 

( 1) Esprit Project No. 1227. 
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prototyping. Among others, SED has led to the implementation of a 
fairly complete interactive and/or batch SETL meta-interpreter, which 
is described in this paper. 

The use of meta-interpreters has a long tradition in LISP and 
Prolog programming. It could be equally useful to SETL programmers, 
but the implementation of a SETL meta-interpreter is a considerably 
harder task. A minimum requirement is that the meta-interpreter 
ought to be able to prevent the occurrence of any kind of run-time error. 
More generally, the meta-interpreter should provide flexibt means 
of controlling the execution. Some exploitations of a meta-interpreter 
are: 

• the collection of global information about execution. In the present 
implementation, a dynamic type-finding facility is already present, 
allowing the recording of the types taken by a variable during 
the execution, and the determination of the (complex) type 
of the variable. Statistics on the operations involving complex 
data objects can guide a heuristic choice of an optimal internal 
representation; 

• the amalgamation of procedural programming with other pro
gramming paradigms. For example, the SetLog Project ([7]) aims 
at an integration of set-oriented and logic-oriented programming, 
and uses the SETL meta-interpreter as one of the main building 
blocks (see section 6); 

• as a starting point for the development of tools for the static 
analysis of SETL programs, like type checkers, data flow 

'l.. 
analyzers, and program transformes; 

. • the experimentation with altered semantics or with new types or 
representations. During the development of the meta-interpreter, 
many semantic obscurities of the original SETL specification have 
been recognized and solved; 

• as a basic to support higher level debugging facilities for SETL. 

Our meta-interpreter is able to treat input/output statements, 
assignments and ~ instructions, structured control constructs, and 
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procedure calls, where procedures are either «hardwired» into the 
meta-interpreter or created at run time as «ephemeral» lambda
expressions. 

Besides the goals mentioned above, within the SED project we 
had the following aims: 

• to clarify the semantics of SETL, in particular for what concerns 
the run-time type model and the conception of an abstract 
machine; 

• to have a fully blown scheme on which to base the construction 
of several meta-interpreters; 

• to have a script command language homogeneous with the imple
mentation language, to be exploited in testing and demonstrating 
SETL libraries. 

2. Meta-Interpreter Architecture 

The meta-interpreter has three main units, which: 

• parse the input and manipulate the resulting abstract syntax 
trees (ASTs); 

• build the symbol tables taking into account type, variable, and 
procedure declarations; 

• interpret the ASTs, and modify the symbol tables accordingly. 

The detailed structure of these components and their dependencies 
are shown in the appendix. 

The meta-interpreter works on ASTs, represented by nested 
SETL tuples. These are fed to the meta-interpretation modules ,by 
the parser (written in SETL). The parser itself is a widely reusable 
library, which may be adapted to parse input following any operator 
precedence grammar (actually, it can handle operators with double 
precedences as in Prolog [1 OJ). 

The treatment of control structures is still slightly incomplete; at 

11 
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present, in fact, only the structured constructs if, while and until 

can be meta-interpreted, whereas no provisions have been made 
concerning forall, quit, continue and goto. Control constructs 
are not expressed in their ordinary form, but are supplied to the 
meta-interpreter in a conventional syntax, closer to the structure of 
an AST than· to the concrete syntax of SETL. 

The symbol table handler holds two tables: orie contains the 
definitions of programmer-defined types; the other one contains the 
variable and procedure declarations. The main program initializes 
the symbol tables, and calls the declaration interpreter to accept 
declarations from the user. During the execution phase, the evalua
tor I interpreter calls the symbol tables handler to check the consistency 
between a value and the declared type of a variable, before the latter 
is assigned the value. 

The actual interpretation of ASTs supplied by the parser is 
performed using the pattern matching machine to recognize the 
instructions. Each internal instruction is then processed by the 
language extender and the type disambiguator to reduce it to a 
simpler form, accepted by the meta-SETL machine. The control-flow 
graph constructor builds a control-flow graph of a program (or an 
ephemeral procedure); the control-flow graph navigator traverses this 
graph during the execution. 

A few basic components of the meta-interpreter deserve a brief 
description. Since an accurate description of a non-redundant abstatct . ~ 

SETL machine is hard to find in the literature - if it exists at all -, 
we have put particular care in the design of a 

• Meta-SETL machine 

This module emulates a small kernel of fundamental SETL 
operations (union, intersection etc.) and assignment instructions 
which, with the addition of control alone, are adequate to support 
the definition of all the other SETL constructs. As a rule, the 
operations implemented at this level are not overloaded, except 
=, type, and some minor ones. 

l 
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A rather unusual feature of SETL is the heavy overloading of its 
operators. This justifies the existence of a 

• Types disambiguator 

This module receives as input the name of a SETL operation 
along with its operands, which are already fully evaluated, but 
under anomalous circumstances may require a type coercion. 
After resolving the overloading of the operator and performing 
type coercion whenever necessary, this module triggers the 
appropriate action of the meta-SETL machine. It also determines 
the type of the result. Only nullary, unary, and binary operations 
are implemented at this level, including assignment operations. 

Control instructions are not present at this level, and only gross 
types are taken into account. These are: 

om, nuls, (singleton scalar types); 

atom, boolean, integer, real, string, 

(remaining scalars); 

tuple, smap, mmap, set, set3, 

(aggregate types); 

plus an error mark, named error, and a wild-card, named 
general, which stands for any gross type. set3 is a representation 
for sets which makes it easier to extend the semantics of operations 
typical of (single- or multi-valued) maps to sets of any kind. 
Inclusions among gross types are as follows: 

om, atom, boolean, integer, string< general; 

integer ~ real; 

tuple ~ smap < mmap < set ~ set3 ~ general; 

nuls < smap; string~ smap; 

where inclusioJ denoted by ~. unlike others, require type coercion. 
Thus, to translate a smap to an mmap or to a set, no coercion is 
required, whereas one coercion is needed to translate a tuple to an 
mmap, and two coercions would be necessary to translate a tuple to 
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a set3 (if this translation were ever needed). We add direct inclusion 
set < general, tuple < general, to bypass type coercions in 
these two cases. 

This is just one aspect - not very problematic indeed, since it 
refers to gross types exclusively - of the run-time type model of SETL. 
Other more intricate issues concerning types in SETL are examined 
later in this paper. 

We stress again that our meta-interpreter is mainly meant to be 
a scheme to be followed in the implementation of fancier (and more 
useful) meta-interpreters. Nonetheless, even in its present form, it 
has «hooks» enabling extensions and modifications of the language 
surface. The following component plays an essential role in this 
respect. 

• The language extender The language extender is a layer placed 
between the evaluator/interpreter and the types disambiguator, 
in order to increase the number of language constructs, or to 
strengthen the semantics of some of the constructs in the kernel. 
Examples of language enrichments typically supported by this 
layer are: 

- notin, range, and other constructs that can be expressed 
as simple combinations of other constructs provided by 
the kernel (e.g. range= ( f) stands for f [ domain f] ); the 
alternated relators <=, >=, / =, are here too; 

-:--(gross) type testing operations, such as is_atom, is_smap, 

etc.; enhanced implementations of the operations with, 

f (x). 

The connectives and and or are not implemented at this level, 
nor at the meta-SETL machine level. In fact, since the evaluation 
of these constructs is optimized in the SETL semantics, they 
must reside at the level of all control .constructs. 

Another opening in the existing meta-interpreter is the possibility 
of hardwiring any new construct implemented as a SETL procedure 
(e.g. a prime predicate based on a fast primality test) into it. In 
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addition to these procedures, that constitute the initial endowment of 
the meta-interpreter, the end-user can define his own procedures «on 
the fly», as we will explain in the section on ephemeral procedures. 

3. Manipulating abstract syntax trees in SETL 

In this section we describe some of the components of the meta
interpreter for their own sake, as reusable libraries and modules. 
From this perspective, it makes sense to hint at pieces of software 
that are still in our mind or that have been developed independently 
of the meta-interpreter, to make the assembly of the various pieces 
in several different contexts easier. 

• The all-purpose parser 

The parse generates ASTs from strings. Trees are raw in the 
sense that they are encoded by «nested tuples», and identifiers 
and keywords inside them are kept in their native string form. 

The programmable parser has several features: 

- the concrete grammar accepted by the parser contains virtually 
no «syntactic sugar» and its variety of constructs should faithfully 
reflect the taxonomy of the ASTs; 

- concessions to common practice can be made, to avoid cumbersome 
amounts of parenthese. These are: infix, prefix and postfix use of 
some operators, and the use of priorities; 

- for efficiency reasons, the syntactic analyzer is, by and large, an 
operator precedence parser; but nonetheless it is able to support 
grammars richer than: 

* Prolog's grammar, including its widespread list notation 
(which will be internally brought into the usual «vineyard 
tree» representation, but without fully enforcing the 
identification between lists and nested uses of a binary cons 
operator); 
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* the grammar of the expressions of SETL, including constructs 
for restricted quantifications and set- and tuple- formers of 
the usual richness, but· not including constructs, such as the 
if. .. then ... else expressions, that are too remote from 
an operator-precedence parsing approach; 

* the language of first-order predicate logic, including quanti
fication constructs, extended with constructs typical • of the 
theory of sets and classes, among which abstraction terms 
of various kinds; 

* a minimal grammar into which Mentor's trees could be 
unparsed in the most «universal» and trivial manner. 
Essentially, this new requirement only imposes deviating 
from Prolog's ordinary list notation to accept head-less lists 
of the form [IH]). 

• The synthesizer 

The synthesizer constructs a raw AST whose subtrees are given 
and whose root has specified characteristics. 

• The evaluators 

The evaluators carry out computations of many different kinds, 
driven by systematic exploration<2) of the raw AST. The series of 
conceivable evaluators is open-ended. Already available are: 

- An unparser that converts an AST into a string concretely 
representing the same expression. 

- A meta-evaluator of trees that represent ground SETL 
terms involving, in addition to integer, boolean, and string 
constants, only the constructs [-, ... , -], {-, ... , - }. 

When combined with a meta-parser which is an instance 
of the all-purpose parser mentioned above, this evaluator 
provides a «meta-read», which is preferable to ordinary read 

of SETL, because it can never cause a run-time error. 

(2 ) «Systematic exploration» actually means structural recursion based upon 
the analyzer. 
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- An evaluator which constructs an internal table of mode 
declarations from a forest of syntax trees that represent 
such declarations expressed in a simplified DRSL (Data 
Representation SubLanguage) of SETL, called mini-DRSL. 
Variable declarations are also evaluated, and the results of 
the evaluation are stored in a symbol table for variables. 

- A meta-interpre!er for straight SETL code consisting of 
assignments and input/output statements. This has been 
combined with the mini-DRSL evaluator just described, to 
form an executable specification of the run-time type model or 
SETL enhanced to deal with recursive ~ types on the one 
hand and to perform «wild» type coercions (e.g. conversions 
of tuples and strings into smaps) on the other hand. 

The meta-interpreter has also been «married» to a control 
flow graph constructor which is able to treat if, while, 

and until constructs. This marriage gave birth to a meta
interpreter for a restricted, but functionally complete, version 
of SETL, which emulates well-structured forms of control. 

- The pattern-matching machine is a particularly useful 
evaluator, which performs high-level pattern matching on 
raw ASTs, taking a base of tree pattern definitions into 
account. Gives a yes/no answer to reflect success or failure. 
The response can be used to reject expressions that would 
otherwise be acceptable on purely syntactic grounds. 

• The analyzer 

This module performs low-level pattern matching on raw ASTs, 
based on a rather rich taxonomy of nodes. In case of success, 
supplies the «neighborhood» of the analyzed node (e.g. associate& 
operator, arity, sons). 

• The AST transformer<3) 

Syntactic transformations of AST take place very 'frequently 
in programs, and most of the time they take the form of 

(3) This module has yet to be designed. 
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quite straightforward structural recursions. Performing one such 
transformation amounts to «evaluating» a tree to produce 
another tree, by systematic calls to the tree synthesizer. A 
language in which simple syntactic transformations can be 
succinctly expressed in the form of «rewrite rules», and an 
interpreter for such language must be designed, on top of 
both the synthesizer and the analyzer (calls to the analyzer 
drive the construction of the transformed tree, while calls to 
the synthesizer perform the construction). The transformation 
language ought to be declarative in style, similar to the language 
of the pattern-matching machine on one side, and inspired 
by Prolog on the other side. Inspiration for the conception of 
this module may come from the RAFTS system ([6]), but we 
have something much simpler than RAFTS in mind here. !&"act, 

,\ 

RAFTS works on a much less naive representation of AST, and 
carries out higher-level, semantics-sensitive transformations. 

It is remarkable that a system of the complexity of a SETL 
meta-interpreter can be based on a simple-minded representation 
of ASTs like the raw trees hinted at above. Efficiency concerns, 
or subtler implementations than an interpreter for an imperative 
language, may require more sophisticated representations of abstract 
syntax trees. To provide support for a more general setting, SETL 
libraries have been implemented to perform the following tasks: 

• The equalities detector 

Determines equal sub-expressioJ given in the form of raw abstract 
syntax trel A 

" • Well-done abstract syntax tree generator 

Obtains from the raw representation of an abstract syntax tree a 
more explicit representation where each syntax node is encoded 
as a SETL atom, and suitable maps defined on such nodes take 
the place of «nesting». This representation is more convenient in 
cases when one has to perform complex «evaluations» of syntax 
trees such as unification or data-flow analysis of some kind. 

By exploiting the equalities detector, it is possible to represent 
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equal expressions by the same atom, so that the abst/h syntax 
tree becomes, in fact, a directed acyclic graph. 

The Prolog interpreter implemented as part of SetLog exploits an 
even more refined representation of ASTs. However, this representation 
is too much ad hoc and, as a consequence, less reusable than the 
rest. 

4. Modeling SETL types in SETL 

The work described in this section is aimed at providing answers 
to the following questions: 

• What is a recursive type in SETL? 

• What is the type of a SETL value? 

• When is a SETL value compatible with a type defined in the Data 
Representation Sub Language (DRSL), extended with alternated 
and recursive type definition [11, 3]? 

A SETL program has been implemented in an effort to come 
out with satisfactory answers to these questions, and to experiment 
with an internal SETL representation of DRSL statements (both 
type declarations and variable declarations). This representation 
has been designed independently to be the support, inside SETL 
meta-interpreters, of a well-understood run-time type model. 

Partial answers indeed came from the implementation of this 
program_ The answers given are, in fact, an adaptation to the 
multi-sorted universe of SETL values of the notion of rank, classically 
referring to the framework of von Neumann's type-free hierarchy of 
sets [5]. 

The question «what is the type of a SETL value» still remains 
partially open due to two reasons: 

• the ambiguous status of maps, which are sets subject to certain 
restrictions, where the restrictions are hard to frame in type 
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theory; 

• the interference of pragmatic concerns (efficiency of a type-finder 
for SETL) with the hope of obtaining a very sound - although 
reasonably simple - mathematical answer. 

To see other problematic aspects of the type notion, notice that 
the «history» of how a value has been calculated may affect his type 
or - better to say - the type of a target variable. For example, in 

x 1 := {[1,2],[3,4],5,6} less [1,2] less 5 less 6 

x2 := {[1,2], [3,4]p,f>} less [1,2] less 5 less 6 

x 1 and x2 are assigned the same value, but it makes sense to regard 
x 1 as a set and x2 as a single valu~ap. Even the way a computation 
is specified may interfere with type determination. For instance, the 
instructions: 

x:={1}; 

(for i in [L.O])x := x with x; end; 

suggest that x has the recursive type 

mode type_x: set ( INTEGER) I set (type_x); 

while the «equivalent» instruction 

x:={1}; 

suggesl that x has the simpler type 

mode type_x: set (INTEGER) 

The following subsections briefly describe some details of the 
implementation. The first one provides the formal description of the 
declarations language actually used, while the following two describe 
which type coercions and consistency checks on type declarations are 
performed. 
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4.1. Declarations language. 

Type definitions, variable and procedure declarations are supplied 
during the first phase of the meta-interpreter, and are expressed 
in a language similar but not identical to DRSL. This language is 
called mini-DRSL, because in some respects it is more restricted than 
ordinary DRSL, although'rt is richer in that it provides alternated 

d 
. !" 

an recursive types. 

In extended Backus-Naur formalism, mini-DRSL can be specified 
as follows: 

(Deel) 
! 
(mode_decl) 
(var_decl) 
(proc_decl) 

!(base_decl) 
(alternand_list_tuple) 

(alternands_list_list) 

( alternands _list) 

(alternand) 

(mode_id) 
(progr_var) 
(proc_id) 

!(base_id) 

::= (mode_decl) I (var_decl) I (proc_decl) 
I (base_ decl) 

::= mod(~ifiode_id)':' (alternands_list) 
::= (progr_var)':' (alternand) 
::= (progr_id)':'proc (alternands_list_tuple) 

I (proc_id)':' ( alternands_list_tuple) proc 
I ( al ternands _list) 

::= base (base_id)':' (alternand) 
::= (alternand_list) 

j'[' ( alternands_list_list) ']' 
::= (alternand_list) 

I ( alternands _list _list)',' ( alternands _list) 
::= (alternand) 

I ( alternands_list)' ,' I ( alternand) 
: := boolean I atom I integer I real I string I '*' 

I set (alternands_list)!tuple (alternands_list) 
I (alternand) smap (alternands_list) 
I (alternand) mmap (alternands_list) 
I elmt (base_id) 
I (mode_id) 

::=ID 
::=ID 
::=ID 
::=ID 

where the production rules preceded by an exclamation mark are 
unimplemented yet, and'*' means .'general'. 
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4.2. Type coercions. 

The SETL meta-interpreter is able to perform - under request -
type coercions well beyond the capabilities of the standard interpreter. 
Three levels of type coercion are available. Ordinary type coercions 
transform integers to reals, smaps to mmaps, mmaps to sets. Mild 
type coercions extend to arbitrary sets the applicability of any 
operation normally applicable to maps: domain, range, lessf, f(-. •), 

f[· • •], f{· • •}, etc.; in particular, smap operations become applicable 
to mmaps; wtld type coercions may transform strings and tuples into 
maps in order to apply certain operations. For instance, the block of 
instructions 

[s := ' a' , s(3) := 9] 

will yield the smap value {[1, 'a'], [3, 9]} for s. 

4.3. Symbol-tables handler. 

After the trans(ation of the declarations into a suitable internal 
form, the following global consistency checks are performed: 

• every mode identifier occurring in the declaration of another 
mode is itseld defined; 

• no mode identifier is defined more than once; 

• recursive mode declarations are non-circular. 

When a SETL value is about to be assigned to a variable or to 
a procedure parameter, a compatibility check is performed with the 
declarations. Note that type declarations may be recursive (which is 
not allowed in ordinary SETL); for instance 

mode a : b smap a 

mode b: a~~map b, 

which makes the compatibility checks non-trivial. Nonetheless any 
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such check always terminates. For example, given the declarations, 

mode hJ: set hJ 

mode hJ_i: set hJ_i I integer 

the following (in) compatibilities will be recognized: 

VALUE 
{#T} 
{ {}, {2, {3} }, 3} 
{{},{{}}} 

hJ 
NO 
NO 
YES 

hJ_i 
NO 
YES 
YES 

This component of the meta-interpreter also has the ability 
to determine the type of any SETL value, without taking into 
consideration any type declaration. 

For example, {0,{},{[1,2]},{[1,2],[3,4]}} will be assigned the 
type 

set (integer I (integer smap integer)); 

{{[1,2,]},{[1,2],[1,a]}} will be assigned the type 

set (integer mmap (integer I string))'}; 

{{[1,2],[3,4]},{[*,3]}} will be assigned the type 

set set tuple integer. 

An ability that the program is currently lacking, is the following: 
given e.g. the value {{1},{{3,1},1},2}, it should be able to define 
the type 

mode hJ_i: set (hJ_i) I integer 

and to assign it to the given value. 

5. Ephemeral procedures. 

Expressions and control flow graphs are treated by the meta
interpreter as special values that can be assigned to program 
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variables. After a control flow graph has been assigned to a variable; 
the latter becomes executable in a way similar to the way a procedure 
is invoked; for this reason, and since it is as «volatile» as any 
other SETL value, a control flow graph which has been stored in a 
program variable is called an «ephemeral procedure». An ephemeral 
procedure contains straight-code blocks connected by (conditional or 
unconditional) jumps, and a header formed by its formal parameters. 
In the current implementation, ephemeral procedures cannot be 
recursive. 

Expressions of the form 

_L(var1), (var2), ... , (varN) (expr) 

where each (varr) is an (optional) identifier, are called lambda
expressions. Such an expression denotes an ephemeral procedure, 
whose formal parameters are denoted by the (vaq)'s, and whose 

body is denoted by (expr). 

A lambda-expression can be translated into an ephemeral 
procedure by means of a Compile function. 

Currently, an ephemeral procedure can only be executed after 
it has been compiled; eventually, it will be executable even in its 
expressions form. 

6. Mixing Prolog and SETL in SetLog. 

SetLog is the name of a Logic Programming system which has 
been implemented in SETL to combine Prolog with various meta
SETL interpreters. The goal is to originate a spectrum of bi-paradigm 
programming languages enhancing both SETL and Prolog, at least 
with respect to the expressive power of both. This extended Prolog 
ought to be compatible with C-Prolog (and perhaps with MU-Prolog 
too), because one first use of SetLog is the design of tools for the 
semantic analysis of SETL. Such tools have been designed in Typol 
[1], a language for semantics specifications, which is automatically 
translated into a version of C-or MU-Prolog. Once SetLog is sufficiently 
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developed to be a surrogate for C- or MU-Prolog in a Typol application, 
the entire world of reusable SETL softwere would be disclosed to the 
Typol programmer. Basically, we intend to produce various hybrids 
of SETL and Prolog, which in tum may be the basis for producing 
SETL-Typol hybrids able to support tools for the semantic analysis 
of SETL whose sophistication is beyond reach of today's Typol. 

Furthermore, SetLog can be the framework in which to design 
extensions to the Prolog interpreter in directions that may facilitate 
modularity, meta-programming, knowledge representation, etc .. It is 
quite hard, in general, to modify Prolog interpreters written in C, 
and therefore a language for quick prototyping, such as SETL, looks 
very useful in the specifications of a new Prolog interpreter/compile"!. 
endowed with all desired features. Interpreting Prolog in Prolog is 
a fairly easy task because of the equivalence between data and 
programs, while it is certainly prohibitive to simulate SETL using 
Prolog since SETL is based on side effects. The decision to use SETL 
for interpreting both SETL and Prolog gives us a reasonable trade-off 
between ease of implementation of the two main components of the 
system. 

The Prolog interpreter developed for SetLog consists of a kernel, 
constituted by those system predicated which are directly implemented 
inside the interpreter, and one or several Prolog libraries that extend 
this initial endowment of Prolog. For compatibility with C-Prolog, it 
is planned that the Prolog interpreter part of SetLog contains the 
SETL implementation of the following familiar Prolog primitives: 

fail true halt abort 
see seeing seen tell telling 
told save/1 assert clause/3 
functor arg integer nl 
read write protect break/exit 
trace notrace 
is =\= < =< > >'b 

The primitive save/2 and dbreference [9] are important for 
an effective use of the system and will be included in the above list. 
All other primitives and application oriented predicates are defined 
as Prolog procedures. 
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Prolog's bagof and setof and «lazy» variants of these will be 
implemented more easily and effectively than in ordinary Prolog, 
thanks to extensions with SETL constructs. 

A Prolog interpreter in SETL is useful in advanced research 
projects based on logic programming for which an high level easily 
modifiable Prolog engine is needed. 

The following is an example of use of the new primitives 
integrating Prolog and SETL: 

edges := {[g, h], [g, d], ... , [e, d]}. 

reach(V, V). 

reach(V, W) : -

[V, U] E edges, 

reach(U, W). 

We use the set edges to describe a directed graph; the reachability 
predicate reach uses a membership test on this set. 

7. Conclusions. 

One • of the original goals of the Esprit project SED was to 
implement an enhanced Typol in SETL. Later on, it was decided to 
design specific semantic analysis tool for SETL, making direct use of 
SETL itself. However, most tools of this kind have been designed to 
work on quadruple code, while it was our belief that many advantages 1,'ll>JJ. 

ensue from working directly at the level of AST. This project has 
confirmed that working on AST in SETL is simpler than in most of 
the traditional programming languages. The only missing feature of 
the existing SETL is the unification mechanism. Prolog is the natural 
candidate to enhance SETL in this respect, and SetLog is an attempt 
to pursue this goal. 



META-INTERPRETING SETI, 97 

8. Acknowledgements. 

Thanks are due to Ph.Facon, who participated in stimulating 
conversations about type models for SET4 F. Jean contributed to the 
characterization of sound recursive type declarations. The usefulness 
of meta-interpreting SETL emerged from discussions with J.P. Keller. 

9. Appendix. 
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Figure 1 - Meta-interpreter dependency graph. 
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