
Open Implementation Design Guidelines

Gregor Kiczales, John Lamping,
 Cristina Videira Lopes,

Anurag Mendhekar
Xerox Palo Alto Research Center*

Gail Murphy
University of Washington

© 1996 Xerox Corporation, All Rights Reserved

                                                       
∗ 3333 Coyote Hill Road / Palo Alto, CA 94304 / U.S.A.  — gregor@parc.xerox.com
  Department of Computer Science & Engineering, University of Washington, Box 352350, Seattle WA,

98195-2350 — gmurphy@cs.washington.edu

ABSTRACT
Designing reusable software modules can be
extremely difficult.  The design must be bal-
anced between being general enough to address
the needs of a wide range of clients and being
focused enough to truly satisfy the requirements
of each specific client.  One area where it can be
particularly difficult to strike this balance is in
the implementation strategy of the module.  The
problem is that general-purpose implementation
strategies, tuned for a wide range of clients,
aren’t necessarily optimal for each specific cli-
ent—this is especially an issue for modules that
are intended to be reusable and yet provide high-
performance.

An examination of existing software systems
shows that an increasingly important technique
for handling this problem is to design the mod-
ule’s interface in such a way that the client can
assist or participate in the selection of the mod-
ule’s implementation strategy.  We call this
approach open implementation.

When designing the interface to a module that
allows its clients some control over its imple-
mentation strategy, it is important to retain, as
much as possible, the advantages of traditional
closed implementation modules.  This paper
explores issues in the design of interfaces to
open implementation modules.  We identify key
design choices, and present guidelines for de-

ciding which choices are likely to work best in
particular situations.

INTRODUCTION
Software has traditionally been constructed ac-
cording to the principle that a module should
expose its functionality but hide its implementa-
tion.  This principle, informally known as black-
box abstraction, is a basic tenet of software de-
sign, underlying our approaches to portability,
reuse, and many other important issues in com-
puting.

Black-box abstraction has many attractive
qualities—amortized development costs, local-
ization of change, etc. Exposing only the
functionality of a module in its interface, how-
ever, can sometimes lead to performance
difficulties when the module gets reused.  It has
been observed that in such cases, clients “code
around” the problem either by re-implementing
an appropriate version of the module or by using
existing modules in contorted ways  [5,  6].  In
either case, many of the goals that motivated
creating the module in the first place are not
actually realized.

Many recent systems address this problem by
having modules that allow client control of their
implementation strategy [7, 8, 9, 10, 11,  12,].
We say that these modules have open imple-
mentations.



2

The open implementation approach works by
somewhat shifting the black-box guidelines for
module design.  Whereas black-box modules
hide all aspects of their implementation, open
implementation modules allow clients some
control over selection of their implementation
strategy, while still hiding many true details of
their implementation.  In doing this, open im-
plementation module designs strive for an
appropriate balance between preserving the kind
of opacity black-box modules have, and provid-
ing the kind of performance tailorability some
clients require.

A number of existing systems have open imple-
mentation style interfaces, but thus far, there has
been no systematic study of open implementa-
tion design, and as a result, designers of these
systems have had little or no general guidance to
assist them.  This paper addresses this need by
examining a series of specific modules with
open implementations, including designs taken
from published systems and toy designs that
illustrate specific issues. The designs serve to
illustrate important concepts, guidelines, and
tradeoffs.  They also provide concrete instances
to study and use as idioms in future designs.

This paper is specifically focused on the design
of interfaces to modules with an open imple-
mentation. While the implementation
techniques that support these interfaces are cru-
cial, they are beyond the scope of this paper.1

Neither does this paper focus on the general
motivation for open implementation—that can
be found in [13, 14, 6, 15, 16]—instead we op-
erate from the premise that some modules can
benefit from the open implementation approach,
and focus on issues in the design of their inter-
faces.

A BASE CASE
Before we begin an exploration of open imple-
mentation interface designs, it is necessary to
provide a basis for the terms module and inter-
face. We use these terms in a similar fashion to

                                                       
1 Many of the implementation techniques are
straightforward, and will be apparent simply
from looking at the interface design.  Others are
more subtle, and involve recently developed
techniques in language and system implementa-
tion [1, 2, 4]. There is, as yet, no unified
presentation of these techniques; a separate pa-
per describing this is in preparation.

[17] where a module  represents a work assign-
ment, and an interface is the set of assumptions
a client programmer using the module may
make about its behavior.2 The modules subject
to an open implementation are conceived  in the
same manner as any other module, namely by
the application of the information hiding princi-
ple [18].  According to this principle, modules
are selected to localize and hide design deci-
sions.

The following interface design for a simple set
module will be used as an illustrative example
throughout the paper. This black-box interface
presents only  the functionality of the set module
and hides all implementation issues behind the
interface. It will serve as a comparison point for
subsequent open implementation designs for
interfaces to set modules.  We are using the set
module throughout to help make the differences
between the designs more clear.  But not all of
the designs we present will be appropriate for a
module as simple as this.  These will noted ex-
plicitly.

Set Module Interface Design A
This is the simple “black-box” design.  It has the
usual procedures for creating sets, adding and re-
moving  elements from sets, and mapping over the
elements of a set.   The calling interface to the mod-
ule might look something like:

makeSet()
insert(item, set)
delete(item, set)
isIn(item, set)
map(function, state, set) 3

Interface design A is attractive in its simplicity.
In addition, it adheres to the five characteristics
of quality interface designs outlined in [19].
That is, the interface is consistent (e.g., the set
parameter is consistently passed as the last ar-
gument), essential (e.g., each service is offered

                                                       
2 In this paper, we are concerned with guidelines
on the selection and form of the interface to an
open implementation module. Issues related to
the specification of an interface  are outside the
scope of this work.
3 The map procedure calls function on every
element of the set, passing it both the element
and the state block.  This design makes it possi-
ble to “simulate a closure.”



3

in only one way), general (e.g., a set may be
used for only insertions, or both insertions and
deletions), minimal (e.g., each function provides
one operation), and opaque (e.g., the interface
hides the “secret” around which the module has
been defined).

It is, however, inherently difficult to develop an
implementation of this interface that will please
a large range of prospective clients.  This diffi-
culty arises because determining the best
implementation strategy for a set depends on
knowing what is going to be done with it.  How
many elements will it have?  How often will new
elements be inserted?  Will existing elements be
deleted?  How often?  How often will the other
set operations be called?  All of these factors are
important in determining how to implement a
set.  This is why there are so many different
implementation strategies for sets. The libg++
library  [20], for example,  has eleven variants
of set, including linked lists, B-trees and hash
tables, to name a few.  But with design A, the
set module implementor has little basis for se-
lecting which implementation strategy to use—
the interface makes it difficult for the set module
to know what a specific client’s usage pattern
will be.  This is, in short, an appropriate case for
an open implementation design.

SEPARATION OF USE FROM IMPLE-
MENTATION STRATEGY CONTROL
The following design addresses the difficulty of
developing a reusable implementation of design
A by providing clients limited control over the
selection of the module’s implementation strat-
egy.

Set Module Interface Design B
In this design, the interface is the same as in design
A, except that now makeSet can optionally be
called with an argument that describes the client’s
pattern of use.  The intent is that the set module im-
plementation can examine this description and select
an appropriate specialized implementation strategy
tuned for that pattern of use. The optional usage pa-
rameter is a string in a simple declarative language
that supports the encoding of information such as the
size of the set and the relative frequency with which
the various operations are called.

makeSet(usage)
makeSet()
insert(item, set)
delete(item, set)
isIn(item, set)
map(function, state, set)

The following example calls to makeSet show how
the usage parameter works:

makeSet(“n=10000,
            insert=lo,
            delete=lo,
            isIn=hi”)

makeSet(“n=5,
            insert=hi,
            delete=hi”)

In this design, the opacity criteria have been
relaxed somewhat from design A. Whereas de-
sign A kept the implementation entirely
“secret,” design B admits to clients that is se-
lecting the implementation strategy is an
important issue, and that understanding how the
set will be used can help in that selection.  But
note that most of the secrets remain hidden.
The client does not know what the actual im-
plementation strategies are, and they certainly
do not know any of the details about how those
strategies are implemented.

We begin with a few simple observations about
this new interface design:

• It is only a small change from interface de-
sign A.  The makeSet procedure now
accepts an optional argument; all the other
procedures are unchanged.

• The client’s use of the new functionality is
optional.  It is still possible to call make-
Set with no arguments, which will leave
the set module free to choose a default gen-
eral-purpose implementation strategy, much
as it would have in design A.

• The client’s use of the new functionality has
an inherently well-bounded effect. The im-
plementation strategy control associated
with a given call to makeSet affects only
the sets created by that call.  This makes it
possible for some sets to use the new func-
tionality and others not, and for different
sets that use the new  functionality to do so
in different ways to get different imple-
mentation strategies.

• The new part of the interface can be seen as
being relatively orthogonal to the original



4

interface.  The new part supports client
control of implementation strategy,
whereas the old part supports actually using
sets.

The last observation means that set module in-
terface design B effectively splits client code
into two kinds: most of the client code simply
uses the set module’s functionality, while the
parameter to makeSet is involved in control-
ling the set module’s implementation strategy.

This important property is in fact the subject of
the first design guidelineopen implementa-
tion module interfaces should support a clear
separation between client code that uses the
module’s functionality (use code) and client
code that controls the module’s implementa-
tion strategy (ISC code) .

A clear separation between client use code and
ISC code is important because it helps to pre-
serve the advantages of black-box modules. It
helps the client programmer selectively focus
their attention on either the way their code uses
the module’s functionality, or the way their code
controls the module’s implementation strategy.
When focusing on the use code, the client pro-
grammer is effectively working with a black-box
interface to the module.

Design B does a good job in this respect; the
client programmer simply has to selectively ig-
nore the paramater passed to makeSet in order
to focus on use code.  It would even be easy to
build an automatic tool that could hide the ISC
code when the programmer wanted to ignore it.

In working with this guideline, what is most
important is the effective separation the client
programmer has to work with, as manifested in
their code.  This goal can be supported by
use/ISC separation in the interface, but it is
separation in the client code that is the real
benefit.

In addition to having a clear separation between
client use and ISC code, open implementation
module interfaces should be designed to  make
the ISC code optional, make the ISC code easy
to disable, and support alternative ISC codes
for one piece of use code.  These additional
guidelines provide further support for the devel-
opment of clients of open implementation
modules.   They enable clients to first be devel-
oped with a focus on getting get the

functionality right, by leaving out ISC code.
They assist performance debugging, by selec-
tively turning parts of the ISC code on and off.
They facilitate porting, by allowing different
ISC code for different environments. They sup-
port division of expertise, since use code can be
written by a person (or group) with one expertise
and ISC code can later be written by a person
(or group) with another expertise.

One example of a system with clear use/ISC
code separation is High-Performance Fortran
(HPF) [21], a Fortran extension intended to sup-
port efficient data parallel programming.  One
of HPF’s principal components is a set of decla-
rations that allows programmers to assist the
compiler (and the runtime system) in determin-
ing strategies for distributing arrays across
multiple processors. In our terminology, these
declarations are ISC code. Clear use/ISC sepa-
ration is achieved by embedding the declarations
into what would be comments in a Fortran-90
program. An example of the use of this mecha-
nism is:

REAL A(1000,1000), B(998,998)
!HPF$ ALIGN B(I,J) WITH         
      A(I+1,J+1)

where the first line is use code that declares two
large arrays and the second line is ISC code
saying how to lay out the elements of the arrays
with respect to each other.

Scoring the HPF interface design against the
use/ISC separation guidelines:

• The use/ISC code separation is clear—the
ISC code can easily be ignored by the client
programmer or hidden by a tool.

• The ISC code is optional—either HPF or
Fortran-90 compilers will compile an HPF
program without the ISC code.

• The ISC code is easy to disable—a very
simple tool can strip it out of a program
before passing that program on to the com-
piler.

• HPF doesn’t directly support multiple ISC
codes for one use code, but it is easy to build
a tool that does do so, for example by fur-
ther extending the syntax to mark each line
of ISC code with the platform for which it is
intended, and then using a pre-processor to



5

strip out inappropriate lines before passing
the code off to the HPF compiler.

These properties translate into direct benefits to
HPF programmers.  Programs can be developed
focusing on just the use code.  The ISC code can
be added later during tuning, possibly by differ-
ent programmers.  Even after the ISC code has
been added, the use code is internally complete
and executable on its own, so that evolution can
be accomplished by first adjusting and testing
the use code, and then making any needed ad-
justments to the ISC code.

An example that doesn’t do quite as good a job
on use/ISC separation is the libg++ library  [20],
a large library of C++ classes and other building
blocks, that includes a set module with an open
implementation.  But in this design, ISC code is
mandatory at set construction, requiring client
programmers to always think about the set mod-
ule’s implementation strategy, even in the many
cases where a general-purpose strategy would be
sufficient.  The result is that too many of the
benefits of the black-box interface are lost.  This
also means there is no way to tell from reading
the client code whether a particular piece of ISC
code was well thought out, or was merely in-
tended to be a default. This makes the code
harder to reason about and maintain.  The work
described in [10] improves on the libg++ design
in several ways, one of which is to provide a
more clear use/ISC separation.

SCOPE CONTROL
An important observation about design B is that
any given piece of ISC code affects the imple-
mentation of only some setsjust those sets
created by the makeSet the ISC code appears
in.  This important point is the focus of the sec-
ond design guidelineopen implementation
module interfaces should be designed to allow
the scope of influence of ISC code to be con-
trolled in a way that is both natural and
sufficiently fine-grained.

Like use/ISC separation, the motivation for this
guideline is to help the client programmer un-
derstand their program, in this case by making it
easier for them to reason about the effect of the
ISC code they write.  Having the scope of influ-
ence of ISC code be both natural and fine-
grained directly facilitate the programmer’s rea-
soning.

Design B does a good job of meeting this guide-
line. The ISC code on a specific call to
makeSet affects only those sets returned from
that call (and all the set operations on them).  It
is natural for the client programmer to think in
terms of sets created by a given call to make-
Set. This granularity is sufficiently fine grained
for the programmer to reason easily about the
effect of any piece of ISC code.

Figure 1. shows the effect of design B’s scope
control from the client programmer’s perspec-
tive.  It shows a number of lines of use code, and
two pieces of ISC code, the strings “n=1000”
and “n=5”.  The dashed lines indicate what
parts of the use code are in the scope of influ-
ence of each piece of ISC code.  Note that the
count function, and the call to map inside it
are in both scopes, since it can be passed sets
with either kind of implementation.

Choosing the Scope  Control
While the importance of natural and fine-
grained ISC code scope control is easy to state,
designing an appropriate scope control for an
interface can be a subtle problem.  Coming up
with the design involves considering how and
why the client is going to want to control the
implementation strategy, and making sure that
the design gives clients a fine-enough granular-
ity to work with, without being overly difficult to
implement or use.  This section presents some
alternative scope controls, to illustrate some of
the considerations that come into play.

As an alternative scope control for design B,
consider a design where the client could only
control the implementation strategy on a per-
application basis.  This might be done with a

   s1=makeSet(“n=1000”)
   for i = 1 to 700 do
     insert(s1, i+i)

   count(s1)

   s2=makeSet(“n=5”)
   insert(s2, 5)
   insert(s2, 6)

   count(s2)

   function count(s) {
     map(.., .., s)

     }

Figure 1: Scope control in Design B



6

declaration associated with the makefile for the
application, that affected all the sets used by that
application.  (This interface to this could look
something like the ISCForSet procedure
mentioned in Section 0.) This scope control
would not be fine-enough grained, because it is
reasonable to expect that an application will
want to use sets more than once, and do so in
different ways, and thus want different imple-
mentations strategies.  This alternative design
would thus be not much more useful than a
closed implementation of sets.

As another example consider file systems that
allow the client to control their pre-fetching and
caching strategy [22]. These systems tend to
provide this control on a per stream basis.4  A
per-file basis would be too coarse a granularity,
because it would cause problems if two different
clients opened the same file but wanted different
implementation strategies. Similarly, ISC scope
control on a per-process basis would be too
coarse, since it is reasonable to expect that a
system running in one process might want to
open different streams with different imple-
mentation  strategies.

While it is important to have sufficiently fine-
grained scope control, there is a tension in that
the more fine-grained it gets, the harder it can
be both to use and to implement.  For example,
if a file system allowed the client to control the
pre-fetching strategy on a per-byte basis—every
call to readByte could control the pre-
fetching that happened with that call—it would
undoubtedly be more powerful than on a per-
stream basis, but it could be more cumbersome
to use and difficult to implement.
(Implementation technology capable of sup-
porting such a design does exist however [3].)

There are, however, cases where very coarse ISC
scope control has proven useful.  Consider for
example the BLAS libraries [23] for matrix rou-
tines.  There are different library
implementations customized for different hard-
ware architectures. The library is linked in when
execution starts, and affects all the matrix
arithmetic in the application, but in this case
that is an appropriate granularity.

                                                       
4 By stream we mean the result of opening the
file, that is a handle to the file that can be used
to read/or write bytes.

In summary, natural and fine-grained scope
control complements clear use/ISC separation.
A clear use/ISC separation divides the client
code into use code and ISC code.  Natural and
fine-grained ISC code scope control partitions
the client code into parts depending on what ISC
code affects them.

SUBJECT MATTER
While design B does address the original need
for client control of implementation strategy, the
way in which it does so has a few potential
weaknesses:

• If a client programmer mis-describes the
behavior of their program they may wind up
with an implementation strategy that is
worse than the default

• Even if the client programmer properly de-
scribes the behavior of their program, they
have no guarantee that they will get an im-
plementation strategy that is optimal for
their purposes. An implementation of de-
sign B might not have an implementation
strategy that is optimal for every usage pro-
file a client might describe in a call to
makeSet.

In essence, design B allows the client to say
more about its behavior, but leaves the client
unsure about the effect this will have on the
module’s implementation strategy.  Addressing
this uncertainty is the motivation for the next
design.

Set Module Interface Design C
This design for  the set module interface is identical
to design B except for the optional argument to
makeSet. In this design the client programmer has
the option to explicitly specify one of a fixed list of
implementation strategies for the new set.   The fixed
list  is: BTree, LinkedList, HashTable ..

makeSet(strategy)
makeSet()
insert(item, set)
delete(item, set)
isIn(item, set)
map(function, state, set)

 Two example calls to makeSet are:

makeSet(“LinkedList”)

makeSet(“HashTable”)

First we note some of the ways that design C is
similar to design B:



7

• It has similar use/ISC separation, i.e. a pa-
rameter of a procedure in the use interface.

• It has  similar scope control, i.e. a given
piece of ISC code affects only operations on
sets returned by that call to makeSet.

But designs B and C differ in an important re-
spect, having to do with the nature of the ISC
code in clients of each.  To capture this differ-
ence, we introduce a concept called the ISC
code subject matter of an open implementation
module’s interface design.  We use this term to
refer to the explicit subject of the ISC code.

In design B, the ISC code subject matter is the
client program’s behavior.  In design C it is the
module’s implementation strategy.  This dis-
tinction is somewhat subtle, since both designs
allow the client to affect the module’s imple-
mentation strategy after all.  And pieces of ISC
code from designs B and C can have the same
intent, even though they have different subject
matter, i.e. "n=1000, insert=lo, de-
lete=lo, isIn=hi" and “HashTable”.
The difference is in what the ISC code is explic-
itly about: the client program’s behavior in
design B vs. is the module’s implementation
strategy in design C.

There is a third important possibility for ISC
code subject matter—performance requirements
the module must meet at its interface.  While
this subject matter may not be appropriate for
the interface to a set module, it is useful in other
cases.5 One example of open implementation
modules with this ISC code subject matter is
network protocol interfaces that allow clients to
request a particular quality of service [24].  Such
guarantees are critical for applications, such as
audio- and video-conferencing, that send real-
time data streams over a network.

                                                       
5 The libg++ set library uses the module’s im-
plementation strategy as its ISC code subject
matter.  (It is like design C in that sense.)  But,
the documentation of the different strategies
(XPSets, OXPSets, SLSets etc.) itself in-
cludes a description of each strategy’s order of
complexity (i.e. [a O(n)], [f O(n)], [d O(n)]…
for XPSets), so it describes itself in terms of
performance properties at the module’s inter-
face.

The three possibilities for ISC code subject
matter are summarized in Table 1.

Tradeoffs
Choosing the ISC code subject matter is a key
decision in the design of the interface to an open
implementation module. The ISC code subject
matter has a significant effect on how easy the
module will be to design, specify and imple-
ment, as well as how well it will work for its
clients.

Making the ISC code subject matter be the cli-
ent’s behavior feels like it should be easier for
the client programmer, since all they have to do
is figure out the behavior of their program and
let the module do the rest.  But this isn’t always
the case.  It can often be much easier for a client
programmer to name a well-known implemen-
tation strategy than to describe the behavior of
their application.  The latter can often give the
client programmer more certainty that their ISC
code will have the effect they desire.  This is
why the libg++ set library has module imple-
mentation strategy as its subject matter, not
client program behavior.  (It is more like design
C than design B.)

On the other hand, having the ISC code subject
matter be the module’s implementation strategy
opens the door to potential problems if the client
programmer chooses an inappropriate strategy.
We are all familiar with the fact that good C
compilers ignore register declarations because
programmers almost always use them incor-
rectly.  So, the interface designer should only
make this choice for ISC code subject matter
when there is a reasonable chance that the client
programmer will be able to choose correctly.

And, while having the subject matter be the
performance requirements at the interface seems
like a happy compromise, it is not always the
best choice either.  There are many cases where
it is easier for the client programmer to speak in
terms of one of the other subject matters.

One rule of thumb for selecting ISC code subject
matter is based on seeing the process of select-
ing implementation strategy as a series of
analysis steps: Given the client use code, how
does it use the interface?  Given a client with
that usage pattern, what performance properties
does it require?  Given those performance re-



8

quirements, what implementation strategy will
best satisfy them? This process is illustrated in
Figure 2.

Seeing the process that way, the rule of thumb is
to pick the first subject matter along that process
for which all of the following criteria hold:

• It is possible to build an automatic mecha-
nism that completes the chain of reasoning
from that point onwards to get an optimal
implementation strategy.

• It is easy to design an interface to express
the subject matter at that point.

• It would be easy for the client programmer
to use that interface to express that subject
matter.  This includes both figuring out
what to say and how to say it.

Note that this rule of thumb also provides a way
of knowing when not to use an open implemen-
tation.  An open implementation is not needed
when all of the steps of the above inference
process can be handled automatically to arrive at
an optimal implementation strategy.

One example of an appropriate choice of ISC
code subject matter is the inline declaration
found in many programming languages, in-

                                                       
6 If there is one implementation strategy that is
appropriate for all clients, there is no need for
an open implementation.

cluding C and Common Lisp.  This declaration
allows the programmer to name an implementa-
tion strategy for handling procedure calling.  It
comes at the end of the inference process above,
and so the programmer has a clear sense of what
its effect will be.

A corresponding example of inappropriate
choice of ISC code subject matter is the
speed/space/safety declarations found in Com-
mon Lisp [25].  These declarations don’t have a
clear subject matter; it isn’t clear where they fall
in the inference process above, and program-
mers don’t have a clear sense of what their
effect will be.

Implementation Details Must be Hidden
Design C further relaxes the original secrets
around which Design A was defined.  Now, the
existence of a fixed set of implementation
strategies is no longer secret.  But notice that the
true details of each strategies implementation is
still hidden.  There is still plenty of information
hiding across the interface between the client
and the implementation.  This can be stated in a
design guideline: Open Implementation module
interfaces should be designed to pass only es-
sential implementation strategy information.
The three subject matters are different ways of
encoding the essential information.

Subject Matter Client ISC Code Example

client program’s behavior n=10000,insert=hi,delete=lo,isIn=hi Design B

performance requirements
the module must meet  at
its interface

bandwith=10000 Network Quality of
Service [24]

module implementation
strategy

HashTable Design C

Table 1: Subject matter and Style of ISC Code

client
use

code

client
usage
profile

client
performance
requirements

module
implementation

strategy

analysis analysisanalysis

Figure 2: Analysis steps in the process of selecting implementation strategy



9

STYLE OF THE ISC CODE
While design C addresses the lack of guarantees
in design B, both designs are limited to what-
ever set of implementation strategies is provided
by the module.  This makes them both vulner-
able to the implementation not being flexible
enough for a wider range of clients.  This moti-
vates yet another design.

Set Module Interface Design D
In this design, the use interface is exactly the same as
in design C.  But this design not only allows client
programmers to choose from a fixed set of default
implementation strategy, but also allows them to
provide entirely new implementation strategies for
the set module. The client provides these strategies in
the form of an entirely new implementation of the set
functionality, packaged up as a subclass of the class
Set.  (In this paper we use the mechanism of object-
oriented programming to capture this kind of design,
but other mechanisms like callbacks or dispatching
procedures could be used just as well.)

The following example illustrates the use of interface
design D:

In use file

      makeSet(“mySet”)

 In ISC file

class mySet (Set) {
  method insert…
  method delete…
  method isIn
  method map}

Design D is similar to design C in many ways:

• It  has the same scope control.

• It has similar use/ISC code separation.  The
key difference in design D is that client ISC
code includes not only the code inside the
arguments to makeSet, but also the code
that defines any new implementation strate-
gies for sets.

• The ISC code subject matter in this design
is the implementation strategy of the mod-
ule.  But in this design, the ISC code takes
two different forms.  The part inside the ar-
guments to makeSet is just like in design
C, but the part that defines new subclasses
of Set is different.

To capture this difference between the declara-
tive ISC code in designs B and C and the
programmatic ISC code that in design D, we
introduce a new concept, the style of the ISC
code.   

Declarative style ISC code is simple, but its
power is limited to the forms of declarations
supported by the interface.  This limitation can
be problematic when a client has needs that fall
out of the purview of these declarations. An in-
terface that supports programmatic ISC code
addresses this limitation by allowing the client
to write ISC code in the form of a small pro-
gram.

In design D, the set primitives insert, de-
lete, isIn etc. will invoke the client’s
programmatic ISC code when one of the client-
defined implementations is requested.  Errors in
this ISC code will cause errors seen by the use
code. So, unlike the situation in the earlier de-
signs, ISC code has the potential of breaking the
use functionality of the interface.

The programmatic style of interface thus ap-
pears to lead to less robust designs. For this
reason, it should only be used in cases, such as
this one, where otherwise the client would be
forced to “code around” the performance defi-
ciency of the module.  The use of programmatic
ISC code puts a premium on having the right
scope control, so as to restrict the consequences
of bad programmatic ISC code to those places
where it is requested. So, for example, if a buggy
backing store is given to the Mach external
pager, the whole operating system does not
come crashing down. Only the process request-
ing that backing store is affected.

Layering
Notice that interface design D subsumes both
design C and design A.  That is, a client of de-

client code from the
client appears
to end up inside
the module

module

Figure 3: Effects of ISC code in design D.



10

sign D has three choices regarding control of the
set module’s implementation strategy:

1. They can specify no ISC code and get the
default implementation strategy.

2. They can choose from the list of the built-in
strategies.

3. They can provide a new strategy.

We say that design D is a layered interface de-
sign.7   In this design the client can get into the
implementation strategy selection process at
three different levels.  In fact, the first two levels
of the above layering have been implicitly pres-
ent since design B, stemming from the guideline
that ISC code should be optional.

Many existing open implementation modules
have layering in this sense. The file system
mentioned above is one example, that closely
parallels design D.  The client can do nothing,
in which case they get a default pre-fetching
policy, or they can choose from a small set of
built-in policies, or they can write programmatic
ISC code to define a new policy.

A layered interface design aims at exploiting a
version of the 90/10 rule.  The idea is that 90%
of the clients can use the default strategy, the
remaining 10% will need to write some ISC
code.  90% of that 10% can select from among
the built-in strategies, and only the final 1% (but
probably a very important 1%) have to provide
an entirely new strategy.

Layering is not an end in itself, but a technique
to address what might otherwise seem like an
irresolvable trade-off.  In particular, layering is
a way to design an interface that has the robust-
ness and ease of use of declarative ISC code,
while at the same time having the power of pro-
grammatic ISC code.  The guideline is: When
there is a simple interface that can describe
strategies that will satisfy a significant fraction
of  clients, but it is impractical to accommo-
date all important strategies in that interface,
then the interfaces should be layered.

                                                       
7 Layered interface designs refer to the structure
of the interface, not to the underlying software
structure. A layered interface design might or
might not be implemented by a layered software
architecture.

OTHER DESIGNS
The range of design approaches presented here
are suitable for a large class of open implemen-
tations.  But there is no room here to cover all
the common approaches.  One notable omission
is an approach, particularly used in some open
operating systems, that allows incremental defi-
nition of new strategies.

These other approaches will be explored in fu-
ture work.

CONCLUSION
Open implementation is appropriate for reusable
modules that have clients with a wide range of
different performance requirements. Open im-
plementation is based on reworking the opacity
guidelines for traditional black-box modules. In
open implementation, modules allow their cli-
ents to participate in their implementation
strategy, but still hide many aspects of their im-
plementation details. Open implementation
requires new design guidelines to augment the
existing ones for black-box modules. This paper
provides an initial set of such guidelines and
issues having to do with:

• Clear use/ISC client code separation

• Natural and fine-grained ISC code scope
control

• Selection of appropriate ISC code subject
matter

• Selection of appropriate ISC code style

• Incrementality in the ISC interface

• Use of layering to balance ease of use and
power

ACKNOWLEDGMENTS
We would like to thank the people who have
contributed directly to this paper: Art Lee, Rob
DeLine, John Irwin, Jean-Marc Loingtier, Chris
Maeda,  and Marvin Theimer.

BIBLIOGRAPHY
1. Kiczales, G., J.d. Riveres, and D.G. Bobrow,

The Art of the Metaobject Protocol. 1991:
MIT Press.

2. Chambers, C. and D. Ungar. Making Pure
Object-Oriented Languages Practical. in
OOPSLA '91 Proceedings; SIGPLAN No-
tices. 1991. Phoenix, AZ.



11

3. Pu, C. and H. Massalin, An Overview of The
Synthesis Operating System. 1989: Columbia
University.

4. Chiba, S. A Metaobject Protocol for C++. in
OOPSLA '95 Conference Proceedings Ob-
ject-Oriented Programming Systems,
Languages, and Applications. 1995. Austin:
ACM Press.

5. Stonebraker, M., Operating System Support
for Database Management. Communications
of the ACM, 1981. 24(7): p. 412-418.

6. Kiczales, G. Towards a New Model of Ab-
straction in Software Engineering. in
Proceedings of the International Workshop
on New Models for Software Architecture
'92; Reflection and Meta-Level Architecture.
1992. Tokyo, Japan.

7. Young, M.W., Exporting a User Interface to
Memory Management from a Communica-
tion-Oriented Operating System. Vol.
Technical report CMU-CS-89-202. 1989:
Carnegie Mellon University, Computer Sci-
ence Department.

8. Hamilton, G. and P. Kougiouris, The Spring
Nucleus: A Microkernel for Objects. 1993:
Sun Microsystems Laboratories, Inc.

9. Yokote, Y. The Apertos Reflective Operating
System: The Concept and its Implementation.
in Proceedings of the Conference on Object-
Oriented Programming: Systems, Lan-
guages, and Applications. 1992.

10.Lortz, V.B. and K.G. Shin. Combining Con-
tracts and Exemplar-Based Programming for
Class Hiding and Customization. in  Object-
Oriented     Programming Systems, Lan-
guages, and Applications. 1994. Portland,
Oregon: ACM Press.

11.Maeda, C. and B.N. Bershad. Service with-
out Servers. in Fourth Workshop on
Workstation Operating Systems. 1993: IEEE
Computer Society Technical Committee on
Operating Systems and Application Envi-
ronments, IEEE Computer Society Press.

12.Anderson, T.E. and others, Scheduler Acti-
vations: Effective Kernel Support for the
User-Level      Management of Parallelism.
ACM Transactions on Computer Systems,
1992. 10(1): p. 53-79.

13.Shaw, M. and W.A. Wulf, Towards Relaxing
Assumptions in Languages and Their Imple-
mentations. SIGPLAN Notices, 1980. 15(3):
p. 45-61.

14.Heninger Britton, K., R.A. Parker, and D.L.
Parnas. A Procedure for Designing Abstract
Interfaces for Device Interface Modules. in
5th International Conference on Software
Engineering. 1981: IEEE Computer Society
Press.

15.Kiczales, G., Beyond the Black Box: Open
Implementation. IEEE Software, 1996.
13(1): p. 8--11.

16.  Open Implementation Home Page, Xerox
Palo AltoResearch Center,

        http://www.parc.xerox.com/oi.

17.Parnas, D.L. and P.C. Clements, A Rational
Design Process: How and Why to Fake It.
IEEE Transactions on Software Engineering
and Methodology, 1986. SE-12(2): p. 251--
257.

18.Parnas, D.L., On the Criteria to be Used in
Decomposing Systems into Modules. Com-
munications of the ACM, 1972. 15(12): p.
1053-1058.

19.Hoffman, D., On Criteria For Module In-
terfaces. IEEE Transactions on Software
Engineering and Methodology, 1990. 16(5):
p. 537--542.

20.  Gnu, Lib G++ Documentation,
        http://www.delorie.com/gnu/docs.

21.Steele Jr., G.L., High Performance Fortran:
Status Report. ACM SIGPlan Notices, 1993.
28(1).

22.Patterson, R.H. and et al., A Status Report on
Research in Transparent Informed Pre-
fetching, in ACM Operating Systems Review.
1993. p. 21-34.

23.Dongarra, J.J., et al., An Extended Set of
Fortran Basic Linear Algebra Subprograms.
ACM Transactions on Mathematical Soft-
ware, 1988. 14: p. 1--17.

24.Zhang, L., et al., RSVP: A New Resource
ReSerVation Protocol. IEEE Network,
1993(September).

25.Steele Jr., G.L., Common Lisp the Language.
Second ed. 1990: Digital Press. 1029.


