
..

"

TIIEORY AND PRACTICE IN THE CONSTRUCTION

OF EFFICIENT INTERPRETERS

Nigel Paul Chapman

Submitted ih~fu(fillment ~f the
requirements for the degree of
Doctor of Phi l:osophy

The Universit)t::of Le~ds . <. .. '. - .~ .. <
Department of Computer Stud1~s

October 1980

ABSTRACT

Various characteristics of a programming -~nguage, or of the
hardware on which it is to be implemented, may make interpretation a
more attractive implementation technique than compilation into machine
instructions. Many interpretive techniques can be employed; this
thesis is mainly concerned with an efficient and flexible technique
using a form of interpretive code known as indirect threaded code
(ITC). An extended example of its use is given by the Setl-s
implementation of Sett, a programming language based on mathematical
set theory. The ITC format, in which pointers to system routines are
embedded in the code, is described and its extension to cope with
polymorphic operators. The operand formats and some of the system
routines are described in detail to' illustrate the effect of the
language design on the interpreter.

Setl must be compiled into indirect threaded code and its
elaborate syntax demands the use of a sophisticated parser. In Setl-s
an LR(1) parser is implemented as a data structure which is
interpreted in a way resembling that in which ITC is interpreted at
runtime. Qualitative and quantitative aspects of the compiler,
interprP.ter and system as a whole are discussed.

The semantics of a language can be defined mathematically using
denotational semantics. By setting up a suitable domain structure, it
is possible to devise a semantic definition which embodies the
essential features of ITC. This definition can be related, on the one
hand to the standard semantics of the language, and on the other to
its implementation as an ITC-based interpreter. This is done for a
simple language known as X10. Finally, an indication is given of how
tnis approach could be extended to describe Setl-s, and of the insight
gained from such a description. Some possible applications of the
theoretical analysis in the building of ITC-based interpreters are
suggested.

CONTENTS

List of Figures

1. Interpreters

1.1. Interpretation and Compilation

1.2. The Choice of Implementation Technique

1.3. Jnterpetive Strategies

2. Introduction to Setl-s

3.

2.1. Preliminary Description

2.2. The Setl Language

2.2.1. Data Types

2.2.2. Expressions

2.2.3. Statements

2.2.4. Miscellaneous

2.3. The Setl-s System

2.3.1. Background

2.3.2. Minimal

2.3.3. Memory Organisation

The Setl-s Interpreter

3 .1. Representation of Code

3.1.1. Indirect Threaded Code

3. 1 .2. Transfer of Control

3.2. Representation of Values

3.2.1. Operand Blocks

3 .2.2 .. Sets and Tuples

3.2.3. Pairs and Maps

3.2.4. Assignment and Copying

V

1

1

6

9

13

13

15

15

16

20

22

23

23

28

29

31

31

31

34

39

39

43

44

i

3.3. Representation of Operators

3 .3 .1 • Polymorphism in Setl

3 .3 .2 .. Operator Implementation

3.4. Some Features of the Runtime Routines

3 .. 4 .1. Iterators

3.4.2. Procedure Call and Return

4. The Setl-s Compiler

4.1. The Parser

4.1.1. Parsing Algorithm

4.1.2. Setl-s Parser Representation

4.1.3. Parser Generation

4.1.4. Initialisation

4.1.5. Syntactic Error Handling

4.2. Lexical Analysis

51

51

53

55

60

63

65

65

65

71

76

78

81

82

4.2.1. The Scanner 82

4.2.2. The Symbol Table and Reserved Words 84

4.3. Semantic Actions and Code Generation

4.3.1. Building the Parse Tree

4.3.2. Generation of ITC

5. Discussion of Setl-s

5.1. Assessment of the System

5.1.1. Performance

5.1.2. Portability

5.1.3. Construction of the Program

86

86

87

89

89

89

94

97

5 .2. The Interpreter

5.2 .1. The Interpretive Scheme

5.2 .2. Miscellaneous Topics

5.3. The Compiler

5 .3.1. Implementation of the Parser

5.3.2. Semantic Actions and

5.3.3. Parser Generation

5.4. Further Work

5.~.1. Improvement

5.4.2. Additions

Code Generation

6. Indirect Threaded Code and Semantics

6.1. Programming Language Semantics

L 1.1. Mathemati cat Semantics

o., .2. Standard Semantics of X10

6.2. Indirect Threaded Code

6.2.1. The Semantic Domains

6.2.2. Block Action Routines

6.2.3. A Translator for X10

6.2.4. Relation to Standard Semantics

6.3. Realisation of the X10 System

6.3.1. The Introduction of Pointers

6.3.2. Interpretive Routines

100

100

104

108

108

110

112

116

116

117

119

119

119

122

128

128

129

131

135

137

137

139

7. Theory and Practice

7 .1. Setl-s

7.2. Applications of the Theory

Appendices

Bibliography

Glossary of Block Names

142

142

145

149

157

161

iv

LIST OF FIGURES

1.1. Compilers and interpreters

2.1. Setl-s operators

2.2. Differences between Setl-s and full Sett

2.3. A comparison of Snobol4 and Setl

2.4. Structure of the Sett-s system

3.1. ITC flow of control

3 .. 2. ITC generated for x := y * 2

3.3. Codeblocks generated 1or If x>O Then s1

3.4. Setl-::. block formats

3.5. OPBLK for +

3.6. Modified ITC generated for x := y * 2

3.7. OPBLK for VAL

3 .. 8. APPLn and APPXn routines

4.1. Configuration sets for example grammar

4.2. CFSM for example grammar

4 .. 3. Replacement of inadequate state

4.4. Parser block formats

4.5. Parsing action routines

4.6. Data structure and PCX fragments

5.1. Performance comparisons

5.2. Parser states and optimisations

6.1. Standard semantics of X10

6.2. The X10 tranlator

Else s2

5

17

24

26

27

33

35

37

40

54

56

57

58

67

69

72

73

75

79

93

115

123

133

V

CHAPTER 1

INTERPRETERS

1.1 INTERPRETATION AND COMPILATJON

1

- An interpreter-based implementation of a programming language is

a system in which some representation of the source program is used at

runtime to direct the flow of execution through system routines. This

is commonly distinguished from a compiler-based implementation, in

which the source program is translated into a sequence of instructions

which can be executed by hardware. Idiomatically, the words

•compiler• and 'interpreter• are used loosely: 'compiler' is

sometimes used to mean the same as a compiler-based implementation,

and srnnetimes used to mean any program or part of a system which

translates from a source language into any lower-level representation.

Similarly, 'interpreter' can mean that part of a system which performs

the runtime operations, but can also be used to mean an entire

interpreter-based implementation. The way in which the two words are

used at particular points in this thesis should be obvious from their

context.

These two terms provide an important distinction between

implementations of programming languages, because of the different

sorts of dependence on the machine hardware which they imply, although

this cannot be a sharp distinction because most implementations

possess some of the characteristics of each and certain techniques

defy·this classification. (For example, the machine code produced by

some compilers consists almost entirely of subroutine calls.) In both

cases, the execution of a program ultimately consists of the execution

of a series of machine instructions, but, as will be seen, an

interpretive system provides an extra degree of flexibility and

independence from the facilities of the hardware.

The main advantage attributed to systems generating hard code is

that no software is required to decode the compiled program and so the

maximum execution speed is obtained. However, the instruction set of

a particular computer is unlikely to be optimal for implementing the

operations required by any particular language, and the memory

organisation will not necessarily be well-suited to representing the

data types the language provides. As a consequence of this, it can be

the case that conceptually simple operations in the source language

require long sequences of machine instructions for their

implementation; consequently, the compiled version of a program can

be very bulky. This effect can be mitigated by the use of

optimisation techniques in the compiler, but this may slow down the

compilation process considerably and increase the amount of workspace

required by the compiler.

The organisation of interpreter-based systems varies

considerably; several possible organisations are described in Section

1.3. If the source language is appropriate it can be interpreted

directly, but more often it is translated into an internal form

3

(referred to as 'interpretive code') which is then used by the

int~rpreter to direct the execution. The individual elements of the

interpretive code will be chosen so that the source program can

conveniently be expressed in terms of them. The runtime system will

consist of a set of routines corresponding to the elements of the

interpretive code. (These routines may be written in a high level

language rather than the machine code of the computer.on which the

system is to run.) Since the runtime routines comprise code sequences

to perform the operations of the source language, they will be as

bulky as the compiled code produced for the same operations. However,

only one copy of each routine is required and the interpretive code

itself will be compact. Therefore, if each operation occurs many

times in a program (as is usually the case) the total size of the

interpretive system and code will be smaller than the corresponding

compiled version of the program.

Although it will be practically important to the implementor of a

language to retain the distinction between compiler-based and

interpreter-based systems, it can be instructive to consider all

implementations as including both a compiler and an interpreter. The

compiler extracts a certain amount of information from the source

program and uses it to perform a translation into some interpretive

code which is then used to direct execution. At one extreme, the

interpretive code is identical with machine language, the 'system

routines• are implemented in hardware, and the flow of execution

simply consists of the sequential execution of the instructions, which

may ·include branching instructions. At the opposite extreme, the

interpretive code is identical with the source language and all the

information in the program is extracted by the interpreter. In

between these extremes~ is a continuum of implementations with

different. levels of interpretive code, in which different amounts of

information are extracted by the compiler and interpreter.

4

Since any system must extract the syntactic information contained

in the source in order to determine the structure of te program, all

implementations must deal somt:how with the problems associated with

parsing. If the internal form used by the implementation is not

identical with the source language some form of code generation will

also be required.

Figure 1.1 is intended to illustrate the variety of

implementations.

Before going on to practical matters relating to implementations,

there is one other aspect of interpreters which deserves mention. One

way of defining the semantics of a programming language is by

appealing to the behaviour of a particular compiler. This has obvious

drawbacks, in particular, the dependence on the operation of a

particular computer and the difficulty of relating the behaviour of

any other compiler to the standard in anything other than an

experimental manner. Therefore, the idea arose of defining semantics

by the use of an ab§!!lli in!~!E!!!~!, the operations of which can be

precisely defined mathematically. Early work on such definitions goes

back to [McC66,LAN64J; the most successful application is the Vienna

definition of PL/l [LW71J. An account of different approaches to the

use and specification of abstract interpreters, as well as some of the

difficulties arising therefrom is given in [REY72J.

Figure 1.1 Compilers and Interpreters

source Language Machine Instructions

+-----+
I I
+-- -+

l- -!
+li:._+--~+!

1
------=--::-==-:::-:::-! compiler ! ____ ,=--::-==-==-=-==!-- --t

I I +---+
--+ +-·----+ I I

+-- -+
I I +-- -+
I I
+-- -+

!--~--!
a) Compiler producing machine code

"'---+

+---+ +-------" I I +----> I
l--;-i I i-+ +-I:..----+

+---+ +--·-----+ I --+ --+

l+-+I I I +---+ I interpreter! I +-----+
. I ====> compiler ===> · -+--> -+ +---> I System
+~~! l--------! +-l--~-! l !!.. __ J_! Routines

--+ I ,, I+-----+
l __ ;-+ -----------+ +-----+

+--,-, I
b) Compiler producing interpretive code +--

+-----i·

+---+

+----------------i ,----------, I
♦-l~i _____ I interpreter !1-=-i r--==:

+-
I =+=

1
=====-----> +---------> l System ---+ I I Routines

+--+ I I ♦-----1 +----
<------+
I I I +-----+

+-------------+ ♦-------i----t I
c) Interpretation of source language +---

==> data transmission
-> control flow

+----+

5

6

1.2 THE CHOICE OF IMPLEMENTATION T~rHNlQUE

A number of programming languages may be said to constitute a

mainstream in language design at present. This would certainly

include Algol68, Cobol, Fortrun, Pascal and PL/1. There is also an

identifiable mainstream in hardware design and, perhaps not

surprisingly, the facilities provided by the latter are well-suited to

implementing mainstream languages. These facilities include integer

and real arithmet;c, conditional branching, loops controlled by

counters, subroutine calls, and index registers suitable for

implementing array-like data structures •. All other things being

equal, the superior execution speed obtained in a compiler-based

system will make this the preierred implementation for such a language

on such a machine. It may be the case, though, that there are

restrictions on space on a small machine or one with an addressing

mechanism which imposes a limit on the address space. If this is so,

then an interpreter-based system may be preferred because of the

compactness of interpretive code.

For this reason, the choice between an interpreter and a compiler

is often presented as a choice between a small, slow system and a

large, fast one. This naive view is inadequate. Both the nature of

the language and of the machine may affect the choice in a variety of

ways and so may the environment in which the system is to be developed

and used.

Outside the mainstream of language design there are some

languages which deal with objects which are not directly implemented

by hardware; the phrase 'high level data types' is used to describe

7

such objects. Snobol4 (strings, tables) and APL (vectors) are

~ell-known examples of such languages. Primitive operations in these

languages require complex machine operations for their implementation,

compared with which the decoding overhead of a suitably designed

interpretive scheme may be acceptable, whereas the size of the machine

code produced by a compiler may be unacceptable on all but the largest

machines.

The choice between compilation and interpretation is also

influenced by the amount of manifest information (information

contained in the source text) available to a compiler. If sufficient

information is available for the compiler to select a sequence of

machine instructions which will not be affected by the runtime values

of variables in the program, compiled code of very high quality can be

produced. A particular requirement is for the type of variables to be

determinable at compile time, since, if they can vary, type checking

code must be generated. For programming languages with dynamic data

types interpretation is usually preferred, particularly since dynamic

typing is often found in languages with high level data types such as

those mentioned in the previous paragraph.

In summary, if, for reasons such as those just outlined, the

overhead of executing a system routine considerably exceeds the

decoding overhead associated with the use of interpretive code, then

the use of a compiler producing hard code ceases to be necessarily the

best method of implementing the language. Whether this is so will

depend on the machine or machines on which the system is to run, as

well as on the language. The introduction of the first generation of

8

micro processors has seen a return to primitive instruction sets,

which are not adequate for implementing high level languages: a prime

example is the lack of floating point operations. For this reason, as

well as the restricted addressing space, implementations of high level

languages for micros are almost always interpreter-based.

Interpreters possess other advantages. It is easier to write an

interpretive system which performs acceptably than it is to write a

code generator to produce high quality machine code. furthermore, a

system generating machine code is je§Q !s£!Q machine dependent, but an

interpreter need not be so. The system routines can be written in a

widely available programming language, and the interpretive code

format can be designed so that it is not dependent on particular

machine characteristics. There is no need to redesign the generated

code sequences or produce register allocation schemes to cope with new

processor configurations, so the task of transporting a system becomes

considerably less complex.

Finally, the environment in which the system is to be used must

be taken into consideration. Interpreters are usually thought

preferable for interactive use (see, for example [BR079J). Even in a

non-interactive environment, if more time is spent developing programs

than actually running them when they work, then compilations will be

frequent. The obvious example of such an environment is a university,

in which students• programs are rarely run at all once they work

sufficiently well to satisfy a course requirement. Under these

circumstances, a fast translation into a suitable interpretive code

may be preferable to a compilation involving considerable

optimisations aimed at producing the most efficient machine code

possible. The Latter option would, however, be preferred in a

production environment, where the costs of compilation will only

rarely be incurred and it is desirable that execution be as efficient

as possible.

9

Interpreters can usually produce better run-time diagnostics than

compiler-based systems and in an environment where much debugging goes

on this may be considered important. There are many Languages in

existence for which a compiler cannot provide complete security;

since an interpreter retains at run-time much information (such as the

symbol table) which is thrown away before execution of a compiled

program, it is able to produce more helpful post-mortem dumps if a

run-time error occurs and can often provide sophisticated tracing

facilities.

1.3 INTERPRETIVE STRATEGIES

If the source language itself is used as the interpretive code,

the path of execution is determined by the syntax of the language.

For example, the interpreter might use some form of shift-reduce

parser, with the interpretive routines being called whenever a

reduction was made. (The use of any parsing algorithm which requires

back-tracking is ruled out for this purpose.) This approach is

particularly simple and does not require the generation of any form of

intermediate code; it can be implemented in such a way that parts of

the program which are not executed on a particular run will not get

parsed at all. The objection to interpretation of the source is that

57 er: 7TW□fCT 1 C 27 El 7

10

if the program contains a Loop or a procedure which is called more

than once, then the overhead of syntax analysis is incurred every time

the body of the loop is executed or the procedure is called. Unless

the language is very unusual, the information extracted by this

analysis will be the same every time, and it is clearly preferable to

perform the analysis once only. For this reason, direct

interpretation of the source is rarely used.

More often, lexical and syntactic analysis are carried out on the

source language before execution. If it is appropriate to the

particular language, semantic attribute processing (e.g. type

checking and d~claration processing) will also be carried out. The

output from this phase may take several forms. Perhaps the simplest

to produce is a parse tree: the corresponding interpreter would be a

tree automaton, which performed a tree walk. This form of internal

representation is suitable for incremental compilers and systems where

the user can edit the program during execution.

Greater efficiency of execution can be obtained by using an

interpretive code which is a flattened representation of the parse

tree. The obvious choice is a reverse Polish string, which can be

evaluated on a stack. The operators appearing in the string can be

the same as the source language operators, with system routines being

written to correspond to them. Such a Polish string probably provides

the most econanical representation of the program. If the operators

and operands are encoded carefully, the interpretive code can be made

extremely compact, but the ultimate in code compression can only be

obtained at the expense of portability, as it depends on machine

11

features such as the number of bits in a word and the address size.

If more processing is performed by the compiler, a lower level of

interpretive code can be generated, in which the source language

operations are represented by the composition of more primitive

operations which more closely resemble machine instructions. This may

permit the detection of special cases for which shorter sequences of

code can be generated. As the level of the interpretive code becomes

Lower, the code becomes bulkier and, up to a point, the execution

speed increases. There comes a point where the effect of the

interpreter's decoding overhead has to be taken into account and the

system's performance deteriorates.

The lowest level of interpretive code which is widely used is

designed in imitation of the machine codes of real computers. A

virtual machine is defined, sometimes with a stack architecture, but

often with one or more virtual registers. A set of instructions is

provided for the virtual machine. An instruction is packed into a

virtual machine word (which has to be mapped onto real machine words)

and contains fields with an opcode, possibly a register and some form

of effective operand address, which may involve indexing and

indirection. The interpreter performs the function of the control

hardware or microprogram in decoding the instruction and performing

the operation. This form of interpretive code is most useful for

specialised applications, connected with the generation of actual

machine code. Examples are provided by Intcode CRIC72J, which is used

during the bootstrapping of BCPL, and by the Janus interpretive

testbed CP0078J.

C

12

The remainder of this thesis is concerned with investigating the

properties of a form of interpretive code known a indirect threaded

code, which differs somewhat from those just described. Although the

code is organised as a reverse Polish string, pointers to the system

routines are embedded in the code in such a way that no interpreter is

required to select the routine - in a sense, it may be said that the

code interprets itself, as will become clear. The next four chapters

provide a detailed description oi one_ system in which indirect

threaded code has been successfully used. Following this, a more

abstract description of such interpreters will be presented.

F f05£?7 11P?Ztt7

CHAPTER 2

INTRODUCTION TO SETL-S

2.1 PRELIMINARY DESCRIPTION

13

Setl-s is the name given to a portable and compact implementation

of a large subset of the language Setl. The language derives its name

from the fact that finite sets are one of its basic data types, and

notations derived from mathematical set theory appear in the syntax,

allowing operations such as union and intersection to be written in

programs in a natural way using infixed operators (although the

restricted character set available on most computers does not permit

the full range of symbols). The language is designed to relieve the

programmer of the job of specifying the storage structures to be

employed to represent sets in the memory of a computer, and the access

and updating algorithms which go with them. No mechanism is provided

for the specification of programmer-defined data types nor for the use

of pointers, so the viability of Setl rests on the contention that

algorithms are most conveniently expressed as operations on sets.

Also, typing is-dynamic so that Setl programs do not contain the

redundant information required for extensive compile-time checking or

for verifying the correctness of programs. The design philosophy has

been summed up as one of 'making it easy to write good programs' as

Hlt • 1 z

14

against 'making it hard to write bad programs' [DEW78J. An account of

the design of Setl can be found in [SCH76J and a full description of

the current version in [DEW79J.

Setl was designed and first implemented at New York University.

The NYU system (which will be referred to as NYU Setl or full Setl) is

large and slow, consisting of four separate, overlaid phases. It was

written in a specially designed implementation language known as

Little, which is not widely available and although it was designed to

be portable has proved to be difficult to transport. <Furthermore,

since the language is particularly unattractive there is no great

incentive to implement it widely.) Consequently, NYU Sett itself is

not very portable and, indeed, its excessive size rules out the

possibility of implementing it on small machines. (See Chapter 5 for

some figures on the size of the system.)

The-sin Setl-s stands primarily for 'subset' but it also stands

for 'small', reflecting the basic design objective of producing a

compact system, especially suitable for use on mini computers and

large micros. The subset of the language which is implemented

comprises roughly 75¾ of full Sett, the most important omissions being

the 'representation sub-language', a system of declarations which

gives the programmer some control over data structure choice, and the

ability to break programs into separately compiled modules.

The following section describes the language features which are

implemented in Setl-s; Figure 2.2, which appears at the end of the

description, lists the differences between Setl-s and the full

language. The listings of several Sett programs, which will be

15

discussed in Chapter 5, appear in Appendix 1.

2.2 THE SETL LANGUAGE

2.2.1 Data Types

Setl provides the familiar types integer, real, boolean and

string. In Setl-s, both numeric tyµes have a range limited to that

available on the host machine; literals are written in the normal way

(e.g. 124, 3.14159, 2.0E7). Strings are sequences of characters of

arbitrary length (subject to an implementation dependent limit); they

can be written enclosed in single quotes (e.g. 'hello'). Tuples are

ordered sequences of values, which again may be of arbitrary Length.

They resemble one dimensional arrays or vectors; the values need not

all be of the same type. Sets are unordered collections of values

which do not include duplicates - an attempt to add a value which is

already present to a set has no effect. Both sets and tuples may

include sets and tuples among their members. Literals are provided

for both types: a list of values separated by commas is written

between set brackets {and} or tuple brackets C and J Ce.g.

{1, 3.4, {'a', 'b'}}, [1, 2, 3]). The values may be any sort of

expression.

Sets all of whose elements are tuples of length 2 (pairs) are

referred to as maps. The first element of each pair is treated as a

domain value, with the second element providing its corresponding

range value. A functional notation (see 2.2.2) is provided for

accessing and updating maps. It is by using maps which represent the

relationships between elements of a structure that a Sett programmer

can represent structures such as graphs.

16

Objects known as atcxns are used to build data structures when

unique tags are required, for example to label nodes of a tree

containing duplicated values. The only property of an atan is that it

has a value which is different from anything else. A supply of atoms

is provided by the system function NEWAT.

Values of all these types can be a5signed to variables. The type

of a variable is dynamic and depends only on the last value assigned

to it. Initially, all variables have an undefined value, omega,

(written OM); this value is also yielded by certain erroneocs

operations. A test for equality is the only operation which can be

performed on omega without an error.

2.2.2 Expressions

Expressions can be built out of literals and identifiers using

the monadic and dyadic operators listed in Figure 2.1 (full Setl

provides a larger number of more elaborate operators). These

operators provide a full range of integer and real arithmetic and

reasonably sophisticated string manipulations. The operators on sets

perform the usual set-theoretic operations as explained in the table.

The With and Less operators provide a convenient shorthand for adding

and removing single elements; s With x is equivalent to s + {x}.

This operator is commonly used to build up sets one element at a time.

Figure 2.1 Setl-s Operators

a) Monadic Operators

+------ --------------------------+
Operator Operand Type I Meaning

+-----~i----------+----------------------------------+
I +
I

integer
real

affirmation

+----- ---------+-----------------------------+
I - integer I negation
I real I

+----------+--------------+----------------------------------+
I set I cardinality

I tuple I number of elements
I string I number of characters

+----------+--------+-----------------------
ABS

integer
real
string

' absolute value
I
I character code value
I (#string= 1 only)

-----+

+-----·-+----------+----------------------------
ARB 1 set I arbitrary element

+------+-------------+-------------
DOMAIN I set I if set is a map, yields domain set

+------+-------------+---------------------------------+
FIX real I convert to integer

+-------------- -----+----------------------------+
I FLOAT I integer I convert to real
+----------+----------f---------------- ------------+

NOT - boolean logical negation
+----------+---+

RANGE set if set is a map, yields range set I

+----------+--------+-----------------------------+
STR any I yields string representation I

+-------+-----·----+---------------------------------+
TYPE I any I yields string giving type

+--·---+-----------+---------------------------------
VAL I string I for suitable strings, converts

I I I to numeric value
+----------+----------+-----------------------------------+

17

Figure 2.1 Setl-s Operators

b) Dyadic Operators

+-----------+-----·-+------------+------ ------+
I Left opnd Operator I Right opnd Meaning
+------f..-------+--------+----

integer
real
set
string
tuple

I
I +
I
I
I

integer
real
set
string
tuple

integer addition
floating point addition
union
concatenation

..,__------+-------+-------------1-----------------------------+
integer I I integer integer subtraction)
real I - I real floating point subtraction!
set I I set set difference I

+----- ..,__----+---------+-----------------------+
integer

real
set
string

I
I
I *
I
I

integer integer multiplication
string replication
real floating multiplication
set intersection
integer replication

+-----•-I------+------------------------------+
integer / integer floating division
real real

+----------+----·---+---- ----.----------- -------+
any = I any equality test

+--------+-----·-+------+--------------------+
any /= any inequality test

+------------ --------+---------------------·+
integer) integer comparisons
string)
real)

(integer
(string
(real

lexical comparisons I
floating point comparisons)

I

+----------+-----+------------------·---------+
integer DIV integer integer division

+-------'-------+------------+--------------------------+
I string string sub-string test
I any IN set membership test
I tuple
+-----------+---------+------+--------------------+

set INCS I set inclusion test
+---------+--------+-----------+--------------------+

set LESS any removes element
+-----..... ---+--------+--------·-------------+

set I LESSF any if set is a map, removes
I I pairs for given domain

+---------ii---•---+------------+---------------------+
I string I I string
I any I NOTIN I set inverse of IN
I I I tuple
+--------+-----+-----+----------------,---+
I integer I REM I integer I remainder after division
+----- +-----+------+--------------------+
I + I C::IIDC::i::'T I <.-~+ I c:11h<:Pt 1-P<e:.t f

18

SilifiillD1 . -., .. ;; iECZ
19

Several additional forms of basic operano·~re available.

Elements of a tuple can be written as, for example, t(i) which selects

the ith element. If i exceeds the current length of the tuple omega

is yielded as the value. Similarly, map references can be written:

f(x) searche$ the set f for a pair whose first element is equal to x

and returns the second element of the pair. If no such pair exists

omega is returned; if the set contains more than one such pair or any

elements which are not pairs an error occurs. In the former case the

notation f{x) is used to give the set of all range elements for the

domain value x.

Set and tuple operands can be formed using special notations.

Tuples which consist of sequences of integers are written in a style

exemplified by [2 ••• 100], which gives a tuple whose members are the

integers from 2 to 100. The general form is Cfirst,next ••• lastJ,

where first is an expression giving the initial value, next is an

expression giving the second value, which indicates the step size and

direction, and last is an expression giving the final value. This

notation can also be used to form sets, the ordering not being

significant; thus, an idiosyncratic way of forming a set of even

integers less than 100 would be {100,98 ••• 1}.

A more general type of set and tuple former uses an iterator.

The general form of iterator is identifier IN expression, where

expression yields a set or tuple. The notation {expression: iterator}

yields a set whose elements are the successive values of the

expression obtained as the identifier in the iterator takes on the

value of each element in its expression, in turn. Thus

zo

{[a*a, aJ: a IN [1 ••• 10J} gives a square root map (e.g. t(16) = 4).

The iterator can be followed by a test to indicate that only some

elements are to be used; thus to skip the pair [25, SJ the previous

example would have to be {[a, a*aJ: a IN [1 ••• 10J I a/=S}. The bar I

is used to ~eparate the test; it may be read as 'such that'.

Function calls, both of ~y!:item functions and user-defined

functions (see 2.2.4) can be used in expressions.

2.2.3 Statements

Most of the statement forms in Setl are conventional, resembling

a hybrid of Pascal and Algol68. An assignment is of the form

left_hand := expression, where left_hand is either an identifier, a

tuple reference or map reference. It is legitimate to assign to a

non-existent element of a tuple or map - the effect is to create an

extra member. Assigning operators, such as+:= are also supplied.

One special assigning operator is From. x From sis equivalent to the

sequence x := Arb s; s Less:= x. It is thus unusual in that it

implicitly assigns to both operands. Both assigning operators and the

assignment can be used within an expression as well as standing alone

as a statement.

Conditional execution is provided by an If-statement and a

Case-statement with the familiar semantics. A point of syntax to note

is that Sett does not have blocks delimited by Begin and End. Instead

keywords such as If and Then act as block delimiters as in Algol68.

The keyword End is used to close all constructs (as against Fi, Od

etc.). If-expressions and Case-expressions are also available for

convenience.

21

There are two forms of loop in Setl. The first, sometimes called

a 'full iterator' is a portmanteau construct with several clauses: an

lnit clause to be performed on entry, a Doing block to be performed at

the start of each iteration; this is followed by a While test, after

which the body of the loop is performed. Next comes a Step block,

which is periormed at the end of every iteration, followed by an Until

test. Finally, a Term block is performed on exit from the loop. Any,

or all, of these clauses may be omitted, which permits the synthesis

of a wide variety oi Loops.

The other form of Loop is controlled by an iterator of the type

described in connection with set formers. It has the syntax:

(For identifier IN expression) body End. The effect is to execute the

body of the loop with the variable in the iterator taking the value of

each member of the set or tuple yielded by expression; if the

expression is a tuple the values are yielded in order, if a set they

are yielded non-deterministically. As with formers, an iterator

controlling a loop may include a 'such that• test. Iterators may be

combined (e.g. (For x IN s, y IN ss)) giving the effect of nested

loops.

Loops can also be used as Boolean expressions in the so-called

•quantified tests•. These are of the form keyword iterator I test,

where keyword is any of Exists, Notexists or Forall. The effect is to

perform the test on each value yielded by the iterator; the final

value agrees with the intuitive meaning of the keyword. Once the

...., .

7•M
' '

value has been established an exit is taken from the loop and the

variable in the iterator may have a value depending on the coRdition

causing the exit. These tests are not the quantifiers known in

symbolic logic.

22

Within the body of any loop the commands Quit and Cont~nue may be

obeyed. The former causes immediate exit from the loop, the latter

causes the rest of the body to be skipped and the next iteration to be

performed.

Commands can be made to yield a value by the use of Expr. Within

the scope of an Expr commands are obeyed until the command

Yield expression is encountered when the value of the expression

becomes the value of the Expr block.

2.2.4 Miscellaneous

A Setl program consists of a header followed by the main body

followed by procedure declarations, which are conventional in format.

Setl-s insists that procedure names be pre-declared in a Procedure

statement following the heading, to facilitate one-pass compilation.

All procedures return a result, which is omega if there is no explicit

one; the procedures may be called either as functions within

expressions or as routines standing alone as statements, in which case

the result is ignored. In Setl-s all parameters are passed by

reference, which is more a bug than a design feature.

--
23

In reading the programs in Appendix 1 it should be noted that

Setl allows the keywords Program, Procedure and Continue to be

abbreviated Prog, Proc and Cont respectively. Also, to cope with the

possibility that{,},[, J and I may not be available these may be

replaced by<<,>>,(/,/) and ST. Iterators at the head of loops may

be surrounded by parentheses as described in previous sections or by

the keyword pair Loop and Do. In full Setl the keyword End may be

followed by tokens copied from the head of the construct it closes, to

aid readability and provide a check on matching of Ends. Setl-s does

not support this feature in full, but it allows If, Case and Loop to

be matched by End If, End Case and End Loop; likewise Prog and Proc

may be appended to the matching End. If the keywords do not match an

error is reported.

This description of Setl has necessarily been rather sketchy;

interested readers are referred to the references. Some other

detailed points will be described as required in the account of the

Setl-s system.

2.3 THE SETL-S SYSTEM

2.3.1 Background

The design of Setl-s was influenced by the macro Spitbol

implementation of the Spitbol dialect of Snobol4CD"77J. This has

proved to be an efficient and highly portable implementation of that

language. Given the similarities between the Spitbol and Setl

languages, and the design objective of Setl-s, it would seem feasible

Figure 2.2 Differences between Setl-s and full sett

Major Omissions

Module structure

Representation sub-language

Macros

Backtracking

Compound operators

Labels and GOTOs

User-defined operators

Some operators

String and tuple slices

Arbitrary precision integers

Restrictions

No tuples on left hand of assignments

No multi-dimensional map references (e.g. f(a, b))

Only simplest iterator forms

Procedures must be pre-declared

Arguments passed by reference

Limitations on tokens following End

Constants in Const and lnit declarations restricted to numbers
and strings

24

25

to suggest that the implementation approach used in macro Spitbol

could profitably be adapted for use in Setl-s. A comparison of the

two Languages, which brings out the relationship between the two

systems is summarised in Figure 2.3. The main point of similarity is

the high Level data types supported, which in both cases demand the

use of a heap-based storage allocation scheme, which in turn calls for

an efficient garbage collector. To correspond with these data types,

both Languages provide operations which are not supported by

conventional hardware, so that interpretive code is an attractive

implementation technique. This is confirmed by the fact that both

Languages are dynamically typed.

There are however sufficient differences between Setl and Spitbol

to demand extensive modifications to the design of macro Spitbol if a

sensible implementation of Setl is to be produced. The precise nature

of the Languages' data types differs considerably, and the approach to

polymorphism and mixed-mode operations is quite different. The

biggest difference is that Setl requires a much more sophisticated

syntax analysis than Spitbol does, although since there is no runtime

compilation of code, this analysis can be entirely separated from the

runtime system.

Figure 2.4 shows the structure of Setl-s. For reasons outlined

in Chapter 1, the source is translated into a form of interpretive

code. The part of the system which performs the translation is

referred to as the Setl-s compiler, and forms the subject matter of

Chapter 4; it uses a novel form of LRC1) parser to perform syntax

analysis. The code which is generated from the parse tree is the

Figure 2.3 A Comparison of Snobol4 and Setl

-------------+--------------------+
Snobol4 Setl

+------------------+------------------------+
I
I dynamic types
I
I sets, maps, tuples
I

set operations, iterators
map references

many polymorphic operators

no mixed mode operations
no coercions

conventional program
structure

complex syntax

dynamic types

strings, patterns, tables

pattern matching

some polymorphic operators

coercions

modified Markov algorithm

simple syntax

run time compilation
of code

+----------·--------+------ -------+

26

Figure 2.4 Structure of the Setl-s System

+-----+

Setl +l source

+--*--+
+---*----

* *

.. ,

+---------------*---------------------·------+
Compiler *

*
* * +------+

-----v-------+ +--------------+ 1+----+ I scanne/ I I tree-builder l*****!treel

+--------1-~-• +-[-l ---! ~~=~.
+----------+ +-v-v-----•-v-+ +------v---+

linitialisatio I -! LRC1) parser 1-----!code generator!
I I I
+------------- -+ +------- -+

+-----------r-
+--------v------+

* Space Allocation
and

Garbage Collection

+----- ---+

* * *
* +-------------•---+
* +---*-+

E:~i
+---*-+

* * * *
.a-----! lnterpret:=-+1 I Routines

+--------t,

·--------->
I Interpreter
+------------------+

--> control flow
**> data transmission
* components derived from macro Spitbol

28

indirect threaded code, briefly mentioned in 1.3; the code format and

interpretive routines will be described in Chapter 3. A space

allocation scheme interacts with all part of the system.

2.3.2 Minimal

Setl-s is written in the implementation language Minimal, which

had been developed for macro Spitbol. This has allowed parts of the

former system to be directly incorporated in the new one. 'Minimal'

is an acronym for Machine Independent Macro Assembly Language. As

this suggests, it resembles the assembly language of real machines,

but is defined in a machine-ir~ependent way, as the assembly language

for a non-existent virtual machine. It is implemented on a particular

machine by macro-expansion into the target machine-code. This is a

fairly efficient process, with expansion ratios from Minimal to target

code as low as 1:1.2 for machines with a modest set of registers, and

so Minimal programs execute with an efficiency approaching that of

machine code. It is important for the runtime interpretive routines

of a system such as Setl-s to be coded as efficiently as possible,

hence the attraction of Minimal, despite the inconvenience of

programming in it.

Minimal is described in some detail in CDM77J. Its design was

influenced by the original application, so it has features which are

particularly useful for string processing. The Minimal virtual

machine resembles most conventional machine architectures

(particularly that of the PDP11). It has two general-purpose index

registers, XL and XR, a stack pointer register XS, three work

registers and separate ·integer and real accumulators. Operations are

provided for integer, addr:ss and (optionally) real arithmetic, jumps

and tests as well as the character handling operations alluded to

above.

Some features of the language are provided specifically to assist

with the coding of interpreters, notably a code pointer CP, and

appropriate operations on it. Machine-dependent quantities, such as

the number of bits in a word, and the size of basic addressing unit

and address, are incorporated as parameters in the Minimal program.

2.3.3 Memory Organisation

Given the basic design approach to Setl-s, it is possible to take

parts of the actual code of mucro-Spitbol and incorporate it into

Setl-s, thereby saving a certain amount of routine coding. The major

saving afforded in this way comes from using the Spitbol garbage

collector, an efficient, compacting garbage collector, which is

already debugged and well understood. It does, however, impose

certain restrictions, which have to be rigorously observed. The ones

which affect the implementation strategy are:

1. no data object in collectable memory may have pointers to it,

other than to its first word.

2. a structure containing pointers must have them all in a

contiguous block, possibly interspersed with recognisable

non-pointers.

3. small integers must be distinguishable from pointers; this

is done by restricting dynar. .. c memory to start at some

threshold value: all pointers therefore exceed this

threshold, with small integers falling below it. This

imposes a limit on the maximum permissible size of objects

whose size is specified by such an integer.

Additional restrictions on the contents of registers when the

collector is called have specific eifects on the coding.

30

Implicit in the adoption of the garbage collector is the adoption

of the particular memory organisation used with it in macro Spitbol.

Memory is divided into a static area, which is allocated once and for

all and not subject to garbage collection, and a dynamic area in which

space is allocated and released as execution proceeds, with freed

space being recovered by the collector.

As well as the collector-imposed restrictions, a further

restriction, imposed by Minimal, to assist portability, is that

pointers must occupy a full word. (Hence, it is not possible to pack

a pointer and, for example, some marker bits into a single field of a

block.) The combination of these factors exerts a powerful influence

on data structure choice, but, in fact, the structures fit in

comfortably with the interpretive scheme, and starting from such a set

of restrictions avoids the problem of having to fit a garbage

collector into the pattern of data structures chosen by the

implementer according to other criteria.

CHAPTER 3

THE SETL-S INTERPRETER

3.1 REPRESENTATION OF CODE

3.1.1 Indirect Threaded Code

The distinguishing feature of the Setl-s interpretive scheme is

the format used for the interpretive code, which is known as indirect

threaded code, abbreviated ITC. The code consists of a series of

codewords, arranged as a reverse Polish string, with operands

preceding their operators. Evaluation proceeds by loading operands

onto a stack, and applying operators to the top stack items.

Each codeword is a word which contains the address of a word

which in turn contains the entry point address of a system routine,

which performs the function of loading operands onto the stack or

applying operators. Such a pointer to a pointer will sometimes be

referred to as an iD2i!~f1 pointer. The code pointer register (CP)

points to the current codeword, in a manner analogous to a hardware

program counter. Each system routine ends in a sequence of code which

increments the code pointer, loads the new current codeword into a

register CXR), and makes an indirect branch through the pointer in

that register, i.e. control passes to the address in the word pointed

32

at by the codeword, which will be the system routine entry point.

This is achieved by t~e following sequence of Minimal inst1uctions:
if'\+o)(f.

LCW XR load the codeword, incrementing CP I a.iw:f_ fOS:;,t 4--(;
MOV (XR),XL XL now points to entry point a£ £"tf O ~i ~

::(L..
BRI XL make indirect branch

The BRanch Indirect instruction transfers control to the location

pointed at by its operand - Minimal restricts such jumps to locations

which are explicitly defined in the program to be 'entry points'.

Figure 3.1 illustrates this flow of control.

Note that this interpretive cycle leaves a pointer in XR. This

is exploited, in the case of operands, by representing each value by a

block, whose first word points to a routine to load the value. This

load routine can access the value (i.e. the block) via XR, so that

the code produced to load any value is merely a pointer to the first

word of the block. Similarly, if an operand is a variable, the

codeword points to the first word of a variable block (VRBLK, see

figure 3.4h), which points to the routine to load the value, while

another field in the VRBLK points to the block which is the current

R-value of the variable. (Following Strachey [STR67J, I use the terms

L-value and R-value of a variable, to distinguish between the

'location' denoted by the variable in a particular environment, its

L-value, and the contents of that location, its R-value.) In the case

of variables, however, another pointer is required - one to a routine

to store a new R-value into it upon assignment. This pointer is held

in the VRSTO field of the VRBLK, which is its second word. A simple

f 33
f

Figure 3.1 ITC flow of control

+-----+

+----+
+--+

fxRf
+ -+

+- -+

+----+

EII
+- -+

+-v---+ +-v-------------+
*****> ********+*********>R1 ***
"-·+---> -----+--------> *
*
*
*
*

I I
+------+

* * * * * * * * *
* * ********** * * ---------+

* *
*

* *
* *

*
*
*
*
*
*
* *
* * * *

* * * **************************** <***
* +----------+ <***************************

Codewords

--> pointers
**> control threads

The registers are shown on entry to R1,
through the first codeword.

Sy5tem Routines

,_~ ~-~.,_~.:!,~· •;.~~~:67.~~·~;·-.. •,, ;.~ .~,·~:~,·~~-!~-~; .:;: ~~~•:~ .(
• k••.~; ~ II ~ _.,,

34

assignment to a variable is represented in the code by a pointer to

this field of the appropriate VRBLK. Since this means that there are

pointers into the middle of VRBLKs, which violates a basic garbage

collector restriction, VRBLKs are kept in the static region, and are

not collected.

Figure 3.2 provides a simple example of the code format; it

shows operators as simple indirect pointers to operator routines,

which was the format used in macro-Spitbol. The modified operator

representation used in Setl-s will be described later.

Although this format seems to be extremely elaborate, it

possesses several desirable features:

the code consists of nothing but addresses, and since most

computers have words which can hold an address, the code format

is portable.

the code is compact.

only one copy of each system routine is required.

the decoding overhead is small.

These points will be elaborated in Chapter 5.

3.1.2 Transfer Of Control -

So far, the ITC has been described as if it were a Linear series

of words, with control passing through each codeword as the code

pointer is incremented. In order to represent the control structures

of Setl it must be possible for control to be transferred, by

conditional or unconditional jumps. A branch of this nature will be

Figure 3.2 ITC generated for x:=y*2 when y=S

stack y

stack 2

+--------+ +---------------+ +---> ----+----------->

I I
+--------+

I I -+--------+
I 2 I
+--------+

+--------+ +---> ----+
I I t--------+
I s I
-i--------+

integer blocks
in dynamic store

stack an

integer

-+---------------+

-+---------------+ +------->
I

stack the

villue of

a variable I -,--1---i -+--------+
-+--------+ +-> --------+
I ----+ I I

I +--------+ +---------------+
-+--------+ y I ----+

* I -,--+ +--------! L
store x +-I-----==~-+ +--,-- I --- -+---------------+ -->

1 -i--------+ -+-------+
I I
code words

+--------+ I -+-----+
-+----l I

+------> ----+
X I I
+----+
I --1 _c_u_r;;~~
-+-----+ x value

variable blocks

store the top

stack item

into a

variable

+----------

in static store +---------------+ +---------->
I I
+--------+

+----> ----+
I I
+-----+

I I
+-----+

I I
operator table

I
multiply the

top two

stack items

together

-+-------
system routines

35

;{'}~_ ~~~~-~~;_· .. :~:•~::-~~::;w) :~;~;~'•?=:-i"_:5: .. ·c.·-,;} t• .- . • ·• \+i.
~ .

36

represented by an indirect pointer to a routine to reset the code

pointer and perform an indirect branch through the new codeword. This

routine will have to be supplied with the destination codeword for the

jump. To do this conveniently, codewords are arranged in codeblocks,

the first word of each of which contains a pointer to the routine to

transfer control. An unconditional jump is simply a pointer to the

codeblock which is its destination; a conditional jump is implemented

as an indirect pointer to a skip routine followed by an unconditional

jump. The skip routine tests the truth value of the top stack item

and either increments the code pointer or not accordingly, so as to

obey the jump or carry on with the next word of the current codeblock.

Both forms of conditional jump - jump on true and jump on false - are

used, as well as more specialised conditional jumps used in iterators

and set formers. Figure 3.3 shows the arrangement of codeblocks

corresponding to the Setl IF-THEN-ELSE construct. Notice that control

cannot drop through to CBn+2, because pointers may only be to the

heads of blocks.

This format has two interesting effects: it is quite easy to

ensure that these codeblocks obey the restrictions imposed by the

garbage collector, so that codeblocks can be built by the code

generator in dynamic memory. This means that, as code becomes

unreachable Ce.g. after the last exit from a loop, or the final

return from a procedure) the space occupied by it can be recovered by

the garbage collector, and made available as workspace to the

executing program. This may prove a valuable feature where memory is

limited. The other thing to note about the code format is that the

code can be looked at statically as a directed graph representing the

l
I
!

Figure 3.3

CB
n

CB
n+1

Codeblocks built for lf x>O Then s1 Else s2 End

1 I +-------~+
I -f-----> VRBLK for x
+-----+

I -',-
+---------+

> lCBLK for 0

I ~----->>operator
+---------+

I -f-----> jump on false
+-----+

I :-----------·--------➔
1------+

-+
I J code words for s1
I I
-+

-1------+
I

--------------------------+
+------l I

+---------------- -----+- I
+----v---+

I -', - > start codeblock

...------+
-+

', I } code words for s2

I I
-+

+---------+

I :--+
♦------+ I

+--------------+------------

+!-r--i:--> start codeblock

CB ♦-, ------+, Note: In general, the codewords for
n+2 I s1 and s2 might themselves be broken

into codeblocks, if for example
there were nested Ifs.

37

----··-. _ --·--·----z-1·---. ;. .. :.e.•F'lllli
38

flow of control in the program. This graph, therefore, contains

information which would be useful in performing optimisations on the

generated code, and it is hoped that it will eventually be possible to

make some such use of it, or else to perform optimisation dynamically

as the code pointer 'traverses' the graph.

The representation of procedures has been chosen to extend these

benefits to procedure calls. There is an entry in the symbol table,

corresponding to the name of each procedure, which is created when the

forward declaration of the procedure is processed and which has its

value set to be a pointer to a procedure block CPCBLK). This PCBLK is

filled in when the procedure body is encountered with a pointer to the

code and certain administrative information required for handling the

procedure call. When a call is found in the Setl program, a codeword

is generated which points to the relevant PCBLK - the first word of

the PCBLK points to a routine to call a procedure, the rest of the

block providing the information required to preserve the calling

environment, and associate arguments with their values (see 3.4.2).

Sett does not permit function-valued variables, and so there is never

any ·need to load a function value (i.e. a PCBLK) onto the stack;

this means that the first word of the PCBLK is free to be used for the

call instead of holding a load routine pointer, as is the case with

most other blocks. The chosen code format is sufficiently flexible

for this arrangement to fit in comfortably. After code generation has

been completed, the value fields of the symbol table entries for

procedures (which are chained together for easy access) are cleared to

zero. Hence the PCBLKs are 'set loose' and become accessible only

through the code. This means that the PCBLKs and their associated

code can be reclaimed by the garbage collector when they become

unrea~nable.

39

Labels and GOTOs are not permitted in Setl-s, since the language

contains adequate control syntax for them to be unnecessary as well as

undesirable; furthermore, the implementation of labels involves

restoring the environment after a jump, a problem which would

complicate the sy~tem to little purpose.

3.2 REPRESENTATION OF VALUES

3.2.1 Operand Blocks

Every value is represented by a contiguous block of two or mere

words, divided into fields; there is a separate block type for each

Setl datatype, with pairs and maps being treated as distinct types.

Figure 3.4 shows the various block formats. Several conventions are

used in these diagrams and the following text.

The block and field names follow the Minimal rules for names,

each being five characters long, the first three of which must be

alphabetic. There is a 2 letter code for each type, e.g. IC for

integer (constant), ST for set, and the block is referred to as an

xxBLK, where xx is the code. Similarly, all fields' symbolic names

begin with the type code, the remaining three letters being a mnemonic

for the field's use. In the diagrams, fields shown delimited by solid

vertical lines are one machine word long, those delimited with* are

one or more words long, depending on the value of some machine

parameter (e.g. the length of the RCVAL field of an RCBLK will be the

Figure 3.4 Setl-s Block Formats

a) ICBLK - integer

+---------+
ICGET

.i.-----+
* ICVAL *
------+

b) RCBLK - real

+--------+
RCGET

+---------+
* RCVAL *
+---------+

c) SCBLK - string

+--·----+
I SCGET
+---------+

SCLEN
+---------+
I I
/ SCHAR /
I I
+------.--+

d) ATBLK - atom

+---------+
ATTYP

+----+
* ATVAL *
+--------+

e) STBLK - set

type pointer

value

type point er

value

type pointer

no o1 characters

characters (packed)

type pointer

print value (integer)

(MPBLK - map is identical)

+------+
STTYP

+-------+
STLEN

+------+
STNEL

+-------+
I I
/ STELS /
I I

type pointer

block length

number of elements (cardinality)

pointers to elements

---------- - ... ---·--- ·•

Figure 3.4 Setl-s Block Formats

f) TPBLK - tuple

+---------+
TPTYP

+----+
I TPLEN
+-----+

type pointer

block length

TPNEL number of elements (cardinality)
+---------+
I I
/ TPELS /
I I

g) PRBLK "'.' pair

+---------+
PRTYP

+---------+
PRDOM

+---------+
PRRNG

+---------+
PRNXT

+---------+

pointers to elements

type pointer

pointer to first element

pointer to second element

link pointer

h) VRBLK - variable

+-------.
I VRGET
+--------+

VRSTO
+------+

VRVAL
+--------+

VRNXT
+--------+

VRNML I
+-------+
I I
/ VRCHS /
I I
+-------+

pointer to load routine

pointer to store routine

pointer to current value

hash chain link pointer

name length (proc number in leftmost bits)

characters of name (packed)

41

42

number of words required to hold a floating point number). Areas

delimited with/ indicate a variable number of identical, one-word

fields (e.g. the members of a set in a STBLK). Blocks with such an

area have also a fixed number of administrative fields; the variable

sis used for the number of these fields, in the following

descriptions. Comments on the zignificance of each field are appended

to the right of each diagram.

Most blocks are allocated in dynamic memory and are subject to

relocation by the garbage collector, as well as being reclaimed by it

when they cease to be active.The exceptions are system constants, ~uch

as OM, TRUE, FALSE and the null set (map), tuple and string, and also

atoms created by NEWAT. These all reside in static, in a single copy,

so they can readily be identified or compared using only their

addresses.

As explained above, the first field of every block contains a

pointer to a system routine to load its value onto the stack. Since

the stacked value is merely a pointer to the block, and all pointers

are just words containing addresses, it might be thought that a single

Load routine was all that was required. In practice, a different

routine entry point is defined for every type, although the routines

all share code. In this way, the pointer serves as a type code for

the block, as we~l as performing its function .as part of the

interpretive scheme.

The blocks can be divided into two groups. The first of these

consists of !!9mi~ values whose internal structure is not

decomposable, and which are never modified once built. This group

comprises ICBLKs, RCBLKs, SCBLKs and all of the static blocks. Any

operation yielding an atomic value creates a new block to hold it:

e.g. performing the addition 2 + 2 Leads to the creation of a new

ICBLK with value 4. The cost of this is low, and a great deal of

potential trouble with shared pointers is avoided. All the other

blocks have a decomposable structure, and can be modified in place -

the latter is inevitable on efficiency grounds, since creating, for

example, a new MPBLK every time a map was modified would rapidly

exhaust memory, as well as slowing down execution intolerably.

3.2.2 Sets And Tuples

43

The structures chosen for sets and tuples are very simple. Sets

are represented as linear hash tables. Pointers to the elements of

the set are kept in the STELS fields, with empty slots being occupied

by OMs. The•fields at the head of the block hold the total block

length, which is used by the garbage collector as well as by the

routines for accessing set elements, and the number of elements, which

is the cardinality of the set. Overflow of the hash table is dealt

with by rehashing the entire set into a new, larger block. When a

block of length N + s becomes full, a new block of length 2N + 1 + s

is allocated. The smallest value of N is 11, giving the sequence 11,

23, 47, 95,191,383, ••• for the number of hash slots in sets. Most

of these are primes, which should help reduce collisions. A block is

deemed full if n/CN+s) >= 0.7 which varies between 70 to 80% occupancy

as the effect of s changes. This would seem to be fairly optimal

[HOP69J. Since a linear regime is used to deal with collisions, a

)

deletion marker must be lef~ after an element has been removed. o is

used for this purpose.

A tuple has a length field, giving the total number of words in

the block, a cardinality field, which gives the index of the highest

element which is not OM, and then pointers to its elements, in order.

A tuple with cardinality n will be a block of length N >= n+s, with

elements beyond the nth filled witl1 pointers to OM. When the block

gets full (n > N-s), a larger one is allocated, using the same

allocator as for sets, with all the values being copied from the

original. Accessing t(x) is easy - if x <= n, then return the element

at the appropriate offset, otherwise return OM. Updating t(x) is more

complex,since the cardinality may be affected, if either x>n, or if

x=n and the value assigned is OM, when it is necessary to find the

last non-OM value, which need not be t(x-1). The details are

straightforward, albeit tedious.

Set and tuple blocks are never contracted again once they have

expanded.

3.2.3 Pairs And Maps

Maps are a distinctive feature of Setl, and the way in which they

are defined in the language presents particular implementation

difficulties. According to the Setl language definition, a pair is

merely a tuple of length 2, and a map is a set containing only pairs.

However, elements of a map can be accessed using the map notations

f(x) and f{x}. It is desirable to use a representation for maps which

I
' !

45

facilitates such references without complicating the treatment of maps

as sets where the context requires it. This is achieved by using the

standard linear hash table set representation for maps, and using a

special pair representation which is suitable for map references when

stored in the table. The type word of the map block serves as an

indicator that the set is known to consist entirely of pairs.

The pair representation is shown in figure 3.4g. When added to a

set or map, the pairs are hashed on the domain value cnly, so that

pairs with the same domain value will hash to the same location in the

MPBLK; the PRNXT field is used to chain such entries together for the

multi-valued map case. To facilitate iteration through maps, such

chains are terminated by a pair whose PRNXT field contains the offset

to the next entry in the MPDLK - a simple test for a pointer will

detect the end condition, so iteration can be controlled by a location

which contains either an offset into the block, or a pointer to a pair

in a chain.

Although this scheme means that special action must always be

taken to add a pair to any set or map, and that iteration is

complicated somewhat, sets and maps are indistinguishable for most

purposes, and map references are straightforward. (In the case of

multi-valued map references f{x} it is necessary to form the result

set explicitly, but the alternative of keeping the range as a set has

its own disadvantages, such as the need to distinguish between

{C1, {1,2}J} and {[1, 1J, [1, 2J}.) A slight problem with not making

the distinction between single-valued and multi-valued maps is that a

reference f(x) to a multi-valued map is supposed to produce an error,

46

whether or not the range for x is itself multi-valued. In Setl-s the

error cannot be detected until reference is actu,Lly attempted to a

range with more than one element.

Making pairs and maps into different internal types introduces

the problem of conversion between types.

Whenever a pair or tuple is created or modified it is

straightforward to detect whether its cardinality has become equal to

2; however, changing a tuple into a pair (or vice versa) involves a

restructuring of the object which will not always be worthwhile,. since

a tuple which is being built up either by an iterator or a series of

assignments will pass through the stage of being a pair. Instead of

always doing this check, therefore, tuples which are created

explicitly with two elements are made into pairs. This reflects the

typical ways of forming maps:

{C1, 1J, [2, 4J, C3, 9J, [4, 16]) or

{Ca, a*a]: a IN C1 ••• 4J)

If elements are added to a pair, or OM is assigned to either of

its elements, the pair is converted to a tuple. By suitable additions

to and deletions from tuples, it is possible to create one of length 2

which is not in pair format, so when context demands a pair, and the

value is a tuple, a check is made, and if it turns out to be a pa,r,

it is rebuilt as a PRBU(.

47

A similar strategy is adopted with respect to maps. The null set

can be treated as a map whose range is everywhere undefined; sets are

always created by adding elements to the null set or to an empty block

which will also have type map and the procedure which adds the

elements can easily determine whether an element being added is a

pair. If it is, the object continues to be a mup, and this will be

reflected by the type word. If, however, a non-pair is added, the

type is chan£)ed to set. lt may be the case that all non-pairs are

subsequently removed, but it is difficult for the system to keep track

of this. The result is that the type word of a map serves to indicate

that the object is known to contain only pairs, and so map references

may be performed. If the type word indicates that an object is a set,

this merely implies that it is not known whether it is a map, so if

context demands a map a check is made before an error is announced.

If the object turns out to contain only pairs its type word is reset.

Union and intersection are implemented in such a way that the result

set is formed by adding elements to an initially empty set. The

checks are performed as each element is added, in the usual way so the

result automatically has its type word correctly set.

It seems quite clear that the implementation problems associated

with maps, which are quite out of proportion to their importance,

derive from a muddled piece of language design and that maps and sets

should be separate types. This may offend some purists, but is a

minor compromise compared to some which the language already makes.

1
48

3.2.4 Assignment And Copying

Conceptually, the way in which Setl defines the assignment of

aggregate values is straightforward. Dewar describes it as follows:

'Setl treats tuples [and sets] as values when it comes to assignment.'

[DEW79]. For example, after execution of the following sequence:

t1 • (1, 2, 3, 4];

t2 := t1 ;

t2(4) .- 999;

the value of t1 is still (1, 2, 3, 4]. Notionally, the right hand

side of an assignment is evaluated to produr.e a value which is then

used to update the location associated with the left hand. This

location must be considered elastic in order to accomodate type

changes and objects whose size may vary dynamically. In practice, a

heap-based storage allocation scheme is used, and location5 hold only

pointers. However, in order to preserve the semantics defined for

assignment it is insufficient to copy a pointer, the entire block

which is pointed to must be copied, and a pointer to the copy used to

update the location. Since the copying of objects such as sets is

expensive it is desirable to avoid this operation whenever possible •

. The difference between a copying assignment and a pointer

assignment only becomes important when the value to be assigned is

already the R-value of some variable, or else is a member of an object

which is the R-value of some variable, because it is only when

subsequent modifications can affect the value of more than one

variable that any difference will be detected in the behaviour of a

program. Fortunately, this condition can be detected at compile-time

I
' ;

49

by inspection of the parse tree, and the code generator can insert

'copy' instructions into the code, before the assignment. The syntax

of expressions which must be copied is given by the following

mini-grammar, where the grammar symbols represent nodes of the parse

tree, rather than symbols of the input, hence precedence and

parentheses need not be considered.

copyvalue ::= name

copyvalue assigning_operator expression

copyvalue subscript

Examples are t1, t1(5), y +:= 3, Cx := y)Ci).

The syntactic forms of right hands which can safely be assigned

or added to a set or tuple by a simple pointer-moving operation are

expressions with operators, set and tuple formers and enumerations, or

constants. Examples would be:

{1, 2, 3}

{x: x IN s I x > 4}

X + y

X + y +:= 3

x WITH y

The correctness of this copying rule depends on the fact that an

expression produces a new block to hold its value. Most of the

routines for operators have been coded so that they build this block

and do not modify their operands. However, the routines for WITH and

LESS have been written so that the operation is performed in place on

the left operand: these operators are frequently used in assigning

form, when it is undesirable to produce a new block. This is

l

exemplified by the following:

s := {};

(For X IN SS) s With:= X; End;

50

which represents a typical way of building a set. It is more

convenient to insert an instruction to copy the left operand on

occasions when the operator is not in assigning form, than to try and

optimise the assigning case, by generating a special codeword. Thus,

in the last example given above, the result of the expression can

still be safely assigned, because an explicit copying operation will

have been inserted into the code.

Althou~1 this discussion has been restricted to assignment, it

should be apparent that similar considerations apply to any operation

whose execution can result in the storing of a value. In particular,

the addition of an element to a set or tuple must be performed so that

shared pointers to aggregate values do not occur.

It will be noticed that the rules just given are unnecessarily

strict, inasmuch as the R-value of a variable might be an atomic

value, and, as has been described, atomic values cannot be modified,

so there is no harm if pointers to them are shared. It is not,in

general, possible for the compiler to detect this situation, so a copy

instruction is always inserted as described. The runtime system can

make use of the extra type information available to it in order to

lessen the number of copying operations performed. If, on entry to

the copy routine, the top stack item which is to be copied is an

atomic value, then no copying is performed. The cost of the operation

is just one indirect threading cycle, and the production of

51

superfluous blocks is avoided. In a similar way, when a set or tuple

is to be copied, normally all of its elements must be copied. In

fact, atomic objects are never copied, and pointers to them inside

objects such as sets may be shared without trouble.

The foregoing discussion should indicate that the problem of

copying on assignment is one of the greatest sources of complexity and

potential insecurity in the wl1ole system. Depending on one's feelings

on these matters, this can eitl1er be taken as a Lesson on the dangers

of pointers, or an indication of the inappropriateness of a strict

value semantics in practically implemented Languages. It is felt,

however, that the strategy adopted (which is original to Setl-s)

provides a workable solution; alternatives will be examined in

chapter 5, to illustrate further the complexity of the implementation

issues raised.

3.3 REPRESENTATION OF OPERATORS

3.3.1 Polymorphism In Setl

Referring back to Figure 2.1, it can be seen that certain

operator signs in Setl represent several entirely different operations

depending on the type of operand to which they are applied. Such

operators are referred to as Q2ll~2!ebi£ operators; an example is+

(dyadic) which can mean integer addition, real addition, string or

tuple concatenation or set/map union. Since the type of a variable

changes dynamically, it is not possible for the compiler to determine

it and select the appropriate operation to be performed (or signal a

type incompatibility error). The type checking must be done at

runtime. This fact has already been mentioned, since it is of

importance in the design of the system, being a major factor in the

decision to use an interpretive scheme.

52

With polymorphic operators it is not sufficient to determine

whether an operand is of a particular type or not,the actual type must

be found, in order to select the required operation. In contexts

where a simple check of a particular type is sufficient, the indirect

pointer in the first word of the block can be tested, since there are

different entry points for each type. A series of tests would also be

sufficient to establish the type of an object, but this would involve

the coding of such a series of tests at the head of each operator

routine, with each routine having to deal with all possible cases.

This would, of course, be straightforward, but the stereotyped nature

of such code suggests that a more systematic approach could be used.

The scheme which has been devised and implemented for this purpose

provides a reasonably efficient, flexible method of type

determination, as well as improving the structure of the runtime

routines.

Two points should be noticed. There is an element of hidden

polymorphism from the implementer's point of view, since sets and maps

and also tuples and pairs have different internal representations and

are separate types to the runtime system, although they are not

distinct in Sett. Secondly, it is the case that once the type of one

operand of a dyadic operator has been found it severely limits the

valid types for the other operand, so that a type determination on the

second operand can reasonably be Left as a series of tests of the

indirect pointer Cat most, there will only be two of these).

3.3.2 Operator Implementation

53

An operator is represented by a block (OPBLK), the first word of

which points to a routine to apply an operator, the remaining words

being pointers to routines which perform the operation appropriate to

that particular operator for each type of operand (some of these will

be error actions). There are two routines, APPL1 and APPL2 which

apply monadic and dyadic operators respectively. They are referred to

collectively as APPLn. The code generated for an operator is a

pointer to the first word of its OPBLK; there is one block for each

operator provided in the Setl language, an example is the block for+

shown in fig 3.5. The OPBLKs a,e set up by data definition statements

in the Minimal code and hence are built in static, although in

principle there is no reason why they should not be built dynamically

and garbage collected.

It should be apparent that this organisation Leads to a modular

arrangement of small operator routines, each performing a Limited

function, and that the type determination has been separated from the

operation. Nothing has been said yet about the way in which the

actual routine to be performed is selected. If the APPLn routines

only performed a series of tests on the type pointer of a value the

scheme would be somewhat inefficient. Instead, use is made of the

fact that, on entry to the routine, XR contains a pointer to the

OPBLK. If types can be mapped onto (small) integers t;, 1<= t; <= tn,

54 -

Figure 3.5 OPBLK for+

-1---------+ I -~---> APPL2
+------+

otom \ --1----> + error routine
+---------+

integer\ -f----> integer addition
+-----+

map\ -1----> map/set union

I
I

omega\ -f----> + error routine

+--------+
I
1

I
pair\ --f----> pair/tuple concatenation

+·-----+

real \ -f----> real addition
+------+

string\ -1----> string concatenation

+-----+

set \ -f----> map/set union

+-------+
tuple' -1----> pair/tuple concatenation

+------+

truth-value\ -f----> + error routine
+--------+

' i

I

I
t
I

!

i
I
I
I

I

t

I

55

where tn is the number of types, then a simple indexing operation on

XR selects the correct routine. Such a mapping is provided by the

entry point id, a constant which Minimal associates with each entry

point. This can be loaded into a register and used as required. This

does mean that all OPBLKs have to have entries for all types, even

though some of these will correspond to errors; this overhead seems

to be acceptable. (See[CM79J)

Figure 3.6 is an example of this scheme.

Since there is a significant number of operators for which only

one operand type is legitimate, an escape mechanism is provided to cut

down on the space overhead. An alternative OPBLK format has a pointer

to the routine APPX1 or APPX2 (collectively APPXn), then the type code

(indirect pointer) for the legitimate type, followed by a pointer to

the operator routine, and a pointer to an error routine. APPXn merely

compares the first word of the operand block with the second word of

the OPBLK, and transfers control to either of the two routines, as

appropriate. This format is shown in Fig 3.7, for the operator VAL.

The code for APPLn and APPXn is presented in fig 3.8.

Figure 3.6 Modified ITC generated for x:=y*2 when y=S

codewords

I +-------------+
+-----!.., -----♦,-+------>, stack an I

integer
+------+

+--------+
+------+

+--> ---+
+-----+
I I +------+

integer blocks
in dynamic storel

operators

56

* routines

+
routines

•

I
I

57

Figure 3.7 OPBLK for VAL

+--------+ I -t----> APPX1
+---------+
' -1----> load string routine
+-------·--+ I -f----> VAL operation routine
+-----+ I -f----> VAL error routine

+---------+

Figure 3.8 APPLn and APPXn Routines

* * APPL1 - apply a monadic operator

* * The operator block has a vector of routine entry points
* On exit merges to APPLY to select the correct one

* APPL1 ENT
'10V (XS),XL load operand
BRN APPLY
EJC

* * APPL2 -- apply a dyadic operator

* * The operator block has a vector of routine entry points.
* On exit, merges to APPLY to select the correct one,
* according to the type of the LEFT operand Cat 1(XS))

* APPL2 ENT

*

MOV OFFS1(XS),XL
BRN APPLY
EJC

load left operand

* APPX1 - apply a monadic operator

* * The operator block has the legitimate type code,
* the operator routine address, and an error routine
* address

* * On exit merges to APPX to do the checking.

*
APPX1 ENT

*

MOV CXS),XL
BRN APPLX
EJC

load operand

* APPX2 - apply a dyadic operator

* * As APPX1, but checked on LEFT operand

*
APPX2 ENT

MOV OFFS1CXS),XL
BRN APPLX
EJC

load left operand

58

..

'
t

I

Figure 3.8 APPLn and APPXn Routines (continued)

* * APPLX - apply an operator

* * In the case where an operator is applicable to only
* one type of operand, APPLX is entered to check the
* type and enter the evaluating routine if ok.

* * (XL) operand of monadic operator or
* left operand of dyildic operator

* APPLX RTN
ICA
BEQ
lCA

APP10 ICA
MOV
BRN
EJC

*

XR
(XL) ,CXR) ,APP10
XR
XR
XR,XL
APPEX

point took type word
h it what we have
no bump pointer
point to routine
copy entry point
merge to enter

* APPLY -- apply an operator

*
*
*
*
*
*
*
*
APPLY

*

APPLY selects an appropriate operator routine, by
chhoosing one of the entries from its jump vector,
indexing by the EPI obtained from the operand in XL

CXL) operand of monadic operator or
left aperand of dyadic operator

RTN
MOV CXL) ,XL
LEI XL
WTB XL
ADD XR,XL

get entry point
load EPI
convert to BAU offset
point to appropriate routine

* Continue by falling into APPEX
EJC

* APPEX - enter operator routine
* This is the common exit for APPLX and APPLY

* * CXL) operator routine entry point

* APPEX RTN
MOV
MOV
BRI
EJC

(XS)+,XR
CXL),XL
XL

pop right operand

59

I
'

I
I

3.4 SOME FEATURES Of THE RUNTIME ROUTINES

3.4.1 Iterators

The Setl-s runtime system includes specialised routines to

implement loops controlled by iterators of the form:

(For name in expression). The code generated for such loops may be

represented in a pseudo-machine language as follows:

{code to evaluate exrression}

PRPIT

->LO

LO: JNEXT

->L1

L1:

STORE name

{code for loop body}

->LO

60

The labels indicate the heads of codeblocks and the notation ->L

indicates a pointer to the corresponding block; note that the blocks

have to be chained together explicitly. The pseudo-opcodes PRPIT and

JNEXT are indirect pointers to system routines which each perform a

fairly complicated function. The routine for PRPIT prepares a

temporary to control the loop. The form of this temporary depends on

the type of the controlling expression, which is the top stack item on

entry. For pairs, tuples and strings, the temporary is a small

integer which is initially the index of the first item (1 for tuples

and pairs, O for strings as a result of the internal representation

used by the system). For set-like objects the temporary is an offset

61

into the block, which gives the first word which can potentially hold

an element.

The routine for JNEXT performs a composite function: it checks

whether all elements of the expression have been exhausted and, if so,

cleans off the top two stack items and executes the next codeword,

which causes a jump out of the loop; otherwise, it extracts the next

element, updates the temporar)" and increments the code pointer so that

the assignment to the loop variable and the body of the loop will be

executed. In the case of tuples, pairs and strings the action is

simply performed, since the blocks for such values contain a field

giving the number of elements and this can be compared with the

temporary to see whether all elements have been used. If they have

not, a procedure to access the appropriate element is called and the

value which it returns is stacked. When the controlling expression is

a set or map the situation is more complicated. Initially, the

temporary is an offset into the block, and a procedure is called to

return the value held at that offset. If this is a pair chain, the

first item is returned and the iterator is updated to point to the

next, as explained in 3.2.2; otherwise it is incremented to point to

the next hash slot. If the offset exceeds the length of the block it

is reset to the initial offset and a flag is set, which can be used by

the calling routine to determine whether the set is exhausted. Since

there will usually be 'empty' slots in a set block filled with OM

values, the JNEXT routine must test for these and skip over them.

I

I
I

I
!

One special case of the iterator involves the arithmetic former:

e.g (for i in Cfirst,next ••• last)). It is obviously inappropriate to

build a tuple and then extract its elements, so this case is detected

by the code generator which produces code for a conventional

arithmetic loop resembling a Fortran DO-loop. Loop temporaries for

the current value, the limit and the step are held on the stack;

special routines are used to load their values onto the top when

required. The only point of interest in this is that the form of loop

permitted in Setl is so general that it is not possible to determine

until runtime whether the loop variable is increasing or decreasing.

This leads to the bizarre necessity of including in the code a test to

determine whether the step value is negative and, if it is, to swap

the current and l irnit values before comparing them at the end of the

loop, since the condition to be satisfied on termination is reversed

by a negative step.

Set and tuple formers are implemented as special cases of loops.

That is, an expression of the form {expression: iterator} is expanded

as if it were:

Expr

tempo:={};

CF or iterator)

tempO with:= expression;

End;

Yield tempO;

Similarly, an arithmetic former is expanded into a loop in which the

current value of the loop variable is added to an initially empty set

or tuple.

63

These iterators offer an example of the flexibility of the

interpretive code format, and the compact representation of loops

which is permitted can be contrasted with the machine code which would

be required.

3.4.2 Procedure Call And Return

It was noted in 3 .1 .2 that a procedure ea l l is rcpresc·nted in the

code as a pointer to a PCBLK th~ first word of which is a pointer to a

routine to call procedures. On entry to this routine, the values of

the arguments being passed to the procedure are on the stack and the

next codeword holds an argument count (thus slightly upsetting the

purity of the code format). Because of the way in which space is

allocated in the static region during compilation, the VRBLKs for the

arguments and local variables of the procedure being called will be

contiguous; during compilation of the procedure body, pointers are

set in the PCBLK to point to the start and end of this contiguous

region of static. The procedure call routine performs the

unconventional action of stacking the pre-entry values of the

arguments and locals of the f~!!~Q procedure, and then initialising

the arguments to the values passed on the stack. On first entry to a

procedure a pointer is set in the PCBLK to point to the stacked values

of the locals; on recursive entries, this pointer is used to obtain

initial values for any locals which had been set by Const or lnit

declarations. This mechanism means therefore that such declarations

can be dealt with by the compiler and do not produce any code to be

executed.

64

Certain link inform~tion has to be placed on the stack. The old

stack pointer is required to identify the start of the information

stacked by the call. A return link is also needed: this is stacked

as a pointer to the catting codeblock and an offset to the codeword to

be executed next, because no pointers into the middle of blocks may be

stacked. A pointer to the PCBLK is also stacked. Setl does not

permit reference to non-local variables except globals, so no static

chain or displdy is needed. Finally, the code pointer is reset from

the PCBLK to point to the procedure's entry point and the procedure is

entered.

On return, the link i ntormati on is recovered from the stack, the

locals are restored to their pre-entry values, the stack is cleaned up

and execution of the calling code is resumed.

CIIAPTER 4

THE SETL-S COMPILER

4 .1 THE PARSER

4.1.1 Parsing Algorithm

Syntactic analysis in Setl-s is carried out by a parser for an

SLR(1) grammar, using essentially the algorithm given by DeRemer in

[DER71J. Since the formulation of this algorithm in Setl-s is

somewhat different from the best-known implementations of LR(k)

parsers (see, for example [AJ74J, [AU77J or [JOH78J), it will be

useful to review the basic ideas behind this class of parser. The

notation and terminology used follow those of [DER71J and [AJ74J.

65

An LRCO) parser for a context-free grammar with start symbol Sis

constructed by computing its £QD!i9~£~1i2n ~!!~ - each member of a

configuration set is known, not surprisingly, as a configuration, and

consists of a production with a special marker, indicated by a dot, in

its right part. The sets are computed as follows: the grammar is

augmented by a production S' -> I- S -1, where I- and -I are special

terminal start- and end-markers, and S' is a new start symbol. The

ini!i!! £.2!l!iSY!!llE!! !ll is s0 = {S' -> .I- S -I}. Each

configuration set which is not empty has one or more successor

66

configuration sets, computed from a ~!~i~ ~t!, obtained by moving the

dot to the right over one symbol; in general, a configuration set has

ans-successor for each symbols that is preceded by a dot in any

configuration of the set. If the dot in a configuration in the basis

set precedes a non-terminal, N say, then a closure set is added to the

basis set. The closure set consists of configurations wherP His the

subject of the production, and the dot precedes the f i rs1: ~ymbol in

the right part. This closure operation is repeated until no new

configurations are required. If the dot appears at the right hand end

of a configuration, then the successor is the empty configuration set,

called the #p successor, where p is the number of the corresponding

production.

Figure 4.1 shows the configuration sets for the grammar:

s -> I- E -I 0

E -> E + T 1

E -> T 2

T -> p / T 3

T -> p 4

p -> i 5

p -> (E) 6

(This example originally appeared in [DER71J)

The parser for an LR(O) grammar can be represented by a

deterministic pushdown automaton, consisting of a finite control known

as the characteristic finite state machine (CFSM) and a stack - the

states of the CFSM correspond to configuration sets, which, in a

sense, represent •states of the parse', and the transitions correspond

•

\

I

Figure 4.1 Configuration Sets for Example Grammar

+---------+-----------·-- ---------+---------------+
I State I Configuration set I Successor I
+----------+--------------- ----------+
I o s-> .. I-E-1 1- ==> 1

+---------+-----------------------+---------------+
1 S -> I- .. E -I E ==> 2

E -> .E + T
E -> .T T ==> 6
T -> .P / T P ==> 7
T -> .P
P -> .i i ==>10
P -> .(E) (==> 11

+------+---------------------------+------------------+
I 2 I s -> I- E .-1 -I==> 3
I I E ->E.+ T + ==> 4
+- -+---------------------------+--------------------+
I 3 I s -> I- E -1. #0 ==> {}
+-------+----------------------- -----------------+

4 E -> E + .T
T -> .P / T
T -> .P
p -> .i
p -> .(E)

+----------+----------
1 5 I E -> E + T.

T ==> 5
p ==> 7

i ==> 10
C ==> 11

----+--------------------+
I #1 ==> <l

+----------+---------------------------+------------+
I 6 I E -> T. I #2 ==> {} I
+----------+-------------------------------+--------------------+
I 7 I T -> P ., T I / ==> 8
I I T -> P. I #4 ==> {}
+--------------------------------+-------------------+

8 I T -> P / .T T ==> 9 I
I T -> .P / T P ==> 7 I
I T -> .P I
I P -> .i i ==> 10 I
I P -> .(E) C ==> 11 I

+-----➔ -------+-------------+
I 9 I T -> P / T. #3 ==> {}
+--------+--------------------- -------------------+

1 o I P -> i. #5 ==> <l
.f-----+-------------------·---------------+
I 11
I
I
I
I
I
I

I P -> C .E >
I E -> .E + T
I E -> .T
I T -> .P / T
I T -> .P
I P -> • i
I P -> • C E)

I E ==> 12 I
I I
I T ==> 6 I
I P ==> 7 I
I I
I i ==> 10 I
I c ==> 11 I

+---------+---------------➔-------------+
I 12 P -> C E .) I > ==> 13
I E ->E.+ T I + ==> 4
+--------+---------------------+---------------+
I 13 P -> C E) • I #6 ==> {}
+-------+-------------·------+--------------------+

67

68

to the successor relations. F;gure 4.2 shows the CFSM for this

example. There are three kina~ of state in the CFSM:

1. Shift State: all transitions are under symbols in the

vocabulary.

2. Reduce state: there is exactly one #p transition.

3. Inadequate state: ~ny state which is neither a reduce state

nor a shift state. It will have either one #p transition and

one or more transitions under vocabulary symbols

(shift-reduce conflict) or more than one #p transition

(reduce-reduce conflict).

A grammar is LR(O) iff its CFSM has no inadequate states, in which

case the following parsing algorithm, in which the stack is used to

remember left contexts, so the parser can 'restart' after a reduction,

can be used.

$(

Set current state= initial state

If current state is a shift state then read the next symbol from
the input, and push it onto the stack.

Select the successor state according to the CFSM transitions.

Push the successor state, and set current state to successor
state.

Otherwise

If current state is a reduce state, pop the appropriate number of
items from the stack (2 * number of symbols in right part of the
production being applied).

Prefix the subject symbol of the production to the input.

If subject of the production is the sentence symbol, then accept.

Figure 4.2 CFSM for the example grammar.

+---+ +---+
I I I T I I

+---> 8 ------> 9

i-1-! i---!
+--------- P,i,C<-----

1 +---+ +---+

+---------2-t 10f-!~-t {}I
+---+ +---+

+

+---+

#3 t nl
+---+

I ->>----------------
+---+ +-1-+ +---+ +---+

+-------~-i ,,!--~--i 12! __ ! __ J 13-1 -11-6 -t
1
{}I

I I I I I I
+- -+ +---+ +---+ +---+

T,P,i,(
+----------------<--+

69

Set current state to state on top of the stac: .•

$) Repeat steps between$(and S).

Note that in fact it is not strictly necessary to push the

symbol in a shift state, but this provides a convenient way of

remembering semantic information associated with it.

70

In general, the grammar tor a practical language will not be

LR(O), and so lookahead is u~ed to resolve parsing conflicts in

inadequate states. There are several algorithms for computing

appropriate lookahead sets - in Setl-s the most straightforward of

these is used to compute the simple 1-lookahead sets associated with

each transition from an inadequate state. For a transition under a

vocabulary symbols, the set is{~}, for a transition under Up, where

p is a production A-> w, the set used is:

* {sin VT I S ==> aAsp, for some strings a,p}

i.e. the set of all terminal symbols which may follow A in any

sentential form. If all the lookahead sets for transitions from any

inadequate state are disjoint, the grammar is SLRC1). (In general,.

the simple 1-lookahead set contains symbols which could not possibly

be read from this particular state, hence the SLRC1) algorithm cannot

produce parsers for some languages which are nevertheless LRC1) or

LALRC1), see [AJ74J.) The CFSM is modified by replacing each

inadequate state N by a !EQ~!h~!Q !!!!~ N', such that, for each

transition to a state M from N under s with associated lookahead set

L, there is a transition from N' under L to a state M' which has

71

exactly one transition; t~at under s to M. Here 'transitio~ under s'

includes the #p transitions to the empty state. The modification to

replace state 7 in the example CFSM is shown in figure 4.3.

The parsing algorithm has to be augmented with:

If current state is a lookahead state then investigate (but do
not read) the next symbol from the input, and change state
according to the transitions of the CFSM.

4.1.2 Setl-s Parser Representation

Any table-driven parser resembles an interpreter, the tables or

their equivalent being used to direct the execution of the parse.

This suggests that the interpretive scheme used in the Setl-s runtime

system could profitably be adapted for use in a parser. This has been

done successfully in Setl-s where the CFSM is represented by a

directed graph. Nodes in this graph are represented by blocks:

SSBLKs for shift states, RSBLKs for reduce states and LSBLKs for

lookahead states. The block formats are shown in figure 4.4. The

first word of each block points to the entry point to one of the

routines which perform the parsing actions shift, reduce or lookahead,

thereby embedding these actions in the data structure. Parsing is

accomplished by interpreting the data structure in a manner resembling

that in which the ITC is interpreted at runtime.

The successor to a shift or lookahead state is selected by

comparing the next symbol from the input stream with each of the

symbol entries in the state block. When a match is found, the pointer

in the following word is loaded and stacked, and an indirect branch is

Figure 4.3 Replacement of inadequate state

+------+ +---- +-----+
I I <-1,+,n I I 114 I

---> 7 ----------> 14 1 +--------> {}
I I I I I +----+----+ +---------+ +---------+

+---------+ +---------+
---~~~-----! 8 • +-I-' ---l 8 l 1 ___ 1 J ________ _

Figure 4.4 Parser Block Formats

a) SSBLK - shift state

b)

+---------+
I SSACT
+---------+

SSLEN
+---------+
I I
/ SSACT /
I I
+---------+

RSBLK - reduce

+---------+
I RSACT
+- +
I RSSYM
+- --+

RSLEN I
+-------+

RSNUM

Pointer to shift routine

Block length

Symbols and successors

state

Pointer to reduce routine

Subject symbol of production

No of symbols to pop

Production number

c) LSBLK - lookahead state

+---------+
LSACT

+---------+
LSLEN

+--------+
I I
/ LSSSS /
I I
+-------+

Pointer to lookahead routine

Block length

Lookahead sets and successors

d) LABLK - lookahead set with multiple entries

+-----+
I LATYP I
+-------+

LALEN
+------+
I I
/ LAMEM /
I I
+--------+

Dummy type pointer

Block length

Members

73

taken through the first word of this successor state block. Thus tne

routine to perform the next parsing action is entered with register XR

pointing to the state block for the current state. The entries in an

SSBLK are simply pairs of grammar symbols and pointers to successors.

The entries to in LSBLKs are slightly different, since the lookahead

sets corresponding to #p transitions will have multiple entries.

These are therefore gathered into a block; the entry in the LSDLK

points to this, and the routine to perform the lookahead action

searches the block appropriately .. The lookahead itself is handled by

having a global re-scan switch, which, if set, causes the scanner to

return the same result as on the previous call. A lookahead act1on

sets this switch, a shift action does not, and thus absorbs the token

as required.

If no match for a token is found in a shift or lookahead state,

an error is reported.

An RSBLK contains the information required to perform the

reduction: the number of items to pop off the stack, the number of

the production being applied (this is used to direct semantic

processing, see 4.3.1) and the subject symbol of the product1on which

will be prefixed to the input stream. Another global switch is used

to indicate to the scanner that a non-terminal is available.

Figure 4.5 gives BCPL routines to perform the parsing act1ons -

this form of presentation permits the elision of irrelevant details in

the Minimal code, for example the saving of registers. In fact, the

organisation of the code in the actual system· is organised slightly

differently to accomodate error recovery, but it is not much Longer.

Figure 4.5 Parsing Action Routines

LET shift O BE
$(

$)

LET symbol= nextsymbolC)
push C symbol)
xr := ssmatch(xr, symbol)
IF xr = error DO error_recovery()
push(xr)
BR! ! xr

ANO lookahead() BE
$(

$)

LET symbol= investigatesymbol()
xr := lamatch(xr, symbol) .
IF xr = error DO error_recovery()
BR! !xr

ANO reduce() BE
$(

$)

LET symbol= r.symbol!xr
ANO Len, prod_number = r.length!xr, r.pnum!xr
semantic_actionCprodno)
xs -:= Len
prefix_to_input(symbol)
xr := !xs
BRl !xr

Notes:
BRI is a fictional command performing an indirect branch.
On entry to each function, xr points to the state block.
xs is a stack pointer.
The functions lamatch and ssmatch search an LSBLK and SSBLK
respectively, returning the successor pointer, or error.

I _,

76

4.1.3 Parser Generation

The parser is produced by a system known as Slrgen, which

consists of two programs: Slrgen itself and Slropt. The first of

these is a straightforward implementation of the constructor algoritnm

given in 4.1.1. It is written in BCPL and is intended to be portable;

it has run successfully on both the t>EC-10 and Amdahl 470/V? machines

at Leeds University. No particular effort was made to produce great

efficiency in Slrgen, but on the Amdahl it can process the Setl-s

grammar (containing about 240 productions) in about 30 seconds of cpu

time, which is acceptable, especially as it is to be hoped that the

parser will not have to be re-generated often.

Slrgen accepts as input a BNF description of the syntax; no

extensions such as the use of regular expressions in productions are

accepted, and a set of lexical conventions must be observed. Appendix

2 is an example of the input required, being the grammar for a very

simple programming language to be described in Chapter 6. Slrgen

computes the parser states from the grammar and diagnoses grammars

which are not SLRC1). The output is in a readable form and can be

edited to resolve ambiguities in the grammar or to make it possible to

parse languages described by non-SLRC1) grammars. In fact, the Setl-s

grammar is not SLRC1), because of the over-use of .the symbol IN both

as an operator and as a connective in the syntax of iterators. Two

inadequate states for which the parsing conflicts cannot be resolved

by one symbol Lookahead arise from this, but it is easy to resolve the

conflict by removing IN from lookahead sets. This makes the

construction {x INS} illegal, but as its meaning is unclear this does

not seem unreasonable.

The output from the Slrgen program forms the input to Slropt.

This program performs three major optimisations: it merges states

which are identical, it merges identical lookahead sets and it removes

reductions by 'single productions' [AJ74J. These are productions of

the form A-> a where Jal=1. Reductions by such productions are

merely wasteful and can slow down the parser considerably. If the

productions have no semantic actio11s associated with them, as is

generally the case when the right part is a single non-terminal, they

can be removed from the parser. The states corresponding to these

reductions need never be built, so there is an additional saving of

space. Section 5.3 contains some statistics on the efficacy of these

optimisations in Setl-s.

The output from Slropt is a linear representation of the CFSM

graph known as PCX which consists of a series of symbols, separated by

newlines. The symbols are grouped in states as follows:

state number
state type

{length) some types only
members

The state number is used to identify the state. The state type

is a 2 character code beginning with Q; the possible types are:

@S shift state*
@R reduce state
SL lookahead state*
SA lookahead set*
SD duplicate state
@B duplicate lookahead set

State types marked* have a length field, which is the total

length of th~ ~tate group. The entries for shift and lookahead states

come in pairs consisting of a symbol followed by its successor. The

symbol is either a terminal, represented by itself, a non-terminal

represented by a code number, or, in the case of a lookahead state, a

lookahead set. The successors are simply state numbers.

A reduce set has three members: the number of symbols to be

popped on reduction, the subject symbol oi the production, and the

production number.

A lookahead set is just a list of symbols.

A duplicate state has only one member, the number of the

original state of which it is the duplicate. Similarly, a duplicate

lookahead set has a pair of members, the state containing the

original, and the offset within it to the required set.

To illustrate this novel compiler structure, Figure 4.6 shows

the PCX and data structure corresponding to the CFSM fragment of

Figure 4.3.

4.1.4 Initialisation

The CFSM graph is built in dynamic memory during the

initialisation phase of Setl-s. The PCX produced by Slrgen is read

in, and used to build the blocks. Initially, the blocks are built

with successor fields holding state numbers as read from the PCX; as

each state block is built, an entry corresponding to its state number

79

Figure 4.6 Data structure and PCX fragments

+------+
I --f-->LOOKAHEAu

+----+

I 6 I
+-------+

I --',----------- +-------+ ------> I ~ummy

I ---,--> +-------+

I I +------+ +-------+
------> I R[l)UC[L I

I I -----> 5 +-------+ I I I +-------+ ------i
+---~---+ I 2 l I -, l L -f--• 1--:---, +-------

+------• J ___ : ___ l

type pointer

I T I I) I
+-------+

+----+
+-> I SHIFT
I -,->
+-------+

I 4 I
I , I
+-------+ I --: -> state 8

+---+

7 16
ell @R
6 2

@A 4
5 101 (code for T)

-1
17 +

) @S
16 (i.e. 14 I) 4

I I
17 (i.e. 8') 8

is made in a state table - this entry is a pointer to the block

itself. When all blocks have ~een built, a pass is made through them,

and the successor entries are replaced by the appropriate pointers.

The result of this process is a data-structure which is garbage

collectable. After parsing has been completed, the pointer to the

root of the parser is cleared, and the garbage collector is called to

reclaim the space formerly occupied by tl1e CFSM graph, thereby

providing a form of overlay for the system's workspace. If the

operating system interface provides tl1e capability, this space can be

returned to the system, leaving a small executing program. For Setl-s

the space recovered is nearly 10,000 words; the amount of code left,

including error recovery, parser setup and parsing action routines is

less than 500 words.

This setting up of the parser is, however, a time-consuming

process, typically taking 12 to 13 seconds on the DEC-10. Incurring

this overhead on every run would be quite unacceptable in most

environments in which Setl-s is envisaged as being used. It should

properly be regarded as an extra phase in the building of the system

following translation and loading, which should only be repeated when

a new version of the grammar or interpreter is introduced. In the

context of Minimal it is possible to de-couple the building of the

CFSM graph from compilation of users' programs. The operating system

interface specification includes a procedure SYSXI, which, when

called, releases i-o associations and halts execution, permitting the

user to save a core image. (It was originally called for to provide

the exit function for macro-Spitbol - see [MHD76J.) So, after the CFSM

graph has been set up, the garbage collector is called to remove

81

garbage created by the scanner during setup, and then SYSXI is called.

The core image ~aved after this call is what the Setl programmer sees

as Setl-s. All initialisation is complete, and parsing commences on

entry.

4.1.S Syntactic Error Handling.

It has become a truism of compiler construction that the

diagnosis of and recovery from syntax errors is of major importance.

In the current Setl-s system, however, the treatment of errors has not

received a great deal of attention, since it is not a primary aim of

the project to build a production compiler. The mechanism which is

used is similar to that used in Yacc [JOH78J: the grammar is

augmented by productions for 'major' non-terminals which include the

special terminal symbol Serror. When an error is detected, the

current input symbol is replaced by $error .and the stack is popped

until a state is found which has a parsing action on $error. This

state is then entered, and parsing continues until a reduction is made

by one of the error productions, at which point an error message is

given and recovery is attempted by discarding input symbols until one

is found on which a legal parsing action is possible - further error

messages are suppressed until a specified number of successful shifts

has been made, in an attempt to prevent an avalanche of messages.

·erroneous statements are flagged in the listing, with a pointer

below the symbol at which the error was detected, hence giving the

user as much information as possible from the parser's early

error-detecting capability. The message produced is generally rather

vague ('syntax error in expression', for example).

It appears that very much better error handling is possible in

LR parsers [GHJ79J, and it should be a fa1rly stra,ghtforward job to

make use of more powerful techniques in a production Setl-s compiler.

This development is not entirely trivial, however. The main idea is

to attempt several repairs to the input and then to allow the parser

to make a forward move, and evaluate the success of the repair. This

necessitates buffering input tokens and copying the stack, as well as

requiring the parser to operate in an error mode in which no

irrevocable actions are p~rformed. This work does not introduce any

new ideas into the system and so, although it is important to a

production compiler, it has not presently been pursued.

4.2 LEXICAL ANALYSIS

4.2.1 The Scanner

Whenever the parser requires a symbol from the input, it calls

the routine SCANE, which returns a pair of values: a token type code

in register XL and a token 'value' in XR. Most of the tokens are

conventional, corresponding to basic symbols such as+ and

'micro-syntactic' constructs such as integers. Each of these has a

unique type code, and where appropriate, the value returned in XR is

the semantic information associated with the particular token just

scanned. For example, if the element scanned were 1356 then XL will

contain the type code for number, and XR will contain a pointer to an

ICBLK built to hold its value. In the case of operators, the token

83

type designates the priority class of the operator and the value is a

pointer to its OPBLK.

During initialisation, SCANE is also used to read the PCX.

Since terminal symbols have their normal character representation,

SCANE naturally returns their internal token form to the

block-building routines, which use these as the symbol entries in

SSBLKs and LSBLKs so they can be directly compared with the token

types returned from the Setl source during parsing. Because

non-terminals are represented by numbers, a condition is imposed that

the token types for terminals must be distinguishable from these

numbers (state numbers can be identified from their position in the

PCX). The highest non-terminal value is known (it is passed as a

parameter to Slrgen) so this condition is satisfied by ensuring that

all token types exceed this value. In the grammar, classes such as

name, number or class 3 operator appear as terminal symbols: $name,

Snumber and $op3. When the grammar is read during initialisation,

SCANE recognises names beginning with Sas classes and returns the

type code for the class. This means that during initialisation tne S

symbol must be treated differently, as must some other symbols, but

the overhead of this is negligible and is rarely incurred, since$

otherwise only introduces a comment and the other symbols concerned

are illegal in Setl.

During parsing, it is the type code which is used to select

successor states in the CFSM, while the token value is put on the

stack for use by semantic routines.

4.2.2 The Symbol Table And Reserved Words.

The symbol table used by Setl-s is organised as a hash table,

with collisions being handled by chaining entries together. Entries

for identifiers consist of the VRBLKs built for them, chained together

via their VRNXT fields (see fig 3.4h). Reserved words are entered

into the table as special WDBLKs. The format of these is identical to

that of VRBLKs, as regards the position of length field and

relocatable fields, uut the VRVAL and VP.STO fields are used to hold

the type code and value for SCANE - the VRGET field is set to a

special type, so that it can be recognised as a reserved word and

treated accordingly. Identifiers declared as the names of functions

also have special table entries: the type word of the block is set to

indicate that the variable is, in fact, a function, and since the

VRSTO field is redundant it is used to chain together all the entries

for functions, to make them easily accessible.

In Setl programs, upper- and lower-case letters are treated as

being identical, so all alphabetic characters are converted to

lower-case before a table lookup is attempted. On the source listing

which can be produced by the system all identifiers are printed in

lower-case and all reserved words and names of system functions in

upper. As well as producing a more readable listing, this has a

useful side-effect, in that any reserved word inadvertantly used by

the programmer as an identifier will be upper-cased on the listing.

This will permit an easier identification of the source of the error

than the resulting syntax error message might. Such accidental use of

reserved words is a source of particularly obscure syntax errors, and

this listing convention provides an economical aid to their

pin-pointing.

The scope rules for identitiers in Setl are especially simple.

There is no block structure, and a variable is purely local to the

procedure in which it is declared (explicitly or implicitly). The

only exception to this is that variables explicitly declared at the

head of the main program block are global, only those used without

declaration are local to the block (5ic). These rules mean that a

variable can be uniquely identified by its name and the procedure in

which it is declared. This is done by assigning numbers to procedures

as they are declar~d, and logically 0R-ing this number into the left

hand end of the VRNML field of the VROLK. Because local variables

need not be declared explicitly, the table lookup routine must firsL

look for an entry for a global symbol, by masking out the procedure

number, and, failing this, a local symbol. If this search fails a

VRBLK for the local is built and entered into the symbol table.

Global declarations cause a minor problem. If, as seems

natural, the procedure number were initialised to zero and variables

were entered into the symbol table as globals until the reduction for

declarations had been performed, all would be well unless there were

no globals. In this case, lookahead would be required before the

reduction could be made, and this might cause the creation of a global

symbol table entry for a name which was genuinely local to the main

block. To avoid this, globals are entered into the symbol table as

locals of the main program block, and the symbol table entries are

amended when a reduction associated with the declaration is made.

4.3 SEMANTIC ACTIONS AND CODE GENERATION

4.3.1 Building The Parse Tree

Whenever the parser performs a reduction, it calls a routine to

perform any semantic action which may be appropriate. In nearly all

cases, the appropriate action is to build a node of the parse tree.

There is very little attribute processing to be done, because of the

dynamic typing; the only semantic actions other than building tree

nodes relate to dealing with syml,ol tahlt- entries for procedures,

fixing the scope of globals and processing the declarations of

initialised variables and constants.

The parse tree building is directed by the grammar. That is,

whenever a production is applied, the descendants of the node being

built will be related only to the grammar symbols in the right part of

the production. Single terminals on the right give rise to leaves in

the tree; more complicated right parts have their essential structure

abstracted to produce interior nodes. The values corresponding to the

grammar symbols of the right part will have been placed on the stack

during earlier shift moves. The position of each on the stack can be

found from the position of the occurrence of the corresponding symbol

in the production. After construction of the node, a global variable

is set to point to it; when SCANE is next called it will return the

non-terminal which was the subject of the production in XL (see 4.2.1)

and the pointer to the tree node as the value in XR. This means that

sub-trees corresponding to non-terminals get placed on the stack, to

become available to the tree-builder.

87

4.3.2 Generation Of ITC.

A code generator is called for each procedure, and for the main

program block, to flatten the tree and produce appropriate codewords.

The approach taken is a simple one: the parse tree is walked

recursively, with stereotyped code sequences being produced for the

various constructs in Setl. No uptimisation of special cases is

attempted.

The final size of each codcblock is not known until it is

complete, but it is necessary for the partly-built block to be

protected from the garbage-collector. The scheme used for building

CDBLKs is inherited from Spitbol - a code construction block CCCBLK)

is allocated, and the codewords are generated in it. The garbage

collector knows that only certain fields are in use, and processes the

CCBLK accordingly. When a codeblock is complete, it is cut off as a

CDBLK from the CCBLK with the remaining words being re-set to form a

new reduced CCBLK. The size of block allocated for code construction

greatly exceeds the size of typical codeblocks, so it is only rarely

that there is not sufficient room to generate codewords. However,

when this does happen, a fresh CCBLK has to be allocated, and the

codewords generated so far have to be copied into it.

This causes complications in the setting of pointers within the

code, to handle jumps. The overall strategy adopted is simple. The

compiler generates label numbers for jumps inside loops and for

conditionals, and uses a label table to keep track of them, with

forward references being chained together from the table entries.

Since there can be no pointers into the middle of collectable blocks,

88

the chain entry for a forward reference consists of a pointer to tne

base of the codeblock in which the reference occurs, and an offset to

the codeword which will ultimately hold the pointer to the destination

of the jump. A label is set at the head of a codeblock, but the

ultimate address of the codeblock will not be known until it is

finally cut off from the CCBLK, since the latter may run out. Hence,

resolution of forward references must be deferred until the codeblock

is complete. Similar complications arise in connection with forward

ref~rences occurring within the current block, since the base of the

descriptor for the forward reference cannot be set. Dealing with

these involves, essentially, keeping a chain of 'pending' forward

references, in which the base field is used to hold the label number.

When the block is complete, these are turned into normal table

entries, and then the references to the head of the block can finally

be resolved. (Care must be taken to treat a block which jumps back to

the head of itself correctly.)

Since compiler generated labels are used for constructs which

are defined in a nested manner, they can be issued and de-allocated in

a nested fashion, hence the size of the compiler's label table can be

kept small without imposing undue limitations on programs.

CHAPTER 5

DISCUSSION OF SETL-S

5.1 ASSESSMENT OF THE SYSTEM

5.1.1 Performance

89

The listings reproduced in Appendix 1 show some typical

performance figures for Setl-s; some explanation of their

significance is required. The programs were run on the Leeds

University DECsystem-10, which has a KI10 processor and 256K words of

memory. Although the timing system on this machine is notoriously

inaccurate, the times given provide an indication of the execution

speed of Setl-s. (The runs of these programs have been repeated

several times and the figures in the appendix are about average.) The

actual terminal response time of the system depends on the load on the

DEC-10, but it is consistently acceptable, comparing well with other

language processors available on the machine.

The figures for •store used' and •store left' give the number of

occupied words and free words respectively in the dynamic area; the

initial size of the dynamic area can be set by the user, the default

being 15K CK=1024) words. If during a run the garbage collector

cannot reclaim more than a specified number of words the dynamic area

90

is increased, if possible, by claiming more memory from the operating

system; this was not necessary on these tests. Under these

circumstances, the system consisted of a 36 page impure 'low segment'

(a page on the DEC-10 is 512 words) and a potentially shareable 'high

segment' of 20 pages. The fact that even for the first small program

a garbage collection was required dt1ring compilation suggests that the

default value for the size of dynamic memory may be too small.

The figures for 'statements executed' should be largely ignored,

since they do not correspond to source statement executions in the

expected way, although with the 'mcsec/statement' figures they do

provide a comparative measure between the programs. (The problem of

getting the statement counts to correspond has not been pursued,

because it is not considered very important and because it overlaps

with other work on performance measurement which lies outside the

scope of the present project.)

Each of the programs in the appendix has some noteworthy

features. The first program, which computes the prime numbers up to

1000, printing the last few, is an example of the conciseness

obtainable in the Setl language and the way in which Setl constructs

resemble those of orthodox mathematics. When the implementation is

considered, it also illustrates some shortcomings of this approach,

since the set primes has to be allowed to grow dynamically, being

copied several times in the process (note the two storage

regenerations) and is represented internally as a linear hash table,

which is not the most appropriate data structure for the application

(to put it mildly). The 'representation sub-language' of full Setl

addresses itself to problems such as these but its efficacy is still

not proven.

Another point should be mentioned in connection with the primes

program. According to the Setl definition, the expression controlling

a loop is evaluated once before the Loop starts, so that any

modification of its constituents inside the Loop has no effe~t on the

number of times it is executed. (Consider, for example:

(For x in t) t with:= x End) This is merely ar1 extension of the value

semantics of assignment. A naive approach to this problem, whereby

the routine which sPts up the iterator for a Loop first copied the

value controlling it was at one point implemented; since a quantified

test conceals a loop, this copying operation was performed every time

the Notexists test was executed. The result of this was that the

primes program ran over 100 times slower. A more appropriate solution

would be to perform a check at code generation time to determine

whether the loop expression had one of the forms described in 3.2.4,

and insert an explicit copy instruction into the code, but, in this

particular case, even this would have had the same effect.

Consequently, the attitude adopted at present is that if the

expression controlling a loop is modified inside that loop the effect

of the loop is 'undefined'.

The remaining programs in Appendix 1 have been adapted from the

Setl test library developed at NYU to test the full Sett system. The

first is an implementation of the O(nlogn) sorting algorithm known as

Heapsort. It is notable that the total execution time is

significantly greater than the time taken actually to sort the items.

The extra time is spent printing the two sequences, or rather building

stri~gs out of the tuples, preparatory to printing them. The

algorithm used to build strings out of tuples is very crude Ca

concatenation of strings produced recursively from each component in

turn) and the figures here suggest it should be improved. Finally,

the third test is an implementation of a linear-time median finding

algorithm. A brief examination of some figures obtained from the

program showed its performance to be practically linear, so that the

Setl-s system has not introduced any gross non-linearities into the

behaviour.

Table 5.1 summarises these performance figures and compares them

with the results obtained running the same programs on the full Setl

system on the same machine. The first example was recoded in BCPL,

using the same algorithm, and figures for this program are included in

the table. These figures give a clear indication of the superiority

in speed of execution, speed of compilation and system size of Setl-s

over NYU Setl. Without delving deeply into the details of NYU Setl it

is not possible to give authoritative reasons for the performance

discrepancy, but several factors can be suggested.

1. NYU Setl is written in a relatively high level language and,

moreover, one whose abstract machine model (based on

arbitrary length bit strings) cannot be mapped comfortably

onto real machine architecture.

2. The full Setl language is significantly more complex than the

subset used in Setl-s. Consequently, compilation is more

costly and the runtime system more complicated. It appears

93

Figure 5.1 Performance Comparisons

a> Speed

+-----------------------------+---------------+
I Program Compile time/ s Execution time/ s
l +------+--------+--------+--------+----+----+
I NYU Setl-s I BCPL NYU I Setl-s I BCPL
+--------+----------+--------+-------+--------+--------+

primes 5.18 0.44 I 1.10 38.16 I 7.26 1.90
+---------------+--------+--------+-------+--------+--------+
I heapsort 10.84 I 1.62 I - 18.2 I 6.52 I -
+-----------+--------+----+-----+--------+--------+----+

median 11.70 l 1.82 I - 4.32 1.14 I -
+-----------+--------+--------+--------+--------+--------+--------+

b) System Size

+------+-----------------------+----------------------------+
System Executing program/ pages I Source files/ disk blocks I

Clo+ hi> I I
+-·----+---- -----------+----------------------------+

NYU) 76 + 117 I 2980 I
+----------+---- -----------+------ ----+

Setl-s 36 + 20 I 7M I
+---------+-----------------------+------------------------+

that the overhead of this added complexity is incurred even

by programs which d~_not use the extra features. CSetl-s

implements roughly 75% of full Setl.)

3. There appears to be a real efficiency gain from the ITC

interpretive scheme.

Supporters of NYU Setl might argue that this comparison is not

entirely fair, since NYU Setl is intended to have a global optimiser

and a feature whereby 'nubbins' of hard code are generated in-line for

some constructs, thereby speeding up execution Cat the expense of

portability). Neither of these features is currently available

outside NYU, however, and neither of them would prevent the system's

being intolerably large, even for a medium-sized machine such as the

DEC-10. On the contrary, both would increase the size still further.

5.1.2 Portability

Setl-s is only currently running on the Leeds DEC-10 on which it

was originally implemented, so its portability can only be

extrapolated from experience with macro Spitbol. This has proved to

be a highly portable system, being implemented on the following

machines: CDC 6000 series, CII Iris, DEC PDP11, DEC-10/20, DEC VAX,

Honeywell 6000, ICL 1900 and 2900 series, Interdata 7/32, Modcomp IV,

Odra, Xerox Alto. The production of a macro Spitbol implementation

for a new machine is now quite routine, typically taking between 3 and

6 months. Minimal translators and operating system interfaces are

95

available for the machines just listed, and in theory all that is

necessary to move Setl-s is to translate the Minimal source into the

target machine's assembly language, assemble the resulting program and

load it with the interface routines. In practice, various problems

might be expected to arise. Firstly, since the DEC-10 is a

word-addressed machine all the Minimal features which depend on the

difference between word- and byte-addresses have not been exercised

and so bugs in the Setl-s source might show up in this area.

Secondly, in practice, it appears that some Minimal translators have

been written with the single aim of translating macro Spitbol, hence

setting translator-defined symbols (see 2.3.1) may necessitate

modifications to th~ translator itself. Finally, the necessity to

save a core image of the compiler (see 4.1.4) may cause problems,

since this is difficult to provide on some machines (e.g.

IBM360/370).

The use of translator-defined symbols for all character codes and

conditional assembly directives to cope with the possibility that

certain characters such as { may not be available on a particular

target machine should, it is hoped, eliminate the character code

problems which are often encountered by portable software. Naturally,

since Setl-s is interpretive, the different machine architectures will

not present problems, except indirectly via the Minimal translator.

Experience will be required to determine whether addressing space

restrictions, as well as physical memory size, will have a severe

effect.

One problem related to portability which has not received much

attention in Setl-s concerns input and output, and the association of

files. In Spitbol, the meaning to be ascribed to the arguments of

INPUT and OUTPUT has been a source of constant dispute among

implementers. The underlying model of file organisation varies so

widely between operating systems that producing some meaningful,

system-independent way of representing an external file inside a

program seems almost impossible. This seems to be a problem best

tackled at the lanuuage design Level, and in Setl no clear definition

has yet emerged. Similar questions arise from the interface between

Setl-s and the host system's JCL (or equivalent) and at other points

where operating system concepts interact with the system. Although~

set of operating system interface procedures is defined, implementers'

experiences with Spitbol have shown that these definitions are not

always appropriate, and do not make sense on all systems. There is

little to indicate that if Setl-s becomes widely available there will

be fewer such problems for this system. Already several minor changes

have been required to the DEC-1O operating system interface to

accomodate Setl-s.

A major practical obstacle in moving any system to any machine

lies in getting material on and off magnetic tape. This is a problem

largely created by the manufaturers, and one with no immediate

prospect of a solution.

97

5.1.3 Construction Of The Program.

The actual writing of the Minimal code of the present version of

Setl-s took about nine months. Some operators remain unimplemented

and both the compile-time and runtime error handling are incomplete;

nevertheless, the system is capable of executing Setl programs and can

be regarded as an essentially complete prototype. The source for this

version is approximately 16,500 lines long. Of these, 2,600 consist

of symbol definitions ~ith substantial ulotks of comment giving data

structure formats and so on; the constant and working-storage

sections comprise another 2,500 linPs, which include the operator

OPBLKs and the WDBLKs for reserved words. The parsing routines occupy

a total of 150 lines, with the parser setup code occupying 275. The

remainder is the code for the runtime system, including space

allocation and input-output, the scanner and some system

initialisation and cleanup code. Out of the total, some 4,500 lines

contain code derived from Spitbol. The biggest pieces are the

routines for converting between strings and numbers, the scanner and

the garbage collector. The last two required significant

modifications for inclusion in Setl-s. This extraction and adaptation

of Spitbol code was mostly carried out by A. P. McCann. The rest of

the system was written by myself.

That such a relatively complex piece of software could be written

in an assembly language in what is considered to be a short space of

time for such a project seems largely attributable to two factors.

First is the quantity of code that has been taken from an existing

system, and second is the structure of the system. Compilers lend

themselves to a modular arrangement, with lexical analysis, syntactic

analysis and code generation being treated separately. The use of a

systematic parsing algorithm has contributed further to the ease with

which the compiler could be constructed. The interpretive scheme also

imposes a structure on the runtime routines which only interact in

tightly controlled ways. The system is composed of small modules with

well-defined interfaces, so each part can be considered in isolation.

During development of the system, for example, the code generation

scheme has twice been extensivel)1 revised, and these revisions have

been carried out without upsetting any other part of the system.

Features have been added to the runtime system without the need to

worry that existing features will cease to work. This is in no way

remarkable, but the amount of recent writing on programming

methodology suggests that there is a prevailing misunderstanding of

the way in which systems can be structured to assist development.

CCNEE76J is a typical example of this sort of writing.) Top-down

design and the use of high level languages cannot claim a monopoly in

this area.

As an implementation language, Minimal has its drawbacks. The

most important of these is the difficulty of doing input and output,

which makes it hard to add certain kinds of diagnostic information.

This can be offset, in a suitable environment, by the fact that the

target code produced is closely related to the source, so that full

advantage can be taken of interactive debugging systems, such as OEC 1 s

DDT. (It is also possible, albeit inadvisable, to patch small bugs

without incurring the considerable cost of translating the entire

system.)

{

' t

99

In the early stages of the system's development, models of parts

of it were written in BCPL; in particular, a complete parser was

written to debug the Setl-s grammar. These early models were intended

to be disposable, and the different criteria applying to them implied

that BCPL was more suitable than Minimal.

The main pay-off from using a low-level implementation language

is, of course, increased efficiency. lhis is particularly important

in the construction of an interpreter, owing to the amount of time

spent in the runtime interpretive routines. Also, the degree to which

the flow of control can be specified permits the ITC interpr~ting

cycle to be efficiently implemented, using the branch indirect

instruction. Such a control construct is not supplied in higlrlevel

languages, although the effect can be simulated in various ways (most

conveniently if procedure or label variable are permitted) with a loss

of efficiency.

The preceding remarks would apply equally to any low-level

implementation language; the following are specific to Minimal.

Firstly, the simplicity of the underlying virtual machine makes

writing code simple and means that the programmer ;s freed from a

concern with bit-level tricks to improve efficiency; this in turn

makes the code more comprehensible and more stable. On the other

hand, Minimal is unduly restrictive about statement formats, use of

literals and program form. Some of the effects of these restrictions

were alleviated by the use of special-purpose editors for the typing

in of the source. A more serious defect arises from the mechanism

supplied for handling errors: the opcode ERR and ERB cause a transfer

100

of control to the t!!Q! section with an error code in WA. This

mechanism is superficially attractive, allowing the error handling to

be grouped in one place, and it also supports a way of providing a

file of error messages which the translator produces from the Minimal

source, but the only information supplied to the error section is the

error number - the action to be taken has to be deduced from this

alone. There is no indication of where the error occurred, so control

cannot be returned directly there. The net effect resembles an

uncontrolled jump, the inadvisability of which is now well-known. An

elaborate and obscure (even to Minimal implementors) mechanism for

saving and restoring subroutine linkage information had to be

developed when Minimal was designed, to permit cleaning up after ~n

error. The result of all this in Setl-s is that the handling of

errors is crude and complicated, relying on the setting of global

flags and a strict division of error numbers corresponding to

different types of error. At this stage it is obvious that a wiser

course would have been to ignore the ERR/ERB mechanism (except,

perhaps, as a panic response to system errors) and use ordinary

procedures to deal with error situations.

5.2 THE INTERPRETER

5.2.1 The Interpretive Scheme.

In Chapter 1, implementation strategies for high Level Languages

were discussed in general terms; the arguments presented there can

now be related to the Setl-s system, by considering the alternatives

to the use of indirect threaded code.

101

Consider first the use of hard code. The main advantage of this

is th~ ·increased execution speed obtainable by using instructions

wired into the machine's hardware. To perform the set operations

found in Setl programs, long complex sequences of the sort of

instruction presently available would be required, leading to

unacceptably bulky programs. This would be compounded by the need to

generate type-checking code. Hard code is inherently

machine-dependent and some form of bootstrap would be required to move

a Setl compiler between machines. Also, in order to produce

acceptable code making the best possible use of available hardware

features, sophisticated optimisation techniques would be required,

which l-!Ould slow dmm compilation. In an environment where production

programs were run many times, this would be offset by the ability to

preserve compiled programs in an executable binary form. However, the

Setl language seems best suited to applications such as algorithm

development, wher~ rauch time would be spent modifying and re-compiling

programs.

To reduce the compiled code to an acceptable size various

compromises between hard code and interpretation might be attempted.

The most obvious of these involves providing a library of runtime

routines to perform, for example, the set operations. The compiler

would then generate hard code inline for simple operations, such as

integer arithmetic, and subroutine calls to these system routines for

the more complex ones. Thus, the code would be more compact, but an

additional overhead would be introduced by the subroutine call and

return. Bell's threaded code scheme CBEL73J uses a different form of

control flow to achieve a similar effect, with a reduced overhead.

102

Although the name 'indirect threaded code' is derived from this

scheme, the diff~rences between the two are greater than their

similarities. In threaded code, actual sequences of target code,

linked by a threading mechanism are generated by the compiler. The

equivalent of a codeword points directly to the entry point of a

routine, but the routine does not receive an argument analogous to the

pointer in XR, so separate routines have to be generated, for example,

to load each variable onto the stack. The same routine can be used

every time a particular variable is loaded, though, so there may be a

considerable saving of space over the use of a compiler producing

inline hard code. Nevertheless, threaded code is more bulky than

ITC's single copies of system routines, despite the extra indirect

pointer required by ITC, and again is not machine-independent.

For producing a portable Setl system, especially if it is desired

to run on small machines, the arguments in favour of using some form

of interpretive code are very great. It is not feasible to interpret

programs written in Setl directly from the source, so a compiler of

some sort is necessary to produce a lower level representation of the

program to be interpreted.

Of the several other interpretive schemes described in 1.3, the

use of a virtual machine with a conventional register architecture can

be dismissed for this application, because Setl op~rations are not

suitable for evaluation using registers and because such schemes use a

code format in which certain fields of a word have special

significance, which presents problems if a system is to be implemented

on a variety of machines. Translation of Setl operations to sequences

of lower level virtual machine code is not feasible, because the

decoding overhead imposed in the interpreter will be unacceptable.

103

It would seem that a reverse Polish interpretive code of some

description is the only practical choice for an efficient

implementation of Setl. Any encoding of tt1e reverse Polish which

depends on word size is ruled out, since portability is a mair. design

objective. By insisting that operator~ can be distinguished from

operands, by a rule such as that imposing a threshold on pointer

values which is already present in Setl-s (see 2.3.3) the elements of

a Polish string can be fitted into address-sized objects. The

advantage of ITC over such a scheme comes from the low decoding

overhead. A more conventional interr,reter will have a main

interpretive loop, which repeatedly fetches the next instructi~n,

performs a switch on its value and then calls the corresponding system

routine. By embedding pointers to the routines in the code, an ITC

based system short-circuits this process, thereby gaining greater

efficiency. Coupled with the flexibility of the interpretive approach

and the compact, portable nature of the interpretive code, this makes

ITC an attractive method of implementation for this application.

ITC would seem to be equally attractive for implementing any

language with high level data types which can conveniently be

represented as blocks on a heap. In order to obtain the maximum

efficiency it is necessary that the interpreter be coded in a

low-level language, so the necessary indirect branches can be made,

but the flexibility of the format, resulting from the way in which the

threading cycle passes arguments to the system routines,can be

·--

obtained at any level.

5.2.2 Miscellaneous Topics

This section brings together several noteworthy features of the

interpreter.

The way in which codeblocks are generated in the dynamic area of

memory so that they can be garLage collected once the code has become

unreachable is a pleasing side-effect of the code format. Related

schemes, such as throwaway compiling [BR076J as well as requiring a

quite elaborate mechanism for jumps must allow for the possibility

that code may have to be re-compiled. This means that the compiler

has to be available at runtime. On the other hand, the effectiveness

of the Setl-s approach as a space-saving mechanism is dependent on

stylistic features of the Setl program being executed: a

tree-structured program will benefit the most from the effect, a

program such as the following, though, will gain no benefit at all.

Program lupe;
Init done:= FALSE;
Loop

Until done
Do

{long sequence of calculations}

End Loop;
End;

If function-valued variables were allowed in Setl, the effect would be

much less useful, since some symbol table entry would always point to

the code for a function, which could never be recovered. At present,

though, this feature promises to be of more use than it was in

Spitbol, where the absence of control structures leads to the use of

many labels, each of which permanently anchors part of the code.

The implementation of type checking for polymorphic operators is

a further demonstration of the flexibility of ITC; of particular note

is the way in which two more or less separate operator application

schemes (APPLn and APPXn) can co-exist, with the code generation being

unaffected. The more unusual version of the type checking is the one

which uses the APPLn mechanism. This is only economically feasible

for heavily overloaded operators, but for them it provides totally

secure type checking. There are resemblances between this scheme and

the capability approach to protection in operating systems [NW74J.

Every object of a particular type possesses a 'capability' in the

shape of the entry point identification associated with the block

action routine which defines its type. It is only through the EPI

that the object can, as it were, gain access to the operator routines

associated with that type. Such a mechanism might have a further

application in an extensible language system based on the notion of

abstract data type, since operator overloading is one way of providing

an adequate syntax for specifying the operators on user-defined types.

In Setl-s, the capabilities are associated with R-values and the type

checking is performed at runtime. However, they could just as easily

be associated, by declarations, with L-values (in practical terms,

this would mean setting appropriate routines into VRBLKs) and the

selection of appropriate operations could be done by the compiler, by

using a routine resembling APPLn to select the correct codeword to

generate or to detect a type incompatibility.

106

Perhaps surprisingly, there is little to be said about the data

structures and algorithms chosen to implement Setl's high l~vel data

types. Since set-like operations underlie a wide variety of

algorithms, techniques for their implementation are well known (see,

for example [AHU74J). Similarly well-known are the techniques for

associative data storage needed for maps. The details of the Setl-s

data structures are, to a large extent, determined by the garbage

collector as described in Chupter 3. Undoubtedly, some of the fine

details could have been subject to ruore analysis which might have

altered some design decisions, but any such analysis would have

depended on knowledge of the frequPncy of the particular set

operations in typical Setl programs, and on the answers to such

questions as: how frequent are deletions tram sets? are multi-valued

maps more or less common than single-valued ones?- are set operations

often performed on maps? Since no Setl implementation is widely

available there is no sample of Setl programs from which to derive

such knowledge. Consequently, strategies have been adopted which,

experience shows, are most likely to be generally acceptable

compromises between the various factors likely to affect the system's

performance.

The problem of copying on assignment deserves a final mention.

The example of the primes program in 5.1.1 demonstrates that always

copying values is not a feasible approach, since the copying imposes a

considerable overhead which should be avoided wherever possible. In

general, it is a very difficult problem to determine at compile time

whether a value is modified. The usual alternative approach is to use

reference counts. The simplest version of this involves having a

107

flag, which is clear when the object is created and becomes set once

there is a pointer to it. If an object to be assigned or added to a

set has this flag set, then it has to be copied. Given the

restrictions imposed by Minimal and by the garbage collector such a

flag would have to occupy a whole word, which is a significant space

overhead. (An attempt to modi1y the block action field to provide a

variation on such a scheme, described in [CM79J was abandoned, because

it proved more useful to have this field as a unique type identifier.)

A more sophisticat~d approach allows more than one pointer to a block,

with the reference count actually being used to count them. In this

way, a copy is not made until absolutely necessary, but in practice,

keeping the counts correct turned out to be terribly complicated and

error-prone, so the present compromise solution was adopted. Although

it can lead to the production of blocks which are strictly

unnecessary, this solution is safe.

Since the interpretive routines produce new atomic values as the

result of operations on such values, there is no harm in having shared

pointers to them. This fact is already exploited in the way in which

the copying routines do not, in fact, copy atomic blocks. A further

space-saving economy could be made, to take advantage of the fact that

multiple copies of integers and strings might arise in the course of

execution of a program. It should be possible to add an extra pass to

the garbage collector, in which all pointers to a specific atomic

value would be reset to point to just one block, producing an

'ultimate' compacting garbage collector.

108

5.3 THE COMPILER

5.3.1 Implementation Of The Parser.

The LRC1) parsers described in, for example, [AJ74J differ from

Setl-s in the parsing actions they perform and the tabular

representation of the parser employed, even though the parsing

algorithm is the same. In such parsers, the parsing action lookahead

is not distinguished, instead the lookahead token is used in every

state to determine the action to be performed. The !hif! action

absorbs the lookahead token and selects a successor state by

consulting the parser tables; the successor state and symbol are

stacked and the successor is entered. The r~2!:!£~ action does not

absorb the lookahead token. The stack is popped the requisite number

of times, and a successor state is determined according to the

combination of subject symbol for the production being applied and the

state now on top of the stack. Thus, the effort of prefixing the

non-terminal to the input stream is avoided. Often, the parser is

represented by a pair of tables: a 'parsing action' table has entries

giving the parsing action Ce.g shift and enter state 111, reduce by

production 94) for each combination of current state and lookahead

token; a •goto• table gives the successor state for each combination

of current state and non-terminal and is consulted after each

reduction. If the states are allocated numbers and these tables are

kept as matrices, a very fast lookup is possible. In practice, the

size of the tables rules out this representation. (Assuming each

table entry can be condensed into a single machine word, the space

requirement would be S•Ct+N), which is over 160,000 for Setl-s.)

tU7

Consequently, sparse matrix techniques are employed, which leads to a

representation similar to that used in Setl-s (see [AJ74J for

details).

By changing the format of RSBLKs to include pairs of entries

giving the successor state to each current state exposed by the

reduction, it would be possible to remove all the norr-terminal

transitions from the CFSM (becc:iuse 1his is a deterministic machine

[DER69J) and re-define the !f2~f£ c1rtion in Setl-s to be the same as

that in the tabulur LRC1) parsers. lhis would entail extra work in

the parser generator, and would affect the number of identical states

which could be merged by the optimiser (sec 5.3.2) so that the space

occupied might actually increase even though the non-termir.als would

no longer appear explicitly in the RSBLK. Any possible increase in

speed does not seem to warrant the effort; after all, although a

great deal of attention has been devoted to it in the past, parsing

only occupies a small amount of the time spent in compilation.

Furthermore, the shift of the non-terminal provides a very neat way

for the semantic routines to pass partly-built trees around and avoids

the need to use a second stack for this purpose, such as Yacc, for

example, requires.

A more significant advantage of the tabular representation comes

from its not duplicating the information in lookahead states, as

Setl-s inevitably does. However, the only way to avoid this is to

abandon the idea of having a unique parsing action in every state; if

the parsing action is to be identified by an indirect pointer the

overhead of having such a pointer for every table entry would be

11 LI

unacceptable, and any compromise scheme whereby special case were

identified would introduce complications and inelegance. The only

viable way of using this approach would be to use a totally

conventional parse table representation, with the actions encoded into

bits in the table entries. Portability considerations forbid packing

extra bits into a word which already holds an address-sized object, so

it would be necessary to give numbers to the states and decode the

entries. Considerations similar to those given in 5.2.1 demonstrate

the advantages of the present scliehle for this application. This is

not surprising, since a table-dr·iven parser can usefully be looked at

as a simple interpreter.

The main advantage, and much o1 the novelty, of the indirect

pointer representation of the parser comes from being able to call the

garbage collector to remove the parsing data-structure thereby

providing a form of overlay within the context of the normal space

allocation scheme. Jn Setl-s, this enables the system to reclaim

about 10,000 words of storage; when this space is returned to the

operating system, the primes program, obtaining its own minimal

workspace, executes in 17+20 pages (instead of 36+20). The necessity

of setting up the parser first is nicely dealt with by the SYSXI call,

although as explained this may cause portability problems.

5.3.2 Semantic Actions And Code Generation.

An attractive idea which has been pursued by many workers is to

automate the production of the translation phase of the compiler as

well as the parser. It would seem that interpretive systems are

111

particularly amenable to this sort of treatment, since the code to be

produced is closely related to the source language, and the

translation does not have to take account of peculiarities of machine

architecture. The most attractive method is that of 'syntax-directed

transduction•, first investigated by Lewis and Stearns [LS68J, in

which 'transduction elements' indicating the translator output to be

produced are appended to the productions of the grammar. Each

production has two right parts then, and provided that each occurrence

of a non-terminal in the right part of the original production has a

corresponding occurrence in th~ transduction element, it is possible

to ~erform 'parallel derivations• tor the two right parts, rewriting

corresponding non-terminals at each step. A simQle Polish

stntax-directed transduction of a grammar is one in which the

non-terminals of a production appear in the same order in both right

parts, with the non-terminals to the left of any terminals in the

transduction element. Lewis and Stearns show that: 'Any translation

performed by a (deterministic) pushdown [automaton] can be effectively

described as a simple Polish SD translation on an LR(k) grammar.•

Clearly, the translation from infix to postfix notation can be so

described.

It is open to question whether a DPDA is sufficient to perform

the translation from Setl into the Polish ITC. In order to satisfy

the simple Polish condition for the transduction, substantial

manipulation of the Setl-s grammar would be required, which tends to

upset the SLRC1) condition required by the parser generator. An early

attempt to use such a scheme in Setl-s was, therefore, rapidly

abandoned in favour of the present approach of building a parse-tree

112

and generating code from it by a recursive tree walk. The translation

into the tree is so trivial that more work would be involved in

automating it than in writing and modifying it by hand.

Alternative schemes for embodying translations and semantic

actions into the grammar for processing by the parser-generator

involve the specification of actions to be performed at each

reduction. These c.::m be specified either in some pseudo programming

languaye which is translated by the parser-generator, or else in the

parser implementation language, in which case the actions are

incorporated into the parser with the parser-generating systtm taking

care of certain book-keeping operations. This approach Leads to a

critical interdependence between the parser and the parser-generator,

which undermines the usefulness of both. For example, in Yacc

[JOH78J, the ~emantic actions are written in the programming language

C and the parser produced is a C program. Thus, any compiler which

uses Yacc must be written in C.

5.3.3 Parser Generation.

LR parsing has become widely accepted, owing to its speed and

early error detecting capability and the ease with which parsers can

be generated automatically. Its main advantage over the LLCk) methods

is that no restrictions, such as forbidding left recursion or null

right parts, are imposed on the grammars from which the parsers are

generated. It was thought desirable to use some parser generating

method for Setl-s because during the system's early development the

definition of the Setl language was changing constantly, and

re-generating parsers from a modified grammar was thought preferable

to cont~nually modifying a hand-built parser.

The SLR(1), LALR(1) and LR(1) methods define increasingly Large

classes of 9!sIDID2I~ (using values of k>1 does not significantly

increase the class [HOR76J), but all produce recognisers for the same

class of languages: the deterministic languages. The difference

between the parser generating olgorithms is in the way in which they

compute Lookahead sets. Since no parser gen~rator was availa~Le at

Leeds it was necessary to construct one in a short time, so the SLRC1)

algorithm was chosen, as it is significantly simpler than the otl1ers.

lt has turned out that a certain amount of re-writing of the grammar

has been required leading to some awkward-looking productions, before

Setl-s could be made to satisfy the SLRC1) condition, and finally some

purely syntactic restrictions have had to be imposed semantically. By

examining the output from Slrgen, it is possible to see that some of

this awkwardness could have been avoided if a more powerful

constructor algorithm had been employed. The objections to an

awkwardness in the grammar are not merely aesthetic, since the

productions are used to direct the tree building and a corresponding

awkwardness results in the tree building routine. To a large extent,

the design of the Setl syntax is at fault, with too many features

being packed in with no regard for the overall pattern, but Setl is by

no means unique in this respect.

Further improvements could be made to Slrgen to make it into a

more useful tool. It is possible to modify the constructor algorithm

so that it will accept regular expressions in the input grammar, which

114

would be more convenient and could lead to smaller parsers. The

Slropt phase could also be improved: as a consequence of the parser

representation chosen, the 'single reductions' which are successors to

successors to lookahead states (i.e. those which are originally

zuccessors to inadequate states) cannot be removed without a

substantial computational effort, which so far has not been considered

worthwhile, since over 96% of the single reductions do get eliminated.

Unfortunately, the remaining few arise irom the grammar of

expressions, and consequently, as a trace of the parse shows, the

parser spends much of its time on them.

Figure 5.2 gives a breakdown of the states oi the parser, and

demonstrates the effect of the optimisations. The figures for the

single reductions refer to the number of transitions into single

reduction states. Although no duplicate lookahead sets are found with

this grammar, in previous versions this optimisation has had some

effect. (Slropt only makes a single pass through the parser merging

duplicates; this and subsequent operations might produce further

duplicates, so the process should be iterated.) The figures are for

the grammar used during system development, without any error

productions; the production grammar will probably be smaller, since

certain features in the original design have been dropped.

Figure 5.2 Parser states and optimisations

Grammar

no of productions

no of terminals

no of non-terminals

total no of symbols

Parser States

shift

reduce

Lookahead

total

242

69

119

188

545

257

72

874

(2 inadequate states resolved by ha11d)

Optimisations

duplicate states merged 90

duplicate sets merged 0

single reductions eliminated 1262

single reductions left 48

115

Notice that it is possible to alter the generating algorithm and

add these extra optimisations and, as long as the PCX format is

retained, the parser itself need not be altered. Equally, the PCX can

be manipulated to produce tables for any LR parser. In cases where it

is not possible to save a core image and memory is freely available it

would be possible to generate Minimal declarations so that a

non-collectable parser could be built in the working storage section.

On the other hand a BCPL program or Fortran data statements might be

generated to suit the requirements of completely different compilers.

The processing required to transform the PCX in this way is relatively

116

straightforward.

5.4 FURTHER WORK

5.4.1 Improvement

Setl~s could be used as a working system with the addition of

some simple operators, tl1e completion of the error recovery scheme and

a certain amount of tidying up, to prevent, for example, the use of an

unimplemented feature causing chaos. I would estimate that, under

favourable conditions, this work could be done in less than a

fortnight. Significant improvements to tl,e system could, however, be

made, most of which have already been mentioned in passing. Perhaps

most important is the syntax error handling. On the one hand, a

careful design of error productions to ~e added to the grammar could

be carried out, in an effort to establish the right balance between

specificity and accuracy of error messages. If too many error

productions are used to produce highly specific error messages the

grammar will inevitably become ambiguous, and arbitrary parsing

decisions will have to made (equivalent to guessing what was meant)

which might produce misleading error messages. On the other hand, a

scheme to make use of local context information to catch such simple

but elusive errors as omitted semi-colons could be added.

The other area for improvement is optimisation. First some of

the interpreter's code could be optimised, an example being the string

building operation mentioned in 5.1.1. Secondly, some of the code

sequences generated could be improved. Finally, a more far-reaching

project would be to make use of the flow information in the code to

perform more sophisticated optimisations.

5.4.2 Additions.

117

The most pressing additional requirement is for a proper system

of input and output. At present, these can only be performed to

standard channels, established at compile-time, unless a crude ad hoe

method of re-defining file associations which is DE.C-10 dependent is

used. Read is still improperly implementell. There should be no

particular difficulty in adapting Spitbol's i-c, routines, although

some modifications will be required to deal with the particular

external representations used in Sell.

Another feature which could be added from Spitbol is the Trace

facility (described in [DM77J). The ITC format permits easy trace

association of variables, and Snobol4 programmers have found the

tracing facilities of considerable value. No facilities exist in Setl

for specifying tracing, so it would be necessary to design the

semantics of this. It might also be helpful to provide a symbolic

dumping facility.

Several improvements to the parser generating system were

suggested in 5.3.4. To produce a significant improvement in this

system, the present version which was simply designed as an

implementation tool for Setl-s could be re-written to incorporate the

recently published efficient LALRC1) constructor algorithm [DP79). It

might also be worth investigating the use of precedence and

associativity declarations, as used in Yacc, to produce a smaller

parser from an ambiguous grammar.

118

119

CHAPTER 6

INDIRECT THREADED CODE AND SEMANTICS

6.1 PROGRAMMING LANGUAGE SEMANTICS

6.1.1 Mathematical Semantics

An interpreter is concerned with the semantic aspects of a

programming language. The way in which a particular interpreter

implements a language can only be described precisely if there is a

precise means of describing the semantics of the language. The most

appropriate description for this purpose is provided by the method

known as denotational semantics, or mathematical semantics, which is

associated primarily with the work of Scott and Strachey. Axiomatic

semantics, although suitable for use in proofs about the behaviour of

programs, cannot easily be related to implementations. Operational

methods are equally unsuitable for the present purpose; by defining a

Language in terms of an abstract interpreter, operational descriptions

do not provide a basis for the description of another interpreter. At

best, a similar description of the second interpreter could be

compared with the first, but methods of interpretation can vary

considerably, so that such comparisons become difficult and obscure,

and by concentrating on the details of the interpreters obscure the

role of the Language. Furthermore, neither interpreter can claim to

120

be canonical. More insight can be gained by defining the interpreter

in terms of the abstract meaning of the language, as given by its

denotational description. The operational description obtained in

this way will be directly related to the semantics of the Language,

and can be used to illuminate the internal workings of the

implementation and possibly to prove its correctness.

A denotational description of a language comprises a set of

valuatiQD§, which are functions mapping constructs of the Language

into their meaning in appropriate mathematical domains. A useful

introduction to the denotational approach to semantic description is

given in [T£N76] which summarises t~e work described in earlier papers

[SS71, STR73, SW74]. The mathematical basis for the use of higher

order functions and reflexive domains is given in [SC076]. The

description of implementation techniques in terms of valuations which

map program texts into transformations on stacks and stores was first

presented in [MIL74J; the most comprehensive description of the

subject appears in the book by Milne and Strachey CMS76].

The presentation of semantic descriptions in this chapter uses

conventions which are commonly adopted, although the restricted

character set available for printing has necessitated some departures

from the most usual notations. A set of ~yntactic EQIDsiD~ is defined,

which group together syntactic features of a language with common

semantic properties; an example of this is the domain Com of

commands. Each syntactic domain has an associated meta-variable,

designated by an upper-case Roman letter. The syntax is presented in

an idealised (or abstract) iorm as a set of BNF-Like productions

121

involving the syntactic meta-variables, possibly with subscripts or

primes. The syntax is usually ambiguous and informal (for example,

the ellipsis ••• is often used instead of recursion) being intended

only to convey the essential structural features of the language, and

not to provide the detailed information required for parsing. The

idealised syntax may be thought of as describing nodes of the parse

tree produced aHer a conventional syntax analysis.

The semantic domains are designated by a single upper-case

letter. They are built up by combining some basic domains using the

operators+ (sum) x (product) and-> (which forms the space of

continuous functions between its two operand domains). The references

just cited should be consulted for the-precise technical meaning of

these operators. The valuations take their first argument from some

syntactic domain and may take other, semantic, arguments. Each

valuation is specified by a set of equations, one for each clause in

the syntactic definition for the relevant syntactic domain.

Valuations are designated by capital letters with underlines, since

the more usual script letters are not available. The syntactic

arguments appear on the left hand side; the right hand side is

written in A-notation, using standard conventions for associativity

and the added convention that A.X.J.y.F is abbreviated to 4Xy.F. The

arguments in these A-expressions are lower-case Greek letters, each of

which is associated with a particular semantic domain (the

associations are largely arbitrary, depending mainly on the

availability of particular Greek letters). It is therefore possible

to deduce immediately from the equations the domains of their

arguments. The notation & : I> indicates that 6 is a proper member of

I (.. C.

D.

A member of a product domain D0xo1 is written <oo, 61 >. Extended

products D0xD1x ••• D
0

are permitted, giving rise to sequences

<o0, 6,,•••6n>. Three operators are defined for manipulating

sequences:

<oo, 61,··-6n>im = 6n~1

<oo, &,, ••• &n>tm = <om+1···on>

<r.o, 61r••·0,ls<lim+1····6n> = <00· .. 0n>

providing the arguments are all in range. # gives the number of

elements in a sequence: 11<& 0 •••• • l\? = n+1. The domain of ~equences

of finite length taken from a domain D is written

* D = {<>}+D+DxO+DxDx~+ •••

6.1.2 Standard Semantics Of X10

Figure 6.1 gives the standard semantics of a simple language

known as X10, which has been designed to illu~trate the ideas of this

chapter. The meaning of X10 program~ is here built up from abstract

objects which are independent of the particular representations which

might be used inside a computer, and which therefore give no

information about how the language is to be implemented. The standard

semantics is thus an appropriate standard with which to compare an

actual implementation.

The intention of most of the clauses in the grammar should be

apparent. Expressions, which return a value, are distinguished in X10

from statements, which do not. Expressions can be formed using

Figure 6.1 Standard Semantics of X10

Syntactic Domains

B : Bas
0 : Mon
w Dya
I Ide
E : Exp
C : Com

Abstract Syntax

E : : = 0 E E
0

W E
1 -

C : : ==- COCI I := E

While E Do C

Semantic Domains

a : L
T = {tt, ff}

B
ll : V = B + T + undef
e: : E = 8 + T + L
p : u = lde ->L

A
e C = S ->A
T : K = E -> C
a : s = L ->V

Valuations

~ Bas.->K->C
Q Mon -> K -> E -> C
tl Dy a -> K -> E -> E -> C
.5 : Exp ->U ->K ->C
,b : I de -> U -> K -> C
~ : Com -> U -> C -> C

bases
monadic operators
dyadic operators
identifiers
expressions
commands

B 1

locations

basic values
stored values
expressed values
environments
answers
command continuations
expression continuations
stores

123

s[0 El = Apy •El[El p(QI[o] y)

.5[E
0

'W Ell = Apy • .5[E0 l P 0..£' .f[Ell p C>..t' e" -!1[Wl ye' c"))

.5[Bl = Apy .~[Bl "f

.5[Il = Apy.Cp[Il)Crvy)

b[Il = Apy.yCpO:: Il)

£[COcll = ApB.£1[Colp(£[cl] pB)

£[I :=El =).p8 • .5[E] ph.F.'•b[I] p<, .. c ... assignBe'c"))

_&[EO -> CO El -> Cl • . • En -> en] =

ApB • .5[E
0

J ptest<£U: c
0

1 pB, .5[E
1

l ptest<f[c
1
] pB,

.5[En l ptest<£[en l pB, 0> ••• >

C[While E Do Cl=
- J..p8.fixC>.,8' •El[E] f>test<£[C] pB', 8>)

Auxiliary Functions

test =).<8', 8">~.~ET -> Cfl IT -> 8', 8 11
), wrong

assign =).0c' c"a.BCupda te(c' I L) c "a)

update= >..apa.CAa'.Ca' =a>-> p,aa'>

rv = Ayta.cEL -> CaCcfL) = undef -> wronga, yCaCelL))a, yta

124

125

inl'ixed dyadic operators and monadic operators from identifiers and an

unspecified set of bases, which ~ight include the numerals and some

representation of the truth values true and false. Typing is dynamic

and there are no declarations; nor are there any procedures, as these

would introduce complications which are tangEntial to the present

discussion. The language is imperative, and it includes a simple form

of assignment. Conditional flow of control is provided by a

multi-armed conditional, shown as the third clause of the definition

of c, in which each of the E. is evaluated in turn until one of them
].

yields true, when the corresponding c. is executed. The while loop
].

behaves in the conventional fasliion. Additional syntactic. details are

contained in the grammar in Appendix 2, which was used by Slrgen to

generate an X10 parser.

The semantic domains include a domain of basic values B which

corresponds to the syntactic bases, and includes the objects

manipulated by the program; its structure will not be examined. The

truth values have been distinguished from the basic values because of

the way in which they are used in tests. The meaning of an identifier

will be taken to be a location, and the environment p : U provides the

mapping from identifiers to the locations they denote. In addition, a

function from locations to their contents is required; this is the

store ff. There is no reason why S should not be taken as Ide->V in

this example, as locations cannot be shared and there is no way in

which the location denoted by an identifier can be altered, but it is

more customary to make the store and environment separate, and later

on the presence of locations will be useful. The domain of stored

values includes an undefined value undef which is the initial contents

of all locations. The values of all expressions will always be

coerced into R-values, hence no valuation Bis required.

1£.0

The remaining domains are the continuation domains, the use of

which was first described in [SW74J. Continuations are required to

provide a satisfactory account of transfers of control, resulting from

jumps or the occurrence of certain sorts of error. It is possible to

describe a language which does not permit unrestricted jumps without

using continuations, but this makes the handling of errors very

awkward. Later, when the ITC implPmentation of X10 is described,

continuations will play an important part, so it is worthwhile

reviewing their use.

Early versions of mathematical semantics gave the meaning of a

command C, f[CJI, as a transformation from states (or stores) to

states. Thus, if C were executed in an environment p and state a, the

resulting state would be a•=£[C] pa. To express the meaning of c0c1,

that is of executing first c0 then c1, one would therefore write

,&[C0c1 l pa = £[c1]pC~_[c0] pa) which signifies the transformation

corresponding to c1 being applied to the store resulting from the

execution of c0 in the original store. Unfortunately, this is not

adequate, since the execution of c0 may result in an error trap or may

never terminate, in whi eh case f[c0c1 JI pa should be equal to fU: c0] pa.

The solution to this consists in defining a domain of 'answers' A,

which contains, among other things, the results of erroneous

computations. The meaning of a command is now a transformation from S

to A; .such a transformation is called a continuation, and the domain

of continuations C = s->A, with 8 being a typical member. In order to

127

accomodate sequencing, the valuation for a command is given a

continuation as an extra ar·"')1..1ment. This continuation models the

execution of the rest of the program (and presumably yields a final

outcome). In the normal course of events, the continuation is applied

to the store resulting from the execution of the command, to give the

final outcome. If, however, a jump or an error occurs the

continuation is thrown away. Ar. is cu5tomary, the arguments are

supplied to the valuation one at a time, so that f.: Com->U->C->S->A,

which is Com->U->C->C, and the equation for the sequential execution

of two command becomes f.[c0c1] pe = £[c0D p(.Q.R c1] pS). A pleasing

side-effect of this notation is that when semantic equations oi this

sort are read from the left to right, the components are read in their

order of execution.

.
The execution of an expression may also fail to terminate or may

result in an error, so continuations must be supplied to the

valuations for expressions as well. An expression yields a result as

well as a possibly altered store (expressions in general being allowed

to have side-effects), so that the functionality of expression

continuations has to be E->S->A which is E->C. The domain of

expression continuations is signified by K, with y as a typical

member, and the valuation~ is taken in Exp->U->K->C. It should be

clear how continuations are used in the other valuations in figure

6.1; if it is not, the reader is referred to section 1.5 of [MS76J.

One particular continuation of practical importance is wrong : S->A,

which is applied when an error occurs.

128

6.2 INDIRECT THREADED CODE

6.2.1 The Semantic Domains

The ITC produced from an X10 program in a realistic

implementation will consist of a series of codewords, each of which

points to a block whose first word points to the entry point of a

system routine. An abstract description of this code need not be

concerned with these pointers, wl,ich are only necessary to accomodate

the organisation of n~mory in a computer. lnsteed, the code can be

considered as a sequence of blocks, each of which is a pair whose

first component is a routine and whose second component is drawn from

a suitable domain of block values. This domain of block values, H,

will include all the stored values from the standard semantics and

also locations, since one sort of block must resemble a VRBLK. In

addition, H must include sequences of codewords, since the domain of

blocks includes codeblocks. This leads to the following collection of

domains:

V

M = XxH

* w : W = M

~ : H = V+L+W

storable values

blocks

code sequences

block values

The fact that M* is embedded in M may look suspicious at first, but the

use of such self-referencing domain equations can be justified on

technical grounds, provided that certain restrictions on the domain

structure are observed C[MS76J gives the full details).

129

The functions in X (of which t is a typical ~ember) take a member

of Has an·argument and produce a state transformation, so it might

seem that X = H->S->S. However, since the execution oft might cause an

error or never terminate, considerations similar to those of 6.1.2

suggest that the second argument to t should be some sort of

continuation, rather than a store. In order to eliminate the

distinction between expressions and commands, and to make explicit

more of the implementation, a domain of stacks Y is introduced, where

* Y = V, that is, a stack is a sequence of storable values. The domain

of command continuations C is defined to be S->A as before. The

continuations appropriate to codewords receive a stack as an

additional argument, much as expression continuations received an

expressed value. Therefore, a dcimain of 'pure continuations' is

defined: Z = Y->C. It is then appropriate to write X = H->Z->Z.

6.2.2 Block Action Routines

A typical member of X is the routine to load an integer value

onto the stack, which could be defined as:

The structure of the domains which have been described shows the

important feature of ITC: the state transformations are embedded in

the blocks, along with the values being operated on. Thus, although

the code is interpretive, no interpreter need be defined, except for

the mechanism to apply the block action routines which form the first

components of the blocks to the values which form their second

components.
I

130

What is required is a function lcw (load codeword) which takes as

its operands a code sequence (in W) and a code pointer (offstt), and

applies the function part of the corresponding block to its value; it

must also supply it with a continuation which will execute the next

codeword so that the indirect threading cycle will continue. A

recursive definition is:

lcw = A.Ci>n .c.1hr+ 1 C.,,hl 2) C lc'tl) Cn+1))

Technically, it is the least fixed point of this equation wh·ich is

needed:

lcw = A<,m .fix"-~· ((l)hf+ 1 fo1hr~ 2Hr,c,i C:n ➔ 1)))

The appropriate function to use as the first component of a codeblock

is thus:

go = AT\6,: .lcw (11 I W) 11:

The continuation 6 is discarded and control passes through the

codewords of the codeblock, in sequence via a threading process. The

continuation lcw(A)n 'remembers• the current code pointer and codeblock,

so that these need not appear explicitly in the continuation domains.

This does necessitate the adoption of a different implementation of

conditional jumping from that used in Setl-s. A conditional jump

consists of a block whose body is the destination of the jump, and

whose first component is the routine jt ,defined by:

j t = >..116,: • C't' i 1 ET-> C,: -1 1-> 1 cw 6) I W) Hi:: t 1) , 6 C,:-t 1)), wrong)

If the top stack item is a truth value and is true the continuation&

(carrying on with the old codeblock) is discarded and execution of the

body of the jump begins, otherwise the old code block is continued.

This precludes the possibility of merging back after the conditional

part has been executed but, as will be seen, the abstract model will

131

never require this.

There remains the implementation of operators to be considered.

It will be recalled that in macro Spitbol an operator is represented

in the generated code by an indirect pointer to the routine to perform

the operation. The corre~ponding abstract representation would be a

block with a null second component. An example of the operator

routines in such a scheme is given by the following routine to perform

integer addition:

intplus = i..Tt6't. Ci..fl
1

• (p
1

IBEN/\p
2

IBEN->

oC<~
1

4p
2

>§'tt2), wrong)) C'ti1)'ti2)

No use is made of the argument 11-

In Setl-s, however, another implementation of operators has been

adopted, to cater for the additional polymorphism. A typical dyadic

* operator would be a pair <appl2, ~>where~: P was a sequence of

functions in Z->Z which would perform the indicated operations on the

top two stack items, and

appl2 = >..T}f>'t. (11 i Ctype ('t i 2)))o't

where type : V->N will return an integer code for the value,

corresponding to its type. The continuation 6 has to be passed on to

.the evaluating routine as this may fail to terminate properly, owing

to overflow for example.

6.2.3 A Translator For X10

To model the operation of an X10 interpreter, X10 programs have

to be translated into code sequences of the sort just described.

132

Figure 6.2 shows a suitable translator. The equations of figure 6.2

bear a close resemblance to those of figure 6.1. They may be

interpreted (in the non-technical sense) in either of two ways. The

code sequences produced might legitimately be considered as the

meaning of the program as they are composed from sequences of state

transformations. In this interpretation, the equations in figure 6.2

provide an alternative definition of the semantics of the language,

albeit not a very useful one. {However, see 3.5.4 of [MlL74J, in

which a domain of answers consisting of state transformations is

suggested as a possible means of supplying distinct meanings to

separate unending computations.) Alternatively, the code sequences can

be thought of as an interpreter for the program, which can be sent

through the state transformatio~s to yield a final outcome. The

second view is more suited to providing an understanding of ITC as an

interpretive method.

The essential difference between ITC and more conventional

interpretive schemes, both practical and abstract, is that the

translation only involves semantic domains: no new syntactic entities

such as abstract machine instructions have been introduced, so there

is no need to add an extra level of definition to describe the

interpreter itself. In an actual implementation, this feature of the

code is responsible for increased efficiency, as no decoding

corresponding to this extra level of definition is required.

The valuations provide a straightforward translation into a

stack-based implementation. The extra argument supplied to f

resembles a command,continuation in that it represents the rest of the

Figure 6.2 The X10 Translator

Syntactic Domains

B Bas
O: Mon
W: Dya
I Ide
E: Exp
C Com

Abstract Syntax

E ::== 0 E

Whi.lP E Do C

Semantic Domains

a. : L

13
e :
p :

e
T
a :
,:

6 . .
11
w :
1l :
I; :

T = {tt, ff}
8
V = B + T + undef
E = B + T + L
u = Ide ->L
A
C = S ->A
K = E ->C
s = L ->V
y = v*
z = y -> C
M = ~JH w =
H = V+L+W
X = H ->Z -> Z

Valuations

~ Bas ->K -> C
2 : Mon -> K -> E -> C

~ Dy a -> K -> E -> E -> C

I . Exp ->U ->K -> C .
.b . Ide ->U ->K -> C .
.t : Com -> U -> C -> C

B

bases
monadic operators
dyadic operators
idcntif iers
expressions
commands

I

Locations

basic values
stored values
expressed values
environments
answers
command continuations
expression continuations
stores
stacks
pure continuations
blocks
code sequences
block values
block action routines

133

~[O E]:: 1'.p-~[E] piQ[O]

,!;[Eo w·E1] = Ap•E[Eo] p§[[El] p§~[W]

f[B] = Xp-~t BJi

b[I]= Ap.<p[J]) ,2, p[I] '3>

£[co cl l = >..pw.£[co] p §£[cl] p §lll

£[I := El= >..pw-k[El p§b[1] r§w

£[EO -> CO El -> Cl En -> en] =

>..pw.5[E
0

] p§

<jt, <£[c
0
1 pw>>§~r E

1
] p§<jt, < •••

•• E[E] §<J·t, C[C] pla)>> ••• >§Cl)
- n - n

£[While E do Cl=

134

135

program; it is necessary in order to translate the jumps resulting

from condi~ionals and loops. There is no need to supply any analogue

of an expression continuation to E since an expression in X10 cannot

involve jumps, and the possibility of an improper termination is

handled by the continuations in Z embedded in the blocks. The

denotations of identifiers are taken in XxXxV, the members of which

resemble VRBLKs in having two routines in them. band g build blocks

in M from these. This method seems rather contrived, and it might be

better to have an assignment operator, which would generalise more

readily to more complex forms of assignment. However, the use of

something resembling VRULKs helps to emphasise the links between this

abstract interpreter and the actual implementation.

6.2.4 Relation To Standard Semantics

It may appear that the description of indirect threaded code just

given differs from an implementation in a high level language merely

in the notation used, so it is worth emphasising that the entities

involved in the description belong to a class of mathematical objects

with well understood properties, which makes it possible to prove

theorems about their behaviour. In particular, it is possible to

prove that an abstract ITC-based interpreter in fact implements the

language which is described by the standard semantics. In practice,

such a proof would be tong and tedious, so an outline of the reasons

for believing it possible is all that will be given here.

136

In essence, the ITC description makes explicit the series of

state transformations which the execution of the X10 program

undergoes, by keeping the block actions in X separate from their

arguments in H. By applying the functions to their arguments a

function in Z->Z results. Thus, there is a straightforward

relationship between the members oi W(=[XxHJ*> and members of [Z->ZJ*.

Equally, the sequences in this domain can be composed to produce

values in the dom~in [Z->ZJ. That is to say, members of W can be

mapped into [Z->ZJ by successive appt-ication of the two functions:

A = AW •).. <t , 11 > • (#t,, = 1 -> ~ 11 >, <~ 'I) >§ A (eu t1)) (u> J. 1)

S =)..tl,.tlr, = 1 ->(tz!l1)&, S(~11)(~l1)&

* where 12! : [Z-> ZJ •

(Actually, A and Sare the least fixed points of these equations.) But

[Z->ZJ is essentially the domain oi 'pure code' belonging to store

semantics and stack semantics, which are two well-established sorts of

semantics, developed in [MIL74J for describing implementations and

implementation-dependent language features. (since the environment in

X10 is a constant the difference between the two is immaterial). It

is therefore possible to set up predicates relating the ITC valuations

for X10 to its stack semantics, which express the requirement that the

'answer' embedded in the ITC be the same as that in the stack

semantics. The equivalence of the two sorts of semantics can be shown

by a structural induction on the clauses of the valuations, although

since A and S depend on the length of the sequences some induction on

their length will also be required. An appeal can then be made to the

proof in [MS76J of the congruence between stack and store semantics

and standard semantics.

137

Since the proof contemplated here rests on the properties of the

retracts associated with the semantic domains, it leads into an area

of mathematics which is a substantial subject of study in its own

right. Furthermore, it necessitates the setting up of a stack

semantics for X10 as the intermediate step in the proof, which adds

nothing to the understanding of ITC. Therefore an appenl will be made

to the reader's intuition (or good will) and the relationship between

the theoretical desr.riptions of this chapter and the nature of actual

implementations will be taken up instead.

6.3 REALISATION OF THE X10 SYSTEM

6.3.1 The Introduction Of Pointers

The equations of Figure 6.2 embody the interpretive scheme of

indirect threaded code, but they are a long way removed from any

actual implementation. The codewords in the abstract description are

members of a domain built out of abstract function spaces; the

codewords generated on a computer are bit patterns representing

machine addresses. The model of the store which has been adopted

makes it possible to incorporate this feature in the abstract model by

making the code sequences be in L* instead of M*, and adding the

appropriate indirection to the definition of lcw. This modification

also permits the removal of fix from the equation for the While-loop,

because, as is intuitively obvious, the effect of taking the fixed

point of the recursive definition is achieved by building a code

sequence which includes a pointer to the head of itself. This

introduces the need for the function go intrcduced in 6.3.2 as

138

unconditional control transfers are now required. In order to model

the translation int0 such a form of code, the valuations would require

a mechanism for performing operations analogous to the setting and

referencing of labels; this is probably best achieved by

incorporating an element into the environment to record the address of

the head of the loop.

The locations pointed at by the codewords cannot contain the pair

<t, 'I>, since the former is a mr:-mlier of an abstract space and the

latter may be a structured object or may not fit into a machine word.

The blocks then must be represented by two locations, one contai11ing a

pointer to a piece of code, the other containing a pointPr to the

value. The simple optimisation of placing the locations hol.ding the

value next to the pointer to the code (assuming that store is arranged

contiguously) leads to the representation used in Setl-s and

macro-Spitbol for values. A similar approach leads to the VRBLK

representation of variables.

In a suitable programming language, it is possible to make use of

higher order functions in the implementation language to provide such

functions as lcw, if the parameter passing mechanism is appropriate.

Few languages provide this facility so a further modification is

required before the semantic equations can be used as the basis for an

implementation. This modification is a desirable optimisation anyway,

to prevent recursion reaching an unacceptable depth; it consists of

some form of recursion removal, which, depending on the properties of

the implementation Language may best be done by replacing calls of lcw

by jumps or by placing a single-level call inside a Loop.

139

There is clearly a lot of work involved in developing such a

description of an implementation, proving its correctness, writing a

program based on it and proving that correct. It would seem that,

with the technology of formal proof methods in its present state, it

is better to use a description of the level oi that in figure 6.2 as a

basis for an implementation and to rely on informal methods to show

the correctness of the program. It is to be hoped, however, that

general rezults might he proved to show the validity of the

optimisations proposed in the preceding paragraph.

6.3.2 Interpretive Routines

The members of the domain X can be implemented as pieces of pure

code receiving an argument drawn from H. The recursion removal

required for lcw can also be applied to these routines, so that they

are entered not by an ordinary procedure call, but by some other

mechanism. Clearly, the indirect branch used in Setl-s provides a

particularly appropriate mechanism and passes the argument

automatically via the pointer left in XR. The continuation argument

is here sealed in to the code by ending all the routines with a jump

to a piece of code to perform the lcw operation. (Perhaps this would

be more clearly related to the abstract description had X been taken

as Z->H->Z instead of H->Z->Z.)

The description of an ITC-based system given so far is tacking in

one important respect: the interpretive routines themselves. The

only routines which feature in the description of X10 are jt and go

(the tatter only when pointers have been introduced) which are

140

concerned with control transfers; any other such routines will arise

from the valuations~, Q and~ which have been Left undefined.

Between them, these three valuations define what can be talked about

in the Language, whereas the others are concerned with the order in

which the operations are performed. ln [WIL68J, Wilkes pointed out a

distinction between what he called 'the inner and outer syntax' of

programming languages; in his terms, the outer syntax is concerned

with the org&nisation of the flow of control and the inner syntax is

concerned with the operations performed on data objects. Wilkes'

discussion was presented in terms of syntax, and as will be seen in

7.1, for practical purposes the syntax of a Language must be

considered when such a distinction is made. However, it is really a

semantic distinction, and, following Wilkes, I will refer to the inner

and outer semantics of a programming language. In the simple case of

X10, the outer semantics comprises g, band~ and the inner~, Q and

H; the valuations of Figure 6.1 provide a full definition of the

outer semantics, without giving any indication what it is that

programs in the language are about, which might be integers, personnel

records, polynomials or even sets. There is a parallel between the

inner semantics and the mathematical concept of an interpretation of a

system. It would be tempting to identify the inner and outer

semantics with the information extracted by an interpreter and a

compiler, mentioned in 1.1, but, as described in 1.3, the Level of the

interpretive code can be varied and different amounts of information

can be extracted by each component of the system. In a system where

the compiler is concerned exclusively with extracting outer semantic

information, however, a clean separation of concerns is permitted and

141

experience shows that this provides a suitable framework for

structuring system development. In addition, it ,dises the

possibility of plugging different inner semantics into the same syntax

and outer semantics, and U$ing the same compiler as the basis for the

implementation of a family of specialised languages.

.,,. -----

7.1 SETL-S

CHAPTER 7

THEORY AND PRACTICE

142

The previous chapter showed that it is possible to describe an

ITC-based interpretive system in a way which is related to the

language being implemented. This suggests that an examination of some

features of the semantics of Setl will provide an additional

understanding of the workings of the Setl-s system. First, it is

necessary to indicate briefly how some aspects of Setl which are not

present in X10 can be accomodated.

The most serious shortcoming of X10 is its lack of any mechanism

for defining and calling procedures; the main reason for their

omission is that the issues of parameter passing and free variable

binding require additional complications in the mathematical models,

which are not directly relevant to the description of ITC. These

issues are discussed at length in [MS76J. In standard semantics, the

value of a procedure is a member of the domain F = e*->K->C (Setl

procedures always return results). In an implementation, the

expression continuation here passed as an argument corresponds roughly

to the return link placed on the stack; the function itself can be

represented by an object resembling a closure [STR67J consisting of a

pointer to the code of the procedure, the bound variables and the

environment (in Setl this last component is restricted to the global

variables of the program). In ITC, the value part of a procedure

block would be this closure, with the block action routine being a

function to apply it to the arguments supplied by a call.

Since declarations do not play an important part in Sett they

will not be considered.

Naturally, the most important aspect of the Setl language is its

set-theoretic data types, and the associated iterative constructs.

Because sets can be formed out of other expressions, it is not

sufficient to treat them as bases to be evaluated by§, as numerals

for example might be. A domain of sets is required which will

resemble theoretical sets: a predicate in will test for membership,

and the operations of union, intersection and so on will be defined to

have their normal meanings. Expressions such as {1, 3.142, 'hello'}

suggest that sets can be formed from sequences of expressed values by

a function formset, which will be in K->e*->c (thus modelling the

evaluation of the complete list before the formation of the set); a

similar function performs the analogous operation for tuples. The

internal structure of sets need not be examined, but the fact that

t(i) can appear on the left of an assignment means that the domain of

* tuples Tp must be equal to L, with a suitable function selecting the

appropriate location. Notice, therefore, that to preserve the

semantics of assignment the function rv must take the R-value of all

the components of its argument if this is in L*.

144

To accomodate expressions such as {x: x IN sl x>43}, a syntactic

domain of formers Fmr is required, with a corresponding valuation f.

To allow for the possibility of errors occurring during the evaluation

of a former a new sort of continuation, a former continuation, is

required, which is similar to an expression continuation except that

its first argument is the partial result of evaluating the former, so

this domain is equal to e*->c. The value of a former will be a

sequence of expressed values, enabling one to write:

f[-0-")l = :>..py-f.[F] (formset 1)

So far, this is straightforward and is obviously related to the

way in i.:hich sets and tuples are formed by Setl-s. Difficulties arise

however when the question of maps is considered. One would like to

consider maps as members of E->L, but the language definition insists

that maps are just special cases of sets. This means that functions

operating on maps must first check that all members of their set

operands are in Tp and that they are of length 2; in addition, to

evaluate fCx) it is necessary to search the set for the pair whose

first component's R-value is equal to x. This is the source of the

practical difficulties discussed in 3.2.3. What the present

discussion demonstrates is that these problems arise from the language

design and not from the particular representations chosen for sets in

Setl-s.

If it is desired to keep maps as sets, a mechanism is required

for the treatment of some types as sub-types of others. Shamir and

Wadge CSW77J have proposed such a mechanism, but it is not clear how

this could be incorporated into the framework of standard semantics,

145

nor how it could be mapped into an implementation.

Loops controlled by iterators such as (For x ins) can be

described easily by providing a function to select and remove an

arbitrary element from a set and a predicate to test whether a set is

empty. In Setl-~ these two have been combined into the JNEXT

operation (see 3.4.1) but there is no particular virtue in this. The

valuation f would make use of the valuations for loops to build its

sequences. The arithmetic formers can be similarly defined in terms

of an arithmetic loop. (This raises the interesting possibility of

proving the legitimacy of the optimisation of arithmetic loops.) For

both kinds of loop, a component in the environment is required to hold

the temporary variables used. A further component will be required to

hold the continuations to be applied when the commands Quit and

Continue are obeyed.

A complete definition of the semantics of Setl would be extremely

lengthy and uninteresting, so none will be presented.

7.2 APPLICATIONS OF THE THEORY

It might be argued, quite rightly I think, that analysing an

implementation in terms of the semantics of the implemented language,

after the system has been built is doing things the wrong way round.

Unfortunately~ this situation, resulting from the circumstances of the

project's inception, is typical of the state of affairs in this

particular branch of software engineering at present, and indicates

the prevalent lack of understanding of semantic matters. This is in

146

marked contrast to the subject of syntax, which is thoroughly

understood.- As the Setl-s compiler illustrates, this understanding is

sufficiently complete to form the basis of an automatic parser

generating system.

Although there are still some unsatisfactory aspects to the

theory, denotational semantics has been shown to be a powerful tool

for describing the semantics of programming languages, and has been

successfully applied to languages as diverse as Snobol4[TEN73J,

Gedanken[TEN76J, Algol60[MOS74aJ, a superset of Pal and some features

of Algol68[MIL74J; in addition, in [MIL74,MS76J it has been shown how

the method can be used to describe features such as co-routines and

parallel processing, type checking and coercion as well as methods of

language implementation. All these applications are firmly based on

the theoretical work originating with Scott, which both provides a

clear understanding of the properties of semantic valuations and

connects them with computability theory in a way which ensures that

they provide a reasonable model of computation.

One particularly useful property of denotational semantic

descriptions is that obscure or undesirable language features require

lengthy and convoluted valuations; because of the connection between

the semantics and their implementation the semantic description will

also show up language features which are difficult to implement, as

the brief discussion of Setl-s in the preceding section will hopefully

have illustrated. It is therefore to be hoped that, in the future,

formal semantic definitions will play a more prominent role in

language design and implementation.

147

The connection between standard semantics and indirect threaded

code outlined in chapter 6 raises the possibility of a more direct use

of the semantic descriptions in the building of interpreters. Mosses

[MOS74,MOS76J has shown how to formalise the meta-language used to

define valuations so that they can be viewed as mappings converting

programs written in the defined language into programs written in the

defining language.. By combining the the valuations with an

implementation of the meta-language an implementation of the defined

language ~an be produced. Pagan [PAG79J advocates the use of a

conventional high level language as meta-language, which has an

obvious appeal, but does not guarantee the correctness of the

implementation in the way which a language such as Mosses' MSL, which

can be defined in terms of Lambda [SC076J does. Such implementations

may be expected to be very inefficient; this inefficiency can be

overcome to a certain extent by the use of optimisation techniques,

such as recursion removal, in the implementation of the meta-language.

It has been shown that a relationship exists between the standard

semantics of a language and an ITC-based semantics. Since the latter

only involves semantic information, it can, in principle at least, be

derived from the standard semantics and an account of the domains

relevant to the two sorts of semantics. By concentrating on what l

have called the outer semantics, a standard semantics could be

transformed into an ITC-based semantics which, when implemented, would

provide a code generator, producing codewords from programs written in

the source language. This could then be combined with a set of

interpretive routines implementing the inner semantics to provide an

interpreter. To produce a complete implementation, a compiler would

148

be required, since the abstract syntax which is used in the semantic

descriptions neglects many syntactic 1eatures and can best be regarded

as a description o1 the parse trees produced by a compiler.

E1ficiency considerations would seem to indicate that the interpretive

routines would have to be hand written.

The idens sketched in the preceding paragraphs adumbrate a whole

new research project; the practical difficulties encountered in 1he

building of Setl-s give some indication ot the range of problems such

a project must at tempt to deal with.

Appendix 1: Sample Setl-s Listings

SETL-S VERSION 1.6(1) - Leeds University
DSK:PRIMES.STL[10177,13J 21-Sep-1980 19:31:21

1 1 PROG prime . ,
2 1 primes := {};
3 1 (FOR p IN [2 ••• 1000])
4 1 IF NOTEXIST~ pp 1N primes I p
5 1 THEN primes \.JlTII:= p ;

REM pp= 0

6 3 lf p >= 990 TilEN PRINT(p); ENO;
7 4 [ND
8 6 END ;
9 6 END F'ROG ;

STORE USED 11895
STORE LEFT 3352
COMP ERRORS 0
REGENERATIONS 1
COMP r1,ie-MSEC 4,0

991
997

NORMAL END
IN STATEMENT
RUN TIME-f.1SEC
STMTS EXECUTED
MCSEC / STMT
REGENERATIONS

6
7260
22873
317
2

IF ;

149

PAGE 1

1 so

SETL-S VERSION 1.6 ..) - Leeds University
DSK:HEAPS.STL[1017- 13J 21-Sep-1980 19:35:04

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

1
1
1
1
1
1
1
1
1
1
1
1
1
3
4
4
4
4
6
6
8
8
8
9
10
11
12
13
13
13
13
13
13
13
14
14
14
14
15
17
18
19
21
21
21
21
23
23
23
24

PROGRAM heapsort_test;
PROC hcap_sort;

CONST
seqlen = SO, nstodo = 10;

VAR
te5tseq, sortseq, timcon;

PAGE 1

te~tseq := [01, 78, 56, 23, 17, 88, 05, 85, 65, 43,
~3, 32, 78, 90, 31, 16, 10, 54, 99, 32,
38, 55, 99, 02, 25, 07, 54, 88, 77, 66,
55, 44, 57, 78, 83, 06, 16, 12, 18, 92,
93, 54, 33, 10, 19, 20, 21, 23, 13, 10 J;

PRINTC'start of heapsort test') ; PRINT;
timeon := TlME;

(FOR i IN (1 ••• nstodoJ)
sortseq := hcap_sort(testseq, 1, seqlen) ;

END;

PRINT; PRINT;

PRINTC'sorted ', seqlen, 'items•,
nstodo, 'times in', TIME-timeon, 'ms') ;

PRINTC'unsorted sequence= •, testseq) ;
PRINT('sorted sequence = •, sortseq) ;
PRINT ;
PRINTC'end of heap sort test') ;

PROC heap_sort(tseq, lo, hi) ;
seq := tseq;
(FOR i IN [lo+1 ••• hiJ)

LOOP
INIT m := i;
WHILE

DO
m >lo/\ seq(m DIV 2) < seq(m)

mm:= m DIV 2;
temp:= seq(m) ;
seq(m) := seq(mm) ; seq(mm) :=temp;
m := mm ;

END LOOP ;
END;

(FOR seqtop IN [hi, hi-1 ••• lo+1J)
temp:= seq(lo) ;
seq(lo) := seq(seqtop) ; seq(seqtop):= temp;
LOOP
INIT m := lo ;
DOING

151

52 24 IF Cm*2+1) < seqtop /\ seq(m*2) < seq(m*2 + 1)
53 24 THEN m*2 + 1
54 24 ELSE m*2
55 24 END;
56 25 WHILE
57 25 Cm* 2) < seqtop /\ seq(m) < seq(targ)
58 25 DO
59 25
60 27
61 28
62 30 END
63 32 END ;
64 32
65 33 RETURN
66 33
67 34 ENl> Pnoc
68 34
69 34 END PROG

STORE USED 13755
STORE LEFT 1492
COMP ERRORS 0
REGENERATIONS 1
COMP TIME-MSEC 1620

;

;

start of heapsort test

temp:= seq(m) ;
seq(m) := seq(targ)
m := targ ;
LOOP;

seq ;

sorted 50items 10times in 6140ms

; seq(targ) := temp ;

unsorted sequence= [1, 78, 56, 23, 17, 88, 5, 85, 65, 43, 43
, 32, 78, 90, 31, 16, 10, 54, 99, 32, 38, 55, 99, 2, 25, 7

, 54, 88, 77, 66, 55, 44, 57, 78, 83, 6, 16, 12, 18, 92,
93, 54, 33, 10, 19, 20, 21 , 23, 13, 10J
sorted sequence = [1 , 2, 5, 6, 7, 10, 10, 10, 12, 13, 16, 1
6, 17, 18, 19, 20, 21 , 23, 23, 25, 31, 32, 32, 33, 38, 43
, 43, 44, 54, 54, 54, 55, 55, 56, 57, 65, 66, 77, 78, 78,
78, 83, 85, 88, 88, 90, 92, 93, 99, 99]

end of heap sort test

NORMAL END
IN STATEMENT 13
RUN TIME-MSEC 6520
STMTS EXECUTED 33354
MCSEC / STMT 195
REGENERATIONS 2

152

SETL-S VERS10N 1.6(1) - Leeds University
DSK:MEDIAN.STL[10177,13J 21-Sep-1980 19:35:48

1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 2
10 2
11 2
12 2
13 3
14 5
15 6
16 7
17 8
18 9
19 10
20 12
21 12
22 12
23 13
24 15
25 17
26 19
27 19
28 19
29 19
30 19
31 19
32 20
33 20
34 20
35 20
36 21
37 22
38 22
39 22
40 24
41 26
42 28
43 29
44 31
45 33
46 33
47 34
48 34
49 35

PAGE 1

PROGRAM medianfinder,
PROC kthone, min2, max2;

$ Based on the median finder from the NYU Setl test library,
S coded by Dave Shi~Ld5 from a SETLA program by H. Warren.

INIT kthonebln := 0;
PRINlC'median test');
cases := (3, 20, SOJ;

(FOR i IN [1 ••• £cases])
tim :::: TIME ;
testset :::: {1 ••• cases(i)};
PRINT ; PRINT ;
PIUNTC'case r.umber •, i, ' test set is:') ;
PRINT(testset) ;
median :::: kthoneCC£testset+1) DIV 2, testset) ;
PRINTC'the median of the test set is', median) ;
PRlNT('time taken=', TIME - tim, 1 ms');

ENI>;

PROC kthone(kparam, setparam) ;
IF setparam ={}THEN RETURN OM; END IF;
k := kparam; sett:= setparam;
kthonebln +:= 1 ; kthonebl := '' ,
(FOR i IN [0 ••• kthoneblnJ) kthonebl +:= 1

LOOP
WHILE £sett>= 3

DO
i := 2 ;
rnidpts := {};
(FOR x lN sett)

i := (i + 1) REM 3;
IF i = 0 THEN u := x,
ELSEIF i = 1 THEN V := x;
ELSEIF i = 2
THEN

IF X < V THEN cas := 1 ;
cas : = 0 ; END ;
cas +:= 2; END;

; ENI> ;

ELSE
IF u < x THEN
IF v < u THEN
midpts WITH:=

cas := 3 - cas; END,
Cu, v, xJ(cas) ;

END IF;
ENO;

PRINT(kthonebl, (£sett DIV 3) * 3) ;

median:= kthone((£midpts+1) DIV 2, midpts) ;

52 36
53 36
54 36
55 37
56 38
57 40
58 40
59 41
60 41
61 41
62 41
63 42
6't 42
65 43
66 45
67 45
68 47 ·
69 47
70 47
71 48
72 48
73 48
74 48
75 49
76 50
77 51
78 51
79 51
80 52
81 52
82 53
83 54
84 56
85 56
86 57
87 57
88 57
89 57
90 59
91 60
92 61
93 61
94 61
95 61
96 63
97 64
98 65
99 65
100 65

(FOR x IN sett)
IF x <= median
THEN smallpile WITH:= x;
ELSE bigpile WITH:= x;
END IF;

END;

PRINTCkthonebl, £sett);

IF k <= £smallpile
THEN sett := smal lpi le ;
ELSE

sett := bigpile;
k -:= lsmrtllpile;

EtJD IF ;

END LOOP;

kthonebln := IF kthonebln > 0

IF £sett = 1
THEN

THEN kthonebln - 1 ELSE O END;

IF k = 1 THEN RETURN ARB sett;
ELSE RETUl<N OM ;

ELSE
END;

IF k = 1
THEN RETURN min2(sett) ;
ELSEIF k = 2
THEN RETURN max2Csett) ,
ELSE RETURN OM;
END IF ;

END IF ;

END PROC ;

PROC min2(s);
SS := S ;

p FROM ss; q FROM ss;
RETURN IF p < q THEN p ELSE q END;

END;

PROC max2(s);
SS ;: S;

p FROM ss; q FROM ss;
RETURN IF p > q THEN p ELSE q END;

END;

END PROG;

STORE USED 14988
STORE LEFT 259
COMP ERRORS 0
REGENERATIONS 1

OMP IME-M .. C 0

153

PAGE 2

154

median test

case number 1 test set is:
{1 , 2, 3}

3
3

the median of the test set is 2
time taken= 60 ms

case number 2 test set is:
{1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16,
17, 18, 19, 20}

X9,
, 32
46,

18
6
6
3
3

19
9
20 , 21,
, 33 , 34
47, 48 ,
48

15
3
5
3
3

16
6
8
3
4

50
27

9
3
3

9
3
5

22, 23, 24, 25, 26, 27, 28, 29, 30, 31
, 35, 36, 37, 38, 39, 40, 41 , 42, 43, 44, 45,
49 , 50}

27
12

3
4

13
3
5

the median of the test set is 25
time taken= 740 ms

NORMAL END
IN STATEMENT 12
RUN TlME-MSEC 1140
STMTS EXECUTED 3991
MCSEC / STMT 285
REGENERATIONS 0

155

156

Appendix 2:· An SLRC1) Grammar for X10

<p> =
X <program> l'il ; •O* <program> =
<block> ; •1* <block> =
$(<statements> $) •2•
<statement> ; •3• <statements> =
<statements> <statement> *4*
<s t att·ment> ; *5"" <statement> =
<assignment> *6*
<if set> *7*
<while> ; *8*

<assignment> =
$name Sas!iop <exp> ; "-9* <if set> =
IF $(<choices>$) ; *10*

<choices> =
<choices> <choice> *11*
<choice> . •12• ,

<choice> =
C <exp>) -> <block> ; •13* <while> =
WHILE <exp> DO <block> . 'l.·14* ,

<exp> =
<exp> SopO <exp1> •15*
<exp1> ; *16*

<exp1> =
<exp1> $op1 <exp2> •17*
<exp2> ; •18*

<exp2> =
<exp2> Sop2 <exp3> •19•
<exp3> . •20* ,

<exp3> =
<exp3> $op3 <exp4> *21*
<exp4> . *22• ,

<exp4> =
Sop2 <bop> •23*
Suop <bop> *24*
<bop> . •25* ,

<bop> =
$name I •26*
<exp>) I *21*
$number I •28*
$string I *29*
TRUE I *30*
FALSE .. , •31*

·,

157

Bibliography

[AHU74] Aho, A.V., Hopcroft, J.E. and Ullman, J.D., The Design and

Anatxsis of Comguter Algorithms, Addison-Wesley, 1974.

[AJ74J Aho, A.V. and Johnson, S.C., 'LR Parsing' in ACM ComEuting

~Y!Y~l~, vi, no~2, June 1974, pp.99-124.

[AU77J Aho, A. V. and Ullman, J .D., Princigles of Compiler Design,

Addison-Wc~ley, 1977 ..

[BEL73J Bell, J.D .. , 'Threaded Code' in Communications Qf .!b~ ~ff!,

xvi, no.6, June 1973, pp.370-372.

[BR076J Brown, P .. J., 1 Throw-a~,ay Compiling' in Software-Practice sD2

Exgcriencc, vi, no.3, 1976, pp.423-435.

[BR079] Brown, P.J., Writing Interactive Comgi lers ~!}g lntergreters,

Wiley, 1979.

[CM79J Chapman,N. and Mccann, A.P., Setl-sL a Proposed

Imglementation of the Programming Language Setl, University

of Leeds Department of Computer Studies Technical Report

no.124, Leeds, 1979.

CDER69J DeRemer, F.L., PrsE!iE2! Translators !QI kBik) ksD9Y~9f§,

Ph.D. Thesis, MIT, 1969

[DER71J DeRemer, F.L., 'Simple LR(k) Grammars' in Communications 91

th~ ~£M, xiv, no 7, July 1971, pp.453-460

[DP79J

[DEW78J

[DEW79J

DeRemer, F.L., and Pennello, T.J., 'Efficient Computation of

LALRC1) Lookahead Sets' in f!Qf~f9iD9! of !h~ ~i9Q!!D

sxmposium on ~omojler Construction, August 1979, pp.176-187

Dewar, R.B.K., et al., 'Setl as a Tool for Generation of

Quality Software' in Hibberd and Schumann, &2D~!!Ytling

9Y!!1!I jof!~ill, North-Holland, 1978, pp.353-366

Dewar, R.B.K., The Setl Programming Language~ Manuscript,

[DM77J

(GHJ79J

[HOP69J

[HOR76]

[JOH78J

[LAN64J

[LS68J

[LW71J

(MHD76J

[McC66J

[MIL74J

158

Dewar, R.B.K. and Mccann, A.P., 'Macro Spitbol - a Snobol4

Compiler' in ~2!E:!~!£: f!!flife !nd Experience, vii,

pp.95-113

Graham, S.L., Haley, C.B. and Joy, W.N., 'Practical LR

Error Recovery• in Proceedings of the SigQlan StmQosium on

&2IDQj!er Construction, August 1979, pp.168-175

Hopgood, F.R.A., Comeiling Technigues, McDonald, 1969

Horning, J.J., 'LR Grammars and Analysers' in Bauer and

Eitkel (eds) Comeiler Construction - an Advanced Course,

Springer-Verlag, 1976, pp.85-108

Johnson, s.c., Yacc: Yet Another &2!!!Eiler-Comei!er, Bell

Laboratories Computing Science Technical Report no 32,

Bell Laboratories, 1978

Landin, P.J., 'The Mechanical Evaluation of Expressions' in

fQ!!!QY!er 4ournal, vi, 1964, pp.308-320

Lewis, P.M. and Stearns, R. E., 1 Syntax-directed Transduct ion'

in Journal of the ACM, xv, 1968, pp.465-488

Lucas, P. and Walk, K., 'On the Formal Description of

PL/1' in Annual Review in Automatic Programming, no 6,

1971, pp.105-182

Mccann, A.P., Holden, S.C., and Dewar, R.B.K., H~f!Q

seitbol - DECSistem 10 Y£r~i2D, University of Leeds

Department of Computer Studies Technical Report no 94,

1976

McCarthy, J., 1 A Formal Description of a Subset of Algol' in

T.B. Steel Ced), f2£ID!! Language DescriQtion Languages !2£

~2me~!f£ f!2B!!IDIDi!!9, 1966, pp.1 - 12

Milne, R.E.~ The f2!ID!1 ~~ID!D!i.E! Ei ~2!~Yl~! t~D9~2B£§ !DQ

Their Implementations, Ph.D. Thesis, University of

(MS76J Milne, R.E., and Strachey, C., A Theorx of Programming

Language Semantics, Chapman and Hall, 1976

CMOS74J Mosses, P.D., 'The Semantics of Semantic Equations' in

Mathematical Foundations of ComQuter Science 1974,

Springer-Verlag, 1974, pp.409-422

CMOS74aJ Mosses, P.O., Th£ ~!!bcmatical ~~mantics E1 ~!92!§Q,

Technical Monograph PRG-12, Oxford University Computing

Laboratory, 1974

(MOS76J 'Compiler Generation Using llenotational Semantics' in

Mathematical Foundations of Comeuter Science 12Z2,

Springer-Verlag, 1976, pp.436-441

159

[NW74J Needham, R.M., and Wilkes, M.V., 'Domains of Protection and

the Management of Processes• in Computer Journal, xvii,

no 2, 1974, pp.117-120

CNEE76J Neeley, P.M., 'A New Programming Discipline' in Software -

[PAG79J

f!!f!lE~ !DQ S!E~!i~DE£, vi, no 1, 1976, pp.7-27

Pagan, F.G., 'Algol68 as a Metalanguage for Denotational

Semantics' in ComEuter Journal, xxii, no 1, 1979, pp.63-66

[P0078J Poole, P.C., 'Towards Improved Reliability and Efficiency

[REY72J

Through Hybrids' in Hibberd and Schuman (eds) Constructing

Qualitx Software, North-Holland, 1978, pp.63-74

'Definitional Interpreters for Higher Order Programming

Languages• in f!2£~£9iD9~ gf lh~ i2!!:! ~£~ U!!i2D!1

&2Df~!~D££, 1972, pp.717-740

[RIC72J Richards, M., !D!£2gf = fill In!~rer~ti~i H!Ehi~ ~gg~ 12!

§£fb, Cambridge University Computing Laboratory, 1972

[SC076J Scott, D.S., 'Data Types as Lattices' in SIAM Journal on

&2!QY!i!!9, v, 1976, pp.522-587·

[SCH76J

[SS71J

CSW77J

[STR67J

CSTR73J

CSW74J

CTEN73J

CTEN76J

[WIL68J

Schwartz, J.T., Qn f!29!!IDming = fill !n!trim B£EB!! gn !ht

~£!! f!2ili!, New York University,.1976

Scott, D., and Strachey, c., Toward a Mathematical ---- - ------------

Oxford University Computing Laboratory, 1971

Shamir, A., and Wadge, W.W., 'Data Types as Objects• in

Springer-Verlag, 1977, pp.465-479

IOU

International Summer School in Computer Programming, 1967,

Unpublithed Manuscript

Technical Monograph PRG-10, Oxford University Computing

Laboratory, 1973

Strachey, c., and Wadsworth, C.P., £2D!i!JY!!i2D!: !

Monograph PRG-11, Oxford University Computing Laboratory,

1974

Tennent, R.D., 'Mathematical Semantics of Snobol4' in

Tennent, R.D., 'The Denotational Semantics of Programming

Languages• in ~!!!m!mi£!!i2D! 2! lb~ ~tl, xix, no 8, 1976,

pp.437-453

Wilkes, M.V., 'The Inner and Outer Syntax of Programing

Languages' in comput~r J0!:!£0!1, xi, 1968, pp.260-263

	Abstract
	Contents
	List of figures
	1. Interpreters
	2. Introduction to Setl-s
	3. The Setl-s interpreter
	4. The Setl-s compiler
	5. Discussion of Setl-s
	6. Indirect threaded code and semantics
	7. Theory and practice
	Appendix 1: Sample Setl-s listings
	Appendix 2: An SLR(1) grammar for X10
	Bibliography

