
IBM

Student Text

APL\1130 Primer

Student Text

APL\1130 Primer

ACKNOWLEDGEMENTS

This Primer was written by Paul Berry of the IBM
Research Division, T. J. Watson Research Center, York·town
Heights, New York; it was adapted for use with the IBM 1130
from another APL Primer by the same author. The basic text
benefitted greatly from the suggestions, criticisms, and
comments of the readers of the various early drafts, and
especially those of A. D. Falkoff, K. E. Iverson, J. C.
McPherson, L. M. Breed, and R. H. Lathwell. The adaptation
for the APL\1130 System was assisted by S. M. Raucher of the
IBM Data Processing Division, Wheaton, Maryland, and Miss C.
A. Conroy, who ran the sample problems at the 1130 console.

NOTICE

This text is distributed by IBM as a service to users
of the 1130 computing system and to those who are interested
in the APL language. Publication of this text does not imply
support of the APL\1130 program; that program is a
contributed program, distributed but not maintained by IBM.
It is not part of the IBM product line, and has not been
subject to product testing. Recipients of the APL\1130
program are expected to make their own final evaluation of
its usefulness.

This text
which were not
distributed in
use of labels
and passwords
numbers.

contains description of certain features
provided in the original APL\1130 program

February, 1968. These features include the
(Chapter 13), common libraries (Chapter 15),
for the locking of works paces and sign-on

Copies of this and other IBM publications can be obtained through IBM branch
offices. Address comments concerning the contents of this publication to:
IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

(0 International Business Machines Corporation 1968

j i

CON TEN T S
===============

PART I

1: INTRODUCTION 1

vvhy an APL Primer? 1
lihat Is a Computer Program? 2
What Is a Programming Language? 3
Power, Relevance, and Simplicity 3
How to Read This Primer 4

2: COMMUNICATING WI'I'H THE COMPUTER 5

The APL Typeface 5
What Equipment Do You Need? 6
Getting Started 6
Getting Started From the Console 6
Getting Started From a Terminal 7
Whose Turn to Type? 8
Distinguishing Who Typed What 9
Fixing Typing Errors as You Go 9
Overstrikes Not Allowed 9
Visual Fideli ty 10
Interrupting the Computer 10

3: BASIC OPERATIONS IN ARITHMETIC 11

The Workspace 11
The Two Modes of Operation: Execution vs. Definition 11
Addition, Subtraction, Multiplication, and Division 12
The Idea of a Variable 13
Storing or Printing the Result of a Calculation 13
Using the Stored Value of a Variable 14
possible Names for Variables 15
Storing a Result Under a Name

that Has Already Been Used 15
Referring to a Variable Which Has No Value 16
Examples of Arithmetic with Variables 16

4: HORE ARITHMETIC OPERATIONS 19

Negation
Reciprocals
Monadic and Dyadic Operators
Raising to a Power (Exponentiation)
Taking a Root
Haximum: Taking the -Larger... of Two Numbers
Minimum: Taking the Smaller of Two Numbers
The Floor and the Ceiling of a Number
Rounding to the Nearest Integer
Summary of Arithmetic Operators Mentioned Thus Far

19
19
19
20
20
21
22
23
24
24

iii

5: SEVERAL OPERATIONS IN THE SAME INSTRUCTION

Order in Which Operations Get Executed in APL
Use of Parentheses
Rewriting the Earlier Examples

With Several Operations in the Same Instruction
Do You HAVE to Write Many Operations

in A Single APL Instruction?

6: ENTERING THE DEFINITION OF A PROGRAM
SO THAT IT CAN BE USED REPEATEDLY

Starting the Definition
Focal Length of a Lens: A Simple Calculation

to Illustrate Program Definition
Sample Use of the Program Just Defined
Another Sample Program:

Efficiency of a Diesel Engine
Writing the DIESEL Program in a Single Line
An Instruction in One Program Can Call

for the Execution of Another Program

7: DISPLAYING OR CHANGING THE PROGRAM
AFTER YOU'VE DEFINED IT

Adding Another Line
Replacing a Line
Displaying What Is Already on a Line
Displaying the Whole Stored Definition
Inserting a Line Between Lines That Are

Already Defined
Deleting a Line of the Definition
Deleting a Program Entirely from Your Workspace
Deleting a Variable from Your Workspace

8: REPRESENTING NUMBERS

Deci.mal Form
Exponential Form
Negative Numbers
Negative Numbers in Exponential Form
Very Small Numbers
Precision of Numbers
Number Display
~~ich Form Does the Computer Use?

9: TESTING THE TRUTH OF A RELATIONSHIP

Example of Test for Equal
Example: The Sign Function
How Close is Equal?

25

25
27

29

30

31

31

32
34

35
36

37

39

39
40
40
42

42
44
45
45

47

47
48
49
49
S,O
50
50
51

53

54
55
55

iv

10: MORE OPERATIONS IN ARITHMETIC

Absolute Value
Residue and Remainder
Powers of the Natural Constant e
Logarithms
Natural Logarithms
Antilogs
Logical Operations
Logical Or
Logical And
Exclusive OR
Not: Logical Negation

57

57
57
58
59
60
60
60
61
61
62
63

11: CONTROLLING THE SEQUENCE IN WHICH
THE LINES OF A PROGRAM ARE EXECUTED 65

"Ordinary" Order of Execution 65
Branches 65
Branching Out of a Program 66
Computed Branches 66
The Factorial: An Example of a Program With a Branch 67
Program Loops 68
The Roots of a Quadratic: Another Example

of a Program With a Conditional Branch Out 68
Branch or Continue 69
The Factorial Again: An Improved Version Using

Two Branch Instructions 71

12: ARRM~GING THE WAY THE PROGRAM TYPES ITS OUTPUT 75

Printing Text 75
Results and Heading Appearing on the Same Line 78

13: LINE LABELS FOR EASIER BRANCHING 79

14: WHAT TO DO WHEN THE PROGRAM STOPS 81

Halt When an Instruction in Your Program
Can't Be Executed 81

A Program Error Doesn't Mean That Execution is AllOver 82
Resuming Execution 83
Where Was Work Suspended? 84
Area of a Segment of a Circle: Illustrating Procedure

for Correcting a Mistake in a Program 84
Tracing the Execution of a Program 86
Trace Can Be Controlled by the Program Itself 87

v

15: SYSTEM COMMANDS 89

Distinguishing System Commands from Other Intructions 89
Signing On 89
Signing Off 90
Establishing a Sign-On Password 90
Saving a Workspace 90
Getting Back a Saved Workspace 91
Getting a List of the Workspaces You Have Saved 92
Dropping a Workspace from Your Library 92
Loading a Workspace from a Common Library 93
Loading a.Workspace From the Private

Library of Another User 93
Revising a Workspace You've Saved 93
Loading a Workspace and then Saving it

Under a Different Name 94
Clearing the Active Workspace 94
Diagram Summarizing Information Flow Between You,

Your Active Workspace, and Saved Workspaces 94

PART II

16: VECTORS: PARALLEL PROCESSING OF THE ELEMENTS
OF ARRAYS 97

Entering a Vector of Numbers 97
Parallel Processing of Vectors 98
Using Parallel Processing In Some of the

Problems Introduced Earlier 99
Vectors Must Have Matching Lengths 99
Extending a Single Number To Match the

Length of a Vector 100
Parallel Processing Requires All The Elements

To Be Treated in the Same Way 102
Adjusting a Formula to Facilitate Work With Vectors 103
A Vector in a Branch Instruction 104

17: "REDUCING" A VECTOR: APPLYING THE SA:rJ!...E OPERATION
TO ALL THE ELEMENTS 105

Summation 105
Product 106
Maximum Reduction: Looking for the Largest 106
Minimum Reduction: Looking for the Smallest 107
OR Reduction: Looking for "Any" 107
AND Reduction: Looking for "All" 108
Example Using the Sum of Products:

Price Times Quantity Ordered 109
The Area Under a Curve 109

vi

18: GENERATING ARRAYS AND FINDING THEIR DIMENSIONS III

Generating an Array by Restructuring III
Vectors of Literal Characters 112
An Array Can Have Zero Length 113
Generating Consecutive Integers 113
Finding Out How Long a Vector Is 114
~vhat is the Length of a Single Number? 116
Another Example Using Parallel Processing of Vectors:

The Correlation Coefficient 117

19: SELECTING PARTICULAR ELEMENTS FROM AN ARRAY
BY USING INDEX Nill1BERS 119

Respecifying Certain Elements Within an Array 119
The Index Numbers May Result From an Expression 120
Indexing an Expression 120
Indexing by an Empty Vector of Indices 121
Indexing a Matrix 121

20: FINDING THE INDEX NUMBERS THAT LOCATE
PARTICULAR ELEMENTS WITHIN A VECTOR 123

Finding Several Indices at Once 123
Indexing Works Just as Well for Arrays

of Literal Characters 124
Looking for the Index Number of a Value

that Isn't There 125
The Index for a Value That Occurs at

Several Locations in the Vector 126
An Example Using Iota to Find Index Numbers:

Evaluating Hexadecimal Representations 126

21: CATENATION: BUILDING A VECTOR
BY CHAINING ITEMS TOGETHER 129

Building a Vector of Results by Catenating
the Latest Result to the Earlier Ones 131

Example Using Catenation: Accumulating Primes 131
Making Any Variable Into a Vector 133
Maximum Length of Vectors 133
Inserting New Elements Between

Existing Elements of a Vector 133
Building Pascal's Triangle:

An Example Using Catenation 135

22: LOOPS 137

Exit From a Loop 137
Leading Decisions 138
Standard Procedure for Writing a Loop with a Counter 139
An Iterative Program to Print an Interest Table 140

vii

Alignment of Output in Columns 141
Interest Table with Output as a Matrix 141
Interest Table with Fixed Format on Each Line 142
A Footnote: The PRINT Program 144
Repaying the Bank 145
An Iterative Program for Finding Prime Factors 146

23: COMPRESSION: SELECTING SOME ELEMENTS FROM A VECTOR
AND OMITTING OTHERS 149

Tests of the Truth of a Relationship Provide
the Zeroes and Ones Needed to Control Compresssion 150

Example: Compression and the Sieve of Eratosthenes 151
Another Program Using Catenation and Compression:

Sorting the Elements of a Vector 154
A Useful Variant of the Sorting Program 155
Why the Branch-or-Continue Instruction

Includes a Compression 157

24: THE PROGRAM ASKS FOR INPUT, GETS IT,
AND THEN PROCEEDS 159

Example of Input to a Program:
Crystal Lattice Problem 160

Input as Literal Characters 162

25: DEFINED FUNCTIONS THAT HAVE ARGUMENTS AND RESULTS 167

The Idea of a Function 167
The Arguments and the Result of a Function 167
Programs as the Definitions of Functions 168
The Definition of a Function That Takes

an Argument and Returns a Result 170
GCD: A Simple Function of Two Arguments 171
Six Possible Forms for a Function Header 171
What Happens When the Computer Executes a Function

with Arguments or a Result 172
A Simple Function of Two Arguments:

Area of a Segment of a Circle 173
Another Example with Two Arguments:

Converting Pounds to Dollars 175
Compound Expressions Using Defined Functions:

Another Approach to the Correlation Coefficient 176

viii

Variables that are Local to the
Execution of a Function 179

Global vs. Local Variables 179
Displaying the Value of a Local Variable 180
Additional Local Variables Other Than

the Arguments or Result 180
A Mystification to Avoid 180
Editing the Definition of a Function

That Has Arguments, a Result, or Local Variables 181
Spaces Separate a Function from its Arguments 181

APPENDIX A: NOTES ABOUT WHAT HASN'T BEEN MENTIONED 183

Base Value and Representation 183
Factorial 184
Combinations Qperator 184
Residue Function With Non-Integral Left Argument 184
Nor and Nand 184
Operations on Arrays 185
Indexing of Arrays 185
Matrix Products 186
Generalized Matrix Product 186
Outer Product 186
Transposition of a Matrix 187
Reversal of an Array 187
Rotation of an Array
Compressing a Matrix 189
Expansion of an Array 190
Characteristic (or Set Membership) Operator 191
Random Number Generation 192
Library Functions 192
Locking a Function 193
Locking a Workspace 193

APPENDIX B: TABLE OF SYSTEM COMMANDS 195

APPENDIX C: TABLE OF APL OPERATORS

Standard Scalar Operators
Generalized Matrix Operations
Generalized Reduction
Compression and Expansion
Other Operators
Symbols Having Special Functions

197

197
198
199
199
199
200

ix

APPENDIX D: TRIALS AND ERRORS

Forms of Error Messages
Errors Are Described

from the Computer's Point of View
Resend (Transmission Error)
Character Error
Value Error
Domain Error
Syntax Error
Rank Error
Length Error
Edi ting Error
Label Error
WS Full Error
Nonce Error
System Error

APPENDIX E: EQUIPMENT YOU NEED TO USE APL\1130

Working at the 1130 Console
The 2741 Terminal
Coupling to the Transmission Line

INDEX

201

201

202
203
203
203
204
204
205
205
205
206
206
207
207

209

209
210
213

215

PART I

1: INTRODUCTION

Why an APL Primer?

The APL\1130 System puts an advanced computing system
within the reach of a wide range of users. APL\1130 is
distinguished from earlier systems of this type by its speed
and power, and by the radical simplicity of the instructions
which control it. This combination makes APL well suited not
only to the advanced scientific or technical user, but also
to the occasional user and to the user with little or no
previous experience with computers.

This primer is intended to provide an introduction to
the APL\1130 System and to the APL programming language. It
will show you the mechanics of using the system, and how to
write effective programs to cover a wide range of
applications. It explains in detail many points which the
experienced user will find obvious--and you may therefore
prefer to skip some portions.

Because this is a primer, little use will be made of a
number of the more advanced features of the system; the
primer doesn't describe all of the operations available, and
mentions only a few of the specialized applications that are
possible using APL. However, even at this rather elementary
level, you will already have at your command all you will
need for a wide range of uses--and frequently more than was
available even to the experienced users of earlier systems.
If you subsequently go on to more advanced material, you
will learn ways in which the programs included in this
primer could have been made neater or simpler or more
general. But that is beyond the scope of a primer. Complete
definitions of all of the operations in the APL language and
all of the features of the APL\1130 System may be found in
the APL\1130 Manual. Here we are concerned with providing
you with a basic orientation to the way the system is used,
and arming you with the fundamental skills needed to make
APL work effectively for you.

The letters APL designate the programming language that
is the outgrowth of the work of K. E. Iverson, first at
Harvard and then at IBM. The name comes from the initials of
his book A Programming Language (New York: Wiley, 1962).
APL\1130 is the computing system which uses this language on
the IBM 1130 computer.

2

What Is a Computer Program?

A program is a set of instructions that tell a computer
how to do something. A computer has to work from coded
instructions which are usually stored inside it. When you
want a job done, you must tell the computer precisely what
you want it to do; no instructions, no work. The word
"program" has been used in this sense only since the advent
of the computer. But the underlying idea of a set of precise
instructions that are to be carried out literally and in
sequence is older and more familiar. A cook book is an
obvious example of an attempt to summarize, in order, those
things that the cook must do in order to produce an
unfamiliar dish. What is different about a computer program
is the speed with which the computer can carry out its
instructions, and the literal faithfulness with which the
computer follows what it is told.

Sometimes the literalness of the computer requires you
to be more precise than you would be if you were simply
giving directions to a friend. If the instruction you give a
computer can be carried out, the computer will carry it out,
regardless of whether it is what you really had in mind. So
you have to be careful to state your instructions in a way
that correctly describes what you want. If the instruction
is wrongly spelled, or otherwise impossible to accept as
stated, the computer will stop and report what you
instructed it and why it cannot proceed. Human beings might
hazard a guess at what you meant by an incorrect
instruction, but the computer doesn't.

The computer has to be able to understand the
instructions you give it. Computers do not understand
English; although they may be programmed to recognize a
handful of English words, the natural language is too rich,
too complex, and too ambiguous for them. Moreover, English
is ill-suited to describe many of the things that you might
want to ask a computer to do. Calculations can be described
far more neatly, clearly, and briefly by the symbols of
arithmetic. That is why we describe a calculation by a
formula rather than in English words.

The designers of the traditional notations of
arithmetic and algebra did not foresee all of the things you
might want to ask a computer to do, and hence arithmetic and
algebra do not contain all the symbols that are needed. This
makes it necessary to have a special language for writing

3

programs of computer instructions. That language is more
extensive than conventional arithmetic, but much more
restricted and precise than natural English. The language in
which the computer is prepared to accept its instructions is
its programming language.

vihat Is a Programming Language?

A programming language is the language in which you
(the user) tell the computer what it must do. Most of this
primer is concerned with APL, the programming language of
the APL\1130 System. A set of instructions written in APL
can also be carried out by any person who knows the
language: they don't have to be executed by a machine. A
programming language is thus a way of stating a procedure,
regardless of who or what actually executes the procedure.

Inside the hardware of the computer, all of its
instructions and all of the data it works with are encoded
as patterns of electronic pulses. This is the electronic
language internal to the machine. You don't need to know
anything about this language in order to use the computer.
All of your communication with the computer will be in APL.
The computer will then translate that into instructions in
its own internal language, and then execute them.
Internally, the machine works by carrying out only one very
small and very simple step at a time. One APL instruction
that you type may easily start a sequence of hundreds or
even thousands of machine instructions before the work is
completed. But these are executed so rapidly that the
machine completes several thousand a second. The machine
sets up its internal instructions in response to the brief
instructions that you type in APL; you need never be
concerned wi th the internal operation of the computer.

Power, Relevance, and Simplicity
In a Programming Language

A programming language should be relevant. That is, you
should have to write only what is logically necessary to
specify the job you want done. This may seem an obvious
point, but many of the earlier programming languages forced
the user to be concerned as much with the internal
requirements of the machine as with his own statement of his
problem. APL\1130 takes care of those internal
considerations automatically.

4

A programming language needs both power and simplicity.
By power, we mean the ability to handle large or complicated
tasks. By simplicity, we mean the ability to state what must
be done briefly and neatly, in a way that is easy to read
and easy to write. You might think that power and simplicity
are competing requirements, so that if you have one you
can't have the other, but that is not so. Simplicity does
not mean that the computer is confined to doing simple
tasks, but that the user has a simple way to write his
instructions to the computer. The power of APL as a
programming language comes in part from its simplicity; it
is this simplicity that makes it simultaneously well suited
to the beginner and to the advanced user.

How to Read This Primer

If this is your first introduction to the use of
APL\1130, after you've glanced through the primer to get a
general impression of its contents, it would probably be
wise to sit down at an APL\1130 computer or terminal with
the book beside you. Then you should tryout the
calculations and programs in the text. Add variations or
explorations of your own; that's one of the advantages of a
conversational system: it's so easy to experiment. See for
yourself how the system responds to your instructions.

After this early stage, you will probably find it more
useful to come back to various passages as the need for them
arises; the table of contents and the index should help you
find what you need.

The two most distinctive and valuable characteristics
of t:he APL language are the way it treats arrays, and the
way it permits you to use a program as you would use a
mathematical function. Neither of these topics is mentioned
at all in Part I of the primer, since it seemed desirable to
lay a foundation of familiarity with other matters before
getting to them. But if you already feel familiar with these
topics and with their treatment in programming systems, you
may wish to look ahead to Chapter 16, where the treatment of
arrays is introduced, and to Chapter 25, where we take up
programs that can be used as functions. The examples in all
the earlier chapters may then be understood as applying also
to arrays of data, and could be written so that they behave
like functions.

5

2: COMMUNICATING WITH THE COMPUTER

This chapter deals with some practical aspects of using
APL on the 1130 computer. If you are about to start work at
the keyboard for yourself, this chapter logically precedes
the ones that describe the APL language and the way in which
you carry out calculations in it. But if your interest is
primarily in the APL language, you may wish to skip this
chapter now, and return to it when you are ready to use APL.

The APL Typeface

The APL typing element provides both a full upper-case
alphabet and the special symbols used in the APL programming
language but not found on an ordinary office typewriter. The
APL typeface was chosen so as to end confusion between the
letter 0 and the number 0, or between the letter I and the
number 1, or between the letter X and the sign that means
multiplication. Three different styles of lettering
distinguish letters, numerals, and operation signs, as
follows:

Alphabetics: * always capitalized
* always italic
* always condensed (higher than wide)
* always with serifs

ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z

Numerals: * always upright
* always condensed

1 234 5 6 7 8 9 0

operators: * not condensed
* upright (except for Greek letters)

+ - x f L r T ~ V A = ~ < > 1++ 1 pEa w

This typeface makes it quite clear whether any character is
a letter, a numeral, or an operator sign. For instance, the
phrase that indicates "the letter 0 times the letter X plus
the letter I minus ten" can be typed

OxX+I-l0

which leaves no doubt about which are the Let t.e r s , which the
numerals, and which the operator signs.

6

What Equipment Do You Need?

There are two ways to use APL\1130. You can use it at
the console of the 1130 computer itself, or (provided the
1130 has the necessary attachments) you can use it from a
remote terminal. A terminal is a special kind of typewriter
which can be connected to the computer so as to serve as a
sort of remote control for the computer while you are using
APL. If you elect to work from a terminal, you need an IBM
2741 terminal, and the means to connect it to the line
leading to the computer. This is often done by using the
telephone lines; in that case, you need a data telephone or
coupler to connect the terminal to the telephone line. Then
when you need to use your terminal, you connect it to the
IBM 1130 computer by dialling its telephone number. These
questions of equipment are treated in more detail in
Appendix E.

You need an APL typing element so that your typewriter
(whether the one built in to the computer console or the one
in your remote terminal) can type with the APL character
seto Appendix E contains a chart showing the APL characters
as they are arranged on the keyboard of a terminal and as
they are arranged on the console keyboard.

In order to start work, either from the console or from
a terminal, you need an APL user number by which the System
identifies you and signs you on.

Getting Started

You may be using APL\1130 directly from the computer
console, or you may be using it from a terminal some
dis·tance away. What you do to get started depends upon which
you are using. Read whichever of the next two sections
applies to your situation.

Getting Started from the Console

When APL is already running but no user is signed on,
the console keyboard will be unlocked, ready to accept your
sign on. You type a right parenthesis (NB: that's an APL
right parenthesis; some other typing elements may have the
right parenthesis in a different location) followed by your
user number. If a password is required, after your number
you must type a colon and the password. You enter your sign
on by pressing the carrier return key.

7

The computer acknowledges your sign on, and you are
ready to start work.

If APL is not running on the 1130 computer, it will be
necessary to start it. The procedure for starting the APL
System is not covered in this primer. Don't attempt to start
APL without a qualified machine operator.

Getting Started from a Terminal

If you are using APL\1130 from a terminal, you proceed
as follows:

1. Turn on the typewriter power. Set the switch on
the left side of the 2741 typewriter to COM (for
"conununicate") rather than to LCL (which stands
for "local").

2. Depress the TALK button on the data telephone, and
dial the number of the APL\1130 computer.

3. When you hear a high-pitched tone, press the DATA
button firmly and release it. Once DATA is
pressed, you may cradle the telephone.

4. Type your sign-on.

When the connection to the computer is established, the
keyboard will be unlocked, and you may type your sign-on.
This is a right parenthesis followed by your user number and
password (if any). When the computer receives your sign-on
command, it acknowledges by typing your name and the system
identification. Until your sign-on is accepted, you cannot
do any other work. Here is a sample sign-on:

)4000000
PCBERRY SIGNED ON

A P L \ 1 1 3 0

Once your sign-on has been acknowledged, you are ready to
begin work. Most of the rest of the primer is devoted to
explaining the kinds of calculations you can perform and
programs you can write. The balance of this chapter deals
with the mechanics of typing your instructions to the
computer.

8

Whose Turn to Type?

You and the computer can't both type on the same
typewri ter at the same time. You have to take turns. You can
type only when the keyboard is unlocked, whereas the
computer can type only when the keyboard is locked. While it
is the computer's turn to type, the keyboard remains locked,
and you can't type anything.

When you complete the typing of an instruction, you
have to let the computer know that you have finished. The
carrier-return key serves to enter the instruction: that is,
to signal the computer that you have finished typing, and
that it should start interpreting and executing the
instruction you have typed. When you hit the carrier-return
key, three things happen:

1. The carrier returns to the left margin and the
paper is moved up by one line.

2. The keyboard is locked.

3. The computer receives the signal that your message
is complete.

Locking the keyboard serves two purposes: it keeps you
from typing any more until the computer is ready for you,
and it keeps the typewriter available for the computer's
response to you. The computer never starts work on your
instruction until it receives the signal that you have
finished typing. Since that signal is the carrier return,
each message you type must fit on a single line. But
instructions in APL ,are so concise that you will rarely need
as much as a whole line for an instruction.

As soon as the computer completes work on the
instruction you typed, it does these three things:

1. Prints the result (if called for) and moves the
paper up one line;

2. Indents by six spaces;

3. Unlocks the
instruction.

keyboard to awai t your next

9

Distinguishing Who Typed What

The paper in your typewriter will contain a complete
record of your dialogue with the computer. When you read it,
it is important to be able to tell who typed what. Because
the computer makes the carrier space over by six spaces
before the keyboard is unlocked, everything you type will
ordinarily appear indented by six spaces, whereas what the
computer types will ordinarily start at the left margin.

If you're working directly at the 1130 console, and if
your console typewriter has a two-color ribbon, what you
type will be in red while what the computer types will be in
black.

Fixing Typing Errors as You Go

If before you press the carrier return you notice a
mistake in what you have typed, you have a chance to correct
it before the computer starts to execute your instruction.
You can do that in the following way:

1. Backspace to the position of
character that is in error.

2. Press the ATTN key.

the leftmost

When you do this, the computer types an inverted caret
under the character in error, and spaces the paper up an­
additional line. Now that character and everything appearing
to the right of it are considered "erased." You may resume
typing the balance of your instruction. Suppose you type
A-BxC, and then you realize that the multiplication should
have been a division. The "erasure" and correction would
look like this:

A -BxC
v
~C

Overstrikes Not Allowed

Don't overstrike or X out any part of what you type.
Except for certain APL characters which are always formed by
overstriking, APL\1130 cannot read overstruck characters. If
you enter a statement which contains an illegal overstrike

10

(i.e. if you type an illegal overstrike but don't erase it
before you hit carrier return), the computer responds with
an error message and a reproduction of your instruction up
to the point that the illegal overstrike occurred, printing
the symbol C in place of the illegal combination that you
entered. Like this:

A-Bx~

CHARACTER ERROR
A-Bx@

A

You will have to retype the line in which an overstrike
occurs.

Visual Fidelity

While you are typing, you don't have to type each of
the characters in order. For instance, you could leave extra
spaces near the beginning of a line and then backspace over
to that point and fill in the blanks. Your message is
Lnt.e rp ret.e d by the computer the way it looks on the paper at
the moment you press the carrier return. Within the line,
the time sequence in which you hit the various keys doesn't
matter. This principle can be summed up by the rule, "What
you see goes in."

In'terrupting the Computer

It may happen that you cause the computer to start
typing a very long result, or working on a very lengthy (or
even interminable) calculation. If you decide that you want
to cut short what the computer is doing, pressing the ATTN
key while your keyboard is locked will bring whatever the
computer is doing for you to a halt.

11

3: BASIC OPERATIONS IN ARITHMETIC

The Workspace

As soon as your sign-on is completed, the computer puts
at your disposal a block of its internal storage (or
"memory"). This block of storage is called your workspace,
since it is where all of your calculations take place. In it
will be stored the definitions of programs that you enter,
and the names and values of variables used in your
calculations. Your workspace also includes locations used by
the computer for the temporary storage of partial results
while a calculation is in process, and specifications of a
number of other items that affect the way your calculation
is carried out or the way its result is printed. As you will
see in Chapter 15, it is possible for a single user to have
several different workspaces within the computer. However,
only one of these is ever available for calculation at any
one time. The one workspace which is currently available is
called your active workspace.

The Two Modes of Operation: Execution vs. Definition

The computer has two modes of operation, called
execution mode and definition mode. When the computer is in
execution mode, it carries out any instruction immediately,
as soon as you enter it. If you enter an arithmetic expres­
sion, the computer immediately responds with the result:

12><13
156

Ordinarily, the computer is in execution mode; it is in
execution mode when you first sign on, and it stays in
execution mode unless you specifically direct it to switch
to definition mode. When the computer is in definition mode,
it does not execute the instruction that you enter, but
stores it as part of the definition of a program. The
instructions that make up the program are not executed until
(at some later time, when you're back in execution mode) you
call for execution of this program. How you enter the
definition of a program is taken up in Chapter 5. The
remainder of this chapter discusses the instructions you can
use to get the computer to carry out some basic operations
in arithmetic. These instructions could just as well be
included as parts of a program, but the illustrations in
this chapter show them being used in immediate execution.

12

Addition, Subtraction, Multiplication, and Division

These operations are familiar from everyday arithmetic.
APL uses the familiar signs to indicate them:

+ - x +

The operation sign is typed between the numbers that
are to be operated on, just as in arithmetic. For instance,
if you want to multiply 13.2 by 8.7, you simply type

13.2x8.7

The computer executes that instruction immediately, and
replies with the answer:

114~81+

Here are some more examples of simple instructions.
Because the computer always indents by six spaces before
unlocking the keyboard, the instructions you type always
appear indented by six spaces, while the responses from the
computer are typed starting at the left margin.

176 +14 n 2·
1203944

17228 0 1-14 c 2
17213 09

2+2

5+0
5

5
5

4 x 1 n 2·5
5

3+32
0.09375

13

The Idea of a Variable:
Associating a Name with a Value, and Storing Them

You can store data, or the results of calculations, in
your active workspace. A stored item is called a variable.
Every variable has a name and a value; the computer
associates the value with the name, and preserves that
association in your active workspace. Whenever you refer to
a variable by its name, the computer automatically supplies
the value that has been associated with that name.

The symbol for assigning a value to a variable is the
left-pointing arrow. If you enter the instruction

SPEED+1088 05

you cause the value 1088.5 to be associated with the name
SPEED.

The left-pointing arrow causes the value of the
expression to the right of the arrow to be stored under the
name which appears immediately to the left of the arrow.
This instruction may be read in several ways. You can read
it as "SPEED is specified as 1088.5," or "SPEED is assigned
the value 1088.5," or even "SPEED is 1088.5."

The variable SPEED is now stored in your active
workspace. The computer doesn't type any specific
acknowledgment that it has stored SPEED, but as soon as the
variable's name and value have been stored in the workspace,
the computer again indents and unlocks the keyboard.

A variable must always have both a name and a value;
you can't create a variable which has a name but no value,
and you can't store a value unless you assign it to a
name.

Storing or Printing the Result of a Calculation

When you enter an instruction that calls for a
calculation, as soon as the instruction is executed, the
computer needs to know what to do with the result. There are
three possibilities; discussion of the third is deferred
until the next chapter, which takes up compound expressions
in a single instruction.

14

1. You can have the result printed. If you don't
indicate that something else is to be done with
the result of a calculation, the computer always
assumes that you want to see it, and prints it.

2. You can have the result associated with a name,
and stored in the workspace as a variable.

3. You can have the result of that operation used in
another operation in the same instruction.

Using the Stored Value of a Variable

Once you have assigned a value to a variable, from then
on whenever you refer to that variable's name, the cdmputer
supplies the associated value. If you simply type the name
of a variable, the computer responds by printing its
value:

SPEED
1088.5

If you use the name of a variable in an instruction,
the computer carries out the instruction, substituting the
associated value wherever the name appears in the
instruction. For instance, the value of SPEED is the speed
of sound in air at 0 degrees Centigr~de, expressed in feet
per second. If you need to know how far sound travels in
15.5 seconds under those conditions, you can find out by the
following instruction:

15,,5xSPEED
16871,,8

Or, since multiplication is commutative (i.e. order doesn't
matter), you could just as well enter:

SPEEDx15 05

1687108

If you'd prefer to have that result stored, the
following- instruction assigns the result as the value of a
variable called DIST:

DIST+SPEEDx15.5

And you could display the value of DIST like this:

15

DIST
16871.8

Possible Names for Variables

The name of a variable must begin with a letter of the
alphabet. After that it may have any combination of letters
or numerals, up to six characters in all. A name may not
contain a space, or any punctuation, or any of the symbols
used for operations. You may often find it helpful to select
names that have some mnemonic significance to you••• but of
course the computer is unaffected by what names mayor may
not mean in English. When naming a new variable, don't give
it a name that you want to keep in use for some other
purpose in the same workspace.

Storing a Result Under a Name
That Has Already Been Used

Suppose that at one point you type:

X+SPEEDx8

and then later on you type:

X+SPEEDf8

Each of these instructions calls for a result to be stored
under i~e name X. What happens? The first time you use the
name X to the left of a specification arrow, a variable is
introduced, with the name X, and whatever value results when
the value of SPEED is multiplied by 8.

The next time you specify a value for X, that new value
replaces the former one. The value of SPEED is divided by 8,
and the result of that division becomes the value of X. The
old value is erased.

Clearly this would be the wrong way to write the
instructions if you really wanted to preserve both of those
results. To keep both, you must give them distinct names.
However, there are many situations in which it is convenient
to be able to replace one value of a variable by another
value stored under the same name. Suppose you want to count
how many times a task has been done. If, for example, you
have a variable called COUNT, you might have use for an

16

instruction which serves to update the counter, perhaps
something like this:

COUNT+COUNT+1

Each time this instruction is executed, the computer adds 1
to whatever value it finds already associated with the name
COUNT, and then stores the resulting value back under the
name COUNT. (It should be noted that COUNT must have
received its very first value in some other instruction: it
can't always have been specified by referring to its own
earlier value.)

Referring to a Variable Which Has No Value

You can assign a value to almost any name you like. But
if you attempt to display or make use of the value of a
variable before any value has been assigned to it, the
computer is unable to supply an associated value, and can't
proceed with the execution of your instruction. It reports
the trouble by sending you an error message. For instance,
suppose you have assigned a value to SPEED but not to
INTRVL, and then you enter an instruction which refers to
INTRVL. Your dialogue with the machine looks like this:

INTRVLxSPEED
VALUE ERROR

INTRVLxSPEED
1\

The first of those typed lines is your instruction. On t.he
second line, the computer types its error message,
indicating the kind of error it has found. On the third line
the computer repeats the instruction as received. Then the
computer types a caret under the point in the instruction at
which it ran into tizoubLe ,

Examples of Arithmetic with Variables

The instruction

AxE

means that the operation of multiplication is to be
performed on the value of A and the value of B. When the
computer executes that instruction, it finds in the
workspace the values of the variables A and B, and then

17

performs the operation, using those values. (The
associated with A and B in the workspace memory
changed unless you specify that they should be.)

values
are not

Suppose that A and B have been assigned the following
values:

A+6 025

B+144

Then you can use those values in simple instructions, and
the computer types results, like this:

A+B
150. 2,5

A+1
7.25

B+A
23 0 0,4

AxB
900

900+B
6. 25

2+1 +A
1 +2

A -A
o

B +B
1

19

4: MORE ARITHMETIC OPERATIONS

Negatio~

If you place a minus sign in front of a number or
variable, but nothing to the left of the minus sign, you get
a result which has the same magnitude but opposite sign. For
instance, if B has the value -17, then you get the negation
of B like this:

-B
17

Reciprocals

When you use a division sign in the same manner, it
means that the reciprocal is to be found. If A still has the
value 6.25, you can find the reciprocal of A like this:

0 01.6

Monadic and Dyadic Operators

Negation and the reciprocal are examples of monadic
operators. It is easy to distinguish them from dyadic
operators such as subtraction or division: the monadic
operators have no value appearing to the left of them. That
is, monadic operations such as negation and reciprocal each
take only one argument, whereas subtraction and division
take two arguments. The arguments of an operator are the
values it works on; an argument may be a variable, a number,
or the value that results when an expression in parentheses
is evaluated.

A dyadic operator is always written with the values on
which it works (i.e. its arguments) on either side of it, as
for instance in A-B. A monadic operator is always written
with its argument to the right of the operator symbol, as in
-B.

APL often uses the same symbol in two senses, one
monadic and the other dyadic. You (and the computer) can
always tell which sense is intended. If there is an argument
immediately to the left of the operator sign, the operator
is dyadic. Otherwise it is monadic.

20

Raising to a Power (Exponentiation)

In conventional arithmetic, exponentiation is indicated
by writing the power to which a number is to be raised in a
smaller typeface and placing it above the line. For
instance, 2 raised to the 3rd power is written:

23

'l'his is hard ·to type. Moreover, it seems odd that
exponentiation has no symbol of its own, although addition,
multiplication, division, etc., all have theirs. So APL uses
a special symbol for exponentiation, placed between the
number (or variable, expression, etc.) and the power to
which it must be raised. The sign is * and is located on the
keyboard above the P (P for Power). For example:

8

Here's an example of a calculation that uses
exponentiation. It is based upon the familiar rules of
compound interest. The names chosen for the variables should
be self explanatory.

PRINC+1045 028
INT+ o 0,3
YEARS+17
RATE+1+INT
MULT+RATE*YEARS
TOTAL+PRINCxMULT
TOTAL

1727069

This sequence of instructions estimates the total to which
$1045.28 would grow if invested for 17 years at 3 per cent,
compounded annually. The calculation could also be obtained
in a single instruction, but that must wait until the next
chapter.

Taking a Root

APL doesn't have any special sign for the extraction of
a root. It doesn't need one. Taking the square root of a
number is exactly the same thing as raising it to the
one-half power. That's the way you write it in APL. If A has
the value 144, you find the square root of A like this:

A*005
:12

21

Or you might get it this way:

POWER++2
A *POWER

12

This procedure isn't confined to taking square roots.
Any root can be extracted; for instance, you can find the
fifth root of A by the following instruction:

The designers of musical instruments that are tuned to
the "even tempered" scale (such as pianos) are faced with
the problem of dividing an octave into 12 equal parts. The
frequency of any note must be in a constant ratio to the
note one semitone below it. Since it takes twelve semitones
to make an octave, the ratio between one semi tone and the
next must be picked so that the product of all twelve of
them will just make an octave. The semi tone ratio is
therefore the twelfth root of the octave ratio. Knowing that
the octave ratio is exactly 2, you could find the size of an
even-tempered semitone by the following two instructions.
(Here again, this could also be done in a single
instruction, as will be seen in the next chapter.)

POWER++12
2*POWER

100,5946

Maximum: Taking the Larger of Two Numbers

It is often convenient to be able to pick whichever is
the larger of two numbers. APL includes an operation which
does this. When the sign r is typed between two numbers (or
variables that have numerical values) the computer selects
whichever value is greater. If you type

the computer examines what has been stored under those
names. Then it takes whichever value is greater. (Recall
that the values associated with A and B in the workspace
remain unchanged.)

Suppose that earlier calculations resulted in the
following values for the variables ABC and XYZ:

22

ABC has the value 5678, and
XYZ has the value 5679.

Then your dialogue with the computer might look like
this:

ABcr XYZ
5679

Consider an illustration in which this operation might
be useful. Suppose you work for a department store. Each
month, the store calculates for each of its customers how
much he·charged and how much he paid that month. You have a
program which handles the billing. You calculate for each
customer the value of a variable you call BALDUE, which is
the difference between the total of the accumulated charges
and the total of the accumulated payments for that customer.

The store charges each customer a service charge of
1.5% of the unpaid balance each month. You might find this
charge by the following instruction:

CHARGE+BALDUEx.015

However, for one reason or another, some of the customers
have overpaid their bills. For them, BALDUE is a negative
number, and shows as a credit on their monthly statements.
If you calculate 'the service charge by the instruction just
shown, you'll be paying them interest at 1.5% per month
whenever they overpay. Instead, the store prefers to
calculate the service charge as 1.5% of ei ther the balance
due or of zero, whichever is greater. You can do this by
using the following instructions:

TRUBAL+rBALDUE
CHARGE+TRUBALx o015

Minimum: Taking the Smaller of Two Numbers

In similar fashion, another primitive APL operator
selects whichever is the smaller of the two values on either
side of it. If ABC and XYZ have the same values as before,
the lesser is selected by this instruction:

ABCLXYZ
5678

23

The annual amount a wage-earner pays for FICA (social
security) tax is based upon how much he earns. However, any
income he has beyond $7800 a year doesn't count for social
security purposes. The FICA tax rate is currently 4.4%. If a
man's yearly gross income is called YGROSS, and has a value
of $8320, then his annual FICA tax might be found this way:

YGROSS+8320
TAXBLE+7800LYGROSS
.044xTAXBLE

343. 2

The Floor and the Ceiling of a Number

You can disregard the fractional portion of a number
and just consider the integer portion. You have a choice of
two ways of doing this: by rounding down to the next smaller
integer than the fraction, or by rounding up to the next
larger integer. The operators which do this are called the
floor and the ceiling~ If A has the value 3.l4l59,then you
get the floor of A as follows:

LA
3

and the ceiling of A like this:

rA
4

You will notice that ceiling is the meaning of the r
symbol when it is used monadically; when it is used
dyadically (i.e. with a value on either side of it) it means
maximum. In the same way, L means floor when it is used
monadically, but minimum when it is used dyadically.

rxyz

means the ceiling of XYZ. If XYZ is already an integer, then
the ceiling of XYZ has the same value as XYZ. But if XYZ has
a fractional part, the ceiling is the next (algebraically)
larger integer than XYZ.

LXYZ

means the floor of XYZ. If XYZ is already an integer, its
floor has the same value. But if XYZ has a fractional part,

24

the floor of XYZ is the next (algebraically) smaller
integer. In the case where XYZ has the value 3:

rxyZ

LXYZ

Rounding to the Nearest Integer

It is common practice to round numbers to the nearest
integer. This means that when the fractional part is less
than .5, the number is rounded down, but if the fraction is
.5 or greater, the number is rounded up. This effect is
produced if you first add .5 and then take the floor.
Suppose A has the value 3.14159, and B has the value 3.5:

X+. 5 +A
LX

X+.5+B
LX

Summary of Arithmetic Operators Mentioned Thus Far

A+B means A plus B

A-B means A minus B
-B means the negation of B (i. e. 0 minus B)

AxB means A times B

A +B means A divided by B
+B means the reciprocal of B (i. e. 1 divided by B)

ArB means the maximum of A and B
rB means the ceiling of B

ALB means the minimum of A and B
LB means the floor of B

A*B means A raised to the Bth power.

Note: in conventional algebra, the expression ab means the
product axb. The mUltiplication sign is elided. But in APL,
the multiplication sign must be explicitly entered wherever
you want multiplication to occur.

25

5: SEVERAL OPERATIONS IN THE SAME INSTRUCTION

The preceding examples of APL instructions were all
written so that only one arithmetic operator occurred on
each line. APL\1130 does not, of course, restrict you to
writing only instructions with but a single operator. The
examples were written that way so as to postpone for a
moment the discussion of some issues that arise when there
are several operations in the same instruction.

APL permits you to write any number of operators in the
same instruction. But as soon as you write more than one
operator, you have to be clear about the order in which they
get executed. It makes a difference.

Conventional arithmetic has a number of rules for this.
First of all, there is a hierarchy of operators. Same
operators are always executed ahead of others, regardless of
their position in the instruction. Exponentiation gena
highest priority. Then multiplication and division a:re
performed. Addition and subtraction are done last. Th.ere.i:s
also a rule to apply if the instruction containsl:3'eve.ra1.
instances of the same operator. If those rules aren't
approp r i at;e to indicate the order in which you want to
execute several operations, you can use parentheses to show
that what falls within them gets priority.

APL employs not only the operators + - x .;. but a great
many others as well. You have made the acquaintance of * and
r. There are several more. Moreover, in more advanced uses
of APL, programs that you write yourself can be made to act
like operators. You can see that attempting to have a
hierarchical rule to determine which of all those operations
should get done first could get very complicated.

Order in Which Operations Get Executed in APL

APL solves this problem by abolishing the hierarchy of
operators altogether. Instead, the order of execution
depends upon only two things:

1. Parentheses (in the usual way);

2. The order in which the operators appear in
the instruction.

26

This is the rule: An operator operates on everything to the
right of it. Stating it more formally, any operator takes as
its right argument everything to the right of it.

This order is the same as the usual order of English
speech. You may not have thought of English speech in that
way, but it will be obvious in a brief example. Take the
following English sentence:

"They oppose a rise in the price of products from farms."

To examine the meaning of this sentence, let's pose
some questions about what applies to what.

Oppose what?

What rise?

A rise in the price of products from farms.

One in the price of products from farms.

Rise in what price?

Price of what products?

The one of products from farms.

The ones from farms.

Here each of the key elements in the sentence refers to
all the rest of the sentence after it.

The same structure occurs in APL.
example:

A+BxC-DfE

What is A added to? BxC-DfE

What is B multiplied by? C-DfE

What is subtracted from C? DfE

vvhat is D di vided by? E

Consider this

Suppose you have to explain that English sentence to
someone who knows about English grammar but doesn't know
what the particular nouns in that sentence apply to. You'll
find that your answer to each of the questions still
involves everything that comes later in the sentence. If the
questions are asked in the order we just used (starting at
the left), the answer to the first one isn't immediately
usable because the answer still refers to the rest of the
sentence, and that hasn't been defined yet. To build up the

27

explanation in a logical way, you have to start with the
last word, "farms." Then, using that, you can work back to
lfproducts," and that will permi t you to get the meaning of
"products from farms." And so on, working from right to left
until the meaning of the whole sentence is established.

Similarly, when the computer executes an instruction
such as

A+BxC-DfE

it starts by looking for the value associated with the name
E. Then it looks up the value of D. That gives it enough
information to evaluate D divided by E. Next it looks up the
value of C, which gives it enough information to evaluate
the difference between C and D-divided-by-E.

Thus although an APL instruction reads aloud easily
from left to right, when the computer comes to execute the
instruction, it executes the various operations in
right-to-Ieft order. This has become known as the "right 'to
left rule." Notice that this doesn't mean that the computer
reads the line backwards, only that when it executes the
various operations within an instruction it does the
rightmost one first, then the next rightmost one, and so on.

Use of Parentheses

In APL, you use parentheses in the usual way. That is,
the operations inside the parenthesis are to be executed
before operations outside. When the expression inside a
parenthesis has been evaluated, the result must always be a
value: you can't just put an operator symbol alone inside
the parenthesis.

Consider the following
ari thmetic:

expression in conventional

(a+b)x (c+d)

The hierarchy of operators in conventional arithmetic would
ordinarily cause the multiplication to be executed before
the addition. But this order is overridden by the
parentheses, which cause the two additions to be done first.
In APL, you could write the instruction in exactly the same
way:

28

(A+B)x(C+D)

or you could also write it like this:

(A+B)xC+D

Since in APL the rightmost operation is executed first
anyway, you don't really need to use the right pair of
parentheses--although it's all right to include them if you
want to. If you enter the following instruction:

(A+B) xC+D

here's how the computer will proceed. The rightmost
operation is the addition of C and D, so it does that first.
Moving leftwards, it finds that the next operation is the
mUltiplication. But the left argument of the multiplication
is a parenthesis. The computer suspends work on the
multiplication until it has evaluated the expression in the
parenthesis. When that is done, it comes back to the
multiplication, and multiplies the sum-of-A-and-B by the
s um-of-C-and-D.

Because of the order of execution of operations in APL,
:many instructions that would otherwise require parentheses
:no longer need them. When you enter an APL instruction, you
can often arrange it so that the operators that you want
executed first appear furthest to the right in your
instruction. For instance, consider the instruction that in
conventional arithmetic would have to be written as either

(a+b)xc or c xf a-sb)

In APL, that can be written without any parentheses:

CxA+B

Where rearrangement doesn't eliminate the need for
parentheses, you can still use them in the usual way.
Parentheses within parentheses (sometimes called "nested"
parentheses) are all right too. The computer starts first on
the outermost parenthesis. If it finds another parenthesis
inside the first one, it suspends work on the expression in
the outer parenthesis until it has evaluated the inner one.

29

Rewriting the Earlier Examples
With Several operations in the Same Instruction

The examples presented earlier in the
only one arithmetic operation on each line.
dealt with the question of order of execution
several operations in the same instruction,
those earlier examples more neatly by
expressions.

text involved
Now that we've
when there are
we can rewri te

using compound

For instance, the total when an amount is invested at
compound interest can be stated as follows, (assuming that
the variables have the same values as before):

PRINCx(1+INT)*YEARS
1727.69

The square root of XYZ can be written like this, using the
reciprocal sign, since the second root of XYZ is equivalent
to raising XYZ to the reciprocal-of-two power) :

XYZ+-12
XYZ*t2

3.4641

and in similar fashion the semi tone ratio
even-tempered scale can be found by

2*t12
1.05946

for an

To prove that it really is the twelfth root, you could raise
the semi tone ratio to the twelfth power. The result should
be the octave ratio, which is 2.

SE'MTON+-2 * t 12
SEMTON*12

2

The charge on the balance due on a charge account becomes:

CHARGE+-.015xOrBALDUE

and the annual FICA tax becomes:

TAX+-.044 x7800LYGROSS

30

Do You HAVE to Write Many Operations
In a Single APL Instruction?

As you gain experience in the use of APL, you will
probably tend to use longer compound expressions in the
instructions that you write. For one thing, it is often
easier to understand a well-formed compound instruction than
it is to trace through a sequence of simpler steps. Compare,
for instance, the expression for the total resulting from
compound interest used on the preceding page:

TOTAL+PRINCx(l+INT)*YEARS

with the one-step-at-a-time sequence we used on page 20:

RATE+l+INT

MULT+RATE*YEARS

TOTAL+PRINC'xMULT

Nevertheless, it should be clear that whether you use a
few long instructions or many short ones is up to you; you
should write in the style that seems easiest to you.

31

6: ENTERING THE DEFINITION OF A PROGRAM
SO THAT IT CAN BE USED REPEATEDLY

If the work that you want done can be specified in an
instruction that is brief and easy to type, you can get it
done simply by entering that instruction. But if you want a
more complex calculation, or one that you want to use
repeatedly, you will certainly want to define a program to
do the job. Then you can obtain execution of the program,
regardless of the number of instructions it contains, simply
by typing its name. This section tells you how to define a
program.

Starting the Definition

You will recall that the computer has two modes, one
for executing instructions immediately, and the other for
storing the definition of a program. To start the
definition, you must enter definition mode. The symbol v
(pronounced "del") takes you from one mode to the other. If
you type a v while you are in execution mode, it signals
the computer that what follows is the definition of a
program. If you type another V while the computer is in
definition mode, that signals the computer that you are
finished with the definition of that program; the computer
returns to execution mode.

To start the definition of a program, the first thing
you do is type (on a single line) the symbol v followed by
the name of the program.*

When you press carrier return, the computer asks what
you want as the first line of the definition. It does this
by typing, in square brackets, the number 1. Then the

*At this point we are limiting the discussion to the
simplest type of program, what you might call a "stand
alone" program. A program of this type is executed simply by
typing its name. That name, standing alone, is all that may
appear in the instruction that causes the program to be
executed. APL also permits you to define a program so that
it may be used as part of a compound instruction, with other
programs, operations, and variables all in the same
instruction. Discussion of that type of program is deferred
until Chapter 25.

32

computer spaces over until it has completed the usual
indentation of six spaces, and unlocks the keyboard to await
your definition of line 1. What you type at that point is
entered as the definition for line 1 of this program. Then
the computer types a 2 in square brackets, and awaits the
definition of line 2. It continues in this fashion until you
type another \l to indicate that you want to return to
execution mode.

This will be clear if we consider a simple program and
work through its definition step by step.

In order to show where the typeball is when the
keyboard is unlocked, we use the following mark:

@

This mark does not, of course, appear on your paper; we
merely use it in this primer to show you where the typeball
is located at the moment when it becomes your turn to type.

Focal Length of a Lens: A Simple Calculation
To Illustrate Program Definition

Here is the formula for the focal length of a lens:

f = nr1r2
(n-l) [n{ r 1+r 2)-t{n-l)]

where f is the focal length
n is the index of refraction
t is the thickness of the lens
r 1and ~ are the two radii of curvature.

Suppose that you want a program called FOCAL to compute
the focal length, F, from the stored values of variables
called N, T, Rl, and R2. The program should both store F and
print F.

(Notice that it's all right for a name to include
numerals, as long as they aren't the first character in the
name, so that the names Rl and R2 are permissible. However,
they are individual names which do not mean that these are
the first and second members of a variable called R.
Indexing of a variable is introduced in Chapter 19.)

Your first
followed by the
computer notes
want as line
this:

33

step in defining FOCAL is to type a del,
name of the program. When you do that, the

the' name of the program, and asks what you
1 of the definition. Your paper looks like

VFOCAL
[1J @

You could start the calculation by finding the value of
the numerator of the fraction, and storing it. When you type
line 1, which might be as follows, the computer responds by
asking what you want on line 2:

VFOCAL
[1J NUM+NxR1xR2
[2J @

On line 2, you can calculate the denominator of the
fraction:

VFOCAL
[1J NUM+NxR1xR2
[2J DENOM+(N-1)x(NxR1+R2)-TxN-1
[3 J @

On line 3, you do the division and store the result
un der the name F-:

VFOCAL
[1J NUM+NxR1xR2
[2J DENOM+(N-1)x(NxR1+R2)-TxN-1
[3J F+NUM+DENOM
[4 J @

On line 4, you want to have F printed. You simply type
its name:

VFOCAL
[1J NUM+NxR1xR2
[2J DENOM+(N-1)x(NxR1+R2)-TxN-1
[3J F+NUM+DENOM
[4J F
[5J @

That's all the program needs.

34

When the computer asks for a definition of line 5, you
type another del. The computer closes the definition of the
program called FOCAL, stores it in the memory of the active
workspace, and returns to execution mode.

VFOCAL
[1J NUM + NxR1xR2
[2J DENOM + (N-1) x (NxR1+R2) - TxN-1
[3J F + NUM+DENOM
[4 J F
[5J V

After the final del, the computer leaves definition
mode. Therefore, as you can see in the example shown above,
when it unlocks the keyboard for your next instruction, it
again indents by six spaces, but this time without typing a
line number (since now you're back in execution mode).

Sample Use of the Program Just Defined

The values of the variables N, T, RI and R2 need not
have been stored at the time you entered the definition of
FOCAL, but they should be stored before you try to execute
FOCAL. Once those values are in storage, you cause the
computer to execute FOCAL simply by typing its name. The
computer prints the value of F, as line 4 of the program
directs.

N+ 1.3275
T+ .375
R1+8
R2+7.85
FOCAL

12 01692

If you wish, you can set new values for the radii and
then ask for a new execution of FOCAL. If you can still use
the former values of Nand T, you need not enter their
values again, since they are retained in the workspace.

R1 + 8.1
R2 + 7.75
FOCAL

12.1643

35

Another Sample Program: Efficiency of a Diesel Engine

One form of the equation for the theoretical efficiency
of a Diesel engine is as follows:

1

R Y-1
EFF = 1 -

~ (~:) - 1

Using this formula, you would like to see how the
theoretical efficiency varies over some range of the various
parameters. You need a program that will compute EFF, the
efficiency, from the stored values of those parameters. In
your workspace, you can give them names based upon their
representations in the formula; for instance, they might be
R, GAMMA, V3, and V2.

There are various strategies for writing this program.
To simplify your task, you might want to divide up the
calculation into sections, and compute each section
s epazabeLy , Suppose you start by breaking the formula into
sections A, B, and C, as follows:

EFF = 1 -
1

R ')'-1

~
A

Once you have calculated values for A, B, and C, you can get
the efficiency by this instruction:

EFF+1-A xB 1-C

This will probably be the last, or next-to-last, instruction
of the program. Ahead of it you need instructions that will
calculate A, B, and C. Part A is easily obtained with the
following instruction:

A+--R*GAMMA -1

Notice that V31-V2 occurs twice in the formula, once in
section B and once in section C. If you save the result the
first time you do the division, you won't have to do the
division twice. Hence before you evaluate Band C, you may

36

want to divide V3 by V2 and store the result; suppose you
oall it RATIO. B can then be calculated by this instruction:

B+-(RATIO*GAMMA) -1

and C can be obtained by this instruction:

C+-GAMMA xRATI 0 -1

Now the various steps can be put together into a program.
Suppose the program has the name DIESEL. This version does
not include a print instruction, although of course one
could be added as line 6.

VDIESEL
[~J A+ fR*GAMMA-l
[2J RATIO+ V3fV2
[3J B+ (RATIO*GAMMA) -1
[4] C+ GAMMAxRATIO -1
[5] EF'F'+ i-A xB fC
[5J V

Writing the DIESEL Program in a Single Line

There are many ways this little program could be
written. If you preferred to write an equivalent program
which puts it all into one instruction, you could do it like
this. Imagine the formula split into sections A, B, and C,
as before, but this time instead of storing values for each
of those variables, substitute the expression for A, B, and
C directly in the first line. Let this short program be
called D:

7!JFF'+l- A x B C

fR*GAMMA -1 « V3fV2) *GAMMA) -1 GAMMAx(V3fV2)-1

The one-line definition of D is therefore as follows:

'Vs
[1J EF'F'+ 1 - (f R *GAMMA - 1) x (((V3 f V2) *GAMMA) - 1) f GAMMA x (V3 f V2) - 1
[2J 'V

37

Sample execution of DIESEL~

GAMMA +1 • 485
V3+184
V2+22
R+15
DIESEL
EFF

O~448444

An Instruction in One Program
Can Call for the Execution of Another Program

The instructions in DIESEL might be rewritten so that
each portion of the calculation is ha.ndled by another
program. Since the diesel calculation was divided into parte
A, B, and C, each of those might be calculated by a separate
program; you might want to call them DOA, DOB, and DOC.
Here's a program called DSL, written in that way:

V DSL
[1J DOA
[2 J DOB
[3 J DOC
[4J EFF+1-A xB +C

V

Of course, you can't tell what this definition means
until definitions are supplied for the programs DOA, DOE,
and DOC. Here they are:

V DOA
[1J A++R*GAMMA -1

V

V DOB
[1J B+((V3+V2)*GAMMA)-1

V

V DOC
[1 J C+GAMMAx(V3+V2)-1

V

As far as you can tell when you use it, DSL works just like
DIESEL. In a larger problem than this one, it is often
convenient to be able to break the work up into modules

38

which are handled by separate sub-programs. As you will see
later, the ability of one program to call for the execution
of other programs becomes much more useful when those
programs can be written so that they have arguments in the
way that APL operators do. Then you can write compound
expressions involving calls to other programs. That topic
is discussed in Chapter 25.

It is sometimes convenient to define a program in which
the opening instructions set up the values that another
program is to use. A later instruction in the same program
may then call for the execution of the program that does the
actual calculation. Here is a definition for a program
called D, which sets new values for GAMMA, Ri V3, and V2 by
modifying the earlier values as shown, and then calls for an
execution of DIESEL and for the printing of the final value
of EFF.

V D
[1 J GAMMA+1.01xGAMMA
[2J V3+0.99xV3
[3 J V2+0 0 95 x V2
[4J R+R+O.04
[5 J DIESEL
[6J EFF

V

D
O.4L~8817

39

7: DISPLAYING OR CHANGING THE PROGRAM
AFTER YOU'VE DEFINED IT

Suppose you've defined a program DIESEL. You have typed
all of your definition, and you've typed a final V to
indicate that the definition is ended. That has taken you
back to execution mode. Perhaps you have even executed the
program a few times. Now you decide that you want to change
the definition. Perhaps you find a mistake in it, or some
unnecessary lines; perhaps you wish to add some additional
steps that you didn't think of before. How may you edit the
stored definition?

Any time you edit the definition of a program
(including just displaying it without changing it) you start
out by typing a V and the name of the program. For the
"stand alone" type of program (the only kind introduced thus
far) this is the same as the way you first started the
definition of the program.

Adding Another Line

Whenever you enter definition mode and type the name of
a program, the first thing the computer does is check the
active workspace to see if there is already a definition for
a program of that name. The first time you entered VDIESEL,
the computer could find no prior definition for a program
called DIESEL in the workspace. So it presumed you welE
starting a new definition, and asked what you wanted on line
1. When you first opened the definition of DIESEL, the
opening dialogue went like this:

VDIESEL
[1] @

But when the computer finds that a definition of DIESEL
has already been stored, it assumes that now you want to add
to the stored definition. So it types the number of the line
which comes next after the lines it already has, and awaits
your def~nition for that new line.

VDIESEL
[6] @

40

After it gets the definition of that line, it asks you
for line 7, and so on until you once more enter a V to
indicate that the definition is closed. You may recall that
the definition of DIESEL did not include an instruction to
print the value of EFF. Suppose you now add such an
instruction after the instructions that have already been
entered:

VDIESEL
[6 JEFF
[7J V

Replacing a Line

Suppose that you don't like the definition that you
originally entered for line 3 of DIESEL; you want to replace
it with something else. If you once again enter definition
mode, since the computer now has six lines of definition for
DIESEL, it invites you to enter a definition for line 7. You
m~y override this suggested line number by typing a new line
number, in brackets as before. If you wish to redefine line
3, you now type [3J followed by whatever you would now like
to have on line 3. The new version of line 3 replaces the
old one.

VDIESEL
[7J [3J B+-l-V*GAMMA
[4 J V

Whenever you specify a new definition for a line which
already exists, your current definition replaces the earlier
one. After accepting your new definition for line 3, the
computer asks if you wish to revise line 4 also. If you
don't want to, you now type a v. Line 4, and all other lines
previously defined, remain unchanged.

Displaying What Is Already on a Line

Suppose you want to check up on what you wrote on a
line of your program. You want to see what was on line 3 of
DIESEL in order to decide whether to change it, or how. You
do this using the input-output symbol D, called "quad." Once
you are in definition mode, you type within brackets the
line number followed by a D. For example, to cause line 3 of
DIESEL to be displayed, at that point you enter [3DJ p This

41

is shown step by step in the following example. Notice that
after it has shown you what is on line 3, the computer
invites you to redefine line 3.

[7 J

[7J
[3 J
[3 J

[7J
[3J
[3 J
[4J

[7J
[3J
[3 J
[5 J
[5J

[7 J
[3J
[3J

VDIESEL
@

VDIESEL
[30J
B+(RATIO*GAMMA)-1
@

VDIESEL
[30J
B+(RATIO*GAMMA)-1
B+-1-RATIO*GAMMA
@

VDIESEL
[30J
B+(RATIO*GAMMA)-1
[50J
EF'F'+1-A xB »c
@

VDIESEL
[30J
B+(RATIO*GAMMA)-1
\J

@

Step 1: Enter definition mode for
the program called DIESEL. The
computer already has six lines
defined, so it asks what you want
on line 7.

Step 2: Instead, you ask for a
display of line 3. The computer
types its stored definition of
line 3, and then asks what you
want as a new definition for line
3.

Step 3: Either--

·(a) If you want to change line
3, type the new instruction for
line 3. Then the computer asks
what you want on line 4.

or--

(b) If you don't want to change
line 3, but you now want to
display some other line, type
in brackets the number of the
line you want to see next,
followed by a jj , The computer
then shows you that line, and
asks what you want as the new
definition of that line.

or--

(c) If you want to leave line 3
as it was, and leave definition
mode, type a V. As always, all
previously defined lines remain
unchanged.

42

Displaying the Whole Stored Definition

Once you have the computer in definition mode, if you
use the 0 symbol to get a line displayed but you don't say
which line you want, you get all of them. For instance,
entering

I1DIESEL
[7J [OJ

causes the computer to print its entire stored definition of
the program DIESEL:

I1DIESEL
[7J [OJ

11 DIESEL
[lJ A++R*GAMMA-1
[2 J RATIO+V3 +V2
[3J B+(RATIO*GAMMA)-l
[4J C+GAMMAxRATIO-1
[5J EFF+1-AxB+C
[6J EFF

[7 J @

Notice that the computer even prints the initial V with
which the definition starts, and another one to show where
the definition thus far stored comes to an end. These dels
that the computer types do not change the mode: only a del
that you type can do that. The first del you typed started
the definition mode; when you are ready, you will have to
type another del to get back to execution mode.

Notice too that after it has finished typing the entire
stored defini tion, the computer types .a new line number,
inviting you to enter the definition of another line after
those already defined. As before, you don't have to enter
one if you don't want to.

Inserting a Line Between Lines that are Already Defined

Suppose that the line that you want to add doesn't come
at the end of the program. Perhaps you forgot to set up
something at the beginning of the program, or perhaps you

43

forgot an intermediate step somewhere in the middle. How can
you ihsert a line between the existing lines of the program?

~ou interpolate a line by giving it an interpolated
line p'umber. Suppose you wish to insert a line so that it
comesl after line 1 but before line 2. You do that by
assi9hing your line a decimal number between 1 and 2; 1.1
wouldi do, or 1.5, or any other number with up to four
decimal places and which is greater than 1 but less than 2.
Negative line numbers aren't allowed, so if you want to
insert a line ahead of the first line, assign it a line
number between 0 and 1.

When you type V followed by the name of the program,
the computer, as before, asks what you want to add after the
last ~ine it now has in the definition. You decline this
invitation; instead, you type a new line number, also in
brackets. This new line number overrules the one typed by
the computer. Suppose the program DSL now has 5 lines; you
wish to insert a line saying

RATIO+V3 -i-V2

between lines 1 and 2. Here's what happens:

VDSL
[6J [1.sJRATIO+V3-i-V2
[106J: @

As usual, after you enter your definition of that line,
the computer responds by asking what you want as the
definition of the next line. What is the "next" line in this
situation? The computer determines the number of the "next"
line by adding a 1 in the rightmost place of whatever number
was typed. Since you typed [l.SJ, the machine asks next for
line [106J.

If you had given the line the number [2.0089J, then the
computer would have asked next for a definition of line
[2.009J. Of course, you wouldn't have to give it one. You
can always close the definition, or you can type any other
line number you may want to insert next.

When you close the definition, the lines are all
renumbered, and given line numbers that are consecutive
integ¢rs (1, 2, 3, 4, ••• etc): If you insert a single line
betwe¢n lines 1 and 2, that inserted line becomes line 2.
The old line 2 becomes line 3, the old line 3 becomes line

44

4, and so on. If you now display the entire definition of
DSL, you find that the inserted line has pushed down the
lines that follow it:

VDSL
[7J [OJ

v DSL
[lJ DOA
[2 J RATIO+V3 +V2
[3J DOB
[4 J DOC
[5J EFF+1-AxB+C
[6J EFF

v
[7J @

Deleting a Line of the Definition

Suppose that you decide that you don't want line 2 of
program DSL in there after all. How can you remove it?

You can delete a line of the stored definition of a
program by using the "erase" feature. You start out as if
you were going to replace the definition of a line (see page
42). But when it comes time to type the new definition for
that line, you simply press the ATTN key, followed
immediately by carrier return. This combination erases that
line from the stored definition. Then the computer asks what
you want to do about the next line of the program. Erasure
Jf line 2 of program DSL looks like this:

VDSL
[7J [2J

v

[3 J @

When you type the final V to leave definition mode,
lines of the program which have nothing on them are dropped,
and the other lines are moved up to fill the gaps. For
Lnstarrce , if you erase line 2, the old line 3 is moved up to
become line 2, the old line 4 becomes line 3, and so on.

45

Delet~ng a Program Entirely from your Workspace

Suppose you are through with a program entirely. You
may keep that definition in your workspace indefinitely if
you wash. But if you no longer want it cluttering up your
workspace, you may delete it entirely by entering its name
with a del on either side of it:

VDIESELV

Both the name and the entire definition of DIESEL are
dropp~d from the active workspace. If you type the nar~

DIESEt now, the computer no longer recognizes it:

DIESEL
VALUE ERROR

DIESEL
A

Delet~ng a Variable from your Workspace

~f you define a program with the same name as a
variable, that variable is lost. This is true even if you
only ~tart to define such a program and then change your
mind after entering only the initial line. Therefore, if you
want to remove a variable from your workspace, you can use
the pame procedure as for deleting the definition of a
program. Its name and its stored value will be deleted
together. In the following example, a variable called NUMBER
is g~ven a value, the value is displayed, and then the
variaple is deleted. After that, reference to NUMBER causes
the computer to report a value error:

NUMBER+144
NUMBER

144

VNUMBERV

NUMBER
VALUE ERROR

NUMBER
A

47

8: REPRESENTING NUMBERS

When you wish to enter a number into the computer, or
when the computer prints the numerical value of a result,
you have to have a system for representing numbers. You want
the computer to understand what you type, and you need to
understand what it reports. Internally, the computer
represents numbers in the binary system, but with APL\1130
you don't have to deal with the internal workings of the
computer. Whenever you and the computer communicate, numbers
are represented in the decimal system.

Within the decimal system, APL\1130 uses either of two
different forms. When you wish to enter a number, you may
use whichever form is convenient for you. You may mix both
forms in the same expression, if you like. The choice of one
or the other form is purely a matter of convenience: it
makes no difference to the computer's calculations.
Similarly, each time the machine has to print a numerical
value, it picks one or the other form in which to type it.
In general, the computer picks whichever form yields the
simplest representation. This choice of form is not made
until the computer is ready to print, after its calculation
has been completed.

Decimal Form

You can enter any number in the usual decimal form,
using the period as a decimal point. If the number doesn't
have any digits to the right of the decimal point, you don't
need to type the decimal point either; to APL, it doesn't
matter whether you enter 6, or 6.0, or even 06.00. Leading
zeroes to the left of the decimal point, or trailing zeroes
to the right of the decimal point, don't matter. However,
the digits that represent a single number must not be
separated by spaces or commas.

In the following examples, A, B, C, D, and E are given
values that are entered in the standard decimal form:

A+O
B+1088 05

C+.00065
D+ 186300000
E+0.3

48

Exponential Form

When your work involves numbers that are very large or
very small, it is often desirable to indicate these numbers
by stating a value in some convenient range, and then
mUltiplying it by the appropriate power of ten. For
instance, Avogadro's number, which is the number of
molecules in x grams of a substance whose molecular weight
is x, is commonly wri tten as 6.02xl0 23

•

A similar form exists in APL. It is called exponential
form. In exponential form, Avogadro's number is written

6.02E23

The E in the middle indicates that this is exponential form;
the digits to the right of the E indicate the number of
places that the decimal point must be shifted.

6.02E23

means the same as

602000000000000000000000.0 (point shifted 23 places).

That is, the digi ts to the right of the E indicate the power
of 10 by which the number to the left of the E must be
multiplied.

The estimated population of the world in 1964 could be
written in any of the following ways; each results in the
same value of the variable POP64:

POP64 +- 3.22E9

POP64 +- 3220E6

POP64 +- 3220000000

POP64 +- 3220000000.00

It is important to note that the letter E in a number
such as 3.22E9 is a part of the name of that number, and not
an operator. By contrast, when you enter 3.22xl0*9 you are
instructing the computer to perform a sequence of operations
which, as it happens, will end up with the same value.

49

Negati ve Numbers

A negative number is indicated by the symbol that means
"negative" placed in front of it. Negative two is written
like this:

2

Note that the negative symbol is not the same as a
minus sign. The minus sign denotes the operation of
subtraction. The negative symbol is part of the name of all
those numbers that lie below zero on the number line.
Unfortunately, the distinction between the operation of
subtraction and the names for numbers that are below zero
has been muddled by the common practice of calling a
negative number (for instance) "minus two," and using the
minus sign for both purposes. APL avoids this confusion by
using the minus sign only to mean the operations of either
subtraction or negation, and the negative symbol only as
part of the name of a negati ve number.

Notice that the operation - (subtraction), like all
other APL operators, applies to everything to the right of
it in an instruction. For instance, the instruction

7 - 2 + 3

means that the sum of 2 and 3 is to be subtracted from 7. By
contrast, the negative symbol is simply part of the
representation of a single number. It doesn't apply to any
other number but the one in which it occurs. Because it is
not an operation at all, it can never be used alone, and it
can never be used to operate on a variable. In this respect,
the negative symbol is like the decimal point, or the
exponential E: it has no meaning other than to help
determine the value of the number represented by a
particular cluster of digits. The decimal point, the
negative sign, and the exponential E, must always occur as
part of the representation of a number. You can't have any
spaces separating these symbols from the other digits of the
same number.

_Negative Numbers in Exponential Form

The negative symbol can turn up in exponential form in
just the same way as in other numbers. For instance, you can
indicate the number negative two trillion by typing:

2E12

50

And you get negative 2.11684 trillion by entering:

2 Q11684E12

Very Small Numbers

In the exponential form, you can represent a very small
number in the same fashion as a very large one. For large
numbers, the decimal point is to be shifted to the right, so
that 2E3 means 2000. For very small numbers the decimal
point must be shifted not to the right but to the left. This
is indicated by having a negative exponent. So you could
write two trillionths like this:

In the same fashion, you can write negative two trillionths
like this:

2E 12

Note that the two negative symbols that are in the
representation of negative two trillionths occur inde­
pendently. The first one means that the whole value of this
number is negative. The second one means that this is a
number with a very small magnitude.

Roughly speaking, APL\1130 can work with numbers
(p08itive or negative) whose magnitude ranges from a minimum
of about 1E-a8 to a maximum of about 1E37.

Precision of Numbers

Internally, the computer represents numbers with a
precision equi valent to about seven decimal d.i q i.t.s ,
Inevitably, any sequence of operations on values each of
which requires the full precision 'will result in some
cumulative error, so that the results (even though
calculated to the equivalent of seven decimal digits) are
not necessarily that significant.

Number Display

When APL\1130 prints a number, it prints only the six
most significant digits, and suppresses trailing zeroes to
the right of the decimal point. If you ask for the
reciprocal of 3; the result that you see print"ed will show
only six places after the uecimai point:

51

+3
0 0333333

Similarly, one hundred thousand divided by 3 is printed with
six digits:

100000+3
33333 03

And one million million million divided by 3 is also printed
with six digits:

1E18+3
3033333E17

Which Form Does the Computer Use?

When you are entering a numerical value, you may use
whichever form you like (assuming that it is adequate to
describe the number you want to enter). But when the
computer types a number, it selects one of the forms
according to its own preference. For instance, the computer
always arranges those numbers that it types in exponential
form so that the left portion (the mantissa) is between 1
and 10, regardless df the 'way you entered the number:

602E21
6 002E23

1E5
100000

000000D00000000000000000000000000000025
2.5E 37

1 . 0
1

As you have just seen, it is quite possible that you
choose to represent a nlmmer in one form, while, when it
types, the computer represents the same value in the other
form. None of this makes any difference to the calculation,
since the way numbers are typed during input or output is
independent of the way they are represented inside the
computer during a calculation. For the computer, as for you,
the choice of one or the other form for writing numbers is
merely a matter of convenience in typing.

53

9: TESTING THE TRUTH OF A RELATIONSHIP

In the course of a calculation, there will be occasions
when you want to know whether a particular relationship
holds or not. You may want to test whether a counter has
reached its maximum, or you may want to check whether a
trial result is close enough to a desired standard of
accuracy. Possibly you want to do something differently in
your calculation, depending upon whether a particular
condition is or is not met. APL includes operators which
test whether two quantities are equal, as well as other
relations.

The following APL operations test the truth of a
relationship:

< less than

:5 less than or equal to

= equal to

~ greater than or equal to

> greater than

~ not equal to

Consider the following exchange:

A+45678
B+4 5679

A=B
o

A<B
1

A~B

o

The computer always evaluates the truth of a
r€lationship with 1 for true and 0 for false. Notice that
because the result of testing one of these relationships is
a number, it can be used in subsequent calculations.

54

1+A~B

2

Each time a relationship is tested, think of it this
way: = means "Is it the case that A=B ?" (and similarly,
"Is it the case that" A~B, or A~B, or A>B, etc. etc.). If
the answer is "Yes," the computer says 1; otherwise, 0 ..

Notice that these instructions do not tell the computer
that A is less than B (or whatever the relation is). Nor do
they instruct the computer to make A less than B. They test
the truth of the relationship.

Example of Test for Equal

Suppose the correct answer to a problem has been stored
as the value of a variable called RIGHT. Suppose that the
answer supplied by a student has been stored under the name
ANSWER. You need to keep track of the student's score. You
want to add 1 to his score if his answer is the same as the
right answer, and otherwise leave his score unchanged.

If the student got this problem right, then it is true
that ANSWER=RIGHT. To add 1 to his score if and only if his
answer is equal to the right answer, you could give this
instruction:

SCORE + SCORE + ANSWER=RIGHT

Then the amount added to SCORE will be 1 when the two values
are equal, and 0 when they are different.

The example could be made slightly more complicated.
Suppose that instead of adding 1 when the student is right,
you wish to give some problems more weight than others. The
weight for the current problem is stored under the name
WEIGHT. If the student gets this problem right, you want to
add WEIGHT to his score; otherwise, O.

SCORE + SCORE + WEIGHTxSTUDENT=RIGHT

If the student's answer is equal to the right answer, then
ANSWER=RIGHT has the value 1, so the amount that is added
is WEIGHTx1. But if they are not equal, then the amount
added is WEIGHTxO, which is o.

55

Example: The Sign Function

The function which is sometimes called the "sign"
function records the sign of a variable by returning a
result of 1 when the variable is positive, 0 when the
variable is 0, and negative 1 when the variable is negative.
An instruction which does this for the variable X might be
as follows:

SIGN+ (X>O) - X<O

How Close is Equal?

We have already mentioned that the computer stores the
values of numbers out to about seven decimal digits. It is
not programmed to handle greater precision than that.
However, if you perform calculations on those stored
numbers, there is almost certainly some loss of accuracy, so
that although a result is carried to about seven digits, the
final digits may become meaningless.

Whenever you ask a computer whether two quantities are
equal, you have to qualify that question, and ask it (in
effect), "Are these quanti ties equal as nearly as it is
reasonable to judge?" APL\1130 judges two quantities to be
equal if the relative difference between them is less than 1
part in about one million.

As we noted earlier, APL\ll30 types a maximum of six
significant digits. This means, in effect, that the typed
answer is rounded to the nearest 1 part in 1000000, so that
occasionally numbers which are not in fact equal may look
alike when printed.

57

10: MORE OPERATIONS IN ARITHMETIC

So far we have considered the following arithmetic
operations: addition, subtraction, multiplication, division,
exponentiation, maximum, and minimum. In this chapter we
present capsule summaries of four other arithmetic
operations, and four logical operations.

Absolute Value

Sometimes you want to consider the magnitude of a
number without regard for whether it is positive or
negative--that is, its absolute value. In conventional
arithmetic, absolute value is often indicated by placing a
vertical bar on either side of the name of a variable, thus:

l a l

In order to keep its syntax consistent, APL dispenses with
the need to wri te the sign twice, and wri tes "the absol ute
value of A" like this:

IA

If A has a positive value, then IA has the same value. But
if A has a negative value, then IA has the same magnitude
but a positive sign.

Like every APL operator,
the right of it, so that

IA+BZxQ

I operates on everything to

means Uthe absolute value of the sum of A and the product
of BZ and Q • "

Residue and Remainder

AlB

is read as "the A residue of B." The A residue of B is the
smallest non-negative number that could be reached if you
started out from the number B and added or subtracted the
absolute value of A as often as necessary. If A and Bare
both positive, this is the same as saying that the A residue
of B is the remainder when B is divided by A.

58

If B is evenly divisible by A, then AlB must be O. By
testing the truth of the relation o=AIB you could decide
whether B is divisible by A.

A program which prepares monthly statements includes a
variable MO which contains the number of the current month.
At the beginning of each new month, the program updates the
stored values of MO. The months run from 1 to 12, so that
the next month after month 12 is month 1. The following
instruction would update the months correctly:

MO+1+12IMO

For instance, at the end of March, MO has the initial
value 3:

MO+3
1+121MO

4

But at the end of December, when MO is 12, the same
instruction has this result:

MO+12
1+121MO

1

Powers of the Natural Constant e

If you type the symbol for exponentiation * with no
left argument, APL presumes that the number which is to be
raised to a power is the natural constant e. Thus e in APL
is written *A o

The formula for the height of the Gaussian "normal
curve of error" (when the total area under the curve is 1)
provides that the height (i.e. frequency) Y of a deviation
of T units from the mean may be found by the following
formula:

1
y= ------

The reciprocal of the square root of two pi is constant in
this formula. Suppose we call that constant RTP; in APL, it
may be found as RTP+ +(2 x PI)* Oo5 Then the formula for Y
becomes:

59

This might be embodied in a program called GAUSS:

'iJ GAUSS
[1J Y+(+(2 xPI)*0.5)x*-0.5xT*2

'iJ

The height of the curve at its center, when the deviation T
is zero, is found in the following execution:

T'f-O
GAUSS
y

0 0398942

And the height when T is 2 units:

T'f-2
GAUSS
Y

0.053991

Logarithms

The log of B to the base A is written:

(The symbol for logarithm is formed by overstriking the
circle 0 and the sign for exponentiation *.)

The common (i.e. base 10) logarithm of NUMBER can be
found by the following instruction:

NUMBER+20
10$NUMBER

1.30103

•

And the base 2 log of NUMBER is found this way:

2fiNUMBER
4 032193

In order to approximate the responsiveness of human
senses, radio engineers convert the power of an audible
signal into units called decibels. The change of intensity,
in decibels, measured with respect to an a.rbf. trary reference
power, is found from the formula

db = 201og
10

power
ref

60

In APL, this becomes:

DB + 20x 10$POWERfREF

For a reference power of .002, an observed power of ~08 is
converted to decibels as follows:

POWER+ .08
REF + .002
DB + 20x10$POWERfREF
DB

32 c0412

Natural Logarithms

Just as the powers of e can be found by entering * with
no left argument, so the log to the base e (the Napierian or
natural logarithm) is found by entering the symbol fot
logarithm with no left argument. Hence the natural log of
XYZ is found by the expression $XYZ.

$2
Oc693147

XYZ+10
9XYZ

2.30259

Antilogs

APL has no special symbol for the antilogarithm, since
it can be found directly by exponentiation. The base 10
antilog of B is obtained by the instruction 10*B, while the
natural antilog of XYZ is found by *XYZ. For example:

A+6
B+7
LOGA+$A
LOGB+$B
PROD+LOGA+LOGB
*PROD

42

Logical Operations

The logical operations OR, AND and NOT operate only on
zeroes or ones. Logical operations are most frequently used
to form compound expressions about the truth of two or more

61

relationships. APL uses the number 1 to stand for "true" and
the number a to stand for "false." Thus the logical
operators can work on the result of any of the tests of
relationship. But they aren~t restricted to handling the
results of relational tests; they can work on any values
that contain only zeroes or ones, regardless of where those
zeroes and ones came from.

Logical Or

Suppose ~ represents the truth of some relation, and B
represents the truth of some other relation. Some condition
you have in mind will be satisfied if either A or B is true.
You can find the truth of "A or B" by the instruction

AvB

Suppose that in a particular program you are finding a
solution by successive approximations. You will be satisfied
if the result is correct within .0000001, but you will also
be satisfied if the computer has already tried 100
approximations. You want to quit if either of those
conditions is met. The first condition to test might be:

1E-7 ;::= ILAST-NEW

And the other one might be written this way:

COUNT;::=100

An expression that yields a 1 if either of those conditions
is true (i.e. has the value 1) is:

(COUNT;::=100) v 1E-7;::=ILAST-NEW

In APL, as in logic, OR means the inclusive or: that
is, you are satisfied if either one of the conditions is
true, or if both of them are true.

Logical And

The instruction

returns a 1 if and only if both A and Bare 1. That is, AAB
is true only when both A and B are true.

62

Let's return to the example in which we increase a
student's score by 1 if his answer is equal to a right
answer (page 54). Suppose now that this is a two-part
question, and he has to have both parts right in order to
get credit. If the student's two answers are called Sl and
S2, and the correct answers are called Rl and R2, then you
can keep track of his score by the following instruction:

SCORE *- SCORE + (S1=R1) 1\ S2=R2

In a certain jurisdiction, you can vote in school board
elections if you are a citizen, and registered, and either a
parent of a child in the local schools or a taxpayer t:o the
school district. If CIT, REGD, PARENT, and TAXED are
variables which indicate whether those conditions are met
for an individual, you can combine them to test whether he
is eligible to vote by the following expression:

ELIG *- CIT 1\ REGD 1\ PARENT v TAXED

Exclusive OR

In ordinary English speech, "or" often means "one or
the other, but not both." Technically, this is the
exclusive or. APL doesn't have a special symbol for
exclusive or since the "unequal" operator provides this
function. If A is a logical variable (i.e. is restricted to
the values 0 or 1), and B is too, then

can have the value 1 if and only if one of those variables
has the value 1 while the other has the value O. The
operation can be used to test whether any pair of values
is unequal, including numerical values of any size, or even
literal characters. But if the operation is applied to
zeroes ~ld ones, its effect is the same as an exclusive or.

In household electrical circuits, it is common practice
to provide some lamps that may be turned on or off from
either of two different switches--perhaps at the foot or the
head of a staircase. The switches are arranged so that the
current may flow when the two switches are in opposite
positions. In that way, reversing the position of either
switch always reverses the light. If the two switches are

63

called Sand T, then the lamp (represented by the variable
LAMP) is on (has a value 1) when:

LAMP+S~T

Not: Logical Negation

The operator'" takes only one argument, which must be
logical (i.e. must be composed exclusively of zeroes and
ones), and produces a result of opposite truth. That is, the
value of "'0 is 1, while the value of "'1 is O.

Suppose a condition will be satisfied only if A is true
and B is false. That can be tested by the result of this
expression:

In constructing logical expressions
negation of some logical result, it may be
these equivalences:

involving the
handy to recall

Neither A nor B:

Not both A and B:

is equivalent to

is equivalent to

65

11: CONTROLLING THE SEQUENCE
IN WHICH THE LIN~S OF A PROGRAM ARE EXECUTED

"Ordinary" Order of Execution

The ordinary order of execution of the lines of a
program is to start at line 1, then do line 2, then line 3,
and so on until the last line for which there is a
definition. Inside each workspace, there is a line counter
which tells the computer which line of the program it should
execute next. When you call for a fresh execution of a
program, it always starts out with line 1. In the usual
course of events, in order to decide which line to do next,
the computer simply adds 1 to the last value of the line
counter.

In the programs which have been used as illustrations
thus far, work always ended because the line counter moved
up in the usual sequence until it came to a line tha.t ha.d
not been defined. I f a program has four lines, after the
computer executes line 4, it sets its line counter to 5, and
looks for line 5. When it finds that there isn't any line 5,
it concludes that it has reached the end.

Branches

There are many situations in which you want to be able
to tell the computer to go to some other line of the
program, instead of the one that it would ordinarily do
next. For instance, after a particular sequence of lines has
been executed, you might want to have the computer go ba.ck
and do them again with a different set of values. If the
sequence that you want to have repeated starts at line 3,
you might want to be able to tell the computer, "Go back to
line 3." Or, if you want to repeat the sequence starting at
line 3 only if a counter has not reached a particular value,
you might want to say, "Go back to line 3 if COUNT is less
than VALUE, otherwise stop."

An instruction which explicitly tells the computer
which line to go to next is written with a right-pointing
arrow, followed by an expression whose value is the number
of the line that is next to be executed. Such an instruction
is called a branch. The two examples mentioned in the last
paragraph would be written like this:

"-+3
-~3xCOUNT< VALUE

66

The second example, which depends for its effect on
some condition that is tested, is often called a Q9nditional
branch. This and other forms of conditional branch will be
dIsCUssed in a moment ..

Branching Out of a Program

A branch to a line for which there is no definition
always causes the computer to conclude that work on the
program is finished, just as it does if the line counter is
set to a line I greater than the last line of the program.
If a program has five lines, the instruction

-+6

will terminate work on it. So would -+99, or +678. But the
most obvious line number for which no instruction is ever
defined is line O. Hence, if for some reason a program needs
an explicit instruction to end work, the instruction that's
generally used is

+0

Naturally, you don't need to write -+0 if the program comes
to an end after the last line. (AI though no line ever has a
fractional number once function definition mode is ended,
you can't use a branch to a fractional line number even to
end execution of a program.)

Computed Branches

Instead of writing +6 you could just as well use this
instruction:

+2x3

The "go to" arrow means that the calculation on the
right is to be performed, and the result of that calculation
is to be used to reset the line counter for the current
program.

Now suppose you give the instruction:

+3xCQUNTER< VALUE

Thi.s calls for a test to see whether it is true
is less than VALUE. If it is true, then the

that COUNT
expression

67

COUNTER<VALUE has the value 1;
instruction either means "Go to 3"
--1. e. exi t from the program."
prevails depends in any instance
that COUNT is less than VALUE.

otherwise, O. Thus this
or else it means "Go to 0

Which of those meanings
upon whether it is true

The Factorial: An Example of a Program with a Branch

Suppose you want a program to compute factorials. The
factorial of n is the product of the consecutive integers
from I to n. You will need a counter; call it X. You will
also need another variable F, to hold the result as it is
developed. Start with X set equal to I and F also set equal
to 1. (It's all right to write both of those in the same
line.)

V FACTL
[1 J F+X+1

Next increase X by 1. Then respecify F as the product of F
and X.

V FACTL
[1J F+X+1
[2J X+X+1
[3J F+FxX

If N is the number whose factorial is to be computed, you
now need an instruction that says "Go back to line 2 if it
is true that X is less than N; otherwise go to 0."

V FACTL
[1] F+X+1
[2J X+X+1
[3J F+FxX
[4J +2xX<N
[5J V

Here is a sample execution of the program called
FACTL. First you set a value of N; then you call for
execution of the program; finally you ask for display of the
latest value of F.

N+6
FACTL
F

720

68

Program Loops

In the FACTL program, the sequence of lines 2 to 4
is repeated as many times as required. A repeated segment of
a program is called a loop. Whenever you write a program
with a loop, there is some danger that a mistake in the
program will cause the loop to be executed endlessly. For
example, if the instruction on line 4 has requested a return
to line 3 instead of to line 2, X would never be increased.
The computer would return to line 3 indefinitely, because X
would always be smaller than N. In this example, F would get
larger and larger, being doubled at each repetition of line
3. Eventually the program would stop when the size of F
exceeded the capacity of the computer.

Any time the computer seems to be taking longer to
execute a program than you think it should, it is possible
that it is in an endless loop. It is good practice tq use
the interrupt feature (see page 10) to stop it. If all is
as it should be, you can tell the computer to resume where
it left off by entering a branch instruction from the
keyboard; this is discussed in more detail in Chapter 14,
"What to Do When the Program Stops."

The Roots of a Quadratic: Another Example
Of a Program With a Conditional Branch Out

There are various ways of finding the roots of a
quadratic equation. One of the best known goes as follows.
Arrange the equation so that it is in the form

ax 2 + bx + C = 0

Then the roots are given by the formula:

roots = -b ±
2a

Suppose you want to write a program to calculate and
print the values of the two roots. The problem that arises
is this: the quantity b 2-4ac (which is called the
discriminant) may be negative. If the discriminant is
negative, the roots are complex. If you woodenheadedly go
ahead and try to calculate them anyway, yot~ I 11 be in trouble
when you try to take the square root of a negative
discriminant. So you want to test whether the discriminant

69

is negative. For the moment, assume that when you find a
negative discriminant, you want to terminate execution of
the program, but if the discriminant is not negative, you'll
go ahead with the calculation. (You're also in trouble if A
is zero, since that would give you a 0 divisor, but let's
not worry about that since if A is zero this isn't a
quadratic equation.)

Here's an outline of the procedure you can use in a
program to find the real roots of a quadratic. Suppose you
call the program QROOTS.

1. Calculate the discriminant and store it.

2. If the discriminant is negative, go to 0 (i.e.
qui t) •

3. Otherwise, calculate and print the values of the
two roots.

In writing this program, you can find the discriminant
on line 1. Then line 2 is a branch: if the discriminant is
negati ve, go to o. Otherwise, go to 3. The program looks
like this:

\J QROOTS
[lJ DISC+(B*2)-4 xAxC
[2J -+3xDISC'?O
[3J (-B-DISC*Or5)f2 xA
[4J (-B+DISC*O.5)+2xA

\J

If a negative discriminant is encountered with this
program, the computer will simply terminate execution
without doing the calculation. Some procedures which are
more general, and handle both the real and the complex
roots, are discussed in other examples later in the text.

Branch or Continue

Line 2 of the QROOTS program says (in effect) "Go to
o if the discriminant is negative, and otherwise go to line
3." It is more convenient to write an instruction which
doesn't require you to know that the next instruction is on
line 3. You would rather say, "If the branch is not taken,
go to whatever line comes next." You can do that in the
following way. The instruction

-+TEST/ LINE

70

causes a branch to the line number specified by LINE if and
only if TEST is true (i.e. has the value 1 rather than
0). When TEST is false (i.e. is 0), the program continues
with the next line in the usual sequence.

This expression, involving the / sign, is actually an
example of a much more general operation called compression,
which is discussed in a later section. For the moment it is
only necessary to note the way that it is used to provide an
instruction which has the effect of "Branch if the tested
condition is true, but otherwise continue."

Instructions which test whether the discriminant is
negative, and go to 0 if it is but otherwise continue, could
be written like this:

TEST+O>DISC
-+TEST/O

Probably you don't want to create a stored variable
called TEST on one line, and then branch on the next line.
You can instead insert the formula for the condition being
tested right into the branch instruction. However, now you
must put parentheses around the expression for the test, so
that the test is evaluated before deciding the branch:

-+(O>DISC)/O

We can now go back to the QROOTS program and give it
a different line 2, so that a display of the entire program
now looks like this:

\l QROOTS
[lJ DISC+(B*2)-4 xAxC
[2J -+(O>DISC)/O
[3J (-B-DISC*O.5)+2 xA
[4J (-B+DISC*O.5)+2 xA

\l

Here is an example of the QROOTS program in use.
Suppose you need the roots of the following equation:

14x2 - 2x = 18 0 6

Putting it into the form ax2+bx+c=0, you find that

A is 14; B is -2; C is -18.6

71

Because the program presumes that values of A, B, and Care
already in storage, you must enter those values before
calling for execution of the program:

A+14
B+-2
C+-18 06

Then you call for execution of the QROOTS program
simply by typing its name.

QROOTS
1.,22628
-1008342

The Factorial Again: An Improved Version
Using Two Branch Instructions

If
page 67
results:

you try executing the factorial program shown on
with small values of N, you run into some strange

N~-2

FACTL
F

2
N+1
FACTL
F

2
N+O
FACTL
F

2

Something is wrong. The factorial of 1 should be 1. The
factorial of 0 is also defined to be 1. Where is the error?

You will recall that line 4 of the FACTL program
said, in effect, "Go back and mUltiply F by the next integer
if the counter X is less than the number N." But before the
computer ever gets to make that test, it has already
mUltiplied F by X+l, or 2, regardless of the value of N. If
this program is to work properly for all the non-negative
integers, this superfluous multiplication must be
forestalled.

72

The answer lies in putting the test ahead of the loop.
That way, when appropriate, there may be zero repeti tions of
the loop, since the test may cause the computer to skip
before it ever executes the instructions in the loop. The
branch instruction should therefore come right after line 1.
It should say, in effect, "Stop now if X is greater than or
equal to N. Otherwise continue with the instructions in the
loop." Thi s may be wri t ten as:

-+(X"2.N)/O

As you will see by studying the program below, this test,
executed before the loop is entered, is the only test
necessary. The loop is closed by the instruction at line 5
to return to line 2" and test again. Here is the program as
revised:

V FACTL
[1J F+X+1
[2J -+(X2.N)/O
[3J X+X+1
[4J F+FxX
[5J -+2

V

Sample executions of this program now give the correct
results:

N+2
FACTL
F

2
N+1
FACTL
F

1
N+O
FACTL
F

1
N+7
FACTL
F

5040

This method of constructing a loop, with the test at
the beginning, is sometimes known as the "method of leading

73

decisions." While it requires two branch instructions (one
at the beginning and one at the end of the loop), it will
often keep you out of trouble and make for a neater program,
as it does in the case just illustrated.

(It should also be noted that factorial is also
available as a primitive operation in APL, so that, apart
from this exercise, you wouldn't need to write a factorial
program at all. See Appendix A.)

Techniques for programming with loops are discussed
further in Chapter 22.

75

12: ARRANGING THE WAY THE PROGRAM TYPES ITS OUTPUT

Frequently, you will want to write a program in such a
way that the computer automatically types readable output,
without your having to give special instructions each time.
If you get much output printed by the computer, pretty soon
you're going to want some headings to distinguish what is
what. You can instruct the computer to print alphabetic
characters. Then you can arrange these as headings for the
results of a program, or as any other message you may want
to have typed.

Printing Text

Literal text can be entered by using quote marks. If
you type

'THIS IS A SAMPLE OF LITERAL TEXT'

you have entered a quotation. Since you haven't said what is
to be done with the quotation, as usual the computer assumes
that it should be printed. Your dialogue with the computer
looks like this (first your instruction, then the computer's
reply) :

'THIS IS A SAMPLE OF LITERAL TEXT'
THIS IS A SAMPLE OF LITERAL TEXT

The quote marks mean that what you typed between them was a
quotation. They aren't part of the quotation itself, so they
do not appear when the computer types the quotation.

You can store a quotation in the same way that you
store anything else. If you type

X+'IN 1492, COLUMBUS SAILED THE OCEAN BLUE.'

a variable named X is created in the workspace. Its value is
that quotation. If you ask to have X typed, the dialogue
will go like this:

X
IN 1492, COLUMBUS SAILED THE OCEAN BLUE o

Anything that you type between quotation marks is
accepted as Li, teral characters. Quoted text is not executed.

76

Operator signs, variable names, spaces, digi ts ••• if they are
in quotes, they are just so many literal characters, with no
meaning to the computer as names, operators, or numbers. Any
character you can print from the keyboard can be included
inside the quote. The computer will either store this string
of characters, or print it, as you direct. In this way you
can put together captions and headings that will make your
output easier to understand.

A quotation must have a quote mark at the beginning and
one at the end. Once you use one quote mark, everything that
you type after that is a part of the quotation until you
reach another quote mark. This fact occasionally trips an
inexperienced user. He types one quote mark, and then
changes his mind and decides to do something else. He types
what he thinks is an instruction to the computer, and
meanwhile the computer is still compiling the quotation he
started but never finished.

Lines of a program which call for the printing of
quoted text can be used to get a program to print headings.
For instance, in the QROOTS program, ahead of the lines
that calculate and print the two roots, you could insert
lines which call for the printing of appropriate text. Here
is a revised version of that program. Lines 3 and 5 now call
for the printing of headings.

V QROOTS
=1] D1SC+(B*2)-4xAxC
[2] +(O>DISC)/O
[3] 'THE VALUE OF THE FIRST ROOT IS'
[4J (-B-DISC*005)t2xA
[5 J '.THE VALUE OF THE SECOND ROOT IS'
[6J (-B+DISC*005)t2 x A

'l

Here is a sample execution of QROOTS, as revised:

A+14
B+-2
C+-18.6
QROOTS

THE VALUE OF THE FIRST ROOT IS
1.22628
THE VALUE OF THE SECOND ROOT IS
-1008342

77

As a further variation, you can have the program type
ano·ther quotation to indicate what has happened when it
finds that the discriminant is negative. To do this, you
have to make the following changes in the QROOTS program:

1. On line 2, if it is true that DISC is negative,
instead of branching to 0, branch to a line which
contains some suitable quotation.

2. At the end of the program, add that quotation. It
is to be typed only when DISC is negative.

3. When there are real roots, line 6 is still the
last executable line of the program. After the
computer executes line 6, you want it to finish
work without running into the quotation about
complex roots. So you should insert a branch to 0
after line 6.

Here's the revised program, followed oby two sample
executions to illustrate the alternative headings:

\j QROOTS
[1J DISC+(B*2)-4 xAxC
[2J ~(0)DISC)/8

[3J 'THE VALUE OF THE FIRST ROOT IS'
[4J (-B-DISC*Oo5)t2 xA
[5J 'THE VALUE OF THE SECOND ROOT IS'
[6J (-B+DISC*Oo5)t2 xA
[7 J '+0
[8J 'ROOTS COMPLEX; CALCULATION TERMINATED.'

\j

A+10
B+12
C+22
QROOTS

ROOTS COMPLEX; CALCULATION TERMINATED.

A+10
B+-22
C+4
QROOTS

THE VALUE OF THE FIRST ROOT IS
2
THE VALUE OF THE SECOND ROOT IS
0 02

78

Results and Heading Appearing on the Same Line

A neater output is sometimes obtained when the heading
and the result are typed so that they appear on the same
line. This is called "mixed output." A line of a program
which calls for mixed output has the following
characteristics:

1. Different items to appear on the same line are
separated by semicolons.

2. An item within a line of mixed output may be a
variable, a quotation, or the result of an
expression.

3. If blank spaces are to appear between the items,
the blanks must be specifically included as parts
of the quotations. Mixed output printing does not
automatically supply spaces between the items.

4. A line of mixed output may not be used as the
argument of any operator, and may not be stored as.
a single variable.

Here is yet another version of the QROOTS program, this
time written to use mixed output, followed by sample
executions that show the same two problems used on page
76.

V QRDOTS
[lJ DISC+(B*2)-4 xAxC
[2J ~(O>DISC)/6

[3J 'FIRST ROOT: ';(-B-DISC*O.5)+2 xA

[4J 'SECOND ROOT: ';(-B+DISC*O.5)+2 xA

[5J ~O

[6J 'ROOTS COMPLEX; CALCULATION TERMINATED.'
v

A+10
B+12
C+22
QROOTS

ROOTS COMPLEX; CALCULATION TERMINATED.

B+-22
C+4
QROOTS

FIRST ROOT: 2
SECOND ROOT: 0.2

79

13: LINE LABELS FOR EASIER BRANCHING

In each of the examples
introduced thus far, you had to
you were branching to. For
instruction

-+(O>DISC)/6

of a branch instruction
know the number of the line
instance, in writing the

you had to know that the instruction you wanted next was on
line 68 But as you saw in the discussion of inserting a line
in a program, or deleting a line of a program, it is
possible that the instruction which used to be the sixth
one in the program will be moved up or down as lines are
inserted or deleted ahead of it. In that case, you'd have to
rewrite the branch instruction each time so that it always
showed the correct number of the line you want to branch to.

There is an easier way to handle this problem. You can
create a variable which is automatically assigned a value
that is the number of the line at which a particular
instruction is located. When you write a branch instruction,
you write it in terms of that name. If the discriminant is
negative in the QROOTS program, you want the computer to
go to the line that deals with complex roots, wherever that
line may be. Suppose you give that line the name COMP. Then
you write the branch instruction like this:

-+(O>DISC)/COMP

A variable like COMP, whose value is the line number
for a particular line of a program, is called a label. You
show the computer what line the label goes with by typing
the label and a colon in front of that instruction.

If the instruction
message saying that the
you had

at COMP asks for the
roots are complex,

printing of a
where formerly

[6 J 'ROOTS COMPLEX; CALCULATION TERMINA'l'ED 0 '

now, with a label on this instruction, it looks like this:

[6J COMP: 'ROOTS COMPLEX; CALCULATION TERMINATED.'

and COMP becomes a variable whose value is 6.

80

The computer automatically sets the values of labels
each time you leave definition mode for that program, so
that after each revision of a program each label again shows
the correct position of the line to which it is attached.
Because a label is a variable, it is necessary that a label
have a name distinct from the name of any program, or any
other variable in the same workspace.

81

14: WHAT TO DO WHEN THE PROGRAM STOPS

While you enter the definition of a program, the
computer stores the definition, line by line, in the active
workspace. It doesn't make any check to see whether your
definition makes sense. You won't discover whether the
definition is satisfactory until you try executing it on a
few examples. It's a good idea to start by running a problem
for which you already know the right answer. If the
definition is correct, the computer will run through your
program without mishap, and you will get the appropriate
results. But if some of your definition is in error, your
mistake will come to light in any of the following three
ways:

1. The computer stops without finishing work on your
program because it has come across an instruction
that cannot be executed.

2. The computer doesn't stop work on your program in
a reasonable time, probably because you've
mistakenly given it an endless task. If a simple
program doesn't produce results in a second or
two, you'd better press the ATTN key to interrupt
the computer.

3. The program runs, but the result it produces isn't
what it should be. Your definition is acceptable
to the computer, but it isn't what you really
wanted.

The first of these three is probably the most common.
Mistakes of this kind also come to light first, since if the
computer can't execute the instruction at all, it doesn't
get a chance to reveal any of the other kinds of error.

Halt When an Instruction in Your Program Can't Be Executed

If the computer finds that it cannot execute an
instruction in your program, here's what it does:

1. It types an error message.
type of trouble the computer
to execute the instruction.

This identifies the
ran into as it tried

2. It types the name of the program and the number of
the line on which it was working when the trouble

82

was encountered, together with
instruction on that line.

the complete

3. It types a caret to show you how far along in the
instruction it had gone (working through the
operations from right to left) when the trouble
was encountered.

The error message is the computer's report telling you
what type of trouble it has run into. There are ten
categories that you might possibly encounter during the
execution of a program. Here are three of the more common
errors:

Value error means that your instruction refers
variable which has not been assigne~ a value in
workspace.

to a
t.h i s

Syntax error means that your
rules of APL syntax, by such
parentheses, or faLling to show
performed on a pair of variables,
argument for an operator.

instruction violates the
things as mis-matching

what operation is to be
or failing to provide an

Domain/error means that you have given an APL operator
an argument that is outside the domain of values that that
operator can handle. You would have such an error if you
were inadvertently dividing by zero, or trying to do
arithmetic on a literal character.

There is an extensive summary of error messages in
Appendix D. You may want to look through that appendix
briefly, and then refer to it again as the need arises.

A Program Error Doesn't Mean
That Execution Is AllOver

The cure for a great many program errors is to rewrite
the defective instruction. You can do this without having to
abandon execution of the program, and without having to
start over from the beginning.

Whenever the computer encounters an unexecutable line
in a program, it halts the work and prints an error message.
But that doesn't mean that execution is allover. The
execution is suspended for whatever corrections you wish to
make. The computer awaits a branch instruction from you to

83

tell it where to resume work on the suspended program. This
fact has two important consequences.

First, while execution is suspended, you
any calculation. You can display the values
used in your program, or any others.

may perform
of variables

You can enter the definition of a new program, or edit
the definition of almost any program. In particular, you can
usually edit the definition of the suspended program, and
thus correct the mistake that produced the error. (There is
one restriction. You can't edit the definition of a program
whose execution has been started but has not been terminated
or suspended. That situatio~ can only arise if an
instruction in that program calls for another program
execution, and that other program has been suspended. See
the discussion of editing errors in Appendix D.)

Second, sooner or ~ater you should tell the computer
where to resume work on the suspended program, or else
terminate work by the instruction +0. The computer·will wait
indefinitely for your instruction telling it where to
resume. If you decide to save this workspace and resume work
on it another day, the computer will save along with the
workspace the list of programs whose execution is still
pending. You aren't required to dispose of these pending
executions ••• but it's a good idea, since they take up some
space in the workspace and if you don't dispose of them you
may gradually accumulate a large number of them (see the
discussion of workspace full error, Appendix D).

Resuming Execution

If you wish to resume
at the place where work was
and the number of the line
work was halted because
instruction

+3

execution of a suspended program
halted, you enter a right arrow
shown in the error message. If

of an error on line 3, the

causes the computer to resume work where it left off.
Alternatively, you can resume execution at any other line of
the program, by entering a right arrow followed by the
number (or the label) for the line at which you want work to
be resumed.

84

As usual, if you enter the instruction to branch to
zero, or to any line for which there is no definition,
execution is terminated.

Where Was Work Suspended?

If you don't recall what line the computer was working
on when the execution of a program was suspended, you can
ask to see the list of all the programs whose execution is
pending. The system command)6 causes the computer to type a
list of the pending programs, together with the line on
which they are working. Programs that are suspended (i.e.
which will not be resumed until you type a right-pointing
arrow and a line number) are marked with an S.

)1:::.
RBPEAT[7 J
WORK[2J S
AREA[1J S

In the example above, three programs are pending. The most
recently called program appears last on the list; when you
type an instruction to resume execution, it always refers to
the last program on the list.

The programs called WORK and AREA are suspended, but
the program called REPEAT is not. This indicates that REPEAT
has not itself been suspended, but is merely held up by the
fact that WORK is suspended. If and when the execution of
WORK is ever completed, execution of REPEAT will resume
automatically. Evidently the execution of WORK was initiated
not by an instruction that you entered directly from the
keyboard, but by the instruction at line 7 of REPEAT.

Area of a Segment of a Circle: Illustrating
Procedure for Correcting a Mistake in a Program

Suppose you have a program called AREA, which
calculates the area of a segment of a circle in terms of a
constant called PI, and the variables ANGLE and RADIUS. Here
is the definition:

'V AREA
[1J A+(PIxRADIUS)*2xANGELf360

'V

Notice that there are two mistakes: first, ANGLE has been

85

mistakenly spelled ANGEL; second, the parentheses are in the
wrong place. They should surround the expression RADIUS*2.
The first mistake makes the line impossible to execute
(unless there happens to be a value for ANGEL in the
workspace). The second mistake won't prevent execution, but
it will make the result unreasonable.

v

Suppose you call for execution of this program called
AREA, starting with an easy problem, when the radius is ten
and the angle is 90 degrees:

RADIUS+10
ANGLE+90
AREA

The computer encounters the mistaken reference to ANGEL,
which (let's suppose) has never been defined. It types the
following error message:

VALUE ERROR
AREA[1J A+(PIxRADIUS)*2xANGELf360

A

As you look at the display of the offending line, you
realize that ANGLE is misspelled. So you immediately reopen
the definition and correct that misspelling. First you ask
to see what is on line 1, and then you reenter it, with the
misspelled name corrected:

VAREA
[2J [10J
[1J A+(PIxRADIUS)*2xANGELf360
[1J A+(PIxRADIUS)*2xANGLEf360
[2J V

Now, to resume work on the program you type a branch
instruction telling the computer to resume work on the line
at which work was halted, in this case, on line 1:

+1
VALUE ERROR
AREA[1J A+(PIxRADIUS)*2 xANGLEf360

A

Another
variable PI.
definition,

error: no value has been assigned for the
This error doesn't require you to reopen the

since PI doesn't get its value from an

86

instruction in the program. You may enter the value
directly, and again resume work on line 1:

PI+3.14159
-+1
A

50605

The value of A seems remarkably small. A circle ten
units in radius has an area of 314.59 square units, so a
quarter of that should be around 78. Something else is
wrong. You return to the definition of AREA. Only the radius
should be squared. The way the definition is written now,
the quantity PI-times-RADIUS is being raised to the power
2-times-angle-divided-by-360.·A slightly-too-large quantity
is being raised not to the second power, but to a power that
is actually less than one. Once again you reopen the
definition and make the correction.

'VA REA
[2J [1J A+PIx(RADIUS*2)xANGLEf360
[2 J 'V

This time there is no unfinished execution of AREA
waiting to resume work; you must start a new execution. But
you may use the values of PI, RADIUS, and ANGLE that are
still stored in the workspace, without reentering them:

AREA
A

78.5398

This time the definition is correct. You may want to
save the workspace containing the corrected definition.

Tracing the Execution of a Program

If a program that involves several lines of
instructions, or the same lines repeated through several
iterations, comes out with a result that isn't what you
expected, it is useful to check up on what was done on
certain lines of the program. This is called tracing the
execution of that program. The instruction

Tl5.WORK + 3 4 7

means that, until you instruct otherwise, the computer

87

should trace the execution of the program called WORK on
lines 3, 4, and 7. When the computer traces, each time it
executes a traced line, it prints the name of the program,
the number of the line, and the result of that instruction.

To discontinue tracing, you type

T~WORK+-O

Trace Can Be Controlled by the Program Itself

A trace instruction can be made part of a program. For
instance, you might want to trace the execution of line 5 of
the program called WORK if and only if some variable B has a
value greater than 1.5. That could be done by the following
instruction within the program:

T~WORK+-5xB>1.5

If you change the definition of a line within a
p r'oqzam , the revision will also discontinue tracing of that
line. So after revising some lines within a program
definition, you should restate which lines you want to have
traced.

89

15: SYSTEM COMMANDS

APL is a language for describing mathematical pro­
cedures. APL\1130 is a system for executing procedures
wri t.t.en in the APL language. Most of what we have discussed
so far has dealt with the operators of the APL language, and
how you may define and execute programs using those
operators. In addition to using the APL language itself, you
also need to be able to give instructions directly to the
computer. These concern such practical matters as signing on
and off, saving your workspace for future use, borrowing
variables or programs from other libraries, or establishing
passwords that lock your account or your workspaces against
unwarranted use by others. None of these matters is part of
a mat.hematii.ceL procedure, and so none of them is dealt with
in the APL language. However, the APL\1130 System has a
family of instructions called system commands, by which
these and similar instructions to the computer are given. A
few of them have already been introduced. This chapter pulls
toge'ther some of the other system commands you are likely to
need. You won't want them all at once, of course, but you
should read through this chapter and come back to it as
specific needs arise later.

Distinguishing System Commands from Other Instructions

A system command always starts with a right
parenthesis. The right parenthesis was selected because no
conceivable expression in arithmetic starts with a right
parenthesis, and thus system commands can be readily
distinguished from other instructions. Anything that you
type which starts with a right parenthesis is treated as a
system command.

A system command can never occur as part of a program.
Whenever you enter a system command, it is always executed
at once, even if you enter it in the midst of a program
definition.

Signing On

Signing on has already been described in Chapter 2. In
a way, it is the simplest of the system commands, since it
consists of nothing but the right parenthesis and your user
number. A sign-on will only be accepted if you aren't signed
on already. If you mistakenly type another sign-on after
you're already signed on, the computer rejects it as
an "incorrect command."

90

If you have established a sign-on password, after your
user number you must type a colon and then the password.

Before your sign-on is accepted by the computer, you
cannot do any work.

Signing Off-
When you have finished working, you should sign off.

The standard sign-off is simply to enter the command)OFF,
to which the system responds like this:

)OFF
SIGNED OFF

If you're working from a terminal over telephone lines, once
you sign off the computer will also cause the telephone
connection to be broken. If you're working at the 1130
console, the keyboard will be left unlocked, ready to accept
a new sign-on.

Es"tablishing a Sign-On Password

When you sign off, you may also, if you wish, establish
a password which will thenceforth be required whenever you
sign on. You do this in the following way. At the end of the
sign-off instruction you type a colon followed by any single
word. For instance, the password SHAZAM would be established
by signing off like this:

)OFF:SHAZAM

From now on, whenever you sign on, you will have to type not
only a right parenthesis and your user number, but also a
colon and the password SHAZAM. This password remains in
effect until, at some subsequent sign-off, you specify some
other password. If you sign off with a colon but you don't
indicate a password, that will mean that from now on no
password is needed (and the colon isn't needed either).

Saving a workspac~

After you have done some calculations or defined some
programs, you may want to suspend work on that topic and set
it aside until some later time or some other day. The system
command)SAVE causes the computer to make a complete copy
(on magnetic disc) of everything that's in your active

91

workspace at the moment you give the save command. The
entire contents of the workspace is saved: programs, stored
data, the list of programs awaiting execution--all of it.

The save command does not
workspace, but causes the
duplicate of it.

alter what is in your active
computer to save an exact

When a workspace is saved, you must give it a name.
This name will be used to locate it when you subsequently
ask to retrieve a copy of the saved workspace. The command

)SA VE A eCT

instructs the computer to make a copy of your currently
active workspace, and store it under the name ACCT. The
computer acknowledges that the workspace has been saved like
this:

)SA VE A CCT
ACCT SA VED

The name of a workspace can be any single word which
starts with a letter of the alphabet and has any letters or
numerals in the remainder. The computer only reads the first
six characters in a workspace name.

The collection of all of the workspaces that you have
saved is referred to as your library of saved workspaces.
The only workspace that you may save is the one that is
currently in your own active area of the computer. You may
save only into your own library of saved workspaces. There is
no way for you to save a workspace so that it becomes part
of some one else's private library. (However, it is possible
under some circumstances to save your active workspace into
a common library, that does not belong to any individual
user.)

Getting Back a Saved Workspace

In order to use a previously saved workspace, you have
to give the system command to load that workspace. This
causes the computer to load into your active area a complete
copy of the entire saved workspace. Your active workspace is
now restored so that it is exactly the way it was at the
moment the workspace was saved. Anything in the acti ve area
before you gave the load command is replaced by the material
from the saved workspace.

92

After a load command, the computer confirms that a copy
of the saved workspace has indeed been loaded. Like this:

)LOAD ACCT
ACCT LOADED

You may load a saved workspace into your active area as
often as you wish. Each time, the active area will be
restored so that it is again exactly the way it was at the
moment when that workspace was saved.

Getting a List of the Workspaces You Have Saved

The collection of all the workspaces that you have
saved is called your library. The system command

)LIB

causes the computer to type the names of the workspaces
currently stored in your private library.

Occasional users will probably not require a library of
more than one or two workspaces. Heavy users may well need
more. Each user is assigned a ration. which is the maximum
number of workspaces he may save. The system won't let you
save another workspace if your ration is used up. If there's
no room in your library for something you want to save, you
should drop a saved workspace, or ask the manager of the
APL\1130 System you are using how to arrange for a larger
library.

Dropping a Workspace From Your Library

You can drop a saved workspace from your library by the
system command)DROP followed by the workspace name. The
system confirms that the workspace has been dropped:

)DROP ACCT
ACCT DROPPED

When a workspace is dropped, it is removed from the
magnetic disc file of saved workspaces. This has no effect
at all on whatever is in your active area. Note also that
you do not need to have the dropped workspace in your active
area at the time it is dropped, unless you actually want to
save it with a different name.

93

Loading a Workspace from a Common Library

An APL\1130 System may have several common libraries in
which have been stored workspaces that contain programs or
data that may be generally useful to many users. Anyone may
load one of these workspaces and thus acquire the programs
or data stored there. Or a group of users whose work is
related may use this means for having some workspaces that
can easily be loaded by any of their members.

To load
you type the
the common
instance, if
NEWS, you can

a workspace from one of the common libraries,
system command)LOAD followed by the number of
library and the name of the workspace. For

Common Library 1 contains a workspace called
get a copy of it by the following command:

)LOAD 1 NEWS
NEWS LOADED

Loading a Workspace
From the Private Library of Another User

You can load a workspace from the private library of
another user only if he has furnished you his library number
(i.e. user number) and the name of the workspace. Private
library numbers are regarded as confidential, and can not be
obtained from the system. On the other hand, if you're on
such good terms with another user that he wants to give you
his library number, you may then load a workspace from his
library by entering a load command followed by his library
number and the name of his workspace. If his number is 666,
then you load his workspace called RECORD by the following
command:

)LOAD 666 RECORD
RECORD LOADED

Notice that even if he permits you to load a workspace
from his library, this merely gives you a copy of his
workspace, while leaving his saved version inviolate.

Revising a Workspace You've Saved

After you've loaded a workspace from your own private
library, you may then re-save it under the same name that it
had before. The most recent version replaces the earlier
version in storage. In this way you can revise or update a
workspace that you've saved.

94

Loading a Workspace and then
Saving it Under' a Di fferent Name

You can load a workspace (from your own library or from
anywhere else) and then save it as part of your own library
under a name of its own provided that the following
conditions are met:

1. You haven't used
workspaces.

up your quota of saved

2. The name you propose
already in use as the
private library.

for this new workspace isn't
name of a workspace in your

This restriction prevents
replacing one of your saved
different workspace.

you from
workspaces

accidentally
with another

Clearing the Active Workspace

If, after doing some work, you wish to start over with
a new, blank workspace (such as you get each time you sign
on), you enter the command) CLEAR. The entire contents of
your active area is replaced by a new, blank workspace.

Diagram Summarizing Information Flow
Between You, Your Active Workspace, and Saved Workspaces

The diagram on the facing page represents the flow of
information between you and the computer. It summarizes the
following points:

1. You can see or use only programs or data that are
in your currently active workspace.

2. You can save only what is in your currently active
workspace.

3. You can save only into your own library (except
for the special case in which you may save into a
common Li.brary) •

4. You can load into your active area from your own
library, from a common library, or (provided you
have the necessary information) from the library
of another user.

95
APL\1130 DATA FLOW AND MEMORY STRUCTURE

I
I

r
)SA VE WSNAME

•)LOAD WSNAME
C

[-

-
I-

, '": ~
,~ \~===~r-.

:i\'\
II \1======
II
I'
• I YOUR TYPEWR ITER
.1 (AT I 130 CONSOLE
.: OR AT 2741 TERMINAL)
'I
'1
••II
.'d---------....., I

It

YOUR ACTIVE WORKSPACE

For WSNAME, substitute appropriate workspace
name.

For 6, substitute appropriate c ornrn on library
number.

For 12345, substitute appropriate user number.

YOUR PRIVATE LIBRARY

r
r

1-

-

A COMMON LIBRARY

ANOTHER USER'S PRIVATE LIBRARY

I

64/
:&'4'4~...

.<7<? r
r-.-li...--------....

Entire workspaces

KEY:

Instructions
or data

1-
1-

1-

97
PART II

16: VECTORS:
PARALLEL PROCESSING OF THE ELEMENTS OF ARRAYS

In science or business, calculations frequently involve
not just one number but a whole array of them. APL gets much
of its power and simplicity from its approach to the
processing of arrays.

1. A single name can stand for an entire array of
values.

2. The basic operations which apply to single values
can be applied with equal ease to the processing
of entire arrays.

A two-dimensional array is called a matrix; any element
within it may be identified by the row and the column in
which it is found. A one-dimensional array is called a
vector. In this primer the discussion is generally limited
to vectors.

A vector is one-dimensional in the following sense: the
various numbers or characters that make up its elements are
arranged in a single chain. Any element can be identified by
its position in the chain. Since a vector has only one
dimension (its length), a single index-number suffices to
identify any element within it, by specifying how far along
from the beginning that element is located.

Entering a Vector of Numbers

If you enter

A+1 2 05 7 11

A is specified to be a vector of four numbers. Each of those
numbers is an element of the vector A. As you enter the four
numbers, you have to type them with at least one space
between them. Whenever you enter numbers separated solely by
spaces (that is, with no operator sign between them) they
are assumed to be consecutive elements of a vector. This
applies only to numbers; you can't do it with variables.

Notice that you don't have to say in advance that there
are going to be four elements in the vector called A, or
even that A is going to be a vector. The computer notices

98

that you have entered four values for A, and automatically
makes A a four-element vector.

If you ask to see what has been stored under the name
A, "!:he computer responds by typing all of the elements, like
this:

A
1 2 05 7 11

Parallel Processing of Vectors

If A is a vector of four numbers, and B is another
vector which also consists of four numbers, then the
instruction A+B causes the computer to add the first number
in A to the first number in B, and the second number in A to
the second number in B, and so on. Four separate additions
are performed, and so the result is also a vector of four
numbers. The four additions are done in parallel fashion; as
far as you can see, the results to the four separate
problems are obtained simultaneously.

B'+-1 0 20 30 40
A+B

11 22.5 37 51

The same sort of element-by-element parallel processing
can be obtained with any of the other arithmetic operators.
For instance:

81

19

10

3 5 9 * 4 3 2
125 81

BL19 20 21 22
20 30 40

AxB
50 210 440

fA
1 0.4 0 0142857 000909091

LA
1 2 7 11

(JjB
2.30259 2.99573 3 04012 3.68888

99

Using Parallel Processing
In Some of the Problems Introduced Earlier

On page 32, we presented a short program to calculate
and print F, the focal length of a lens, as a function of
the following variables:

N, the refractive index of the glass
T, the thickness of the lens
RI and R2, the radii of curvature

The example on page 34 shows how this program calculates a
value for F, provided that the values of the variables N, T,
RI and R2 are already specified in the workspace. That very
same program, without any change, can just as well calculate
any number of F's in parallel, provided now that N, T, Rl,
and R2 are arrays of the same size. For instance, here is
an example in which N, T, RI and R2 are five-element
vectors. Because those variables are five-element vectors,
the five focal lengths are calculated simultaneously, as
another five-element vector. (This same program could just
as well handle vectors of any length, or matrices, if that's
what you should need.)

N + 1.32 1. 32 1 032 1 • 32
T + . 65 .65 .65 • 65
Rl + 8. 1 8. 2 8. 3 8.4
R2 + 7 . 29 7.38 7.47 7 . 56
FOCAL

12.1142 12.2623 12.4102 12 05582

In similar fashion, the DIESEL program can process any
number of efficiency problems at once, provided the
necessary input variables are vectors of compatible length.
Here's a sample showing three done at once:

R + 8. 5 90 7 10. 9
V3 + 22. 8 25 32
V2 +140 143 145
GAMMA + 1. 35 1.38 1.42
DIESEL

0.61772 0.663032 0.70742

Vectors Must Have Matching Lengths

In the last paragraph, we remarked that the various
vectors must be of compatible length. If you enter an

100

instruction such as the following:

1 2 3 + 17 18 19 20

the computer finds three elements in the firs·t vector, and
four elements in the second. Which element is supposed to be
matched with which? The problem is ambiguous. The computer
cannot proceed, so it types the following error message:

1 2 3 + 12 18 19 20
LENGTH ERROR

1 2 3 + 17 18 19 20
A

Generally speaking, whenever an operation
performed on two vectors, the vectors must have
length (i.e. the same number of elements).

Extending a Single Number
To Match the Length of a Vector

is to be
the same

Ordinarily, when an operation is performed on two
vectors, they have to be of the same length. But there is
one important exception to this rule. The exception occurs
when one of the operands is a vector but the other operand
is a single number. Whenever a single number enters into an
arithmetic operation with a vector, the single number is
extended to match the length of the vector. For instance, if
you enter

1 3 5 7 9 + 2

the computer finds that one argument of the addition is a
vector of five elements, while the other argument is the
single number 2. It treats the instruction as if it were

135 7 9 + 2 2 2 2 2

In effect, the single number 2 is replicated until it is a
vector of the same length as the vector 1 3 5 7 9. Here are
some examples of operations involving a vector and a single
number.

Take the square roots of nine numbers simultaneously:

2 4
1 041421 2

9 16 25 36 49 64 83 * 0.5
3 4 5 6 7 8 9.11043

101

Convert four angles in degrees to radians:

1 15 22.5 45 x 2xPIt360
0 00174534 0.261799 0.392699 0.785397

Is it true that some single number stored under the name C
is divisible by each of five prime integers?

C+20937
0=3 5 7111C

1 010

The single number B divided by each of the four elements of
the vector H:

B+28
H+Oo014 9E 11 3.5
BtH

2000 3 011111E11 8

Two raised to each of the powers 0 through 12:

2*0 1 2 3 4 5 6 7 8 9 10 11 12
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

The largest integer whose square is less than or equal to
10, 20, 30, 40, 50, 60, 70, 80, 90, and 100:

L10 20 30 40 50 60 70 80 90 100*.5
3 4 5 6 7 7 8 8 9 10

The frequencies of all the semi tones in the octave starting
with middle C (whose frequency is 262), rounded to the
nearest integer:

L0 05+ 262 x 2 * 0 1 2 3 4 5 6 7 8 9 10 11 12 t12
262 278 294 312 330 350 371 393 416 441 467 495 524

To make quite clear the way the computer extends a
single number to match the dimensions of an array, it may be
useful to examine that last example in detail. The first
operation to be executed is, as usual, the rightmost one. It
is a division. The dividend is a vector of thirteen
elements, the numbers 0 through 12. The divisor is the
single number 12. So the computer replicates the number 12
until there are thirteen of them. Then it executes the
thirteen divisions, producing thirteen quotients.

102

The next operation is exponentiation. The left argument
is the single number 2, but the right argument i.s 'the
13-element vector of quotients arising from the divisi.on. So
tile 2 is replicated until it is also a l3-element vector of
25, and then the thirteen exponentiations are executed,
producing thirteen results.

The next operation is multiplication. The left argument
is the single number 256, while the right argument is the
vector of thirteen results from exponentiation. Once again
the single number is replicated to match the length of the
vector, the thirteen multiplications are performed, and
thirteen products found.

The next operation is addition. Its left argument is
the single number .5, and its right argument is the vector
of products resulting from the last operation. As before,
this produces a vector of thirteen results.

The computer reaches- the last operation:
the floor of the thirteen results coming from
Once these thirteen integers are found, there
instruction telling what to do with them, so
prints them.

Parallel Processing Requires All the Elements
To Be Treated in the Same Way

it must take
the addition.
is no further
the computer

We've mentioned two programs that were originally
written to work on single numbers, but which turn out to
work just as well on vectors of numbers. This depends on the
fact that each of the elements in those vectors was treated
in the same way. It isn't always obvious how this can be
done.

In the program to find quadratic roots, the first step
was to find a value for the discriminant (b2-4ac) and store
it under the name DISC. But after that the program did
either of two different things, depending upon whether DISC
was found to be positive or negative. If you were to give
this program a whole vector to work on at once, DISC would
be a vector. Some of its elements might be positive and
others negative. They would generate a whole vector of line
numbers to which the program should branch. However, it
isn't possible to branch to several different places at
once, and therefore the program would not produce the
results you want.

103

To use parallel processing of vectors, you have to have
a procedure that can be applied uniformly to all of the
elements in a vector. Even if some e Lemerrt.s of the vector
must be treated in one way and others in another, it is
often possible to devise a single procedure which has that
effect. In the next paragraph, the same problem is handled
first by branching, and then by a formula that applies a
single procedure to all the elements of a vector.

Adjusting a Formula To Facilitate Work with Vectors

During 1967, New York State gave the following formula
for income tax on a weekly paycheck. P is the pay; E is $13
for each exemption. (Although the State didn't say so,
presumably the tax is rounded to the nearest penny, and is
never negative, even if you have little pay and many
exemptions.)

Net Income $350 or less: Tax=(.018+.000105(P-E)) (P-E)-,.48

Net Income Exceeds $350: Tax=.09(P-E)-12.80

If you need a program- to handle only one person's tax,
you could write it with a branch. (To simplify rounding,
this program treats income in pennies rather than in
dollars.) In this program, EX is the number of exemptions,
PAY is the amount paid, TI is the taxable income, and T is
the amount of tax owed.

'V TAX
[1J TI+PAY-1300xEX
[2J +(TI>35000)/OVER
[3J T+orLo.5+-48+TIxO.018+TIx1005E-6
[4 J +0
[5J OVER: T+orLo.5+-1280+TIxO.09

'V

This program has two separate instructions (line 3 and
line 5), only one of which is executed in any use of the
program. The branch instruction at line 2 decides for any
single' instance which of them will be executed, 3 or 5.

To take advantage of vector operations, you need a
single formula which works for any execution, so that no
branch is necessary. Suppose you calculate the tax rate by
mUltiplying the alternative rates by 0 or 1, depending on
whether the taxable income is or is not over $350. This is

104

done in the program called TAXES. The variables EX, TI, and
PAY have the same meaning as before. HI has the value 1 for
a person who is in the high income bracket (taxable income
over $350.00), and 0 otherwise. LO is the negation of HI.

'V TAXES
[1J LO+~HI+3SOOO<TI+PAY-1300xEX

[2J T+orLo.s+(HIx-1280+TIxO a09)+LOx-48+TI xO.018 x1.0SE-6
'V

Line 1 of TAXES may be read this way: LO is the
negation of HI, which is the truth of 35000 is less than TI,
which is PAY minus 1300 times EX.

Line 2 computes the tax as the sum of two quant.Lt.Lea •
The one within parentheses will always have the value 0
whenever income is low, since the values are all multiplied
by HI, and that will be 0 for all persons who are not in the
high income bracket. The other quantity comes from the
expression to the right of the parentheses. Here the values
will always be 0 for anyone who is not in the low bracket.
When the values are added together, for any individual, the
component that isn't multiplied by 0 should be his correct
'tax.

Whenever they are asked to calculate the tax for only
one person, these two programs give the same answer. But
when they are asked to calculate a whole vector of taxes,
the first program, called TAX, will have to decide its
branch solely on the basis of the first element of those
~~ctors. This may be inappropriate for the other elements,
and so answers ot.her than the first may be wrong. The second
program, called TAXES, does not involve a branch, and can be
applied correctly to arrays of any size.

A Vector in a Branch Instruction

Whenever the value to the right of a right pointing
arrow is a vector, the computer branches to the value of the
first element of the vector, and ignores the rest.

105

17: "REDUCING" A VECTOR:
APPLYING THE SAME OPERATION TO ALL THE ELEMENTS

It is often useful to have the sum of all the elements
in a vector, or the product of all of them, or the maximum
of all of them, and so on. APL has a simple procedure for
applying the same operation cumulatively to all the elements
of a vector. This operation is called "reduction. II It
reduces a vector of numbers down to a single number that
represents their sum, their product, their maximum, and so
on, as the case may be.

Summation

In conventional notation, the capital sigma (Greek for
S) means that you are to take the sum of the specified
members of an array. To sum them all, you have to specify
that the summing starts with the first element and then goes
on summing the consecutive elements until it gets to the
last one. You write it like this:

n

In APL, you can sum all the elements of a vector called
A (regardless of how few or how many elements A has) by
typing:

+/A

The / sign means that the operation on the left of it is to
be applied to all the elements along the last dimension of
the array on the right. Since vectors have only one
dimension anyway, this means summdng all the elements. Thus,
if A is a vector, like this:

A+1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

then +/A is executed by the computer as if it were

1+2+3+4+5+6+7+8+9+10+11+12+13+14+15

When you find the sum of the elements of A, your dialogue
with the computer goes like this:

+/A
120

106

Notice that you don't have to tell the computer the
dimensions of A. It reduces the last dimension by applying
tile operation all the way along that dimension; when the
elements of A are arranged in one dimension, in a vector,
the computer finds the sum of all of them, for however many
there are.

In speaking, +IA is read as "plus reducing A," or "plus
over A," or simply "the sum of A."

Product

In conventional notation,
elements in a vector is written
for product) :

n

the product of all of the
with the Greek letter pi (p

In APL, you get the product of all of the elements of a
vector called A by entering:

xlA

That is read as "times over A," or "the product of A." If A
has values as follows:

A+1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

then the computer treats x I A as if Lt; were:

Here's how you get the product of all the elements of A:

xlA
l. o 3 0 7 6 7 E 1 2

Maximum Reduction: Looking for the Largest

To select the single largest element in a vector, you
reduce the vector by the maximum operator, like this

riA

selects the
vector. For
of the first

107

If BALDUE is the vector of the balances due fo:r all of
the customers of a store,

BALDUE+62.15 127 4 042 18.65 814.11 76.42 118.50

r/BALDUE gives the amount owed by the customer who has the
biggest bill.

r /BALDUE
814.11

Minimum Reduction: Looking for the Smallest

In similar fashion, L/VECTOR
(algebraically) smallest element from a
instance, if ROOTI contains the vector of all
roots of a set of equations,

ROOT1+0.4815 0085236 16.442 0.000625 4 3.17215

L/ROOT1 selects whichever value is the smallest.

L/ROOT1
4

OR Reduction: Looking for "Any"

Suppose you need to know whether a particular value
exists anywhere in a long vector. Suppose, for instance, you
want to know if any element of the vector V is equal to the
single number Q. If you type

V=Q

you will have a vector of zeroes and ones indicating for
every element of V whether or not it is equal to Q. You
don't want to examine all those zeroes and ones: you want to
reduce them to a single result, either 1 or 0, by applying
the logical OR operation so that it puts an OR between each
of the elements:

OVOVOVOVOVOV1VOVOVOVOVOVOV1VOVOV1VOVOVOV1VOV1VOVO

Thus the instruction that you need is typed like this:

v /V=Q
1

108

The result is 1 if there is a 1 anywhere in that vector,
and 0 if and only if every element is o.

Suppose N is a vector of integers. You want to know if
any of them is a perfect square. If an element of N is a
perfect square, then its square root is an integer. In that
case, rounding the root off to the nearest integer won't
make any difference. Then, if you square the rounded-off
roots of N, wherever an element of N was a perfect square,
you s~ould be able to get back to the original value of N.
The following expression tests to see if that condition is
met for any elements of N:

N+103 117 142 121 135 176 149 169 128 156 118 124 133
'v / N=(LN* 0 5,) * 2

1

And if you need to know not just whether any of them
are perfect squares, but how many, you can find that by
reducing the expression N = (LN*Oo5)*2 by plus instead of
OR:

+/N=(LN*O.5)*2
2

AND Reduction: Looking for "All"

Suppose you want to know if every one of a set of
equations has real roots. The vector of discriminants for
these equations has been stored as the variable DISC. Then

DISC'?:. 0

is a vector of zeroes and ones, indicating for each element
of DISC whether it is true that DISC is equal to or greater
than O. The operation AND placed between every element will
return the result 1 if and only if every element is 1, and
otherwise O. Thus to find out if the test is true for every
element of DISC, you enter:

A/DISC'?:. 0

Suppose you have a vector called KEY, and anoche r
vector called LOCK. Both vectors have the same length. You
need to know whether every element of KEY is equal to the
corresponding element of LOCK:

A/KE'Y=LOCK

109

KEY+ 1.01 1.763 1.808 1.2346 1.2272 1.8095 1.1
LOCK+1.01 1.763 1.898 1.2346 1.2272 1 08095 1.1
A/ KEY=LOCK

o

Evidently at least one of the elements of KEY does not match
an element of LOCK.

Example Using the Sum of Products:
Price Times Quantity Ordered

Suppose that PRICE is a variable which contains the
pri.ce list for the various items sold by a store, and Ql and
Q2 are vectors indicating the quantities of the various
items ordered by Customer 1 and Customer 2. Then the total
bill for Customer 1 is the sum of the product of PRICE and
Ql, while the total bill for Customer 2 is the sum of the
product of PRICE and Q2.

56 .. 59

57.67

PRICE + 066
Q1 + 0
Q2 + 12
+/Q1 xPRICE

+/Q2xPRICE

1.40
o
7

27.10
2
o

2.39
1
5

14 000 7.60
o 0
o 0

8 045 2.80
o 0
o 10

The Area Under a Curve

One simple approach to finding the area under a curve
is to divide it into a great many small trapezoids and then
find the sum of the areas of all of them. Suppose you want
to find the area under the curve produced by some function F
of X for all the values of X between 0 and 1. You might get
a suitably fine division by splitting that interval into 100
parts. Counting both end points, that makes 101 values.
Suppose now that you have stored under the name FX the
vector of the 101 values of F of X as X varies from 0.00 up
to 1.00 in steps of .01. The area of anyone of the
trapezoids is the average of the two values of FX that bound
it, times the width of the interval, which is .01. You don't
actually have to average all those adjacent pairs; you can
get the same effect by simply using FX times the width,
provided that you first divide the first and last elements
of FX by 2. Suppose that D is a vector whose first and last
elements are 2, with 99 ones in between. Then you get the
area under the curve by the instruction:

AREA + +/FXxWIDTHtD

III

18: GENERATING ARRAYS
AND FINDING THEIR DIMENSIONS

,As you have seen, in APL, ari thmetic operations apply
not only to single numbers, but also to entire arrays.
Array-handling requires a variety of manipulations for which
conventional arithmetic makes no provision. Therefore, in
addition to the arithmetic operators (most but not all of
which have been introduced) APL includes several other
operators specifically designed for manipulating arrays.
They can generate an array of a given size and structure,
tell you the size of an array, pick out certain elements
from an array, find where particular elements are located
within an array, selectively throwaway some elements and
keep others, and so on.

Generating an Array by Restructu~ing

In order to build an array, you have to specify two
things:

1. The structure that the array is to have: the
number of dimensions, and the length of each.

2. The values that are to be assigned to each of the
elements of the new array.

The APL operator which restructures an array (or a
single element) to form a new array with a new structure is
rho, the Greek form of the letter R, which looks like this:

. P'. The restructuring operator p is dyadic. The left argument
determines the structure of the resulting array, and the
right~ argument provides the values for the various elements.
As the left argument of p you enter one number for each of
the dimensions to be generated, indicating the length that
that dimension is to have. Since for the time being we are
limiting the discussion to vectors, which are one­
dimensional arrays, in the examples p will have only one
number as its left argument.

The values of the elements of the new array are taken
from whatever values appear as the right argument of p. The
instruction

7pA

means that a seven-element vector is to be generated. Its
seven values are to be supplied from whatever values are

112

found stored under the name A. It doesn't matter whether A
is an array, or what structure A has--just so long as it has
at least one value that can be used in the new array. If A
has more than seven elements, just the first seven are
taken. If A has fewer than seven elements, its elements are
repeated as often as needed to provide seven entries in the
new vector. The following examples may make this clear:

7p 1 2 3
1 2 3 1 2 3 1

2p 1 2 3
1 2

10p1.3
1 . 3 1 • 3 1. 3 1 • 3 103 1 • 3 1 • 3 1 • 3 1 • 3 1 • 3

Vectors of Li teral cha.raot.era

On page 75, we mentioned that the value of a variable
can be quoted alphabetic letters (or numerals, or any sign
from the keyboard). Although no mention of it was made at
the time, a quotation with several letters in it is in fact
an array. Just as a one-dimensional array of numbers is a
numerical vector, so a one-dimensional array of literal
characters is a literal vector. Each element of a literal
vector is a single literal character. When the computer
prints this sort of a vector, the elements are typed without
any extra space between them. They are typed without
additional spaces for two reasons:

1. Since an element of an array of literals can only
contain one literal character, there isn't any
need to insert spaces to distinguish where one
ends and the next begins.

2. Spaces which occur as part cfa quotation are
characters, just like any other character that can
be entered from the keyboard.

The restructuring operator p can also be used to
generate vectors of literal characters. For instance:

6p 'A '
AAAAAA

15p'THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG'
THE QUICK BROWN

113

A vector of literal characters can include numerals or
operator signs as well as alphabetic letters.

60p'++ * ++ 0 '
++ * +of- 0 ++ * ++ 0 ++ * ++ 0 +of- * +of- 0 ++ * ++ 0 ++ * ++ 0

An Array Can Have Zero Length

When you use p to generate a vector, the number of
elements you ask for (i.e. the length of the vector) can be
anything you want, provided that it isn't negative, isn't
fractional, and doesn't generate a vector so large that
there's no room for it in the workspace. In particular, it's
all right to have a vector of length zero. This vector has
no elements at all. If you ask to see such a vector printed,
there is nothing to see. The computer prints a line on which
nothing is writte~: a blank line.

A quotation which has no letters in it is sometimes
useful when you want a program to insert a blank line
between some portions of the typed output. You can get a
blank line typed if one instruction in your program simply
calls for the printing of a vector of zero letters (or zero
numbers, for that matter). Typing two quote marks side by
side, with nothing between them, will also generate a vector
of zero length. The following expressions are equivalent:

, , Op , Op 'A ' Op 0 OpA Op1E6

Generating Consecutive Integers

The operator 1 is called iota, which is the Greek form
of the letter I. Like most other APL operators, 1 has both a
dyadic and a monadic use. The dyadic (i.e. two-argument) use
is explained in Chapter 20. The monadic use of iota (i.e.
with a right argument but no left argument) generates
consecutive integers. The right argument must be a single
positive integer.

112
1 2 3 4 5 6 7 8 9 10 11 12

One way to think of this use of iota is to say that it
generates all the index numbers for a vector of a given
length. Index numbers are always consecutive integers. The
first element of a vector is element number 1, and similarly
the consecutive integers generated by iota also start with

114

one. The right argument of
number; that is, iota can
integers at a time.

iota must always be a single
only generate one vector of

2.5 x112
2.5 5 7 . 5 10 12.5 15 17.5 20 22. 5 25 27.5 30

5-110
4 3 2 1 0 1 2 3 4 5

f15
1 o • 5 0 0333333 0.25 O. 2

The index-generating iota is very handy when you want
to refer to a consecutive block of numbers. You could get
the first 35 powers of 2 simply by typing this instruction:

2*135
8 16 32
8192 16384
1.04857E6
3.35544E7
1.07374E9
1.71799E10

2 4 64 128 256 512 1024 2048
32768 65536 131072 262144

2.09715E6 4.1943E6 8.38861E6
6.71089E7 1.34218E8 "2.68435E8
2.14748E9 4.29497E9 8.58993E9

3.43597E10

4096
524288
1.67772E7

5.36871E8

(Note that when the computer finds that a vector is too long
to fit on a line, it continues it on the next line for as
many lines as it needs, but it indents the continuation
lines to show that they're still part of the same vector.
For the sake of this illustration, the result is shown above
with a much shorter line than would really appear at the
terminal or console typewriter.)

Finding Out How Long a Vector Is

If you use p with no left argument, it no longer means
that an array should be generated. Now it asks the computer
to report on the size of the array that is the right
argument of p. If A is a vector with eight elements, and you
ask for pA, the computer responds by typing one number
(because A is a one-dimensional array). The one number it
types is 8, which is the length of A's one dimension.

A+186 17 .00165 3.14159 1.26E15 3 2E-9 .00001
pA

8
B+OpA
pB

o

115

p 1 3 5 7 9 11
6

p'1 3 5 7 911'
12

There are many useful expressions which use 1 and p
together. Suppose you'd like to have a vector of consecutive
integers which matches the length of another vector called
A. A is a vector with 13 elements. You can get the correct
number of consecutive integers by entering this instruction:

1pA
1 2 3 4 5 6 7 8 9 10 11 12 13

Perhaps you'd rather have the integers run backwards to
zero. The place-values for the successive columns in the
representation of a number are found by raising the base of
the number system to the Oth power for the last column, the
first power for the next column, and so on. For base 10,
the values of the first 6 columns would be found like this:

10*6-16
100000 10000 1000 100 10 1

And in base 8 they'd be:

8*6-16
32768 4096 512 64 8 1

Suppose you want integers that depart from 500 in steps
of 8. You enter:

500+8 x16

508 516 524 532 540 548

The expression 1N always results in a vector of length
N.

p1115
115

P 1 5
5

P10
o

116

Thus, still another way to get an empty vector is to
enter the instruction:

• o
~(Here the computer prints a blank line)

What Is the Length of a Single Number?

The answer to this question depends upon whether the
single number is an array or not. Suppose you generate an
array which has one dimension, and the length of that
dimension is 1. When you ask for rho of that array, the
answer will be 1:

A+1p 5
pA

1

By contrast, if you simply store a single number under
the name A, without involving any of the operations that
generate arrays, then A is not an array. Like a point in
geometry, which is presumed to have no length, breadth or
height, a single number or literal character, unless
produced by some array-generating operation, has no
dimensions, and is called a scalar. If you ask for its
length, the length is neither 1 nor 0: length just isn't an
attribute of a scalar.

When you ask for rho of a scalar, the result is itself
an empty vector (a vector with no elements).

A+5
pA

~(Here the computer types a blank line)

When you use rho to find the dimensions of a variable,
the result that you get is always a vector. This vector has
one element for each dimension of the variable you asked
about. If you ask for rho of a three - dimensional array--a
topic we're not otherwise mentioning in this primer--you get
a vector of three elements, one element for each dimension
of t~e array. If you ask for rho of a vector, you get back a
vec1:.or of one element, for the one dimension (length) of the
vector. If you ask for rho of a scalar, which has no
dimensions, the result is a vector of no elements: an empty
vec1:.or.

117

Another Example Using Parallel Processing of Vectors:
The Correlation Coefficient

The correlation coefficient is the average product of
two vectors of scores. The average of the elements of a
vector V is readily found by the expression:

(+/V)+pV

And the average of the product of the vectors X and Y is:

(+/xxy)+px

However, this simple definition requires that the
vectors X and Y be in "standard" form. Scores are
standardized if they are arranged so that their average is
zero and their standard deviation is 1. Since scores are
seldom found already standardized, the .first step is to
standardize them, by reducing each score by the mean of its
group, and then dividing each score by the standard
deviation of the group. The steps needed to calculate the
correlation between two vectors of scores called X and Yare
therefore as follows:

1. From X and Y, subtract their respective means.

2. Divide X and divide Y by their respective standard
deviations. Once the means have been subtracted,
the standard deviation is the square root of the
average of the squares.

3. Find the correlation coefficient as the average
product of the standardized scores.

The program called CORR (next page) presumes that the
scores are a l.zeady stored in X and Y, and that X and Yare
vectors of the same length. The standard deviations are
stored under the names SDX and SDY, and the standard scores
are stored under the names XX and YY. The correlation
coefficient is given the name R. Once XX and YY have been
set up, the key formula appears on line 10 of the
definition.

118

V CORR
(pX);' OBSERVATIONS'
XX+X-MEANX+(+/X)+pX
YY+Y-MEANY+(+/Y)+pY
SDX+«+/XX*2)+pX)*0.5
SDY+«+/YY*2)+pY)*005
XX+XX+SDX
YY+YY+SDY
'X: MEAN' ;ME'ANX;' STANDARD DEVIATION' ;SDX
'Y: MEAN ';ME'ANY;' STANDARD DEVIATION ';SDY
'CORRELATION ';R+(+/XXxYY)+pX

[1 J
[2J
[3J
[4J
[5 J
[6 J
[7 J
[8J
[9 J
[10J

v

Here is a sample execution of CORR. The values of X and
Yare taken from an illustration involving the reciprocity
of affection among "steady" couples (S. Diamond, Information
and Error(Basic Books, 1959, p. 167).

X+2 8 7 5 4 4 3 2 5 6 7 3
Y+5 6 5 5 6 3 4 3 3 6 7 2

CORR
12 OBSERVATIONS
X: MEAN 4 066667 STANDARD DEVIATION 1.92931
Y: MEAN 4.58333 STANDARD DEVIATION 1 049768
CORRELATION: 0 0615257

119

19: SELECTING PARTICULAR ELEMENTS FROM" AN ARRAY
BY USING INDEX NUMBERS

Once an array exists, you may want to refer not to the
whole thing but just to the elements in certain positions
within it. This procedure is called indexing. (Because
historically the index values were written in a smaller type
face and set below the line, index numbers are often loosely
called "subscripts.") In APL, index numbers must be
integers; they are enclosed in brackets and written after
the array to which they apply.

A+-1.11 1.22 1.331.441.551.661.77
A [2 J

1.22
A[3 3 1 5J

1033 1.33 1.11 1055

B+-2 4 2 6 1
A[EJ

1 0 22 1 0 44 1 a 22 1 • 66 1 a 11

QQ+-'AECDEFGHIJKLMNOPQRSTUVWXYZ '
QQ[20 S 5 27 3 1 20 27 19 1 20 27 15 14 27 20 S 5 27 13 1 20J

THE CAT SAT ON THE MAT

6 • 11 6. 22 6 a 33 6. 44 6 a 5,5 6. 66 6. 77 6. S S [6 6 1 3 2 J
6.66 6.66 6.11 6.33 6.22

If you use a subscript which refers to an element which
doesn't exist in the array, the computer is unable to
execute the instruction, and reports an "index error."

A[SJ
INDEX ERROR

A[sJ
A

Respecifying Certain Elements Withi.n an Array

An indexed variable may also appear on the left of a
specification arrow. Then the result on the right is stored
in the indicated positions within the array on the left,
while the rest of the array on the left remains unchanged.

•
A[3 1J+-7E30 7E10
A

7 E 10 1 • 22 7 E 30 1 • 4,4 1 • 55 1 a 66 1 • 77

120

You can't index an array until after the entire array
has been specified. Suppose that no value has been assigned
to the name Z. Then an attempt to store some values as
particular elements within Z would be an error:

Z[3 4J+18 46
RANK ERROR

Z[3 4J+ 18 46
A

The Index Numbers May Result from an Expression

Indices (i.e. whatever is inside the brackets) may
include expressions, provided that when those expressions
are finally evaluated, they turn out to have values that are
valid indices for the vector.

QQ+'ABCDEFGHIJKLMNOPQRSTUVWXYZ '
X+4 9 16 25 36

QQ[LO.5+Xf2J
BEHMR

BCDEF

QQ[10+X[3 1 2JJ
ZNS

ZED+ 18 2 31 01

SIGN+' +-,
SIGN[1+0>ZED]

+-+--+

Indexing an Expression

4 096E27 0.22

The thing from which elements are selected does not
have to be a variable. A constant vector may be indexed:

'ABCDEFGHIJKLMNOPQRSTUVWXYZ '[12 15 15 11 27 13 lJ
LOOK MA

1.1 1 02 103 1 04 1.5 1 06 1.7[3 3 1 5J
1.3 1.3 1 01 1.5

Similarly, an expression may be indexed, provided you
enclose it in parentheses:

121

(- 1 2 3 4 5 *0.5)[2 1 3J
1o~1421 1 1.73205

Indexing by An Empty Vector of Indices

A vector of 0 index numbers (i.e. an empty vector
inside the brackets) refers to none of the elements of an
array, and therefore it produces an empty vector of results.
But that is not an illegal operation.

A[Opl' 2 3J ,.!

~(Here the computer prints a blank line)

If selection by indexing is summarized as R+A[XJ, in
which A is an array, R is the result, and X represents
whatever index numbers are used for the selection, then it
is always true that

(pR) = p X

This means that it is possible to index a vector by a
matrix, or indeed by any array all of whose elements are
valid indices for the vector. But tha.t go~s beyond the scope
of this primer.

Indexing a Matrix

Matrices don't get much attention in this primer.
Nevertheless, it may be useful to describe how you select
particular elements from within a matrix.

Within the brackets, the index numbers for the two di­
mensions are separated by a semicolon. Suppose M is a 3-by­
4 matrix of consecutive integers, generated like this:

M+3 4Pl12

If you ask to see the values of M, they are printed in the
usual matrix form. Note that the computer prints one blank
line before printing a matrix.

M

1 2 3 4
5 6 7 8
9 10 11 12

122

If you want to refer to the element in row two, column
three, you enter:

M[2;3J
7

If you would like the third and fourth elements in that
row, you enter:

M[2;3 4J
7 8

Similarly, if you would like the elements in column
four, rows one and two and one, you enter:

M[1 2 1;4J
484

You use the same procedure to select a sub-matrix from
within M. If you want the matrix of those elements which are
on rows two and three and columns one, two, and one of M,
you enter:

M[2 3;1 2 1J

5 6 5
9 10 9

Now the result is a two by three matrix.

If you fail to state any value for one or more of the
dimensions of the array that is being indexed, the computer
assumes that you want all of that dimension. For instance,
to get all of row two of M, you enter:

M[2;J
5 6 7 8

Or to get

M[; 4 1J

L~ 1
8 5

12 9

all of columns four and one, you enter:

Note that you still have to type the semicolon: it's
needed to make clear which dimension is which.

123

20: FINDING THE INDEX NUMBERS THAT LOCATE
PARTICULAR ELEMENTS WITHIN A VECTOR

Suppose that A is a vector which has the following
values:

A+1.2916 103184 102196 1 01629 1.26191.2961 1.1326

and B has a single value:

B+1.2619

Then the instruction

AlB

means "Where in A can you find the value of B?" This is the
dyadic (two-argument) use of iota. The instruction is read
as "A iota B" or "the A-index of B."

The computer responds with the index number that shows
which element of A has the same value as B:

AlB
5

If you would like to know where in A its largest value
is located, that can be found too:

A 1 r /A
2

And the smallest value likewise:

AlL /A
7

Finding Several Indices at Once

Suppose instead of being a single number, B is itself
an array. In that case the computer will look up the A-index
of each of the elements of B in turn. Like this:

B+1 02619 1.2916 102961
AlB

516

124

Notice that the result always has in it one element for each
element in the right argument of iota. If the instruction is
in the form X+A1B, then it is always true that

(pX) = pB

Indeed, the right argument of iota may just as well be a
matrix: the result of AlB always has the same shape as B.
But this point is not pursued in this primer.

Indexing Works Just as Well
For Arrays of Literal characters

Iota can also be used to look up the position in which
a literal character is located. For instance, suppose A and
B are vectors of literal characters as follows:

A+'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
B+'CAT'

Then the locations in A at which the values of B can be
found can be obtained by the following instruction:

AlB
3 1 20

And similarly the index numbers for various other literal
characters can be found:

A+'THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG'
Q+'CAT SAT ON MAT'
X+A1Q
X

8 37 1 4 25 37 1 4 13 15 4 23 37 1
A[X]

CAT SAT ON MAT

A[Al'HELLO IS WHAT A MIRROR SAYS']
HELLO IS WHAT A MIRROR SAYS

NUM+'1234567890'
NUM1'1776'

1 7 7 6

NUM1'1890'
1 8 9 10

10INUM1'1890'
1 8 9 0

125

10*3 2 1 0
1000 100 10 1

+/(10INUMl'1890') x 10*3210
1890

To prove that that last result is a number, whereas '1890'
is literal, you can try adding 1 to each of them:

1 + '1890'
DOMAIN ERROR

1+'1890'
A

1 + +/(10INUMl'1890') x 10*3 210
1891

Looking for the Index Number
Of a Value that Isn't There

Suppose that one of the values in the right argument of
an iota simply isn't represented anywhere in the left
argument. What number does the computer return as the index
of this nonexistent element?

For a value that isn't represented anywhere in the
vector to the left of an iota, the computer responds with
the first illegal index for that vector. For instance,
suppose that A is a vector of seven elements with the
following values:

A+11 12 13 14 22 77 18

Then the possible index numbers for this vector are the
integers 1, 2, 3, 4, 5, 6, 7. The first" illegal" index for
this array is 8. If you ask for the index of a value that
isn't anywhere in the vector A, the computer responds by
saying that it is at location 8. For example:

Al77 15
6 8

'ABCDEFGHIJKLMNOPQRSTUVWXYZ' l '?'
27

1 2 3 4 5 t '5'
6

Suppose you
element with the
three elements
giving you the
HIK. Like this:

126

'Ilhe Index for a Value That Occurs
At Several Locations in the Vector

ask where in the vector HIK there is an
value 666. And suppose that HIK in fact has

with that value. The computer responds by
location of the first occurrence of 666 in

HIK+18 66 618 666 627 216 616 666 624 466 424 666
HIK1666

4

(You have already seen an example of this, since the vector
'THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG', used on page
124, contains several duplications.)

The computer looks up an index number for every element
of the right argument of iota. It does so even if the right
a.rgument.cqntains duplicates. For instance, suppose the left
argument of iota contains two occurrences of 'X', while the
right argument is 'XXX'. What are the index numbers of
'XXX'? The computer will respond with three index numbers,
one for each of the elements in 'XXX'. Those three numbers
will all be the same: they will all be the index of the
first 'X' in the left argument. Thus:

'SEX EX MACHINA' 1 'XXX'
333

to Find Index Numbers:
Repre s ent a tJ.ons

The internal work of some computers is performed in
base-16 arithmetic, sometimes called hexadecimal arithmetic.
The IBM 1130 compute~ operates this way internally,
although of course you don't see that when you're using
APL\1130. But the people who work closely with such machines
have to have some familiarity with the way numbers act and
look when they are represented in base 16. When numbers are
represented to that base, as usual, the rightmost column is
the ones column. But the next column is the 16s column, and
the one to the left of that is the 256s, and so on. A
problem arises because anyone column can contain any of the
numbers 0-15: that is, a single column may contain a number
which ordinarily would require two places to write. To solve
this problem, the digits 10-15 are represented by the
letters A through F.

127

If you're working with hexadecimal arithmetic, you may
often find that you'd like to be able to translate a
hexadecimal representation back into the more familiar
decimal. Suppose, for example, you are faced with the number
whose hexadecimal representation is 8.P~2F. How much is that
in decimal?

The index-finding operator gives you an easy way to
work this out. You ask the computer where in a standard set
of digits the digits 8A2F are to be found. Suppose the
standard digits are set up as follows:

DIGITS+'0123456789ABCDEF'

Then you find the positions of the literals 8A2F this way:

DIGITSl' 8A2F'
9 11 3 16

Evidently '8' is in the 9th position, '2' is in the 3rd
position, and so on. They're all off by 1 because 0 is in
the first position. That's easily remedied by subtracting 1
from the result. Now you have only to multiply each of those
values by the appropriate powers of 16, and' sum. The program
DH (for "decimal from hex") stores under the na.me VALUE the
value of the hexadecimal number represented by the literal
vector HEX. The vector CV on line 1 contains the place value
for each column; it doesn't matter how long HEX is, since CV
is generated so that it has the same length.

V DH
[1J CV+16*(pHEX)-lpHEX
[2J VALUE++/CVx-1+' 0123456789ABCDEF' lHEX

V

HEX+'8A2F'
DH
VALUE

35375
HEX+'1001'
DH
VALUE

4097

APL includes two operators, ~ and T, which convert
numbers to their representation in any base, or vice versa.
These operators would further simplify the DH program, but
they are discussed only in Appendix A, page 183.

129

21: CATENATION:
BUILDING A VECTOR BY CHAINING ITEMS TOGETHER

You can chain together two vectors to make a single
vector by using the catenation operator. The symbol for this
operation is the comma, placed between the vectors which are
to be catenated. The number of elements in the resulting
vector is the sum of the number of elements in the two
items that are catenated.

18 2.5 3,3 14 1E7
18 2.5 3 3 14 1E7

12 13, 13
12 13 13

Here's what happens when you catenate two vectors
called QS and HT:

QS+-1 2 3
HT+-1 02 105

XX+-QS,HT
XX

1 2 3 102 105

The things that
vectors or scalars
instance:

QS,6002E23
1 2 3 6.02E23

pQS,6 002E23
4

2,HT
2 102 105

A,B
1.41421 1.25992

A,A
1.41421 1.41421

are to be catenated
(dimensionless single

may be either
values). For

130

H+'NOW IS THE TIME'
H,'FOR ALL GOOD MEN'

NOW IS THE TIME FOR ALL GOOD MEN

Note that when you want to form a vector from numbers
(or literal characters) that you already know (rather than
from stored variables) you don't need to use the catenation
operator. You can form those vectors simply by typing their
values with no operation sign between them. Thus

18,2,40

has the same effect as

18 2 40

and similarly

'A', 'P', 'P', 'L', 'E'

has the same effect as

, APPLE'

When you enter a numerical vector simply by typing
spaces between the successive elements, the machine at once
treats those numbers as a single vector. By contrast, if you
type commas between the elements, then the commas indicate
the operation of catenation, and they are executed according
to the usual rules governing order of execution. For
instance:

18 2 10x4

means that the vector 18 2 10 is to be multiplied by four,
whereas

18, 2, :10x4

means that the product of 10 and 4 is to be catenated to 2
and then to 18.

A vector must always be either entirely made up of
numbers or entirely made up of literal characters. Therefore
you can't catenate a number to a literal character. Literals
are not in the domain of things that can be catenated to

131

numbers, and vice versa. If you try it, the computer will
respond with an error message as follows:

NUMB+- 1 5 9
LIT+- , 1 FIVE 9'
NUMB,LIT

DOMAIN ERROR
NUMB,LIT
A

Building a Vector of Results
By Catenating the Latest Result to the Earlier Ones

Suppose you have a program that works through a series
of problems by doing them one at a time. One way of
accumulating the answers is to catenate each new result onto
the vector of the results previously obtained. If the most
recent result is in a variable called LATEST, and all the
former ones are in a vector called RESULT, somewhere in the
program you want an instruction like this:

RESULT+-RESULT,LATEST

The very first time that this instruction is executed,
there won't be any old result. Therefore, before you get to
the point at which you instruct the computer to catenate the
latest result onto the vector of earlier results, the
program should have a separate instruction which gives
RESULT an initial value. Since before you start there aren't
any results, the appropriate way to initialize this variable
is to make it an empty vector, by an instruction such as
this:

RESULT+-tO

Example Using Catenation: Accumulating Primes

Here is a simple program which finds prime numbers by
considering the odd integers in turn. The number being
considered at any moment is called T, for Trial. The primes
that have been found are in P. Whenever another T is found
to be prime, it is catenated to P. The core of this program
is the proposition that a number is prime if it cannot be
divided evenly by any prime number smaller than itself.

132

V PR
[1 J P+1+T+1
[2J TEST:~(END~p,P)/PRINT

[3J ADD:~(v/o=pIT+T+2)/ADD

[4 J P+P, T
[5J ~TEST

[6J PRINT:P
V

On line 1, initial values are set for P and T. This
program starts by assuming that it is already known that 2
is prime, so line 1 sets P to 2. T is initially set to I
because the successive values of T are going to be increased
by 2, and each increase is made before the test to see
whether T is prime. The first T that will actually be tested
is 3.

Line 2 is labelled, because it is the beginning of a
loop. The loop starts with a test, to see whether a variable
called END is less than or equal to the number of primes
already found. If not, the work of testing another T
continues. But if P has grown so that its length is equal to
END, the program branches to an instruction called PRINT,
which calls for printing of tbe accumulated primes.

Line 3 is a one-line loop. The line will be repeated
indefinitely, each time with the value of T raised by 2,
until a value of T is found which is not divisible by any of
the primes already found. The instruction says, in effect,
"Branch to the line labelled ADD (i.e. repeat this line) if
it is true that any of the P residues of T is zero."

The program gets to line 5 only after it has found that
none of the P residues of T is zero--that is, when T has
been found to be a new prime number. T is catenated to the
primes already found in the vector P.

After that, the program returns to the line labelled TEST,
to see whether it has yet found enough primes.

Here is a sample execution, finding the first sixteen
p r i me numbers:

END+-16
PR

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53

133

Making Any Variable Into a Vector

Occasionally it is useful to be able to turn a scalar
into a one-element vector. For instance, suppose you have a
program that operates on a variable called INPUT. To find
out how many elements there are in INPUT, you might use
pINPUT. But if INPUT was specified as a single dimensionless
value (i.e. a scalar) pINPUT will be an empty vector. You
won't be able to use its numerical value, since it has none.
The remedy is first to convert INPUT so that it is always a
vector, by using the ravel operator.

When the comma is used monadically (i.e. with no left
argument) it ravels whatever is to the right of it. That is,
it converts its argument to a vector. Applied to a scalar,
the ravel operator produces a one-element vector. Applied to
a matrix, it produces a vector that is made up by catenating
the rows of the matrix in order from the first row to the
last. If the variable you ravel is a vector already, the
result is the same vector, without change.

When a program asks for the length of a variable that
may be a vector or may be a scalar, it is prudent first of
all to make sure that the variable is a vector by an
instruction something like this:

INPUT+,INPUT

Maximum Length of Vectors

In APL\1130, the maximum length that an array may have
is 255 elements, so that no vector, and no single row or
column of a matrix, may be longer than 255 elements.

Inserting New Elements
Between Existing Elements of a Vector

Suppose V is a long vector. It contains, perhaps, two
hundred elements. Now you ·find that you would like to insert
several new elements between what are now the 135th and
l36th elements. The new version of V can be assembled if you
can catenate together these three vectors:

1. The vector containing V's elements 1 through 135.

2. The vector that is to be inserted; call it INSERT.

3. The vector of V's elements from 136 to the end.

134

Getting the first 135 elements of V is easy: you just
ask for V[l135]. The INSERT (we'll assume) you have already.

There are several ways of getting the elements from 136
to the end; here's one. You index V by the consecutive
integers starting after 135, and going until they reach the
last element of V. Like this:

V[1 3 5 +1 (PV) -1 35]

The complete expression to reassemble a new V, longer than
the old by the number of inserted elements, becomes:

V[l13S], INSERT, V[135+1(pV)-135]

The same technique can be used to delete elements from
within a vector. Suppose that you wish to keep elements 1
through D, but delete the N elements that follow element D.
Then you want to keep all that remains after element D+N.

The formula for the first part of the new vector is:

V[1 D]

and the formula for the remaining part is:

V[D+N +l(pV)-D+NJ

so the formula for the whole new vector becomes:

V[(lD), D+N+l(pV)-D+N]

Here's an example. The vector G is a string of
literals, like this:

G·'" NOW IS THE TIME FOR ALL GOOD MEN TO COME TO OUR AID'

You decide to keep elements 1 through 23, omit the next
five, and then retain the rest. Like this:

G[(123),28+1(pG)-28]
NOW IS THE TIME FOR ALL MEN TO COME TO OUR AID

There are several other techniques for inserting
elements within a vector, or removing some. Some of them
involve operations that have not yet been introduced, or
which are mentioned only in Appendix A.

135

Building Pascal's Triangle:
An Example using Catenation

The famous triangle that bears Pascal's name starts out
like this:

1
1 1

1
1

1

4
3

2

6
3

1

4
1

1

Each row has one more element than the row. above it.
The value of each element is the sum of the two elements
nearest it in the row above. The triangle has many
interesting properties; among the best known is the fact
that each row provides a set of binomial coefficients. That
is, the values of the nth row are the coefficients for the
expansion of (a+b)"-l.

You can construct Pascal's triangle in the following
way. Notice that to get any row, you leave the elements on
the end unchanged (they are always 1), and add all the pairs
of adjacent elements. The fourth row is 1 3 3 1. You can
get the fifth row by the following addition:

1

1

3
1

4

3
3

6

1
3

4

1

1

In APL . terms, this can be written as follows. First
catenate a zero at one end of the row. Then add to that the
same row but with a zero catenated at the other end. Like
this:

P+ (0, P) + P, 0

Here is a program that prints the first N rows of
Pascal's triangle.

V PASCAL
[1J P+1
[2 J P
[3J +2xN~pP+(O,P)+P,o

V

136

N+12
PASCAL

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1

The triangle, as printed by this program, turns out to
be an erect right triangle rather than the more convention­
al form, but a triangle nonetheless. If you'd really like it
Christmas-tree shaped, here's an alternate version which
inserts a calculated number of spaces at the left--just
enough to make the triangle symmetrical about its vertical
axis. A sample execution of this program appears below it.

\j TRI
[1 J P+, 1
[2J SPACES+(OrMIDPGE-LO.5 x+/3+L10$P)p'

[3J SPACESiP
[4J 72XN~pP+(0,P)+P,o

\j

MIDPGE+30
TRI

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

:1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1

137

22: LOOPS

A repeated sequence of instructions is called a loop.
Loops have already been discussed briefly on pp. 71-72, and
there's a loop in the program which accumulates prime
numbers (pp.131-32). This chapter brings together some
points to be observed in writing programs with loops.

Exit from a Loop

Whenever a program contains a loop, you must provide
the computer some way of knowing when to stop. It needs to
have a test which tells when it has executed the
instructions in the loop a sufficient number of times. The
exit test is a branch instruction, written so that the line
to which the computer branches depends upon whether the loop
has been sufficiently repeated.

Here is a program called GCD. It finds G, the greatest
common divisor of two numbers Nl and N2, by the Euclidean
algorithm. The method depends upon the fact that a number
which is an even divisor of both Nl and N2 must also be an
even divisor of the remainder when N2 is divided by Nl.

If there is no remainder when N2 is divided by Nl, then
we can immediately conclude that Nl is itself the greatest
common divisor. But if Nl doesn't go into N2 evenly, then
the g.c.d. must be some smaller number; in particular, it
must be some number that is a factor of the remainder. So we
look next for the g.c.d. of Nl and the remainder when N2 is
di vided by m ,

The program starts off by arbitrarily supposing that
one member of the pair is the g.c.d., and assigns G the
value of Nl. Then on line 2 we have a test to see whether
the G-residue of N2 is zero. This is the exit test: if the
remainder is zero, then we may let G stand as the value of
the g. c. d.

But if the remainder is not zero, then we respecify Nl
as the remainder, and N2 as G (i.e. what Nl used to be), and
try again.

\j GCD
[1J G+N1
[2 J +(O=N1+GIN2)/O
[3 J N2+G
[4J +1

\j

138

In "this example, the entire program is a single loop.
The conditional branch in line 2 either permits another
iteration to proceed or terminates the work. The loop is
"closed" by an unconditional branch back to the first line
of the program.

Is the program sure to reach an exit eventually, no
matter what the values of Nl and N2? As long as Nl and N2
are integers, at each iteration G will be smaller. If the
test at line 2 is not satisfied earlier, eventually G will
be 1, and the I-residue of any integer is zero. At that
point the instruction on line 2 will result in a branch to
zero, and the work will be complete.

Here is a sample execution when Nl is 1155 and N2 is
12298.

N1+1155
N2+12298
GCD
G

11

You might want to trace the execution of GCD. For
instance, what happens if you transpose the two values so
that Nl is initially the larger of the two?

Leading Decisions

As we remarked on page 72, sometimes the right number
of times to repeat the execution of a loop is zero
times--i.e. the work in the loop should not be executed at
all. For that reason, it is better practice (whenever
possible) to put the instruction which decides whether the
loop should be entered at the beginning, rather than at the
end.

Loops which involve repeating a sequence a specified
number of times require a way of counting how many times the
loop has been repeated. This is commonly done by using a
variable whose sole function is to count whi.ch iteration of
the loop is now in progress. Counters are not always needed;
there are some calculations in which you could deduce how
many times the work had been repeated without having an
explicit counter, or others in which you want to have the
loop repeated indefinitely until some other condition is
satisfied, as in the preceding example.

139

Before the computer gets to the instructions that will
be repeated in the loop, you will need to specify the
initial values of the counter (if one is used), and perhaps
the initial value of a result. Setting these initial values
is often called "initializing" a loop.

Standard Procedure for Writing a Loop With a Counter

There are many ways of writing loops. The outline that
follows isn't the only way things can be done. But it is
quite general, and is recommended for many situations.

1. Pick some convenient name for the variable which
is to be used as a counter. Any name not already
in use for something else will do. I, J and K are
conventional favorites for counters.

2. Give the counter its initial value. This should be
one less than the first value that will be used
inside the loop. The reason for this will be
apparent when we get to step 4.

3. Give an initial value to the variable which
contains the result of work on this loop, if that
is appropriate. This should be the value that you
want left as the result if it turns out that the
loop is not executed at all.

4. Label the first line of the loop, so that you can
come back to it easily. The labe1led instruction
is the test that decides whether the computer will
continue on through the loop or wi.ll skip on to
the next part of the program. This means that the
form of the test is this:

"If it is true that work on
finished, branch to another part of
Otherwise, continue into the lOop."

the loop is
the program.

Thus you
executing the
false~

want the computer to
loop when the tested

go ahead with
condition is

The test can be combined with the instruction
that increases the counter, so that that needn't
take a separate instruction:

LABEL: ~(TOTAL<COUNT+COUNT+1)/NEXT

140

Now the test instruction says in effect: "If it is
true that the desired number of iterations of this
loop is less than the new (augmented) value of the
counter, you are about to overshoot, so branch.
But if not, continue through the loop."

5. Write the working instructions for the loop. If
you need to pick out individual elements of a
vector, the counter may be used to index them.

6. After the last repeated instruction in the loop,
branch (unconditionally) back to the labelled line
that contains the exit test, at the beginning of
the loop.

A summary of procedures for writing loops should also
be accompanied by a caution: there are a great many
situations in which the array-processing capabilities of APL
make it unnecessary to use a loop. Earlier programming
languages, which lacked provision for the parallel
processing of the elements of an array, could express
procedures on arrays only by the writing of loops. If you've
had prior experience with one of these languages, or if you
are writing an APL program by transcribing the procedure
from another language, you may find that you've written a
program with loops that aren't necessary. Such a program
will still work in APLi it just won't be as concise or
elegant as it might have been, nor as efficient in its use
of the computer's time.

An Iterative Progr~m to Print an Interest Table

An interest table shows the amount to which an initial
sum will grow at various rates after each of the intervals
at which interest is compounded. Suppose that the various
columns of the table are the various rates of interest,
while the rows are the successive compoundings. If PRINe is
a scalar, containing the principal sum, and RATES is a
vector of interest rates, while YEARS is the number of years
for which interest is annually compounded, a simple program
to generate the table might be as follows:

'iJ INT1
[1 J I+-O
[2J -+(YEARS<I+-I+1)jO
[3J PRINCx(1+RATES)*I
[4J -+2

v

141

Here's an execution of INTI, for five years and three
different rates of interest:

PR INC+1 0 0
YEARS+5
RATES+.05 oOS .07

105 106 107
110.25' 112.36 114.49
115.762 119.102 122.504
121 0551 126.248 131.08
1270 6,28 133 . 823 140 • 255

The output reveals a pzobLerm becaus e the various lines
of output were printed independently, each line is spaced
for a convenient display of the numbers appearing on that
line, but without regard to alignment with the other lines.
So now let's modify the program to take care of that
difficulty.

Alignment of Output in ·Columns

If you want the successive lines of
program to be vertically aligned, you have a
procedures:

output from a
choice of two

1. Instead of printing each line separately, one at
each iteration of the loop, accumulate them until
they can all be printed as a matrix. The computer
automatically aligns the columns of a matrix.

2. Print each line separately, but instead of having
the computer print the values directly, convert
the numerical values to literal characters in a
fixed format. There are many ways this can be
done; one possibility is illustrated on page 143.

Interest Table with Output as a Matrix

The program INT2, shown overleaf, accumulates OUTPUT
as a long vector, until the very last instruction, which
restructures that vector as a matrix. The matrix has one
more row than there are years, and one more column than
there are rates. That permits the top row to show what the
rates are, and the leftmost column to number the years. The
zero in the top left corner doesn't do anything, but a

142

matrix must always have some value for everyone of its
elements.

\J INT2
[lJ OUTPUT+O,RATES
[2J I+O
[3] I2LOOP: ~(YEARS<I+I+l)/I2PRNT

[4] OUTPUT+OUTPUT,I,PRINCx(l+RATES)*I
[5 J ~I2LOOP

[6] I2PRNT: (l+YEARS,pRATES)pOUTPUT
\J

INT2 instructs that OUTPUT is to be printed as a
matrix. The width of the columns is therefore sufficient to
accommodate any value that might appear, given the usual
rules for the representation of numbers. Since APL\1130
prints up to six significant digi ts, the columns are spaced
widely enough to accommodate numbers that long.

PRINC+l 0 0
YEARS+5
RATES+o05 006 007

INT2

o
1
2
3
4
5

0 0 05
105
110.25
115 0762

121 0551
127.628

0 0 06
106
112 036
119 0102
126 0248
133.823

0.07
107
114.49
122.504
131.08
140.255

Interest Table with Fixed Format on Each Line

The program INT3 generates each row of the interest'
table independently. Then INT3 calls on another program
called PRINT to do the actual typing of the result.

The definition of PRINT does not really concern us at
this point, although it is shown as a footnote to page 144.
{PRINT is a program which takes two arguments, like an APL
dyadic operator. Functions with arguments are discussed in
Chapter 25. This one pI.ints the value of whatever expression
appears to the right of it. The left argument indicates the
maximum number of digits to be printed. All numbers are

143

printed with a decimal point and two places after the point,
a format that is appropriate for typing sums of money. The
definition of PRINT makes use of the representation
operator, which is otherwise discussed only in the Appendix,
p , 183.)

Suffice it to say that PRINT sets up a vector of
literal characters to represent the various values within
the right argument of PRINT, alwaY$ assigning the same field
width for each element, and always putting the decimal
points in the same position. Because the format is always
the same, regardless of the values that are printed, the
successive printings of the various rows of the table always
have the same horizontal spacing, and so the columns are
aligned even though printed independently.

Apart from its use of PRINT, INT3 is identical to INTI.
Here is the definition, followed by a sample execution of
the same problem used in the two preceding examples.

'V INT3
[1] 5 PRINT RATES
[2] J+O
[3J ' ,
[4J I3LOOP:~(YEAHS<J+J+l)/0

[5 J 5 PRINr PRINCx(l+RATES)*J
[6 J ~I3LOOP

'V

PRINC+l00
YEARS+5
RATES+o05 006 007

INT3
0 005 0 006 0 007

105.00 106 000 107.00
110.25 112.36 114.49
121.55 126.25 131.08
127.63 133 082 140 026

144

A Footnote: the PRINT Program

The program which does the printing for INT3 is listed
below. Unless you have some immediate need to use PRINT, or
are especially interested in its definition, you should skip
this note and go on to the next page. Similar programs may
well be available through the system library. You may often
find yourself making use of a program whose inner workings
are quite unknown to you--so it isn1t essential at this
point to trace through what happens in PRINT. But if you
need it, here it is.

All of the names appearing in the program are local
variables (see Chapter 25). OGTS is the maximum number of
digits to appear in a printed number. FLO is the total field
for representing one number. SHP is the shape (i.e. rho) of
the right argument, X. RNK is 1 more than the rank of Xi it
will be used at the end to restructure the literals back
into a shape that matches the original shape of X. N is the
total number of elements in X, and SGN shows which are
positive and which are negative.

PLACES is a vector showing the number of digits to be
used for each of the elements of X, but always at least 3
and never more than OGTS. RSLT is a vector of blanks and
decimal points, ready to receive the representations as they
are calculated. REP is the representation of a single
element, while END marks the end of the field currently
being calCUlated. I is the counter, and PL is the number of
places needed for the representation of the Ith number.

In the last line, the literal vector
restructured. The last dimension of the literal
FLD times longer than the last dimension of X.

RSLT is
array is

V RSLT+DGTS PRIN T X; I ; N; FLD; SHP ; RNK ; SGN·; PLACES ; PL ; I PL ; END; REP
FLD+3+DGTS
RNK+1+pSHP+pX
RSLT+(FLDxN+pSGN+O>X+,X)p(DGTSp' '),'0
PLACES+DGTSL3r3+L10&(X=I+0)+X+IX
PRT1:~(N<I+I+1)IPRT2

'''ENV':;'''-1 +FLDx I
REP+«PL+PLACES[IJ)p10)TLO.5+100 xX[IJ
RSLT[(END-PL)+IPL+(IPL+1PL)2PL-1J+'0123456789'[1+REP]
RSLT[END-PLJ+' -'[1+SGN[I]]
~PRT1

J?/it£, ,?...:RSLT+(((RNK= 3) pSHP) , xl (RNKL 2) pFLD, ¢SHP) pRSLT

[1J
[2J
[3J
[4J
[5 J
[6J
[7 J
[8J
[9 J
[10J
[11J

V

145

Repaying the Bank

Suppose that a loan is to be repaid so that the
payments are always of the same size, and at regular
intervals. Suppose that the principal sum and the interest
rate are fixed. For a given number of payments, you can
solve for the size that each must be. Conversely, given the
amount paid each time, you can solve for the number of
payments to payoff the entire debt.

It turns out that the size of each flat-rate payment
can be found, at least approximately, without using a loop.
The following program does that. PRINC is the principal sum
borrowed, T is the number of times a payment will be made,
and RATE is the interest in one time interval. The program
is approximate since it does not include the effects of
rounding the remaining balance to the nearest penny at
each iteration.

V SIZE
[1] PA YMNT+- (PR INC x (1 +RATE) *TIM ES) ~ +/ (1 +RATE') *TIMES - 1 TIME S

V

Suppose that the principal to be borrowed is $3,200,
the true annual interest rate is .08 per year, and it is to
be paid in 36 monthly installments (i.e. 3 years). Then RA'IIE
should be one twelfth of .08.

PRINC+-3200
RATE+-.08~12

TIMES+-36
SIZE
PAYMNT

100.276

Next we consider a program which counts the number of
payments needed to repay a loan. This is an iterative
program, and so it can include at each iteration the
porrection for rounding to the nearest cent. As usual, the
program that follows contains a loop and a counter. But the
exit test is whether the balance due has been reduced to
zero, while the counter keeps track of the number of
iterations needed. At the same time, the program notes the
amount of the last payment, since that may be for the odd
amount due at the end.

For the first execution, let's see if the approximation
obtained as the result of the program called SIZE does
indeed repay $3,200 in exactly 3 years.

146

\j REPAY
[1J BAL+PRINCx100
[2J PAY+PAYMNTx100
[3 J COUNT+O
[4J RPLOOP:~(0~BAL+Lo.5+BAL+BALxTATE)/RPEND

[5J BAL+BAL-LAST+PAYLBAL
[6J COUNT+COUNT+1
[7 J -~RP LO0 P
[8 J RPEND: 'TOTAL OF '; COUNT;' PAYMENTS
[9J 'OF WHICH " COUNT-1;' ARE ';PAYMNT;' AND THE LAST IS ';LAST

PRINC+3200
RATE+.08.;.12
PAYMNT+1 00., 28
REPAY

TOTAL OF 36 PAYMENTS
OF WHICH 35 ARE 100.28 AND THE LAST IS 100.14

This program is able to make its calculations down to
the nearest cent provided that the numbers involved are not
excessively large. (Precision with which numbers are
represented is discussed on pages 50 and 55.) In APL\1130,
numbers can be precisely represented to about 1 part in ten
million, which means that if you need to keep track of
amounts greater than $10,000.00 precisely to the last penny,
you need steps in the program to provide you the additional
precision by keeping different components of each number as
separate elements. That topic is not developed in this
primer.

An Iterative Program for Finding Prime Factors

Suppose NUMBER is a scalar integer. You need to find
all of the prime factors of NUMBER. This isn't just a matter
of finding which primes are factors of NUMBER, since you
also want to know how many times any particular prime is a
factor.

The program called PF finds prime factors. It presumes
that you already have in the workspace a vector called
PRIME, which contains all the prime numbers you are likely
to need, in ascending order.

On ,line 1, X is given the same value as NUMBER. As
factors are extracted, X will be reduced by dividing it by
each new factor as it is found, but NUMBER will be left
unchanged.

147

, ;FACTRS

\J PF
X+INUMBER
FACTRS+1I+0
NEWTE: +«X*0.5)<TF+PRIME[I+I+1J)/OVER
TRYTF: +(O~TFIX)/NEWTF

FACTRS+FACTRS,TF
X+XtTF
+TRYTF
OVER: FACTRS+FACTRS,(X~1)pX

+(1=pFACTRS)/PR
'PRIME FACTORS OF ';NUMBER; ':
+0
PR: NUMBER;' IS PRIME'---

[1 J
[2J
[3J
[4J
[5 J
[6 J
[7 J
[8 J
[9 J
[10J
[11J
[12J

\J

On
FACTRS
vector.

line 2, I is given
(which will contain

an initial
the result)

value of 0, and
is made an empty

The line labelled NEWTF tests to see whether work has
been completed. TF (for "trial factor") is selected as the
next prime number from the vector PRIME. Then TF is compared
with the square root of X. At the first iteration, X has the
same value as NUMBER, but in subsequent iterations X is the
quotient after NUMBER has been divided by each of the
factors already found. If TF is larger than the square root
of X, TF can't be a factor of X, and nor can any other
number larger than TF, so it is safe to conclude that no new
value of TF, other than X itself, is going to be a factor of
X. If there are no new factors to be found, the program
branches to OVER.

But if there may be factors yet unfound, the program
proceeds to the next line in sequence, which is labelled
TRYTF. Here the current value of TF is tested to see if it
is a factor of X. If it is, the program catenates TF to the
FACTRS already found, divides X by TF, and branches back to
TRYTF. Note that it does not go back to the line labelled
NEWTF, since the old value of TF may still be a factor of
the newly-divided X.

Only when it is established that
X does the program return to NEWTF,
prime number as a value for TF.

TF is not a factor of
and select the next

When the computer reaches the line labelled OVER, there
are two possible situations. If the successive values of TF
which were catenated to form the vector called FACTRS

148

indeed account for all the prime factors of NUMBER, then the
value of X must be 1. That is, X now has the value that you
get when NUMBER is successively divided by all of its
factors.

But it is also possible for the program to reach the
line labelled OVER if the last value of X is a prime
different from any of those so far used in TF. In that case,
the test on line 3 will correctly reveal that there is no
other factor of X smaller than the square root of X. In this
case, however, X itself should be counted among the prime
factors of NUMBER.

So on line 8, to the end of the vector FACTRS is
catenated either one or zero extra elements, having the
value X.

Notice that line 8, although not formally a branch
instruction, has the effect of either catenating the value
of X or not catenating it, depending upon whether the
value of X is 1.

Line 9 represents a small refinement in the output. If
only one prime factor has been found, then the NUMBER was a
prime, and the result may be printed in a different format.

Here are some examples of the PF program at work:

NUMB ER+1 505
PE

PRIME FACTORS OF 1505:

NUMBER+1728
PF

PRIME FACTORS OF 1728:

NUMBER+97226
PF

PRIME FACTORS OF 97226:

NUMBER+333667
PF

333667 IS PRIME

5 7 43

222 2 2 2 333

2 173 281

149

23: COMPRESSION:
SELECTING SOME ELEMENTS FROM A VECTOR

AND OMITTING OTHERS

Suppose you have a vector named V. You would like to
generate a new vector that contains some of the elements
from V, but omits others. For instance, you want to keep all
those that are greater than zero, while omitting those that
aren't. The APL operator that does this is called
co~ression. The sign for compression is a slash--the same
sign that is used for reduction. The two operations,
compression and reduction, are easily distinguished by the
fact that in reduction the slash has an operator sign
immediately to the left of it, whereas in compression there
must be an expression resulting in a vector of zeroes and
ones in that position.

The way compression works is this: wherever there is a
1 in the vector on the left, the corresponding element of
the array on the right is retained. But where there's a 0 on
the left, the corresponding element on the right is omitted.
The left argument must contain a 0 or a 1 for each element
on the right; that is, the two vectors must have the same
length.

Suppose that as the right argument of a compression you
have a vector called V, composed like this:

V+1.1 2.2 3.3 4.4 5.5 6.6 7.7 8.8

You want to keep all the elements from V except the second
and fifth. So as a left argument for compression you need a
vector that has the same length as V, and all of whose
elements have the value I except the second and the fifth,
which must be zero.

1 0 1 1 0 1 1 1/V
1.1 3.3 4.4 6.6 7.7 8.8

If the selection vector (i.e. the left argument of
compression) is made up entirely of ones, then all the
elements from the array on the right are preserved:

1 1 1 1 1 1 1 1/V
1.1 2.2 303 4 04 5.5 6 06 7.7 8.8

150

Conversely, if the selection vector consists of nothing
but zeroes, then none of the elements on the right is
selected, and so the result is an empty vector:

a a a a a a a a IV
-.((Here the computer prints a blank line)

In general, the vectors on either side of the
compression sign must be of the same length, so that the
ones and zeroes on the left can be matched one-to-one with
the elements on the right. However, if the left argument is
a single element, the computer first replicates it until it
matches the length of the right argument. Thus a single 1 on
the left of a compression keeps everything from the vector
on the right:

i/V
2 02 3.3 4.4 5.5 6.6 7.7 8.8

and a single 0 on the left of a compression selects none of
the elements on the right.

a/v
~(Here the computer prints a blank line)

Whenever the left argument of a compression contains
more than one element, then the length of the result is the
same as the total number of ones in the left argument.

Tests of the Truth of a Relationship
Provide the Zeroes and Ones Needed to Control Compression

You will recall that when the computer tests whether a
relationship is true, it responds with 1 for true, and 0 for
false. These ones and zeroes are just what is needed for
the selection vector during compression. For instance,
suppose you would like to keep from V only those elements
that are greater than some constant X. The expression

V>X
a a a 1 1 1 1 1

151

generates a response for each element in V. That response is
1 for each element of V that is greater than X, and 0 for
each that is not. This expression can be used directly in
the compression, like this:

(V>X) / V
4 04 6.6 7.7 8.8

(Evidently X was something smaller than 4.4, but greater
than 3.3)

Example: Compression and the Sieve of Eratosthenes

Our earlier program for finding prime numbers
considered at each iteration whether a single number N was
or was not a prime. If it was, it was catenated to the list
of primes found already. Then N was increased by 2, and
checked again. A different procedure was proposed by
Eratosthenes around 200 BC. He suggested that you start with
all the integers (or as many as you have patience for) and
successively cross out all those divisible by various
divisors. The numbers that remain when all possible divisors
have been tried are the primes.

You don't have to try gl1 possible divisors; once a
number has dropped through the sieve, it doesn't need to be
considered as a divisor either. After you finish with one
trial divisor, the next trial divisor is the next higher
number from among the potential primes still remaining.

Here is a program to find primes by the sieve method.
In the earlier program, the test for finishing work was
whether sufficient primes had been found. But with the sieve
method it is easier to count how many numbers are in the
sieve at first; you can't say in advance exactly how many of
them will turn out to be prime. So the test for stopping is
whether you've reached a divisor so high that it couldn't
possibly divide any of the remaining numbers in the initial
set. The square root of the largest number in the sieve is
such a number. The initial divisor is 2, and the intial
values for the potential primes are the integers from 2 to
N.

152

V ERATOS
[1J PP+1+1N-1
[2J LAST+N*fD+2
[3J +(LAST<D)/ERPRT
[4J PP+«D=PP)vO~DIPP)/PP

[5J D+PP[1+PP1DJ
[6 J +3
[7J ERPRT: PP

V

After each use of the sieve, D is respecified as the
next of the potential primes now remaining (line 5).

The compression on line 4 is the sieve. An element of
PP is retained if it meets either of two conditions: if it
is equal to D, the divisor, or if it is not exactly
divisible by D.

Here is a sample execution showing selection of the
n wnbers that are prime up to 20.

N+20
ERATOS

2 3 5 7 11 13 17 19

It might be interesting to trace the execution of
ERATOS to see how many different trial divisors are used
before all the prime numbers up to 20 can be found. If you
trace the execution of lines 4 and 5, you will see on line 4
the potential primes as they are sifted until only genuine
primes remain, and on line 5 the successive values of D
following the initial value of 2. (Tracing was discussed on
pages 86-87). To start tracing, you enter:

T!1ERATOS+4 5

Now when you execute ERATOS, you see
each execution of lines four and five,
printing of the result.

ERATOS
ERATOS[4J 2 3 5 7 9 11 13 \15' 17 19
ERATOS[5J 3
ERATOS[4 J 2 3 5 7 11 13 17 19
ERATOS[5] 5
2 3 5 7 11 13 17 19

the values after
before the final

153

Two iterations were needed. After the initial value of
2, D took on the value 3 and then 5. No compression was done
for D=5, since that value already exceeds the square root of
N.

How many iterations would it take to select all the
primes up to 200? This time if you trace line 4 you'll be
looking at one hundred numbers that fall through the first
sieve, and a somewhat smaller number through the second, and
so on. That may be more detail than you care to see, so this
time let's skip tracing of line 4. If you just trace line 5,
you will see each of the successive values of D, and then
the answer.

(In order to fit on the page, the vector of results
is shown as if it were printed on a short line of
only sixty characters, when in fact the computer or terminal
typewriter is much wider, and would get the entire result
into only two lines of output.)

Tb.ERATOS+5

N+200

ERATOS

ERATOS[5J 3
ERATOS[5J 5
ERATOS[5J 7
ERATOS[5J 11
ERATOS[5 J 13
ERATOS[5J 17

53
109

173

47
107

167

43
103

163

31 37 41
89 97 101

151 157

29
83

149
199

19 23
'73 79

137 139
193 197

11 13 17
61 67 71

127 131
181 191

75
59
113
179

32

Evidently six iterations
earlier program PR would have
that many primes.

sufficed. By contrast, the
taken 99 iterations to find

154

Another Program Using Catenation and Compression:
Sorting the Elements of a Vector

Sorting the elements of a vector so that they are
arranged in ascending order is a classical problem to which
there are a great many solutions. Here is one which uses
compression to find which elements should go first, and
catenation to reassemble them into a new, ordered vector.
The steps in the procedure are as follows:

1. Call the vector that is to be sorted UNS (for
unsorted). Call the sorted vector that results ORO
(for ordered). Start with ORO being an empty
vector.

2. Test to see whether any elements remain in UNS. If
there are none, exit.

3. Set up the logical vector WHICH, with a 1
corresponding to each element of UNS that is equal
to the minimum of UNS.

4. Compress UNS by WHICH. That is, pick out from UNS
those elements that are equal, to its minimum.
Catenate them to those already found in ORD.

5. Compress UNS
respecify UNS
not selected.

by the negation of WHICH. That is,
to be all those elements that were

6. Return to line 2.

IJ SORT
[1 J ORD+OpUNS+,UNSRTD
[2J -+(O=pUNS)/O
[3 J WHICH+UNS=L/UNS
[4J ORD+ORD,WHICH/UNS
[5J UNS+("'WHICH) / UNS
[6J -+2

V

155

Here is a sample execution of SORT:

UNSRTD+ 18 43 6 22 17 6 44 29 8 19 24 17 32
SORT
ORD

6 6 8 17 17 19 22 24 29 32 43 44

A Useful Variant of the Sorting Program

The program called SORT starts with a vector that may
be in scrambled order and produces a vector with the same
values arranged in ascending order. Sometimes it is more
useful to produce as your result not the values themselves
arranged in order, but the index numbers which, if used to
index the scrambled vector, would order it. The advantage of
doing it that way is that, once you have the ordered index
numbers, you can then apply them not only to the original
scrambled vector, but to any other vector of the same
length. For instance, suppose GRADE is a vector of the
grades obtained by a class of students, and ID is a vector
of their identification numbers. Then you could arrange ID
in an order based upon the order of their grades. (Or, when
you get into two-dimensional arrays, you could have their
names arranged as the rows of a matrix, and print their
names in an order determined by their grades.)

To do that, you again find a logical vector WHICH. But
now instead of using it to select values from the scrambled
vector, you use it to select index numbers. Now you remove
elements from the vector of index numbers as well as from
UNS. But you still iterate until all the elements of UNS are
used up. Here is such a definition:

V SORTX
[1J ORDX+OpINDEX+JpUNS+UNSRTD
[2J +(O~pUNS)/O

[3J WHICH+UNS+L/UNS
[4J ORDX+ORDX,WHICH/INDEX
[5J UNS+(~WHICH)/UNS

[6J INDEX+(~WHICH)/INDEX

[7J +2
V

Using SORTX, in order to put the elements of a variable
called Y into order, you have to index Y by ORDX, the vector
of ordered indices that the program produces:

156

UNSRTD+Y+ 18 6 24 72 14 27 6 31 17 14 20
SORTX
Y[ORDXJ

6 6 14 14 17 18 20 24 27 31 72

In the next example, a vector called GRADE contains the
grades for a class of students. Their names are stored as
the rows of the matrix NAMES. The program called REPORT
prints both the names and grades in rank order by grade.

NAMES

BRENNER, WILLIAM
DRISCOLL, KEITH
GALTON, JULIE
KURTZBERG, BURTON
ROTHWELL, DAVIS
S'l'RONG, VERA
SUGARMAN, DAVID
THOMPSON, EDWARD
WATSON, EDWIN
YANG, TSIAO

GRADE'S
73 80 79 84 90 85 76 94 62 80

V REPORT
[1J I+O
[2J UNSRTD+GRADES
[3J SORTX
[4J +«pGRADES)<I+I+l)/O
[5J NAMES[ORDX[IJ;J;' ';GRADES[ORDX[IJJ
[6 J +4

V

REPORT
WATSON, EDWIN 62
BRENNER, WILLIAM 73
SUGARMAN, DAVID 76
GALTON, JULIE 79
DRISCOLL, KEITH 80
YANG, TSIAO 80
KURTZBE~G, BURTON 84
S:J.1RONG, VERA 85
ROTHWELL, DAVIS 90
THOMPSON, EDWARD 94

157

Why the Branch-or-Continue Instruction
Includes a Compression

On page 70, we remarked that a conditional branch
instruction may be written

+TEST/LINE

The value of TEST is logical (i.e. either 1 or 0). The
result of the compression is therefore either the value of
the variable called LINE (when TEST is 1), or else an empty
vector (when TEST is 0).

A branch to an empty vector
taken to mean "Continue with
sequence. "

is no branch at all: it is
the next instruction in

Thus a branch-or-continue instruction is any
instruction in which a right-pointing arrow is followed by
an expression which, when evaluated, yields either the
number of a line to which the program is to branch, or else
an empty vector if no branch is to be taken.

Compression is not the only operator which would give
that effect. Recall that 10 also produces an empty vector.
So another form of the branch instruction can be written as
follows. Suppose LINE is a label for the line to which the
program is to branch if it is true that X is smaller than
the square root of Y. Otherwise the program should continue
in sequence. You could get that by using compression (as is
done in almost all the illustrative programs in this primer)
like this:

+(X<Y*0.5)/LINE

Or you could get it by this instruction, which has the
advantage of putting the label at the beginning rather than
the end:

+LINE Xl X<Y*0.5

You can read that instruction as "Branch to LINE if X is
less than the square root of Y."

159

24: THE PROGRAM ASKS FOR INPUT,
GETS IT, AND THEN PROCEEDS

The quad symbol 0 stands for input and output. If a
quad appears immediately to the left of a specification
arrow, it means that the value to the right of the arrow is
to be printed. You don't often need this sort of explicit
instruction to print something, since the computer prints a
value automatically anytime you fail to specify what else is
to be done with it.

If a quad symbol appears anywhere else in an
instruction (that is, anywhere but immediately to the left
of a specification arrow), it means that the computer should
at that point ask for input from the keyboard. Suppose you
enter an instruction like this:

Z+D

The value of Z is to be specified as whatever value is
entered from the keyboard in response to the quad. To show
that it is requesting input, the computer types a quad and
colon at the left margin, and then indents and unlocks. The
value of the expression that you type now is taken as the
value of 0; in this case, that value is now assigned to the
variable z.

Here's how it looks: first the instruction containing a
quad. Then the quad typed by the computer, to show that it
is requesting input. Then your response to that request.
Finally, if you ask to see the value of Z, you find that the
value of the expression you entered at the quad has indeed
been assigned to Z.

Z+D
0:

6

Anytime a quad occurs in an instruction, when the
computer reaches that point in its evaluation of the
instruction, it goes to the keyboard for input, evaluates
what you enter then, and then returns to the original
instruction. Suppose you enter this instruction:

XxD+AxB

160

XxD+AxB

Recall that the computer performs the rightmost operation
first, so first it f i.nds the product of A and B. Then it
encounters the 0 symbol; the product of A and B is to be
added to the value of O. Whatever you enter now becomes t.he
value used in the instruction. If you enter 6, that value is
added to the product of A and B. But if you enter an
expression, that entire expression is evaluated at once, and
its result becomes the value used.

In the illustrations that follow, A has the value 5, 13
has the value 2, and X has the value 1.

XxD+A xB
0:

6
16

X+D*05
0:

:2
2 041421

X+D
0:

ilxB
11

n- X
0:

A *15
5 25 125 625 3125

Example of Input to a Prol;lram:
Crystal Lattice Problem

In the examples us ed in earlier chapters, the data
needed for a particular program had to be assigned to
variables before execution of the program. It may be more
convenient to have the program ask for the data it needs as
it goes along. You can do that by using the 0 in the
program. For instance, here is a program intended for work
with some problems in the geometry of crystal lattices. The
program finds 0, the dd s t.ance between adjacent planes of a

161

hexagonal crystal, as a function of 5 parameters. The first
two, A and C, are constant for a given compound. The other
three, called H, K, and L, are integers which identify the
set of planes under consideration. In conventional notation,
D can be found from the following formula:

l = ~ (H
2
+ HK + K

2
) L

2

D2 3 A2 + C 2

At the bottom of the page you will find an APL program
which first asks for the values of A and C (as a single
2-element vector) and then asks for an HKL combination.
After printing the value of D, the program returns and asks
for a new HKL combination. It will keep repeating until you
enter a scalar instead of a vector for HKL.

Notice that when the 0 asks you for i~put, you're free
to enter numerical values, or an expression, or the name of
a variable. For instance, suppose you may want to work
repeatedly with germanium oxide. You could store the values
of A and C for germanium oxide under the name GE02.
Similarly, since the program ends by testing to see if HKL
is a scalar, you could store a scalar under the name END,
and henceforth END will suffice to indicate the end of your
execution of the program. Both of these points are
illustrated on the next page.

V HEXGNL
[1 J 'SPECIFY A AND C (I N ANGS'PROMS) '
[2 J AC+D
[3J Hl+ 1 2 2 3
[4J H2+ 1 1 2 3
[5J DN+ 1 1~1 2
[6J +(O=ppHKL+O)/O
[7J D+t((4t3)x+/HKL[H1JxHKL[H2JtAC[DNJ*2)*O.5
[8J 'D IS ';D;' ANGSTROMS'
[9 J +6

V

GE02+4 a987 5.652

END+O

162

HEXGNL
SPECIFY A AND C (IN ANGSTROMS)
0:

GE02
SPECIFY H K L
0:

1 0 0
D IS 4 031887 ANGSTROMS
0:

1 0 1
D IS 3043168 ANGSTROMS
0:

1 1 0
D IS 2.4935 ANGSTROMS
0:

1 0 2
D IS 2.36474 ANGSTROMS
0:

1 1 1
D IS 2 028135 ANGSTROMS
0:

2 0 0
D IS 2,.15943 ANGSTROMS
0:

2 1 1
D IS 1.56828 ANGSTROMS.
0:

END

Input as Li teral Characters

The symbol [!J is called quote-quad; it is formed by
overstriking the quad symbol with a quote mark. Quote-quad
asks for input in the same way that quad does, but with two
important differences:

1. When the computer requests input from a [!J, it
simply unlocks the keyboard with the typeball at
the left margin. It doesn't print a quad symbol,
and it doesn't indent.

2. Whatever you enter in response to a [!J is accepted
as literal characters. If you enter just one
character, it goes in as a literal scalar. If you
enter any other number of characters, they go in
as a literal vector. In particular, if you don't
type anything but a carrier return, a vector of
length 0 is ent.e re d ,

163

Suppose you would like to build up a list of names. The
list might be a matrix of literal characters, with a name on
each row of the matrix. Then later on you can recover one or
more names from the list by indexing the matrix so as to
select the appropriate rows. The following pair of programs
illustrate how this might be done.

The first program compiles the matrix of literal
entries. It assumes that there is already in existence a
matrix called LIST, and two scalar variables called ROWand
eOLS, which indicate how many rows and columns LIST now has.
Before the program is used for the first time, ROW should be
1, and LIST should be a l-by-eOL matrix (containing any
literal characters).

V ENTER
[1J ROW
[2J +(O=pENTRY+~)/EXIT

[3J ENTRY+COLpENTRY,COLp"
[4J LIST[ROW;J+ENTRY
[5J LIST+«ROW+ROW+1),COL)pLIS~

[6J +1
[7J EXIT:LIST[ROW;J+"

V

When you execute the program called ENTER, the first
thing the computer does is type the value of RON. This is to
show you which line is about to be entered. Then it unlocks
the keyboard, in response to the quote-quad in line 2.

What you type next becomes the value of the vector
called ENTRY. If the length of ENTRY is 0, the computer
skips down to the line labelled EXIT. Otherwise it goes
ahead to line 3, where ENTRY is made to have exactly the
right length to match the number of columns in LIST, and any
extra elements are filled with blanks. The entry, thus
adjusted, is inserted as row ROW of LIST. Finally, ROW is
increased by one, and LIST is restructured so that it has
one more row than it had before. That extra row is now ready
to receive the next entry that you may enter. The program
continues to accept new entries until you enter an empty
vector (by simply pressing carrier return when the keyboard
unlocks for the quote-quad).

The second program prints selected entries from the
matrix called LIST--those that are indicated by the values
of NO. Actually, it prints only one entry at a time; a

164

counter called J steps through the various elements of NO.
Since NO is indexed by J, NO has to be a vector. So the
first line of PRINT ravels NO.

\J PRINT
[1 J NO+-,NO
[2 J J+-O
[3J +((pNO)<J+-J+1)jO
[4J +Op[!J
[5 J LIST[NO[JJ;J
[6 J +3

\J

Line 5 of PRINT causes the printing of one of the zows
of LIST. The line just ahead of it isn't needed for the
p r.i.n t.Ln q , but may prove useful if you want to have each line
typed on a separate sheet of paper--if you're addressing
envelopes, for instance. Line 3 is a branch to an empty
vector of characters typed from the keyboard. Branch to an
empty vector always means "continue in sequence." But the
point is that the line can't be evaluated until you press
carrier return to enter your response to the quote-quad.
That means that the computer ha.s to wai t until you press
carrier return before it prints the next line of the output.
Naturally, if you don't want the computer to wa.it for that
signal to print each line, you delete the instruction on
line 4.

Below and on the next page you'll find samples of t.he
execution of these two p r oqzaias , Notice that, since the
input is Ii teral characters, any character on the typin9
element can be included in the input. Indeed, you don't have
to use an APL element ai: all, but you can type inpu.t wi th
any other typing elemeni: that fi ts your typewri ter. In the
following example, a s c r i.pt; typeball was fi tted while t.he
names were being entered and then again when printing of t.he
names numbered 4, 2, and 5 was asked for.

ROW+-1

COLS+-80

LIST+-(ROW,COLS)p'A'

165

ENTER
1
M~. and M~¢. John H. Hoe, 245 Cente~ St~eet, Plaine¢ville, M~ehigan

2
Mi¢¢ Ba~ba~a Halve~¢on, 12245 South B~oadway, Alameda, Olkahoma
3
V~. Ha~old Jaeob¢, RFV 4, Ba~tontown, New Jen¢ey
4
M~. Jonathan Le¢te~, 614 24th Avenue NW, Ceda~ Fall¢, Iowa
5
M~. and M~¢. J. Q. Walden, T~ade Cente~, Pt. Ba~~ow, Ala¢ka
6
IBM Re¢ea~eh Cente~, Yo~ktown Height¢, New Yo~k 10598
7

NO+4 2 5
PRINT

M~. Jonathan Le¢~e~, 614 24th Avenue NW, Ceda~ Fall¢, Iowa

Mi¢¢ Ba~ba~a Halve~¢on, 12245 South B~oadway, Alameda, Olkahoma

M~. and M~¢. J. Q. Walden, T~ade Cente~, Pt. Ba~~ow, Ala¢ka

167

25: DEFINED FUNCTIONS
THAT HAVE ARGUMENTS AND RESULTS

Up to now, the discussion of how to write a program has
deal t only with what on page 31 we called ..stand alone"
programs. The instruction that calls for the execution of
such a program always consists of just one word: the name of
the program. With that sort of program, the data the program
works on must either be stored in the workspace before you
execute it, or else entered from the typewriter when the
program calls for input. However, APL provides for some
other forms of definition which are more powerful and often
far more useful than the simple type to which discussion has
been confined. This chapter is devoted to introducing these
more general forms of program definition.

The Idea of a Function

To a mathematician, a function is a correspondence
between one set of values (the domain) and another (the
range). This correspondence can be represented in various
ways. One way would be to have a table in which each value
of the domain appears beside the corresponding value of the
range.

Another way to represent a function is to state an
algorithm (or procedure) by which, given any particular
value within the domain as input, you (or a computer) could
determine the corresponding value as an output, or result.
In APL, a program is considered to be the algorithmic
definition of a function, and a program may be used like a
function, provided it has been properly defined.

The Arguments and the Result of a Function

The operations of arithmetic are functions; if you
perform an addition, you start with the addends (the input)
and you follow a procedure which gives you the sum (the
output, or the result). The input values to a function are
called its arguments. In the instruction 3+4, the function
is addition, and the arguments are 3 and 4. You have already
seen that the primitive functions of APL (each of which has
its own symbol) are always written in one of two forms: for
a fWlction of two arguments, the function symbol always
appears between the two arguments (like A +B, or A *B, and so
on). For a function of only one argument, the argument
appears to the right of the function symbol.

168

Suppose A, B, and C are variables. Consider the
instruction

It contains two primi ti ve functions, addi tion and di vision.
The division function has two arguments: Band C; B is the
dividend, since it's on the left of the -i- sign, and C is the
divisor, since it's on the right.

What are the arguments of the addition function? The
left argument of + is A. The right argument of + is whatever
result you get when you finish executing the division of B
by C. The point is important: an instruction which calls for
the execution of two functions depends upon the fact tha.t
the first returns a result which then becomes the argument
of the second.

Programs as the Definitions of Functions

A program is a statement of a procedure. It generally
works on some input data, and processes the input until it
produces a result; the value of the result depends on wha.t
the input values are: i.e. the result is a function of the
input. So it is perfectly reasonable and consistent to think
of a program as a function.

If the system in which you're working has a primitive
operator for everything you ever want to do, you never need
to wri te programs. A program is a way of telling the
computer the procedure it must follow in order to evaluate a
function that it doesn't otherwise have.

APL uses the general word "function" to refer both t.o
the operators that are primi tive to the language, and to the
programs that APL users write. A program is simply a
user-defined function.

When you use a defined function, it would be very handy
to be able to use it in the same way that you use primitive
functions. For instance, you'd like to be able to say what
function is to be used, what values it is to work on, and
what is to be done with the result, all in the same
instruction.

Suppose that
resistance RR of

you sometimes need to calculate the
several resistors in parallel. Their

169

resistances, considered separately, are stored as the
elements of a vector calle.d R. In conventional notation, the
formula for RR is:

1
RR = +

There is no APL primitive which, when applied to R,
gives you RR. So you would like to define a function which
does that. Suppose that function is called PR (for "parallel
resistance"). Before we discuss how to write a definition
for this function PR, consider how you would like to be able
to use it.

To find the parallel resistance for the vector R, you'd
like to be able to enter simply:

PR R

Or to find the parallel resistance of a resistor of 800 ohms
and another of 1200 ohms, you'd like to be able to enter:

PR 800 1200

You'd like to get back the answer simply by entering the
instruction:

PR 800 1200
480

Or conversely you'd like to be able to assign the result of
PR R to a variable, like this:

RESIST+PR R

just as you would if PR were an APL primitive.

This description implies that PR, just like a primitive
operator, takes as its argument whatever comes to the right
of it in the instruction. Like a primitive operator, it
returns a result that may be stored, or passed on to the
next operator to the left, or printed if neither of the
other two is .indicated.

It is a simple matter to write the definition of PR so
that it behaves in this way. Indeed, everyone of the
program definitions used in the various examples in the

170

early chapters of this primer could be written in that way,
and would thereby become a great deal more convenient to
use.

The Defini tion of a Function
That Takes an Argument and Returns a Result

The joint re sd s t.ance of several resistors in parallel
may be found as the reciprocal of the sum of the reciprocals
of the separate resistances. In APL, that is:

RR+ f+/fR

Here is the definition for the function PR:

V RR+PR R
[1J RR+f+/fR

V

It differs from the defin.itions that appeared in the earlier
examples in two ways:

1. Its header (that is, the top line which contains
the V symbol and the name of the function) now
includes some other i terns which serve to indicate
that this funct:ion takes one argument and returns
a result.

2. The definition does not contain any statemen1:
calling for the printing of the result. Now thai:
the function has a formal result, the result will
be printed automatically whenever the instruction
calling for e xe cutd.on of this function doesn' 1:
indicate some other use for the result.

The header of a function definition always stipulates
the name of the function. At the same time, the header
serves as a paradigm, illustrating the syntax that is to
govern the way this func1:ion will be used.

If the header includes a specification arrow (with aome
name to the left of it) it means that the function returns a
result. That result may be stored (as illustrated in the
header), or passed on to some other function appea r i.nq
further to the left in the same instruction, or printed,
just like the result of a primitive function.

171

If in the header the name of the function appears with
one or two other names next to it, those other names
indicate the arguments of the function. When you use the
function, you must provide a variable or expression next to
the name of the function, in the positions illustrated in
the paradigm. As with the primitive functions, if there's
one argument, it comes after the function, and if there are
two they go on either side of the name of the function.

GCD: A Simple Function of Two Arguments

On page 137 we gave a definition for a program to find
the greatest common divisor of two numbers Nl and N2.
Leaving the body of the definition exactly as it was, we can
write a second version with a different header, making Nl
and N2 the arguments of GCD, and G the result.

V G+N1 GCD N2
[1J G+N1
[2 J -+(O=N1+G/N2)/O
[3J N2+:G
[4J -+1

V

Now to find the greatest common divisor of 1155 and 12298,
you enter those values with the name GCD between them:

1155 GCD 12298
11

Six Possible Forms for a Function Header

result, and it may
no arguments. That

header contains a
returns a result, and
the name used within

A function mayor may not return a
have one argument, two arguments, or
makes six possibilities. If the
specification arrow, then the function
the name to the left of the arrow is
the function to identify the result.

To the right of the arrow (if any) there may be one,
two or three names. If there's only one, it is the name of
the function. If there are two, the one on the right is the
name of the argument, and the one on the left is the
function name. If there are three, the one in the middle is
the name of the function, and those around it are the names
of the two arguments.

172

What Happens When the Computer Executes
A Function with Arguments or a Result

Consider what the machine does when you ask for an
execution of the function PR. Here is the definition of PR:

V R.R+PR R
[1J RR+f+/fR

V

Here is an instruction that calls for its execution:

RESIST+PR 800 1200

When the computer encounters the name PR, it finds that
in this workspace PR is Cl function. Checking the header of
function PR, it finds that PR has on~ argument, named R. So
the computer creates a nE~W local variable called R, whose
value is the vector 800 1200. Then it carries out the work
specified in the body of the function definition, using the
new local meaning of R wherever that name may occur.

When the computer finds that it has no further work to
do in the execution of PR, it again consults the header:
does this function r'eq u.i re a formal result? In our case, the
answer is yes; there is a result, called RR. The computer
takes the latest value of RR, and reports that as the
result. What must be done with the result? The computer
returns to the instruction which called for this execution
of PR, and finds that the result is to be assigned as the
value of a variable called RESIST, and does that.

As soon as the execution of PR is complete and i t.s
result has been reported, the variables Rand RR which were
created during this execution of the function have no
further use. They cease to exist; they are removed from the
workspace.

Suppose you had en1:ered the instruction RR+PR R. In
that case, the argument of PR happens to have the name Rand
the result happens to be assigned to a variable called RR.
As far as the computer is concerned, it is merely a
coincidence that the na~~s are the same as those occurring
in the header of PR. Your instruction refers to the meanings
of R and RR outside the function. During execution, the
computer goes ahead and as usual creates new local variables
with the names Rand RR, keeping those distinct from the
meanings of Rand RR outside this defini tion.

173

A Simple Function of Two Arguments:
Area of a Segment of a Circle

Suppose that you need to calculate the areas of
segments of circles. For each segment, you know its radius
and the angle it subtends. You would like to have a function
called CA (for "circular area") so that when you need the
area of a segment whose radius is 415 feet and whose angle
is 42 degrees, you have only to enter the instruction:

415 CA 42

The function needs two arguments and should return a
result. You might as well give them names which will be easy
to Lnce rp re t; if you subsequently check back to see what is
in this definition. Let's assume that the angle is given in
degrees, rather than in radians, and that PI has been
assigned the value 3.14159.

'V ARE'A+RADIUS CA DEGREE
[lJ AREA+(PIxRADIUS*2)xDEGREE+360

'V

Here is the area (in square feet) for the problem we just
mentioned (415 feet, 42 degrees):

415 CA 42
63123.8

This defined function works just as well if the arguments
are arrays. However, the arguments must either have the same
dimensions, or at least one of them must have only one
element:

112 240 88 CA 45 110 70
4926.02 55291.9 4730.54

100 CA 45 55 60 90
3926.99 4799.66 5235.99 7853.99

10 20 30 40 CA 90
7805399 314.159 706.858 1256.64

144 200 CA 30 45 60
LENG.TH ERROR
CA[lJ AREA+(PIxRADIUS*2)xDEGREE+360

/\

174

The last example on the p rece df.nq page illustrates
several things. To begin with, you can't specify two radii.
and three angles, at least not with this definition of CA.
But notice some additional points:

1. Execution of CA has not been aba.ndoned, but
suspended. You can take some corrective action and
resume work.

2. Since an execution of CA has been started but not:
finished, and no more recent function is in.
execution, you can display the variables RADIUS
and DEGREE, containing the value of the arguments
for this execution of CA.

3. While execution is suspended, you can alter t.h e
definition itself, or the values of the arguments.
In this case, it wouLd be useful to respecify one
or the other o'f the arguments so they' re the same
length, and then resume execution.

In the following exampl.e , the instruction and the
computer's ~esponse are repeated from the bottom of the
preceding page, so that the entire exchange is visible in
one place. That doesn't mean that the same problem was
started over again.

144 200 CA 30 45 60

LENGTH ERROR
CA[1] AREA+(PIxRADIUS*2)xDEGREEf360

1\

RADIUS
144 200

DEGREE
30 45 60

Your instruction

Error Message

You ask for display of
each of the arguments
of CA

DEGREE+2pDEGREE

-+°1

5428.67 15708

You respecify one
the arguments
resume execution

Result is printed

of
and

DEGREE
VALUE ERROR

DEGREE
1\

Now that execution is
complete, the variable
DEGREE no longer
exists.

175

Another Example with Two Arguments:
Converting Pounds to Dollars

The British use a currency with three units: pounds,
shillings, and pence. There are 12 pence in a shilling, and
20 shillings in a pound. The dollar value of a pound varies;
during 1967, it went from $2.80 per pound to $2.40 per
pound. Here is a function which calculates the dollar value
of an expression in pounds, shillings, and pence. It is
called SL, for "dollars from pounds." (S stands for dollars;
the British use L for pounds.)

V S+-RATE SL BRIT
[1J BRIT+3p«Or3-pBRIT)pO),BRIT
[2J S+RATEx+/BRITf 1 20 240

'iJ

The first line of the program respecifies its own
argument. First it inserts up to three zeroes ahead of BRIT,
so as to fill the high-order positions with zeroes if an
amount is stated solely in pence, or in pence and shillings
with no pounds. Then it takes the first three elements of
the resulting vector. If the argument contained three
elements to begin with, this won't produce any change. But
if the argument stated only the pence, the argument will be
respecified as a vector whose first two elements are zero.

On line 2, the argument (now assured of having three
elements) is divided by 1 20 240, converting all three
columns to pounds. Then those are summed, and the sum is
multiplied by the other argument (the exchange rate).

2.80 SL 14 7 6
40.25

2 04,2 S L 10 6
1 02,705

As written, this function won't process several
different British amounts at once, since no matter how many
elements the right argument of SL contains at first, the
program always converts BRIT so that it has three elements
which it presumes to represent a single sum of money. But
the function will accept any number of exchange rates:

4.20 208~ 2.40 2.10 SL 0 13 8
2 087 1.91333 1.64 1.435

176

Compound Expressions Using Defined Functions:
Another Approach to the Correlation Coefficient

The great advantage of permi tting defined functions t.o
have arguments and results is that you can use them in
compound expressions, just as you can write compound
expressions involving t:he primi ti ve operators. As a simple
example, let's return to the correlation coefficient, whi ch
we discussed earlier on pages 117-118.

~rhe correlation coefficient is defined as the average
product of two vectors of scores, provided that the scores
are in standard form. You could therefore wri te a simple
one-line program for the correlation coefficient like this:

V R+-X CORR Y
r i : R+-AVG(STD X)xSTD Y

\j

Clearly, this de fini tion depends upon having
defini tions for AVG and STD; it also depends upon the fact
that each of them can take a right argument and can return a
result.•

~ro define AVG, you could treat its argument as a
vector, and divide the sum of the elements by the number of
elements:

\j R+-A VG X
[lJ R+-(+/X)"i-pX

\j

To standardize a vector of scores, first you center
them (that is, reduce e a ch of them by their average) and
then you divide them by icheir standard deviation:

\j R+-STD X
[lJ R+-(CTR X)~SD X

\j

Centering the elements of a vector means this:

\j R+-CTR X
[lJ R+-X-AVG X

\j

177

Finally, you need a definition for standard deviation.
It is the square root of the average of the squares of the
centered scores:

V R+-SD X
[lJ R+-AVG(CTR X)*2
[2 J R+-R* 0 • 5

V

In this definition of SD, the header declares that inside
this function, its result will be called R. Line 1 specifies
a value for R, and then line 2 respecifies R with a new
value. When this function is executed, it will return as its
result the last value of R arising from this particular
execution of SD (i.e. the one stored in response to line 2
of the definition).

YQU should keep in mind that the set of definitions
just presented is devised to illustrate one approach to
programming, making maximum use of sub-programs and compound
expressions. For a problem of this scale, perhaps you
wouldn't really want to break the main program into quite so
many parts. Moreover, this particular illustration doesn't
give you the most economical way of doing the work in terms
of the computer's internal operations; the average of the
scores is computed more than once, and there are other such
minor extravagances. But these defini tions do illustrate a
style of programming which starts from the most general
description of the procedure, and then fills in the other
definitions as they are required. This makes for a highly
readable program, and one which corresponds closely to the
original English description of the procedure.

Notice that everyone of the definitions on the last
two pages uses the name X for one of its arguments. Each of
these XiS refers only to the argument of a single execution
of that particular function. There is no problem of overlap,
even though the same name occurs as an argument in each of
the functions. When these functions are used to process
variables stored in your workspace, there is no need for
those variables to be called X--nor is there any reason why
they should not be called X.

Suppose your workspace contains two vectors of scores,
called Hand W. You can examine their averages, their
standard deviations, and the correlation between them with
instructions such as those on the next page:

(pH),pW
50 50

(A VG H), A VG W
801.093 545.576

(SD H),SD W
77.4181 Lj.9 . 2122

A VG STD H
2c.18358E-14

SD STD H
1

H CORR W
0.531275

H CORR -W
0.531275

H CORR H+W
0.927648

H CORR H-W
0.775562

H CORR H
1

178

Lengths of Hand W

Averages of H and W

standard deviations of H and W

Average of standardized H
(Close enough to theoretical 0)

Standard deviation of standardized H
(As it should be)

Correlation of H with W

Correlation of H with -W
(Same, but opposite sign)

Correlation of H with sum of Hand W

Correlation of H with difference
between H and W

Correlation of H with itself

179

Variables that are Local
To the Execution of a Function

When you write a definition so that the function has
arg~ments or a result, you cause the creation of some
variable names which are not permanently stored in the
workspace, but which exist only during a particular
execution of that function. They are called local variables.
The arguments and the result of a function are automatically
local variables. If you wish, you can also make other
variables local to the execution of a function (see the next
page).

The variables named as the arguments of a function get
their values as soon as the computer starts an execution of
that function, even before it starts to execute line 1. The
result, and any other variables local to the function, get
their values only by being specified by some instruction
within the function. Thus the result gets its value only if
and when the instructions within the program assign it
one--possibly never, if you don't include the appropriate
instructions in the definition.

Global vs Local Variables

Unless the header of a function specifically indicates
otherwise, APL\1130 assumes that all variables are ~lobal

variables. A global variable is one that is available to any
calculation or any function in the workspace. All the
variables mentioned in all the chapters before this one were
global variables.

A name becomes local if it is mentioned in the header
of a function. Then it exists only during a specific
execution of that function.

Whenever a variable name is mentioned within the body
of a function definition, there are only two things that
that name can possibly refer to:

1. If the name is local to the execution of that
function, then the local meaning is understood.

2. If the name is not local to that function, then
the global meaning is understood.

180

Displaying the Value of a Local Variable

Since the value of a local variable disappears as soon
as the computer finishes executing that function, the only
time you can ever display the value of a local variable is:
during the execution of the function to which it belongs. Of
course, that is precisely the point: the local variable is
available if you need to check up on it while debugging a.
program, but doesn't clutter up the workspace when normal
execution of the function is completed.

You can use or display the value of a local variable
only if it is local to the most recently suspended function.
If one function calls for execution of another one, and
execution of that second function is suspended, you can not
display a variable which is local to the program that was
started earlier.

A local variable is not merely local to the function in
which it occurs, but local to each specific execution of
that function. If you start executing a function and it is
suspended, and then you start a new execution of the same
function and that too is suspended, you can refer only to
local variables that are local to the most recently
suspended execution. When you display the state indicator
with the command)6 , you get a list of all functions whose
execution is pending. The only local variables you can refer
to are those that are local to the last program on the list.

Additional Local Variables
Other than the Arguments or Result

A p roqz-arn may involve temporary variables tha.t are of
no further interest orioe execution is complete. If you
prefer, you can make them local to the function in which
they're used. Since any variables named in the header are
local to that function, as many extra names as you like can
be made local by listing t.hem in the header.. The extra names
go at the right end of t:he header, after the name of the
function and the right argument (if any) .. They are set off
from the rest of the header, and from each other, by
semicolons (see, for example, the defini tion of PRINT, on
page 144).

A Mystification to Avoid

Every now and again an APL user forgets to tell the
computer what should be done with a function whose execution

181

has been suspended. Ordinarily this may not matter much, but
if the suspended function uses a local variable whose name
is also used for a function or for a global variable, you
may think you're referring to one and get the other. But the
problem is easily avoided: don't leave suspended executions
hanging around unresolved any longer than necessary. You can
always check to see whether a function remains suspended by
typing) b. to get the list of functions whose execution is
pending (see p. 84).

Editing the Definition of a Function
That Has Arguments, a Result, or Local Variables

When you reopen the definition of a function, whether
to change it or just to display it, enter a V followed
solely by the name of the function. You should not re-enter
the entire function header. An "-attempt to do-so- will be
rejected as an "editing error."

Spaces Separate a Function from its Arguments

When you use functions which take arguments or return
results, it is possible to construct an expression in whi.ch
several names occur next to each other, or the name of a
function occurs next to a number which is its argument. So
you have to make clear to the computer where each name
begins and ends.

A numerical digit may be part of the name of a variable
or funct~on, provided that the first character of the name
is a letter of the alphabet. That means that FN6, for
instance, is an allowable name, so the computer must be able
to distinguish between FN 6 10 (meaning the function FN with
an argument of 6 10) and FN6 10 (meaning the function FN6
with an argument of 10).

APL uses spaces as delimiters, to mark where the name
of a function or variable begins and ends. When a name is
used in an expression, it must be separated from another
name or a number by one or more spaces.

Since the symbols used for the primitive operators can
never occur in names, it isn't necessary to enter spaces
next to them, but you may if you wish.

183

APPENDIX A: NOTES ABOUT
WHAT HASN'T BEEN MENTIONED

For the purposes of this primer, we have
refrained from mentioning some APL operators
features of the APL \1130 System. To keep
perspective, we present here a list of topics
received little if any attention in this primer.

Base Value and Representation

deliberately
and certain

things in
which have

The representation operator T converts the value of a
number into its representation in any number system. The
left argument is a vector which specifies the base, one
element for each column of the representation. For instance,
1277 expressed in 7 columns of base 3 is found by:

(7p3)T1277
1 2 0 2 0 '2 2

Mixed bases are allowed: 105246 inches expressed in miles,
yards, feet, and inches is found by:

o 1760 3 12 T 105246
1 1163 1 6

The base value operator .L does the converse: it reduces a
representation vector in any number system to a value. The
left argument specifies the base. It may either be a vector
of the same length as the right argument, or a single number
which is then extended to match the length of the right
argument. The base-8 value of 1 7 7 6 is found by:

8 .L 1 776
1022

The number of seconds in 4 days, 12 hours, 20 minutes, and
57 seconds is found by:

o 24 60 60 .L 4 12 20 57
390057

184

Factorial

In conventional not.ation, factorial A is wri tten: A!
Following the uniform syntax rules, APL places the operator
first and its argument to the right:

!A

The ! symbol
period.. When
x/lAo

is formed by overstrlking the quote and t.he
A is a positive integer, !A is equivalent to

!A is also defined when A is not an integer. It is then
equivalent to the gamma function:

(! A) - r A+l

Combinations Operator

When the ! symbol is used dyadically, it indicates the
combination operator. A! B means the number of pos s Lb l,e
combinations of B things taken A at a time. Where A and B
are positive integers and B is not less than A, the value of
A!B is (!B)f(!A)x!B-A.

Residue Function With Non-Integral Left Argument

The definition for residue gi ven on page 57 does not:
exclude having a fractional left argument:

1.514.2
1. 2

Nor and Nand

The symboLs for AND 1\, and OR v, may be overstruck with
the NOT symbol to form NOR and NAND.

A~B is equivalent to ~AAB.

A¥B is equivalent to ~AvB.

Unlike 1\ and v, the operators ~ and ¥ are not associative,
and in general

~/x is not equivalent to ~I\/X.

185

Operations on Arrays

In APL\1130, arrays of either one or two dimensions are
permitted. Two - dimensional arrays (matrices) must be
rectangular. All arithmetic operators extend automatically
on an element-by-element basis to arrays of either rank.

Indexing of Arrays

The values of the indices in the two dimensions are
separated by a semicolon. The elements selected are those at
the intersection of the specified positions in each
dimension. Thus

A[2 4;2 3 8J

means those elements of A located at the intersection of
positions 2 and 4 of the first dimension (rows) with
positions 2 3 8 of the second dimension (columns). If A is a
4 by 9 matrix of literals, like this:

ABCDEFGHI
JKLMNOPQR
STUVWXYZ1
234567890

the expression A[2 4; 2 3 8J selects from A the following
matrix:

KLQ
349

The dimensions of an array produced by indexing are
given by catenating the rank-vector (i.e. rho) for the index
of each dimension considered separately. Thus, if an array X
is indexed by an expression in which A represents the
indices for the first dimension, B represents the indices
for the second dimension: X[A;BJ, then the dimensions of the
resulting array are (pA),pB. Notice that if either A or B is
a scalar, then pA or pB will be an empty vector, and hence
the result will not have any extent in that dimension. For
this reason, X[2;3J is a scalar, X[2;,3J or X[,2;3J are both
I-element vectors, and X[,2;,3J is a l-by-l matrix.

186

Matrix Products

APL provides for three general forms of matrix
mUltiplication. The simple element-by-element product of two
matrices A and B is obtained directly from the instruction

AxB

It is necessary that A and B have the same rank,
same length in each din~nsion, except (as usual)
case in which either A or B has only one element.

Generalized Matrix Product

and the
for the

In matrix algebra, the "matrix product" of the two
matrices A and B is found by a procedure in which tih e
element i; j of the product is found by taking the sum of t.h e
product of the elements in the ith column of A with those in
the jth row of B. APL indicates these two component:
operations explicitly, and writes the conventional matrix
product of A and B like t.h i s s

.4+. xB

The advantage of this notation is that it permits the
user to Substitute any other dyadic arithmetic operator for

+ or x, thus generalizing matrix product to permit such
forms as

A v 0 ~B Ax. »e A L • rB A +. *B

For instance, A r . -B returns for the i; j element of the
result the maximum difference between the pairs of elements:
in the i th column of A and the jth row of B. A". =B returns at
I where each column of 'A. is equal in all its elements to at
row of B. Many other matrix products are possible and
useful ..

Outer Product

An outer product requires that each element of 'Po...

operate on every element of B. The result is a higher order
array. Its dimensions are the dimensions of A catenated to
the dimensions of B. Outer product is wri tten in a form that.
resembles the standard matrix product, but with a null
symbol 0 replacing the first operator:

A o. +B

187

The outer product of the vector 2 3 4 and the vector
4 5 6 7 is the following 3-by-4 matrix:

2 3 4 O.X 4 5 6 7

8
12
16

10
15
20

12
18
24

14
21
28

Transposition of a Matrix

A matrix can be restructured so that its coordinates
appear in reversed order. That is, the rows become the
columns and the columns become the rows. If M is a matrix,
then ~M transposes the rows and columns of M.

A

ABCDEFGHI
JKLMNOPQR
STUVWXYZ1
234567890

~A

AJS2
BKT3
CLU4
DMV5
ENW6
FOX7
GPY8
HQZO
IR10

Reversal of an Array

The elements of an array can be restated so that their
sequence is reversed in one or the other of the dimensions
of the array. The monadic operator ~ means reversal. Applied
to a vector, it arranges the elements of the vector
backwards:

~'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

ZYXWVUTSRQPONMLKJIHGFEDCBA

188

When cP is applied to a matrix, it reverses the matrix
along its last dimension (columns). In APL\1130, reversal in
the other dimension (rows) may be indicated by using the
reversal symbol with CL horizontal rather than a vertical
line through it, like t:his: 9. The e symbol is formed by
overstriking the 0 symbol with. a minus sign. (If you're
working at the 1130 console keyboard, a separate key is
provided for each of the APL composite characters.)

Suppose A is the same 4-by-9 Ld, teral matrix used on the
preceding page and on page 185:

A

ABCDEFGHI
JKLMNOPQR
STUVWXYZ 1
234567890

cPA

IHGFEDCBA
RQPONMLKJ
1ZXYWVUTS
098765432

eA

234567890
STUVWXYZ1
JKLMNOPQR
ABCDEFGHI

Notice that reversing a matrix in both of i t:s
dimensions is not the sa.me as transposing it.

Rotation of an Array

When used dyadically, the operator ¢ restructures an
array so that the elements are rotated by a specified amount
in one of the dimensions of the array. A posi ti ve rotation
is a left shift, while a. negative rotation is a right shift:.

If the array is a vector, a single integer specifies
the amount of rotation:

7cP'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
HIJKLMNOPQRSTUVWXYZABCDEFG

189

-3~'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

XYZABCDEFGHIJKLMNOPQRSTUVWXYZABC

When the array to be rotated is a matrix, APL\1130 uses
~ for rotation along the last dimension (columns) and e for
rotation along the first dimension (rows). Now the left
argument must be a vector with one element for each column
of the matrix (for column rotation with ~), or one element
for each row (for rotation along the rows, when e is used).
If the left argument is a single number, it is presumed that
all the rows (or columns) are to be rotated by the same
amount.

o 1 2 3~A

ABCDEFGHI
KLMNOPQRJ
UVWXYZ 1ST
567890234

1 1 2 2 3 344 5 e A

JKUV67GHR
ST45EFPQ1
23CDNOYZO
ABLMWX89I

Rotation provides an alternative procedure for
selecting a consecutive sequence of elements from the middle
or the end of a long vector (see pp. 133-4). For instance,
the 76 elements of V which follow element 135 can be
obtained by the expression:

76p135~V

Compressing a Matrix

Compression may be applied to matrices as well as to
vectors. The syniliol / means compression along the last
dimension (columns), while in APL\1130, the symbol f is used
to mean compression along the first dimension (rows). The
logical selection vector must have the same length as the
array in the dimension being compressed. Consider the
literal array A, which is the same 4 by 9 matrix as before:

ABCDEFGHI
JKLMNOPQR
STUVWXYZ1
234567890

190

If the last dimension (columns) is compressed, the
selection vector for a 4-by-9 matrix must have a length of
nine. Columns 3 and 6 are omitted by the following
compression:

1 1 0 1 1 0 1 1 1/A

ABDEGHI
JKMNPQR
STVWYZ 1
2356890

In APL\1130, compression along the first dimension of a
matrix (rows) is indicated by using the symbol t,.
Compression to remove the second of the four rows of A is
achieved this way:

1 0 1 1 fA

ABCDEFGHI
STUVWXYZ1
234567890

Expansion of an AIray

in one of its dimensions by
blanks, as appropriate) in

the elements. The expansion
with a left argument that is a

1ill array A may be expanded
the insertion of zeroes (or
designated posi tions bet.ween
operator is the backslash \,
logical vector.

The number of ones in the left argument must be the
same as the length of the dimension of A that is being
expanded. The zeroes in the left argument indicate where the
extra zeroes or spaces must be inserted.

Expanding a numerical vector:

1 1 0 1 0 1\6.1 6.2 6.3 6.4
6.1 6.2 0 6.3 0 6.4,

Expanding a Ld, teral ve ct.or s

1 1 0 1 0 1\'ABCD'
AB C D

191

Expanding the literal matrix A in its last dimension
(columns) :

1 1 0 1 0 1 1 1 1 0 0 1 1\A

AB C DEFG HI
JK L MNOP QR
ST U VWXY Z1
23 4 5678 90

Expanding A in its first dimension (rows) :

1 0 1 1 1\A

ABCDEFGHI

JKLMNOPQR
STUVWXYZ1
234567890

Characteristic (or Set Membership) Operator

The symbol for the characteristic operator is the Greek
letter epsilon, E. The expression

returns a 1 for each element of an array A which occurs
anywhere in another array B, and 0 for each that does not.
There is no requirement that A and B have similar
structures. The result has the same dimensions as A. Where A
is the same 4 by 9 literal matrix used previously, epsilon
returns this result:

A E ' 1234 5AB CD E'

1
o
o
1

1
o
o
1

1
o
o
1

1
o
o
1

1
o
o
o

o
o
o
o

o
o
o
o

o
o
o
o

o
o
1
o

192

Random Number Generation

The random operator ? generates an array of independent
random integers. In the expre$sion

?B

each element of the array B must be a positive integer. The
result is an array of the same dimensions as B, with each of
its elements a random integer in the range between 1 and the
value of the corresponding element of B. For instance, tihe
instruction ?6 10 produces a vector of two elements, thle
first between 1 and 6, and the second between 1 and 10.

?6 10
1 8

?4 7p 100

46 54 22 5 69 68 94
39 52 83 4 6 53 68

1 39 7 42 69 59 94
85 53 10 66 42 71 92

Library Functions

An APL\1130 System may include a conunon library of
workspaces containing defined functions for a variety of
special purposes. These workspaces may be loaded into yOUJ:
active area, or individual functions from wi thin them may be
copied and incorporated into your own library. The use of
these pre-wri tten libraxy functions may thus provide extra
operations, in addi tion to those available as primi ti VE~

operators. While the contents of individual libraries may
vary, they may likely include provision for such things as
trigonometric functions, complex ari thmetic, graph plotting ,­
format control for output, text edi ting, matrix inversion"
and so on. Some systems may use these libraries for notices
of system modification or the posting of schedules of
operating hours. For details of the library functions
available, you should consult those in charge of the system
you are us ing.

193

Locking a Function

The definition of a function may be locked. Once it is
locked, it can not be displayed or edited; when an error is
encountered within it, the computer reports the line on
which it was working when it found it was unable to
continue, but does not print the offending line.

A function is locked by closing its de~ition with "!,
formed by a del overstruck with the .:tilde (for "not"), at
the time of its initial definition or/at any subsequent time
when the definition has been reopened. Locking a function is
not reversible. A locked function may be deleted, but it may
never again be displayed or edited.

Locking a Workspace

When the command to save a workspace 1s given, you may
add a password. The workspace can not be loaded unless the
subsequent)LOAD commands are accompanied by the password.
Th e command

)SAVE WORK:SESAME

saves the workspace under the name WORK and establishes the
password SESAME. Subsequent)LOAD commands must include the
colon and the password. The password remains in effect until
the next time that the workspace is saved.

The system operator generally has no way of finding out
what password was used, and no means to override a workspace
password. There is no remedy for a lost password. However, a
locked workspace may be dropped even if you don't know its
password.

195

APPENDIX B: TABLE OF SYSTEM COMMANDS

To illustrate the format of system commands, the
samples that follow refer to fictitious identifiers, such as
user number 12345, a workspace named WSNAME, and the
passwords PSST and SESAME. Naturally, you should substitute
for these the appropriate names to make sense in your
context.

)12345

) 12 34 5: SESAME

) CLEAR

)DROP WSNAME

)FNS

)LIB

)LIB 10

Sign on

Sign on when password required

Replace active workspace with new
empty workspace

Remove named workspace from library

List functions in this workspace

List user's saved workspaces

List workspaces in indicated common
library

)LOAD WSNAME Replace active workspace
complete copy of the
workspace from user's library

with
named

)LOAD WSNAME:PSST

)LOAD 10 WSNAME

)OFF

)OFF: SESAME

)SA VE WSNAME

Replace active workspace with
complete copy of the named
workspace whose password is shown

Replace active workspace with
complete copy of the named
workspace from indicated library

Sign off this user. System remains
ready to accept new sign-on.

Establish a sign-on password for
this user and then sign off. System
remains ready to accept a new
sign-on.

Enter copy of active workspace into
user's library under name indicated

)SA VE WSNAME: PSST

)SA VE 10 WSNAME

) VARS

)D.

196

Enter copy of active workspace into
user's library under name and with
password indicated

Enter copy of active workspace into
indicated common library with name
indicated

Dd s p Lay list of variables in this
workspace

Display list of functions whose
execution has been started but not
completed, and line numbers for
each.

197

APPENDIX C: TABLE OF APL OPERATORS

Standard Scalar Operators

The following operators return a scalar result when
their arguments are scalars. They may also be applied on an
element-by-element basis to arrays of any rank, provided
that where used dyadically, either both arguments have the
same rank and the same length in every dimension, or that at
least one argument has only one element. Any of the scalar
dyadic operators may be used in reduction, or in the
generalized inner and outer products.

X+Y X plus Y

+Y Y (no change)

X-Y X minus Y

-Y Minus Y

XxY X times Y

xy Y (no change)

XfY X divided by Y

fY Reciprocal of Y

X*Y X to the Bth power

*Y e to the Bth power

xry Larger of X and Y

ry Ceiling of Y

XLY Minimum of X and Y

LY Floor of Y

xlY X residue of Y

IY Absolute value of Y

X$Y Log of Y to the base X

198

~¥ Natural log of Y

X!¥ Number of combinations of Y things taken X at a.
time

~y Y factorial; Gar.~a of Y-l

?¥ Random equi-probable selection of an integer from
lY

X<¥ X less than Y

X5:¥

X=¥

X'2.¥

X>¥

XA¥

X less than or equaL to Y

X equals Y

X greater than or equal to Y

X greater than y

X not equal to y

X and Y

Xv¥ X or Y

X¥¥ Neither X nor Y

X~¥ Not both X and Y (X nand Y)

""¥ Not Y

Generalized Matrix Operations

In the entries below, the symbol @ stands for "any
standard scalar dyadic operator."

X+ox¥ Ordinary matrix product of X and Y

Xc 0 @,¥ Generalized inner product of X and Y

Xo.@¥ Generalized outer product of X and Y

@/Y

@fY

X/Y

XfY

X\Y

X\Y

XpY

pY

X[Y]

X1Y

lY

XEY

XTY

X~Y

X?Y

X~Y

xeY

199

Generalized Reduction

The @ reduction along the last dimension of Y

The @ reduction along the first dimension of Y

Compression and Expansion

X (logical) compressing along the last dimension of Y

X (logical) compressing along the first dimension of Y

X (logical) expanding along the last dimension of Y

X (logical) expanding along the first dimension of Y

Other Operators

Restructure Y to have dimensions X

Dimension of Y

The elements of X at locations Y

Locations of Y within vector X

Consecutive integers up to Y

Each element of X is a member of Y

Representation of Y in number system X

Value of the representation Y in number system X

X integers selected without replacement from lY

Rotation by X along the last dimension of Y

Rotation by X along the first dimension of Y

200

¢Y Reversal along t.he last dimension of Y

ey Reversal along t.h e first dimension of Y

~Y Transpose of Y

X,Y Y catenated to X

,Y Ravel of Y (make Y a vector)

X+Y X specified by Y: the name X receives the value of
Y. Value and dimensions of Yare passed on
unchanged to the next operator to the left of X"
if any.

Symbols Having Special Functions

The following symbols are not operators, but may appear
in APL expressions with t.h e sense indicated below:

() Parentheses. Expression within them is to be
evaluated before: being used as the argument of an
operator or defined function.

-+X Branch to X. Where X is a scalar
branch to 1pXi where X is an empty
the next line in sequence.

or a vector ,.
ve ctor, go to

D+X

X+D

'Xyzv

Print the value of X. The value of X is also passed
on to the next operator further to the left.

Request input. Value of 0 is the resulting value
after expression entered is evaluated.

Request input. Value of ~ is entire input text as
literal characters, up to but not including carrier
return.

The literal characters XYZ

201

APPENDIX D
TRIALS AND ERRORS

One of the advantages of a conversational computing
system is that it becomes very easy to experiment. If you
don't know what the result of an instruction will be, you
can try it and see. Indeed, you could discover for yourself
the effect of all the various APL operators just by trial
and error--plus a certain amount of patience and ingenuity.
"Try it and see" is a practical strategy with a
conversational computing system because the result comes
back so rapidly. If you're in doubt about what the computer
does in some particular case, or what an unfamiliar operator
does, you are encouraged to experiment.

Of course, trial and error does entail some risks. One
risk is that you will incorrectly generalize the results of
your experimentation; that's why primers and manuals exist.
Another risk is that you run into some errors that you don't
understand, because they go beyond the topics to which
you've been introduced. This appendix lists a great many of
the possible error messages, even including some whose
significance may not at first be clear, and some which are
not otherwise discussed at all in this primer.

Form of Error Messages

When you enter an instruction, first the computer has
to read it, then it has to execute it. Two types of errors
arise becaus e the computer is unable to read your
instruction. One is a transmission error, which may be due
to electrical faults or noisy transmission lines. The other
is a character error, which arises when the transmission is
technically adequate, but still doesn't refer to an
allowable APL character.

Once the computer has received your instruction, it
starts work on executing it. If you have entered an
instruction which the computer cannot execute, it stops work
on that instruction and sends you an error message. Each
error message consists of three lines. The first identifies
the type of error that the computer has encountered. The
second restates the instruction as the computer understands
it. The third shows a caret mark indicating where the
computer ran into trouble. If the trouble was an instruction
that could not be executed, the caret shows how far the
computer had worked (proceeding from right to left) when it
found it could go no further.

202

Errors Are Described from the Computer's Point of View

Errors arise in various ways. You may have mis­
understood the proper use of an operation. You may have
tried to carry out a sequence of instructions in the wrong­
order. You may have forgotten what value is associated with
a variable .. A great many errors are simply mistypings .. The:
computer, of course, has no way of knowing what you intend.
It executes each of the instructions you enter as best it.
can, until it encounters something that it cannot execute.
Then it reports the trouble that it has encountered .. The
computer's classification of the error is, of necessity,
written from its own point of view, since it can't very well
guess how the error departs from what you pri va tely had in
mind.

For example, if you. misspell the name of a variable,
the computer may read t.his as a reference to some other
variable, and it will report an error only if the value of
that other variable makes the instruction impossible to
execute. It can't stop and tell you "spelling error," even
if that is how the error really arose.

Similarly, if you put a parenthesis in the wrong place "
or leave one out by mistake, the computer can only tell you
what problem it encount:ered as it tried to execute the
instruction that you di.d enter. Thus, while the computer
reports the type of error it has found, it can't tell you
what you should have typE~d; you have to figure that out for
yourself.

Generally speaking, when the computer finds an error in
an instruction, you have to reenter the entire instruction ..
The value of an int:ermediate expression within the
instruction is not saved,. unless of course your instruction
specifically directs thai: it should be stored as the value
of a named variable. ~~his arises only when there is a
specification arrow further to the right (and hence executed
earlier) than the caret 1:hat indicates where the trouble is.
If the result of an Lrrt.e rrne d.i a tie step has been stored, you
need only reenter (correctly!) the part of the instruction
that appears to i ts Le ft ..

If the instruction that's causing the trouble is a Li.ne
wi thin a program, you may ask to have the line
retried--presumably a f t.er you've taken some steps to correct
whatever was wrong. Correc t i.nq and restarting a program a re
discussed in Chapters 7 and 14.

203

Resend (Transmission Error)

When you are using a terminal, some malfunction of
equipment between you and the computer may cause the
computer to receive a garbled or unreadable transmission.
When this happens, the computer immediately requests that
your last transmission be repeated.

At the terminal, when the computer has detected a
transmission error, it types the word RESEND. Then the
computer unlocks the keyboard, but wi.thout the usual
indentation of six spaces, and waits for you to reenter your
last instruction--that is, to be more precise, everything
since the last time you pressed the carrier return key.

Character Error

Your message contains an illegal overstrike. The
computer types back as much as it can of the instruction as
received, up to the first unacceptable character. The
computer makes no start on executing any part of an
instruction containing a character error. The caret mark
indicates where the instruction is unreadable rather than
where it is unexecutable. You have to reenter the entire
instruction.

Value Error

Your instruction refers to a variable for which no
value can be found in this workspace. This may arise because
you have failed to assign a value to that variable, or
because you have misspelled the variable name so that the
computer does not recognize it. In that case, you may
correct the situation by entering a value for the missing
variable, or correcting the misspelled name.

You may also encounter a value error if you have
confused the local and global meanings of a name, and are
getting one when the other was intended. See the discussion
of local variables, and an avoidable mystification, page
180. Displaying the state indicator)~ and branching to 0
may resolve the difficulty by taking you out of the function
to which the name is local.

204

Value errors may also arise if you attempt to make USE~

of the result of a defined function, but the function
definition fails to provide one. You can remedy this by
rewriting the function definition so as to provide an
explici t result, or (if it already has one) by making SUrE!
that the body of the definition in fact specifies a ValUE!
for the result before execution of the function is complete.

Domain Error

You have entered a.n instruction which asks an API,
operator to operate on a value outside the domain tha.t t.h at;
operator can handle. You may get a domain error if you try
to di vide by zero, or to do ari thmetic on a val ue which is:
not a number, or to perform an operation whose execution
would develop a result too large to be handled. You will
also get a domain error if you attempt to catenate a Ii teral
vector with a numeric vector, or to insert literal elements
in a numeric array, or numeric elements into a Ii teral
array.

Syntax Error

You have entered an expression whose syntax is
impossible. Some examples of impossible syntax are:

1. Two variable names are juxtaposed
indication of the operation that is
performed on them.

with
to

no
be:

2. An operator symbol is used with no indication of a
value on which it is to operate.

3. A parenthesis or bracket is opened but not closed,
or closed but not opened.

4. A defined function is
inconsistent with the
header.

used in a way
syntax specified

that
in

is
its

You will have to correct the instruction and reenter.'

205

Rank Error

The rank of a variable is the number of dimensions it
has. You have entered an instruction which uses variables of
different rank for an operationwhich requires that the
ranks be matched, or you have used a variable whose rank is
too large for the particular operation. While the scalar
operators extend to arrays of rank I or 2, a number of the
other operators, such as ~, T, or 1, can take arguments only
of rank I or rank O.

Length Error

You have entered an instruction involving two arrays
whose lengths do not match properly. In APL\1130, a length
error is also reported if you attempt to generate a vector
whose length is greater than 255 elements.

Editing Error

You have entered an instruction which employs the
symbol V improperly. This symbol is used to begin the
definition of a function, or to revise (edit) an existing
function. An editing error is reported if you use a V in one
of the following improper ways:

1. The V is not
instruction.

the first character in the

2. You attempt to edit a function whose execution has
been started but not finished, and which is not
suspended (i.e. it is waiting for the result of
some other function which it calls and which has
been suspended). Check the sta te indicator by
entering)6.

3. You attempt to start a new definition for a
function whose header contains a result, an
argument, or a local variable when a definition
for a function of that name already exists in the
workspace.

4. While in definition mode, you enter a defective
request to edit a line of the function.

206

Label Error

You have used a colon improperly. Within the definition
of a function, the ·colon separates a label from the
instruction. Only one colon may appear on any line, and it
must have one and only one: label to the left of it. The name
may not be a name that is: already in use as the name of a
function; it is unwise to use as a label a name that has any
other use in the same workspace. Any use of a colon outside
defini tion mode gi ves r i s e to a label error.

WS Full Error

You have entered an instruction which requires more
storage in your workspace: than is now available. This may
arise because you have assigned to a variable a value that
involves a large array, or because some of the intermediate
steps in your calculation (even though not. assigned to a
variable) require too much space even for temporary storage
during the calculation. You should check over the list of
variables in the workspace to see if some may be removed
when no longer needed.

You should also check the state indicator for functions
whose execution is suspended, since space is required for
the values of their argun~nts or of other local variables
occurring within them, and these are stored separa tely for
each execution of a function.

It is possible to s t.ar t; the execution of one program
before the execution of earlier programs is complete. This
may happen if you suspend execution of a program and enter a
new instruction from the keyboard, or if one program itself
contains instructions calling for the execution of other
programs, or of itself. Since space is required for each
separate execution, a wo~xspace-full error may occur when
too many calls to execute: functions are stacked up at one
time. The two conunon oauses of this type of error are these:

1. You have a progrram which inadvertently calls for
its own execution and produces an infinite
recursion. This occasionally arises because you
enter definition mode to display the definition,
find the definition satisfactory, and then enter
the name of the function in order to execute it.
If you did this. without leaving definition mode,

207

you have appended to the definition a new line
calling for its own execution.

2. After a program is suspended in mid-execution, you
keep starting new executions without disposing of
those already started but not yet completed.

When you encounter a workspace-full error because too
many function executions are pending, you should enter +0
for each of them, thereby terminating those executions one
by one until none are left pending. As a general practice,
you should dispose of one execution of a function before
starting new ones, so that excessive numbers of stacked
executions are not accumulated.

Nonce Error

You have entered a valid instruction, but one which for
the moment (i.e. for the nonce) the computer is unable to
execute. You will have to' wai t until this restriction is
removed in subsequent revisions to the APL system program,
or arrange the instruction so that it doesn't use the
operator in that way.

System Error

The computer has detected some fault in its own
internal operations, either because of mechanical
difficulties or because of errors in its own system program.
System errors should be brought to the attention of the
system operator.

209

APPENDIX E:
EQUIPMENT YOU NEED TO USE APL\1130

There are two different ways to use APL\1130. Under one
arrangement, you work from an IBM 2741 terminal connected to
the computer by a telephone line. Under the other, you use
the keyboard and typewriter built in to the computer
console, without any external terminal.

If you use a terminal, you are free to locate the
terminal anywhere you like, even at a great distance from
the computer. You are also free to connect first one
terminal and then another (perhaps located somewhere quite
different) if that is convenient. The terminal has a
standard typewriter keyboard.

If you work directly at the console, you have no need
of any additional equipment other than an APL typing
element, which must be substituted for the typing element
usually found in the console typewriter. But because the
console keyboard ha.s fewer keys than a standard typewriter,
you must use a different layout of the key positions, with
three characters for each key rather than two.

Working at the 1130 Console

You need an APL typing element in the console
typewriter (part number 1167988). The keyboard diagram shows
you the layout of the keys when the console keyboard is used
for APL.

While APL is running, shifting between the different
cases is controlled by the two keys at the upper left corner
of the keyboard. (Note that these keys which serve for
shifting during APL use are different from the keys marked
ALPH and NUM, which aren't used at all for APL work.)

On the computer console you will find several rows of
lights. When the computer is being used to run APL, the
bottom two rows of lamps (marked ACC and EXT) serve to
indicate which shift position the keyboard is in. When all
those lamps are out, the keyboard is in lower case. When
lamps on the left are lit, the keyboard is in upper-left
case. When the lamps on the right are lit, the keyboard is
in upper-right case.

210

Suppose you start out when there are no lamps Li, t::
you're in lower case. PI'ess the upper-case key once and one
row of lamps will light on the left. The next character you
type will be in upper-left cas e-, But as soon as that on.e
character is typed, the case will automatically shift back
to lower case.

However, if you press the upper-left-case key twice,
you get a double row of lights on the left. Now you are
locked in upper-left case. You'll stay in upper-left case
until you manually shift down, or until you press carrier
return, whichever comes first.

Similarly, if you press the upper-right-case key once,
you get one row of lights on the right, and the next
character is typed in upper-right case. But if you press the
upper-right-case key twice, you get a double row of lights
on the right, and you' z'e locked in upper-right case until
you enter a carrier ze t urn , or you manually shift down,
whichever comes first.

Notice that on t.he console keyboard, some keys are
provided which by a single keystroke provide printing of
some of the composi te characters, such as [!J or 4> or f, even
though those are in fact formed by two separate 1mpression:s
from the typing element I' one on top of the other. This is
possible because at the computer console the typing element
is not directly connected to the key mechanism, but always
goes through the intermediate control of the computer.

If you're working at the console typewri ter, the
computer automatically provides ribbon-shift signals so
that, p r'ov.i de d a two-color ribbon is fitted in the console
typewri ter, what you t:ype will be in red while tih e
computer's responses will be in black.

The 2741 Terminal

The 2741 terminal is basically a typewri ter, modified
so that for each chara.cter that you type, a signal is
p roduced which may be transmi tted to the computer, and so
that similar signals sent from the computer can cause the!
terminal to type under the computer's direction.

It is essential that a 2741 terminal intended for use
with APL\1130 be ordered with the Interrupt Feature.

BACK
RETURN SPACE

" w- E< p< "J t> +> 1¢ °v *" ..~•••
Q W E R- T y- U I 0 P ~

at r 2 L3
'\7 5 ~6 0

, °9 (0)~-4 J7 K 8A S D F G H L []

APL KEYBOARD FOR 1130 CONSOLE

APL KEYBOARD FOR 2741 TERMINAL

213

The 2741 terminal is manufactured with either of two
systems for encoding the typing element. For terminals built
with the standard SelectriC®keyboard correspondence, the APL
typing element is number 1167987. Such a terminal may also
use any of the typing elements intended for Selectric@
typewri ters.

Some 2741 terminals are built with the PTTC/EBCD
correspondence, which is also employed in the 1130 console
typewriter. These terminals require typing element number
1167988, and are compatible with elements used in some
other computer systems.

When a new terminal is delivered, it is provided with
keytops to match the typing element with which it was
ordered. Terminals ordered with an APL typeball will show
APL characters on the key tops • Terminals which were ordered
with some other typing element, and which therefore have
keytops showing a different character set, may be converted
with a stick-on conversion kit, or by use of an overlay or a
keyboard map •

.Coupling to the Transmission Line

A device is required to couple the terminal to the line
running to the central computer. Where this is done by
dial-up over telephone circuits, a Western Electric 103-A2
data-set may be used. Other devices providing the same
encoding are possible, including acoustic couplers which may
be used with any voice telephone circuit, and which are not
electrically connected to the telephone equipment.

The equipment needed to couple the terminal to the line
may depend upon the equipment used by the central computer,
so you should check this out with the installation to which
you expect to be connected. In some cases, di re.ct wiring
rather than a telephone circuit may be possible, and then
you'd need the appropriate modulator-demodulator instead of
a data-set or acoustic coupler.

215

INDEX

A table of all the system commands appears on pages
195-196, and a table of all the APL operators on pages
197-200. The index does not contain any references to the
entries in those tables.

Absolute value 57
Absolute value of difference
in approximation 61

Active workspace 11
Active workspace only one
that can be saved 90

Adding line to definition 39
Addition 11
Addition of logarithms 60
Alignment of output in

columns 141 ff
All (AND reduction) 108
Alphabetic signs in APL

typeface 5
Alternation of sending and
receiving at typewriter 8

And (logical) 61
And reduction 108
Antilog 60
Any (OR reduction) 107
APL, meaning of name 1
APL typeface 5
Area of circular segment

(example) 85, 173
Area under curve 109
Arguments of a function 167,

170 ff
Argument of function dis­
played during execution 174

Argument of function re­
specified during execu­
tion 175

Array generating 111 ff
Arrays 97 ff, 186, 197

ATTN key in erase 9
ATTN key to delete line of

program definition 44
ATTN key to interrupt 10
ATTN key with transmission
error 203

Average 117, 118
Avogadro's number 48

Backspace to erase 9
Base value 183
Branch, conditional 66, 69,

137 ff, 157
Branch instruction 65 ff
Branch instruction to resume

execution when suspended 82
Branch to a vector

caption 75
Caret, inverted, to mark
erasure 11

Caret mark to indicate where
error is 82, 201

Carrier-return as end-of-
message signal 8

Catenation 129 ff
Catenation of results 131
Ceiling 23
Centering of vector 176
Chaining 129
Character error 10, 203
Characteristic operator 191

Clear active workspace 94
Column alignment 141
Combinations operator 184
COM switch on 2741 terminal

8
Common library, loading a
workspace from 93

Compound expressions 25
Compound expressions with
defined functions 176

Compound interest (example)
20, 29, 140-144

Compression 149 ff
Compression in branch in-
struction 157

Compression of a matrix 189
Computer program, what is 2
Computer output distin-
guished from user's 9

Conditional branch 66, 69,
137 ff, 157

Conformability of arrays
99, 186, 197

Consecutive integers 113
Console, using APL from 6
Correlation coefficient

(example) 117, 176
Coupling terminal to trans­
mission line 213

Crystal lattice (example)
160

Data-set 7, 213
Decibel (example) 59
Decimal representation 47
Definition mode 11
Definition of function, how
to enter 31 ff.

Deleting entire function 45
Deleting line of definition

44
Deleting variable 45
DeMorgan's rule 63
Diesel efficiency formula

(example) 35

216

Dimensions of an array 114
Displaying single line of
definition 40

Distinguishing who typed
what 9

Division 11
Domain error 204
Dropping a workspace 92

e, powers of 58
Editing definition of a

function 39-44, 181
Editing error 205
Editing function that has

arguments, result, or local
variables 181

Empty vector 113, 157
English order of speech com­
pared to APL 26

Equal 53 ff .
Equality: how close is

equal? 55
Equipment needed to use

APL 1130 APL 1130 APL 1130
--at 1130 console 209
--at 2741 terminal 210

Erase procedure 9
Eratosthenes 151
Error message 81, 201 ff
Errors in typing 9
Euclidean algorithm 137, 171
Exclusive or 62
Execution mode 11
Exit from loop 137
Exit from program 66
Expansion 190
Exponential form for repre­
sentation of numbers 48, 49

Exponentiation 20

Factorial (example) 67, 71
Factorial operator 184
FICA tax (example) 23, 29
Fixed format for numerical
output 143, 144

Floor 23
Focal length (example) 32
Format selected by computer
for numbers 51

Function called by another
function 37, 176 ff

Function definition, how to
enter 31 ff.

Function display 42
Function in mathematics 167
Function locked to prevent
editing or display 193

Function, program as a rep­
resentation of 168

Function definition when
function has arguments or
result 170 ff

Function with arguments,
execution of 172

Fuzziness of judgment of
equality 55

Gamma function 184
GCD (example) 137, 171
Generating an array III ff
Global vs. local variables

179 ff
Greater (relation) 53

Halt on unexecutable in­
struction in program 81 ff

Header format in function
definition 170

Hexadecimal (example) 126

Immediate execution 11
Indentation of carrier when

computer ready for input 8
Index-finding 123
Index-finding for non­
existent value 125

Index-finding for value
located at more than one
place in the vector 126

217

Indexing 119 ff
Indexing by expression 120
Indexing by empty vector
Indexing, dimensions of
result of 124

Indexing of expression 120
Indexing of matrix 121, 185
Indexing on left of speci-
fication arrow 119

Initial value of counter 16,
139

Initializing loop 139
Inner product: see general­
ized matrix product 186

Input requested by program
159

Inserting new elements in
a vector 133

Integer portion 24
Integers, consecutive 113
Integration (area under

curve) 109
Interest table 140 ff
Interpolated line of defi-
nition 42

Interrupting computer 10
Iterative programs 137 ff
Iverson, K. E. 1

Juxtaposition of operands
not permitted in APL 24

Keyboard map for 2741 212
Keyboard map for console 211

Label error 206
Labels in program 79, 139
Largest value expressible
in APL 1130 50

Leading decisions 72, 138
Left arrow 13
Length error 205
Length of a vector 114
Length of single number 116

Less than (relation) 53
Library functions 192
Library list 92
Library structure 94
Literal characters 75, 78,

112, 124, 126, 131, 162 ff
Loading saved workspace 91
Loading workspace from pri-
vate library 93

Loan payment (example) 145
Local variables 179 ff
Local variables other than

arguments or result 180
Locking function definition

193
Locking sign-on number 90
Locking workspace 193
Logari t:hm 59
Logical operations 60 ff
Logical values (result
of test of relation) 53

Loop, endless 81
Loop with counter 139
Loops 68, 137 ff

Machine instructions 3
Matrix, indexing of 121
Matrix product 186
Maximum of two arguments .21
Maximum reduction 106
Memory structure 11, 94
Minimum of two arguments :22
Minimum reduction 107
Mixed output 78
Modem 213
Modes: execution vs.
definition 11

Modulus (see residue) 57
Monadic vs. dyadic operators

19
Month, updating (example) 58
Multiplication 11
Multiplication, juxtaposing

operands not allowed 24
Mystification when local CLnd
global meanings confused
180

218

Names for variables 15
Nand 184
Natural logarithm 60
Negation, arithmetic 19
Negation (logical) 63
Negative numbers 49
Negative sign distinguished

from subtraction 49
Nonce error 207
Nor 184
Normal curve (example) 58
Not equal 62
Number representation 47-51
Number systems other than

decimal 183
Numerals in APL typeface 5

One-line form of program 36
Operations, several in same
instruction 25, 30

Operator signs in APL type­
face 5

Operators, monadic vs.
dyadic 19

Operators, table of 197
Or (logical) 61
Or reduction 107
Order of execution of lines
of a program

Order of operations 25
Order of presentation in
primer 4

Outer product 186
Output format with literal
characters 75, 78, 144

Output requires no "print"
statement when function
has formal result 170

Overstruck characters 9

Parallel processing 97 ff
Parentheses 27
Pascal's triangle (example)

135
Pounds to dollars (example)

175

Power (exponentiation) 20
Power vs. simplicity 3
Precision of numbers 50
Prime factors (example) 146
Primer, how to use 4
Primer, purpose of 1
Primes (example) 131, 151
Printing result of cal-
culation 13

Product 106
Program called by another

program 37, 176 ff
Program display 42
Program stops, what to do

when 81 ff
Program, what is a? 2·
Programming language 3

Quad input 159
Quadratic (example) 76ff, 79
Quote-quad input 162

Random numbers 192
Range of numbers 50
Rank error 205
Ravel 133
Reciprocal 19
Recursion, excessive 206
Reduction 105, 199
Relational test used to con-
trol compression 150 ff

Relations, truth of 53
Remainder function 57
Replacing line of definition

40
Representation 183
Resend 203
Residue 57
Residue with non-integral
left argument 184

Resistance (example) 172
Respecifying certain
elements within array 119

Restructuring IlIff

219

Result, definition of func­
tion having 170

Results, building by cate­
nation 131

Resuming execution of a
suspended program 82, 83,
174

Reversal of array 187
Revising saved workspace 93
Right-to-left rule 27
Root, extraction of 20
Rotation of array 188
Rounding off to integer 24

Saving a workspace 90
Saving workspace under
different name 94

Scalar 116
Selection by compression

149 ff
Selection by indexing 119
Semicolon 1n indexing of
matrix 121, 185

Semitone ratio (example)
21, 29

Sequence in which keys are
struck while typing 10

Service charge (example) 22
Set membership 191
Sign function (example) 55
Sign off 90
Sign-on 6, 7, 89
Sign-on password 90
Simplicity vs. power 3
Smallest value expressible
in APL 1130 50

Sorting 154, 155
Spaces, where needed 181
Standard deviation 118, 177
Stand-alone program 31
State indicator lists pro-

grams whose execution is
incomplete 87, 196

Storing result of calcu­
lation 13

Subtraction 11, 49
Summation 105
Sum of products 109, 117
Syntax error 204
Syntax of operators: monadic
vs. dyadic operators 19

Syst.em commands 89 ff
System commands table 195
System error 207

TALK button 7, 213
Tax (example) 103
Telephone noise: see trans­
mission error 201, 203

Terminal, getting started
from 7

Terminal, 2741, for use with
APL 1130 210

Text output 75, 78, 112
Tracing 86, 152
Transmission error 203
Transposition of matrix 187
Trial and error method 201
Two-color ribbon 210
Type, whose turn to? 8
Typeface for APL 5
Typing errors corrected 9
Typing element for APL

209, 210

Unequal (relation) 53, 62
Unlocking of keyboard 8
Unlock without indent during
open quote 76

Value error 16, 203
Vanishing variable 180
Variable, allowable names: 15
Variable, assigning value

to 13
Variable respecified 15
Variable used in calculation

14

220

Variable with no value 16
Vector, making any variable
into a 133

Vector, maximum length in
APL 1130 133, 205

Vectors 97 ff
Vectors, length matching 99
Vectors of zero length 113
Visual fidelity 10

What you see goes in 10
Workspace 11
Workspace full 206
Workspaces, list of 92
Workspace locked against

unauthorized use 193
WS Full error 206

Zero-length vector 113

C20- 01691'-0

International Business Machines Corporation
Data Pl'ocessing Diviosion
112 East Post Road, White Plains, N.Y.10601
[U5A Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 1001Z.:
{International]

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	xBack

