
I:II::\.CONT~OL DATA
\::I r::J CORrO~TlON

APL
VERSION 2
REFERENCE MANUAL

CDC· OPERATING SYSTEM:
NOS

60454000 F

o4l.}

z.o

TABLE OF APL SYMBOLS REFERENCED IN THE TEXT OTHER THAN TAPLE C- 2

~:'f:f.I!.0-L. 1l.4H~ 4lJJ2.LO-B. !l.~E.
+ PLUS

7-4
1-5
3-9
10-11
SEC 2
3-9
3-8
3-3
C-l
3-2
2-4
3-3
C-2
C-l

6-5
6-5
6-13
6-5

6-19
6-21

6-23
6-24
6-7
4-3
6-8
6-11
7-3

4-3
4-3,4-5
4-3,4-5
4-3
4-3
6-9
5-4
6-5

f4Q:~
4-2
4-2
4-2
4-2
4-2

4-2,4-4
4-2
4-2

4-3.4-5
4-3

4-3,4-5

EXPAND
SCAN

ROTATE
REVERSE

OUTER PRODUCT
SPECIFY
QUOTE QUAD
BAD CHARACTER
DEL TILDE
COLor,
SEMI-COLON (LISTS)
QUOTE
DOLLAR SIGN
DIGITS
LINE DEL~TIon (V)
NEGATIVE
BREAK OR ATTN
DIERESIS

1ST COORD
1ST COORD
DROP
1ST COORD
1ST cnORD
REPRESENT
FORMAT

!-fA TRIX INVERSE
MATRIX DIVIDE
DEAL
ROLL
GRADE DOW!i
EXPAND
SCAN

NOT
NOT GREATER THAN
NOT LESS THAN
OR
NOR
JOIN
RAVEL
1ST COORD JOIll

?

•

,
I

~ (\-)

o••• 9

;' (,-)

, (V I)
\

l

" (SI)

T
.. (To)

...
e (0-)

~rMI!.QL ~4M~ 4~QLQH
- MINUS

SUBTRACT
DIVIDE
RECIPROCAL
MINIMUM
F'LnOR

• (0*) LOGARITHM
NATURAL LOG

t ('.) COMBINATIOnS
FACTORIAL
EQUAL

° .S
+

[ti (Ot)

v
", (v-)

l!I (0')
I (VIl)

'" (V-)

2-7
2-11

6-8
6-10
7-1
2-5
6-5
6-5
6-12
6-14
6-14
6-18
6-20
3-3
9-1
7-4
6-15
3-9
2-4
SEC 2
2-9
3-2
3-6
2-7
3-2

4-2
4-2
4-2

4-2,4-4
4-2,4-4

4-2
4-3,4-5

4-3
4-3,4-5 =
4-3,4-5
4-3.4-5
4-3,4-5
4-3
4-3
4-3
5-3
5-4
5-5
3-5
6-6
6-6
6-7

GRADE UP
COMPRESS
REDUCE
CONTEXT EDITING (V)
1ST COORD COMPRESS
1ST COORD REDUCE
TAKE
ROTATE
REVERSE
BASE VALUE
EXECUTE
DECIMAL POINT
GROUP INDICATOR
INNER PRODUCT
TRANSPOSE
QUAD (INPUT-OUTPUT)
LINE EDITING (V)
FUNCTION DEFINITION
BRANCH
COMMENT
PARENTHESES
DIAMOND
ALPHABET

TIMES
SIGNUM
MAXIMUM
CEILING
POWER
EXPONENTIAL
RESIDUE
MAGNITUDE
CIRCLE
PI TIUES
NOT EQUAL
LESS THAN
GREATER THAN
AND
NAND
RESHAPE
SIZE
INDEXING
FUNCTION INDEX
INDEX OF
INDEX GENERATOR
MEHBERSHIP

ESCAPE FROM ~ INPUT
II FROM EDITOR (V)

4 (61)
/

f (/-)

[]

r

x

\

*

v

o

t
<I> (01)

~

<
>
A

ft (A-)
P

ol
.I (ol 0)

R.S
~ (0\)
o

A (no)
()
• (VA)
A • • • Z
4 •.• ~
Ii _ t!
a(OUT)

(Continued on the inside of the back cover)

&lI::\CONT~OL DATA
\::I r::J CO~O~TION

APL
VERSION 2
REFERENCE MANUAL

CDC~ OPERATING SYSTEM:
NOS

6045.4000

REVISION RECORD
REVISION DESCRIPTION

A Manual released.

(9-15-76)

B Manual revised to reflect NOS 1.2 at PSR level 460.

(2-10-78)

C Manual revised for APL version 2.1 level 472 and NOS 1.3 level 472. The changes include the

(6-13-78) documentation of the repetition count feature of o FRMT, the FPACK file function, a file storage

efficiency equation, the workspace SEAL capability, terminal usage under NAM/IAF, and several

technical corrections.

D Manual revised to reflect NOS 1.3 at PSR level 477 and to make technical and typographical

(8-18-78) corrections.

E Manual revised to reflect NOS 1.4. The changes include the incorporation of new NAM/IAF

(7-20-79) protocols, a few improvements in notation, and several technical corrections.

F Manual revised to reflect PSR level 528. The changes include enhancement of FSTATUS to show

(11-31-80) read failure for coded files, and several technical corrections.

Publication No.
60454000

REVISION LETTERS I, 0, Q AND X ARE NOT USED

©1976, 1978, 1979, 1980 by Clark Wiedmann

All rights reserved.

Reprinted by Control Data Corporation

with permission from Clark Wiedmann.

ii

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision

Front Cover -
Inside Front Cover E
Title Page -
ii F
iii F
iv F
v C
vi C
vii E
1-1 E
1-2 E
1-3 E
1-4 E
1-5 A
1-6 C
1-7 A
1-8 A
2-1 A
2-2 A
2-3 A
2-4 F
2-5 A
2-6 A
2-7 A
2-8 A
2-9 A
2-10 A
2-11 C
3-1 A
3-2 A
3-3 C
3-4 A
3-5 A
3-6 F
3-7 F
3-8 C
3-9 A
3-10 A
4-1 A
4-2 A
4-3 A
4-4 A
4-5 C
4-6 A
5-1 A
5-2 A
5-3 A
5-4 A
5-5 A
5-6 A
5-7 A
6-1 A
6-2 A
6-3 A
6-4 A
6-5 F
6-6 C
6-7 A

60454000 F

Page Revision

6-8 A
6-9 A
6-10 A
6-11 E
6-12 E
6-13 A
6-14 A
6-15 C
6-16 A
6-17 A
6-18 A
6-19 A
6-20 C
6-21 A
6-22 B
6-23 C
6-24 A
6-25 A
7-1 A
7-2 A
7-3 A
7-4 A
7-5 A
8-1 A
8-2 C
8-3 C
8-4 C
8-5 C
8-6 E
8-7 E
8-8 C
8-9 C
8-10 C
8-10.1/8-10.2 C
8-11 C
8-12 E
8-13 E
8-14 E
8-15 C
8-16 E
8-17 F
8-18 C
8-19 C
8-20 F
8-20.1/8-20.2 F
8-21 C
8-22 A
8-23 A
8-24 E
9-1 C
9-2 E
9-3 E
9-4 E
9-5 A
10-1 A
10-2 C
10-3 C
10-4 C

iii.

Page Revision

10-5 C
10-6 A
10-7 C
10-8 A
10-9 F
10-10 F
10-11 C
10-12 F
10-12.1/10-12.2 8
10-13 C
10-14 C
10-15 C
10-16 C
10-17 A
10-18 A
11-1 8
11-2 A
11-3 A
12-1 A
12-2 A
12-3 A
12-4 C
12-5 A
12-6 A
13-1 E
13-2 A
13-3 8
13-4 C
13-5 8
13-6 C
A-I C
A-2 C
A-3 C
A-4 A
A-5 A
A-6 8
A-7 8
8-1 A
C-1 E
C-2 E
C-3 E
C-4 E
C-5 E
C-6 E
C-7 E
C-8 E
C-9 F
C-I0 F
C-11 F
0-1 E
0-2 E
0-3 E
0-4 E
E-1 A
F-1 E
F-2 E
F-3 E
Index-1 E
Index-2 E
Index-3 E
Index-4 E
Index-5 E
Index-6 E
Index-7 E
Index-8 E
Index-9 E
Index-l0 E
Conment Sheet E
Inside Back Cover F
8ack Cover -

• iv 60454000 F

PREFACE

This manual describes the APL 2 system, an implementation of
the APL language available under the NOS operating system. The
APL language had its origins in the book A Progr~ing Language
(John Wiley & Sons, new York, 1962) by- Kenneth E. Iverson.
Because a single line in APL typically expresses what would
require many lines in other languages, programs can be written in
APL in a fraction of the time with less chance of error. The
programs that result tend to be easier to use and easier to
extend.

Primary objectives in the design for the APL 2 system were:
to achieve a very high level of performance, to provide a
flexible file system, to incorporate system functions and
variables, to provide all system command capabilities to
user-defined functions, and to allow all workspace areas
(including the symbol table and file buffers) to change size
dynamically according to changing needs. The storage manag~aent

scheme was designed to anticipate future extensions of APL to
a Ll.ow list structures.

The APL 2 system, formerly named APLU!1, was developed under
the direction of James H. Burrill at the University Computing
Center of the University of J.1assachusetts. (The APL 2 system
accepts files and wor ksp a ces produced by the APLUH system with
full compatibility.) This manual is a Control Data adaptation of
the APLU1·1 Reference Hanual (second edition, 1975) by Clark
Niedmann. The following programmers also participated in the APL
2 system development: Rick Mayforth, Sheldon Gersten, Brian
Arnold, Jeff Dean, Judy Smith, Bob Weinberger, and Ira Greenberg.
In addition, Pat Driscoll and Nendy Mayfield assisted with
documentation. Development of APLUl1 and APL 2 was supported in
part by a grant from Control Data Corporation.

60454000 C v

Note that this manual is organized as a reference manual,
not as a teaching manual. The intent is to accurately describe
the APL 2 system, but not to teach APL to the novice. A reader
who lacks familiarity with the APL language is advised that it is
much easier to learn APL from an introductory text rather than
from a reference manual such as this.

The following manuals contain information concerninq the NOS
operating system:

Control Data Publication

NOS version 1 Time-Sharing User's
Reference ManuaL

NOS Version 1 Time-Sharing User's Guide

NOS Version 1 Reference Uanual, Volume 1

Network Products Interactive Facility
Version 1 Reference l1anual

Network Products Interactive Facility
Version 1 User's Guide

Publication No.

60435500

60436400

60435400

60455250

60455360

vi

This product
described in
cannot be
functioning
parameters.

is intended for
this document.
responsible for
of undescribed

use only as
Control Data
the proper

features or

60454000 C

COUTENTS

Section 1. A Sample Terminal Session

Section 2. User-Defined Functions

Section 3. Statement Form and Order
of Evaluation

Section 4. Scalar Functions

Section 5. Array Concepts and Indexing

Section 6. I-1ixed Functions

Section 7. Composite Functions

Section 8. System Functions and Variables

Section g. System Comnands

1-1

2-1

3-1

4-1

5-1

6-1

7-1

8-1

9-1

Section 10. File System 10-1

Section 11. APL Public Libraries 11-1

Section 12. Optimization of APL Programs 12-1

Section 13. Operating System Features for APL Users 13-1

Appendix A. Error 14essages A-I

Appendix B. Output Format B-1

Appendix C. Character Sets and Terminals C-l

Appendix D. APL Control Card D-l

Appendix E. numerical Lirilitations E-l

Appendix F. Use of Terninals at Installations
without HAU/lAP F-l

lHj)EX

60454000 E

lUDEX-l

vii

Section 1. A Sample Terminal Session

This short introduction to APL shows a sample terminal
session from the time of logging on until the time of logging
off. This section attempts to emphasize some of the important
facilities of APL, and attempts to show the dynamic nature of
APL, which ~ay not be evident from the following sections.

LOGGING ON

The first step is to establish a telephone connection
between the terminal and the computer. This procedure varies
somewhat according to the type of terminal used. Further
information about telephone numbers, types of terminals that are
supported, passwords, accounting procedures, and restrictions
placed on use of computer resources can be obtained from
personnel at the computer installation. The f o Ll.owd.nq discussion
assumes that an acoustic coupler will be used, that NAM/IAF (with
auto baud) is used as the communications processor, and that the
terminal is an ASCII terminal capable of printing the APL
symbols. Terminals not able to print the APL character set can
be used, but they are much less satisfactory for program
development, although they may be satisfactory for entry of data
or transactions. See Appendix C for further information about
terminals, and see Appendix F for special instructions for
installations not using NAli/IAF.

1. Turn on the terminal and the coupler (sometimes one
switch activates both). Dial the phone number for the
computer. You should soon hear a high-pitched tone
indicating the computer has answered the phone. Place the
telephone handset in the acoustic coupler. Usually, one end
of the acoustic coupler is marked "cord" to indicate which
end of the telephone handset should be placed there. It is
important to match the correct ends.

60454000 E 1-1

2. When the connection to the computer has been completed,
press the RETURN key (possibly labeled CR, CAR RET, or
CARRIAGE RETURN). When you press RETUffil, the paper should
instantly advance two lines. If it does not advance, press
RETum~ again. After the system responds, type) and press
RETURN again. Note that you should be using the APL
character set at this point, so the right parenthesis you
use is the APL right parenthesis. It should print as a
right parenthesis.

3. The system will reply with three lines wllich appear
something like the following

76/05/07. 14.12.44. T1P2047
CDC MULTI-MODE OPERATING SYSTEM
FAMILY:

NOS 1.3 485/485

The first line is the current date given ill year/month/day
and the current time given in hours.minutes.seconds. , The
second line is the identifying header of the installation
which may give the installation name, the operating system,
and the version of the operating system. The third line is
a request for a family name if the installation has divided
its mass storage devices into families. Respond by entering
the name of the family to which you are assigned and press
RETURN. If your family is the default family name for the
system you only need to press RETURU.

The system will then request your user number. If
family names are not required, the request for a family name
is omitted and the request for a user number is the second
line you type in the log-in sequence. This request is:

USER NAME:

Respond by entering your account name and pressing RETURN.

1-2 60454000 E

The system will then reply with:

PASSWORD
1Il.1/l1i11.11fll.llfl

The second line results from the system overtyping a variety
of characters to preserve password security. Type your
password over the blackened squares and press RETURN.

4. The sys t em wi Ll, respond by printing something like:

TERMINAL 332,NAMIAF
RECOVER / SYSTEM:

The first line gives the terminal number assigned for this
session. The second line invites you to either RECOVER
(resume work that was in progress before a line disconnect
or system malfunction) or specify the system you wish to
use. Type APL in response.

APL will respond with something like:

APL2.0 J6/05/07 16.29.12
APLNEWS 76/05/06
CLEAR WS

The first line identifies the version of the APL system and
the date and time when it was created. The message APLNEWS
indicates when a news item about changes in the APL system
was entered. To access news items, type

)LOAD *APL1 APLNEWS

The message CLEAR WS indicates that you have begun with a
clear active workspace.

60454000 E 1-3

IM11EDIATE EXECUTION MODE

You can now type APL expressions.
evaluated immediately. For example,

What you type is

8
3+5 (You type this and press RETURN.)

(This is the computer's response.)

Pressing the RETURN key is your signal to the computer that you
have finished typing the line. The computer will not process the
line until you press RETURN. The expressions you type are
interpreted as they appear on the paper. This is called the
principle of visual fidelity. You can space forward or backward
as much as you please as long as the final appearance of the
paper is what you intended. (Visual fidelity is not preserved on
terminals that do not print the APL character set.)

If you make a typing mistake, you can correct the line by
canceling the rightmost portion of the line and retyping. On an
ASCII terminal you do this by backspacing to the first character
to be changed and then pressing LINE FEED (possibly labeled LF on
the keyboard). The system responds by printing a pointer below
that character and positioning the type element below that
pointer. You can then continue typing as if only the symbols to
the left of the pointer had previously been entered. To cancel
the entire line, hold down the CTRL key while pressing X, then
press RETURN.

The following examples show some simple calculations being
pezformed ,

6

3f2
1.5

note that the APL system indents six spaces before allowing you
to type, but the system prints its response at the left margin.
This clearly distinguishes what you type from what the computer
types. The following example shows how arithmetic can be
performed with several numbers at the same time

2x1 2 3 4
246 8

1-4 60454000 E

The series of nillIDers on the right is called a vector.
element of the vector was multiplied by 2.

Each

Values can be given a name and saved for later use. ~he

names are called variables. The process of giving a variable a
value is called assignment. The following examples show
assignment of values to variables A and B.

A+4.8
B+1 2 3 4
A+B

5.8 6.8 7.8 8.8

l~te that when the result of a calculation is not assigned to a
variable it is printed. The sum of the elements in a vector can
be found as follows:

B+1 2 3 4
+/B

10

Any symbols on the keyboard can be used as values if they
are surrounded by quotes. For example,

GRADES+'ABADCABAABADB'

~he = symbol can be used to compare values. The result is 1
where a match is found and 0 otherwise. For example,

'A'=GRADES
101 001 011 010 0

The following example shows h~
be produced:

'ABCD'o.=GRADES
1 0 1 0 0 1 0 1 1 0 1 0 0
0 1 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0

a table of comparison values can

~here is one row for each value in 'ABeD' and there is one" column
for each value in GRADES. To find the number of A's, B's, CiS,
and D'S, add up the 1's in the four rows as follows:

+/('ABCD'o.=GRADES)
641 2

Below is an example of another comparison table using ~ instead
of =. Aiso, instead of using +/ to add the rows as in the last
exanple, +1 is used to add up the columns. The symbol I, called
an overstrike, is formed by typing I, backspacing, and then
typing - (Actually the two symbols comprising the overstrike
can he typed in either order.)

60454000 A
1-5

V+2.1 3.2 .08 8.1 4.6 1.2 2.3 4.2 1 06

2 4 6 8°.~V

1 1 0 1 1 0 1 1 0
0 0 0 1 1 0 o 1 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0

+r{2 4 6 8o.~V)

1 1 0 4 2 01 2 0

As shown, this operation classifies each value in V according to
the number of values in 2 4 6 8 it exceeded. That is, a value
between 2 and 4 is in class 1, a value between 4 and 6 is in
class 2, and a value between 6 and 8 is in class 3. A user
defined function can be written to perform this operation:

VZ+A CLASSIFY B
l1] Z++rA 0 • ~BV

The first V signals to the computer that you wish to de£ine a
function. The first line shows that the function takes two
arguments (input values) and gives a result. The computer
numbered the next line with ll]. The V at the end indicates you
have completed typing the lines of the function. The function
can be used as follows:

2 4 6 8 CLASSIFY V
1 1 042 012 Q

flow it might be interesting to tabulate how many D's, l's, 2's,
and so forth were in the last result. An APL function can be
written to do this but it requires two more APL operations: The
largest value in a vector V is given by [/.V;. and t,N gives the
integers 1. 2 3 ••• N. lie use both of these as follows:

VZ+TAB B
[1] K+tltr/B)+1)
L2'] K+K-·l
L3J Z++ Il x- •=B) V

TAB 0 1 0 1 2 ~ 3
231 1

TABl2 4 6 8 CLASSIFY Y)
3 3 201

1-6 60454000 C

The following function will give a crude histogram of these
results:

'iJZ~HIST B
[1] t--t r»
[2] Z~«P+1)-lP)o.~B 'iJ

HIST 3 3 2 0 1
11000
1 110 0
1 110 1

A neater histogram can be produced by adding another line to the
HIST function:

'iJHIST
[3] Z~' 0 t [Z+l]
[4] [OJ

'V Z~HIST B
[1] p~r IB
[2] Z~«P+1)-lP)o.~B

[3] Z+' O'[Z+l]
'il

[4] 'iJ

(Function definition is opened.)
(Another line is added.)
(Display is requested.)

(Definition is closed.)

Note that to add more to
name (but not Z~HIST B) •
Typing [OJ on the next
function. Fin~lly, the
lines were to be added.
two others as follows:

the function you first type 'iJ and the
The computer nUMbered the line [3J.

line caused the computer to list the
V was typed to indicate that no more
This function can now be used with the

HIST TAB 2 4 6 8 CLASSIFY V
DO
DOD
DOD 0

You can display the names of defined functions and variables as
shown below:

)FNS
CLASSIFY HIST TAB

A
)VARS

B GRADES K p V

To save
session,

the functions
type

) SA VE MYWORK

and variables for use at some other

The collection
worksp'at:e • Here
advisable to save

60454000 A

of functions and variables constitutes a
a workspace naned MYWORK was saved. It is
the workspace often if you are changing it in

1-7

order to minimize the amount of work that will be lost in the
event of a serious computer malfunction. (See Section 13 for the
procedure to follow to avoid losing work after a telephone
disconnect or minor computer malfunction.' To remove all
functions and variables from the workspace you are now working
with, type

)CLEAR
CLEAR WS

)FNS

)VARS
(110 functions.)

(No variables.)

You can retrieve the MYWORK workspace as shown belpw:

)LOAD NYWORK
MYWORK 75/08/08 16:18:28

)FNS
CLASSIFY HIST TAB

~o terminate the session and log off the computer, type)OFF.

)OFF
A123456 LOG OFF 18.12.07.
A123456 SEU 2.774 VNTS.

Although this sample session was short and only used a small
fraction of the APL operations, it illustrates how well adapted
APL is to experimentation. Programs can easily be developed in
small parts and put together to do useful work. The flexibility
in using functions in new combinations makes many problems much
easier to solve. Many users of APL begin with the habit (formed
by familiarity with other computer languages) of writing large
monolithic programs in one piece. It should be evident that the
modular approach illustrated above is better.

1-8 60454000 A

Section 2. User-Defined Functions

Function definition mode allows the user to enter function
lines one at R tille, r~10ve lines, change lines, insert lines, or
display the function. In function definition mode, APL
statements entered are not executed or checked for errors, nor
are system conmands executed. Host errors will be detected when
the statement is executed for the first time. System commands
are illegal in the body of a function. Table 2.1 contains a
summary of function definition.

CREATItTG A FUnCTION

To enter function definition mode, type V and the function
header. The fOTIl for the function header should be determined by
hOH the function is used. The six possible forms are shown in
the following table.

lJunber of Arguments 0

110 Result name

Result Z+na~e

1 2

name B A name B

Z+name B Z+A name B

The nane of the function (represented by name in the table
above) can consist of any number of letters A to Z, underscored
letters A to Z, digits 0 to 9, or the symbols _, L, or L, but
must not-lJegin- with a digit. The function name must not-be in
use for another global function or global variable. In the
table, Z is used as the result variable, A is the left argument,
and B is the right argument. Any other names could be used
instead, provided they are used consistently in the body of the
function. Ilarne s of systern functions or variables must not be
used as the result variable or argument variables.

60454000 A 2-1

Table 2-1. Sm~tmary of Function Definition.

Creating a function

VZ+A NAME B

Reopening definition

VNAl1E

Display

[OJ
[020]
[200J

(Display all.) .
(Display from 20.)
(Display line 20.)

Insert a line between [2J and [3 J

[2.1] P+'l5

Delete line [3 J

[~3]

Replace line [3]

[3] P+Q+5 x'lN

Line editing for line [3]

[3J

[3J

[308]
P+Q+5 x'lN

Ii 1
P+ +5 x 'l lJ

(Line 3, colunn 8.)
(The line is printed.)
(Type / to remove, 1 to insert 1 space.)
(Type additions in the spaces.)

[3J I.old phrase.new phrase
[3J I.old phrase.
[3 J I .. new t ex t
[3 J I ..

Extending line [5J

[500J

context editing for line [3J

(To replace.)
(To delete.)
(To extend.)
(To display the line and then
extend it.)

[3J I.old phrase.nev phrase.4 (To replace 4 times beginning at
line [3J)

[3J I.old phrase.new phrase.l0? (Interactive multiple
changes.)

[3J I.old phrase.new phrase.Vl0? (Interactive multiple
replacement of names.)

2-2 60454000 A

After any of the forms in the table, there can be a
semicolon and additional names separated by semicolons. The
additional names declare variables and functions to be local to
the function. (Local variables and functions are discussed later
in this section.)

The function header is line [oJ of the function. After
entering a V and a header, function definition is said to be open
(If the header contains duplicate names, a DEFN ERROR will
occur.) The system then types [1J on the next line to invite
the user to enter line [1J of the function. The user can then
type function lines, and the system continues to number lines.
~lhen the last line has been entered, function definition mode can
be terminated by typing a V at the end of a line or on a line by
itself. The V is recognized as long as it is the last nonblank
character on the line, even if the line is a comment.

Upon an atte~pt to close definition, statement labels are
checked for duplication with names used in the header or names
used for labels on other statements. Any errors cause the
message DEFN ERROH and display of the line with the incorrect
label. The error should be corrected, then V should be typed to
attempt to close definition again.

REOPENING DI:FIUITIOH

To add more lines to a function, first reopen definition by
typing V and the nane. No other header information should be
used--use of other header infornation causes the system to assume
you are mistak.enly attempting to create a new function having the
same name as an old function. (The header can be changed after
definition is open by treating it as line [OJ and revising it as
described below.) After definition of the function has been
opened, the syst~a types the number the next line will have.
The user can type additional lines in the same manner as when the
function was created.

OVERRIDING THE LIlJE NUHBER

After the system types a line number, the user can override
that line number by providing· a different one. For example,
assume the syste~m printed [4J because line [4J was expected. The
user could type [2J to override the [4J if he wants to enter a
new line [2J. He could type the new line [2J on the same line he
types the line number, or, he can type only the overriding line
number and press RETURN, after whi.ch the system would type [2 J.
After line [2J is provided, the system would continue by
numbering the next line with [3~.

To insert a new line between lines, use a fractional line
number. For example, [3.2J could be used to insert a line
between lines 3 and 4. No more than 4 digits are allowed after

60454000 A 2-3

the decimal point. The system continues to number subsequent
I lines by incrementing the last nonzero fractional position of the

overriding line number until another overriding line number is
used. Thus, after [3.98] would follow [3.99], [4], [4.01], and
so forth.

To remove a line, use a request of the form [~3]. The delta
before the overriding line number indicates that the line should
be deleted. More than one line number can be provided (e.g.,[~3

9 1.6]). Note that a line cannot be replaced by a blank line by
overriding a line number with the number of the line to be
deleted and pressing RETURN.

Line [0] (the header) can be replaced like any other line,
but it cannot be deleted. If the new line [0] causes the name of
the function to change, the old function remains as it was when
function definition was opened, and a function having the new
name is produced when definition is closed. The function name
cannot be changed to the name of a global function or variable,
and the function header is not allowed to contain duplicate
names.

When function definition is closed, all lines are renumbered
with consecutive integers. Because line numbers can change, use
of labels for all branching is recommended.

DISPLAY OF FUNCTIONS

When function definition mode is open, the entire
can be displayed by typing [0]. To display only line
function, type [3D]. To display all lines from line [3]
[03]. If you interrupt the display (see Appendix C),
definition remains open unless a closing V appeared in
line as the request for display.

LINE EDITING

function
3 of the
on, type
function
the same

Line editing can be used to change individual characters in
a line. To begin line editing, type something of the form [308],
where 3 is the number of the line to be revised, and 8 is the
approximate position in the line where the first change is to be
made. The system then prints the line and unlocks the keyboard
below the 8th character. Use spaces or backspaces to position
the typeball to the position to be changed. Type / under a
character to delete it, or type a digit 1 to 9 to insert 1 to 9
spaces before the character, or type A below it to insert 5
spaces, B for 10 spaces, C for 15 spaces, and so on up to H for
40 spaces. To replace a character, you must delete that
character (which closes up the line leaving no new space) and
type a 1 below the next character to provide space for the

2-4 60454000 F

replacement character. After the changes are specified and
RETURN is pressed, the system prints the revised line and waits
at the position of the first inserted space or at the end of the
line if no spaces were inserted. Type in any new characters in
the spaces and then press RETURN.

If line editing causes the line number to change, the old
line remains intact, and a new line with the new number is
inserted. To extend a line, use the form [300J. The zero as a
position in the line causes the line to be printed and the
keyboard to unlock at the end of it.

Note that line editing is not allowed for terminals i::hat do
not print the APL character set. Context editing (see below) can
be used in these cases.

CONTEXT EDITING

Context editing allows replacement of the first occurrence
of a given phrase by another phrase. Context editing is often
more convenient than line editing when the changes are localized
in a small part of the line and prior display of the line is not
required. The editing command has the form

I.old phrase.new phrase.options

The I signals that what follows is a context editing
request. The symbol immediately after the I is the symbol chosen
by the user to separate the old phrase (i.e., that which is to be
replaced), the new phrase (i.e., the replacement), and the
options. Any delimiter or series of delimiters at the end of the
line can be ami tted unless the symbol to the lef·t of the
delimiter is a V or a space. In the simplest case where no
options are provided, the first occurrence of the old phrase is
replaced by the new phrase. The search for the old phrase begins
at the left of the line the system is currently expecting but
does not continue beyond the end of that line. (A different line
nuraber can be specified by overriding the line number provided by
the system.) Special cases arise if the old phrase, the new
phrase, or both, are e~pty. If the old phrase is empty, the new
phrase is placed at the end of the line; if the new phrase is
empty, the old phrase is del.eted (i.e., replaced by an empty
phrase); if both phrases are empty, the line is displayed and
the keyboard unlocks at the end of the line to allow the line to
be extended. After a change, except in the case where both
phrases are empty, the altered line is displayed. The following
examples illustrate cases in which no options are specified:

60454000 A 2-5

I.POUR.SIX
1,3.5,4.5

I .. ; c
I ..

(POUR is replaced by SIX)
(A corr~a is used as the delimiter
because periods occur in the phrase.)
(Deletion of XtY+; [3J was used to
override the line number that had
been printed by the system.)
(To extend the line with ;C)
(To extend the line with information from
the keyboard •)

The options may include a number, question mark, or the
letter V. These may occur in any order and may have {but do not
require} spaces between them. When a number is included in the
options, that number is interpreted as a repetition count. The
number also has the effect of allowing the search to extend to
lines following the line of the function where editing began.
After each repetition, the search begins just beyond the last
change or match. The operation is repeated until the repetition
count is satisfied or until the end of the function is reached.

The question mark can be included among the options if you
want to select which natches should result in replacements. The
line is shown as it wouLd appear if t.he change were made, and you
are then asked to type Y or N (for yes or no) to indicate whether
the change should be performed. - -

A V aLlong the options stands for variable name replacement.
More precisely, the V requires that a phrase not be considered a
match if it is preceded or followed by a period, letter, or a
digit. This option is usually used to prevent accidental
matching on part of a name or part .of a number. As suggested by
use of the letter V, this option is usually used to change the
names of variables, although it can also be used to control
matching of function n~les, label names, constants, or words in
comments or within quotes.

The following examples illustrate the use of these options
in various combinations:

[6J I.A.J.3V (Beginning at line [6J, replace the first
3 occurrences of the variable name A with
J.)

[lJ 1.12.13.?V lEl0 (Change the constant 12 to 13 throughout
the function, but allow the user to accept
or reject each change. The huge
repetition count assures that the entire
function will be processed.)

2-6 60454000 A

[4] /,+.x,o.x,2 (Beginning at line [4],
occurrences of +.x to o.x.
of commas as delimiters
phrases contain periods.)

change 2
lJote the use
because the

FUNCTION DEFINITION SHORTCUTS

In general, a line you type in function definition mode is
used up before you are required to type another line. For
example, you can type [3DJv to display line [3] and then close
function definition. Or, you can type VFN[3]P+tNV to open
definition, override the line number with [3], provide a new line
[3], and close definition. A V at the end of a statement is
always recognized, but other editing requests at the end are
interpreted as being part of the line. Hence VPN[3]P+tN[4DJV
would cause line [3J to be P+tN[4DJ. It would not cause display
of line [4J after replacing line [3J. .

LINE SEPARATOR

You can use the diamond symbol (the overstrike • for a
Selectric terminal) as an input line separator for function
definition mode. The parts separated by diamonds are used as if
they were entered consecutively from the keyboard except that the
normal line number prompt is suppressed. However, input lines
for line editing requests must still be entered separately from
the keyboard. Any diamonds preceded by an odd number of quotes
are considered to be part of character constants and not line
separators. If an error occurs, any remaining lines are
discarded and input is again requested from the keyboard. The
following example shows use of the line separator to define a
function and then display it:

VZ+NEXTLINE N ~ Z+CFREAD N ~ Z+(~\Z~t t)/Z ~ [DJv
VZ+NEXTLINE N

[1 J Z+CFREAD N
[2 J Z+ (v \ Z;t I I) / Z

V

The purpose of the line separator is to reduce waiting time when
the computer responds slowly. The diamond is allowed as a line
separator only in function definition mode and should not be
confused with the use of the same symbol in other versions of APL
to allow multiple executable APL statements on a line.

ESCAPE FROl1 FUNCTION DEFINITION

All changes to a function are considered tentative until
function definition mode is closed. The overstrike m (formed
from 0, V, and T) can be used to escape from function definition
mode without changing an old function or creating a new function.

60454000 A 2-7

The m is recognized as long as it is the first nonblank (ignoring
the system prompt) in a keyboard entry. However, when the system
asks you to type y or N during interactive context editing, the
overstrike m terminates context editing and leaves function
definition mode in effect.

LOCALIZATION OF VARIABLES AIID FUNCTIONS

The variables local to a function include all variables
appearing in the function header and all statement labels.
Variables that are not local to any function are called global
variables. When execution of a function begins, the local
variables take precedence over any other functions and variables
having the same names. Other variables that were in effect
before this function was called (that is, those not local to this
function, which are called variables global to the function)
remain accessible. When execution of the function is completed,
the variables local to it vanish, thus releasing storage space
for other uses, and any variables or functions global to the
function become accessible again.

As execution of the function begins, the argument variables
are assigned the values of the arguments in the expression
invoking the function. If the function modifies the arguments,
it is actually changing a copy of the original arguments. (See
Section 12 for storage implications.) The label variables are
also assigned scalar integer values of the line numbers on which
they appear. These variables are locked to prevent them from
being assigned inappropriate v~lues. (However, they can be given
improper values if they are first erased and then given a value.)
The result variable and any other variables listed after the
first semicolon in the header have no initial value.

A function can also have 'another function local to it if it
has the second function's name in its header. As for local
variables, the local function is undefined as execution of the
main function begins. The local function can then be defined by
use of DFX or DCOPY with DENV having 1 as its value (the normal
case--see Section 8 for details about DFX, DCOPY, and DENV).
When execution of the main function completes, the function
local to it will vanish, just as a local variable would, and any
temporarily inaccessible function or variable having the same
name would again become accessible.

FunCTION EXECUTIon

Function execution begins when the name of the function is
encountered in an expression being executed and any arguments
have been evaluated. The system must save information about how
far execution has progressed in the calling line in order to be
able to eventually return to it and continue processing. The
state indicator is a summary of this information and is available

2-8 60454000 A

to the user. Execution of a function begins with establishment
of local variables as discussed in the last section. Then,
except for branching, the statements are executed in order from
first to last. After the last statement has been executed, the
value last assigned to the result variable is returned to be used
in the calling expression, and all local variables vanish.

Branching can be used to control which statement will be
executed next. A branch statement consists of a branch arrow
followed by an expression that returns a result. The value must
be a scalar or a vector, and unless it is an empty vector, the
first value must be a nonnegative integer. If an empty vector is
used, the next statement is performed. If the value is a scalar
or vector, its first element is used as the number of the line to
be executed next. If the value is 0 or exceeds the largest line
nunber, the function exits. The following examples show useful
branch statements. Close examination of the expressions to the
right of the arrows should show how they generate appropriate
line numbers:

~5X1A<14

~(A=3)/8

(Branch to line 5 if A is less than 14. Note
that this will not work in O-origin.)

(Branch if A equals 3 to line 8.)

~(L1,L2,L3)[2+xB]

(Branch to L1 if B is negative, to L2 if
zero, or to L3 if positive.)

~(A>20 18 13 2)/L5,L4,L3,L2
(Branch to L5 if A is greater than 20, branch
to L4 if greater than 18 but not 20, to line
L3 if greater than 13 but not 18, to L2 if
greater than 2 but not 13, or go to the next
line if A is less than or equal to 2.)

STATE INDICATOR

Any lines that call for execution of another function cannot
be completed until the other function has exited. Such
unfinished lines are called pendent lines. If an error causes a
halt at a line of a function, that halted line is said to be
suspended. The state indicator is a record of all pendent and
suspended lines of functions. It omits partially executed lines
entered in immediate execution mode, lines entered for quad
input, and lines used as arguments to the execute function. The
state indicator with variables, displayed by the system command
)SIV, shows what lines are pendent or suspended and also shows
variables local to functions. An abbreviated form, displayed by
the system command)SI, omits names of label variables and names
appearing in the header after the first semicolon. For example:

60454000 A 2-9

)SIV
[3]*Z+-PRINT B;X;K:LIMIT:L1:L2
[4] SIMU K:L3

)SI
[3]*Z+-PRINT B
[4] SIMU K

In both examples above, the most recently invoked line is shown
first. An asterisk marks a line that is suspended. .Here, line
[4J of SIMU called PRINT, and execution of PRINT halted at line
[3J because of an error. The)SIV display shows the full
function header followed by a colon and names of statement labels
separated by colons. If the function has no statement labels, no
colons appear.

The)SIV display shows that the variable K currently
accessible is the one local t.o PRINT. The other K local to SIMU
is no longer accessible. However, the label variable £3 local
to SIMU still has its value because no variable £3 is local to
PRINT. In general, the current value associated with a variable
name is that for its first occurrence on the state indicator. If
it does not appear on the state indicator, the current value is
that of any global variable having that name.

A branch in immediate execution mode can be used to restart
execution of the most recent suspended function. For example,
+5 would cause execution of PRINT to continue at line 5.
Usually, the function would be corrected or values of variables
would be changed before proceeding. To remove the most recent
suspension and the pendent lilies that led to it, type a branch
arrow vzi.t.h nothing to the right:. A beg inning user of APL often
begins a nevi execution of a function w i.t.hout; r emovLnq the old
one, causing a large nmnber of suspensions to accmnulate. These
unnecessary suspensions wa s t,e space and can lead to confusion by
allowing local variables to make global variables inaccessible.
When a suspension occurs, it is a good practice to either make
corrections and continue execution or clear the state indicator
by use of the niladic branch (see Section 3). An excessive
n~~ber of suspensions can be eli~inated by use of a DSAVE 'name'
(see Section 8).

The information the system keeps about pendent lines can
becorue invalid if the pendent functions are altered, replaced, or
erased. The system responds by printing 14: SI DAMAGE and
su.rrounding with brackets the names cf the affected functions on
the state ind.icator display. Execution of the affected functions
cannot be resumed. Experienced users are expected to avoid SI
DAMAGE if they intend to continue ~xec'Ution of a halted function.
Certain changes to suspended functions can also lead to SI DAMAGE
--specifically, altering the function header or changing the
number or r-e LacLve order of at.acement; labels.

2-10 60454000 A

RECURSIVE FUNCTIons

An APL function may appear more than once on the state
indicator and it may even call itself. The following example
shows a simple recursive function that calls itself to compute
the factorial of an integer:

VZ+FACT N
[1] Z+1
[2] -+{N<2)/O
[3] Z+NxFACT N-1
[4J V

FACT 5
120

HALTING A FUnCTION

While a function is running, it can be halted by an
interrupt (see Appendix C). However, when the keyboard is
unlocked, use of the interrupt on some terminals is interpreted
as an attempt to revise the line being entered. To halt a
function requesting quote-quad input, type the overstrike m
(formed from 0, U, and T). This results in suspension as if an
error had occurred. To halt a function requesting quad input and
remove it and all related pendent lines from tiLe state indicator,
use a branch arrow with nothing to the right.

TRACE AND STOP CONTROLS

Any stop, trace, and timing controls
function are cleared if function definition
change the function in any way.

LOCKED FillJCTIONS

in effect for
mode is used

a
to

A function can be locked by using ¥ (V overstruck by ~) in
place of V when opening or closing function definition. Locking
a function prevents display of the function and prevents its
definition from being reopened. An attempt to open definition of
a locked function results in the error message DEFN ERROR. A
locked function cannot be unlocked; if you will want to change a
locked function at a later date, keep an unlocked copy of the
function in another workspace protected by a password, or keep a
printed listing of the function.

60454000 C 2-11

Section 3. Statement Form and Order of Evaluation

This section discusses the form of legal APL statements and
the order of evaluation of statements. Restricting the
discussion to "APL statements" means that system commanc.s (which
are distinguished by beginning with a right parenthesis) are not
of interest here. The meaning of a statement is determined in
part by its form, but mainly by the functions used and the
environment in which they are used. This section discusses the
influence of form on meaning and leaves the functions and
environment to be discussed in several other sections.

SPACES

The use of spaces in an APL statement is usually unimportant
to the meaning of the statement except for a few cases:

{l} Hames must be separated from other names by spaces,
and names must be separated from digits of a number to
the right by spaces. (Also, a name beginning with E
must be separated from digits to the left.) Otherwise,
they would run together and appear to be all one name.
Conversely, spaces in the middle of a name would make
it appear to be two names.

(2) Numbers next to one another must be separated by
spaces, and spaces cannot appear within a number.

{3} Spaces within a character constant
any other character in the constant
value of the constant.

are treated as
and affect the

(4) Spaces in a comment (except for trailing spaces)
are preserved by the system. Although they have no
meaning to the APL syst~a, they may be important to
the .. reader of the comment.

60454000 A 3-1

rtrncrron DEFIllITION AND SYSTEU COI1HANDS

As execution begins for statements entered in ~ediate

execution mode, entered in response to quad input, or used as
arguments to the execute function (but excluding statenents in
the body of a function), a check is made to determine if the
first nonblank character on the line is v,~, or). In these
cases the statement is preconverted to become a call to the
function DFD (a system function that performs function definition
mode) or DSY (a system function·that performs system commands)
with the original line as a character argument. For example,
VFN[6DJ becomes DFD 'VFN[6DJ'. To preserve the original meaning,
any quotes in the original statement become double quotes after
the conversion. Any comment at the end of the original statement
becomes part of the argument to DFD or DSY. The discussion that
follows assumes that any such preconversion has already beer­
performed.

COnrIENTS

A comment may be entered in immediate execution mode or may
appear in a function line. Comments begin with the symbol A and
extend to the right to the last nonblank on the line. The part
of the line following the comnlent symbol is not executed. This
allows the user to intersperse descriptive text with APL
statements. The following example shows a corrunent used in
imMediate execution mode to add a description to the printed
transcript of the-session:

K+2 x l N A TO GENERATE 2 4 6, ETC.

The following discussion makes no further mention of comments,
although a comment may appear at the end of any line, or the
comment may constitute the entire line.

CONSTANTS

Constants represent numbers or characters. For example,
.14 5.2 9 is a numeric cons~ant-vector, and 'ABeD' is a
character constant-vector. Constants consisting of one character
or number are scalars, while those having more components or no
components are vectors.

An unsigned-number is defined to be any of the following:

digits
digits. digits
.digits

where digits represents one or more of the digits 0123456789.
The italic notation used here is used throughout this manual to
denote a term having a special definition. Here, digits

3-2 60454000 A

represents a sequence of digits, not the letters dig i t and s.
Hence the following numbers are examples of unsigned-numbers:

3.4
.05
58

A number has any of the following forms:

unsigned-number
unsigned-number
unsigned-number exponent
unsigned-number exponent

The symbol - is used to express a
symbol cannot be used in its place.
f'o Ll.owi.nq forms:

Edigi ts
E-digi ts

negative number--the minus
An exponent has one of the

The E can be read n times 10 to the powez , II So, 1E23 means
1 x10*23, and 3.2E-3 is the same as .0032. A nu me x i o-rcori s tz e n t: is
formed from one or more number, separated by spaces.

A character-constant is of the form:

'symbols I

where symbols represents any number of APL symbols, including
no symbols. The symbol I in a character-constant is represented
by two quotes. For example,

t IT I IS r

IT'S

Quotes must always appear in pairs. An expression with an odd
number of quotes results in a SYNTAX ERROR.

The term constant means either a nume r ic-ccon e tz eri t: or a
character-constant.

FUNCTIons

Functions are of three kinds:

(1) System functions, which have names that begin with 0 or
[!I, are used to communicate with the APL system.

60454000 C 3-3

(2) User-defined functions, which have names
same way as variable names, are the only ones
define.

formed in the
the user can

(3) Primitive functions [except those produced by operators)
are symbolized ty single characters such as +, x, ~, etc.

For the purposes of this section, the important features of
functions are the number of arguments they require and whether
they return results. Functions can be monadic (one argument),
dyadic (two arguments), or niladic (no arguments). If rfunction
is used to denote a function that returns a result and function
is used to denote one that does not, the six possible forms are:

dyadic-rfunction
monadic-rfunction
niladic-rfunction
dyadic-function
monadic-function
niladic-function

(Dyadic, returns a result.)
U1onadic, returns a result.)
(Niladic, returns a result.'
(Dyadic, no result.)
(Honadi.c , no result.}
(Niladic, no result.)

For some primitive functions and system functions the same
symbol or name is used for two distinct functions--one monadic
and the other dyadic. The dyadic function is used if there is a
left argument, and the monadic function is used if there is no
left argument.

Dyadic user-defined functions can be used without a left
argument, but if the function requires a value for its left
argument, a VALUE ERROR results. The following example is a
function that can be used without a left argument provided its
right argument is not negative:

VZ+A P1 B
[1] Z+2xB
[2] ~(B~O)/O

[3] Z+Z+A V

P1 5
10

Pi -1
05: VALUE ERROR
P1 [3] Z+Z+A

/

5 F1 1
3

The function ONe, described in Section 8, can be used to check
whether the left argument has a value. This could be used to
write user-defined functions that have distinct monadic and
dyadic forms in analogy to distinct primitive functions having
the same symbol.

3-4 60454000 A

Hhether a name refers to a function. or a variable is a
matter that can be decided only when the line begins to execute.
Also, whether a function actually returns a result may depend on
circumstances. For example, if a user-defined function was
defined to return a result, but the result variable was not
assigned a value prior to exit from the function, a VALUE ERROR
results if the expression calling the function requires a result.

OPERATORS

An operator is a special kind
functions as arguments and produces
Following are examples of four types:

of function that takes
functions as results.

A.+.xB
A ° . xB
+IB
+\B

(Inner Product.)
(Outer Product.)
(Reduction.)
(Bcan ,)

The operators are the period, I, and \. In place of the f and x

in the above examples, any dyadic scalar function symbols could
be used. These operators are discussed in detail in Section 7,
but for the present, it is important to note that the forms
exemplified by f.X and o.x represent dyadic functions that return
results, and +/ and ~\ represent monadic functions that return
results.

The axis operator is used to specify the coorainate along
which an operation is to be performed. Only a few functions can
be used with the axis operator and further details are discussed
wi.t.n those functions. The operator is used in the fonn
function-symbol[valueJ. For example:

Q>[2]B
+/[1JB

Vl~RIABLES

A variable is a name that might be associated wi·th 2. value.
'l'he variable-name is formed from any sequence of the Let.t.er s A to
Z, underscored let·ters .4 to z, digits 0 to s , or the symbols ts ,
2, or , but the name- cannot begin with a digit. Systerrl
variables are special variables with n~~es that begin with D or
~. The rest of the name can be co~posed in the same way as
normal variable na~es. Only the system variables recognized by
the system can be used--the user cannot invent new ones.

An indexed-variable is of the for~:

variable[list]

"60454000 A 3-5

I

A variable-name having no value associated with it can be used
only immediately to the left of an assignment arrow; otherwise a
VALUE ERROR will result.

VALUES

A value is any of the following:

variable
constant
constant[list]
indexed-variable
monadic-rfunction value
left-argument dyadic-rfunction value
niladic-rfunction
niladic-rfunction[list]
left-argument
variable-name+value
indexed-variable+value
(value)
+value

The last case has the further restriction that the + may appear
only as the first character of a line.

Use of an indexed-variable to the left of a specification
arrow sets the values of elements of the variable without
changing the shape of the variable. Used elsewhere, the index
returns parts of a value.

The assignment arrow can be used to give a value to a
variable or to change the value of a variable. The result of the
assignment (not to be confused with the value of the variable) is
the value used on the right. Consequently, A+B[l 2]+3 is the
same as the two statements B[l 2]+3 and A+3. Similarly, A+O+B
is the same as O+B and A+Bi but A+O+B is not the same as O+B and
A+O.

The operations to find a value occur in right to left order.
Hence, 3x2t4 means 3 x (2 t 4) . When a dyadic function is
encountered, the right argument is preserved while the expression
producing the left argument is evaluated. Hence,

A+3
(A+4)xA

12

More generally, any value encountered in the right to left scan
is preserved. For example,

A+4 5 6
A[3 2 l]+A
A

654

3-6 60454000 F

(On some APL systems the result would be 4 5 4 or 6 5 6 because
the variable on the right is not preserved, while on other
systems such operations are prohibited.) However, the following
example shows a case where the value is not preserved because the
scan has not reached the variable:

A+2
A+A+3

6

In other words, specification of a variable affects all
references to that variable that occur to the left in the line,
but affect no references to that variable to the right in the
line.

LEFT ARGUMENTS

A left-argument is any of the following:

variable
constant
constant[list]
indexed-variable
(value)
(value)[list]
niladic-rfunction
niladic-rfunction[list]

For example, 3 can be used as a left argument, ALPHA can be used
as a left argument, and '123'[2] can be used as a left argument,
but 2x3 cannot unless it is enclosed in parentheses. In fact,
in 2 x3*5, the 3 would actually be used as the left argument to
*.

EXPRESSIONS

An expression is the same as a value except that it need
not return a result that can be used for subsequent operations.
An expression is any of the following:

monadic-function value
left-argument dyadic-function value
niladic-function
value
+

The last case, called niladic branch, can be used only as the
leftmost character of a line. The branch with no value or
expression to the right causes exit from the executing function
and from all other functions on the state indicator up to any
previous suspension.

I

60454000 F 3-7

LISTS

A list is of the form:

list-element
list-element;list-element
list-element;list-element;list-element

The list, if used for an index, must have one list element for
each dimension of the array being indexed.

A list-element can be:

va cant
value
expression

An expression that does not give a result can be used in a list
used for indexing and is treated as if the list element were
vacant. A list element is vacant if there is nothing at all in
that position. For example, F[3;] illustrates a list having a
vacant list-element.

The elements of a list are evaluated in right to left order.
Hence

A+3 ; A+5

gives A a final value of 3. Note that the semicolon
APL function. Lists can only be used for indexing,
Expressions like the following are illegal:

3p(A;B)

Also, the statement

3pA;B

is equivalent to

(3 pA); B

not

3p(A;B)

is not an
and DFRNT.

The expressions separated by semicolons are evaluated separately,
then their results constitute the list.

3-8 60454000 C

LInES AND IHPLICIT OUTPUT

A line is any of the following:

value
expression
list
vacant

When a line is a list, the list elements are printed in left to
right order. The list can contain a mixture of character and
numeric values as shown below:

X+34
'THE VALUE OF X IS: ';X

THE VALUE OF X IS: 34

Scalar and vector list elements are printed on the same line (if
DPW has not been exceeded), but printing of a matrix or array of
higher rank begins on a new line, and any subsequent vector or
scalar begins on a new line. List elements that are vacant or
that produce no results are skipped over.

If the first list element is a niladic branch, no output is
produced. If the first list element is a branch with a value to
the right, the value of the branch is printed along with the
other list elements, then the branch is taken.

When the line is a value, the value is printed unless a
specification or branch occurred as the last operation. Hence,
3+2 \rould print a result, but A+3+2 or even (A+3+2) would not.

STATElfENTS

A statement is either a line or a line with a
label is a variable-name and colon placed before the
example:

REPEAT:-+4 x l X = ¥

1 abel.
line.

The
For

A label on a statement entered in immediate execution mode, for
quad input, or in the argument to the execute function is ignored.

QUAD AND QUOTE-QUAD

The system variables 0 and ~ are used for input and output.
lllien they are assigned a value, the system prints the value.
When their values are used in an expression, the system reads
input from the keyboard to provide the value.

60454000 A
3-9

When ~ input is requested, the keyboard unlocks tnormally
with the type element at the left marginl. Any characters typed
are returned as a vector, except that a single character gives a
scalar.

~fuen 0 input is requested, the system prints 0: and then on
the next line indents six spaces and unlocks the keyboard. Any
APL expression that returns a result can be entered. If the
express10n 1S incorrect or does not produce a res~lt, an erro~

message is printed and the input request is repeated. For
example,

A+O
0:

B
05: VALUE ERReR

B
/

0:
2 X'l4

A
2 I~ 6 8

(This is t.he input line.)

(The input request is repeated.)

A branch in quad input does not actually effect a branch,.

The 0 can be used for output to conserve lines in a progr~.

The statement D+A+B has the same effect as the two staterrents A+B
and O+B.

The ~ symbol, when used for output, is slightly different
from D used for output. Ordinarily, ~-\PL output is followed by a
carriage return so that the next input or output will begin on a
new line. However, when quote-quad is used for out.put, t.he extra
carriage return is suppressed. This allows the program to
continue output on the same line or to give output and then
request input on the same line. For example,

VZ+ASK B
[1] [!j+B
[2] Z+-[!] V

P+ASK. 'AGE? '
AGE? 38

P
38 (Note leading blanks in the result.)

The leading blanks show where the typeball was positioned when
the keyboard was unlocked. The person who was typing could have
backspaced and replaced the blanks with other characters. Any
leading blanks can be removed by using (V\B~t ')/B+~. Note that
OPfl is not ignored when [!] output is used. If the number of
printed characters reaches DPW, the system inserts a carriage
return in the output and indents 6 spaces before continuing the
output.

3-10 60454000 A

Section 4. Scal~r Functions

The class of scalar functions includes those functions that
can be defined for scalar arguments and then can be extended to
other arguments through element-by-element extension. That is,
if the function is monadic, the result has the same dimensions as
the argument, and the elements of the result are found by
applying the function to all elements of the argument. For the
dyadic functions the following rules apply:

1. If the arguments have the same shape, the result has
that shape and is formed by applying the function to
the corresponding elements of the arguments.

2. If one argument is a one-element array and the other
is not, the result has the shape of the one that is not
one element. The one-element argument is used with
each element of the other argument to form the result.

3. If both arguments are one-element arrays, the result
has the larger of the ranks of the arguments.

For the dyadic functions, the arguments must either have
identical shapes or at least one must be a one-element array.
Any other argunlents produce a RANK ERROR if their ranks differ,
or a LENGTH ERROR if their ranks match but dimensions differ.
The following examples illustrate some of these rules:

D~A~3 3p 1 9
123
456
789

-A
-1 2-3
456
789

60454000 A

(A monadic scalar function.)

4-1

Table 4-1. Summary of Scalar Functions.

Dyadic Function Monadic Function

A+B Sum of A and B. +B Same as O+B.
Addition 3+5+~8 Plus

A-B A minus B. -B Same as O-B.
Subtraction 3-4+~-1 Additive

Inverse

AxB
Times

A70B
Divide

AfB
l-laximurn

ALB
Hinimum

Product of A
and B.
2x4+~8

A divided by B.
Division by 0 is not
allowed except that
0700 is defined to
be 1. 3702+~1.5

Larger of A and
B. 3f5+~5 -1r-5+~-1

Smaller of A and
B. 3 L5+~3
-1L-5+~-5

xB
Signum

70B
Recip­

rocal

fB
Ceiling

LB
Floor

Sign of B. Same
as (8)0)-B<0 -x3 0 2+~1 0 1

Same as 17oB.
Not allowed if B
is O. 7o.2+~5

If B is an
integer, the
result is
that integer.
Otherwise the
smallest integer
greater than B.
f2.5 3+~3 3

If B is an
integer, the
result is
that integer.
Otherwise the larg­
est integer less
than B.
L2. 5 3+~2 3

A*B
Power

A to the B
power. A may
be zero if B
is not negative.
0*0 is defined to be
1. If A < 0, B must
be representable as
a rational fraction
with an odd
denominator.

*B e to the B
Exponent- power (e is

ial 2.7l828l82845904)

4-2

AeB
Logarithm

Base A logar­
itlun of B. A
must be positive and
must not be 1.

eB
Natural
Logaritlun

Natural (base e)
logarithm of B.

60454000 A

Table 4-1. Summary of Scalar Functions, Continued.

AlB
Residue

The remainder of B
divided by A.
Uore precisely,
B-AxlB.;.A+A=O

18 Absolute Value of
Magnitude B. '13 0 -3++3 0 3

A!B
Combinations
of

AoB
Circular

Number of combi­
nations of B
things taken A
at a time for
positive integer
arguments. More
generally A!B
++ (! B) .;. (! A) x ! B - A

The argument A
determi.nes which
function from the
following table
is applied to B.
A must be an
integer in the
range -7 to 7. All
angles are in
radians.

!B
Factorial

?B
Roll

-B
NOT

oB
pi times

Factorial of B
for nonnegative
integers. Otherwise
the mathematical
gawma function of
B+l. Not defined
for negative
integers.

A random choice
from lB. Depends on
current origin.

B must consist of
l's or O's.
-1++0 -0+-+1

Pi times B
01++
3.14159265358979

A=B
A~B

A<B
A>B
A~B

A~B

N NoB
o (1-B*2)*.5
1 sin B
2 cos B
3 tan B
4 (1+B*2)*.5
5 sinh B
6 cosh B
7 tanh B

Equal
Not equal
Less than
Greater than
Not greater than
Uot less than

(-N)oB
(1-B*2)*.5
arc sin B
arc cos B
arc tan B
(-1+B*2)*.5
arc sinh B
arc cosh B
arc tanh B

Result is 1 if the
relation holds, 0
otherwise.

3~5 6 3 1++0 a 1 ~

60454000 A

AND
OR
NAND
NOR

Elements of
A and B
must be l's
or a's.
A*B++-AAB
A¥B++-AvB

A B AAB AVB A*B A¥B
1 1 1 1 0 0
a 1 a 1 1 a
1 0 a 1 1 a
a a a a 1 1

4-3

2xA
2 4 6
8 10 12

14 16 18

A+A
2 4 6
8 10 12

14 16 18

(Scalar argument and matrix argument.)

(Two arguments with identical shapes.)

p(1 1p4)f(1 1 lp3) (The larger rank prevails.)
.1 .1 1

Table 4--1 describes most of the scalar functions in complete
detail. Most of these functions are familiar mathematical
functions or incorporate very simple concepts. Therefore, the
discussion below deals with only a few of the less familiar
functions or special cases.

The symbol +~ is used in Table 4-1, as well as in much of
the rest of this manual, to mean "is the same as." Note that
this symbol is not part of the APL language, but is used to
describe APL. ~llien ++ is used between two expressions, the
entire expression to the left is asserted to give the same result
as the entire expression to the right.

FLOOR AND CEILING

The functions floor and ceiling always return an exact
integer. The result depends on the value of OCT as follows: If
CIB-NINT B)~nCTx(l+JNINT B) the result is NINT B, where NINT B is
the nearest integer to B. Otherwise, the result is the least
integer larger than B for ceiling, or the largest integer smaller
than B for floor. Note that B-LB can be negative in cases where
OCT is not zero and B is slightly less than an integer.

POWER

In keeping with proper mathematics, the power function does
not allow taking square roots of negative numbers (e.g., -1*.5),
but it does allow taking cube roots of negative numbers (e.g.,
-1*f3). To distinguish these cases, the power function attempts
to represent the right argument P as a rational number NfM, where
N is an integer and M is the least integer such that (NfM)=1p.
Note that (NfM)=lP depends on OCT. If the left argument is
negative and the rational representation has an even denominator,
the power function gives a DOMAIN ERROR. If the left argument is
negative and the rational fraction has an odd denominator, the
result is negative if the numerator is odd and is positive if the
numerator is even.

4-4 60454000 A

RESIDUE

The residue function is slightly more sophisticated than the
definition in the table. For example, 212-.5 xDCT would give the
improper negative result -.5xDCT. The actual algorithm returns
zero if B-AxLB~A+A=O would give a result having a sign opposite
to the sign of A.

COMBINATIONS-OF

The combinations-of function returns limit values of A!B if
A, B, or B-A are negative integers. That is, the result is zero
if A, B, and B-A are all negative integers or if B is not a
negative integer but either A or B-A is a negative integer. A!B
is related to the mathematical Beta function as follows:

BETA(A,B)++~Bx(A-1)!A+B-1

CIRCULAR FUNCTIONS

The domains and ranges of the circular functions are given
below. All angles are in radians.

N NoB Domain Range (-N)oB Domain Range

0 (1-B*2)*.5 1~IB (O~Z)A1~Z

1 sin B 1~]Z arc sin B 1~]B (o.5)~IZ

2 cos B 1~]Z arc cos B 1~JB (Z~O)AZ~01

3 tan B arc tan B (o.5)~IZ

4 {1+B*2)*.5 1~Z (- 1+B*2)*.5 l~.IB O~Z

5 sinh B arc sinh B
6 cosh B 1~Z arc cosh B l~B O~Z

7 tanh. B 1~.IZ arc tanh B 1~IB

RELATIONAL FilltCTIONS

The functions = and ~ are the only scalar functions that can
be used with arguments of character type. Characters can be
compared with numbers, but the result always shows inequality.
For numeric A and B, the result for A =B a.s 1 if IB--A is not
greater than DCTxJB. The three conditions A<B, A=B, and A>B are

60454000 C 4-5

always exclusive. For example, jf A=B gives 1, then A>B and A<B
give o. The range where two numbers are considered equal is
illustrated below:

A<B A=B A>B

, I I
B-DCTx1B B B+DCTx1B

Note that when B is zero, A=B gives 1 only if A is exactly zero.

4-6 60454000 A

Section 5. Array Concepts and Indexing

An APL array can be visualized as an arrangement of values
along n orthogonal coordinates, where n is 0 to 75 for this
particular APL system. The positions along the coordinates are
numbered 1, 2, 3, etc. in I-origin, and they are n~mbered 0, 1,
2, etc. in O-origin. The number of elements along a coordinate
can be 0 or more. The lengths of the array along the coordinates
are called the dimensions of the array, and the number of
coordinates is called the rank'of the array. The names scalar,
vector, and matrix are used~denote arrays of rank 0, 1, and 2,
respectively. No special names' exist for arrays of rank greater
than 2. The APL system has an arbitrary limit of 75 as the
maximma rank of an array, but in practice, this limit is so
large that it is not restrictive. Contrary to common casual
practice in ~athematics, an APL array has a definite rank--a
one-element vector is not the same as a scalar, and a matrix with
one row or column is not a vector.

The last coordinate of an array is conventionally considered
to be the column coordinate, the second from last coordinate is
the row coordinate, and the third from last coordinate is the
plane coordinate. The following examples show how various arrays
can be formed and displayed:

3 (A ece.Lar ,)
3

14 tA vector.)
1 2 3 4

2 3P16 (A matrix.)
1 2 3
4 5 6

2 3 p 'ABCDEF t (A matrix of characters.)
ABC
DEF

60454000 A 5-1

Tal-Ie 5-1. Summary of Section 5.

Function Description

pB
Size

VpB
Reshape

,B
Ravel

R+B[I1;I2;
I3; •.. ;Il'lJ

Indexed
selection

R[I1 ; I2 ; I3 ;
..• ;INJ+B

Indexed
specification

Returns a vector containing the
dimensions of B. The result
has 0 elements for a scalar B,
1 element for a vector, and 2
elements for a matrix.

Forms a result having the dbmensions
specified by the left argument and
having elements taken from the
right argument in odometer order.

The result is a vector containing
all elements of B in odometer
order.

The result has as dimensions
(pI1),(pI2),(pI3), ••• ,(pIN)
and contains those elements of
B for which their first
index is in I1 and their
second index is in I2, etc.
If a list element is vacant, all
possible index values are used.

The indicated elements of R
are set to corresponding values
from B. Either B must
be a one-element array, or the
dimensions of B must match
(pI1),(pI2),(pI3), ••• ,(pIN)
except that dimensions of I are
ignored. If a list element is
vacant, all possible index values
are used.

2 3 4p1.24
123 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

lTwo planes, three rows, four columns.)

The last example shows that a rank-3 array is printed as a number
of matrices separated by 1 blank line. A rank-4 array would be

5-2
60454000 A

printed as a number of rank-3 arrays separated by two blank
lines, and in general, a rank-N array is displayed as a number of
arrays of rank N-1 separated by N-2 blank lines. An empty array
prints as a blank line.

One often visualizes an array as a spatial arrangement of
values. The spatial conceptualization leads to use of terms like
"shape of array" and "vector along the Kth coordinate." These
terms are important enough to give precise meanings for them. We
define the "shape of an array" to be the result given by the size
function (to be discussed in this section). As a consequence, a
vector and a one-row matrix have different shapes, even though
they may be visualized to look the same (and in fact, the system
prints them identically). We define "a vector along the Kth
coordinate" to be a vector of those elements in the array for
which the coordinates other than the Kth are the same, and the
Ith element of the vector has I as its Kth coordinate in the
array--that is, a line of values aligned in the direction of the
Kth coordinate.

RESHAPE: R+VpB

The reshape function was used in some of the previous
examples to form arrays. The function forms a result having the
dimensions specified by the vector (or scalar) left argument and
having elements taken from the right argument. Elements are
taken in first to last order, and if they are exhausted, they are
used again beginning with the' first. The right argument must
not be empty unless the result will be empty--"reshape never
makes something out of nothing."

OP~ERING OF EL~1ENTS

The elements of an array are considered to be ordered. The
reshape function takes elements according to this ordering. The
ordering is the same as the order in which the elements are
printed by a terminal. The order is called odometer order
because the indices (coordinate positions) vary in the same way
as the digits of an odometer. For example, for an array A3
having dimensions 2 3 4 the elements in odometer order are:

A3[1;1;1]
A3[1;1;2]
A3[1;1;3]
A3[1;1;4]
A3[1;2;1]
A3[1;2;2]

A3[2;3;4]

60454000 A 5-3

SIZE: R+pB

The size function returns a vector of the dimensions of its
right argument. Because there is one element in the result for
each dimension of B, the result has 0 elements for a scalar B, 1
element for a vector, 2 elements for a matrix, and so forth.
Note that because pB has one element for each dimension of B,
ppB gives the rank of B as a one-element vector. The following
examples illustrate the size function for arrays of various ranks:

p3 (A scalar.)
(A blank line indicates an empty vector
result.)

pp3
o

pt3 (A vector.)
3

pp13
1

p2 3P16 (A matrix)
2 3

pp2 3P16
2

p2 3 5pt30 (A rank-3 array.)
2 3 5

pp 2 3 5pt30
3

RAVEL: Z+,B

The ravel function returns a vector result containing all
the elements of the right argument in odometer order. For
example:

,2 3P16 (Changing a matrix to a vector.)
12345 6

p,3 (Changing a scalar to a vector.)
1

The ravel function can be used to determine the number of
elements in an arbitrary array. The number of elements in B is
p,B. Ulote that the ravel function could be omitted in this
expression if B were always a vector.}

5-4 60454000 A

INDEXED SELECTION: R+B[I1;I2;I3; ••• ;IN]

Indexed selection chooses those elements of an array for
which all indexes occur in the respective list elements. For
example, if M is a matrix, M[3;4] gives the element having 3 as
its row index and 4 as its column index. Similarly, M[2 3;4 5J
gives those elements in the second and third rows that are also
in the fourth and fifth columns. If a list element is vacant,
tN is used, where N is the length along that coordinate. The
index values must be integers in the range of coordinates of
elements in B. The index list for an array of rank K must have
K-l semicolons. The result R has the dimensions
(p Il) , (p I2) , (p I3), ••• , (p IN) • Hence the rank of R is the sum
of the ranks of the indices. If the indices are vectors, the
result satisfies

R[Kl;K2;K3; ;KN]=B[Il[Kl];I2[K2];I3[K3]; ••• ;IN[KN]]

When the indices are not all vectors, the result is:

«pI1),(pI2),(pI3), , («is:) p B [, 11 ; , I2 ; ,1 3; •.• ;, IN]

Indexed selection cannot be applied to a scalar. The following
examples show indexed selection applied to vectors and matrices:

3

7+3 6 9 12
V[l]

V[4]
12

V[5]
07: INDEX ERROR
V[5]

/
V[5;6]

06: RANK ERROR
V[5; 6]

/

{An error results from a request
for an element that does not exist.}

(Because V is a vector, its rank is
incompatible with the index list.)

V[l 2 1 1 2]
3 633 6

D+1I!+3 4p t12
1 2 3 4
5 6 7 8
9 10 11 12

M[2;3]
7

].f[2;]
567 8

M[;3]
3 7 11

60454000 A

(~ow 2, all collli~ns.)

0;11 rows, column 3.}

5-5

M[2;3 4]
7 8

M[l 2 1;3 1]
3 1
7 5
3 1

D+K+3 Sp2 3 2 3 4 2 3 5 3 2 1 3 1 3 1
2 3 2 3 4
2 3 532
13131

(A matrix of characters.)

INDEXED SPECIFICATION: R[Il;I2;I3; ... ;IN]+B

Indexed specification allows setting of selected elements of
R. The index list ir:dicates elements to be set in the same way
as for indexed selection (see previous section). The
restrictions on list elements are also the same as for indexed
selection. The array B must be a scalar (or one-element array)
or must have di~ensions (pI1),(pI2),(pI3), ... ,(pIN) except that
dimensions of length 1 are ignored in the comparison. If B is
not a scalar (or one-element array), the elements of Bare t.aken
in odometer order and placed in appropriate locations in R. If
two elements of B are placed in the same position in R, the last
one in odomet:er order in B prevails. Both Rand B must be of the
same type (i.e., character or numeric). The shape of R is not
changed by the operation. R must not be a scalar.

V+3 6 9
V[2]+-1
V

3 1 9

V[2 3J+10 12
V

3 10 12

V[3 3 J+15 16
V

3 10 16

0+/.1+2 3p' *'

5-6
60454000 A

M[1 ; 1 2 3l~-' a '
M

000

M[;1]+'O'
M

000

0**

M[1;2 3]+'+x'
M

60454000 A

(A scalar is used repeatedly.)

(All rows, column 1.)

5-7

Section 6. ~xed Functions

The class of mixed functions includes all functions that are
not system functions, composite functions, or scalar functions.
Because few patterns exist between the mixed functions, they must
be discussed individually to describe the arguments they allow
and the results they produce. Section 5 already discussed the
three mixed functions reshape, size, and ravel. Table 6-1.
contains a summary of the mixed functions discussed in this
section.

EXCEPTION RULES

Most of the mixed functions have "normal" cases for which
the results are relatively simple to express in terms of the
arguments. They also generally have additional special cases
that are convenient but are treated as "exceptions. The following
are some of the reasons these exceptions are allowed:

Exceptions to overcome notational difficulty. There is
no way to represent an empty numeric vector constant in
an expression, and to is inconvenient to use as a left
argument because it must be surrounded by parentheses.
Hence "pB is allowed in place of (to)pB. However,
the only other case where an empty character argument
is allowed where a nonempty character argument would
not be is the catenate function. (However, the system
functions DSTOP, DTRACE, and DLTIME also allow empty
character left arguments.) Another class of exceptions
to overcome notational difficulty arises because it is
not possible to type a one-element vector constant.
Because a constant consisting of a single character or
number is a scalar, many functions allow a scalar in
place of a one-element vector. However, the left
argument for index-of and the arguments to grade up and
grade down are not allowed to be scalars.

60454000 A 6-1

Table 6-1.

Function

1B
Index
generator

V1B
Index-of

AEB
rleIllber s hip

Sl?S2
Deal

!V
Grade up

l'V
Grade down

A, [K]B
Join

V/[K]B
Compress

6-2

Summary of Mixed Functions in Section 6.

Description, Examples

Produces a vector of the first
B integers. 1 5+-+1 2 3 4 5

For each el~Jent of B gives
the first index in the vector
V where the e l.ement; is found
or l+pV (in I-origin) if the
elenent is absent from V.
5 6 7 816 5 2++2 1 5

Returns 1 for each element of
A that occurs in B and returns
o for other elements of A.
1 3 5E2 3++0 1 0

Chooses Sl random numbers from
lS2 without any duplications.

The Ith el~lent of the vector
result is the index in V of
the Ith smallest value in V.
V[!V] gives V sorted in increasing
order. !3.3 5.2 1.1++3 1 2

The Ith elenent of the vector
result is the index in V of
the Ith largest value in V.
V[VV] gives V sorted in decreasing
order.

Joins A and B along the Kth
coordinate. 1 2 3,4 5++
12345

The result includes elements
along the Kth coordinate of B for
which there are corresponding l'S
in V and does not include elements
for wh i ch there are 0 I S in V.
1 0 1/1 2 3++1 3 1 0 l/'ABC'++'AC'

60454000 A

Table 6-1. Summary of ~fixed Functions in Section 6, Continued.

Function

7\[K]B
Expanu

AtB
Take

Ai-B
Drop

<1>[K]B
Reverse

A<I>[K]B
Rotate

~B

~fonadic

transpose

A~B

Dyadic
t.ranspose

60454000 A

Description, Examples

Expands by inserting zeros (if B
is numeric) or blanks Cif B is of
character type) where there are O's
in V and selects consecutive
elements along the Kth coordinate
of B where there are l~s in V.
1 a 1 0\3 4++3 0 4 0
1 0 l\'AB'++'A B'

Selects the first (if A[K]>O) or
last (if A[K]<O) IA[K] elements
along the Kth coordinate of B.
If IA[K] exceeds (pB)[K],
zeros or blanks are used as the
extra elements. 3t1 2 3 4 5++1 2 3-3t'ABCDE'++'CDE' 4t1 2++1 2 0 0

Drops the first (if A[K]>O) or
last (Lf A [K] < 0) IA [K] elements
along the Kth coordinate of B.
If IA[K] exceeds (pB)[X],
the Kth dimension of the result
is zero. 3~1 2 3 4 5++4 5-

3 t 'A BCD E ' ++ , AB '

Reverses the order of elements
along the Kth coordinate of B.
¢5 6 7++7 6 5 ~IABCD'++'DCBA'

Shifts vectors along the Kth
coordinate of B in a negative
direction (tor A>O) or positive
direction (for A<O).
2 <I> 1 2 3 4- _5~-+3 4 5 .1 2

2$'ABCDE'+-+'DEABC'

Reverses coordinates of B.
p~B++<t>pB

Interchanges coordinates of B
according to A.
The Kth coordinate of the result
cor'z-eaponda to the (A =K) /1 pA
coordinate of B.

6-3

Table 6-1. Summar~ of Mixed Functions in Section 6, Continued.

6-4

Function

A.lB
Base
value

ArB
Represent

J.E
Execute

vB
110nadic

format

AlfB
Dyadic

format

fEB
~1atrix

inverse

A fEB
Matrix

divide

Description, Examples

Evaluates B as a number
represented in a number system
having radices A.
"2 2 2L1 0 1++5 10 10 10L2 3 4++234

Represents B in the number system
having radices A.
2 2 2T5++1 0 1 10 10 10T296++2 9 6

Executes the character vector B
as an APL statement.
J. 't5'++1 2 3 4 5

Produces a character array represen­
tation of B. Except for treatment
of lines longer than DPW,
vB looks exactly like B when printed.

Represents columns of B
according to the format specified
by pairs of numbers in A. The
first element of a pair in A is
the width of the field (0 to have
the system" choose a width), and the
second element of the pair gives the
nunbe.r of digits beyond the decimal
if positive. If the second element.
of the pair is negative, its absolute
value determines the total number of
digits, and exponential format is
used.

Matrix inverse of B. Smae as
I~B where I is an identity
matrix.

Solution to a system of equations
(for a square matrix B) or least
squares regression coefficients
(if B has more rows than columns).
Same as <mB)+.xA.

60454000 A

Exceptions to itnore dimensions of 1. At times it is
conven1ent coreat a row or coTUmn of an array as a
vector, while at other times it is more convenient to
treat it as a matrix. Consequently, some flexibility
has been built into functions to allow extra or missing
dimensions of 1.

Generalized scalar extension. The dyadic scalar
functions allow a scalar argument to be used repeatedly
with all elements of the other argument. More
generally, some mixed functions allow a single vector,
plane, etc. to be used repeatedly with parts of the
other argument.

ARRAY TYPES

An array, even if it is empty, is either of character type
or numeric type. Those mixed functions that rearrange elements
of an array or select elements of an array always return a result
having the same type as the right argument. For example,
Op'ABCD' gives an empty result of character type.

AXIS OPERATOR

For several of the mixed functions (and composite functions)
an axis operator can be used to specify the coordinate along
which the operation is to be performed. If no axis is specified,
the last coordinate is assumed. Alternate symbols can be used to
perform the operations along the first coordinate. These forms
are:

Last coordinate First coordinate Kth coordinate
A,B A,B A,[K]B
AlB AfB AI[K]B
A\B A,B A\[K]B
~B eB ~[K]B

A~B AeB A~[K]B

Note that the symbols for performing the operations along the
first coordinate are not allowed to be used with an axis
operator. For example, e[K]B would produce a SYNTAX ERROR.

The value used for an axis operator must be a one-element
array, and for functions other than join, it must be an integer
in lppB (except that if B is a scalar, it may be orO). For the
join function (e.g., A,[K]B) the value of K should be an integer I
in 1(ppA)r(ppB)rl0r any half integer obtained by adding or
subtracting .5 from one of those integers.

60454000 F 6-5

INDEX GENERATOR: R+tB

The index generator function produces a vector of length B
containing the first B integers. The result depends on the
current origin.

Requirements for B. B must be a one-element array containing a
nonnegative integer.

Examples.

t 3 (In I-origin.)
.1 2 3

OI"O+O
15

o 1 2 3 4 (In a-origin.)

t.0
(Blank line indicates 1.0 is empty.)

IIIDEX-OF: R+ V t,B

element of B the
e~uals the element
element iS1tpV in

B are numeric, the
B may be considered

The index-of function returns for each
least index I in the vector V for which VCr]
of B. If no value in V is equal, the result
I-origin, or pV in a-origin. tihen V and
comparisons use OCT so that elements of V and
equal even if they differ slightly.

Requirements for V and B. V must be a vector--a scalar is not
allowed. B may be of any shape and the result will have that
shape.

Examples.

4 5 6t2 5
4 2

D+M+2 3p {DEFGHIl
DEF
GHI

t HIVE DOG r t.M
3 4 9 (A matrix result for a matrix right argument.)
812

7 8 9 t CAB t

4 4 (Characters never equal numbers.)

6-6 60454000 C

'ABA' 1. t.ABAB t

1 2 1 2

DIO+O
'ABA' 1. IABAB t

o 1 0 1 (The a-origin result is I less.)

l-OOffiERSHIP : R+A € B

The membership function returns 1 for each element of A that
occurs in B. For numeric arguments the comparisons use the
current value of OCT, so values may differ slightly and still be
considered equal.

Requirements for A and B. A and B may have any shape. The
result has the same shape-as A.

Examples.

1 2 3e:3 1 6 4 9
1 0 1

, ABeD' € ' BACJ{8 '
1 1 1 0

D+A+2 3p'CATDOG'
CAT
DOG

A€ 'GOAT'
011
o 1 1 (The result has the shape of the left argument.>

'GOAT' €A
1 1 1 1

'ABCI€1 2 3 4
000

DEAL: R+81?82

The deal function chooses at random 81 values from 182
without repetitions.

Requirements for 81 and 82. Both 81 a.nd-- .,......-,- - -- --. .arrays conta~nlng nonnegat2ve lntegers
result is a vector of length S1.

60454000 A

82 must be one-element
such that 81~S2. The

6-7

Bxamples.

3?5
3 1 4

3?5
4 5 3

5?5
1 2 5 3 4

OIO+O
5?5

3 2 0 1 4 (O-origin.)

GRADE UP MID GRADE DOWN: R+!B and R+'B

The Ith element of the vector result R is the index in B
where the Ith smallest (for grade up) or the Ith largest (for
grade down) element of B occurs. The comparisons do not use OCT.
If a value occurs more than once in B, the indices- of those
values occur together in R in increasing order.

Requirements for B. B must be a numeric vector. The result R is
a numeric vector of the same length as B.

Examples.

!3.3 1.1 2.2 4.4 1.1 5.5
253 1 4 6

'3.3 1.1 2.2 4.4 1.1 5.5
641 3 2 5

V+3.3 1.1 2.2 4.4 1.1 5.5
V[!V] (To sort in increasing order.)

1.1 1.1 2.2 3.3 4.4 5.5

V['V] (~o sort in decreasing order.)
5.5 4.4 3.3 2.2 1.1 1.1

P+3 4 5 1 2
('ABCDE'[P])[!P] (!P is the inverse of a permutation

ABCDE vector P.)

X+'ABC'
Y+'DEF'
Z+'GHI'
(X,Y,Z)[!! 0 2 1 1 2 0 0 2 1]

AGDEHBCIF (~elect next from X for a 0, Y for a 1,
Z for a 2.)

6-8 60454000 A

DIO+O
"'3.3 1.1 2.2

1 2 0 (O-origin.)

JOIN: R+A , [K]B

The join function connects A and B along a coordinate
already existing in A or B or along a new coordinate of length 1
inserted into each. The first elements along the coordinate come
from A and the rest come from B. When K is an integer, the
operation is called catenate. When K is not an integer, the
operation is called laminate and the new coordinate of length 1
is inserted into each argument between the existing LK coordinate
and rK coordinate.

Requirements for ~ and ~. Except for the special cases below,
A and B must have the same rank, and dimensions other than the
Kth must be the same; that is, (K~lppA)/pA and (K~lppB)/pB must
be the same. The types of A and B must be the same unless one or
both are empty arrays. (Warning: some APL systems do not allow
empty arrays to have a different type. It is recommended that
differing types be avoided for compatibility.) The shape of the
result is the same as the shape of the two arguments except that
the Kth coordinate of the result is (pA)[K]+(pB)[K]. If both
arguments are empty and of differing types, the result is numeric.

Exception cases.' If A or B is a scalar (bu t not both), it is
reshaped to have the shape of the other argument except that the
Kth dimension is 1 for catenate. If both arguments are scalars,
they are treated as one-element vectors for catenate. For
catenate, one argument may have a rank 1 less than the rank of
the other argument. In this case a new coordinate of length 1 is
inserted to become the Kth.

Examples

1 2 3,4 5 6
1 2 3 4 5 6

D+1l1+2 3p'*'

D+N+3 3p ' O I

000
000
000

M,[l]N

k**
000
000
000

60454000 A

{Joining two vectors.}

6-9

0+L+2 4p'D'
DODD
DODD

M,L
***0000
***0000

***+
***+

***3
***4

M, '+'

M, '34'

(The scalar is treated as a one-column
matrix.)
(A vector is treated as a one-column
matrix.)

345

1 2 3
456

M, [1] '345' (A vector is treated as a one-row matrix.)

1 2 3,[.5]4 5 6 (Laminate along a new first coordinate.)

1 2 3,[1.5]4 5 6 lLaminate along a new last coordinate.)
1 4
2 5
3 6

1 2 3,[1.5]4
1 4
2 4
3 4

COlWRESS: R+V/[K]B

The compress function shortens B along the Kth coordinate
by omitting those elements for which there are corresponding O's
in V.

Re-quir-etnents for V and B. V must be a vector and all elements of
V must be l'S--or OTS.- The length of V must be the same as
(pB)[K]. The result has the same dimensions as B except that the
Kth dimension is +/V.

Exception cases. If V or B is a scalar it is treated as a
one-element vector. Then if V is a one-element vector, it is
extended to the length of B along the Kth coordinate. If B is a
one-element vector, it is extended to the length of V.

6-10 60454000 A

Examples.

1 0 1 0 1/1 2 3 4 5
135

1 0 1 0 1/'ABCDE'
ACE

1/'ABCDE'
ABCDE

OI'ABCDE'
(Blank line indicates an empty result.)

D+M+3 4Pl12
1 2 3 4
567 8
9 10 11 12

1 o 1 11M
1 3 4
5 7 8
9 11 12

1 o 1/[1]M (Same as 1 o 1 fM.)
1 2 3 4
9 10 11 12

1 o 1/4
4 4

p.1/2
~ ~calar right argument, but vector result.}

EXPAND: R+V\[K]B

The result is formed by expanding B along the Kth coordinate
by filling with zeros (if B is numeric) or blanks (if B is of
character type) in_ those positions in R for which there are
corresponding D's in v~

Requiretlents for V and B. Ignoring the special cases, V must be
a vector conta1nIng onTy lis and O's such that (+/V)=(pB)[K].
The result R has the same dimensions as B except that the Kth
dimension is pV.

Exception cases. If V or B is a scalar, it is treated as a
one-element vector.

60454000 E 6-11

Examples.

1 o 1 0 1\1 2 3
1 o 2 0 3

D+M+2 3P16
1 2 3
4 5 6

1 0 1 o 1\M
1 0 2 0 3
4 0 5 0 6

1 0 1\[1]M (Same as 1 0 1 ~M •)
1 2 3
0 0 0
4 5 6

pl\2
.1

, '=0\'1
.1

0\ 10
o

TAKE: R+VtB

(A vector result.)

(An empty array can be expanded.)

The take function selects IV[X] first elements (for V[K]>O)
or last elements (for V[K]<O) along the Kth coordinate of B. If
IVLK] exceeds (pB) [K], zeros (if B is numeric) or blanks (if B is
of character type) are used to provide the extra elements.

Requirements for V and" B. Ignoring the special cases below, V
must be a vector having an integer for each dimension of B. That
is, (pV)=ppB. The result R has dimensions IV.

Special cases.
vector. If B
of rank pV.

Examples.

If V is a scalar, it is treated as a one-element
is a scalar, it is treated as a one-element array

3t-1 2 3 4 5
123

3t1 2 3 4 5
345

3t tABCDE'
ABC

6-12 60454000 E

3t10
000

5tl 2 3
12300

D+M+3 4Pl12
1 2 3 4
5 6 7 8
9 10 11 12

2 -5tM (First 2 rows, last 5 columns.)
0 1 2 3 4
0 5 6 7 8

(Take can be applied to an empty array.)

2 3 t 5 (5 is treated as a 1 by 1 matrix.)
500
000

DROP: R+V-I-B

The drop function forms its result by omitting IV[K] first
elements (if V[K]>O) or last elements (if V[K]<O) along the Kth
coordinate of B.

Requirements for V and B. Ignoring the special cases below, V
must be a vector of 1ntegers, and pV must be the same as ppB.
The result has dimensions Or(pB)-IV.

Special cases.
vector. If B
of rank pV.

Examples.

If V is a scalar, it is treated as a one-element
is a scalar, it is treated as a one-element array

3-1-1 2 3 4 5
4 5

2-1- 'ABCDEF'
ABCD

10-1-1 2 3
(Blank line indicates an empty result.)

D+N+3 4P112
123 4
5 6 7 8
9 10 11 12

1 2 -I-M(First row and last 2 columns are dropped.)
5 6
9 10

60454000 A 6-13

1 1

3

pO 0""3
(The scalar was treated as a matrix.)

REVERSE: R+~[K]B

The reverse function reverses the order of elements alor.g
the Kth coordinate of B. The result has exactly the same shape
as B.

Examples.

~ 3 4 5 6
6 543

~'ABCDEF '
FEDCBA

D+ll1+3 4P112
1 2 3 4
567 8
9 10 11 12

~N
4 3 2 1
876 5

12 11 10 9

eM (Same as ~[l]M.)

9 10 11 12
5 6 7 8
1 2 3 4

ROTATE: R+A~[K]B

The rotate function shifts elements of B along the Kth
coordinate a number of positions specified by A. For positive
elements of A, the elements move so that their indices decrease,
and for negative elements of A their indices- increase.. Elements
shifted beyond the end are replaced at the other end. The
absolute value of the elements in A gives the number of positions
the corresponding vector along the Kth coordinate of B is shifted.

Requirements for i. and~. Ignorin~ the exceptions below, ~ must
have one element for each vector ln B along the Kth coordlnate.
That is, pA must be (K~lppB)/pB. Thus the dimensions of A must
be like those of B except that the Kth dimension of B is absent
from A. The result has the same shape as B.

6-14 60454000 A

Special 'case.s , If A is a scalar, it is extended to become an
array having dimensions suitable for B. Rotation of a scalar is
allowed, but the left argument must be a scalar, and the result
is the same as B. When the right argument is a vector or a
scalar, the left argument may be either a scalar or a one-element
vector.

Examples.

2 <j> 1 2 3 4 5 (Rotation by 2 positions to the left.)
3 4 512

-2 ~ i 2 3 4 5(Rotation by 2 positions to the right.)
4 512 3

2 4>tABCDEt
CDEAB

0+B+3 4p t.12
1 2 3 4
5 6 7 8
9 10 11 12

0 -1· 2 ~ B
1 2 3 4 (Rows are shifted.)
8 5 6 7

11 12 9 10

o 1 1 2 90B (S arne as 0, 1· 1 2 -~ [1] B.)
1 10 7 12
5 2 11 4
9 6 3 8

1 q> B
2 341
6 7 8 5

10 11 12 9 (All rows are shifted by 1.)

HONADIC TRANSPOSE: R+~B

The monadic transpose function reverses the coordinates in
B. Thus the last coordinate in R corresponds to the first in B,
the second to the last corresponds to the second in B , and so
forth. For a vector or scalar, the result is the same as the
argument. For a matrix, the result is the usual matrix
transpose. For an array of rank 3, R[I:J:KJ is the same as
B[K:J:I]. The shape of the result is ~pB.

Examples.

O+M+3 4Pl12
1 234
567 8
910 11 12

60454000 C 6-15

~M

1 5 9
2 6 10
3 7 11
4 8 12

D+C+3 4p 'FOURFIVEFORT'
FOUR
FIVE
FORT

~C

FFF
OIO
UVR
RET

D+R3+2 3 4P124
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

p~R3

4 3 2

~R3

1 13
5 17
9 21

2 14
6 18

10 22

3 15
7 19

11 23

4 16
8 20

12 24

DYADIC TRANSPOSE: R+V~B

The dyadic transpose function interchanges coordinates of B
according to the integer values in the vector V.

6-16 60454000 A

Requirementsfor V and B. Ignoring the special case below, V
must be a vector having one element for each dimension of B--that
is, V and B must satisfy (pV)=ppB. The elements must be integers
such that (tr/v)€vand v€tr/v (all integers up to the largest
element in V but no other values)~ The rank of R is r/v in
I-origin or 1+r/V in a-origin. The Ith dimension of R is
l/(V=I)/pB. The Ith coordinate of B becomes the V[I]th
coordinate of R. If two or more coordinates of B map into the
same coordinate of R, the length along that coordinate is the
least of the related dimensions in B.

Special case. If V is a scalar, it is treated as a one-element
vector.

Examples.

0+M+3 4p'ABCDEFGHIJKL'
ABCD
EFGH
IJKL

AEI
BFJ
CGK
DHL

2 1 ~ M

(R[I;J]=B[J;I].)

1 1~M (R[I]=B[I;IJ. The diagonal of the matrix.
AFK note that the length is the shorter

of the two dimensions of the rnatr Ix ,)

0+B+2 3 4pt24
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

2 1 3 ~ B
1 2 3 4

13 14 15 16

5 6 7 8 (R[I;J;KJ=B[J;I;KJ.)
17 18 19 20

9 10 11 12
21 22 23 24

60454000 A 6-17

1 1 1~B

1 18 (R[Ij=B[I;I;I] • The main diagonal.)

1 2 1~B

1 5 9
14 18 22 (R[I;J]=B[I;J;I]. A diagonal slice.)

2 1 2~B (R[I;J]=B[J;I;J].)
1 14
5 18
9 22

The expressions to the right which relate elements of B, V, and
R are forme~ as follows: The indices applied to Rare
(r/V)p'IJKL •.. ', and the indices applied to Bare 'IJKL •.. '[V].

BASE VALUE: R+AJ.B

The base value function evaluates its right argument as a
representation of a number in a general number system described
by its left argument. For example, 2 2 21.1 0 1 gives 5; the
vector 1 0 1 is evaluated as a number represented in base 2. The
left argument, 2 2 2, contains the radices of the number system.
(Radices are ratios between the weightings of the positions.)
For the simpl~ case of a vector left argument A, the Kth
weighting (in a-origin) is x/(-K)tA. That is, the Kth weighting
is the product of the last K elements of A. If W is a vector of
these weightings, the result for AJ.B is W+.xB. Thus for the case
2 2 21.1 0 1 the result is +/4 2 1x1 0 1.

Requirements ~ ~ and B. Except for the specia~ cases below, A
and B must satl.sfy(-1tpA)=1tpB (the last dimensl.on of A must be
the same as the first dimension of B). For arrays A and B, the
vectors along the last coordinate of A are used to find vectors
of weightings, and each vector along the first coordinate of B is
evaluated according to each vector of weightings. The weightings
are W+¢x\(pA)t~A,1. The result is then W+.xB. The result has as
dimensions (-1+pA),1~'p3 (same as the dimensions of A+.xB).

Spe'cial oases , If A or B is a scalar, it is treated as a
one-element vector. If the last dimension of A does not match
the first dimension of B but one of the two dimensions is 1, that
dimension is extended to match the other.

Exampl'es.

24 60 601.1 2 3
3723 COne hour, two minutes, and

3 seconds is 3723 seconds.)

6-18 60454000 A

o 60 601.1 2 3 (The first element in the
3723 left argument has no effect.)

D+A+2 3p 2 2 2 10 10 10
2 2 r-:

L

10 10 10

D~-B-<-'3 4p1 1 3 2 0 1 4 0 1 0 5 3
1 1 3 2
0 1 4 0
1 0 5 3

A.1.B
5 6 25 11

101 110 345 203

.51.3 4 5
7.75

REPRESENT: R+ATB

(Each vector along the first coordinate of B
is evaluated according to each vector
along the last coordinate of A.)

(Evaluates the polynomial (3x.5*2)+
(4x.5)+5. The left argument is extended
to become a 3-element vector.)

~he represent function represents its right argument in the
nlli~ber system described by its left arglli~ent. For example, 2
2 2T5 gives 1 0 1. The left arg~~ent contains the radices of the
number systen. For a vector left argument and a scalar right
argument, the result is given by the following function:

~R+A SREP B;N;DCT
[lJ N+pA
[2J R+llpDCT+O
[3 J L 1 : -+(11 == 0) / 0
[4J R[N]+A[NlIB
[5J B+B-R[NJ
[6J -+(B=O)/O
[7 J B+ BfA [NJ
[8J N+N-l
[9J -+[,1 ~

the usual
dividing

This function is
converting between
r eme Lnde.r s ,

a generalization
numbe.r systems

of
by

method of
and finding

Requirements for A and B. A and 8 nay have any shape. Each
ele~ment of B--rs represented according to the radices in each
vector along the first coordinate of A. (If A is a scalar, it
is treated as a one-element vector for this operation.) The
dimensions of the result are (pA),pB (i.e., the same as for outer
product) .

60454000 A 6-19

Examples.

10 10 10T273
273

24 60 60T3723 (3723 seconds is ~ hour ,
1 2 3 2 minutes, and 3 seconds.)

111

7 1 1

2 2 2T31

o 2 2T31

(High-order information is lost.}

(High-order information is
intercepted by" using a zero. I

o 2
3 8
4 1

o 10
2 .10
2 .10

.70 80
2 3

o 1
8 2

1 .1
.1 3

10 10 10T34 281

O+A+3 2pO 10 2 10 2 10

AT281 323

EXECUTE: R+ gJ1

The execute function performs the ~L statement in the
vector or scalar ~. A result is returned only if the expression
produces a result. When the execute function is performed as the
last operation on a line, any result is automaticall¥ printed
unless specification or a branch was the last operation within
the argument. Branching in the argument has no effect, and any
statement label is ignored. If execute is applied to a character
argument representing a list, the list is printed and the first
list element is returned as the result of the execute function.
note that the present system does not allow expressions exceeding
150 characters to be executed. (Some statements of as few as 87
characters give a LIMIT ERRORo)

6-20 60454000 C

Examples •

.t'1 24 48'
1 24 48

X+l 2 3
+/.t'X+X*2'

20

P+J.' A+13'
P

1 2 3

P+J.'2;3;4'
234

P
2

(Converting characters to numbers.)

MONADIC FOID·ffiT: R+TB

The monadic format function returns a character array that
when printed looks exactly like B (except possibly when OPW is
exceeded, in which case numbers in TB could be split between
lines). An argument of character type is returned unchanged.
For a numeric argument, each column of B becomes several columns
in the result '(depending on OPP and the numbers in the column),
but the other dimensions of the result are the same as for the
argument. Thus the rank of_R is the same as the rank of B, and
pR matches pB except that ltpR (the last dimension of R) is
generally greater than -ltpB (the last dimension of B). Note
that the exact output format differs between APL systems and may
even differ between versions of the same system. Programs should
be written to be independent of such differences.

Special case. A scalar numeric argument is treated as a
one-element vector and thus produces a vector result.

Examples.

Tl 2 3
1 2 3

p lfl 2 3
5

T3 4P112
123 4
567 8
9 10 11 12

60454000 A 6-21

p" 3 4p t 12
3 10

.,tAB'
AB

DYADIC FORMAT: Z+V.,B

The dyadic format function represents columns of B according
to pairs of integers in the vector V. The first number of a pair
in V gives the width, and the second number gives the precision
to be used in representing the number. The width is the number
of character positions to be used for the column, and if 0 is
used, the system chooses a width so that at least one blank will
separate that column from the preceding column. The result R has
the same dimensions as B except that the last dimension of R is
usually greater than the last dimension of B. Character
arguments are not allowed. The precision has the. following
significance:

precision~O The numbers are represented in decimal format.
The precJ..sJ..on is the number of di..gits beyond
the decimal point. If the precisi..on i..s zero,
no decimal point appears.

precision<O The numbers are represented in exponential
format. The number of digits shown is the
absolute value of the precision, and if the
number of digits is 1, no decimal point
appears. Five columns are reserved for the
exponent when the system chooses the width.
l~en the width is provided the number of
columns reserved at the right for the exponent
is given by 5LW-D+1+1~D, where W is the width
and D is the number of digits.

If a number cannot be represented in the space provided, the
field for that number is filled with asterisks. However, there
is no requirement that spaces separate numbers in the same row.

Exception cases , If B is a scalar, it is treated as a
one-element vector. (Hence the result is a vector, never a
scalar.) If V is a scalar or one-element vector, it is extended
to become V+O,V. (Thus the width of the columns will be chosen
by the system.) Then if p V is 2 but -1tpB (the last dimension of
B) is not 1, V is replicated to become V+(2 x-1tpB)pV so that the
pair of numbers in V will be applied to all columns.

6-22 60454000 B

Examples.

1 3Y.3456 2.8 928
0.346 2.800928.000

4v.3456 2.8 928
OG3456 2.8000 928.0000

1 OV 3 3p 1 0
101
010
101

2.35EO
4. 2 3K1 8
5.30g-6

-~Y1E5 1.2E6 1.8E2
lE5 lE6 2E2

MATRIX DIVERSE: R+IiIB

The matrix inverse function returns the inverse of a matrix
B. The inverse is such that

(~B)+. xB++T

where I- is an identity matrix (i.e., a matrix with l's along the
diagonal and D's elsewhere) having J.+pB rows and columns. note
that this uniquely defines R only as long as B has the same
number of rows and columns. However, if B has more rows than
columns, the result R can be uniquely defined by
R++(!E(ls?B)+.xB)+.x~B. The result is related to the result for the
dyadic matrix divide function according to ~B++ImB, \~Lere I is an
identity matrix having· -itpB rows and columns.

Requirements for B. Ignoring the exceptions below, B must be a
matrix such that T1+pB)~-1+pB (B must have at least as many rows
as columns) and B must have an inverse. Hote that some matrices
do not have inverses and produce a DOMAIN ERROR if an inverse is
requested. In particular, a square matrix with two identical
rows or with one row that can be produced by multiplying other
rows by factors and adding them has no inverse. Actually, there
is no precise distinction between matrices that hav~ inverses and
those that do not, and OCT is used in the test. Decreasing the
value of OCT may prevent a »OMAIN ERROR, but the result so
produced is less reliable and may be completely meaningless. The
dimensions of the result are ~pB (i.e., p~B).

60454000 C 6-23

Special cases. If B is a scalar, the result is the scalar +B.
If B 1S a vector, the result is B++/B*2. Except for the result
rank, the scalar case is the same as if the scalar were treated
as a one-by-one matrix, and the vector case is the same as would
be produced by treating the vector as a one-column matrix.

Examples. See the examples at the end of the following
dlScussion of matrix divide.

~1ATRIX DIVIDE: R+A(BB

The matrix divide function solves systems of simultaneous
equations or finds least-squares regression coefficients. When
the matrix B has the same number of rows and columns, R is the
solution to linear equations represented by the constant vector
A and the coefficient matrix B. When B has more rows than
columns, the result R contains the regression coefficients for a
dependent variable A and independent variables in the columns of
B. Note that the result is the same as «(BB)+.xA.

Requirements for A and B. Ignoring the special cases below, B
must be a matrix-such -that (ltpB)~-ltpB, and B must have an
inverse (see the preceeding discussion of the matrix inverse
function). Also, A must be a matrix such that (ltpA)=ltpB (they
must have the same number of rows). vllien A has more than one
column, the result R has a solution column for each column of A.
The result has the dimensioris (1 {-pB) ,1-l-pA Cone row for each
column of B and one column for each column of A). The result R
satisfies B+.xR+~A if B is a square matrix. ~ihen B is not a
square matrix, the result minimizes each elerr~ent of

+f(A-B+.xR)*2

That is, B+.xR gives predicted values for the regression
cofficients R, and A-B+.xR gives the residuals; so the sum of the
squared residuals is minimized.

Special cases. The arguments may also be scalars or vectors. A
scalar is treated as a one-by-one matrix, and a vector is treated
as a one-column matrix. After this extension, ltpA must match
ltpB. The dimensions of the result are (l-l-pB),l-l-pA where A and
B here are the original arguments before extension.

Example 1. To solve the system of equations:

5= x + 2y
4=5x + 3y

Use:

O+M+2 2pl 2 5 3
1 2
5 3

6-24 60454000 A

5 4 lflM
1 3 (A vector result.)

(2 lp5 4) ffiM
1
3 (A matrix result.)

The is - 1, y=3.answer x=

Example 2. Given Vl+.8 .9 1.0 2.2 3.1, V2+1 2 3 1 2, and Y+4.5
6.6 9.2 8.3 7.1 find the values of Al and A2 that most nearly
satisfy Y=(A1 xV1)+A2 xV2 in the least squares sense.

D+Q+Vl,[1.5]V2
0.8 1
0.9 2
1 3
2.2 1
3.1 2

DPP+3
D+Z+YIiJQ

1.37 2.56

The predicted values for Yare:

Q+.xZ
3066 6.35 9.04 5.58 9.37

and the residuals are:

Y-Q+.xZ
0.845 0.252 0.159 2.72 2.27

Example 3. Using V1 and V2 from Example 2 and Y2+6.5 806 11.2
10.3 9.1; find Al, A2, and A3 that most nearly satisfy
Y2=A1+(A2 xVl)+A3 xV2. This problem is like the previous one
except that we imagine A1 to be the coefficient of a vector of
l's. The solution is given by:

1 0.8
1 0.9
1 1
1 2.2
1 3.1

D+B+1,Q
1
2
3
1
2

Y2mB
5.76 0 0593 1.35

60454000 A
6-25

Section 7. Composite Functions

As described in Section 3, an operator is a special function
that takes functions as arguments and produces a function as a
result. Except for the result of the axis operator, these
resulting functions are the composite functions. A few examples
will help to illustrate this. The expression +/1 2 3 ("the plus
reduction of 1 2 3") is the same as 1+2+3. Sfulilarly, -/1 2 3 is
1-2-3 or 2 (remember that it is performed from right to left).
The function symbol to the left of the slash indicates the
particular dyadic scalar function to be used. The forms for
composite functions are dlB (~eduction), d\B (scan), Ao.dB (outer
product), and Ad.DB (inner product), where d and D represent
symbols for any dyadic scalar functions.

REDUCTION: R+d/[K]B

Reduction applies a dyadic scalar function repeatedly
between elements in vectors along the Kth coordinate of B. For a
vector B, the reduction is of the form

B[1]dB[2]d ••• dB[N]

For higher order arrays the same sort of operation is performed
for each vector along the Kth coordinate. vllien the axis operator
is omitted the operation is performed along the last coordinate.
The alternate symbol f can be used to indicate the operation
should be performed along the first coordinate.

Requirements for~. Elements of B must be in the domain of the
scalar function used. Thus, character arguments are allowed only
for the functions = and~. Except for the special cases below,
the result has a rank that is one less than the rank of B and the
dimensions of the result are (K~lppB)/pB (the same as the
dimensions of B except that the Kth dimension of B is missing).

60454000 A 7-1

Special cases. A scalar is treated as if it were a one-element
vector, and the result is then a scalar. If the length of B
along the Kth coordinate is 1, the result is the same as the
argument except that one dimension is removed. No operation is
actually performed in this case, so no check is made to see
whether the values are in the domain of the function, except that
arguments of character type are still illegal for functions other
than = and~. When B is empty but the result is not empty, the
result contains the identity element for the function if one
exists. The following table shows the identity elements used.
Note that in some cases the identity elements are identities in a
rather loose sense. Some are right identities only, some are
left identities only, some are both, and some are identities only
for logical arguments. Functions for which there is no identity
in the table produce DOMAIN errors when applied along a
coordinate of length O.

Function Identity Function Identity
+ a * 1

a A 1
x 1 v a
... 1 ! 1
r 1.26E322 > a
L 1.26E322 ~ 1
= 1 < a
~ a s 1

a
Examples.

15
r/31 915

(Largest element.)

L/3 1 9 15
1 (Smallest element.)

x/1 2 3 4 5
1.20 (Pzoduct.,)

+/1 2 3 4 5
15 (Sum.)

-/1 2 3 4 5 (Alternating sum; same as
3 1+(-2)+3+(-4)+5.)

+/1 2 3 4 5 (Alternating product; same
1.875 as (1 x 3 x5)+2 x4.)

D+P+3 4P112
1 2 3 4
56'1 8
9 10 11 12

7-2 60454000 A

r/p
4- 8 12

rfP
9 10 11 12

+/3
3

A/5
5

+/10
0

+/3 Op 0
000

A/A€B

v /A€B

(Largest element in each rew.)

(Largest element in each column.)

(A scalar is treated as a vector.)

(No domain check for one e l ement.,)

(An identity if the length is zero.)

(An identity for each of the 3 rows.)

(Gives I if all elements of the vector A
occur in B.)

(Gives I if any elements of the vector
A occur in B.)

SCAN: R+d\[K]B

Scan performs a series of reductions. For example, +\1 2 3
4 5 returns 1 3 6 10 15i that is, the Ith element is +/ItB. For
arrays other than vectors, the result has the same shape as the
argument, and the elements along the Kth coordinate are produced
by performing a reduction over the first I elements. Arguments
of character type are not allowed. If the axis operator is
absent, the last coordinate is assumed. The alternate symbol ~

can be used to indicate the operaticn is the be performec along
the first coordinate.

v\O 0 1 0 0 1 0
0 0 1 1 1 1 1

A\1 1 0 1 0 1

" " " " " ".L .L V V V v

x\1 2 3 4- S 6
1 2 6 24 120 720

O+P+3 4P112
1 2 3 4
5 6 7 8
9 10 11 12

60454000 A 7-3

+\P
1 3 6 10
5 11 18 26
9 19 30 42

+~P (Same as +\ [1]P •)
1 2 3 4
6 8 10 12

15 18 21 24

OUTER PRODUCT: R+A 0 .dB

Outer product applies a scalar dyadic function using all
elements of A as left arguments and all elements of B as right
arguments. The rank of the result is (ppA)+ppB and the'
dimensions of the result are (pA),pB. Each result ela~ent has as
its first ppA indices the indices of the element used from A and
has as its last ppB indices the indices of the ela"Uent used from
B.

Examples.

1 2 3o.x4 5
4 5 6 7
8 10 12 14

12 15 18 21

6 7

(Each element of the left argument is
multiplied by each element of the right.)

1 2 3 0 • =3 1 3
o 1 0
000
1 0 1

+/1 2 30.=3 1 3
1 0 2 (The number of lis, 2's and 3's

in the right argument.)

INNER PRODUC'I': R+Ad.DB

Inner product appliea the scalar function D between each
vector along the last coordinate of A and each vector aloLg the
first coordinate of B, then perfoI.1Us a reduction usi.ng d to that
result. The usual matrix product is A+.xB.

Requirements for A and B. Ignoring the special cases below, the
last dimension of- Amust match the first dimension of B. The
dimensions of the result are (-1+pA),1+pB (all di~mensions of A
except the last and all dimensions of B except the first).

7-4 60454000 A

Special cases. If A or B is a scalar it is treated as a
one-el~nent vector. Then if the last dimension of A does not
match the first dimension of B but one of the two dimensions is
1, that dimension is extended to match the other (thus allowing
the array having the 1 as a dimension to be used repeatedly).

Examples. The following table shows examples for arguments of
various ranks.

ppA
-2-

2
1

ppB
-2-

1
2

ppR
-2-

1
1

Result
R[I;J]=d/A[I;]DB[;JJ
R[IJ=d/A[I; JDB
R[IJ=d/ADB[;I]

The following examples illustrate useful inner products:

0+-A+-2 3p1 0
1 0 1
o 1 0

0+-B+3 3pt9
1 2 3
456
789

A+. xB
8 10 12
456

(!-tatrix Product.)

'ABCD'+.='XZCD'{Counts matches in corresponding
2 positions.)

D+-TABLE+-3 4p'FOURFIVESTX '
FOUR
FIVE
SIX

TABLEA. ='FIVE'
o 1 0 (Gives 1 for a row that matches

'FII'E' •)

60454000 A 7-5

Section 8. System Functions and Variables

This section discusses system functions and variables other
than 0, [!], DFD, and DSY, which are described elsewhere. System
functions and variables allow communication with the APL system,
and, to some extent, with the operating system under the control
of which the APL system runs. In most respects system functions
and variables behave as other APL functions and variables except
that: their names are distinguished by beginning with the symbol
o or [!], they control the APL environment in ways that other
functions and varLab.l ea cannot, and the values of system
variables can change between settings. For exmnple, DAI, which
is a vector of accounting information, may be set by the user to
any desired value, but the next time he regliests its value, it
will correctly reflect current accounting Lnformati.on-c-Ehat; is,
the system resets the value of OAI before it is read. Similarly,
DAI can be erased by the user, but the system gives it a value
whenever its value is requested.

The system variables that affect operation of the APL
have restricted shapes and douains. For ~~ample, OIO, the
for indexing, must have a value of 1 or 0.. Any atrt.empt;
DIO t;o an improper value will result in a RANK ERROR or- a
ERROR. However, the user can erase OIO or declare OIO
local to a function and then fail to assign it a value.
system variable is undefined and its value is required
operation, an IMPLICIT ERROR resul-ts. For example:

sys·tem
origin
to set
DOMAIN

to be
\'lhen a
for an

'i/Z+IOTA B;DIO
[1] Z+tB 'i/

IOTA 3
01: INPLICIT ERROR
IOTA[1] Z+tB

/

60454000 A

(OIO is a local variable.)

8-1

Table 8-1. Summary of Section 8.

Output Control

DP~+integer (1 to 15)
Printing prec~sLon--maximum number of significant digits
used for numeric output.

DPW+integer (30 to 131071)
Maximum printing ~idth used for output.

DPL+pagesize,linecount (0 to 131071j
Print lines. Print lines to be used before a halt to allow
the terminal operator to intervene, and count of lines used.
If DPLl1] is 0, output will be uninterrupted.

DHT+integers
Horizontal tabs. Indicates to the APL system where tab
stops have been set on the terminal.

Indicators affecting Primitive Functions

DCT+number (0 to .Ol)
Comparison tolerance used for relational functions,
membership, index-of, integer tests, and domain tests.

DIO+O or -1
Index origin. Determines base for counting.

DRL+£nteger (1 to 281474976710655)
Random link used by random number functions.

Function Definition

DENV+O or I
Environment control. Affects OCR, OFX, OEX, ONC, DNL,
DSTOP, DTRACE, DLOCK, OLTIME, DNAMES, and DCOPY. If DENV
is 0, the global enviromnent is used, and if DENV is ~,

the current environment is used.

matrix+DCR 'name'
Canonical representation
matrix.

of a function in the form of a

Z+DFX matrix
Fixes the
argument.
name of the
scalar line

function represented by the character matrix
The result returned is a vector containing the
function, or, if the operation failed, a numeric
number for the erroneous statement.

vector+OEX 'names'
Expunges (erases) objects named by the right argument. The
result contains l's for names that are now available, O's
for others.

8-2 60454000 C

Table 8-1. Summary of Section 8, Continued.

vector+ONC tnamest
Returns the name class for each narne--O for available, 1
for locked variable (label or group), 2 for unlocked
variable, 3 for function, or 4 for distinguished name.

matrix+ONL V
matri~+'letterst DNL V

The namelist functions return matrices of names in use.
Which- names are returned depends on class numbers in
V--locked variables (labels or groups} if 1EV, unlocked
variables if 2EV, functions if 3EV, and defined
distinguished names if 4EV. The left argument of the dyadic
form should contain letters to further restrict names to
those beginning with those letters.

vector+OLOCK 'names'
Locks functions and variables named by the right argument.
The result is a vector containing lis for success, D's for
failure.

Stop, Trace, and Timing Control

Y / DSTOP '--name t

Y DTRACE" [name [
V DLTIME tname t

Sets stop, trace, or timing controls for lines specified by
V and clears controls for other lines.

Z+DSTOP [name t

Z+DTRACE tname t

Z+DLTIME tname t
Returns line numbers for which stop, trace, or line ti@ing
controls are set. DSTOP and OTRACE return vector results,
while DLTIME returns a matrix with line numbers in column 1
and corresponding times in column 2.

Program Library Functions

DWSTD+ '--name '--
DWSID contains the workspace identification of
workspace. This name 1S used--when no name is
DSAVE.

60454000 C

the active
given for

Table 8-1. Summary of Section 8, Continued.

Z+DSAVE ' wsname L:passwdJL/optionsJI
Saves a copy of the acti3e workspace under the name
specified. DSAVEtt (no name given) uses the name in DWSID.

A DSAVE twsname L :passwdJ L/ options J '-
Same as above except that A controls the state indicator of
the active and stored workspaces. If A is 0 or ~ the state
indicator is cleared or backed up to the last suspension,
respectively.

DLX+texpressiont.
The latent expression is executed immediately after the
workspace containing it is loaded.

DLOAD LL*accountJ wsname L:passwdJt
Activates a copy of a stored workspace and then executes the
latent expression if one is defined.

matrix+V DNAMES 'L*accountJ wsname L:.passwdJ'
Lists names used in a stored workspace. The result is a
matrix of names of objects in the name classes specified b~

elements of V--locked variables llabels or groups) if lE.V I

unlocked variables if 2€V, functions if 3EV, and
distinguished names if 4€V.

matrix+DNAMES '-L*accountJ wsname L:passwdJL
Returns a matrix of all names of classes 1, 2, and 3 in the
workspace.

matrix+t.namesL OCOP~ 'L*account] wsname L:passwd]'
Copies specified objects into the active workspace from a
stored workspace.

matrix+DCOP.Y' tL *acaount] w'sname L :passwdJ '-
Copies all objects of classes ~, 2, and 3 from the
workspace.

DDROP '-L*accountJ wsname L:passwd]L
Removes the stored workspace or file named by the right
argument from the indicated library.

Z+DLLR 'L*accountJ Lname~t.

Returns a matrix containing names, types, and sizes of files
in a library. If an account number is given, information is
given only for the files that are public or semiprivate or
for which the user has access permission. If a name is
given, detailed information about that one file is returned.

8-4 60454000 C

Table 8-l. Summary of Section 8, Continued.

Error Processing

DTRAP integer
Specifies that errors are to be intercepted by a forced
branch to the specified line of the currently executing
function.

Z+DERR
D~R is a 3-row matrix of the last error message, the line
having the error, and a pointer to the position of the error
in the line.

matrix+DSLV vector
The result is a character matrix containing the rows of the
state indicator with variables display specified by the
right argument. DsrY-loDLC gives the entire display (in
either origin).

Y+OLC
OLC is a vector of all line numbers appearing on the state
indicator.

Miscellaneous System Communication

V~OAL

OAr is a vector of accounting information. OAL1.1 2 3 4 5]
gives: an encoding of the user'a account number, accumulated
central processor time, accumulated connect time,
accumulated keying time, ~d SRU's used.

V+OAV
Atomic vector of all 256 APL characters.

Y+OTS
Time" stamp: current year" month, day, hour, minute, second,
and millisecond.

Y+OTT
Terminal type.

DffA+V
Working' area: Of1[A'l1] is the part of the max imum field length
available for use, OfiAt21 is the current field length,
OfYAl3] and OW-At 41 are the minimum and maximum field lengths
the user wishes APL to use.

Z+OTM Lcommand t

Terminal mode: commands are ~~STEM, OFF and AHORT, to return
to operating system command processor, sign off, or abort
batch job.

60454000 C 8-5

Table 8-1. Summary of Section 8, Con.tinued.

S+DDL seconds
Causes execution to delay for the specified n.umber of
seconds.

Format System Function

Z+'phrase,pnrase, ..• ' DFRMT B
Z+lphrase,phrase, ... ' OFRMT (B1:B2; ...)

Form~ts right argument according to left argument. A
phrase is of the form 3qI4, 2qF9.2, 4E~5.7, 4A1, [9text[9, or
5X. The qualifier q may be a combination of C, T, Z, or L
lfor commas, to change trailing zeros to blanks, use leading
zeros, or to left justify); R~text~ (to pre-fill with text);
M~text~ or N~text~ (to place text to left or right if
negative); P~text~ or Q~text~ (to place text to left or
right if positive), N, B, or P (to replace with blanks if
llegative, zero, or -positive); or N~text~, B~text~, or
P~text~ (to replace with text if- negative, zero, or
positive) •

Number Conversion

Z+DEXTRACTlcharacters t

Scans argUQent for numbers. Z[1J tells the number of
characters scanned, and 1+Z gives a vector of any valid
numbers encountered.

However, three system variables are so important that When they
are undefined the system uses default values. Thus, when DPW is
undefined the system uses 30 as the printing width. Wilen OPP is
undefined, normal output uses a value of 1. When OCT is
undefined, the system uses zero as the comparison tolerance for
domain tests, although nmaerical comparisons still give implicit
errors. For ex~aple,

OEXLDCTt
1

3=3
01: IMPLICIT ERROR (Because OCT is undefined for comparison.)

3=3
/
t. 3

-1 2 3
13+.1E-~2

03: DOMAIN ERROR ~ecause OCT is zero for domain tests.)
13+1E-12
/

8-6 60454000E

Certain system variables
These session variables remain
loaded and always have their
begins. The session variables
DAI.

are not stored in the workspace.
in effect if another workspace is
normal values when an APL session
are OHT, DWA, DPL, OTT, DTS, and

Hote that many system variables are concerned with internal
intricacies of the, APL system or the host operating system.
Consequently, they can be expected to differ from one system to
another. For some programs it may be worthwhile to access them
through user-defined functions to reduce the number of locations
requiring changes if the program is later moved to another
system.

NAME LISTS

Some system functions require arguments consisting of lists
of names. In all cases such name lists can be either a vector of
names separated by spaces, or a matrix of names with one name in
each row. In either form extra spaces are allowed before or
after names. When a system function returns a list of names as a
result, the list is always in the form of a matrix because the
matrix form is usually more convenient for manipulation by the
program.

WORKSPACES

An APL workspace comprises variables, user-defined
functions, the state indicator, and system variables that are
currently defined. A cle'ar workspace comprises the following:

an empty state indicator
OPP+10 (printing precision of 10 digits)
OPW+120 (up to 120 characters are printed per line)
DCT+5E-11 (comparison tolerance is 5E-11)
DIO+1 (index origin is l)
DRL+16807 (random link is 16807)
DENV+1 (local environment)
DERR+3 Op r t

60454000 E 8-7

As functions and variables are defined, they become part of
the active workspace. A copy of an active workspace can be
saved. To use it at a later time, a copy of the saved workspace
can be activated (that is, made active).

A stored workspace is a special kind of "file. II Under an
account number (or user number) can be stored as many .files as
are allowed by restrictions imposed on the account nUmber. The
collection of files is known as a '11brary.

APL workspaces and data files are ordinarily private files f
wh.i.ch means that other users cannot use them. A user may'
optionally save a workspace as a semiprivate file or public file
by use of commands of the form DSAVE tname/Sl or OSAVElname/PUl.
This allows other users to access the workspace but does not
allow them to alter it. Other users can be given permission to
access a private file by use of the PEID4IT control card (see
Section 13). This gives selected user numbers permission to
access the particular file. Further details about these file
categories can be found in Section 10 and Section :13.

Passwords can be given to workspaces for additional
security. When a workspace is given a password, .other users must
provide the password in order to access the workspace. However,
the owner of the workspace need not provide the password in order
to use it.

The first time a workspace is saved it can be given a
password or a category (i.e., private, semiprivate, or pUblic).
Thereafter, the file password and category remain unchanged for
subsequent save commands that replace the stored workspace.
(ThUS, the password and category options should not be provided
for subsequent save commands.) To change the password or
category you must load the workspace, drop the stored one, and
then resave it with the new options. Alternatively, you can use
the QIANGE control card (see Section ~3).

Workspaces can optionally be saved in direct access form
(ordinarily they are saved in indirect access fOrInt. This option
is chosen by using a command of the form OSA.VE'-name/DA Lthe first
time the stored file is established. Direct access workspaces
are faster to load, save, or copy, but require more disk space.
The direct access option is appropriate for unusually large
workspaces that are loaded or saved very often. A workspace can
be changed to direct access form by loading it, dropping it,
then resaving it using the .DA option.

Workspace names
letters and digits.

and passwords must be composed
Embedded spaces are not allowed.

of 1. to 7

8-8 6045.4000 C

NOTATION

Throughout this section, brackets are used to surround
optional portions of expressions. The brackets themselves should
not be used. For example,

OLOAD tL*account] wsname L :passwd] r.

means that the account number and password are optional. Any of
the following commands are of the correct form:

OLOAD 'ALGEBRA r

OLOAD l*A123456 ALGEBRA:SESAMEL
OLOAD '-ALGEBRA: SESAMEL
OLOAD L*A123456 ALGEBRA t.

SYSTEM VARIABLES FOR OUTPUT CONTROL

Printing precision. DPP+integer C1 to 1.5}
The value of upp determines the maximum number ox significant
digits to be used for numeric output. The result is rounded to
OPP digits; hence if OPP is 3, 0.34567 would be printed as
0.346. See Appendix B for further details of numeric output
format.

Printing width. OP~i'nteger (3Q to .13.10J.1L
The value of Dp~ determines the line width used for output. When
a line of output requires more character positions than OPW, the
remaining characters are indented and continued on successive
lines. Output of numbers will not cause individual numbers to be
split between two lines, but output of character data
representing numbers may cause numbers to be split between lines.

Print lines. DPL+pagesi'ze,linecount [0 to -.13.10-'7.1)
DpL is primarily intended to facili tate the use 0·£ CRT terminals
having a screen smaller than the total amount of output
generated. Appropriate setting of OPL causes output to pause
when the screen has been filled to allow the screen to be
examined or cleared (if required) before more output is sent.
The first element of OPL should be set to the number of lines
that will be used for actual output. The second element of OPL
is a count of the number of lines actually used for input and
output. When each output line or input line has been completed,
DPLl2] is incremented by 1. If OPL'L.l]=DPL12], the system prints
? on the next line and suspends further output until RETURN is
pressed. (Any other input is treated as if RETUro~ has been
pressed.) The program requesting input can be halted by use of an
interrupt (see Appendix cj , tVhen RETURN is pressed, DPL'L 2] is
reset to 0, and further output is sent. The value of DPLl2] can
be reset to compensate for screen repositioning caused by graph
mode output. The elements of DPL are restricted to nonnegative
integer values. If an attempt is made to set DPLL1] to 1, it

60454000 C 8-9

actually is set to O. If the last line on the screen is used for
input, the ? is suppressed and normal input can be entered on
that line. (The input request gives a pause to allow the screen
to be zead,) Note that for some terminal types the? prints as
\.

OPL has a different meaning when APL output is sent to a
file rather than to a terminal. Specifically, if APL is not
being used from a terminal or is being used from a terminal but
the output file name is not OUTPUT, and if the B (for leading
blanks) output option is in effect {see Appendix D1, a page eject
carriage control character is sent at the beginning of the next
output line whenever the page size has been exhausted.

Horizontal tabs. DHT+i'ntegers
The variable--oHT can be set to indicate to the APL system that
the terminal has tab stops set at the Lndi.cat.ed locations. APL
will subsequently send tab characters rather than spaces whenever
the tab character will improve output speed. The first terminal
column is numbered as column zero. Tab positions greater than
255 are ignored and positions beyond DPW are inconsequential. If
there is a discrepancy between the actual tab settings on the
terminal and the values in OHT, the output will be printed
incorrectly. Also, some terminals cannot keep up with the output
when the tabs are too far apart. To use tab stops set every N
spaces, you can set DHT using an expression like OHT+N xtl00. To
revert to normal output without use of tabs you can set OHT using
OHT+10.

VARIABLES AFFECTING PRIMITIVE FUNCTIONS

Comparison tolerance. OCT+numbex (0 to .0.1)
The comparison tolerance is used when comparing numeric values
and when testing whether values are sufficiently close to
integers:

1. Two numbers A and H are considered equal only if

(JA -..BJ$1 DCTxB

2. A number B is considered to be in the integer
domain if

(J (NI'NT B)-~J ~OCT+J OCTxNINT B

where NINT B is the nearest integer to a, defined by:

YZ+NI'NT B
[1] Z+ (x B_) xL, 5+ 1B.V

The value actually used for the operation is NLNT B_
If OCT is undefined, zero is used as OCT.

8-10 60454000 C

Random link. DRL+integer (1 to 281474976710655)
ORL determInes the next random number to be produced by roll or
deal. Each time a random number is requested, the value of ORL
changes. A series of random numbers can be recreated by setting
DRL to the same initial value and repeating the same requests.
Because the value of ORL is saved with the workspace, it may be
desirable to reset it after the workspace is loaded to a value
based on the current time of day so that the random numbers
produced will not be the same as for the last session; for
example, DRL++/DTS.

Index origin. DIO+O or ~

"The index origin determines the ori.qa.n for counting coordinates
or elements along coordinates. In O-origin the elements of a
vector would be numbered 0, 1, 2, etc. All indexing should use

60454000 C 8-10.1/8-10.2

values that are 1 less in O~origin than in I-origin. In
addition, the following functions produce results that are 1
less in a-origin than in I-origin: AlB, t,B, ~B, 'tB, A?B, and ?B.
In addition, the left argument for dyadic transpose should be 1
less for a-origin, and all axis operators require values that are
1 less. That is, K should be 1 less in expressions like A/[K]B
and 4>[K]B.

FUNCTION DEFINITION

Environment. DENV+O ox ~

OENV controls whether the functions OCR, DFX, DEX, ONe, DNL,
DLTIME, DNAMES, DCOPY', DSTOP, DLOCK, and DTRACE refer to the
global environment or to the current environment. When DENVis
0, the global environment is used, and when DENV is 1, the
current environment is used. The normal value of DENY is 1, so
the system functions listed above may refer to local variables
and functions. However, when function definition mode is
entered or when a system command is performed, only the global
functions and variables are used. When the state indicator is
empty, the current environment and the global environment are the
same and DENV has no effect.

Canonical representation. matrix+DCR '-NAME'-
Canonical representation returns a character matrix
representation of a function. The right argument contains a
character vector or scalar containing the name of the function to
be returned. The result will have one row for each line of the
function, including the function header. Lines will be indented
one space unless they have labels. If the argument does not name
an object in the environment specified by DENY, a NAME NOT FOUND
error is given. If the function named by the argument is a
locked function or is a variable, the result will have 0 0 as its
shape.

Fix. Z+DFX me tzxix
TIPX establishes the function represented by the character matrix
argwnent. If the attempt to establish the function is
successful, Z will be a vector containing the name of the
function. Replacement of previously existing functions is
allowed and may result in SI DAMAG~ if the function is halted.
The SI DAMAGE error is processed as a normal error, except that
if the state indicator entry for the currently executing function
was damaged, error trapping is not allowed to take place. In
this case the error is considered to be located at the last line
entered in ~ediate execution mode. DFX cannot be used to
replace objects other than functions. An attempt to establish a
function may also fail as a result of an incorrectly formed
function header or duplicate use of statement labels or local
variables. If the attempt fails, Z will contain a scalar row
index of the line that was improper. Functions created by DFX
can be declared local to other functions.

60454000 C 8-11

Expunge. vector+DEX 'names'
DEX expunges (erases) functions and variables named by the
argument. The result is a logic vector cont~ining lis in
positions corresponding to names in the argument that are now
free, and D's in positions corresponding to names that remain
unavailable for new uses. Erasure of a function that is on the
state indicator does not take effect until the function is no
longer on the state j.ndicator. Thus a function can erase itself
and not actually be erased until it exits. The unfinished
execution can complete, but the name is immediately available for
new uses.

Name class. vector+DNC 'names'
DNC returns information about use of the names in the right
argument. The result contains 0, 1, 2, 3, or 4 according to
whether the name is available (not in use), a locked variable
(label or group), unlocked variable, a function, or a defined
distinguished name (i.e., beginning with the symbol D),
respectively. Incorrectly formed names in the argument cause a
DOMAIN ERROR.

Name list. matrix+DNL V or matrix+'letters' DNL V
The name list functions return lists of names in use. The right
argument is a numeric vector such that A/VEl 2 3 4. V indicates
the classes of names for which information is desired--l for
locked variables (labels or groups), 2 for unlocked variables, 3
for functions, and 4 for distinguished names (i.e., those
beginning with the symbol D). The result is a matrix of the
names. The left argument of the dyadic form may contain any
number of letters, and names appear in the result only if they
begin with those letters.

Lock. vector+DLOCK tnames 1

The variables and functions specified by the right argument are
locked. A locked function cannot be displayed, and a locked
variable cannot be reset using specification. (However, a locked
variable can be reset by erasing it and then using
specification.) Locking a variable is a very useful way to find
where the variable is reset. When the variable has been locked,
the next assignment to it will cause an error halt. Label
variables and groups are automatically locked to prevent them
from having improper values. The result returned by DLOCK
contains lis in positions corresponding to names ~hat are now
locked and contains D's for other names.

STOP, TRACE, AND TIl1ING CONTROL

The functions DSTOP, DTRACE, and DLTIME are closely related.
In each case the right argument is a character vector or scalar
that names a function, and the left argument for the dyadic form
must contain nonnegative line numbers for which the control is to
be set. Setting controls for any lines clears all controls of
the same type for the other lines of the function. Elements of

8-12 60454000 E

the left argument not in the range of line numbers are ignored.
In all cases, an empty vector of line numbers can be used to
clear the controls. An empty character vector is allowed as a
left argument for notational convenience (e.g., " DSTOP 'PLOT').
The monadic forms of the functions return information about
controls that are currently set.

Stop control. V D$TOP 'name' and vector+DSTOP 'name'
When the stop control is set for a particular line, execution of
the function suspends before execution of the line begins, and
the system prints STOP SET, the name of the function, and the
line number. To continue execution where it stopped, issue a
branch to the line number just printed. Stop control at line a
of a function causes suspension just prior to exit from the
function. The monadic form returns a vector of line numbers for
which stop controls are currently set.

Trace control. V DTRACE 'name' and vector+DTRACE 'name'
Setting trace control for a line causes the function name and
line number to be printed each time after the line has been
executed, and if the result of the line was used for a branch or
assignment, the result is printed even though it ordinarily would
not be. Setting trace contol for line a causes tracing of the
exit from the function and causes printing of the explicit result
of the function (if it has one). The monadic form returns a
vector of line numbers for which trace controls are set.

Line timing control. V OLTIME 'name' and matrix+DLTIME 'name'
setting the Ilne timing control for a line causes the central
processor tune for that line to be accumulated. The time for a
line is accumulated until line timing controls for the function"
are reset, at which time all accumulated times are set to zero.
An attempt to set the line timing control for line a of a
function causes a DO~AIN ERROR. The result returned by the
monadic form is a 2-column matrix--the first column contains th~

line numbers for which the line timing control is set, and the
second column contains the total times for the lines. Because
the time clock has a resolution of one millisecond, each parcel
of time used by the line is measured with limited accuracy, and
lines consuming very little time or lines consuming time in small
parcels can be expected to show relatively large inaccuracy in
accumulated times. Note that the times accumulated for a
recursive function can count the time more than once.

PROGRN1 LIBRARIES

Workspace identification. DWSID+'name l

The variable OWSID contains the name of the active workspace.
The name of the active workspace is used as the name for storing
the workspace if no name is specified when OSAVE or)SAVE is
used. The name must begin with a letter, which may be followed

60454000 E 8-13

by additional letters or numbers.
the name, but spaces may precede
must not exceed seven characters.

No spaces are allowed within
or follow the name. The name

Save. vector+DSAVE' wsname [:passwd][/options]'
DSAVE saves a copy of the active workspace under the specified
name and attaches to the saved workspace the password if one is
used. If a password is used, it must be separated from the name
by a colon. The name itself may be omitted, and in this case the
value of DWSID is used as the name. When DSAVE is executed from
a function, the state indicator of the saved workspace will show
suspension where DSAVE was executed. The options may include S,
P, or PU (for semiprivate, private, or public category) or may
include DA or IA for direct access or indirect access. The list
of options may include any desired number of options, separated
by spaces, as long as the options do not include contradictory
choices. The options and password may be specified only when the
saved workspace is first established. If no options are
specified, the workspace is saved as an indirect access private
file if the saved workspace is being created; otherwise it is
saved in the same form as before.

The result returned is a vector of the workspace name and
the current date and time. However, when DSAVE is used in
immediate execution mode, the name, date, and time are printed
rather than being returned as a result.

Dyadic save. A DSAVE t wsname [:passwd][/options]l
Tfie dyaarc-save function is like the monadic form except that it
permits control over the state indicator in both the active and
the saved workspace. The argument A may be a numeric scalar or
vector. If A is 0, a clear state indicator results, and if A is
1, the state indicator is backed up to the point of the most
recent suspension (or cleared if there have been no previous
suspensions). Note that a function calling the dyadic DSAVE
function always ceases to execute because of the change in the
state indicator, unless an error prevented completion of the
operation. Dyadic save prints the workspace name and the current
date and time.

Latent expression. DLX+lexpression t

The latent expression in a workspace is executed inunediately when
the workspace containing it is loaded. When a workspace has no
latent expression, the keyboard unlocks for the user to specify
the first operation to be performed. A successful load operation
ordinarily causes the time and date when the workspace was saved
to be printed, but when the workspace contains a latent
expression this message is absent.

Load. DLOAD '[*account] wsname [:passwd]'
~function DLOAD activates a copy of a stored workspace. The
right argument must contain the name of the workspace to be
loaded, the password for the workspace (if it requires one), and
the account number under which the workspace is stored (if

8-14 60454000 E

different from the user's own}; A successful load results in
execution of the latent expression (DLXI if the workspace being
loaded has one. If the workspace has no latent expression, the
time and date when the workspace was saved are printed. The
special case DLOADt*APLO CLEARWS' is equivalent to the system
command)CLEAR, which erases all indirect access files and unties
all direct access files that were tied during the APL session.

Name lis-t for stored worksp"aces. matrix+V DNAMES L[*account]
;;;;me---r:pa;S;-d] ,
The DNAMES function returns a matrix list of the names used in a
stored workspace. The list returned is controlled by DENV in the
active workspace. The right argument is the same as the right
argument for DLOAD. The vector V may contain the integers I, 2,
3, or 4 to specify what classes of names should be
returned--lockedvariables {labels or groups} if iEV, unlocked
variables if 2EV, functions if 3EV, and distinguished names if
4EV"

Monadic name list. ma tri x+DNAMES t [*account] wsname [:passwd] l

Returns a matrrx-of names of all objects in the workspace. Same
as dyadic form with 1 2 3 as a left argument.

Copy. matrix+'names t DCOPY '[*account] wsname [:passwd]t
The function DCOPY copies functions and variables from a stored
workspace to the active workspace. The account number, workspace
name, and password are the same as described for DLOAD. The list
of names in the left argument specifies objects to be copied.
However, if copying the object would cause replacement of objects
already in the active workspace, the copying process is
inhibited. If DENV is zero, copying will be from the global
environment of the stored workspace to the global environment of
the active workspace, and if DENV is 1, the current envirorunents
will be used. The result from DCOPT is a matrix of names of
objects not copied because they were not found, because WS FULL
occurred, or because they already were in use in the active
workspace.

Monadic c<;>py. matrix+DCOPY' L[*account] wsname [:passwd]'
Like dyad~c copy except that all objects of classes 1, 2, and 3
(see DNC) are copied.

Drop. DDROP '[*account] wsname [:passwd]t
~function DDROP removes a stored workspace (or other file)
from the user's library. A password must be specified if an
account number is specified and differs from the one used to sign
on to the system and if the file has a password.

Library list. li'st+DLIB r [*account] [name] L

The function DLIB returns information about files stored under
the specified account number (or the user's own account number if
no account number is specified). When no file name is included,
the list is a matrix such that each row has the £ollowing fields:

60454000 C 8 -15

(When created.)
(Last change.)
(Las t access.)

File name: 7 characters
File type: 2 characters
File size (in words): 7 characters

One space separates the file name and type.

When a file name is given, detailed information about that
particular file is returned. The format when a name is provided
is illustrated below:

DLIBt*APL1 FILESYSt
FILESYS WS 1075
IA S RD 11478
75/05/12 11:46:58
75/05/30 13:03:30
75/07/31 12:30:59

The first row gives the name, type of file (WS for workspace, F
for APL file, blank for all others), and the size in words. The
second row indicates the file is indirect access (the other
possibility would be DA for direct access), the file category
(8 for semiprivate, P for private, and PU for public) 1 the mode
of access permitted for other users (ED for read, WE for write,
EM for read4modify, MD for modify, AP for append, RA for
read-append), and the number of accesses that have occurred.

ERROR PROCESSING

Some system functions respond to certain error conditions by
returning a result to indicate the error. However, APL handles
most errors by suspending execution at the point of the error,
printing a message, and unlock1ng the keyboard for a new command
to be entered. Note that a keyboard interrupt (see Appendix C)
is treated as an error, as is typing m (0, BACKSPACE, V,
BACKSPACE, T). However, halts due to stop controls are not
errors. Special exceptions arise when the error is in an
argument to the execute function, in a quad input entry, in a
locked function, or when DTRAP has been used to intercept errors.

Errors in an argument to the execute function normally cause
two error messages to be printed. The first shows the execute
argument, and the second shows the error at the line where
execute was called (more precisely, the most recent pendent line
other than lines of locked functions or arguments to execute).

Errors in lines entered for quad input cause the request for
input to be repeated. If the error was encountered in a function
called by the input line, the request for input is not repeated
and normal error processing ensues.

For security reasons, lines of a locked function are not
shown in error messages. Any error in a line of a locked
function is treated as if it were situated in the line where the

8-16 60454000 E

locked function was called (more precisely, the most recent
pendent line other than lines of locked functions or arguments to
execute) •

The function DTRAP can be used to designate a line of the
currently executing function to intercept errors. Once this has
been done, error trapping is in effect and an error in any line
of the function causes a forced branch to the trap line. The
error trap is in effect for functions called by that function or
for functions that are in turn called by those it calls, etc.

The scope of error trapping is analogous to the scope of
local variables. A function with a trap line remains in control
of errors unless a function called by it sets its own trap line.
The newer trap line takes precedence over the old one until the
called function completes execution or clears its trap. The trap
also takes precedence over the normal processing of errors in
quad input lines.

When a workspace is loaded, an interrupt may be acted upon
as an error before the latent expression has been executed and
the error trap has been enabled. To prevent this situation, a
function with a trap can be halted using a stop control before
the workspace is saved. The latent expression can then
deliberately cause an error in order to invoke the trap line.
(Warning: If a suspended function with a trap set is edited, any I
error that occurs may not trap to the expected line and the value
of DERR may be erroneous.)

For additional security of private software, a workspace can
be sealed. See the discussion of AWSFIX in section 13 for
details.

Error matrix. DERR
The character matrix DERR contains the last error message. Row 1
has the type of error. Row 2 has the name of the function, the
line number (surrounded by brackets), and the line itself. Row 3
of DERR has a slash to indicate where the error was found in row
2. The number of columns in DERR varies according to the longest
of the three rows.

The first row always shows the type of error actually
encountered, but the location of the error as shown in rows 2 and
3 can be different from the actual location of the error under
the following conditions:

1. If error trapping is in effect, the error is treated
as an error in the pendent line of the trapping
function.

2. If error trapping is not in effect and the error
occurred in a line of a locked function or in an
argument to execute, the location of the error is
considered to be the most recent pendent line that is

-not an argument to execute or a line of a locked
function. However, an error in a locked function that

60454000 F 8-17

uses trapping causes DEER to contain a line of the
locked function. It is advisable for the locked
function to localize DERR in order to protect its
security'.

Trap set. DTRAP integer
The DTRAP function sets, resets, or clears the trap line for the
currently executing function. Use' of DTRAP from immediate
execution mode has no effect. The argument must be an integer.
If the integer is within the range of line numbers, that line
becomes the trap line. If the number is 0 or exceeds the number
of lines, trapping causes exit from ,the function. The trap can
be cleared by OTRAP10. Once trapping is in effect, an error in
that function, in 0 input, or any function invoked by it causes a
forced branch to betaken to the trap line, and the trap state is
cleared. Hote that OTRAP must be used to set the trap again
before additional errors can be intercepted by that function.
Hence a second error during processing of the trap routine
results in either normal error processing or error processing by
a function that invoked this one. If trapping is in effect,
execution of functions can still halt as a result of a stop
control. However, the trap then remains in effect for errors in
immediate execution mode.

When a forced branch to the trap line occurs, at least one
function will execute before an interrupt is detected. For
complete security, the trap line can immediately reset the trap.
In addition, at least one function is executed on the first line
of a user-defined function before an interrupt is detected, thus
allowing the function to set a trap without an interval of
vulnerability to interrupts.

Locationccunter~ OLe
The variable OLe contains a vector of all line numbers appearing
on the state indicator. The numbers appear in the same order as
in the)STV display--that is, the numbers of the most recently
invoked lines appear first. The ffrst element is the number of
the function line currently executing.

State indic'ator 'and var'ia:bles. matrix+DSTV vector
The function USI'Vreturns rows of the state indicator, including
local variables. The argument must be a vector or scalar
containing integers. The value returned is a character matrix
containing a portion of the)SIV display' selected by the right
argument. OS7Y ~pDLC prints the entire SIV display (in either
origin). If a value in the argument exceeds the range of
appropriate row indexes for the SIY display, a blank line
appears in the corresponding row of the result. Note that only
entries for function lines appear on the state indicator--not
execute arguments, quad input lines, or immediate execution
lines.

8-18 60454000 C

unlocked. Includes
system's response.
of} System Resource
APL.

l-1ISCELLAUEOUS SYSTEM COl41-iUNICATION

Accounting information. OAI
The variable DAI is a numeric vector of the following accounting
information:

DAI[l] - A numeric encoding of the user's account number. For
a character vector V containing the 7-character
account number, the value of OAI[1] is generated in
zero origin by
i00L' ABCDEFGHIJKLMNOPQRSTUVWXYZOi23456789'tV

DAI[2] - Central processor time used.
DAI[3] - Total connect time.
DAI[4] - Total time the keyboard has been

part of the time required for the
DAI[5] - The number of milli (thousandths

units (SRU's) used since entering

Times are in milliseconds and are cumulative since signing on to
APL.

Atomic vector. DAV
The vector DAV contains all 256 characters manipulable by A?L.
Note that the ordering of characters in OAV is system dependent,
and programs that depend on the ordering of characters in DAV
cannot be easily transferred to other APL systems. See the table
in Appendix C to find positions of particular characters.

Time stamp. DTS
The value of DTS is a 7-element numeric vector expressing the
current point in time. The elements are in the following order:
the year (e.g., 1975), month (1 for JanuaryL, day of the month,
hour (0 to 23), minute, second, and millisecond. The last
element is always a because the operating system does not report
the time of day to millisecond precision.

Terminal Type. OTT
The value--of OTT identifies the type of terminal in use. The
value is a numeric scalar as follows:

1 - Correspondence
2 - Typewriter-pairing
3 - Bit-pairing
4 - ASCII-APL
5 - Teletype Model 33
6 - Full ASCLI
7 - Batch. ASCLI
8 - Batch. 501 Printer
9 - Teletype 38, arrangement 3

10 - CDC 713

Working area. OWA
The value of DWA is a 4-element vector of: the part of the
maximum field length available, the current field length, the
minimum field length the user wishes used, and the maximum field

60454000 C 8-19

length the user wishes used. The field length is the actual
memory space occupied by the APL system and the workspace. The
user can set constraints on the field length to be used in order
to optimize performance (see Section 12). Attempts to reset the
first- two elements of OWA have no effect. The maximum field
length cannot be set to less than that which is currently
required. Setting ~WA[4] to more than the user's validation
limit or more than the field length limit imposed by the operator
results in a DOMAIN ERROR.

Terminal mode. vector+OTM'command'
vector+'dayfile message' OTM 'command'

The terminal mode function allows the following operations:

OTM'SISTEM' Returns control to the operating system command
processor.

OTM'OFF' Logs the user off.

OTM'ABORT' Terminates job with operating system abort error
flag set.

Note that these commands do not cause the active workspace to be
saved. The result returned is a vector containing a zero
indicating that the operation was not recognized. If the rfght
argument is an empty vector, nothing is performed, and the result
is an empty vector. If a left argument is supplied, it is sent
to the user's dayfile before the commands are executed. The
user's dayfile is a log of the NOS control cards executed by the
user and is available outside of APL.

Delay. scalar+ODL seconds
Causes execution to delay for the number of seconds requested.
The delay does not involve consumption of central processor time.
The result returned is the actual delay that occurred (usually
slightly more than requesteq). The delay cannot be interrupted.

FORMAT SYS~M FUNCTION

The function OFRMT allows detailed control over column
formatting. The function can be used in two forms:

matrix+A OFRMT B
matrix+A DFRMT (Bl;B2; ...)

The second form uses a list structure generated by separating
expressions by semicolons and surrounding the entire group of
expressions with parentheses. The left argument is a character
vector (or scalar) describing how successive columns of the right
argument should be formatted. A scalar right argument or a
scalar list element in the right argument is treated as a

8-20 60454000 F

one-element matrix, and a vector is treated as a one-column
matrix. (To display a vector horizontally, reshape it to become
a one-row matrix, or apply the ravel function to the result.)
Arrays of rank greater than 2 are not allowed. The arrays in a
list argument may have differing numbers of rows, which causes

60454000 F 8-20.1/8-20.2 I

blanks to be used in the lower portion of the result
corresponding to the missing rows. If DFRMT is the last
operation on the line, the result is printed directly rather than
actually forming a result, thus reducing the chance of a WS FULL
error.

Format phrases. The left argument
format phrases separated by commas.
allowed forms for phrases:

to DFRMT is comprised
The following are

of
the

[n] [q] i»

en] [q] Fw.d

Integer format. Same format as (w,O)~B.

Decimal format. Same format as (w,d)~B.

[n] Ew.d Exponential format. Same format as (w,-d)~B.

If w~d+8, field overflow will not occur and
there will be at least one space separating
the previous column.

[n] X Spaces.

en] Aw Character format. Aw right justifies one
character in a field of width w.

[n] l!Jt:ext:1!J Literal format. Forms a field containing
t:ext:.

Here n represents a number to be used asa repetition count, q
represents a "qualifier" (described below), w represents a number
to specify the width of the format field, and d represents a
number to determine how many digits should be shown. Brackets
are used to indicate parts that are optional. If no digits will
appear after the decimal point in the result, the decimal point
is omitted. If the repetition count is zero, the entire format
phrase is ignored. If no repetition count is provided, l is used
as the number of repetitions. Spaces may be used as desired in
the left argument and have no effect unless they occur within
pairs of I!J symbols or within a number (an error condition).
I'lumbers are rounded to the precision required, and the number of
digits shown is allowed to exceed the computer's precision (zeros
are used to fill digits beyond the fifteenth). The following
examples illustrate the use of simple format phrases:

13
282

3. 8

13
282

4

D+M+~3 3p13 282 3.8 13.046 -22.52 0,O-1E-263 -2 1E30
13.046 -3.141592654E-263
22.52 6.283185307EO
o 3.141592654E30

'I4 ,F7. 2 .E13. 5 t DFRMT M
13.05 -3.1416E-263
22.52 6.2832EO

0.00 3.1416E30

tA1,A2,A3,A4,A5 t DFRMT.1 5 pt-SPACEt
SPA C E

60454000 C 8-21

ITEMS+4 7p'LATCHESHINGES BOLTS TOTAL
CODE+'FTX'
QTY+18 34 102
PRICE+2.45 1.20 .28
TOT+P,+/P+QTYxPRICE
'7Al ,A3 .n in. IS, F6. 2, F8 • 2 'DFRMT(ITEMS; CODE; QT Y; PR IC E; TOT)

LATCHES F] 18 2.45 44.10
HINGES T I 34 1.20 40.80
BOLTS X I 102 0.28 28.56
TOTAL) 113.46

The I, F, E, and A format prinlitives are value-using in the
sense that each time one of these is performed it operates on a
value from the right argument. There must be at least one
value-using phrase if the right argument is not empty. As
processing of a row of the right argument begins, the scan of the
left argument begins at its first element. If the left argument
is used up before the row of the right argument is completed, the
scan of the left argument begins again at the left. When the row
of the right argument is exhausted, the left argument is
processed until a value-using phrase is encountered or until the
scan encounters the end of the left argument.

If the information (including that required by qualifiers)
to be placed in a field exceeds the width of the field, the field
is filled with asterisks. Also, if a value in the right·argument
is of the ~rrong type for the format primitive (i.e., if numeric
for A or if character for I, F, or E) the field is filled with
asterisks and that value is bypassed.

Format qualifiers. Format qualifiers can be used wi, th the I or
F format primitives to further control the format. In cases
where the qualifier depends on whether the number is positive,
negative, or zero, the test considers only the part of the number
that will be shown after rounding. For example, if I format were
used with the numbers .01 and -.01 both would be considered to be
zero. The following qualifiers are defined

R[!]textl!l Background with which to pre-fill
background is repeated from left to
to fill the field.

the field. The
right as needed

c

T

Z
L

M[!]textl!l

Nl!ltext[!]
P!!ltextl!l
Q[!]textl!l

8-22

Insert commas to group triples of digits to the left
of the decimal point.·
Change trailing zeros after the decimal point to
blanks.
Fill field by using leading zeros.
Left justify number in field.

Place text to left of negative numbers. (Default is
[!]-I!l II 1
Place text to right of negative numbers.
Place text to left of nonnegative numbers.
Place text to right of nonnegative numbers.

60454000 A

N Nl.'Jtext[!] Fill entire field with blanks or with text (right
justified) if negative.

B Bl.'JtextL!J Fill entire field with blanks or with text (right
justified) if zero.

P Pl.'Jtextl.'J Fill entire field with blanks or wi th text (right
justified) if positive.

If more than one qualifier of the same type is encountered
in a format phrase, the rightmost one is used. (This allows the
user to build variables containing prototype strings of
qualifiers and then catenate on further qualifiers to deal with
special cases.)

The formatting of a field can be considered to follow this
procedure:

1. The field is pre-filled with blanks or the text
specified by Rl.'Jtext[!].

2. The number is rounded and formatted according to the
format primitive and the C, Ml.'Jtext[!], N[!]textl.'J, Pl.'Jtextl.'J, and
Ql.'Jtextl.'J qualifiers. Trailing zeros are replaced by blanks
if T was specified, and leading zeros are added to the left
(but to the right of the sign or text required by Ml.'Jtextl.'J or
Pl.'Jtext[!]) if Z was specified. This augmented number is then
moved into the right (or left if L was specified) of the
pre-filled field.

3 • Replacement
N[!]text[!], B[!]textl.'J,
'lield.

text required by an applicable N, B, P,
or PL!Jtextl.'J qua~ifier replaces the entire

The use of qualifiers is illustrated below:

ANEGATIVE NUMBERS IN PARENTHESES
ROWS+2 15p'PROFIT (LOSS) PER SHARE
M+ 2 3 p 4 2E6· - 4E6 18E6 3. 14 -. 3 2 1. 26
'15Al,3MI.'J(l!JNl!J)I.'JQI!J I.'JCF15.2' DFRMT (ROWS;M)

PROFIT (LOSS) 42,000,000.00 (4,000,000.00) 18,000,000.00
PER SHARE 3.14 (0.32) 1.26

ADOUBLE ENTRY STYLE WITH TWO COLUMNS, N. C. FOR ZEROS
V+24.61 -30.24 387.60 29.80 -52.48 0
'BI!JN. C.~~~N~ ~14.2'DFRMT V

24.6.1
30.24

387.60
29.80

52.48
N.C.

8-23
60454000 A

ABACKGROUND FOR CHECK PROTECT
'[!J$[!J,R[!J*[!]CF10.2' DFRMT 3.14 328.54

$******3.14
$****328.54
$*50,412.87

50412.87

ABACKGROUND FOR TABLE OF CONTENTS,
ACHAPTER NUMBERS LEFT JUSTIFIED
'~CHAPTER ~,LI2,R~. [!]I40'DFRMT (7

CHAPTER 7 • • • • •
CHAPTER 8 • • • •
CHAPTER 9 •
CHAPTER 10. • • • • • • • •

8 9 10;9 92 328 552)
• • • 9
• • 92

• • • .328
• • • .552

ALEADING ZEROS FOR DATES
DATES+4 303 7 72 4 4 73 1 16 76 12 1 75
'I2,[!]/~,ZI2,~/[!],ZI2'DFRMTDATES

3/07/72
4/04/73
1/16/76

12/01/75

ALEADING ZEROS FOR MULTIPLE PRECISION REPRESENTATION
'CI7,10CZI8' DFRMT 1 401234 567890 003456 789012

1,234,567,890,003,456,789,012

ACURRENCY SYMBOL AT LEFT, CR TO RIGHT IF NEGATIVE
'CM[!]$[!]N[!] CR[!]P[!]$[!]Q[!] [!]F15.2' DFRMT 32768 -911 1427.21

$32,768.00
$911.00 CR

$1,427.21

Repetition. Groups of format phrases can be repeated by
surrounding them with parentheses and prefixing with a repetition
count. These repetition groups can ~n turn be nested within
repetition groups. For example, '2(F2.0,F3.1)1 means the same as
'F2.0,F3.1,F2.0,F3.1' and t2(2(F2.0,F3.1),2(F4.1,F5.0»1 is
equivalent to:

'2(F2.0,F3.1,F2.0,F3.1,F4.1,F5.0,F4.1,F5.0)t

NUMBER CONVERSION

Z+DEXTRACT'characters l

The DEXTRACT function can be used to extract legal APL numbers
from a character vector or scalar. The first element of the
vector result tells the number of columns processed, and any
remaining elements are any numbers encountered. The scan of the
argument begins at its first element and proceeds to the right
until a character is encountered that is not a blank or part of a
number. If any illegal numbers (such as numbers with two decimal
points) are encountered, a SYNTAX ERROR results.

8-24 60454000 E

Section 9. System Commands

System commands provide the same capabilities as some of the
system functions and variables. The system commands are provided
for compatibility with other APL systems. The main advantages to
using system functions and variables instead of system commands
is that the system functions and variables can be used in
programs (system commands cannot). For more complete discussions
of the operations performed by system commands, see the related
system functions in Section 8.

GROUPS

The APL 2 system, unlike some other APL systems, does not
have a distinct data type for "groups." However, the system
commands allow a character matrix or a vector of names to be used
for the same purposes as groups in the other systems. For
example, if GRPX is a matrix of names, the command) ERASE • GRPX
would erase GRPX and any objects referenced by the names in
GRPX" The period in the command is required to indicate that
objects referenced by GRPX are to be erased, not just GRPX
itself. The general system convention for distinguishing groups
is that all group names should begin with GI/,P. Matrices or
vectors of names that do not begin with GBP can be used as
groups, but they will not be listed by the command)GRPS o The
names in the group definition can be preceded by a period, which
causes them to be interpreted as a reference to another group.
Any groups formed by the)GROUP command will be locked to prevent
accidental use of the same variable for a different purpose.

)CLEAR (Equivalent to DLOAD t*APLO CLEARWS '-)"

The command)CLEAR activates a clear workspace ldescribed in
Section 8) and erases all indirect access files and unties all
direct access files that were tied during the APL session.

60454000 C 9-1

Table 9-1. Summary of Section 9.

) CLEAR
Activates a clear workspace.

)ERASE names
Erases specified f~nctions and variables.

)SAVE [wsname] [:pa$swd] [/optionsJ
Saves a permanent copy of the active workspace. Options ~ay

include S, P, PU, IA, or DA.
)LOAD [*account] wsname [:passwd]

Activates a copy of the specified workspace.
)DROP [*account] wsname [:passwd]

Removes a permanent wo.rkapace from the Li.bzary,
)COpy [*account] wsname [:passwd] [names]

Protected copy of all global objects of classes 1, 2, and 3
or selected global objects from a stored workspace to the
active workspace.

lUCOPY [*account] wsname [:passwd] [names]
Unprotected copy of all global objects of classes 1, 2, and
3 or selected global objects from a storad workspace to the
active workspace.

)LIB [*account] [name]
Displays names, types, and sizes of all files, or displays
detailed information about a single file.

)SYSTEM
Returns control to operating system co~and processor.

)OFP

)SI

)SIV

Signs a user off.

Displays the state indicator.

Displays the state indicator along with names of variables.
)FNS [letter]

Displays names of functions.
)Y4RS [letter]

Displays names of variables.
)GRPS [letter]

Displays names of groups.
~GHP group-name

Displays names in a specified group.
)GROUP group-name names

Forms a group having specified names.

9-2 60454000 E

)ERASE names (Equivalent to DEX 'names t)

Erases all global objects specified by the list of names.
If a name .is preceded by a period, the name is treated as the
name of a group. The erasure erases the group itself (actually a
matrix or vector of characters) and the objects referenced by the
group.

)SAVE [wsname] [:passwd] [/options]
(Equivalent to DSAVE t[wsname] [:passwd] [/options]t)

The)SAVE command saves a copy of the active workspace under
the name specified or under the name in DWSID if no name is
given. The options are S (Semiprivate), P (private, the
default), PU (public), DA (direct access) or IA (indirect access,
the default).

~LOAD [*account] wsname [:passwd]
rnquivalent to DLOAD L[*account] wsname [:passwd][)

The)LOAD command activates a copy of a stored workspace. A
password is required if the workspace has a password and is
stored under another user number. After the workspace has been
loaded, the system executes DLX if DLX is defined.

)DROP [*account] wsname [:passwd]
(Equivalent to DDROP '-[*account] wsname [:passwd] '-)

The)DROP command removes a stored workspace or other file
from a library. If the workspace is in another user's library, a
matching password must be given if ·the stored workspace has a
password. The user must also be authorized to alter the existing
file.

lCOPY [*account] wsnaroe [:passwd] [names]
)UCOPY [*accountJ wsname [:passwd] [names]

The)COPY command performs a protected copy of global
functions and variables from a stored workspace to the active
workspace. The)COPY command will not replace objects in the
active workspace with objects from the stored workspace having
the same names. The)UCDPY command performs an unprotected copy
and will replace objects having the same names. If no list of
names is given, all objects of classes I, 2, and 3 are copied.
If a name in the list is preceded by a period, the name is
assumed to refer to a group and objects named in the group are
also copied. The DCOPY function can be used instead of)COPY if
groups are not to be copied. The form is [tnamesL] DCOPY
L[*account] wsname [:passwd]'.

60454000 E 9-3

def~ned global !unctions,
If a letter is included,

or letters that follow that
The command)GRPS lists

)LIB [*account] [name] (Equivalent to DLIB '[*account][name]t)

The)LIB command displays names, types, and sizes of all
files the user is authorized to access, or, if a file name is
specified,)LIB displays detailed information about that
particular file. The format is the same as for DLIB (see Section
8) •

)SYSTEM (Equivalent to DTM' SYSTEM')

The command)SYSTEM causes the user to leave APL control and
allows the operating system command processor to execute
subsequent commands. The active workspace is not saved.

)OFF lEquivalent to DTMtOFFL)

The)OFF command signs a user off the system.

lSI
)SIV lEquivalent to OSIV 1..oDLC)

The command lSI lists the state indicator, and the command
)SIV lists the state indicator and all local variables. See
Section 2 for the format of the display.

)FNS [letter] (Roughly equivalent to DNL 31
)VARS [letter] (Roughly equivalent to DNL 2)
)~RPS [letter] (Roughly equivalant to ~t DNL ~)

These commands list the names of
variables, and groups, respectively.
only names beginning with that letter
letter in the alphabet are shown.
variable names that begin withGRP.

)GROUP group-name names

The command)GROUP defines a group, extends a group, or
erases a group definition. Groups are actually represented as
character matrices. If the group-name itself is the first name
in the list of names, any previously defined group is extended by
the addition of the remaining names. .If no names are given, the
group definition is erased but objects named by the group are not
erased. Names listed in the command can be preceded by a period
in order to include a period in the group definition (to indicate
the name refers to another group).

9-4 60454000 E

)GRP grpname (Equivalent to grpname)

The command)GRP displays the definition of the indicated
group_ If the group is not defined or is not a character matrix
or vector, an error message is given.

60454000 A 9-5

Section lO~ File System

This section discusses files from the APL user's point of
v i.ew , ThE~ APIJ system supports two distinct types of files:
API,-structured files, and coded files. The use of files enables
programs to deal with large quantities of data that would not fit
into a workepace , and files also provide a convenient way for
programs to communicate with one another.

APL-STRUCTURED FILE: CONCEPTS

An APL-structured file is a collection of APL arrays with
each array identified by a nonnegative integer. The follo~ing

example shows creation of a file and writing and reading a few
records (arrays) of the file.

)LOAD *APLl FILESYS (File system functions are
loaded from APL1.)

'SAMPLE' FCREATE 9 (The FCREATE function is used
to create a file with the name SAMPLE
and with 9 as its number ,)

'RECORD 3' FWRITE 9 3 (The left argument is written
to file 9 as record 3.)

(3 3p19)FWRITE 9 1

(2 3p'D') FWRITE 9 28

FREAD 9 1
1 2 3
456
789

60454000 A

(The records can be read in
any order.)

10-1

Table 10-1. Summary of File Functions.

t-fi'lename [:passwdJ [Ioptions J L FCREATE fnum
Creates a file. Options are DA, C, WR, 5, or PU.

array FWRITE fnum[,rnumJ
Writes array on file number fnum as record rnum.

result+FREAD fnum[,rnumJ
Reads the record numbered rnum from the file numbered fnum.

FRDEL fnum[,rnumJ
Deletes record rnum from file fnum.

rnum+FFREE fnum
Returns the least record number not presently in use in file

fnum.

l[*account] filename [:passwd]L FPACK fnum
Condenses file by eliminating lost and unused space.

FP05 fnum,rnum
Sets position of file fnum to rnum.

result+FSTATUS fnums
Returns the status of all files specified by the right

argument. The result is a vector or matrix according to whether
the argument is a scalar or vector. Columns are: (11 largest
record number, (2) current position, (3} file size, (41 unused
space, (5) lost space, (6) space not used because record sizes
not divisible by 64, (7}1 if coded file, (81 ~ if DA type, tg}
1 if absent record encountered by last read attempt.

PSTATUS
Prints status information (with descriptive headingsl for

all active files.

result+FNAMES
Returns a matrix of user numbers and names for all tied

files.

result+FNUMS
File numbers in use for tied files.

FRET URN fnums
Unties specified direct access files and erases specified

indirect access files.

FUNTIE fnums
Unties files in right argument.

copy.

10-2

This leaves a pezmanerit;

60454000 C

FERASE fnums
Erases all files specified by right argument. Erasure

affects active file and for DA type also affects permanent file.

t[*account] file-name [:passwd] [/options] , FTIE fnum
Ties a file with specified options--RD for read only (other

users can read at the same time), and RM for read-modify '(another
user can modify at the same time).

result+CFREAD fnum[,rows,columns]
Coded read. Result is a vector or matrix of characters or a

numeric scalar--l for end of record, 2 for end of file, 3 for end
of information.

array CFWRITE fnum
The left argument is written to the coded file fnum. The

argument should be a character scalar, vector, or matrix, or
integers--l to write end of record or 2 for end of file.

i.n tz e qe r s CFPOS- fnum
Positions file.

a for rewind, 1 for
end. Second integer
as repetition count.

Operations indicated by first integer are:
skip record, 2 for skip file, 3 for skip to
for skip record or skip file may be included

jobname+CSUBMIT fnum[, type]
Submits the coded, indirect access file fnum as a batch job

and erases the active copy.

FREAD 9 28
DOD
DOD

FREAD 9 3
RECORD 3

After the above steps, the user can store the tile (using
FUNTIE 9), an operation analogous to saving a workspClce. The
user could then sign o'£f the sy'stem. The information in the .file
would remain intact and could be accessed or modi~ied at a later
time.

Fi'le lim:i'ts. Individual file records are allowed to be as large
as desired. IIowever, user numbers have associated restrictions
that may limit the total number of files, the total size of all
files, the size of individual files, and whether the user can
create direct access files.

Tied files. It is usually' more convenient to use numbers within
a program to identify a file rather than using the file name.
All file operations require this file number. The number is tied
to the file when the file is created using FCREATE or when a
previously stored file is accessed using the FTIE function. Once

60454000 C 10-3

a file has been assigned a number, the file is said to be tied.
The file can be released by using the FUNTIE operation, the
FRETURN operation, by erasing the file using FERASE, by signing
off from APL, or by typing) CLEAR. However, files remain tied
when another workspace is loaded.

Accessing file f'lmc·t'ibhS. The functions descril>ed in this section
are ordinarily' stored under the user number APL1 in the workspace
FILESYS. Before file operations can be performed, the functions
must be obtained from APLI by loading the entire FILESYS
workspace or by copying selected functions from FILESYS. All
functions in FILESYS are independent, and you need copy only
those functions you intend to use. The following examples show
various ways that copies of the file functions can be obta,ined.

)LOAD *APL1 FILESYS
DLOAD l*APL1 FILESYS'
)COPY *APL1 FILESYS .GRPPRIM (A group that excludes

documentation)
)COPY *APL1 FILESYS FTIE FREAD

The file functions use the system function OFI to perform
all file operations. The function DFI' could actually be used
directly, but it is usually' more convenient to use the functions
in the FILESYS workspace. Most of the functions in the FILESYS
workspace are locked so that error processing will be more
convenient. Users who wish to learn how to use DFI directly' can
discover all details about OFI by study'ing the definitions of the
locked l'ILESYS functions below:

VA FPA CX B [1] A OFTO, BV

,VA FCREATE B [1J A OFI .1,B~

VA FWRITE B [1] A OFI 2,BV

VZ+FREAD B [1] Z+OFI 3,BV

VFERASE B [1] B OFT 4V

VFRDEL B [1] OFT 5,E_V

VZ+FSPATUS B [1] Z+B OFI 6\7

VZ+FNAMES [1] Z+OFI JV

VZ+FNUMS' [1] Z+OFI 8\7

VFUNTIE B [1] B OFI 9V

VA FTIE B. [1] A OFI 1 Q, B\7

VFPOS'- B. [110FT 1.1, BV

10-4 60454000 C

VA CFWRITE B [1] A DFI12,B'iJ

V Z+CFREAD B [1] Z+OFI .13,BV

VA CFPOS B [1] OFI ~4,B,AV

VZ+CSUBMIT B [1] Z+DFI15,B'iJ

VZ+FFREE B [1] Z+OFI 16,BV

In addition to the basic functions in the FILESYS \vorkspace,
the workspace FILES2 contains additional file functions that are
based on the functions in FILESYS' and perform more complicated
operations.

Active and stored files. APL-structured files are ordinarily
indirect---aC'cess files unless the user specifies otherwise at the
time of creation. This means that when the file is tied, the
system makes a copy of the stored file. All reads and writes
actually interact with this active copy. To save the file as a
permanent stored file, an FUNTIE is required. Signing off from
APL, typing) CLEAR, or a telephone disconnect (as sumi.nq the
RECOVER command is not used) causes the active file to be erased.
One advantage of having a separate active copy is that no damage
can be done to a stored file if a series of file updates is not
completed. For example, suppose that a program writes a record
to indicate that a transfer of funds was made from one account to
another on a certain date, then the program revises two records
containing the balances of those accounts. If the program were
to halt in the middle of the sequence of operations (due to a
system problem or telephone disconnect), the transactions
recorded in the file would be inconsistent with the balances in
the file. This causes no problem when indirect access fi.les are
used because the inconsistent information is in a temporary file
and the stored file is in the same state it was when it was tied.

For some applications that use indirect access files, it may
be desirable to perform an FUNTIE and an FTIE at intervals of
about every ten minutes in order to minimize the amount of new
information that would be lost in the event of a system problem.

Forms for file names and passwords. File passwords and file
names must be composed of 1 to 7 of the letters A to Z and digits
o to 9 and must not contain any embedded blanks. File names
should be distinct from names used for other files or workspaces.
Use of the same name will result in an errormessage when an
attempt is made to untie the newly created file. (For a direct
access file, the error occurs when FCREATE attempts to create the
new file.)

Range for file numbers. File numbers can be any nonnegative
integers-not greater than ~3107~.

60454000 C 10-'5

FILE SECURITY

A file is owned by the user who created it. The owner is
allowed to alter the file in any desired manner, but the owner
can control access by other users through the following controls:

1. The file category is ordinarily private. Private
files cannot be accessed by other users unless their
user names have been given explicit access permission
by use of the PERMIT command (see Section 13).
Alternatively, the file can be assigned a category of
semiprivate or public. Either of these categories
allows other users to access the file if they know the
password, the name of the file, and the user name under
which it was stored. The DLIB command will reveal to
another user the names of files that are semiprivate,
ov bl ic, or that are pr i.ve t e and have been explicitly
made accessible to the other user. To make a file
public or semiprivate, use the options PU or S when the
file is created, or use the CHANGE command to change
the category. When the DLIB function is used with a
file name, the result shows when the file was created,
when it was last changed, and when it was last
accessed. In addition, for se~iprivate and private
files the system retains the number of accesses and the
time of the last access for each user of the file.
This information can be displayed by use of the CATLIST
command (see Section 13).

2. The file can be given a password. Only users who
know the password can use the file; however, the owner
of the file is never required to.provide the password.
The password can be assigned when the file is created,
or the password can be assigned or changed by use of
the CHANGE command (see Section 13).

3. The file mode can be used to control the type of
operation another user can perform. For files created
by APL (including workspaces) other users are
ordinarily allowed to read the file (assuming the
password and category do not exclude them) but are not
allowed to alter or destroy the file. Other users can
be given permission to alter the file by specifying the
WR option (for write) when the file is created. For
private files, this mode has no significance because
when other users are given explicit access permission
via the FEIDIIT command , -::he pennitted access mode for
each user becomes that expressed in the PERHIT command ,
For semi-private files, the general access mode is
applicable to most users of the file, but an
overriding access mode can be specified for individual
users by use of the PEill1IT command~ For example, most
users might be allowed to read the file, while a few

10-6 60454000 A

selected users might be allowed to alter it. The
general mode allowed for o~her users can be chqnged
after the file has been created by use of the CHANGE
command. For APL-structured files the mode should be
write or read~modify, while for coded files it should
be write or zead , .-

4. Files can be accessed by other users through locked
functions which can provide extremely general control
over the permitted operations. For example, the locked
function can prohibit alteration of the first five
records of the file, or, it can prohibit adding records
that are not vectors of 4 integers. The success of
locked functions as a security measure rests on
preventing the user from learning the file name, the
user number, or the password, and preventing him from
accessing the file directly. To assure this, the
locked function should not call other functions (except
those local to itself) lest someone substitute a
subversive function having the same name. In
particular, DFI' should be used directly rather than
using FTIE. (A subversive FTIE could print its
arguments and thus reveal the file passwordl. Also, 0
input should not be used while the file is tied, and
the file should be untied prior to exit from the
function. To ensure that the file will be untied, use
OTRAP to specify a trap line that will release the file
prior to exit.

Note that the file category, p e s swor d , and mode are independent
restrictions on access by other users. Each of these further
restricts the type of access permitted to others. Unless
different options are specified when the file is created or the
controls are changed, the APL system selects private as the file
category, assigns no password, and selects' read 0+ read-modify
mode (depending on whether the file is coded or APL~structured

type , respectively).

APL-STRUCTURED FILE OPERATIONS

Sequential file ·operati'ons. Th.e file operations that ordinarily
require a record number can also be used without specifying the
record number. \ihen this is done, the record number used is the
current file position (available in the result ofF$TATVsl. The
file position can be reset using FPOS and is incremented by each
successful read, write, or deletion. When a file is tied or
created, the position is initially zero. For example:

tXRAytpTIE
Z+FREAD 5
K FWRITE 5
.y, FWRITE 5
W FWRITE 5

60454000 C

5 (The file position is zero.)
(Record 0 is read; the position becomes 1.1

(Record lis written)
{Record 2 is written}

(Record 3is written)

10-7

When a record number is provided for the operation,
position will be set one greater than that number
operation succeeds.

the file
if the

File create: 'file-name [:passwd] [/options]' FCREATE fnum
The file create function can be used to create a file and specify
options about the type of file. ~fuen the file is created, it is
tied to the file number fnum. In addition to the name of the
file, the left argUMent may include the password the file is to
tave. Examples of file creation follow:

'FILE1' FCREATE 11 (A file named FILE1 with 11
as its number ,)

'FILE2: SESAME'FCREATE 2 (A file with SESAME as its
password.)

The list of options can include any of the following separated by
spaces: DA, C, WR, S, or PU (to specify direct access, coded,
write mode, semiprivate, or public).

File write: array FWRITE fnum[,rnum]
The FWRITE function writes its left argument on the file having
fnum as its number as the record having rnum as its record
number. This will replace any existing record in that file
previously having that record number.

File read: result+FREAD fnum[,rnum]
The FREAD function reads from the file having fnum as its file
number that record having rnum as its record number. If that
record does not exist, an empty numeric vector is returned, and
the file status (see FSTATUS) will indicate that the last read
attempt encountered a nonexistent record.

File record delete: FRDEL fnum[,rnum]
The FRDEL function deletes the record rnum from file fnum. If
the record was absent already, nothins is done (except that the
file position changes) and no error results.

Free record number: rnum+FFREE fnum
The FFREE function returns the first free (unused) record number
for file fnum. This is a useful way to select the recorc number
for a new record when the application does not require a
particular ordering of the records.

File positioning: FPOS fnum,rnum
The function FPOS sets the position of the file identified by
fnum to record number rnum.

File status: result+FSTATUS fnums
The file status function returns various information
condition of files identified by file numbers in

10-8

about the
the right

60454000 A

argument. If the argument is a vector, the result is a matrix
having a row for each file number in the right argument. If the
argument is a scalar, the result is a vector of information about
the single file. The columns of the result contain:

Column
I

2

3

4

5

6

7

8

Contents
Largest record number currently in use
or -1 if the file is empty.

Current file position.

File size in words.

Unused space in words.

Lost space in words.

Space not used because of record sizes not
being divisible by 64. (This space is called
"tails" because it resides at the tail ends of
physical record units.)

o if APL-structured file, 1 if coded type
file.

o if indirect access file type,
1 if direct access file type.

Note that only columns 7, 8, and 9 are meaningful for
files. All columns will be zero if the file is not tied.

9 o if last read attempt succeeded, 1
if the record was absent (APL structured
files) or too long (coded files).

coded I
The largest record number does not take account of records

that have been deleted. That is, the largest record number is
the largest number currently in use for records that actually
exist.

Print status: PSTATUS
The PSTATUS function prints the information returned by FSTATUS
FNUMS along with the file names. The information is given in a
descriptive format and is thus a convenient way to discover the
status of all tied files if you do not remember the meanings of
the columns in the result from FSTATUS. The following example
illustrates the format used.

PSTATUS
NAME NUMBER LAST R POS SIZE UNUSED LOST TAILS

COMTIME 14 8 0 768 64 0 397
LIB 2 1 14 256 0 0 98 DA

*A123456 SUGn 45 CODED FILE
REFMAN7 1 94 o 80384 2496 7744 3233 DA

60454000 F 10-9

File names: resu~t+FNAMES
The FNAMES funct10n returns a matrix of names (and user numbers)
of files currently tied. The number of columns in the matrix is
always 16. FO,r example,

FNAMES
SAMPLE1
ALGEBRA

*A123456 FILE1

File numbers: result+FNUMS
The FNUMS function returns a vector of numbers in use for tied
files. The order is the same as the order of file names in the
result from FNAMES.

File untie: FUNTIE fnums
The FUNTIE function unties all files for which their file numbers
appear in the vector or scalar right argument. This produces a
permanent stored copy of each file. The new permanent copy will
replace any previously existing file having the same name, unless
the active file was newly created. To untie a newly created file
when the same name is already in use for another stored file,
first use DDROP to remove the old file. If any of the files
specified in the argument is not tied, nothing is done and an
error message results. To untie all tied files, use FUNTIE

I
FNUMS. For indirect access files, FUNTIE saves the file whether
it has been changed or not. This modifies the date indicating
when the file was last changed (see DLIB).

File return: FRETURN fnums
~FRETURN function behaves as FUNTIE for direct access files
and behaves as FERASE for indirect access files. This frees the
number of a currently tied file for other uses with a minimal
impact on stored files. The use of this function is recommended
for cleaning up any files that may have been accidentally left
tied. File numbers in the argument that are not in use for tied
files are ignored.

File erase: FERASE fnums
The FERASE function erases the active copy of the file but leaves
any stored copy of the file. (See the section on direct access
files for exceptions.) To remove a stored copy, use DDROP.

File tie: '[*account] file-name [:passwd] [/options]' FTIE fnum
The FTIE function gives the number fnum to the previously stored
file having the indicated name. If no previously stored file
having that name is found, an error message is given and no file
tie results. If a user number is given, the stored file is
sought under that user number rather than the one used when
signing on to the system. The password need be given only if
another user number was provided and a password was given to the
file. Examples using FTIE follow:

10-10 60454000 F

'FILE5' FTIE 7
'*AOQ1234 FILE6'FTIE 8

(A user ties one of his own files.)
(A user ties a file belonging
to another user.)

'*A123456 FILE7 : SESAME , FTIE 9

Note that the options DA and C (for direct access or coded files)
must not be provided to the FTIE function. These options are
chosen when the file is created and can be altered only by making
a copy of the file. If the file number or file name is in use
for another tied file, an error message results. The list of
options can include either of the options RD or RM. These
options are discussed in later sections.

File pack: 'L*account] filename L:pas$wd]1. FPACK fnum
The FPACK function is designed for occasional use to condense a
direct access file by eliminating lost and unused space.
Ordinarily, the FPACK function causes the file to be tied, packed
in place, and then untied. However, file damage may cause the
file to remain tied in write mode. In this event, other file
system functions (FUNTIE, FREAD, FWRITE, or FSTATUS) can be used
to diagnose or correct the problem.

SPECIAL CONSIDERATIONS FOR CODED FILES

Coded files are the standard type of file on the operating
system for information interchange between programs, card
readers, printers, and so forth. Coded files are essentially
intended for sequential access; replacement of records, except
at the end, is not practical. Instead, such changes would
ordinarily be made by copying the file and making the changes as
the new file is produced.

Coded files consist of lines (essentially vectors of
characters) which can be separated into groups by end of record
marks. These groups can in turn be separated by end of file
marks. At the end of the file is an end of information mark.
The characters in a line of a coded file are restricted to the
64-character set. The 256 APL characters are translated into
these 64 characters as shown in Appendix C. Briefly, the letters
A to Z become A to Z, all symbols with approximate equivalents
,for an ASCII printer are translated into those equivalents, and
all others become @. When translating from the 64-character set
to APL characters, all symbols are represented by equivalents,
and @ is represented as ~ c.the symbol used for illegal
overstrikes}.

The functions FTIE, FUNTIE, and FRETUBN have essentially the
same meanings for coded files as for APL-structured files.
However, special functions must be used for reading, writing, and
repositioning coded files.

60454000 C 10-11

Creating a coded file. A coded file can be created using
hiCHEATE by-includin~as an additional parameter. For example,

'PRINT :XXX/C'FCREATE 9

Coded read: result+CFREAD fnum[,rows,columns]
When the right argument contains only the file number, the result
returned by CFREAD is a character vector containing the next line
from the file, or if an end of record, end of file, or end of
information was encountered, the result is the scalar integer 1,
2, or 3, respectively. The file position changes after each read
so that the next read will give the next line of the file. The
FREAD function cannot be used in place of CFREAD with a coded
file. If a line is longer than 1280 characters, only 1280
characters are provided for each call to CFREAD, although the
file is positioned so that the next call to CFREAD will be able

I

to continue the same line. In this case the file status (see
FSTATUS) will indicate that the last read attempt did not read
the entire line.

The right argument to CFREAD may optionally include the
number of rows and columns the result 1S to have. In this case,
the result is a character matrix (unless an end of record, end of
file, or end of information was encountered) containing multiple
lines from the file. Lines longer than the requested number of
columns are shortened by omitting any extra columns, and short
lines are extended to the requested number of columns by
extending with blanks on the right. The actual number of rows
may be less than requested if there are insufficient lines in the
file before an end of record, end of file, or end of information.
When the right argument to CFREAD includes the number of rows and
columns, lines longer than 1280 characters may be read by
providing a sufficiently large number of columns.

Coded write: array CFWRITE fnum
The left argument to CFWRITE is written at the current position
of the file. The left argument must be a character vector,
scalar (which is treated as a one-element vector), or matrix, or
a scalar or vector containing the integers 1, 2, or 3. A
character scalar or vector produces one line in the file, whereas
a matrix produces one line for each row of the matrix. However,
a unit separator symbol (the U over S overstrike) embedded in the
left argument also causes a new line to begin, just as it would
if the array were displayed on a terminal. Trailing blanks in a
line are removed. The integers 1 or 2 produce an end of record
mark or end of file mark, respectively. A vector of integers can
be used to produce a series of these marks. The file position
is altered after each write so that subsequent writes will add
information after that produced by the present one. Anything
written to the file is automatically followed by an end of
information mark. This has the effect of truncating the file if
the write was not performed at the end of the file. The function
FWRITE cannot be used for a coded file in place of CFWRITE.

10-12 60454000 F

Because of peculiarities of the operating system, a colon at
the end of a line in a coded file will vanish, and two or more
colons next to each other may be considered an end of line
(depending on the position within the word where they occur).
These problems can be avoided entirely by not using colons in
coded files.

Coded file positioning: integers CFPOS fnum
The function CFPOS repositions the file according to integers in
the scalar or vector left argument. The fLrst element in the
left argument indicates the action to be taken, and the optLonal
second element may contain a repeti.tion count.

60454000 B 10-12.1/10_12.2

Opel:at-i-on
Rewind .
Skip record
Skip file
Skip to end

value
o
1
2
3

The rewind operation positions the file at its beginning. The
rewind and skip-to-end do not allow use of a repetition count.
For the skip record or skip file operations, the repetition count
may be negative to skip towards the beginning of the file. If no
repetition count is given, a count of 1 is assumed. The skip
record operation counts end of file marks as records. The
skipping never goes past the end of information mark or the
beginning of the file, even if the repetition count has not been
satisfied.

Batch job submission: Z+CSUBMIT fnumL ,tg-pe]
The coded file fnum is submitted as a batch job. The type may be
o if batch output produced by the job should be discarded, or 1
if it should be printed or punched at the central batch site. If
no type is specified, a default type of 0 (output discarded) is
used. The file must be a properly constructed job file (see
operating system reference manual}. In particular, the first two
lines must be a job card and account card. The file must not be
direct access type. If the operation is successful, the active
file vanishes as if FERASE had been used. The result returned is
the job name assigned to the job. This name can be used with the
EnQUIRE command (see Section 13) to determine whether the job has
completed. Note that the number of concurrently executing
deferred batch jobs allowed for a given user number is controlled
by the system.

SPECIAL COUSIDERATIONSFOR DIRECT ACCESS FILES

A direct access file differs from an indirect access file in
that all operations interact with the permanent file itself, not
with an active copy. This has both advantages and disadvantages.
One advantage is that a copy of the entire file need not be made
by the system when the file is tied. One disadvantage is that a
program can stop executing due to a system problem-in the middle
of a series of file writes, and the stored file can end up with
contradictory information. Another disadvantage at' direct
access files is that write operations take a little longer
(because the APL system does less buffering of information due to
the risk of a system problem freezing the tile in a temporary
state) •

To create a direct access file, include the parameter DA in
the left argument to FCREATE. A direct access file may- also be a
coded file if desired--these two options can - be chosen
independently. The following are examples of direct access _file
creation:

60454000 C 10-13

LFILEX/DA r FCREATE 4
'-PILEY': XY-Z/DA S WE '- FCREATE 5
'-FTLEZ/C DA r FCREATE 6

All operations with direct access files take the same form
as for indirect access files, but because of the differences
between the two fil~ types, the file tie, untie, and file erase
operations behave differently: A file tie to a direct access
file does not make a copy of the file. An untie does not create
the permanent copy, it merely releases the file number for use
with other files and releases the file itself for access by other
users. An erase removes both the active and stored copy of the
file because they are the same thing. In addition,)CLEAR or a
telephone disconnect cause an automatic FUNTIE of a direct access
file (thus leaving a stored file) whereas an indirect access file
wou Id be erased.

If a telephone disconnect occurs, the file remains tied for
10 minutes. The operations that were in progress can be
continued by use of the operating system RECOVER command (Section
13). However, logging on without using the RECOVER command will
leave the file tied until the 10 minute period is over, possibly
causing an error message indicating the file is busy.

SYNCHROnIZED FILE OPERATIONS

At present, it is not very practical for two users to update
a single file at the same time. With an indirect access file the
two users are actually updating separate copies of the same file,
and whichever user unties the file last will create a stored file
with his updates, but will replace any stored file just produced
by the other user. The operating system does not allow two users
to be tied to the same direct access file in write mode at the
same time, so no conflicts can occur, but an error occurs if a
second user attempts to tie the file. However, users can tie a
direct access file in read mode (which allows other users to read
the file at the same time) or read-modify mode lwhich ~eans the
user desires only to read the file but has no objection to
another user writing to the file at the same timel. To tie a
file in read mode or in read-modify mode, include ED or EM (but
not both) in the left argument to the FTLE function. For
example,

'-PILK1 / RD '-FTIE 9 (Read mode.}

LFTLE2: SECURE/RML FTIE J.O (Read-modi£y'mode.)

These modes are allowed for indirect access files as well.
mode can be used for APL-structured or coded files
read-modify mode is allowed only for APL-structured files.

Read
while

10-14 60454000 C

FILE EFFICIENCY

Although many users need not concern themselves with the
information presented here on file efficiency" usezs o£ very
large files will find this information important. Use of a tew
fairly simple techniques can result in improved speed and reduced
storage requirements.

First of all, each APL-structured file has an initial size
of 64 words used for a table of available space. In addition,
one word is required for each record number up to the last record
number in use. This space is allocated in multiples of 64 words.
These two factors combine to make it inefficient to store many
files with only a few records in each rather than one file with
many records. Also, it is inefficient to leave large gaps
between record numbers as the unused numbers require an average
of one word each.

Indirect access files grow in multiples of 64 words, but
direct access files grow in multiples of a logical track (usually
several thousand wozds , depending on the storage device used 1.
There is consequently a considerable space advantage to using
indirect access files for files smaller than several thousand
words. The number of words required for a file that results from
writing an array a is

4-t,(P pB) +,['l x IpB) f D

where D is the density of packing in the file--l for floating
point, 7.5 for characters, and 60 for boolean (See also section
12.). This size is then rounded up to a multiple of 64 words.
Because records require multiples of 64 words, there is some
saving in space if many little arrays can be packed together and
written as a single record. In addition, actual transfers and
operating system requests are reduced because no buffering of
output is used for APL-structured files.

When records are erased or replaced by records of a
different size, the APL system keeps track of any unused gaps in
the file where records can be placed in the future. The total
amount of this space in words is in column 4 of the result
returned by the FSTATUS function. It may happen that the number
of gaps exceeds the size of the table, in which case the smallest
gap is removed from the table. This results in a certain amount
of space becoming unusable, and the total amount of this lost
space is in column 5 of the result returned by the status
function. Lost space can also result in a direct access file if
a telephone disconnect or system problem prevents the file from
being untied (DTM-f SYSTEM"" , DTlI1 'ABORT [, and DTM-'--OFF L untie tiles
properly), and if the RECOVER command is not or can not be used.
All lost and unused space can be recovered by, applying the FPACK
function to the file. Because each record occupies a multiple of
64 words, some space is generally left unused. This space is
returned in column 6 of the result from FSTATUS.

60454000 C 10-15

Details of the space required for coded files can be found
in the operating system reference manual. Coded files have a
speed advantage over APL-structured files when the information is
accessed sequentially, the records are small, and the limitations
of the 64-character set are not restrictive.

INTEGRITY OF DIRECT A~CESS APL-STRUCTURED FILES

File integrity refers to the ability of a file to retain
internal consistency. Some file access methods render a file
practically useless if a program operating on the file does not
complete properly (due to a flaw in the program or a system
problem). Every effort has been made in the design of the
APL-structured file system to minimize the chance of such damage.

All alterations to an APL-structured file are performed
immediately and thus occur in exactly the order requested. When
multiple files are being updated, one file will not be several
transactions ahead of another. A checksum is computed for each
file record so that if the storage device corrupts the
information and is unable to detect the error, the error will
still be detected by the APL system. A system halt, program
halt, or telephone disconnect will leave the file in a
satisfactory state except that in the rare event of a system halt
requiring a level zero deadstart within a minute of extending a
direct access file, there is some chance of damage to newly
created or replaced records.

File damage will cause an error message to be printed at the
time it is detected. The damage will usually affect only one
record of the file. If the file cannot be reconstructed,
installation personnel can assist with restoring the file to its
state the last time files were dumped to magnetic tape.

Note that a telephone disconnect or system problem that
results in failure to untie the file may cause the information on
file space utilization (unused space, lost space, and tails} to
be incorrect. This does not hinder utilization of the file and
can be corrected by copying the file or applying the FPACK
function to it.

FILE EXAMPLES

The following sample functions taken from the workspace
FILES2 under user number APL1 illustrate simple file operations.
The first function, FCOPY, can be used to copy an APL-structured
file. Such a copy might be made to convert the file from
indirect access to direct access form or to compact the file by
minimizing unused space. The left argument should be the
character argument required to tie the old file, and the right
argument should be the character argument required to create the
new file. Note that the first line illustrates a simple way to
select a file number that is not already in use.

10-16 60454000 C

\7FCOPY[OJ\7
\7A FCOPY B;P;K;I;J

[1] A FTIE I+1+r/O,FNUMS
[2J B FCREATE J+I+l
[3J K+(FSTATUS I)[lJ R GET LARGEST RECORD NUMBER
[4J L1:~(K<O)/L3

[5J P+FREAD I,K R READ RECORD K FROM FILE I
[6J ~(FSTATUS I)[9J/L2 A IF ABSENT RECORD
[7J P·FWRITE J,K R WRITE RECORD K TO FILE J
[8J L2:K+K-1
[9 J ~L1

[10] L3:FUNTIE I,J R UNTIE BOTH FILES
[11J 'COpy COMPLETE'

\7

The next function is useful for listing a coded file. The
right argument may be the name of a stored file or the number of
an active file. If a name is given, the file is tied, listed,
then untied. If a number is provided, the file is listed
beginning at its current position and is left tied.

VCLIST[OJ \7
VCLIST B;K;L

[1J ~(O=O\OpK+B)/Ll R IF FILE ALREADY TIED
[2J B FTIE K+1+r/O,FNUMS
[3J L1:L+CFREAD K
[4] ~(0=ppL)/L2 R SCALAR INDICATES SPECIAL MARK
[5J L
[6] ~L1

[7] L2:~L3+2xL-1

[8] L3:'-END OF RECORD-'
[9] ~Ll

[10] '-END OF FILE-'
[11] ~Ll

[12] '-END OF INFORMATION-'
[13] FUNTIE(O~O\OpB)/K

V

The next two functions are useful when a file is too large
to list at a terminal but it is necessary to learn the general
structure of the file. The function PMAP prints the structure of
an APL file, and the function CMAP prints the structure of a
coded file. Both functions allow a character argument or a
numeric argument in the same manner as CLIST. If the file is
already tied (for numeric arguments) the mapping begins at the
current file position. PMAP prints record numbers and the types
(C or N for character or numeric) and shapes of records that
exist, or ABSENT for absent records. CMAP prints the number of
lines in records and prints EOR, EOF, or EOI when an end of
record, end of file, or end of information is encountered.

60454000 A
10-17

VFNAP[O]V
VFNAP B;K;P

[1] -+-(0=O\OpK+-B)/L1 A IF B IS NUMERIC
[2] B FTIE K+1+r/0,FNUMS
[3] Ll:-+-(-1~ltFSTATUSK)/L2 A IF FILE NOT EMPTY
[4] 'NO RECORDS'
[5] -+-0
[6] L2:\NUMBER, TYPE, DIMENSIONS'
[7] L3:-+-«/2tFSTATUS K)/L5 A IF FINISHED
[8] P+-FREAD K
[9] -+-(FSTATUS K)[9]/L4 A IF READ FAILED
[10] -1+(FSTATUS K)[2];0 1 0\tCN'[1+0=0\OpP];pP
[11] -+-L3
[12J L4:-1+(FSTA.TUS K)[2];' ABSENT'
[13] -+-L3
[14] L5:FUNTIE(0~0\OpB)/K

V

VCMAP[OJV
VCMAP B;K;P;C

[1] -+-(O=O\OpK+-B)/Ll A IF B IS NUMERIC
(2] B FTIE K+-1+f/0,FNUMS
[3] L1 : C+-O
(4] L2:-+-(0=ppP+CFREAD K)/L3
[5] C+-C+1
[6] -+-L2
(7] L3:-+-(C=0)/L4
[8] c;t LINE'~(C~1)/'S'

[9] L 4 : 'EO' , 'RP I' [P]
(10] -+-(P<3)/L1
[11] FUNTIE<O~O\OpB)/K

V

10-18 60454000 A

Section 11. APL Public Libraries

The standard APL release includes the following workspaces
stored under the user name APLl:

APLNEWS

FILESYS

FILES 2

CATALOG

News about the changes in the APL system as well
asa list. of reported bugs and requests for system
changes.

File system functions.

Contains functions from FILESYS for primitive file
operations as well as additional tunctions for
more elaborate file operations.

A guide to workspaces in the APL publi.c librari.es.

To learn how to use any of these wo'rkapaces , type a command of
the form DLOAD'*APL1 FILESy-g' .and then type DESCRIBE.

APL PROGRAM LIBRARY STANDARDS

It is suggested that installations reserve. the user names
APL1 to APL999 for APL public libraries. Although these user
names need not be defined in the system, they should not be used
for other purposes. It is suggested that programs placed in
these public libraries be of fairly general interest so that
users will find it rewarding to browse through the various
workspaces. Norkspaces of interest only to a specialized group
or course should be stored elsewhere.

60454000 B 11-1

Programs placed in the public libraries should be well
documented. The available documentation may be entirely in the
workspace or partly in the workspace and partly in a manual. In
any case, the documentation should be readily available. The
advantage of having the documentation in the workspace is that it
will be immediately accessible. The disadvantages are that the
documentation is slow to print and therefore tedious to read, and
the format of the documentation is constrained by the APL
character ~et. Generally, the amount of documentation determines
whether it is practical to put the documentation in the workspace.

Documentation in the workspace should consist of functions
or variables that describe the workspace. The documentation
should be able to be printed with a standard APL terminal and
should print within a standard 65 column page width. The
following documentation variables or functions are suggested.
Typing the name of the function or variable should cause the
information to be printed.

ABSTRACT. Should contain a brief description of the
contents of the workspace.

DESCRIBE. This should give the user further details
than provided in the ABSTRACT. This should print the
names of all functions intended for the user to use as
modules along with a short description and names of
related HOW functions (see below). If groups are
defined in the workspace, describe them and their
purposes.

HOW functions. If a function has the name NAME,
detailed documentation of that function should have the
name NAMEHOW. There is no point in giving a
line-by-line description of the function. The APL
program is already an excellent description of the
separate steps. The HOW function should tell what the
function does and how to use it as a module. In some
cases it should outline major steps in the processing
and describe the method used. References might be
appropriate. Special limitations of the function
should be discussed.

SOURCE. Should give the author's name, an inquiry
name, and an inqu1ry address. The date when the
workspace was contributed should be included.

CHANGES. Changes should be documented by a function or
variable having a name of the form CHANGES092675 (so
that the name includes the date of the changes),

11-2 60454000 A

GRPDOC. The group (locked matrix of names) GRPDOC
should include names of all documentation variables and
functions so that the user can readily erase them to
make more space available" in the workspace or reduce
disk storage charges.

Even when most of the documentation is in a separate manual, the
following v~riables or functions are required: ABSTRACT, SOURCE,
GRPDOC, and DESCRIBE.

60454000 A 11-3

Section 12. Optimization of APL Programs

This section discusses some of the techniques that can be
used to make APL programs perform better and run with lower
demands on computer resources. It may seem out of place to
discuss efficiency in an APL manual--after all, APL should free
the user from being concerned with the nature of the particular
computer being used--but the techniques discussed here may yield
efficiency improvements as large as a factor of a hundred. To
neglect discussing efficiency could leave many users with the
mistaken impression that APL cannot perform well enough to be
used for their problems.

Often, the question of efficiency calls to mind the
fanatical programmer who constructs a program he considers
efficient but who in doing so produces a totally incomprehensible
collection of operations. It should be remembered that for many
programs the programming time is so great that the only kind of
efficiency worth considering is the sort that makes the program
easy to understand, free of errors, and easy to change.
Fortunately, a simple program is usually an efficient program.
However, when improving the performance of the program does not
coincide with simplifying it, the optimization should not be
applied unless it is very important for the program to perform
well.

As a very blatant example of misguided optimization,
consider the following statement:

K+1,Opp+O,r/L+1Q+pR

This statement was probably contrived by someone who believed
that the most efficient program was the one that required the
smallest number of lines. The fact is, execution proceeds from
one line to the next very rapidly compared to the time required
to perform the extra steps needed to fit the operations in one
line. The following statements are a more straightforward way to
achieve the same results:

60454000 A 12-1

K+1
L+1.Q+pR
P+O,Q

One way to estimate the relative time required for an expression
is to count the number of operations required. ('!'his method is
fairly valid when the number of elements in arrays is less than
about 20.) For this method of estimation, specification is not
counted at all (it takes relatively little time). The one line
version totals 6 operations while the three line version requires
only 3 operations. The efficiency expert who wrote the one line
version devoted extra time to adding three operations, which
double the time required for execution. The one line version is
harder to understand, is more likely to contain errors, and when
changes are made, the rest of the line hinders revision. The one
liner is thus a poor 'example of efficiency in all respects.

At this point it must be stated that much of the information
in this section is relevant only to this particular APL system.
Also, it may occur that something that is particularly slow now
will become particularly fast in later versions of the system.
Other versions of APL on other computers will often show quite
different Characteristics. In fact, according to Paul Berry (who
wrote one of the first books on APL), the popular belief that one
line programs are more efficient is based on a ~stem for which
this is true. An early version of APL on a small computer
actually required considerable time to change from one line to
the next because only one line at a time was kept in main memory.
Although very few present users of APL ever used that particular
system, its influence persists.

STORAGE REQUIREMENTS

Although the APL system allows a workspace of up to about
119,000 words (provided the user is validated to use that much
main memory and the installation has that much), equivalent to
892,500 8-bit bytes, there are practical reasons to keep a
workspace smaller. The operating system uses computer resources
much more effectively when it runs programs requiring minimal
amounts of central memory. Also, the "response time" for an
interactive program to respond to a command requiring a trivial
amount of processing increases somewhat with central memory
requirements. In addition, minimizing storage requirements
improves the chances that the same program will be able to run
under another version of APL or on a computer with less central
memory.

The vector DWA contains information about the memory
currently in use for the APL system and the active workspace.
The field length is the amount of memory space currently in use.
The APL system manages that memory space and at any given time
some of the space may not be in use for functions, variables, and

12-2 60454000 A

other information kept by the APL system. The APL system
evaluates storage requirements from time to time and resets its
actual field length according to current needs. The user can set
DWA to specify the maximum and minimum field lengths to be used.
Increasing the maximum and minimum field length generally reduces
the central processor time used by APL to reorganize its storage,
but as discussed previously, reduces the operating system
efficiency. As a general rule of thumb, leave the minimum field
length at its normal value, and set the maximum field length
large enough to avoid WS FULL plus a little extra to prevent
frequent storage reorganization. Incidentally, referencing the
value of DWA in a statement causes the APL system to reorganize
its storage, so programs should not alter or read the value of
DWA too often or performance will be degraded.

Obvious techniques for minimizing storage requirements
include using algorithms that minimize temporary storage, using
local variables and local functions to assure automatic erasure
of unneeded objects, and using DEX to erase other functions that
are no longer needed. DEX can also be used to erase variables,
but respecification (e.g., A+") is faster. Files can be used to
store functions and variables until they are required. DLOAD can
be used to load another workspace of functions and variables.
Any variables that must be communicated from one workspace to the
next can be placed in files--files remain tied when another
workspace is loaded. Of course, any of these techniques can be
overdone. Do not let the time spent performing these operations
outweigh the storage they save.

The space in words required for an APL array A is

2+(ppA)+r(x/pA)fD

where D is the number of elements packed per word--l for floating
point values, 4 for characters, and 32 for logical. Clearly,
there is an advantage to using the internal logical
representation if the values are ones and zeros. The system does
not always use the logical representation when it could. For
example, the scalar constants 1 and 0 are floating point, and
1+0 is floating point. However, the following functions always
produce a logical result: AAB, AvB, ANB, A¥B, A=B, A~B, A<B,
A-s.B, A>B, A~B, and AEB. Also, the functions that restructure or
rearrange their arguments always preserve the same type of
representation, so NpO is floating point, while Np1 0 is logical
(because vector constants consisting of ones an d 3aros are packed
as logicals). To assure that a result is logical, apply 1= to
it.

Expressions Like A+B+C+1100 do not cause three copies of
1100 to be produced. Actually, only one copy is kept. However,
subsequently altering an element of A, B, or C, (e.g., A[3]+9)
will cause a separat~ copy to be made. Similarly, arguments to

60454000 A 12-3

functions are not actually copied unless an attempt is made to
alter them using indexed specification_ Unlike most other ArL
systems, using function arguments rather than global variables
incurs no storage penalty.

The operation A/~B is treated as a single function to avoid
generating lB when only a few elements will actually be selected.
This combined operation is somewhat faster and USes considerably
less storage for an important class of cases.

Storage requirements for programs are too complicated to
discuss in detail. As a rule of thumb, unless you make a special
effort to put a lot on each line, figure that an average
statement takes about 10 words of storage. The first time a
statement is executed it is converted to an internal form for
more efficient execution. In the internal form the function
almost always requires somewhat more space. The ~torage overhead
per line of a function averages about 3.5 words for lines without
labels and 4.5 words for lines with labels.

The APL system keeps a "symbol table'" in the workspace
containing all names of functions, variables, and lqhel~, Once a
name has been used (even if the use resulted in a VALUE ERROR)
the name remains in the symbol table. Th.e space used br· names
that are no longer needed can be recovered by copying all objects
into a truly clear workspace. The recommended procedure is:

(Obtain a clear workspace.)
(Copy global objects.}

4 DNAMES 'OLDWS')DCOPY tOLDWSt
(Restore to normal value.)

) CLEAR
DENV+O
(1 2 3
DENV+1
DBA VE 'NEWWS t

This procedure will also recover space in workspace are~s other
than the symbol table in some circumst~nces.

Space can be conserved in the symbol table by using n~es

consisting of a single symbol whenever possible. Space can also
be conserved by using the same name in several functions for
local variables or labels. A common convention is to use the
letters A to Z for local variable names and use L1, L2, and so
forth for labels.

CENTRAL PROCESSOR TIl4E

optimLza,tion prohleIJl i~ to
First of all, one of the
processor time is the

The algorithm should be
and appropri~te to ,AJ?L.

algorithms that are

For many programs the main
minimize central processor time_
primary determinants of central
appropriatness of the algorithm used~

appropriate to the data to be processed
Computer literature is filled with

12-4 60454000 C

"efficient" for other languages but which perform miserably in
APL. Often a s~raightforward translation of a prcgr~~ from
anoth3r language gl.ves a program that performs poorly because it
fails to take advantage of the more powerful APL functions.

For most operations in APL the time required for the
operation can be separated into a per-element tLme required to
process each element of the arguments and result plus a setup
time required for interpreter overhead, to check the arguments
for compatibility of dimensions, to compute the result
dimen~ions, and allocate space for the result. The time per
element varies considerably with the complexity of the operation.
The sine function, for example, requires far more tline per
element than addition. The time also depends come on the 'i",ay the
values are stored; operations defined only for logic values
perform better if their arguments are internally represented as
logical type, and arit~~etic operations are faster for the
floating pcint internal ~ype. The setup time varies far less
fro:.n func·tion to function than the time per element.

For many functions the setup time is on the order of 25
times as great as the time per element. This means that the
set~p time is negligible when thousands of elements are to be
processed, but the setup time constitutes about 95 percent of the
time when only one element is being processed. For most
programs, the setup time limits speed more than the tL~e per
element. Thus the first step to optimization is to Ininimize the
number of operations to be performed. For exampLe , if pX is used
many times in a Eunc'cion, it would be worthwhile to assign the
value of pX to a variable (assigment requires ne';rlig ible time).
Often a branch statement can be added to skip steps that are not
required except in special cases.

~nl€n the arrays used have a large nmnber of elements, the
operations should be chosen to mini~mize the number of elements
processed. For example, if V is a vector of 5000 characters, a
few e Lement.s can be selected from V using NtM+ V (whLch might
process about 5000 elements) or using V[J+1K] (which wo~ld

process only a few elements). The second approach is much more
efficient. Similarly, rather than extending a vector by
cate:n,ating one element at a 'time, it might be preferable to
extend it vii th a large number of e Lement.s and then respecify the
elp~ents one at a time using ind~{ed specifi~ation.

It is comraonly believed that APL branching for looping is
slow. Actually, looping is fairly fast by itself but is usually
a sign that the program is performing operations one element at a
time--the amount of time required is mainly due to the number of
operations being performed. Actually, looping is sometimes a
very efficient way to perform an operation, especially if the
number of i t.era t.Lons required for normal cases is small and the
alternative requires more operations than are used in the loop.

60454000 A 12-5

On same APL sys~ems central processor time can be saved by
catenating output together and then printing it in a batch rather
than as it is generated. However, for this APL system it is -more
efficient to print the output as it is produced.

The following chart gives
operations. Be forewarned that
will vary with the particular
workspace configuration. Times
time per element for addition.

approximate timings for various
these timings are 4pproximate and

computer used and the internal
are expressed in terms of P, the

Time range

o to T

T to 5xT

5xT to 25xT

-Operations

Time per element for AAB, AVB, and *B for logical
internal representation

Setup time per statement to be evaluated
Tinle per element for most scala~ and mixed

functions

Time per element for complicated fun~tions such as
AoB, AeB, A4>B, and A[Bj

Time required for an unnecessary set of
parentheses in a statement

Time required to evaluate a constant other than 0,
1, 2, . 5, -1, and • '.o

Extra time per local variable for a function call
-+B
A+B

25xT to 125xT Call to a user defined function with a few local
variables

Setup time for primitive functions

12-6 60454000 A

Section 13. Operating System Features for APL Users

~lis section discusses a few operating system commands of
interest to users of APL. The discussions cover only the more
important details. Further information can be found in the
time-sharing reference manual or volume 1 of the operating system
reference manual. Be aware that the descriptions here are less
detailed and may not be as up to date as the other manuals. Most
of the commands discussed can be used as timesharing commands or
batch job control cards. However, they cannot be used while in
APL. Use the commands before issuance of the APL command l or use
DTl1-'-SYSTEM [to leave APL to use these commands , Note that none
of these commands allow embedded spaces.

If N1U1/IAF is not used for communications with terminals,
some special precautions must be observed for these commands.
When an ASCII terminal is used, it may be necessary to first use
the TERl-1 command (see time-sharing reference manual) in order to
produce legible output when using an APL type element. Also note
that the "equals" symbol used in some of these commands may not
print as = on ASCII terminals (depending on the terminal type and
the type of terminal specified in the TERl1 command) • See
Appendix F.

HELLO

The HELLO command allows you to sign on again with a
different account number.

BYE

The command
when not in APL.
or)OPP.

60454000 E

BYE is the correct t..lay to sign off the sy,stem
This is equivalent to the APL command DTMLOPP'

13 -1

PASSWOR

The PASSWOR (pronounce it ·password"--all operating system
commands have names of seven letters or less) command allows you
to change the sign-on password associated with your user name.
The form for the command is:

PASSWOR,old,new

where old represents the old password and new represents the new
password. If there was no old password it will look like:

PASSWOR, , new

RECO'VER,number

The RECOVER command can be used to return to the state just
before a disconnect or system malfunction occurred. The use of
this command prevents loss of the active workspace or active
files. The command is allowed only when the system prints
RECOVER/SYSTEM at the end of the sign-on procedure. If you have
already proceeded beyond that point and wish to initiate
recovery, type HELLO to begin the sign-on procedure anew. The
number you provide in the RECOVER command should be the terminal
number that was printed after the previous sign on. (That is,
the terminal number in effect for the session that terminated
abnormally.) After you type the RECOVER command, the system may
print RECOVERY Il~OSSIBLE, which indicates that the system
malfunction was too serious to allow recovery, that too much time
has elapsed (recovery information is retained for ten minutes),
you signed on with a different user number, or that you gave an
incorrect tenninal number. When the RECOVER command is
successful, the recovery information is destroyed and the system
prints various information about the status at the time of
disruption. Press the RETURN key to continue (or type STOP to
exit from APL). The recovery is sometimes imperfect. Some
output m~ be lost, and the next in~ut request may cause a
question mark to be printed, and .any special APL symbols used in
the input may be translated incorrectly. Do not perform the
recovery on a different type of terminal from that in use when
the disruption occurred or the APL sys.tem will translate input
and output incorrectly for that terminal. After a recovery, the
next interrupt from the keyboard will terminate APL. To avoid
this, perform the following steps after recovery (unless files
are tied)

)SAVE wsname
) SYSTEM

APL,WS=wsname

13-2 60454000 A

SETTL,number

Sets the CPU time limit to number. This can.be used before
entering APLUM to prevent a *TI~m LIMIT* error from occurring.
The number should be the desired time limit in octal. In order
to be meaningful, the time limit should be at least 10 (octal)
and the last digit should be a zero. The time limit must not be
set to more than the remaining allowance for the session. (You
can use the HELLO command to start a new session and get a fresh
allotment of CPU time.)

S,number

This command is meaningful only immediately after the system
has printed *SRU LIMIT*. This command extends the SRU limit by
the requested amount. If you type anything other than S,number,
a forced exit from APL will occur and the active workspace will
be lost. If you have used up the entire SRU allotment for the
session, hang up the phone and then sign on again and use the
RECOVER command.

T,number

This command is meaningful only immediately after the system
has printed *TIME LIMIT*. The number has the same significance
as for the SETTL command. If you type anything other than
T,number, a forced exit from APL will occur and the active
wo rkapaoe will be lost. If you have used up the entire CPU time
allotment for the session, hang up the phone and then sign on
again and use the RECOVER command.

CHANGE

The CHANGE command can be used to change the name of a file
(whdch includes workspaces), its password, category, or access

modes permitted to other users. The following examples show
simple forms of th·e command.

CHANGE,newname=oldname
Changes the name from oldname to newname.

CHANGE,filename/CT=category
Changes the category. The category specified may be P for
private, S for semiprivate, or PU for public.

CHANGE,filename/M=mode
Changes the mode. The mode specified may be R for read, W
for write, MODIFY for modify, or RM for read~modify. (Other
modes exist but are not of interest for APLusers.)

60454000 B 13-3

CHM1GE,filename/PW=password
Sets the file password. The password may consist of 1 to 7
letters or digits.

ENQUIRE,JU=jobname

This command can be used to determine the status of a job
submitted using the CSUBMIT function (discussed in Section 10).
If the response indicates the job is not in the system, this
usually indicates that it has completed or is presently being
printed.

PERMIT

The PERMIT command can be used to give another user access
to a private file or to specify the permitted aocess mode for a
particular user of a semiprivate file. The fo~ of the command
is:

PERl.fiT ,filename~aaaount=mode,account=mode, •• It

The mode for each account number determines the type of access
allowed. Meaningful modes for APL users are Rfor read, W for
write, or RM for read-modify.

CATLIST

The CATLIST command can be used to examine access
information about an individual file. The following examples
show how to find· information not provided by the APL DLIB
function:

CATLIST/LO=F,FN=filename
Similar to DLIBtfilename t but also gives the password and
count of the number of accesses.

CATLIST/LO=FP,FN=filename
Gives access information for each user who accessed the
specified private or semiprivate file. The information
printed includes the number of accesses by each user, the
access mode allowed for each user, and the date and time of
the last access by each user.

LIMITS

The LIl~TS command causes validation limits for the account
number currently in use to be printed. Any numbers in the output
that are followed by a B are expressed in octal (base 8}.The
APL functions base-value and represent can be used to convert
between octal and decimal. For example, 70000B can be converted
to decimal using 8£7 0 0 0 0, and 32768 can be converted to octal
using (6p8)T32768. The following are the limits that are
important to APL users:

13-4 60454000 C

TL = CPU time limit in 10's (octal) per session. Append a
zero to the right of the number to find the CPU time
limit in octal seconds. In addition, there may be a
smaller time limit per session. This other time limit
per session can be overridden by using the SETTL
connnand or by using the T,number command after a *TIME
LIMIT* error occurs. If you have consumed your entire
CPU time limit for the session, you can use the
operating system HELLO command to get a new CPU time
allotment, or hang up, sign on again, and use the
operating system RECOVER command.

CM = lofaximum central memory field length.. Append two zeros
to the right of the number to find the central memory
limit in octal words. Note that a more stringent
restriction can be imposed on all timesharing users by
the computer operator. This second restrLction may
vary according to the time of day. .

DB = The number of jobs allowed for the gLven user. The
CSUBMIT function (see Section lO) is not allowed to
submit additional jobs if the total number of jobs for
that account number already equals or exceeds this
parameter. The count of jobs includes the program
attempting to use the CSUBMIT function.

FC = Maximum number of stored indirect access files allowed.

CS = Total storage in PRU's allowed for all stored ind£rect
access files. (One PRU is 64 words or 640 six-bit
bytes.)

FS = lofaximum size in
indirect access
six-bit bytes.-)

PRU's allowed for individual
files. (One PRU is 64 words

stored
or 640

AW = Access word. If the last di.git i.s 4 or greater,. the
user is allowed to create direct access fi.les.

NF = Number of local files· allowed. This includes active
APLm~ files and coded files. Allow one extra file when
saving or loading a workspace.

MS = Maximum number of massstoragePRUl: s allowed for local
files, which includes active copies of indirect access
files but not direct access files. (one. PRU is 64 words
or 640 six-bit bytes.)

SL = lfaximum number of SRU's that can be expended during the
job or session.

DS = Maximum file size in PRU's allowed for a direct access
file (or workspace) at the time it is ti.ed lor
resaved). (OnePRU is 64 words.) This limLt is not
imposed if the RD or RM option is used with FTIE.

60454000 B 13-5

AWSFIX and AFIFIX

The APL system uses the user control word associated with
operating system permanent files to identify which files are APL
workspaces and APL-structured files. When operating system
commands are used to copy a workspace or APL-structured file or
to transfer one to magnetic tape, the user control word is lost.
An appropriate control word can be restored by Use of the AWSFIX
or AFIFIX utility program. The following example shows the
procedure that would be used for a workspace:

BATCH (Use the batch subsystem)
GET ,AWSFIX/ml=APLO.
AWSFIX,namel,name2, •••

In the example, namel, name2, etc. represent names of permanent
files stored under the current user number that should be
processed. The procedure for. restoring the user control word for
an APL-structured file is identical except that AFIFIX ·is
substituted for A~qSFIX in the last two commands. Note that
application of the wrong utility to a file may result in
irreparable damage to the file.

The AWSFIX utility can also be used to "seal" a workspace.
A workspace can be sealed to safeguard the priv~cy of its
contents while still allowing the workspace to be used by others.
Sealing a workspace provi<.1es the following protection:

1. An active copy of the workspace cannot be saved using
)SAVE or DSAVE.

2. Objects cannot be copied from the workspace. However,
the entire workspace can be loaded.

3. If the user of the workspacegatns control Las a result
of an error) an exit is taken from-APL with the mes$a~e

17: PROTECTED WORKSPACE.

These safeguards are intended for packages that start up by use
of a latent expression illLX}. There is no procedure to unseal a
workspace, so a separate unsealed copy of the workspace should b.e
retained if future changes are contemplated. The following
example shows the procedure that would be used to seal two stored
workspaces named MATH and PHYSICS.

BATCH
GET,AWSFIX/UN=APLO.
AWSFIX,MATH=SEAL,PHYSICS=SEAL

13-6 60454000 C

Appendix A. Error Messages

APL ERROR MESSAGES

The following list describes the APL error messages and
their meanings. It should be noted that most of these cause
execution to halt (unless DTRAP is used to intercept the error
processing), but function definition mode prints its error
messages and then may continue processing.

00: INTERRUPT
This indicates that an interrupt has been received from a

terminal or that the overstrike m .has been entered as the first
nonblank symbol for quote-quad input.

01: IMPLICIT ERROR
An implicit argument to a primitive function is not defined.

The system variable OCT is required for the functions A=-B, A>B,
A<B, A~B, A~B, A~B, AcB, Al~B, lt1B, A~B, AJB_, [B., LB and 1.B. The
variable DIO is required for indexing, the axis operator, A~B,

AlB, lB, !B, TB, ?B, and A?B. The variable DWSID must be defined
for DSA VE' , • DRL is required for A?Band ?B, and DPP is
required for monadic format. DENV is required for OCR, DEX,
DFX, DNC, DNL, DSTOP, DTRACE, DLOCK, DLTIME, DNAMES and DCOPY.

02: SYNTAX ERROR
Incorrectly formed statement. Check to be sure the

statement has matched quotes, parentheses, and brackets. A
common error is to forget to place an operation symbol between
two variables when catenation is intended (e.g., (M N)pQ instead
of (M,N)pQ). Other causes include failure to provide a right
argument to a function, and use of a branch arrow other than at
the left end of a statement. Check the state indicator to be
sure a local variable or label is not obscuring a function having
the same name.

60454000 C A-I

03: DOMAIN ERROR
The argument is not in the domain of the function or is an

improper value for a system variable being specified. The
following are examples of ways that domain errors can arise:
13.5 (an integer is required), DIO+14 (the index origin must be 1
or 0), tr+3 (char~cter arguments are not allowed for many
operations, even if the argument is empty') I OPP+45 (printing
precision must be between land 15). When OCT is not defined,
zero is used as OCT in domad.n checks. Thus, tl+lE-14 would not
be allowed because exact integers are required when OCT is zero.

04: LENGTH ERROR
Lengths of the arguments to a function are incompatible, or

the operation is not defined for arguments of that length.

05: VALUE ERROR
A variahle used in an expression has not been assigned a

value, a dyadic function has been used without a left argument,
the result variable of a function that returns a result wa s not
assigned a value, or a function was used for which ~lere is no
current definition. Check the state indicator to see if a local
variable has obscured a global variable or function.

06: RANK ERROR
The ranks of the arguments are incompatible or the operation

is not defined for an argument of that rank. For example: t 11
(not defined for vectors unless they have one element), AL1;2]
(if A is a vector it has the wrong rank for the index applied},
ffi3 4 5pO (not defined for ranks greater than 21.

07: INDEX ERROR
Index out of range. For example, if A is a three-element

vector: A[4] in I-origin, A[3] in zero orl.gl.n, or A[O] in 1
origin. To find the current origin, display OIO.

08: LIMIT ERROR
The operation exceeds limitations of the computer or the APL

system. Limit errors can result from~ attempts to generate a
result greater in magnitude than about ~E322, attempts to execute
a line longer than 150 characters (in a function, arguments to
tile execute function, or entered as input), or attempts to
produce an array having a rank greater than 75.

09: LOCKED OBJECT
Attempt to specify a value for a locked variable (label or

group). Locked variables can be redefined only by erasing them
and then specifying them.

10: WS FULL
Insufficient space remains in the workspace for the

operation. Use)ERASE to erase unneeded functions and variables
to make more space available, or resetOWA to allow a larger
workspace. Some space can usually be reclaimed by executing a
niladic branch (e.g., +). If more than one suspension is on the

A-2 60454000 C

state indicator, use a niladic branch for each suspension. The
state indicator can also be cleared by use of 0 DSAVE II lwhich
also saves a copy of the workspacer.

11: WS NOT FOUND
Although a file having that name was found, it was not

recognizable as a workspace.

12: DEFN ERROR
Incorrect request in function definition mode. Ma¥ result

from providing header information other than the function name
when reopening the function, use of a function name already in
use for another global function or variable, or an illegal
display or line editing request. Another cause is an attempt to
close definition of a function having an incorrectly formed
header or duplication of names used in the header or as labels.

13: PHRASE NOT FOUND
The phrase specified was not found in the line where it was

sought. Be sure to specify the correct line number. Display the
line to determine the correct phrase.

14: SI DAMAGE
Information on the state indicator has been lost due to

changing a pendent function, by altering a function that is
suspended more than once, or by changing the number or relative
order of local variables in the header or label variables for a
suspended function. This message is a warning--no corrective
action is required. The pendent or suspended functions on the
state indicator that are affected by STDAMAGE are indicated by
enclosing brackets. The affected functions cannot be continued,
but they remain on the state indicator as long as other
suspensions are above them. When the state indicator collapses
to the affected suspension, the system automatically removes that
suspension.

15: NAME NOT FOUND
No function or variable having that name exists.

16: NAME IN USE
A function or variable already has that name.

17: PROTECTED WORKSPACE
An attempt was made to save or copy from a sealed workspace,

or an error in a sealed workspace was about to give control to
the user.

18: NIXED FUNCTION
A mixed function has been used where a dyadic scalar

function is required as an argument to an operator. For example:
A+.tB, Ao.tB, ~/B.

19: UNDEFINED FUNCTION
no such priI!litive function exists.

monadic ~ function}.

60454000 C

For example: aB, ~B (no

A-3

20: operating system error message
This message is a message from the operating system and

usually concerns some sort of operation with a file or with a
workspace. See the list of common errors under OPERATING SYSTE}!
ERROR lmSSAGES below.

21 : FILE DAI1AGE
Usually indicates that one record of the file has been

damaged. If an attempt to tie the file causes this message, the
entire file may have been damaged. Most installations
periodically copy all files to tape, and files can be restored to
their condition when the last copy was made. Contact
installation personnel for assistance. File damage may be
reported erroneously when reading a direct access file in RMmode
if repeated interference is encountered from another user writing
the same record.

22: WRONG TYPE FILE
An attempt was made to use CFREAD, CFPOS, CSUBMIT, or

CFWRITE on an APL-structured file, or an attempt was made to use
FREAD or FWRITE on a coded file. Note that the operating system
COpy commands do not preserve the type with a COpy made from an
APL-structured file. This error also results from an attempt to
submit a direct access file using CSUBMIT.

23: FILE TIE ERROR
An attempt was made

was already in use, or
operation (e.g., FREAD,
tied.

to use a file number or file name that
an attempt was made to perform an

FWRITE) that requires the file to be

24: CHANGE TO READ-ONLY FILE
An attempt has been made to alter a file that was tied in R

or R1f mode.

OPERATING SYSTEM ERROR 11ESSAGES

The following list includes those operating system errors
that the APL user is most likely to see. The timesharing manual
or volume 1 of the operating system reference manual may provide
further details and additional messages that are not included
here, and may reflect recent changes.

20: filename BUSY
The specified direct access file is tied by another user in

an incompatible mode. This may be caused by a system problem or
telephone disconnect, in which case the file will be released in
~O minutes or can be accessed by using the operating system
RE.COVER command to resume the session that terminated abnormally.
Occasionally a file will be left busy due to an operating system

A-4 60454000 A

error and will remain bUsy until a level zero deadstart (usually
done at the start of the day). An APL-structured direct access
file can usually be retrieved from this condition by using RM
mode to make a new copy of the file.

20: filename ALREADY PERMANENT
A file having the indicated name already exists. This error

may result if a workspace is being saved and a password,
category, mode, file type (i.e., IA or DA), or a name different
from DWSID was specified. This error can also occur when
FCREATE attempts to create a direct access file having the sarne
name as a file already in existence or when FUNTIE attempts to
store a copy of an indirect access file that was created during
the session. If the old file is no longer needed, use DDROP to
eliminate it; otherwise, copy the new file to change its name.

20: filename NOT FOUND
The file does not exist under the specified user number,

the user is not allowed to access the file, or the user did not
provide a correct password for a file requiring a password.

20: ILLEGAL USER ACCESS
The user is either not allowed to create direct access files

or is not allowed to create indirect access files.

20: PF UTILITY ACTIVE
The computer operations· staff is using a permanent file

utility program that prevents users from performing operations
involving permanent files. Try the operation again.

20: CATALOG OVERFLOW - SIZE
The operation would cause the user's limit on total size of

all indirect access files to be exceeded.

20: CATALOG OVERFLOW - FILES
The operation would exceed the li~t on the number of files

allowed for the account number.

20: BAD FILE OR SUBMIT NOT ALLOWED
This error results from use of CSUBMIT under the following

circumstances: the user is not validated to use the SUB~IT

facility, the file is not properly constructed, or the number of
jobs allowed for the user would be exceeded.

20: PARITY ERROR
20: ADDRESS ERROR
20: DEVICE STATUS ERR.
20: 6681 FUNCTION REJ.
20: DEVICE RESERVED
20: DEVICE NOT READY

Any of these messages indicates a malfunction
computer or a storage device. Try the operation again,
the problem persists, notify installation personnel.

60454000 A

in the
and if

A-5

20: TRACK LIMIT
There is no space available on the device where the file

resides. Be sure you have not accidentally created a gigantic
file. If you use very large files, you may need to make special
arrangements with the installation personnel.

20: FILE TOO LONG
The indirect access file or workspace cannot be

because it would exceed the user"ssize limit for Lndd.r'ect;
files, or the direct access file being tied or the direct
stored workspace being re~saved pres'ently' occupies more
than the user's size limit for direct access'files.

ABNORMAL EXITS FROM APL

saved
access
access
space

PARAMETER ERROR
This error indicates the APL command was i.ncorrect in form

or that a parameter was specified incorrectly.

TIME LIMIT
A *TIME LIMIT* occurred and the T,number command was not

used to continue processing (see Section. 13).

SRU LIMIT
An *SRU LI11IT* error occurred and the S,number command was

not used to continue processing (see Section l3).

PP ABORT
A peripheral processing unit requested that the program be

terminated.

OPERATOR DROP
The computer operator intervened and terminated the program.

FILE LIMIT
More active files were used than are allowed by the user':s

validation limits.

SYSTEM ABORT
SUBSYSTEM ABORT
OVERIDE CONDITION
PARITY ERROR
FORCED ERROR

Any of these indicates a computer or operating system
malfunction. Contact the system analyst.

APL SYSTEM ERROR (or EXCHANGE PACKAGE)
This indicates a defect in the APL system or a computer or

operating system malfunction. Please report this error to
installation personnel along with work that led to the problem
and any further output from the API... system. Unlike most error
messages, this is not an indication of an error by the APL
progranuner.

A-6 ,60454000 B

OTHER MESSAGES

DEL
This indicates that the input line was cancelled.

OVL
This indicates that the preceding input line was too long

for the operating system.

TIME LIMIT
This indicates that the user

consumption of computer resources.
Section 13.

reached a limit on allowed
See the T,number command in

SRU LIMIT
This indicates that the user reached a

consumption of System Resource Units ("SRUs).
command in Section 13.

60454000 B

limit on allowed
See the S,number

A-7

Appendix B. Output Format

Character output is sent to a terminal unaltered except for
character translation required for the particular type of
terminal and omission of trailing blanks in rows of a matrix.
This omission of trailing blanks in character output speeds the
printing of the result from OCR, the printing of tables of
names, and so forth.

Numeric output is ordinarily shown in decimal form unless
decimal form would not be sufficiently compact. When decimal
form is used, up to OPP significant digits are shown, but
trailing zeros beyond the decimal point are omitted, as is the
decimal point itself if no digits follow. Numbers with a
magnitude less than I are shown with a zero before the decimal
point (e.g., 0.025, 0.12S). All numbers in a column have their
decimal points aligned.

Exponential form is used if decimal form would require more
than 3 zeros after the decimal point before the first significant
digit; if aligning decimal points in the column would require
more than 1.5xOPP character positions, or if more than OPP
digits would appear to the left of the decimal point. If any
number in a column requires exponential format, the entire column
is shown in exponential format with the decimal points and
exponents aligned. All numbers in the column are shown with the
same number of digits in the mantissa. The number of mantissa
digits is less than OPP according to how many trailing zeros
would otherwise appear in all numbers in the column. If no
numbers in the column have digits beyond the decimal point, the
decimal point is omitted.

Numbers in adjacent columns are separated by at least one
space. However, no more spaces than necessary are used.

60454000 A B-1

Appendix C. Character Sets and Terminals

TIllS section discusses character sets and terminal types
from the point of view of installations using NM1/IAF (Hetwork
Access l1ethod/lnteractive Facility) for communication with
terminals. Appendix F contains further information and
exceptions that apply to terminals at installations that do not
us e HAl-1/IAF.

l1any different types of terminals can be used with the APL
system. In addition, card readers, printers, and files can be
used for input and output. The characters available on these
various devices are shown in Table C-2. 14any' of these devices
cannot print the full set of APL characters. APL characters are
translated so as to print the same whenever possible. When no
related symbol is available, the symbol is represented as a
dollar sign followed by two mnemonic symbols (e.g., $10 for 1 and
$RO for pl. For input, if the symbols following the dollar sign
are not recognized as one of these mnemonics, the dollar sign is
entered as a dollar sign. In Table C-2 where two characters
appear in the same column, either character may be used for
input, but all output uses the second character. Note that the
APL system assumes the same terminal type for input and output.
Where there is a blank entry in the table, the Itbad character
symbol," OAV[220], is used. Note that the DAV indices are for
a-origin. The column for APL coded files includes the octal
(base 8) values used. The print symbols shown for coded files
assume an ASCII printer will be used; a fe\17 symbols print
differently all. other printers. Note that future versions of the
APL 2 system may be changed to preserve exact equivalents for all
ASCII characters. This would affect the TT=BATCH, TT=713, and
coded file translations.

60454000 E C-l

LOG ON CHARACTERS AND TERMINAL CONTROLS

Most terminals used with computers can be classified as
either ASCII terminals or Selectric terminals. (Selectric
terminals are distinguished from ASCII terminals in that
Selectric terminals are based on an IBM Selectric print
mechanism, although the terminals themselves are produced by
several manufacturers.) In addition, the terminal mayor may not
be equipped to print the APL character set. Some terminals can
easily be switched from the APL character set (e.g. Land 0 are
the Lowez and upper case symbols on the L key) to a "standard"
character set (e.g. I and L are the two symbols on the L key).
In some cases you select the character set by changing a switch
setting, while in other cases you select the character set by
replacing the type element. In either situation, the signal sent
to the computer when a given key is pressed does not change when
you switch character sets -- only the printed symbol changes. It
is therefore important that the computer be notified of the
character set you are using.

In a normal NAM/IAF log on, you first press RETURN (Which
NAM/IAF uses to determine tile data rate of the terminal), then
you send) RETURN. The right parenthesis is used to determine
the type of terminal (ASCII or Selectric), Whether APL is
available on the terminal, and what keyboard arrangement or
transmission codes are used (bit pairing, typewriter pairing,
Correspondence, or EBCDIC). If the APL character set is
available, select the APL character set before sending the right
parenthesis so that the code for the APL right parenthesis will
be sent.

The TT= option on the APL command should be used if the
terminal does not have the APL character set. In addition, for
APL Selectric terminals, TT~COR may be used if overstrikes are
desired for the symbols {} $ <> to- -4 • For most non-APL terminals
the TT=7l3 option is recommended.

Note that visual fidelity is not preserved for non-APL
terminals. Non-APL terminals are not recommended for program
development, although they may be satisfactory for entering data
or transactions.

Table C-l shows the appropriate TT= option for each terminal
type, as well as the terminal controls normally used to cancel
lines, correct input, or interrupt a program. In this table, a
circle around a letter means the CTRL key should be held down
while typing the letter. For example, QD means CTRL X.

C-2 60454000 E

TABLE C-l. Terminal Controls and Options.

ASCII with Selectric with
APL print ASCII APL print Selectric

TT= option none TT=713 TT=COR TT=713
(optional)

Cancel line o RETURN @ RETURN BACKSPACE to BACKSPACE to
begin of line, begin of line,
ATTN ATTN

Correct line BACKSPACEs BACKSPACEs BACKSPACEs BACKSPACEs
LINE FEED (or ~) ATTN ATTN

LINE EED

Interrupt 0 RETURN 0 RETURN ATTN: RETURN ATTH:RE'I'URN
while
executing

Stop 0 input -+ $GO -+ $GO

Stop [!) input OJ $G. UJ $G.

!-1ost of the HAM/IAP controls shown in Table C-l are system
default controls; they are the same as you would usually use
with another language. In addition, the APL system requests
special editing mode (which allows APL to use overstrikes,
partial line correction with a caret prompt, and the full
character set), and selects a NID~/IAF printing width of 0 (which
prevents HA14/IAF from dividing lines of input and output
according to the printing width of the terminal). These special
selections made by the APL system are equivalent to the effect of
the following NAM/IAF commands typed at a terminal:

ESC SE=Y RETURN
ESC PW=O RETURN

(To request special editing.)
(For no print width processing.)

These commands to NAM/IAF are recognized only if they occur at
the beginning of a keyboard entry. Spaces are shown above for
the sake of clarity, but no spaces should actually be entered.
When the APL session ends, APL requests no special editing. This
is equivalent to the following request from a terminal:

ESC SE=N RETURN

However, NA!1/IAF printing widta remains O. To reset the printing
width, type a command like the following:

ESC PW=l32 RETURN (To set the width to 132.)

60454000 E C-3

These examples, as well as Table C-l, are based on the
default NAM/IAF terminal controls. However, NAM/IAF allows you
to designate other characters to be used in place of the special
contro~ characters.* Substitutions might be desirable when using
a special device on which the default controls are not available
or are reserved for a special purpose. Further details can be
found in manuals describing NAM/IAF.

SPECIFYING NAM/IAF CHARACTER SET

During the normal log on procedure with the computer
connection through telephone lines, the first characters from the
terminal allow the system to detect the data rate and character
set in use. lihen the terminal is directly wired to the computer
the data rate and character set may be predetermined. If you
wish to change the character set of the terminal (e.g., to use
another language) you should identify the new character set to
the system as follows:

ESC CD=A RETUm~ (Typed using the old character set.)

The system responds with two line feeds. You should then switch
to the new character set and type:

}RETURN

SPECIAL CHARACTERS

The character formed by overstriking C and R causes a
carrier return (without a line feed) on an ASCII terminal. For
Selectric terminals, no exact equivalent exists, so a carrier
return with line feed occurs. The symbol formed by overstriking
U and S results in a carrier return and line feed for all
terminal types. (For output to coded files, U over S also causes
a new line.) The line feed itself is also available and is
represented by overstriking Land F.

Note that earlier versions of the APL system used the CR
overstrike to mean carrier return with line feed. The symbol
formerly entered as Cover R is now printed as U over S,
regardless of whether it was in a program or data. The CR
overstrike remains at DAV[13] {in 0 origin} as a result of
rearrangement of DAV. However, the effect of DAV[13] has changed
for some terminal types and for output to coded files.

STANDARD SWITCH SETTINGS

The following information is intended as a general
discussion on choosing switch settings for terminals. Because of
the many variations between terminals and the various conventions
adopted by installations, these suggestions can only serve as a

*The cancel line character should not be changed, because APL
will only recognize @ for cancel line.

C-4 60454000 E

Character
character
SET. On
immediate
depressed.

general guide. Further information can be obtained from
personnel at the computer installation or from the instruction
manual provided by the manufacturer of the terminal.

LINE/LOCAL switch. LOCAL mode prevents signals fro~ being sent
to the computer. The LIlJE position should be used.

CAPS LOCK. This key on ASCII terminals causes the codes for
upper case letters to be sent even if the shift key is not used.
This option should not be used for APL terminals.

DATA RATE. Standard rates usually available are 110 BAUD (10
cps) and 300 BAUD (30 cps) for ASCII terminals andl35 BAUD for
Selectric terminals. Much higher data rates are sometimes
available.

set. Some terminals have a switch to select the
set. The APL setting may be marked APL or ALT CHAR
some terminals resetting the character set key has no
effect unless the character set lock key is also

Parity. Even parity is standard at most installations.

FDX/HDX. In full duplex mode (FDX) , characters sent by the
terminal are echoed back by the communications processer. The
terminal prints the character as a result of receiving it from
the system. This mode helps you to determine whether the
transmission was received correctly. In half duplex mode, the
terminal always prints the characters as the keys are pressed,
and the system does not echo the characters as they are received.
The terminal and system must both use the same mode or else
characters will be printed twice (or will be garbled), or they
will not print at all. You should determine (possibly by
experimentation) the standard mode (usually HDX) for the
installation. (If the acoustic coupler has a similar switch, use
the full duplex selection, regardless of the convention between
the terminal and the system.)

60454000 E C-5

Table C-2. APL Character Set.

DAV
Index

APL
Symbol

(Overstrike)

ASCII
Symbol TT=713 BATCH BSOI
(Name) Symbol Printer Printer

APL
Coded
Files

0 N (NU) (NUL) $NU $NU $UU
1 B (SH) (SOH) $SH $SIl $SH
2 II (ST) (STX) SST SST SST
3 tg (ET) (ETX) $ET $ET $ET
4 B (EO) (EOT) $EO $EO $EO
5 II (EN) (ENQl $EN $EN $EN
6 K. (AX) (ACK) $AI< $AI< $AI<
7 B (BL) (BEL) $BL $BL $BL
8 11 (BJ) (BS) $BJ $BJ $BJ
9 1/ (HT) (HT) $HT $HT $HT

10 E (LF) (LF) $LF $LF $LF
11 I' (VT) (VT) $VT $VT $VT
12 EJ (FD) (FF) $FO $FO $FO
13 H (CR) (CR) $CR $CR $CR

.
14 8 (SO) (SO) $SO, $SO $SO
15 s (SI) (SI) $SI $SI $SI
16 J!) (DE) (OLE) $OE $OE $OE
17 JD (Dl) (DCl) $Dl $Dl $01
18 II (D2) (DC2) $D2 $D2 $D2
19 B (D3) (DC3) $D3 $D3 $03
20 1J (D4) (oC4) $04 $04 $04
21 R (NK) (NAK) $NK $NK $NK
22 S (SY) (SYN) $SY $SY $SY
23 B (EB) (ETB) $EB $EB $EB
24 8 (CA) (CAN) $CA $CA $eA
25 Jl (EM) (EM) $EM $EM $EM
26 8 (SB) (SUB) $SB $SB $SB
27 E (ES) (ESC) $ES $ES $ES
28 B (FS) (FS) $FS $FS $FS
29 (J (OS) (GS) $GS $GS $GS
30 B (RS) (RS) $RS $RS $RS
31 B (UB) CUS) SUS SUS SUS
32 blank blank blank blank blank blank (55B)
33 !- ('.) , $EX ! $EX : $EX ! (66B).

* 34 r (•• .t) It $DQ $00 $00
* 35 .. (+=-) # $PD $PO $PO

36 $ (S j) s $ $ $ $ (53B)
* 37 /. (/ :) % $PR $PR $PR

* 38 & (8\) & $AM $AM $AM
39 I , $Q'1' , $QT I $QT ' (70B)
40 (((((« SIB)
41)) 1 >- >-). (52B)
42 * * * * * *(47B)
43 + + + + + + C45B)
44 , , , , , , (56B)
45 - ... - - - - (46B)

..

C-6 60454000 E

Table C-2. APL Character Set, Continued.

DAV
Index

APL
Symbol

(Overstrike)

ASCII
Symbol TT=713 BATCH B501
(Name) Symbol Printer Printer

APL
Coded
Files

46 . · . . . • (57B)
47 / / / / / / (SOB)
48 0 0 0 0 0 0{33B)
49 1 1 1 1 I 1{34B)
50 2 2 2 2 2 2 (35B)
51 3 3 3 3 3 3(36B)
52 4 4 4 4 4 4(37B)
53 5 5 5 5 5 5(40B)
54 6 6 6 6 6 6(4IB)
55 7 7 7 7 7 7 (42B)
56 8 8 8 8 8 8(43B)
57 9 9 9 9 9 9{44B)
58 : · $CL . $CL . $CL . : (OOB)· . . .
S9 ; ; $SC ; $SC ; $SC ; ; (77B)
60 < < $LT < $LT < $LT < < (72B)
61 = = $EQ = $EQ = $EQ = = (54B)
62 > > $GT > $GT > $GT > >(73B)
63 ? ? $QU ? $QU ? $QU ? ? (7IB)

* 64 6 (Co) @ $AT $AT $AT
65 A A A A A A(OIB)
66 B B B B B B (02B)
67 C C C C C C(03B)
68 D D D D D D(04B)
69 E E E E E E (05B)
70 F F F F F F (06B)
71 G G G G G G(07B)
72 H H H H H H{10B)
73 I I I I I I (lIB)
74 J J J J J J (12B)
75 K K K K K K(13B)
76 L L L L L L (14B)
77 M 14 M M M M(15B)
78 N N N N N N(16B)
79 0 0 0 0 0 o (17B)
80 P P P P P P (20B)
81 Q Q Q Q Q Q(21B)
82 R R R R R R(22B)
83 S S S S S S(23B)
84 T T T T T T (24B)
85 U U U U U U(25B)
86 V V V V V V(26B)
87 W W W W W W(27B)
88 X X X X X X (30B)
89 y y y y y Y (3IB)
90 Z Z Z Z Z Z (32B)

60454000 E C-7

Table C-2. APL Character Set, Continued.

OAV
Index

APL
Symbol

(Overstrike)

ASCII
Symbol TT=713 BATCH BSOl
(Name) Symbol Printer Printer

APL
Coded
Files

91 [[SOB [SOB [SOB [[(6IB)
92 \ \ $BS \ $BS $BS \ (7SB)
93]] $CB] $CB] $CB]] (62B)

* 94
... ('--) "" $CX $CX $CX

* 95 $UL $UL $UL (65B)-
* 96 T { ,-} , $AC $AC - $AC - -

97 4- {A_} a $AA $AA $AA A(OIB)
98 s {B_} b $BB $BB $BB B(02B)
99 k (C) c $CC $CC $CC C(03B)

100 Q (D_) d $DD $DD $DD D(04B)
101 Fl {E_} e $EE $EE $EE E (OSB)
102 f. {F_} f $FF $F'F $FF F (06B)
103 Q. {G_} 9 $GG $GG $GG G(07B)
104 lJ. (H_) h $HH $HII $00 H(lOB)
105 1. {I_} i $11 $II $II I (lIB)
106 i. (J_) j $JJ $JJ $JJ J (12Bl
107 If: {K_} k $KK $KI< $KK K(13B)
108 It. (L_) 1 $LL $LL $LL L (14B)
109 lJ. {M_} m $Uf-1 $MM $MM M(lSB)
110 l'!. {N_} n $NN $NN $NN N(16B)
111 Q (O_) 0 $00 $00 $00 o (17B)
112 P. (P_) P $PP $pp $pp P (20B)
113 Q. (Q-) q $QQ $QQ $00 Q(21B)
114 H. (R_> r $RR $RR $RR R(22B)
115 ~ (S_) s $SS $SS $SS S (23B)
116 r {T_} t $TT $TT $TT T (24B)
117 u (U~) u $UO $UU $UU U(25B)
118 g (V....) v $VV $VV $VV V (26B)
119 Ji (W_) w $WW $WW $WW W(27Bl
120 ,X (X_) x $XX $XX $XX X(30B)
121 X (.Y~) Y $YY $YY $YY Y(31B)
122 ~ (Z_) z $ZZ $ZZ $ZZ Z(32B)

* 123 { ([0) { $LB $LB $LB
124 j I $MD $MD $lIDJ

* 125 } {] 0 } } $RB $RB $RB
* 126 ,.." A $TL $TL At $TLA A (76B)

127 -B (lJZ) (DEL) $DZ $DZ $DZ
128 eKO)
129 (K1)
130 (K2)
131 (K3)
132 (K4)
133 (KS)
134 (K6)
135 (K7)

C-8 60454000 E

Table C-2. APL Character Set, Continued.

APL
DAV Symbol

Index (Overstrike)

ASCII
Symbol TT=713 BATCH B501
(Name) Symbol Printer Printer

APL
Coded
Files

136 (K8)
137 (K9)
138 (K10)
139 (K11)
140 (K12)
141 (K13)
142 (K14)
143 ~K15~144 K16
145 (K17)
146 ~K18~147 K19
148 (K20)
149 ~K21)
150 K22)
151 (K23)
152 (K24)
153 (K25)
154 (K26)
155 (K27)
156 (K28)
157 (K29)
158 (K30)
159 (K31)
160 A (NO) $AN $AN $AN A
161 v (N1) $OR $OR $OR v
162 * (A--) (N2) $ND $ND $ND
163 ¥ (v-)

f~a~
$NR $NR $NR

164 s $LE $LE $LE <
165 ~

~~g~
$NE $NE $NE ;;

166 ~ $GE $GE $GE ~

167 ! (f11) (N7) $UG $UG $UG
168 ,

f~~~
$DG $DG $DG

** 169 t $TA $TA $TA t
170 4- (N10) $DR $DR $DR 4-

** 171 +- (N11) $IS $IS $18
172 ~ (N12) $GO $GO $GO ~
173 A (no) (N13) $LP $LP $LP
174 1tf (\7-) (N14) $LD $LD $LD
175 \7 (N15) $DL $DL $DL
176 L fN16) $MN $MN
177 r N17) $MX $MX

** 178 x
fN18j $ML $ML $ML &~67Bl** 179 . N19 $DV $DV $DV %63B

** 180 .. (N20) $DI $DI $DI "(64B

I

I

I
60454000 F C-9

Table C-2. APL Character Set, Continued.

APL
DAV Symbol

Index (Overstrike)

ASCII
Symbol TT=713 BATCH B501
(Name) Symbol Printer Printer

APL
Coded
Files

I

I

** 181 - (N21) $NG $NG $NG #(60B)
182 I::. (N22) $DT $DT $DT
183 -t (-+-I) ~N23~ $RK $RK $RK
184 t- (~I) N24 $LK $LK $LK
185 0 (N25) $C1 $CI $CI

** 186 • (0*) ~N26~ $LG $LG $LG @(74B)
187 e (0-) N27 $RU $RU $RU
188 cf> (0 I) (N28) $RT $RT $RT
189

~ (0\) (N29) $TP $TP $TP
190 o (AV) (N30) $DM $DM $DM
191 I::. (I::.) (N31) $DU $DU $DU
192 - (N32) $10 $10 $101

193 p (N33) $RO $RO $RO
194 .1 (N34) $BV $BV $BV
195 T (N35) $RP $RP $RP
196 I (.1T)

~N36~ $1B $1B $1B
197 c N37 $1D $1D $ID
198 :> (N38) $1N $IN $IN
199 n ~N39~ $1X $1X $1X
200 u N40 $UN $UN $UN
201 0

fN41~ $NL $NL $NL
202 0 N42 $QD $QD $QD
203 l!I (0')

f~4~j ~QP ~QP *QP204 , (\ -) BT BT BT
205 f (1-) (N45) $SM $SM $SM
206 (N46)
207 m (Ot) ~N47~ $XD $XD $XD
208 fA) N48 $OM $OM $OM
209 a (N49) $AL $AL $AL
210 (N50)
211 (N51)
212 fN52~213 ~ N53 $EP $EP $EP
214 .! (.1 0) (N54) $EV $EV $EV
215 ... (TO) ~N55~ $FM $FM $FM
216 t (- ,) N56 $CN $CN $CN
217 (N57)
218 (N58)
219 (N59)
220 JI (VI::.) (N60) $BC $BC $BC
221 (N61)
222 (N62)
223 (N63)
224 fJ (OUT) (GO) $G. $G> $G>
225 o (OU) (G1) $OU $OU $OU

C-IO 60454000 F

Table C-2. APL Character Set, Continued.

APL
DAV Symbol

Index (Overstrike)

ASCII
Symbol TT=713 BATCH B501
(Name) Symbol Printer Printer

APL
Coded
Files

226 (G2)
227 (G3)
228

~g~l229
230 G6)
231 (G7)
232

~g~l233
234 (G10)
235 (G11)
236 (G12)
237 (G13)
238 ~G14l239 G15
240

(G16l
241 fG17
242 G18)
243 (G19)
244 (G20)
245 (G21)
246 (G22)
247 (G23)
248 (G24)
249 (G25)
250

f
G26l

251 G27
252 fG28)
253 G29)
254 (G30)
255 (EO)

*

**

Future versions of APL may change the APL coded file I
conversions to use the ASCII graphic symbol to represent the
ASCII character.

Future versions of APL may change the APL coded file I
conversions to allow only the $ mnemonic to enter or print
these characters.

60454000 F C-ll

Appendix D. APL Control Card

The optional parameters on the APL timesharing command (or
batch control card) allow specification of the type of terminal
(or batch options) to be used, the workspace to be used (thus
avoiding a subsequent LOAD command), and the constraints on the
field length to be used. The general form for the control card
is:

APL,option,option,option,

where an option is of the form keyword or keyword=value.

Indicati~ terminal typ~. When .no termin~l type is specified,
APL assumes TT=ASCAPL as the term1nal type 1f the job was entered
from timesharing. (This default may be changed by the
installation.) If the job is a batch or remote batch job, APL
assumes the TT=BATCH option. See Appendix C or Appendix F for
specific recommendations. Other terminal types can be specified
as follows:

TT=COR

TT=TYPE

TT=BIT

Correspondence Selectric APL terminal (OTT=1).•
This option assumes the communications systma
recognizes the terminal as an APL terminal.

Typewriter-paired APL terminals (DTT=2). This is
applicable only if the communications system does
not recognize the terminal as an APL terminal.

Bit-paired APL terminal (DTT=31. This is
applicable only if the communications system does
not recognize the terminal as an APL terminal.

TT=ASCAPL This type (DTT=4) is appropriate
communications system translates APL
codes into a standard intermediate code.

60454000 E

when the
terminal

D-l

TT=TTY33 For Teletype 33 terminal or similar
(DTT=5). TT=713 is recommended instead
other ASCII terminals.

devices
for most

TT=ASCII For full ASCII terminals not equipped to print the
APL character set (OTT=6). This may also be used
for non-APL correspondence te~inals, but TT=713
is recommended instead.

TT=BATCH

TT=B501

For devices that support the ASCII 64-character
set (OTT=7). Usually used for batch or remote
batch ASCII printers.

For batch 501 printer (DTT=8).

TT=TTY383 For certain Teletype 38 models (OTT=9). See
Appendix F.

TT=713 For full ASCII terminals or correspondence
terminals not having the APL character set.
Avoids frequent use of shift key for letters.
E.g. either T or t may be entered for the APL
letter T.

Indicating batch output options. The following options are
intended primarily for batch users of APL. If the APL control
card does not specify output o2tions, it is assumed that
timesharing users do not wish these options and that batch users
do want them.

LO=EPB Any or all
specified.

of the options E, P, or B may be
Any options not specified are not used.

E Echo input. The APL lines read as input are also
sent as output.

P

B

LO=O

Prohibit prompt. The normal APL input prompts (6
spaces or 0: plus transparent mode control bytes, a
lack of which may cause the input translation for
terminals to be incorrect) are not sent to the
output file.

Blank in first column. Causes a blank to be added
to the front of each output line to prevent the
first character from being used for printer carriage
control.

To select none of the E, P, or B options.

Input and output file specification. The input and output files
normally used for--APL are named INPUT and OUTPUT. For
t~esharing jobs this causes input to come from the terminal and
output to be sent to the terminal. For batch jobs input

D-2 60454000 E

ordinarily is from the card deck or CSUBMIT file, and output is
to a line printer. other operating system files can be used
instead. APL translation of input and output is according to the
TT= option (or the default which depends on whether the job is
batch type or timesharing type).

I=file-name Causes input to be read from the named file.

L=file-name Causes output to go to the named file.

L=O No APL output
discarded.)

is produced. (All output is

Initial workspace specification. If no workspace is specified, a
clear workspace is used. Some effort can be saved by specifying
the initial workspace name on the APL control card.

WS=wsname APL operations begin with a copy of the named
workspace as the active workspace.

UN=user-number Used to specify the user number of the
initial workspace. Required only if the user
number of the workspace differs from that
used when signing on.

PW=passwd If the workspace belongs to another user and
has a password, the password must be provided
in order to use it.

Field length specification. The field length used by APL
includes the central memory used for the APL system and the
active workspace. The user is not allowed to specify a field
length greater than that permitted by validation limits
associated with the user name, or greater than the limit imposed
by the computer operator. If no field length is specified, the
APL system chooses a minimum field length that depends on the
current version of APL, and a maximum field length of 24576 words
(60000 octal) or the maximum allowed, whichever is less. The
field length is used for the APL system and the active
workspace. The actual field length used varies dynamically. If
storage requirements exceed the maximum field length, a WS FULL
message results.

MX=number Sets the maximum field length. The number is
assumed to be in decimal form unless followed
immediately by B, in which case it is interpreted
as octal. The value is actually rounded up to a
multiple of 64.

!ft~=number Sets the minimum field length. The number is
assumed to be in decimal form unless followed
immediately by B, in which case it is interpreted
as octal. The value is actually rounded up to a
multiple of 64.

60454000 E D-3

suppressin~ banner. The NH keyword (for no heading) may be used
on the APL control card to prevent the APL system from printing
the usual banner (APL system identification) at the beginning of
the APL session.

D-4 60454000 E

Appendix E. Numerical Limits and Precision

The CYBER computers can represent nonzero numbers having
magnitudes in the approximate range 1.27E322 to 3.14E-294. An
operation that would ordinarily produce a number smaller in
magnitude than 3.14E-294 actually produces zero. Operations that
would produce results of magnitude greater than 1.27E322 produce
a·DOMAIN ERROR.

Numbers within this magnitude range are represented with an
accuracy of about 14 decimal digits (more precisely, to within 1
part in 2*48). The simple operations such as addition,
subtraction, multiplication, and division can be expected to be
accurate to within 1 part in 2*48 except when cancellation
magnifies the errors. However, operations involving numbers that
are integers or powers of 2 give exact results unless the
magnitudes differ greatly. For example, exact results are given
by: .5+4, .25-.125, 8-3.

60454000 A E-l

Appendix F. Use of Terminals at Installations without NAl1/IAF

When NAM/IAF is not used for communications with terminals,
the log on procedure is somewhat more complicated, and the user
must know more about the type of terminal in use. Also, the
system does not sense the character rate of the terminal,
although it determines some information about the terminal class
from the first characters sent. Furthermore, operating system
messages printed on the terminal may use the wrong character set.
For example, *TlME LIMIT* may be printed as ~~lIE Dll~~~ -­
instead of letters the upper case symbols on the same keys as the
letters are printed.

TERMINAL TYPES

ASCII terminals that have the APL character set are divided
into three classes according to which ASCII signals are
associated with the APL symbols. The most common type is
typewriter paired; these terminals have the APL symbol for
multiplication on the same key as the ASCII symbol for equals.
The second class, bit-paired terminals, have the APL symbol for
subtraction on the same key as the ASCII symbol for equals. The
third class, TTY383, applies to Teletype 38 terminals with the
following model numbers: 3841/4EA, 3841/4EG, 385l/6JA, and
385l/6JG.

ASCII terminals without the APL character set either have
the full ASCII character set (e.g. both capital and small
letters) or only the partial character set (e.g. no small
letters). In either case, the terminal type TT=713 is
recommended. This translation treats either the capital or small
letters as the APL letters A to Z and avoids frequent use of the
shift key. (The TTY33 terminal type is nearly obsolete; the 713
type is preferable for most terminals other than Teletype 33
terminals. The ASCII translation allows small letters to be
distinguished from capital letters, but this capability is
usually a nuisance since small ASCII letters become underlined
APL letters.)
60454000 E F-l

Selectric APL terminals use either correspondence
transmission codes or EBCDIC transmission codes. The EBCDIC
codes are not ordinarily supported. Correspondence terminals
that do not print the APL character set can be used with the
TT=713 terminal type as if they were ASCII terminals.

LOG-ON PROCEDURE

The log-on procedure is summarized in Table F-l for the
various types of terminals. The first step is to establish a
telephone connection with the computer, as discussed in Section
1. Ho\vever ,when NM4/IAF with auto baud detect is not used, the
telephone number may vary according to the type of terminal and
the data rate to be used.

Table F-1. Log-on Procedure

Symbol for
First Change TT= = when not

Terminal Type transmission character set option in APL

ASCII typewriter-
paired APL A RETURN TERM, TTY TYPE x

ASCII bit-
paired APL A RETURN TERl-1,TTY BIT -

ASCII TTY383
APL A RETURN TERM, TTY TTY383 -.

Correspondence
APL A ATTN COR =
ASCII
non-APL RETURN 7~3 =
Correspondence
non-APL RETURN 713 =

The initial transmission from the terminal indicates whether
the terminal has the APL character set. Enter
shown in Table F-1. Then provide the account
number, ~nd password as discussed in Section 1.

F-2

the characters
family, account

60454000 E

When the system prints

RECOVER/SYSTEM:

reply with r1ERH, TTY if Table
required for your terminal type.
the appropriate terminal type
example,

APL,TT=COR

F-l indicates this command is
Then type the APL command with

option from Table F-l. For

would be used to indicate that a correspondence APL terminal is
in use. For some terminal types, you must use the x symbol or ­
symbol in place of = because the operating system assumes that
the ASCII symbols are in use. The last column in the table s110\JS
the character to use instead of = for the APL command and other
operating system commands. Note that these substitutions must be
made for commands discussed in Section 13.

TERHINAL CONTROLS

, Table F~2 sllows the terminal controls used to cancel an
input line, stop a program wIllie executing, and to stop a program
\vhile requesting input. The two entries for halting a program
z eques t.Lnq input are for 0 input and [!J input, respectively. The
procedure to cancel an entire input line for corresiJondence
terminals requires that the type element be positioned beyond
what; was already typed. lV.11en you correct input according to the
procedure in Table F-2, the system responds by printing a caret
under the first character to be replaced. You t.nen type
replacement characters. For ASCII terminals you can also use the
LIUE FEED key instead of BReAK; this procedure does not print
the caret prompt, but you do not need to wait for the system to
respond before providing replacement characters.

Table F-2. Terminal Controls

Terminal Cancel Correct Stop Stop
type input input program input

ASCII with BACKSPACEs
APL print BREAI(LINE FEED BREAK 01 or -+

Non-APL BACKSPACEs
ASCII BREAK (or CTRL II} BREAK $G. or $GO

LIUE FEED

APL BACKSPACEs
Correspondence ATTN ATTN ATTN f1 or -+

Non-APL BACKSPACEs
Correspondence ATTU ATTU ATTN $G. or $GO

60454000 E F-3

INOEX

4-3
11-2,3
10-6;

13-3,4

ABORT CDTM request) 18-20
Absent records 10-8,9
Absolute value function
ABSTRACT documentation
Access modes for files

10-11; 10-14,15;
Account number

for files 10-10
for logging on 1-2
from DAI 8-19

Accounting information (DAI)
8-7; 8-18,19

Acoustic coupler 1-1
Active files 10-5
Active workspace 8-8; 8-14
Addition function 4-2
Additive inverse function 4-2
ADDRESS ERROR A-S
AFIFIX 13-6
DAI 8-7; 8-18,19
ALREADY PERMANENT A-5
Alternating product 7-2
Alternating sum 7-2
ANO function 4-3
APL control card 0-1,3
APL SYSTEM ERROR A-6
APL1 public library 11-1
APLNEWS workspace 1-3; 11-1
APL-structured files 10-1

indicated by FSTATUS 10-9
integrity of 10-16

Arc sine, arc cosine, etc.
4-3; 4-5

Arguments to functions 1-6;
2-8; 3-4

ASCAPL terminal type 0-1
ASCII terminals 1-1,3; C-2,11;

n-l,2; F-l,3

60454000 E

Assignment 1-5; 3-6,7; 5-6.
See also Indexed
specification

Atomic vector (DAV) 8-19;
C-l,lO

ATTN key C-3; F-2,3
DAV 8-19; C-l,10
AWSFIX 13-6
Axis operator 3-5; 6-5; 8-11;

A-I

BS01 terminal type C-6,11; 0-2
BACKSPACE key 1-4; C-2,3
Bad character symbol C-l
BAD FILE OR SUBMIT NOT ALLOWED

A-5
Base value function 6-18,19
Batch job submission. See

CSUBMIT
Batch output options 0-1,4
Batch printer translation

C-6,ll; 0-1,2
BATCH terminal type C-6,ll;

D-l,2
Batch use of APL D-l,4
Beta function 4-5
Bit-pairing terminals F-l,2;

0-1
BIT terminal type F-l,2; D-1
Blanks

in commands 3-1
in output 0-2

Boolean data. See Logical
representation

INDEX-l

Branching 2-9; 3-7; 3-9
and efficiency 12-5

(and execute function 6-20
and restarting execution

2-10
in quad input 3-10

BREAK key C-2; F-3
Busy files 10-14; A-4
BYE 13-1

Canceling input 1-4; C-2,3;
F-3

Canonical representation (OCR)
8-11

Carriage control 8-10; 0-2
Carriage return

character C-4
key 1-4
suppression 3-10

CATALOG OVERFLOW - FILES A-S
CATALOG OVERFLOW - SIZE A-5
CAPALOG workspace 11-1

I Category of files 8-8; 9-3;
10-6; 13-4

Catenate function 6-9
CATLIST command 13-3
Ceiling function 4-2; 4-4
Central processor time 8-13;

8-19; 12-5,6
CFPOS 10-12.1/12.2,13; A-4
CFREAD 10-12; A-4
CFWRITE 10-12;10-12.1/10-12.2;

A-4
CHANGE command 8-8; 10-6;

~3-3,4

CHANGE TO READ-ONLY FILE A-4
CHANGES documentation 11-2
Character constants 3-1,3
Character data

density in files ~0-15

Character set
OAV 8-19
and CFWRITE 10-12
for coded files 10-11

I tables C-l,ll
Character type 6-5
Check protect 8-24
Circular functions 4-3;4-5
) CLEAR 8-7; 8-15; 9-~; 10-14
Clear workspace 8-7; 8-15
CLEAR WS 1-3
CLIST (to list coded files)

10-17

INDEX-2

Closing function definition
2-3

CMAP ~0-18

Coded files ~O-l; 10-11,13;
lO-15; C-~

character set C-1,11
creating lO-·8
indicated by FSTATUS 10-9
listing 10-17

. repositioning
.10-12.1/10-12.2; lO-13

Coded file read (CFREAD) 10-12
Coded file write (CFWRITE)

10-12, .10-12.1/10-12.2
Colons and CFWRITE ~0-l2,12.1

Column coordinate 5-1
Combinations~of function 4-3;

4-5
Comments 3-1,2
Comparison tolerance (OCT)

8-10
and floor and ceiling 4-4
and grade up and grade down

6-8 .
and IMPLICIT ERROR A-1,2
and matrix inverse 6-23
and power function 4-5
and relational £unctions

4-5,6
default value for 8-6
in clear workspace 8-7

Compress function 6-l0,11;
~2-4

Composite functions 7-1
Connect time 8-l9
Constants 3-2,3; l2-6
Constant vector 3-2
Context editing 2-5,7
Control card for APL 0-1,4
Conversion between number

systems 6-18,19
OCOpy 8-11; 8-15; A-1
)COpy 9-3
Copying APL files 10-16,17
COR terminal type C-2,3; 0-1;

F-~,3

Correcting typing errors 1-4;
C-2,3; F-3

Correspondence terminals
C-2,10; 0-1; F-l,3

Cosine function 4-3; 4-5
CPU time 8-~3; 8-19; l2-5,6
OCR 8-11; A-I

60454000 E

Creating files 10-12,14
CRT terminals 8-9,10
CSUBMIT 10-13; 13-4; A-4; D-3
OCT 8-10

and floor and ceiling 4-4
and grade up and grade down

6-8
and IMPLICIT ERROR A-l,2
and matrix inverse 6-23
and relational functions

4-5,6
default value for 8-6
in clear workspace 8-7

Data rate C-2; C-S
Deal function 6-7,8; 8-11; A-I
Decimal format for output

6-21,22; B-1
Decode function. See Base

value function
DEFN ERROR 2-3; A-3
DEL 1-4; A-7
Delay CODL) 8-20
Deleting function lines 2-4
DESCRIBE documentation 11-2
DEVICE NOT READY A-5
DEVICE RESERVED A-S
DEVICE STATUS ERR. A-5
Diamond symbol (line separator)

2-7
digits 3-2
Digits for output. See

Printing precision
)DIGITS. See OPP
Dimensions of an array 5-1
Direct access files 10-13,15

creating with FCREATE 10-8
indicated by FSTATUS 10-9
integrity of 10-16

Direct access workspaces 8-8
Disconnect

and busy files 10-14
and lost space 10-15
and storage statistics

10-16
Disk storage space 12-3,4
Display of arrays 5-2,3
Displaying functions 2-4
Distinguished names 8-12
Divide function 4-2
DDL 8-20
Documentation standards

11-2,3

60454000 E

DOMAIN ERROR 6-23; 7-2; 8-l;
A-2; E-l

Domino functions. See Matrix
divide or Matrix inverse

Double entry format 8-23
DDROP 8-15
)DROP 9-3
Drop (primitive function) 6-13
Dyadic format 6-22,23
Dyadic functions 3-4
Dyadic save 8-14
Dyadic transpose 6-16,18; A~l

EBCDIC terminals F-2
Echo input option D-2
Editing of functions 2-l,8
Efficiency

for APL programs 12-1,6
for files 10-15,16

Encode. See Represent function
End of information, file,

record 10-11,13
ENQUIRE command 10-13; 13-4
DENV 8-7; 8-11; A-I
Environment control (DENV)

8-7; 8-11; A-I
Equals function 4-3; 4-5,6;

A-I
Equals symbol for operating

system commands 13-1;
F-2

)ERASE 9-3
Erasing direct access files

(FEj3ASE) lO-14
Erasing files and workspaces

8-15
Erasing functions and variables

8-11,12; 9-3
DERR 8-7; 8-17,18
Error matrix CDERR) 8-7;

8-17,18
Error messages A-l,7
Error processing 8-16,18
Error trapping 8-16,18
Escape from function definition

2-7
OEX 8-11,12; A-I
Exception rules 6-1; 6-5
EXCHANG~ PACKAGE A~6

Execute function 6~20i 8-16
Execution of functions 2-8,11
Expand function 6-11,12
exponent 3-3

INDEX-3

Exponential format for output
6-22; 8-21; B-1

Exponential function 4-2
Exponential notation for

constants 3-3
expression 3-7
Expunge (OEX) 8-11,12; A-I
Extending function lines 2-5
OEXTRACT 8-24

Factorial function 4-3
Family identifier 1-2
FCOPY 10-16,17
FCREATE 10-8; 10-12,14
OFD 3-2
FDX C-5
FERASE 10-10
FFREE 10-8
OFI 10-4,5; 10-7
Field length 8-19,20; 12-2,3;

0-3
File access information 13-3
File create 10-8; 10-12,14
FILE DAMAGE A-4
File efficiency 10-15,16
File erase 10-10; 10-14
File integrity 10-16
FILE LIMIT A-6
File limits 10-3
File marks in coded files

10-11,13
File names 8-16; 10-5; 10-10
File numbers 10-10
File passwords. See Passwords
File positioning 10-8;

10-12,13
File read 10-8
File record delete 10-8
File return 10-10
File sizes 8-16; 10-9; 10-15,16
File status 10-8,9
File submit 10-13
File system 10-1,18
File tie 10-11; 10-14
FILE TIE ERROR A-4
FILE TOO LONG A-6
File type 8-16
File untie 10-10; 10-14
File write 10-8
FILES2 workspace 10-16,18;

11-1
FILESYS workspace 10-1,18;

11-1
Fix (OFX) 8-11

INDEX-4

Floor function 4-2; 4-4
FMAP 10-18
FNAMES 10-10
)FNS 9-4
FNUMS 10-10
FORCED ERROR A-6
Format for array output 5-2,3
Format for normal output B-1
Format functions

"' 6-21,23
OFRMT 8-20,24

Format phrases 8-21
FPOS 10-7,8
FRDEL 10-8; 10-15
FREAD 10-8; A-4
Free record number 10-8
FRETURN 10-10
OFRMT 8-20,24
FSTATUS 10-8,9
FTIE ~0-10,11; 10-14
Full ASCII terminals C-2,10
Full duplex mode C-5
Function classifications 3-3
Function definition mode

2-1,11; 3-2; 8-11
Function execution 2-8,11
Function header 2-1; 2-3,4;

2-9,10
Function names, form for 2-1
6681 FUNCTION REJ. A-5
Functions, user defined 2-1,11

listing names of 8-12; 9-4
storage requirements for

12-4
FUNTIE 10~0; 10-14; A-5
Fuzz. See OCT
FWRITE 10-8; 10-12; A-4
OFX 8-11

Gamma function 4-3
Global environment 8-11
Global variables 2-8
Grade up and grade down 6-8;

8-11; A-I
Greater than function 4-3;

4-5,6; A-I
Greater than or equal function

4-3; 4~5,6; A-I
Groups 8-12; 9-1; 9-4
)GFjOUP 9.... 4
)GRP 9-5
GRPDOC documentation 11-2
)GBPS 9-4

60454000 E

Inverse of a matrix 6-23,24
DIO (Index origin)

8~10 .l/8-.10. 2, 8-l1
and grade up and grade down

6~8

and IMPLICIT ERROR A-l
and index-of function 6-6
and indexing 5-1
in clear workspace 8-7

Italic notation 3-2,3

Half duplex mode C-5
Halted function 2-9,11
Halting execution 2-10; C-l,2
HDX C-5
Headers for functions 2-1;

2-3,4
HELLO command 13-1
Heterogeneous output 3-9
Histogram function 1-7
Horizontal tabs 8-10
HOW functions 11-2
OHT 8-7; 8-10
Hyperbolic functions 4-3; 4-5

Job submission
Jo.in function

10-l3
6-5; 6-9.

IAF log-on procedure 1-1,3;
C-2,4

Identity result from reduction
7-2

ILLEGAL USER ACCESS A-5
Immediate execution mode 1-4
IMPLICIT ERROR 8-1; 8-6; A-I
INDEX ERROR A-2
Index generator function 6-6;

8-11; 12-4
Index-of function 6-6; 8-11;

A-I
Index origin (OIO)

8-10.1/8-10.2,8-11
and clear workspace 8-7
and grade up and grade down

6-8
and IMPLICIT ERROR A-I
and index-of function 6-6
and indexing 5-1

Indexed selection 3-6; 5-5
Indexed specification 3-6,7;

5-6
Indexed variables 3-6. See

also Indexed
specification, Indexed
selection

Indirect access files 8-8;
10-5; 10-9; 10-15

Inner product 3-5; 7-1; 7-4,5
Input file specification D-2,3
Input using quote quad and quad

2-11; 3-9,10; 8-16; C-2;
F-3

Inserting function lines 2-3
Integer domain 8~10

Integer format 6-22; 8-21
Integrity of files 10-16
Interrupt 8-17,18; C-2,3; F-3
INTERRUPT A-I

60454000 E

Keying time 8-19

Label variables 2-8
Labels on statements

and DERR 8-11
and execute function 6-20
form for 3-9
and OFX 8-11
and line renumbering 2-4
and localization of 2-8,9
and ONC 8-12
and state indicator 2-9,10
and symbol table 12-4

Laminate function 6-9
Largest record number 10-9
Latent expression (DLX) 8-15
OLe 8-18
Least squares 6-24
Left argument 3-7
LENGTH ERROR 4-1; A-2
Less than function 4-3; 4-5,6;

A-l
Less than or equal function

4-3 ;4-5 ,6; A-l
DLIB 8~15,16i lO-6
)LIB 9-4
Libraries of workspaces 8-8;

8-l4,16; 11-1,3
Library list (DLIB) 8-15,16
LIMIT ERROR 6-20; A-I
LII1ITS command 13-4
line 3-9
Line correction 1-4; C-2,3;

F-3
Line editing 2-4
LINE FEED key 1-4; C-3,4; F-3
Line labels. See Statement

labels
Line printer translation

C-6,11

INDEX-5

Line separator 2-7
Line timing controls (OLTIME)

8-11,13
Linear equations 6-23,25
Listing coded files 10-17
Listing user-defined functions

2-4
lists 3-8,9; 8-20
Lists of names for system

functions 8-7
DLOAD 8-14,15; 9-3
Local environment 8-11
Local functions 2-8; 8-11
Local system variables 8-1
Local variables

and OENV 8-11
behavior of 2-8,9
declaration of 2-3
names of active 2-9,10;

8-18i 9-4
Location counter (OLC) 8-18
DLOCK 8-11,12; A-I
Locked functions

and error processing
8-16,18

and OCR 8-11
and OERR 8-17
creating 2-11; 8-12
for file security 10-7

LOCKED OBJECT A-2
Locked variables

and statement labels 2-8
and ONC 8-12
creating 8-12
for groups 9-1

Logarithm 4-2
Logging on 1-1,3; C-2,4; F-l,3
Logging off 1-8;8-20
Logical representation 10-15;

12-3
Lost space in files 10-9;

10-15
OLTIME 8-11,13; A-I
DLX 8-15

Magnitude function 4-3
Magnitude range for numbers

E-l
Matrix 5-1
Matrix divide 6-24,25
Matrix inverse 6-23,24
Matrix product 7-4,5
Matrix transpose. See Monadic

transpose

INDEX-6

Maximum field length 8-19,20;
~2-2,3; D-3

Maximum function 4- 2
Membership function 6-7; A-I
Memory space. See Storage

requirements
Minimum field length 8-19,20;

12-2,3; 0-3
Minimum function 4-2
Minus. See Subtraction,

Additive inverse, or
Negative symbol

MIXED FUNCTION A-3
Mixed functions 5-1,6; 6-1,25
Modes ~0-6; ~0-1~; ~0-14,15;

13-3,4
Modify mode ~3-3

Modulus. See Residue
Monadic format function

6-21,22
Monadic functions 3-4
Monadic transpose 6-15,16
Multiplication 4-2

NAM log-on procedure 1-1,3;
C-2,4

Name class ~-4i 8-11,12; A-I
NAME IN USE A-3
Name list (ONL) 8-11,12; A-I
N~e list for stored workspaces

(ONAMES) 8-11; 8-15
Name lists for system functions

8-7
NAME NOT FOUND 8-11; A-3
Name of active workspace 8-14
Names

and spaces 3-1
for files 10-5
for workspaces 8-8
lists of, for system

functions 8-7
of tied files 10-10

Names of files, changing 13-3
ONAMES 8-11; A-I; 8-15
NAND function 4-3
Natural logarithm 4-2
ONe 3-4; 8-11,12; A-I
Nearest integer 8-10
Negative symbol 3-3
Niladic branch 2-~0; 3-7; 3-9
Niladic functions 3-4
NINT (nearest integer) 8-10
ONL 8-11,12; A-I
NOR function 4-3

60454000 E

Not equal function 4-3; 4-5,6;
A-I

NOT function 4-3
Not greater than function 4-3;

4-5,6; A-I
Not less than function 4-3;

4-5,6; A-1
Number conversion 8-24
Number system conversion 6-18
Numbers of tied files 10-10
Numeric constants 3-2,3
Numeric conversion using format

functions 6-21,23;
8-20,24

Numeric output format B-1
Numeric type 6-5

Odometer order 5-3,4
OFF (DTM request) 8-20
)OFF 9-4
One origin 5-1
Open definition 2-3
Operating system commands 13-1
Operating system error messages

A-4,6
OPERATOR DROP A-6
Operators 3-5; 7-1
Optimization of APL programs

12-1,6
Order of evaluation 3-1;

3-6,7; 5-6
Ordering of array elements

5-3,4
OR function 4-3
Origin (OIO) 8-11

and grade up and grade down
6-8

and IMPLICIT ERROR A-I
and index-of function 6-6
and indexing 5-1
in clear workspace 8-7

) ORIGIN. See OIO
Outer product 3-5; 7-1; 7-4

60454000 E

Output
control 8-9
conversion using format

functions 6-21,23;
8-20,24

efficiency 12-6
file specification n-2,3
formatting 6-21,23;

8-20,24; B-1
implicit 3-9
lists 3-9
of arrays 5-2,3
options D-2
using quad and quote quad

3-9,10
OVERIDE CONDITION A-6
Overriding line numbers 2-3
Overstrike .1-5
OVL A-7

Packing files 10-5
Page eject 8-10
PARAMETER ERROR A-6
Parity C-5
PARITY ERROR A-5,6
PASSWOR command 13-2
Passwords

changing 8-8; l3-2
for files 10-5,6
for logging on ~-3

for workspaces 8-8
specifying with FCREATE

10-8
Pendent functions 2-9,10
Per-element time l2-5,6
Permanent files 10-5
PERMIT command 10-6; 13-4; 8-8
PF UTILITY ACTIY~ A-5
PHRASE NOT FOUND A-3
Pi-times function 4-3

:DPL 8-7; 8-9,10
Plane coordinate 5-1
Plus function 4-2

INDEX-7

Position of a file 10-7
Positioning files 10-8;

10-12,13
Power function 4-2; 4-4
OPP 8-6,7; 8-9; A-I
PP ABORT A-6
Precision of calculations E-1
Preconversion of V and) 3-2
Primitive functions 3-4
Print lines (DPL) 8-6,7;

8-9,10
Printer carriage control 8-10;

0-2
Printing precision (OPP)

8-6,7; 8-9; A-1,2
Printing width (DPW) 3-10;

8-6,7; 8-9
Printing width (NAM) ~-3

Privacy of files 10-6
Private files 8-8; 10-6
Program libraries 8-14,16;

11-1,3
Prohibit prompt option 0-2
Prompt suppression 0-2
Protected copy 9-3
PROTECTED WORKSPACE 13-6; A-3
PSTATUS 10-9
Public files 8-8; 10-6; 10-8
Public libraries 11-1
Purging files and workspaces

8-15
OPW 3-10;8-6,7; 8-9

Quad input and output 2-11;
3-9,10; 8-16; C-1,2;

Qualifiers for format 8-22,23
Quotes in constants 3-3
Quote-quad input and output

2-11;3-9,10; C-1,2

Radices 6-18
Random link 8-7; 8-10.1/8-10.2
Random number functions 6-7
RANK ERROR 4-1; 8-1; A-2
Rank of an array 5-1; 5-4
Ravel function 5-4
Read mode 10-6; 10-11;

10-14,15; 13-3
Read-modify mode 10-7; 10-11;

10-14,15; 13-3
REAOY light 1-2
Reciprocal function 4-2
Record delete (FRDEL) 10-8

INDEX-8

Record marks in coded files
10-11,13

Record number, largest 10-9
Record numbers 10-5,6
Records 10-1
RECOVER 10-14,15; 13-2
Recursive functions 8-13
Reduction 3-5; 7-1,2
Regression coefficients

6-24,25
Relational functions 4-3;

4-5,6; A-I
Remainder. See Residue
Removing function lines 2-4
Renumbering function lines 2-4
Repetition count for context

editing 2-6
Report formatting function

8-20,24
Repositioning files 10-8;

10-12,13
Represent function 6-19,20
Residuals 6-24,25
Residue function 4-3; 4-5
Response time 12-2
Restarting execution 2-10
Result variable 2-1; 2-8,9;

3-4,5
RETURN key 1-4
Returning files 10-10
Reverse function 6-14
Revising functions 2-3,7
Revising input 1-4; C-2,3
Rewind ~0-13

DRL 8-7; 8-10.1/8'!""~0.2; A-I
Roll function 4-3; 8-~1; A-I
Rotate function 6-14,15
Row coordinate 5-1

S ,nti)mbex 13-3
OSAVE 8-14; A-I
)SAVE 9-3
Scq1ar qrrays 5~~

Sca1a+ extension 6'!""5
Scalar functions 4-~

Scan functions 3-5; 7-1; 7-3,4
Scientific notation for

constants 3-3
Scientific notation for output

6-22; 8-21; B-1
Sealing workspaces 13-6
Security of files 10-6
Security of workspaces 13-6

60454000 E

Seed. See ORL
Selectric terminals 1-1; 1-3;

C-2,4; D-1
Semantics for APL statements

3-1,10
Semiprivate files 8-8; 10-6;

10-8
Sequential file operations

10-7
Session variables 8-7
SETTL command 13-3
Setup time 12-5,6
Shape of an array 5-3,4
Shared files 10-14,15
Shifted output option D-2
Shortcuts in function editing

2-7
)SI 2-9,10; 9-4
SI DAMAGE 2-10; 8-11; A-3
Significant digits for output

8-9
Signing off. See Logging off
Signing on. See Logging on
Signum function 4-2
Sine function 4-3; 4-5
OSIV 8-18
)SIV 2-9,10; 9-4; 8-18
Size function 5-4
Sizes of files 8-16; 10-9;

10-15,16
Skip record, file, or to end

10-12,13
Sorting 6-8
SOURCE documentation 11-2
Space requirements. See

Storage requirements
Spaces 3-1
Special editing mode C-3
Specification. See Assignment

or Indexed specification
5-6

Square root. See Power
function

SRU 8-19
SRU LIMIT 13-3; A-7
Standards for programs 11-1,3
State indicator 2-9,11; 8-18;

9-4
State indicator damage 2-10;

8-11; A-3

60454000 E

Statement labels
and execute function 6-20
and OFX and OCT 8-11
and line renumbering 2-4;

8-11
and symbol table 12-4
form for 3-9
in SIV display 2-9,10
localization of 2-8,9

Status of files (FSTATUS)
10-8,9

DSTOP 8-11,13; A-I
Stop controls 2-11; 8-11,13
Stopping function execution

2-10; C-l,2
Storage requirements

and DWA 8-19,20
in files 10-15,16
in workspaces 12-2,4

Stored files 10-5
Stored workspaces 8-8
Submitting batch jobs. See

CSUBMIT
SUBSYSTEM ABORT A-6
Subtraction function 4-2
Suspended functions 2-9,11;

3-7
DSY 3-2
Symbol table size 12-4
SY NTAX ERROR 6-5; A-I
Syntax for APL statements

3-1,10
)SYSTEM 9-4

SYSTEM (DTM request) 8-20
SYSTEM ABORT A-6
System commands 2-1; 3-2;

8-11;9-1,5
System functions 3-3; 8-1,24
System Resource Units 8-19
System variables 3-5; 8-1,24

T,number command 13-3
Table lookup 7-5
Tabs 8-10
Tails in files 10-9; 10-l5
Take function 6-12,13
Tangent function 4-3; 4-5

INDEX-9

Telephone disconnect
affects storage statistics

10-16
and busy files 10-14
and lost space 10~15

and RECOVER command 13-2
Teletype terminals D-2; F-1
Terminal mode COTM) 8-20
Terminal switch settings C-4,5
Terminal type (OTT) 8-7; 8-19;

0-1,2
Terminal type

specification of 0-1,2
Terminal types C-l,ll; 0-1,2;

F-1,3
Tied files 10-3,4
TIME LIMIT ~'3-3; A-7
TIME LIMIT A-6
Time stamp (OTS) 8-7; 8-19
Timing controls 2-11; 8-12,13
Timings, table of 12-6
Times function 4-2
OTM 8-20
OTRACE 8-11,13; A-I
Trace controls 2-11; 8-~1,13;

A-I
TRACK LIMIT A...6
Translation for input and

output C-l,ll; 0-1,3
Translation tables C-1; C-6,11
Transpose functions 6-15,18;

A-I
OTRAP 8-17,18; 10-7
Trap ~ine 8-17,18
OTS 8-7;8-19
OTT 8-7; 8-19; 0-1,2
TT=713 terminal type C-2,3;

C-6,11; 0-2; F-2
TTY33 terminal type C-3; 0-2
TTY383 terminal type 0-2;

F-1,2
Type of an array 6-5
Types of files 8-16
TYPE terminal type 0-1; F-l
Typewriter-pairing terminals

0-1; F-~

INDEX-IO

)UCOpy 9-3
UNDEFINED FUNCTION A-3
UNLOCK key 1-2
'Unprotected copy 9-3
Unquote function. See Execute

function
Untie for files 10-10; 10-14
Unused space 10-9; 10-15
User defined functions 2-1,11;

3-4
User name

for logging on 1-2.
See also Account number

Vacant list elements 3-8
value 3-6
VALUE ERROR 3-4; A-2; 3-5
Variable name replacement 2-6
Variable names 3-5
Variables 1-5
Variables, names of defined

9-4
)VARS 9-4
Vector 1-5; 5-1
Visual fidelity ~-4

OWA 8-7; 8-19,20; ~2-2,3; A-3
Weightings 6-18
)WIDTH 0 See OPf{
Working area (OWA) 8-7;

8-19,20; 12-2,3
Workspace 1-7
Workspace identification

(DWSID) 8...14
Workspace names 8-14; 8-8;

8-14,15
Workspace size. See Field

length
Write mode ~0-6; 10-8;

~0-14,15; ~3-3

WRONG TYPE FILE A-4
WB FULL 8-19,20; 12-2,3; A-3
WB NOT FOUND A-3
DWBID 8-14; A-I; A-5

Zero origin 5-1

60454000 E

MANUAL TITLE:

COMMENT SHEET

CDC APL Version 2 Reference Manual

•

PUBLICATION NO.: 60454000 REVISION: F

NAME: ~-----------------------

COMPANY: _

STREET ADDRESS: _

CITY: STATE: ZIP CODE: _

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

w
Z
:::;

C>z
o
..,I

<C(

I­
:::>
u

0-'",---..,
~

»
w
a::

o Please reply o No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

TAPE TAPE

FOLD FOLD

---~

III II I
BUSINESS REPLY MAIL

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STAYES

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. w
Z
:::.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
215 Moffett Park Drive
Sunnyvale, ~alifornia 94086

---~ffiW ffiW

TAPE
TAPE

I

I

I
I

TABLE OF DISTINGUISHED FUNCTIONS AND VARIABLES

114M.~ lI.~AN.l.ll.G. fAG.! ll.dM~ H~4N.l.ll.G. f4a~

DISTINGUISED VARIABLES

OAI ACCOUNTING 8-19 OAV ATOMIC VECTOR 8-19INFORMATION DHT TAB SETTING 8-19OCT COMPARISON TOLERANCE 8-10 OENV ENVIRONMENT CONTROL 8-11
OERR ERROR MESSAGE 8-17 010 INDEX ORIGIN 8-19.1
OLC LOCATION COUNTER 8-18 OLX LATENT EXPRESSION 8-14
OPL PRINT LINES 8-9 OFP PRINT PRECISION 8-9
OPW PRINT WIDTH 8-9 ORL RANDOM LINK 8-19.1
OTS TIME STAMP 8-19 OTT TERMINAL TYPE 8-19
OWA WORKSPACE AVAILABLE 8-19 OWSID WORKSPACE IDENTIFIER 8-13

DISTINGUISHED FUNCTIONS

OCOPY PROTECTED COPY 8-15 OCR CANONICAL 8-11
REPRESENTATION

ODL DELAY EXECUTION 8-20 ODROP DROP PERMANENT FILE 8-15
OEX EXPUNGE 8-12 OFI FILE SYSTEM FUNCTION SEC 19
OFRMT FORMATTING FUNCTION 8-20 OFX FIX FUNCTION 8-11
OLIB LIBRARY 8-15 OLOAD LOAD WORKSPACE 8-14
OLOCK LOCK OBJECTS 8-12 OLTIME SET TIMING VECTOR 8-13
ONAMES NAME LIST 8-15 ONC NAME CLASS 8-12

FROM SAVED WS
DNL NAME LIST 8-12 OSIV STATE INDICATOR 8-18

WITH VARIABLES
OSTOP SET STOP VECTOR 8-13 OSAVE SAVE WORKSPACE 8-14
OTM TERMINAL MODE 8-20 OTRACE SET TRACE VECTOR 8-13
OTRAP SET ERROR TRAP 8-18

TABLE OF FILE SYSTEM FUNCTIONS

li.4l1.l lI.~4N.Z.ll.G. fd-G.! li.AM.~ lI.~411.I.1lG. f4a~
FCREATE CREATE FILE 1B-8 FWRITE RANDOM RECORD WRITE IB-8
FREAD RANDOM RECORD READ 18-8 FRDEL RANDOM RECORD DELETE 1B-8
FFREE GET FIRST FREE 1B-8 FPOS SET FILE POSITION 10-8

RECORD NUMBER
FSTATUS GET FILE STATUS 1B-8 PSTATUS PRINT FORMATTED 10-9
FNAMES GET FILE NAMES IB-18 FILE STATUS
FUNTIE UNTIE FILES 1B-10 FNUMS GET FILE NUMBERS 10-10
FERASE ERASE ACTIVE FILES 10-10 FRETURN RELEASE ACTIVE FILES 10-10
FPACK PACK FILE 10-11 FTIE TIE A PERMANENT FILE 10-10
CFREAD READ CODED FILE 10-12 CFWRITE WRITE TO CODED FILE ' 10-12
CFPOS POSITION CODED FILE 10-12.1 CSUBMIT SUBMIT BATCH JOB 10-13

FROM A CODED FILE

60454000F

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

~:?)
CO~OL DATA CO~ORf\T10N

LITHO IN U.s.A.

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	07-01
	07-02
	07-03
	07-04
	07-05
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10.0
	08-10.1
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20.0
	08-20.1
	08-21
	08-22
	08-23
	08-24
	09-01
	09-02
	09-03
	09-04
	09-05
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12.0
	10-12.1
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	11-01
	11-02
	11-03
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	D-01
	D-02
	D-03
	D-04
	E-01
	F-01
	F-02
	F-03
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	replyA
	replyB
	xBackA
	xBackB

