60454000 F

049
@'5) SQNTROL DATA i
CORPORATION 2,0
(z=H 1)
APL
VERSION 2

REFERENCE MANUAL

CDC® OPERATING SYSTEM:

NOS

TABLE OF APL SYMBOLS REFERENCED IN THE TEXT OTHER THAN TABLE C-2

SYMBOL HNAME AND/OR USE

+

X

r

A

- A

PLUS

TIMES

SIGNUM
MAXIMUM
CEILING
POWER
EXPONENTIAL
RESIDUE
MAGNITUDE
CIRCLE

PI TIMES

NOT EQUAL
LESS THAN
GREATER THAN
AND

NAND

RESHAPE

SIZE
INDEXING
FUNCTION INDEX
INDEX OF
INDEX GENERATOR
MEMBERSHIP

GRADE UP

COMPRESS

REDUCE

CONTEXT EDITING (V)
157 COORD COMPRESS
1ST COORD REDUCE
TAKE

ROTATE

REVERSE

BASE VALUE

EXECUTE

DECIMAL POINT
GROUP INDICATOR
INNER PRODUCT
TRANSPOSE

QUAD (INPUT-OUTPUT)
LINE EDITING (V)
FUNCTION DEFINITION
BRANCH

COMMENT
PARENTHESES
DIAMOND

ALPHABET

@(0UT) ESCAPE FROM [N INPUT

*' FROM EDITOR (V)

PAGE
4.2

4-2
4-2
4-2

4-2,4-4

4-2,4-4
4-2
43,45
4-3
4-3,4-5
4-3,4-5
4-3,4-5
4-3,4-5
4-3
4-3
4-3
5-3
5a4
55
35
6-6
6-6
6=17

6-8
6-10
T=-1
2-5
6«5
6«5
6=12
6-14
6-14
6-18
6-20
3-3
9-1
7-4
6=15
3=9
2-4
SEC 2
2=9
3-2
3-6
27
3=2

2«7
2«11

SYMBOL NAME AND/OR USE

-

1> O o 2w o Q”Ef o

MINUS
SUBTRACT
DIVIDE
RECIPROCAL
MINIMUM
FLOOR

(ox) LOGARITHM
NATURAL LOG

('.) COMBINATIONS
FACTORIAL
EQUAL

NoT
VOT GREATER THAN
NOT LESS THAN
OR
(v~) NOR
JOIN
RAVEL
(,-) 18T COORD JOIN

([1¢) MATRIX INVERSE
MATRIX DIVIDFE
DEAL
ROLL

(V|) GRADE DOWW
EXPARND
SCAN

(\-) 18T COORD EXPAND
1ST COORD SCAWN
DROP

(o-) 1ST COORD ROTATE
1ST COORD REVERSE
REPRESENT

(To) FORMAT

.S OUTER PRODUCT
SPECIFY

(O0') QUOTZ QUAD

(VA) BAD CHARACTER

(V~) DEL TILDE
coLon
SEMI-COLON (LISTS)
QUOTE

(S|) DOLLAR SIGN

«e+.9 DIGITS
LINE DELETION (V)
NEGATIVE
BREAX OR ATTHN
DIERESIS

PAGE
42

4-2
4.2
4-2
4.2

4-2,4-4
42
422

4=3.4-5
4-3

4-3,4-5

4-3
4-3,4=5
4-3,4-5
4-3
4-3
6-9
5-4
6=5

6~23
6-24
6=7
4-3
6=8
6=-11
7=3

6-5
6=5
6-13
6=-5

6-19
6-21

7-4
1-5
3-9
10-11
SEC 2
3-9
3-8
3=3
C-1
3=2
2«4
3-3
C-2
C-1

(Continued on the inside of the back cover)

60454000

@ E,CONTROL DATA
CORPORATION

APL
VERSION 2
REFERENCE MANUAL

CDC® OPERATING SYSTEM:
NOS

REVISION RECORD

REVISION DESCRIPTION
A Manual released.
(9-15-76)
B Manual revised to reflect NOS 1.2 at PSR level 460.
(2-10-78)
C Manual revised for APL version 2.1 level 472 and NOS 1.3 level 472. The changes include the
(6-13-78) documentation of the repetition count feature of 0O FRMT, the FPACK file function, a file storage
efficiency equation, the workspace SEAL capability, terminal usage under NAM/IAF, and several
technical corrections.
D Manual revised to reflect NOS 1.3 at PSR level 477 and to make technical and typographical
(8-18-78) corrections.
E Manual revised to reflect NOS 1.4. The changes include the incorporation of new NAM/IAF
(7-20-79) protocols, a few improvements in notation, and several technical corrections.
F Manual revised to reflect PSR level 528. The changes include enhancement of FSTATUS to show
(11-31-80) read failure for coded files, and several technical corrections.

Publication No.
60454000

Address comments concerning

REVISION LETTERS I, O, Q AND X ARE NOT USED this manual to:

©

1976, 1978, 1979, 1980 by Clark Wiedmann

All rights reserved.

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the

Reprinted by Control Data Corporation

with permission from Clark Wiedmann.

ii

back of this manual

LIST OF EFFECTIVE PAGES

0 S
. O
© Q
o g
2
>y
)
&
DR
- O
el
O o
— =
hor]
<
o—
>
0
b [
55 5
—
E=] 7
S o CTLLC UL LCLCOLLL COLTNOL L LLCLLLLOOOOWIOO QOO WL OLIL OO L O <€ WO WLl e O O O
<C >
2 o
[[~ 4
E .
o
v O
—
< O
B o
&
o=
w— ™
= wn
G
- o~ o
+ o . .
©
o o o
Ewm %J — N
Wp] | 1
o © <)
fe ~ ~
£ - —
—
— ™ < w0 ~ O NS WO OCCHNMT HON VOO O N M —o <
..w..m 89N1H141M1B12229__2nd_lnﬂ_own“.rﬂvJZown“.rwrwJo.oJJ41411111111222229.;47...4.4R.un.vmvn_uo
| 1
Se 6566666566665666657777788888888888888888888888888999991111
s2
—
4
-y
273
am_r..g
228
aUh
20
y N
2o0wm
S <
T A
<
@
— e
[T =
=g 5
ng © "
%%M = tH L OCOoLWULLWNCO T LU CLL XXX OLL QL L U O L L L <L L L O L L L <L <L L L < L <L <C <L L D <C
oc
£=s 2
© 4
o
Cde
=
wn
o T4
— 2%
—a e S
L O [
k- S >
w 8 8
= o
o—
oo O [J] s =
22 | B || 288
ml“ o OL. ©
2Eg S o
° o+ T o
[T t22 (=] o
50 O wne o 23456_/81?_345678911123455789112345512345671234567
- L e > e [| UBUBUPUUBUS) UL R S RN RN e
wn.m L b= oo > > S 111111122222222222333333333344444455555556666665
= -

iiie

60454000 F

Page

Revision

10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-12.1/10-12.2
10-13
10-14
10-15
10-16
10-17
10-18
11-1
11-2
11-3
12-1
12-2
12-3
12-4
12-5
12-6
13-1
13-2
13-3
13-4
13-5
13-6
A-1

A-2

A-3

A-4

A-5

A-6

A-7

B-1

c-1

c-2

c-3

c-4

c-5

C-6

c-7

c-8

c-9
c-10
c-11
D-1

D-2

D-3

D-4

E-1

F-1

F-2

F-3
Index-1
Index-2
Index-3
Index-4
Index-5
Index-6
Index-7
Index-8
Index-9
Index-10
Comment Sheet
Inside Back Cover
Back Cover

FTMmmmmam i mmmmMmmMmmM e MMM T T MM mmmmm e m OO0 mOWPMEDPODLIDPEBOOOTIOTTTIBORO

iv

60454000 F

PREFACE

This manual describes the APL 2 system, an implementation of
the APL language available under the NOS operating system. The
APL language had its origins in the book A Programming Language
(John Wiley & Sons, MNew York, 1962) by Kenneth E. Iverson.
Because a single line in APL typically expresses what would
require many lines in other languages, programs can be written in
APL in a fraction of the time with less chance of error. The
programs that result tend to be easier to use and easier to
extend.

Primary objectives in the design for the APL 2 system were:
to achieve a very high 1level of performance, to provide a
flexible file system, to incorporate system functions and
variables, to provide all system command capabilities to
user-defined functions, and to allow all workspace areas
(including the symbol table and file buffers) to change size
dynamically according to changing needs. The storage management
scheme was designed to anticipate future extensions of APL to
allow list structures.

The APL 2 system, formerly named APLUM, was developed under
the direction of James . Burrill at the University Computing
Center of the University of Massachusetts. (The APL 2 system
accepts files and workspaces produced by the APLUM system with
full compatibility.) This manual is a Control Data adaptation of
the APLUM Reference Manual (second edition, 1975) by Clark
Wiedmann. The following programmers also participated in the APL
2 syvstem development: Rick Mayforth, Sheldon Gersten, Brian
Arnold, Jeff Dean, Judy Smith, Bob Weinberger, and Ira Greenberg.
In addition, Pat Driscoll and Wendy Mayfield assisted with
documentation. Development of APLUM and APL 2 was supported in
part by a grant from Control Data Corporation.

60454000 C v

Note that this manual is organized as a reference manual,
not as a teaching manual. The intent is to accurately describe
the APL 2 system, but not to teach APL to the novice. A reader
who lacks familiarity with the APL language is advised that it is
much easier to learn APL from an introductory text rather than
from a reference manual such as this.

The following manuals contain information concerning the NOS
operating system:

Control Data Publication Publication No.

NOS Version 1 Time-Sharing User's

Reference Manual 60435500
NOS Version 1 Time-Sharing User's Guide 60436400
NOS Version 1 Reference Manual, Volume 1 60435400

Network Products Interactive Facility
Version 1 Reference Manual 60455250

Network Products Interactive Facility
Version 1 User's Guide 60455360

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features or
parameters.

vi 60454000 C

Section
Section

Section

Section
Section
Section
Section
Section

Section

Section 10.

Section 11.

Section 12.

Section 13.

Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

INDEX

60454000 E

CONTENTS

A Sample Terminal Session
User-Defined Functions

Statement Form and Order
of Evaluation

Scalar Functions

Array Concepts and Indexing
HMixed Functions

Composite Functions

System Functions and Variables
Systém Comnmands

File System

APL Public Libraries

Optimization of APL Programs

Operating System Features for APL Users

Error Messages

Output Format

Character Sets and Terminals
APL Control Card

Numerical Limitations

Use of Terminals at Installations
without NAM/IAF

10-1
11-1
12-1
13-1
A-1
B-1
C-1
D-1

E-1

F-1

INDEX-1

vii

Section 1. A Sample Terminal Session

This short introduction to APL shows a sample terminal
session from the time of logging on until the time of logging
off. This section attempts to emphasize some of the important
facilities of APL, and attempts to show the dynamic nature of
APL, which may not be evident from the following sections.

LOGGING ON

The first step is to establish a telephone connection
between the terminal and the computer. This procedure varies
scnnewhat according to the type of terminal wused. Further
information about telephone numbers, types of terminals that are
supported, passwords, accounting procedures, and restrictions
placed on use of computer resources can be obtained from
personnel at the computer installation. The following discussion
assumes that an acoustic coupler will be used, that NAM/IAF (with
auto baud) is used as the communications processor, and that the
terminal 1is an ASCII terminal capable of printing the APL
symbols. Terminals not able to print the APL character set can
be used, but they are much less satisfactory for program
development, although they may be satisfactory for entry of data
or transactions. See Appendix C for further information about
terminals, and see Appendix F for special instructions for
installations not using HA!M/IAF,

1. Turn on the terminal and the coupler (sometimes one
switch activates both). Dial the phone number for the
computer. You should soon hear a high-pitched tone
indicating the computer has answered the phone. Place the
telephone handset in the acoustic coupler. Usually, one end
of the acoustic coupler is marked "cord" to indicate which
end of the telephone handset should be placed there. It is
important to match the correct ends.

60454000 E 1-1

2. When the connection to the computer has been completed,
press the RETURN key (possibly labeled CR, CAR RET, or
CARRIAGE RETURN) . When you press RETURN, the paper should
instantly advance two 1lines. If it does not advance, press
RETURN again. After the system responds, type) and press
RETURN again. Note that you should be using the APL
character set at this point, so the right parenthesis you
use is the APL right parenthesis. It should print as a
right parenthesis.

3. The system will reply with three lines which appear
something like the following

76/05/07. 14,12.44, T1P2047
CDC MULTI-MODE OPERATING SYSTEM NOS 1.3 u485/485
FAMILY:

The first line is the current date given in year/month/day
and the current time given in hours.minutes.seconds. . The
second line is the identifying header of the installation
which may give the installation name, the operating system,
and the version of the operating system. The third line is
a request for a family name if the installation has divided
its mass storage devices into families. Respond by entering
the name of the family to which you are assigned and press
RETURN. If your family is the default family name for the
system you only need to press RETURIN.

The system will then request your user number. If
family names are not required, the request for a family name
is omitted and the request for a user number is the second
line you type in the log-in sequence. This request is:

USER NAME:

Respond by entering your account name and pressing RETURN.

1-9 60454000 E

The system will then reply with:

PASSWORD
onEpBRREl

The second line results from the system overtyping a variety
of characters to preserve password security. Type your
password over the blackened squares and press RETURN.

4, The system will respond by printing something like:

TERMINAL 332,NAMIAF
RECOVER/SYSTEM :

The first line gives the terminal number assigned fcr this
session. The second line invites you to either RECOVER
(resume work that was in progress before a line disconnect
or system malfunction) or specify the system you wish to
use. Type 4PL in response.

APL will respond with something like:

APL2.0 76/05/07 16.29.12
APLNEWS 76/05/06
CLEAR WS

The first line identifies the version of the APL system and
the date and time when it was created. The message APLNEWS
indicates when a news item about changes in the APL system
was entered. To access news items, type

JLOAD xAPL1 APLNEWS

The message CLEAR WS indicates that you have begun with a
clear active workspace.

60454000 E 1-3

IMMEDIATE EXECUTION MODE

You can now type APL expressions. What you type is
evaluated immediately. For example,

3+5 (You type this and press RETURN.)
8 (This is the computer's response.)

Pressing the RETURN Kkey is your signal to the computer that you
have finished typing the line. The computer will not process the
line until you press RETURN. The expressions you type are
interpreted as they appear on the paper. This is called the
principle of visual fidelity. You can space forward or backward
as much as you please as 1long as the final appearance of the
paper is what you intended. (Visual fidelity is not preserved on
terminals that do not print the APL character set.)

If you make a typing mistake, you can correct the 1line by
canceling the rightmost portion of the 1line and retyping. On an
ASCII terminal you do this by backspacing to the first character
to be changed and then pressing LINE FEED (possibly labeled LF on
the keyboard). The system responds by printing a pointer below
that character and positioning the type element Dbelow that
pointer. You can then continue typing as if only the symbols to
the left of the pointer had previously been entered. To cancel
the entire 1line, hold down the CTRL key while pressing X, then
press RETURN.

The following examples show some simple calculations being
performed.

2x3

3%2
1.5

llote that the APL system indents six spaces before allowing you
to type, but the system prints its response at the left margin.
This clearly distinguishes what you type from what the computer
types. The following example shows how arithmetic can be
performed with several numbers at the same time

2x1 2 3 4
2 4 6 8

1-4 60454000 E

The series of numbers on the right is called a vector. Each
elenent of the vector was multiplied by 2.

Values can be given a name and saved for later use. The
names are called variables. The process of giving a variable a
value 1is called assignment. The following examples show

assignment of values to variables 4 and B.

A<L .8
B<1 2 3 u
A+B

5.8 6.8 7.8 8.8

llote that when the result of a calculation is not assigned to a
variable it is printed. The sum of the elements in a vector can
be found as follows:

B«1l 2 3 4
+/B
10

Any symbols on the keyboard can be used as values if they
are surrounded by quotes. For example,

GRADES<'"ABADCABAABADB'

mhe = symbol can be used to compare values. The result is 1
where a match is found and 0 otherwise. For example,

'A'=GRADES
1010020110100

The following example shows how a table of comparison values can
be produced:

'ABCD' e .=GRADES
1010010110100
0100002120010 01
000010O0O0OO0OO0COG OO
0001000O0O0OO0CO01O0

~here is one row for each value in '4AB¢D' and there is one column
for each value in GRADES. To find the number of A's, B's, ('s,
and D's, add up the 1's in the four rows as follows:

+/('ABCD'o ,=GRADES)
6 4 1 2

Below is an example of another comparison table using < instead
of =. Also, instead of using +/ to add the rows as in the last
example, +# is used to add up the columns. The symbol #, called
an overstrike, is formed by typing /, backspacing, and then
typing -. (Actually the two symbols comprising the overstrike
can be typed in either order.)

60454000 A 1-5

.08 8.1 4,6 1.2 2.3 4,2 1.6

V<2.1 3.2

2 4 6 80,25V
110110110
600110010
0001000O00O0
000100000

+4(2 4 6 8o,5<V)
1104 20120

As shown, this operation classifies each value in 7V according to
the number of values in 2 4 6 8 it exceeded. That is, a value
between 2 and 4 is in class 1, a value between 4 and 6 is in
class 2, and a value between 6 and 8 is in class 3. A user
defined function can be written to perform this operation:

VZ«A CLASSIFY B
L11] Z<++A40,<BV

The first V signals to the computer that you wish to define a
function. The first line shows that the function takes two
arguments (input values) and gives a result. The conputer
numbered the next line with [1]. The V at the end indicates you
have completed typing the lines of the function. The function
can be used as follows:

2 4 6 8 CLASSIFY V
110420120
Now it might be interesting to tabulate how many 0's, 1l's, 2's,
and so forth were in the last result. An APL function can be
written to do this but it requires two more APL operations: The
largest value in a vector V7V is given by [/¥; and ¥ gives the

integers 1, 2 3 ... N. We use both of these as follows:

VZ+«TAB B
L1l K<t((l/B)+1)
L2] K<K-1

L3l Z++/(K°,.=B)V

TAB 01 01 2 1 3
2311

TAB(2 4 6 8 CLASSIFY V)
33201

1-6 60454000 C

The following function will give a crude histogram of these
results:

VZ<«HIST B
[11 P<[/B
[2] Z<((P+1)-1P)o.<B V

HIST 3 3 2 0 1

[Ny
[ENIRY
R P o
oo o

0
0
1

A neater histogram can be produced by adding another line to the
HIST function:

VHIST (Function definition is opened.)
31l Z<t [Qt[Z+1] (Another line is added.)
[u] (a3 (Display is requested.)
V Z<«HIST B

[11 P<[/B
[2] Z«((P+1)-1P)o.<B
[3] Z«<' O'C[Z+1]
v
[u] v (Definition is closed.)

Note that to add more to the function you first type v and the
name (but not Z<«HIST B). The computer numbered the 1line [3].
Typing [[] on the next line caused the computer to list the
function. Finally, the V was typed to indicate that no more
lines were to be added. This function can now be used with the
two others as follows:

HIST TAB 2 4 6 8 CLASSIFY V
aa
aaa
doa o

You can display the names of defined functions and variables as
shown below:

YFNS
CLASSIFY HIST TAB

YVARS
A B GRADES K P 4

To save the functions and variables for use at some other
session, type

)SAVE MYWORK

The collection of functions and variables constitutes a

workspace. Here a workspace named MYWORK was saved. It is
advisable to save the workspace often if you are changing it in

60454000 A 1-7

order to minimize the amount of work that will be lost in the
event of a serious computer malfunction. (See Section 13 for the
procedure to follow to avoid losing work after a telephone
disconnect or minor computer malfunction.) To remove all
functions and variables from the workspace you are now working
with, type

YCLEAR
CLEAR WS
YFNS
(llo functions.)
YVARS
(No variables.)

You can retrieve the MYWORK workspace as shown below:

JLOAD MYWORK

MYWORK 75/08/08 16:18:28
JFNS

CLASSIFY HIST TAB

To terminate the session and log off the computer, type)OFF.

JOFF
A123456 LOG OFF 18.12.07.
A123456 SRU 2.774 UNTS.

Although this sample session was short and only used a small
fraction of the APIL operations, it illustrates how well adapted
APL is to experimentation. Programs can easily be developed in
small parts and put together to do useful work. The flexibility
in using functions in new combinations makes many problems much
easier to solve. Many users of APL begin with the habit (formed
by familiarity with other computer languages) of writing large
monolithic programs in one piece. It should be evident that the
modular approach illustrated above is better.

18 60454000 A

Section 2. User-Defined Functions

Function definition mode allows the user to enter function
lines one at a time, remove lines, change lines, insert lines, or
display the function. In function definition mode, APL
statements entered are not executed or checked for errors, nor
are system cormands executed. Most errors will be detected when
the statement is executed for the first time. System commands
are illegal in the body of a function. Table 2.1 contains a
surmary of function definition.

CREATING A FUINICTION

To enter function definition mode, type V and the function
header. The form for the function header should be determined by
how the function is used. The six possible forms are shown in
the following table.

llurnber of Arguments 0 1 2
1To Result name name B A name B
Result Z<nane ZJ<name B 7Z<A name B

The name of the function (represented by name in the table
above) can consist of any number of letters A4 to Z, underscored
letters 4 to Z, digits 0 to 9, or the symbols _, A, or 4, but
must not begin with a digit. The function name must not be in
use for another global function or global variable. In the
table, Z is used as the result variable, A4 is the left argument,
and B is the right argument. Any other names could be used
instead, provided they are used consistently in the body of the
function. llames of system functions or variables must not be
used as the result variable or argument variables.

60454000 A 2-1

Table 2-1. Summary of Function Definition.

Creating a function
VZ«A NAME B
Reopening definition
VNAHE
Display
[0l (Display all.) .
[020] (Display from 20.)
[200] (Display line 20.)
Insert a line between [2] and [3]
[2.1] P+15
Delete line [3]
[a3]
Replace line [3]
[3] P«@t5x1¥

Line editing for 1line [3]

[3081 (Line 3, column 8.)
[3] P«Q+5x%x1N (The line is printed.)
/1 1 (Type / to remove, 1 to insert 1 space.)
[3] P« +5x1 W (Type additions in the spaces.)

Extending line [5]
L5001

Context editing for line [3]

[3] /.0ld phrase.new phrase (To replace.)
[3] /.o0ld phrase. (To delete.)
[3] /..new text (To extend.)
[31 /.. (To display the line and then

extend it.)

[3] /.0ld phrase.new phrase.4 (To replace 4 times beginning at
line [31)

[3] /.0ld phrase.new phrase.10? (Interactive multiple

[3] /.0ld phrase.new phrase.V10?

changes.)
(Interactive multiple
replacement of names.)

2-2

60454000 A

After any of the forms in the table, there can be a
semicolon and additional names separated by semicolons. The
additional names declare variables and functions to be local to
the function. (Local wvariables and functions are discussed later
in this section.)

The function header is line [0] of the function. After
entering a vV and a header, function definition is said to be open
(If the header contains duplicate names, a DEFN ERROR will
occur.) The system then types [1] on the next line to invite
the user to enter line [1] of the function. The user can then
type function 1lines, and the system continues to number lines.
Vthen the last line has been entered, function definition mode can
be terminated by typing a v at the end of a line or on a line by
itself. The Vv is recognized as long as it is the last nonblank
character on the line, even if the line is a corment.

Upon an attempt to close definition, statement 1labels are
checked for duplication with names used in the header or names
used for labels on other statements. Any errors cause the
message DEFN ERRCOR and display of the line with the incorrect
label. The error should be corrected, then vV should be typed to
attempt to close definition again.

REOPENING DEFINITION

To add more lines to a function, first reopen definition by
typing Vv and the name. No other header information should be
used--use of other header information causes the system to assume
you are mistakenly attempting to create a new function having the
same name as an old function. (The header can be changed after
definition is open by treating it as line [0] and revising it as
described below.) After definition of the function has been
opened, the system types the number the next line will have.
The user can type additional lines in the same manner as when the
function was created.

OVERRIDING THE LINE NUIMNBER

After the system types a line number, the user can override
that 1line number by providing a different one. For example,
assume the system printed [u4] because line [4] was expected. The
user could type [2] to override the [u4I 1if he wants to enter a
new line [2]. He could type the new line [2] on the same line he
types the line number, or, he can type only the overriding line
nunber and press RETURN, after which the system would type [2].
After 1line [2] is provided, the system would continue by

numbering the next line with [37.
To insert a new line between lines, use a fractional line

number. For example, [3.2] could be used to insert a 1line
between lines 3 and 4. o more than # digits are allowed after

60454000 A 2-3

the decimal point. The system continues to number subsequent
lines by incrementing the last nonzero fractional position of the
overriding line number until another overriding line number is
used. Thus, after [3.98] would follow [3.99], [#], [4.01], and
so forth,

To remove a line, use a request of the form [A3]. The delta
before the overriding line number indicates that the line should

be deleted. More than one 1line number can be provided (e.g.,[A3
9 1.6]). Note that a line cannot be replaced by a blank line by
overriding a line number with the number of the 1line to be
deleted and pressing RETURN.

Line [0] (the header) can be replaced like any other line,
but it cannot be deleted. If the new line [0] causes the name of
the function to change, the o0ld function remains as it was when
function definition was opened, and a function having the new
name is produced when definition 1is closed. The function name
cannot be changed to the name of a global function or variable,

and the function header 1is not allowed to contain duplicate
names.

When function definition is closed, all lines are renumbered
with consecutive integers. Because line numbers can change, use
of labels for all branching is recommended.

DISPLAY OF FUNCTIONS

When function definition mode is open, the entire function
can be displayed by typing [[0]. To display only line 3 of the
function, type [30]. To display all lines from line [3] on, type
[03]. 1If you interrupt the display (see Appendix C), function
definition remains open unless a closing V appeared in the same
line as the request for display.

LINE EDITING

Line editing can be used to change individual characters in
a line. To begin line editing, type something of the form [308],
where 3 is the number of the line to be revised, and 8 is the
approximate position in the line where the first change is to be
~made. The system then prints the line and unlocks the keyboard
below the 8th character. Use spaces or backspaces to position
the typeball to the position to be changed. Type / under a
character to delete it, or type a digit 1 to 9 to insert 1 to 9
spaces before the <character, or type 4 below it to insert 5
spaces, p for 19 spaces, ¢ for 15 spaces, and so on up to g for
40 spaces. To replace a character, you must delete that
character (which closes up the line leaving no new space) and
type a 1 below the next character to provide space for the

9.4 60454000 F

replacement character. After the changes are specified and
RETURN is pressed, the system prints the revised 1line and waits
at the position of the first inserted space or at the end of the
line if no spaces were inserted. Type in any new characters in
the spaces and then press RETURN.

If line editing causes the 1line number to change, the old
line remains intact, and a new line with the new number is
inserted. To extend a line, use the form [3[0]. The zero as a
position in the 1line causes the 1line to be printed and the
keyboard to unlock at the end of it.

Note that line editing is not allowed for terminals that do
not print the APL character set. Context editing {(see below) can
be used in these cases,

CORNTEXT EDITING

Context editing allows replacerment of the first occurrence
of a given phrase by another phrase. Context editing is cften
more convenient than line editing when the changes are localized
in a small part of the line and prior display of the line is not
required. The editing command has the form

/.0ld phrase.new phrase.options

The / signals that what follows is a context editing
request. The symbol immediately after the / is the symbol chosen
by the user to separate the old phrase (i,e., that which is to be
replaced), the new phrase (i.e., the replacement), and the
options. Any delimiter or series of delimiters at the end of the
line can be omitted unless the symbol +to the left of the
delimiter is a V or a space. In the simplest case where no
options are provided, the first occurrence of the o01d phrase is
replaced by the new phrase. The search for the old phrase begins
at the left of the line the system iz currently expecting but
does not continue beyond the end of that line. (A different line
nunber can be specified by cverriding the line number provided by
the system.) Special cases arise 1if the old phrase, the new
rhrase, or both, are empty. If the old phrase is empty, the new
phrase is placed at the end of the line; if the new phrase is
enmpty, the old phrase is deleted (i.e., replaced by an empty
phrase); if both phrases are empty, the line is displayed and
the keyboard unlccks at the end of the line to allow the line to
be extended. After a change, except in the case where both
phrases are empty, the altered 1line is displayed. The following
examples illustrate cases in which no options are specified:

60454000 A 25

/. FOUR.SIX (FOUR is replaced by SIX)

/s3.5,4.,5 (A comma is used as the delimiter
because pericds occur in the phrase.)
[3]1 /.X1Y+. (Deletion of X1Y+; [3] was used to

override the line number that had
been printed by the system.)

/e300 (To extend the line with ;C)

/e (To extend the line with information from
the keyboard.)

The options may dinclude a number, question mark, or the
letter V. These may occur in any order and may have (but do not
require) spaces between them. When a number is included in the
options, that number is interpreted as a repetition count. The
number also has the effect of allowing the search to extend to
lines following the line of the function where editing began.
After each repetition, the search begins just beyond the last
change or match. The operation is repeated until the repetition
count is satisfied or until the end of the function is reached.

The question mark can be included among the options if you
want to select which matches should result in replacements. The
line is shown as it would appear if the change were made, and you
are then asked to type Y or ¥ (for yes or no) to indicate whether
the change should be performed. - -

A 7V among the options stands for variable name replacement.
More precisely, the V requires that a phrase not be considered a
match if it is preceded or followed by a period, letter, or a
digit. This option is usually used to prevent accidental
matching on part of a name or part of a number. As suggested by
use of the letter V, this option is usually used to change the
names of variables, although it can alsc be used to control
matching of function names, label names, constants, or words in
cormments or within quotes.

The following examples illustrate the use of these options
in various combinations:

[6] /.A.J.3V (Beginning at line [6], replace the first
3 occurrences of the wvariable name 4 with
J.)

[11 /.12.13.2V 1E10 (Change the constant 12 to 13 throughout
the function, but allow the user to accept
or reject each change. The huge
repetition count assures that the entire
function will be processed.)

60454000 A

[ul /,+ex,0.x,2 (Beginning at line fu1, change 2
occurrences of +.x to °.Xx, Note the use
of commas as delimiters because the
phrases contain periods.)

FUNCTION DEFINITION SHORTCUTS
In general, a 1line you type in function definition mode is

used up before you are required to type another line. For
example, you can type [30]V to display line [31] and then close

function definition. Or, vyou can type VFN[3]P<1NV to open
definition, override the line number with [3], provide a new line
[a1, and close definition. A V at the end of a statement is

always recognized, but other editing requests at the end are
interpreted as being part of the 1line. Hence VFNL[3 1P« N[41V
would cause line [3] to be P<«1¥[u4[0]J. It would not cause display
of line [4] after replacing line [31].

LINE SEPARATOR

You can use the diamond symbol (the overstrike x for a
Selectric terminal) as an input 1line separator for function
definition mode. The parts separated by diamonds are used as if
they were entered consecutively from the keyboard except that the
normal line number prompt is suppressed. However, input lines
for line editing requests must still be entered separately from
the keyboard. Any diamonds preceded by an odd number of quotes
are considered to be part of character constants and not line
separators. If an error occurs, any remaining 1lines are
discarded and input is again requested from the keyboard. The
following example shows use of the line separator to define a
function and then display it:

VZ«NEXTLINE N % Z<«CFREAD N X Z<(Nv\Zz' ')/Z x [0OIv
VIZI«NEXTLINE N

[11] Z«CFREAD N

[2] Z<(v\Zz' ')/Z
\Y

The purpose of the line separator is to reduce waiting time when
the computer responds slowly. The diamond is allowed as a line
separator only in function definition mode and should not be
confused with the use of the same symbol in other versions of APIL
to allow multiple executable APL statements on a line.

ESCAPE FROM FUNCTION DEFINITION
All changes to a function are considered tentative until
function definition mode is closed. The overstrike # (formed

from 0, U, and T') can be used to escape from function definition
mode without changing an old function or creating a new function.

60454000 A 2-7

The U is recognized as long as it is the first nonblank (ignoring

. the system prompt) in a keyboard entry. However, when the system
asks you to type y or y during interactive context editing, the
overstrike 0 terminates context editing and leaves function
definition mode in effect.

LOCALIZATION OF VARIABLES AND FUNCTIONS

The variables local to a function include all variables
appearing in the function header and all statement labels.
Variables that are not local +to any function are called global
variables. When execution of a function begins, the local
variables take precedence over any other functions and variables
having the same names. Other variables that were in effect
before this function was called (that is, those not local to this
function, which are called variables global to the function)
remain accessible. When execution of the function is completed,
the variables 1local to it wvanish, thus releasing storage space
for other uses, and any variables or functions global to the
function become accessible again.

As execution of the function begins, the argument variables
are assigned the values of the arguments in the expression

invoking the function. If the function modifies the arguments,
it is actually changing a copy of the original arguments. (See
Section 12 for storage implications.) The label wvariables are

also assigned scalar integer values of the line numbers on which
they appear. These variables are locked to prevent them from
being assigned inappropriate values. (liowever, they can be given
improper values if they are first erased and then given a value.)
The result variable and any other variables 1listed after the
first semicolon in the header have no initial value.

A function can also have another function local to it if it
has the second function's name in its header. As for 1local
variables, the 1local function is undefined as execution of the
main function begins. The local function can then be defined by
use of [OFX or [COPY with [JENV having 1 as 1its value (the normal
case-~see Section 8 for details about [JFx, 0OcorY, and [ENV).
When execution of the main function completes, the function
local to it will vanish, just as a local variable would, and any
temporarily inaccessible function or variable having the same
name would again become accessible.

-FUNCTION EXECUTION

Function execution begins when the name of the function is
encountered in an expression being executed and any arguments
have been evaluated. The system must save information about how
far execution has progressed in the calling line in order to be
able to eventually return to it and continue processing. The
state indicator is a summary of this information and is available

9-3 60454000 A

to the user. Execution of a function begins with establishment
of 1local variables as discussed in the last section. Then,
except for branching, the statements are executed in order from
first to last. After the last statement has been executed, the
value last assigned to the result variable is returned to be used
in the calling expression, and all local variables vanish.

Branching can be used to control which statement will be
executed next. A Dbranch statement consists of a branch arrow
followed by an expression that returns a result. The value must
be a scalar or a vector, and unless it is an empty vector, the
first value must be a nonnegative integer. If an empty vector is
used, the next statement is performed. If the value is a scalar
or vector, its first element is used as the number of the line to
be executed next. If the value is 0 or exceeds the largest line
nunber, the function exits. The following examples show useful
branch statements. Close examination of the expressions to the
right of the arrows should show how they generate appropriate
line numbers:

>5x14d<14 (Branch to line 5 if 4 is less than 14. Note
that this will not work in 0O-origin.)

>(A=3)/8 (Branch if 4 equals 3 to line 8.)

+(L1,L2,L3)[2+xB]
(Branch to I[1 if B is negative, to L2 if
zero, or to L3 if positive.)

+(A>20 18 13 2)/L5,L4,L3,L2
(Branch to L5 if 4 is greater than 20, branch
to L4 if greater than 18 but not 20, to line
L3 if greater than 13 but not 18, to L2 if
greater than 2 but not 13, or go to the next
line if A4 is less than or equal to 2.)

STATE INDICATOR

Any lines that call for execution of another function cannot
be completed wuntil the other function has exited. Such
unfinished lines are called pendent lines. If an error causes a
halt at a line of a function, that halted line 1is said to be
suspended. The state indicator is a record of all pendent and
suspended lines of functions. It omits partially executed lines
entered in immediate execution mode, lines entered for quad
input, and lines used as arguments to the execute function. The
state indicator with variables, displayed by the system command
)SIV, shows what lines are pendent or suspended and also shows
variables local to functions. An abbreviated form, displayed by
the system command)SI, omits names of label variables and names
appearing in the header after the first semicolon. For example:

60454000 A 2-9

)SIV
[31%Z«PRINT B;X;K:LIMIT:L1:L2
(4] SIMU K:L3

)SI
[3]1*Z«+PRINT B
[4] SIMU K

In both examples above, the most recently invoked 1line is shown
first. An asterisk marks a line that is suspended. Here, line
[4] of SIMU called PRINT, and execution of PRINT halted at line
[3] because of an error. The)SIV display shows the full
function header followed by a colon and names of statement labels
separated by colons. If the function has no statement labels, no
colons appear.

The)SIV display shows that the variable K currently
accessible is the one lccal +o PRINT. The other X local to SIMU
is no lcnger accessible. However, the lakel variable 3 local
to SIMU still has its value because no variable 13 is local to
PRINT. In general, the current value associated with a variable
name is that for its first occurrence on the state indicator. If
it does not appear on the state indicator, the current value is
that of any global variable having that name.

A branch in immediate execution mode can be used to restart
execution of the most recent suspended functicon. For example,
+5 would cause execution of PRINT to continue at 1line 5,
Usually, the function would be corrected or values of variables
would be changed before proceeding. To remove the most recent
suspension and +the pendent lines that led to it, type a kranch
arrow with nothing to the right. A beginning user of APL often
begins a new execution of a function without removing the old
one, causing a large number c¢f suspensions to accunulate. These
unnecessary suspensions waste space and can lead toc confusion by
allowing local variables toc make global variables inaccessible.
When a suspension occurs, it is a good practice to either make
corrections and continue execution or clear thc state indicator
by use of the niladic branch (see Secticn 3). An excessive
number of suspensions can be eliminated by use of 0 [SAVE 'name'’
{see Secticn 8).

The informaticn the system keeps about pendent lines can
become invalid if the pendent functions are altered, replaced, or
erased. The system responds by printing 14: SI DAMAGE and
surrounding with brackets the names c¢f the affected functions on
the state indicator display. Execution of the affected functions
cannot be resumed. Experienced users are expected to avoid SI
DAMAGE if ihey intend to continue execution of a halted function.
Certain changes tc¢ suspended functions can also lead to SI DAMAGE
~-specifically, altering the function header or changing the
number or relative crder of sitatement labels.

2~10 60454000 A

RECURSIVE FUNCTIONS

An APL function may appear more than once on the state
indicator and it may even call itself. The following example
shows a simple recursive function that calls itself to compute
the factorial of an integer:

VZ<«FACT N
[1]1 2Z+<«1
[2] =(r<2)/0
[3] Z<«NxFPACT N-1
(4] v
FACT 5
120

HALTING A FUNCTION

While a function is running, it can be halted by an
interrupt (see Appendix C). However, when the keyboard is
unlocked, use of the interrupt on some terminals is interpreted
as an attempt to revise the 1line being entered. To halt a

function requesting gquote-quad input, type the overstrike g
(formed from 0, U, and T). This results in suspension as if an
error had occurred. To halt a function requesting quad input and
remove it and all related pendent lines from the state indicator,
use a branch arrow with nothing to the right.

TRACE AND STOP CONTROLS

Any stop, trace, and timing controls in effect for a
function are cleared if function definition mode is used to
change the function in any way.

LOCKED FUNCTIONS

A function can be locked by using # (Vv overstruck by ~) in
place of Vv when opening or closing function definition. Locking
a function prevents display of the function and prevents its
definition from being reopened. An attempt to open definition of
a locked function results in the error message DEFN ERROR. A
locked function cannot be unlocked; if you will want to change a
locked function at a later date, keep an unlocked copy of the
function in another workspace protected by a password, or keep a
printed listing of the function.

60454000 C 2-11

Section 3. Statement Form and Order of Evaluation

This section discusses the form of legal APL statements and
the order of evaluation of statements. Restricting the
discussion to "APL statements" means that system commands (which
are distinguished by beginning with a right parenthesis) are not
of interest here. The meaning of a statement is determined in
part by its form, but mainly by the functions used and the
environment in which they are used. This section discusses the
influence of form on meaning and leaves the functions and
environment to be discussed in several other secticns.

SPACES

The use of spaces in an APL statement is usually unimportant
to the meaning of the statement except for a few cases:

(1) Names must be separated from other names by spaces,
and names rust be separated from digits of a number to
the right by spaces. (Also, a name beginning with E
must be separated from digits to the left.) Otherwise,
they would run together and appear to be all one name.
Conversely, spaces in the middle of a name would make
it appear to be two names.

(2) Numbers next to one another must be separated by
spaces, and spaces cannot appear within a number.

(3) Spaces within a character constant are treated as
any other character in the constant and affect the
value of the constant.

(4) Spaces in a comment (except for trailing spaces)
are preserved by the system. Although they have no
meaning to the APL systen, they may be important to
the reader of the comment.

60454000 A 3-1

FUNCTION DEFINITION AND SYSTEM COMMANDS

As execution begins for statements entered in immediate
execution mode, entered in response to quad input, or used as
arguments to the execute function (but excluding statements in
the body of a function), a check is made to determine if the
first nonblank character on the 1line is v, %, or). In these
cases the statement is preconverted to become a call to the
function [OFD (a system function that performs function definition
mode) or [SY (a system function that performs system commands)
with the original line as a character argument. For example,
VFN[601 becomes [OFD 'VFN[60]'. To preserve the original meaning,
any quotes in the original statement become double quotes after
the conversion. Any comment at the end of the original statement
becomes part of the argument to [JFp or [0syY. The discussion that
follows assumes that any such preconversion has already been
performed.

COMMENTS

A comment may be entered in immediate execution mode or may
appear in a function line. Comments begin with the symbol a and
extend to the right to the last nonblank on the 1line. The part
of the line following the comment symbol is not executed. This
allows the user to intersperse descriptive text with APL
statements. The following example shows a comment used in
immediate execution mode to add a description to the printed
transcript of the -session:

K<2x1N a TO GENERATE 2 4 6, ETC.
The following discussion makes no further mention of comments,

although a comment may appear at the end of any line, or the
comment may constitute the entire line.

CONSTANTS
Constants represent numbers or characters. For example,
.14 5,2 9 1is a numeric constant-vector, and 'ABcp' is a

character constant-vector. Constants consisting of one character
or number are scalars, while those having more components or no
components are vectors.

An unsigned-number is defined to be any of the following:
digits
digits.digits
.digits
where digits represents one or more of the digits 0123456789,

The italic notation used here is used throughout this manual to
denote a term having a special definition. Here, digits

3.9 60454000 A

represents a sequence of digits, not the letters d i g i t and s.
Hence the following numbers are examples of unsigned-numbers:

3.4
.05
58

A number has any of the following forms:
unsigned=-number
unsigned-number
unsigned-number exponent
“unsigned-number exponent

The symbol ~ is wused to express a negative number--the minus
symbol cannot be used in its place. An exponent has one of the
following forms:

Fdigits

E digits
The F can be read "times 10 to the power." So, 1E23 means
1x10%23, and 3.2FE 3 is the same as .0032., A numeric-constant is
formed from one or more number, separated by spaces.

A character-constant is of the form:

'symbols !
where symbols represents any number of APL symbols, including
no symbols. The symbol ' in a character-constant 1s represented

by two quotes. For example,

trptIge
IT'S

Quotes must always appear in pairs. An expression with an odd
number of quotes results in a SYNTAX ERROR.

The term constant means either a numeric-constant Or a
character-constant.
FUNCTIONS

Functions are of three kinds:

(1) System functions, which have names that begin with [or
(1, are used to communicate with the APL system.

60454000 C 3-3

(2) User-defined functions, which have names formed in the
same way as variable names, are the only ones the user can

define.

(3) Primitive functions (except those produced by operators)
are symbolized ky single characters such as +, x, :, etc.

For the purposes of this section, the important features of
functions are the number of arguments they require and whether
they return results. Functions can be monadic (one argument),
dyadic (two arguments), or niladic (no arguments). If rfunction
is used to denote a function that returns a result and function
is used to denote one that does not, the six possible forms are:

dyadic-rfunction (Dyadic, returns a result.)
monadic-rfunction (Monadic, returns a result.)
niladic-rfunction (Niladic, returns a result.)
dyadic~-function (Dyadic, no result.)
monadic-function (Mlonadic, no result.)
niladic-function (tliladic, no result.)

For some primitive functions and system functions the same
symbol or name is used for two distinct functions--one monadic
and the other dyadic. The dyadic function is used if there is a
left argument, and the monadic function is used if there 1is no

left argument.

Dyadic wuser-defined functions can be used without a left
argument, but if the function requires a value for its 1left
argunent, a VALUE ERROR results. The following example is a
function that can be used without a left argument provided its

right argument is not negative:

VZ«<A F1 B
[1] Z<2xB
[2] »(B=0)/0
[3] Z«Z+4 ¥

F1 5
10

F1 "1

05: VALUE ERROR
F1[3] Z<«Z+A
/

5 F1 1
3

The function [nc, described in Section 8, can be used to check
whether the 1left argument has a value. This could be wused to
write user-defined functions that have distinct monadic and
dyadic forms in analogy to distinct primitive functions having
the same symbol.

34 60454000 A

VWVhether a name refers to a function. or a variable is a
matter that can be decided only when the line begins to execute.
Also, whether a function actually returns a result may depend on
circumstances. For example, if a user-defined function was
defined to return a result, but the result wvariable was not
assigned a value prior to exit from the function, a VALUE ERRCE
results if the expression calling the function requires a result.

OPERATORS

An operator 1is a special kind of function that takes
functions as arguments and produces functions as results.
Following are examples of four types:

A+.xB (Inner Product.)
Ao ,xB (Outer Product.)
+/B (Reduction.)

+\B (Scan.)

The operators are the period, /, and \. In place of the : and «x
in the above examples, any dyadic scalar function symbols could
be used. These operators are discussed in detail in Section 7,
but for the present, it is important ' to note that the forms
exemplified by #.x and ¢.x represent dyadic functions that return
results, and ¢/ and *\ represent monadic functions that return
results.

The axis operater is used to specify the coorcinate along

which an operation is to be perfcrmed. Only a few functions can
be used with the axis operator and further details are discussed
with those functions. The operator 1is used in the form
function-symbollvaluel. For example:

¢L21B

+/[1]B
VARIABLES

A variable is a name that mnight be associated with a value.
The variable-name is formed from any sequence cf the letters 4 to
Z, underscored letters 4 to Z, digits ¢ to 9, or the symbols 4,
A, Or , tut the name cannot begin with a digit. System
variables are special variables with names that begin with [0 or
1. The rest of the name can be composed in ths same way as
ncrmal variable names. Only the system variables recognized by
the system can be used--the user cannot invent new ones.

An indexed-variable is of the form:

variablel l1ist]

- ©60454000 A 3.5

A variable-name having no value associated with it can be used
only immediately to the left of an assignment arrow; otherwise a
VALUE ERROR will result.

VALUES
A value is any of the following:

variable

constant

constant[list]

indexed-variable

monadic-rfunction value
left-argument dyadic-rfunction value

niladic-rfunction
niladie-rfunction[list]
left-argument
variable-name<«value
indexed-variable«value
(value)

+value

The last case has the further restriction that the + may appear
only as the first character of a line.

Use of an indexed-variable to the left of a specification
arrow sets the values of elements of the variable without
changing the shape of the variable. Used elsewhere, the index
returns parts of a value.

The assignment arrow can be used to give a value to a
variable or to change the value of a variable. The result of the
assignment (not to be confused with the value of the variable) is

the value wused on the right. Consequently, A<B[1 2]«3 is the
same as the two statements B[1 2]«3 and g«3. Similarly, A<Q<«B

is the same as [J«B and 4<B; but A«J«B is not the same as [J«B and
A<-D L]

The operations to find a value occur in right to left order.

Hence, 3x2:4 means 3x(2:4), When a dyadic function is
encountered, the right argument is preserved while the expression
producing the left argument is evaluated. Hence,

A<«3
(A«4)xA
12

More generally, any value encountered in the right to left scan
is preserved. For example,

A+4 5 6
A[3 2 1]«
A

6 5 4
3-6 60454000 F

(On some APL systems the result would be 4% 5 4 or 6 5 6 because
the variable on the right is not preserved, while on other
systems such operations are prohibited.) However, the following
example shows a case where the value is not preserved because the
scan has not reached the variable:

A<2
A+A<3
6

In other words, specification of a variable affects all
references to that variable that occur to the left in the line,

but affect no references to that variable to the right in the
line.

LEFT ARGUMENTS
A left-argument is any of the following:

variable

constant

constant[list]
indexed-variable
(value)

(value)[1list]
niladie-rfunction
niladic-rfunction[list]

For example, 3 can be used as a left argument, ALPH4 can be used
as a left argument, and '123'[2] can be used as a left argument,
but 2x3 cannot wunless it is enclosed in parentheses. In fact,
in 2x3*5, the 3 would actually be used as the left argument to
*

EXPRESSIONS

An expression 1is the same as a value except that it need
not return a result that can be used for subsequent operations.
An expression is any of the following:

monadic-function value
left-argument dyadic-function value
niladic-function

value
+

The last case, called niladic branch, can be used only as the
leftmost character of a 1line, The branch with no value or
expression to the right causes exit from the executing function
and from all other functions on the state indicator up to any
previous suspension.

60454000 F 3-7

LISTS
A list is of the form:
list-element
list-element;list—-element

list-element;list-element;list-element ...

The list, if used for an index, must have one list element for
each dimension of the array being indexed.

A list-element can be:

yacant

value

expression
An expression that does not give a result can be used in a list
used for indexing and is treated as if the list element were
vacant, A list element is vacant if there is nothing at all in
that position. For example, F[3;] illustrates a 1list having a

vacant list-element.

The elements of a list are evaluated in right to left order.
lence

A<3 ; A<5
gives 4 a final value of 3. Note that the semicolon is not an
API, function. Lists can only be used for indexing, and [FRMT.
Expressions like the following are illegal:

3p(4;B)
Also, the statement

3pA; B
is eguivalent to

(3p4);B
not

3p(4;:B)

The expressions separated by semicolons are evaluated separately,
then their results constitute the list.

3-8 60454000 C

LINES AND IMPLICIT OUTPUT

A line is any of the following:

value
expression
list
vacant

When a line is a 1list, the list elements are printed in left to
right order. The list can contain a mixture of character and
numeric values as shown below:

X34
‘THE VALUE OF X IS: ';X
THE VALUE OF X IS: 34

Scalar and vector list elements are printed on the same line (if
OPW has not been exceeded), but printing of a matrix or array of
higher rank begins on a new 1line, and any subsequent vector or
scalar begins on a new line. List elements that are vacant or
that produce no results are skipped over.

If the first list element is a niladic branch, no output is
produced. If the first list element is a branch with a value to
the right, the value of the branch is printed along with the
other list elements, then the branch is taken.

When the 1line is a value, the value is printed unless a
specification or branch occurred as the last operation. Hence,
3+2 would print a result, but 4+«3+2 or even (4<«3+2) would not.

STATEMENTS

A statement is either a line or a line with a 1label. The
label is a variable-name and colon placed before the 1Iine. For
example:

 REPEAT :>ux1X=Y

A label on a statement entered in immediate execution mode, for
quad input, or in the argument to the execute function is ignored.

QUAD AND QUOTE-QUAD
The system variables [and [are wused for input and output.
When they are assigned a value, the system prints the value.

When their values are wused in an expression, the system reads
input from the keyboard to provide the value.

60454000 A

When [input is requested, the keyboard unlocks (normally
with the type element at the 1left margin}. Any characters typed
are returned as a vector, except that a single character gives a
scalar.

When [input is requested, the system prints [J: and then on
the next line indents six spaces and unlocks the keyboard. Any
APL expression that returns a result can be entered, If the
expression is incorrect or does not produce a result, an errox
message 1is printed and the input request is repeated. For
example,

A<
0:
E (This is the input line.)
05: VAZLUE ERRCR
B
/
0: (The input request is repeated.)
2x14
A
2 4 6 8

2 branch in quad input does not actually effect a branch.

The [] can be used for cutput to conserve lines in a program.
The statement [J«4<«2 has the same effect as the two statements A4A<«B
and [«B.

The M symbol, wher: used for output, is slightly different
from 0 used for output. Ordinarily, APL output is followed by a
carriage return so that the next input or output will begin on a
new line. However, when quote-gquad is used for output, the extra
carriage return is suppressed. This allows the program to
continue output on the same 1line or to give output and then
request input on the same line. For example,

VZ«ASK B
{11 M<B
[2] Z«W V¥

P<ASX 'AGE? !
AGE? 38
p

38 (lote leading blanks in the result.)

The leading blanks show where the typeball was positioned when
the keykoard was unlocked. The person who was typing could have
backspaced and replaced the blanks with other characters. Any
leading blanks can be removed by using (v\Bzt! ')/B<«[Nl. Note that
0JPKF is not ignored when [l output is used. If the number of
printed characters reaches [1P¥, the system inserts a carriage
return in the output and indents 6 spaces before continuing the
output.

3-10 60454000 A

Section 4. Scalar Functions

The class of scalar functions includes those functions that
can be defined for scalar arguments and then can be extended to
other arguments through element-by-element extension. That is,
if the function is monadic, the result has the same dimensions as
the argument, and the elements of the result are found by
applying the function to all elements of the argument. For the
dyadic functions the following rules apply:

1. If the arguments have the same shape, the result has
that shape and is formed by applying the function to
the corresponding elements of the arguments.

2, If one argument is a one-element array and the other
is not, the result has the shape of the one that is not
one element. The one-element argument is wused with
each element of the other argument to form the result.

3. If both arguments are one-element arrays, the result
has the larger of the ranks of the arguments.

For the dyadic functions, the arguments must either have
identical shapes or at least one must be a one-element array.
Any other arguments produce a RANK ERROR if their ranks differ,
or a LENGTH ERROR if their ranks match but dimensions differ.
The following examples illustrate some of these rules:

[«A<«3 3p19
1 2 3
3 5 6
7 8 9
-A (A monadic scalar function.)
1 T2 73
"4 75 "6
"7 8 "9

60454000 A v 4-1

Table 4-1. Summary of Scalar Functions.
Dvadic Function Monadic Function
A+B Sum of 4 and B, +B Same as 0+B.
Addition 3+5+>8 Plus
A-B A minus B, -B Same as 0-B.
Subtraction| 3-u<->"1 additive
Inverse
AxB Product of 4 xB Sign of p. Same
Times and B. . Signum as (B>0)-B<0
2x4«>8 x3 0 -24")1 0 _1
A:B A divided by B, :B Same as 1:B.
Divide Division by 0 is not }|Recip- Not allowed if B
allowed except that rocal is 0. +.2¢»5
0¢0 is defined to
be 1. 3:2+>1.,5
AlB Larger of 4 and [B If B is an
Max imum B. 3[5+»5 T~1[5¢» 1 ||Ceiling integer, the
' result is
that integer.
Otherwise the
smallest integer
greater than B,
[2,5 3+»>3 3
ALB Smaller of A and LB If B is an
Minimum B. 3| 5+«-3 Floor integer, the
T1L 75«75 result is
'that integer.
Otherwise the larg-
est integer less
than B.
L2,5 3+»2 3
AxB A to the B *B e to the B
Power power. A may Exponent-|power (e is
be zero if B ial 2.71828182845904)
is not negative.
00 1is defined to be|
1. If A<0, B must
be representable as
a rational fraction
with an odd
denominator.
AeB Base 4 logar- B Natural (base e)
Logarithm ithm of B. 4 Natural logarithm of B.
must be positive and ||Logarithm

rmust not be 1.

60454000 A

Table 4-1. Summary of Scalar Functions, Continued.

AlB The remainder of B |B Absolute Value of
Residue divided by 4. Magnitude| B. 13 0 "3«+3 0 3
More precisely,
B-Ax1B:A+A=0
A'B Number of combi- !B Factorial of B
Combinations{ nations of B Factorial| for nonnegative
of things taken 4 integers. Otherwise
at a time for the mathematical
positive integer gamma function of
arguments. More Bt1l. Not defined
generally A!B for negative
«>(!B)+('4)x!B-4 integers.
AOB The argument 4 ?B A random choice
Circular determines which Roll from 1B. Depends on
function from the current origin.
following table ,
is applied to B. ~B B must consist of
A must be an NOT 1's or 0's.,
integer in the ~1<>0 ~0+->1
range 7 to 7. All
angles are in OB Pi times B
radians. Pi times | o1+~
3.14159265358979

N NoB (-N)oB
0 (1-B*2)x.5 (1-B*2)*,5
1 sin B arc sin B
2 cos B arc cos B
3 tan B arc tan B
4 (1+B*2)x.5 (1+4Bx2)%.5
5 sinh B arc sinh B
6 cosh B arc cosh B
7 tanh B arc tanh B
A=B Equal Result is 1 if the
A=#B Not equal relation holds, 0
A<B Less than otherwise.
A>B Greater than
A<B Not greater than 325 6 3 1+>0 0 1 1
A2B ot less than
AAB AND Elements of A B AAB AVvB AnB AwB
AVB OR A and B 1 1 1 1 0 0
AnB NAND must be 1's 0o 1 0 1 1 0
AMB NOR or 0's. 1 0 0 1 1 0
AXB<->~AAB 0 0 0 0 1 1
ANB<+~AVB

60454000 A 4-3

2xA (Scalar argument and matrix argument.)
2 4 6
8 10 12
iy 16 18

A+A (Two arguments with identical shapes.)
2 4 6
8 10 12
14 16 18

p(1 1pu)z(1 1 1p3) (The larger rank prevails.)
1 1 1

Table 4-1 describes most of the scalar functions in complete
detail. Most of these functions are familiar mathematical
functions or incorporate very simple concepts. Therefore, the
discussion below deals with only a few of the less familiar
functions or special cases.

The symbol «+ 1is used in Table 4-1, as well as in much of
the rest of this manual, to mean "is the same as." Note that
this symbol is not part of the APL language, but is wused to
describe APL, When <> 1is wused between two expressions, the
entire expression to the left is asserted to give the same result
as the entire expression to the right.

FLOOR AND CEILING

The functions floor and ceiling always return an exact
integer. The result depends on the value of [J¢T as follows: If
(1B-NINT B)<[OCTx(1+]NINT B) the result is NINT B, where NINT B is
the nearest integer to B. Otherwise, the result is the least
integer larger than B for ceiling, or the largest integer smaller
than B for floor. Note that B-lB can be negative in cases where
OCT is not zero and B is slightly less than an integer.

POWER

In keeping with proper mathematics, the power function does
not allow taking square roots of negative numbers (e.g., ~1x.5),
but it does allow taking cube roots of negative numbers (e.qg.,

1x33). To distinguish these cases, the power function attempts
to represent the right argument P as a rational number py:y, where
N is an 1integer and ¥ is the least integer such that (#:M)=1{P.
Note that (¥:M)=|P depends on [OCT. If the 1left argument is
negative and the rational representation has an even denominator,
the power function gives a DOMAIN ERROR. If the left argument is
negative and the rational fraction has an odd denominator, the
result is negative if the numerator is odd and is positive if the
numerator is even.

4-4 60454000 A

RESIDUL

The residue function is slightly more sophisticated than the
definition in the table. For example, 2|2-.5x[0CT would give the
improper negative result -.5x[JCT. The actual algorithm returns
zero if B-Ax|B+A+4=0 would give a result having a sign opposite
to the sign of 4.

COMBINATIONS-OF

The combinations-of function returns 1limit values of 4!B if
A, B, or B-A are negative integers. That is, the result is zero
if 4, B, and B-4 are all negative integers or if B is not a
negative integer but either 4 or B-4 is a negative integer. A4!B
is related to the mathematical Beta function as follows:

BETA(A,B)<+3Bx(A-1)!4A+B-1

CIRCULAR FUNCTIONS

The domains and ranges of the circular functions are given

below. All angles are in radians.
N NoB Domain Range (-N)oB Domain Range
0} (1-B*x2)x.,5 1=|B (0<2)A1=Z
1| sin B 1>]1Z{ arc sin B 1>|B (0.5)2]2
2| cos B 1>12} arc cos B 1>]B (Z20)AzZ<o01
3| tan B arc tan B (0.5)2]2
4 | (14B*2)*.,5 1<Z| (T1+B*2)*.5 1<|B 0<7Z
5| sinh B arc sinh B
6 | cosh B 1<Z} arc cosh B 1<B 0<2
7 { tanh B 1>]Z} arc tanh B 1>|B

RELATIONAL FUNHCTIONS

The functions = and # are the only scalar

be used with arguments of

compared with numbers, but the result always
result for 4=B is

For numeric 4 and B, the
greater than [OCTx|B.

60454000 C

character type.

The three conditions

functions that can

Characters

can be

shows inequality.

1 if
A<B, A=B,

|B-4 is
and A>B are

not

4-5

always exclusive., For example, if 4A=B giyes 1, then 4>p and 4<B
give 0. The range where two numbers are considered equal is
illustrated below:

A<B A=B A>B

L 1 L
v

B-NICTx]1B B B+0CTx1B

Note that when B is zero, A=B gives 1 only if A is exactly zero.

4-6 60454000 A

Section 5. Array Concepts and Indexing

An APL array can be visualized as an arrangement of values
along n orthogonal coordinates, where n is 0 to 75 for this
particular APL system. The positions along the coordinates are
numbered 1, 2, 3, etc. in l-origin, and they are numbered 0, 1,
2, etc. in O-origin. The number of elements along a coordinate
can be 0 or more. The lengths of the array along the coordinates
are called the dimensions of the array, and the number of
coordinates is called the rank:of the array. The names scalar,
vector, and matrix are used to denote arrays of rank 0, 1, and 2,
respectively. No special names exist for arrays of rank greater
than 2. The APL system has an arbitrary limit of 75 as the
maximum rank of an array, but in practice, this limit is so
large that it 1is not restrictive. Contrary to common casual
practice in mathematics, an APL array has a definite rank--a
one-element vector is not the same as a scalar, and a matrix with
one row or column is not a vector.

The last coordinate of an array is conventionally considered
to be the column coordinate, the second from 1last coordinate is
the row coordinate, and the third from 1last coordinate is the
plane coordinate. The following examples show how various arrays
can be formed and displayed:

3 (A scalar,)
3

14 (A vector.)
12314

2 3p16 (A matrix.)
1 23
4L 5 6

2 3p'ABCDEF' (A matrix of characters.)

ABC
DEF

60454000 A 5-1

Tal'le 5~1. Summary of Section 5.

Function Description
pB Returns a vector containing the
Size dimensions of B. The result
has 0 elements for a scalar B,
1 element for a vector, and 2
elements for a matrix.
VoB Forms a result having the dimensions
Reshape specified by the left argument and
having elements taken from the
right argument in odometer order.
»B The result is a vector containing
Ravel all elements of B in odometer
order.
R«B[I1;:;I2; The result has as dimensions
I3; .. 3IN] | (pI1),(pI2),(pI3), oo S(pIN)
Indexed and contains those elements of
selection B for which their first

index is in 11 and their

second index is in 12, etc.

If a list element is vacant, all
possible index values are used.

RB[I1;I2;I3;

The indicated elements of R

..o 3IN]+B are set to corresponding values
Indexed from B. Either p must
specification] be a one-element array, or the
dimensions of B must match
(pI1),(pI2),(pI3), «.. 5(pIN)
except that dimensions of 1 are
ignored. If a list element is
vacant, all possible index values
are used.
2 3 bpir2y (Two planes, three rows, four columns.)
i 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

The last example shows that a rank-3 array is printed as a number

of matrices separated by 1 blank line.

5-2

A rank-4 array would be

60454000 A

printed as a number of rank-3 arrays separated by two blank
lines, and in general, a rank-#¥ array is displayed as a number of
arrays of rank N-1 separated by ~N-2 blank lines. An empty array
prints as a blank line.

One often visualizes an array as a spatial arrangement of
values. The spatial conceptualization leads to use of terms like
"shape of array" and "vector along the Xth coordinate." These
terms are important enough to give precise meanings for them. We
define the "shape of an array" to be the result given by the size
function (to be discussed in this section). As a consequence, a
vector and a one-row matrix have different shapes, even though
they may be visualized to look the same (and in fact, the system
prints them identically). We define "a vector along the gth
coordinate" to be a vector of those elements in the array for
which the coordinates other than the XKth are the same, and the
Ith element of the vector has I as its Kth coordinate in the
array--that is, a line of values aligned in the direction of the
Kth coordinate.

RESHAPE: R<«VpB

The reshape function was used in some of the previous
examples to form arrays. The function forms a result having the
dimensions specified by the vector (or scalar) left argument and
having elements taken from the right argument. Elements are
taken in first to last order, and if they are exhausted, they are
used again beginning with the first. The right argument must
not be empty unless the result will be empty--"reshape never
makes something out of nothing.”

ORDERING OF ELEMENTS

The elements of an array are considered to be ordered. The
reshape function takes elements according to this ordering. The
ordering is the same as the order in which the elements are

printed by a terminal. The order 1is called odometer order
because the indices (coordinate positions) vary in the same way
as the digits of an odometer. For example, for an array A3

having dimensions 2 3 4 the elements in odometer order are:

A3[1;1;11]
A3[1:;1;2]
A3[1:1:3]
A3[131:4]
A3[1;2;11
A3(1;2;2]

A3[233;4]

60454000 A 5-3

SIZE: R+pB

The size function returns a vector of the dimensions of its
right argument. Because there is one element in the result for
each dimension of B, the result has 0 elements for a scalar B, 1
element for a vector, 2 elements for a matrix, and so forth.
Note that because pB has one element for each dimension of B,
ppB gives the rank of B as a one-element vector. The following
examples illustrate the size function for arrays of various ranks:

p3 (A scalar.)
(A blank line indicates an empty vector
result,)
pp3
0
p13 (A vector.)
3
pp13
1
p2 3p16 (A matrix)
2 3
pp2 3p16
2
p2 3 5p130 (A rank-3 array.)
2 35

pp 2 3 5p130

RAVEL: Z<,B

The ravel function returns a vector result containing all
the elements of the right argument in odometer order. For
example:

,2 3p16 (Changing a matrix to a vector.)
1 23 45 6

0,3 (Changing a scalar to a vector.)
1

The ravel function can be used to determine the number of
elements in an arbitrary array. The number of elements in B is
0.8, (llote that the ravel function could be omitted in this
expression if B were always a vector.)

5-4 60454000 A

INDEXED SELECTION: R<«B[I1;72;I3; ... 3;IN]

Indexed selection chooses those elements of an array for
which all indexes occur in the respective 1list elements. For
example, if M is a matrix, M[3;4] gives the element having 3 as

its row index and 4 as its column index. Similarly, M[2 3;u4 51
gives those elements in the second and third rows that are also
in the fourth and fifth columns. If a list element is vacant,

1§ is used, where ¥ 1is the length along that coordinate. The
index values must be integers in the range of coordinates of
elements in B. The index list for an array of rank x must have
K-1 semicolons. The result R has the dimensions
(pI1).,(pI2),(pI8), ... ,(pIN). Hence the rank of R is the sum
of the ranks of the indices. If the indices are vectors, the
result satisfies

RLK1;K2;K2; ... 3KN3=B[1T1C&1]1;72[k23;13{K2]: ... :IN[KN]]
When the indices are not all vectors, the result is:
((pI1),(pI2),(p13)s .. ,(pIK))pB[,I%1;,1I2;,13; ... ;,IN]

Indexed selection cannot be applied to a scalar. The following
examples show indexed selection applied to vectors and matrices:

V<3 6 9 12
vi1]
3
yiul
12
Vis5] (An error results from a request
07: INDEX ERROR for an element that does not exist.)
vis]
/
Vis5:6] (Because ¥V is a vector, its rank is
G6: RANK ERROR inccmpatible with the index list.)
v[5;6]
/
Vi1 2 1 1 2]
36 3 3€¢6
O«M<«3 up112
i 2 3 4
5 6 7 8
9 10 11 12
M[2;3]
7
H[2; 1] (Row 2, all columns.)
56 7 8
M[;3] (All rows, column 3.)
3 7 11

60454000 A 5-5

M[2:3 4]

7 8
M1 2 133 1]
3 1
7 5
3 1
O«K<«3 5p2 3 2 3 4 2353213131
2 3 234
2 35 3 2
131 31
v _lox'[K]
_I_la .
1X1 (A matrix of characters.)
[
INDEXED SPECIFICATION: R[711;I23I3; ... 3;IN]«B

Indexed specification allows setting of selected elements of
R. The index 1list irdicates elements to be set in the same way
as for indexed selection (see previous section). The
restrictions on 1list elements are also the same as for indexed
selection. The array B must be a scalar (or one-element array)
or must have dimensions (pI1),(pI2),(pI3), ... ,(pIN) except that
dimensions of length 1 are ignored in the comparison. If B is
not a scalar (or one-element array), the elements of B are taken
in odometer order and placed in appropriate locations in R. If
two elements of B are placed in the same position in R, the last
one in odometer order in B prevails. Both R and B must be of the
same type (i.e., character or numeric). The shape of R is not
changed by the operation. R must not be a scalar.

V<3 6_9
vi2]« 1
_ v

3 1 9
VL2 3]«10 12
14

3 10 12
VL3 3]«15 186
14

3 10 16
O«M+2 3p'=!

* k%

* % %

5-6 60454000 A

000
* % %

[Joo
O *

O+x
O *

M[13;12 2 3]«'0!
M

ML ;13«0
M

M[1;2 3]«t+x?
M

60454000 A

(A scalar is used repeatedly.)

(A1l rows,

column 1.)

5-7

Section 6. Mixed Functions

The class of mixed functions includes all functions that are
not system functions, composite functions, or scalar functions.
Because few patterns exist between the mixed functions, they must
be discussed individually to describe the arguments they allow
and the results they produce. Section 5 already discussed the
three mixed functions reshape, size, and ravel. Table 6-1.
contains a summary of the mixed functions discussed in this
section.

EXCEPTION RULES

Most of the mixed functions have "normal" cases for which
the results are relatively simple to express in terms of the
arguments. They also generally have additional special cases
that are convenient but are treated as exceptions. The following
are some of the reasons these exceptions are allowed:

Exceptions to overcome notational difficulty. There is
no way to represent an empty numeric vector constant in
an expression, and 10 is inconvenient to use as a left
argument because it must be surrounded by parentheses.
Hence ''pB 1is allowed in place of (10)pB. However,
the only other case where an empty character argument
is allowed where a nonempty character argument would
not be is the catenate function. (Hdwever, the system
functions [0OST0P, OTRACE, and OLTIME also allow empty
character left arguments.) Another class of exceptions
to overcome notational difficulty arises because it is
not possible to type a one-element vector constant.
Because a constant consisting of a single character or
number is a scalar, many functions allow a scalar in
place of a one-element vector. However, the left
argument for index-of and the arguments to grade up and
grade down are not allowed to be scalars.

60454000 A

6=1

Table 6-1. Surmary of Mixed Functions in Section 6.
Function Description, Examples

1B Produces a vector of the first

Index B integers. 15«31 2 3 4 5

generator

V1B For each element of B gives

Index-of the first index in the vector
7V where the element is found
or 1+pV (in l-orxigin) if the
elenent is absent from vy,
5 6 7 816 5 2«>»>2 1 5

AeB Returns 1 for each element of

Membership

4 that occurs in p and returns
0 for other elements of g4,
1 3 5€2 3«»>0 1 O

S1252 Chooses 51 random numbers from
Deal 152 without any duplications.
AV The 7th element of the vector
Grade up result is the index in y of
the rth smallest value in 7,
V[AV] gives V sorted in increasing
order. A3.3 5.2 1.1+»3 1 2
1274 The rth element of the vector

Grade down

result is the index in y of

the rth largest value in 7,

VI¥V] gives 7V sorted in decreasing
orcer.

A,[KI1B Joins 4 and B along the gxth
Join coordinate. 1 2 3,4 5<«-
1 2 3 45
V/[K1B The result includes elements
Compress along the xth coordinate of p for

which there are corresponding 1's
in 7 and does not include elements
for which there are 0's in 7.

1 0 1/1 2 3+«>1 3 1 0 1/YABC'<~>'14AC"

6-2

60454000 A

Table 6-1. Summary of Mixed Functions in Section 6, Continued.

Function Description, Examples
/\[LKX1B Expands by inserting zeros (if B
Expand is numeric) or blanks (if B is of
character type) where there are 0's
in ¥ and selects consecutive
elements along the xth coordinate
of B where there are 1l's in vy, ‘
1 01 O\3 4«3 0 4 O
1 0 1\'AB'+>'4 B!
A4B Selects the first (if A[k]>0) or
Take last (if A[kJ<0) |A[K] elements
along the xth coordinate of g,
If |ALK] exceeds (pB)[K1],
zeros or blanks are used as the
extra elements. 341 2 3 4 5¢+1 2 3
T34 'ABCDE'«>'CDE' 441 2«>1 2 0 0
AVB Drops the first (if A[kx]>0) or
Drop last (if A[K]<0)]ALK] elements
along the xth coordinate of B,
If |A[K] exceeds (pB)[k1,
the xth dimension of the result
is zero. 3+v1 2 3 4 S5«>4 5
"34'"ABCDE'<>'AB!
é[K1B Reverses the order of elements
Reverse along the kxth coordinate of B,
¢5 6 7«>7 6 5 GLABCD'~>'DCBA!
APLK]1B Shifts vectors along the Xth
Rotate coordinate of B in a negative
direction (for 4>0) cor positive
direction (for 4<o0).
261 2 3 4 5¢>3 4 5 1 2
T2 'ABCDE'<«+>"'DEABC !
QB Reverses coordinates of B,
Monadic pQB«+>Pp B
transpose
A{B Interchanges coordinates of B
Dyadic according to 4.
transpose The Xth coordinate c¢f the result
corresponds to the (4=K)/1p4
cocrdinate of B,
60454000 A 6-3

Table 6-1. Summary of Mixed Functions in Section 6, Continued.

Function Description, Examples
ALB Evaluates F as a number
Base represented in a number system
value having radices 4.
2 2 211 0 1«>5 10 10 10412 3 4+>234
ATB Represents B in the number system
Represent having radices 4.
2 2 2715+>»1 0 1 10 10 10T296+«>2 9 6
25 Executes the character vector B
Execute as an APL statement.
2 "15'«>1 2 3 4 5
¥5 Produces a character array rerresen-
Monadic tation of B. Except for treatment
format of lines longer than [PV,
¥B looks exactly like B when printed.
A%¥B Represents columns of B
Dyadic according to the format specified
format by pairs of numbers in A. The
first elemént of a pair in 4 is
the width of the field (0 to have
the system choose a width), and the
secend element of the pair gives the
nunber of digits beyond the decimal
if positive. If the second element
of the pair is negative, its absolute
value determines the total number of
digits, and exponential format is
used.
BB Maitrix inverse of B. Same as
Matrix IBHB where I is an identity
inverse matrix.
ABB Solution to a system of equations
Matrix (for a square matrix B) or least
divide squares regression coefficients

(if B has more rows than columns).
Same as (EB)+.x4.

60454000 A

Exceptions to ignore dimensions of 1. At times it is
convenient €0 “treat a row or column of an array as a

vector, while at other times it is more convenient to
treat it as a matrix. Consequently, some flexibility
has been built into functions to allow extra or missing
dimensions of 1. :

Generalized scalar extension. The dyadic scalar
functions allow a scalar argument to be used repeatedly
with all elements of the other argument. More
generally, some mixed functions allow a single vector,
plane, etc. to be wused repeatedly with parts of the
other argument.

ARRAY TYPES

An array, even if it 1is empty, is either of character type
or numeric type. Those mixed functions that rearrange elements
of an array or select elements of an array always return a result
having the same type as the right argument. For example,
Op'4ABCD' gives an empty result of character type.

AXIS OPERATOR

For several of the mixed functions (and composite functions)
an axis operator can be used to specify the coordinate along
which the operation is to be performed. If no axis is specified,
the last coordinate is assumed. Alternate symbols can be used to
perform the operations along the first coordinate. These forms
are:

Last coordinate First coordinate Kth coordinate

A,B AsB A,[K]B
A/B A+B A/LK]B
A\B AXB A\[K]1B

bB eB ¢lk1B
AdB AeB ASP[K]B

Note that the symbols for performing the operations along the
first coordinate are not allowed to be used with an axis
operator. For example, e[X]B would produce a SYNTAX ERROR.

The value wused for an axis operator must be a one-element
array, and for functions other than join, it must be an integer
in 1ppB (except that if B is a scalar, it may be [rp). For the
join function (e.g., A4,[X1B) the value of X should be an integer
in 1(ppa)[(ppB)f1 or any half integer obtained by adding or
subtracting .5 from one of those integers.

60454000 F 6-5

INDEX GENERATOR: R<«1B

The index generator function produces a vector of length B
containing the first B integers. The result depends on the
current origin.

Requirements for B. B must be a one-element array containing a
nonnegative integer.

Examples.

13 (In l-origin.)

0ro<o
5
01 2 34 (In O-origin.)

t0
(Blank line indicates 10 is empty.)

IINDEX-OF: R+«V1B

The index-of function returns for each element of B the
least index I in the vector V for which V[I] equals the element
of B. If no value in V is equal, the result element is 1+pV in
l-origin, or pV in 0O-origin. When V7 and B are numeric, the
comparisons use [CT so that elements of ¥V and B may be considered
equal even if they differ slightly.

Requirements for V¥ and B. 7V must be a vector--a scalar is not
allowed. B may be of any shape and the result will have that

shape.

Examples.
L 5 612 5
b 2
O«M<2 3p 'DEFGHI‘
DEF
GHI
YHIDE DOG'1M
3 49 (A matrix result for a matrix right argument.)
8 1 2
7 8 9ut4Bt
4oy (Characters never equal numbers.)

6-6 60454000 C

'ABA'"1YABAE"

1 21 2
nro<o
'ABA'1'ABAB!
0101 (The 0-origin result is 1 less.)

MEMBERSHIP: R<AeB

The membership function returns 1 for each element of 4 that
occurs in B. For numeric arguments the comparisons use the
current value of [ICT, so values may differ slightly and still be
considered equal.

Requirements for 4 and B. A and B may have any shape. The
result has the same shape as 4.

Examples.

1 2 33 1 6 4 9
101

'ABCD'e 'BACKS!
1110

[«A+«2 3p'CATDOG!
CAT
DOG

Ae'GOoAT!
1
1 (The result has the shape of the left argument.)

o
RGN

'GOAT'eA
1111

'ABC'el 2 3 4
000

DEAL: R<«S51?82

The deal function chooses at random S1 values from 152
without repetitions.

Reguirements for 51 and S2. Beth 51 and 52 must be one-element
arrays containing nonnegé&ative integers such that S§1<52. The
result is a vector of length S1.

60454000 A 6-17

525
125314

0r0+«0
525 o
32014 (0-origin.)

GRADE UP AND GRADE DOWN: R<4B and R«yB

The rth element of the vector result g is the index in p
where the 1th smallest (for grade up) or the rth largest (for
grade down) element of p occurs. The comparisons do not use [ICT.
If a value occurs more than once in B, the indices of those
values occur together in B in increasing order.

" Requirements for B. B must be a numeric vector. The result g is
a numerlic vector of the same length as B.

Examgles.

43.3 1.1 2.2 4,4 1,1 5,5
253146

¥3.3 1.1 2.2 4,4 1,1 5.5
6 413 25

V«<3.3 1.1 2.2 4.4 1.1 5,5
V[AV] (To sort in increasing order.)

1.1 1.1 2.2 3,3 4.4 5.5

AR 2’4 (io sort in decreasing order.)
5.5 4,4 3.3 2.2 1.1 1.1

P«3 4 5 1 2
('"ABCDE'[P]1)[AP] (AP is the inverse of a permutation
ABCDE vector P.)

X«1ABC?!
Y«'DEF!
Z<'GHI'
(X,Y,Z)[AA 0 211 200 2 1]
AGDEHBCIF (select next from y for a 0, y for a 1,
z for a 2.)

6-8 60454000 A

0ro<«o
A3.3 1.1 2.2
120 (0-origin.)

JOIN: R<A,[X1B

The Jjoin function connects 4 and B along a coordinate
already existing in 4 or B or along a new coordinate of length 1
inserted into each. The first elements along the coordinate come
from 4 and the rest come from B. When ¥ 1is an integer, the
operation is called catenate. When K is not an integer, the
operation is called laminate and the new coordinate of length 1
is inserted into each argument between the existing | X coordinate
and [X coordinate.

Requirements for 4 and B. Except for the special cases below,
A and B must have the same rank, and dimensions other than the
Kth must be the same; that is, (Kz1ppd)/p4A and (K#1ppB)/pB must
be the same. The types of 4 and B must be the same unless one or
both are empty arrays. (Warning: some APL systems do not allow
empty arrays to have a different type. It is recommended that
differing types be avoided for compatibility.) The shape of the
result is the same as the shape of the two arguments except that
the Xth coordinate of +the result is (p4)[K1+(pB)[K]. If both
arguments are empty and of differing types, the result is numeric.

Exception cases. If 4 or B is a scalar (but not both), it is
reshaped to have the shape of the other argument except that the
Kth dimension is 1 for catenate. If both arguments are scalars,
they are treated as one-element vectors for catenate. For
catenate, one argument may have a rank 1 less than the rank of
the other argument. In this case a new coordinate of length 1 is
inserted to become the Kth.

Examples
1 2 3,4 5 6 (Joining two vectors.)
1 23 4 56
[J«M<2 3p'«x"
%* %k %k
* % %k

[J«N<3 3pto!
000
000
000
M,[11N
* %k %k
k% %
000
000
000

60454000 A 6-9

O«L+2 up'0*

0oooo
0oooo
M,L
* % x[100
=% x[]000
M, '+|
* % %+
*k k4 (The scalar is treated as a one-column
matrix,)
M,'34? (A vector is treated as a one-column
x%x %3 matrix.)
*hknly
M,[1]1'345" (A vector is treated as a one~row matrix.)
*x %k %
* % %
3us
1 23,[.5]4 56 (Laminate along a new first coordinate.)
1 2 3
L 5 6
1 2 3,[1.5]4 5 & (Laminate along a new last coordinate.)
14
2 5
3 6
1 2 3,[1.5]14
14
2 4
3 4

COMPRESS: R<«V/[K]B

The compress function shortens B along the Kth coordinate
by omitting those elements for which there are corresponding 0's
in V, ‘

Requirements for V and B. V must be a vector and all elements of
V'rmust be I's or 0's, The length of V must be the same as
(pB)LK]. The result has the same dimensions as B except that the
Kth dimension is +/V.

Exception cases. If V or B is a scalar it is treated as a
one-element vector. Then if V is a one-element vector, it is
extended to the length of B along the Kth coordinate. If B is a
one-element vector, it is extended to the length of V.

6-10 60454000 A

Examples.
10101/1 23 45

1 3 5
1 01 0 1/'ABCDE"!
ACE
1/'ABCDE'
ABCDE
0/'ABCDE"
(Blank line indicates an empty result.)
DeM<«3 4p112
1 2 3 4
5 6 7 8
9 10 11 12
101 1/M
1 3 4
5 7 8
9 11 12
10 1/[11M (Same as 1 0 14M.)
1 2 3 4
9 10 11 12
10 1/4
TN
pl/2
1 (Scalar right argument, but vector result.)

EXPAND: R<«V\[KXI1B

The result is formed by expanding B along the Xth coordinate
by filling with zeros (if B is numeric) or blanks (if B 1is of
character type) in those positions in £ for which there are
corresponding 0O's in V.

Requirements for V and B. Ignoring the special cases, V must be
a vector containing only 1l's and 0's such that (+/V)=(pB)[K].
The result £ has the same dimensions as B except that the Kth
dimension is oV.

Exception cases. If V or B is a scalar, it 1is treated as a
one~element vector.

60454000 E 6-11

Examples.

1010 1\1 2 3
10203

[J«M<2 3p16

[N

10 1\¥

Y
o

1\[11¥ (Same as 1 0 1XM.)

Fohr
noON
OO W

p1\2
1 (A vector result.)

tot=o\"! (An empty array can be expanded.)

o\10

TAKE: R<V+B

The take function selects |V[X] first elements (for VI[K1>0)
or last elements (for V[X1<0) along the Xth coordinate of B. If
| VLK1 exceeds (pB)[k]1, zeros (if B is numeric) or blanks (if B is
of character type) are used to provide the extra elements.

Requirements for V7V and B. Ignoring the special cases below, V
must be a vector having an integer for each dimension of B. That
is, (pV)=ppB. The result R has dimensions |V.

Special cases. If V is a scalar, it is treated as a one-element
vector. If B 1is a scalar, it is treated as a one-element array
of rank oV.

Examples.

341 2 3 4 5
T341 2 3 4 5
34 *ABCDE!

ABC

6-12 60454000 E

541 2 3

1 2300
O«M<3 u4pr12
1 2 3 4
S 6 7 8
9 10 11 12
2 “s54M (First 2 rows, last 5 columns.)
01 2 34
056 78

3410 (Take can be applied to an empty array.)
0 00O

2 345 (5 is treated as a 1 by 1 matrix.)

DROP: R<V+B

The drop function forms its result by omitting |V[k] first
elements (if V[X]1>0) or last elements (if V[X]<0) along the Kth
coordinate of B,

Requirements for V and B. Ignoring the special cases below, V
must be a vector of integers, and pV must be the same as ppB.
The result has dimensions 0l (pB)-|V.

Special cases. If ¥V is a scalar, it is treated as a one-element
vector. If B is a scalar, it is treated as a one-element array
of rank pV.

Examples.
3¥1 2 3 4 5
4 5
T2V 'ABCDEF!
ABCD
1041 2 3
(Blank line indicates an empty result.)
O«M<3 up112
1 2 3 4
5 6 7 8
9 10 11 12
1 72 yM(First row and last 2 columns are dropped.)
5 6
9 10

60454000 A 6-13

p0 0+3
11 (The scalar was treated as a matrix.)

(10)+3

REVERSE: R<¢[X1B

The reverse function reverses the order of elements alorg
the Xth coordinate of B. The result has exactly the same shape
as B.

Examples.

¢ 3 456
6 54 3

G 'ABCDEF'
FEDCBA

O«M+«3 u4p112
1 2 3 4
5 6 7 8
9 10 11 12

oM

©
N W
N
w =

oM (Same as $[11M,)

ROTATE: R<+A$[X1B

The rotate function shifts elements of B along the Xth
coordinate a number of positions specified by 4. For positive
elements of 4, the elements move so that their indices decrease,
and for negative elements of 4 their indices- increase. Elements
shifted beyond the end are replaced at the other end. The
absolute value of the elements in A gives the number of positions
the corresponding vector along the XKth coordinate of B is shifted.

Requirements for A and B. Ignoring the exceptions below, 4 must
have one element for each vector in B along the xth coordinate.
That is, pA must be (X=21ppB)/pB. Thus the dimensions of 4 must
be like those of B except that the xth dimension of p is absent
from A. The result has the same shape as B.

6-14 60454000 A

Special cases. If A 1is a scalar, it 1is extended to become an

array having dimensions suitable for B, Rotation of a scalar is
allowed, but the left argument must be a scalar, and the result
is the same as B. When the right argument is a vector or a

scalar, the left argument may be either a scalar or a one-element
vector.

Examgles.

2% 1 2 3 4 5 (Rotation by 2 positions to the left.)
3 4 51 2

"2 ¢ 14 2 3 4 5(Rotation by 2 positions to the right.)
b 5 1 2 3

2 $tABCDE®
CDEAB
OJ«B<3 u4pui2
1 2 3 4
5 6 7 8
9 10 11 12
0 1 2% B
1 2 3 4y (Rows are shifted.)
8 5 6 7
11 12 9 10
0 112 eB (Same as 0 1 1 2 $[11B.)
1 10 7 12
5 2 11 4
9 6 3 8
19 B
2 3 4 1
6 7 8 5
10 11 12 9 (All rows are shifted by 1l.)

MONADIC TRANSPOSE: R<«®B

The monadic transpose function reverses the coordinates in
B. Thus the last coordinate in R corresponds to the first in B,
the second to the last corresponds to the second in B, and so
forth. For a vector or scalar, the result is the same as the
argument. For a matrix, the result is the wusual matrix
transpose. For an array of rank 3, R[I:J:X] is the same as
B[K:J:I1. The shape of the result is pB.

Examples.

O«M<3 u4p112

1 2 3 4
5 6 7 8
9 10 11 12

60454000 C 6-15

5

FwWwNNR

FOUR
FIVE
FORT

FFF
010
UVR
RET

O o
ooON

13 14
17 18
21 22

1 13
5 17
9 21

2 1y
6 18
10 22

3 15
7 19
11 23

4 16
8 20
12 24

M
9

6 10
7 11
8 12

0«C<«3 up'FOURFIVEFORT'

&C

[O«R3+«2 3 u4p124
3 L
7 8

11 12

15 16
19 20
23 24

p QA3

QR3

DYADIC TRANSPOSE: R<V&B

6-16

The dyadic transpose function
according to the integer values in the vector V.

interchanges coordinates of B

60454000 A

Requirements for vy and B. Ignoring the special case below, 7
must be a vector having one element for each dimension of p--that
is, 7 and B must satisfy (pV)=ppB. The elements must be integers
such that (1[/V)eV and 7Ve:i[/V (all integers up to the largest
element in V¥V but no other values)., The rank of g is [/V in
l-origin or 1+[/V in O-origin. The srth dimension of p is
1/(V=I)/pB. The Ith coordinate of B becomes the y[r]th
coordinate of R. If two or more coordinates of B map into the
same coordinate of R, the length along that coordinate is the
least of the related dimensions in B.

Special case. If V7V is a scalar, it is treated as a one-element
vector. '

Examples.

O«M<«3 u4p'ABCDEFGHIJKL'
ABCD
EFGH
IJKL

21 8M
AEI
BFJ '
CGK (R[I;J1=BlJ3I].)
DHL

1 18 (R[I1=B[I;I]. The diagonal of the matrix.

AFK Note that the length is the shorter
of the two dimensions of the matrix.)

O«B<«2 3 4p124

i 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

5 6 7 8 (RLI;J;K]1=B[J;I;K].)

g 10 11 12
21 22 23 24 .

60454000 A 6-17

11 18B

1 18 (R[LIj=B[I;I;I]. The main diagonal.)

1 2 1§B
i1 5 9

14 18 22 (R[I;J1=B[I;J;I]. A diagonal slice.)
2 1 288 (R[I;JI=BLJ;:;I;:;J1.)

O

5 18

9 22

The expressions to the right which relate elements of B, v, and
R are formed as follows: The indices applied to g are
(I /V)p'IJKL...', and the indices applied to B are 'IJkL...'[V].

BASE VALUE: R<«A.1B

The base value function evaluates its right argument as a
representation of a number in a general number system described
by 1its left argument. For example, 2 2 211 0 1 gives 5; the
vector 1 0 1 is evaluated as a number represented in base 2. The
left argument, 2 2 2, contains the radices of the number system,
(Radices are ratios between the weightings of the positions.)
For the simple case of a vector left argument 4, the xth
weighting (in O-origin) is x/(-K)+4. That is, the xth weighting
is the product of the last X elements of 4, If y is a vector of
these weightings, the result for 41B is W+.xB. Thus for the case
2 2 211 0 1 the result is +/4 2 1x1 0 1.

Requirements for 4 and B. Except for the special cases below, 4
and B must satisfy (14p4)=14pB (the last dimension of 4 must be
the same as the first dimension of B). For arrays 4 and B, the
vectors along the last coordinate of 4 are used to find vectors
of weightings, and each vector along the first coordinate of B is
evaluated according to each vector of weightings, The weightings
are W<«¢x\(pd)+$4,1. The result is then W+.xB. The result has as
dimensions (14p4),1+p3 (same as the dimensions of A+.xB).

Special cases. If 4 or B 1is a scalar, it is treated as a
ocne-element vector. If the last dimension of 4 does not match
the first dimension of B but one of the two dimensions is 1, that
dimension is extended to match the other.

Examples.
24 60 6011 2 3

3723 (One hour, two minutes, and
3 seconds is 3723 seconds.)

6-18 60454000 A

0 60 6011 2 3 (The first element in the

3723 left argument has no effect,)

O«A<2 3p2 2 2 10 10 10
2 2 zZ

10 10 10
Og«B<+3 4p1 1 3 2 01 4 01 0 5 3

113 2

01 4 0

1 05 3

A41B (Each vector along the first coordinate of p
5 6 25 11 is evaluated according to each vector
101 110 345 203 along the last coordinate of 4.)

.513 4 5 (Evaluates the polynomial (3x.5%2)+
7.75 (4x.5)+5, The left argument is extended
to become a 3-element vector.)

REPRESENT: p<«ATB

The represent function represents its right argument in the
number system described by its left argument. For example, 2
2 215 gives 1 0 1. The left argument contains the radices of the
number systen. For a vector left argument and a scalar right
argument, the result is given by the following function:

VR<A SREP B3N ;0CT
[1] HN<oA
[2] R<«NpOCT<«O
[3]1 L1:>{l=0)/0
[u4) RLNI<ALNTIB
[5] B<«B-RL[K]
[6]1 =(BR=0)/0
[7]1 B<«B:A[N]
[8]1 H<«N-1
[9] ~I1 V

This function is a generalization of the usual method of
converting between number systems by dividing and finding
remainders.

Requirements for A4 and B. A and B may have any shape. Each
element of B is represented according to the radices in each
vector along the first coordinate of 4. (If 4 is a scalar, it
is treated as a one-element vector for this operation.) The
dimensions of the result are (p4),pB (i.e., the same as for outer
product) .

60454000 A 6-19

Examples.

10 10 1071273

2 7 3
24 60 60713723 (3723 seconds is 1 hour,
12 3 2 minutes, and 3 seconds.)
2 2 27131 (High-order information is lost.)
111
0 2 2731 (High-order information is
711 intercepted by using a zero.)

10 10 10734 281

F wWwo
[oe]

O«4«3 2p0 10 2 10 2 10

AT281 323

[o<]
(NS]

e
w

EXECUTE: FR<seB

The execute function performs the APL statement in the
vector or scalar B, A result is returned only if the expression
produces a result. When the execute function is performed as the
last operation on a 1line, any result is automatically printed
unless specification or a branch was the last operation within
the argument. Branching in the argument has no effect, and any
statement label is ignored. If execute is applied to a character
argument representing a 1list, the list is printed and the first
list element is returned as the result of the execute function.
Note that the present system does not allow expressions exceeding
150 characters to be executed. (Some statements of as few as 87
characters give a LIMIT ERROR.)

6-20 60454000 C

ExamEles.

¢'1 24 48' (Converting characters to numbers.)
1 24 48

X<«1 2 3

+/'X+X%x2"
20

P+«2'4«13"

P
1 23

P<2'2;3;4"
234

P
2

MONADIC FORMAT: H<«¥B

The monadic format function returns a character array that
when printed 1looks exactly like B (except possibly when [PV is
exceeded, in which case numbers in ¥8 could be split between
lines). An argument of character type is returned unchanged.
For a numeric argument, each column of B becomes several columns
in the result " (depending on UPP and the numbers in the column),
but the other dimensions of the result are the same as for the
argument. Thus the rank of ® is the same as the rank of B, and
PR matches 0B except that 1tpR (the last dimension of R) is
generally greater than 1*tpB (the last dimension of B). Note
that the exact output format differs between APL systems and may
even differ between versions of the same system. Programs should
be written to be independent of such differences.

Special case. A scalar numeric argumernt is treated as a
one-element vector and thus produces a vector result.

Examples.
¥1 2 3
1 2 3
p¥l 2 3
5
¥3 Lp112
1 2 3 4
5 6 7 8
9 10 11 12

60454000 A 601

p¥3 Upr12
3 10

vYAB!
AB

DYADIC FORMAT: Z<V¥B

The dyadic format function represents columns of B according
to pairs of integers in the vector V. The first number of a pair
in V gives the width, and the second number gives the precision
to be used in representing the number. The width is the number
of character positions to be used for the column, and if 0 is
used, the system chooses a width so that at least one blank will
separate that column from the preceding column. The result R has
the same dimensions as B except that the last dimension of R is
usually greater than the 1last dimension of B. Character
arguments are not allowed. The precision has the following
significance:

precision20 The numbers are represented in decimal format.
The precision is the number of digits beyond
the decimal point. If the precision is zero,
no decimal point appears.

precision<0 The numbers are represented in exponential
format. The number of digits shown is the
absolute value of the precision, and if the
number of digits is 1, no decimal point
appears. Five columns are reserved for the
exponent when the system chooses the width.
When the width is provided the number of
columns reserved at the right for the exponent
is given by 5LW-D+1+12D, where ¥ 1is the width
and D is the number of digits.

If a number cannot be represented in the space provided, the
field for that number is filled with asterisks. However, there
is no requirement that spaces separate numbers in the same row.

Exception cases. If B is a scalar, it 1is treated as a
one-element vector. (Hence the result is a vector, never a
scalar.) If V is a scalar or one-element vector, it is extended
to become V<0,V. (Thus the width of the columns will be chosen

by the system.) Then if pV is 2 but ~14pB (the last dimension of
B) is not 1, V is replicated to become V<«(2x 14pB)pV so that the
pair of numbers in V will be applied to all columns.

6=-22 60454000 B

Examples.

7 3¥.3456 2.8 928
0.346 2.800928.000

Ly, 3456 2.8 928
0.3456 2.8000 928,0000

1 0¥3 3p1 O
101
010
101

10 "3¥3 1p2.34567 4,23E18 ~5.3E 6
2.35E0
4,23E18
“5.30E°6

T1¥1ES 1.2E6 1.8E2
1E5 1E6 2E2

MATRIX INVERSE: R<HEB

The matrix inverse function returns the inverse of a matrix
B, The inverse is such that

(BB)+.xB<+~>T

where I is an identity matrix (i.e., a matrix with 1l's along the
diagonal and 0's elsewhere) having 14pB rows and columns. Iote
that this uniquely defines R only as long as B has the same
number of rows and columns. However, if B has more rows than
columns, the result £ can be uniquely defined by
R<>(E(®B)+.xB)+.x8B. The result is related to the result for the
dyadic matrix divide function according to EHB«->IEB, where I is an
identity matrix having 14pB rows and columns.

Requirements for B. Ignoring the exceptions below, B must be a
matrix such that (14pB)> 14pB (B must have at least as many rows
as columns) and B must have an inverse. Note that some matrices
do not have inverses and produce a DOMAIN ERROR if an inverse is
requested. In particular, a square matrix with two identical
rows or with one row that can be produced by multiplying other
rows by factors and adding them has no inverse. Actually, there
is no precise distinction between matrices that have inverses and
those that do not, and 0OCT is used in the test. Decreasing the
value of OCT may prevent a DOMAIN ERROR, but the result so
produced is less reliable and may be completely meaningless. The
dimensions of the result are $pB (i.e., p®&B).

60454000 C 6-23

Special cases. If B is a scalar, the result is the scalar :B.
If 5 1s a vector, the result is B#+/Bx2, Except for the result
rank, the scalar case is the same as if the scalar were treated
as a one-~by-one matrix, and the vector case is the same as would
be produced by treating the vector as a one-column matrix.

Examples. See the examples at the end of the following
iscussion of matrix divide.

MATRIX DIVIDE: R<AHB

The matrix divide function solves systems of simultaneous

equations or finds least-squares regression coefficients. When
the matrix B has the same number of rows and columns, R is the
solution to linear equations represented by the constant vector
A and the coefficient matrix B. When B has more rows than
columns, the result X contains the regression coefficients for a
dependent variable 4 and independent variables in the columns of
B, ©Note that the result is the same as (BB)+.x4.
Requirements for A4 and B. Ignoring_the special cases below, B
must be a matrix such that (14pB)2 14pB, and B must have an
inverse (see the preceeding discussion of the matrix inverse
function). Also, 4 must be a matrix such that (14p4)=14pB (they
must have the same number of rows). When 4 has more than one
column, the result R has a solution column for each column of A.
The result has the dimensions (1+¥pB),1+p4 (one row for each
column of B and one column for each column of 4). The result R
satisfies B+.xK<+»>4 if B is a square matrix, When B is not a
square matrix, the result minimizes each element of

+£(A-B+.xR)*2

That is, B+.XE gives predicted values for the regression
cofficients E, and A-B+.xR gives the residuals; so the sum of the
squared residuals is minimized.

Special cases. The arguments may also be scalars or vectors. A
scalar is treated as a one-by-one matrix, and a vector is treated
as a one-column matrix. After this extension, 1+pA must match
14pB. The dimensions of the result are (1+pB),1¥p4A where A and
B here are the original arguments before extension.

Example 1. To solve the system of equations:

5= x + 2y
4=5x + 3y
Use:
O«M«2 2p1 2 5 3
1 2
5 3

6-24 60454000 A

5 4 [EM

103 (A vector result.)
_ (2 1p5 u)EM

1

3 (A matrix result.)

The answer is x="1, y=3.

Example 2. Given V1+«.8 .9 1.0 2.2 3.1, V2+«1 2 3 1 2, and Y<u4,5
6.6 9.2 8.3 7.1 find the values of 41 and 42 that most nearly
satisfy Y=(41xV1)+42xV2 in the least squares sense.

O«@«V1,[1.51V2

WNERr oo
* o e 9
=N ©0 ™
NP W

0OPP<3
0<z<YHQ
1.37 2.56

The predicted values for Y are:

Q+.%x2Z
3.66 6.35 9.04 5.58 9,37

and the residuals are:

Y-Q+.%x2
0.845 0.252 0,159 2.72 ~2.27

Example 3. Using V1 and V2 from Example 2 and Y2<6.5 8.6 11.2
10.3 9.1, find 41, 42, and A3 that most nearly satisfy
Y2=A1+(A2xV1)+A3xV2. This problem is 1like - the previous one
except that we imagine 41 to be the coefficient of a vector of
1's. The solution is given by: '

[O«B<«1,@

(RN
WO R oo
N R WA R

Y28B
5.76 0,593 1.35

60454000 A
6-25

Section 7. Composite Functions

As described in Section 3, an operator is a special function
that takes functions as arguments and produces a function as a
result. Except for the result of the axis operator, these
resulting functions are the composite functions. A few examples
will help to illustrate this. The expression +/1 2 3 ("the plus
reduction of 1 2 3") is the same as 1+2+3. Similarly, -/1 2 3 is
1-2-3 or 2 (remember that it is performed from right to left).
The function symbol to the left of the slash indicates the
particular dyadic scalar function to be used. The forms for
composite functions are d/B (reduction), d\B (scan), 4-.dB (outer
product), and Ad.DB (inner product), where d and D represent
symbols for any dyadic scalar functions.

REDUCTION: R<«d/[K1B

Reduction applies a dyadic scalar function repeatedly
between elements in vectors along the Xth coordinate of B. For a
vector B, the reduction is of the form

B[11dB[21d ... dBLN]

For higher order arrays the same sort of operation is performed
for each vector along the Xth coordinate. When the axis operator
is omitted the operation is performed along the last coordinate.
The alternate symbol / can be used to indicate the operation
should be performed along the first coordinate.

Requirements for B. Elements of B must be in the domain of the
scalar function used. Thus, character arguments are allowed only
for the functions = and 2. Except for the special cases below,
the result has a rank that is one less than the rank of B and the
dimensions of the result are (K#i1ppB)/pB (the same as the
dimensions of B except that the Xth dimension of B is missing).

60454000 A - 7-1

Special cases. A scalar is treated as if it were a one-element
vector, and the result is then a scalar. If the length of B
along the Kth coordinate is 1, the result is the same as the
argument except that one dimension is removed. No operation is
actually performed in this case, so no check is made to see
whether the values are in the domain of the function, except that
arguments of character type are still illegal for functions other
than = and =. When B is empty but the result is not empty, the
result contains the identity element for the function if one
exists. The following table shows the identity elements used.
Note that in some cases the identity elements are identities in a
rather loose sense. Some are right identities only, some are
left identities only, some are both, and some are identities only
for logical arguments. PFunctions for which there is no identity
in the table produce DOMAIN errors when applied along a
coordinate of length O.

Function Identity Function Identity
+ 0 * 1
- 0 A 1
x 1 v 0
3 1 ! 1
[T1.26E322 > 0
L 1.26E322 2 i
= 1 < 0
z 0 < 1
I 0
Examples.

/73 1 9 15

15 (Largest element.)
L/3 1 9 15

1 (Smallest element.)
x/1 2 3 4 5

120 (Product.)
+/1 2 3 4 5

15 (Sum.)
-/1 2 3 4 5 (Alternating sum; same as

3 1+(-2)+3+{(-U43+5.)

$+/1 2 3 v 5 (Alternating product; same
1.875% as (1x3x5)+2x4,)

O«P<3 up112
1 2 3 u
5 15) 7 8
g 10 11 12

7-2 60454000 A

[/p (Largest element in each row.)

i 8 12
[AP (Largest element in each cclumn.)

9 10 11 12
+/3 (A scalar is treated as a vector.)

3
A/S

5 (tlo domain check for one elerient.)
+/10

0 (An identity if the length is zero.)
+/3 0pO :

0 00 (An identity for each of the 3 rows.)
A/AeB (Gives 1 if all elements of the vector 4

occur in B.)

v/AeB (Gives 1 if any elements of the vector

A occur in B.)

SCAN: PR<d\[KX]B

Scan performs a series of reductions. For example, +\1 2 3
4 5 returns 1 3 6 10 15; that is, the fth element is +/74+B. For
arrays other than vectors, the result has the same shape as the
argument, and the elements along the Kth coordinate are produced
by performing a reduction over the first I elements. Arguments
of character type are not allowed. If the axis operator is
absent, the last coordinate is assumed. The alternate symbol \
can be used to indicate the operaticn is the be performecd along
the first coordinate.

vi0 01 0010
0011111

A\1 10101
1100600

*x\1 2 3 4 5 6
1 2 6 24 120 720

O«P«3 up112

1 2 3 4
5 6 7 8
9 10 11 12

60454000 A 7-3

+\P
1 3 6 10
5 11 18 26
9 19 30 42

+XP (same as +\[1]F.)
1 2 3 4
6 8 10 12
15 18 21 24

QUTER PRODUCT: R<Ao,dB

Outer product applies a scalar dyadic function using all
elements of 4 as left arguments and all elements of B as right
arguments. The rank of the result is (ppd)+ppB and the
dimensions of the result are (p4d),pB. Each result element has as
its first pp4 indices the indices of the element used from 4 and
has as its last ppB indices the indices of the element used from

B.

Examples.

1 2 3o0,x4 5 6 7

b 5 6 7

8 10 12 1y (Each element of the left argument is

12 15 18 21 multiplied by each element of the right.)
1 2 3¢,=3 1 3

010

00090

101

+/1 2 30,=3 1 3
102 (The number of 1l's, 2's and 3's
in the right argument.)

INNER PRODUCT: R«Ad.DB

Inner product applies the scalar function D between each
vector along the last coordinate cf 4 and each vector along the
first coordinate of B, then performs a reduction using d to that
result. The usual matrix product is A+.xB.

Requirements for A and B. Ignoring the special cases below, the
Tast dimension of /4 must match the first dimension of B. The
dimensions of the result are (1+4p4),1+pB (all dimensions of 4
except the last and all dimensions of B except the first).

7-4 60454000 A

Special cases. If 4 0or B 1is a scalar it is treated as a
one-element vector. Then if the last dimension of 4 dJdoes not
match the first dimension of B but one of the two dimensions is
1, that dimension 1is extended tc match the other (thus allowing
the array having the 1 as a dimension to be used repeatedly).

Examples. The following table shows examples for arguments of
various ranks.

pod ppB ePR Result
2 2 2 RLI;J1=d/ALI; IDBl;J]
2 1 1 R[I1=d/A[I;1DB
1 2 1 RLI1=d/ADB[;I]

The following examples illustrate useful inner products:

0«4d<2 3p1 0

101
010
0«B+«3 3p19
123
4 5 6
789
A+.xB (Matrix Product.)
8 10 12
4 5 b
'YABCD'+.='X2¢D"' (Counts matches in corresponding
2 positions.)
O«TABLE+«3 up'FOURFIVESTX !
FOUR
FIVE
SIX
TABLEA.='FIVE"'
010 (Gives 1 for a row that matches

'FIVE'.)

60454000 A 7-5

Section 8. System Functions and Variables

This section discusses system functions and variables other
than [0, M, 0OFD, and [JsY, which are described elsewhere. System
functions and variables allow communication with the APL systemn,
and, to some extent, with the operating system under the control
of which the APL system runs. In most respects system functions
and variables behave as other APL functions and variables except
that: their names are distinguished by beginning with the symbol
O or M, they control the APL environment in ways that other
functions and variables cannot, and the wvalues o©of system
variables can change between settings. For example, [J47, which
is a vector of accounting information, may be set by the user to
any desired value, but the next time he requests its value, it
will correctly reflect current accounting informaticn--that is,
the system resets the value of [JAT before it is read. Similarly,
JAI can be erased by the user, but the system gives it a value
whenever its value is requested.

The system variables that affect cperaticon of the APL system
have restricted shapes and domains. For example, [J70, the origin
for indexing, must have a value cf 1 or 09, Any attempt to set
010 to an improper value will result in a RANK ERROR OY & DOMAIN
ERROR. However, the wuser can erase [JJ0 or declare [J70 to ke
local to a function and then fail to assign it a value. When a
system variable is undefined and its value 1is required £for an
operaticn, an IMPLICIT ERROR results. For example:

VZ<«IOTA B;0r0 (10 is a local variable.)
[1] Z«\B VY

I0TA 3
01: IMPLICIT ERROR
ITOTA[1] Z+1B
/

60454000 A 8-1

Table 8~1. Summary of Section 8.

Output Control

(OPP<integer (1 to 15)
Printing precision--maximum number of significant digits
used for numeric output.

(JPW<integer (30 to 131071)
Maximum printing width used for output.

OPL<«pagesize,linecount (0 to 131071)
Print lines. Print lines to be used before a halt to allow
the terminal operator to intervene, and count of lines used.
If OPLL1]1 is 0, output will be uninterrupted.

(JHT<integers
Horizontal tabs. Indicates to the APL system where tab
stops have been set on the terminal.

Indicators affecting Primitive Functions

OCT<number (0 to .01)
Comparison tolerance used for relational functions,
membership, index-of, integer tests, and domain tests.

JI0«0 or 1

Index origin. Determines base for counting.

JRL<integer (1 to 2814749767108655)
Random link used by random number functions.

Function Definition

OENV<0 or 1
Environment control. Affects [Ocr, UOFx, UOEX, ONC, ONL,
OsTopr, OTRACE, 0LOCK, OLTIME, ONAMES, and [corPy. If OENV
is 0, the global environment is used, and if 0Ny is 1,
the current environment is used.

matrix<[JCR 'name!'
Canonical representation of a function in the form of a
matrix.

7<0FX matrix
Fixes the function represented by the character matrix
argument. The result returned is a vector containing the
name of the function, or, if the operation failed, a numeric
scalar line number for the erroneous statement.

vector<«[]JEX 'names'
Expunges (erases) objects named by the right argument. The
result contains 1l's for names that are now available, 0's
for others.

8-2 60454000 C

Table 8-1. Summary of Section 8, Continued.

vector<[NC ‘'namest
Returns the name class for each name--0 for available, 1
for locked variable (label or group), 2 for wunlocked
variable, 3 for function, or 4 for distinguished name.

matrix<{NL V

matrix<'letterst ONL V
The namelist functions return matrices of names in use.
Which names are returned depends on class numbers in
V=--locked variables (labels or groups) if 1¢V, wunlocked
variables if 2¢V, functions if 3eV, and defined
distinguished names if u4eV. The left argument of the dyadic
form should contain letters to further restrict names to
those beginning with those letters.

vector<[JLOCK 'names’'
Locks functions and variables named by the right argument.
The result is a vector containing l1l's for success, 0's for
failure.

Stop, Trace, and Timing Control

¥ OSTOP ‘name!

¥ OTRACE ‘namet®

vV OLTIME 'namet
Sets stop, trace, or timing controls for lines specified by
¥ and clears controls for other lines.

Z<[008T0P 'name!

Z<[TRACE 'namet

2<[JLTIME ‘'name®t
Returns line numbers for which stop, trace, or line timing
controls are set. 0ST70P and [OTRACE return vector results,
while OLTIME returns a matrix with line numbers in column 1
and corresponding times in column 2.

Program Library Functions

OWSID<tname*
OWSID contains the workspace identification of the active

workspace. This name 1Is used when no name is given for
OSAVE,

60454000 C 8-3

Table 8=1. Summary of Section 8, Continued.

7«SAVE ' wsname | :passwdll/options]?
Saves a copy of the acti3e workspace under the name
specified. [OSAVE'' (no name given) uses the name in [OWSID.

A OSAVE ‘'wsname l:passwdll/optionsl*t
Same as above except that 4 controls the state indicator of
the active and stored workspaces. If 4 is 0 or 1 the state
indicator is cleared or backed up to the 1last suspension,

respectively.

OrX«texpression®
The latent expression is executed immediately after the
workspace containing it is loaded.

OLOAD | *account] wsname L :passwdl"®
Activates a copy of a stored workspace and then executes the

latent expression if one is defined.

matrix<V ONAMES 'l*account] wsname |:passwdl'
Lists names used in a stored workspace. The result 1is a
matrix of names of objects in the name classes specified by
elements of V--locked variables (labels or groups) if 1eV,
unlocked variables 1if 2¢V, functions if 3ev, and
distinguished names if u4eV.

matrix<«[INAMES 'l*account] wsname |:passwdl"
Returns a matrix of all names of <classes 1, 2, and 3 in the

workspace.

matrix<"names™ [COPY ‘[*account] wsname L:passwdl"
Copies specified objects into the active workspace from a
stored workspace.

matrix<«0COPY *[*xaccount] wsname | :passwdl!'
Copies all objects of <classes 1, 2, and 3 from the
workspace.

ODROP ‘| *account] wsname | :passwdlt‘
Removes the stored workspace or file named by the right
argument from the indicated library.

Z<0LIB ‘lL*account] lnamel‘
Returns a matrix containing names, types, and sizes of files
in a library. If an account number is given, information is
given only for the files that are public or semiprivate or
for which the user has access permission. If a name is
given, detailed information about that one file is returned.

8-4 60454000 C

Table 8-1. Summary of Section 8, Continued.

Error Processing

OTRAP integer
Specifies that errors are to be intercepted by a forced
branch to the specified 1line of the currently executing
function.

Z<[lERR
OEERR is a 3-row matrix of the last error message, the line
having the error, and a pointer to the position of the error
in the 1line.

matrix<0SIV wvector
The result is a character matrix containing the rows of the
state indicator with variables display specified by the
Tight argument. [OSIV 100LC gives the entire display (in
either origin).

y<QgrLc ;
ULC is a vector of all line numbers appearing on the state
indicator.

Miscellaneous System Communication

V<0AI
OAI is a vector of accounting information. OAIL1 2 3 4 5]
gives: an encoding of the user's account number, accumulated
central processor time, accumulated connect time,
accunmulated keying time, and SRU's used.

V<AV
étomic vector of all 256 APL characters.

y<Qrs
Time stamp: current year, month, day, hour, minute, second,
and millisecond.

y<Qrr
Terminal type.

Owd <V
Working area: [WAL1] is the part of the maximum field length
available for wuse, UWAL2] is the current field 1length,
OWAL3] and OWAL4]1 are the minimum and maximum field lengths
the user wishes APL to use.

Z<[JTM “command’'
Terminal mode: commands are SYSTEM, OFF and ABORT, to return
to operating system command processor, sign off, or abort
batch job.

60454000 C 8-5

Table 8-1. Summary of Section 8, Continued.

S<[DL seconds
Causes execution to delay for the specified number of

seconds.

Format System Function

Z<'phrase,phrase, ... ' [FRMT B
Z«'phrase,phrase, ... ' OFRMT (B1:B2: ...)
Formats right argument according to left argument. A

Phrase is of the form 3qI4, 2gF9.2, 4E15.7, 441, [Htextl, or
5¥« The qualifier g may be a combination of ¢, T, Z, or L
(for commas, to change trailing zeros to blanks, use leading
zeros, or to left justify); Rltext[l (to pre-fill with text);
MAtextl or Nltextll (to place text to left or right if
negative) ; PMtext or Qtextl (to place text to left or
right if positive), ¥, B, or P (to replace with blanks if
negative, zero, or positive); or /NOtextll, Bltextl, or
PMtextl (to replace with text if negative, zero, or
positive).

Number Conversion

Z«[JEXTRACT‘characters™
Scans argument for numbers. Z[1] tells the number of
characters scanned, and 1+Z gives a vector of any valid
numbers encountered.

Ilowever, three system variables are so important that wien they
are undefined the system uses default values. Thus, when UPW is
undefined the system uses 30 as the printing width. Waen [PP is
undefined, normal output uses a value of 1. Wnen [OCT 1is
undefined, the system uses zero as the comparison tolerance for
domain tests, although numerical comparisons still give implicit
errors. For example,

Ogxtdcr:
1
3=3
01: IMPLICIT ERROR (Because [CT is undefined for comparison.)
3=3
/
3
1 2 3
13+1E 12
03: DOMAIN ERROR (Because [CT is zero for domain tests.)
13+1F 12
/

8-6 60454000 E

Certain system variables are not stored in the workspace.
These session variables remain in effect if another workspace is
loaded and always have their normal values when an APL session
begins. The session variables are U#¥T, OWA, 0OpPL, 0OTT, 0TS, and
OAT.

llote that many system variables are concerned with internal
intricacies of the. APL system or the host operating system.
Consequently, they can be expected to differ from one system to
another. For some programs it may be worthwhile to access them
through user-defined functions to reduce the number of locations
requiring changes if the program is later moved to another
system.

NAME LISTS

Some system functions require arguments consisting of lists
of names. In all cases such name lists can be either a vector of
names separated by spaces, or a matrix of names with one name in
each row. In either form extra spaces are allowed before or
after names. When a system function returns a list of names as a
result, the list is always in the form of a matrix Dbecause the
matrix form 1is usually more convenient for manipulation by the
program.

WORKSPACES

An APL workspace comprises variables, user-defined
functions, the state indicator, and system variables that are
currently defined. A clear workspace comprises the following:

an empty state indicator

UPP«10 (printing precision of 10 digits)

DPW+129 (up to 120 characters are printed per line)
[CT«5E 11 (comparison tolerance is 5& 11)

0r0«1 (index origin is 1)

0ORL<16807 (random link is 16807)

OENV<1 (local environment)

OERR«3 0p"!

60454000 E 8-17

As functions and variables are defined, they become part of
the active workspace. A copy of an active workspace can be
saved. To use it at a later time, a copy of the saved workspace
can be activated (that is, made active).

A stored workspace is a special kind of "file." Under an
account number (or user number) can be stored as many files as
are allowed by restrictions imposed on the account number. The
collection of files is known as a library.

APIL, workspaces and data files are ordinarily private files,
which means that other users cannot use them. A user may
optionally save a workspace as a semiprivate file or public file
by use of commands of the form [0OSAVE 'name/S' or [ISAVE'name/PU‘'.
This allows other wusers to access the workspace but does not
allow them to alter it. Other users can be given permission to
access a private file by use of the PERMIT control card (see
Section 13). This gives selected user numbers permission to
access the particular file. Further details about these file
categories can be found in Section 10 and Section 13,

Passwords can be given to workspaces for additional
security. When a workspace is given a password, other users must
provide the password in order to access the workspace. However,
the owner of the workspace need not provide the password in order
to use it.

The first time a workspace is saved it can be given a
password or a category (i.e., private, semiprivate, OYr public).
Thereafter, the file password and category remain unchanged for
subsequent save commands that replace the stored workspace.
(Thus, the password and category options should not be provided
for subsequent save commands.) To change the password or
category you must load the workspace, drop the stored one, and
then resave it with the new options. Alternatively, you can use
the CHANGE control card (see Section 13).

Workspaces can optionally be saved in direct access form
(ordinarily they are saved in indirect access form). This option
is chosen by using a command of the form [SAVE'name/DA* the first
time the stored file is established. Direct access workspaces
are faster to 1load, save, or copy, but require more disk space.
The direct access option 1is appropriate for unusually large
workspaces that are loaded or saved very often. A workspace can
be changed to direct access form by 1loading it, dropping it,
then resaving it using the DA option.

Workspace names and passwords must be composed of 1 to 7
letters and digits. Embedded spaces are not allowed.

8-8 60454000 C

NOTATION

Throughout this section, brackets are used to surround
optional portions of expressions. The brackets themselves should
not be used. For example,

OLo0AD t{xaccount] wsname 1 :passwdl"®

means that the account number and password are optional. Any of
the following commands are of the correct form:

OLOAD "ALGEBRAT®

0LOAD '%x4123456 ALGEBRA:SESAME"
OLOAD “ALGEBRA:SESAME"

OLOAD *%A2123u456 ALGEBRA*

SYSTEM VARIABLES FOR OUTPUT CONTROL

Printing precision. UPP<+integer (1 to 15)

The value of UPP determines the maximum number of significant
digits to be used for numeric output. The result is rounded to
OPP digits; hence if [0PP is 3, 0.34567 would be printed as
0.346. See Appendix B for further details of numeric output
format.

Printing width. U[PW<integer (30 to 131071}

The value of UUP¥ determines the line width used for output. When
a line of output requires more character positions than [0OPW, the
remaining characters are indented and continued on successive
lines. Output of numbers will not cause individual numbers to be
split between two lines, but output of character data
representing numbers may cause numbers to be split between lines.

Print lines. [PL<pagesize, linecount (0 to 131071)

UPL 1s primarily intended to facilitate the use of CRT terminals
having a screen smaller than the total amount of output
generated. Appropriate setting of [PL causes output to pause
when the screen has been filled to allow the screen to be
examined or cleared (if required) before more output is sent.
The first element of UPL should be set to the number of lines
that will be wused for actual output. The second element of [PL
is a count of the number of lines actually used for input and
output. When each output line or input line has been completed,
UPLL2] is incremented by 1. If OPLL11=0PL12], the system prints
? on the next line and suspends further output until RETURN is
pressed. (Any other input is treated as if RETURN has been
pressed.) The program requesting input can be halted by use of an
interrupt (see Appendix C}. When RETURN is pressed, OPLL2] is
reset to 0, and further output is sent. The value of OPL[2] can
be reset to compensate for screen repositioning caused by graph
mode output. The elements of [IPL are restricted to nonnegative
integer values. If an attempt is made to set 0OPLL1] to 1, it

60454000 C 8-9

actually is set to 0. If the last line on the screen is used for
input, the ? is suppressed and normal input can be entered on
that line. (The input request gives a pause to allow the screen
to be read.) Note that for some terminal types the ? prints as
\.

0OPL has a different meaning when APL output is sent to a
file rather than to a terminal. Specifically, if APL is not
being used from a terminal or is being used from a terminal but
the output file name is not OUTPUT, and if the B (for leading
blanks) output option is in effect (see Appendix D), a page eject
carriage control character is sent at the beginning of the next
output line whenever the page size has been exhausted.

Horizontal tabs. [HT<«integers

The variable [JHT can be set to indicate to the APL system that
the terminal has tab stops set at the indicated locations. APL
will subsequently send tab characters rather than spaces whenever
the tab character will improve output speed. The first terminal
column is numbered as column zero. Tab positions greater than
255 are ignored and positions beyond [PV are inconsequential. If
there is a discrepancy between the actual tab settings on the
terminal and the values in [HT, the output will be printed
incorrectly. Also, some terminals cannot keep up with the output
when the tabs are too far apart. To use tab stops set every ¥
spaces, you can set [HT using an expression like [OHT«Nx1100. To
revert to normal output without use of tabs you can set [JAT using
QHT<1 0.

VARIABLES AFFECTING PRIMITIVE FUNCTIONS

Comparison tolerance. [CT<number (0 to .01)

The comparison tolerance is wused when comparing numeric values
and when testing whether values are sufficiently close to
integers:

1. Two numbers A4 and B are considered equal only if
(1A-B)=<|0CTxB

2. A number B is considered to be in the integer
domain if

(J(vIvT B)-B)<OCTX]UOCTXNINT B
where NINT B is the nearest integer to B, defined by:

VZ<+NINT B
11 Z<«(xB)xL.5+|B¥Y

The value actually used for the operation is NINT B,
If 0CT is undefined, zero is used as [CT,

8-10 60454000 C

Random link. [RL<integer (1 to 281474976710655)

ORL determines the next random number to be produced by roll or
deal. Each time a random number is requested, the value of [RL
changes. A series of random numbers can be recreated by setting
ORL to the same initial value and repeating the same requests.
Because the value of [JRL is saved with the workspace, it may be
desirable to reset it after the workspace is loaded to a value
based on the current time of day so that the random numbers
produced will not be the same as for the last session; for
example, [ORL<+/0TS.

Index origin. [0I0+«0 or 1
The index origin determines the origin for counting coordinates

or elements along coordinates. In O-origin the elements of a
vector would be numbered 0, 1, 2, etc. All indexing should use

60454000 C 8-10.1/8-10.2

values that are 1 1less in O-origin than in l-origin. In
addition, the following functions produce results that are 1
less in 0-origin than in l-origin: 4B, B, 4B, VB, A?B, and ?B.
In addition, the left argument for dyadic transpose should be 1
less for 0O-origin, and all axis operators require values that are
1l less. That is, K should be 1 less in expressions like A/[K1B
and ¢[X1B.

FUNCTION DEFINITION

Environment. [OENV<«0 or 1

OENV controls whether the functions 0Ocr, 0OFx, 0Orx, Onvc, O0ONL,
arrrMe, 0ONAMES, OCoPY, 0OSTOP, 0OLOCK, and OTRACE refer to the
global environment or to the current environment. When [QENV is
0, the global environment is used, and when [JENV is 1, the
current environment is used. The normal value of [JENV is 1, so
the system functions listed above may refer to 1local variables
and functions. However, when function definition mode is
entered or when a system command is performed, only the global
functions and variables are used. When the state indicator is
empty, the current environment and the global environment are the
same and UENV has no effect.

Canonical representation. matrix<[JCR “NAME"

Canonical representation returns a character matrix
representation of a function. The right argument contains a

character vector or scalar containing the name of the function to
be returned. The result will have one row for each line of the
function, including the function header. Lines will be indented
one space unless they have labels. If the argument does not name
an object in the environment specified by UENV, a NAME NOT FOUND
error 1is given. If the function named by the argument is a
locked function or is a variable, the result will have 0 0 as its
shape.

Fix. Z<[FX matrix
[OFX establishes the function represented by the character matrix

argument. If the attempt to establish the function is
successful, Z will be a vector containing the name of the
function. Replacement of previously existing functions is

allowed and may result in SI DAMAGE if the function is halted.
The SI DAMAGE error 1is processed as a normal error, except that
if the state indicator entry for the currently executing function

was damaged, error trapping is not allowed to take place. In
this case the error is considered to be located at the last line
entered in immediate execution mode., [OFX cannot be used to

replace objects other than functions. An attempt to establish a
function may also fail as a result of an incorrectly formed
function header or duplicate use of statement labels or local
variables. If the attempt fails, Z will contain a scalar row
index of the line that was improper. Functions created by UFX
can be declared local to other functions.

60454000 C 8-11

Expunge. vector<[EX 'names'

JEX expunges (erases) functions and variables narmed by the
argument. The result is a logic vector containing 1l's in
positions corresponding to names in the argument that are now
free, and 0's in positions corresponding to names that remain
unavailable for new uses. Erasure of a function that is on the
state indicator does not take effect until the function is no
longer on the state indicator. Thus a function can erase itself
and not actually be erased until it exits. The unfinished
execution can complete, but the name is immediately available for
new uses.

Name class. vector<[INC 'names'

ONC returns information about use of the names in the right
argument. The result contains 0, 1, 2, 3, or 4 according to
whether the name is available (not in use), a locked variable
(label or group), unlocked variable, a function, or a defined
distinguished name (i.e., beginning with the symbol 0),
respectively. Incorrectly formed names in the argument cause a
DOMAIN ERROR.

Name list. matrix<[NL V or matrix<«'letters' [NL V

The name list functions return lists of names in use. The right
argument 1s a numeric vector such that A/Vel 2 3 4. V indicates
the classes of names for which information is desired--1 for
locked variables (labels or groups), 2 for unlocked variables, 3
for functions, and 4 for distinguished names (i.e., those
beginning with the symbol 0). The result is a matrix of the
names. The left argument of the dyadic form may contain any
number of letters, and names appear in the result only if they
begin with those letters.

Lock. Vvector<[]JLOCK 'names"'

The variables and functions specified by the right argument are
locked. A locked function cannot be displayed, and a locked
variable cannot be reset using specification. (However, a locked
variable can be reset by erasing it and then using
specification.) Locking a variable is a very useful way to find
where the variable is reset. When the variable has been locked,
the next assignment to it will cause an error halt. Label
variables and groups are automatically locked to prevent them
from having improper values. The result returned by [OLOCK
contains 1l's in positions corresponding to names that are now
locked and contains 0's for other names.

STOP, TRACE, AND TIMING CONTROL

The functions [UST0P, [OTRACE, and UOLTIME are closely related.
In each case the right argument is a character vector or scalar
that names a function, and the left argument for the dyadic form
must contain nonnegative line numbers for which the control is to
be set. Setting controls for any lines clears all controls of
the same type for the other lines of the function. Elements of

8-12 60454000 E

the left argument not in the range of line numbers are ignored.
In all cases, an empty vector of line numbers can be used to
clear the controls. An empty character vector is allowed as a
left argument for notational convenience (e.g., '' 0OSTOP 'PLOT').
The monadic forms of the functions return information about
controls that are currently set.

Stop control. V USTOP 'name' and vector<«[STOP 'name'’

When the stop control is set for a particular line, execution of
the function suspends before execution of the line begins, and
the system prints ST0P SET, the name of the function, and the
line number. To continue execution where it stopped, issue a
branch to the line number just printed. Stop control at line O
of a function causes suspension Jjust prior to exit from the
function. The monadic form returns a vector of line numbers for
which stop controls are currently set.

Trace control. V [OTRACE 'name' and vector<[TRACE 'name'

Setting trace control for a line causes the function name and
line number to be printed each time after the 1line has been
executed, and if the result of the 1line was used for a branch or
assignment, the result is printed even though it ordinarily would
not be. Setting trace contol for line 0 causes tracing of the
exit from the function and causes printing of the explicit result
of the function (if it has one). The mnonadic form returns a
vector of line numbers for which trace controls are set.

Line timing control. V JLTIME ‘'name' and matrix<[JLTIME 'name'
Setting the line timing control for a 1line causes the central
processor time for that line to be accumulated. The time for a
line is accumulated wuntil line timing controls for the function
are reset, at which time all accumulated times are set to zero.
An attempt to set the line timing control for 1line 0 of a
function causes a DOMAIN ERROR. The result returned by the
monadic form is a 2-column matrix--the first column contains the
line numbers for which the line +timing control is set, and the
second column contains the total times for the lines. Because
the time clock has a resolution of one millisecond, each parcel
of time used by the line is measured with 1limited accuracy, and
lines consuming very little time or lines consuming time in small
parcels can be expected to show relatively large inaccuracy in
accumulated times. Note that the times accumulated for a
recursive function can count the time more than once.

PROGRAM LIBRARIES

Workspace identification. [WSID+«'name"

The variable [IW51D contains the name of the active workspace.
The name of the active workspace is used as the name for storing
the workspace if no name is specified when [JSAVE or)SAVE is
used. The name must begin with a letter, which may be followed

60454000 E 8-13

by additional letters or numbers. No spaces are allowed within
the name, but spaces may precede or follow the name. The name
must not exceed seven characters.

Save. vector<[SAVE ' wsname [:passwdll/options]'

OSAVE saves a copy of the active workspace under the specified
name and attaches to the saved workspace the password if one is
used. If a password is used, it must be separated from the name
by a colon. The name itself may be omitted, and in this case the
value of OWSID is used as the name. When [SAVE is executed from
a function, the state indicator of the saved workspace will show
suspension where [SAVE was executed. The options may include S,
P, or PU (for semiprivate, private, Or public category) or may
include DA or IA for direct access or indirect access. The list
of options may include any desired number of options, separated
by spaces, as long as the options do not include contradictory
choices. The options and password may be specified only when the
saved workspace 1is first established. If no options are
specified, the workspace 1is saved as an indirect access private
file if the saved workspace is being created; otherwise it is
saved in the same form as before.

The result returned is a vector of the workspace name and
the current date and time. However, when [SAVE is used in
immediate execution mode, the name, date, and time are printed
rather than being returned as a result.

Dyadic save. A4 [USAVE ' wsname [:passwdll/options]!'

The dyadic save function is like the monadic form except that it
permits control over the state indicator in both the active and
the saved workspace. The argument 4 may be a numeric scalar or
vector. If 4 is 0, a clear state indicator results, and if 4 is
1, the state indicator is backed up to the point of the most
recent suspension (or cleared if there have been no previous
suspensions). Note that a function calling the dyadic [SAVE
function always ceases to execute because of the change in the
state indicator, unless an error prevented completion of the
operation. Dyadic save prints the workspace name and the current
date and time.

Latent expression. [LX<«'expression'

The latent expression in a workspace is executed immediately when
the workspace containing it is loaded. When a workspace has no
latent expression, the keyboard unlocks for the wuser to specify
the first operation to be performed. A successful load operation
ordinarily causes the time and date when the workspace was saved
to be printed, but when the workspace contains a latent
expression this message is absent.

Load. [LOAD '[*account] wsname [:passwdl!

The function [OLOAD activates a copy of a stored workspace. The
right argument must contain the name of the workspace to be
loaded, the password for the workspace (if it requires one), and
the account number under which the workspace is stored (if

8-14 60454000 E

different from the user's own). A successful load results in
execution of the 1latent expression (0LX) if the workspace being
loaded has one. If the workspace has no latent expression, the
time and date when the workspace was saved are printed. The
special case [LOAD'*xAPLO CLEARWS' 1is equivalent to the system
command)CLEAR, which erases all indirect access files and unties
all direct access files that were tied during the APL session.

Hame list for stored workspaces. matrix<V [ONAMES '[*accountl
wsname L :passwdl!’

The [NVAMES function returns a matrix 1list of the names used in a
stored workspace. The list returned is controlled by [OENV in the
active workspace. The right argument is the same as the right
argument for [LOAD. The vector V may contain the integers 1, 2,
3, or 4 to specify what classes of names should be
returned--locked wvariables (labels or groups) if 1eV, unlocked
variables if 2eV, functions if 3¢V, and distinguished names if
Lel/,

Monadic name list. matrix<[NAMES'[*account] wsname [:passwdl‘
Returns a matrix of names of all objects in the workspace. Same
as dyadic form with 1 2 3 as a left argument.

Copy. matrix<'names' [COPY '[*xaccount] wsname [:passwdl!

The function [OCOPY copies functions and variables from a stored
workspace to the active workspace. The account number, workspace
name, and password are the same as described for [r04D. The list
of names in the left argument specifies objects to be copied.
However, if copying the object would cause replacement of objects
already in the active workspace, the copying process is
inhibited. If OENV 1is zero, copying will be from the global
environment of the stored workspace to the global environment of
the active workspace, and if [ENV is 1, the current environments
will be used. The result from [OCOPY is a matrix of names of
objects not copied because they were not found, because WS FULL
occurred, or because they already were in use in the active
workspace.

Monadic copy. matrix<[COPY '[*account] wsname [:passwdl’
Like dyadic copy except that all objects of classes 1, 2, and 3
(see ONC) are copied.

Drop. [ODROP '[*account] wsname [:passwdl"®

The function [DROP removes a stored workspace (or other file)
from the wuser's library. A password must be specified if an
account number is specified and differs from the one used to sign
on to the system and if the file has a password.

Library list. 1ist<«[0LIB '[*account] [namel *“

The function [OLIB returns information about files stored under
the specified account number (or the user's own account number if
no account number is specified). When no file name is included,
the list is a matrix such that each row has the following fields:

60454000 C 8-~15

File name: 7 characters
File type: 2 characters
File size (in words): 7 characters

One space separates the file name and type.

When a file name is given, detailed information about that
particular file is returned. The format when a name is provided
is illustrated below:

OLIB'"*APL1 FILESYS!
FILESYS WS 1075
IA S RD 11478

75/05/12 11:46:58 (When created.)
75/05/30 13:03:30 (Last change.)
75/07/31 12:30:59 (Last access.)

The first row gives the name, type of file (WS for workspace, F
for APL file, blank for all others), and the size in words. The

second row indicates the file 1is indirect access (the other
possibility would be DA for direct access), the file category
(S for semiprivate, P for private, and PU for public), the mode

of access permitted for other users (RD for read, WR for write,
BM for read-modify, MD for modify, AP for append, R4 for
read—-append), and the number of accesses that have occurred.

ERROR PROCESSING

Some system functions respond to certain error conditions by
returning a result to indicate the error. However, APL handles
most errors by suspending execution at the point of the error,
printing a message, and unlocking the keyboard for a new command
to be entered. Note that a keyboard interrupt (see Appendix C)
is treated as an error, as is +typing 7 (0O, BACKSPACE, U,
BACKSPACE, T). However, halts due to stop controls are not
errors. Special exceptions arise when the error is in an
argument to the execute function, in a quad input entry, in a
locked function, or when [TRAP has been used to intercept errors.

Errors in an argument to the execute function normally cause
two error messages to be printed. The first shows the execute
argument, and the second shows the error at the line where
execute was called (more precisely, the most recent pendent line
other than lines of locked functions or arguments to execute).

Errors in lines entered for quad input cause the request for
input to be repeated. If the error was encountered in a function
called by the input line, the request for input is not repeated
and normal error processing ensues.

For security reasons, lines of a 1locked function are not
shown in error messages. Any error in a 1line of a locked
function is treated as if it were situated in the line where the

8-16 60454000 E

locked function was called (more precisely, the most recent
pendent line other than lines of locked functions or arguments to
execute) .

The function UOTRAP can be used to designate a line of the
currently executing function to intercept errors. Once this has
been done, error trapping is in effect and an error in any line
of the function causes a forced branch to the trap line. The
error trap is in effect for functions called by that function or
for functions that are in turn called by those it calls, etc.

The scope of error trapping is analogous to the scope of
local variables. A function with a trap line remains in control
of errors unless a function called by it sets its own trap line.
The newer trap 1line takes precedence over the old one until the
called function completes execution or clears its trap. The trap

also takes recedence over the normal processing of errors in
quad input lines.

~ When a workspace 1is loaded, an interrupt may be acted upon
as an error before the latent expression has been executed and
the error trap has been enabled. To prevent this situation, a
function with a trap can be halted using a stop control before
the workspace 1is saved. The latent expression can then
deliberately cause an error in order to invoke the trap line.
(Warning: 1If a suspended function with a trap set is edited, any
error that occurs may not trap to the expected line and the value
of JERR may be erroneous.)

For additional security of private software, a workspace can
be sealed. See the discussion of AWSFIX 1in section 13 for
details.

Error matrix. [JERR

The character matrix [Jgrr contains the last error message. Row 1
has the type of error. Row 2 has the name of the function, the
line number (surrounded by brackets), and the line itself. Row 3
of OERR has a slash to indicate where the error was found in row
2. The number of columns in [(JFRR varies according to the longest
of the three rows.

The first row always shows the type of error actually
encountered, but the location of the error as shown in rows 2 and

3 can be different from the actual location of the error under
the following conditions:

1. If error trapping is in effect, the error is treated
as an error 1in the pendent 1line of the trapping
function.

2. If error trapping is not in effect and the error
occurred in a 1line of a locked function or in an
argument to execute, the 1location of the error is
considered to be the most recent pendent 1line that is
‘not an argument to execute or a 1line of a 1locked
function. However, an error in a locked function that

60454000 F 8-17

uses trapping causes [JERR to contain a 1line of the

locked function. It is advisable for the locked
function to 1localize OFRR in order to protect its
security.

Trap set. [TRAP integer

The [OTRAP function sets, resets, or clears the trap line for the
currently executing function. Use of [TRAP from immediate
execution mode has no effect. . The argument must be an integer.
If the integer is within the range of line numbers, that line
becomes the trap line. If the number is 0 or exceeds the number
of lines, trapping causes exit from the function. The trap can
be cleared by [JTRAP10. Once trapping is in effect, an error in
that function, in [0 input, or any function invoked by it causes a
forced branch to be taken to the trap line, and the trap state is
cleared. llote that [TRAP must be used to set the trap again
before additional errors can be intercepted by that function.
Hence a second error during processing of the trap routine
results in either normal error processing or error processing by
a function that invoked this one. If +trapping is in effect,
execution of functions can still halt as a result of a stop
control. However, the trap then remains in effect for errors in
immediate execution mode. '

When a forced branch to the trap line occurs, at least one
function will execute before an interrupt is detected. For
complete security, the trap line can immediately reset the trap.
In addition, at least one function is executed on the first line
of a user-defined function before an interrupt is detected, thus
allowing the function to set a trap without an interval of
vulnerability to interrupts.

Location counter: 0IC

The variable ULC contains a vector of all line numbers appearing
on the state indicator. The numbers appear in the same order as
in the)SIV display--that is, the numbers of the most recently
invoked lines appear first. The first element is the number of
the function line currently executing.

State indicator and variables. matrix<[SIV vector

The function L3IV returns rows of the state indicator, including
local variables. The argument must be a vector or scalar
containing integers. The value returned is a character matrix
containing a portion of the)SIV display selected by the right
argument. USTV vpULC prints the entire SIV display (in either
origin). If a value in the argument exceeds the range of
appropriate row indexes for the GSIV display, a blank 1line
appears in the corresponding row of the result. Note that only
entries for function lines appear on the state indicator--not
execute arguments, quad input lines, or immediate execution
lines.

8-18 60454000 C

MISCELLANEOUS SYSTEM COMMUNICATION

Accounting information. AT
The variable [JAI 1s a numeric vector of the following accounting

information:

0AIL1] - A numeric encoding of the user's account number. For
a character vector ¥ containing the 7-character
account number, the value of [J4I[1] is generated in
zero origin by
100L" ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789%1V

JAT[2] - Central processor time used.

0AI[3] - Total connect time.

0AIfu4] - Total time the keyboard has been unlocked. Includes
part of the time required for the system's response.

UAIL5] - The number of milli (thousandths of) System Resource

Units (SRU's) used since entering APL.

Times are in milliseconds and are cumulative since signing on to
APL.

Atomic vector. [AV

The vector [AV contains all 256 characters manipulable by APL.
Note that the ordering of characters in [JAV is system dependent,
and programs that depend on the ordering of characters in [J4V
cannot bhe easily transferred to other APL systems. See the table
in Appendix C to find positions of particular characters.

Time stamp. 0TS

The value of 0TS is a 7-element numeric vector expressing the
current point in time. The elements are in the following order:
the year (e.g., 1975), month (1 for January), day of the month,
hour (0 to 23), minute, second, and millisecond. The last
element is always 0 because the operating system does not report
the time of day to millisecond precision.

Terminal Type. 0OTT
The value of 07T identifies the type of terminal in use. The

value is a numeric scalar as follows:

- Correspondence

- Typewriter-pairing

- Bit-pairing

- ASCII-APL

- Teletype Model 33

- Full ASCII

- Batch ASCII

- Batch 501 Printer

- Teletype 38, arrangement 3
- CDC 713

CwvwoooNOUTdWN
I

=

Working area. [OWA
The value of [WA is a 4-element vector of: the part of the

maximum field 1length available, the current field 1length, the
minimum field length the user wishes used, and the maximum field

60454000 C 8-19

length the user wishes used. The field 1length is the actual
memory space occupied by the APL system and the workspace. The
user can set constraints on the field length to be used in order
to optimize performance (see Section 12). Attempts to reset the
first- two elements of W4 have no effect. The maximum field
length cannot be set to 1less than that which 1is currently
required. Setting wA[u4] to more than the user's validation
limit or more than the field length limit imposed by the operator
results in a DOMAIN ERROR.

Terminal mode. vector+(JTM'command'
vector+'dayfile message' [OTM 'command'
The terminal mode function allows the following operations:

OTM'SYSTEM' Returns control to the operating system command
processor.

OrM'OFF! Logs the user off.

OTM'ABORT' Terminates job with operating system abort error
flag set.

Note that these commands do not cause the active workspace to be
saved. The result returned is a vector containing a zero
indicating that the operation was not recognized. If the right
argument is an empty vector, nothing is performed, and the result
is an empty vector. If a left argument is supplied, it is sent
to the user's dayfile before the commands are executed. The
user's dayfile is a 1log of the NOS control cards executed by the
user and is available outside of APL.

Delay. scalar+[]DL seconds

Causes execution to delay for the number of seconds requested.
The delay does not involve consumption of central processor time.
The result returned is the actual delay that occurred (usually
slightly more than requested). The delay cannot be interrupted.

FORMAT SYSTEM FUNCTION

The function [OFFMT allows detailed control over column
formatting. The function can be used in two forms:

matrix<4 OFRMT B
matrix<A4 OFRMT (B1;B2; ...)

The second form uses a list structure generated by separating
expressions by semicolons and surrounding the entire group of
expressions with parentheses. The left argument is a character
vector (or scalar) describing how successive columns of the right
argument should be formatted. A scalar right argument or a
scalar 1list element in the right argument is treated as a

8-20 60454000 F

one-element matrix, and a vector is treated as a one-column
matrix. (To display a vector horizontally, reshape it to become
a one-row matrix, or apply the ravel function to the result.)
Arrays of rank greater than 2 are not allowed. The arrays in a
list argument may have differing numbers of rows, which causes

60454000 F 8-20.1/8-20.2 |

blanks to be wused in the 1lower portion of the result
corresponding to the missing rows. If QOrFrMT 1is the 1last
operation on the line, the result is printed directly rather than
actually forming a result, thus reducing the chance of a ws FULL
error.

Format phrases. The left argument to [OJFRMT is comprised of
format phrases separated by commas. The following are the
allowed forms for phrases:

(n]l [q] Iw Integer format. Same format as (w,0)¥B.
[n] [q] Fw.d Decimal format. Same format as (w,d)¥B.
[n] Ew.d Exponential format. Same format as (w,-d)¥B.

If w>d+8, field overflow will not occur and
there will be at least one space separating
the previous column.

[a] X Spaces.

[n] Aw Character format. Aw right justifies one
character in a field of width w.

[(n] MtextM Literal format. Forms a field containing
text.

Here n represents a number to be used as a repetition count, ¢
represents a "qualifier" (described below), w represents a number
to specify the width of the format field, and 4 represents a
number to determine how many digits should be shown. Brackets
are used to indicate parts that are optional. If no digits will
appear after the decimal point in the result, the decimal point
is omitted. If the repetition count is zero, the entire format
phrase is ignored. If no repetition count is provided, 1 is used
as the number of repetitions. Spaces may be used as desired in
the left argument and have no effect wunless they occur within
pairs of M symbols or within a number (an error condition).
Humbers are rounded to the precision required, and the number of
digits shown is allowed to exceed the computer's precision (zeros
are used to fill digits beyond the fifteenth). The following
examples illustrate the use of simple format phrases:

O«M<®3 3p13 282 3.8 13.046 ~22.52 0,0 1E 263 2 1E30

13 13,046 ~3.141592654E 263
282 22,52 T6.283185307FE0
3.8 0 3.141592654F30

'I4,F7.2,E13,5" [OFRMT M
13 13.05 "3.,1416E 263
282 T22.52 T6.2832E0
y 0.00 3.1416E30

41 ,A2,A3 ,A4 ,A5" [OFRMT 1 5p“SPACE"
S P A c E

60454000 C ’ 8-21

ITEMS<«4 7p'LATCHESHINGES BOLTS TOTAL !

CODE<'FTX'

QTY<+18 34 102

PRICE+2.45 1.20 .28

TOT«P,+/P+QTYxPRICE

'741,A3,M |M,I5,F6.2,F8.2'0FRMT(ITEMS;CODE;QTY;PRICE;TOT)

LATCHES F | 18 2.45 4h,10
HINGES T | 34 1.20 40.80
BOLTS X | 102 0.28 28.56
TOTAL] 113.46

The 1, 7, E, and 4 format primitives are value-using in the
sense that each time one of these is performed it operates on a
value from the right argument. There must be at least one
value-using phrase if the right argument is not empty. As
processing of a row of the right argument begins, the scan of the
left argument begins at its first element. If the left argument
is used up before the row of the right argument is completed, the
scan of the left argument begins again at the left., When the row
of the right argument is exhausted, the left argument is
processed until a value~using phrase is encountered or until the
scan encounters the end of the left argument.

If the information (including that required by qualifiers)
to be placed in a field exceeds the width of the field, the field
is filled with asterisks. Also, if a value in the right argument
is of the wrong type for the format primitive (i.e., if numeric
for 4 or if character for 1, F, or E) the field 1is filled with
asterisks and that value is bypassed.

Format qualifiers. Format qualifiers can be used with the 1 or
F format primitives to further control the format. In cases
where the qualifier depends on whether the number is positive,
negative, or zero, the test considers only the part of the number
that will be shown after rounding. For example, if ;7 format were
used with the numbers .01 and ~ .01 both would be considered to be
zero. The following qualifiers are defined

RMtextM Background with which to pre-fill the field. The
background is repeated from left to right as needed
to £ill the field.

c Insert commas to group triples of digits to the left
of the decimal point.

T Change trailing zeros after the decimal point to
blanks,

Z Fill field by using leading zeros.

L Left justify number in field.

MMtex t Place text to left of negative numbers. (Default is
M M)

NMtext Place text to right of negative numbers.

PMtextM Place text to left of nonnegative numbers.

QMtextM Place text to right of nonnegative numbers.

60454000 A

8-22

N NMtextM Fill entire field with blanks or with text (right

- T justified) if negative.

B BMtextl Fill entire field with blanks or with text (right
justified) if zero.

P PMltextl Fill entire field with blanks or with text (right

justified) if positive.

If more than one qualifier of the same type is encountered
in a format phrase, the rightmost one is used. (This allows the
user to build wvariables containing prototype strings of
qualifiers and then catenate on further qualifiers to deal with
special cases.)

The formatting of a field can be considered +to follow this
procedure:

1. The field is pre-filled with blanks or the text
specified by RMNtextl.

2, - The number is rounded and formatted according to the
format primitive and the ¢, MMtextl, ~NMtextl, PMtextl, and
QMtextl qualifiers. Trailing =zeros are replaced by blanks
if 7 was specified, and leading =zeros are added to the left
(but to the right of the sign or text required by MMNtext[l or
PMtextl) if Z was specified. This augmented number is then
moved into the right (or 1left if [was specified) of the
pre-filled field.

3. Replacement text required by an applicable ¥, B, P,
%ﬂtextﬂ, BMtextll, or PMtextll qualifier replaces the entire
ield. '

The use of qualifiers is illustrated below:

ANEGATIVE NUMBERS IN PARENTHESES

ROWS<2 15p'PROFIT (LOSS) PER SHARE '

M<2 3p42E6- u4E6 18E6 3.1i4 .32 1.26

11541, 3MM(MNMIMQM [MCF15.2' [OFRMT (ROWS ;M)
PROFIT (L0OSS) 42,000,000.00 (4,000,000,00) 18,000,000.00
PER SHARE 3.14 (0.32) 1.26

anDOUBLE ENTRY STYLE WITH TWO COLUMNS, N. C. FOR ZEROS
V<24 .61 ~30.24 387.60 29.80 ~52.48 0
'B¥. C.MMMMNM MFiu.2'0FRMT V
24 .61
30.24
387.60
. 29.80
52.48
N, C.

8-23
60454000 A

ABACKGROUND FOR CHECK PROTECT
'M$M,RO*MCF10.2' OFRMT 3.14% 328.54 50412.87
Frxxxxx3 14
Fxxxx328.54
$*x50,412.87

ABACKGROUND FOR TABLE OF CONTENTS,
RCHAPTER NUMBERS LEFT JUSTIFIED

'MCHAPTER M,LI2,RM. MI40'0FRMT (7 8 9 10:;9 92 328 552)
CHAPTER 7 o ¢ o o o o o o s o o o o o o o o« o o 9
CHAPTER 8 o « « o o o o o o o o o o o o o » « o 92
CHAPTER 9 & ¢« « o o o o o o o o o o o o o o » 328
CHAPTER 10. « & « o o o o« o o o o« o o o o« o « 4552

ALEADING ZEROS FOR DATES
DATES+4 303 7 72 4 4 73 1 16 76 12 1 75
'12,M/M,212,0/0,212'0FRMT DATES

3/07/72

4L/0u4/73

1/16/76

12/01/75

ALEADING ZEROS FOR MULTIPLE PRECISION REPRESENTATION
'0717,1002I8' OFRMT 1 401234 567890 003456 789012 '
1,234,567,890,003,456,789,012

ACURRENCY SYMBOL AT LEFT, CR TO RIGHT IF NEGATIVE
'eMMSINT CRMPISMQM MF15.2' OFRMT 32768 911 1427.21
$32,768,00
$911.00 CR
$1,427.21

Repetition. Groups of format phrases can be repeated by
surrounding them with parentheses and prefixing with a repetition
count. These repetition groups can in turn be nested within
repetition groups. For example, '2(F2.0,F3.1)' means the same as
'F2,0,F3.1,F2.0,F3.1" and '2(2(F2.0,F3.1),2(F4,1,F5.0))" is
equivalent to:

'2(F2.0,F3,1,F2,.0,F3,1,F4 ,1,F5.0,F4,1,F5.0)"

NUMBER CONVERSION

Z<«0EXTRACT'characters"

The [EXTRACT function can be used to extract legal APL numbers
from a character vector or scalar. The first element of the
vector result tells the number of columns processed, and any
remaining elements are any numbers encountered. The scan of the
argument begins at its first element and proceeds to the right
until a character is encountered that is not a blank or part of a
number. If any illegal numbers (such as numbers with two decimal
points) are encountered, a SYNTAX ERROR results.

8-24 60454000 E

Section 9. System Commands

System commands provide the same capabilities as some of the
system functions and variables. The system commands are provided
for compatibility with other APL systems. The main advantages to
using system functions and variables instead of system commands
is that the system functions and variables can be used in
programs (system commands cannot). For more complete discussions
of the operations performed by system commands, see the related
system functions in Section 8.

GROUPS

The APL 2 system, unlike some other APL systems, does not
have a distinct data type for "groups.™ However, the system
commands allow a character matrix or a vector of names to be used
for the same purposes as groups in the other systems. For
example, if GRPX is a matrix of names, the command)ERASE .GRPX
would erase GRPX and any objects referenced by the names in
GRPX . The period in the command is required to indicate that
objects referenced by 6RPX are to be erased, not just GRPX
itself. The general system convention for distinguishing groups
is that all group names should begin with GRP, Matrices or
vectors of names that do not begin with GERP can be used as
groups, but they will not be 1listed by the command)GRPS. The
names in the group definition can be preceded by a period, which
causes them to be interpreted as a reference to another group.
Any groups formed by the)GROUP command will be locked to prevent
accidental use of the same variable for a different purpose.

YCLEAR (Equivalent to [ULOAD'xAPLO CLEARWSY)
The command)CLEAR activates a clear workspace (described in

Section 8) and erases all indirect access files and unties all
direct access files that were tied during the APL session.

60454000 C 9-1

Table 9-1. Summary of Section 9.

JCLEAR
Activates a clear workspace.

JERASE names
Erases specified functions and variables.

)SAVE [wsnamel [:passwd]l [/options]
Saves a permanent copy of the active workspace. Options may
include $, P, PU, IA, or DA.

JLOAD [*account] wsname [:passwdl
Activates a copy of the specified workspace.

)JDROP [*account] wsname [:passwdl
Renoves a permanent workspace from the library.

)COPY [*account] wsname [:passwd] [names]
Protected copy of all global objects of classes 1, 2, and 3
or selected global objects from a stored workspace to the
active workspace.

JUCOPY [*account] wsname [:passwd] [names]
Unprotected copy of all global objects of classes 1, 2, and
3 or selected global objects from a stored workspace to the
active workspace.

JLIB [*account] [namel
Displays names, types, and sizes of all files, or displays
detailed information about a single file.

)SYSTEM
Returns control to operating system command processor.

)OFF

Signs a user off.
)ST

Displays the state indicator.
)SIV

Displays the state indicator along with names of variables.
JFNS [letter]

Displays names of functions.
JVARS [letter]

Displays names of variables.
JGRPS [letter]

Displays names of groups.
)GRP group-name

Displays names in a specified group.
JGROUP group-name names

Forms a group having specified names.

9-2 60454000 E

JERASE names (Equivalent to [EX 'names')

Erases all global objects specified by the list of names.
If a name .is preceded by a period, the name is treated as the
name of a group. The erasure erases the group itself (actually a
matrix or vector of characters) and the objects referenced by the
group.

)SAVE [wsname] [:passwd]l [/options]
(Equivalent to USAVE '[wsnamel [:passwd] [/options]')

The)SAVE command saves a copy of the active workspace under
the name specified or under the name in OWSID if no name is
given. The options are S (semiprivate), P (private, the
default), PU (public), DA (direct access) or IA (indirect access,
the default).

JLOAD [*account] wsname [:passwd]
(Equivalent to OLOAD ‘'[xaccount] wsname [:passwd]')

The)LOAD command activates a copy of a stored workspace. A
password 1is required if the workspace has a password and is
stored under another user number. After the workspace has been
loaded, the system executes ULX if [(LX is defined.

)DROP [xaccount] wsname [:passwd]
(Equivalent to ODROP “[*account] wsname [:passwdl"')

The)DROP command removes a stored workspace or other file
from a library. If the workspace is in another user's library, a
matching password must be given if the stored workspace has a
password. The user must also be authorized to alter the existing
file.

JCOPY [xaccount] wsname [:passwd] [names]
YUCOPY [*account] wsname [:passwd] [names]

The)COPY command performs a protected copy of global
functions and variables from a stored workspace to the active
workspace. The)COPY command will not replace objects in the
active workspace with objects from the stored workspace having
the same names. The JUCOPY command performs an unprotected copy
and will replace objects having the same names. If no list of
names is given, all objects of «classes 1, 2, and 3 are copied.
If a name in the 1list is preceded by a period, the name is
assuned to refer to a group and objects named in the group are
also copied. The LCOPY function can be used instead of)COPY if
groups are not to be copied. The form is [‘names*] [ICOPY
“[xaccount] wsname [:passwd]',

60454000 E 9-3

JLIB [*account]l [namel (Equivalent to [OLIB '[*account]llnamel')

The)LIB command displays names, types, and sizes of all
files the user 1is authorized to access, or, if a file name is
specified, JLIB displays detailed information about that
particular file. The format is the same as for [LIB (see Section
8).

)SYSTEM (Equivalent to [TM'SYSTEM')

The command)SYSTEM causes the user to leave APL control and
- allows the . operating system command processor to execute
subsequent commands. The active workspace is not saved.

JOFF (Equivalent to [OTM'0OFFt')

The)0FF command signs a user off the system.

)ST
)SIV (Equivalent to OSIV 1o0LC)

The command)SI 1lists the state indicator, and the command
)JSIV 1lists the state indicator and all local variables. See
Section 2 for the format of the display.

JFNS [letter] (Roughly equivalent to UNL 3)
JVARS [letter] (Roughly equivalent to ONL 2)
YGRPS [letter] (Roughly equivalant to “G*' 0ONL 1)

These commands 1list the names of defined global functions,
variables, and groups, respectively. If a letter is included,
only names beginning with that letter or letters that follow that
letter in the alphabet are shown. The command)GRPS 1lists
variable names that begin with GRP,

JGROUP group-name names

The command)GROUP defines a group, extends a group, or
erases a dgroup definition. Groups are actually represented as
character matrices. If the group-name itself is the first name
in the list of names, any previously defined group is extended by
the addition of the remaining names. If no names are given, the
group definition is erased but objects named by the group are not
erased. Names listed in the command can be preceded by a period
in order to include a period in the group definition (to indicate
the name refers to another group).

9-4 _ 60454000 E

JGRP grpname (Equivalent to grpname)
The command JGRP displays the definition of the indicated

group. If the group is not defined or is not a character matrix
or vector, an error message is given.

60454000 A 9-5

Section 10, File System

This section discusses files from the APL user's point of
view. The APIL system supports two distinct types of files:
API~structured files, and coded files. The use cf files erables
programs to deal with large quantities of data that would not fit
into a workspace, and files also provide a conveniernt way for
programs to communicate with one another.

APL-STRUCTURED FILE CCNCEPTS

An APL-structured file is a ccllection of APL arrays with
each array identified by a nonnegative integer. The following
example shows creation of a file and writing and reading a few
records (arrays) of the file.

YJLOAD *APL1 FILESYS (File system functions are
loaded from APL1.)

'SAMPLE' FCREATE 9 (The FCREATE function is used
to create a file with the name SAMPLE
and with 9 as its number.)

'RECORD 3' FWRITE 9 3(The left argument is written
to file 9 as record 3.)

(3 3p19)FWRITE 9 1

(2 3p'(0') FWRITE 9 28

FREAD 9 1 (The records can be reaéd in
123 any order.)
4 5 6
7 8 9

60454000 A 10-1

Table 10-1. Summary of File Functions.

*filename [:passwd] [/options]"' FCREATE fnum
Creates a file. Options are DA, C, WR, S5, or PU,

array FWRITE fnuml,rnum]
Writes array on file number fnum as record rnum,

result<«FREAD fnuml ,rnum]
Reads the record numbered rnum from the file numbered fnum.

FRDEL fnumi,rnum]
Deletes record rnum from file fnum.

roum<~FFREE fnum
Returns the least record number not presently in use in file
fnum.

'[xaccount] filename [:passwdl'® FPACK fnum
Condenses file by eliminating lost and unused space.

FPOS fnum,rnum
Sets position of file fnum to rnum.

result<«FSTATUS fnums

Returns the status of all files specified by the right
argument. The result is a vector or matrix according to whether
the argument is a scalar or vector. Columns are: (1) largest
record number, (2) current position, (3) file size, (4) unused
space, (5) lost space, (6) space not used because record sizes
not divisible by 64, (7) 1 if coded f£file, (8) 1 if DA type, (9)
1 if absent record encountered by last read attempt.

PSTATUS
Prints status information (with descriptive headings) for

all active files.

result<FNAMES
Returns a matrix of user numbers and names for all tied
files.

result<FNUMS
File numbers in use for tied files.

FRETURN fnums
Unties specified direct access files and erases specified
indirect access files.

FUNTIE fnums
Unties files in right argument. This leaves a permanent

copY .

10-2 60454000 C

FERASE fnums
Erases all files specified by right argument. Erasure
affects active file and for DA type also affects permanent file.

t{xaccount] file-name [:passwd] [/options]' FTIE fnum

Ties a file with specified options--rRD for read only (other
users can read at the same time), and rM for read-modify (another
user can modify at the same time).

result<«CFREAD fnum{, rows,columns]

Coded read. Result is a vector or matrix of characters or a
numeric scalar--1 for end of record, 2 for end of file, 3 for end
of information.

array (CFWRITFE fnum

The left argument is written to the coded file fnum. The
argument should be a character scalar, vector, or matrix, or
integers--1 to write end of record or 2 for end of file.

integers (FPOS fnum

Positions file. Operations indicated by first integer are:
0 for rewind, 1 for skip record, 2 for skip file, 3 for skip to
end. Second integer for skip record or skip file may be included
as repetition count.

jobname<CSUBMIT fnum[,type]
Submits the coded, indirect access file fnum as a batch job
and erases the active copy.

FREAD 9 28
aaa
0oo

FREAD 9 3
RECORD 3

After the above steps, the user can store the file (using
FUNTIE 9), an operation analogous to saving a workspace. The
user could then sign off the system. The information in the file
would remain intact and could be accessed or modified at a later
time.

File limits. Individual file records are allowed to be as large
as desired. However, user numbers have associated restrictions
that may limit the total number of files, the total size of all
files, the size of individual files, and whether the user can
create direct access files.

Tied files. It is usually more convenient to use numbers within
a program to identify a file rather than using the file name.
All file operations require this file number. The number is tied
to the file when the file is created using FCREATE or when a
previously stored file is accessed using the FTIE function. Once

60454000 C 10-3

a file has been assigned a number, the file is said to be tied.
The file can be released by wusing the FUNTIE operation, the
FRETURN operation, by erasing the file using FERASE, by signing
off from APL, or by typing)CLEAR. However, files remain tied
when another workspace is loaded.

Accessing file functions. The functions described in this section
are ordinarily stored under the user number Apr1 in the workspace
FILESYS., Before file operations can be performed, the functions
must be obtained from APL1 by loading the entire FILESYS
workspace or by copying selected functions from Frresys. All
functions in FILESYS are independent, and you need copy only
those functions you intend to use. The following examples show
various ways that copies of the file functions can be obtained.

YLOAD *APL1 FILESYS
OLOAD '*xAPL1 FILESYS!
YCOPY xAPL1 FILESYS .GRPPRIM (A group that excludes
documentation)
YCOPY %xAPL1 FILESYS FTIE FREAD
The file functions use the system function [OFI to perform
all file operations. The function OFI' could actually be used
directly, but it is usually more convenient to use the functions
in the FILESYS workspace. Most of the functions in the FILESYS
workspace are locked so that error processing will be more
convenient. Users who wish to learn how to use [FI directly can
discover all details about [OFI by studying the definitions of the
locked FILESYS functions below:
VA FPACK B [1] A OFI 0,BvV
YA FCREATE B [1] A OFI 1,BvV
VA FWRITE B [11 A OFrI 2,BV
VZ<FREAD B [1] Z<0OFI 3,BV
VFERASE B [1]1 B OFI uv
VFRDEL B (1] OFI 5,BV
VZ«FSTATUS B [1] Z+«B 0OFI &V
VZ«FNAMES [1] Z<0OFI 7V
VZ<«FNUMS [1] Zz<0OFI 8V
VFUNTIE B [11 B OFI 9V
VA FTIE B [1] A OFI 10,BV

VFPOS B [11 OFI 11,BV

10-4 60454000 C

VA CFWRITE B [1]1 A OFI 12,BV
VZ«CFREAD B [1] Zz<0FI 13,BY
VA CFPOS B [1]1 OFI i4,B,AV
VZ<CSUBMIT B [11 Z<[OFI 15,BV
VZ<FFREE B [11 Z<[0FI 16,BV

In addition to the basic functions in the FILESYS workspace,
the workspace FILES2 contains additional file functions that are
based on the functions in FILESYS and perform more complicated
operations.

Active and stored files. APL-structured files are ordinarily
indirect access files unless the wuser specifies otherwise at the
time of creation. This means that when the file is tied, the
system makes a copy of the stored file. All reads and writes
actually interact with this active copy. To save the file as a
permanent stored file, an FUNTIE is required. Signing off from
APL,, typing JCLEAR, or a telephone disconnect (assuming the
RECOVER command is not used) causes the active file to be erased.
One advantage of having a separate active copy is that no damage
can be done to a stored file if a series of file updates is not
completed. For example, suppose that a program writes a record
to indicate that a transfer of funds was made from one account to
another on a certain date, then the program revises two records
containing the balances of those accounts. If the program were
to halt in the middle of the sequence of operations (due to a
system problem or telephone disconnect), the transactions
recorded in the file would be inconsistent with the balances in
the file. This causes no problem when indirect access files are
used because the inconsistent information is in a temporary file
and the stored file is in the same state it was when it was tied.

For some applications that use indirect access files, it may
be desirable to perform an FUNTIE and an FTIE at intervals of
about every ten minutes in order to minimize the amount of new
information that would be lost in the event of a system problem.

Forms for file names and passwords. File passwords and file
names must be composed of 1 to 7 of the letters 4 to Z and digits
0 to 9 and must not contain any embedded blanks. File names
should be distinct from names used for other files or workspaces.
Use of the same name will result in an error message when an
attempt is made to untie the newly created file. (For a direct
access file, the error occurs when FCREATE attempts to create the
new file.)

Range for file numbers. File numbers can be any nonnegative
integers not greater than 131071,

60454000 C 10-5

FILE SECURITY

A file is owned by the user who created it. The owner is
allowed to alter the file in any desired manner, but the owner
can control access by other users through the following controls:

l. The file category is ordinarily private. Private
files cannot be accessed by other users unless their
user names have been given explicit access permission
by wuse of the PERMIT command (see Section 13).
Alternatively, the file can be assigned a category of
semiprivate OY public. Either of these categories
allows other users to access the file if they know the
password, the name of the file, and the user name under
which it was stored. The [OLIB command will reveal to
another user the names of files that are gemiprivate,
public, or that are private and have been explicitly
made accessible to the other user. To make a file
public or semiprivate, use the options py or s when the
file is created, or use the CHANGE command to change
the category. When the [Jr7/B function is used with a
file name, the result shows when the file was created,
when it was last changed, and when it was last
accessed. In addition, for semiprivate and private
files the system retains the number of accesses and the
time of the 1last access for each user of the file.
This information can be displayed by use of the CATLIST
command (see Section 13).

2, The file can be given a password. Only users who
know the password can use the file; however, the owner
of the file is never required to provide the password.
The password can be assigned when the file is created,
or the password can be assigned or changed by use of
the CHANGE command (see Section 13).

3. The file mode can be used to control the type of
operation another user can perform. For files created
by APL (including workspaces) other users are
ordinarily allowed to read the file (assuming the
password and category do not exclude them) but are not
allowed to alter or destroy the file. Cther users can
be given permission to alter the file by specifying the
WR option (for write) when the file is created. For
private files, this mode has no significance because
when other users are given explicit access permission
via the FERMIT command, the permitted access mode for
each user becomes that expressed in the PERMIT command.
For semi-private files, the general access mode 1is
applicable to most users of the file, but an
overriding access mode can be specified for individual
users by use of the PERMIT ccmmand, For example, most
users might be allowed to read the file, while a few

10-6 60454000 A

selected users might be allowed to alter it. The
general mode allowed for other wusers can be changed
after the file has been created by use of the CHANGE
command . For APL-structured files the mode should be
write or read-modify, while for coded files it should

4., Files can be accessed by other users through locked
functions which can provide extremely general control
over the permitted operations. For example, the locked
function can prohibit alteration of the first five
records of the file, or, it can prohibit adding records
that are not vectors of 4 integers. The success of
locked functions as a security measure rests on
preventing the user from learning the file name, the
user number, or the password, and preventing him from
accessing the file directly. To assure this, the
locked function should not call other functions (except
those local to itself)] lest someone substitute a
subversive function having the same name. In
particular, [OFI should be used directly rather than
using FTIE. (A subversive PTIE could ©print its
arguments and thus reveal the file password). Also, [
input should not be used while the file is tied, and
the file should be untied prior to exit from the
function. To ensure that the file will be untied, use
UTRAP to specify a trap line that will release the file
prior to exit.

llote that the file category, password, and mode are independent
restrictions on access by other users. Each of these further
restricts the type of access permitted to others. Unless
different options are specified when the file is created or the
controls are changed, the APL system selects private as the file
category, assigns no password, and selects read or read-modify
mode (depending on whether the file is coded or APL-structured
type, respectively).

APL-STRUCTURED FILE OPERATIONS

Sequential file operations. The file operations that ordinarily
require a record number can also be used without specifying the
record number. When this is done, the record number used is the
current file position (available in the result of FSTATUS). The
file position can be reset using FP0S and is incremented by each
successful read, write, or deletion. When a file is tied or
created, the position is initially zero. For example:

'XRAY'FTIE 5 (The file position is zero.)

Z«FREAD 5 (Record 0 is read; the position becomes 1.)
K FWRITE 5 (Record 1 is written)

Y FWRITE 5 (Record 2 is written)

W FWRITE 5 (Record 3 is written)

60454000 C 10-7

When a record number is provided for the operation, the file
position will be set one greater than that number if the
operation succeeds.

File create: 'file-name [:passwd] [/options]' FCREATE fnum

The file create function can be used to create a file and specify
options about the type of file. When the file is created, it is
tied to the file number fnpum. In addition to the name of the
file, the left argument may include the password the file is to
Lave. Examples of file creation follow:

'"FILE1' FCREATE 11 (A file named FrrLE1 with 11
as its number.)

'FILE2: SESAME'FCREATE 2 (A file with SESAME as its
password.)

The list of options can include any of the following separated by
spaces: DA, C, WR, S, or pU (to specify direct access, coded,
write mode, semiprivate, OY public).

File write: array FWRITE fnum[,rnum]
The rFwrRITE function writes its left argument on the file having
fnum as its number as the record having rnum as 1its record
number. This will replace any existing record in that file
previously having that record number.

File read: result<«FREAD fnum[,rnum]

The FREAD function reads from the file having fnum as its file
number that record having rnaum as its record number. If that
record does not exist, an empty numeric vector is returned, and
the file status (see FSTATUS) will indicate that the last read
attempt encountered a nonexistent record.

File record delete: FRDEL fnuml ,rnum]

The FRDEL function deletes the record rnum from file faum. If
the record was absent already, nothing is done (except that the
file position changes) and no error results,

Free record number: rnum<FFREE fnum
The FFREE function returns the first free (unused) record number
for file fnum. This is a useful way to select the record number
for a new record when the application does not require a
particular ordering of the records.

File positioning: FPOS fnum,rnum
The function FP0OS sets the position of the file identified by
fnum to record number rnum.

File status: result<«FSTATUS fnums
The file status function returns various information about the

condition of files identified by file numbers in the right

10-8 60454000 A

argument. If the argument is a vector, the result is a matrix
having a row for each file number in the right argument. If the
argument is a scalar, the result is a vector of information about

the single file. The columns of the result contain:
Column Contents .
1 Largest record number currently in use

or 1 if the file is empty.

2 Current file position.

3 File size in words.

4 Unused space in words.

5 Lost space in words.

6 Space not used because of record sizes not
being divisible by 64. (This space is called
"tails" because it resides at the tail ends of
physical record units.)

7 0 if APL-structured file, 1 if coded type
file.

8 0 if indirect access file type,
1 if direct access file type.

9 0 if last read attempt succeeded, 1

if the record was absent (APL structured
files) or too long (coded files).

Note that only <columns 7, 8, and 9 are meaningful for coded
files. All columns will be zero if the file is not tied.

The largest record number does not take account of records
that have been deleted. That 1is, the largest record number is
the largest number currently in use for records that actually
exist.

Print status: PSTATUS

The PSTATUS function prints the information returned by FSTATUS
FNUMS along with the file names. The information is given in a
descriptive format and is thus a convenient way to discover the
status of all tied files if you do not remember the meanings of
the columns in the result from FSTATUS. The following example
illustrates the format used.

PSTATUS
NAME NUMBER LAST R POS SIZE UNUSED LOST TAILS
COMTIME 1y 8 0 768 64 0 387
LIB 2 1 14 256 0 0 98 DA
*4123456 SYSGEN 45 CODED FILE
REFMANT 1 9L 0 80384 2496 7744 3233 DA

60454000 F 10-9

File names: peogyjt*FNAMES

The FNAMES function returns a matrix of names (and user numbers)
of files currently tied. The number of columns in the matrix is
always 16. For example,

FNAMES
SAMPLE1

ALGEBRA
*A123456 FILE1

File numbers: resul t«FNUMS

The FNUMS function returns a vector of numbers in use for tied
files. The order is the same as the order of file names in the
result from pyAMES.

File untie: FUNTIE fnums)
The FYUNTIF function unties all files for which their file numbers

appear in the vector or scalar right argument. This produces a
permanent stored copy of each file. The new permanent copy will
replace any previously existing file having the same name, unless
the active file was newly created. To untie a newly created file
when the same name is already in use for another stored file,
first use 0ODROP to remove the old file. If any of the files
specified in the argument is not tied, nothing is done and an
error message results. To untie all tied files, use FUNTIE
FNUMS. For indirect access files, FUNTIE saves the file whether
it has been changed or not. This modifies the date indicating

when the file was last changed (see [OLIB).

File return: FRETURN fnums

The FreTyrN function behaves as Fpyyrrr for direct access files
and behaves as FERASE for indirect access files. This frees the
number of a currently tied file for other uses with a minimal
impact on stored files. The use of this function is recommended
for cleaning up any files that may have been accidentally left
tied. File numbers in the argument that are not in use for tied
files are ignored.

File erase: FERASE fnums

The FERASE function erases the active copy of the file but leaves
any stored copy of the file. (See the section on direct access
files for exceptions.) To remove a stored copy, use [DROP.

File tie: '[*account] file-name [:passwd] [/options]' FTIE fnum
The FTIE function gives the number fnum to the previously stored
file having the indicated name. If no previously stored file
having that name is found, an error message is given and no file
tie results. If a user number 1is given, the stored file is
sought under that user number rather than the one used when
signing on to the system. The password need be given only if
another user number was provided and a password was given to the
file. Examples using FTIE follow:

10-10 60454000 F

'‘FILES' FTIE 7 (A user ties one of his own files.)
'*xA0Q1234 FILEG'FTIE 8 (A user ties a file belonging
to another user.)

'*A123456 FILE7 :SESAME' FTIE 9

Note that the options p4 and ¢ (for direct access or coded files)
must not be provided to the FTIE function. These options are
chosen when the file is created and can be altered only by making
a copy of the file. If the file number or file name is in use
for another tied file, an error message results. The 1list of
options can include either of the options RD or RM. These
options are discussed in later sections.

File pack: ‘[xaccount] filename | :passwd]'! FPACK fnum

The FPACK function is designed for occasional use to condense a
direct access file by eliminating lost and unused space.
Ordinarily, the FPACX function causes the file to be tied, packed
in place, and then untied. However, file damage may cause the
file to remain tied in write mode. In this event, other file
system functions (FUNTIE, FREAD, FWRITE, or FSTATUS) can be used
to diagnose or correct the problem.

SPECIAL CONSIDERATIONS FOR CODED FILES

Coded files are the standard type of file on the operating
system for information interchange between prograns, card
readers, printers, and so forth. Coded files are essentially
intended for sequential access; replacement of records, except
at the end, 1is not practical. Instead, such changes would
ordinarily be made by copying the file and making the changes as
the new file is produced.

Coded files consist of lines (essentially vectors of
characters) which can be separated into groups by end of record
marks. These groups can in turn be separated by end of file
marks. At the end of the file is an end of information mark.
The characters in a line of a coded file are restricted to the
64-character set. The 256 APL characters are translated into
these 64 characters as shown in Appendix C. Briefly, the letters
4 to Z become A to Z, all symbols with approximate equivalents
for an ASCII printer are translated into those equivalents, and
all others become @. When translating from the 64-character set
to APL characters, all symbols are represented by equivalents,
and @ is represented as g (the symbol wused for illegal
overstrikes).

The functions FTIE, FUNTIE, and FRETURN have essentially the
same meanings for coded files as for APL-structured files.
However, special functions must be used for reading, writing, and
repositioning coded files.

60454000 C 10-11

Creating a coded file. A coded file can be created using
by including ¢ as an additional parameter. For example,

'PRINT :XXX/C'FCREATE 9

Coded read: result«CFREAD fnum[,rows,columns]

When the right argument contains only the file number, the result
returned by CFREAD is a character vector containing the next line
from the file, or if an end of record, end of file, or end of
information was encountered, the result is the scalar integer 1,
2, or 3, respectively. The file position changes after each read
so that the next read will give the next line of the file. The
FREAD function cannot be used in place of CFREAD with a coded
file. If a 1line is 1longer than 1280 characters, only 1280
characters are provided for each call to CFREAD, although the
file is positioned so that the next call to (FREAD will be able
to continue the same line. In this case the file status (see
FSTATUS) will indicate that the 1last read attempt did not read
the entire line.

The right argument to (CFREAD may optionally include the
number of rows and columns the result is to have. 1In this case,
the result is a character matrix (unless an end of record, end of
file, or end of information was encountered) containing multiple
lines from the file. Lines longer than the requested number of
columns are shortened by omitting any extra columns, and short
lines are extended to the requested number of columns by
extending with blanks on the right. The actual number of rows
may be less than requested if there are insufficient lines in the
file before an end of record, end of file, or end of information.
When the right argument to CFREAD includes the number of rows and
columns, 1lines 1longer than 1280 characters may be read by
providing a sufficiently large number of columns.

Coded write: array CFWRITE fnum

The left argument to CFWRITE is written at the current position
of the file. The 1left argument must be a character vector,
scalar (which is treated as a one-element vector), or matrix, or
a scalar or vector containing the integers 1, 2, or 3. A
character scalar or vector produces one line in the file, whereas
a matrix produces one line for each row of the matrix. However,
a unit separator symbol (the U over S overstrike) embedded in the
left argument also causes a new line to begin, Jjust as it would
if the array were displayed on a terminal. Trailing blanks in a
line are removed. The integers 1 or 2 produce an end of record
mark or end of file mark, respectively. A vector of integers can
be used to produce a series of these marks. The file position
is altered after each write so that subsequent writes will add
information after that produced by the present one. Anything
written to the file 1is automatically followed by an end of
information mark. This has the effect of truncating the file if
the write was not performed at the end of the file. The function
FWRITE cannot be used for a coded file in place of CFWRITE.

10-12 60454000 F

Because of peculiarities of the operating system, a colon at
the end of a line in a coded file will vanish, and two or more
colons next to each other may be considered an end of 1line
(depending on the position within the word where they occur).
These problems can be avoided entirely by not using colons in
coded files.

Coded file positioning: integers CFPOS fnum

The function CFPOS repositions the file according to integers in
the scalar or vector left argument. The first element in the
left argument indicates the action to be taken, and the optional
second element may contain a repetition count.

60454000 B 10-12.1/10-12.2

Operation Yalue
Rewind '
Skip record
Skip file
Skip to end

wm{

The rewind operation positions the file at its beginning. The
rewind and skip-to—end do not allow use of a repetition count.
For the skip record or skip file operations, the repetition count
may be negative to skip towards the beginning of the file. If no
repetition count is given, a count of 1 is assumed. The skip
record operation counts end of file marks as records. The
skipping never goes past the end of information mark or the
beginning of the file, even if the repetition count has not been
satisfied.

Batch job submission: Z<CSUBMIT fnuml ,typel

The coded file fnum is submitted as a batch job. The type may be
0 if batch output produced by the job should be discarded, or 1
if it should be printed or punched at the central batch site. If
no type is specified, a default type of 0 (output discarded) is
used. The file must be a properly constructed job file (see
operating system reference manual). In particular, the first two
lines must be a job card and account card. The file must not be
direct access type. If the operation is successful, the active
file vanishes as if FERASE had been used. The result returned is
the job name assigned to the job. This name can be used with the
ENQUIRE command (see Section 13) to determine whether the job has
completed. Note that the number of concurrentlys executing
deferred batch jobs allowed for a given user number is controlled
by the system.

SPECIAL CONSIDERATIONS FOR DIRECT ACCESS FILES

A direct access file differs from an indirect access file in
that all operations interact with the permanent file itself, not
with an active copy. This has both advantages and disadvantages.
One advantage is that a copy of the entire file need not be made
by the system when the file is tied. One disadvantage is that a
program can stop executing due to a system problem in the middle
of a series of file writes, and the stored file can end up with
contradictory information. Another disadvantage of direct
access files 1is that write operations take a 1little longer
(because the APL system does less buffering of information due to
the risk of a system problem freezing the file in a temporary
state).

To create a direct access file, include the parameter DA in
the left argument to FCREATE. A direct access file may also be a
coded file if desired--these two options can be chosen
independently. The following are examples of direct access file
creation:

60454000 C 10-13

“FILEX/DA* FCREATE Y4
‘FILEY: XYZ/DA S WR" FCREATE 5
“FILEZ/C DAY FCREATE 6

All operations with direct access files take the same form
as for indirect access files, but because of the differences
between the two file types, the file tie, untie, and file erase
operations behave differently: A file tie to a direct access
file does not make a copy of the file. An untie does not create
the permanent copy, it merely releases the file number for use
with other files and releases the file itself for access by other
users. An erase removes both the active and stored copy of the
file because they are the same thing. In addition,)CLEAR or a
telephone disconnect cause an automatic FUNTIE of a direct access
file (thus leaving a stored file) whereas an indirect access file
would be erased.

If a telephone disconnect occurs, the file remains tied for
10 minutes. The operations that were 1in progress can be
continued by use of the operating system RECOVER command (Section
13). However, logging on without using the RECOVER command will
leave the file tied until the 10 minute period is over, possibly
causing an error message indicating the file is busy.

SYNCHRONIZED FILE OPERATIONS

At present, it is not very practical for two users to update
a single file at the same time. With an indirect access file the
two users are actually updating separate copies of the same file,
and whichever user unties the file last will create a stored file
with his updates, but will replace any stored file just produced
by the other user. The operating system does not allow two users
to be tied to the same direct access file in write mode at the
same time, so no conflicts can occur, but an error occurs if a
second user attempts to tie the file. However, users can tie a
direct access file in read mode (which allows other users to read
the file at the same time) or read-modify mode (which means the
user desires only to read the file but has no objection to
another user writing to the file at the same time). To tie a
file in read mode or in read-modify mode, include RD or RM (but
not both) in the 1left argument to the FTIIE function. For
example,

YFILE1/RDYFTITE 9 (Read mode.)
YFILE2: SECUBRE/RMY FTIE 10 (Read—modif.y‘ mode.,)
These modes are allowed for indirect access files as well. Read

mode can be used for APL-structured or coded files while
read-modify mode is allowed only for APL-structured files.

10-14 60454000 C

FILE EFFICIENCY

Although many users need not concern themselves with the
information presented here on file efficiency, users of very
large files will find this information important. Use of a few
fairly simple techniques can result in improved speed and reduced
storage requirements.

First of all, each APL-structured file has an initial size
of 64 words used for a table of available space. In addition,
one word is required for each record number up to the last record
number in use. This space is allocated in multiples of 64 words.
These two factors combine to make it inefficient to store many
files with only a few records in each rather than one file with
many records. Also, it is inefficient to leave large gaps
between record numbers as the unused numbers require an average
of one word each.

Indirect access files grow in multiples of 64 words, but
direct access files grow in multiples of a logical track (usually
several thousand words, depending on the storage device used).
There is consequently a considerable space advantage to using
indirect access files for files smaller than several thousand
words. The number of words required for a file that results from
writing an array B is

Y44+(ppB)+[(x/pB)*D

where D is the density of packing in the file--1 for floating
point, 7.5 for characters, and 60 for boolean (See also section
12.). This size is then rounded up to a multiple of 64 words.
Because records require multiples of 64 words, there is some
saving in space if many little arrays can be packed together and
written as a single record. In addition, actual transfers and
operating system requests are reduced because no buffering of
output is used for APL-structured files.

When records are erased or replaced by records of a
different size, the APL system keeps track of any unused gaps in
the file where records can be placed in the future. The total
amount of this space in words is in column 4 of the result
returned by the FSTATUS function. It may happen that the number
of gaps exceeds the size of the table, in which case the smallest
gap is removed from the table. This results in a certain amount
of space Dbecoming unusable, and the total amount of this lost
space is in column 5 of the result returned by the status
function. Lost space can also result in a direct access file if
a telephone disconnect or system problem prevents the file from
being untied (0TM'SYSTEM*, OTH'ABORT', and [OTM“OFF' untie files
properly), and if the RECOVER command is not or can not be used.
All lost and unused space can be recovered by applying the FPACK
function to the file. Because each record occupies a multiple of
64 words, some space is generally left unused. This space is
returned in column 6 of the result from FSTATUS,

60454000 C 10-15

Details of the space required for coded files can be found
in the operating system reference manual. Coded files have a
speed advantage over APL-structured files when the information is
accessed sequentially, the records are small, and the limitations
of the 64-character set are not restrictive.

INTEGRITY OF DIRECT ACCESS APL-STRUCTURED FILES

File integrity refers to the ability of a file to retain
internal consistency. Some file access methods render a file
practically useless if a program operating on the file does not
complete properly (due to a flaw in the program or a system
problem). Every effort has been made in the design of the
APL-structured file system to minimize the chance of such damage.

All alterations to an APL-structured file are performed
immediately and thus occur in exactly the order requested. When
multiple files are being updated, one file will not be several
transactions ahead of another. A checksum is computed for each
file record so that 1f the storage device corrupts the
information and 1is unable to detect the error, the error will
still be detected by the APL systen. A system halt, program
halt, or telephone disconnect will 1leave the file in a
satisfactory state except that in the rare event of a system halt
requiring a level zero deadstart within a minute of extending a
direct access file, there is some chance of damage to newly
created or replaced records.

File damage will cause an error message to be printed at the
time it 1is detected. The damage will usually affect only one
record of the file. If the file cannot be reconstructed,
installation personnel can assist with restoring the file to its
state the last time files were dumped to magnetic tape.

Mlote that a telephone disconnect or system problem that
results in failure to untie the file may cause the information on
file space utilization (unused space, 1lost space, and tails) to
be incorrect. This does not hinder utilization of the file and
can be corrected by copying the file or applying the FPACK
function to it.

FILE EXAMPLES

The following sample functions taken from the workspace
FILES?2 under user number APL1 illustrate simple file operations.
The first function, FCOPY, can be used to copy an APL-structured
file. Such a copy might be made to convert the file from
indirect access to direct access form or to compact the file by
minimizing unused space. The left argument should be the
character argument required to tie +the old file, and the right
argument should be the character argument required to create the
new file. Note that the first line illustrates a simple way to
select a file number that is not already in use.

10-16 60454000 C

VFCcOPY[LDOIV
VA FCOPY B;P3;K;I;d
[11] A FTIE I<«i1+[/0,FNUMS
[2] B FCREATE J<I+1
[3] K<(FSTATUS I){1] ma GET LARGEST RECORD NUMBER
[4] L1:+(K<0)/L3

[5] P<FREAD I,K a READ RECORD K FROM FILE I
[6] +(FSTATUS I)[9]1/L2 a IF ABSENT RECORD
[7] P'FWRITE J,K a WRITE RECORD K T0 FILE J
[8] L2:K«K-1

(9] +L1

[10]) L3:FUNTIE I,J A UNTIE BOTH FILES

f111 'COPY COMPLETE'

v

The next function is useful for listing a coded file. The
right argument may be the name of a stored file or the number of
an active file. If a name is given, the file is tied, listed,
then wuntied. If a number is provided, the file is 1listed
beginning at its current position and is left tied.

VeLIsTLOlv

VCLIST B;K;L
[1] +(0=0\0pK<«B)/L1 A IF FILE ALREADY TIED
[2] B FTIE K<i+[/0,FNUMS
[3] L1:L«CFREAD K

[u4] +(0=ppL)/L2 a SCALAR INDICATES SPECIAL MARK
[51] L
[6] +L1

[7] L2:+L3+2x[-1
[8] L3:'-END OF RECORD-'

[al +L1
[10] '-END OF FILE-'
(111 +L1
[12] '-END OF INFORMATION-'
[13] FUNTIE(0=0\0pB)/K
v

The next two functions are useful when a file is too large
to list at a terminal but it is necessary to 1learn the general
structure of the file. The function FMAP prints the structure of
an APL file, and the function C(MAP prints the structure of a
coded file. Both functions allow a character argument or a
numeric argument in the same manner as CLIST. If the file is
already tied (for numeric arguments) the mapping begins at the
current file position. FMAP prints record numbers and the types
(¢c or ¥V for character or numeric) and shapes of records that
exist, or ABSENT for absent records. (MAP prints the number of
lines in records and prints EOR, EOF, or EOI when an end of
record, end of file, or end of information is encountered.

A
60454000 10-17

[1]
[21]
[3]
[4]
[5]
[6]
[71]
[8]
[9]
f101]
[11]
[12]
[13]
[14]

[11]
[2]
[3]
(4]
£51
[61]
[71]
[81]
[9]
[10]
[11]

10-18

VFMAPLOIV
VFMAP B;K;P
+(0=0\0pk«B)/L1 a IF B IS NUMERIC
B FTIE K«1+[/0,FNUMS
L1:+("121+FSTATUS K)/L2 n IF FILE NOT EMPTY
'O RECORDS!
+0
L2:“NUMBER, TYPE, DIMENSIONS!'
L3:>(</24FSTATUS K)/L5 a IF FINISHED
P<«FREAD K
+~(FSTATUS K)[91/L4 a IF READ FAILED
T1+(FSTATUS K)L213;0 1 O\'CN'[1+0=0\0pPJ;pP
+L3
L4: 1+(FSTATUS K)[2];' ABSENT!®
+L3
L5:FUNTIE(0#0\0pB)/KX
v

VCMAPLO1V

VCMAP B;K;P;C

+>(0=0\0pK+B)/L1 a IF B IS NUMERIC
B FTIE K+1+[/0,FNUMS

L1:C+«0

L2:>(0=ppP+CFREAD K)/L3
C+C+1
->L2

L3:+(C=0)/Lu
C;' LINE',(C#1)/'S"

Ly ;'EO','RFI'[P]
+(P<3)/L1
FUNTIE(O0=0\OpB)/K

v

60454000 A

Section 1l. APL Public Libraries

The standard APL release includes the following workspaces
stored under the user name APLl:

APLNEWS News about the changes in the APL system as well
as a list of reported bugs and requests for system

changes.
FILESYS File system functions.

FILES? Contains functions from FrrLESYS for primitive file
operations as well as additional functions for

more elaborate file operations.

CATALOG A guide to workspaces in the APL public libraries.

To learn how to use any of these workspaces, type a command of
the form [1LOAD'*APL1 FILESYS' and then type DESCRIBE.

APL, PROGRAM LIBRARY STANDARDS

It is suggested that installations reserve the user names
APL1 to APL999 for APL public libraries. Although these user
names need not be defined in the system, they should not be used
for other purposes. It is suggested that programs placed in
these public libraries be of fairly general interest so that
users will find it rewarding to browse through the various
workspaces. Workspaces of interest only to a specialized group
or course should be stored elsewhere.

60454000 B 11-1

Programs placed in the public libraries should be well
documented. The available documentation may be entirely in the
workspace or partly in the workspace and partly in a manual. In
any case, the documentation .should be readily available. The
advantage of having the documentation in the workspace is that it
will be immediately accessible. The disadvantages are that the
documentation is slow to print and therefore tedious to read, and
the format of the documentation is constrained by the APL
character set. Generally, the amount of documentation determines
whether it is practical to put the documentation in the workspace.

Documentation in the workspace should consist of functions
or variables that describe the workspace. The documentation
should be able to be printed with a standard APL terminal and
should print within a standard 65 column page width. The
following documentation variables or functions are suggested.
Typing the name of the function or variable should cause the
information to be printed.

ABSTRACT. Should contain a brief description of the
contents of the workspace.

DESCRIBE. This should give the user further details
than provided in the ABSTRACT. This should print the
names of all functions intended for the user to use as
modules along with a short description and names of

related pow functions (see below). If groups are
defined in the workspace, describe them and their
purposes,

How functions. If a function has the name pNANME,
detailed documentation of that function should have the
name NAMEHOW. There 1is no point in giving a
line-by~line description of the function. The APL
program is already an excellent description of the
separate steps. The pFoKy function should tell what the
function does and how to use it as a module. 1In some
cases it should outline major steps in the processing
and describe the method used. References might be
appropriate. Special 1limitations of +the function
should be discussed.

SOURCE. Should give the author's name, an inquiry
name, and an inquiry address. The date when the
workspace was contributed should be included.

CHANGES. Changes should be documented by a function or

variable having a name of the form CHANGES092675 (so
that the name includes the date of the changes),

11-2 60454000 A

GRPDOC. The group (locked matrix of names) GRPDOC
should include names of all documentation variables and
functions so that the user can readily erase them to
nake more space available' in the workspace or reduce
disk storage charges.

Even when most of the documentation is in a separate manual, the
following variables or functions are required: ABSTRACT, SOURCE,
GRPDOC, and DESCRIBE.

60454000 A 11-3

Section 12. Optimization of APL Programs

This section discusses some of the techniques that can be
used to make APL programs perform better and run with lower
demands on computer resources. It may seem out of place to
discuss efficiency in an APL manual--after all, APL should free
the user from being concerned with the nature of the particular
computer being used--but the techniques discussed here may yield
efficiency improvements as large as a factor of a hundred. To
neglect discussing efficiency could leave many users with the
mistaken impression that APL cannot perform well enough to be
used for their problems.

Often, the gquestion of efficiency calls to mind the
fanatical programmer who constructs a program he considers
efficient but who in doing so produces a totally incomprehensible
collection of operations. It should be remembered that for many
programs the programming time is so great that the only kind of
efficiency worth considering 1is the sort that makes the program
easy to understand, free of errors, and easy to change.
Fortunately, a simple program is usually an efficient program.
However, when improving the performance of the program does not
coincide with simplifying it, the optimization should not be
applied unless it is very important for the program to perform
well.

As a very blatant example of misguided optimization,
consider the following statement:

K<1,0pP«0,[/L<1Q<pR

This statement was probably contrived by someone who believed
that the most efficient program was the one that required the
smallest number of lines. The fact is, execution proceeds from
one line to the next very rapidly compared to the time required
to perform the extra steps needed to fit the operations in one
line. The following statements are a more straightforward way to
achieve the same results:

60454000 A 12-1

K<l
L<«1Q<«pR
P<0,@

One way to estimate the relative time required for an expression
is to count the number of operations required. (This method is
fairly valid when the number of elements in arrays is less than
about 20.) For this method of estimation, specification is not
counted at all (it takes relatively little time). The one line
version totals 6 operations while the three line version requires
only 3 operations. The efficiency expert who wrote the one line
version devoted extra time to adding three operations, which
double the time required for execution. The one line version is
harder to understand, is more likely to contain errors, and when
changes are made, the rest of the line hinders revision. The one
liner is thus a poor example of efficiency in all respects.

At this point it must be stated that much of the information
in this section is relevant only to this particular APL system.
Also, it may occur that something that is particularly slow now
will become particularly fast in later versions of +the system.
Other versions of APL on other computers will often show guite
different characteristics. In fact, according to Paul Berry (who
wrote one of the first books on APL), the popular belief that one
line programs are more efficient is based on a gstem for which
this is true. An early version of APL on a small computer
actually required considerable time to change from one 1line to
the next because only one line at a time was kept in main memory.
Although very few present users of APL ever used that particular
system, its influence persists.

STORAGE REQUIREMENTS

Although the APL system allows a workspace of up to about
119,000 words (provided the user is validated to use that much
main memory and the installation has that much), equivalent to
892,500 8-bit bytes, there are practical reasons to keep a
workspace smaller. The operating system uses computer resources
much more effectively when it runs programs requiring minimal
amounts of central memory. Also, the "response time" for an
interactive program to respond to a command requiring a trivial
amount of processing increases somewhat with central memory
requirements. In addition, minimizing storage requirements
improves the chances that the same program will be able to run
under another version of APL or on a computer with less central
memory.

The vector [W4 contains information about the memory
currently in use for the APL system and the active workspace.
The field length is the amount of memory space currently in use.
The APL system manages that memory space and at any given time
some of the space may not be in use for functions, variables, and

122 60454000 A

other information kept by the APL system. The APL system
evaluates storage requirements from time to time and resets its
actual field length according to current needs. The user can set
OwA to specify the maximum and minimum field lengths to be used.
Increasing the maximum and minimum field length generally reduces
the central processor time used by APL to reorganize its storage,
but as discussed previously, reduces the operating system
efficiency. As a general rule of thumb, leave the minimum field
length at its normal value, and set the maximum field length
large enough to avoid WS FULL plus a 1little extra to prevent
frequent storage reorganization. Incidentally, referencing the
value of [Jy4 in a statement causes the APL system to reorganize
its storage, so programs should not alter or read the value of
OwA too often or performance will be degraded.

Obvious techniques for minimizing storage requirements
include using algorithms that minimize temporary storage, using
local variables and local functions to assure automatic erasure
of unneeded objects, and using [JEX to erase other functions that
are no longer needed. [JEX can also be used to erase variables,
but respecification (e.g., A<«'') is faster. Files can be used to
store functions and variables until they are required. [LOAD can
be used to load another workspace of functions and variables.
Any variables that must be communicated from one workspace to the
next can be placed in files--files remain tied wlen another
workspace is loaded. Of course, any of these techniques can be
overdone. Do not let the time spent performing these operations
outweigh the storage they save.

The space in words required for an APL array 4 is
2+ (ppAd)+[(x/pAd):D

where D is the number of elements packed per word--1l for floating
point values, 4 for characters, and 32 for logical. Clearly,
there is an advantage to using the internal logical
representation if the values are ones and zeros. The system does
not always use the logical representation when it could. For
example, the scalar constants 1 and 0 are floating point, and
1+0 is floating point. However, the following functions always
produce a logical result: AAB, AvB, A~B, A»B, A=B, A#B, A<B,
A<B, A>B, A=B, and AeB. Also, the functions that restructure or
rearrange their arquments always preserve the same type of
representation, so Np0 is floating point, while Npil 0 is logical
(because vector constants consisting of ones and =z=ros are packed
as logicals). To assure that a result is logical, apply 1= to
it.

Expressions like A<B<«(C+«1100 do not cause three copies of
1100 to be produced. Actually, only one copy is kept. However,
subsequently altering an element of A4, B, or ¢, (e.g., A[3]+«9)
will cause a separate copy to be made. Similarly, arguments to

60454000 A 12-3

functions are not actually copied unless an attempt is made to
alter them wusing indexed specification. Unlike most other APL
systems, using function arguments rather than global variables
incurs no storage penalty.

The operation A4/:B is treated as a single function to avoid
generating 183 when only a few elements will actually be selected.
This combined operation is somewhat faster and uses considerably
less storage for an important class of cases.

Storage requirements for programs are too complicated +to
discuss in detail. As a rule of thumb, unless you make a special
effort to put a 1lot on each 1line, figure that an average
statement takes about 10 words of storage. The first time a
statement is executed it is converted to an internal form for
more efficient execution. In the internal form the function
almost always requires somewhat more space. The storage overhead
per line of a function averages about 3.5 words for lines without
labels and 4.5 words for lines with labels.

The APL system keeps a "symbol table™ in the workspace
containing all names of functions, variables, and labels, Once a
name has been used (even if the use resulted in a VALUE ERROR)
the name remains in the symbol table, The space used by names
that are no longer needed can be recovered by copying all objects
into a truly clear workspace. The recommended procedure is:

YCLEAR (Obtain a clear workspace.,)
OENV<0 (Copy global objects,)

(1 2 3 4 ONAMES ‘'OLDWS‘')COPY 'OLDWS:'

OENV<1 (Restore to normal value,)

USAVE *NEWWS®

This procedure will also recover space in workspace areas other
than the symbol table in some circumstances,

Space can be conserved in the symbol table by using names
consisting of a single symbol whenever possible, Space can also
be conserved by using the same name in several functions for
local variables or labels. A common convention is to wuse the
letters 4 to Z for local variable names and use Li, L2, and so
forth for labels.

CENTRAL PROCESSOR TIME

For many programs the main optimization problem is to
minimize central processor time, First of all, one of the
primary determinants of central processor time is the
appropriatness of the algorithm used, The algorithm should be
appropriate to the data to be processed and appropriate to APL,
Computer literature is filled with algorithms that are

12-4 60454000 C

"efficient" for other languages but which perform miserably in
APL. Often a straightforward translation c¢f a program from
anothar language gives a program that performs poorly because it
fails to take advantage of the more powerful APL functions.

For most operations in APL the time required for the
operation can be separated into a per-eslement time required to
process each element of the arguments and result plus a setup
time required for interpreter overhead, to check the arguments
for compatibility of dimensions, to compute the result
dimensions, and allocate space for the resuit. The time per
element varies considerably with the complexity of the operation.
The sine function, for example, requires far more time per
element than addition. The time also depends some on the way the
values are stored; operations defined only for logic values
perform better if their arguments are internally represented as
logical type, and arithmetic operations are faster for the
floating pcint internal <type. The setup time varies far less
from function to function than the time per element.

For many functicns the setup time is on the crder of 25
times as dgreat as the time per element. This mearns that the
setup time is negligible when thousands of elements are to be
processed, but the setup time constitutes about 95 percent of the
time when c¢nly one element is being processad. For most
programs, the setup time limits speed more than the time per
element. Thus the first step to optimization is to minimize the
number of operations to be performed. For example, if px is used
many times in a function, it would be wcrthwhile to assign the
value of pX to a variable (assigment requires negligible time).
Often a branch statemeni can be added to skip steps that are not
required except in special cases.

When the arrays used have a large number of elements, the
operations should be chosen to minimize the number of elements
processed. For example, if vV is a vector of 5900 characters, a
few elements can be selected frcm Vv using y+M+V (which might
process about 5000 elements) or using V[J+1X] (which would
process only a few clements;. The second approach 1is much more
efficient. Similarly, rather than extending a vector by
catenating one element at a time, it might be preferakle tc
extend it with a large number of elements and then respecify the
elements cne at a time using indexed specification.

It is commonly believed that APL branching for 1looping is
slow. Actually, looping is fairly fast by itself but is usually
a sign that the program is performing operations one element at a
time--the amournt of time required is mainly due to the number of
operations being performed. Actually, 1looping is sometimes a
very efficient way to perform an operation, especially if the
number of iterations required for normal cases is small and the
alternative requires more operations than are used in the loop.

60454000 A 12-5

On some APL sys*ems central processor time can be saved by
catenating output together and then printing it in a batch rather
than as it is generated. However, for this APL system it is more
efficient to print the output as it is produced.

The following chart gives approximate timings for various

operations.

Be forewarned that these timings are dpproximate and

will vary with the particular computer used and the internal
workspace configuration. Times are expressed in terms of 7, the
time per element for addition.

Time range

Operations

0 to?T

T to S5xT

5xT to 25xT

25xT to 125xT

12-6

Time per element for AAB, AvB, and ~B for logical
internal representation

Setup time per statement to be evaluated
Time per element for most scalatr and mixed
functions

Time per element for complicated funttiténs such as
AoB, AeB, AdB, and ALB]

Time required for an unnecessary set of
parentheses in a statement

Time required to evaluate a c¢onstant other than o,
1' 2' .5" -1, and ' 'o’

Extra time per local variable for a function call

B

A<B

Call to a user defined function with a few local

variables ;
Setup time for primitive functions

60454000 A

Section 13. Operating System Features for APL Users

This section discusses a few operating system commands of
interest to wusers of APL. The discussions cover only the more
important details. Further information can be found in the
time-sharing reference manual or volume 1 of the operating system
reference manual. Be aware that the descriptions here are less
detailed and may not be as up to date as the other manuals. Host
of the commands discussed can be used as timesharing commands or
batch job control cards. However, they cannot be used while in
APL., Use the commands before issuance of the APIL command, or use
OTM*SYSTEM® to leave APL to use these commands. Note that none
of these commands allow embedded spaces.

If NAM/IAF is not used for communications with terminals,
some special precautions must be observed for these commands.
When an ASCII terminal is used, it may be necessary to first use
the TERM command (see time-sharing reference manual) in order to
produce legible output when using an APL type element. Also note
that the "equals" symbol used in some of these commands may not
print as = on ASCII terminals (depending on the terminal type and
the type of terminal specified in the TERM command). See
Appendix F.

HELLO

The HELLO command allows you to sign on again with a
different account number.
BYE

The command BYE is the correct way to sign off the system

when not in APL. This is equivalent to the APL command [UTM'OFF'
or)OFF,

60454000 E 13-1

PASSWOR

The PASSWOR (pronounce it "password"--all operating system
commands have names of seven letters or less) command allows you
to change the sign-on password associated with your user name.
The form for the command is:

PASSWOR ,01d ,new

where ol1d represents the old password and new represents the new
password., If there was no old password it will look like:

PASSWOR,,new

RECOVER,number

The RECOVER command can be used +to return to the state just
before a disconnect or system malfunction occurred. The use of
this command prevents loss of the active workspace or active
files. The command is allowed only when the system prints
RECOVER/SYSTEM at the end of the sign-on procedure. If you have
already proceeded beyond that point and wish to initiate
recovery, type HELLO to begin the sign-on procedure anew. The
number You provide in the RECOVER command should be the terminal
number that was printed after the previous sign on. (That is,
the terminal number in effect for the session that terminated
abnormally.) After you type the RECOVER command, the system may
print RECOVERY IMPOSSIBLE, which indicates that the system
malfunction was too serious to allow recovery, that too much time
has elapsed (recocvery information is retained for ten minutes),
you signed on with a different user number, or that you gave an
incecrrect terminal number. When the RECOVER command is
successful, the recovery information is destroyed and the system
prints various information about the status at the time of
disruption. Press the RETURN key to continue (or type STOP to
exit from APL). The recovery is sometimes imperfect. Some
output may be 1lost, and the next input request may cause a
question mark to be printed, and . any special APL symbols used in
the input may be translated incorrectly. Do not perform the
recovery on a different type of terminal from that in use when
the disruption occurred or the APL system will translate input
and output incorrectly for that terminal. After a recovery, the
next interrupt £from the keyboard will terminate APL, To avoid
this, perform the following steps after recovery (unless files
are tied) '

)JSAVE wsname

YSYSTEM
APL ,WS=wsname

13-2 60454000 A

SETTL ,number

Sets the CPU time limit to number. This can be used before
entering APLUM to prevent a *TIME LIMIT* error from occurring.
The number should be the desired time limit in octal. In order
to be meaningful, the time limit should be at least 10 (octal)
and the last digit should be a zero. The time limit must not be
set to more than the remaining allowance for the session. (You
can use the HELLO command to start a new session and get a fresh
allotment of CPU time.)

S,number

This command is meaningful only immediately after the system
has printed *SRU LIMIT*. This command extends the SRU limit by
the requested amount. If you type anything other than S,number,
a forced exit from APL will occur and the active workspace will
be lost. If you have used up the entire SRU allotment for the
session, hang up the phone and then sign on again and use the
RECOVER command.

T,number

This command is meaningful only immediately after the system
has printed *TIME LIMIT*. The number has the same significance
as for the SETTL command. If you type anything other than
T,number, a forced exit from APL will occur and the active
workspace will be lost. If you have used up the entire CPU time
allotment for the session, hang up the phone and then sign on
again and use the RECOVER command.

CHANGE

The CHANGE command can be used to change the name of a file
(which includes workspaces), its password, category, or access
modes permitted to other users. The following examples show
simple forms of the command.

CHANGE ,newname=oldname
Changes the name from oldname tO newname.

CHANGE, filename/CT=category
Changes the category. The category specified may be P for
private, S for semiprivate, or PU for public.

CHANGE, filename/M=mode

Changes the mode. The mode specified may be R for read, W
for write, MODIFY for modify, or RM for read-modify. (Other
modes exist but are not of interest for APL users.)

60454000 B 13=3

CHANGE,filename /PW=password
Sets the file password. The password may consist of 1 to 7
letters or digits.

ENQUIRE,Jli=jobname

This command can be used to determine the status of a job
submitted using the CSUBMIT function (discussed in Section 10).
If the response indicates the job is not in the system, this
usually indicates that it has completed or is presently being
printed.

PERMIT

The PERMIT command can be used to give another user access
to a private file or to specify the permitted access mode for a
particular user of a semiprivate file. The form of the command
is:

PERMIT,filename,account=mode ,account=mode, ...

The mode for each account number determines the type of access
allowed. Meaningful modes for APL users are R for read, W for
write, or RM for read-modify.

CATLIST

The CATLIST command can be used to examine access
information about an individual file. The following examples
show how to find ' information not provided by the APL OLIB
function:

CATLIST/LO=F ,FN=filename
Similar to U[LIB'filename' but also gives the password and
count of the number of accesses.

CATLIST/LO=FP ,FN=filename

Gives access information for each user who accessed the
specified private or semiprivate file. The information
printed includes the number of accesses by each user, the
access mode allowed for each user, and the date and time of
the last access by each user.

LIMITS

The LIMITS command causes validation limits for the account
number currently in use to be printed. Any numbers in the output
that are followed by a B are expressed in octal (base 8). The
APL functions base-value and represent can be used to convert
between octal and decimal. For example, 70000B can be converted
to decimal using 8L7 0 0 0 0, and 32768 can be converted to octal
using (6p8)T32768, The following are the 1limits that are
important to APL users:

13-4 60454000 C

TL

CM

DB

FC

CSs

FS

AW

NF

SL

DS

CPU time limit in 10's (octal) per session. Append a
zero to the right of the number to find the CPU time
limit in octal seconds. In addition, there may be a
smaller time limit per session. This other time limit
per session can be overridden by using the SETTL
command or by using the T,number command after a *TIME
LIMIT* error occurs. If you have consumed your entire
CPU time 1limit for the session, you can use the
operating system HELLO command to get a new CPU time
allotment, or hang up, sign on again, and use the
operating system RECOVER command.

Maximum central memory field 1length. Append two zeros
to the right of the number to find the central memory
limit in octal words. Note that a more stringent
restriction can be imposed on all timesharing users by
the computer operator. This second restriction may
vary according to the time of day.

The number of jobs allowed for the given user. The
¢csUBMIT function (see Section 10) is not allowed to
submit additional jobs if the total number of jobs for
that account number already equals or exceeds this
parameter. The count of jobs includes the program
attempting to use the ¢suBmMIrT function.

Maximum number of stored indirect access files allowed.

Total storage in PRU's allowed for all stored indirect
access files. (One PRU 1is 64 words or 640 six-bit
bytes.)

Maximum size in PRU's allowed for individual stored
indirect access files. (One PRU is 64 words or 640
six-bit bytes.)

Access word, If the last digit is 4 or greater, the
user is allowed to create direct access files.

Number of 1local files allowed. This includes active
APLUM files and coded files. Allow one extra file when
saving or loading a workspace.

Maximum number of mass storage PRU's allowed for local
files, which includes active copies of indirect access
files but not direct access files. (One PRU is 64 words
or 640 six-bit bytes.)

Maximum number of SRU's that can be expended during the
job or session.

Maximum file size in PRU's allowed for a direct access
file (or workspace) at the time it is tied (or
resaved) . (One PRU is 64 words.) This limit is not
imposed if the RD or RM option is used with rrrF.

60454000 B 13-5

AWSFIX and AFIFIX

The APL system uses the user control word associated with
operating system permanent files to identify which files are APL
workspaces and APL-structured files. When operating system
commands are used to copy a workspace or APL-structured file or
to transfer one to magnetic tape, the user control word is lost.
An appropriate control word can be restored by use of the AWSFIX
or AFIFIX utility program. The following example shows the
procedure that would be used for a workspace:

BATCH (Use the batch subsystem)
GET,AWSFIX/UN=APLO.
AWSFIX,namel ,name2, ...

In the example, namel, name2, etc. represent names of permanent
files stored under the current user number that should be
processed. The procedure for restoring the user control word for
an APL-structured file 1is identical except that AFIFIX 'is
substituted for AWSFIX in the last two commands. Note that
application of the wrong utility to a file may result in
irreparahle damage to the file.

The AWSFIX utility can also be used to "seal" a workspace.
A workspace can be sealed to safeguard the privacy of its
contents while still allowing the workspace to be used by others.
Sealing a workspace provides the following protection:

1. An active copy of the workspace cannot be saved using
JSAVE or [SAVE.

2. Objects cannot be copied from the workspace. However,
the entire workspace can be loaded.

3. If the user of the workspace gains control (as a result
of an error) an exit is taken from- APL with the message
17: PROTECTED WORKSPACE.

These safeguards are intended for packages that start up by use
of a latent expression (0OLX). There is no procedure to unseal a
workspace, so a separate unsealed copy of the workspace should be
retained if future changes are contemplated. The following
example shows the procedure that would be used to seal two stored
workspaces named MATH and PHYSICS,

BATCH

GET,AWSFIX/UN=APLO.
AWSFIX ,MATH=SEAL,PHYSICS=SEAL

13-6 60454000 C

Appendix A. Error Messages

APL ERROR MESSAGES

The following list describes the APL error messages and
their meanings. It should be noted that most of these cause
execution to halt (unless UTRAP jis used to intercept the error
processing), but function definition mode prints its error
messages and then may continue processing.

00: INTERRUPT

This indicates that an interrupt has been received from a
terminal or that the overstrike ¥ has been entered as the first
nonblank symbol for quote-quad input.

01: IMPLICIT ERROR

An implicit argument to a primitive function is not defined.
The system variable UCT is required for the functions 4=B, 4>B,
A<B, A2B, A<B, A#B, AeB, AvB, BB, ABB, A|B, [B, LB and 1B. The
variable [0I0 is required for indexing, the axis operator, AR®B,
A1B, 1B, AB, ¥B, ?B, and A?B. The variable [OWSID must be defined
for [OSAVE'!', ORL is required for A?B and ?B, and Opp is
required for monadic format. OENV is required for [CR, 0EX,
OFx, Ovc, ONL, OSTOP, UOTRACE, OLOCK, OLTIME, [ONAMES and [COPY.

02: SYNTAX ERROR

Incorrectly formed statement. Check to be sure the
statement has matched quotes, parentheses, and brackets. A
common error 1is to forget to place an operation symbol between
two variables when catenation is intended (e.g., (¥ N)pQ@ instead
of (M,V)pQ). Other causes include failure to provide a right
argument to a function, and use of a branch arrow other than at
the left end of a statement. Check the state indicator to be
sure a local variable or label is not obscuring a function having
the same name.

60454000 C A-1

03: DOMAIN ERROR

The argument is not in the domain of the function or is an
improper value for a system variable being specified. The
following are examples of ways that domain errors can arise:
13.5 (an integer is required), [0I0«14 (the index origin must be 1
or 0), '"+3 (character arguments are not allowed for many
operations, even if the argument is empty), [OPP«u45 (printing
precision must be between 1 and 15). When [OCT is not defined,
zero is used as [ICT in domain checks. Thus, 11+1F 14 would not
be allowed because exact integers are required when [OCT is zero.

O4: LENGTH ERROR N
Lengths of the arguments to a function are incompatible, or
the operation is not defined for arguments of that length.

05: VALUE ERROR

A variable used in an expression has not been assigned a
value, a dyadic function has been used without a left argument,
the result variable of a function that returns a result was not
assigned a value, or a function was used for which there is no
current definition. Check the state indicator to see if a local
variable has obscured a global variable or function.

06: RANK FERROR

The ranks of the arguments are incompatible or the operation
is not defined for an argument of that rank. For example: 1 1 1
(not defined for vectors unless they have one element), 4[1;2]
(if 4 is a vector it has the wrong rank for the index applied),
B3 4 5p0 (not defined for ranks greater than 2).

07: INDEX ERROR

Index out of range. For example, if 4 is a three-element
vector: A[4] in 1l-origin, A[3] in zero origin, or A[0] in 1
origin. To find the current origin, display [0I0.

08: LIMIT ERROR

The operation exceeds limitations of the computer or the APL
system. Limit errors can result from: attempts to generate a
result greater in magnitude than about 1E322, attempts to execute
a line 1longer than 150 characters (in a function, arguments to
the execute function, or entered as input), or attempts to
produce an array having a rank greater than 75.

09: LOCKED OBJECT

Attempt to specify a value for a locked variable (label or
group). Locked variables can be redefined only by erasing them
and then specifying then.

10: WS FULL

Insufficient space remains in the workspace for the
operation. Use)ERASE to erase unneeded functions and variables
to make more space available, or reset OWA to allow a larger
workspace. Some space can usually be reclaimed by executing a
niladic branch (e.g., *). If more than one suspension is on the

A-2 60454000 C

state indicator, use a niladic branch for each suspension. The
state indicator can also be cleared by use of 0 [0S4VE '' (which
also saves a copy of the workspace).

11: WS NOT FOUND
Although a file having that name was found, it was not
recognizable as a workspace.

12: DEFN ERROR

Incorrect request in function definition mode. May result
from providing header information other than the function name
when reopening the function, use of a function name already in
use for another global function or variable, or an illegal
display or line editing request. Another cause is an attempt to
close definition of a function having an incorrectly formed
header or duplication of names used in the header or as labels.

13: PHRASE NOT FOUND

The phrase specified was not found in the line where it was
sought. Be sure to specify the correct line number. Display the
line to determine the correct phrase.

14: SI DAMAGE

Information on the state indicator has been 1lost due to
changing a pendent function, by altering a function that is
suspended more than once, or by changing the number or relative
order of local variables in the header or label variables for a
suspended function. This message 1is a warning--no corrective
action is required. The pendent or suspended functions on the
state indicator that are affected by SI" DAMAGE are indicated by
enclosing brackets. The affected functions cannot be continued,
but they remain on the state indicator as 1long as other
suspensions are above them. When the state indicator collapses
to the affected suspension, the system automatically removes that
suspension.

15: NAME NOT FOUND '
Ho function or variable having that name exists.

16: NAME IN USE
A function or variable already has that name.

17: PROTECTED WORKSPACE

An attempt was made to save or copy from a sealed workspace,
or an error in a sealed workspace was about to give control to
the user.

18: MIXED FUNCTION

A mixed function has been used where a dyadic scalar
function is required as an argument to an operator. For example:
A+.1B, Ao.tB, $/B.

19: UNDEFINED FUNCTION
No such primitive function exists. For example: oB, #B (no
monadic # function).

60454000 C A-3

20: operating system error message

This message is a message from the operating system and
usually concerns some sort of operation with a file or with a
workspace. See the list of common errors under OPERATING SYSTEM
ERROR MESSAGES below.

21: FILE DAMAGE
Usually indicates that one record of the file has been
damaged. If an attempt to tie the file causes this message, the

entire file may have been damaged. Most installations
periodically copy all files to tape, and files can be restored to
their condition when the last copy was made. Contact

installation personnel for assistance. File damage may be
reported erroneously when reading a direct access file in RM mode
if repeated interference is encountered from another user writing
the same record.

22: WRONG TYPE FILE

An attempt was made to use C(FREAD, CFPQS, CSUBMIT, or
CFWRITE on an APL-structured file, or an attempt was made to use
FREAD or FWRITE on a coded file. Note that the operating system
COPY commands do not preserve the type with a copy made from an
APL-structured file. This error also results from an attempt to
submit a direct access file using CSUBMIT.

23: FILE TIFE ERROR

An attempt was made to use a file number or file name that
was already in use, or an attempt was made to perform an
operation (e.g., FREAD, FWRITE) that requires the file to be
tied.

24: CHANGE TO READ-ONLY FILE

An attempt has been made to alter a file that was tied in R
or RM mode.

OPERATING SYSTEM ERROR MESSAGES

The following 1list includes those operating system errors
that the APL user is most 1likely to see. The timesharing manual
or volume 1 of the operating system reference manual may provide
further details and additional messages that are not included
here, and may reflect recent changes.

20: filename BUSY

The specified direct access file is tied by another user in
an incompatible mode. This may be caused by a system problem or
telephone disconnect, in which case the file will be released in
10 minutes or can be accessed by using the operating system
RECOVER command to resume the session that terminated abnormally.
Occasionally a file will be left busy due to an operating system

A-4 60454000 A

error and will remain busy until a level zero deadstart (usually
done at the start of the day). 2An APL-structured direct access
file can usually be retrieved from this condition by wusing Ry
mode to make a new copy of the file.

20: filename ALREADY PERMANENT

A file having the indicated name already exists. This error
may result if a workspace 1is being saved and a password,
category, mode, file type (i.e., 74 orxr p4), or a name different
from [OWSID was specified. This error can also occur when
FCREATE attempts to create a direct access file having the same
name as a file already in existence or when FUNTIE attempts to
store a copy of an indirect access file that was created during
the session. If the old file is no longer needed, use [JDROP to
eliminate it; otherwise, copy the new file to change its name,

20: filename NOT FOUND

The file does not exist under the specified user number,
the user is not allowed to access the file, or the user did not
provide a correct password for a file requiring a password.

20: ILLEGAL USER ACCESS
The user is either not allowed to create direct access files
or is not allowed to create indirect access files.

20: PF UTILITY ACTIVE
: The computer operations staff is using a permanent file
utility program that prevents users from performing operations
involving permanent files. Try the operation again.

20: CATALOG OVERFLOW - SIZE
The operation would cause the user's limit on total size of
all indirect access files to be exceeded.

20: CATALOG OVERFLOW - FILES
_ The operation would exceed the 1limit on the number of files
allowed for the account number.

20: BAD FILE OR SUBMIT NOT ALLOWED

-This error results from use of CSUBMIT under the following
circumstances: the user is not validated to wuse the SUBMIT
facility, the file is not properly constructed, or the number of
jobs allowed for the user would be exceeded,

20: PARITY ERROR
20: ADDRESS ERROQOR
20: DEVICE STATUS ERR.
20: 6681 FUNCTION REJ.
20: DEVICE RESERVED
20: DEVICE NOT READY
Any of these messages indicates a malfunction in the
computer or a storage device. Try the operation again, and if
the problem persists, notify installation personnel.

60454000 A A-5

20: TRACK LIMIT

There is no space available on the device where the file
resides. Be sure you have not accidentally created a gigantic
file. 1If you use very large files, you may need to make special
arrangements with the installation personnel.

20: FILE T00 LONG

The indirect access file or workspace cannot be saved
because it would exceed the user's size limit for indirect access
files, or the direct access file being tied or the direct access
stored workspace being re-saved presently occupies more space
than the user's size limit for direct access files.

ABNORMAL EXITS FROM APL

PARAMETER ERROR
This error indicates the APL command was incorrect in form

or that a parameter was specified incorrectly.

TIME LIMIT
A *TIME LIMIT* occurred and the T,number command was not
used to continue processing (see Section 13).

SRU LIMIT
An *SRU LIMIT* error occurred and the S,number command was

not used to continue processing (see Section 13).

PP ABORT
A peripheral processing unit requested that the program be

terminated.

OPERATOR DROP
The computer operator intervened and terminated the program.

FILE LIMIT
More active files were used than are allowed by the user's
validation limits.

SYSTEM ABORT
SUBSYSTEM ABORT
OVERIDE CONDITION
PARITY ERROR
FORCED ERROR
Any of these indicates a computer or operating system
malfunction. Contact the system analyst.

APL SYSTEM ERROR (oxr EXCHANGE PACKAGE)

This indicates a defect in the APL system or a computer or
operating system malfunction. Please report this error to
installation personnel along with work that led to the problem
and any further output from the APIL system. Unlike most error
messages, this is not an indication of an error by the APL
programmer.

A-6 : 60454000 B

OTHER MESSAGES

*DE L
This indicates that the input line was cancelled.

OVL
This indicates that the preceding input line was too long
for the operating system.

*TIME LIMITx

This indicates that the user reached a 1limit on allowed
consumption of computer resources. See the T,number command in
Section 13.

SRU LIMITx

This indicates that the user reached a 1limit on allowed
consumption of System Resource Units (SRUs). See the S,number
command in Section 13.

60454000 B A7

Appendix B. Output Format

Character output is sent to a terminal unaltered except for
character translation required for the particular type of
terminal and omission of +trailing blanks in rows of a matrix.
This omission of trailing blanks in character output speeds the
printing of the result from [CR, the printing of tables of
names, and so forth.

Numeric output is ordinarily shown in decimal form unless
decimal form would not be sufficiently compact. When decimal
form is wused, up to [OPP significant digits are shown, but
trailing zeros beyond the decimal point are omitted, as is the
decimal point itself if no digits follow. Numbers with a
magnitude less than 1 are shown with a zero before the decimal
point (e.g., 0.025, 0.12%). All numbers in a column have their
decimal points aligned.

Exponential form is used if decimal form would require more
than 3 zeros after the decimal point before the first significant
digit; if aligning decimal points in the column would require
more than 1.5x[0PP character positions, or if more than [Jpp
digits would appear to the left of the decimal point. If any
number in a column requires exponential format, the entire column
is shown in exponential format with the decimal points and
exponents aligned. All numbers in the column are shown with the
same number of digits in the mantissa. The number of mantissa
digits is less than [JPP according to how many trailing zeros
would otherwise appear in all numbers in the column. If no
numbers in the column have digits beyond the decimal point, the
decimal point is omitted.

Numbers in adjacent columns are separated by at least one
space. However, no more spaces than necessary are used.

60454000 A B-1

Appendix C. Character Sets and Terminals

This section discusses character sets and terminal types
from the point of view of installations using NAM/IAF (Network
Access Method/Interactive Facility) for communication with
terminals. Appendix F contains further information and
exceptions that apply to terminals at installations that do not
use NAM/IAF.

Many different types of terminals can be used with the APL
system. In addition, card readers, printers, and files can be
used for input and output. The characters available on these
various devices are shown in Table C-2. Many of these devices
cannot print the full set of APL characters. APL characters are
translated so as to print the same whenever possible. When no
related symbol is available, the symbol is represented as a
dollar sign followed by two mnemonic symbols (e.g., $I0O for 1 and
SRO for p). For input, if the symbols following the dollar sign
are not recognized as one of these mnemonics, the dollar sign is
entered as a dollar sign. In Table C-2 where two characters
appear in the same column, either character may be used for
input, but all output uses the second character. Note that the
APIL, system assumes the same terminal type for input and output.
Where there is a blank entry in the table, the "bad character
symbol,™ UAV[220]1, is used. HNote that the 4V indices are for
0-origin. The column for APL coded files includes the octal
(base 8) values used. The print symbols shown for coded files
assume an ASCII printer will be used; a few symbols print
differently on other printers. Note that future versions of the
APL 2 system may be changed to preserve exact equivalents for all
ASCII characters. This would affect the TT=BATCH, TT=713, and
coded file translations.

60454000 E C-1

LOG ON CHARACTERS AND TERMINAL CONTROLS

Most terminals used with computers can be classified as
either ASCII terminals or Selectric terminals. (Selectric
terminals are distinguished from ASCII terminals in that
Selectric terminals are based on an IBM Selectric print
mechanism, although the terminals themselves are produced by
several manufacturers.) In addition, the terminal may or may not
be equipped to print the APL character set. Some terminals can
easily be switched from the APL character set (e.g. L and 0 are
the lower and upper case symbols on the L key) to a "standard"
character set (e.g. 1 and L are the two symbols on the L key).
In some cases you select the character set by changing a switch
setting, while in other cases you select the character set by
replacing the type element. 1In either situation, the signal sent
to the computer when a given key is pressed does not change when
you switch character sets -- only the printed symbol changes. It
is therefore important that the computer be notified of the
character set you are using.

In a normal NAM/IAF log on, you first press RETURN (which
NAM/IAF uses to determine the data rate of the terminal), then
you send) RETURN. The right parenthesis is used to determine
the type of terminal (ASCII or Selectric), whether APL is
available on the terminal, and what keyboard arrangement or
transmission codes are wused (bit pairing, typewriter pairing,
Correspondence, or EBCDIC). If the APL character set is
available, select the APL character set before sending the right
parenthesis so that the code for the APL right parenthesis will
be sent.

The TT= option on the APL command should be used if the
terminal does not have the APL character set. In addition, for
APL Selectric terminals, I7=COR may be used if overstrikes are
desired for the symbols {}$O + . For most non-APL terminals
the TT=713 option is recommended. '

Note that visual fidelity is not preserved for non-APL
terminals. Non-APL terminals are not recommended for program
development, although they may be satisfactory for entering data
or transactions.

Table C-1 shows the appropriate TT= option for each terminal
type, as well as the terminal controls normally used to cancel
lines, correct input, or interrupt a program. In this table, a
circle around a letter means the CTRL__ key should be held down
while typing the letter. For example,<:) means CTRL X.

Cc-2 60454000 E

TABLE C-1. Terminal Controls and Options.

ASCII with Selectric with
APL print ASCIIT APL print Selectric
TT= option none TT=713 TT=COR TT=713
(optional)
Cancel line (:) RETURN (:) RETURN BACKSPACE to BACKSPACE to
begin of line, begin of line,
ATTN ATTN
Correct line| BACKSPACESs BACKSPACEs BACKSPACEs BACKSPACEs
LINE FEED (or) ATTN ATTN
LINE FEED
Interrupt @ RETURN @ RETURN ATTN: RETURN ATTII: RETURN
while
executing
Stop O input| - $GO > $GO
Stop M input| @ $G. o $G.

Most of the NAM/IAF controls shown in Table C-1 are system
default controls; they are the same as you would usually use
with another language. In addition, the APL system requests
special editing mode (which allows APL to wuse overstrikes,
partial 1line correction with a caret prompt, and the full
character set), and selects a NAM/IAF printing width of 0 (which
prevents NAM/IAF from dividing lines of input and output
according to the printing width of the terminal). These special
selections made by the APL system are equivalent to the effect of
the following NAM/IAF commands typed at a terminal:

ESC SE=Y RETURN (To request special editing.)
ESC PW=0 RETURN (For no print width processing.)

These commands to NAM/IAF are recognized only if they occur at
the beginning of a keyboard entry. Spaces are shown above for
the sake of clarity, but no spaces should actually be entered.
When the APL session ends, APL requests no special editing. This
is equivalent to the following request from a terminal: -

ESC SE=N RETURN

However, NAM/IAF printing width remains 0. To reset the printing
width, type a command like the following:

ESC PW=132 RETURN (To set the width to 132.)

60454000 E C-3

These examples, as well as Table C-1, are based on the
default NAM/IAF terminal controls. However, NAM/IAF allows you
to designate other characters to be used in place of the special
control characters.* Substitutions might be desirable when using
a special device on which the default controls are not available
or are reserved for a special purpose. Further details can be
found in manuals describing NAM/IAF.

SPECIFYING NAM/IAF CHARACTER SET

During the normal 1log on procedure with the computer
connection through telephone lines, the first characters from the
terminal allow the system to detect the data rate and character
set in use. When the terminal is directly wired to the computer
the data rate and character set may be predetermined. If you
wish to change the character set of the terminal (e.g., to use
another language) you should identify the new character set to
the system as follows:

ESC CD=A RETURN (Typed using the old character set.)

The system responds with two line feeds. You should then switch
to the new character set and type:

) RETURN

SPECIAL CHARACTERS

The character formed by overstriking (¢ and R causes a
carrier return (without a line feed) on an ASCII terminal. For
Selectric terminals, no exact equivalent exists, so a carrier
return with line feed occurs. The symbol formed by overstriking
U and S results in a carrier return and line feed for all
terminal types. (For output to coded files, U over S also causes
a new line.) The line feed itself is also available and is
represented by overstriking Z and F,

Note that earlier versions of the APL system used the Cr
overstrike to mean carrier return with line feed. The symbol
formerly entered as ¢ over R 1is now printed as U over S,
regardless of whether it was in a program or data. The CR
overstrike remains at [0AV[13] (in 0 origin) as a result of
rearrangement of [UAV. However, the effect of [0AV[13] has changed
for some terminal types and for output to coded files.

STANDARD SWITCH SETTINGS

The following information is intended as a general
discussion on choosing switch settings for terminals. Because of
the many variations between terminals and the various conventions
adopted by installations, these suggestions can only serve as a

*The cancel line character should not be changed, because APL
will only recognize ® for cancel line.

C-4 60454000 E

general guide. Further information can be obtained from
personnel at the computer installation or from the instruction
manual provided by the manufacturer of the terminal.

LINE/LOCAL switch. LOCAL mode prevents signals from being sent
to the computer. The LINE position should be used.

CAPS LOCK. This key on ASCII terminals causes the codes for
upper case letters to be sent even if the shift key is not used.
This option should not be used for APL terminals.

DATA RATE. Standard rates usually available are 110 BAUD (10
cps) and 300 BAUD (30 cps) for ASCII terminals and 135 BAUD for

Selectric terminals. Much higher data rates are sometimes
available.
Character set. Some terminals have a switch to select the

character set. The APL setting may be marked APL or ALT CHAR
SET. On some terminals resetting the character set key has no
immediate effect wunless the character set 1lock key 1is also
depressed.

Parity. Even parity is standard at most installations.

FDX/HDX. In full duplex mode (FDX), characters sent by the
terminal are echoed back by the communications processer. The
terminal prints the character as a result of receiving it from
the system. This mode helps you to determine whether the
transmission was received correctly. In half duplex mode, the
terminal always prints the characters as the keys are pressed,
and the system does not echo the characters as they are received.
The terminal and system must both use the same mode or else
characters will be printed twice (or will be garbled), or they
will not print at all. You should determine (possibly by
experimentation) the standard mode (usually HDX) for the
installation. (If the acoustic coupler has a similar switch, use
the full duplex selection, regardless of the convention between
the terminal and the system.)

60454000 E C-5

Table C-2. APL Character Set.

APL ASCII APL
gav Symbol Symbol TT=713 BATCH B501 Coded
Index (Overstrike) (Name) Symbol Printer Printer Files

0 ¥ (NU) (NUL) SNU $SNU $NU
1 8 (SH) (SOH) $SH $SH $SH
2 & (ST) (STX) $ST $ST $ST
3 E (ET) (ETX) SET SET SET
4 8 (EO0) (EOT) SEO $SEO $SEO
5 F (EN) (ENQ) SEN SEN SEN
6 Z (AK) (ACK) SAK SAK SAK
7 B (BL) (BEL) $BL $SBL $BL
8 8 (BJ) (BS) $SBJ SBJ SBJ
9 ® (HT) (HT) SHT SHT SHT
10 E (LF) (LF) SLF SLF SLF
11 ¥ (VT) (V) S$vT svT SVT
12 P (FD) (FF) SFD SFD SFD
13 B (CR) (CR) SCR $CR SCR
14 8 (S0) (s0) $SO . $S0 $80
15 g (SI) (s1) $SIT $sIT $S1
16 B (DE) (DLE) SDE SDE $DE
17 D (p1) (DC1) $D1 $D1 $D1
18 2 (D2) (DC2) SD2 $D2 $D2
19 B (D3) (DC3) $D3 $D3 $D3
20 o (D) (DC4) $D4 $D4 $D4
21 R (NK) (NAK) $NK SNK SNK
22 g (5Y) (SYN) $SY $SY Ssy
23 B (EB) (ETB) SEB SEB SEB
24 £ (cA) (CAN) sca SCA SCA
25 B (EM) (EM) SEM SEM SEM
26 8 (SB) (SUB) $SB $SSB $SB
27 B (ES) (ESC) SES SES SES
28 B (FS) (FS) SFS SFS $FS
29 £ (GS) (6s) $GS $Gs $GS
30 B (RS) (RS) SRS SRS SRS
31 B (US) (us) $uUs $uUs $Us
32 blank blank blank blank blank |blank (55B)
33 D) ! $EX | $EX ! $EX ! (66B)
* 34 vO) " $DQ $DQ $DQ
* 35 £ (+=) # $PD SPD $PD
36 F si) S $ [$ $(53B)
* 37 £ (/) 3 $PR $PR $PR
* 38 § (8\) & $AM SAM SAM
39 ! ! $QT ! $QT ' $QT ' (70B)
40 (((((. ((51B)
41)))))) (52B)
42 * * * * * - *(47B)
43 + + + + + +(45B)
'44 4 14 ’ r . r ’ (56B)
45 - C - - - - - (46B)

C-6 160454000 E

Table C-2. APL Character Set, Continued.

APL ASCII APL
OAV Symbol Symbol TT=713 BATCH B501 Coded
Index (Overstrike) (Name) Symbol Printer Printer Files
46 (57B)
47 / / / / / / (50B)
48 0 0 0 0 0 0(33B)
49 1 1 1 1 1 1(34B)
50 2 2 2 2 2 2 (35B)
51 3 3 3 3 3 3(36B)
52 y. 4 4 4 4 4 (37B)
53 5 5 5 5 5 5(40B)
54 6 6 6 6 6 6(41B)
55 7 7 7 7 7 7 (42B)
56 8 8 8 8 8 8 {43B)
57 9 9 9 9 9 9(44B)
58 : : SCL : SCL : SCL : : (00B)
59 3 H $sC ; $sC ; $sC ; ; (77B)
60 < < SLT < SLT < SLT < < (72B)
61 = = SEQ = SEQ = SEQ = =(54B)
62 > > SGT > SGT > SGT > >(73B)
63 ? ? SQU ? $SQU ? SQU ? ?2(71B)
* 64 € (Co) ¢] SAT SAT SAT
65 4 A A A A A(01B)
66 B B B B B B(02B)
67 C C C c C C(03B)
68 D D D D D D(04B)
69 E E E E E E(05B)
70 F F F F F F(06B)
71 G G G G G G(07B)
72 H H H H H H(10B)
73 I I I I I I(11B)
74 J J J J J J(12B)
75 K K K K K K(13B)
76 L L L L L L(14B)
77 M M M M M M(15B)
78 N N N N N N(16B)
79 0 o] 0 0 (o] 0(17B)
80 P P P P P P(20B)
81 Q Q Q Q Q Q(21B)
82 R R R R R R(22B)
83 S S S S S S(23B)
84 T T T T T T(24B)
85 U U U U U U(25B)
86 14 v v v v V(26B)
87 W W W W w W(27B)
88 X X X X X X (30B)
89 Y Y Y Y Y Y (31B)
90 A Z Z Z 7 Z (32B)
60454000 E C-7

Table C~2. APL Character Set, Continued.
APL ASCII APL
04av Symbol Symbol TT=713 BATCH B501 Coded
Index (Overstrike) (Name) Symbol Printer Printer Files
91 [C $oB [| soB [$OB [[(61B)
92 \ \ $BS \ $BS $BS \ (75B)
93]] $CB] $CB 1] $CB 3] 1(62B)
* 94 (T ~ $cx $CX $CX
* 95 _ _ SUL $UL SUL (65B)
* 96 T (') - $AC $AC ~ SAC ~ -
97 A (A)) a $AA $AA SAA A(01B)
98 B (B.) b $BB $BB $BB B(02B)
929 c (C.) c $cc $cc $cc C(03B)
100 D (D) d $DD $DD $DD D(04B)
101 E (E_) e SEE $SEE SEE E(O5B)
102 F (F.) £ SFF SFF S$FF F (06B)
103 G (G_) g $GG $GG $GG G(07B)
104 H (H.) h SHH SHH $HH H(10B)
105 I (I.) i SII $II $II I1(11B)
106 Jd (J_) J $JJ $JJ $JJ J(12B)
107 X (K_) k SKK SKK SKK K(13B)
108 L (L.) 1 SLL SLL SLL L(14B)
109 M (M) m SMM SMM SMM M(15B)
110 N (N_) n $NN SNN $NN N(16B)
111 0 (o_) o $00 $00 $00 0(17B)
112 P (P.) P $ppP $PP $PP P (20B)
113 e () q $QQ $QQ $Q0 Q(21B)
114 B (R.) r SRR $RR $RR R(22B)
115 S (S.) s $ss $ss $8S S (23B)
116 r (7_) t $TT STT STT T (24B)
117 U (u.) u $uU Suu $UU U (25B)
118 Y (v v SV Svv Svv V (26B)
119 . K (W) w SWW SWW SWW W(27B)
120 X (X_) X $XX $XX $XX X(30B)
121 Y (¥.) Yy SYY SYY SYY Y (31B)
122 Z (Z.) z $Z72 $72 $2% Z (32B)
* 123 { (Le) { $LB SLB $LB
124 J i $MD $MD $MD
* 125 } (o) } $RB SRB SRB
* 126 ~ A $TL STL A STL A] A (76B)
127 B (D2) (DEL) $DZ $DZ $DZ
128 (X0)
129 (K1)
130 (XK2)
131 (X3)
132 (x4)
133 (K5)
134 {K6)
135 (K7)

60454000 E

Table C-2. APL Character Set, Continued.

APL ASCII APL
0A4v Symbol Symbol TT=713 BATCH B501 Coded
Index (Overstrike) (Name) Symbol Printer Printer Files
136 (K8)
137 (K9)
138 (K10)
139 (K11)
140 (K12)
141 €K13)
142 K14)
143 EK15§
144 K16
145 (K17)
146 §K18g
147 K19
148 K20)
149 €K21)
150 K22)
151 (K23)
152 (K24)
153 (K25)
154 (K26)
155 (K27)
156 (K28)
157 (K29)
158 (K30)
159 (K31)
160 A (NO) $AN $AN $AN A
161 v (N1) $OR $OR $0R v
162 * (A~) (N2) $ND $ND $ND
163 ¥ (v~) §N3§ $NR $NR $NR
164 < N4 $LE $LE $LE <
165 z gng $NE $NE $NE =
166 > N6 $GE ~ $GE $GE >
167 A (A]) (NT7) $UG $UG $UG
168 v gnag $DG $DG $DG
%% 169 4 N9 $TA $TA $TA 4 |
170 ' (N10) | $DR $DR $DR +
** 171 « (N11) | $IS $IS $IS
172 > (N12) | 360 $G0O $G0 -» i
173 p (no) (N13) | $LP $LP $LP
174 ¥ (V~) (N14) | $LD $LD $LD
175 v (N15) | $DL $DL $DL
176 L §N16) $MN $MN
177 r N17) $MX $MX
*% 178 x §N18; $ML $ML $ML &2673
¥ 179 2 N19 $DV $DV $DV %(63B
*% 180 - (N20) $D1I $DT $DI "(64B

60454000 F C-9

Table C-2. APL Character Set, Continued.
APL ASCII APL
JAv Symbol Symbol TT=713% BATCH B501 nged
Index (Overstrike) (Name) Symbol Printer Printer Files
}|** 181 - (N21) | snG $NG $NG #(60B)
182 A (N22) gnm gpm gnw
183 — (<]) N23 RK RK RK
AR 1 A A
185 N2
I |** 186 2 (o%) ENzeg $1.G $1.G $LG @(74B)
187 e (o0-) N27 $RU $RU $RU
188 b (o]) (N28) | S$RT $RT $RT
189 § (o\) (N29) | $TP $TP $TP
190 O (av) (N30) | $DM $DM $DM
191 A (A) (N31) | $DU $DU $DU
192 i §N323 glo glo :;8
193 p N33 RO - $RO
194 1 (N34) | $BV $BV $BV
195 T (N35) | $RP $RP $RP
196 T (17) §N362 $1IB $IB $IB
s | S a3 | s | Sm | Sy
198 > N38
189 n §N393 $IX $IX $IX
200 v N40 $UN $UN $UN
201 ° §N41g $NL $NL $NL
202 0 0 N42 $QD $QD $QD
20 o o) N QP P QP
SO0 | E BB
205 F (/=) N
205 0:) (ﬁig) $XD $XD $XD
207 B (Os:
208 w §N48g $OM $OM $OM
209 @ (N49) | $AL $AL $AL
21 nas)
212 N52
213 € §N53; $EP $EP $EP
214 e (10) (N54) | $EV $EV $EV
215 ¥ (To) §N55; $FM $FM $FM
216 s (-,) N56 $CN $CcN $CN
51 (N20)
219 (N59)
220 8 (VA) (N60) | $BC $BC $BC
e
223% (N63)
224 D (0oUT) (GO) $G. $G> $G>
225 U (0U) (G1) $0U $0U $0U
C-10 60454000 F

Table C-2. APL Character Set, Continued.

APL ASCII APL
gav Symbol Symbol TT=713% BATCH B501 Coded
Index (Overstrike) (Name) Symbol Printer Printer Files
226 (G2)
227 (a3)
228 643
229 G5
230 G6)
231 (G7)
232 gGBg
233 G9
234 (G10)
235 (G11)
236 §G12)
237 G13)
238 §G14;
239 G15
240 (G16§
241 EG17
242 G18)
243 (G19)
244 (G20)
245 (G21)
246 (G22)
247 (G23)
248 (624)
249 (G25)
250 §G26g
251 G27
252 EG28)
253 G29)
254 (G30)
255 (EO)

* Future versions of APL may change the APL coded file

conversions to use the ASCII graphic symbol to represent the
ASCII character.

*% Future versions of APL may change the APL coded file

conversions to allow only the $ mnemonic to enter or print
these characters.

60454000 F C-11

Appendix D. APL Control Card

The optional parameters on the APL timesharing command (or
batch control card) allow specification of the type of terminal
(oxr batch options) to be used, the workspace to be used (thus
avoiding a subsequent LOAD command), and the constraints on the
field length to be used. The general form for the control card
is:

APL,option,option,option, ...

where an option is of the form keyword or keyword=value.

Indicating terminal type. When no terminal type is specified,
APL assumes TT=ASCAPL as the terminal type if the job was entered
from timesharing. (This default may be changed by the
installation.) If the job is a batch or remote batch job, APL
assumes the TT=BATCH option. See Appendix C or Appendix F for
specific recommendations. Other terminal types can be specified
as follows:

TT=COR Correspondence Selectric APL terminal (O77=1).
This option assumes the communications system
recognizes the terminal as an APL terminal.

TT=TYPE Typewriter-paired APL terminals ((077=2). This is
applicable only if the communications system does
not recognize the terminal as an APL terminal.

TT=BIT Bit-paired API, terminal (drr=3). This is
applicable only if the communications system does
not recognize the terminal as an APL terminal.

TT=ASCAPL This type (07T=4) is appropriate when the

communications system translates APL terminal
codes into a standard intermediate code.

60454000 E D-1

TT=TTY33 For Teletype 33 terminal or similar devices
(O77=5). TT=713 is recommended instead for most
other ASCII terminals.

TT=ASCII For full ASCII terminals not equipped to print the
APIL character set (077=6). This may also be used
for non-APL correspondence terminals, but TT=713
is recommended instead.

TT=BATCH For devices that support the ASCII 64-character
set (OrT=7). Usually used for batch or remote
batch ASCII printers. ! :

TT=B501 For batch 501 printer ([7T=8).

TT=TTY383 For <certain Teletype 38 models (0OTT=9). See
Appendix F.

TT=713 For full ASCII terminals or correspondence
terminals not having the APL character set.
Avoids frequent use of shift key for letters.
E.g. either T or t may be entered for the APL
letter 7.

Indicating batch output options. The following options are
intended primarily for batch users of APL. If the APL control
card does not specify output options, it dis assumed that
timesharing users do not wish these options and that batch users
do want them.

LO=EPB Any or all of the options E, P, or B may be
specified. Any options not specified are not used.

E Echo input. The APL 1lines read as input are also
sent as output.

P Prohibit prompt. The normal APL input prompts (6
spaces or [I: plus transparent mode control bytes, a
lack of which may cause the input translation for
terminals to be incorrect) are not sent to the
output file.

B Blank in first column. Causes a blank to be added
to the front of each output line to prevent the
first character from being used for printer carriage

control.
1L0=0 To select none of the E, P, or B options.
Input and output file specification. The input and output files
normally used for APL are named INPUT and OUTPUT. For
timesharing jobs this causes input to come from the terminal and
output to be sent to the terminal. Fcr batch jobs input

D-2 60454000 E

ordinarily is from the card deck or CSUBMIT file, and output is
to a 1line printer. Other operating system files can be used
instead. APL translation of input and output is according to the
TT= option (or the default which depends on whether the job is
batch type or timesharing type).

I=file-name Causes input to be read from the named file.
I=file-name Causes output to go to the named file.

=0 No APL output js produced. (All output is
discarded.)

Initial workspace specification. If no workspace is specified, a
clear workspace 1s used. Some effort can be saved by specifying
the initial workspace name on the APL control card.

WS=wsname APIL operations begin with a copy of the named
workspace as the active workspace.

UN=user-number Used to specify the wuser number of the
initial workspace. Required only if the user
number of the workspace differs from that
used when signing on.

PW=passwd If the workspace belongs to another user and
has a password, the password must be provided
in order to use it.

Field 1length specification. The field length used by APL
includes the central memory used for the APL system and the
active workspace. The user 1is not allowed to specify a field
length greater than that permitted by validation 1limits
associated with the user name, or greater than the limit imposed
by the computer operator. If no field length is specified, the
APL system chooses a minimum field length that depends on the
current version of APL, and a maximum field length of 24576 words
(60000 octal) or the maximum allowed, whichever is less. The
field length is used for the APL system and the active
workspace. The actual field 1length used varies dynamically. If
storage requirements exceed the maximum field length, a WS FULL
message results.

MX=number Sets the maximum field length. The number is
assumed to be in decimal form unless followed
immediately by B, in which case it is interpreted
as octal. The value is actually rounded wup to a
multiple of 64.

MN=number Sets the minimum field length. The number is
assumed to be in decimal form unless followed
immediately by B, in which case it is interpreted
as octal. The value is actually rounded up to a
multiple of 64.

60454000 E " D-3

Suppressin
on the APL

banner. The NH keyword (for no heading) may be used

control card to prevent the APL system from printing

the usual banner (APL system identification) at the beginning of
the APL session.

60454000 E

Appendix E. Numerical Limits and Precision

The CYBER computers can represent nonzero numbers having
magnitudes in the approximate range 1,27E322 to 3,14E” 29y, An
operation that would ordinarily produce a number smaller in
magnitude than 3.14F 294 actually produces zero. Operations that
would produce results of magnitude greater than 1,27E322 produce
a DOMAIN ERROR.

Numbers within this magnitude range are represented with an
accuracy of about 14 decimal digits (more precisely, to within 1
part in 2x48), The simple operations such as addition,
subtraction, multiplication, and division can be expected to be
accurate to within 1 part in 2x48 except when cancellation
magnifies the errors. However, operations involving numbers that
are integers or powers of 2 give exact results unless the
magnitudes differ greatly. For example, exact results are given
by: .5+4, .25-.125, 8-3.

60454000 A

Appendix F. Use of Terminals at Installations without NAM/IAF

When NAM/IAF is not used for communications with terminals,
the log on procedure is somewhat more complicated, and the user
must know more about the type of terminal in use. Also, the
system does not sense the character rate of the terminal,
although it determines some information about the terminal class
from the first characters sent. Furthermore, operating system
messages printed on the terminal may use the wrong character set.
For example, *TIME LIMIT* may be printed as #~i1]e Ov]i~z —-
instead of letters the upper case symbols on the same keys as the
letters are printed.

TERMINAL TYPES

ASCII terminals that have the APL character set are divided
into three classes according to which ASCII signals are
associated with the APL symbols. The most common type is
typewriter paired; these terminals have the APL symbol for
multiplication on the same key as the ASCII symbol for equals.
The second class, bit-paired terminals, have the APL symbol for
subtraction on the same key as the ASCII symbol for equals. The
third class, TTY383, applies to Teletype 38 terminals with the
following model numbers: 3841/4rEA, 3841/4EG, 3851/6JA, and
3851/6JG.

ASCII terminals without the APL character set . either have
the full ASCII character set (e.g. both capital and small
letters) or only the partial character set (e.g. no small
letters). In either case, the terminal type TT=713 is
recommended. This translation treats either the capital or small
letters as the APL letters A to 7 and avoids frequent use of the
shift key. (The TTY33 terminal type is nearly obsolete; the 713
type is preferable for most terminals other than Teletype 33
terminals. The ASCII translation allows small letters to be
distinguished from capital 1letters, but this capability is
usually a nuisance since small ASCII letters become underlined
APL letters.)

60454000 E F-1

Selectric APL terminals use either correspondence
transmission codes or EBCDIC transmission codes. The EBCDIC
codes are not ordinarily supported. Correspondence terminals
that do not print the APL character set can be used with the
TT=713 terminal type as if they were ASCII terminals.

LOG-ON PROCEDURE

The log-on procedure is summarized in Table F-1 for the
various types of terminals. The first step is to establish a
telephone connection with the computer, as discussed in Section
1. However, when NAM/IAF with auto baud detect is not used, the
telephone number may vary according to the type of terminal and
the data rate to be used.

Table F-1. Log-on Procedure

Symbol for

First Change TT= = when not
Terminal Type transmission character set option in APL
ASCII typewriter-—
paired APL A RETURN TERM, TTY TYPE X
ASCII bit-
paired APL A RETURN TERM, TTY BIT -
ASCII TTY383
APL A RETURN TERM, TTY TTY383 -
Correspondence
APL A4 ATTN COR =
ASCII
non-APL RETURN 713 =
Correspondence
non-APL RETURN 713 =

The initial transmission from the terminal indicates whether
the terminal has the APL character set. Enter the characters
shown in Table F-1l. Then provide the account family, account
number, and password as discussed in Section 1.

¥F-2 60454000 E

When the system prints

RECOVER/SYSTEM:
reply with TERM,TTY if Table F-1 indicates this command is
required for your terminal type. Then type the APL command with
the appropriate terminal type option from Table F-1. For
example,

APL ,TT=COR

would be used to indicate that a correspondence APL terminal is
in use. For some terminal types, you must use the x symbol or -
symbol in place of = because the operating system assumes that
thhe ASCII symbols are in use. The last column in the table shows
the character to use instead of = for the APL command and other
operating system commands. Note that these substitutions must be
made for commands discussed in Section 13.

TERMINAL COWTROLS

. Table F-2 shows the terminal controls used to cancel an
input line, stop a program while executing, and to stop a program
while requesting input. The two entries for halting a program
requesting input are for U input and [input, respectively. The
procedure to cancel an entire input line for correspondence
terminals requires that the type element be positioned beyond
what was already typed. Waen you correct input according to the
procedure in Table F-2, the system responds by printing a caret

under the first character to be replaced. You tuen type
replacement characters. For ASCII terminals you can also use the
LINE FEED key instead of BREAK; this procedure does not print

the caret prompt, but you do not need to wait for the system to
respond before providing replacement characters.

Table F-2, Terminal Controls

Terminal Cancel Correct Stop Stop

type input input program input

ASCII with BACKSPACEs

APL print BREAK LINE FELD BREAK 7 or -~

Non-APL BACKSPACEs

ASCIT BREAK (or CTRL H) BREAK $G. or $GO
LINE FEED

APL BACKSPACESs

Correspondence ATTN ATTN ATTH 7 or -

Non-AP]I, BACKSPACESs

Correspondence| ATTH ATTH ATTN $G. or $GO

60454000 E F-3

INDEX

ABORT ([TM request) 18-20
Absent records 10-8,9
Absolute value function 4-3
ABSTRACT documentation 11-2,3
Access modes for files 10-6;
10-11; 10-14,15; 13-3,4
Account number
for files 10-10
for logging on 1-2
from A 8-19
Accounting information ([AT)
8-7; 8-18,19
Acoustic coupler 1-1
Active files 10-5
Active workspace 8-8; 8-14
Addition function 4-2
Additive inverse function 4-2
ADDRESS FERROR A-=5
AFIFIX 13-6
0Ar 8-7; 8-18,19
ALREADY PERMANENT A-=5
Alternating product 7-2
Alternating sum 7-2
AND function 4-3
APL control card D-1,3
APL SYSTEM ERROR A-6
APL1 public library 11-1
APLNEWS workspace 1-3; 11-1
APL-structured files 10-1
indicated by FSTATUS 10-9
integrity of 10-16
Arc sine, arc cosine, etc.
4-3; 4-5
Arguments to functions 1-6;
2-8; 3-4
ASCAPL terminal type D-1
ASCII terminals 1-1,3; C-2,11;
p-1,2; F-1,3

60454000 E

Assignment 1-5; 3-6,7;
See also Indexed
specification

Atomic vector ([4AvV) 8-
c-1,10

ATTN key C-3; F-2,3

0Av 8-19; C-1,10

AWSFIX 13-6

Axis operator 3-5; 6-5
A-1

B501 terminal type C-6
BACKSPACE key 1-4; C-2

5-6.

19;

; 8-11;

'3

Bad character symbol C-1
BAD FILE OR SUBMIT NOT ALLOWED

A-5
Base value function 6-
Batch job submission.
CSUBMIT

18,19
See

Batch output options D-1,4

Batch printer translati
c-6,11; D-1,2
BATCH terminal type C-
D-1,2
Batch use of APL D-1,4
Beta function 4-5
Bit-pairing terminals
D-1
BIT terminal type F-1,
Blanks
in commands 3-1
in output D-2
Boolean data. see Logi
representation

on

6,11;

F-1,2;

2; D=1

cal

INDEX-1

Branching 2-9; 3-7; 3-9
and efficiency 12-5
- and execute function 6-20
and restarting execution
2-10
in quad input 3-10
BREAK key C-=2; F-3

Busy files 10-14; A-4

BYE 13-1

Canceling input 1-4; C-2,3;
F-3

Canonical representation ([CR)
8-11

Carriage control 8-10; D=2
Carriage return
character C-4
key 1-4
suppression 3-10
CATALOG OVERFLOW - FILES A-5
CATALOG OVERFLOW - SIZE A-=5
CATALOG workspace 1l1l-1
Category of files 8-8; 9-3;
10-6; 13-4
Catenate function 6-9
CATLIST command 13-3
Ceiling function 4-2; 4-4
Central processor time 8-13;
8-19; 12-5,6
CFpPOS 10-12.1/12.2,13; A-4
CFREAD 10-12; A-4
CFWRITE 10-12;10-12.,1/10-12.2;
A-4
CHANGE command 8-8; 10-6;
13-3,4
CHANGE TO READ-ONLY FILE A-4
CHANGES documentation 11-2

Character constants 3-1,3
Character data _
density in files 10-15

Character set
gav 8-=19
and CFWRITE 10-12
for coded files 10-11
tables C~1,11
Character type 6=5
Check protect 8-=24
Circular functions 4-3; 4-=5
YCLEAR 8-7; 8=15; 9-1; 10-14
Clear workspace 8-7; 8-=15
CLEAR WS 1-3
CLIST (to list coded files)
10-17

INDEX-2

Closing function definition

2~-3

CMAP 10-18

Coded files 10-1; 10-11,13;
10-15; C-1

character set C-1,11
creating 10-8
indicated by FsTATUS 10-9
listing 10-17
- repositioning
10-12.1/10-12.2; 10-13
Coded file read (CFREAD) 10-12
Coded file write (CFWRITE)
10-12, 10-12.1/10-12.2
Colons and CFWRITE 10-12,12.1
Column coordinate 5-1
Combinations—-of function 4-3;
4-5
Comments 3-=1,2
Comparison tolerance ([JCT)
8~10
and floor and ceiling 4-4
and grade up and grade down
6-8
and IMPLICIT ERROR A-1,2
and matrix inverse 6-23
and power function 4-5
and relational functions
4-5,6
default value for 8-6
in clear workspace 8-7
Compress function 6-10,11;
12-4
Composite functions 7-1
Connect time 8-19
Constants 3-2,3; 12-6
Constant vector 3-2
Context editing 2-5,7
Control card for APL D-1,4
Conversion between number

systems 6-18,19
Ocopy 8-11; 8=15; A-1
)COPY 9-3

10-16,17
c-2,3; D-1;

Copying APL files
COR terminal type
F-1,3
Correcting typing errors

c-2,3; F-=3
Correspondence terminals

C=-2,10; D-1; F-1,3
Cosine function 4-3; 4-5
CPU time 8-13; 8-19; 12-5,6
Ocr 8-11; aA-1

1-4;

60454000 E

10-12,14
8_9 ’ lo
13-4; A-4;

Creating files
CRT terminals
CSUBMIT 10-13;
ger 8-10
and floor and ceiling 4-4
and grade up and grade down
6-8
and IMPLICIT ERROR A-1,2
and matrix inverse 6-23
and relational functions
4-5,6
default value for
in clear workspace

D-3

8-6
8-7

Data rate C-2; C-5

Deal function 6-7,8; 8-11; A-1

Decimal format for output
6~-21,22; B-1

Decode function. See Base

. value function

DEFN ERROR 2-3; A-3

*DEL*x 1=-4; A-7

belay (OpL) 8-20

Deleting function lines 2-4

DESCRIBE documentation 11-2

DEVICE NOT READY A-5

DEVICE RESERVED A-=5

DEVICE STATUS ERR. A-5

Diamond symbol (line separator)
2=7

digits 3-2

Digits for output. See
Printing precision

)JDIGITS. See OPP
Dimensions of an array 5-1
Direct access files 10-13,15

creating with FCREATE 10-8
indicated by FSTATUS 10-9
integrity of 10-16

Direct access workspaces 8-8
Disconnect
and busy files 10-14
and lost space 10-15
and storage statistics
10-16
Disk storage space 12-3,4

5-2,3
2-4
8-12

Display of arrays

Displaying functions

Distinguished names

Divide function 4-2

OpL 8-20

Documentation standards
11-2,3

60454000 E

DOMAIN ERROR 6-23; 7-2; 8-1;
A-2; E-1
Domino functions. See Matrix

divide or Matrix inverse

Double entry format 8-23
OproP 8-15
)DROP 9-3

Drop (primitive function) 6-13
Dyadic format 6-22,23

Dyadic functions 3-4

Dyadic save 8-14
Dyadic transpose 6-16,18; A-1
EBCDIC terminals F-2

Echo input option D-2

Editing of functions 2-1,8
Efficiency
for APL programs 12-1,6
for files 10-15,16
Encode. See Represent function
End of information, file,
record 10-11,13
ENQUIRE command 10-13; 13-4
geyy 8-7; 8-11; A-1
Environment control (OENV)
8-7; 8-11; A-1
Equals function 4-3; 4-5,6;
A-1

Equals symbol for operating

system commands 13-1;
F=-2

JERASE 9-3

Erasing direct access files
(FERASE) 10-14

Erasing files and workspaces
8-15

Erasing functions and variables
8~11,12; 9-3

UErRrR 8-7; 8-17,18

Error matrix (UOERR) 8-7;
8-17,18

Error messages A-1,7

Error processing 8-16,18

Error trapping 8-16,18

Escape from function definition
2=-7

Orx 8-11,12; A-1

Exception rules 6-1; 6-5

EXCHANGE PACKAGE A-6

Execute function 6-=20; 8-16

Execution of functions 2-8,11

Expand function 6-11,12

exponent 3-=3

INDEX-3

Exponential format for output

6-22; 8-21; B-1
Exponential function 4-2
Exponential notation for

constants 3-3
expression 3-7

Expunge (0OFX) 8-11,12; A-1
Extending function lines
OEXTRACT 8-24

2-5

4-3
1-2

Factorial function
Family identifier
FCOPY 10-16,17
FCREATE 10-8;
OrFp 3-2

FDX C-5

FERASE 10-10
FFREE 10-8

OFr 10-4,5; 10-7

Field length 8-19,20; 12-2,3;

10-12,14

D-3
File access information 13-3
File create 10-8; 10-12,14

FILE DAMAGE A-4

File efficiency 10-15,16

File erase 10-10; 10-14

File integrity 10-16

FILE LIMIT A-6

File limits 10-3

File marks in coded files
‘'10-11,13

File names 8-16; 10-5; 10-10

File numbers 10-10

File passwords. See Passwords

File positioning 10-8;
10-12,13

File read 10-8

File record delete 10-8

File return 10-10

File sizes 8-16; 10-9; 10-15,16

File status 10-8,9

File submit 10-13

File system 10-1,18

File tie 10-11; 1l0-14

FPILE TIE FRROR A-4

FILE TOO LONG A-6

File type 8-16

File untie 10-10; 10-14

File write 10-8

FILES2 workspace 10-16,18;
11-1

FILESYS workspace 10-1,18;
11-1

Fix (OrFx) 8-11

INDEX-4

Floor function 4-2; 4-4
FMAP 10-18
FNAMES 10-10
YJFNS 9-4
FNUMS 10-10
FORCED FERROR A-6
Format for array output 5-2,3
Format for normal output B-1
Format functions
¥y 6-21,23
- OFrMT 8-20,24
Format phrases 8-21
FPOS 10-7,8
FRDEL 10-8; 10-15
FREAD 10-8; A-4
Free record number
FRETURN 10-10
OFRMT 8-20,24
FSTATUS 10-8,9
FTIFE 10-10,11; 10-14
Full ASCII terminals
Full duplex mode C-5
Function classifications
Function definition mode
2-1,11; 3-2; 8-11
Function execution 2-8,11
Function header 2-1; 2-3,4;
2-9,10
Function names, form for
6681 FUNCTION REJ., A-5
Functions, user defined 2-1,11
listing names of 8-12; 9-4
storage requirements for

10-8

c-2,10

3-3

2-1

12-4
FUNTIE 10-10; 10-14; A-5
Fuzz. see [OCT
FWRITE 10-8; 10-12; aA-4
OrFx 8=11
Gamna function 4-3
Global environment 8-11
Global variables 2-8

Grade up and grade down 6-8;
8-11; A-1

Greater than function 4-3;
4-5,6; A-1

Greater than or equal function
4-3; 4-5,6; A-1

Groups 8-12; 9-1; 9-4
YGROUP 9-4
JGRP 9-5

GRPDOC documentation 1ll1l-2
YGRPS 9-4

60454000 E

c-5
2-9,11
2-10; Cc-1,2

Half duplex mode
Halted function
Halting execution
HDX C-5
Headers for functions
2-3,4
HELLO command 13-1
Heterogeneous output 3-9
Histogram function 1-7
Horizontal tabs 8-10
HOW functions 11-2
O#T 8-7; 8-10
Hyperbolic functions

2=1;

4-3; 4-5

IAF log-on procedure 1-1,3;
c-2,4

Identity result from reduction
7-2

ILLEGAL USER ACCESS A=5

Immediate execution mode 1-4

IMPLICIT FRROR 8-=1; 8-6; A-1

INDEX FRROR A-2

Index generator function 6-6;
8-11; 12-4

Index-of function 6-=6; 8-11;
A-1

Index origin (0I10)
8-10.1/8-10.2,8=11

and clear workspace 8-7

grade up and grade down
6-8
IMPLICIT ERROR A-1
index-of function
and indexing 5-1

Indexed selection 3-6; 5-5

Indexed specification 3-6,7;
5-6

Indexed variables
also Indexed
specification,
selection

Indirect access files
10-5; 10-9; 10-15

Inner product 3-=5; 7-1; 7-4,5

Input file specification D-2,3

Input using quote quad and quad
2-11; 3-9,10; 8-1l6; C-2;
F-3

Inserting function lines

Integer domain 8-10

Integer format 6-22; 8-21

Integrity of files 10-16

Interrupt 8-17,18; C-2,3; F=-3

INTERRUPT A~-1

and

and

and 6-6

3=6. see

Indexed

8-8;

2-3

60454000 E

Inverse of a matrix 6-23,24
0ro (Index origin)
8-10.1/8-10.2,8-11
and grade up and grade down
6-8
and IMPLICIT ERROR A-1
and index-of function
and indexing 5-1
in clear workspace
Italic notation 3-2,3

6—-6

8-7

10-13
6-5; 6-9

Job submission
Join function
Keying time 8-19
Label variables 2-8
Labels on statements
and 0OERR 8-11
and execute function
form for 3-9
and OFX 8-11
and line renumbering
and localization of
and ONC 8-12
and state indicator 2-9,10
and symbol table 12-4
Laminate function 6-9
Largest record number
Latent expression (0LX)
0zc 8-18
Least squares 6-24
Left argument 3-7
LENGTH ERROR 4-1; A-2
Less than function 4-3;
A-1
Less than or equal function
4-3; 4-5,6; A-1
O0rre 8-15,16; 10-6
JLIB 9-4
Libraries of workspaces
8-14,16; 11-1,3
Library list (0OLIB) 8-15,16
LIMIT ERROR 6-20; A-1
LIMITS command 13-4
line 3-9
Line correction 1-4; C-2,3;
F-3
Line editing 2-4
LINE FEED key 1-4; C-3,4;
Line labels. See Statement
labels
printer translation
Cc-6,11

6-20

2-4
2-8,9

10-9
8-15

4—5' 6;

8-8;

F-3

Line

INDEX-5

Line separator 2-7
Line timing controls (OLTIME)
8-11,13
Linear equations 6-23,25
Listing coded files 10-17
Listing user-defined functions
2-4
3-8,9; 8-20
of names for system
functions 8-=7
8-14,15; 9-3
environment 8-11
functions 2-8; 8-11
system variables 8-1
Local variables
and OENV 8-11
behavior of 2-8,9
declaration of 2-3
names of active 2-9,10;
8-18; 9~4
Location counter (0LC)
grock 8-11,12; A-1
Locked functions
and error processing
8-16,18
and [OCr 8-11
and OFRR 8-17
Creating 2-11; 8-12
for file security 10-7
LOCKED OBJECT A=2
Locked variables
and statement labels
and 0OnvC 8-=12
creating 8-12
for groups 9-1
Logarithm 4-2
Logging on 1-1,3; C-2,4; F-1,3
Logging off 1-8; 8-20
Logical representation 10-15;
12-3
Lost space in files
10-15
OLTIME 8-11,13; A-1
Oox 8«15

lists
Lists

OLoAD
Local
Local
Local

8-18

2-8

10-9;

Magnitude function 4-3
Magnitude range for numbers

E-1
Matrix 5-1
Matrix divide 6-24,25
Matrix inverse 6-23,24

Matrix product 7-4,5

Matrix transpose. See Monadic
transpose

INDEX-6

Maximum field length 8-19,20;
12-2,3; D-3
Maximum function 4-2
Membership function 6-7; A-1
Memory space. See Storage
requirements
Minimum field length
12-2,3; D=3
Minimum function 4-2
Minus. see Subtraction,
Additive inverse, or
Negative symbol
MIXED FUNCTION A-3

8-19,20;

Mixed functions 5-1,6; 6-1,25

Modes 10-6; 10~11; 10-14,15;
13-3,4

Modify mode 13-3

Modulus. see Residue

Monadic format function
6-21,22
Monadic functions
Monadic transpose
Multiplication 4-2

3-4
6-15,16

NAM log-on procedure 1-1,3;
Cc-2,4
class 3-4;
IN USE A-3
list (ONL) 8-11,12; A-1
list for stored workspaces
(OVAMES) 8-11; 8-15
lists for system functions
8~7
NoT FOUND 8-11; A-3
of active workspace

Name 8-11,12; A-1
NAME
Name

Name
Name

NAME
Name
Names

and spaces 3-1

for files 10-5

for workspaces 8-8

lists of, for system

functions 8-7

of tied files 10-10
Names of files, changing 13-3
OVAMES 8=11; A-1l; 8-15
NAND function 4-3
Natural logarithm 4-2
Ovc 3-4; 8-11,12; A-1
Nearest integer 8-10
Negative symbol 3-3
Niladic branch 2-10; 3-7; 3-9
Niladic functions 3-4
NINT (nearest integer)
Ovz 8-11,12; A-1
NOR function 4-3

8-14

8-10

60454000 E

~e

Not equal function 4-3; 4-5,6
A-1

NOT function 4-3

Not greater than function 4-3;
4-5,6; A-1

Not less than function 4-3;
4-5,6; A-1

Number conversion 8-24

Number system conversion 6-18

Numbers of tied files 10-10

Numeric constants 3-2,3

Numeric conversion using format
functions 6-21,23;
8-20,24

Numeric output format B-1

Numeric type 6-5

Odometer order 5-3,4
OFF (OTM request) 8-=20
JOFF 9-4
One origin 5-1
Open definition 2-3
Operating system commands 13-1
Operating system error messages
A-4,6
OPERATOR DROP A-6
Operators 3-5; 7-1
Optimization of APL programs
12-1,6
Order of evaluation 3-1;
3-6,7; 5-6
Ordering of array elements
5-3,4
OR function 4-3
Origin (0I0) 8-11
and grade up and grade down
6-8
and IMPLICIT ERROR A-1
and index-of function 6-6
and indexing 5-1 o
in clear workspace 8-7
JORIGIN. See [IO
Outer product 3-5; 7-1; 7-4

60454000 E

Output

control 8-9

conversion using fo
functions 6-
8-20,24

efficiency 12-6

file specification

formatting 6-21,23
8-20,24; B-1

implicit 3-9

lists 3-9

of arrays 5-2,3

options D=2

rmat
21,23;

D-2,3

.
14

using quad and quote quad

3-9,10
OVERIDE CONDITION A-6

Overriding line numbers 2-3

Overstrike 1-5
OVL A~7

Packing files 10-5
Page eject 8-10
PARAMETER ERROR A-6
Parity C-5
PARITY ERROR A-5,6
PASSWOR command 13-2
Passwords
changing 8-8; 13-2
for files 10-5,6
for logging on 1-3
for workspaces 8-8
specifying with FCR
10-8
Pendent functions 2-9
Per-element time 12-5
Permanent files 10-5
PERMIT command 10-6;
PF UTILITY ACTIVE A-5
PHRASE NOT FOUND A-3
Pi-times function 4-3

‘0Pz 8-7; 8-9,10
Plane coordinate 5-1

Plus function 4-2

EATE

.10
,6

13-4; 8-8

INDEX-7

10-7
10-8;

Position of a file
Positioning files
10-12,13
Power function 4-2;
opp 8-6,7; 8-9; A-1
PP ABORT A-6
Precision of calculations
Preconversion of V and)
Primitive functions 3-4
Print lines (OPL) 8-6,7;
8-9,10
Printer carriage control
D-2
Printing precision ([PP)
8-6,7; 8-9; A-1,2
Printing width (OPW) 3-10;
8-6,7; 8-9
Printing width (NAM)
Privacy of files 10-6
Private files 8-8; 10-6
Program libraries 8-14,16;
11-1,3
Prohibit prompt option D=2
Prompt suppression D=2
Protected copy 9-3
PROTECTED WORKSPACE 13-6; A-3
PSTATUS 10-9
Public files 8-8; 10-6;
Public libraries 1l1l-1
Purging files and workspaces
8-15
Opw 3-10;

4-4

E-1
3=-2

8-10;

Cc-3

10-8

8-6,7; 8-9

Quad input and output 2-=11;
3-9,10; 8-16; C-1,2;

Qualifiers for format 8-22,23

Quotes in constants 3-3

Quote-quad input and output
2-11; 3-9,10; C-1,2

Radices 6-18
Random link 8-~7;
Random number functions
RANK ERROR 4-1; 8-1; A-2
Rank of an array 5-1; 5-4
Ravel function 5-4
Read mode 10-6; 10-11;
10-14,15; 13-3
Read-modify mode 10-7;
10-14,15; 13-3
READY light 1-2
Reciprocal function
Record delete (FRDEL)

8-10.1/8-10.2
6-7

10-11;

4-2
10-8

INDEX-8

Record marks in coded files
10-11,13
Record number, largest 10-9
Record numbers 10-5,6
Records 10-1
RECOVER 10-14,15; 13-2
Recursive functions 8-13
Reduction 3-5; 7-1,2
Regression coefficients
6-24,25
Relational functions
4-5,6; A-1
Remainder. see Residue
Removing function lines 2-4
Renumbering function lines
Repetition count for context
editing 2-6
Report formatting function

4-3;

2-4

8~-20,24
Repositioning files 10-8;
10-12,13
Represent function 6-19,20
Residuals 6-24,25
Residue function 4-3; 4-5
Response time 12-2
Restarting execution 2-~10
Result variable 2-1; 2-8,9;
3-4,5
RETURN key 1-4
Returning files 10-10

Reverse function 6-14
Revising functions 2-3,7
Revising input 1-4; C-2,3
Rewind 10-13

Orz 8-7; 8-10.1/8-10.2; A-1
Roll function 4-3; 8-11l; A-1
Rotate function 6-14,15

Row coordinate 5-1

S,number 13=3
0sAVE 8-14; A-1
JSAVE 9-3
Scalar arrays 5-1
Scalar extension
Scalar functions 4-1
Scan functions 3-5; 7-1;
Scientific notation for
constants 3-3
Scientific notation for output
6-22; 8-21; B-1
Sealing workspaces 13-6
Security of files 10-6
Security of workspaces

6-5
7-3,4

13-6

60454000 E

Seed., sSee [URL

Selectric terminals
C-2,4; D-1

Semantics for APL statements
3-1,10

Semiprivate files
10-8

Sequential file operations
10-7

Session variables 8-7

SETTL command 13-3

Setup time 12-5,6

Shape of an array 5-3,4

Shared files 10-14,15

Shifted output option D=2

Shortcuts in function editing

1-1; 1-3;

8-8; 10-6;

2=-7
)SI 2-9,10; 9-4
SI DAMAGE 2-10; 8-11; A-3

Significant digits for output
8-9

Signing off. See Logging off

Signing on. See Logging on

Signum function 4-2

Sine function 4~3; 4-5

Osiv 8-18

)SIVv 2-9,10; 9-4; 8-18

Size function 5-4

Sizes of files 8-=16; 10-9;
10-15,16

Skip record, file, or to end
10-12,13

Sorting 6-8

SOURCE documentation 11-2

Space requirements, See
Storage requirements

Spaces 3-1

Special editing mode C-3

Specification. See Assignment
or Indexed specification
5-6

Square root. See Power
function

SRU 8-19

SRU LIMITx 13-3; A-7

Standards for programs

State indicator
9-4

State indicator damage 2-10;
8-11; A-3

60454000 E

“Symbol table size

11-1,3
2-9,11; 8-18;

Statement labels

and execute function 6-20
and 0OFx and 0OCT 8-11
and line renumbering 2-4;

8-11
and symbol table 12-4
form for 3-9
in SIV display 2-9,10
localization of 2-8,9
Status of files (FSTATUS)
10-8,9
gsrop 8-11,13; A-1
Stop controls 2-11; 8-11,13
Stopping function execution
2-10; C-1,2
Storage requirements
and OWwA 8-19,20
in files 10-15,16
in workspaces 12-2,4
Stored files 10-5
Stored workspaces 8-8
Submitting batch jobs. See
CSUBMIT
SUBSYSTEM ABORT A-6
Subtraction function 4-2
Suspended functions 2-9,11;
3=7
sy 3-2
12-4
SYNTAX ERROR 6-5; A-1l
Syntax for APL statements
3-1,10 ;
)SYSTEM 9-4 '

SYSTEM (OTM request) 8-20
SYSTEM ABORT A~6
System commands 2-1; 3-2;

8-11; 9-1,5
System functions 3-3; 8-1,24
System Resource Units 8-19
System variables 3-5; 8-1,24

T,number command 13-3
Table lookup 7-5

Tabs 8-10

Tails in files 10-9; 10-15
Take function 6-12,13
Tangent function 4-3; 4-5

INDEX-9

Telephone disconnect
affects storage statistics
10-16
and busy files 10-14
and lost space 10-15
and RECOVER command 13-2
Teletype terminals D-2; F-1
Terminal mode (0OTM) 8-20
Terminal switch settings C-4,5
Terminal type (OTT) 8-7; 8-19;
D-1,2
Terminal type
specification of D-1,2
Terminal types C-1,11; D-1,2;
F-1,3
Tied files 10-3,4
TIME LIMIT 13=~3; A-7
TIME LIMIT A-6
Time stamp (075) 8-7; 8-19
Timing controls 2-11; 8-12,13
Timings, table of 12-6
Times function 4-2
Ory 8=20
OTRACE 8-11,13; A-1
Trace controls 2-11;
A-1
TRACK LIMIT A-6
Translation for input and
output <¢$-1,11; D-1,3
Translation tables C-1; C-6,11
Transpose functions 6-15,18;
A-1
Or7rAP 8-17,18; 10-7
Trap line 8-17,18
Oors 8-7; 8-19 :
orr 8-7; 8-19; D-1,2
TT=713 terminal type C-2,3;
C-6,11; D=2; F-2
TTY33 terminal type C-3; D-2
TTY383 terminal type D-2;
F-1,2
Type of an array 6-5
Types of files 8-16
TYPE terminal type D-1; F-1
Typewriter-pairing terminals
D-1; F-1

8-11,13;

INDEX-10

YUCOPY 9-=3

UNDEFINED FUNCTION A-3

UNLOCK key 1-2

Unprotected copy 9-3

Unquote function. see Execute
function

Untie for files 10-10; 10-14
Unused space 10-9; 10-15
User defined functions 2-1,11;

3-4
User name
for logging on 1-2.
See also Account number

+

Vacant list elements 3-8
value 3-6
VALUE ERROR 3-4; A-2; 3~5

Variable name replacement 2-6

Variable names 3-5

Variables 1-5

Variables, names of defined
9-4

YVARS 9-4

Vector 1-5; 5-1

Visual fidelity 1-4

OwAa 8~7; 8-19,20; 12-2,3; A-3
Weightings 6-18 :
JWIDTH, See [OPW
Working area ([WA)
8-19,20; 12-2,3
Workspace 1-7
Workspace identification

8-7;

(OwWwsID) 8-14
Workspace names 8-14; 8-8;
8-14,15
Workspace size. See Field
length

Write mode 10-6; 10-8;
10-14,15; 13-3

WRONG TYPE FILE A-4

WS FULL 8-=19,20; 12-2,3; A-3

WS NOT FOUND A-3

Owsip 8-14; A-1l; A-5

Zero origin 5-1

60454000 E

CUT ALONG LINE

AA3419 REV. 4/79 PRINTED IN US.A.

COMMENT SHEET

MANUAL TITLE: CDC APL Version 2 Reference Manual
PUBLICATION NO.: 60454000 REVISION: F

NAME:

COMPANY:

STREET ADDRESS:

ary: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

D Piease reply D No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

TAPE TAPE
FOLD FOLD
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

|

BUSINESS REPLY MAIL S

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.]

]

POSTAGE WILL BE PAID BY e —

CONTROL DATA CORPORATION N

]

Publications and Graphics Division T

215 Moffett Park Drive o

Sunnyvale, California 94086 P

|

|

]
FOLD - FOLD
TAPE

TAPE

CUT ALONG LINE

TABLE OF DISTINGUISHED FUNCTIONS AND VARIABLES

NAME MEANING BAGE YAME MEANING PAGE
DISTINGUISED VARIABLES
0Ar ACCOUNTING 8-19 0av ATOMIC VECTOR 8-19
INFORMATION OeT TAB SETTING 8-10
Ocr COMPARISON TOLERANCE| 8-10 OENV ENVIRONMENT CONTROL 8-11
OERR ERROR MESSAGE 8-17 0ro INDEX ORIGIN 8-164.1
grc LOCATION COUNTER 8-18 Orx LATENT EXPRESSION 8-14
0pL PRINT LINES 8-9 OppP PRINT PRECISION 8-9
OpPw PRINT WIDTH 8-9 ORL RANDOM LINK 8-10.1
ars TIME STAMP 8-19 Qrr TERMINAL TYPE 8-19
Ow 4 WORKSPACE AVAILABLE }8-19 OwSID WORKSPACE IDENTIFIER| 8-13
DISTINGUISHED FUNCTIONS
Ocopry PROTECTED COPY 8-15 OCr CANONICAL 8-11
REPRESENTATION
anr DELAY EXECUTION 8-20 ODROP DROP PERMANENT FILE 8-15
Orx EXPUNGE 8-12 OFI FILE SYSTEM FUNCTION| SEC 10
OFRMT FORMATTING FUNCTION | 8-20 Orx FIX FUNCTION 8-11
0LIB LIBRARY 8-15 0roap LOAD WORKSPACE 8-14
grock LOCK OBJECTS 8-12 OLTIME SET TIMING VECTOR 8-13
ONAMES | NAME LIST 8-15 One NAME CLASS 8-12
FROM SAVED WS
avL NAME LIST 8-12 0s1v STATE INDICATOR 8-18
WITH VARIABLES
asrop SET STOP VECTOR 8~-13 OSAVE SAVE WORKSPACE 8-14
OrM TERMINAL MODE 8-20 OTRACE SET TRACE VECTOR 8-13
OTRAP SET ERROR TRAP 8-18
TABLE OF FILE SYSTEM FUNCTIONS
NAME MEANING BagE N4ME MEANING PAGE
PCREATE| CREATE FILE 190-8 FWRITE RANDOM RECORD WRITE 10-8
FREAD RANDOM RECORD READ 16-8 FRDEL RANDOM RECORD DELETE | 10-8
FFPREE GET FIRST FREE 10-8 FPOS SET FILE POSITION 10-8
RECORD NUMBER
FSTATUS| GET FILE STATUS 16-8 PSTATUS PRINT FORMATTED 19-9
FNAMES | GET FILE NAMES 10-10 FILE STATUS
FUNTIE | UNTIE FILES 10-10 FNUMS GET FILE RNRUMBERS 106-190
FERASE | ERASE ACTIVE FILES 10-10 FRETURN RELEASE ACTIVE FILES | 16-18
FPACK PACK FILE 19-11 FTIE TIE A PERMANENT FILE | 10-10
CFREAD | READ CODED FILE 19-12 CFWRITE WRITE TO CODED FILE 10-12
CFPOS POSITION CODED FILE| 106-12.1)} CSUBMIT SUBMIT BATCH JOB 19-13

FROM A CODED FILE

60454000 F

CORPORATE HEADQUARTERS, P.0. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN US.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G2

CONTROL DATA CORPORATION

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	07-01
	07-02
	07-03
	07-04
	07-05
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10.0
	08-10.1
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20.0
	08-20.1
	08-21
	08-22
	08-23
	08-24
	09-01
	09-02
	09-03
	09-04
	09-05
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12.0
	10-12.1
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	11-01
	11-02
	11-03
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	D-01
	D-02
	D-03
	D-04
	E-01
	F-01
	F-02
	F-03
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	replyA
	replyB
	xBackA
	xBackB

