
APL-STAT
A Do-It-Yourself Guide

to Computational Statistics
Using APL

James B. Ramsey
New York University

Gerald L. Musgrave
University of Michigan

LIFETIME LEARNING PUBLICATIONS
Belmont, California

A division of Wadsworth, Inc.

In preparing APL-STAT we were fortunate to have the help of many
friends and colleagues. Rather than attempt to explain their individual
contributions we simply list their names and express our thanks to each of
them: Bert Alexander, Alea Curtis, Dorothy Dixson, David Edelman, John
Hause, Robert Hessen, John Kassionas, Jan Kmenta, Alexander
Kugushev, Charles Moore, Thomas Gale Moore, Jan Musgrave, Richard
W. Parks, Virginia Perry, Alvin Rabushka, Grace Ramsey, Shannon
Ramsey, Robert Rasche, Bernard Scheier, Bert Schoner, Andy Silver,

, Barbara Snarr, and Mike Sullivan.

© 1981 by Wadsworth, Inc. All rights reserved. No part of this book may
be reproduced, stored in a retrieval system, or transcribed, in any form or
by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher, Lifetime
Learning Publications, Belmont, California 94002, a division of
Wadsworth, Inc.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10--85 84 83 82 81

Library of Congress Cataloging in Publication Data

Ramsey, James Bernard.
APL-STAT, a do-it-yourself guide to computational

statistics using APL.

Includes index.
1. Statistics-Data processing. 2. Econometrics

3. Mathematical statistics-Data processing. 4. APL
(Computer program language) I. Musgrave, Gerald L.,
joint author.
II. Title.
QA276.4.R35 519.5'028'5 80-15016
ISBN 0-534-97985-8

Contents

Preface ix

Notes to Instructors xiii

1
1.1
1.2

Introduction
Overview of APL 1
Road Map of Where We Are Going and How We Will Get
There 3

1

2 Getting Started
2.1 Some Keying Conventions 6
2.2 Simple Arithmetic 6
2.3 Arrays 10
Summary 12
Exercises 12

6

3
3.1
3.2
3.3
3.4
3.5
3.6

3.7

Some Elementary Statistics
The Computer Reads from the Right 15
Two Arguments or One? 16
Variables and Assignment 17
A System Command:)VARS 18
How to Calculate a Mean 19
Two Other Measures of Central Tendency: The Geometric
and Harmonic Means 21
Sample Variance and Standard Deviation 23

15

iii

7
7.1
7.2
7.3

8
8.1
8.2
8.3

iv Contents

3.8 Correcting Typing Errors 25
3.9 Mean and Variance of Sample Probabilities 26
Summary 28
Exercises 29

4 How to Write Your Own Function
4. 1 The Sample Median 34
4.2 Function Definition 41
Summary 49
Exercises 51

5 Some More Statistics
5.1 Some Basic Statistics 58
5.2 Dummy, Local, and Global Variables 63
Summary 66
Exercises 67

6 Higher and Cross Product Moments and Distributions
6.1 Some Useful Distributions (Binomial, Poisson) 73
6.2 Histograms 76
6.3 The Normal Distribution 83
Summary 87
Exercises 89

Data and Information-How to Get It In and Out
Numeric and Character Arrays 97
Entering Data Inside a Function 101
Saving Your Workspace When Using the
Computer Terminal J06

Summary 111
Exercises 112

More on Functions
Function Display, Correction, and Editing 116
Diagnostic Procedures 121
A Case Study in Program Development and the Location and
Correction of Program Errors 127

Summary 137
Exercises 138

34

57

72

97

116

9
9.1

Elementary Linear Regression, Goodness of Fit, and Analysis

of Variance (ANOVA) Problems
Introduction to Linear Regression 144

144

12
12.1
12.2
12.3
12.4

Contents

9.2 An APL Program for Linear Regression Analysis 145
9.3 Goodness of Fit, Contingency Tables, and ANOVA

Problems 148
9.4 Calculating the Chi-Square and F Distributions 159
Summary 165
Exercises 166

10 Matrix Algebra in APL-How Simple It Is
10.1 Vectors, Matrices, and Arrays 172
10.2 Elementary Matrix Operations 174
10.3 Transpose of a Matrix 178
10.4 A Not So Elementary Operation: Matrix Inverse 179
Summary 185
Exercises 186

11 Higher-Order Arrays
11. 1 Reduction Function 191
11.2 Compression 197
11.3 Expand Function 199
11.4 Reverse or Rotate Function 200
11.5 Transpose Function 205
11.6 Ravel, Catenate, Laminate 209
11.7 Take and Drop Functions 213
Summary 215
Exercises 217

Inner and Outer Products-Matrix Manipulation
Inner Product: Some New Ideas 221
Outer Product 223
An Economic Example (Production Functions) 225
Two More Not-So-Elementary Matrix Operations
(Kronecker Product, Determinant) 229

Summary 235
Exercises 236

13 Linear Regression
13.1 Covariance and Correlation Matrices 240
13.2 Some Initial Linear Regression Statistics 243
13.3 SiInple and Partial Correlation Coefficients 245
13.4 Creation of a Regression Routine 246
13.5 Bells and Whistles Section 258
SUlnmary 262
Exercises 262

v

172

191

221

240

14
14.1
14.2
14.3
14.4
14.5

vi Contents

Other Simple Regression Equation Estimators
Simultaneous Equation Models 268
Two-Stage Least Squares 269
Instrumental Variables 272
Aitken's Generalized Least Squares 275
Durbin's Estimator in First Order Auto-regressive
Models 278

14.6 k-Class Estimators in Simultaneous Equation Systems (OLS,
2 SLS, and Limited Information Maximum Likelihood) 282

Summary 288
Exercises 289

268

Appendix A
A.I
A.2
A.3

The Computer: Where It Is and How to Get Access to It
Account Number and Password 294
Log-On Procedure 295
Log-Off Procedure 297

294

Appendix B Longley Benchmark
Appendix C APL Character Set
Appendix D Saving Your Workspace on The IBM 5110 Microcomputer
Appendix E Data Set 'Macro'
Function Glossary
Bibliography
Answers to The Exercises
Index

302
304
307
310
316
330
332
338

Preface

Please Read This Before Reading the Text!

This book explains how to perform both simple and complex statistical
calculations using APL. "APL" is an acronym for "A Programming
Language"-a computer programming language that is ideal for the com­
putational work done in statistics.

The authors are both economists, and the content reflects their profes­
sional interests. However, political scientists, physicists, sociologists, in­
dustrial psychologists, public health and dental researchers, and others
have used this book and found it helpful.

No previous knowledge of computers, computer programming, or meth­
ods involved in statistical computation will be needed to understand this
book. You will start from the most elementary statistics and progress to
more complicated procedures on a gradual step-by-step basis. The numer­
ous examples, exercises, and statistical applications are drawn from a
variety of fields. Emphasis is placed on how to obtain the statistical results
with ease. Using this book you will be able to perform computations that
otherwise would be so cumbersome or time-consuming that you would not
do them. You also will be able to perform experiments and computer
simulations with relatively little effort.

The APL statistical procedures presented are useful to researchers,
analysts, managers, and anyone concerned with statistical calculations. We
believe that when you have seen how easy it is to perform these computa­
tions, you will be as pleasantly surprised as we were. If you are familiar
with computers here is a dramatic example of the simplicity of APL com­
pared to the FORTRAN statements used to compute the arithmetic mean.
If you are a novice in these things don't be frightened--everything will be
explained.

vii

viii Preface

APL
X+{J

O+-AVE+(+/X)+pX

10

20

F0RTRAN
DIMENSI0N X (1000)
READ (5,99)N

99 F0RMAT (14)
READ (5,100) (X(I), 1== 1,N)

100 F0RMAT (9F8.0)
SUM == 0.0
D0 10 J == I,N
SUM == SUM + X(J)
AVE = SUM/N
WRITE (6,20)AVE
F,0RMAT (FI0.4)
END

To estimate the parameters of Y = B 1 + B2 X 2 + Ba Xa + . · ·
via multiple regression, you could type in APL:

An Example
of F(/)RTRAN
and APL

Use of [1

in Multiple
Regression

B +- Y!BX

In other computer languages an equivalent program might take 50 state­
ments.

This book is not just an introduction to APL programming, although
many people have learned APL from it. Certainly it is not a statistics
textbook, but readers have commented that they never really understood
certain statistical concepts until they "tried real numbers to see how the
formulas worked." This book is a valuable aid to understanding statistics
because it actually computes results and even displays probability distribu­
tions graphically. By the time you finish you will know a lot about APL
programming. And after you spend a few hours at the computer, you will
find that it is easier to program your own work than it is to learn to use the
"canned" (F,0RTRAN) routines available at the computer facility. More
importantly, you will understand what you are doing and how the results
are obtained. We have long maintained that the less you are asked to
accept unquestioningly, the better is your intellectual health and the
greater will be your interest in statistical subjects.

This book is not primarily a textbook. It is a book for the person who
understands basic statistics, who wants a painless way to compute results,
and yet wants to know what is really going on. We think that teachers of
basic or applied statistics and especially econometrics will find our ap­
proach using APL to be an important part of a practical statistics course.
Students are often assigned "artificial," "theoretical," or "academic"
problems, situations, and exercises. These assignments are not made be­
cause the instructor thinks such things are important. Actually, most in­
structors understand the difficulty of tackling real statistics problems. Con­
sequently, when the amount of computational pain the student (and
teacher) must go through to get the statistical result is compared to the
"statistics" that can be taught, a stress on pure theory almost always
results. Thus, after a course (or even several courses), an individual may
be unprepared to solve the first problem-how to perform the calculations!
The use of APL minimizes these difficulties.

Preface ix

Purpose of
These
Comments

We think that when you complete APL-STAT you will agree­
programming can be easy !

Because the text proceeds in a carefully structured sequence it is impor­
tant that you follow it exactly and that you make sure you thoroughly
understand each section before moving to the next. Later sections assume
that prior sections have been mastered. You should do the exercises and
check your answers in the back of the book. Above all, you can teach
yourself a lot by experimenting, so try it.

If you forget something, the primitive function glossary at the back of
the book will help you recall earlier materiaL If you need more informa­
tion, the side of most _pages has brief comments. These comments contain
the name and symbol of the APL operator introduced on that page. You
will be able to flip through the book quickly and locate what you want,
using the comments. They also provide a quick visual guide to the major
topics in any section.

We have a request. In the back of the book is an error sheet for recording
our omissions, bad language (though never foul!), and other sins. We would
be most obliged if you would send us this error sheet with your comments.
The next edition will then be much better with your help.

JAMES B. RAMSEY GERALD L. MUSGRAVE

x

Note to Instructors

Instructors can assign much more meaningful examples and exercises
using the procedures in this book than using either canned programs or
hand calculation. Students will not be spending time in tedious calculation
or in using the computer as a black box. Students will be able to perform
calculations, including complex matrix algebra, know how they are done,
and see the numerical results. They will be able to obtain results they
understand. One example is where a multiple regression model requires
the intercept to be "forced" through zero. It is surprising how simple the
mathematics of this is (not having a column of ones in the regressor X
matrix). It is also surprising how few preprogrammed packages allow this
option. In APL you can modify your program to handle this change in a
matter of moments.

Computer simulation and generation of distributions become a relatively
trivial task in the hands of an APL-proficient student. We could enumerate
a long list of such examples, and once you start you will see them too.
Also, we have included our benchmark program data on the Longley re­
gression problem in Appendix B. You may find it interesting to compare
the computational accuracy of APL programs with the canned ones on
your home computer or at your computer center.

In using this book as a text you might consider the following ideas. The
titles of certain sections, e.g., The Normal Distribution in Chapter 6, are
starred. These starred sections involve mathematical material which may
be beyond the scope of an elementary course in statistics that doesn't have
a mathematical prerequisite. Any APL instructions introduced in such
sections will not be used anywhere else in the text without reexplanation.
So starred sections can be dropped without fear of losing some important
information about APL.

The book is carefully structured in that it follows the usual pattern of
topics in the introductory statistics course and only uses as much APL as
is needed to get the job done. Consequently, it is important that, except for
the starred sections, the sequence be followed and sections are not skipped.

If you decide to alter the presentation of statistical subjects, have your

Note to Instructors xi

students read the APL-material in sequence, even if they skip the earlier
presentations of the statistics. A number of readers have used this ap­
proach and found it to be satisfactory. In these cases the readers either
knew statistics or were not interested in statistics per see They wanted to
learn APL and found this approach to be effective. One reason for this is
that APL instructions are introduced to solve specific problems rather than
presented in the abstract.

Each chapter has a large number of exercises and applications. The
exercises help in exploring the use of APL concepts, functions, and sym­
bols. The statistical applications help extend the depth and breadth of APL
use. Throughout the book, experimentation is encouraged to expand and
intensify interest and understanding.

An elementary nonmathematical course in statistics would usually stop
at Chapter 9, which covers contingency tables, analysis of variance, and
simple linear regression with one regressor. Chapters 10, 11, and 12 intro­
duce various aspects of matrices and prepare the way for multiple linear
regression analysis and topics that might be regarded as more "economet­
ric." You may find that the use of APL will allow you to cover Chapters 10
through 13 as well. This is important since the rudiments of matrix algebra
can be taught quickly using APL. The benefit will be that you can enable
your students to master multiple linear regression and more complicated
analysis of variance techniques more easily.

Three administrative matters might be of interest. Many computer cen­
ters have only a few APL terminals. Don't let this apparent difficulty slow
you down. First, if the terminals use a typing ball or a daisy wheel, the
center can obtain APL balls or print wheels. They are easy to switch, are
low in cost, and small adhesive labels are available for the keys. Second, if
the terminals use a non-APL matrix printer or if the terminals are CRT's
without APL characters, another solution is available. A Mnemonic
character set that substitutes for the APL symbols is available. The multi­
ple regression example in the preface was coded as

y+-YffiX

using the standard APL character set. In the Mnemonic character set it
would be written as

Y+Y.DQX

Appendix C contains both the standard and Mnemonic character sets.
Third, some computers have implemented only the monadic version of
domino. In this case you simply enter the following two lines

VYDQX
(~((~X)+.xX»)+.X((~X)T.XY)V

when you enter YDQX the result is the same as if YffiX 'had been entered.
If in using the book you have any comments that would be helpful to

others please pass them along to us and we will incorporate them in the
next edition.

1

Introduction

1.1 Overview of APL

APL is a powerful and versatile computer programming language. When
you use this language to communicate with the computer it will be as ifyoll
were personally operating the machine. APL is designed to operate on
small microcomputers no larger than a typewriter, on minicomputers the
size of one or two office desks, and on large maxicomputers the size of a
truck. No matter how large or small the computer, once you log-on to the
system it will appear from your perspective that you have a one-to-one
relation with the computer. The APL contained in this book has been used
on micro-, mini-, and maxicomputers produced by a variety of manufac­
turers. We found the APL language to be remarkably similar in all of these
cases.

Administrative Procedures

The procedures used to log-on to the various systems that we have used
vary greatly. Each computer center has its own administrative procedures,
keywords, passwords, and account verification methods. In addition, you
usually need to connect your computer terminal to the computer itself and
this process can be mysterious at first. There is really nothing to this at all.
Nevertheless, sometimes people who hang around computer centers make
a big deal about the administrative and technical matters surrounding the
use of the machine. The truth of the matter is that the procedure is much
the same as getting a key for an office, registering for a class, or signing up
for Little League. It's a hassle. Every organization thinks that there is only
one way to do it, and yet every way is different. Appendix A contains a
brief description of how it is done at the Stanford and NYU computer
centers, and on an IBM 5120 desk-top computer. This description should

1

2

CLEAR WS

)OFF

State Diagram

Introduction

allow you to understand better the procedures that are used with your
computer. In a short time the mystifying intricacies of gaining access to the
computer become second nature. You type a few words and numbers and
you are ready to go.

The APL Keyboard

We have included a few diagrams of typical APL keyboards in Appendix
A. The alphabetic characters are in exactly the same position as they are
on a standard typewriter. These letters are all capitals but (wouldn't you
know it) they are in the lowercase positions. Holding the shift key down
while pressing a specific key enters a special APL symbol. Each of these
symbols performs a specific operation in APL. As you can see, the
keyboards are almost identical, and in the very few instances where some
minor differences do exist we will explain them. One of the most frighten­
ing things that the new APL programmer encounters is the APL character
set. All those strange symbols are indeed foreboding. However, our ex­
perience has been that the symbols are easy to learn. They are not much
more difficult to learn than the international road signs, especially if you
take them one at a time in the context of an actual problem.

Some General Features of APL

Now suppose that you are sitting in front of the keyboard and you have
logged-on. The computer has responded with the message CLEAR ws. The
computer is indicating that you have been allocated a part of the
computer-APL calls it a Work Space-named CLEAR. Now you can
communicate with the computer, and it is in fact much like an electronic
hand-held calculator except that it is much more powerful. To tum off the
computer you simply type)OFF, for example, and log-off. You will soon
see how APL can be used as a very powetful calculator in the immediate
execution mode. However, it can do much more.

You can define a set of instructions that will perform tasks such as
balancing a checkbook; computing means, standard deviations, and re­
gression coefficients; or directing the computer to simulate a Las Vegas
casino game. In APL, the set of instructions is called a defined function.
After the function has been defined you simply refer to it by name. The
same instructions, operating on different data, can be used over and over
again.

Figure 1.1 is a state diagram that represents these three APL modes.
When you log-on you are given a clear work space, you are in immediate
execution mode, and you have a powerful calculator at your disposal. You
can enter data, process the data with a one-line APL expression, define an
entire new work space with different functions and data, and test your
functions on a line-by-line basis before you program the whole set of
instructions.

1.2 Road Map of Where We Are Going and How We Will Get There 3

Figure 1.1

Enter &
execute APL
statements

To define a function enter
dNAME of function

-.DTo close a function
enter 11

Enter data (

Edit function
in development
stage

Then you can define your own function, edit any part of it, or modify it
for a particular application. Also, should a function stop because of a
programming error and further processing thereby be suspended, you can
correct the error by editing the function and then resume the function's
execution from the point of suspension. You need not start from the begin­
ning if your previous calculations were correct.

A function is executed by simply entering its name. You can specify the
particular data set to be processed, and your function can call other func­
tions, request data, and produce results for use by other functions. In
addition, you can trace the execution of your function by having the results
of any line or group of lines displayed-all of this without having to write
any output statements. When your function's execution is completed it
returns you to immediate execution mode where you began. We hope that
this sounds simple, straightforward, and like something you can do­
because it is!

1.2 Road Map of Where We Are Going and How We Will Get There

In the next chapter you will learn how to use APL as a calculator. After
these basics are under your belt, the general presentation is to explain a
statistical problem and then to solve it using APL. On the way to the
solution the various APL functions and programming methods are pre­
sented and explained. We first discuss the sample mean and median, stan-

These matrix
methods are used
in the solutions
of more complex
statistical
problems

Statistics

Chapters
3, S, 6,'9,
12, 13, 14

Maitix
Methods

ct'-
Hi~Order'
. ~ys

ci\aPten 10.. 1t

Functions often
use these methods

Many of our statistical
procedures are written
as defined functions

1
These primitive
functions are combined
mto routmes

F,unction
DeJinitioo

Chapters
4,05, <i, 7, 8

tAlter the resultsI of Computations

'. ,

Chapters 2, 3

Systems .
cio~

" "'~.',

SylllC!D1I Y~bIes

Chapter lS

+, -, x, +, I. p, etc.

After defining a 1
function it can be
used as any other
primitive function

Systems commands can be
used to organize data
and work space

Processing of
scalars & vectors Basic Deft",tions & Syntax

-....:..---:----:---------1.~ Execution of FUDCtion

Executing functions
to organize data..

Functions are often
used to organize
and manipulate data

Chapters
7, 11, 14

D$ta Entry and
Mani~ulation

'Figure 1.2

1.2 Road Map of Where We Are Going and How We Will Get There 5

dard deviation, covariance, and higher order moments. Then we investi­
gate a number of the most prominent statistical distributions, including the
binomial, Poisson, and normal density and cumulative distribution func­
tions. After you learn how to handle more complex data structures in APL
and to write more general and powerful functions you will learn how to
diagnose and correct programming errors. After you go through a case
study using APL in a research project, we present an introduction to
elementary linear correlation and regression, analysis of variance, and the
chi-square and F distributions. Next we show how to do matrix algebra in
APL, including the operation of matrix inversion, which is performed with
one symbol, IT]. Multidimensional arrays are discussed in Chapter 12,
where the various APL functions are explained in relation to these higher
order arrays. The final chapters concentrate 00 computational statistics
related to multiple linear regression, two-stage least squares, instrumental
variables, Aitken estimators, Durbin's First Order Autoregressive Models,
and K -class estimators including limited information maximum likelihood
estimators.

Don't let this impressive soundingjargoo put you off. The first half of the
book has been understood by good high-school students, and they were
able to write APL programs after only a few hours of study. The later
chapters have been used in both undergraduate and graduate classes. Also,
the statistical routines have been used by a number of our colleagues in
their statistical research. So you can see that while much of the material is
technical, it progresses at a measured rate. Figure 1.2 is a schematic rep­
resentation of APL-STAT. It might help you to visualize how the various
components of APL are related.

We can summarize our position this way:

APL
TRY IT-YOU'LL LIKE IT

So turn the page and let's go ...

2

Getting Started

2.1 Some Keying Conventions

Now that you are seated comfortably in front of your terminal or minicom­
puter, everything is switched on, and the terminal is set to receive your
instructions in APL, we can begin. Our first task is for you to gain some
familiarity with the use of your keyboard as shown in figure 2.1.

Sometimes we want to indicate to you very clearly that there is a blank
space. For example, consider the character string ABCD EFG, which you
type by hitting the A, B, C, D keys, the space bar, and then the keys E, F,
and G. Blank spaces will be indicated, but only when we need to stress that
there is a blank, by printing an ampersand (&) in a subscript position. In
the above example, we would print ABCD&EFG. You can read this as: A,
B, C, D, and E, F, G. You will not find the & character on your APL
keyboard; we use it in the earlier chapters to emphasize blanks until your
eye is accustomed to the idea.

2.2 Simple Arithmetic

Arithmetic
Functions
+,-,X,7-

6

We will start by making sure we know how to add (+), subtract (-),
multiply (x), and divide (-7-) numbers on the computer. The symbols +, -, x,

and -;- are the symbols for the mathematical operations of adding, subtract­
ing, multiplying, and dividing, respectively. On the IBM 5120, for exam­
ple, they are found on the far right-hand side of the keyboard, next to the
keys with the integers from 0 to 9. You may also use the numbers shown on
the top row of the main keyboard and the arithmetic functions shown at the
end of that row (this is the most common configuration).

You instruct the computer to perform a calculation by hitting the RE­
TURN or EXECUTE key; the instruction is executed only after you hit
the key.

Figure 2.1 IBM 5120
desktop computer
showing the APL
character set, numeric
pad, and special
function keys.

IBM 5120 showing
keyboard characters
that can be entered
using the command key.

Add +

2.2 Simple Arithmetic

This photograph showing a 5120 desktop computer can be programmed
in either Basic or APL with the flip of a switch. The keyboard is exactly
like a standard typewriter in that pressing the shift key (either of the keys
with the wide arrows on the bottom rank of keys) results in the APL charac­
ters being entered into the computer. A convenient feature is that by
holding the command key (CMD, on the far left) and pressing one of the
keys on the top row will produce an entire command. For example, holding
down CMD and pressing I results in the command)LOAD being entered
automatically.

This photograph shows the special overstruck characters that can be
produced with one stroke. The command key is held down and any of the
individual keys now represents a new symbol or combination of key strokes.
For example, pressing the CMD key and the F key results in the divide quad
or domino function being entered. If the machine were in the Basic
programming mode the characters INPUT would have been entered. Using
the CMD key saves a number of key strokes and is a handy feature.

Addition

1-t2

3

7

If you did not get the answer after keying in the digit 2, hit the RETURN
or EXECUTE key. Now try addition with decimals:

1.2+0.6

1.8

8

SYNTAX ERROR

Minus

Negative Numbers

Getting Started

But if you key in

1 8

This does not look right! What happened?
Clearly, embedded blanks in real numbers (numbers that include a dec­

imal) cause problems! So do not embed blanks in real numbers. You will
understand why you got 1 & 8 and not 1.8 by the end of this chapter.

Try

1+

SYNTAX ERROR

1+

You have made an error and the symbol /\ (a caret) marks the point at
which the error occurred. Unfortunately, we all get much too familiar with
this symbol! The error was called a syntax error because the statement
"execute 1 +" is ungrammatical; it does not make sense to tell the com­
puter to "add 1." The computer's response is to say, "Add 1 to what?" or
"How can I do this?"

Subtraction

Key in 3, minus sign (-, which is next to the plus (+) sign), and 2, then
EXECUTE:

3-2

1

or

2-3

1

Notice that on the last response negative 1 was printed by the computer as
-1. The superscript negative indicates the negative sign of the number and
must be carefully distinguished from the - in - 1. In the latter case
the symbol - represents the operation of subtraction. How do we know the
difference? By position. For example,

-2 represents the number "negative 2";
- 2 represents the operation of subtracting 2 from whatever is to the left

of -.
How do you type the nUlnber "negative 2"? This is done by typing the

symbol -, which is upper-shift 2 on the keyboard. Try it.

2

2

(Remember to hit EXECUTE!)

2.2 Simple Arithmetic

Now use the minus operator symbol key:

-2

9

Multiply x

Divide -.

DOMAIN ERROR

2

What happened here? 3+ gave a syntax error, why didn't -2? The an­
swer is that APL interprets the operation - 2, when nothing is on the left, as
the instruction "Make the argument (i.e., whatever is on the right) the
negative of whatever it is." Try - -2 and - -2. You get 2 in both cases. Try
the following as well:

+2

- +2

2-

So if the + or - functions are on the left of a number, the sign of the
number is unchanged by + and reversed by - . But if the number is on the
left of thefunction, you will get a syntax error.

Multiplication

6

3.Sx2

7

Division

Try

6-;-3

2

5-;-2

2.5

0-;-4

o

DOMAIN ERROR

10

2.3 Arrays

Arrays

Blanks

Getting Started

We have hit another error. A useful mathematical convention is that divi­
sion by zero is an undefined operation, and that is what the computer is
telling you. In this case the syntax or "grammar" ofthe use ofthe function
... is correct, but the operation cannot be performed with the number 0; 0
lies outside the domain of validity for the operation of division. But what
about o... o? Try it.

0 ... 0

1

Without going into details at this stage, merely note that this is another
useful convention-in short, an agreement as to what to do with such an
operation.

We will now introduce you to the single most important aspect of the APL
language, the array. An array is an ordered arrangement of numbers or
characters. A simple example is a linear arrangement of numbers, such as
1 3 2 4 5, or characters, such as AN&ARRAY. In one form or another,
arrays playa vital role throughout this book. Try the following:

3+263

266

and

596

What has happened here? In the second example 2 6 3 is treated as a list
or array ofthree numbers, viz., 2, 6, 3 in that order. So an array ofnum­
bers is created by separating each number in the array by a blank. Another
way to do it is to key in 2,6,3 where the comma, instead of blanks, sepa­
rates the individual digits. If you recall the comment made above about
blanks inside real numbers, you will see that it is dangerous not only for
you to embed blanks in real numbers in an array, but also for you to embed
blanks within integers as well.

Try the following:

3+1.2&2.3&3.3&4.1

4.2 5.3 6.3 7.1

3+1.&2&2.3&3&.3

4 5 5.3 6 3.3

If these results seem strange (or if you do not get either result) carefully
check your keying of numbers and blanks. In the second example, the
result shown occurs because 3 is added to 1., 2, 2.3, 3, and 0.3 in tum;

2.3 Arrays 11

the blanks denote from the right where one number ends and the next
begins. Also try

3+1.2,2.3,3.3,4.1

4.2 5.3 6.3 7.1

APL and Arrays or

3+ 1 . , 2 , 2 . 3 , 3 , . 3

4 5 5.3 6 3.3

456

Notice here that just as you can add a number to a list of numbers you
can also add a list of numbers to a single number.

3+1&&2&&&364

4 5 367

So much for the blanks. Now let us get back to the main issue: What
is meant by adding 3 to an array of numbers? Quite simply, and as you
would expect, 3 is added in tum to each of the numbers in the array. Now
try

APL
Functions
and Arrays

3&2&1-2

1 0 1

The general rule we see is that for any functionf such as +, -, x, or f, a
number n, and an array at, a2, . .. ,ap , the statement "nf array" produces
an array nfat, nfa2' ,nfa p , and the statement "arrayfn" produces an
array attn, a2!n, , apfn.

If one array lets you do a series of operations all at once, what will
happen if you use two arrays? Try

1&2&3+1&2&3

246

Clearly, each element of the first array is added to the corresponding ele­
ment of the second array. Similar results hold for the other arithmetic
operations.

12

LENGTH ERROR

Summary

Getting Started

But what if the two arrays have different numbers of elements in them
(i.e., what if the arrays have different lengths)? There will be some ele­
ments in one array to which there are no corresponding elements in the
other. So if we try to operate on arrays of different lengths, we get a
LENGTH ERROR. Try

1&2+1&2 &3

LENGTH ERROR

12+ 1 2 3

II

But the following is fine:

243

+ , -, x, and .;. are arithmetic functions.
"3+2" adds the numbers 3 and 2; "3-2" subtracts 2 from 3; "3';'2"

divides 3 by 2 : "3 x 2 ., multiplies 3 times 2.
"+ number" returns the number.
" - number" changes the sign of the number.

An array of numbers is formed by entering numbers in a list separated by
blanks or by commas. We represent blanks where necessary in this text by
&. More complex arrays will be discussed later.

Numbers, arrays, and the arithmetic operations that we discussed in this
chapter can be combined as follows:

Exercises

Numberf Number
fNumber
Numberf
Numberf Array
Array f Number
Array f Array

f Array
Arrayf

yields a number.
yields a number.
yields Syntax Error.
yields an array.
yields an array.
yields an array only if the arrays have the
same number of elements (the "same
length"). It yields Length Error when the
arrays have different lengths.
yields an array.
yields Syntax Error.

APL Practice
Let's explore the use of the functions defined in this chapter:
1. (a) +2 positive two

(b) 2+ Syntax Error

Exercises 13

(c) 1-;-2 one divided by two

(d) - 2 minus two
(e) -2 negative two

(f) - -2 minus negative two

(g) - 2 the negative of minus two

(h) -;- 0 Domain Error

(i) 3 -;- 0 Domain Error

(j) 3-;- (2- 2) Domain Error

(k) 3+ - 2 three plus negative two

(1) 3-+2 subtract positive two from three

(m) 3 x - 2 multiply three by negative two

(n) 3 x -;- - 2 three times the reciprocal of negative two

(0) 3 x - -;- 2 three times the negative reciprocal of two

(p) - 3x-;- -2 the negative of the answer to (n)

(q) - 3 -;- - 2 the negative of three divided by negative two

2. You can get a better idea about the use of arrays by trying the follow­
ing exercises:

(a) 1&2&3+2 add a number to an array

(b) 1&-2&3-2 subtract a number from an array

(c) 1& -2&3+ -1&2&-3 add two arrays

(d) (1&-2&3)-(-1&2&-3) subtract two arrays

(e) 1&-2&3- -1&2&-3 subtract two arrays

(f) 1& - 2 &3 x -1 & 2 & - 3 multiply two arrays element by element
(g) 1, -2, 3x -1,2,3 same as (f)

(h) (1& -2&3)-;-(-1&4&-3) divide one array by another, element by
element

(i) 1 -23-;--14 -3 same as (h)

(j) 1&2&3 X -1&2 Length Error

(k) 1& 0 &3 X -;-1&O &3 Do you get Domain Error? Why or why
not?

(1) 1- &-2 &3+ 2 add the number two to the array - 2 3 and
subtract the sums from one

Statistical Applications

1. What is the arithmetic average of 10 and 20?

2. What is the reciprocal of the arithmetic mean of the reciprocals of 10
and 20? Verify that this number is smaller than the arithmetic average
of 10 and 20.

3. Find the volume of a cube whose sides are 4.5 ft long.

14 Getting Started

4. The following three measurements were taken on one side of a cube:
0.00000060,0.00000065,0.00000063. What is your estimate of the vol­
ume of the cube?

5. Seven prices for a popular 35 mm SLR camera were collected from a
recent photography magazine: $259.95, $245.00, $254.99, $259.99,
$259.95, and $249.95.
a. Compute an average price for the camera.

b. What is the range of prices?

c. How much more is the highest price than the average price?

d. What would be the percent saved by purchasing at the lowest price
compared to the highest price?

6. A local business selected a representative week's returned checks
due to insufficient funds or fraudulent accounts. The checks were
written for $23.41, $184.24, $73.12, $2.48, $32.00, $14.28, $58.61,
$84.00, $41.41, $83.27, and $102.87. What would you forecast the
yearly total amount of returned checks to be?

3

Some Elementary
Statistics

If you have read the first few chapters in any book on statistics or econo­
metrics, you will have noted that the sample mean appears quite promi­
nently. In fact, if you continue using statistics you will be computing a
large number of means. It will save a lot of time if we can discover a quick
way to get the computer to do it. Before tackling our first statistic, we have
to learn an important fact about how a computer reads instructions in APL.

3.1 The Computer Reads from the Right

In order to compute a mean, we need an array of numbers and a knowledge
of how many elements (numbers) it contains. Suppose we have the array
(1 2 3 4), which obviously has four elements in it, and we want to calculate
its mean. Mathematically, the operation can be written as:

(1 + 2 + 3 + 4)/4 == 2.5

In APL we can enter the following statement:

(1+2+3+4)-i-4

2.5

Great so far. But suppose we entered:

1+2+3+4-i-4

7

Computer Reads
From Right to Left

We made another mistake! But this one is a very, very important one to
remember. In APL a string of mathematical operations is carried outfrom
right to left. Since we are accustomed to reading from left to right, you
can see that until you are used to the idea, you can make some bad

15

16 Some Elementary Statistics

mistakes. Indeed, for the next few chapters you are strongly advised to
practice reading all the computer statements from right to left.

Consider the first example: (1 + 2 + 3 + 4) -;- 4. The computer does
the following. Starting from the right, the computer recognizes a number,
then a function requiring two arguments, such as -i-, x, -, or +, then a right
parenthesis. This parenthesis tells the computer to keep going to the left
until it encounters a matching left parenthesis; then whatever is contained
between the left and right parentheses is to be divided by four. Within the
parentheses the computer recognizes a 4, the function, +, and then the
number 3. It perlorms the operation 3 + 4 and stores the result. Proceed­
ing to the left, it recognizes another function symbol, +, followed by
another number, 2, so it adds 2 to (3 + 4), and so on.

All of this is simple enough, so let us try a trickier example. Do this one
by ha.1d first and then check your result on the computer.

1+2-3-4+5-6-7

10

If you got -12 instead of 10, then that is exactly what we wish to explain. If
we add parentheses, the above expression can be written as

1+(2-(3-(4+(5-(6-7)))))

10

In case you haven't got it yet, the following table should help:

Operation
Number Operation Result

6-7 - 11

2 5- -
1 6

3 4+6 10
4 3-10 7

2- - 7 95
6 1+9 10

3.2 Two Arguments or One?

Monadic Functions
Dyadic Functions

A few paragraphs back we said that the functions -i-, x, -, and + require two
arguments, but in Chapter 2 we successfully used the + and - functions
with only one argument, provided that the argument was on the right of the
function, not the left. At the moment all of this may be confusing, but it
won't be after we show you how useful it is to have a function that can take
either one or two arguments.

First, a little terminology in case you dip into an APL manual or talk to a
programmer friend: functions that take two arguments are said to be
dyadic, and those that have one argument are monadic; 1+2 is a dyadic use
of +, +2 is monadic. The symbols for most functions are used to represent

3.3 Variables and Assignment 17

Dyadic function:

Reciprocal

SYNTAX ERROR

both an operator that is dyadic and one that is monadic-two functions for
the price of one symbol!

For example, the function.;. can be used in two ways:

Monadic function: Symbol: .;-, function: reciprocal
Example: .;.2

.5

Symbol: .;., function: division
Example: 4.;.2

2

In the first case the symbol.;. indicates the reciprocal (or 1 -;- argument); in
the second case the symbol -;- indicates the operation of division (ar­
gument2 divided by argumentl).

The symbol - represents two functions-the monadic function of arith­
metic negation (more simply, "changes the sign") and the dyadic function
of subtraction. The symbol + represents addition in its dyadic form; in its
monadic form it preserves the identity of the argument, i.e., + number
returns the number itself. The symbol x is used for both the dyadic func­
tion of multiplication and for the monadic function "signum," which will
be mentioned later.

Recall that with monadic uses the function comes first, then the argu­
ment. A number followed by a function and nothing else gives a
SYNTAX ERROR.

In using symbols that can represent different functions depending on
whether they are being used monadically or dyadically, remember to read
from the right. After a little more practice in the exercises you will soon
find no difficulty in distinguishing monadic from dyadic uses of functions.

3.3 Variables and Assignment

Assignment

Ifwe want the mean of the array 1,2, -3, -4, 5, -6, -7, what should we do?
Typing out (l + 2 - 3 - 4 + 5 - 6 - 7) -;- 7 is incorrect; try it and you
will see. (Remember to read from the right, performing each function in tum
and storing the result.) Well, there is a very easy solution, but first we will
find it useful to give arrays and scalars (a scalar is a single number) names,
so that when using the array we can refer to the name instead of writing out
the whole array each time. This procedure is called "assignment." As­
signment uses the key next to the p key. (Do not confuse this key with the
shift control keys, which also have arrows on them. The latter keys are
used for editing by moving text to the right or left, up or down. On the IBM
5120 they are located next to the ATTN key; on other keyboards they are
usually on the right next to the number keys or the numeric key pad.) Type
out

18

Variable Names
Valid/Invalid

Some Elementary Statistics

and hit the EXECUTE key. Nothing seems to happen. Try typing X and
hit the EXECUTE key:

X

1 2 -3 -4 5 -6 -7

Success! We now have the array we want stored in the computer with a
name, X. "Executing" X tells the computer to print out or display x. Try

N+-7

N

7

Letters of the alphabet together with numbers, but only after the first
character, can be used to define names of arrays or scalars. Special sym­
bols for operations, spaces, punctuation marks, and so on cannot be used.
Some examples of valid and invalid names are:

Valid Variable Names

A
ABLE
B3C1
Z

Z.
A_OR_B

Invalid Variable Names

3A

-A
A'
(B)
+c
A*

Results can be lost
when you log-off

Z. is created by typing Z, backspacing once, and hitting the upper shift F

key. Z and Z. are different names. A_OR_B is keyed by typing upper shift F

for _. Keying in an invalid variable name with assignment produces a
syntax error.

An important question arises at this point. If someone defines a number
of variable names by assigning values to them, what happens when he
signs off the computer or turns off the power on his minicomputer? As one
might suspect, all is lost! However, we willleam in Chapter 7 how to save
important material for use at a later time. For now, remember that if you
log-off after having assigned values to variables, the variables will not be
defined when you log-on next time.

3.4 A System Command:)VARS

System Command An aid in this regard is the system command)VARS. First, we have to
define a system command. This·is an instruction to the computer concern­
ing the manner in which it carries out your APL instructions; system
commands are rather like sending instructions to an operator who is keep­
ing a constant record of all that you do on the computer. System com­
mands are easily recognized; they all start with a), a right parenthesis.

3.5 How to Calculate a Mean 19

)VARS The use of)VARS will illustrate the idea. Suppose, after a long session on
the computer, you have forgotten which variables you have defined. An
obvious idea is to ask the computer what variables you have used. But it is
clear that we need some way to make sure the computer knows we are
asking a question about the system and how it is operating, and that we are
not making another statement in our calculations. In APL, the distinction is
very simple: system commands begin with a right parenthesis,), which is
keyed as upper case]. For example, typing

)VARS

N X

instructs the computer to give us a list of the variable names we have
defined so far. The computer responds with Nand X.

3.5 How to Calculate a Mean

We have now defined by assignment two variable names,X andN: an array
X and the number of elements, N, inX. This is all that we need to calculate
a mean. The calculation is easy. Key in

(+/X)+N

1.7143

and we have indeed obtained the mean. But how? Let us try this again.
Key in

Y+-2 4 6 8 4 2 6

(+/Y)+N

Reduction /

4.5714

Apparently the symbols +/, when applied to an array, add up the ele­
ments of the array. Mathematically, for an N -element array X this is Xl +
X 2 + X 3 + ... + X 1", Of, more compactly, Lf=tXi. The symbol/represents
an operation on arrays called reduction, and reduction can be used with a
large number of mathematical functions including +, -, x, and +. Letf
represent one of the arithmetic functions. Then (f/array) tells the com­
puter to insert the function! between each element of the array and then
perform all functions, but remember that it does so from right to left! Thus
+/Y produces (i.e., is equivalent to) 2 + 4 + 6 + 8 + 4 + 2 + 6.

As another example, suppose L is a variable name of an array with three
elements which repree~nt the dimensions of a box, and you want to calcu­
late the volume of the box. In APL, this problem is solved by typing x/L.

For example:

L+-3 2 5

x/L

30

20

Shape P.

Arithmetic Mean

Monaliic p

Some Elementary Statistics

Let us return to calculating the mean. It would be most convenient if we
did not have to count the number of elements in an array. Why not have
the computer do it? Why not indeed! For this we use a little symbol called
the shape function, p, which is the upper shift R key. Let's try it. Type

pX

7

p(1&2&3&4)

4-

pl&2&3&4

4

So the argument of the function shape, p, can be a variable name or an
array, and the result is the number of elements in the array. What about the
shape (length) of the variableN, which is a scalar? Typing pN, for example,
produces no response since a scalar has no dinlension associated with it.
As we will see, a scalar and an array with one element in it are different
animals.

When we calculated the mean of the array X, we remembered that the
computer reads APL statements from right to left, so that writing (+ IX)-i-N
meant that the elements of X were added together and then divided by N.
What would have happened if we had written +/ X -i- N? Each element of X
would have been divided by N, and then the array of results summed. Both
mathematical procedures theoretically give the same answers, but the
second method is both slower and less computationally accurate if N is
very large.

Let us review what we have learned about computing the mean of an
array of numbers. Suppose you are given the array X. That is, X is in the
computer ready for you to use, but you know nothing else about it. Prob­
lem: calculate the mean and find out how many elements there are in X.
Here is one solution:

N+-pX

M+-(+ / X) 7N

N

7

M

1.7143

One thing to notice about the above is that:

(a) if you perform a function and assign the result to a variable, the result
is stored under the variable's name and nothing is printed or displayed
until you execute the name of the variable;

3.6 Two Other Measures of Central Tendency 21

Scan \

(b) if you perform a function and do not store the result, it will be dis­
played immediately;

(c) the values assigned by you to Nand M will remain in the computer
until you log-off or you redefine the variable name. For example:

N

7

N+9

N

9

Do you remember all the variables you have defined? Type in the system
command)VARS and see if you are right-the computer knows!

What should we do if we would like an array of the partial sums (some­
times called running totals) or partial means of X? That is, suppose we
want the array

1 (1+2) & (1+2+-3) & (1+2+-3+-4) & (1+2+-3+-4+5) ... &

(1+2+-3+-4+5+-6+-7)

This is obtained by the symbols plus scan: \. The operation scan works in
a manner similar to reduction except that after inserting the function "f"
between each element of the array, the first element is kept, then the first
pair of elements are reduced from right to left, then the first three, and so
on. Try

+\X

1 3 0 -4 1 5 12

+\Y

2 6 12 20 24 26 32

3.6 Two Other Measures of Central Tendency: The Geometric and Harmonic Means

Geometric Mean The geometric mean of N values is the Nth root of their product. Mathe­
matically, one has

g = (Xl X X2 X X3· • . X XX)1/N

or

(

N)l/Jt:
g == II Xi

i=l

How might we get the computer to calculate the geometric means of the
arrays X and Y defined above? We have to learn some new functions
first.

22

Logarithm ~ and
Exponential *
Functions

Logarithm and
Exponential Functions
~ *

Some Elementary Statistics

Raising a number to a power, taking logs, and related functions are
computed as shown in Table 1. The mathematical function is given on the
left, the corresponding general computer programming statement is given
in the middle, examples are shown on the right, and the keying of the
symbols is shown below the table.

Note that both * and ~ can be used as monadic (single argument) or
dyadic (two argument) functions. The first and third rows show the dyadic
uses and the second and fourth rows the monadic ones.

Table 1

Exponential and Logarithmic Functions

Mathematical APL
Statement Statement MID Examples

AB A * B D 5*2 3.2*0.6
25 2.0095

eB (e = 2.7183) * B M *1 *0.032
2.7183 1. 0325

log BA B~A D 10~1 2~8

(102 ofA to base B) 0 3
loge A (or In A) ~A M e1 ~3.2

0 1.1632 .

M is Monadic, D is Dyadic.
* is typed as upper shift P key.
eis typed as upper shift P key, backspace, and upper shift 0, to the left of P, not the zero key.

* and ~ are inverse functions of each other. For example,

3

2

With the above functions we can now compute the geometric mean of an
array of numbers. The geometric mean for the array DATA is:

DATA~1.1 1.2 1.3 1.4 1.5 1.6 1.7

N

7

G~(x/DATA)*1"oN

G

1. 3855

and

G~(x/y)HN

G

4.0679

3.7 Sample Variance and Standard Deviation 23

Harmonic Mean

In the former example, multiplicative reduction on DATA yields a result
equivalent to the mathematical statement rr~=t D i , where D i is the ith ele­
ment in the arra)' DATA. The remainder of the expression produces the Nth
root of the product.

The second example illustrates a practical use of the monadic function -i­

that we discussed earlier, namely the inverse or reciprocal.
The harmonic mean is the reciprocal of the arithmetic mean of the recip­

rocals. Mathematically,

h =N/(~ (lIXi»)
In APL, this is simply

H+-N-i- (+ / ~-X)

H

8.6726

and

H+-N -i- (+ / ~- y)

H

3.5745

3.7 Sample Variance and Standard Deviation

Sample Variance

Parentheses

Calculating means presents us with few difficulties. What about calculating
the variance and its square root, the standard deviation? The mathematical
formula for the sample variance is simple enough.

If

L (Xi - x)2/(N - 1),
i=l

where N is the number of observations N i and x is their arithmetic mean.
If we know i, the solution is apparent. Consider the following APL

expression, which is a series of functions linked together to make up the
API-J equivalent of a mathematical expression. (DO NOT TYPE IT IN
YET!)

(x/((X-M)*2»~N-l

The above expression was obtained by the following line of thought. LetM
represent the arithmetic mean i. Then the expression ~(Xi - i) 2 is in APL
+/(X-M)*2 ; the term inside the parentheses is an array Xt - X,X2 - i, . .. ,
x.,· - i, each terln of which is squared, and then plus reduction is per­
formed on the resulting array. Remember that the computer reads APL
statements from right to left, and expressions in parentheses are evaluated
as soon as they are encountered by the computer. In the above expression
the array (X-M) is calculated first, then each element is squared. With a
number of pairs of parentheses embedded in each other as above, the
expression within the innermost parentheses is evaluated first, then the

24 Some Elementary Statistics

expression within the next outside ones, and so on. The resulting array is
plus reduced (Le., the elements of the array are added), and finally, the
summed array is divided by (N-1).

Now we are ready to tryout our expression. First type

G

)VARS

H L M N x y

Sample Standard
Deviation

Checking
Parentheses

just to make sure we still have N and X stored in the computer. Jfyou do not
get N and X listed, then you probably signed off after you last used those
variables. If that is the case, enter them into the computer again (X is given
on page 18 and N is obtained by N+-pX). Now type

M+-(+/X)~N

V+-(+/((X-M)*2»~N-1

M

1.7143

v

19.905

3D

4.4615

If you did not get the same results, check first to see if the mean value is
the same. If it is not, your X array may not match that shown on page 18, or
the value of N may be incorrect. If V is wrong while M is right, check your
APL expression very carefully to make sure that it is exactly like the one
shown above.

One little hint about keeping parentheses properly paired up: going from
right to left, add 1 each time you hit a right parenthesis and subtract 1 each
time you hit a left parenthesis; when you are out of parentheses, the an­
swer should be zero, because the number of right and left parentheses
should be equal. If they are not, find the missing or extra parenthesis. For
example,

V+-(+/((X-M)*2)+N-1

t tt t t

-1 01 2 1

The count ends at - 1, so we have either a missing right parenthesis or an
extra left parenthesis. To find out which, go to the innermost pair of par­
entheses and work outwards in both directions. Thus

(X-M)

(X-M)*2)

looks alright

looks alright

3.8 Correcting Typing Errors 25

(+/((X-M)*2) here is the error, a

+ missing right parenthesis

If instead we were to delete the first left parenthesis, we would get the
"right answer," but in a very inefficient manner. In the latter case the
squared elements of the array (X - M) would each be divided by (N-1) and
the quotients added. In the original expression, the squared elements are
added and then the sum is divided by (N-1) once.

3.8 Correcting Typing Errors

In keying the above APL expressions you may have made some typing
errors-a common error is to have too many or too few parentheses. So far
it has been easy enough to hit RETURN, get some error message, and redo
the expression. However, you can see that as your APL expressions get
longer, this will become a nuisance, so let's see how to correct a line while
it is being typed, that is, before hitting the EXECUTE key. Backspace
until the cursor on the terminal head (a little ~evice that indicates where
the next character will be typed) is at the beginning of your first mistake
(i.e., everything to the left of the cursor is correct), then hit the ATTN
(Attention) key. Now type the remaining part of the line. Alternatively, hit
the "line feed" key on the right-hand side of the tenninal. For example,
suppose that you are working at a "hard copy" terminal (that is, one that
prints on paper), that you have typed

V+ (+/ (X- 1M)*2fN-1

and that you realize your error before hitting the EXECUTE key.
Backspace to the division sign, hit "line feed," which advances the paper
one row (and tells the computer to add the new characters to the previous
line), and then complete the line correctly. You will have

V+ (+/((X-M)*2)~N-l

)~N-1

and the computer will correct your error as soon as you hit EXECUTE.
Editing lines on the IBM 5120 and many other CRT* terminals is even

easier. You can simply backspace and type in the correct characters. Some
terminals have the ability to insert characters within a line. You space back
until you reach the last correct character, hold down a special key ("com_
mand" on the 5120 series), and press the right arrow on the top row of
keys.** The result is

V+(+/((X-M)*2)&fN-l

* Cathode Ray Thbe--electronics jargon for a television screen.

** This is true on terminals that have an addressable cursor. For others, the correction process is more
elaborate. In some cases, each character may need to be erased. In others it may be easier to just
replace the whole line.

26 Some Elementary Statistics

In effect, you moved the fOUf characters -i-N-1 one space to the right and
held the cursor at its original point. You now type the missing ")":

V+(+/((X-M)*2))~N-l

The procedure used for editing lines is specific to the computer system
you are using and also to the particular terminal interlaced to that system.
CRT's generally provide the most flexibility, but having a written or hard
copy of your session is often extremely valuable. You will have to consult
the computer center personnel for specific editing procedures, as such
procedures are not explicitly part of the APL language.

If we refer again to the APL statements on page 24, we notice that the
three lines of statements that calculate M, V, and SD must be executed in
precisely the order shown. This is because the second line needs the result
of the first, and the third needs the result of the second. We are beginning
to discover that we will have to develop tools more powerful than those
that we have used so far. This will be the subject of the next chapter.
Meanwhile, we will conclude this chapter with a way of calculating sample
means (arithmetic) and variances from sample probabilities of success
(see, for example, Kmenta, Chapter 2).

3.9 Mean and Variance of Sample Probabilities

Suppose we are interested in estimating the probability of getting a seven
when we roll a pair of dice. (Of course, it is easy to see that if we have
clean, unloaded dice, the probability is 1/6 , but we might want to check our
dice.) One way to do this experimentally is to roll a pair of dice N times
and then divide the number of successes (number of times you got a seven)
by N. But this is merely an estimate'. How might we estimate the mean and
variance of this esthnate? One way would be to repeat the above experi­
ment a large number of times, say NN, and then to calculate the mean and
variance of the estimates of the probability ofa seven that were obtained in
each trial.

Suppose you have data obtained from NN == 100 replications of a dice
tossing experiment in which N == 4 tosses were made. In anyone experi­
ment of four tosses you could obtain zero to four sevens-five possibilities
in all. The estimated probability from each experiment could vary from
zero (equal to 0 successes divided by 4, the number of trials), to 1 (4
successes in 4 trials). As we suspect, if our dice are unloaded, PR, the
probability ofgetting a seven is 1/6,PR == 0.166.... From each experiment
we get an estimate, say fiR, which can take one of 5 discrete values, viz., 0,
0.25,0.5, 0.75, and 1.0. Let PR 1 = 0, ffl 2 == 0.25, ... ,ffl 5 == 1.0. IfNN
equals 100, then we can count the number of times n; that we get each
estimate PRt, i == 1,2, ... ,5, in 100 trials. These five numbers nt, n2' ... ,
n s, whose sum is 100, are called absolute frequencies. If we divide each ni
by 100 we get five relative frequencies whose sum is 1.0. Let's call the
relative frequenciesjrh i == 1, 2, ... , 5.jr; is merely the proportion of
the NN repetitions of our experiment that yielded PR i as the estimated
probability. That is,!ri == ni/NN.

3.9 Mean and Variance of Sample Probabilities 27

Mean & Variance of
Sample
Probabilities

Inner Product
+ . x

Line Continuation
with ,0
Entering Data
on Two Lines

The first thing that we must determine is the mean estimate PRe The
mathematical statement of the answer is simple: MF = L~=l friPRi, where
MF represents the mean of the sample probabilities obtained from the
observed relative frequenciesfri. (MF is a sample mean of sampling pro­
portions ffl h i == 1,2, ... ,5.) The variance VF is given by the expression,
VF = "22~=l friCPRi - MF)2.

The calculation of MF and VF in APL, although straightforward, intro­
duces us to yet another function. Let us suppose that we have the follow­
ing data from a sampling experiment in which NN == 100: fr l == 0.01,
frz == 0.06,fr3 == 0.28,fr 4 == 0.42,fr 5 == 0.23. Enter the APL statements

FR~0.01 0.06 0.28 0.42 0.23

PR+O.O 0.25 0.50 0.75 1.0

We now have all the data we need ready and waiting in the two arrays FR
and PRo

To get what we want requires an operation called the "inner product,"
and the version we want here is typed by keying plus, period or decimal
point, and then multiply. The expression for MF then is simply FR+. xPR.

The APL code tells the computer to take in tum each element of the array
FR, multiply it by the corresponding element in PR, and add the products.
The calculation of the sample mean and variance may thus be carried out
by typing

MF~FR+.xPR

VF~FR+.x (PR-MF)*2

MF

0.7

VF

0.05

From our results it would seem that our dice are definitely loaded!
Now that you have learned how to calculate some basic statistics, you

will be anxious to try your hand at some more realistic data. If you try to
enter somewhat more data than we have been using so far, you will run into
a little problem. The problem is that the computer will limit the amount of
data you can enter. The limit is usually 80, 128, or 160 characters. You get
to the right-hand end of a line and you either cannot enter more data, or the
new data replaces your previous entry.

The solution to this problem is not difficult. Whenever you want to
continue entering data on the next line, simply close off the current line by
the symbols ,0 and hit RETURN (or EXECUTE). The symbols are a
comma followed by an upper case L.O is called 'Io quad," and you will be
meeting this useful operator again. The computer will respond on the next
line by printing 0: after which you carryon entering data until finished.
You can use this device to enter as much data as you wish.

28

Summary

Some Elementary Statistics

The Computer Reads from Right to Left.
Expressions in Innermost Pairs of Parentheses Are Executed First.

Arrays of numbers and scalars can be given names by assignment, e.g.,
X+-l 2 3 assigns the name X to the array 1 2 3. There are name limitations
on the symbols that can be used in making up a name. Names should begin
with a letter-after that any other alphabetic character or number is okay.
The name can be as long as you want (only the first 77 characters will be
recognized); don't put blanks inside the name.

Dyadic functions have two arguments.

Monadic functions have one argument; the order is '1 array" or'1
number."

Many symbols, such as +, -, x, -;., do double duty and represent both
dyadic functions as well as monadic ones.

System Commands are instructions about the operation of the computer.
They are indicated by a right parenthesis:).

)VARS is a system command which instructs the computer to list all the
variable names assigned by the user.

Reduction, /, a monadic function, is used with the arithmetic functions
on arrays:

produces xtfxzfxd... fXn

Shape, p, displays the number of elements in an array.
Arithmetic Mean (of an array X): Mathematically, M = ('i.~=lXi)/N, and

in APL

N+- pX

Scan, \, a monadic function, is used with the arithmetic functions on
arrays:
f\Xh X2, ... ,Xn produces Y1 , Y2, , Yn where Yt = Xl> Y2 = XtfX2,
Y3 = xtfx2 f x3, ... , Yn = XtfX2fx3, ,fxn •

The exponential function, *, has a monadic and a dyadic use; see
Table 1.

The logarithmic function, ~, has a monadic and a dyadic use; see
Table 1.

Geometric mean (of an array X): Mathematically, G = (I1~=l(Xi))1lN. In
APL,

N+- p X

G+- x/X)*+N

Harmonic Mean (of an array X): Mathematically, H = N('i.~=tXil)-l,

and in APL,

H+-N++/+X

Exercises 29

Exercises

Chapter 3

Sample Variance (of an array X): Mathematically, V = ~f=t (Xi - M)2/
(N - 1), where M is the arithmetic mean. In APL,

V+- (+/ ((X-M)*2»~N-_l

The Sample Standard Deviation (of an array X) is the square root of the
sample variance.

Inner product (between two arrays X and Y of equal length): Mathemat­
icallY,IP == XtYt + X2Y2 + · . . + XnYn. In APL,

IP+-X+.xY

Mean (arithmetic) for Sample Proportions: Mathematically, MF == Lf<=l
friPRi' where K is the number of cells andfri is the relative frequency of
the ith value of PR i , the ith sample proportion. In APL,

MF+FR+.xPR

Variance for Sample Proportions: Mathematically, VF = Lf=t
fri(PRi - MF)2. In APL,

VF+FR+.x (PR-M)*2

How to continue entering data over more than one or two lines: use ,0 at
the end of a line of input on the terminal.

APL Practice

1. Let's explore the uses of the functions defined in this chapter.
Let P+-3 and Y+-1&2&3&4.

(a) p P (e) p Y

(b) p 3 (f) p p y

(c) PP 3 (g) +/ Y and compare it carefully with +\Y

(d) p p P (h) (+ / Y~Y) which is the same as p Y. Why?

2. Assign the values 1&2&3&4 to X, the values -1& -2&-3&-4 to W, and
define Z by Z+* X.

(a) 1*X (m) X*O

(b) X*1 (n) oeW

(c) 2*X (0) l~X

(d) X*2 (p) xe-l

(e) O*X (q) eZwhich is X

(f) x*o (r) +/X+ p X

(g) 7*W (8) (+/X)+ p X

(h) X* -1 (t) What is the difference between (r) and (8)?

(i) lex (u) +/XxW*2 which is the same as X+. xW*2.

(j) X*l (v) -\Xand compare with-IX.

(k) 2f!'X (w) -\Wand compare with -IW.
(I) xe2

30 Some Elementary Statistics

3. Evaluate the polynomialsf(x) == x 2
- 5x + 6,f(x) == (x 5

- 1)(x2
- 2),

andf(x) == x 4 - 3x2 + 2 for X+--5&-3 &-1 & O~~.1S2f:>3.

4. Practice the right to left rule by solving:

(a) 10+-3+-5 (t) -/1&2&3+3

(b) - 3 &-5 -10 (g) - / -;-1 - 3& - 2

(c) +3& -5&-10 (h) +\2-34

(d) 3-X-;-6-10 (i) +\10*123

(e) +/';-1&2&3

You should be able to find the answers without using the terminal and
then use the terminal to check.

5. Let the arrays X and y be defined by

X+-l&2&3&4&_ . . &10, Y+-2+X*.3.

Practice the algebra of summations by trying:

APL Form Math Form Explanation

(a) +/-i-X L i~111Xi the sum of the reciprocals of the elements
of X

(b) +/X-l L '~1 (Xi - 1) the sum of the differences Xi - 1
(c) +/X*2 Li~l Xf the sum of the squares of the elements ofX

(d) (+/X)*2 (L i~l X i)2 the squared sum of the Xi
(e) +/~X 2: i~l In Xi the sum of the natural log of the Xi (natural

log is log to base e)

(f) +/*X L i~l eX; the SUln of e raised to the powers Xi

(g) -IX L X:l (-l)i-IXi

(h) -j-X L i~l (-I)iXi

(i) +/Xxy Li~l XiYi { These sums occur very frequently in

U) +/YxX*2 Li~l XTYj regression analysis; see Chapter 8.

6. Verify that the first element of X is equal to the first element of + \X,
while the last element of + \X is equal to +/ X.

7. Here are some more summation formulae. Try expressing each in
terms of APL functions.

(a) LjV=l Xi - 1
(b) ~i"=l e x2i

(c) Li'::l (Xi + 3)2
(d) Li'::t (-l)i(l/Xi)
(e) ("LfJ=l X i)/N
(f) l/"Lf=l (l/Xi)

(g) Li"=l eXT - 5)2
(h) Show that Li~l kXi = k"Li"=1 Xi
(i) Show that ~f=l (Xi + 2)2 = Lf"=l Xi2 + 2mr=1 Xi + N22

(j) Show that L~l (Xi - (Li"=1 X i)/N)2
= Lf=l XT - 1/N('Li"=1 X i)2

Exercises 31

where N is the number of elements ofX. As there are several ways to
write each of the above, the suggested procedures in the solutions may
not always be the same as yours. You can, however, check that your
procedure is correct by computing the numerical solutions. Use the list
X defined in exercise number 5.

8. Interpret the following APL statements in mathematical form:

(a) +/fX (d) f+/fXxY

(b) -/fX (e) f+/ (X-+/Xf p X)*2

(e) -/f-X (f) (XxY)- (+/X)x (+/y)

9. Which of the following are invalid names?

(a) ABE LINCOLN

(b) B*

(e) LOUI$ THE 14TH

(d) xxx+yyy

(e) X1X2X3

(1) 2W+3Y

(g) IWILLBEHERETOMORROWATTHREE

Statistical Applications

I. When the elements of an array are ratios, the geometric mean may be a
more useful measure of central location than the arithmetic mean would
be. If an array has elements that are rates of change, then the harmonic
mean is usually preferable.

Consider the following data:

Year

1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977

u.s. Total Residential Debt Outstanding
in Billions of Dollars

274.2
292.0
312.8
335.9
357.8
398.0
454.5
509.8
549.8
593.0
655.0
711.2 (estimated)

Source: U.S. League of Savings Association Publications #24,1977,
p.28.

(a) Fil1d the arithmetic mean of U.S. residential debt outstanding
during the 12 years.

32 Some Elementary Statistics

(b) Find the ratio of each year's debt to the previous year's.
(c) What is the geometric mean of these ratios?

(d) Find the percentage increase of the debt series from each year to
the next. (This is equal to the ratios in (b) minus 1.)

(e) What is the harmonic mean of the percentage increases?
(f) What is the mean rate of growth in U.S. residential debt?

(g) Explain intuitively your answers to (a), (c), and (f).

2. In the following table CE represents the number of cracked eggs in a
carton (each carton contains 12 eggs). CN is the number of cartons out
of a sample of 60 cartons, randomly selected from a shipment of 2,000,
that contain cracked eggs.

CE 1~_O 2__3 4__5__6__7__8 __9__1_0__11__12

CNl 0 5 7 11 16 8 4 5 2 0 0

(a) What is the average number of cracked eggs in each carton?

(b) What percentage of cartons have fewer than 2 cr::tcked eggs?

(c) On the basis of your answers to (a) and (b), shouid the shipment be
accepted? (A shipment is acceptable when 8% or less of the eggs
are cracked.)

3. LetWhi= 1, ... ,5,takethevalues3,4,7,5,11,andYi =3+2Wi .

Find lV, Y, Sit, = (~f=t(Wi - W)2)/4, S} = (}:f=t(Yi - y)2)/4,
Sw = VS¥;, Sy = YSf. Verify that iT = 3 + 2W, S} = 4S~, and
Sy = 2Sw.

4. Let r represent a list of estimates of the interest rate for next year: 5%,
6%, 7%, 8%, 9%, 10%. Suppose we believe that the respective prob­
abilities that these values will occur are 0.1, 0.2, 0.3, 0.2, 0.1, 0.1. Find
the expected value of the interest rate. What is the probability that the
interest rate will neither fall below 6% nor exceed 9%? (Note: the
expected value of a variable X which can take on only discrete values
is defined by 'Lr=l XiPh where Pi is the probability that Xi will occur.)

5. Consider a gamble .wherein a fair coin is repeatedly tossed until a head
turns up. If a head is obtained on the first toss the payoff is $2; it is $4 if
a head is obtained on the second toss, $8 on the third toss, and so on.
Use the computer to find the expected return if the coin is tossed at
most a total of one hundred times. (A new wager is made after each
time that a head appears.)

Exercises 33

6. The following measurements (in dollars rounded to the nearest integer)
represent the increase (if positive) or decrease (if negative) in the daily
closing price of General Motors and General Electric common stocks
for 10 consecutive days.

GM If---_2-----1__3 0 0 -_1 2__4 0_

GEl 3 4 -1 ° -1 -2 0 4 3 -2

(a) Which stock would you prefer with respect to average daily re­
turn?

(b) If the larger the variance of a security the larger the risk, which is
the riskier security?

7. Imagine yourself sitting at the roulette table in Las Vegas, having lost
the family fortune, and being left with only $200 at your disposal. The
roulette wheel will be spun about seventy more times before the table
is closed. There are 36 numbers and a double zero on the wheel. You
decide to bet $3 on the number 11 repeatedly. The rule of the game
is as follows: If 11 comes up you get $105 ($3 x 35), the payoff
is $35 for a $1 bet; if any other number comes up you lose the $3.
What is your expected cash position at the end of the night?

4

How to Write
Your Own Function

In this chapter, after defining a few more APL expressions, we introduce
the important concept of a fUl1ction which you can write yourself. At the
end of this chapter your ability to apply APL will have taken a big leap
forward. Let's press on.

4.1 The Sample Median

Sample Median

Residue, I

34

One measure of central tendency that is in widespread use is the median.
The median is that value for which half of the sample values are less than
or equal to it and half are greater than or equal to it. The median for n
observations is defined mathematically by

M == ((Xn/2 + x n/2+l)/2 if n is even (4.1)
Xk' k == (n - 1)/2 + 1 if n is odd

where Xl :5 X2 ~ • • .:5 Xu are the order statistics obtained from n ob­
servations. That is, the n observations are reordered so that the smallest
observation is first (Xl) and the largest is last (xn).

Calculating M in APL might seem to be a formidable task, but in fact it is
quite simple. In addition, calculating the median will introduce us to some
useful programming tools.

We have two problems to solve-discovering whether n is even or not,
and reordering the array to get the order statistics. That is, we want an
array with the smallest observed number first, the largest last, and with
each number less than or equal to the number on its right. Let us begin with
some useful new APL tools.

The Residue Function

The first of these tools is the residue function, I, which is upper shift M.

The residue function applied to two numbers A and B, denoted by A IB,

4. 1 The Sample Median 35

Absolute Value, I

yields the A residue of B, and is the "remainder" left over after dividing A
into B. For example, the 2 residue of 3 is 1, the 3 residue of 8 is 2, the 4

residue of 8 is 0, and so on. Of particular interest is the 1 residue of a
positive decimal number; thus

11 2 . 5&°.6&4.0

0.5 0.6 0

In other words, the 1 residue of a positive decimal number is simply the
decimal fraction of that number. Let's try some more examples:

31 0 1 2 3 4 5 6 7 8 9 10

o 1 2 0 1 2 0 1 201

101 11&102&1032&11021

1 2 2 1

11 6.0&-6.4&-0.3

° 0.6 0.7

21 3&4.°&-3.°&6.2&-6.2&-4.0

1 0 1 0.2 1.8 0

3/4.0&-4.0&5.0&-5.0&4.2&-4.2&-4.8

1 2 2 1 1.2 1.8 1.2

The results for the first two arrays are clear enough, but what about the
others? Close inspection reveals a difficulty in interpretation of the results
only when we try to get the residue of a negative number. What is occurring
with negative nUlnbers will become clear as soon as we understand the
residue operation with positive numbers.

If we look back at the first example we notice a recurring sequence 0 1 2.
Suppose that we extend the array to include negative numbers, say

31 -10 -9 -8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10

2 0 120 120 1 2 0 1 2 0 1 2 0 1 201

Note that the pattern is exactly the same.
However, 314 is 1 and 31-4 is 2, so the result is not simply the residue of

the absolute value of the righthand list. In fact the monadic use of the I
symbol is the absolute value function. For example

4

36

Absolute Value and
Residue to Compute
Fractional Parts of
Positive & Negative
Numbers

Logic of Residue
Function

How to Write Your Own Function

So we could find the fractional parts of elements of a vector that had both
positive and negative elements by

111-2.1 -1 0 1.2 3.1

0.1&0&0&0.2&0.1

Remember, we proceed from right to left, first finding the absolute values
of the array by using the monadic I function and then using the dyadic I
function to find the fractional parts.

While we ·have shown that the residue is consistent in its operation on
positive and negative numbers, we need to explain the logic behind this
consistency. Here is one way to think about it. The residue for a positive
righthand argument is obtained by successively subtracting the lefthand
value until the result is less than the lefthand value. If we have 317 we
subtract 3 from 7, yielding 4 , then subtract 3 from 4 , leaving 1, which is less
than 3 so we stop. The last value is the residue. When the righthand value
is negative we add the lefthand value to the right until the result is positive.
So if we have 3/-7, we add 3 to -7, yielding -4, then add 3 to -4) leaving
-1, then add 3 to -1 to get 2. This process defines the residue function for
positive lefthand and negative righthand values.

Finally, here is a diagram of the results of the first example:

Statement 31 -10 - 9 8 7 6 5 2 0 2 3 5 6 7 8 9 104 3 1 1 4
Result 2 0 1 2 ° 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1
Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Diagram 1 Illustrating the Value of the Residue When Dividing Numbers by Three*

Residue = 2 4 7 10 13 16 19 22

Residue = 1

Residue = 0

* Right argument of residue on x axis, residue on y axis, numbered points are the index values (see
above), Locate 4 on the bottom of the diagram, move vertically until you cross the diagonal line, read
the residual value 1 on the left. Check to see that it is element 15.

Arrays: Parity

Parity of the Number of Elements in an Array

After this lengthy digression we can take the first step in finding the
median. Does the array have an even or odd number of elements? If you

4. 1 The Sample Median 37

Ordering Arrays

Indexing Arrays

have re-Iogged-on to do this chapter, yOll will have lost the X and Yarrays
defined in Chapter 3. If so, please enter these values first:

X+1&2&-3&-4&5&-6&-7

Y+2&4&6&8&4&2&6

Solution:

N+ 0 X

21N

If the result is 0 we have an even number of elements (N is divisible by 2

with no remainder), and if the result is 1 we have an odd number. In our
example N is 7, so we have an odd number and the result of 2/ N is 1. You
may be wondering why we bother with all of this, since printing N tells us
immediately if N is even or odd. The reason is that we are laying the
foundation for the computer to make the decision itself, without our inter­
vention.

Ordering the Elements of an Array

The next problem is to reorder the array X so that the smallest element is
first and the largest is last. To be safe and not lose the original order, let us
store the reordered array X in a new array called R. The process of reorder­
ing an array introduces two new concepts, the grade up (or down) function
and the simple mysteries of indexing. Let us first consider the indexing of
arrays and the indexing function.

Since a one-dimensional array is merely a list of elements, it seems
natural to give the position of each element in the list an index value and to
let that value be the position of the element in the list; in short, the first
element going from left to right is element number 1, the second is number
2, and so on., APL lets us refer to the elements in an array in a simple
manner. Type out the following:

W+9&10&3&8&12&0&1&5

W

9 10 3 8 12 015

W[1]

9

W[5]

12

W[1&2&3]

9 10 3

W[3&1&2]

38

INDEX ERROR

Grade Up ~

Grade Down'

How to Write Your Own Function

3 9 10

w

9 10 3 8 12 0 1 5

The examples illustrate what is happening. The indexing of an array allows
'you to select from an array the individual elements of an array in any
order. In addition, specific elements in an array can be replaced very
easily; for example,

9 8

6 10 3 15 12 0 1 5

The contents of [] can be any valid APL expression, provided only that it
results in an array of integers, none of which is larger than p W, the number
of elements in the array W. Try

W[O]

INDEX ERROR

W[o]

1\

W[2 2 2J

10 10 10

f,y[9 J

INDEX ERROR

Wf9]

1\

WC-2]

INDEX ERROR

W[-2]

1\

Now consider the functions grade up, th, and grade down, t. Each is
formed by typing one character on top of another (the I we used for
residue (upper shift M), backspace, and then upper shift H for 6 (delta) or G
for V (del». Let's try it on the array W that we defined above:

~w

6 7 381 254

4. 1 The Sample Median

and

39

4 5 2 1 8 376

To see what is happening here, write down the elements of W with their
indices underneath them:

W: 6
index: 1

10 3
2 3

15 12 0 1 5
4 567 8

Sorting an Array

Sample Median

We see that ~ (grade up) gives us a new array in which the first element is
the index value of the smallest element of W, the second element is the
index value of the second smallest element of W, and so on. Grade down
(t) also indicates the order of the array, except that the first index value in
the new array is that of the largest element in W, the next is the index value
of the second largest element of W, etc. The last index value in the new
array is the position of the smallest element of W.

You might be able to guess what we should do now in order to get an
array with the elements of Wor X or Y listed in either ascending or descend­
ing order. Try

WUP+-W[~W]

WUP

o 1 3 5 6 10 12 15

WDOWN+-W['fW]

WDOWN

15 12 10 6 5 3 1 0

This is all you need to sort any list of numbers. The grade function orders
the index values inside the square brackets, and then the elements rep­
resented by those positions are selected.

Calculation of the Sample Median

Now we can calculate the median. If our expression for discovering the
parity ofN tells us that N is odd, then by Eq. (4.1) the median value of the
elements ofX is element number «N - 1)/2) + 1 of the ordered array. (It
is irrelevant here whether the elements ofX are arranged in ascending or
descending order.) Let's try it, but first let's recall what X and N are.

X

1 2 345 6 7

N

7

40 How to Write Your Own Function

XUP+-X[4X]

M+XUP[l+ (N-l)~2J

M

3

If N is even; the median is:

w

6 10 3 15 12 0 1 5

WUP+-W[~WJ

K+- (p W)~2

M+-WUPCK ,K+l]

M-E- (+/ M) ~ 2

M

5.5

<E- rearranges X in ascending order
and stores result in xUP

<E- picks out the middle element
of xup

<E- picks out the middle pair of
elements

<E- averages them

Catenate, ,

You can easily check by visual inspection that both calculations are
correct. Each of these two sets of APL statements can be called a "rou­
tine' , ; a routine is a group of APL statements that perform some operation.

These two APL routines worked, but the third line in the second routine
contains something strange-the contents of [] must be an array of inte­
gers, but what is the comma doing there? Why does WUP[K,K + 1] work?
First, ask yourself what you would get if you typed in K &K + 1, where K
has the value 4. If you incorrectly read from right to left, you might believe
that the answer would be 5 5. You would be incorrect in believing that K
K + 1 is computed as "to the array K &K add 1." APL expressions are
computed from right to left. But we cannot separate K and K + 1 by
parentheses alone, e.g., K (K + 1), since APL expects a function to ap­
pear between K and (K + 1). The function represented by " ," is discussed
next.

The Catenate Function

The solution to our little problem introduces a very useful concept and a
useful function, the catenate function " :', which is keyed in by typing a
comma. The catenate function enables us to extend an array or to make
arrays out of scalars. For example, let A and B denote arrays of length p
and q, respectively, and let K and L be scalars. Then

4.2 The Function Definition 41

A,B produces an array of length (p + q) with the A elements
coming first,

B,A produces an array of the same length, but the B elements
come first,

A,K produces an array of length (p + 1),
K,L produces an array of length 2,

,L produces an array of length 1.

So the solution to our problem is to create the array K,K + 1, a two­
element array of which the first element is K and the second is K + 1.

We have now solved the problem of computing the median but, espe­
cially ifN is even, it is a nuisance to type out all these statements each time
we want the median. What would be convenient would be a function
called, say, MD, such that typing MD&X (where X is an array) produces the
median of X. In short, we need a monadic function just like the ones
provided by APL, like 4, p, f, and so on. To meet this need, APL provides
a method whereby the user can supplement the set of primitive APL func­
tions (those available from the keyboard, such as *, +, etc.) with user­
defined functions. Once the user function is defined, it can be used over
and over again just by calling it-for example, by typing MD~X, where X is
an array, the median of which is defined by the function called MD.

4.2 Function Definition

Entering Function
Definition Mode

'l

Niladic Function

Our first step is to tell the computer that we want to define a function to
be used later. This is done by typing 'l (called "del"), which is the upper
shift Gkey. We will also need to inform the computer when we are finished
defining the new function. That is done by typing in V again. Thus the
computer expects that between the two V symbols it will be receiving
instructions that will define a new function.

Certain rules must be followed when defining functions, and we will
consider these rules now. If we type v, which tells the computer" Function
definition coming up," our next action must be to give the function a name.
Once we have named our function, both we and the computer can refer to
it even while we are in the process of defining it. But in APL we not only
name a function, we can also give it some arguments-that is, something
for the function to operate on.

Niladic Functions

In §3.2 we defined monadic and dyadic functions-functions with one
and two arguments, respectively. We can also have niladic functions,
which do not have any arguments. A niladic function is called simply by
typing 'V and the name of the function and hitting the EXECUTE or RE­
TURN key. It then carries out the procedure specified in the function­
you do not give it any arguments to work on. Let's consider an example.

42

) CLEAR

Roll?

Correcting
Typing Mistakes

How to Write Your Own Function

Suppose we want to run some experiments on the computer to check out
/'.:.

the statistical properties of the probability estimator PR discussed at the
end of the last chapter. One of the first things we have to be able to do is to
generate data similar to that which we would get from rolling a pair of dice.
IfN, the sample size, is 16 or 20, and NN, the number of repetitions of the
experiment, is 100 or more, and if we want to see how the mean and
variance change as we alter N, then we are facing a very large amount of
dice throwing. Such an activity may not be your favorite way of spending a
Sunday afternoon in the sun, but if it is pouring rain, go ahead and roll the
dice. Fortunately instead of rolling dice we can use the computer to simu­
late the process of actually tossing them. So, let's generate some data.

We begin by defining a function that will give us one roll of a pair of dice.
Before beginning to define our own functions, let us clear the decks, so to
speak, of any other nonprimitive functions that might be already in our
"workspace" and might give us some difficulties and strange responses.
We do this by typing)CLEAR, and the computer responds by telling us that
our workspace (you can think of it as the part of the computer that we are
using) is clear. WS stands for workspace. You will recall that the symbol)
indicates that a system command is coming up. Type

)CLEAR

CLEAR WS

\JR+DICE

[1J

The use of Vin the first line is clear enough; it tells the computer that we
are defining a function. In more technical language, it puts us into "func­
tion definition mode" instead of "execution mode." The word DICE is the
name of our function, but why R? We will explain that one in a minute.

The computer responded with a [1]. This is its way of telling you that it
understands that you are defining a function, and [1 J is the number of the
first statement for you to write. The computer now expects you to write an
APL statement, so let's oblige. We will be using a special APL symbol, ?,
called roll, which is upper case Q. Be careful not to get confused. Some
terminals have two? symbols, one for APL and one for non-APL use. If
you are unsure about which is correct, just experiment-you can't hurt a
thing. Starting directly to the right of [1 J, type in

[lJ R++/?6 & 6

and then hit (but only after checking line [1] very carefully to see if it is
correct) EXECUTE. The computer will respond with [2J and you type V

[2J \J

Then hit EXECUTE (or RETURN on some terminals) again.
If you made a mistake on line [1 J, and you noticed it after pressing

EXECUTE, then you can correct it very easily by typing in on line [2]

[2J[1J R++/?6 6

4.2 The Function Definition 43

Generating Random
Numbers

Function
Headers

In short, you repeat the line number of the incorrect line and type in what it
should be.

We have defined our function, but what is it? Type

DICE

6

DICE

7

DICE

3

Generating Random Numbers

By now you have guessed that DICE is a function designed to give you
the result of rolling a pair of dice. The basic element in the function is the
primitive function roll, for which the symbol is ? . Typing

?6

5

produces a random number between 1and 6, typing ?10, a random number
between 1 and 10, and in general ?N produces a random number between 1
and N. The probability of anyone specific number showing up is 1/N. This
is the monadic use of the aptly named roll function. Now we see why? 6&6
produces two numbers from 1 to 6, each of which is equally likely to occur;
this is the computer's simulation of rolling a pair of dice.

Our statement number [1] is now clear:? 6 6 gives us an array of two
random numbers (statistically independent in fact), and + /? '6 6 gives us
the sum of the two random numbers.

Function Headers

We are now ready to answer the question about the function header-the
line that defines the function. (In this case the function header is 'VR+-DICE.)
In line [1J, instead of writing R++/? 6. 6, we could have written:
+/? 6 6. What's the difference? In either case, calling DICE produces the
desired result in that the computer prints out the sum of a random tossing
of two "computer dice."

The distinction between the two statements becomes apparent when we
consider whether we want to use the result in some other APL statement.
For example, we might wish to calculate DICE+2. Alternatively, we might
want a function such that when the user types HI, the computer responds
WHAT IS YOUR NAME. Now we do not want to use such a function in any­
thing else; we just want the computer to type out WHAT IS YOUR NAME.

44

Interactive
Programming

How to Write Your Own Function

The DICE function is said to "return an explicit result," something we
can use elsewhere .. and the HI function does not produce an explicit result.
If you want an explicit result, you need the header in this form: V (Some
Variable Name) +- (Name of Function). Somewhere in your function you
will produce the explicit result that you want; that result must be stored
under the same variable name as that used in the header. This is what
we did in VICE. If instead of using R in the header we had written
VD+-DICE, then litle [1] would have to read

[lJ D++/? 6 6

The Quote Function

To provide a contrasting example of a no explicit result function, consider
the function HI mentioned above. Let's define HI:

Quote'

'VHI

[1] 'WHAT IS YOUR NAME?'

[2J V

Now try typing

HI

WHAT IS YOUR NAME?

~ quote is upper shift K

~ you type

~ computer responds

Monadic Function
Headers

This example introduces another useful APL function, the quote ('),
upper shift K. The characters between the quote signs are treated as just
that: characters. When the computer comes across a line like [lJ when in
execution mode, it simply prints what it sees.

Monadic Function Headers

Let's return to functions with arguments. First, the header of a monadic
(sitlgle argument) function is of the form

opens--------~) VM+-MD X(--------"dummy"
function variable name

returns an
explicit result

function
name

Why is X in the above header to the function MD called a "dummy" variable
name? The reason is that in the header, X represents the argument that the
function is supposed to operate on, and X appears later in the body of the
function. But when you use the function MD on a variable V, or a variable P,
or A, you would simply type in MD V, or MD P, or MD A.

Remember the median? We showed how to calculate it on page 40. Now
we know how to make it a function. First, we need to decide on a name;

4.2 The Function Definition 45

Unconditional
Branch -+

Line Labels

Conditional
Branches

MD seems to be as good as any. Second, we need to decide whether we
want an explicit result or not. Presumably, since the median IS going to be
used in some other calculations by someone at some time, it would be best
to have it return an explicit result. Third, do we want the function to
have arguments? Well, the answer to that is that if we have a vector, say X,
in the computer we might want its median, and an easy way to say that is
'MD X', so we want a monadic function. Recall that our first task is to enable
the computer to decide whether X has an odd or an eve·n number of ele­
ments in it (see page 40). But, somewhat more importantly, we want the
computer to decide which way to calculate the median on the basis of
whether N is even or odd. In short, we want the computer to do one
computation if N is even and to branch to another computation if N is odd.
As you might guess, this is a not so subtle hint that we are about to define a
new APL operation; this one is called ~ ~branching."

Unconditional Branch

Suppose that in some APL routine you want the computer to go directly
to line 6 if it gets to line 3. This is easily done by entering +6 on line 3.

[3J-+6

The symbol -+ is the upper shift of the + key. This is called ~ ~unconditional

branch." In this case, the computer would know that if it ever gets to line 3
it must go directly to line 6 and execute it next.

Now for reasons that will become apparent in Chapter 7, it is a good idea
to develop the habit of giving labels to lines to which the branch directs the
computer to go. So if we label line 6 "SIX", for example, then the state­
ment on line 3 could read [3 J-+SIX. In this case line 6 would look like this:

[6J Sl"X: {some APL instruction to be performed}

The computer reads from right to left, so when it encounters the symbol
in a line of a routine, it knows that everything to the left of : js the label
for this line of instruction in the routine. We have simply named the line
SIX. It now has a position number [6 J, and a label or name, SIX.

Let us now discover how to solve our problem. Recall the two ways in
which we calculated the median (page 40). What we want to do is to go to
one set of instructions or the other, depending on whether N is odd or even,
and then to exit from the function. Let's see if we can program the follow­
ing steps:

(a) determine whether N is even or odd;

(b) if Nis odd, continue with the "odd" calculation and then exit from the
function;

(c) if N is even, branch to the "even" calculation and then leave the
function.

Index Generator, 1

RANK ERROR

How to Write Your Own Function

Consider (but do not type anything yet!):

'iJ M+-MD X

[1J N+ p X

[2J -+oDDx 12/N

The last part of this line is clear enough: 2 /N produces 0 if N is even and 1
if N is odd, since 2 IN is the "two" residue of N, but what can we make of
the first part? Let's look at the next section.

The Index Generator

The symbol 1 is the "index generator" (upper shift I). For any integer N,
IN produces the "index array" 1, 2, ... ,N. 1.1 produces an array with
only one element in it, namely 1. But what about 10 ? This produces an
"array" with nothing in it! The index generator, the monadic use of 1,

unlike most of the other primitive functions in APL, cannot operate on an
array; e.g., lA , where A is an array, produces the result RANK ERROR.

Conditional Branches

If N is odd, __ IN produces 1, so line [1] produces an array of length 1
with a 1 in it, and multiplying- this by ODD produces ODD. The first part of
the statement says: Branch to the line labelled ODD. But what if N is even?
Then 1 2 IN gives an array with nothing in it, and ODD multiplied by that
produces an array with nothing in it still. APL interprets -+(an array with
nothing in it) as "ignore this silly statement and continue to the next line."
So we have in line 2 a conditional branch statement; go to the line labelled
ODD if N is odd, otherwise continue. So let us begin and put down the
complete function. If you make a mistake typing any line, remember how
to correct it: backspace to the beginning of the error and hit the linefeed or
ATTN key, depending upon the type of terminal and computer system that
you are using. On most CRT screens you just backspace and reenter the
line.

'J M+MD X

[1J N+ p X

[2J XUP+-X[~xJ

[3J -*ODDx 12}N

[4J K+ (p X)+2

[5J M+(+/XUP[K~K-1J)';'2

[6J -+0

~if N is even, calculates M
for even case, otherwise goes
to line ODD

~tells computer to leave function

4.2 The Function Definition

[7J ODD:~XUP[1+(N-1)f2J

[8J

oE- if N is odd, calculates M
for odd case and then
leaves function

47

Exit from Function

Correcting
a Defined Function

Hold it!
Before typing the final 'V and completing the function definition, check

your entries very carefully. If a line has an error in it, then enter its line
number (in brackets), type the correct version of the line, and hit RE­
TURN. The computer will respond with the line numbers following the one
you entered. If there are no more corrections, type in "J and RETURN;
otherwise repeat the process.

The first and third lines we have figured out. The three lines [2], [4],

and [5] are copied from page 40, where we wrote down the routine for
calculating the median M when N is e.ven. But line 6 is a puzzle. Notice
that the header of the function has no line number, and that line numbers
start with 1. The function ~O, or-+(any line number not in function) tells the
computer to "exit" from the function and go back to the point from which
our function, MD, was called. In short, when the computer hits line 6 it
knows it has finished calculating the median. It is best to stick to "-+0" to
exit from the function, since you may later want to add new lines to the
function. The last two lines are modified from page 40, where we showed
how to calculate the median where N is odd.

Let us tryout our new median function. We put into the computer the X
and Warrays we used earlier:

X+l 2 3 -4 5 6 7

W+6 10 6 15 12 0 1 5

and now we can check the function out.

MD X

3

MD W

5.5

Correcting a Defined Function

What if you enter MD X and you do not get -3? You've made a mistake!
Let's see how to correct it. First, relist the variables X and wand make sure
that they are correct. If they are, continue; if not, redefine X or wand retry
the function.

But suppose you are sure the mistake is in the function MD? In order to
check it, you will need to display it. To do this, we type in:

48

Display, 0

How to Write Your Own Function

\J MD[OJ \J

V M+MD X

[1J N+p X

[2] XUP+X[~xJ

[3J -+ODD x 121N

[4J K+(p X)-i-2

[5J ~(+/XUP[K,K+1J)+2

[6J -+0

[7J ODD:M+XUP[1+(N-1)+2J

-E- this line "opens" the function,
displays it (that's what [OJ does),
and closes it. D is typed in by
upper case L.

<E- this is the computer's response
to your command to display the
function

V

Suppose you discover that you made some typing errors in the function.
In Chapter 5 we will show you in detail how to correct errors, but for now
we will give you one drastic, but surefire, way to do it. If we remove the
function altogether, we can completely redo it-this time very carefully.
To remove the function, type

)ERASE Command)ERASE MD

SI DAMAGE <E- this statement is the computer's
response. It warns you that you
have erased a suspended function.
SI stands for State Indicator.

Suspended Functions

You might also get a statement indicating there is a syntax, value, or
some other error in a line of your function when you try to execute the
function with an error in it. For example,

MD X

VALUE ERROR

MD[1JN+RX

.- this is the computer's response
telling you the first line and
first position of your first
mistake

Removing a
Suspended
Function

)SI Command

The result of this error is to prevent further execution of the function. It is
said to be suspended. At this time, it is best to remove the suspension. This
is easy-type

.- this is upper case "+"

In order to check whether you have cleared the suspension, type

)SI

Summary 49

Summary

If you get no apparent response (actually a blank line) all is well. But ifyou
get something like

MD[3]*

type in the -+ instruction again. Keep doing this until you get a blank
response to the system command)SI.

Now erase the incorrect function and start again. Remember, you can­
not correct the function simply by redefining it unless you first erase the
old function. (This is not strictly correct-you could do it if you gave the
correct function a new name (i.e., one that differs from the old name).)

One last word: if you think that the MD function is a lot of fuss about a
simple operation, you're right. Later on we will show you how to calculate
the median in one short line. But in writing out the routine MD you learned a
lot about APL that will be very useful in the following chapters, and that,
of course, is what this book is all about.

Sample Median, M (of an array X): that value such that half the
observations in X are less than or equal to M and half are greater or equal
to it.

Residue function, I: in its dyadic form it is written AlB. For posi­
tive values of A and B, the A residue of B is the remainder of dividing B
byA.
The monadic use of I yields the absolute value.

Indexing, [I] (of an array X): elements of an array X can be
selected by specifying their position in the array; the positions are labelled
from 1 to pX starting from the left. X[I] gives the value of the number in
the array X in the Ith position from the left.

Grade up, ~ (upper shift M, backspace, upper shift H) (of an array
x): gives an array, the first element of which is the index position of the
smallest number in X, the second element is the index of the next largest,
and so on.

Grade down, ~ (upper shift M, backspace, upper shift G) (of an
array X): gives an array, the first element of which is the index position of
the largest number in x, the second element is the index position of the
next smallest, and so on.

Catenate, "," (the comma): forms one array out of its arguments;
A,B is an array with the elements of A listed first where A or B can be any
one-dimensional array or scalar.

Roll, ? (upper case Q): ?N, where N is all integer that generates a
random integer from 1 to N with probability liN.

Index Generator, 1 (upper shift I): monadic function, IN, N an
integer, produces the "index" array 1, 2, 3, . . . ,N.

so How to Write Your Own Function

Quote, ' (upper shift K): all keyed entries between a pair of
quotes are treated as characters and not executed as APL functions.

Del, V (upper shift G): the instruction that is used when entering
or exiting from function definition mode.

Niladic function: a function which has no arguments; it carries
out a specified procedure when called.

Function Headers: first line of a function that gives the function
name; specifies whether function produces an explicit result or not, and
contains either zero, one, or two arguments. Thus:

\J HI

\J A GO B

\J R+-FNC

V R~FNC X

niladic (no argument) function, no
explicit result produced

dyadic function, no explicit result
produced

niladic function, explicit result
produced

monadic function, explicit result
produced

(All six combinations are possible)

In function definition mode, a line in a function can be corrected by
typing in the line number and the correct version of the whole line. For
example, in correcting line [1 J at line [3], you would type: [3] [1] (cor­
rect APL statement).

Unconditional Branch, -+: used within a function to alter execu­
tion path to a different line. Thus:

[3J -+6

or

[3J -+LABEL

[7] LABEL: (an APL expression)

Line Label: a name for a line in a function. When the second of the
above versions of line 3 is executed, the next line to be executed will be
number 7 with the label LABEL rather than number 4.

Conditional Branch: branching to a function line on the basis of
the "condition" of some APL expression. Example:

[3J -+TRUEx l2/N

[4J 'THE CONDITION IS FALSE'

[6 J TRUE: (another APL expression)

Exercises 51

Exercises

If 21 N takes the value 1, the next executable statement is line [6] labelled
TRUE. If 2 IN takes the value 0, next executable statement is [4].

Quad, 0 (upper shift L): when used as illustrated below with the
function MD it displays the function MD:

V MD[OJ V

)CLEAR: a system command used to remove all existing functions
and variables from the existing workspace. The workspace can be thought
of as the part of the computer which is assigned to the user for his compu­
tation procedures (both stored data and functions).

)ERASE: (FUNCTION NAME): a system command that enables you to
erase a function from your workspace.

)SI: system command called state indicator. If you have func­
tions which cannot complete their operation, they are said to be sus­
pended. The command)SI will indicate which functions are suspended
and at what line in the function the suspension occurs.

To clear a suspended function, type -+ as often as needed to get a blank
response from the command)SI.

APL Practice

1. Let's examine in some detail the use of the new APL functions pre­
sented in this chapter. For X+-5+ t 11, compare the results of the oper­
ations in each question.

(a) 1 IX (j) X[t 2 J+-O & 0 and then ask for X

(b) 0 IX (k) X[1 1 2 3 J
(c) 2 IX (1) X[t 4 J
(d) -2\ X (m) X[1VX] and compare to X[t pX]

(e) 10 Ix (n) X[O]

(f) X I0 (0) X[1 2]

(g) XI-10 (p) P+t4and then X[P]

(h) X[t3J (q) xiX
(i) X[2 , 3]

2. Since you know that the meaning of?6 6 and 6 6 is equivalent to 2p6,

why not combine them into ? 2 p 6 ? Try:

(a) ?3 p 6

(b) ?3 p 0

(c) ? 3 p 1

(d) ?i p 1

52 How to Write Your Own Function

(e) What is the difference between 3 p?6 and (a)?

(f) What is the difference between pX,p Y ., (pX),(p Y) and pX, Y for any
arrays X and Y?

3. Indexing can be used with the variables defined as a list of characters.
Consider the following code game. Let

AL+'I WILL MEET YOU TOMORROW AT SEVEN'

(a) AL[8 26 22 26J tells whom you will meet

(b) AL [22 ., 9 , 29 , 1 7 ., 26 ., 15 , 22 ., 26 ., 33 ., 17] tells where

(c) AL[10.,26, 27J says what you will do

(d) AL[29,30,31,32,33]+'SIX'changes the time of the meeting

4. Let Z+-5+ 111

(a) ((6 p1) ., (5 pO)) / z: picks the six first elements of Z, and is equiva­
lent to Z[1 6] .

(b) Show how to pick the last four elements of Z.

(c) For any array Z write an APL expression that will pick the middlen
elements. What if pZ is even?

(d) Is 2[1'1'ZJ equal toZ[~4ZJ?

(e) Suppose you want to delete the seventh element of Z. How would
you ask the computer?

5. Can you discover, with the computer's help, which of the following
series converge to a limit and which diverge? If the series converges,
can you determine what the limit is? How accurate is your answer?
Compare your result with a table of limits of series.

111
(a) 1 - "2 + "3 - 4"" ..

12345
(b) "2 + 3 + 4 + "5 + "6 + " · .

50 51 52 53 54
(c) T + T + "2 + T + 4 + · " .

111 1
(d) 20 + 22 + 23 + 24 + . · ·

1 234
(e) 2.3 + 3.4 + 4.5 + 5.6 + · · "
(f) e-1 + e-2 + e-3 + e-4 + · · ·

(g) (1 + +r+ (1 + -}r+ (1 + {r +. . .

4 5 6 7
(h) 2.3 + 3.4 + 4.5 + 5.6 + . · ·

(i) (-1)1 (_1_)1 + (_1)2 (_1_)2 + (_1)3 (_1_)3 + ...
1 + 1 2 + 1 3 + 1

(j) 1· In (1 + f) + 2 · In (1 + }) + 3 . In (1 + }) + · · .

Exercises S3

e 1 e2 e3 e4

(k) f+T + f+l + 3+1 + 4+1 + · · ·

log 1 log 2 log 3
(1) 1 + log 1 + 2 + log 2 + 3 + log 3 + · · ·

6. Let the list M ~ 3 3.2 3.5 3.6 3.6 3.7 4 4.2 4.5 5.1 5.3 5.5 represent
the annual U.S. money supply in hundred billions of dollars for a 12
year period. Define a new list consisting of the first differences of the
elements of M. That is, for i = 2, 3, , 12, let DMi = M i -

M i - 1 = 3.2 - 3, 3.5 - 3.2, 3.6 - 3.5, , eleven terms in total.
What are the mean and variance? How about the list (Mi - Mi-t)1
M i - t , i = 2, 3, ... , 12? The list log Mi-t/log M i , i = 2, ... , 12?

(Hint: One suggestion for finding the first differences of a list is:

'V DM+-DEF X;Ml;M2

[1J M1+ (O,«pM)-l)pl)M

[2J M2+ ((((pM)-l)pl)p,O)p/M

[3J DM+-M2-Ml

[4J \J

Notice that DMl+-DEF M produces the first differences of M.
DM2+-DEF DMl would produce the second differences of M,
DM3+-DEF DM2 would produce the third differences of M, and so on.
What are the mean values of the differences DM1, DM2, DM3 • • .?)

7. Here are some important inequalities and identities.
(a) The Cauchy-Schwarz inequality

(Lf=lXiyi) :5 (Lf=txr)(Lf=tyr)

(b) Holder's inequality

(Lf=tXiYi) ~ (~~lxf)l/P(Lf=ly?)l/q

for any p and q such that lip + l/q = 1, p > 1.

(c) Minkowski's inequality

[Lf=l(Xi + Yi)K]l/K :5 (~f=lXf)l/K + c~:r=tyf)l/K

for XiYi ~ 0 and K > 1
(d) For Lf=lai and Lf=lbi convergent series of positive numbers such

that Lai ~'Lbi' we have

}:i"=lailog(bi / ai) :5 0

(e) The Lagrange identity

(Lf=txr) (Lf=lYT) - (}:f=lXiYi)2 = ~r<j(XiYj - XjYi)2

In some advanced statistics courses, these inequalities and identities
are proven by algebraic methods. However, here is a way to use the

54 How to Write Your Own Function

computer to be fairly certain that the result can be proven algebra­
ically.

Pick four integers at random (Hint: use ?); say you get 49 10 15. For
each integer pick a random sample ofnumbers for listx and another for
a list y, where the number of elements in each list is in tUfn 4 9 10 15.
Check to see that the suggested inequalities hold with each sample.
Repeat the same experiment using different random lists x and y each
time.

If you discover no reversal of the inequalities (or violation of the
identity), you may reasonably suspect that the result can be proven
algebraically, and hence that it is a mathematically correct statement.

The above procedure is known as a "sampling experiment," and
provides the basis for what are known as 4'Monte Carlo" procedures.
Monte Carlo procedures often are used to solve mathematical prob­
lems that are difficult to solve by analysis.

8. Enter the function MD X (page 48) into your workspace.

(a) Display the function.

(b) Describe what the function instructs the computer to do at line [3].

(c) Add the line 4The Median of X is' between lines [5] and [6].

(d) Execute the function and press the ATTN key before you get any
answer (i.e., while the computer is in execution mode). Press the
command)SI .

(e) Get out of the suspension.

(f) What would the comp~terdo if you changed line number [6] of the
original function into -+1 and the number of elements in X is even?

Statistical Exercises

1. Let C<E--t + ?100 p 2 represent the outcome from tossing a coin 100
times. The random variable C takes on the value 0 if a "head" and 1 if
a "tail." If a head occurs you win one dollar, while if a tail occurs you
lose one dollar. Calculate how many dollars you expect to win or lose
if you play this game with the computer. Try it four times. What would
you pay to play this game?

2. The standard deviation of the binomial distribution with parameters n
andp is given by the formula S = Vnp(1 - p), where n is the sample
size and p is the probability of success in a single trial. For n +- 100
and p ~ (LI0) -7- 10 find the value of p for which S is maximum. Is
there a minimum?

3. Your friend from Texas called you up and asked you to find out what
the average price is of used cars sold in N.Y. You collect a small
sample of New York used car prices as shown in the following table.

Exercises

p

F

2.5

o
3

2

3.5

5

4 4.5

4 6

5

15

5.5

14

6

18

6.5 7 7.5 8

11 8 9 4

S5

8.5 9

3 3

P is the price of the car in thousands of dollars rounded to the nearest
0.5 thousand, and F is the frequency, i.e., how many cars you ob­
served at each respective price. You have a sample size of 102. Calcu­
late the sample mean, variance, and standard deviation. Plot the his­
togram of P vs. F. How would you convey to your friend, who does
not know any statistical theory, the information you have collected?
How would you advise her?

4. One hundred cans of floor wax, randomly selected from a large pro­
duction lot, have the following net weight in ounces with the corre­
sponding frequencies:

weight

frequency

19 19.2 19.4 19.6 19.8 20 20.2 20.4 20.6 20.8 21

o 3 8 9 16 20 15 12 4 5 6

(a) Find the sample mean weight (x).

(b) Find the sample median (Mx) and compare its value to the mean.
Explain the difference.

(c) What is the value of the sample standard deviation S?

(d) What percentage of the sample falls into each of the following
intervals:

1. i ± IS
2. i ± 2S
3. i ± 3S

(e) The variation in production by net weight is "acceptable" when
the mean value is 20 ounces and 95% of the cans produced contain
no more than 20.3 nor less than 19.7 ounces. Can we conclude that
the production run is acceptable on the basis of this sample?

5. The formula P(Yi) = (0.1) (y + 1) gives the probability of y = 0, 1, 2, 3
occurring.
(a) Graph P(Yi).

(b) Verify that P(y) is a probability distribution function, that is,
that ~t=l P(Yi) = 1.

(c) Calculate the cumulative probability distribution function ofy and
graph it.

(d) Find the expected value ofy.

(e) What is the value of P(y < 3). That is, what is the probability ofy
being strictly smaller than 3?

(t) What is the probability of y being smaller than O?

(g) What is the probability of y being smaller than 10?

(h) Calculate the standard deviation ofy.

(i) Calculate the third and fourth moments about the mean.

S6 How to Write Your Own Function

6. Suppose u is a random variable that assumes the integer values from
one to ten, each with equal probability of 0.1. Use the computer to do
the following:

(a) Pick 20 random samples, each of size 30, from the distribution of u.

(b) Calculate the mean value and sample standard deviation of u for
each of the 20 samples.

(c) Print the vector of mean values and call it U.

(d) Calculate and print the sample standard deviation of the 20 mean
values. (Call it su).

(e) Calculate and print the percentage of the samples whose means fall
into the intervals

1. 5.5 ± 1Su
2. 5.5 ± 2Su
3. 5.5 ± 3Su

where 5.5 is the mean of the distribution u.

(t) Calculate and print the percentage of the samples for which the
intervals

1. Ui ± lSUi
2. Ui ± 2SUi
3. Ui ± 3SUi i = 1, 2, ... , 20

include the number 5.5.

What is the connection between the results in (e) and (f)?

Ravel, ,

5

Some More Statistics

The major objectives of this chapter are to enable you to calculate a few
more simple statistics and probabilities, practice your computer skills, and
learn some more useful APL functions.

Ravel

First, let us clear up a small difficulty with the routin~ we used to calcu­
late the arithmetic mean (see page 20). We calculated N, the number of
observations, by N~ pX where X is the array of num'ers whose mean we
wanted. What if X is a scalar, not an array? In this special case, we would
like the mean of X to be X; but we will not get that result by using N+-pX,
since pX is "blank." There is an easy way out: our friend the comma (,),
used this time as a monadic function, is called ravel. Ravel simply makes its
argument an array, whatever its shape was to start with. Thus if Xis scalar,
then ,x is an array of length one. Try the following:

X+-3

(+/X)+pX

Nothing seems to have happened. There is no response·since division by
"blank" is undefined. Now try

(+/X)+p,X

3

Now we have the correct result.

57

58 Some More Statistics

5.1 Some Basic Statistics

APL Routine to
Compute
Mean, Median,
Variance, Standard
Deviation

Let's consider a routine that will calculate a number of basic statistics, say
the mean, median, variance, standard deviation, the range, .and so on. To
increase our understanding of how to define and use functions, let us define
a function which has a single argument which is an array x, does the
required calculations, and prints out the results, but does not yield an
explicit result.* That is, the routine performs a series of operations but
does not return a value that can be used in other calculations. Type in

VDSTAT X

[1 J R-+- (MAX-+-X[p X]) -MIN-+- (X-+-X[LhxJ) [1 J

[2J SD-+- (VAR-+- (+/ (X-MEAN-+- C+/X)~N)*2)+ (N-+- p X)-1)*0.5

[3J MD-+-(+//X-MEAN)+N

[4J MED-+-0.5 x+/X[CfN+2),1+LNf2J

[5 J 'SAMPLE SIZE'

[6] N

[7J 'MAXIMUM'

[aJ MAX

[9J 'MINIMUM'

~10J MIN

[11J 'RANGE'

[12J R

[13J 'MEAN'

[14J MEAN

[15J ' VARIANCE'

[16J VAR

[17J 'STANDARD DEVIATION'

[18J SD

[19J 'MEAN- DEVIATION'

[20J MD

[21J 'MEDIAN'

[22J MED

[23J

* This routine is a modified version of one appearing in Smillie (1969, p. 16).

5.1 Some Basic Statistics 59

Hold it. Don't type the final V until you are sure that you have typed
everything just as it's written above! If you made a mistake in any line,
correct it as you did in Chapter 4. When you are sure that the function is
correct, close it out.

[23J V

Let's see if the function works. Type in our old friends the X and W
arrays.

X+1 2 3 4 5 -6 7

W+9 10 3 8 12 0 1 5

DSTAT X

SAMPLE SIZE

7

MAXIMUM

5

MINIMUM

7

RANGE

12

MEAN

1.7143

VARIANCE

19.905

STANDARD DEVIATION

4.4615

MEAN DEVIATION

3.7551

MEDIAN

3

X

1 2 345 6 7

DSTAT W

SAMPLE SIZE

8

60 Some More Statistics

MAXIMUM

12

MINIMUM

0

RANGE

12

MEAN

6

VARIANCE
..;0.

19.429

STANDARD DEVIATION

4.4078

MEAN DEVIATION

3.75

MEDIAN

6.5

W

9 10 3 8 12 0 1 5

) ERASE

Correcting a
Function Line

Correcting a Function Line

It seems as if our function works, but what if yours did not?
If your function did not produce the same results as ours, but otherwise

appeared to work, then first of all check that the variables X and Ware
exactly the same as ours. If they are, but you still got some strange results
or statements about errors in the routine, then you know that you have
made a mistake in defining the function.

You know that you can always use the system command

)ERASE DSTAT

to remove the function. But there is a better way!
First, in case your function is suspended, remove the suspension in the

way that we showed you in the last chapter. Then check with the)SI
system command to ensure that the suspension is completely removed.

The next thing to do is to see how we can correct a line in our function.
Let's suppose that you have discovered your mistake lies in line [3J. You
want to correct jl1st that line. Here's how to do it. Type in

5.1 Some Basic Statistics 61

Narne of Function
//'1 DSTAT[3] {enter the correct APL expression~,/

Indicates ~ Statement Number Closes the
Function Definition of Line to Correct Function Definition
Mode Mode

and then hit the RETURN or EXECUTE key. For example:

'J DSTAT[3] MD+(+/Ix-MEAN)~N'J

If you have several lines to correct you can use the above procedure
repeatedly.

Now that you have a working function, let's see how it works. Consider
the first line:

[1J R+(f~X+X[pXJ)-MIN+(X+X[~XJ)[1J

Starting from the right, the first group of symbols needing our attention is

(X+-X[4X])[1]

Let's skip the [1] for a moment. First, we sort the array X, and then we
replace the oldX array by the new sorted array X. Thus (X+X[!x]) results
in an array. X[4x] reorders the elements of X in ascending order, using the
grade up function 4, and the reordered elements are replaced in the X
array. In short, X is now an array containing the original elements of X
rearranged in ascending order. Now the [1] in

(x+X[!X]) [1]

gives us the first and, therefore, minimum element of X. This result is
promptly placed into a variable called MIN by

MIN+-(X:+-X[~X])[1J

The next function, -, instructs us to subtract MIN from the next argu­
ment, (ll1AX+-X[pX]), and to put the result inR. Note that (proceeding from
right to left) after MIN has been calculated, X is in ascending order. The
maximum of X, which is its last element, is therefore given very simply by
X[pX]. We now have the "range" of the array, Le., the difference between
the maximum and minimum of X.

After line [1], line [2] should be easy. Reading from the right, after) *0 . 5
we have:

(N +- pX) -1 stores number of observations in Nand
computes (N - 1)

(+/(X-~1EAN+-(+/X)fN)*2)computes Li(Xi - i)2
(X7MEAN+(+!X)fN) computes the array X-MEAN

Finally, raising the whole expression to the 0.5 power (computing the
square root) yields the standard deviation. In tracing this through, re­
member to match up the parentheses inpairs. For example, in the first tenn

62

Absolute Value
Function~ 1

Floor, L Ceiling, r

Some More Statistics

above, one does not have (N - 1)1/2 as you might at first think, because

(N+- p X) - 1) *0 . 5

involves right and left parentheses that are not matched until you reach the
parenthesis to the left of VAR.

Absolute Value, Floor, and CeDing

Line [3J involves the monadic use of I, which produces the absolute
value of a number (discussed in the previous chapter). Try keying in

[3.2

3.2

'-3.2

3.2

1-2.6

2.6

XABS+-lx

XABS

123 456 7

Line [4] shows the quick way to get the median and introduces two
new, but related, functions: Floor L and ceiling r, both used here as
monadic functions. Floor L rounds its argument down to the next lowest
integer, whereas ceiling r rounds up to the next highest integer. Floor L is
keyed in as upper shift D; ceiling as upper shift S. For example,

L 2.3 2.5 2.7

222

r 2.3 2.5 2.7

333

If N is even, say 6, then the index function

X[(rN -;- 2) ,1+ L N-;- 2]

yields the third and fourth elements of X, which was reordered into ascend­
ing order in line [1]. If N is odd, say 7, then

X[(rN-;- 2) ,1+ LN-;- 2]

produces the fourth (middle) element of X twice. Plus reduction followed
by multiplication by 0.5 gives the correct answer in both cases.

Line [4] is clearly a much better way of calculating the median than is
the procedure we used earlier. Since that approach has now served its

5.2 Dummy, Local, and Global Variables 63

purpose, you snould use line [4] or something like it for calculating a
median. But the experience provided an important lesson: the first way you
think of doing something is probably not the most efficient way-so you
might think of some alternatives before proceeding with your attempt.

5.2 Dummy, Local, and Global Variables

You may have wondered why we printed out the arrays X and Wafter
using the function DSTAT in §5.1. However, if you think about what was
done in line [1J in DSTAT, you might instead wonder why it is that although
we rearranged the arrays X and W into ascending order in line [1J, they
were in their original order when we printed them out. The explanation for
this result is that the variable X, which occurs in both the header and the
body of the function, is "local" to the function. So anything that happens
to an X inside the function does not affect any X that exists outside the
function. This idea seems intriguing, so let's pursue it.

Up until now, you have become accustomed to the idea that if a variable
is redefined in some function, then the old definition is lost and only the
new one prevails. For example,

N+-6

N

6

Global Variables

Dummy Variables

49

and so on. As we shall see, the variables we have been using so far are
known as "global variables" or, rather, the way in which we have defined
and used these variables makes them global variables. The values rep­
resented by the variable names which are globally defined can be called
and used by any APL expression at any time.

Dummy Variables

The variables that are used in a function header as the arguments of the
function are known as dummy variables; these variables are in fact defined
only within the function itself and nowhere else! For example, if you start
with a clear workspace, we can illustrate this idea with an experiment.
Type

)ERASE A B

'VC+-A DUM B

This is to ensure that A, B are not defined
as variables anywhere in your workspace.

64 Some More Statistics

Value Error

[1J C+-A+-l+B+-3 V

A

VADUE ERROR

A

/\

B

VALUE ERROR

B

This sets up a function with A, B
as arguments in the function.

This indicates that after defining the
function DUM, both A and B are still
undefined in the computer workspaceI'

A DUM B

VALUE ERROR

A DUM B

We get a VALUE ERROR because A, B
are undefined outside the function DUM, so
that we cannot use undefined variables
as arguments for the function.

Suppose we assign zero to both A and B, thereby defining

A DUM B

A+B+-O

A

B

4

a

a

Here we use the function and it
produces the value 4. In this case
the result is completely independent of
whatever we have defined A or B to be
outside the function.
So, even after execution, A, B
still have the values assigned
to them initially. Although the
function produced the expected
result of 4, A and B have not been
changed to 4 and 3, respectively.

We see from this experiment that the variables used as arguments in the
definition of a function are distinct from global variables. When A and B
were set to 0 by use of the replacement statement, they were defined
globally. The variables in the definition of a function serve a role distinct
from that of variables generally.

Consider the mathematical statement defining the summation of a set of
n numbers (at, a2, ... , an):

In this definition, the index i is a dummy variable also-we could use any
letter and get the same result. Thus

and so on. Correspondingly, in our function DUM, the variables A and Bused
in the definition served the role of dummy variables. They merely indicate

5.2 Dummy, Local, and Global Variables 6S

Local Variables

each role that the first and second arguments play in the function. If we
substituted any other two variable names in the function definition we
would get the same results on execution. But when we come to the execu­
tion of a function, globally defined variables must be used in calling the
function; otherwise a value error will be generated. For a function to
peIform its assigned task it must have some values on which to operate.
Assigning values to variable names by the assignment operator <E- does
just that.

The above example of summation indices gives us an idea why we might
want to distinguish global and dummy variables. First of all, we see that we
will want our function definitions to be general in the sense that we would
like to define the function once and then be able to use it with any variables
we choose. When we define the function we will have to use some symbols
to represent the arguments. Consequently, you can see the benefits of
deciding that variable names specified in function definitions should have
no meaning outside the definition of the function, and that to use the
function global variables must be specified.

When you become more expert at computing you will discover that you
will have to handle a large number of variables, and that it is very easy to
forget what is what. A part of the problem is that it is very easy to give the
same variable name to two different variables-and you already have dis­
covered that the second assignment replaces the first. In any case, you can
appreciate how confusing it all can be. Consequently, it is a relief to know
that when you define a function and the use of its arguments, you will not
affect the values of any global variables that you have already defined and
want to keep.

What about variables that appear in the body of a function, but not in the
header? These are also global variables and they will be defined when the
function is executed, but not before. For only when the function is executed
are the operations defined in the function actually carried out. Before then
the operations have been defined, but not yet used.

Local Variables

The idea of variables that appear as arguments in the header of the
function, so that they are defined only in the context of the definition of the
function, can be extended to "local variables." Local variables are defined
in the header by separating the specification of the local variables from the
function header (and from each other) by semicolons. For example, con­
sider the following headers:

VR+A GET B ;X;Y

VA BY B;X;Y

V FUNC;X

X is a local variable in each of the above functions and y is a local variable
in the first two. Note that local variables can be defined with an explicit

66

Summary

Some More Statistics

functional result (function GET), without an explicit functional result (func­
tion BY), and even for functions without arguments, as in FUNC.

Local variables differ in several respects from dummy argument vari­
abies. When a function is used, that is, when the computer is instructed to
perform the mathematical operations specified by the function definition,
then global variables must be inserted where the dummy variables
appear-a one-argument function needs one global variable to operate on;
a two-argument function needs two global variables to work on. But the
local variables, which are specified in the header, are defined in the body of
the function and do not have to (indeed, must not) be supplied by you when
using the function. For example, one would call the above functions by

P GET Q, or

S BY T, or

FUNC,

where P, Q, S, T are global variables defined elsewhere in the computer
before these functions are executed.

Consider a use of a local variable:

X~1 2 3 4 5 6 7

\J FUNC;X

[1J X+2

[2J X \J

FUNC

2

X

1 2 3 - 4 5 6 - 7

We see from this example that the globally defined X and the X defined
locally to the function PUNC are two entirely different variables. The
specification of local variables lets you extend the advantages of the
dummy variables to more variables.

Dummy variables that appear as arguments in the header of a function
when defining it enable one to define the mathematical operations to be
performed. Use of the function requires substituting previously defined
global variables.

Local variables enable us to reuse variable names within a function
without affecting whatever definitions these variable names may have
elsewhere.

Ravel, "/': a monadic function that makes its argument a one­
dimensional array.

Exercises 67

DSTAT: a routine in this book defined to calculate maximum and
minimum values, range, mean, variance, standard deviation, mean devia­
tion, and median.

A statement, say the third, inside a function routine can be corrected by:

V DSTAT[3] {correct APL expression} V

Absolute value, I (upper shift M): a monadic function that gives
the absolute value of a number.

Floor, L(upper shift D): rounds number down to the next lowest
integer.

Ceiling, r (upper shiftS): rounds a number up to the next highest
integer.

Dummy Variable: variable names used in the definition of a func­
tion's arguments, are not defined outside the function.

Global Variables: variables defined by the assignment operator,
can be used by any APL expression or routine.

Local Variables: variables defined only within a function, are
designated in the header.

EXAMPLE:

A+-3

V R+X FNCT Y;Zl;Z2;Z3

[1 J B+ some APL expression

[2 J R+ some APL expression

[3J

Exercises

'V

Result Variable:
Dummy Variables:
Local Variables:
Global Variables:

APL Practice

R
X, Y
Z1, Z2, Z3
A,B

1. Let X+-(? 10 0 10)';- 2

Drill
(a) 4 pX

(b) (pX) pX which is of course X

(c) 30 p 'X' and try 3+30 p 'X'. (You get a Domain Error because X
is an array of characters, not numbers.)

(d) p (pX) pX

(e) Is r3.4 the same as L 3.4+1?

68 Some More Statistics

(f) L X

(g) Is rx the same as L X+l?

(h) Is LLX the same as LX?

(i) Is rrx the same as rx?
(j) What do you get by using L IX; orr / X? Compare L\X and r\x.
(k) Is X-ll X the same as LX?

(1) Is X+(1-LIX) the same as rX? What if some X i are integers?
(m) Is (rIX) the same as (X[~XJ) [pXJ?

(n) Find the two largest values of X.

(0) Find the third smallest value of X.

2. Let W+-(-5+19)+2, YY+-l/W, and Z+-IW, i.e.,Z is the array of the
absolute values of W.

(a) Compare rw to rZ and rYY.

(b) Compare LWto LZ and LYY.

(c) Compare Z to (W*2)*. 5.

(d) Compare -Z to -(W*10)*.1.

3. Consider the polynomialf(X) = lOX - X2, where X+-Sl+1101, i.e.,X
takes only the integer values from -50 to 50. For these values of X,!(X)
might be either positive or negative.

(a) Find the maximum value of f(X).

(b) Find the values ofX for which f(X) is positive.

(c) Display all the negative values of f(X).

4. Using X+(-S1-t1101)-i-10 and .((X) = -X4 + 3X2 + 1, find the two
local maxima of f(X) as well as the one local minimum.

S. For any array V verify that the following APL expressions are equiva­
lent.
(a) (+/V)-;- pV

(b) +/V-;- p V

(c) V+. -;- p V

(d) 1+. xV-;- V+ • *0

6. Put the following function into your workspace:

V J+-JOHN I;A;B;C;D

[lJ A+lxI

[2J B+-2xI

[3J C+-3xI

[4J D+4xI

f5] J+A+B+C+D

[6J v

Exercises 69

(a) What does the function do?

(b) Which variables are local?

(c) Which variables are global?

o (d) Which variables are dummy?

(e) Which variable contains the result?

(f) Is the function monadic, niladic or dyadic?

(g) Does the function give you an explicit result?

7. Consider the polynomialf(X) == -1 · Xo + 2X1 + 3X2 + 5X3
- 10X4 +

2X5. Let B+-1 2 3 5 -10 2 be the array of coefficients and P+-1S the
array of the exponents of X. Then B+. xK*P evaluates the polyno­
mial for X == K.

(a) Evaluate the polynomial for K == -5 and K == 3.

(b) Does this polynomial have a root for -10 < X < 10?

8. Refer to exercise 7. Suppose you discover that there is one root be­
tween 0 and 1. Write a program that will find the root to the nearest
thousandth.

Statistical Applications

1. Use your DSTAT X function and the samples

W+1 2 3 4 5 6 7 8 9 10 11

2+1 2 4 5 5 6 7 7 8 10 11

Y+-1 1 1 2 2 6 10 10 11 11 11

to verify that

(a) All three samples have the same number of elements, the same
maximum, the same minimuln, the same range, the same sample
mean, and the same median.

(b) The median is equal to the mean for all three samples.

(c) Z has the smallest mean deviation, standard deviation, and vari­
ance.

2. Use the dyadic use of the ceiling and floor functions to play the follow­
ing game with the computer. Toss a coin 100 times. You win $1
whenever a head occurs, otherwise you lose $1. You start the game
with $20. During the game record:

(a) How many times you were in deficit.

(b) How many times you were in surplus.

(c) What your maximum profit was and at which toss it occurred.

(d) What your maximum loss was and at which toss it occurred.

(e) How many times you switched from a surplus to a deficit posi­
tion.

70

Statistical
Application
Chapter 5

Some More Statistics

Did you go broke by the end of the game?

3. A random variable X takes the values 1, 2, . . . , 11, each with prob­
ability of (1/11). Use the scan operator and the random number genera­
tor to confirm the following two arguments.

(a) As the sample size gets large the sample mean "approaches" (or
fluctuates more closely around) the number 6, which is the popula­
tion mean.

(b) As the sample size gets bigger the sample variance "approaches"
(or fluctuates closely around) the number 10.083, which is the
population variance.

4. The numbers of admissions to the emergency ward of a hospital be­
tween 4 and 8 P. M. for a period of 20 days were 0 1 3 0 2 3 4 5 0 5 3 6 3 4
o 1 1 425.

(a) Use your DSTAT X function to calculate the maximum, minimum,
range, mean, variance, standard deviation, mean deviation, and
median.

(b) Unexpectedly, on the 21st day there were 11 admissions. In light
of this information recalculate the measures asked for in (a) and
find which ones are affected (i.e., increase or decrease), and which
remain unchanged.

5. The following table gives the population growth rates for various re­
gions of the world for the year 1970:

Region

Europe
U.S.S.R.
N. America
Oceania
Asia
Africa
S. America
World

Population in Millions

470
240
230
20

2100
350
290

3700

Annual Growth Rate in %

0.8
1.1
1.3
2.1
2.3
2.6
2.9

Source: 1974 American Almanac, Table 1322.

(a) Find the weighted average of the world population growth rate.
Which average population (weighted, unweighted, geometric, or
harmonic) is the most appropriate?

(b) Use the computer to predict the world population for the year
2050 using the appropriate estimate for the growth rate. Compare
this to the estimate obtained by adding the separate estimates for
each region. Assume that the world growth rate will not change.

6. Refer to exercise 1. Verify that in no case is the mean deviation greater
than the standard deviation.

7. Redefine the DSTAT X function as F DSTAT1 X, where F is the rela­
tive frequency of X. Use this function to solve the following problem.

Exercises 71

A random variable X is defined as follows:

{

- 2 with probability 1/3
X == 3 with probability 1/2

1 with probability 1/6

Calculate all measures of location given by the function for

(a) X

(b) X 2

(c) 2X + 3

(d) 2X2 + 3X + 1

(e) Is the variance of 2X + 3 twice the variance of X?

(f) What is the relationship (if any) between the mean value ofX and
the mean value of X2?

8. A population consists of six elements with X values 10 11 12 13 14 15.
One element is picked at random.
(a) What is the expected value of X?

(b) What is the expected value of X2?

(c) Suppose that the elements are circles and the X -values are their
diameters. What is the expected value of the area of such a circle?

(d) Suppose that the X values are dollars per day that you carry in
your pocket during a 6-day period, and that you always spend $4
plus 80% of whatever is left. What are your expected expenditures
on a randomly selected day?

(e) Suppose that the X values are the number of cars per minute that
pass through six gates at a toll road. Find the expected number of
cars going through the six gates per hour.

9. LetX take the values 0, 1,2, 3,4, and let Y = Xl/3D be its probability
distribution function. First verify that Y is a probability distribution
function, Le., that Yi > 0 and L~Yi = 1. Find E(X) and the variance
of x.

Higher Order
Sample Moments

6
Higher
a.nd Cross Product
Moments
and Distributions

Higher Order Sample Moments

So far we have restricted our attention to the first two sample moments:
the arithmetic mean and the sample variance. Let us write a function to
calculate the rth sample moment about the mean, where r is greater than or
equal to 2. Mathematically, what we want to calculate is

Lf(Xi - i)rI(N - 1)

From what we have learned so far, we can write the answer down. Try
doing so by working outwards from (Xi - i) in the mathematical expres­
sion. Thus, write down on a piece of paper

First effort:
Second:
Third:
Fourth:

X-MEAN+(+/X)fN
~(+/(X-MEAN+(+/X)fN)*R)

M+(+/(X-MEAN+(+/X)fN)*R) • (N+ p ,X)-l
V~R 1-1NTS X

[1J ~(+/(X-MEAN+(+/X)fN)*R) • (N+ p ,X)-1
[2J V

72

Now that we have it defined, let's try using it. Try

3 MNTS X

22.245

4 MNTS X

570.82

5 MNTS X

1477.1

6 MNTS X

20467

6.1 Some Useful Distributions (Binomial, Poisson) 73

First effort:
Second:
Third:

Covariance

We have a function that produces an explicit result and has two arguments.

Covariance

Another simple function we can write down is one that calculates the
covariance between two arrays. The mathematical statement is

Cov (x, Y) = Li"(Xi - i) (Yi - y)/N

= Li"xiYJN - iji

where i, Yare the means of the arrays x and y. Try to write down the APL
expressions on a piece of paper.

«X+.xY)~N)-«+/X)x(+/Y»~N*2

«X+.xY)-«+/X)x(+/Y»~N)~N+p ,X
\/C+X COV Y

[1J C+«X+. xY) -« +/X)x(+/Y))~N)~N+ p ,X \J

To use this new function, we will need another array, say Y. Type in

X+1 2 3 -4 5 -6 -7

Y+2 4 6 8 4 2 6

X COV Y

-2.7347

Y COV X

-2.7347

6.1 Some Useful Distributions (Binomial, Poisson)

One of the first distributions that you would encounter in your studies of
statistic.s would be the binomial distribution, which has associated with it
the ubiquitous binomial coefficients.

Binomial Coefficients

Binomial
Coefficients

Mathematically, we define the binomial coefficient by

(;) = (n ~~)! r!

for r = 0, 1,2, ... ,n, and where n! = 1 x 2 x 3 x ... x n, r! = 1 x
2 x 3 x . . . X r. and (n - r)! = 1 x 2 x 3 x . . . x (n - r). The nota­
tion n! is called n factorial. As you may recall, the term (~) represents
the rth term in the expansion of the polynomial (a + b)n. The binomial

74

Binomial
Probability
Distribution

Factorial Function

Combination of R
Things N at a Time

Higher and Cross Product Moments and Distributions

probability distribution is given by

(~)pr(l _ p)n-r

where 0 < p < 1 is the probability of some event occurring, and
(~)p r(1 - p)n-r is the probability of getting r successes in n independent
trials. (~) is also the number of ways that n objects can be combined r at a
time.

In APL, factorial and combinatorial functions are handled very simply.
We use !, "shriek," or the exclamation point, which is keyed by upper
shift K, backspace, period. Thus, !, as a monadic function, produces N
factorial by executing ! N. Try

! 3

6

! 5

120

Now try:

!O

1

!6

720

! ! 3

720

The combinatorial function that we just discussed is obtained from the
dyadic use of!, that is, (~) or the number of combinations ofr things takenn
at a time is given by R! N. R must not exceed N, otherwise the result is zero.
Try.

3!5
10

O!5
1

5!5
1

Binomial Distribution

Using ! we can write a function to yield binomial probabilities as defined
by (~)pr(l - p)"-r; indeed we can just write the function out. Try the
following:

Binomial
Distribution

6.1 Some Useful Distributions (Binomial, Poisson)

\JPR-+-N HI P

[lJ PR+ (R!N)x(P*R)x(l-P)*N-R+O,tN

[2J \J

75

X = 0, 1,2, ... and e = 2.718 ...
Poisson Distribution

PR..ls a result array with n + 1 elements in it, where the rth element is the
probability of r successes in n independent trials. In BI, R is computed to
be an (n + I)-element array with elements 0, 1, 2, ... ,n. Try

5 BI .5

0.03125 0.15625 0.3125 0.3125 0.25625 0.0312S

5 BI .2

0.32768 0.4096 0.2048 0.0512 0.0064 0.00032

5 HI .8

0.00032 0.0064 0.0512 0.2048 0.4096 0.32768

Probabilities are meant to sum to 1. If we have done a reasonable job of
calculating these probabilities, we should be able to add them up to get 1.
Let's try:

+/5 HI .5

1

+/5 HI .2

1

Poisson Distribution

Another important discrete distribution is the Poisson distribution with
mean value M. The probability distribution is defined mathematically by

e-MMx

X!

An APL function that generates Poisson probabilities is easily written. One
minor problem is that we cannot write a routine to give all the probabilities,
because that would mean an infinite array length; even APL finds that
difficult! Let us compromise and specify that we want only the first N
probabilities. This suggests that we define a dyadic function. Consider

\J PR+N POISSON M

[lJ PR+(*-M)x(M*X)~!X+O"lN

[2J V

X is an (N + I)-length array, as is PR, which contains the probabilities of
0, 1, 2, ... up to N successes in an infinite number of trials.

76

Cumulative Poisson
Distribution

6.2 Histograms

Histograms

Higher and Cross Product Moments and Distributions

For example,

5 POISSON .5

0.60653 0.30327 0.075816 0.012636 0.0015795 0.00015795

One frequently wants the cumulative probabilities, that is, the sum of the
probabilities from 0 to R, 0 < R :s; N, for the binomial distribution, or 0 toR
for some integer R for the Poisson distribution. Thus, the SUID of probabil­
ities for 0 to R gives the probability of no more than R successes. Corre­
spondingly, the probability of at least R successes is 1 - Lf-lPRi. Let us
use our binomial probability function to generate an array of cumulative
binomial probabilities. This involves the use of a primitive function that we
haven't used very much, \, scan (typed by striking upper case I); see page
28 for its definition. The function we require is

\/CB+N CUMBI P

[1J CB++\N BI P

[2J \J

Note that we have a function inside a function, which is perfectly okay.
This is referred to as one function calling another. In fact, a function can
call itself. That technique is called recursive programming; it is an interest­
ing subject, and Barron [1968] is a good reference. Returning to cumulative
probabilities, let's try

5 CUMBI .5

0.03125 0.1875 0.5 0.8125 0.96875 1

5 CUMBI .2

0.32768 0.73728 0.94208 0.99328 0.99968 1

It is a trite saying that a picture is worth a thousand words. That doesn't
stop us from repeating it, and noting that in programming it seems that to
get one simple picture we need to use 10,000 words. This is not so in APL.
Let us write a simple program for getting a histogram from an array of
absolute frequencies. Because the number of entries in some cells may be
very large, it would be useful to have a simple way of scaling the histogram
down so that our plots do not take up pages and pages of output. For
example, if we have a set of absolute frequencies whose sum is 100, divid­
ing each frequency by 10 and rounding off should produce a useful histo­
gram.* Suppose that we have an array F of absolute frequencies. Consider

'V G+S HIST F;M;K

[1J ~r/F+ L O.S+FtS

* This routine is adapted from K. W. Smillie [1969, p. 20].

6.2 Histograms

[2J G+('. '),(r/K+(F~)/lpF)p' ,

[3J G[K+l]+'T'

[4J G

[5J -+(O<fl¥:-M-1)/2

[6J (1+ pF)p' .. '

[7J G+10

[8] V

An example of the use of HIST is given by

F+3 8 10 20 9 7 4

8+2

S HIST F

T
T
T
T
T

TTT
. TTTTT
.. TTTTT
.TTTTTTT
.TTTTTTT

77

Dyadic Functions
Maximum, r" and
Minimum, L

You will notice that the function starts by plotting a T in the position of the
largest frequency first, and then moves down toward the lower frequencies.

In the first line, the operation L0 .. S+F+S divides each frequency by S,
adds 0.5 and rounds down to the nearest integer. In short, this procedure cor­
rectly produces the usual rounding-off of numbers to the nearest integer
after division of F by the scale factor, S. If F /S is 4.2 or 4.5, La .. S+Ff~C;
produces 4 or 5, respectively. The rounded numbers are restored in F.

Dyadic Functions Maximum and Minimum

The dyadic operation r/F finds the maximum of the array F and stores
the result in M. r/F is equivalent to

f 1 rf2 rf3 • • •

and the dyadic use of the symbol f, called maximum, is to produce the
larger number of each pair compared. Thus

3rs

5

78 Higher and Cross Product Moments and Distributions

Sf3

5

y

2468426

fly

8

The symbol L, in its dyadic mode, is the minimum function. So line [1J in
HIST produces an array F of scaled and integer-rounded frequencies and
stores the largest frequency in M .

Dyadic Function Reshape

Line [2J of HIST introduces the dyadic use of p, called reshape. It is
keyed by striking upper shift R. The operation NpV will make V into an
array of length N. If V is too big (too many elements), then only the first
N elements of V will be used, and if V is too small, the elements of V will
be repeated in sequence until the newly created array is of length N. Some
examples of this function are

2 p Y

Dyadic Reshape p 2 4

7 P Y

246 8 4 2 6

9 p Y

246 8 4 2 624

4 P 3

333 3

4 P tAt

AAAA

1 p 2

2

p 2

p A+-1 p 2

1

Nine is greater than the number of elements
in :t: so the two extra elements came from
the beginning of 1':

Keep this result in mind for the
next paragraph.

Compare these last three examples
carefully.

Character Arrays Line [2J of HIST uses the symbols' '(upper shift K). The use of a pair of
quotation marks, as you probably remember, tells the computer to regard

6.2 Histograms 79

whatever is between them as an array of "literals," that is, characters that
are not to be executed. Thus we get

4 p , t

3 p 'T'

TTT

3 p , ,

&&&

and so on.

Logical Functions

LogicaL Functions <, In line [2J of HIST the left-hand argument to the dyadic function p is
~, = , ~, >, ~, 1\, 'N, V , (r /K+(F~) /1 P F). The result is an integer, although at the moment it all ap-
¥ pears to be highly mysterious. The operation IpF, you may recall., pro­

duces the array of index numbers 1,2, .•. ,pF, where pF is the number of
frequencies.

The expression (F~M) introduces a new type of primitive function, the so­
called logical functions. Other examples of logical functions are: >, <, $, =,
;t, etc. Essentially, the logical function asks a question, say, Is the relation­
ship a < b true or false? If true, return a one, if false return a zero. For
example,

3 < 1

a

5 < 3

0

4 ~ 4

1

2=1+1

1

2;t3-1

0

You see that the output of a logical function, the result if you like of a
logical comparison, is either 0 (false) or 1 (true). In our example, F is an
array and M is the maximum value of the elements in the array F. If F has
only one maximum, say in the Ith position, then (F ~ M) produces an
array of the same length as F with O's everywhere except in the Ith posi-

80

Logic Functions
in Flow
Systems

Higher and Cross Product Moments and Distributions

!ion, which contains a 1. That is, (F ?=.-M) looks like 000 1 0 O. Try, for
example

3<1 2 3 4 5

00011

10>1 2 3 4

1 1 1 1

A second group of logical functions not only produces results that are
either 1's or O's but also requires that the arguments ofthe function be 1's
and o's. These logical functions are: 'or' v, 'and' 1\, and 'not' ~. To see
how these functions work look at the Truth Table for FfM

Truth Table

F M V 1\ \I A

1 0 1 0 0 1

1 1 1 1 0 0

0 0 0 0 1 1

0 1 1 0 0 1

The table gets its name from the fact that a statement like, "the mean ofx
is 22.3 and x has a variance of 2.3" is true if and only if both parts of the
conjunction are true. We could have a long series of 1\ (and's) and for the
statement to be true (result in a 1) every element would have to be true (be
a 1). The statement, "the mean ofx is 22.3 or the variance ofx is 22.3," is
true if either part is true. We use the symbol - (not) to change a 1 to a 0, or
a 0 to a 1. And if v or 1\ are overstruck with - the results are "negated."

These logical functions have many uses outside of symbolic logic. For
example, in modeling material or traffic flow you may have a process that
can be diagrammed as

Here to stop the process you need to have both F and M stopped. To
obtain flow, either one needs to be on. If the system looked like

.
both F and M would have to be on to obtain production or flow and either
could be off to stop it. You can see the direct relation between these
situations and our logical functions. Mter we show you the compress
function we will show you some numerical applications of these ideas.

6.2 Histograms 81

Compression /

Compression

We can now consider the dyadic use of /, which is called compression.
The left argument must be composed of l's and O's only. Both arguments
must be arrays of the same length, except that the left-hand side may be a
scalar. What happens is this. Given an array, say A, of O's and 1'8 on the
left-hand side, and an array, say B, of equal length on the right, then A /B
produces an array whose length is equal to the number of 1's in A.
Whenever ai is 0, hi is dropped, and whenever ai is 1, hi is retained. For
example,

A+O 0 1 0 1 0 0 1

B+1 2 3 4 5 6 7 8

A/B

358

l/B

123 4 5 678

O/B

The blank space after 0/B means that the 0 compression ofB is an empty
vector which, when you consider the matter, is natural enough.

Back to the expression (r /K+(F?:M)/l pF). What is put into K is the
array ofindex numbers where F has maximum frequency. r/K picks out the
largest of these index numbers. This determines the number of blank
spaces to be catenated to the symbol' . ' . This completes line [2J of BIST.

Line [3J gives rise to no difficulties. K is an array (even if it has only one
element), of which each element is an index number of the array F which
has maximal value. What line [3] does is to put the character T, or the
literal 'T' in each position indicated by the index numbers K + 1, recogniz­
ing that the first element of G is ' . '. Line [4] merely prints G.

Line [5] decides whether to continue to line [6] or go back to line [2].
What this routine does is to start at the top of the histogram and work its
way down to the bottom, so line [5J first reducesM by 1. If the value ofM
is greater than 0, then 1/2 gIves 2 and +2 means go to line l2 J . IfM reduced
by 1 is less than 0, then 0/2 gives an empty array. The computer interprets
such a statement as one to be ignored, so it continues to the next line.

Every time M is reduced, more frequencies become eligible to be bigger
than M, so more T's will be printed.

Line [6J, reached whenM has been reduced to -1, merely prints a row of
periods across the bottom of the graph. Line [7] makes G an empty array
and the routine is ended. The reason for this is that ifG were not redefined
as an empty array, the completion of the function would print the contents
of G, since an explicit result is specified in the function header.

You might note that this routine has three dummy variables-G, S, and
F; two local variables-M and K; and no global variables. Try the follow­
ing examples:

82

Dyadic
Compression

Higher and Cross Product Moments and Distributions

8+-10

F+-1 6 28 42 23

S BIST F

T
TT
TTT

TTTT

F+O 0 0 0 0 1 0 1 5 10 17 21 20 15 7 3 0

3+-10

S BIST F
TTTT

TTTTTTT

S+1
S BIST F

T
TT
TT
TT

TTT
TTT
TTTT
TTTT
TTTT
TTTT
TTTT

TTTTT
TTTTT
TTTTT
TTTTTT
TTTTTT

TTTTTTT
TTTTTTT
TTTTTTTT
TTTTTTTT

T TTTTTTTTT

In some cases you may want to look at the histogram of a range of your
data, maybe the central portion, or possibly select the observations on a
series of criteria. We might have a vector INC containing a sample of
personal incomes and only want to look at those greater than $20,000 and
less than or equal to $50,000. The APL statement would be

((X>20000)A(X~50000))/X

Here we are combining the two types of logical variables and using dyadic
compression. Each operation in parentheses produces a logical vector with

6.3 The Normal Distribution 83

the shape p X. After these three functions are computed, compression
selects particular elements ofX that are both larger than 20,000 and equal
to or smaller than 50,000. This statement could have had an assignment to
a new variable F or it could have been written as

S HIST «X>20000) A (Xs50000))/X

Another situation arises in presenting statistical results and in computa­
tion in general; and that is selection of data from a larger data base. For
example, along with income we may have a second vector coded with years
of education, a third with degree status. Suppose we coded degree as O-no~

I-high school, 2-associate, 3-bachelors, 4-masters, 5-Ph.D., 6-DDS, 7-MD,
etc. Now suppose you want the income histogram of people with 16 or
more years of formal schooling or having a 2 or 4 year degree. Suppose the
data were organized on an individual-by-individual basis:

INC

15843

ED

15

DEC

2

21842

18

5

9823

12

a

13586

13

4

The first subject has an income of$15,843, went to school for 15 years, and
has an associate of arts degree. The APL statement that selects our sample
IS

«ED~16) v (DEG=2) v (DEG=l))/INC

You can select a number of complex combinations of attributes for analysis
using these techniques.

6.3 The Normal Distribution*

The most important distribution you will have to handle in statistics is the
Normal Distribution Normal Distribution. The mathematical expressions for the normal density

function f(x) and the corresponding cumulative distribution function F(x)
are:

Exp (-1/2(x - J.L)2 / (T2)
f(x) = (21T(T2) 1/2

_ IX Exp (-1/2(x - J.L)2/U 2)
F(x) - (2 2)1/2 dx,

-ex: 7TU

where Exp (.) denotes the exponential function, i.e., Exp(x) = eX.

* Remember that, as mentioned in the introduction, starred sections involve statistical material
beyond the level normally presented in an elementary course. No new APL expressions, functions, or
procedures which will be used later in the book will be introduced in these sections.

-00

84 Higher and Cross Product Moments and Distributions

Plots of the Normal (0 mean, unit variance) Density and Distribution Functions

___-===:::=::::=--- -L --======--__ x
o +00

--~----

Figure 6.1
-00 o +00

"Standard"-Normal
Density Function

Pi Times, 0

Let us define APL functions to give us the normal density and cumula­
tive distribution values for any value ofx and any value for the mean, IL,
and the variance, u 2 •

In defining our functions, let us agree to let the array P have two ele­
ments, the first of which is the mean and the second the variance. Let the
second argument be the x value at which we want to evaluate the func­
tions. Thus,

P-+-O 1

X-+-3

means that we want to evaluate a normal density function with mean 0,
variance 1, at the point x = 3. We define:

\l~-P NORMD X

[1J ~(*(-O.5x(X-P[1J)*2)+P[2J)+(OP[2Jx2)*O.5

[2J II

The only operation in this function with which you will not be familiar is
the monadic function "pi times" (0 called large circle). 0 is keyed as upper
case O. 03 produces 1T x 3 or 9.4244777961, where 1T = 3.141592654.
o P[2 Jx 2 produces the mathematical expression (21TU2) , where u 2 is the
variance.

Experimenting, we obtain

P<c-O 1

P NORMD 1

6.3 The Normal Distribution

0.24197

P NORMD 2

0.053991

P NORMD -1

0.24197

8S

Now let us get the corresponding cumulative distribution, or at least a
reasonable approximation to it.

The integral of the function P NORMD X can be approximated by adding
the areas of a series of small rectangles which approximate the area under
the density function. Let the base of each approximating rectangle have a
width specified by the user, and let the height be detennined by the func­
tion NORMD at the midpoint of the interval.

Since the normal integral is theoretically defined from -oc, to +oc, we will
have to "approximate" the end points.

Let the two arguments of the cumulative distribution function be X and
the array I. The first element ofl is the mean, the second the variance, the
third the chosen interval width in terms of standard deviations, and the
fourth the number of standard deviations below the mean at which integra­
tion starts, e.g.,

I+-O 1 1 6

indicates that the distribution has a mean of 0, a variance of 1, an interval
width of 1 standard deviation, and the integration begins at (0 - 6) == -6
on the X axis, or 6 standard deviations to the left of the origin. We define
(in several lines for clarity):

v A+I NORMC X

[1J LHS+-I[1]-I[4]xS+I[2]*0.5

[2J X-f-eX-I[lJ)~S

[3J NINT+-lex-LHS)+I[3]

[4J A+-I[3J+.xI[1 2J NORMD ee LHS+I[3J X 1NINT)-I[3J+2)

[5J v

The first line determines LHS, the lefthand side from which the integra­
tion is to start (in our example -6). Line [2J normalizes the variable of
integration, Le., subtracts the mean from the ppint where we are evaluat­
ing the function and divides the result by the standard deviation. The third
line defines NINT as the number of intervals into which the integral is to be
broken up. The last line approximates the area under the normal density.
The density function is evaluated at the midpoint of each interval.*

The procedure is illustrated in Figure 6.2.

* Note that the righthand argument in this function, X, may only be a scalar as the function is
currently defined, since if X is an array, attempted execution gives a RANK ERROR.

86 Higher and Cross Product Moments and Distributions

Approximating the Normal Distribution Function by Calculating the Area
under the Normal Density Function

(a)

Area Wanted for Answer

x

Figure 6.2
L.H.S.

Interval
Widths

(b)

2 0

Z=~
(J'

Let us check our function against a set of normal tables. Try

I+-O 1 .1 5

X+--1

I NORMC X

0.15855

X+-O

I NORMC X

0.5

X+-2.5

I NORMC X

Summary

0.99381

I NORMC 3.3

0.99952

87

Comparison of
APL-STAT
Routine to
Tabulated Values

Summary

You can see from these results that the routines are quite accurate, since
for most purposes only three significant digits is enough. Better approxi­
mation could be obtained by using a smaller value for I[3] and a larger
value for I[4].

Biometrika Tables*

Ordinate Value Density Cumulative Distribution

x Computed Table Computed Table

-1 0.24197 0.24197 0.15855 0.15866
0 0.39894 0.39894 0.5 0.5
1 0.24197 0.24197 0.84145 0.84134
2 0.953991 0.95399 0.97729 0.97725
2.5 0.017528 0.017528 0.99381 0.99379
3.3 0.001723 0.001723 0.99952 0.99952

* Values obtained from the Pearson, E. S. & Hartley, H. 0., Biometrika Tables for Statisticians,
Vol I. (Cambridge University Press, 1962, p. 104).

Higher Order Sample Moments are defined mathematically by

~r(Xi - iY/(N - 1) for r = 2, 3, ...

APL routines to calculate them are given on page 72.
Sample Covariance is defined mathematically by

Cov(X,Y) = ~r(Xi - i) (Yi - y)/N
= ~rxiyJN - iY

An APL routine to calculate it is given on page 73.
Binomial Coefficient:

(;) = (n~~)!r!
where n ! is defined by n ! = 1 x 2 x 3 x 4 x ... X n.

Factorial, ! (of an integer), (keyed by upper shift K, backspace,
period): !N produces the product xltN

Combinatorial, !, dyadic use of previous function: R! N produces
the binomial coefficient (~) defined above.

The binomial probability distribution is defined by

e) pr(l - p)n-r

for r successes in n trials, where probability of a success is p. An APL
function to calculate it is given on page 75.

88 Higher and Cross Product Moments and Distributions

The Poisson probability distribution is defined by

x = 0, 1, 2, ... , and e = 2.718 .

An APL function that calculates the probabilities is given on page 75.

Maximum, f, (upper shift S): dyadic function which picks the
larger of its arguments.

Minimum, L, (upper shift D): dyadic function which picks the
smaller of its arguments.

Reshape, p, (upper shift R): dyadic fUllction which rearranges
righthand argument into an array with the number of elements determined
by the lefthand argument.

Quotes ' ',(upper shiftK): entries between quote symbols are
treated as characters, or literals, not as digits and numbers, or variable
names, or APL functions.

Logical functions «,:S;, >,~, =, ;t;): dyadic functions which com­
pare left and right arguments. If the stated relation is true for the arguments
compared, a 1 is produced by the function; otherwise a a is produced.
Examples:

3<4

1

4<3

o

Logical functions (1\, 7\:, v, It!): dyadic functions which produce
binary results as indicated in the truth table on page 80.

Compression, /: dyadic use of reduction. Left argument must be
either 0, 1, or an array of O's, 1's equal in length to righthand array
variable. Output is an array of length equal to the number of l' s and whose
elements are the elements of the righthand array selected according to the
position of the l' s.

EXAMPLES:

1/1 2 3

123

1 0 1/1 2 3

1 3

0/1 2 3

o 1 0/1 2 3

2

See pages 76 and 77 for an APL function that plots histograms.
In the starred section, the normal density and cumulative distribution

functions are calculated with APL routines.

Exercises

Exercises

APL Practice

89

1. Let's explore some of the uses of the logical functions. Let W+?20 P 5
and K~'AN APPLE A DAY KEEPS THE DOCTOR AWAY'.

(a) W=5

(b) W < 14

(c) W~l

(d) W?:.7

(e) 'A t =K

(f) 'P t =K

(g) 0 > W

(h) w~o

(i) 'K';r.K

(j) +/ 'E' =KHow many E's do we have in K?

(k) +/W=3 How many 3's do we have in W?

(1) Find the frequency of 2 in W.

(m) F*-(+/W=l), (+/W=2), (+/W=3), (+/W=4), (+/W=5), the row of
absolute frequencies.

(n) W=' K'

(0) W=K

(p) X-. =3; the same result in (K).

(q) +/W+. $3; the number of elements of W that are smaller than or
equal to 3.

(r) FR+F+pW; a list of relative frequencies.

(s) +\FR; the cumulative distribution of W where F is defined in (m).

2. The Maclaurin's series for the cosine of X in radians is given by

XU Xl X4 XG XS
cos X = Of - 2f + 4T - 6T + Sf - · · ·

Use the relations

sinX == VI - cos 2 X

sinX
tanX = -­cosX

1
cotan X == tan X

to find the sine, cosine, tangent and cotangent of 30°. (Hint: use only
the first twenty terms of the series. 1 degree == 3.14/180 radians)

3. Show that
(a) ~~(-1)j(f) = 0 for N = 50, j = 0, 1, ... , 50.

(b) ~<i(f) = 2 for N = 50, j = 0, 1, ... , 50.

90 Higher and Cross Product Moments and Distributions

for N = 50, j = 1, 2, , 50.

for N = 50, j = 1, , 50.

forj = 0,1 ,20,r = 20,K =: 30,N = 60.

for N = 50, j = 0, 1, ... , 50.

(c) 'Lrj(f) = N · 2N - 1

(d) ~f(-l)j-Ij(f) = 0

(e) (~ = ~bGK) (~_jK)

(f) (~:V) = Lg(f)2

(g) "L}OLJe-L/j! == 1 for L = 5,j = 1, ... ,10.
where == means 44approximately equal."

(h) (~) = fJ-l) + fJ=l)

(i) (~) (M~k)/(~) = (ff) (A'-=-'~)/(~)

for r = 25, M = 20, N = 15, K = 10.

4. An interesting fact is that you can express the relational logical func­
tions <,~, =,~, >,~, in terms of,....., v, ¥, A, 1'<, when the arguments are
binary variables. For example, whenA andB are either 1or O,A>Bcan
be expressed as AArvB. In order to see these relationships more clearly,
write all of the relational logical functions in terms of ""', A, and v.

* 5. Evaluate the integral

F(x) = fo
3

x 3dx, using X+-(1 30) t10

(e) A+.!B

(f) A=.=B

(g) A-. =B

6. In general, for any two arraysA andB with equal numbers of elements,
and any two binary functions 4)" and 4'g", the expression AI· gB
(the inner product ofA and B) produces a scalar of the following form:
(AIgBI)!(A2gB2)!(A3gB3)!· · .. For A ~ 2 3 5 6 andB ~ 455 6, try the
following:

(a)A+.xB

(b) Ax. +B

(c) A+. =B

(d) A=.+B

7. Consider the function f(X) = lOX - X 2 where X+-O, 110

(a) First find the integral folo
f(X)dX algebraically.

(b) Write a function that will calculate the same integral utilizing Sim­
son's Rule which is to be explained below: Simson's Rule divides
the interval (0, 10) into an even number ofN subintervals, namely,
SIX, 02X, · . · such that SIX = Xl - X o = X 2 - Xl' 03X = X 3 ­

X 2 = X 4 - X 3 • • • The area under the curve will be given by the
sum

SIX f(Xo) + 4f~Xl) + f(X2) + S:0" fC¥2) + 4f~X3) + f(X4)

+ SsX f(X4) + 4f(Xs) + f(X6) + . . .
3

(c) Write a routine that will calculate the same integral utilizing the
Trapezoidal Rule.

Exercises 91

.l'3

Y Simpson's rule for f: f(x)dx

o
_..- ..-__~~-----L------L------L------i~X

Figure 6.3

Trapezoidal Rule: Divide (0, to) into N equal intervals 5tX, 52X,
53X, ... Use the formula

Figure 6.4

Y Trapezoidal rule for I"
(f

o a b
x

(d) And lastly, use the usual rectangular rule, discussed in the text, to
calculate the integral. The rectangular rule uses the formula

5tX . !(Xt) + 52X . !(X2) + 53X' !(X3) + ...

(e) Which method gives you the most accurate result? which the
least?

(f) Which method is more appropriate for
(a) Convex functions?
(b) Concave functions?

92 Higher and Cross Product Moments and Distributions

Figure 6.5 Illustration
of a Concave and a
Convex Function

[(x)

? Com, F""",,

[(x)

x

(Concave Function

x

Statistical Applications

1. Here is a function that gives you the Rth sample moment about the
mean.

V M+R MNT X;N;M

[1] N+-p ,X

[2] M+-(+/x)+N

[3] M+-«X-M)*R)+N-1

[4] v

(a) Which variables are local?

(b) Which variables are global?

(c) Which variables are dummy?
(d) Which variable is the result?
(e) Define X~ -3 -2 -2 -1 -1 -1 0 00 0 1 1 1 2 2 3 and find the first

four moments of X.

(t) Delete the first -1 fromX to get a list of length 15 and repeat (d).

(g) Compare (d) and (e).
(h) Given that the first four moments ofN(O, 1), a normal distribution

with zero mean and unit variance, are 0, 1, 0, 3, compare the
results in (d) with the population moments of an N(O, 1) variable.

2. Use the binomial function (page 75) to solve the following problem.
Thirty percent of the people in Barrington, lllinois, have blue eyes.

In a random sample of 10 find the

Exercises 93

(a) probability that exactly 5 have blue eyes.
(b) probability that no more than 5 have blue eyes.
(c) probability that fewer than 5 have blue eyes.

(d) probability that at least 5 have blue eyes.
(e) probability that no fewer than 5 have blue eyes.

3. Let the variahle X take the values ± ~, ± ~, ± 1with equal probability,
and let Y = X2. Verify that cov(X, Y) = 0, Le., X and Yare not
correlated, though they are obviously dependent since Y = X 2

•

4. The probability of getting the first success on the kth trial is given by
f(k) = p(1 - P)k-l (geometric distribution) where p is the probability
of a success ill single trial. If the probabilities of having a male and
a female offspring are equal, find the probability that a family's
fourth child is their first son.

* 5. Let f(X) = e-x , X > 0, be a probability function. Use the terminal to
search for a value of X, call it X 0, such that fsoe-xdX = ~, i.e.,
the probability that X < X o is equal to 50%. (Hint: use
X ~ (LIOO) -;- 100, the scan operator, and the rectangular rule de­
scribed in exercise 7 (d), of this chapter.)

~l:. 6. Use the Poisson and the binomial distributions (page 75) to verify
the following statement, "The one distribution approximates the other
whenever the sample size is very large and the probability of success
is small." In light of this statement find the probability that exactly two
out of a 100 full-time traveling salesmen will be involved in a serious
automobile accident during a year if the probability of one driver
being involved in an auto accident during a year is .01. (See exercises
7 and 8.)

7. Write a function, name BI TABLE, that will construct the binomial
tables for N == 2, 3, ... , 10, R == 0, 1, ... ,N, and P == 0.05,
0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95. (Hint: use the N BI P
function (page 75) and a conditional branching that will repeat the
same step for different N's and P's.)

8. Write a function, called POISSON TABLE, that will construct a table
of the Poisson distribution probabilities for M == 0.01, 0.02, . . . , 1,
... ,9.9, lO;N == 0, ... , 10. (Hint: useN POISSON M, page 75,
and the conditional branching to executeN POISSON M as many times
as needed.) Note: if the sample size is very large, e.g., 200, and the
probability of a success very small, e.g., P = 0.03, you cannot use
the binomial because it involves a lot of calculations. Instead, you
can use the Poisson with M = NP, e.g., M = (100) (.01) = 1, and N
depending on the problem.

9. Write a function that will solve the following types of problems.
In a food processing and packaging plant there are on the average

two packaging machine breakdowns per week. Assume that the
weekly machine breakdowns follow a Poisson distribution and find

94 Higher and Cross Product Moments and Distributions

(a) The probability that there are no machine breakdowns in a given
week.

(b) The probability that there are no more than two machine break­
downs in a given week.

(c) The probability that there is at least one breakdown in a given
week.

(d) The probability that there is at most one breakdown in a given
week.

10. The sample coefficient of skewness is defined as a3 == M 3/53
, where

M 3 is the third moment about the mean and S is the standard devia­
tion. Note:

if Qa > 0 the distribution is skewed to the right.
if a3 < 0 the distribution is skewed to the left.
if aa == 0 the distribution is symmetric.

Find the coefficient of skewness of X in exercises 1 (d) and 1 (e).

11. The coefficient of kurtosis measures the "sharpness" with which a
distribution peaks. It is given by Q4 == M 4/54

, where M 4 is the fourth
moment about the mean and S is the standard deviation. Find the
sample coefficient of kurtosis for the list X given in exercises 1 (d)
and 1 (e).

12. Let X+-O, 110 be binomially distributed, with P=O. 5and N=10. Use the
binomial function (page 75) to find the sample probability distribu­
tion and compare this distribution to the normal with respect to
skewness and kurtosis.

13. Repeat exercise 12 with X+O, 110 , P == 4, and N == 10.

14. Repeat exercise 12 with X+O, 110 " P == 0.6, and N == 10.

15. The joint probability distribution function of two discrete random
variables X and Y is

{
CXY

f(x, y) = 0
if 0 :5 x :5 4, 1:5 y :5 5
otherwise

where x = 0, .1, .2, ... , 3.0, ... , 3.9,4.0 and y = 1, 1.1, 1.2,
... ,3.0, ... ,4.9, 5.0.

Let X+-(0, 140) -;-10 and Y+-(Y~1) / Y+(0,150) +10

(a) Find c such thatf(x, y) is a probability distribution function, Le.,
L11L11CXiYi = 1.

(b) Find the joint probability P(l :::; x :5 3, 2 :5 Y :5 3).

(c) Find the joint probability P(x ~ 3, y :5 2).

(d) Find the f(x ; y == 2), i.e., the conditional probabilities of x when
y = 2.

Exercises 95

(e) Find the conditional expectation E(x; y = 2), i.e., find the condi­
tional mean value of x given y == 2.

(f) Let Z ~ 2 + (3 x X) + 4 x X * 2, (Z = 2 + 3X + 4X2
). Find

E(Z; Y == 2), i.e., the mean value of Z given Y == 2.

(g) Find E[(X - E(X))2, Y = 2], i.e., the variance ofX given Y == 2.

(h) Find the standard deviation ofX given Y = 2, i.e., the square root
of your answer to (f).

16. Refer to exercise 15 and note that for a given value of Y we get a
vector of probabilities of X hence the corresponding values for
E(X) and the variance of X. Find the variance of X for Y == 2 and
Y == 3. Are the two values the same?

17. The following table shows the number of days in a 50-day period on
which X automobile accidents occurred in a city.

Number of
Accidents

o
1
2
3
4
5
6

Number
of Days

f
30
14
3
2
1
o
o

50

Compute:

(a) The mean value of the sample (X).

(b) The variance.

(c) The standard deviation.

(d) The coefficient of skewness.

(e) The coefficient of kurtosis.
(0 Assume that we want to compare this sample distribution to the

theoretical Poisson distribution with Y:= prob (X accidents) ==
MXe-l~f/X!, where we replace M, the mean value of the theo-
retical distribution, with the sample mean X. Find Y for X = 0, 1,
2, 3, 4, 5, 6. Find the theoretical number of accidents (i.e., 50
times Y).

(g) The theoretical variance is equal to M (which in this case is
estimated by X). Is the sample variance equal to X?

(h) Why might we wish to compare the sample distribution of acci­
dents with the theoretical Poisson distribution?

18. Put the HIST function (page 76) into your workspace. Let F+(1. 35) ,
('1. 35), and then try

96 Higher and Cross Product Moments and Distributions

(a) 1 HIST F

2 HIST F

3 HIST F

10 HIST F

What is the difference between these 4 histograms?

(b) Draw the histogram of the number of accidents vs. the number of
days from exercise 17.

7

Data and Information­
How to Get It In and Out

7.1 Numeric and Character Arrays

We begin this chapter with a brief review. In Chapter 2 you learned how
to store numeric data in a variable name. You used the left-pointing arrow
or the specification function, +-; for example, typing A+-1 , 2 ,3,4 followed
by EXECUTE or RETURN stores this array of four numbers in locations
which can be referenced when needed by typing A. In APL you can sepa­
rate the numbers by spaces (blanks), as we have been doing, or by com­
mas. Thus you can specify the array by

A.~l, 2,3,4

Review Numeric
Arrays

A

1 2 3 4

This specification is made possible by using the comma (,) which plays the
role of the (primitive) catenate function (see pages 41-42).

Next, suppose you want to add more data to theA array, for example,
data contained in array B.

B +- 5 6 7 8 9 10

A +- A, B

A

1 2 3 4 5 6 7 8 9 10

You have joined two vectors by using the catenate function. Rather than
joining the whole vector, you might want to catenate some elements-say
the first, third, and sixth elements. You could type

A + A, B[l, 3, 6J

A

1 2 3 4 5 6 7 8 9 10 5 7 10

97

98 Data and Information-How to Get It In and Out

A +- A,B[1&3&6J, would give the same result, and is more usual and per­
haps quicker. Remember that our last definition of A was A +- A, B, so the
above operation is equivalent to A+-A~B,B[l,3,6J. You can display ele­
ments of an array in the same way. For example:

A[l 3 10 4J

1 3 10 4

or

B[6 6 2 1 1J

10 10 6 5 5

So far we have stored and retrieved numerical data. We can store
character information with the same commands. To store the alphabetic
string ECONOMETRICS in vector C, we use the function quote' 1 (upper
case K). Type

C +- 'ECONOMETRICS'

C

ECONOMETRICS

{
enclose the string of characters
with a single quote at each end

Review Character
Arrays

DOMAIN ERROR

LENGTH ERROR

You could also store the characters of a course name and number:

C +- 'ECONOMETRICS 801'

c

ECONOMETRICS 801

Now suppose that you wanted to alter the string, changing just the course
number. You might try

C[2J +- 802

This would yield

DOMAIN ERROR

C[2J +- 802
/\

or, you might try

C[2J +- '802'

and you would get

LENGTH ERROR

C[2] +- '802'
/\

Let's see what has gone wrong. How many elements are contained in C?

7.1 Numeric and Character Arrays

You can ask the computer:

pC

99

Display Numeric and
Character Data on
One Line with ;

16

Each letter, each number, and all blanks (in this case one) are separate
elements. Remember that the p command tells us the "shape" of an
array-the number of elements that it contains. Also recall that t 801 ' is not
a number, but is three characters, viz., 8,0, 1. We are not able to perform
arithmetic with characters.

When you attempted to replace the second element of the character
vector C with the number 802, you were told that numbers are not in the
domain of characters. The attempt to enter the three characters' 802' into
the one character element C[2J caused a length error.

To change the course number, we could change the whole array:

C + 'ECONOMETRICS 802'

or just the last three elements

C[14, 15, 16J ~ '802'

or just the last element

e[16] +- '2'

The result in C is the same:

C

ECONOMETRICS 802

Suppose that you had a vector of course titles

A+-'ECON MATH MONEY'

and a vector of course numbers, say

B +- 802 801 800

Keep in mind that A is a character array and B is a numeric array. Now,
how would you display

ECON 802

You might try

A[1 2 3 4J, B[lJ

and it would yield:

DOMAIN ERROR

A[l 2 3 4J, B[l]

Unfortunately, you can't mix characters and numeric data. However,
there are ways around the problem. You canprint or display mixed charac­
ter and numeric data by using the·semicolon ; (upper case comma on an

100

Monadic Format l"

Data and Information-How to Get It In and Out

APL keyboard):

A[l 2 3 4J; B[lJ

ECON802

It might be tempting to try to form an array which could be used as an
array. Type

D+-A[l 2 3 4J; B[lJ

The computer displays

ECON802

and if you did not check to see the result you might believe that the array D
contained what you want. Try

D

The computer responds

ECON

The numeric portion is lost.
You might experiment by reversing the order and see if you obtain the

same result. Thus, with mixed numeric and character data, we can use the
semicolon to print the mixed array as output, but we cannot store it that
way.

It is possible to convert numerical data to character information with a
command called Monadic Format. The symbol for the operation is if; it is
formed by overstriking T (upper case N) and little 0, called jot (upper case
J). In our example,

A[l 2 3 4J, ~ B[lJ

ECON802

("' transformed B [1 J into a character array and comma catenates the two
character arrays.) You can form a new character array this way.

D +- A[l 2 3 4J, ~ B[lJ

D

ECON802

But be careful. D is a character array, not a numeric array. Try

D + 1

DOMAIN ERROR

D + 1
A

7.2 Entering Data Inside a Function

7.2 Entering Data Inside a Function

101

Entering Data
Inside a Function

Input Continuation
Using, D

When you read Chapter 4, you may have wondered how you can enter data
into a function after the function has been defined. Until now, in executing
functions, all the data have been stored in the machineprior to execution. If
you 'want to enter data' 'inside" a function, that is, without first specifying
arguments and then defining global variables to be llsed in the function, the
following procedure does ttle job.

Before we write a function that uses input in this special way, let's write
a function to compute the arithmetic mean. You did this in Chapter 4, but
let's do it again.

V XBAR -+- MEAN X

[1J XBAR + (+/X) + p,X V

To use the function, we store values into the array labelled X:

X + 10 30 5 71 15.2

MEAN X

26.24

To do it again, we could enter new data-say,

B ~ 3 5 4.1 .2031

X+-X, B

MEAN X

15.945

or

MEAN B

3.0758

Suppose that you had more data than could fit on a line. You could type,O
(upper case L, called "QUAD") after one of the numbers. For example,

LONG+7 11 232 152,0

Then press RETURN, and the computer responds:

0:

Then you could type

5 21 31 68

and press RETURN. The array LONG is

LONG

7 11 232 152 5 21 31 68

102

Numeric Input
Quad-Input
A+O

Data and Information-How to Get It In and Out

MEAN LONG

65.875

Using ,0 gives you an easy way to input data into an array when the
amount of data exceeds the line length of the terminal.

With reference to our mean function, notice that first we changed the
data and then we executed the function. Why not enter the data inside the
function? To try this, enter the function

v XBAR +- NUMEAN

[1J X +- 0

[2J XBAR ~ (+/X) p,X

[3J 'V

To execute NUMEAN:

NUMEAN

(you type, followed by RETURN or EXECUTE)

0:

(the computer responds by printing quad, to indicate that it is waiting for
your data.) You now type:

1 3 8 13 14 12.732

and the computer replies

8.622

Now try typing

X

1 3 8 13 14 12.732

We now see that +-0 enables us to define a global variable; X is global in the
above function. NUMEAN can also be used with the previously defined
global variables. Try

Y +- 1 234 5 6 7 8 9

NUMEAN

0: Y

5

which is the mean of Y:
You might be thinking, "Nice, but so what? I have to type in as much

information." True, but what if we add the unconditional transfer? The
program could be

\l XBAR+-BETRYET

7.2 Entering Data Inside a Function

Making a Program [lJ X-+{]
Interactive Using D

[2J XBAR+-(+/X)+p,Xand Branching
[3J XBAR

[4J -+1

[5J V

Now try it:

BETRYET

D:

1 2 4 5 12

4.8

D:

2 .12 .034 34.1 71

21.4508

D:

103

Terminating Quad
Input with ~

Character Input
Quote-Quad Input
A+- [!]

Wait! How do we stop it? The machine will keep asking you for input. You
might try to type ill such words as STOP, END, etc., but you will have no
luck. Try using "branch," which is the right-pointing arrow -+- (keyed by
upper case +). Now you are out of the function.

You can see how we have developed an interactive program, Le., a
program that interacts with you by prompting you. It might be easier to
calculate means in this new way, especially if you had a large number of
separate data sets and you were unsure about exactly how many sets there
were.

What about character information? We can handle it in almost the same
way, but we must use "quote quad," [!J [type quad (upper case L),
backspace, and then quote (upper case K)]. The new program might be

\J BESTYET

[lJ I+-O

[2J AGAIN: I +- I + 1

[3J DISP +- [!J

[4J X +- 0

[5J XBAR +- (+/X) ~ P,X

[6J 'THE NAME OF THE DATA SET IS ' ; DISP

[7 J 'NUMBER OF DATA SETS READ THUS FAR = I

[8 J 'THE MEAN = '; XBAR

104

Terminating
QUAD and Quote­
Quad Input
Request:

-+ for + 0
and

obackspace U
backspace T

for [!J

Data and Information-How to Get It In and Out

[9J -+ AGAIN

[10J V

Try it:

BESTYET

&&& ••• &

Notice that the response for [!] is not the same as for 0; here we get a
"blank" response! (Some systems respond with a blinking cursor, under..
score, or color.)

You name the data set by typing

CHICAGO S/4SA

0:
Then enter the data:

33.7 27.3 31.4 84.2 33.9

THE NAME OF THE DATA SET IS CHICAGO SMSA

NUMBER OF DATA SETS READ THUS FAR = 1

THE MEAN = 42.08

And again:

SAN FRANCISCO SMSA

D: 34.2 41.2 48.7 84.3 44.2

THE NAME OF THE DATA SET IS SAN FRANCISCO SMSA

NUMBER OF DATA SETS READ THUS FAR = 2

THE MEAN = 50.52

AAA

D:

Terminating Input

How does one get out of the above program? You could type any charac­
ter for the name. Then type -+ for the numeric data. To terminate the
request for quote-quad input you enter 0, then backspace, U, then back­
space, T, and then press return. This will interrupt the execution of your
function. To double-check, type

)SI

(SI == state indicator: indicates which routines are "suspended," i.e., still
trying to finish execution, and where the suspension occurs. A blank re­
sponse by the computer means nothing is suspended.)

7.2 Entering Data Inside a Function 105

Clearly this is not the only, or even the best, way to handle this prob­
lem. One advantage of introducing the problem in this way was that it gave
you another useful "'emergency" tool in your APL tool kit. But how else
might we handle this problem? Another method, which we have used
before, is the conditional branch. We can instruct the user that when he is
finished entering data to calculate means, he is to instruct the computer to
finish the operation by typing in

FINISHED

Now all that we have to do is to insert after statement [3] a conditional
branch that instructs the computer to leave this routine when it encounters
the characters FINISHED. Consider the following:

[3.5J~EXITx18=+/'FINISHED'=8pDISP

[10J EXIT:-+O

When the character string FINISHED is read and stored in DISP, state­
ment [3.5J tells the computer to go to the statement named EXIT. The
latter statement sitnply terminates the function's execution .. If DISP does
oot contaioFINISHED, then 'FINISHED'=8pDISP is an array of one to
eight zeros. Applying + / to this array (character by character) yields the
number less than 8: the logical comparison 8 = some number less than 8
also yields 0, and to gives an empty array. APL interprets "go to an
empty array" as a statement to be ignored.

Let's proceed to alter BESTYET.

V BESTYETr3DJ

[3J[3.5J-+EXITx 18=+/'FINISHED'=8pDISP

[3.6J[10J EXIT:-+OV

Don't dismay. We know that the editing of the function is not clear to you
yet. You will learn exactly how to do it in the next chapter. It is presented
here .so that you can edit the function and understand the main points
which concern entering data and branching.

Now let's retry the function.

BESTYET

NEW YORK SMSA

D:

1 2 3 4

THE NAME OF THESE DATA IS NEW YORK SMSA

NUft1BER OF DATA SETS READ THUS FAR = 1

THE MEAN = 2. 5

DETROIT SMSA

0:

106 Data and Information-How to Get It In and Out

1 2 3 4 5 6

THE NAME OF THE DATA IS DETROIT SMSA

NU/tfBER OF DATA SETS READ THUS FAR = 2

THE MEAN = 3. 5

FINISHED

& & & &•••• &

7.3 Saving Your Workspace When Using the Computer Terminal

Saving Workspace

)CONTINUE

)CONTINUE:
PASSWORD

If you are working at a terminal, you can preserve your workspace so that
your functions and variables will be available to you at your next session.
Just type

)CONTINUE

and the computer will respond

08:21:31 01/15/80

indicating that your workspace was stored in your personal APL library at
8:21:31 on 15 January, 1980. You now have stored one workspace in your
private library, and the)CONTINUE systems command also disconnected
you from the system. It is just as if you issued the)OFF command that you
used in Chapter 1, with the exception that you have preserved your work­
space in a private library. When we first introduced workspaces, we said
that they could be thought of as a part of the computer that was allocated
to the individual APL user. Now we can expand on that and think of a
workspace as a file. A computer file is an electronic analogue of a manila
file folder. So an APL workspace can be retrieved from the "file cabinet,"
loaded, updated, saved, and erased. The name of the file is the name of the
workspace.

You can establish a password in the same way in which the)OFF com­
mand was used. For example,

)CONTINUE:FARM

However, when you log-on, you must use the new password:

)1984:FARM

But now the system responds

062* 08:16:01 01/16/80

OPR: SYSTEM AVAILABLE TO 22:30

SAVED 08:21:31 01/15/80

7.3 Saving Your Workspace When Using the Computer Terminal 107

)CONTINUE HOLD

)WSID
)WSID ID

)SAVE ID

The last line would have been CLEAR WS if your previous signoffwas)OFF •
But with the) CONTINUE command, your workspace is exactly as it was when
you issued the command. You might like to know that the computer auto­
matically uses this routine if your terminal is inadvertently disconnected
from the system. When you subsequently reestablish communication, your
workspace is also reestablished, just as if you had issued the)CONTINUE
command.

As a matter of convenience, you may use

)CONTINUE HOLD

In this case the APL system recognizes the word HOLD, and the com­
munications line to the computer is held open for approximately 60 sec­
onds. This saves the next user the bother of reestablishing the communica­
tion link with the computer. If you are going to use this command, it is
recommended that the new user sit at the terminal and log-off the old user.
This avoids a computerized version of musical chairs. However, don't just
leave your terminal on in the active mode, waiting for someone to log you
off. You are probably being charged for this connect time. Also, someone
could log you off with a new password known to him and unknown to you.

It is possible to save a workspace without logging-off. The first step is to
identify the workspace with a name. This is done with the)WSID (Work­
~pace IDentification) command.

)WSID MONEY

WAS CLEAR WS

Your workspace is renamed MONEY. The computer responded with
WAS CLEAR WS, indicating the former name of the workspace. The next
step is to actually save your active workspace. The command is

)SAVE MONEY

Your active workspace is saved in your private library under the name
MONEY. Mter you issue the systems command)SAVE MONEY; the com­
puter responds

9:01:21 01/16/80

)LOAD ID

indicating that the workspace was saved at 9:01:21 on 16 January, 1980.
You can proceed with more computing after issuing the)SAVE command.

To load the saved workspace from your private library into your active
workspace, you issue the command

)LOAD MONEY

The active workspace (it could be a clear ws) that existed before the
command was issued is replaced by the workspace named MONEY. The
computer responds with

SA VED 9: 01 : 21 01/16/80

telling you when the workspace MONEY was saved. Since it is possible to

108

)LIB

)SA VE CONTINUE

)COpy

)PCOpy

Data and Information-How to Get It In and Out

save a number of workspaces, you may want to know the names of the
workspaces stored in your private library. The command is

)LIB

and the computer responds

CONTINUE

MONEY

This indicates that you have two stored workspaces in your library-one
named CONTINUE, the other named MONEY.

Whenever you issue the) CONTINUE command, the workspace is stored
under the name CONTINUE. This workspace is automatically loaded
when you sign on. If you want to save your workspace and have it auto­
matically loaded, you can execute the following command:

)SA VE CONTINUE

This command saves the active workspace under the special name CON­
TINUE. It is as if you typed)CONTINUE , but you have not logged-off the
computer.

So far we have replaced the old workspace with the new one by the use
of the)LOAD command. Another way to update a workspace is to add one
workspace to another or to add functions or variables to an existing work­
space. This is accomplished with the)COPY command. For example, you
may have a number of functions stored in one workspace and a number of
data sets stored in another workspace. The data (variables) and the pro­
gram (functions) must be in the same active workspace to perform compu­
tations. Suppose that you have a function named REGRE, which was
stored in workspace STAT. You could load it by

)LOAD STAT

Suppose that the data are stored in the workspace named DAT under the
variables names Y and X. You can add the data from DAT by

)COPY DAT Y X

The general form of the copy command is

)COpy NAME ENTITY 1 ... ENTITY N

NAME is the name of the workspace, and ENTITY represents either a
function or a variable. If the entity is omitted, all the variables and func­
tions are added to the existing active workspace. When a function or
variable conflict exists between the existing active workspace and any of
those in the copy command-that is, the same variable (or function) name
appears in both workspaces-the copy command takes precedence. The
existing values are replaced by the ones in the copy command. If you want
to be protected against possible unintentional conflicts or inadvertent re­
placements, you can protect your existing workspace by using the

)PCOpy

7.3 Saving Your Workspace When Using the Computer Terminal 109

) CLEAR

)VROP IV

command, which will not resolve any conflicts between the existing and
copied workspaces, but will notify you of such conflicts.)PCOPY will only
copy those entities for which no conflict exists.

After you have continued, saved, loaded, and copied a nUlnber of work­
spaces, it is a good idea to check what functions are in the workspace with
the)FNS command, what variables are stored in the workspace with
)VARS , and the name or identification of the active workspace with)WSID.

You can clear the workspace with the

)CLEAR

instruction. You can drop a workspace from your private library with the
command

)DROP MONEY

and the computer responds with

9:12:07 01/16/80

Private Library
)ERASE

telling you when the workspace named MONEY was dropped from your
private library. It is now impossible to retrieve that dropped workspace.
Finally, to erase a function or variable you enter)ERASE and the name of
the item(s). You can see the result of this command by entering)VARS or
)FNS.

You now know a few more ways to get data into and out of the com­
puter. Many other ways are possible, but these basic methods will get you
through many situations that you are likely to encounter in your work.

Here is an example of a terminal session that might help you to review
the concepts presented in this section.

CLEAR WS

)FNS

DATAGEN MEAN
)VARS

[lJ

[2J

[lJ

[2J

VMEAN
AVE+-(+/X)+pX

\J

VDATAGEN

X+-25?1000

V

{ function to compute mean

{

function generates 25 random
numbers from 1 to 1000 without
replacement.

{

We have two functions (DATAGEN
and MEAN) and no variables in this
active workspace.

)WSID
IS CLEAR WS

)SAVE CASH

08:42:41 01/18/80

{
!he name of this active workspace
IS CLEAR WS.

{
We saved the workspace under the
name CASH.

110 Data and Information-How to Get It In and Out

) CLEAR

CLEAR WS
)FNS
)VARS

)LIB
CASH

)COpy CASH DATAGEN

SAVED 08.: 42: 41 01/18/80

)FNS
DATAGEN

)VARS

)WSID
IS CLEAR WS

DATAGEN

We clear the workspace. Computer
responds that we have a cleared
workspace, and we have no variables
or functions in the workspace. We
have one stored workspace named
CASH.

We copy the function Datagen into
the active workspace. Remember,
we have another function called
MEAN in the stored workspace CASH.

(

We check this and note that only
DATAGEN was indeed transferred to
the workspace.

(

The name of the active workspace
is not altered by the copy com­
mand.

{
Execute the function and list the
result.

X
132 756 459 533 219 48 679 680 935
384 520 831 35 54 530 672 8 67 418
687 589 931 847 527 92

)FNS
DATAGEN

)VARS
x

)SAVE COINS

08:45:13 01/18/80

)LIB
CASH
COINS

DATAGEN

{
The effect of this has been to
create a variable X in the workspace.

{
We save this workspace under the
name COINS.

{
Note that the workspaces COINS
and CASH are not the same.

We have executed the DATAGEN
program again. The storing of a
workspace does not change the
contents of the active workspace.

X
654 416 702 911 763 263 48 737 329
633 575 992 366 248 983 723 754 652
73 632 885 273 437 767 478

Summary

)LOAD COINS
SAVED 08:45:13 01/18/80

x

111

{
We load the workspace COINS into
the active workspace

{ and list the values ofX.

132 756 459 533 219 48 679
680 9 35 384 5 20 8 31 3 5 54 { Note that the loading of X values
530 672 8 67 418 687 589 from COINS replaced the existing
931 847 527 92 values in the workspace.

)SAVE CASH
NOT SA VED, THIS WS IS COINS

)WSID

IS COINS

)WSID CASH
WAS COINS

)SAVE CASH

08:49:00 01/18/80

)DROP COINS
08:52:14 01/18/80

)OFF

The computer will not allow us to
replace the values in a stored
workspace with those in an active
workspace if the WSIDs are different.

{
Our workspace name is COINS from
our last load command.

{
We change the name of the active
workspace

{
and save it (thus replacing the
previous version stored in CASH).

{
This removes COINS from our
private library.

Saving Workspaces
on Microcomputer

Summary

LOG OFF 08:52:32 01/18/80

END OF SESSION

You can log-on and see that CASH is still stored on your private library. If
you had logged-off with the)CONTINUE systems command, you would
have a second copy of CASH in your private library under the name
CONTINUE. It would be automatically loaded when you logged-on again.

You are now at the stage where you can experiment with passwords and
the)PCOPY command in order to see how they work in practice. Appendix
D contains an explanation of one way to save your wo~kspace on a mi­
crocomputer.

We reviewed the assignment of numeric and character data. DOMAIN ERROR

was generated when an attempt was made to catenate the two types of
data. LENGTH ERROR was generated when an attempt was made to assign

c) A+-A , B [3] , A [24]

d) C+-C,D

112

Exercises

Data and Information-How to Get It In and Out

more than one character to an element in a character array. Data can be
entered into the computer from an executing function. Numeric data are
entered via Dand character data are entered via[!J. When you want to enter
more data than can be held on a line of your terminal, enter, D and press
return.

You can save your active workspace by entering the systems command
)CONTINUE . When you log-on the next time, this workspace, rather than
CLEAR WS, comes up. By typing)CONTINUE :PASS you will have to use the
password PASS when you log-on. Other uses of CONTINUE were also dis­
cussed.

Another systems command is)WSID; it allows you to display and change
the name of your workspace.)SA VE ID allows you to save the current
active workspace under the name ID. To use this workspace you enter
)LOAD ID. You could bring part of this workspace to your CLEAR WS or to
your active workspace by entering) COpy ID Y X. This would bring the Y
and X (either functions or variables) from workspace ID to your current
workspace. It is as if you loaded only X and Y. If you already had a function
or variable named X or Y, the)COPY command would cause the existing
item to be replaced. The)PCOPY instruction copies those items for which
no conflicts exist and infonns you of conflicts.

To clear your whole workspace enter)CLEAR, to erase functions or
variables from a workspace enter)ERASE X Y, and to drop a workspace
from your library enter)DROP ID. The remaining workspaces can be dis­
played by)LIB .

APL Practice

1. Let the variables A, B, C, D be

A*-l 2 3 4

B*-5 6 7 8 9 10

C+-'ABC D'

D+-'E F'

(A) Try to predict the result before entering the following operations
on the computer:

a) A,B d) C~D

b) A,B,B e) C;D

c) A, B [3] , A [4] f) c, C ; B [4]

(B) Enter the following and predict the result. If you get an error
explain why.

a) A+-A,B

b) A+A,B,B

Exercises 113

h) C+C&B

i) pB+-B ~B

e) C+-C;D

f) C+-C ~ C; B [4 J

g) C+-C ~ Zf B[5]

2. Enter the following function:

\J MEAN+MEAN

[1] HEADER+~

[2J DATA+[]

[3] MEAN+-+ /DATA -;- p DATA \j

(a) Execute the function.

(b) Use any name you choose for a header.

(c) Compute the mean of: 1 2 10 -4 6_

(d) Compute the mean of (7~8. 3)+ 1 100.

3. Display the names of all the functions in your workspace.

4. Display the names of all the variables in your workspace.

5. Display the name of your workspace.

6. (a) Why is the function MEAN computationally inefficient?

(b) How would you write it to make it more efficient?

(c) What would be the effect of putting a comma between p and
DATA?

7. In line 10 of BESTYET what would the following produce and why?

(a) -+ (c) -+10

(b) -+0 (d) -+20

8. (a) Save the current workspace under the name STAT.

(b) Erase all functions, variables and obtain a clear workspace.

(c) Enter a function that computes the standard deviation using the
result from MEAN.

(d) Compute the mean and standard deviation of the 200 element
array (0 t 10 0) ~ (2 3 x 1 0 0 ? 1 0 0) .

9. How would you ask the computer to:

(a) Copy the function CORR from the file whose name is STAT.

(b) Copy the variable Y from the file whose name is DATA.

(c) Copy the variable X from the file whose name is DA, given you
already have another variable with the name X on your work­
space.

(d) Find the correlation of X and Y, using function CORR.

(e) Store the answer in the file whose name is IE.

10. Suppose that in a file you have saved the workspace STAT which
contains some functions and some variables. Write down the neces-

114 Data and Infonnation-How to Get It In and Out

sary commands that will allow you to add variable X into the file
STAT.

11. In the function BESTYET we added the line

[3.5]+EXITx 18=+/'FINISHED'=8 pDISP

to allow for a more orderly termination of the routine. Rewrite that
line using a logical function rather than +1.

Statistical Applications

1. Write a routine that will do the following:

(a) Asks you for a number from 10 to 100. Call it N.

(b) Take a random sample of size N from the integers 1 to 5.

(c) Calculate the sample mean; call it MI.
(d) Repeat the sampling process from (a) to find a second mean called

M2.

(e) Find the mean and the variance of M 1 and M2 [in this case
(Ml + M2)/2], call it MM2. Find the sample variance of Ml and
M2 [in this case «Ml - MM2)2 + (M2 - MM2)2)/(2 - 1)], and
call this SS2.

(f) Repeat the sampling process from (a) to find a new mean calledM3,
and recompute the "average" mean and variance, say MM3 and
553.

(g) Repeat the sampling process up to the point where the difference
of the sample variances of the MMi-MMi- 1 is less than .001. How
many samples does it take?

2. Let the variables X and Y be defined as X+-YxY+-f (-4 -3 -2 2 3 4)

and the variables W+-Y-X. Write 'a function to calculate the correlation
between any two variables and use this function to verify that:

(a) X and Yare not correlated (I.e., their sample correlation coeffi­
cient is close to zero).

(b) Wand X are perfectly negatively correlated (i.e., their sample
correlation coefficient is very close to -1).

(c) In general, how would you generate two discrete random variables
that are perfectly negatively correlated?

3. The joint discrete distribution of two arrays A and B is:

A

-3 -2 -1 0 2 3

B
10 .05 .10 .18 .19 .04 .02 .01
20 .01 .12 .13 .07 .06 .01 .01

Exercises 115

(a) Compute the marginal distributions ofA and B.

(b) Compute the conditional distribution ofA given B = 10.
(c) Are A and B independent?

(d) Are A and B uncorrelated?

4. One form of the central limit theorem states that if Xh i = 1;. . . , N
are independent random variables with mean J-l and variance 0"2, and
Zi = (X - J-l)'Vn/u is the standardized X h then Zi is distributed as
standard normal (i.e., Zi has mean value 0 and variance 1). Write a
function that will give you a random sample Xl' X 2 , • • • X n of size 30
of a random variable which takes on values 1, 2, · · · 10, each with
probability .1, and calculate Zl == «X - 5.5)/\1'8.25» V30. Repeat the
process nine times and calculate the sample mean and variance of
Zl' Z2 ... Z10.

*5. Write a function that will utilize the functions I NORMC X (page 85)
and the function NORM D (page 84) to calculate the tables of the
standard normal distribution for the values of -4 to 4 in intervals of .1.
Compare your table to the standard normal tables.

6. An economist who believes in cardinal utility had to decide on one of
two dates. DateA would yield 40,000 utils* if successful and 4,000 utils
if unsuccessful. Date B would yield 70,000 utils if successful and 10
utils if unsuccessful. Chances of a successful date were subjectively
estimated to be equal for A and B. The economist was in a quandary
about what to do. (She was indifferent between the two choices.) So
she decided to compute the probabilities of success that would makeA
the preferred choice, B the preferred choice, and A and B equally
attractive on the basis of expected utility. Next, suppose that she
could be assured of receiving 8,000 utils by remaining home and learn­
ing more about APL. Which of the three alternatives would she now
choose?

Finally, assume that the probabilities were such that the expected
utilities were in fact equal. However, the economist could spend time,
and thus utils, in improving the chances of success in case B. In this
case the probability of success in A might remain the same as before,
and the chance of success in B would be larger than that in A. State a
decision rule for spending utils to improve the probability of success.
If she could buy an increase in the probability of success to 20% and
reduce the probability of failure to 80% for date B at the cost of 6,000
utils, should she do it?

* A util is an arbitrary measure of satisfaction.

8

More on Functions

Thus far we have been very careful with the definitions of our functions
and have cautioned you to be very careful in typing in the suggested APL
expressions. Now is the time to become more adventurous in our writing
of functions and to no longer worry unduly about making mistakes. One of
the delights of APL for those of us who are used to programming in
FORTRAN and similar languages is that correcting mistakes and errors is
so much easier in APL than it is in the other computer languages. We all
make mistakes, so it is reassuring to know that correcting our errors will
not be difficult.

8.1 Function Display, Correction, and Editing

You will find that you will want to be able to examine your function from
time to time and, if it is a long one with many statements in it, you will
often want to look at only a part of the function, not at all of it. Next, you
will discover that you will need to alter, if not to correct, one or more lines
in your function. So we need easy ways to display a function and to alter,
add, or delete lines in it.

The next most important task is to be able to figure out how and why
your function does not work or does not produce the results it should. This
brings us to the intriguing world of diagnostics. Let's begin with the sim­
pler task of correcting errors we know about, before we learn how to
discover the ones we don't know about.

If your typing is like ours, you made a few typing errors when entering
the function statements. As long as you caught them on the line on which
they were made, prior to pressing the RETURN or EXECUTE key, they
were easy to correct. We discussed a method of correcting such errors on
page 25. However, if you discovered the typo after the function definition
was closed off, that is, after the final 'l, you had troubles. On page 61 we

116

8.1 Function Display, Correction, and Editing 117

Function Display 0

showed one way to correct the errors. Here are some more ways to modify
your function. Let's start with your old friend from the previous chapter,
BESTYET.

To display your function, type

VBESTYET[OJ v

[lJ I+-O

[2J AGAIN:I+-I+l

[3J DISP+{!]

[4 J -+EXITx 18=+/' FINISHED' =8 p DISP

[5J X+[]

[6 J XBAR+- (+/ X) -;- p X

[7J 'THE NAME OF THESE DATA IS '.,DISP

[8J 'NUMBER OF DATA SETS READ THUS FAR = ';I

[9J 'THE MEAN = ';XBAR

[10 J -+AGAIN

[11J EXIT:--+O

\J

~ you type

computer responds

Display One or
Several Lines of a
Function [# OJ or
[O#J

As you may remember, this is how to obtain a display or listing of the
whole function. Should you want to display only one statement in the
function, for example, number three, then you can type

\JBESTYET[30J \J

and the computer prints

[3J DISP+{!]

What you have done is to open the function by typing 'VBESTYET. State­
ment [3] is displayed by using the 0 (quad) symbol, and the function is then
closed with the final V (del). If you had typed

V BESTYET[03] \J

you would have received all the function statements from [3] to the end of
BESTYET.

Suppose you want to modify a single statement, say [7]. You can type

\j BESTYET[7 J 'THE NAME OF DATA SET IS '; DISP \J

This will replace the former statement number 7 with this new one. An­
other way to modify a statement is

\j BESTYET[sO] ~ you type

[8J 'NUMBER OF DATA SETS READ THUS FAR = ';I ~computerresponds

118 More on Functions

This is the first time. that we have not closed the function. You have
opened the function, the computer has displayed statement [8], and you
are now able to modify it by typing

[8] I;' DATA SETS HA VE BEEN READ'

.[9]

~ you type

~ computer responds

Remember to Close
the Function

Now you must close the function by typing on line [9] the symbol v.
Yet another way to modify your function is to display the function and

omit the closing del.

v BESTYET[OJ

This will list your function and allow you to add a statement at the end of
the function, or to modify other function statements or to insert new
statements in your program. Let's start by adding a statement at the end.
After listing the entire function, including the final \J, the computer will
type

[12J

Insert a New Line

and you can add:

[12J 'THIS STATEl'4ENT CANNOT BE REACHED'

Next we could modify statement [9] by

~ you type to display line 9

~ the computer responds'THE MEAN =, ;XBAR

[13J [90J

'THE ARITHMETIC MEAN =, ;XBAR ~ you type a correction

~ the computer responds with
the next line number

To insert a statement between statement [2] and statement [3] you would
type

[9J

[9J

[10J

[10J [2.2J'ENTER THE NAME OF THE DATA SET'

and you could add

[2.3J 'THIS STATEMENT HAS NO PURPOSE'

[2.4J \J

Before we delete the last statement we just inserted, we should list the
function:

V'BESTYET[OJ

'JBESTYET

[1J I+-O

[2J AGAIN:I+-I+l

8.1 Function Display, Correction, and Editing

[3J 'ENTER THE NAME OF THE DATA SET'

[4 J 'THIS STATEMENT HAS NO PURPOSE'

[5J DISP*-C!]

[6J 7EXITx 18=+/'PINISHED'=8 p DISP

[7J X+[J

[8J XBAR+- (+/X)-;-pX

[9J 'THE NAME OF THE DATA SET IS' ;DISP

[10J I; 'DATA SETS HAVE BEEN READ.'

[11J 'THE ARITliMETIC MEAN = ';XBAR

[12J 7AGAIN

[13J EXIT:-+O

[14J 'THIS STATEMENT CAN NOT BE REACHED'

V

[15J

119

Statements
Automatically
Renumbered

Deleting a Line in a
Function

(Notice that the statements we entered as [2.2], [2.3] are renumbered as
[3], [4], and all subsequent line numbers are increased by two: another
reason for using line labels in branch statements!)

The last (useless) statement we added is now Number 4; we added it in
order to show you how to delete a line. On some systems we can type

[1SJ [~4J

On other systems this may not work. Instead of [L\4 J, type [4 J and hit
LINEFEED followed by EXECUTE or, on some terminals, ATTN fol­
lowed by ~XECUTE.

Ifwe decided that we want to prompt the user of this function when data
are entered, we might insert

V BESTYET [140J

[14J [4.1J 'ENTER DATA, SEPARATE OBSERVATIONS BY BLANKS AND
PRESS EXECU'1'E AFTER LAST SAMPLE'

[4.2J 'V

Display the function as rewritten once again, and note the renumbering of
the statements. Renumbering would cause problems if your branctl state­
ments referred to a specific line number, so that is why it is best to label
statements that receive branches.

For example, consider this very simple function and its change. Enter

'V TRIAL

120 More on Functions

[lJ

[2J 'END' V

~ first statement instructs computer
to execute 'END' by branching to [2]

Now alter the function as follows:

V TRIAL[-30J

[3J [1. 1 JA+-1

[1.2J V

V TRIAL[OJ V

v TRIAL

[lJ --+2

[2J A+l

[3J 'END'

\j

After change, lines are renumbered
but the branch statement is not, so
the instruction in [1] is no longer
correct.

Now try using the function with the data as before. You can treat the
function header as if it were another statement with line count 0 (re­
member: zero-not alphabetic "oh").

VBESTYET[OOJ

[0] BESTYET

[oJ BSTYET

[lJ v

<E- you type
<E- computer responds-note the next

number is not put in until you
hit RETURN

<E- you type

We have renamed the function. We could also change the "type" of the
function by altering the header in various ways. For example,

'iJBSTYET[OOJ

[oJ BSTYET

[lJ[OJ XBAR+-BSTYET

[lJ V

To erase the whole function, type)ERASE BSTYET. To reassure yourself
that it is gone, type

BSTYET

VALUE ERROR

BSTYET

/\

or type)FNS and check to see that BSTYET is no longer listed.
After you have gained a little practice you will find that your ability to

8.2 Diagnostic Procedures 121

edit your functions will become second nature. Of course, it is all very well
to be expert at editing your functions and correcting errors if you know
what has to be done. The real challenge is finding out what went wrong
with your function; even more challenging are those cases wherein you are
not sure anything is wrong, but it might be! We now come to computer
detective work: how to find errors and mistakes. As in all detective work,
there are some rules to know and some recommended procedures to fol­
low, but after that you are on your own in learning the arcane art of
computer error detection. Let's begin with some useful procedures.

8.2 Diagnostic Procedures

Diagnostics Define the function

V NEW+-ECON X

[1 J NEW+- p X-i- (+/ (1 -i- X))

[2J GEO+-(x/X)*(l~pX)

[3J V

What are the expected results? When the vector X containing 2 4 8 is
executed, the harmonic mean should be 3.4286, and the geometric mean
should be 4.

What does the computer produce?

X+-2 4 8

ECON X

3

Is this satisfactory? Of course not, but what about the variable GEO?

CEO

4

This is OK, but is this' 'test" adequate? The latter question is not easily
answered in general. First, let's alter ECON to print GEO every time it is
executed.

\j ECON[OJ

\j NEW+-ECON-X

[1 J NEW+- p X -i- (+/ (1 4- X))

[2J GEO+-(x/X)*(1-i-pX)

[3J [}-GEO V

122 More on Functions

ECON X

4

3

Is this the order you expected? If not, remember that when the function is
executed, GEO will be printed at line [3] and then NEW will be printed
upon completion of execution.

Let us now work through our routine one step at a time in order to figure
out what we have done wrong.

1. Let's write the mathematical expression we want.

N
NEW == 1 1 1

-+-+ ... +­
Xl X2 X n

for N observations on vector X. Compute the answer by hand:

3
NEW == 1 1 1 == 3.4286

2+"4+8

2. Are the data correct?

x

248

Yes

3. Now that we are reasonably sure that the error is in line [1], let's find
out exactly where it is. Try doing each part of the line separately:
a . .(1~X)

0.5 0.25 0.125

b. (+/(l-i-X))

0.875

c. pX

3

d. pX-i-(+/(lfX))

3

Now we have found a problem. Two components-each apparently
correct-fail to produce the correct result when combined. Remember that
the computer operates from right to left. So let's reexamine the entire line.
If you do, you will recognize that you need parentheses around pX.
Consider

X+(+/(l+X))

2.2857 4.5714 9.1429

8.2 Diagnostic Procedures 123

Trace; T6.

pX+(+/(l+X))

3

The function is· producing a result which we would obtain if we had written

p (Xf(+/(1fX»))

So all that we did in line [1] was to find the number ofelements in the string
(X -;- (+ /(1 -;- X))). What we really want is

(pX)-i-(+/(l-i-X»

3.4286

The Trace Function

Now let us suppose that our function is a little more complicated and
that we do not know where our problem initially occurs. In order to locate
the source of the error, we can use the "trace" function. For example,
suppose we want to print out the intermediate results in a routine called
DSTAT. In particular let us suppose that we want to examine the results of
the computations performed at lines [1], [2], and [4]. We can do this by
typing

T6.DSTAT+1 2 4

where /1 is upper case H. This allows us to see the results of each statement
listed. The numbers on the right of the + are the statements we want to
trace. In order to implement the trace operation, having first specified what
is to be traced, we merely execute the function. Before doing that, let us
display the function DSTAT, which we defined in Chapter 5 and which you
might have stored in a file after reading Chapter 7.

V DSTAT[OJ v

V DSTAT X

[1J R+(MAX+X[pX])-MIN+(X+X[&X])[1]

[2 J SD+(VAR+-(+/ (X-MEAN+(+/ X) fN)*2).;- (N+- p X) -1) *0: 5

[3J MD+-(+/IX-MEAN~~N

[4] MED+-O . 5 x +/ X[(rNf 2) , 1+ LNf 2]

[5J 'SAMPLE SIZE'

[6J N

[7J 'MAXIMUM'

[8J MAX

[9J 'MINIMUM'

124 More on Functions

[10J MIN

[11J 'RANGE'

[12J R

[13J 'MEAN'

[14J MEAN

[15J 'VARIANCE'

[16J VAR

[17J 'STANDARD DEVIATION'

[18J 3D

[19J 'MEAN DEVIATION'

[20J MD

[21J 'MEDIAN'

[22J MED

V

We need an array of nUlnbers on which to operate, so let us define

W~9 10 2 8 12 0 1 5

DSTAT W

DSTAT[1] 12

DSTAT[2J 4.517821852

DSTAT[4 J 6. 5

SAMPLE SIZE

8

MAXIMUM

12

MINIMUM

o

RANGE

12

MEAN

5.875

VARIANCE

{
called by the
Trace function

~egins the programmed output

8.2 Diagnostic Procedures

20.41071429

STANDARD DEVIATION

4.517821852

MEAN DEVIATION

3.875

MEDIAN

6.5

125

Stop; S6.

What the trace function does is to print out certain intermediate values
in a routine, as specified by the array in the statement
T~FUNCTION NAME+ARRAY. What is printed on each line is the final (left­
most) variable defined by the operator +. That is why, in tracing line [1],
we get R (the range), but neither MAX nor MIN.

The trace function will remain in force until you remove it. This is done
by typing in

TtJDSTAT+l0

That is, we instruct the computer to trace the DSTAT line numbers con­
tained in an empty array.

Before leaving trace, try:

TtJDSTAT+-O

The Stop Operator

Another very useful diagnostic tool is the stop operator, which is used in
a manner similar to the trace operator. The stop operator is activated by
typing

S~DSTAT+-1 4

and used by calling

DSTAT W

DSTAT[1J

What happens is that when DSTAT is executed, the routine stops automat­
ically at the line before the one indicated. In our example, the function
DSTAT is ready to execute the first line, but has not yet done so. When a
routine is suspended in this way, you can do a host of other calculations,
print results, etc. The function remains suspended while these other opera­
tions are being performed.

Try typing in

R

126

)SI
Suspended
Functions

Pendent Functions

More on Functions

VALUE ERROR

R

MAX

VALUE ERROR

MAX

MIN

VALUE ERROR

MIN

x
9 10 2 8 12 0 1 5

These results show that because the routine has been stopped before R,
MAX, and MIN have been defined, we get value errors if we try to display
them. The output also shows we are inside the routine, since the dummy
variable X contains the array W

In order to execute line [1], we type

-+1

DSTAT[4]

and not only line [1], but also lines 2 and 3 will be executed. However, line
[4] will not be executed, since we have a stop at [4]. If we had typed -+2

instead of -+1 above, execution of line [1] would not have been carried out,
and so the variables R, MAX, and MIN would still not be defined. The
instruction -+2 instructs the computer to go to line [2], execute it, and then
continue, executing line by line, to the next stopp~d line.

We happen to know that at the moment our routine DSTAT is suspended
just before line [4], but after a confusing terminal session, we may not be so
sure of ourselves. Fortunately, in APL we have an easy way to find out.
Type in the system command

)SI

DSTAT[4]*

51 stands for state indicator; it tells us which routines are currently sus­
pended, as well as where the suspensions have occurred. As you see from
our example, the position is given by the next line to be executed. That is,
line [4] of DSTAT is the next statement to be executed.

You may wonder: Why the asterisk, *? The reason is that it distinguishes
between suspended functions and pendent functions. Any APL expression

8.3 A Case Study in Program Development 127

can include another program function. When an APL statement cannot be
completed because a program function it called is suspended, the former
function is called pendent and the latter is called suspended. If statement
[2] in function A used function B, and statement [3] in function Bused
function DSTAT, which contained an undefined value at statement number
[1], then the state indicator would be

)SI

DSTAT[1J*

B[3J

A[2]

Suspended functions have a * and pendent ones don't.
Both suspended and pendent functions can c~use you a lot of mysterious

errors if you are not careful, so the best advIce is to get rid of them as soon
as possible. Before we show you how to do that, we will point out that
functions usually get suspended not by the use of stop commands, but
because an error is encountered which halts execution-for example, a
length, or value, or domain error.

Consequently, if your routine is stopped in its execution by an error
and you decide to reexecute after putting in a stop or a trace command,
remember first to get rid of the suspended and pendent functions.

This is done very simply. Type in

and repeat it as many times as is necessary to get a blank response to your
query

)SI

System Command)SIV

)SIV Another useful system command is)SI'V. This command provides the
same information as)SI, but in addition it gives you a list of the dummy
variables that appear in the header of the suspended function.

A Case Study in Program Development and the
8.3 Location and Correction of Program Errors

Debugging
In order to give you some idea of the problems illvolved in finding and
removing errors from a program, a process which is known as "debug­
ging, " we are going to work through a case study of writing an APL
routine for a "live" practical problem.

As you will soon see, the way in which this program was written is a
classic example in many respects of how not to write a routine; however,
it is a simple example, and at the moment that's what counts most.

128

Student's t

More on Functions

This example concerns the effectiveness of a new drug for the treatment
of duodenal ulcers. As part of the study the question was asked, "Does
this drug have an effect on the work hours lost due to the disease?"
Medical researchers collected data and decided to test the hypothesis
using the Student t distribution. Since the researchers had access to APL,
they decided to write an APL program to compute the t statistic. Here is
how they did it.

First, they went to a textbook which contained the formula for the
statistical test they wanted, as well as a test problem with a computed
result. * The equation for the test statistic they used was:

Xl - X2
t == I (Nl - l)si + (N2 - l)s~ 1_1 +_1

-V N l + N 2 - 2 VNt N 2

where Xl' X2 , 51, 5~, N I , N 2 , are the respective sample means, variances,
and sample sizes.

In the textbook problem, two small random samples were drawn-one
from freshmen, the other from seniors--of the amounts of money that
these students had on their persons. The null hypothesis was that the
average amount of money held by freshmen was equal to that held by
seniors. The alternative hypothesis was that the two means were unequal.
The following statistics were cited:

Variable

Average Amount of Money
Standard Deviation
Number of Observations

Symbol Freshmen

$1.28
0.51
10

Symbol Seniors

$2.02
0.43
12

The critical value of the t statistic at the 5% significance level for (NI +
N 2 - 2) == 20 degrees of freedom is ±2.086 for a two-tailed test. If the
computed t value is larger than the positive or smaller than the negative
value, we would reject the null tlypothesis at this level.

Here is a listing of the program written by the medical researchers:

v TTE5T[OJ v

V T+-TTEST

[lJ 5S+-51*2

[2J 555+-52*2

[3J NO+-N1-1

[4J NT+-N2-1

[5J A+-((NOxSS)+(NTxSSS))~N1+N2-2

[6J A+-A*O.5

[7J B+-((1~Nl)+(1~N2))*O.5

* The text was Hamburg, Morris, Statistical Analysis for Decision Making (New York: Harcourt,
Brace and World, Inc., 1970), pp. 347-348.

8.3 A Case Study in Program Development

[8] C+-AxB

129

How Mistakes
Begin

[9] T+-(X1-X2)+C

'V

The first two statements convert the standard deviations provided in the
examples to the variances. The next two statements each subtract one
from the number of observations. Statement [5] computes the ratio in the
first radical; number [6] takes its square root. Statement [7] computes
the value of the second radical and number [8] computes the denominator
of the ratio. The last statement computes the t statistic itself.

Notice that they took each step and broke it down into small parts, each
part getting one line. This procedure creates more lines, but it makes each
line very easy to understand. They could have put many of these steps on
one line. However, if one does that, then locating possible errors can
become more difficult.

The next step was to store the test data in their active workspace:

X1+-1.28

X2+-2.02

51+-0.51

N1+-10

52+-0.43

N2+-12

and execute the function:

TTE5T

3.6953

Since the result was the same as that reported in the text, the medical
researchers concluded that the program was functioning correctly. The
next step should have been to compute other test values and see if they
worked, too, but the researchers didn't do this.

Next the researchers decided that they would have to compute the stan­
dard deviation themselves from their raw data. To accomplish this, they
constructed a second function, although the routine could have been in­
corporated in the TrEST program. The textbook formula for the standard
deviation was

STDEV = ~}:f (Xi - X)2
N - 1

and their APL program to do this is listed below.

'V 5TDEV[DJ 'V

'V 51+-5TDEV X

C1] XBAR+-(+IX) + p X

130 More on Functions

[2J SA+ +/(XBARo. -X)*2

[3J S1+(SA*0.5)-i-(pX)-1

'V

The next step was to revise the TTEST program in order to incorporate
this calculation. Here is that revised program:

\J TTESTrOJ 'V

\J TT+TTE5T

[1J 5TDEV X

[2J NO+(p X)-l

[3J Xl+XBAR

[4J 55+51*2

[5J 5TDEV Y

~6J NT+(p Y)-l

[7J X2+XBAR

[8J 555+-51*2

[9J A+«NoxSS)+(NTxSSS))-;-Nl+N2-2

[1 0 J A+A *0 • 5

[11J B+«l-i-Nl)+(1-i-N2))*O.5

[12J C+AxB

[13J TT+-(XI-X2)-i-C

'V

Let's go through this. Line [1] executes the standard deviation func­
tion. Line [2] subtracts 1 from the first sample size, line [3] renames the
first group mean (so that its value will not be lost in line [5]), and line [4]
computes the variance from the standard deviation computed in STDEV.
Lines [5] through [8] repeat the process for the second group of data.
The remaining part of this function is the same as before. They entered a
test set of data and executed the program:

Y+-IO 20 30 40 50

X+l 2 3 4 5 6 7 8 9 10

TTEST

1.0092

7.9057

12.981

8.3 A Case Study in Program Development 131

OUTER PRODUCT
(a • g)

The standard deviation and -the t value are printed. The values obtained
seemed to be in the ball park, so they proceeded to the real data.

Even at this point in our discussion you can see that the medical re­
searchers have gotten themselves into some peculiar programming, be­
cause it would appear that they did not think ahead and plan out what they
wanted to do. For example, they wrote a separate routine to calculate
standard deviations, which they promptly resquared in TTEST. Also, if
they had considered more carefully which variables should be local and
which global, they would have been able to avoid having to store XBAR
into Xl and X2 and then taking the difference.

There is one operation in this routine with which you are not yet famil­
iar; that is the outer product operation (0 • g) which appears in line [2] of
STDEV. The symbol g represents any dyadic operator, and outer product is
always used in the dyadic mode. The operation (XBARa. -X)*2 produces
an array, each element of which is (Xi - XBAR) 2. The same result could be
obtained by +/(XBAR-X)*2. The latter approach to programming might be
preferable to the former in that it is both easier to understand and on some
systems is quicker to execute. The outer product operation (a.-) is a
most useful tool, but is probably "overkill" for our simple needs in this
routine.

The data that the researchers used are:

TREATMENT

134 5 5 5 5 2 3 4 1 5 0 6 2 3 5 5 5 525 5 354

5 5 1 1 3 5 4 5 1 5 5 5 5 0

p TREATMENT

40

CONTROL

2.5 5 0 2 2.5 1 5 5 3 5 5 5 335 5 404 0 3 0 5 1 3

1 3 5 2 5 0 1 2

p CONTROL

33

indicating the number of work days lost for each patient in the two groups
before the medication was administered. The researchers had to store
these data under the names X and 1': since the programs as written can use
only arrays X and Y as input (another reason for thinking ahead and con­
sidering carefully the use of dummy variables in the header).

X+TREATMENT

Y+CONTROL

Upon executing the program, they obtained

TTEST

132

Checking the
Results

Using APL in the
CALCULATOR
Mode

More on Functions

0.27425

0.32809

9.1397

and printed the means:

Xl

3.7

X2

2.9091

The means were correct (this was known from previous work), but the
value for t of 9.1397 seemed to be inordinately high. Now they became
suspicious. Were the data wrong? Was this a correct, even though surprising,
result? Or was there something wrong with this patchwork programming?

The t statistic function looks good in the sense that it produced results
that were corroborated from an outside source, but they did alter it after
the test. However, the standard deviation program was not checked in the
same way. The program was so simple that they did not run any test data.
The mistake they made is an example of a very common type of error. Let
us check the routine out with a simple data set that we can easily compute
by using the calculator or immediate execution mode of APL.

x

1 2 3 4 5 6 7 8 9 10

STDEV X

1.0092

XBAR

5.5

The mean is correct, but the standard deviation is wrong! The hand calcu­
lation is Standard Deviation ==

82.5

(82.5-;-9.0)*.5

3.0277

We now know that there is a problem, but not where that problem occurs.
So let's use our trace function.

TD.STDEV+-l 2 3

STDEV X

8.3 A Case Study in Program Development

STDEV[l] 5.5

STDEV[2] 82.5

STDEV[3] 1.0092

133

1.0092

Line [1] we have already checked by hand, and we also find that line [2] is
correct. So the error must occur in line [3]. Line [3] is

[3J 51+(SA*0.5)+(p X)-l

Rethinking through this line from right to left, we discover that they com­
puted (V~(Xi - X)2)/(N - I) rather than (VL(Xj - X)2j(N - 1)). We can
correct this error by editing STDEV:

\l STDEV[3DJ

[3J 51+ (SA*0.5)~(p Y)-l

[3J 51+ (SA+((p X)-1»*O.5

[4J \l

Upon executing the revised function, we obtain

STDEV X

STDEV[l] 5.5

STDEV[2] 82. 5

STDEV[3] 3.0277

3.0277

which yields the correct answer.
Remember that the trace function will stay in effect until we retract it

with the following command:

Tt:.STDEV+lO

Our next step is to retry the TTEST program with the new STDEV
program. We generate a second data set Y and run the program.

x

1 2 3 4 5 6 7 8 9 10

Y+10 20 30 40 50

TTEST

3.0277

15.811

380.03

Our hand calculation for the standard deviation of Y is correct, but the

134 More on Functions

value for t of -139.16 is wrong. Our hand calculation is

t := 5.5 - 30 := -4.9019
V83.269 V03

Consequently, TTEST, which was thought to be correct, is in fact in er­
ror. Let us compare a trace on TTEST run before correcting STDEV with
one run afterwards, and see if we get some clues as to where the error
occurs.

TTEST

STDEV[l] 5.5

STDEV[2] 82.5

STDEV[3] 1.0092

TTEST[1] 1.0092

TTEST[2] 9

TTEST[3] 5.5

TTEST[4] 250

STDEV[l] 30

STDEV[2] 1000

STDEV[3] 7.9057

TTEST[5J 7.9057

TTEST[6] 4

TTEST[7] 30

TTEST[8] 250

TTEST[9] 9.5588

TTEST[10J 3.0917

TTEST[11] 0.180889

TTEST[12] 0.33667

TTEST[13] - 72.771

72.771

Next, we run the trace function on our program with the corrections:

TTEST

STDEV[l] 5.5

STDEV[2] 82 . 5

STDEV[3] 3.0277

Problems from
Careless Use of
Global Variable

A Student's t Test
Routine

8.3 A Case Study in Program Development 135

TTEST[l] 3.0277

TTEST[2] 9

TTESTr3] 5.5

TTEST[4] 250

STDEV[1] 30

STDEV[2] 1000

STDEV[3] 15.811

TTEST[5] 15.811

TTEST[6] 4

TTEST[7] 30

TTEST[8] 250

TTESTf9] 9.5588

TTEST[10] 3.0917

TTEST[11] 0.10889

TTEST[12] 0.33667

TTEST[13J 72.771

72.771

Compare line [3] in STDEV with line [13] in TTEST. We have different
inputs (from STDEV) but the same output from TTEST. If we look at
statement [9] in the display of the function, we see that the results of lines
[10], [11], [12], and [13] are the same, even though we have different
values for the standard deviation. First we notice that Nt and N2 are
not defined in the program itself. Whatever values variables Nt and N2
happen to have will be used in the program. We need statements like Nt +­
p X and N2 +- p Y. But is this all? No. We also notice that the dummy
variable in the header of the function STDEV is used as if it were a global
variable! We should have received an error message when we tried to
execute TTEST. The reason we did not is that a global variable 81 was
defined earlier and is still floating around waiting to trap the unwary.

Here we have two more reasons why great care is "needed in deciding
which variables should be dummies in the header, which local, and which
global. It is also a warning to keep track of the globally defined variables
and to erase those no longer needed.

The rewritten program is listed below. Note in particular lines [1], [3],
[5], and [7].

\J TTEST[OJ \J

'VTT~TTEST

[lJ N1~ pX

136

Trace Routine

More on Functions

[2J NO+- (p X)-l

[3J 5S+- (STDEV X)*2

[4J Xl+XBAR

[5J N2-+- p y

[6J NT-+- (p Y)-l

[7J SSS+ (STDEV Y)*2

fsJ X2+-XBAR

[9J A+- ((NOxSS)+ (NTxSSS))+Nl+N2-2

[10J A-+-A*O. 5

[11J B +- ((l~Nl) +(1+N2))~O.5

[12J C+AxB

[13J TT+- Xl-X2)~C

\j

Running the routine with the trace operator and the test data yields

TTEST

TTEST[lJ 10

TTEST[2] 9

STDEV[lJ 5.5

STDEV[2J 82.5

STDEV[3J 3.0277

TTESTI3] 9.1667

TTEST[4] 5.5

TTEST[5J 5

TTE/5Ti6] 4

STDEV[l] 30

STDEV[2J 1000

STDEV[3J 15.811

TTEST[7] 250

TTEST[S] 30

TTEST[9] 83.269

TTEST[10J 9.1252

Summary

TTEST[11] 0.54772

TTEST[12] 4.9981

TTESTr13] 4.9019

137

Summary

4.9019

These results check with hand computation at every stage, so we can now
have more confidence in the correctness of this routine.

The new TTEST routine gives an answer of t == 1.8908 rather than t ==
9.1397 in the comparison of the treatment and control data arrays that
were defined on page 131.

Display of functions and use of quad, D, (uppershift L):

v function name [OJ v: displays the entire function
v function name [30] : displays line [3]
v function name [00] ry: displays header of function
\j function name [03J : displays functionfrom line [3] to end
v function name [4] (new APL expression): changes line [4] from

what it was to that specified
v function name [OJ: displays function and then enters next

line number ready for an additional
statement (previous last line plus one)

A line may be inserted between two existing lines, say 2 and 3, in a
function by using:

[13] [2 . 2] (APL expression to be inserted)
Deleting a line, say number 4:
[13] [4] ~ you enter [4] at line [13]

Hit Line Feed or ATTN key
Hit Execute key

If you use branches in your APL statements, either conditional or
unconditional, use line labels, not numbers.
Examples:

Unconditional Branch
Use: -+EXIT
Not: -+10

Conditional Branch
Use: -+EXITx lA > B
Not: -+10x lA > B

Computer
Diagnostic Tools

Computer Diagnostic Tools:

Trace: TIJ. function name ~ 11, 12 , ••• , In sets up a "trace opera­
tion" that will be activated every time the function is used. /1 < 12 < 13 •••

138 More on Functions

< In are line numbers. Upon function execution. trace will print each line
number, 11, 12 , ••• ,In being traced, followed by the final (i.e., left-most)
computed result of the line, which is usually the last variable defined
(assigned a value) in each line.

Trace is removed by:

T f::. function name +-1 0

Stop: S L\ function name ~ 11, 12 , ••• , lk sets up a "stop opera­
tion" that will be activated every time the function is used. 11 < 12 < ...
< lk are line numbers. Upon function execution, stop will print the first line
number listed, 1b before executing it; all prior lines will have been exe­
cuted. The computer will not execute line 11. Line 11 or any subsequent line
can be executed by typing right arrow and line number t. For example:

-+5

While the function is stopped by the STOP command, arithmetic opera­
tions can be used al1d functions called.

Stop is removed by:

Sf::. function name +-10

Any function that cannot continue executing its statements, either because
of a programming error or because of a STOP command, is said to be
suspended.

Any function that cannot be executed because it calls a suspended func­
tion is said to be pendent.

Example of the above and the use of)SI (state indicator system
command): Suppose that at line [3] function A uses function B, which is
suspended at line [5].

)SI
B[5]*
A[3J

~you type
+-function B is suspended at 5
+-function A is pendent at 3

Exercises

To clear both suspended and pendent functions, type

as many times as necessary to get a blank response from the command
)SI.

APL Practice

1. Let's investigate some of the uses of the functions you learned in this
chapter.

(a) S+[}-4+ 3

Exercises 139

(b) Type 3 x D and execute. The computer responds D:. Type 6. What
do you get?

(c) Type X+{!] and execute. Now type 1. What is in X? Type X = 1
and X = 41'.

(d) X,[!l and execute.

(e) Examine the difference between 10 p 'W', 'TAC' and
10 p'W'; 'TAC'.

(f) Let T+'20' and type T=20.

(g) Compare p" and p 'A '.

2. The following two functions carry out exactly the same operations.

'V A COM B 'V A COMP B

[lJ --+Ex lA > B [lJ --+4+2xxA-B

[2] --+Sx lA < B [2J 'LESS'

[3J 'EQUAL' [3J -+0

[4J -+0 [4J 'EQUAL'

[5J B: 'GREATER' [5J -+0

[6J +0 [6J 'GREATER'

[7J S: 'SMALLER' [7J 'V

[8J 'V

(a) What must the arguments be-scalars, arrays, or characters?

(b) What is the result of the functions?

3. The following function is meant to calculate the simple 90rrelation
coefficient between two variables X and 1':

'V R-+-X Be Y;MX;MY;NUM;DENOM

[lJ MX-+-(+/x)~ p x

[2J MY-+-(+/Y)~ P Y

[3 J NUM+-· +/ (X-XM)+ (Y-MY)

[4J DENO~(C +/C X-XM)*2)xx/C Y-MY)*2)*.5

[5] R-+-NUM~VENOM

'V

The mathematical formula for the correlation coefficient is

L.(X, - X)(Y· - Y)r = 1 l 1

YLiJ(Xi - X)2Y(Yj - Y)2

Find the two mistakes in the APL function.

4. The functionBICO was constructed to calculate the coefficients of the

140 More on Functions

expansion (a + b)n for given n, i.e., the binomial coefficients. See if
you are getting the desired result. If not, can you detect the error?

\J R+-BICO N

[1J R+-1

[2l R+(O,R)+R,O

[3J +N'2: p R/2 \j

5. Write a function that will give you the first N elements of the
Fibonacci series 1, 1,2,3,5,8,13, ... (Each number in the series is
equal to the sum of the two previous numbers.)

6. My objective was to draw a pyramid. I tried: ' 6'[1+(120)0.::;120J

and I got a tilted pyramid. Can you help me?

7. Write an APL expression that will replace with K all of the
elements less than or equal to K in a given array W.

8. The powerful jot dot operator and its uses are summarized in the
following exercises.

(a) Xo.xX+-120 (g) (X+1)0.~X (m) Xo. LL/X
(b) Xo. =X (h) Xo. *X (n) Xo. ~X

(c) Xo. > X (i) Xo. *0 (0) Xo. ~10

(d) Xo.?:.X (j) Oo.*X (p) XO.'2:15

(e) Xo. < X (k) 1 0 • *X (q) X0 • ! 3a
(f) xo.~x (1) xo.rr/x (r) Xo.*2

9. Show that the expression +/(1N) o. *2 is equivalent to (1 + N) x (1 +
2 x N) x N -7- 6 for any integer N.

10. The generalized inner product has more uses than we showed in the
text. Consider A+-3 4 5 B+-15

(a) Ax.-B (g) A! •L fA

(b) Ax. - 2 (h) A+.x2

(c) 2x.-A (i) AX.+2

(d) Br.-A (j) A+.~A

(e) Bf. LB (k) A~.*A

(f) A!. L fA

Since there are twenty-four primitive (scalar) dyadic functions, there
are 406 (2! 24) possible combillations. Good luck.

11. Enter the function TTEST (pages 135-136) on your workspace and
carry out the following tasks:

(a) Display the function but don't close it.

(b) Between lines [12] and [13] put the line

'THE T-STATISTIC IS'

Exercises

(c) Rename the function as

X TTEST Y

(d) Put the appropriate local variables in the function header.

141

Statistical Applications

1. The nicotine content in milligrams of a random sample of two kinds of
cigarettes is given below.
Brand A: 16.2 17.7 16.7 15.9 15.1
Brand B: 14.8 17.5 16.1 13.3 15.6
Use your TTEST function to find out if the two brands have on t~e

average the same nicotine content. (These are not paired observations.)

2. Ten persons engaged in a prescribed program of physical exercise for
weight reduction for a period of one month. The results are given in the
following table.

Weight (lb)

Before the program: 208 215 196 185 232 156 188 195 232 167
After the program: 205 219 185 175 207 132 195 158 198 167

Was the program effective? The program is effective if the mean
weight after the program is statistically smaller than the mean weight
before the program. (Hint: Let Y == after - before.)

3. In 1960, a sample of 300 ten-year-old boys had mean height 52.8
inches, with standard deviation 2.3 inches. In 1975, a sample of 600
ten-year old boys had mean height of 53.9 inches, with standard devia­
tion 2.5 inches. Since the samples were very large, you may take
O"I and (T~ as being known: CTr = (2.3)2 = 5.29; (T~ = (2.5)2 = 6.25 so
that Xl - X2 has a variance of (5.29/300) + (6.25/600) = 0.28. Can
we conclude that on the average the ten-year-old boys of the seventies
are taller than the ten-year-old boys of the sixties?

4. Here is a group of problems that ask you to check if the Poisson
distribution can be used to fit some data. We remind you that the
Poisson distribution is given by P(X) = MXe-Af/X', X == 0, 1, 2, ...
and that

(i) E(X) = M

(ii) VAR (X) = M

(iii) Sx = vIM
(iv) a3 = l/VM, coefficient of skewness

(v) a4 = 3 + 1/M, coefficient of kurtosis.

Notice that since a3 > 0, the Poisson distribution is skewed to the
right.

142 More on Functions

Combine the POISSON function (page 75), the MNTS function
(page 76), the HIST function (page 77), the Poisson tables of exercise
9, Chapter 5, and the coefficients of skewness and kurtosis into a
POISSON FIT function whose output will consist of
(i) The first four sample moments.
(ii) The sample histogram.

(iii) The theoretical values of X.

(iv) The probabilities ofX being greater or less than a specified value
given in the function header.

Use this function to solve the following problems:
(a) A study was made to determine whether the deaths of centenarians

were distribu~ed randomly over time. In the data below, X repre­
sents the number of such deaths that occurred in anyone day, and!
represents the number of such days in a set of one thousand days.

x 0 1 2 3 456789

f 229 325 257 119 50 17 2 o o

Fit the Poisson distribution to these data. Find the probability that
at most one death occurs on a given day.

(b) In the following table, X represents the number of shirts bought by
f men that walked into a clothing store in one day.

x 0 1 2 3 4

f 35 40 16 8

Use the POISSON FIT function to check if the Poisson distribution
fits the data satisfactorily. Find the probability that a randomly
selected customer will buy at least one shirt.

(c) The following table gives the number of times (X) that your APL
terminal malfunctioned, and the respective number of days (f)
that a malfunction occurred during a one year period.

X 0 1 2 345

f 220 80 50 8 2 0

Fit the Poisson distribution to these data and find the probability
that during a specific day you will have no problem with your
terminal.

5. The owner of a bakery knows that the daily demand for a highly­
perishable cheesecake is as shown in the following table.

Daily Demand

o
10
20
30
40
50

Probability

0.05
0.15
0.25
0.30
0.15
0.10

1.00

Exercises 143

Since the most likely daily demand is 30 cakes, he decides to cook 30
cakes per day. Assume that for each cheesecake he cooks and sells he
makes a profit of $3, while for each one he cooks but does not sell he
loses $2 (assuming that he must throw it away). (Hint: For every
number he could bake between 1 and 50, use the computer to compute
the expected profit.)

(a) Find his expected profit if he decides to cook 30 cakes. (Hint: If he
cooks 30 and sells 0 he loses $60, and this happens with probability
0.05, and so on.)

(b) Find the optimum number of cakes that he can bake (Le., the
number that will maximize his expected profit). Notice that the
profit-maximizing daily demand does not equal the maximum
daily demand.

6. A process for making steel pipe is under control if the diameter of the
pipe is 5 inches. The known value of the standard deviation is 0.015
inches. In order to test whether the process is under control, a random
sample of size 30 is taken, and the mean value of the sample is found to
be 3.0078. If a level of significance of a: = 0.01 is used, should the
process be adjusted or not?

9
Elementary Linear Regression,
Goodness of Fit, and
Analysis of Variance
(ANOVA) Problems

9.1 Introduction to Linear Regression

Simple Least
Squares Regression

Estimators of
Regression
Coefficient

Estimators of the
Variance of
Regression
Estimators

144

Let us begin with the simplest form of a linear regression model-one
found and discussed in every introductory textbook on statistics or
econometrics; some useful textbooks are listed in the bibliography at the
end of the book. The mathematical model is

Y=a+bX+U

where Y is the regressand , X is the regressor, and U is called a disturbance
term. Only Y and X are observed; U is unobserved. All textbooks assume
that you have n observations, Of, in OUf new APL language, we would say
we have two arrays of length n called Y and X.

The idea of regression analysis is to find values for a and b, say Q, b, such
that we minimize the SUlTI of squared deviations (differences) between the
elements of the array Y and those of the array Ydefined by Y = a + bX.
Mathematically, this means that h, d are given by

b == Li1(X i - X) (Yi - Y)/~(Xi - X)2
= (L XiYi - nXY)/(L Xr - n~)

where

x = L X·jn Y = }2Y·jn nXY = LY·kl.' l. , 1

a=Y-bX
Correspondingly, the estimated variance of U and the variances of the
coefficient estimators Q, b are defined mathematically by

----- -S2 = VAR (U) = ~{Yi - Yi)2/(n - 2)
------- -VAR (b) = S2(:2,(Xi - X)2)-t
~ --
VAR (a) = s2(n- t + X 2/L(Xi - X)2)
............... -
VAR (a,b) = - XS2/~(Xi - X)2

9.2 An APL Program for Linear Regression Analysis 145

Breaking up the
Sum of Squares

An important identity in regression analysis is that the total sum of
squares is equal to the sum of the regression and error sums of squares.
Algebraically, this is

~(Yi - Y)2 = ~(Yi - y)2 + ~(Yi - Yi)2
SST SSR SSE

Here SST is the total sum of squares, SSR is the regression sum of squares,
and SSE is the error sum of squares.

The coefficient of determination is given by the formula.

R 2 = SSR/SST = 1.0 - SSE/SST

9.2 An APL Program for Linear Regression Analysis

Once you have a clear and accurate mathematical statement of what you
want, you can write down the appropriate APL expression. Let us define a
little APL regression function to calculate the above statistics for any pair
of arrays Y and X.

We will define a regression routine which does not return an explicit
result, which has two arguments, and we will make sure that all other
variables used in the routine are local. Now that we know what to do, we
can easily write down (on paper) each line in sequence. As we add vari­
ables, which we want to be local, in the body of the routine, we can add the
variable names to the header. When the routine is written out on a piece of
paper, we can check it over for errors and then enter it on the terminal.

The header will start as

\j Y REGRESS X

An examination of the series of mathematical formulas listed above
shows that the calculation of b is central to the whole analysis, so let's
begin by defining B, the APL symbol representing the estimator b. The
following series of lines will give you one idea of how to go about writing a
"one-liner". Start off with the basic mathematical notion and work out­
wards from there, keeping in mind that the computer reads from right to
left. But do not expect to get everything not only right, but elegant or even
computationally efficient, the first time. Let's define B, the APL variable
for b. Each line of the text below represents a subsequent stage in fitting
together the whole line.

[lJ B +-

[1J B +­

(X-XM+

(Y+ aX X) -t/Yx XM

y+ .XX)-(+/Y)xXM~

+ /X)~N)*2

[

XM is going to be the
mean of X and is useful
to define equations
needed later

/ (N is going to be the
+ length of X and will be

used a lot below

146 Elementary Linear Regression, Goodness of Fit, and Analysis of Variance (ANOV,A) Problems

(

XSQ is the sum of
[lJ B+((Y + .xX)- (+/Y)xXM)f squared deviations of
(XSQ +- + / (X-XM+ (+/X)~N+p X)*2) x from XM, which will

also be used repeatedly

Reread line [1] from right to left, ensuring that it does what is intended and
that the parentheses match.

[2J A+ + /YfN-B xXM

[2J A+ « +/Y)~N)-BxXM

{
+/Y~N is inefficient; Y~N-Bx XM
does not work as intended

{
This is nearly right, but we will
need the mean of Y later

Regression Routine

~2J A+- (YM+- (+/Y)+N)-BxXM

Check this line, which now seems reasonable, and let's proceed to the
next. The remaining lines will give you no problems. In the preface we
computed these coefficients using .YffiX and we could have used that method
here too. X would be an N-by-2 array where the first column is composed
of Is. This method is presented in Chapter 13.

The whole program might look like this:

) CLEAR

CLEAR WS

\j Y REGRESS X

[lJ B+-« Y + .xX)-(+/Y)xXM)~ (XSQ~ +/ (X-XM+(+/X)~N~p X)*2)

[2J A+ (YM+- (+/Y)~N)- BxXM

[3J SST+- (+/ (Y-YM)*2)

[4J SSE++ / (y- (A+BxX))*2

[SJ V+SSE~ (N-2)

[6 J VB+V~XSQ

[7J VA+ ((XM*2)~XSQ)+~N)xV

[8J COV+-XMxV~XSQ

[9J RSQ+1-SSE+SST

[10J 'SAMPLE SIZE IS ' ;N

[11J 'MEAN OF X IS ' ;XM

f12] 'MEAN OF Y IS ' ;YM

[13J 'VARIANCE OF X IS ' ;XSQ~N

r14J 'VARIANCE OF Y IS ' ;SST~N

[15J 'VARIANCE OF ERROR IS ' ; V

9.2 An APL Program for Linear Regression Analysis

[16J 'COEFFICIENT OF A = , ;A

[17J 'VARIANCE OF A = , ; VA

[18J 'T-RATIO = ';A+VA*O.5

[19] 'COEFFICIENT OF B = , ;B

[20J 'VARIANCE OF B = '; VB

[21J 'T-RATIO = , ;B+ VB*O • 5

[22J 'COEFFICIENT OF DETERMINATION IS ' ;RSQ

[23J ' COVARIANCE (A, B) IS ' ;COV

Y~55 70 90 100 90 105 80 110 125 115 130 130

X~100 90 80 70 70 70 70 65 60 60 55 50

147

Sample Results of
Regression Routine

Y REGRESS X

SAMPLE SIZE IS

MEAN OF X IS

12

70

MEAN OF Y IS 100

VARIANCE OF X IS 187 .5

VARIANCE OF Y IS 525

VARIANCE OF ERROR IS 69.889

COEFFI-CIENT OF A = 210.44

VARIANCE OF' A = 158.03

T-RATIO = 16.74

COEFFICIENT OF B = 1.5778

VARIANCE OP B = 0.031062

T-RATIO = 8.95

COEFFICIENT OF DETERMINATION IS 0.88907

COVARIANCE (A. B) IS -2.1743

Now you know how to calculate: various statistics used .in simple linear
regression.

We can define Y = a+ bX, the residuals fJ = Y - Y, plot relationships
between them, calculate the variance of the estimator Y, and so on. Just for
practice, try the routine RES/D, which will calculate the residuals and Y
ready for plotting or otherwise analyzing the results. Consider

VRESIDCOJv

148

Residual Routine

Elementary Linear Regression, Goodness of Fit, and Analysis of Variance (ANOVA) Problems

\} RESID

[lJ YH+A+BxX

[2J RES+Y-YH

[3] ' RESIDUALS'

[4J RES

[5J 'COMPUTED VALUES OF Y»») >Y-HAT'

[6J YH

RESID

RESIDUALS

2.333333333 1.555555556 5.777777778 0 10 5 20 2.111111111

9.222222222 0.7777777778 6.333333333 1.555555556

COMPUTED VALUES OF Y»))) >Y-HAT

52.66666667 68.44444444 84.22222222 100 100 100 100 107.8888889

115.7777778 115.7777778 123.6666667 131.5555556

9.3 Goodness of Fit, Contingency Tables, and ANOVA Problems

Chi-Square and
Goodness o.f Fit

Chi-Square Distribution and Goodness of Fit

A number of statistical analyses of data are linked by their common
reliance on the chi-square distribution. The chi-square distribution is the
distribution of the random variable 1': defined by Y == L{Vr, where the Vi
are independent random variables, each distributed as a standardized nor­
mal. That is, it has a mean of zero and a variance of one. Stated symboli­
cally, Vi is distributed as N(O, 1). The chi-square distribution depends only
upon its degrees of freedom; in the above example, the distribution of Y is
chi-square with N degrees of freedom.

One of the first uses of the chi-square distribution you will encounter in
your statistical travels is the "goodness of fit" test. In the goodness of fit
test you are asked to decide whether an observed set of relative frequen­
cies is consistent with some theoretical predictions. So suppose that you
have the traditional k cells; there are a total ofN observations, n 1 of which
are in the first cell, n2 in the second, and so on. n1 + n2 + · · · + nk = N.
You assume that someone (maybe your favorite uncle) has given you the
theoretical probabilities Pi of getting an observation in each of the cells.
Thus PI is the probability for the first cell, P 2 is the probability for the
second, and so on, so that the expected number of entries in each cell is
NP 1, NP z, . .. ,NPk. Your task is to compare the ni with the NP i, i = 1,

9.3 Goodness of Fit, Contingency Tables, and ANOVA Problems 149

Chi-Square
Distribution

2, . . . ,k, and the statistic you calculate is written mathematically as

W = I~ (n j
~;Pj)2)

where W is distributed as a chi-square variable with (k - 1) degrees of
freedom.

The APL expression is obtained in a straightforward manner. Our inputs
to our chi-square function are two arrays, one for the ni and one for the Pi'
i == 1, 2, ... , k. So let's begin by entering them:

N~15 7 4 11 6 17

PI+-6 p -;.6

We have here an experiment to test whether a die is unbiased. On the
assumption that the die is unbiased, Pi = 1/6, i = 1,2, ... , k. This is a very
simple function, so we can build up our expression from the middle (rather,
from the most important part of the expression) as follows. Using paper
and pencil, we put down

First Stage: N-PIxN!l~+ IN

Second Stage: ((N-PIxNN~+IN)*2)-;'NNxPI

This will not do, since NN (reading from the right) has not been defined
early enough.

Third Stage: +/((N-PIx NN)*2) t PIxNN+ -tIN

Goodness of
Fit Routine

Contingency
Tables

A suitable goodness of fit routine would look something like the follow­
ing:

"V N GOODFIT PI

[lJ G+-+/ ((N-PIxNN)*2)-;.PIxNN+-+/N

[2 J 'CHI -SQ GOODNESS OF FIT STATISTIC IS ' ;G

[3] 'WITH '; (pN) -1; , DEGREES OF FREEDOM'

[4J V

Let's try our function. Enter it into the computer, and then call it by

N GOODFIT PI

CHI-SQ GOODNESS OF FIT STATISTIC IS 13.6

WITH 5 DEGREES OF FREEDOM

Contingency Tables

Now we can move on to something a little more ambitious that intro­
duces some new APL concepts. Contingency tables are generated in the
following manner. Suppose that someone takes a sample of people, or

150

Two-Way
Classification

Elementary Linear Regression, Goodness of Fit, and Analysis of Variance (ANOVA) Problems

machines, or whatever, and then classifies everyone or everything into two
categories. For example, people can be classified according to blood type
and color of eyes, machines by frequency of breakdown (i.e., once a
month, twice, three or more times) and number of defective items pro­
duced, and so on. The two-way classification produces a table of cells such
as that shown in Table 9.1.

Table 9.1. Two-Way Classification Scheme

Color of Eyes

Blood
Type

A
B
o

BI Br Gr G

In this example there are 12 (3 x 4) cells altogether. The entry in each
cell is the number of people in the sample who have the designated pair of
classification characteristics. For example, the entry in the B row and Br
column would be the number of people in the sample with blood type B
and eye color brown. Everyone in the sample has to be in one (and only
one) of the cells, so if we add up all the cell entries we get the number of
people in the sample.* Let ni.b i = 1,2, ... ,r,j = 1,2, ... ,c denote
the number ofpeopJe in the cell (iJ) , wherer andc are the number of rows
and columns, respectively, in the table. The hypothesis to be tested with a
contingency table is that the observed entries in any row (or coluInn) differ
from the expected nUlnber in the row (or column) only bv sampling varia­
tion. The expected number in the cell (iJ) is given by (ni.n,j)/N, where ni.
is the ith row sum and n.j is thejth column sum, and N is the total number
of people in the sample (see Table 9.2).

Table 9.2. Expected Number of Observations in the Two-Way Classification
Scheme of Table 9.1.

Color of Eyes

BI Br Gr G

Blood
Type

A nIl n l2 n l 3 n14 1
B n21 n Z2 n 23 n 24 :

Io n31 n 32 n 33 n 34 I n3.------- --------- ---~-------
n. l n.2 n.3 n A I N

I

The chi-square statistic for this problem is

W = I r "9 (nij - nj.njN)2
1=1 £..J=1 ni.n.j/N

which, if the assumption is true, is distributed as a chi-square distribution
with (r - 1) x (c - 1) degrees of freedom.
* Our appologies to those with blood group AB or hazel eyes, We simply wanted to keep the size
of the table down.

9.3 Goodness of Fit, Contingency Tables, and ANOVA Problems

Dyadic p: Reshape

151

Reshape p

Plus Reduction of
Rows and Columns

Our first problem in handling this situation is how to enter a table like the
one above into the computer. This reintroduces the dyadic use of p, called
the "reshape" function. Consider the following examples:

A+-2 3 p 1 2

A

1 2 1

2 1 2

B+-2 2 pi 2 3 4

B

1 2

3 4

C+-2 2 p 1 2 345 6

C

1 2

3 4

The use of reshape rearranges the array given on the right-hand side into
the shape denoted by the left-hand side. If D is an array, then E+-M N p D
will take the first n elements ofD and put them down as the first row of E,
then the second n elements ofD become the second row ofE, and so on, m
times. If there are too few elements in D, as shown in the example with
A, then the elements of D are reused from the beginning until a table of
appropriate size is created. In APL such tables are known as two-dimen­
sional arrays or tables, as opposed to the one-dimensional arrays or lists
we have been having fun with so far.

Our first task is to obtain the row and column sums. With a one-dimen­
sional array we know how to do this: +/(plus reduction). But with rows and
columns, what happens? Try

+/A

4 5

So +/ on a two-dimensional array gives us plus reduction of the rows ofA .
We get plus reduction of columns by a simple device. Try overstriking the
reduction sign with the subtract sign; thus:

+IA

333

gives us plus reduction down columns.

152

Outer Product o. x

Elementary Linear Regression, Goodness of Fit, and Analysis of Variance (ANOVA) Problems

Outer Product

Now that we see how to get row and column sums, the next step is to
create the table of entries: (ni.n.i)/N. This is most easily accomplished by
means of what in APL is called the outer product. Suppose that x and yare
any two single-dimensional arrays, say m and n in dimension, respectively,
and we want the table created' by multiplying each element of x by each
element ofy. Ifx has elements Xl' x2 , ••• ,Xm andy has elements YI, Y2' . .. ,
Yn, then we want the (m x n) table of entries given by X1Yl, XIY2, XIY3,. • • ,

XmYn arranged into an (m x n) table. This sounds like a very complicated
arrangement, but once again what looks difficult is easy in APL. The (m x n)
table we want is obtained by using the "'outer product," or jot dot product,
which is o. x and is keyed by upper case J (gives the jot), period (gives the
dot), and the multiply key. Thus we have

T+-Xo . XY

and T is the desired (m x n) table of entries. Let's try it. Recall theX and Y
that we have used before. In case you logged-off since last using them, we
have

X+-1 2 3 4 5 6 7

Y+-2 4 6 8 4 2 6

T+-Xo. xY

T

2 4 6 8 4 2 6

4 8 12 16 8 4 12

-
6 12 18 24 12 6 18

8 16 24 32 16 8 24

10 20 30 40 20 10 30

12 24 36
-

48 24 12 36

14 28 42 56 28 14 42

If you examine the entries of T you will see that the entry in the (i, J)
position is the product of the ith element of X and thejth element of Y:

Now we can create a table of entries where the (i,j) entry in the table is
(ni.n.i)/N. Let TB be the two-dimensional array of numbers nij. Write down
our first attempt at creating the table:

R+-+/TB

C+-+ITB

Line [1] gives the row sums and line [2] the column sums. The third line
obtains N by adding up row sums, and divides that into the array of column

9.3 Goodness of Fit, Contingency Tables, and ANOVA Problems 153

totals which, in turn, is multiplied element by element by the elements of
the array R. The new array is then subtracted from the original array TB,
element by element, and the result is stored in TB again to save space (the
storing of a number of big tables soon uses up all of your available work­
space). The new contents of TB contain elements such as (nij-ni.n.JIN).

The elements of the new array TB have to be squared and divided by the
elements of (Ro. x(fN++IR). Let's try again.

NT-+-Ro . xCfN+-t IR

+1+/((TB+TB-NT)*2)--'NT

To be sure that you are following all this step by step, let's actually per­
form these operations with TB.

TB+2 3 02 3 1 1 4 2

R-+-+ITB

R

6 7

C+-+fTB

c

373

NT-+-Ro .. xCfN+ +IR

NT

1.384615358

1.615384615

3.230769231

3.769230769

1.384615385

1.615384615

Chi-Square
Contingency Table
Routine

A routine for calculating the statistic of a contingency table might look
like the following:

V CONTAB TB;R;C;NT;W

[1J R++ITB

[2J C-+-+fTB

[3J DF+-(pTB)-l

[4J NT+Ro.xCfN++IR

[5.J W+-+I+ I ((TB-NT)*2) fNT

[6J 'THE CHI-SO STATISTIC FOR A'

[7J 'CONTINGENCY TABLE IS ';W

[8J 'WITH' ;DF[1]xDF[2Ji' DEGREES OF FREEDOM'

[9J V

154

One-way ANOVA

F - Statistic

Elementary Linear Regression, Goodness of Fit, and Analysis of Variance (ANOVA) Problems

This routine does not produce a specific result, and variables used as
intermediate output are made local to the function. Note that this saves
room in the limited workspace available to you. Otherwise, the intermedi­
ate products would sit around until you reused them or erased them. Let's
try it. Type in

TB~3 4 018 29 70 115 17 28 30 41 11 10 11 20

CONTAB TB

THE CHI-SO STATISTIC FOR A

CONTINGENCY TABLE IS 19.94264769

WITH 6 DEGREES OF FREEDOM

One-way Analysis of Variance

So much for testing hypotheses about contingency tables. The last type
of statistical analysis we will handle in this chapter is analysis of variance
(abbreviated ANOVA). Only the simplest types of problems will be dealt
with here. The analysis that follows is called one-way analysis of variance.

Once again imagine that we have a table of entries. Each column of
entries might represent, for example, crop yields with a given type of
fertilizer on different types of land, or each column might represent typing
speeds of various typists on a variety of machines.

If Xu represents the entry in the (i, j)th position, for example, the ith
typist using thejth machine, then X,I' i,2' ... ,i.e represent the mean
typing speeds of all typists using the first machine, the second machine,
and so on up to the c th machine-there being c machines and c colulnns.
Let i represent the overall mean, i.e., the mean of the column means.

The main concept in analysis of variance is to examine the breakup of the
total sum of squares just as we did in the regression section. Thus we
consider the identity

,,"r ,,"c (_ -)2 _ "r ,,"C (_ -)2 ,,"r ""e (- -)2
L.ii=IL.ij=l Xu X - L.ii=IL.ij=l Xu X.j + L.ii=lL.ij=l X.j - x

TSS ESS + CMSS

where TSS =: total sum of squares, ESS == error sum of squares, and
CMSS == column mean sum of squares. CMSS can be rewritten as
,,"r ~c (- -·)9 - ~e (- -)')
L.ii=1 L.if=l X'.j - x ... - rL.ij =1 ~t,j - X -.

The test of the hypothesis that there is no difference in the column means
is obtained by looking at the ratio ofCMSS/(c - 1) to ESS/(rc - c) which,
under the null hypothesis of no difference, is distributed as F with (c - 1)
and c(r - 1) degrees offreedom. This is fully explained in statistics books;
see, for example, Mendenhall and Reimuth, which is listed in the bibliog­
raphy. Consequently, we want to calculate the statistic F defined by

F == CMSS[c(r - I)J
ESS(c - 1)

9.3 Goodness of Fit, Contingency Tables, and ANOVA Problems 155

Index of an Array
of Dimensions

One-way ANOVA
ANOVAI

Let us suppose we have a table X ofe columns ofr entries each, and we
want to do a one-way analysis of variance on X by columns. From the
mathematical expression above we need column sums and the overall sum;
but this is now very easy! Write down the following first attempt:

MCOL+-(+IX)~R+(p X) [1J

M+-(+/MCOL)~C+(p X) [2J

NUM+-RxCx(R-l)x+/C MCOL-M)*2

DEN+-(C-l)x+/+/ (X- (R,C) pMCOL)*2

F+-NUM~DEN

The only new element here is (p X) [1] and (pX) [2 J. The expansion
(pX) is an array of the dimensions ofX, so that (pX) [2J gives the second.
If the parentheses had been left off, any attempt to execute pX[l] would
have given an error; thus

p X [lJ

RANK ERROR

p X [1J
A

The reason for this is that once X has shape r xc, the expression X[1J is
invalid. What is needed to index a two-dimensional array is a pair of
indexing numbers, e.g., X[1;2J. More of this later. What we wanted, of
course, was the first element of the one-dimensional array (pX) .

You should also recall that to obtain an (R x C) table from MeOL, an
array ofC elements, we must write (R~C) pMCOL and not just R4C pMCOL,
which produces a SYNTAX ERROR. This is because the pair of variables R Cis

not an array even though 8 3 would be. To produce an array with a set of
variables it is necessary to catenate them; thus, (R, C) is an array of two
elements, Rand C.

An example of an analysis of variance routine for this simple problem is

V ANOVA1 X

[1J MCOL+(+tX)fR+(p X)[1]

[2J ~(+/MCOL)fC+(p X)[2]

[3J NU1~RxCx (R-1)x+/ (MCOL-M)*2

[4J DEN+ (C-1)x+/+/(X-(R,C) p MCOL)*2

[5] F+-NUM~DEN

[6] r THE F STATISTIC FOR ANALYSIS OF r

[7J 'VARIANCE ACROSS COLUl-1NS IS ';F

[8J 'WITH '; (C-1), 'AND ';Cx(R-1);' DEG FREEDOJ.1 '

[9J V

156

Two-way ANOVA

Elementary Linear Regression, Goodness of Fit, and Analysis of Variance (ANOVA) Problems

Now that we have it, let's try it. Type

TAB~8 3p 44 40 54 39 37 50 33 28 40,0

0:

56 53 55 43 38 45 56 51 66 47 45 49,0

0:

58 60 65

ANOVA1 TAB

THE F STATISTIC FOR ANALYSIS OF

VARIANCE ACROSS COLUMNS IS 1.868644068

WITH 2 AND 21 DEC FREEDOM

Two-way Analysis of Variance

The last problem that we will consider in this section is two-way analysis
of variance. As before, we have a table of entries with r rows and c
columns. With one-way analysis of variance we calculated only column
means; in two-way analysis we calculate both column and row means. As
before, the analysis of the test of the null hypothesis of "no effects" is
based on the breakup of the total sum of squares. Consider the identity:

~r=l~Y=l(Xij - X)2 = ~r=l~Y=l(Xij - X,J - X.i + X)2 + ~r=l~Y=l(X;. - X)2
TSS = ESS + RMSS

+ CMSS

X is the overall mean, Xi, is the mean of the ith row, and x,J is the mean of
thejth column. RMSS is the row mean sum of squares and CMSS is the
column mean sum of squares. CMSS can be rewritten (as before) as
r~f=I(Xj - X)2 and RMSS as C~r=I(.Xi. - X)2.

With these statistics we can test three different hypotheses:

HI: Row means are equal, column means are unspecified.
H2 : Column means are equal, row means are unspecified.
H3 : Rowand column means are both equal (not necessarily to each

other).

Hypothesis Hi is tested by the statistic F; defined mathematically by:

RMSS/(r - 1)
F l = -=E=S-=-S-"'/["'-(r--~1)....,...(c--~1)~]

CMSS/(c - 1)
F2 = -=E=-=SS=-/~[(;--r"":"_-':'1'7)(c-----"--:"1'"')]

9.3 Goodness of Fit, Contingency Tables, and ANOVA Problems IS7

F - (RMSS + CMSS)/[(r - 1) + (c - 1)]
3 - ESS/[(r - l)(c - 1)]

Under the null hypothesis of no row or column effects, F 1 is distributed as
F with (r - 1) and (r - l)(c - 1) degrees of freedom, F 2 as F with (c - 1)
and (r - 1)(c - 1) degrees of freedom, and F 3 as F with (r - 1) + (c - 1)
and (r - 1)(e - 1) degrees of freedom.

All we have to do now is to program a routine for calculating the statis­
tics required for a two-way analysis of variance. Let's modify ANOVAI
and call it ANOVA2.

So far we have not paid much attention to trying to make our routines
computationally efficient or compact in terms of size of workspace used.
This is because we felt you had enough to do in learning statistics and the
basics of APL all at once. But, since ANOVA2 will be similar to ANOVAl,
let's take the opportunity to do things a little more efficiently than before.
To this end, let's expand and simplify algebraically each of the sums of
squares listed above.

ESS' "'r ""'c [2 -2 + -2 :-.2 + ..,;;; (_ - _ - +-)
• ~1=l~i=l Xi) + XI. X.j + A- "'-"-Ii XI. X.j X

- 2Xi.(- X.j + i) - 2i.~]

'" -2 -2 ['" -2 :-.2]= e~-x· - rex = c ~·X· - rA -I I. I I.

= r~.i2. - rex2 = r[~,r2. - ex2]J J ,oJ

From the above expressions we see that the major sums needed are ~~Xri>

~ixL ~~~j, and x2 • We might begin by putting together the various sums and
parameters required to calculate the main results. Consider, for a table X
of entries

R+(p X)[1]

C+(p X)[2J

XR+-+/X

XC++IX

{
Gives us the R, C values
needed in the calculations

{
Gives the row and column
sums

As noted above, there are three possibleF values we can calculate, all of
which require ESS/[(r - 1)(e - 1)] in the denominator. Consider the
following possible form for ANOVA2:

ANOVA2 V ANOVA2 X;RM;CM

[1J R+(p X)[lJ

[2J c+(p X)[2J

9.3 Goodness of Fit, Contingency Tables, and ANOVA Problems 157

F - (RMSS + CMSS)/[(r - 1) + (c - 1)]
3 - ESS/[(r - 1)(c - 1)]

Under the null hypothesis of no row or column effects, F 1 is distributed as
F with (r - 1) and (r - l)(c - 1) degrees of freedom, F 2 as F with (c - 1)
and (r - 1)(c - 1) degrees of freedom, and F 3 as F with (r - 1) + (c - 1)
and (r - l)(c - 1) degrees of freedom.

All we have to do now is to program a routine for calculating the statis­
tics required for a two-way analysis of variance. Let's modify ANOVAI
and call it ANOVA2.

So far we have not paid much attention to trying to make our routines
computationally efficient or compact in terms of size of workspace used.
This is because we felt you had enough to do in learning statistics and the
basics of APL all at once. But, since ANOVA2 will be similar to ANOVA1,
let's take the opportunity to do things a little more efficiently than before.
To this end, let's expand and simplify algebraically each of the sums of
squares listed above.

ESS· ~r ~c [2 -2 -2 ~ + 2- (- - - - -)
• 4Ji=l4Jj=l Xii + Xi. + X.j + A,- Xij Xi. X.j + x

-2Xi.(-i. j + i) - 2i.~]

RMSS · ~r ~c [-2 -2 - 2- -]
• ~i=l~j=l Xi. + X Xi-X

== cL·i~ - rcx2 == C[L'X~ - ri2]1 1. 1 1.

= r~·i2. - rci2 == r[L.y2, - ci2]J .J 'yo.-.J

From the above expressions we see that the major sums needed are ~~Xrj,

~iir., ~~~j, and i 2
• We might begin by putting together the various sums and

parameters required to calculate the main results. Consider, for a table X
of entries

R+-(p X)[1]
C+-(p X) [2 J

XR+-+/X
XC+-+fX

{
Gives us the R, C values
needed in the calculations

{
Gives the row and column
sums

As noted above, there are three possibleF values we can calculate, all of
which require ESS/[(r - 1)(c - 1)] in the denominator. Consider the
following possible form for ANOVA2:

ANOVA2 \J ANOVA2 X;RM;CM

[1] R+- (p X) [1]

[2J C+-(p X)[2]

158 Elementary Linear Regression, Goodness of Fit, and Analysis of Variance (ANOVA) Problems

[3 J RM~-(+/ X) -;- C

[4J GM~(+/ (CM~ (+!X)-;-R»-;-C

[5 J RMSS~Cx ((RRM++ / (RM*2») -RxGM*2)

[6J CMSS+Rx(CCM+-+/CM*2)-CxGM*2

[7J ESS+(+/+/X*2)+(-CxRRM)+(-RxCCM»+CxRxGM*2

[8J DEN+ESS~DDF+« R-l)x(C-l»

[9J Fl~RMSS~DENx(R-1)

[10J F2+-CMSS+DENx(C-l)

[11J F3+(RMSS+CMSS)~DENx(R+C-2)

[12J 'THE F STATISTICS FOR TWO-WAY ANOVA ARE: '

[13J 'TESTING ROW MEANS, FIS ';Fl

[14J 'WITH '; (R-1)!JDDF;' DEC. FREEDOM'

[15J 'TESTING COL. MEANS, F IS ';F2

[16J 'WITH '; CC-l),DDF;' DEG. FREEDOM'

[17] 'TESTING ROW AND COL. MEAN~c;, F IS ' ;F3

[18J 'WITH '; (R+C-2),DDF;' DEC. FREEDOM'

[19J \J

There are a few points in this routine worth noting. First, the number
of operations performed has been reduced. This was made possible by
showing that the required algebraic expressions depended upon a small
number of partial sums. Second, intermediate results are stored in a
variable for use later in the rOlltine (see, for example, lines [4], [5], and [6]).
Third, an attempt was made to ensure that where a sum of variables is
divided (or multiplied) by the same constant, the sum is taken first, then
the result is divided (or multiplied). In general, it is better to multiply
before dividing in a complicated expression since this reduces the propaga­
tion of errors introduced by the process of division. This rule was not
followed entirely in this routine since it was, in fact, more efficient to form
the denominator first, because it was used repeatedly.

Line [7] is interesting in that it poses a trap for those who forget
that the computer operates from right to left. If we had written
ESS++ /+ / X*2-CxRRM-RxCCM+CxRxGM, we would have obtained an errone­
ous result. CxRxGM is alright, but then this is added to CCM, which sum is
then multiplied byR, leading to the first error. The result (ofRxCCMxCxRxGM)
is subtracted fromRRM, leading to the second error, and so on. Note that
the minus operator signs used with Rand C are being used in their monadic
sense; -C and -R change the signs of C and R.

9.4 *Calculating the Chi-Square and F Distributions

TAB

44 40 54

159

Results from
ANOVA2

39 37 50

33 28 40

56 53 55

43 38 45

56 51 66

47 45 49

58 60 65

ANOVA2 TAB

THE F STATISTICS FOR TWO-WAY ANOVA ARE:

TESTING ROW MEANS, F IS 29.46666667

WITH 7 14 DEC. FREEDOM

TESTING COL. MEANS, F IS 19. 6

WITH 2 14 DEC. FREEDOM

TESTING ROW AND COL. MEANS, F IS 27.27407407

WITH 9 14 DEC. FREEDOM

While this routine is neither as compact nor as elegant as it might be, it
has served the purpose of demonstrating some of the factors you should be
beginning to take into consideration. The major ones are:

1. Keep the use of big arrays, especially tables, to a minimum-they use
up an incredible amount of workspace.

2. Simplify the algebra as much as possible before beginning to write the
routine.

3. Avoid repeating calculations.

9.4 * Calculating the Chi-Square and F Distributions

In this short section we will discuss how to calculate the chi-square and F
probability distributions so that you need not use the tables and can pick
confidence levels and sizes of tests not available there. More importantly,
by plotting the distributions you can acquire a better understanding of
them than would otherwise be the case.

Let's begin with the chi-square distribution. If Y is distributed as chi­
square with N degrees of freedom, its density can be written as:

_ YN/2-l> Exp (- Y/2)
F(YIN) - r(N/2) 2(N/21

(See, for example, Press in the bibliography.)

160

r Gamma Function
!X

Elementary Linear Regression, Goodness of Fit, and Analysis of Variance (ANOVA) Problems

The non-APL symbol f(N /2) represents the gamma function, which
generalizes the factorial. If N /2 is an integer, then r(N/2) = (N/2 - 1)!.
f(p) is defined by the integral

fcp) = Jooo xP-1e-·rdx

Ifp is an integer, r(p) = (p - 1)!. The chi-square distribution of Y with
N /2 degrees of freedom is nothing more than the gamma distribution of the
variable Y/2 with parameter p = N /2. In APL, f(N/2) is easily calculated;
in fact, f(N/2) is given by !(N -;- 2) - 1, even where N -7- 2 is a noninteger.

In order to calculate the integral of F(ytN) from zero to some bound B,
we will have to use a numerical approximation. The simplest proce­
dure to follow is that used in obtaining the Normal integral whereby we
broke the interval over which the function is to be integrated into a series
of small intervals and added up the approximate areas to get the integral.
Before continuing you might wish to review briefly section 6.3 in Chapter 6.

How many intervals are needed? Or rather, how small should each
interval be? If we regard the interval from 0 to 10V2N, where \I2N is the
standard deviation, as the effective range of the variable 1': Le., integration
of the density function over this range gives a value close to one, and if we
regard a ·suitable interval length as a 32nd of a standard deviation, then in­
tegration over the effective range would involve 320 intervals. For an inte­
gration from 0 to B, we need to determine how many intervals are needed.
Note that we do not want to divide the interval 0 toB by some fixed number
since the accuracy of the integral would vary tremendously with variations
in the value ofB. Figure 9.1 will help clarify our stratagem. In the sample
shown, the interval zero to B should be broken up into 9 sub-intervals.

Figure 9.1 Illustration of a Method for Determining Integration Intervals

Intervals for Range (0, 10 V2N)

1llllllllllllllllmllll,1
o

--
B

--
10 V2N

1-1-'-1-1-'-1-1-1-1
o B
I Represents interval boundaries
• Represents interval mid points

Thus, the required number of sub-intervals can be obtained in APL as
follows:

L+ (O,t320)x((2xN)*O.5)f32

NINT+t /B>L

The first line produces 321 points on the interval from 0 to 10 V2N and the
second line gives, by compression, the numbers of such points less than B
and hence the number of intervals into which 0 to B is to be divided.

9.4 *Calculating the Chi-Square and F Distributions 161

The idea underlying the approximation of the integral is uncompli­
cated. * On each sub-interval, we will approximate the actual area under
F(Y~N) by a rectangle whose base is given by BW (B - 0) -;- NINT and
whose height is F(y* IN), where y* is the mid-point of the interval. This
approximating procedure is known as the rectangular method. It is the
same as that used in Chapter 6 to calculate the cumulative normal distribu­
tion. A brief glance at figure 6.2b will remind you of the main idea.

The sequence of mid-points at which F(YlN) is to be calculated is given by

YS~((lNINT)xBW)-BW~2

In Figure 9.1 above, these points are shown as the dots on the interval
[0, B].

We now have most of the pieces, so that all we have to do is fit them
together. Consider

Cumulative
Chi-Square

'J W~N CUMCHISQ B;YS

[1J DEN~(2*NN)x!(NN~N~2)-1

[2J NINT~+/B > L~(O,1320)

x«(2 xN)*O.5)f32

~N = degrees of freedom
B = boundary of integration

+-Calculates denominator
of F(Y~N)

~{Determinesnumber of
intervals needed

[3J YS~((lNINT)xBW)-(BW~B~NINT)-;-2 ~Midpoints of the intervals

[4J FYS+(YS*(NN-1) }x*(-YS-i-2) ~Evaluates the density at YS

[5J W+(W++/PYSxBW)~DEN

[6J 'THE CUM CHI SQ DISTN ,

[7J 'WITH' ;N;' DEC FREEDOM'

[8J 'F(B) IS ';W

[9J '1-F(B) IS ';(1-W)

[10J 'J

+-[W gives probability of
random variable distributed
as F(YJN) of being less
thanB.

Let's try our function and compare its results with those obtained from
the Biometrika Tables prepared by Pearson and Hartley. The official tables
give the following numbers.

Comparison of Biometrika Table Chi-Sq Values

APL-STAT Results
n.F\ B 0.1 1.0 5.0 10.0

and Tabulated
Values 1 0.24817 0.68269 0.97465 0.99943

2 0.04877 0.39347 0.91791 0.99326
5 0.00016 0.03743 0.58412 0.92476

10 0.00017 0.10882 0.55951
20 0.00028 0.03183

* Any advanced calculus text or book on numerical approximation will discuss various methods. One
useful reference is W. Kaplan, Advanced Calculus, Addison-Wesley, 1952, Reading, Mass.

162

Cumulative F
Distribution Routine

Elementary Linear Regression, Goodness of Fit, and Analysis of Variance (ANOVA) Problems

Approximate APL Chi-Sq Values

D.F\ B
0.1 1.0 5.0 10.0

1 .20434 .63228 .92400 .94767
2 ,04877 .39345 ,91788 .99322
5 .00016 .03741 ,58414 .92478

10 .00017 .10881 .55951
20 ,00028 .03182

There are a few items worth mentioning with this routine. First of all, in
the header to the function, the name was given as CUMCHISQ, instead of
something like CUMCHI~SQ. The reason for this is that a symbol such as
,, - " cannot be used in the definition of a function name. Further, and very
importantly, the way in which the function is written, the arguments Nand
B must be scalars, not arrays. If you define either N or B as an array and
attempt to use CUMCHISQ, you will get the response

LENGTH ERROR

CUMCHISQ[1] NINT++/B > L+(O,320)x(2 xN)*O.5)+32

if N is an array, or the caret will be under B, if only B is an array.
However, the most important lesson from the above tables is that while

the routine provides a useful approximation to the correct values for de­
grees of freedom greater than 1, the approximation is very bad for one
degree of freedom, and we shall not bother with this now. However, you
should note that the difficulty is not simply one in which the interval width
is too broad. If you were to examine a plot of the densities for 1, 2, 3, and 4
degrees of freedom, you would see considerable differences in the shape
of the chi-square distribution as the degrees of freedom increase in this
range as shown in the graph in problem 10. What is required is a much more
accurate approximating procedure-our simple rectangular procedure is
inadequate for the task; some suggestions are contained in the exercises.

Let us consider the F distribution with k 1 and k 2 degrees of freedom. The
. density function can be written as:

,

ji(w) = (kdk2)k
l

/2r«k1 + k2)/2) W(k, /2l-J(1 + (k /k))-<k l +k2)/2

fk1/2)r(k2 /2) 1 2 w

The terms involved in the constant of integration present no difficulty after
the chi-square distribution. Since our strategy for obtaining the cumula­
tive distribution worked reasonably well with the chi-square distribution,
let's try it with the F distribution, whose standard deviation in algebraic
terms is:

2k~(kl + k2 - 2)
k t (k2 - 2)2(k2 - 4)

where k must be greater than 4 for the variance to be defined.
The F cumulative distribution function routine can be set up in a manner

very similar to that of the chi-square distribution. The main differences

9.4 *Calculating the Chi-Square and F Distributions 163

Comment f1

occur in the fact that the F distribution has two degrees of freedom instead
of one and ""FYS" has a different definition in the two routines. Try the
following:

\J W+-P CUMF B

[1J RTHIS ROUTINE CANNOT BE USED WITH

[2] ~LESS THAN FIVE DENOM, DEC. OF FREEDOM.

[3J CONST+-(!«PS++/P)+2)-1)xP[lJ*Pl+-P[lJ+2

[4J CONST+-CONST~(!(P[2J+2)-1)x(!Pl-1)XP[2]*Pl

[5J ST~2x(PS-2)xP[2J*2

[6J STD+-(STD+(P[1]x(P[2]-4)x(P[2]-2)*2))*0.5

[7J NINT++/B > L~(O,1320)xSTD+32

[8J YS+« lNINT)xBW)-(BW+B+NINT)+2

~g] FYS+-(YS*P1-1)x(1+(P[1]+P[2])XYS)*(-PS+2)

[10J W+-(W++/FYSxBW)xCONST

[llJ 'THE CUMULATIVE F DISTN WITH'

[12J P[l];' AND ';P[2J;' DEC. FREEDOM'

[13J 'IS ';W

[14J V

The first two lines of this routine form a comment which will warn the
user when he displays the function that it cannot be used with less than five
denominator degrees of freedom. The comment symbol is made by keying
uppershift C(called cap), backspace, and uppershift J (or jot). Everything
to the right of this symbol is regarded as a comment. When the function is
executed, comments are ignored; they are only printed when the function is
dispLayed.

B is one limit of integration; 0 is assumed to be the other, in that we are
calculating the probability of the random variable being contained in the
interval [0, B]. The array P contains the degrees of freedom, k v k 2.

In the calculati{)n of the integral of f(w) there are two component parts
multiplied together, a constant:

(k l / k2)kJ/2r«kl + k2)/2)
f(k l / k2)r(k2 /2)

and that portion of the function to be integrated is

W(k l /2)-1(I + (k
l

/ k
2
)w!(k1 +k2)/2

In calculating the integral the multiplicative constant can be calculated
separately from the second part and the two multiplied together to get the
answer.

164

Example of Use of
Cumulative F
Distribution Routine

Elementary Linear Regression, Goodness of Fit, and Analysis of Variance (ANOVA) Problems

Lines [3] and [4] determine the value of the constant term; line [31
produces the numerator and [4] the denominator. Remember that r(k t /2) is
obtained in APL by !(P[lJ~2)-1 since algebraically, r(k1/2) == (k1/2 ­
I)!, when k1/2 is an integer. The APL function "factorial", !, is really the
gamma fllnction.

Lines [5] and [6] calculate the standard deviation of the distribution
which is needed for determining the interval widths.

Lines [7] to [10] determine the probability of the random variable lying in
the interval [0, B] in a manner very similar to the previous effort.

As a check on the accuracy of the routine, examine the following table.
The table shows the probabilities obtained from the routine using various
combinations of degrees of freedom and bounds. At the head of each
column the theoretically correct probability is listed.

Table of Probabilities from F Distributions*

SPrOb.
.75 .95 .99 .999D.F.

(1,5) 0.66 0.86 .90 0.91
(1.69) (6.61) (16.26) (47.18)

(1,10) 0.69 0.89 0.93 .94
(1.49) (4.96) (10.04) (21.04)

(2,5) 0.75 0.95 0.99 0.998
(1.85) (5.79) (13.27) (37.12)

(4,5) 0.75 0.95 0.99 1.000
(1.89) (5.09) (11.39) (31.09)

(4,10) 0.75 0.95 0.99 0.999
(1.59) (3.48) (5.99) (11.28)

(10,20) 0.75 0.95 0.99 0.999
(1.40) (2.35) (3.37) (5.08)

* The bound B is given in parentheses below the probability.

Once again, as with the chi-square distribution, we see that one degree
of freedom in the numerator causes difficulties with the approximation. As
both degrees of freedom increase, the relative accuracy increases. This is
because the functions being approximated are easier to handle with our
simple rectangular procedure. Greater accuracy and less computation can
be obtained with a more sophisticated procedure, such as the use of
Simpson's rule.

An example of use of the routine is:

p

1 5

B

1.69

P CUMF B

Summary

Summary

THE CUMULATIVE F DISTN WITH

1 AND 5 DEC. FREEDOM

IS 0.662880113

0.662880113

165

REGRESS: Simple least squares regression-an APL routine
was provided to calculate most of the relevant statistics in a simple linear
regression model of the type Y = a + bX + u.

GOODFIT: a routine to perform goodness of fit tests.

CONTAB: a routine for calculating the statistics required in tests
of hypotheses within a contingency table.

ANOVA1: a routine for carrying out simple one-way analysis of
variance.

ANOVA2: a routine for performing two-way analysis of vari-
ance.

Reshape, p (uppershift R): a dyadic function which rearranges
the "array shape" of the right-hand argument as specified by the left-hand
array. Example:

C+-2 3 pA

rearranges the elements of the array A into a table (matrix) composed of
two rows of three columns each; elements fromA are stored in the variable
C row by row in sequence from the elements of A.

Outer Product, o. x (jot dot) (uppershift J), period, multiplica­
tion): a dyadic function which multiplies each of the m elements in the
left-hand argument array with each of the n elements in the right-hand
argument array to form a table of dimension (m x n) containing all m x n
multiplications.

Reduction, /: a monadic function. When used over two-dimen­
sional arrays (tables or matrices) IITABLE produces an array formed by the
I reduction of each rol'V of TABLE, where f is one of the arithmetic
functions.

Reduction, / by columns for a two-dimensional array is obtained by
using f (reduction, backspace, minus sign).

Gamma function, ! (uppershift K, backspace, period): a monadic
function to evaluate the gamma function, which generalizes the factorial
function. !P in APL produces the mathematical result of f(P + 1).

CUMCHISQ: a routine to calculate the integral of the chi­
squared density function.

CUMF: a routine to calculate the integral of the F density func-
tion.

166 Elementary Linear Regression, Goodness of Fit, and Analysis of Variance (ANOYA) Problems

Comment, R (uppershift C, backspace, uppershift J) used as the
first character of a line inside a function to provide explanatory comments
when function is displayed. Comments are not printed on execution of
function and are otherwise ignored.

Exercises

APL Practice

(h) COY (A, B) = [2.:(X~~2 .W] 5;,

1. For the two arrays X+120 and Y+-5+120, use your knowledge of APL
to perform the following calculations based on the mathematical for­
mulas listed below. These formulas are useful in regression analysis.

L{l(Xi - i)(Yi - y) estimator of the regres-
(a) B = (x; - i)2 sion slope coefficient.

-~ == LXiinand
Y == "ZYi/n

(b) A == Y - B.¥: estimator of the con­
stant term

(c) Ui = Yi - A - BXi' i = 1, 2, ... ,n vector of estimated
errors
sum of the squares of
the error
estimator of variance
of disturbance terms

estimator of the vari­
ance of the slope

estimator of the vari­
ance of the constant
term

estimator of the vari­
ance of the covariance
of the estimators A
andB

(i) R = 2.:(x; - ·t')(Yi - .5')
nSJ'Sy

where

simple correlation
coefficient of x and Y

S.r = ~(Xi - i)2/(n - 1), and
Sy == ~(Yi - y)2/(n - 1)

(j) SST = ~(Yi - y)2
SSR = ((A + BXi) - y)2

total sum of squares
regression sum of
squares

(k) RS = ~~~ a~d compare y?ur .answer with that in (j), the coeffi­
CIent of determInatIon.

Exercises

the variance of the
predicted value of y
given Xo

167

t-statistic of the pre­
dicted value

(m) T = Y - (A + Bxo)

I(2 [1 (xo - X)2])V Su 1 + Ii + I(Xi - i)2

2. This exercise introduces you to some novel ideas about constructing
some matrices that you will find useful in the following chapters. Let
I~110.

(a) Io. =I produces the identity matrix

(b) a 3[1+I 0 • ~IJ produces an upper triangular matrix

(c) a 3[1+Io . =I] produces a diagonal matrix

(d) 2 3[1+(Io. =I)~1J a symmetric matrix

(e) 10 10 p'111 a circular matrix

(t) 10 10 p2 3,(8 pO),3 a tridiagonal matrix

(g) Va. =V where V+-1 1 1 2 2 2 2 3 3 3 3 3 , a block diagonal
matrix

3. The following exercises are basic to calculations inANOVA problems.
For any matrix X nxk where n is the number of rows and k is the

number of columns, use your APL to write a routine to calculate each
of the following:

(a) Row means

(b) Column means

(c) Total mean and compare to (d) and (e)

(d) Mean of row means

(e) Mean of column means

(f) The mean of the squared differences of each element from the total
mean

(g) The mean of the squared differences of each element from its own
row mean

(h) The mean of the squared differences of each element from its own
column mean

(i) The mean of the squared differences of each element from its own
row maximum value

4. You might want to see where the total variation of any contingency
table might come from. Let the matrices A, B, C, D represent four
different sets of tabulated data of ninety observations which you wish
to analyze.

A == [~~ ~~ ~~]
10 10 10

B == [1~ ~~ ~~]
16 10 4

168 Elementary Linear Regression, Goodness of Fit, and Analysis of Variance (ANOVA) Problems

c=[~ 1~ ~i]
8 13

D == [~
15

1~ 1~]
8 13

Use your program in Exercise 3 to get all the quantities given by the
program for all four matrices. Comment on the results.

* 5. Let F(P) = Jooo xP~le~·rdx

Find F(20) and F(3.5) using the generalized APL factorial.

Statistical Applications

1. You are given the following data:

x
y

65 63 67 64 64 68 62 70 66 68 67

68 66 68 65 69 66 68 65 71 67 68

69 71

70 65

where X is the height of the father and Y is the height of the son, both
measurements taken to the nearest inch. The objective is to find out if
the height of the son depends on the father's height, and if so what is
the specific relationship between the fathers' and sons' heights. Use
your Y REGRESS X function (page 146) to find out which one of the
following regressions fits the data best.

(a) Y == a + bx + u

(b) Y == a + bx2 + U

(c) Y == a + b In x + u ~ eY == eUxbeu

(d) In Y == In a + x + u ~ Y == ae.TeU

(e) In Y == In a + b In x + u ¢::> Y = axbeu

(f) Y == a + (b/x) + u

Use as your criterion for best fit that regression which produces the
highest sample value for the coefficient of determination.

For each equation plot the residuals u == y - Yagainst Y. Comment
on your observations.

2. Use the routine Y REGRESS X (page 146) to solve the following prob­
lem.

You are given the data:

x
y

z

64

57

8

71

59

10

53

49

6

67

62

11

55

51

8

58

50

7

77

55

10

57 56

48- 52

9 10

51

42

6

40

30

2

68

57

9

Exercises 169

where X == weight to the nearest pound, Y == height to the nearest
inch, and Z == age to the nearest year of 12 boys.

Run the following regressions in order to discover to what extent
the variables X, Y, and Z are linearly related.

at : X = a + by + UI

~ : Y = a + bx + U2

a3 : Y = a + bz + U3

a4 : X = a + bz + U4

After making the required transformations, run the regressions
as : loglo Y = a + b loglo X + Us

~ : Y = a + b/x + U6

a7 : Y = a + b log X + U7

as : Y =a + b log Z + Us

ag : Z = xbe1l
9' which can be written as Z = In a +

b In x + Ug

Explain intuitively the meaning of each equation and of the estimated
as and bs.

3. The following data give the yields of wheat on some experimental
plots of ground corresponding to four different sulphur treatments for
the control of rust disease. The treatments consisted of:
(1) dusting before rain
(2) dusting after rain
(3) dusting once each week
(4) no dusting

Test to see if there are any significant differences in the yields due to
the dusting methods.

Dusting method

Plot 1 2 3 4

1 5.3 4.4 8.4 7.4
2 3.7 5.1 6.0 4.3
3 14.3 5.4 4.9 3.5
4 6.5 12.1 9.5 3.8

4. The number of units of work done per day by five workers using four
different types of machines is given in the following table. Each
worker operated each type of machine for one day. Find estimates of
the differential effects due to
(a) machine type

(b) worker's skill

In each case, specify carefully the maintained, null, and alternate
hypotheses

170 Elementary Linear Regression, Goodness of Fit, and Analysis of Variance (ANOVA) Problems

Units of Work Output by Type of Machine and Worker

Machine Type

Worker

1
2
3
4
5

I II III IV

40 40 48 36
40 42 50 48
35 37 45 32
42 36 48 30
36 40 50 40

(c) Now suppose that you were not able to get the observation (3,
III), i.e., the number of units for the third worker using the third
machine. How would you answer questions (a) and (b)?
Some suggestions are:

1. Put some row or column average in the (3, III) position.
2. Change the routine in such a way that you need use only three

observations for the third row and four observations for the
third column.

5. Put the cumulative F distribution function (page 163) into your work­
space. Add some lines to ANOVAl and ANOVA2 functions already
defined in order to give the answers of hypotheses tests immediately,
so that you don't have to look up the F tables.

6. Add some lines to the function Y REGRESS X to obtain the following
statistics.

(a) the vector of calculated ~ call it Y
(b) the vector of calculated residuals, call it 0 == y - y
(c) the mean of X, ~ and Y
(d) var (0) and var (n

7. Poultry researchers investigated the weight gains (in pounds) of four
types of "super" or "Industrial" turkeys fed three different rations
over a period of several months. The results are listed below:

Type of Ration
Type of
Turkeys 2 3

A 50 45 35
B 41 38 45
C 61 35 55
D 55 59 61

Find estimates of the differential effects of (a) rations, and (b)
types, and test the hypotheses:

(a) Ho: The variations of weight gains is due to the different rations,
regardless of the type of turkey.
against HI: The rations have no effect on gains.

Exercises 171

(b) Ho: The variation of gains is due to the type of turkey, regardless
of the rations.
against H 1 : The type of turkey does not affect gains.

(c) Ho: Neither the type nor the ration affects the weight against H 1 :

At least one of type or ration affects the weight.

8. The following diagram will help you understand the role of the degrees
of freedom (n) of the X2 distribution. Let X2 represent the random
variable andf(X2

) the corresponding density function.

fn(x2)
n = 2

n = 10

B

Notice that for the same upper bound (B) and increasing degrees of

freedom the value of the integral,JoB f,b2)dx2
, decreases in n.

(a) Use your N CUMCHISQ Bfunction (page 161) to verify this forN==
1, 2, 3, . . . ,20 and B == 5.

(b) Use the N CUMCHISQ B function (page 161) to calculate the
integrals for N == 20 and B = 1,2,3,4,5,6,7,8,9, 10.

(c) Alternatively. How would you use the N CUMCHISQ B function to
determine the value of B for which the area from 0 to B is 87%
when N = 20? Notice that the value of 87% is not in the tables of
the chi-square distribution given by most textbooks.

10

Matrix Algebra in APL­
How Simple It Is

10.1 Vectors, Matrices, and Arrays

Vectors, Matrices,
and Arrays

Arrays, Column
Vector, Row Vector

172

Up to this point in our discussion we have dealt with variables which can
be scalars or which can be arrays; arrays have one or more dimensions,
scalars are dimensionless. You will recall that if we define the variable V by
V +-H some number," p V produces Hblank" because a scalar has no dimen­
sion, and PP V (which is the dimension of the number of dimensions)
produces O. But if V is defined by V +- "a list of numbers," p V produces the
number of elements in the list and pp V produces 1 (the number of ele­
ments in the list of dimensions).

Chapter 9 introduced a very important extension to our definition of
variables-variables defined as two-dimensional arrays which can be visu­
alized as a table of entries with rows and columns. In this chapter we will
develop our APL tools for handling two-dimensional arrays and we will
distinguish between APL expressions such as "arrays" and mathematical
expressions such as "vector" and' 'matrix. " In Chapter 11 we will extend
the examination of arrays in APL to three and higher dimensions!

Following the theme of this book, we will relate the APL expressions
directly to the mathematical operations you have learned, or are learning,
in matrix algebra. Even if you do not know any matrix algebra at all, this
book will help you to learn some.

A matrix is a two-dimensional array. Its dimensions, say (n, m) (some­
times this is written as (n x m), signify that the matrix has n rows and m
columns. But what if either m or n is I? If the matrix is 1 x m (one row, m
columns), it is called a row vector (or often just a vector for short). And if
the matrix is n x 1 (n rows, 1 column), it is called a column vector (just a
vector for short). So you see that when referring to a vector, you have to
be careful to distinguish between row vectors and column vectors.

Now a row vector is not a column vector is not a list! (Remember, a list
has only one dimension: length.) "Array" in APL is a general term indicat-

10.1 Vectors, Matrices, and Arrays 173

Reshape p

ing a variable with one or more dimensions. An array with one dimension is
a list; an array with two dimensions is a table. Mathematically, we need to
be a bit more precise, so we will often have to be careful to distinguish row
and column vectors from each other, from matrices, and especially from
lists.

If you have a list, say A, and you want to make it a vector, either column
or row, then use dyadic p. For example,

A+- 1 2 3 4

A is a list.

CV+-4 1 pA

CV is a column vector, or a matrix of dimensions (4, 1).

RV+-l 4 pA

RV is a row vector, or a matrix of dimensions (1, 4).
Now type

A

1 2 3 4

CV

1

2

3

4

RV

1 2 3 4

A , CV, and RVare all arrays.

pA
{4 elements in a list.

4

Ravel t

pCV

4 1

pRV

1 4

Now try:

B+,CV

pB

4

{4 rows, 1 column in a column vector.

{I row, 4 columns in a row vector.

{
Ravel "," converts the column vec­
tor CV into a list.

174 Matrix Algebra in APL-How Simple It Is

pD

4

{

Again, the monadic function ravel
converts the row vector RV into a
list.

So now you know that lists and vectors are different, how to get vectors
from lists (use reshape p), and how to get lists from vectors (use ravel,).

10.2 Elementary Matrix Operations

Our first task is to define some matrices to use as examples. Try

A23+2 3 pi 2 3 456

A 13+-1 3p1 2 3

A31+3 lp3 2 1

A33+-3 3p1 2 3 3 214 2 3

B23+-2 3 p 1 2 3 456

B31+3 1p4 1 2

B13+1 304 1 2

Naming of matrices is arbitrary. You could have used DOG or MOUSE, etc.
Our name choice was intended to make the dimensions easier to under­
stand.

Now that we have defined a number of two-dimensional arrays, we will
need to consider how to refer to individual elements of an array. Consider

A33[1;2]

2

A23[2;3]

6

831[2;lJ

1

That's easy enough, but what if we want to refer to a whole row or column
ofA33? How could we do that? Try

A33[1;]

123

A23[;2J

2 5

Notice that with A3 3 [1;] and, more strikingly, with A23 [; 2] the array
returned is a list, not a row or column vector. Thus

10.2 Elementary Matrix Operations

pA 3 3 [1; J

3

pA23 [; 2]

2

Now try

A33[1 2; 1 2J

1 2

3 2

or

175

{
This is the first two rows and
the first two columns ofA 33.

(2,1)

1+(D (6) 3 First and
A33[1 3; 2 1J

(1, 3) 3 2 1 third rows
2 1

3-+@ ~
with second

3 and first
2 4 columns.t t

1 2

or again

A33[1 2; 3J

3 1

Matrix Addition and Subtraction

{Gives the 3rd element in rows 1 and 2.

Matrix Addition and
Subtraction

Matrices of the same dimensions can be added and subtracted.

A23+B23

046

o 10 12

but if you try

A23+A31

LENGTH ERROR

A23+A31

/\

This is because in APL, addition, subtraction, multiplication, and so 00, are
operations which are carried out between corresponding elements in the
two matrices. This is nothing more than an extension to two dimensions of
the idea we met before in adding, subtracting, etc., one-dimensional arrays
or lists.

176

MultipLy Matrix by
a Scalar

Matrix
Multiplication +. x

Matrix Algebra in APL-How Simple It Is

Multiplying a Matrix by a Scalar

Multiplying a matrix by a scalar is obviously easy:

3xA23

369

12 15 18

and forming linear combinations of vectors is also easy. Try the mathemat­
ical relation 2(A31) + 3(B31); in APL this is

(2 xA31)+3 xB31

18

7

8

What would happen if we removed the parentheses? Try it.

Matrix Multiplication

The mathematical operation of matrix multiplication (to be distinguished
from the APL operation of multiplication between arrays, e.g., A23 x B23)
is nothing more than the APL function called inner product (defined on
page 27) between the rows of the first matrix and the columns of the
second. The mathematical expression for the matrix multiplication of two
matrices B23, A33 to give a matrix C is C = (B23) (A33), where C has
dimensions (2 x 3).

C+B23+. xA33

c

17 8 8

35 14 11

For example, the [1;2] element ofC is the inner product of row [1;] ofB23
and column [;2] ofA33. Let's check that.

B23[1;J+.xA33[;2]

8

or, to obtain C [2;2], try

B23[2;J+.xA33[;2]

14

The APL operation of +. x for obtaining the mathematical operation of
inner product between vectors or, more generally, "matrix multiply,"

10.2 Elementary Matrix Operations 177

while very useful, is not without some dangers. What if by mistake one
of the matrix variables is not defined to be a matrix, but is only a list?
Consider

BT+4 1 2

GT+A33+. x BT

GT

12 16 24

pGT

3

{BT is a list of dimension 3.

{

The result of the operation +. x

between a matrix (3 x 3) and a
list is a list of dimension 3.

The importance of noting the difference between A 33+. XBTandA 33+. xB31

is illustrated by the following. Try

AT+-4 5 6

A13+GT

RANK ERROR

A13+GT

because

pA13

1 3

pAT

3

But

AT+GT

16 21 30

and

A31+(A33+. x B31)

15

18

15

because

pA33+. x B31

3 1

{AT is a list of dimension 3.

{
A 13 is 1 x 3, but GT has only
dimension 3.

{Both are lists.

JA column vector (matrix which
l is 3 xl).

178 Matrix Algebra in APL-How Simple It Is

pA31

3 1

So the rule is: to be safe in carrying out matrix operations, do not mix lists
with vectors and make sure all your arrays are dimensioned as matrices
and vectors of the appropriate shape. That is, you should always know
whether you are dealing with a row or a column vector. This last point is a
tricky one. Consider

G+-A33+. xB31

G

12

16

24

But what if we take the inner product betweenA33 andBl3, which opera­
tion is not defined mathematically as a"matrix multiplication"?

A33+.xB13

24 6 12

24 6 12

36 9 18

It is unfortunate here that you do not get an error message telling you that
you cannot multiply a (3 x 3) matrix by a (1 x 3) vector. What happens in
APL is that each element ofB 13 is treated in turn as a scalar, and each row
of A33 is multiplied by that scalar and added up to get the above result.
Thus

24 = (1 + 2 + 3) x 4 6 = (1 + 2 + 3) x 1
24 = (3 + 2 + 1) x 4 6 = (3 + 2 + 1) x 1
36 = (4 + 2 + 3) x 4 9 = (4 + 2 + 3) x 1

Compare this result withA33+ . x B31.

12 = (1 + 2 + 3) x 2
12 = (3 + 2 + 1) x 2
18 = (4 + 2 + 3) x 2

10.3 Transpose of a Matrix

Matrix Transpose ~ Matrices can be transposed. That is, a (m x n) matrix is converted to an
(n x m) matrix simply by writing all its rows as the columns of the trans­
posed matrix (and hence all its columns as rows in the transposed matrix).
The primitive APL function (i.e., it's on the keyboard!) which does this is
Transpose, Q (key upper shift 0, backspace, and key\). Thus

QB23

1 4

2 5

3 6

10.4 A Not So Elementary Operation: Matrix Inverse 179

Transposition of a list does nothing, since a list has length only. Try trans­
posing AT.

10.4 A Not So Elementary Operation: Matrix Inverse

Matrix Inverse

Identity Matrix

Let's begin with the simplest situation-a square matrix which is nonsingu­
lar. A square matrix is one with as many rows as columns. A nonsingular
matrix is one for which no linear combination of the rows or columns will
produce a vector of zeros. More formally, a matrix A with rows ab a2, ... ,
an or columns a 1 ,a 2

, • •• , a n where we can find no list ofn numbers (notzero
of course) to satisfy either

or

alb l + a2b2 + ... +anbn = 0

is nonsingular. An important and very special example of a nonsingular
matrix is the identity matrix, I. I looks like this:

1 0 0 0 0
o 1 000
o 0 100

o 0

o
o
o

o
o 1

Singular and
Nonsingular
Matrices

That is, I is square and has zero's everywhere except for the 1's on the
diagonal.

The interesting thing about a nonsingular matrix is that we can always
find another matrix, say B, which satisfies the following mathematical
relationship:

AB = BA =]

where AB and BA represent matrix products. B is said to be the "inverse"
ofA. The above relationship between A, B, and] is similar to n(n- l

) = 1,
where n IS any nonzero number. So instead of talking about B, let's com­
plete the analogy with nUITlbers and write A -} for "A inverse." We have
now

AA-I = A-IA = I

and if A is a (1 x 1) dimensional matrix, we get the same result that we
would get if A were a scalar, namely

180 Matrix Algebra in APL-How Simple It Is

You will recall that, for a a number, a-I is called the reciprocal, or multi­
plicative inverse.

With numbers we know that +N gives DOMAIN ERROR if Nhas the value o.
The matrix analogue to N = 0 is a singular matrix; singular matrices do not
have inverses. Consider a few simple matrices:

1 0
o 1

1 3
2 6

123
456
789

123
465
879

is nonsingular

is singular

is singular

is nonsingular

Quad-divide ~ or
Domino

Try adding together combinations of rows (or of columns) in order to get a
zero vector. More easily, see that you cannot find a combination of two of
the rows (or columns) which equals the negative of the third for the non­
singular matrix.

This is all very well, but how can we get the inverse of a matrix in APL?
Fortunately, we have another primitive function called "quad-divide,"
"domino," or "matrix-divide." It is the monadic I±J, keyed in by upper shift
L backspace, key -i-. Consider the following matrix.

A+-2 2 p5 0 0 2

A

5 0

0 2

[±]A

0.2 0

0 0.5

A+.xtB4

1 0

0 1

([]A) + . xA

1 0

0 1

10.4 A Not So Elementary Operation: Matrix Inverse 181

Let's calculate the inverse ofA33 and check that it is in fact the inverse.

EB433

3.3333E-l

4.1667E-1

1.6667E-l 5.oonOF: 1

3.3333E-l

0.6667E-1

1.0000EO

A33+. x[R433

1.0000EO

5.S511E-17

4.4409E-16

1.0000ED

7.8469E-17

).6368E-16

9.7145E-17

1.0000EO

As long as we recognize that numbers on the order of 10-16 are essentially
zero, we see that we did, in fact, get the inverse of A. Try ([±] A33)

+. xA33 on your own. From these examples you see that the results of the
operation of taking the inverse may be only approximate and not exact. In
any case, we see that [] A33 is a very good approximation to A33- 1

, the
inverse of A33.

Domino, or quad-divide, just like + for numbers, also has a dyadic use
that we will discuss further in a moment. For now, note that all you needed
to do to check that (~ A 33) +. xA 33 is approximately 1.1 was to type

A331±]A33

1.00GOEO 8.7093E-17

2.2214E-16 1.0000EO

1.3362E-16 1.7367E-16

2.7911E-16

2.4126E-16

1.0000EO

Left and Right
Inverse of a
Nonsquare Matrix

If you are wondering why you get slightly different results in the two cases,
the answer is that this is due to the use of different algorithms (computa­
tional procedures) for using [] dyadically and using +. x with monadic [±].

This is simple enough if you have been reading some matrix algebra, but
tE in APL enables you to consider something a little more mathematically
tricky. We just reminded you that for a square matrix A , A -1 is a matrix
which satisfies two mathematical conditions:

(a) A-IA = I

(b) AA-l = I

where! is the identity matrix of the same dimensions (square) asA and, of
course, A -1. But what if we have a nonsquare matrix, say A, which is (m x
n), and there exists a matrix such that only one of the conditions holds? We
can define a left and a right inverse, say ALI and A RI' depending upon which
condition is satisfied. It is only when A is square and nonsingular that both
left and right inverses exist and are equal (i.e., ALl = AHa so that we can
talk about the inverse ofA. In this caseA -1 = ALI = ARI • Thus if we can find

182 Matrix Algebra in APL-How Simple It Is

a matrix A HI so that

A +.x
(m x n)

A H1

(n x m)
I

(m x m)

then A HI is the right inverse of A. Similarly, if

ALI +.x
(n x m)

A
(m x n)

I
(n x n)

then ALl is said to be a left inverse (it multiplies A from the left).
Quad-divide applied to a nonsquare matrixA will yield the left inverse of

A if that inverse exists. A left inverse ofA can be found if the columns ofA
are linearly independent vectors, which means that no column can be set
equal to a linear combination of the other columns. If the columns ofA are
linearly independent, A is said to have full column rank. Let's try it. We
need a nonsquare matrix with at least as many rows as columns. Let's use
the transpose ofA 23, which gives us 3 rows and only 2 columns. Key in

QA23

1 4

2 5

3 6

QA 23 is of full column rank because one cannot find a number C such that

Now try

I±JQA23

0.94444

0 .. 44444

0.11111

0.11111

0.72222

0.22222

If this is to be a left inverse, premultiplying ~A23 by fEQA 23 should give I 2:

(~A2 3) +. xQA 2 3

1.0000EO

6.9389E-17

1.3323E-15

1.00aOEO

Here we see that ~~A23 would give us the right inverse of A23. From
this you will realize that the right inverse ofA 23 is the transpose of the left
inverse of the transpose of A23. Try

A23Q~A23

i.OOOOEO

1.3323E-15

6.9389E-17

1.0000EO

10.4 A Not So Elementary Operation: Matrix Inverse 183

System of Linear
Equations

Linear Regression

You will notice that the matrix result printed out is the transpose of the
previous matrix result.

Systems of Linear Equations

Now that we are equipped with quad-divide, we have an easy way to
solve linear equations and to obtain linear least-squares estimates of coeffi­
cients in a much simpler way than the approach of Chapter 9. Consider first
the linear equation

y= XB

Where Y is an (n x 1) vector, X is an (n x m) matrix, and B is an (m x 1)
vector. Clearly Y is obtained as the inner product (mathematicaL operation
of matrix multiply) ofX and B. Suppose we know X and Y but not Band,
perverse creatures that we are, we want to know B as well. We now see
that the solution is apparent. IfX has more rows than columns (n > m) and
X has full column rank (rank of X = m), then all we need is the left inverse
of X, say X LI. Thus if Y = XB, then XLI Y = XL1XB = IB = B. The way to
write X LIY in APL is .YffiX using the dyadic form of quad-divide or, more
obviously but less elegantly, (Ef)X) +. x Y.

Let's create a Yvector. LetX be the transpose ofA 23 and letB be given
by B+-2 3. Then Y is defined by Y = X' B or, in APL,

B+-2 3

Y+-(X+-QA23)+.xB

y

14 19 24

Remember, Y is a list, not a vector, because B was defined only as a list. If
we solve for our known list B, we have

2 3

Will this approach work in the least-squares analysis of linear regres­
sion? Consider the regression model we solved in Chapter 9:

Y = a + bX + U

where Y andX are observed lists, U is an unobserved list, and a and bare
the coefficients to be estimated. If we have n observations on Y and X, the
model can be written in matrix form as follows:

Y = ZB + V

where Y is an (n x 1) vector, Z is the (n x 2) matrix shown below, B is a (2

184 Matrix Algebra in APL-How Simple It Is

x 1) vector with elements (a, b), and U is an (n x 1) vector of unobserved
error terms. Z is given by

Z=·

1 X n

If we use our current approach, how might we solve the problem? Well,
Z has more rows than columns, so what do we get if we use the left
inverse? When we multiply

Y = ZB + U

by ZLI we get

ZLIY = B + ZLIU

and if we feel justified in "ignoring" the term ZLIU, we have solved
our problem: our estimate of B is ZLI Y. But what of the "least-squares"
solution, and how does it compare to our dyadic quad-divide? The
least-squares approach to the problem is to define the estimator B of
B by

fJ = (Z'Z)-IZ'Y

where the symbol Z' means the transpose of Z, Z' Z is a square matrix, and
(Z' Z)-1 is its inverse (both left and right). Before worrying about the statis­
tical meaning of this, consider the term (Z' Z)-IZ' ZB. (Z' Z)-1 is the inverse
ofZ'Z, so (Z'Z)-1Z'ZB = B, but this in turn means that (Z'Z)-IZ' is a left
inverse of ZI We have, therefore, reached the inescapable conclusion
that Yl±IZ, which produces the inner product of the left inverse of Z with
the vector Y, gives us the least-squares solution. To further establish this
result, let's redo our calculations from Chapter 9. First we set up the
data:

Y~55 70 90 100 90 105 80 110 125 115 130 130

X~100 90 80 70 70 70 70 65 60 60 55 50

Z~12 2pl

Z[;2J~X

and now all we have to do is to type

B+YillZ

B

210.44 1.5778

which is exactly the same solution we got in Chapter 9.

Summary

Summary 185

Scalars: single numbers, with no dimension.

Lists: variables that have one dimension-length.

Arrays: variables that have at least one dimension.

Matrix, or table: an array with two dimensions (rows and columns).
Vector: a special case of a matrix-a column vector is a matrix

with one column, a row vector is a matrix with one row.

Reshape, dyadic use of p: reshapes an array according to the
specification of the left argument; e.g., I p A where A is an array and I is a
list of integers reshapes A according to the dimensions specified in f.

Ravel, monadic use of " , ": converts the argument (array, list, or
scalar) into a list.

Indexing of arrays: A. [A; B; C;] indicates that the ath plane of the
bth row of the cth column is being referenced; or A [A; ; C;] refers to the
ath plane and cth column for all rows.

Arrays and arithmetic functions: A f B produces an array C, each
of whose elements are defined by the functional relationship! between the
corresponding elements of A and B. A and B must have the same dimen­
sions.

Matrix multipli~ation: obtained in APL by use of the inner prod­
uct function +. x; e.g.,A +. x B, where A and B are matrices, produces an
arracy C whose elements are given by the mathematical operation of ma­
trix multiplication.

Transpose, ~: keyed by upper shift 0, backspace, \. In its
monadic use it alters an array so that its dimensions are reversed. If p A is
3 5 2, p~A is 2 5 3.

Matrix transposition, A' (or A T): given by QA.

Matrix inverse and identity matrix: The identity matrix, I, is a
square matrix with l's on the diagonal and zero's elsewhere. A square
matrix A has an inverse A -1 if AA -1 = A-IA = 1, where A-IA represents
matrix multiplication. A matrix is said to be nonsingular if its inverse
exists.

Quad-divide (domino), [J: keyed by upper shift L, backspace, -;­
(monadic use). IfA is an array of two dimensions with the first at least as
large as the second, then I±I A produces the left inverse of A, ALI; e.g.,
ALI +. xA=I, where the dimensions of I are the same as the second dimen­
sion of A.

Quad-divide (dyadic use): Solves linear equations. For example,
if you wish to find the array X such that AX = B, whereB is a list andA is a
matrix, then X is given by B[JA. The result BEH4 is equivalent to ([14) + • xB.
In a linear regression Y = XB + U, the estimator for B can be obtained by
YffiX, which produces a result equivalent to the mathematical expression
(X'X)-IX' Y.

(i) C l±J B

(j) (~ A)+.xA

(k) A [] fIJ B

(1) A+ . x [±] A

(m) C IT] ~ [J B

(n) A [±] A

(0) 2 m2

186

Exercises

Matrix Algebra in APL-How Simple It Is

APL Practice

1. Let A+-4 4 P 15

(a) Write the APL statements to select the first column of A ?
(b) Write the APL statements to select the second row of A ?
(c) Write the APL statements to replace all the elements that are

equal to 5 with the number 6?
(d) Write the APL statements to instruct the computer to multiply

the first row by the last row element by element?
(e) Write the APL statements to express each element of the matrix

as a percentage of the largest element of the matrix?
(f) Suppose you want each of the 4 column averages and each of the

4 row averages. Write a routine to do this.
(g) Write the APL statements to select the two by two middle block

of the matrix A ?

2. Let A-+-2 2p 26 16 9 6, B+2 2 p 3 5 1 2, C+26 9 , and D+l 2

p 16 6. Examine carefully the results of:

(a) ~ B

(b) B fB
(c) [] ~ B

(d) t¥ [] B and compare to (c)

(e) D ~ C

(f) A Ef] C

(g) A [J B

(h) (, D) [J B

3. Solve the following systems of equations.

(a) 3X1 + 5X2 = 26
Xl + 2X2 = 9

Compare this solution with the one for 2(i) above.

(b) 3XI + 5X2 = 16
Xl + 2X2 = 6

Compare this solution with the one for 2(h) above.

(c) Compare the results of both (a) and (b) with those found in 2(g)
above.

4. Find the left inverse of the matrix 2+3 2 p 3 5 1 2 4 5 and verify
that (([i]Z) + . x Z) = (~Z) +. x~f±]Z •

5. Consider the matrix W+-3 2 p 1 2 2 4 3 6 ~which does not have full
column rank. Use APL to verify that W does not have a left inverse.

6. Consider the following system of equations:

6X1 + 4X2 + 3Xa = hI

Exercises 187

20X1 + 15X2 + 12X3 = b2

15XI + 12X2 + lOX3 = b3

(a) Find the values of Xl' X 2 , and X 3 if hI = 13.1, b2 = 46.9, and
b3 = 37.1.

(b) Suppose you round the values of bI , b2 , and b3 to the nearest
integer, i.e., hI = 13, b2 = 47, and b3 = 37. Solve the system
using the rounded values for the vector ofb's. Compare the solu­
tion values obtained to your answer to (a). This exercise is an
example of ill-conditioning; i.e., small changes in the values of
the numbers in the problem lead to large changes in the solution
values.

7. Consider the following system of equations.

5Xt + 3X2 = 7
2X1 + 3X2 = 5
3X1 + 4X2 = 7

Let:

[53] r7]
B = ; ~ and C = L~

(a) Compare the solutions to the following operations.
1. ([f]B)+.xC

2. C II] B ..
3. (~C) +. xqlRB

Comment on the results.

(b) Try the following operations:

1. ttl B The left inverse ofB.
2. ill ~ B The inverse of the transpose of B does not exist.
3. QfEQBThesameasin2.
4. ?:¥ tE B The transpose of the inverse.

Thus for any matrix A nxk with n < k the left inverse does not exist
and the right inverse is Ql§]Q A while if n > kthe right inverse does
not exist and the left inverse is tE A.

8. Using the logical function equal (=) and the matrices given in exer­
cise 2, verify the following properties.

Mathematically

(a) B= (B r) ,

(b) (AB)' =B 'A 1

(c) (A+B)=B+A

APL

B=QQ B

(~A+.xB)=(~B)+.xQA

(A+B)=B+A

Explanation

The transpose of the
transpose is equal to
the original matrix.

The transpose of a
product is equal to
the product of the
transposes in reverse
order.

Associative Law.

188 Matrix Algebra in APL-How Simple It Is

Mathematically

(d) 3 (A+B) =3A +3B

APL

([±lis? B) =is?ffi B

B =[±][J B

([W+.xB)=(ffi B)+.xmA

Explanation

Distributive Law.

The inverse of the
transpose is equal to
the transpose of the
inverse.

The inverse of the
inverse is equal to
the original matrix.

The inverse of a
product is equal to
the produet of the
inverses in reverse
order.

9. It is often the case that you need to check if the lim All, where A is
n_ x

any square matrix, exists. In APL everything is easy. Consider
the very simple function.

VCONV A

[1] A+-A+ . x B+-A

[2J ~1Xl(+/+/A=B)7x/pA v

(a) Use the program to verify that the limits of the matrices XX and
ZZ, when raised to the n power, are the Zero Matrix.

[
0 1 0]

XX = 0 0 1
000

[

0.1 0.2 0.3]
ZZ = 0.3 0.1 0.4

0.3 0.2 0.5

(Hint: Use the trace operator to see if the matrix in fact
converges.)

(b) How would you change the routine so that it would stop and
print a message in case the matrix does not converge?

(c) Can we use the program to check if a matrix is idempotent? That
is, if A 2 = A'A = A then A is idempotent.

(d) Change the program so that it will calculate the inverse of I - A
using the formula (1 - A)-l == I + A + A2 + A3 + A4 + ... in
case A's limit is the zero matrix.

10. Let

x = [: ~]
Find A = I - X(X' X)-lX', where I is the identity matrix, and verify
that A is an idempotent matrix (Le., A2 = A).

Exercises

11. Using

and

X=[: ~]

189

find:
(a) (X' X)-t

(b) (R'R)-l

(c) [R(X' X)-tR']-l

12. In the following input-output model let au be the input of product i
per unit-volume of output of product j 0 < au < 1, Xi be the total
output of product i, and let Ci be the final demand for product i.
Suppose we have only two products Xl and X 2 • The input-output
equations are

a 1t X t + a tZX2 + Ct == Xl
a21X t + a22X 2 + Cz == X z

Given the matrix of input-output coefficients

A=[O.3 O.lJ
0.4 0.2

find the total production of Xl and X z that will meet a final demand
of C1 = 20 and Cz == 30.

Statistical Applications

1. Given the one equation model where the coefficient of X is known

and X = [~J

Consider the efficiency of the following two estimators of the
coefficient of X.

and

Prove that:
a. Var (at) < Var (az), i.e., az is more efficient than at if the U/s are

independently distributed.

and U == [1 with probability .5
t -1 with probability .5 t == 1, 2

190 Matrix Algebra in APL-How Simple It Is

b. Var (a2) < Var (at), i.e., at is more efficient than a2 if the U/s are
not independently distributed, but have the following joint discrete
probability distribution.

v. U2

(1,1)
(1, -1)
(-1,1)
(-1,-1)

Probability
1/10
.4/10
4/10
1/10

IMPORTANT: In appendix E you will find two sets of data named
MACRO and WAIT, as well as a detailed explanation of the symbols that
will be used. You are advised to store these data sets into your file because
they will be used for most of the exercises in this and the following chap­
ters.

2. Let C = a + bY be the familiar Keynesian consumption function
where C is the total consumption expenditures and Y is the GNP, both
given in appendix E. Use the data from 1950 to 1978 to estimate the
marginal propensity to consume, b, and the average propensity to
consume. Comment on the relationship between them.

3. Another relationship that you probably learned in your macro­
economics courses is that imports (1M) are positively related to
GNP. Use the data from the data set MACRO (appendix E) to see
which of the following equations better describes the relation between
imports and GNP.

(a) 1M = a + b GNP

(b) 1M = a + b GNP2

11

Higher-Order Arrays

So far we have avoided large arrays of data and complicated statistical
problems in an effort to learn the basic and easy procedures first. How­
ever, we are now getting to the stage where we can branch out and be more
adventurous. You will soon see that as the complexities of the statistical
problems increase, and as the amount and variety of data increase, we will
need to develop new mathematical tools and hence new APL procedures
to handle them.

The mathematical tool which is most heavily used in statistics is matrix
algebra; it was introduced in the last chapter. What we need to do now is to
learn to exploit the power of APL in solving a variety of data-handling
problems and complex statistical procedures. It is to these issues that we
now address ourselves.

11.1 Reduction Function

Reduction /
Arrays and Indexing

In Chapter 9, when we were calculating the cell frequencies for a con­
tingency table, we saw the need for the use of reduction across both rows
and columns of a matrix. In fact, we can make the reduction function even
more useful. For example, we might have a list of tables and want to get
the average value of the {;,JJ entries across all the tables. In APL we have a
direct way of doing this, as we shall now see.

Recall from Chapter 9 that the reduction function, /, operates on only
one dimension of a multidimensional array at a time. For example, the use
of +/ on a matrix X of dimension 2 x 3 is

x
123

456

191

192 Higher-Order Arrays

+/X

6 15

The summation has proceeded across the last coordinate of the matrix. That
is, each row is reduced by its columns. Another way of indicating the
coordinate over which reduction is taken is to specify the coordinate
explicitly. For example

(+/[2]X)

6 15

and

(+/[1]X)
579

In the latter case, the reduction is over the first coordinate; Le., each
column is reduced along its rows. In this case there is an alternative proce­
dure. By overstriking the reduction operator (/) with the subtraction
symbol, producing I, we can also obtain reduction over the first coordi­
nate.

But when we have three dimensions, as in

X+-2 2 2 pX

x

1 2

3 4

5 6

1 2

where X is composed of two planes of two rows by two columns each, the
situation is more complicated. In our example with X we have

Columns
1 2

Plane 1 {~

Plane 2 {i

2
4 <E- Rows 1, 2

6
2 <E- Rows 1, 2

The number "6" is in the second column of the first row of the second
plane.

To find sums across the third coordinate, we could use

(+/X)

3 7

11 3

11. 1 Reduction Function

(+/[3]X)

3 7

193

Expand \ with
Arrays

11 3

which results in four sums-addition over each row in each plane. 3 is the
reduction of the first row in the first plane, 7 is the reduction of the second
row in the first plane, and so on.

However, the main advantage of the use of the index notation with
reduction is not merely the provision of an alternative to +/ (reduction over
the last coordinate) or to +I (reduction over the first coordinate), but that it
enables us to get reduction over the middle coordinate. Suppose that we
want column sums in each plane. We obtain this by

+/[2]X

4 6

6 8

Reduction over the first coordinate is obtained by

+/[l]X

6 8

4 6

or by

+IX

6 8

4 6

which gives us the sums across matrices of the (i, j)th elements in each
matrix.

Any dyadic element can be used with the reduction operation. However,
with - and -;- you have to consider carefully what the results will be. For
example, (- /1 2 3 4) will produce 1 - 2 - 3 - 4, and in APL the value of
that expression is - 2. Also (-;- / 2 4 6 8) becomes 2 + 4 -;- 6 -;- 8, which
is equal to (2 x 6) + (4 x 8) in APL. So you need to be concerned
about both the coordinate over which the reduction takes place and the
meaning of the reduction itself.

Recall the scan instruction, \, which is similar to the reduction instruc­
tion. Scan has the same general form as reduction, and the same rules
about index coordinates apply. In "sum-scan" we would have

+\1 2 3 4

which would result in

1 3 6 10

The general form of scan is FN\VAR, where FN is a primitive dyadic

194 Higher-Order Arrays

function and VAR is a vector or matrix. The dyadic function FN is placed
between successive additional elements of VAR. For example,

+\1 2 3 4

would be

1 (1+2) (1+2+3) (1+2+3+4)

The last element is exactly the same as that which you would obtain with
the "sum-reduction," +/1 2 3 4.

Let's consider a practical example of the use of scan with three­
dimensional arrays. Suppose that you had a three-dimensional array of oil
production data. The planes represent different nations, the rows are oil
pumping locations, and the columns are quarters of the year. We wish to
know the cumulative totals by quarter for each site and each nation. For
expository purposes, let us reduce the number and size of the matrices and
use hypothetical values. We can construct the data by use of the roll
function, ?, which generates random numbers (see Chapter 4).

PRODUCTION+3 5 4 p60?60

We will pretend that the above represents the quarterly output of three
nations at five sites in each nation for four quarters. In order to generate
the cumulative sums by quarter, we use +/ on the array PRODUCTION, since
quarters are the elements in the last dimension:

In schematic form these data are:
PRODUCTION Quarters of Output

~ t ~ ~
53 15 32 27
44 60 18 17

4 58 25 9 N l •

47 45 22 59
56 57 40 24

13 55 3 6 . Sl~
54 51 12 20 Three • S2~ Output
10 38 8 45 Nations N 2 • · S3~ at each
43 30 36 35 . S4~ site
37 1 14 16 · S5~

23 41 5 19

48 39 2 50 N 3 .
7 31 21 34

42 26 28 11
33 52 29 49 Ql Q2 Q3 Q4

i i i i
Quarters of Output

11.1 Reduction Function

+\PRODUCTION

53 68 100 127
44 104 122 139

4 62 87 96

47 92 114 173

56 113 153 177

13 68 71 77
54 104 117 137
10 48 56 102

43 73 109 144
37 38 52 68

23 64 69 88
48 87 89 139

7 38 59 93
42 68 96 107

33 85 114 163

195

A matrix for each nation.
Each row represents a site.
Each column contains the accumulating
partial sums of quarterly output.

Let's look at the first nation and first site. We have 53 units of output for
the first quarter, (53 + 15 = 68) units in the second, (68 + 32 = 100) in the
third, and (100 + 27 = 127) in the fourth. Each of these rows yields our
quarter-to-date totals, and each matrix represents the cumulative quantity
output by sites for each country.

Now, if we want the total quarter-to-date figures for each country (Le., if
we want to add up over sites for each country), we type in

+\(+/[2]PRODUCTION)

204 439 576 712
157 332 405 528
153 342 427 590

~ Cumulative quarterly outputs for nation 1.
~ Cumulative quarterly outputs for nation 2.
~ Cumulative quarterly outputs for nation 3.

Reading from the right, we have summed down the columns of each plane
and then performed "sum-scan" on each of the three vectors created by
the reduction down each column.

Suppose that the second dimension represented classifications by types
of oil rather than locations, and we wanted to compute the quarter-to-date
sum for each of these five types across nations.

+\(+/[1]PRODUCTION)

89 200 240 292

146 296 328 415

21 148 202 291

132 233 319 424

126 236 319 408

196 Higher-Order Arrays

+/ [1 J PRODUCTION gives the totals across nations by type of oil and by
quarter. + \ applied to the resulting matrix gives the cumulative sums.
Thus 89 = (53 + 13 + 23), and 200 = (89) + (111) = (5 + 55 + 41). In order
to give you a better appreciation of the flexibility of these operations,
consider the following alternatives, which are all equivalent:

A++,C+/[lJPRODUCTION)

B++\[l]C+/[l]PRODUCTION)

C++\[l] (+fPRODUCTION)

D++,(+fPRODUCTION)

The equivalence of these four alternatives is verified by

A=B

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

C=D

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

A=D

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

A problem which statisticians frequently encounter is that of selecting
subsets of observations. Suppose that you have a list of tables of statis­
tics; for example, you are looking at annual observations of G,NP (gross
national product) statistics for a series of countries. Now while the com­
plete list may contain as much information of this type as you would ever
wish to use, and so is potentially a very useful data source, in any particu­
lar problem you may want to look at only a few variables, or a few observa-

11.2 Compression 197

11.2 Compression

Dyadic Use
of Compression

tions, or only a selection of countries. Let's see how we can select vari­
ables from an array of several dimensions ..

The compression function is the dyadic use of the reduction operator /.
This operation requires a vector of 1's or zeros to the left of the "slash."
Here is an example.

1 0 1 Oil 2 5 7

1 5

What does it do? It "compresses" the vector 1 2 5 7 to 1 5, by dropping
those elements from the right array which are matched by zeros on the left
side of the compression symbol. This means that we must have the same
number of elements on both sides of the.1 symbol. If we violate this rule,
we get a length error.

1 a 1/1 3 5 7

LENGTH ERROR

1 a 1 / 1 357

/\

If X is a three-dimensional vector defined by

X+-2 2 2 018

x

1 2

3 4

5 6

7 8

we can compress this matrix by using the same rules we developed for
scan and reduction. Here are a few examples:

o l/X

2

4

6

8

{
Compression according to the
last coordinate, columns.

{
An alternative way of doing the
same thing.

{
Compression according to the
first coordinate, planes.

{
An alternative way of doing the
same thing.

3 4

[

Compression according to rows,
that is, according to the second

7 8 coordinate.

Let's consider an example. Suppose that we have annual observations
on GNP statistics listed as columns in a two-dimensional table, one table
for each country. This mammoth variable is called GNPSTAT. You want to
run a regression between, say, consumption and income, which are in
columns 5 and 26 for countries for which the index numbers are 8, 9, 22,
and 38. Also, you have decided to delete the war years from your analysis;
these years have index numbers 40 to 45. Let's store our subset of data
into CYTRFAL. This could be achieved by the procedure outlined below.

We need three arrays to compress GNPSTAT. Let's label them CO for
the country compression, VAR for the variable compression, and WAR for
the war years. Suppose that there are N countries, M variables, and T
years altogether. Then we type in

198 Higher-Order Arrays

o 1/[3JX

2

4

6

8

o lfX

5 6

7 8

o l/[lJX

5 6

7 8

o 1/[2JX

VAR+M pO

VAR[5 26J+ 1 1

CO+N pO

CO[8 9 22 38J+ 1 1 1 1

WAR+T pi

WAR[40+0,15J+ 6 pO

and now we can obtain the variable we want by

REGVAR+CO/[lJ~~R/[2JVAR/[3JGNPSTAT

As a numerical example of this, consider the variable X above and
suppose that M = N = T = 2. We want the first "country," the second

11.3 Expand Function 199

year, and the first variable; in this simple example that produces the num­
ber 3. Type in

VAR+ 1 0

CO+ 1 0

WAR+- 0 1

REGVAR+CO/[1]WAR/[2]VAR/[3]X

3

11.3 Expand Function

Dyadic Use of
Expand \

Deletion of variables naturally has its complement in the insertion of
variables. Suppose for example that we have a matrix of data (Le., a table
of variable values) and we decide that we want to add some more variables
to the array-not just tacked on as it were, but added into a specific place
in the array. The way in which this can be done is by use of the dyadic
expand function, \.

The expand function is analogous to the compress function. It has the
same general form. It requires an array of zeros and 1's to the left of the
expand operator (\). But with expand, the number of 1's in the left vector
must be equal to the number of elements in the coordinate of the array to be
expanded. Whenever a zero occurs in the left array, a zero is placed in
sequence in the expanded array between the elements of the array on the
right. Here is an example:

X

1 2

3 4

5 6

7 8

1 0 l\X

1 0 2

3 0 4

5 0 6

7 0 8

1 0 1,X

1 2

3 4

[

Expansion by columns (last
coordinate); O's are placed
between coilimns as indicated
by the array 1 0 1.

{
Expansion by planes (first
coordinate).

200 Higher-Order Arrays

0 0

0 0

5 6

7 8

1 0 1\[2JX

1 2 { Expansion by rows (second

0 0
coordinate) .

3 4

5 6

0 0

7 8

As you can see, a zero in the left argument inserts a coordinate of zeros in
the expanded array.

If we follow up the GNPSTAT example in §11.3, we can see that if we
wanted to insert GNP statistics for a whole country we would first make
room for them by

1 1 1 ... 1 0 1 ... l\[l]GNPSTAT

We would make room for a new variable for all countries and years by

1 1 1 . . . 1 0 1 . . . 1 \[3]GNPSTAT

In order to fill in years of observations originally left out of the data set we
would enter

1 1 1 . . . 1 0 a 0 1 . . . 1 0 O\[2JGNPSTAT

In this last example we have made room for two rows of data to be added
at the bottom of each table; in short, we have made room for two further
years of observations when we manage to get them.

Frequently, when we acquire a data set, the order of the variables or the
arrangement of the tables of entries may not be convenient for our pur­
poses. Consequently, it is often most useful to be able to reorder higher
dimensional arrays-to rearrange them into a more suitable format. The
next couple of functions help us to do just that.

11.4 Reverse or Rotate Function

Rotate <P In its monadic form; ¢\1 2 3 4 produces 4 3 2 1 . The character ¢ is
produced by overstriking the circle (upper shift alphabetic 0) and the res­
idue I (upper shift M). If the vector on the right of ep is a multidimensional
array, the function obeys the same rules that we have discussed concern­
ing the expand, compress, scan, and reduce operators. The following ex­
amples will illustrate the use of ¢.

11.4 Reverse or Rotate Function

X

1 2

3 4

5 6

7 8

<Px
2 1

4 3

6 5

8 7
twas column 1

twas column 2

¢[3]X

2 1

4 3

{
Reverses the order of columns,
the last coordinate.

{
An alternative way of doing the
same thing.

201

6 5

8 7

¢[2]X

4 <E-was Row 2, Plane 1
[Reverses the order of rows, the

3 second coordinate. Notice that
1 2 +-was Row 1, Plane 1 row reversal is within planes,

not across planes.
7 8 +-was Row 2, Plane 2

5 6 +-was Row 1, Plane 2

¢[l]X

5 6 +-was Plane 2
{ Reverses the order of planes,

the first coordinate.
7 8

1 2 +-was Plane 1

3 4

ex
5 6

{ An alternative way of doing the
same thing.

7 8

1 2

3 4

202 Higher-Order Arrays

2nd rotation step 1 6 4 2

Produces 1 6 4 2

~1

1 2164 1
L.=1
or
-..c----:!

~

2<P4 2 1 6

In this last example, the overstriking of the circle with the subtraction
sign instead of the residue sign indicates that the operation is to be over the
first coordinate instead of the last.

The two-argument or dyadic form of rotate allows you to specify the
,'amount of rotation. " By this we mean that you can reposition the ele­
ments of the array by specifying the rotation in the array to the right of <P.
As an example, we rotate 4 2 1 6 two positions to the left by

Symbolically we have:
1st rotation step 2 1 6 4

1 642

•

We can rotate in the other direction by
! ~

-34>4 2 1 6 14 2 1 6 f

2 1 6 4

Here we have rotation to the right by three spaces. Here is how that
worked:

-1<P1+ 216 t 421 4-
61+2 1

-2<1'4 2 1 6 · t 642+

1 6 4 2

-3¢4 216 t 164 j-
2 1 6 4

Perhaps an easier way to see these operations is to consider putting the
numbers down in a circle with positions marked, and then to rotate the
inner "dial" of numbers. Thus 2¢ 1+ 2 1 6 means rotate two positions to
the left, and if y,ou rotate the inner dial two positions to the left (counter­
clockwise) you will get 1 in position 1, 6 in position 2, etc.

If you find the clock approach handy, use it.
In short, rotate merely rotates the array of numbers in sequence, to the

right with a negative argument, and to the left with a positive argument.

11.4 Reverse or Rotate Function 203

This procedure is also called a cyclic shift, because although elements are
rotated, they are not interchanged.

Just as a reminder that -1 and -1 are not the same, you might try

-1 <P4 2 1 6

2 -1 -6 -4

Multidimensional arrays can be rotated along a specified coordinate. Or,
you can indicate the "amount" of rotation for each row, column, or plane
within a coordinate. For our example, we will use the three-dimensional
array Z generated by

Z+-2 3 4 p 124

Z Row numbers

1 2 3 4 (1)

5 6 7 8 (2)

9 10 11 12 (3)

13 14 15 16 (1)

17 18 19 20 (2)

21 22 23 24 (3)

(1) (2) (3) (4)

Column numbers

2¢Z [Rotate columns (last

3 4 1 2
coordinate) to the left
by two positions.

7 8 5 6

11 12 9 10

15 16 13 14

19 20 17 18

23 24 21 22

(3) (4) (1) (2)

Column numbers

Next, we rotate the second dimension (rows) one place to the "right"
which, for rows, is down, and notice that the rotation of rows is within
planes. (Rotation of columns is also within planes, but the distinction is not
apparent.)

204 Higher-Order Arrays

-1¢[2J2
Row numbers

9 10 11 12 (3)

1 2 3 4 (1)

5 6 7 8 (2)

21 22 23 24 (3)

13 14 15 16 (1)

17 18 19 20 (2)

We can reverse the planes with any of the following commands:

1¢[1]Z

13 14 15 16

17 18 19 20 ~ Plane (2)

21 22 23 24

1 2 3 4

5 6 7 8 +- Plane (1)

9 10 11 12

-1¢[1]Z

13 14 15 16

17 18 19 20 <E- Plane (2)

21 22 23 24

1 2 3 4

5 6 7 8 ~ Plane (1)

9 10 11 12

eZ

13 14 15 16

17 18 19 20 ~ Plane (2)

21 22 23 24

1 2 3 4

5 6 7 8 +-- Plane (1)

9 10 11 12

You will gain much more familiarity with this function in the exercises at
the end of the chapter. For now, it should be clear how you can rearrange

11.5 Transpose Function 205

your data into a more convenient format. In matrix algebra the operation of
transposition of matrices and vectors is the most useful of all matrix opera­
tions. We now examine APL's development of this basic, but simple,
notion.

11.5 Transpose Function

Transpose ~ The transpose function will alter the shape of your data matrix. The trans­
pose symbol is constructed by overstriking the circle (above the alphabetic
0) and the reduction operator \, forming Q. The two-dimensional case is an
exact analogue to the mathematical operation of transposition. For exam­
ple,

Y+2 3 pi 1 1 2 2 2

Y

1 1 1

2 2 2

pY

2 3

QY

1 2

1 2

1 2

p(QY)

3 2

In mathematical notation Q Y is written as yT or Y'. The three-dimensional
array is sometimes confusing:

Q~

1 13

5 17

9 21

2 14

6 18

10 22

3 15

7 19

11 23

206

Dyadic Transpose

Higher-Order Arrays

4 16

8 20

12 24

What has been done here is best explained by considering the shapes of the
two arrays. The shape of Z is

pZ

234

but the shape of ~ Z is

p(~Z)

432

So we see that we have here a natural extension of the idea of transpose; in
APL terms, transpose yields an array whose dimensions are the reverse of
the dimensions of the original matrix, i.e., ~Z 2 3 4 are the dimensions of
~Z.

The above discussion has shown you how the monadic form of trans-
pose, ~, works. There is a very important extension of this idea in the
dyadic use of~. Remember that in the monadic use, if p (Z) was 2' 3 4,
P (~Z·) is 4 3 2. But what if we want an array of dimensions 3 2 4? We
obtain such a result with the dyadic transpose and we refer to each dimen­
sion number by its position. Thus in the first position for Z, the dimension
number is 2, in the second it is 3, and in the third it is 4. If we type

1 2 3~Z

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

we get back Z itself.
Now let us consider the more interesting alternatives. If we specify

3 2 1 ~ Z, we will get an array of 4 planes of 3 by 2 matrices. An element
in the [/;J;K] position in Z is put into the [K;J;I] position for the array
(3 2. 1 ~ Z). For example,

3 2 l~Z

1 13

5 17

9 21

p (3 2 1 Q Z) is 4 3 2.

Elements in the [I;J;K] position
are transposed to the [K;J;I]
position.

11.5 Transpose Function 207

2 14

6 18

10 22

3 15

7 19

11 23

4 16

8 20

12 24

1 3 2~Z

1 5 9

2 6 10

3 7 11

4 8 12

13 17 21 {P (1 3 2 Isl Z) is 2 4 3. Elements

14 18 22
in the [!;J;K] pos~t~on are transposed
to the [I;K;J] posItIon.

15 19 23

16 20 24

2 1 3QZ

1 2 3 4

13 14 15 16

5 6 7 8 { P (2 1 3 Isl Z) is 3 2 4. Elements
in the [I;J;K] position are transposed

17 18 19 20 to the [J;/;K] position.

9 10 11 12

21 22 23 24

One way to visualize these changes is:
Original Coordinate Values 2 3 4
Original Index Position 1 2 3

.. 11111111116_____ -.___

Transposed Index Position 2 1 3
Transposed Coordinate Values 3 2 4

These operations will be particularly important in certain matrix opera­
tions needed later on in the text. For now, let us note only the more

208 Higher·Order Arrays

obvious benefits of the transpose function and its extension to multiple­
dimensioned arrays.

First of all, a very common matrix multiplication needed in statistics is
given in mathematical terms by

X(X'X)-IX'

whereX' represents the transpose ofX and X is an N x K matrix, N > K.
The matrix product X(X' X)-IX' is programmed in APL by

R+X+.x(~ (~X)+.xX)+.x~X

Let's try it with the matrix W defined in the following manner:

W+4 2 p1 o 0 11123

R+W+.x ([l (ls(W) +. xW) +• xis(W

R

0.64706 0.4117.6 0.25529 0.658824

0.41176 0.35294 0.058824 0.23529

0.23529 0.058824 0.17647 0.29412

0.058824 0.23529 0.29412 0.82353

A more interesting example is the following. Suppose that we have time
series data on some variables for different countries. The data are averaged
by country. But what we would like to observe are the data arranged by
year, rather than by country. That is, the original data contain a set of
observations on a number of variables by year for each country. We want
to rearrange the data so that for each year, we have observations across
countries for each variable. Let's give a simple example.

Suppose that the matrix Z we created before represents two countries'
data for three years on four variables; Z has 2 planes, 3 rows, and 4
columns.

Z Years--
I 2 3 4

(1) }
5 6 7 8 (2) Country 1
9 10 11 12 (3)

13 14 15 16
(1) }(2) Country 2
(3)

i t t i
1 2 3 4

Variables

For each year we want 3 planes, a table of entries representing observa­
tions by country on each variable; that is 2 rows and 4 columns. This is
achieved by

11.6 Ravel, Catenate, Laminate 209

2 3 4 <E- Current dimensions
1 2 3 <E- Current position

3 2 4 <E- Desired dimensions
2 1 3 <E- and positions

So we type

2 1 3~Z

1 2 3 4

13 14 15 16

5 6 7 8

17 18 19 20

9 10 11 12

21 22 23 24

and get the desired result.
Another important "data manipulation" task is to "combine" matrices

and vectors to form bigger matrices; for example, we might have a matrix
X of dimension N x M and another matrix Z of dimension N x Q, and want
to form a new matrix W = [X Z] of dimension N x (M + Q). The next set
of functions enables us to do just that and much, much more.

11.6 Ravel, Catenate, Laminate

Ravel
Catenate ,
Laminate ,

The ravel function", " can convert a multidimensional array into a list.
Consider the array DATA:

DATA+-2 3 4 p10+124

DATA

11 12 13 14

15 16 17 18

19 20 21 22

23 24 25 26

27 28 29 30

31 32 33 34

If we ravel DATA we get:

,DATA

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

210

Catenation ,

Higher·Order Arrays

where we have DATA listed by rows in the first plane and then in the second.
Essentially, the ravel operation (like all the others that we have discussed)
operates according to columns within rows within planes, within blocks,
etc. You can check the shape of DATA and of, DATA by

pDATA

234

p (,DATA)

24

To compute an arithmetic average of all the elements of the DATA matrix,
you could write

(+/ ,DATA)';' p ,DATA

22.5

The ravel function is monadic. The dyadic form of the function is called
catenate or laminate. The general form of the command is X,[Y]Z. When Y
is an integer, the function is called catenate and when Y is a fraction , the
function is called laminate. Let's begin with catenate when Y is an integer.

Catenation "joins together," as it were, two arrays along a specified
coordinate, provided that the lengths of the arrays involved are the same,
that is, provided that the two arrays are conformable. If this is not the case,
you get a length error. The operation can best be explained by examples.

Let us define the following arrays:

A B C D

1 2 3 8 9 20 21 22 25

4 5 6 10 11

pA pB pC pD

2 3 2 2 3

Now try

A, [2JB B, [2 JA
{ Catenation here augments

1 2 3 8 9 8 9 :L 2 3 the columns

4 5 6 10 11 10 11 4 5 6
'-...,--I '-...,--I

A B B A

pA,[2JB pB,[2JA

2 5 2 5

Catenation along columns means column dimensions are added, 3 + 2 = 5.

11.6 Ravel, Catenate, Laminate

A,B

1 2 389

4 5 6 10 11

B,A

8 9 1 2 3

10 11 4 5 6

211

{Same result as above

We notice here that, as we might have suspected, if no coordinate is
specified, catenation, if conformable, proceeds along the last coordinate.
Now try

A,[lJC C,[lJA

1 2 3}A 20 21 22 } C
{ Catenation in this case

4 5 2: }c
1 2

: } A
augments rows

20 21 4 5

pA, [lJC pC, [lJA { So row dimensions are
added, 2 + 1 = 3

3 3 3 3

A, [lJD A,D

1 2 3 1 2 3 25 [A scalar is extended to

4 5 6 4 5 6 25
make up an array of appro-
pri~te dimension for cate-

25 25 25 nation.

pA,[lJD pA,D

3 3 2 4

We see here that scalars can be catenated to arrays and are automatically
extended for this purpose.

Examples of data manipulation using the function catenate spring to
mind. Imagine that you have an array of time series data on a set of
variables, and that later you acquire data on a further few years of observa­
tion on the same variables. Catenate enables you to add the new data to
your old array quickly and efficiently. Another useful example to keep in
mind is the perennial problem of handling the constant term in a multiple
regression problem. Suppose once again that you have an array X of data
on variables to explain the movements in steel prices over time, but that
before running your regression you want to add the constant term; i.e., you
want a column of l's as the first column of your data matrix. Now we know
how to do this without pausing for further thought:

X+l,[2JX

gives the desired data array. Try this with our simple A matrix:

A+l, [2]A

A

112 3

1 Lt 5 6

212 Higher-Order Arrays

Lamination , Laminate is quite different from catenate in operation because a new
coordinate is established. The fonn of the command is identical to that for
catenation, specifically X,[Y]Z. But now Y can take on any positivefrac­
tional value. The idea of laminate is to create a new dimension. For exam­
ple, suppose that you have two matrices of dimension 3 x 4 to be lami­
nated. You might want 2 planes of 3 x 4 matrices, 3 planes of 2 x 4
matrices, or 3 planes of 4 x 2 matrices. Laminate lets you choose. Con­
sider the two matrices E and F:

E F

1 2 3 4 .1 • 2 .3 .4

5 6 7 8 • 5 .6 • 7 .8

9 10 11 12 .9 1.0 1.1 1.2

G+E, [. sJF H+F,C.5JE

G H

1 2 3 4 .1 • 2 · 3 .4 {G' Hare each 3-dimen-
5 6 7 8 • 5 .6 • 7 .8 sional arrays; 2

1.1 1.2
planes of 3 by 4 matrices

9 10 11 12 .9 1.0

.1 .2 .3 .4 1 2 3 4

• 5 . 6 .7 • 8 5 6 7 8

.9 1 1.1 1.2 9 10 11 12

pC pH

432

t

2 3 4 { The added dimension is
t indicated by the t

In short, specifying [. 5 JE means that we want to add a dimension in
''front.'' Actually, any decimal between 0 and 1.0 would do as well as .5.
Now, what about something like [1.6]F? Here we want to add a dimen­
sion between the existing first and second dimensions. This operation will
give us 3 planes of 4 x 2 matrices. Consider the examples:

E, [1. 6JF E, [2. 6JF

1 2 3 4 1 .1

.1 .2 . 3 .4 2 .2

5 6 7 8 3 • 3

.5 • 6 • 7 .8 4 .4

9 10 11 12 5 • 5

.9 1.0 1.1 1.2 6 .6

11.7 Take and Drop Functions 213

pE,[1.6JF

3 2

t

4

7

8

9

.7

. 8

.9

10 1

11 1.1

12 1.2

pE ~ [2. 6JF

3 4

t

2
{

The added dimension
is indicated by the t

These examples show us how we can fit two data matrices together in a
variety of ways. For example, the first case of creating 2 planes of 3 by 4
matrices might be useful in setting up an array of time series data on a
group of variables by country. Alternatively, E and F might represent,
respectively, the labor and capital inputs by year for various production
plants. In the E, [1 . 6 JF case, each of the three planes created contains
each year's labor and capital inputs to the various plants. In the E , [2 . 6 JF
case, each of the three planes contains the transpose of these data mat­
rices.

Let's complete this chapter by examining the ways in which we can do
the opposite to the above operations; that is, we have just been discussing
fitting matrices together into higher-dimensional arrays, now let us see how
to "undo" that process.

The functions of "drop" and "take" enable us to select in a straight­
forward manner from a multidimensional array those elements that we
wish to use.

11.7 Take and Drop Functions

Take t and Drop f

Functions

It is possible to extract or delete some of the elements of a multidimen­
sional array by using the take and drop functions. These functions, like the
others we have described, will operate on character matrices as well as on
numeric ones.

The take function, t, which is upper case Y, extracts elements of an
array. It has the format AtF, where A elements are extracted from B,
starting on the left. For example

2t 'ABCDE'

AB

but

3t 'ABCDE'

CDE

which takes three elements from the right.

214 Higher-Order Arrays

Now consider the three-dimensional array

B+2 2 3 p'ABCDEFGHIJKL'

B

ABC

DEF

CHI

JKL

122 t B

AB

DE

takes the first plane from the first dimension, the first two rows from the
second dimension, and the first two columns from the third dimension.

The drop function, -}, removes elements from an array or list, just as the
take function extracts elements. The down arrow -t- is above the character
U on the keyboard.

3 {- 'ABCDEF'

drops the first three elements ABC, and we get

DEF

The code

3 -t- ' +/ *A , ?6 '

results in

+/*A

As you can see, characters other than alphabetic or numeric ones can be
operated on. The drop function also operates on multidimensional arrays,
just as the take function does. For example,

B

ABC

DEF

CHI

JKL

I

L

1 0 2 -t B

1 1 2 -} B

{
Drops the first plane, keeps all rows,
and drops the first two columns.

{
Drops the first plane, first rows,
and first two columns

Summary

Summary

L

111 + B

AB

1 1 o + B

GHI

000 4- B

ABC

DEF

GHI

JKL

215

{
Drops the last plane, the last row,
and the last column

{
Drops the first plane, last row, and
keeps all columns

{
Drops nothing, i.e., keeps
everything

Reduction, /, and Scan, \: across multidimensional arrays oper­
ates as with lists, but over the last coordinate. Overstriking / or \ with ­
(minus sign) yields reduction or scan over the first coordinate. Reduction
or scan over any coordinate can be chosen by specifying the chosen coor­
dinate by indexing. Thus if, for example, pA is 2 3 4 we have:

+/A is equivalent to +/ [3JA, reduction by columns

+fA is equivalent to +/ [1JA, reduction by planes

+/ [2 JA yields reduction by rows

Similar remarks hold for the scan function.
Compression, dyadic use of I: IfA is a list ofO's and l's, andB is

a list, then AlB produces a list C of dimension (+ / A) which contains those
elements of B indicated by the 1'8 in A. Compression can be used with
higher-dimensional arrays in exactly the same way as can reduction or
scan.

Expansion, dyadic use of \: IfA is a list of 0'sand l's, and B is a
list, then A\B produces a list C of dimension p (A). Then +/ A must equal pB.

C will contain the elements ofB with zeros inserted in the positions corre­
sponding to the zeros in A. Expansion with multiple-dimensional arrays
expands the size of the indicated dimension by the number of zeros which
appear. For example, if pX is 2 2 2:

1 0 1\X is equivalent to 1 0 1 \ [3]X and produces a middle col­
umn of zeros in each matrix in each plane.

1 0 1\.X is equivalent to 1 0 1\[l]X and produces a matrix of zeros
between the two planes of matrices of X.

216 Higher-Order Arrays

1 1 0 \ [2] X produces a row of zeros at the end of each matrix in
each plane.

Rotate, ¢ (keyed by upper shift 0, backspace, upper shift M), a
monadic function: Rotate reverses the order along the indicated dimen­
sion. For example, ¢X reverses the order of columns in X, an array of
dimension 2 2 2.

cP[2]X reverses the order of rows in the array X.

¢[1]X, which reverses the order of planes, is equivalent to eX
(keyed by upper shift 0, backspace, MINUS).

Rotate, ¢, dyadic form: The amount and direction of rotation can
be specified in the dyadic use of ¢.

2¢ (list) rotates a list two positions to the left.

- 3¢ (list) rotates a list three positions to the right.

Dyadic rotate can be used in a manner analogous to the use of scan and
reduction with higher-dimensional arrays.

eX is equivalent to ¢[l]X.

Transpose, ~ (keyed by upper shift 0, backspace,.\), a monadic
function: ~ applied to an array with dimensional elements [I; J; K] yields
an array with dimensional elements [K;J;/].

Transpose, Q, dyadic form: IfA is an integer array, AQX trans­
poses the elements ofX as specified by the elements ofA. For example, if
X has dimensions 2 3 4, then 2 3 1 Q X produces an array with 3 planes, 4
rows, and 2 columns.

Ravel, " , " a monadic function: converts any array into a list by
listing the elements along the dimensions, starting with the last and work­
ing forward to the first.

Catenate (or Laminate), " ," the dyadic form of ravel: The func­
tion is used by Y, [A]X, whereA is the specified dimensional "index" ofa
multidimensional array X. If A contains integers, the function is called
catenate; if A contains nonintegers, the function is called laminate. With
catenation, Y and X are joined together to form a larger array whose
dimension along that indicated by A is the sum of the corresponding values
for Y and X. The arrays must be conformable. With lamination a new
dimension is created (see page 212).

Take, t , (keyed by upper shift Y): dyadic function which extracts
elements from a list or array. If B has dimensions 2 3 4 ~ 1 2 3 t B

produces an array from the first plane of B, the first two rows, and first

Exercises 217

(m) 0 0 1 tX

(n) 5 3 2 tX

(0) 1 1 1 ~1 1 1 tX
(p) +\+IX

(q) 0 0 O~O 0 0 tX
(r) +/ 1 1 0 i- a 0 1 t X

(s) 1 0 0 1/[2JX

(t) 1 a 1 0 I[3}X

(u) (8p01)\[2JX

(v) 1,X

(w) 1-, 0 , 1 , X

Exercises

three columns ofB. Similarly -1 2 '-3 t B produces an array from the last
plane of B, the first two rows, and last three columns of B.

Drop, + , (keyed by upper shift U): dyadic function used in a man­
ner analogous to take, t, but drops (or deletes) elements from the array
instead of taking them. What is obtained is what remains after the indicated
elements have been deleted from the array.

APL Practice

1. Let X+2 4 4p 32 ?32. That is, X consists of two planes of 4 by 4
matrices each. Perform the following operations and examine the
results with a view to understanding how to handle multidimensional
arrays.

(a) +/X

(b) +IX

(c) +/[1JX

(d) +/[2JX

(e) +/[3JX

(f) -/[1JX

(g) -IX
(h) + / [1]X[2 ; ;]

(i) +/+\X
(j) +/+\[1JX

(k) +1+\[2JX

(I) 2 2 2 t X

2. Use the matrix X of exercise 1 to examine the following APL opera­
tions. Before carrying out each operation, try to predict the result.
(a) 2¢X (j) 2 1 3 ~X

(b) o¢x (k) 3 1 2' ~X

(c) -l¢X (1) ¢,X

(d) -14>[1JX (m) 1 0 ¢,X

(e) -1<1'[2JX (0) ¢X,[2JX

(0 -1¢[3JX (0) ([2JX) ,¢X

(g) eX (p) 1,X

(h) ~X (q) X,l

(i) 1 2 3 ~X (r) X; 1

3. Use the matrix X of exercise 1 to examine the difference between:
(a) --1 -~ -..1+X and 1 1 2 tX

218 Higher-Order Arrays

(b) 0 0 0 irX

(c) +/[l]X

(d) X[;2;J

(e) eX

and 2 3 4 +X

and (1 3 4 +X)+1 0 0 irX

and 2 3 1 t1epX

and ¢[l]X

4. Use the matrix X of exercise 1 to :

(a) Compute the left inverse of X.

(b) Insert a row of zeros between the 3rd and 4th row of each block.

(c) Insert two blocks of zeros between the two blocks ofX.

(d) Select the second block with a column of 1's added in the begin­
ning.

(e) Form a block-diagonal matrix consisting of the two blocks ofX.

(f) Form a matrix W of dimension 3 x 4 consisting of the 1st and 3rd
rows of the first block ofX and the 2nd row of the second block of
X.

5. Define a matrix A with elements

i<j
i=j
i>j

j = 1 ... 10

where (1=1) is the binomial coefficient. Verify that A2 = I. The
matrix A is said to be orthonormal; it is its own inverse!

6. For the matrix X of exercise 1, use the logical function, to
show that

A matrix such as

0] -1

X[2;;] X [2;;]-~]

[
X[l;;] 0]
o X[2;;]

is called block diagonal, where X [1;;] and X [2;;] are the blocks.

7. Consider the square matrix

A == [~ i ~]
4 8 12

Use the computer to verify:

(a) That A is singular (i.e., has no inverse).

(b) That the matrix eA is not singular.

(c) That C == A + B, where

Exercises

[
0 0 0]

B== 000
o 0 0.1

219

is nonsingular.

(d) That (1 + B)A yields a matrix identical to A except that the
3rd row has been replaced by the third row plus 0.1 times the
3rd column, while A(I + B), where I is the identity matrix,
has a similar effect upon columns.

8. For A == [6 ~] and B == [8 ~] show that AB == BA using the logical
function '=='.

9. Given the matrices:

[
-1

y==
1 x == [Xijl\'xs

where Xij == (-I)N-i(t--/), (i~-l) is the binomial coefficient, N == 10,
j == 1, . . . , 10, i == 1, . . . , 10, find the limits of

(a) limn~x yn

(b) limn~x x n

10. Assume that the array namedALL consists of 12 matrices, one for each
of the 12 cities in which a publishing company sells some of its
magazines. Assume further that each matrix consists of five rows that
represent locations within the city, and that each row has 16 elements
representing the number of magazines sold per month by each of the
16 newsstands in each location. How would you write in APL a pro­
gram to determine:

(a) The total number of magazines sold in each city during the
month.

(b) The newsstand with the maximum sales volume in each city.

(e) The total volume of sales.

(d) Let P be the row of the 12 different prices charged, one for each
city. Show how you would find the city with the maximum sales
in dollars.

Statistical Applications

Data for these applications are in appendix E.

1. Find estimates of the coefficients of the regression

It = Qo + Q1RLt + Ut

where It = level of investment in the U.S. for the years 1950 to 1978,
and RLt == the long-tetm interest rate for the U.S. for the same 29-year

220 Higher-Order Arrays

period. Recall that if you use REGRESS, the data arrays must be lists,
not two-dimensional arrays.

2. Suppose you wanted to rerun the regression of exercise 1,
It = ao + atRLt + Ut, using the information (which somehow you
managed to get) that the true variance of Ut is 225. How will this new
information change your regression coefficient estimators and esti­
mates? How about their estimated standard errors?

12

Inner and Outer
Products-Matrix
Manipulation

The previous chapter gave us a variety of methods for rearranging, select­
ing, and building up multidimensional data arrays. But multidimensional
arrays also enable us to peIform with ease a number of complicated statis­
tical computations. For example, we frequently require the sum of prod­
ucts of observations on two random variables. Another frequent require­
ment is the preparation of tables and the need to peIform some operation
on all the elements of an array with each element of another array. The
functions below facilitate these operations.

12.1 Inner Product: Some New Ideas

Inner Product
+.x

You have already seen the inner product in connection with matrix multi­
plication. In that case two matrices, say A andB, were operated upon using
the three symbols that form what is sometimes called the "plus-times"
inner product. We form two matrices

A+-2 2p 18

B+-2 2p4+18

A

1 2

3 4

B

5 6

7 8

221

222

Inner Product
Generalized

Inner and Outer Products-Matrix Manipulation

The plus-times inner product is written as

A+.xB

19 22

43 50

To review, the (1,1) entry is formed by (1 x 5) + (2 x 7) == 19; the (1,2)
entry by (1 x 6) + (2 x 8) = 22; (2, 1) by (3 x 5) + (4 x 7) == 43; and (2,2) is
computed by (3 x 6) + (4 x 8) == 50. We have, in effect, placed the
multiplication symbol between the elements "across" the second coordi­
nate ofA and down the first coordinate ofB. Then the summation sign is
inserted between these product pairs.

Suppose that we reversed the + and x signs? We would have

Ax.+B

54 70"

88 108

The (1, 1) element is computed by (1 + 5) x (2 + 7) == 54, and the (1, 2)
element is (1 + 6) x (2 + 8) == 70. So you can see that the "inner product"
is more powerful than you might have expected. Another example is
maximum-times inner product:

14 16

28 32

The first element is computed by (1 x 5) r (2x 7) =14. Another function
might be called the max-min inner product:

Ar. LB

2 2

4 4

where the first element (1,1) is computed by (1 L 5) r (2 L 7)=2. For
example, suppose that A andB represent expenditures on a group of com­
modities over time by two individuals. You wish to discover what was the
largest of the minimum expenditures between the two.

These operations can be performed on higher-order arrays of different
dimensions. For example:

A+2 2 2 pl8

B+2 2 p1

A

1 2

3 4

12.2 Outer Product 223

5 6

7 8

B

1 1

1 1

A+.xB

3 3

7 7

11 11

15 15

The shape of the result of this command is 2 2 2. The shape always drops
the last coordinate of the array on the left and the first coordinate of the
array on the right. The 1ddropped" coordinates must be equal to each
other-this is called conformability of the two arrays. Just as before, the
multiplication symbol is placed between the elements of the last coordinate
ofA and the first ofB.

(1 x 1) + (2 x 1) = 3
(3 x 1) + (4 x 1) = 7

(5 x 1) + (6 x 1) = 11
(7 x 1) + (8 x 1) = 15

(1 x 1) + (2 x 1) = 3
(3 x 1) + (4 x 1) = 7

(5 x 1) + (6 x 1) = 11
(7 x 1) + (8 x 1) = 15

12.2 Outer Product

Outer Product
o .fn.g

Another operation is illustrated by the following example. If we wanted
to obtain the matrix product of the matrix in plane one ofA with that of the
matrix in plane two of A, we would key in

A [1 ; ;] + • xA [2 ; ;]

19 22

43 50

This is exactly what we obtained in the first example of this section. If the
two planes represent observations on two vectors of random variables,
each observed over time, then the above operation produces the raw mo­
ment matrix of the random variables. Thus the typical (i, j) element of the
iIlner product is mathematically LkXikYjk, where x ik and y jk are the kth
observations on Xi and yj, the ith andjth elements, respectively, in the x
and y vectors of random variables.

This instruction enables you to place a primitive dyadic function between
each element in the corresponding positions in the two arrays. (Is that a

224 Inner and Outer Products-Matrix Manipulation

mouthful of words! And only a few weeks ago you didn't even know that
APL means A Programming Language!) This function is constructed with
two symbols, the null or jot (the little 0 above the J)and the period. Its
general form is

Ao. fn B

where A and B can be either scalars or matrices. o. is called "jot dot."
One use that is made of this instruction is preparing tables. Here is an

example of a simple arithmetic table for addition.

1 2 3 4 5 0 .+0 1 2 3 4 5

1 2 3 4 5 6

2 345 6 7

345 6 7 8

4 5 6 789

5 6 7 8 9 10

The first row is computed by adding to one (the first element on the left) all
the elements on the right of the outer product function. The second row is
formed by adding the second element of the left argument to each element
of the right argument. Here is another way to visualize the operation:

+ 0 1 2 3 4 5

1 1 2 3 4 5 6
2 2 3 4 5 6 7
3 3 4 5 6 7 8
4 4 5 6 7 8 9
5 5 6 7 8 9 10

Notice that we have written in the column and row headings and the
addition symboL Let's try another simple arithmetic table, only this time
let B be a three-dimensional array.

B+2 2 2p 4+1.8

B

3 2

1 0

1 2

3 4

C+-O 1 2 o .xB

C

12.3 An Economic Example (Production Functions) 225

0 0
0 0

0 0
0 0

3 2
1 0

1 2
3 4

6 4

2 0

2 4

6 8

pC

3 2 2 2

Block 1, given by 0 x B

Block 2, given by 1 x B

Block 3, given by 2 x B

Notice that the shape that results from the outer product is the catenation
of the shapes of the arrays A and B, P (A) == 3, P (B) == 2 2 2. C has 3
blocks of 2 planes of 2 rows by 2 columns. The arithmetic is just as easy as
it is in the simple case. The scalar zero is multiplied by every element of
the three-dimensional array B, then 1 x B is formed, and then 2 x B. Feel
free to experiment with other dyadic operators or combinations of
operators. However, be aware of how much storage, printing, and com­
puter time you are using, since this is a "super-powerful" command.
Consider how many values A 0 • *B would generate if the shapes ofA and B
were each (5 5 5 5).

12.3 An Economic Example (Production Functions)

An interesting use of outer product concerns production functions. Sup­
pose that we have estimated the parameters of a productioll function and
we want to examine the properties of the estimated function. We start with
a modified version of a Cobb-Douglas production function:

and our estimates of the parameters could have been

Yi == 120.0 Lp·5Kp·5eO.3D i

Y; might be the amount of oil pumped from various drilling platforms, L;
equals the amount of labor at each platform, K i is the amount of capital
services at each of the platforms, and D i is a binary variable that takes on
the value 1 for offshore rigs and 0 for onshore rigs. Y is the estimate of the
conditional mean of Y i • The Greek letters arJrsymbols for the parameters
that were estimated, and U i is a disturbance term distributed normally with
zero mean and constant variance.

226 Inner and Outer Products-Matrix Manipulation

Our objective is to explain the economic implications of this equation.
We write an APL program using the outer product command.

VPROD

[1J Y~120x(*0.3xD)o.x(L*0.5)o.x(K*0.5)

[2J \}

Working from right to left we raiseK to the 0.5 power. Next perform outer
product multiplication with L raised to the 0.5 power. This two­
dimensional result is combined with eO.3D using the outer product multiply
again. The final three-dimensional array is multiplied by 120.

Notice that we did not code the equation exactly as it was first written.
Since the first dimension of the result is the coordinate of the left-most
variable, we putD on the left. This allows us to see most easily the effect of
drilling location on productivity. We generate some hypothetical data:

L+110

K+15

[frO 1

PROD

y

120 169.7056275 207.8460969 240 268.3281573

168.7056275 240 293.9387691 339.411255 379.4733192

207.8460969 293.9387691 360 415.6921938 464.7580015

240 339.411255 415.6921938 480 536.6563146

268.3281573 379.4733192 464.7580015 536.6563146 600

293.9387691 415.6921938 509.1168825 587.8775383 657.267069

317.4901573 448.9988864 549.9090834 634.9803147 709.929574

339.411255 480 587.8775383 678.8225099 758.9466384

360 509.1168825 623.5382907 720 804.9844719

379.4733192 536.6563146 657.267069 758.9466384 848.5281374

161.9830569 229.078636 280.5628845 323.9661138 362.2051265

229.078636 323.9661138 396.7758364 458.1572719 512.2354022

280.562845 396.7758364 485.9431707 561.1257691 627.3576818

323.9661138 458.1572719 561.1257691 647.9322276 724.4102529

362.2051265 512.2354022 627.3576818 724.4102529 809.9152845

396.7758364 561.1257691 687.2359079 793.5516728 887.217742

12.3 An Economic Example (Production Functions) 227

428.5668852 606.0851014 742.2996196 857.1337704 958.3046882

458.1572719 647.9322276 793.5516728 916.3145438 1024.470804

485.9491707 687.2359079 841.6886536 971.8983415 1086.615379

512.2354022 724.4102529 887.217742 1024.470804 1145.39318

The array Y has too many digits in each number for us easily to see what
is happening. Let's get an array of approximations to Y that will be easier
to read. Let's try

YI+LY

YI

120 169 -

168 240 ­

207 293 -

240

This array has the following form:

On-shore

Off-shore

[
~~~~~~~~~~~~~~~JIncreasing~

Increasing
L

First Table Entries

[
~~~~~~~~~~~~~~~)Increasing~

Increasing
L

Second Table Entries

You might also want to see the effect that an increase in the output elastic­
ity of capital from 0.5 to 0.7 would have on output with various combina­
tions of inputs. Consider

VPROV[lJ

[lJ [10J

[1J Y+120 x(*0.3 xD)o.x(L*0.5)o.x(K*0.5)

[1J Y+120x(*0.3 xD)o.x(L*0.5)o.x(K*O.7)

[2J V

228 Inner and Outer Products-Matrix Manipulation

PRG'-',D

LY

120 194 258 316 370

169 275 366 447 523

207 337 448 548 641

240 389 517 633 740

268 435 578 708 827

293 477 634 775 906

317 515 685 837 979

339 551 732 895 1047

360 584 776 950 1110

379 616 818 1001 1170

161 263 349 427 499

229 372 494 604 706

280 455 605 740 865

323 526 699 854 999

362 588 781 955 1117

396 644 856 1047 1224

428 696 924 1130 1322

458 744 988 1209 1413

485 789 1048 1282 1499

512 832 1105 1351 1580

These data can be plotted to give a clearer picture of the results.
You have seen to some extent how higher-order arrays can be used in

APL to simplify your statistical calculations. However, it is easy to be­
come confused at first. It will help you to avoid confusion if you experi­
ment with small samples of data and check your work at each stage. We
have kept the examples small so that they were relatively easy to check by
hand. The last example on the prodiIction function was more ambitious,
but now you are at a point where you can probably use APL to check your
APL. Applications that are even more ambitious, but more useful, will be
discussed next.

12.4 Two More Not-So-Elementary Matrix Operations

12.4 Two More Not-So-Elementary Matrix Operations (Kronecker
Product, Determinant)

* Kronecker Product

229

Kronecker
Product

Later on, if you continue to study econometrics and statistics, you will
find a great need for a mathematical operation called the Kronecker prod­
uct. The Kronecker product of two matrices I and W is written mathemat­
ically as I ® W, where I and Ware square matrices of dimensions (n x n)
and (m x m), respectively. The result, say C, is of dimension (nm x nm),
and is defined by

0"11 W 0"12 W
0"21 W 0"22 W

C=2:®W==

O"nn W

where Land Ware the matrices

O"In

0"2n

O"tl 0"12

0"21 0"22

L=

O"nt O"n2

W=

W ml W mm

and O"ijW represents scalar multiplication of the matrix W by the scalar O"u.

This may at first glance look like a complicated product to obtain, but by
now you know that in APL the required computation will be easy. We use
the outer product introduced earlier in this chapter.

Consider first the straightforward multiplicative outer product A 0 • xB,
which multiplies each element of the matrixA by each element ofmatrixB.
So far so good. But the dimensions of the result are not exactly what are
wanted. If D is the result of A 0 • xB, where A is (n x n) and B is (m x m),
thenD has dimensions (n n m m), that is, n blocks ofn planes ofm rows and
m columns, or we have n-squared (m x m) matrices. You may recall that
the shape of A 0 • xB is the catenation of the shapes ofA and ofB. Blit we
want an (mn x mn) matrix. The desired rearrangement of the result can be
achieved by using reshape and the dyadic transpose, ~ (key upper shift 0,
backspace, key \).

As you will recall, the monadic transpose, when applied to a matrix,
transposes rows and columns, but what about this strange beast of a mul­
tidimensional array D? QD would merely give us m blocks of m planes of
n x n matrices; the order of dimensions is merely reversed. Thus, to get
what we want, we need to do two things: rearrange blocks, planes, rows,
and columns so that then we can reshape the result to get an (mn x mn)
matrix.

230 Inner and Outer Products-Matrix Manipulation

Let's consider the problem of getting A x B, where

lJ
(3 x 3)

A (1 2)
(2 x 2) - 3 4 l: ~ i]

First, let's see what the outer product gives us (assign values to A and
B first!):

Block 1

Block 2

this is equivalent to allB

this is equivalent to a12B

this is equivalent to a21B

2
3
4

1
1
1

2 4
2 6
2 8

~ 1~ 1:)

:4 ~~8 16:) this is equivalent to a22B

If we try to reshape the above as it stands, we get the wrong results; try
it and see. The solution we want is obtained by use of the dyadic transpose.
Our solution is given by recalling that if we label the positions in A 0 • xB by
[I; J; K; L], we want to rearrange them so that we get instead [I; K; J; L], to
get 2 blocks of 3 planes of 2 rows by 3 columns, which can now be re­
shaped into a (6 x 6) matrix. Consider then

1 3 2 4 ~D

If you type this into the computer and look at the output, you will observe
that raveling the result (which proceeds by raveling the first matrix in the
first plane in the first block, then the second matrix in the first plane in the
first block), you will get an array that can be reshaped into that required for
the Kronecker product. Let's see it.

6 6 pi 3 2 4 ~D

1 2 4 2 4 8

1 3 3 2 6 6

1 4 2 2 8 4

....
3 6 12 4 8 16

3 9 9 4 12 12

3 12 6 4 16 8

12.4 Two More Not-So-Elementary Matrix Operations 231

Determinant

The dotted lines have been inserted to aid you in relating the output to the
definition of a Kronecker product.

Dyadic transpose gives us another advantage-an easy way to get the
diagonal elements of a matrix. Let K be defined by

K+6 6 01 3 2 4 0D

Try

1 1 ~K

1 3 2 4 12 8

In short, using 1 1 ~ is how to get the diagonal elements of a matrix.
The trace of a matrix is the sum of its diagonal elements, so that in APL

the trace is

+/1 1 ~K

30

Determinant

The next matrix operation you may need is the determinant, written as
IAI. The determinant of a square matrix A of dimension (n x n) can be
written as a linear function of determinants of submatrices ofA of dimen­
sion (n - I) x (n - 1); in short, the determinant can be defined for n = 1
by A itself. For n == 2, IAI is given by (a 11a22 - a12Q 21). For larger n, if we let
Au == (-I)i+iDih where D u is the determinant of the matrix obtained from
A by deleting the ith row andjth column, and let Qu be the (i,J)th element
of A, then

IAI = LJ=lQ tAu
for any i = 1, 2, ... , n. This is the usual expansion by minors, which we
can program quite easily in APL. Let's begin by writing things out using
paper and pencil.

We see that the routine for calculating the determinant can be decom­
posed into two main components: the calculation of the determinant of a
2 x 2 matrix, and the recursive definition of a determinant of a matrix of
dimension n in terms of determinants of matrices of dimension (n - 1). So
the basic elements of the routine are these two components, plus a decision
component that enables the computer to know which of the other two
components to calculate.

The determinant of a 2 x 2 matrix is easily programmed. Consider

D+(x/1 1 ~A)-A[1;2JxA[2;1J.

D

2

which is nothing more than the APL version of (Q 11 Q22 - Q12 Q 21). You will

232

Looping

Inner and Outer Products-Matrix Manipulation

recall that 1 1 ~ A gives the diagonal elements ofA, so adding xl yields
the product of the diagonal elements.

If E is a vector containing the signs associated with the minors D Ij, that
is, E is a vector with elements 1 -1 1 -1 ... generated by (-I)i+j for
j = 1, 2, ... , n, then the recursive definition is

~A[1;J +.x (ExM)

which is the APL version of

~n (-l)l+jD - ~JI A"
~j=2alj Ij - ~j=lalj Ij

Looping

We note from our definitions that the vector M has to be created element
by element by getting the determinant of various submatrices. In short, to
evaluate the function determinant, our function has to call itself! Fortu­
nately, in APL this causes no difficulties, provided that it is done cor­
rectly. We also see that we have to do the same thing (n - 1) times (for an
n-dimensional matrix) each time we call the function; this is called' 'loop­
ing. "

In order to define M, we have to calculate the determinants of the
matricesA tt ,A I2 , ••• ,A ln , whereA is the matrix which is the argument of
our function. A Ij, you will recall, is obtained from A by deleting the first
rOHJ and thejth column. To do this in APL, we will need to use the indexing
of arrays and the "drop," ~', operation (key upper shift U). Another
operation we need in this routine is "compression," which is the dyadic
use of I.

In our problem we want to drop only one row (the first) and one column,
but a different one each time; this is where the indexing comes in. If we
rearrange the matrix A so that the column to be dropped is first, and if we
keep everything else in the same order, you can easily see (at least by using
a paper and pencil to try it) that this will give us the submatrices we want.
Consider the following:

N+-1 01 pA

IND+1N

)ERASE B

B+-(N,N) pO

B

0 0

0 0

{We need to know how "big" A is.

{
Gives us the index numbers 1,
2, ... ,N.

{
We need a "dummy" matrix for
reindexing.

I +-1 {Initializes our index.

{
Produces an index array

IN+(I ~IND) lIND with the I th element deleted.

M+-M, DET 1 1 +B[; INDJ+-A [;I ,IN]

12.4 Two More Not-So-Elementary Matrix Operations 233

'[he last line needs some discussion. First, let's call our determinant func­
tion DET and let it have one argument, the matrix whose determinant we
are trying to obtain. Also, by writing M+-M ,DET (argument), we create a list
M with determinants as its elements by catenation.

B[;INDJ+A[;I ,IN]

rearranges the columns ofA so that the column to be deleted, indexed by I,
occurs first inB, and the remaining columns are unchanged in their relative
positions. l1-rB deletes the first row and column of B, and DET takes the
determinant; in short, we get the (1, I) minor by this line.

We are nearly done-the next most important step is to complete the
looping through the index I from 1 to N. This is done as follows:

I+l {Initializes the loop.

{
Gets us out of the loop

ST:-+ST1 x l(I> N) when! exceedsN.

IN+-(I~IND)/IND

M+-M,DET 1 1 -rB[;INDJ+A[;I,INJ

E+E, (-1*(1+I)) {Produces the vector of signs.

I+I+l {Increments I for the looping.

{
Takes us back to the be­

-+ST ginning to check on I.

We now have only a few minor details to settle: the original decision of
whether to go to the n = 2 case and some "housekeeping chores." For
example, in order to define M and E in the way in which we have done it,
they have to be "defined as lists," even if there are no elements in them.
This is done by setting MoE-tO and E-4:- LO.

The whole routine is

VD+DET A;N;E;I;IN;IND;M;B

[1J N+1 0 / pA

[2J -+ENDx l(N=2)

[3J IND+-1N

[4J B+(N,N)pO

[5J I+1

[6J ~10

[7J E+10

[8J ST:-+ST1 x l(I > N)

[9J IN+-(I~IND)/IND

[10J ft¥-M,DET 1 1 -rB[;INDJ+A[;I ,IN]

[11J E+E, (-1) * (I + 1)

234

A Routine to
Calculate the
Determinant of a
Matrix

Inner and Outer Products-Matrix Manipulation

[12] I+I+1

[13J -+ST

[14J ST1:D+A[1;J+.x(ExM)

[15J -+0

[16J END:~(x/ 1 1 ~A)-A[1;2JxA[2;1J

V

Let's try it.

A+2 2 pi 2 3 4

DET A

2

Z+3 3 pi 2 3 2 3 4 3 4 5

DET Z

a

D+5 5 p3 7 1 2 5 6 4 3 0 2 a 3 0

1 2 1 0 6 5 3 2 1 0 2 0

DET D

278

With this last one, if you waited around for what seemed like an age
(actually, about 3 minutes if you are on the IBM 5110-though only a few
seconds on a large computer), you are right in concluding that the calcula­
tions seem to be very slow. This example raises a very important issue: the
straightforward programming of a mathematical statement need not be the
most computationally efficient way to calculate something. The main prob­
lem with the above routine is that the calculation of all the subdeterminants
involves a very large number of operations-a number that increases with
the dimension ofA very rapidly indeed.

A computationally more efficient way of obtaining the determinant is to
convert A to a triangular matrix (e.g., all entries below the diagonal are
zero), and then the determinant is simply the product of the diagonals.
Here is a more efficient routine.*

V ~PDET A

[1J N+(pA) [1J ~An alternative to getting dimen-
sion of A.

[2J I+1 ~ Initializes I.

[3J B+A[;IJ ~Stores lth column of A in B.

[4J B[lIJ+o ~Zeros out the first I elements of B.

* This routine was written by our colleague Dr. Richard W. Parks, University of Washington, Seattle.

Summary

[5J A+A-(Ba.xA[I;J)~A[I;IJ

[6J ~(N~I+I+1)/3

[7J D+-x/ 1 1 ~A

235

-E-See below.

-E-See below.

~Obtains determinant by multiply­
ing the diagonal elements.

Summary

Only lines [5] and [6] require any explanation. The main idea of this
routine's algorithm (method of calculating a mathematical formula) oc­
curs in line [5]. The idea is to transform the matrix A into a triangular
matrix; in this case all elements below the diagonal are zero. This is ac­
complished by subtracting from each row ofA the elements ofA to the left
of the diagonaL

Line [6] increments the index I and then returns to line [3] if N 2: I;
otherwise we continue to line [7] to calculate D.

PDET Z

o

PDET D

278

If you try this routine, you will find that it will execute the matrix D much
faster than does the previous routine. Indeed, on the IBM 5120 it will do
the D matrix in about 7 seconds. However, even this routine has its prob­
lems, since it will not work if any of the diagonal elements are zero.

While this lesson may have been a bit expensive, the lesson to be learned
is important. As your routines become more complex, you will have to
worry about computationally efficient ways of handling the problem. Fi­
nally, you should realize that the usual mathematical statements, while
very informative, can often be computationally inefficient.

Inner Product and Multidimensional Arrays: the general form of
this product is Afn t • fn2B, where A, B are arrays, andfnl,fn2 are functions.
For example, A+. xB where A , B are two arrays, gives the usual mathe­
matical operation of "matrix product." The inner product for multiple
dimensional arrays is always between the elements of the last dimension of
A and the elements of the first dimension of B.

Outer Product, o.fn (keyed by upper shift J, period, followed by a
function): general use is given by A a •.fn B where A, B are arrays. The
output is an array whose dimensions are the catenation of the dimensions of
A and ofB. Each element ofA is an argument to the dyadic functionfn for
every element ofB.

Kronecker Matrix Product: mathematically is given by L ~ W,
where Land Ware (n x n) and (m x m) matrices, respectively. The result

236

Exercises

Inner and Outer Products-Matrix Manipulation

is of dimension (nm x nm) and each element of ~ scalar multiplies the
matrix W The Kronecker product, K, for two matrices A, B is obtained in
APL by

MN+(N+1 0/ pA)x(l\¥-1 0/ pB)

K+MN MN p1 3 2 4 ~Ao. xB

Determinant of a square matrix A, denoted by IAI: defined mathematically
by

IAI = ~f=laijAij, fot any i == 1, 2, ... , n.
Qij == (i, j)th element of A
Au == (-l)i+jDu
D ij == IAul, called the Cij) minor of A.
Au == matrix A with ith row andjth column deleted, is the (ij)th

cofactor of A .

Two illustrative APL routines are given in the text; care is needed in the
use of both.

APL Practice

1. ForanylistL, the APL expressions L~«pL), 1)p'1 andLfBI,fLgive
the same number. What is this number? Why is this result true?

2. For two positive numbers A and B, the APL expressions
«A*2)+B*2)*. 5 and AX40B~A give the same number. What is this
number? What is the explanation?

3. IfX+--o(0,t12)f12 and Y*Q 123 o.oX,whatisinY?

4. LetM be any matrix and L+(,M>K) /, M where K is any number. What
is in L?

5. Let Qy?N p K and F++/[l]Qo. =lK for any two positive numbers N
and K. What is in F?

6. Use the outer product to construct the following tables.

(a) A table 100 by 10 of the powers from 1 to 10 of the integers from 1
to 100.

(b) A table 100 by 2 of the logarithms to base e and base 10 of the
integers from 1 to 100.

(c) A table 100 by 10 of the 1st through the 10th root of the integers
from 1 to 100.

(d) A table of all possible products of the integers from 1 to 30.

(e) A table of the binomial coefficients (ji=l) for i <j andj = 30. (See
exercise 9, Chapter 11.)

Exercises

(t) The following matrix:

237

1
p

pT-l

p2
1 p
p 1

for T = 30, where p can take the values 0.2, 0.5, 0.7.

7. Here is how the outer product can be used to plot functions. Consider
the following steps:

(a) Y+-¢X+-l1+121

(b) L+Yo. xX

(c) Let W+Yo. =X+1

(d) K+' '+' [l-tO=W]

Lone blank space

(e) PLOT+' V+'V· [W+1+2 x O=LJ

Lone blank space

Use this procedure to plot the following functions:

(a) Y=2X+1

(b) Y=X
2
-1

(c) Y=-3X
2

+2X+3

8. Since you know that the rank of an idempotent matrix is equal to its
trace, find the rank of M = I - X(X'X)-lX', where

X = [~ i ~]
352

9. The following matrix is called a payoff matrix of firm A which has
only one competitor, firmB. FirmA has 3 possible pricing policies and
firm B has 4 possible pricing policies. The elements of the matrix
represent profit in $1000 of firmA givenB's possible pricing policies.

B 's Strategy

123 4

1
A's Strategy 2

3

50 90 18 25
27 5 9 95
64 30 12 20

There is another matrix for B which is not given because its elements
are known to be the differences between the entries inA's matrix and

238 Inner and Outer Products-Matrix Manipulation

100 (assuming that only $100,000 profit can be made in the market). If
A chooses strategy 1, then B will choose strategy 3, because B gets
$82,000, which is the highest profit for B given A 's strategy. Thus A's
one optimum policy (called maximin) is to find the minimum of each
row and then pick the maximum of those minima. This long verbal
story is only half a line in APL. Can you write it? What if A chooses
a minimax strategy? (A minimax strategy is exactly the opposite to
the maximin strategy.)

10. Consider the following table:

Table M

Possible home mortgage rate
values this year in %

10.50 11.00 11.50 11.75

Possible home 10.50 0.1 0.25 0.4 0.25
mortgage rate 11.00 0.25 0.3 0.25 0.20
values next 11.50 0.4 0.25 0.1 0.25
year in % 11.75 0.25 0.20 0.25 0.3

Each element of this table represents the probability of next year's
interest rate given the rate this year. Notice that column and row
elements sum to 1. Enter the matrix of probabilities into the variable
M.

(a) Find next year's expected interest rate if this year's interest rate
is 11.50%.

(b) Find next year's expected interest rates under all possible alterna­
tive values for this year.

(c) Let

10.5
11.0
11.5
11.75

Then Mr(will be a vector of next year's expected values given this
year's alternatives. Let's call this vector rt+l. Then r(+2 = Mrt+t will
be the potential values in year rt+2.Give alternative interest rates for
year t + 1. Project possible interest rates up to 5 periods ahead. Do
they seem to converge to an equilibrium value?

11. Enter both routines DET and PDET in your workspace (see pages
233-235) and find the determinants of the matrices

(a) A = [; ;~] (b) B = [~ ~ ;]

313 112
(c) AB

Exercises 239

(d) A @ B, where ® is the Kronecker product.

(e) B ®A

12. Using the PDET A function (page 234), solve the following system of
equations utilizing Crammer's rule, which is explained below:

2X + 3Y - 3Z = 7

X - 2Y + Z = -2

3X + Y + Z = 9

Solutions by Crammer's rule are given by:

X= ax
a'

y= ay

d'
Z = ~z

a
where
~ is the determinant of the matrix of coefficients.
~x is the determinant of the matrix a with the first column replaced

by the column of constants.
~y is the determinant of matrix a with the second column replaced by

the column of constants.
Az is the determinant of the matrix a with the third column replaced

by the column of constants.

13. Let C+-1+?10 P2. Examine carefully the results of the following op­
erations.

(a) 21\C

(b) 1ve

(c) ave
(d) C+. /\c
(e) Co .I\C

(f) Co.¥C

(g) Co .'!'<C and compare to (e).

(h) Co. vC and compare to (f).

14. (a) Assign the statement "'I don't like APL and tea" to variable X.

(b) Write an APL function that will erase the n, the apostrophe and
the t of the word don't using the logical operators.

13

Linear Regression

For those of you who already know a fair amount of statistics, here is the
chapter you have been waiting for. Now is the time to come to grips with
regression analysis, the calculation of confidence intervals, and tests of
hypotheses. In this chapter you will learn the advantages of being able to
do all your statistical analysis yourself instead of relying on someone else's
black box. Before you proceed, you might want to refresh your memory
about simple linear regression (Chapter 9) and the use of Iil (Chapter 10).

This chapter deals only with the analysis of single-equation (as opposed
to multi-equation), and linear (as opposed to nonlinear), regression equa­
tions. You might well be wondering why we have a whole chapter on
regression, when the regression of a vector Y on a matrix X is obtained in
APL by Y fB X. The answer is that there are a number of associated
statistics with a linear regression which need calculation and these are a
little messier computationally. Let's begin.

13.1 Covariance and Correlation Matrices...

Moment,
Covariance and
Correlation Matrices

240

The basic input to any regression problem is an (N x K) matrix of N
observations on K regressors (variables used to "explain" the dependent
or regressand variable Y). An important set of statistics for many reasons is
the sample moment, covariance, and correlation matrices. If X is the

•

13.1 Covariance and Correlation Matrices 241

Simple Correlation
Matrix of Regressors

(N X K) regressor matrix, the mathematical statements are, In matrix
terms,

Moment matrix X'X
Covariance matrix X'X - X'X
Correlation matrix D-1/2(X' X - X' X)D-1I2

where you may recall that X'X is the inner product between X transpose
and X itself, X is an N x K matrix, each of whose rows contains the array
of means of the K regressors, and D is a diagonal matrix whose ith diagonal
element is the variance of the ith regressor variable, so that D-1/2 is the
diagonal matrix of the inverse of the square roots of the nonzero elements
ofD.

The above mathematical equations give the matrix equivalents of the
variances and covariances we calculated in Chapters 5 and 9. Each of
these matrices is easily obtained in APL. They are, in turn,

Moment matrix: ~(~X)+. xX
Covariance matrix: CM+-MM- (XB 0 • xXB-H-/X) -i- CpX) [1]
Correlation matrix: CRJi,¥.D+. xCM+ • xl)+-illC ((lK) 0 • = lK-+-(pX) [2])

xCM)*O.5

Let's explain this. The moment matrix is easy: ~X produces X trans­
pose and (~X) +. x X gives the inner product of ?siX with X. The
covariance matrix introduces something we used briefly in Chapter 9,
namely (pX) [1] , which means: shape ofX over the first dimension, in
short, the number of rows. The rest is easy to understand once you realize
that x'X, whereX' is an (N x K) matrix of the means of the K variables, is
simply N (== number of rows == (pX) [1J) times the outer product of the
array of means, or 1/N times the outer product of the vector of column
sums ofX.

The correlation matrix is obtained from the covariance matrix by divid­
ing the covariance between the ith andjth variables by the product of the
standard deviations (square roots of the variances) of the ith andjth vari­
ables. The variance of the ith variable is clearly given by the ith diagonal
term of eM. The elements of CRM. usually labelled in mathematical nota­
tion as Pu == COV(Xi' Xj)/VVar(Xi)Var(Xj) , satisfy the mathematical con­
straint -l$Pu:5 1. For further mathematical and statistical details see
Mendenhall and Reinmuth or Kmenta, both of which are listed in the
bibliography at the end of the book.

The APL expression is now fairly obvious. K is the number of regres­
sors. (lK) 0 • = lK) xCM produces a diagonal matrix with the diagonal ele­
ments of eM, and m(((1 K) 0 • =tK) xCM) * . 5 gives the inverse of the
square roots of the variance obtained from the CM matrix; the reason that
we cannot use *-0. 5 is that the zero off-diagonal terms will give
DOMAIN ERROR. The operation D+. xCM+. xD produces a matrix with Pu on
the off-diagonal positions and 1's on the diagonal.

242 Linear Regression

For example, let us suppose that we have the following X matrix in the
computer's memory:

x
(12 x 2)

100
90
80
70
70
70
70
65
60
60
55
50

5.50
6.30
7.20
7.00
6.30
7.35
5.60
7.15
7.50
6.90
7.15
6.50

and if we don't, let's enter X now.
Consider a simple routine to calculate the moment matrices that we have

been discussing.

'V M4TCO] 'V

\jCR~MAT X;D;MM;CM;K;XB

[1J 'MM EQUALS';Mru+(~X)+.xX

[2J 'eM EQUALS';C~MM-(XBo.xXB++fX)+(pX)[1J

[3J K+(pX)[2]

[4J 'CRM EQUALS'

[5J CRM+D+.xCM+.xD+ffi(((lK)o.=lK)xCM)*O.5

MAT X

MM EQUALS

61050

5577.5

eM EQUALS

2250

54

5577.5

544.2075

54

4.857291667

CRM EQUALS

1 0.5165417262

0.5165417262 1

And if we have the following three-column regressor matrix:

zzz

13.2 Some Initial Linear Regression Statistics

55 100 5.5

70 90 6.3

90 80 7.2

100 70 7

90 70 6.3

105 70 7.35

80 70 5.6

110 65 7.15

125 60 7.5

115 60 6.9

130 55 7.15

130 50 6.5

Our routine produces:

MAT ZZ

MM EQUALS

126300 80450

80450

8170.25

eM EQUALS

6300

3550

125.25

61050

5577.5

3550

2250

54

8170.25

5577.5

544.2075

125.25

54

4.85729166667

243

CRM EQUALS

1 0.942902569586 0.715995624984

-0.942902569586 1 0.516541726216

0.715995624984 0.516541726216 1

13.2 Some Initial Linear Regression Statistics

The first generalization of the regression model which was discussed in
Chapter 9 is to allow for more than one regressor; to some extent we have
done this already with the use of the function ffi. The general model to be
discussed in this chapter is

244 Linear Regression

Y = XB + U

where Y is an (N x 1) regressand vector, X is the N x K matrix of regres­
sors, B is the K x 1vector of regression coefficients to be estimated, and U
is the N x 1 vector of unobserved disturbance terms. Excellent elementary
discussions of multiple regression analysis can be found in both of the
references mentioned on page 241.

From our work in Chapters 9 and 10, you know the least-squares ap­
proach to estimating the regression coefficients involves the calculation of
the left inverse ofX. The left inverse ofX is (X' X) -1 X' (recall that ALI is the
left inverse ofA if ALIA ~ I) and in APL this is obtained by fRY, using the
monadic use of domino. The least-squares regression coefficients are ob­
tained by the dyadic use of domino, Y!±IX, which is the APL equivalent of
the mathematical expression (X' X)-1 X' Y. Mathematically, we obtain from
(X' X)-lX' Y the expression B + (X' X)-IX' u. The statistical properties of
the least-squares estimator depend on the statistical properties of the vec­
tor (X' X)-lX' U. Let's store the regression coefficient estimators inBE, i.e.,
we compute BE+-YI±lX; BE stands for B vector Estimate.

As we mentioned in the note to instructors, some computer systems
have not implemented the dyadic form of domino. An easy way around this
is to write your own function directly.

VY DQ X

[lJ (ffi((~X)+.xX))+.x((~X)+.xY)V

Here is how it works for a 3 independent variable case where the intercept
is constrained to be equal to zero.

CLEAR WS

Y+-10?10

X+-10 3p30 ?30

0.076969 0.0021871 0.24941

(~ ((~X)+.xX))+.x((~X)+.xy)

0.076969 0.0021871 0.24941

The estimator of the variance of the disturbance term was given for the
special case examined in Chapter 9. The general mathematical expression
IS

where Y = xiJ, Y' = (Y t , Y2' . .. , Yn), where ;\ symbolizes the estimator
of the variable or parameter under the 1\. Thus fJ symbolizes the estimator
of B in the model Y = XB + V, where iJ == (X' X)-lX' Y.

The maximum-likelihood estimator of the variance of U is a little differ­
ent, involving division by N instead of N - K. Vi is the forecast value of Y i

for the ith observation given the regression coefficient estimates, i.e., Yi =

13.3 Simple and Partial Correlation Coefficients 245

~f~r XijB j • Bj , j = 1, 2, ... ,K are obtained in APL by calculating the
vector BE defined above. The APL expression for the estimator of the
variance of U is

NP+- pX

V +-(SSE+(Y-X+.xBE)*2)~(-/NP)

and in the process, we have defined the "error sum of squares," SSE,
which will be needed later. Note that NP is the array (N, K), and - /NP is
simply (N - K). Y is obviously given by X +. x BE.

The estimated covariance matrix of the regression coefficient estimators
has two forms, depending on whether or not the regression equation is run
in "deviation terms" [that is, after elimination of the "constant vector"
i' = (1, 1, ... , 1) by subtracting the mean from each variable]. If the
regression is run in deviation terms, the estimated covariance matrix for
BE is given by

COVD +- V x eM

If the regression is not run in deviation terms, the estimated covariance
matrix for BE is given by

I +- 1

RM +- (~Z) +.x Z +- I~X

COV +Vx RM

The dimensions of COVD are (K x K) and of COV, (K + 1) x (K + 1)),
when there are K regressors in X. The use of the catenate function in
creating the matrix Z from I and X was discussed in Chapter 11.

The coefficient of determination (R 2
) was defined in Chapter 9; the mul­

tiple correlation coefficient is merely the square root of R 2
• Note that the

coefficient of determination defined in Chapter 9 by I-SSE/SST gives the
coefficient of determination with respect to variables defined in terms of
deviations about their respective means. If the R"2 value is wanted in terms
of the original variables, then the new R 2 is defined as before, except that
SST is given by Y+.x Y instead of Y+.xY-((+/Y)*2)~N.

13.3 Simple and Partial Correlation Coefficients

Simple and Partial
Correlation
Coefficients

A topic related to regression analysis is the analysis of simple and partial
correlation coefficients. The simple correlation coefficient has already been
defined and calculated in this chapter. Given K variables, the simple corre­
lation between any two of them, say the lth andjth, is given mathematically
by fO = COV(Xi' Xj)/ VVar(xj)Var(xj); the simple correlation coefficient
"measures" the extent of linear association between the two variables l
and}.

A related concept is the partial correlation coefficient, say rU'k, which is
the correlation between variables i and} a.fter allowing for the joint correla-

246 Linear Regression

tions between variables k and i and between variables k and j. The partial
correlation coefficient can be obtained easily from the simple correlation
coefficients; mathematically, one has

rij'k = (rij - rikrjk)Iv(I - rTk) (I - rJk)

where 'ij, 'ik, rjk are the simple correlation coefficients.
The matrix CRM obtained above gives for any set of K variables the

matrix of simple correlation coefficients between each of the K variables.
Any partial correlation coefficient can be obtained from the CRM matrix.
By now you should be able to program this on your own.

13.4 Creation of a Regression Routine

Let us now consider creating a reasonably complete regression routine.
The procedure will not only provide us with our own regression routine
which, of course, we can alter in any way at any time we like, but it also
will provide some valuable lessons in how to write routines that are more
complicated than those we have tackled so far. Let's begin at the very
beginning, which is to determine what we are required to do mathemat­
ically. Our next step will be to plan our programming steps. Here then is a
recommended procedure for you to follow in writing any program routine
of any difficulty.

1. Write down all the mathematical expressions needed; sequence the
expressions so that all operations to be completed before a particular
step are in fact listed before that step. One diagrammatic way to help
you do this is to write down a flow chart, an example of which is
given for the regression routine below.

2. Figure Ollt whether any loops or conditional branch statements are
needed and, if so, where in the program they are needed. Rethink the
basic APL approach to see if there are alternative ways to get results
which will not use up inordinate amounts of computer time and
space.

3. Decide for each function whether the result is to be explicit or im­
plicit, have one or two arguments, and which variables, if any, are to
be globally defined.

4. Begin with paper and pencil and assemble the various parts of the
routine that may already be written out.

5. Using your flow chart, layout the sequence of "one liners" and set
up your decision branches. As you do so, label all statements involv­
ing branches.

6. With each "one liner" expression, start with the "core" of the math­
ematical term and put it in the middle of the page; build outwards from
there, and then recheck by reading the expression from right to left.

13.4 Creation of a Regression Routine 247

7. Alter the header line as you introduce local variables to avoid forget­
ting them.

8. Recheck yOUT program carefully, looking to see that:

(a) program statements give the results desired (read from right to
left!);

(b) the relationships between arrays, vectors, and matrices are com­
formable (possible length errors);

(c) every variable will be defined before it is used;

(d) loops, branches, and recursive function definitions will terminate
under all alternatives.

9. Document your routine very carefully and include explanatory com­
ments inside it (within a month, you won't remember how you did it!).

10. Enter the routine into the computer, then enter several easy problems
for which you have the answers in order to check that the routine is
correct. Be sure that you check the routine for general, not just
special, cases.

11. Remember, even when you believe it is impossible to make a mistake,
you will!

You might well ask: Why all these elaborate instructions? Up until now
most of our routines have simply been written out. The answer is that so
far the routines have all been very uncomplicated-the regression routine
to follow is our first example of a more elaborate routine. Also, it is the first
routine that we might want to keep for future use, so we need to be more
careful about how we define it and set it up for use by others.

The following routine is a suggestion; a lot of variables are global since it
is assumed that the output will be used in further analysis. We need some
trial data. Let us suppose that the first column of ZZZ is the regressand
array 1': and the remaining two columns ofZZZ are the regressor matrixX.
Thus

Y+ZZZ[;l]

X+ZZZ[;2 3J

Y

55 70 90 100 90 105 80 110 125 115 130 13a

x

100 5.5

90 6.3

80 7.2

70 7

70 6.3

248 Linear Regression

70 7.35

70 5.6

65 7.15

60 7.5

60 6.9

55 7.15

50 6.5

Let us begin to write out the regression routine by deciding on what it is
we want.

Desired Calculations

regression coefficient estimates

raw moment matrix

covariance matrix for regression coefficients
variance of disturbance term U ~

R2 (the coefficient of determination)

correlation matrix for regressors

array Y
array 0 = (Y - Y)
F statistics with degrees of freedom
standard deviations of the regression coefficient estimates

T ratios for the regression coefficient estimates

Disposition: all of the above to be global variables; but f: 0 to be printed
out automatically; two arguments Y and X.

An examination of the formulas in Table 13.1 shows that there is a cer­
tain order in which calculations should be made and certain intermediate
products which need to be defined as they are reused repeatedly. While
the mathematical structure of this routine is very simple and hardly calls
for an elaborate flow chart, one is given in Figure 13.1 in order to illustrate
the idea. Our main concern is to keep the number of computations and
numbers of arrays to a minimum, the former to economize on computer
time, the latter to economize on space taken up in the computer.

In the process of working up the flow chart, you can see that some ideas
occurred to us. First, we should remember that a function or a routine is
defined for general use, so you should be on your guard to watch out for
problems caused by someone trying to do something which you did not
anticipate. The first decision box illustrates this problem. Someone may
inadvertently specify an X matrix with more variables than observations
(more columns than rows). If no test is made for this mistake, the com-

13.4 Creation of a Regression Routine

Table 13.1 List of Mathematical Expressions and Tentative APL Statements

249

Definition

Moment matrix of
X
Covariance matrix
of X
Correlation matrix
of X
(D is the diagonal
matrix obtained
from Cov(X»
Regression coeffi­
cient estimators:

Total Sum of
Squares (TSS)
Error Sum of
Squares (ESS)
Var (U)
R2
Regression SS
(RSS)
If done
without constant
term:
F = (RSS/ESS)/
((N - K - l)/K)
COY matrix for
fJ, where
Z = (i, x)
Standard devia­
tions of elements
of B given by
square roots of
diagonal elements
of covariance
matrix for fJ, S~
Student 44(" ratios

Mathematical Expression

X'X

X'X- X'X

D-tl2(X' X - X' X)D-tl2

Diag(X' X - X'1)

fJ = (X'X)-tx'y
y = xiJ
U=y-y
~(Y - Y)2

L(Y - Y)2 = 'L,U 2

'LUz/(N - K - 1)
1 - ESS/TSS
'L,(Y - Y)2

var (U)(Z' Z)-l

S~ = (Diag Cov(B»

fJ i/SBi, i = 1, 2, . . . ,k

APL Expression

~({QX)+.xX

CM+-MM- eXBo. xXB++fX) -;- (pX)

CRM+D+ . xCM+ . xD

+ffi(((lK)o.=lK+(pX)[2])
xCM)*O.5

BE+.YtEX
YH+X+.xBE
UH+Y-YH
TSS++/(Y+YB)*2
YB+(+/ Y) -;-pY
ESS++/UH*2

VARU+ESS+ (N-K+1)
RSQ+1-ESSfTSS

RSS++/(YH-YB)*2

F+(RSS~ESS)x«N-K+l)+K)

COVB+VARUx~«~Z)+.xZ)

SBE+(11~COVB)*O. 5

TRATIO+-BE~SBE

puter will blithely proceed to the calculation of the regression coefficients
and then give a DOMAIN ERROR and specify the line in the program at
which the error occurred. This is all very well, but you may want the
program which contains the regression routine to continue in any case and
not stop. If so, a diagnostic test will get you around the difficulty before
you waste valuable computer time. In addition, you can specify a warning
variable to indicate when the regression routine has not, in fact, been
executed; this is called' 'setting a flag. "

The second idea is that sometimes we want to carry out the F test on the
mean as well as on the statistical significance of the regression coefficients
for the regressor matrix, so we have allowed for two variants of the test:

and

250

Figure 13.1
Flow chart for regres­
sion routine.

Linear Regression

,---­
I
I
I
I

-No------~

i O

x,y
X'X - xl:i0

correl Mat. X, fYl

yO
:t, y2'

BE
YH
UH

TSSO
ESSo
RSSo
RSS~'

RSQO

VAR U
CO VBE

St. Dev. BEo

Student I ratios
i,i
x'x
Covx
Correl. x
BE
St. Dev. BE, RSQ
CO VBE
VAR U
F

"
F2

13.4 Creation of a Regression Routine

Sample Main Sheet

V Y MREGRESS X;MS;D;SS

[1 J R THIS PROGRAM ASSUMES Y TO BE AN ARRAY OF DIMEN.

eN), x TO BE AN (NxK) ARRAY

[2J R OF PANK K. A DIAGNOSTIC IS PRINTED IF N5-K OR IF

RANK ex) <K.

[3J R THE CONSTANT TERM IS ADDED BY THE ROUTINE.

[4J NP+ pX

[5J PREMEND1xl(NP[1J~NP[2J+1)

[6J C~(MM+(~ X)+.xX)-(MSo.xMS++fX)+NP[1]

[7J CR~D+.xCM+~x~«(tK)o.=tK)xCM)*O.5

[4.2J K+NP[2J

[8J MS+(+/Y),MS)+NP[lJ

[9 J SS[2]+(SS[1J++/Y*2)-NP[1]xMS[1J*2

[4.5J SS+5 pO

[10J MWIN:UH+(Y-(YH+X+.x(BE+Yffi(X+(1,X)))))

[3.1J A**** IF DOMAIN ERROR OCCURS ON LINE [7J OR [ftMINJ

X IS SINGULAR 9 ROUTINE WILL BE SUSPENDED

[3.2J AOPERATOR SHOULD KEY IN: -+PREMEND

IN ORDER TO COMPLETE ROUTINE. ****

[llJ SS[4J+(SS[3J++/YH*2)-NP[1JxMS[1J*2

[12J SS[SJ++/UH*2

[13J RSQ+1-SS[5]+SS[2J

[14J VARU+SS[5]+(-/NP)-1

[1SJ F1+SS[4J+SS[S]xK+(-/N?)-1

[16J F2+SS[3J+SS[SJx(K+1)+(-/NP)-1

[17J COVBE+VARUx~(~X)+.xx

[18J STDBE+(1 1 tQCOVBE) *0 •S

[19J 'THE RAW MOMENT MATRIX OF REGRESSORS. IS: '

[20J MM

[21J 'THE COVARIANCE MATRIX OF REGRESSORS IS: '

251

252 Linear Regression

[22J

[23J

[24J

[25J

[18.5J

[26J

[22.1J

[22.3J

CM

MAINEND: 'THE CORRELATION MATRIX OF REGRESSORS IS: t

CRM

'THE VECTOR OF MEANS; Y.,Xl,X1, .. •IS:'

TRATIO+-BE+STDBE

MS

-+MAINENDx 1FLAG

'ROUTINE PREMATURELY ENDED DUE TO SINGULARITY OF

X MATRIX'

-+0

PREMEND 1:'NO. OF OBS. (N) IS TOO FEW RELATIVE TO NO.

OF REGRESSORS (K).'

'ROUTINE TERMINATED'

[22.4J -+0

[3 . 4] FLAG+l

[18.1J -+CONT

[18 . 2] PREMEND: FLAG+- 0

[18 . 3 J[19 J CONT: 'THE RAW MOMENT MATRIX OF REGRESSORS IS: '

[30 J 'THE REGRESSION COEFF:!CIENT ESTIMATES ARE IN ORDER

CONST • ., X1,X2 .•. :'

BE

'THE CORRESPONDING STANDARD ERRORS ARE: '

STDBE

'THE REG. COEP. EST. COVARIANCE lv1ATRIX IS: '

COVEE

'RSQ IS: ';RSQ;' VAR. ERROR TERM IS: ' ; VARU

'THE F STATISTIC INCLUDING THE CONSTANT TERM IS: '

F2;' WITH' ;(K+1) ,!>(-l+-/NP); 'DEGREES OF FREEDOM. '

'THE F STATISTIC NOT INCLUDING CONSTANT TERM IS: '

P1; 'WITH ';K,("-l+-/NP); , DEGREES OF FREEDOM: '

THIS ENDS THE OUTPUT FROM MREGRESS. '

[44J

[31J

[32J

[33J

[34J

[35J

[36J

[37J

[38J

[39 J

[40J

[41J

[42J

[43J

13.4 Creation of a Regression Routine

[33. 5 J 'THE CORRESPONDING T RATIOS ARE: '

[33.7J TRATIO

[45J V

Sample Subsidiary Sheet

Used for Preliminary Working Out of APL Statements

253

Reline [4]: N+pX

+PREMENDxl(N[1J~N[2J+l)

Reline [6]: MM+C ~X) + . xX
CM+MM-(MSo.xMS++IX)~N[1J

Reline [7]: CRM+-D+. xCM+ • xD+{fJ(((lK) 0 • =lK+-N[2]) xCM) *0 . 5

Reline [8]: MS+((+/Y) ~N [1J ,MS~N[lJ)

Reline [9]: TSS2+(TSS+-+ / Y*2) - NxMS[1 J* 2

Reline [10]: YH+-X+. x (BE+-Yl±](X+-(l.,X)))

At this point you could get a DOMAIN ERROR and a suspended routine
if the augmented X matrix is singular. To get out of this and continue
operation will require operator intervention from the terminal; a flag must
be set to bypass the remaining analysis and to print only what has been
done so far. Operator action is indicated in the comment lines labelled [3.1]
and [3.2]. You will notice that we havejust realized that we could also get a
domain error leading to a suspension in the current line [7]. (This is indi­
cated on the flow chart by the dotted-dashed line which was added later.)

Reline [11]: SS[4]+-(SS[3J+-+/YH*2)-NP[1]xMS[1]*2

Reline [17]: COVBE+VARUx[±](~X) +. xX

Reline [18]: STDBE+-(11 QCOVBE) *0 .5

Some of the early calculations not affected by the domain error can be
printed, but we will need to bypass the remaining items if the routine has a
domain error. The inserts at lines [3.4] and at [18.1;2;3] do this.

With the flow chart and our previously developed "one-liners" in hand,
let us proceed to write out our regression routine. As you do it, start off with
a large clean piece of paper, work in pencil, and leave yourself lots of room
for making corrections. Do the more complicated one-liners first on a
separate piece of paper, then fit them into the main rOlltine. When you
have finished, rewrite the routine carefully, checking it as you go. Review it
in light of our comments above, then (and only then), consider keying into
the computer. Here is a typical sample of trying to write a routine-warts
and all! Before you read the following paragraphs, glance over the sample

254

A Regression
Routine

Linear Regression

program listed on pages 251-253, the detailed comments on pages 246--247,
and the flow chart in Figllre 13.1.

Some comments are in order. While all the APL operations used in this
program are familiar to you by now, there are a few items which should be
emphasized. In line [9] we decided we would put the various sums of
squares into an array. But executing SS[1]+-+/Y*2 would give a value
error if SS had not already been declared a list! That is why we had to
insert line [4.5], Le., this line is to go between lines [4.2] and [5]. Line [4.5],
8S+5 p 0, sets up S5 as an array of zeros. The statements in line [9] put
sums of squares into various elements of the list SSe

The inserted lines [4.5], [3.1], and [3.2] illustrate two things. First, we
promised that we would show how writing a routine is done, including
mistakes! Quite frankly, we forgot all abollt the need to define 55 as an
array before reaching line [9] until we, in fact, wrote line [9] .. Likewise, the
inserted statements [3.1] and [3.2] were afterthoughts-in short, we
goofed. The second item to note is that the routine can be keyed-injust as it
stands, and on being displayed everything will be rearranged into proper
sequence by the computer.

Finally, as you look between the flow chart, the preliminary statement,
and the sample main sheet version, you will see that we changed our mind
at times; we hope each change was for the better. If nothing else, this
shows that the flow chart is a guide to aid you, not an inflexible route from
which you dare not deviate.

The routine is not quite finished, since we need to add a series of com­
ment statements to guide any reader (including ourselves in a month's
time). For example,

[4.8J A CHECK NO. OBS. (N) > NO. VARS eK)

[5.1J ~ THIS SECTION CALCULATES RAW MOMENT MATRIX~ MOM. MAT. ~

AND CORREL. MAT. FOR REG. MAT. X.

and so on.
The last steps are to reread the routine carefully to check for errors of

both omission and commission, key it into the computer, check that the
keying-in is correct, and then run some tests on its operation under all the
situations it is meant to encounter. For example, (i) run a regression for
which the results are already known; (ii) try to enter a regression with
fewer observations than variables; and (iii) try one with a singular X ma­
trix.

Let's try the routine. Begin by displaying the rearranged routine and the
X and Y arrays to be used for the test.

VJt.1REIGl1'ESS[OJ v

'V Y MREGRESS X;MS;D;SS

[1J ATHIS PROGRAM ASSUMES Y TO BE AN ARRAY OF DIMEN. (N) ~

[2J AX TO BE AN (NxK) ARRAY OF RANk K. A DIAGNOSTIC IS

[3 J APRINTED IF N~K OR IF RANK X < K

13.4 Creation of a Regression Routine 255

[4J ATHE CONSTANT TERM IS ADDED BY THE ROUTINE.

[5J n***** IF DOMAIN ERROR OCCURS ON LINE 14 OR [MAIN] X IS

SINGULAR,

[6] AROUTINE WILL BE SUSPENDED. OPERATOR SHOULD KEY IN: -+PREMEND

[7] PrIN ORDER TO COMPLETE ROUTINE.

[8J FLAG+1

[9 J NP-+-pX

[10J K-+-NP[2J

[11J 55-+-5 pO

[12J -+PREMEND1xl(NP[lJ~NP[2J+1)

[13J CM+(MM-+-(~X) +. xX)- (MBa .xMS+ +1X) -i-NP[1J

[14J CR~D+. xCM+. xD+ffi(« lK) o. =lK) xCM) *0. 5

[15J MS+«+/Y),MS)~NP[lJ

[16J SS[2]-+-(SS[1]++/Y*2)-NP[lJxMS[lJ*2

[17J MWIN:UH-+-(Y-(YH+X+.x(BE+~(X+(1,X)))))

[18J SS[4]-+-(SS[3J++/YH*2)-NP[1]xMS[1]*2

[19J TRATIO+-BE-i-STDBE

[20J SB[5]++/UH*2

[21J RSQ+l-SS[5J~SS[2J

[22J VARU+SS[5J~(-/NP)-1

[23J F1+SS[4J~SS[5JxK~(-/NP)-1

[24J F2+SS[3J~SS[5Jx(K+1)~(-/NP)-1

[25J COVBE+VARUx~(~X)+.xX

[26J STDBE-+-(l + ~COVBE)*O.5

[27 J -+-CONT

[28J PREMEND: FLAG+-O

[29J CONT: 'THE RAW MOMENT MATRIX OF REGRESSORS IS: '

[30J MM

[31J 'THE COVARIANCE MATRIX OF REGRESSORS IS:'

[32J CM

[33J -+MAINENDxlFLAG

[34] 'ROUTINE PREMATURELY ENDED DUE TO SINGULARITY OF X MATRIX'

256 Linear Regression

-+0

[35J -+0

[36J MAINEND: 'THE CORRELATION MATRIX OF REGRESSORS IS: '

[37J CRM

[38J 'THE VECTORS OF MEANS,Y~ Xl~ X2, X3~•• IS:'

[39J MS

[40] 'THE REGRESSION COEFFICIENT ESTIMATES ARE IN ORDER CONST.,~

Xl ,X2 , : '

BE

'THE CORRESPONDING STANDARD ERRORS ARE. '

STDBE

'THE CORRESPONDING T RATIOS ARE: '

TRATIO

'THE COVARIANCE MATRIX OF THE REGRESSION COEF. IS.'

COVBE

'RSQ IS:' ;RSQ, 'VAR OF ERROR TERM IS:' ;VARU

'THE F STATISTIC INCLUDING THE CONSTANT TERM IS: t

F2; 'WITH' ;(K+l) ~(-l+-/NP); 'DEGREES OF FREEDOM.'

'THE F STATISTICS NOT INCLUDING CONSTANT TERM IS: f

Pi; 'WITH ';K, (-1+- /NP) ; 'DEGREES OF FREEDOM. '

'THIS ENDS THE OUTPUT FROM MREGRESS. '

[56J

[41J

[42J

[43J

[44J

[45J

[46J

[47J

[48J

[49 J

[50J

[51J

[52J

[53J

[54J

[55J PREMEND1: 'NO. OF OBS (N) IS TOO FEW RELATIVE TO NO! OF

REGRESSORS (K) .'

'ROUTINE TERMINATED'

V

Y

100 106 107 120 110 116 123 133 137

X

100 100

104 99

106 110

111 126

13.4 Creation of a Regression Routine 257

111 113

115 103

120 102

124 103

126 98

[These data are from Johnston, Econometric Methods, p. 147.]

Y MREGRESS X

THE "RAW MOMENT MATRIX OF REGRESSORS IS;

115571 107690

107690 101772

THE COVARIANCE MATRIX OF REGRESSORS IS:

650 112

112 648

THE CORRELATION MATRIX OF REGRESSORS IS:

1 0.17257

0.17257 1

THE VECTORS OF MEANS ~Y, Xi!t X2, X3, IS:

116.89 113 106

THE REGRESSION COEFFICIENT ESTIMATES ARE IN ORDER CONST. ,Xl ,X2, ... :

49.341 1.3642 0.11388

THE CORRESPONDING STANDARD ERRORS ARE.

24.061 0.14315 0.14337

THE CORRESPONDING T RATIOS ARE:

2.0507 9.5299 0.79429

THE COVARIANCE MATRIX OF THE REGRESSION COEF. IS.

5.7893E2 2.6911EO 2.5792EO

2.6911EO 2.0493E-2 3.5420E-3

2.5792EO 3.5420E-3 2.0556E-2

RSQ IS:O.9385VAR OF ERROR TERM I5:12.924

THE F STATISTIC INCLUDING THE CONSTANT TERM IS:

3202.2WITH3 6DEGREES OF FREEDOM.

THE F STATISTICS NOT INCLUDING CONSTANT TERM IS:

258 Linear Regression

45.782WITH 2 6DEGREES OF FREEDOM.

THIS ENDS THE OUTPUT FROM MREGRESS.

Now let's try the oddball cases. Consider:

Q+1 2 3

XX+3 4 pi 2 3 4 5 6 7 8 9 10 11 12

Q MREGRESS XX

NO. OF OBS.(N) IS TOO FEW RELATIVE TO NO. OF REGRESSORS(K).

ROUTINE TERMINATED.

Q+15

XX+5 3 p1 2 3 1 5 6 1 8 9 1 10 11 1 12 13

Q MREGRESS XX

DOMAIN ERROR

MREGRESS[14] CR~D+.xCM+.xD+ffi(((lK)o.=lK)xCM)*0.5

-+PREMEND

THE RAW MOMENT MATRIX OF REGRESSORS IS:

5 37 42

37 337 374

42 374 416

THE COVARIANCE MATRIX OF REGRESSORS IS:

o

o

o

o

63.2

63.2

o

63.2

63.2

ROUTINE PREMATURELY ENDED DUE TO SINGULARITY OF X MATRIX.

13.5 Bells and Whistles Section

In this section we will discuss some ways in which this simple multiple
linear regression model can be applied to a wider variety of circumstances
than might at first appear to be the case.

Transformed Variables

The first way in which the linear model can be extended is to broaden the
concept of the regressor matrix used in the regression routine. Let us

13.5 Bells and Whistles Section 259

Transformed
VariabLes

Heteroskedastic
Models

Lagged VariabLes

suppose that you have a number of arrays called, say, Xl, X2, X3, and so
on. The arrays might represent time series of interest rates, net national
product, consumption expenditures, population, consumer price index,
money supply, etc. We might call these the raw data. In the regression
model we have derived from other considerations, we may want to use not
the raw data but functions of them, such as

In(Xii) , e Xij
, XTh Xu/Xkh (Xij + Xkj)/Xij, (XijXkj)2

and so on, where Xu, Xkj represent thejth observation on variables Xi and
Xk. These transformations are easily handled in APL. For example:

(Y~10*5) MREGRESS Q3 NOBS p(Xl~X2, ~X3, (X3+X4)~X5)

enables one to transform variables by arrays and set up the regression
without having to define a new regressand vector or a new regressor ma­
trix; and all of this is done in one statement. NOBS is the value of the
number of observations.

Heteroskedastic Models

One important special case of these ideas is the concept of weighted
regression which frequently arises in heteroskedastic models. These are
models wherein the covariance matrix of the disturbance term is a diagonal
matrix with unequal diagonal elements. Thus, suppose that the variance of
the ith disturbance term, i = 1, 2, ... , N, there being N observations, is
cr2z" where (T2 is an unknown scalar and Zi is a known constant. Then, if
the ith observations on the regressand and the regressors are divided by
VZ;, the transformed model meets the usual multiple linear regression
model assumption that the covariance matrix of the disturbance term array
is u 2I, where! is the identity matrix. (For further details about such models
see Kmenta in the bibliography.) This transformation is performed without
difficulty in APL.

Lagged Variables

The next problem is a little trickier. Suppose that we have three arrays
labelled Y, Xl, and X2 representing time series on three variables of inter­
est. Now, as frequently is the case in econometric analysis, you want to
carry out your analysis not just with the original three arrays, but with
arrays created by lagging the original arrays. An associated problem is that
the lagging process will reduce the usable length of our arrays. Let's con­
sider a lag of length M M can be 1 or 2 or any positive integer less than
(N - K - 1), where N is the number of observations (or length of the
arrays) and K is the number of regressors to be used in the regression
analysis.

With lagging, the regressors will include not only Xl andX2 (the original
regressors), but also the lagged values of Y,Xl, andX2. With lags of length

260 Linear Regression

M, and N the length of the original array, the variable length of the ne\\T
array is only (N - M). Let's call the lagged variables YL,XIL, andX2L.
Consider, therefore, a lag of length M:

YL +- yep +- IN-MJ

XIL +- Xl[P]

X2L +- X2[P]

(3 N p (Y~Xl.,X2» +- (M pO.,(N-M) p 1)/3f-N p (Y.,Xl.,X2)

The reader might recall that here we have used the dyadic form of /, called
compression. Essentially, we have dropped the first M elements of the
arrays on the right.

We now have six arrays of length (N - M), the former three of
which-Y, Xl, X2-contain observations from the (M + l)st to the Nth,
and the latter three-YL, XIL, X2L-contain the first (N - M) observa­
tions from Y,Xl, andX2, respectively. Just to check these ideas out, let's
try it, using the Y array and X matrix defined earlier. Let M be 2. Thus we
key in:

y

100 106 107 120 110 116 123 133 137

X

1 100 100

1 104 99

1 106 110

1 111 126

1 111 113

1 115 103

1 120 102

1 124 103

1 126 98

pX

9 3

XL+-YCP+lN-MJ

XL+XCP ;1 2 3J

Y+(eM pO)., (N-M)pl)/Y

X+((MpO) ., (N-M) p 1) -Ix

Durbin-Watson
Statistic

13.5 Bells and Whistle s Section 261

y

107 120 110 116 123 133 137

X

1 106 110

1 111 126

1 111 113

1 115 103

1 :t20 102

1 124 103

1 126 98

A comparison of the new arrays Y and YL and the matrices X and XL will
show that we have accomplished our objective. Examine the use of pa­
rentheses very carefully in the expression ((MpO) , (N-M)p1) .

Durbin-Watson Statistic

Now consider a useful test statistic in linear regressions involving time
series-the Durbin-Watson statistic (see, for example, Kmenta, pages
295-97). From MREGRESS we get a globally defined array called UR,
which contains the forecast error terms. Mathematically, the Durbin­
Watson statistic is defined by

d = 2:[=2(et - et_ t)2/ 2:[er
where et = (Yt - Yt). An obvious APL solution is

A +-t/UH*2

D +(+A)x+/((O,(T-1) p1)/UH)-((T-1) p1,0)/UH)*2

Try it on the UH generated by MREGRESS:

VD+-DURWAT X

[1J T1+(pX)-1

[2J A++/X*2

[3J ~(+A)x+/(((O,T1 p1)/X)-(T1 p1)~0)/X)*2

[4J 'THE DURBIN-WATSON TEST STATISTIC WITH' ;T1;' DEGREES

OF FREEDOM IS: 'D

'V

Y MREGRESS X

262

Summary

Exercises

Linear Regression

The computer output for MREGRESS has been suppressed to save space
(see page 257).

DURWAT VB

THE DURBIN~WATSON TEST STATISTIC WITH 8 DEGREES OF FREEDOM IS;

1.635297783

For a matrix X of N observations and K variables, the following
statistics can be defined:

Moment Matrix X' X
Covariance Matrix X' X - X' X
Correlation Matrix D-t/2(X'X - X'X)D-t/2, where D contains the

diagonal elements of (X' X - X'X)

[See page 241 for the APL expressions.]

Sample Correlation Coefficients:

rij == COV(Xi' Xj) / VVar(xi) Var(xj)

where Cov(Xj, Xj), Var(xi), and Var(xj) are sample values.

Sample Partial Correlation Coefficients:

rijoh- = (rij - rih-rh-j)/Y(l - rrlJ(1 - rf·)

For regression statistics, see Table 13.1. The corresponding APL state­
ments are contained in MREGRESS on page 254.

Durbin-Watson Test Statistics:

d - ~T (-)2/~T 2- ~t=2 et et- 1 ~l et

where et == (Yt - Yt).

The APL routine is listed on page 261.

APL Practice

1. Suppose that you have an array ZZ. How would you instruct the
computer to form a diagonal matrix D with diagonal elements those of
ZZ? Specify an array ZZ and check your routine.

2. Write a simple routine called CORRMAT, whose output will consist of
the correlation matrix of the regressors with their respective names,
i.e.:

Exercises

THE CORRELATION MATRIX OF REGRESSORS

263

NAME

JJ

KK

LL

JJ

*

*

*

KK

*
*

*

LL

*

*
*

Have the program ask you for the names of the variables first and then
print the correlation matrix.

3. Write a program that will calculate the partial correlation coefficients
of a set of regressors X.

4. Write a simple routine that will give you the regression coefficients in
the following format:

ESTIMA.TED REGRESSION COEFFICIENTS

CONSTANT *

STANDARD ERROR

*

T-STATISTIC

*
COEF. OF X1 *
COEF. OF X2 *

*

*
*
*

Furthermore, if one of the t-statistics is smaller than 1.96, print a
message to state which coefficient is not significantly different than
zero at the 5% significance level.

5. Another way to calculate the Durbin-Watson statistic is given by the
formula

where a is a vector of estimated error terms and

1 -1 0 0
-1 2 -1 0 0

0 -1 2 -1
A=

-1 2 -1 0
0 0 -1 2 -1

0 0 -1 1

Write a short routine to calculate the Durbin-Watson statistic using this
matrix formulation.

264 Linear Regression

For the following list of residuals calculated as UH = 1, -1, 2, 3, -4,
-5, 1,3, find the Durbin-Watson statistic using the above formula and the

DURWAT H function (page 261). Do you get the same result? If not, why not?

Statistical Applications

The questions in this section utilize the Data Set Watt in Appendix E.

1. Consider the following one equation production model

Y = bo + b1X1 + b2X 2 + U

where Y is production in KWHR of 15 electricity-generating plants,
X 1 is the input in BTU's per firm, and

{
I if plant's number is odd

X 2 = 2 if plant's number is even

Test the following pair of hypotheses using only the second year data
(1967)

bo = 0, b2 = 0

bo = 0, b2 =f. 0
against

and compare to:

H o: b2 = 0, bo unrestricted
b. against

H t : b2 =1= 0, bo unrestricted

(Hint: The column of 1's should be used.)

c. Does your answer regarding the importance of X 2 in the
model differ between tests (a) and (b)?

2. Suppose that the manager of the second power plant knows that one
of the following two models is the true model that explains the factor
demand for energy. The two models are

model A

model B

Yt = ao + atXt + a2Pt + U lt

Yt = bXtPt + U2t

where Yt is input in BTU's for year t, P t is the price per BTU paid by
the second plant for year t, X t is the production in KWHR for year t,
and the standard assumption that the distributions of Vi!, i = I, 2 are
given by:

Utt --- N(O, (rI)

U2t ~ NCO, (T~)

Show that modelA is the true model. (Hint: combine the two models
and test the coefficient on the X/PI term.)

Exercises 265

3. The purchasing department of the sixth plant has the following model
to estimate the factor demand relationship:

Yt = ao + a1X t + a2P t + a3D + Ut

where Yt is the quantity of energy utilized in BTU's for year t, Pt is
the price per BTU paid by the plant in year t, Xl is the output in
KWHR for year t, and D is a dummy variable which takes on the
value one if summer temperature exceeds 90°F, and the value zero if
the temperature is less than 90°F. The summer temperatures are:

Year

Temp.

66

lOa

67

92

68

92

69

94

70

99

7]

92

72

lOS

73

92

74

97

75

87

(a) Find the estimates of the coefficients and the estimates of their
covariance matrix.

(b) Drop the 1975 observation. Notice that the matrix of regressors is
now singular. However, one can obtain estimates of these pa­
rameters ai' a2, and a*, where a* = ao + a3; that is, drop the
variable D. What are the estimates of at, a2' and a*? Determine
the covariance matrix of at, a2, and a*. Compare estimates of at
and Q2 with your answers to (a). Use the appropriate column of
the data set WATT in Appendix E.

4. Suppose the Department of Energy wanted to know the production
relationship between BTU and KWHR. A model that they might use
employs averages for the variables of the industry. The model could
be

Yt = ao + GIXt + a2Pt + Ut

where Yt is the average output (in KWHR) of the plants in year t, Xt is
the average input in BTU's to the plants in year t, and Pt is the
average price per BTU paid by the plants in year t. Here t == 1,. . . ,100
Estimate the coefficients of this model.
Estimate the covariance matrix of the coefficients.
Use data set WATT of Appendix E.

5. The manager of the fourth plant conceived a more sophisticated
model for his input demand. He believed that his input demand for
fuel is explained by a partial adjustment model. The model is

(i)

(ii) Yt - Yt - 1 == y(Yi -)1'1-1) + VI

where Y t is BTU for year t, P t is the prices for year t, X (is KWHR for
year t , and y* is the unobserved desired Yto As before, t == I, 0 • • ,10.

Using data set WATT of Appendix E:

266 Linear Regression

(a) Show that the input demand equation is equivalent to

Yt == boY + b2yXt + (1 - y) Yt- 1 + btyPt + Ut

(b) Run an OLS and obtain the estimates of the coefficients. (Assume
that Y1965 == 700 X 1012 BTU's).

6. In the model of problem 5, notice that the first equation is determinis­
tic; Le., it has no error term. Suppose that the manager believed
instead that the following model was correct:

(i) Yi == bo + b1Pt + b2Xt + Ut

(ii) Yt - Yt - 1 == y(Yi - Yt - t)

(a) Solve for Yt as you did in part (a) of problem 5.

(b) Estimate the coefficients using the least squares procedure dis­
cussed in this chapter.

7. Suppose that you hypothesize that current production of KWHR
depends on current prices of the inpllt (BTU) and the previous year's
prices of the input as well. Your model now becomes Y t == Qo + QtPt +
a2Pt-t + V t for the first plant. Test the hypothesis that your model is
the correct model against the alternative, that KWHR depends on
BTU's consumed and current prices, written as Yt == Qo + atXt + a2P t

+ V t is the correct model, using data set WATT of Appendix E.

8. In this application you will extend the idea of adding lagged prices to
the demand function as was done in the previous exercise. Suppose
that you hypothesize that it takes two to three years to adjust output
to price changes in inputs. Formulate your model and test the hy­
pothesis that the adjustment period is three years, using data from
the first plant. The two models can be written as:

(i) Yt == ao + atPt + a2Pt-l + Q3P t-2 + Q4Pt-3 + Utt

(ii) Yt == bo + b1Xt + b2Pt + U2t

where the variables are defined in question 2.

9. Consider the following model:

i == I, ... , 15

where Yit is the 10 by 1 column vector of KWHR of firm i over the 10
years, Xu is the 10 by 1 column vector of BTU's used by firm i, and
over the 10 years bit is the coefficient relating input to output. Test
the following two hypotheses:

(a) The coefficient bit is the same for all of the 15 plants, although
they may differ over time, Le., bit == bt for all i.

(b) The relationship between X and Y remains constant over time,
but it might differ across firms, Le., bit = bi for all t.

Exercises 267

10. If you have already found that the functional form of the relationship
between prices of BTU's and BTU's demanded by the whole industry
is

(a) Estimate ao and at-
(b) Find the price elasticity of demand for inputs for the entire indus­

try_

14

Other Simple Regression
Equation Estimators

You will not study econometrics very long before you discover that the
linear multiple regression model we discussed at length in the previous
chapter cannot handle all eventualities, and so new estimators have to be
created. This chapter will discuss a number of these.

14.1 Simultaneous Equation Models

Simultaneous
Equation Models

268

One of the most important extensions of the linear regression model is
based upon the recognition that in most situations in economics we cannot
COllsider a single regression equation in isolation, but instead must treat it
as merely one equation within an interdependent system. In short, in this
chapter we begin by introducing the notion of simultaneous equation mod­
els. For an excellent introduction to this fascinating area of econometrics
see the books by Kmenta or Johnston (listed in the bibliography).

The most usual simple example is to consider the market for lemons (the
fruit, not inferior cars or appliances !). If you have studied only a little
economics you will be aware that the price and quantity of lemons ex­
changed in the market are the result of the interaction between two behav­
ioral relationships, one determining producers' supply responses and one
determining consumers' demand responses to market prices.

Now the statistical problem we face if we want to use observed data to
estimate either response, or even both responses, in that we cannot blithely
run a regression of, say, quantity traded, on price and other variables
affecting demand and expect to get useful estimates of the parameters of
the model. Besides, we might immediately wonder whether we should
really be regressing price on quantity and other variables or quantity on
prIce.

This is not the place for us to settle these issues since many books,

14.2 Two-Stage Least Squares 269

indeed several very good books, have been written on the subject. We will
proceed under the assumption that you have read or are reading a text­
book on estimation in simultaneous equation systems.

The estimation problem in a simultaneous equation system arises from
the distinction between endogenous and exogenous variables. So far in
linear regression the distinction has been straightforward-the dependent
variable is the endogenous variable and the regressors on the right-hand
side of the equation are the exogenous variables. Endogenous variables are
determined by the set of equations being considered and exogenous vari­
ables, while determined outside the system, affect the endogenous vari­
ables through the equations. The problem in a simultaneous equation sys­
tem is that we have more than one endogenous variable in each equation!
The regression techniques that were suitable for the single endogenous
variable are not suitable for the many endogenous variables case. New
techniques are needed. We now address ourselves to one of these
cases.

14.2 Two-Stage Least Squares

2SLS Regression
Procedure

One method of estimation for a single equation that is frequently used with
simultaneous equation systems is called two-stage least squares (2SLS).
Here is an example of a simplified model for food consumption from
Kmenta, pages 563-656.

Qt = at + a2Pt + a3D f + Udf

Qt = ht + b2Pt + b3Ft + b4A t + Ust

(demand)
(supply)

where Q t is food consumption per capita, P t is the ratio of food prices to
general consumer prices, D t is disposable income in constant prices, F t is
the ratio of the preceding year's prices received by farmers for products to
general consumer prices, A t is time in years, and U(lt and Ust are the
disturbance terms. The data are presented on page 285.

In simultaneous equation systems we are usually interested in what are
known as the structural coefficients, that is, the coefficients relating the
effect of, say, income, on quantity demanded or price. The demand and
supply equations shown above are structural equations. Alternatively, we
can consider solving for each endogenous variable in terms of all the exog­
enous variables. These latter equations are called the "reduced form"
equations because the prediction of each endogenous variable has been
reduced to a linear function of exogenous variables only. Of course, the
reduced form coefficients are in general complicated functions of the struc­
tural coefficients. For example, the reduced form equations for the above
simple model are

Qt = Yo + ylDt + Y2F t + Y3A t + Vtf

Pt = 60 + 6tDt + 62Ft + 6:~At + V2t

and the reduced form coefficients expressed as functions of the structural
coefficients are

270 Other Simple Regression Equation Estimators

In this simple model Qt and Pt are the endogenous variables and Dt , Ft , and
At are the exogenous variables.

The 2SLS procedure starts with estimates of the coefficients of the re­
duced form equation, wherein each endogenous variable is a function of all
the exogenous variables in the system. The second stage is to use predicted
values of the endogenous variables as regressors in the regression equa­
tion, relating one endogenous variable to the others in the structural equa­
tion. These first round coefficients in the price equation are computed by

V+-P ffi1,D,F,A

The only thing new here is the catenation of D, F, A and a column of
l's, which is a simple extension of the way in which we used catenate
earlier. Recall that the computer operates from right to left. You might
type 1, D, F, A to see the matrix in full.

Next we compute the "estimated" or "fitted" values of the P list by
multiplying each of the coefficients by the appropriate data value. For the
first sample point we have

99.628 = 90.278 (1) + 0.663 (87.4) - 0.488 (98.0) -0.737(1)

In order to compute the vector of all fitted values we can use matrix
multiply

(1,D,F,A) +.x V

and to store the result in a 20 by 1 vector we would write

VV+ 20 1 p (1,D,F,A) +.x V

You may wish to type VV and display the 20 fitted values. This completes
the first stage of the procedure.

The second stage is to estimate the structural equations using the fitted
values of P (stored as VV) in place of the original values of P. For the
demand equation, this is accomplished by

Qill1,VV,D

94.63333

0.24355

0.31399

{

These are the 2SLS estimators
of the structural coefficients
at, a2, a3.

14.2 Two-Stage Least Squares

The structural equation is

Qt == 94.63333 - 0.2436 Pt + 0.3140 D t

Similarly, the supply equation is

QfE1, VV, F, A

271

or

49.53244

0.24007

0.25561

0.25292

{
These are the 2SLS estimates of the
structural coefficients bI , b2 , b3 , b4 •

Qt == 49.53244 + 0.24007 P t + 0.25561 Ft + 0.25292 At

You may have noticed that the supply equation is exactly identified; that
is, the number of excluded exogenous variables from that equation is equal
to the number of endogenous variables included in the regression as regres­
sors. The excluded exogenous variable is D t and the included endogenous
variable is Pt.

In the exactly identified case we can derive estimates of the structural
coefficients directly from the estimates of the coefficients of the reduced
form equation. This is usually an exercise in algebra, where the values of
the structural coefficients to be estimated are obtained by solving the equa­
tions relating the structural and reduced form coefficients in the exactly
identified equation. To accomplish this we can estimate the reduced form
equations for P and Q.

QI±J1,D,F,A Fffi1,D,F,A

71.20355 [The estimates of 90.26776
{The estimates of the

0.15922
the reduced form

0.66321 reduced form coeffi-
coefficients Yo,

cients So, · . . , S3'
0.13834 · · · , Y3' -0.48845

0.07598 -0.737039

Algebraically, we have

Q == 71.20355 + 0.15922D + 0.13834F + 0.075978A
= B 1 + B2(90.26776 + O.66321D - O.48845F - O.737039A)

+ BsF + B~

After some algebraic manipulation we obtain

0.15922
B2 = 0.66321 = 0.24007

B3 = 0.13834 - (0.24007)(-0.48845) == 0.2556

etc., which are in fact our 2SLS results. The other coefficients are left as an

272 Other Simple Regression Equation Estimators

exercise for the reader. It should be clear that even when the equations are
exactly identified, 2SLS is a much simpler procedure than is indirect least
squares. Of course, when the equation is overidentified (more excluded
exogenous variables than included endogenous ones), you cannot use the
indirect least-squares procedure, but you can use 2SLS.

As a final example, you may want to see what results you would have
obtained if you had performed ordinary least squares (O.L.S.) on the
structural equations. (Remember that these estimates are statistically in­
consistent.)

The demand equation would be

QI131,P ,D

0.24355

0.31399

94.63333
~The O.L.S. estimates
The 2SLS estimates---?J'

99.89542

-0.31630

0.33464

and the supply equation would be

Ql±ll,P,F,A

58.27543

0.16037

0.24813

0.24830

~The O.L.S. estimates
The 2SLS estimates~

49.53244

0.24007

0.25561

0.25292

The result of this section is that you can use APL to compute estimates
that have desirable statistical properties. The procedures are not difficult.
Even in the case of exactly identified equations, 2SLS using APL is easier
than the indirect least-squares approach. Two-stage least squares for the
system we used requires two additional APL expressions over ordinary
least squares, and that technique yields inconsistent estimates.

An alternative, but related, estimator that we will develop is the instru­
mental variable estimator. It is related to 2SLS in that the fitted values
from the reduced form which we computed can serve as "instruments" for
the endogenous variables.

14.3 Instrumental Variables

Instrumental
Variables

In those situations in which the conditional distribution of the disturbance
term is not independent of the regressors for whatever reason (some exam­
ples of this problem are "errors in variables" and simultaneous equation
models), a useful approach to obtain estimators with desirable statistical
properties is that of instrumental variables. More formally, but easier to
understand, consider the model

y
(N x 1)

X B +
(N x K) (K x 1)

U
(N x 1)

14.3 Instrumental Variables 273

where the dimensions of the arrays are given in parentheses below each
array. The main difference between this model and that of Chapter 13 is
that here we assume that the distribution of the disturbance term U is not
independent of X, while in Chapter 13 we did assume such independence.

Now if (and it is a big IF), we can find another matrix Z of dimension
(N x K) such that U is independent of Z and the columns of A have
positive coefficients of determination with the columns ofX, then Z is said
to be a matrix of instrumental variables for X. You might care to remember
that the nonindependence ofX and U may be caused by only one column of
X, say X b in which case the variables X2, ••• , x". can ""serve as their own
instruments. "

Well, if we have an instrumental matrix Z, how do we use it? The easy
way to do it is this: transform the regression Y = XB + U to

Z'Y = Z'XB + Z'U

and now carry out an ordinary least-squares regression of Z' Y on Z'X
where, with proper choice ofZ, Z'X, a (K x K) matrix, is nonsingular. The
mathematical solution is

BE (the estimatcr of B) = (Z' X)-lZ' Y
= B + (Z'X)-lZ'U

The corresponding covariance matrix of the regression coefficient es­
timators is defined by

(T:2(Z' X)-l(Z'Z)(X'2)-1

where fi2 is the variance of the disturbance term U. The required APL
expressions are

BE+((QZ)+.XY)~(ZX+(~Z)+.XX)

VARU+(+/(UH+(Y-X+.xBE»*2)7-/(pX)

COVBE+VARUx(ffiZX)+.x(~Z+.xZ)+.x~(QZX)

In order to illustrate the use of instrumental variables, we will write a
very simple and straightforward routine to do the necessary calculations,
but we'll omit all the frills that we put intoMREGRESS; these you can add
later. Consider

VBE+INSTRVAR

[lJ BE+((~Z)+.xY)~(ZX+(~Z)+.xX)

[2] VARU+(+/ (UH+(y- X+. xBE))*2) 0;- - / (pX)

[3J COVBE+VARUx(WZX)+.x((~Z)+.xZ)+.xffi(~ZX)

[4J V

We will check the routine with some data cited by Kmenta, page 313.

y

0.768 0.433 0.4575 0.5002 0.3462 0.3068 0.3787 0.1188 0.1379

274 Other Simple Regression Equation Estimators

0.2001 0.3845

X

3.5459 3.2367 3.2865 3.3202 3.1585 3.1529 3.2101 2.6066

2.4872 2.428 2.318

z

3.4241 3.1748 3.1686 3.2989 3.1742 3.0492 3.1175 2.5681

2.5682 2.6364 2.5703

X+Q2 l1p ((11 pl),X)

X

1 3.5459

1 3.2367

1 3.2865

1 3.3202

1 3.1585

1 3.1529

1 3.2101

1 2.6066

1 2.4872

1 2.428

1 2.318

Z+ Q2 11p ((11 p 1) , Z)

z

1 3.4241

1 3.17 Ll-8

1 3.1686

1 3.2989

1 3.1742

1 3.0492

1 3.1175

1 2.5681

1 2.5682

14.4 Aitken's Generalized Least Squares

1 2.6364

1 2.5703

INSTRVAR

2.297911012 0.8435302294

VARU

0.002081788327

COVBE

0.01070128568 -0.00353069422

0.00353069422 0.001185860302

14.4 Aitken's Generalized Least Squares

275

The next estimator that we consider is Aitken's generalized least-squares
estimator. Suppose that the model we want to estimate is

Y = XB + V

and the distribution of U has a null mean vector (of dimension N) and a
covariance matrix I which is of dimension (N x N) and, in general, has
nonzero terms off the diagonaL Suppose I is known. If so, an appropriate
estimator in such a situation is Aitken's generalized least-squares es­
timator. It is defined mathematically by

B = (X'L-1X)-lX'L-1Y

with corresponding covariance matrix

(X'L-1X)-1

A routine that calculates this estimator is very simple. Some suitable
data are

y

160 160 180 200 210 220 230 250 200 220 230 300 310 340 350

300 400 450 540

x
2000 2000 2000 2000 2000 2000 2000 2000 4000 4000 4000 4000

4000 4000 4000 6000 6000 6000 6000 6000

SIG is a list whose elements are the values of the diagonal elements of L

SIG

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.1428571429

276 Other Simple Regression Equation Estimators

0.1428571429 0.1428571429 0.1428571429 0.1428571429

0.1428571429 0.1428571429 0.2 0.2 0.2 0.2 0.2

These data are from Kmenta, page 259.

Z+QZ~2 20 pZ~Y,X

z
160 2000

160 2000

180 2000

200 2000

210 2000

220 2000

230 2000

250 2000

200 4000

220 4000

230 4000

300 4000

310 4000

340 4000

350 4000

300 6000

300 6000

400 6000

450 6000

540 6000

A useful routine for calculating Aitken's generalized least squares is

Aitken's
Generalized Least
Squares [1J

VAITKNGLS[OJv

\jBE~Z AITKNGLS SIG

Y~Z[;1J

[2J X~Z[;(1(pZ)[2J-l)+lJ

[3] NN+-NxN+ p __SIC

[4J (N,N)p(NN pl,N pO)\SIG

14.4 Aitken's Generalized Least Squares 277

Regression with
Restricted
Coefficients

[5J BE~(COVBE+ill(Q X)+.x(~ SIG)+.xX)+.x(~X)+.x(ffiSIG)+.xY

V

Z AITNKGLS SIC

0.07315178571

The only bit of APL programming which is a little different is in line [4].
What this line does is to produce a diagonal matrix with the elements of the
list SIG on the main diagonaL (N N p 1,N po)produces a list of length N2
of 1's and O's such that when it is used to expand SIG the N2 elements are
the rows of the required diagonal matrix written out in a list.

The Aitken's generalized least-squares estimator is mathematically
equivalent to the estimator obtained by ordinary least squares on

p' y == p'XB + p' U

where p' is an N x N matrix which satisfies P''LP = I. Such a P can
always be found when L is nonsingular.

Another linear regression situation for which a different estimator is
required occurs when the regression coefficients are known to satisfy cer­
tain linear constraints. The model is

Y == XB + U

r = RB

where the (Q x 1) vector r is known, as is the (Q x K) matrix of coeffi­
cients R. In this situation the mathematical expression for the restricted
least squares estimator is

BER == BE + (X'X)-1R '[R(X'X)-lR 'J-1(r - (R)BE)

where BE is the unrestricted ordinary least-squares estimator and BER is
the restricted least-squares estimator. If V represents the covariance ma­
trix of the unrestricted estimator, then the covariance matrix of the re­
stricted estimator is given mathematically by

COVBER = V - VR'(RVR')-lRV

.Expressing these functions in APL is, of course, by now not difficult. For
example:

VBER+-RESLS

[1J B+Yl±]X

[2J Q+ffiR+.x(XIX+ffi (~X)+.xX)x.x~R

[3J BER+B+XIX+.x (~R)+.xQ+.x (R2-R+.xB)

[4J VARU~(+/(Y-X+.xBER)*2)+ (-/(pX))

[5] COVBER+-VARUx(XIX-XIX+. xC QR + .. x ([lR) +. xXIX+. xQR) +. xR+. xX_TX)

Let's use the following data to try the above function:

278 Other Simple Regression Equation Estimators

y

100 106 107 120 110 116 123 133 137

x
1 1 1

1 1.04 0.99

1 1.06 1.1

1 1.11 1.26

1 1.11 1.13

1 1.15 1.03

1 1.2 1.02

1 1.24 1.03

1 1.26 0.98

R

1 0 0

1 1 0

R2

1 0

RESLS

1 1 109.6135479

VARU

373.1395307

COVBER

2.651315829E-12

2.651315829E-12

O.OOOOOOOOOEO

3.976973744E-12

4.391241842E-12

1.077097056E-12

O.OOOOOOOOOEO

1.988486872E-12

3.666426234El

14.5 Durbin's Estimator in First Order Autoregressive Models

All of the estimators so far have been defined in terms of some linear
transformation of the regressand vector 1:- i.e., all the estimators have been
of the type

B = AY

where A is some suitable matrix of known constants.

14.5 Durbin's Estimator in First Order Autoregressive Models 279

First Order
Autoregressive
Model

We come now to some estimators which are no longer linear in this sense
and which involve iterated solutions. The basic idea is that we start with
some reasonable idea for A, say A 0, and from that we get

BI = AOy

We use B I to calculate an A I, from which we get

B2 = AIY

and so on. Usually, it is convenient and statistically justified to stop after
obtainingB2. The iterated nature of such estimators is sometimes not clear
from the formulas in the textbooks, especially when one can obtain B2 as a
function (through A 1) of A 0 and Y directly. Our first example of such an
iterated estimator is in the context of a time series model.

The model we are considering is

Y = XB + V

where Y is (T x 1), Xis (T x K), B is (K x 1), and U is (T x 1). The model
is similar to our previous models except that the covariance matrix of U is
given by:

1 P p2 pT-I

P 1 pT-2

V = (72 = (72L

pT-t pT-2 1

where p is the autocorrelation parameter, -1 < p < 1; i.e., we are assum­
ing that V t = pVt- 1 + e t , where et is normally distributed with zero mean
and constant variance, and et, es for t =1= s are statistically independent.

There are several methods of estimating a model of this type when p is
unknown. (Of course, if p is known, then Aitken's generalized least
squares, which was discussed above, can be used.) One of the best meth­
ods is a procedure due to Durbin (see, for example, the discussion in
Johnston*). The regression model can be transformed to

Yt = Yt-IP + XtB - Xt-IBp + E t

where Yt denotes the array Y with the first observation deleted, Yt- 1 de­
notes the array Y with the last observation deleted, X t is the X matrix with
the first row deleted, and X t - 1 is the X matrix with the last row deleted.
E t is the error term. There are now only T - 1 observations. The regres­
sion is a two-step procedure.

First Step: Use ordinary least squares to get an estimate r for p in
Yt = Yt~tP + XtB - Xt-IB P + E t

Second Step: (i) Transform variables to get (Yt - rYt-l), (Xl - rXC- 1);

(ii) Use ordinary least squares on the transformed vari-

* J. Johnston, Econometric Methods. McGraw-Hill, New York, pp. 192-199. 2nd Ed., 1972.

280 Other Simple Regression Equation Estimators

abIes to get an estimate for B; i.e., use (Yr - r Yt - 1) ==
(Xt - rXt-1)B + Eto

In terms of the APL programming of the routine, we need to obtain the
Hlagged" arrays .Yt - l , Xt-l, perform an ordinary least squares (OLS) regres­
sions, transform variables, and do another OLS regression. Consider the
following effort:

\JBE+-Y AUTOREG X

YL+-(L1+((((p Y) -1) pi) !J 0)) / Y {Initial lagging of variables in
lines [1] to [4].

Y+ (L2+(0 , ((p Y) -1) pi)) / Y

K+2+ (p X) [2] x 2

XL+L1fX

X+L2fX

BE+.Yffi (YL!J «pYL) p1) !JXL,X) {First step regression, line [5].

R+-BE[1J

[lJ

[2J

[2.2J

[3J

[4J

[5J

[6J

[7J

[8J

[9J

Y+-(Y-RxYL)

X+- (X-RxXL)

BE+.YffiX

{
Transform variables, lines
[6] to [8].

{Second step regression [9].

[• 5] AX MATRIX IS ASSUMED TO BE WITHOUT CONST.

[10J \l

Let's try an example. In order to see the difference between the esti­
mates, calculate .YffiX with the original variables. First of all, you might wish
to check that (YL ~ ((p YL) p 1») XL) X) gives the expected matrix. Let's
reuse some familiar data.

y

1 1.06 1.07 1.2 1.1 1.16 1.23 1.22 1.27

p y

9

X

1 1

2.04 0.99

1.06 1.1

1.11 1.26

1.11 1.13

14.5 Durbin's Estimator in First Order Autoregressive Models

1.15 1.03

1.2 1.02

1.13 1.03

1.26 0.98

p X

9 2

YL

1 1.06 1.07 1.2 1.1 1.16 1.23 1.33

Y

1 1.06 1.07 1.2 1.1 1.16 1.23 1.33 1.37

XL

1 1

1.04 0.99

1.06 1.1

1.11 1.26

1.11 1.13

1.15 1.03

1.2 1.02

1.24 1.03

L1

111 1 1 1 1 1 0

L2

011 1 1 1 111

(YL, ((p YL) pl),XL,X)

1 1 1 1 1.04

1.06 1 1.04 0.99 1.06

1.07 1 1.06 1 ..1 1.11

1.2 1 1.11 1.26 1.11

1.1 1 1.11 1.13 1.15

1.16 1 1.15 1.03 1.2

1.23 1 1.2 1.02 1.24

0.99

1.1

1.26

1.26

1.03

1.02

1.03

281

282 Other Simple Regression Equation Estimators

The result from the routine A UTOREG is simple:

Y AUTOREG X

1.16889455 0.1677267818

14.6 k-Class Estimators in Simultaneous Equation Systems (OLS, 2 SLS, and Limited
Information Maximum Likelihood)

k-Class Estimators The last estimator to be discussed in this chapter is in fact a class of
estimators-the "k" class estimators to be precise-which occur in the
estimation of regression models embedded within a system of simulta­
neous equations. The linear regression model is now written in the form

Y
(T x 1)

Yl G1

(T x M 1) (M l x 1)
+ Xl B1 +

(T x K 1) (Kt x 1)
U

(T x 1)

where the dimensions of the arrays are put in parentheses below the ar­
rays. Because the variables Yand Yt arejointLy determined by a system of
simultaneous equations, V is not statistically independent of Y 1. Y 1 is
known as the matrix of included endogenous variables this equation, X 1 is
the matrix of included exogenous variables, and X 2 is a (T x K 2) matrix of
the exogenous variables which is called the matrix of excluded (from equa­
tion 1) exogenous variables. We will make the simplifying assumption that
K2 ~ M t . Let X == (Xt X 2) , a T x (K1 + K2) matrix.

With such a model, an entire class of estimators can be defined by the
normal equations as follows:

[Y~Yt-kV~Vt Y~Xl] [ql(k)] == [Y~Y-kV;Y]
X;Y1 X;X 1 B 1(k) X;Y

where VI == Yl - Y1 , Y1 == X(X'X)-lX; Y1 , and Gt(k), RICk) are the k-class
estimators; for the algebraic details, see Kmenta, Goldberger, or any
intermediate level econometrics textbook. If k == 0, one has the OLS
estimator; if k = 1, the two-stage least-squares estimator, and so on. The
value of k need not be a preassigned constant, but could be a solution to a
maximization problem involving the random variables, as, for example, in
the case with the limited information maximum likelihood procedure.

In setting up a program to obtain k-class estimators, let's consider some
changes to the approach we have taken so far.

Let's assume that stored in the computer is a matrix Z of dimension
T x NV, where NV is the number of variables in the system of equations
to be analyzed. Alternatively, and equivalently in APL, the data could be
stored as NV arrays of length T. The routine to be defined below will be an
interactive routine in that the routine, once it is called, will request input
from the user and process it accordingly.

The main steps in the calculation of the k-class estimators are:

(i) Fix the value of k and determine which columns ofZ are Y, Y 1J X h

and X 2 ;

14.6 k-Class Estimators in Simultaneous Equation Systems

(ii) Calculate V 1;

(iii) Set up the matrices appearing in the normal equations above;

(iv) Obtain the estimates GI(k), RI(k).

Consider the following routine:

V KCLASSEST;IND;Z;X2;Yl;VH1;Y;Q;P

[lJ 'ENTER NO. OF ARRAYS OF VARIABLES'

[2J NV+{]

283

[3J Ll+-L2+-L3+L4+NV pO

[4 J 'ENTER ARRAY NO. OF DEPENDENT VB L. '

[5J ND+-O

[6J Ll[NDJ+1

[7 J 'ENTER ARRAY NOS. OF ENDOGENOUS REGRESSOR VB LS.'

[8J NEND+-O

[gJ L2[NENDJ+l

[10 J 'ENTER ARRAY NOS. OF EXOGENOUS INCL REGRESSOR VB LS. '

[11J NEX+{]

[12J L3[NEXJ+1

[13J 'ENTER ARRAY NOS. OF EXOGENOUS EXCL. REGRESSOR VB LB.'

[14J NEXX+{]

[15J L4[NEXXJ+1

[16J L4[NEX]+1

[17J 'ENTER DATA ARRAYS' ;NV;' IN NO. '

[18J Z+{]

[19J VH1+Y1-X2+.x«Yl+L2/Z)~(X2+L4/Z))

[20J 'ENTER VALUE OF K FOR K-CLASS EST.'

[21J K+{]

[22J Y+-«(~Y1)+.x(Ll/Z))-Kx(~VH1)+.x(Ll/Z)),[lJ«~L3/Z)+.xLl/Z)

[23J Q+«(QY1)+.xYl)-Kx(C¥VH1)+.xVH1)~I2J«QY1)+.xL3/Z)

[24J P+«QL3/Z)+.xY1),[2J«QL3/Z)+.xL3/Z)

[25J BE+(,Y)ffi(Q,[lJP)

[26J BE

284 Other Simple Regression Equation Estimators

Some discussion is needed for this routine, as it appears to be a little
complicated. However, the complications arise from only two sources: the
desire to pick out easily which arrays are to be the dependent variables,
which the included endogenous, and so on; and the wish to define a whole
class of estimators at once. To see how simple two-stage least squares
would be without the first requirement (having already removed the sec­
ond), consider the following pair of lines:

YH1+X2+.x(YENDffiX2)

BE+YIIJ(YH1~X1)

where YEND is the matrix of included endogenous variables, X2 is the
matrix of excluded exogenous variables, Y is the dependent variable array,
and X 1 is the matrix of included exogenous regressors. This simple pair of
statements generates 2SLS regression coefficient estimates if the appropri­
ate arrays are already specified.

Let's return to the more conlplicated routine. The first step is to enter
the number of variables~ since we are going to extract Y, YI, Xl, and X2
from Z by compression (Le., use of I). For example, L2 is an array (of
dimensionNV) of l's and O's-I's where the columns of Yl are located and
O's elsewhere. The device NV~, used to solicit a response from the user,
has been discussed previously.

In line [18] the user is prompted to insert data in the form of a matrix Z.
You can do this by catenating the variable arrays which we have assumed
are already stored in the computer. For example, if Q, P, R, S, Ware the
arrays needed, you type (after the computer prompts with D)

where T is the numbers of observations. This action creates a matrix Z
whose columns are Q, P, etc.

Line [19] calculates VI. Lines [22J and [23], [24J define the arrays shown
in the normal equations whose solution yields the required k-class regres­
sion coefficient estimates; this is done in line [25].

Line [22] is a straightforward programming version of the mathematical
statement wherein the two parts of the Y array are catenated together.
Lines [23], [24], and [25] are a little more tricky in that we need the exten­
sion of catenation called laminate, which we discussed in Chapter 12. The
two-dimensional array Q contains (Y{ Y1 - kV; V1 , Y;X1) , and P contains
(X~ Y1 , X;X1), while(Q~[lJp)yieldsthe required matrix:

Line [25] raises another interesting little facet in APL. In the use of til
dyadically, the left argument must be a list of length n if the right-hand
argument is a two-dimensional array of dimensions (n x q). The left argu-

14.6 k-Class Estimators in Simultaneous Equation Systems 285

ment must not be a two-dimensional array of dimensions (n x 1) or
(1 x n). Thus, given the way in which the variable Y was created, (, Y)
produces the appropriately dimensioned array.

To test our function, let us consider some data from Kmenta (pages 653­
65). The model, which we have used before, is

Qt = at + a2P t + a3Dt + Udt

Qt = hI + b2Pt + b3Ft + b~t + Ust

(Demand Equation)

(Supply Equation)

Here Qt is the quantity of food consumed per head per year, Pt is the ratio
of food prices to general consumer prices, D t is disposable income, F t is the
ratio of the previous year's prices received by farmers to general prices,
and At is time in years. Q and P are regarded as endogenous; D, F, and A
are exogenous. The demand equation is overidentified, and the supply
equation is exactly identified. The data are given in Table 14.1. These data
are simulated so that we know the true model, which is

Qt = 96.5 - 0.25 P t + 0.30 Dt + Udt

Qt = 62.5 + 0.15 P t + 0.20 Ft + 0.36 At + Ust

Let us use our k-class function with k == 0 (gives OLS) and k == 1 (gives
2SLS). In this demand equation, P t is Y t and if = (1, 1, ... , 1), the D t are
Xl' and (Ft, At) are X 2 - We begin by entering the arrays Qt, Ph Dt, Fh and At
into the computer.

The output is self-explanatory.

Table 14.1 Data List for Test of k-Class Estimators Routinea

Yor Qt
(Dependent

Variable) Y1 or P t Xl or Dt X 2 or Ft X2 or At Xl or i

98.485 100.323 87.4 98 1 1
99.187 104.264 97.6 99.1 2 1

102.163 103.435 96.7 99.1 3 1
101.504 104.506 98.2 98.1 4 1
104.24 98.001 99.8 110.8 5 1
103.243 99.456 100.5 108.2 6 1
103.993 101.066 103.2 105.6 7 1
99.9 104.763 107.8 109.8 8 1

100.35 96.446 96.6 108.7 9 1
102.82 91.228 88.9 100.6 10 1
95.435 93.085 75.1 81 11 1
92.424 98.801 76.9 68.6 12 1
94.535 102.908 84.6 70.9 13 1
98.757 98.756 90.6 81.4 14 1

105.797 95.119 103.1 102.3 15 1
100.225 98.451 105.1 105 16 1
103.522 86.498 96.4 110.5 17 1
99.929 104.016 104.4 92.5 18 1

105.223 105.769 110.7 89.3 19 1
106.232 113.49 127.1 93 20 1

a These data are stored for us (the authors) in an array called K 565.

286 Other Simple Regression Equation Estimators

First round-Ordinary Least-Squares Estimators (K =0):

KCLASSEST

ENTER NO. OF ARRAYS OF VARIABLES

0:

6

ENTER ARRAY NO. OF DEPENDENT VEL.

D:

1

ENTER ARRAY NOS. OF ENDOGENOUS REGRESSOR VBLS.

0:

2

ENTER ARRAY NOS. OF EXOGENOUS INCL REGRESSOR VBLS.

0:

3 6

ENTER ARRAY NO/3. OF EXOGENOUS EXCL. REGRESSOR VBLS.

0:

4 5

ENTER DATA ARRAYS 6 IN NO.

0:

K565

ENTER VALUE OF K FOR K-CLASS EST.

0:

o

0.3162988049 0.3346355982 99.89542291

Second Round-2SLS Estimators (K == 1):

KCLASSEST

ENTER NO. OF ARRAYS OF VARIABLES

0:

6

ENTER ARRAY NO. OF DEPENDENT VEL.

14.6 k-Class Estimators in Simultaneous Equation Systems

0:

1

ENTER ARRAY NOS. OF ENDOGENOUS REGRESSOR VBLS.

0:

2

ENTER ARRAY NOS. OF EXOGENOUS INCL REGRESSOR VBLS.

0:

3 6

ENTER ARRAY NOS. OF EXOGENOUS EXCL. REGRESSOR VBLS.

0:

4 5

ENTER DATA ARRAYS 6 IN NO. 0

0:

K565

ENTER VALUE OF K FOR K-CLASS EST.

lJ:

287

1

0.2435565378 0.3139917943 94.63330387

Third Round-Limited Information Maximum Likelihood Estimators

(K = 1.1739):

KCLASSEST

ENTER NO. OF ARRAYS OF VARIABLES

0:

6

ENTER ARRAY NO. OF DEPENDENT VEL.

D:

1

ENTER ARRAY NOS. OF ENDOGENOUS REGRESSOR VBLS.

0:

2

288 Other Simple Regression Equation Estimators

ENTER ARRAY NOS. OF EXOGENOUS INCL REGRESSOR VBLS.

0:

3 6

ENTER ARRAY NOS. OF EXOGENOUS EXCL. REGRESSOR VBLS.

D:
4 5

ENTER DATA ARRAYS 6 IN NO.

0:

K565

ENTER VALUE OF K FOR K-CLASS EST.

0:

.739

0.2295353985 0.3100126821 93.61902556

Limited
Information
Maximum
Likelihood
Estimators

Summary

The value of k in the L.I.M.L. estimator is obtained by minimizing the
ratio of the error sum of squares of the regression of (Y - Y1G t) on Xl and
on X; for an explanation, see Kmenta (page 569).

We have now reached the end of the book. We trust that you have
discovered by this stage the power (and beauty) of APL and, more impor­
tantly, that in using APL you learned statistics more easily and fully than
would otherwise have been possible.

There is more to learn, in APL statistics and econometrics. To do
that you will need to read some more books. As far as APL is concerned,
you might now find it useful and interesting to look through some of the
computer manuals recommended in the bibliography. The statistics and
econometrics books listed are all excellent at their various and respective
levels of sophistication and detail.

This chapter discussed a number of APL routines for calculating
regression estimators in some interesting extensions to the simple model.
The first topic is that of simultaneous equations. The program to estimate
the general k-class estimators was given. In addition, the 2SLS, indirect
least squares, and instrumental variables estimators were discussed at
length.

The next topic to be discussed was Aitken's generalized least-squares
procedure, which is needed to estimate regression models where the
covariance matrix of the disturbance terms is nonscalar.

Another useful extension was to consider Durbin's method for estimat-

Exercises 289

Exercises

ing a linear regression model, where the disturbance term was distributed
according to a first order autoregressive process.

Statistical Applications

1. Write in APL the following formulas useful in simultaneous equation
systems.

(a) Z = Lnxn ~ IKxK , where ® is the mathematical Kronecker prod­
uct.

(b) B == [Z'(~-lQ9X(X'X)-lX')Z]-I[~-lQ9X(X'X)-lX']Y

(c) B == [Z[10X(X'X)-lX']Z]-lZ[1Q9X(X'X)-l]y

2. Let the true model be Y = 2X1 + 3X2 + Ut, where

0.2 0.1
0.3 0.8
0.4 0.6
0.5 0.5
0.6 0.5
0.7 0.4

The U t are identically and independently distributed random vari­
ables with mean zero and variance 1 (see the solution for a routine
that generates independent random numbers from a normal distribu­
tion with zero mean and variance equal to N(O, 1».

(a) Given X and U, find the values of 1':

(b) Compute the variance of Y using the computed values of 1':

3. Consider the follo't:ving data:

y Xl X2
..~----_-.~

49 35 55
40 38 60
46 40 70
45 41 61
52 42 68
59 38 71
55 31 59
61 44 66
64 38 75
65 29 85

where Y == the production, in thousands of bushels, of wheat of one
farm over a period of 10 years; Xl = mean January temperature; and
X2 = mean June temperature.
Let the relationship between the variables be linear and of the form
Y = ao + atX1 + a2X2 + U.

the unconstrained vector of a.

the restricted vector of a.
r == 0

290 Other Simple Regression Equation Estimators

Test the following hypotheses:

Ho: az = 0
against H t : az * 0

and
Ho: ao = at = az = 0

against HI: ao, at, az '* 0

Use a 5% significance level for your tests.

4. Referring to exercise 3, suppose you believe that the June tempera­
ture affects the production twice as much as does the January tem­
perature, and you want to test if your belief is true. Mathematically,
this can be solved by the following steps (given without prooO.

(a) Find a = (X'X)-tX'y

(b) Find a == a + W(r - Ril)
where R = [0 2 -I]

W == (X'X)-lR'A
A == [R(X'X)-lR']-l Notice Ra == r ¢:> az == 2a1

(c) Find A= AR(il - ii) and V,," = u7,A, the variance-covariance
matrix of A, where CT71 is the variance of the residuals from the
restricted regression. * Thus under flo: az = 2a 1 A --- N(O, V~J,

which is equivalent to testing

H o: A = 0
against Hi: A*-O

(d) Another statistic that you might want to use is

u'u ~ D'u n - k - 1
a'a . s --- Fs,n-k-l

where li'u is the restricted error sum of squares, u'a is the
unrestricted error sum of squares, and s is the number of
constraints.

(e) Yet another statistic that you might want to use is

ii'a
-21n ~

uu

which is distributed as chi-square with 5 degrees of freedom.

(0 Do you get the same answers using the three different tests?
That is, do you accept or reject your hypotheses in all three
tests?

5. Consider the following simple market model:

qS = 2 + P + U qd = 4 - p + v

where qS is quantity supplied, qd is quantity demanded, the equilib­
rium condition is qS = qd, and u --- N(O, 3) and v ~ N(O, I), where u
and v are independent.

* A is the Lagrange multiplier of the minimization problem L = ul
U + 2'A(Ra-r).

Exercises 291

(a) Find the expected equilibrium price.

(b) Suppose that the government initiates an inquiry whenever the
equilibrium price is more than $1.50. Find the probability of hav­
ing the government make an inquiry in this market.

6. Refer to exercise 3. Suppose you believe that there is no constant
term in that relationship, and you run the regression

Y = a1Xt + aZX 2 + U

(a) Find the error sum of squares of this regression and compare it to
error sum of squares of the regression in exercise 3.

(b) Suppose that instead of running the previous regression, you
decide to run

Y = at V + a2X2 + U*

where V is the residual vector of the regression of X t on X 2,

including a constant term. Use the same data to show that the
estimate of a z is the same as that given by the regression of Y on
X 2 •

7. Write a program that will calculate the following statistics in the
heteroskedastic model, which is given by Y = XB + U, where the
covariance matrix of U is L, which is diagonal with unequal elements
on the diagonal.

(a) B = (X'L- 1X)-lX'2:- 1 Y, the efficient estimator of the vector of
regression coefficients, where L is a diagonal matrix whose ele­
ments are known in advance.

(b) The t-statistics for the B estimates.

(c) Use the regression rOlltine you have just written together with the
data set ~~TT (Appendix E) to estimate the regression

Y = ao + atXt + aZPt + V

where Y is the KWHR of the 15 plants for the first year, X is the BTU
of the 15 plants for the first year, and P t is the vector of prices that the
15 plants paid during the first year. L is a diagonal matrix with the
numbers 1 to 15 on its diagonal; the numbers correspond to the size of
the plant (1 for the smallest, 15 for the largest) measured by the total
KWHR produced during the first year.

8. Consider the following model that determines the equilibrium price
and quantity of a product.

D t == ao - alPt + a2 Yt + Ult

St = bo + blPt + U2t

where Dt = quantity demanded, endogenous; Pt == price of product,
endogenous; St = quantity supplied, endogenous; YZt = disposable
income, exogenous; Dt == St, the equilibrium condition.
Utt , UZt are each identically and independently distributed normal

292 Other Simple Regression Equation Estimators

variables with means zero, variances CTT and CT~, respectively, and
covariance (T 12.

(a) Solve for the reduced form.

(b) Is OLS an appropriate method of estimation for the reduced form
coefficients?

(c) Generate by computer a sample of observations on U tt , U2t and Yt

for 20 observations and compute values for D t , St, and Pt by
solving the equations after picking values for the coefficients. Use
your generated data to run OLS and 2SLS regressions on both
equations and comment on your results.

9. Consider the very simple income determination model:

Ct = ao + at Yt + U f

Yt = Ct + It

where Ct = aggregate consumption, It == Investment (exogenous),
Yt == GNP, V t == stochastic disturbance.
Use the data set MACRO in Appendix E.

(a) Estimate ao and at using OLS on equation (1).

(b) Write the reduced form equation for C, (using equations 1 & 2).

(c) Estimate Qo and at using OLS on the reduced form equation for C.

10. Consider the following product market model for the United States.
Use the data set MACRO. See Appendix E. Can you estimate these
equations?

Ct ~ QtYt + Q2RLt-l + Ult

It == b i Yt + b2RLt- 1 + U2t

Yt == Ct + It

Check to see which, if any, of these equations are identified.

11. Using the money supply series in data set MACRO, estimate the
parameters of the model:

MLt = ao + Q 1MLt- 1 + V t

12. A partial adjustment hypothesis could state that the target level of per
capita consumption (Ci) is a linear function of income, Le.:

Cf = Q + bYt

Actual consumption is adjusted towards C* according to

Ct - Ct- 1 = y[ct - Ct- t] + Ut,O < Y < I

which means that people adjust their consumption towards the de­
sired level. However, the adjustment is not generally accomplished in
one period (y < 1). Use the data in MACRO from 1950 to 1977 in
Appendix E to test this hypothesis. On the basis of your estimated

Exercises 293

model predict consumption for the year 1978 and check your predic­
tion with the actual 1978 value of consumption.

13. Suppose that you want to test Milton Friedman's permanent income
hypothesis. You first want to translate his hypothesis into mathe­
matical formulas and test it on real data. The entire model might be
summarized in the following two equations:

Ct = a + bYpt

YPt = yLf=o(l - y)iYt _ i

These equations can be combined to yield the following final equa­
tion:

C t = ay + bYYt + (1 - y)Ct - 1 + V t

Verify that this final equation is identical to the model in exercise 12
after substitution of Cr and reinterpret the estimated coefficients.

Appendix A

The Computer: Where It
Is and How to Get
Access to It

A.I Account Number and Password

Account No. and
Password

294

In this brief appendix you will learn how to "log-on" to the computer.
First, let's repeat that every computer center has its own administrative
procedures for determining who call use the machine and what resources
are allocated to those users. Some organizations make these arrangements
for you, otherwise you go to the computer center to do it yourself. In any
event, it's nothing to be overly concerned about. Typically, a form is
completed and you are given an "account number" and a "password,"
and sometimes a budget or time constraint. The account numbers are
usually six or fewer digits, and the passwords are eight or fewer characters
(either digits or letters). As an example, at Stanford the ~~account num­
bers" have two parts: a user number-J66 for the project, and a user
group-El. The password was H0V. (To discourage poachers, a slang term
for people who specialize in using other people's accounts for their own
purposes-such as playing space war----one should keep his or her
password confidential.)

With this administrative chore done, you are ready to begin. First find an
unoccupied computer terminaL The keyboard looks like any electric
typewriter, and in fact the letters are in the same position. The end of this
appendix contains diagrams of some typical keyboards-one for an IBM
5120 minicomputer, an IBM-2741 terminal and a DEC-Writer II, and a
Hewlett-Packard-HP2541A-literally hundreds of others exist, although
most have the standard keyboard layout and features. In other respects,
each terminal is slightly different; they hide the on-off switch in different
places, provide extra buttons, extra keys, lights, and even electronic whis­
tles. None of these matters should worry you, but you must be sure that
the terminal has the special APL characters. If your terminal does not have
these special symbols, it is probably called an ASCII (American Society
for Coded Information Interchange) terminaL These terminals do not sup­
port the special character set of APL; however, all is not lost. The APL

Appendix 295

language allows you to use mnemonic codes in place of the special sym­
bols. Look at the letter R; above it is the Greek letter rho, p. To represent
p you would type the mnemonic code .RO and the computer would under­
stand it to be the symbol p. We have included a list of mnemonic codes
used in APL in Appendix C. These vary somewhat from computer to
computer, and you should check with your facility if you must use one of
these ASCII terminals. You are now ready to start, and we presume that
you are sitting in front of the terminal.

A.2 Log-on Procedure

Log-on Procedures

On the IBM-5120 minicomputer there is a white switch on the front control
panel marked APL/BASIC; push it to the APL position and turn the red
power (on-off) switch on. That is all there is to it. When the machine warms
up, the TV screen will say CLEAR WE, meaning that you are ready to go
with a clear workspace-the electronic equivalent of a blank piece of
paper. If you have a 5120 or similar microcomputer, you can skip to the
log-off section of this appendix.

Those of you who are operating in a time-sharing environment will have
to use a more complicated log-on procedure. On the 5120, which is a small
desktop minicomputer, there is one user. On a big computer, hundreds of
users are connected to the computer. These connections are done in one of
two ways: via a direct wire from your terminal to the computer, or over the
telephone system. If you see a telephone by every terminal, you know how
your terminal is connected.

Unfortunately the log-on procedure varies from computer center to
computer center. However, the procedures are usually not difficult to ac­
quire. We suggest that if you are not provided with a log-on procedure
sheet by the computer center, you make one up yourself until you have
everything memorized. Believe us, one of the most frustrating parts of
programming is learning how to get programming access to the computer;
once that is done, the rest is plain sailing. The problem here is that, as we
mentioned above, every center has its own ideas about how people should
log-on.

Nevertheless, to give you an idea as to what is involved, consider the
following procedure. Starting with the direct wire situation, you turn on
the terminal and type the symbol), then your account number and
password, and then press the "return" key. This button sends one line of
information to the computer. This could look like

)1984:ME

your account being number 1984 and your password ME. This password is
sometimes called a "LOCK." The computer will respond with something
like:

062*]0:41:32 9/10/80 Von Mises

OPR: SYSTEM AVAILABLE TO 22:30

296 Appendix A The Computer: Where It Is and How to Get Access to It

CLEAR WS

Translating this into English, it means that you are using telephone line
number 62 (called a "port" by computernics), the time is 10:41 and 32
seconds A.M. on the tenth day of September, 1980, and the user's name is
Von Mises. The operator indicates that the system will be available until
10:30 tonight.

If, when you turned on your terminal, you could not type on it, or when
you typed nothing happened, it might be that the terminal is in local mode.
Look for a switch marked COM/LOC for communication and local. It
needs to be in the COM mode to communicate with the computer. Clear
Work Space means you are ready to begin.

If you connect to the computer via a telephone line, you have exactly the
same log-on procedure, with the additional task of calling the computer.
The procedure is simple enough; first you activate a small box called a
modem. Modem stands for Modulator Demodulator. This modem essen­
tially takes the signals from your terminal and sends them over the tele­
phone line, and then retranslates the signals from the computer to your
terminal.

These modems are of two basic types: one a Data-Phone and the other
an acoustic coupler. The Data-Phone is usually a Western Electric device;
you simply pick up the telephone receiver, press the "talk" button, and
dial the computer's telephone number after you get a dial tone. When the
computer electronically answers the phone, you will hear a high pitched
tone that indicates that the computer is ready for you. You then press the
"data" button.

The computer will typically send a brief message or just one
character-a - or a *. You can now "log-on" exactly as the direct-wired
terminal user does.

The final connecting device is the acoustic coupler. Again the terminal
power is turned on. With this equipment, the electric power to the modem
is also turned on, and the telephone number is called. When you hear the
high pitched tone, push the telephone hand set into the coupler receptacle.
Sometimes there is an indication of which direction to place the hand set,
but if there isn't, just take a guess. If it doesn't work, try it the other way
around. Again, you will get some message from the computer and you
log-on.

As an exaplple, here is how it would be done at the Stanford Computer
Facility. OUf connection is hard wired, so we turn on the terminal (a
GenCom, with the switch cleverly placed under the keyboard so that it is
almost impossible to find). I type an "a" and the computer responds with a
+, I type SCF APL and the machine responds ... SCF 168 ... waits a
moment and then types User? I type J66; it responds, Group? I tell it EI; it
asks, Password? I reveal H0V (since changed) and it asks, Command? I
respond CALL APL; the machine types APL, then skips a line and types
CLEAR ws.

As another example, consider the sign-on procedure used at New York
University when using the CUNY computer center. At this point we run
into another option on terminals-some can be used for both APL and

Appendix 297

other languages. The character set for other languages is often designated
STD CHAR SET (Standard Character Set), and you should be in standard
to begin. The procedure is:

Switch on power of terminal and modem;

Ensure character switch is set to STD;

Dial up and place phone in acoustic coupler when high pitched tone
comes on line (a white light on the acoustic coupler comes on if the
connection is good);

Type "shift" P

Hit RETURN key (sometimes called EXECUTE);

System responds: type: a for apI, w for wylbur, 0 for callos

Type: a

Hit RETURN key;

System responds: PROJECT No., ID?

Type: [the project number given to you by the computer center];

System responds: PASSWORD?

Type: [the password you have picked and which is on file with the
computer center];

Change character switch from STD to ALT;
Type:)BLot [the '~)" symbol is upper case] key on the APL keyboard

(see end of this appendix)]

System responds: XXXXXXXXXXXXXXXXXXXXXXX

Type:) followed by APL account number, the symbol: and password;

System responds:

Date Your Name [as filed in conlputer center]
CUNY APL

Your log-on is now complete, and you are ready to begin.
By now you realize that every center is different and will have its own

special way of logging you onto the machine. However, you now know
enough to understand the general idea of the log-on procedu.res used in any
computer center. They all have handouts that explain the details and pecu­
liarities of their own system.

A.3 Log-off Procedure

Logging off is simple. On the microcomputer systems you just turn the
machine off. Of course, everything in the machine will be erased if you do
not copy it onto a tape or disk. The same thing is true when you use the
terminals. You must make special provision to save anything you want to
use again. You learned how to do this in Chapter 7. If you have a 5120 or
other microcomputer, you can skip to the last sentence of this appendix.

298 Appendix A The Computer: Where It Is and How to Get Access to It

To log-off on the terminal, you type)@FF and press the return button.
The machine will respond, indicating that it understood your command.
The response is something like:

062* 13:01:04
Started 10:41:32

9/10/80 Von Mises
Clocktime this session 2:22:32
CPUTime this session 0:00: 10

to date 17:25:30
to date 00:01:10

Log-off Procedure

IBM 5120 desktop
computer showing the
APL character set,
numeric pad, and
special function keys.

IBM 5120 showing
keyboard characters
that can be entered
using the command key

The first line here is similar to the first line of your terminal session; it
indicates your port, the current time (1:04 P.M.), the date, and your name.
The second line repeats the time you started and computes the elapsed

This top photograph showing a 5120 desktop computer can be programmed
in either Basic or APL with the flip of a switch. The keyboard is exactly like
a standard typewriter in that pressing the shift key (either of the keys with
the wide arrows on the bottom rank of keys) results in the APL characters
being entered into the computer. A convenient feature is that by holding the
command key (CMD, on the far left) and pressing one of the keys on the top
row will produce an entire command. For example, holding down CMD
and pressing I results in the command) LOAD being entered automatically.

The lower photograph shows the special overstruck characters that can be
produced with one stroke. The command is held down and any of the
individual keys now represents a new symbol or combination of key strokes.
For example, pressing the CMD key and the F key results in the divide quad
or domino function being entered. If the machine were in the Basic
programming mode the characters input would have been entered. Using the
CMD key saves a number of key strokes and is a handy feature.

Appendix 299

Operator uses Hewlett­
Packard 264lA CRT
terminal specifically
designed for APL and
featuring extensive
communications
capabilities.

The operator IS using the H-P 2641A terminal as a device to communicate
with a central computer. In the upper right corner above the keyboard are
two tape cassettes for data.

---- -_.-.r-;;:-- ,.; '-':;"-'

": ""'I
-_.=~

[:~~~~J ...7f! I:~:~
2" -, ~1

... • ::: I
.. ._-.J

Closeup of Hewlett­
Packard 2641 A terminal
keyboard showing the
various APL characters
and special function
keys.

The closeup photo of the Hewlett-Packard 2641 A CRT terminal keyboard
shows the APL characters, numeric pad, cursor control, and tape control
keys. The dial in the upper left corner allows the operator to select the
communications rate from 110 to 9600 band. The higher rates are used for
direct or hardwired communications to the host computer and the lower
rates are generally used when communication is over telephone lines.

time that you were connected to the machine for this session and all your
previous sessions. The third line tells how much computer time you have
used.

The final steps are to disconnect the terminal from the computer and
turn off the electricity to the equipment. If your terminal is hard wired or
connected via a DataPhone, just turn the electricity off. If the terminal is

300 Appendix A The Computer: Where It Is and How to Get Access to It

connected via an acoustic coupler, you tum off the electricity to the termi­
nal, hang up the phone, and tum off the power to the coupler.

These log-off procedures also vary from installation to installation. At
Stanford, to log-off you would type:)OFF , and press the return button.
(Remember-the computer does not get your message until you send it by
pressing the return button.) The computer responds: Command? Next, the
user types "logoff," and the computer responds with a large amount of
information including the CPU time, elapsed time, the dollar charges to
your account, and the words END OF SESSION.

IBM 5120 showing the
full keyboard and dual
diskette slots.

The IBM nas the full APL character set and two diskette drives. The
diskettes are used to store APL functions and data.

Pictured is the MCM
System 900 desktop
APL computer,
manufactured by MCM
Computers Ltd. of
Kingston, Ontario,
Canada and distributed
in the United States by
Interactive Computer
Systems, Inc., New
York, New York.

Appendix

The MCM 900 is a desktop computer that can be programmed in APL as a
standalone device. It can also be used as a communications terminal to
other computers using its data communication interface. A number of
applications routines are available to assist the APL programmer in the
areas of business management, pension administration, bilingual word
processing, and financial accounting.

301

302

Appendix B

Longley Benchmark

The "Longley Benchmark," as it has come to be called, was developed in
a paper titled" An Appraisal of the Least Squares Programs for the Elec-
tronic Computer from the Point of View of the User." 1 The results were
shocking to some since a number of well-known and extensively used
programs produced inaccurate results. In fact some of the computed coef-
ficients have the wrong sign! Beaton and Barone used the same data in

OLS Regression Equation
Y = Bo + BIX} + B2X 2 + B 3X 3 + B4X 4 + BsXs + B¢f) + U

Regres-
sand Regressor Variables

Xl
Y GNP X5

Total Implicit X2 X4 Noninstitutional
Derived Price Gross X3 Size of Population 14
Employ- Deflator National Unem- Armed Years of Age X 6

ment 1954 = 100 Product ployment Forces and Over Time

60,323 83.0 234,289 2,356 1,590 107,608 1947
61,122 88.5 259,426 2,325 1,456 108,632 1948
60,171 88.2 258,054 3,682 1,616 109,773 1949
61,187 89.5 284,599 3,351 1,650 110,929 1950
63,221 96.2 328,975 2,099 3,099 112,075 1951
63,639 98.1 346,999 1,932 3,594 113,270 1952
64,989 99.0 365,385 1,870 3,547 115,094 1953
63,761 100.0 363,112 3,578 3,350 116,219 1954
66,019 101.2 397,469 2,904 3,048 117,388 1955
67,857 104.6 419,180 2,822 2,857 118,734 1956
68,169 108.4 442,769 2,936 2,798 120,445 1957
66,513 110.8 444,546 4,681 2,637 121,950 1958
68,655 112.6 482,704 3,813 2,552 123,366 1959
69,564 114.2 502,601 3,931 2,514 125,368 1960
69,331 115.7 518,173 4,806 2,572 127,852 1961
70,551 116.9 554,894 4,007 2,827 130,081 1962

I Longley, James W., American Statistical Association Journal. Vol. 62, No. 31,7 September, 1967,
pp. 819-841.

Appendix 303

other programs, and they found similar inaccuracies. 2 As a special check,
they wrote their own routine, using multiple precision arithmetic and were
careful about the numerical analysis methods they used. Their results were
in agreement with Longley's calculations. So we have some confidence in
the computed accuracy of the benchmark. We should add parenthetically
that Beaton and Barone caution researchers on interpreting regression re­
sults in problems of this nature. However, our point is that, ceterus
paribus, more accuracy should be preferred to less.

We have included the raw data and some of the published results, and
the results from our APL runs with the l±I function.

Computed Coefficients

Longley
Computation
Using Desk
Calculator

- 3482258.6330
15.061872271

-0.035819179
- 2.020229803
-1.033226867
-0.051104105

1829.15146461

Longley
Computation
Using High
Precision

Program 360

- 3482258.634597
15.06187227161

-0.035819179293
- 2.020229803818
-1.033226867174
-0.051104105653

1829.151461614112

APL-STAT

- 3,482,258 .634594932
15.06187227114229

- 0.03581917929260994
- 2.020229802817922
-1.033226867173836
- 0.05110410565236916

1829.151464613044

Standard Error of Regression Coefficient

Longley APL-STAT

890420.3836
84.9149
0.0335
0.4884
0.2143
0.2261
455.4785

890420.3862191836
84.91492578619182
0.03349100783754301
0.4883996826502304
0.2142741633587326
0.2260732001756643
455.4785004777639

Computed toO Values

Longley

- 3.9108
0.1774

-1.0695
-4.1364
-4.8220
-0.2261

4.0159

APL-STAT

- 3.91080290668244
0.1773760282034131

-1.0695163151363
-4.136427347486052
-7.821985306012059
-0.2260511445525611

4.015889800933297

This should give you an idea of our results compared to the benchmark.
You might want to try this problem on your computer with the APL-STAT
routines and also with other program packages.

2 Beaton, A., Rubin, D., and Barone, J., The Acceptability of Regression Solutions: Another Look at
Computational Accuracy," Journal of the American Statistical Association, Vol. 71, No. 353, March,
1976, pp. 158-168.

Appendix C

APL Character Set

Single-Strike Characters

APL Set ASCII Set Mnemonic Name

+ + add
A-Z A-Z alphabetics

/\ & .AN ANd
+ -E- or_ assignment

concatenate, comma
colon
decimal point

...- % .DV DiVide
= equal to
\ \ expand

* * exponentiate
> > .GT Greater Than
[[left bracket
((left parenthesis
< < .LT Less Than
x # multiply

0 9 0-9 numerics,
quote string

? ? question (roll and deal)
/ reduce
] right bracket
) right parenthesis

semicolon
subtract

t 1\ .TK TaKe
.US UnderScore

r .AB residue (ABsolute value)
a .AL ALpha
0 .BX quad (BoX)
r .CE CEiling (maximum)

304

Appendix 305

Overstruck Characters

APL Set ASCII Set Mnemonics Name

¢ .RV ReVersal
~ .TR TRanspose
1. .XQ eXecute
l' .PM ForMat

A-Z .ZA-.ZZ underscored alphabetics
tl .Z@ underscored lower del

Single..Strike Characters

APL Set ASCII Set Mnemonic Name

{- .DA drop (Down Arrow)
.DD Dieresis

l. .DE DEcode
V $.DL DeL
·0 .DM DiaMond
n .DU Down Union
T .EN ENcode
E .EP EPsilon
L .FL FLoor
;;::: .GE Greater than or Equal
-+- .GO GO to (branch)
1 .10 IOta
{ .LB Left Brace
~ .LD delta (Lower Del)
~ .LE Less than or Equal
I- .LK Left tacK
0 .LO circle (Large 0)
~ .LU Left Union
~ .NE Not Equal to

.NG NeGation

.NT NoT
w .OM OMega
v .OR OR
} .RB Right Brace
--i .RK Right tacK
p .RO RhO
c .RU Right Union
0 .SO jot (Small 0)
U .DU Up Union

Overstruck Characters

APL Set ASCII Set Mnemonic Name

A LAmp (Comment)
! factorial
$ $.DS dollar sign, .GD Grade Down
~ .GU Grade Up
I .IB I-Beam
e .LG LoGarithm
'J'(.NN NaNd
It/' .NR NoR
\ .CB Column expansion
e .CR Column Rotate
f .CS Column Reduction
[] .DQ Divide Quad
0 .OU OUt
'if .PD Protected Del

Overstruck Characters

NAME CHARACTER KEYS

Comment CD [J

Compress* f OJ CJ
Execute OJ [J

Expand* OJ CJ
Factorial, Combination CD 0
Format OJ CD
Grade Down CD rn
Grade Up CD QJ

Logarithm ITJ (IJ

Matrix Division t}J rn CJ
Nand '" (JJ Q

A

Nor v CD GJ
Protected Function v CD Q

Quad Quote [!J mGJ
Rotate, Reverse

Q] (IJ

Rotate, Reverse* e
(IJ CJ

Transpose Q OJ (IJ
* These are variations of the symbols for these functions. These variations are
used when the function is to act on the first coordinate of an array.

306

Appendix D

Saving Your Workspace
on The IBM 5110
Microcomputer

If you want to save your workspace and you are using the 5120, you will
use the cartridge tape. You must first "mark" the number of tape files on
the tape and then transfer the workspace onto the tape. The details of
marking the tape are not directly relevant for this discussion. However, if
you type

)MARK 32 2 1

you will mark 2 tape files. The numbering of the files begins with one, and
each file contains 32 blocks of 1024 Bytes. There is enough room to store the
whole memory of a machine with 32,768 Bytes of core. The computer will
respond with

MARKED 0002 0032

To copy the workspace onto the tape, key in

)CONTINUE 1001 PROB

The first 1 indicates tape drive 1 (on the machine), 001 means you are
storing the information of the first file and you are naming it PROB. The
5110 will respond

CONTINUED 1001 PROB

if all goes well. You could then take your tape out, turn the machine off and
walk away with the tape. Next time, after turning the machine on and
obtaining the CLEAR WS signal, you would push the tape cartridge into the
machine and key

)LOAD 1001 PROB

307

308

SaVing Your Workspace On The IE"" 5110 AI'

'VI 'Vl/crocOlllPuter

Appendix

The computer responds

LOADED 1001 FROB

309

and you are ready to go.
The)SAVE ,) COpy , and)PCOPY commands are used in much the same

way as they were described in the previous section. If you skipped that
section, you should read it now. The main differences concern marking the
tape as you just learned, keeping track of the physical record number of
the workspace, and the fact that continued workspaces are not automat­
ically loaded when the computer is turned on.

If you forget the physical location (file number) of your saved work­
spaces, you can issue the)LIB command. The computer will respond with
the file number and the name of the workspace. It also displays other
information about the file-but that does not concern us now. Two warn­
ings about this command are appropriate. Firstly, the computer does not
automatically rewind the tape to its beginning. You should issue the)RE­
WIND command to accomplish this. Secondly, a small slot, marked with
an arrow, exists on the top of the cartridge (see the figure). You must turn
the little wheel (a dime in the slot is perfect) until the arrow points away
from the word "safe," as in the figure. If the arrow points to "safe" the
computer will not write on the tape, although you can read from the tape at
all times.

On other mini- and microcomputers you may save your functions and
variables on floppy disks. This is also true for the IBM 5110 and 5120 series
machines. The procedure for disks is similar to the one we outlined for
tapes.

Appendix E

Data Set 'Macro'
A. GNP and its components Units of Measurement Abbreviations

1. GNP Billions of 1972 US $ y

2. Consumption Billions of 1972 US $ C
a) Nondurables Billions of 1972 US $ eN
b) Durables Billions of 1972 US $ CD

3. Investment Billions of 1972 US $ I
4. Government Billions of 1972 US $ G
5. Imports Billions of 1972 US $ 1M
6. Exports Billions of 1972 US $ X

B. Income
1. Disposable Income Billions of 1972 US $ YD

c. Prices, Wages, Interest Rates
1. GNP Deflator == 100 in 1972 P
2. Short-term interest rates % per annum RS
3. Long-term interest rates % per annum RL
4. Wage rate in current US $' s W

per week
D. Employment

1. Employment Thousands of persons L
2. Unemployment % U

E. Assets
1. Capital Stock Billions of US $ K

F. Money Supply Billions of US $ ML
Source: Economic report of the President, January 1979. Series only from 1950 to 1978.

Data Set Macro

Year y C I G X 1M YD

1950 533.5 338.1 93.7 97.7 21.7 17.7 205.5
1951 576.5 342.3 94.1 132.7 25.9 18.5 224.8
1952 598.5 350.9 83.2 159.5 24.9 20.0 236.4
1953 621.8 364.2 85.6 170.0 23.8 21.8 250.7
1954 613.7 370.9 83.4 154.9 25.3 20.8 255.7
1955 654.8 395.1 104.1 150.9 27.9 23.2 273.4
1956 668.8 406.3 102.9 152.4 32.3 25.0 291.3
1957 680.9 414.7 97.2 160.1 34.8 26.0 306.9
1958 679.5 419.0 87.7 169.3 30.7 27.2 317.1
1959 720.4 441.5 107.4 170.7 31.5 30.6 336.1

310

Appendix 311

Data Set Macro (Continued)

Year y C G X 1M YD

1960 736.8 453.0 105.4 172.9 35.8 30.3 349.4
1961 755.3 462.2 103.6 182.8 37.0 30.3 362.9
1962 799.1 482.9 117.4 193.1 39.6 33.9 383.9
1963 830.7 501.4 124.5 197.6 42.2 35.0 402.8
1964 874.4 528.7 132.1 202.7 47.8 36.9 437.0
1965 925.9 558.1 150.1 209.6 49.1 41.0 472.2
1966 981.0 586.1 161.3 229.3 51.6 47.3 510.4
1967 1,007.7 603.2 152.7 248.3 54.2 50.7 544.5
1968 1,051.8 633.4 159.5 259.2 58.5 58.9 588.1
1969 1,078.8 655.4 168.0 256.7 62.2 63.5 630.4

1970 1,075.3 668.9 154.7 250.2 67.1 65.7 685.9
1971 1,107.5 691.9 166.8 249.4 67.9 68.5 742.8
1972 1,171.1 733.0 188.3 253.1 72.7 75.9 801.3
1973 1,235.0 767.7 207.2 252.5 87.4 79.9 901.7
1974 1,217.8 760.7 183.6 257.7 93.0 77.1 984.6
1975 1,202.3 774.6 142.6 262.6 90.0 67.5 1,086.7
1976 1,271.0 819.4 173.4 262.8 95.9 80.5 1,184.4
1977 1,332.7 857.7 196.3 269.2 98.2 88.7 1,303.0
1978 1,385.1 891.2 210.1 275.2 107.3 98.7 1,451.2

Data Set Macro (Continued)

Year P RL RS W L

1950 53.64 2.62 1.45 53.13 58,918
1951 57.27 2.86 2.16 57.86 59,961
1952 58.00 2.96 2.33 60.65 60,250
1953 58.88 3.20 2.52 63.76 61,179
1954 59.69 2.90 1.58 64.52 60,109
1955 60.98 3.06 2.18 67.72 62,170
1956 62.90 3.36 3.31 70.74 63,799
1957 65.02 3.89 3.81 73.33 64,071
1958 66.06 3.79 2.46 75.08 63,036
1959 67.52 4.38 3.CJ7 78.78 64,630

1960 68.67 4.41 3.85 80.67 65,778
1961 69.28 4.35 2.97 82.60 65,746
1962 70.55 4.33 3.26 85.91 66,702
1963 71.59 4.26 3.55 88.46 67,762
1964 72.71 4.40 3.97 91.33 69,305
1965 74.32 4.49 4.38 95.45 71,088
1966 76.76 5.13 5.55 98.82 72,895
1967 79.02 5.51 5.10 101.84 74,372
1968 82.57 6.18 5.90 107.73 75,920
1969 86.72 7.03 7.83 114.61 77,902

1970 91.36 8.04 7.72 119.83 78,627
1971 96.02 7.39 5.11 127.31 79,120
1972 100.00 7.21 4.69 136.90 81,702
1973 105.80 7.44 8.15 145.39 84,409
1974 116.02 8.57 9.87 154.76 85,935
1975 127.15 8.83 6.33 163.53 84,783
1976 133.76 8.43 5.35 175.45 87,485
1977 141.61 8.02 5.60 188.64 90,546
1978 152.09 8.73 7.99 203.34 94,373

312 Appendix E Data Set 'Macro'

Data Set Macro (Continued)

Year U ML K

1950 5.3 0 0
1951 3.3 0 0
1952 3.0 0 0
1953 2.9 128.8 0
1954 5.5 132.3 0
1955 4.4 135.2 0
1956 4.1 136.9 0
1957 4.3 135.9 0
1958 6.8 141.1 0
1959 5.5 143.4 0

1960 5.5 144.2 0
1961 6.7 148.7 254.7
1962 5.5 150.9 269.7
1963 5.7 156.5 288.2
1%4 5.2 163.7 305.6
1965 4.5 171.4 336.0
1966 3.8 175.8 364.0
1967 3.8 187.4 386.2
1968 3.6 202.5 426.5
1969 3.5 209.0 473.6

1970 4.9 219.7 492.3
1971 5.9 234.0 529.6
1972 5.6 255.3 599.3
1973 4.9 270.5 697.8
1974 5.6 282.9 734.6
1975 8.5 295.2 756.3
1976 7.7 313.5 823.1
1977 7.0 338.5 900.1
1978 6.0 361.1 953.6

o Not available

Data Set Watt*
List of the Plants

Number Plant Name

1 J. H. Cambell
2 B. C. Cobb
3 Dan E. Kern
4 J. R. Whiting
5 Rock River (Wis.)
6 Nelson Dewey (Wis.)
7 Minn. Power and Light Co., Clay Boswell
8 81. Clair
9 Presque Isle

10 Gulf Power (Scholtz)
11 Gulf Power (Lansing Smith)
12 Tampa Electric Company (P. J. Gannon)
13 Northern States Power Co. (Lawrence)
14 Montana Dakota Utilities Co. (Heshett)
15 Appalachian Power Co., Clinch River

Source: U.S. Federal Power Commission, Steam Electric Plant Construction Cost and Annual Pro·
duction Expenses 1966-1977.
U. S. Energy Information Administration 1974.

Appendix 313

Data Set Watt

The data set WATT consists of three tables, the KWHR produced in
Table 1, the BTU's used in Table 2, and the prices of BTU's in Table 3. The
observations are for 15 plants over a period of 10 years. Thus, WATT is a 3
by 10 by 16 (including the year column) three-dimensional array.

Table 1 Number of KWHR in millions
Plant Number

Year 2 3 4 5

1966 1,938.4 2,754.9 4,066.6 2,575.7 927.7
1967 2,980.4 2,752.4 3,878.5 2,425.5 977.8
1968 3,904.3 2,923.6 4,055.3 2,442.2 971.7
1969 3,678 2,907.9 3,900.7 2,393.9 987.9
1970 4,273.9 2,901.9 3,590.3 2,276.2 926.5
1971 3,316.7 3,244.4 3,558.2 2,190.1 807.5
1972 3,971.3 2,874.3 3,489.9 1,921.2 827.8
1973 4,103.7 3,449.8 3,438.2 2,211.8 862.4
1974 3,921.4 3,506.8 3,328.9 2,440.5 727.5
1975 3,460.9 2,869.6 3,032.5 2,155.4 546.9

Year 6 7 8 9 10

1966 1,393 892.2 9,792.8 854.2 246.0
1967 1,453.1 1,046.5 9,468.6 1,114.6 233.6
1968 1,505.9 1,023.2 9,373.4 1,135.4 313.4
1969 1,454.9 941.2 11,671.6 1,229.6 415.4
1970 1,275.0 947.9 12,620.4 1,161.4 389.4
1971 1,286.1 916.5 12,606.2 1,086.8 430.9
1972 1,439.8 945.6 12,386.8 1,121.0 433.3
1973 1,371.4 2,007.4 10,509.6 1,136.4 505.9
1974 1,126.5 2,773.6 9,958.2 1,130.8 462.2
1975 1,186.9 3,192.1 8,266.0 1,795.7 489

Year 11 12 13 14 15

1966 1,006.8 4,481.7 128 355.3 5,660.3
1967 1,648.4 4,666.5 176.2 462.5 5,345.6
1968 2,231.9 5,078.1 144.8 510.7 5,191.0
1969 2,173.2 4,954.9 113.2 497.7 5,353.9
1970 1,961.5 5,350.0 124.5 564.8 5,223.7
1971 1,754.6 4,736.7 133.3 583.2 5,052.4
1972 1,827.5 5,136.3 167.7 612.9 5,484.9
1973 2,043.8 4,880.3 168.1 575.9 5,575.2
1974 1,722.8 3,821.6 150.3 610.8 4,974.5
1975 1,592.3 4,392.5 40.8 602.9 4,202.2

Table 2 Number of BTU's in 1012 Units
PLant Number

Year 2 3 4 5

1966 663.2 1,049.4 1,376.2 986.4 402.9
1967 1,093.6 1,066.4 1,331.9 942.3 413.9
1968 1,429.9 1,133.6 1,426.6 955 425.7
1969 1,349.5 1,138.9 1,384.6 955.2 440.5
1970 1,569.1 1,200.4 1,308.0 922 431.3
1971 1,237.8 1,363.0 1,302.6 913.1 378.1
1972 1,497.0 1,190.3 1,289.7 790.7 389.1
1973 1,540.4 1,424.3 1,282.9 831.3 414.2
1974 1,488.7 1,474.0 1,258.1 972 362.6
1975 1,355.4 1,238.1 1,128.8 838.4 291.4

314 Appendix E Data Set 'Macro'

Table 2 (Continued)

PLant Number

Year 6 7 8 9 10

1966 601 397.8 3,765.6 362.5 118.6
1967 625.6 426.9 3,633.5 454.2 110.2
1968 648.9 411.6 3,592.5 465.9 144.5
1969 631.6 485.5 4,483.7 507.6 192.5
1970 560.4 583.0 4,797.9 487.7 186
1971 565.4 570.2 4,788.3 476.8 218.4
1972 638.1 605.8 4,508.5 511.5 224.3
1973 605.2 1,143.4 3,560.2 516.4 241.6
1974 507.2 1,707.6 473.9 549.4 225
1975 600.8 2,063.0 2,434.0 794.3 235.5

PLant Number

Year 11 12 13 14 15

1966 422.1 1,965.5 18.3 330.2 2,069.5
1967 699.6 2,113.3 28.1 425.1 1,964.8
1968 941.5 2,340.2 16 467.3 1,912.5
1969 930.1 2,285.8 26.5 463.2 1,990.1
1970 868 2,466.3 31.8 520.2 1,972.0
1971 770.9 2,213.4 46.9 541.9 1,917.9
1972 849.0 2,420.6 52.6 571.3 2,068.5
1973 893.3 2,246.3 47.7 542.3 2,145.4
1974 771.3 1,808.1 59.6 575.9 1,948.6
1975 716.2 1,039.9 32.5 577.3 1,609.2

Table 3 Cost per Million BTU in ¢
Plant Number

Year 2 3 4 5

1966 30.40 29.40 30.7 27.20 31.79
1967 27.30 29.90 31.80 27.70 32.38
1968 27.60 31.70 31.70 28.40 33.36
1969 29.00 34.00 31.80 30.10 34.94
1970 30.41 39.90 40.20 33.20 40.39
1971 34.10 45.50 46.60 41.60 47.80
1972 37.92 46.75 46.99 43.91 51.99
1973 44.00 49.20 48.34 61.43 55.49
1974 57.70 57.70 66.69 116.67 85.66
1975 111.90 101.30 104.9 142.40 133.90

PLant Number

Year 6 7 8 9 10

1966 26.78 35.54 28.30 32.44 30.01
1967 26.32 35.00 28.50 33.54 29.88
1%8 26.62 36.00 29.20 34.29 30.15
1969 28.41 36.00 29.40 35.96 31.96
1970 30.78 32.90 32.90 41.53 36.52
1971 34.11 31.70 39.70 51.30 43.70
1972 38.06 31.85 43.60 56.94 51.50
1973 43.37 31.68 47.71 64.10 54.80
1974 65.49 34.38 86.90 96.98 102.39
1975 96.60 62.00 106.00 134.03 136.83

Appendix 315

Table 3 (Continued)
Plant Number

Year 11 12 13 14 15

1966 25.07 26.66 38.93 20.95 17.31
1967 25.29 26.13 38.18 20.52 17.71
1968 25.67 26.36 39.23 20.00 18.69
1969 26.99 29.28 41.45 20.42 20.36
1970 30.08 30.25 46.02 21.84 22.11
1971 40.02 31.02 54.09 22.90 26.47
1972 43.97 39.54 56.88 24.60 29.64
1973 46.74 49.80 65.51 25.36 34.50
1974 72.74 68.88 69.93 28.18 72.92
1975 124.40 123.00 135.95 45.50 128.90

Function Glossary

Table 1 Monadic Functions

Symbol Name Definition Example

+ Conjugate +A is A A

7

+A

7

Negative -A is a-A A

7

-A

7

x Signum xAis (A>Q) -A<O A
When A is positive a 1
results. When A is 7
negative a 1 results.
When A is zero a a xA
results.

1

x(-A)

1

Reciprocal f A is if A A

7

fA

0.14286

316

Function Glossary 317

Table 1 Monadic Functions (Continued)

Symbol Name Definition Example

Magnitude Absolute Value B

7.653 7.653 7.456 7.456

IB

7.653 7.653' 7.456 7.456

L Floor Least Integer B

7.653 7.653 7.456 7.456

LB

7 8 7 8

r Ceiling Greatest Integer B

7.653 7.653 7.456 7.456

fB

8 -7 8 7

7 Roll ?A is random number ?A
from set of (p A)
consecutive integers 1
with each integer
having the (1 +pA) 77777777
probability of being
selected. 644 2 1 5 5

* Exponent eA A

7

*A

1096.6

Natural In A or logeA A
Logarithm

7

f15.'A

1.9459

0 Pi Times 1TxA 01

3.1416

C

123

oC

3.1416 6.2832 9.4248

318 Function Glossary

Table 1 Monadic Functions (Continued)

Symbol Name Definition Example

Factorial !A=1 x 2x ... x(A-1)xA A

7

!A

5040

!4

24

Not ""1 is 0 , ""0 is 1. D
Truth table defined for
oand 1 only. 1 a 1

""D

0 1 0

f'oI ""'D

1 a 1

Table 2 Dyadic Scalar Functions

Symbol Name Definition Example

+ Plus Add 3 + 1.02

4.02

5 + 4

9

Minus Subtract 6 - 7

1

x Times Multiply 5 x 4

20

...- Divide Divide 5 ...- 4

1.25

Residue Remainder after divide 5125.010

0.01

L Minimum Smaller of two values 5 L 4

4

7.001 L 7.01

Function Glossary 319

Table 2 Dyadic Scalar Functions (Continued)

Symbol Name Definition Example

7.01

r Maximum Greater of two values 5 r 4

!1

7.001 r 7.01

7.001

* Power A to the B power: AB 3 * 2

9

4 * .5

2

~ General The base A logarithm of B 1ofA;) 5
Logarithm

0.69897

10~1005

3.0022

Symbol Name

o Circular,
Hyperbolic,
and
Pythagorean
Functions

Detinitlon

10X = Sine X

20X = Cosine X

30X = Tangent X

sox = SinhX

60X = CoshX

70X = Tanh X

-10X = Arcsin X

20X = Arccos X

- 30X = Arctan X

- SoX = Arsinh X

- 60X = Arcosh X

-70X = ArtanhX

OoX = (1+X*2)*.5

320 Function Glossary

Table 2 Dyadic Scalar Functions (Continued)

Symbol Name

Binomial
Coefficients

Definition Example

The Bth term in the expansion
of (X + Y)A, also the number of
combinations of A things taken
B at a time.

/\ And

v Or

'1< Nand (not
and)

¥ Nor (not or)

A B A/\ E AvE A'l'<B A.¥ B

0 0 0 0 I I

0 1 0 1 1 0

1 0 0 1 1 0

1 1 1 1 0 0

A and B must be logical (0 or 1) variables

<
:5

=

Less than
Not greater
than
Equal to
Not less
than
Greater than
Not equal to

Result is 1 if relation holds (TRUE) and
oif it does not hold (FALSE). For example,
5 < 7 is 1, 5 > 7 is O.

Table 3 Dyadic Array Functions

Function

Plus

Symbol

+

Scalarf Array

3 + 4 8 2

7 11 1 587

Arrayf Array

3 4 1 + 246

Minus 3 - 4 8 2 3 4 1 - 2 4 6

15510 5

Times

Divide

Residue

Minimum

Maximum

x

L

r

3 x 482

12 24 6

3 -;. 482

0.75 0.375 1.5

314 8 -2

121

3L4 8 2

332

3r4 8 2

483

341x246

6 16 6

3 4 1 .;. 246

1.5 1 0.16667

3 4 112 4 6

200

3 4 1L2 4 6

241

3 4 lr2 4 6

346

Function Glossary

Table 3 Dyadic Array Functions (Continued)

Function Symbol Scalarf Array

321

Array f Array

Power

Logarithm

Circle

Binomial

And

Or

Nand

Nor

Less

Not greater

Equal

Not equal

Not less

Greater

*

o

v

<

=

>

3 * 482

81 6561 0.1111

3 fA} 4 8 2

1.2619 1.8928 0.63093

30 4 8 2

1.1578 6.7997 2.185

3 ! 482

4 56 0

1/\1010

1010

Iv1010

1111

1']\11010

0101

1"1'1010

0000

3<4 8 2 3

110 0

3--S4 8 2 3

110 1

3=4 8 2 3

a 001

3~4 8 2 3

1 110

32482 3

o 0 1 1

3 > 482 3

o 010

341 * 246

9 256 1

3 4 2 ~ 2 4 6

0.63093 1 2.585

3 410 2 4 0

2.185 4.1231 -0.27942

341 ! 246

016

10101\1100

1000

1010vl100

1110
1010'7'<1100

0111

1010;\/1100

0001

3 4 1<2 4 6

o a 1

3 4 1~2 4 6

011

341 = 246

010

3 4 1 ~ 246

101

3 4 1 2 2 4 6

110

3 4 1 > 246

100

322 Function Glossary

Table 4 Mixed Functions

Examples
Name Form Definition Arrays used in Examples:

Shape or pA Results in vector A B C
Size whose elements

are the number of 1 2 3 10 20 100 200
elements in A if A
is a vector, or the 4 5 6 30 40 300
dimension of A if
A is an array. 7 8 9 50 60

70 80

pC

3

pA

3 3

pB

4 2

Ravel ,A Results in vector ,A
whose elements
are the elements 1 2 3 4 5 6 7 8 9
ofA in row order.

Reshape ApE Reshapes the 2 2 pB
ravel ofB to shape
specified by A. 10 20

30 40

2 4 pA

1 2 3 4

5 6 7 8

3 5 pA

1 2 3 4 5

6 7 8 9 1

2 3 4 5 6

Reversal cPA or Reverses elements ¢A
sA in A. ¢ reverses

the elements 3 2 1
along the last
coordinate. e 6 5 4
reverses the
elements along 9 8 7
the first
coordinate. eA

7 8 9

4 5 6

Function Glossary 323

Table 4 Mixed Functions (Continued)

Examples
Name Form Definition Arrays used in Examples:

1 2 3

<t>C

300 200 100

Rotate A¢B or The elements of 2¢C
AeE B rotated A

positions. 1> 300 200 100
rotates elements
along the last 2¢A
coordinate and e
rotates elements 3 1 2
along the first
coordinate. 6 4 5

9 7 8

2eB

50 60

70 80

10 20

30 40

Trans- ~A or ~A transposes ~A

pose A~B the axes of array
A.A~B, 1 4 7
arranges axes ofB
to conform to 2 5 8
argument A.

3 6 9

~B

10 30 50 70

20 40 60 80

1 1¢A

1 5 9

2 1 ~A

1 4 7

2 5 8

3 6 9

1 2 ~A

1 2 3

4 5 6

324 Function Glossary

Table 4 Mixed Functions (Continued)

Name Form

Catenate A ,A
A, [IJB

Definition

Joins two arrays
along last axis.
A , [IJB joins
B to A on the I th
axis.

Examples
Arrays used in Examples:

789

C,15

100 200 300 1 2 345

B,B B, [IJB

10 20 10 20 10 20

30 40 30 40 30 40

50 60 50 60 50 60

70 80 70 80 70 80

10 20

30 40

50 60

70 80

Laminate A , [J]B Joins two arrays
along a new axis,
where J is not an
integer, new axis
is rJ ..

C,C.1JC

100 200 300

100 200 300

C,Cl.1JC

100 100

200 200

300 300

p (A , C1 . 1 JA)

323

A, Cl.1JA

1 2 3

1 2 3

4 5 6

4 5 6

7 8 9

7 8 9

Function Glossary 325

Table 5 Mixed Functions

Name Form Definition Example

Take NtA IfN is positive, 2tC
.first N
elements are 100 200
taken and if
negative, last 1tC
N elements are
taken from 300
vector A.

2 2tA

1 2

4 5

Drop N+A IfN is positive, 2+C
first N
elements are 300
dropped and if
negative, last 1iC
N elements are
dropped from 100 200
vector A.

2 2+A

9

Compress N/A Selects 0 1 O/C
elements from
A as deter- 200
mined by zero
one argument 1 0 a/A
N. For each 1
in N, the cor- 1
responding
element in A is 4
selected and
for each 0, the 7
element is not
selected. 1 0 O/[l]A

1 2 3

Expand N\A Fills array 1 a 1 1\C
with alphabetic
spaces or 100 0 200 300
numeric zeros
corresponding 1 0 1 0 l\[l]A
to zeros in the
argument N. 1 2 3

0 0 0

4 5 6

a 0 0

7 8 9

326 Function Glossary

Table 5 Mixed Functions (Continued)

Name Form Definition Example

Indexing A[J Selects ele- e[l 3J
ments from A
depending on 100 300
expression en-

A[1;3Jclosed in
brackets.

3

A[1 2 3;3J

3 6 9

B[;2]

20 40 60 80

Index of A 1 B Returns the 1 2 3 4 5 6 717
index value of
first OCCUf- 7
rence ofB inA.

0 0 1 111

3

2 342 111 5 3

5 6 2

Index 1 A Generates first 110
Generator A integers in

order. 1 2 3 4 5 6 7 8 9 10

Member- AEB Determines if 2 3 4 2 lE2
ship each element

of A is a mem- 1 0 0 1 0
ber of B.

2 3 4 2 lE2 3

1 1 0 1 0

Grade Returns the ~4 2 3 1 5
Up index values of

A in ascending 4 2 3 1 5
order.

A[M] Sorts the ele- Li 40 20 31 10 55
ments of
vector A in 4 2 3 1 5
ascending
order. S[tiS+4 2 3 1 5J

1 2 31+5

Grade WA Returns the W4 2 3 1 5
Down index of values

of A in 5 1 3 2 4
descending
order. t40 20 30 30 10 55

Function Glossary

Table 5 Mixed Functions (Continued)

327

Name Form Definition Example

A[tA] Sorts the ele­
ments of
vector A in
descending
order.

6 1 342 5

SCtS+40 20 30 30 10 55J

55 40 30 30 20 10

Deal A?B Selects A 2?20
random
integers with- 18 5
out replace-
ment fronl 1B , 10?10
each integer
has a (1 +pB) 6 5 7 8 2 10 1 9 4 3
chance of
selection. 10?10

10 9 4 3 6 8 5 2 1 7

Matrix fR4 Produces the RND+-2 2 p414
Inverse inverse of a

nonsingular RND
matrix.

1 3

4· 2

rIJRND

2 1.5

1 0.5

Domino B~ Domino can be 5X
1

+ X
2

+3X
3

= 7
used to solve a
set of linear 10X

1
+3X

2
+SX

3 = 10
equations if A
has the same 2X

1
+0. 2X

2
+8. 3X

3
=O

number of
rows as col- A
umns. Domino
returns the 5 1 3
coefficient of
least-squares 10 3 5
regression if
the number of 2 0.2 8.3
rows of A
exceeds the B+7 1 0 0
number of
columns. BI±IA

1.7881 3.4851 0.51485

328 Function Glossary

Table 5 Mixed Functions (Continued)

Name

Domino fB

Quad
output

Form

[frA

Definition

Displays A and
generates a line
feed.

Example

AA

513

10 3 5

2 .2 8.3

2 3.5 0.5

B

71001

BlR4A forces intercept
through zero

0.90461 0.20213 0.22486

BI±J1 !J AA catenate column
of ones for intercept

6.2918 0.26813 1.5607 0.7310

[fr' CHARACTER '

CHARACTER

[frSUMS++/B

18

Quote
quad
output

Quad
Input

Quote
quad
input

[!}+-A Displays A
with no line
feed.

A+{] Enters a line of
input from a
function.

A+{!] Reads a line of
characters and
creates a char­
acter vector
from inside a
function.

In a Function

[!}+- , A1& & &' •

[!}+-'CHARACTER'

A 1 & & & CHARACTER

A+{]

D:

123

A

123

A+('J

A C B

A

A C B

Function Glossary

Table 5 Mixed Functions (Continued)

329

Name

Format
monadic

Format
dyadic

Form Definition

"A Monadic format
A results in a
character rep­
resentation of
A so it can be
catenated &
displayed on
same line with
character data.

Al'B Displays B
according to
specification
A. The first
element ofA is
the number of
columns and
the second ele­
ment is the
print precision.

Example

('THE LOG OF' ,"fA) , 'EQUALS' '-f~A

THE LOG OF 2 EQUALS 0.69315

A

5 1 3

10 3 5

2 0.2 8.3

2 3.5 0.5

6 3l"A

5.000 1.000 3.000

10.000 3.000 5.000

2.000 .200 8.300

2.000 3.500 .500

7 172 7 3"fA

5.0 1.00 3~000

10.0 3.00 5.000

2.0 .20 8.300

2.0 3.50 .500

330

Bibliography

Barron, D. W., Recursive Techniques in Programming, American Elsevier, New
York, 196~

Beaton, A., Rubin, D., and Barone, J., fThe Acceptability ofRegression Solutions:
Another Look at Computational Accuracy,' Journal of the American Statistical
Association, Vol. 71, No. 353, March 1976, pp. 158-168.

Dhrymes, Phoebus J., Distributed Lags: Problems of Estimation and Formulation,
Holden-Day Inc., San Francisco, 1971.

Dhrymes, Phoebus J., Introductory Econometrics, Springer-Verlag: Berlin­
Heidleberg-New York, 1979.

Gilman, L., and Rose, A., APL An Interactive Approach, John Wiley and Sons,
New York, 1976.

Hamburg, Morris, Statistical Analysis for Decision Making, Harcourt, Brace and
World, Inc., New York, 1970, pp. 347-348.

IBM-APL Reference Manuals; APU360 User's Manual (GH20-0906), APL Primer
(GH20-0689), APL Language (GC26-3847) IBM Corp., New York, 1977.

IBM 5110 APL Reference Manual, SA21-9303-1, IBM Corp., (General System
Division), Atlanta, 1978.

IBM Systems APL Language, GC26..3847-3, IBM Corp. (Programming Publishing),
San Jose, 1978. .

Iverson, K. E.,A Programming Language, John Wiley and Sons, New York, 1962.

Johnston, J., Econometric Metlwds, McGraw Hill, New York, 1972.

Kaplan, W.,Advanced Calculus, Addison-Wesley, Boston, 1952.

Kmenta, J., Elements of Econometrics, MacMillan, New York, 1977.

Longley, James W., 'An Appraisal of the Least Squares Programs for the Elec­
tronic Computer from the Point of View of the User,' American Statistical
Association Journal, Vol. 62, No. 317, pp. 819-841, September 1967.

Mendenhall, W., and Reinmuth, J., Statistics for Management and Economics,
Wadsworth, Belmont, California, 1978.

Bibliography 331

Neter, J ... Wasserman, W., Whitmore, G., Applied Statistics, Allyn and Bacon,
Boston, 1978.

Pearson, E. S., and H. O. Hartley, Biometrika Tables for Statisticians, Vol. 1,
Cambridge University Press, 1962, p. 104.

Press, James, Applied Multivariate Analysis, Holt, Rinehart and Winston: New
York, 1972.

Rao, R. C., Linear Statistical Inference and Its Applications, John Wiley and Sons,
New York, 1968.

Smillie, K. W., Stat Pac I, Department of Computing Service, University of Al­
berta, Edmonton, Alberta, Canada, 1968.

Smillie, K. W., Statpack2: an APL Statistical Package, Department of Com­
puting Science, University of Alberta, Edmonton, Alberta, Canada, June
1969.

Theil, H., Introduction to Econometrics, Prentice-Hall, New Jersey, 1978.

Wonnacott, T., and Wonnacott, R.,lntroductory Statisticsfor Business and Econom­
ics, John Wiley and Sons, New York, 1977.

Answers to Exercises

In this section a few answers to sel~cted problems are presented. A
complete set of solutions to both the APL exercises and statistical prob­
lems is available from the publisher.

2 (f) Domain error

(k) 0 1 1.58 2

(p) Domain error

Statistical Applications (r) 2.5

1. 15.00 (u) 100

2. 13.33
(v) 1 -1 2 -2

3. 91.125
3. F1

-44 -18 0 6 10 12 12
4. 0.2457E-18 F3

5. (a) 254.97166 552 56 0 2 0 6 56

(b) 14.99 4. (a) 2

(c) 5.02 (b) 7 15

(d) 0.057656 (e) 1.83

6. 36,383.88 5. (a) 2.928

(d) 3085

(g) -5

3 (j) 110

7. (a) 45

APL Practice
(e) 5.5

(h) 6.2£20
1. (a) blank (1) 82.999 82.5

(c) 0

(e) 3 Statistical Applications

(h) 3 1. a. 380.4
2. (a) 1 1 1 c. 1.0905

(d) 4 9 16 e. 0.08515

332

Answers to Exercises 333

2. a. 4.2

4. a.7.3%

b.0.8

6. a. $.8

b. 2.88 and 5.99

7. $194.32

4

4. c. 0.447

d. (1) 19.61, 20.51
(2) 19.16, 20.95
(3) 18.72, 21.40

5. d. 2

e. 0.6

f. zero

i. S3 = -0.6

S4 = 2.2

APL Practice 5

122
J 2 2
010

1. (0) (X[4X])[3]

2. (a) -2 -I -I 0 0
2 2 1 1 0
o 1 0 1 0

(c) Same as Z

4. 3.246 3.246 -549

6. (a) X + 2X + 3X + 4X

(c) none

(d) I

8. The root is between 0.3169 and 0.3170

APL Practice

Statistical Applications

4. a. Mean = 2.6
Variance = 3.3714
Standard Deviation = 1.8361
Mean Deviation = 1.64
Median = 3

b. Mean = 3
Variance = 6.2727
Standard Deviation = 2.5045
Mean Deviation = 1.9048
Median = 3

5. a. weighted average = 2.044

8. a. 12.5

b. 159.17

1. (a) 0 0 0 0 0 0 0 0 0 0 0

(e) 6 7 8 9 0 1 2 3 4 5 6

(i) -3 -2
(I) 0 0 -2 -1

(0) Index Error

2. (a) 3 random numbers from 1 to 6 with
replacement.

4. «7pO),4pl)/Z

5. We use the first 20 terms of each series.

(a) 0.69

(e) does not converge

(f) 0.58198

(i) =-.3

(k) does not converge

7. (a) Cauchy-Schwartz
+ IX x Y s (+ /X*2) x (+ /Y*2)

8. (e) type--?'

(f) you will have an infinite loop.

Statistical Applications

2. The maximum value of S is 5 when P = .5
and the minimum value of S is 0 when
P = 1.

3. Mean equals 5.920
Variance equals 1.920
Standard deviation equals 1.360

2. 0.866
0.500
0.577
1.732

3. (b) \J CHECK [10]
[1] S~(L .5+ +/-7-(O,L50)!50) == 2\7
CHECK
YES

Statistical Applications

1. a. Nand M

e. 1 MNTS X
o
2 MNTS X
2.66
3 MNTS X
o
4 MNTS X
15.46

2. a. The sixth element of the series 10 bi .3
is 0.1029.

d. 1-+15pl0BI .3 or 0.16

4. for P = .5 and K = 4 the probability
f(N) = 0.0625

334

c. 124.95

d. 10.8

e. 750

9. 3.33, 0.68

6
APL Practice

4. Problem

F<M
F";?M
F>M

5. 19.125

6. (a) 84
(c) 2

7. 166.67

Answers to Exercises

Answer

('-F)/\M
Fv-M
FI\-M

6. 2 POISSON 1
0.1839

12. Mean = 5
Variance = 2.5
Third moment == 0
Fourth moment = 17.5
Like the normal this distribution is bell

shaped but less peaked than the normal.

14. Mean == 6
Variance = 2.4
Third moment = -0.48
Fourth moment = 16.224
The distribution is skewed to the left

(since V 3 < 0).

15. a. 6 = 1/1008C

c. 0.055

h. 0.94

17. a. 0.6

d. 1.39

e. 6.11

7
APL Practice

1. A (a) 1 2 3 4 5 6 7 8 9 10

(f) ABC DA B C D8

B (d) ABC DE F

(e) ABC DE FE F

2. (d) MEAN
These data are for part D of Exercise

No.2
0:

(7*8,3) x (,100
54, 921

5.)WSID
CLEAR WS

6. (b) (+/DATA) -7- pDATA

8. (d) 83325

tl. [3.5] --+ EXIT XL l=A/'FINISHED' ==

8pDISP

1. (a) 7 3.

12

(d) 1 YOU
(e) WTACWTACWT 4.

WWWWWWWWWWTAC

2. They must be scalars

3. line [I] (+/X) not (+/x)
7.

line [4] x +/(Y-MY) not x x/(Y -MY)

4. [3]~(N ~ PR)/2

7. Wo.rK

11. (c) [12.2][O]X TTEST Y; Nt; SS; XI; X2~
NT; C; G;A;N2;NO

Answers to Exercises

Statistical Applications

2. a. -3.8696E-17
b. -0.84543

3. a. 0.06 0.22 0.31 0.26 0.1 0.03 0.02

b..59 .41

4. TSX ~ NORM N
[1] X (- ? (N,30)plO
[2] SX ~ «(+/X)+ 30)- 5.5)+

(8.25+30)*.5 \l

8
APL Practice

Statistical Applications

2. The result of ATTEST B is -1.15 and
the t-value from the t-table for 90%
confidence is -1.812. Thus the program
was not effective.

3. 0.15

4. a. Computed poisson frequencies are
223.13 334.7 251.02 125.51
47.068 14.12 3.53 0.75643
0.14183 0.023683

5. a. $32.50

335

9
APL Practice

1. (c) U~Y-A-BxX

(e) SU~S-+-(pX)-2

(k) VYXO~XUx«XO-XB)*2)+
XSQ)++N

5. F(20) = !19
F(3.5) = !2.5

Statistical Applications

1. a. R 2 = 0.043

d. R2 = 0.044

f. R2 = 0.036

Since F = .507 for the column means
we are unable to establish a dependency
on dusting methods.

a. F for column means = 10.4, F(3,12) =
3.49 so we reject hypothesis of no
difference.

Row means F = 2.3401
Column means F = 0.045685
Row & Col. means F = 1.4223

a) Ho not rejected
b) Ho not rejected
c) Ho not rejected.

10
APL Practice

2. (a) 2 -5
-1 3

(b) syntax error
(c) 2 -1

-5 3
(k) 123 78

44 28

336 Answers to Exercises

4. Left inverse is given by fE Z
«~Z+.xZ)==(~Z)+.XQ~ Z
results in

1 1
1 1

6. 2.3 1
-3.7 1
4.7 1

The rounding of the constants changed the
solutions dramatically.

8. a to g result in a matrix of ones proving
that the statements are true.

10. A=A+.xA andA==(~A)+.xA result in
matrices of ones.

12. 36.5 and 55.7

Statistical Applications

1. a. at = ¥-, lZ2 = t, var at = 1, var a2 = i
2. i == 909.91, Y == 561.12,

Ii = -39.532, h == 0.66012

t == 69.824, R2 == 0.99449

3. a. x == 909.91, ij == 46.934,

Ii = -38.313, b == 0.093688

t == 32.659, R2 == 0.97531

b. i == 8.9271E5, Y == 46.934,

a == 2.4623, b == 4.9817£-5

t == 45.556, R2 == 0.98716

11
APL Practice

4. (b) 1 1 1 0 1\[2]X

(c) 1 0 0 1 \ X

(d) 1, -1 44 jX

5. C~«0,L9)o.!0,t9)x 10 10 pI -1

then

(C+. x C)x (LI0) 0. == (LI0)
gives a matrix of ones.

8. A~2 2pI 0 0 2

B~2 2p3 0 0 1

(AxB)=BxA

1 1

1 I

10. 1. +/[2]+/[3]ALL

2. r /[2]+/[3]ALL

3. +/+/+/ALL

Statistical Applications

1. Macro [;4] Regress Macro [;10]

i == 5.3714, Y == 135.76, a == 44.673,

h == 16.957,

t == 9.837, R2 == 0.78185.

2. Macro [;4] Regress Macro [;10]

after changing lines [4] and [5] to

[4] SSE~225x(n-2)

[5] V~225

:i == 5.3714, Y == 135.76,

Ii == 44.673, b == 1.8179,

t == 0.5126, R2 = 0.86654

12
APL Practice

1. The required number is the mean of L

5. Q is a list of N random numbers from 1 to
K

6. (a) (L 100) 0.* Ll0

(c) (LIOO) 0.*. t x LI0

(f) S~30 30p(.2*O,t29),.2 for p=.2

10. (a) 11.038

(b) 11.338, 11.15, 11.038, 11.225

13. (b) a row of ones

(c) you obtain c

(g) a matrix whose rows is either ones or
note.

Answers to Exercises

13
Statistical Applications

1. a. Beta coefficients are 2.6706 and
-129.42

their t ratios are 32.209 and -1.7648

3. Coefficients and corresponding t-ratios
a* at a 2

1.0223 0.42378 0.49806
(0.027089) (18.425) (2.3033)

4. Coefficients and corresponding t-ratios
ao at a2

2730.8 -1.5229 50.688
(2.9563) (- 2.1977) (6.3059)

5. b. y = .9, b i = -.14, b2 = .37,
bo = 57.67

7. t ratio for Ca = -1.9948
8. t- statistics

-2.3658, 51.987, 3.9462,
-4.5486, 3.3161, 0.34169
F == 25.888

9. a. F statistic == 5.1094 with 30 and 120
degrees of freedom.

b. F statistic == 2.3604 with 30 and 120
degrees of freedom.

10. ao == 7.7956 and a l == -0.32873
Elasticity == - .32873

337

14
Statistical Applications

3. t-statistic for a2 = 2.35 thus the H 0 is
rejected.

F statistic == 197.7 and Ho is also rejected

5. a. equilibrium P == 1 & Q == 3.

6. b. ITest 1
-0.23881, 0.79786, 0.79786

7. Beta coefficients == -569.26, 2.6626,
19.659

t-ratios == -6.4608, 204.67, 7.0156

9. c. ao == 2.7769, at == 0.80121

11. ao == -10.298, at == 1.1005

coefficients t values
12. l-y = 0.55511 5.9576

Yb == 0.30999 5.2282
)'a == -22.376 -3.316

Using y 1978 == 1,385.1
and C1977 == 857.7

we obtain
C 1978 == -22.376 + .31(1,385.1)
+ .56(857.7) == 883.11

which is close to the actual value of 891.2.

A
Absolute value 35-36~ 49, 62, 67
Account no. 294
Addition 7, 12
Addressable cursor 25
Administrative procedures 1
Aitken's generalized least squares 275
And 79
APL program for linear regression 145
APL keyboard 2, 298-301
Arithmetic functions 6--10, 12
Arithmetic mean 20~ 28
Arrays 10-12, 172
Arrays: parity 36
Assignment 17, 28

B
Barone, J. 303
Barron, J. 76
BASIC 7
Basic statistics 58
Beaton, R. D. 303
Benchmarks 302
Bibliography 330
Binomial coefficients 73
Binomial distribution 75
Binomial probability 74
Blanks 10, 12, 28
Branching 45, 50
Breaking up the sum of squares 145

C
Case study in program develop-

ment 127
Catenate 40, 49, 210
Cathod ray tube 25
Ceiling 62 ~ 67
Character arrays 78, 98
Character input 103
Character set 304
Checking parentheses 24
Checking results 132
Chi-square 148, 153
Chi-square distribution 149
Clear WS 2
Column vector 172
Combination of R things N at a time 74
Command key 7
Comment 163
Compression 79, 81, 197
Computers Ltd. 301
Concave functions 92
Conditional branches 45, 46, 50
Contingency tables 149
Contingency table routine 153
Continuation 27, 29, 101
Convex functions 92
Correcting a defined function 47
Correcting a function line 60
Correcting typing 25, 42
Correlation matrices 240
Covariance 73, 240

338

Index

Covariance and correlation mat-
rices 240

Cross products 72
Cumulative Chi-square 161
Cumulative F distribution routine 162
Cumulative Poisson distribution 76
Cursor 25

D
Data and information 97
Data set ·Macro' 310
Deal 43
Debugging 127
Del 41,50
Deleting a line in a function 119
Determinant 231
Determinant routine 234
Diagnostics 121
Digital Equipment Corporation 294
Display 48, 51
Display numeric and character data on

one line 99

Display one or several lines of a
function 117

Distributions 73
Divide 9, 12
Domain error 9, 98
Domino "180
Drop function 214
Dummy variables 63,67
Durbin-Watson statistic 261
Durbin's estimator in first order autore-

gressive models 278
Dyadic compression 82, 197
Dyadic expand 199
Dyadic functions 16, 28
Dyadic reshape 78

E
e 22

Elementary linear regression 144
Elementary matrix operations 174
Elementary statistics 15
Entering data inside a function 101
Entering data on two lines 27 ~ 29
Entering function definition mode 41 ,

50
Equal 79
Estimators of regression coefficient 144
Estimators of the variance of regression

estimators 144
Execute 6-8, 18, 27
Execution mode 2
Exit from function 47
Expand 193, 199
Exponential function 22, 28

F
Factorial function 74
Features of APL 2
First order autoregressive model 279
Floor 62,67
Format 100

F~Statistic 154
Functions and arrays 11, 12
Function definition 41, 50
Function display 117
Function glossary 316
Function headers 43, 50

G
Gamma function 160
Generalized least squares 275
Generating random numbers 43, 49
Getting started 6
Geometric distribution 93
Geometeric mean 21, 28
Global variables 63, 67, 135
Goodness of fit 148
Grade down 38-39, 49
Grade up 38, 49
Greater than 79
Greater than or equal to 79

H
Hamburg, M. 128
Harmonic mean 23,28
Heteroskedastic models 259
Hewlett-Packard 294, 299
Higher and cross product nloments and

distributions 72
Higher-order arrays 191
Higher order sample moments 72
Histograms 76
How mistakes begin 129
How to calculate a mean 19, 28
How to write your own function 34

I
IBM I, 6, 294, 307, 234-235, 298, 307
Identity matrix 179
Immediate execution mode 2
Index error 38
Index generator 46, 49
Indexing arrays 37,49, 193
Inner product 27, 29, 22 I
Inner product generalized 222
Input continuation 101
Insert a new line 118
Interactive programming 44
Introduction to linear regression 144
Instrumental variables 272
Invalid variable names 18, 28
Inverse 179
Inverse of a nonsquare matrix 182

J
Johnston, J. 268, 279

K
Kaplan, W. 161
K·Class estimators 282
Keyboard 2, 295, 298-301
Keying conventions 6
Kmenta, J. 26, 268, 269, 276, 285, 288

Index

Kronecker product 229
Kurtosis 94

L
Label 45
Lagged variables 259
Lagrange multiplier 290
Laminate 212
Left inverse of a nonsquare matrix 181
Length error 12, 98
Less than 79
Less than or equal to 79
Limited information maximum likelihood

estimators 288
Linear regression 183, 240
Line continuation 27, 29
Line labels 45, 50
Local variables 65, 67
Logarithm function 22, 28
Logic of residue function 36
Logical functions 79
Log-Off procedure 297
Log~On procedure 1, 295
Longley benchmark 302
Longley, J. W. 302
Looping 232
Lost results 18

M
Macro, data set 310
Making a program interactive 103
Matrices 172
Matrix addition 175
Matrix algebra 172
Matrix inverse 179
Matrix multiplication 176
Matrix subtraction 175
Matrix transpose 178
Maximum 77
Maximum likelihood estimator 288
MCM System 900 201
Mean 19,28
Mean and variance of probabilities 27,

29
Median routine 58
Minimum 77
Minus 8, 12
Mistakes, how they begin 129
Modem 296
Moment 240
Monadic format 100
Monadic function headers 44, 50
Monadic functions 16, 28
Multiline data input 101
Multiply 9, 12

N
Negative numbers 8, 12
New line, insert 118
Niladic function 41, 50
Non-singular matrices 179
Normal distribution 83
Not and 79
Not equal to 79

-Not or 79
Numeric arrays 97
Numeric input 102

o
One-way analysis of variance 154
One-way anova 154
OR 79
Ordering arrays 37, 49
Outer product 131, 152, 221, 223
Overstruck characters 306
Overview of APL 1

p

Parentheses 23
Partial correlation coefficients 246
Password 294
Pearson, E. S. 87
Pendent functions 126
PI times 84
Poisson distribution 75
Power 22
Private library 109
Problems from careless use of global

variable 135
Procedures, administrative
Production functions 225
Program development 127
Program errors 127

Q
Quad 27,29
Quad-divide 180
Quad-input 102
Quote 44, 50
Quote-quad input 103

R
Random numbers 43,49
Rank error 46
Ravel 57, 66, 173, 209
Reciprocal 17, 28
Recursive programming 76
Reduction 19, 28, 191
Regression routine 146, 254
Regression with restricted

coefficients 277
Removing a suspended function 48, 51
Reshape 173, 151
Residual routine 148
Residue 34-35, 49
Restricted coefficients 277
Return 6-- 10, 27
Reverse or rotate function 200
Rho 20,28
Right inverse of a nonsquare matrix 182
Right to left order 15, 28
Roll 42, 49
Rotate 200
Row vector 172

S
Sampl~ median 34, 49

339

Sample results of regression rou-
tine 147

Sample standard deviation 24, 29
Sample variance 23, 29
Saving workspace 106
Saving workspaces on microcom-

puter III
Saving your workspace 307
Scan 21,28
Shape 20,28

SI Damage 48,51, 104, 126
Simple and partial correlation

coefficients 245
Simple least squares regression 144
Simpson's rule 91
Simultaneous equation models 268
Singular matrices 179
Smillie, K. W. 76
Sorting an array 39
Standard deviation 24, 29
.. Standard" -normal density

function 84
State diagram 2-3
Statements automatically renum-

bered 119
Standard deviation routine 58
Stop 125
Student's t 128
Student's t test routine 135
Subtraction 8, 12
Sum of squares 145
Suspended functions 126
Syntax error 8, 12, 17
System commands 18, 28
System of linear equations 183

T
Take function 213
Terminating input request 103
Trace 123, 136
Transformed variables 258

, Trapezoidal rule 91
Transpose 205
Truth table 79
Two-way analysis of variance 156
Two-wayanova 156
Two-way classification 150
Two-stage least squares 269

U
Unconditional branch 45, 50
Using APL in the calculator mode 132

V
Valid variable names 18, 28
Value error 64, 67
Variables and assignment 17, 28
Variable names 18, 28
Variance 23, 29, 58
Vectors 172
Vectors matrices, and arrays 172

w
Work space 2

Symbol Index

)OFF 2 I 62, 67; 77
+ 7, 12 0 84

8, 12 99
x 9, 12 l' 100

...- 9, 12, 28 +- D 102
)VARS 18-19, 28 +- [!] 103
/ 19, 28; 79; 191)CONTINUE 106
p 20, 28; 78; 151; 173)WSID 107
\ 20, 28; 193)SAVE 107
e9 22,28)LOAD 107

* 22,28)LIB 108
+.x 27, 29; 121)SA VE CONTINUE 108
,0 27, 29; 101)COpy 108
I 34-36, 49; 62, 67)PCOpy 108
~ 38,49)DROP 109
t 38-39, 49)FNS 110

40, 49; 57, 66; 173; 209; 0 117
212 T~ 123

v 41,50 Sf1 125
) CLEAR 42, 51, 109)SIV 127
? 43 0 131

44,50 o.x 152
-+- 45,50 [lJ 180
1 46,49 ¢ 200
0 48,51 Cs? 205
)ERASE 48, 51, 60, 109 t 213
)SI 48, 51; 104; 126 + 214
L 62, 67; 77

340

