VAX APL
Reference Manual

AA-GV09C-TE

June 1991

This reference manual describes the VAX APL functions, operators,
variables, and system commands.

Revision/Update Information: This revised document supersedes the

VAX APL Reference Manual Vols. 1&I1
. . AR -PI4 2D TE
Operating System: VMS Version 5.4
perating =y ph- GNPQE-TE

Software Version: VAX APL 4.0

Digital Equipment Corporation
Maynard, Massachusetts

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1982, 1983, 1985, 1987, 1991.
All Rights Reserved.

The Reader’s Comments form at the end of this document requests your critical evaluation to
assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DEC, DECnet, DECwindows,
DECstation, VAX, VAXcluster, VMS, VT102, VT220, VT240, VT320, VT330, VT340, and the
DIGITAL logo.

HDSAVT, HDS201 and HDS221 are trademarks of Human Design Systems, Inc.
Tektronix is a trademark of Tektronix, Inc.

Preface

Contents

1 VAX APL Primitive Functions and Operators

—

—_ = - —A -k - - -

—_ = - —A e ek b b —h ek —h b —h
ve e P . . e e

T
—_ = - A -k A ok =k

1
1
1
1
1
1
1

1.
1
1
1
1
1
1
1

-t —A - A - - -k - —A —A —A A i

W= Lo LLan

omND NN LN

Primitive Scalar Functions.,

Arithmetic Functions

+ Conjugate

- Negative

x Signum
+ Reciprocal

Exponential ..

Natural Logarithm

*
®
o PiTimes
| Floor........
[Ceiling
| Magnitude ...
! Factorial
?
N
Division
* Power
e Logarithm. . ..
o Circle
{ Minimum
[Maximum
| Residue......
! Combinations .
Logical Functions . . .
Relational Functions

, —, %, and + Addition, Subtraction, Multiplication, and

xi

1-2
1-10
1-10
1-11
1-11
1-11
1-11
1-12
1-12
1-12
1-13
1-14
1-14
1-14

1-16
1-16
1-17
1-17
1-18
1-18
1-18
1-19
1-21
1-22

1.2

1

>

N U

U 1

-«

n

m

~ P B g g o o > [E e

—

=7

LN 0o O]

U

& =+ in © & 6 0 A -

Branch e
and ; Catenate/Laminate.............................
Contains e e
Deal e
Depth . .. o

T 1
Monadic Format
Dyadic Format
Monadic Grade Down
Dyadic Grade Down
MonadicGrade Up
DyadicGrade Up
Index Generator

Matrix Inverse e,
Membership e,
Pick .. e
Ravel
Represent
Reshape e
and e Reverse i,
ande Rotate
Shape e

1.3

1.3.1
1.3.2
1.3.3

& Dyadic Transpose
vUnion
uUnique

~Without
APLOperators
/and # Slash
\and x Backslash...................
. The Dot Operator

/ and # Compression and Replication
/ and # Reduction.

\and X Expansion
Vand X Sean i
. fOuter Product
f. glnner Product
[TARIS ..o

+« Specification Function

o

Strand Assignment with the Specification Function

Selective Assignment with the Specification Function

2 VAX APL System Variables and Functions

2.1
211
21.2
2.2
221
222
2.3

System Variables
System Variable Names
System Variable Characteristics

System Functions.
System Function Names
Types of System Functions.

System Variables and Functions Reference . . .

0AI Accounting Information

0ALPHEA Alphabetic Characters

O0ALPHAL Lowercase Alphabetics

0ALPHAU Underscored Alphabetics

OARBOUT Arbitrary Qutput

04sc11 APL Approximation to the ASCII Character Set

04ss Associating Files with Channels.
0AUS Automatic Save of the Workspace.
DAV Atomic Vector
0BoX Forming Character Matrices and Vectors

1-164
1-170
1-172
1-174
1-176
1-178
1-178
1-178
1-179
1-185
1-191
1-196
1-201
1-205
1-208
1-212
1-215
1-218
1-221

2-1
2-2
2-2
2-3

24

2-9
2-13
2-14
2-15
2-16
2-17
2-19
2-20
2-28
2-32
2-35

vi

O0BREAK Suspending Execution
OCHANS Returning Channel Numbers
0cHS Returning File Organization and Open Status
0cIqQ and 0 coqQ Packing and Unpacking Data.
OcLs Closing Files i
[1CR Obtaining a Canonical Representation

O0c¢T Comparison Tolerance
OcTRL Control Characters
O0DAS Deassigning Files i i
O0Dc¢ Display Control
O0DL Delaying Execution.
0DbML Maximum Record Length
0DVvc Returning Device Characteristics
OEFR DEFS DEFC Event Flag System Functions
OERROR Error Messagecuiiiiniiennnannnnns
O0EX Erasing a Named Object.

0EXP Expansion .

OFI Converting Characters to Numerics

OFLS Returning File Information
OFMT The Report Formatter
OFx Establishing an Operation
0GAG Preventing Interruptions

070 Index Origin

0L Monitoring Variable Changes

NLc¢ Line Counter

OLX Latent Expression
OMAP Defining External Routinesto APL,
OMBX Mailbox System Function
OMONITOR Gathering Data on Operations
[¥C Returning a Name Classification
OFNG Print High Minus i iiinia...

O~L Constructing
Ow~UM Digits

alistof Names............

OoM Indexing a Boolean Vector
OPACK Packing and UnpackingData
OPPPrint Precision00t iiennnn..

02w Print Width

2-38
2-40
2-41
2-44
2-52
2-54
2-56
2-58
2-60
2-62
2-70
2-72
2-74
2-77
2-80
2-83
2-85
2-88
2-91
2-93
2-98
2-100
2-102
2-104
2-106
2-108
2-111
2-120
2-122
2-126
2-129
2-131
2-135
2-136
2-138
2-142
2-144

1Qco Copying Objects from a Workspace.

0@LD Loading a Workspace

0¢@Pc Copying Objects with Protection

0OR Monitoring Variable Changes
ORELEASE Unlocking Shared Records

OREP Replication
ORESET Resetting the State

Indicator

OREWIND Returning Next-Record Pointer to Start of File

ORL Link
0SF Quad Input Prompt ..
O0SIGNAL Signaling Errors .
O0SINK Discard Output. . . .
0SS String Search

0SToP Suspending Operation Execution
OTERSE Terse Error Messages

O0TIMELIMIT User Response

Time Limit

O0rIMEOUT Time Limit Report

0 7LE Terminal Line Editing

Characteristics

0 TRACE Monitoring Operation Execution.

0 TRAP Trap Expression . . .
O7S Time Stamp
07T Terminal Type
Ouvr User Load..........

0 VERSION Interpreter and Workspace Version

O vI Validating Input
0 vPc Vector Process Control
0 VR Visual Representation.
OwWA Workspace Available . .

OwWAIT Limiting Time on Read Functions

OWATCH Monitoring Variable
0xqQ Executing Expressions

Changes

.............................

2-147
2-151
2-154
2-157
2-159
2-161
2-164
2-165
2--168
2-170
2-172
2-176
2-177
2-179
2-183
2-185
2-188
2-190
2-192
2-195
2-197
2-198
2-201
2-202
2-203
2-205
2-207
2-210
2-211
2214
2-221

vii

3 VAX APL System Commands

viii

3.1
3.2
3.2.1
3.22
3.2.3
3.24
3.25
3.3

System Command Form.......
System Command Categories. . .
Query System Commands . .

Query/Change System Commands
APL Action System Commands
System Commands that Initiate System Action...........
Workspace Manipulation System Commands.............

System Command Reference . . .

YATTACH Interacting with Other Processes
) CHARGE Displaying Accounting Information................
) CLEAR Clearing the Active Workspace
)CONTINUE Saving the Workspace and Ending the Session.
) COPY Copying Objects from a Workspace

YDIGITS Output Precision
yD0 Executing a DCL Command

)DROP Deleting Stored Workspaces or Files.

)EDIT Editing with VAXTPU. . . .
) ERASE Erasing Global Names .

)FNS Displaying a List of Functions
) GROUP Defining or Dispersinga Group
) GRP Displaying the Members of a Group

)GRPS Displaying a List of Groups
) HELP Obtaining Help on the VAX APL Language
) INPUT Diverting Input to Another Device

) LIB Listing Workspace Names .
) LOAD Retrieving a Workspace .

YMAXCORE Determining the Maximum Workspace Size

YMINCORE Determining the Minimum Workspace Size

yMON Returning to Operating System Command Level
) ¥MS Digplaying Names in the Symbol Table
)OFF Terminating the APL Session
)OPS Displaying a List of Operators
)ORIGIN Determining the Index Origin....................
yOUTPUT Diverting Output to Another Device
) OWNER Displaying Information About Workspace Creation

) PASSWORD Workspace Password

)y PcoPY Copying from a Workspace with Protection.
) PUSH Interacting with Operating System Programs..........
) SAVE Saving a Copy of the Active Workspace
) ST Displaying the State Indicator
)SIC Clearing the State Indicator
) SINL Displaying the State Indicator and Local Symbols
) SIS Displaying the State Indicator and Executing Lines
) STEP Executing Lines of a Suspended Operation............
) VARS Displaying a List of Variables
) VERSION Displaying the APL Version Number
YWIDTH Output Width
YyWSID Workspace Identification.
YXLOAD Retrieving a Workspace

A System Messages

Glossary

Index

Figures
1-1

Argument Corners Selected by Take Function

Documentation Conventions Table
Arithmetic Scalar Functions
Trigonometric Functions Performed by o
Determining Result for Dyadic !
Truth Table for Logical Functions
Primitive Mixed Functions

3-72
3~-74
3-77
3-80
3-82
3-83
3-84
3-85
3-88
3-890
3-91
3-93
3-85

2-4
2-5
2-6
2-7
3-1

Elements of DAV(OI0«0) .ottt
Type Parameter Values

Device Characteristics Longword

Characteristics of External Data Types

System Commands

2-33
2-46
2-75

2-115

Preface

This manual describes the VAX APL interpreter, including VAX APL
language and programming elements, facilities for controlling the VAX APL
environment, the interaction between VAX APL and the VMS operating
system, and VAX APL’s I/O capabilities.

Intended Audience

This manual is intended for experienced APL programmers. This manual is
not a tutorial and is inappropriate for novice users. Programmers experienced
with other languages such as FORTRAN or BASIC can learn VAX APL from
this manual, but are advised to study it in conjunction with an APL language
primer.

Related Documents

The VAX APL User’s Guide describes the VAX APL interpreter and the
environment in which it operates. The VAX APL Installation Guide contains
instructions for installing VAX APL on the VMS operating system. The
VAX APL Installation Guide also explains how to install QAPL, the license-
free, execute only version of VAX APL.

To find out more about the VMS system, refer to the VMS system documents
listed in the Introduction to VMS or use the Help utility by entering HELP
at the system prompt ($). The VMS DCL Dictionary and the Introduction to
VMS System Management provide detailed information you may need to know
to use some of the features of VAX APL.

Product References
In this document, VAX APL is referred to as APL.

xi

Conventions

The following conventions are used in this manual.

xii

Table 1 Documentation Conventions Table

Conventions

Meaning

Default values used in
examples

Delimiting pairs

UPPERCASE

ttalics

Quotation mark (')

>

[

1]

The default value for the index origin (010) is 1, unless
explicitly stated to be 0. Numeric print precision (O PP)
is 10 digits. Enclosed arrays are displayed with boxes
around enclosed items and with all values in the top left
corner of the display areas. This is done using:

ODC+ (T17223) ++++]]--"

This manual uses »texts ; other delimiting pairs may be
any of the following pairs:

] - 0ogd <> c>o

Uppercase words and letters, used in format examples,
indicate that you should type the word or letter exactly
as shown.

The APL characters 4, B, and X are used in generic
descriptions of command formats. 4 represents a
left argument, B represents a right argument, and ¥
represents an axis argument.

Italicized lowercase words and letters, used in format
examples, indicate that you are to substitute a word or
value of your choice.

The term quotation mark refers to the APL single
quotation mark (').

The equivalence symbol means “is equivalent to”.

The double square brackets indicate that the item or
string of items inside the brackets is optional. Individual
items within a string of items are delimited by the .ab
character, which indicates that you may choose only one
item from the string.

Single square brackets that appear in the format
specification for a language element are required syntax
for the element being described.

(continued on next page)

Table 1 (Cont.) Documentation Conventions Table

Conventions Meaning

{1 Braces are used to enclose lists from which one
item must be chosen. The items in such a list are
delimited by the | character. For some user-defined
operation headers, the braces are required syntax (this
requirement is described in Chapter 3 of the VAX APL
User’s Guide).

n/a and n/s These abbreviations indicate that something is Not
Applicable or Not Supported in the context being
discussed.

A horizontal ellipsis indicates that the preceding items
can be repeated one or more times. A comma preceding
the ellipsis indicates that successive items must be
separated by commas.

A vertical ellipsis indicates that not all of the statements
in an example or figure are shown.

Color Color in examples shows user input.

<CR><LF> The <CR><LF> symbol indicates the presence of a
control sequence representing a Carriage Return and a
Line Feed.

CtrI/’X The Ctrl/X symbol indicates that you must press the key

labeled Ctrl while you simultaneously press another key,
for example, Ctrl/C, Ctrl/Y, Ctrl/O.
XXX A symbol such as indicates that you press a key on

the terminal. For example, the symbol represents
a single stroke of the Return key on a terminal.

Unless otherwise noted:
¢ All numeric values are represented in decimal notation.
* You terminate commands by pressing the Return key.

* All examples in the manual are executable, and comments beginning with
the lamp (a) symbol are part of the examples; comments surrounded by
parentheses are not part of the examples.

xiii

1

VAX APL Primitive Functions and
Operators

VAX APL provides functions that allow you to perform various operations with
arrays. These functions are termed primitive because they represent the basic
capabilities of the language. You do not have to write programs to perform
these operations; they are built in. That is, the APL interpreter already knows
how to perform them.

Primitive functions may be classified by the characteristics of their arguments
and results. One distinction is whether a function is scalar or mixed. The APL
primitive scalar functions perform scalar (or scalar-like) operations; the APL
primitive mixed functions perform mixed-rank operations.

Primitive functions are either monadic or dyadic. Monadic functions require
only one argument, which is placed immediately to the right of the function.
Dyadic functions require two arguments, one on either side of the function.

Primitive functions also have a domain and a range. The domain of a function
is the permissible type, shape, and values of its argument arrays; the range is
the permissible type, shape, and values of its result array.

In addition to describing the APL primitive functions, this chapter describes
the APL primitive operators (operations that produce functions as results), and
the specification function (a function used to associate values with identifiers).

APL also provides functions for system communication and for I/O. These are
explained in Chapter 2, Chapter 3, and in Chapter 5 of the VAX APL User’s
Guide.

APL Reference Manual 1-1

APL Primitive Functions
1.1 Primitive Scalar Functions

1.1 Primitive Scalar Functions

The primitive scalar functions include the arithmetic, relational, and logical
functions that almost everyone is familiar with—addition, subtraction, equality,
and, or, and so on—plus a few operations that are less familiar, such as residue
and roll. These functions are called scalar functions because they take scalar
arguments and return scalar results. For example:

'3 aFACTORIAL OF 3

The primitive scalar functions are extended on an item-by-item basis when
the argument array is not a scalar (the argument can be any shape, simple
or enclosed). In effect, APL operates on a sequence of scalar arguments and
returns one value for each argument. This process is known as scalar product.
For example:

1345 aEACH ITEM IS TREATED AS A SCALAR
6 24 120

L9+ 3 12 AEACH PAIR OF ITEMS IS ADDED
7 21

Here, APL applies the factorial (!) and addition (+) functions as if each item
were a scalar argument. For factorial, each of the three items in the argument
(a vector) returns a value. For addition, each corresponding pair of items is
added. The results are just as if five statements had been entered as follows:

24

15
120

5+ 3
7

g + 12
21

Monadic scalar functions take only one argument, which is placed immediately
to the right of the function. The shape of the argument determines the shape
of the result. For example, a scalar argument returns a scalar result, and a
vector argument returns a vector result.

1-2 APL Reference Manual

APL Primitive Functions
1.1 Primitive Scalar Functions

Dyadic scalar functions have two arguments that must conform to each other.
They conform if one of the following is true:

¢ Their shapes match.
¢ At least one of the arguments is a singleton.

When the shapes match, the function is applied a number of times equal to the
number of items in the arguments, and the resulting array has the same shape
as the argument arrays.

Each item in the left argument array is associated with the item that has the
same position in the right argument array, and the result is placed in that
same position in the resulting array. For example:

123+123 aSHAPES OF BOTH ARGUMENTS CONFORM
2 46
aSHAPES DO NOT CONFORM
123+1234
10 LENGTH ERROR
123+123%4

A

When one of the arguments is a singleton, the shape of the result is the same
as the shape of the nonsingleton argument. Again, the function is applied on
an item-by-item basis, but either the right or left argument (whichever is the
singleton) is the same each time the function is applied. For example:

1 +123 ASINGLETON EXTENSION LEFT ARGUMENT
234
456+ 2 ASINGLETON EXTENSION RIGHT ARGUMENT
678
0« A« 10 (15 18 (8 4) 21) 30
10 4----—---mmmmm = + 30
|15 18 +---+ 21}
| |8 4] |
| e
o +
5+ 4
15 4---mmmm e + 35
20 23 +----+ 26|
| 13 9| l
| tooemt
it +

APL Reference Manual 1-3

APL Primitive Functions
1.1 Primitive Scalar Functions

When both arguments are singletons, the shape of the result is the same as
the shape of the argument with the higher rank. For example:

B«{1 11 p2) @B IS A RANK 3 SINGLETON

C+«{(1 1 p3) aC IS A RANK 2 SINGLETON

D«B + C ASMALLER RANK WILL CONFORM TO LARGER
D aDISPLAY D, A SINGLETON OF SHAPE 1 1 1

5

The primitive scalar functions are pervasive functions; that is, their operations
extend pervasively throughout the depth of enclosed arrays:

ABOTH ARGUMENTS HAVE DEPTH = 3
0«4+« 10 (15 18 (8 4) 21) 30

10 4-------mmmmmm + 30
|15 18 +---+ 21]
l I8 4 |
| t---t |
R R EEE e +
0«B+«5 (12 11 (3 3) 2) 25
I e i + 25
[12 11 +---+ 2|
| s 31 |
| temet |
fommm oo +
4 -B
5 t--m-mmmmmm - + 5
[3 7 +---+ 19|
| {5 1) |
l ==t |
it +

The conformance rules for the arguments of the primitive scalar functions are
also pervasive; APL does a conformance check at each level of enclosed arrays.
During the check, APL performs singleton extension when necessary. The
following example uses the dyadic minimum function (L), which returns the
smaller of two arguments:

4 (5 3) L (26)1
to-=t t---t
[2 4] |1 1]
R B]

In the preceding example, APL first pairs the corresponding items (through the
process of scalar product). The pairs are 4| (2 6) and (5 3) L 1. Second, APL
pairs the singleton argument with each element inside the enclosed arguments
(through the process of singleton extension). These pairs are ((u412) (u4l6))
and ((501) (3L1)). Finally, APL evaluates each pair of scalar arguments.

1—-4 APL Reference Manual

APL Primitive Functions
1.1 Primitive Scalar Functions

The following example shows two arguments that conform at the top level
of their nesting, but do not conform at a lower level. This example uses the
monadic enclose function (<), which encloses its argument, as well as the
dyadic minimum function (|).

4 (53) Lc261
10 LENGTH ERROR

b (53) Lec2s61

A

In the preceding example, APL first pairs the corresponding items. The
pairs are 4| (2 6 1) and (5 3) L (2 6 1). Second, APL pairs the singleton
argument with each element inside the enclosed argument. These pairs are
((ulL2) (ul6) (wlL1)). Third, APL recognizes the length error in the pair
of enclosed arguments (5 3 and 2 6 1) and signals the error. (If one of these
enclosed arguments had been a singleton, APL would have applied singleton
extension.)

Primitive scalar functions generally take numeric arguments. The argument
domain for relational functions (s, =, <, >, =, #), however, includes both
character and numeric arguments. The equal (=) and not equal (¢) functions
can take both character and numeric arguments in the same expression. The
result domain for all primitive scalar functions is a scalar numeric array.

Primitive scalar functions return empty arrays when there is an empty
argument (provided that APL does not detect an error before evaluating the
result). For example:

1+2+3+4+10 a10 ALWAYS GENERATES AN EMPTY ARRAY
(APL outputs a blank line)
IAI(II
(APL outputs a blank line)
AARGUMENT SHAPES DO NOT CONFORM
(10 3p1) + 15
9 RANK ERROR
(1 0 3p1) + 15

A

You can specify an axis ([X1) with dyadic scalar functions. For example, this
allows you to apply a vector to each row or each column of a matrix. The
general form of axis is as follows: AfTk]1B, where 4 and B are the arguments
to f (a scalar function), and X is the axis argument. Note that k¥ specifies the
axes of subarrays constructed from whichever argument has the larger rank.
The argument of smaller rank is combined with these subarrays.

APL Reference Manual 1-5

APL Primitive Functions
1.1 Primitive Scalar Functions

For example, if you specify axes [1 3], then the shape of the subarrays of the
larger rank argument is the lengths of that argument’s first and third axes,
and the smaller rank argument has the same shape as these subarrays. When
APL combines the two arguments, it does so along the second axis of the larger
rank argument of scalar extension. The length of the second axis in this case
is the number of subarrays involved.

In all cases, the axis argument must be near-integer in the vector domain. The
length of ¥ must be equal to the smaller of the ranks of the arguments, and
the values in ¥ must be between the index origin and the larger of the ranks
of the arguments (you cannot specify an axis that does not exist). The order
of the items in the axis argument makes no difference; however, ¥ may not
contain duplicates. The arguments to the function f must conform by having
their shapes match along the axes specified by . The shape of the result is the
same as the argument with larger rank.

For an enclosed argument, the application of the axis does not pervade, but
works only at the top levels of nesting. See the following examples:

A « 10 100 1000 ACREATE 4
0« B+ 3 u4p112 aCREATE AND DISPLAY B
2 3 4
6 7 8
0 11 12
4 411 B aA CONFORMS TO AXIS 1 OF B
11 12 13 14
105 106 107 108
1009 1010 1011 1012
A « 1 10 100 1000 @CREATE NEW A
4 x[21 B ad CONFORMS TO AXIS 2 OF B
1 20 300 4000
5 60 700 8000
9 100 1100 12000
0«4+« 2 3p0.1x16 aCREATE NEW 4
2 0.3
.5 0.6
0« B <« 24 3124 aCREATE NEW B

O~ F e
N WO w

16 17 18
19 20 21
22 23 24

1-6 APL Reference Manual

O~ F e
R A

16.
19.

.
= 5 F &

o o
S,

N .
£ W N

O N F o

[y
w
o~ oy »n

OO O
-~ E e

<O

= O O O

APL Primitive Functions
1.1 Primitive Scalar Functions

AORDER OF AXIS ARGUMENT UNIMPORTANT

O«Z«A+[3 11B a4 CONFORMS TO AXES 1 AND 3 OF B
2.2 3.3
5.2 6.3
8.2 9.3
11.2 12.3
14,5 15.6
17.5 18.6
20.5 21.6
23.5 24.6
aTHE FOLLOWING SUBSCRIPTS DEMONSTRATE
& SUBARRAY COMBINATIONS USED BY APL
AMATCH RETURNS 1 WHEN TRUE
Z[;1;] = A + B[;1;1]
Z0;25] = A + B(525]
Z0;3;1 = A4 + B[;3;]
Z0s85] = A + Bls4;]
0« A4 <« 2 4p0.1x18 aCREATE NEW A
.2 0.3 0.4
6 0.7 0.8
0«2« 4 +[1 2] B nA CONFORMS TO AXES 1 AND 2 OF B
2.1 3.1
5.2 6.2
8.3 8.3
11.4 12,4
14.5 15.5
17.6 18.6
20.7 21.7
23.8 24.8
/THE FOLLOWING SUBSCRIPTS DEMONSTRATE
a SUBARRAY COMBINATIONS USED BY APL
Z[;311 = A + B[;;1]
Z[3:21 = 4 + B[;;2]
Z[5331 = 4 + B[;;38]
0« 4 « 4 3p0.1x112 aCRFATE NEW A
2 0.3
5 0.6
8 0.9
11.2

APL Reference Manual 1-7

APL Primitive Functions
1.1 Primitive Scalar Functions

<« Z « A +[3 21 B w4 CONFORMS TO AXES 2 AND 3 OF B

0
2.
5.
8.
2.

N E e
=
[N NS Y
w W o W
N OO W

1 1
13.1 14,
16.4 17,
19.7 20.
23 24,

15.
18.
21.
25.

= o LN
N o O w

ATHE FOLLOWING SUBSCRIPTS DEMONSTRATE
8 SUBARRAY COMBINATIONS USED BY APL
Zf1;3] = 4 + Bl1s3]

2023531 = 4 + Bl[2;;]

PC«2 3p(13) (13) (13) (2 3pi6) (2 3p16) (2 3p:i6)
PC

l1 23} 112 3] |12 3f
[+ 5 6] |45 6] |45 6]

t----- + o= + t----- +
PC+1

+----- + t----- D +

j2 3 uf {2 3 4] |2 3 4]

et + - + ot +

oo + - + t----- +

o + ot R +

PC + f2] 123
oo + ot I +
{2 3 4] |3 4 5] |45 6]
o + ot + opmemn +
o + ot + ot +

123 4] |34 5] [45 6]
{567 1678 |7889]

to---- t+ote-- t ot +
O«ER«1 2 (13)
12 +----- +
12 3]
tomm - +

1-8 APL Reference Manual

APL Primitive Functions
1.1 Primitive Scalar Functions

RAXIS IS NOT PERVASIVE SO PLUS (+)
R WITH AXIS APPLIES BETWEEN
a +PC[2;3] AND +ER[3] WHICH
A IS A RANK ERROR
PC+[2]ER
9 RANK ERROR
PC+[2]ER

A

The individual descriptions of the primitive scalar functions are presented
in three sections. Section 1.1.1 describes arithmetic functions, Section 1.1.2
describes logical functions, and Section 1.1.3 describes relational functions.
Most of the individual descriptions include examples of how the functions
work.

APL Reference Manual 1-9

APL Primitive Functions
Arithmetic Functions

1.1.1 Arithmetic Functions

The arithmetic functions, which are summarized in Table 1-1, perform well-
known mathematical operations. All of them take numeric scalar arguments
and return numeric scalar results.

Table 1-1 Arithmetic Scalar Functions

Monadic Dyadic
Function Meaning Function Meaning

+B B A+B Add 4 to B

-B Negative of B A-B Subtract B from 4

xB Sign of B AxB Multiply 4 and B

B Reciprocal of B A+ B Divide 4 by B

* B e to the B th power AxB A to the B th power

| B Magnitude of B A|B A residue of B

B Ceiling of B ATB Maximum of 4 and B

LB Floor of B ALB Minimum of 4 and B

®B Natural logarithm of B AeB Logarithm of B to the base 4

!B Factorial of B A!'B Binomial coefficient (number of
combinations of B things taken 4
at a time)

oB Pi times B AoB Trigonometric functions (B is in
radians; see Table 1-2)

?B Random integer from 1 B

1.1.1.1 + Conjugate

The monadic + function returns a result that is the same as its argument;
thus, + B is identical to B. For example:

+5

1-10 APL Reference Manual

APL Primitive Functions
Arithmetic Functions

1.1.1.2 - Negative
The monadic - function returns the negative of its argument; thus - B is the

negative of B. Be careful not to confuse the negative function with the high
minus sign (*) used to denote a negative number. For example:

1.1.1.3 x Signum
The monadic x function identifies the sign of its argument; thus, x B is the sign
of B. The signum function returns ~ 1 if the argument is less than 0, 1 if the
argument is greater than 0, and o if the argument is equal to 0. For example:

1.1.1.4 : Reciprocal

The monadic + function returns the reciprocal of its argument; thus, < B is the
reciprocal of B. For example:

+5

2
0.5
+0
15 DOMAIN FRROR (DIVISION BY IERO)
0
A

1.1.1.5 ~ Exponential

The monadic = function raises the value of e (2.71828182845904523536...)
to the power specified by its argument; thus, x B is e to the B th power. For
example:

APL Reference Manual 1-11

APL Primitive Functions
Arithmetic Functions

*0
1
*1
2.718281828
*10
22026.46579
*50
5,18u4705529E21

1.1.1.6 » Natural Logarithm

The monadic e function returns the natural logarithm of its argument; thus,
® B is the natural logarithm (base e) of B. For example:

81
0

®2,718281828459
1

®22026,46579
10

®5.184705529F21
50

The e symbol is formed with the o and * symbols.
1.1.1.7 o Pi Times

The monadic o function returns the product of its argument and the value of
7 (3.14159265358979323846264...). For example:

ol
3.141592654

03
9.424777961

1.1.1.8 | Floor

The monadic | function returns the greatest integer not greater than its
argument, within a tolerance defined by 0 CT. For example:

L72.5
73

[4.111
I

[4.999
Iy

1-12 APL Reference Manual

1.1.1.9

APL Primitive Functions
Arithmetic Functions

Note that the 0 CT setting may affect the result of L. For example:

0cr«o
[4.9999999999

OCT+1E 10
[4.9999999999
5

The following is a formal description of how the floor function is implemented:

VZ+«FLOOR B ;0CT ;BXCT N
[1) BXCT<[CT o QCT+0
(2] N+«(xB)x|l0.5 + |B
[3) Z«N-(N-B)>BXCT x T[N
(41 v

I Ceiling
The monadic f function returns the smallest integer not less than its
argument, within a tolerance defined by 0¢T. For example:

[72.5

fu.111
5

[4.999
5

Note that the 0 cT setting may affect the result of . For example:

0cr«o
[4,0000000001

OCT«1E 10
[4.0000000001
iy

The I and | functions are related in the following manner: [B<+~- | - B. For
example:

M4.111

-{-4,111

APL Reference Manual 1-13

APL Primitive Functions
Arithmetic Functions

1.1.1.10

1.1.1.11

1.1.1.12

| Magnitude

The monadic | function returns the absolute value of its argument; thus, | B
is the absolute value of B (that is, B= | B, if B0 and (-B) = | B, if B<0). For
example:

|9
9
179
9
! Factorial

The ! of B (for integer arguments) is the product of the first B positive
integers. For example:

120

If the argument to the factorial function is 0, the result is 1. If the argument
is a negative integer, APL signals DOMAIN ERROR. If the argument is not an
integer, ! B is defined in terms of the mathematical function GAMMA as follows:

!B «> GAMMA(B+1)
The ! symbol is formed with the quote (') and period (.) symbols.

For more information on the Gamma function, see Milton Abramowitz and
Irene A. Stegun, eds., Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables (National Bureau of Standards, November
1964), pp. 255-293; or John F. Hart, et al., Computer Approximations (Robert
E. Krieger Publishing Company, 1978), pp. 130-136, 243-254.

? Roll

When applied to an argument B, the monadic ? function generates an integer
randomly selected from the integers 1 B (for a near-integer argument). For
example:

1-14 APL Reference Manual

APL Primitive Functions
Arithmetic Functions

75 10 15 20 25

4786 25
75 10 15 20 25

293210
A+2 3p1 6
A

74

74
111
336

At the completion of the roll function, the value of JRL changes:

ORL
695197565

?5
"

ORL
71133752294

If the argument is not a near-integer, or if a near-integer argument is less than
the value of [10, APL signals DOMAIN ERROR:

0I0+1
20
15 DOMAIN ERROR
20
A
0I0+0
70
0

Note that the roll function is [70-dependent: 7B when 010 is 1, is equivalent
to (for the same value of TRL) 1+ ?B when 010 is 0.

The roll function is analogous to the rolling of several dice. Roll may generate
duplicate values; thus, it differs from the dyadic deal function (?), which
generates a set of unique random numbers.

APL Reference Manual 1-15

APL Primitive Functions
Arithmetic Functions

1.1.1.13 +, -, x, and - Addition, Subtraction, Multiplication, and Division
The dyadic +, -, x, and + functions return the sum, difference, product, and
quotient of their arguments, respectively.

The right argument for the division function may not be 0 unless the left
argument is also 0. For example:

00
1
1.1.1.14 » Power

The dyadic ~ function raises the value of its left argument to the power
specified by its right argument. For example:

5%3

125
T5%x3

125
3%x2.5

15.58845727
T3%2.5

15 DOMAIN ERROR

T3%2.5

A

The power function’s domain is restricted to the following combinations of

arguments:

Left Right
Any o

¢] 20

>0 Any
<0 Integer

Note that 0x0 is 1.

If the right argument of the » function is exactly 0.5, APL returns the square
root of the left argument.

1-16 APL Reference Manual

APL Primitive Functions
Arithmetic Functions

1.1.1.15 e Logarithm

1.1.1.16

The dyadic e function returns the logarithm of its right argument in the base
of its left argument; thus, Ae B is the logarithm of B in base 4. For example:

10e1
0

10010
1

5810
1.430676558

Both arguments must be greater than zero. The left argument may not be 1
unless the right argument is also 1. For example: 1e1 is 1.

The e symbol is formed with the o and » symbols.

o Circle
You use the dyadic o function to perform trigonometric functions.

The left argument of o specifies which trigonometric function is to be
performed. Only certain combinations of arguments are valid for the circle
function. For arguments 4 and B, Table 1-2 lists the possible values of 4
(near-integer argument), and indicates the operation associated with each
value.

Table 1-2 Trigonometric Functions Performed by o

Function
Al (Z<A0B)? Domain Result Domain
7 arc tanhB 12 | B
6 arc cosh B B>1 Z20
5 arc sinhB
4 (T1+Bx)% 0.5 1< | B Zz 0
~3 arc tan B (1Z)<o0.5
2 arc cos B 1> | B (0<sZ)aZgo1
1 arc sin B 1> | B (12)<00.5
0 (1-Bx2)*0.5 1> | B (Z=0)nZ<1
1 sin B (12)=s1

!The value of 4 must be a near-integer from ~ 7 through 7.

2The value of B is given in radians.

(continued on next page)

APL Reference Manual 1-17

APL Primitive Functions
Arithmetic Functions

1.1.1.17

1.1.1.18

1.1.1.19

Table 1-2 (Cont.) Trigonometric Functions Performed by o

Function
Al (z«AoB)? Domain Result Domain
2 cos B (1Z)y=<1
3 tanB Bzx2|[B+00.5
4 (1+4B%x2)}%x0.5 Zz1
5 sinh B
6 cosh B Z>1
7 tanh B (1Z)y=<1

!The value of A must be a near-integer from ~ 7 through 7.

2The value of B is given in radians.

L Minimum
The dyadic | function returns the smaller of its two arguments. For example:

4f5
U

4 5 3126
123

[Maximum
The dyadic [function returns the greater of its two arguments. For example:

41s
5

45312686
456

| Residue
The dyadic | function returns the residue of the right argument with respect to
the left argument. The residue is obtained by adding or subtracting multiples
of the left argument from the right argument. The result of a residue operation
takes the sign of the left argument.

If the left and right arguments are equal, the residue is 0. (Note that the
residue function is [1¢T-dependent.) If the left argument is 0, then the residue
equals the value of the right argument. If the left argument is not 0, then the
residue is in the range of the left argument through o ; it may equal 0 but may
not equal the value of the left argument. For example:

1-18 APL Reference Manual

APL Primitive Functions
Arithmetic Functions

2]5.8
1.8
1]1123.4567
0.4567
55|88
33
55 5)|2
222
5|2 2 2
222
A«3 0 73
B«6 5 4 372 710123456
Ao . |B
01 2 0 1 20 2
6 5 T4 7372710 1 2
T2 7 T2 710 1

0 2 1 0 2

1.1.1.20 : Combinations
For arguments 4 and B, the dyadic ! function returns the number of
combinations of B elements taken A at a time. For example:

204
b

10110
1

For arguments 4 and B, the function’s domain is described as follows:
~(B<0)a(~ INTEGER B)~~ INTEGER A

INTEGER is a function that returns 1 if all the items in its argument are
integers, and ¢ otherwise.

APL determines the result of the dyadic ! function based on the algorithms
explained in Table 1-3. The value 1 in the table for 4, B, or B- 4 means that
the argument or the difference between the arguments is a negative integer;
the value 0 means that the argument or the difference between them is not a
negative integer.

APL Reference Manual 1-19

APL Primitive Functions
Arithmetic Functions

Table 1-3 Determining Result for Dyadic !

A B B-A Result

0 0 0 (!BY+(!A)=x!B-4A

0 0 1 o

0 1 0 APL sig'nals DOMAIN ERROR

0 1 1 (T1*A) xAl A-B+1

1 0 0 0

1 0 1 Not a possible case

1 1 0 (T1*B-A)x({B+1) ! (]4+1)
1 1 1 0

Note that the dyadic ! function is related to the mathematical function BETA
as follows:

BETA(A,B)«~» #Bx (A-1)! A+B-1 «»> +Ax (B-1)!A+B-1
The ! symbol is formed with the ' and . symbols.

For more information on the Beta function, see Milton Abramowitz and Irene

A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables (National Bureau of Standards, November 1964), pp.
255-293; or John F. Hart, et al., Computer Approximations (Robert E. Krieger

Publishing Company, 1978), pp. 130-136, 243-254.

1-20 APL Reference Manual

APL Primitive Functions
Logical Functions

1.1.2 Logical Functions

The monadic ~ (Not) and the dyadic », v, ~, and » functions (And, Or, Nand,
Nor, respectively) are commonly called logical functions. The domain and range
of logical functions are restricted to the Boolean values 0 and 1.

Table 14 is a truth table that shows the results of logical operations for
arguments 4 and B.

Table 1—4 Truth Table for Logical Functions

Arguments Functions
And Or Nand Nor Not
A B AAB AV B A~B AvB -5
A B AAB AvB A~B AvB -5
° 0 0 0 1 1 _
° ' 0 1 1 0 _
' 0 0 1 1 0 -
! ' 1 1 0 0 _
_ 0 B ~ - i 1
_ 1 : ~ ~ j)

The ~ symbol is formed with the » and ~ symbols. The » symbol is formed
with the v and ~ symbols.

APL Reference Manual 1-21

APL Primitive Functions
Relational Functions

1.1.3 Relational Functions

The dyadic <, <, =, #, >, and > functions are commonly called relational
functions. The domain of relational functions is not restricted; they can take
both numeric and character arguments. However, only the equal and not
equal functions can have mismatched arguments, that is, one numeric and one
character argument simultaneously. For example:

TAT=5
0

151z5
0

The result domain of relational functions is restricted to the Boolean values
0 and 1. A relational function returns the result 1 if true and o if false. For
example:

9>6
1

4>6
0

1 Cl > IA 1
1
When <, <, >, or > have character arguments, the order of characters in JAV
is used as a collating sequence, and the evaluation is based on the respective
positions of the arguments. When the relational functions have numeric
arguments, the comparisons between the arguments are affected by the value
of OCr.

When you use relational functions with Boolean arguments, the relational
functions can perform logical operations. For example, the not equal («)
function performs an exclusive OR operation if its arguments are 0 s and 1 s:

(0#0),(021),(120),1=21
01190

1.2 Primitive Mixed Functions

The primitive mixed functions allow more extensive array manipulation

than the scalar functions. Scalar functions take scalar arguments, return
scalar results, and are extended to arrays on an item-by-item basis. Mixed
functions are not as predictable. For example, depending on the values of their
arguments, mixed functions may do the following:

1-22 APL Reference Manual

APL Primitive Functions
Relational Functions

¢ Take a scalar argument and return a vector result:

19
12345672839

* Take a vector argument and return a scalar result:

211234
1234

* Take a matrix argument and return a vector result:

0«B<«4 3p112 ACREATE AND DISPLAY B
1 2 3
4 5 6
7 8 9
10 11 12
B ARAVEL B {MAKE B A VECTOR)

1234%5678910 11 12

Table 1-5 summarizes the primitive mixed functions, which are described in
this section.

Table 1-5 Primitive Mixed Functions

Function Name Meaning

ALB Base Bases the representation of B in number system 4.

+B Branch Modifies the standard order of execution in a user-
defined operation.

A,B Catenate Catenates A to B along the last axis of 4.

A,[K1B Catenate/ Catenates/laminates A to B along the k¥ th axis of 4.

A5 [XK1B Laminate

AsB Catenate Catenates 4 to B along the first axis of 4.

A>B Contain Determines whether all the items in array B are
also found in array 4.

A?B Deal Deals 4 integers selected randomly in the range 1 B.

5B Disclose Reduces the depth in an array.

> [K1B Disclose Discloses B and arranges the substructure axes ().

AV B Drop For 4> 0, drops the first 4 items of B ;for 4< 0, drops

the last | 4 items of B.

(continued on next page)

APL Reference Manual 1-23

APL Primitive Functions

Relational Functions

Table 1-5 (Cont.) Primitive Mixed Functions

Function Name Meaning

A+ [K]B Drop For 4> 0, drops the first 4 items along the axes of
B specified by & ; for 4<0, drops the last | 4 items
along the axes of B specified by ¥.

cB Enclose Builds enclosed arrays. Returns a scalar containing
B.

< [K]B Enclose Builds enclosed arrays; subarrays along axes ¥
become scalars.

€B Enlist Builds a simple vector with all of the simple scalars
in its argument,

¢B Execute Executes the character string 5.

HB File Input Reads records from an external file into an APL

KB (X1B workspace.

ABB File Qutput Writes information to an external file from an APL

AB[K1B workspace.

B (X1B

BB

v B Format Formats array B.

AT B Format Formats character array 8 with width and precision
specified by 4.

VB Grade Down Generates an index vector that can be used to sort B
in descending order.

Y [KIB Grade Down Generates an index vector that can be used to sort
B in descending order, row by row or column by
column.

AYB Grade Down Generates an index vector that can be used to sort B
in descending order using collating sequence 4.

AB Grade Up Generates an index vector that can be used to sort B
in ascending order.

4 (KIB Grade Up Generates an index vector that can be used to sort B
in ascending order, row by row or column by column.

AAB Grade Up Generates an index vector that can be used to sort B

. in ascending order using collating sequence 4.
| Index Generates the first B consecutive integers from the
Generator current index origin.
A1B Index Of Finds the first occurrence of B in vector 4.

1-24 APL Reference Manual

(continued on next page)

APL Primitive Functions
Relational Functions

Table 1-5 (Cont.) Primitive Mixed Functions

Function Name Meaning

AnB Intersection Returns a vector of the common items in the arrays
A and B.

A=B Match Determines whether arrays 4 and B are identical in
rank, shape, and value.

ABB Matrix Divide Performs matrix division, solves linear equations,
and finds a least-squares solution.

BB Matrix Inverse Inverts the matrix B.

Ae B Membership Determines if 4 is a member of array 5.

A>B Pick Discloses an item from any depth of an array.

,B Ravel Returns the ravel of B (makes B a vector).

,[K1B s [K1B Ravel Merges or adds axes to the shape of B depending on
the value of .

ATB Represent Represents B in number system 4.

Ap B Reshape Reshapes B to the shape specified by 4.

$B Reverse Reverses along the last axis of B.

¢ [KIB Reverse Reverses along the k¥ th axis of B.

o [K1B

eB Reverse Reverses along the first axis of B.

A$B Rotate Rotates by 4 along the last axis of B.

Ab[KIB Rotate Rotates by A along the k¥ th axis of B.

Ae [K1B

AeB Rotate Rotates by 4 along the first axis of B.

pB Shape Returns the shape of B.

AcB Subset Determines whether all the items in array 4 are
also found in array B.

A+ B Take For 4> 0, takes the first 4 items of B; for4< 0, takes
the last | 4 items of B.

A+ [K1B Take For 4> 0, takes the first 4 items along the axes of
B specified by X ; for A< 0, takes the last | 4 items
along the axes of B specified by .

8B Transpose Transposes the axes of B (for a matrix, exchanges

the rows and columns).

(continued on next page)

APL Reference Manual 1-25

APL Primitive Functions
Relational Functions

1-26

Table 1-5 (Cont.) Primitive Mixed Functions

Meaning

Function Name
A®B Transpose
AuB Union

uB Unique
A~B Without

Transposes the axes of array B according to 4.
Returns a vector of the items in the arrays 4 and B.
Removes the duplicate items of array B.

Returns a vector of the items of array 4 that are not
found in array B.

APL Reference Manual

Primitive Mixed Functions
1 Base

1 Base

Form
Al1B

Left Argument Domain

Type Numeric
Shape Any
Depth 0 or 1 (simple)

Right Argument Domain

Type Numeric
Shape Any
Depth 0 or 1 (simple)

Result Domain

Type Numeric

Rank Ol "2+ (ppd)+ppB
Shape (T 1+pA) ,14pB
Depth 0 or 1 (simple)

Implicit Arguments

None.

Description

The dyadic 1 function (known as base or decode) reduces a representation in
a number system to a value. More specifically, it converts to decimal those
vectors along the first axis of the right argument that are expressed in the
positional number bases of radices given by vectors along the last axis of the

left argument.

The base function is best explained as the converse of the represent function
(7). The following example shows the two functions operating on a quantity

expressed in yards, feet, and inches:

APL Reference Manual 1-27

Primitive Mixed Functions

L Base

at YARD, 2 FEET, 3 INCHES IS 63 INCHES
1760 3 1211 2 3

63
1760 3 12763

123

The expressions A1 B and A1 B differ only in the value included in B; 4 expresses
the number base in both cases.

The number of items in both arguments, for example 4 and B, must generally
be the same; the first item in 4 expresses the radix in which the first item in
B is decoded, and so on. However, if 4 is a singleton, it is extended so that its
length is the same as that of the first axis of B. For example, the following
expression has the effect of producing the base 10 value of the base 8 number
3777 (octal-to-decimal conversion):

8137 77
2047

For arguments 4 and B, the argument arrays for 1 must conform to one of the
following rules:

* A or Bis a scalar.
* The results of "1t p 4 and 1+ o B are equal.
* Either " 1tp4 or 1t p B equals 1.

If the argument arrays conform to the last rule, the axis that equals 1 is
extended to match the appropriate other axis. For example:

(2 3p5)L(3 4p3)
93 93 93 93
93 93 93 93

(2 3p5)1(1 4p3)
93 93 93 93
93 93 93 93

(2 1p5)L(3 up3)
93 93 93 93
93 93 93 93

The following are some other uses of the base function:

1-28 APL Reference Manual

119

Primitive Mixed Functions
1 Base

aCONVERT 3 YDS. 2 FT. 4 IN. T0 INCHES
13121324

RDETERMINE IF 2.5 1S A ZERO OF THE POLYNOMIAL
RO((6xX*2)-(7xX))-20
2.516 7 20

RYES
RBASE 10 EQUIVALENT OF BASE 5 NUMBER
514 3 4

You can use the base function to evaluate polynomials; the expression X1 ¢
evaluates a polynomial in X with coefficients given by the vector C.

For vectors 4 and B, the base function can be thought of as a form of the
inner product operator. The expression A1 B is equal to ¥+ . x B, where ¥ is the
weighting vector (W< ¢ x\ 7~ 1+ 4, 1) given by the expression ¥[p 4] <+ 1, and
WL(-N)+pAl isequal to AT (-N)+1p AT xW[(-N) +1+pA]. The value of
A[17 is irrelevant. The following example shows two equivalent operations:

A«1760 3 12
B+t 2 3
ALB
63
36 12 1+.xB
63
Note that if the right argument is empty, the type of the left argument is not
significant:
(3 2 1p'4")L V!
00
00
00
(3 2 1p0)1 10
00
00
00

APL Reference Manual 1-29

Primitive Mixed Functions

L Base

Possible Errors Generated

10

15

15

27

27

LENGTH ERROR (LENGTHS OF INNER AXES DO NOT MATCH)
DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

LIMIT ERROR (FLOATING OVERFLOW)

LIMIT ERROR (VOLUME TOO LARGE)

1-30 APL Reference Manual

Primitive Mixed Functions
- Branch

-+ Branch

Form

+B

Argument Domain

Type Near-Integer
Shape Any
Depth 0 or 1 (simple)

Result Domain

None.

Implicit Arguments

None.

Description

The monadic ~ function (known as branch) modifies the standard order of
execution in a user-defined operation.

Normally, APL lines in operations are executed in the order of their line
numbers; execution begins at the first line following the operation header
and ends with the last line in the operation. Branch changes the sequence of
execution by transferring control to another line in the operation.

There are two types of branches: unconditional and conditional. Unconditional
branches specify the next line to be executed. The result of an expression
evaluation determines the next statement in a conditional branch.

Unconditional branches consist of a branch symbol (=), followed by a
representation of the number of the operation line to which you want to
transfer control. The argument can be a label, a constant, a variable, or

an expression. Its value (or, if it is a vector, the value of its first item) is
equivalent to an integer line number within the current definition. Execution
continues at that line.

APL Reference Manual 1-31

Primitive Mixed Functions

- Branch

Conditional branches can be expressed in one of the following three forms:

~ line-number x1 logical-expression

Here APL evaluates the logical expression that is the right argument

of 1. The logical expression returns either a 1 (true) and the control
passes to the specified line or a 0 (false) and the control passes to the next
statement. (This form only works when 0I0+0.) In the following example
a simple counter controls the number of times the statements in a loop are
executed. The example branches to line number 0, an out-of-range number,
and forces an exit from the operation:

v COUNTER
[1] [«'NUMBER OF ENTRIES:' o N+{l
[2] C+0
[3] LOOP: +0x1C=N
(4] C+C+1
(5] +LOOP
(6] v

~+logical-expression / line-numbers

This type of conditional branch specifies several line numbers and
associated logical expressions as possible branch destinations. Control
passes to the line number corresponding to the first logical expression that
evaluates to 1 (true). For example:

VF A
(1] ~+(4>0)/3
(2] '"WILL NOT ACCEPT NEGATIVE NUMBERS' ¢ =0
[3] 'FUNCTION CONTINUING NORMALLY'

(4] v
Fs

FUNCTION CONTINUING NORMALLY
F 2

WILL NOT ACCEPT NEGATIVE NUMBERS

1-32 APL Reference Manual

Primitive Mixed Functions
-+ Branch

¢ ~line-numbers [K]
Here the value of ¥ is used as an index to select the corresponding line
number. For example:

Vv labs
[1] K+2
2] +~(LAB1,LAB2 ,LAB3}[X]
[3] LABi: 'LAB1 IS EXECUTED' o =0
[4] LAB2: ‘'LAB2 IS EXECUTED' ¢ 0
[5] LAB3: 'LAB3 IS EXECUTED' o =0

(6] v
LABS
LAB2 IS EXECUTED

Note that ~ is described in greater detail in Chapter 3 of the VAX APL User’s
Guide along with other information on user-defined operations.

Possible Errors Generated

7 SYNTAX FRROR (BRANCH NOT ALLOWED IN MIDDLE OF AN EXPRESSION)
11 VALUE ERROR (BRANCH HAS NO RESULT)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPFE)

15 DOMAIN FRROR (NOT AN INTEGER)

27 LIMIT FRROR (INTEGER TOO LARGE)

APL Reference Manual 1-33

Primitive Mixed Functions
, and ; Catenate/Laminate

, and 5 Catenate/Laminate

Form

4,B 4,(K1B A4+ B A5 [(K]B
5 1s formed with , and -

Left Argument Domain

Type Any
Shape -
Depth Any

Right Argument Domain

Type Any
Shape -
Depth Any

Result Domain

Type -

Rank 1T (ppA) [ppB (for catenate) or
1+ (ppA) [ppB (for laminate)

Shape -

Depth (=4) =B

Implicit Arguments

None.

Description

The dyadic APL function joins together the specified axis of two arrays. If, for
A,[K1B or 45 [K]B, X is a near-integer, the function is called catenation, and
A and B are joined along the ¥ th axis. If ¥ is not a near-integer, the function
is called lamination, and A and B are joined along a new axis lying between
the axes named by L X and [X. The forms 4, B and 4; B represent catenation
and join the arrays along their last or first axis, respectively.

1-34 APL Reference Manual

Primitive Mixed Functions
, and ; Catenate/Laminate

If one of the arguments is a scalar, its length is extended to match the shape
of the other argument. If both arguments are scalars, the result is a two-item
vector. For example:

5,6 ACATENATE 2 SCALARS, RESULT IS A VECTOR
56

B«2 3p16

B, {137 ACATENATE SCALAR TO FIRST AXIS OF B
123
L 56
777

B,7 ACATENATE SCALAR TO LAST AXIS OF B
1237
L 567

For catenation, the arguments’ ranks must differ after scalar extension by at
most 1. Note that a singleton argument is not extended to conform to the other
argument:

ACATENATE SINGLETONS OF DIFFERENT RANKS
(1 1p7),1 1 1 1p8
9 RANK ERROR (RANKS DIFFER BY MORE THAN ONE)
(1 1p7),1 1 1 1p8
A
aTRY AGAIN
0<«R <« (1 1p7), 1 1 1p8
7 8
PR
112

In the following example, two arrays of equal rank are catenated. The shapes
of the arguments match except for the axis [(¥)] along which the arrays are
being joined:

B«3 4 5p12
0B

3 45
C«3 6 5pik
oC

365
R<B,[2]C
oR

3 10 5

Note that B isequal to R[; 1 4;] and C toR[; 4+:16;].

APL Reference Manual 1-35

Primitive Mixed Functions
, and ; Catenate/Laminate

The next example shows the catenation of two arrays whose ranks differ by 1.
Again, the shapes of the arguments match except for the axis along which the
arrays are being joined:

B+3 4 5p12
0B aB IS RANK 3

3 45
C+4 5p33
pC aC IS RANK 2

4 5
R+B,[1]C ACATENATE ALONG FIRST AXIS OF B
oR

4 45

AATTEMPT TO CATENATE ALONG SECOND AXIS
B,[2]C
10 LENGTH ERROR (SHAPES OFF AXIS DO NOT MATCH)

B,[2]C

A
Here, B isequal toR[13; ;] and C to R[4; ;7.

The following are more examples of catenation:

A+5 8 9
B« 7
A,B RCATENATE TWO VECTORS
58967
10,4,B,12
10 58 9 6 7 12
'NAME' T XY?
NAMEXY
B+2 3p1 2 3 456 ACREATE B
C+2 3p7 8 9 10 11 12 aCREATE C
B

=
o N
o w

Y
7 8 9
10 11 12
B,[1]1C ACATENATE ALONG FIRST AXIS
3
6
9
12
B,[2]C ACATENATE ALONG SECOND AXIS
7 8 9
10 11 12

o~ FE R
= o N

—

=
o w

1-36 APL Reference Manual

Primitive Mixed Functions
, and ; Catenate/Laminate

C AUSE COLUMN CATENATE

S N F e
, ®Wa N

1
B,C ACATENATE ALONG SECOND AXIS
3 7 8 9
6 10 11 12
(«A«2 3 3p"ABCDEFGHIJKLMNOPQR'

12
4 5
ABC

DEF
GHI

JKL
MNO
PR
(«B«2 3 3p'SSSTTTUUUVVVWNNWIXX'
555
TTT
i

vy
WHHW
XXX
A,B ACATENATE RANK 2 OBJECTS
ABCSSS
DEFTTT
GHIUUU

JKLVVV
MNONHW
PQRXXX

Note that the catenation of scalars produces a vector:

pp4,5
1

For lamination (4, [X1 B and 45 [X1 B where X is not a near-integer), the
arguments must have the same ranks and shapes after singleton extension.
The following are examples of lamination:

ACREATE NEW DIMENSION BEFORE THE FIRST
& DIMENSION WHEN [K]}<1
[JeX<«'ABC' ,[0.5]'DEF! nADD A ROW
ABC
DEF
pX
2 3

APL Reference Manual 1-37

Primitive Mixed Functions
, and s Catenate/Laminate

AD
BE
CF

3 2

AB
CD
EF

uv
WX
¢/

AB
)
EF

uv

WX
Yz

AB
uv

cD
WX

EF
Yz

32

ACREATE NENW DIMENSION AFTER THE FIRST
A DIMENSION WHEN 1<[K]<2
O«X«'ABC',[1.3]'DEF' n ADD A COLUMN

pX

aNOW TRY EXAMPLE WITH HIGHER RANK OBJECTS
aNOTE THAT APL RESHAPES EACH ARGUMENT
ABEFORE JOINING

(«E«3 2p"ABCDEF'

O«F«3 2p'UVWXYZ'

AnCREATE NEW DIMENSION BEFORE THE FIRST
p DIMENSION WHEN [K]<1
O«R«E,[.2]F nADD A PLANE

oR

ACREATE NEW DIMENSION AFTER THE FIRST

a DIMENSION WHEN 1<[K]<2

nADD A ROW, PREVIOUS ROWS BECOME PLANES
O«R<E,[1.9]1F

oR

1-38 APL Reference Manual

Primitive Mixed Functions
, and 5 Catenate/Laminate

ACREATE NEW DIMENSION AFTER THE SECOND
A DIMENSION WHEN 2<[K1<3
AADD A COLUMN, PREVIOUS COLUMNS BECOME ROWS
[O«R«E, [2.3]F
AU
BV

CW

EY
FZ
oR

aTRY EXAMPLE USING SINGLETON EXTENSION
O«R<E,[.51'2¢ RADD A PLANE
AB
D
EF

YA
YA

PR

RADD A ROW, PREVIOQUS ROWS BECOME PLANES
O«R«E,[1.51"X!
AB
XX

D
XX

EF
XX

PR
322

tyv,[2.51F RADD A COLUMN
YA
1B

e
D

YE
r

Note that if 170 «<~0, then ~ .5 is valid as the axis value for lamination. This
is the only case in which an axis may take a negative argument (range: ~1<K).

APL Reference Manual 1-39

Primitive Mixed Functions
, and ; Catenate/Laminate

Further examples:

O«A«(0 ('4B"))
0 +--+
[4B]
+--+
O«B+c,b4

J«Cet?
(APL outputs a blank line)
O«MAX«2 3 p A 1 0 '4B* B C

[0 +--+]
| 14B}|
|4t

+--+ t---+ +
|4B| [+-+] |
+--+ [lul} +
[+-+]
+---+
MAX,[11B ACATENATE ALONG FIRST AXIS

[0 +--+]
| [AB]|
I

+-—+ te-=t +
|48 [+-+1 |
Tt FIull +
[+-+]
+---+
+-+ +-+ 4+t
4] RN
+-+ +-+ 4=t
O«D«0 'DP!
0 +--4
| DP|
+--1

1-40 APL Reference Manual

Primitive Mixed Functions
, and ; Catenate/Laminate

D, [2]MAX aCATENATE ALONG SECOND AXIS
0 tommme +1 0
jO +--+]
| |4BT|
Pttt
- +
t-=t t--+ t--—+ -t
|DP{ [AB| [+-+{ | |
+--t +--t [He]] +-+
[+-+1
-t
aSHOW CATENATION OF TWO ARRAYS WHOSE RANKS DIFFER BY 1
pMAX
23
(«VIC«B,D
+-+ 0 +--+
il 1DP|
-+ -t
pVIC
3
O«WeMAX, [1]VIC
pomm———- + 1 0
[0 +--+]
| 14BI{
Loot--tl
tmmmmm +
+=—+ +--—+ +-t
tAB| [+=+] | |
+--+ [Tl +-+
[+-+]
+---1
+-+ 0 +--+
fu {DP|
+-+ +--+
oW
3 3
ASHOW LAMINATION
OeX«t,c,1
bo+-+
11
+-+
pX
2
B
+-+
|4
+-+
pB

(APL outputs a blank line)

APL Reference Manual 1-41

Primitive Mixed Functions
, and 5 Catenate/Laminate

0«y«X,[0.5]B
+-+
[1]
+-+
+-+
4
+-+
pY

0«Z«X,[1.9]B
+-+
[4]
+-+
+-+
[4]
+-+
o2

Possible Errors Generated

9 RANK ERROR

9 RANK ERROR (RANKS DIFFER BY MORE THAN ONE)

10

15

27

28

30

30

30

30

29

30

LENGTH ERROR (SHAPES OFF AXIS DO NOT MATCH)

DOMAIN ERROR (INCORRECT TYPE)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-42 APL Reference Manual

Primitive Mixed Functions
> Contains

> Contains

Form

A>B
> is formed with > and _

Left Argument Domain

Type Any

Shape Any

Depth Any
Type

Shape Any

Depth Any

Result Domain

Type Boolean

Rank 0

Shape 1 0 (scalar)
Depth 0 (simple scalar)

Implicit Arguments

{1 ¢T (determines comparison precision)

Description

The dyadic > function determines whether the left argument contains all the
items found in the right argument. The result is a Boolean scalar: true, if
the left argument is a superset of the right argument, and false if it is not.
Duplicate items in either argument do not affect the result. For example:

A+3 4p 23 54 98 34 98 47 98 32 78 65 12 23
4 > B+1100

B o4

[we

APL Reference Manual 1-43

Primitive Mixed Functions
> Contains

The > function compares items in terms of the match (=) function, which uses
the value of 0 CT. Because = allows mixed-type arguments, you can compare
characters with numbers. However, such a comparison is always false, so that
if you use mixed-type arguments for dyadic o, the result will be zero. For
example:

'23 24 25' 5 22 23 24 25 26
0

Further examples:

(O«WRL+0 '4AB' (<,3)
0 +--t+ +---+
[AB] [+-+]
+--+ 113]]
[+-+]
t---+
0«POOL«2 2 p 0 'AB' 'EB' (<,3)
0 +--+
|4B]
+--+
t-=t +---+
[EB] |+-+|
==+ 1131
[+-+1
+-==t
POOL 2 WRL
1
O«VAN<0 "QIW' "1 (<,3)
0 +---+ 1 +---+
[QTH] f+-+]
t--=t 1131
[+-+]
+---t
D«VIC«(<,4),0,(<'DP")
t-+ 0 +--+
[l |DP|
t-t 4--4
VAN > VIC
0

Possible Errors Generated

None.

144 APL Reference Manual

Primitive Mixed Functions
? Deal

? Deal

Form
A?B

Left Argument Domain

Type Nonnegative near-integer
Shape Singleton
Depth 0 or 1 (simple)

Right Argument Domain

Type Nonnegative near-integer
Shape Singleton
Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer
Rank 1

Shape A

Depth 1 (simple)

Implicit Arguments
ORL O0I0 (47?B when 0I0 « 1 1is identical to 1 + 4?B when 0I0 « 0 for the
same ORL)

Description

For 47 B, the dyadic ? function generates a vector of integers randomly selected
from 1 B; no number is selected more than once. The length of the result vector
is specified by 4. For example:

APL Reference Manual 1-45

Primitive Mixed Functions

? Deal

575

42315
571.0E7

2047059 8326627 1771140 853115 3809508
571.0E7

8895125 7387197 6272379 6940437 9062050
571.087

6693744 185074 2861354 853279 5088023

Unlike the roll function, dyadic 7 is analogous to dealing a number of cards
from a deck with no two cards alike. Roll is analogous to rolling several dice
independently; roll may generate duplicates, but deal will not.

The value of the system variable 0 RL affects the result of the deal operation,
and the value of JRL changes each time a deal operation completes
successfully. For more details about ORL, see Chapter 2.

Possible Errors Generated

9 RANK FRROR (NOT SINGLETON)

10 LENGTH FRROR (NOT SINGLETON)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (NEGATIVE NUMBER NOT ALLOWED)

15 DOMAIN FRROR (RIGHT ARGUMENT IS LESS THAN LEFT)

27 LIMIT ERROR (INTEGER TOO LARGE)

1-46 APL Reference Manual

Primitive Mixed Functions
= Depth

= Depth

Form
=B

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Integer (non-negative)
Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)

Implicit Arguments

None.

Description

The monadic = function (known as depth) indicates the maximum level of
nesting in an array. A simple array has 1 level of nesting (0 if the array is
scalar). An enclosed array has a depth of at least 2.

Examples:
(«B+«3 ACREATE A SIMPLE SCALAR
=B
aCREATE A SIMPLE ARRAY

J«C«'WHERE ARE YOU GOING?'
WHERE ARE YOU GOING?

=C

APL Reference Manual 1-47

Primitive Mixed Functions

= Depth
O«D«1 (56 7) 11 12 ACREATE AN ENCLOSED ARRAY
1 +----- + 11 12
|5 6 7]
tomm - +
=D
2
RCREATE AN ENCLOSED ARRAY WITH MORE NESTING
O«E«1 (56 7 (8 9 10}) 11 12
1 4 + 11 12
|56 7 +------ +]
l 8 9 10]]
l $mmmeme +]
e +
=E

Possible Errors Generated

None.

1-48 APL Reference Manual

Primitive Mixed Functions
> Disclose

> Disclose

Form

>B >[K]B

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as constituent items in B
Rank (ppB)+4[/p 0" (,B),ctB
Shape (0B), 4T /(p"(,B),ctB)~c10

(pZ)[.K1«>4T/(p"(,B)~<10
Depth O[T 1+=8

Implicit Arguments

None.

Description

The monadic > function reduces the depth of an array. It reverses the building
action of the monadic enclose (¢) function. Disclose is the left inverse of enclose
(B«+>cBand B«+>[{X]<[KI]B).

The rank of the items in B must be the same (singleton items are extended).
However, the lengths of the corresponding axes do not need to match. For
example, three enclosed items of shape 1 3 1, 2 6 2, and 4 2 4 match in rank,
but not in shape. When the shapes do not match, each item is padded along
each axis, and the length of each of the result’s axes is equal to the longest
corresponding axis among the items of B. In the preceding example, the
portion of the result that corresponds to the three items would have the shape
46 4:

APL. Reference Manual 1-49

Primitive Mixed Functions
> Disclose

AALL ITEMS SAME RAKK
Fe(3 2p16) (2 3p'ABCDEF') (2 u4p10 ¢19) (5 1p'TUVXY")
oF

oF
tommt oot tm-ot 4--—f

13 2f [2 31]2 4] |5 1]

tooot fom-t bo-—4 d--—t

0«DD+>F aNOTE FILL ITEMS
0

oo OO WU W
txy o cC oo EN
Oy oo o oo

oo oo

O O O oo
O O O = w
O O O w
O O O wWwom

b @ Mg

pDD
454

Disclose only reduces one level of enclosure:

A+{c13) "ABC' 3

A
tomm + +---+ 3
J4---m- +| [ABC
P11 2 3} +---+
[----- +]
fome +

pA
3

=4

1-50 APL Reference Manual

Primitive Mixed Functions

> Disclose

04
++ oottt
I
++ At

X+«o4

X
tem--- +ot----- t ot----- +
|12 3} |00 0] |00 0]
t----- R + ot----- +
4 B c
3 0 0

oX

Disclose with axis (form > [k] B) allows you to specify the placement of the
disclosed item’s axes. The number of axes specified by ¥ must be equal to the
rank of the items of B (ignoring the singleton items), and the axis numbers
must be less than the sum of the rank of B plus the rank of the items of

B (1(pgpB)Y++T\,p o B). The axis numbers must also be unique. The
following example shows various combinations of axis arguments and the
resulting arrays:

R « (3 3p19) (2 3p'ON' 'TI' 'MA' 'NO' 'IT' 'AM'")
[1 2 3] |+--+ +--+ +--+]|

4 5 6] [[ON] |TI] |[MA]]
17 8 9] [4=-t +--t +--4]

to---- e A R
[INol [IT) |AMI|
[+--+ +--+ +--+4]
o +
A<oR
=4
2

APL Reference Manual 1-51

Primitive Mixed Functions

> Disclose

to=t oot -t

|ON|

|MA|

|71}

to-t -t oot

to=t -t -t

{AM|
te=t +--F+ +--t

IT|

[NO|

to-t oot -t

}

|

o=t -t -t

B«>[1 21R

B

1 +--+

|OF |
+--+
2 +--+

[TI]
-+

3 +--+

| MA|

+--+

bo+--+

[§O|

+=-+
5 +--+

| IT

+--+
6 +--+

tAM]
+--+

7 t--+

+--+
8 +--+

|
+--+
9 +--+

+o-t

APL Reference Manual

1-52

1

+--1
| ON]
+--1

+-—1
[H0|
+--+

+--+t

+--+

2

3

3

it
=

il
[ev]

pA

0B

Ceo[1 3]R

=(
oC

4
2

+--+

|TI

+--1

5

+--+

|IT

+--1t

8

+--+

l

l

!

3

+--+
|MA|
+--+

6

+--1
[AM|
+--+

9
+-—+

[

t--t +--+

D«s[2 3]R

=D

pD

Primitive Mixed Functions
> Disclose

APL Reference Manual

1-53

Primitive Mixed Functions

> Disclose

o=t -t -t

|ON|

|MA|

[TI]

t-—+ +--t +--+

t--t +--+ +--+

|50

[AM|

[IT]

te-t t--t +--4
-t 4--+ t--t

I

o=t +--+ +--1

E<o[2 1]R

1 +--+

| 0N}
+--+

b4t

|70|

+--+
7 +--+

+--+

2 +--+

| TT]

t--+
5 +--+

T

+--+
8 +--+

+--+

3 +--+

| MA|

+--t
6 +--+

| M|
+--t
9 +--+

+--t

APL Reference Manual

1-54

Primitive Mixed Functions

> Disclose

-t t--+ +--+

l

[vol |
t——t +--1 +--+

| ON|

8

5

2

to-t oot 4t

71|

|

[IT]

t--t t--t +--1

9

t=-+ t-—+ +--+

| MA|

6

3

l

|

| AM|

-t -t -1

1

G+>[3 2

to-t 4ot ot

tvol 1|
t--t t—F -t
t-=t +--+ +--+

[ON|

[IT] |
e A it

|71

t--+ +--+ +--+

| MA|

| AM|

Foot -t -t

1-55

APL Reference Manual

Primitive Mixed Functions
> Disclose

If all the items of B are scalars, then the axis, if specified, must be empty:

Pec"(13)(14){15)

T
tomm———— o i I +
[+----- +] [4---mm-- LI +]
[23] |11 23 4] [{123u45]]
[4----- + [4------- + - +]
tommmm o I +
=T
3
ol
3
o
222
p"'T
+t+ ottt
IR
++ o+ 4t
O«S+o[10]T
o R I +
[1 23] (1234 /123u5s]
tmm--- t+ ot T +
=S
2
oS
3

The disclose of an array which contains only scalars and empty arrays as item
will be an empty array:

E«2 '1 3
E
2 ++ 3
I
++
=F
2
oF
3
+E
2

1-56 APL Reference Manual

30

0

Primitive Mixed Functions
> Disclose

Xk
X
(APL outputs a blank line)

X
X

X

The following expression describes the formal relationship between disclose
and disclose with axis: >B «+> > [(ppB)+1pp+B1B

Possible Errors Generated

9 RANK ERROR (ITEMS NOT SINGLETON OR ALL THE SAME RANK)

27

28

29

30

30

30

30

30

30

30

LIMIT FRROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

APL Reference Manual 1-57

Primitive Mixed Functions
+ Drop

v Drop

Form

A¥B AV [K]B

Left Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as right argument

Rank (p,A)TppB

Shape ol (pB) -4 (if no explicit axis)
Depth =B

Implicit Arguments

None.

Description

The dyadic + function builds an array by dropping a specified number of items
from an existing array. The left argument specifies how many items are to be

dropped from each axis in the right argument array. Thus, for 4+ B, item A[k]
is used to drop values along the ¥ th axis of B.

Unless the right argument is a scalar, the left argument must have a number
of values equal to the rank of the right argument (for arguments 4 and B,

p , 4 must equal p p B). For instance, if the right argument is a vector, the left
argument must have just one value. If that value is positive, APL drops the

1-58 APL Reference Manual

Primitive Mixed Functions
+ Drop

specified number of items from the beginning of the vector; if the value is
negative, APL drops items from the end of the vector. For example:

2415
345
T2+15
123
If the right argument is a scalar, it is reshaped to a singleton with a rank
equal to the length of the left argument.

If the rank of the right argument is greater than 1, the result array is said to

be a "corner” of the argument array. The origin of the corner is determined by
the signs of the items of the left argument. For example, if the right argument
is a matrix, there are four possible corners, as shown in Figure 1-1.

The drop function leaves a corner that is diagonally opposite to the origin
specified by the signs of the items of the left argument. In the following
example, note how the order of the signs determines the "corner” selected from
the matrix:

O«C<3 3 0:9

~NE e
[CIRE NN
0 O w

3

7

Note that for arguments 4 and B, the dimension of the remaining corner is the
complement of 4 with respect to pB, or | (pB) - 4.

If the value of an item in the left argument is greater than the length of the
corresponding axis, then, for arguments 4 and B, 4+ B returns an empty array
with shape o7 (pB) - | 4.

If the left argument is empty, the right argument must be a scalar, and the
result is the right argument.

When you use + with an axis argument, ¥ is a vector of axis numbers whose
lengths are determined by corresponding items of the left argument, 4.
Formally, + with an axis argument can be described by the following:

Z < 0>pB o Z[K] « A o Z « I4B

APL Reference Manual 1-59

Primitive Mixed Functions
+ Drop

The value for ¥ must be in the vector domain, and each item must be a near-
integer in the set 1 p p B. Therefore, the values of ¥ are (J 70 dependent. The
items may be in any order, but they may not be duplicated. The length of
must be less than or equal to the rank of the right argument, and it must
match the length of the left argument.

The value for ¥ does not have to specify all the axes in B. APL regards the
lengths of any missing axes as zero. This means that you can drop rows or
columns of a matrix without specifying zero for the length of the other axis.
For example:

(J«A«8 5p140
1 2 3 4% 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
3 +(1] 4 RDROP 3 ROWS OF A
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
T2 ¥[2] 4 ADROP THE LAST 2 COLUMRS OF A
1 2 3
6 7 8
11 12 13
16 17 18
21 22 23
26 27 28
31 32 33
36 37 38
34 402 1] 4 ADROP 4 ROWS, 3 COLUMNS OF A
24 25
29 30
34 35
39 40
gIo <« o
43 400 11 4 ADROP 4 ROWS, 3 COLUMNS OF A
24 25
29 30
34 35
39 40

1-60 APL Reference Manual

Primitive Mixed Functions
+ Drop

Further examples:

J«POL+2 3p0,(<'4BC'),1,0,(cVAB'),"!
0 +---+1
|ABC|
+--—t
0 +--+ 0
[AB|
t--+
POL
0 +---+ 1
|ABC|
o=t
0 +--+ 0
[AB|
o=t
2 +[11POL
(APL outputs a blank line)
“1 y[11POL
0 +---+ 1
| ABC
+---t
2 y[2]P0OL
1
0
OeMEW«4 3 p'XY' 1 3 (c,1) 72 ' t4v v v 01 40
t--t+ 1 3
[XY]
et
+-=-t T2 ++
[+-+] I
(a1 ++
[+

2 14 [2 11MEW

APL Reference Manual 1-61

Primitive Mixed Functions
+ Drop

2 0 v MEW

The following expression describes the formal relationship between drop and
drop with axis: 4yB <> Ay [100 B1B

Possible Errors Generated

9 KRANK FRROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (LEFT LENGTH NOT EQUAL TO RIGHT RANK)
15 DOMAIN EFRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

29 AXIS LENGTH ERROR (LEFT ARGUMENT HAS WRONG LENGTH)
30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
30 AXIS DOMAIN KRROR (AXIS LESS THAN INDEX ORIGIN)

30 AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

30 AXIS DOMAIN ERROR (INCORRECT TYPE)

30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-62 APL Reference Manual

Primitive Mixed Functions
< Enclose

c Enclose

Form

B < [K]B

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as constituent items
Rank (ppB)-p,.K

Shape (pB)L(1ppB)~K]
Depth (0%#=B)+=8

Implicit Arguments

None.

Description

The monadic < function builds enclosed arrays. For a nonsimple scalar
argument, the result of the form c B is always an enclosed scalar item. If the
argument is a simple scalar, the depth remains the same: B«+<B when B is a
simple scalar. The result of the form < [X] B is an array of enclosed scalars:

APL Reference Manual 1-63

Primitive Mixed Functions
= Enclose

B + 4
C « 15
D« 22 p "ABCD!
(«B<«cB RENCLOSE A SIMPLE SCALAR, NOTHING HAPPENS
I
[J«B+c,B aMAKE A SINGLETON
+-+
4
+-t
O«Cec(
tmmmm o +
{1234 5]
tomm - +
0«D+cD
+--t
| 4B
[CD]
+--+
pB o pC o pD ATHE NEN B C AND D ARE SCALAR

(APL outputs 3 blank lines)

Each time you use monadic <, you increase the depth of the argument by one
(unless the argument is a simple scalar). For example:

(«D<«2 2p 'ABCD!

AB
CD
pD
22
=D AaDEPTH OF D SHOWS A SIMPLE ARRAY
1
[O«D+«cD
+--+
[AB]
[CD]
+--+
pD
(APL outputs a blank line)
=D aDEPTH OF D HAS INCREASED T0 1

2

Using the catenate function (,) with < allows you to create arrays with
multiple items. In such an expression, you must use parentheses to prevent
the scope of ¢ from extending to the rightmost end of the expression. You can
also enclose arrays that are already enclosed. The only limit to the depth you
create is the memory available to the workspace.

164 APL Reference Manual

Primitive Mixed Functions
c Enclose

For example:

B«
C«15
O«E«B , (<B) , <C ANOTE USE OF PARENTHESES
I el +
{12 34 5]
oo +
pE
3
=E
2
D«2 2 p "ABCD!
O«E«B , (c<B) , (<C) , D aNOTE USE OF PARENTHESES
BoL e + oot
[1 2 34 5] |4B]
e i + | CD}
+-—+
pE
i
=E
2
D+E+CE
oo +
I e T + +--1]
j [1 2 34 5] [AB]|
| e + |cpl|
| T
o +
pE ASHAPE OF E SHOWS IT IS NOW A SCALAR
(APL outputs a blank line)
=E
3

The result of the form = [X] B is in an array of items formed by enclosing
subarrays along the axes given by ¥. The axis numbers in ¥ must be a unique
set of numbers in 1 p p B:

«S«2 3p16
cS

APL Reference Manual 1-65

Primitive Mixed Functions
< Enclose

1-66 APL Reference Manual

'THE GODS!

c[11S
ot -t -t
f1 4] |2 5] |3 6|
to--t -t -1
<[2]S
toem L +
[12 3] |u 5 6]
t----- + - +
c[1 218
to-m-- +
|1 2 3]
|45 6]
t----- +
c[2 118
+---+
[1 4]
12 5]
13 6]
t---1
SCHILLER«'AGAINST' 'STUPIDITY'
O«SCHILLER<3 2pSCHILLER, ' CONTEND!
o I +
{AGAINST| |STUPIDITY|
to-mm I +
fommmm I +
| THE GODS| |THEMSELVES]|
fommm e I +
fommm e I +
|CONTEND| |IN VAIN|
EREEEEE I +
0+PHRASES+5[1.5]c[21SCHILLER
oo +
[+------~ ot +
| {AGAINST} |STUPIDITY||
| $===mmm- ot +]
fomm e +
fom e +
T I +]
| |THE GODS| |THEMSELVES!|
[+==mmmmm ot +]
R e E LT L P e e +
tom oo +
[+---=--~ ot +|
[{CONTEND| |IN VAIN||
[+------- +ot-mmm-- +]
R EEEEEE LT +
pPHRASES
31

ACHANGING AX1S ORDER TRANSPOSES SHAPE

'THEMSELVES'

"IN VAIN!

Primitive Mixed Functions
< Enclose

If ¥ is empty, than it has no effect if B is a simple array. If B is enclosed,
then each item in B becomes enclosed one level deeper (c [1 01 B <+ <" B). For
example:

(«S<2 3pb6 aCREATE S, A SIMPLE ARRAY

oo

3
6

£ =

c[t0]lS aEMPTY K, NO CHANGE
23
56

£ =

SCHILLER«'AGAINST' 'STUPIDITY' 'THE GODS' 'THEMSELVES'
O«SCHILLER«3 2p SCHILLER, 'CONTEND' 'IN VAIN'

c[1OJSCHILLER AEMPTY K, ITEMS NESTED DEEPER

Further examples:

APL Reference Manual 1-67

Primitive Mixed Functions
c Enclose

(«POL«2 3 p 'ABC' 0 {(c,2) 99 'A' '0!
t---+ 0 +---1t

| ABC J+-+]
+e-mt1]2]]
[+-+]
+--—+t
99 A0
cPOL
tommm +
[+=--+ 0 +---+]
|14BC| [+=+]]
[+---+ [l21]]
! +-+11
! 4ot
|99 40 |
e +

The first two of the following expressions describe the relationship between <
and < [X1. The third expression describes the relationship between <« [k] and
the disclose (= [k7)) function:

cB <+ c[1ppBlB

c[K1B «> c{4K)&B {only true when K includes all axes of B}
B < o[K] <[K] B

B ++ >cB

Possible Errors Generated

27 LIMIT ERROR (INTEGER TOO LARGE)

28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

30 AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

30 AXIS DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

30 AXIS DOMAIN ERROR (INCORRECT TYPE)

30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-68 APL Reference Manual

Primitive Mixed Functions
e Enlist

€ Enlist

Form

e€B

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as argument
Rank 1

Shape Vector

Depth 1 (simple vector)

Implicit Arguments

None.

Description

e builds a simple vector by recursively raveling each of the items in its
argument. For example:

O«d«e (2 (2 2p5 6 7 8)) TABC' "A' 2 5 6 7 8 'AB(C!
2567 8 ABCA 256 7 8 ABC

Possible Errors Generated

None.

APL Reference Manuai 1-69

Primitive Mixed Functions
¢ Execute

¢ Execute

Form

¢ B
¢ is formed with L and -

Argument Domain

Type Any
Shape Any (Vector domain for characters)
Depth Any (0 or 1 for characters)

Result Domain

Type Any
Rank Any
Shape Any
Depth Any

Implicit Arguments

None.

Description

The monadic ¢« function executes the expression represented by its character-
string argument as if that expression were entered in immediate mode or
included in a user-defined operation. For example, the expressions 1 5 and

¢ ' 15" return the same result:

15
12345

e'15!
12345

B«<15

¢'B'
2 345

1-70 APL Reference Manual

Primitive Mixed Functions
¢ Execute

For a numeric argument B, ¢ B returns B. For example:

220
20

B«15

¢B
12345

For an enclosed or heterogeneous array B, ¢ B returns B. For example:

¢ 12 "4V 3
1243

0«P0L+«2 3p ('ABC') 0 (=,2) 99 'A' 0O
t-——+ 0 +---+

|ABC| | +-+]
t-——+ |2]]
[+-+]
t-——t
99 A0
e "POL!
e
{ABC| [+-+]
t---+ {121
k1
+o--t
99 40
¢ POL
t---t 0 +---+
|ABC| [+-+]
===+ |l2]]
l+-+
t---+
99 40

The ¢ function is similar to the 0X¢Q system function; however, there are
several differences.

One difference is that the 0 XQ system function always returns a value, but
the ¢ function returns a value only if the evaluation of its argument returns
a value. Another difference is that the JX¢ function cannot execute a branch
function (+), and the ¢ function can.

The ¢ and [JxqQ functions also handle errors differently. Errors resulting from
the evaluation of the JX¢ function’s argument cannot be trapped; if an error
occurs during the evaluation of its argument, 0xQ returns an empty array
whose shape indicates the number of the error. With the ¢ function, however,
you can use [JTRAP to trap errors. If an error occurs in the character string
being executed by ¢, APL generates—in addition to the normal three-line error
message—an execute error message for the line on which the actual execute
error occurred.

APL Reference Manual 1-71

Primitive Mixed Functions
¢ Execute

For example:

V GRIFF 4
[11 B+sd
(2] v

GRIFF '3,!

7 & SYNTAX ERROR (RIGHT ARGUMENT TO FUNCTION MISSING)
3,
A

25 EXECUTE ERROR

GRIFF(1] Beed
A
)SI
GRIFF[1] =
B
11 VALUE ERROR
B
A
GRIFF' !
11 VALUE ERROR (REQUIRED VALUE NOT SUPPLIED BY EXECUTE)
GRIFF(1] B+2d

A

In the previous example, when the argument to the ¢ function was invalid
('3, "), APL generates six lines of error messages and suspends operation

execution. The blank argument is a valid one for the ¢« function, but « ' ' does
not produce a value, so APL signals YALUE ERROR when the assignment is
made to B.

If you enter the attention signal while the ¢ function is executing, APL stops
and signals ATTENTION SIGNALED.

Note that quiet functions are still quiet when executed, provided that the
execute is the leftmost function in the statement. When the argument is empty
and numeric, the result is an empty numeric vector (¢ 1 0 «-» 1 0). When the
argument is empty and character, the result is an empty character vector (*
<> o ' 1)if a value is required by the expression. For example:

1-72 APL Reference Manual

Primitive Mixed Functions
¢ Execute

o' 741"
Lozl

¢ 10
s ! aQUIET, NO OQUTPUT

Aee !

(APL outputs a blank line.)

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

25 EXECUTE ERROR

APL Reference Manual 1-73

Primitive Mixed Functions
M and B File Input and Output

K and B File Input and Output

Form

B [[mode | index]] chan ldata-typel
B is formed with O and <«

Argument Domain

Type Numeric
Shape Vector domain
Depth Any

Result Domain

Type Any
Rank Any
Shape Any
Depth Any

Form

[datall B [[mode | index]l chan [data-typell
B is formed with O and -

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Numeric
Shape Vector domain
Depth 0 or 1 (simple)

1-74 APL Reference Manual

Primitive Mixed Functions
H and B File Input and Output

Result Domain

Type Same as left argument

Rank o o data-sent

Shape o data-sent

Depth =data-sent
Parameters

mode

Is an integer representing one of the modes listed in Table 5-3 in the VAX APL
User’s Guide. This parameter is used only when accessing files with ASCII
sequential organization. When you specify mode, it must be surrounded by
brackets.

index
Is the component number, record number, or key value in a direct-access,
relative, or keyed file, respectively. Index must be surrounded by brackets.

chan

Is a positive integer scalar whose value is a channel number in the range 1
through 999.

data-type

Specifies the data type of the record you want to read or write. When you
include a value for data-type, you imply that the record contains pure data;
that is, the beginning of the record does not contzin any header information. If
you do not specify data-type, or if you specify a value of 0, APL assumes that
there is a header at the beginning of the record

data
Is the data that is to be written to the file.

Description

The file input (d) and file output (@) functions are for reading and writing files.
B and B are described in greater detail in Chapter 4 of the VAX APL User’s
Guide along with other file I/O information.

The file output function (B) in its monadic form deletes a component or
record from a direct-access, relative or keyed file. APL signals DOMAIN ERROR
(DELETION NOT ALLOWED) if you use monadic B with a sequential file. When

APL Reference Manual 1-75

Primitive Mixed Functions
d and B File Input and Output

monadic B is not the leftmost function in the statement, it returns an empty
numeric matrix of shape 0 75.

The value of the A function is the record read from the specified file. The B
function is quiet. It does not display a result if it is the leftmost function in a
statement. When it is not the leftmost function, B returns the value of its left
argument.

When a B or 8 function references a channel associated with a file that is not
open, APL opens the file and executes the function.

Possible Errors Generated

15 DOMAIN ERROR (DELETION NOT ALLOWED)

1-76 APL Reference Manual

Primitive Mixed Functions
+ First

4 First

Form
+ B

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as selected item
Rank Same as selected item
Shape Same as selected item
Depth Same as selected item

Implicit Arguments

None.

Description

The monadic + function builds an array by disclosing the first item from an
existing array. If B is empty, then + returns the prototype of B:

B«
C +« 15
+C

D+« 22 p "ABCD!
+D

APL Reference Manual

1-77

Primitive Mixed Functions
+ First

Q«E<«B, (), <D

b oo + ot
[1 2 34 5] |AB]
e + | CD}
+--1
+E aFIRST OF F
[
=4E RDEPTH SHOWS A SIMPLE SCALAR ARRAY
0
tE[2] aFIRST OF SECOND ITEM OF E
12345
=tE[2] aDEPTH SHOWS A SIMPLE ARRAY
1
ptE[2] aSHAPE SHOWS A VECTOR
5
+E[3] aFIRST OF THIRD ITEM OF E
AB
CD
=+E[3] RDEPTH SHOWS A SIMPLE ARRAY
1
p+E[3] RSHAPE SHOWS 4 MATRIX
22
+ 0 3p99 REMPTY ARG RETURNS PROTOTYPE
0
tort aPROTOTYPE IS A CHARACTER BLANK

t 0p(1 2 3) '"ABC!
000

For simple arrays, the result of monadic + is the same as it would be with
the dyadic take function (+) when all the items of the left argument are 1.
Formally, this can be represented as follows: +B <+ ((ppB)p 1)+ B. However,
note that take does not disclose items of an array. First is also related to the
pick (o) function as follows: +B <+ (< (ppB)p1)>B

Possible Errors Generated

None.

1-78 APL Reference Manual

Primitive Mixed Functions
v Monadic Format

% Monadic Format

Form

9B
% 1s formed with T and o

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Character

Rank 1 ppB for simple numeric or heterogeneous B
ppB for simple character B
2 for nonsimple B

Shape (T 14y pB)<«>(1+ presult) for simple B
Depth 1 (simple)

Implicit Arguments
OPP (Determines decimal precision)
[¥G (Determines minus sign placement)
Opc¢ (Displays control of enclosed arrays)
Description

The monadic # function formats its argument array as a character array,
making it look as it would appear when displayed by APL.

Thus, if the argument array is already of type character, the result is identical
to the argument:

APL Reference Manual 1-79

Primitive Mixed Functions
7 Monadic Format

(«4«3 5p'STAN SAM STEVE:
STAN
SAM
STEVE
54
STAN
SAM
STEVE
074
35

If the argument array is of type numeric, the result appears to be identical to
the argument; however, the blank characters displayed along with the items
are actually part of the result array. For example:

A«?2 U4p18

B34

A
1234
56 7 8

pA
24

B
1234
56 78

0B
27

(" ",B)[;2xu4]
1234
5678

Note the difference between the shapes of the numeric array 4 and the
character array B.

Since it is not feasible to indicate both shape and depth in a two-dimension
display, the format of an enclosed array is always a matrix. Shape is indicated
by blank lines in the same manner as for simple arrays. Display of depth is
controlled by 0D, the display control system variable.

Further examples:

O0«POL«2 3p ('ABC') 0 (c,2) 99 'A' 0
t--—+ 0 +---+

|ABC]| [+-+]
===t 1211
[+-+]
+--—+
99 A0
pPOL
23

1-80 APL Reference Manual

Primitive Mixed Functions
¥ Monadic Format

0«B<«¥POL
t--=1 0 +---+
| ABC| [+-+]
===+ 21|

f-+]

t---t
99 40

pB aTHE SHAPES OF B AND POL ARE DIFFERENT

O«XT+« 3 p (20 p 3) (') (10) ACREATE AN EMPTY ARRAY
++ ++ t++

NEREE
] ++ ++
pXT
O«B«3XT
t+ o+t o+t
NEREE

[++ ++

p B

Possible Errors Generated

None.

APL Reference Manual 1-81

Primitive Mixed Functions
7 Dyadic Format

¥ Dyadic Format

Form

AT B
7 1s formed with v and -

Left Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Numeric
Shape Any
Depth 0 or 1 (simple)

Result Domain

Type Character
Rank 1lppB
Shape (“1%pB) ,+/1 04 (2,70.5%p,A)pA

(provided no widths are 0)
Depth 1 (simple)

Implicit Arguments

ONG (determines minus sign placement)

Description

The dyadic = function formats its right argument according to the width and
precision information supplied by its left argument.

The left argument generally contains one pair of numbers for each column (last
axis) in the right-argument array. The first number specifies the width of the
field; the second number controls the print precision. For example:

1-82 APL Reference Manual

Primitive Mixed Functions
7 Dyadic Format

[«B<«2 4p18

1234
5678

A«5 2 41 4 06 3

R«43%B

R
1.00 2.0 3 4.000
5.00 6.0 7 8.000

PR
2 18
Because the right argument has four columns, the left argument (4) has four
pairs of numbers. The last axis of the formatted array () has a length of
19, the sum of the widths specified in 4 (5+ u4+4+6). The second number of
each pair in 4 specifies how many digits are to be displayed to the right of the
decimal point.

You do not have to specify more than one pair of numbers as the left argument.
If you specify only one pair, that pair is replicated a number of times equal to
the length of the last axis of the right argument.

The last axis of the formatted array Y, below, has a length of 36 because the
format function specifies that each of the three columns should have a width of
12. The items are displayed with four digits to the right of the decimal point
because the second number of the left argument pair is 4.

Note the difference in the results when the array is formatted so that all
columns have a width of 9 and a print precision of 2, and then a width of &
and a print precision of 0.

If a print-precision specification in the left argument is negative, the associated
item is formatted in scientific rather than decimal form, and the argument
represents the number of digits in the item’s mantissa.

[<X+2 3p 31.16 0 ~1.07 ~15.578 8 ~235.61
31.16 0 T1.07
715.578 8 235.61

pX
23
[J«Y«12 usX ~
31.1600 0.0000 1.0700
~15.5780 8.0000 7235.6100
pY
2 36
A<9 23X
A —_
31.16 0.00 1.07
715.58 8.00 ~235.61
pd
2 27

APL Reference Manual 1-83

Primitive Mixed Functions
¥ Dyadic Format

J«R+6 03X
31 0 1
16 8 236
pR
2 18
0«B+9 ~27X
3.1F1 0.0E0 T1.1F0
“1.6F1 8.0E0 T2.4E2
0«C+7 ~13X
3E1 0F0 “1FE0
T2E1 8K0 T2F2

The width specification in the left argument may be omitted or may be 0. If
it is omitted, the entire left argument must be a singleton and is extended to
(2x7140B)p 0,4, for arrays 4 and B. If the width specification is 0, then
APL uses the minimum width possible, allowing for one blank between the
formatted columns.

Two more examples of dyadic # follow. The first illustrates the formatting of a
rank 3 array; the second shows how you can use ¥ to format tables.

f«4+2 2 2p18

~ o, w =
@ o = N

0«C+5 2%4
1,00 2.00
3.00 4.00

5.00 6.00
7.00 8.00
pC
2 2 10
O«B+3 3p 1 00101111

1-84 APL Reference Manual

Primitive Mixed Functions
7 Dyadic Format

Second example:

aTABLE FORMATTING
ROWS+«5 7p'APL FORTRANCOBOL BASIC PLI !
COLS«' USERS PROGS SYST
FORM«<5 3pA
((7+" ') ;ROWS),COLS;7 0¥FORM
USERS PROGS SYSTS

APL 1 2 3
FORTRAN 4 5 6
COBOL 7 8 1
BASIC 2 3 Y4
PLT 5 6 7

If the right argument to the dyadic format function is empty, the shape of the
result is determined by the following function:

VZ«L EMPTY SHAPE R ;C;HW;P
(1] L«{{"1tpR),2)p((1=0,L)/0),L
(2] WeL[;1]
[3] P«L[;2]
(4] CeW,(P+3),2,6,[1.5]6-P
[5] Z«{W=0)x2+{-xP)+< 1
(6] C«(Z¢C)[51]
(7] 2«(T1+4oR),(-W[1]=0)++/C
(8] v

For example:

p5 0 0 2%0 2p5
0 10

p0 2 5 0%0 2p5
09

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH FRROR

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (NEGATIVE NUMBER NOT ALLOWED)

APL Reference Manual 1-85

Primitive Mixed Functions
¥ Dyadic Format

15 DOMAIN ERROR (WIDTH TOO SMALL)
27 LIMIT ERROR (INTEGER TOO LARGE)

27 LIMIT FERROR (PARAMETER OUT OF RANGE)

186 APL Reference Manual

Primitive Mixed Functions
¥ Monadic Grade Down

Y Monadic Grade Down

Form

yB VYLKXIB
¥ is formed with v and |

Argument Domain

Type Homogeneous
Shape Matrix, vector, or scalar (not singletons of rank >2)
Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer
Rank 1

Shape (épB) [K]

Depth 1 (simple)

Implicit Arguments

0I0 (yB when ,010 « 1 1is identical to 1 + ¥B when ,010 <« 0)

Description

The monadic ¥ function returns a numeric vector whose items can be used to
sort the items of the argument in descending order. Thus, grade down does not
actually sort arrays. It creates a permutation vector of the index numbers of
the argument array’s items, and this vector can then be used to sort the array.

Sorting a vector requires two steps. First, the vector is the argument to the
grade down function, and then the result is used to index the vector:

A2 97 4 3 10 4
{«B<y4
6234751
ALB]
10 97 4432

APL Reference Manual 1-87

Primitive Mixed Functions
¥ Monadic Grade Down

If two or more items of a vector or matrix have the same value, the order of
the items is determined by their relative positions in the original array (this
is called a stable sort). For character arguments, the collating sequence is
determined by the value of JAV. Note that for numeric arguments, the result i:

not J CT-dependent.

When you use the grade down function to sort a matrix, APL treats each row
or column as a string. Thus, you can use the function to sort row by row or
column by column, but not to sort individual items within a row or column.
When applied to a matrix, the grade down function produces a vector whose

length is equal to the number of rows or columns in the matrix.

The following sorts the matrix B by rows and then sorts the matrix by columns

0«B+3 5p 32150319703208¢0

32150
31970
32080
YB
132
YI218
132
BLYB;]
32150
32080
31970
yL11B
11235
BL;¥[11B]
53210
73190
83200

In this example, the original first row remains the first row, the third row
becomes the second row, and the second row becomes the third row. Note that

YB and V¥ [2] B are equivalent.

You can also sort character arrays by rows or by columns. For example:

1-88 APL Reference Manual

Primitive Mixed Functions
¥ Monadic Grade Down

(«B+3 Sp'ALLENALAN ALLAN'
ALLEN
ALAN
ALLAN

B[yB;]
ALLEN
ALLAN
ALAN

B[;¥[1]B]
NLLEA
LANA
NLLAA

If the argument to ¥ is a scalar, the ravel function is applied to extend it to a
one-item vector, and the result of the ¥ function is ,01710:

R<y5
R
1

pPR
1

Note that 0 CT is not an implicit argument to the grade down function.

Possible Errors Generated

9 RANK ERROR (NOT A SCALAR, VECTOR, OR MATRIX)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

27 LIMIT ERROR (INTEGER TOO LARGE)

28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

29 AXIS LENGTH ERROR (NOT SINGLETON)

30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
30 AXIS DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

30 AXIS DOMAIN ERROR (INCORRECT TYPE)

30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

APL Reference Manual 1-89

Primitive Mixed Functions
¥ Dyadic Grade Down

Y Dyadic Grade Down

Form

AV B
¥ 1s formed with v and |

Left Argument Domain

Type Character
Shape Any
Depth 0 or 1 (simple)

Right Argument Domain

Type Character
Shape Any
Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer
Rank 1

Shape 1tpsB

Depth 1 (simple)

Implicit Arguments

070 (AYB when ,0I0 < 1 is identical to 1+ A¥B when ,0I0 <« 0)

Description

The dyadic ¥ function returns a numeric vector whose items can be used to
sort the items along the first axis of the right argument in descending order.
(The sort is performed according to the collating sequence defined in 4.) Grade
down does not actually sort arrays; it creates a permutation vector of the index
numbers of the argument array’s items, and this vector can then be used to
sort the array. If either argument is empty, the result of the grade function is

1 1+ p B. If the length of the first axis of B is one, then the result is ,070.

1-90 APL Reference Manual

Primitive Mixed Functions
¥ Dyadic Grade Down

If two or more items of the right argument have the same value, the order of
the items is determined by their relative positions in the original array (this is
known as a stable sort).

Sorting an array requires two steps. First, the array is the right argument
to the grade function, and then the result is used to index the array. The
left argument determines the order in which APL collates the items of the
right argument; APL evaluates the collating sequence from right to left. For
example:

ALPHA1«<'IVXLCDM' o N<'CMXIVCILI'
X « [0 « ALPHA1YN
216835478
N[X3
MCCLXVIII
DATES<[IBOX '"MCCLXVIII
VII
MLXXIII
DCCCXXIIT
CLXVI
MDCLIII
CLXXI
XVIII®
X <« [0 « ALPHA1YDATES
61347582
DATES[X;]
MDCLIIT
MCCLXVIII
MLXXIII
DCCCXXIII
CLXXI
CLXVI
XVIIT
VII
HEX<' 0123456789ABCDEF!
HD+[JBOX '8E7
3DA
976
AE8
Fg
3D5
4o’

APL Reference Manual 1-91

Primitive Mixed Functions
¥ Dyadic Grade Down

X « [0 « HEXYHD
4312657
HDTX;]
AE8
976
8E7
3DA
3D5
F8
490

To sort an array that contains more than one font, you can use sequences
similar to the following, depending on the desired result:

aZ SORTS AFTER 7 AND BEFORE Y
ALPHA2«'AABBCCDDEEFFGGHHIIJJKKLLMMNNOQFPP

WORDS«{1BOX 'HOPE

X « 0 « ALPHA2YWORDS
87263541

WORDS[X;]
PALM
NEAR

nZ SORTS AFTER 4 AND BEFORE Y

X « O « ALPHASYWORDS
72358641

WORDS(X;]
NEAR

1-92 APL Reference Manual

Primitive Mixed Functions
¥ Dyadic Grade Down

If any items appear in the right argument when they have not been specified
in the left argument, APL considers them equal and places them at the end of
the sort sequence. For example:

ALPHAY«'"ABCDEFGHIJKLMNOPQRSTUVWNXYZ'
GAMES+[JBOX 'FREEZE TAG
MONOPOLY

HIDE AND SEEK
BACKGAMMON
FRISBEE'
X « [0 « ALPHAYVGAMES
234651
GAMES[X;]
MONOPOLY

HIDE AND SEEK
FRISBEE
BACKGAMMON
FREEZE TAG

When the left argument has a rank greater than one, each axis represents

a level of comparison and the last axis receives the highest priority. For
example, when the left argument has two rows, each containing an alphabet
in a different font, APL gives higher priority to the order specified by the
columns (last axis) than it gives to the fonts specified by the rows (first axis).
For this reason, the word HELM precedes the word ZEEL in the end result of
the following example:

APL Reference Manual 1-93

Primitive Mixed Functions
¥ Dyadic Grade Down

ALPHAS+'ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ'
WORDS+{IBOX 'HOPE

X+ 0 « ALPHASYWORDS
72358614

WORDS[X;1
NEAR

Duplicate items, such as character blanks, in the left argument (4) may yield
an unexpected collating sequence. APL compares the locations of a duplicate
item and bases its position in the final collating sequence on this comparison.
The final location of a duplicate item is the minimum value along each axis
for each occurrence. For example, if a duplicate ¥ appears at locations 1 1 3
and 2 1 2 in a three-dimensional array, then the position of the ¥ in the final
collating sequence is 1 1 2. If the position 1 1 2 is occupied by a value other
than ¥, the two are treated as equivalents:

{«D+2 2 3p'ABCDEFGCIJKL'
ABC
DEF

G¢CI
JKL
(JeB+«t 3p'ABFAAFACFABF!
ABF
AAF
ACF
ABF
B[DYB;] aNOTE THAT C AND B ARE EQUIVALENT
ABF
ACF
ABF
AAF

1-94 APL Reference Manual

Primitive Mixed Functions
¥y Dyadic Grade Down

In the following example, D appears at locations 1 2 and 2 1, and B appears
at locations 1 1 and 2 2. In the final collating sequence, both are positioned at
location 1 1 and are treated as equivalent values:

{I«L<«2 2p'BDDB'
BD
DB
{d«R<«5 2p'DBBDBDDBBD'
DB
BD
BD
DB
BD
LYR aD AND B ARE EQUIVALENT, NO CHANGE
12345

For more information about how the dyadic grade function is implemented, see
Smith, H.J., "Sorting - A New/Old Problem.” APL Quote Quad 9 (June 1979)
ppl23-127.

Possible Errors Generated

10 LENGTH ERROR (ARGUMENT STRING IS TOO LONG)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

30 AXIS DOMAIN ERROR (INCORRECT OPERATION)

APL Reference Manual 1-95

Primitive Mixed Functions
A Monadic Grade Up

A Monadic Grade Up

Form

AB ALK]B
4 is formed with A and |

Argument Domain

Type Homogeneous
Shape Matrix, vector, or scalar (not singletons of rank > 2)
Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer
Rank 1

Shape (¢pB)LK]

Depth 1 (simple)

implicit Arguments

0I0 (4B when 70 « 1isidenticalto 1 + 4B when 170 « 0)

Description

The monadic 4 function returns a numeric vector whose items can be used to
sort the items of the argument in ascending order. Thus, grade up does not
actually sort arrays; it creates a permutation vector of the index numbers of
the argument array’s items, and this vector can then be used to sort the array.

Sorting a vector requires two steps. First, the vector is the argument to the
grade up function, and then the result is used to index the vector:

A€2 9 7 4 3 10 4

O«B+A
15473268

A(B]
23447910

1-96 APL Reference Manual

Primitive Mixed Functions
A Monadic Grade Up

If two or more items of a vector or matrix have the same value, the order of the
items is determined by the relative positions of the items in the original array
(this is called a stable sort). For character arguments, the collating sequence is
determined by the value of JAV. Note that for numeric arguments, the result is
not] CT-dependent.

When you use the grade up function to sort a matrix, APL treats each row

or column as a string. Thus, you can use the function to sort row by row or
column by column, but not to sort individual items within a row or column.

'~ When applied to a matrix, the result of the grade up function is a vector whose
length is equal to the number of rows or columns in the matrix.

The following sorts the matrix B by rows and then by columns:

B+«35p321503197032028290

AB
231

A(21B
2 31

BLAB;]
31970
32080
32150

AL11B
53214

BL;4[1]1B]
01235
09137
002 38

In this example, the original second row becomes the first row, the third row
becomes the second row, and the first row becomes the third row. Note that 4 B
and 4 [2] B are equivalent. You can also sort character arrays by rows or by
columns. For example:

0+«B+3 5p'ALLENALLINALLAN!
ALLEN
ALLIN
ALLAN
B[4B;]
ALLAN
ALLEN
ALLIN
B(;4[1]B]
AELLN
AILLN
AALLN

APL Reference Manual 1-97

Primitive Mixed Functions
A Monadic Grade Up

If the argument to 4 is a scalar, the ravel function is applied to extend it to a
one-item vector, and the result of the 4 function is ,0J10:

R<AS

R
1

ppR
1

Note that 0 ¢T is not an implicit argument to the grade up function.

Possible Errors Generated

9 RANK ERROR (NOT A SCALAR, VECTOR, OR MATRIX)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

27 LIMIT FRROR (INTEGER TOO LARGE)

28 AXIS RANK EFERROR (NOT VECTOR DOMAIN)

29 AXIS LENGTH ERROR (NOT SINGLETON)

30 AXIS DOMAIN FRROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

30 AXIS DOMAIN FRROR (INCORRECT TYPE)

30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-98 APL Reference Manual

Primitive Mixed Functions
A Dyadic Grade Up

A Dyadic Grade Up

Form

AAB
A is formed with A and |

Left Argument Domain

Type Character
Shape Any
Depth 0 or 1 (simple)

Right Argument Domain

Type Character
Shape Any
Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer
Rank 1

Shape itp 5B

Depth 1 (simple)

Implicit Arguments

0I0 (AAB when 0I0 « 1 1sidentical to 1 + 4AB when 0I0 « 0)

Description

The dyadic 4 function returns a numeric vector whose items can be used to
sort the items along the first axis of the right argument in ascending order.
(The sort is performed according to the collating sequence defined in 4.) Grade
up does not actually sort arrays; it creates a permutation vector of the index
numbers of the argument array’s items, and this vector can then be used to
sort the array. If either argument is empty, the result of the grade function is
1 1+ p B. If the length of the first axis of B is one, then the result is ,[0 I0.

APL Reference Manual 1-99

Primitive Mixed Functions
4 Dyadic Grade Up

If two or more items of the right argument have the same value, the order of
the items is determined by their relative positions in the original array (this is

known as a stable sort).

Sorting an array is accomplished in two steps. First, the array is the right
argument to the grade function, and then the result is used to index the array.
The left argument determines the order in which APL collates the items of the

right argument. For example:

ALPHA1«"IVXLCDM'
Ne«'CMXIVCILI'
X « [0 « (QALPHAL)YMN
216835479
Nl
MCCLXVIII
DATES+[BOX 'MCCLXVIII
VIII
MLXXIII
DCCCXXIII
CLXVI
MDCLIII
CLXXI
XVIII!
X « [0 « ALPHALMDATES
285743168
DATES(X;]
VIII
XVIII
CLXVI
CLXXI
DCCCXXIII
MLXXIII
MCCLXVIII
MDCLIII
HEX+' 01234567834BCDEF!
HD<[1BOX '8E7
3D4
976
AE8
F8
305
40!

1-100 APL Reference Manual

Primitive Mixed Functions

X « 00 + HEXAHD

7562134
AD{X;]

40

F8

3D5

3DA

8E7

976

AE8

A Dyadic Grade Up

To sort an array that contains more than one font, you can use sequences

similar to the following, depending on the desired resulit:

ALPHA2+0+«'AABBCCDDEEFFGGHHIIJJKKLLMMNNOOPPQ.

X + 0 « ALPHA2AWORDS
4 1536278
WORDSTX;]
HELM
HOPE
HEEL
HEEL
NEST

X « [1 « ALPHA3ANORDS
41685327

APL Reference Manual 1-101

Primitive Mixed Functions
A Dyadic Grade Up

WORDS[X;]
HELM
HOPE
NEST
PALM
HEEL
HEEL

If any items appear in the right argument when they have not been specified
in the left argument, APL considers them equal and places them at the end of
the sort sequence. For example:

ALPHA4+"ABCDEFGHIJKLMNOPQRSTUVWXYZ'
GAMES<[1BOX 'FREELE TAG
MONOPOLY

HIDE AND SEEK
BACKGAMMON
FRISBEE!
X « [0 « ALPHAYAGAMES
516423
GAMES(X;]
BACKGAMMON
FREEZE TAG
FRISBEE
HIDE AND SEEK
MONOPOLY

When the left argument has a rank greater than one, each axis represents

a level of comparison and the last axis receives the highest priority. For
example, when the left argument has two rows, each containing an alphabet
in a different font, APL gives higher priority to the order specified by the
columns (last axis) than it gives to the fonts specified by the rows (first axis).
For this reason, the word #EEL precedes the word HELM in the end result of
the following example:

1-102 APL Reference Manual

Primitive Mixed Functions
4 Dyadic Grade Up

ALPHAS+«2 26p'ABCDEFGHIJKLMNOPQRSTUVNXYZ
ABCDEFGHIJKLMNOPQRSTUNXYZ'
WORDS<[IBOX 'HOPE

X <« [0 « ALPHASAWORDS
53412768
WORDS[X;]
HEEL
HEEL
HELM
HOPE

Duplicate items, such as character blanks, in the left argument (4) may yield
an unexpected collating sequence. APL compares the locations of a duplicate
item and bases its position in the final collating sequence on this comparison.
The final location of a duplicate item is the minimum value along each axis for
each occurrence. For example, if a duplicate ¥ appears at locations 1 1 3 and
212 in a 3-dimensional array, then the position of the ¥ in the final collating
sequence is 1 1 2. If the position 1 1 2 is occupied by a value other than v, the
two are treated as equivalents.

0«D«2 2 3p'ABCDEFGCIJKL'
ABC
DEF

GCI
JKL
O«B+«Y4 3p'ABFAAFACFABF!
ABF
AAF
ACF
ABF
BIDAB;] aNOTE THAT C AND B ARE EQUIVALENT
AAF
ABF
ACF
ABF

APL Reference Manual 1-103

Primitive Mixed Functions
A Dyadic Grade Up

In the following example, D appears at locations 1 2 and 2 1, and B appears
at locations 1 1 and 2 2. In the final collating sequence, both are positioned at
location 1 1 and are treated as equivalent values.

BD
DB

DB
BD
BD
DB
BD

{J«L«2 2p'BDDB'

{J«R<«5 2p'DBBDBDDBBD'

LAR aD AND B ARE EQUIVALENT, NO CHANGE

12345

For more information about how the dyadic grade function is implemented, see
Smith, H.J., "Sorting - A New/Old Problem," APL Quote Quad 9 (June 1979)
ppl123-127.

Possible Errors Generated

10

15

15

30

30

LENGTH ERROR (ARGUMENT STRING IS TOO LONG)
DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT OPERATION)

1-104 APL Reference Manual

Primitive Mixed Functions
1 Index Generator

1 Index Generator

Form

1B

Argument Domain

Type Nonnegative near-integer
Shape Singleton
Depth 0 or 1 (simple)

Result Domain

Type Nonnegative integer
Rank 1

Shape ,B

Depth 1 (simple)

Implicit Arguments

0I0 (:Bwhen 70 « 1 isidentical to 1 + 1 B when 0I0 <« 0)

Description

For an argument B, the monadic : function generates a vector of B consecutive,
ascending integers starting with the value of the index origin. For example:

Jede1t
12 34
pA

2%112 APOWERS OF 2
2 4 8 16 32 64 128 256 512 1024 2048 4096
2 50110
4 5
10
X<7 1 3 4
ipX
1234

~ =
@D N
0w

APL Reference Manual 1-105

Primitive Mixed Functions
1 Index Generator

If the index origin is 1, the integers have values 1 through B; if the index
origin is 0, the integers have values 0 through B - 1:

{10
1

15
12345

0I0+0

15
01234

Regardless of the value of 070, 1 0 is the numeric empty vector:

{APL outputs a blank line)

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NEGATIVE NUMBER NOT ALLOWED)
15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

1-106 APL Reference Manual

Primitive Mixed Functions
1 Index Of

1 Index Of

Form

A1 B

Left Argument Domain

Type Any
Shape Vector domain
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Nonnegative integer
Rank poB

Shape 0B

Depth 0 or t (simple)

Implicit Arguments

0CT (determines comparison precision)

070 (41 B when JI0 «+ 1 isidenticalto 1 + 41 B when[110 « 0)
Description

The dyadic 1 function returns the position of the first occurrence in the left
argument of the corresponding items in the right argument. For example:

4 968 16 4
31

The result indicates that 6 is the third item in the left argument and u is the
first item.

APL Reference Manual 1-107

Primitive Mixed Functions
1 Index Of

The result will always have the same shape as the right argument, so that an
index is returned for each of the values in the right argument. If a particular
value in the right argument does not appear in the left argument, APL
supplies a value equal to the last index value of the left argument plus one.
For example:

"ABCDEFGH' 1 'HEADER!
8514589

The value R does not appear in the left argument, so APL returns the value 9
(there are eight values in the left argument) for the position corresponding to
R.

Note that the dyadic : function is J70-dependent: when] I0 is 0, each item
in the result is one less than when 010 is 1:

010+0
"ABCDEFGH' ' HEADER'
7403148

If the right argument of the dyadic 1 function is empty, the result is empty. If
the left argument is empty, the result is all 1s (J70«~>1):

(10)12 5p110
11111
11111
Note that comparisons of the items in the right and left arguments are defined
in terms of the match (=) function (and so are [] ¢T-dependent). Because match
allows mixed-type arguments, you can compare characters with numbers.
However, such a comparison is always false, so that if you use mixed-type
arguments for dyadic 1, the items in the result will be equal to the last index

value of the left argument plus one.

Further examples:

O«VIC+'4BC' ©
+--=+ 0
[ABC|
+---+
O«VOOF+ '4B' 0 "3 'ABC' 39 1
+--+ 0 3 +---+ 99 1
[AB] |ABC|
+-=-+ +---+

1-108 APL Reference Manual

Primitive Mixed Functions

1 Index Of
VOOF 1 VIC
4 2
aNOTE THAT DYADIC 1 IS OIO-DEPENDENT
010+0
VOOF VIC
31
O«XIP+< 0 p {1 2 3) 'ABC"
(APL outputs a blank line)
O«V<(1 2 3) 'ABC!
e + --—t
[1 2 3] |ABC]
- + ==t
V v XIP AEMPTY RIGHT ARGUMENT
(APL outputs a blank line)
p V 1 XIP
0
XIP v V REMPTY LEFT ARGUMENT
00

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

APL Reference Manual 1-109

Primitive Mixed Functions
n Intersection

N Intersection

Form

AnB

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type See explanation below
Rank 1

Shape pU((,A)eB)/ A
Depth -

Implicit Arguments

O cr (Determines comparison precision)

Description

The dyadic n function returns the common items found in both arguments.
The result is the intersection of the arguments with the duplicate items
removed. Note that the order of the items in the result is not predictable. For
example:

1-110 APL Reference Manual

Primitive Mixed Functions
n Intersection

'CBEFGH' n 2 3p'"ABCD!

CB
(2 3p "ABCD') n 'CBEFGH!
BC
(16) n 57 34
3 45
57 3 40016
345

You can use the intersection function to remove duplicate items from an
argument. However, the unique function is the preferred method for this task.
For example:

A<1 212 345 1 65 34 67 1 34 aDUPLICATES ARE 1 AND 34
An A4
1 212 345 65 34 67

u 4
1 212 345 65 34 67

The type of the result depends on the types of the arguments, as shown in the
following table:

Argument Resulting Type

Neither empty Same as left argument

One empty Same as nonempty argument
Both empty Same as left argument

The n function compares items in terms of the match (=) function, which uses
the value of 0 ¢T. Since match allows mixed-type arguments, you can compare
characters with numbers. However, such a comparison is always false, so that
if you use mixed-type arguments for dyadic n, the result will be empty.

Note that the following definition applies: 4nB «> u ((,4)=B)/ ,A, where
the order of the items may differ.

Further examples:

[J¢A+«c, 3
+-+
[3]
+-+
[0«B<(1 2 5)
125

APL Reference Manual 1-111

Primitive Mixed Functions
n Intersection

O«WRL«(c,3) (12 5) 71

ot o= + 1
{+-+] |1 2 5}
[131] 4= t
b-+1
tomt
O«MIC«2 2 p A B 710
e +
[+-+] |1 2 5]
FTE 4=mmms +
[+-+1
+---1
"1 0
MIC n WRL AZERO NOT IN INTERSECT
to--t oo + 71
f+-+1 |1 2 5|
AEIREE
[+-+]
+---1
MIC v <,3 aNO INTERSECTION BETWEEN TWO ARGUMENTS
e + 710 +-4
[+-+] 11 2 5 3]
[13]] +==~-- + +-+
[+-+]
+---+
O«VAN«(1 2 3) 'ABC' (c,1 2 3) ACREATE VAX
R e +
{12 3] |ABC| |+----- +]
to-m- + +---+ |1 2 3]
[+----- +]
e +
A«(1 2 3) 4 ACREATE NEW 4
A n VAN
tommmm +
12 3]
e +

Possible Errors Generated

None.

1-112 APL Reference Manual

Primitive Mixed Functions
= Match

= Match

Form

A=B
= is formed with = and _

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Boolean

Rank 0

Shape 1 0 (scalar)
Depth 0 (simple scalar)

Implicit Arguments

0cr (determines comparison precision)

Description

The dyadic = function determines whether the two arguments are identical in
rank, shape, and value. The result is a Boolean scalar: true, if the arguments
are identical, and false if they are not. For example:

APL Reference Manual 1-113

Primitive Mixed Functions

= Match

VABCD' = 'ABCD!
1

YVABCD' = 'ACBD!
0

YABCDY = 2 2p‘'ABCD!
0

AT = A
0

123=123
1

123=12
0

123=1223
0

123=1"1"12 3"
0

'Y= 10

0

The = function compares the simple items in terms of the equal (=) function
and identifies equal items based on the value of [JCT. For example:

acr
1715

4L = 4-5F 16
1

Further examples:

[ed«y
"

(J«B<«c, i
+-+
[¢]
+-+

A =B ANOTE DIFFERENCE BETWEEN = AND =
0

A =B
+-+
{1
-+

(«VIC«(1 2 3) (c,i)
i + ot--—+
|12 3] [+-+]
t----- + 4]

-+]
+---+

[JeN<c,u
-t
Ju
+-+

1-114 APL Reference Manual

Primitive Mixed Functions
= Match

O«RED+(1 2 3),N

123 +-+
[4]
+-+
RED = VIC
0
Oe@«c(1 2 3)
to---- +
[1 2 3]
s +

Possible Errors Generated

None.

APL Reference Manual 1-115

Primitive Mixed Functions
B Matrix Divide

E Matrix Divide

Form

ABB
B is formed with 0 and+

Left Argument Domain

Type Numeric
Shape Matrix, vector, or scalar (not singletons of rank < 2)
Depth 0 or 1 (simple)

Right Argument Domain

Type Numeric
Shape Matrix, vector, or scalar (not singletons of rank < 2)
Depth 0 or 1 (simple)

Result Domain

Type Numeric

Rank Ol 2+ (ppA)+ppB
Shape (1+4pB),14+p4
Depth 0 or 1 (simple)

Implicit Arguments
OcT (used in the test for singularity)

Description

For arguments 4 and B, the dyadic B function determines the generalized
solution R to the linear system 4=B+ . x R. If B has more rows than columns,
then dyadic B returns the least-squares solution to the linear system.

The matrix divide function treats scalars and vectors as one-column matrices
(except when it is determining the shape of the result).

1-116 APL Reference Manual

Primitive Mixed Functions
B Matrix Divide

The following example shows the use of the matrix division function in solving
the linear equations 3A+B=9 and 2A-B=1:

X+9 1
Y«2 2p3 12 1
XBY

23

In the expression XY, ¥ is a matrix whose values are the coefficients of the
equations, and X is a vector containing the constant terms 9 and 1.

The result is a vector in which the first item is the value of A in the linear
equations, and the second is the value of B. The following example shows other
uses of matrix divide, including a least-squares solution:

O«A<({,[1.5]2 5), 1

21
51
B«10 19
oJ«X+BBEA
3y
2
A+ xX
10 19

O«A«(,[1.5]15), 1

DE W N e
e e e e

opp

10
B+2.,001 2.998 4.002 4,997 6.01
O«X+BHA

1.0017 0.9965
B-A+.xX

0.0028 0.0019 0.0004 ~0.,0063 0.005
J«X+B4A

T0.2 T0.1 79,356402631E°19 0.1 0.2

0.8 0.5 2.,000000000E°1 0.1 "0.4

X+.xA
1.000000000E0 ~1.040834086E 17
2.775557562E 17 1.000000000F0

For more information about how the matrix divide function is implemented,
see Jenkins, M. A., The Solution of Linear Systems of Equations and Linear
Least Squares Problems in APL. New York: IBM Scientific Center, Technical
Report No. pp320-2989, June 1970; and Businger, Peter, and Golub, Gene H.
"Linear Least Squares Solutions by Householder Transformations." Numerische
Mathematik 7 (1965) pp269-276.

APL Reference Manual 1-117

Primitive Mixed Functions
F Matrix Divide

Possible Errors Generated

9 RANK EFRROR (NOT A SCALAR, VECTOR, OR MATRIX)
10 LENGTH ERROR (FEWER ROWS THAN COLUMNS)

10 LENGTH ERROR (NUMBER OF ROWS MUST MATCH)

15 DOMAIN ERROR (DIVISION BY ZERO)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPF)

15 DOMAIN ERROR (SINGULAR MATRIX)

27 LIMIT ERROR (FLOATING OVERFLOW)

1-118 APL Reference Manual

Primitive Mixed Functions
B Matrix Inverse

H Matrix Inverse

Form

BB
B 1s formed with 0 and +

Argument Domain

Type Numeric
Shape Matrix, vector, or scalar (not singletons of rank < 2)
Depth 0 or t (simple)

Result Domain

Type Numeric

Rank ppB

Shape $pB

Depth 0 or 1 (simple)

Implicit Arguments
0c¢T (used in the test for singularity)

Description

The monadic 8 function inverts a matrix to facilitate matrix division and a
variety of other matrix operations.

If the argument is a matrix, its rows must be linearly independent.

If the argument is a scalar or vector, the result is a scalar or vector,
respectively, but the result’s items are obtained by treating the argument
as a one-column matrix. Formally expressed, for an argument B :

BB «~>((I,I)p1,(I+]|4eB)p0)HA (2¢ (pB),11))pB

Note that the matrix product of B and BB is the identity array. Formally
expressed, for an argument B:

B+.xHB+>1I

APL Reference Manual 1-119

Primitive Mixed Functions
B Matrix Inverse

For example:

O«A«2(13)0.+ 1+13

1 0.5 0.3333333333
0.5 0.3333333333 0.25
0.3333333333 0.25 0.2
_|:|<—X<—EA
9 36 30
736 192 180
30 “180 180
X+.x4

1.000000000F0 2.220446049E 16 1.665334537E 16
“h.440892099E715 1.000000000F0 T1,332267630F 15
4. 440892099EF 15 2.220446049E 15 1.000000000E0

For more information about how the matrix inverse function is implemented,
see Jenkins, M. A., The Solution of Linear Systems of Equations and Linear
Least Squares Problems in APL. New York: IBM Scientific Center, Technical
Report No. pp320-2989, June 1970; and Businger, Peter and Golub, Gene H.
"Linear Least Squares Solutions by Householder Transformations.” Numerische
Mathematik 7 (1965) pp269-276.

Possible Errors Generated

9 RANK ERROR (NOT A SCALAR, VECTOR, OR MATRIX)

10 LENGTH FRROR (THERE ARE FEWER ROWS THAN COLUMNS)
15 DOMAIN ERROR (DIVISION BY ZERO)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPFE)

15 DOMAIN ERROR (SINGULAR MATRIX)

27 LIMIT ERROR (FLOATING OVERFLOW)

1-120 APL Reference Manual

Primitive Mixed Functions
¢ Membership

€ Membership

Form

Ae B

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Boolean

Rank ppA

Shape pA

Depth 0 or 1 (simple)

Implicit Arguments

0CT (determines comparison precision)

Description

The dyadic ¢ function determines whether particular items of the left
argument array occur as items of the right argument array. The result is

a Boolean array whose shape is the same as that of the left argument: a 1
indicates that the corresponding item in the left array is present somewhere in
the right array; a 0 indicates that the item is not present. For example:

A<2 3p7 8 2 4 6 9
A€1b
001
110

APL Reference Manual 1-121

Primitive Mixed Functions
¢ Membership

The result identifies the items in 4 that are also items in 1 6.

You can use the compression function (/) in conjunction with the membership
function (¢) to identify the particular items that are members of both
argument arrays:

{J«A«'"ABCDEFGH' ¢ ' HEADED'
10011001

A/'ABCDEFGH!
ADEH

Note that comparisons of the items in the right and left arguments are defined
in terms of the match (=) function (and so are [¢T-dependent). Since match
allows mixed-type arguments, you can compare characters with numbers.
However, such a comparison is always false, so that if you use mixed-type
arguments for dyadic ¢, the result will be all 0 s.

Further examples:

0«ACT«(1 2 3) 'ABC' (c,4)
tom-— + +---+ t---1%
|1 2 3| |ABC| |+-+]
- + +---+ U]}
[+-+]
-t
0«BOY+2 2 p (c,4) 'BC' (12 3) 0
t---+ +--1%
f+-+] |BC|
TG

ACT ¢ BOY

Possible Errors Generated

None.

1-122 APL Reference Manual

Primitive Mixed Functions
> Pick

> Pick

Form
A>B

Left Argument Domain

Type Nonnegative near-integer
Shape Vector domain
Depth Less than or equal to 2

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Any
Rank Any
Shape Any
Depth (=B)-pA (provided 4 is along the deepest path)

Implicit Arguments

0I0 (A>B when [J1I0+«1 is identical to (.1+A) >B when JI0+«0)

Description

The dyadic > function selects and discloses an item from an existing array.
The items in 4 specify the coordinates of items in B. For example:

V<21 22 23 24 25 26
22V ASELECT SECOND ITEM IN V
22

vi2] ANOTE SIMILARITY TO INDEXING
22

APL Reference Manual 1-123

Primitive Mixed Functions

> Pick

1-124

You can select an item from any depth in an enclosed array. The length of 4
determines the depth of the selected item: when 4 has one item, the selection
is from the top level of B; when A4 has two items, the selection is from the
second level; and so on. For example:

O«B«('14' '1B') ('24' '2B') ('34' '3B')
Hommm - R I +
[4--+ +-—+] |+--+ +--+] [+--+ +--+|
[114] [1BI| [124] 12B}] |I3A] [3B]]
f4-=+ +--+] [4==+ +-=+] [+-~+ +-~+]
oo R R +
=B
3
ALEFT ARG LENGTH IS 1, PICK FROM TOP LEVEL
1«Z«2-8B
-t +--1
{241 12B]
-+ +--+
=]
2
pZ
2
O«X+2 2-B aPICK FROM SECOND LEVEL
2B
=X
1
pX

2

The length of each item of 4 is equal to the rank of the corresponding array
in B. The first item in 4 has a length equal to the rank of B; the second item
has a length equal to the rank of the array selected by the first item in 4; the
third item has a length equal to the rank of the array selected by the second -
item in 4; and so on. In the following example, the rank of # is 2, and the
rank of item A 1; 2] is 3. To select an item from H{ 1; 27, the first item of 4
must contain two elements, and the second item must contain three elements.
When you pick from the top level of an array, 4 must have length 1, and if 4
is enclosed, the contents must be in the simple vector domain.

APL Reference Manual

Primitive Mixed Functions

> Pick
J€A+2 2 p (10x15) (2 3 4p124) (2 2p100x14) 1000
Frmmm oo + tmmmmmm e +
|10 20 30 40 50) | 1 2 3 4
fommmmm e + 15 6 7 8]
| 9 10 11 12}
! |
|13 14 15 16|
|17 18 19 20}
|21 22 23 24
oo +
fom— - + 1000
1100 200]
1300 400]
tommmm - +
=f
2
0«Z+((1 2) (2 2 3)) > H 8sPICK FROM SECOND LEVEL
19
=7
0
(c1 2)>H
1 2 3 4
5 6 7 8
g 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
1 2oH
10 LENGTH ERROR (LEFT ITEM LENGTH NOT EQUAL TO SELECTED ITEM RANK)
1 220

A

When B and all the items in B are in the vector domain, then 4 is in the
simple vector domain. When 4 is empty, then A->B <~ B.

O«FetAt TANY (YANT' (YANTI' TANTIC'))

A t--t - +
[AN] |4+---+ +-------momm - +|
t--+ [ANT] [4-—-+ $----- +11

[+---+ | |ANTI| [ANTICI]|

I T 1
| oo +]
e T +
=F

[

oF
3

APL Reference Manual 1-125

Primitive Mixed Functions

> Pick
p" F ASHAPE OF EACH OF F
++ +-+ -+
[P 121 12}
++ +-t -4
J«P<«3 o F APICK 3RD ITEM OF F
e e +
[ANT] J4-=--t 4~—mem +]
+---+ [{ANTI| [ANTIC]]
[+---—+ +--—-- +1
o +
=p
3
pP
2
0«@«3 2 > F APICK 1 LEVEL DEEPER
et T +
VANTI| |ANTIC]
et I +
2
Y
2
O«Re3 2 1 > F aPICK ANOTHER LEVEL DEEPER
ANTI
=R
1
PR
I
J«S+3 2 1 3 =>F APICK FROM 4TH LEVEL OF F
T
ER
0
oS
(APL outputs a blank line)
G+(10)>F
G=F

1

When an item in B is a scalar, the corresponding item in 4 must be empty. For
example:

1-126 APL Reference Manuat

O+X«2 2p"ABC!

[ABC| [+---—-=---=- +]
t-—=t [[+---+ +---+]]|
(111 2] 12 3]
P4+ +---+11
Pl4---4 +---+]]
[113 4] |4 5{]]
[[+---+ +-==+1]

A e R +
1Xyzi 11 2 3 1 5|
-t oo +

(1 2) 'v o}

Primitive Mixed Functions

(c2 2p(1 2)(2 3)(3 w)(4 5)) "XYZ' (15)

aSHAPE OF EACH OF X

aPICK X[1;2]

aUSE EMPTY TO PICK INTO SCALAR

(1 2) "' (2 1)>X ”PICK DEEPER

To select more than one item from an array, use pick with the each (™)

operator. For example:

APL Reference Manual

> Pick

1-127

Primitive M
> Pick

ixed Functions

O«Y<«2 3pc[2]1X+6 2p , TABCDEFGNIJKL'

[+-4 +=+] J+=+ +-4] |+-+ +-+]

[BIL [1Cl DI LIEL IR

fH-+ +=+] {4+-+ +-t] |+-+ +-+}

[+-4 +-+] [+-4 +-+] [+-+ +-+]

INEE LEDE 1ahE 1K FL

P-4 +-+] [+=+ +-4] [+-+ +-+]

The
any

GETA+(1 1) 1
GETL+(2 3) 2
GETA o ¥

GETL > Y

GETA GETL >" cY RUSE EACH TO PICK MULTIPLE ITEMS
-+
{L]
+-+

GETA GETL " Y Y aTHIS IS AN ALTERNATIVE FORM
+-+
[L]
+-+

following relationship between the take (+) function and pick is true for
nonempty B: +B «> (c(ppB)p0IO0)>B.

Possible Errors Generated

9 RANK ERROR (LEFT ITEM NOT VECTOR DOMAIN)

9 RANK ERKOR (NOT VECTOR DOMAIN)

10

10

i4

15

15

15

1-128 APLR

LENGTH ERROR (LEFT ARGUMENT LENGTH GREATER THAN RIGHT ARGUMENT
DEPTH)

LENGTH ERROR (LEFT ITEM LENGTH NOT EQUAL TO SELECTED ITEM RANK)
DEPTH ERROR (LEFT ARGUMENT DEPTH GREATER THAN 2)

DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (INDEX LESS THAN INDEX ORIGIN)

DOMAIN ERROR (INDEX OUT OF RANGE)

eference Manual

Primitive Mixed Functions
> Pick

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 1-129

Primitive Mixed Functions
, Ravel

, Ravel

Form
,B ,LK]1B

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as argument
Rank 1 (for ,B)

Shape x / p B (for ,B)
Depth 1 =B

Implicit Arguments

None.

Description

The monadic APL, function returns a vector made up of the items of the
argument array, stored in row-major order (by increasing index position). For
example:

A«2 3p1 2 3 4 56
(«B+,4
1234568
0B
6

1-130 APL Reference Manual

Primitive Mixed Functions
, Ravel

O«4d«2 3 3 p118

1 2 3
4 5 6
7 8 9
10 11 12
13 14 15
16 17 18

LA
123456789 10 11 12 13 14 15 16 17 18

p,A
18

pA
233

If the argument array is a scalar, APL returns a vector that contains one item.
Note the difference in the shape of a scalar and the shape of a scalar to which
the ravel function has been applied:

pY
(APL outputs a blank line)

P,k
1

If the argument is a vector, APL returns a vector that is identical to the
argument:

A«16

A
123456

LA
123456

If the argument is an empty array of any rank or shape, APL returns an empty
vector that is the same type as the argument.

When you use ravel with an axis argument, ¥ is in the vector domain and its
items are numeric. The result depends on whether ¥ is a noninteger singleton
or a near-integer vector. (If ¥ is a near-integer singleton, the shape of B is
unchanged.)

When the axis argument is a noninteger singleton, APL inserts a new axis (of
length one) in the indicated position. For example, if ¥ is a fraction between
1 and 2, APL will insert an axis between the first and second axes of B. Note
that ¥ must be between ~1+070 and 0I0+pp B. The rank of the result is
1+pp B:

APL Reference Manual 1-131

Primitive Mixed Functions

L

Ravel

A<2 3p9 8 76 5 4
,[1.534

p,[1.5]4
213

If you specify a noninteger singleton axis when B is a scalar, the result is a
one-item vector:

,[.5] 28
28

p,[.5] 28
1

When the axis argument is a near-integer vector, APL merges the specified
axes into a single axis. In this case, XK must contain contiguous ascending axis
numbers between [70 and o p B. The rank of the resultis 1+ (ppB) -p , k. If X
is empty, then the result is ((p B), 1) p B. Note that , [1 p o B] B is the same
as ,B:

B«2 3 6p'SARAH SELLS SHELLSBETH BUYS BOATS ?
B

SARAH

SELLS

SHELLS

BETH
BUYS
BOATS
pB
236
,[2 318
SARAH SELLS SHELLS
BETH BUYS BOATS
p,[2 31B
2 18

If you want to add an axis to the end of the shape of an array, you can use 1 0
as the axis argument. If you want to add an axis to the beginning of the shape
of an array, you can use ~ .5+0I0 as the axis argument:

4«2 3p 976 54
,[10]4

1-132 APL Reference Manual

Primitive Mixed Functions
, Ravel

p,[10]4
2 31

,(7.5 + 0I014
976
5439

p,[.5 + 0I014
123

If you specify 010 or 10 as the axis argument when B is a scalar, the result is
a one-item vector:

, (1] 28
28

p,[1] 28
1

,[10] 6
6

p,[:0] 6
1

Further examples:
J«d+c.3
(«B«'ABC!

O«Cett
0«D<+"2

O«E«2 2 p ABCD
0.3 +---+
|ABC|
t---1
++ 2
H
++
p K

JE
0.3 +-—-+ ++ "2
[ABC] 1
to--t t1
p LE

,[1.51E
0.3 +---¢+
14BC|
-t

APL Reference Manual 1-133

Primitive Mixed Functions

, Ravel

++

H

++

2

1

p ,[1.5]F
2
,[0.51F

0.3 +---+

{ABC]
Fo-ot

p ,L0.51F

Possible Errors Generated

27

28

29

29

30

30

30

30

30

30

LIMIT FRROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXTIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (AXES NOT IN CONTIGUOUS ASCENDING ORDER)
AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLONED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-134 APL Reference Manual

Primitive Mixed Functions
T Represent

T Represent

Form

ATB

Left Argument Domain

Type Numeric
Shape Any
Depth 0 or 1 (simple)

Right Argument Domain

Type Numeric
Shape Any
Depth 0 or 1 (simple)

Result Domain

Type Numeric
Rank (ppA)+ppB
Shape (p4d).,oB
Depth 0 or 1 (simple)

Implicit Arguments

None.

Description

The dyadic v function (known as represent or encode) represents an array in
any number system. The left argument specifies the number system; the right
argument specifies the array to be represented. For example, to represent the
decimal value 7 as a four-digit binary number, specify the following:

2 22 2717
0111

APL Reference Manual 1-135

Primitive Mixed Functions
T Represent

In the expression A7 B, 4 can be considered as the representation rule to

be applied to B. Each item of the vector 4 is defined in terms of the item
immediately to its left. You can specify mixed bases in the left argument.
For example, the represent function can express some number of inches in
miles, yards, feet, and inches, or some number of milliseconds in days, hours,
minutes, seconds, and milliseconds:

Thus, in representing a number as miles, yards, feet, and inches, the left
argument specifies, from right to left, 12 inches in 1 foot, 3 feet in 1 yard, and
1760 yards in 1 mile. In the following example, a miles specification is not
defined in terms of another quantity, so 0 is printed in the miles column.

aMILES, YARDS, FEET, INCHES
0 1760 3 127273125
4 546 2 5
rDAYS, HOURS, MINUTES, SECONDS, MILLISECONDS
0 24 60 60 10007713732523
8 6 15 32 523

The following examples of base 3 conversions demonstrate the specification of
different numbers of columns in the left argument and illustrate the way in
which negative numbers are represented:

3 33 3r117 APRODUCES 3'S COMPLEMENT OF 17
0122

33337717 APRODUCES 3'S COMPLEMENT OF ~17
2101

Another useful application of T is to return the integer and fractional portions
of a number:

X«823.7513
0 17X
823 0.7513

The following are more examples of the use of the v function:

A<®3 2p2 3
B<5 2
J«R+«ATB

[N
o o o

1-136 APL Reference Manual

Primitive Mixed Functions
T Represent

pB
pA
oR

C«<2 20865 429 103 692
0« X<« 1010 107C

= @
N =

(s> a)
[

o
w

pX

3128X

APRODUCES 2'S COMPLEMENT OF 13

2222 2113
01

aPRODUCES 2'S COMPLEMENT OF ~13
222221713

10011

If 4 is a scalar, A7 B is the same as 4| B with 0 T« 0. Note that 0T is not an
implicit argument to the represent function.

Possible Errors Generated

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

27 LIMIT ERROR (FLOATING OVERFLOW)

APL Reference Manual 1-137

Primitive Mixed Functions
p Reshape

o0 Reshape

Form
Ap B

Left Argument Domain

Type Nonnegative near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as right argument
Rank pLA

Shape LA

Depth -

Implicit Arguments

None.

Description

The dyadic o function creates an array of items from the right argument taken
in row-major order and arranged in the shape specified by the left argument.

For example:

23 p 16 A2 ROWS, 3 COLUMNS

123
456

1-138 APL Reference Manual

Primitive Mixed Functions
o Reshape

If the right argument does not contain enough items to fill an array that has
the shape specified by the left argument, the right argument is reused starting
at its beginning:

33 p 16

- e
N O RO
w O W

3p5
555

If the right argument has more items than are required for an array that has
the shape specified by the left argument, the extra items are ignored:

2 2 p 16
12
34
Note that the right argument may be any type and shape (it is, in effect,
raveled before it is reshaped):

[J«B«3 5p'STAN SAM STEVE!
STAN
SAM
STEVE
20pB
STAN S4M STEVESTAN

For arguments 4 and B, if B is empty, 4 must contain at least one 0 value, and
the result is empty with the shape , 4. For example:

J+«R+«2 0 p 10
(APL outputs a blank line)
oR
20

If 4 is empty, the result is a scalar whose value is the first item of B in
row-major order; formally expressed:

(10)pB «> ' 'pB > (,B)[0I0]

For example:

(10)p5 7 9

APL Reference Manual 1-139

Primitive Mixed Functions
p Reshape

Further examples:

O«VAN«'ABC' (1 2 3 &) 1.2 (<,3)

e e + 1.2 4+---+
[ABC] 11 2 3 & [+-+]
oot oo + [13]
l+-+]
te—t
o VAN
i
O«VAN+<2 2 p VAN
e i +
[ABC] 1 2 3 4]
o=t t------- +
+--—+
[+-+]
131
[+-+1
+---+
o VAN
22
O0«<(:0) p VAN REMPTY LEFT ARGUMENT
R
[4BC|
+---+

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (NEGATIVE NUMBER NOT ALLOWED)

27 LIMIT FRROR (INTEGER TOO LARGE)

1-140 APL Reference Manual

Primitive Mixed Functions
¢ and e Reverse

¢ and © Reverse

Form

¢ B ¢[KIB oB e[K]B
¢ 1is formed with o and !
o is formed with o and -

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as argument
Rank ppB

Shape pB

Depth =B

Implicit Arguments

None.

Description

The monadic ¢ function returns the items of the argument array in reverse
order along the relevant axis. You specify the axis to be reversed in square

brackets. For example:

O«d<2 4p18
1234
5678

e[1]4
5678
1234

$[2]4
4321
8765

APL Reference Manual 1-141

Primitive Mixed Functions
¢ and e Reverse

If you do not specify an axis, ¢ reverses the items along the last axis, and e
reverses the items along the first axis. For example:

(<G«3 3p19

=
[}
o

ek

=
[S e]
o

oG

o
(8]

n
987

The following reverses a matrix along both axes simultaneously:

[0«X+2 3p16
2
5

o ow

1
n
boX

w O

54
21
For singleton, vector, or empty arguments, both ¢ and e return the same
value. For an empty array or singleton, they return the original argument; for
a vector, they return the items of the vector in reverse order. For example:

$5
e5

10
(APL outputs a blank line)
b1 1 1p6
6
15
54321
o015
54321

1-142 APL Reference Manual

Note that reverse is not the same as transpose:

O«X«2 3p1 2 3 456
23
56

gX
14

25
36

Further examples:

Q¢MIZZ<2 & p 'ABC' 0 ~1 2 'XYZ' 4 (c,3) 100
t---+ 0 Tt 2

|ABC|
+---+
+---+ 4 +---+ 100
[XYZ| | +-+}
Ik
J+-+]
o=t
o[1]MIZZ
t--—+ 4 +---+ 100
[XYZ| [+-+1
==+ [13]]
[+-+]
+--—+
t---+ 0 1 2
[ABC|
t---t
b[2]MIZZ
21 0 +---+
| ABCY
+---+
100 +---+ 4 +---+
f+-+] [XYZ|
SEIR RS
[+-+1
-1
boMIZZ
100 +---+ 4 +---+
[+-+] [XYZ]
11311 4=+
[+-+]
t---1
2 71 0 +---+
[ABC|
t---+

Primitive Mixed Functions
¢ and e Reverse

APL Reference Manual

1-143

Primitive Mixed Functions
¢ and e Reverse

Possible Errors Generated

27

28

29

30

30

30

30

30

30

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-144 APL Reference Manual

Primitive Mixed Functions
¢ and e Rotate

¢ and © Rotate

Form

Ad B AGLKIB Ae B Ae [K1B
¢ is formed with o and |
e is formed with o and -

Left Argument Domain

Type Near-integer
Shape Conforms to right argument (p4)=(pB)[1p pB)~) K]
Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as right argument
Rank ppB

Shape pB

Depth =B

Implicit Arguments

None.

Description

The dyadic ¢ or e function rotates items along the relevant axis of the right
argument in a way specified by the left argument. The rotation is cyclical and,
for each axis, continues for the number of places specified by the corresponding
item in the left argument. If the left argument is positive, the shift is to the
left; if it is negative, the shift is to the right. For example:

APL Reference Manual 1-145

Primitive Mixed Functions
¢ and e Rotate

3615
45123

36015
34512

The axis to be rotated must be specified in square brackets, as in the following
example:

O«4+3 5p115
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
2 1 4¢[2]4
3 4 5 1 2
7 8 910 6
15 11 12 13 14
2 102 36[1]4
11 7 3 14 5
112 8 4 10
6 2 13 9 15

If no axis is specified, ¢ rotates the items along the last axis, and e rotates the
items along the first axis:

O«G+2 4Yp18
123
567
146G
341
6 7 8
2 0 1eG
523
167

Fo g roN o F

Note that, in general, the shape of the left argument must be the same as the
shape of the relevant axis in the right argument. If the left argument is a
singleton, it is extended to conform to the relevant axis of the right argument.
For example:

262 5p110
34 512
8§ 9 10 6 7

1-146 APL Reference Manual

Primitive Mixed Functions
¢ and e Rotate
Further examples:

O«MIZZ«2 4 p '"ABC' 0 "1 1 'XYZ' 4 (c,3) 100
+---+ 0 "1 1

| ABC|
+---+
+---+ 4 +---+ 100
[XYZ] [+-+]
t—+ |31
[+-+]
oot
13 ¢ MIZZ
0 1 1 +---+
|ABC|
t---1
100 +---+ 4 +---+
[XYZ| [+-+1
K
[4-+]
+---+

“10 11 ¢ [1]MIZZ
+---+ 0 +---+ 100

1XYZ] [+-+]

+t---t]3]
[+-+1
+---+

t---+ 4 1 1

[ABC|

+---1

10118 MIZIZ
t---+ 0 +---+ 100

[XYZ] [+-+]

=-mt [13]]
[+-+]
+---+

t---+ 4 71 1

|4BC]|

+---+

Possible Errors Generated

9 RANK ERROR (RANKS DIFFER BY MORE THAN ONE)
10 LENGTH ERROR (SHAPES OFF AXIS DO NOT MATCH)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

APL Reference Manual 1-147

Primitive Mixed Functions
¢ and e Rotate

15

27

28

29

30

30

30

30

30

30

DOMAIN ERROR (NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)
AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (RIGHT ARGUMENT HAS WRONG RANK)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-148 APL Reference Manual

Primitive Mixed Functions
o Shape

p Shape

Form

p B

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Nonnegative integer
Rank 1

Shape ppB

Depth 1 (simple)

Implicit Arguments

None.

Description

The monadic p function returns a vector of nonnegative integers that represent
the lengths of each of the axes of the argument array.

If the argument is a vector, APL returns an integer vector that represents the
number of items in the vector:

A<2 4 6 8
pd

B<'ABCDEF'!
0B

0.9

APL Reference Manual 1-149

Primitive Mixed Functions
p Shape

If the argument is a matrix, APL returns the number of rows and columns:
[J«A«2 3p1b

3

6
pA

12
4 5
23

If the argument is a scalar, APL returns an empty numeric vector:

K<3
0K
(APL outputs a blank line)

You can use the shape function to determine an array’s rank. Because the
shape function returns one item for each axis of the array, the shape of shape
is an integer vector that represents the number of axes in the array:

O+«4+«5 6p130
1 2 3 4% 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 2u
25 26 27 28 29 30

A
56

ppa
2

Further examples:

QeVerxyr (12 3) ' !

to—t F-—--- +
[XYP 11 2 3
to—t o= +
pV
3
0«B«{2 0 p5)(" ")(10)
++ +t
[
| ++
++
0B
3

1-150 APL Reference Manual

Primitive Mixed Functions
p Shape

O€«M«2 3 p 1 ("'} "ABC' 0 2 &
1 +4+ +---4
|1 1ABC|
++ +---+
0724
oM

ppM
2

Note that for all B: pppB «»> ,1

Possible Errors Generated

None.

APL Reference Manual 1-151

Primitive Mixed Functions
< Subset

c Subset

Form

AcB
c is formed with < and _

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Boolean

Rank 0

Shape 1 0 (scalar)
Depth 0 (simple scalar)

Implicit Arguments

0 CT (determines comparison precision)

Description

The dyadic < function determines whether the right argument contains all
the items in the left argument. The result is a Boolean scalar: true, if the left
argument is a subset of the right argument, and false if it is not. Duplicate
items in either argument do not affect the result. For example:

1-152 APL Reference Manual

Primitive Mixed Functions
c Subset

O«A«3 4 p 23 54 98 34 98 47 98 32 78 65 12 23
23 54 98 3%
98 47 98 32
78 65 12 23
Ac 1100
1

Ac 190

0

The < function compares items in terms of the match (=) function, which
uses the value of 0 CT. Because match allows mixed-type arguments, you can
compare characters with numbers. However, such a comparison is always
false, so that if you use mixed-type arguments for dyadic =, the result will be
zero. For example:

¥23 24 25'c 22 23 24 25 26
0

Further examples:

Og«V<«0 'AB' (1 2 3)

0 +--+ +----- +
|AB} |1 2 3|
t--t - +
(O«M<2 2 p (1 2 3) '0" 'AB' 4!
tem—-- + 0
|12 3}
- +
-t A
[4B|
-t
VeM ANOTE CHARACTER AND NUMERIC ZEROS

Note that the following definition applies: 4<B <+ A/ ,4¢B

Possible Errors Generated

None.

APL Reference Manual 1-153

Primitive Mixed Functions
+ Take

4+ Take

Form
A+ B A+ LKIB

Left Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as right argument
Rank (p,A)TppB

Shape | ,A (if no explicit axis)
Depth -

Implicit Arguments
Fill item

Description

The dyadic + function builds an array by taking a specified number of items
from an existing array. Each item in 4 corresponds to an axis in 8. The value
of each item in 4 specifies how many items to take from the axis. Thus, for
A+ B, item A[K] is used to take values along the k¥ th axis of B.

If an item in A4 is a positive integer n, APL takes the first n items from the
appropriate axis of B. If an item in 4 is negative, APL takes the last n items

from the appropriate axis of B.

1-154 APL Reference Manual

Primitive Mixed Functions

+ Take
Re1 2 3 4
21R aTAKE FIRST TWO ITEMS OF R
12
“24R ATAKE LAST TWO ITEMS OF R
34

Unless the right argument is a scalar, the number of items in 4 must equal
the rank of B (p , 4 must equal p ¢ B). (When the right argument is a scalar, it
is extended to be a singleton of the appropriate rank.) If you use the axis form
(L k1), the number of items in 4 must equal the length of ¥. (Examples of axis
form are presented at the end of this section.) Thus, if the right argument is a
matrix, the left argument must have two values:

[J«R<3 3p19
123
456
789
aLEFT ARG MUST BE LENGTH 2
24R
10 LENGTH ERROR (LEFT LENGTH NOT EQUAL TO RIGHT RANK)
2R
A
aTAKE TWO ITEMS ALONG EACH AXIS
2 24R
12
45

If the value of an item in 4 is greater than the length of the corresponding axis
of B, APL pads the result array with fill items. This operation is known as
overtake. For example:

NUM«1 2 3
CHA<'ABC!'
AOVERTAKE NUM, FILL ITEMS ARE ZEROS
S5tNUM
12300
AOVERTAKE CHA, FILL ITEMS ARE BLANKS
ACATENATE X TO SHOW END OF FILL ITEMS
(54CHA), ' X!
ABC X

The fill items are determined by the prototype of each vector along the relevant
axis. This is important for arrays of rank 2 or more because the fill item for

a given position depends on the prototype of that particular column, row, or
plane. The following expressions describe such an operation. Note where the
fill items are blanks and where they are zeros. (Because the array ¥ is simple,
all the fill items are scalars. If ¥ were enclosed, some of the fill items might
also have been enclosed.)

APL Reference Manual 1-155

Primitive Mixed Functions

+ Take

[«M«2 3p 1 A" 2 'B' 4 5

142
B 45
oM
23
aOVERTAKE M ALONG FIRST AXIS
aPROTOTYPE BASED ON VECTORS ALONG FIRST AXIS
4+[11M
142
B us
0 0
0 0
aFIRST AXIS IS CHANGED
put[1IM
43
aQVERTAKE M ALONG 2ND AXIS
5+[2]M
14200
B 45
p54[2]M a2ND AXIS IS CHANGED
25
b 5+M AOVERTAKE M ALONG BOTH AXIS
14200
B 45
0 000
0 000
p4 54M ABOTH AXIS ARE CHANGED
45

Note that if £ is positive, any needed fill items are placed at the end of the
result array. If 4 is negative, any needed fill items precede the result array.
For example:

6412 24 36 48 AFILL ITEMS AT END OF RESULT
12 24 36 48 0 0
(10¢ 'TEST'), X" WCATENATE X TO SHON END OF FILL ITEMS
TEST X
6412 24 36 48 RFILL ITEMS AT BEGINNING OF RESULT
00 12 24 36 48
104 1TEST! RFILL ITEMS AT BEGINNING OF RESULT
TEST

If the rank of the right argument is greater than 1, the result array is called

a corner of the argument array. The origin of the corner is determined by the
signs of the items of the left argument. For example, if the right argument is a
miatrix, there are four possible corners as shown in Figure 1-1.

1-156 APL Reference Manual

Primitive Mixed Functions
+ Take

Figure 1-1 Argument Corners Selected by Take Function

» Axis2 =

++ + ~
v 1 4
Axis 1 Axis 1
A 'y
- > Axis2 < —=

NU-2233A-RA

In the following example, note how the order of the signs in the left argument
determines the corner selected from the matrix right argument:

(«A<3 3p19
123
L 56
7883

2 244
12

T2 7244
56
8 3

T2 244
45
78

2 244
2 3
56

If the left argument contains a o, then, for arguments 4 and B, 4+ B returns
an empty array with shape , | A. For example:

A€2 3 042 3 3p118
pA
2 30

If the left argument is empty, the right argument must be a scalar, and the
result is the right argument.

APL Reference Manual 1-157

Primitive Mixed Functions

+ Take

If the right argument is a scalar, it is extended to a singleton with a rank equal
to the length of the left argument. For example:

"23+5
000
500
Note that for any array 4, 0= 14 0p 4 is true if 4 is numeric and false if 4 is
character.

When you use + with an axis argument, ¥ is a vector of axis numbers
whose lengths are determined by corresponding items of the left argument,
A. Formally, + with an axis argument can be described by the following:

z+«pBo Z[K1 « Ao Z+ Zt+B

The value for ¥ must be in the vector domain, and each item must be a near-
integer in the set : p p B. Therefore, the values of ¥ are (J 70-dependent. The
items may be in any order, but they may not be duplicated. The length of x
must be less than or equal to the rank of the right argument, and it must
match the length of 4.

The value for ¥ does not have to specify all the axes in B. APL determines the
lengths of any missing axes by the lengths of the corresponding axes of B. This
means that you can take rows or columns of a matrix without specifying the
length of the other axis. For example:

(«4+8 5p1u0
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35
36 37 38 39 40
3 +[1]1 4 aTAKE 3 ROWS OF A
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
T2 t[2] 4 ATAKE THE LAST 2 COLUMNS OF A

9 10
iy 15
19 20
24 25
29 30
34 35
39 40

1-158 APL Reference Manual

Primitive Mixed Functions

34 4[2 1] 4 ATAKE 4 ROWS, 3 COLUMNS OF A
1 2 3
6 7 8
11 12 13
16 17 18
010 <« o
4 340 1] 4 aTAKE 4 ROWS, 3 COLUMNS OF A
1 2 3
6 7 8
11 12 13
16 17 18
O«WRL+{1 2 3) 'ABC' 0
t---—- + 4---+ 0
|1 2 3] |ABC|
$----- + 4---+
S+WRL AOVERTAKE TO SHOW FILL ELEMENT
o + A==t 0 H--=-- e +
11 2 3| 14BC| {100 0] |00 Of
fommmm R T T + t---=- +

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (LEFT LENGTH NOT EQUAL TO RIGHT RANK)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

27 LIMIT ERROR (VOLUME TOO LARGE)

29 AXIS LENGTH ERROR (LEFT ARGUMENT HAS WRONG LENGTH)
30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

30 AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

+ Take

APL Reference Manual 1-159

Primitive Mixed Functions
+ Take

30 AXIS DOMAIN ERROR (INCORRECT TYPE)
30 AXIS DOMAIN ERROR (NOT AN INTEGER)
28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-160 APL Reference Manual

Primitive Mixed Functions
& Monadic Transpose

& Monadic Transpose

Form

§ B
§ 1s formed with o and \

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as argument
Rank ppB

Shape bpB

Depth =B

Implicit Arguments

None.

Description

The monadic & function transposes the axes of an array; thus, & B is B with
the order of the axes reversed. For example, if the argument is a matrix, &
exchanges rows and columns:

0«A<«2 3pi6
123
4 5 6
§4
14
2
36
p&A
32

APL Reference Manual 1-161

Primitive Mixed Functions
& Monadic Transpose

If the rank of the argument is less than 2, the function has no effect:
A«1 2 3 45

R4
12345

In the next example, a rank 3 array is transposed:

(«B«2 3 up18

12314
5678
1234
5678
1234
5678
4B

15
51
15
26
& 2
26
37
73

7
48
8 4
4 8

p&B

4 3 2

Further examples:

(«MIZZ«2 4 p 'ABC' 0 "1 1 'XYZ' 4 (c,3) 100
+---+ 0 71 1

{ABC|

+---t

+-==+ L4 +---+ 100

[XYZ] [+-+]

---t 113]]
[+-+1
tommt

1-162 APL Reference Manual

Primitive Mixed Functions
& Monadic Transpose

RMIZZ
t-—=t t---+
[ABC| |XYZ]
t--—t t---t
0 4
R

[+-+]

N

[+-+]

-t
1 100

p MIZZ
2 4

PRMIZZ
4 2

Note that & B <> (¢pB)&B

Possible Errors Generated

None.

APL Reference Manual 1-163

Primitive Mixed Functions
& Dyadic Transpose

& Dyadic Transpose

Form

AR B
§ 1s formed with o and \

Left Argument Domain

Type Nonnegative near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as right argument

Rank RANK+[/A +~01I0

Shape (1+pA)+L/((1RANK) o .=A) x (RANK,pA)ppB
Depth =B

Implicit Arguments

A%B when 0 I0 « 1 is identical to (1 + 4) 8B when JI0 + 0

Description

The dyadic & function permutes the axes of the right argument in a way
specified by the left argument.

The shape (Iength) of the left argument must equal the rank of the right
argument; thus, one item of the left argument is associated with each axis of
the right argument. In general, the item in the left argument specifies the
position to be assumed by the associated axis in the result array. For example:

1-164 APL Reference Manual

W oa
(-2 TN N

13 14
17 18
21 22

= w N
@~

13 17
14 18
15 19
16 20

243

243

0<«A<2 3 upr24
3 4
7 8
11 12

15 16
19 20
23 24
pd

O«B«1 3 284
9
10
11
12

21
22
23
24
pB

(pA)[1 3 2]

Primitive Mixed Functions
& Dyadic Transpose

Note that the shape of the result of the & function is equal to the shape of its

right argument subscripted by its left argument.

The values in the left argument must be less than or equal to the rank of the
right argument; thus, if the right argument’s rank is 3, then 1, 2, and 3 are
the only permissible values in the left argument (when 070 is 1). However,
there is one exception: if the right argument is a scalar, then either 1 (or o if
0IO is 0)or 10 is permissible as the left argument; the value returned is the

value of the scalar right argument.

You may repeat values in the left argument. When you do, the result is a
diagonal slice of the right argument. For example:

APL Reference Manual

1-165

Primitive Mixed Functions
& Dyadic Transpose

X«(€2 4 Uplo—--mkocomx-—o-—x!

Y12 4 Gpluakkkommmmmmm e
kKK

* Kk k%
11 28Y
* ok ok k
*kkk
2 2 1%Y
* %
* %
* %
* ok
Z+0€2 4 4p k- okm koo koo
oo
S
e
S

k-
e
R
koo

12 1§27
Xk k%
XKk k

1-166 APL Reference Manual

* %
* %
* %
* %

2 1 282

Primitive Mixed Functions
& Dyadic Transpose

When you repeat values in the left argument, they must form a dense
sequence; that is, in counting from 1 (or 0 if 1 70 is 0) to the largest item
you specify, no number may be left out.

Note that dyadic & is sometimes the same as monadic &. Expressed formally,
this means & B <~ (¢$p B) & B. For example:

2
5
1y
36
14

25
36

O«4«2 3p16

3
6
&4

2 184

Table 1-6 lists transpositions for a variety of arrays: V is a vector, M is a
matrix, and A is any array.

Table 16 Dyadic Transpose Definitions

Expression Shape of r Definition

R<1{V pV R«V

R+<1 289 M oM R<M

R<2 18M (pM)[2 1] RLI;Jl«M[J;I]

R+<1 18M L/oM R[I]J«M[I;I]

R<1 2 384 pA R<+4A

R+<1 3 284 (pA)[132] RLI;J; K1<A[I;K; J]
R<2 3 184 (pAd)[312] R[I;J;K1«A[J;K; I]
R«<3 1284 (pA)Y[2 31] R{I;J;K]1«A[K;I;J]
R«<1 1284 (L/(pA)[212]1),(pA)[3] RLI;JI<AlI;1I;J]

(continued on next page)

APL Reference Manual 1-167

Primitive Mixed Functions
§ Dyadic Transpose

Table 1—6 (Cont.) Dyadic Transpose Definitions

Expression Shape of r Definition

Rk«12 184 (L/(pA)[13]),(pA)[2] RLI;JI<ALI;d;]I]
R<2 1 184 (L/(pA)[231),(pA)[1] RLI;JI<A[J;I;1I]
R+<1 1 184 L/p4 RII1I+«A[I;I;I]

Further examples:

O«MIZZ«2 4p('ABC') 0 "1 1 ('XYZ') 4 (c,3) 100
+---1+ 0 "1 1

|ABC|
+---+
+---+ 4 +---+ 100
|XYZ] [+-+]
tt |13]]
[+-+]
t--=t
2 1§ MIZZ aTHIS IS THE SAME AS MONADIC §
t---t +---+
|ABC| |XYZ]
te-mt t=--t
0 4
"1 te=-t
[+-+]
1311
L=+
+-—-+
1 100
O«MIC«2 2 2 p'AB' (1 20) 1 "2 0 "' A" 'XyZ'
t--t +----+
|4B| |1 20]
t--+ +----+
1 "2
0 ++
M
++
4 +--=+
|XYZ|
+---+

1-168 APL Reference Manual

Primitive Mixed Functions
& Dyadic Transpose

122 8§ MIC
+t--+ 2
[4B|
+--+
0 +---+
1XYZ]
+---t
2 1 1 {MIC
t--+ 0
[4B]
+--1
T2 44
[XYZ!
+---+
12 1 8MIC
+--+ 1
|AB}
+--+
-1
I XYz
-1
212 % MIC
t--+ ++
[4B] 1|
t--+ 41+
1 et
[XYZ|
t---+

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (LEFT LENGTH NOT EQUAL TO RIGHT RANK)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (LEFT ARGUMENT NOT DENSE FROM QUAD I0)
15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 1-169

Primitive Mixed Functions
v Union

U Union

Form

AuB

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Any

Rank 1

Shape pu(,4),.B
Depth 1[=4,B

Implicit Arguments

Oc¢T (determines comparison precision)

Description

The dyadic v function joins the two arguments and removes all duplicate
items. The result is a vector that includes all the items from both arguments.
For example:

"ABCB' v 2 3p'DDEDCC!
ABCDE
(23p445433)u1il232
453172

The v function compares the items in terms of the match (=) function and
eliminates duplicate items based on the value of I CT.

1-170 APL Reference Manual

Primitive Mixed Functions
u Union

Further examples:

J«Ve{c,100) 'TTY' '39!
i + t---t -t
[+---+] [TTY! |99]|
[1100]] +---+ +--4

[+---+]
+----- +
(«M+2 2 p 100 99 'TTY' 0
100 99
+---+ 0
[TTY]
+---+
VuM
R + +---+ +--+ 100 99 0

f+---+] 1TTY] |99
f1100f} +---+ +--+
b---+]

Note that the following definition applies: AuB<~>u (,4),.B

Possible Errors Generated

None.

APL Reference Manual 1-171

Primitive Mixed Functions
u Unique

U Unique

Form

uB

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as argument

Rank 1

Shape Equal to number of unique items
Depth 1[=B

Implicit Arguments

0CT (determines comparison precision)

Description

The monadic v function removes duplicate items from an array. The result is a
vector of the unique items in the argument. For example:

0« 4 «?234p7

H ~ O
w N o
~ O =

2
2
6
u 4

271
B « !

3
DR.GRANT''S CHEWING GUM'

uB
DR.GANT'S CHEWNIUM

1-172 APL Reference Manual

Primitive Mixed Functions
u Unique

The v function compares the items in terms of the match (=) function and
eliminates duplicate items based on the value of JCT. For example:

ger
1E715

U4 4-5E" 16
n

Note that the following definition applies: vB+~+ ((B1B)=1p0B) /B+,B

Possible Errors Generated

None.

APL Reference Manual 1-173

Primitive Mixed Functions
~ Without

~ Without

Form
A~ B

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Any

Rank 1

Shape p(~(,A)eB)/,4A
Depth -

Implicit Arguments

0cT (determines comparison precision)

Description

The dyadic ~ function returns all the items in the left argument that are not
found in the right argument. Duplicate items in the right argument do not
affect the result. Duplicates in the left argument are not removed unless they
are specified in the right argument. For example:

1-174 APL Reference Manual

Primitive Mixed Functions

~ Without
RAMBLE«'RUN ON RUN ON RUN ON.®
SQUISH«' ! ASQUISH CONTAINS A BLANK SPACE
RAMBLE ~ SQUISH aELIMINATE THE BLANKS FROM RAMBLE
RUNONRUNONRUNON.

[J«4+3 4p 56 78 105 137 49 329 97 235 142 105 56 59
56 78 105 137
49 329 97 235
142 105 56 59
A ~ 1100
105 137 329 235 142 105

If your data represent sets, and you want to remove duplicates from your
result, you can use the unique function along with the ~ function:

A<3 Lp 56 78 105 137 49 329 87 235 142 105 56 58
U 4~ 1100
105 137 329 235 142

If the left argument is a subset of the right argument, the result is an empty
vector. For example:

O«B+ 3 2 p 26 25 65 9 34 76 13 43 21
2 6
25 65
9 34
U B~ 130
65 34

The ~ function compares items in terms of the match (=) function, which
uses the value of €T. Because match allows mixed-type arguments, you can
compare characters with numbers. However, such a comparison is always
false, so that if you use mixed-type arguments for dyadic ~, the result will be
equal to the left argument. For example:

(A«<'ABC') ~ B+«'BA?

B~ A
(APL outputs a blank line)

Note that the following definition applies: A~B«~>(~(,A)eB)/ ,4

Possible Errors Generated

None.

APL Reference Manual 1-175

Primitive Mixed Functions
1.3 APL Operators

1.3 APL Operators

APL operators take either functions or arrays as operands, and produce results
called derived functions.

Operators are either monadic or dyadic, but not ambivalent. Monadic
operators bind to the left; that is, they take a left operand and not a right
operand. Dyadic operators take a left and a right operand. Derived functions
are either monadic, dyadic, or ambivalent (their classification depends on the
arguments to the derived function and not on the valence of the operator).

You can specify an axis when you use some of the operators. Because axis
binds to the left, it must appear to the right of the operator.

There are four APL primitive operators: slash (/ and #), backslash (\ and %),
each (), and dot (.). The following table describes the valence of the operators,
the derived functions, and the valence of the derived functions. Note that 4, B,
f, and g are all operands where 4 and B are arrays, and f and g are functions.

Operator Valence Derived Function Valence
Slash Monadic Compress (A/ and 4+) Monadic
Replicate (4/ and 4+) Monadic
Reduce (f/ and f#) Monadic
Backslash Monadic Expand (4\ and 4Y) Monadic
Scan f\ and f\ Monadic
Each Monadic Itemwise application (") Ambivalent
Dot Dyadic Inner product (f.g) Dyadic
Outer product (- .f) Dyadic

Operators may accept functions or arrays for their operands. You can specify
any valid function, including primitive functions, system functions, user-
defined functions, and derived functions. (A derived function is a function
resulting from the use of an operator.)

Because derived functions may be operands for operators, it is possible to build
sequences of operators to form function expressions.

For example, you can use the inner product derived function (+ . x) as the

left operand to the slash operator (/). The result is the inner product reduce
derived function, which allows you to perform matrix multiplication along a
vector of matrices. Note that the left and right sides of the following expression
are equivalent. However, the left side is more concise. The arrays M1, ¥2, and
M3 represent matrix arrays:

1-176 APL Reference Manual

Primitive Mixed Functions
1.3 APL Operators

+ox /M1 M2 M3 <> M1 +.x M2 +.x M3

The following example uses the outer product derived function (- . ,) as the
left operand to the slash operator. The result is the catenate outer product
reduce derived function, which in this case extends the monadic iota function
(1) to vector arguments to produce the odometer function:

V<1 2 3

22 0., [V
i + ----- + t----- + ----- + t----- + t----- +
f1 1 1) J1r 1 2] 1113 12 1) {12 2] {12 3]
t-—--- + t----- + o +-—--- + t----- + t----- + t----- +

The following expression adds parentheses to show the binding action of the
operator sequence: ,> ((°.,) /) (1 ")V

Table 1-7 summarizes the operators and derived functions in greater detail,
including the forms with axis. The subsequent subsections describe all the
forms.

Table 1-7 APL Operators

Operator Name Meaning

A/B Slash A compression/replication along the last axis of B

A/ TK1B Slash A compression/replication along the ¥ th axis of B

A4 [K1B

A+B Slash Af compression/replication along the first axis of B first axis
of A

fr4 Slash The f reduction along the last axis of 4

f/ K14 Slash The f reduction along the k¥ th axis of 4

fALK14

f+4 Slash The f reduction along the first axis of 4

"B Each The application of monadic f on each item of B

Af"B Each The application of dyadic f on corresponding pairs of each
item of 4 and B

A\ B Backslash 4 expansion along the last axis of B

A\N[K]B Backslash 4 expansion along the ¥ th axis of B

AX[K1B

(continued on next page)

APL Reference Manua!l 1-177

Primitive Mixed Functions
1.3 APL Operators

Table 1-7 (Cont.) APL Operators

Meaning

Operator Name
AXB Backslash
N4 Backslash
N[KI4 Backslash
ALKIA

N4 Backslash
Ao . B Dot
Af.gB Dot

A expansion along the first axis of B
The f scan along the last axis of 4
The f scan along the X th axis of 4

The f scan along the first axis of 4
Outer product

Inner product

1.3.1 / and # Slash

The monadic slash (/ and #) operator takes a left operand and produces a
monadic derived function. When the operand is an array, the derived function
is either compression or replication. When the operand is a function, the

derived function is reduction.

1.3.2 \ and \ Backslash

The monadic backslash (\ and %) operator takes a left operand and produces a
monadic derived function. When the operand is an array, the resulting function
is expansion. When the operand is a function, the result is scan.

1.3.3 . The Dot Operator

The dyadic dot (.) operator takes a left and right operand and produces

a dyadic-derived function. When the left operand is a jot (-), the derived
function is an outer product. When the left operand is a function, the derived
function is an inner product. The right operand is always a dyadic function.

1-178 APL Reference Manual

Primitive Mixed Functions

/ and # Compression and Replication

/ and # Compression and Replication

Form

A/ B A/ LK1B A+ B A4 [LK]1B
1is formed with / and -

Left Operand Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain (of derived function)

Type Same as right argument

Rank 1ifppB

Shape ((K-1)+pB)Y, (+/} A) ,K+pB (for 0I0+«1)
Depth -

Implicit Arguments

None.

Description

Compression and replication are monadic functions derived from the slash (/)
operator. They build arrays by specifying the items to be deleted, preserved,
or duplicated from an existing array, and by indicating where fill items are
to be added in the new array. When items only are preserved or deleted,
this is known as compression (the left operand is Boolean). When items are
d(uplicated, deleted, or filled, this is known as replication (the left operand is
integer). You can also use the] REP system function to perform the compress
and replicate operations (see Chapter 2 for more information).

APL Reference Manual 1-179

Primitive Mixed Functions
/ and # Compression and Replication

For compression, each Boolean item in 4 corresponds to the position of an item
in B. When 4 is 1, the item in B is preserved in the result array. When 4 is
0, the item in B is deleted from the result array.

11010/57 9 11 13 aTHIS IS COMPRESSION
57 11

For replication, each positive scalar and each zero in 4 correspond to the
position of an item in B. Negative integers, which specify fill items, are not
associated with explicit positions in 3. When 4 is Boolean, the effects are the
same as for compression (items are either preserved or deleted in the result
array). When 1> 4, the item in B is repeated 4 times in the result array. When
A is negative, APL builds | 4 occurrences of the fill item into the new array:

0 42 72/57 91113 aTHIS IS REPLICATION
0

131
57778290 00 13 13 00
If 4 contains only 1 s, the result is B itself; if 4 contains only 0 s, the result is

an empty array. For example:

11

12345
0000 0/15

(APL outputs a blank line)

In general, the length of the relevant axis of B must equal the number of
nonnegative items in 4 ((pB) [K]+~+/420). That is, you must specify an
operation (either copy, drop, or replicate) for each item in the right argument.
However, APL does perform singleton extension in certain conditions. If 4 is
a positive singleton, it is extended to the length of B. (Negative values are not
extended. When 4 is a negative singleton, B must be empty along the axis
being replicated.) If B is a singleton, it is extended to the length of 4.

G«5 7 9 11 13

K«1 1010
2/G ASINGLETON EXTENSION ON LEFT ARGUMENT
557799 11 11 13 13
k/5 ASINGLETON EXTENSION ON RIGHT ARGUMENT
555
[J«M«3 0 1p9
(APL outputs a blank line)
pM
301
2 3/M AEXTENSION ON LAST (DEFAULT) AXIS
(APL outputs a blank line)
p (2 3/M) aTHIRD AXIS EXTENDED 2+3 TIMES
305

1-180 APL Reference Manual

Primitive Mixed Functions
/ and £ Compression and Replication

aNEXT EXPRESSIONS USE NEGATIVE SINGLETON IN LEFT ARGUMENT
aTHE RIGHT ARGUMENTS MUST BE EMPTY ON APPLICABLE AXIS

72/10
00

“2/3 0p% aLAST (DEFAULT) AXIS IS EMPTY
00
00
00

“2/3 3 0p9 QAGAIN, LAST AXIS IS EMPTY
00
00
00
00
00
00
00
00
00

G
57 9 11 13

2/G ARIGHT ARGUMENT NOT EMPTY
10 LENGTH ERROR

2/G aRIGHT ARGUMENT NOT EMPTY

A

“2/0 3p9 AWRONG AXIS IS EMPTY
10 LENGTH ERROR

“2/0 3p9 aWRONG AXIS IS EMPTY

A

If B is a vector, all four forms of the compression function have the same effect.
If the rank of B is greater than 1, the form used determines which axis of the
array is affected.

For the forms A/ [k1 B and A# [K] B, the affected axis is axis X:

0¢B+3 4p112
12 3 4
5 6 7 8
9 10 11 12

10 1/[1)B
102 3 4
9 10 11 12

APL Reference Manual 1-181

Primitive Mixed Functions
/ and # Compression and Replication

10 14[1]B
1 2 3 4
9 10 11 12
101 0/[21B
1 3
5 7
9 11
10 1 04[2]1B
3
5 7
9 11

The forms 4/ B and A# B affect the last and first axis of B, respectively:

X<«2 3p16
X

@ N

3
6

£

01 1/X

o N

3
6

1 04X
123

If 4 is empty, then B (after extension, if necessary) must have length 0 along
the relevant axis.

If the left argument contains all negative numbers (indicating fill characters),
then the applicable axis in the right argument must be empty, and the result
will be the prototype of B repeated + / | 4 times along the axis. If the applicable
axis is not empty, APL signals LENGTH ERROR. For example:

[J«B+3 0p5
(APL outputs a blank line)
"2 T3/B ACORRECT AXIS IS EMPTY
00000
00000
00000
J«C+0 3p5
(APL outputs a blank line)
2 T3/C aINCORRECT AXIS IS EMPTY
10 LENGTH ERROR
"2 73/¢C AINCORRECT AXIS IS EMPTY

A

APL inserts fill items that are determined by the prototype of each vector
along the relevant axis. This is important for arrays of rank 2 or more because
the fill item for a given position depends on the prototype of that particular
column, row, or plane. The following expressions describe such an operation.
Note where the fill items are blanks and where they are zeros. (Because the

1-182 APL Reference Manual

Primitive Mixed Functions
/ and # Compression and Replication

array M is simple, all the fill items are scalars. If ¥ were enclosed, some of the
fill items might also have been enclosed.)

aCREATE M, A HETEROGENEOUS ARRAY OF RANK 3
O«M«2 2 3p 1 "A" 2 3 4 5 'A* 3 45 'B" 6

w
= o
[S2 00]

(S0~
w

N
N
w

COL«1 "1 11
AREPLICATE M ALONG LAST AXIS (DEFAULT)
aPROTOTYPE BASED ON VECTORS ALONG LAST AXIS

Ul = W
=
w
= w

pCOL/YM aLAST AXIS IS CHANGED

N
N
=

COL«1 "1 1
CoL/(21M aREPLICATE M ALONG 2ND AXIS

P S I
=
w0

pCOL/[21M a2ND AXIS IS CHANGED

CoL/[11M aEXPAND M ALONG 1ST AXIS

w
= o
(SN

g o o
w
=

pCOL/[11M alST AXIS IS CHANGED

w
N
w

APL Reference Manual 1-183

Primitive Mixed Functions

/ and # Compression and Replication

Further examples:

O«WRL«(1 2 3) 'ABC' 0
t----- + +---+ 0
1 2 3| |ABC]|
- t t---+
1 1 0/WRL ACOMPRESSION
o= + +---+
|1 2 3| |4BC|
t----- tot---t
3 7220 "1/WRL AREPLICATION
o + - + t----- + - + t----- t o t--—+ t-—-+ +----- +
[12 3] |12 3] |12 3] {00 0] |00 0| |ABC| |ABC| |0 0 0]
t----- t - + ot + - + ot B e e e +

Possible Errors Generated

7 SYNTAX ERROR (NO DYADIC FORM OF DERIVED FUNCTION)
9 KRANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)
15 DOMAIN FRROR (NOT AN INTEGER)
27 LIMIT EFRROR (INTEGER TOO LARGE)

28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

29 AXIS LENGTH FRROR

30 AXIS DOMAIN ERROR
30 AXIS DOMAIN ERROR
30 AXIS DOMAIN ERROR
30 AXIS DOMAIN ERROR
30 AXIS DOMAIN ERROR

30 AXIS DOMAIN ERROR

1-184 APL Reference Manual

(NOT SINGLETON)

(AXIS LESS THAN INDEX ORIGIN)
(ENCLOSED ARRAY NOT ALLOWED)
(INCORRECT TYPE)

(NOT AN INTEGER)

(RIGHT ARGUMENT HAS WRONG RANK)

(SEMICOLON LIST NOT ALLOWED)

Primitive Mixed Functions
/ and # Reduction

/ and # Reduction

Form

f/B f/TK1B f#B f#[K1B
is formed with / and -

Left Operand Domain
Type Dyadic value-returning function

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain (of derived function)

Type Depends on f
Rank 0f "1 +ppB
Shape (pB)[(1ppB)~K]
Depth Depends on f

Implicit Arguments

None.

Description

Reduction is a monadic function derived from the slash (/) operator. To derive
the reduction function, use any dyadic function as the operand (f in the form) to
slash. f can be a primitive dyadic function, a dyadic system function, a dyadic
user-defined function, or a dyadic-derived function. f cannot be a user-defined
operator. The result operates as if f were applied between successive items
along a specified axis of an array (B). For example:

APL Reference Manual 1-185

Primitive Mixed Functions
/ and # Reduction

[J«X+16
123456
1+2+43+4+5+6
21
+/X
21
1x2x3xUx5%6
720
x/X
720
<[4
A
</’AB'
1
</VABC?
15 DOMAIN ERROR (INCORRECT TYPE)
</VABC!

A

The reduction of a scalar always returns the scalar itself. Thus, the last
expression in the preceding example results in a DOMAIN ERROR because
"Bt<'(Ct evaluatestol,and '4' <1 is invalid because the data types do not
match.

Remember that APL evaluates expressions from right to left. For example:

</1 2 3
0

Here, APL evaluated 2< 3 and the result was 1. APL then evaluated 1< 1 and
returned 0.

The result of the derived function has a rank that is one less than the rank of
the original array (unless the original array is a scalar). Thus, the reduction of
a matrix yields a vector, the reduction of a vector yields a scalar, and so forth.

For the forms f/ [k1 B and f# [K] B, the applicable axis is axis X:
[«<4+«2 up16
1234
56 12
+/[2]4
10 1t
+/[1]4
6 8 46

1-186 APL Reference Manual

Primitive Mixed Functions
/ and # Reduction

Further examples:

O«¥Y«(1 2 3) (732 72) (732 72) (10 1)

pommm R I + o= +
{12 31 1732 721 |73 2 2] |10 "1}
Fommm e + ot-———--- +oto-—--- R +
+/Y
ittt +
"4 6 2]
it +
,/13 nSIMPLE ARG YIELDS NESTED RESULT
pommmm +
112 3|
pommm +

If the length of the ¥ th axis is 1, the result of the derived function is the
original array with the ¥ th axis removed:

J«A«5 1p15
1
2
3
u
5
+/{1]A
15
+/[2]4
12345

The forms f/ B and f# B affect the last and first axes of B, respectively:
+A<2 Up16

123
561

+ N & O

/4
10 14

14
6 8 4 6

If the length of the applicable axis is 0, and all other axes have nonzero
lengths, each result item is the identity function applied to the prototype of the
argument, if one exists. The identity function for all scalar dyadic functions is
p+f/ 10 where p is the prototype of the right argument (p«+ 0p B) and [is the
scalar dyadic function. The identity elements for the identity function of the
scalar dyadic functions are listed in the following table:

APL Reference Manual 1-187

Primitive Mixed Functions
/ and # Reduction

Identity Items for the Scalar Dyadic Functions
Dyadic Function Symbol Identity ltem (f/ 1 0)

Plus + 0

Minus - 0

Times x 1

Divide + 1

Power * 1

Residue | 0

Maximum r Most negative representable number
(T 1.7E38 approx)

Minimum L Largest representable positive number
(1.7E38 approx)

Logarithm ® None

Combination ! 1

Circle o None

And A 1

Or v 0

Nand ~ None

Nor » None

Less < 0

Not Greater < 1

Equal to = 1

Not Less > 1

Greater > 0

Not Equal z 0

The identity functions for the nonscalar dyadic functions are listed in the
following table. Note that P is the prototype of the argument B (defined
formally as P+« + 0p B). Any functions not listed (including system functions,
user-defined operations, and derived functions from arbitrary operator
sequences) do not have identity functions.

1-188 APL Reference Manual

Primitive Mixed Functions
/ and # Reduction

Identity Functions for the Nonscalar Dyadic Functions

Dyadic Function Symbol Identity Function
Reshape p pP

Catenate , ((T14pP),0)pc((14pP),0)pP
Rotate ol (T1+pP)poO
Rotate e (1+pP)p0
Transpose \ tpp P

Pick > 10

Drop ¥ (ppP)p0

Take + pP

Without ~ 10

Matrix Divide 8 (14pP)o.=14pP

Possible Errors Generated

7 SYNTAX ERROR (NO DYADIC FORM OF DERIVED FUNCTION)

7 SYNTAX ERROR (NO DYADIC FORM OF FUNCTION)

11

15

15

15

15

15

27

28

29

30

30

VALUE ERROR

DOMAIN ERROR

DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (FUNCTION HAS NO IDENTITY ITEM)

DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (NOT 4 DYADIC FUNCTION)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXTS DOMAIN FRROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXTS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

APL Reference Manual 1-189

Primitive Mixed Functions
/ and # Reduction

30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
30 AXIS DOMAIN ERROR (INCORRECT TYPE)
30 AXIS DOMAIN FRROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-190 APL Reference Manual

Primitive Mixed Functions
" Each

" Each

Form
B Af"B
Left Operand Domain

Type Any function

Left Argument Domain

Type Depends on the function f
Shape Depends on the function f
Depth Depends on the function [

Right Argument Domain

Type Depends on the function f
Shape Depends on the function f
Depth Depends on the function f

Result Domain (of derived function)

Type Depends on the function [
Rank p p B (after singleton extension)
Shape p B (after singleton extension)
Depth Depends on the function f

Implicit Arguments

None.

Description

The monadic ~ operator (known as each) takes a function (f) as the left
operand. The result is either a monadic or dyadic derived function (depending
on the valence of /). f can be a primitive function, a system function, a user-
defined operation, or a derived function from an arbitrary operator sequence.
The function f does not have to be a value-returning function.

APL Reference Manual 1-191

Primitive Mixed Functions
” Each

When you use 7, the action of a monadic f is applied to successive items

of an array (B in the form), and the action of a dyadic f is applied between
corresponding pairs of items (4 and B in the form). The action of f is only
applied to the top level of nesting in an enclosed array (is not pervasive).

B«
C + 15
D « 2 2 p "ABCD!
0« E<+«B, (cC), cD aNOTE USE OF PARENTHESES
b t--mm - + t--+
[1 2 3 4 5] |4B]
dom - + |CD|
+--+
pE #SHAPE OF E SHOWS A 3-ITEM VECTOR

3
0"k ASHAPE OF EACH OF E SHOWS SHAPE OF ALL ITEMS
++ ot-t F---+

H1s) 12 2}
++ +-+ t---+
=F aDEPTH OF E SHOWS ONE NESTING LEVEL
2
="F RDEPTH OF EACH OF E SHOWS DEPTH OF ALL ITEMS
011
D“E“CE
e +
I + -+
i 112 3 4 5] |AB}]
i + 1CDI
I +--+]
R e e PP +
00 E aRANK OF EACH ITEM OF E
+-+
[1]
+-+
0+«F + cE,EE
e +
R b ot I e +]
[14 $==mmmo - + t--+] |4 Fmmmmmmee— I e B R + +--+1]|
It 11234 5] |AB{{ | 12345} {ABl] | |12 34 5] |AB]|
[mmmmmmne T e + D]
K oot] oot | #et] |
[= e t o oo +]
et et et ittt +
oF aSHAPE OF F SHOWS IT IS NOW A SCALAR
(APL outputs a blank line)
=F aDEPTH OF F SHOWS ENCLOSED ARRAY, 3 NESTING LEVELS
4

1-192 APL Reference Manual

Primitive Mixed Functions
” Each

ASHAPE OF EACH OF F SHOWS 1 VECTOR OF SHAPE 3)

oF
+-+
13
+-+
RSHAPE OF EACH/FACH OF F SHOWS 3 VECTORS OF SHAPE 3
F
e TR +
[+-+ +-+ +-+]|
13l 131 13l
[+-+ +-+ +-+]
R i +
ASHAPE OF EACH/EACH/EACH OF F
o
i +
[4-=-mmmm I i ot +]
|14+ 4=+ +---+] [++ +-+ +-—-+] |++ +-+ +-——+]]|
PETEist b2 200 biE ist f2 2ff FiErst 12 21|
[{++ +-4+ +---+] |++ +-+ +---+] |++ +-+ +---+]]
[+-===--=--- I t ot +]
b e +
Vi+SH X

(1] aTHIS USER-DEFINED FUNCTION RETURNS A RESULT
[2] aSH DETERMINES IF ARRAY X IS SIMPLE HOMOGENEOUS
(3] Z(2>=X)n (+Z)A.=Z«4+70p", "X

(4] v

SH "At 2 3
0

SH 15
1

SH 2 2p'ABCD!
11

SH (1 2) 3
0

SH VYABC' 5
0

The following example shows the use of system functions with the each
operator. The example creates a vector of function definitions and then
displays the canonical representation of each of the list of functions:

X« 2 20'F 2!
X
F
2
Y « 2 3p'F001+2"
Y
FO0
1+2
YENS

APL Reference Manual 1-193

Primitive Mixed Functions
" Each

orx”™ x ¢
t-+ +---+
[FI |FOO]
t-t t---+
VFNS
F FOO
gcr ™ 'Fr 'F0O"
+-t t---+
|F| |FOO|
2] [1+2]
t-t t-——+
0BOX™ [OVR™ <[2]0ONL 3

| vF| | VFOO0 |

011 2] {11 1+2]
| vl v

The next example shows the use of each to derive a dyadic function:

X<'WENDY' 'STAN' 'PETER'

X
o + ot o +
|WENDY| |STAN| |[PETER]
tomm- - I +
(cOALPHAY b X
et e + Hmmmmmmmo- +
/42 315] 13412 {2415 3}
 EEEEEE B R +
Y « (14) (16} (13)
Y
et + oo mmm oo I +
[1 234 [123u456] |12 3]
et R + ot +
213477
tommmm +opmmmm oo + oo +
13412 |23456 1] |12 3]
pommmee + o e + oo +

The next example shows each as part of a derived function:

+/7 (2 2p14)(9 8 7)
t--—+ 24
[3 7]
t--=-t

1-194 APL Reference Manual

Primitive Mixed Functions
" Each

Possible Errors Generated

9 RANK ERROR
10 LENGTH ERROR

40 OPERATOR DOMAIN ERROR (OPERAND TO EACH NOT A FUNCTION)

APL Reference Manual 1-195

Primitive Mixed Functions
\ and \ Expansion

\ and \ Expansion

Form

ANB A\ [K1B AXB AX[KIB
\ 1s formed with \ and -

Left Operand Domain

Type Near-Boolean
Shape Vector domain
Depth 0 or t (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain (of derived function)

Type Same as argument

Rank 1lppB

Shape (p0B)[(1ppB)~K] and p, 4 on axis X
Depth 1[=B

Implicit Arguments

None.

Description

Expansion is a monadic function derived from the backslash (\ operator. It
builds an array by combining the items of an existing array with fill items. You
can also use the JEXP system function to perform the expand operation (see
Chapter 2 for more information).

Each item in the operand (4 in the form) is a Boolean scalar that corresponds
to the position of an item in the right argument (). When 4 is 1, APL inserts
the corresponding item along the relevant axis of B into the result array. When
A is 0, APL inserts a fill item into that position in the result array. There

1-196 APL Reference Manual

Primitive Mixed Functions
\ and x Expansion

must be a 1 for each item along the relevant axis in the right argument, so
that all the items in B appear in the result array. Any number of fill items
may be included:

0«LIS+12 13 15
12 13 15
V1 0 1 0 1
AZEROS IN V DECIDE LOCATION OF FILL ITEMS
VNLIS
12 0 13 0 15

A singleton right argument is extended along the axis to a length that matches
the number of 1 s in the left argument:

10 1\5
505

If the left argument is a singleton, APL signals an error:

1\5 6 7 8
10 LENGTH ERROR

1\5 6 7 8
A

0\5 6 7 8
10 LENGTH ERROR

0\5 6 7 8
A

If the right argument is a vector, all four forms of the expansion function have
the same effect. If the rank of the right argument is greater than 1, the form
used determines which axes of the array are affected.

For the forms 4\ [k] B and A\ [X] B, the affected axis is axis X :

O«A«2 3p:i6

10 1\[1]4 AEXPAND ALONG 1ST AXIS

APL Reference Manual 1-197

Primitive Mixed Functions
\ and \ Expansion

10 1%(134 AEXPAND ALONG 1ST AXIS

10 1 1\[2]4 AEXPAND ALONG 2ND AXIS
1023
40 56

101 1%(2]4 AEXPAND ALONG 2ND AXIS
1023
4056

The forms 4\ B and 4% B affect the last and first axis of B, respectively:

X+3 9p ' xTHISISANEXPANSIONEXAMPLE* "'
X
«THISISAN
EXPANSION
EXAMPLE»*
pX
39
V«1 1111011011
WX AEXPAND X ALONG LAST AXIS
«THIS IS AN
EXPAN SI ON
EXAMP LE xx
101 1%% aEXPAND X ALONG FIRST AXIS
*THISISAN

EXPANSION
EXAMPLE*x

When you expand an array, APL uses fill items that are determined by the
prototype of each vector along the relevant axis. This is important for arrays
of rank 2 or more because the fill item for a given position depends on the
prototype of that particular column, row, or plane. The following expressions
describe such an operation. Note where the fill items are blanks and where
they are zeros. (Because the array M is simple, all the fill items are scalars. If
M were enclosed, some of the fill items might also have been enclosed.)

O«M«2 2 3p 1 "A" 2 3 4 5 '4" 345 'B' 6

U W e
oy w =
o BN S I)

oM
2 23
BOO+1 1 0 1

1-198 APL Reference Manual

Primitive Mixed Functions
\ and % Expansion

aEXPAND M ALONG LAST AXIS (DEFAULT)
PROTOTYPE BASED ON VECTORS ALONG LAST AXIS

w
= o
o o
(SN

(S0 S
w
=

pBOO\ M aLAST AXIS IS CHANGED

[}
[ae]
=

B0O«1 0 1
BOO\ [2]M aEXPAND M ALONG 2ND AXIS

= W O
=
o

pBOO\ [2]1M R2ND AXIS IS CHANGED

BOON [1]M REXPAND M ALONG 1ST AXIS

o O
<
[y

[Sa0: N
w
=

pBOON\ [11H a1ST AXIS IS CHANGED
3 23

Note that the right argument may be empty:

0 0 0\10
000
D«A<0 0 O\ '!
(APL outputs a blank line)
pA
3

If the left argument is empty, the right argument (after extension, if necessary)
must have length 0 along the relevant axis.

For a simple, homogeneous array 4, the result of the expression 0=0\0p 4
is 1 if A is numeric, and 0 if 4 is character. For any array X, the result
of the expression (2>=X)nr (+2Z)n.=Z«4+"0p ", X 1is 1if X is simple or
homogeneous, and 0 if X is either nonsimple or heterogeneous.

APL Reference Manual 1-199

Primitive Mixed Functions
\ and % Expansion

Further examples:

[«WRL<«{1 2 3) ('ABC') 0

tmmmm- + 4---+ 0
[1 2 3] |ABC]
e + -t

101 0 1I\WRL
et + o4---—- + oAt e + 0
[123) Jo ool [ABC) |0 0 0]
tmmm - e IR +

Possible Errors Generated

7 SYNTAX ERROR (NO DYADIC FORM OF DERIVED FUNCTION)

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

27

28

29

30

30

30

30

30

30

LENGTH ERROR

DOMAIN ERROR

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)
AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (RIGHT ARGUMENT HAS WRONG RANK)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-200 APL Reference Manual

Primitive Mixed Functions
\ and % Scan

\ and Y\ Scan

Form

f<B fLKIB B ACKIB
y 1s formed with \ and -

Left Operand Domain

Type Dyadic value-returning function

Argument Domain

Array Any
Type Any
Shape Any
Depth Any

Result Domain (of derived function)

Type Depends on f
Rank opB

Shape 0B

Depth Depends on f

Implicit Arguments

None.

Description

Scan is a monadic function derived from the backslash (\ operator. To derive

the scan function, use any dyadic function as the

operand (f in the form) to

backslash. f can be a primitive dyadic function, a dyadic system function, a
dyadic user-defined function, or a dyadic-derived function from an arbitrary
operator sequence. The result operates as if f were applied between successive

items along a specified axis of an array (B). Thus,

a scan of an array works the

same as a reduction, except that the scan returns the results as the function is

applied to each successive group of items.

APL Reference Manual 1-201

Primitive Mixed Functions
\ and % Scan

The result has the same shape as B. The first item of the result is always
identical to the first item of B, and the last item is equal to the f reduction of
B. For example:

+\3 45
37 12

As the function is applied to each successive group of items, APL evaluates the
resultant expressions from right to left:

-\123¢4
171272

Here, APL returned the following:

¢ The first item in the argument array
¢ The result of the expression 1-2

¢ The result of the expression 1-2-3

¢ The result of the expression 1-2-3-4

Note that APL treated each expression in the example independently; for
example, the result of the expression 1-2 did not affect the evaluation of the
expression 1-2-3.

If B is an empty array, the result is an empty array.

For the forms A\ [X1 B and f\ [X] B, the applicable axis for the scan is axis X:

O«A<2 4p16
1234
5612

+\ [2]4
1 3 6 10
5 11 12 14

+\ [1]4
1234
6 8 4 6

The forms A\ B and f\ B affect the last axis and first axis of B, respectively:

1-202 APL Reference Manual

Primitive Mixed Functions

\ and \ Scan
O«4+2 upi6
123y
5612
+\ 4
13 6 10
5 11 12 14
+34
1234
6 8 4 6

Note that the scan operator is never applied if B has the length 1. Thus,
+\"At«<>1 A", Also note that for =\ ' 4B' «»> ' 4', 0 is heterogeneous,
because the first item of the result would be a character (* 4!), and the second
item would be a number ¢, the result of "4 ="B".

If the dyadic function specified with scan is one of the associative primitive
functions (+, x, L, [, < , and v for all arguments; = and # for Boolean
arguments), APL uses an optimization that changes the way scan is computed.
The definition of R<f\ B (for vectors R[k] =f/ K+ B0) is changed as follows:

R[1] B(1]
RIK] R[K-1] £ B[K] for KeivipB

Hon

This optimized scan requires fewer operations than the traditional scan.

Note that the result of an associative operation may differ slightly from the
nonassociative approach, and you should use it carefully if your results require
a high degree of precision. For example:

A«1E6 “1E6 1E 16
A

1000000 ~ 1000000 1E 16
+\ 4

1000000 0 1E™ 16
+/4

0

Further examples:

O«W«(2 2 3) (2 1 0)

APL Reference Manual 1-203

Primitive Mixed Functions

\ and % Scan
p\3 2 1 aSIMPLE ARG YIELDS NESTED RESULT
3 +t----- + ot----- +
12 2 2] 111 1]
Fom——— I +

Possible Errors Generated

7 SYNTAX ERROR (NO DYADIC FORM OF DERIVED FUNCTION)
7 SYNTAX ERROR (NO DYADIC FORM OF FUNCTION)

11 VALUE ERROR

15 DOMAIN ERROR

15 DOMAIN ERROR (INCORRECT TYPE)

27 LIMIT ERROR (INTEGER TOO LARGE)

28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

29 AXIS LENGTH ERROR (NOT SINGLETON)

30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)
30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWNED)
30 AXIS DOMAIN FRROR (INCORRECT TYPE)

30 AXIS DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

40 OPERATOR DOMAIN ERROR (NOT A DYADIC FUNCTION)

1-204 APL Reference Manual

Primitive Mixed Functions
o . f Outer Product

o , fOQuter Product

Form
Ao . fB

Left Operand Domain

Type Always jot (o)
Right Operand Domain

Type Dyadic function

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain (of derived function)

Type Depends on f
Rank (ppA)+ppB
Shape (pd).pB

Depth Depends on f

Implicit Arguments

None.

APL Reference Manual 1-205

Primitive Mixed Functions
o . f QOuter Product

Description

Outer product is a derived function that specifies an operation to be performed
between every item of one array and every item of another array. In the
expression R<4. , B, R is an array that results from the application of the
function f to every pair of items of 4 and B. fcan be a primitive dyadic
function, a dyadic system function, a dyadic user-defined function, or a dyadic-
derived function from an arbitrary operator sequence. The function f does not
have to be a value-returning function.

In the following example, note how the outer product operator affects the
operation of the primitive scalar function multiply:

12 3x2 34 RSCALAR PRODUCT APPLIES x TO FACH PAIR
26 12
AQUTER PRODUCT APPLIES x BETWEEN ALL ITEMS
12 30,x2 3 4

o =N
o o w
N o

1

In the next example, the outer product operator affects the operation of

the equal function so that each data item in the left argument is compared

to each item in the right argument. Then, the reduction function (derived
from the slash operator) is used to determine how many times each item

in the left argument appears in the right argument. Note that the left
argument determines the number of rows in the result, and the right argument
determines the number of columns:

G¢«1 23221
(183)0.,=CG RFIND THE LOCATIONS OF 15,2S5,AND 35S IN G
100001
010110
001000
+/{13)0.=G RUSE REDUCE TO TOTAL THE ROKS
231

aTHERE ARE TWO 1S THREE 25 AND ONE 3 IN G

Further examples:

O«X+(1 2 3) 'ABC' 72

1-206 APL Reference Manual

O«l«(2 2 3)

(2 10)

Primitive Mixed Functions
o . f Outer Product

e.p 1 2 0 RSIMPLE ARGS YIELD NESTED RESULT

+-+
[2]
+-+
+---+
l2 2]
+---+

+-+
[0]
-1
+--—+
[0 o]
t--—+

Possible Errors Generated

7 SYNTAX ERROR (NO MONADIC FORM OF DERIVED FUNCTION)

15 DOMAIN ERROR

15 DOMAIN ERROR (INCORRECT TYPFE)

40 OPERATOR DOMAIN ERROR (NOT A DYADIC FUNCTION)

APL Reference Manual

1-207

Primitive Mixed Functions
f. g Inner Product

f. glnner Product

Form
Af.gB

Left Operand Domain

Type Dyadic value-returning function
Right Operand Domain

Type Dyadic value-returning function

Left Argument Domain

Type Any
Shape Any, inner axes of 4 and B must conform
Depth Any

Right Argument Domain

Type Any
Shape Any, inner axes of 4 and B must conform
Depth Any

Result Domain (of derived function)

Type Depends on f and g
Rank O " 2+(ppd)+ppB
Shape (T1vpd),14pB

Depth Depends on fand g

Implicit Arguments

None.

1-208 APL Reference Manual

Primitive Mixed Functions
f. g Inner Product

Description

The derived function inner product produces the common algebraic matrix
product of two arrays. The name inner product comes from the application
of the function (g) along the inner axes of the two arguments. f and g can be
a primitive dyadic function, a dyadic system function, a dyadic user-defined
function, or a dyadic-derived function from an arbitrary operator sequence.
(The inner axes are the last axis of the left argument and the first axis of the
right argument.) For example:

[«A+«2 3p16
123
4 56
[J«B+<13
123
A+ . xB
14 32
aINNER AXES DO NOT MATCH IN NEXT EXPRESSION
B+.x4
10 LENGTH ERROR (LENGTHS OF INNER AXES DO NOT MATCH)

Bt.xA

A

In the preceding example, each item along the first axis of the right argument
(in this case, B has only one axis) is multiplied by the corresponding item along
the last axis of the right argument, and the products of each row are summed.
The lengths of these inner axes must conform (in this case they are both 3).
The shape of the result is the shape of 4 (2 3) catenated to the shape of B (3)
without their inner axes.

When each of the arguments has only one axis, the result is a scalar:

(13)+.x13
14

When you want to perform the inner product with one object on itself, use
transpose:

0«A<2 3p16

12 3

4 56

A+, x{A
4 32
32 77

APL Reference Manual 1-209

Primitive Mixed Functions
f. g Inner Product

You can also specify an inner product in which an operation other than
multiplication is performed. Commonly, you might also use A .= (And Dot
Equals), v.# (Or Dot Not equals), or x.» (Times Dot Star). Using this method,
you can locate values containing specific characters or search for a row of one
array in which all the items are equal to those in a column of another array.
For example:

0«B«2 316
3
aNEXT EXPRESSION COUNTS WHERE 2 AND 6
2 6+.<B a ARE < THE TWO ROWS OF EACH COLUMN IN B
1
O«X«4 3p 'ONETWOSIXTEEN!
ONE
TWO
SIX
TEE
pX
43
pY«!'SIX? aFIND WHERE Y OCCURS IN SIX

3

To be used in an inner product operation, the two arguments, denoted 4 and B,
must conform to at least one of the following rules:

* A or B is a singleton
* The inner axes (the results of 14 p 4 and 1+ p B) are equal
¢ Either the last axis of 4 (T 1+ p 4) or the first axis of B (1+ p B) equals 1

If the first or third rule is true, then the corresponding argument is extended
(through the process of singleton extension) so that the arguments have equal
lengths along the matching axes.

If (0="14p4) ~A0=1+%0 B, but no other axes of 4 and B are equal to 0, then the
inner product operator returns an array of identity items for the function £, as
in reduction.

1-210 APL Reference Manual

Primitive Mixed Functions
f. g Inner Product

Further examples:

O0«G«1 3 p (12 3) (72 01) 72

ASIMPLE ARGS YIELD NESTED RESULT

Possible Errors Generated

7 SYNTAX FRROR (NO MONADIC FORM OF DERIVED FUNCTION)

11

i0

15

15

15

Lo

VALUFE ERROR

LENGTH FRROR (LENGTHS OF INNER AXES DO NOT MATCH)
DOMAIN ERROR

DOMAIN ERROR (FUNCTION HAS NO IDENTITY FELEMENT)
DOMAIN ERROR (INCORRECT TYPE)

OPERATOR DOMAIN ERROR (NOT A DYADIC FUNCTION)

APL Reference Manual 1-211

Primitive Mixed Functions
[] Axis

[] Axis

Form
fLK1B AflK]B

Left Argument Domain
Type Monadic or dyadic function

Right Argument Domain

Type Near-integer (floating for laminate and ravel, Any for user-
defined operations)

Shape Singleton (Vector for drop, enclose, disclose, ravel,
take and all dyadic scalar functions, Any for user-defined
operations)

Depth 0 or 1 (simple), Any for user-defined operations

Result Domain

Type Same as left argument

Implicit Arguments
0I0 (fLx] when 0I0+«1 is identical to f[X+1] when JI0+0)

Description

Axis makes the function to its left apply to the axis specified by the value
surrounded by brackets. The following functions and operators may be affected
by axis:

* Catenate (, and 7)

* Derived compress/replicate (/ and #)
¢ Derived reduction (/ and #)

* Derived expand (\ and %)

* Derived scan (\ and %)

e Disclose ()

* Drop (+)

1-212 APL Reference Manual

Primitive Mixed Functions
[] Axis

* Enclose (<)

¢ Laminate (, and ;)

¢ Monadic grade up (4)

¢ Monadic grade down (V)
* Ravel (, and 5)

* Rotate (¢ and o)

¢ Reverse (¢ and o)

e Take (+)
e [JEXP
e [REP

¢ All dyadic scalar functions (see Table 1-1 in Section 1.1.1)
¢ User-defined operations

The use of axis with these functions (and operators) is described in the
individual explanations of the functions. For examples and further descriptions
of axis with scalar functions, see Section 1.1.

When you use axis with the 5, #, %, and e functions, the functions are
equivalent to ,, /, \, and ¢ used with axis. The following list shows the
definitions and equivalences of these symbols. Note the following:

f represents either ,, /, \ or ¢

g represents 5, 4, X, 0r e

4 and B represent any arrays

S is any scalar

K is any axis

0710 is used to select the first axis of an array.

* gB«~ flOIO] B

e flk] B<«~> g[K] B for allk

* fS«> flO0I0] S <«~gsS <« gl0IO]S

e AgB<«~ Af([0IO] B

e Aflx] B<«~ Aglk] Bforall

* AfS<~ AfIOIO] S<«> AgS <~ Agl0IO] S

Axis is [] 70-dependent; thus, all the functions named are 0 70-dependent when
they are affected by axis, except user-defined operations.

APL Reference Manual 1-213

Primitive Mixed Functions

[] Axis

Possible Errors Generated

28

29

30

30

30

30

30

30

30

30

30

30

30

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
AXIS DOMAIN ERROR (AXES NOT IN CONTIGUOUS ASCENDING ORDER)
AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

AXIS DOMAIN ERROR (INCORRECT OPERATION)

AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (LEFT ARGUMENT HAS WRONG LENGTH)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (RIGHT ARGUMENT HAS WRONG RANK)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

1-214 APL Reference Manual

Primitive Mixed Functions
« Specification Function

<+ Specification Function

Form

A+B ALK]<B
Left Argument Domain

Type Variable name or undefined name
Shape Any

Right Argument Domain

Type Any
Shape Conforms to index argument &, if any
Depth Any

Result Domain

Type Same as right argument
Rank ppB

Shape pB

Depth =B

Implicit Arguments

None.

Description

The specification function («) stores values in identifiers. The left argument
(4) must be a variable name or undefined. When the function is executed, the
value of the right argument (B) becomes associated with the name 4.

In addition to the uses described below, specification can also be used for
strand and selective assignment statements.

Specification functions can be included in the construction of other statements.
For example, the following assigns the value 7 to ¢, 11 to B, and 14 to 4:

A€3+B<k+ (<7

APL Reference Manual 1-215

Primitive Mixed Functions
<« Specification Function

For the form 4 [k] «B, axes of length 1 are dropped from B to allow B to
conform to 4L K] . (For more details about the A[k¥]+B form of specification,
see the VAX APL User’s Guide.) For example:

[J«4A+2 3p1b

123
4 56

B«3 1 1p7 8 9

A[2;1+B

A
123
789
The specification function is a quiet function; it does not return a value if it is
the leftmost function in a statement.

A+2
4
2

(4+2)
2

(J«A<2
2

Note that the value returned by the specification function (when you require
that it returns a value) is the value of the right argument, even if the left
argument is indexed. For example:

A<5 4 3 2 1
O«Al1]+Y

Possible Errors Generated

Specification not subscripted (form A+B)

u NOT A VALID SYSTEM IDENTIFIER

7 SYNTAX ERROR (MISSING LEFT ARGUMENT TO ASSIGNMENT)
11 VALUE ERROR (NO VALUFE TO ASSIGN)

15 DOMAIN ERROR (ILLEGAL LEFT ARGUMENT TO ASSIGNMENT)

15 DOMAIN ERROR (NOT A SYSTEM VARIABLE)

1-216 APL Reference Manual

Primitive Mixed Functions
+ Specification Function

Subscripted specification (form A[X]<«B)

11

11

15

15

27

36

36

37

37

37

38

38

38

VALUE ERROR (NO VALUE TO ASSIGN)

VALUE ERROR (SUBSCRIPTED NAME IS UNDEFINED)
DOMAIN FRROR (INVALID OBJECT IN INDEXED ASSIGNMENT)
DOMAIN ERROR (NOT A SYSTEM VARIABLE)

LIMIT ERROR (INTEGER TOO LARGE)

INDEX RANK ERROR

INDEX RANK ERROR (CANNOT INDEX A SCALAR)

INDEX LENGTH ERROR

INDEX LENGTH FRROR (INDEX LESS THAN INDEX ORIGIN)
INDEX LENGTH ERROR (INDEX OUT OF RANGE)

INDEX DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
INDEX DOMAIN ERROR (INCORRECT TYPE)

INDEX DOMAIN ERROR (NOT AN INTEGER)

APL Reference Manual 1-217

Primitive Mixed Functions
Strand Assignment with the Specification Function

Strand Assignment with the Specification Function

Form

(A1...4n)+B

Left Argument Domain

Type List of variable or undefined names
Shape Any

Right Argument Domain

Type Any
Shape Vector domain
Depth Any

Result Domain

Type Same as right argument
Rank ppB

Shape pB

Depth =B

Implicit Arguments

None.

Description

Strand assignment (also known as vector assignment) allows you to assign a
list of values to a list of objects. APL applies the assignment along successive
pairs of items in the left (4) and right (B) arguments in a manner similar to
scalar extension. The objects in 4 may be undefined names, variable names,
or system variable names. The result of the strand assignment function is the
right argument.

The length of B must conform to the number of objects in 4, or B must be a
singleton, in which case APL performs singleton extension. For example:

1-218 APL Reference Manual

Primitive Mixed Functions
Strand Assignment with the Specification Function

BURR « 32 o TEMP « 0 o (COLD « 12
BURR o TEMP o COLD

32
0
12
#PARENTHESES REQUIRED
(BURR TEMP COLD) + 20 “4 ~15
BURR o TEMP ¢ (COLD
20
Ty
15

RSINGLETON EXTENSION
(BURR TEMP COLD) <« 3
BURR o TEMP o COLD

You can use strand assignment to allow multiple arguments in user-defined
operations. For example, FRET is a monadic user-defined function containing
three local variables (X, Y, and Z). The header definition of FRET is as follows:

VFRET ByX;Y;2 V

When FRET is called, the argument (8) contains three items. Inside FRET,
there is an expression that performs a strand assignment in which each item
in B is assigned to a local variable. For example:

BIP«23 u1 'RUE' ABIP CONTAINS 3 ITEMS
FRET BIP fTHE CALL TO FRET IS STILL MONADIC

(X Y Z)+«BIP aTHIS IS EXPRESSION INSIDE OF FRET

Note that the length (3) of the left argument to the specification function
conforms to the number of items in BIP. If BIP were a singleton, APL would
perform singleton extension.

Strand assignment is an atomic operation; if any of the assignments fail, no
change occurs to any of the names in the left argument list. However, If you
have set the display option on the OWATCH system function (see Chapter 2
if you have set the signal option, the signal is held until APL completes the
entire strand assignment and only the last watched name is signaled.

APL Reference Manual 1-219

Primitive Mixed Functions
Strand Assignment with the Specification Function

Possible Errors Generated

4 NOT A VALID SYSTEM IDENTIFIER

7 SYNTAX ERROR (MISSING LEFT ARGUMENT TO ASSIGNMENT)
9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR

15 DOMAIN FRROR (INVALID OBJECT IN STRAND ASSIGNMENT)
1t VALUE ERROR (NO VALUE TO ASSIGN)

15 DOMAIN ERROR (NOT A SYSTEM VARIABLE)

1-220 APL Reference Manual

Primitive Mixed Functions
Selective Assignment with the Specification Function

Selective Assignment with the Specification Function

Form
(fA)+B (CfA) «B
Left Argument Domain
Type 4 1is a variable name

fis a function (see list below)
C is any valid left argument to f

Shape Any

Right Argument Domain

Type Any
Shape Conforms to left argument
Depth Any

Result Domain

Type Same as right argument
Rawrite nk ppB

Shape 0B

Depth =B

Implicit Arguments

None.

Description

Selective assignment allows you to assign values to specified items of an
array. The left argument (f4) contains an expression that selects items from
an array. The length of the right argument (B) either equals the number of
items selected or is 1 (B is a singleton), in which case APL performs singleton
extension. For example:

APL Reference Manual 1-221

Primitive Mixed Functions
Selective Assignment with the Specification Function

0«GUT«15
12345

(0« (34GUT)«u48 49 50 AASSIGN TO FIRST 3 ITEMS OF GUT
48 49 50 45

(0« (34GUT)«48 ASINGLETON EXTENSION
48 48 48 45

ASHAPES DO NOT MATCH
(3+GUT)«u8 19
10 LENGTH ERROR
(3+GUT)«u8 49

A

The following table describes the primitive functions you can use in the left
argument expression to select items from an array. The symbol I refers to an
expression that is a valid argument to the function in the form.

Assignment Form

Function Name

(,A)+B
(,[K14) « B
(¢4) « B
(ed) «B

(¢ [KJA) <« B
(e[KJA) « B
(®4) « B
(IvA) <« B
(I+[K14) « B
(I+4) « B
(I+[K]A) « B
(IbA) « B
(Ied) « B
(I¢[KJA) « B
(Ie[KJA) « B
(IRA) « B
(IpA) « B
(IN4) « B
(IX4) « B
(IN[K]4A) « B

1222 APL Reference Manual

Ravel
Ravel with axis

Reverse

Reverse with axis

Transpose
Drop

Drop with axis
Take

Take with axis
Rotate

Rotate with axis
Transpose
Reshape

Expand

Expand with axis

Primitive Mixed Functions
Selective Assignment with the Specification Function

Assignment Form

Function Name

(Ix[XKJ4) « B
(I/A) « B
(I+A4) « B
(I/CKJA) « B
(I#[KJA) «B

Replicate

Replicate with axis

You can use more than one of the eligible functions in the left argument
expression. For example:

J«BOP+3 3p19

J«(2t1 18BOP)«0 0

8CHANGE FIRST 2 ITEMS ON THE DIAGONAL

You can use other primitive functions in the portion of the left argument
expression that evaluates the argument of one of the eligible functions. For

example:

[€BOP«3 3p18

123
456
788
BE«1
EP<2

J«((BE+EP)+1 18BOP)«0 0 0

023
6
780

=
o

Possible Errors Generated

4 NOT A VALID SYSTEM IDENTIFIER

11 VALUE ERROR (NO VALUE TO ASSIGN)

15 DOMAIN ERROR (CANNOT MODIFY SELECTIVE ASSIGNMENT TARGET)

APL Reference Manual 1-223

Primitive Mixed Functions
Selective Assignment with the Specification Function

15 DOMAIN ERROR (INVALID FUNCTION IN SELECTIVE ASSIGNMENT)
15 DOMAIN ERROR (INVALID OBJECT IN SELECTIVE ASSIGNMENT)
15 DOMAIN FRROR (NOT A SYSTEM VARIABLE)

36 INDEX RANK ERROR

37 INDEX LENGTH FRKOR

1—224 APL Reference Manual

2

VAX APL System Variables and Functions

Conceptually, there are two parts to the VAX APL interpreter: the APL
language and the APL environment. The APL language comprises the lexical
and symbolic elements of APL, the parts of APL that are included when it is
used as a mathematical notation in a classroom. The APL environment is the
setting in which the APL language elements are applied.

The APL interpreter recognizes a set of system variables, functions, and
commands that allow you to control your APL sessions, as well as to facilitate
and preserve the work you do in those sessions. For example, the interpreter
allows you to:

¢ Determine or set the values of the index origin, print precision, comparison
tolerance, and other elements that affect the operation of functions.

* Get information about a workspace, such as its name and size, the
names of its user-defined operations and variables, the state of its active
operations, and so on.

* Manipulate workspaces; that is, load, save, or delete them, copy objects
from them, or change their size.

* Get the system time and date, or get accounting information for a session.

2.1 System Variables

VAX APL system variables, like ordinary variables, can be used in any
language expression or function. Unlike ordinary variables, system variables
have special meaning to the system, and they allow you to do the following:

* Set the index origin and comparison tolerance.
¢ Change the output precision and line width.
* Specify an operation to be performed when a workspace is activated.

* Automatically save an active workspace after function editing and data
input.

APL Reference Manual 2-1

VAX APL System Variables and Functions
2.1 System Variables

2.1.1 System Variable Names

The names of APL system variables begin with a quad character (7). The
names are considered to be distinguished names, meaning that they are
reserved for a specific purpose. You cannot use them as names for user-defined
operations or variables, and you cannot copy, erase, or collect them in a group.

2.1.2 System Variable Characteristics

System variables are similar to ordinary variables in the following ways:
¢ They retain their values until new ones are assigned.

® Their current values are saved with a workspace (except for 0GAG, O TT,
OTLE and OVPC).

¢ They can be localized in user-defined operation definitions.

Each of the system variables in APL can be assigned a value and can be
localized in user-defined operations.

Table 21 lists the system variables, the range of values you can specify for
them, and their default values.

Table 2—-1 System Variable Value Ranges

Variable Value Range Default

04us 0,1,2 0

acr 0 to 2.328E 10 1E715

gbpc Nested vector C1102) 1
ODML 512 to 2048 2048

OERROR Error message te

[GAG 0,1,2,3 Terminal dependent
grIo 0,1 1

0L Any 1 0

OrLx Expression v

orG 0,1,2 1

gprp 1 to 16 10

O0PwW 35 to 2044 Terminal width
ORr Any 10

(continued on next page)

2-2 APL Reference Manual

VAX APL System Variables and Functions
2.1 System Variables

Table 2-1 (Cont.) System Variable Value Ranges

Variable Value Range Default

ORL T 2147483648 to 695197565
2147483647

OsF Prompt 0:<CR><LF> 6 spaces

OSINK Any Always 1 0

OTERSE 0,1 0

OTIMELIMIT ~1 to 255 0

OTIMEOUT 0,1 0

OTLE 0,1 Terminal dependent

OTRAP Expression v

grr 1to19 Terminal dependent

gvec Non-negative integer 30

Note that QERROR, OLX, O0SF, and 0 TRAP must have character values; 0DC
has a two-item heterogeneous value; all the other system variables must have
numeric values. The exceptions are 0L, IR, and JSINK, which may take any
type of value.

2.2 System Functions

APL system functions supplement the primitive functions by providing
additional processing capabilities. For instance, they allow you to do the
following:

e Express the canonical representation of a user-defined operation and store
the operation definition as data.

¢ Expunge a named object.

¢ Construct a name list of labels, variables, or functions, and return the
classification of a named object.

* Delay execution of an operation for a specified period of time.

You access a system function by stating its name and arguments (if any), just
as you would access a primitive or user-defined operation.

For the system functions that take character arguments, white space (spaces
and tabs) is allowed before and after the name (workspace name, function
name, and so on) in the argument. For example, all of the following will load
the workspace MYWS:

APL Reference Manual 2-3

VAX APL System Variables and Functions
2.2 System Functions

OQLD ' MYKWS '

geLp MYWS 1

0QLD 'MYWS!

0QLp MYWS !

Anything other than white space is not allowed before or after the name:

0QLD ' MYWS Al
22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
0QLD * MYWS Al

A

2.2.1 System Function Names
System functions, like system variables, are identified by unique names that
begin with a quad character (0); you cannot use these names for user-defined
operations or variables, and you cannot copy, erase, or collect them in a group.
APL assumes that any system functions in an expression are ambivalent,
even though most system functions have a specific valence. This means that
if an expression contains a left argument for a monadic system function, APL
signals an error. For example:

a0ARBOUT IS MONADIC
2 0ARBOUT 3

7 SYNTAX ERROR (NO DYADIC FORM OF FUNCTION)
2 JARBOUT 3

A

2.2.2 Types of System Functions

System functions can be categorized as follows:

* Niladic system functions—those that do not take arguments.

* Monadic system functions—those that take one argument.

* Dyadic system functions—those that take two arguments.

* Ambivalent system functions—those that take either one or two arguments.

The niladic system functions do not take arguments (you may not assign
a value to them), and they cannot be localized in user-defined operations.
The niladic system functions and their values (where applicable) in a clear
workspace may be summarized as follows:

2-4 APL Reference Manual

VAX APL System Variables and Functions

2.2 System Functions

Niladic System Functions

Function Description (value in clear workspace)

OAr Account information as 4-integer vector
HALPHA 'ANABCDEFGHIJKLMNOPQRSTUVWNXYZ!'
OALPHAL 'abcdefghijklmnop qrstuvwxyz'
OALPHAU '"8ABCDEFGHIJKLMN OPQRSTUVNXYZ'
QASCIT AV subset; approximates ASCII characters
gav Atomic vector

OCHANS Assigned file channels (empty numeric vector)
OCTRL The first 32 ASCII characters and Delete
orLc Line numbers in state indicator (1 0)

ONUM 10123456789

ORESET Clears the state indicator (no value)

ars Time stamp as 7-integer vector

ouL Process identification number (PID)
OVERSION Interpreter and workspace versions

OwA Workspace available in bytes

The monadic system functions take one argument, which is placed immediately
to the right of the function. The following table of the monadic system
functions describes the type, shape, and, where applicable, the units associated
with each function’s argument. Note that there are two entries for (1453,
which has both action and query uses.

Monadic System Functions

Function Shape Type Units

DARBOUT Vector domain Integer Character codes
DASS Vector domain Character File information
DAsSs Vector domain Near-int Channel numbers
OBREAK Any Any N/A

JCHS Vector domain Near-int Channel numbers
gcLs Vector domain Near-int Channel numbers
Ocr Vector domain Character Operation name
0DAsS Vector domain Near-int Channel numbers

APL Reference Manual 2-5

VAX APL System Variables and Functions
2.2 System Functions

Monadic System Functions

Function Shape Type Units

anr Singleton Floating Seconds

Opve Vector domain Near-int Channel numbers

OEFC Vector domain Near-int Channel numbers

OEFR Vector domain Near-int Channel numbers

QEFS Vector domain Near-int Channel numbers

OEx Matrix domain Character Name list

OrrI Vector domain Character Numeric string

OFLS Vector domain Near-int Channel numbers

OFx Matrix domain Character Operation definition

OMBX Vector domain Near-int Channel numbers

gnc Matrix domain Character Name list

aoM Vector domain Near-Bool N/A

gqQco Vector domain Character Workspace name, object names
gQLD Vector domain Character Workspace name

0gQpcC Vector domain Character Workspace name, object names
ORELEASE Vector domain Near-int Channel numbers

ovr Vector domain Character Numeric string

Ovr Vector domain Any Value or object name

0xeQ Vector domain Any N/A

The dyadic system functions take both a left and a right argument. The dyadic
system functions and the type, shape, and units, if any, associated with their
arguments are as follows.

Dyadic System Functions

Function Shape Type Units
Ocrq Left: Vector domain Near-int Packed data
Right: Vector domain Near-int Control information
gcoq Left: Array Any Data to be packed
Right: Vector domain Near-int Control information
OEXP Left: Vector domain Near-Bool Expand information

26 APL Reference Manual

VAX APL System Variables and Functions

2.2 System Functions

Dyadic System Functions

Function Shape Type Units

Right: Any Any Array to be expanded
OFMT Left: Vector domain Character Format string

Right: Any Any Data to be formatted
OREP Left: Vector domain Near-int Replicate information

Right: Any Any Array to be replicated
0ss Left: Vector domain Character Pattern string

Right: Vector domain Character String

The ambivalent system functions may be monadic or dyadic; thus, they take
either a right argument only, or they take both a right and a left argument.
The following table of the ambivalent system functions describes the type,
shape, and, where applicable, the units associated with each function’s

arguments:
Ambivalent System Functions
Function Shape Type Units
0BOX Left: Vector domain Character Delimiter
Right: Matrix domain Character Delimited lines
OMAP Left: Vector domain Character Function header
Right: Vector domain Character Shared image def/function
name
OMONITOR Left: Vector domain Numeric Line numbers
Right: Matrix domain Character Operation names
ONL Left: Vector domain Character Letter list
Right: Vector domain Near-int Name classes
0 PACK Left: Vector domain Numeric Data packets
Right: Matrix domain Character Variable names
OREWIND Left: Singleton Near-int Key of reference
Right: Vector domain Near-int Channel numbers
O0SIGNAL Left: Vector domain Character Error message
Right: Singleton Near-int Error number
O0sToP Left: Vector domain Near-int Line numbers

APL Reference Manual 2-7

VAX APL System Variables and Functions
2.2 System Functions

Ambivalent System Functions

Function Shape Type Units
Right: Matrix domain Character Operation names
OTRACE Left: Vector domain Near-int Line numbers
Right: Matrix domain Character Operation names
OWAIT Left: Singleton Near-int Time limit
Right: Vector domain Near-int Channel numbers
OWATCH Left: Singleton Near-int Watch mode
Right: Matrix domain Character Variable names

Another type of system function is the quiet function, a category that is
independent of the valence of the function. Quiet functions do not generally
cause APL to display a value when they are evaluated as the leftmost function
in a statement. The following table shows the quiet functions:

Quiet System Functions

Monadic Dyadic Ambivalent
OARBOUT -]

-~ (always) OwWAIT OREWIND
gcLs 0XQ (sometimes)

dDAS ¢ (sometimes)

geco

0QLD

gqQrc

ORELEASE

However, a quiet function displays a value if you enclose the function and its
arguments in parentheses (note that the branch function () is always quiet).
The 0xQ and ¢ functions are quiet when the argument is quiet; otherwise [1X¢
and ¢ cause APL to display a value. For example:

2-8 APL Reference Manual

VAX APL System Variables and Functions
2.2 System Functions

A+5 aSPECIFICATION FUNCTION IS QUIET. NO DISPLAY
(A+5) aADD PARENTHESIS IF YOU WANT A DISPLAY
5
(B«'THIS WILL PRINT BECAUSE OF THE PARENTHESES')
THIS WILL PRINT BECAUSE OF THE PARENTHESES
0XQ 'A+10° a0XQ ARGUMENT IS NOT QUIET
15
0X@ 'C«A+10' a0XQ ARGUMENT IS QUIET. NO DISPLAY

2.3 System Variables and Functions Reference

The following sections describe the APL system variables and functions in
alphabetical order. Table 2—-2 lists the system variables and functions and
gives a brief description of their uses. APL displays an alphabetical list of
these variables and functions when you enter the following expression:
X<«ONL "2 73 50 X[4X;]

Table 2-2 System Variables and Functions

Name Meaning

OAT Maintains account information on the current APL session. Includes
user identification, CPU time, and connect time.

OALPHA Vector of 27 characters: 4 and 4 through Z.

OALPHAL Vector of 26 lowercase characters: a through z.

OALPHAU Vector of 27 underscored characters.

OARBOUT Writes arbitrary output to the terminal.

QASCIT Subset of 0 AV approximates the ASCII character set.

0ASS Associates a file or mailbox with a channel.

04us Specifies periodic workspace backup.

OAv Vector of all APL characters.

0BOX Returns a matrix from a character vector and vice versa. (The rows
of the matrix are delimited by a specified string.)

OBREAK Suspends operation execution and returns control to immediate
mode.

OCHANS Identifies channel numbers associated with files.

OCHS Returns file organization and open status on one or more channels.

ocre Unpacks data packed by 0 C0g.

(continued on next page)

APL Reference Manual 2-9

VAX APL System Variables and Functions
2.3 System Variables and Functions Reference

Table 2-2 (Cont.)

System Variables and Functions

Name Meaning

0cLs Closes the files on one or more channels.

0coqQ Packs data of different types for storage as one record.

OcCr Returns a canonical representation of a user-defined operation
whose name is the character string specified.

gcr Determines the degree of tolerance applied in numeric comparisons.

OCTRL Vector of ASCII control characters.

gpas Disassociates files from one or more channels.

gbpc Controls the display of enclosed arrays.

ODL Delays execution by the number of seconds specified.

ODML Controls default maximum record length used to save the workspace
or to create a file.

gove Returns the device characteristics longword for one or more
channels.

grerc Clears event flags associated with one or more channels.

OEFR Returns the setting for event flags on one or more channels.

OEFsS Sets event flags associated with one or more channels.

OERROR Character vector that describes last error to occur.

Orx Expunges existing use of a name in the workspace.

OExpP Expands an array by adding fill items in the same manner as the
expansion derived function.

OrrI Converts character argument to numeric, placing Os in each position
not corresponding to a valid number.

OFLsS Returns information about files on one or more channels.

gFMrT Converts argument to character matrix in designated format.

OFx Establishes an operation from its canonical representation.

OGAG Indicates whether to accept broadcast messages.

010 Sets index origin for arrays; must be 0 or 1.

0L Contains the name of a changed variable that is being watched by
OWATCH.

gLe Vector of line numbers in state indicator; most recently suspended

2-10 APL Reference Manual

operation appears first.

(continued on next page)

VAX APL System Variables and Functions
2.3 System Variables and Functions Reference

Table 2-2 (Cont.) System Variables and Functions

Name Meaning

OLx Contains an expression to be executed automatically when
workspace is loaded.

QmAP Associates an external routine with a user-defined function.

OMBX Returns information about mailboxes on one or more channels.

OMONITOR Gathers information about operation execution counts and CPU
times.

gnc Returns the classification of one or more names.

gnNG Controls recognition and printing of negative sign.

anL Constructs a list of named objects residing in the active workspace.

anuvm Vector of 10 numeric characters: 0 through 9.

goM Returns the index of every occurrence of a 1 in a Boolean vector.

OPACK Packs and unpacks data for storage as one record.

grpP Controls precision of noninteger numeric output.

gpPw Sets maximum number of characters in output line.

geco Quietly copies a workspace.

aerLp Quietly loads a workspace.

0QFPC Quietly copies a workspace with certain protection.

Or Contains the previous value of a changed variable that is being
watched by OwWATCH.

ORELEASE Releases all locked records in files on one or more channels.

OREP Compresses or replicates an array in the same manner as the
compression and replication derived functions.

ORESET Clears the state indicator.

OREWIND Repositions the next record pointer to the first record of a file on one
or more channels.

ORL Forms link in chain of random numbers used in roll and deal
functions.

asr Prompt for evaluated input.

OSIGNAL Passes an error up the stack one level to the caller of the operation
in error.

OSINK Discards unwanted output; always 1 0.

(continued on next page)

APL Reference Manual 2-11

VAX APL System Variables and Functions
2.3 System Variables and Functions Reference

Table 2-2 (Cont.)

System Variables and Functions

Name Meaning

gss Searches the right argument for every occurrence of a character
string specified in the left argument.

gsTopP Sets or clears stop bits associated with operation lines.

OTERSE Suppresses display of secondary error messages.

OTIMELIMIT Limits time to respond to quote quad and quad del input requests.

OTIMEOUT Equals 1 if time runs out during quote quad or quad del input
request; otherwise, equals 0.

OTLE Equals 1 when the terminal line editing attribute is on and 0 when
line editing is off.

OTRACE Sets or clears trace bits associated with operation lines.

OTRAP Contains an expression to be executed when an error occurs.

grs Current date and time in base 10 format.

orr Determines the type of terminal being used for the current APL
session.

OouL Process identification number.

OVERSION Interpreter and workspace versions.

gvr Returns logical vector giving position of valid numbers in Q7T of
argument.

gvec Controls the use of vector processing hardware.

OVR Returns a visual representation of a value or user-defined operation
whose name is the argument specified.

Owa Maximum amount in bytes by which the active workspace can be
increased.

OWAIT Determines how long a read function waits for control of a shared
record.

OWATCH Watches changes or references to the values of variables.

0xe Executes character strings with error handling.

2-12 APL Reference Manuai

System Variables and Functions
0 AT Accounting Information

[J A I Accounting Information

Type
Niladic System Function

Form

uic/cpu-time/connect-time « OAT

Result Domain

Type Integer

Rank 1 (vector)

Shape L

Depth 1 (simple)
Description

OAT returns a vector of the user identification number (uic), computer time
(cpu-time) used during the current APL session, and time elapsed (connect-
time) since the beginning of the current APL session.

For the user identification code GROUP, MEMBER, the uic is
MEMBER+ (GROUPx2%16). All times are expressed in milliseconds. The fourth
element is always 0. For example:

QAT
589825 390 1190 0

VMS expresses the GROUP and MEMBER numbers in 0A7[1] in octal. The
following APL. expression returns those numbers:

1018 8 8T(0,2x16)TOAI[1]
111

Possible Errors Generated

None.

APL Reference Manual 2-13

System Variables and Functions
OALPHA Alphabetic Characters

[1AL PHA Alphabetic Characters

Type
Niladic System Function

Form
"AABCDEFGHIJKLMNOPQRSTUVWXYZ' < [JALPHA

Result Domain

Type Character

Rank 1 (vector)

Shape 27

Depth 1 (simple)
Description

OALPHA is a subset of 0A4V; it returns a vector of the 27 alphabetic characters
that may be used in identifiers. They are 4 and 4 through 7, or, expressed in
terms of DA4V:

DAVE(0I0+72),97+126]

For example:

JALPHA

AABCDEFGHIJKLMNOPQRSTUVHXYZ
0I0«0 o [OPW+52
OAV 1+ JALPHA

72 97 98 99 100 101 102 103 104 105 106 107 108 109
110 111 112 113 114 115 116 117 118 119 120
121 122

Possible Errors Generated

None.

2-14 APL Reference Manual

System Variables and Functions
OALPHAL Lowercase Alphabetics

UALPHAL Lowercase Alphabetics

Type

Niladic System Function

Form

tabcdefghljkimnopgrstuvwxyz' « (] ALPHAL
galj Pq y

Result Domain

Type Character

Rank 1 (vector)

Shape 26

Depth 1 (simple)
Description

OALPHAL is a subset of 1AV; it returns a vector of the 26 lowercase alphabetic
characters. They are a through z, or, expressed in terms of J4V:

0AV[129+126]

For example:

UOALPHAL

abcdefghijklmnopqrstuvwxyz
0I0«0 ¢ [PW<«52
04V [JALPHAL

129 130 131 132 133 134 135 136 137 138 139 140 141
142 143 14y 145 146 147 148 149 150 151 152
153 154

Possible Errors Generated

None.

APL Reference Manual 2-15

System Variables and Functions
OALPHAU Underscored Alphabetics

JALPHAU Underscored Alphabetics

Type
Niladic System Function

Form

Result Domain

Type Character

Rank 1 (vector)

Shape 27

Depth 1 (simple)
Description

OALPHAU is a subset of JAV; it returns a vector of the 27 underscored
alphabetic characters that may be used in identifiers. They are o and 4
through Z, or, expressed in terms of 0AV:

OAVI160+:27]

For example:

UALPHAU

AABCDEFGHIJKLMNOPQRSTUVNXYZ
(0I0«0 o [JPW«52
OAV + QALPHAU

160 161 162 163 164 165 166 167 168 169 170 171 172
173 174% 175 176 177 178 179 180 181 182 183
184 185 186

Possible Errors Generated

None.

2-16 APL Reference Manual

System Variables and Functions
OARBOUT Arbitrary Output

(HARBOUT Arbitrary Output

Type

Monadic System Function (quiet)

Form

10 « JARBOUT B

Argument Domain

Type Near-integer
Shape Vector domain
Depth 1 (simple)
Value 0 through 255

Result Domain

Type Numeric

Rank 1 (vector)
Shape 0 (empty)
Depth 1 (simple)

Description

OARBOUT allows you to send untranslated output to the terminal (actually, to
the default output device). JARBOUT outputs the argument’s items as if they
were character codes.

One use of JARBOUT 18 to write a file of ASCII characters, where each of the
integers corresponds to a character in the ASCII character set. You cannot
use the file system function 8 (see the VAX APL User’s Guide) with JARBOUT
to write the file because [ARBOUT sends output only to your default output
device, usually your terminal. You can use the)0UTPUT system command (see
the VAX APL User’s Guide), however, to divert output from your terminal to a
file. For example:

APL Reference Manual 2-17

System Variables and Functions
O ARBOUT Arbitrary Output

JOUTPUT ASCFILE
OJARBOUT 35 37 38 42 6u4 94 95
JOUTPUT
aCHANGE TO ASCII CHARACTER SET
YPUSH
STYPE ASCFILE.AAS
OARBOUT 35 37 38 42 64
#%8%@ JOUTPUT
$

APL does not append a <CR><LF> to JARBOUT output.

If you use 0ARBOUT immediately following M or B output, JARBOUT resets the
bare output buffer. For details, see the VAX APL User’s Guide.

{JARBOUT is a quiet function; that is, it does not return a result if it is the
leftmost function in a statement. If it is not the leftmost function, JARBOUT
returns 1 0 as its result.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

15 DOMAIN ERROR

2-18 APL Reference Manual

System Variables and Functions
0ASCIT APL Approximation to the ASCII Character Set

[1ASCII APL Approximation to the ASCIl Character Set

Type

Niladic system function

Form
ASCII-characters « QASCITI

Result Domain

Type Character

Rank 1 (vector)

Shape 128

Depth 1 (simple)
Description

0ASCII is a subset of DAV; it returns a vector of 128 characters that
approximates the 7-bit ASCII character set. 1ASCII contains the ASCII
control characters (0 CTRL) and the lowercase letters (D0ALPHAL). For example:

(324[0JASCII) = 324{CTRL

(T1404S8CII) = “14QCTRL

DASCII[33] = ' ! a33RD ITEM IS AN EMPTY SPACE
aDISPLAY ALL BUT THE CTRL CHARACTERS

2 47 p 9u43340ASCIT

VUHSAR () *+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\1n_'abcdefghijklmnopqrstuvwxyz{|}~

Possible Errors Generated

None.

APL Reference Manual 2-19

System Variables and Functions
0 ASS Associating Files with Channels

[145S Associating Files with Channels

Type

Monadic System Function (action form)

Form
variable « QASS ' [channelll filespec [/ fileorganization]]’

Argument Domain

Type Character
Shape Vector domain
Depth 1 (simple)

Result Domain

Rank 0 (scalar)

Shape 1 0 (scalar)

Depth 0 (simple scalar)
Type

Monadic System Function (query form)
Form

current-assignments < [JASS channel

Argument Domain

Type Near-Integer

Shape Vector domain

Depth 0 (simple scalar)

Value ~ 999 through 399 (but not 0)

2-20 APL Reference Manual

System Variables and Functions
0ASS Associating Files with Channels

Result Domain

Type Character

Rank 1 0r?2

Shape Vector or matrix

Depth 1 (simple)
Parameters

variable

Is an optional variable used when writing to or reading from this file and
channel combination.

channel

Is an optional integer scalar whose absolute value represents a channel
number in the range 1 through 999. If you do not specify a channel number,
APL assigns one for you. APL picks the first available channel number,
beginning at 12 and counting down to 1; then APL begins at 13 and counts up
to 999.

filespec

Is the VMS file specification associated with the specified channel. If you do
not include the file extension, APL uses the default file extension for the file
organization qualifier specified. (See Table 2-3.)

/fileorganization
Identifies the file organization of the file specified by filespec. The possible
values of /fileorganization are listed in Table 2-3. The default value is /D4.

Table 2-3 File Organization Qualifiers

ffileorganization Default File

Qualifier Extension Type of File

/AS LAAS ASCII sequential; can open for either
read or write, or both (when you specify
/UPDATE).

/ASx .AAS ASCII sequential; file is positioned at

end-of-file to allow appending.

(continued on next page)

APL Reference Manual 2-21

System Variables and Functions
0ASS Associating Files with Channels

Table 2-3 (Cont.) File Organization Qualifiers

Hileorganization Default File

Qualifier Extension Type of File

/IS LAIS Internal sequential; can open for either
read or write, or both (when you specify
/UPDATE).

/IS* LAIS Internal sequential; file is positioned at
end-of-file to allow appending.

/DA JATX Direct-access; can do read and write (this is
the default).

/RF .ARF Relative; can do read and write.

/KY LAKY Keyed; can do read and write.

current-assignments
A vector containing the current value of assignments.

Qualifiers

/BLOCKSIZzE [:blocksize]

For input on nondisk devices, it specifies the minimum size memory buffer
for APL to make available. The default is 2044 bytes or the current /MAXLEN
value, whichever is smaller.

In all other cases, it is ignored. In addition, it is always ignored for ASCII
sequential files (the blocksize is always 2044 bytes.)

/BUFFERCOUNT [:n]

Specifies how many I/O buffers you want allocated to read and write to a file.
The acceptable values for n is 0 through 127. The default is 0, which means
that the number of allocated buffers will be the same as the current system
default value.

/CCONTROL [:keyword]

Specifies the carriage control attribute for a new, sequential file. (The qualifier
is ignored for nonsequential file organizations.) When you do not specify
/CCONTROL, or when you do not specify a keyword, the carriage controls are set
according to the file type.

2-22 APL Reference Manual

System Variables and Functions
0ASS Associating Files with Channels

Valid keywords include the following:

Keyword Carriage control Attribute Default

FORTRAN The first character of each record
will contain the appropriate carriage
control information

LIST Implied carriage control (single Default for /45 files.
spacing between records)

NONE No carriage control information (any Default for /IS files.
carriage control information will be
placed in individual records)

/DEFAULTFILE :defaultspec

Specifies a default to be applied to any missing components of the filespec. The
defaultspec must be specified. APL first looks at the file specification named
in the argument. If any components are missing, APL looks for a default in
the /DEFAULTFILE qualifier. If you omit the defaultspec, APL specifies the
appropriate APL file type.

/DISPOSE [:keyword]

Specifies whether the file is temporary or permanent. /DISPOSE:KEEP, the
default, means the file is permanent. /DISPOSE:DELETE means the file will be
deleted when it is closed.

Other keywords send the file to a queue when the file is closed in accordance
with the following:

Keyword Definition

PRINT Sends the file to SYS$PRINT. The file is not deleted.

PRINTDELETE Sends the file to SYS$PRINT. The file is deleted when job is
finished.

SUBMIT Sends the file to SYS$BATCH. The file is not deleted.

SUBMITDELETE Sends the file to SYS$BATCH The file is deleted when job is
finished.

Note that you must have VMS delete privileges to use any of the delete
keywords. If you do not have delete privileges, APL signals FILE PROTECTION
VIOLATION when the file closes. As a result, APL closes the file, but does

not delete it. If you receive the file protection violation error when you press
Ctrl/Z, you can exit from APL by pressing Ctrl/Z a second time.

APL Reference Manual 2-23

System Variables and Functions
0 ASS Associating Files with Channels

/EFN n
Associates an event flag with a channel number. For more information on
event flags see JEFR,0EFS, and QEFC.

/MAXLEN [:length]

Specifies the maximum record length (in bytes) for a new file. It is ignored for
existing files. The default length is the value of the 3DML system variable. The
maximum record length value is also used as the maximum segment size for
segmented records on output.

The maximum values are as follows:

* 32232 (for prolog 1 or 2)

e 32224 for /D4 and / KY files (prolog 3)
e 32767 for / IS files

e 2048 for / 45 files

¢ 32253 for / RF files

When you write to an /45 file in quad output mode, the maximum record
length is determined by the current setting of J Pw. In all other output modes
for all file types, the maximum record length is determined by /MAXLEN.

/MBX
Indicates that an assigned file name actually refers to a mailbox.

/NFS

A non-file-structured qualifier that tells APL to read from the device without
trying to interpret the data. In other words, to return the data on the device
as a string of bits. This qualifier is useful when reading foreign devices.

/NOSHARE

/NOWRITERS
Allows you to write to a shareable file, but prevents other users from doing so.

/OPEN [:keyword]

Specifies that you want APL to open or create a file when the channel is
assigned. Using the /0PEN qualifier allows you to detect errors related to the
openning or creating of a file at the time of assignment instead of at the time
of the first I/O operation. Values for keyword include ¥EW, used to create a new
file, and 0LD, used to open an existing file.

2-24 APL Reference Manual

System Variables and Functions
0 ASS Associating Files with Channels

/PROTECTION [[:protection]
Specifies the protection to be associated with a new file. It is ignored for
existing files.

/READONLY [:NOLOCKS]

Allows you to read the file but not write to it. The N¥OL0OCKS argument specifies
that records should be read even if they have been locked by another user.
Using /READONLY : NOLOCKS avoids waiting for a locked record to become
unlocked. However, note that when [I¥WAIT is set to any value but the default
(wait indefinitely), it overrides the NOLOCKS argument.

/RECORDTYPE {:keyword]|

Specifies the record format used by VAX RMS for each record of the file. The
default is variable length records. APL ignores this qualifier if the file already
exists or if the file type is /D4, /RF, or /XY. You can use the following keywords
as values to /RECORDTYPE.

Keyword Record Format

VARIABLE Variable length

FIXED Fixed length

STREAM Stream format

STREAMCR Stream format delimited with <CR>s
STREAMLF Stream format delimited with <LF>s

Note that when you use fixed-length records, the record size is defined with the
/MAXLEN qualifier. The default value is []DML.

Because APL adds a prefix containing system information to each record of
a /IS file, you may want to write data out to these files in pure data mode
when using fixed-length records. Otherwise you need to calculate the size of
the prefixed information before writing the data.

/SHARFE

Specifies that several users may access the file simultaneously. All users
sharing the file must use the /SHARE qualifier when associating a given file
with a channel. Sequential file users are exempted from this rule.

/SIGNAL

Specifies that APL signal the end-of-file indicator when you perform a read
operation on a nonexistent record. For /A4S and /IS files the indicator is EOF
ENCOUNTERED. For /D4, /RF, and /KY files the indicator is EOF ENCOUNTERED
for a sequential read and RECORD NOT FOUND for a random read. If you do not

APL Reference Manual 2-25

System Variables and Functions
0 4SS Associating Files with Channels

specify /SIGNAL, APL returns an empty numeric matrix with the shape of 0 75
as the end-of-file indicator.

/UPDATE

Specifies that you want both read and write access to a sequential file and that
APL should change the rules slightly for sharing the file. /UPDATE is relevant
for /A4S and /IS files only and is ignored for all other file types.

When you use /UPDATE you should consider how you want APL to deal with
locked records. See /READONLY : NOLOCKS and ORELEASE for more information.

/WRITEONLY

Allows you to write to a file, but not read it. A new file is created when APL
writes to the file. If the assignment specifies /OPEN:0LD, a new file is not
created. However, APL can write to an existing file only if the file is empty, or
if /1S~ was specified for appending. Subsequent assignments can gain read
access to the file.

Description

The action form of [14SS associates files with channels. JASS does not create
or open a file (unless you use the /0PEN qualifier) or perform any input or
output. It establishes a connection between a file specification (and related file
information) and a specified channel.

When you perform I/O functions, you must refer to channel numbers rather
than to file specifications. The APL functions that perform file I/O (B and &)
require channel numbers—not file specifications—as part of their arguments.
So, to read or write a file, you must first associate it with a channel.

The query form of [14S5S returns the current value of assignments made
previously with the action form.

The result of the query form is a character vector or matrix that identifies the
parameters you associated with the channels specified.

Note that the action and query forms of 0455 are described in in the VAX APL
User’s Guide, along with other file I/O information.

2-26 APL Reference Manual

System Variables and Functions
0 ASS Associating Files with Channels

Possible Errors Generated

Action Form

15 DOMAIN ERROR (ERROR PARSING ARGUMENT TO CCONTROL)
15 DOMAIN ERROR (REDUNDANT KEYWORD OR QUALIFIER)

15 DOMAIN ERROR (CONFLICTING QUALIFIERS SPECIFIED)
33 10 FRROR (INVALID RECORD SIZF)

33 I0 FRROR (FILFE CURRENTLY LOCKED BY ANOTHER USER)
68 END OF FILE ENCOUNTERFED

69 RECORD NOT FOUND

74 BLOCK TOO BIG

Query Form

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN FRROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INVALID CHANNEL NUMBER)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT FRROR (INTEGER TOO LARGE)

APL Reference Manual 2-27

System Variables and Functions
O0AUS Automatic Save of the Workspace

[1 A US Automatic Save of the Workspace

Type
System Variable

Form

0AUS < near-integer-singleton
integer-scalar < JAUS

Value Domain

Type Near-Integer
Shape Singleton
Depth 0 or 1 (simple)
Value 0,1,0r2
Default 0

Result Domain

Type Integer

Rank 0 #(scalar)

Shape 10 (scalar)

Depth 0 #(simple scalar)
Description

04US controls a feature that allows you to save the active workspace
automatically at periodic intervals.

Workspace backup is often critical when you are performing extensive
operation editing and debugging, or when you are using quad input to type a
large table of values. You could back up your work by perioedically issuing a

) SAVE command. However, if you set 04US to 1 or 2, APL automatically saves
the workspace every time you exit from function-definition mode, or every time
quad input is requested from the terminal. Then, if the system crashes, you
probably will have to reenter only a small amount of input. In addition, when
0AUS is set to 2, the) OFF command acts like the) CONTINUE command (see
Chapter 3).

2-28 APL Reference Manual

System Variables and Functions
0 AUS Automatic Save of the Workspace

You can set [14US to 0, 1, or 2; the default is 0. When JAUS equals 0, the
automatic save feature is not activated. When 140S equals 1 or 2, the feature
is activated and the workspace is saved in your default directory as follows:

Value of J4US File Name of Saved Workspace

1 APLxxxxxxxx.TMP, where xxxxxxxx is the value of QUL,
represented in hexadecimal. (Note that 0 UL is an integer
that represents your process identification number.)

2 CONTINUF.APL

The name of the file saved when JA4US is 1 can be represented as the following
APL expression:

"APL',('0123456789ABCDEF' [(0I0+(8p16)TOULY), " . TMP!

The value of JAUS is saved when you save the active workspace and can be
localized in user-defined operations.

When [JAUS is 2, APL keeps all versions of CONTINUE.APL, even after the APL
session ends.

When JAUS is 1, APL deletes all old versions of APLxxxxxxxx.TMP each time
a new version is created during the same APL session. When you successfully
execute a)SAVE, YOFF, or YCONTINUE system command, APL deletes all
APLxxxxxxxx.TMP files created during the session, including the one most
recently created. Note, however, that APL does not delete APLxxxxxxxx.TMP
files created in past APL sessions, unless such an APLxxxxxxxx.TMP file

has exactly the same name as a newly created APLxxxxxxxx.TMP file. For
example:

0AaUS«1
auL
88
'0123456789ABCDEF ' [0I0+(8p16)TOUL]
VG
[1] tq1
(2] v
nAPL WRITES .TMP FILE
JLIB *.TMP

Directory APLGRP:[USER]
APL00000058.TMP;1

APL Reference Manual 2-29

System Variables and Functions
0AUS Automatic Save of the Workspace

Total of 1 file.

ASTART NEW APL SESSION WITH NEW QUL

[JAUS«+1
oL
92
'0123456789ABCDEF ' [0I0+(80p16)TOUL]
0000005D
VG
[1] 11!
[2] v
AAPL WRITES .TMP FILE
JLIB x.TMP

Directory APLGRP:[USER]

APL0O0000058.THP;1
APL0O0000OSD.TMP;1

Total of 2 files.
)SAVE ABC

SAVED THURSDAY 15-NOV-1990 14:33:21.32 6 BLKS
JLIB %.TMP

Directory APLGRP:{USER]
APL00000058,.TMP; 1

Total of 1 file.
AAPL DELETED NEW .IMP FILE BUT NOT .TMP
p FILE CREATED IN EARLIER SESSION

Note

(UL has a value that changes each time you log in to VMS, and the
names of the APLxxxxxxxx.TMP files are probably different if they are
created during different VMS sessions. The names are the same if the
files are created during the same VMS session, even if they are not
created in the same APL session.

To recover the 0AUS file after a system crash, execute APL and issue a)LIB
command to verify that the temporary file exists. Then use) LOAD to load
the temporary file. APL prints the)Z.0AD message. The name of the active
workspace is now the name that the workspace had before the backup was
performed, not the name of the temporary file:

2-30 APL Reference Manual

System Variables and Functions
0AUS Automatic Save of the Workspace

JLIB *.TMP
Directory APLGRP:[USER]
APL0000005C. TMP; 1

Total of 1 file.
YLOAD APL0000005C.TMP
SAVED THURSDAY 15-NOV-1990 12:30:05.04 53 BLKSx WAS ABC

YWSID
ABC

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (PARAMETER OUT OF RANGE)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-31

System Variables and Functions
1AV Atomic Vector

[]AV Atomic Vector

Type

Niladic System Function

Form

all-known-chars <« DAV

Result Domain

Type Character
Rank 1 (vector)
Shape 256

Depth 1 (simple)

Description

0AV contains a vector of the 256 characters known to APL. Table 2-4 shows
the characters and their positions in the vector. The positions are based on an
index origin of 0. The index of a character is the sum of its row and column
numbers.

Symbols with indexes 213 through 255 have no meaning to the APL user. They
are used only by the APL implementation and may not be used for input. On
output, they print as squish quads (). If you include any of these characters
in a character array, the results are unpredictable.

The following is useful to display the APL characters in JAV order.

6 32p32¢0AV
Ty<g=>]var:,+./0123456789([;x%:\
Talnle VA1o' TOo*?p[~YyUwdtcersz-
OABCDEFGHIJKLMNOPQRSTUVWXYZ{-}$
‘abcdefghijkIimnopqrstuvwxyz@"#%8
AABCDEFGHIJKLMNOPQRSTUVHXYZ!r10%
BEBIEA y¥vre¢Re5#5c2=A00000000000

2-32 APL Reference Manual

System Variables and Functions

0 AV Atomic Vector
Table 2-4 Elements of 04V ([0 I0+0)
dec 0 32 64 96 128 160 192 224
0 NUL SP - o ¢ A | 0
1 SOH o A a 4 5] I
2 STX) n B b B] i
3 ETX < n c c c] Il
4 EOT < L D d D i
5 ENQ = € E e E 4 i
6 ACK > _ F £ F ¥ Il
i BEL] v G g G 2 0
8 BS v A H h H ~ i
9 HT A ! I i I ~ 0
10 LF 2 ° J 7 J ® i
11 VT + ' K K X ¢ 0
12 ¥FF] L 1 L ® Il
13 CR + | M m M © i
14 SO T N n N 5 0
15 SI / o 0 o Q # 0
16 DLE 0 * P p P X Il
17 DC1 1 ? Q q Q c 0
18 DC2 2 p R r R El 0
19 DC3 3 i S s S = Il
20 DC4 4 ~ T t y A 0
21 NAK 5 +] u U 0 a
22 SYN 6 u v v v I 0
23 ETB 7 w W W W i i
24 CAN 8 > X X X Il Il
25 EM 9 + Y y Y i Il

(continued on next page)

APL Reference Manual

2-33

System Variables and Functions
0 AV Atomic Vector

Table 24 (Cont.) Elements of 04V([0I0+0)

dec 0 32 64 96 128 160 192 224
26 SUB (c z z Z 0 0
27 ESC L < { @ ! 0 il
28 FS H - - " A i 0
29 GS x > } # 1 i i
30 RS > $ yA ® i I
31 Us \ - DEL 2 ¥ i i

The index of a character in A7V is the sum of its row and column numbers.

Possible Errors Generated

None.

2-34 APL Reference Manual

System Variables and Functions
0 B0X Forming Character Matrices and Vectors

[1 BOX Forming Character Matrices and Vectors

Type
Ambivalent System Function

Form
boxed-text <« [delimiter] 0BOX text

Left Argument Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Shape Matrix domain
Depth 0 or 1 (simple)

Result Domain

Rank ior?2

Shape Matrix or Vector

Depth 1 (simple)
Description

0B0X produces a character matrix from a character vector or vice versa.

When the right argument is in the vector domain, 0 B0X forms a matrix. When
the right argument is a matrix, 080X forms a vector. If the right argument

is an empty vector, the result is an empty character matrix with the shape 0
0. If the right argument is an empty matrix, the result is a vector containing
a number of delimiters equal to the number of rows in the right argument
matrix.

When producing a matrix, APL uses a delimiter to determine where to form
rows. The left argument optionally specifies a delimiting string. The default
delimiter is <CR> <LF> . The number of columns is equal to the longest string

APL Reference Manual 2-35

System Variables and Functions
0B0OX Forming Character Matrices and Vectors

contained between any pair of delimiters. Shorter strings are padded with
trailing blanks.

When producing a vector with the monadic form, APL removes any trailing
blanks and inserts the <CR> <LF> delimiter at the end of each row.

When producing a vector with the dyadic form, APL does not remove trailing
blanks from the rows of the matrix argument. It does insert the specified
delimiter at the end of each row.

JBoX is particularly useful for forming a matrix from a vector consisting of
lines of data delimited by <CR> <LF> pairs. 180X removes the <CR> <LF>
and makes each line of data that was between <CR> <LF> s (or between a
<CR> <LF> and the end or beginning of the vector) a row in the result matrix.
Thus, the result matrix and right argument vector appear the same when
displayed by APL.

Examples:

B « '"FIRST LINE
SECOND LINE IS LONGER

LIRE FOUR!

pB
70

(34 # [JCTRL 1 B)/1pB AGENERATE INDEX OF <CR><LF>S
11 12 48 49 55 56

p(0+[0BOX B
FIRST LINE
SECOND LINE IS LONGER
LINE FOUR
4 35
aNO <CR><LF> ADDED TO LAST ROW
p0«0BOX (0BOX B)
FIRST LINE
SECOND LINE IS5 LONGER
LINE FOUR
65
o(«0BOX 4!
A
11

2-36 APL Reference Manual

System Variables and Functions
0 B0X Forming Character Matrices and Vectors

ATRAILING <CR><LF> IGNORED

o«0BOX "A', OCTRL [14 11]
A
11

o[J«¥Y<«* ' [0BOX 'ABC,DE,FGHI!
ABC
DE
FGHI
34

pd«'!" OBOX Y
ABC'DE!FGHT
11

pl«<'"AB' [OBOX 'XXXABYYYABZILI'
XXX
YyYy
YN
33

p[J«'A" 0BOX 1 1 1 p 'B!
B
11

o«'4" 0BOX 1 1 1 p 'A!

(APL outputs a blank line.)

10

Possible Errors Generated

9 RANK ERROR (NOT MATRIX DOMAIN)
9 RANK ERROR (NOT VECTOR DOMAIN)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

APL Reference Manual 2-37

System Variables and Functions
0OBRFEAK Suspending Execution

U BREAK Suspending Execution

Type

Monadic System Function

Form
0O BREAK apl-expression

Argument Domain

Type Any
Shape Any
Depth 0 or 1 (simple)

Resuit Domain

Type None

Shape None

Depth None
Description

0BREAKsuspends execution of the operation in which it is contained and
returns you to immediate mode. It takes any APL object as an argument and
prints the value of that argument before breaking to the terminal. However,
the function itself has no explicit result.

To return to execution after a break, you can either branch to a specific line
number (= 3), or you can use the system function 0LC. Use of JLC would return
you to the breakpoint, that is, to the line where the JBREAK executes. To
resume at the line after the breakpoint, specify JZLC+1. For example:

2-38 APL Reference Manual

System Variables and Functions
0 BREAK Suspending Execution

YFUNC
[1] "FIRST LINE'
(2] [BREAK 'BREAK AT LINE 2!
[3] '"RESUME AT LINE 3!
(4] v
FUNC
FIRST LINE
BREAK AT LINE 2
+OLC+1
RESUME AT LINE 3

It is illegal to use [J BREAK in immediate mode or as part of the argument to
the execute (e)function.

Possible Errors Generated

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

APL Reference Manual 2-39

System Variables and Functions
0 CHANS Returning Channel Numbers

[0 CHANS Returning Channel Numbers

Type
Niladic System Function (query)

Form

current-channels « [1CHANS

Result Domain

Type Integer

Rank 1

Shape Vector

Depth 1 (simple)
Description

OCHANS displays all of the channel numbers currently associated with file
specifications. The result is a vector. In the following example, channels 1 and
5 are each associated with a file:

(JASS '1 PLAN/AS' ¢ QASS 'S5 ANALYSIS/AS!
1
5

(JCHANS
15

YCLEAR
CLEAR WS

(CHANS

(APL outputs a blank line)
If no channels are assigned, JCHANS returns an empty numeric vector.

[0 CHANS is also described in the VAX APL User’s Guide along with other file
1/0 information.

Possible Errors Generated

None.

240 APL Reference Manual

System Variables and Functions
0 CAS Returning File Organization and Open Status

[J] CHS Returning File Organization and Open Status

Type

Monadic System Function

Form
file-org /status < 0 CHS chans

Argument Domain

Type Near-integer

Shape Vector domain

Range T 999 to 999 (but not 0)
Depth 0 or i (simple)

Result Domain

Type Integer

Rank 10r2

Shape Vector or matrix
Depth 1 {simple)

Description

0 CHS returns the file organization and status of the files associated with
the specified channels. The absolute value of chans represents the channels
associated with the files you want information on. The following table gives
the possible codes resulting from [CHS.

APL Reference Manual 2-41

System Variables and Functions
0 CHS Returning File Organization and Open Status

First Element Second Element
Code File Organization Code Open Status
0 Not applicable 0 Channel free
1 /AS 1 Assigned but not open
2 /IS 2 Open for output
3 Not applicable 3 Open for input
4 /DA 4 Open for input and output
5 Not applicable
6 Not applicable
7 /RF
8 /KY

If the argument is a singleton, 0 CAS returns a two-item vector: the first item
identifies the file’s organization, and the second item identifies the file’s open
status. For example:

0CES 1
13

This means that the file associated with channel 1 is an ASCII sequential file
that is assigned and open for input.

If the argument is a vector of n items, the result is an array of shape n by 2.
For example, the following expression returns a 3-by-2 array:

O+FILS+[CHS13

R~
N Fow

pFILS
32

0CHS returns a result of 0 2o 0 if its argument is empty.

[1CHS is also described in the VAX APL User’s Guide along with other file /O
information.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)

2-42 APL Reference Manual

System Variables and Functions
0 CHS Returning File Organization and Open Status

15 DOMAIN ERROR (INVALID CHANNEL NUMBER)
15 DOMAIN FRROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-43

System Variables and Functions
0cIq and JcogQ Packing and Unpacking Data

1 CI4 and[] COQ Packing and Unpacking Data

Type
Dyadic System Function

Form
unpacked-data + packed-data 0CIQ header [typell

Left Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Result Domain

Type Any

Rank Any

Shape Any

Depth Any
Type

Dyadic System Function
Form

packed-data + data 1C0Q header [typell

2-44 APL Reference Manual

System Variables and Functions
0C1Q and 0 Cc0Q Packing and Unpacking Data

Left Argument Domain

Type Any
Shape Any
Depth Any

Right Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Result Domain

Type Integer

Rank 1

Shape Vector

Depth 1 (simple)
Parameters

unpacked-data

The variable associated with the unpacked data; it must be in the format of the
result of 0 0@, with or without a header. It may be empty only if header is O.

packed-data
Specifies the variable associated with the packed data.

data
Any array you want to pack into an integer vector.

header

0, 2, or 4. For 0cIQ, if a header exists, it is 2; if no header exists, it is 0. If you
specify 0 and a header does exist, the header is treated as part of the data to
be unpacked. With 01¢0q, use 0 if you do not want a header; 2 if you do want a
header; and 4 if you want only a header.

type
If specified, it indicates whether the data is to be converted to another data
type before being packed. The possible values are listed in Table 2-5. The

APL Reference Manual 2-45

System Variables and Functions
0cIq and 00 coQ Packing and Unpacking Data

possible effects of such a conversion are summarized in the VAX APL User’s
Guide. Omitting type has the same effect as using type 0.

Description

0cIQ and 0c0q allow you to accumulate data of different types into variables.
You can then catenate the variables for storage as one logical record.

0coQ takes an argument of any data type and packs it into an integer vector
by treating it as if it were a stream of bits. For example, you can put ASCII
characters in one variable and internal APL characters in another variable,
then catenate them, and write them to a file. Later, you can read the file and
use [1¢IQ to change the variables from integer vectors back into ASCII and
APL characters.

The value of J C0Q is the packed data or, if the header parameter equals 4, the
header information associated with the left argument.

The value of JC1¢Q is the unpacked data. [JCIQ converts the packed data

to the internal data type specified by the corresponding external data type
identified by the type parameter (the possible effects of such a conversion are
summarized in the VAX APL User’s Guide.)

Table 2-5 Type Parameter Values

Type External Data Type

No conversion; use type of "data”

Convert to 32-bit integer

Convert to 1-bit Boolean

Convert to F_floating single-precision floating-point
Convert to D_floating double-precision floating-point
Convert to 8-bit 2AV characters

Convert to 8-bit ASCII characters

Convert to 8-bit unsigned numeric bytes

Convert to G_floating double-precision floating-point

O o N o O F W N O

Convert to H_floating floating-point

e
(o]

Convert to 16-bit integer

[y
[y

Convert to 8-bit Digital Multinational Characters

(continued on next page)

2-46 APL Reference Manual

System Variables and Functions
0CIQ and [c0Q Packing and Unpacking Data

Table 2-5 (Cont.) Type Parameter Values

Type External Data Type

12 Convert to 8-bit 14V characters in TTY mnemonics
13 Convert to 8-bit DAV characters in KEY-paired APL
1u Convert to 8-bit 14V characters in BIT-paired APL
15 Convert to 8-bit 14V characters in APL. COMPOSITE

The header generated by [1c0qQ has the following format:

length

type
rank

(pdata)[1]
(pdata)2]

(pdata) rank]

NU-2234A-RA

Each large box represents a longword as described in the following list:
¢ length is the length of the integer vector result of 0 CcogQ 2

* type is one of the external types in Table 2-5

* rank is the rank of the data that was packed by 0 co¢

The next n (n = rank) boxes contain the shape of the data that was packed.

APL Reference Manual 247

System Variables and Functions
0¢Iq and JC0Q Packing and Unpacking Data

For example:

A<15

P+4 [JC0Q 2

P
911512345

B«3 4p1 0

H
o
[ENENN
D ooow

«B [JC0Q 2

o D

6 22 1365

L+(32p2)71365
+ BOOL
1010101

cIg 2

| g
[]
N o O &

&
N

o
=
(]

12

w

10
10
10

cocol Y L
(e

[ErE—

The first example uses 0 C0Q to pack the vector 1 5. The value of P shows that
when 1 5 was packed, the packed data had length 9 (including the header),
type 1 (integer), rank 1, and shape 5.

In the second example, the Boolean matrix B is packed into ¢. The value of @
indicates that the packed data with its header has length 6, type 2 (Boolean),
rank 2, and shape 3 4. Note that when @[6] is converted to Boolean, the value
is the same as that of ¢ , B (the Boolean data values are stored right to left).

Finally, 0 ¢7Q was used to unpack the data, to retrieve the data and translate
it back to the original data.

In the following example, the functions PACK and UNPACK use 0C0Q and 0CIQ
to pack and unpack values of different types:

248 APL Reference Manual

(1]
(2]
(3]
fu]
(5]
[6]
7]
(8l
(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

[1]
[2]
[3]
[4]
[51]
[6]
[71]
[8]
[9]
[10]
[11]
[123
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

System Variables and Functions
0CIQ and [0 C0Q Packing and Unpacking Data

VP<PACK LIST;I
APACK USES [1C0Q TO PACK A SET OF VALUES
aINTO A SINGLE VARIABLE. THE VALUES CAN BE
aDIFFERENT TYPES OR SHAPES. THUS, YOU CAN
al/SE PACK WHEN CATENATE WON'T WORK.
aLIST IS A CHARACTER MATRIX, EACH ROW OF WHICH
ACONTAINS THE NAME OF 4 VARIABLE WHOSE VALUE
alS TO BE PACKED.
AP IS THE RESULTANT PACKED VALUE; IT IS AN
aINTEGER ARRAY.
A
P<10
I+1
TEST:»(I>14pLIST)/0
P<«P, (oLIST[I;])0C0Q 2
I<I+1
+TEST
v
VP UNPACK LIST;DATA;I;J;LEN;ENTRY
aUNPACK USES [0CIQ TO UNPACK A VARIABLE CREATED
aBY PACK INTO A SET OF VARIABLE NAMES.
aP IS THE PACKED VALUE, CREATED BY PACK.
aLIST IS A CHARACTER MATRIX, EACH ROW OF WHICH
ACONTAINS THE NAME OF A VARIABLE TO RECEIVE ONE
a0F THE PACKED VALUES. UNPACKED VALUES FROM P
AARE STORED INTO SUCCESSIVE VARIABLES IN LIST.
DATA<P
I<pDATA
Je1
TEST:~»(I<0}/0
+(J>14pLIST)/0
LEN<DATAT1]
ENTRY<DATA [+1LEN]
o LIST[J:], "<ENTRY (CIg 2'
DATA<LEN + DATA
Jed+1
I«I-LEN
+TEST
v
aDEFINE SOME NUMERIC VARIABLES:
A+l
Ad« 1 1
Add« 1 11

ADEFINE SOME CHARACTER VARIABLES:

B<+'R!
BB<'BB!

APL Reference Manual

2-49

System Variables and Functions
0cCI1qQ and 0 c0q Packing and Unpacking Data

L1«5 3p 'A A4 AAAB

1

4

A4

AdA

B

BB
P«PACK L1
P

4201521234521

L2«5 3p'X XX XXXY

ARMAKE A LIST OF INPUT VARIABLE NAMES:
BB !

aPACK THESE VARIABLES INTO ONE ITEM
RCATENATE WON'T WORK

374500985512 25186
RMAKE A LIST OF OQUTPUT VARIABLE NAMES:
ry

aUNPACK THE PREVIOUS DATA INTO NEW VARIABLES:

aTHE RESTORED DATA IS THE SAME AS THE
n DATA THAT WAS PACKED.

L2
X
XX
XXX
Y
Y
P UNPACK L2
X=4
1 .
XX=44
11
XXX=4A4
111
=B
1
YY=BB
11

Possible Errors Generated
For QCIq:

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (ARGUMENT MUST BE 1 OR 2 ELEMENTS)

10 LENGTH ERROR (DATA TYPE MISSING)

10 LENGTH ERROR (DATA TYPE FEXCEEDS DATA LENGTH)

15 DOMAIN ERROR

2-50 APL Reference Manual

15

15

15

15

15

15

15

27

System Variables and Functions
0CIQ and [0 C0Q Packing and Unpacking Data

DOMAIN ERROR (DATA TYPE MUST BE UNSPECIFIED OR ZERO)
DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (INVALID CIQ HEADER)

DOMAIN ERROR (INVALID EXTERNAL DATA TYPE)

DOMAIN ERROR (INVALID HEADER TYPE)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

For 0C0q:

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

15

15

15

27

LENGTH ERROR (ARGUMENT MUST BE 1 OR 2 ELEMENTS)
DOMAIN ERROR

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (INVALID HEADER TYPE)

DOMAIN ERROR (INVALID EXTERNAL DATA TYPE)
DOMAIN ERROR (NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-51

System Variables and Functions
0 CLS Closing Files

[1 CL S Closing Files

Type

Monadic System Function (quiet)

Form

10 « OCLS chans

Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value ~ 999 through 999 (but not 0)

Result Domain

Type Numeric

Rank 1 (vector)

Shape 0 (empty)

Depth 1 (simple)
Description

OCLS closes one or more files without deassigning their corresponding
channels. The absolute values of chans represent the channels associated
with the files you want to close.

0 CLS is useful when you want to return to the beginning of a sequential file.
(You can also use the JREWVIND system function, which does not close files.)

After you close a channel, a read function opens the file and reads the first
record, and a write function creates a new version of the file (except for /D4,
/RF, and /KY files, where a new file is created only if no version currently
exists). With OCLS, there is no need to reassign the file to the channel.

The following line closes the file associated with channel 2:

gcLs 2

Any unassigned channels in the argument are ignored.

2-52 APL Reference Manual

System Variables and Functions
OcLs Closing Files

[CLS is a quiet function; it does not return a result if it is the leftmost function
in a statement. When JCLS is not the leftmost function, it returns an empty
numeric vector. If its argument is empty, 0 CLS has no effect.

Note that when you use 0CLS, you activate whichever parameter has
been set for the /DISPOSE qualifier on 0A4SS. For example, if you specify
/DISPOSE:DELETE, APL deletes the file when you specify the 0 CLS function.

APL automatically closes and deassigns all open files when you press Ctrl/Z
or execute a)LOAD, YCLEAR, YOFF, or)CONTINUE system command (the)MON
and) PUSH system commands do not have this effect).

JCLS is described in the VAX APL User’s Guide along with other file I/O
information.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INVALID CHANNEL NUMBER)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER T0OO LARGE)

APL Reference Manual 2-53

System Variables and Functions
0 CR Obtaining a Canonical Representation

[1 CR Obtaining a Canonical Representation

Type

Monadic System Function

Form

canonical-rep + [1CR operation-name

Argument Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)

Result Domain

Type Character
Rank 2

Shape Matrix
Depth 1 (simple)

Implicit Arguments

0 PP (controls precision of numeric constants)

Description

[CR provides a canonical representation of a user-defined operation, which
enables you to treat the operation as data. A canonical representation is
a character matrix with rows that are the original lines of the operation
definition, but are reformatted so that they are the same length.

The canonical representation consists of exactly what you typed when you
defined the operation, minus the beginning and ending v s, plus blanks added
to the end of lines to make their lengths the same as that of the longest line
of the operation. Line numbers and brackets are removed from the definition.
White space at the beginning (but not at the end) of a line is preserved. Lines
that contain labels are not shifted.

2-54 APL Reference Manual

System Variables and Functions
0 CR Obtaining a Canonical Representation

The argument of the 0 CR system function is a character array representing
the name of the operation. The shape of the argument must be in the vector
domain.

If the argument is empty or does not represent the name of an existing
unlocked operation, the resulting character matrix is an empty matrix, with
the shape 0 0. (APL considers primitive system functions and external
functions as locked.)

The display of numeric constants in an operation definition is J PP-dependent.

0 ¢R does not work on operands to user-defined operators that contain derived
functions. Use [VR instead.

For example:

IMEANX<NSUBJ MEAN X
[1] aSUM VECTOR X
[2] SUMX«+/X
£3] MEANX<SUMX+NSUBJ
iy v
0 « SHOWCRFX « [OCR 'MEAN®
MEANX<NSUBJ MEAN X
aSUM VECTOR X
SUMX«~+/X
MEANX<SUMX+NSUBJ
pSHOWCRFX
4 21
X+ 86 39542174
10 MEAN X
4.9

The O FX system function is the inverse of [CR.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

APL Reference Manual 2-55

System Variables and Functions
0 cr Comparison Tolerance

[J CT Comparison
Type

System Variable
Form

Tolerance

gcT « tolerance-value
foating-scalar « OCT

Value Domain

Type
Shape
Depth
Value
Default

Result Domain

Type
Rank
Shape
Depth

Description

Non-negative numeric
Singleton

0 or 1 (simple)

0 to 2.328E 10

1E7 15

Numeric

0

10 (scalar)
0 (simple)

[1¢T specifies the degree of tolerance applied when two numbers are compared
for equality. If the difference between two numbers is less than or equal to the
value of [CT times the larger number, the numbers are considered equal.

The value of 0 T affects the following primitive functions:

Function Function Name

Function Function Name

€ Set membership
1 Index of
> Greater than

2-56 APL Reference Manual

| Residue
r Ceiling
L Floor

System Variables and Functions
0 T Comparison Tolerance

Function Function Name Function Function Name
> Greater than or equal to u Set union and unique
= Equal to n Set intersection
2 Not equal to ~ Without
< Less than or equal to c Subset
< Less than > Contains
= Match B Matrix inverse and divide

The value of 0CT is saved when you save the active workspace and can be
localized in user-defined operations.

For example:

ner
1E 15

1= 1.00000000009
0

OCT«1EF 10

1 = 1.00000000009
1

The following function is the APL metafunction. It describes an exact definition
of how OCT is applied.

Vz«A DFEQ B ;0CT;T eA=B WITHIN BXCT

[11] 0CT+«0

[2] T+0<(xA)B

[3] A<AXT

[4] B+BxT

[5] Z«(|A-B)<0CTx(|A)[|B
6] 7+IxT ¥

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)
10 LENGTH FRROR (NOT SINGLETON)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN FRROR (INCORRECT TYPE)

15 DOMAIN ERROR (PARAMETER OUT OF RANGE)

APL Reference Manual 2-57

System Variables and Functions
O CTRL Control Characters

[0 CTRL Control Characters

Type

Niladic System Function

Form
control-chars < [JCTRL

Result Domain

Type Character

Rank 1 (vector)

Shape 33

Depth 1 (simple)
Description

[0 CTRL is a subset of 0AV. It returns a vector of the 32 ASCII control characters
and Delete, or, expressed in terms of 0 AV:

OAV[:132,0I0+127]

The control characters are listed in the table below. Note that for any
formatting control character, the internal code that appears in 1CTRL is
the same as the internal code used by APL for that character. For example:

10«0 o [AV + 'ABCDEF!
97 98 99 13 10 32 32 32 32 32 100 101 102

Index Name Description Octal Value Hex Value
0 NUL Null 000 00
1 SOH Start Of Heading 001 01
2 STX Start of TeXt 002 02
3 ETX End of TeXt 003 03
4 EOT End Of Transmission 004 04
5 ENQ ENQiry 005 05

2-58 APL Reference Manual

System Variables and Functions

00 ¢cTRL Control Characters

Index Name Description Octal Value Hex Value
6 ACK ACKnowledge 006 06
7 BEL BELI 007 07
8 BS BackSpace 010 08
9 HT Horizontal Tabulation 011 09

10 LF <LF> 012 0A

11 vT Vertical Tabulation 013 0B

12 FF Form Feed 014 0oC

13 CR <CR> 015 0D

14 SO Shift Out 016 OE

15 SI Shift In 017 OF

16 DLE Data Line Escape 020 10

17 DC1 Device Control 1 021 11

18 DC2 Device Control 2 022 12

19 DC3 Device Control 3 023 13

20 DC4 Device Control 4 024 14

21 NAK Negative AcKnowledge 024 15

22 SYN SYNchronous Idle 026 16

23 ETB End-of-Transmission Block 027 17

24 CAN CANcel 030 18

25 EM End of Medium 031 19

26 SUB SUBstitute 032 1A

27 ESC ESCape 033 1B

28 FS File Separator 034 1C

29 GS Group Separator 035 1D

30 RS Record Separator 036 1E

31 Uus Unit Separator 037 1F

32 DEL DELete 177 7F

Possible Errors Generated

None.

APL Reference Manual 2-59

System Variables and Functions
0 DAS Deassigning Files

[1DAS Deassigning Files

Type

Monadic System Function (quiet)

Form

10 « [1DAS chans

Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value ~ 999 through 999 (but not 0)

Result Domain

Type Numeric

Rank 1 (vector)

Shape 0 (empty)

Depth 1 (simple)
Description

ODAS dissociates or deassigns file specifications from channel numbers. The
absolute value of chans represents the channels associated with the files you
want to deassign. If any files associated with the specified channel numbers
have not been closed (by CLS), JDAS closes them, and then deassigns them.

In general, 0 D4S reverses the operations performed by the 2ASS system
function. The following line deassigns the files associated with channels 1, 3,
and 5:

ODAS 1 35

Any unassigned channels in the argument are ignored.

O0DAS is described in the VAX APL User’s Guide along with other file I/O
information.

260 APL Reference Manual

System Variables and Functions
0 DAS Deassigning Files

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLONED)
15 DOMAIN ERROR (INVALID CHANNEL NUMBER)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-61

System Variables and Functions
0 D¢ Display Control

UJ D C Display Control

Type
System Variable

Form

O0DC « display-area box-characters
current-setting <« O0DC

Value Domain

Type Enclosed, heterogeneous (see below)
Shape 2 (vector)

Depth 2 or 3 (enclosed)

Default (T1102) "

Result Domain

Type Enclosed, heterogeneous
Rank 1

Shape 2 (vector)

Depth 2 or 3 (enclosed)

Description

0DC specifies how APL displays enclosed arrays. You can set 0DC to draw
boxes around enclosed items of an array, and the resulting display makes the
nested structure of the array clearer. You can also increase the blank space
that APL uses to surround an enclosed item.

The value you assign to 0DC is a two-item enclosed vector.

The first item of the 0 D¢ value is a simple numeric vector of length 4. Data
elements 1 and 2 of this item specify where an item is displayed when its
display area is larger than the structure of the item itself. The first data
element controls the vertical placement; the item can be at the top, center, or
bottom of the display area. The second data element controls the horizontal
placement; the item can be at the left, center, or right of the display area. The
following table describes the meaning of the values you can specify for these
two data elements:

262 APL Reference Manual

System Variables and Functions
gDc Display Control

Positioning ltems in Display Areas

First Element Location Second Element Location
"1 Top -1 Left
0 Center 0 Center
1 Bottom 1 Right

Data elements 3 and 4 of the first item of the JDC value allow you to change
the size of the display areas. The third data element controls the vertical space
between rows of items; the integer you specify indicates how many blank rows
you want to add. The fourth element controls the horizontal space between
columns; the integer you specify indicates how many blank columns you want
to add. (Note that the rows and columns containing the characters that form
the boxes are included in the number you specify. When you display boxes, the
minimum value you can specify for the third and fourth elements is 2.) The
default for the third and fourth elements are 0 (no extra rows between rows of
items) and 2 (two extra columns between columns of items), respectively.

The second item is a character vector that is either empty (' '), if you do not
want boxes around enclosed items, or has length 8. The vector specifies the
characters for APL to use when it draws boxes around enclosed items. The
first four items specify the symbols for the corners of boxes (upper left, upper
right, lower left, lower right), the next two items specify the left and right
sides, and the last two specify the top and bottom.

The following table describes the order and meaning of the eight items in the
second item of the D¢ value:

Position in Portion of Box

Second ltem Described Shape
1 Upper left corner Singleton
2 Upper right corner Singleton
3 Lower left corner Singleton
4 Lower right corner Singleton
5 Left side Vector

APL Reference Manual 2-63

System Variables and Functions
0 DC Display Control

Position in Portion of Box
Second ltem Described Shape
6 Right side Vector
7 Top Vector
8 Bottom Vector
The default value of 0DCis (71 1 0 2) ''. The four data elements of the

non-empty item have the following meanings: ~ 1 positions data at the top
of each display area, 1 justifies data to the right, 0 places no extra blank
lines between rows of data, and 2 places an extra blank between columns of
enclosed items. For example:

0+«CSNY«3 3p'LONG' 9823 834 'TIME' 98 23 'COMIN' ~2 'Y0!
+----+ 9823 834

{LONG|
-t
+----+ 98 23
| TIME |
+----1
o= + 2 -t
| COMIN| |70
t----- + +-—t
O«MUSC+(1 2) (3 4 5) 6 (7 8 9 10)
o=t - + 6 - +
f1 2} 13 4 5] {7 8 9 10]
ot - + e +
WITHOUT EXTRKA BLANKS, MUSC WOULD APPEAR AS 110
110

123456789 10

The displays that follow show CSNY and MUSC with the addition of the delta
(4) symbol to clarify the location of the blanks.

ALONGAA98230A8314
ATIMEAALAL9800423
COMINALAA 204470

1420030445006 0074809010

The following examples describe the use of the second item of the JDC value,
which specifies the boxes for APL to draw. If you specify '++++}| | = ="' as the
second item, APL draws boxes that look like the following:

2-64 APL Reference Manual

System Variables and Functions
0 Dc Display Control

The items you specify for the corners of boxes must be singleton items.
However, the four sides may be character strings (vectors). (Note that the
depth increases from two to three when you specify a character string for one
or more of the four sides.) For example, if you specified "+ '+ t+1 141 1\ /!
"\ /' '"PETER' 'PETER' as the second item of the O0Dp¢ value, APL would draw
boxes that look like the following:

+PETER+
\ \

/ /
+PETER+

If a dimension of the box requires fewer characters than the string you specify,
APL uses only the number required. If the box requires more characters, APL
reuses the string. For example, the boxes might look like the following:

+PET+
AU
+PET+
+PETERPET+
\ \
/ /
\ \
/ /
+PETERPET+

When APL displays an array, it places each item of the array into a display
area. If all items have the same shape, the display areas are all the same size.
If the items vary in shape (as they often do), the display areas also vary in size.
For any given row, the vertical dimension of the display area is determined by
the maximum number of rows in any item in that row. For any given column,
the horizontal dimension of the display area is determined by the maximum
number of columns in any item in that column. For example:

APL Reference Manual 2-65

System Variables and Functions
0 D¢ Display Control

ope
pomm - ot e +
171 71 2 3| [++++] -]
ommmmm o et +
BUMP<?2 20p(110) 5 (3 4pi112) 'ABC!
BUMP
fmm e +5
123456789 10|
Fmmm e +
Fommm e + ot
1 2 3 4] |ABC]
I5 6 7 8} A
9 10 11 12}
pomm e +

Note the dimensions of the display areas in the preceding example.
BUMP[1:;1] (<1 10) determines the dimension for the first column because it
is wider than BUMP[2;1](c3 4p112). BUMPL[2;2] determines the dimension
for the second column because it is wider than BUMP[1:2] (5). BUMP[1;1]
determines the dimension for the first row because it has more rows than
BUMP[1;2] (the rows of the box are part of the display size of BUMP[1;17).
Finally, BUMP[2; 1] determines the dimension for the second row because it
has more rows than BUMP[2;2] (< 'ABC!').

Note that this manual displays enclosed items as if the 0 D¢ default were the

following:

gopc
et I +
171 71 2 3] |++++] -]
R I +

The O0DC setting shown in the preceding example places items in the top left
corner of each display area, adds two extra rows between rows of items, adds
three extra columns between columns of items, and draws boxes using plus
signs, vertical bars, and hyphens.

Examples:

ODC+(™1 71 2 3) '+44t||--"
goc

BUMP«2 2p(110) 5 (3 u4p112) 'ABC!
aCHANGE POSITION IN DISPLAY AREA

266 APL Reference Manual

System Variables and Functions
0Dc Display Control

ODC<(0 0 2 3) '++++]]--"
anc

|1 234856789 10| 5

1 2 3 &l +o--t
[5 6 7 8 [ABC|
lg 10 11 12} +---+

aCHANGE SIZE OF DISPLAY AREAS
ODC<(0 0 & 5) '++4+|{--"

gpc
oo I +
[0 0 & 5] [++++]]--1
tom e L +
=[bC
2
BUMP
e e EE L +
{1 23456789 10} 5
oo +
oo +
|1 2 3 u 4ot
{5 6 7 8] [ABC|
|9 10 11 12} +--—+
tomm e +
ACHANGE BOX, REDUCE DISPLAY AREA USE E FOR ELEMENT 7
a OF SECOND ITEM, F FOR ELEMENT 8 OF SECOND ITEM
Fel--p-——mmmmmmm === !
Fel oo 1
DDC"(O 0 2 3) (x+y IR N RS R 1{! |I| EF)
goe aDISPLAY (IDC VALUE
to-pmmmmmmmmmmmmooo- pommmmmmmmmmmmooo pm=mmmmmmomo—- +
t--p-—--+ | R totmmprm s +|
100 23] [++++ | | |=mprmmmmmmmmmmmmv R e !
==Vt | ==V I e +1
e Pommmmmmmmmemm o R +
=[1DC
3

APL Reference Manual

2-67

System Variables and Functions
0 Dc Display Control

BUMP
t--p----mmm oo p+
/1223456789 10] 5
FoV-m e v+
oo +
1 2 3 uf +--p+
|5 6 7 8f |ABC|
[9 10 11 12] +--V+
-V +

8STOP DRAWING BOXES
0bpc«(0 0 2 3) V!
BUMP
12345678910 5

1 2 3 4

5 6 7 8 ABC

9 10 11 12

ODC«{"1 "1 2 3) "++++]]--!
B«i o (« 15 o D<«2 2p 'ABCD'
J«A«cA<«B, (c(C}, <D

aTHE FOLLOWING WORKS WELL TO DISPLAY NESTS OF VECTORS
a IN A FORM SIMILAR TO STRAND NOTATION.

ODC<(0 ~1 0 4)('+1 4t 141 t41 r(1 oty o111y
4

(4 (1 2 34 5) (4B))

((€D))

ATHE FOLLOWING PUTS PARENTHESES AROUND ARRAYS

DDC*(0023) (l/v !\Y!\Il/lll!!{lllt!)
4

/ \

L/ \ /]

ju 112 3 4 5| [4B]]

[/1CDl|

| \ /]

\ /

Possible Errors Generated

9 KANK FRROR (MUST BE VECTOR)

9 RANK ERROR (NOT SINGLETON)

2-68 APL Reference Manual

-

System Variables and Functions
O Dc Display Control

9 RANK ERROR (NOT VECTOR DOMAIN)

10

10

10

15

15

15

15

15

15

LENGTH ERROR (DISPLAY CONTROL ITEM WRONG LENGTH)

LENGTH ERROR (DISPLAY CONTROL VECTOR MUST BE TWO ITEMS)
LENGTH ERROR (NOT SINGLETON)

DOMAIN ERROR

DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)
DOMAIN ERROR (ENCLOSED VALUE REQUIRED)

DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (NEGATIVE INTEGER NOT ALLOWED)

DOMAIN ERROR (PARAMETER OUT OF RANGE)

APL Reference Manual 2-69

System Variables and Functions
0 DL Delaying Execution

[1 DL Delaying Execution

Type

Monadic System Function

Form

actual-delay ~ 0 DL seconds

Argument Domain

Type Numeric

Shape Singleton

Depth 0 or 1 (simple)
Value seconds <~ 1+2x18

Result Domain

Type Non-negative numeric

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple)
Description

ODL delays execution for the number of seconds specified in the argument. If
the argument is less than 0.001, there is no delay. If the argument is negative,
there is no delay.

Although O0DL specifies the desired duration of the delay, the actual delay may
be longer because of other demands on the system. The result returned is the
actual delay in seconds. For example:

0 « ODL 8.5 ASET DELAY AND DISPLAY
9

0 « ODL "74.36 ANEGATIVE ARG = NO DELAY
0

Here, the user instructed APL to wait 8.5 seconds before prompting for input;
the actual delay was 9 seconds.

2-70 APL Reference Manual

System Variables and Functions
ODL Delaying Execution

The OpL function uses a negligible amount of computer time. Thus, you
can issue it freely when tests are required at periodic intervals to determine
whether an event has occurred as expected.

The delay resulting from the execution of 0 DL may be canceled by the weak
attention signal. When the weak attention signal is thus used, APL stops O0DL
and returns the actual delay but does not signal attention.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

27

LENGTH ERROR (NOT SINGLETON)
DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

LIMIT ERROR (DELAY VALUE TOO LARGE)

DECLIT AA vax svosc

VAX apL reference manual

APL Reference Manual 2-71

System Variables and Functions
0 DML Maximum Record Length

(] DML Maximum Record Length

Type
System Variable

Form

ODML « default-length
integer-scalar ~ ODML

Value Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value 512 through 2048 (bytes)
Default 20un

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)
Description

0 DML specifies the default maximum record length to be used when you save
a workspace or create an external file. The value of [JDML is saved with the
workspace and can be localized within user-defined operations.

If you do not want to use the default maximum record length, you can use the
/MAXLEN qualifier when you save a workspace or create an external file. If
you omit the /MAXLEN qualifier, APL uses the value of 0DML as the maximum
record length.

2-72 APL Reference Manual

System Variables and Functions
00 DML Maximum Record Length

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

15

27

LENGTH ERROR (NOT SINGLETON)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN FRROR (INCORRECT TYPE)

DOMAIN FRROR (NOT AN INTEGER)

DOMAIN ERROR (PARAMETER OUT OF RANGE)

LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-73

System Variables and Functions
0DV C Returning Device Characteristics

[l D VC Returning Device Characteristics

Type
Monadic System Function (query)

Form

characteristics « JDVC chans

Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value ~999 through 999 (but not 0)

Result Domain

Type Integer

Rank 1 0r?2

Shape Vector or matrix (n by 2)

Depth 1 (simple)
Description

Opvc displays device characteristics. The absolute value of chans represents
the channels associated with the files you want information on.

For each channel specified in the argument, 0DV C returns one row containing
two values. The first value is the VMS device-characteristics longword, and the
second value is always 0. For unassigned channels,] DVC returns 0 0.

0DVC returns a two-element vector if a single channel is specified. If more
than one channel is specified, the result is a matrix of shape n by 2, where n is
the length of the argument.

If its argument is empty, 0DVC returns a result of 0 2p 0.

Note that to return a value for JDvC, APL must open files that have been

associated with channels but have not yet been opened. Thus, unopened files
associated with channels identified by positive integers in the [DVC argument
are opened for input; unopened files associated with channels identified in the

2-74 APL Reference Manual

System Variables and Functions
0 DvC Returning Device Characteristics

argument by negative integers are opened for output. Note that when you open
a sequential file for output, APL makes a new copy of the file with a version
number that is one higher than that of the previous copy.

It is usually helpful to convert the device-characteristics longword to binary
format before examining it. For example:

(JASS '15 DESIGN/DA!

15
"XIXXYYY'B 15
A«QDVC 15
A

474824712 0
(32p1)TAL1]

6001110001001 1010100000000001000
(-010)+00M (32p2)7A[1]
3 459 12 13 15 17 28

You can compare the binary value of the longword with the device
characteristics in Table 2-6. The first element in the table is associated

with the rightmost bit in the longword, the second element is associated with
the next rightmost bit, and so forth. Thus, in the previous example, the three
rightmost Os indicate that the device is not record-orientated, is not a carriage-
control device, and is not a terminal; the 1 in the fourth position from the right
indicates that the device is directory-structured.

Table 2-6 Device Characteristics Longword

Bit Type or Condition of Device

Record-oriented
Carriage-control

Terminal
Directory-structured
Single directory-structured
Sequential, block-oriented
Being spooled

Operator console
RA50,RA81,RA82,RH60
(Bits reserved)

© W0 13 N x WN = O

p—
ro

(continued on next page)

APL Reference Manual 2-75

System Variables and Functions
0 DVC Returning Device Characteristics

Table 2—6 (Cont.) Device Characteristics Longword

Bit Type or Condition of Device
13 Network

14 File-oriented

15 (Bit reserved)

16 Shareable

17 Generic

18 Available for use

19 Mounted

20 Mailbox

21 Marked for dismount

22 Error logging enabled

23 Allocated

24 Non-file-structured

25 Software write-locked

26 Capable of providing input
27 Capable of providing output
28 Allows random access

29 Real-time

30 Read-checking enabled

31 Write-checking enabled

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLUDES ARRAY NOT ALLOWED)
15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (INVALID CHANNEL NUMBER)

27 LIMIT ERROR (INTEGER TOO LARGE)

2-76 APL Reference Manual

System Variables and Functions
UEFR OEFS OEFC Event Flag System Functions

UEFREFS[]FEFC Event Flag System Functions

Type

Monadic System Functions

Form

event-flag-values + DEFR chans (read)
previous-values + JEFS chans (set)
previous-values « QEFC chans (clear)

Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value ~999 to 999 (but not 0)

Result Domain

Type Numeric

Rank 1 or?2

Shape Vector or matrix (n by 2)

Depth 1 (simple)
Description

There are three event-flag-system functions: 0 EFR to read event flag values,
JEFS to set event flags (make them equal 1), and QEFC to clear event flags
(make them equal 0).

The absolute values of chans represent the channels associated with the event
flags you want to manipulate.

The EFR function returns the values of the event flags associated with the
channel numbers in its argument. For channels not associated with an event
flag, DEFR returns ~ 1.

APL Reference Manual 2-77

System Variables and Functions
OFFR JEFS DEFC Event Flag System Functions

The result is a matrix (or vector, if the argument is a singleton) of shape n 1,
where n is the shape of the argument. In the example, the result indicates
that the event flags are associated with channels 1, 2, and 5. The event
flag associated with channel 2 is set, and then cleared, and no event flag is
associated with channel 4:

UASS '1 MYFILE/RF/SHARE/EFN:77"
0ASS '2 PUBLIC/DA/SHARE/EFN:68'
DASS '4 MINE/IS'

0ASS '5 MAILBOX/AS/SHARE/MBX/EFN:65'

QEFS 2
0
JEFR:15
0
1
1
1
0
JEFC 2
1
OFEFR:i5
0
0
"1
1
0

The 0£FS and OEFC functions set and clear, respectively, the event flags
associated with the channel numbers in their arguments. They return a
matrix of shape n by 1, where n is the shape of the argument, and the values
are the previous values of the event flags. For channel numbers not associated
with event flags, QEFS and QEFC return ~ 1.

If the argument to OEFR, JEFS, or JEFC is empty, APL returns 0 1p 0 as the
result.

OEFR,UEFS, and OEFC are described in the VAX APL User’s Guide along with
other file I/O information.

2-78 APL Reference Manual

System Variables and Functions
OEFR UEFS JEFC Event Flag System Functions

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)
15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (INVALID CHANNEL NUMBER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-79

System Variables and Functions
0 ERROR Error Message

[FRROR Error Message

Type
System Variable

Form

<« JERROR
OERROR < error-text

Value Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)
Default T

Result Domain

Type Character

Rank 1

Shape Vector

Depth 1 (simple)
Description

OERROR contains either the text of the last error message that occurred or the
text that you assign to it. (CERROR is set implicitly by the system when an
error occurs, but can also be set by the user.)] ERROR contains one error at a
time; when a new error occurs, the new message overwrites the old one. You
can, however, localize (] ERROR within user-defined operations to save error
information within an operation’s own environment.

The text of JERROR is a character vector of variable-length lines and is
delimited by a <CR><LF>. The lines of text in JERROR are the same as the
lines of the error message that APL displays on the terminal (except when
JTrERSE is 1), including secondary error messages and execute error messages.
The error number is always contained in the first four characters of JERROR,
so you can always extract the error number with the expression ¢ 4+ [JERROR.
JERROR always contains the entire error message text, even if some of the text

2-80 APL Reference Manual

System Variables and Functions
OERROR Error Message

was not displayed on the terminal because it was truncated to [J PW characters.
For a description of the text of error messages, see Appendix A.

Note that like all the system variables, DERROR can be set by the user; that is,
you can use the specification function (%) to assign a value to it.

It is possible that when a WORKSPACE FULL error occurs, there will not be
enough memory available to build 1 ZRROR. In that case, JERROR will equal ' !
(an empty character array). It is also possible that there will not be enough
room to display 0ERROR. In that case, APL signals WORKSPACE FULL with the
line in error being 0 ERROR.

For example:

VABC;0TRAP;[0ERROR aLOCALIZE [{ITRAP AKD [JERROR
[1] JTRAP«'+ LAB'
[2] 5+
[3] aNEXT LINE PRINTS MESSAGE AND INTERRUPTS EXECUTION
[u] LAB:[JBREAK '"CHECK FRROR MESSAGE!
[5] 'RESUME AT LINE 5!

(6] v
aNON GENERATE AN IMMEDIATE MODE ERROR
C+4 aADD TWO UNDEFINED VARIABLES
11 VALUE ERROR
C+4 aADD TWO UNDEFINED VARIABLES
A
aCHECK GLOBAL VALUE OF [ERROR
JERROR
11 VALUE ERROR
C+4 aADD TWO UNDEFINED VARIABLES
A
aNOW EXECUTE ABC TO GENERATE LOCAL ERROR
ABC

CHECK ERROR MESSAGE
n4BC HAS SUSPENDED
aNOW CHECK CONTENTS OF [JERROR
UERROR
7 SYNTAX ERROR (RIGHT ARGUMENT TO FUNCTION MISSING)
ABC[2] 5+
A
aNOW BRANCH TO CURRENT LINE + 1 TO CONTINUE EXECUTION
+JLC+1
RESUME AT LINE 5
aFUNCTION HAS FINISHED EXECUTION
RAND LOCAL [JERROR IS GONE
aCHECK GLOBAL VALUE OF [JERROR
[JERROR
11 VALUE ERROR
C+4 AaADD TWO UNDEFINED VARIABLES

A

APL Reference Manual 2-81

System Variables and Functions
OERROR Error Message

Note that if an error occurs during an ¢ execute, 0ERROR contains six lines of
text. For example:

¢ '0BREAK 1!
79 ¢ SYSTEM FUNCTION ILLEGAL IN EXECUTE
OBREAK 1

A

25 EXECUTE ERROR
¢ '[IBREAK 1!
A
OERROR
79 ¢ SYSTEM FUNCTION ILLEGAL IN EXECUTE
(BREAK 1

A

25 EXECUTE ERROR
¢ 'OBREAK 1!

A

Note that 0 ERROR is set by 0FX, 0ASS, and 0x@, even though no message is
displayed when the error occurs.

The value of 0ERROR is saved when you save the active workspace and can be
localized within user-defined operations. (See the VAX APL User’s Guide.) The
default value is ' ' .

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

2-82 APL Reference Manual

System Variables and Functions
A EX Erasing a Named Object

[l £ X Erasing a Named Object

Type

Monadic System Function

Form

erased [not-erased <« N EX name-list

Argument Domain

Type Character
Shape Matrix domain
Depth 1 (simple)

Result Domain

Type Boolean
Rank 1

Shape o name-list
Depth 1 (simple)

Description

OEX erases the local APL objects named by the rows of its argument. You
cannot erase a named object that refers to a label, a group (a group name is
always global), or to a suspended or pendent operation.

The result of the 0EX system function is a Boolean vector that indicates which
objects were erased: a 1 signifies that the object now has no value; a 0 signifies
that the object cannot be erased. Note that 0EX returns O if you specify an
ill-formed identifier.

APL Reference Manual 2-83

System Variables and Functions
U EX Erasing a Named Object

For example:

JENS
ABCD GROW TEST
)SI
TEST[2] =
A«3 UYp'ABCDTESTGROW'
A
ABCD
TEST
GROW
QJEx A
101
JENS
TEST

If the argument to JEX is empty, the result also is empty.

Note that the memory allocated from VMS remains allocated even if you
expunge an object from the workspace. If you want to release this memory,
follow the sequence of steps discussed in the section on space considerations in
Chapter 3 of the VAX APL User’s Guide.

Possible Errors Generated

9 RANK ERROR (NOT MATRIX DOMAIN)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWNED)

15 DOMAIN ERROR (INCORRECT TYPE)

2-84 APL Reference Manual

System Variables and Functions
0 EXP Expansion

[1EX P Expansion

Type
Dyadic System Function

Form

AOFXPB A OFXPLK] B

Left Argument Domain

Array Simple, homogeneous
Type Near-Boolean

Shape Vector domain

Depth 0 or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Same as argument

Rank ilppoB

Shape (K-1)4+0B),(p,4),K+pB (for DI0-1)
Depth i[=B

implicit Arguments

None.

APL Reference Manual 2-85

System Variables and Functions

0 EX P Expansion

Description

2-86

OEXP builds an array by combining the items of an existing array with fill
items.

OExP works the same as the expansion derived function. The examples
shown for the Expansion operator in Chapter la also apply to JEXP (you can
substitute JExP for the backslash (\) operator). The difference between 0 EXP
and the backslash operator is that you can use DEXP as an operand to an
operator. Operators cannot be used as operands to operators. JEXP applies
along the last axis of B unless modified by an explicit axis (¥) in brackets.
The shape of the result is the same as the original array B except along the
applicable axis (p B[k]) where the shape becomes the length of 4 (o, 4).

The following examples show OEXP with the each (7) operator. Although
the variables 4 and ¢ are nested in the examples, they conform to the left
argument domain requirement that specifies a simple array. This is because

.the each operator reduces the nesting by one level.

O«d«(1 01 1) {1 10 1)

tommmm- I +
1011 110 1]
to--mm - R +
O«B<(2 3p16) (4 3p'ABCDEFGHIJKL')
to-m- + ot
{12 3| |4BC|
|4 5 6| [DEF|
o + |GHI|
| JKL |
+---t
AATTEMPT TO USE OPERATOR AS ARG TO ~
AN:| RAPL EVALUATES AS (A\)'B
15 DOMAIN ERROR (ENCLOSED/HETEROGENEOUS ARRAY NOT ALLOWED)
A\"B RAPL EVALUATES A4S (4\)"B
A
4 OEXP" B
oo I

[10 2 3] [4B C|
e 05 6| [DE F|

fommmee + |GH I|
|JK L]
-t
4 DEXP[21"B AEXPAND ITEMS OF B USING THE ITEMS OF A
R + oot

[1 02 31 |4B C|
{4 0 5 6] |DE F|

APL Reference Manual

System Variables and Functions
0 FX P Expansion

OeC«(1 0 1) (1101 1)

¢ OEXP[1]"B aUSE [EXP WITH AXIS ARGUMENT

{12 3] |4BC|
{0 0 0| |DEF|
fv 560 | |

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH FRROR

15 DOMAIN ERROR

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN FRROR (INCORRECT TYPE)

27 LIMIT ERROR (INTEGER TOO LARGE)

28 AXIS RANK ERROR (NOT VECTOR DOMAIN)

29 AXIS LENGTH ERROR (NOT SINGLETON)

30 AXI1IS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)
30 AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
30 AXIS DOMAIN ERROR (INCORRECT TYPE)

30 AXI1S DOMAIN ERROR (NOT AN INTEGER)

30 AXIS DOMAIN FERROR (RIGHT ARGUMENT HAS WRONG RANK)

30 AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

APL Reference Manual 2-87

System Variables and Functions
(1 FI Converting Characters to Numerics

[] ' I Converting Characters to Numerics

Type

Monadic System Function

Form

numeric-values ~ 0 FI numeric-character-string

Argument Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)

Result Domain

Type Numeric
Rank 1

Shape Vector
Depth 1 (simple)

Implicit Arguments

ONG (determines minus sign placement)

Description

OFI converts a numeric character argument to a vector of numeric values,
placing a 0 in each position that does not correspond to a valid number. The
shape of the argument must be in the vector domain. If the argument is empty,
0FI returns an empty numeric vector.

OFI separates the argument into fields that are delimited by one or more
spaces, tabs, or a carriage return (optionally followed by a line feed); converts
each field that contains a valid number; and inserts a 0 to replace each field
containing an invalid number. For example:

2-88 APL Reference Manual

System Variables and Functions
0 FI Converting Characters to Numerics

A<QOFI '12 55%¢ "4 (2951 8 +5!'
A

12 0 "4 0 2951 8 ©
o4

7

Note that a plus sign preceding a number is not part of the number but is
rather an operation to be performed on the number. However, in APL, the
negative sign in the expression ~ 5 is a valid part of the number.

OFT is often used in conjunction with [VI and the compression derived
function (see the Section 1.3.2 section) to select the valid numbers from a
character string: 0 VI produces the left argument of the compression function,
and OFI produces the right argument. For example:

V Z<AVERAGE
[1] O«'ENTER A LIST OF NUMBERS' o Z<,0
[2] Z«(0VI 2)/0FI 1
[3] I«(+/2)+pZ
[4] v
AVERAGE
ENTER A LIST OF NUMBERS

1 3.540+2 .5 6. .
2

In the previous example, OVI of Z equals 1 1 0 1 0 1 1 0 and OFI of Z equals
13.5000° .560

Recognition of negative numbers in the 0FI argument depends upon the value
of the system variable ONG. If NG equals 1 (the default), negative numbers in
the OFI argument must begin with the high minus sign (7) to be recognized.
If ONG equals 0, numbers preceded by a minus sign (-) are recognized as
negative numbers. If JNG equals 2, negative numbers are preceded by an APL
"+" symbol. (APL "+" prints as an ASCII "-" so that ONG+2 can be used to
handle negative numbers in strings that are read or written in ASCIL.) For
example:

ONG«1 A~ MEANS NEGATIVE
I«'66 G 7 +9 u
OFI X

66 0 7 0 4
ONG«0 a~ MEANS NEGATIVE
OrI X

66 0 0 0 0
ONG<2 a+ MEANS NEGATIVE
OFI X

66 0 0 +3 0

APL Reference Manual 2-89

System Variables and Functions
0 FI Converting Characters to Numerics

Note that when ONG is 0, it may be useful for you to use APL to interpret data
created by other languages, specifically those that do not use the high minus
sign.

Possible Errors Generated

9 RANK ERROR (NOT MATRIX DOMAIN)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN FRROR (INCORRECT TYPE)

2-90 APL Reference Manual

System Variables and Functions
0 FLS Returning File Information

[1F LS Returning File Information

Type
Monadic System Function (query)

Form

file-info ~ OFLS chans

Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value 7999 to 999 (but not 0)

Result Domain

Type Integer
Rank 1o0r?2
Shape Vector or matrix (n by 5)
Depth 1 (simple)
Description

OFLS returns information about files. The absolute values of chans represent
the channels associated with the files you want to specify. The result contains
one row of five values for each channel specified in the argument. The
meanings of the values differ according to each file’s organization.

The values returned by OFLS have the following meanings (from left to right):

First value Share bit: 1 means that you specified /SHARE in the
argument for the associated (4SS function; 0 means
that you did not.

APL Reference Manual 2-91

System Variables and Functions
0 FLS Returning File Information

Second value For sequential files, the second value is the number of
records read or written since the file was opened. For
direct-access and relative files, it is the value of the
last record or component number used for a successful
read or write operation. For keyed files, it is the value
of the last key of reference used for a successful read,
write, or rewind.

Third value The maximum record length of the file (0 means there
is no user limit on record size).
Fourth value The /BLOCKSIZE setting for the file.
Fifth value The type of the most recent I/O operation
Value
Returned /O Operation
0 None
1 Sequential read
2 Random read
3 Sequential write
L Random write
5 Sequential delete
6 Random delete

OFLS is described in the VAX APL User’s Guide along with other file I/O
information.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)
15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (INVALID CHANNEL NUMBER)

27 LIMIT ERROR (INTEGER TOO LARGE)

2-92 APL Reference Manual

System Variables and Functions
OFMT The Report Formatter

U FMT The Report Formatter

Type
Dyadic System Function

Form

report + format-phrases O FMT larray | (array ; array;...)}

Left Argument Domain

Type Character
Shape Vector domain
Depth 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth <2 (vector of arrays or a simple array)

Resuit Domain

Type Character
Rank 2

Shape Matrix
Depth 1 (simple)

Implicit Arguments

ONG (determines minus sign placement)

Description

JFMT combines the data from all the arrays in the right argument and
arranges it as a single character matrix whose columns are then formatted
according to corresponding format phrases specified in the left argument. The
arrays in the right argument can be both character and numeric data.

APL Reference Manual 2-93

System Variables and Functions
O0FMT The Report Formatter

OFMT can edit the data as it is moved to an output field. For example, QFMT
fills or erases zeros in numeric fields; round numeric data; and inserts commas,
dollar signs, and other text where appropriate.

The right argument is a list of arrays of any type or rank. The list must be
surrounded by parentheses (unless there is only one array in the list), and the
arrays must be separated by semicolons. Alternatively, the right argument
may be a single nested vector of simple arrays, which are treated in the same
manner as a semicolon list.

The left argument is a character vector comprised of one or more format
phrases of the form described in Chapter 4 of the VAX APL User’s Guide. The
phrases must be separated by commas.

The following table summarizes the syntax of the format phrase in the left
argument. Note that rep (repetitions) refers to the number of consecutive
target columns to be affected by the format phrase; quals refers to one of

the qualifiers or decorators described in the following table; width refers to
the width in the result array of a value from a column of data in the right
argument; dig (digits) refers to the number of decimal places included in the
result array; and col (column) refers to either the leftmost column that a value
is to occupy in the result array (for type T), or the number of columns to be
shifted before the next value is output to the result array.

Phrase Type of Data

[rep] Mqualsl A width Character

firep]l [qualsl E width.dig Floating-point with exponent
firepll [qualsl F width.dig Fixed-point

[repl Mqualsl G « patterna Picture

Lrepll [quals]l 1 width Integer

[repl Mqualsl Y width Byte

firep]l T [col] Absolute tab

[repl X [leol] Relative tab

[replla texta Literal

2-94 APL Reference Manual

System Variables and Functions
OFMT The Report Formatter

The following table summarizes the qualifiers and decorators used in the

format phrase:

Qualifiers Meaning

B For types I, E, F, G, and Y, if the value of the item in
the target column is zero, make the field in the target
column blank in the result array.

C For types I and F, insert commas between each group
of three digits in the integer part of the formatted
value.

L For types I, F, E, A, and Y, left-justify the fields in the
target column.

Kn For types I, F, G, and E, before formatting the fields

Sa symbol pairsa

in the target column, multiply the fields by the scale
factor 10+n.

For types [, E, F, G, and Y, replace, in the formatted
output, all occurrences of the first character in each
symbol pair with the corresponding second character
of the symbol pair.

Wn For type E, use n exponent digits in the formatted
output.

Z For types I, F, and Y, fill leading blanks in the
formatted output with zeros.

Decorator Meaning

Ma texitn For types I, F, and G, replace the sign of negative-
formatted values with fext placed to the left of the
value.

Na texta For types I, F, and G, place text to the right of
negative-formatted values.

Oan textn For types I, F, G, and Y, replace formatted zero values
with text.

Pa textn For types I, F, and G, place text to the left of positive-

formatted values.

APL Reference Manual 2-95

System Variables and Functions
0 FMT The Report Formatter

Decorator Meaning

Qn texta For types 1, F, and @G, place text to the right of

positive-formatted values.

Rn textn For types I, F, E, A, G, and Y, fill unused columns in

the formatted output with text.

Note that the delimiting pair a a may also be any of the following pairs:

oo

goa < > c >

OFMT is also described in Chapter 4 of the VAX APL User’s Guide.

Possible Errors Generated

9 KANX ERROR (NOT VECTOR DOMAIN)

10

14

15

15

15

15

27

15

15

15

15

15

15

15

LENGTH ERROR

DEPTH ERROKR

DOMAIN ERROR (DUPLICATE FMT QUALIFIER)

DOMAIN ERROR (DUPLICATE FMT STANDARD SUBSTITUTION CHARACTER)
DOMAIN ERROR (EMPTY FMT STRING PARAMETER NOT ALLOWED)

DOMAIN ERROR (ENCLOSED ARRAY IS NOT ALLOWED)

LIMIT ERROR (FLOATING OVERFLOW)

DOMAIN ERROR (FMT DECORATION OR LITERAL STRING TOO LONG)
DOMAIN ERROR (FMT RIGHT ARGUMENT DOES NOT MATCH FORMAT PHRASE)
DOMAIN ERROR (ILL FORMED FMT PARAMETER)

DOMAIN FRROR (ILLEGAL CHARACTER IN FMT LEFT ARGUMENT)

DOMAIN ERROR (ILLEGAL FMT FORMAT PHRASE)

DOMAIN FRROR (ILLEGAL FMT G FORMAT PHRASE PATTERN CHARCTER)

DOMAIN ERROR (ILLEGAL FMT LITERAL STRING DELIMITER)

2-96 APL Reference Manual

15

15

15

15

15

15

15

15

15

15

15

15

15

DOMAIN FRROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN ERROR

DOMAIN FRROR

DOMAIN ERROR

DOMAIN EFRROR

DOMAIN FRROR

DOMAIN ERROR

DOMAIN FRROR

DOMAIN FRROR

DOMAIN FRROR

System Variables and Functions
OFMT The Report Formatter

(ILLEGAL FMT S QUALIFIFER SYMBOL)

(ILLEGAL USE OF FMT QUALIFIER)

(INCORRECT TYPE)

(MISSING FMT FORMAT PHRASE SEPARATOR)

(MISSING FMT FORMAT PHRASE/QUALIFIER)

(MISSING LITERAL STRING IN FMT LEFT ARGUMENT)
(NODIGIT SELECTOR IN FMT G FORMAT PHRASE PATTERN)
(NO FMT EDITING FORMAT PHRASE)

(PARAMETER OUT OF RANGE)

(RIGHT ARG TOO DEEPLY NESTED)

(UNBALANCED TEXT DELIMITER IN FMT LEFT ARGUMENT)
(UNBALANCED PARENS IN FMT LEFT ARGUMENT)

(UNPAIRED SYMBOL IN FMT S QUALIFIER)

APL Reference Manual 2-97

System Variables and Functions
0 FX Establishing an Operation

[F'X Establishing an Operation

Type

Monadic System Function

Form

operation-name<« [1FX operation-definition

Argument Domain

Type Character
Shape Matrix domain
Depth 1 (simple)

Result Domain

Type Character (Numeric if error is detected)
Rank 0ori

Shape Vector (Scalar if error is detected)
Depth 0 or 1 (simple)

Implicit Arguments

0 70 (controls origin of line number in error)

Description

OFX reverses the operation of the 0 CR system function; that is, it creates in
internal form the operation defined by its argument.

The argument is assumed to be a character matrix that contains the canonical
representation of an operation. The shape of the argument must be in the
matrix domain. Blank lines in the argument are removed in the operation
established by O FX.

[0 FX fails if the operation’s name is the same as that of an existing label,
variable, or group, or if it is the same as that of an existing operation that is
pendent or suspended. If an operation already exists in your workspace with
the same name, 0 FX replaces it and removes any trace, stop, or monitor bits
that were set on it.

2-98 APL Reference Manual

System Variables and Functions
[} FX Establishing an Operation

The M Fx function executes properly if the matrix it references is identical to

a canonical representation. If (17X fails, APL returns a scalar index (which is
{1 I0-sensitive) representing the row in the matrix where the error occurred,
and no change is made to any operation or array in your workspace. You can
check the value of JERROR for a description of what was wrong with the line in
error.

If O FX is successful, its result is a character vector containing the name of the
operation defined. If the argument is empty, the result is empty.

The following example begins where the {J CR example from the JCR section
ended. Here, the plus sign in SHOWCRFX is changed to a multiplication sign;
then, the JFX system function is applied to SHOWCRFX to replace the function
MEAN with its new version:

SHOWCRFX[3;6]«!x!
OFX SHOWCRFX
MEAN
v MEAN[O]V
VMEANX<NSUBJ MEAN X
(1] aSUM VECTOR X
[2] SUMX<x/X
[3] MEANX<SUMX:NSUBJ
v

£
86 39542174
10 MEAN X
145152

X<2 4p 'F X123y!
X[1:2 3)<0CTRL[14 11] AEMBED CRLF IN OPERATION HEADER

Orx X
1
OERROR
5 DEFN ERROR (EXTRANEOUS CHARACTERS AFTER COMMAND)
F
X

A

Possible Errors Generated

9 RANK FRROR (NOT MATRIX DOMAIN)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

APL Reference Manual 2-99

System Variables and Functions
[0 GAG Preventing Interruptions

[1 GAG Preventing Interruptions

Type

System Variable (session)

Form

0GAG « near-integer-singleton
integer-scalar ~ JGAG

Value Domain

Type
Shape
Depth
Value
Default

Result Domain

Type
Rank

Shape
Depth

Description

Integer

Singleton

0 or 1 (simple)

0,1,2,0r3

Determined when APL is invoked

Integer

0

1 0 (scalar)

0 (simple scalar)

0GAG allows you to specify how APL handles messages that arrive at your
terminal from other users. You can set JGAG to the following values:

Value Meaning

0 Display messages

1 Refuse messages

2 Trap, translate, and display messages
3 Signal BROADCAST RECETVED

Setting 0 GAG to 0 is equivalent to executing the DCL command set terminal
/broadcast, and setting JGAG to 1 has the same effect as the DCL command

2-100 APL Reference Manual

System Variables and Functions
[0 GAG Preventing Interruptions

set terminal/nobroadcast. When JGAG is 1, messages from nonprivileged users
are suppressed (note that senders are not told that their messages were not
received). For more details, see the VMS DCL Dictionary. When you return to
DCL from APL, the original system value for 1GAG is restored, unless the exit
from APL was a panic exit; in that case, the setting established in the APL
session remains in effect.

Setting 0GAG to 2 is equivalent to executing the DCL command SET
TERMINAL/BROADCAST, with the addition of instructing APL to display
the message in the character set that is currently set for the terminal. If you
use an APL terminal, the default setting is 2 when APL is invoked.

Setting 0 GAG to 3 allows you to trap messages with 1 TRAP and to view them
at a later time. As messages arrive at the terminal, APL signals BROADCAST
RECETVED followed by a secondary message of the broadcast text.

The default setting of 0 GAG is the current monitor setting. Note that 1GAG is
a session variable; that is, its value is not saved with the workspace, and 0GAG
is not reset by the execution of a) CLEAR command (see Chapter 3). JGAG can,
however, be localized in user-defined operations.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH FRROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-101

System Variables and Functions
0 70 Index Origin

[J 1O Index Origin

Type
System Variable

Form

(170 <« near-integer-singleton
integer-scalar-current-value « 010

Value Domain

Type Integer

Shape Singleton
Depth 0 or 1 (simple)
Value 0 ori1

Default 1

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)
Depth 0 (simple scalar)

Description

0 70 specifies the setting of the index origin. This setting determines whether
the values of an array are indexed beginning with position O or 1. The default
position is 1.

[0 I0 also affects the operation of axis ([]), exceopt when axis is used with
user-defined operations. In addition, 010 affects the operation of the following
primitive and system functions:

14 A B 7A A?B AA V4 A&B aoM B OFx B

The value of 0 I0 is saved when you save the active workspace and can be
localized in user-defined operations.

2-102 APL Reference Manual

System Variables and Functions
0 70 Index Origin

Examples:

0I0+1
13

A+2 U4p16
+/[274
10 1u
+/[1]4
8 4 b
+/[0]4
30 AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)
+/{034
A
010+0
13
012
+/{2]4
30 AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)
+/[2]74
A
+/01]4
10 14
+/[0]4
6 8 4 b6
0I0+«7
15 DOMAIN ERROR (SYSTEM VARIABLE VALUE MAY ONLY BE 0 OR 1)
10«7

A

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH FRROR (NOT SINGLETON)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (SYSTEM VARIABLE VALUE MAY ONLY BF 0 OR 1)

27 LIMIT FRROR (INTEGER TOO LARGE)

APL Reference Manual 2-103

System Variables and Functions
0 L Monitoring Variable Changes

[] L Monitoring Variable Changes

Type
System Variable

Form

0L < any-value
variable-name<«~ 0L

Value Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Character (any when set by user)
Rank 1 (any when set by user)
Shape Vector (any when set by user)
Depth 1 (simple) (any when set by user)
Default 10

Description

0L and OR are system variables that are implicitly used by OWVATCH. (OL is set
implicitly by the system when a variable changes, but can also be set by the
user.) OWATCH is a system function that is used to monitor any changes in one
or more variables. When a change occurs in a monitored variable, APL assigns
information to JZ and OR: 0 contains a character vector showing the name of
the variable that has changed; OR contains the previous value of the changed
variable. APL assigns this information regardless of whether monitoring is set
for signal or display mode.

The default value for both 0L and OF is : 0. Immediately after a QWATCH event
occurs, 0L and OR contain the new information that results from the event.
However, this information may change as an operation continues execution
(this is especially true if an error occurs during an assignment or reference of a
variable that is associated with a watchpoint).

2-104 APL Reference Manual

System Variables and Functions
0 L Monitoring Variable Changes

Both 0L and JR can be localized, explicitly assigned values of any type, and
saved in the workspace.

Note that you cannot include OL or OR in the right argument to dyadic
OWATCH.

Possible Errors Generated

None.

APL Reference Manual 2-105

System Variables and Functions
0L ¢ Line Counter

[1 L C Line Counter

Type
Niladic System Function

Form

current-line-number « OLC

Result Domain

Type Integer

Rank 1

Shape Vector

Depth 1 (simple)

Default Empty
Description

0Lc¢ (line counter) allows you to obtain a partial report on operations that

are currently being executed. The function returns a vector of all the line
numbers contained in the state indicator; the numbers are arranged as they
would appear in the)57 system command display (see Chapter 3.) If the state
indicator is empty, 0L C returns an empty numeric vector.

The 0LC system function is particularly useful in restarting suspended
operations. For more information, see the VAX APL User’s Guide. For

example:
YNEW
[1] >1 v

NEW aCALL FUNCTION, THEN SEND ATTENTION SIGNAL
18 ATTENTION SIGNALED
NEW[1] -1

A

gLc

2-106 APL Reference Manual

System Variables and Functions
0O Lc Line Counter

Possible Errors Generated

None.

APL Reference Manual 2-107

System Variables and Functions
0 LX Latent Expression

[] LX Latent Expression

Type
System Variable

Form

O0LX <« character-vector
current-value « O0LX

Value Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)
Default T

Result Domain

Type Character
Rank 1

Shape Vector
Depth 1 (simple)

Description

[X specifies an APL expression that is executed automatically when the
workspace is loaded.

The value you assign to 0 LX must be a character vector. The default value is
' 1. APL processes the expression as if you had specified « 0LX. Any error
messages you receive are produced by the execute function.

The 0 Lx system variable is useful in restarting a suspended operation. For
example:

OLx<'~»[LC!

OZX is also useful for invoking a particular user-defined operation (see the
VAX APL User’s Guide) when you load the workspace. For example:

OLX«'" STARTUP!

2-108 APL Reference Manual

System Variables and Functions
(0 LX Latent Expression

The 0LX system variable is often used to display a message when the
workspace in which it is defined is loaded. For example:

QLX«'"'NOTE NEW LINE PRINTER IN OPERATION''!
YSAVE MYWS
FRIDAY 16-NOV-1990 10:09:27:02 7 BLKS

JCLEAR
CLEAR WS

YLOAD MYWS
SAVED FRIDAY 10-NOV-1990 10:09:27.02 7 BLKS
NOTE NEW LINE PRINTER IN OPERATION

When you want to load a workspace without invoking 0 LX, you can use the
YXLOAD command (see Chapter 3) if you are the owner of the workspace.

APL executes 0 LX only in immediate mode and only when the state indicator
stack is either empty or has a suspended operation on top. If the top of the
stack contains a [J input function, the latent expression is executed only after
the pendent 0 input is removed from the stack. The latent expression is not
executed if the top of the stack contains an execute function, or if the loaded
workspace is in function-definition mode. For example:

JLOAD MYWS

SAVED THURSDAY 8-NOV-1990 19:42:58.52 15 BLKS
vF

[1] A+«1

[2] Z<00XQ') SAVE MYNS'
[3] X IS ':X
[4] END OF F' ¢
F
¥ IS THURSDAY 8-NOV-1990 17:01:59.54 16 BLKS
END OF F
)CLEAR
CLEAR WS
VLOAD MYNS
¥ IS SAVED THURSDAY 8-NOV-1990 17:01:59.54 16 BLKS
END OF F

In this example, the note about the new line printer is not displayed when the
workspace is loaded because the workspace was saved during the execution of
an []XQ system function; thus, the []X¢Q function is at the top of the stack when
the workspace is reloaded, and APL completes the [] x¢ function rather than
executing the latent expression.

APL Reference Manual 2-109

System Variables and Functions
O LX Latent Expression

If you were to save the workspace after execution of the function F completed,
the latent expression would be executed the next time the workspace was
loaded:

YSAVE MYWS

FRIDAY 16-NOV-1990 10:43:59.54 8 BLKS
JCLEAR

CLEAR WS
YLOAD MYWS

SAVED FRIDAY 16-NOV-1990 10:43:59.54 8 BLKS
NOTE NEW LINE PRINTER IN OPERATION

Note that when the function F was executed, the value of X displayed by
operation line [3] was equivalent to the message displayed by the)SAVE
system command:

X IS MONDAY 27-SEP-1982 18:07:42,02 8 BLKS

However, when the execution of function 7 was resumed because the saved
workspace was loaded by a)L0AD command, the value of X displayed by
operation line [3] was equivalent to the message displayed by the)L04D
command:

X IS SAVED MONDAY 27-SEP-1982 18:07:42.02 8 BLKS

Thus, as shown by this example, it is possible to determine whether the
workspace has just been saved or has just been loaded.

The value of [1LX is saved when you save the active workspace and can be
localized in user-defined operations.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

2-110 APL Reference Manual

System Variables and Functions
O MAP Defining External Routines to APL

[1 MA P Defining External Routines to APL

Type

System Function

Form

external-routine-definition + OMAP function-name
function-name « function-header O MAP image-definition

Monadic Argument Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)

Dyadic Left Argument Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)

Dyadic Right Argument Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)

Result Domain

Type Character
Rank 1

Shape Vector
Depth 1 (simple)

APL Reference Manual 2-111

System Variables and Functions
(0 MA P Defining External Routines to APL

Parameters

external-routine-definition

The operation header returned by the monadic form of J#AP. This is the
same header that dyadic DM4P uses when you successfully define the external
routine to APL.

function-name

Specifies the name of the external routine. For dyadic OM4P, if both function-
header and image-definition are empty, and are in the vector domain, then
the result is an empty vector. For monadic IMAP, if function-name is empty,
the result is an empty character vector. If the value of function-name does
not name an external routine, APL signals DOMAIN ERROR (NOT AN EXTERNAL
FUNCTION).

function-header
Describes the external routine. function-header has the following form:

[result/att<] entry-point [arg1/att [arg2/atf] . . .]

result /att specifies that the external function returns a result. Note that the
result must be a scalar. (If you want to return data that has a rank greater
than 0, you can modify a formal parameter with the external routine.) The
/att qualifier specifies the type of the result. It has the form /TYPE:vms-data-
type, and must be one of the external data types in the Table 2-7 (excluding
/TYPE:Z).

Do not specify the /MECHANISM attribute for the result of an external routine;
APL determines the mechanism by the value specified for /7y PE. Table 27
describes these default mechanisms.

If the result type occupies 8 bytes or less, APL assumes the mechanism is
IMMEDIATE. If the result type occupies more than 8 bytes, APL assumes the
mechanism is DESCRIPTOR for strings and REFERENCE for all others. entry-
point is the name that you want APL to associate with the shared image
entry point specified in image-definition. After you define entry-point, you
can call the external routine as if it were a user-defined operation. Note that
entry-point has a name class value of 3.

Dyadic OMAP signals DOMAIN ERROR (NAME IN USE) if entry-point is the same
name as an existing label, variable, or group, or if it is the same name as an
existing operation that is pendent or suspended. If an operation already exists
in your workspace with the same name, and it is not pendent or suspended,
OMAP replaces it.

2-112 APL Reference Manual

System Variables and Functions
0 MAP Defining External Routines to APL

argn specifies the names of the function’s formal parameters. These names
are similar to the dummy arguments of a user-defined operation; they are
placeholders only, and you specify the actual values for these parameters when
you invoke the function.

The maximum number of formal parameters you can specify is 255 (including
result). The names must be valid APL identifiers; they do not have to be
unique. An external function can only be monadic or niladic; all of the formal
parameters belong to the function’s right argument. /a#t determines the
attributes for each of the formal parameters and for the external routine’s
result. For parameters, the attributes specify the kind of access that the
external routine has to the parameter (either read, write, or both), the data
type of the parameter, and the passing mechanism used to send the parameter
between APL and the external routine. Valid qualifiers for /att include
/ACCESS, /TYPE and /MECHANISM.

image-definition

The name of a shared image (in the form of a VMS file name or logical name)
and its entry point. If you use a logical name you cannot change the name once
the shared image is mapped by APL. image-definition has the following form:

{vms-filename | vms-logical-name} [{/ENTRY | /VALUE} [:symbol]]

vms-filename or vms-logical-name specifies the name of the VMS shared
image. If you do not use a logical name, you can only specify a file name,
not a complete file specification. The default directory for vms-filename is
SYS$SHARE:, and the default file type is .EXE. If you use vms-logical-name,
you should not redefine the logical name to point to a different file once the
shared image 1s mapped.

Note that you can use the equal sign delimiter (=) in place of the colon (:).
Spaces are allowed before and after the /ENTRY or /VALUE qualifier, the
delimiter, and the value for symbol.

Qualifiers

/ENTRY[[:symbol]

Used with dyadic OmAP, specifies the name of the entry point in the shared
image. An entry point is the starting address of executable code. If you
do not specify /ENTRY, or if you specify /ENTRY with no value for symbol,
APL assumes that the name of the entry point is the same as the value for
function-name.

APL Reference Manual 2-113

System Variables and Functions
(O MAP Defining External Routines to APL

/VALUEL:symbol]

Used with dyadic QM4 P, specifies the name of a global constant in the shared
image. A global constant is a 32-bit signed longword value. When you specify
/VALUE, then function-header must specify a niladie function that returns

a value with a return type of L (for example, 'Z/TYP: L+ F'). If /VALUE is
specified when there is no value for symbol, APL assumes that the name of the
global constant is the same as the value for function-name.

J/ACCESS

Specifies whether the parameter is read only or modifiable. The value I¥
indicates that the external routine reads the parameter and does not modify
its value. The value 7¥0UT indicates that the routine reads the parameter and
may modify it. The value 0UT indicates that the routine writes a value to the
parameter.

When you specify TNOUT or 0UT, the actual parameter that you specify when
you invoke the function must be a character string that names the variable
that the routine will read (in the case of I¥0UT) and write. If the variable does
not have a value when you call the external routine, APL assumes the variable
is a scalar and will accept a scalar only when the value is returned.

If you do not specify a value for /ACCESS, APL uses the IN value as the
default. You cannot specify the /ACCESS attribute for the result of an external
routine; by definition the access is always 0UT.

Note that you can abbreviate the values for /ACCESS to their shortest unique

prefixes.

/TYPE

Specifies the attribute for both the formal parameters and the result (if any).
It is one of the external types shown in Table 6-1 in the VAX APL User’s Guide.
On a formal parameter, /'Y PE specifies the VAX data type that the external
routine is expecting. On the result, / 7Y PE specifies the VAX data type that
will be returned. Data internal to APL has one of the following types:

* Character data in the APL character set (8-bits per value)

* Boolean data, a subset of numeric data (1-bit per value)

¢ Integer data, a subset of numeric data (32-bits, signed, per value)

* Floating-point, a subset of numeric data (64-bits, D_floating, per value)

Because VMS supports many more data types than APL, conversions will take
place as data leaves and returns to APL from the external routine. Tables 6-2
and 6-3 in the VAX APL User’s Guide summarize these possible conversions.

2—-114 APL Reference Manual

System Variables and Functions
[0 MAP Defining External Routines to APL

The default data type is /TYPE: Z (unspecified), which indicates that data is
passed out of the workspace without conversion. Data that is passed out of
APL as /TYPE: Z cannot return to APL; for this reason, a formal parameter
with the attribute /T7YPE: Z must also have the attribute /ACCESS: IN.

Note that you cannot abbreviate any of the values to the / TYPE qualifier.

Table 2-7 Characteristics of External Data Types

External Type DEFAULT resuit Length
Type Name /MECHANISM in Bytes
Z Unspecified N/S

BU Byte Logical IMM 1
wuU Word Logical IMM

LU Longword Logical MM 4
QU Quadword Logical N/S

ou Octaword Logical N/S

B Byte Integer IMM 1
w Word Integer IMM

L Longword Integer IMM 4
Q Quadword Integer N/S

0 Octaword Integer N/S

F F_floating IMM 4
D D_floating IMM 8
G G_floating IMM 8
H H_floating REF 16
FC F complex IMM 8
DC D complex REF 16
GC G complex REF 16
HC H complex REF 32

Key to Default result /MECHANISM

N/S—not supported
IMM—by value
REF—by reference
DES—by description

{continued on next page)

APL Reference Manual 2-115

System Variables and Functions
(0 MAP Defining External Routines to APL

Table 2—7 (Cont.) Characteristics of External Data Types

External Type DEFAULT result Length

Type Name /MECHANISM in Bytes

CIT COBOL Temp N/S

T 8-bit Text DES 1

VT Varying Text REF 1

NU Numeric String DES 1

NL Left Sign String DES 1

NLO Left Overpunch DES 1
String

NR Right Sign String DES 1

NRO Right Overpunch DES 1
String

Nz Zoned Sign String DES 1

P Packed Decimal N/S

A\ Bit IMM 1

VU Bit Unaligned N/S

71 Instructions N/S

ZEM Entry Mask N/S

DSC Descriptor N/S

BPV Bound Procedure N/S

BLV Bound Label N/S

ADT Date/Time N/S

other DEC or user reserved N/S

Key to Default result /MECHANISM

N/S—not supported
IMM—by value
REF—Dby reference
DES—by description

JMECHANISM

Specifies one of the three techniques for passing formal parameters from APL
to the external routine. These techniques are IMMEDIATE, REFERENCE, and
DESCRIPTOR. IMMEDIATE specifies that the value of the parameter is the value
you want to pass. REFERENCE specifies that the value of the parameter is the

2-116 APL Reference Manual

System Variables and Functions
O MAP Defining External Routines to APL

address of the value you want to pass. DESCRIPTOR specifies that the value
is the address of a descriptor that contains the address and length of the data
as well as other attributes (if the descriptor requires them). Note that the
descriptor length field contains the length of the object.

If you do not specify the /MECHANISM attribute when you invoke

dyadic OmMAP, APL uses a default when you call the external routine.

If the parameter is /TYPE:Z, APL assumes /MECHANISM:REFERENCE.
Otherwise, the default is based on the rank of the actual argument being
passed: /MECHANISM:REFERENCE is chosen for scalars and vectors, and
/MECHANISM:DESCRIPTOR is used for arrays of rank 2 or higher.

When you specify /MECHANISM: IMMEDIATE, the formal parameter must be
a scalar; if the internal length of the actual value that you specify when you
invoke the external function is greater than 4 bytes, APL signals LENGTH
ERROR.

When you specify /MECHANISM:DESCRIPTOR, APL uses string descriptors
(CLASS_S) for the vector domain, and array descriptors (CLASS_A with a
multipliers block) for arrays of rank 2 or greater. (The type of the value being
passed does not affect the choice of descriptor.) For more information on
descriptors, see the Introduction to VMS System Routines.

Note that you can abbreviate the values for /MECHANISM to their shortest
unique prefixes.

Description

Dyadic QM4 P defines an external routine to APL. Once a routine is defined in
a workspace, the workspace can be saved, loaded, or copied, and the definition
for the routine remains intact.

The monadic DMAP system function returns an operation header that provides
information on the current definition associated with an external routine.
APL returns an operation header (external-routine-definition). This is the
same header that dyadic JM4P uses when you successfully define the external
routine to APL. The header’s form is as follows:

[result/att < [|function-name/info [[arg1/att arg2/att ...]

function-name shows the name that APL currently associates with the external
routine.

/info shows the name and entry point of the shared image that contains the
external routine. The shared image name is preceded by /IMAGE:, and the
entry point name is preceded by /ENTRY :. If the external symbol defines a

APL Reference Manual 2-117

System Variables and Functions
(0 MAP Defining External Routines to APL

global constant instead of an entry point, then the symbol name is preceded by
/VALUE ;.

argn/att ... shows the names and attributes of the external routine’s formal
parameters. The attributes describe the settings for /ACCESS, /TYPE, and
/MECHANTISM that APL associates with each formal parameter. If you did not
specify a value for any of the attributes when you defined the external routine,
monadic {JMAP reports the following default selections: /ACCESS:IN, /TYPE:Z,
and /MECHANISM:UNSPECIFIED (APL does not choose a default mechanism
until you call the external routine).

result/att shows the name and attributes of the result that is returned by
the external routine if there is one. the attributes describe the settings for
the following: /TYPE, which you defined with dyadic O MAP; and /MECHANISM,
which APL determines based on the value for /TYPE. Monadic OMAP does
not report the /4CCESS attribute, which is assumed to be /ACCESS: 0UT by
definition.

If the routine does not return a result, then monadic O¥4P does not report a
value for result/att.

The result of monadic ¥4 P contains one blank before each formal parameter,
and one blank following the « symbol (unless the function has no result).

Both monadic and dyadic 0M4P are described in Chapter 6 of the VAX APL
User’s Guide.

Possible Errors Generated
Dyadic Form
9 RANK ERROR (NOT VECTOR DOMAIN)
10 LENGTH ERROR (ILLEGAL EMPTY ARGUMENT)
15 DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)
15 DOMAIN ERROR (ERROR ACTIVATING IMAGE)
15 DOMAIN ERROR (EXTRANEQUS CHARACTERS AFTER COMMAND)
15 DOMAIN ERROR (FUNCTION NAME MISSING)
15 DOMAIN ERROR (ILL FORMED NAME)

15 DOMAIN ERROR (INCORRECT TYPE)

2-118 APL Reference Manual

15

15

i5

i5

i5

15

27

System Variables and Functions
0 MA P Defining External Routines to APL

DOMAIN FRROR (INCORRECT PARAMETER)

DOMAIN ERROR (INVALID FILE SPECIFICATION)
DOMAIN FRROR (KEY NOT FOUND IN TREE)

DOMAIN ERROR (NAME IN USE)

DOMAIN ERROR (OPERATION SUSPENDED OR PENDENT)
DOMAIN ERROR (WILDCARDS NOT ALLOWED IN FILE SPEC)

LIMIT ERROR (ARGUMENT TOO LONG)

Monadic Form

9 RANK ERROR (NOT VECTOR DOMAIN)

15

15

is

15

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (EXTRANEOUS CHARACTERS AFTER COMMAND)
DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (NOT AN EXTERNAL FUNCTION)

APL Reference Manual 2-119

System Variables and Functions
(0 MBX Mailbox System Function

[J MB X Mailbox System Function

Type

System Function

Form

mailbox-info « OMBX chans

Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value “ 399 through 999 (but not 0)

Result Domain

Type Integer
Rank 10r2
Shape Vector or matrix (n by 3)
Depth 1 (simple)
Description

O MBX returns information on the status of mailboxes. For each channel
specified, I MBX returns a row of three elements denoting (from left to right):

* The physical device number assigned to the mailbox (or 0 if the mailbox is
remote, and ~ 1 if the channel is not associated with a mailbox).

* The Process IDentification number (PID, returned by 0UZ) of the last user
to receive a message you sent to the mailbox (or ~ 1 if no messages have
been sent).

¢ The PID of the last user from which you received a message in the mailbox
(or T 1 if no messages have been received).

The result is a matrix (or a vector if the argument is a singleton) with the
shape n by 3, where n is the length of the argument.

2-120 APL Reference Manual

System Variables and Functions
OMBX Mailbox System Function

To return a value for J¥BX, APL must open the mailbox if it is not already
open. (For a list of commands that open files, see the VAX APL User’s Guide.)
For channel numbers represented in the argument by positive integers, APL
opens the mailbox for input; for channel numbers represented by negative
integers, APL opens the mailbox for output. Note that whether a mailbox is
opened for input or output is not significant, because APL treats mailboxes like
terminals: it allows both input and output at the same time, even in sequential
modes.

OMBX is described in the VAX APL User’s Guide along with other file I/O
information.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)
15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (INVALID CHANNEL NUMBER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-121

System Variables and Functions
OMONITOR Gathering Data on Operations

[JMON I TOR Gathering Data on Operations

Type

System Function

Form

success [failure « line-numbers OMONITOR operation-names
monitor-database < IMONITOR operation-name

Left Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Character
Rank 1 0r2

Shape Matrix domain
Depth 0 or i (simple)

Result Domain

Type Integer (dyadic) or Boolean (monadic)
Shape Vector or matrix (n by 3)
Depth 1 (simple)

Description

OMONITOR is a debugging tool that allows you to gather statistics on an
operation. These include the following:

* The execution count, or the number of times an operation or operation line
is invoked while JMONITOR is enabled. The possible range is 0 to "1 +
2%x31.

2-122 APL Reference Manual

System Variables and Functions
OMONITOR Gathering Data on Operations

¢ The accumulated CPU time charged to an operation or operation line while
OMONITOR is enabled. The possible range is 0 to ~ 1 + 2x31 milliseconds
(about 24.5 days).

If either of these statistics overflows its range, its value is reset to 0, and the
data collection continues.

Once OMONITOR is enabled, APL collects data from the moment the operation
(or operation line) receives control to the moment it relinquishes control. APL
increments the execution count each time the control is relinquished and
registers the accumulated CPU time from the beginning moment to the ending
moment. If the operation (or operation line) calls another operation, the result
includes the time required to execute this second operation.

You can view a monitored operation with the)ZDIT command, but if you
modify the operation with)EDIT, OFX, or (MAP, you will disable QMONITOR
and lose any collected data. If you view the operation with the a editor, you
can change the contents of individual lines without affecting the status of
OMONITOR. Note that you cannot add or delete lines or modify the header of a
monitored operation with the A editor.

The dyadic form of OMONITOR enables and disables monitoring of an operation.
The form used is as follows:

success/failure «line-numbers OMONITOR operation-names

The right argument identifies the user-defined operations you want to monitor.
It belongs to the character matrix domain, and each row specifies one operation
name. The operations must be user-defined, and they must be unlocked. You
can also monitor line 0 of external functions (this has the same meaning as
monitoring line 0 of a user-defined operation). When the same operation name
applies to more than one operation in the workspace, APL monitors the most
local one.

The left argument identifies the lines you want to monitor. It belongs to

the near-integer vector domain. The line numbers can be in any order. APL
ignores negative line numbers, repeated line numbers, and line numbers that
do not appear in the operation. If the left argument contains a 0, APL monitors
the entire operation.

APL Reference Manual 2-123

System Variables and Functions
OMONITOR Gathering Data on Operations

2-124

The result of dyadic DMONITOR is a Boolean vector. Each position in the vector
corresponds to a row of the right argument. A 1 means that the attempt to
enable JMONTITOR was successful, and a 0 means the attempt was unsuccessful.
If the right argument is empty, the result is also empty. For example:

PHASEONE <« [BOX 'FOO
DOUBLE
MOVE
SPREAD
FINAL'
(150) OMONITOR PHASEONE R PARENTHESES REQUIRED
00000

To disable OMONITOR, use the dyadic form with an empty left argument, as
follows:

(10) OMONITOR 'DESIGN!
1

OMONITOR on an operation that is already being monitored, APL reinitializes
any previously collected data. If you want to use this data before losing it, you
must retrieve it with the monadic form of [MONITOR before you reset it with
the dyadic form.

monitor-database + OMONITOR operation-name

The monadic form of MONITOR queries for any collected data. The argument
must be in the character matrix domain, and must have at most one row; you
must query for J¥ONITOR information one operation at a time. Note that the
operation must be unlocked and user-defined.

Monadic 0 MONITOR returns an n by 3 numeric matrix, where n is the number
of monitored lines. Each row of the matrix contains the current data for each
line since OMONITOR was enabled. The result is formatted as follows:

line-number execution-count cpu-time-in-milliseconds

For example:

(MONITOR 'FOO!

11 20
2 5 104
3 5 96
4 1 20

APL Reference Manual

System Variables and Functions
OMONITOR Gathering Data on Operations

The result is an empty 0 by 3 matrix in the following five instances:
¢ The right argument is empty

¢ The right argument does not specify an operation name

¢ The operation does not exist

* The operation is locked

¢ The operation is not being monitored
Possible Errors Generated
The Dyadic Form
9 RANK ERROR (NOT MATRIX DOMAIN)
9 RANK ERROR (NOT VECTOR DOMAIN)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)
15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

Monadic Form

9 RANK FRROR (NOT MATRIX DOMAIN)

10 LENGTH FRROR

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

APL Reference Manual 2-125

System Variables and Functions
0 NC Returning a Name Classification

[] N C Returning a Name Classification

Type

Monadic System Function

Form

name-class-list <« ONC name-list

Argument Domain

Type Character
Shape Matrix domain
Depth 0 or 1 (simple)

Result Domain

Type Integer

Rank 1

Shape 1 + pname-list

Depth 1 (simple)
Description

ONC responds with the name class of each APL object that you specify in the
argument. APL objects include user-defined objects, system variables, and
system functions. Each row of the argument must contain the name of one
object.

The result has a length equal to the number of rows in the argument. If the
argument to ONC is empty, the result is 1 0.

2-126 APL Reference Manual

System Variables and Functions
0 ~C Returning a Name Classification

The possible name classes and values returned by JNC are as follows:

gnc Name Classes and Values
Value Name Class

0 Derived function
Niladic system function

Group

System variable
I1l-formed identifier
Name not in use
Label

Variable
User-defined function

2
5
u
3 Monadic, Dyadic, or Ambivalent system function
2
1

£ W N =2 O

User-defined operator

Examples:

JFNS
AVER MEAN
JVARS
A B C T0T
ONC 'AVER?®
3
gne ¢t
2
gnec tgneer
3
ONC 5 up'A TOT 0I0 MEANB

2272071

APL Reference Manual 2-127

System Variables and Functions
JNC Returning a Name Classification

Note that QN ¢ returns the current local rather than global name classification
of the object. For example:

aF IS A FUNCTION AND A VARIABLE

VF; F
[1] F«<1 o [JBREAK 'STOP F' ¥

gyc ' aTHIS QUERY RETURNS THAT F IS A FUNCTION
3

F aEXECUTE F, WHICH GETS SUSPENDED
STOP F

gNc 'r ANOW THE MOST LOCAL F IS A VARIABLE

2

Possible Errors Generated

9 RANK ERROR (NOT MATRIX DOMAIN)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

2-128 APL Reference Manual

System Variables and Functions
d~NG Print High Minus

[l NG Print High Minus

Type

System Variable

Form

ONG « near-integer-singleton
integer-scalar « ONG

Value Domain

Type
Shape
Depth
Value
Default

Result Domain

Type
Rank

Shape
Depth

Description

Near-Integer
Singleton

0 or 1 (simple)

0, 1,0r?2

1 (high minus sign)

Integer
¢}
10 (scalar)

0 (simple scalar)

ONG controls the output representation of the APL negative sign, the high
minus (7). ONG affects the primitive functions monadic and dyadic format and
the system functions O0F7, O0VI, and O0FMT. The following table describes the
display of the minus sign for each of the possible values for ONG.

Value Meaning in APL Output

0 The minus sign (-) is used as the negative sign.

1 The higH minus sign = (NG in TTY mode) is used as the negative
sign.

2 The ASCII minus sign (-) is used as the negative sign.

APL Reference Manual 2-129

System Variables and Functions
QNG Print High Minus

When NG = 2, negative numbers are preceded by an APL "+" symbol when
formatted by ¥+ and 0FMT. Because APL "+" prints as an ASCII "-", you can use
ONG = 2 to handle negative numbers in strings that will be read or written in
ASCII. Note that O0FTI and O VI recognize negative numbers that are preceded
by an APL "+" symbol as negative numbers.

The value of ONG is saved when you save the active workspace, and ONG can
be localized in user-defined operations.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

15

27

LENGTH ERROR (NOT SINGLETON)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWNED)
DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (NOT AN INTEGER)

DOMAIN ERROR (PARAMETER OUT OF RANGE)

LIMIT ERROR (INTEGER TOO LARGE)

2-130 APL Reference Manual

System Variables and Functions
ONL Constructing a List of Names

[1 NL Constructing a List of Names

Type
Ambivalent System Function

Form

name-list « 1NL name-classes
name-list « letter-list D NL name-classes

Left Argument Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Result Domain

Type Character
Rank 2

Shape Matrix
Depth 1 (simple)

Description

ONL lists the names of all existing APL objects belonging to the name classes
specified in the argument. APL objects include user-defined objects, system

variables, and system functions.

APL Reference Manual 2-131

System Variables and Functions
ONL Constructing a List of Names

The right argument specifies one or more name classes. The possible values for
the right argument and the classes those values represent are as follows:

Value Names Returned

Niladic system functions

s

Ty Groups
3 Monadic, dyadic, and ambivalent system functions
T2

System variables
1 Labels
2 User-defined variables
3 User-defined functions
4 User-defined operators

Note that ONL returns the current local name of an object rather than the
global name. For example:

VP F aF IS A FUNCTION (3) AND A VARIABLE (2)
[1] F<1 o [OBREAK 'STOP F' ¥

ONL 3 aTHIS QUERY RETURNS THAT F IS A FUNCTION
F

F AEXECUTE F, WHICH GETS SUSPENDED
STOP F

OvL 2 aNOW THE MOST LOCAL F IS A VARIABLE
F

ONL 3 aTHE FUNCTION F IS NO LONGER LISTED

(APL outputs a blank line.)

The result of ONL is a character matrix. If the right argument is empty, or if
there are no objects belonging to the specified name class, the result is 0 0 o
11, Otherwise, each row contains the name of one object. All rows have the
same number of columns; O NL pads the ends of the shorter names with blanks.

APL returns the objects of each name class in JAV order. When the right
argument specifies more than one name class, APL catenates the alphabetical
lists without merging them together. The order of the lists is as follows:

¢ Niladic system functions
* Monadic, dyadic, and ambivalent system functions
* System variables

¢ User-defined names

2-132 APL Reference Manual

System Variables and Functions
ONIL Constructing a List of Names

The dyadic form of Q¥ L allows you to restrict the name list to names beginning
with the characters in the left argument. For example, the following constructs
a name list of function names whose initial letters are 4 through r:

NLIST« '"ABCDEF' [INL 3

The left argument of ONL, if used, must be a character array whose shape

is in the vector domain. The order of the characters does not affect the 04V
order of the result. APL ignores the left argument if it is empty. Note that
the first character of a system function or system variable is the [symbol; if
you use the dyadic form of O¥L and specify either ~ 5, ~ 3, or ~ 2 in the right
argument, APL ignores the [] as it searches for the names beginning with the
letters contained in the left argument.

The following example shows the construction of a matrix containing the
names of variables in the active workspace that begin with the letter V:

NLIST«'V' ONL 2
NLIST

VAR1

VAR2

VAR203

VBMAX

The ONL system function is useful for a variety of purposes. For example:

* [ONL can interact with 0 CR to create functions that automatically display
the definitions of some or all the functions in the workspace.

e With OFX, ONL can dynamically erase all the named objects in a certain
category. You can also use ONL to design a function that will clear a
workspace of all but a preselected collection of named objects.

¢ In its dyadic form, ONL can guide you in choosing names while you develop
or interact with a workspace.

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN FRROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT A LETTER)

15 DOMAIN ERROR (NOT AN INTEGER)

APL Reference Manual 2-133

System Variables and Functions
ONL Constructing a List of Names

15 DOMAIN ERROR (PARAMETER OUT OF RANGE)

27 LIMIT ERROR (INTEGER TOO LARGE)

2-134 APL Reference Manual

System Variables and Functions
O NUM Digits

[0 NUM Digits

Type
Niladic System Function

Form

'0123456789"' « [QNUM

Result Domain

Type Character

Rank 1

Shape 10

Depth 1 (simple)
Description

ONUM is a subset of JAV. ONUM returns a vector of the 10 digits 0123456789,
or, expressed in terms of 0AV:

OAVEL48+110]

For example:

ONUM
0123456789
(10«0
DAYV:ONUM
48 49 50 51 52 53 5% 55 56 57

Possible Errors Generated

None.

APL Reference Manual 2-135

System Variables and Functions
U OM Indexing a Boolean Vector

[1OM Indexing a Boolean Vector

Type

Monadic System Function

Form

indexes « [1OM near-Boolean

Right Argument Domain

Type Near-Boolean
Shape Vector domain
Depth 0 or 1 (simple)

Result Domain

Type Integer

Rank 1

Shape +/near-Boolean
Depth 1 (simple)

Implicit Arguments

010 (oM B when 0I0 « 1 is identical
to1+ 0oM B when JI0 « 0

Description

oM produces indexes showing the locations of the 1s in a Boolean vector. If
the argument is empty, the result is 1 0. For example:

MERZ « 0001011210010

(oM MERZ

467 8 11
A « '"THE QUICK BROWN FOX!
goM 4 = ' 1

4 10 16

Note that the following definition applies: JOM 4 <> A/1p ,4

2-136 APL Reference Manual

System Variables and Functions
0 oM Indexing a Boolean Vector

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)
15 DOMAIN ERROR
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

APL Reference Manual 2-137

System Variables and Functions
0 PACK Packing and Unpacking Data

L1 PA CK Packing and Unpacking Data

Type

success /fail « data-packets [1PACK variable-names

Monadic Argument Domain

Type Character
Shape Matrix domain
Depth 0 or 1 (simple)

Monadic Result Domain

Type Integer
Rank 1

Shape Vector
Depth 1 (simple)

Dyadic Left Argument Domain

Type Near-integer
Shape Vector
Depth 1 (simple)

Dyadic Right Argument Domain

Type Character
Shape Matrix domain
Depth 0 or 1 (simple)

Dyadic Result Domain

Type Boolean
Rank 1

Shape Vector
Depth 1 (simple)

2-138 APL Reference Manual

System Variables and Functions
0 PACK Packing and Unpacking Data

Description

O0PACK allows you to pack and unpack data of different types into a single
variable known as a packet. The monadic form packs data, and the dyadic
form unpacks it.

0 PAck differs from [C0Q and 0CIQ because it allows you to pack and unpack
variables of different data types with only one invocation of the 0 PACK
function. (Otherwise, to pack variables you invoke [1C0Q once for each data
type, and then catenate the results into a single variable; to unpack a variable
you undo the catenation and then invoke 0CI¢q once for each data type.)
Unlike 0¢0q, O PACK does not convert data into different data types before
packing it.

Use monadic 1 PACK to pack data. When you specify a single variable, 1 PACK
creates a [1C0Q packet with a header; it does not perform any data type
conversion before creating the packet. When you specify more than one
variable, 0 PACK creates individual 0C0qQ packets for each variable and
combines them in a single logical record.

The argument to the monadic form contains the names of the user-defined
variables you want to pack. If the argument to monadic 0 PACK is empty, then
the result is 1 0.

Use dyadic 1 PACK to unpack data. The left argument must be a vector; it
identifies a packet that was created by monadic O PACK.

The right argument contains the names you want to assign to the individual
packets as they are unpacked from the left argument. It must have one row
for each individual packet in the left argument. Each name can have a name
class of O or 2 (undefined name or user-defined variable). When the name class
is 0, the variable becomes defined. When the name class is 2, APL redefines
the variable. If the right argument contains a blank row, APL does not unpack
the individual packet associated with that row.

The result indicates whether the names contained in the right argument

have been successfully assigned the JcIq value of the individual packets. A

0 indicates an unsuccessful assignment (caused by a blank row in the right
argument), and a 1 indicates a successful assignment. Each position in the
result corresponds to a row in the right argument. If the left or right argument
is empty, then the result is 1 0. The header generated by 0 PACK has the
following format:

APL Reference Manual 2-139

System Variables and Functions
0 PACK Packing and Unpacking Data

length =4 +n

type =1
rank =1

n

start of 0°°9 packets

end of 09 packets

NU-2235A-RA

Each large box represents a longword. length is the length of the result (an
integer vector) of monadic [1PACK. type always has a value of 1, indicating
32-bit integers. rank is always 1. n indicates the length of the data section of
the packet. The data section (elements 5 through 5 + n) contains the integer
representations of the individual packets.

The following example shows how the individual packets created by 0PACK
relate to the packets created by 0C1¢. Note the use of 0B0X in the right
argument to dyadic JPACK; it is used to facilitate the entry of the names of the
individual packets as a character matrix:

A<1r5
B«2 4 o 'ABCD!
0« 44 « A JC0Q 2
911512345
0 « BB <« B QOC0Q 2
52 2 4 1684234849 1684234849
D+[PACK [IBOX 'A

B 1
D

201116911512 34575 224 1684234849 1684234849
0«8 « (pdd) + oBB

16
D= ((N+4), 1 1, N),AA,BB

1
D OPACK [0BOX 'A4A

2-140 APL Reference Manual

System Variables and Functions
0 PACK Packing and Unpacking Data

AAA
12345

AbL = 4

BBE
ABCD
ABCD

BBB

1"
oo

Possible Errors Generated

9 RANK ERROR (MUST BE VECTOR)

9 RANK ERROR (NOT MATRIX DOMAIN)

10 LENGTH ERROR (ITEM COUNT MISMATCH)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (ILLEGAL NAME CLASS)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (INVALID CIQ HEADER)

15 DOMAIN ERROR (INVALID LENGTH IN PACK HEADER)
15 DOMAIN ERROR (INVALID RANK IN PACK HEADER)
15 DOMAIN ERROR (INVALID RHO VECTOR IN PACK HEADER)
15 DOMAIN ERROR (INVALID TYPE IN PACK HEADER)
15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT FRROR (INTEGER TOO BIG)

APL Reference Manual 2-141

System Variables and Functions
[0 PP Print Precision

[] PP Print Precision

Type
System Variable

Form

0 PF « digits-of-precision
integer-scalar < [0 PP

Value Domain

Type Near-integer
Shape Singleton
Depth 0 or 1 (simple)
Value 1 to 16
Default 10

Result Domain

Type Integer

Rank 0

Shape 10

Depth 0 (simple scalar)
Description

0 PP determines how many significant digits are displayed in APL floating-
point output. It does not affect the display of integers or the precision of
internal calculations. It does affect the conversion of numbers to characters by
the dyadic format function or the display of floating-point constants in 1 CR and
OVR.

Legal values for 0 PP are the integers 1 through 16. The default is 10. APL
rounds off numbers that contain more digits than the setting. For example:

2—-142 APL Reference Manual

System Variables and Functions
0 PP Print Precision

gpp
10
123456789.123456789
123456789, 1
[PP<5
123456789.123456789
1.2346E8
[JPP<«15
123456789.123456789
123456789.123457
0PP+10
ALEADING ZEROS ARE NOT SIGNIFICANT
aNOTE THAT ROUNDING MAY MAKE RESULT
AHAVE FEWER THAN OPP DIGITS
O«4<2 1p1 % + 101
0.003900990099
0.0336039604
OPP«11
A
0.009900990099
0.039603960396
OPpP«12
A
0.00990093009901
0.039603960396

The value of 0PP is saved when you save the active workspace and can be
localized in user-defined operations.

Possible Errors Generated

9 KRANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (PARAMETER OUT OF RANGE)

27 LIMIT FRROR (INTEGER TOO LARGE)

APL Reference Manuali 2-143

System Variables and Functions
(0 P¥ Print Width

[PW Print Width
Type

System Variable
Form

[0 PW <« print-posttions
integer-scalar < [PV

Value Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value 35 to 2048

Default Determined when APL is invoked

Result Domain

Type Integer

Rank 0

Shape 10

Depth 0 (simple scalar)
Description

0 Pw specifies the maximum number of characters that can appear on a
terminal output line before a <CR><LF> is performed. 0 P¥ has no effect on
the length of input lines. The default uses the current VMS setting for set
terminal/width=n.

If an output line requires more than J P¥ character positions, printing
continues on succeeding indented lines. For example:

OPW+35
A<'THIS IS A TEST OF THE PRINT WIDTH VARIABLE'
4
THIS IS A TEST OF THE PRINT WIDTH V
ARIABLE

2-144 APL Reference Manual

System Variables and Functions
00 PW Print Width

However, if a line in an error message is longer than [JP¥ characters, it is
truncated; it is not continued on the next line. If truncating the line prevents
APL from displaying the particular point in the line at which the error was
discovered, APL cuts off enough characters from the beginning of the line to
allow the part in error to be displayed.

The value of [P¥ is saved when you save the active workspace and can be
localized in user-defined operations. When you exit from APL, the original
terminal-width value is restored.

Actually, APL never changes your terminal width; in effect, it overrides the
width by preventing lines from wrapping and then by formatting any output
based on the value of] Pw.

Note that if you interrupt your APL session (for example, by executing a) PUSH
command) and then execute an operating system command to change the value
of the terminal width, the value of 0 P¥ is not changed when you return to
APL. For example:

YCLEAR
CLEAR WS
OpPw a0PW INITIAL VALUE = SYSTEM TERM WIDTH
80
0PW+65 aCHANGE 0OPW TO 85
aINTERRUPT APL SESSION
)PUSH
$ SET TERMINAL/WIDTH = 72
$ LOGOUT
Process USER logged out at 16-NOV-1990 13:24:43.11
)2 a0PW NOT CHANGED TO 72
65

If you exit APL via a panic exit, your system terminal width takes effect, but
your terminal retains the APL setting that prevents lines from wrapping,
regardless of the way wrapping was handled before you began your APL
session. If you want lines to wrap, execute the DCL command set terminal
/wrap.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)
10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN FRROR {(ENCLOSED ARRAY NOT ALLOWED)

APL Reference Manual 2-145

System Variables and Functions
[0 PW Print Width

15 DOMAIN ERROR (INCORRECT TYPE)
15 DOMAIN ERROR (NOT AN INTEGER)
15 DOMAIN FRROR (PARAMETER OUT OF RANGE)

27 LIMIT ERROR (INTEGER TOO LARGE)

2-146 APL Reference Manual

System Variables and Functions
0 Qco Copying Objects from a Workspace

[1 @ CO Copying Objects from a Workspace

Type

Monadic System Function (quiet)

Form

message ~ 0QC0O wsname [object-names]|

Argument Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)

Result Domain

Type Character

Rank 1

Shape Vector

Depth 1 (simple)
Qualifiers

/PASSWORD [:pwi
If a workspace is saved with a password, you must specify the password to
copy objects from the workspace.

/CHECK

The optional /CHECK qualifier causes APL to examine the workspace for
possible corruption (damage to the internal structure of the workspace). If
damage is detected, a message is displayed and APL tries to recover as much
information as possible from the workspace and continues the copy. The
recovered workspace may be missing APL variables, user-defined operations,
and other APL objects that were damaged. The user must determine what
named objects have been removed from the workspace.

APL Reference Manual 2-147

System Variables and Functions
0 QC0 Copying Objects from a Workspace

Description

0Qc0o (quiet copy) retrieves global objects from a workspace and places them
into your active workspace.

The argument has four parts: the name of the workspace from which you want
to copy the objects, an optional password, an optional qualifier (/ CHECK), and
an optional list of objects to be copied.

Use the list of objects to identify the specific objects you want to copy. If you
omit the list, all global user-defined operations, global variables, and groups
are copied. When you specify the objects, you can use the » and + wildcards.
Note that 01Q¢0 does not transfer local values for variables, functions, and
operators, nor does it copy the state indicator or system variables like the print
width, index origin, or significant digits settings.

The 0QCO system function performs the same operation as the) COPY system
command (see Chapter 3). 1QC0 returns as its result a character vector
containing the usual) COPY command message. However, because 0QC0 is a
quiet function, if it is the leftmost function in the statement, its result is not
displayed on the terminal unless there is an error (warnings are not displayed).
For example:

JCOPY AB CALC
SAVED TUESDAY 6-NOV-1990 17:49:10.14 16 BLKS
JCLEAR
CLEAR WS
0QCo 'AB CALC!
JCLEAR
CLEAR WS
MSG+0QCO "AB CALC TOT!'
MSG
SAVED TUESSDAY 6-NOV-1990 17:49:10.1% 13 BLKS
NOT FOUND: TOT

If your active workspace contains objects with the same names as those in
the copied workspace, [1QC0 replaces the global (but not the local) values in
your active workspace with the copied ones. For example, if B is a variable in
the active workspace with a global value of 10 and a local value of 5, and the
workspace being copied has a variable B with a global value of 20, the active
workspace after J9@C0 executes will have a variable B with a global value of 20
and a local value of 5. A pendent or suspended operation is not replaced, and
an operation being created in the workspace being copied is not copied.

2-148 APL Reference Manual

System Variables and Functions
0 QCo Copying Obijects from a Workspace

When you copy a group, all members of the group are copied along with their
values. However, if a member of a group is itself a group, APL copies only the
group name and not its values. For example, suppose the group GROUP1 has
as members the variables 4 and B, and the group GROUP2. Also suppose that
GROUP2 has as members the variables ¢ and D. Then, if you copy GROUP1, you
copy the values of 4 and B, but only the name of GROUP2, not the values of ¢
and D.

If the object list contains objects that are not in the specified workspace, APL
returns the warning message ¥OT FOUND followed by the names (separated
by tabs) that were not found. The objects that were found are still copied,
however.

Examples:

YCLEAR
CLEAR WS
YCOPY T A B
SAVED TUESDAY 6-NOV-1990 17:51:20.88 13 BLKS
A
1
B
2
C
11 VALUE ERROR
C
A
YJCLEAR
CLEAR WS
MSG<QCco 'T*
MSG
SAVED TUESDAY 6-NOV-1990 17:51:20.88 13 BLKS

YCLEAR
CLEAR WS
MSG+0QCO 'T 4 B’

11 VALUE ERROR
C

A

APL Reference Manual 2-149

System Variables and Functions
0 Qco Copying Objects from a Workspace

JCLEAR
CLEAR WS
JCOPY T A D
SAVED TUESDAY 6-NOV-1990 17:51:20.88 13 BLKS
NOT FOUND: D
A
1
B
11 VALUE ERROR
B

A
JCLEAR
CLEAR WS
MSG+0QCo T A D!
MSG
SAVED TUESDAY 6-NOV-1990 17:51:20.88 13 BLKS
NOT FOUND: D
oMSG
59

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (ILLEGAL EMPTY ARGUMENT)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (FILE SPECIFICATION IS MISSING)

15 DOMAIN ERROR (INCORRECT TYPE)

2-150 APL Reference Manual

System Variables and Functions
0 QLD Loading a Workspace

&L D Loading a Workspace

Type

Monadic System Function (quiet)

Form

O0QLD wsname

Argument Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)

Result Domain

None.
Qualifiers

/PASSWORD [:pwl

Specifies the password used when the workspace was saved. If a workspace is
saved with a password, you must specify the password to copy objects from the

workspace.

/CHECK

The optional /CHECK qualifier causes APL to examine the workspace for
possible corruption (damage to the internal structure of the workspace). If
damage is detected, a message is displayed and APL tries to recover as much
information as possible from the workspace and continues the copy. The
recovered workspace may be missing APL variables, user-defined operations,
and other APL objects that were damaged. The user must determine what
named objects have been removed from the workspace. You must use the

) SAVE command if you want to maintain an undamaged version of the

recovered workspace.

APL Reference Manual 2-151

System Variables and Functions
U QLD Loading a Workspace

Description

0QLD (quiet load) makes the specified workspace the active workspace by
replacing the currently active workspace and destroying its contents.

The argument has three parts: the name of the workspace to be loaded,

an optional password, and an optional qualifier (/CHECK). For example, the
following loads a workspace named ABC, which was saved with the password
JOHN:

0QLD 'ABC/PASSWORD:JOHN'®

Note that the 0QLD system function performs the same operation as the)L04D
system command (see Chapter 3), but 0QLD does not print messages on the
terminal unless there is an error.

0QLD does not return a result in the usual sense or display a message when it
is successful, because the context in which 0QLD was executed is replaced by
the loaded workspace.

If the O LX system variable has a value in a workspace, it executes when QLD
is used to load the workspace, except if the top of the state indicator stack
contains an execute function (see the Execute function described in Chapter 1
for details), or if the workspace was saved in function-definition mode (if it was,
you remain in function-definition mode after the workspace is loaded). If the
workspace was saved inside [input, the 0LX expression is executed only after
the pendent O input is removed from the state indicator stack. For example:

A
1
YCLEAR
CLEAR WS
0QLD Tt
YWSID
T
A

1

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)
10 LENGTH FRROR (ILLEGAL EMPTY ARGUMENT)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

2-152 APL Reference Manual

System Yariables and Functions
0 QLD Loading a Workspace

15 DOMAIN ERROR (FILE SPECIFICATION IS MISSING)

15 DOMAIN ERROR (INCORRECT TYPE)

APL Reference Manual 2-153

System Variables and Functions
0 QPcC Copying Objects with Protection

[] & PC Copying Objects with Protection

Type

Form

Monadic System Function (quiet)

message «~ [1QPC wsname [[object-names]

Argument Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)

Result Domain

Type Character

Rank 1

Shape Vector

Depth 1 (simple)
Qualifiers

/PASSWORD [:pwl

Specifies the password used when the workspace was saved. If a workspace is
saved with a password, you must specify the password to copy objects from the
workspace.

/CHECK

The optional /CHECK qualifier causes APL to examine the workspace for
possible corruption (damage to the internal structure of the workspace). If
damage is detected, a message is displayed and APL tries to recover as much
information as possible from the workspace and continues the copy. The
recovered workspace may be missing APL variables, user-defined operations,
and other APL objects that were damaged. The user must determine what
named objects have been removed from the workspace. You must use the
)SAVE command if you want to maintain an undamaged version of the
recovered workspace.

2-154 APL Reference Manual

System Variables and Functions
[0 Q PC Copying Objects with Protection

Description

JQP¢ (quiet copy with protection) is the same as the JQC0 system function
except that 0QPC does not replace objects in the active workspace with objects
of the same name in the copy workspace. Instead, APL returns the warning
message NOT COPIED followed by the names of objects (separated by tabs) that
were not copied.

As with 0@co0, the argument for 0 QPC represents the name of the workspace
from which you want to copy the objects, followed by three optional items: a
password, a qualifier (/CHECK), and a list of objects. When you specify the
objects, you can use the » and + wildcards.

When copying groups, 0 QPC does not copy any members of the group that have
the same name as a name already in the active workspace. If the group name
itself is the same as a group name in the active workspace, APL does not copy
the group name or any members of the group.

If the list to be copied contains an object that is not in the specified workspace,
APL returns the warning message NOT FOUND, followed by the names of the
objects (separated by tabs) that were not found. The objects that were found
are still copied, however.

The 0@PC system function performs the same operation as the) PCOPY system
command (see Chapter 3). JQPC returns as its result a character vector that
contains the usual) PCOPY command message. However, because 0QC0 is a
quiet function, if it is the leftmost function in the statement, the result is not
displayed on the terminal unless there is an error (warning messages are not
displayed).

Examples:

JCLEAR
CLEAR WS

A<20

JPCOPY T
SAVED TUESDAY 6-NOV-1990 17:51:20.88 13 BLKS
NOT COPIED: A

A
20

B
2

¢
3

APL Reference Manual 2-155

System Variables and Functions
O QPC Copying Objects with Protection

)JCLEAR
CLEAR WS
A+20
MSG+OQPC 'T!
MSG
SAVED TUESDAY 6-NOV-1990 17:51:20.88 13 BLKS
NOT COPIED: A
A
20
B
2
C
3
MSG+[QQPC 'T A D!
MSG
SAVED TUESDAY 6-NOV-1990 17:51:20.88 13 BLKS
NOT FOUND: D
NOT COPIED: A
oMSG
74

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH FRROR (ILLEGAL EMPTY ARGUMENT)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN FRROR (FILE SPECIFICATION IS5 MISSING)

15 DOMAIN ERROR (INCORRECT TYPE)

2-156 APL Reference Manual

System Variables and Functions
00 R Monitoring Variable Changes

[J R Monitoring Variable Changes

Type

Form

System Variable

OR <« any
old-value <« OR

Value Domain

Type Any
Shape Any
Depth Any
Default 1

Result Domain

Type Any

Rank Any

Shape Any

Depth Any
Description

0OR and [JL are system variables that are implicitly used by QWATCH. QWATCH is
a system function that is used to monitor any changes in one or more variables.
When a change occurs in a monitored variable, APL assigns information to JR
and JL: OR contains the previous value of the changed variable; JL contains

a character vector showing the name of the variable that has changed. APL
assigns this information regardless of whether monitoring is set for signal or
display mode.

Immediately after a JWATCH event occurs, JR and 0L contain the new
information resulting from the event. However, this information may change
as an operation continues execution (this is especially true if an error occurs
during an assignment or reference of a variable that is associated with a
watchpoint).

APL Reference Manual 2-157

System Variables and Functions
0 R Monitoring Variable Changes

Both O and O~ can be localized, explicitly assigned values of any type, and
saved in the workspace.

Note that you cannot include OR or 0L in the right argument to dyadic
OWATCH.

Possible Errors Generated

None.

2-158 APL Reference Manual

System Variables and Functions
ORELEASE Unlocking Shared Records

U RELEASE Unlocking Shared Records

Type

Monadic System Function (quiet)

Form

10 « ORELEASE chans

Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value ~ 3999 through 299 (but not 0)

Result Domain

Type Numeric

Rank 1

Shape 0 (empty)

Depth 1 (simple)
Description

ORELEASE unlocks any locked records in files associated with the channel
numbers specified in the argument. The absolute values of chans represent the
channels associated with the files you want to unlock.

ORELEASE is quiet; it does not return a result if it is the leftmost function

in a statement. When it is not the leftmost function, JRELEASE returns an
empty numeric vector. If its argument is empty, 0 RELEASE has no effect and
its result is an empty vector. Note that APL performs a DRELEASE on all open
files whenever a) MON command is executed.

If you read a record that you do not intend to rewrite, it is a good idea to
unlock it as soon as possible, because other users who try to retrieve it are put
in a wait state until the record becomes available.

ORELEASE is described the VAX APL User’s Guide along with other file I/O
information.

APL Reference Manual 2-159

System Variables and Functions
ORELEASE Unlocking Shared Records

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

15

15

15

27

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (NOT AN INTEGER)
DOMAIN ERROR (INVALID CHANNEL NUMBER)

LIMIT ERROR (INTEGER TOO LARGE)

2-160 APL Reference Manual

System Variables and Functions
0 REP Replication

[1 RE P Replication

Type
Dyadic System Function

Form

AQOREP B AUOREFP[K] B

Left Argument Domain

Type Near-integer
Shape domain
Depth or 1 (simple)

Right Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type as right argument

Rank ifeppB

Shape ((K-1)nrpB),(+/14),K+pB {ornIo 1)
Depth i[=B

Implicit Arguments

None.

Description

OREP builds arrays by specifying the items to be deleted, preserved, or
duplicated from an existing array, and by indicating where fill items are to be
added in the new array. When items are preserved or deleted, this is known
as compression (the left argument is Boolean). When items are duplicated,
deleted, or filled, this is known as replication (the left argument is integer).

APL Reference Manual 2-161

System Variables and Functions
0 REP Replication

O REP works the same as the compress and replicate derived functions. The
difference between [REP and the slash operator is that you can use I REP as
an operand to an operator. Operators cannot be used as operands to operators.
(0 REP applies along the last axis of B unless modified by an explicit axis () in
brackets. The shape of the result is the same as the original array B except
along the applicable axis (p B) [X]. The shape of that axis becomes the sum of
the absolute value of the items in A(+/]4).

The following examples show OREP with the each (7) operator. Although
the variables 4 and ¢ are nested in the examples, they conform to the left
argument domain requirement that specifies a simple array. This is because
the each operator reduces the nesting by one level:

O«A+(1 0 1) (1 "1 0 2)

o= L +
[10 1 |1 710 2]
to---- L + .
0«B<(2 3p16) (4 3p'ABCDEFGHIJKL')
t---=-- + o+t
|1 2 3] l4BC]
|4 5 6] |DEF]
o= + |GHI|
| JKL |
t---+
RATTEMPT TO USE OPERATOR AS ARG TO
A4/7B RAPL EVALUATES AS (A/)"B
15 DOMAIN ERROR (ENCLOSED/HETEROGENEOUS ARRAY NOT ALLOWED)
A/"B AAPL EVALUATES AS (A/)"B

A

A OREP"B AREPLICATE ITEMS OF B USING THE ITEMS OF A

t--—t ----4
{1 3] |4 ¢C
|4 6| [D FF|
+-—+ |G II|
|J LL|
t----1
A OREP[2]1” B ASECOND AXIS«+ DEFAULT IN THIS CASE
t---t +----+
[1 3] |4 ¢C|
|4 6] |D FF|
t---+ |G II|
|J LL)
t----4
O«Ce«{2 "1 0) (110 1)
tom o L +
[2 71 0] [110 1]
to-mm- I +

2-162 APL Reference Manual

System Variables and Functions
0 REP Replication

¢ OREP[1]” B aUSE [(REP WITH AXIS ARGUMENT

[1 2 3] |ABC|
|1 2 3| |DEF|
[0 0 0] |JKL|

Possible Errors Generated

9 RANK EFRROR (NOT VECTOR DOMAIN)

10

15

15

15

27

28

29

30

30

30

30

30

30

LENGTH ERROR

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

AXIS RANK ERROR (NOT VECTOR DOMAIN)

AXIS LENGTH ERROR (NOT SINGLETON)

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)
AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
AXIS DOMAIN ERROR (INCORRECT TYPE)

AXIS DOMAIN ERROR (NOT AN INTEGER)

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)

AXIS DOMAIN ERROR (RIGHT ARGUMENT HAS WRONG RANK)

APL Reference Manual 2-163

System Variables and Functions
0 RESET Resetting the State Indicator

[l RESE T Resetting the State Indicator

Type
Niladic System Function

Form

ORESET

Result Domain

None.
Description

ORESET clears the state indicator. When the state indicator is clear, no user-
defined operations are suspended, no quad input requests or execute functions
are pending, and the) ST system command (see Chapter 3) does not return a
value.

ORESET does not return a value.

Possible Errors Generated

None.

2-164 APL Reference Manual

System Variables and Functions
0 REWIND Returning Next-Record Pointer to Start of File

U REWIND Returning Next-Record Pointer to Start of File

Type
Ambivalent System Function (quiet)

Form

10 « QREWIND chans
10 « key-of-reference QRENIND chans

Monadic Argument Domain

Type Near-integer

Shape Vector domain

Depth 0 or 1 (simple)

Value “ 999 through 999 (but not 0)

Dyadic Left Argument Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value 0 through 255 inclusive

Dyadic Right Argument Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value 999 through 999 (but not 0)

APL Reference Manual 2-165

System Variables and Functions
O REWIND Returning Next-Record Pointer to Start of File

Result Domain

Type Numeric

Rank 1

Shape 0 (empty)

Depth 1 (simple)
Description

OREWIND allows you to reposition the next record pointer to the first record
of a file without closing the file. The absolute values of chans represent the
channels associated with the files you want to rewind.

With the monadic form, you can specify a vector of channel numbers in the
right argument. This will rewind each of the files associated with the specified
channel numbers. If any of the files have a keyed organization, APL performs
the rewind on the primary key of reference.

Use the dyadic form for keyed files when you want APL to perform the rewind
on a key of reference other than the primary key. The right argument specifies
the channel number associated with the keyed file. The left argument specifies
the key of reference. Zero (0) indicates the primary key, one (1) indicates the
secondary key, and so on. You can specify only one file at a time when you
invoke dyadic OREWIND.

OREWIND is described in the VAX APL User’s Guide along with other file I/O
information.

Possible Errors Generated
Monadic Form
9 RANK ERROR (NOT VECTOR DOMAIN)
15 DOMAIN ERROR (INCORRECT TYPE)
15 DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INTEGER TOO LARGE)
15 DOMAIN ERROR (NOT AN INTEGER)
15 DOMAIN FRRKOR (INVALID CHANNEL)

15 DOMAIN ERROR (CHANNEL NOT ASSIGNED)

2-166 APL Reference Manual

15

33

System Variables and Functions
OREWIND Returning Next-Record Pointer to Start of File

DOMAIN FRROR (FILE IS5 ASSIGNED WRITE ONLY)

I0 ERROR (INVALID KEY OF REFERENCE FOR $GET/$FIND)

Dyadic Form

9 RANK ERROR (NOT A SINGLETON)

15

15

15

15

15

15

15

27

33

DOMAIN ERROR (CHANNEL NOT ASSIGNED)

DOMAIN FRROR (CHANNEL NOT ASSIGNED TO A KEYED FILE)
DOMAIN ERROR (ENCLOSED HETEROGENEOQOUS ARRAY NOT ALLOWNED)
DOMAIN ERROR (INCORRFECT TYPE)

DOMAIN ERROR (INVALID CHANNEL)

DOMAIN ERROR (NOT AN INTEGER)

DOMAIN FRROR (PARAMETER OUT OF RANGE)

LIMIT ERROR (INTEGER TOO LARGE)

I0 ERROR (INVALID KEY OF REFERENCE FOR $GET/$FIND)

APL Reference Manual 2-167

System Variables and Functions
ORL Link

O RL Link

Type
System Variable

Form

ORL <« random-seed
integer-scalar < ORL

Value Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value “ 2% 30 through ~1+2x 30
Default 695197565

Result Domain

Type Integer

Rank 0

Shape 10 (scalar)

Depth 0 (simple scalar)
Description

ORL sets the seed of the pseudo-random-number generator used with the roll
and deal functions (see Chapter 1). [1RL can be set by the user, and is also set
implicitly by the system when roll and deal are executed.

Every time you execute a roll or deal function, the value of the random link
changes. The value of ORL is saved with a workspace and can be localized in
user-defined operations. For example:

2-168 APL Reference Manual

System Variables and Functions
ORL Link

ORL

695197565

575

42 315

ORL

47060346

575

412 35

ORL

1636171147

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

27

LENGTH ERROR (NOT SINGLETON)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual

2-169

System Variables and Functions

(0 SF Quad Input Prompt

[1SF Quad Input Prompt

Type

System Variable

Form

OSF « prompt

char-vector « O SF

Value Domain

Type
Shape
Depth
Value
Default

Result Domain

Type
Rank

Shape
Depth

Description

0 SF specifies the text to be used as the prompt for quad input (see the
VAX APL User’s Guide). You can use any printing characters in the prompt.

The prompt is printed each time a request is made for quad input (G). For

example:

Character

Vector domain

0 or 1 (simple)

prompt length< 255 keystrokes
'0: <CR><LF> 6-spaces’

Character
1

Vector

1 (simple)

2-170 APL Reference Manual

System Variables and Functions
00 SF Quad Input Prompt

A+3+[+5
0.

5

A
13

B+l
0:

VINPUT!

B
INPUT

OSF«'WHAT IS YOUR NAME? '
c+0

WHAT IS YOUR NAME? 'CARLA'
4

CARLA

Note that you must enclose character-type quad input in single quotation
marks.

The maximum length for 0SF is 255 keystrokes (a keystroke occurs any time
you press a key on the keyboard, including the Space bar and the Backspace
key). The value of O SF is saved when you save the active workspace and can
be localized in user-defined operations.

Possible Errors Generated

9 KRANK ERROR (NOT VECTOR DOMAIN)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

27 LIMIT ERROR (ARGUMENT STRING IS TOO LONG)

APL Reference Manual 2-171

System Variables and Functions
0SIGNAL Signaling Errors

0 SIGNAL Signaling Errors

Type

Ambivalent System Function

Form

error-number
message-text 0 SIGNAL error-number

Monadic Argument Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value Any APL error number (except 75, 115 to 499 or greater
than 999)

Dyadic Left Argument Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)

Dyadic Right Argument Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value Any APL error number (except 75, 115 to 499 or greater
than 999)

Resuilt Domain

None.

2-172 APL Reference Manual

System Variables and Functions
OSIGNAL Signaling Errors

Description

O0SIGNAL allows you to signal an error to the caller of the operation in error;
thus, the way a user-defined operation that executes JSIGNAL fails is similar
to the way a primitive function fails.

In both the monadic and dyadic forms, the right argument is the error number.
You can use an existing APL error number (except 75) as listed in Appendix A,
or you can define your own number (within the range 500 through 999).

The left argument (dyadic form), if used, is the text of the error message for
the error you are signaling. For example:

"WILL NOT ACCEPT NEGATIVE NUMBERS' [JSIGNAL 501

This statement, if executed within a user-defined operation (0 SIGNAL generally
appears within a user-defined operation, but this is not a requirement), signals
the following error:

501 WILL NOT ACCEPT NEGATIVE NUMBERS

The message is followed by the rest of the APL standard three-line error
message; that is, the text of the line in error and a caret pointing to the part of
the line in error. The three-line error message generated by 0SIGNAL becomes
the value of JERROR.

If the error number you supply to 0 SIGNAL is the number of an APL error, the
message displayed (and stored in OERROR) is the error message that coincides
with that number (see Appendix A for a description of APL error messages),
and the left argument to 0 SIGNAL becomes the secondary error message
(displayed in parentheses following the primary error message). If you do not
use an existing APL error number, and you leave the left argument blank, APL
signals the following error:

ERROR SIGNALED

In the following example, notice that the error is signaled at the level of the
caller, function #, not at function F:

APL Reference Manual 2-173

System Variables and Functions
OSIGNAL Signaling Errors

RFUNCTION F HAS (0SIGNAL
vF A
(11 +(4>0)/3
(2] "WILL NOT ACCEPT NEGATIVE NUMBERS' [SIGNAL 15
(3] "FUNCTION CONTINUING NORMALLY®

(4] 7
AFUNCTION H CALLS F
vH 4
[1] F 4
[2] v
S
FUNCTION CONTINUING NORMALLY
g 77
15 DOMAIN ERROR (WILL NOT ACCEPT NEGATIVE NUMBERS)
A1) F 4

A

You can use error number 80 to signal a status condition to the DCL
interpreter. The right argument to JSIGNAL must be 80, and the left argument
is a character string representing a hexadecimal number that is the status code
you want to return to VMS. The status code returned is stored as the value of
the global symbol $STATUS. For example:

"1234BC1* [JSIGNAL 80

(APL returns control to DCL}
$show symbol $status
SSTATUS == "%X0123ABC1"

The low-order three bits of $STATUS represent the severity level of the error
signaled and are contained by the global symbol $SEVERITY. For example:

$show symbol $severity
SSEVERITY == "1"

DCL command procedures interpret the $SEVERITY value 1 to mean success,
and the value 2 to mean error. (For details on command procedures, see the
Guide to Using VMS Command Procedures.) In the following command
procedure, the first line means branch to the label ERROR any time
$SEVERITY becomes equal to 2:

on error then goto error
$ apl

(APL statements)

$ write sysSoutput"No Error From APL"

2-174 APL Reference Manual

System Variables and Functions
OSIGNAL Signaling Errors

$ exit
$ error:
$ write sys$output"APL Returned Error"

If 2" O0SIGNAL 80 1is executed during the APL session, the command
procedure branches to ERROR and displays the message "APL Returned
Error". If '1' OSIGNAL 80 is executed, the command procedure displays "No
Error From APL" and then exits.

For more information on the use of 0SIGNAL, see Chapter 3 in the VAX APL
User’s Guide.

Possible Errors Generated

15

15

10

15

15

15

27

15

DOMAIN ERROR (CANNOT SIGNAL EOF)

DOMAIN ERROR (NOT VECTOR DOMAIN)

LENGTH ERROR (NOT SINGLETON)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT FRROR (INTEGER TOO LARGE)

DOMAIN ERROR (PARAMETER OUT OF RANGE)

APL Reference Manual 2-175

System Variables and Functions
0 SINK Discard Output

[1SINK Discard Output

Type
System Variable

Form

0SINK « any-value
10« [JSINK

Value Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Numeric
Rank 1

Shape 0 (empty)
Depth 1 (simple)

Description

[0 SINK immediately discards any value that you assign to it. The value of
0SINK is always 1 0.

OSINK is useful inside a user-defined operation; it allows you to discard output
that you do not want stored or displayed.

0 SINK can be localized and is saved with the workspace; however, neither
operation has any effect.

Possible Errors Generated

None.

2-176 APL Reference Manual

System Variables and Functions
0SS String Search

1SS String Search

Type
Dyadic System Function

Form

Boolean « pattern-string 0SS target-string

Left Argument Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)

Right Argument Domain

Type Character
Shape Vector domain
Depth 0 or 1 (simple)

Result Domain

Type Boolean

Rank 1

Shape p ,target-string
Depth 1 (simple)

Description

0SS searches the right argument for every appearance of the character string
specified in the left argument. This allows you to determine where a substring
begins in the searched string.

The result is a Boolean vector equal to the length of the ravel of the right
argument. The function places a 1 in any position corresponding to the start of
the specified string. For example:

APL Reference Manual 2-177

System Variables and Functions
0SS String Search

'ISSIY 0SS '"MISSISSIPPI!

01001000000
O«MONTHS«4 11p'JAN FEB MARAPR MAY JUNJUL AUG SEPOCT NOV DEC'

JAN FEB MAR
APR MAY JUN
JUL AUG SEP
0CT NOV DEC

Possible Errors Generated

9 RANK FRROR (NOT VECTOR DOMAIN)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

2-178 APL Reference Manual

System Variables and Functions
0 SroP Suspending Operation Execution

[1.STO P Suspending Operation Execution

Type

Ambivalent System Function (monadic form is query)

Form

line-numbers < [1STOP function-names
success /fail « line-numbers [1STOP function-name

Monadic Argument Domain

Type Character
Shape Vector domain or one-row matrix
Depth 0 or 1 (simple)

Dyadic Left Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Dyadic Right Argument Domain

Type Character
Shape Matrix domain
Depth ¢ or 1 (simple)

Result Domain

Type Boolean (dyadic) or integer (monadic)
Rank 1

Shape Vector

Depth 1 (simple)

APL Reference Manual 2-179

System Variables and Functions
0 SToP Suspending Operation Execution

Description

0SToP allows you to suspend the execution of user-defined operations at
specified lines. [1STOP is a useful debugging tool; you can use it to execute

a portion of a user-defined operation, then to stop execution temporarily and
examine the operation’s environment, including the values of its local variables.
You can also stop execution at line 1 of an external routine.

The external image containing the external routine must be linked with
the /SHARE and /DEBUG qualifieres; APL causes VMS DEBUG to set a
breakpoint at line 1 (the routine entry point).

For dyadic 0SsT0P, the right argument identifies the operations you want to
suspend. Each row should be the name of a valid, unlocked, user-defined
operation or an external routine.

The left argument specifies where you want to suspend the operations by
naming the lines on which stop bits are to be set; the line numbers do not have
to be in order. Negative line numbers and line numbers that do not appear in
the operation are ignored.

Note that line [0] can be stopped; APL suspends execution immediately
before returning to the caller, thus enabling you to examine the operation’s
environment after it has finished executing.

The following example sets a stop bit at lines [5], [25], and [55] of the user-
defined operations CALC and AVER:

5 25 55 [0STOP 2 u4p 'CALCAVER!®
11

Thus, if you run CALC or £4VER, execution is suspended before line [5], and APL
displays the operation name and the line number. Execution can be resumed if
you type a branch to line [5], but it is suspended again at line {25], and so on.

The result of dyadic 1STOP is a Boolean vector that indicates whether stop bits
were set for the objects named. A 1 in the position corresponding to the name
in the right argument indicates that the stop bits were successfully set; a 0
indicates that stop bits were not set.

2—-180 APL Reference Manual

System Variables and Functions
0 5T0P Suspending Operation Execution

To clear all the stop bits associated with an object or objects, use 0SToP with
an empty left argument, as follows:

(10) OSIOP 2 up 'CALCAVER'
11

If you modify an operation with YEDIT, OFX, or OMAP, you clear any stop bits
set with 0.5sToP. (However, you can view an operation with)EDIT and not
clear the stop bits as long as you do not perform any modifications.) If you edit
an operation with the o editor, stop bits remain on existing lines (provided
they are not modified) even if the lines are renumbered when the operation is
closed.

When operation execution is suspended because a stop bit was set for the line,
APL signals STOPSET. Thus, you can trap stop bits with 0 TRAP.

In its monadic form, 0 STOP returns the line numbers (in ascending order) on
which stop bits have been set for a specified operation. The right argument
must contain only one row, which identifies the name of the operation. In the
case of a stop bit that is set on an external routine, JSTOP returns a one-item
vector with a value of 1 (the only allowable line). For example:

gsrorp 'CALC!
5 25 55

If the argument is empty or contains a value other than the well-formed name
of an unlocked operation, APL returns an empty Boolean vector.

For more details about 0 STOP, see Chapter 3 in the VAX APL User’s Guide.
Possible Errors Generated

Dyadic Form

9 RANK ERROR (NOT MATRIX DOMAIN)

9 KANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN FRROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-181

System Variables and Functions
0 STOP Suspending Operation Execution

Monadic Form

9 RANK ERROR (NOT MATRIX DOMAIN)

10 LENGTH FRROR

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

2-182 APL Reference Manual

System Variables and Functions
0 TERSE Terse Error Messages

[TERSF Terse Error Messages

Type
System Variable

Form

O TERSE <« terse-verbose
integer-scalar « [TERSE

Value Domain

Type Near-integer
Shape Singleton
Depth 0 or 1 (simple)
Value 0 ori

Default 0

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)
Description

Each APL error message (see Appendix A) consists of a primary error message
(for example, VALUE ERROR or DOMAIN ERROR) and perhaps a secondary error
message. The secondary message provides more information about why the
error occurred.

OTERSE determines whether or not secondary error messages are output.
When 0 TERSE is 0, secondary error messages are printed; when it is 1, they
are not printed. The default is O.

Note that APL always puts secondary error messages into] ERROR, regardless
of the value of D TERSE.

The value of 0 TERSE is saved when you save the active workspace and can be
localized in user-defined operations.

APL Reference Manual 2-183

System Variables and Functions
0 TERSE Terse Error Messages

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN EFRROR (NOT AN INTEGER)

15 DOMAIN ERROR (SYSTEM VARIABLE VALUE MAY ONLY BE 0 OR 1)

27 LIMIT ERROR (INTEGER TOO LARGE)

2-184 APL Reference Manual

System Variables and Functions
OTIMELIMIT User Response Time Limit

UTIMELIMIT User Response Time Limit

Type
System Variable

Form

QOTIMELIMIT « seconds
integer-scalar « ([TIMELIMIT

Value Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value ~1to 255

Default 0 (unlimited response time)

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)
Description

OTIMELIMIT limits the amount of time allowed for responses to quote quad
(M) or quad del (B) input requests. Note that you cannot set 0 TIMELIMIT on a
VT220, VT240, VT320, VT330, VT340, or DECterm terminal designator.

If, in responding to input requests, you exceed (1 TTMELIMI T seconds between
characters, APL accepts only the characters you typed before you ran out of

time, and appends a <CR><LF> to them. You can use the 0TIMEOUT system
variable to check whether the time limit expired.

In the following example, the user sets the time limit to 5 seconds, and then
supplies a value for 4 before the time limit expires. However, the user does
not finish entering a value for B before time expires, so APL accepts what was
typed before time ran out. The six spaces after the last character (an angle

APL Reference Manual 2-185

System Variables and Functions
OTIMELIMIT User Response Time Limit

bracket) are APL’s input prompt, and the comment (a 6 SPACES I.S PROMPT) is
terminal input.

OTIMELIMIT+5
A<}

YOU HAVE FIVE SECONDS
A

YOU HAVE FIVE SECONDS
B[}

NOW STOP TYPING BUT NO <RETURN>
ATIMELIMIT WAS EXCEEDED ON PREVIOQUS LINE
B

NOW STOP TYPING BUT NO <RETURN>

A negative argument (" 1) makes APL check for type-ahead input, that is, data
that was placed in the input buffer before the quote quad or quad del input
request was made. You can use this feature to help you determine whether
anything was typed after the time limit expired. For example:

VIIME

[1] OTIMELIMIT<5

[2] DO<'RESPOND WITHIN 5 SECONDS'

[31 A<D

[4] O<'TIMED 0UT' o (SINK<QDL 5 «ODL DELAYS EXECUTION
[5] OTIMELTMIT< 1

(61 B+
[7] A,' BEFORE TIMED OUT AND ',B,' AFTER!
81 v

TIME

RESPOND WITHIN 5 SECONDS
I STOPPED TYPING

TIMED 0UT
THIS IS TYPEAREAD

I STOPPED TYPING BEFORE TIMED OUT AND THIS IS TYPFAHEAD AFTER

Because O TIMELIMIT was set to ~ 1 on line [5], the quote quad request on line
[6] captured the input that was typed after time expired on the response to the
first quote quad input request (line [3]), but before the second input request
(line [6]) was made.

You may also want to set TIMELIMIT to ~ 1 if you have written a function
that checks periodically for a response to a poll or prompt. For example:

2-186 APL Reference Manual

System Variables and Functions
OTIMELIMIT User Response Time Limit

VPOLL;START
(1] [QTFIMELIMIT<"1
(2] [M<'WHEN READY TYPE THE NUMBER 1 '
(3] [SINK<ODL 5 a(DL DELAYS EXECUTION 5 SECONDS
(4] START+N
{51 >(START = '1')/7

(6] =3
(7] aEXECUTION BEGINS HERE
(8] v

POLL

WHEN READY TYPE THE NUMBER 1 1

The function PoLL displays a message telling the user to respond with the
number 1 when ready. Until the user enters 1, POLL loops between operation
lines [31 and [6]; thus, POLL delays for 5 seconds, then checks whether the user
typed 1 during the delay and, if not, branches back for another 5-second delay.
When the user enters 1, control passes to line [7] and operation execution
continues.

The value of DTIMELIMIT is saved when you save the active workspace and
can be localized in user-defined operations.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH FRROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN EFRROR (NOT AN INTEGER)

15 DOMAIN ERROR (PARAMETER OUT OF RANGE)

15 DOMAIN ERROR (TIMEOUT READ UNSUPPORTED FOR CURRENT VALUFE OF
QUAD TT)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-187

System Variables and Functions
O TIMEOUT Time Limit Report

U TIMEOUT Time Limit Report

Type
System Variable

Form

QTIMEOUT «+ Q-or-1
integer-scalar + QTIMEQOUT

Value Domain

Type Near-integer
Shape Singleton
Depth 0 or 1 (simple)
Value 0 or1

Default 0

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)
Description

OTIMEOUT queries the system to see whether response time expired for a
previously executed quote quad (1) or quad del () input request. (QTIMEOUT
is set implicitly by the system when a timeout occurs, but can also be set by
the user.) Its value is a Boolean scalar\ 1 means that time ran out, 0 means
that it) did not. The amount of time the user has to respond to quote quad or
del quad input requests is determined by the 0 TTMELIMIT system variable.
For example:

2-188 APL Reference Manual

System Variables and Functions
OTIMEOUT Time Limit Report

OTIMELIMIT<S

A<]
YOU HAVE FIVE SECONDS

OrIMEOUT aDID NOT RUN OUT OF TIME
0

A<l
NOW STOP TYPING BUT NO <RETURN>

OTIMEOUT alIMELIMIT EXCEEDED
1

You may set 0 TTMEOUT to 0 or 1. APL changes the value of] TTMEOUT only
when you type one of the following:

* Quote quad input from the terminal ([1)
* Quad del input from the terminal (¥)

The value of 0 TTMEOUT is saved when you save the active workspace and can
be localized in user-defined operations.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH FRROR (NOT SINGLETON)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (SYSTEM VARIABLE VALUE MAY ONLY BE 0 OR 1)

27 LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-189

System Variables and Functions
0 TLE Terminal Line Editing Characteristics

[1 T L K Terminal Line Editing Characteristics

Type

System Variable (session)

Form

OTLE « 0-or-1
current-value « OTLE

Value Domain

Type Near-Integer

Shape Singleton

Depth 0 or 1 (simple)

Value 0 or1

Default Determined when APL is invoked

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)

Depth 0 (simple scalar)
Description

OTLE controls the terminal line editing attribute. You can assign a O or a 1 to
OTLE. By default, 0 TLE inherits the line editing status that is in effect when
APL is started. Note that JTLFE is a session variable; that is, its value is not
saved with the workspace and I TLE is not reset by the execution of a) CLEAR
command (see Chapter 3).

OTLE Equivalent DCL Command
0 $SET TERMINAL/NOLINE_EDITING
1 $SET TERMINAL/LINE_EDITING

APL determines the default value for 0 TLE depending on your terminal
designator. For LA, VT102, GIGI, KEY, BIT, HDS201, and HDS221 (terminals

2—-190 APL Reference Manual

System Variables and Functions
{0 TLFE Terminal Line Editing Characteristics

that form overstruck characters with the Backspace key), the default is 0. For
VT220, VT240, VT320, VT330, VT340, DECterm and VS (terminals that form
overstruck characters with the Compose key or Ctrl/D), the default is 1. In
all other cases (TTY for example), the default is the same as the current VMS
getting when APL is invoked.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10

15

15

15

15

27

LENGTH ERROR (NOT SINGLETON)

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN FRROR (INCORRECT TYPE)

DOMAIN ERROR (NOT AN INTEGER)

DOMAIN ERROR (SYSTEM VARIABLE VALUE MAY ONLY BE 0 OR 1)

LIMIT ERROR (INTEGER TOO LARGE)

APL Reference Manual 2-191

System Variables and Functions
0 TRACE Monitoring Operation Execution

[1 TRA CE Monitoring Operation Execution

Type
Ambivalent System Function

Form

line-numbers « O TRACE function-name
success /fail « line-numbers 1 TRACE function-name

Monadic Argument Domain

Type Character
Shape Vector domain or 1-row matrix
Depth 0 or 1 (simple)

Dyadic Left Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Dyadic Right Argument Domain

Type Character
Shape Matrix domain
Depth 0 or 1 (simple)

Result Domain

Type Integer (dyadic) or Boolean (monadic)
Rank 1

Shape Vector

Depth 1 (simple)

2-192 APL Reference Manual

System Variables and Functions
0 TRACE Monitoring Operation Execution

Description

(0 TRACE is a debugging tool that allows you to obtain intermediate results of
operation execution.

In the dyadic form, the right argument identifies the operations that you
want to trace. Each row should be the name of a valid, unlocked, user-defined
operation. You can also specify the name of an external routine.

The left argument specifies the line numbers you want to trace. The line
numbers do not have to be in order. Negative line numbers and line numbers
that do not appear in the operation are ignored. When you trace line 0 of
an operation, APL displays the result returned by the operation before the
operation exits. For external routines, you can specify only line 0.

When you execute a line of an operation that has the trace bit set, APL
displays the following information:

* The name of the operation
* The line number being traced (always 0 for external routines)

¢ The final value returned by the statement, provided that the value is not
an enclosed array, in which case APL displays a message indicating an
enclosed value

When the statement traced is not the first statement on the line, APL also
displays the statement number.

The result of dyadic 0 TRACE is a Boolean vector that indicates whether trace
bits were set for the operations named. A 1 in the position corresponding to
the name in the right argument indicates that the trace bits were successfully
set; a 0 indicates that trace bits were not set.

To clear all the trace bits associated with an object or objects, use [JTRACE with
an empty left argument, as follows:

(10) OTRACE 2 up'CALCAVER'
11

If you modify an operation with YEDIT, 0FX, or QMAP, you clear any trace
bits set with JTRACE. (However, you can view an operation with)EDIT and
not clear the trace bits as long as you do not perform any modifications.) If
you edit an operation with the A editor, trace bits remain on existing lines
(provided they are not modified), even if the lines are renumbered when the
operation is closed.

APL Reference Manual 2-193

System Variables and Functions
00 TRACE Monitoring Operation Execution

In the monadic form, 0 TRACE returns the line numbers (in ascending order)
on which trace bits are set for a specified operation. The right argument must
contain only one row, which identifies the name of the operation. In the case of
a trace bit that is set on an external routine, 0 TRACE returns a one-item vector
with a value of O (the only allowable line). The result indicates the lines that
exist and have trace bits set on them. For example:

OTRACE '"CALC' aLINES 5, 25, AND 55 ARE TRACED
5 25 55

If the argument is empty or contains a value other than the well-formed name
of an unlocked operation, APL returns an empty Boolean vector.

For more details about 0 TRACE, see the VAX APL User’s Guide.
Possible Errors Generated

Dyadic Form

9 RANK ERROR (NOT MATRIX DOMAIN)

9 RANK ERROR (NOT VECTOR DOMAIN)

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (NOT AN INTEGER)

27 LIMIT ERROR (INTEGER TOO LARGE)

Monadic Form

9 RANK ERROR (NOT MATRIX DOMAIN)

10 LENGTH ERROR

15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

2-194 APL Reference Manual

System Variables and Functions
O TRAP Trap Expression

[1 TRAP Trap Expression

Type

System Variable

Form

OTRAP +« terminal-type
current-value « [TRAP

Value Domain

Type
Shape
Depth
Default

Result Domain

Type
Rank
Shape
Depth

Description

Character
Vector Domain
0 or 1 (simple)

L

Character
1

Vector

1 (simple)

OTRAP allows you to override a system response with a user-defined response.
The value of 0 TRAP is a character vector representing an APL expression.
This expression is executed (in #+ fashion) when any of the events listed in
Appendix A are signaled during the execution of a user-defined operation. This
includes an attention signal, an abort input signal, or a stop bit (0 ST0P). For
information on error handling, see the VAX APL User’s Guide.

You can set []TRAP as a global variable or localize it in an operation. When an
error occurs during execution of a user-defined operation, APL searches for the
most local 0 TRAP. If O TRAP is set to anything other than the empty vector (the
default value), APL executes it in the envirnoment of the operation where the

error occurred. For example:

APL Reference Manual 2-195

System Variables and Functions
0 TRAP Trap Expression

V R;0TRAP
[1] OTRAP« '[!
[2] A+5
[3] B«0
[4] C<A+B
[5] ADIVISION BY 0 IS DOMAIN ERROR

[6] L: '"TRAPPED ERROR, THEN CONTINUED'
[7] "EXECUTED LAST LINE' ¥
R
TRAPPED ERROR, THEN CONTINUED
EXECUTED LAST LINE

VST

JERROR
15 DOMAIN ERROR (DIVISION BY ZERQ)
R[4] C+A=B

A

The following example shows what happens when [0 TRAP is not set:

G
[1] A*5
[2]1 B+0
[3] C<4:B ¥
G
15 DOMAIN ERROR (DIVISION BY ZERO)
GL[3] C+A+B
A
VST
GL3] *

If execution of an operation’s] TRAP expression does not transfer control to
a new statement, the operation becomes suspended. If such an operation is
a locked operation, APL cuts back the state indicator to the first unlocked
operation and then signals DOMAIN ERROR (UNSUCCESSFUL TRAP IN LOCKED
FUNCTION).

Because a [] TRAP expression can call an operation, you may want to localize
OTRAP in the called operation and set 0 TRAP to ' ' to avoid unwanted loops.

Possible Errors Generated

2-196

9 RANK ERROR (NOT VECTOR DOMAIN)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (INCORRECT TYPE)

15 DOMAIN ERROR (UNSUCCESSFUL TRAP IN LOCKED FUNCTION)

APL Reference Manual

System Variables and Functions
0TS Time Stamp

[1 TS Time Stamp

Type

Niladic System Function

Form

current-time /date « 0TS

Result Domain

Type Integer

Rank 1

Shape 7

Depth 1 (simple)
Description

07s (time stamp) returns a vector (in base 10 format) representing the current
time and date. This vector is known as a time stamp and contains the current
year, month, day, hour, minute, second, and millisecond.

For example:

ars A21-NOV-90 11:31:55.134
1990 11 21 11 31 55 134

Possible Errors Generated

None.

APL Reference Manua! 2-197

System Variables and Functions
0 TT Terminal Type

(1 T T Terminal Type

Type

System Variable (session)

Form

OTT « terminal-type
integer-scalar <« OTT

Value Domain

Type Near-integer

Shape Singleton

Depth 0 or 1 (simple)

Value 0 through 19

Default Determined when APL is invoked.

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)
Depth 0 (simple scalar)

Description

07T (terminal type) indicates the type of terminal being used for the current
APL session. When you invoke APL, you specify the terminal type in an
initialization stream or in response to the terminal designator prompt.

07T allows you to change the terminal type during an APL session. The
following table shows the possible values and meanings for 0 TT:

2-198 APL Reference Manual

System Variables and Functions
07T Terminal Type

Orr Values
Value Meaning
1 APL COMPOSITE terminal
2 TTY-type terminal
3 Digital VK100 (GIGI) terminal (key-paired)
4 Digital LA-type terminal (key-paired)
5 APL/ASCII key-paired terminal
6 API/ASCII bit-paired terminal
7 Digital VAXstation running VWS(composite)
8 Digital VT102 (key-paired)
9 Digital VT220 (key-paired)
10 Digital VT240 (key-paired)
11 Tektronix 4013 terminal (key-paired)
12 Tektronix 4015 terminal (key-paired)
13 HDSAVT (key-paired)
14 HDS201 (key-paired)
15 HDS221 (key-paired)
16 Digital VT320 (key-paired)
17 Digital VT330 (key-paired)
18 Digital VT340 (key-paired)
19 Digital VAXstation running DECwindows (key-paired)

You can query for the current [7T value by entering] 7T without assigning a
value. APL responds with the current value. For example:

Sapl/term=decterm /silent=all
grr
19

If you specify APL as your terminal designator when you first invoke APL, O TT
is set to 5. You can change the value of 07T by assigning it a valid terminal
type. For example:

110 ATERMINAL DESIGNATOR IS APL
123456788910

017 + 2

.1010 "The terminal type 1is nov TTY
12345678910

APL Reference Manual 2-199

System Variables and Functions
077 Terminal Type

If you change the value of 77, APL may send an escape sequence to the
terminal to change its character set. This escape sequence is the same as the
one that is sent after you identify the terminal when invoking APL.

If the value of 07T is currently 9, 10, 16, 17, 18 or 19 and you leave the APL
environment temporarily (with a)D0, YEDIT, or) PUSH command), you should
be careful about changing your terminal type while at the operating system
level. If you return to APL with a different terminal type, or if the font files for
the APL character set are not available, APL signals an error. (You also get an
error if you restricted access to those files while at the DCL level.)

Note that 07T is a session variable; that is, its value is not saved with the
workspace and [TT is not reset by the execution of a) CLEAR command (see
Chapter 3). However, it can be localized in user-defined operations.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

10 LENGTH ERROR (NOT SINGLETON)

15 DOMAIN FRROR (ENCLOSED ARRAY NOT ALLOWED)
15 DOMAIN ERROR (ERROR ACTIVATING IMAGE)

15 DOMAIN ERROR (FONT FILF COULD NOT BE OPENED)
15 DOMAIN FRROR (INCORRECT TYPE)

15 DOMAIN ERROR (NEGATIVE INTEGER NOT ALLOWED)
15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (PARAMETER OUT OF RANGE)

27 LIMIT ERROR (INTEGER TOO LARGE)

2-200 APL Reference Manual

System Variables and Functions
O UL User Load

] UL User Load

Type

Niladic System Function

Form
pid <« QUL

Result Domain

Type Integer

Rank 0

Shape 10 (sealar)

Depth 0 (simple scalar)
Description

The result of UL (user load) represents the user’s process identification
number (PID). VMS assigns you a unique PID each time you log in to the
system. If you log off and then log back in to VMS, your PID (and thus, your
0UL value) probably will have changed. For example:

guL
93

You can use the following expression to convert a PID from decimal, as it
appears in the APL environment, to hexadecimal, as it appears in the DCL
environment:

'01234567890ABCDEF! [(OI0+(8p16)TOUL]
00000055

Possible Errors Generated

None.

APL Reference Manual 2-201

System Variables and Functions
0 VERSION Interpreter and Workspace Version

U VERSION Interpreter and Workspace Version

Type

Niladic System Function

Form

version-info ~ QVERSION

Result Domain

Type Character

Rank 1

Shape Vector

Depth 1 (simple)
Description

O VERSION returns a two-row character vector, with each row followed by a
<CR><LF>. The first row identifies the version of the interpreter under which
the current workspace was saved; the second row identifies the version of the
interpreter that is currently running. The display is in the form lv.u-edit,
where [is the support letter, v is the version number, u is the update number,
and edit is the edit number. For example:

OVERSION
V3.2-834
V3.2-834

Possible Errors Generated

None.

2-202 APL Reference Manual

System Variables and Functions
0 VI Validating Input

[] VI Validating Input

Type

Monadic System Function

Form

valid /invalid-number « O VI character-vector

Argument Domain

Type Character
Shape Vector domain
Depth 1 (simple)

Result Domain

Type Boolean
Rank 1

Shape Vector
Depth 1 (simple)

Implicit Arguments

(G (controls negative number recognition)

Description

0 VI determines the valid numbers in a character argument. 0 VI examines
fields in the argument that are delimited by one or more spaces, tabs, or a
carriage return (optionally followed by a line feed), and returns a Boolean
vector that contains a 1 in each position corresponding to a field containing a
valid number, and a 0 in each position corresponding to an invalid number. If
the argument is empty, 0 VI returns an empty array.

O VI is often used in conjunction with OFI and the compression function

(see Section 1.3.1) to select the valid numbers from a character string; O VI
produces the left argument of the compression function, and 7T produces the
right argument. For example:

APL Reference Manual 2-203

System Variables and Functions
0 vI Validating Input

A«'1.5 3 4 75 3.. 1.0F +1 "3
Ovi A
11010001

Recognition of negative numbers in the O VI argument depends upon the value
of the system variable ONG. If ONG equals 1 (the default), negative numbers in
the 0 VI argument must begin with the high minus sign () to be recognized.
If ONG equals 0, numbers preceded by a minus sign (-) are recognized as
negative numbers. If JNG equals 2, negative numbers are preceded by an
APL "+" symbol. (APL "+" prints as an ASCII "-" so JNG_2 can be used to
handle negative numbers in strings that will be read or written ‘a ASCIIL.) For
example:

ONG+1 A~ MEANS NEGATIVE
X166 G "7 +9 -u'
ovli x

10100
OFG+0 a- MEANS NEGATIVE
ovr x

10001
ONG=2 a+ MEANS NEGATIVE

ovr: x
10010

Note that the case where ONG is 0 may be useful when you use APL to
interpret data created by other languages, specifically those that do not use the
high minus sign (7).

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (INCORRECT TYPE)

2-204 APL Reference Manual

System Variables and Functions
0 VPC Vector Process Control

L] VPC Vector Process Control

Type

System Variable (session)

Form

O VPC <« session variable
integer-scalar < [1VPC

Value Domain

Type Non-negative near-integer

Shape Singleton

Depth 0 or 1 (simple)

Default Determined when APL is invoked.

Result Domain

Type Integer

Rank 0

Shape 10 (scalar)

Depth 0 (simple scalar)
Description

OVEPC determines the threshold at which vector processing is used. A value of
0 indicates that vector processing is not used; a value of 1 indicates that the
vector processing is always used.

When you invoke a session, APL: determines whether a vector processor is
available. O VPC is set to 0 if no vector processor is available; it is set to the
non-negative, near-integer default if a vector processor is available. You can
also specify the value for 0 VPC when you invoke an APL session with the
qualifier /INOJVECTOR=n (see the section on initializaiton streams in the
VAX APL User’s Guide).

If a vector processor is not present, setting (] VPC to a non-zero value results in
the use of the vector processer emulator. The vector processer emulator may
be useful for testing. The vector processer emulator should not be used for

APL Reference Manual 2-205

System Variables and Functions
0 VPC Vector Process Control

applications because APL’s performance with the emulator is usually poorer
than APL’s performance with the scalar processor.

[VPC is a session variable; that is, its value is not saved with the workspace,
and 0 VPC is not reset by the execution of a } CLEAR command (see Chapter 3).
However, it can be localized in user-defined operations.

You can query for the current JVPC value by entering [J VPC without assigning
a value. APL responds with the current value. For example:

gvec
30

Controlled testing can help you identify the threshold at which the increased
overhead of running the vector processer is compensated for by increased
performance.

Possible Errors Generated

9 RANK ERROR (NOT SINGLETON)
15 DOMAIN ERROR (NEGATIVE NUMBER NOT ALLOWED)
15 DOMAIN ERROR (NOT AN INTEGER)

15 DOMAIN ERROR (VECTOR PROCESSOR NOT AVAILABLE)

2-206 APL Reference Manual

System Variables and Functions
0 VR Visual Representation

[1 VR Visual Representation

Type

Monadic System Function

Form

OVR {value | object-name)

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Character
Rank Any
Shape Any
Depth Any

Implicit Arguments

0Dc¢ (Controls display of enclosed arrays)
O PP (Controls precision of numeric constants)

Description

O VR returns a character array of the visual representation of an APL object.
The argument is either a numeric array of any rank or a character array with
its shape in the vector domain.

If the argument is numeric,] VR works the same way as monadic v : the
numeric array is formatted into a character array that looks as the numeric
array would appear when displayed by APL (which is dependent on the [J PP
setting).

APL Reference Manual 2-207

System Variables and Functions
0 VR Visual Representation

If the argument is type character, its value must represent the name of an APL
object. If the character argument represents a variable or label, the result is
the same as for numeric arguments: APL formats the variable or label value
as a character array, making it look as it would appear when displayed by
APL.

If the character argument represents a user-defined operation, 0 VR returns
a character vector that is similar to the canonical representation of the
operation. Specifically, the visual representation of a user-defined operation,
F, is the operation definition displayed by the editor command AF[3] 4. The
result starts and ends with a A character, and each line begins with a line
number surrounded by square brackets and ends with a <CR><LF>.

If the character argument represents a derived function such as an operand
of a user-defined operator, 0 VR returns a character representation of it. For
example, if the operand is plus (+), then O VR returns the string '+1; if the
operand is outer product (+. «), then J VR returns '+.+'; and if the operand is
OCR, then O VR returns '0CR"'.

If the argument to O VR is empty, the result is an empty character vector.

Examples:

ACREATE FUNCTION FRTH
VZ « A FRTH B; X
[1] L: 7«4+ BV

JFNS
FRTH
(O«V+2 3p16 aCREATE AND DISPLAY V
123
L 56
oV
23
O«A<QVR V!
123
L 56
pA
25

0«B<{QVR 'FRTH'
VZ < A FRTH B; X
[1] L: 2« A+ 8B
v
0B
54

2-208 APL Reference Manual

System Variables and Functions
0 VR Visual Representation

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)
15 DOMAIN ERROR
15 DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

15 DOMAIN ERROR (OPERATION LOCKED)

APL Reference Manual 2-209

System Variables and Functions
0 WA Workspace Available

[WA Workspace Available

Type

Niladic System Function

Form

available-space < QWA

Result Domain

Type Integer

Rank 0

Shape 1 0 (scalar)
Depth 0 (simple scalar)

Description

OWA (workspace available) returns an integer scalar representing an estimate
of the amount of available storage space, in bytes, in the active workspace.
This value allows you to determine the maximum amount by which your
workspace can increase. APL obtains the value by subtracting the current
data-segment size from the maximum data-segment size which is the current
YMAXCORE setting (see Chapter 3). Thus, the value returned by O0#4 may

be greater than the amount of available memory or the amount of memory
allocated by APL. For example:

Owa
516980

Possible Errors Generated

None.

2-210 APL Reference Manual

System Variables and Functions
OWAIT Limiting Time on Read Functions

U WA IT Limiting Time on Read Functions

Type

Ambivalent System Function (dyadic form is quiet)

Form

current-timelimit <« OWAIT chans
10 « imelimit OWAIT chan

Monadic Argument Domain

Type
Shape
Depth

Value

Near-integer

Vector domain

0 or i (simple)

999 through 399 (but not 0)

Dyadic Left Argument Domain

Type

Shape
Depth
Value

Near-integer

Singleton

0 or t (simple)

" 1 through 255 (seconds)

Dyadic Right Argument Domain

Type
Shape
Depth

Value

* Near-integer

Singleton
0 or 1 (simple)
~999 through 999 (but not 0)

APL Reference Manual 2-211

System Variables and Functions
OWAIT Limiting Time on Read Functions

Result Domain

Type Integer

Rank 1

Shape Vector

Depth 1 (simple)
Description

Dyadic OWAIT specifies the amount of time you want APL to wait when it tries
to read a shared record that is locked by another user.

When you set a waiting period, APL waits even if you specified the
/READONLY : NOLOCKS qualifier when you assigned the file to a channel
with 14SS (NOLOCKS normally causes a read to happen without waiting).

The left argument (¢imelimit) determines the time limit; it has the following
meanings:

Value of Time Limit Meaning

1 Don’t wait, return immediately
Wait indefinitely (this is the default)
n Wait for n seconds

Monadic OWAIT queries the system for the current time limits associated with
individual channel numbers.

For each channel number in the argument, monadic Q¥AIT returns a value
between T 1 and 255 that can have the following meanings:

Value Returned Current Time Limit
1 Don’t wait
Wait indefinitely
n Wait for n seconds

OWAIT is described in the VAX APL User’s Guide along with other file I/O
information.

2-212 APL Reference Manual

System Variables and Functions
OWAIT Limiting Time on Read Functions

Possible Errors Generated

Monadic Form

1 FILE NOT FOUND (FILE NOT FOUND)

10

15

15

15

15

27

LENGTH ERROR (NOT VECTOR DOMAIN)

DOMAIN ERROR (ENCLOSED HETEROGENEOUS ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (INVALID CHANNEL NUMBER)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

Dyadic Form

1 FILE NOT FOUND (FILE NOT FOUND)

10

15

15

15

15

15

15

27

33

LENGTH ERROR (NOT SINGLETON)

DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (ENCLOSED HETFROGENEOUS ARRAY NOT ALLOWED)
DOMAIN ERROR (NOT AN INTEGER)

DOMAIN ERROR (PARAMETER OUT OF RANGE)

DOMAIN FRROR (INVALID CHANNEL NUMBER)

DOMAIN ERROR (CHANNEL NOT ASSIGNED)

LIMIT FRROR (INTEGER TOO LARGEF)

I0 ERROR (TIMEOUT PERIOD EXPIRED)

APL Reference Manual 2-213

System Variables and Functions
0 WATCH Monitoring Variable Changes

[0 WA T CH Monitoring Variable Changes

Type
Ambivalent System Function

Form

currentmode « [WATCH object-name
success / failure mode-number [JWATCH object-names

Monadic Argument Domain

Type Character
Shape Vector domain or one-row matrix
Depth 0 or 1 (simple)

Dyadic Left Argument Domain

Type Near-integer
Shape Vector domain
Depth 0 or 1 (simple)

Dyadic Right Argument Domain

Type Character
Shape Matrix domain
Depth 0 or i (simple)

Result Domain

Type Integer

Rank 1 or?2

Shape Vector or matrix
Depth 1 (simple)

2-214 APL Reference Manual

System Variables and Functions
0 WATCH Monitoring Variable Changes

Description

OWATCH is a debugging tool that allows you to monitor changes in the value

of APL objects. APL either displays or signals information when a watched
object is referenced or modified. You can set watch modes on variable and label
names and most system variables and niladic system functions. You cannot set
watch modes on nonniladic system functions, ill-formed identifiers, user-defined
operations, or group names. A watch mode remains in effect when the watched
object occurs in a locked operation; the watch bit is not reset, as is the case
with 0STOP and 0 TRACE.

A modification occurs any time a value is explicitly assigned to a variable
(niladic system functions and labels cannot be modified). A reference occurs
any time an object is referenced for its value.

In display mode, APL sends information to the current output and continues
execution of the operation where the reference or modification occurred. In
signal mode, APL signals an error (trappable with 0 7R4AP) and suspends the
operation.

Implicit in the use of the O¥WATCH command are the 0L and OR system
variables. Each time a modification occurs on a watched object, APL reassigns
the values of these variables: 0L contains the name of the changed object; OR
contains the previous value of the changed object. The object contains the new
value.

Dyadic 0WATCH enables watchpoints on one or more objects. The right
argument specifies the objects you want to watch. Each row contains the
name of one niladic system function or one variable (which can be a defined

or undefined variable), a system variable, or a label. You cannot watch the
following system variables: OR, [1L, or JERROR. If the right argument is empty,
or if it contains the name of an object that cannot be watched, APL returns an
empty Boolean vector.

The left argument determines the watch mode: either display or signal
mode. In addition, you can specify the watch mode for either modifications or
references.

APL Reference Manual 2-215

System Variables and Functions
OWATCH Monitoring Variable Changes

There are six watch modes:

Mode Meaning

Signal if modified

Display if modified

Signal if referenced

Display if referenced

Signal if modified or referenced

N O Otk W N

Display if modified or referenced

The result of dyadic JWATCH is a Boolean vector indicating whether the
watch mode was set for the specified variables. Each position in the vector
corresponds to a row of the right argument. A 1 indicates that the watch
mode was successfully set; a 0 indicates that the watch mode was not set. For
example:

B+ 35 p '"BABELSABLECABLE'
B

BABEL

SABLE

CABLE
4 OWATCH B

111

To clear the watch mode associated with an object or objects, use dyadic
OWATCH with an empty left argument. The result is a Boolean vector
indicating whether the watch mode was turned off. Each position in the
vector corresponds to a row of the right argument. A 1 indicates the watch
mode was successfully turned off; a 0 indicates the watch mode was not turned
off. For example:

"t OWATCH 3 5 o "BABELSABLECABLE'
111

In signal mode, you can trap a reference or modification with 0 7rRAP. APL
signals a primary message and one of three secondary messages. The signals
have the following form:

113 WATCH POINT ACTIVATED (VARIABLE HAS BEEN REFERENCED)

113 WATCH POINT ACTIVATED (VARIABLE HAS BEEN MODIFIED)

2-216 APL Reference Manual

System Variables and Functions
OWATCH Monitoring Variabie Changes

113 WATCH POINT ACTIVATED (VARIABLE HAS BEEN MODIFIED BY INDEX)

In display mode, APL displays information in different forms depending on
whether the event is a reference or a modification. For a reference, the display
form is as follows:

function-name [line o statement} object-name
OLD NAME CLASS: nc SHAPE: rho-vector
value

For a modification, the display form is as follows:

function-name [line ¢ statement] object-name
OLD NAME CLASS: nc SHAPE: rho-vector
value

NEW NAME CLASS: nc SHAPE: rho-vector
value

Note that if value is an enclosed array, APL does not display the value.
Instead, APL displays a message indicating that value is enclosed.

If the operation that contains the reference or modification is locked, APL
displays the name of the object with a protected del (¥) symbol (there is no line
number). .

Monadic OWATCH returns information indicating the current watch mode for
the object specified in the right argument. The right argument must have at
most one row, which means you must query for the watch mode one object at a
time.

The result of monadic Q¥ATCH is a one-element integer vector (unless the
argument is empty, in which case APL returns 1 ¢). There are seven possible
values which indicate the following watch modes:

Mode Meaning

1 Object not being watched
2 Signal if modified

3 Display if modified

4 Signal if referenced

APL Reference Manual 2-217

System Variables and Functions
O WA TCH Monitoring Variable Changes

Mode Meaning

5 Display if referenced

6 Signal if modified or referenced
7 Display if modified or referenced

When OWATCH is set in mode 2 or 6 on a name that is the left argument

of a strand assignment, the signal is delayed until APL has completed

all the assignments. If there is more than one watched name in the left
argument, APL only signals information on the last (rightmost) one. (For more
information, see the strand assignment sections in Chapter 1.)

Some events do not activate a OWATCH signal or display (immediate mode
events, for example). In addition, a watchpoint is not activated when the
following occur:

* A variable is used as an output parameter in a call to an external function.
¢ An object becomes shadowed by an operation invocation.
* An object becomes unshadowed by an operation termination.

® A variable is included in the argument of any of the following commands:
OEX, YERASE,)COPY, YPCOPY, 1QC0, and] QPC.

When you enable 1¥ATCH, the watchpoint is set on the most local version

of the specified objects. When a watched object becomes shadowed, APL
saves the current OWATCH definition and restores it when the object becomes
unshadowed. Labels are always local to an operation and are defined only
when the operation is being executed. To watch the referencing of a label,
you must enable [J¥ATCH within the context of the operation (either inside the
operation or in immediate mode while the operation is suspended or pending).
(The VAX APL User’s Guide has more information on debugging operations.)
An example of this behavior follows:

X<5 aDEFINE GLOBAL X
3 OWATCH ' X' AENABLE WATCHPOINT ON X
1
VSHAG1; X #DEFINE LOCAL X
[1] OeXet aSTMPLE ASSIGNMENT
21 ¥
SHAG1 aCALL 70 SHAG1, LOCAL X SHADONS GLOBAL X

aNO OWATCH EVENT OCCURS

2-218 APL Reference Manual

System Variables and Functions
OWATCH Monitoring Variable Changes

This same behavior occurs when a local variable becomes shadowed by a more

local variable:

YSHAGL; X ARE-WRITE SHAG1
[1] O«X<1
[2] 3 OWATCH X! RENABLE WATCHPOINT ON LOCAL X
[3] SHAG?2 aCALL SHAG2
[4] v
V SHAG2;X RADD ANOTHER LOCAL X
[1] O«X<2 ASIMPLE ASSIGNMENT
[2] v
SHAG1 REXECUTE SEAG1
1 (Value of local X in SHAG1)
2 (SHAG? local X shadows SHAG1 local X)
Examples:
F <5 aDEFINE GLOBAL F
3 OWAICH 'k aENABLE DISPLAY IF MODIFIED
1
VF0O RDEFINE FUNCTION FOO
[1] F <+ 19 aSIMPLE ASSIGNMENT MODIFIES F
{2] F ALINE 2 REFERENCES F
[3] v
Foo AaEXECUTE F0O
FOO[1] F
NAME CLASS: 2 SHAPE:
5
NEW NAME CLASS: 2 SHAPE: 9
12345671839
1234567839
5 OWATCH 'F! aREPLACE PREVIOUS WATCHPOQINT AND
1
AENABLE DISPLAY IF REFERENCED
Foo
FOO[21 F
OLD NAME CLASS: 2 SHAPE: 9

1234567829

1234567839
2 UWATCH 'F!
1
F <5
FoO

AREPLACE PREVIOUS WATCHPOINT AND

AENABLE SIGNAL IF MODIFIED

aNO SIGNAL FOR INTERACTIVE ASSIGNMENT

113 WATCH POINT ACTIVATED (VARIABLE HAS BEEN MODIFIED)

FOOL1] F <9

A

aSIMPLE ASSIGNMENT MODIFIES F

APL Reference Manual 2-219

System Variables and Functions
O WATCH Monitoring Variable Changes

181

FoO[1] =

F

ul
F

1234567883

5

UR

Possible Errors Generated

Monadic Form

9 RANK ERROR (NOT MATRIX DOMAIN)

10

15

15

LENGTH ERROR
DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)

DOMAIN ERROR (INCORRECT TYPE)

Dyadic Form

9 RANK FRROR (NOT MATRIX DOMAIN)

9

10

15

15

15

15

27

RANK ERROR (NOT VECTOR DOMAIN)

LENGTH ERROR

DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
DOMAIN ERROR (INCORRECT TYPE)

DOMAIN ERROR (INVALID WATCH MODE)

DOMAIN ERROR (NOT AN INTEGER)

LIMIT ERROR (INTEGER TOO LARGE)

2-220 APL Reference Manual

System Variables and Functions
0 X @ Executing Expressions

[] X @ Executing Expressions

Type

Form

Monadic System Function (sometimes quiet)

result <« 1XQ apl-expression

Argument Domain

Type Any
Shape Any
Depth Any

Result Domain

Type Any

Rank Any

Shape Any

Depth Any
Description

0XQ executes the expression represented by its argument as if that expression
were entered in immediate mode or included in a user-defined operation. For
example, the expressions 1 5 and 1XQ' 1 5' return the same result:

15
12345

0xg'1s’
12345

The argument can be a numeric (any shape) or a character array (vector
domain). If the argument to 0XQ is numeric, APL returns the value of the
argument):

0xg ss
55

APL Reference Manuai 2-221

System Variables and Functions
0XQ Executing Expressions

APL treats a <CR><LF> in the argument as a statement separator as if it

were input from the terminal, so multiple lines are allowed. The 0x¢Q function
always returns a value: either the value of the last statement evaluated in its
argument, or, if the last statement has no value, an empty array. For example:

D+[XQ'5+4
3+2
6!

9

5

6

The 0 x@ function can execute system commands or invoke the function editor.
For example:

JXQ'VR<FO0
A+2
B+3
R<4+B
v
1
FOO
5
OxXQ')FNs:
FO0
JXQ')VARS!
A B
0XQ' YERASE ' ,0XQ")VARS! RERASE ALL VARIABLES
A
11 VALUE FERROR
A

A
Pendent 00X functions are indicated by the '0X@' characters in the state

indicator. For example:

gxe ')so
0xq

Note that quiet functions are still quiet when executed, provided that 0xq is
the leftmost function in the statement:

D CAVASE
R CAVASE

2222 APL Reference Manual

System Variables and Functions
0 XQ Executing Expressions

When the argument is empty and numeric, the result is an empty numeric
vector (0XQ 1 0 <> 1 0). For example:

[1X@ 10
When the argument is empty and character, the result is an empty character
vector (1" = JXQ ') if a value is required by the expression. For example:
gxe RQUIET, NO OUTPUT
A<QlXQ '

If APL encounters an error while evaluating the X9 function’s argument, it
does not signal an error; instead, it stops evaluating the argument and returns
an empty array whose shape is 0 n, where n is a number indicating the error
that was encountered (see Appendix A for a complete description of all APL
errors). The complete text of the error message is placed in JERROR. For

example:
E<QXQ'5+5

3+2,

y!

10
E

(APL outputs a blank line)

pE

07
OERROR

7 0XQ SYNTAX ERROR (RIGHT ARGUMENT TO FUNCTION MISSING)

342,

A

If you enter the attention signal while the 0 X¢@ function is executing, APL stops
executing the argument to 0x¢@, and 0 x@ returns an empty array whose shape
is 0 18. Then, the normal order of execution continues.

The 0X¢q function cannot execute a branch statement; if one is entered, the
branch is not taken, and the result of the 0 XQ function, if needed, is an empty
vector. Thus, 0XQ never alters the flow of control within an operation.

Possible Errors Generated

9 RANK ERROR (NOT VECTOR DOMAIN)

APL Reference Manual 2-223

3

VAX APL System Commands

VAX APL provides a wide variety of system commands that allow you to
examine or change the state of the system. For example, you can do the
following:

® (Clear, save, or name the active workspace
¢ Load or copy a workspace from a secondary storage device
e List workspace, variable, and user-defined operation names

* Display the status of user-defined operations and local variables in the
workspace

¢ Set the index origin, the maximum number of significant digits, and the
output line width

¢ End an APL session

Unlike system functions and system variables, system commands are not
considered part of the APL language.

System commands are particularly useful in function-definition mode, because
they are executed immediately instead of being executed when the operation
is executed. Thus, you can change the APL environment without exiting from
the function editor. For example, if the terminal print width is set at 50, and
you display an operation line that is 60 characters long, you could use the
YWIDTH system command to change the print width so that the operation line
is displayed on one line.

Note that by giving system commands as arguments to the 0XQ system
function, you can use the commands within user-defined operations, rather
than having them execute immediately.

APL Reference Manual 3-1

System Commands
3.1 System Command Form

3.1 System Command Form

APL system commands begin with a right parenthesis, as shown in the
following form:

Ywhite command-name [space white arguments]

The right parenthesis is a required part of the system command name. white is
optional white space; that is, zero or more spaces or tabs. Space is a required
blank space. Arguments may or may not be allowed. See the individual
descriptions of the system commands for more details.

You can abbreviate a command name to its shortest unique form. Some system
commands take required or optional parameters; when you include them,

you must separate the individual items of the parameter list with at least

one space or tab. If a system command that takes no arguments is followed
by nonwhite space, or if an argument is invalid, APL signals INCORRECT
PARAMETER.

The following examples show the form of several system commands:

YCONTINUE

YCONT

JCONTIN

)SAVE MYWORK

WS40 A B C VARS N

The first three examples invoke the same system command,) CONTINUE; note
that the first four letters of each of the command names are the same. In the
fourth example, MYWORK is an argument to the) SAVE system command. The
fifth example shows a) COPY command that takes a series of arguments.

3.2 System Command Categories
There are two broad categories of system commands:

* Query commands obtain information

e Action commands that change the state of a workspace or the operating
environment

The action commands can be further categorized into the following logical
groups, which are described in the following sections:

* Query/change commands find out about or change the state of the
environment

¢ APL action commands manipulate APL objects in a workspace

¢ System action commands terminate or interrupt an APL session

3-2 APL Reference Manual

System Commands
3.2 System Command Categories

* Workspace manipulation commands manipulate workspaces

There are some system commands that specifically affect APL I/0; they are
described in detail in the VAX APL User’s Guide. Table 3—1 summarizes the
system commands.

3.2.1 Query System Commands

The query system commands return information about the current state of the
session, the active workspace, or the APL system or environment. The query
system commands follow:

JENS
)GRP
)GRPS
YNMS
JOPS
)VARS
)ST
JSINL
)SIS
)VERSION
)CHARGE
JOWNER
JLIB
YHELP

3.2.2 Query/Change System Commands

The query/change system commands are both action and query commands;
that is, they can return information about the present state of the APL
environment, or they can be used with an optional parameter to change the
state of the environment. The) ORIGIN command, for instance, can either
return or change the index origin setting.

In the following example,)ORIGIN is used first as an action command; it

sets the index origin to 0 and reports that the previous setting was 1. Then,
YORIGIN is used as a query command; it reports that the current setting of the
index origin is 0:

JORIGIN ©
WAS 1

YORIGIN
0

APL Reference Manual 3-3

System Commands
3.2 System Command Categories

Each of the query/change commands can be thought of as displaying, or
changing and displaying, a system variable. There are two types of system
variables: workspace and session.

Workspace variables are associated with a particular workspace; that is, they
are saved and loaded with the workspace. The system commands associated
with the workspace variables are as follows:

YWSID [wsnamell [/ PASSKORDI: Tpwlli
YPASSWORD I/ PASSWORD [: Tpwlll | pwl
YORIGIN [[n]

yDIGITS [[n]

YWIDTH [n]

Session variables are associated with the current APL session; they do not
change when the current workspace is changed, and they cannot be saved
with a workspace. The system commands associated with the session variables
follow:

YMAXCORE [[n]l
YMINCORE [[n]

Note that the system variables [1GAG, ITLE, 07T and [VPC are also session
variables.

3.2.3 APL Action System Commands

The APL action system commands cause some action to take effect within the
current workspace. The APL action system commands are as follows:

YCLEAR
YEDIT object-name /qualifiers
YERASE [/FNS] [/ GRPS] [/0PS] [/ VARS] list
)GROUP group-name [[group-member-list]]
)SIC
YSTEP [n] [/ SILENT] [/INTO | /0VER]
3.2.4 System Commands that Initiate System Action

This section describes the system commands that terminate or interrupt an
APL session or initiate some other program.

You can exit from APL in a variety of ways:
¢ Returning to the DCL command level

* Terminating the APL session, optionally returning to the DCL command
level

¢ Terminating the session and saving the active workspace

3-4 APL Reference Manual

System Commands
3.2 System Command Categories

¢ Interrupting the session and running other programs while at the DCL
command level, eventually returning to APL

The following system commands are in this category of commands that initiate
system action:

YMON

JOFF
YCONTINUE
YPUSH
YATTACH
YDO

3.2.5 Workspace Manipulation System Commands

The workspace manipulation system commands preserve, make active, and
delete workspaces. They also copy objects from workspaces to the currently
active workspace. The workspace manipulation system commands are as
follows:

YLOAD
YXLOAD
JSAVE
YCOPY
)PCOPY
YJDROP

3.3 System Command Reference

The following sections describe the APL system commands in alphabetical
order. Each description indicates the general category of the command: query,
query/change, apl action, system action, or workspace manipulation.

Table 3—-1 lists all the system commands and gives a brief description of their
uses.

Table 3-1 System Commands

Command Meaning

YATTACH Temporarily suspends the APL session and returns control to a
specified process

)CHARGE Displays a record of activity for the current APL session

(continued on next page)

APL Reference Manual 3-5

System Commands

3.3 System Command Reference

Table 3—1 (Cont.) System Commands

Command Meaning

YCLEAR Replaces active workspace with clear workspace

YCONTINUE Saves active workspace and exits APL

YCOPY Copies global objects from another workspace

YDIGITS Displays or changes the number of significant digits to be displayed

YDO Executes a VMS command; returns output to APL

)JDROP Deletes workspaces or files from a directory-structured device

YEDIT Edits a global object with the VAXTPU editor

YERASE Erases the named global object from the current workspace

YFNS Displays an alphabetical list of global function names

YGROUP Collects named objects into a group

YGRP Lists members of a group

YGRPS Displays an alphabetical list of group names

YHELP Displays information about APL features

YINPUT Diverts input to a device other than your terminal

YLIB Displays names of workspaces or files on a directory-structured
device

YLOAD Retrieves a workspace from secondary storage

YMAXCORE Displays or changes the setting for maximum workspace size

YMINCORE Displays or changes the setting for minimum workspace size

YMON Returns you to operating system command level

YNMS Displays all names in the symbol table

)OFF Ends current APL session

YOPS Displays an alphabetical list of global operator names

JORIGIN Displays or changes index origin

YOUTPUT Diverts output from your terminal to another device

YOWNER Displays information about the creation of the current workspace

) PASSWORD Displays or changes the workspace password

YPCOPY Same as) COPY but protects names already in use

3-6 APL Reference Manual

(continued on next page)

System Commands
3.3 System Command Reference

Table 3-1 (Cont.) System Commands

Command Meaning

YPUSH Temporarily suspends the APL session, returning control to the
operating system

YSAVE Saves a copy of the active workspace

VST Displays workspace state indicator

YSIC Clears workspace state indicator

YSINL Displays workspace state indicator, local symbols for each user-
defined operation, and argument to pending execute functions

VSIS Displays workspace state indicator, currently executing line, and
argument to pending execute functions

)JSTEP Executes lines of a function one at a time

) VARS Displays an alphabetical list of global variables

YVERSION Displays the APL version numbers for the workspace and interpreter

YWIDTH Displays or changes the terminal line width

YWSID Displays or changes workspace name; optionally changes workspace
password

YXLOAD Retrieves a workspace from secondary storage without executing

OorLx

APL Reference Manual 3-7

System Commands
)ATTACH Interacting with Other Processes

)ATTACH Interacting with Other Processes

Type

Action System Command

Form

YATTACH {process-name}

Qualifiers

/PARENT
Specifies that you want to attach to the first process established in the current
job.

Description

Note that you must specify either / PARENT or the process-name, but you cannot
specify both.

YATTACH interrupts the APL session and attaches to a process that already
exists within your current job. The APL session is not terminated when you
use)ATTACH. To return to APL, you can use the DCL command ATTACH on
the process name of the APL process. When you return to the interrupted
APL session, program execution resumes at the point after the execution of the
YATTACH command.

Examples:

QJGAG « 2 RBROADCASTS WILI BE DISPLAYED IN APL CHARACTERS
REXECUTE MAIL IN A SUBPROCESS NAMED MAILPROC
)PUSH/PROCESSNAME=MAILPROC MAIL

MAIL>ATTACH/PARENT
aWE ARE BACK IN APL
RGO READ THE NEW MAIL

YATTACH MAILPROC
You have 1 new message.

MAIL>read/new
#l 8-NOV-1999 15:15:15:41
From: APLVAX::USER2
To: USER1
CC:

Subj: Pizza today?

Do you want to have pizza for lunch today?

3-8 APL Reference Manual

System Commands
YATTACH Interacting with Other Processes

MAIL>attach/parent

aWE ARE BACK IN APL
YDO SHOW PROCESS/SUBPROCESSES

8-NOV-1990 15:39:04.42 User: USER1 Process ID: 00000067
Node: APLVAX Process name: aUSER<2n

There are 2 processes In this job:

«TWA2:
USER1+2 (%)
aUSER1«1 IS THE PROCESS FOR DO)
JOFF
TWA2: THURSDAY 8-NOV-1990 15:39:05.01
CONNECTED 00:00:39.53 CPU TIME 00:00:01.089
6 STATEMENTS 1 OPERATIONS
306 PAGE FAULTS 410 BUFFERED I0 125 DIRECT I0
$ show process/subprocesses

8-NOV-1990 15:47:58.25 User: USERI1 Process ID: 00000005A
Nede: APLVAX Process name: "_TWA4:"

There are 3 processes 1n this job:

_TWad: (*)
USER1_1
MAILPROC

Possible Errors Generated

22 INCORRECT PARAMETER (MISSING ARGUMENT)

22 INCORRECT PARAMETER (UNRECOGNIZED QUALIFIER KEYWORD)
114 ERROR PROCESSING ATTACH (ATTACH REQUEST REFUSED)

114% ERROR PROCESSING ATTACH (INVALID LOGICAL NAME)

114 ERROR PROCESSING ATTACH (NONEXISTENT PROCESS)

249 EXTRANEOUS CHARACTERS AFTER COMMAND

383 PARENT QUALIFIER REPEATED

APL Reference Manual 3-9

System Commands
) CHARGE Displaying Accounting Information

) CHA RGE Displaying Accounting Information

Type

Query Systemm Command

Form
YCHARGE

Description

Y CHARGE displays a record of activity during the current APL session and
includes the following:

* Your terminal identification

¢ Current time and date

* Length of time connected to APL

* Amount of computer CPU time used inside APL

¢ Number of APL operations executed

* Number of page faults while inside APL

e Number of buffered I/O and number of direct I/O while inside APL

For example:

JCHARGE
SYS$INPUT: WEDNESDAY 14-ROV-1990 16:03:22,16
CORNECTED 00:00:01.33 CPU TIME 00:00:00.40
0 STATEMENTS O OPERATIONS
160 PAGE FAULTS 20 BUFFERED I0 15 DIRECT IO

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

3-10 APL Reference Manual

System Commands
) CLEAR Clearing the Active Workspace

) CLE AR Clearing the Active Workspace

Type

APL Action System Command
Form

YCLEAR
Description

yCLEAR empties the active workspace by erasing all variables, groups, and
user-defined operations; resetting all workspace variables (but not session
variables) to their default values; closing all open files; and clearing the state
indicator.

The clear workspace has the following characteristics:

Contains no user-defined operations, groups, or variables
Has an index origin (0 10) of 1

Has an output line length (00 P¥) determined by the operating system width
specification

Has a comparison tolerance value (OCT) of 1E™ 15
Has a random link value (ORL) of 695197565

Has an empty character array as the value for 0LXx, 0TRAP, DERROR, 0L,
and OR

Has the automatic save feature turned off (JAUS 1s 0)
Outputs the negative sign (T) in TTY mode as .NG (ONG is 1)

Displays both primary and secondary error messages when an error occurs
(0TERSE is Q)

Has a workspace and interpreter version that are the same (the lines
returned by 0 VERSION match)

Displays numbers with ten significant digits (0 PP)
Has a clear symbol table and state indicator
Has the name CLEAR WS

Has an empty password

APL Reference Manual 3-11

System Commands
) CLEAR Clearing the Active Workspace

* Requests quad input with the message 0: followed by a <CR><LF> and six
blanks (0 SF)

e Has a default 0pC valueof (71 1 0 2) '', which means that there are no
boxes around enclosed arrays

Note that APL gives you a clear workspace when you begin a work session,
unless you have a CONTINUE workspace in your default device and directory
area, or unless you use an initialization stream to specify a workspace to be
loaded. Also note that) CLEAR clears only the active workspace; it has no effect
on workspaces you have saved with the)SAVE system command.

When the)CLEAR command completes execution, APL displays the message
CLEAR WS. For example:

JCLEAR
CLEAR WS

YMINC, YMAXC, 0GAG, OTLE, and OTT are not affected by) CLEAR.

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

3-12 APL Reference Manual

System Commands
) CONTINUE Saving the Workspace and Ending the Session

) CONTINUE Saving the Workspace and Ending the Session

Type

System Action System Command

Form

YCONTINUE [HOLD | LOGOUT]

Default in Clear Workspace
HOLD

Description

)CONTINUE works the same way as the)OFF system command, except that
before ending the session) CONTINUE saves the active workspace in your
default device and directory area under the name CONTINUE.APL. If files
named CONTINUE.APL already exist in your directory, the new CONTINUE
workspace will have a version number that is one greater than the next most
recent version.

The HOLD parameter (the default) returns you to DCL command level after
ending the APL session. The LOGOUT parameter logs you off the system after
ending the APL session. The) CONTINUE command prints the same message
that the) SAVE command prints, followed by the same summary information
that)oFF displays. For example:

JCONTINUE HOLD

WEDNESDAY 28-NOV-1980 16:04:29.46 15 BLKS
SYS$INPUT: WEDNESDAY 28-NOV-1990 16:04:29.90
CONNECTED 00:00:01.62 CPU TIME 00:00:00.42

0 STATEMENTS 0 OPERATIONS

191 PAGE FAULTS 24 BUFFERED I0 21 DIRECT IO

If a CONTINUE workspace exists in your default area when you begin an APL
session, it is loaded as your active workspace, unless you specify a different
workspace in an APL initialization stream, or unless the workspace had a
password when it was saved. If the CONTINUE workspace is saved with a
password, APL signals WORKSPACE LOCKED when the APL session begins.
You can still load the workspace by executing the command YLOAD CONTINUE
/ PASSWORD: pw.

APL Reference Manual 3-13

System Commands
) CONTINUE Saving the Workspace and Ending the Session

Note that the name of a CONTINUE workspace that is loaded is not CONTINUE;
the name is the one the workspace had when it was saved. The load message
displayed when APL is invoked identifies what the name was when the
workspace was saved. For example:

JLOAD CONTINUE

SAVED WEDNESDAY 28-NOV-1890 16:04:29.46 15 BLKS WAS EXAMPLE
YWSID

EXAMPLE

Note

APL does not delete your CONTINUE workspace after it is loaded. A
particular CONTINUE workspace in your default area may be loaded as
your active workspace each time you invoke APL, not just the first time
that you invoke APL after the workspace was created. If you do not
want the CONTINUE workspace to be loaded, you must explicitly delete
it from your default area, or specify a different workspace in an APL
initialization stream.

Possible Errors Generated

15 DOMAIN ERROR(EXTRANEOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (UNRECOGNIZED QUALIFIER KEYWORD)

3-14 APL Reference Manual

System Commands
) COPY Copying Objects from a Workspace

) COPY Copying Objects from a Workspace

Type

Manipulation System Command
Form

YCOPY wsname [[list]
Qualifiers

/ PASSHORDI:Ipwil
Specifies the password associated with the stored workspace.

/CHECK

Causes APL to examine the workspace for possible corruption (damage to
the internal structure of the workspace). If damage is detected, a message

is displayed and APL tries to recover as much information as possible from
the workspace and continue the copy. The recovered workspace may be
missing APL variables, user-defined operations, individual lines of user-
defined operations, and other APL objects that were damaged. The user must
determine what named objects have been removed from the workspace.

Description

)COPY retrieves global user-defined operations, global variables, and groups
from a stored workspace (wsname) and places them into your active workspace.
If there is a password associated with the stored workspace, you must include
it in the command string.

You can copy all the named objects in a workspace or a subset of them; lisz
identifies the specific objects to be copied. When you specify a list of objects,
you can use the » and + wildcards. If you omit the list parameter, all user-
defined operations, variables, and groups are copied.) COPY does not transfer
local values for variables and functions, nor does it copy the state indicator,
channel assignments, or any system variable such as the print width, index
origin, or print precision.

If your active workspace contains objects with the same name as those in the
copied workspace,) COPY replaces the global (but not the local) values in your
active workspace with the copied ones. For example, if B is a variable in the
active workspace with a global value of 10 and a local value of 5, and the
workspace being copied has a variable B with a global value of 20, after) cory
is executed the active workspace will have a variable B with a global value of

APL Reference Manual 3-15

System Commands
) COPY Copying Objects from a Workspace

20 and a local value of 5. A suspended or pendent operation, or an operation
still being defined in the active workspace is not replaced, and an operation
being created in the workspace being copied is not copied.

When you copy a group, all members of the group are copied along with their
values. However, if a member of a group is itself a group, APL copies only the
group name and not the value. Thus, for example, suppose the group GROUP1
has as members the variables 4 and B, and the group GRoUP2. Also suppose
that GROUP2 has as members the variables ¢ and D. Then, if you copy GROUP1,
you copy the values of 4 and B, but only the name of GROUP2, not the values of
C and D.

The) cOPY command displays the same message as the) .04D command. Note
that the size printed in this message is the size (in disk pages) of the active
workspace after execution of the) COPY command completes. If the list to be
copied contains an object that is not in the specified workspace, APL returns
the message NOT FOUND:, followed by a list of the objects (separated by tabs)
that were not found. The objects that were found are still copied, however.

The) COPY command performs the same operation as the 0QC0 system function
(see Chapter 2), but D@0 does not display messages to confirm that the copy
was successful.

Examples:
YCOPY AVER

SAVED WEDNESDAY 28-NOV-1990 16:20:42.14 24 BLKS
YCOPY AVER B

SAVED WEDNESDAY 28-NOV-1990 16:20:42.14 24 BLKS
yCOPY AVER G

SAVED WEDNESDAY 28-NOV-1990 16:20:42.14 24 BLKS
NOT FOUND: G

Possible Errors Generated

22 INCORRECT PARAMETER
22 INCOKRECT PARAMETER(ILL FORMED NAME)
27 LIMIT FRROR(ARGUMENT STRING IS TOO LONG)

83 DAMAGED WORKSPACE HAS BEEN CORRECTED (SOME SYMBOLS MAY HAVE
BEEN ERASED)

3-16 APL Reference Manual

System Commands
YDIGITS Output Precision

)DIGITS Output Precision

Type
Query/Change System Command

Form
YDIGITS [nl

Default in Clear Workspace

10

Description

YDIGITS displays or changes the value of the print precision system variable
(@ PP).

The print precision (n in the form) is the number of significant digits displayed
in APL floating-point output; it can be an integer from 1 to 16. It does not
affect the precision of internal calculations or the display of integers. APL
rounds off any number that has more digits than the current setting.

Executing the)DIGITS command in change mode has the same effect as
assigning a value to the [PP system variable (see Chapter 2).

Examples:

JDIGITS
10

1,23456789123456789
1.234567881

)DIG 5
WAS 10

1.23456789123456789
1.2346

)DIG 2
WAS 5

1.23456789123456789
1.2

APL Reference Manual 3-17

System Commands
)DIGITS Output Precision

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
22 INCORRECT PARAMETER (ILL FORMED NUMERIC CONSTANT)

22 INCORRECT PARAMETER (PARAMETER OUT OF RANGE)

3-18 APL Reference Manual

System Commands
) DO Executing a DCL Command

) DO Executing a DCL Command

Type
System Action System Command

Form
) DO command-string

Qualifiers
/ LOWERCASE
Refers to how you want) D0 to translate any output from the execution of the
command string. Without this qualifier, the)D0 command converts any ASCII
lowercase letters to uppercase unless you are using VI'102, VT220, VT240,
VT320, VT330, VT340, DECterm, VS, or TTY mnemonic mode, or unless the
output is the argument to execute (either 0XQ or ¢). Use the /LONERCASE
qualifier if you do not want this conversion to occur.
/NOKEYPAD
Specifies that you do not want the keypad characteristics of the current process
to be available to the new subprocess. The default is that the characteristics
are available.
/NOLOGICALS
Specifies that you do not want the logical name table from the current process
to be available to the new subprocess. The default is that the table is available.
/NOSYMBOLS
Specifies that you do not want the global and local symbol table (defined at the
DCL level) from the current process to be available to the new subprocess. The
default is that the symbol table is available.

Description

) DO interrupts the APL session and creates a VMS subprocess, putting you
at the DCL command level without terminating the APL session. Unlike
the) PUSH command,)DO attempts to recover any output resulting from the
execution of the command string.

APL Reference Manual 3-19

System Commands
) DO Executing a DCL Command

With) Do, you must always include a command string (do not enclose the
string in quotation marks); VMS creates a subprocess, executes the command
specified, and then returns to APL when the execution completes. For example,
the following executes the DCL command SHOW TIME and returns its output
to APL:

DOTIME<[JXQ'")D0 SHOW TIME'
DOTIME
8-NOV-1990 16:25:21

The command string must be no longer than 132 characters (after translation
to ASCII), not including leading white space (spaces or tabs before the
argument begins), but including all other white space within the argument.

Any output written to SYS$OUTPUT or SYS$ERROR is retrieved by APL. See
the VMS DCL Dictionary for a description of SYS$OUTPUT and SYS$ERROR.

While you are at DCL command level, your terminal is in ASCII rather than
APL mode, and your terminal characteristics (such as output line width) revert
to the system settings. When you return to APL, the APL character set is
restored, and your [] P¥ setting is the same as it was before you executed the
yDO command (although the default for 0 P¥ changes if you changed your
system terminal width). However, other terminal characteristics you may have
changed at command level (for example, the JGAG setting, or the ability to
input lowercase characters) remain changed.

Possible Errors Generated

22 INCORRECT PARAMETER (LOWERCASE QUALIFIER REPEATED)
22 INCORRECT PARAMETER (MISSING ARGUMENT)

22 INCORRECT PARAMETER (NOLOGICALS QUALIFIER REPEATED)
22 INCORRECT PARAMETER (NOSYMBOLS QUALIFIER REPEATED)
22 INCORRECT PARAMETER (NOKEYPAD QUALIFIER REPEATED)

73 SUBPROCESS ERROR (COMMAND BUFFER OVERFLOW
SHORTEN EXPRESSION OR COMMAND LINE)

3-20 APL Reference Manual

System Commands
) DRO P Deleting Stored Workspaces or Files

) DRO P Deleting Stored Workspaces or Files

Type

Workspace Manipulation System Command
Form

YDROP file-spec
Description

YDROP can delete any file for which you have the necessary protection
privileges. You can delete one, several, or all the files on a device and directory.

If you do not include a device and directory, your default device and directory
are assumed; however, you must always include a file name, file type, and
version number. You may use a wildcard designator to substitute for the
version number or for all or part of the file name or file type. In the following
example, all files on the default device and directory that begin with the letter
S are deleted. APL prints the file specification for each file dropped. For
example:

JDROP %, LIS;*
+DELETE-I-FILDEL, DEV1:[APLGRPIDOC.LIS;1 deleted (3 blocks)
+DELETE-I-FILDEL, DEV1:[APLGRP)SAMPLE.LIS;? deleted (3 blocks)
+DELETE-I-FILDEL, DEV1:[APLGRP)SAMPLE.LIS;1 deleted (3 blocks)
+DELETE-I-TOTAL, 3 files deleted (9 blocks)

The maximum length of the) DROP command argument is 121 characters
(after translation to ASCII), not including leading white space (spaces and tabs
before the argument begins), but including all other white space within the
argument.

Executing the) DROP command is equivalent to executing the DCL command
DELETE/LOG. For more details about the DELETE command, see the VMS
DCL Dictionary.

Possible Errors Generated

22 INCORRECT PARAMETER (LINE TOO LONG TO TRANSLATE)

22 INCORRECT PARAMETER (MISSING ARGUMENT)

APL Reference Manual 3-21

System Commands
) EDIT Editing with VAXTPU

) ED I T Editing with VAXTPU

Type

APL Action System Command
Form

YEDIT objectname
Qualifiers

Evolls commanp

Allows you to specify an initialization file to VAXTPU. The value for filespec
is a VMS file specification. If you omit the /COMMAND qualifier, or if you do
not specify a filespec value, VAXTPU uses the file specification assigned to the
logical name TPUINI as a default.

Inol/PISPLAY

Tells VAXTPU that you are using a support ANSI CRT terminal. This is the
default. You should specify /DISPLAY only during an interactive session.
/NODISPLAY tells VAXTPU that your are not using a supported terminal.
You should use this qualifier only when you run VAXTPU procedures in batch
mode.

/EXECUTE[:ipucommand]

Allows you to specify a VAXTPU command string that you want to execute
after the editor finishes any command or section files. Note, however, that
VAXTPU does not execute the /EXECUTE qualifier when either the command or
section file contatins a QUIT or EXIT command.

The value for ipucommand is a character string containing one or more
VAXTPU statements that you want VAXTPU to execute. It should not contain
any non-ASCII APL characters or embedded <CR><LF>s. You do not have to
place quotation marks around the string, but if quotation marks are necessary
for the VAXTPU operation, they must be balanced. The maximum length of
the string is 100 characters, and it must be terminated by the end of the line
or by another qualifier. If you do not specify tpucommand, APL ignores the
/EXECUTE qualifier.

The /EXECUTE qualifier is particularly useful when you run APL and)EDIT
in batch mode. For example, you can set up an error-checking routine to
handle situations where the VAXTPU file is too large to return to the APL
environment. If you create a VAXTPU procedure called CHECKMESBUFFER

3-22 APL Reference Manual

System Commands
) EDIT Editing with VAXTPU

that checks the VAXTPU message buffer for a WORKSPACE FULL error, you can
call the procedure with the /EXECUTE qualifier:

JEDIT FOO/EXECUTE:CHECKMESBUFFER

When you first invoke VAXTPU, the section and command files run, and the
/EXECUTE qualifier calls the CHECKMESBUFFER procedure. The procedure
does nothing because there is currently no WORKSPACE FULL error message
in the VAXTPU message buffer. However, if the editing session ends and the
file is too large, APL reinvokes VAXTPU. This time the CHECKMESBUFFER
procedure detects the error message and handles it accordingly.

/LC

Determines whether the line numbers of a user-defined operation appear in
the VAXTPU editor. This qualifier is useful because it allows you to view the
current line numbers associated with the lines of the operation. APL ignores
the /LC qualifier for objects that are not operations.

Once the file is in the editor, the line numbers no longer determine the
organization of the lines in the operation. When the file returns to the APL
environment, APL assigns new line numbers based on the order that it reads
the records from the VAXTPU editor. If you add new lines to the operation,
you do not have to include any line numbers.

When you do not specify /LC, APL generates the canonical representation of
the operation in the VAXTPU editor. (The canonical representation does not
include line numbers.)

/MODE[:mode]

Allows you to determine the input/output mode for the data moving between
the AP and VAXTPU environments. The value for mode is the integer 2 or 3,
and represents [1 and B, respectively. If you omit the /MODE qualifier, or if you
do not specify a mode value, APL uses /MODE: 2 as a default.

Note that you must specify ¥0DE : 3 if you have embedded line feeds in an
object and want them to remain intact in the file that VAXTPU returns to
APL. However, be aware that @ turns off APL overstrike and TTY mnemonic
translation.

/Ncl:nc]

Determines the name class of the object you are editing. This qualifier is
useful only when you intend to create a new object in the editor. The value for
nc is an integer that specifies the name class of the new object, which has the
following characteristics:

APL Reference Manual 3-23

System Commands
Y EDIT Editing with VAXTPU

Name Class Data Type Shape

2 Character Vector
3 Function Not applicable
4 Operator Not applicable

When you omit the /NC qualifier, or when you specify /N¢ without a value,
APL uses the name class of the object named by objectname as the default. If
objectname specifies a currently undefined object, APL uses 2 as the default
value.

/NG :ngll

Determines how VAXTPU displays the APL high minus sign (), which is used
to indicate a negative number. This qualifier only affects the representation of
numeric variables; numeric values within operations are not affected.

/NG is the equivalent of ONG and accepts the same values (0, 1, or 2). When ng
is 1, negative numbers are preceded by the high minus sign (7). When ng is 0,
negative numbers are preceded by the minus sign (-). When ng is 2, negative
numbers are preceded by the APL plus sign (+). (The setting 2 is used when
reading or writing ASCII files; the ASCII minus sign translates to the APL
plus sign. See the discussion of QNG in the VAX APIL Reference Manual for
more information.)

The default setting for /NG is the current setting for 0 NG.

/ PP:ppl

Determines the print precision of noninteger numeric values sent to VAXTPU.
/PP is the equivalent of PP and accepts the same values (1 to 16). If you omit
the /PP qualifier, APL uses the current value of 1 PP as the default. If you
specify /PP but do not include a value, APL uses the maximum allowable value
(16).

/PWE:pwi

Determines how APL segments an object for output to the temporary file in the
VAXTPU editor. The value for pw specifies the maximum number of characters
in a single line of output. /PW is the equivalent of [P¥ and accepts the same
values (35 to 2044). However, the greatest value that VAXTPU will accept from
APL is 900. If you specify a /Pw value greater than 900, APL selects 900 by
default. If you do not specify /Pw, or if you specify /Pw without a value, then
the default setting is 0 P¥ or 900, whichever is smaller.

3-24 APL Reference Manual

System Commands
) EDIT Editing with VAXTPU

VAXTPU truncates any record that has a length greater than 900. To avoid
losing data, APL forms records in the following manner when creating the
temporary file:

Functions APL breaks records between each line
Matrices APL breaks records between each row
Vectors APL breaks records at each <CR> <LF>

When you enter VAXTPU, some line wrapping may occur, depending on the
setting used for /PW. This could cause unexpected changes in the edited object,
and may result in an error when you attempt to end the editing session. To
avoid confusion, APL places a warning message in the VAXTPU message buffer
as you enter the editing session: LINE WRAP HAS OCCURED. The semantics
for line wrapping are as follows:

e If /PW is not specified, APL wraps records with length > 900
e If /Pw is specified, APL wraps records with length > s00 L 0P¥
e If /PWw=pw is specified, APL wraps records with length > 900 pw

[vol/ secTION:filespec]

Allows you to specify a section file to VAXTPU. The value for filespec is a
VMS file specification. If you omit the /SECTION qualifier, or if you do not
specify a filespec, VAXTPU uses the file specification assigned to the logical
name TPUSECINI as a default. If you desire to use the EDT emulation mode,
specify /SECTION:EDTSECINI.

/ TERMINAL[:termtypel]]
Determines the terminal type you want to use during the YEDIT session. The
values for termtype, and the character sets that they represent are as follows:

Terminal Type Character Set
TTY TTY
KEY KEY
BIT BIT
COMPOSITE COMPOSITE
VT102 BIT
VTr220 COMPOSITE
Vr2u0 COMPOSITE
V7320 COMPOSITE

APL Reference Manual 3-25

System Commands
) EDIT Editing with VAXTPU

Terminal Type Character Set
VT330 COMPOSITE
VT340 COMPOSITE
HDS201 COMPOSITE
HDS221 COMPOSITE
Vs COMPOSITE
DECTERM COMPOSITE

If you omit the /TERMINAL qualifier, or if you do not specify the termtype value,
APL uses the current terminal type as the default.

Description

The)EDIT system command allows you to edit global APL objects with the
VAXTPU editor. You can edit user-defined operations and variables. You
cannot edit enclosed arrays, and you cannot modify an operation that is
suspended or pendent. (If you edit a suspended or pendent operation, APL
puts an appropriate message in the VAXTPU message buffer, and you must
end the VAXTPU session with a QUIT command.)

When you invoke)EDIT, APL creates a temporary file containing the object
you want to edit and then invokes VAXTPU. When you exit VAXTPU, APL
reads the edited file from VAXTPU into the workspace. Note that APL returns
you to the VAXTPU editor if an error occurs as the file reenters the workspace.

For more information about VAXTPU, see the VAX Text Processing Utility
Manual.

Note that YEDIT is also described in the VAX APL User’s Guide.

Possible Errors Generated

3-26

5 DEFN ERROR (OPERATION SUSPENDED OR PENDENT)

15 DOMAIN ERROR (FRROR ACTIVATING IMAGE)

111 EDIT COMMAND FRROR (xx QUALIFIER REPEATED)

111 EDIT COMMAND ERROR (ARGUMENT TO xx IS OUT OF RANGE)

111 EDIT COMMAND ERROR (BAD ARGUMENT TO xx)

APL Reference Manual

111 EDIT COMMAND FRROR
DEFINITION)

111 EDIT COMMAND ERROR

111 EDIT COMMAND ERROR

111 EDIT COMMAND ERROR

111 EDIT COMMAND ERROR

111 EDIT COMMAND ERROR

111 EDIT COMMAND ERROR

111 EDIT COMMAND ERROR

111 EDIT COMMAND ERROR

111 EDIT COMMAND ERROR

111 EDIT COMMAND ERROR

System Commands
) EDIT Editing with VAXTPU

(EDIT COMMAND UNAVAILABLE DURING FUNCTION

(ENCLOSED ARRAY NOT ALLOWED)

(EXECUTE QUALIFIER ARGUMENT 15 TOO LONG)

(ILL FORMED NUMERIC CONSTANT)

(ILL FORMED NUMERIC MATRIX)

(ILLEGAL NAME CLASS)

(INCORRECT PARAMETER)

(MISSING ARGUMENT)

(OPERATION LOCKED)

(UNRECOGNIZED QUALIFIER KEYWORD)

(VOLUME TO0 LARGE)

APL Reference Manual

3-27

System Commands
) ERASE Erasing Global Names

) FRASE Erasing Global Names

Type

Form

APL Action System Command

)YERASE list

Qualifiers

/FNS
Limits the name class of the objects to functions.

/VARS
Limits the name class of the objects to variables.

/GRPS
Limits the name class of the objects to groups.

/OPS
Limits the name class of the objects to operations.

Description

3-28

)ERASE deletes the APL objects named in the list; it undefines global user-
defined functions and operations, erases global variables, and disperses groups
and erases their members.

When you specify list, you can use the ~ and + wildcards. You can use the
/FNS, /GRPS, /0PS, and /VARS qualifiers in conjunction with wildcards to limit
the name class of the objects being erased.

You cannot erase pendent or suspended operations, nor can you erase labels or
other local names. If you are inside the A editor, you cannot erase the function
being edited.

If a member of the named group is itself a group, the group name is erased,
but the members of the subgroup remain intact. For example:

APL Reference Manual

System Commands
) ERASE Erasing Global Names

JCLEAR
CLEAR WS
JLOAD TRIG_CIRCLE
SAVED THURSDAY 8-NOV-1990 15:08:07.52 12 BLKS

JENS
ARC COS DIAM RADIUS SIN TAN
aTRIG CONTAINS THE GROUP CIRCLE
JGRP TRIG
SIN COS TAN CIRCLE
aSHOW MEMBERS OF GROUP CIRCLE
JGRF CIRCLE
ARC RADIUS DIAM
YJERASE TRIG
JGRP TRIG
22 INCORRECT PARAMETER (NOT A GROUP)
)GRP TRIG
A
aERASING TRIG ERASED GROUPNAME CIRCLE
JGRP CIRCLE
22 INCORRECT PARAMETER (NOT A GROUP)
) GRP CIRCLE
A
AMEMBERS OF CIRCLE NOT ERASED
JFNS

ARC DIAM RADIUS

If a specified object cannot be erased, either because such an operation is
illegal or because the object is undefined, the following message is displayed:

NOT ERASED: list of objects

The objects are separated by tabs. There is no message when)ERASE is
successful.

Note that) ERASE leaves a slot in the symbol table for the erased name
(symbol). Although you erase a symbol, the slot in the symbol table still exists.
If you reuse a name that was in the symbol table, APL places it in the same
slot where it was before. If you do a) COPY of the workspace into a CLEAR WS,
APL rebuilds the workspace, thus erasing the slot as well as the symbol.

APL Reference Manual 3-29

System Commands
) ERASFE Erasing Global Names

Examples:

0«B+2 3 4
2 3 4
VERASE B
B
11 VALUF ERROR
B
A
¥ R«F
[1] aF CANNOT BE ERASED
[2] YERASE F
NOT ERASED: F
[2] v
VFNS G*
G2 GI
YVARS Gx

G3 G4
AUSE QUALIFIER TO LIMIT WILDCARD

JERASE [FNS Gx
aFUNCTIONS G1 AND G2 ARE GONE

YFNS
aVARIABLES G3 AND G4 STILL DEFINED

YVARS
G3 G4

Possible Errors Generated

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)
22 INCORRECT PARAMETER (ILL FORMED NAME)

27 LIMIT ERROR (ARGUMENT STRING IS5 TOO LONG)

3-30 APL Reference Manual

System Commands
) FNS Displaying a List of Functions

) FFN.S Displaying a List of Functions

Type
Query System Command
Form
YENS [start-stringlstop-stringlll
Qualifiers
/WSID:wsname[l /PASSWORD : pw]
Allows you to specify a nonactive workspace. If the nonactive workspace was
saved with a password, you must also specify the /PASSWORD qualifier.
Description

YFNS displays a list of the global names used as user-defined function names
in a workspace. By default, APL displays the list from the currently active
workspace.

The optional string parameters identify starting and stopping points for

the list. When you specify the string parameters, you can use the » and =
wildcards. The objects are listed in JAV order, separated by tabs. Each output
line in the list begins in column one.

Note that the wildcard determines the start-string. There is no wildcard for
the stop-string.

If you use)FNS with no parameters, APL displays all the global function
names in the workspace:

YJLOAD FNS

SAVED THURSDAY 8-NOV-1990 17:12:11.52 41 BLKS
YFNS

ALPH HILB INVRS INVT LSQ

If you include just one argument, APL uses Z as the default for the stop-string:

YLOAD OPERS

SAVED THURSDAY 8-N0OV-1990 18:06:12.76 12 BLKS
JENS IN

INVRS INVT L5¢
JENS INV INV

INVRS INVT

APL Reference Manual 3-31

System Commands
) FN .S Displaying a List of Functions

To obtain a list of all user-defined function names that begin with a given
prefix, use the prefix for both arguments or use a wildcard:

JLOAD OPERS

SAVED THURSDAY 8-NOV-1990 18:06:12.76 12 BLKS
JENS INV+

INVRS INVT

Possible Errors Generated

1 FILE NOT FOUND (FILE NOT FOUND)

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
22 INCORRECT PARAMETER (FILE SPECIFICATION IS MISSING)

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

22 INCORRECT PARAMETER (NOT A LETTER)

57 FILE DOES NOT CONTAIN A WORKSPACE

3-32 APL Reference Manual

System Commands
) GROUP Defining or Dispersing a Group

) GRO U P Defining or Dispersing a Group

Type
APL Action System Command

Form

) GROUP group-name l[group-member-list]

Description

) GROUP collects APL objects together under a single name. The objects can be
variables, user-defined operations, and other group names. When you specify
the objects, you can use the = and + wildcards.

The)GROUP command is often used with the)co2PY and) PCOPY commands.
After collecting a set of operations and variables under one group name, you
can specify the name in a) COPY or) PCOPY command to copy the entire
collection at one time.

In the following example, the functions and variables named INT, FUTVAL, and
PRESVAL are collected into a group named FINANCIAL:

YJGROUP FINANCIAL INT FUTVAL PRESVAL

To add a new member to an existing group, you must list the group name as an
item in the member list. Thus, the variable 74X is added to the group named
FINANCIAL as follows:

YGROUP FINANCIAL TAX FINANCIAL

To disperse a group, specify the group name without a group member list. The
group name will no longer be defined, but the individual members of the group
will still exist under their original names. The following command disperses
the group FINANCTAL:

JGROUP FINANCIAL

A group name is always global; you cannot localize it. For example:

APL Reference Manual 3-33

System Commands
) GRO U P Defining or Dispersing a Group

[1]
2]

C

A<l

B+2

VF;C

R<[1XQ 'GROUP C A B'")
v

F

YGRPS

Here, the)GROUP command executed inside the function 7 created a global
group name C, even though ¢ was included in the function’s local symbol list.

Possible Errors Generated

22

22

22

24

INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
INCORRECT PARAMETER (ILL FORMED NAME)
INCORRECT PARAMETER (MISSING ARGUMENT)

NOT GROUPED, NAME IN USE

3-34 APL Reference Manual

System Commands
) GRP Displaying the Members of a Group

) GK P Displaying the Members of a Group

Type
Query System Command
Form
)GRP group-name
Qualifiers
/WSID:wsname ([/PASSWORD: pwl
Specifies a nonactive workspace. If the nonactive workspace is saved with a
password, you must also specify the /PASSWORD qualifier.
Description

)GRP displays the names of the objects associated with the group name. The
names are listed in the order in which they are entered into the group and are
separated by tabs.

For example:

YGROUP APLGRP LEE PETER STAN DAVE ERIC CHIP CHRIS SHOTA
JGRP APLGRP
LEE PETER STAN DAVE ERIC CHIP CHRIS SHOTA

Possible Errors Generated

1 FILE NOT FOUND (FILE NOT FOUND)

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
22 INCORRECT PARAMETER (ILL FORMED NAME)

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

22 INCORRECT PARAMETER (MISSING ARGUMENT)

22 INCORRECT PARAMETER (NOT A GROUP)

57 FILE DOES NOT CONTAIN A WORKSPACE

APL Reference Manual 3-35

System Commands
) GRPS Displaying a List of Groups

) GRPS Displaying a List of Groups

Type
Query System Command
Form
YGRPS [start-stringllstop-string]l
Qualifiers
/WSID:wsnamefl /PASSWORD : pw]
Specifies a nonactive workspace. If the nonactive workspace was saved with a
password, you must also specify the / PASSWORD qualifier.
Description

)GRPS displays a list of group names in a workspace. By default, APL displays
the list from the currently active workspace.

When you specify the string parameters, you can use the » and : wildcards.
The names are listed in DAV order, separated by tabs. Each output line in the
list begins in column 1.

Note that the wildcard determines the start-string. There is no wildcard for
the stop-string.

If you use)GRPS with no parameters, APL displays all the group names in the
workspace. For example:

YGRPS
ALPH HILB INVRS INVT LSQ

If you include just one argument, APL uses Z as the default for the second
string:

YGRPS 1IN
INVRS INVT LSQ

JGRPS INV INV
INVRS INVT

To get a list of all group names that begin with a given prefix, use the prefix
for both arguments or use a wildcard.

JGRPS INVx
INVRS INVT

3-36 APL Reference Manual

System Commands
) GRPS Displaying a List of Groups

Possible Errors Generated

1 FILE NOT FOUND (FILE NOT FOUND)

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

22 INCORRECT PARAMETER (NOT A LETTER)

57 FILFE DOES NOT CONTAIN A WORKSPACE

APL Reference Manual! 3-37

System Commands
) HEL P Obtaining Help on the VAX APL Language

) HE'L P Obtaining Help on the VAX APL Language

Type
Query System Command

Form
YHELP [[stringll

Qualifiers
/LIBRARY : filespec
Specifies a Help library other than the default APL Help library. This feature
allows you to write your own Help libraries and reference them through the
APL) HELP facility. If you want to make your help library the default (and
thus avoid specifying the /LTBRARY qualifier each time you invoke) HELP), you
can define the logical name APL$HELP: as the value for filespec.
The /LIBRARY qualifier must follow directly after the) #ELP command, and
you must specify the colon or equal sign and the VMS file specification. If
you specify a file that does not exist, APL signals ERROR PROCESSING HELP
(FRROR OPENING AS INPUT).

Description

3-38

YHELP provides controlled access to the APL Help facility via the VMS Help
librarian.

The APL Help library is a file associated with the VMS logical name
APL$HELP:. You can define that logical name if you want your own help
library to be the default. If APLSHELP: is not defined, VAX APL looks for a
file named SYS$HELP:VAXAPI.HLB, which is placed on your system during
installation.

The APL Help Library contains the actual text of the help topics and is
organized into multiple levels. For example, 4SS is a secondary level topic
under QUAD-NAMES, which is a primary level topic.

You can gain access to the primary level topics by entering the name of a
primary key as the string parameter. Each of these topics contains explanatory
text and a menu of secondary level topics. The primary keys include the
following.

APL Reference Manual

System Commands
) HEL P Obtaining Help on the VAX APL Language

Primary Key Topic

Help General information and menus of other topics

Error-numbers Error messages beginning with a numeric string

Symbols 04V characters

Qualifiers Qualifiers beginning with the slash (/) symbol

Quad-names System functions and variables beginning with
the quad (1) symbol

System-commands System commands beginning with the right

parenthesis ()) symbol

To gain access to a secondary level topic, you can enter the name of a primary
key followed by a space and the name of a secondary key. Use the following
form:

YHELP primary-key secondary-key

In many cases, you can omit the primary-key parameter and obtain help
directly from a secondary level; if you specify a system command, system
function, system variable, qualifier name, or error number, APL generates the
primary key for you and uses your string as the secondary key. (Note that APL
generates primary keys only when you use the default APL Help library.) For
example, you can enter) FELP OMBX and receive information on QMBX without
enterring)HELP QUAD-NAMES OMBX. The following table describes how APL
translates secondary key entries:

INPUT TRANSLATION
Secondary Key Primary Key
null-string Help
numeric-string Error-numbers
atomic-vector-character Symbols

string Qualifiers

(string Quad-names

) string System-commands

APL also performs translations in other instances where the first character
(not including blanks) following the) ZELP command is a character from the
following table. (These translations do not occur when you have specified
/LIBRARY.)

APL Reference Manual 3-39

System Commands
) HEL P Obtaining Help on the VAX APL Language

INPUT TRANSLATION
Secondary Key Primary and Secondary Keys

. Symbols period
$ Symbols dollar
+ Symbols divide
! Symbols shriek

1 Symbols ’

@ Symbols at sign

A Symbols lamp

? Symbols question mark
(Symbols left parenthesis

Aside from the instances described above where APL recognizes a string and
generates the appropriate primary and secondary keys, APL assumes that the
string you enter is a primary key followed by optional subkeys separated by
blanks. For example,)HELP ARITHMETIC-FUNCTIONS provides a description
of arithmetic functions and a menu of subtopics on which you could obtain help.
Entering)HELP ARITHMETIC-FUNCTIONS FACTORIAL provides information on
the factorial function.

Once APL determines a primary key, it translates the key and all related
subkeys from AV characters to TTY mnemonics using [1 mode; this produces
keys in a format understood by the Help facility, which then locates the
appropriate text. This text is then translated from TTY mnemonics to GAV
characters, converted into uppercase, and then sent to the appropriate output
destination by APL. (The text is not converted into uppercase in two instances:
when your terminal is a VT102, VT220, VT240, VT320, VT330, VT340,
DECterm, VS, or is in TTY mode; and when you execute) HELP with [XQ or
e.)

When you request information that currently exists within the APL Help
Library, the output appears in the following form:

keyl
key2
key3

help text
additional help text (if any)

3-40 APL Reference Manual

System Commands
) HEL P Obtaining Help on the VAX APL Language

When you request information that currently does not exist within the APL
Help Library, the output appears in the following form:

SORRY, NO DOCUMENTATION ON xxx
ADDITIONAL INFORMATION AVAILABLE ON ...

Where xxx is the string you specified when you invoked)HELP, and . . .
indicates a menu of available help topics.

APL treats the string parameter as a prefix when it locates a topic in the
APL Help Library. For example,)HELP OL finds the help file text for all
QUAD-NAMES beginning with L.

The APL Help facility accepts wildcards in the form of the ellipsis (...) and
pairs of star characters (x x). (A single » character returns information on the
* gsymbol.) For example:

Command Meaning

YHELP * % Returns text on all primary key levels.

YHELP x % ... Returns all text on all levels.

YVHELP key-name . . . Returns all text on the primary key (key-name

and all its subkeys).

Note that you cannot use the ellipsis on secondary (or lower) keys:

JHELP
HELP

The)HELP command provides you with controlled access to the VMS
HELP librarian to obtain help on various topics related to the

VAX APL lanquage. APL looks for the file associated with the
logical name APL$HELP:. If that iIs not defined, it looks for
SYSSHELP:VAXAPL.HLB. This system command accepts terms familiar to
APL as keys into the APL help library and returns a character vector
(help text) with embedded Carriage Returns Line Feeds.

Additional information available:

APL-applications APL-command-1ine Arithmetic-Functions Axis
Comments Editor Error-Numbers Execute-only
File-System Function-Names Glossary Help Indexing
Logical-Functions Operators (uad-Names Qualifiers
Relational-Functions Specification-Function Statements Symbols
System-Commands Terminal-Input-Output Terminal-Support
JHELP +
SYMBOLS

'
+

Plus TTY mpnemonic is +

APL Reference Manual 3-41

System Commands
) HE'L P Obtaining Help on the VAX APL Language

To obtain help on monadic + type)HELP ARITHMETIC-FUNCTIONS CONJUGATE
To obtain help on dyadic + type)HELP ARITHMETIC-FUNCTIONS ADD

YHELP 6

ERROR-NUMBERS

00

06 LABEL ERROR

Improper use of a colon was detected, or an Improper variable
name vas entered as a label.

Secondary error messages:
(DUPLICATE LABEL)
(NAME IN USE)

An attempt was made to use the same identifier for both a label and
a local symbol or argument.

(OPERATION SUSPENDED, PENDENT, OR MONITORED)

An attempt was made to change a label definition in a suspended, pendent,
or monitored operation.

aNOTE THAT THE ARGUMENT IO)YHELP IS TREATED AS A PREFIX
aTHERE IS MORE THAN ONE QUAD-NAME THAT STARTS WITH QL
JHELP (0L

QUAD-NAMES

0L

0L - Watched Variable Name
Type: System Variable
Forms: [L < any-value

variable-name + (L
Value Domain:

Type: Any
Shape: Any
Depth: Any
Result Domalin:
Type: Character (any when set by user)
Rank: 1 (vector) (any when set by user)
Shape: Vector (any vhen set by user)
Depth: 1 (simple vector) {any when set by user)
Default: '

A variable that Is used implicitly by OWATCH. 0L

contains a character vector showing the name of a watched
variable that has changed. [L is set implicitly by the

system when a variable changes, but can also be set by the user.

Additional information available:

Errors

QUAD-NAMES

11

c

3-42 APL Reference Manual

System Commands

} HEL P Obtaining Help on the VAX APL Language

0LC - Line Counter
Type: Niladic System Function
Form: current-line-number « [JILC
Result Domain:
Type: Integer
Rank: 1 (vector)
Shape: Vector
Depth: 1 (simple vector)
Default Value: Empty

Vector of line numbers in the state indicator;
most recently suspended operation appears first.

Typing +0LC restarts the most recently suspended
operation at the beginning of the line where execution
vas stopped.

Additional information available:

Errors

QUAD-NAMES
QrLx

OLX - Latent Expression

Type: System Variable

Forms: [LX « character-vector
current-value + OLX

Value Domain:

Type: Character
Shape: Vector domain
Depth: 0 or 1 (simple)
Default: '

Result Domain:
Type: Character
Rank: 1 (vector)
Shape: Vector
Depth: 1 (simple vector)

Causes expression to be executed automatically
vhen workspace is loaded.

The expression Is not executed when you load the
vorkspace with the YXLOAD system command.

Additional Information available:
Errors

aTHE NEXT EXAMPLE DEMONSTRATES THE /LIBRARY QUALIFIER
JHELP /LIBRARY=DEV1:[APLGRP.LIBRARYITEMP.HLB

HELP

This is a sample help file. You can modify the VAX APL HELP
function file or create additional help files.

For help building library files, see the VMS LIBRARIAN
REFERENCE MANUAL.

Additional information available:

APLHELP File Assigning_Default_Library
Library Source File Library Utility

APL Reference Manuai 3-43

System Commands
Y HEL P Obtaining Help on the VAX APL Language

YHELP /LIBRARY=DEV1:[APLGRP.LIBRARYITEMP.HLB APLHELP

APLHELP File

Certain files may be modified after installation If desired.

VAXAPL .HLP, the source text of the VAX APL HELP function file,
Is In SYSSLIBRARY. You can add new text to the HELP library.
Refer to)HELP HELP HOW-TO-BUILD while inside VAX APL for
instructions on creating the help file.

Possible Errors Generated

112

112

112

112

ERROR PROCESSING HELP (ERROR OPENING AS INPUT)
ERROR PROCESSING HELP (ERROR PARSING ARGUMENT TO LIBRARY)
ERROR PROCESSING HELP (INVALID KEY)

ERROR PROCESSING HELP (TOO MANY HELP KEYS SPECIFIED)

3-44 APL Reference Manual

System Commands
) INPUT Diverting Input to Another Device

) INPUT Diverting Input to Another Device

Type
Query/Change System Command

Form
YINPUT [lfilespec [/character-setll]

Qualifiers

/LIST
The query form of the) INPUT command. Use /LIST to list the names of the
currently nested input files.

/REVERT
Cancels all nested input files and returns to your terminal as the source of
input.

Description

YyINPUT allows you to change the source of APL input from your terminal to
other devices. Typically, you would select a file (filespec) to be the new source.
character-set specifies that the file is to be read in a character set other than
the one you designated for your terminal when you invoked APIL. The possible
values are /TTY, /KEY, /BIT, /COMPOSITE and /APL.

If no arguments are used,) TNPUT cancels the current input stream and
returns to the previous input stream on the list.

The) INPUT system command is also described in the VAX APL User’s Guide
along with other I/O information.

APL Reference Manual 345

System Commands
) INPUT Diverting Input to Another Device

Possible Errors Generated

1 FILE NOT FOUND (FILE NOT FOUND)

14 DEPTH ERROR (TOO MANY DIVERTED INPUTS)

22 INCORRECT PARAMETER (FEXTRANEOUS CHARACTER AFTER COMMAND)
22 INCORRECT PARAMETER (INVALID CHARACTER SET QUALIFIER)

35 INVALID FILE SPECIFICATION (WILDCARDS NOT ALLOWED IN FILE
SPECIFICATION)

3-46 APL Reference Manual

System Commands
) L IB Listing Workspace Names

) L I B Listing Workspace Names

Type

Query System Command
Form

)LIB [Hfile-specll
Description

yLIB displays a list of workspace or file names located in the area specified.

If you omit file-spec,) LIB lists all the files on your default device and directory
area that have the file type .APL (the default for workspace names). If you use
file-spec, APL lists the names of all selected files, not just workspaces, on the
selected device and directory.

You can identify a particular file, or use the wildcard characters «+ and <, to
substitute all or part of the file name or file type; for the version number, only
* is a valid wildcard character. In the following example, this command lists
all files on the default device and directory that have a file name beginning
with the letter v:

JLIB Wx . %%

The following command lists the names of all files on the default device in the
directory [USER.APL]:

JLIB [USER.APL]

The file names in the list begin in column 1 and are separated by a Carriage
Return Line Feed. The list of file names is preceded by a line identifying the
device and directory, and the list is followed by a line that tells how many files
were listed. For example:

JLIB
Directory DEV1:[APLGRF]

ALPHA.APL;1
CHAR.APL;1

GEORGE .APL;1
PRIME.APL;1

APL Reference Manual 3-47

System Commands
) LIB Listing Workspace Names

Total of 4 files.
YSAVE WS40

THURSDAY 29-NOV-1990 16:54:45.31 3 BLKS
YLIB

DEV1:[APLGRP]
ALPHA.APL;1
CHAR.APL;1
GEORGE.APL; 1
PRIME.APL;1
WS40.APL;1

Total of 5 files.
JSAVE WS40.VAR

THURSDAY 29-NOV-1990 16:54:45.84 3 BLKS
JLIB WS40, =*

Directory DEV1:[APLGRP]

WS40.APLy1
WS40.VAR; 1

Total of 2 files.
YLIB * .

Directory DEV1:[APLGRP]

ALPHA.APL;1
CHAR.APL;1
GEORGE.APL; 1
LIS«WOR+1.4AS5;1
LIS«WOR+<1EX.0UT;1
LIS«WOR+1TMP.AAS; 1
PRIME.APL;1
WRITE+«EXAMPLE.COM;7
WS40.APL; 1
WS40.VAR; 1

Total of 10 files.

Note that when you execute the)IL.7B command with no argument, APL passes
the following command string to VMS for execution:

DIRECTORY/COLUMNS=1/HEADING/TRAILING *.APT;*

3-48 APL Reference Manual

System Commands
) LIB Listing Workspace Names

If you include an argument with)Z7B, that argument is substituted for

* .APL;* in the command string passed to VMS. The argument may be no
more than 95 characters long (after translation to ASCII), not including leading
white space (spaces or tabs before the argument begins), but including all other
white space within the argument. For example:

JLIB/PROTECTION WS40, x
Directory DEV1:[APLGRP]

WS40.APL;1 (RWED ,RWED ,RE)
WS40.VAR;1 (RWED ,RWED ,RE)

Total of 2 files.

The)L IB command uses the DCL command DIRECTORY. This is true even
if you have a symbol definition for DIRECTORY that has different qualifiers.
For more details about the DCL command DIRECTORY, see the VMS DCL
Dictionary.

Possible Errors Generated

22 INCORRECT PARAMETER (LINE TOO LONG TO TRANSLATE)

APL Reference Manual 349

System Commands
Y LOAD Retrieving a Workspace

) LOAD Retrieving a Workspace

Type

Workspace Manipulation System Command

Form

YLOAD wsname

Qualifiers

/PASSWORD [:Apwlll
If you use a password when the workspace is saved, you must specify it

when you perform a load operation or APL will not retrieve the workspace. A
/PASSWORD or /PASSWORD: specification that is not followed by a password is
ignored.

/CHECK

The optional /CHECK qualifier causes APL to examine the workspace for
possible corruption (damage to the internal structure of the workspace). If
damage is detected, a message is displayed and APL tries to recover as much
information as possible from the workspace and continues the load. The
recovered workspace may be missing APL variables, user-defined operations,
individual lines of user-defined operations, and other APL objects that were
damaged. The user must determine what named objects have been removed
from the workspace. You must use the) SAVE command if you want to
maintain an undamaged version of the recovered workspace.

Description

)y LOAD makes wsname the active workspace by replacing, and thus destroying,
the contents of the currently active workspace. If the workspace named by
wsname is larger than the current)MAXCORE setting, APL increases the
setting and loads the workspace.

The file specification you give for wsname must include at least a file name.
APL will assume default values for the rest of the specification; that is, it
assumes the file type .A4PL, the current user device and directory, and an
empty password.

3-50 APL Reference Manual

System Commands
) LOAD Retrieving a Workspace

When you load a workspace, the)L0AD system command responds by
displaying the word SAVED, followed by the time and date when the workspace
was saved, followed by the size (in disk pages) of the newly active workspace.
If the newly active workspace contains a suspended operation, APL also prints
a star. If the newly active workspace is larger than the current setting for
MAXCORE, APL prints the message NEW MAXCORE IS5 nnnP, where nnn is the
new size of maxcore, and P indicates that the size is measured as pages of
memory. The }¥SID value of the loaded workspace is the value you specified
for wsname.

The 0QLD system function (see Chapter 2) performs the same operation as the
) LOAD command, but does not display the verifying messages.

The verifying messages for the)L04AD and) SAVE system commands are very
similar. The only difference is that when you load a workspace, the message
includes the word SAVED. You can use this difference to distinguish between a
workspace that has just been loaded and a workspace that has just been saved.
For example:

VFRY

[1] M « [0XQ 'SAVE ROAR'")

[2] 'MESSAGE IS ' ; M

[3] v
YWSID FRY

WAS CLEAR WS
FRY

MESSAGE IS THURSDAY 8-NOV-1990 17:12:33.14 16 BLKS
YLOAD ROAR

MESSAGE IS SAVED THURSDAY 8-NOV-1990 17:12:33.14 16 BLKS
M

SAVED THURSDAY 8-NOV-1990 17:12:33.14 16 BLKS

In this case, the user executes the) SAVE command from within the function
FRY. APL saves the workspace and assigns the verifying message of the
}SAVE command to the variable ¥. Next, the user loads the workspace. APL
immediately continues execution of the function and assigns the verifying
message of the)LOAD command to the variable M.

When you load a workspace that was saved inside 0 input, APL removes the
pendent [input from the state indicator stack. If the J input was executed
from within an operation, APL suspends the operation after removing the
pendent 0 input from the stack.

If the 0 LX system variable (see Chapter 2) has a value in the workspace, it is
executed when the workspace is loaded, unless the top of the state indicator
stack contains an execute function, or unless the workspace was saved in
function-definition mode (if it was, you remain in function-definition mode after

APL Reference Manual 3-51

System Commands
) LOAD Retrieving a Workspace

the workspace is loaded). If the workspace was saved inside [0 input, the 0Zx
expression is executed only after APL removes the pendent [J input from the
state indicator stack.

Examples:

JLOAD WS35 .

SAVED THURSDAY 8-NOV-1990 17:12:11.52 41 BLKS
YLOAD SYS$SCRATCH:TICTAC

SAVED THURSDAY 8-NOV-1990 17:11:59.28 41 BLKS

nJEN HAS 4 SUSPENDED OPERATION

yLOAD JEN

SAVED THURSDAY 8-NOV-1990 17:04:23.38 42 BLKS+
)JCLEAR

CLEAR WS
OLX « '"'"'"USE APL_LASER PRINTER''!
YLOAD SQUARE

SAVED THURSDAY 8-NOV-1990 17:03:11.46 11 BLKS
SQUARE
YWSID ROOT

WAS SQUARE
)SAVE ROQOT

THURSDAY 8-NOV-1990 17:27:40,51 12 BLKS
JLOAD ROOT

SAVED THURSDAY 8-NOV-1990 17:27:40.51 12 BLKSx

Possible Errors Generated

22 INCORRECT PARAMETER

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

3-52 APL Reference Manual

System Commands
YyMAXCORE Determining the Maximum Workspace Size

) MAX CORE Determining the Maximum Workspace Size

Type
Query/Change System Command

Form

YMAXCORE [[n]

Default in Clear Workspace
1024P / 1048576P

Description

As an action command,)MAXCORE changes the current setting for the
maximum workspace size to the value specified (n) and displays the previous
YMAXCORE setting. As a query command,)MAXCORE returns the current
maximum workspace size and the system maximum workspace size.

You may not set the current maximum workspace size to a value smaller than

the amount currently in use, or to a value less than 40, which is the minimum
value of n for all new workspaces. Also, you may not set the maximum size to a
value larger than the system maximum. Note that, depending on your system

resources, you may not have access to the maximum amount of memory.

Although the number of pages (P) appears in the display, you do not type P in
the command string. For example:

YMAXC
1024P/ 1048576P

YMAXC 2000
WAS 1024P/ 1048576P

YMAXC
2000P/ 1048576P

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
22 INCORRECT PARAMETFER (ILL FORMED NUMERIC CONSTANT)

22 INCORRECT PARAMETER (PARAMETER OUT OF RANGE)

APL Reference Manual 3-53

System Commands
)MINCORE Determining the Minimum Workspace Size

) MINCORE Determining the Minimum Workspace Size

Type
Query/Change System Command

Form
YMINCORE [[n]

Default in Clear Workspace
40P

Description

YMINCORE displays or changes the current minimum workspace size (in
pages). As an action command,)MINCORE changes the current setting for

the minimum workspace size to the value specified (n) and displays the
previous setting. Legal values for the)MINCORE setting are 0 through the
current)¥MAXCORE value. As a query command,)MINCORE returns the current
minimum workspace size.

The)MINCORE system command is useful in dealing with large arrays or in
performing operations that require large amounts of intermediate storage.
Such operations can make the workspace continually expand, thus slowing
the processing and fragmenting of the workspace. You can improve system
efficiency by using)¥INCORE to ensure that a reasonable amount of memory is
available at the beginning of the operation.

Generally, the)MINCORE setting does not change when you load a workspace.
However, depending on the characteristics of the loaded workspace, the
JMINCORE setting may be greater than the amount of available memory. In
this case,) MINCORE is reset to the default when the) L04D succeeds (no error
is signaled).

Examples:

YMINC

32P
JMINC 100

WAS 32P

3-54 APL Reference Manual

System Commands
)MINCORE Determining the Minimum Workspace Size

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
22 INCORRECT PARAMETER (ILL FORMED NUMERIC CONSTANT)

22 INCORRECT PARAMETER (PARAMETER OUT OF RANGE)

APL Reference Manual 3-55

System Commands
) MON Returning to Operating System Command Level

) MON Returning to Operating System Command Level

Type

System Action System Command
Form

YMON
Description

)MON returns control to operating system command level. It does not save
the active workspace, but if JAUS is set (see Chapter 2), the workspace is
automatically saved. The)¥0N command does not close open files, but it does
flush the file buffers.

.When you use)MON to leave APL, you can return to APL by typing the DCL
command CONTINUE. If you intend to return to APL, be careful not to destroy
your memory image while you are at DCL level. This situation could occur if
you issue a command that runs a program.

The)MON command has limited value because most DCL commands do run
a program and thus will destroy the APL image. If you want to return to
the DCL command level to run other programs, you should use the) PUSH or
yDO command. If you want to return to another process, you should use the

YATTACH command.

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

3-56 APL Reference Manual

System Commands
) NMS Displaying Names in the Symbol Table

) NM.S Displaying Names in the Symbol Table

Type

Query System Command

Form
YNMS [start-stringllstop-stringlll

Qualifiers
/WSID: wshame
Allows you to list the names in a nonactive workspace. wsname specifies the
workspace.

/PASSWORD: [pw]
Specifies the password used when the nonactive workspace was saved.

Description
yNMS displays all the names in the symbol table in 04V order. The result is a
combination of the same information obtained by the) VARS, YFNS,)0OPS, and
YGRPS commands.

By default, APL displays the names from the currently active workspace. The
optional /WSID qualifier allows you to specify a nonactive workspace. If the
nonactive workspace was saved with a password, you must also specify the
/PASSWORD qualifier.

The optional string parameters identify starting and stopping points for

the list. When you specify the string parameters, you can use the » and =
wildcards. The objects are listed in J AV order, separated by tabs. Each output
line in the list begins in column 1.

Note that the wildcard determines the start-string. There is no wildcard for
the stop-string.

APL Reference Manual 3-57

System Commands
) NM.5 Displaying Names in the Symbol Table

3-58

The following name classes are possible:

Value Meaning
0 Name not in use
2 Variable name
3 Function name
4 Operator name
Ty Group name

A symbol has a name class of 0 when it has no value. Such a symbol may be
listed in the symbol table because it is currently referenced in a user-defined
operation (either a function or operator) or was previously used and has since
been erased. For example:

JLOAD NAMES
SAVED THURSDAY 8-NOV-1990 17:44:43.63 15 BLKS
JGRPS
LAB1 RECAP REPLACE VERTICAL
JVARS
A B LAT VET
JFRS
ADD
JNMS
A.2 ADD.3 B.2 DC.0 DONE.O DOWN.0 LAB1. 4 LAT.?2
NEW.O OLD.0 OUT.0 RECAP. & REPLACE. 4 TEST.0

UP.0 VERTICAL. % VET.2

If you use)~¥MS with no parameters, APL displays all the symbols in the
workspace. If you use the optional string parameters, you can specify a
particular section from the list of symbol names. For example, all the names
starting with B through those starting with £ 4. If you include just one
argument, APL uses Z as the default for the second string. To get a list of all
symbol names that begin with a given prefix, use the prefix for both arguments
or use a wildcard. For example:

APL Reference Manual

System Commands
) NMS Displaying Names in the Symbol Table

JLOAD NAMES
SAVED THURSDAY 8-NOV-1990 17:44:43.63 15 BLKS
JNMS B LA
B.2 DC.0 DONE.O DOWN.0 LAB1. 4 LAT.2
YNMS R
RECAP. 4 REPLACE. 4 TEST.0 UP.O VERTICAL. VET.2
JNMS VE VE
VERTICAL. 4 VET.2
JNMS VEx
VERTICAL. 4 VET.2

Possible Errors Generated

1 FILE NOT FOUND (FILE NOT FOUND)

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
22 INCORRECT PARAMETER (FILE SPECIFICATION IS MISSING)

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

22 INCORRECT PARAMETER (NOT A LETTER)

57 FILE DOES NOT CONTAIN A WORKSPACE

APL Reference Manual 3-59

System Commands
) OFF Terminating the APL Session

) OF F" Terminating the APL Session

Type

System Action System Command

Form
)OFF[HOLD ILOGOUTH

Default in Clear Workspace
HOLD

Description
)OFF terminates an APL session.

If you specify the #70LD parameter (H0LD is the default), APL terminates your
session and returns you to DCL command level. If you specify the LoGoUT
parameter, APL not only terminates your session, but logs you off the system.

The) 0FF command destroys the currently active workspace, deletes the J4UsS
file, closes all open files, and resets the terminal characteristics to the system

settings. When you use) OFF, you cannot return to APL by enterring the DCL
command CONTINUE.

The)0FF command displays several lines of information before terminating
the session. The lines contain the following:

¢ Your terminal identification

¢ Current time

¢ Current date

¢ Length of time connected to APL

e Amount of computer CPU time used inside APL

e Number of APL statements executed

¢ Number of APL operations executed

* Number of page faults while inside APL

* Number of buffered I0 and number of direct IO while inside APL

3-60 APL Reference Manual

System Commands
) OFF Terminating the APL Session

Examples:

YOFF LOGOUT
SYSSINPUT: THURSDAY 8-NOV-1990 17:48:59.32
CONNECTED 00:00:00.98 CPU TIME 00:00:00.37
0 STATEMENTS 0O OPERATIONS

170 PAGE FAULTS 21 BUFFERED I0 9 DIRECT IO
JOFF HOLD

SYS$INPUT: THURSDAY 8-NOV-1990 17:50:13.15
CONNECTED 00:00:00.98 CPU TIME 00:00:00.38
0 STATEMENTS © OPERATIONS

154 PAGE FAULTS 21 BUFFERED IO 9 DIRECT I0
$

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (UNRECOGNIZED QUALIFIER KEYWORD)

APL Reference Manual 3-61

System Commands
) OPS Displaying a List of Operators

) O P.S Displaying a List of Operators

Type

Query System Command
Form

YOPS lstart-stringlstop-stringll]
Qualifiers

/WSID:wshame
Allows you to list the user-defined operators defined in a nonactive workspace.
wsname specifies the nonactive workspace name.

/ PASSWORD : pW
Specifies the password used when the nonactive workspace was saved.

Description

yOPS displays a list of the global names used as user-defined operator names
in a workspace. By default, APL displays the list from the currently active
workspace. The optional /¥SID qualifier allows you to specify a nonactive
workspace. If the nonactive workspace was saved with a password, you must
also specify the / PASSWORD qualifier.

The optional string parameters identify starting and stopping points for

the list. When you specify the string parameters, you can use the « and =
wildcards. The objects are listed in AV order, separated by tabs. Each output
line in the list begins in column 1.

Note that the wildcard determines the start-string. There is no wildcard for
the stop-string.

If you use)0PS with no parameters, APL displays all the global operator
names in the workspace:

JOPS
ALPH HILB INVRS INVY L5Q

362 APL Reference Manual

System Commands
) OPS Displaying a List of Operators

If you include just one argument, APL uses Z as the default for the second
string:

JOPS IN
INVRS INVT L5Q
YOPS INV INV
INVRS INVE

To obtain a list of all user-defined operator names that begin with a given
prefix, use the prefix for both arguments or use a wildecard:

JOPS INV«
INVRS INVT

Possible Errors Generated

1 FILE NOT FOUND (FILE NOT FOUND)

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
22 INCORRECT PARAMETER (FILE SPECIFICATION IS MISSING)

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

22 INCORRECT PARAMETER (NOT A LETTER)

57 FILE DOES NOT CONTAIN A WORKSPACE

APL Reference Manual 3-63

System Commands
) ORIGIN Determining the Index Origin

) ORIG 1IN Determining the Index Origin

Type
Query/Change System Command

Form
YORIGIN [n]

Default in Clear Workspace

1

Description
YORIGIN displays or changes the setting of the index origin (0 10).

The index origin (n in the form) can be either 0 or 1; its setting determines
whether the values of an array are indexed beginning with position O or 1.

Executing the)ORIGTIN in change mode has the same effect as assigning a
value to the 0 70 system variable (see Chapter 2).

Examples:

15

12345
YORIGIN 0

WAS 1
15

01234
YORIGIN

0

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
22 INCORRECT PARAMETER (ILL FORMED NUMERIC CONSTANT)

22 INCORRECT PARAMETER (SYSTEM VARIABLE VALUE MAY ONLY BE 0 OR 1)

3-64 APL Reference Manual

System Commands
yoUTPUT Diverting Output to Another Device

) OUT PUT Diverting Output to Another Device

Type

Query/Change System Command
Form

youTPUT lfilespec [/character-set]l
Qualifiers

/APPEND
Specifies that you want to add data to the end of an existing file. If you specify
filespec without the /APPEND qualifier, APL creates a new file.

/DISPOSE: { KEEP | DELETE | PRINT | SUBMIT | PRINTDELETE |
SUBMITDELETE}

Specifies whether the value of filespec is a temporary or permanent file.
/DISPOSE:KEEP, which is the default, means the file is permanent;
/DISPOSE:DELETE means the file will be deleted when it is closed.
/DISPOSE: PRINT sends the file to a print queue (SYS$PRINT) when the file is
closed, and /DISPOSE:SUBMIT sends the file to a batch queue (SYS$BATCH)
when the file is closed. PRINTDELETE and SUBMITDELETE send the file to the
appropriate queue and then delete the file when the job is finished.

/LIST

This is the query form. Allows you to display the diverted output file on one
line and SYS$OUTPUT (the VMS name for your default output stream) on the
next line (or just SYS$OUTPUT, if output is not being diverted).

/REVERT
Causes the return of system output from the diverted destination to your
terminal. This is the same as using)OUTPUT with no qualifiers.

/SHADOW

Allows you to display the diverted output on your terminal as well as sending
it to a file. Otherwise, no system output is displayed except for system prompts
and echoed input.

If you want to begin shadowing output that is already diverted, you can reenter
the original)OoUTPUT command and add the /SEADOW and /APPEND qualifiers.

If you want to discontinue shadowing while keeping the same diverted output

stream, you can reenter the original)OUTPUT command with the omission

APL Reference Manual 3-65

System Commands
)OUTPUT Diverting Output to Another Device

of the /SHADOW qualifier and the addition of the /APPEND qualifier. (You can
change any of the original arguments or qualifiers at this time. If you omit
information that you specified in the original) 0UTPUT command, APL selects
any default values that may be applicable. For example, output diverted from
an APL terminal with the /TTY qualifier defaults to the APL character set if
you do not reenter the /TTY qualifier.)

Description

youTPUT allows you to change the destination of output to a device other than
your terminal. Typically, you send the output to a file or to another terminal. If
the output is sent to a file, you can specify that you want to write the diverted
output in a character set other than the one you designated for your terminal
when you invoked APL. The possible values for character-set are /TTY, /KEY,
/BIT, /COMPOSITE, and /APL.

)OUTPUT with no arguments or qualifiers causes the system output to return
from the diverted destination to your terminal. This is the same as using the
/REVERT qualifier.

When you use)0UTPUT, the output file has the appearance of a normal
terminal display containing input lines and the resulting output. However, at
your terminal the display is different. The only output that APL generates
at your terminal is echoed input and APL prompts. APL echoes any input,
whether it comes from your terminal or a file, and APL displays the usual
6-space prompt to signal the completion of a task. In fact, all APL-generated
prompts (such as the 0SF prompt and function editor prompts) are still
displayed at the terminal. If you want to see a normal display at your
terminal, use the /SHADOW qualifier (see below).

Note that)oUTPUT files cannot be nested.

If you enter either a weak or strong attention signal while output is being
diverted from your terminal, APL responds by displaying output on your
terminal as well as in the diverted stream, just as if you had specified
/SHADOW.

The)0UTPUT system command is also described in the VAX APL User’s Guide
along with other I/O information.

3-66 APL Reference Manual

System Commands
)OUTPUT Diverting Output to Another Device

Possible Errors Generated

22

22

22

33

INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)
INCORRECT PARAMETER (REDUNDANT KEYWORD OR QUALIFIER)

10 ERROR (INVALID WILDCARD OPERATION)

APL Reference Manual 3-67

System Commands
) OWNER Displaying Information About Workspace Creation

) OWNER Displaying Information About Workspace Creation

Type

Query System Command

Form
YOWNER

Description

yOWNER displays information about the active workspace at the time it was
created. A workspace is created when it is saved. The clear workspace is
created when the) CLEAR system command is given.

The result of the) OWNER appears in the following form:
CREATED ON day dd-mmm-yyyy hh:mm:ss.tt BY name [uic] AT dev: WITH Iv.u-edit

day dd-mmm-yyyy hh:mm:ss.tt is the day, date and time of creation
name is the user name of the.creator

uic is the user identification code of the creator

dev: is the terminal device name used to create the workspace
lv.u-edit is the version of APL used to create the workspace (see the
description of 0 VERSION in Chapter 2)

Examples:

YCLEAR
CLEAR WS
YOWNER
CREATED ON THURSDAY 8-NOV-1990 18:11:49.32 BY
[APLGRP,USER] AT WITH V3.2-83%4
YSAVE USER1WS
THURSDAY 8-NOV-1990 18:11:49.51 3 BLKS
YLOAD USER1NS
SAVED THURSDAY 8-NOV-1990 18:11:49.51 3 BLKS
JOWNER
CREATED ON THURSDAY 8-NOV-1990 18:11:49.51 BY
[APLGRP,USER] AT WITH V3.2-834

3-68 APL Reference Manual

System Commands
) OWNER Displaying Information About Workspace Creation

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

APL Reference Manual 3-69

System Commands
) PASSWORD Workspace Password

) PASSWORD Workspace Password

Type
Query/Change System Command

Form

) PASSWORD [pw]l

Default in Clear Workspace
Empty

Qualifiers

/ PASSWORD :[pwi
Specifies the password associated with the active workspace.

Description

) PASSWORD displays or changes the password associated with the active
workspace.

APL passwords are eight characters long, and the password you supply must
be a valid APL identifier. Passwords longer than eight characters are truncated
on the right; passwords with fewer than eight characters are padded on the
right with blanks.

If you do not change the password, the form of the) PASSWORD display is as
follows:

/ PASSWORD : pW

If you do change the password, the form of the) PASSWORD display is as follows:
WAS /PASSWORD: pW

If the password is empty, the display is one of the following:

/PASSWORD: WAS /PASSWORD:

When you use) PASSWORD to change the password, you can specify the
new password directly after the) PASSWORD, or you can specify it following
/PASSWORD. For example:

3~70 APL Reference Manual

System Commands
) PASSWORD Workspace Password

JPASSWORD SESAME
WAS JPASSWORD:
RPASSWORD WILL BE TRUNCATED TO 8 CHARACTERS
YPASSWORD /PASSWORD:OPENSESAME
WAS /PASSWORD:SESAME
JPASSWORD /PASSWORD:
WAS /PASSWORD:0PENSESA
)PASSHORD
/PASSWORD:

To load or copy objects from a workspace with a nonblank password, you must
include the password for the workspace in the command string.

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

22 INCORRECT PARAMETER (ILL FORMED NAME)

APL Reference Manual 3-71

System Commands
) PCOPY Copying from a Workspace with Protection

) PCOPY Copying from a Workspace with Protection

Type
Workspace Manipulation System Command

Form
Y PCOPY wsname [[list]

Qualifiers
/CHECK
The optional /CHECK qualifier causes APL to examine the workspace for
possible corruption (damage to the internal structure of the workspace). If
damage is detected, a message is displayed and APL tries to recover as much
information as possible from the workspace and to continue the copy. The
recovered workspace may be missing APL variables, user-defined operations,
individual lines of user-defined operations, and other APL objects that were
damaged. The user must determine what named objects have been removed
from the workspace.
/PASSWORD [:Ipwil
Specifies the password used when wsname was saved.

Description

) PCOPY (protected copy) is the same as the) COPY system command, except
that) PcoPY does not replace objects in the active workspace with objects of
the same name in the copy workspace. Instead, APL returns the message ¥OT
COPIED: along with the names of the objects affected.

When copying groups, the) PCOPY command does not copy any members of the
group that have the same name in both workspaces. If the group name itself is
the same as a group name in the active workspace,) PCOPY does not copy the
group name, nor any members of the group.

The)PCOPY system command performs the same operation as the JQFPC
system function (see Chapter 2), but 0QPC does not display messages to verify
the success of the copy.

3-72 APL Reference Manual

System Commands
) PCOPY Copying from a Workspace with Protection

Example:

YPCOPY VARS A T

SAVED TUESDAY 6-NOV-1990 18:21:58.u41 13 BLKS
FOUND: T

NOT COPIED: A

Possible Errors Generated

22 INCORRECT PARAMETER
22 INCORRECT PARAMETER (ILL FORMED NAME)
27 LIMIT ERROR (ARGUMENT STRING IS TOO LONG)

83 DAMAGED WORKSPACE HAS BEEN CORRECTED (SOME SYMBOLS MAY HAVE
BEEN FRASED)

APL Reference Manual 3-73

System Commands
) PUSH Interacting with Operating System Programs

) PUS H Interacting with Operating System Programs

Type

System Action System Command
Form

Y PUSH [command-stringll
Qualifiers

/NOKEYPAD

Specifies that you do not want the keypad characteristics of the current process
to be available to the new subprocess. The default is that the characteristics
are available.

/NOLOGICALS
Specifies that you do not want the logical name table from the current process
to be available to the new subprocess. The default is that the table is available.

/NOSYMBOLS

Specifies that you do not want the global and local symbol table (defined at the
DCL level) from the current process to be available to the new subprocess. The
default is that the symbol table is available.

/NOTIFY

Determines whether VMS broadcasts a message to your current process when
the new subprocess completes or aborts. If you are executing the) PUSH
command from the batch mode, you cannot use the /NOTIFY qualifier. Note
that you can use /NOTIFY only when you specify the /nowait qualifier.

/PROCESS : process-name

Specifies the name for the new subprocess. If you do not use /NOWAIT, and you
use the DCL command ATTACH rather than the LOGOUT command to return
to APL, you can later use the)ATTACH command with the process name that
you specify.

/NOWAIT

Allows you to create a detached subprocess. When you specify /NOWAIT, control
returns to APL when the subprocess begins execution, and the subprocess
continues to execute in the background. Note that if the subprocess uses any

3-74 APL Reference Manual

System Commands
) PUSH Interacting with Operating System Programs

terminal I/0, it becomes mixed with any terminal I/O used by your current
process.

Description

) PUSH interrupts the APL session, creates a VMS subprocess, and puts you at
DCL command level without terminating the APL session. You can perform
any operation at the DCL command level; when you are finished, you can
return to APL at the point you left off.

Note that if you use an invalid qualifier when you specify) PUSH, APL sends
the unrecognized characters to the subprocess command level along with the
command string.

If you want to display the process name of any subprocess owned by the
current process, use the DCL command SHOW PROCESS/SUBPROCESSES
(for more details, see the VMS DCL Dictionary).

When you use) PUSH without a command string, you remain at DCL command
level until you enter LOGOUT to return to APL. When you use) PUSH with a
command string (do not enclose the string in quotation marks), VMS executes
the command string and then automatically returns control to APL. The
command string must be no longer than 132 characters (after translation to
ASCII), not including leading white space (spaces or tabs before the argument
begins), but including all other white space within the argument.

For example, entering) PUSH and the DCL command SHOW TIME, and then
LOGOUT has the same effect as entering) PUSH with the command string
SHOW TIME:

YPUSH

$SHOW TIME
23-NOV~1990 13:32:42
$LOGOUT
Process USERL logged out at 23-NOV-1990 13:33:13

YPUSH SHOW TIME
23-NOV-1990 13:33:41

While you are at DCL command level, your terminal is in ASCII rather than
APL mode, and your terminal characteristics (such as output line width) revert
to the system settings. When you return to APL, the APL character set is
restored, and your [J P¥ setting is the same as it was before you executed the

) PUSH command (although the default for 0 P¥ changes if you changed your
system terminal width (see Chapter 2 for details). However, other terminal
characteristics you may have changed at DCL command level (for example, the
0 GAG setting, or the ability to input lowercase characters) remain changed.

APL Reference Manual 3-75

System Commands
) PUSH Interacting with Operating System Programs

APL makes no attempt to recover the output from any of the work you do at
DCL command level. For example:

TIME « o')PUSH SHOW TIME'

23-NOV-1990 13:40:34
11 VALUE ERROR (REQUIRED VALUE NOT SUPPLIED BY EXECUTE)
TIME « o')PUSH SHOW TIME'

A

Here, APL executes the) PUSH command, and VMS displays the result of the
SHOW TIME command. But APL does not recover the output and cannot
assign the value to the variable TIME.

For more details about VMS subprocesses, see the VMS DCL Dictionary.

Possible Errors Generated

22 INCORRECT PARAMETER (ILLEGAL ASCII CHARACTER)

22 INCORRECT PARAMETER (MISSING ARGUMENT)

22 INCORRECT PARAMETER (NOKEYPAD QUALIFIER REPEATED)

22 INCORRECT PARAMETER (NOLOGICALS QUALIFIER REPEATED)
22 INCORRECT PARAMETER (NOSYMBOLS QUALIFIER REPEATED)

22 INCORRECT PARAMETER (NOTIFY QUALIFIER REPFATED)

22 INCORRECT PARAMETER (NOWAIT QUALIFIER REPEATED)

22 INCORRECT PARAMETER (PROCESS NAME QUALIFIER REPEATED)

73 SUBPROCESS ERROR (COMMAND BUFFER OVERFLOW---SHORTEN EXPRESSION
OR COMMAND LINE)

3-76 APL Reference Manual

System Commands
) SAVE Saving a Copy of the Active Workspace

) SAVE Saving a Copy of the Active Workspace

Type

Workspace Manipulation System Command

Form

YSAVE [wsnamell

Qualifiers

/CHECK

The optional /CHECK qualifier causes APL to examine the workspace for
possible corruption (damage to the internal structure of the workspace). When
/CHECK is specified on) SAVE, APL checks for possible damage before saving
the current workspace on disk. If there is damage, APL signals an error and
aborts the execution of) SAVE. If this occurs, use) SAVE without /CHECK to
save the damaged workspace; use) L0OAD with /CHECK to recover as much as
possible from the damaged workspace and determine what APL objects have
been lost from the damaged workspace. You must use the)SAVE command if
you want to maintain an undamaged version of the recovered workspace.

/MAXLEN:n]

The optional /MAXLEN qualifier allows you to specify the maximum record
length, n (in bytes), to be used to save the workspace. If you omit /MAXLEN (or
specify it without an argument), APL uses the value of [DML (see Chapter 2)
as the maximum record length.

/P4sSWORD [:Epwil

The)SAVE system command allows you to specify a password for your
workspace. The default is an empty password (eight blanks). If you save a
workspace that has a password — either one you specify with) SAVE or one
specified earlier by the) PASSWORD or)WSID command—you have to specify
the password when you load or copy the workspace.

Description

) SAVE saves a copy of the active workspace in a file specified by wsname. If
you omit wsname, the file is saved with the name currently returned by)¥SID.

APL Reference Manual 3-77

System Commands
) SAVE Saving a Copy of the Active Workspace

The)SAVE command displays the time and date the workspace is saved, the
number of disk blocks required to store the workspace, and the workspace
identification (either the name currently returned by) ¥SID, or the name you
specify as wsname).)SAVE appends a star () to the message if the saved
workspace contains a suspended operation.

When you save a workspace, you have the option of saving it under its current
name—the name returned by) ¥SID—or renaming it. However, APL does not

save a workspace under a name that already exists in your storage area, unless
the)WSID is that name. If you specify a new name with the)SAVE command,

you not only store your active workspace under that name, but you also change
the name of the currently active workspace to the new name specified.

If your current) WSID is the same as a workspace you have already saved, APL
creates a new version of the file. Both the old and new files are available on
the appropriate storage device; however, the new file is considered the current
version and has a version number one greater than that of the old file.

APL does not save a clear workspace. If your workspace is clear, you must first
give it a name with the)¥SID command, or you must use the) SAVE command
with a workspace name.

If you specify a password using) PASSWORD or)WSID, but then save the
workspace using the wsname parameter, the workspace is saved with an empty
password (unless you specify a new one with) SAVE). For example:

YWSID MYNS/PASSWORD:SESAME
WAS EXAMPLE
ACHANGE THE WSID

YSAVE MYWS
THURSDAY 8-NOV-1990 19:42:58.52 15 BLKS
JNSID
MYNS
APASSHORD CHANGED TO EMPTY
) PASSHORD
/PASSHORD:
aNO NEED FOR A PASSWORD WHEN LOADING
YLOAD MYWS

SAVED THURSDAY 8-NOV-1990 19:42:58.52 15 BLKS

You can save a workspace while there is a suspended operation on the top of
the SI stack. When you load the workspace, the operation is still suspended; it
does not continue automatically. You can cause an automatic startup by using
the OLX system variable (see Chapter 2).

3-78 APL Reference Manual

System Commands
) SAVE Saving a Copy of the Active Workspace

If you execute a) SAVE command within an operation, for example, with 0x¢Q
1) SAVE', APL saves the workspace, displays the time and date, and continues
executing the operation. The next time you load that workspace, APL displays
a slightly different message (see) LOAD for details) and begins the session by
executing that particular operation after the 0xq ') SAVE'. It does not execute
0LX, because [LX does not execute if the loaded workspace is in function-
definition mode, or if the operation at the top of the state indicator stack is
pendent.

Examples:

JCLEAR

CLEAR WS
YWSID

CLEAR WS
JSAVE

60 WS NOT SAVED, THIS WS IS CLEAR WS
) SAVE

A
YWSID WS30

WAS CLEAR WS
JSAVE

THURSDAY 8-NOV-1990 19:46:08.95 3 BLKS WS30
YWSID WS10

WAS WNS30
YSAVE

THURSDAY 8-NOV-1990 19:46:09.24% 3 BLKS WS10
JWSID WS30

WAS WS10
YSAVE WS10

60 WS NOT SAVED, THIS WS IS WS30
) SAVE WS10

A
YWSID WS35
WAS WS30

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

59 WS NOT SAVED, THIS WS IS CLEAR WS

APL Reference Manual 3-79

System Commands
) ST Displaying the State Indicator

) S I Displaying the State Indicator

Type

Query System Command
Form

YST
Description

ySI displays the state indicator of the active workspace. The state indicator
contains the status of the execution of user-defined operations, quad input
requests, and execute functions.

For user-defined operations, APL displays the operation name followed by,
within brackets, the line and statement numbers at which the operation
stopped executing. No statement number is displayed if the statement at
which execution stopped is the first or only statement on the line. If a
statement number is displayed, it is separated from the line number by a
diamond (o) character. A star following the bracketed line and statement
number indicates that the operation is currently suspended; no star indicates
that the operation is pendent. For example:

1ST
F[2] =«
G{302]

In this example, the pendent operation ¢ stopped executing at statement 2 on
line [3] and is currently waiting for operation F, which was suspended at line
£21.

Pendent quad input requests are indicated by a 0 character. For example:

A0
0:

VST
0
0:

First, the) ST display shows that the quad input request is pendent; then, APL
displays [0: to reprompt for quad input.

3-80 APL Reference Manual

System Commands
) SI Displaying the State Indicator

Pendent execute functions are indicated by the 0XQ or ¢ characters. For

example:

0xq ') sSIt
gxe

VST

(There is no output)

In this example, the)SI display indicates that an execute function is pendent.
This occurs because APL executes expressions from right to left, and the
output from) ST is displayed before the execute function is considered to have
completed. Afterwards, the state indicator is clear.

The order of display in the)STI list is significant; the operation or quad input
request that was most recently active is listed first, the next most recent
request is listed second, and so on.

Locked operations in the state indicator are flagged with a # character, and no
line number is displayed.

You can clear individual operations from the state indicator by using the
branch function (+) to restart or terminate suspended operations, or you can
use the system function JRESET or)SIC to clear the state indicator entirely.
When the state indicator is clear,) SI returns no result. For more information,
see the VAX APL User’s Guide

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

APL Reference Manual 3-81

System Commands
) SIC Clearing the State Indicator

) S I C Clearing the State Indicator

Type
APL Action System Command

Form
YSIC

Description

ySIC clears the state indicator. Once cleared, the state indicator shows

no suspended operations and no pending quad input requests or execute
functions. After you use)SIC, the)SI,)SINL, and) SIS system commands
do not return a value. The)SIC system command behaves in the same
manner as the ORESET system function (see Chapter 2), and they can be used

interchangeably.

)SIC does not return a value.

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

3-82 APL Reference Manual

System Commands
) SINL Displaying the State Indicator and Local Symbols

) S I NL Displaying the State Indicator and Local Symbols

Type

Query System Command
Form

YSINL
Description

) SINL displays the same information as) SI. This includes the status of
the execution of user-defined operations, quad input requests, and execute
functions. In addition,)SINL lists the local symbols of each operation, and
displays the argument expression of any pending execute function. Local
symbols in locked operations (flagged with a ¥ character) are not displayed.

For example:

YSINL
F[2] R A B
GL302] « T CAD

Here, the pendent operation ¢ has the local symbols 7, ¢, 4, and D. The
suspended operation F has the local symbols R, 4, and B.

When the state indicator is clear,) SINL returns no result.

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

APL Reference Manual 3-83

System Commands
) SIS Displaying the State Indicator and Executing Lines

) SIS Displaying the State Indicator and Executing Lines

Type
Query System Command

Form
YSIS

Description

) SIS displays the same information as)SI. In addition, it displays the line
that is currently being executed and the argument expression of any pendent
execute functions.

For example:

yST
F[2] =
¢
G[3¢02]
)SIS
F[2] x B:0
e F X
G[302] X+Ax2 o Y+¢ 'F X!

Here, the function 7 is suspended at line {2] because of an invalid division
by zero. The execute function that called F is pending, and its argument is
displayed. Finally, the function ¢ is pending, and its currently executing line,
containing the execute function that calls F, is displayed.

Note that) STS does not display the executing line of a locked operation,

When the state indicator is clear,) SIS returns no result.

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

3-84 APL Reference Manual

System Commands
) STEP Executing Lines of a Suspended Operation

) STE P Executing Lines of a Suspended Operation

Type

APL Action System Command
Form

YSTEP [n]
Qualifiers

/SILENT

Specifies that APL should not display the operation name and the current line
that are at the top of the state indicator after the execution of the lines of the
operation.

/INTO
Specifies that you want APL to step into any called operations.

/OVER
Specifies that you want APL to step over any called operations. This is the
default setting.

Description

)STEP is a debugging feature that allows you to execute one or more lines of a
suspended operation. The) STEP command is valid only when specified from
immediate mode, and when there is a suspended operation on the top of the
state indicator.

APL Reference Manual 3-85

System Commands
}STEP Executing Lines of a Suspended Operation

Examples:

YFRILL
[1] '"FRILL LINE 1
(21 '"FRILL LINE 2!
[3] "FRILL LINE 3
(4] "FRILL LINE &7
(5] "PRILL LINE 5'

[6] v
VT
[1} FRILL

[2] 'T LINE 27
[31 'T LINE 3'
(4] ‘T LINE 4!
{51 'T LINE 5!
[6] v
1 QSToP 'T!
1
T
77 STOPSET
TC1] FRILL
A
VSIS
1] + FRILL
JSTEP 4 [INTO
FRILL LINE 1
FRILL LINE 2
FRILL LINE 3
FRILL[4] "FRILL LINE 4!

)SIC
T
77 STOPSET
T(1] FRILL
A
VSIS

T[1] = FRILL
JSTEP 4 /OVER

FRILL LINE 1
FRILL LINE 2
FRILL LINE 3
FRILL LINE 4
FRILL LINE 5

T LINE 2

T LINE 3

T LINE &

Trs] 'T LINE 57

3-86 APL Reference Manual

System Commands
) STEP Executing Lines of a Suspended Operation

)SIC
7
77 STOPSET
Tl1] FRILL
A
)SIS

T[1] * FRILL
YSTEP 4 JOVER/SILENT
FRILL LINE 1
FRILL LINE 2
FRILL LINE 3
FRILL LINE 4
FRILL LINE 5
T LINE 2
T LINE 3
T LINE 4
VSIS
TC5] = 'T LINE 5!

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEQOUS CHARACTERS AFTER COMMAND)
22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)
22 INCORRECT PARAMETER (PARAMETER OUT OF RANGE)

46 OPERATION INVALID IN THIS CONTEXT

APL Reference Manual 3-87

System Commands
) VARS Displaying a List of Variables

) VARS Displaying a List of Variables

Type
Query System Command
Form
Y VARS [[start-stringlstop-stringlll
Qualifiers
/WSID:wsname
Allows you to specify the nonactive workspace APL uses to develop the list.
/PASSWORD: pW
Specifies the password used to save the nonactive workspace.
Description

Y VARS displays a list of global names used as variable names in a workspace.
By default, APL displays the list from the currently active workspace. The
optional /¥51D qualifier allows you to specify a nonactive workspace. If the
nonactive workspace is saved with a password, you must also specify the
/PASSWORD qualifier.

The optional string parameters identify starting and stopping points for

the list. When you specify the string parameters, you can use the ~ and <
wildcards. The objects are listed in JAV order, separated by tabs. Each output
line in the list begins in column 1.

Note that the wildcard determines the start-string. There is no wildcard for
the stop-string.

If you use) VARS with no parameters, APL displays all the global variable
names in the workspace:

) VARS
4 I J K N

If you include just one argument, APL uses Z as the second string:

YVARS K
K N

3-88 APL Reference Manual

System Commands
) VARS Displaying a List of Variables

To get a list of all variable names that begin with a given prefix, use the prefix
for both arguments or use a wildcard:

YVARS

PETER STAN STEVE ~ STUART THOMAS NILLIAM
JVARS ST ST

STAN STEVE STUART
JVARS ST~

STAN STEVE STUART

Possible Errors Generated

1 FILE NOT FOUND (FILE NOT FOUND)

22

22

22

22

57

INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
INCORRECT PARAMETER (FILE SPECIFICATION IS MISSING)
INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)
INCORRECT PARAMETER (NOT A LETTER)

FILE DOES NOT CONTAIN A WORKSPACE

APL Reference Manual 3-89

System Commands
) VERSION Displaying the APL Version Number

) VERSION Displaying the APL Version Number

Type
Query System Command

Form
Y VERSION

Description

) VERSION displays the APL version number under which the currently active
workspace was last saved, followed by a Carriage Return Line Feed, followed
by the current version of the APL interpreter and a trailing <CR><LF>.

The display is in the following form:
Iv.u-edit

[is the support letter

v is the version number
u is the update number
edit is the edit number

For example:

JVERS
V3.2-834
V3.2-834

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

3-90 APL Reference Manual

System Commands
YyWIDTH Output Width

) WIDTH Output Width

Type
Query/Change System Command

Form

YWIDTH [n]

Default in Clear Workspace
System setting

Description

YWIDTH displays or changes the setting of the print width system variable

(0 PW) and toggles the video screen between 80- and 132-column mode on
some terminals (see below). The print width (n in the form) is the number of
characters that can appear in an output line. The legal values are the integers
from 35 through 2048.

The YWIDTH system command does not affect the allowable length of input
lines. However, it does affect the display of error messages. Lines in the
error message that are longer than the print width are truncated; they are
not wrapped to the next line. If truncating a line would prevent APL from
displaying the point in the line where the error was discovered, APL cuts part
of the beginning of the line from the display so that the error is visible.

Executing the)WIDTH system command in change mode has the same effect as
assigning a value to the 0 PV system variable (see Chapter 2).

When you use)WIDTH to set the print width to above or below 80 on some
terminals, APL toggles the video screen between 80- and 132-column mode.
For example, setting the width to 80 or less toggles the screen to 80-column
mode. Setting the width to 81 or more toggles the screen to 132-column mode.
The affected terminals are the VT220, VT240, VT320, VT330, VT340, VT102,
DECTERM, HDSAVT, HDS201, and HDS221. Setting [1P¥ does not cause this
behavior.

Note that APL uses two font files for the VT240, VT320, VT330, and VT340
support: one for 80-column and the other for 132-column mode. If you suspend
the APL session and change the terminal width at DCL level, the screen will
be in the new mode and APL will be in the previous mode when you return to
APL. Use the appropriate value to)WIDTH to correct it.

APL Reference Manual 3-91

System Commands
YyWIDTH Qutput Width

Examples:

JWIDTH
132
A«'THIS IS A TEST OF THE PRINT WIDTH VARIABLE'
A
THIS IS A TEST OF THE PRINT WIDTH VARIABLE
YWIDTH 35

WAS 132
A

THIS IS A TEST OF THE PRINT WIDTH V
ARIABLE

Possible Errors Generated

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)
22 INCORRECT PARAMETER (ILL FORMED NUMERIC CONSTANT)

22 INCORRECT PARAMETER (PARAMETER OUT OF RANGE)

3-92 APL Reference Manual

System Commands
) WSID Workspace ldentification

) WS 1D Workspace ldentification

Type
Query/Change System Command

Form

YWSID [wsnamell

Default in Clear Workspace
CLEAR WS with a blank password

Qualifiers

/PASSHORD [:[Lpwil
Specifies the password associated with the workspace.

Description

yWSID displays or changes the name of the active workspace. When you use
YWSID to change the name of the active workspace, you must specify the
wsname parameter.

You can use the password qualifier of) wWSID to change the password associated
with a workspace. When you use)¥SID as an action command, the password
is changed (but not displayed) either to the password you specify as the
argument to /PASSWORD or, if you do not specify a password, to the empty
password (eight blanks). The password is never changed when you use)¥SID
as a query command () ¥SID with no argument). For example:

YWSID MYWS/PASSWORD:SESAME
WAS EXAMPLE
YWSID
MYWS
)PASSWORD
/PASSWORD : SESAME
YWSID YOURWS
WAS MYWS
)PASSHORD
/PASSWORD:

APL Reference Manual 3-93

System Commands
) XLOAD Retrieving a Workspace

The file specification you give for wsname must include at least a file name.
APL assumes default values for the rest of the specification; that is, it assumes
the file type .4PL, the current user device and directory, and an empty
password.

For more information on J7X, see Chapter 2.

Possible Errors Generated

22 INCORRECT PARAMETER

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

3-96 APL Reference Manual

A

System Messages

If an error is detected during the evaluation of an expression, APL displays the
following:

* An appropriate primary error message from the list included in this
appendix

e The text of the line in which the error occurred

* A caret (») approximately underneath the point in the line at which the
error was discovered

Often the primary error message is followed on the same line by a secondary
error message that offers a more specific explanation of what caused the error.
Secondary error messages are surrounded by parentheses. (If you do not want
to see secondary error messages, set 1 TERSE to 1.)

When an expression that produces an error is executed by the [1X¢ function,
the result returned is an empty array with the shape 0 n, where n is an ERROR
NUMBER. For example, the APL error number for VALUE ERROR is 11, so when
an expression that produces a VALUE ERROR is executed by the [1X¢ function,
the value returned is an empty array with the shape 0 11:

C«(XQ 'A+B'
oC

0 11
[JFRROR

11 [0XQ VALUE ERROR
A+B

A

The following pages list the primary error messages and, when appropriate,
explain what they mean and what you can do to correct the errors. Some of the
secondary error messages that APL may display with the primary messages
are also identified. In many cases, no explanation of secondary error messages
is given, because the message is self-explanatory.

APL Reference Manual A-1

System Messages

1 FILE NOT FOUND

Explanation: The requested Workspace or file was not found in the
specified disk area.

1 FILE NOT FOUND (FILE NOT FOUND)

2 SYSTEM ERROR

Explanation: An internal inconsistency was detected. Please report this
error to your Digital software specialist.

3 WORKSPACE FULL

Explanation: The active workspace could not retain all the information
requested, nor could it expand further. Erase unneeded objects, issue a
) MAXCORE command to enlarge the workspace, or do a) SAVE,) CLEAR,
and) COPY sequence on the needed information.

3 WORKSPACE FULL (FXCESSIVE FRAGMENTATION)
3 WORKSPACE FULL (MAXCORE EXCEEDED)
3 WORKSPACE FULL (VIRTUAL MEMORY FXHAUSTED)

4 NOT A VALID SYSTEM IDENTIFIER

Explanation: An attempt was made to use a system identifier that is not
supported by this APL implementation.

5 DEFN ERROR

Explanation: Invalid syntax was detected in a line or command entered
in function-definition mode.

5 DEFN ERROR (CANNOT DELETE HEADER)

5 DEFN ERROR (EDIT COMMAND ILLEGAL IN QUAD FX ARGUMENT)
5 DEFN FRROR (EXPECTING A DOLLAR SIGN)

5 DEFN FRROR (EXPECTING A NUMBER)

5 DEFN ERROR (EXPECTING A NUMBER, OR RIGHT BRACKET)

5 DEFN ERROR (EXPECTING A NUMBER, QUAD, DELTA, OR JOT)

5 DEFN ERROR (EXPECTING A QUAD, OR RIGHT BRACKET)

A-2 APL Reference Manual

w

System Messages

DEFN ERROR (EXPECTING A QUAD)

DEFN ERROR (EXPECTING A RIGHT BRACKET)

Explanation: An error was discovered while the function editor scanned
an edit command string.

DEFN ERROR (EXPECTING A STRING DELIMITER)

Explanation: Did not find a delimiter for one of the search or replace
strings for dollar sign editing.

DEFN ERROR (ILL FORMED LINE NUMBER)
DEFN ERROR (ILL FORMED NUMERIC CONSTANT)
DEFN ERROR (LEFT BRACKET EXPECTED)

DEFN ERROR (LINE NUMBER OUT OF RANGE)

Explanation: A line number greater than 9,999 was specified.

DEFN ERROR (LINE NUMBER TRUNCATED)

Explanation: More than five decimal digits were specified in a line
number.

DEFN ERROR (LOCAL SYMBOL EXPECTED)

DEFN ERROR (NAME IN USE)

Explanation: An attempt was made to use the same identifier for both
arguments of an operation, or for both a label and a local symbol or
argument.

DEFN ERROR (NEGATIVE INTEGER NOT ALLOWED)

DEFN ERROR (NO PREVIOUS SFARCH STRING)

Explanation: The search string is empty and there was no previous use
of dollar sign editing during this activation of the Del editor.

DEFN ERROR (NO SYMBOL AFTER OPENING DEL)
Explanation: The operation name was missing from the line entered.

DEFN ERROR (NO SYMBOL AFTER RESULT ARROW)

DEFN ERROR (NOT A SYSTEM VARIABLE)

Explanation: An attempt was made to localize a system function.

APL Reference Manual A-3

System Messages

5 DEFN ERROR (NOT AN INTEGER)

Explanation: A print position parameter that is not an integer was
entered in superedit mode.

5 DEFN ERROR (NOT IN FUNCTION DEFINITION MODE)

Explanation: An edit command was entered outside of function-definition
mode. Edit commands are illegal in immediate mode except when used to
display or edit the last executed input line.

5 DEFN ERROR (OPERATION LOCKED)
Explanation: An attempt was made to list or change a locked operation.

5 DEFN FRROR (OPEFRATION SUSPENDED, PENDENT, OR MONITORED)

Explanation: An attempt was made to edit a pendent or monitored
operation, or an attempt was made to change the number of lines in a
suspended operation or the definition of a local symbol in a suspended
operation. '

5 DEFN ERROR (OPERATION SUSPENDED OR PENDENT)

Explanation: For) EDIT, an attempt was made to end the VAXTPU
session with an EXIT command when you are not allowed to modify the
function.

5 DEFN ERROR (RIGHT BRACE EXPECTED)

Explanation: An error was discovered while the function editor scanned
an operation header and found a left brace that was not balanced with a
right brace.

5 DEFN ERROR (RIGHT PARENTHESIS EXPECTED)

5 DEFN FRROR (RIGHT PARENTHESIS OR SYMBOL EXPECTED)
5 DEFN FRROR (SEMICOLON EXPECTED)

5 DEFN ERROR (SYMBOL EXPECTED)

5 DEFN ERROR (TOO MANY LINES IN OPERATION)

Explanation: An attempt was made to close an operation that has more
than 10,000 lines.

5 DEFN FRROR (UNEXPECTED CHARACTER IN HEADER)

A-4 APL Reference Manual

System Messages

LABEL FRROR

Explanation: Improper use of a colon was detected, or an improper
variable name was entered as a label.

LABEL ERROR (DUPLICATE LABEL)

LABEL ERROR (NAME IN USE)

Explanation: An attempt was made to use the same identifier for both a
label and a local symbol or argument.

LABEL ERROR (OPERATION SUSPENDED, PENDENT, OR MONITORED)

Explanation: An attempt was made to change a label definition in a
suspended, pendent, or monitored operation.

SYNTAX ERROR

Explanation: Invalid syntax was detected, such as an operation call with
missing arguments, or an unmatched parenthesis.

SYNTAX ERROR (ILL FORMED NUMERIC CONSTANT)
SYNTAX ERROR (MISMATCHED DELIMITERS)
SYNTAX ERROR (MISSING ARGUMENT)

SYNTAX ERROR (MISSING LEFT ARGUMENT TO ASSIGNMENT)

Explanation: There is no left argument to the specification function (+).
For example: «2 is incorrect.

SYNTAX ERROR (MISSING OPERAND)
SYNTAX ERROR (NO DYADIC FORM OF FUNCTION)

SYNTAX ERROR (NO MONADIC FORM OF FUNCTION)
Explanation: Inner product and outer product are dyadic.

SYNTAX ERROR (OPERATOR HAS NO OPERANDS)
SYNTAX ERROR (UNBALANCED DELIMITER)

SYNTAX FRROR (BRANCH NOT ALLOWED IN MIDDLE OF AN EXPRESSION)

Explanation: The branch (-) function was used when it was not the
principal function of a statement.

APL Reference Manual A-5

System Messages

7 SYNTAX FRROR (DEPTH ERROR)

Explanation: Either there are too many nested parentheses or brackets,
or the expression is too complex for APL to parse.

7 SYNTAX ERROR (ILLEGAL CHARACTER IN FXPRESSION)

Explanation: An internal 0AV code appeared outside of a literal or
comment.

7 SYNTAX FRROR (NO DYADIC FORM OF DERIVED FUNCTION)

Explanation: Scan, reduction, expansion, compression, and replication all
derive monadic functions.

7 SYNTAX FRROR (NO MONADIC FORM OF DERIVED FUNCTION)
Explanation: Inner and outer product both derive dyadic functions.

7 SYNTAX FRROR (NON-NILADIC FUNCTION HAS NO ARGUMENTS)

Explanation: An ambivalent, dyadic, or monadic user-defined operation
was invoked without any arguments.

7 SYNTAX ERROR (NOT IN FUNCTION DEFINITION MODE)
Explanation: An editing command was entered at the beginning of a line

in immediate mode.

7 SYNTAX ERROR (SUBSCRIPT NOT ALLOWED)

Explanation: An attempt was made to index something that does not
have a value.

7 SYNTAX FRROR (WRONG NUMBER OF ARGUMENTS TO USER FUNCTION)

Explanation: A monadic user-defined operation was invoked with two
arguments.

8 FRROR RETURNING FROM FXTERNAL ROUTINE

8 ERROR RETURNING FROM EXTERNAL ROUTINE (DOMAIN ERROR)
Explanation: A conversion failed when data returned to the workspace.

8 FRROR RETURNING FROM EXTERNAL ROUTINFE (ILLEGAL ASCII CHARACTER)

Explanation: A conversion to ASCII failed as character data returned to
the workspace.

A-6 APL Reference Manual

System Messages

ERROR RETURNING FROM EXTERNAL ROUTINE (LENGTH ERROR)

Explanation: A Varying string (/ TYPE: VT) returned to the WS is bigger
than it was when it was passed to the external routine. (It is allowed to be
smaller or the same size.)

RANK ERROR
Explanation: The ranks of two operands did not conform.

RANK ERROR (ITEMS NOT SCALAR OR ALL THE SAME RANK)

Explanation: The items of the right argument of disclose () are neither
scalars nor of matching rank.

RANK ERROR (ITEMS NOT SINGLETON OR ALL THE SAME RANK)
Explanation: The items of B must be either singletons or of matching
rank.

RANK ERROR (LEFT ITEM NOT VECTOR DOMAIN)

Explanation: Either the left argument or an item in the left argument to
pick () is not a singleton and its rank is greater than 1.

RANK ERROR (MUST BE VECTOR)

Explanation: The value and each item in the value, must be vectors.

RANK ERROR (NOT A SCALAR, VECTOR, OR MATRIX)
Explanation: The rank of an argument to 8, ¥ or 4 is greater than 2.

RANK ERROR (NOT MATRIX DOMAIN)

RANK ERROR (NOT SINGLETON)
Explanation: Deal, and the JW¥A47T and ODL functions accept only single

numbers as an argument.

RANK ERROR (NOT VECTOR DOMAIN)

Explanation: An argument or value is not a singleton and its rank is
greater than 1.

RANK ERROR (NUMERIC PRIMARY KEY MUST BE SINGLETON)
Explanation: A numeric key for a keyed file must be a singleton.

RANK ERROR (RANKS DIFFER BY MORE THAN ONE)

Explanation: The arguments, after singleton extension to catenate or
rotate differ in rank by more than one.

APL Reference Manual A-7

System Messages

10

10

10

10

10

10

10

10

10

10

10

LENGTH FRROR
Explanation: The shapes of two operands did not conform.

LENGTH ERROR (ARGUMENT MUST BE 1 OR 2 ELEMENTS)

Explanation: B, 8, 0CIQ, and [¢0Q may have at most two items in their
right argument.

LENGTH FRROR (ARGUMENT STRING IS TOO LONG)

Explanation: The left argument to dyadic 4 or ¥ is greater than 256
characters along any one axis.

LENGTH ERROR (DATA TYPE EXCEEDS DATA LENGTH)

Explanation: The data type specified for g file input or the] ¢I9Q function
is incompatible with the length of the left argument.

LENGTH ERROR (DATA TYPE MISSING)

Explanation: The data type parameter in the right argument to 0CIQ is
required in this case.

LENGTH ERROR (DISPLAY CONTROL ITEM WRONG LENGTH)

Explanation: The first item must have length 4. The second item can
either be empty or have length 8.

LENGTH ERROR (DISPLAY CONTROL VECTOR MUST BE TWO ITEMS)
Explanation: The value must have length 2.

LENGTH ERROR (ILLEGAL EMPTY ARGUMENT)

Explanation: An empty argument was used with O0FMT, OMAP, 0QCO,
0QLD, 0QPC, or SIGNAL.

LENGTH ERROR (INDEX LESS THAN INDEX ORIGIN)
Explanation: An index is less than the current setting of 0 10.

LENGTH ERROR (INDEX OUT OF RANGE)

Explanation: For pick (), an element of the left argument exceeds the
length of the corresponding axis of an item of the right argument.

LENGTH ERROR (ITEM COUNT MISMATCH)

Explanation: If the number of variable names specified in the right
argument to [1 PACK, is not equal to the number of packets contained in the
left argument.

A-8 APL Reference Manual

10

10

10

10

10

10

10

10

10

System Messages

LENGTH FRROR (KEY VALUFE TOO LARGE FOR KEY SIZE)
Explanation: For /xY files.

LENGTH FRROR (LEFT ARGUMENT LENGTH GREATER THAN RIGHT ARGUMENT
DEPTH)

Explanation: For pick (5), the length of the left argument is greater than
the depth of the right argument.

LENGTH ERROR (LEFT ITEM LENGTH NOT EQUAL TO SELECTED ITEM RANK)

Explanation: For pick (5), the length of an item of the left argument does
not match the rank of the selected item at the corresponding depth of the
right argument.

LENGTH ERROR (LEFT LENGTH NOT EQUAL TO RIGHT RANK)

Explanation: For +, +, or dyadic &, where no axis has been specified and
the right argument B is not a scalar and its rank is not equal to the length
of the left argument 4.

LENGTH ERROR (LENGTHS OF INNER AXES DO NOT MATCH)

Explanation: For Base, the length of the last axis of the left argument

4 is not equal to the length of the first axis of the right argument B, and
neither axis is 1. For Inner product, after singleton extension, the left
argument last axis length must equal the right argument first axis length.

LENGTH ERROR (NOT SINGLETON)

Explanation: The value is not a single item. Dyadic B (for /45 files), 7,
and the numeric system variables require a single item for their argument
or value. For example, the following is incorrect: 0 T0+«1 3

LENGTH ERROR (NUMBER OF ROWS MUST MATCH)

Explanation: The number of rows in the arguments to dyadic B must
match.

LENGTH ERROR (SHAPES OFF AXIS DO NOT MATCH)

Explanation: For Catenate and Rotate, after singleton extension, the
shape of the left argument must match the shape of the right argument
except along the specified axis.

LENGTH ERROR (THERE ARE FEWER ROWS THAN COLUMNS)

Explanation: The number of rows in the right argument to B must be
greater than or equal to the number of columns.

APL Reference Manual A-9

System Messages

A-10

10

11

11

11

11

11

11

11

1y

14

1y

15

15

LENGTH ERROR (TOO MANY ELEMENTS IN KEY SPECIFICATION)

Explanation: An attempt was made to include elements other than
value, key-num, tech, and key-type between the brackets of your file output
expression.

VALUE ERROR

Explanation: A variable name was used and has not been assigned a
value, or a user-defined operation that should return a value was executed
and it did not return a value.

VALUE ERROR (BRANCH HAS NO RESULT)
Explanation: A branch (+) expression was used as a response to [input.

VALUE ERROR (FUNCTION DOES NOT RETURN A RESULT)
VALUE ERROR (FUNCTION RESULT UNDEFINED)

VALUE ERROR (NO VALUE TO ASSIGN)

Explanation: There is no right argument to the specification function (+).
For example: T+« is incorrect.

VALUE ERROR (REQUIRED VALUE NOT SUPPLIED)

VALUE ERROR (SUBSCRIPTED NAME IS UNDEFINED)
Explanation: In the form A[X]1+B, 4 is not a defined name.

DEPTH ERROR

Explanation: For 0 FMT there are more than eight nested parentheses in
4.

DEPTH ERROR (LEFT ARGUMENT DEPTH GREATER THAN 2)
Explanation: The items in 4 must be simple (vectors or singletons).

DEPTH ERROR (TOO MANY DIVERTED INPUTS)
Explanation: Files were nested to a depth greater than 10 with) I¥PUT.

DOMAIN ERROR

Explanation: The values given for the arguments were outside of the
function domain. For JQou, the argument is not Boolean and is nonempty.

DOMAIN ERROR (BUFFER OVERFLOW)

APL Reference Manual

15

15

15

15

i5

15

15

15

15

15

15

System Messages

DOMAIN ERROR (CANNOT MODIFY SELECTIVE ASSIGNMENT TARGET)
Explanation: The variable being assigned to cannot be modified by the
expression forming the left argument of the selective assignment. For
example: ((pA<12)¢4A)<+"AB" is incorrect.

DOMAIN ERROR (CANNOT SIGNAL EOF)

Explanation: An attempt was made to use 75 as the right argument to
OSIGNAL. 1 SIGNAL does not accept 75 as a right argument.

DOMAIN ERROR (CHANNEL NOT ASSIGNED)

Explanation: The value in the right argument does not refer to an
assigned channel. An attempt was made to use O¥AIT or JREWIND on an
unassigned channel.

DOMAIN FRROR (CHANNEL NOT ASSIGNED TO A KEYED FILE)
Explanation: The file associated with the channel number is not a /xY

file.

DOMAIN ERROR (CHARACTER KEY TOO LONG OR NOT IN VECTOR DOMAIN)
Explanation: For /x7Y files.

DOMAIN ERROR (CONFLICTING QUALIFIERS SPECIFIED)

Explanation: More than one of the following qualifiers was specified in
the argument to 04SS:/READONLY, /WRITEONLY, or /UPDATE.

DOMAIN ERROR (DATA TYPE MUST BE UNSPECIFIED OR ZERO)
Explanation: For 0c19.

DOMAIN ERROR (DELETION NOT ALLOWED)
Explanation: A sequential delete was attempted for a /XY or /45 file.

DOMAIN ERROR (DIVISION BY ZERO)

Explanation: Division by zero is attempted.

DOMAIN ERROR (DUPLICATE FMT QUALIFIER)

Explanation: A qualifier is used more than once with a particular format
phrase.

DOMAIN ERROR (DUPLICATE FMT STANDARD SUBSTITUTION CHARACTER)

Explanation: A substitute for a standard symbol character was specified
more than once.

APL Reference Manual A-11

System Messages

15

15

15

15

15

15

15

15

15

DOMAIN ERROR (EMPTY FMT STRING PARAMETER NOT ALLOWED)
Explanation: The O, R, or S qualifier string is empty.

DOMAIN ERROR (ENCLOSED/HETEROGENEQUS ARRAY NOT ALLOWED)

Explanation: The argument is not a simple, homogeneous array. For
D¢, the first item must be a simple homogeneous array. The second item,
if not empty, must be simple.

DOMAIN ERROR (ENCLOSED VALUE REQUIRED)

Explanation: The value must be an enclosed array.

DOMAIN ERROR (ERROR ACTIVATING IMAGE)

Explanation: For 0 ¥AP, the shared image named by B does not exist.
For 0717,) EDIT, or the initialization stream, there is an attempt to

enter VT220, VT240, VT320, VT330, VT340 or DECterm mode when
SYS$SYSTEM:APLSHR is not accessible. APL can signal this error when
you invoke APL with the /TERMINAL qualifier, when you use) EDIT with
the / TERMINAL qualifier, when you use) EDIT with an HDS201 or HDS221
terminal, or when you set 0 77T.

DOMAIN ERROR (ERROR PARSING ARGUMENT TO BLOCK SIZE)

Explanation: An error was discovered when parsing the /BLOCKSIZE
qualifier in the argument to JASS.

DOMAIN FRROR (FRROR PARSING ARGUMENT TO BUFFER COUNT)

Explanation: An error was discovered when parsing the /BUFFERCOUNT
qualifier in the argument to 045S.

DOMAIN ERROR (ERROR PARSING ARGUMENT TO CCONTROL)

Explanation: An invalid value was specified for the /CCONTROL qualifier
in the argument to JA4SS.

DOMAIN ERROR (ERROR PARSING ARGUMENT TO DEFAULT FILE SPEC)

Explanation: An error was discovered when parsing the /DEFAULTFILE
qualifier in the argument to [14SS.

DOMAIN ERROR (FRROR PARSING ARGUMENT TO DISPOSE)

Explanation: An error was discovered when parsing the /DISPOSE
qualifier in the argument to 0ASS.

A-12 APL Reference Manual

15

15

15

15

15

15

15

15

15

15

System Messages

DOMAIN ERROR (ERROR PARSING ARGUMENT TO EVENT FLAG)

Explanation: An error was discovered when parsing the /EFN qualifier in
the argument to 0ASS.

DOMAIN FRROR (ERROR PARSING ARGUMENT TO KEY SPECIFICATION)

Explanation: An error was discovered when parsing the /Y qualifier in
the argument to JASS.

DOMAIN ERROR (ERROR PARSING ARGUMENT TO MAXLEN)

Explanation: An error was discovered when parsing the /MAXLEN
qualifier in the argument to JASS.

DOMAIN FRROR (ERROR PARSING ARGUMENT TO PROTECTION)

Explanation: An error was discovered when parsing the /PROTECTION
qualifier in the argument to JASS.

DOMAIN FRROR (ERROR PARSING ARGUMENT TO RECORD TYPE)

Explanation: An error was discovered when parsing the /RECORDTYPE
qualifier in the argument to 145S.

DOMAIN FRROR (EXTRANEOUS CHARACTERS AFTER COMMAND)

Explanation: There are characters other than spaces following the
command.

DOMAIN ERROR (FILE IS ASSIGNED WRITE ONLY)

Explanation: The file associated with the channel number cannot be
rewound because it was assigned with the /WRITEONLY qualifier.

DOMAIN ERROR (FILE SPECIFICATION IS MISSING)

Explanation: There is no file specification or default file specification in
the argument to 04SsS.

DOMAIN ERROR (FMT DECORATION OR LITERAL STRING T0OO LONG)

Explanation: A text string in the left argument consists of more than 255
characters.

DOMAIN ERROR (FMT RIGHT ARGUMENT DOES NOT MATCH FORMAT PHRASE)

Explanation: The data type of a value in the right argument does not
match the type called for by a format phrase specification in the left
argument.

APL Reference Manual A-13

System Messages

15

15

15

15

15

15

15

15

15

15

15

15

15

DOMAIN ERROR (FONT FILE COULD NOT BE OPENED)

Explanation: For O TT or the initialization stream, there is an attempt to
enter VT220, VT240, VT320, VI'330 or VT340 mode when the APL font
file is not accessible. Possibly, the file does not exist or is associated with a
protection code that does not allow access.

DOMAIN ERROR (FUNCTION HAS NO FILL ITEM)

Explanation: Either each () or outer product (- .r) was applied with a
user-defined function to an empty argument.

DOMAIN ERROR (FUNCTION HAS NO IDENTITY ELEMENT)

Explanation: The inner axes of an inner product or the reduction axis is
empty and there is no identity element for the left operand function.
DOMAIN ERROR (FUNCTION MISSING)

Explanation: For OM4P, if function-name is not present or if it is followed

by any attributes.

DOMAIN ERROR (ILL FORMED FMT PARAMETER)

Explanation: An invalid numeric parameter (such as a negative sign with
no number) was found.

DOMAIN ERROR (ILL FORMED NAME)

Explanation: For OMAP, if the left argument has a formal parameter that
contains illegal characters, or if the right argument has a value for the
/ENTRY or /VALUE qualifier that contains illegal characters.

DOMAIN ERROR (ILLEGAL ASCII CHARACTER)

DOMAIN FRROR (ILLEGAL CHARACTER IN FMT LEFT ARGUMENT)
Explanation: An invalid character appears in the left argument of JFMT.

DOMAIN FRROR (ILLEGAL COMPOSITE CHARACTER)

DOMAIN ERROR (ILLEGAL DATA TYPE CONVERSION)

DOMAIN ERROR (ILLEGAL DEC MULTINATIONAL CHARACTER)
DOMAIN ERROR (ILLEGAL EMPTY ARGUMENT)

DOMAIN ERROR (ILLEGAL FMT FORMAT PHRASE)

Explanation: A letter in the left argument of 0FMT does not represent a
valid format phrase or qualifier.

A-14 APL Reference Manual

15

15

15

15

15

15

15

15

15

15

15

15

System Messages

DOMAIN FRROR (ILLEGAL FMT G FORMAT PHRASE PATTERN CHARACTER)

Explanation: An invalid character was found in a type G format phrase
pattern string.

DOMAIN ERROR (ILLEGAL FMT LITERAL STRING DELIMITER)
Explanation: A decorator or literal string delimiter was invalid.

DOMAIN ERROR (ILLEGAL FMT S QUALIFIER SYMBOL)

Explanation: The first symbol of a substitution pair is not x, ., ,, 0, 9,
Z,0r@.

DOMAIN ERROR (ILLEGAL IS0 8BIT CHARACTER)

DOMAIN ERROR (ILLEGAL LEFT ARGUMENT TO ASSIGNMENT)

Explanation: An element of 4 is not an undefined or variable name.
DOMAIN ERROR (ILLEGAL MODE)

DOMAIN FRROR (ILLEGAL NAME CLASS)

Explanation: For 0 PACK, the right argument is not a variable. For
assignment (<), the left argument is neither a variable nor an undefined
name.

DOMAIN ERROR (ILLEGAL SELECTIVE ASSIGNMENT FUNCTION)

Explanation: The function fis not one of the allowed selection functions.

DOMAIN ERROR (ILLEGAL USE OF FMT QUALIFIER)

Explanation: The specified qualifier and format phrase are incompatible.

DOMAIN ERROR (INCORRECT PARAMETER)

Explanation: A parameter in the left argument to QAP is incorrect.

DOMAIN ERROR (INCORRECT TYPE)

Explanation: An argument is non-empty and is either numeric, when it
should be character, or character when it should be numeric. For example,
the following is incorrect: 010+ 'G!

DOMAIN ERROR (INDEX LESS THAN INDEX ORIGIN)

Explanation: An element of an argument is less than the current setting
of 0 I0.

APL Reference Manual A-15

System Messages

15

15

15

15

15

15

15

15

15

15

15

15

15

DOMAIN ERROR (INDEX OUT OF RANGE)

Explanation: An element of the left argument exceeds the length of the
corresponding axis of an item of the right argument.

DOMAIN ERROR (INTEGER OVERFLOW)

DOMAIN ERROR (INVALID CHANNEL NUMBER)
Explanation: A channel number is not between = 999 and 999 or is 0.

DOMAIN ERROR (INVALID CIQ HEADER)
DOMAIN ERROR (INVALID EXTERNAL DATA TYPE)

DOMAIN ERROR (INVALID FILE SPECIFICATION)

Explanation: There is an error in the shared image file specification in
the right argument of QMAP.

DOMAIN ERROR (INVALID FUNCTION IN SELECTIVE ASSIGNMENT)

Explanation: The principal function or functions in the left argument
is ineligible for use with selective assignment. For example: (A+B) «3 is
incorrect.

DOMAIN ERROR (INVALID HEADER TYPE)
Explanation: An incorrect header type was specified for 0C0Q or 0CI4.

DOMAIN ERROR (INVALID KFYED FILE PURE DATA TYPFE)
Explanation: For /kY files.

DOMAIN ERROR (INVALID LENGTH IN PACK HEADER)

Explanation: The first item of the value in the left argument to O0PACK
must equal the length of the left argument.

DOMAIN FRROR (INVALID OBJECT IN INDEXED ASSIGNMENT)

DOMAIN ERROR (INVALID OBJECT IN SELECTIVE ASSIGNMENT)

Explanation: The first object inside the parentheses of selective
assignment must be a variable name. For example: (1+2) <3 is incorrect.

DOMAIN ERROR (INVALID OBJECT IN STRAND ASSIGNMENT)

A-16 APL Reference Manual

15

15

15

15

15

15

15

15

15

15

System Messages

DOMAIN ERROR (INVALID PACK HEADER)

Explanation: The length of the left argument to 0 PACK must be greater
than or equal to 8. The shortest possible packed data has four elements for
the 1 PACK header and 4 elements for the shortest (] c0Q header.

DOMAIN ERROR (INVALID RANK IN PACK HEADER)

Explanation: The value of the third element in the left argument to
OPACK must equal 1 (1 means the packed data is a vector).

DOMAIN ERROR (INVALID RHO VECTOR IN PACK HEADER)

Explanation: The length of the left argument to 0 PACK must equal the
value of the fourth element in the left argument plus 4.

DOMAIN ERROR (INVALID TYPE IN PACK HEADER)

Explanation: The value of the second element in the left argument to
(0 PACK must equal 1 (1 means the type is integer).

DOMAIN ERROR (INVALID WATCH MODE)
Explanation: An incorrect mode was specified for QVATCH.

DOMAIN ERROR (KEY OF REFERENCE OUT OF RANGE OR NOT A NUMERIC
SINGLETON)

Explanation: An attempt was made to specify a key of reference that

is not a numeric singleton or that is less than 0 or greater than 254
(inclusive).

DOMAIN ERROR (KEY NOT FOUND IN TREE)

Explanation: For QMAP, if the left argument specifies an entry point that
does not exist in the shared image.

DOMAIN ERROR (LEFT ARGUMENT NOT DENSE FROM INDEX ORIGIN)
Explanation: For dyadic &, the left argument is not a dense sequence
beginning at I 70.

DOMAIN ERROR (MISSING FMT FORMAT PHRASE SEPARATOR)
Explanation: A format phrase separator (such as a comma or parenthesis)
was expected but not supplied.

DOMAIN ERROR (MISSING FMT FORMAT PHRASE/QUALIFIKER CHARACTER)
Explanation: A format phrase or qualifier was expected but not supplied.

APL Reference Manual A-17

System Messages

15

15

15

15

15

15

15

15

15

15

15

15

DOMAIN ERROR (MISSING FMT FORMAT PHRASE/QUALIFIER PARAMETER)

Explanation: No string was included with a decorator or an S format
phrase; no number was included where a width or decimal parameter was
required; or no number was included with a K or W qualifier.

DOMAIN ERROR (MISSING LITERAL STRING IN FMT LEFT ARGUMENT)

Explanation: The text string parameter was missing from a decorator.

DOMAIN ERROR (NAME IN USE)

Explanation: For OMAP, if the name specified for function-name is already
defined as an object other than a function.

DOMAIN ERROR (NEGATIVE INTEGER NOT ALLOWED)

DOMAIN ERROR (NEGATIVE NUMBER NOT ALLOWED)

Explanation: The value of the argument is less than 0.

DOMAIN FRROR (NO DIGIT SELECTOR IN FMT G FORMAT PHRASE PATTERN)

Explanation: A type G format phrase pattern does not contain at least
one 9 or one Z, or a character that is substituted for a 9 or a Z.

DOMAIN ERROR (NO FMT EDITING FORMAT PHRASE)

Explanation: The left argument of 0 F¥T does not contain at least one
value editing format phrase, that is, at least one of type A, I, E, F, G, or Y.

DOMAIN ERROR (NOT A LETTER)
Explanation: A nonletter was used as the left argument to ONL.

DOMAIN ERROR (NOT A SYSTEM VARIABLE)

Explanation: The argument is a quad name but not a system variable.
DOMAIN ERROR (NOT A VALID SYSTEM IDENTIFIER)

DOMAIN ERROR (NOT AN FEXTERNAL FUNCTION)

Explanation: For OMAP, if the argument names an illegal identifier, a
system identifier, a name with no value, or a name that is not an external
function.

DOMAIN ERROR (NOT AN INTEGER)

Explanation: An argument is not a near-integer. For example, the
following is incorrect: 0 I0+2.5

A-18 APL Reference Manual

System Messages

15 DOMAIN FRROR (OPERATION SUSPENDED, PENDENT, OR MONITORED)

15 DOMAIN ERROR (PARAMETER OUT OF RANGE)

Explanation: An attempt was made to use an unavailable value as the
argument. For 0D¢, Elements 1 and 2 of the first item can only be ~ 1, 0,
or 1. For FMT, the repetition count, field width, number of decimal places
or significant digits, column position, scale factor, or exponent size is out of
range.

15 DOMAIN FRROR (REDUNDANT KEYWORD OR QUALIFIER)

Explanation: A keyword or qualifier was repeated in the argument to
OASS.

15 DOMAIN ERROR (RIGHT ARGUMENT 1S LESS THAN LEFT)
Explanation: For dyadic 7.

15 DOMAIN ERROR (RIGHT ARG TOO DEFPLY NESTED)

Explanation: The right argument to JFMT is not a vector domain of
simple arrays.

15 DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

Explanation: A semicolon list was used as an argument to a primitive
function.

15 DOMAIN FRROR (SINGULAR MATRIX)
Explanation: For g, division by 0 is attempted.

15 DOMAIN FRKOR (SYSTEM VARIABLFE MUST BE 0 OR 1 OR 2 OR 3)
Explanation: The value of JGAG must be 0, 1, 2, or 3.

15 DOMAIN ERROR (SYSTEM VARIABLE VALUE MAY ONLY BE 0 OR 1)
Explanation: J70, ONG, O TERSE, QTIMEOUT, or JTLE accept only O or 1.

15 DOMAIN ERROR (TIMEQUT READ UNSUPPORTED FOR CURRENT VALUFE OF
QUAD TT)

Explanation: An attempt was made to set JTITMELIMIT while the current
value of 07T indicates a VT220, VT240, VT320, VT330, VT340 or DECterm
terminal.

15 DOMAIN ERROR (UNBALANCED PARENS IN FMT LEFT ARGUMENT)

Explanation: The parentheses in the left argument of O FMT are not
nested properly.

APL Reference Manual A-19

System Messages

15 DOMAIN ERROR (UNBALANCED TEXT DELIMITER IN FMT LEFT ARGUMENT)

Explanation: The closing delimiter for a text string was not compatible
with the opening delimiter.

15 DOMAIN FRROR (UNPAIRED SYMBOL IN FMT S QUALIFIER)

Explanation: The length of the standard symbol substitution string is not
even.

15 DOMAIN ERROR (UNRECOGNIZED SEARCH MODE)
Explanation: IFor /xv files.

15 DOMAIN ERROR (UNSUCCESSFUL TRAP IN LOCKED FUNCTION)

Explanation: An error occurred while executing the trap expression in a
locked function.

15 DOMAIN ERROR (WIDTH TOO SMALL)

Explanation: The width parameter for dyadic = is too small to
accommodate the data.

15 DOMAIN ERROR (WILDCARDS NOT ALLOWED IN FILE SPECIFICATION)
Explanation: Wildcards are not allowed in the right argument to QMAP.

16 UNBALANCED DELIMITER

Explanation: An input line has unbalanced parentheses, or the argument
to the execute function contains unbalanced quotation marks or a
characters.

17 EDIT ERROR
Explanation: An improper character editing request was entered.

17 EDIT FERROR (COLUMN POSITION OUT OF RANGE)

Explanation: The print position number that was entered for superedit
was greater than the page width, or was negative.

17 EDIT ERROR (EXPECTING A RIGHT BRACKET)

Explanation: An attempt was made to delete the line number during line
editing.

17 EDIT FRROR (ILL FORMED LINE NUMBER)

A-20 APL Reference Manual

17

17

17

17

17

17

18

19

20

21

21

21

21

22

System Messages

EDIT FRROR (ILLEGAL CHARACTER IN LINE EDIT COMMAND)

Explanation: The command that was entered included a character other
than a letter, digit, /, space, or backspace.

EDIT ERROR (LEFT BRACKET MISSING)

EDIT FRROR (LINE FDITING NOT ALLOWED IN EXECUTFE)
EDIT FRROR (NONEXTSTENT LINE)

EDIT ERROR (PREVIOUS INPUT LINF EMPTY)

EDIT FRROR (OPERATION SUSPENDED, PENDENT, OR MONITORED)
Explanation: An attempt was made to make an illegal change to a

suspended, pendent, or monitored operation.
ATTENTION SIGNALED

Explanation: The attention signal was detected during operation
execution.
DEVICE DOES NOT EXIST

Explanation: An invalid device specification was entered.

DEVICE NOT AVAILABLE

Explanation: The requested device has already been assigned to another
process.

INCORRECT COMMAND

Explanation: A system command was entered improperly.

INCORRECT COMMAND (AMBIGUOUS ABBREVIATION)

Explanation: Not enough characters of a system command were entered
to distinguish it from other commands.

INCORRECT COMMAND (MISSING SYSTEM COMMAND)

Explanation: A right parenthesis was entered at the beginning of a line
and was not followed by a known system command.

INCORRECT COMMAND (NO SUCH SYSTEM COMMAND)

INCORRECT PARAMETER

Explanation: Invalid syntax was specified for a recognized system
command.

APL Reference Manual A-21

System Messages

22 INCORRECT PARAMETER (ARGUMENT STRING IS TOO LONG)

Explanation: The argument entered for) DO or) PUSH was more than
2096 keystrokes.

22 INCORRECT PARAMETER (CURRENT WORKSPACE CLEARED)
Explanation: APL failed to load the requested workspace.

22 INCORRECT PARAMETER (EXTRANEOUS CHARACTERS AFTER COMMAND)

Explanation: Extra characters were entered after all the required
parameters for a system command.

22 INCORRECT PARAMETER (ILL FORMED NAME)
Explanation: In the argument to) ERASE or) GROUP.

22 INCORRECT PARAMETER (ILL FORMED NUMERIC CONSTANT)
Explanation: A numeric argument to a system command was entered
improperly.

22 INCORRECT PARAMETER (ILLEGAL ASCII CHARACTER)

Explanation: An illegal character was used in the argument to } PUSH.

22 INCORRECT PARAMETER (ILLEGAL NAME CLASS)

Explanation: A label or system object was used in the argument to
) GROUP.

22 INCORRECT PARAMETER (INVALID CHARACTER SET QUALIFIER)

Explanation: An invalid qualifier was used in the argument to) INPUT or
) OUTPUT.

22 INCORRECT PARAMETER (INVALID KEYWORD OR QUALIFIER)

Explanation: An invalid keyword or qualifier was used in the argument
to) INPUT,) OUTPUT,) SAVE, or) STEP.

22 INCORRECT PARAMETER (LINE TOO LONG TO TRANSLATE)

Explanation: The argument entered for) DROP or) LIB was greater than
approximately 2048 keystrokes.

22 INCORRECT PARAMETER (LOWERCASE QUALIFIER REPEATED)

Explanation: An invalid repetition of /LOWVERCASE was used in the
argument to) DO or) PUSH.

A-22 APL Reference Manual

22

22

22

22

22

22

22

22

22

System Messages

INCORRECT PARAMETER (MISSING ARGUMENT)

Explanation: An argument was not supplied for a system command that
should have one.

INCORRECT PARAMETER (NOKEYPAD QUALIFIER REPEATED)

Explanation: An invalid repetition of /NOKEYPAD was used in the
argument to) DO or) PUSH.

INCORRECT PARAMETER (NOLOGICALS QUALIFIER REPEATED)

Explanation: An invalid repetition of /NOLOGICALS was used in the
argument to) DO or) PUSH.

INCORRECT PARAMETER (NOSYMBOLS QUALIFIER REPEATED)

Explanation: An invalid repetition of /N¥0SYMBOLS was used in the
argument to) DO or) PUSH.

INCORRECT PARAMETER (NOT A GROUP)
Explanation: An attempt was made to display the contents of a nongroup.

INCORRECT PARAMETER (NOT A LETTER)

Explanation: The argument to) ¥MS,) VARS,) FNS, or) GRPS was not a
letter.

INCORRECT PARAMETER (NOTIFY QUALIFIER REPEATED)

Explanation: An invalid repetition of /N¥OTIFY was used in the argument
to the) PUSH command.

INCORRECT PARAMETER (NOWAIT QUALIFIER REPEATED)

Explanation: An invalid repetition of /¥OWAIT was used in the argument
to the) PUSH command.

INCORRECT PARAMETER (PARAMETER OUT OF RANGE)

Explanation: The numeric argument entered for a system command was
outside the legal range of values for the command. The ranges are:

For)DIGITS, 1to 16

For) wIDTH, 35 to 2048

For) MAXCORE, the) MINCORE value to 1048576
For) MINCORE, O to the) MAXCORE value

For) SAVE/MAXLEN, 512 to 2048

APL Reference Manual A-23

System Messages

22 INCORRECT PARAMETER (PARENT QUALIFIER REPEATED)
Explanation: In the) ATTACH command.

22 INCORRECT PARAMETER (PROCESS NAME QUALIFIER REPEATED)
Explanation: In the) PUSH command.

22 INCORRECT PARAMETER (REDUNDANT KEYWORD OR QUALIFIER)

Explanation: A keyword or qualifier was repeated in the argument to
) OUTPUT,) STEP, or [1ASS.

22 INCORRECT PARAMETER (SYSTEM VARIABLE VALUE MAY ONLY BF 0 OR 1)
Explanation: In the) ORIGIN command.

22 INCORRECT PARAMETER (UNRECOGNIZED QUALIFIER KEYWORD)

22 INCORRECT PARAMETER (WILDCARDS NOT ALLOWED IN FILE SPEC)
Explanation: A wildcard was used in the name of a workspace identifier.

23 WORKSPACE LOCKED
23 WORKSPACE LOCKED (INCORRECT PASSWORD)

23 WORKSPACE LOCKED (WORKSPACE HAS NO PASSWORD)

Explanation: An incorrect password (or none at all) was given to access a
workspace that was saved with a password.

24 NOT GROUPED, NAME IN USE

25 EXECUTE ERROR

Explanation: APL signaled an error while executing the argument to the
¢ execute function.

27 LIMIT FERROR

Explanation: The result of the operation exceeded some implementation
limit; for example, if the argument array to (07X has more than 65535
columns.

27 LIMIT FRROR (ARGUMENT STRING IS5 TOO LONG)

Explanation: The length of an argument cannot be greater than 255
keystrokes.

27 LIMIT ERROR (ARGUMENT TOO LARGE)
Explanation: The argument to [SF was greater than 255 keystrokes.

A-24 APL Reference Manual

27

27

27

27

27

27

27

27

27

28

29

29

29

System Messages

LIMIT FRROR (ARGUMENT TOO LONG)
Explanation: For (OMAP, if A contains more than 255 formal parameters
(including the result).

LIMIT FRROR (AXIS TOO LONG)

LIMIT ERROR (DELAY VALUE TOO LARGE)
Explanation: The delay specified for (JDL was larger than approximately
3.4E11 milliseconds.

LIMIT ERROR (FLOATING OVERFLOW)

Explanation: Arithmetic overflow has occurred.
LIMIT ERROR (INPUT LINFE TOO LONG)

LIMIT ERROR (INTEGER TOO LARGEF)

Explanation: A value is greater than the largest allowable integer.

LIMIT ERROR (PARAMETER OUT OF RANGE)

Explanation: One of the parameters in the left argument of dyadic + is
less than ™ 127 or greater than 127.

LIMIT ERROR (RANK TOO LARGE)

LIMIT ERROR (VOLUME TOO LARGE)

Explanation: The result of a primitive function has more elements than
the implementation can accomodate.

AXIS RANK ERROR (NOT VECTOR DOMAIN)

Explanation: The specified axis number argument ([X]) is not a
singleton and its rank is greater than 1.

AXIS LENGTH FRROR

Explanation: The specified axis number argument has more than one
item.

AXIS LENGTH ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

AXIS LENGTH ERROR (NOT SINGLETON)

Explanation: The axis argument is not a singleton.

APL Reference Manual A-25

System Messages

29

30

30

30

30

30

30

30

30

30

30

AXIS LENGTH ERROR (LEFT ARGUMENT HAS WRONG LENGTH)

Explanation: The length of the axis argument to + or + does not match
the length of the left argument.

AXIS DOMAIN ERROR

Explanation: The specified axis argument value was not a nonnegative
integer (except in the case of laminate, which accepts floating-point
numbers greater than ~ 1), or the specified function was not in the domain
of the axis operator.

AXIS DOMAIN ERROR (ARGUMENT RANK AND AXIS INCOMPATIBLE)

Explanation: The axis argument or an element of the axis argument is
greater than the rank of the argument with the largest rank.

AXIS DOMAIN ERROR (AXIS LESS THAN INDEX ORIGIN)
Explanation: The axis argument is less than 0 70.

AXIS DOMAIN ERROR (INCORRECT TYPE)
Explanation: The axis argument is not a number.

AXIS DOMAIN ERROR (NOT AN INTEGER)

Explanation: The axis argument is not a near-integer.

AXIS DOMAIN ERROR (SEMICOLON LIST NOT ALLOWED)

Explanation: There is a semicolon inside the brackets that surround the
axis argument .

AXIS DOMAIN ERROR (AXES NOT IN CONTIGUOUS ASCENDING ORDER)
Explanation: The axis argument elements must be in contiguous
ascending order for Ravel.

AXIS DOMAIN ERROR (DUPLICATE AXIS NUMBER)

Explanation: An axis argument element was specified more than once.

AXIS DOMAIN ERROR (ENCLOSED ARRAY NOT ALLOWED)
Explanation: The axis argument must be a simple homogeneous array.

AXIS DOMAIN ERROR (INCORRECT OPERATION)

Explanation: An operation was specified that was not one of the
following: Ravel, Catenate/Laminate, Reverse, Rotate, Expand, Scan,
Replicate/Compress, Reduce, Monadic Grade up/down, Take, Drop.

A-26 APL Reference Manual

30

31

31

32

32

33

33

33

33

34

34

34

34

35

System Messages

AXIS DOMAIN ERROR (RIGHT ARGUMENT HAS WRONG RANK)

Explanation: An axis argument value was specified that is greater than
the rank of the right argument.

PROTECTION VIOLATION

Explanation: The protection assigned to the workspace you specified

prohibits the access you requested.

PROTECTION VIOLATION (INSUFFICIENT PRIVILEGE OR FILE PROTECTION
VIOLATION)

INVALID SIMULTANEQOUS ACCESS

Explanation: More than one user tried to save the same workspace
simultaneously, or a user tried to access a nonshared file that is already in
use.

INVALID SIMULTANEOUS ACCESS (FILE CURRENTLY LOCKED BY ANOTHER
USER)

I0 ERROR

I0 ERROR (INVALID WILDCARD OPERATION)

Explanation: For) oUTPUT, a wildcard was specified in place of a value
for filespec.

I0 ERROR (NULL PRIMARY KEY)
Explanation: An attempt was made to specify an empty key value.

I0 ERROR (SEQUENTIAL DELETE OPERATION IS NOT ALLOWED FOR KY
FILES)

Explanation: An attempt was made to omit the entire key specification.

COMPONENT ERROR

Explanation: An attempt was made to read a component that cannot be
read.

COMPONENT FRROR (COMPONENT CROSSES CELL BOUNDARY)
COMPONENT ERROR (COMPONENT IS DAMAGED)
COMPONENT ERROR (RECORD NOT A COMPONENT)

INVALID FILE SPECIFICATION

APL Reference Manual A-27

System Messages

35 INVALID FILE SPECIFICATION (WILDCARDS NOT ALLOWED IN FILE
SPECIFICATIONS)

Explanation: Wildcards are invalid in the file specifications for) INPUT
and) OUTPUT.

36 INDEX RANK ERROR

Explanation: The rank of the index and the argument are not compatible.
36 INDEX RANK FRROR (CANNOT INDEX A SCALAR)

37 INDEX LENGTH ERROR

Explanation: In the form 4TX]+«B B is not a singleton and its shape does
not conform to the shape of the selected items of 4.

37 INDEX LENGTH ERROR (INDEX OUT OF RANGE)
38 INDEX DOMAIN ERROR

38 INDEX DOMAIN ERROR (INCORRECT TYPE)

Explanation: An attempt was made to enter an index array that does not
consist of nonnegative integers.

38 INDEX DOMAIN ERROR (INDEX LESS THAN INDEX ORIGIN)

38 INDEX DOMAIN ERROR (NOT AN INTEGER)

Explanation: A value of the axis argument is not a near-integer.
39 NO SUCH DIRECTORY

40 OPERATOR DOMAIN ERROR (ARKAY OPERAND NOT ALLOWED)

Explanation: An array was specified as an operand to an each (™) or dot
(.) operator.

41 NO ROOM ON FILE STRUCTURE OR QUOTA EXCEEDED

Explanation: The specified file structure was full, or the disk allocation
was exceeded. In the latter case, files must be deleted from the user’s disk
area before more files can be added.

u2 DEVICE IS5 WRITE-LOCKED

Explanation: The specified device (usually a magnetic tape) was
physically write-protected.

A-28 APL Reference Manual

System Messages

43 SYSTEM RESOURCES FXHAUSTED

Explanation: The system ran out of space to perform certain functions for
the user. See the system manager at your installation.

by FRROR INVOKING EXTERNAL ROUTINE

Explanation: An error occurred while trying to map an external routine
or process the actual arguments before executing the external routine.

4y ERKOR INVOKING EXTERNAL ROUTINE (DOMAIN ERROR)

Explanation: One of the following situations has occurred:

¢ The data leaving the workspace cannot be converted to the data type

expected by the external routine (for example, numbers could not be
converted to /TYPE: T).

A conversion failed as data passed from the workspace to the external
routine.

by FRROR INVOKING EXTERNAL ROUTINE (EXTRANEOUS CHARACTERS AFTER
COMMAND)

Explanation: Unrecognized input, such as an undefined or repeated
qualifier, appeared at the end of the command.

4y FRROR INVOKING EXTERNAL ROUTINE (ILL FORMED NAME)

Explanation: The actual parameter specified for either the /ACCESS: 0UT
or /ACCESS:INOUT qualifier is not a valid APL name.

44 ERROR INVOKING EXTERNAL ROUTINE (ILLEGAL ASCII CHARACTER)

Explanation: A conversion to ASCII failed as character data (/TYPE: T or
/TYPE: VT left the workspace.

Uu ERKOR INVOKING EXTERNAL ROUTINE (ILLEGAL NAME CLASS)

Explanation: The actual parameter specified for either the /ACCESS: 0UT
or /JACCESS: INOUT qualifier is defined, but is not a variable.

4y FRROR INVOKING FEXTERNAL ROUTINE (INCORRECT PARAMETER)
Explanation: One of the following situations has occured:

The actual parameter specified for either the /ACCESS:0UT or
/ACCESS: INOUT qualifier is currently undefined and is /TYPE: Z. The
parameter must either be defined so an unconverted value can be
passed or undefined with a known data type, not /TYPE: Z

APL Reference Manual A-29

System Messages

¢ The actual argument is missing when the formal paramter is specified
with the /MECHANISM: IMMEDIATE qualifier.

44y FRROR INVOKING FXTERNAL ROUTINE (INCORRECT TYPE)

Explanation: The actual paramter specified for either the /ACCESS:0UT
or /ACCESS:INOUT qualifier is not a character.

4y FRROR INVOKING EXTERNAL ROUTINE (LENGTH ERROR)
Explanation: One of the following situations has occurred:

¢ The actual argument has a length greater than 4 bytes when OMAP was
specified with the /MECHANISM: TMMEDIATE qualifier.

¢ The actual argument has a length greater than 2+ 2+ 16 when dyadic
OMAP was specified with the /MECHANISM:DESCRIPTOR qualifier.

* A complex data type is being passed an odd number of items (APL
requires two numbers to form each complex number).

¢ The length of a Varying sTring (/TYPE: VT) is greater than ~ 1+ 2« 16.

4y FRROR INVOKING EXTERNAL ROUTINE (NOT VECTOR DOMAIN)

Explanation: The actual parameter specified for either the /ACCESS: 0UT
or /ACCESS: INOUT qualifier is not in the vector domain.

44 FRROR INVOKING FXTERNAL ROUTINE (NOT SINGLETON)

Explanation: The actual argument is not a singleton (as it should
be) when dyadic (OMAP is specified with the /MECHANISM: IMMEDIATE
qualifier.

44 ERROR INVOKING EXTERNAL ROUTINE (WRONG NUMBER OF ARGUMENTS TO
USER FUNCTION)

Explanation: More actual arguments were specified than there are formal
parameters defined in the formal parameters of the external routine.

45 SIGNAL FROM EXTERNAL ROUTINE

Explanation: An external routine signaled the error that is the secondary
error message.

46 OPERATION INVALID IN THIS CONTEXT

Explanation: An attempt was made to use) STEP when there was no
suspended operation.

47 OUTPUT LINE TOO LONG

A-30 APL Reference Manual

47

L7

48

ug

49

49

50

50

50

51

52

53

System Messages

OUTPUT LINE TOO LONG (BUFFER OVERFLOW)

Explanation: A line editing sequence created a line that was too long to
fit in the I/O buffer.

QUTPUT LINE TOO LONG (PAGE WIDTH EXCEEDED)

Explanation: A line editing sequence created a line longer than the page
width limit.

INPUT LINE TOO LONG

INPUT LINE TOO LONG (ARGUMENT STRING IS TOO LONG)
Explanation: The argument to) #ELP was longer than APL’s input buffer.

FILE CONTAINS A DAMAGED WORKSPACE

Explanation: The file specified by) LOAD,) COPY, or) PCOPY contains a
damaged workspace.

FILE CONTAINS A DAMAGED WORKSPACE (CURRENT WORKSPACE CLEARED)
Explanation: An attempt was made to load a file that contains a damaged

workspace. The current workspace is cleared.

CHARACTER ERROR
Explanation: The user entered an illegal overstruck character.

CHARACTER ERROR (ILLEGAL CHARACTER IN EXPRESSION)
Explanation: An internal ([JAV code was included outside of a literal or

comment.

CHARACTER ERROR (ILLEGAL OVERSTRIKE)

INPUT ABORTED

Explanation: The user entered the abort signal to escape from quad,
quote quad, or quad del input.

FUNCTION EDITING ABORTED

Explanation: The user entered the abort signal to escape from the
function editor.

LINE EDITING ABORTED

Explanation: The user entered the abort signal to escape from character
editing mode.

APL Reference Manual A-31

System Messages

54 INTERNAL ERROR SAVING WORKSPACE
Explanation: An internal inconsistency was detected. Please notify your
Digital software specialist.

55 NOT A RANDOM ACCESS DEVICE

56 INCORRECT MODE FOR DEVICE

Explanation: The I/O mode for the operation requested was improper for
the chosen device.

57 FILE DOES NOT CONTAIN A NORKSPACE

Explanation: An attempt was made to load or copy a file that does not
contain an APL workspace.

57 FILE DOES NOT CONTAIN A WORKSPACE (CURRENT WORKSPACE CLEARED)

58 DATA TRANSMISSION ERROR

Explanation: A data transmission error was detected during input or
output. This message is usually associated with a nonrecoverable device
error.

59 FILE ALREADY EXISTS WITH GIVEN NAME

Explanation: An attempt was made to save a workspace with the same
file name as an existing file that is not a workspace.

60 WS NOT SAVED, THIS WS IS wsname

Explanation: An attempt was made to save a workspace with the same
file name as an existing workspace, without first making that same name
the workspace identification (returned by) ¥SID). This error message is
to prevent inadvertent overwriting of previously saved workspaces.

62 NOT A DIRECTORY STRUCTURED DEVICE
63 FILE ASSIGNED READ ONLY

64 CHANNEL NOT ASSIGNED
Explanation: The channel specified in a file operation was not previously
associated with a file via a 045S system function.

65 CHANNEL CANNOT DO BOTH INPUT AND QUTPUT

Explanation: An attempt was made to do both input and output to a
channel assigned to a sequentially organized file.

A-32 APL Reference Manual

66

67

68

69

71

72

73

73

74

75

76

77

System Messages

NOT AN INPUT DEVICE

Explanation: The user tried to perform input from an output-only device,
such as a line printer.

NOT AN OUTPUT DEVICE

Explanation: The user tried to perform output from an input-only device,
such as a card reader.

END OF FILE ENCOUNTERED

Explanation: A sequential read operation was attempted when there was
no next record or component and when the channel was assigned with
/SIGNAL.

RECORD NOT FOUND

Explanation: A random read operation was attempted on a nonexistent
record or component when the channel was assigned with /SIGNAL.
DEVICE ERROR

Explanation: A file operation attempted to use a mode that is improper
for the device specified in the associated 0 4SS function.)

SYSTEM SERVICE FAILURE

SUBPROCESS ERROR

SUBPROCESS ERROR (COMMAND BUFFER OVERFLOW - SHORTEN EXPRESSION
OR COMMAND LINE)

BLOCK TOO BIG

Explanation: A data-transfer error occurred during I/O. Specifically, the
last read attempted to read a block of data that was too large.

Explanation: The end of the file was reached when /SIGNAL was not
being used. No message is printed and execution continues.

RESULT ERROR (BRANCH HAS NO RESULT)

Explanation: Branch was used with [J input.

STOPSET

Explanation: The operation was suspended because a stop bit was set for
the current line.

APL Reference Manual A-33

System Messages

A-34

78 END OF TAPE
Explanation: The end of a reel of magnetic tape was reached.

79 SYSTEM FUNCTION ILLEGAL IN EXECUTE

Explanation: The (1BREAK system function was used in the argument to
the execute function.

80 RETURN TO CALLER OF THIS IMAGE
Explanation: The right argument to (0 STGNAL was 80.

81 BROADCAST RECEIVED
Explanation: A broadcast was received when ({1GAG was set to 3.

82 CHANNEL NUMBER IS NOT AVAILABLE
83 DAMAGED WORKSPACE HAS BEEN CORRECTED

83 DAMAGED WORKSPACE HAS BEEN CORRECTED (SOME SYMBOLS MAY HAVE
BEEN ERASED)

Explanation: A workspace, which previously contained corrupted data,
was loaded with the /CHECK qualifier.

86 FILE IS ASSIGNED WRITE ONLY

100 HI FILE READ ERROR

Explanation: An error occurred while reading the file specified by the /HI
qualifier on an APL command line or in an initialization file.

101 INITTAL WORKSPACE NOT FOUND

Explanation: The workspace that was specified on the APL command line
or in the initialization file was not found by APL.

102 VECTOR PROCESSOR NOT AVAILABLE

103 ERROR IN INITIALIZATION FILE

Explanation: APL detected an error while processing the parameters in
the initialization file identified by the logical name APL$INIT.

104 NEGATIVE THRESHOLD WITH VECTOR QUALIFIER NOT ALLOWED
105 ERROR INITIALIZING CONSOLE CHANNEL

106 ERROR INITIALIZING WORKSPACE ENVIRONMENT

APL Reference Manual

System Messages

108 FATAL INITIALIZATION ERROR

109 FATAL FRROR SETTING UP CLEAR WORKSPACE
110 FRROR READING INPUT FILE

111 EDIT COMMAND FRROR

111 EDIT COMMAND ERROR (xx QUALIFIER REPEATED)

Explanation: For) EDIT, the same qualifier was specified more than
once. xx is the name of the repeated qualifier.

111 EDIT COMMAND ERROR (ARGUMENT TO xx IS OUT OF RANGE)

Explanation: For) EDIT, a numeric value that is outside the acceptable
range was specified for a qualifier. xx is the name of the qualifier.

111 EDIT COMMAND ERROR (BAD ARGUMENT TO xx)
Explanation: For) EDIT, an invalid value was specified for a qualifier. xx
is the name of the qualifier.

111 EDIT COMMAND ERROR (CANNOT EDIT SYSTEM SYMBOL)

111 EDIT COMMAND ERROR (EDIT COMMAND UNAVAILABLE DURING FUNCTION
DEFINITION)

111 EDIT COMMAND ERROR (ENCLOSED ARRAY NOT ALLOWED)
Explanation: An attempt was made to edit an enclosed array.

111 EDIT COMMAND FRROR (EXECUTE QUALIFIER ARGUMENT IS TOO LONG)
Explanation: For /EXECUTE, the string specified for tpucommand is too
long.

111 EDIT COMMAND FRROR (ILL FORMED NUMERIC CONSTANT)

Explanation: For) EDIT, there is nonnumeric data (data unacceptable to
vI)inside a numeric array that is returning from VAXTPU.

111 EDIT COMMAND ERROR (ILL FORMED NUMERIC MATRIX)

Explanation: For)} EDIT, a record or records in the matrix returning from
VAXTPU have either more or fewer values than the number of values in
the first record.

111 EDIT COMMAND FRROR (ILLEGAL ASCII CHARACTER)

APL Reference Manual A-35

System Messages

111 EDIT COMMAND FRROR (ILLEGAL NAME CLASS)

Explanation: For /NC, either a value other than 2, 3, or 4 was specified,
or the specified value does not match the current name class value for
objectname.

111 EDIT COMMAND ERROR (INCORRECT PARAMETER)

Explanation: For) EDIT, an unknown parameter was specified.

111 EDIT COMMAND ERROR (MISSING ARGUMENT)

Explanation: For) EDIT, an attempt was made to edit a system function
or variable.

111 EDIT COMMAND ERROR (OPERATION LOCKED)
Explanation: For) EDIT, an attempt was made to edit a locked function.

111 EDIT COMMAND ERROR (OPERATION SUSPENDED, PENDENT, OR
MONITORED)

111 EDIT COMMAND ERROR (UNBALANCED DELIMITER)

111 EDIT COMMAND ERROR (UNRECOGNIZED QUALIFIER KEYWORD)
111 EDIT COMMAND FRROR (UNSUPPORTED TERMINAL TYPE)

111 EDIT COMMAND ERROR (VOLUME TOO LARGE)

112 EFRROR PROCESSING HELP

112 FRROR PROCESSING HELP (INVALID KEY)

112 ERROR PROCESSING HELP (TOO MANY HELP KEYS SPECIFIED)

112 FRROR PROCESSING HELP (ERROR OPENING AS INPUT)

Explanation: The file that was specified as the argument to the) HELP
command did not exist.

112 FRROR PROCESSING HELP (ERROR PARSING ARGUMENT TO LIBRARY)

Explanation: The value for filespec on the /LIBRARY qualifier was either
not specified or specified incorrectly.

113 WATCH POINT ACTIVATED

113 WATCH POINT ACTIVATED (VARIABLE HAS BEEN MODIFIED)

A-36 APL Reference Manual

System Messages

113 WATCH POINT ACTIVATED (VARIABLE HAS BEEN MODIFIED BY INDEX)
113 WATCH POINT ACTIVATED (VARIABLE HAS BEEN REFERENCED)

114 ERROR PROCESSING ATTACH

Explanation: An error occurred when APL attempted to process the
)y ATTACH command.

114 ERROR PROCESSING ATTACH (ATTACH REQUEST REFUSED)

Explanation: The value specified for process-name is the name of a
nonexistent process.

114 FRROR PROCESSING ATTACH (NONEXISTENT PROCESS)
114 ERROR PROCESSING ATTACH (INVALID LOGICAL NAME)
115—499 are reserved for VAX APL

500-999 are for user-defined error messages.

Explanation: For more information, see [SIGNAL.

APL Reference Manual A-37

Glossary

abort input signal

A technique for escaping to immediate mode when APL is waiting for input.
Different terminals form the abort input signal differently. Consult the index
to find more information on this subject.

ambivalent function
A function that may be monadic or dyadic, depending on how many arguments
are supplied when it is invoked.

APL terminal

A terminal that has an APL keyboard, that is, a terminal that can be set

up to use the APL key-paired (typewriter-paired), APL bit-paired, or APL
COMPOSITE character set.

argument

An array that is manipulated by a function. APL functions take zero, one, or
two arguments.

array

Any number (including 0 or 1) of items treated as a unit.

assignment

A method for associating a name with an array.

atomic vector

An array, returned by the system function 04V, that contains all the characters
in the APL character set.

Glossary-1

attention signal

A technique for suspending the execution of an operation and escaping to
immediate mode. The weak attention signal (formed by pressing (Ctrl/C) once)
means suspend execution of the current operation after executing the current
statement, and return control to immediate mode. The strong attention signal
(formed by pressing (Ctrl/C)) twice, means suspend the current operation as
soon as possible, even in the middle of the statement, and return control to
immediate mode.

axis
A dimension along which items in an array are arranged.

Boolean

A numeric item that has the value 0 or 1.

branch

Within a user-defined operation, a change in the normal order of statement
execution.

canonical representation

A character matrix with rows consisting of the original lines of a user-defined
operation.

channel)

The logical path through which the APL file system interacts with external
files and mailboxes.

character-editing mode

While in function-definition mode, a mode of editing in which you can edit
individual characters in a line.

command line

The line that contains the DCL command APL. You enter the command line in
response to the DCL prompt ($).

comment

Ignored characters appearing to the right of (and on the same line as) the
a symbol; you can place a comment at the end of a line containing APL
statements or on a separate line.

Glossary-2

comparison tolerance

An amount used by APL when it calculates how much two numbers can
differ and still be considered equal. The system variable O CT contains the
comparison tolerance used by APL.

component

In an external file, a record that contains an APL object.

constant

An item whose value is literally the constant itself.

dense sequence

For some functions, APL requires that an argument of nonnegative integers
must form a dense sequence, beginning at 1 I0. This means that the smallest
element in the argument must be 010, and that an integer ¥ from the
argument domain may be included only if ¥-1 is also included. For example, if
the argument domain is the integers from 1 to 3, the arguments 21 3, 1 2 2,
and 1 1 1 form dense sequences, but the arguments 13 1 and 3 2 3 do not.
depth

The degree of nesting of an array.

derived function

A function that results from the combination of an operator and its operand or
operands.

domain

The permissible type, shape, and values of a function’s argument arrays or the
permissible objects of an operator’s operands.

dummy argument

In the header of a user-defined operation, an identifier that serves as a
placeholder for the actual argument, operand, or result that is supplied when
the operation is called.

dyadic function
A function that takes both a left and a right argument.

enclosed array

An array that includes one or more arrays.

Glossary-3

empty array

An array that has a type and shape but no items. The length of the array
along at least one axis is 0.

error trapping

Techniques to find and react to errors that occur during the execution of
user-defined operations.

event flag

A shareable indicator, accessible through the APL file system, intended to aid
in synchronizing access to shared files or mailboxes.

execute-only APL

The DCL command APL/EXECUTE_ONLY [parameters] invokes the run-time
support version of VAX APL called QAPL. QAPL can execute applications
written in VAX APL but does not contain the features to develop applications.
QAPL can be copied to any valid VMS system free of charge.

expression

An identifier or constant standing alone, a function or operator and its
arguments, or an expression enclosed in parentheses.

external data
Data created outside of APL.

external routine

A routine (not written in APL) that exists outside the APL environment. APL
can call library routines and other external routines that support the VAX
Procedure Calling and Condition Handling Standard. APL cannot call VMS
system services routines.

fill element

A scalar data element (either a space or a 0) inside a fill item.

fill item

An array (consisting of spaces, zeros, or a combination of both) that APL
inserts into another array. The shape and contents of a fill item are based on
the prototype of the array that APL is using as a model for the array being
built. Fill items are used by Take, Replicate, Expand, Disclose, and 1 50X.

Glossary-4

function

An operation that applies to arrays and produces an array as a result.

function-definition mode

An operating mode in which the lines of APL you enter are not executed
immediately but rather are stored for later execution. Function-definition
mode begins when you type a v and ends when you type a second v or #. This
mode is used when creating user-defined functions and operators.

global symbol

A symbol that has the same value inside and outside a user-defined operation.

header

The initial line of a user-defined operation. See operation header for more
information.

heterogeneous array

An array that contains both character and numeric data.

high minus
The symbol (7) used to represent the negative sign in APL.

homogeneous array

An array that contains either character or numeric data, but not both.

identifier

A variable name, label name, group name, or user-defined operation name. See
also system identifier.

identity element

A value (if one exists) to a dyadic function which, when used as one argument
to the function, does not change the value of the other argument. For example,
for any identity element i applied to a dyadic function f and an argument a, a
does not change: i fa<—~>a

identity function

A function that APL applies to the prototype of an array when performing the
reduction (f/B) of an axis that has length zero. Note that the inner product
(f.g) derived functions imply the use of reduction. The identity function

is applied to the prototype of the argument array in place of the specified
function.

Glossary-5

immediate mode

An APL operating mode in which lines are executed immediately after they are
entered.

index

A notation used to specify the position of items within an array that you want
to reference. The index appears immediately to the right of an array and
consists of two brackets enclosing values that correspond to axes in the array.
Index is synonymous with subscript.

indexed assignment

The assignment of values to selected items of a variable. The indexed variable
is positioned to the left of the assignment arrow (<), and the index specifies
the items in the array where the assignment is applied. Indexed assignment is
synonomous with subscripted assignment or indexed specification.

index origin

The starting point for the index values of an array. The index origin may be 0
or 1. The system variable] 70 contains the current index origin value.
indexing

The use of an index to access particular items from an array.

initialization file

A file, referenced by the VMS logical name APL$INIT, that contains
parameters that are processed when APL is initialized.

initialization stream

Either the DCL command line that invokes APL, or the initialization file
referenced by the VMS logical name APL$INIT. Either or both of these streams
may contain parameters to be processed when APL is initialized.

integer

Any of the positive and negative integers, or zero.

internal data

Data stored in one of the four APL internal data type formats.

Glossary—6

key

A field defined by its location and length within each record and used to sort
the records. At least one key, called the primary key, must be defined for a
keyed file. Optionally, additional keys, called alternate keys, may be defined.

key of reference

The specific key used in a sequential or random read of a keyed file.

keyed file

A file in which records are organized by fields, called keys, inside the records.
The VAX RMS term is indexed sequential file organization (ISAM). The keys
of the file define the order in which the records are retrieved; you can retrieve
records sequentially by one of the sorted orders or randomly by one of the
record’s key values. A keyed file must contain at least one key.

label

An identifier associated with a line in a user-defined operation.

latent expression

A character vector representing an APL expression; the expression is
associated with a workspace and is automatically executed when the
workspace is loaded. The system variable 0LX contains the value of the
workspace’s latent expression.

line

The statement or statements you enter beginning after an APL input prompt
and ending when you press Return to enter the line.

local symbol

A symbol that has significance only during the execution of a particular
user-defined operation.

locked operation

An operation definition that cannot be changed or displayed.

logical name

A symbolic name for any portion or all of a file specification.

mailbox

A virtual device useful for sending messages to other processes.

Glossary-7

matrix

An array consisting of any number of items arranged along two axes,
commonly called rows and columns.

matrix domain

A matrix, vector, or singleton.

monadic function
A function that takes one argument.

monitored operation

A user-defined operation that has some of its lines being monitored via
OMONITOR.

multikey file

A file in which records are organized by fields, called keys, inside the records.
The RMS term is indexed sequential file organization (ISAM). The keys of
the file define the order in which the records are retrieved: you can retrieve
records sequentially by one of the sorted orders or randomly by one of the
record’s sort values. A multikey file must contain at least one key.

near-integer
A numeric item whose floor is equal to its ceiling; this includes all numbers
sufficiently close to an integer as determined by the APL comparison tolerance.

nested array
A synonym for enclosed array.

next record pointer

An internal mechanism that keeps track of the next record to be processed by
a sequential input function.

niladic function

A function that takes no arguments.

non-APL terminal

A terminal that does not have an APL keyboard. On such a terminal, APL
characters must be represented by ASCII mnemonics.

nonnegative integer

Any of the positive integers or zero.

Glossary-8

operation

Either a function or an operator. Occasionally, operation refers to a
mathematical action (such as the addition operation) or to an action taken by
the APL interpreter.

operation body

The executable lines of APL that appear in a user-defined operation definition.

operation header

The first line you enter when you define an operation. It names the operator;
indicates whether the operation returns a value; indicates whether the
operator is monadic or dyadic; indicates the use of an axis argument; and
identifies the operation’s local symbols.

operator

An operation that is applied to either arrays, or functions, or both and
produces a derived function as a result. In VAX APL, there are user-defined
operators and primitive operators.

operator sequence

A sequence of functions and operators whose result is a derived function.

overstruck character

An APL character formed by combining two other APL characters. For
example, the B symbol is formed with the 0 and < symbols. Different terminal
types form overstrikes in different ways. Some terminals allow you to enter
the first character, use Backspace, and then enter the second character on top
of the first. Other terminals allow you to use a Compose Character key (or
Ctrl/D) and then to enter the two characters. On these terminals, only the
resulting overstrike character is displayed.

panic exit

A technique for immediately suspending the execution of an operation and
giving control to the operating system. The panic exit is formed by pressing
Ctrl/Y once. After a panic exit, you can return to where you left off by
executing the DCL command CONTINUE. If you enter the panic exit while
an operation is executing, the operation is suspended; if you then enter
CONTINUE, the operation resumes execution at the point where it was
interrupted.

Glossary-9

pendent operation

A user-defined operation that has called another operation and is waiting for
that operation to return.

pervasive operation
An operation that acts at all depths (levels of nesting) of an array.

PID
Process Identification, an integer value that uniquely identifies a VMS process.

positive integer

The integers greater than zero.

print precision

The maximum number of significant digits displayed in floating-point output.
The system variable [PP contains the current print precision value.

print width

The maximum number of characters that APL can display on a terminal
output line. The system variable [P¥ contains the current print width value.

process

The basic entity scheduled by VMS software that provides the context in which
an image executes.

process identification
An integer value that uniquely identifies a VMS process.

prototype

An array that APL uses to determine the shape and contents of fill items.
The prototype of an array B has the same shape as the first item of B and
has character blanks and zeros in positions corresponding to characters and
numbers, respectively, in the first item of B.

pure data record

A record that is a vector of values, with none of the embedded format
information that APL includes within component data records.

quiet function

A function that does not return a value unless one is needed; that is, a value is
returned only if it is not the leftmost function.

Glossary—10

random link

The current value used by the APL random number generator. The system
variable (1 RL contains the current random link value.

range

The permissible type, shape, and values of a function’s result array.

rank

The number of axes along which an array’s items are arranged.

recursive operation

A user-defined operation that calls itself.

reshape

A function used to change the number of an array’s axes or to change the
length of one or more of its axes.

row-major order

An ordering of the items of an array so that the last subscript value varies
most rapidly. For example, the row-major order of a 2 by 3 matrix would be
[1;1], [1;2], [1;3], [2;1], [2;2], [2;3].

scalar

A rank 0 array (an array with no axes) containing a single numeric or
character or enclosed item.

scalar extension

An implicit operation that reshapes a scalar argument to match the shape of a
non-scalar argument.

scalar product

An implicit operator that applies a dyadic scalar function over each
corresponding pair of items in the two arguments.

selective assignment

A method for replacing selected items of an array.

Glossary-11

shadow

The act of localizing a name when a user-defined operation is activated so
that the old value of the name is saved and the name becomes undefined
in the context of the newly activated user-defined operation. The old value
of the name is restored when the user-defined operation exits to its calling
environment.

shape

The way an array’s items are arranged; specifically, a numeric vector that
describes the length of each of the array’s axes.

signal

A term often used in the description of what APL does when it detects an
error; APL signals an error.

simple array
An non-enclosed array whose depth is less than 2.

simple scalar

A scalar that contains only a single character or number.

singleton

A one-item array of any rank (includes scalars).

singleton extension

An implicit operation that is applied to a dyadic scalar function when one
or both of the function’s arguments are singletons. This implicit operator
reshapes the singleton argument to match the shape of the nonsingleton
argument, allowing the single value from the singleton to be applied to
each item of the other argument. When both arguments are singletons, the
argument with the smaller rank is reshaped to match the rank of the other
singleton.

specification
A method for associating a name with an array.

state indicator

A vector that reports the status of user-defined operations, quad input
requests, and execute functions.

Glossary—12

statement

One or more expressions executed as a unit.

stop bit

A setting associated with a line in an operation definition that causes the
operation to be suspended before the line is executed.

strand

Two or more juxtaposed arrays (including scalars) which form a vector. Also
known as vector notation.

strand assignment

The process of associating a strand of values with a set of names.

subprocess

A process created by and subordinate to another process. The subprocess
shares the resources of the creating process.

subscript

A notation used to specify the position of items within an array that you want
to reference. The subscript appears immediately to the right of an array and
consists of two brackets enclosing values that correspond to axes in the array.
Subscript is synonymous with index.

subscripted assignment

An assignment that modifies only the items that are specified by an index list.
Subscripted assignment is synonymous with indexed assignment or subscripted
specification.

suspended operation

A user-defined operation that has stopped executing but still has lines of APL
to be processed.

symbol table

A data structure inside the APL interpreter. The symbol table keeps track of
the names of all objects in a workspace.

system identifier

Any system-provided name that always begins with the quad (0) symbol.
System identifier refers to system variables and functions.

Glossary-13

A

Abbreviations for system commands, 3-2
Absolute value, 1-14
Accounting information system function,
2-13
Accumulating data system function, 2-44
Addition function, 1-16
Alphabetic characters
vector of, 2-14
Alphabetics
lowercase, 2-15
system function, 2-14
underscored, 2-16
Ambivalent system functions, 2-7
And function, 1-21
APL character set, 2-47
APL session
exiting from, 3-4, 3-13, 3-60
interrupting, 3-4
Arbitrary output, 2-17
Arguments
multiple
in user-defined ops, 1-219
scalar function, 1-2
Arithmetic functions, 1-10
Array corner, 1-59, 1-156
Arrays
displaying, 2-62
joining, 1-34
matrix product of, 1-209
rank of, 1-150
shape of, 1-138
sorting, 1-87, 1-90, 1-96, 1-99

Index

ASCII
character set system variable, 2-19
control characters, 2-58
output, 2-17
Assigning files system function, 2-20
Assignment
selective, 1-221
strand, 1-218
Associative argument with scan, 1-203
Atomic vector system function, 2-32

Automatic save system variable, 2-28
Axis, 1-212

B

Backslash operator, 1-178
Bare output

resetting buffer, 2-18
Base function, 1-27
BETA function, 1-20
Bit-paired character set, 2-47
Box system function, 2-35
Branch function, 1-31
Break system function, 2-38
Breakpoint, 2-38
Brief error messages, 2-183
Buffer

resetting bare output, 2-18

Index—1

C

Canonical representation, 2-98

system function, 2-54
Catenate function, 1-34
Channels

assigning files to, 2-20

listing active, 2-40

status of, 2—41

system function, 2-40
Character arrays

converting to, 1-79
Character matrix

from character vector, 2-35
Character set

APL, 2-47

atomic vector table, 2-32

bit-paired, 2-47

composite, 2-47

key-paired, 247

TTY, 2-47
Character string

executing, 1-70, 2-221

selecting numbers from, 2-89, 2-203
Character vector

from character matrix, 2-35
Characters

ASCII control, 2-58

converting to numbers, 2-88

digits, 2-135

fill, 1-179, 1-196, 2-86, 2-161

nonprintable, 2-32

vector of alphabetic, 2-14
Circle function, 1-17
Clear event flag system function, 2-77
Clear workspace

characteristics, 3-11
Closing files system function, 2-52
Combinations function, 1-19
Comparing numbers, 2-56
Comparison tolerance, 1-12, 1-13

system variable, 2-56
Composite character set, 2-47

Index-2

Compresssion function, 1-179
Conditional branching, 1-32
Conjugate function, 1-10
Connect time, 2-13
Contains function, 1-43
CONTINUE workspace, 3-13
Control characters

ASCII, 2-58

Control characters system function, 2-58

Controlling output, 1-82

Convert characters system function, 2-88

Copy
protected, 3-72

Corner of an array, 1-59, 1-156
CPU time, 2-13

Current date, 2-197

Current time, 2-197

D

Data

packing, 2-46, 2-138

reformatting, 2-93

treating a function as, 2-54

unpacking, 2-46, 2-138
Date, 2-197
DCL

command execution, 3-19, 3-74
Deal function, 1-45
Debugging

stepping through operations, 3-85
Decode function, 1-27
Defaults

in clear workspace, 3-11

of system variables, 2-2
Delay system function, 2-70
DELETE command

VMS, 3-21
Depth function, 1-47
Derived functions

compression, 1-179

expansion, 1-196

inner product, 1-208

outer product, 1-205

reduction, 1-185

Derived functions (cont’d)
replication, 1-179
scan, 1-201
Device
displaying characteristics of, 2-74
mailbox number of, 2-120
Diagonal slice, 1-165
Difference (subtraction), 1-16
Digits, 2-135
significant, 2-142
DIRECTORY, DCL command, 3—49
Disclose function, 1-49
Display control system variable, 2-62
Display format, 1-79
Displaying enclosed arrays, 2-62

Displaying workspace information system

command, 3-68
Distinguished names, 2-2, 2-4
Division

by zero, 1-16

matrix, 1-116, 1-119
Division function, 1-16
Domain of functions, 1-1
Domino, 1-120
Dot operator, 1-178
Drop function, 1-58
Dyadic format function, 1-82
Dyadic functions, 1-1

scalar, 1-3
Dyadic grade down function, 1-90
Dyadic grade up function, 1-99
Dyadic transpose function, 1-164

E

Each operator, 1-191

Editing with VAXTPU, 3-22

Enclose function, 1-63

Encode function, 1-135

Enlist function, 1-69

/ENTRY qualifier, 2-118

Equal to function, 1-22

Erasing global names, 3-28

Erasing named objects system function,
2-83

Error messages, A-1
brief, 2-183
secondary, 2-183, A-1
text of, 2-80
Error number, 2-173
Errors
signaling, 2-172
Exclusive OR operation, 1-22
Execute function, 1-70

Executing expressions system function,

2-221
Execution
monitoring, 2-192
of DCL. commands, 3-19, 3-74
of VMS commands, 3-74
status of, 3-84
Expansion function, 1-196
Expansion system function, 2-85
Exponential function, 1-11
Expressions
automatic execution of, 2-108
executing, 2-221
External routines
defining to APL, 2-111
querying APL definition, 2-111

F

Factorial function, 1-14
File assignments, listing, 2-20
File organization qualifiers, 2-21
File status, 2-41
Files

closing, 2-52

deassigning, 2-60

deleting, 3-21

organization of, 2-41

sharing, 2-91

Fill character, 1-179, 1-196, 2-86, 2-161

Fill items, 1-155

First function, 1-77

Fix function system function, 2-98
Floor function, 1-12

Index—3

Form character matrix system function, Functions, APL primitives (cont'd)

2-35 expansion (derived), 1-196
Form character vector system function, 2-35 exponential, 1-11
Format factorial, 1-14

of output display, 1-79 first, 1-77
Format function floor, 1-12

dyadic, 1-82 GAMMA, 1-14

monadic, 1-79 greater than, 1-22
Format system function, 2-7 greater than or equal, 1-22
Function characteristics index generator, 1-105

domain, 1-1 index of, 1-107

range, 1-1 inner product (derived), 1-208
Function names intersection, 1-110

displaying, 3-31 laminate, 1-34

list of, 2-131 less than, 1-22
Functions, APL less than or equal, 1-22

quotient, 1-16 logarithm, 1-12, 1-17
Functions, APL primitives magnitude, 1-14

addition, 1-16 match, 1-113

and, 1-21 matrix divide, 1-116

base, 1-27 matrix inverse, 1-119

BETA, 1-20 maximum, 1-18

branch, 1-31 membership, 1-121

catenate, 1-34 minumum, 1-18

ceiling, 1-13 monadic format, 1-79

circle, 1-17 monadic grade down, 1-87

combinations, 1-19 monadic grade up, 1-96

compression (derived), 1-179 monadic transpose, 1-161

conjugate, 1-10 multiplication, 1-16

contains, 1-43 nand, 1-21

deal, 1-45 natural logarithm, 1-12

decode, 1-27 negative, 1-11

depth, 1-47 nor, 1-21

disclose, 1-49 not, 1-21

division, 1-16 not equal, 1-22

drop, 1-58 or, 1-21

dyadic format, 1-82 outer product (derived), 1-205

dyadic grade down, 1-90 overtake, 1-154

dyadic grade up, 1-99 pi times, 1-12

dyadic transpose, 1-164 pick, 1-123

enclose, 1-63 power, 1-16

encode, 1-135 ravel, 1-130

enlist, 1-69 reciprocal, 1-11

equal to, 1-22 reduction (derived), 1-185

execute, 1-70 replicate (derived), 1-179

Index—4

Functions, APL primitives (cont’d)
replication (derived), 1-179
represent, 1-135
reshape, 1-138
residue, 1-18
reverse, 1-141
roll, 1-14
rotate, 1-145
scan (derived), 1-201
shape, 1-149
signum, 1-11
specification, 1-215
subset, 1-152
subtraction, 1-16
take, 1-154
union, 1-170
unique, 1-172
without, 1-174

Functions, system

see System functions
Functions, types of
arithmetic, 1-10
dyadic, 1-1
dyadic scalar, 1-3
locked, 3-81
logical, 1-21
mixed, 1-1
monadic, 1-1
monadic scalar, 1-2
pendent, 3-80
primitive mixed, 1-22
quiet, 2-8
relational, 1-22
scalar, 1-1, 1-2
suspended, 3-80

G

Gag system variable, 2-100
GAMMA function, 1-14
Global names, erasing, 3-28
Grade down function

dyadic, 1-90

monadic, 1-87

Grade up function
dyadic, 1-99
monadic, 1-96
Greater than function, 1-22

Greater than or equal function, 1-22

Group members
displaying, 3-35

Group names
displaying, 3-36
erasing, 3-28

Groups
adding to, 3-33
copying, 3-16, 3-72
defining, 3-33
dispersing, 3-33

H

High minus sign
printing, 2-129

o
mode, 1-75
Identification

of users, 2-13

of workspace, 3-93
Identification number, VMS

process, 2-120
Identifier

assigning a value to, 1-215
Identity items, 1-187
/IMAGE qualifier, 2-118

Index generator function, 1-105

Index Of function, 1-107
Index of records, 1-75
Index origin, 3-64

Index origin system variable, 2-102

Inner product function, 1-208
Inner product operator, 1-29
Input prompt, 2-170

Input prompt system variable, 2-170

Input time limit, 2-188

Index-5

Integer

random, 1-14, 1-45, 2-168
Interpreter, APL

version of, 2-202
Interruptions

preventing, 2-100
Intersection function, 1-110

J

Job number, user, 2-201

K

Key-paired character set, 2-47

L

Labels
list of, 2-131
Laminate function, 1-34
Latent expression system variable, 2-108,
3-51
Left context system variable, 2-104, 2-215
Length
of output lines, 2-144
Less than function, 1-22
Less than or equal function, 1-22
Limit
time, 2-185
Line
length of output, 2-144, 3-91
wrapping output, 2-145
Line counter, 2-106
Line counter system function, 2-106
Local symbols
status of, 3-83
Logarithm function
dyadic, 1-17
monadic, 1-12
Logical functions, 1-21
Logical operations, 1-22
Lowercase alphabetics system function,
2-15

Index—6

Magnitude function, 1-14
Mailbox system function, 2-120
Map system function, 2-111
Match function, 1-113
Matrix divide function, 1-116
Matrix division, 1-116, 1-119
Matrix inverse function, 1-119
Matrix operations, 1-116, 1-119
Matrix product of arrays, 1-209
Maximum function, 1-18
Membership function, 1-121
Messages

displaying during load, 2-109

error, A-1

preventing, 2-100

secondary error, 2-183, A-1

shorter error, 2-183

signaling a, 2-172

text of last error, 2-80
Minumum function, 1-18
Minus sign, 1-11
Mixed functions, 1-1

primitive, 1-22
Monadic ceiling function, 1-13
Monadic format function, 1-79
Monadic functions, 1-1

scalar, 1-2

system, 2-5
Monadic grade down function, 1-87
Monadic grade up function, 1-96
Monadic transpose function, 1-161
Multiple arguments in user-defined ops,

1-219

Multiplication function, 1-16

N

Name classification system function, 2-126
Name list system function, 2-131
Names

classifying, 2-126

directory of workspace, 3-47

Names (cont’d)
displaying functions, 3-31
displaying operators, 3-62
distinguished, 2-2, 24
erasing global, 3-28
lists of, 2-131
of group members, 3-35
types of, 2-127
workspaces, 3-93
Nand function, 1-21
Natural logarithm function, 1-12
Negative function, 1-11
Negative numbers
recognition of, 2-89, 2-129, 2-204
Negative sign
output representation, 2-129
Next-record pointer, 2-165
Niladic system functions, 2—4
Nonprintable characters, 2-32
Nor function, 1-21
Not equal function, 1-22
Not function, 1-21
Null password, 3-71
Numbers
comparing, 2-56
converting characters to, 2-88

selecting from character string, 2-89

Numbers system function, 2-135
Numbers, types of

error, 2-173

user job, 2-201
Numeric empty vector, 1-106
Numeric input

validating, 2-203

(o)

Objects
erasing named, 2-83
Om system function, 2-136
Operating system
interacting with, 3-19, 3-74
returning to command level, 3-56
Operation execution
delaying, 2-70
gathering data, 2-122

Operation execution (cont’d)
interrupting, 2-179
monitoring, 2-192
stopping, 2-179
suspending, 2-38, 2-179
tracing, 2-192

Operations, types of
logical, 1-22

Operations, user-defined
debugging, 2-122, 2-179, 2-192
displaying names, 3-62
establishing, 2-98
listing names, 2-131
monitoring, 2-122
restarting suspended, 2-108
stopping, 2-179
tracing, 2-192
treating as data, 2-54

Operators
APL operators, 1-176
backslash, 1-178
dot, 1-178
each, 1-191
inner product, 1-29
slash, 1-178

Operators, types of
locked, 3-81
pendent, 3-80
suspended, 3-80

Or function, 1-21

OR operation, 1-22

Origin
index, 3-64

Outer product function, 1-205

Output
arbitrary, 2-17
ASCIH, 2-17
controlling, 1-82
formatting, 2-7
untranslated, 2-17

Output lines
length of, 2-144
wrapping, 2-145

Output precision, 3-17

Index—7

Overtake function, 1-154

P

Pack system function, 2-138
Password

null, 3-71

workspace, 2-147, 2-151, 2-154, 3-50,

3-70, 3-77, 3-93, 3-94, 3-95

Pervasive functions, 1-4
Physical device number, mailbox, 2-120
Pi times function, 1-12
Pick function, 1-123
PID, 2-29, 2-201
Pointer, next-record, 2-165
Polynomials, evaluating, 1-29
Power function

dyadic, 1-16

monadic, 1-11
Precision of output, 3-17
Primitive mixed functions, 1-22
Print high minus system variable, 2-129
Print precision, 3-17

system variable, 2-142
Print width, 3-91
Print width system variable, 2-144
Process identification number, 2--120
Product (multiplication), 1-16
Product, of array matrix, 1-209
Prompts

quad input, 2-170

terminal type, 2-198
Protected copy, quiet, 2-154
Pseudo-terminal, 2-185

Q

Quad input prompt, 2-170
Qualifiers, APL
/ACCESS, 2-114
/CHECK, 2-147,2-151, 2-154, 3-15,
3-50, 3-72, 3-77, 3-95
/ENTRY, 2-113, 2-118
/IMAGE, 2-118
/INTO, 3-85

Index-8

Qualifiers, APL (cont’d)
/LOWERCASE, 3-19
/MAXLEN, 3-77
/MECHANISM, 2-116
/NOKEYPAD, 3-19, 3-74
/NOLOGICALS, 3-19, 3-74
/MNOSYMBOLS, 3-19, 3-74
/NOTIFY, 3-74
/NOWAIT, 3-74
/OVER, 3-85
/PARENT, 3-8
/PASSWORD, 3-15, 3-50, 3-95
/TYPE, 2-114
/VALUE, 2-113, 2-118

qualifiers, file organization, 2-21

Query system commands, 3-3

Query/Change system commands, 3-3

Quiet copy
system function, 2-147
with protection, 2-154

Quiet functions
definition, 2-8
list of, 2-8

Quiet load system function, 2-151

Quotient function (division), 1-16

R

Random integer, 1-14, 1-45, 2-168

Random link system variable, 1-46, 2-168

Range of functions, 1-1
Rank of arrays, 1-150
Ravel function, 1-130
Read event flag system function, 2-77
Reciprocal function, 1-11
Records

index for, 1-75

releasing locked, 2-159
Reduction function, 1-185
Relational functions, 1-22
Release system function, 2-159
Remainder, 1-18
Renaming a workspace, 3-78
Replication function, 1-179

Replication system function, 2-161
Report formatter system function, 2-93
Represent function, 1-135
Representation

of an object, 2-207

of canonical form, 2-98

of negative sign, 2-129
Reset system function, 2-164
Reshape function, 1-138
Residue function, 1-18
Reverse function, 1-141
Rewind system function, 2-165
Right context system variable, 2-157, 2-215
Roll function, 1-14
Rotate function, 1-145
Row-major order, 1-130, 1-138

S

Saving workspace system function, 2-28
Scalar functions, 1-1, 1-2

arguments to, 1-5

dyadic, 1-3

monadic, 1-2
Scalar product, definition of, 1-2
Scan function, 1-201

with associative argument, 1-203
Secondary error messages, 2—-183, A-1
Selective assignment, 1-221
Session variables, 3—4

gag, 2-100

tle, 2-190

tt, 2-198

vpe, 2-205
Set event flag system function, 2-77
$SEVERITY, global symbol, 2-174
Shape

array, 1-138, 1-149

function, 1-149

Shift
left, 1-145
right, 1-145

Short error messages, 2-183
Sign, high minus
printing, 2-129

Signal system function, 2-172
Significant digits, 2-142, 3—-17
Signum function, 1-11
Singleton, 1-3
Sink output system variable, 2-176
Size, workspace, 2-210

maximum, 3-53

minimum, 3-54
Slash operator, 1-178
Specification function, 1-215
Squish quad, 2-32
State indicator

clearing, 3-82

displaying, 3-80

resetting, 2-164
Status

channel, 2-41

file, 241

function, 3-80

local symbol, 3-83

of executing lines, 3-84
$STATUS, global symbol, 2-174
Stop system function, 2-179
Stopping programs, 2-179
Storage available in workspace, 2-210
Strand assignment, 1-218
String search system function, 2-177
Subprocess, VMS, 3-19, 3-74
Subscripted assignment

See Arrays Indexing
Subset function, 1-152
Subtraction function, 1-16
Sum (addition), 1-16
Suspended operations, 3-80

executing, 3-85

restarting, 2-106, 2-108
Symbols

status of local, 3-83
System commands, 3-1, 3-5

abbreviations for, 3-2

form of, 3-2

query, 3-3

query/change, 3-3

types of, 3-2

Index—8

System commands, APL

attach, 3-8
charge, 3-10
clear, 3-11

clearing the state indicator, 3-82

continue, 3-13

copy, 3-15

digits, 3-17

displaying function names, 3-31

displaying group members, 3-35

displaying group names, 3-36

displaying information about workspace
creation, 3-68

displaying operator names, 3-62

displaying state indicator, 3-80

displaying state indicator and executing
lines, 3-84

displaying state indicator and local
symbols, 3-83

displaying symbol table, 3-57

displaying variables, 3-88

displaying version number, 3-90

do, 3-19

drop, 3-21

edit, 3-22

erase, 3-28

group, 3-33

help, 3-38

Input, 3-45

listing workspace names, 3-47

load, 3-50

maximum workspace size, 3-53

minimum workspace size, 3-54

mon, 3-56

off, 3-60

origin, 3-64

output, 3-65

output width, 3-91

owner, 3-68

protected copy, 3-72

push, 3-74

save, 3-77

step, 3-85

workspace identification, 3-93

workspace password, 3-70

Index—-10

System commands, APL (cont’d)

xload, 3-95

System functions, APL
accounting information, 2-13
alphabetics, 2-14
arbitrary output, 2-17
assigning files, 2-20
atomic vector, 2-32
canonical representation, 2-54
channel status, 2—41
clear event flag, 2-77
closing files, 2-52
control characters, 2-58
convert input, 2-88
deassigning files, 2-60
delay, 2-70
device characteristics, 2-74
erasing named objects, 2-83
executing expressions, 2-221
expansion, 2-85
file sharing, 2-91
fix function, 2-98
form character matrix, 2-35
form character vector, 2-35
format, 2-7
indexing Booleans, 2-136
mailbox, 2-120
map external routine, 2-111
name classification, 2-126
name list, 2-131
numbers, 2-135
packing data, 2-46, 2-138
quiet copy, 2-147
quiet load, 2-151
quiet protected copy, 2-154
read event flag, 2-77
release, 2-159
replication, 2-161
report formatter, 2-93
reset, 2-164
saving workspaces, 2-28
set event flag, 2-77
string search, 2-177
time stamp, 2-197
underscored alphabetics, 2-16

System functions, APL (cont’d)
unpacking data, 2-46, 2-138
user load, 2-201
validating input, 2-203
visual representation, 2-207
workspace available, 2-210

System functions, types of, 2-3, 24, 2-9
ambivalent, 2-7
dyadic, 2-6
form, 24
monadic, 2-5
niladic, 24

System variables, 2-1, 2-9
ASCII character set, 2-19
form of, 2-2
list of, 2-2
maximum record length, 2-72
types of, 2-2

System variables, APL
automatic save, 2-28
comparison tolerance, 2-56
display control, 2-62
error message, 2-80
index origin, 2-102
input prompt, 2-170
latent expression, 2-108
print high minus, 2-129
print precision, 2-142
print width, 2-144
random link, 2-168
sink output, 2-176
terminal line edit, 2-190
terminal type, 2-198
terse error messages, 2-183
trap expression, 2-195
vector process control, 2-205
watched variables, 2-104, 2-157, 2-215

System variables, APL primitives
random link, 1-46

T

Take function, 1-154
Terminal

width, 2-145
Terminal line edit system variable, 2-190
Terminal type system variable, 2-198
Terse error messages system variable, 2-183
Time

connect, 2-13

CPU, 2-13

current, 2-197
Time limit, 2-185

input, 2-188
Time limit system variable, 2-185
Time out system variable, 2-188
Time stamp system function, 2-197
TPU editor, 3-22
Tracing programs, 2-192
Transpose function

dyadic, 1-164

monadic, 1-161
Trap system variable, 2-195
Trigonometric functions, 1-17
Truth table, 1-21
TTY

character set, 247

output of high minus, 2-129

U

Unconditional branching, 1-31

Underscored alphabetics system function,
2-16

Union function, 1-170

Unique function, 1-172

Untranslated output, 2-17

User identification, 2-13

User load system function, 2-201

Index-11

v

Validating input system function, 2-203
/VALUE qualifier, 2-118
Variables

catenating different types of, 2-44, 2-138

displaying, 3-88

list of, 2-131

session, 3—4

system, 2-1, 2-9, 2-102

see also System variables

workspace, 3—4
VAXTPU editor

syntax form, 3-22 :
Vector process control system variable,

2-205

Version number

displaying, 3-90
Version of APL interpreter, 2-202
Version system command, 3-90
Version system function, 2-202
Visual representation system function,

2-207

VMS

command execution, 3-19, 3-74

signaling to, 2-174

subprocess, 3-19
VMS subprocess, 3-74

W

Workspace (cont’d)

clearing, 3-11

copying objects from, 3-15, 3-72

copying objects to, 2-147

deleting, 3-21

displaying information about creation,
3-68

expression executed when loading, 2-108

loading, 2-151, 3-50, 3-95

owner, 3-68

password, 3-50, 3—70, 3-77, 3-93, 3-94,
3-95

renaming, 3-78

saving, 3-13, 3-77

size, 2-210
maximum, 3-53
minimum, 3-54

storage available in, 2-210

variables, 3—4

version saved under, 2-202, 3-90

Workspace available system function, 2-210
Workspace names

directory of, 3-47
displaying, 3-47

Wait system function, 2-211
Watch modes, 2-216
Watch system function, 2-214
Watchpoints, 2-215
White space, 3-2
Width, output, 2-145, 3-91
Wildcards, 3-47
Without function, 1-174
Workspace
APL CONTINUE, 3-13
Automatic saving, 2-28
automatically saving, 2-28
backup, 2-28

Index—12

Zero

as argument in division, 1-16

How to Order Additional Documentation

Technical Support

If you need help deciding which documentation best meets your needs, call 800-343-4040
before placing your electronic, telephone, or direct mail order.

Electronic Orders

To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store,
call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact
Continental USA, 800-DIGITAL Digital Equipment Corporation
Alaska, or Hawaii P.O. Box C52008

Nashua, New Hampshire 03061
Puerto Rico 809-754-7575 Local Digital subsidiary
Canada 800-267-6215 Digital Equipment of Canada

Attn: DECdirect Operations KAO2/2
P.O. Box 13000

100 Herzberg Road

Kanata, Ontario, Canada K2K 2A6

International —_— Local Digital subsidiary or
approved distributor

Internal’ S — USASSB Order Processing - WMO/E15
or

U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

'For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Do Not Tear — Fold Here and Tape ———————u————— e e e e

i i

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Information Products
PK03-1/D30

129 PARKER STREET

MAYNARD, MA 01754-9975

DoNot Tear ~-FoldHere ————~—-————— — — —

No Postage
Necessary
If Mailed

in the

United States

