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ERRATA

The following correct known technical errors but not minor typographical

errors.
pg 40
pg 40
rg 45
pg 45
g 52
pg 57
pg 58
pg 80

after line 12 add the line:

ELSE undefined

line 16
for each scalar integer I, QRGLI<ORG+pL

not ORG<I<QRG+pR

line 7

integer scalar instead of numeric

line 14 substitute + for -
IF 2 -p,BR THEN ((1|L)+(p,R) 4 R

rather than .°. (p,R) - L)

line 7 add
element vector. A scalar is extended to the dimension of a

vector operand.

line 6 should read:
Z« > ((140RG + pR) + URG - 1 pR) 4 F

rather than Z « - (( 1+0RG + pR) -ipE) ¢ R

line 6 should read

Formal description: 0 origin dependent

line 6 should read:

Formal description: 0 origin dependent



ERRATA (continued)

pg 103 line 7 should read

set of rank N-M arrays joined along M new coordinates.

pg 121 line 4 should read

Formal description: 0 origin independent

pg 121 line 5 should read

Z <« » oLQRG) (LORGY L) » . ¢ T R

pg 126 last line should read
2 2
pg 206 line 6 insert parens to read

L X 44 (v'z') v'y!
pg 209 line 22 substitute + for - to read

(6] (»0) Z<« ((1|L) + (p,R) + L) d R

This list does not contain errors occurring in the text which do not alter

the meaning of a passage.
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PREFACE

This paper presents a generalization of APL. It is
presented as a notation not as a computer implemented
programming language although implementation considerations
are eluded to. The fact that the body of the work contains
2x8 pages is not an implementation consideration,

For completeness some of the sections present APL
functions or concepts unchanged from APL\360 (which is used
as the standard for comparison). Parts of many pages are
blank for two reasons. First, starting new sections and
function descriptions on a new page make reading and
reference easier. Second, this work was prepared entirely in
APL using a text editor.

I would 1like to acknowledge the following people who
read selected chapters of this paper and provided valuable
suggestions. Ted Edwards, Control Data Canada; Bill Jones,
Syracuse University; Dick Lathwell, IBM Philadelphia
Scientific Center; and Bill Newman, Syracuse University.
Special thanks go to my advisor Dr., Garth Foster who
struggled diligently through drafts containing illegible
definitions and muddled examples yet still managed to prompt
some 0of the more significant discoveries. Finally I want to
thank my wife Karen who prepared the index to this paper not

to mention many midnight meals.
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Chapter 0

Introduction

A. Notation

One of the best measures of a civilization is its
developement of notation systems for expressing ideas in
writing. Most common is the written form of spoken
languages. But these notations are subject to ambiguity,
idiom, and imprecision.

When an idea must be precisely written, the notation
used tends to become symbolic in that special graphics are
assigned well defined meanings. One problem with the modern
sciences is that each branch uses its own set of symbols and
worse each uses the same symbol to stand for different
functions. Even the symbol + is not sacred and is often used
for the logical OR predicate when arithmetic is not also a
requirement. In algebra the same symbol may be used over and
over again for different functions. For example, x is used
to denote the product function in different groups. This is
not bad if the functions themselves are the objects of study
and it shows that the meanings assigned to symbols are
indeed arbitrary and may be changed if desired. However if
specialists are to communicate with each other with ease, a
common notation is needed. This problem was underscored by
the advent of the general purpose computer. A notation

common to the computer and to the users of the computer was
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required. The first attempt to solve this problem was to
invent new notations called programming languages which
mimicked existing notations (e.g. arithmetic). Thus the rule
"multiplication before addition" was incorporated in almost
all programming languages (and why not? - it <can be
convenient and everybody knows of it)., When new functions
were 1included (like exponentiation) they were given a
position in the hierarchy. A simple Fortran compiler had the

following hierarchies:

assignment lowest
addition and subtraction
multiplication and division
exponentiation

everything else highest

where everything else included user written subroutines
[Leeson 13], This isn't so bad and is easy to remember. But
if more functions are included (logarithm, relationals,
etc,) the table becomes large and bothersome to remember.

Many of the rules used in mathematics are artificial
and are only for convience. When they cease to be a
convenience and become a nuisance, then perhaps they should
be put aside. A programming language ignoring these rules

would involve more forgetting than learning.



APL 1is a notation created by K. E., Iverson and
presented to the public in 1962 in his book "A Programming
Language" [Iverson 10],from which the shorthand name arises.
(some claim that the name APL has its roots in the Greek
word awpa meaning simple [McDonnell 15]. Everyone knows that
an APLITE is a simple rock.) This notation has cast out the
old precedence rules of mathematics allowing functional
richness to coexist with simplicity of evaluation. 1Its
integrated use of arrays permits subjugation of unnecessary
detail. Its descriptive power was shown in 1964 when "2
Formal Description of System/360" appeared in the IBM
Systems Journal [Falkoff et.al., 7] with the actual
description taking under 20 pages.

Then 1966 saw the advent of an experimental APL time
sharing system and soon the habits of people at IBM's
Yorktown Heights began to include APL as a research tool,
This experimental system evolved into the present APL\360
which is now a program product of the International Business
Machines Corporation [IBM 9],

APL has become an object of study and implementation by
computer manufactures and universities. Interest in APL
continues to grow and the question may be asked: "Where do

we go from here?"



C. Where do we go from here: The Problem

APL is one of the most powerful notations for computer
programming in existence today. It is simple to learn
because its rules are few and simple. It 1is amenable to
mathematical analysis because it is self-consistent,

Yet the notation clearly indicates directions for
generalization which will simplify or complete existing
concepts. Other extensions are prompted by particular
applications of the notation.

Many areas of study use data structures not easily
represented by the simple rectangular arrays of APL. For
example the study of formal systems often gives rise to tree
structures,

The power of the notation is not available for function
definition or modification. Expressions may be written but
only the values and not the expressions themselves may be
manipulated. It is desirable that one function be able to
treat another function as data. It should be possible to
implement function definition as an APL function. It should
be possible to implement other language to APL compilers as
APL functions. These desires become requirements when one
postulates APL as the native language for a machine.

The purpose of this paper shall be to discuss these

problems and to propose solutions for them,
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This paper presents a generalized APL notation. While a
knowledge of APL\360 is not a prerequsite for reading this
paper, it is recuired to distinguish between what currently
exists in APL and what 1is being proposed. A concise
presentation of APL may be found in "APL\360 Reference
Manual" [Pakin 18}. A more recent publication designed for
self-teaching is "APL\360 An Interactive Approach"
[Gilman,Rose 8] . This volume contains a supplement
describing the most recent improvements to APL\360.

Appendix 1 to this paper summarizes the changes to
APL\360 which are proposed. The generalizations fall into

four classifications:

1.) Syntax

2,) Arrays

3.) Names

4,) Functions

Generalized Syntax

The syntax of APL\360 may be characterized as follows:

a.) Precedence is positional - functions within an

expression are evaluated from right to left



subject to parentheses,

b.) Context sensitive - a function defined within
the notation (a primitive function) may be
used for two different functions depending
upon the existence of two operands (with
infixed function symbol) or one operand (with
function symbol on the 1left). A function
described by a set of expressions (a defined

function) mav have zero operands.

The generalizations proposed here involve first a
closer tie between primitive and defined functions so that
the notation becomes functionally extensible. The notation
is in no way made syntacticaly extensible. A function symbol
used to name primitive functions or an identifier used to
name defined functions may be used to denote any or all of
four functions depending upon the existence of zero, one on
the right, one on the 1left, or two operands. To do this
requires only a small modification to the present
parentheses rules. The second generalization of syntax
permits functions having no result to exist within an
expression. The bracket notation for array indexing is
deleted and replaced by a more selective dyadic function for
indexing. Lastly, a defined function may have a function
index,

These generalizations simplify the syntax of the
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notation by uniformly treating primitive functions and

defined functions as instances of the same class of objects.,
Generalized Arrays

The arravs of APL\ 360 are simple rectangular
arrangements of scalar arrays (i.e. values of the array).
Scalar arrays may be one of two types: numeric or character,
While arrays of mixed type are not permitted in APL\360,
they are well defined. Therefore the inclusion of such
arrays, as done here, is not really an extension,

The first generalizations to arrays proposed are the
definition of new scalar types. Most notable is the program
scalar which permits expressions and functions to be treated
as data. The inclusion of this scalar (along with one
function and one operator) implies a significant broadening
of the capabilities of the notation. It permits functions to
define and modify other functions and solves the other
problems mentioned earlier, but it has unexpected benifits
as well, A "call by name" facility is achieved by passing
program scalars as operands to defined functions.
Mul tiprogramming of APL functions is an immediate
consequence of arrays of program scalars and is achieved by
exploiting the already existing parallelism of the notation.

The second generalization is the obvious extension from
arrays of scalar arrays to arrays of arbitrary arrays. The

properties of such arrays really arise from the functions
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defined on them and it is the functions which are of primary

interest.

The Name Domain

Names in APL\360 stand for either functions or
variables (or other extra-lingual objects not considered in
this paper). Mention of a variable name usually implies a
reference to its associated arrav. The exception is a name
occuring as the left operand of a specification. Mention of
a function name implies evaluation of the expressions
comprising the function definition,

The generalizations proposed in this paper make
functions and variables sub-classes of the same set of
objects (appropriately called variable functions). A defined
function is a name associated with a scalar program array.
Mention of any name usually implies evaluation of its
associated array, In this case the name-~array pair is said
to exist in the value domain. Again the exception is a name
occuring as the left operand of a specification. In this
case the name is said to exist in the name domain and it is
not in general important that any array be associated with
the name. Expressions are permitted on the left of
specification and they evaluate to arrays of name scalars.
Functions occuring in such expressions must be defined for
name arrays and dgenerally mimic functions in the value

domain. Using the same function symbols in both domains
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makes the new functions easy to remember but increases the
sensitivity of expressions to their context.

These concepts already exist in APL\360 but are hidden
by the use of the special bracket notation used for array

indexing.

Generalized Functions

Some functions defined in APL\360 have been trivially
extended to include the new data types in their domain. Some
functions previuosly defined on scalars or vectors are
extended to 1include higher rank arrays. Functions are
defined to create and manipulate general arrays.

A general array extension method is developed which
uses definition of a function on vectors to extend the
function to array operands. This method makes definition of
functions on arrays easy and more importantly may itself be
used to extend functions to arrays in non-standard ways. The
existence of this method motivates the definition of
functions only on vectors in the early parts of Chapter 1, A
small number of new functions have been defined to permit

special action on the new data types.
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E. Guidelines
The determination of Jjust what constitutes good APL or
what extensions or generaliztions are in the APL spirit is
largely a matter of taste. The following guidelines are

followed in this paper:

1.) Existing definitions are preserved whenever

possible - extend don't change.

2.) The wuseful identities are preserved whenever
possible. Identities are used to infer the

properties of general arrays.

3.) The introduction of special syntax is avoided -
keep it simple. The temptation to include new
heirarchies of punctuation (i.e. braces, bars,
vinvulae, etc..) 1s resisted, The use of the
semicolon (;) as a low precedence spearator is

expunged,
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Chapter 1

Primitive Functions and the Value Domain

A, Introduction

In this chapter the computational subset of the
notation is developed. The basic data objects are defined
and their properties are exploited by the functions defined
on them. When the significant feature of an operand to a
function is its value (the data object which it defines)
then the operand is said to be in the value domain. The
majority of the functions described in this chapter already
exist in APL and are trivially extended. Notable exceptions
are the functions to create and manipulate general arrays;
the scalar product operator which applies functions
uniformly to sub-levels of general arrays; and the general

array extension method for defining vector functions on

array operands.,
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B. The Meta Language

The following meta-notation is wused throughout this
paper 1in verbal descriptions and formal definitions. A
certain basic knowledge is assumed here. It is presumed that
the meanings of the terms function, operand, etc. are
already known even though some of them are formally defined
later. Following the list of meta notations are some simple

examples which justify the assumption,

D - a dyadic function (one with two operands).

M - a monadic function (one with one operand on the
right).

L - the left operand of a function.

R - the right operand of a function.

Z - the result of applying a function to its operand
(i.e. the result produced when the function is
evaluated) ,

E - an empty vector,

S - any scalar.

U - any unit array.

)4 - any vector.

{J - an array of 2 dimensions.

FI - a function index,

ORG - the index origin.

PRQD X - a scalar which is the product of all the elements

in the numeric array X (=1 if X has no elements).,
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> - identically equal (the objects pointed to are the
same objects). the symbol «-+ may be read "is",
/> - not identically equal (the objects pointed to are

different). the symbol <«/-+ may be read "is not".

1~
I
S

THEN Y ELSE Z - this 1is the expression of the
conditional and has the value Y if X is true (X<«->1)
and the wvalue Z if X 1is false (X«»0) and is
otherwise meaningless. If the ELSE clause is
omitted or "ELSE undefined" is written then the
value is meaningless in the case X is false. X is
called the antecedent, Y is called the consequent,
and Z is called the alternative.

SCALAR X - this predicate is true if X is a scalar and false

otherwise,

X AND Y - this is the expression of the conjunctive and is

defined in terms of the conditional,

IF Y THEN true (i.e. 1)
ELSE false {(i.e, 0)

ELSE IF Y THEN false

The last statement is included +to make AND
meaningless in the case X false Y neither true nor

false.
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Example of a function and operands:

243

In this case the function + is recognized to be that of
addition. L is 2, B is 3 and Z is 5. Thus the terms function
and operand are merely labels for familiar objects. Z of

this example could be expressed using the conditional as:

«>

[[\]

IF R <> 4 THEN 7
or
Z >
IEF (L +» 3 AND R+>4) THEN 7

Since AND is defined in terms of the conditional it is
not strictly needed. However the above formulation shows
that it can be wused to limit the depth of recursion of the

conditional in cases where the recursion is not of interest.

Some of the meta-notation 1is parallel to APL functions
(i.e. the meta-notation "identically ecual" and the APL
function "same" vet to be introduced). Many functions could
be made pure APL by substituting functions for
meta-notation. The meta-notation is used instead of

functions for the following reasons:



1.)

2.)

3.)

4,)

5.)

It is a convenient starting point for
defining functions and structures.
Unnecessary circularity of definitions is
avoided,

Some parenthesis are avoided without loss
of clarity and with an increase of
readability.

It focuses attention on the object being
defined.

The formal definition of a meta is never a
point to ponder while it is with a

function.

15
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The first «class of functions to be introduced are
is a function whose name and value are intimately associated
in that the value may be determined solely from the name.
These functions are the bhasic building materials for all

other functions.

Literal Functions

A literal function (or literal array, literal) is a
constant function whose constant value is precisely and
immediately determined by its manifestation. The simplest
form of 1literal function is a scalar. A scalar is an
undefined object which may be described as having a single
value but having no coordinates (i.e. no direction, no
structure, empty dimension).

A scalar may be thought of geometrically as a point.
Following are scalars of five distinct types three of which
have literal manifestations representing the values of the

scalars,

Character scalar
tA the single character 4. Enclosing quotes
are used so there can be no confusion

between the character *3*! and the number
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3. The quote character itself is
represented by two quotes in the usual
manner,

Numeric scalar

35 the single number thirty five.

35 is scalar because it 1is the number
which is of interest and not its
multidigit decimal representation.

Position scalar

) The position scalar (hereafter called

the p-scalar). This scalar is used as a
placeholder when no other type is
appropriate,

Program scalar
Every piece of notation in 4APL is a
program scalar. Its mention implies its
evaluation thus the three scalars
mentioned above are program scalars.
However '4' evaluates to a character
scalar, 35 evaluates to a numeric
scalar, and 6 evaluates to the position
scalar.

Name scalar
This scalar refers indirectly to a

value.

Notice that while all values are printed as characters,
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character type values are still distinguished from numeric
type values by use of enclosing quotes. Since it 1is useful
to supress guotes on display of a function result, confusion
may still exist when reading such a result (but never in
evaluation). A gimple array is an ordered arrangement of
zero or more scalars along zero or more coordinates. The
number of coordinates in an arrav is called its rank. A
scalar is then a 0 rank simple array. An array of rank 1 is
Ccalled a vector. An array of rank 2 is called a matrix. The

dimension of a simple array is a simple vector telling the

number of scalars along each of the coordinates of the
array. If an array has zero scalars along any of its
coordinates (i.e. if a zero occurs in its dimension vector)
then it 1is <called an empty array. In particular the

dimension of a scalar is the empty vector (zero scalars

along one coordinate). The scalars used in an array are

Examples:
5 73 is a rank 1 array (vector) of dimension 2
containing the scalars 5 and ~ 3.
0 1
2 3
4 5 ié a rank 2 array (matrix) of dimension 3 2

containing the scalars ©0,1,2,3,4,and 5,

(selecting the values of an array one row
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at a time as above is called selecting them

in row major order).

YABCD! is a rank 1 (vector) of dimension 4

containing the scalars '4','B','C', and'D’'.

A literal array may be considered the written form for

the value of the array.
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D. Display of Simple Arrays

If the printed form of an array is to be an unambiguous
representation of the array, then the dimension of the array
and the scalar value at each position in the array must be
clearly indicated. Therefore the following display format is

used:

1.) Dimension display = the symhol p followed by a
vector of integers which is the dimension of

the arrav,

2,) Value display - A scalar 1is displayed as its
literal value. A vector is displayed as a line
consisting of jits scalar values. A matrix is
displaved one row per line. Each plane of a
higher rank array is displayed as a matrix
with one blank line separating planes, two
blank lines separating hvper-planes, etc., In
this paper all printing is double spaced. This

recuires some visual compensation,

For many arravs, the dimension display is a repetition
of information contained implicitly in the value display. In
these cases the dimension display mav be elided without loss
of information. A scalar may always be displaved without a

dimension displav. A one element vector requires the
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dimension display to differentiate it from a scalar, while a
two element vector does not require it. In general, if the
dimension neither contains a zero nor begins with a one,
then it may be elided.

In an implementation it may be convenient to always
elide the dimension display, but when defining functions as
will be done here, it is important that no ambiguity be

present.,
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The second class of constant functions are
expressions. Since expressions are usually involved with the
class of variable functions called primitive functions, they

shall be discussed together,

a name and an associated scalar array of type program, The
name of a primitive function is a special symbol (i.e.
function is not a constant function because its name does
not indicate its description. In general the value of a

primitive function depends upon the values of other arrays

classifications all the arrays previously introduced (i.e.
literal functions) may be considered niladic functions
because their value depends upon zero other arrays. A
function taken with some particular operands is called a

simple expression or 3just an expression. The process of

of the expression and is considered a mapping of the
operands of the function into the result. This is an

important distinction. A function (say addition +) is a
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mapping and to properly define a function it is only
necessary to specify the mapping. An expression (say 3+Uu)
specifies an application of the mapping to the particular
operands, Thus an expression is an alternate notation for
some constant (3+4 is an alternate notation for the constant

7).

dyadic L:R
The function symbol ':' appears between the
left and right operands L and R

monadic R
The function symbol appears to the left of its
single operand R. There is no confusion with
the dyadic function which wuses the same
function symbol because there is no left
operand.

dextri-monadic L*
The function symbol appears to the right of

its single operand [ (hence the term dextri-)

niladic 2

There are no operands.

Thus the number and positions of the operands of a
function uniquely and unambiguously determine which of the
four possible functions a function symbol stands for. The

description associated with the function name must be
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sensitive to each environment in which use of the function
is to bé valid. It will be seen that an effort is made to
define functions having the same name but differing valid
syntax, related in meaning so they will be easy to remember,
However it should be noted that this is an attempt at good
taste and not a requirement. In these examples it is the
syntax of the functions which is of interest. The meanings
of L+R and +R will shortly be presented. The meanings of R:
and + will remain undefined. Dextri-monadic and niladic
functions are of little importance till defined functions
are introduced but are in fact valid forms for future

expansion of the language.

F. Scalar Functions

A scalar function is a function which is defined for
scalar operands and which produces a scalar result. Apprendix
2 summarizes the primitive scalar functions and gives their

identity elements. They will not be discussed individually

except by example,

Examples

+5

10+4
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Scalar functions are extended to take array operands

according to the following rules:

For monadic scalar functions (of either type):

Tm) If the operand is a non-scalar array then the
function is applied to each scalar in the array
producing a result having the same dimension as

the operand.

For dyadic scalar functions:

1d) If the operands are non-scalar arrays then
they must have the same dimension and the function
is applied to scalars in corresponding positions
in the two arrays producing a result having the

same dimension as the operands.

2d) If one operand is scalar and the other is a
non-scalar array, then the function is applied to
the scalar operand paired with each scalar of the
non-scalar array producing a result having the

same dimension as the non-scalar operand.

These rules are often called the scalar extension and

they will be formalized after the proper theory has been
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developed. In the following examples arrays of rank 2 are

enclosed in a box (i.e. meta [) because there

linear representation for such an array.

Example scalar functions:

37 1
f 3.14 o 7
4 73,14 (i.e. a 2 2 array)
b 1
4 "3

Ee[E (E +«» empty vector)

L]

is so far no
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0 >|3.,14 .7
I T3.1Y4
0 0
0 1
30 31| 8

15 2

Ex7
E

Note that 1in each case the result has the same

dimension as the non-scalar operand.
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The APL 1language does not provide symbols for every
possible function., In particular no functions of three or
more operands are permitted by the syntax. The functions
which are provided (i.e. the primitive functions) are those
of general usefulness which can be used to define more
specialized functions. Such a composite function is called a
compound function and 1is composed from zero or more
primitive functions. As an example let 4,8, and ¢ stand for
any three arrays. Then a candidate for a compound function
is :

AxB+C

since whatever it is, it 1is defined in terms of primitive
functions. It has been seen that given a primitive function
and its operands, it 1is never a problem to evaluate the
function (i.e. just apply the mapping). But here it is not
clear exactly what the operands of the primitive functions
are, This ambigquity is resolved by introducting punctuation
which describes the function-operand relationship, The
symbols used for the punctuation are ( and ) and they
surround a function and its operands. Thus

neither (case 1) ((AxB)+C)

nor (case 2) (4Ax(B+C))
contain any operand ambiguity. Unfortunately this rule

implies that the expression 3+4 must be written (3+4),
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And in fact a pair of parentheses is introduced for
each primitive function used. While this is theoretically no
problem, it is bothersome for people to write or look at so
many parentheses. One way to 1limit them is to assign
precedence to functions to indicate which should be
evaluated first. Mathematics and traditional programming
languages do this,., But there are too many primitives in APL

to make this workable so instead the following two

1.) Parentheses which delimit the right operand of
some function may be deleted.

2.) Parentheses which do not alter the scope of
operands for some function may be deleted.

(i.e. at least the outermost pair)

These rules impose the following precedence on

functions:

If a function occurs immediately to the right of a
right parenthesis, then it has lower precedence
than any function occuring in the parenthesized
expression. Otherwise precedence is positional and

increases from left to right [Lathwell,Mezei 11},

Using the parentheses elimination rules the previous

example may now be written:
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(case 1) (AxB)+C

and (case 2) AxB+C

Note that a compound function is still a function and
is considered a mapping of its operands into its result.
When a compound function is written with explicit operands
(i.e. 2x3+1) it is <called a compound expression and as
before is a constant. Evaluation of all such functions can
be considered a table look-up procedure., Thus there is no
fundamental concept of one primitive of a compound function
being evaluated before another (i.e. no time relationship).
The many function symbols are just an unusual syntax for the
specialized function. However since it is not convenient to
remember (or compute!) the tables for all possible
functions, people and computers use algorithms to evaluate
compound functions and it is these algorithms which suggest
a time relationship.

Such an algorithm for evaluating compound expressions

using the above two rules may now be stated:

Evaluate functions in order of decreasing

precedence.

This statement is actually stronger than reauired since
in (AxB)+CxD it does not matter which multiplication is
done first. The algorithm is sometimes called by the

misleading name "the right to left rule". These rules are



31
sufficient to evaluate any expression. The section on magic
syntax (Chapter 3) discusses this more and shows that the
order of evaluation described in A Formal Description of APL
[Lathwell,Mezei 11] does not hold with the generalized

syntax.,

Examples of compound expressions:

3xh+1
15

(3x4y)+1
13

-4+1
°5

(-4)+1

ofL1+10®139
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The section following this one begins the exposition of
non-scalar functions. Each function is coded with a letter
to indicate the degree to which the function differs from
existing APL functions. The codes have the following

meanings:

I. inclusion - a function existing in APL which is
retained unchanged or trivially extended to

include new data types or general arrays.

E. extension - a function existing in APL which is
generalized or altered.
:‘/
A, addition - a function not currenetly defined in

APL

The functions are generally presented in the following

format

1,) syntax - a display of the function symbol to
be used for the function and the number and

positions of its operands.

2,) english description - a brief sentence

indicating the task performed by the function.
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3.) conformability = general information about
what data objects are in the domain of the

function.

4,) formal description - defines the action of the

function.

A formal description is in order whenever the function
being described can be defined in terms of the meta-notation
and previously defined functions.

Some functions in the notation have hidden or implied
operands as well as those explicitly written. Of chief
interest is the index origin.

Particular elements of an array are sometimes refered
to by a set of one or more integers called the index of the
element. For example the elements of a vector would be
refered to by succesive integers. Any integer may be chosen
as the index to the first element of a vector. This integer
is called the index origin and is denoted (QRG in the
meta-notation. The second element of a vector is always
refered to by (0RG+1. An element of a rank ¥ array may be
refered to by a set of #V integers. While one could write
defined functions which wused ¥ origins for a rank ¥ array,
primitive functions always use the same origin for all

coordinates. The important consideration is that functions

are sensitive to the index origin and arrays are not. An
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array is an arrangement of objects and is independent of how
one decides to number the objects.

When a formal description of one function includes
previously defined functions then it 1is possible that the
description is origin sensitive. Therefore each description

is labeled as follows:

1.) origin free - the index origin does not affect

the description.

2.) origin independent - the index origin does
affect the description and 1is explicitly

mentioned via the meta QRG.

3.) O-origin dependent - the index origin does

affect the description but QRG«+0 is assumed.

Formal descriptions have the following properties:

1.) They are recursive - evaluation of the
conditionals involves the function being

described.

2.) recursion is finite - there is at 1least one
consecuent or alternative which does not
involve recursion and all operands declared

conformable lead to these.
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3.) they are constructive - the descriptions can
be used as algorithms for evaluating the

functions.

Following each function are examples of its use. All
examples assume zero origin. Frequent lapses into English
are included 1in an attempt to convey the spirit of the
notation and give some insight into the why of functions as

well as the what.
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I. Mixed Functions

Anv function which is not a scalar function is called a
mixed function. Two important subsets of the mixed functions
can be isolated, The structure functions [Morrow 17]
generally manipulate entire arrays without regard to the
value of the arrav. The gelect functions extract particular
elements or subarrays of an arrav without regard to the type
of the elements, The operands of these sets of functions can
be classified as one of two types. An operand manipulated by

a structure function or disected by a select function is

called a subject operand. An operand which is wused to

of the functions to new domains easy., Each of the mixed
functions will be treated individually. The structure and
select functions will bhe identified when they are introduced

and are summarized in tables 1 and 2 on page 130,
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Size (I) (structure function)
Syntax:Z <> pkR
Z is a simple vector whose components represent the
number of scalars along each coordinate of E.

Conformability: R is the subject operand and is any array

The size function is the APL equivalent of the word
dimension and pg 1is sometimes read dimension of RE. The
compound function ppR is the APL equivalent of the word rank
since the number of coordinates in an array is the number of
elements in its dimension vector. The size function is
useful in defining other functions. For example in the
discussion of the monadic scalar functions the words
"producing a result having the same dimension as the
operand"” could be replaced by pZ <> pE. This will be done

from here on,
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Reshape (I) (structure function)

"Syntax: Z <+ LpR
The result 1is an array of dimension L whose
elements (if any) are taken from F in row major
order, reusing elements of R if necessary.

Conformability: [ is the control operand and 1is a
non-negative integer scalar or a non-negative
integer vector. R is the subject operand and is any
array having at least one element unless a zero

occurs in L in which case R may be emptv.

Reshape is used to generate arrays of given dimension
from scalars, The examples of scalar functions contain
statements which use a meta-notation for arrays:

Example:

0 > 3,14 o7

With reshape this could be written:

0 > 2 2p 3.14 o7 U 3.14
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Ravel (I) (structure function)
Syntax: Z <=+ ,R
Z is the vector of the scalars in E taken in row
major order.
Conformability: B is the subject operand and is any array.
Formal description: origin free

Z +> (BROD pR) o R

In the following descriptions of functions, ravel is
used in two ways. First as a formal way to treat scalars as
one-element vectors, and second to displav how results are
calculated when the structure of operands is not relevant to
the calculation. An extension of ravel will be introduced

later.

Examples:

w2 2p ‘ABCD'
ABCD

pP,2 2p 'ABCD?
pl
n

This is the first example where the dimension display
is required. It emphasizes the fact that the size function

always results in a vector, never a scalar.



Vector Indexing (&) (select function)

Syntax: Z <+ L 9 R

40

Z is an array of elements selected from positions [

in R.

Conformability: B is the subject operand and is any vector,

L is a control operand and is any simple integer

array.

Formal description: origin independent

THEN the scalar which is the Lth component of &

)
Z of dimension pL such that

I d 2 «+(I 4 L) dR
for each scalar integer I, ORG<ISORG+oR

ELSE (oL) o (,L) 3 B

Vector indexing is fundamental to the definitions of

the mixed functions. Most other select functions
expressed in terms of indexing.
Examples:

2415739

(2 2p1 21 0) 491579

can be
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Vector Attach (I) (structure function)
Syntax: Z <+ L,R
Z is a vector made by joining L to R.
Conformability: L and R are subject operands and may be any
vector or scalar.
Formal description: origin independent
Z of dimension (p,L)+p,E such that

I 32«13 ,L for QRGSI<QRG+p,L

(I+p,L) 4 2 «»I 4 ,BE for QRG<I<QRG+p,R

Vector attach (and its extension to array operands yet
to be introduced) is the fundamental way of joining two
arrays. In APL\360 this function is called catenate but here
that term shall be given a more restrictive meaning (see

Catenate page 114)

Examples:
1,2
1 2
2 3,4
2 3 4
1,2,3,4
1 2 3 4

Every simple array A can be represented by a compound

function on scalars using only the primitive functions
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vector attach and reshape. A vector can be represented as a
compound function as follows:

1.) The empty vector is 0p0

2.) A one element vector is 1pS for S any scalar

3.) A vector with ¥ elements is $51,52,...,SN for

any scalars Si

Given that a vector can be represented, any simple

array A 1is represented by

(pAd)p,A
Where p4 is a vector and ,4 is a vector,

Thus the statement is verified.

The representation of a numeric vector constant (i.e.
1 2 3 4) is really a primitive functional notation for the

compound function 1,2,3,4.
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Interval (I)
Syntax: Z <> 1}
Z 1is the 1length B vector of successive integers
starting at the index origin.
Conformability: R is any scalar integer such that 0 < R.

Formal description: origin independent

Examples:
13

o 1 2

10

Ity



ug

Identities

(11) WL > plLpk
(12) B «> (pR)pR
(I3) pL «+> p L 3 F
(I4) W3 +> pr 8



45

Vector Take (I) (select function)

Z is a dimension ,L vector of the first or 1last [
elements of R

Conformability: R 1is the subject operand and is any scalar
or vector, [ 1is a control operand and is any
numeric scalar.

Formal description: origin free

IE L 2 -p,B THEN ((1[L)+(p,R)-L) § R
ELSE ((lLtp,R)p6 ),R
where 6 1is the previously defined position scalar.

ELSE undefined

Examples:
2 41 2 3
1 2
T34 '"IFATE®
ATE
4 4+ 3,'4

3 48 8
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Vector Drop (I) (select function)

Z is R with the first or last L elements deleted.

Conformability: R is the subject operand and is any scalar
or vector, L is a control operand and is any
numeric scalar.,

Formal description: origin free

Examples:

2+ 1 2 3
p1l
3

T3 4 'IFATE!
IF

4 4 3,'A!
E

The definitions of take and drop illustrate the
statement that functions which select elements from vectors
can be defined in terms of vector indexing. The statement

will remain true when indexing and the select functions are



47
defined for array operands. Of course none of the select
functions are really needed since indexing could always be
used., They are convenient in that they represent easily
understood and often needed special cases of indexing and
are often less clumsy to use,

For example given vector V, 14V is not much different
from 0 4 V¥ except that the former is origin free and the

latter is a scalar. 14V is nicer than ( 1+pV) 4 V.
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Vector reduction (I)

Syntax: Z <+ D/R
Z is a scalar derived from repeated applications of
the scalar function D on scalars in R

Conformability: R is any scalar or vector, D is any dyadic
scalar function.

Formal description: origin independent

mER A = - -

ELSE (QRG 94 R) D D/1+R
Examples:
+/1 2 3
6
-/1 2 3
2
=/0 1,'4B"

+/ 1 2 3 can be considered a shorthand notation for

(1+(2+3) ).,
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Reduction could have been defined so that it would
associate to the left and be shorthand for ((1+2)+3). This
is the reduction originally defined by Iverson [Iverson 10}
and the two definitions are obviously equivalent for any
associative function., It is not the right to left rule that
directs the choice of right association. Rather the reverse
is true. Non-associative functions produce uninteresting
numbers when evaluated from left to right. 1-2-...-N would
be 1 minus the sum of the remaining numbers whereas when
evaluated form right to left the same expression yeilds an

alternating sum,

Reduction can be considered a device for defining
dyvadic scalar functions on other than two operands. Everyone
knows that addition can be applied to more than two numbers.
An algorithm is provided for adding sets of numbers., For all
associative functions the meaning of reduction is well
known. +/ is summation, x/ is product, [/ is biggest, etc,.
When D is not associative reduction is still well defined
and some still have well known meanings. -/ 1s the
alternating sum, but ®/ is uncommon. x/ 1s the APL
equivalent for the meta-notation PROD X for vector X. The
equivalence will remain when reduction is extended to

arrays.
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Vector Scan (I)

Z is a vector of partial reductions of elements in
K.
Conformability: E is any vector, D is any dyadic scalar
function,
Formal description: origin independent
Z of dimension pR such that
I 4 D\R <> D/{(I+1-0RG)*R

for scalar integer I, ORG < I <QRG+pR

Examples:

+\1 2 3
1 3 6
-\1 2 3
1 1 2
=\0 1,'4B"

o 0o 1 1

2
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Vector back~scan (A)
Syntax: Z <«+ DXR
Z is a vector of partial reductions of elements in
R,
Conformability: £ is any vector, D is any dyadic scalar
function.
Formal description: origin independent
Z of dimension pR such that
I 4 Dx B «+ D/(I-QRG)VR

for scalar I, QRG £ I <QRG+pR

Examples:
+%1 2 3

6 5 3
-%x1 2 3

2 "1 3
=x0 1,'4B"

1 0 0 B
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Vector Base Value (Decode) (I)
Syntax: Z <> [LR
Z is a scalar which is the evaluation of B in the
mixed radix [L.
Conformability: [ and B are any scalar or vector such that

pL «+ pR or one of them is a scalar or a one

element vector.

Formal description: origin free

>

e

ELSE undefined

Examples:
10 L 1 2 3

123

10 10 10 1 2

222

4 2 3L 210

15
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Vector Represent (Encode) (I)
Syntax: Z2 <+ LTR
Z is the mixed base [ representation of R.
Conformability: L is any simple numeric vector, PR is any
numeric scalar.

Formal description: origin free

ELSE IF ~14L <> O THEN ((T1+L)T0),R

ELSE ((T1+L)T(R-(T14L)IR): " 14L),(T14L) IR

Examples:

2227165
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Vector Compress (I) (select function)

Syntax: Z +»> L/R
Z 1s a a vector of scalars from £ in positions
corresponding to ones in L.

Conformability: L is a control operand and R is the subject
operand. They may be any vector or scalar,

Formal description: origin independent

AR

IF SCALAR L THEN

IE 0 «» oL THEN [
ELSE ((QRG 94 L)/QRG 9 R),(1+L)/1+E

ELSE undefined

Note how the description is meaningless 1in case [ is
not composed of zeros and ones. In case [ is scalar the

result is all of R or none of it as L is a one or a zero.

Examples:
1/'CAT!
CAT
0/4 5 6

it



101/5 7 9

10 1/5

55
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Vector Expand (I) (select function)

Z is R expanded to positions corresponding to ones
Conformability: L[ is a control operand and R is the subject
operand. They may be any vector or scalar.

Formal description: origin free
Z +~>

IF SCALAR L THEWN

ELSE undefined
Identity:
(1I6) R <+ L/L\R for vector operands
Examples:

1 0 1\5

101\ 5 7
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Vector Reverse (I) (select function)
Syntax: Z <+ ¢R
Z is the vector R with elements reversed.
Conformability: R is the subject operand and is any vector
Formal description: origin independent

Z <> ((T1+40RG+pR)-1pR) d R

Example:

$13

2 1 0
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Vector Rotate (1) (select function)

Z is the vector EF with elements cyclicly rotated.
Conformability: R is the subject operand and is any vector.

L is the control operand and is any scalar integer.
Formal description: origin free

Z <> ((pR)IL+1v"'ppR) 94 R

Later when interval (1) is extended to vector operands
the sub-expression 1''ppR may be replaced by 1pR.
Example:
T1¢'ABC!

CAB
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A simple array has been defined as a set of rank 0
arrays arranged along coordinates., A general array is the
obvious extension of a simple array and is a set of rank ¥
arrays arranged along coordinates. The definition of a
general array includes that of a simple array. The
personality of these new objects 1is determined by the
functions which are defined wupon them. The desire 1is to
define the existing functions on this enlarged domain so
that the useful identities are retained.

A graphic representation of arrays is now developed as
an aid in discovering the properties of general arrays. The

new representation is that of a singly rooted tree with

labeled nodes. A singly rooted tree with labeled nodes

where N is a finite set of labeled nodes, and L is a finite

set of ordered pairs of elements of ~¥ <called lines or

branches. The first element or each ordered pair is called

the initial node, the second the final node. Trees have the

following properties

1.) There is a distinguished node called the
root which is the final node for no line.
2.) No node is the final node of more than one

line.

3.) For every node Vi, either Ni is the root or
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there exists a sequence of lines
rLt1,.2,L3,...,LN8 such that the root is the
initial node of L0 and Ni is the final node
of ILn. Ni is said to be at the VNth-level of
the tree,

b.,) Every node of a tree defines a subtree of

which it is the root.

The following terminology is used when talking about
trees. A node which is the initial node for no line is
‘called a leaf. A tree is gimple if everv node 1is either the
root or a leaf., If a tree has a node at the N¥th level but no
node at the N+1st level, then it is called an ¥N-level tree.
A simple tree is either a 0-level or a 1-level tree. Figure

1 page 64 pictures a 2-level tree with 4 leaves,

Now a mapping is made from arrays to trees.

A scalar 4 is mapped to a tree T(4) consisting only of
its root. The root is labeled with the dimension and value
of the scalar. (see Figure 2 page 64)

Thus a scalar is represented bv a 0-level tree. Notice
that the size function produces the dimension label of the

root node,

Just as scalars are used to build arrays, scalar treces

shall be wused to build array trees. The extension from
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scalars to simple arrays is made by going from O-level trees
to 1-level trees whose leaves are 0-level trees.

A simple array 4 is mapped to a simple tree T(4) as
follows:
1.) The root of the tree is labeled p4.
2.) The root is the initial node for PROD p4 lines.
3.) The final nodes of the PROD p4A lines are leaves
(making the tree simple) and are the scalars of 4
in ravel order,

(see Figure 3 page 65)

Notice that as before the size function p produces the
dimension label of the root node. Since each leaf 1is a
scalar tree, they are each labeled with a dimension so that
identity (I3) on vector indexing is preserved. Using the

second example of figure 3:

'BY «» 1 4 A (definition of vector indexing)
pl 4 4 «» p1l (by I3)
«> F (definition of a scalar)

which is the label on the node.

Each node also has a value, In the case of a leaf, the
scalar value appears as the second label on the node. (This
is consistent with the previous definition of a scalar
tree). The value of the root node is the entire array which
the node defines and as such is redundant and may be elided.

The dimension part of the 1label 1is not strictly needed
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because the tree for a rank V¥ array could be drawn in N+1
space. This 1is not done because of the difficulty in
visualizing the difference between the tree for ,3 in 2
space and the tree for 1 1p3 in 3 space., Thus a simple
array is a 0O-level or a 1-level tree whose leaves are scalar

trees,

The obvious way to make the extension from simple arrays to

general arrays is to examine more general trees,

Consider the tree required for a two element vector A4
whose first element is 'B' and whose second element 1is the
three element vector 13 (see Figure 4a page 66). It is not
clear what label should be supplied for the unlabeled node.
Property 4 of trees says that this node is the root of a
subtree so the label must be 3:, Yet if the node is viewed as
the second element of a vector then to satisfy identity I3
the dimension label should be

o 13 A4 «> p1 by I3

++ F by def, of a scalar

Therefore to satisfy all the requirements the labels
for nodes must be modified to contain two dimensions. First

the dimension seen by functions ( called the apparent

dimension) and second the real dimension of the array

(called the hidden dimension). Now a general array can be

represented as in Figure U4b page 66.
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The tree (and the array) defined by the node labeled

E:3: has the property that it looks like a scalar yet has
many values. Any tree whose apparent dimension is E 1is
called a unit tree and the array it represents is called a

unit array. Notice that the mapping from arrays to trees is
not surjective (onto) but is injective (one-to-one). In
particular no tree which represents an array can have a node
whose apparent dimension 1is different from its hidden
dimension unless it is a node defining a unit tree. It is
possible that an attempt to make the mapping surjective
(isomorphism) could lead to more general arrays. Further
modifications of the labeling of these trees and/or

permitting multiply rooted trees could also lead to

extensions,
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N0

N10 N1
n21 21 N22
Figure 1

A singly rooted tree with labeled nodes
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Scalar Trees
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K, Mixed Functions (continued)

Just as functions are needed to create simple arrays,
they are needed to create general arrays. In this section
the basic functions for creating and manipulating general
arrays will be presented. Most of the mixed functions
presented so far can be extended to the domain of general
arrays by substituting the term unit array for the term
scalar in their definitions. They will therefore not be

presented again,
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Conceal (A) (structure function)
Syntax: Z <+ <R
Z is the unit array of the array R.

Conformability: R is the subject operand and is any array.

Since <R is a unit array, the following identity is
obvious
(17) E «» pcR

The structure of R is not lost but merely not apparent
(i.,e. hidden from the view of some functions - dimension,
reshape, ravel, etc.). Conceal is nilpotent on unit arrays
and scalars because neither the dimension nor the values are

changed by application of the function.

Identity:

(18) U «+ cl

In terms of the tree representation, conceal sets the

apparent dimension of the root node to 'E'.
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Reveal (A)

Syntax: Z <> >R
Z is the wunit array R with its hidden dimensions
revealed.

Conformability: R is the subject operand and is any unit
array.

Identities:

(I9) R <+=+>cp Reveal is the left inverse of conceal

(I10) U +> <>l

Thus Z 1is the array which is concealed in the unit
array £E. In discussion of functions, reveal is used to
exhibit the action of functions on general arrays, given
that their action on simple arrays is known. Reveal is
nilpotent on scalars.,

Identity:
(x11) S > 25
(proof)
S «* 2cg by I9

+«+ 2§ by I8

In terms of the tree representation, reveal changes the

apparent dimension from £ to the hidden dimension.
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The expression B <= 5B which is true for scalars is not
an appropriate definition because -F may be undefined if R
is not a unit array. An expression for the SCALAR predicate

which does not involve the conditional is presented on page

90.
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Unit Indexing (A) (select function)
Syntax: Z <+ L 94 R
Z 1is an array of unit arrays selected from
positions [ in R.
Conformability: B is the subject operand and is any array, L
is a control operand and is any O-level or 1-level
array of integers,

Formal description: 0 origin dependent

IF 0 = ppL THEN ((pR)LoL) 4 ,R

ELSE IF 1 = ppL THEN Z of dimension pL such that

Notice how the use of 1+ in the definition imposes
restrictions on L. If L[ is not simple in line 2 then > is
not a scalar and therefore must have dimension ppEF. Thus a
rank-N array is indexed by unit arravs which are the conceal
of N element vectors. In particular a vector is indexed with
unit arrays which are the conceal of one element vectors. In
vector indexing scalars are used to index vectors. This is
no problem because in case [ is simple and B is a vector,
the definition of unit indexing reduces to that of vector
indexing. This is seen because the definitions are identical

except when 0=pplL. In that case [ is scalar and:
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((pR)L>L) 3 ,R def. of unit indexing
<+ ((pR)1DL) 3 R by I5
<> ((pR)LL) 4 R by I11

<>+ (+/Lx1+(x%xpR),1) 4 R def., of 1
«+ (+/Lx1+¥(pR),1) 4 R def. of xX
<+ (+/Lx1) 94 B def. of +

«+ L d R def. of +/

Therefore unit indexing is a proper extension of vector

indexing.

Examples:

((c0 0),c1 2) 4 3 3 p19

(cE) 4 9

Unit indexing allows selection of elements from any
array. In particular it allows indexing of unit arrays (and

therefore scalars) yielding the following identity:

(112) U «> (cg) 9 U

(proof) :

(cE) 4 U

<+ ((pcE)1ock) 3 ,U by def. of 3§
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«> (Zi>cE) 4 ,U by I7
«+ (ELE) 3 ,U by I9

<> (+/Ex1+v(xXE),1) 4 ,U by def. of 1

«+ (+/Ex1vE,1) 34 ,U by def. of %

“«> (+/Ex1+1) 3 ,U by def. of ,

«> (+/ExE) 4 ,U by def. of +

+«+ (+/E) 4 ,U by the scalar extension

«> 0 4 ,U by def. of +/

«> U by def. of vector indexing
Identity:

(113) J d K dL «> (J dK) 3L

This is merely a substitution for Z in line 4 of the
description and says that unit indexing is associative.

An index I to an array R is called a proper index (PI)
of R 1if it selects a single unit array from F. Formally I
must be the conceal of a length ppZ vector of integers such
that

QRG < (J 3 oI) < ~1+0RG+J 4 pR

for each scalar integer J

QRG < J < “1+QRG+J 9 pR

In particular the only proper index of a unit array is
cE. The terminology PI will be used to eliminate the

explicit declaration of the range of indexes.
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2Ry _—— Emaammas mmEmmae=

The display of a general array is not as straight
forward as the display of a simple array because any index
position may contain an arbitrarily complicated sub-array.
The following algorithm is used for display of general

arrays:

1.) If A is simple then display it as before,

2,) If 4 is not simple, then display in row major
order as part of the dimension display, the
index to each position 1in the array and then
recursively display the reveal of the array in

that position.

For example the array represented by the tree in figure

4b page 66 is displayed as follows:

The array 1s a two element vector and is not simple.
The first element is at index position zero and is a scalar
so its dimension display is empty. The index positions and

dimension are separated by the symbol :, The second element
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is at index position 1 and is a three element vector. This
form is a 1little cumbersome and in an implementation it
might be desireable to elide some of the detail. It is,
however, an unambiguous and complete representation of a
general arrayv. The following properties may be read

immediately from the dimension display:

1.) The dimension display of a simple arrav has no

occurence of the symbol :

2,) The dimension display for a unit array begins

with the symbol :

No primitive notation is provided for writing general
arrays just as no way is provided for writing simple arrays

or even scalar rational fractions.
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Entire (&) (select function)

Conformability: R is the subject operand and is any array.

Formal description: origin free

2« R

This is not a useful function at this time but later

the fact that it is size preserving will be useful.



Same (A)

Syntax: Z <> L = R

Z is 1 if [ and R are the same array
otherwise,
Conformability: L and EF may bhe any arrays

Formal description: origin free

ELSE IF pL <> pR

THEN A/T for T of dimension x/pL such that

for each PI I of ,L

Examples:

1§
iy
N
w

£ =

Jex1
1]
It

could be used in its place,

and

77

0

is the APL equivalent of the meta-notation <= and
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Membership (I)

Syntax: Z <+ LeR
Z is one or zero as the corresponding element of L
does or does not occur in R

Conformability: L and B may be any arrays

Formal description: origin free

Z of dimension pL such that

I d 2 «+IF (I 3 L) =J dR
for some PI J of R THEN 1
ELSE 0
Examples:

'CAT' ¢ '"CAB!

1 3 5 € c¢1 3 5

13 5 € 3,1 3 5
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Complement-of (set Difference) (p)
Syntax: Z +-» L~R
Z 1is the vector of elements from £ which do not
occur in [
Conformability: L and R may be any arrays.
Formal description: origin free

Z +> (,~REelL)/,R

L~F may be read as the complement of L in XK. Notice
that the structure of the operands is of no consequence.
Examples:

(13) ~ 15

YAB' ~ 1 2

The function may be used to delete the blanks in a
character vector.
' '~'NOW IS THE TIME'

NOWISTHETIME
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Index=-0of (ranking) (E)
Syntax: 2 +> L1\R
Z is the array of index positions for elements of R
in L
Conformability: L and R may be any arrays

Formal description: origin free

Z of dimension pR such that

ELSE ©

ELSE IF I 4 LR +«+ J 4 ,L for some scalar J
THEN <(pL)TJ
for the smallest J such that I 4 ,B «+»> J 4 ,L

ELSE ©

Examples:

12312 20 310 3

0 0O:p1

0 1:p1
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1 1:p1

(2 2p"ABCD')r'CA!

O:p2

This use of the position scalar 6 corresponds to the
use of the null character o in Iverson's discussion of

ranking. [Iverson 10]

In certain special cases index-of may be considered an
inverse to unit indexing.
Identity:

(I14) R «+ (B\R) 4 R
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Transpose (I)

The definitions of dyadic and monadic transpose are so
closely related that it is convenient to treat them

together.

Syntax: Z <> L&R (or Z <> QR)
Z is R with permuted coordinates some of which may
be aligned.
Conformability: B is any array,‘ L in the dyadic case is any
vector of elements taken from 1ppR such that
pL «> ppk
A/Lerppk

A/(WT/L)eL (L is dense)

[Abrams 1]
Dyadic Transpose

Formal description: origin independent
Z of rank 1-0RG-T/L such that
I dpZ <> L/(L=I)/pR
for each I, QRGsI<[/L
and

I 4 Z <> (cL 4 oI) 94 R

for each PI I of 2
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Monadic Transpose
Formal description: origin free
Z <+ (dr1ppRIRR
This description differs from that used in APL\360 but
is the transpose defined in the formal description of APL

[Lathwell,Mezei 11]

Examples:
1 0 & 2 3p"ABCDEF! (or ® 2 3p'ABCDEF')
AD
BE
CF

0 0 & 2 3p'ABCDEF'

AE

In case L is a permutation of 1ppR or in every case of
monadic transpose Z is said to be eguivalent to PR up to a

transpose. When defining functions there are often many
choices for the arrangements of the dimension vector. Each
of the arrangements is equivalent up to a transpose to each

of the others.

Identity:

(I15) R «+ (1ppR)&R
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Grade Up (I)
Syntax: 2 <+ 4 R
Z is the permutation of 1pR which will order R from
smallest to largest.
Conformability: R is any numeric vector. The position scalar
® 1is permitted in the domain of grade wup and is

considered smaller than any number,

Example:

(A5) 4 5

(A 50 6 2)d 5886 2

8 2 5 6

Grade up has the following useful property. If R is any
permutation of 1¥ for some non-negative integer N then AR is
its inverse permutation and (4R) 4 R <+ N which is the

identity permutation. Thus R <+ A4R.



o
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Grade Down (I)

Syntax: Z <> VR
Z is the permutation of 1pE which will order R from
largest to smallest.

Conformability: R is any numeric vector. The position scalar
6 is permitted in the domain of grade down and 1is
considered larger than any number.

In case £ has no occurance of @ the following
definition holds,

Z > A—]i

Examples:
(VY 586 2) 3586 2

e 6 5 2

Information about the Grade functions as implemented in
APL\360 may be found in the IBM Systems Journal [Woodrum

22] .,
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In this section several methods for applving functions
to general arrays are defined. The most fundamental of these
is the scalar extension for scalar functions. A direct
generalization of this is the scalar product operator which
extends the same concept to non-scalar functions. Reduction
has already been defined but is generalized. The outer
product 1is defined as an alternate way to pair up the
elements of the operands for application of the primitive
definitions of functions. Inner product combines arrays

using two primitive functions.,

The Scalar Extension for Scalar Functions

The following definitions of scalar functions on
general arrays assume only the primitive definitions of the
functions, The extension of the functions to simple arrays
is restated (now formally) providing a self-contained

description.

1.) Scalar monadic functions: Z <= ¥ R

THEN M R (the primitive definition)

ELSE IE E <> okt
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ELSE Z of dimension pR such that

I 4 72 «> MM T 4 R for each PI I.

2.) Scalar dyadic functions: Z <> L D R
Z =
IF ( SCALAR L AND SCALAR R) THEN L D R

_—_—= e Rt AL

IF E <> pR THEN <(>L) D =R
ELSE ((pR)pL) D R

ELSE IF E <> ol ITHEN L D (pL)pR

ELSE IF poR <-» oL THEN Z of dimension p[L such that
I 4 2 «> (I dL)DIJdR
for each PI I of R

ELSE undefined

Notice that a unit array is made dimensionally

conformable to every array.

The scalar extension for scalar functions is certainly
one of the important ways to apply functions to arrays. But
it is only one of many possible extensions some of which are
sufficiently useful to deserve primitive existence along

with scalar extension. A function cannot be allowed to act
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in more than one way on array operands so new functions are
needed to represent the alternate arravy extensions. To
invent new function symbols for them is no problem but is
inefficient of symbols and confusing. Therefore objects
called operators are introduced.

An operator is an object which takes functions as

operands and produces a function as its result. Operators

differ from functions as follows:

1.) They are of higher precedence than functions.
The rightmost operator in an expression is
evaluated before any function is evaluated.

2,) Both the left and/or right operands of an
operator have limited scope. That is
parentheses are not needed to limit the extent

of the right operand.

It is interesting that an operator and its operands
could be considered a multi-position symbol for a function
(this has been done in implementations to date)., This stand
was taken implicitly in the earlier discussion of the
reduction and scan functions. The symbols +/ may be taken to
be a 2 position notation for a function which is related to
addition (i.,e. an alternate extension of addition on
arrays). Or / may be considered a dextri-monadic operator
which modifies its function operand + to be a new monadic

function called plus reduction.
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P, The Scalar Product Operator (a)

The scalar product operator is a monadic operator which
has three definitions, one each when it is applied to
monadic and dextri-monadic functions and one when it is
applied to dyadic functions. It represents a method for
applying functions to the subarrays concealed in general

arrays. The symbol g is called demi-colon.

1.) Monadic functions: Z <+ ¢ M R

ELSE Z of dimension pR such that
I 42 «>9¢ MIdR

A similar description applies to dextri-monadic functions.

2.) Dyadic functions: Z <+ L[ g D
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Unlike scalar extension for scalar functions, recursion
ends when a unit array is reached. 1In case D (or ¥) is a
scalar function then the operator is nilpotent. The
operator is called the scalar product operator because the
functions it produces act 1like scalar functions on the
outermost level of their operands. A more general
description of scalar extension will be given in a later
section.
Examples:

$ p €2 3p1b6

ip2
2 3
(¢ 1 2) §9 , €3 4
H
1 2 3 4
(¢ 4 5) g = (c'AB'),cl4 5
0 1

The scalar product operator allows definition of the

SCALAR R <«» (<10) = ¢ pkR
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Generalized Vector Reduction Operator (I)

Vector reduction is a dextri-monadic operator whose
left operand is apy dyadic function. Notice there is no
restriction that this function be scalar or even primitive.
It represents a way to apply a dyadic function D to a single

array operand.

Syntax: Z <+ D/R
Conformability: RE is any vector or scalar, D is any dyadic
function,

Formal description: origin independent

[}
4
¥

IF identity element I exists for D THEN I

ELSE undefined

Scan and backscan would be generalized by using this
definition of reduction.

Example

5,/(c0 1),(c2 3),cH4 5

c 1 2 3 4 5
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Matrix Product Operator

The matrix product operator (.) is a dyadic operator.
When both operands are dyadic functions, the resulting
function is called inner product. When the right operand is
a dyadic function and the left operand is the symbol ¢, the
resulting function is <called outer product. They each
represent alternate wavs to apply dvadic functions to array
operands. The extension of inner product to arrays to be
introduced later represents a generalization to the

algebraic matrix product.

Outer Product (1)

Syntax: Z ++ [ o.D R
Z 1is the array produced by applying the dyadic
function D to all pairs of elements, one from [ ,
one from R

Conformability: L and F are any arrays, D is any dyadic
function.

Formal description: origin free

Zz of dimension (pL),pRE such that
(Is ,J) 3 Z <> (I 8 L) ¢ DJ 4R

for each PI I of L and each PI J of R
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Outer product may be used to generate operation tables

for functions.

(13)e.+13
0o 1 2
1 2 3
2 3 4

(2,1 3) e,+ 20,c30 40

22

0 1:p2

32 42

1 0:p2

21 23

1 1:p2

31 43

In case [ and R are simple, the outer product may be
expressed in either of the forms:
>(eL) D R
°L D <R

Yet another form is discussed in Chapter 3 under scalar

extension.
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Vector Inner Product (I)

Syntax: Z <+ L D.D"

=

Conformability: L and £ are any vector or unit array. D and
D' are any dyadic functions.

Formal description: origin free

Z 1is always a unit array because vector reduction
always produces a unit array. Inner product will be extended
to arrays along with other vector functions in section T of

this chapter.
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Operator examples

For all operators the functions may be any function
(i,e. even non=-primitive). In particular they may be
functions resulting from an application of these operators.
Thus these operators may be used to generate any number of
new functions related to, but different from, the primitive
function. The following examples take the same two operands
(2,1 3) and ((20,<30 40). The first case shows an ordinary
attach. The next two show attach with the scalar product
operator and with the outer product operator. The next four

show the same operators on attach to two levels in all

possible combinations.

(2,1 3),(20,c30 40)

1:p2



(2,1 3) ¢ ,(20,c30 40)

O:p2

l:p4

1 3 30 40

(2,1 3)0,,(20,c30 u40)
0 O0:p2

2 20

0 1:p3

2 30 40

1 0:p3

1 3 20

1 1:p4

1 3 30 40

96



1:

1:

0

2

0

0

1

1

(2,1 3) ¢ ¢ ,(20,c30 40)

sp2

20

0:p2

30

1:p2

40

(2,€1 3)e,0,,(20,c30 40)
O:p2

20

1:0:p2

30

1:1:p2

4o

0:0:p2

20

O0:1:p2

20
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1:0 0:p2

30

1:0 1:p2

40

1:1 0:p2

30

1:1 1:p2

40

(2,<1 3)o., ¢ ,(20,c30 u40)
O:p2

20

1:0:p2

30

1:1:p2

4o

0:0:p2

20

28



1 0:1:p2

1 1:0:p2

1 1:1:p2

(2,c1 3) 3%

0:p2

1:0 0:p2

1:0 1:02

1:1 0:p2

1:1 1:p2

°,,(20,<30 40)

99
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Index Generator (Interval) (Odometer) (E)

Syntax: Z <+ 1R
Z is the array of all valid indices to an array of
dimension R

Conformability: R is any vector of non-negative integers.

Formal description: 0 origin dependent

Z«»
IF 0 <> pR THEN <E
ELSE (10 d RE) o. ¢ , V14K

10 4 R is the previously defined interval function and
11vR 1is recursively the index generator. It is obvious from

the use of the outer product that pZ <=+ pR.

Examples:
13
0 1 2
(13) 4 15
o 1 2
1,3
O:p1



:pl

:pl

0:p2

1:p2

2:p2

O0:p2

1:p2

2:p2

(v,3) 4

2

12 3

15

101
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Extended interval is called index generator for the
obvious reason. The term odometer was used for a similar
function defined by Abrams [Abrams 1] probably because the
elements taken in row major order count in a base R number
system,

An index I is a proper index (PI) of an array R iff
Ie1pR and this may be considered an alternate definition for
a proper index. Again note that for R a unit array

1pR «+ 1F <> cf

Identities:
(I16) E <> (pR) 9§ R

(I17) R <= p1\R (easily proven by induction on pR)

Pl



103

S. Indexed Functions

An array R of rank N¥21 may be thought of as any one of
N sets of rank V-1 arrays joined along a new coordinate. For
example a matrix of dimension 3 5 may be considered as
3 b5-element vectors or 5 3-element vectors. In general an
array R of rank #Nz2M may be thought of as any one of M!¥N

sets of rank M-N arrays joined along ¥ new coordinates.,

Functions can be defined which act on array R as a
single entity. But if one is thinking of B as a set of
smaller rank arrays, it would be convenient to permit the
functions to act on the smaller arrays as though they were
the entities. Therefore many functions are equiped with a
third operand called a function index which is used to
specify the partitioning of the array. The function index
(denoted FI in the meta-notation) is usually considered an
index to the dimension vector of the right operand R of the
function. As a vector index, its elements may be scalars or
the conceal of one element vectors but for formal purposes
the latter is assumed. An indexed function has its third
operand displayed in brackets and appended to the right of
the function symbol,

For functions which are defined on subarrays of an
array it is convenient to allow elision of the index in case
its value is 1ppR. Other indexed functions may have other

defaults but in every case FI selects one oOr more
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coordinates of a dimension. With each function will be a

specification of the range of its function index.
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used to index M and select the Ith subarray.

Examples:

c[0] 2 3p16

c[1] 2 3p16

Identity:

(I18) <R «> cl1ppR] R

(proof)
1.)dimension identity:
pclippRl R
+> ((1ppR)~1ppR) 3 pR def. of <[]

<——>_Z«;'
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Indexed Conceal (A) (structure function)

Syntax: Z «+ c[FI]

I~y

Z is an array of unit arrays derived from subarrays
of R
Conformability: £ is the subject operand and is any array.
FI is any subset of 1ppR. The order of the elements
in FI is relevant. If FI 1is elided it is taken to
be 1ppR
Formal description: 0-origin dependent
Z of dimension (FI~i1ppR) 4 pR such that
I 4 2 <> c(Is ,1(-pFEIl)toM) 9 M
where
M +> (A((rppR)eEII\NI+EI)RE

for each PI I of 2Z

Although the description is involved, the function is
simple. The indexed dimensions are hidden and the resulting
subarrays are concealed. The dimension of each subarray is
FI 4 pR. This means that the order of the elements in FI is

are

[isS]

important and that the subarrays concealed in
equivalent (up to a transpose) to the subarrays of R. The
transpose in the description moves the indexed dimensions in
the order specified in FI to the right of the dimension
vector defining the array ¥ equivalent up to a transpose to
Bs 1(-pFI)+pM 1is then the complete index set on those

dimensions and defines a subarray. This index array is then

united (via ¢ ,) in turn with each proper 1index I of Z and
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Indexed reveal (A) (structure function)

Syntax: Z <> >[FI] R

Z 1is the array

E with its hidden dimensions

revealed, Indexed reveal is the inverse of indexed

conceal,

Conformability: R is the subject operand and is any array of

unit arrays having
p>I 4 B «> p2J 3 R
for any PI's I and
FI is a vector of
indexes selected
FI is elided it is

of the elements in

the property

J of R

dimension pp> I 4 R of vector
from the set 1(ppR)+pp>I 4 R. If
taken to be 1pp>I 94 R. The order

FI is relevant,

Formal description: 0 origin dependent

Z of rank (ppR) + pp>I 4d
EI 4 pZ «» o> 4 R
(EI~1wppR) 4 pZ <> pR
and
Z <> (M ((r1ppM)eFI)\1

for M such that

R such that

+21)8M

(Is ,J) @ M <> T 3 57 3 R

Here M is generated with the hidden dimensions revealed

on the right, then the inverse transpose of that used in

indexed conceal is wused to

dimension,

distribute them in the result



<> pck
2.)value identity:

J d <clippR] R

«> J d c(Jg ,1(-prppRlitpM) 4 M

for ¥ «>(4((1ppR)er1ppBE)\1+1ppR)IRER

evaluating ¥

M

«> (A((1ppR)erppRI\1+1ppR)IRR

<> (Al+1ppp)&R
<> (1ppR)RER
<—->}_?

using this result

J 4 cl1ppR] R

«r J d c(Jg ,1(-prppR)+pR) d R

by def. of \
by def. of 4

by I15

by def. of <[]

<> (cE) d c((cE)g ,1(-prppR)*pR) 4 R by JeippceXxp.

+«> c(1(-prppR)4pR) 9 R
«+ c(1(-ppRI+pR) 4 R

«+ c(1pR) 4 R

by
by
by
by

by

I12 and def. of ,
I17

def. of ¢

I16

Jelrppchk

107
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— e ahes e el ISl IS mm = SFEmmSmEn RN aleaoesaEn

Indexed reveal and conceal along with the scalar
product operator may bhe used to define a function on array
operands when given its definition on vector operands. An
array operand is concealed along an appropriate coordinate
making it an array of one smaller rank whose elements are
vectors (though not necessarily simple vectors) then the
scalar product operator is applied to the functional so that
its vector definition conforms with the hidden vectors. A
more general form of this same scheme conceals more than one
dimension and allows easy definition for the action of a
function index on a function already defined on array
operands. This is the case with indexed unit indexing.

This basic pattern will be used without further comment
in many of the descriptions which follow. Understanding of
the functions on vector operands is assumed so little

discussion will accompany the function descriptions.
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Examples:

5[0] (<0 3), (c1 4),c2 5

o[1] (¢ 01 2), € 3 4 5

Identities:
(119) R «+ o[FI1c[FI1 R

(I20) R <> <[FI] >[FI1R
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(0 o, 9 , 01 o, § , 0 3)Yd 3 3 3p127

0 2
3 5

Note that the second outer product could have been
written simply ¢., . If one defined a cartesian product

function (;) having the definition
L3R «> L °o. 3 , R
then the above expression could be written
(03 01 ;03 )d 3 3 3p127
This form has a pleasing similarity to the bracket
indexing of APL\360 differing only in the possible need for

extra parentheses,



Indexed Unit Indexing (A) (select function)

Syntax: Z «+ L 4 [FI] R
Z is a set of rank (ppR)-pFI subarrays selected
from R

Conformability: B is the subject operand and is any array, L
is the control operand and is any 0O-level or
1=level array of integers. FI is any subset of 1ppR
such that p>I 4 L «» pFI for any PI I of L. If FI
is elided it is taken to be 1ppR.

Formal description: origin free

Z «> o[FI] (<L) ¢ 4 <[EI] R

Identities:
(121) L d R <« L 4 [1pR] R

(I22) R« L 34 [E]R
Examples:

1 3 d [1] 3 4p'ABCDEFGHIJKL®
BD
FH

JL

This form of unit indexing eases the selection of cross
sections of an array. More general cross sections may be
taken by calculating an index as a cartesian product of the
desired coordinates. Thus selecting plane 0, rows 0 and 1,

columns 0 and 3 of 3 3 3p127 may be written
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Attach (I)
Syntax: 7 <> L,[FI]1 R
Z is the arrav formed bv joining L to R.

The function index is either a scalar or the conceal of
a one element vector and may be thought of as indicating the
position in the result dimension along which the operands
are joined. If FI is elided it is taken to be

[/1(ppl)TppR

There are three distinguishable cases of attach and for

purposes of claritv each will be treated separatelv.

Catenate

Two arravs of ecual rank are attached vielding an
arrav of the same rank.

Conformabilitv: (FIzvppL)/pL +> (FIzvppL)/pR
ElerppL

Formal description: origin free

Z <> o[FI] (cLFI1 L) s , <LFI1 R

Examples:
1 2,[0] 3 u
1 2 3 L

(2 3p16),2 2p14



Indexed Ravel (E) (structure function)

Syntax: Z <> ,[FI] R

Conformability: & is the subject operand and is any array,
FI is any permutation of 1ppR. If FI is elided it
is taken to be 1ppR.

Formal description: origin free

Z +> FIQR

The description is so nearly primitive itself that it
is questionable if the function is worthy of primitive
existence, However its inclusion removes some of the special
status attributed to row major order.

Example:
,[1 0] 2 3p'ABCDEF'

ADBECF



6,L0] 2 3p16

6 6 3)
0 1 2
3 4 5
Laminate

Arrays of identical shape are attached vielding an
array of one higher rank.
Conformabilitv: pL <= pR or one arrav must be a unit array.

FI must be non-integer in the range (QRG-1) < FI <

8]

RG+ppR
Formal description: origin free
Z > 2lTELT L s , B

Examples:

2,3
2 3
"ABC',[T.5]1 'DEF!
ABC
DEF

'ABC',[ .51 'DEF'
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In the description of catenate each operand is
concealed along the indexed dimension. These arravs are then
conformable for the scalar product operator which is used to

catenate the hidden vectors.

Adjoin
Arrays wvhich differ in rank bv one are attached
vielding an arrav having the larger rank.
Conformability: 1 «» |(ppL) - ppR or one array must he a

unit arrav,.
FI € 1(ppL)lppR

Formal description: 0O-origin dependent

[[\]

«~>

=]

ELSE »[FI] (<[EI1 L) s ,

In adjoin the indexed dimension of the arrav of larger
rank is concealed making the arrays conformable for the
scalar product operator. An alternate definition would be to
reshape the array of smaller rank to insert a one in the
indexed dimension making the resulting arrayvs conformable

for catenate.

Examples:

1,2 3
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Indexed Take (E) (select function)

o]

Syntax: Z <~ +tLEF

I~

1R

Conformability: E is the subject operand and is any array,
FI is any subset of 1ppR. If FI 1is elided it is
taken to be 1ppR. L is the control operand and is a
simple vector such that pL <+ pF[l.

Formal description: origin independent

I

«—

I~

£ «» oFl THEN R

Ity

Lg

Ity

(1vL)+01vFI] o[ 14FL] (ORG 3 L) s + <[14FI]1 R
When FI is elided, this 1is the same as the take function

defined in APL\360,.

Example:
24[0] 3 3p19
0 1 2

3 & 5

T2 2 4[1 0] 3 3p19



AD
BE

CF

Here unit arravs are joined by applications of the
scalar product operator vielding hidden two element vectors.
The fractional function index then indicates where in the
result dimension the hidden dimension of 2 should be

inserted.

The attach function defined by this triple of
descriptions 1is essentially unchanged from the attach

function defined in APL\ 360,
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Base Value (decode) (I)
Syntax: Z <= L.LR
Conformability: L and E are any arrays such that
T1tpL +> 14pR
Formal description. origin independent

Z <> (c[ " 141ppL] L) 3 L <[QRGI R

This function is identical with the Base value defined in

APL\360.

Example:
10 10 10 L 3 2 p16

24 135
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Indexed Drop (E) (select function)
Syntax: Z <= L+[FI1 R
Conformability: same as indexed take.

Formal description. origin independent

i~

“

I~
™
Iy

«> pEI THE

=

B

sl
it
I
It

(1+L)+[1+EIL] SL1+EL] (QRG 9 L) ¢ +<l14FI] R

When FI is elided this is the same as the drop function

defined in APL\360.

Example:

2 +[{01 3 3p19

T2 2 +[1 0] 3 3p19

pl 1
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Indexed Compress (I) (select function)
Syntax: Z <«» L/[FI] R
Conformability: R is the subject operand and is any array.
FI e€wppR, if FI is elided it is taken to be [/i1ppR.
L is a numeric vector such that pL <=+ FI 4 pR
Formal description: origin free
Z <> o[EI] (<L)y /<LEI] R

This function 1is identical to the compress defined in

APL\360,

Example:

1 0 1/[0] 3 3p19



Represent (Encode) (I)

Conformability: [ and E are any numeric arravs.,
Formal description: origin free

Z «» o[ 1t1ppL] <[T141ppL] 9§ T R
( . ) -

- N

This function is identical with the represent defined
APL\360.
Example:

10 10 10 T 24 135

121

in
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Indexed Reverse (I) (select function)
Syntax: Z «» o[FI] R
Conformability: E is the subject operand and is anv array.
FI is any subset of 1ppR, if FI 1is elided it 1is
taken to be 1ppR.

Formal description: origin free

§++
IF E «» pEl IHEN R
ELSE QL1+EI] »[14EI] ¢ ¢ <[14FI]1 R

The first ¢ in this description is a recursive reference to
indexed reversal, the second 1is vector reversal. This
function differs from the reverse defined in APL\360 in that
any or all coordinates mav he reversed, and when FI is

elided, all coordinates are reversed.

Example:

¢[1] 3 3p19
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Indexed Expand (I) (select function)
Syntax: Z <> L \[EI] R
Conformability: R is the subject operand and is anv array.
FIerppR, if FI is elided it is taken to be [/i1ppR.
L is a numeric vector such that +/L <= FI 4 pR
Formal description: origin free
Z <> o[FI1 (cL)s \ <[FI] R

This function is identical to the expand defined in APL\360,

Example:

1 0 1\[0] 2 3p0 1 2 6 7 8

o 1 2
6 ©6 6
6 7 8

It is interesting to note that if FI is permitted to be
a subset of 1ppR, that the definition still holds. If this
extension were adopted, then the following example would be
valid:

(3 3p0 1 1 1)\[0 1] 3 2016
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Indexed Reduction
Syntax: Z <+ D/[LFI]1 R
Conformability: R is any array,FI is any subset of 1ppk, if
FI is elided then it is taken to be 1ppE, 2 is any
dvadic function

Formal description: origin free

=
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The first p2/ in this description is a recursive
reference to indexed reduction, the second 1is vector
reduction. The expression in the function index of D/
assures that throughout the recursion the index will refer
to the original coordinates of the arravy ER. This function
differs from the reduction defined in APL\360 in two ways.
First any or all coordinates mav be reduced. Second when no
function index is supplied, reduction always produces a unit

array.

Example:

-/[1 2] 2 3 udpr12y
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Indexed Rotate (I) (select function)

Syntax: Z «» LO[FI] R

Conformability: R is the subject operand and is any array. 7L
is the control operand and is an integer scalar or
a simple array of integers of dimension
(EIz1ppR)/0E. FIeippR. If FI is elided it is taken
to be [/1ppR.

Formal description: origin free

Z <> >5LEI) L 3 ¢ <[ELIR

This function is identical to the rotate defined in
APL\360, It is particularly pleasing that the general array
extension method applies so easily in the description of
this function. [} is concealed along the indexed dimension
leaving an array conformable to a scalar [ or an array L of

like dimension,

Example:

"1 01 ¢ 3 3p13
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Inner Product
Syntax: Z «+ L D.D' R
Conformability: L and B are any arrays such that
“14pL +> 14pR, D and D' are any dyadic functions.

Formal description: origin independent

Z +> 3 D/ (<[ 1+1ppL) L) ¢ D' <[QORG] R

This function is the same as the inner product function

defined in APL\360,
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Indexed Scan
Syntax: Z <+ D\[EI] R
Conformabilitv: same as indexed reduction

Formal description: origin independent

[N}
4
+

IF E «» oFl THEN R

Indexed back-scan has a similar description by using

backscan in place of scan in the above description.
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U. Remarks
A multitude of primitive functions have been presented
in this chapter. The majority of these functions already
exist in APL\360 but nearly all have been redefined to some
extent (the scalar functions being the notable exception).
One could continue to define primitive functions for more
and more specialized purposes but given a sufficiently
powerful and general set of primitives these special
functions may be defined as sets of compound expressions. To
achieve this, notational existence must be attributed to
some set of objects corresponding to function symbols and to
L, B, Z, and FI of the meta-notation. These objects are
called names. They and functions defined on them shall be
the subject of Chapter 2.
The following page contains a summary of the structure
and select functions to provide an easy reference for the

definition of these functions on names.
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any examples in this paper to avoid confusion with the
meta-notation. An identifier is an atomic object and its
multiposition display is not significant. An identifer
cannot be confused with a character constant because there
are no enclosing quotes. (This is a stronger reason for
using quotes for character constants than the one given
earlier.)

Examples:
X
RATE

Lug

A pame is any identifier or any function symbol and is
therefore not an array. A name may be associated with a

constant array called its description and the resulting pair

is called a variable function. Variable functions which are

have already been discussed. Variable functions which are
named by identifiers are separated into three classes based
on the type of the constant array. 1.) if the array does not
contain a program scalar then the variable function is
called a variable. 2.) If the array contains only program
scalars, then the variahle function 1is <called a defined

variable and is treated syntacticly as a variable. The term

variable is used because at different times a name may be

associated with different constant descriptions. This is not

»
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Chapter 2

befined Functions and the Name Domain

A. Introduction

All the examples of the preceding chapter involved
primitive functions with literal operands. All the
descriptions involved a meta-notation for operands with the
understanding that any literal in the domain of a given
function could be substituted for the meta-notation. If all
possible functions were primitive, then no further machinery
would be required., But as was stated before not all
functions are created equal and only the useful and general
ones are endowed with primitive existence. It becomes useful
then to permit one to derive a new function from the old
ones in terms of general operands as 1s done in the
meta-notation and then apply the function as though it were
primitive. To this end the concept of a variable which will
play the role of the meta~notation for operands and

functions is introduced.

B. The Name Domain

An identifier is a sequence of alphabetic (4-Z, and
A-Z) and numeric (0-9) characters whose left-most symbol is

an alphabetic. The underscored alphabetics are not used in
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C. Functions in the Name Domain

Specification (I)

The description associated with the name L (if any)
is replaced by E.

Conformability: L is any identifier, the position scalar e ,
or the special symbol [J, B is any array.

Formal description: origin free

Z <> R

Specification is indeed a unique function, Its
evaluation is trivial (much 1like entire) but it has the
important side effect of either <changing a name into a
variable function, changing the description of a variable
function (in which case it is often called a
respecification), or in case 6 «+ [ having no effect at all.
The clear distinction between the domains permits the
inclusion of the p-scalar in the name domain without
ambiguity. When L[ <«-» [0 a display of R is generated.
Examples:

Z+13

o 1 2

B<«'4AB"

AB

)
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the same as a variable in the mathematical sense. In the
equation

((X%x2)-Y*2)=(X+Y)x(X-Y) ’

if the wvariables ever denote values, they denote "any
value", In APL a variable has one particular value (its
description). The concept of a compound expression is
extended to include variable functions and a variable
function used as an operand to some other function always
requires evaluation. The value of a variable function is the
array produced when its description is evaluated. The
evaluation of a variable is trivial and the value is not
distinguishable from the description. The evaluation of a
defined function implies evaluation of the program it
represents and in general may depend upon other arrays (its
operands) .

An operand of a function is said to be in the value
domain when the arrays of the operand are the objects of
interest., This 1is the <case with the operands of all
functions introduced so far. An operand of a function is
operand are themselves the objects of interest., It does not
in general matter if the names are variables (i.e. are
associated with descriptions) or not.

The obvious link bhetween the value domain and the name
domain is a function which has one operand in each domain
and which establishes the association between a name and a

description,
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Chapter 3 Section B). The second restriction is that no
defined function equivalent to specification is permitted.

Having established a link between the value domain and
the name domain it is natural to explore the name domain
further,

A name scalar is a dimensionless array in the name
domain containing a single name. Specification is extended
to allow L to be a name scalar and its action is imposed on
the name composing the scalar. As with general arrays in the
value domain the differing personalities between a name and
a name scalar are determined by the functions which are
defined on them. In the following pages the structure and
the select functions shall be defined in the name domain. It
is this latter group which recognizes a difference between a
name and a name scalar,

In the value domain, after a scalar was introduced the
first order of business was to define structured arrays of
scalars, The same is done in the name domain. Name scalars

has name dimension. A unit name includes several names but
has empty dimension. A general name array has unit names
arranged in order along coordinates. As before, functions
are needed to construct the name arrays out of name scalars.
And again the problem of symbol pollution arises. New,
different, exciting (and probably hard to remember) function

symbols could be invented for functions in the name domain

but should be avoided if possible. Fortunately functions
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In these examples as in all previous examples the
result produced by the function evaluation is displayed., It
turns out to be convienent in an implementation to inhibit
the display of a result in the case it 1is a result of the
specification function., This convention will be followed
from here on and is the reason for introducing the special [J
symbol,
The fact that specification has F as a result means
that multiple specifications are possible in a compound
expression. Any such expression can be evaluated by the

algorithm on page 30 without ambiguity.

A<1B+0
B

0
A

E

Thus specification is used to supply a description for
a name. A more general specification will be introduced
shortly which permits specification of selected elements of
a variable. The left operand of specification is considered
to be in the name domain only in context of the
specification arrow “. This prompts treatment of
specification as a special object rather than a function.
Treating it as a function is only possible with two
restrictions. First no monadic or niladic <« shall be
permitted. If they were defined then a no-result expression

left of &« would be interpreted in the wrong domain (see
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These functions may be wused in the obvious way to
produce any general name array.

The important property of the structure functions in
this domain is that the relevant structure of the subject
operands is the dimension of the names. The names need not
be variables; and if they are, the structure of their
associated descriptions 1is utterly ignored. For this reason
the structure functions do not differentiate a name from a

name scalar and names are treated as name scalars.
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defined in the value domain may be extended to the name
domain without ambigquity (again because of the clear
distinction between the domains). This is 1in effect trading

off symbol creation for increased sensitivity to context.

Structure Functions in the Name Domain

Generally the extension of functions to the name domain
involves restatement of the description used in the value
domain with the term name array substituted for the term
array. Therefore the descriptions will not be repeated in
detail.

The following table summarizes the structure functions
which are extended by allowing the subhject operand(s) to be
in the name domain, Notice that a control operand ard a

function index are always in the value domain.

Z L EL Jis
name syntax domain domain domain domain
reshape Z <=+ LpR name value - name
attach Z <«» L[,[FIIER name name value name
size Z <> pR value —_———— ———— name
ravel Z <> ,LEIIR name ———— value name
conceal Z <=+ c[FIIR name ——— value name
reveal Z <«-» >[FI]JR name ———— value name

TABLLE 3., Structure Functions in the Name Domain
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While interpreting the above description keep in mind
that L is in the name domain and that any functions applied
to L[ (i.e. » and p) must be deciphered in the name domain.
This 1is the reason for the «curious notation Li. It is
desired to select a name from L vet no select functions have
vet been extended to the enlarged domain. General
specification will play an important role in defined
functions and in arrays of functions. It could be arxgucd
that the «case (E <> pL) AUD (E </~ pR) should be undefined
but the definition given is reasonable and useful (see the

second example).

Examples:
(A,B)<«0

A
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General Specification (E)
Syntax: Z <~ L<R
The descriptions associated with the names L (if
any) are replaced by the arrays in R.
Conformability: L is any array of distinct names, F is any
unit array or any array such that pR <= plL.
Formal description: origin free

Z <> B

Note that L 1is an indirect reference to the values
associated with the names in L. As with the specification
defined earlier the result is not as important as the side
effect of associating arrays (i.e. descriptions) with names.
The following is the assignment rule which specifies how

arrays in R are associated with names in L.

i 4 Z <> c(>Li)«>i 4 R
where [Li 1is the unit name which occurs in index
position i of 7.

ELSE undefined
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The select functions are extended to the name domain by
allowing the subject operand to be in the name domain,
Unlike the structure functions, the select functions are
defined only for names having descriptions (i.e. variable
functions) or for name arrays. In case the subject operand
of a select function is a name (say V) associated with an
array (say 4), then it is treated as a simple name array
defined as follows. The size of the name array is pd. The
names in the name array are the names of unit arrays in
corresponding positions of 4.

For example suppose N+ 2 3p16 is evaluated. Then the
name array used when Y 1is the subject operand of a select

function could be pictured as follows:

Voo Vo1 No2

710 Vi1 Ni2

Names as above are never really created but it is a
convenient memory device for understanding how the functions
evaluate. Notice that each name is associated with a
position in ~N. Now the select functions may be defined
assuming that the subject operand is a name array and then
the definitions are the same as in the value domain with the
term name array substituted for the term array. Therefore

the descriptions shall not be repeated. A table of select



LA

(A,B)+c13

A
:p3
0 1 2
B
:p3
¢ 1 2
(2 2p A,B,C,D)<« 2 2p1 4
4
0
B
1
¢
2
D
4
The p-scalar may be used to force conformability.
(E, 8 ,F)«13
E,F
0 2

The following expression can be used to directly
interchange two unit arrays.

(4,B)+«B,A



Name Entire
(d 4)+«0

A

Name Take
(44A)«YABCD!
A

ABC Note the use of the

p-scalar in the

name domain to form 40 A1 A2 8

Name Drop
(244)<«7
A

o 1 7

Name Compress
(1 0 1/4)«5 6
A

S 1 6

Name Expand
(1 1 0 1\A)<«'4ABCD!

A

ABD Note the use of the p-scalar

X

)
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functions would be pointless because the right operand is
always in the name domain and the function index and left
operand (if any) are always in the value domain. Therefore
each select function shall be discussed by example.

Assume the following specifications have been evaluated
just prior to each example:

A« 3

B+2 2p14

C€2 2p1 4

Name Unit Indexing
(2 0 § 4)« 5 6
A

6 1 5

This example will be discussed in detail because all
other select functions are defined in terms of unit
indexing. First, 4 is a name and not a name array. Therefore
it is treated as the name array which could be pictured

AO Al A2

The 2 0 name index of that is A2 A0. Then applying the
general specification function 1is like applying the two
expressions:

A2+5

A0<+6

and the resulting value of 4 is as described.
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(¢o 94 [0]B),0 0O RC)<O

B



Name Reverse
(¢A)<«'"ABC!
A

CBA

Name Rotate
(1d4A)«'ABC!

CAB

Name Transpose

(0 0 &B)+« 8 9

Since the result

a compound expression

A<110

145

of a select function is a name array,

on select functions is well defined.

(34544)+« 91 92 93

Combinations of
valid if the operands

if the resulting name

93 8 9

select and structure functions are
to each function are conformable and

array is an arrav of distinct names.
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may not in general be clear which expressions comprise the
definition. This prohlem may partly be solved by supplying a
notation which emphasizes the relationship of expressions.
Therefore an expression separator symbol [ is introduced. An
occurrence of this symbol on a line 1is to mean that the
expressions so separated are related for purposes of
definition but are separated for evaluation. The occurrence
of a [ which does not separate two expressions is ignored.
The previous example mav now be written as follows:

V<« 12 6 7 3 15 10 18 5
MEAN«<(+/V)+pV 0 DSQ«(V-MEAN)*x2 0 VR<++/DSQ%pV
VR

23.75

Now the definition is distinguished from the setting of
its operand and the displaying of its result. Observe that
the expressions of the definition have been evaluated in
sequence proceeding from left to right. The decision to
evaluate in this order is somewhat arbitrary. It emphasizes
the fact that 0 is punctuation and not a function. Choosing
a right to left evaluation could tend to implv some special
significance which does not exist.

Of the many remaining objections to this method of
definition, three are outstanding. First a definition may be
comprised of a large number of expressions and an attempt to
make them colinear 1is neither practical nor desireable.

Second, the wvariables which are operands and the variables

O
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Frequently the description of a function in APL
notation requires a set of expressions evaluated 1in
sequence., This is certainly true when defining specialized
functions from the primitive ones. For example consider
defining a function to calculate the variance VR of a
vector of numbers V. It could be defined as the following
set of expressions which may be divided into three groups.
The first expression defines the (implied) operand of the
function; the next three calculate the result; the last
expression displays the result.

V< 12 6 7 3 15 10 18 5
MEAN<(+/V)spV
DSQ«(V-MEAN)*2
VR«+/D5Q%pV

VR

23,75

Of course the above definition could be expressed in
one line but in general that is not always possible and even
when it is the one-line syndrome tends to cloud a
definition. A set of expressions such as the above is a
perfectly wvalid method for calculating a variance. There
are, however, some formal and pragmatic objections to be
aired., First, there 1is no clear distinction between the

definition of the function and its evaluation and in fact it
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E. Defined Functions

A defined function is a variable function whose
description is a program scalar defined by one or more
compound expressions. Evaluation of a variable of type
program then implies evaluation of these expressions and is
the non=-trivial case of variable evaluation mentioned
earlier. Such a function has two properties of interest: its
description, and the evaluation of its description for given
operands,

The intent is to have defined functions
indistinguishable from primitive functions as far as their
behaviour 1is concerned SO that the language becomes
functionally extensible. This means that any mention of the
function name (in the value domain) with appropriate
operands must imply evaluation of the function. Yet for a
defined function to be reallyv valuable there must he a way
to retreive the unevaluated description for inspection and
manipulation. This implies making arravs of tvpe programrm
more tangible (i.e, in that they are in the range and domain
of some functions).

One problem in including a new type to the notation is
that the domain of each primitive function must be examined
to see if it should be extended to include the new type.
This matter can be disposed of quickly in this case. The

structure and select functions are extended such that their

subject operands may contain arrays of tvpe program. No

Fel
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which are intermediate results are not distinguished.
Informal operands as these are called implied operands.
Applying the function to many sets of operands implies
repeating the definition that many times because the
definition and its evaluation are inseparable. Lastly, there
is no way to indicate a recursive evaluation,

Clearly what is needed is a way to associate a name
with the expressions such that a mention of the name
implies evaluation of the expressions. Such a variable

function is called a defined function and is discussed next.
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Define (2)
Syntax: Z «» VR
Z is the program expression for the expressions
represented in the character array R
Conformability: R is any character or program arrav.

Formal description: origin free

I~

«

IF B of type program [HEN R

The program expressions are not evaluated and therefore
need not be meaningful or syntacticly correct. There is in
general no means provided to both define and evaluate a
program expression in the same compound expression. However
the description of a variable may be specified by one

expression, then evaluated by another:

V«V'A+B?
A<B«3 [ V
©
B«u4 [V
7

Thus the define function together with specification
may be used to assign to a variable a program description
consisting of an arhitrarv number of expressions which are

called lines of the function. The lines are associated with

o e s ey
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other functions are extended. Thus function perturbation
caused by the new type is minimized. A further
simplification is that no special notation is introduced for
program constants. This means that every array having
elements of type program arise from the evaluation of some
expression. Therefore there is need of a function which will
take an operand of some other +tvpe and evaluate to a

program,
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Definition~of operator (2)

Z is the unevaluated program description of &
Conformability: R is any single function (including the

primitive functions)

The definition-of operator is only valuable if some of
the elements of B are of tyvpe program (since otherwise the
description and the value are identical). The operator is in
no sense an inverse to define because it is an operator ,
and it evaluates to a program and not to characters. It is
similar to the special form QUOTE of LISP [McCarthy,et.al.

161]

Examples on primitive functions
MINUS<A-

MINUS S

8 MINUS 5

This shows in a more dramatic way that the description

of a (primitive or defined) function 1is sensitive to it's

context,
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successive integers called 1line numbers. The first
expression is assigned line number 1, There seems to be no
reason to make the numbering origin sensitive. Line numbers
are significant in conjunction with the branch function vyet
to be introduced.

If the description of a function is to be
computationally wuseful there must be a means to extract it
from the function. It is clear that no function can perform
this task because its operand would be the function whose
description was desired. But the mere mention of the operand

implies its evaluation prior to the evaluation of the

proposed function. Therefore an operator is required.
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While an unheaded function appears to have many
shortcomings, it is a fundamental object in the notation.
Every expression written in the notation may be considered a
literal unheaded defined function having one 1line. Thus the
expression

2+3

is a literal unheaded defined function having a result.
A set of expressions written colinearly and separated by the
expression separator symhol, [ ,mav be considered a literal
unheaded defined function having several lines.

Other than this, the principle value of an unheaded
defined function is that it is always in the domain of the

evaluate function vet to be introduced,
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Now it is possible to define a variable function which
calculates a variance.

VAR<V'MEAN<(+/V):pV [0 DSQ«(V-MEAN)*2 I VR<+/DSQipV"

This statement defines the function but does not cause
evaluation of the expressions. The same function could have
been defined by using the character array ¢ having the
following description:

G
MEAN<(+/V)spV
DSQ«(V-MEAN)*?2
VR<+/DS5Q%pV

VAR<VG

Using this defined function, a variance may be
calculated on many sets of data without repeating the
definition. By convention the function value produced is the
value (if any) of the last expression evaluated. Thus any
function defined as above is niladic and returns a result if
the last expression evaluated returned a result. This type
is called an unheaded defined function to distinguish it
from another tvpe to be presented shortly.

V<12 6 7 3 15 10 18 5

VAR

23,75
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G. Headed Defined Functions

Defined functions as presented in the last few sections
provide a means for associating a name with an ordered set
of expressions. The function thus produced 1is niladic
because its operands may only be implied. The function may
or may not produce a result; and if it does, the result must
be the last value calculated in the function. A name which
is specified within the function retains its assigned value
after function evaluation is complete.

For example consider the function VAR previously
defined. Its operand V is implied and must be assigned a
value prior to evaluating VAR. The result VR must be (and
is) calculated producing the function result. It is assigned
to a name inside the function only to suppress a display of
the result, The function result is a proper operand for
other functions so a standard deviation could be calculated
by the expressions:

V<12 6 7 3 15 10 18 5
(VAR)* .5

4,873397172

For the function VAR, the extra names used to hold
intermediate results may be useful

MEAN
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F. Display of Defined Functions
The display of a program array is a display of each
expression in the function. The form of the display is
unspecified except that it must be an unambiguous
representation of the expressions in the function. In an
implementation it is convenient to display a function in a
one expression per 1line format. It is also convenient to
display the line numbers. This form shall be used in this
paper., It may be useful to attempt a display which reflects
the original character form of the function description if
it is known. The definition-of operator produces the
unevaluated program description of a function and is
therefore the ordinary way to request a function display.
The example of the previous section would be displayed as

follows:

AVAR
(1] MEAN<(+/V):pV
f21] DSQ<«(V-MEAN)* 2
[3] VR++/DSQ:pV
A function is said to Dbe locked if display of its
description 1is inhibited. All primitive functions are
locked. In an implementation it may be desirable to provide

a mechanism (outside the language) which will lock a defined

function.,
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3.)

4.)

The names of the formal results and the manner
in which their values form the actual result.
A formal result is a name which potentially
becomes associated with an array during
function evaluation. When function evaluation

is complete this array becomes (at least part

of) the actual result.

The wvalid context of the function. The
arrangement of the formal parameter(s) in the
header determines whether the function is

dyadic, monadic, etc..

Names which are bounded on this function and
on referenced functions. These are called
local names. A name is local to a function if
its value (if any) exists only while the
function is being evaluated. A name which
name. A local name may be thought of as
qualified by the function name in that it is
distinguished from a global name having the
same 1identifier. An action on the local name
does not affect the global name and the global
is said to be ghadowed by the local. A local

name in a function is global to anv functions

160
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In the general case the intermediate results may be of
only passing interest within the function yet their value
will remain after evaluation is completed.

These properties may be considered features or
handicaps depending upon the desired use of the function.
They are all features if the function is really a shorthand
for entering expressions one by one. If however the
criterion is to mimic the primitives then this type of
defined function fails. Therefore a second tvpe of defined

function is introduced called a headed defined function.

A headed defined function is a defined function whose
first expression is not subjected to ordinary evaluation but
rather is a prototype expression which exhibits the
essential features of the function., This first expression is
called the function header and contains the following

o St o i T O R o e ST

information.

1.) The names of the formal parameters and the
manner in which actual parameters are
associated with them. A formal parameter is
the name of a general operand to the function.
Its use 1is similar to the meta-notation for
operands. An actual parameter is an array
whose value becomes associated with the formal

parameter during a particular application of

the function,



A function header has the following syntax:

E0 « E1 LFI] E2;N03N1

where

ED <>

El +>»

FI <

E2 <+«-»>

NO <«

The expression of the formal result. If the
function is to have no result E0 and <« are

elided.

The expression of the formal left operand. If
the function is monadic or niladic F1 1is

elided.

The placeholder for the function name. This
may not be elided. The occurance of this
symbol distinguishes headed functions from

un-headed functions.

The expression of the formal function index.
If the function is not indexable, then [FI]

is elided.

The expression of the formal right operand,
If the function is niladic or dextri-monadic

E?2 is elided.

The list of local names separated by blanks.

An integer occuring in this list of names is
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5.)

referenced by this function.

Names which are bounded on this function only.
These are called gtrictly 1local names. A
strictly local name has all the properties of
a local name except that it is not global to
referenced functions. That is a mention of the

name in a referenced function refers to the

global definition.

161
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this function, The symbol _ may tend to become lost among
the multitude of names and expressions in the header but it
can be useful to envision filling in the blanks at every
occurance of _ with the name of the variable associated with
the function description.

E1 and E2 are of the form [ or L«R where R (if
included) is any valid expression in the wvalue domain and L
is any array of distinct names created by use of structure
functions only. The names occuring in [ are considered local
unless they occur in the 1list ¥1 in which case they are
strictly local. Upon evaluation of the function one of the

following actions occurs for each permitted operard:

1.) If an operand is supplied (say B) then the

specification [+B is evaluated.

2.) If no operand is supplied but B 1is included
then the specification L+E is evaluated. (i.e.

E is a default operand)

3.) If no operand is supplied and B is not included
then no specification 1is performed and the
names in L remain undefined. Note that <« is

still written,
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taken to be a local origin (i.e. the index
origin for this function and for referenced

functions).

N1 <> The list of strictly local names separated by
blanks. An integer occuring in this 1list of
names is taken to be a strictly local origin
(i.e. the index origin for this function

only).

Clearly no name may be declared both local and strictly
local, nor can more than one index origin be specified. Any
variable appearing in a defined function which is neither
local nor strictly 1local is a global variable to the
function although it may be 1local to a function which
referenced this function.

The operands F1, FI, and FE2 are called the formal
parameters of the function. Their arrangement about the
determine the wvalid syntax for the function. When the
function is to be evaluated, the name of the function is
presented in context with operands called actual parameters.
Generally the actual parameters are in the value domain and
the formal parameters are in the value domain. Parameter
substitution is then very much 1like specification except
that the names in the formal parameters are local.,

An occurance of the svmbol _ in any expression other

than the function header implies a recursive reference to

C)&PJ_ oS JlVil Ll Ll VAL UL Uil dil e LD TAPML TOD LVl 1D VLl L
after all the program expressions in the description have
been evaluated and the resulting value becomes the value of
the function, Names occuring in F0 are considered local

unless they occur in the 1list #¥1. The names have no
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descriptions at the start of function evaluation unless they
duplicate names appearing in F1, FI, and E2. The facility to
default operands which are not supplied allows definiton of
related functions of differing syntax in a single

description.
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The previously defined function VAR which computes a
variance is repeated below defined as a headed defined
function. Recall that the function header is a prototype
statement and not an expression and therefore does not have
a line number. It is convenient however to call it line 0
and this shall be done. Note that all variables are local
and the operand is actual so the function acts like a

primitive monadic function.

AVAR
[0)] VR« _ V;MEAN DSQ
[1] MEAN«(+/V)2pV
[2] DSQ«(V-MEAN)*2

[3] VR«+/D5Q+pV

VAR 12 6 7 3 15 10 18 5

23,75

The following example shows a function MINUS which acts
like the primitive - and one which acts like reduction where

the default function index is [/1ppR instead of 1ppR.
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MINUS+ V'(A-B)+(A«0) _ B'

5 MINUS 3

MINUS ©

This example shows how the formal result of a function
is evaluated in the value domain. Recall that the header is
not itself evaluated and that therefore the «'s are not
specifications.

REDUCE « V'Z+«F _ [I«[/1ppA] A [0 Z«F/[I] A"

A+ REDUCE 2 3pi16

Here the left operand of reduce is the unevaluated
description of the function +. This description becomes
associated with the name F during evaluation and F/[I]JA is

then plus reduction.

[
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The expressions of a defined function are evaluated in
index order. This is a somewhat arbitrary (though
convenient) choice. It is often desirable to specify some
other ordering perhaps even one which causes repeated
evaluation of some expressions. To this end a function is
defined which is meaningful only when evaluated in the
context of a defined function and which specifies a

departure from the standard sequence of evaluation.
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Branch (I)

Syntax: -k
This function has no result but specifies the line
number of the expression in the defined function D
to be evaluated next.

Conformability: R is any array.

In the following (somewhat less than formal)
description, /¥ is the largest line number in the defined

function D,

- =

ELSE IF (QORG) 9 ,R) € 1-0RG-1N then evaluation of this
expression is abandoned and evaluation of line (QRG
4 ,R) commences

ELSE function evaluation terminates with the evaluation

of the function result (if any)

A common way to terminate function evaluation is -»0.

A branch most commonly occurs at the left end of an
expression in which case a branch to an empty array is like
branching to the next expression in sequence. It is often
bothersome to keep track of line numbers in a function
especially when its description is being changed. Therefore

another type of local object is defined called a label, A
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label is a local constant which is named by an identifier.
Any program expression in a defined function 2 (including
the function header) may be of the form
"identifier:expression" in which case the identifier is
taken to be a local constant whose scalar integer value is
the line number of the expression. As usual a label is local
unless it appears in the 1list WN1. Branching and labels are
also permitted in unheaded defined functions and the labels
are local. Notice that a label (and its :) is attached to an
expression but not part of the expression. Later when rules

for synthesizing expressions are presented, labels will not

be considered.
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The definition-of operator when applied tc a function
produces a scalar of type program. This is not an
appropriate result if the purpose is to modify the
description rather than to display or rename it. Therefore a
function is presented which rroduces the character

representation of a scalar.

Character Form (A)
Syntax: Z <+ TR

Z 1s a character array which represents the scalar

Eo

If R is numeric, then Z is a vector; if R is a program,

then Z 1is a matrix with one row per line. This function
along with definition-of is an inverse to define up to
equivalent expressions. Let F<«VG Then TAF is a character
matrix which has the same expressions as G expressed in a
one line per row format with each line in some cannonical
form (i.e. some blanks deletecd, etc.). The evaluation of the
APL notation is not sensitive to the exact carnonical form
and it is therefore not specified other than to say that it

ought to match the cdisplay format.

Identity: for function F

F <+ VTAF
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Inclusion of this function is consistent with limiting

the number of functions defined on the program domain. It
permits modification of function descriptions using more
general text handling functions. In an implementation it
would be reasonable to disallow application of this function
to locked functions. Its application to numbers gives a

convenient way to do numeric to character conversions.
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J. Defined Functions and Evaluate
There is generally no way provided to hoth define and
apply a function at the same time. This may be attributed to
the difficulty of syntactically determining the operands of
the function. For more discussion on this topic see Chapter
3 Section B. In the special case where the function is
niladic and therefore has no operands, immediate evaluation

is possible. Therefore the following function is defined.

Evaluate (LExecute) (Unquote) (?)

Syntax: Z <+ 1R
Z is the result (if any) of evaluating the program
expression R.

Conformability: £ is any program array for a niladic
function or is a character array which represents a

niladic function.

This function does not exist in APL\360 hut has been
the topic of much discussion [Watson 21} . Evaluate is an
unusual function in that it may or may not have a result
depending upon the expression evaluated. It is specifically
defined on program arrays. Then a niladic function D may be
defined from a character array ¢ and immediately evaluated
by the expression:

LD«VG

Recall that the result of specification is its right
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operand. If there 1is no need to assign a name to the
function then the following expression is sufficient:

1VG
Since this is perhaps the most common use of evaluate,
the function is extended to include the capabilities of the
defined function when it is applied to character arrays.
Therefore LG is equivalent to 1VG,
Since every unheaded defined function is niladic, they
are all acceptable to the evaluate function., This is the

principle value of an unheaded function.

Examples:

An important use of L is the creation of names. The
following function creates names consisting of the character
'y' followed by a positive integer and then assigns to the

name the value of the integer.

ANAMES
[o0] _ NI
[11] I+0

[2] Lis>(N<I«I+1)/0
[3] L'V, (TI),'<I"

[4] L1



176

NAMES 20
N15

15
N7

7

The character vector formed in line 3 is an unheaded
defined function having one line.

The evaluate function is sometimes called unquote
because of the following identity:

l'any expression' <«-» any expression

Thus the evaluate treats a character array like a piece
of APL notation in that the mention of . and 1its quoted
operand 1is much 1like mentioning an expression without
quotes., The symbols 1 for evaluate and T for character form

are due to Jim Ryan [Ryan 20).

2]
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So far the only non-scalar arrays which have been
considered were those whose elements had descriptions of
type numeric, character, or position. Arrays of program
scalars have been limited to rank 0 arrays. There Iis,
however, no reason to require this limitation. A non-scalar
array some of whose elements are program scalars 1is a well
defined object. The only question is how these arrays should
be evaluated.

Since an array of functions 1is fundamentally just an
array, it would be expected to conform to its operands (if
any) in much the same way as operands of a dyadic functions
conform with each other when conformability is required. As
a simple example consider the vector of functions W defined

by the expression

Wb+, A~

W 5
5 75

3 W S
8 2

Thus even without a description for evaluating arrays
of functions, the intent of the above expressions is clear.
(The example also demonstrates that while ¥ is an array of
scalar functions, it is not itself a scalar function since

when it is applied to scalar operands it yeilds a 2 element
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vector,) Following are the formal descriptions for arrays of
functions on array operands. 4 1is any array of monadic

functions, P is any array of dyadic functions.

1.) Arrays of Monadic Functions Z <> ¥ B

L <>
IF AM is scalar THEN M R

(the usual definition of ¥)
ELSE IE E <> pbM THEN

IF E «» ph THEV < MJ =R

for MJ<«oAM

ELSE MJ B for MYJ«(pR)epAM

ELSE IE E +> oR THEN M (pAM)pE

Z of dimension pR such that

I 4 Z «» < MI oI 4

[1av

for MI+« oI 4 AM

for each PY I of R

1
|l
IKn
It

undefined

Arrays of dextri-monadic functions have a similar
description,

Since program scalars cannot be both manipulated and
evaluated in a single expression, the names M¥I and YJ are
specified with the appropriate scalars and these names are

applied to the operands.

In the following description of an array of dyadic
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functions, the same conformability rules are enforced on a
triple of arrays. Since the conformability of the operands
does not change from that of a dyadic scalar function, the
following simplification can be made., If [ <«-» pL make the
replacement L <+ (pR)pL. If [ <+ pE make the replacement
E <> (pL)pR, these replacements allow concentration on the
effects of the array of functions and are assumed in the

following description at each level of recursion.

2.) Arrays of Dyadic Functions Z <+ L D Ik

IF AD is scalar THEN L D

(=]

(the usual definition of D)

for DJ«(pL)pAD

ELSE IE (pL <« pR) AND (pL <> pb

e}
]
IS8
it
=

Z of dimension
pL such that
I 4 72 «>» < (2 4 L) pI =I 4R
for DI<>I 4§ AD
for each PI I of [

ELSE undefined

In general, the operands of a non-scalar array of
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functions have less freedom of structure. First of all
shapes must always conform; and then at each step in the
recursion, operands are revealed. It is therefore difficult
to have a primitive in an array take a unit array as an
operand. However this is a small restriction because the

result is concealed.

Examples:

F <« 2 2pA+,0-,M1,4p

F 5

1 1:p0
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6 F 2 2ph

To calculate (R+1)xR-1
PM<pA+,0-

x/R PM 1

The previous discussion includes arrays of defined
functions. In particular, arrays of niladic functions may be
evaluated in their character form by the evaluate function
in the obvious way. Examples of arrays of defined functions
are defered till the section on multiple-processes.

While it is possible to define any array of functions,
not all such arrays can be evaluated, For example, an array
of functions containing both monadic and dyadic functions

cannot be evaluated in either the presence or absence of a

left operand!
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Evaluation of a mixed variable (i.e. one containing

both program and non-program arrays) is possible only if the

programs are niladic. Then the result of evaluation is an

array identical to the variable description except the
programs are replaced by their evaluated results.

If every function in an array of functions may have a

function index, then the array may have a function index.

The rules for general specification govern the mapping of

the specified index onto the array of functions.

Examples: let M«A+/,00 and R<(<c2 2pi4),c13
M[O] R

0p2

2 4

1:p3

2 1 0
M1 O] R

0p2

1 5

1:p3
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M[(c0 1),0] R

The

operators scalar product, inner product, outer

product, and reduction apply to arrays of functions without

change.

For example the outer product on an array of

functions may be used to produce an array of operation

tables.

AM<A+ , AX

>2(14) o, AM 14

o 1 2
1 2 3
2 3 4
3 4 5
0 0 ©
o 1 2
0 2 4
0 3 ©

3

i

Ordinary outer product applies functions to all pairs

of elements one from each operand. This concept may also be
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applied between a function array and its operand(s). This is
called the function outer product and may be monadic,
dextri-monadic, or dyadic., A suggested notation for these
function 1is respectively L Doo 3 D.o B3 and L[ D.o R
[Edwards 6]. For the dyadic case, scalar conformability is
required for the operands.

These functions are not really needed Dbecause the

scalar product operator on an array of functions produces

this same effect.

Examples
PM<A+ A~
> ¢ PM 2 3
2 3
2 73

28 ¢ PM 2 3

10 11
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Chapter 3

APL Potpourri

A. Introduction

This chapter presents a mixture of topics which may be
classified in three general groups. Sections B=E contain
discussion and elaboration on topics already defined in
chapters 1 and 2, Sections F=I contain new functions and
their applications. They are presented separately because
they may be accepted or rejected independently of the rest
of the notation. Finally, sections J=-0 present
generalizations for consideration which are not actively
proposed as a formal part of this work, Some have been
proposed elsewhere and are included for completeness, others

originate here but are set aside for the stated reasons.
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B. Magic Syntax?

It has been stated that any valid APL expression may be
evaluated unambiguously by the rules given on page 30. Yet
at first glance, it appears possible to write expressions in
the notation which are impossible to evaluate or which are
ambiguous. This section will discuss the impact on the
notation of defined functions which are valid in more than
one context and will show that every combination of symbols
defines either an expression which may be unambiguously
evaluated or a statement which is invalid. Two conditions
are isolated wunder which alleged expressions cannot be
evaluated. It will be shown that a well formed expression is
not necessarily valid and that a specification can alter the
syntax of an expression.

For an example of an expression impossible to evaluate
let ¥ be a function having a result and having a monadic
description, and 1let X be a function having a result and
having a dextri-monadic description (see page 23). Then how

is the expression

(case 1) M X

to be evaluated? It appears that each requires evaluation of
the other for its operand. As an example of an apparent
ambiguity let F be a function having a result and having

both a niladic and a monadic description, and let G be a
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function having a result and having both a monadic and a

dyadic description, Then how is the expression

(case 2) F ¢ V

to be evaluated? Both F niladic - ¢ dyadic and F monadic - G
monadic appear to be valid combinations,

Dealing with problems of syntax such as these requires
a more formal description of what constitutes a 1legal
expression. In the following discussions of syntax, an
expression is assumed to be represented in a cannonical form
using the symbols (, ), [, 1, V, F0, F1 where V is a
variable, a literal array, an identifier not having a
description, or an array resulting from a function
evaluation , F0 is a function or a primitive function which
does not produce a result, and F1 is a function or a
primitive function which produces a result. Recall that a
variable function whose elements are program scalars is
called a function, all others are called variables.

The following set of rules may be used for the
synthesis of fully parenthesized expressions in the

cannonical form,
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Non~terminal symbols

EXP - an expression

E0 - an expression with no value
E1 - an expression with a value
FNO - a function with no result

a function with a result

[N
!

Terminal Symbols

(, >, [, 1, v, Po, F1 (same as the cannonical form) and

A an empty string

Complete parentheses synthesis rules.

The following substitution rules may be used to
transform the root symbol (EXP) into expressions in the
cannonical form. The rules are presented in the following
form:

N-+NT

where N 1is a non=-terminal symbol and NT is a
combination of terminal and non-terminal symbols which may
be substituted for N. The rules are numbered for easy
reference. In case several substitution rules involve the
same N, alternate NT's are listed and numbered on the same
line separated by the symbol |, The symbols -, |, A should

not be confused with their usual use in the notation,
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(EXP) - the root symbol

(1-3)  EXP - (EXP) | EO | E1
(4-8) EO > A~ | ENO | ENO (E1) | (E1) ENO | (E1) ENO (E1)
(9-10) EO = (E0)(EO) | (EO0)
(11-14) E1 -~ EN1 | FEN1 (E1) | (E1) EN1 | (E1) EN1 (E1)
(15-18) E1 > (EO0)(E1) | (E1)(EO0) | (E1) [ V
(19-20) FNO - FO | FO[LEXP]
(21-22) FN1 > F1 | F1[EXP]
Any expression derived by these rules and by

application of the parentheses elimination rules is called a
well formed expression. Appendix 3 gives a set of rules
which classify the terminal functions of the generated
expression as UV, M, X, or D for niladic, monadic,
dextri-monadic, or dyadic respectively and which include the
parentheses elimination rules. The explosion in the number
of rules 1is principly caused by the formalization of the
rather heuristic rule which allows parentheses not altering
the scope of operands for some function to be deleted.

When these rules are used to determine the
classification of an expression, they are wused with
foreknowledge of what result is desired (i.e. synthesis not
analysis). If one applies the wrong rule then he will find
no path leading to the desired result. Rules which would
classify expressions by analysis are possible and would be

useful in an implementation.
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A string of symbols selected from the terminal symbols may

fail to be a well formed expression in only a few ways:

1.) If it contains unbalanced parentheses or

brackets,

2.) If it contains pairs of parentheses and

brackets whose ranges intersect.

3.) If it <contains a function index Dbracket
divorced from a function symbol. (Brackets are

not used for indexing as in APL\360.)

4,) If it or any parenthesized part of it defines

more than a single array.

This last case 1is legislated so that expressions may
properly be called compound functions. (functions have a
single array as a result or no result at all.) Note that the
rule only applies to a complete expression or a complete
parenthesized sub-expression.,

If an expression contians neither a specification nor a
defined function which alters global variables, then it is
said to contain a gyntax error if it is not well formed., If
an expression does contain a specification, then some

"magic" can occur and the concept of a well formed

expression 1is not so useful., For now consider expressions
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which have no embedded specifications.
The following statements fail to be well formed

expressions:

V FO (V by 1
(Vv F1LV)] by 2
VL] by 3

Vv by 4

The following are well formed expressions:

V F1 ¥V
(V FO) FO
F1 FO V V

This last is well formed despite the occurrence of V V
because V V is neither a complete expression or a complete
parenthesized sub-expression, Appendix 3 gives the
right-derivation of these expressions and classifies the
functions. Evaluation of F0 ¥V gives no result leaving F1 V¥

remaining for evaluation.



192
Now the original two cases from page 186 may be

examined. Case 1 in cannonical form is

F1 F1

There are two possible parenthesized expressions from

which this one could have been derived:

(F1 (F1)) and ((F1) F1)

and therefore the functions may be classified as

(M1 (V1)) and ((N1) X1)

Applying the parentheses elimination rules from page 29

gives

M1 N1 and (N1) X1

The first of these is then the correct classification
of the original expression ¥ X. Thus it is not possible in
the notation to write a monadic followed by a
dextri-monadic, and evaluation is impossible only because
neither function has a niladic description. (The same
argument holds if X 1is dyadic so this does not involve a
departure from APL\360.) The expressions have proper syntax

but the functions do not have matching descriptions. Any
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such statement is said to contain a definition error.

Case 2 in cannonical form is

F1 F1 V

Two possible parenthesized forms are

(F1 (F1(V))) and ((F1) F1 (V))

and therefore the functions may be classified as

(M1 (M1 (V))) and ((N1) D1 (V))

Applying the parentheses elimination rules from page 29

gives

M1 M1 V and (N1) D1 V

The first of these is then the correct classification
of the original expression F G V. The second is the other
possible meaning., Notice that the parentheses which remain
in the second expression are needed to specify function
precedence other than increasing from left to right. This
does involve somewhat of a departure from APL\360 in that a
niladic function as the left operand of a function requires

parentheses. These parentheses would be called superfluous
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by some [Breed 2] and the resulting syntax ambiguous. Yet
can parentheses which define the number or scope of operands

for a function be superfluous?

The existence of parenthesized expressions having no
value gives rise to another syntatic departure from APL\360.,
In APIL\360, to say that "the rightmost function whose
operands are available ... is evaluated" {Lathwell,Mezei 11]
is’ equivalent to saying that functions are evaluated in
order of decreasing precedence (see page 30). This is not

true in generalized 4PL and an example is:

(v FO V) F1 V

Since F1 appears immediately to the right of a right
parenthesis, it has lower precedence than F0. Therefore Fo0
is evaluated first and gives no result. F1 1is evaluated
second and is monadic. Thus F1 is not evaluated first even
though it is rightmost and its operand is available. The

classification of this statement appears in Appendix 3.

Given the classification of an expression it is then
possible to determine the function of highest precedence and
so evaluation of the expression can begin with evaluation of
that function. Clearly the next function to be evaluated
must be the one of next lower precedence. However this may

not be the case (!). This wunexpected (and perhaps

4
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disturbing) condition occurs because evaluation of the first
function may change the syntax of the statement. This bit of
magic may occur if the function in question 1is a
specification or is a defined function which specifies
global variables. For example consider the following

expressions the last of which is classified:

MEAN+S

Y4 MEAN 6 ,pMEAN«V'Z+4 B[] Z«.5x4+B"

VN

Vv VDL MLV DL MLV

But this defines three arrays. One from V D1 M1 V D1 M1 V
and two V's, Therefore this would appear to have a syntax
error. Yet during evaluation of the expression MFAN is
respecified to be of type program and 1is therefore
reclassified as cannonical type F1, The expression is then

evaluated as though it were classified:

Vo1 Vv D1 MLV DL MLV

This expression does not contain a syntax error and may be
evaluated.
Syntax errors may also be introduced during evaluation

of an expression.



196
REV<«AD [ A+« 2 2p14

REVLO] A,0pREV+5S

This statement could be classified

FiLV Vv D1 V D1 V D1 V

This does not contain a syntax error, Yet during evaluation
REV is respecified to be of type numeric and now the
statement contains brackets divorced from a function and a

syntax error is introduced.

Thus the apparent syntax of an expression as separated
from evaluation is not necessarily the same as the actual
syntax during evaluation. Thus, the classification of any
expression is wvalid, in general, only until the first
function 1is evaluated. This is why a right-derivation is
used in all the examples. After a specification or a defined
function which alters glohal variables has been evaluated,
the remaining expression must then be reclassified,
Therefore the syntactic analysis of an expression in the
generalized AP] notation is intimately tied to the
evaluation of the expression.

Even without this requirement the dynamic structure of
arrays in APL would make compilation of expressions (in the
usual sense) difficult in that the declaration of array

structure and data types may change during evaluation. For
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this reason implementations to date have been interpreters
(an interpreter alternates between analysis and evaluation
where a compiler analysis entire sets of expressions before
any evaluation). The generalizations proposed in this paper
imply that even the syntax of an expression may change
during evaluation and this makes compilation of the notation
even more painful if possible at all. This could well mean

that the notation is inherently interpretive!
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The APL notation has been designed such that the actual
operands of a function are evaluated and the result is used
wherever the corresponding formal parameter occurs. This is
sometimes referred to as a call by value. (early programming
languages referred to the invocation of a function or
subroutine as a call.) Therefore in one sense only constant
values may be parameters to a function. Yet it is frequently
desirable to specify a function or an expression as an
actual parameter to a function such that this function or
expression is not evaluated upon invocation but rather is
evaluated at each occurrence of the corresponding formal
parameter. This 1s usually called a call by name. There are

various ways to achieve this in the generalized notation.

First, a function reference or an expression may be
passed as a character constant then evaluated where needed
by the evaluate function. For example consider a dyadic
function SUM which adds up terms of a series from V=0 to the
integer specified as the left operand, where the right
operand 1is the expression for the ~th of the series

(expressed in characters in terms of W),
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This function does the call by name as advertised but
there are some objections to the method, 1In the first
example a constant series is specified (constant Nth term).
It is somewhat painful to pass a numeric in 1its character
form especially if the numeric is the result of some
expression rather than literal (of course the character form
function could be used). If one had a function and wished to
pass to it the character 'C' by name then the operand would
be written ''*C''°’,
A user of the function must be aware of the local names
used in the function and be careful not to use them, For
example:

TERM«4 [ 3 SUM ‘'TERM'

is invalid while

TER+4 [] 3 SUM ‘'TER’®

is perfectly valid. This is because TERM is local to SUM and
the local value is used in the evaluation.

A final objection has to do with the function SUM
itself. The function 1is designed with the fore-knowledge
that call by name using evaluate is to be used. Often in the
notation, a function may be designed assuming a scalar
operand and yet it works properly for array operands (this
is because of the orderly way in which scalar functions are
extended to arrays). It would be elegant if a function could

be designed expecting a call by value and yet work properly
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2 SUM1 V'2+N%2°
11
TERM<«u4 [l 3 SUM1 TERM

16

There are several points of interest here. First, the
call by name property lies with the actual parameter to the
function and not with the formal parameter or with the
function itself. Second, the function is (at least
supposedly) designed to expect values yet it works properly
if given a function or expression which produces a value. In
fact if given an array of #Nth terms, the function would
evaluate an array of sums. The key is that both define and
definition-of evaluate to a program description which is
passed and a description is always a constant.

Thus, call by name is really a misnomer for it 1is not
the name which 1is of interest at all but rather the
description associated with the name. The last example shows
that the problem with conflict of names 1is reduced. The
following example shows that the problem is not eliminated.

TERM<«2 (] 2 SUM1 V'TERM+N=*2°®

Here the description passed still involves a name and
the local value is active and therefore the expression is
invalid. The following expression is worse yet because it is

not invalid but gives erroneous results.

SUM<«2 [ 2 SUM1 V'SUM+N%2'
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The next example shows that the conflict of names can
always be reduced to affect only a single name by using
strictly 1local variables and a secondary function to

calculate the ¥th term,

ASUM?2
[o] SUM«LAST _ TERMg; ;N SUM LAST L1
[1] (SUM,N)+0
£2] L1:+(LAST<N)/O
f£31] SUM«SUM+ NTH TERM
(4] N«N+1

(sl +L1

ANTH
o] TERM< _ TERM

(1] TERM«TERM

Here the only possible conflict can occur with the name
TERM, This scheme also works with evaluate.

Therefore when functions and expressions are not
special objects in a language, call by name 1is not

essentially different from call by value.
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D. IF APL has a Conditional THEN '!!

Perhaps the greatest shortcoming in the notation is the
lack of an explicit conditional function. While much of the
meta-notation has been assimilated in the notation, the
conditional is conspicuous in its absence because of its
frequent wuse in descriptions. In this section some of the
problems associated with the attempt to define such a
function are discussed along with some methods for

circumventing the problem,

The conditional may be characterized as follows:

1.) It is a triadic function (antecedent,

consequent, and alternative).

2.) Evaluation of the antecedent determines which

of the other operands is evaluated,

The fundamental problems in attempting to define a

conditional function in the notation are:

1.) The syntax does not permit triadic functions,
Supplying a special syntactic type for this

one function would not be an elegant solution.



2.) Operands to a function are always evaluated

before the function itself is evaluated. But
in the conditional one operand is by
definition not evaluated and need not even be

a well formed expression.
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This does not mean that the effect of a conditional

function is

lost to the notation for it may be acheived in

many ways some of which shall be described in the pages that

follow.
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Evaluate and the Conditional
Evaluate may be used to gain the effect of the

conditional. The statement
IF X THEN Y ELSE 7
might be realized by the expressic>n
L X3 v'z')v'y”

This formulation uses indexing to select from a two
element vector of expressions. The vector may arise from
define (V) applied to a character operand (as is done here)
or from definition-of (A) on a defined function. The
unselected expression is never evaluated and need not be a
valid expression.

The definition of Interval from page 43 could be

realized by the following function.

AINTERVAL
(o] I«_ R

(1] I«1(R=0) 4 V'(_R-1),R-1-21',V'10°

(Z«»?R is a scalar function and produces a random integer
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When conditionals are nested, one is faced with
writting very long lines containing quoted expressions which
themselves contain quoted expressions to many levels. Using
the character form of an expression is not appealing in any

case,
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A1 4 4% 14 malilk S EErmoSss==cs==

The statement

IE X THEN Y ELSE Z

may be realized in a defined function by wusing

branching as follows:

+XvL1 ] C«Y 0 »L2 0 L1:C+«Z ] L2:etc.

where ¢ is the value of the conditional

The first branch calculates either to an empty vector
or to Li, If X 1is true (=1) then Y is evaluated and the
second branch skips evaluation of Z. If X is false (=0) then
evaluation of Y and the second branch is skipped and Z is
evaluated. In either case line L2 is the next evaluated.

Since branching is a function without a result and

since

(E0) E1 (EO)

is a well formed expression, a shorthand version of the

above formulation can be given as

(+L2) C«Y (+X+L1) 0] L1:C«Z [ L2:etc.

o«



209

This is little better than the original, but shows a

use of an embedded branch. In this expression, X false means

quit expression evaluation early. Thus the total expression
need not be well formed yet no error is detected.

The definition of interval could be realized by the

following function:

AINTERVAL
o] I«_ Rk

[1] +(R=0)+L1 0 I«+x0 (] =0 [ L1:I«(_ R-1),R-1-71

(This function has 5 1lines counting the header for
writing several expressions on a single line is merely a
topograpgic consideration.)

Nesting of conditionals is moreconvenienent than with
evaluate. For example, the definition of Vector Take from
page 45 could be realized by the following function:

ATAKE
o] Z«L _ R
(1] »(L20)+vL1
(2] (+0)2Z2«(1L)d ,R(>(<p,R)¥L11) [ L11:(+0)Z«R,(L-p,R)p®
4] L1:>(L<0)+L2
[5] =+(L2-p,R)+L21
(6] (+0) Z«((1|L)+(p,R)-L) 4 R
7] L21:(»0) ((|L+p,R)p® ),R

[8] L2;'UNDEFINED'
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The use of branching to acheive the conditional has

some interesting

properties. First the labels used make it

easy to tell which F goes with which ELSE. Second,

statements may be combined in non-standard ways. (e.g. the

ELSE clause of

another,)

Thus it has
triadic functions

functions do not

one conditional may be the THEN clause of

been shown that the inability to define
and the evaluation rules for operands to

exclude the functional abilities of the

conditional from the notation.
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E. Recursive Functions
The term recursive function refers to a function which
is defined 1in terms of itself and can therefore only be
properly applied to a defined function. Either an unheaded
or a headed defined function may be used to define a
recursive function. A good example of recursion is the
factorial function. It is such a common example that no one
is concerned with the factiorial so there is nothing left to
look at but the techniques! The following is an unheaded

recursive function for factorial V.

AFACT]
(11 (V=0 1)/0
2] F<«Fxl
[3] N<l-1

(4] FACT1

This function is recursive because on line 4 it refers
to itself. Since it is unheaded its operands are implied and
must be set prior to evaluation. In this case the variable ¥
is the operand and the variable F leaves the result variable
and must be initialized to 1 externally to the function. It
cannot be initialized inside the function because the global
nature of / implies that the partial factorial be computed
before recursion. The last line evaluated is line 1 which is

a Dbranch and therefore by convention the function has no
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result. So an extra expression 1is required to display the

result,

Example:
F<1 [ N+uy
FACT1 0 F

2y

FACT1 generally lacks any similarity with the ordinary

definition of the factorial.

The headed version is far superior in this case (and in

almost every case).,

AFACT?
(0] Fell _
(1] Fe1

(2] +>(N=0 1)/0
£31] FelNx(N=-1) _

Notice that the function is dextri-monadic and matches
the usual mathematical syntax for the factorial (which is no
great advantage)., Line 3 is a translation of the expression
N! <+ Nx(N-1)! The fact that F and N are local means they do
not collide with F and 7 of the recursive call so the result
variable may be initialized within the function. The

recursion 1is denoted by the placeholder and so 1is
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independent of the function name.

Example:
4 FACT?2

24

Neither function will terminate if the operand is other
than a non=-negative integer.
There is a subtle difference bhetween these functions .
Suppose the following expressions are evaluated:
Q1<«AFACT1

Q2<«AFACT?2

Then @1 is a function having the same description as
FACT1 and therefore they are the same function. A similar
statement is true for @2 and FACT2. Yet Q1 is not recursive
while the others are! This is because Q1 does not refer to
itself in its description (it still refers to FACT1).
Therefore any recursive property of an unheaded defined
function must be considered transient. When the placeholder
symbol is wused to specify recursion in a headed function
then the recursion is a permanent property of the function
and 1is preserved when the program scalar is given a new

name.,
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In Chapter 2 arrays of names were used to define a
selective form of specification. At no time, however, was a
name array itself associated with a name. There appears to
be no reason to continue this embargo. Therefore a
specification is considered which has the same syntax as
value specification (Z «+ L<«R) but which has both operands
in the name domain, At the moment a right operand of a
function is in the name domain only if it is already part of
an expression left of specification. Its definition 1is the
same as simple specification except that R is an array of
names. The extension to general specification is avoided so
no array contains both name scalars and other scalars. The
effect of the function is to permit naming of subarrays of

an array.

Example:

Ve110 [ (W«5484V)<«-13

o 1 2 3 4% 0 1 2 8 9

The above example has defined W to name a subarray of
V. The description of /¥ is a three element vector of name
scalars. The mention of ¥ in the value domain implies an

indirect reference to the wvalues named.

“



215

The value specification in this example is a trick to
get the expression (W<«5+84V) into the name domain but alters
V as though the name specification were not written. This is
because the name specification has its right operand as its
result, A further refinement of names introduced in the next
section along with a new function will remove the need for
the value specification.

The treatment of names (as opposed to name scalars) in
the name domain is modified such that mentioning the name of
a name array is equivalent to mentioning the array itself.
This is required so that

W<'ABC"

remains an indirect reference to V¥V rather than a
description replacement.

A name array fails to act like an ordinary variable in
two ways. First, when it is the left operand of a
specification, it has stronger conformability requirements.
Using the previous ¥/, note that when ¥ is respecified, the
right operand must conform to the dimension of W or be a
unit array.

W<0
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Second, a named name array is dependent upon the rank
and, to a lesser extent, the dimension of another variable.
If V¥ 1is respecified to be other than rank 1, or less than
dimension 8, then both attempted reference and specification
of W are invalid.
Examples

N«2 2p14 [ (DIAG<«0O 08N)+«9 10

N

g 1
2 10

DIAG
g 10

but N+<110 [ DIAG 1is invalid.

Specification in the name domain adds a new breadth of
naming conventions to the notation and careful consideration
of its impact will be required., The fact that it is strongly
rank and dimension dependent is unfortunate, It would be
useful, for example, to name the diagonal of a rank 2 array
independently of its dimensions., Since the name array
essentially indexes the referenced arrays, it 1is possible
that a solution to the above problem is tied to a more

general indexing function.
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When a variable function wused as an operand is
evaluated, the resulting expression is normally viewed as
being detached from the name of the variable. Such an
expression is called a passive expression in that its use as
an operand of some function can never affect the description
of the originating name of the expression. Any expression
written in the notation or produced by functid ns introduced
thus far are passive. An operand of a function is called
active when it is altered by the function evaluation. An
active expression is used in the notation to describe an
indivisibility of function evaluation and specification. The
description of an active operand to a function becomes the

result of +the function evaluation., The evaluation and

specification are considered a single action.
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Activate (p)

Z is the active expression of [
Conformability: L 1s any expression valid in the name

domain.

Activate is the only dextri~monadic primitive defined.
This syntax is chosen to suggest a similarity with
specification, The display convention also reflects this
similarity in that display of a result is suppressed in case
it is the result of the activate function or any function
one of whose operands is activated.

The function is used for two widely differing
applications. First it provides an easy way to denote
expressions in the name domain and therefore may be used for
subarray naming. The name arrays from the previous section

may now be generated without respecifying any values:

(W«5+84V )<«

(DIAG«0 0&/N)=

For these examples the fact that the result is active

is not relevant,

The following examples show active expressions used as

operands:

1+A« (the successor function)

1S
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V<10
(V<),5 6

|4

A+«B+5

(A<)+B«

10 10

Activate has been used above to avoid writing a name
twice. Another scheme proposed for doing this is A4d+<«1 to
mean A<A+1 [Ryan 20]. An active expression for 5:4 would not
be possible in that notation. Using activate both 5%+4<« and
(A<):5 are wvalid and do not require a special syntax to
explain a monadic looking specification.

In case both operands of an active expression are the
same, the order or number of activations 1is not important
for two reasons. First the operands are evaluated before the
function and second there 1is at most one result of the
function. Thus the following expressions are equivalent:

B+B+
(B<)+B

(B«)+B+
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If an active variable is used as operand to a function
having no result, then the variable name is detached from

its description. In a sense the value of the variable is

>4+«

will erase A (because -+ has no result) but has the
unfortunate side effect of branching. A new primitive could
be defined but the following defined function is sufficient.

AERASE
(0] _k
Then the expression
ERASE A<«

will erase 4.

None of the examples given here are exciting uses of
activate. The real significance of active expressions will
be made clear in the following section on multiple
functions,

The denotation for activate does not conflict with the
similar notation used in a function header, because a

function header is not an expression.
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The array orientation of APL notation implies a
parallelism of actions. For example in the evaluation of the
statement

(2 3p16)Y+2 3p16
the implication is that six additions are done
simultaneously producing six results. In a digital computer
the computation may indeed be done serially but this is
transparent to the notation. Parallel computers have been
designed and it would seem that APL may be a useful language
for them.

A well formed expression may be invalid only because
the parallelism defines a race condition. For example the
expression

(01 0 4d A)+3

must be considered invalid because the value of 0 4 4 at its
completion is ambiguous. In an implementation on a serial
computer (like APL\360) this condition 1is expensive to
detect and an invalid expression as this may in fact be
evaluated. Knowledge of the implementation (or a 1little
experimentation) would allow one to predict the value of
0 § 4. However use of such an implementation shortcoming
could produce different results on different APL systems.

The real implications of parallelism are not striking
till arrays of defined functions are considered. If the

defined functions (and any functions referenced by them)
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have no common implied operands, (i.e. global variables)
whose values are respecified, then they are not essentially
different from primitive functions and evaluation of each
function is independent of the others, Although conceptually
the functions are evaluated simultaneously, there would be
no way to tell in an implementation if this was in fact the
case. If, on the other hand, two functions in an array
mention a common variable and if at least one of the
functions respecifies the variable, then evaluation of the
array may be ambiguous. This ambiguity is in general
difficult to detect.

For example consider the array of unheaded defined

functions defined from the character array G:

G
(0 4 4)<o0
(1 4 A)«1
(0 4 A)=2

grc(1]G

First note that the expression does indeed indicate
evaluation of an array of functions. The conceal hides each
row of (; the scalar product operator applies evaluate (1)
to each hidden row simultaneously. This is not the same as

LG
which causes evaluation of the rows in sequence (the latter

expression is even valid). The function array evaluation is
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ambiguous for exactly the same reason as
(001 0 9 A)«13

The two expressions (0 1 0 4 A)«2 3 and glc[1]G are
essentially equivalent and demonstrate in a dramatic way the
hidden parallelism of APL.

If any meaning is to be given to such arrays of
functions, there must be a notation provided to state any
dependencies existing among parallel functions which makes
their synchronization explicit and unambiguous. Such
synchronized functions are sometimes called a gystemr of
functions.

Conceptually each function in an array is advancing in
its evaluation simultaneously with and independently of each
of the other functions in the array. Synchronization may be

achieved by permitting a function to delay conditionally at

some point in its evaluation.
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Wait (n)
Syntax: Z +» LwR
Z is L

Conformability: L and EF are any arrays.

The evaluation of this function may be described as
follows., If L and R are different arrays then evaluation of
the function is delayed, if R and L are the same array then
the value of the function is this common value.

The wait function may be used to cause one function to
remain dormant till another has computed some required
result., Function 1 waits during evaluation of the expression

A<0 0 »(1wd)/L1

Function 2 causes function 1 to resume evaluatid n by
evaluating the expression

A+l
in which case function 1 branches to Li. The wait function
implies a calculation to test equality every time R is
respecified,

Use of active operands may cause an implied wait. If
function 1 is evaluating the expression

144«

then if function 2 evaluates

2+4A
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its evaluation is delayed till function 1 completes its
active wuse of 4. The inseparability of the function
evaluation and the respecification of 4 implies that a
parallel reference or specification of 4 must be pendant.
The wait is implied over evaluation of a single function and
so muy seem a bit restrictive. However the following section

shows that this is no restriction at all.
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The following example is a modification of a model
proposed by Dijkstra [Dijkstra 5 pg.53] and consists of ¥
defined functions which are looping as described in figure
5. Each function has a section which may run in parallel
with any of the other functions. Each also has a critical
section and the constraint imposed is that only one function
may be in its critical section at any given time.

V

non-critical section

enter critical section

\4

critical section

V

leave critical section

i

Figure 5 Looping Defined Functions

Dijkstra's solution involved introduction of
synchronizing primitives [Dijkstra 5 pg.67] which combined
inseparable function evaluatid n and specification of special
objects called semiphores, with delay of evaluation, Here

this combination is avoided. The delay is embodied in the
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wait function (w), with the other properties existing as
active expressions (see Activate). No declarations or
special objects are used.

The following pseudo-function is a prototype for the ¥

defined functions.

APROCESSI
ol -
(1] ZL1:NONCRITICALi
(2] ENTER i
(3] CRITICALL
(u] i LEAVE Q<

[5] +>L1

A real function 1is derived by substituting a positive
integer <N for each occurance of i in the pseudo-function,
To avoid confusion in the following discussion, the
functions PROCESSi shall be termed processes and the
functions they reference shall be termed functions. The
program vector PROCESS is defined to be a length ¥ vector of
these processes (i.e. evaluating PROCESS implies evaluating
the processes in parallel). The actual computatd n done in
the critical and non=-critical sections is not of interest
here and shall not be specified.

The actual synchronization is done by the FENTER and
LEAVE functions. There 1is only one copy ©of each of these

functions and the integer 1 1is passed as an operand, Of
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course one function may be invoked several times at once by
several processes (as with + 1in array addition). The

controlling functions are defined as follows:

AENTER
o _1I
(1) (@<),I

[2] IwFIRST

ALEAVE
(o) @«I _ @
[1]  Q«1+4Q

The parallel process is initiated by evaluating:

@«<,1 0 (FIRST+«14Q)« 0 Q<10 [ PROCESS

The global variable § is a queue and is the vector of
process numbers desiring use of their critical sections. @
empty (as it 1is initially) means no process 1is in its
critical section. @ non-empty means process 14¢ 1is in its
critical section and the processes 1+Q (if any) are waiting
to enter their critical sections.

The ENTER function places a process on the queue.
Notice that @ 1is wused actively on line 1 and so the
catenation and the respecification of @ are inseparable.
This is not equivalent to §<«@,I for using the latter two

processes could then define the following sequence:
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process number action
1 evaluate 9,1 yielding expression EXP1
2 evaluate 0,2 yielding expression EFXP2
3 respecify @ as EXP1
4 respecify @ as EXP2

Process 1 would then be lost from the gueue.

After a process 1is entered on the queue, the function
waits till the process number is first on the queue. FIRST
is a global variable defined as a subarray name for the
first element of @¢. Thus the processes are encountered on a
first come first serve bhasis and no process will ever be
locked out.

The function LFAVE merely deletes the process number
from the queue. Notice that the expression Q+«1+§ is used.
Since only one process can be in its critical section at one
time, only one process can c¢valuate LEAVE at one time,
However an ENTER and a LEAVE could be evaluated at one time.
Why then is there not danger of a race condition as before?

The answer is simple but has far reaching implications.
When evaluation of [LFAVE 1is requested by PROCESS1, the
operand ¢ 1is wused actively. Therefore any attempt to
reference or specify ¢ by another process is pendant over
the entire evaluation of the function LFAVE, This is why the
wait implied by active use of an operand for a single

function is not a restriction. The single function may be a
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defined function of any complekity.

This simple case could in fact have been written such
that each critical section used an active operand to block
the others., While this would meet all the requirements of
the problem, the order in which processes entered their
critical sections would be unspecified (although first come
first serve would be a reasonable choice for
implementation).

If the processes described here were computing systems,
then the critical sections might include access to an I/O

channel shared among them.
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Changing the ENTER and LEAVE functions can change the
entire personality of the system. For example using the
following ENTER and LEAVE functions a system is defined
where M<lJ processes are permitted in their critical sections

at the same time.

AENTER
fol] _ I

11 »(M2p(Q<«),I)/0

(21 IwFIRST

ALEAVE

fo] Q«I Q

£1] >(M>pQ«I~g)/0

{21 FIRSTM<« 10FIRSTH

This parallel process is initiated by evaluating
QM [l (FIRST«14Q)« [0 (FIRSTM<«M4Q)+« [ Q<10

PROCESS

Here if fewer than ¥ processes are in their critical
sections, a new one may enter, otherwise a new process waits
till it is first. When a process leaves 1its critical
section, if there are more than ¥ in queue then a new
process is granted enterance by rotating its number into the
first position of ¢ by using the subarray name FIRSTM,

Again if the processes were computing systems, ¥ might
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represent the number of I/O channels shared by them.

A priority system could be defined by having ENTER sort
the waiting processes according to priority. In general the
full power of the notation is available to specify any
special requirements a system may have whatever their

complexity.
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In this section another data type called void is
proposed. It is presented separately because its value to
the notation is independent of the other topics in this
paper. A void scalar has no literal existence but is

produced in two ways:

1.) on attempted evaluation in the value domain of
an identifier having no description. (a value

error in APL\360)

2,) on evaluation of a defined function having a
result if that result is never specified.

(sometimes a value error in APL\360)

In the generalized notation a statement 1is said to

1.) the void scalar occurs as operand to a
function which does not have void in its

domain.

2.) the value of an expression after complete

evaluation is void.

This second case means that a display of void is always
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an error,

The obvious question is to ask what functions shall be
extended to include void in their domains. The answer is
easy; none of them. That is, void used as an operand to any
function introduced so far implies a value error. However
two new functions are defined which do include void in their

domains.

Exist (a)
Syntax: Z « 3 R
Conformability: R is any array.

Formal description: origin free

_Z_+->
IF R is void THEN ©
ELSE 1

Default-of (A)

Syntax: Z «+ L 4 R
Conformability: L and R are any arrays.

Formal description: origin free

IF R is void THEN [
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These functions make it possible to test if an

identifier has a description or if a function defined to

have a result, really produces a result. More importantly

they provide a more general means for defaulting parameters
of a defined function. (see page 164)

The following defined function uses the function header

to default its left operand:

AMINUS
o] 7« (A<«0) _ B

[11] Z<A-B

Whenever this function is invoked without a left
operand, the expression A<«0 is evaluated.

Using default-of this could be written

AMINUS1
[o] Z « (A«) _ B

[1] Z«(0 4 A) - B

Whenever this function 1is invoked without a left
operand the formal parameter is left without a description,
(Recall that a formal parameter written in the function
header in the form [+« implies that the actual parameter is
optional and is not the activation of that parameter.)

This is an important distinction. If one tried to write

a times/signum function, one would be at a loss to choose
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the proper default value to put in the header because any
number is a valid left operand of multiplication. However

using exist it could be written:

ATIMES
ol Z « (4«) _ B
(1] »(4 4)+L1
£2] (+0) Z+AxB

3] Li:2Z« (0<B)-0>B
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J. Scalar Extension

A number of schemes have been proposed for generalizing
the conformability requirements for scalar dyadic functions.
The question arises as a practical matter from problems
encountered in actual programming in APL\360. First, there
is confusion about the (unpublished?) rules for
conformability of a one element array with other arrays.
This 1is allowed in APL\360 because so often one element
vectors occur where scalars are desired. While convenient in
an implementation, such an extension has not been allowed in
this work. Second, there are circumstances where it is clear
what non-conformable operands to a scalar function ought to
mean. A common example is applying a vector to each row or
column of a matrix,

One of the earliest published attempts to provide a
solution came from S. Charmonman [Charmonman 4]. His
proposal (which shall not be restated) solves the above
stated problem but suffers some serious drawbacks. It tends
to ignore the shape of operands and the shape of the result
is somewhat arbitrary; commutative scalar functions do not
commute under the extension.

Abrams [Abrams 1] proved the following theorem

concerning arrays L and R conformabhle for scalar functi n D:

LDE +> ((vppL).1ppR)® L .0 R
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By extension one could use the expression on the right
as a definition for scalar functions. This allows applying
vectors to columns of an array but not to rows (a slight
modification allows rows but not columns)., A problem in
common with Charmonman's proposal is that everything is
conformable making errors difficult to detect.

The following proposal [Breed 3] is a compromise which
relaxes conformability requirements without removing them,
Following is his formal definition for 4 D B for p a dyadic
scalar function. The formulas are rewritten below 1in the

notation of this paper.

1, M«( (Ol (ppB)-pp4d)pl),pd

N<((0ol (ppA)-ppB)pl),pB

2. U«((1pMY+(M=1)xpM) 4 M,N
Ve((1pWN)+(N=1)xplN) 4 N ,M

length error unless U 14

I

3. X<(YM=1)8((¥M=1) 9 U)p(4V1=p4)&A
Y<«(¥V=1)8((¥N¥=1) 3 V)p(AV1=pB)QB
R<«XDY

where scalar extension as defined holds.

Simply this means that the operand of smaller rank has
its dimension vector extended on the left with 1's. The

resulting arrays conform if the dimension vectors are
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elementwise equal or one is a 1. Finally each dimension
equal to 1 is extended to match the dimensid n of the other
operand causing a replication of the first array along that
coordinate,

This scheme has the following features:

1.) It 1is a superset of the current scalar

extension rules.

2,) Commutativity and associativity are preserved

where they exist between scalars.

3.) Outer product may be defined in terms of

scalar extension.

A oD B «> (((pA),(ppB)ol1)pA)D(((ppA)pl),pB)pB

This proposal appears to embody all the requirements of
a generalized scalar extension; using it the vector inner
product description (page 94) could be written simply D/L D'
E; its application to arrays of functions does not seem to
be a problem; and it is formally pleasing to see the closed

outer product definition.
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K, Interval Revisited

Interval has already been extended to vectors of
non-negative integers. The observation was made that 1R
counts in a base [E number system. This statement suggests
yet a further extension. Since counting in a negative number
base 1is well defined, it should be possible to define
interval for vectors containing negative integers. One

possible definition for scalar integers is:

The extension to arrays would use this definition for
scalars in the description on page 100. This description is
obviously the same as before on positive integers.

Examples:

Thus 1 10 counts negatively from 0 to ~9. Under this
definition for non-negative integer ¥ 1\-N in origin QRG is

the same as ¢1¥ in origin QRG-N
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Interval on arrays is even further removed from

counting as seen by the following example.

o1 2 2
0 0
1 71
0 "1
0 "1

The representation for a number is along the leftmost

coordinate, A base value shows which numbers are

represented.

This illustrates the fact that negative radix number
systems represent a set of integers skewed about =zero.

Thus this extension does not behave as hoped. It may
still be considered for inclusion in the notation in its own
right, It does produce the mixed radix representation of a

dense set of integers.
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Often in an expression, some parentheses could be
eliminated if the left and right operands of a function were
reversed, There are numerous examples of this phenomena in
this paper. For example the parentheses in the definition of
vector scan

D/(I+1)+R
could be eliminated if the operands of take were reversed,
It has been proposed [Liu 14] that an operator be provided
to do this. Choosing ; (only for the moment) as the
operator, the above expression could be written

D/E34I+1

But very 1little is gained. The expression is one
character shorter and this is about the best to be expected.
The statement is no clearer and is perhaps even harder to
read, Therefore this extension is rejected. Parentheses (as

any LISP user will agree) are not really so bad.
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M. Vacant

2 S e O, i oo

Abrams [Abrams 1] proposed that the intent of an
expression and not the literal expression itself should be
evaluated. Thus

0d 5 2:10

has the undisputed wvalue 5. This view is rather forced
since the APL machine which he proposes will distribute the
select function and will indeed evaluate the expressbd n.
However the intent of any expression is subject to
interpretation (no pun intended) where the literal
expression 1is not. In the notation as defined here, the
expression

0 4 5 21 0
must be considered invalid. The question is then what could
be added to the notation to make such an expressd n legal?

Earlier the <concept of a value error was formally
introduced into the notation wunder the guise of a new data
type called void., It is tempting to try to do the same with
other forms of errors. Therefore a domain error scalar
called vacant and denoted v is postulated. Vacant is the
result of a scalar function on operands not in the domain of
that scalar function. As with void, display or specification
of an array containing vacant is always invalid. Admiting
vacant into the domain of the select functions solves many
of the problems, Thus 5 2:1 0 results in 5 v and

0§ 52:10 1is 5, while 1 4 5 221 0 is a domain error. It
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appears that vacant ought to be in the domain of the scalar
functions so that

0d 03 +5 2 %+ 10 is still defined.
The main objection to this extension is that the danger
is present that detection of an error will occur far from
its cause, making the cause of the error difficult to

determine.



245

N. Primitive Variable Functions

Variable functions have been divided into two groups:
defined functions which are named by identifiers and
primitive functions which are named by function symbols. A
primitive function 1is treated much like a constant because
no way 1is provided to <change its description. But this
changelessness is more a matter of taste than a requirement,
Allowing function symbols to be respecified with new
descriptions would make them variable in a truer sense. This
is specifically rejected for two reasons. First, the
standardization of symbols is a practical necessity for a
widely used notation. The functional ability of the notation
is enhanced by use of commonly distributed defined
functions. Second, if it really is desirable to interpret a
symbol at one time as + and at another as v then a defined
function is suitable when defined once as

SYM<b+
and again as

SYM<Av
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In chapter 2 a new punctuation symbol 0 was introduced
as an expression separator, It is interesting to note that
the symbol could be treated as four functions one with each
of the four operand contexts [Rubin 19]. The four functions

may be described as follows:

1.) A right operand (if any) is ignored

2,) A left operand (if any) 1is returned as a
result. Only a function with a left operand

has a result.

Examples:
A+3 [ A+«5+6 (0 dyadic with result 3)
14
Z<Z%,5 [ +(A<0)/0 (0 dextri-monadic with result .5)

1,4« [0 +(A<0)/0 (0 niladic with no result)

These functions may be characterized as follows:

1.) They do not separate expressions but rather

join expressions to make a single new

expression.

2.) Evaluation of the original expressions
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proceeds from right to left.

3.) Display of results in intermediate expressions

is suppressed,

4,) Intermediate expressions may be neither

labeled nor branched to.

The functions [ differ from the punctuation [ in each
of the ways 1listed above. The fact that the functions
provide a single expression is not in itself objectionable.
The different order of execution is not traumatic since the
order chosen for [ punctuation 1is somewhat arbitrary.
Inhibiting the display of results implies that the functions
do not genuinely mimic the punctuation. The functions could
be designed so that a right operand would imply a display
but this would also imply a display of the result of a
specification.

The original purpose of 0 was to emphasize the
relationship between expressions yet keep them separate for
evaluation., Making [ a function defeats this purpose. Thus,
the proposal is rejected primarily because of the branching
and labeling restrictions it would impose. Some of the more
interesting uses o©f the symbol (the conditional) become

invalid.
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Chapter 4
Conclusion
A. Summary
The generalizations to APL proposed in this

dissertation fall into four classifications:

1.) Syntax
2.) Arravs
3.) Names

4,) Functions

The syntax 1s generalized to permit functions in four
operand contexts to exist for primitive functions and
defined functions., An expression or any complete
sub-expression of an exrression 1is treated much 1like a
function in that it evaluates either to a single array or to
no result at all.

Arrays are extended by allowing more scalar types and
by defining arrays each of whose elements may be an array of
anv rank.

The existence of names (in the name dJdomain) as
scparated from arravs (in the value domain) is recognized.

Functions defined on namnes are generally insensitive to

arrays associated with the names.
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Functions are defined to c¢reate and manipulate new
scalar tyres and general arravs. Tunctions previously
definerl on vectors are extended to arravs by use of general
arrays for arrav indexinag., A defined function is treated
much lilke a primitive amd may describe anv of four functions
by use of default onerands., A function index is permitted
with a defined functicen and in general may bc a vector,

For the nurpose of this work APL\3G0 has becen taken to
be a de facto standard for APL. A detailed sumrmary of the
changes to 4PL\360 which are proposed is presented in
Appendix 1.

The pronosals which have heen put forward here may be
adopted in whole or in part although there are dependenciecs.
These suqggestions have been made with the prime focus on the
lanquage and not on its implermentation; moreover, there are
still areas for futher consideration in the language in
addition to what is discussed in this paper. At this tire it
is aprropriate to cormment on irplerentation and further

work,
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B. Implementation

In keeping with the spirit of APL the generalizations
are presented as a notation not as an implemented
programming lanqguage. Problems of implementation have been
generally ignored. However it is the feeling of the author
that all the concepts in chapters 1 and 2 may be implemented
in a straightforward manner. Certainly the uniformity of the
svntax should ease syntax analvsis.

Implermentation of functions on general arrays would
propably mimic quite closely the descriptions given for them
here. In particular the scalar functions should be amenable
to a simple recursive evaluation algorithm,

An easy way to represent a general array on a
conventional computer would be to store in row major order a
set of pointers (addresses) to the arrays in each position
of the general arrav. Iach indicated array would either be
one of the scalar types or another arrav of pointers. In
case all the scalars of a simrple arrav were of the same
tvpe, a compact representation of the array (as with all
arrays of API\360) would provide storage optimization. The
use of descriptors separated from the values as proposed by
Abrams [Abrams 1] is clearly indicated.

The treatrment of proagram scalars has not implied
constraints on what the computer representation of
expressions should be so long as a character representation

equivalent to the original description is always obtainable.
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Proper implementation of arrays of functions merely

implies mnultiprogramming of functions. Inclusion of the

synchronizing primitives of chapter 3 (activate and wait)
may be more difficult.

Implementation of named nare arrays (i.e. specification

in the name domain) should probably be pendant on further

study of the implications of the concept.
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C. Further Research

Certain aspects of the generalized notation seem to beg
for further extension and a number of problems have not been

considered at all.

The position scalar

Prominent in this set is the position scalar ¢ . It is
in the domain of the structure and select functions and very
few others.It arises because arrays containing scalars of
difrerent type are permitted. In some applications it could
be useful if & were treated as a universal identity for the
scalar functions. That is & 1in a operand of + would act
like a zero, while 9 in an operand of x would act like a
one, Then an expression like

1+1 0 1\3 4

would be valid as it is in APL\360. Unfortunately 1like

the universal solvent that can't be stored, the p-scalar

would be difficult to detect. Neither = nor (which is

defined in terms of =) could detect it, Worse would not

really be identically equal since every occurrance of 6

would be treated as a one.

Unit indexing
A more tenable use of 8 would be to postulate the
following identity for unit indexing

8 4 F «+ 8
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then
1 3 © d "ABCDE' <«- BD 8
and
(Br14) 4 B

would be an array of the elements of 4 which occur in B
with & elsewhere,

Unit indexing itself seems to need a further extension.
While it 1is a replacement for the bracket indexing of
API\360, it is not an equivalent replacement. There 1is no
way to mimic the elision of a coordinate which in API\360
implies the selection of all elements along that coordinate.
Indexed unit indexing does select all elements along
unindexed coordinates but the resulting array is short by a
transpose of being identical to the APL\360 notation. In the
absence of such an extension, the bracket notation for
indexing could be retained in an implenmentation solely for
convenience even though 4 is more pleasing formally.

A different extension to unit indexing would permit
selecting of elements on other than the top level of an

array.

Functions on General Arrays

Only a few new functions have been defined on general
arrays. Further study may indicate that more primitives are
required to efficiently manipulate the arrays. This is
particularly true in the case of uniformly structured

general arrays (i.e. arrays where all the sub-arrays on a
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level have identical structure). It should be possible to
first implement these new functions as defined functions
using the notation of this paper. For example a defined
function to determine the depth of an array (i.e. the
maximum number of levels as defined in chapter 1) could be

written as follows:

ADEPTH
Lo] D« _ A
(1] >((c10) = gpA)+D+0
(2] +(D«(10) = ,A)/0

[3] D«(_ 14,A)[1+ _ 20 3 4

Type Determination

It is often useful for a function to adjust its action
depending on the data type of arrays presented to it as
operands. The inclusion of arrays consisting of different
scalar types makes it difficult to test for the type of an
array. It may therefore be necessary to provide a primitive
for the purpose. Such a primitive could return a particular

element of the type or perhaps merely an integer,

Multiple Functions

The synchronizing functions (wait,activate) proposed

for multiple functions provide basic requlation of parallel
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functions but have some shortcomings. It is not easy to
cause a function to wait on multiple conditions. There is no
primitive ability for one defined function +to terminate,
interrupt, or cause a branch in another defined function.
Proper programming conventions, however, can provide these

abilities.

Files

Perhaps the biggest deterrent to use of APL in many
applications is the lack of a large data capability (a file
system). This is largely an implementation probler and could
be solved without modification to the notation by permitting
(by declaration) 1large general arrays whose values were
recorded external to the computer. Adding RIEAD and WRITE
functions to the notation in the spirit of traditional

programming languages would not be an elegant solution.

System commands

Further study into the relation of the system commands
of APL\360 to the notation is required. Perhaps they should
be included formally in the 1language. Or perhaps the
implementation environment should be altered so they are not

needed at all,
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D. Final Remarks

This paper has presented for consideration a
generalization of the APIL notation. The concepts developed
extend and complement the existing capabilities of the
notation, General arrays permit easy representation of data
not amenable to rectangular structures (i.e. trees, lists).
Including functions in the domain of variables makes the
notation functionally self-extensible and makes
consideration of APL for the native language of a computer
more realistic,

It has been said (by Alan Perlis) that there is an
inherent danger in extending APL in that the extensions may
corrupt rather than improve. Whether or not the proposals
made here are in good taste and in the spirit of APL in the
ultimate analysis is in the hands of the users. The attempt
has been made to preserve the essence of APL by preserving
identities while extending the notation and the domain on
which it is defined., It is hoped that the ideas presented

here will stimulate further discussion and study of APL.
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Appendix 1: Summary of Modifications

A, Syntax

The only change to the syntax of the notation 1is the
requirement to parenthesize a niladic function used as the
left operand of a function., The syntax is generalized in two

ways:

1.) A function symbol or function name may be used
in any of four contexts depending wupon the
existence of zero, one on the right, one on
the 1left, or two operands. These types are
called respectively niladic, monadic,
dextri-monadic, and dyadic.

2.) Expressions having no value (no result after
evaluation) may be embedded within expressions
and may in a sense be left operands to niladic
or monadic functions, or right operands to

niladic and dextri=-monadic functions.

The order of evaluation of functions is unchanged for
expressions valid in APL\360. However the existence of
embedded expressions of no value requires a more restrictive
description of the order, A function occuring immediately to

the right of a right parenthesis has lower precedence than
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any function occuring in the parenthesized expression.
Otherwise precedence is positional and increases from left
to right, The evaluation rule then merely demands that

functions be evaluated in order of decreasing precedence.

B. Arrays

The variety of arrays is increased by the inclusion of
three new data types. The position scalar 8 , is used as a
placeholder in arrays when there is no reason to chose
another scalar. A program scalar is the description of some

function. A name scalar is an indirect reference to some
value. Arrays whose scalars are of different types are
permitted. An array which is composed of scalars is called a
simple array. An array whose structure is hidden and which
is treated as atomic is called a unit array. An array

______ . A general
array 1is the regular, structured equivalent of a ragged
array. An array whose rows of different length may be

represented as a general vector whose elements are the rows

of the ragged array.

C. Names

Names are treated more uniformly via the introduction

and variables as name-array pairs. A function is a name

1
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associated with a program array, all other variable
functions are called variables, Names may exist
independently of arrays in the name domain. The name domain
is recognized only in the left operand of specification (and
in Chapter 3 in the left operand of activate). Specification
may be used to define both functions and variables. Arrays
of name scalars are produced by functions defined on names.
These name arrays allow selective respecification of values
of variables and allow splitting of a value among several
names, Selective respecification is not new to APL\360 since
it exists under the gquise of the triadic-looking indexed
specification. Splitting of a value among names is new and

is wvital to the parameter substitution rules for defined

functions,

D. Functions and Operators

scalar, An un-headed defined function 1is niladic and is a

collection of associated expressions. A headed defined

of which is called the function header. The function header

defines the valid context of the function, specifies the

default operands, and declares sets of names as local names

(=P . 1] A R TR IS e ST AR
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The following list of primitive functions are present

in APL\360 or are trivially extended to include new data
types or general arrays. They may be located in the paper

via the index.

Size pR
Reshape LoR
Attach L,R
Base Value L1R
Represent LTR
Compress L/R

Expand L\

I~

Reverse ¢

o]

Rotate Ld

(l=v}

Membership LeR
Transpose ®F and L &R
Grade Up AR

Grade Down YR

Branch +R

The following operators are included as above

Outer Product

™~
o

S

=

\w}
o]
=

Inner Product L
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The following functions exist in APL\360 but have been

altered or extended,

Index=of LR array left operands
Interval 1¥id vector operand

Ravel WK function index permitted
Take LR function index permitted
Drop LYR function index permitted

Specification L<R left operand name arrays

The following operators are included as above

reduction D/R when unindexed, always produces a scalar.
When indexed, any or all dimensions may
be reduced

scan D\R same as reduction

The following functions do not exist in APL\360

Conceal cR creates unit arrays

Reveal SR extracts array for a unit array

Unit Indexing L 3 replaces bracket indexing

iy

Entire d R an identity function
Same L = R =1 if operands are identical
Complement-of L~R set difference

Activate L« create an active name
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Define VR create a program scalar

Evaluate iR evaluate an expression

Character form TR character representation

Exist iR =1 if name has a value

Default~of L 1 F defaults operands

Wait LwR suspends evaluation of expressi>ns

The following operators do not exist in APL\360

Scalar Product 8D applies functions to concealed arrays
Definition=~of AR produces an unevaluated variable

description
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Primitive Scalar Functions

D K RESULT D L DR RESULT
+R R + L+R L plus R
+2 2 3+2 5
-K Minus R - L-R L minus R
-2 2 4.,5-1,.5 3
xR Signum of R x LxR L times R
x 1 0 3 "1 0 1 Lx4,5 18
iR Reciprocal of & % LK L divided by R
+5 0 2 433 1.333333333
LR Floor of R L LLR Minimum of I and R
L3.14 72,7 3 73 3Ly 3
R Ceiling R I LIR Maximum of L and R
r3.1s 2.7 4 T2 3fu 4
xR e to the Rth power * LR L to the Fth power
*1 2.718281828 2% ,5 1.414213562
®F natural log of R @ ILeFR Log R to the base L
kL >+ R «>+>%x®f L8R <« (@R):@]
|k Magnitude of » LIR L residue of R
[ 2.718 2.718 L=0 R-Lx|R%L
L=0 R
'R Generalized factorial ! LR R things L at a time
'R+ Gamma(R+1) LIR <> (tR)+('L)Yx!'R-L
215 10
7R Random roll from R 7 (dyadic is non-scalar)
OR PI times R o LOR Lth circular function
o1 3.141592654 (see table on next page)
~R Not R ~
~1 <> 0 ~0 +» 1



A And L R LAR LVR LnR L~R
v Or 0 0 0 0 1 1
~ Nand 01 0 1 1 0]
» Nor 10 0 1 1 0]
11 1 1 0 0
< Less RELATIONS
s Not greater Result is 1 if the
= Equal relation holds; 0 if
2 Not less it does not.
> Greater
® Not equal
The Circular Functions
(-LJ)OR L LOR
(1-R%x2)%*.5 | 0| (1-R%2)x.,5
Arcsin R |1 | Sine R
Arccos R | 2 | Cosine R
Arctan R | 3 | Tangent R
(T14R*x2)*.,5 | 4 | (1+R*2)*.5
Axrcsinh R | 5 | Sinh R
Arccosh R {6 | Cosh R
Arctanh £ | 7 | Tanh R
Identity Elements
D FELEMENT
x 1
+ 0
3 1 (right only)
- 0 (right only)
* 1 (right only)
f 0 (left only)
® (none)
o (none)
v 0
A 1
~ (none)
» (none)
! 1 (left only)
[ (smallest number representable)
L (largest number representable)
> 0 (right only)
2 1 (right only)
< 0 (left only)
< 1 (left only)
= 1
# 0

264
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partially

following rules

parenthesized

classified.

Non-terminal Symbols

LXp -
EX0 -
EX1 -
Lo -
E1 -
ERO =
ER1 =
ELO -
EL1 -
ELRO -
ELR1 -
LE1 -
ENO =
FN1 -
Mo -
FM1 -
EX0 -
EX1 -
EFDo =

=

ig

N
I

an

an

an

an

an

an

an

an

an

an

an

an

a

a

a

expression

expression with

expression with

expression with

expression with

expression with

expression with

expression with

expression with

expression with

expression with
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may be used for synthesis of

expressions with functions

no value

a value

no value and no operands

a value and no operands

no value and a right operand
a value and a right operand
no value and a left operand
a value and a left operand
no value and two operands

a value and two operands

expression as left operand of a function

niladic
niladic
monadic

monadic

function
function
function

function

with no result
with a result
with no result

with a result

dextri-monadic function with no result

dextri-monadic function with a result

dyadic function with no result

dyadic function with a result
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Terminal Symbols

()L1va as before

N0 a niladic function with no result

N1 a niladic function with a result

40 a monadic function with no result

41 a monadic function with a result

X0 a dextri~ronadic function with no result
X1 a dextri-monadic function with a result
D0 a dyadic function with no result

D1 a dyadic function with a result

The Rules

it

XP -the starting expression

(1-3) EXP -+ EXO0 | EX1 | (EZXDR)

(4-8) EXO0 ~» A | E0 | ERO | ELO | ELRO
(9-11) EX0 - (EXO0)EX0 | EXO(EX0) | (EXO0)
(12-15) EX1 ~» E1 | ER1 | EL1 | ELR1

(16-18) EX1 ~ E
(19-22) EO - EO EO | ERO ELO | FNO | (E0)

(23-26) ELO - ELO ELO | ELRO ELO | LE1 FX0 | (ELO)
(27-29) ERO -+ ERO ERO | ERO ELRO | EMO ER1

(30-31) ERO - FMO ELR1 | (ERO)

(32-34) ELRO - ELRO ELRO | ELO ERO | ELO ELRO

(35-36) ELRO -~ ELRO ERO | LE1 EDO ER1

(37-38) ELRO - LE1 FDO ELR1 | (ELRO)



(39-42) E1 - B1
(43-45)
(46) EL1 - LE

(47-50) ER1 =~ ER

(51-53) ELR1 - ELRO LLR1

(54-57) LLR1 > EL
(58) ELR1 - LE
(59-60) LE1 =-» (E
(61-62) FNO -~ NO
(63-64) FN1 - N1
(65-66) FMO - MO
(67-68) EM1 > M1
(69-70) FX0 -+ X0
(71-72) EX1 =~ X1
(73-74) FDO > DO

(75-76) ED1 = D1



Example derivations and
numbers
Vv F1 V
EXP
2 kX1
15 ELR1
58 » LE1 FD1 ELR1
56 LE1 FED1 LE1
60 - LE1 FD1 V
75 - LE1 D1 V
60 Vv D1V
(V FO)FO
EXP
1 EXO0
9 (EX0) EXO
5 (EX0) EO
21 (EX0) ENO
61 (EX0) WO
7 (ELO) WO
25 (LE1 FXO0) NO
69 (LE1 X0) wo
60 (V X0) NO

classifications

268

giving the rule



13

49

L7

56

60

30

56

60

65

67

F1 FO V V
EXP

EX1

ER1

FM1 ER1
FM1 LRO EL
FM1 ERO LI
FM1 ERO V
FM1 EMO EL
FM1 EMO LE
FM1 EMO V
FM1 MO V V
M1 MO V V

o)

finy

o

[y

269
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13

50

56

60

67

60

73

60

(V FO

EXP

~ ~ ~ ~ ~ ~ it
1< N | <o I | o B s N | ap BN | cs BN P4
LTI T =R o N o =
(@} (@] o O (@} o

it
it

RO)

[ [ B | v
= =
JEN - N

12 I i

JE
=

(Vv Do v) M1 V

V) F1 V

e B 3|
(1= B
e N

164
N
I
1o

=2
N
it
It
-

I
1=
[N
<

M1V
M1 V

D

(o]

10
o

FDO V) M1 V

51 DO V) MLV

ELR1) M1 V

LE1) M1 V

270



271

References

Stanford Linear Accelerator Center, Stanford

University (February) AD706 741

Breed,L.M. [1971] . Correspondence, 4

PL Quote Quad Vol. 2,

No., 6 (March)

Breed,L.M,[1971]. "Generalizing APL Scalar Extension".

A4PL Quote Quad Vol. 2,No. 6 (March)

Charmonman,S. [1970]. "A Generalization of APL
Array-oriented Concept". APL Quote Quad Vol 2, No, 3

(September)

Dijkstra,E.W.[1968]. "Cooperating Sequential Processes"

Programming Languages, Academic Press, New York, 52-76

Edwards,E.M. [1971] Personal correspondence, Control Data

Canada

Falkoff,A.D,,Iverson,K,E, and Sussenguth,E.H, [1964]. "A

Formal Description of SYSTEM/360"., IBM Systems Journal

vel, 3, No. 3, 198-262



10.

11,

12,

13.

14,

15.

and Sons, New York

Report (March)

Lathwell,R.H., Personal correspondence, IBM Philadelphia

Scientific Center

Concepts and the IBM 1620 Computer, Holt, Rinehart and

Winston, New York

Center News Vol. 4, No. 4, Syracuse University (March)

McDonnell,E.E., Personal correspondence, IBM

Philadelphia Scientific Center



16.

17.

18,

19,

20,

21,

22,

273

M., I.T. Press

Morrow,L.A,, Personal correspondence, IBM Philadelphia

Scientific Center

Research Associates, Inc., Chicago, Illinois

Rubin,W.B.,Personal correspondence, Syracuse University

Ryan,J.[1971] . Generalized Lists and Other Extensions,

APL Quote Quad Vol 3,No. 1 (June)

Watson,D.,McEwan,A. [1970] . "APL\360 Recursed", APL Quote

Quad Vol. 2, No. 2 (July)

Woodrum,L.J.[1969] ., "Internal Sorting with Minimal

Comparing". IBM Systems Journal Vol 8,No. 3 189-219



274

INDEX OF IDENTITILS

I ... 44
I2 ... 44
I3 ... 44
s ... 44
I5 ,.. 44
I6 ... 56
I7 ... 68
I8 ,.. 68
I9 ... 69
I10 ... 69
11 ... 69
12 ... 72
I13 ... 73
14 ... 81
I15 ... 83

I176 ... 102
I17 ... 102
I18 ... 107
I19 ... 109
I20 ,.. 109
21 ... 111

I22 ... 112



Activate L+

INDEX

6> © ® 3G ® S @0 OO OO

Active Expression ceceaas

Actual Parameter

Adjoin L,[ZI

1R

*© 3 2@ 02 00

> @ 2 € 8 08 O

Apparent dimension cessas

Arrays of functions coaos

Attach [,[FI
Backscan DX
Base value

Branch +R
Branching

Call by name
Call by wvalue

Catenate

1B

[

™3
I~

L1

iy

> ® 3 e OO SO

]E @@ 3 0 20

® ¢ ® Q23 @O SBO D@

Character form

Complement=of
Compress L/
Conceal c[F

Conditional

L]

2 ® 2 83 ® 3 Q66600 2@

> e o ¢ 3C @0 0B e

© 3 0 3033 0 00

Ls[ﬁi]fi 2000 0@

Tzi a2 0 0 0

]]j e o0 e 8@

o ®cCc a0 e

80 ® @ 800 Q2® OO0

Decode (see Base value)

Default-of

Define VE

L%E s @ ®» 8 PO O

2 ® ® 80 O e ®OT O

Defined function

Definition=-~of

Demi=-colon

¥

® ® 3O @ D3

AB «e® o @ 8O

e

®

218
217

159

41,114
51
52,120
170
169
198
198
41,114
172

79
54,122
68,105

13,204-210

234
152
150

154

(see Scalar product)

275



Display of defined functions 2o
Display of general arrays cesoces
Display of simple arrays secsces

Drop Ly[FIJR

© 2 © 0% ® 8 0O 060 S 3PS S

Encode (see Represent)

Entire d R 0
Erase cceoaceo

Evaluate 1R

9 © 0000900060000 0e

® 00 %3G POS S DS S S IO

2@ e 28 0005500030 03000

Execute (see Evaluate)

Exist 1 R o

Expand IN[FIIR

® 3% O ® © 80 060 00 e 00w

© 8 030 @500 385D

Expression separator 1 cesses

Formal parameter
Function header
Function Index

General array

e ® o330 060208200 0068

® ® ® 3 8¢ ? 8000 0 08

® ® 00 6 ® 00 0803 Oe 3OS

e 3 e 00 8 00 9008 00O OO O

General array extension method o

Global name o
Grade down VR

Grade up AR

> > 8 2 86038 0008 308 600

26 ®®®® ° 0 3OS PO

©c® ® 2 @30 00 @® D6 & & a

Headed defined function cecseens

Hidden dimension
Identifier co s
Index generator

Index-of LWR

2 ® © 0 ® DO DS e OO 80D
® o e > e 2 08 3PSO
1& ®> 0 0 00 03 06 @0

s ® 8 0 ® 2 O O © 0 0O O

Indexing Ld [FIIR sscesscoscac

Inner product

@ ® 0O ® © 3 60O e S0 ed e S OO

276
157

74

20

46,119

76
220

174

234
56,123
148

159

159
103,162
59

110

160

85

84

158

62

131
100,240
80
40,711,111

94,128

S



277

Interval 1R csecosscscosascess 43,100,240
Label ccosscecsscccsecoscssasccs 170

Laminate L,LFI1R soeosssccsscos 116

Local name sec0ces0o00scscessscees 100

Matrix product esccsoeesssssesac 2

Membership LeR sessossesscocce 18
Meta-notation cssosossessasseces 12

Name 0 ® QT QO ®SPOE®O BSOSO RSO DS IB R 132

Odometer R ccessesscscessssoo 143,100,240
Operators @0 @8 @ 8% ®© C ® ® © e & 9 G DO DS QG 87
Order of execution coeccscscscao 30

Outer product csoscococesscasscces I2

Parentheses elimination rules oo 29
Passive expression esevcsceccoss 217
Position scalar coosscoacscascso 17
Precedence of functions cocesoes 29
Primitive function cessscoscococe 22,132
Program scalar coossesosscsscoosc 17

Ravel ,[:El]ﬁ 92 ®0020®0© 680000008060 39,113

Recursive functions cecccsanoe 211

©
o

Reduction 1—7 [zi]& ® ® 9 @ ® ® ® O0Q O & B 0 48’91'126

1o}

Represent LT 20 ©0 29 ® 0000 O©Oad &S0 53’121

3 ® PO 000 >0 PO Q0T 38

Reshape

it~
O
=

Reveal DEEI]& ® ® @ ©® @ & 3 P o0 D ® O @ 69'108
Reverse SLFELIR vessscsoesccce D7,124

¢

]

Rotate

it

Eijg @ 0O ® @ o » 0O & 3 © ® O 58'125

0@ 0000 P0OO0®HPO Q0O D 77

Same L =

i~



278

Scalar extension scessoccesesscsss 25,86,237
Scalar Product ccscsscesesse 89
Scalar types soesscscesseasessss 10

Scan D\[FIIR ssoeessccos 50,127
Shadowed name scececesscssssssca 160
Size oR sosescessceccsecessses 37
Specification coecesceesasoca 134,139
Specification in the name domain 214
Squad 1 (see expression separator)
Strictly local name cooseeossecess 161
Syntax cocaccecoscessasossssccsss 23,186
Take LALEIIR ceecesssosssessss U45,118
Transpose LRR saeecesessscesae 82
Types of scalars csoeesscasccsscs 106
Un-headed defined function 155
Unit array esasssssssssesssssoos 03
Unit indexing Ld [EIIR 40,771,111
Unquote (see Evaluate)

Vacant soosoesecscsasssessescsscso 243
Variable function cesceceenccssos 132
Void csascecocscosssecsessscscaoc 233
Wait  LWR  soescescesssesssasaces 22U



279

BIOGRAPHICAL DATA

Name: James Arthur Brown

Date and Place of Birth: December 23, 1943
Erie, Pennsylvania

Elementary School: Jefferson School, Erie Pennsylvania;
St. Peter's School, Erie Pennsylvania
Graduated 1957

High School: Cathedral Preparatory School
Erie, Pennsylvania
Graduated 1961

College: Gannon College, Erie, Pennsylvania
B.A., 1965

Graduate Work: Syracuse University, Syracuse, New York
Graduate Assistant
M.S., 1970



)





