

APL
Advanced Techniques and Utilities

by Gary A. Bergquist

Zark Incorporated
53 Shenipsit Street
Vernon, Connecticut 06066

APL Advanced Techniques and Utilities
Gary A. Bergquist

Copyright 1987 Zark Incorporated

All rights reserved, including the right to reproduce or translate
this document or any portion thereof in any form. Requests for
permission or further information should be addressed to the
publisher.

The material contained herein is supplied without representation or
warranty of any kind. Zark Incorporated therefore assumes no

responsibility and shall have no liability of any kind arising from
the supply or use of this document or the material contained herein.

Printed in the United States of America

APLAPLUS is a registered service mark of STSC, Inc.
Sharp APL is a registered service mark of I. P. Sharp Associates, Ltd.

TABLE OF CONTENTS

INTRODUCTION ... 1
1 LIMBERING UP ... 4

2 BRANCHING AND LOOPING ... 8
Conditional Branching ... 8
Multi-target Branching ... 9
Looping ... 11
When to Loop in APL ... 15
PROBLEMS ... 20

3 COMPUTER EFFICIENCY CONSIDERATIONS ... 23
Timing Alternative Algorithms ... 23
A Utility Function for Timing Algorithms ... 25
Fine-tuning Production Applications for Efficiency ... 28
APL Efficiency Considerations ... 33
PROBLEMS ... 38

4 POSITIONING CHARACTER DATA ... 40
Removing Extra Blanks from Character Vectors ... 40
Justifying Nonblank Segments within Character Arrays ... 42
Restructuring Skinny Matrices into Fat Ones ... 43
Delimited Character Vector to Justified Matrix ... 46
PROBLEMS ... 49

S SORTING AND SEARCHING ... 53
Major-to-minor Sorting ... 53
Character Matrix Sorting ... 56
Uppercase/Lowercase Sorting ... 62
Array Searching ... 64
Range Searching ... 70
Character Substring Searching ... 75
Character Substring Replacement ... 76
PROBLEMS ... 78

6 SELECTING ... 80
Selection and Selection Assignment ... 80
Scattered Point Indexing ... 82
Unique (Distinct) Values ... 84
Translating Distinct Values to Distinct Indices ... 88
PROBLEMS ... 89

7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS ... 92
One-Way Plus Reductions ... 94
N-Way Plus Reductions ... 97
N-Way Maximum and Minimum Reductions ... 100
N-Way Logical Reductions ... 104
N-Way Reduction Utility Functions ... 105
N-Way Reductions on Files ... 109
Milky-Way Reductions ... 111
PROBLEMS ... 114

TABLE OF CONTENTS (continued)

8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS ... 116
Primitive Interactive Functions ... 116
Utility Interactive Functions ... 119
Utility Validation Functions ... 122
PROBLEMS ... 127

9 MANIPULATING DATES ... 129
Representation of Dates in APL ... 129
Entering and Validating Dates ... 131
Formatting Dates for Output ... 133
Manipulating Dates ... 135
PROBLEMS ... 144

10 WRITING REPORTS ... 145
Viewing the Report ... 146
Constructing Titles and Headings ... 147
Row Oriented Formatting ... 150
Formatting Multi-Row Records Using Newlines ... 151
Directing Report Output to Print Files ... 152
PROBLEMS ... 156

11 SYSTEM DEVELOPMENT PROCEDURE ... 157
Familiarization ... 158
Specification ... 159
File Design ... 160
Workspace Design ... 160
User Documentation ... 161
Flow Charting ... 162
Coding, Typing, Testing ... 162
Delivery, Training ... 163

12 PROGRAMMING STANDARDS ... 165
Familiarization ... 165
Specification ... 166
File Design ... 166
Workspace Design ... 167
User Documentation ... 168
Flowcharting ... 169
Coding, Typing, Testing ... 170
Delivery, Training ... 174

13 WORKSPACE DESIGN AND DOCUMENTATION ... 175
Subfunction Design ... 175
Starting an Application ... 185
Function Documentation ... 188
Workspace Documentation ... 191
Function Identifiers ... 194
Workspace Identifiers ... 200
PROBLEMS ... 202

14

15

16

17

18

19

TABLE OF CONTENTS (continued)

FILE DESIGN AND UTILITIES ... 203

APL Database File Organization .

File Design Considerations ... 208
Efficient Record Location ... 210

File Documentation ... 212
File Utility Functions ... 215

204

Multi-Set Transposed File Organization ... 222
An Illustration of File Utilities .

PROBLEMS ... 228

BOOLEAN TECHNIQUES ... 230

Logical Scalar Functions ... 231

Logical Reductions and Scans ...
Logical Partition Operations ...

PROBLEMS ... 252

IRREGULAR ARRAYS ... 253

Constructing Irregular Arrays ..

Catenating to Irregular Arrays .
Selecting from Irregular Arrays

.. 225

233
Logical Shift-and-Compare (Map) Operations ...
237
An Illustration of Boolean Techniques ... 244

. 255
Emulating Nested Arrays on Non-Nested Systems ...

262
264

Replacing Items of Irregular Arrays ...
Determining Shapes of Irregular Items ... 266

Sorting Character Nests ... 267

Searching Character Nests ... 268

Reducing Numeric Nests ... 269
PROBLEMS ... 269

CURVE FITTING ... 271

Using Quad-Divide ... 272
Forecasting ... 274

Fitting Data to a Nonlinear Formula ...

Finding the Best Formula ... 278
PROBLEMS ... 279

FINANCIAL UTILITIES ... 282

Interest and Annuities ... 282
ILoan Amortization Schedules ...
Internal Rate of Return ... 293
Bond Calculations ... 297
PROBLEMS ... 301

EXCEPTION HANDLING ... 303

Detecting the Error ... 304
Signalling the Error ... 307
Detecting the Attention ... 308
Suspending the Function ... 309
Controlling the State Indicator
PROBLEMS ... 314

POSTSCRIPT ... 316

290

« o o

311

265

277

236

257

TABLE OF CONTENTS (continued)

Solutions: 1 LIMBERING UP ... 320

Solutions: 2 BRANCHING AND LOOPING ... 324

Solutions: 3 COMPUTER EFFICIENCY CONSIDERATIONS ... 327
Solutions: 4 POSITIONING CHARACTER DATA ... 330

Solutions: 5 SORTING AND SEARCHING ... 334

Solutions: 6 SELECTING ... 337

Solutions: 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS ... 340
Solutions: 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS ... 362
Solutions: 9 MANIPULATING DATES ... 364

Solutions: 10 WRITING REPORTS ... 366

Solutions: 13 WORKSPACE DESIGN AND DOCUMENTATION ... 367
Solutions: 14 FILE DESIGN AND UTILITIES ... 383

Solutions: 15 BOOLEAN TECHNIQUES ... 449

Solutions: 16 IRREGULAR ARRAYS ... 459

Solutions: 17 CURVE FITTING ... 474

Solutions: 18 FINANCIAL UTILITIES ... 476

Solutions: 19 EXCEPTION HANDLING ... 479

INDEX ... 483

INTRODUCTION

It is a mystery that APL is more than 20 years old and there are
no APL textbooks which treat the reader as if he or she has some
understanding of the language. The introductory APL textbooks
available are excellent at accomplishing their objectives. However,
they leave the novice APL programmer stranded in the real world. The
novice APlLer has the tools but not the techniques, the knowledge but
not the experience.

This book picks up where introductory APL textbooks leave off. 1Its
goal is to build your experience quickly by exposing you to
applications of APL. This is accomplished by presenting real world
problems and their APL solutions.

Most sections of the book begin with the presentation of a problem.
You should read the problem and formulate a solution to it, given
your knowledge of APL. Then read on. The problem is followed by a
"good" APL solution. Compare it to yours. If different, learn from
the differences.

Each chapter is followed by a set of problems. The purpose of the
problems is to confirm your understanding of the material presented
in the chapter. You will reinforce that understanding by working on
the problems. The solutions to the problems are in the back of the
book.

Some of the most valuable material in the book is presented as
utility function solutions to problems. Therefore, you should at
least scan the problems and solutions after reading each chapter,
even if you feel you need no reinforcement.

The book assumes you understand the APL primitive functions. If you
encounter a primitive function with which you are unfamiliar, look it
up in an introductory APL textbook. Though the book does not assume
you are using any particular implementation of APL, it does make
specific references to three versions: APL2, APL*PLUS, SHARP APL.
APL2 is a product of IBM; APL*PLUS is the trademark of a product of
STSC, Inc.; SHARP APL is the trademark of a product of I. P. Sharp
Associates, Ltd.

If you are using a different implementation of APL, the material in
the book will still be pertinent. Only one primitive function is

1

INTRODUCTION

assumed which you may not have: replicate (/). If your version of
APL supports compression but not replicate, i.e. generates a DOMAIN
ERROR on 3/4, you will need to substitute your own replicate
function, say REPL, whenever replicate is used. The listing of one
such REPL function is included at the end of this Introduction.

Most experienced APL programmers collect a set of their favorite
utility functions. These utility functions are used to increase
programmer productivity by solving the same problem over and over
again. This book contains and describes more than 150 commented
utility functions. These functions are available on a floppy disk.
See the Postscript at the end of the book.

Notice the workspace ID (WSID:) displayed above the header of the
REPL function below. The WSID refers to the name of the workspace in
which the REPL function may be found. This convention is used
throughout the book. Every function for which a WSID is provided is
available on floppy disk.

In several sections of the book, you are asked to imagine extensions
to the APL language. Each extension is then implemented via a
utility function. These imaginary extensions to APL are intended as
instructive and mnemonic devices to help you to quickly understand
and remember the definition of the utility function. Please do not
misinterpret my intent. I do not seek to have these extensions
implemented in the current versions of APL. In some cases, the
extensions are half-baked or are inconsistent with existing APL
conventions. No matter. Use them as they are intended. Allow
yourself to imagine the extension and then view the utility function
as the implementation of that extension.

There is much emphasis in the book on efficiency considerations. A
chapter is devoted to the topic. 1In addition, relative efficiencies
of alternative algorithms are considered throughout the book.
Emphasis is placed upon efficiency because of its importance. At an
introductory level of APL, you can concentrate on the conciseness of
APL and on its elegance. But in the real world, the practical APL
programmer must take a blue collar approach.

Sometimes a concise and elegant algorithm requires much more
processing time than a somewhat more complicated algorithm. The
difference may be significant enough to make an application feasible
or infeasible depending upon the algorithm chosen. However,
efficiency does not need to come at the cost of clarity. If comments
are used generously and subfunctions used judiciously, you can have
the best of both worlds: fast, readable functions.

I solicit comments and suggestions about the topics, presentation and
utility functions contained herein. In fact, if you make a
suggestion that is incorporated into the text or utility functions of
the next edition of the book, you will receive a free copy of the
current version of the utility functions.

INTRODUCTION

I wish to acknowledge the efforts of everyone who has contributed to
the creation of this book, especially: Bob Richmond, Christine Bell,
Daryl Burbank-Schmitt, George Dobbs, Joe Hatfield, Bruce Hitchcock,
Roger Hui, Don Lagosz-Sinclair, Lori McNichols, Jack Reynolds, David
Routhier, Tapan Roy, Jerry Turner and Andi.

Gary A. Bergquist
Zark Incorporated
53 Shenipsit Street
Vernon, CT 06066

March 1987

[WSID: UTILITY]
Vv R¢B REPL V;I;N;P;T;0IO0
[1] A Emulates the replicate function (R¢B/V), where B
(2] A may be non-Boolean. Works for scalar/vector right
[31] A argument only.
[4]1 A Branch if right argument not a singleton:
(51 2(1#Nex/pV)pLl
[6] Re&(+/B)pV
[71 >0
[8]1 n Branch if left argument not a singleton:
[9] L1:>(1#x/pBlpL2
[10] Re¢,®(B,N)pV
[111 =0
[12] A Origin 0 logic is simpler:
[13] L2:0I0€0
[14]1 A Flag nonzero replication factors:
[151 PexB
(161 A Indices into V of values to replicate:
{171 Neé€pI€¢P/LN
[18] A Indices into result of starts of runs:
[19]1 Te+\P/B
{201 A All-zero vector with length of result:
[21] Re(T1TT)p0
[22] A Insert 1st differences for subsequent +\:
(231 RINpO,T]1¢I-NpO,I
[24]1 A Replicate selected elements of V:
[25] ReVI+\R]
v

Chapter 1

LIMBERING UP

The purpose of this chapter is to give you an opportunity to
crack your knuckles and stretch you muscles on some APL problems. If
you have not used APL for awhile, you will want to spend some time
solving these problems. The effort will put your mind in the proper
APL orientation to get the most out of the book. If the solutions
are different from your own, spend some time studying them. Review
any primitive functions with which you are unfamiliar.

If you use APL daily and the problems seem simple to you, skip this
chapter altogether. (Solutions on pages 320 to 323).

1. What expression will change the value 645 in the vector AMOUNT to
8457

2. What expression will return the scalar 1 if all elements of the
numeric vector PREMS are between 100 and 500, and will return the
scalar 0 otherwise?

3. What expression will return the number of elements in the numeric
vector WEIGHT which are approximately equal to 247
"Approximately" means the numbers are rounded to the nearest
integer before comparing to 24.

4. What expression will return the number of elements in the matrix
MAT?

Chapter 1 LIMBERING UP

5.

10.

11.

Given a variable ANS which represents a numeric scalar (say 56.5),
what expression will return the character vector 'ANSWER IS 56.5
YEARS'?

What expression will cause the character vector NAME to be
catenated as a new row of the character matrix NAMES, assuming
the number of elements in NAME is less than or equal to the
number of columns in NAMES?

What is the effect of the expression, =pl2 ?
A. Proceed to the next statement
B. Proceed to line 12
C. Proceed to line 1
D. Exit the function

E. RANK ERROR

Given an integer vector V of length 2xN, construct an N-element
vector R by adding the odd elements of V (1, 3, 5, ...) to the
even elements (2, 4, 6, ...) times 256.

What is the result of L/10 and why?

What is the meaning of -\VECTOR?

How do you resume execution of a function after an error has
occurred and been corrected?

Chapter 1 LIMBERING UP

12. What happens when closing function definition mode after editing
the header of a suspended function?

13. What is the meaning of A4AVECTOR?

l14.a. What expression describes the shape of the result of A+.xB?

b. If either argument is a scalar?

15.a. What expression describes the shape of the result of Ao.>B?

b. If either argument is a scalar?

16. What system function can be used to determine the amount of CPU
time consumed by an APL expression?

17. What expressions may be used to display the character vector
PROMPT and to allow the user to enter a response (R) on the same
line as, and following, the display of PROMPT?

18.a. What expression will construct a character matrix which will
generate N blank lines when displayed?
b. What expression will construct a character vector which will

produce the same effect?

19. What expression will cause all variables in the workspace to be
erased?

Chapter 1 LIMBERING UP

20.a. What would you type before running the function MODEL to cause
the computer to stop before executing each of the lines 12 and 147

b. The following is a partial display of the function MODEL:

[11] TeA+2
[12]1 OQ€¢INTERPOLATE T
[13] TeT,Q

By executing MODEL with the stops specified above, the value of T
after the first stop is 6 11 13 and after the second stop is 6 11
10. What corrective action would you take?

21. What expression will return the number of lines in the function
CALC?

22. Given two vectors, V1 and V2, an INDEX ERROR is signalled by the
last of the following expressions:

IND«V11V2
GOOD¢IND=pV1
Ke(V1x1pV1)[GOOD/IND]

Why?

Chapter 2

BRANCHING AND LOOPING

Branching in APL is a paradox. The definition of the branch
function (») is simple but its application is not. 1In this chapter
we discuss applications of the branching function for: conditional
branching, multi-target branching and looping. Finally, the
efficiency considerations of looping in APL are discussed.

RV R VA VeV fa Ve W, VA, V] RV R VI VE V] LA VA VI, VI V] RV Ea Vi VE V] L e Vi VA, VT LA VI VI VR V] S

PROBLEM: Branch to the line labeled CALC if the value of the
variable X is greater than 5.

TOPIC: Conditional Branching

This problem requires a conditional branch statement. If the
condition (X>5) is true, you want the program’s flow of execution to
proceed to the line labeled CALC. If untrue, you want to continue at
the next statement. The conditional branch statement can be
expressed in many ways, the following being some of the more typical:

1. »(X>5)/CALC 4. =CALCx1X>5 7. =2(X=5)I{CALC
2. 2(5>5)pCALC 5. 3CALCI1X>5 8. »CALC UNLESS X=5
3. 2 (X>5)TCALC 6. CALC IF X>5

While all of these expressions appear to be adequate, there exist
subtle differences between them. Algorithm 1 (/) is the most
commonly used conditional branching algorithm. Algorithm 2 (p) is
the fastest. Algorithm 3 (1) is a graphic complement to algorithm 7
(). Algorithms 4 (x1) and 5 (l1) are more readable than algorithms
1, 2 and 3 since the word "IF'" may be read in place of the xu or [lt.
However, XU does not work in index origin 0 and L does not allow
branching to line 0 (i.e. exiting the function) in origin 1.

-8-

Chapter 2 BRANCHING AND LOOPING

Algorithm 6 (IF) is the most readable algorithm but requires the
existence of the subfunction IF (which is a problem if your function
must be self-contained) and is slightly slower than the other
algorithms.

Algorithms 7 (1) and 8 (UNLESS) require the logical negation of the
condition and so may be read as '"unless'". They may be used when the
condition is expressed in such a way that the opposite condition
requires the branch (e.g. = (MeMVEC)!APPEND instead of

+(~MeMVEC) /APPEND). Algorithm 8 (UNLESS) has the same slight
disadvantages of algorithm 6 (IF).

Given such a variety of conditional branching algorithms, which
should you use? I prefer to use IF and UNLESS when extreme
efficiency and self-containment are unnecessary (most of the time).
Otherwise, I use p and !. Whichever algorithm you use, be
consistent. APL code is easier to read when conventions are used
consistently.

AUNUALAY AUNUAUAY NUAUAUAY T AUAUNUAY S AUAUAUAY D AUAUAUAY S AUAUALAY S AUASAUAS

PROBLEM: Branch to the line labeled CALC if the value of the
variable X is 4, to ENTER if X is 7, to STOP if X is 9 and
to LOOP if X is 10.

TOPIC: Multi-target Branching

This problem requires a multi-target branch statement. You want the
program's flow of execution to jump to one of four different
locations within the program depending upon the value of the variable
X. The branch statement can be constructed in many ways, the
following being two of the more typical:

1. »(X= 4 7 9 10)/CALC,ENTER,STOP,LOOP
2. »(CALC,ENTER,STOP,LOOP}[4 7 9 10 11Xl

In general, the first algorithm (/) is used unless the branch
variable (X) is an index value (1, 2, 3,...) which corresponds to the
index of the desired label in the list of labels. Then indexing ([1)
is used. For example, if the problem is restated such that X will
have the value 1, 2, 3 or 4, then use the expression:

2> (CALC,ENTER,STOP,LOOP) [X]
Notice that the first algorithm (/) actually causes a branch to one

of five locations, not four. The fifth location is the next

-9-

Chapter 2 BRANCHING AND LOOPING

statement and is reached when the condition is untrue for all values
supplied (e.g. if X is 6). This bonus branch location is not
available when using the second algorithm ([1) since an invalid
branch value (e.g. if X is 6) causes an INDEX ERROR. You may avoid
the INDEX ERROR by including an additional label to which the branch
should take place if there is no match:

2 (CALC,ENTER,STOP,LOOP,OTHER)[4 7 9 10 X1

The additional label not only prevents an INDEX ERROR but has a
possible advantage over the first algorithm (/) in that you are not
forced to drop through to the following statement when there is no
match.

Both algorithms cause a branch to the label corresponding to the
first true condition. In the above example, the conditional
expression (X= 4 7 9 10) may have at most one true condition.
However, if the expression is rewritten (e.g. X=4 7 9 10), there may
be more than one true condition (e.g. if X¢8), in which case only the
first true condition will be honored.

When using multi-target branching algorithms, it is easy to overlook
the fact that the expression

»(L1,L.2,L3,14,L5,L6,L7)LTYPE]
requires 8 primitive functions (»,,,,,,[1), not 2 (»[1). The
catenation commas are readily dismissed as mere aesthetic
punctuation. When extreme efficiency is important, the labels should
be catenated once, outside of any loops in which the multi-target
branching is being employed:

LABS¢L1,L2,L3,14,L5,L6,L7

LOOP:

o

>LABSI[TYPE]

->LO0OP

~ A A AN RV VI VY] Ea 0 Ve VI V) AU AL NS R e Vi VI, V) LAV VI VI RV VL VR V] R Ve T Vi V]

-10-

Chapter 2 BRANCHING AND LOOPING

PROBLEM: Construct looping logic which will allow the function
PROCESS to be executed N times. The right argument of
PROCESS is I, where I is the index number of the iteration
(1, 2, 3,...,NJ).

TOPIC: Looping

The simplest looping logic is:

Iel
LOOP: PROCESS I
IeI+1

>LOOP IF I=N

However, this logic breaks down when N=0. The check for completion
is not made until after PROCESS has been executed at least once. A
safer, but less simple, set of logic is:

Iel

LOOP:>ENDLOOP IF I>N
PROCESS I

I¢I+]

=»LOOP
ENDLOOP:

Naturally, the conditional branch in both sets of logic above may be
replaced by any valid form of conditional branching (discussed above).

Notice the looping overhead which takes place within each iteration.
In particular, the counter (I) is incremented, a comparison (>) is
made and a conditional branch (-2ENDLOOP IF ...) is performed. When
extreme efficiency is important, some of this overhead can be removed
from the looping logic by precalculating the branch labels:

Iel
>LAB¢«(NpILOOP) , ENDLOOP
LOOP: PROCESS I

I¢I+1

>LABII]
ENDLOOP:

Notice that this logic works correctly for the N=0 case. This
looping logic is the most efficient possible. However, you should be
careful when using it. The shortcoming of this approach is that you
must have available workspace for the entire label vector. For
example, if you plan to iterate 5000 times, you must have room for a
5001 element integer label vector.

11

Chapter 2 BRANCHING AND LOOPING

There are two other rather unconventional algorithms for looping
which "loop'" without branching back. One involves the use of execute
(¢):

¢ (N2I¢1)/LOOP¢«'PROCESS I ¢ I¢«I+1 ¢ ¢(I=N)/LOOP’

(Note: ¢ is an APL statement separator and is not available in all
APL installations.) The other involves the use of a recursive
function:

LOOP N
where the function LOOP is defined as:

vV LOOP I
[11] ~»Ilo
[2] PROCESS 1+N-I
(3] ILOOP I-1

v

These two looping algorithms are confusing, inefficient and may cause
unexpected complications (e.g. STACK FULL or WS FULL).

Some extended APL systems which support nested arrays have a
primitive "iterating'" operator named '"each'" (7). The problem stated
above can be solved via:

PROCESS™"LN

This expression is significantly simpler and more efficient than the
sets of looping logic above. However, it has two drawbacks. The
first is the same drawback which the precalculated label vector logic
has, namely that you must have available workspace for the entire
vector of counter (I) values.

The second drawback is that this expression will not work (as is) if
N=0. A DOMAIN ERROR or NONCE ERROR will result because the nested
array system does not know what fill value (prototype) to associate
with the empty result of PROCESS, should it have a result. For
example, if the normal result of PROCESS is a character scalar for a
numeric scalar argument, you would expect the result of PROCESS10 to
be an empty character vector, not an empty numeric vector. The APL
system has no way of knowing the nature of the result of PROCESS
without executing it at least once.

Viewing the '"each'" operator as an 'iterator'" rather than as a

parallel processor can quickly lead to expressions which over-kill a
problem. For example, consider this file-summarizing logic:

-12-

Chapter 2 BRANCHING AND LOOPING

N«1000

SUM¢O

i<l
LOOP: SUMe¢SUM++/READ T
JeI+l

>LOOP IF I=N

This logic loops through 1000 components of an APL file, reading and
sumnming the 5000-element numeric vectors found in each component.
The equivalent nested arrays expression is:

SUM¢+/+/ "READ LN

The expression is certainly concise. However, at one point during
the execution of the expression, the contents of the entire 5,000,000
element file exist in the workspace as a temporary nested variable.
This problem can be circumvented by writing a function SUMREAD which
returns the sum of the elements of a specified component:

v R¢SUMREAD I
[11] Re¢+/READ I
\4

Then, the expression can be rewritten as:
SUM¢+/SUMREAD LN

Now we have only the temporary 1000-element vector result of
SUMREAD "LN as extra baggage from the nested arrays approach.

One of the recurring criticisms of APL is its lack of primitive
looping constructs. Because of APL’'s array-handling capabilities,
looping is not required as often as in other programming languages.
However, despite nested array extensions to APL, the need to loop
still exists.

Imagine a looping primitive () which solves our PROCESS problem as
follows:

IeENDLOOP,N
PROCESS I
o7
ENDLOOP:

The left argument of dyadic loop () or the right argument of

monadic loop is the counter variable. The right argument of dyadic
loop may contain from 1 to 4 elements:

13

Chapter 2 BRANCHING AND LOOPING

[1] the line number (exit line) to which execution will proceed
at the completion of the loop:;

[2]1 the number of iterations (infinite if omitted);

[3]1 the value of the counter variable during the first iteration
(0I0 if omitted):

[4]1 the amount by which the counter variable is to be incremented
or decremented after each iteration (1 if omitted).

The monadic loop function increments the counter variable and
branches back to the line immediately following the line containing
the dyadic loop function if there are more iterations to perform.
Otherwise, the counter variable is erased and the flow of execution
proceeds to the exit line.

APL utility functions can be written to approximate this behavior:

-LOOPI ENDLOOP,N
PROCESS I

SNEXTI
ENDLOOP:

The definitions of the LOOPI and NEXTI functions follow:

[WSID: LOOP]
vV R¢LOOPI LAB
(11 n Initializes globals (I,loopi) for looping.
[2] A LAB: line to branch to when loop complete,
[31 A no. iterations, starting I, increment.
[4] A Used in conjunction with NEXTI as:

[51 na

[6]1 ~n -»LOOPI END,100

(7] ~n PROCESS I

(81 n SNEXTI

f91 A END:

[101 n

[11] A Default values of 1liright arg if omitted:
[12] A +infinity, 0IO, 1

(131 Re€ILAB,L(p,LABY{O,(L/10),010,1
[14] m Exit if no iterations at all:
{151 ->(R[1+0I01<1)p0
{161 TI¢R[2+0I01
[171 A Top line, exit line, number of iterations,
[18] A current I, increment, current counter:
[19] Re¢loopi«(1l+0LCL1+0I01),R,1
v

.14

Chapter 2 BRANCHING AND LOOPING

{WSID: LOOPI]

V ReNEXTI;OIO
[11] A Used in conjunction with LOOPI. Returns line
(2] @A number for next iteration of loop. Requires
[31] A (may erase) globals: I;loopi.
(4] 0IO0¢1
[5] A Increment I:
[6] I¢loopildl«loopil4l+loopil5]
(71 Re¢loopilll
[8]1 A Increment current counter; exit if not done:
[91 2 (loopil31zloopil6l«loopil61+1)p0
[10] a Else return exit line; erase I and loopi:
[11] Re¢loopil2l
[12] Re¢R,0p0EX 'I loopi’

v

AUNUALAY AUALALAY AURNUALAL S AUAUAUNY AUAUAUNL AUAUALAY AUAUNU AU AUAU AU AL

PROBLEM: Suppose you want to compute the running balance of your
savings account for the last 24 months. You have made a
single deposit at the end of each month. DEPOSIT is a 25
element vector of the opening balance and the 24 monthly
deposits. RATE is a 24 element vector of the monthly
interest rates during this time, expressed as fractions
(e.g. .0075 .0081 .0078 ...). You may compute the balances
iteratively with the following formula:

BALANCELT+11 = DEPOSITIT+11 + (BALANCEIT] x (RATEITI+1))
where T goes from 2 to 25 and where BALANCE[11=DEPOSITI11].

What APL algorithm may be used to compute this stream of
cash balances without looping?

TOPIC: When to Loop in APL

Because APL code is interpreted and not compiled, a looping algorithm
is generally less efficient than a non-looping algorithm. For
example, the expression SUM¢+/VECT will be significantly faster than
the looping algorithm:

-15-

Chapter 2 BRANCHING AND LOOPING

Ie«SUM€O0

LOOP:>ENDLOOP IF IzpVECT
TeI+1

SUM¢SUM+VECTILI]

>LOOP
ENDLOOP:

During each iteration of the loop, every symbol of code is
reinterpreted. The addition function is actually a small portion of
the processing being performed during the loop.

This situation leads to two conclusions:

1. Avoid looping in APL when possible;

2. When looping is necessary, remove as much code as possible from
within the loop.

To illustrate, let us solve the above problem in a casual, looping
fashion:

[WSID: CASHBAL]I
V BALANCE¢RATE CASH1 DEPOSIT;I;N
[11] A Returns stream of cash balances for deposits
[2]1 @A DEPOSIT and corresponding rates RATE.
[31 N¢oDEPOSIT
[41 BALANCE¢«(pDEPOSIT)pO
(51 BALANCE[1]l¢DEPOSITIL[11]
(61 Iel
(7] LOOP:-END IF Iz=N
[81 TeI+1
[91] BALANCE[L[TI]1¢DEPOSITI[I]1+BALANCE[I-11xRATE[I-11+1
{101 SLOOP
[11]1 END:
v

16.

Chapter 2 BRANCHING AND LOOPING

Now let's squeeze everything possible from the loop:

[WSID: CASHBALI
vV BALANCE¢«RATE CASH2 DEPOSIT;B;I;LAB;:N
[11] A Returns stream of cash balances for deposits
[2]1 @A DEPOSIT and corresponding rates RATE.
[3] N¢pDEPOSIT
[4] BALANCE«NpO
[51] BAILANCE[1]€¢B«DEPOSITI[1]
{61 RATE€RATE+1
[71 LAB¢(NpLOOP) ,END
[81] S>LAB[TI«2]
[9]1 LOOP:B¢BALANCE[I]¢DEPOSITIII+BXRATEL[I-1]1
[10] ~»LABILIe¢I+1]
[11]1 END:
\

Given these modest modifications, we can expect the function CASH2 to
take perhaps 60% to 70% as long to run as CASH1.

Now let's look for a non-looping solution. Let’'s refer to the
elements of 1+RATE as R1l, R2, R3,... Let'’s refer to the elements of
DEPOSIT as D1, D2, D3,... Then the elements of BALANCE which we seek
may be computed by the following expressions:

D1 , R1xD1 , R1xXR2xD1l , R1xR2XR3xD1 , ...
+D2 +R2xD2 +R2XR3xD2
+D3 +R3xD3
+D4

Our objective is to find some APL expression which will generate this
vector. We will accomplish this by performing a series of
transformations to these elements until the resulting elements can be
easily produced with an APL expression. We will then apply APL
expressions which will reverse the transformations.

Let's begin by defining the vector RSCAN:
1 , Rl , R1xR2 s RI1IXR2XR3 s e
We will divide our desired result by RSCAN, giving:
D2 D2 D3 D2 D3 D4
D1 , Dl+-- , Dl+-—+--—--- Dl+=—+-~=—-— it
R1 R1 R1xR2 R1 R1xR2 R1xR2xR3
Take the first difference (VII+11-VII1) of these elements, giving:
D2 D3 D4

pL , -- , =—=-== , —mmm——--
R1 R1xR2 R1XR2xXR3

-17-

Chapter 2 BRANCHING AND LOOPING

Multiply the result by RSCAN, giving DEPOSIT:
D1 , D2 , D3 , D4

Now, undo each transformation in reverse order. Undo the
multiplication by RSCAN:

DEPOSIT+RSCAN

To undo the first difference, you must realize that the cumulative
sum (+\V) is the inverse of the first difference (V-"110,V):

+\DEPOSIT+RSCAN
Undo the division by RSCAN:
RSCANXx+\DEPOSIT+RSCAN
There it is. Expressed as a function:

[WSID: CASHBAL]I

V BALANCE«RATE CASH3 DEPOSIT;RSCAN
[1] A Returns stream of cash balances for deposits
[2] A DEPOSIT and corresponding rates RATE.
[3] A Performs:
{4] n BALANCE[I]¢DEPOSITIII+BALANCE[I-11xRATE[I-11+1
[5] RSCAN«(pDEPOSIT)pl,X\RATE+1
[61 BALANCE¢RSCANX+\DEPOSIT+RSCAN

v

We can expect the function CASH3 to take perhaps 2% to 5% as long to
run as CASH1l! This significant improvement in speed does come at the
cost of clarity. The algorithm in CASH3 screams out for comments,
the least of which should be:

A Performs: BALANCE[I]¢DEPOSITL[II+BALANCE[I-11xRATE[I-11+1

After seeing an elegant application of the APL scan functions to
perform an inherently iterative function, it is easy to become
obsessed with the pursuit of non-looping algorithms. Beware! You
may invest a greater value of human time than is saved in machine
time. As a further irony, you may find that your elegant and
sophisticated non-looping algorithm is slower than a compact looping
algorithm.

As a guideline, do not spend your time looking for a non-looping
algorithm unless all of the following are true:

1. You suspect one exists;

2. The function is used frequently and the looping algorithm is a

"bottleneck" in the function;

18

Chapter 2 BRANCHING AND LOOPING

3. The loop involves at least 20 iterations;

4. Transplanting all possible logic from within the loop to
outside the loop does not give you satisfactory performance.

5. You do not have access to an APL "compiler". For example, STSC
provides a product used in conjunction with its mainframe
APL*PLUS System product which can be used to compile selected
APL functions to improve their execution speed. The compiling
process requires a good deal of both programmer and computer
time but can produce dramatic efficiency improvements,
especially on highly iterative functions.

If you choose, or are forced, to employ a looping algorithm, you may
still solve the overall problem in an efficient manner by considering
the context in which the loop is performed. To illustrate, let us
consider the problem of computing the yield-to-maturity rates for
1000 coupon-bearing bonds.

Given the parameters which define the cash flows of a bond, it is
necessary to solve for the yield by a method of successive
approximations (looping). The APL solution to this problem is
described in detail in the Financial Utilities chapter. For now, let
us assume that we have an algorithm which can be used to determine
the yield rate (to satisfactory precision) in no more than 10
iterations.

To compute the yield rates for the 1000 bonds, are we compelled to
perform 10,000 iterations?

No. We are forced to loop by successive approximation (10
iterations) but we are not forced to loop by bond. To efficiently
solve the problem, we may perform the 10 iterations on the parameters
of all 1000 bonds at once. After 10 iterations, we will have the
1000 desired yield rates. Computing yield rates by such an
"iterative" APL approach is quite efficient. The processing speed
will rival or surpass that of any compiled language.

AUAUAUALY AUNUAUAY AUNUNUAY AURUAUAY AUAUNUNL AUNUNUAS AUNURNUAY AURL AL N

._19_

Chapter 2 BRANCHING AND LOOPING

PROBLEMS: (Solutions on pages 324 to 326)

1. What are the problems with the following conditional branch
expression?

2CALCX(X>53)71

2. Assuming index origin 1, what expression will cause a branch to
the line labeled NEGATIVE if N is negative, ZERO if N is zero or
POSITIVE if N is positive?

3.

Assuming index origin 1, write the looping logic which will add
together the 100 matrices in file components 11, 14, 17, .
308. Assume the existence of the monadic function READ whose
right argument is the number of the component to be read and
whose explicit result is the matrix stored in that component
(e.g. MAT¢READ 11). Use each of the following techniques:

Normal APL looping logic (increment, compare, branch);
b. Precalculated label vector logic;

c. The hypothetical looping primitive (e);

d. The LOOPI, NEXTI utility functions.

e. The each (") operator.

4. Write non-looping APL logic which is equivalent to the following

formula:

OPRIN[I] = OPRIN[I-11-(PMT-RATEXOPRIN[I-11)

for I from 1 to TERM, where OPRINI[O]=LOAN.

-20~-

Chapter 2 BRANCHING AND LOOPING

5. Write a function CASH4 which uses another approach to perform the
same task as that of functions CASH1, CASH2 and CASH3 listed in
this chapter. Begin by defining a vector ACCUM:

R1IXR2XR3X. .. s, R2XR3xR4x,.. s, R3xXR4xXR5%, .. s .. s, 1
Perform the following transformations on the elements of BALANCE:
A. Multiply by ACCUM
B. Take the first difference
C. Divide by ACCUM

What is the result? Undo the transformations to construct the
new algorithm and use it to write CASHA4.

6. The following function WRAPLP modifies its character vector right
argument so that it will display in the width (number of
characters) specified in the left argument. The modification
consists of inserting a newline (carriage return) character in
place of the last blank character on each line. 1In that way,
words (groups of contiguous nonblank characters) are not broken
from one line to the next. Existing newline characters are left
unaltered and are used to separate 'sentences'" within which the
above word-wrap logic takes place. For example:

oTEST

70
TEST

THIS EXAMPLE IS NOT VERY BIG.

THE FUNCTION WORKS ON LARGE VECTORS TOO.
15 WRAPLP TEST

THIS EXAMPLE

IS NOT VERY

BIG.

THE FUNCTION

WORKS ON LARGE

VECTORS TOO.

Rewrite the WRAPLP function to eliminate looping where possible.

_21...

Chapter 2

BRANCHING AND LOOPING

(11

[21

(31

[41

[51]

[61]

£71

[81

£91]

[101]
[111
[121
(131
[141]
(151
[161
[17]
{181
(191
{201
[211
[221]
£231]
£241
[25]
[26]
271
[281
(291
[301]
[31]
{321
[331
(341
[35]
{361
[37]

[WSID: WP]

V¥ R¢WID WRAPLP CVEC;0IO;BL;BREAK;I;L;LAST;LEN;LIM;NL;S;

v

START ; TCNL

A Wraps text CVEC into lines of length WID
A or less by inserting newline characters.

A Origin 1:
01I0€«1

A Newline character:

TCNL¢OTCNL A APL#PLUS

R TCNL<¢OTCL2] A APL2

A TCNL«OAVI157] a SHARP APL
an Flag newline characters:

NL&CVEC=TCNL

A Index before start of each sentence:

START«0,NL/lpNL

A Lengths of sentences (between newlines):

LEN¢T1+(14START, 1+pCVEC)-START

A Flag valid break points (blank followed by nonblank):

BL¢CVEC="' '
BREAK¢BL>19BL

A Initialize result from argument:

R¢CVEC

A Loop by sentence:

1¢0
LIM¢pLEN

LOOP1:>(LIM<I¢I+1)/0

LeLENLTI]
S€STARTILI]

A Loop by line within sentence:

LOOP2:>(L=WID)/LOOP1
A Find last break point within WID chars of line:

LAST¢+/Vv\BREAKL[S+®LWID]

A Advance start to new break point:

SeS+LAST
A Insert newline:
RI[S1«TCNL

A Decrement remaining length:

LeL~-LAST
A Repeat:
>LO0OP2

22

Chapter 3

COMPUTER EFFICIENCY CONSIDERATIONS

Time is money. The faster an APL function will run, the less it
will cost. This is true whether you are using APL on a commercial
remote timesharing service or on your dedicated personal computer.

In this chapter, we discuss computer efficiency: measuring time
consumption and understanding the factors which affect processing
efficiency.

AUALAUAL AUALAUAL AUNUAUNAY AUNUAUNY S AUNURUAY S AUAUALALY . AUAUAUAY AUAUAU N

PROBLEM: Which expression will execute quicker on a 4000 element
numeric vector V?

1. Re+/V+pV
2. Re(+/V)+pV

TOPIC: Timing Alternative Algorithms

The niladic APL system function OAI (accounting information) returns
a numeric vector of miscellaneous usage statistics. The meanings of
the elements of the result vary among the different implementations
of APL. One element (usually the second) measures the amount of
processing time (CPU time) consumed since the current APL session
began. It is usually expressed in milliseconds, or 60ths of a second
or seconds. We will assume in our discussion that the index origin
is 1 and that DAI[2] is the measure of processing time.

Timing an algorithm is then a simple matter of checking the
"stopwatch" before and after executing the algorithm:

TIME1€OATL2]
Re(+/V)+pV
TIME2¢0AI[2]
USED¢TIME2-TIME1

23

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

These expressions should not be executed in immediate execution mode
unless they are executed all at once on a single line:

TIME1«0OAIL2]1 ¢ Re(+/V)+pV ¢ TIME2¢0AI[21 ¢ USED¢TIME2-TIMEl

If your implementation of APL does not have a statement separator
(e.g. ©), the expressions should be specified as lines of a
function. The reason for avoiding immediate execution mode is that
CPU time is being consumed as you are typing each expression. 1In
fact, on a dedicated (i.e. personal) computer, the measure of CPU
time is equivalent to the measure of clock time. That is, the value
for OAI[2] increases by 60 seconds every minute whether or not APL
expressions are being executed. Therefore, the measured time will
include typing time.

Let us solve the problem above:

V¢400074000

Te€OAIL2] © Re+/V+pV © OAIL21-T
675

T¢OAIL2] © Re(+/V3I+pV ¢ OAIL2]1-T
162

From this example, we can begin to see the importance of well placed
parentheses. In the first algorithm, the computer performs 4000
divisions and 4000 additions. 1In the second, it performs 4000
additions and 1 division.

What happens if we time the algorithms again?

TeOAIL[2] © Re+/V+pV © OAIL2]1-T
692

T¢OATI[2] ¢ Re(+/V)+pV ¢ DOATIIL2]1-T
155

We get the same approximate results but they are not exactly the
same. Why? On a multi-user computer, the results will vary
primarily because of the varying requirements of other users at the
moment of execution. Even on a dedicated computer, the results may
vary because of "house-cleaning" operations performed automatically
and sporadically by the APL system and because of imprecise clock
resolution. Therefore, if the accuracy of your timings is important,
you should perform several timings and average the results.

AUAUAUAL AUNUALUAY AUALUALAY AUNUAUAY AUAUAUAY AURNUALAY AUANUALAL AU AL AU AL

24

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

PROBLEM: Write a dyadic function TIMER to time the execution of a
specified algorithm. The algorithm is provided as an
executable character vector right argument. TIMER runs the
algorithm N times, where N is the left argument, and
returns the average CPU time consumed. For example:

25 TIMER 'Re&+/V3pV!
638.44

TOPIC: A Utility Function for Timing Algorithms

In writing the TIMER function, we will attempt to isolate the time
consumed during the execution of the algorithm. Any time consumed
during the overhead of the timing process itself will be deducted.

In this way, and by averaging many samples, we can get timing results
which are as precise as possible.

There are two methods in APL for executing a character vector
expression under program control. The first is to use the execute
(¢) primitive and the second is to construct and execute a local
function which has the expression as one of its lines.

The first approach (¢) is simpler but not as accurate. When a
character vector expression is executed, the expression must first be
"parsed" so that the APL interpreter may correctly identify
variables, APL primitive functions, character constants and numeric
constants. It is during this parsing phase that variable names and
function names are translated into pointers and addresses, the
natural vocabulary of the computer. This parsing takes place when
you enter an expression in immediate execution mode or in function
definition mode or when you define a function under program control.
Therefore, when you execute the expression as the line of a function,
it has already been parsed and will execute quicker than if the
expression is executed as the argument to the execute (¢) primitive.

We will therefore use the second method, constructing and executing a
local function, to time the specified algorithm. Our task is to
define a function local to TIMER under program control which looks
something like the following (say, to time Re&(+/V)+pV):

V ELAPSED¢RUN1 N;I

[11] ELAPSED«OATI[2]

[21 I<0

[3] LOOP:->(N<I«I+1)pEND

[4] DOIT:Re«(+/V)+pV

[51 >L.0OP

[6]1 END:ELAPSED¢«[OAI[2]1-ELAPSED
v

25

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

This function will run the specified algorithm (on line [41) N times,
where N is the right argument (e.g. RUN1 25). It will return the
amount of elapsed processing time consumed during its execution.

We will define a second local function RUN2 which is identical to
RUN1 except for line [4], which is defined to do nothing:

[4]1 DOIT:

We may then execute both RUN1 and RUN2 with the same argument,
subtract the results (to eliminate the non-algorithm overhead) and
divide by the number of iterations to determine the average
processing time for a single execution of the specified algorithm.
Therefore, TIMER will look something like:

V ReN TIMER CVEC;:;RUN1;RUN2
: define RUN1 and RUN2

[71 R¢(RUN1 N)-RUNZ2 N
[81l ReR+N
v

How do we define RUN1l and RUN2? There are two popular methods for
defining functions under program control. One is to build a
character matrix which '"looks" like the function, less the dels (V)
and the bracketed line numbers. Each function line, including the
header, occupies exactly one row of the character matrix. Each
function line is padded with blanks to have as many characters as the
longest function line. Such an array is called the '"canonical
representation" of the function and may be used as the definition of
a new function in the workspace. The function is defined by a system
function (OFX in APL2, ODEF in APL*PLUS or OFD in SHARP APL).

The second method is to build a character vector which "looks"
exactly like the function. The lines of the function are separated
by the newline (i.e. carriage return) character. Such an array is
called the '"visual representation' of the function. The function is
defined by a system function (ODEF in APL*PLUS or OFD in SHARP APL).

There is one final comment to make before defining the TIMER
function. Since the algorithm being timed may involve variables or
functions having any valid names, it is possible that these
identifiers may coincidentally be the same as the variables local to
TIMER and RUN1l. We should take some effort to name the local
variables so that the chances of a name conflict are minimized. The
RUN1 function we will construct will thus look like:

26

Chapter 3

COMPUTER EFFICIENCY CONSIDERATIONS

(11 AEA€OAIL1+0I0]1]
[21 ‘ATIA€O
(31 ALA:>(ANA<AIA€ATA+1)pAZA
[4] ADA:Re(+/V)+pV
[5]) <ALA
[6] AZA:AEA€DAI[1+0I01~-AEA
v

Let us define the TIMER function using the "visual representation"

method.

exercise at the end of the chapter.

system function to define the function.

vector name of the function defined.

We will leave the '"canonical representation' method as an
We shall use the monadic ODEF
Its result is the character
The niladic system function

OTCNL returns a character scalar newline character.

Times the execution of the character vector
ACA by running it aANA times.
scalar of the average CPU time consumed per run.

[13
[21
[31
[4]
[51]
[61] Newline character:

[7]1 ANLA€OTCNL A APLAPLUS

DD®DD®DD

{81 A ANLA€OAVI156+0I0]1 A SHARP APL

[(WSID: TIMING]

Returns a numeric

Prepare to build local functions...

(91 AAAC'VAEA€AFA ANA;;ATIA' ,ANLA,'[1]JAEA€DOAIL1+0I0]°

[10] AAA¢AAA,ANLA,'[2]AIA€O’',ANLA

[11]1 AAA€AAA, ' [3]1ALA:>(ANA<ATA€AIA+1)pAZA’

{121 AAA€AAA,ANLA,'[41ADA:’

{131 ABA€ANLA,'[51>ALA',ANLA

[14]1 ABA€ABA,'[61AZA:AEA€NAIL1+0I0]1-AEAV’

[15]1 n
[16] n

[17] A Define local fn AFA to run ACA:

[18]1 ARA<«ODEF AAA,ACA,ABA A APLAPLUS

£19]1 A ARA€«3 0OFD AAA,ACA,ABA A SHARP APL

{201 n

[21]1 a Define local fn AGA to run nothing:

[22]1 AAALAAAL'F']€'G’

[23] ARA<ODEF AAA,ABA A APL*PLUS
{241 A ARA€3 OFD AAA,ABA A SHARP APL

[25] n

[26]1 A Run the functions (disallow negative result):

[271 ARA€OT (AFA ANA)-AGA ANA
[28]1 A Return the average:
[29] ARA€ARATANA

\%

AUAUNUAL NUNUAUAL T AUNUAUAY NUNUAUAY AUAUAUNY AUALALAY NUAUNUAS AL AL AU A

-27-

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

PROBLEM: Define a procedure whereby the individual lines of a
specified function may be timed so that possible
inefficiencies can be quickly located within the function.
The ideal end result of such a procedure will be a display
like the following (for a 5 line function):

TIMES TOTAL AVG MIN MAX

LINE RUN CpPU CPU CPU CPU
1 3 450 150 122 171

2 3 15 5 3 7

3 153 918 6 3 8

4 150 9,280 62 55 66

5 3 1,065 355 240 380

312 11,728 38

TOPIC: Fine-tuning Production Applications for Efficiency

After designing and implementing an application system in APL, you
may find that it operates slower than you anticipated. In fact, the
system may be so slow or so expensive that it is infeasible to
operate. What can you do?

A procedure such as the one suggested in the problem above allows you
to examine the functions for bottlenecks. You begin with the highest
level cover functions and work your way into suspicious

subfunctions. Having identified the major inefficiencies, you are in
an ideal position to correct them. A discussion of the causes and
cures for some of the inefficiencies encountered in APL is contained
later in this chapter.

To aid in our discussion, suppose the function we wish to time is the
following:

v MODEL
[11] SETUP
[21 LIM¢50 © I¢0
[3]1] LOOP:-END IF LIM<I«I+1
(41 PROCESS ¢ -LOOP
[51 END:CLOSE
v

To time the lines of this function, we need to click our '"stopwatch"
at the beginning and end of each line. This suggests the placement
of timer functions at the start and end of each line. For example:

[11 START ¢ SETUP ¢ STOP

-28-~

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

This idea breaks down for lines which involve branches:
[4] START ¢ PROCESS ¢ =-»LOOP ¢ STOP

In this example, the branch to the line labeled LOOP occurs before
the STOP function is executed.

Since functions placed at the end of function lines are not reliably
executed (due to branching), we must be satisfied with placing timer
functions only at the start of function lines. The timer function
must then perform two tasks: to stop the stopwatch for the previous
line (which may not be the line directly above the current line) and
to start the stopwatch for the current line. If we call our timer
function A, we may be able to time the MODEL function above by
placing the timer function as follows:

vV MODEL

¢ SETUP

¢ LIMe50 © I€0
OP:A ¢ =2END IF LIM<I¢I+1
¢ PROCESS ¢ -LOOP

D:aA ¢ CLOSE

{11
[21
{31 L
[41]
(5]
(61

=
> ZP> O

<

Notice that a new line must be added (line 6) to stop the stopwatch
for the last line of the function (line 5).

If your implementation of APL does not support statement separators
(e.g. ¢), you are compelled to insert the timer function on the line
before each function line:

vV MODEL
[11] A
[21 SETUP
(31 A
(4] LIMe«50
{51 A
[6] I¢0

[7] ©LOOP:a
(81 END IF LIM<I«¢I+1

(9] A
(101 PROCESS
[111 A
[12]1 -LOOP
(13] END:a
[14]1] CLOSE
[151 A

\4

29

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

It is the job of the timer function (A) to do the following:

1. Record OAILZ2].

2. Look at a global variable (say AT) which contains the value of
OAI[2]1 when A was last executed. Subtract this value from the
value recorded in step 1. The result is the time consumed by
the previously executed line.

3. Look at a global variable (say AL) which contains the number of
the line for which A was last executed. Using this line number
and the consumption value computed in step 2, update the global
variable accumulation matrix (say AM) which has one row per
function line and 4 columns: times run, total CPU, minimum CPU,
maximum CPU.

4. Update AL to contain the number of the current line.

5. Update AT to contain the value of ODAI[2] at the start of the
current line.

To write the timer function (A), we will assume the following initial
values for the required global variables:

AL€O
AM€(N,4)p0 0,(L/10),0

No initial value is set for AT since A will not refer to it when it
is first executed (on line 1) since AL is 0. The N used in the
assignment of AM is the number of lines in the function being timed.
The (L/10) is used to generate the largest possible number (the
identity element for mimimum) for your APL system. We cannot
initialize the minimum value to 0 since the 0 will remain as the

minimum value. No timing result could be less.

Let us write the timer function (assuming statement separators):

-30-

Chapter 3

COMPUTER EFFICIENCY CONSIDERATIONS

[WSID: TIMINGI]

vV A;TIME;USED;OIO

[11
[21
[31
(41
[51]
[61]
[71
[81l
(91
{101
[111]
[121
(131
[141
[15]
[16]
[171]
£181
[191]

TIME«QOAI

A Records time since last called and resets
A stopwatch. Checks the 'stopwatch’' before
A anything else.
0IO0«1

A Branch if first time called:
2(xalDIL1

A Compute time consumed since last called:
USED€¢TIME[2]1-AT

A Update accumulation matrix:
AMIAL; 1 2leaM[aL; 1 21+1,USED
AM[AL;3]1¢€aAM[AL;31LUSED
AMILAL;41¢AMIAL;41TUSED

A Update line numker:

Ll: ALeDBLC[21

A Set AL to 0 if bottom of function:
AL¢ALXALS(pAM)[1]

A Update 'stopwatch’ as last step:
AT«0ATI[21]

\'4

Notice the use of OLC (line counter) to compute the number of the
current line on which A is being called. If your implementation of
APL does not support statement separators, and the number of lines in
your function has been doubled because of the insertions of A, the
computation of AL would be changed to:

ALe(1+0LC[2]1)+2

Along with the A timer function, we need 3 other functions:

TIMEADEFINE

TIMEADISPLAY

TIMEARESET

'MODEL' The TIMEADEFINE function modifies the

function named in its character vector right
argument by inserting the A timer function
before each function line. It also initializes
the global variables AL and aM.

The niladic TIMEADISPLAY function generates and
displays a formatted report of the contents of
the global accumulation matrix AM.

The niladic TIMEARESET function resets the
global variables AL and aAM to their initial
(zeroed out) settings. Then, the function whose
lines are being timed may be rerun and the
results redisplayed.

._31_

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

The definition of the TIMEADEFINE function is fairly complex,
especially if you attempt to write it without looping. Techniques
for writing the function are discussed in a subsequent chapter
(Boolean Techniques). The definition of TIMEADEFINE is a problem at
the end of that chapter.

The definition of the TIMEADISPLAY function is a straightforward
formatting problem.

[WSID: TIMING]
v TIMEADISPLAY;A;B;M;0IO
[1] n Displays timing data stored in global arrays.

[21 Oe’ TIMES TOTAL AVG MIN MAX'
[3]1 O¢' LINE RUN CPU CPU CPU CPU’
[4] D€' === ——=== mmmmm e e e ‘

[51] 0I0¢1

[6] A Squeeze out rows of AM not updated:

[71 MeAMI(AML$11#0)/11TpaAM: 1 1 2 2 3 41

[81 A€Ml ;2]

[91 BeM[;31

[101] M[;1l€tpA

[111 ML[;4]1¢B+A

[12]1 a APL+#PLUS, SHARP APL:

[13] 0¢'T4,CBI8,X1,4BCK3I8' OFMT M

[141 A APL2:

[151 a O«('5550 555,559 ',32p' 555,559')sMI;1 21,1000xML[;3 4

51

[161 O&¢' W ===m= ————= ———-- !

{171 Ae+/A

[18] Be+/B

{191 A APLAPLUS, SHARP APL:

[20] 0O«'CBIl12,X1,2BCK3I8' OFMT 1 3 pA,B,B+A

{211 A APL2:

[22] A DOe(! 555,559 ',16p' 555,559')3%A,B,B+A
v

The definition of the TIMEARESET function is trivial:

fWSID: TIMING]
Vv TIMEARESET
[1] AL€O
[21] AMe(paAM)p O O ,(L/10),0
v

Some final notes on this line-timing procedure:

1. Since TIMEADEFINE will permanently modify the function being
timed, be sure to save a copy of the function before running
TIMEADEFINE on it.

-32-

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

2. Functions timed by this procedure are subject to certain
constraints:

a. Avoid sudden exits (e.g. =20) and insure that the function
always exits through its bottom (last 1line);

b. Avoid branches to absolute or relative line numbers (e.g. =5
or »0LC-1 or -NEXTL) if your implementation of APL does not
support statement separators, since TIMEADEFINE will change
the line numbers.

The mainframe implementation of APLAPLUS provides a system function
OMF (monitor facility) which enables you to time the individual lines
of a function in much the same way as the utility functions above.

If you use a mainframe APL*PLUS system, you should read the
documentation to learn how to use OMF and its companion utility
functions.

AUAUAUA AU AU AN AUALAUNY AUV AUV NSNS v AL

PROBLEM: What factors influence the efficiency of a user-defined APL
function?

TOPIC: APL Efficiency Considerations

So far in this chapter we have discussed techniques for timing
segments of APL code. Using these techniques, you can isolate
inefficiencies in existing functions and you can choose between
alternate algorithms. But how can you learn to write efficient APL
functions in the first place?

You can develop a feel for the efficiencies and inefficiencies of APL.

If you were to go on a timing rampage and time every stitch of APL
code in sight, some patterns would begin to emerge. You would begin
to anticipate the relative speeds of algorithms without timing them.
More important, you would find yourself formulating a mental model of
the inner workings of the computer. Multiplication is more painful
to the computer than addition and exponentiation more painful than
multiplication. Out of sympathy for the machine, you will find
yourself writing N+N instead of 2xN, and AxA instead of Ax*2.

While there is no substitute for such an encounter, below are some of
the efficiency considerations which you may want to assimilate.

33

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

1. Addition (e.g. A+72) is faster than subtraction (e.g. A-2) which
is faster than multiplication which is faster than division which is
faster than exponentiation which is faster than doing it by hand.
For example, (x\Np2) will typically be faster than (2*1N).

2. Integers are easier (quicker) to manipulate than fractional
(floating point) numbers. An array of integers will generally be
stored internally in a more compact form (2 or 4 bytes per element)
than an array of floating point numbers (8 bytes per element).
Integers can be moved about (e.g. ¢, T, []1, /) quicker than floating
point numbers and can be more easily operated on computationally
(e.g. +, x, 1, |J.

3. Boolean arrays (all 0s and 1ls) are stored as bits (one-eighth byte
per element) in many implementations of APL. On such
implementations, operations involving Boolean arrays are either
lightening fast or quicksand slow depending upon the implementation.
If they are fast, it is because the bits are being manipulated one
byte (8 bits) or so at a time or because the CPU is optimized for
Boolean operations. If they are slow, it is because each bit has to
be yanked from its byte and processed by a CPU which is better suited
to working with 4, 8, 16, 32 or 64 bits at a time. Examples of
functions so influenced include: A/, V\, +.A, /, #\.

4. Elements of arrays are stored internally in raveled order. If you
picture in your mind's eye this internal "vector'" representation of a
matrix M, you should appreciate the reason that +/M is somewhat
faster then +#M. If M is a Boolean matrix (in which each element
occupies one-eighth byte) the difference can be dramatic.

5. Execute (¢) is slower than branching because its argument must be
parsed. For example:

¢(I>99)/'MI[15;1«<A=B'
is slower than:

>(I=99)pLl
M[15;]¢A+B
Ll:

6. The workspace may be viewed as a chain of bytes. 1In a clear
workspace, all of the bytes are 'clean" (unused). As you execute
expressions (e.g. A¢2 or B¢150 or C¢A+B), the bytes become occupied
by variables. When variables are reassigned (e.g. A«l1+A), the old
value of the variable is left as so much garbage. The same fate
befalls temporary results which are the products of multiple
expressions. For example, the expression A¢3+2x1.5 produces the
temporary results from 15 and from 2x15. As you proceed, the

34

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

workspace becomes cluttered with a mixture of active variables and
functions and garbage (unused) variables and functions. The symbol
table is used to keep track of the locations of the active objects.

Eventually, the computer will be asked to perform a function for
which it cannot find sufficient clean space for the result. At that
moment, the CPU will take a break from its APL function execution
chores and will perform spring cleaning. All of the valid objects
are shuffled back to the beginning of the workspace chain, the symbol
table is updated and the remaining bytes are swept clean, ready to be
reused. The CPU then resumes its APL function execution chores.

It is because of these occasional workspace cleanups that you may
notice seemingly random peaks when doing timings. Logic which
requires a lot of temporary storage will tend to be less efficient
than that which requires less storage. For example, index assignment
tends to be more efficient than catenation reassignment:

LOOP:VECII1«CRUNCH I
vs.
LOOP:VEC¢VEC,CRUNCH I

Consider the storage requirements of the second expression when
constructing VEC to be 1000 elements, one element at a time. For
example, the catenate (,) function must find space for its 932
element result while the 931 element VEC still exists. Of course, a
moment later the 932 element vector is assigned the name VEC and the
931 element vector is left to smolder in the ashes. On the other
hand, the index assignment approach creates a 1000 element vector
just once and then changes individual elements. Much less data
shuffling is involved.

7. Shape (p) and reshape (p) are the most primitive of primitives.
The rank and shape of a variable are included as part of its internal
representation. The shape function does not have to count its
elements; it simply extracts the shape directly. Shape and reshape
are extremely fast. For example, =Bpl is faster than -»B/L or -BTL.
Also, 1lppMAT is faster than 11pMAT. To construct a 100 by 100
identity matrix (all zeros, but ones along the diagonal), the
expression (1100)0.=1100 may seem simple enough to you but that'’s
because you do not have to perform the 10,000 mindless comparisons.
The less intuitive expression 100 100p1,100p0 is dramatically faster
because of its use of reshape.

8. When performing scalar operations, time consumption can be
measured with a ruler. Because APL is interpretive, it does not
check for syntax errors, value errors or argument conformability
until it executes the expression. When working with scalars, the
time consumed making these checks tends to dwarf the time consumed
performing the desired function. Therefore, when considering the
efficiency of APL expressions dealing with scalars, it is more

35

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

pertinent to count the number of functions being executed than to
dwell on the nature of the functions. Consider the expression:

RII-1]J¢RII-11+(C1+4TII-11)+RII-11IxGLI-1142

If we count the functions being performed (counting index assignment
as 2 functions), the result is 16. Let us rewrite the expression
(assuming T1¢1+T):

Jel-1
RIJI1€RI[JI-TI[JTI+RITIXGLTII*2

These expressions have the same effect as the original expression but
involve 12 functions instead of 16. We can expect these expressions
to run approximately 25% faster.

Let us label the approximate time consumed when performing a function
on scalars a "tad". Then the original expression used 16 tads and
the second used 12 tads.

It is important to develop the proper perspective on tads. APL is an
efficient language and performs tads extremely quickly. A tad is a
miniscule unit of time. APL can perform a hundred tads in a blink of
the eye. Tads do not become important until you write functions
which consume thousands or tens of thousands of tads, i.e. when you
loop.

The lesson here is to avoid looping when APL’'s array handling
capabilities can be effectively employed. Your avoidance should not
develop into a mania, however. Looping in APL is fast if there are
not too many iterations (say, two dozen) or if the number of tads
within the loop is not too large. Do what you can to keep the tads
from getting into the tens or hundreds of thousands.

9. Get to know the peculiarities of your APL implementation. For
example, say you have a 100,000 element Boolean vector BV which
contains only five 1ls. Further, say you have only 1000 bytes of
available workspace. Many implementations of APL will allow you to
execute the expression I¢BV/1pBV without producing a WS FULL error
message. How can this be when 1pBV results in an integer vector of
100,000 elements (400,000 bytes or so)?

In one set of implementations, the APL interpreter is clever enough
to construe the two symbols /1 as a single function. Therefore, the
monadic U is never executed. Instead, the /i '"function" scans its
Boolean left argument for 1s and returns their indices. In these
implementations, it is ironic to find a section of "optimized" code
like the following:

I¢LpA

IA€A/T
IB¢«B/I

.36

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

The more conventional expressions will typically be much more
efficient since they employ /1 as a single function and do not
require as much workspace:

IA¢A/1pA
IB¢<B/1pB

In a second set of implementations, the result of monadic U is an
arithmetic progression vector and is stored internally as a "J
vector". Specifically the computer stores only the vector'’s length,
its starting value and its value-to-value increment. When executing
the expression I¢«BV/1pBV, the compression (/) function works with its
"J" vector right argument without ever building the entire index
vector.

Expressions like 2x10+11000 are extremely fast on APL systems which
use J vectors. In this expression, a single addition and a single
multiplication are performed to generate the 1000 element J vector
result.

If you do not know whether your APL system employs J vectors, try
Ve¢l11E9. If no WS FULL message is generated, you have J vectors.

10. Use "compiled" functions when available. Some vendors of APL
provide workspaces of utility functions which are written in machine
code rather than in APL. These functions are extremely fast and
behave like regular APL utility functions. They may be copied into
or erased from your workspace and they can have arguments and
results. Take some time to explore available workspaces of utility
functions.

In addition, much research has been conducted toward compiling APL
code. For example, STSC provides a product used in conjunction with
its mainframe APL*PLUS System product which can be used to compile
selected APL functions to improve their execution speed. The
compiling process requires a good deal of both programmer and
computer time but can produce dramatic efficiency improvements when
applied to bottleneck functions which consume a large portion of the
processing time of an application system.

Some APL systems and some related software products allow you to run
non-APL programs from within the APL environment. For example, if
you have available a program written in another language (say, C or
COBOL) which is very efficient and which performs a desired task, you
may be able to invoke the program without ever leaving the APL
workspace environment.

A final caveat. This list of computer efficiency considerations can
create a distorted perspective. Your primary goal as an APL
programmer is not to write APL functions which run fast. Your goal

37

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

is to get the job done. If getting the job done means writing faster
functions, then keep the above efficiency considerations in mind.

In any case, you should also keep in mind these nonefficiency
considerations:

1. Your time is more valuable than the computer'’s. If you find
yourself laboring to find a faster algorithm, ask yourself, "Why?"
Will the savings in computer time result in a more responsive system
which is less frustrating to use and which saves people time? Will
the efficiency improvements result in lower computer allocation
charges or lower timesharing bills? If you cannot foresee material
benefits from your efforts, you are wasting your time.

In general, when writing a function which will perform a one-time
task, forget efficiency. Use the code which flows most rapidly from
your mind. Get the job done.

2. A readable function is better than a fast one. It is a crime
against nature to insert fast, obscure, uncommented code in a
production application. Any algorithm which can be understood can be
adequately commented. If you do not have the inclination to insert
the comments, then do not use the code. By taking a moment to
include comments with your efficient algorithm, you will write code
which is both fast and readable. Remember, in six months the person
who cannot understand your code may be you.

LV PR VLV LV VI, VI V) Ra VA Ve VI, V] Lo Ve VI, VE, V] EaY RV Vi V) RS Ra VL VAL V) LV VI VE, V] [a 2 Vi Vi V)

PROBLEMS: (Solutions on pages 327 to 329)

1. Write a niladic function COST which will produce a display like
the following:

13.15 DOLLARS CONSUMED
65.12 DOLLARS SINCE SIGNON

The first line of the display will not appear the first time COST
is run and will thereafter display the dollars consumed since the
prior execution of COST. Assume your CPU charge is 75 cents per
unit of DOAI[2].

-38-

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

2.

Write the TIMER function described in this chapter to work with
the canonical representation method of local function definition.

In the Sorting and Searching chapter, a function CMIOTA is
presented for searching through the rows of one character matrix
for the location of the rows of a second. The function is
designed to use one of two different algorithms depending upon
the number of rows in its arguments. Time CMIOTA (as defined in
that chapter) for character matrix arguments of 10, 50, 100, 500
and 1000 rows (12 columns) in all combinations (e.g. 50 row left
argument and 100 row right argument). Then, change the line

L2:>(F#1)pL4
to
L2:»(F#1)pL5

and do all the timings again. The first set of timings uses a
sorting algorithm and the second set uses a looping algorithm.
Record these numbers. They are required by a problem in the
Curve Fitting chapter which determines the constants to be
plugged into CMIOTA for automatically choosing the fastest
algorithm.

Construct your character matrices such that the rows of your left
argument are distinct (or nearly so) and the rows of your right
argument are found throughout the left argument. For example:

Le50 12p0AVI?(50%12)p2561 (50 row left argument)
ReL[?100p1ppL] (100 row right argument)

39

Chapter 4

POSITIONING CHARACTER DATA

Many problems in APL involve the realignment of characters. For
example, the title of a report may need to be centered above the body
of the report; or a character vector entered by the user may need to
have any extraneous blanks deleted from it. In this chapter, we
discuss techniques for positioning the nonblank character elements of
an array for a variety of different applications.

AUAUAUAL T AUALAUNY AUAURUAY AUAUAUAY AUAUAUAY AUAVAUAY T AUAUAUAY AUV AU A

PROBLEM: Write the monadic functions DLB, DTB and DEB for deleting
leading, trailing and extraneous blanks from a specified
character vector.

TOPIC: Removing Extra Blanks from Character Vectors

The DLB, DTB and DEB functions are frequently used when accepting
character input or when generating report output. For example, say
you have a character matrix MONTHS of month names, left justified, an
integer scalar MNO of the current month (1 to 12) and an integer
scalar YR of the current year (e.g. 1987). You want to construct a
character vector of the current month and year (e.g. 'JUNE 1987').
The following expression will perform the task:

(DTB MONTHSI[MNO;1),’' ',3YR
Say you want to build a 30 column character matrix NAMES of employee
names by prompting for one name at a time. You want each name to be
left-justified in the matrix and to contain no extra spaces between
the segments of the name. Use the following expression:

NAMES«NAMES,[11301DEB,0

-40-

Chapter 4 POSITIONING CHARACTER DATA

The following functions will perform the desired tasks. Notice that
alternative algorithms are included in each function. The relative
speed of each of the algorithms depends upon the implementation of
APL you use. You may want to time them (as discussed in the Computer
Efficiency Considerations chapter) to determine which is fastest for
your APL environment.

[WSID: FORMAT]
vV Re¢DIB C
[1] @A Deletes leading blanks from character vector C.
[21] Re(vAC#' ') /C

[31 A Re(+/AN\C='" ')IC
41 A Re(C(C#’ '")11)-O1I0J1C
v
[WSID: FORMATI]
vV ReDTB C

[11 nA Deletes trailing blanks from character vec C.
£21 Re(+/VvN!' "#0C)pC

{31 A Re(OVN! '#£0C)/C

[4] A Re(-+/A\" "'"=0C)HIC
[5] A Re(OIO-(C’ '"#4CHLLIIC
[61 A Re(1-(C=' ')11)1C

v

[WSID: FORMATI
V R¢DEB C;N
[11] A Deletes extraneous (leading, trailing,
[21 A contiguous) blanks from character vector C.

[31] NeC#' !

£4] Re(~1TNJ)J(NV1IIN,0)/C
(51 n

[6] A Ce' ',C

[7] @A NeC#' !
[8]1 A RelI(NVION)/C

AN AUAUALNS AUNUAUNY AUAUAUALY S AUAUAUNL AUNUAUAY S AUNUAUAL AUAUAUN

-41-

Chapter 4 POSITIONING CHARACTER DATA

PROBLEM: Write the monadic functions LJUST, CJUST and RJUST for
left-justifying, centering and right-justifying the
nonblank text within a specified character vector or matrix.

TOPIC: Justifying Nonblank Segments within Character Arrays

The LJUST, CJUST and RJUST functions are useful for constructing
report titles and for merging character matrices. For example, to
display ACME INC. centered within a width of 75 characters, use the
following expression:

CJUST 757'ACME INC.'

As another illustration, say you have two 15 column character
matrices of left-justified names, LNAMES and FNAMES. You would like
to construct a 32 column character matrix of left-justified names in
which the names of LNAMES precede the names of FNAMES and are
separated by a comma and a single space (e.g. SMITH, JOHN). Use the
following expression:

LJUST(RJUST LNAMES),',',' ',FNAMES
The following are the definitions of these functions:

[WSID: FORMAT]
V R¢LJUST C
[11 Re(+/AN\C=" ")OC

[WSID: FORMAT]
v R¢RJUST C
[11] Re(+/vN' "#0CIOC

[WSID: FORMAT]
vV R¢CJUST C;B
(11 BeC=' !
[21] Re(T ((+/A\B)-+/A\®B)+2)¢C

RV Ea Vi, VEe g RaVEa Ve, VR V] L 2a Vi, Vi V] o VR VI, VEL V) RV IV VI V) R VR VR VI V] R ha VI, VI N ~ N AU A

42

Chapter 4 POSITIONING CHARACTER DATA

PROBLEM: Given a 20 column character matrix of employee names (in
alphabetical order), construct an 80 column matrix of the
names such that the names run down the resulting matrix in
4 "columns'". The resulting matrix will have one-fourth (or
so) as many rows as the original matrix has.

TOPIC: Restructuring Skinny Matrices into Fat Ones

Let’'s illustrate this problem on a simple character matrix of first
names.

ANNE
BILL
CAL
DOT
ED
FRED
GAIL
HAL
IKE
JOAN
KEN
LISA
MIKE
NED
PAT
RICK
VI

ANNE FRED KEN RICK
BILL GAIL LISA \'28
CAL HAL MIKE

DOT IKE NED

ED JOAN PAT

R R T R 4

In this illustration, the initial matrix has 7 columns instead of the
specified 20 and the resulting matrix has 28 columns instead of 80.
Still, you can see what we want to do. We will solve the problem for
this simple 7 column matrix and then modify the solution to work for
the specified 20 column matrix.

The brute-force approach to this problem involves breaking the matrix
apart into 4 pieces and then sticking them together side-by-side.
Assume the name of the character matrix is CMAT. The number of rows
in the desired result is computed as:

NRel (1ToCMAT)+4
NR is 5 in our illustration.

The pieces can be extracted by using the take (1) and drop (!)
functions:

P1¢(NR,7)TCMAT
P2«(NR,7)T(NR,0)I!CMAT

P3¢ (NR,7)1T((2xNR),0)ICMAT
P4<(NR,7)T((3%XNR),0)ICMAT

43

Chapter 4 POSITIONING CHARACTER DATA

In our illustration, P2 is:

FRED
GAIL
HAL
IKE
JOAN

Notice that the last expression pads P4 at the bottom with blank rows
if there are fewer than 4xNR rows in CMAT. The last step catenates
the 4 pieces together:

Re¢P1,P2,P3,P4

A more elegant solution to this problem involves the use of dyadic
transpose. We begin by padding CMAT so that its number of rows is
divisible by 4:

NRel (1TpCMAT) 4
CMAT«((4xNR),7)TCMAT

Second, reshape the matrix into a 3 dimensional array:
CMAT¢(4,NR,7)pCMAT

In our illustration, CMAT is now:

ANNE
BILL
CAL
DOT
ED

FRED
GAIL
HAL
IKE
JOAN

KEN
LISA
MIKE
NED
PAT

RICK
VI

-44 -

Chapter 4 POSITIONING CHARACTER DATA

Notice that each of the planes in CMAT corresponds to one of the
"columns'" of names in the desired result.

Third, use dyadic transpose to shuffle the planes and rows so that
the shape changes from (4,NR,7) to (NR,4,7). Since the first
coordinate (4) becomes the 2nd coordinate, the next (NR) becomes the
1st and the last (7) remains the 3rd, use 2 1 3 as the left argument
(or 1 0 2 in origin 0):

CMAT¢2 1 32CMAT

In our illustration, CMAT is now:

ANNE
FRED
KEN

RICK

BILL
GAIL
LISA
Vi

CAL

HAL
MIKE

DOT
IKE
NED

ED
JOAN
PAT

By performing this transpose, the characters of the array (if
raveled) are in the same order as those in the desired result (if
raveled).

Finally, reshape the array into the desired two-dimensional result:
R¢(NR,28)pCMAT
The final solution for the 20 column problem is:

NRe¢l (1TpCMAT)+4
R&(NR,80)p2 1 3%(4,NR,20)p((4xNR),20)TCMAT

45

Chapter 4 POSITIONING CHARACTER DATA

The dyadic transpose approach is generally more efficient than the
brute-force approach. Its work is performed primarily by the
relatively efficient reshape and transpose functions. The
brute-force approach makes heavy use of the less efficient take, drop
and catenate functions.

LAY R VI VI V] R YR VI VI, V] RaV I VI VE, V] Ra YAV ia VEA N LSl Vs VE V) BRI VL, V] [N e Ve VI V) [V VI VRV

PROBLEM: Write a function TITLES which will return a character
matrix of titles which will be displayed at the top of a
report. The left argument is an integer scalar of the
width of the resulting character matrix (i.e. the width of
the report). The right argument is a delimited character
vector (e.g. 'NOPERATING STATEMENTNDEC. 31, 1987n($000'’'S)')
whose "partitions" each begin with one of the delimiters
c (left-justify), n (center) or > (right-justify). The
result has one row per partition. Each partition is
justified within the row according to the delimiter. For
example:

HDG¢50 TITLES'>PAGE 1nNnOPERATING STATEMENTN1987<($000s)’

HDG

PAGE 1
OPERATING STATEMENT
1987
($000s)

TOPIC: Delimited Character Vector to Justified Matrix

Let us define the header of the TITLES function:
vV ReWID TITLES CS
We will use origin 0 throughout:
0I0€0
Determine which elements of CS are justification symbols:

JUSTe¢'cn>’'1CS
BJUST«JUST<3

BJUST is a Boolean vector with 1ls corresponding to justification
symbols.

46

Chapter 4 POSITIONING CHARACTER DATA

JUST«BJUST/JUST
NROWS€pJUST

JUST is an integer vector with one element per justification symbol
and whose values indicate which symbol (0: left; 1l: center; 2:
right). NROWS is the number of titles (delimiters). Determine the
length (LEN) of each delimited partition (i.e. each title), excluding
the justification symbol:

T¢BJUST/1pBJUST
LEN« (14T, pBJUST) -T+1

Reduce (truncate) those lengths which exceed the specified width WID:
LEN¢WIDLLEN

Determine the indices into CS of the characters which start each
title (i.e. the character after the justification symbol):

ARGSTART¢1+T

Determine the number of leading blanks required per title to justify
it (left, center or right) within the matrix result:

LEAD¢ (JUST#0)xL (WID-LEN)+1+JUST=1

Determine the indices into the raveled matrix result of the
characters which start each title:

RESSTART«LEAD+WIDXLNROWS

Initialize the result to have the correct number of characters but to
be all-blank and raveled:

Re (NROWSXWID)p' '’

All that remains is to extract the titles from CD (we know the
starting positions, ARGSTART, and the lengths, LEN, of each title),
insert them into R (we know the starting positions, RESSTART, and the
lengths, LEN) and then reshape R to the proper shape. If there was
but one title, we could do the following:

RIRESSTART+1lLEN]1«CSTARGSTART+1LEN]
Unfortunately, monadic v will only work with a one element argument.
Imagine an enhanced monadic U function which exhibits the following

vector behavior:

15 2 4
01234010123 (remember: 0I0=0)

47

Chapter 4 POSITIONING CHARACTER DATA

Let us assume a function MONIOTA which will work with vectors as
above. Then we can finish the function:

RI(LEN/RESSTART)+MONIOTA LEN1¢CS[(LEN/ARGSTART)+MONIOTA LEN]
Re(NROWS ,WID)pR

The definition of the MONIOTA function we need follows:

[WSID: UTILITY]
vV R¢MONIOTA LEN
[11] A Performs: (LLEN[11),(LLENL[21),(LLENI31),...
[2] A In APL2: R¢€l LEN
{31 R¢LEN/-7110,+\LEN
[41] R€R+1pR
v

As an exercise, you should reread the TITLES logic above to see what
happens when some of the partitions are empty (e.g. 80 TITLES
'NBALANCE SHEETNNNDEC. 31n').

Finally, let us redefine the TITLES function slightly to allow it to
function as a typical character "vector to matrix" converter. Such a
function takes a delimited character vector argument and converts it
to a character matrix with one row per partition and with as few
columns as possible (equal to the length of the longest partition}.
The rows of such a matrix result are usually left-justified (padded
to the right). We will redefine the left argument of TITLES to be
either the width of the resulting matrix or an empty vector if the
width is to be automatically determined as the length of the longest
partition.

To implement this enhancement, we need only precede the line,
LEN¢«WIDLLEN, by the following:

WIDe«1TWID, T /LEN
Now the TITLES function may be used in the following way:

"' TITLES 'cREDcORANGEcCYELLOWCcGREENcBLUE'
RED
ORANGE
YELLOW
GREEN
BLUE

(The APL purist may prefer to express the empty vector left argument
to TITLES as an empty numeric vector such as 0p0 rather then the
empty character vector ''. In that way, the WID,[/LEN operation does
not engender a conceptual domain error from the catenation of
character and numeric data. However, since most implementations of
APL "forgive' the catenation of character and numeric datatypes when
one of the arguments is empty, this preference is academic.)

48

Chapter 4 POSITIONING CHARACTER DATA

The completed TITLES function is listed below.

i [WSID: FORMAT]
V ReWID TITLES CS;0IO;ARGSTART;BJUST;JUST;LEAD;LEN ;NROWS
sRESSTART ;T
[1] A Creates report titles from text CS within page
[2] A width WID. CS is delimited by 'cn>' indicating
[31] A left, center, right justification respectively.
[4] 0I0«0
[51 A O:left; l:center; 2:right; 3:not a delimiter:
(61 BJUST«3>JUST¢«'cn>'1LCS«,CS
(71 A Select just delimiters; determine no. titles:
[81 NROWS€pJUST¢BJUST/JUST
[9] n Title lengths:
[10] TeBJUST/1pBJUST
[11] LENe(1lT,pBJUST)-T+1
[12] A Set WID as largest title length if empty WID
[13] A provided; truncate titles to specified width:
{14] LEN¢LENLWID€¢11tWID,[l/LEN
[15] A Index of char following each delimiter:
[16]1 ARGSTART¢1+T
[17] A Leading blanks per title, to justify:
[181 LEAD«(JUST#0)xL(WID-LEN)+1+JUST=1
[19] A Ind in raveled result where each segm. starts:
[20] RESSTART¢«LEAD+WIDxXLNROWS
[21] A Blank, raveled result:
[22] R&¢(NROWSXWID)p' '
(23] A T¢MONIOTA LEN:
[24] TeT+1pT¢LEN/-"110,+\LEN
[25] RIT+LEN/RESSTARTI1«CSI[T+LEN/ARGSTART]
[26]1 Re(NROWS,WID)pR
v

AUNUNUAL AURUAUAL AUAUALUAL AUAUNUAY PUALACUNY AUAUAUAL AUAUALALY AU AU AL AL

PROBLEMS: (Solutions on pages 330 to 333)

1.

Given a character vector TEXT which contains embedded newline
characters (carriage returns) and given the scalar NL which is
the newline character, what expression will return the first line
of text (up to, but not including, the first newline)?

-49-

Chapter 4 POSITIONING CHARACTER DATA

2. Given a character vector CODE, find all occurrences of the string
'*/1'. Return a bit vector which has the same length as CODE,
with a 1 in each element which corresponds to the '/’ in a '/.’
pair. All other elements are zero.

3. Write a dyadic function CENTER which returns a character vector
whose length is specified by the left argument and in which the
character vector right argument is centered. For example:

p0€50 CENTER 'ACME'
ACME
50

Test your function on each of the following:

50 CENTER 'ACME'
49 CENTER 'ACME’
3 CENTER 'ACME'
11 CENTER 'A’

4. Suppose you have a dyadic function COLFMT which formats a numeric
matrix into a character matrix. Its right argument NMAT is the
numeric matrix to be formatted and its left argument CTL is an
integer vector with one element per column of NMAT. The integers
indicate the number of decimal places, for each numeric column,
to be displayed in the character matrix result CMAT. Each number
is formatted in a width of <width> characters (e.g. 10), where
<width> is an integer scalar global variable. For example:

e0¢3 0 1 COLFMT 4 3p112

1.000 2 3.0
4.000 5 6.0
7.000 8 9.0
10.000 11 12.0

4 30

Write a function ROWFMT which has the same syntax as COLFMT
except the elements of its left argument correspond to the rows
of the numeric matrix argument rather than to the columns. For
example:

_50..

Chapter 4 POSITIONING CHARACTER DATA

pel0€3 0 1 2 ROWFMT 4 3p112

1.000 2.000 3.000
4 5 6

7.0 8.0 9.0
10.00 11.00 12.00

4 30

ROWFMT should use COLFMT.

5. Write a dyadic function COLUMNIZE which will restructure a skinny
matrix into a fat one as described in this chapter. The right
argument of COLUMNIZE, CMAT, is the original skinny character
matrix and the left argument is the number of "columns'" of CMAT
across the width of the fat character matrix result. For
example, to solve the problem presented in that section, you
would use:

R¢4 COLUMNIZE CMAT

Allow a 1 or 2 element left argument. If 2 elements, the first
is the number of rows per '"page'" and the second is the number of
"columns" as discussed above. The result is a 3 dimensional
character array with one plane per page. For example, using the
7 column character matrix illustrated in this chapter:

2 3 COLUMNIZE CMAT
ANNE CAL ED
BILL DOT FRED

GAIL IKE KEN
HAL JOAN LISA

MIKE PAT VI
NED RICK

6. Write a function HEADINGS which will behave as described below:

SYNTAX: CMAT«WIDS HEADINGS CVEC

DESCRIPTION:

HEADINGS is used to convert a delimited character vector into a
character matrix of column headings whose respective widths are
given by the vector WIDS. Each substring of CVEC is preceded by
a delimiter (n) and may contain any number of newline delimiters
(¢). The newline delimiters therefore separate sub-substrings.
Typically, one width (element of WIDS) is provided for each

51

Chapter 4 POSITIONING CHARACTER DATA

heading (substring). However, if fewer widths are provided, they
are repeated to match the number of headings in CVEC. The
headings are formatted into a character matrix according to the
following procedure: the sub-substrings of each heading are
truncated if necessary to the corresponding width for that
heading; the sub-substrings are padded to the left and right with
spaces to bring each sub-substring up to the width for that
heading; the sub-substrings are catenated together as rows
{centered with respect to one another); a row of underlines
(hyphens) is catenated to the bottom of each heading; the
headings are padded on the top so that each heading has the same
number of rows; the headings are catenated together separating
them by 2 columns of blanks (if there are more elements in WID
than there are headings defined by the right argument, the
remaining elements are used as the numbers of columns of blanks
to be inserted between each of the pairs of headings):

10 13 8 HEADINGS 'nNNAMESNHIRE«DATENAGE¢AT¢HIRE'

AGE
HIRE AT
NAMES DATE HIRE

10 13 8 4 1 HEADINGS 'NnNAMESNHIRE¢DATENAGE«AT«HIRE'

AGE
HIRE AT
NAMES DATE HIRE

Empty substrings in CVEC are displayed without underlines. To
include an all-blank heading which is underlined, insert at least
one blank character in the corresponding substring.

52

Chapter 5

SORTING AND SEARCHING

Many applications in the real world deal with lists of things.
In APL those things are typically represented as numbers and the
lists as vectors; or the things are represented as character vectors
(rows) and the lists as matrices. That is, real world lists are
usually represented in APL as numeric vectors or character matrices.

Since the most common operations performed on lists include sorting,
searching and selecting, these too are among the most important APL
operations on vectors and matrices. 1In this chapter, we discuss
primitive and utility APL functions for performing sorting and
searching. In the next chapter, we discuss selecting.

ACAUALAL AUALUALUAY AUAUAUAL AUAUALNAY AUAUAUAY AUALUAUAL AUAUAUNY MU AU AL AL

PROBLEM: Suppose you have three 1000 element numeric vectors, ENUM
(employee identification number), AGE (employee age) and
OFFICE (office identification number), that these vectors
are in one-to-one correspondence and that each element
corresponds to a single employee. How can you reorder
these three vectors such that they remain in one-to-one
correspondence (i.e. the same index in each vector still
corresponds to a single employee) but are sorted by office,
and within office by age, and within age by employee number?

TOPIC: Major-to-minor Sorting

Sorting in APL is a two-step process: determine the '"grade vector"
of the vector to be sorted; and reorder the original vector by
indexing the original vector with the grade vector. Therefore, to
sort a vector SALARY in ascending order, you would employ the
following expression:

SORTEDSAL¢SALARY[ASALARY]

-53-

Chapter 5 SORTING AND SEARCHING

The grade-up function (4) returns the grade vector and the indexing
function ([1) reorders the elements. Note that while we have '"sorted
SALARY", the variable SALARY remains unsorted (unless we reassign

it: SALARY«SALARY[4ASAILARY1).

Why does sorting require two steps in APL? Because the grade vector
is required if we are dealing with several corresponding vectors
whose elements must remain in one-to-one correspondence. For
example, if we want to reorder ENUM, AGE and OFFICE such that the
values of ENUM are in ascending order but still have corresponding
elements in AGE and OFFICE, we must do the following:

GRADE«4AENUM
ENUM¢ENUMI[GRADE]
AGE€AGE[GRADE]
OFFICE«OFFICELGRADE]

Note that the values of AGE and OFFICE are now not in ascending
order. They have simply been reordered to continue to correspond to
ENUM which is in ascending order.

The sort required in the problem stated above is called a
"major-to-minor" sort. It is not possible (usually) to sort all
three variables and to maintain the one-to-one correspondence. Only
one variable can be strictly sorted (the '"major" sort variable). The
other variables can at best be sorted within each of the distinct
values of the major variable, since only such reordering will
maintain the sorted order of the major variable'’'s values. The second
variable sorted is said to be "more minor" than the major variable.
The third variable is more minor still and may be sorted only within
each combination of the distinct values of the two more major sort
variables. And so it goes. The last sort variable is called the
"minor" sort variable.

How do you do a major-to-minor sort in APL? Backwards. Reorder all
the sort variables (to maintain correspondence) by sorting the minor
sort variable. Then reorder them by the next more major variable.
And so on. The last variable sorted will be the major sort variable
and so it will be in strictly sorted order. Since sorting does not
change the relative order of the values which are equal, the effects
of the earlier sorts will be preserved within each of the distinct
values of the major sort variable.

The solution is therefore:

GRADE<«AENUM
ENUM¢ENUMILGRADE]
AGE€AGE[GRADE]
OFFICE<OFFICEILGRADE]

GRADE«AAGE
ENUM¢ENUML GRADE]
AGE<«AGEIGRADE]
OFFICE€«OFFICELGRADE]

54

Chapter 5 SORTING AND SEARCHING

GRADE<¢4OFFICE
ENUM¢ENUMIGRADE]
AGE¢AGE[LGRADE]
OFFICE<OFFICELGRADE]

If you study this solution, it may strike you that there is much
reordering (indexing) going on needlessly. In particular, rather
than reorder every variable after each grade operation, you can just
reorder the grade vector. Using this approach, the solution becomes:

GRADE«4AENUM
GRADE¢GRADE[AAGE[GRADE]1]
GRADE«GRADEI[40OFFICELGRADE]]

ENUM¢ENUMIGRADE]
AGE<AGELGRADE]
OFFICE<«OFFICE[GRADE]

The processing cost using this latter solution increases linearly as
the number of sort variables increases. Using the former solution,
the processing cost increases exponentially. However, the latter
solution lacks the clarity of the first solution and requires
comments. In fact, the latter solution is sufficiently unclear that
many APL programmers feel little remorse at jamming the first three
lines together using embedded assignment. That solution is included
here so that you will recognize it, not as an endorsement:

GRADE«GRADE[AOFFICE[GRADE«GRADE[4AGELGRADE«4AENUMI111]1]

ENUM¢«ENUMIGRADE]
AGE€AGE[GRADE]
OFFICE<OFFICELGRADE]

Some implementations of APL support numeric matrix right arguments to
grade-up and grade-down. If so, the resulting grade vector is the
result of grading the columns of the matrix (from left to right) as
major-to-minor variables. If your APL implementation supports this
feature, you may solve the above problem with the following
expressions:

GRADE¢«AOFFICE,AGE,[1.5]1ENUM (in origin 1)
ENUM¢«ENUMI[GRADE]

AGE«AGE[GRADE]
OFFICE«OFFICELGRADE]

AoAUNUAL RUALNUAL AUAUNUNY AUNUAUNL ALY AUALALNY AUAYALRY T AU AU AL A

-55-

Chapter 5 SORTING AND SEARCHING

PROBLEM: Suppose you have a 1000 row, 8 column character matrix,
CMAT, of part numbers, one per row (e.g. 'AK10632B'). How
can you construct a 1000 element grade vector which can be
used to reorder the rows of CMAT such that the part numbers
are in ascending (alphabetic) order?

TOPIC: Character Matrix Sorting

In the previous problem, all sorting was performed on numbers. When
numbers are sorted up, they are in ascending order. That means
smaller numbers precede bigger numbers. In this problem, we will
sort characters, not numbers. What does that mean? If the
characters are letters of the alphabet, it means that the earlier (in
the alphabet) letters precede the later letters. For characters not
in the alphabet we must decide their relative sorting "magnitude" and
extend the alphabet accordingly. Such an extended alphabet is called
a "collating segquence" and is used as a reference to determine which
characters are bigger or smaller than a given character for sorting
purposes. The following character vector represents a typical
collating sequence.

CS¢' .,:3;-/0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZAD'

A different collating sequence may define a different result when
sorting a given character array. Therefore the collating sequence is
a necessary parameter to the solution of the problem. To solve the
problem, we will define a dyadic function CGRADEUP whose left
argument is the collating sequence, whose right argument is the
character matrix to be sorted and whose result is the desired grade
vector:

V GRADE«CS CGRADEUP CMAT

If the rows of a character matrix are in sorted order, what
characteristics do they have? The characters of the first column are
in strictly ascending order (as defined by the collating sequence).
The characters of the second column are in strictly ascending order
within any distinct character in the first column. The third column
is sorted within distinct combinations of values in the first and
second columns. And so on. In other words, the rows of the matrix
are reordered by using the columns (first to last) as the
major-to-minor sort keys.

Some APL systems have defined primitive dyadic grade-up and
grade-down to solve this problem directly. The left argument of 4 or
¥ is the collating sequence. There is no need to define a CGRADEUP
function. The solution to this problem is:

GRADE«CSACMAT

-56-

Chapter 5 SORTING AND SEARCHING

On APL systems for which dyadic grade-up and grade-down are not
implemented, a different approach is required. The most
straightforward converts the character matrix to an integer matrix
with the same shape whose values are the indices into the collating
sequence of the corresponding characters. Then the integer matrix is
sorted in major-to-minor order as done in the previous section.

Since dyadic U is used to convert characters to indices, the
characters in the character matrix which are not in the collating
sequence will translate to 1 greater than the length of the collating
sequence (or to the length of the collating sequence if the index
origin is 0). Therefore, all characters not included in the
collating sequence are treated as if they are at the end of the
collating sequence.

[WSID: SORT]
V GRADE«CS CGRADEUP1 CMAT;I
(11 A Returns grade vector for sorting rows of
[2]1] @A CMAT with collating sequence CS.
[3] A Convert characters to indices:
[41] CMAT¢CS1LCMAT
[51] A Index of last column as a scalar:
[6] T (pCMAT)[1+0I01-~0IO0
[71 a Return trivial result of no columns:
[81 >(Iz0I0)pL1
[91 GRADE«11ppCMAT
[10] =0
[11] A Grade rightmost (minor) column:
[12] L1:GRADE«ACMATL:;I1]
[13]1 A Decrement column index and exit if done:
[14] L2:>(0I0>XI€I-1)p0
[15]1 A Grade next more major column:
[16]1] GRADE«GRADEL[ACMATIGRADE;I11]
[17]1 ~L2
v

A more sophisticated technique packs several columns together at once
so that fewer applications of grade-up (4) are required. For
example, suppose you have a 9 column character matrix whose indices
into the collating sequence are the following:

32716 9 8 4 15 8 33
31 30 19 9 10 8 24 2 23
2 3 19 16 12 4 19 14 15

.
-

By grouping the matrix into 3 groups of 3 columns and by packing each
group into 1 column by respectively multiplying its columns by 10000,
100 and 1 and adding, the result is:

57

Chapter 5 SORTING AND SEARCHING

32716 90804 150833
313019 91008 240223
20319 161204 191415

Because of the nature of major-to-minor sorting and because of the
scheme used to pack these numbers, you can then determine the grade
vector of this 3 column matrix (third column first) and it will be
the same as that of the 9 column matrix. The approach will probably
be more efficient than the original approach because only 3 grade-up
operations are needed rather than the original 9.

Taking this approach to its logical extreme, you may argue to pack
all 9 columns into a single column (vector) of large numbers:

32716090804150833
313019091008240223
20319161204191415

However, the computer internally maintains only 16 or 17 digits of
precision on any number. It sees the numbers as:

3271609080415083_
3130190910082402_ _
2031916120419141_

Therefore, the last digit or two of these large packed numbers are
insignificant to the computer when it is grading the vector and may
produce incorrect grade indices for rows of the character matrix
which are identical except in the last column or two.

So how many characters can be packed together at once? This is a
function not only of the internal precision of your APL
implementation but also of the length of the collating sequence. In
the illustration above, the indices were packed by multiplying by
consecutive powers of 100. Smaller powers (say 80) can be used to
result in smaller packed numbers and to allow more columns to be
packed at once. But if the powers used are too small, the indices
will not always pack to distinct numbers.

For example, if the power 10 is used to pack the numbers 3 2 4 and 3
1 14, the results will be the same. This problem arises only if the
range of indices is greater than the power used. Since the range of
indices is one greater than the length of the collating sequence,
that is the power you should use.

The following solution packs as many columns at once and performs as
few grade-up operations as possible.

58

Chapter 5 SORTING AND SEARCHING

[WSID: SORT]
V GRADE«CS CGRADEUP2 CMAT;I;COLS:N:;P
[1] A Returns grade vector for sorting rows of
[2] a CMAT with collating sequence CS.
[31 n Convert characters to origin 0 indices:
[41 CMAT«(CS1.CMAT)-0IO
[51] A Number of columns as a scalar:
[6] I«(pCMAT)[1+0I0]
{71 a Return trivial result of no columns:
[81] »(I>0)pll
[91] GRADE«11ppCMAT
[101 =0
[11] A Compute max. no. cols. to pack (if 16 digits
[12]1 A precision):
[13] L1:COLS¢L(P¢1+pCS)I®1E16
[14]1 a Number of cols. to pack for first grade:
[151 NeILCOLS
[16] GRADE«API®CMATIL[;(I-NJ)+1N1
[17] A Decrement columns and exit if done:
(18] L2:->(0=TI¢I-N)pO
[19] A Grade next group of more major cols.:
[20] NeILCOLS
(211 GRADE«GRADE[AP1&CMATIGRADE; (I-N)+1N]1]
[221 »L2
v

This solution is an improvement over the prior solution only if the
packing operation is fast relative to the grade operation. The
relative speeds differ among APL implementations and hardware
configurations. You should time the two solutions for your
implementation. Use the fastest, unless you are paid by the hour.

If you are familiar with the issue of comparison tolerance (system
variable OCT) , you are aware that APL systems typically do not
distinguish between values which differ only beyond the 14th (or so)
significant digit. Yet, here we are packing numbers out to 16
significant digits. We can do this because grade-up (4) and
grade-down (¥) are primitive functions which do not consider
comparison tolerance (as do =, >, i, €, #, etc.) If your
implementation of grade-up and grade-down does consider comparison
tolerance, you should modify the above function to localize OCT in
the header and to set OCT«0 (full precision) on the first line of the
function.

Finally, APL implementations store small integer numbers more
compactly than large integer numbers. Because of these differences
in internal storage, grade-up is faster on small integers than on
large ones. This difference may be so dramatic that you should pack
fewer columns and do more grade-up operations on the small integer
values. If so, you should change the reference to 1E16 in the above
function to 2147483647 or 32767 or whatever your largest integer is
{i.e. the largest number not stored as an 8 byte floating point
number).

59

Chapter 5 SORTING AND SEARCHING

When working with character matrices which are wide and which have
rows whose values are all significantly different (e.g. names),
another solution to this problem becomes practical. The approach is
to work with the columns in major-to-minor order.

Sort the first column. Compare the sorted characters to their
neighbor (prior and next row) characters. If both neighbor
characters are different, the row is distinct and belongs in its
current (sorted) position. If one or both of its neighbors have the
same value as it has, we must proceed to the second column. Consider
the second column for only the rows whose value is not distinct for
the first column. Sort the second column within the values of the
first column. Compare the sorted characters to its neighbors and
again identify the rows which are still not distinct for the first
two columns. And so on.

Consider each successive column until all rows are known to be
distinct or until you run out of columns. As fewer and fewer
nondistinct rows remain, the grade-up operation will be performed on
shorter and shorter vectors. Since the grade-up operation is quicker
on short vectors than on long ones, this solution can be quite fast
on matrices whose row values are mostly different.

[WSID: SORT]
V GRADE«¢CS CGRADEUP CMAT;C;F;G;I;M;N;R;ROWS
[11 a Returns grade vector for sorting rows of
[2] A CMAT with collating sequence CS.
[31 A Index of last column as a scalar:
(41 Ne(pCMAT)I[1+0I01-~0I0
[5] A Return trivial result of no colunmns:
[61 »(N=0I0)pLl
(71 GRADE€¢11ppCMAT
[81 20
[9] A Select first column:
[10] L1:CeCMATI ;I«0IO0]
[11]1 A Convert characters to indices and grade them:
[12] GRADE«ACS1C
[13]1 A Exit if 1 column or 1 or less rows:
[141 -((I=N)v1zlppCMAT)pO
{15] A Sort characters:
{161 C¢«CLGRADE]
[17] a Flag first of groups of equal values:
[18]1 FeC#710C
[19] A Handle incorrect result if all values equal:
[20]1 FLOIOIl«l
[21] A Flag values still unresolved (i.e. more than
[22] A 1 equal value):
[23] MeFAL10F
[24]1 A Squeeze down flag-first vector:
(251 FeM/F
[26]1 A Exit if none left to resolve:
[27]1 =(pF)l0
[28]1 A Indices into GRADE of unresolved values:
[29] ROWS€M/L1pM

._60_

Chapter 5 SORTING AND SEARCHING

V CGRADEUP (continued)
[30]1 A Indices into CMAT of unresolved values:
[31] LOOP:R¢GRADE[ROWS]
{321 a Increment column index:
[33] TIeI+1
[34]1 A Select Ith column for unresolved rows:
[35] CeCMATIR;I]
[36] A Convert and grade characters:
[37]1 Ge¢4ACSLC
[38] A Reorder grade vec to maintain sorted prior columns:
[39]1 GeGLA(+\FIIL[GI]
[40]1 A Insert reordered grade vec:
[411 GRADELROWSI¢«RIG]
[42] A Exit if no more columns:
[43]1 =(IzN)pO
[44] A Sort characters:
[45] CeCIG]
[46]1 n Flag first, considering prior columns too:
[47]1 FeFvC#714C
[48] A Flag values still unresolved:
[49] MeFAL1OF
[50]1 a Squeeze down flag-first vector:
[51] FeM/F
[52] A Exit if none left to resolve:
[53]1 =(pF)i0
[54] A Squeeze down unresolved indices into GRADE:
[55]1] ROWS€M/ROWS
[56]1] -=LOOP
v

AUNUAINY AUAUNUAY NUAUNUAY AURUAUAY AUNUNUAY AUAUAUAY AUAUAUAL AUAL AL AL

PROBLEM: Sort the following character matrix, SUBJECTS.

Lincoln
troops
liberty
lasting
brothers
Grant
Lee

61

Chapter 5 SORTING AND SEARCHING

TOPIC: Uppercase/Lowercase Sorting

Since this matrix contains both uppercase and lowercase letters, the
collating sequence must contain both the uppercase and lowercase
alphabets. Let'’s try catenating them:

CSe¢' ABCDEF...XYZabcdef...xyz'
SUBJECTS[CSASUBJECTS; 1] (use CGRADEUP if
Grant dyadic 4 is unavailable)
Lee
Lincoln
brothers
lasting
liberty
troops

No good. Words beginning with the letter L should be together,
whether the L is uppercase or lowercase. Let's try interleaving the
uppercase and lowercase alphabets:

CSe«' AaBbCcDcEeFf...XxYyZz'
SUBJECTS[CS4ASUBJECTS;]

brothers

Grant

Lee

Lincoln

lasting

liberty

troops

Not quite. Although words beginning with the letter L are now
together, those beginning with an uppercase L precede those beginning
with a lowercase 1, regardless of the second letter in each word. We
want all Ls to be treated equally, regardless of case.

Since equality is our aim, let us promote each lowercase letter to an
uppercase letter and try again. Suppose UPPERCASE is a monadic
function which converts its character array argument to an array of
the same shape and values except each lowercase letter has been
replaced by the corresponding uppercase letter. Then, lowercase
letters can be omitted from the collating sequence. The following
solution does the job.

CS¢' ABCDEF...XYZ'
SUBJECTS[CSAUPPERCASE SUBJECTS;]

brothers

Grant

lasting

Lee

liberty

Lincoln

troops

-62-

Chapter 5 SORTING AND SEARCHING

Notice that the character matrix is converted to uppercase letters
for purposes of grading only. The original mixed case matrix is used
for indexing.

The technique of converting an array to uppercase letters is also
useful for searching through mixed case arrays whenever the uppercase
and lowercase characteristics of letters are to be ignored. For
example, to list the words which begin with "LI":

((UPPERCASE SUBJECTS[:1 21)A.="LI')#SUBJECTS
Lincoln
liberty

The following function will perform the desired translation to
uppercase letters.

[WSID: SORT]

V R¢UPPERCASE C;FOUND;IND;LOWER;UPPER
{11 @n Converts the lowercase letters in the character
[2] na array C into the corresponding uppercase
[31 A letters. Useful for sorting or searching
[4]1 n character arrays when the case distinction is
[5] A to be ignored.
[61] LOWER¢' abcdefghijklmnopgrstuvwxyz'’
[71] UPPER¢' ABCDEFGHIJKLMNOPQRSTUVWXYZ'
(81 Re,C
[9] a Inds of arg in LOWER (1l+last ind if not found):
[10] IND¢LOWERLR
[11] A Mark those found:
[12]1 FOUND«IND<OIO+pLOWER
[13] A Insert UPPER elements in place of LOWER ones:
(141 RIFOUND/1pFOUND]¢<UPPERI[FOUND/INDI
[15]1 A Reshape to original shape:
[16] Re&(pClpR

(171 n
{181 A In APL2, no need to reshape:
{191 n IND¢LOWERL,C
{201 n FOUND«IND<DOIO+pLOWER
(211 n ReC
(221 n (FOUND/ ,R)<UPPERI[FOUND/IND]
(231 n
[24] A Alternate algorithm...
[25]1 A Construct OAV of only uppercase letters:
[26]1 n AAV€[OAV
[27]1 n AAVIOAVLLOWER]«UPPER
[28]1 A Perform transl from lower/upper OAV to upper AAV:
[29]1 n ReAAVIOAVLC]
v

Implementations of APL which provide dyadic grade-up typically also
provide a facility for handling this uppercase/lowercase problem
directly. Specifically, the collating sequence left argument may be

63

Chapter 5 SORTING AND SEARCHING

a matrix which contains both alphabets as two corresponding rows.
For example:

CS¢' ABCDEF...XYZ',[0.5]1' abcdef...xyz'
SUBJECTS[CSASUBJECTS; 1

brothers

Grant

lasting

Lee

liberty

Lincoln

troops

You should read your documentation for dyadic grade-up to understand
the subtleties of this facility. Given the facility, the UPPERCASE
function is not needed for sorting uppercase/lowercase character
matrices. However, it is still useful for searching through
uppercase/lowercase arrays.

ACPURNLUAL AUAUNUAL AUAUALUAL D AUAUAUAY T AUAUALUAL AUNUNUAY AUAUALAY AUAUAULAS

PROBLEM: Given the policy numbers of 1000 existing policyholders (as
a 1000 row, 12 column character matrix since the policy
"numbers'" may contain letters) and the policy numbers of
600 non-smokers (600 rows, 12 columns), determine the index
of the existing policy (1 to 1000) to which each of the 600
non-smokers corresponds. The resulting integer vector will
have 600 elements. Return the "index'" 1001 if the policy
number is not found.

TOPIC: Array Searching

If the two lists of policy numbers were numeric vectors rather than
character matrices, the solution would be trivial. Suppose BASE is
the name of the 1000 element vector of existing policy numbers, VALS
is the name of the 600 element vector of non-smoker policy numbers
and INDS is the desired result. The following expression will solve
the problem:

INDS¢BASELVALS
(Note that the default comparison tolerance, i.e. OCT, will need to

be reduced to make accurate comparisons between numbers with more
than 14 or so digits.)

64

Chapter 5 SORTING AND SEARCHING

In APL implementations which support nested arrays, the dyadic t
function may be used to solve this problem, even on character
matrices. The first step is to convert the matrix arguments to
nested vector arguments (e.g. c[21BASE in APL2). The solution then
follows directly:

INDS«(c[21BASE)L1(<c[21VALS) (in APL2)
INDS«(I[21BASE)L(I[2]1VALS) (in APL*PLUS)
INDS«(<s1l BASE)lL(<s1 VALS) (in SHARP APL)

In APL implementations which do not support nested arrays, a more
creative approach is required since the dyadic 1 function does not
operate as hoped for on character matrix lists.

One effective approach is to convert the character matrix arguments
into numeric vector arguments by converting the columns of characters
into columns of indices and then packing the numbers together by the
techniques of the previous sections. As mentioned there, only a
limited number of characters may be packed into a single number
without losing precision (say 8 to 12 character columns, depending
upon the length of the character vector collating sequence used to
convert the characters to indices). Further, since dyadic 1 uses
comparison tolerance, the value of OCT should be set to zero to make
comparisons which are as precise as possible.

The following function uses this technique to emulate dyadic U on
character matrices:

{WSID: SEARCHI
vV INDS¢BASE CMIOTAl VALS:CS;P;0OCT
[11] a Returns the row indices of BASE at which the
(2] A rows of VALS first match.
[3]1 A Set comparison tolerance to maximum precision:
(4] OCT«0
[51 A Determine collating sequence:
[61 CS«((0OAVeBASE) VOAVeVALS) /0OAV
[7]1 A Packing factor:
[8]1 Pel+pCS
[9]1] A Pack and search:
[10] INDS¢«(PL(CSL&BASE)-0OIO)1LPL(CSLRVALS)-0OIO
v

Unfortunately, this technique will not work on wide character
matrices. Further, in some APL implementations, the decode (1)
function is slow. Under either of these conditions, another approach
is desired.

Suppose BASE is a numeric vector and VAL is a numeric scalar. How
can we find the index of the first occurrence of VAL in BASE?

BASELlVAL

65

Chapter 5 SORTING AND SEARCHING

How can we identify (by bits) all of the occurrences of VAL in BASE?
BASE=VAL

If VALS is a vector, how can we identify (by bits) all of the
occurrences of VALS in BASE?

BASEoc.=VALS

If BASE is a character matrix and VAL is a character vector (i.e. one
policy number), how can we identify (by bits) all of the occurrences
of VAL in BASE?

BASEA. =VAL

If VALS is also a character matrix, how can we identify (by bits) all
of the occurrences of VALS in BASE?

BASEA. =QVALS

The information we seek is contained in the Boolean matrix result of
this expression. Specifically, the column index of the first bit in
each row is the index we seek. By using a Boolean scan, we can
extract the indices:

INDS«DBIO++#AX~BASEA.=QVALS

We will modify this algorithm somewhat to replace row-wise (e.g. AX)
functions by the usually faster column-wise (e.g. A\) functions and
to eliminate the not (~) function.

[WSID: SEARCH]
vV INDS¢«BASE CMIOTA2 VALS
(1] A Returns the row indices of BASE at which the
[2] A rows of VALS first match.
[31] INDS«OIO++/A\VALSV.#8&BASE
v

This algorithm is an excellent illustration of the power of APL.
Unfortunately, it has some drawbacks. For this example, the result
of the v.# function is a 600 row, 1000 column Boolean matrix (600,000
elements) which might generate a WS FULL error message. Even if it
does work, the function will consume a large amount of CPU time while
making the 600,000 comparisons.

A different approach takes advantage of the speed of sorting
algorithms. The following discussion assumes 0IO=1.

1. Combine the two arguments via catenation into a 1600 row matrix:

A€BASE,[1]VALS

-66-

Chapter 5 SORTING AND SEARCHING

2. Sort the combined matrix using the CGRADEUP function developed in
a previous section (or using dyadic 4 if available) and using 0AV as
the collating sequence:

GRADE¢[AV CGRADEUP A
A¢A[GRADE;]

By sorting the matrix, like rows are now contiguous.
3. Shift the rows of the matrix down one row and compare:
FILAG¢V/A# "10A

FLAG is a 1600 element Boolean vector whose 1ls flag the first of each
set of contigquous like-valued rows.

4. For each of the 1600 rows, determine the index into the original
unsorted catenated matrix of the first row of each set of contiguous
like-valued rows:

FIRST¢«(FLAG/GRADE) [+\FLAG]

The 1600 elements of FIRST correspond to the rows of the sorted
catenated matrix.

5. Reorder the elements so they correspond to the rows of the
unsorted catenated matrix:

INDS«(pFIRST)p0
INDS[GRADE]¢FIRST

6. Select only those elements of INDS which correspond to the rows of
VALS (not the rows of BASE):

L¢11pBASE
INDS«LLINDS

7. Set the elements of INDS which correspond to rows of VALS for
which no matching row was found in BASE to the 'not found" index (1
plus the number of rows in BASE):

INDS«INDSL1+L

This approach is quite efficient for large arguments. However,
because it requires so many steps, other algorithms may be more
efficient for small arguments. In particular, inner product (A.=) is
typically quite fast when one argument is a matrix and the other is a
vector. Therefore for a small (few rows) right argument of CMIOTA,
it may actually be faster to loop on the rows of the right argument
(using A.= to search through the rows of the matrix left argument)
than to employ this catenating, sorting, shifting, comparing
algorithm.

._67__

Chapter 5 SORTING AND SEARCHING

But how small should the right argument to CMIOTA be before we switch
to a looping algorithm? Let us assume the arguments to CMIOTA are L
and R:

I«L CMIOTA R

The CPU time consumed by the looping algorithm increases linearly
with the number of rows in R (for a constant L) and linearly with the
number of rows in L (for a constant R). Therefore, the CPU time
consumed will be a function of the formula:

CPUL = Cl+(RRX(C2+(C3xRL)))

where CPUL is the amount of CPU time consumed by the looping
algorithm, RR and RL are the number of rows in R and L respectively,
and Cl1l, C2 and C3 are constants to be determined.

The CPU time consumed by the sorting algorithm increases linearly
with the sum of the numbers of rows in R and in L. Therefore, the
CPU time consumed will be a function of the formula:

CPUS = C4+(C5%X(RR+RL))

where CPUS is the amount of CPU time consumed by the sorting
algorithm and C4 and C5 are constants to be determined.

The values of Cl, C2, C3, C4 and C5 for the formulas above will
depend upon the particular machine and APL implementation. To
determine them for your environment, you must time the two algorithms
for a variety of arguments and then use the techniques of least
squares to find the constants which define the '"best" curves to fit
the empirical data. There is a problem at the end of the chapter on
Computer Efficiency Considerations which performs the first task and
a problem at the end of the chapter on Curve Fitting which performs
the second task. Work these problems and plug the derived values
into the CMIOTA function below (in place of Cl, C2, C3, C4, C5).

(The formulas above do not consider the number of columns in the
matrix arguments nor the nature of the data, i.e. whether and where
the values are found. Therefore they are not precise formulas.
However, they will be sufficiently accurate to insure that the best
algorithm is used in all but borderline cases.)

The following CMIOTA function uses the approaches discussed above and

has been extended to handle origin 0 and to treat the trivial cases
(empty or l-row arguments) separately.

68

Chapter 5

SORTING AND SEARCHING

(11

£21

31

[41

[51]

[61

[71

(81

(a1l

[101
[11]
[121
[131
(141
{151
(161
{171
[181
[191
[20]
(211
(221
(23]
[24]
[25]
[26]
[271
[28]
[29]1]
{301
[311
£321]
[331]
[34]
[35]
[36]
[371
[38]
£391
(401
[41]
[421
[431
[44]
[45]
[461]
[471
(481
491
(501
[51]
[52]

{WSID: SEARCH]I

vV INDS¢BASE CMIOTA VALS;A;F;G;I;L

A Returns the row indices of BASE at which the
A rows of VALS first match.

A Branch if right arg a matrix:
2(2=ppVALS)pL1l

A Handle vec or scalar right arg:
INDS¢«(BASEA.=VALS)11

20

11:L¢(pBASE)I[OIO]

A«(pVALS)[OIO]

A Branch unless no rows in either arg:
>(XxF¢ALL) pL2

A Handle empty arg:

INDS«Ap0IO

>0

A Branch if both args have more than 1 row:
L2:>(F#1)pL4

A Branch unless left arg has 1 row:
»>(L#1)pL3

A Handle 1 row left arg:
INDS€¢[IO+VALSv.#,BASE

20
A Handle 1 row right arg:
L3:INDS¢«, (BASEA.=,VALS)11

-0

A Branch if sort alg. costs more than looping alg.:
A (remove A after replacing C1,C2,C3,C4 by

A computed constants):

L4: A>((C4+C5XL+A)>CL+AXC2+C3xL)pL5
A Combine args. and sort (like values together)
A (use CGRADEUP if dyadic 4 unavailable):
G¢DAVAA¢BASE,[OIO]VALS
A€AlLG;]
A Flag 1st of distinct rows by shifting and comparing:
Fev/A# 1A
A Insure 1lst elt is 1 (in case all rows the same):
FIOIOl«1
A Indices of 1lst distinct rows:
I€F/G
A Replicate for each like row:
FLOIOl€OIO
JeI[+\F1]
A Unsort indices (to catenated order):
INDS€I
INDSL[Gl¢I
A Keep those corresponding to right arg:
INDS«LIINDS
A Set 'not found’' inds to ’'one greater’:
INDS¢«INDSLL+0IO
=0
A Use looping algorithm if more efficient:
L5: INDS¢ApO
Le¢(ApL6),0

-69-

Chapter 5 SORTING AND SEARCHING

vV CMIOTA (continued)
[53] I«0I0
[54] L6:INDSII1«(BASEA.=VALS[I;JJ)11
[55] SLI[IeI+1]

\'%

ACRUALAY AUASAUAL PURURUNL AUNUNUAY AUNUNUALY NUAUNUAY AUNUAUAY AU AU AL AL

PROBLEM: Suppose you have a 1000 element vector of ages. You wish
to group the ages into the 10 ranges: O to 9, 10 to 19, 20
to 24, 25 to 29, 30 to 34, 35 to 39, 40 to 49, 50 to 59, 60
to 64, 65 and up. What approach would you take to translate
these 1000 ages into 1000 corresponding range indices (i.e.
numbers between 1 and 10)7?

TOPIC: Range Searching

Suppose the 1000 element vector of ages is named AGES. Let us define
a 10 element vector LOWER of the lower limits for the specified
ranges:

LOWER€¢O 10 20 25 30 35 40 50 60 65

We need to compare each element of AGES to each element of LOWER and
to determine the index into LOWER of the last element which is less

than or equal to the element of AGES. Outer product may be used to

solve this directly:

INDS«+/AGESo.2LOWER

This expression is simple and powerful but suffers from the malady of
all outer product solutions. Since every element of the left
argument is being compared to every element of the right argument,
the number of comparisons increases exponentially as the lengths of
the two arguments increase linearly. Hence, the solution is slow and
expensive when performed on two long vectors.

A more efficient (for long arguments) algorithm can be developed
using the same sorting technique employed in the prior section.

1. Combine the two arguments and determine the grade vector:

A¢LOWER,AGES
GRADE€AA

70

Chapter 5 SORTING AND SEARCHING

2. Rather than reorder the elements of the catenated array, reorder
the elements of an array of 1ls and 0s where the 1s mark elements of
LOWER and the 0s mark elements of AGES:

FLAG«((pA)T(pLOWER)p1) [GRADE]

3. Determine the index into LOWER of each element of the sorted
catenated array:

FIRST¢+\FLAG

4. The elements of FIRST correspond to the elements of the sorted
catenated array. Reorder the elements so they correspond to the
elements of the unsorted catenated array:

INDS«(pFIRST)p0
INDS[GRADEJ¢FIRST

5. Select only those elements of INDS which correspond to the
elements of AGES (not the elements of LOWER):

INDS« (o LOWER) {INDS

The following function LIOTA uses this approach but is extended to
handle origin 0 and to return 1 greater than the largest index if the
corresponding value is less than the smallest lower limit. The left
argument is assumed to be in ascending order.

[WSID: SEARCHI]
v INDS¢LOWER LIOTA VALS;A;F;G;I;L
[11 @A Returns the indices of LOWER at which the
[2] A elements of VALS first match or exceed.
[31 na Branch unless right argument empty:
[4] > (xpVALS)pL1l
[51] INDS€«10
[61] -0
[71] @A Combine arguments and sort:
{81 L1:G¢<AA¢LOWER,VALS
[91 R Flag elements from LOWER in sorted array:
[10] L¢pLOWER
[11] Fe((pA)TLel)IG]
[12]1 A Determine indices into LOWER (origin dependent):
[13]1 FIOIOl¢«FL[OIOI-~OIO
[14] TI&+\F
[15] A Unsort indices (to catenated order):
[16]1 INDS«I
[17]1 INDSLGI«I
[18]1 A Keep those corresponding to right argument:
[19] INDS«LIINDS
[20] A Set 'not found’ indices to 'one greater':
£21] INDSLCINDS=0I0O-1)/1pINDSle¢L+0IO
v

71

Chapter 5 SORTING AND SEARCHING

The solutions presented here are oriented around lower limits of
ranges (in ascending order). If upper limits are considered (e.g.
UPPER«9 19 24 29 34 39 49 59 64 99), the solutions must be modified
accordingly:

Lower limits (ascending): +/AGESc.zLOWER
or: LOWER LIOTA AGES

Upper limits (ascending): 1++/AGESc.>UPPER
or: UPPER UIOTA AGES

ILower limits (descending): 1++/AGESo.<LOWER
Upper limits (descending): +/AGESo.=UPPER

The following function UIOTA works like LIOTA but requires a vector
left argument of range upper limits in ascending order.

[WSID: SEARCHI]
vV INDS«UPPER UIOTA VALS;:;A;F;G;1I:L
[11] A Returns the indices of UPPER at which the
[2] n elements of VALS last match or are less than.
[3] a Branch unless right argument empty:
[4]1 -(xpVALS)pL1l
[5] INDS«10
{61l -0
[7] A Combine arguments and sort:
{81 L1:Ge¢AA¢VALS,UPPER
[9] @A Flag elements from UPPER in sorted array:
[10] Le¢pUPPER
[11] Fe«((-pA)TLp1)IG]
[12] A Determine indices into UPPER (origin dependent):
[13] Ie+\"1401I0,F
[14] a Unsort indices (to catenated order):
[15]1 TINDSeI
[16]1 INDSI[GIle«I
[17]1 A Keep those corresponding to right argument:
{181 INDS€¢(pVALS)pINDS
v

You should be aware that the LIOTA and UIOTA functions may not
produce correct results when operating on floating point numeric
vectors whose values are approximately equal (within comparison
tolerance) to elements in the lower limit or upper limit vector.

This aberration occurs because the grade-up (4) function used in
LIOTA and UIOTA does not consider comparison tolerance when sorting.
Thus, two numbers which would be treated as equal by the relational
functions (say =z or >) are treated as distinctly different numbers by
grade-up. If this is a likely problem for a particular application,
you should use the appropriate outer product solution.

Let’'s consider an alternate algorithm for solving this range
searching problem. The algorithm involves "ranking vectors'". The

=-72-

Chapter 5 SORTING AND SEARCHING

ranking vector of a vector V is computed via 44V and indicates the
relative magnitudes of the values of V. The smallest value in V is
assigned the index 1 (in origin 1), the second smallest the index 2,
the third 3 and so on. For example,

4415 5 10 15 20
31245

Notice that in the event of ties, the earlier values receive the
lower rankings. In this example, the first 15 is ranked 3rd and the
next is ranked 4th.

Consider what happens to the rankings of these values when more
values are catenated to the vector. For example,

AA15 5 10 15 20,13 17
4125736

Notice that the corresponding rankings (4 1 2 5 7) have increased by
the number of catenated values which are less than the respective
values.

4 1257-31245
1 0012

That is, no catenated values are less than the 5 or 10; one catenated
value (13) is less than the two 15s; and two catenated values (13 17)
are less than the 20.

Consider what happens when some of the catenated values are equal to
values in the original vector. For example, catenating 13 15 instead
of 13 17:

4415 5 10 15 20,13 15
41257 36

We get the same result. However, notice what happens when the
catenated values are placed at the front of the vector:

413 15,15 5 10 15 20

1

2 6 7

126 7-312 45
200 2

The result now indicates the number of catenated values which are
less than or equal to each value, not just less than.

Given this behavior, the LIOTA and UIOTA algorithms follow directly:
LIOTA: INDS€«((pLOWER)!A4LOWER,AGES) -4AAGES

UIOTA: 1INDS¢1+((pAGES)T44AGES,UPPER)-44AGES

73

Chapter 5 SORTING AND SEARCHING

These algorithms produce correct results for origin 1. The LIOTA
algorithm returns 0 (instead of 1+pLOWER) for values of AGES which
are less than the smallest value in LOWER. The two functions listed
below, LIOTAl and UIOTAl, work like the LIOTA and UIOTA functions
above but use these ranking vector algorithms. The algorithms have
been modified to work correctly in either origin and to return the
correct '"not found" value (OIO+pLOWER).

Further, a more efficient method for computing the ranking vector is
employed. When sorting a grade vector, traditional sorting logic is
not needed. Index assignment will suffice. The following four sets
of expressions generate equivalent results:

R«4AAV G«AV G<AV GeAV
ReAG Re(pV)pO0 ReG
RIGI€1pG RIGl€1pG

The last set of expressions is the most efficient. Since it is not
as clear as the first expression, it should include a comment:

A ReAAV @
ReGAV
RIGI€¢1pG

Using this technique, the LIOTAl and UIOTAl functions each perform
only two grade-up operations instead of four. However, the LIOTA and
UIOTA functions above each perform only one grade-up operation and so
will typically be the faster functions. Time them in your APL
implementation.

[WSID: SEARCH]
vV INDS¢LOWER LIOTAl VALS;G;L;R;S
[1] A Returns the indices of LOWER at which the
[2] R elements of VALS first match or exceed.
[31 L¢pLOWER
[4] A ReAAVALS @
[51 ReG€AVALS
[6] RIGI€1pG
[7] A S€<4ALOWER,VALS :
[81] S¢G¢AT.OWER,VALS
[9] SI[Gl€lpG
{101 A Origin 1 indices:
[11] INDS«(LIS)-R
[12] A Set 'not found' indices to 'one greater’:
[131] INDSL(INDS=0)/1pINDSI¢L+1
[14] A Change from origin 1 to origin 0 if needed:
{151 -»0I0p0
[16] INDS«INDS-1
\'4

-T74-

Chapter 5 SORTING AND SEARCHING

[WSID: SEARCHI]
vV INDS«UPPER UIOTAl VALS;G;R;S
[1] A Returns the indices of UPPER at which the
[2] @A elements of VALS last match or are less than.
[3]1] A Re€AAVAILS :
[4] ReG«AVALS
[5] RIGl¢1pG
[6] A S¢«AAVALS,UPPER :
71 S«G<AVALS ,UPPER
[8] SIGlelpG
[9] A Origin 0 indices:
[101] INDS«((pVALS)pS)-R
[11]1 A Change from origin 0 to origin 1 if needed:
[12]1 ~»0I0l0
[13]1] INDS«INDS+1
\%

AUNUALAL AUALUAUAL AUAUAUNY AURUAUAY NUNUAUAY S AUAUASAL AUNUAUAY AUAU AU

PROBLEM: Write a function named ASS (string search) which will
locate every occurrence of a character vector substring
(right argument) in a character vector (left argument).
The result is a Boolean vector of the same length as the
left argument whose 1s flag the indices at which each match
begins. For example:

'THIS IS A TEST' ASS 'IS'
0010010000O0O0OO0TCOC

TOPIC: Character Substring Searching
Some APL implementations have primitive functions which solve this
problem directly:
APL*PLUS:
vV BIT«CVEC ASS SUB

[1] BIT«CVEC 0SS SUB
v

-75-

Chapter 5 SORTING AND SEARCHING

APL2:

vV BIT«CVEC ASS SUB
[1]1 BIT¢SUBEeCVEC
v

If such a primitive function is unavailable to you, you must work a
little to get the desired result:

[WSID: SEARCHI]

V BIT¢CVEC ASS SUB;C;S
{11 A Returns bit vector of length (pCVEC) with 1s
[2] A flagging starts of substrings which match SUB.
[3] Ce«pCVEC
[4] S¢p,SUB
{51 BIT«CT(-S)ISUBA.=(5,C+xC)pCVEC

v

AUAUALUAL PUAUALUAL AUAUAUAL AURUNUAL AUARUAUAL AUAUAUALY AUAUAUAL AUAL AL AL

PROBLEM: Write functions REPLACE and BY which will replace all
occurrences of a character vector substring in a character
vector by a second substring. For example:

'THIS IS A TEST' REPLACE 'IS' BY 'ARE'
THARE ARE A TEST

Use the function ASS defined in the prior section.

TOPIC: Character Substring Replacement

The BY function is used simply as a syntactic convenience to provide
three arguments to the REPLACE function. One approach is to assign
the right argument to a global variable (say <by>) and to return the
left argument as the explicit result.

[WSID: SEARCHI
V R¢A BY B
[1] A Used in conjunction with REPLACE as:
{21
£31
[41]
[51 bye¢B
(61 Re¢A
v

'THIS IS A TEST' REPLACE 'IS' BY 'ARE’

DD

..'76_

Chapter 5 SORTING AND SEARCHING

The REPLACE function will generate a result by analyzing its two
arguments and its third global "argument" <by>. When done, REPLACE
erases <by> so that it will not be left global.

The approach taken by REPLACE is the following:

1. Use ASS to find the occurrences of the old substring in the
character vector. Convert the bits to indices.

2. Create a replication vector (i.e. left argument to /) which can be
used to both squeeze out the old substring and to allow room for the
new substring. Perform the replication on the character vector.

3. Since the length of the character vector has changed (unless the
new substring has the same length as the old substring), adjust the
indices computed in step 1 to point to where the new substrings must
be inserted.

4. Insert the new substrings.

[WSID: SEARCH]

V NVEC«QOVEC REPLACE SUB;:;BIT;IND;NHITS;REP;SIZE;OIO
[11 A Replaces all occurrences of SUB in OVEC by <by> (set
[2] A in BY), erases <by> and returns the modified OVEC.
[31] A Requires subfn ASS (or 0SS or €).
[4] A The logic is a bit simpler using origin O0:
[51 O0I0€0
[6]1 n Locate the starts of the old substring:
[71] BIT<«OVEC ASS SUB
[8]1 A Convert the bits to indices:
[91 NHITS¢pIND¢BIT/1pBIT
[10] A Initialize replication vector as 1s:
[111 REP«(pBIT)pl
[12] A Insert Os where old substrings are:
{131 REP[INDo.+1p,SUBIl€¢0
[141 A Insert new substring length where new substrings
[151 A will begin:
[16]1 REPIIND1¢«SIZE«¢p,by
[17] A Squeeze and expand OVEC with replicate:
[18]1] NVEC«REP/OVEC
[19] A Adjust old indices to get new indices:
[20] IND¢IND+(SIZE-p,SUB)XLNHITS
[21] A Insert new substrings:
[22]1 NVECLINDo.+lSIZE]J«{(NHITS,SIZE)pby
[23] A Erase <by>:
[24]1 BIT«OEX 'by'’

v

AUALAUAL AUALALAL AUAUAUAL NUALAUAY S AUALAUAY S AUAUAUAY AUAUAUAY AUAUAU AL

77

Chapter 5 SORTING AND SEARCHING

PROBLEMS: (Solutions on pages 334 to 336)

1.

Given a 3 column integer matrix PNUM of telephone numbers (area
code, phone number, extension, e.g. 213 5550123 1234), how can
you sort the numbers in ascending order?

Modify the CMIOTA function described in this chapter to define a
function IOTA which works on numeric vector arguments instead of
character matrix arguments. Test it in your APL implementation.
Which is faster, IOTA or dyadic 1 (see Computer Efficiency
Considerations chapter)? What is the consequence of the
dependence of dyadic 1 on OCT (comparison tolerance) and the
independence of 4 on 0OCT?

Given a 3 column integer matrix PNUM of telephone numbers (area
code, phone number, extension) and a 3 element integer vector P
which represents a particular telephone number, determine the
index of the first row of PNUM in which P is located.

Using the LIOTA function developed in this chapter, determine in
which salary grouping each of the elements of the vector SALARY
belong. The groupings are: (1) 1000 to 9999; (2) 10,000 to
19,999; (3) 50,000 to 69,999; (4) 100,000 and up. Return the
index 5 for elements of SALARY in none of these groupings.

Using the ASS function developed in this chapter, write a monadic
function DEB which will delete extraneous (leading, trailing or
contiguous) blanks from its argument and will return the
compressed result. For example:

DEB ' TOO MANY SPACES. !
TOO MANY SPACES.

In a numeric vector NVEC, the value ~1 represents '"unknown'.
Display NVEC, showing each occurrence of ~1 as the characters
'N/A' (not applicable).

78

Chapter 5 SORTING AND SEARCHING

7. Suppose you have a 25 column character matrix of employee names,
ENAMES. Each row contains one name, left-justified. The names
contain both uppercase and lowercase letters. Display the names
which contain the string "son" anywhere in the name.

79

Chapter 6

SELECTING

This chapter deals with the task of data selection in APL.
Selection is the process of extracting elements from an APL array.
The reverse process, replacing the values of elements within an
array, or selection assignment, is also considered. Finally, a
special selection task is covered: the task of selecting those
values in an array which are unique (or distinct).

LV e Vi VT V] A AN ~ AN RS Pl VI V] R AV, VI V) RV I VI, VEL V] ~ oAU LAV Vs VI, V)

PROBLEM: Given a three element vector NVEC, what APL expression will
return the first two elements? What expression will
replace these elements in NVEC by the values 10 and 207?

TOPIC: Selection and Selection Assignment

There are basically 3 selection techniques available in APL.

1. Indexing. Use indexing ([]1) when you know the positions within
the array of the elements to be selected. For example (in origin 1):

NVECI[1 21

2. Take/drop. Use take (1) or drop (1) or both when the elements to
be selected are contiguous, especially at the start or end of the
array. For example:

2TNVEC
“1INVEC

80

Chapter 6 SELECTING

3. Compression. Use compression (/) when you have a corresponding
Boolean compression vector whose ones flag elements to be selected.
For example:

1 1 0/NVEC

Typically, the compression vector is the result of a relational or
logical expression which defines some criteria by which elements are
to be selected.

Though there are 3 selection techniques, the only selection
assignment technique available in APL is index assignment. For
example:

NVECL1 21«10 20

If the nature of the selection assignment problem is oriented more
toward take/drop or compression logic, you must convert the selection
values to indices so that you may use index assignment. For example:

NVEC[2T1LpNVEC1€¢10 20
NVECI["1l 1pNVEC1€«10 20
NVEC[1 1 O/1LpNVECIl«1l0 20

It is because of this need to convert to indices when performing
selection assignment that the APL idioms itp and /ip are so common.

In APL2, the APL language has been extended to allow direct selection
assignment without first converting to indices. For example:

NVECI1 2]€10 20
(2TNVEC)«10 20
("1INVEC) €10 20
(1 1 O/NVEC)€«10 20

In fact, fairly complex selection assignment expressions are
permitted. The expression,

(3p1lONVEC) €10
is equivalent to:
NVEC[3p1l®1pNVECI«10

The enhancement, when not abused, is a welcome extension to the
language.

ALAUAUAY AUAUAUAY NUAUAUAL AUAUAUNU AUAUALUAL AUALAUAL NUAUALAL AUAL AL AL

81

Chapter 6 SELECTING

PROBLEM: Suppose you have constructed a matrix DEPN of annual
depreciation rates to be used for assets which have
depreciable lives of 20 years. DEPN has 20 rows and 12
columns. DEPNI[Y;M] is the fraction of the asset to be
depreciated in the Yth year of its life for an asset
purchased in month M (1 for January, 2 for February, and so
on). Suppose YEAR is a 1000 element vector of the ages (1
to 20) of 1000 assets and MONTH is a 1000 element vector of
the months of purchase (1 to 12) for the corresponding
assets. Determine the annual depreciation rates for these
assets.

TOPIC: Scattered Point Indexing

A common mistake made when solving this problem is to try the
following:

DEPNILYEAR ;MONTH]

This expression shows nicely what you want to do but unfortunately
does not do it. The shape of the result of matrix indexing is the
catenation of the shape of the row indices with the shape of the
column indices. Since YEAR has shape 1000 and MONTH has shape 1000,
the result has shape 1000 1000. These 1,000,000 elements are the
rates for every combination of the elements of YEAR and the elements
of MONTH.

If you can picture this 1000 by 1000 element matrix in your mind's
eye, you can see that the desired rates are sitting on the diagonal.
The other rates are superfluous. If you have experimented much with
dyadic transpose (&), you know that it can return the diagonal
elements of a matrix argument by providing a left argument of 1 1 (in
origin 1). Therefore, a correct expression to solve this problem is:

1 1 ®DEPNLYEAR;MONTH]

Unfortunately, this expression requires room in your workspace for
the temporary 1000 by 1000 table. This may cause a WS FULL error.
Even if available workspace is not a problem, the extraction of
1,000,000 rates when you need only 1000 is extremely inefficient.

An alternate approach to this problem is to view DEPN as a vector.
The vector has 240 elements and is derived by raveling the matrix
DEPN. Our job is to pack the vectors YEAR and MONTH into a single
vector of indices into the raveled DEPN. The desired indices may be
computed by the expression,

MONTH+12xXYEAR-1

...82_

Chapter 6 SELECTING

Thus, the desired result may be computed from the expression,
(,DEPN) [MONTH+12XxYEAR-11]
This type of problem is called a ''scattered point indexing" problem
because the desired elements to be selected from the matrix are
scattered throughout it. Normal matrix indexing (MATI[ROWS;COLS1) is
useful only when the elements to be selected are in a rectangular
pattern.
Let us state the scattered point indexing solution in general terms:
(,MATRIX)[COLUMNINDEX+NUMCOLSXROWINDEX-11]

For a 3-dimensional array, the solution is:

(,ARRAY) [COLUMNINDEX+ (NUMCOLSXROWINDEX-1)+ (NUMCOLSXNUMROWS) X
PLANEINDEX-11

or:

(,ARRAY) [COLUMNINDEX+NUMCOLS*x (ROWINDEX-1) +NUMROWS x
PLANEINDEX-11]

When performing scattered point indexing in origin 0 (0IO«0), the
"-1" portions of the above expressions disappear:

Matrix (origin 0):
(,MATRIX) [COLUMNINDEX+NUMCOLSXROWINDEX]
3-D array (origin 0):
(,ARRAY) [COLUMNINDEX+NUMCOLSXROWINDEX+NUMROWS*xPLANEINDEX]

For this reason, scattered point indexing is frequently done in
origin 0.

NUAUAUAY AUAURNUAY AUAUAUAY T AUAUAUAY T AUAUAUAL D AUAUAUAY D AUALUAUAL AU AU AU AL

83

Chapter 6 SELECTING

PROBLEM: What algorithm may be used to return the unique values (UN)
from a numeric vector (NV)? The unigque values (UC) from a
character vector (CV)?

TOPIC: Unique (Distinct) Values

Determination of the unique, or distinct, values is a common problem
in the world of data processing. For example, given 1000 sales
transactions which each include the salesperson number, you may want
to compile a list of the numbers of the salespeople who had sales.
If only 60 salespeople accounted for all 1000 sales, you would want
to determine the numbers of those 60 salespeople. (You might also
want to know the number of sales and the total dollar value of the
sales attributed to each salesperson. These topics are covered in
the next chapter.)

To illustrate the algorithms discussed in this section, we will use
the following vectors:

NV

30 20 20 30 10 50 10 10
cv

BOOKKEEPER

Oour task is to return the vectors UN and UC:

UN
30 20 10 50
uc
BOKEPR

Since the problem of determining distinct values can be viewed as a
searching problem, the most obvious algorithm uses the APL searching
primitive, dyadic L. Consider the result when you search the
elements of a distinct vector for its own elements:

8 97 15 18 9 7 15
1234

However, if the elements are not distinct, the pattern of the result
is not so regular:

NVLNV
12215655

In fact, wherever the result deviates from the vector of generated
indices (1pNV), the corresponding element is a repeat value, i.e. has
occurred earlier in the vector. To flag the distinct values then:

(NVLNV) =1pNV
11001100

84

Chapter 6 SELECTING

And to select the distinct values:

O0€UN«((NVLNV)=1pNV)/NV * Algorithm 1 =
30 20 10 50

Notice that this algorithm returns the distinct values in the same
order as they first appear in the target vector. This algorithm also
works on character vectors:

((CVLCV)=1pCV)/CV
BOKEPR

Since this algorithm depends upon the behavior of dyadic i, it may
also be used with functions which emulate dyadic 1. For example, if
your task is to determine the distinct rows in the character matrix
NAMES, you may do so with the following expression (given CMIOTA from
the previous chapter):

((NAMES CMIOTA NAMES)=11ppNAMES)#NAMES

When using this algorithm on a large vector (say, 2000 or more
elements), the dyadic L portion of the algorithm may require a
significant amount of processing time. A more efficient algorithm
may be constructed which uses the (typically very efficient) grade-up
(A) primitive function.

Sort the vector:

O«SORTED¢NVL[ANV]
10 10 10 20 20 30 30 50

Shift the elements of the sorted vector to the right and compare to
the sorted vector to flag the first distinct value in each run of
like values:

“1¢SORTED
50 10 10 10 20 20 30 30
O0¢«FIRST¢«SORTED# "1$SORTED
10010101

Unfortunately, if the values in the vector SORTED are all the same,
the vector FIRST will be all zeros. Yet the first value of FIRST
should be 1. The following expression will set the first (in either
origin) element to 1, and will have no effect if FIRST is an empty
vector:

FIRSTILXpFIRST]¢1
Finally, select the first distinct value in each run:

O0¢UN¢FIRST/SORTED
10 20 30 50

85

Chapter 6 SELECTING

Notice that this algorithm returns the distinct values in ascending
order (descending if ¥ is used). The entire algorithm follows:

SORTED¢NVL[4NV] * Algorithm 2 =
FIRST¢«SORTED# "1®SORTED

FIRSTLUXpFIRSTI¢1

UN¢FIRST/SORTED

The algorithm works on character vectors once you manage to sort the
characters. If your implementation of APL supports dyadic grade-up,
you may replace the first statement by:

SORTED¢CVLOAVACV]
If it does not, you may replace the first statement by:
SORTED«CVL[AOAVLCV]

As with numeric vectors, the distinct elements in the final result
are in ascending order (where DAV, the atomic vector, defines the
collating sequence).

You may determine the distinct rows (UNAMES) of a character matrix
(NAMES) using this algorithm if you are able to sort the matrix. If
your implementation of APL supports dyadic grade-up, do the following:

SORTED¢NAMES [OAVANAMES ; 1
FIRST¢Vv/SORTED# "1eSORTED
FIRSTILXLpFIRSTI¢1
UNAMES€¢FIRST#SORTED

If your implementation does not support dyadic grade-up, use the
CGRADEUP function developed in the previous chapter.

The expression CVI[AOAVLCV] in the statement above suggests another
algorithm for determining the distinct elements of a character
vector. Consider the meaning of the expression CV1i0AV, or better
still, the expression OAVeCV. The result of the latter expression is
a 256 element Boolean vector that flags the elements of DAV which are
in CV. Since the elements of OAV are distinct by definition, the
remaining step is to use the Boolean vector to select the
corresponding elements from OAV. The complete algorithm:

UC«(0AVeCV) /OAV * Algorithm 3 *
Like algorithm 2, this algorithm returns the distinct values in
ascending order (according to OAV). In some implementations of APL,
€ is extremely fast on character data. In others, it is not. 1If
not, use algorithm 1 or 2.

Extending this algorithm to numeric (or at least integer) data will
produce ridiculous expressions like:

UN¢((L1E30)€NV)/11E30

-86-

Chapter 6 SELECTING

which will hopefully generate a WS FULL error message rather than run
into the next century. When we stop to consider the philosophy of
the algorithm rather than its implementation, however, a very clever
algorithm emerges.

The philosophy is to consider the nature of the values in NV. The
expression above assumes that all elements of NV are integers between
1 and 1E30 (origin 1). A more realistic problem would have the
values between, say, 1 and 100. Let us view these values as indices
rather than numbers and use them as such. Initialize a Boolean
vector to have 100 zeros:

BIT«100p0

Use the numeric (index) vector to index assign 1s into the Boolean
vector:

BITENVI1el

Duplicates in NV are essentially discarded. The final step is
similar to the final step in algorithm 3:

UN¢BIT/1100

Notice that this algorithm returns the distinct values in ascending
order, that it works only on positive integers (0IO and up), that the
maximum value (MAX) must be known and not too large (else WS FULL on
MAXp0). This algorithm is extremely fast on vectors of any size and
for any APL implementation. The entire algorithm follows:

BIT«(MAX+~0I0)p0 * Algorithm 4 =
BITINVIe¢l
UN¢BIT/1pBIT

AUALUALAL AUAUAUAY AUALAUAY AUAUAUNU S AUAUALAL S AURUALURL AUAURNUAL AUAU AL AL

_.87..

Chapter 6 SELECTING

PROBLEM: For each of the unique-value algorithms presented in the
last section, what additional logic must be included to
also return the indices (INDS) of the numeric vector (NV)
or character vector (CV) into the vector of distinct values
(UN or UC)? For example, suppose NV and UN have the
following values:

NV

30 20 20 30 10 50 10 10
UN

30 20 10 50

The desired value if INDS is:

INDS
12213433

TOPIC: Translating Distinct Values to Distinct Indices

The obvious solution to this problem is:
INDS«UNLNV or INDS«UCLCV

These indices are useful when performing frequency counts or
accumulations. These topics are covered in the next chapter.

While obvious, the dyadic U approach may not be the most efficient
technique for computing these indices, depending upon the
unique-value algorithm being used.

In the case of Algorithm 1, a dyadic U is already being performed so
there is no need to do it again. Instead:

UN&(B«(I€NVLNV)I=1pNV)/NV * Algorithm 1 =
INDS«(B\1pUN)IL[I]
or: INDS«(+\B)[I]1-~0OIO

The expansion in the second statement or the cumulative sum in the
third are typically more efficient than another dyadic .

In the case of Algorithm 2, the grade-up operation removes the need
to perform dyadic .. Instead:

SORTED¢NVI[G«4NV] * Algorithm 2 *
FIRST¢«SORTED# "1$¢SORTED

FIRSTL1xpFIRST]¢1

UN¢FIRST/SORTED

FIRSTI1XpFIRSTI«OIO

INDS¢«(oFIRST)p0

INDS[Gl«+\FIRST

88

Chapter 6 SELECTING

The fifth statement sets the first element of FIRST to 1 or O
depending upon the index origin. The statement is needed only if you
may be working in origin 0 since the first element of FIRST will
already be 1 (unless FIRST is empty). The plus scan (+\) and
indexing operations in the last statement are typically more
efficient than another dyadic 1. The last two statements are
required to "unsort" the indices so that they are in the order of the
elements of NV rather than of SORTED. A simpler, though less
efficient, statement may be used in place of the last two statements:

INDS«(+\FIRST)[4G]

In the case of Algorithm 3, there is no way to avoid the dyadic .
So:

UCe«(OAVeCV) /0AV * Algorithm 3 +
INDS«UCLCV

In the case of Algorithm 4, there is no need to do the dyadic U for
the same reason there is no need to do any searching when determining
the distinct values:

BIT«(MAX+~0I0)p0 * Algorithm 4 *
BITINV]e¢l

UN¢BIT/1pBIT
INDS«(BIT\1pUN)[NV]

AUAUNUAL AUAUAUAY AUAUALUAUY AUALAUAY AURAUAUAY AUALAUAY AUAUALAL AUALALAL

PROBLEMS: (Solutions on pages 337 to 339)
1. What APL expression will select every other element (1st, 3rd,

5th, ...) of a vector V which has an even number of elements?

2. What APL expression will return a vector of the elements on the
diagonal of the square matrix M?

3. What APL expression will return the Nth column of the matrix M as
a vector, where N is the value of the last element of the vector
v?

-89-

Chapter 6 SELECTING

4. In a character matrix NAMES of passenger names, the last names
precede the first names and are separated from them by a slash
(/). What APL expression(s) will replace the slashes with commas
(,)?

5. As an actuary, you need to determine the mortality rates for a
set of 500 policyholders. You have a 3 dimensional '"select and
ultimate" table of mortality rates named RATES. RATES has shape

2 100 16. The first dimension is sex (female, male). The second
dimension is issue age (0 to 99). The third dimension is
duration from issue (0 to 15 years). You have three 500 element

vectors: SEX, IAGE, DUR. The elements of these vectors are in
1-to-1 correspondence with the 500 policyholders. SEX indicates
the policyholder's sex (0=female; l-male). IJAGE indicates the
issue age (0 to 99). DUR indicates duration from issue (0 to 15
years).

A. Construct the 500 element vector MRATES of the mortality rates
for these 500 policyholders.

B. Suppose some of the durations from issue (elements of DUR)
exceed 15. For these policies, use duration 15 (the
"ultimate" duration) but increase the issue age by the amount
that the duration exceeds 15. Construct MRATES.

C. Suppose you receive a memo which informs you that 40 of the
elements in RATES are incorrect and must be modified. From
the information in the memo, you construct 4 vectors of length
40: NEWRATES, the correct rates; NEWSEX, the sexes for the
new rates; NEWIAGE, the issue ages for the new rates; NEWDUR,
the durations for the new rates. Insert the new rates into
RATES.

6. Write the monadic function UNQNV which returns the distinct
elements of its numeric vector argument. Write UNQCV to return
the distinct elements of its character vector argument. Write
UNQCM to return the distinct rows of its character matrix
argument.

Write the dyadic functions UNQI1 and UNQIO which return the
distinct elements of their index vector right arguments (origin 1
or 0 indices respectively). The left argument of UNQI1 or UNQIO
is a scalar of the number of possible indices. For example, a
left argument of 5 for UNQIO implies that all indices in the
right argument are elements of the set 0 1 2 3 4.

In addition to the distinct values, each function should compute
the indices of the right argument values into the resulting

90

Chapter 6 SELECTING

distinct values. Assign the indices to the global variable
<ind>. Place lamps (A) in front of the lines which compute <ind>
so that the indices are not computed unless the lamps are removed.

91

Chapter 7

FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

The often used APL expression +/A adds up the elements of the
array A in such a way that one of the dimensions of A is eliminated,
or "reduced". If A is a 1000 element vector, the result is a scalar
whose one element is the sum of the 1000 elements of A. Typically,
the elements of a vector represent measurements or counts of
respective real world items. Then, the result of the expression +/A
represents the sum of the measurements or counts for all items.

Frequently in the business world, we tend to categorize items rather
than lump them together. For example, 1000 sales transactions may be
categorized by retail outlet or by salesperson or by product or by
day, and so on. In such an environment, we may want to "reduce" the
1000 element vector of invoice amounts into 10 sums (say, by
salesperson) rather than into just a single grand total. Such a
problem has traditionally been called an "accumulation" problem in
APL. Naturally, to solve such a problem, we need a corresponding
1000 element vector whose values indicate the salesperson responsible
for each transaction (e.g. salesperson number). Such a vector is
called a '"classification" vector.

By analyzing the classification vector alone, we can answer questions
such as, "For how many transactions was each salesperson
responsible?'" Such a problem has been called a "frequency count"
problem in APL.

If a second classification vector is available which represents, say,
day of the week of the sale, we may want to look at sales broken down
(i.e. added up) by both salesperson and day of the week. 1In this
case, we want to reduce the 1000 element vector of invoice amounts
into a 10 (salesperson) by 7 (days of the week) matrix. Such a
problem has been called a ''cross-tabulation" problem in APL.

To avoid ambiguity from existing terminology, we present the
following terminology and definition:

-92-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

"n-way plus reduction on dimension d of array A by
classification 1, classification 2, ..., and classification n"

The summarization of array A across dimension d such that
dimension d is replaced by n new dimensions whose magnitudes
are the number of classes defined for the corresponding
classifications 1, 2, ..., n.

Let us try this terminology on an example. Suppose you have
information on 1000 life insurance policies. A subset of the
information is listed below:

Issue Underwriting
Age Sex Class Death Annual
[0 to 991 [M,F1] [S,A,B,C,DI] Benefit Premium

(IAGE) (SEX) (UCLASS) (DBEN) (APREM)
36 M C 150 130
27 M S 100 75
42 F S 80 85
50 M B

The names IAGE, SEX, UCLASS, DBEN and APREM represent the names of
the APL variables containing the corresponding data. Each variable
is a 1000 element vector. SEX and UCLASS are character vectors and
the rest are numeric vectors. Here are a few of the plus reductions
that can be performed on these data:

1. The O-way plus reduction of APREM. This is simply +/APREM.

2. The 1-way plus reduction of APREM by SEX. This is the 2 element
vector (+/(SEX='M')/APREM), (+/(SEX='F')/APREM).

3. The 3-way plus reduction of DBEN by AGE, SEX and UCLASS. This is
a 100 (ages) by 2 (sexes) by 5 (underwriting classes) array whose
elements contain the sums of the elements of DBEN for each
combination of AGE, SEX and UCLASS. Notice that the result
coincidentally has 1000 elements, the same number of elements as
DBEN, the vector being '"reduced". The number of elements has not
been reduced at all. 1In fact, if another classification were added,
the result would contain more elements than the vector being
reduced. Most of the elements of the result will be 0. The data
will have become so finely classified that each '"cell" (i.e.
combination of classes) in the result contains at best a few policies.

4. The l-way plus reduction of 1 (or (pSEX)el) by SEX. This is the
frequency count by sex: (+/SEX='M'),(+/SEX='F').

-93-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

5. The 2-way plus reduction on dimension 1 of DBEN,[1.5]APREM by AGE
and UCLASS. This is a 100 (ages) by 5 (underwriting classes) by 2
(columns...the dimension not reduced) array whose elements contain
the sum of the elements of DBEN (column 1) and APREM (column 2) for
each combination of age and underwriting class.

AR AUAUAUAY AUAUAUANY AUAUAUNY AUAUAUNU NUAUALAY AUNUAUAL AUALAU A

PROBLEM: What is the frequency count (or l1l-way plus reduction of 1)
by issue age (IAGE) for the above insurance policies? Call
the result F. Accumulate (or 1l-way plus reduce) APREM by
the same ages. Call the result A.

TOPIC: One-Way Plus Reductions

Let us solve this problem first by using the classical APL approach,
which is simple but ignores efficiency considerations. The distinct
issue ages can be determined by using an algorithm discussed in the
previous chapter:

DIA¢«((TAGELIAGE)=1pIAGE)/IAGE

Next, use outer product to compare the vector of issue ages to the
vector of distinct issue ages:

MeDIAo.=IAGE
The result is a Boolean matrix with one row per distinct issue age
(say 40) and one column per policy (say 1000). Each column has
exactly one 1, marking the distinct age (row) to which that policy
(column) corresponds. The frequency count by distinct issue age
follows directly:

Fe+/M
and the accumulation of APREM by distinct issue age is not far behind:

A¢M+. xAPREM
The dimensions of M (say 40 by 1000) and APREM (say 1000) conform
along their inner coordinates allowing the matrix multiplication
(+.x) which reduces the inner coordinates (1000) and returns a vector
with the same number of elements as M has rows (40).

This approach is simple. However, it is inefficient and is prone to
WS FULL errors. 1Its inefficiencies stem from the many needless

-94 -

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

comparisons and computations which take place in the o.= and +.Xx
functions. 1Its WS FULL tendencies are caused by the potentially
gigantic result of the outer product (eo.=).

A more efficient approach uses the sort-and-shift techniques employed
in the previous chapter. Begin by sorting the ages in ascending
order (retaining the grade vector):

GRADE«ATAGE
SORTED¢«IAGE[GRADE]

Shift the elements of the sorted vector to the left and compare to
the sorted vector to flag the last distinct value in each run of like
values:

LAST¢SORTED#1¢SORTED

Unfortunately, if the values in the vector SORTED are all the same,
the vector LAST will be all zeros. Yet the last value of LAST should
be 1. To avoid this problem, you may instead use an odd expression
like the following (which assumes that no policyholder has issue age
T99):

LAST¢SORTED#1{SORTED, 99

Sometimes, using an arbitrary number such as 799 is not feasible.
Perhaps the vector could contain any conceivable value. The
following alternate expressions will set the last (in either origin)
element to 1, and will have no effect if SORTED is an empty vector:

LAST«SORTED#16SORTED
LASTL ("1+pLAST)+1xpLAST1¢1

Select the last distinct value in each run:
DIA¢LAST/SORTED

You may have noticed that we determined the distinct values
differently than in the previous chapter. There, we constructed a
bit vector FIRST which flagged the first 1 of each run of like
values; here, we constructed a bit vector LAST which flagged the last
1 of each run. The reason for this minor change of algorithm is that
LAST is more useful for determining the 1-way plus reductions.
Consider the meaning of the expression:

CUM¢LAST/LpLAST

CUM has one element per distinct issue age. The values are the
cumulative frequency counts (in origin 1). If we can undo the
cumulative effect, we will have the frequency counts. Cumulative
sums are undone by taking the first differences:

FeCUM- (pCUM) 0 ,CUM

95

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

To accumulate APREM, we use the same approach. Reorder APREM to be
in 1-to-1 correspondence with the sorted issue ages (SORTED);
determine the cumulative sum; select the last element for each run:

CUM¢LAST/+\APREMIGRADE]
Compute the first differences to get the desired result:

A¢CUM-(pCUM)p0O,CUM
This algorithm is extremely efficient, especially on large vectors.
As vectors get larger, the required processing time generally
increases linearly for this grade-up (4) based algorithm; but it
increases exponentially for the outer product (e.=) based algorithm.
This algorithm works just as well on character classification vectors
(e.g. UCLASS or SEX) as it does on numeric classification vectors
(e.g. IAGE). Just begin by converting the characters to indices.
For example:

GRADE«4 'SABCD' LUCLASS

or

GRADE<¢«' SABCD' AUCLASS

Use the latter expression if your implementation of APL supports
dyadic grade-up, and the former expression if it does not.

AUAUAUAY AUAUALUAY T AUAUAUAY AUAUAUAY AUAUAUAY AUAUAUAL S AUAUAUAL AUAUAULAL

PROBLEM: Generate a 3 by 10 by 2 by 5 array (SMRY) which summarizes
(or 3-way plus reduces) the above insurance policies by
age, sex and underwriting class. The definition of SMRY

follows:
SMRY[1l;;;]1 Total death benefits
SMRY[2;;:;]1 Total annual premiums

SMRY[3;;;]1 Frequency count (number of policies)

SMRY[;I;;] Age group I (1 is 0-9; 2 is 10-19; ...:
10 is 90-99)

SMRY[;;J;] Sex group J (1 is male; 2 is female)
SMRY[;; ;K] Underwriting group K (1 is Standard; 2 is A;
3 is B; 4 is C; 5 is D)

..96_

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

TOPIC: N-Way Plus Reductions

This problem is awkward to solve using inner product and outer
product techniques. The solution is confusing, WS FULL prone and
inefficient.

A neater solution arises when you look at the problem backwards.
Consider the result SMRY. The three elements defined by SMRYI[;:I:J;Kl]
are affected by just those policies belonging to age group I, sex
group J and underwriting group K. Conversely, each policy affects
exactly one set of three elements in the result.

To simplify the discussion, let's consider just SMRYI[3;;:;1, i.e.
frequency counts. The first element of this array represents the
number of policies in age group 1, sex group 1 and underwriting group
1. The second element of this (raveled) array represents the number
of policies in age group 1, sex group 1 and underwriting group 2.

And so on. The last (100th) element of this (raveled) array
represents the number of policies in age group 10, sex group 2 and
underwriting group 5.

By considering the result as a vector, you may treat this problem as
a 1l-way plus reduction (100 classes) rather than as a 3-way plus
reduction (10 by 2 by 5 classes). All that remains is to pack
together the values of the three classification vectors (IAGE, SEX,
UCLASS) such that the resulting packed classification vector has
values which distinctly identify the cell of the result affected by
the corresponding policy.

The ideal packing scheme is one which converts the classification
values for each policy directly into the index of the affected
element in the raveled result. For example:

Raveled
Result
IAGE SEX UCLASS Index (RRI)
36 (4) M (1) Cc (4) 34 (origin 1)
27 (3) M (1) S (1) 21
42 (5) F (2) S (1) 46
50 (6) M (1) B (3) 53

The formula being used here is:
RRI¢UCLASSINDEX+(5XSEXINDEX-1)+(10XxIAGEINDEX-1)

When working in origin 0, the formula is a bit simpler:

._97_

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

Raveled
Result
IAGE SEX UCLASS Index (RRI)
36 (3) M (0) C (3) 33 (origin 0)
27 (2) M (0) S (0) 20
42 (4) F (1) S (0) 45
50 (5) M (0) B (2) 52

RRI<UCLASSINDEX+ (5XSEXINDEX)+ (10XxIAGEINDEX)

The 5 in the above formula refers to the number of elements in each
row of the result (i.e. the number of UCLASS classes). The 10 refers
to the number of elements in each plane (i.e. the number of UCLASS
classes times the number of SEX classes).

The computations of UCLASSINDEX, SEXINDEX and IAGEINDEX are
straightforward:

OI0«0
UCLASSINDEX¢'SABCD' LUCLASS
SEXINDEXe¢'F'=SEX
TAGEINDEX«LIAGE+10

The elements of the vector RRI are all integers between 0 and 99.

You may then use logic from the prior section to determine the
distinct values in RRI and the corresponding frequencies (l-way plus
reduction of 1) and l1-way plus reductions of APREM and DBEN. If you
initialize the result to be an all-zero vector of the desired length
(the length of the raveled result), you may simply index assign the
derived frequencies and sums using the corresponding distinct indices
from RRI. Finally, reshape the result to the proper shape.

The complete logic follows:

A Use origin 0 throughout:
O0I0«0

A Index in result of column affected by policy:
UCLASSINDEX¢'SABCD' LUCLASS

A Index of row affected:
SEXINDEX¢'F'=SEX

A Index of plane affected:
IAGEINDEX¢LIAGE+10

A Index in raveled SMRY[O0;;;] affected:
RRI¢UCLASSINDEX+5XSEXINDEX+2XTAGEINDEX

A Sort result indices in ascending order:
GRADE«4ARRI
SORTED¢RRIIGRADE]

A Shift to left and compare to flag last distinct values:
LAST¢SORTED#1lSORTED, "1

A Select last distinct value in each run:
URRI«LAST/SORTED

98

Chapter 7

FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

A Initialize 3 raveled all-zero arrays for SMRY[O;;;1,
A SMRYI[1;;;] and SMRY[2;;;1:
SMRY(0¢SMRY1«SMRY2€¢(10%x2x5)p0

A One-way plus reduce DBEN and insert into SMRYO:
CUM¢«LAST/+\DBENLGRADE]
SMRYO[URRI]«CUM-(pCUM)p0O,CUM

A Ditto for APREM into SMRY1:
CUM«LAST/+\APREM[GRADE]

SMRY1[URRI 1¢CUM- (pCUM) o0, CUM

A Ditto for frequency count into SMRY2 (origin 0):
CUM¢LAST/lLpLAST

SMRY2[URRI1¢CUM-(pCUM)p ~1,CUM

A Catenate and reshape:

SMRY¢3 10 2 5 pSMRYO,SMRY1l,SMRY2

O0IO0«1

The logic above can be shortened somewhat if you choose to view the
problem as a single 3-way plus reduction on the last dimension of the
three row matrix whose rows are DBEN, APREM and all 1ls. Then, the
logic is:

URRI«LAST/SORTED

SMRY«(3,10%x2%x5)p0

CUM¢LAST/+\ (DBEN,[O0]JAPREM,["0.511)[;GRADE]
SMRY[;URRI1¢CUM-(pCUM)10,CUM

SMRY¢3 10 2 5 pSMRY

0I0«1

Once this 4 dimensional array has been constructed, many questions
can be answered by performing a few simple indexing and plus
reduction operations. For example (origin 1):

1. How many males and females?

+/[11+/[31SMRY[3;;:1]

What is the total death benefit by sex and underwriting class
(2 row, 5 column matrix)?

What
row,

What

+/0{11SMRY[1;;;]

is the average annual premium by age group and sex (10
2 column matrix)?

+/[11+/L41SMRY[2 3:::]1

is the death benefit, annual premium and frequency

breakdown by age group and underwriting class, where ages are
broken into 5 groups: 0 to 19; 20 to 39; ...; 80 to 997

+/[3]1 3 5 2 5 p+/[31SMRY

99

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

AUNUNUAL AUASNUAL T AUAUAUAL NUNUALAL T AUALRUAY NUAUAUAS AUAUAUAL AuAas ALy

PROBLEM: Generate a 2 by 10 by 5 array (MAX) which contains the
maximums of (or 3-way maximum reduces) the above insurance
policies by age, sex and underwriting class. The
definition of MAX follows:

MAX[1;;;] Maximum death benefits
MAXI[2;3;;]1 Maximum annual premiums

MAX[;I;J;K] Maximum death benefit and annual premium
for age group I, sex group J, underwriting
group K.

TOPIC: N-Way Maximum and Minimum Reductions

This problem is no different from the problem in the prior section
except an n-way maximum reduction is being performed instead of an
n-way plus reduction. Consequently, the same solution works, up to a
point. That point in the above solution is:

SMRY0¢SMRY1¢SMRY2¢(10Xx2X5)p0
CUM«LAST/ +\DBEN[GRADE]
SMRYO [URRI 1¢CUM- (pCUM) 00, CUM

Unfortunately, you may not simply substitute I\ for +\. The
algorithm happens to work for +\ because of the nature of addition.
We must find a comparable algorithm which will work for maximum (and
hopefully minimum).

One such algorithm involves the grade-up (4) function. The idea
behind the algorithm is to sort the values within their respective
classes (i.e. within like values of SORTED) and then use LAST to
select the maximum in each class. Stated differently, you must
perform a two-key sort where RRI is the major key and the data (DBEN)
is the minor key. Do the minor key first:

G¢ADBEN
and then the major key:

G¢GL[ARRIIG]1]

Use this grade vector to reorder the values, and use LAST to select
the maximum in each class:

MAX«LAST/DBENIG]

-100-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

or quicker:
MAX¢«DBENLLAST/G1

The final step is to index assign MAX into the result variable
(MAX0). When performing the n-way plus reduction, we initialized
SMRYO as all zeros so that those classes which were not represented
by any policies (i.e. cells not index assigned) would show a plus
reduction result of zero (just as +/10 is 0). In mathematical
terminology, the "identity element'" of plus is 0. Likewise, you
should initialize MAX0 as a vector filled with the identity element
for maximum, which is negative infinity and is returned as nearly as
possible by the expression [/10. The rest of the solution is:

MAXO0¢MAX1¢(10%x2%x5)pl /10
MAXO{URRIJ«MAX

G¢<AAPREM
G¢GLARRIIG]]
MAX«APREMI[LAST/G]
MAX1[URRIJ¢<MAX

MAX¢2 10 2 5 pMAXO,MAX1
O0I0¢1

A different algorithm solves the problem without the use of

grade-up. It uses instead maximum scan (f\). In order for maximum
scan to be useful, the values in each subsequent class must first be
shifted up the number scale so that the maximum value of an earlier
class does not shadow the maximum value of a subsequent class. To
illustrate, suppose the values of LAST and DBENIGRADE] are as follows:

LAST
6 01 0o o0 O 1 0 1 1
DBEN[GRADE]

20 10 15 15 35 20 25 20 25 30

Suppose we add 100 to each value in the first class, 200 to the
second class, 300 to the third class and 400 to the fourth class:

120 110 115 215 235 220 225 320 325 430
The maximum scan of this vector is:

120 120 120 215 235 235 235 320 325 430
Using LAST to select from this vector produces:

120 235 325 430

Subtracting 100, 200, 300 and 400 from the respective classes gives
the desired maximums by class:

20 35 25 30

-101-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

For this logic to work, you must shift (add to) the values of each
class an amount which is at least equal to the difference between the
maximum value in the preceding class and the minimum value in this
class. Since your task is to determine these very maximums, you
cannot use these precise numbers. Rather, you can determine the
difference between the maximum and minimum values for the entire data
vector and use that amount.

The following are expressions which implement this algorithm as well
as numbers which illustrate the procedure:

D¢<DBENLGRADE] 20 10 15 15 35 20 25 20 25 30
DIFe(l/D)-1/D 25

FIRST¢ "10LAST 1001000101
T¢+\FIRST\DIF 25 25 25 50 50 50 50 75 75 100
UeLAST/T 25 50 75 100

ReD+T 45 35 40 65 85 70 75 95 100 130
ReTA\R 45 45 45 65 85 85 85 95 100 130
MAX¢(LAST/R)-U 20 35 25 30

The solution to the above problem using this algorithm can be written
as follows:

URRI€¢LAST/SORTED
MAXO€MAX1€(10x2%x5)pl /10

D¢«DBEN[GRADE]

DIF«(lF/D)-L/D

Te+\ ("1oLAST)I\DIF
MAXO[URRI 1« (LAST/I\D+T)-LAST/T

D¢APREMIGRADE]

DIF«(lI/D}-L\D

Te¢+\("10LAST)I\DIF
MAX1[URRI1I«(LAST/I\D+T)-LAST/T

MAX¢2 10 2 5 pMAXO,MAX1
O0I0«1

You can do both DBEN and APREM at once with some minor modifications:

URRI€¢LAST/SORTED
MAXe(2,10x2%x5)pl /10

D¢(DBEN,[~0.5]APREM) [; GRADE]
DIFe(T/D)-L/D

T¢DIFo.x+\ "10LAST

MAX[;URRIJ«(LAST/[\D+T)-LAST/T

MAX€¢2 10 2 5 pMAX

-102-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

There are potential problems with the maximum scan algorithm. If
there are many classes (i.e. 1s in LAST) and if the difference
between the maximum and minimum values of the data vector is large,
the values in the vector on which the maximum scan is being performed
will become immense. If they become too large (beyond 16 or so
significant digits), precision will be lost and the results may be
incorrect. Even if precision is not lost, the numbers may get large
enough to require internal floating point (usually 8 bytes per
element) representation rather than integer (usually 2 or 4 bytes per
element) representation. Consequently, the chances of a WS FULL
error will increase and processing speed will decline since floating
point numbers require more processing time than do integers.

Despite these potential problems, the maximum scan algorithm is a
useful and efficient algorithm.

If the problem at the beginning of this section were stated as a
minimum reduction problem rather than a maximum reduction problen,
the same two approaches could have been taken, with slight
modifications. Here are the solutions:

[grade-up algorithml

URRI«LAST/SORTED
MINO€MIN1e€(10x2X5)pL /10

G¢YDBEN
G¢G[ARRILG]]
MINOLURRII<«DBEN{LAST/G]

G¢YAPREM
G¢GLARRI[G]]
MIN1[URRI]J«APREMILAST/G]

MINe¢2 10 2 5 pMINO,MIN1
0IO0e1

[minimum scan algorithm]

URRI<¢LAST/SORTED
MIN€(2,10x2%x5)pl/10

D«(DBEN,["0.5]APREM) [;GRADE]
DIF«(T/D)-L/D

T¢DIFo.x+\ "10LAST

MINIL ;URRIJ«(LAST/L\D-T)+LAST/T

MIN¢2 10 2 5 pMIN

-103-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

AUALUAUAL AUNUALAL AUALNRNUAU . AUNUALAL AUNUAUAUY D AURUAU RS AUSUAUNY AU AU AL A

PROBLEM: Suppose the variable ACTIVE is a Boolean vector with the
same length as IAGE, SEX, DBEN, ... whose values indicate
whether the corresponding policies are active. Generate a
10 by 2 by 5 Boolean array (ALL) whose elements indicate
whether (1) or not (0) all of the insurance policies (as
defined above) are active within each possible age, sex and
underwriting class. That is, perform the 3-way
and-reduction (A/) of ACTIVE by age, sex and underwriting
class.

ALL[I;J;K]1] The and-reduction of ACTIVE for age group I,
sex group J, underwriting group K.

TOPIC: N-Way Logical Reductions

Once again, the solution to this problem is similar to that of an
n-way plus reduction. However, you need to devise an algorithm for
A/ comparable to that for +/:

SMRYO0¢(10%x2x5)p0
CUM¢LAST/+\DBEN[GRADE]
SMRYOLURRI 1«CUM-(pCUM)p0,CUM

Unfortunately, you may not simply substitute A for + in the above
logic. One simple solution may be derived from the knowledge that
the A/ is true if the +/ equals the frequency count. As with the I/
and L/ problems of the last section, you must begin by initializing
the result with the identity element for the reduction function. The
identity element for A is one, i.e. 1=A/10. The explanation for the
identity element is: for any Boolean array B, (1AB) and (BAl) always
return exactly B, so 1 is the identity element for A. The algorithm
is:

ALLe(10%x2x5)p1
CUM¢ (LAST/1pLAST)-LAST/+\ACTIVELGRADE]
ALL[URRI1¢CUM=(pCUM)p~1,CUM (71 for origin 0)

A second algorithm takes advantage of the fact that (A/B) produces
the same result as (~v/~B). To perform the v/, we need not compute
the frequency count. Instead, we know that the v/ is true if the +/
is not equal to 0. The algorithm is:

ALL¢(10x2x5)pl

CUM¢LAST/+\~ACTIVE[GRADE]
ALLIURRI 1«CUM=(oCUM) 00, CUM

-104-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

A third algorithm may be employed which is based entirely on Boolean
techniques. Since these techniques are discussed in the Boolean
Techniques chapter, the algorithm is presented here without
explanation:

ALL¢(10%x2x5)p1
B¢ACTIVE[GRADE]

CUMé (LAST=B) /LAST
ALLIURRI 1« (LAST/B)ACUM/ “10CUM

Notice that this algorithm uses no arithmetic function and makes
heavy use of Boolean functions (z, A and /). In some implementations
of APL, Boolean functions have been optimized to be extremely fast.
In such implementations, the third algorithm will dramatically
out-perform the first two. You should time the alternative
algorithms in your own environment before deciding among them.

If the problem at the beginning of this section were stated instead
as an or-reduction (any) problem rather than an and-reduction (all)
problem, similar approaches could have been taken, with slight
modifications. Here are the solutions:

[sum algorithml
ANY«(10x2x5)p0 (note: 0=v/10)
CUM¢«LAST/+\ACTIVEIGRADE]
ANY[URRI 1¢CUM# (oCUM)p0,CUM

[Boolean techniques algorithml
ANY«(10%x2x5)p0
B¢«ACTIVE{GRADE]

CUMe(LASTVB) /LAST
ANY[URRI1«(LAST/B)=CUM/ ~1¢CUM

AUAUAUAL AUNUALUAY AUAUAUAY AUAUAUAL AUAUAUAL AUAUAUAY AUALALAL AuAL AU AL

PROBLEM: Define the syntax of utility functions for performing
frequency counts, accumulations and cross-tabulations in
APL.

TOPIC: N-Way Reduction Utility Functions
We will approach this problem by first imagining an extension to APL

which can solve the problems of the previous sections. Imagine an

-105-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

extension to the definition of the primitive APL reduction operator
(@/) so that it will accept the following dyadic syntax:

re(dshape;civecl;civec2;...;civecN)@/[dlarray
where:
array = array being reduced;
d = dimension of array being reduced;
dshape = the shape to which dimension d is "reduced'"; dshape has
N elements if an N-way reduction is to be performed;
civeci = the class index vector for classification i (1=i=N for

an N-way reduction); civeci has the same length as
dimension d and its values are indices (origin
dependent) which identify the class indices into which
the corresponding dimension 4 arrays are to be grouped;
the values of civeci are all elements of idshapelil;

r = the N-way (where N=pdshape) @ reduction (where @ is any
scalar dyadic function) on dimension 4 of array by
classifications cvecl, cvec2, ..., cvecN.

This syntax calls for multiple left arguments (N+1 for an N-way
reduction) where the arguments are separated by semicolons (;) and
are enclosed in parentheses. Since the monadic form of reduction is
a 0-way reduction, it is equivalent to the dyadic form in which a
single empty vector left argument is provided.

re(10)@/[dlarray > re@/fdlarray

Note that the dyadic reduction functions (except 0-way reduction) are
origin sensitive since the left arguments contain indices.

We may illustrate the use of this syntax by using it to solve the
problems of the previous sections. We assume origin 1.

One-Way Plus Reductions:

DIA«((TAGELIAGE)=1pIAGE)/IAGE
JAGEIND¢«DIAL1IAGE
Fe¢(pDIA;IAGEIND)+/1
A¢(poDIA;IAGEIND)+/APREM

-106-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

N-Way Plus Reductions:

UCLASSIND¢' SABCD' LUCLASS

SEXIND«'MF'1SEX

IAGEIND¢«1+LIAGE+10

SMRY«(10 2 5;IAGEIND;SEXIND;UCLASSIND)+/DBEN,[1]APREM,[.5]11

N-Way Maximum and Minimum Reductions:

MAX¢(10 2 5;TAGEIND;SEXIND;UCLASSIND)I/DBEN,L[.5]1APREM
MIN¢(10 2 5;IAGEIND;SEXIND;UCLASSIND)L#DBEN,[1.5]APREM

N-Way Logical Reductions:

ALL«(10 2 5;TAGEIND;SEXIND;UCLASSIND)A/ACTIVE
ANY« (10 2 5;IAGEIND;SEXIND;UCLASSIND)V/ACTIVE

The syntax of dyadic reduction as described in here is adequate as a
model for user-defined utility functions. Unfortunately, current APL
systems do not allow multiple left arguments (unless they are packed
together into a single '"nested" array.) Also, optional arguments
(e.g. the d in +/0d]1} are not allowed. Therefore, we must make
compromises.

One possible syntax is the following:

r¢<(dshape,cindl,cind2,...,cindN, {d}) PLUSRED array
MAXRED
MINRED
ANDRED
ORRED
where:
array = array being reduced;
d = dimension of array being reduced;
dshape = the shape to which dimension 4 is "reduced"; dshape has
N elements if an N-way reduction is to be performed; d
is optional and defaults to the last dimension of array
if omitted;
cindi = the numeric suffix of the name of the global class index

vector for classification i (1s=i=N for an N-way
reduction); the name of the vector is 'I’,scindi (e.qg.
I3 or I6); the class index vectors have the same length
as dimension d of array and their values are indices
(origin dependent) which identify the class indices into

-107-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

which the corresponding dimension d arrays are to be
grouped; the values of the class index vectors are all
elements of itdshapelil;

r = the N-way (where N=pdshape) @ reduction (where @ is +

for PLUSRED, I for MAXRED, ...) on dimension d of array
by the classifications identified by cindl, cind2, ...,
cindN.

In the case of a scalar right argument (e.g. 1), PLUSRED replicates
the scalar to a vector with the same length as the class index
vectors. The effect is to return a frequency count by class (times
the value of the scalar).

We may illustrate the use of these utility functions by using them to
solve the problems of the previous sections. We assume origin 1.

One-Way Plus Reductions:

DIA¢«((TAGELIAGE)=1pIAGE)/IAGE
I1«DIALIAGE

F«((pDIA),1) PLUSRED 1
A¢((pDIA),1) PLUSRED APREM

N-Way Plus Reductions:

I2«'SABCD' LUCLASS

I3¢’'MF’'LSEX

T4¢1+LIAGE+10

SMRY«(10 2 5, 4 3 2) PLUSRED DBEN,[1]APREM,[0.5]1

N-Way Maximum and Minimum Reductions:

MAXe¢(10 2 5,

4) MAXRED DBEN,[0.5]JAPREM
MIN«(10 2 5, 4

3 2
3 2, 1) MINRED DBEN,[1.5]APREM

N-Way Logical Reductions:

ALL«(10 2 5, 4 3 2) ANDRED ACTIVE
ANY«(10 2 5, 4 3 2) ORRED ACTIVE

Notice that the following pairs of expressions produce identical
results:

-108-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

(10) PLUSRED array € +/array
O0IO0 PLUSRED array > +tfarray
2 PLUSRED array € +/[2]array

The writing of these utility functions is left as an exercise at the
end of this chapter.

AURNUAUAY AUAUNUAY T NUNUAUAY S AUNUAUAY AUNUNUAY AUNUNUNY AUNUAUAY AUAU AU AL

PROBLEM: Suppose you wish to compute the 3-way plus reduction by
age, sex and underwriting class of death benefits, annual
premiums and frequency counts (as presented in the N-Way
Plus Reduction section above.) How would you do this on
one million policies?

TOPIC: N-Way Reductions on Files

So far, we have considered only arrays which can be easily
manipulated within the active workspace. 1In this problem however, we
would need several 1,000,000 element vectors: TIAGE, SEX, UCLASS,
DBEN, APREM. In many implementations of APL, the active workspace is
not large enough to contain these variables. They must be broken
into smaller pieces and stored on a file.

The chapter, File Design and Utilities, discusses the application of
APL files for storing and manipulating large amounts of information.
In that chapter, a number of alternative file organizations are
described. One of them, the multi-set transposed file organization,
is a likely candidate for storing the one million policies introduced
above. Using that organization, the information is broken into
smaller pieces and each piece is stored as a single file component.
Suppose the pieces are 5000 element vectors. The file will consist of
1000 components (200 sets of 5 variables), each component containing
a 5000 element vector.

To compute the required 3-way reduction, you will read in one set of
the 5 variables (i.e. 5000 policies) at a time and apply the PLUSRED
function on them. Accumulate the results as you go. After 200
iterations (i.e. sets), you will be done.

The file utility function EXECUTE is designed for this type of
problem. It reads from file one set of information at a time for
specified variables and then performs any specified computations on
those variables. The left argument of EXECUTE identifies the file
being used (FP) and the variables ("fields") required. The right
argument of EXECUTE is a character vector representation of an APL

-109-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

expression to be executed once for each set. The variables F1,
F2,... (where the n in Fn is included in the list of field numbers in
the left argument) are assigned the values of the respective fields
for the current set.

Suppose the variables required for this problem are located in the
following fields of the file:

Field
Number Variable
3 IAGE
4 SEX
9 UCLASS
12 DBEN
13 APREM

You can add up the APREM variable (field 13) for all records on file
with the following statements:

SUM«0
(FP,13) EXECUTE 'SUM¢SUM++/F13'

The EXECUTE function will execute the expression SUM¢SUM++/F13 once
for each set on file. Before executing the expression, it will read
from file the 5000 element vector of APREM values for the current set
and will assign it to the variable name F13 (because the number 13 is
in the left argument of EXECUTE).

To perform the desired 3-way reduction, we write the following
function:

V SUMeXTAB;I3:;I4;1I9
Returns the 3-way plus reduction by age, sex and
underwriting class of death benefits, annual
premiums and frequency counts. Requires globals:
F3 (IAGE), F4 (SEX), F9 (UCLASS), Fl2 (DBEN),
[5] F13 (APREM). Requires fn: PLUSRED. Origin 1.
(61 Which age class?
[L71 I3¢1+LF3+10
[8]1 @A Which sex class?
[91 J4¢<'MF'LlF4
[10] A Which underwriting class?
[111] TI9«'SABCD’1lF9
[12] A Perform the 3-way plus reduction:
[13]1] SUMe«(10 2 5, 3 4 9) PLUSRED F12,[11F13,[0.511

v

(11
[21
[3]
[41]

D2D2DDDD®DD

Then we use EXECUTE to execute this function once for each set of
5000 policies:

SUM«0
(FP,3 4 9 12 13) EXECUTE 'SUM¢SUM+XTAB'

-110-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

AN AUANYAUAY AUAIAUNY AYAUAUAY AUAUAUAY AUAUAUAY AUAUAUAL T AU AU AU AY

PROBLEM: Suppose you need to perform a 2-way plus reduction by A and
B, another by B and C, and another by A and C. You could
perform the 3-way plus reduction by A, B and C and then
respectively plus reduce dimensions 3, 1 or 2 of the result
to generate the desired arrays. Taking this approach to
its extreme, you would always perform a single n-way plus
reduction by every possible classification and then use
monadic plus reduction to eliminate those dimensions not
needed for particular reports. What are the problems which
arise from taking this extreme approach? How can the
problems be overcome?

TOPIC: Milky-Way Reductions

We define a new term:

Milky-Way reduction: an n-way reduction in which you reduce by
every classification variable under the sun, generating a result
which may have an astronomical number of elements.

Performing Milky-Way reductions can improve your productivity and
reduce computer processing time consumed. Compare the following:

I7€1+LIAGE+10 (by IAGE)

I8¢« 'MF'lSEX (by SEX)

I9¢'SABCD' LUCLASS (by UCLASS)
Milky-Way: SMRY€«(10 2 5, 7 8 9) PLUSRED APREM

By SEX and UCLASS:

N-way: (2 5, 8 9) PLUSRED APREM
Milky-Way: +/[11SMRY

By IAGE and UCLASS:

N-way: (10 5, 7 9) PLUSRED APREM
Milky-Way: +/[21SMRY

By Sex:

N-way: (2, 8) PLUSRED APREM
Milky-Way: +/[11+/[31SMRY

Unfortunately, the number of elements in the result of a Milky-Way
reduction may be astronomical. Your active workspace may not be big

-111-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

enough to contain them. Even if it can contain them, the process of
plus reducing the array to a manageable size will be costly and time
consuming because of the tremendous number of values.

Ironically, the majority of the values are zeros. For example, if
you perform a 7-way reduction in which the 7 classifications
respectively involve 5, 6, 7, 8, 9, 10 and 11 classes, the result (on
a vector) will contain 1,663,200 elements (5x6x7x8x9x10x11),
regardless of the length of the vector being reduced. If the vector
contains 5000 elements, the result will contain at most 5000 nonzero
values. If the entities represented by the 5000 elements are
somewhat similar to one another, many of the entities will be
classified the same. Then there will be fewer than 5000 nonzero
values in the result, perhaps much fewer.

If we discard the zeros and retain just the nonzero values, the
result of a Milky-Way reduction is more manageable. Of course, we
must keep track of where the nonzero values belong in the result.

We propose the following functions:

Are¢(dshape,cindl,cind2,...,cindN,{d}) APLUSRED array
AMAXRED
AMINRED
AANDRED
AORRED

The meaning and syntax of these functions are identical to those of
the PLUSRED, MAXRED, MINRED, ANDRED and ORRED functions introduced
earlier in the chapter. The only difference between those functions
and these is the result. The result of these functions is a
"compressed Milky-Way array" which is a numeric vector whose elements
are defined as follows (origin 03}:

ar[0]1 R -- rank of the array right argument
Arfl] D -- dimension being reduced (origin 0)
Ar[2] N -- shape of dshape, i.e. the N for an N-way
reduction
Ar[3+1R] S -- shape of the reduced, but not expanded
(i.e. zero-filled), result
AYr[(3+R)+1N]1 DS -- resulting shape of dimension reduced,
i.e. dshape
Ar[(3+R+N)+1S[D1]1 RIND -- indices (origin 0) into the raveled

dshape dimensions of the existing (i.e.
nonzero) values
Ar[(3+R+N+S[D1)+1x/S] DATA -- raveled existing (i.e. nonzero) values

Since the results of these functions are not in very useful forms, we
need another set of utility functions to convert them back to the
more familiar multi-dimensional forms (including zeros where
appropriate). We propose the following functions:

-112-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

reways APLUSWAY Ar
AMAXWAY
AMINWAY
AANDWAY
AORWAY

The right argument of these functions is a compressed Milky-Way array
as returned by the corresponding functions APLUSRED, AMAXRED,
AMINRED, AANDRED or AORRED. The left argument is a vector of the
ways (i.e. indices from N for an N-way reduction) to be returned.
The result is the normal X-way reduction (where X=p,ways) as returned
by the functions PLUSRED, MAXRED, MINRED, ANDRED or ORRED.

For example:

A€(5 6 7 8 9 10 11, 1 2 3 4 5 6 7) APLUSRED NVEC

O0I0«1

02 4 6 APLUSWAY A
6 8 10

el 7 APLUSWAY A
5 11

02 APLUSWAY A
6

cp(10) APLUSWAY A
0

Finally, we need to address the problem of performing Milky-Way
reductions on files. When using PLUSRED, we execute an expression
like the following, once for each set of, say, 5000 records on file:

SUM«SUM+A PLUSRED B

This solution will not work with the Milky-Way reduction functions
since the values in SUM (after the first set) and the values in the
result of APLUSRED are not corresponding data values. They are,
instead, both compressed Milky-Way arrays. We propose the following
functions:

ACe€AA APLUS AB
AMAX
AMIN
AAND
AOR

These functions perform the +, I, L, A and v functions, respectively,
between two compressed Milky-Way arrays, returning a compressed
Milky-Way array. If either argument is an empty array, the other
argument is returned.

The solution for working with files, then, needs to be modified only
slightly when performing Milky-Way reductions:

ASUM€10 (before loop)
ASUM¢ASUM APLUS A APLUSRED B (within loop)

-113-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

The writing of these functions is left as an exercise below.

AUALAUAL NUALALAL AUNUAUAL AUNUALAL T AUAUAUAY AUAUAUAY AUAUALAL AUAU ALY

PROBLEMS: (Solutions on pages 340 to 361)

Given a 500 element character vector TZONE whose values represent
the time zones (E, C, M, P, H) in which each of your 500 fast
food restaurants are located, how many restaurants are located in
each time zone?

If SALES is a 500 element numeric vector whose values represent
the annual sales, in dollars, of the corresponding 500
restaurants of the prior problem, what are the annual sales by
time zone?

If TYPE is a 500 element character vector whose values represent
the restaurant types (B, C, P, S) of the corresponding 500
restaurants, how many (FRQ) restaurants of each type are located
in each time zone? What are the annual sales (AMT) for each of
these type/zone breakdowns? How large (MAX) was the largest
restaurant in each of these type/zone breakdowns?

Write one or more of the utility functions PLUSRED, MAXRED,
MINRED, ANDRED, ORRED defined in this chapter. Compare your
functions to the listings of those functions included in the
solutions at the back of the book.

Write one or more of the utility functions APLUSRED, AMAXRED,

AMINRED, AANDRED, AORRED, APLUSWAY, AMAXWAY, AMINWAY, AANDWAY,
AORWAY, APLUS, AMAX, AMIN, AAND, AOR defined in this chapter.

See the listings at the back of the book.

-114-

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

6.

Given the 500 element vectors TZONE, SALES and TYPE defined in
the questions above, suppose you also have the following data:

STATE 500 row, 2 column character matrix of state (postal code)

abbreviations indicating the states in which the
corresponding 500 restaurants are located.

MGR 500 element integer vector whose values represent the
regional managers responsible for the corresponding 500
restaurants; there are 6 managers and their respective
numeric codes are 301, 304, 310, 322, 329 and 333.

FIT 500 element numeric vector whose values represent the
annual federal income tax, in dollars, of the
corresponding 500 restaurants.

Using the utility functions presented in this chapter, generate
the following information:

1.

2.

Number of restaurants whose annual sales were $0 to $1
million, $1 million to 5 million, $5 million and up.

Number of restaurants, total sales and total FIT by state
(given a 50 row, 2 column matrix ALLSTATES of the distinct
state postal codes).

Total sales and total FIT by manager, annual sales volume
(0-1, 1-5, 5+ million) and type of restaurant.

Number of restaurants by state and type.

FIT by type and sales volume.

-115-

Chapter 8

WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

An interactive function is one which "prompts'" you to enter
information at the keyboard. 1In this chapter we discuss the
primitive capabilities available in APL for writing interactive
functions. We also define utility functions which make the primitive
functions easier to apply and friendlier to use.

NUAUAUAS T AUAUAUAY AUALAUAY AUNUAUAY URUNUNY AUASAUANY AUNUALAS T AUAU AU AL

PROBLEM: Write a function ASKUSER which prompts you to "ENTER
EMPLOYEE NAME", assigns the character vector response to
the variable NAME, prompts to "ENTER SALARY" and assigns
the numeric scalar response to SALARY.

TOPIC: Primitive Interactive Functions

The primitive niladic APL functions 0 (quad) and O (quote-quad) allow
user interaction. When invoked, both functions causes execution to
pause while you type information at the keyboard. When you press the
RETURN (or ENTER) key, the typed information is returned explicitly
and execution resumes. Graphically, the 0 and 0 represent "windows"
through which information passes to the computer from the outside
world. In general, O is used to enter numeric information and MO is
used to enter character information.

A simple solution to the stated problem follows:

VvV ASKUSER
[11 'ENTER EMPLOYEE NAME'
[2] NAMEe€l
[3]1] '"ENTER SALARY’
{41 SALARY«O
v

-116-

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

On the 1st and 3rd lines, the prompts are expressed as constant
character vectors. Since the vectors are not assigned to variable
names or otherwise used as arguments to functions, they are
displayed. This behavior is one of the great simplifications in

API: to generate output, just construct an array (as a constant or
as the result of an expression) and do not assign it to a variable or
otherwise use it. This is why the expression 2+3 causes 5 to display
but the expressions A¢2+3 or 6x2+3 do not cause 5 to display, even
though the same 2+3 operation is being performed.

This convention for generating output in APL is a mixed blessing.
While it is simple to generate output, it is sometimes unclear from
context whether or not output is being generated. For example, does
the following function line generate output?

{151 CRUNCH I

The answer depends upon whether or not the monadic function CRUNCH
returns an explicit result. If so, the result is not being assigned
and so will be displayed. If not, nothing will appear (unless output
is generated during the execution of CRUNCH). Because of this lack
of clarity, some APL programmers choose to show output explicitly by
assigning it to 0. For example:

153 O¢CRUNCH I

Note that the "window" analogy still holds when using 0O in this
context. Now information is passing from the computer to the outside
world. Not only does the O¢ convention add clarity, it also enables
you to locate (under program control) occurrences of output in case
you wish to direct output elsewhere (say, replace 'O¢' by 'OUTPUT ')
or turn it off altogether (say, replace 'O¢’' by 'O 0p').

Using this convention, let us rewrite our simple solution:

vV ASKUSER
[1] 0O'ENTER EMPLOYEE NAME'
[2] NAMEe[O
[31] O0«’ENTER SALARY'
[4] SALARY«[
v

When executing this function, you will see the following:

ENTER EMPLOYEE NAME

where the "_" symbol represents the location of the cursor (or print
mechanism) while the computer is awaiting your response.

Why is the cursor located at the beginning of the line below the
prompt? Output in APL (via O« or automatic output) is automatically
followed by a '"carriage return" (i.e. a newline). The only way to
suppress the succeeding carriage return is by assigning the output to

-117-

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

M, the other "window". In fact, the inclusion or exclusion of the
carriage return is the only difference between ¢ and [b¢. For
example, consider the following function:

v DISPLAY
{11 O¢'VALUES: '
[2] O€2 3 4
[31 0O«'.’

v

When you execute this function, you will see the following:

VALUES: 2 3 4.

Notice that the last statement uses O¢, causing the cursor to move to
the start of the next line for any subsequent output (including the 6
space indent you get in immediate execution mode).

How can we modify our solution to display the prompt and leave the
cursor beyond the prompt on the same line?

ENTER EMPLOYEE NAME:

Given the behavior of 0O« described above, we are compelled to try the
following:

{11 [Oe¢’'ENTER EMPLOYEE NAME: '
[2] NAMEeD

Sure enough, it behaves as we want it to:
ENTER EMPLOYEE NAME: LANDER, KEVIN

Unfortunately, when we check the value of the variable NAME, we find
that it contains not only the name but the prompt as well:

o NAME
34
NAME
ENTER EMPLOYEE NAME: LANDER, KEVIN

The 0O function returns every character on the line, whether put there
by 0O« or by user entry. (Some APL systems return the [0¢ characters
as blanks or stars or other designated characters.) Clearly, we need
to drop the prompt characters from the result of [:

[1] 0O¢'ENTER EMPLOYEE NAME: '
[2] NAME«21.10

The number 21 is the length of the prompt (including the trailing
blank).

-118-

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

Can we apply the same technique to the SALARY prompt? No. Quad (0)
input causes the characters "O:" to display. For example:

ENTER SALARY
O:

If we use [¢'ENTER SALARY: ', all we accomplish is to put the "O:" at
the end of the prompt line:

ENTER SALARY: Q:

If we want to eliminate the "0O:" from the prompt, we must use 0
input. However, the result will then be character valued. To
convert the characters to the numbers they represent, we must use
execute (¢). Our final solution is therefore:

Vv ASKUSER
{11 0[O¢'ENTER EMPLOYEE NAME: '
[2] NAMEe¢21.10
[3]1 0O¢'ENTER SALARY: '
{41 SALARY€¢¢1410
v

AUAUNUAY AUMUALUAL AUAUAUAY AUAUAUALY AUAUAUALY AUALUAUAY AUALAUAY AU AL AL AU

PROBLEM: Write utility functions which prompt for character vectors
or numeric vectors and which handle the problems associated
with each.

TOPIC: Utility Interactive Functions

First, we will define a monadic function CPROMPT (character prompt)
which will display its character vector right argument as a prompt
and will allow you to enter a response at the end of the same line,
returning your response as a character vector.

[WSID: INPUTI]
V R¢CPROMPT PROMPT
[1] ~n Displays character vector PROMPT, allows
[2] A keyboard input on same line and returns
[3]1 A character vector response.
[41] 0«PROMPT
[51 Ré¢(p , PROMPT) I
v

-119-

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

Note the use of ravel (,) on the 2nd line to handle the case in which
PROMPT is a scalar (e.g. ReCPROMPT '?').

Given this utility function, the solution to the problem of the last
section may be rewritten:

v ASKUSER
(1] NAME«<CPROMPT 'ENTER EMPLOYEE NAME: '
[2] SALARY«¢CPROMPT 'ENTER SALARY: '

v

This function is an improvement over the previous solution. However,
problems remain. If you accidentally type a non-numeric character
(e.g. 3B5) in response to the 'ENTER SALARY:' prompt, an APL error
message will appear (from ¢) and the function will suspend. This is
not user-friendly behavior.

We could use 0 input ("evaluated input'") to avoid the suspension.
When an error occurs in evaluated input mode, the error message is
displayed and you are reprompted. For example:

ENTER SALARY

0:

3B5
VALUE ERROR
] 3B5

A
(15

However, evaluated input mode has several disadvantages. The first
is that its appearance (0:) is odd to a naive user. The second is
that the error messages are technical APL messages (e.g. SYNTAX
ERROR), not user-oriented messages (e.g. DEPARTMENT NUMBER MUST BE
NUMERIC). The third is that you may inadvertently invoke other
functions in the workspace. The fourth is that the response will not
be accepted on the same line as the prompt.

Therefore, we will stick with 0 input ("character input"). We will
define a function NINPUT (numeric input) which will display its
character vector prompt right argument and will allow you to enter a
response at the end of the same line. The response will be converted
to numbers if possible and returned. If not possible, the message
'+% ENTER NUMBERS ONLY **' will be displayed and you will be
reprompted.

How then do we convert a character vector which looks like numbers
(e.g. '67 15') into a numeric vector (e.g. 67 15)? A number of APL
implementations (e.g. APL*PLUS, SHARP APL) have available the
companion monadic functions OFI (fix input or format inverse) and OVI
(verify input). The OFI function is just what we are looking for.

It converts its character vector or scalar right argument into a
numeric vector result. Each group of contiguous nonblank characters
is converted into a single numeric element. If the group of

-120-

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

characters does not represent a valid number, it is returned as 0.
For example:

OFI '67.5 3B6 5 0 HI'
67.5 05 00

Since invalid groups are returned as 0, another function is required
to tell the good 0s from the bad 0s. This is what OVI does. The OVI
function converts its character vector or scalar right argument into
a Boolean vector result. Each group of contiguous nonblank
characters is converted into a single bit: 1 if a valid number, 0 if
not. For example:

Ovi '67.5 3B6 5 0 HI'
10110

The OFI and OVI functions always return vectors, never scalars. For
example:

oOFI '6'
1

pOFI '
0

Using OFI and OVI, the definition of NINPUT is:

[WSID: INPUTI]
vV ReNINPUT PROMPT
[11 @A Displays character vector PROMPT, allows
[2] A keyboard input on same line and returns
[3] A numeric vector response. Requires CPROMPT.
[4] L1:R¢CPROMPT PROMPT
[51 =(A/0OVI R)pL2
[6] O¢'’'*%x ENTER NUMBERS ONLY #*x%'
[71 =>L1
[8] L2:Re¢0FI R
v

If OFI and OVI are unavailable in your implementation of APL, you
must write an APL function which performs a similar function. Such a
"parsing" function is quite complicated and is not included here.

In APL2, which does not have OFI and OVI, exception handling may be
used to execute the character vector and to display appropriate
messages if it can not be successfully executed. The system function
OEA (execute alternate) is used. It executes its right argument and
returns the result. If an error occurs while executing its right
argument, its left argument is executed.

-121-

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

In APL2, the definition of NINPUT is:

[WSID: INPUT]
Vv ReNINPUT2 PROMPT
[1] a Displays character vector PROMPT, allows
[2]1 A keyboard input on same line and returns
[31 A numeric vector response. Requires CPROMPT.
[41 L1:Re¢CPROMPT PROMPT
[51 A Return empty numeric vector if all-blank response:
[61] S(Rv.#' ')pL2
(71 R¢10
[81] -0
[9]1 A Allow only characters which may be parts of numbers
{101 A (so that other functions will not be executed):
{111 L2:»(A/R€’'0123456789."E ')J)IL3
[12] A Make sure any E (exponential notation) is not
{131 A preceded by a blank:
{141 =->»(v/’' E'e' ',R)pL3
[15]1 A Ravel when assigning to insure a vector result:
[161 'sL3' OEA 'R¢,',R

[17]1 -0
{18] L3:0¢'*% ENTER NUMBERS ONLY *%'
{191 -L1

v

ACAUANUAY AUAUAUAL AUNURUAL S AUMUAUNY AUNUNUAY AUAUNUAY NUALAUAY AUAUALAY

PROBLEM: Write a function ASKUSER which prompts for employee name,
salary and project codes (numeric) and assigns the
respective responses to NAME, SALARY and CODES. Verify
that the name is not all-blank, that the salary is a
positive integer less than 100,000 and that no more than 5
project codes are entered. Terminate ASKUSER immediately
if the user types END in response to any question. The
explicit result of ASKUSER is 0 if END is typed and is 1
otherwise.

TOPIC: Utility Validation Functions

Let us take a reverse-engineering approach to this problem. We will
write the ASKUSER function, employing imaginary utility functions as
needed. Then, we will write the utility functions. Here is the
finished solution:

-122-

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

vV R€ASKUSER

[11 ReO
[2] L1:-»0 ESCAPE NAME<CPROMPTE 'ENTER EMPLOYEE NAME: '
[3] »L1 IF (NAMEA.=' ') MESSAGE '** YOU MUST ENTER A NAME'

[4] L2:-0 ESCAPE SALARY¢l NPROMPTE 'ENTER SALARY: '

[51] »L2 IF ((SALARY#[SALARY)VSALARY=0) MESSAGE '#** SALARY
MUST BE A POSITIVE INTEGER'

(6] »L2 IF (SALARY>100000) MESSAGE '#** SALARY ‘IS
EXCESSIVE'

{71 L3:-0 ESCAPE CODES«0 NPROMPTE 'ENTER PROJECT CODES: '

[81] »L3 IF (5<pCODES) MESSAGE '#** TOO MANY PROJECTS'’

[91 Rel
v

This function was easy to write and is easy to read. Comments are
unnecessary. Our task now is to write the utility functions such
that the function is '"user-friendly" as well.

The CPROMPTE (character prompt with escape) function behaves like the
CPROMPT function written earlier with one exception. It checks for
the "escape'" word END and returns the numeric scalar 1 if entered.
Otherwise, it returns the character vector entered via the keyboard.
The CPROMPTE function is listed below.

Since some applications permit the use of more than one escape word
(e.g. END, QUIT, BACKUP, ABORT, HELP, PRINT, etc.), we have written
CPROMPTE to illustrate the use of several escape words, specifically
END, BACKUP, and ABORT. CPROMPTE returns the scalar 1, 2 or 3 if the
respective escape word is entered.

-123-

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

{WSID: INPUT]
vV R¢CPROMPTE PROMPT;S
Displays character vector PROMPT, allows
keyboard input on the same line and returns
character vector response. Checks for entry
of escape words END, BACKUP or ABORT and
returns corresponding numeric scalar 1, 2 or 3
if even partially entered. (Modify to include
[71 your own set of escape words or to use exact
[81 matching.) Requires: CPROMPT.
[91] R¢CPROMPT PROMPT
[10] A Exit if empty entry:
[11] ->(xS¢pRJIIO
[12] A Branch unless 'END' partially entered:
[131 ->(RV.#ST'END')JpLl

[11
(21
(31
[4]
[5]
[6]

DD2DDO®XDDDDD

[14] A For exact (not partial) match:

[151 A >((3#S)V'END'v.#3TR)pL1l

[16] A Or, if = is available:

(171 A »>('END’'=R)IL1

{181 A Else return scalar 1 (in origin 1):

[191] ReOIO
[20]1 =0
{211 A Return 2 if 'BACKUP' entered:
[22] L1:2(Rv.#S1'BACKUP’')pL2
[23]1 Re1+0I1I0
[24] -0
[25]1 A Return 3 if 'ABORT' entered:
[26] L2:>(Rv.#ST'ABORT')p0O
[27]1 Re2+0I0
v

The ESCAPE function is a dyadic function which checks to see if its
right argument is a scalar. If so, it returns its label left
argument. If not, it returns an empty vector so that no branch will
take place. The ESCAPE function is listed below.

The ESCAPE function has been written to accomodate multiple escape
words. For example, the expression,

2(L99,L1,0) ESCAPE NAME«CPROMPTE 'ENTER EMPLOYEE NAME: '
will cause a branch to one of the '"labels'" 199, L1l or 0 if the
corresponding escape word END, BACKUP or ABORT is entered. If a

single label is provided as ESCAPE’'s left argument, that label is
returned if any of the escape words is entered.

-124-

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

[WSID: INPUT]
Vv R¢LABELS ESCAPE CODE

[11] Used as:
[21]
[31]
[41
[51
[61]

[71

-»(L1,L2,0) ESCAPE NAME«CPROMPTE 'ENTER NAME: '

Returns LABELSIL[CODE] if code is a scalar.
Otherwise, returns 10 so no branch occurs.
If LABELS is a singleton, it is returned for
[81 any scalar CODE.
(91 Return empty vector for non-scalar CODE:
[10] Rer 0
[111 -(xppCODE)pO
{121 A Return LABELS for singleton LABELS:
{131 Re¢LABELS
(141 ->(1A.=pLABELS)pO
[15]1 A Otherwise, return label for corresp escape code:
[16] Re¢LABELSICODE]!

v

DDO®XDODDD®ZTDO®TDODDDD

The IF function is the standard conditional branching function.

[WSID: INPUTI]

V RelL, IF C
[11] na Conditional branch function. Used as:
[21] A -»LABEL IF I>50
[3] ReC/L

v

The MESSAGE function is a dyadic function which returns its Boolean
left argument and which displays its character vector right argument
only if the left argument is 1.

[WSID: INPUT]

V R¢BIT MESSAGE CVEC
(1] a Displays err msg CVEC if BIT=1. Used as:
£21
[3]
[4]
[51] ReBIT
[6] -BITIO
[71 0«CVEC

v

2ASK IF (X<0) MESSAGE 'VALUE IS NEGATIVE'

DD D

The NPROMPTE (numeric prompt with escape) function is dyadic. Its
left argument is the number of numbers required. Since a check for
the exact number of numbers entered (usually 1) is the most common
numeric input check, we will build the check into the function. If
the left argument is 0, we will accept any number of numbers. Since
the result of NPROMPTE is passed as the right argument of ESCAPE, we
will use CPROMPTE within NPROMPTE and will return a numeric scalar

-125-

Chapter 8 WRITING USER~-FRIENDLY INTERACTIVE FUNCTIONS

(escape) result directly instead of the normal numeric vector
response.

The NPROMPTE function for APLA*PLUS or SHARP APL follows:

[WSID: INPUT)
V R¢NUM NPROMPTE PROMPT
Displays character vector PROMPT, allows
keyboard input on same line and returns
numeric vector response of length NUM
[4] (or of any length if NUM=0). Returns
£51 numeric scalar escape code if escape word
(6] p entered. Requires: CPROMPTE.
[7]1 L1:R¢CPROMPTE PROMPT
[81 n Exit if scalar escape code:
[91] 2>(ppRILO0
[10] ~»(A/0VI RI/L2
{111 0O¢'x* ENTER NUMBERS ONLY #x'
{121 »L1
[131 L2:Re0FI R
[14]1 A Exit if NUM is 0 or is length of input:
[151 -NUMIO
[161 ->(NUM=pR)/0
[171 O¢'’'x*x ENTER ',(3NUM),' NUMBER',(NUM=1)l'S **'
(181 -~L1

[11
£2]
{31

DPD>XD®DD

-126-

Chapter 8

WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

The NPROMPTE function for APL2 follows.

[11
[21
[31
(41
[51
(61
£71
[8]
(91l
(101
(111
(121
(131
{141
[151
[161
[171
[181
{191
[201
[211
[221]
(231
[241
[251]
(261
(271
(281
[29]

PROBLEMS:

[WSID: INPUT]

vV R¢NUM NPROMPTE2 PROMPT

Displays character vector PROMPT, allows
keyboard input on same line and returns
numeric vector response of length NUM

(or of any length if NUM=0). Returns

numeric scalar escape code if escape word
entered. Requires: CPROMPTE.

L1:R¢CPROMPTE PROMPT

A Exit if scalar escape code:

>(ppRILO

A Return empty numeric vector if all-blank response:
2(Rv.#' 'JpL2

Re10

>L4

A Allow only characters which may be parts of numbers
A (so that other functions will not be executed):
L2:>5(A/R€’'0123456789.E ')IL3

A Make sure any E (exponential notation) is not
A preceded by a blank:

2(v/' E'e' ',R)pL3

A Ravel when assigning to insure a vector result:
'>13' OEA 'R¢,',R

DD2DD®IDD

2>L4

L3:0¢'*%x ENTER NUMBERS ONLY *x%'

2L1

A Exit if NUM is 0 or is length of input:
L4 : >NUMIO

- (NUM=pR) /0
O¢'*%x ENTER ',(sNUM),' NUMBER', (NUM=1)l'S *x’
»L1

AUAUAUAY AUAUANUAY T AUAUAUNY AUAUAUAY S AUAUAUAY AUAUAUAY AUALUAUNY S fuAU ALY

(Solutions on pages 362 to 363)

1. Write a function LPROMPTE (letter prompt with escape) which
prompts for a single letter. The right argument is the character
vector prompt. The left argument is a character vector of
allowable single characters which the user may enter. The result
is a one element vector index into the left argument of the

-127-

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

character entered or is the numeric scalar escape code if an
escape word is typed. To illustrate:

[10] -0 ESCAPE ACTION¢'ACD' LPROMPTE 'ADD, CHANGE, DELETE: '
£111 »(ADD,CHANGE,DELETE) [ACTIONI]

2. Suppose you are writing interactive functions for a user who does
not have an APL terminal. Without an APL terminal, the user
cannot enter a negative symbol (7). What modifications would you
make to the utility functions described in this chapter to allow
the user to enter a minus symbol (-) for negative numbers (e.q.
-38)7

3. Write a niladic function PROPOSAL which generates a proposal for
life insurance as follows:

PROPOSAL
NAME: Fred
NUMBER OF KIDS: 3

AGES OF KIDsS: 3 4 8
PRESS ENTER WHEN READY... (press ENTER key)

Dear Fred:

As a proud parent of 3 kids (whose
average age is 5), you need insurance.

(press ENTER key)
GENERATE ANOTHER PROPOSAL? N

Use the utility functions developed in this chapter.

-128-

Chapter 9

MANIPUILATING DATES

In the field of data processing, one of the more commonly
processed forms of data is dates. Dates tell us when employees were
hired, when bonds mature, when insurance policies take effect, when
commissions are due, when materials must be reordered, when expenses
are incurred, and so on. Despite the many uses of dates, the number
of different tasks performed on dates is small. This chapter
discusses those tasks: representing dates in APL, entering dates,
displaying dates and manipulating dates.

AUAUALAY AUAUAUAY AUAUALAL AUAUALUALY NUALUAUNY AUAUAUAL AUAUAUAY AUAU AU AL

PROBLEM: Given that APL supports only two datatypes (numbers and
characters), how should dates be represented?

TOPIC: Representation of Dates in APL

Suppose you wish to keep track of the date March 22, 1986. What are
the different possible conventions you might employ to store this
date? Here are several:

1. DATE«'MARCH 22, 1986' ('MONTH DD, YYYY')

2. DATE«3221986 (MMDDYYYY)

3. DATE€«19860322 (YYYYMMDD)

4. DATE«860322 (YYMMDD)

5. DATE«1986 3 22 (YYYY MM DD)

6. DATE«1986 81 (YYYY DDD, days from December 31
of the previous year)

7. DATE€31127 (Days from December 31, 1899)

In order to choose the best convention, you must consider the ways in
which the date is to be used. Different representations are better
for different applications.

-129-

Chapter 9 MANIPULATING DATES

For example, the first representation (DATE«¢'MARCH 22, 1986') is
ideal if all you want to do with the date is display it. However,
the representation requires 14 bytes (characters) of storage which is
more than any of the other representations and it does not lend
itself to chronological sorting or to date arithmetic (say, adding 3
months to it).

The second representation (DATE«3221986) requires less storage (4 or
8 bytes depending upon the APL implementation) and is still fairly
easy to display in a meaningful form (say 3/22/1986). However, it
also requires transformation before it can be sorted or used in date
arithmetic (since 3221986 is greater than 1221987 but 3/22/1986
occurs earlier than 1/22/1987).

The third representation (DATE¢19860322) requires the same storage as
the prior representation and is fairly easy to display in a
meaningful form (say 1986/03/22) and can be sorted with or compared
to other dates directly, without transformation. For example, since
19870122 is greater than 19860322, it occurs later.

The fourth representation (DATE«860322) is similar to the prior
representation. Its advantage is that it displays in two fewer
character positions (say 86/03/22 vs. 1986/03/22), though the storage
requirements are the same. Its disadvantage is that the year is
ambiguous and may not sort properly when comparing to dates in the
next century (e.g. 15/03/22 for 2015/03/22).

The fifth representation (DATE«1986 3 22) has different storage
requirements than the prior three representations (more or less
depending upon the APL implementation). It is easier to work with
for some manipulations (say, year arithmetic) but harder for others
(say, comparing dates to see which is later).

The sixth representation (DATE«1986 81) makes day arithmetic easier
but meaningful display harder. For example, it is simple to see that
the date 50 days beyond 1986 81 is 1986 131. However, it is not as
simple to see that 1986 131 is May 11, 1986.

The seventh representation (DATE«31127) makes day arithmetic, date
comparisons and chronological sorting trivial operations. However,
converting the date to a meaningful form (year, month, day) is a
complex task.

Depending upon the specific requirements of your application, you may
decide to pick any one of these or another form of date
representation. If you are undecided, representations 3
(DATE«19860322) and 5 (DATE«1986 3 22) are good choices. These
representations seem to provide a nice balance between the extreme
forms 1 and 7.

AUAUALAL AUNLAUAY AUAUAUAY AUAUAUAY D AUAUAUAL D AUAUAUAL AURUAUAL AUAL AU AL

-130-

Chapter 9 MANIPULATING DATES

PROBLEM: Write a monadic function IPDATEMDY (input date in month,
day, year order) which may be used to convert a date, as
entered, into the internal representation of the date. The
right argument of IPDATEMDY is the character vector
representation of the date in month, day, year order and
the result is the numeric scalar representation (YYYYMMDD)
of the date. For example: DATE«IPDATEMDY CPROMPT 'ENTER
DATE OF HIRE: ' (where CPROMPT returns the character vector
response to the prompt provided as its right argument).

The result is 0 if the right argument does not represent a
valid date.

TOPIC: Entering and Validating Dates

To be as friendly as possible, the function must allow you to enter
the date in any reasonable form. For example, if the date being
entered is March 22, 1986, the right argument (i.e. your response)
may be in any of the following forms:

3/22/86

3.22.1986

3 22 1986

3 22 (if the current year is 1986)
3-22

3-22-86

and so on

To be as safe as possible, the function must verify that the date
entered is a valid date. For example, some dates which should be
rejected are 13/25/86 and 2-29-86.

The function follows:

-131-

Chapter 9

MANIPULATING

DATES

[11

£21

[31]

[41]

[51

[61]

[71

(81

[91l

(101
(111
{121
(131
[141]
{151
[16]
(171
(181
(191
£201
[211
[221
[231]
[24]
[25]
[26]
[271]
[281]
[291]
[301]
£311]
[321]
[331]
[341]
[35]
[361]

£371
[381]
[39]
(401
[41]
[42]
(431

[WSID: DATES]

vV YYYYMMDD«IPDATEMDY CVEC;DD;MM;NVEC;YY;0IO

A Converts the character vector representation
A of a date (e.g. '6/15' or '3-22-1986' or

A '3 22’ or '3.22.86') to an integer scalar

A representation (YYYYMMDD) of the date.

A The items in the right argument are in month,
A day, year order. The result is 0 if the

A date is invalid.

A

0I0¢«1
A Ravel CVEC in case a scalar; replace '/-.'
A by space:
CVEC«,CVEC
CVECL(CVECe'/~."')/1pCVECI¢' '
A Set result to 0 and exit if date not wvalid:
YYYYMMDD<«O
A Date must contain only digits and spaces
A (once / and - are converted):
>(A/CVECe' 0123456789')10
A Convert character vector to numeric vector:
NVEC«, ¢CVEC
A Date must have 2 or 3 elements (MM DD or
A MM DD YY):
2((pNVEC)e 2 31310
A Stick on current year if omitted:
+(3=pNVEC)pL1
NVEC¢NVEC, 1p0TS
A Convert YY to YYYY using current century:
L1:YYeNVECL 3]
*(YY>99)pL2
YYe¥YY+100xLOTS[11+100
A Validate month:
L2:MMeNVECI 1]
>(MMe112)10
A Validate day of month:
DD¢NVECL[2]
>((DD<1)VvDD>(31 29 31 30 31 30 31 31 30 31 30
e0
A Check 2/29 if a leap year:
+>((MM#2)vDD#29)pL3
A Leap year every 4 years except at centuries
A (except 4th centuries):
2((0#41YY)Vv(0=1001YY)AO#4001YY)pO0
A Pack date into YYYYMMDD format:
L3:YYYYMMDD¢1001YY,MM,DD

AUAUAUAL AUALALAY AUNUAUAY AUAUANUAL AUAUAUAL AUAUAUAY AUALALAY AUAUAL AL

-132-

315I[MMI)D

Chapter 9 MANIPULATING DATES

PROBLEM: Given the three element vector DATE which represents a
single date (in YYYY MM DD format), write the APL
expressions which will generate each of the following date
formats (for DATE€¢1986 3 22):

a. MAR 22, 1986

b. March 22, 1986
c. 3/22/86

TOPIC: Formatting Dates for Output

In the first format (MAR 22, 1986), we must convert the month from an
integer (e.g. 3) to a 3 element character vector (e.g. 'MAR'). The
most direct way to do this is to first construct a 3 column character
matrix which has one row per possible month:

MON¢12 3p'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC'

Then we may use the month number as the row index into MON. Here is
one approach (showing 1986 3 5 as MAR 05, 1986):

MONLDATEC21;1,' ',("27'0',3DATE[31),', ',3DATE[1]

This approach does not work for a matrix (3 columns) of dates. It
must be modified, as in the following:

DAY«2 O%DATEL ;3]

DAYL (' '=DAY)/lpDAY1«'0’

DAY« ((1TpDATE),2)pDAY

MONIDATE[;21:;1,’ ',DAY,',’',5 O%DATE[;,1]

If your implementation of APL supports the system function OFMT, you
may construct this date format with the following:

One date:
MONI[DATE[2131,,'X1,212,<,>,I5' OFMT (DATEL3]1;DATE[11)
Matrix of dates:
'3A1,X1,72I12,<,>,15' OFMT (MONLDATE[;21;1;DATEL;3 11])
In APL2, you may do the following:
One date:
MONI[DATE[2]1;1,' 05, 5555'sDATEIL3 11
Matrix of dates:

MONIDATE[:;21;1,' 05, 5555'sDATE[;3 1]

-133-

Chapter 9 MANIPULATING DATES

In the second format (MARCH 22, 1986), the entire month name is
displayed. This format differs from the first in that the length of
the formatted result is not fixed but depends upon the length of the
month name and upon the number of digits in the day.

One approach to selecting the month name portion of the date is to
build a character matrix of month names (padded to the right with
blanks), extract the appropriate row and squeeze out the blanks:

MONTH«12 9p'JANUARY FEBRUARY MARCH APRIL MAY...'
MON«MONTHLDATE[21;]
MON¢(MON#' ')/MON

A second approach is to build a character vector of month names and a
corresponding vector of the lengths of the names. The vector of
lengths may be used to locate the corresponding name:

MONTH¢ ' JANUARYFEBRUARYMARCHAPRILMAYJUNEJULYAUGUST. . .'
MLEN¢« 7 8 5 5 3 4 4 6 9 7 8 8
MON€MONTHL (0 ,+\MLEN) [DATEL2]J+LMLENIDATEL[2]1]

Using either approach, once the name is selected, the formatting of
the date is simple:

MON,' ’',(®DATE[31),’, ',sDATEL1l]

Generally, the second format (MARCH 22, 1986) is not used when
formatting many dates at once since they will have a ragged
appearance:

MARCH 22, 1986
MAY 3, 1986
SEPTEMBER 17, 1987
JULY 4, 1988

On the other hand, you may choose to align the days and years:

MARCH 22, 1986
MAY 03, 1986
SEPTEMBER 17, 1987
JULY 04, 1988

To construct this result, you can simply use the same approaches
discussed for the first format (MAR 22, 1986), but create a 9 column
character matrix of right-justified month names instead of a 3 column
character matrix of abbreviated month names:

MON€¢12 9p' JANUARY FEBRUARY MARCH APRIL MAY...'
In the third format (3/22/86), the month number does not need to be
translated into a month name. However, the first two digits of the

year must be truncated. Here is one approach:

(sDATEL21),'/',(721'0' ,3DATEL(31),'/', 213DATE[1]

-134-

Chapter 9 MANIPULATING DATES

This approach does not work for a matrix (3 columns) of dates. It
must be modified, as in the following:

('/',4 OsDATE(;,1]1,DATEL;31+100xDATEL;21)[;6 7 1 8 9 1 4 5]
If your implementation of APL supports OFMT, you may do the following:

One date:

,'12,</>,212,</>,ZT2’' OFMT (DATE[2];DATEL31;100IDATEL11)
or
, 'G<Z9/99/99>' OFMT 100.LDATEL2 31,100IDATE[f11

Matrix of dates:
'12,</>,212,</>,2I1I2' OFMT (DATE[:2 31;100IDATEL[:11)

or
'G<Z9/99/99>' OFMT (100I1DATEL;11)+100xDATEL;31+100xDATE[;2]

In APL2, you may do the following:
One date:
'56/06/05'sDATE[2 3 11
Matrix of dates:

'56/06/05'3DATEL;2 3 11

AUNUAUALY AUAUAUAY AUAUALUALY S AUALAUNY S AUAUANUAY NUNUNUAL AUALUAUAL AUAUAL AL

PROBLEM: Since some tasks involving dates are more easily solved
from certain date representations than from others, design
and write a set of date conversion functions which can be
used to convert between the various date representations.

TOPIC: Manipulating Dates

Suppose you limit yourself to 4 different date representations. You
will need 24 different date conversion functions to handle every
possible conversion (4 types times 3 remaining types times 2
directions: to or from). If you handle 5 different date
representations, you will need 40 different functions.

You can reduce the number of functions needed by assuming a '"base"
date representation. If you define just enough functions to be able

-135-

Chapter 9 MANIPULATING DATES

to convert any date representation to or from the base
representation, you can do any possible conversion, though it may
require two steps instead of one. For example, to convert dates from
a first representation to a second, neither of which is the base
representation, you can convert the dates from the first
representation to the base representation and then from the base
representation to the second representation.

Let us use YYYYMMDD (e.g. DATE«19860322) as the base representation.
We choose this representation because it can serve a number of
functions directly, without conversions:

a. Such dates can be sorted chronologically using grade-up (4) or
grade-down (V).

b. Such dates can be compared chronologically (before or after)
using the relational functions (=, #, >, <, =z, =).

c. Such dates can be displayed directly (or with minor formatting)
and be readily interpreted by the reader.

If you prefer a different base date representation for your
applications, you may modify the functions below to suit your needs.

Assuming the YYYYMMDD base date representation, we propose the
following date utility functions:

1. MMDDYYYY¢«TOMDY YYYYMMDD
Converts from YYYYMMDD format to MMDDYYYY format. For example:
TOMDY 19860322 19870209
3221986 2091987
2. YYYYMMDD¢FROMMDY MMDDYYYY
Converts from MMDDYYYY format to YYYYMMDD format. For example:
FROMMDY 3221986 2091987
19860322 19870209
3. DAYS¢TODAYS YYYYMMDD

Converts from YYYYMMDD format to number of days since
February 29, 0000. For example:

TODAYS 19860322 19870209
725393 725717

-136-

Chapter 9 MANIPULATING DATES

4.

YYYYMMDD¢«FROMDAYS DAYS

Converts from numbers of days since February 29, 0000 to
YYYYMMDD format. For example:

FROMDAYS 725393 725717
19860322 19870209
QTS«TOQTS YYYYMMDD
Converts from YYYYMMDD format to 31T0TS format (i.e. YYYY MM DD).
The shape of the result is the catenation of 3 and the shape of

the right argument. For example:

TOQTS 19860322 19870209

1986 1987
3 2
22 9

YYYYMMDD¢FROMQTS QTS

Converts from 310TS format (i.e. YYYY MM DD) to YYYYMMDD format.
The first element of the shape of the right argument must be 3.
The shape of the result is all but the first element of the
shape of the right argument. For example:

FROMQTS 3 2 p 1986 1987 3 2 22 9
19860322 19870209

DAYS360¢TODAYS360 YYYYMMDD

Converts from YYYYMMDD format to number of days since

January 1, 0000, assuming a 30 days per month, 12 months per
year, 360 days per year calendar (the 31st day of the month is
treated like the 30th day). Financial institutions frequently
assume 360 days per year. For example:

TODAYS360 19860322 19870209
715041 715358
YYYYMMDD«FROMDAYS360 DAYS360
Converts from number of days since January 1, 0000 to YYYYMMDD
format, assuming a 30 days per month, 12 months per year, 360

days per year calendar. For example:

FROMDAYS360 715041 715358
19860322 19870209

-137-

Chapter 9 MANIPULATING DATES

February 29, 0000 was chosen as a base date in the TODAYS and
FROMDAYS functions for computational reasons. At the end of that
leap day, a 400 year cycle of leap years began. The conversion from
dates to days or vice versa is easier when March 1 is considered the
first day of the year. When a leap year occurs, the leap day is the
last day of the year.

Let us illustrate the application of these functions by using them to
solve a variety of problems. The following problems assume that the

variable DATES is a vector of dates whose values are assigned in the
YYYYMMDD format (e.g. DATES€¢19860322 19870209 19851225...).

A. How many dates occur in 19877
+/(DATESz19870101)ADATES=<19871231 (no conversion needed)
B. Display in MM/DD/YYYY format the dates derived by adding 30
years to each date.
'G<Z9/99/9999>"' [OFMT TOMDY 300000+DATES (assuming OFMT)
*55/55/5555 ' 3TOMDY 30000+DATES (assuming APL2)
C. What dates result when adding 90 days to each date?

FROMDAYS 90+TODAYS DATES

D. Which dates occur in any September?
(9=(TOQTS DATES)[2;1)/DATES
E. Assuming a 360 day year (as in bond calculations), how many whole
6 month periods (i.e. semiannual coupons) are there from each date
to the date July 4, 1995?
L ((TODAYS360 19950704)-TODAYS360 DATES)+180
F. Display (in YYYY/MM/DD format) the dates in the past (before
today’s date), in reverse chronological order (present to past).
D¢ (DATES<FROMQTS 310TS)/DATES

*'G<9999/99/99>"' OFMT DIL[V¥D] (assuming OFMT)
'555/55/55'sDL[¥D] (assuming APL2)

-138-

Chapter 9 MANIPULATING DATES

G. Compute the ages (age last birthday) today of people born on each
of the dates.

TODAY«31T0TS
YMD«TOQTS DATES
(TODAY[11-YMDI[1;31)~-(100.TODAYL[2 31)<1001YMDIL2 33;]

The definitions of these date utility functions follow. 1In those
instances for which two substantially different algorithms are
available to perform the same task, two functions have been provided,
one with the name suggested above and the second with the same name
followed by 'A' (e.g. FROMDAYS and FROMDAYSA). You may want to time
the alternate functions for your APL installation to determine which
is faster (see the Computer Efficiency Considerations chapter).

[WSID: DATES]
vV MMDDYYYY«TOMDY YYYYMMDD
[1] n Converts dates in form YYYYMMDD to form
(2] A MMDDYYYY by numerical manipulations.
£31] A The steps: 19860322 » 322 -
[41 A (32200000000-322) > 32219860000 > 3221986
[5] ~n
[61] MMDDYYYY«L (YYYYMMDD+99999999x100001YYYYMMDD)+10000
v

[WSID: DATES]

vV MMDDYYYY¢«TOMDYA YYYYMMDD
[1] A Converts dates in form YYYYMMDD to form MMDDYYYY
[2] A by unpacking, rotating and re-packing the digits.
[3] A The steps: 19860322 > 1986 322 = 322 1986 = 3221986
(41 na
[5] MMDDYYYY¢ 10000 1 +.xe O 10000 TYYYYMMDD
[61 A Alternative:
[L7] A MMDDYYYY¢ O 10000 1o O 10000 TYYYYMMDD

A%

[WSID: DATES]
v YYYYMMDD¢FROMMDY MMDDYYYY
[1]1] A Converts dates in form MMDDYYYY to form
(2] A YYYYMMDD by numerical manipulations.
3] A The steps: 3221986 > 1986 -
[4] A (198600000000-1986) > 198603220000 -» 19860322
[51 n
[6] YYYYMMDD«L (MMDDYYYY+99999999%x10000 I MMDDYYYY)+10000
v

-139-

Chapter 9

MANIPULATING DATES

[WSID: DATES]

vV YYYYMMDD«FROMMDYA MMDDYYYY
[1] nA Converts dates in form MMDDYYYY to form YYYYMMDD
[2] A by unpacking, rotating and re-packing the digits.
[3]1] A The steps: 3221986 > 322 1986 -» 1986 322 -» 19860322
[4]1 n
[51 YYYYMMDD¢ 10000 1 +.xe O 10000 TMMDDYYYY
[61 A Alternative:
[7) A YYYYMMDD¢ O 10000 1e O 10000 TMMDDYYYY

\'%

[WSID: DATES]
vV DAYS¢TODAYS YYYYMMDD;DD;YYYYMM;MM;YYYY;[JIO
[1] n Converts date (YYYYMMDD) to number of days since
[2] @A Feb. 29, 0000.
[31] 0I0«1
£41 DD«1001YYYYMMDD
£51 YYYYMMe (YYYYMMDD-DD)+100
[61] MM¢100I1YYYYMM
[71 YYYYe(YYYYMM-MM)+100
[8] @A Treat Jan and Feb as if in prior year (to have
[9]1] A leap day at end of yr)
[10] YYYYeYYYY-MM=<2
[11] A Days from Feb. 29, 0000 to prior Feb. 28/29 (leap
[12] A year every 4th year, no leap year every 100th vyear,
[13]1 A leap year every 400th year):
[14]1 DAYS«(365%XYYYY)+-/LYYYYo.+ 4 100 400
[151 A Add in DD days and days from prior Feb. 28/29
{161 DAYSeDAYS+DD+(306 337 0 31 61 92 122 153 184 214 245
275)[MM]
v

[WSID: DATES]

vV DAYS¢TODAYSA YYYYMMDD;DD;MM;YYYY;YYYYMM;OIO
[11] n Converts date (YYYYMMDD) to no. of days
[2] A since Feb. 29, 0000.
£31 DD€«100 I YYYYMMDD
£41 YYYYMM«(YYYYMMDD-DD)+100
[51 MM¢1001YYYYMM
[6] YYVYYe(YYYYMM-MM)+100
[7] A Treat Jan and Feb as if in prior year (to
[8] a have leap day at end of year):
[9] YYYYe€YVYYY-MM=<2
[10]1 A Days from Feb. 29, 0000 to prior Feb. 28/29
[111 m (146097, 36524, 1461, 365 days in 400, 100,
[12] A 4, 1 year cycles):
[131 DAYSe 146097 36524 1461 365 +.x 0 4 25 4 TYYYY
[14] A Add in DD days and days from prior Feb. 28/29:
[15] DAYS«DAYS+DD+(306 337 0 31 61 92 122 153 184 214 245

275)IMM]
v

-140-

Chapter 9

MANIPULATING DATES

(11
[21
[31
(41
51
(61
[71
(81
[o9l
{101
(111
(121
[131
[141
{151
(161
[171
£181
(191
£201]
(2113
[221
[231
£241
[25]
{261
[271
[281

(291
[301]

[311]
(321
(331
[34]
(351

v

v

[WSID: DATESI]
YYYYMMDD¢FROMDAYS DAYS;:;DD; IND;MM;PDAYS ;RDAYS;SHAPE;Y;
YYYY;0OIO
A Converts number of days since Feb. 29, 0000
A to date (YYYYMMDD).

O010¢1
A Work with array as a vector and reshape when done:
SHAPE«pDAYS
DAYS«,DAYS
A Approximate year (only off for some 2/28,
A 2/29 and 3/1 dates); 365.2425 is used because
A there is a leap year every 4th year (+.25),
A no leap year every 100th year (-.01), leap
A year every 400th year (+.0025):

YYYYe€LDAYS+365.2425

A Number of days from Feb. 29, 0000 to Feb. 28/29 of

A prior year:

PDAYS«(365xYYYY)+-/LYYYYo.+ 4 100 400

A Number of days from start of year to specified date:
RDAYS¢DAYS-PDAYS

A Branch unless year may be too small by 1 (e.g. 3/1):
> (xpIND¢ (RDAYS=366)/1pRDAYS)II{L1
YYYYLIND]«Ye€YYYYIINDI+1
RDAYS[IND]«DAYSLIND1-(365%xY¥)+~-/LYo.+ 4 100 400

A Branch unless year too big by 1 (e.g. 2/29 looks

A like 3/0):

L1:>(xpIND«(RDAYS=0)/1pRDAYS)I{L2
YYYYIIND]¢YeYYYY[INDI+T1
RDAYSLIND]¢DAYSLINDI-(365xY)+-/LYo.+ 4 100 400

A Determine month no. from no. days from start of yr:

L2:MMe(31 30 31 30 31 31 30 31 30 31 31 29 /2¢112)L
RDAYS]

A Determine day no. from no. days from start of mon.:
DD¢RDAYS-(306 337 0 31 61 92 122 153 184 214 245 275)1[
MM1]

A Correct for fact that Jan. and Feb. are treated

A as if in prior yr (to have leap day at end of yr):
YYYYe€YVYYY+MM=2

A Repack and reshape result:
YYYYMMDD¢SHAPEpeDD+(100xXMM)+10000xYYYY

-141-

Chapter 9 MANIPULATING DATES

[WSID: DATES]
vV YYYYMMDD«FROMDAYSA DAYS;L4;L400;MM;N1;N4;N100;N400;
YYYY;0OIO
[11 a Converts number of days since Feb. 29, 000
[2] @A to date (YYYYMMDD).
[31] 0I0¢1
[4] A Reduce no. days by 1 so day 0 is Mar. 1, 0000:
[5] DAYS¢«DAYS+"1
[6] A No. of 400 year cycles (146097 days) preceding
[7] na each date:
£81 N400€LDAYS+146097
[9] @A No. days since last 400 year cycle:
[10] DAYS¢DAYS-N400x146097
[11]1 a Flag 400 year leap dates (e.g. Feb. 29, 1600)
f{12]1] A and change to Feb. 28:
[13]1 1.400¢DAYS=146096
[141 DAYS€DAYS-1400
[151 A No. of 100 year cycles (36524 days) preceding
[16] n each date:
[17]1 N100¢«LDAYS+36524
{181 A No. days since last 100 year cycle:
[191 DAYS¢DAYS-N100x36524
[20] A No. of 4 year cycles (1461 days) preceding each
[211 A date:
[22] N4€LDAYS+1461
[23] A No. days since last 4 year cycle:
{241 DAYS«DAYS-N4x1461
[25]1 A Flag 4 year leap dates (e.g. Feb. 29, 1988)
[26]1 A and change to Feb. 28:
[27]1 L4«DAYS=1460
[28]1 DAYS€¢DAYS-L4
[29] A No. of 1 year cycles (365 days) preceding each
[30] A date:
[31] N1¢LDAYS+365
[32]1 A No. days since last 1 year cycle:
[331 DAYS¢DAYS-N1x365
{341 A Increase no. days by 1 so days are 1 to 365:
[351 DAYS¢DAYS+]
[36]1 A Determine month no. from no. days from start of yr:
[37] MMe(31 30 31 30 31 31 30 31 30 31 31 28 /2¢L12)L[DAYS]
[381 A Determine day no. from no. days from start of mon.:
{391 DAYS¢«DAYS-(306 337 0 31 61 92 122 153 184 214 245 275)
[MM1]

[40]1 m Add back in leap days:
{411 DAYS€DAYS+L4+L400
[42] A Determine year from no.s of 400, 100, 4, 1 year
[43]1 A cycles:
{441 YYYY€N1+(4xN4)+(100xXN100)+400xN400
[45] a Correct for fact that Jan. and Feb. are treated as
[46]1 a if in prior year (to have leap day at end of yr):
471 YYYYeYYYY+MM=2
[48]1 A Pack year, month, day together:
{491 YYYYMMDD¢DAYS+100xMM+100xYYYY

v

-142-

Chapter 9

MANIPULATING DATES

[WSID: DATES]
V QTS«TOQTS YYYYMMDD
[1] A Converts date (YYYYMMDD) to OTS format (YYYY MM DD).
[21 QTS« 0 100 100 TYYYYMMDD
v

[WSID: DATES]
vV YYYYMMDD«FROMQTS QTS
[1] A Converts date from OTS format (YYYY MM DD)
(2] A to YYYYMMDD format.
[3] YYYYMMDD¢« 10000 100 1 +.XxQTS
[41 A Alternative:
[5] A YYYY« O 100 100 1QTS
v

[{WSID: DATES]
vV DAYS«TODAYS360 YYYYMMDD
Converts dates in form YYYYMMDD to days since
January 1, 0000 assuming a 30 days per month,
12 months per year, 360 days per year calendar.
The 31st day is treated like the 30th.

(11
[21
[31
[4]
[51]
(6] Change DD=31 to DD=30 and subtract 1 from all days
£71 and 1 from all months:
[81 YYYYMMDD¢YYYYMMDD-101+31=1001YYYYMMDD
[9] DAYS¢ 360 30 1 +.x 0 100 100 TYYYYMMDD
[10]1 A Alternative:
[11]1] A DAYS¢ 0 12 30 1 0 100 100 TYYYYMMDD

\4

D2D2D2DDD®DD

[WSID: DATES]

vV YYYYMMDD¢«FROMDAYS360 DAYS
{11 A Converts days since December 30, "1 to dates in
(2] A form YYYYMMDD assuming a 30 days per month, 12
[3]1 n months per year, 360 days per year calendar.
(41 na
[51] A Add 1 to all days and 1 to all months (101):
(61 YYYYMMDD«101+ 10000 100 1 +.x O 12 30 TDAYS
[7] a Alternative:
[8] A YYYYMMDD«101l+ O 100 100 1 O 12 30 TDAYS

v

AUAUALUAY AUAUAUAY T AUNUAYAL AUNUAUALY S AUNUALAY AUAUAUAY D AUAUAUAY AU AU AU A

-143-

Chapter 9 MANIPULATING DATES

PROBLEMS: (Solutions on pages 364 to 365)

1. Most bonds pay semi-annual coupons (interest payments). That is,
every six months the holder of the bond receives one coupon
payment to compensate the holder for the use of his or her
money. The bond has printed on it a maturity date, i.e. the date
when the final semi-annual coupen is to be paid and when the face
(par) value is to be repaid. When a bond is sold prior to
maturity, the purchase date usually falls somewhere between two
coupon dates. Since the seller and the buyer each hold the bond
during a portion of the 6 month coupon period, each is entitled
to a portion of the next coupon payment. Traditionally, the
buyer pays the seller a portion (called the accrued interest) of
the next coupon in addition to the agreed-upon purchase price.
The number of days the bond was held by the seller is compared to
the number of days the bond will be held by the buyer and the
coupon is divided proportionately. The number of days is
computed using a 360 day year (12 months of 30 days).

Given two vectors PDATES and MDATES which respectively represent
the purchase dates and maturity dates (in YYYYMMDD representation)
of a set of bonds, determine the fractions of the coupons paid
for accrued interest at purchase.

2. Suppose you borrow $1000 and agree to pay .1% (.001) of the
outstanding balance per day. If the variables BDATE and RDATE
represent the dates (in YYYYMMDD format) on which you
respectively borrow and repay the loan, how much interest do you
pay?

3. Dates stored in the YYYYDDD representation (e.g. 1986081 for
March 22, 1986) are sometimes called "Julian" dates. The last
three digits represent the number of days from the previous
December 31. Write the utility function TOYD and FROMYD which
may be used to convert dates in the YYYYMMDD representation to or
from the Julian representation.

4. What expressions will return the day of week today as a character
vector (e.g. 'TUESDAY')? (Hint: Feb. 29, 000 was a Tuesday.)

-144-

Chapter 10

WRITING REPORTS

Report formatting in APL is an afterthought. It was an
afterthought to those who designed and implemented APL. And it is
frequently an afterthought to those who use APL. The APL language
excels at manipulating large multi-dimensional arrays, not at
inserting dollar signs and decimal points. The task of designing and
implementing reports is slow and tedious and not relished by many
programmers, APL or otherwise.

Excellent report formatting capabilities have evolved in the various
implementations of APL over the years. These have greatly improved
the productivity of the APL programmer but probably not to the extent
that report formatting is fun. The capability available in APL*PLUS
and in SHARP APL is OFMT. In APL2 it is format by example (dyadic 3%
with character vector left argument). In unenhanced versions of APL,
it is format (dyadic % with numeric vector left argument).

In this chapter, we will describe techniques and utilities which can
be employed to make report formatting easier and almost enjoyable.

AUAUAUAY AUAUAUALY AUALUAUAY AUALALAY AUAUAUALY AUAUAUAY S AUALALAL AUAUAUAL

PROBLEM: How would you construct the following report?

CAMPBELL CARPET CLEANING
ANNUAL SUMMARY

12/31/1986
PERCENT
ACCOUNT BUDGET ACTUAL DIFFERENCE
GROSS REVENUES 650 625 ~3.8
LESS DISCOUNTS 50 45 10.0
NET REVENUES 600 580 3.3
EXPENSES 500 510 2.0

NET INCOME 100 70 ~30.0

I Y. B~

Chapter 10 WRITING REPORTS

TOPIC: Viewing the Report

Imagine transcribing this report onto a piece of graph paper (evenly
spaced vertical and horizontal lines) by placing each letter, digit
or other character into a single square. Viewed in this way, the
report appears to be a simple character matrix. Your task is to
construct the character matrix.

At the simplest conceptual level, you need only use reshape (p):
REPORT¢12 45p’ CAMPBELL CARPET.... ~30.0 '

This is the most computationally direct and efficient way to
construct the report. While the burden is light on the computer,
however, it is enormous on you. You must count spaces and type them
in precisely and you must type in the numbers whose values are
probably already in the computer as vector or matrix variables. This
is a tremendous waste of your time.

It is more natural to view the report as a set of submatrices which
can be pieced together to form the overall report. Then your task is
to construct each piece and to catenate them together to construct
the whole report.

How do you subdivide the report? You should break it into as few
pieces as possible where each piece may be constructed by a single
straightforward procedure. Here is one possibility:

CAMPBELL CARPET CLEANING
ANNUAL SUMMARY
12/31/1986
PERCENT
ACCOUNT BUDGET ACTUAL DIFFERENCE

GROSS REVENUES 650 625 3.8
LESS DISCOUNTS 50 45 10.0
NET REVENUES 600 580 3.3
EXPENSES 500 510 2.0
NET INCOME 100 70 730.0

By using formatting utility functions or APL primitive functions, you

can construct each of these blocks with relative ease. Once

constructed, they may be pieced together by a single statement:
REPORT¢«TOP, (1 IMIDDLE,[1]1LEFT,RIGHT

If you do not have access to utility functions or are using poorly
designed functions, you will be forced to break the report into

-146-

Chapter 10 WRITING REPORTS

smaller pieces and construct it in more steps. More steps means less
productivity.

0f the four blocks above, the one which may be constructed directly
by using APL primitive functions is the matrix of numbers in the
lower right of the report. Assuming a 3 column numeric matrix of
values named DATA, you may construct the block by the following:

RIGHT«(7 0 8 0 11 1 3DATA),((lpeDATA),2)p" '
or:
RIGHT«2¢9 0 8 0 11 13DATA

(Note that the 2 columns of trailing blanks could have been
considered a fifth block of the report.)

If your APL implementation has an enhanced formatting capability, you
may choose to use it rather than ¥. For example, with OFMT, you may
use:

RIGHT¢'1I7,I8,F11.1,X2' OFMT DATA
In APL2, you may use:

RIGHT«'5555550 5555550 5555550.00 '&DATA

AUMUALALY AUALALUAY AUAUAUAL AUAUAUAL AUAUALAL AUAUAUAL AUALALAL AU AL AL AL

PROBLEM: Design utility functions which will construct the three
remaining blocks in the report above.

TOPIC: Constructing Titles and Headings

The top block is a block of titles. When you look at that block, you
see the words and date, not the blanks. You see three strings of
nonblank characters on three separate lines, centered within the
width of the report. The information which completely specifies this
block is:

* the width of the report (45 characters)

* the fact that each line is centered within the report width

-147-

Chapter 10 WRITING REPORTS

* the nonblank strings to be used, one per line (4 lines):

CAMPBELL CARPET CLEANING
ANNUAL SUMMARY
12/31/1986

(empty)

The left block is a block of row names. It is similar to the block
of titles except the nonblank strings are left-justified within the
width of the block (except for one indented line). The information
which specifies this block is:

* the width of the block (17 characters)
* the fact that each line is left-justified within the block
* the nonblank strings to be used, one per line (5 lines):

GROSS REVENUES
LESS DISCOUNTS

NET REVENUES

EXPENSES

NET INCOME

The specifications for these two blocks suggest the syntax for a
formatting utility function which we will call TITLES. Let us
illustrate the syntax before we define it:

TOP«45 TITLES 'nCAMPBELL CARPET CLEANINGNANNUAL SUMMARY
nl2/31/1986n’

LEFT«17 TITLES '<GROSS REVENUESc LESS DISCOUNTS
cNET REVENUEScEXPENSEScNET INCOME'

The left argument is an integer scalar of the width of the resulting
character matrix. The right argument is a delimited character vector
whose partitions each begin with one of the delimiters < (left-
justify), n (center) or > (right-justify). The result has one row
per partition. Each partition is justified within the row according
to the delimiter.

The TITLES function is developed and explained in the Positioning
Character Data chapter.

The remaining (middle) block is a block of column headings. When you
look at the block, you see four headings. The rightmost heading has
two lines. The lines are centered with respect to each other. Every
heading is underlined. Each set of underlines is separated from its
neighbors by two spaces. The headings are centered with respect to
the underlines.

We will illustrate and then define the syntax for a formatting
utility function which we will call HEADINGS.

-148-

Chapter 10 WRITING REPORTS

MIDDLE«17 6 6 10 HEADINGS 'NACCOUNTNBUDGETNACTUAL
NPERCENT¢DIFFERENCE'

The right argument is a delimited (by leading n symbols) character
vector whose partitions each represent one heading. The partitions
themselves may be delimited by newline delimiters (¢«) which indicate
the points at which headings are broken into multiple lines. The
left argument is an integer vector of the widths of the fields into
which the headings are inserted. Typically, one width is provided
for each heading (partition). However, if fewer widths are provided,
they are repeated to match the number of partitions.

The subpartitions of each partition are truncated if necessary to the
corresponding width for that heading. The subpartitions are centered
above one another within the width for that heading. A row of
underlines (hyphens) is placed below each heading across the width of
the heading. The headings are separated by 2 blank columns. If a
separation of more or less than 2 blank columns is desired, you may
include a vector of the desired separations after the vector of
widths in the left argument. They will be repeated if necessary to
match the number of partitions. For example, to have one blank
column between each heading in the example above:

MIDDLE«¢17 7 7 11 1 HEADINGS 'nACCOUNTNBUDGETNACTUAL...'

The HEADINGS function is developed as a problem at the end of the
Positioning Character Data chapter.

AURUAUAL AUNUNUAL AUAUAUNY AUNUAUAY S AUNUAUAY S AUAYAUAY S AUAUAUAL S AUAUAL AL

PROBLEM: Most primitive APL formatting capabilities are column
oriented. That is, each column of a numeric matrix to be
formatted is treated as a separate entity. Every row of
the column is formatted in the same way as every other
row. This is not true of every column. For example:

6 061623 33 pl9

1 2.0 3.00
4 5.0 6.00
7 8.0 9.00

What approach would you take to do row oriented formatting.
For example, how would you generate the following?

1 2 3

4.0 5.0 6.0
7.00 8.00 09.00

-149-

Chapter 10 WRITING REPORTS

TOPIC: Row Oriented Formatting

A common approach to this problem is to simply format each row
separately. For example:

Re3 18p' !
R[1;1¢6 OFMAT[1;]
R[2;1¢6 13MATI[2;]
R[3;1¢6 23MATL3;]

This process may be tedious if the matrix has many rows. The problem
may be solved noniteratively by transposing the data, formatting it
with a column oriented formatting function and then transposing it
back. Both monadic and dyadic applications of transpose (&) are
required. The specific logic required is presented as a problem at
the end of the Positioning Character Data chapter. Using the ROWFMT
function developed there, the solution is:

widthes
Re0O 1 2 ROWFMT MAT

AUALAUNY T AUAUAUAY AUNUNUAY AUAUAUY AU AUALNUAY AUAU AU AuAunu N

PROBLEM: You wish to print 50 checks. You are given 5 global
variables: CNUM (50 element integer vector of check numbers,
e.g. 305); CDATE (50 element integer vector of check dates
in MMDDYY format, e.g. 121586); VENDOR (50 row, 25 column
character matrix of vendor names, e.g. 257'ACME SUPPLIES');
CAMT (50 element integer vector of check amounts in cents,
e.g. 518250); DESC (50 row, 40 column character matrix of
check descriptions, e.g. 407'LOOSELEAF NOTEBOOKS'). Write
a function to print the information on continuous form blank
checks loaded in the printer. The following is an
illustration of the layout and characters to be printed for
a single check:

NO. 00305 DEC 15, 1986

TO: ACME SUPPLIES $5,182.50

FOR: LOOSELEAF NOTEBOOKS

~-150-

Chapter 10 WRITING REPORTS

TOPIC: Formatting Multi-Row Records Using Newlines

When doing simple formatting of a numeric matrix (e.g. 7 O3NMAT), the
character matrix result contains one row per row of the matrix being
formatted. In the problem above, the result appears to contain one
matrix (a check) per row (or element) of the arrays being formatted.
The term "appears" is used because the '"matrix" may in fact be a
vector with embedded newline (carriage return) characters. Let us
look at the above example in a special way:

! ... NO. 00305bbbbb DEC 15, 1986nnn TO: ACME SUPPLIES

. e $5,182.50nnnFOR: LOOSELEAF NOTEBOOKS . e nnnnnn'

The n represents a newline character and the b represents a backspace
character. Notice how the backspaces are being used to underline the
check number. The entire vector, including newlines, backspaces and
blanks is 174 characters long. The problem becomes much simpler if
you consider that your task is to format and combine the arrays into
a 174 column matrix, with one row per element or row of the arrays.

Begin by breaking the CDATE variable into two parts: the month (as a
3 letter abbreviation) and the day/year portion (DDYY):

MON¢12 3p'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC'
MON€«MONI[LCDATE+100003; 1]
DDYY«10000 1 CDATE

Let us solve the problem first for those APL implementations which
have OFMT (e.g. APLAPLUS and SHARP APL). Given the appropriate
format string (FS) left argument to OFMT, the desired matrix result
(CHKS) may be constructed as:

CHKS«¢FS OFMT (CNUM;MON;DDYY;VENDOR;CAMT ;DESC)

The format string left argument of OFMT may contain special
characters such as newline and backspace. Construct the variables NL
and BS to contain the newline and backspace character scalars
respectively:

APL*PLUS SHARP APL
BS<TCBS BS«DOAV[158+0I0]1]
NL«OTCNL NL«DAVL[156+0I01]

The format string is constructed by carefully piecing together the
control characters needed to produce the special 174 column matrix.

FS¢'X36,<NO. >,ZI5,<',(5pBS),(5p'_"'),"'>,X3,3A1,"'
FSe¢FS, 'S<97?>G< ?7, 197?7?>,<',(3pNL),' TO: >,’'
FS¢FS, '25A1,P<$>CK"2F15.2,<',(3pNL), 'FOR: >,'
FS¢FS,'40A1,<',(6pNL),"'>'

To print the checks, just display the variable CHKS on the printer.

-151-

Chapter 10 WRITING REPORTS

Now let us solve the problem using format by example (dyadic % with
character vector left argument, an APL2 enhancement). The approach
is basically the same. However, % does not allow more than one array
in its right argument. We must therefore build the result in
sections and then combine the sections.

BS«OTCLOIO]
NL¢OTC[1+0I01
ROWS«pCNUM

S1¢((36p’' '),'NO. 05555',(5pBS),(50'_'),3p' ')%
(ROWS, 1) pCNUM

S2¢MON (MON and DDYY from above)
S3«(' 05,_5555',(3pNL),' TO: ')3(ROWS,1)pe1900+100001

0 100TDDYY
S4«VENDOR
S5€('$555,555,553.50',(3pNL), 'FOR: ')3(ROWS,1)pCAMT+100
S6¢DESC

S7«(ROWS, 6)pNL

CHKS«S1,s2,53,54,85,86,87

~Aune Ao R Y i YR VI, V) L Ve Vi VEL V] fa ¥ 2V 1a Vi V) ~ N A A N AN A fa 2 Vi Vi V) RS VL VNS

PROBLEM: Frequently, when an APL application produces multi-page
reports, the reports are sent to a "print file" rather than
printed directly. Why? How should such a print file be
organized? How should its contents be printed?

TOPIC: Directing Report Output to Print Files

There are several reasons for directing report output to a print file
rather than printing/displaying it immediately:

1. To avoid the interruption caused by printing when many different
reports are to be generated. You may generate them all (to a
print file) and then let them print unattended.

2. To enable simple and inexpensive restarting. If the paper jams
or runs out (or the line to a remote computer drops), you may
reprint the report without having to regenerate it.

3. To make multiple copies of a report. The print file may be
printed repeatedly without regenerating the report.

-152-

Chapter 10 WRITING REPORTS

4. To print the report on a remote (batch) high-speed line printer.
A print file must exist in order for you to submit a batch
request for remote printing.

5. To spot-check a lengthy report. If a lengthy report is appended
to a print file by an applicaton, selected pages may be printed
and reviewed when deciding whether or not to print the entire
report.

The following is a reasonable organization for a print file (assuming

your APL implementation allows APL files or a reasonable emulation):

Component Description

1 to 10 (latent, i.e. empty character matrices: 0 0p'"')
9+2x1I Character matrix (or character vector with embedded
newline characters) representation of page I (1,2,3,...)

of the report. When displayed, the array will require no
more lines than can be accomodated by the paper on which
the page is to be printed (typically 66, i.e. 6 lines per
inch on paper which is 11 inches high).

10+2x1I One column all blank character matrix with as many rows
as are required at the bottom of page I to reach the
bottom of the paper (typically 66 minus the number of rows
in the matrix stored in component 9+2xI).

The first 10 (latent) components are included in case your
implementation has a remote (batch) high-speed line printer
capability. Typically, these batch facilities require several
control components at the beginning of your print file. The precise
significance of these control components is a function of your APL
implementation. Include whatever components are needed in your
environment.

After the first 10 components, the print file is organized into pairs
of components, one pair per page. Two components are used per page
instead of one so that your printfile will not be filled with 80
column (or so) blank rows whose only function is to move the printer
to the top of the next page. In fact, if file storage is a major
consideration, you should break each page into many pieces (some
pieces only one line) so that excess spaces can be omitted. However,
the file organization would then not allow direct access to a page in
the middle of the file since you could not determine the component in
which it begins except by trial and error or by maintaining a
directory.

With this file organization, you can immediately tell how many pages
are on the print file (.5x710+number of components) and you can
determine exactly where any page is stored (component 9+2xI for page
I3.

-153-

Chapter 10 WRITING REPORTS

To send the contents of a print file to a remote (batch) high-speed
line printer, you must follow the directions which apply to that
facility in your environment. However, if you want to print pages on
your local printer (or hardcopy terminal) or just wish to spot-check
pages on your CRT terminal, the following PRINT function may be
useful. To use it, you tie (or otherwise activate) the print file
and provide the tie number (or other file identification) as the
right argument of PRINT. The dialog will then look something like
this:

73 PAGES ON THE PRINTFILE.

BEGIN ON WHICH PAGE (OR END): 25
ALIGN PAPER TO PERFORATION AND PRESS RETURN.

(page 25 prints)
(page 26 prints)
(page 7% prints)
ERASE PAGES? YES
NO PAGES ON FILE.

If you respond YES to the ERASE PAGES? question, all pages on file
will be erased. That is, all but the first 10 components of the
print file will be dropped.

In this function, some attention handling code has been included (for
APL*PLUS or SHARP APL) in case the BREAK key is pressed while the
pages are printing. In that event, the printing immediately stops
and you are again asked for the page number on which to begin.

-154-

Chapter 10 WRITING REPORTS

[WSID: PRTFILE]

vV PRINT TIE;A;I;N;P;0ALX;0PW
[1] A Prints some or all pages in the printfile tied
[2] A to TIE. Pages are in components 11, 13, 15,...
[31 A APL*#PLUS attention handling (put OALX in header):
(41 OALX¢'>L1"
[5]1 A SHARP APL attention handling (put OTRAP in header):
[6] @a OTRAP¢«'V 1000 E L1’
[7] a Set print width to avoid APL wrap on long lines:
[81 OPWe250
[91 A Number of pages in the file:
[10] Ne&«((OFSIZE TIEJ[2]1-11)+2 m APL*PLUS
[11] A Ne((OSIZE TIEDX[21-11)+2 A SHARP APL
[12]1] 0O«(sN),' PAGE',(N=1)!'S ON THE PRINTFILE.'
[13]1 A Branch if 0, 1 or many pages:
[14] Tel
[15]1 -(END,L2,L1)[1+NL2]
[16] A Ask for starting page if more than one:
[17] Li:0¢"’
[18]1 [[O¢P«'BEGIN ON WHICH PAGE (OR END): '
[19]1 A¢(pP)LMO
[20] A Reprompt on empty response:
[211 ~(pA)IL1
[22]1 A Exit if END entered (even partially):
[23] 5(AA.=(pA)T'END')pl4
[24]1 A Convert response to numeric and validate:
[25]1 I¢OFI A A Available on APL#PLUS and SHARP APL
[26]1 -»>((1=pI)AA/TI€1LN)pL2
[27]1 O0Oe¢'+x INVALID PAGE NUMBER.'
(28] 0O«'x% VALID PAGE NUMBERS ARE 1 THROUGH ',(sN),'.’
{29] 0O«’'+x+« TYPE ''END'’' TO STOP PRINTING.'
[30]1 »-»L1
[31] a Align paper:
{32] L2:0¢P«<’'ALIGN TO PERFORATION AND PRESS RETURN.'
[331 A«(pP)iN
{341 a Exit if END entered:
{351 =((1=pA)AAA.=(pA)T'END')pL4
[36]1 A Print page and spacing to next page:
(371 L3:0«0FREAD TIE,9+2xI A APLAPLUS
[38] A L3:00READ TIE,9+2xXI A SHARP APL
[391 0O«OFREAD TIE,10+2xI A APL*PLUS
[40] a O€OREAD TIE,10+2XI A SHARP APL
[41] A Branch if more pages:
[42]1 =(N2I¢I+1)pL3
[43] n Erase pages, if desired:
[44] L4:0¢P¢«'ERASE PAGES? '
[451 =('Y'#17(pP)LiM)pEND
[46] OFDROP TIE,OL11-(OFSIZE TIE)[2]1 A APL*PLUS
[47] A ODROP TIE,OL11-(OSIZE TIE)[21 A SHARP APL
[48]1 [O«'NO PAGES ON FILE.'
[49]1 END:

v

-155-

Chapter 10 WRITING REPORTS

AUAUAUNS AUAUALAY AUAUAUALY AUNUNUAY AUAUALAY NUNUAUNS T AUAU ALY AuAU AU

PROBLEMS: (Solutions on page 366)

1. Using the HEADINGS function introduced in this chapter, construct
the following set of column headings.

LAST YEAR THIS YEAR GROWTH
—————————————————————————————— IN
AVG. TOTAL AVG. TOTAL TOTAL
SALE SALES SALE SALES SALES

2. Using the numeric scalar DATE which is today’s date in the form
MMDDYY and the numeric scalar PNO which is the current page
number, construct the following set of titles using the TITLES
function introduced in this chapter.

PAGE 17
FINANCIAL SUMMARY

12715786
WESTERN REGION

3. Given the following numeric matrix,

NMAT
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

how would you format it to appear as follows?

CMAT
1 2 3 4
5.0 6.0 7.0 8.0
9 10 11 12
13.0 14.0 15.0 16.0
17 18 19 20

21.0 22.0 23.0 24.0

-156-

Chapter 11

SYSTEM DEVELOPMENT PROCEDURE

Because APL is so concise, powerful and unrestricted, almost
anyone can toss together an application system. While experience and
discipline are useful to have, they are not essential. This is one
of the reasons why so many APL programmers do not come from
traditional data processing backgrounds. (The other reason being
that prolonged use of COBOL tends to rot the brain.)

If you can solve a problem in APL in one-fifth the time it takes to
solve it using FORTRAN, it follows that you can develop 5 unreadable,
unmaintainable APL systems in the time it takes you to develop one
unreadable, unmaintainable FORTRAN system. To some computer
scientists, this improvement in productivity leads to a new
philosophy of system development: throw-away code. The basic idea
is to write the system fast to get the job done. Then, when
requirements change and the system is no longer adequate, throw it
away and build a new one.

Those who foster the view that APL is the ideal language for writing
throw-away code are those who would like to see APL thrown away.
They also tend to kick their pets.

In many respects, APL is not unlike any other programming language.
System development should be planned, documented and implemented
meticulously. If done properly, the system will be a pleasure to use
and to maintain. If done improperly, the system will be a living
hell for all those associated with it. Documentation will be scarce,
if existent. Code will be mystifying, if readable. The user will be
suicidal, if not homicidal.

A well-developed system, on the other hand, is easy to recognize. It
is easy to use so the user rarely needs to refer to the extensive
user guide. It is reliable and efficient so the technical support
person rarely needs to scan through the readable code or the
extensive technical documentation. The word '"enhancement" is used
more frequently than '"maintenance" and neither word causes the system
developer to tremble with anxiety.

-157-

Chapter 11 SYSTEM DEVELOPMENT PROCEDURE

In this chapter we describe eight steps which should be part of any
APL system development procedure:

Familiarization
Specification

File design

Workspace design

User documentation

Flow charting

Coding, typing, testing
Delivery, training

VIO WM

Yes, in that order. Compare this list to the procedure for the usual
throw-away APL system:

1. Coding, typing, testing
2. Delivery, training
3. Familiarization {Oht So that’s what you wanted!)

I implore you. Please do not dismiss the system development
procedure outlined here without trying it once. The procedure will
increase your productivity, improve the quality of your system and
make the development process more fun. Try it.

AUNCAUAL AUNUAUNY AUAUAUAY T AUAUAUAY AUAUNUAY S AUAUAUAY AUAUAUAL AUNLAUAL

TOPIC: Familiarization

During this phase, you become familiar with the problem, not the
solution. Emphasis is on the needs of the user, not the tools of the
programmer.

If a manual system exists and is to be replaced, now is the time to
study the manual system. If there is no manual system, you should

talk with the user and '"brain-storm'" about an ideal system. Sketch
sample reports and sample input sheets.

Where will the data come from? Is it readily available? Will the
value of the system justify the installation and updating of the
data? How much will the data requirements of the system grow? Will
the system need to supply data to other computer systems? How
frequently will reports be generated? Who will use them and why?
How often will the report formats change? What is the expected life
of the system?

The unasked questions which should permeate your thinking are: Is

this system feasible? Does the user have a clear picture of what
such a system will be like and how it will interact with the

-158-

Chapter 11 SYSTEM DEVELOPMENT PROCEDURE

organization? 1Is the value of the finished system going to justify
the time and effort required to develop it?

The familiarization phase could also be called the feasibility phase.

The phase is complete when both you and the user have a clear
qualitative understanding of how the system should operate, and are
both convinced that the system is a good idea.

AUALALAL AUAUAUAL AUAUAUAY S AUAUAUAY AUNUAUNAY S AUNUAUAY S AUAUAUAY AU AU AL A

TOPIC: Specification

At the heart of the word "specification" is the word '"specific".
That is what the specification phase is all about: getting
specific. Put in writing all the details which define the system.

Bear in mind during this phase that any system has three major
aspects: input, processing, output.

Input: What data items must be supplied to the system? Are there
other items which are not needed now but may be needed later? How
many records of data items will the system contain? How fast will it
grow? From what different sources will the data come? How
frequently? What is the exact record layout of any data from
external media (e.g. computer tape)? What is the exact layout of the
input sheets used to manually enter data? How clean will the data
be? What data integrity checks must be performed (e.g. salary must
be a positive integer less than 50,000)? What inter-data
restrictions must be imposed (e.g. date-of-hire must be earlier than
date-of-termination)?

Processing: What data items must be computed from input data items?
With what formulas? What reqular processing operations are to be
conducted? How frequently? What steps are involved in these
operations? How often will these steps change and how dramatically?

Output: What reports will need to be generated by the system? How
frequently? What is the exact layout of each report? How is each
report item derived from the input and computed data items? How
often will the report formats change and how dramatically? Will
other areas need access to certain data items? In what format?

The specification phase is complete when you have a written document
(the "specification") which so thoroughly and specifically describes
the system that, ideally, it could be given to any expert programmer
who could then develop the system without conferring with the user.

-159-

Chapter 11 SYSTEM DEVELOPMENT PROCEDURE

AUAUAUNY T AUAUAUNY AURUAUAL S NURUNUAY AUNUAUAY AUV AUV AN Ay

TOPIC: File Design

During this phase, you draw pictures of alternative file designs.
You then consider the pros and cons of each design given the input
and output requirements of the system.

How many file accesses are required to add one record? To add 100
records? To change a few items on one record? On 100 records? To
delete one record? To delete 100 records? To display the entire
contents of one record? Of 100 records? To search the entire file
for records which match a set of logical criteria? To generate each
of the reports included in the specification? How often will each of
these operations be performed? Will the cost and response time
resulting from these file accesses be acceptable?

The file design phase is complete when the structure of each file,
including its name, is completely documented in written form.

AUALAUAL AUAUAUNY S AUANUNUAY AUAUAUAS AUAUALNU ROAUAUAY NUAUAUAL AR AUAS

TOPIC: Workspace Design

During this phase, you sketch sample terminal sessions. The terminal
sessions illustrate the actual operation of the system including
system prompts and typical user responses.

You should work closely with the user during this phase since the
user must live with the system interaction being designed now.

Begin with a general flow chart of the operations to be performed by
the system. Break the flowchart into functional blocks, each of
which will be implemented as a single APL function. Then, for each
function, write down the dialog (sample terminal session) produced by
the function.

Does the dialog allow for all required input? Does it provide
control of every processing step? Can any and all reports be
requested easily? Can the user gracefully exit the system from
anywhere without losing any input? Can the user quickly navigate
among the most commonly used operations of the system? Are the
prompts meaningful? Does the prompting structure allow for optimal
use of the files, given their design?

-160-

Chapter 11 SYSTEM DEVELOPMENT PROCEDURE

The workspace design phase is complete when sample terminal sessions
have been sketched for all contingencies and the user accepts the
flow of the system without reservation. The major functions of the
system are identified, named and documented in general terms. The
file design is updated if necessary.

AUAUAUAL T AUAUAUNY S AUNUAUAY AUAUAUAY NUAUACAL NUAUAUAY AUAUAUAY AUAUAUAY

TOPIC: User Documentation

User documentation may be written before or after the system is
implemented. It is better to write it before. The only reason for
writing the documentation after the system is built is that you may
be able to talk the user out of any documentation at all. Not a
noble reason.

By writing the user documentation before the system is implemented,
you will find that the documentation is much easier to write (fewer
constraints) and the system is easier to implement. For example,
before implementation you can write, '"Type STOP at any time to
terminate the system." After implementation you must write, "Type
STOP to terminate the system when adding records; type END when
generating reports; type HALT when closing the accounting period; and
type O-backspace-U-backspace-T if none of these works."

If you have never documented a system before implementing it, you may
be reluctant to try it now. Please! Please try it! It will make
the overall system development task easier and will result in a
better system. It's more fun too. Try it once. What can it hurt?

The user documentation is an instruction manual which explains to an
inexperienced user how to use the system. It begins with an
explanation of the purpose of the system and any background
information required to understand the system. After the
introduction, the manual consists mainly of the sample terminal
sessions along with comments explaining the various options. After
reading a well-written manual, the user should be able to use every
facet of the system without help from you.

As you write the manual, you should update the specifications and
file design if such change is suggested by the documentation

process. The user documentation phase is complete when the manual
has been read by the user and accepted without reservation.

AUASALAL NUNUALNAY NUNLNUNL NUNUALAY AUV ALY AUAUAUNS AUNUAGNS AUAU A A

-161-

Chapter 11 SYSTEM DEVELOPMENT PROCEDURE

TOPIC: Flow Charting

During this phase, you will diagram the program logic which underlies
each of the major functions identified during the workspace design
phase. You will do this with the documented file structure on one
side of your desk and the user documentation on the other side.

The flow charting phase can be called the '"divide and conguer"
phase. Divide each major function into the general steps which it
must perform. Then divide the general steps into more specific
steps. Continue in this fashion until the steps can be translated
directly into APL code.

During this subdivision process, you will identify common steps which
are required in several locations of the system. If such steps are
not at the low level in which they may be translated into APL code,
you may choose to label these steps as subfunctions and write their
comprising steps but once. As you identify each subfunction, you
should name it, define its syntax, list the variables and functions
which are global to its operation and write a brief description of
what it does. This will become a permanent part of the technical
documentation.

The flow charting phase is complete when coding is all that remains.
You will have written descriptions of all functions, subfunctions and
global variables. You will have flow charts which diagram every
logical step during the use of the system. The steps will be
described at such a precise level of detail that they may be
translated directly (without much logical reasoning) into APL code.

AN LaVEa Vi, VL V] [T VI VL V) RaYEA VR VI, V] RA TRV, VEL V] LV VI, VL V] ~AU AN fa v da e Vi V]

TOPIC: Coding, Typing, Testing

Without having written a symbol of APL code or pulled your chair up
to your APL terminal, you are more than half done with the system.

The user has been getting constant feedback from you, has a user's
manual on his or her desk and has complete confidence in your ability
to deliver the exact system needed. All this without a symbol of APL.

If you do not know APL, now is the time to learn it. Quickly.

During the coding, typing, testing phase, you do just that. The
three tasks are clumped together because they need not each be
performed to completion before starting the next task. For example,
you may want to code 5 or 10 functions, type them, test them and
repeat this process for the next 5 or 10 functions.

-162-

Chapter 11 SYSTEM DEVELOPMENT PROCEDURE

While it is possible to code the entire system before typing a single
keystroke, there are disadvantages to such extreme behavior. For one
thing, a coding flaw will not be picked up until you begin testing.
You may have made the same mistake dozens of times throughout the
system. Second, when you are testing the code, you may not remember
your intentions in a difficult piece of code. Finally, if doing
nothing but writing code for 3 weeks does not drive you crazy, then
doing nothing but typing APL code for 3 days will. And if that does
not, then 2 weeks of testing will.

At the other extreme, you may choose to code, type and test one
function at a time. There are disadvantages to this mode of
programming. Some design flaws will not be uncovered until you get
further into the system. Such flaws may require you to rewrite or
scrap functions written earlier. Any time spent typing or testing
now obsolete code will have been wasted.

The coding, typing, testing phase is complete when everything is
tested and you are ready to turn the system over to the user.

AUNUNUAY T NUAUNUAL AURUNUNY NUNUAL AU RUNUNUNY AUANUNUAS AUNUAUNY AuAau AL AL

TOPIC: Delivery, Training

During this phase, you will transfer the system from your control to
the user's control. You will initialize any files which have not yet
been initialized and will move the workspace or workspaces to the
user's library if they need to be moved.

When the system is ready to roll, you will meet with the user to take
a spin. Having read the user documentation (and helped you design
the dialog), the user should require little guidance or training from
you. As the system is tested, you will need to make two lists. The
first list refers to bugs which are encountered. If your testing
process was careful and thorough, this list will be empty.

The second list refers to suggested enhancements to the system.
There is nothing like a live system to suggest what is wrong with
it. The user will be happy to mention these. Since you worked
together closely to design and document the system, you will not be
blamed for delivering an imperfect system. Rather, you will be
commended for delivering what you agreed to deliver.

The delivery and training phase is complete when the user accepts the

system as is. If there are enhancements to be made to the system,
you should implement them as you did the system: familiarization,

-163-

Chapter 11 SYSTEM DEVELOPMENT PROCEDURE

specification, file design, etc. For simple enhancements, you may
get through all the phases in a few minutes. Do not forget to update
the technical and user documentation.

-164-

Chapter 12

PROGRAMMING STANDARDS

The reason for programming standards is to create a conformist
world in which every programmer thinks and programs the same way.
What these programmer clones lose in creativity they more than make
up in productivity. After all, when picking up a program written by
Clone A, Clone B has no trouble reading it. Not only is the language
familiar; so too is the dialect and the handwriting.

The purpose of this chapter is to present a set of APL programming
standards. They are not presented as the perfect set nor even as the
author's preferred set. Rather, they are a set. Pick and choose as
they suit you. The important thing here is that the set you choose
be accepted by all those in your organization who will work on the
same systems as you.

The standards are organized by the phases of the system development
procedures presented in the prior chapter. Along with the dogma of
each standard is a brief justification for it. If the justification
is omitted, you may assume it is, "To improve readability by use of
consistent conventions."

AUAUAUAL T AUAUALUALY AUAUARUALY AUAUANUAY AUNUANUAY AUAUAUNY NUALAUAY S AUAU AL AL

TOPIC: Familiarization

1-1 Select, or have appointed, another programmer to review your
work.

WHY: To spot design and logic flaws and otherwise help you see the
forest from the trees. This is also one of the best ways to
learn new design and programming techniques.

-165-

Chapter 12 PROGRAMMING STANDARDS

1-2 Make certain a single user has been assigned the responsibility
of working with you.

WHY: You need a single person to accept your design and to be held
responsible for it.

AUAUAUAL AUAUAUAL T AUNUALALY AUNUALALY T AUAUAUALY AUAUAUAY AUNUALNY T AU AU AL

TOPIC: Specification

2-1 Include hand drawn input sheets and full-screen input forms.
WHY: To insure that you and the user and you see input
requirements eye to eye.
2-2 Include hand drawn reports containing exact headings, line names
and number formats.
WHY: To insure that you and the user and you see output

requirements eye to eye.

2-3 Have someone else review the specification.

AUALUAUAL AUALUAUALY AUAUALAY AURUAUAL AUNUAUAY AUAUAUAY T AUAUALAY AU AU AU AL

TOPIC: File Design

3-1 All file components are assigned a meaningful variable name
(first letter underscored) which is used when the component is read
into the workspace.

WHY: To help anyone reading the code to identify objects from file.

3-2 The file directory, if there is one, is stored in component 1 of
the file.

3-3 On-line file documentation, if any, is stored in component 2 of
the file.

-166-

Chapter 12 PROGRAMMING STANDARDS

3-4 Leave at least 10 latent (empty vector) components at the start
of the file for future design modifications.

3-5 Files are documented on paper (preferably using word processing
software) and include the component number, variable name, shape and
description of each object in the file.

3-6 Have someone else review the file design.

AUNUNUAY T AUNUNUNY UNUNUAY NN AUNUAUNY UL AUAUAU NS A as AU A

TOPIC: Workspace Design
4-1 Along with each user prompt, list all possible error messages in
the sample terminal sessions.

WHY: To insure consistent error messages.

4-2 Use the following standard user keywords when needed:
ADD: Add more data to database.
CHANGE: Replace an existing value with another.
DELETE: Remove data from database.
SHOW: Display data from database.

INSERT: Add more data among existing data in a database where
order of data is important.

END: Normal termination of the current phase of the program.
HALT: Terminate program abruptly and compeltely.

WHY: To be consistent so the effect of various responses to a
prompt can be anticipated.

-167-

Chapter 12 PROGRAMMING STANDARDS

4-3 The system is invoked by loading an autostarted workspace (using
OLX). The functions do not return to immediate execution mode until
the system is terminated. All input is accepted via character input
(M) mode or full-screen input mode rather than evaluated input (0)
mode.

WHY: To eliminate the possibility of accidentally invoking
non-user functions or of getting APL system error messages
(e.g. SYNTAX ERROR).

4-4 Applications are terminal independent unless special features
are expressly desired.

WHY: To allow switching from one terminal to another without
requiring program modifications.

4-5 All reports are directed to a printfile rather than to the
terminal. The contents of the printfile must be displayed in a
separate step.

WHY: To allow easy, inexpensive report restarting in the event of
line noise, line drop, printer malfunction or complete
crash; to allow reference by page number when printing; to

allow flexibility in directing reports to terminal, line
printer or remote printer.

4-6 Have someone else review the workspace design.

AUAUNUAY T AUAUAUAL T AUAUAUNY S AUAUNUAY AUAUAUAY AURNURUAY AUAURLAY AUNL AL AL

TOPIC: User Documentation
5-1 Include all possible prompts in the documentation, along with
descriptive text.

WHY: To ease the transition from text to terminal.
5-2 Write the documentation using whatever word processing software
is commonly used in your department or company.

WHY: To insure professional appearance of documentation; to allow

quick, easy modifications; to ease the transfer of system

support since the same word processing software is used by
all.

~168-

Chapter 12 PROGRAMMING STANDARDS

5-3 If the dialog or options of the system are necessarily
complicated, include a brief summary of the workspaces, functions,
keywords, choices, and so on for quick reference.

WHY: So the user does not have to thumb through the lengthy
documentation.

5-4 Include a complete Table of Contents.

5-5 Have someone else review the documentation.

AUAUNUNL T AUNUAUAY NUNUALAY AUTUALAY AUAUNUAY NUAUAUAY AUAUAUNY AU AL AL

TOPIC: Flowcharting

6-1 The purpose of each function is documented in a one-sentence
description, including the function syntax and its dependence upon
global variables and subfunctions. All functions have meaningful
names or abbreviations.

6-2 The purpose of each global variable is documented in a
one-sentence description.

6-3 Functions with same names in different workspaces are identical.

6-4 Subfunctions are chosen judiciously. They have well defined
arguments, produce well defined results or effects and require or
create a minimum number of global variables or other subfunctions.
The state indicator does not get deeper than 5 levels.

WHY: All user defined functions call other functions (at a
minimum, APL primitive functions). The key to readability is
that the subfunctions can be understood without reference to
further documentation. If there are too many subfunctions
and they are not neatly defined, the reader will spend too
much time flipping back and forth among function listings
instead of reading code. The state indicator in the human
brain can generally go no deeper than 5 levels without losing
track.

-169-

Chapter 12 PROGRAMMING STANDARDS

6-5 Flowchart using words and diagrams, not APL code.

WHY: To compel the programmer to organize her thoughts and plans
before getting bogged down in coding details. If coding is
all that remains, flowcharting is done.

6~6 Include all error checks in flowchart.
WHY: To remember them when coding and to not underestimate the

complexity of the function.

6-7 Have someone else review the flowcharts.

AUNCAUAL T AUNUAUNY AUAUALAY NIRRT AN AR AN AUV

TOPIC: Coding, Typing, Testing

7-1 All workspaces contain the global variable <wsid> which contains
the workspace identification (WSID) of the saved workspace.

7-2 All workspaces contain the global variables <fnums> and <fnames>
which contain the file numbers and file names of the files which are
assumed to always be tied.

7-3 File tie numbers are assigned to global variables whose
meaningful names are prefixed with 'f' (e.g. fSMRY, fEMPL). These
variables reference files which may or may not be tied (see
<fnums>). The tie number of the printfile is assigned to fPRINT.

7-4 The name of the printfile is 'PRINTFILE'.

7-5 All workspaces contain the function TIEFILES which ties those
files in <fnums> and <fnames>.

7-6 Workspaces which alter their OLX contain the global <1x> which
is assigned the original value of OLX.

7-7 Variables global to the workspace have meaningful names and are
completely underscored (except for global variables containing file
tie numbers).

-170-

Chapter 12 PROGRAMMING STANDARDS

7-8 Variables from file and localized variables used globally by
other functions have meaningful names and have their first character
underscored.

7-9 Functions on file, like variables on file, have meaningful names
with the first character underscored.

7-10 Strictly local variables (localized and not used within
subfunctions) contain no underscores in their names. Meaningful
variables have meaningful names or abbreviations. Temporary,
intermediate or useless (e.g. from OEX) results are assigned to
single letter variable names and are not used further than 5
statements beyond the assignment.

7-11 The meaning of a variable is commented when first assigned
unless the comment is the name, or the variable is read from a
documented file, or the meaning can be inferred from a prompt.

7-12 The first line or two of every function is a comment which
explains the purpose and syntax of the function, and lists the global
variables and subfunctions required by the function.

7-13 When calling a subfunction, include a comment which lists the
global variables and subfunctions required by the subfunction.

7-14 The intent of every function line is commented.

WHY: To help the program maintainer quickly locate and decipher
code which needs fixing or enhancing. Writing code is the
process of converting the intent to the code. Reading code
is the process of attempting to reconstruct the original
intent based on the code. Since the intent is obvious during
coding, it can be included in a fraction of the time (and
mental effort) it would take to reconstruct it later. Lines
that contain prompts or error messages are often
self-commenting. Examples of comments which unsuccessfully
and successfully comment the intent:

A Squeeze out the flagged rows of the matrix. (no good)
A Ignore inactive profit centers. (good)
A Set DOELX to capture error messages. (no good)
A Prepare for file reservation errors. (good)
A Increment and repeat if not done. (no good)
A Loop by region. (good)

-171-

Chapter 12 PROGRAMMING STANDARDS

7-15 Line labels are L1, L2, L3,... and are kept in ascending order
even if not sequential. Significant labels, which segment the

function or identify key steps, may have meaningful names. For
example:

>('ACDE' =11TR)/ADD,CHANGE,DELETE, END

7-16 Branching is always to a line label or empty vector (never =0
or).

WHY: Without -0, the program must exit through its "bottom" which
is better style than having many exit points. For example,
you may be certain that a statement added to the end of a
function will always be executed. The use of naked branch

(») removes control from cover functions which may call the
function.

7-17 Recommended branching techniques are:

>LABEL
-CONDITION/LABEL
2CONDITIONS/LABELS
>CONDITIONILABEL
>LABELS[INDEX]
>CONDITIONOLFALSE, LTRUE

7-18 Recommended looping technique is:

Il
LOOP:»ENDLOOP IF I>LIM
process 1
TeI+l
->LOOP
ENDLOOP:

7-19 Use 72147483647 for numeric values which are '"not applicable";
assign this constant to the variable <huge> if used frequently.
7-20 All output to the terminal is through 0 or M. For example:

0¢'ENTER YOUR CHOICE'

WHY: To help locate all terminal output if the need arises (e.q.
to direct output to a file) and to improve readability (e.g.
O0¢«PROCESS MAT vs. PROCESS MAT).

-172-

Chapter 12 PROGRAMMING STANDARDS

7-21 Evaluated input mode (0) is not used.

WHY: To avoid unintentional escapes via)LOAD or)OFF, to avoid
unintentional execution of defined functions, and to avoid
technical error messages (e.g. SYNTAX ERROR) to the user.

7-22 Maintain 0I0=1 globally. Localize O0IO if assigned as O.

7-23 The local result variable is used only for the result and not
for temporary values.

WHY: To avoid unintended results upon premature function
termination and to avoid confusion when reading the function.

7-24 The local argument variables are never reassigned except to
ravel them.

7-25 Every function line is restartable. That is, no other
functions should be performed on the same function line once a
function has been executed whose effect should not be repeated. For
example, T¢2+VeV,R 1is unrestartable.

WHY: So that any function line may be restarted from its beginning
after it has been stopped, say by an error. For example, the
following suspension cannot be properly restarted via -3
since V will have been extended twice:

WS FULL
MODELI[3] Te2+VeV,R
A

7-26 Error messages or other error handling logic immediately follow
detection. For example:

[101 2(X>0)/L2

[111 J¢’'x+x VALUE MUST BE POSITIVE'
[121 »>L1

[131 L2: etc.

WHY: To avoid having to search through the function to find the
code which handles each error condition.

7-27 Lines containing multiple statements perform a single, logical
operation.

-173-

Chapter 12 PROGRAMMING STANDARDS

7-28 All error messages are passed through an error-displaying
function named ERRMSG.

WHY: To allow consistent presentation of error messages (e.g.
preceding them by two stars or beeping twice or displaying in

a specified position on the screen). To enable you to find
all error messages for inclusion as an appendix in the user
manual.

7-29 Testing is performed methodically by stopping on every function
line, not experimentally (i.e. by jumping from bug to bug).

7-30 Test all edge (e.g. empty vector) conditions.

7-31 Have someone else review the code.

AUAUAUNS AUAUNUAY NUANUNUAY S NUNUNUAY AUAUAUAY NUAUANLAL AURUALAL AUNUAU AL

TOPIC: Delivery, Training

8-1 The contents of all workspaces are documented using whatever
workspace documentation software is commonly used in your department
or company. This software produces a printed, paged listing of the
definitions of all functions and at least the names and shapes of all

global variables.

8-2 Functions are not locked unless you have a significent reason
for doing so.

-174-

Chapter 13

WORKSPACE DESIGN AND DOCUMENTATION

For a given computer application, two different programmers will
design and implement it differently. 1In fact, a single programmer
will develop the application differently at different times in her
own career. Because of the flexibility of APL, a spectrum of
approaches are both possible and feasible for any problem. How then
is one to choose between plausible approaches when designing an
application system? In this chapter, we discuss workspace design and
documentation considerations. The aims are to expand your
appreciation of the trade-offs involved during the design process,
and to help you document an existing application.

PROBLEM:

TOPIC:

AUAUALAL AUALAUAL NUNUNUNL AUNUAUALY T AUAUAUANY AUAUNUAL T NUNUNUAL AU AL AU A

Develop an application which will maintain a list of
employees. For each employee, maintain the employee's
number (4 digits), name (last name first) and age. Do not
use files for this application. Rather, store the
information in the global variables ENUM (integer vector),
ENAME (25 column character matrix) and EAGE (integer
vector). Provide capabilities for adding, deleting and
listing employees.

Subfunction Design

As simple as this application is, no two programmers will develop it
exactly the same way. The most pronounced difference between
solutions is the degree to which subfunctions are employed. At one
extreme, a single function is written which calls no subfunctions.

At the other extreme, a primary (or main or cover or driver) function
is written which calls a variety of subfunctions which in turn call
subfunctions and so on as desired.

-175-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

The following is an illustration of the APL code written to implement
the application as a single function.

[WSID: FLFI
Vv EMPLOYEES;AGE;G;GOOD;NAME;NUM;P;R
[11 a Ask for choice on same line:
[2] CHOOSE:[O¢P«'ADD, DELETE, LIST OR END: '
[3] Re(pP) L
[4]1 @ Branch based on 1lst char of response:
[51 >('ADLE'=11TR)/ADD,DELETE,LIST,END
[61] ¢’ **x INVALID CHOICE. CHOOSE FROM: ADLE'’
£71 >CHOOSE
[81 ~n
[9]1 ~n
{101 ADD:0«'EMPLOYEE NUMBER (OR 0 IF DONE)'
(111 NUMe,O
[121 A Continue if exactly 1 number entered:
[13]1 -(1=pNUM)/A1l
{141 0O¢'*xx ENTER 1 NUMBER’
[15] ~-ADD
[16]1 A Branch to choice question if 0 entered:
[17]1 Al:->(0=NUM)/CHOOSE
[18] A Continue unless employee number already exists:
[19] -(NUMe€ENUM)IA2
[20]1 0O«'xx EMPLOYEE ', (sNUM),' ALREADY IN LIST'
(211 =ADD
[22] A2:[0¢P¢'EMPLOYEE NAME (MAX 25 CHARACTERS): '
[23]1 A Ask for name at end of same line:
[24]1 NAME«(pP)lD
[25]1 A Continue unless name too long:
[26] ~(25zpNAME) /A3
[27]1 O¢'*xx NAME TOO LONG'
[28]1 =A2
{291 A3:0¢’'EMPLOYEE AGE'
[301 AGEe«,O
[31] A Continue if exactly 1 number entered:
[32]1 -(1=pAGE)/A4
[33]1 O€¢'xx ENTER 1 NUMBER'
{341 -A3
[35]1 A Continue if a valid age:
[36] A4:>((AGE=TAGE)A(AGE217)AAGE=<99)/A5
[37]1 O¢’*% AGE MUST BE INTEGER FROM 17 TO 99’
[38] ~A3
[39] A Catenate new values and ask for more:
[40]1 A5:ENUM¢ENUM,NUM
[41] A Pad name to length 25:
[42]1 ENAME<ENAME,[1125TNAME
[43] EAGE«EAGE,AGE
[44]1 -ADD
[45]1 n
[46]1 A
[47] DELETE:0¢'ENTER EMPLOYEE NUMBERS TO DELETE’
[48]1 A Ravel to insure a vector, not scalar:
[49]1 NUMe,O

-176-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

v EMPLOYEES (continued)
[50]1 A Continue if all valid numbers:
{511 ->(A/GOOD¢NUMeENUM) /D1
[52]1 [O«'*x NOT FOUND: ',3(~GOOD)/NUM
[53]1 >DELETE
[54]1 A Flag those employees to keep:
[55]1 D1:GOOD¢«~ENUMeNUM
[56]1 A Squeeze out deleted employees:
[571 ENUM«GOOD/ENUM
{581 ENAME«GOOD#ENAME
[59]1 EAGE«GOOD/EAGE
[60] ->CHOOSE
[61]1 A
[62]1 n
[63] LIST:0¢'NUMBER AGE NAME'
(641 D&’
[65] A Prepare to sort employees by number:
[66]1 G¢«AENUM
[67]1 A Sort and display:
[681 0O¢«(5 0 7 0O ENUMIG],[1.5]1EAGEILG]1),(((pENUM),3)p"' '3,

ENAMEI[LG; 1]

[69]1 DOe'’
[701 ->CHOOSE
[71] n
[72] nA
[731 END:

v

The following is an illustration of the APL code written to implement
the application in highly subfunctionized fashion. EMPLOYEES is the
driver function.

[WSID: MSF]

v ADDEMP; AGE ; NAME ; NUM
[1] Al:NUMeNINPUT 'EMPLOYEE NUMBER (OR O IF DONE)'’
[2] @A Exit if 0 entered:
£31 20 IF 0=NUM
[4]1 A Continue unless employee number already exists:
{51 2A2 UNLESS NUMeENUM
[6] O€'’'+%x EMPLOYEE ', (sNUM),' ALREADY IN LIST'
[71] 2Al
[8] A2:NAME«CINPUT 'EMPLOYEE NAME (MAX 25 CHARACTERS): '
[9]1 A Continue unless name too long:
{101 -»A2 IF(25<pNAME)IMESSAGE '** NAME TOO LONG'
[11] A3:AGE«NINPUT 'EMPLOYEE AGE'
[12] -A3 IF((AGE#lAGE)V(AGE<17)VAGE>99)MESSAGE '** AGE MUST

BE INTEGER FROM 17 TO 99'

[13] A Catenate new values and ask for more:
[14] CATEMP
[15]1 ~Al

v

-177-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

[WSID: MSF1
V CATEMP
(11 ENUM«ENUM, NUM
{21 A Pad name to length 25:
[31 ENAME<ENAME RCAT NAME
[4] EAGE<EAGE,AGE
v

[WSID: MSFI]
V Re¢CINPUT PROMPT
[1] @A Display prompt and ask for response on same line:
[21 1«PROMPT
[3] Re(pPROMPT) IO
v

[WSID: MSF]
vV DELEMP;GOOD ;NUM
[1] Ll:0¢’'ENTER EMPLOYEE NUMBERS TO DELETE'
[2] A Ravel to insure a vector, not scalar:
(3] NUM«, O
[4] @A Continue if all valid numbers:
[5] »L2 IFA/GOOD¢NUM€eENUM
[61] Oe'*x NOT FOUND: ' ,s(~GOOD)/NUM
[71 L1
(8] na Flag those employees to keep:
[9] L2:GO0D¢«~ENUMeNUM
[10] A Squeeze out deleted employees:
[11]1 SQZEMP GOOD
\%

[WSID: MSF]
vV EMPLOYEES;R
[11] a Ask for choice:
{21 CHOOSE:R¢'ADLE' SELECT 'ADD, DELETE, LIST OR END: '’
[3] A Branch based on response:
[4] - (ADD,DELETE, LIST,END)[R]
[5]1 n
[61 ADD:ADDEMP
(71 - CHOOSE
(81 n
{91 DELETE:DELEMP
[10]1 -CHOOSE
[111 n
[12]1 LIST:LISTEMP
[131 -CHOOSE
[14]1 n
[15]1 END:
v

-178-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

[WSID: MSF]
vV R¢LINE IF CONDITION
(11 R¢CONDITION/LINE
v

[WSID: MSFI]

vV LISTEMP;G
[1] O¢' NUMBER AGE NAME'
[21] Qe
[31] A Prepare to sort employees by number:
(41 G¢AENUM
[51 a Sort and display:
(61 0«(5 0 7 0 SENUMIG]1,[1.51EAGE[G]),(((pENUM),3)p' '),

ENAMEILG;]

{71 O«'’

[{WSID: MSF]
vV R¢CONDITION MESSAGE CVEC
[11 R<CONDITION
[21] >0 UNLESS CONDITION
[3] O0«CVEC

[WSID: MSF]

V ReNINPUT PROMPT
(1] L1:0¢PROMPT
{2] A Ravel response to insure a vector, not scalar:
(31 Re,0
[4]1 n Exit if exactly 1 number entered:
5] 2Ll IF(1#pRIMESSAGE '#4* ENTER 1 NUMBER'

v

[WSID: MSF]
vV ReM RCAT V
(11 ReM,[11(1lpMI TV
v

[WSID: MSF1

vV IND¢CHOICES SELECT PROMPT;R
[11] A Ask for choice:
[2] ASK:R«<CINPUT PROMPT
[3]1 A Search vector of choices for 1st char of response:
[41 IND¢CHOICES111TR
[51 a Ask again if not a valid choice:
[6] »ASK IF(IND>pCHOICES)IMESSAGE '#** INVALID CHOICE.

CHOOSE FROM: ' ,CHOICES
v

-179-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

[WSID: MSF]
vV SQZEMP BIT
(11 ENUMeBIT/ENUM
[21 ENAME«BIT#ENAME
[31 EAGE¢BIT/EAGE

[WSID: MSF]
vV R¢LINE UNLESS CONDITION
[11 R¢CONDITIONILINE

By any measure, this sample application is tiny. Yet the advantages
and disadvantages of these two extreme approaches emerge even in an
application of this size. As the application grows, the differences
become more important, even critical. For easy reference, we will
use the abbreviations FLF (few large functions) and MSF (many small
functions) to refer to the two extreme approaches illustrated above.
Let us discuss the pros and cons of each. These considerations
should be kept in mind when developing an application system so that
the cons are minimized.

1. Utility Functions

A utility function is a usually small (under 20 statements)
subfunction which performs a common task and which usually gets its
inputs entirely from its arguments (vs. from global variables) and
returns its outputs as an explicit result. A well designed utility
function will resemble a primitive APL function in its behavior.
Some examples of the application of utility functions in the
illustrations above include:

A2 UNLESS NUMeENUM
A2 IF (25<pNAME) MESSAGE '#** NAME TOO LONG'
NAME«CINPUT 'EMPLOYEE NAME (MAX 25 CHARACTERS): '

The FLF approach avoids the use of utility functions while the MSF
approach uses them generously. This is a pro for MSF and a con for
FLF. Utility functions provide two distinct advantages, both of
which improve programmer productivity. The first is that a utility
function can replace several lines of common code, allowing you to
write and test code faster. For example, compare the following:

-180-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

AGE€NINPUT 'EMPLOYEE AGE'
vVsS.

Ll:0¢'EMPLOYEE AGE'
AGEe, D

2(1=pAGE)/L2

O¢'*+« ENTER 1 NUMBER'
»L1

L2:

The second advantage is that utility functions can improve code
clarity, allowing you to read code faster. For example, compare the

following:

A2 UNLESS NUMeENUM
vVSs.

- (NUMeENUM) lA2
or 2 (~NUM€ENUM) /A2

2. Global Changes

After coding and testing an application, you may be asked by the user
to make a change which is pervasive. For example, "Remove the dollar
signs from all the numbers being displayed," or "Precede all error
messages by a 10 space indent and 3 stars," or "When prompting for
numbers, await the response on the same line as the prompt." If you
have taken the MSF approach and have used your subfunctions
consistently, you may be lucky enough to only have to change a single
function. For example, if all error messages are being displayed
within a subfunction MESSAGE, you may be able to implement the second
request above by changing the line of MESSAGE,

O0«CVEC
to
e’ *x&x' CVEC

This is a pro for MSF and a con for FLF. However, if you have not
used your subfunctions consistently, much of the advantage will be
lost. For example, if some error messages are being displayed
directly and not within the subfunction MESSAGE, you will be forced
to conduct an extensive search for those messages. This is exactly
what you need to do if you used the FLF approach. Since FLF involves
fewer functions than MSG, a slight advantage goes to FLF.

-181-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

3. Function Size

There exists a school of thought in the community of APL programmers
that the ideal size of a function is a page. No line should be wider
than a page (i.e. 80 characters or so) and no function should have
more lines than will fit on a page (i.e. 50 lines or so). The
rationale for this conviction is that the eye and the brain can
retain no more than a page or so at a time. Further, by confining
each function to a page, the programmer is forced to discern the
forest from the trees. The outline of the program logic is placed in
the higher level function and the detailed logic is included in
subfunctions. The FLF approach violates this standard without
remorse. The MSF approach adheres to it rigorously.

Score one for MSF if you want to see the forest and not the trees.
Score one for FLF if you want to see the forest and the trees. You
can find the trees with the MSF approach but not without leaving the
forest (i.e. flipping to another page).

At any rate, smaller function size is a definite pro for MSF when it
comes to function editing. If you use a full-screen editor, a small
function will fit nicely on a single screen. If you use a
line-oriented editor, a large function will suffer more from line
renumbering (due to line additions or deletions) than will a small
function. For example, if line 15 of a 300 line function is deleted,
285 lines will be renumbered and may need to be reprinted. If line
15 of a 30 line function is deleted, only 15 lines will be renumbered.

4. Self-Containment

The issue of self-containment becomes most obvious when you load the
workspace and explore its contents. For FLF:

JFNS
EMPLOYEES
For MSF:
JFNS
ADDEMP CATEMP CINPUT DELEMP EMPLOYEES IF
LISTEMP MESSAGE NINPUT RCAT SELECT

SQZEMP UNLESS

If you decided to merge this application with another, it will be
easier to accomplish with the FLF approach. Since the entire
application is contained within a single function, the application
can be moved about (copying or erasing) as easily as moving the
function. With the MSF approach however, you need to be careful that
name conflicts (i.e. functions with the same name in two different
applications) do not exist.

-182-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

For example, if you copy the above MSF functions into another
application workspace in which a different SELECT function is
defined, one of the two SELECT functions will be erased (depending on
whether COPY or PCOPY is used). Likewise, if you then erase the
above MSF functions from the merged application workspace, the
remaining application may no longer work without the IF or CINPUT
functions.

Finally, any good written technical documentation will include at

least a brief description of each function in an application. The
task of writing that documentation is considerably simpler for FLF
than for MSF since there are fewer functions to document.

5. Global Passing

Another school of thought in the community of APL programmers states
that global variables should be avoided as much as possible. Data
should be passed to functions as arguments. There are three reasons
for this view:

A. Less confusion. When you are reading a function and you encounter
an undocumented global variable, your reading flow is interrupted.
What is this variable? Where did it come from? Did I just overlook
its assignment? Did the programmer just forget to localize it in the
header? 1Is it a niladic function and not a variable at all? 1Is it
global to this function and assigned outside of it or is it local to
this function and assigned within a subfunction to which it is global?

B. Less documentation. To alleviate some of the confusion associated
with the use of global variables, you should document a global
variable at two points: in the first few lines of any subfunction
which requires the global variable; and at the point where any
subfunction is called which requires the global variable. For
example, the ADDEMP and CATEMP functions defined above should include
the following comments:

vV ADDEMP

[e] a Catenate new values and ask for more:
[c]l] A (Requires globals: NUM,NAME,AGE)

[c]l] A (Modifies globals: ENUM,ENAME,EAGE)
[o] CATEMP

vV CATEMP
[11] A Called by ADDEMP.
[2] A Requires globals: NUM,NAME,AGE
[31] A Modifies globals: ENUM,ENAME,EAGE

-183-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

C. Fewer localization problems. When a system makes extensive use of
global variables, it is easier to forget to localize a variable at
the proper level or to localize it at the wrong level. Poorly
localized variables can cause some of the most mystifying errors.

Since the FLF approach has fewer functions then the MSF approach, it
has fewer subfunction calls and less global variable passing. This
is a pro for FLF and a con for MSF.

Oon the other hand, the MSF approach is easier to employ when you need
to use a new name in a function. It is easy to scan a small function
to see whether a meaningful name has already been used. With FLF,
you may inadvertently re-use the name of a variable still containing
valuable information.

6. State Indicator Depth

When you pick up a system written by someone else (or written by you
a long time ago), you will most likely start by reading the cover
function and then each subfunction as it is called. 1In order to
retain the meaningfulness of what is going on, you must maintain a
mental state indicator as you delve into subfunctions. As you finish
reading each subfunction, you must remember which function called it
and in what context so that you can flip back to that function and
continue reading. This process is analogous to the procedure
followed by the computer as it is executing the code.

Unfortunately, the human brain cannot maintain its state indicator as
flawlessly as the computer. At a depth of 5 or 6, our memories get
flaky. If the current state indicator is not kept on paper, you may
get lost and have to start again.

In the MSF approach, the state indicator depth grows very rapidly.
Even in the tiny application above, it occasionally gets 5 levels
deep. For example:

UNLESS[11 «*
MESSAGE[21]
NINPUTLS5]
ADDEMPI11
EMPLOYEESL(6]

In an MSF system of any respectable size, the state indicator will
occasionally get 10 to 15 levels deep and will average 5 to 9
levels. Such a system is extremely difficult to read until you
become familiar enough with the subfunctions that you know what they
do without looking into them (like primitive APL functions).

The problem of deep state indicators is especially apparent when you

are called upon to handle an error in an unknown MSF system. The
first natural step after generating the error is to check the state

-184-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

indicator. If the state indicator is 9 levels deep, the next natural
step is to go to lunch.

Having explored some pros and cons of the FLF and MSF approaches,
which should you use? Typically, neither. The most readable and
maintainable system is one which employs a moderate number of
medium-sized functions, each performing a well-defined task. Utility
functions which are self-contained and well-documented should be used
generously.

AUAUNUAY AUAUAUAL T AUAUAUAY NUNUALALY AUAUAUNY AUAUAUAY AUNU NN A AuAU A

PROBLEM: How is the above application invoked?

TOPIC: Starting an Application

In deciding how to start an application, you must first decide
whether or not immediate execution mode will be needed. If so, the
user should load the application workspace and then execute (from
immediate execution mode) whatever functions are user functions (e.g.
EMPLOYEES).

If immediate execution mode is not needed, which is most often the
case, you should stay out of that mode until the termination of the
application. The main reasons to avoid immediate execution mode are
simplicity and security. The application will be simpler to use if
the user is prompted for choices rather the having to remember the
names of functions. The application will be more secure if non-user
functions cannot accidentally or intentionally be invoked.

To "autostart" an application, you should assign the system variable
OLX (latent expression) to be the name of the desired cover function
before saving the application workspace. For example:

O0LX¢' EMPLOYEES'
JSAVE EMPLOYEES

To initiate the application, the user only needs to load the
application workspace. 1In some installations of APL, even the
loading step is unnecessary. A workspace may be specified to be
automatically loaded when APL is invoked. In either case, the
expression assigned to OILX will be automatically executed. For
example:

-185-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

JLOAD EMPLOYEES
ADD, DELETE, LIST OR END:

In this simple application, no special steps need to be taken after
the workspace is loaded and before the cover function is executed.

In larger applications, this is less likely to be true. Files may
need to be tied or shared variables activated and global variables
may need to be assigned. 1In such instances, the value of 0OLX is more
likely to be 'START' or '-RESTART'.

A typical START function will have the following layout:

[WSID: MSFI]

V START
[1] A Workspace driver function. Used as:
[2]1 ~n
(31 n 0LXe¢'START'
(4] ~n
[5] A Display any messages. For example:
[61 Qe
{71 O¢'WELCOME TO THE EMPLOYEE MAINTENANCE SYSTEM'
[81 Qe

[9] A Assign any global variables. For example:

101 OPWe1l50

[111 fEMP€345

[12] A Tie any files or share any variables. For example:
[131] "EMPDATA' OFTIE fEMP

[141 A Read any global variables from file. For example:
[151 ENUM«OFREAD fEMP,1

[16]1 ENAME<OFREAD fEMP,2

[17] EAGE¢OFREAD fEMP,3

[18]1 A Call the cover function. For example:

{123 EMPLOYEES

[20] A Do any followup work. For example:

{211 ENUM OFREPLACE fEMP,1

{221 ENAME OFREPLACE fEMP,2

{231 EAGE OFREPLACE fEMP,3

[24] OFUNTIE fEMP

{251 O«
{261 DO¢'HAVE A NICE DAY’
(271 QOe€'’

v

A RESTART function (used as OLX¢«'-RESTART’) performs the same tasks
as the START function but handles '"line drops'" in those APL
environments which support CONTINUE workspaces. For example, suppose
you are connected via terminal, modem and telephone line to a remote
APL system. If the telephone line is interrupted (say due to
telephone line noise or by accidentally unplugging your modem or
terminal), the APL system will detect the drop and will save your
active workspace into a stored workspace named CONTINUE. When you
next sign on, the CONTINUE workspace will be automatically loaded and

-186-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

its OLX executed. (In some installations of APL, you may need to
load the CONTINUE workspace manually.)

In such an instance, you do not want to run the START function
again. Rather, you want to redo any steps undone by the drop (e.g.
retie the files or reshare the variables) and then resume execution
at the line on which the function at the top of the state indicator
is suspended. The RESTART function therefore checks the state
indicator (via DLC) and either executes START if there is no
suspension or performs restart logic. The final task performed by
RESTART is to explicitly return the line number of the suspended
function so that execution can resume.

A typical RESTART function will have the following layout:

[WSID: MSF]
V R¢RESTART
Workspace driver function and line drop handler.
Used as:

[11
[21
[3]
[41
[5]
[61] Return the line number of any suspended function

[71 (beyond RESTART):

(8] Rel1l0LC

[9] A Remove 0's from any ¢:

(101 Re(R#0)/R

(111 A Branch if restart logic is necessary:

(121 »(xpR)/L1

[13] A Otherwise, run START and return R as an empty vector:
(141 START

OLX¢'->RESTART'

D2D2D2D®D DD

[15]1 =0

[16]1 A Restart logic. Display any messages. For example:
[171 L1l:0€’’

(181 0O¢'’'EMPLOYEE MAINTENANCE SYSTEM BEING RESTARTED'

[19]1 DO«'!

[20] A Tie any files or share any variables. For example:
[211 'EMPDATE’' UOFTIE fEMP
[22]1 A Upon exit, line number result will be branched to
{231 A (if OLX¢'->RESTART') and execution will resume at
[24]1 A point of suspension.

v

AURUALUAL AURUAUAL AUAUAUNRY AUALUAUAL AURNUAUAL AUAUALUALY AUAUNRUAL AU AL AU AL

-187-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

PROBLEM: Write a niladic function QDOC (quick documentation) which
will display the contents of each function in the
workspace, as if you typed VfnnamefOlV for each function,
in alphabetic order.

TOPIC: Function Documentation

The first step is to determine, under program control, which
functions exist in the workspace. The system function ONL (name
list) can be used to this end. When used monadically with the right
argument 3 (for functions), ONL returns a character matrix of the
names of the functions in the active workspace, one row per

function. If your implementation of ONL does not return the names in
sorted order, sort them (see the Sorting and Searching chapter).

(Some APL implementations have different system functions for
returning the names of identifiers. For example, APL*PLUS has
OIDLIST and SHARP APL has 1 OWS. However, these implementations also
support 0ONL.)

The next step is to display the functions, under program control, one
at a time. Since APL systems generally do not support an expression
like ¢'Vfnnamel0lVv', a system function must be used. The APL*PLUS
system function OVR (visual representation) and the SHARP APL system
function 1 OFD (function definition) both return a character vector
"visual representation" of the function whose name is provided as the
right argument to the system function. The result, when displayed,
looks exactly like the display produced by Vfnnamel[llv. This is
possible because the character vector result contains newline
(carriage return) characters at the end of each function line
substring. For example:

v UNLESSL[O1V
V R€LINE UNLESS CONDITION
(11 ReCONDITIONILINE

CVe¢OVR 'UNLESS'
eCV
59
cv
vV Re€LINE UNLESS CONDITION
{11 Re¢CONDITIONILINE

A Replace newline characters by '#’' to see them:
CVL (CV=0OTCNL)/1pCVie's'
cv
vV R¢LINE UNLESS CONDITION®[1] R¢CONDITIONILINE® ve

-188-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

The result of OVR is an empty character vector if the function
specified is locked. For implementations which provide such visual
representation system functions, the solution to this problem is
straightforward:

[WSID: QDOC]

V QDOC;FNS;I;N:V;0IO0
[11] A Displays continuous listing of all functions in ws.
[2] A Origin 1:
(3] 0I0«1
[4] A Determine functions:
[5] FNSeONL 3
[61] a Exclude QDOC from list:
[71 FNS€(FNSV.#(1lpFNS)T'QDOC’)#FNS
[8]1 A FNS«(A/FNSV.#8(2,1lpFNS)1T2 5p'QDOC CRAVR')#FNS n APL2
[91 A Sort fn names if not already: FNS¢FNSI[OAVAFNS;]
[10] A Loop on rows of FNS:
111 I<0
[12] N«1TpFNS
[13] LOOP:>(N<I«I+1)/0
{141 VeDVR FNS[I;]1 A APLXPLUS
[15] m V&1 OFD FNSI[I;]1 A SHARP APL
[16] A VeCRAVR OCR FNS[I;]l A APL2
[17]1 A Ignore if function locked:
[181 -(xpV)ILOOP

{191 QOev
(201 A Blank line:
[21]1 Oe'!
[221 -LOOP
v

Please note that QDOC will not list functions in the workspace whose
names happen to be the same as any of the local identifiers in QDOC
(e.g. FNS or LOOP). The system function ONL 3 returns the names of
identifiers which are functions at the most local level. Since FNS
is a variable and LOOP is a label at the local level, any global
function with the same name is 'shadowed" and will not be seen.
Likewise, OVR (or 1 OFD) returns only the visual representation of
identifiers which are interpreted as functions at the local level.

For implementations which do not provide a visual representation
system function, you must work with the "canonical" (matrix)
representation system function OCR (available in SHARP APL as 2

OFD). The function OCR returns a character matrix representation of
the function whose name is provided as the right argument. The
result has one row per function line (including the header) and as
many columns as the length of the longest function line. The
function lines are not numbered, are left justified within their
respective rows and are padded to the right with blanks. For example:

-189-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

CM«0OCR 'UNLESS’
eCM
2 23
cM
Re¢LINE UNLESS CONDITION
R€CONDITION!LINE

The result of OCR is an empty character matrix if the function
specified is locked.

To write QDOC, we need a function which will convert this canonical
representation result to the more aesthetic visual representation
form. The following function will do the trick:

[WSID: FNREP]
V VR¢CRAVR CR;[O0IO;C;D;KEEP;L;:N;TCNL

[11 a Converts canonical representation of fn to visual
[2] A representation. Return empty vector if CR empty
[31] A (locked fn):
{41 VRe' !
[51 2>(x/pCR){0
[61] A Use origin 1:
[71 0I0€«l
[8] na Construct newline character:
[ol TCNL«OTCNL a APL*PLUS
[10] a TCNL€¢OTCI[21 a APL2
[111 A TCNL¢OAVI[157] a SHARP APL
(121 n
[13] A Format header, deleting trailing blanks:
[14] VReCRI1:;1
[151 VRe' v ',(+/v\'" "#OVRIpVR
[16]1 A Characters which may begin identifiers:
[17] L¢'ABCDEFGHIJKLMNOPQRSTUVWXYZaAabcdefghijklmnopgrstuvwx

yzal’
[18]1 A First character in each line:
[19] Ce&CRI;11
[20] A Flag comment or label lines:
[21]1 D€ld(C='A'")IV(CELIAV/(CR=":"')A<\~CReL, '0123456789"
[22] A Drop header and include leading blank column:
[23]1] CR&(1 71 -pCRITCR
[24]1 A De-indent comment or label lines:
[25] CR¢DOCR
[26]1 A Number of lines:
[27]1 Ne¢11pCR
[28]1 A Line numbers right justified with right bracket:
[29] Le(((3lp3N),0)3(N,1)pLN),"'1!
[301 A Line numbers left justified, with both brackets
[31] A and newline:
[32] Le&TCNL,'L',(L+.=' ')OL
[33] a Attach line numbers to lines:
[34] CR¢L,CR
[351 A Flag trailing blanks to drop from each line:
[36]1 KEEP¢«®v\' '#OCR
[37]1 A Squeeze out trailing blanks:

-190-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

V CRAVR (continued)
[38] CR¢(,KEEP)/,CR
(39] A Include header and trailer:
[401] VR¢VR,CR,TCNL, ' v',TCNL
v

Given the CRAVR function, the QDOC function can be rewritten for OCR
implementations by replacing the lines:

FNS«(FNSVv.#(1lpFNS)1T'QDOC') #FNS
V€OVR FNSI[TI;]

in the QDOC function above by the corresponding lines:

FNS«(A/FNSV.#8(2,11lpFNS) T2 5p'QDOC CRAVR')#FNS
V€CRAVR 0OCR FNSII:;]

L Vi Vi VI V] LR VR VI, V2 RV Ea VA VL V] e RaVEA VR VI, V] Ra VA VI Vi V) RV VR VY A AU A

PROBLEM: Design a function WSDOC (workspace documentation) which will
display the entire contents of the workspace.

TOPIC: Workspace Documentation

One possible solution to this problem is to design a single
self-contained function WSDOC which may be copied into the workspace
to be documented. Since the function is self-contained, it requires
no subfunctions. Therefore, it may be copied into the workspace or
erased from the workspace with minimal impact.

Let’s establish the differences between the proposed WSDOC function
and the QDOC function of the previous section:

1. The output of WSDOC is paged, not continuous.

2. WSDOC is monadic. The elements of its integer vector argument
represent: number of rows per page (usually 66), number of
columns per page (say 85), lines in top margin (say 3), lines
in bottom margin (say 3), columns in left margin (say 5),
columns in right margin (say 5).

-191-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

6.

At the top of each page is a title which includes the workspace
ID, the current date and time and the page number. For example:

36150 MODEL * 11/15/1986 15:43 PAGE 4

The nondefault workspace environment is included at the top of
the first page. The workspace environment includes the latent
expression, the index origin, the print precision, the random
link, the comparison tolerance and any other programmer-
controlled workspace settings. Only those settings are
displayed whose current values differ from those in a clear
workspace. For example:

NONDEFAULT WORKSPACE ENVIRONMENT:

OdLX¢'START'
OPPe¢12

After the nondefault workspace environment, the global
workspace variables are listed in alphabetic order, along with
their shapes and up to one line of their raveled values. For
example:

GLOBAL WORKSPACE VARIABLES:

NAME <« SHAPE p VALUE

CODE ¢« 'X!

MONTHS ¢ 12 9 p 'JANUARY FEBRUARY MARCH...'
MSG €« 10 ¢ 'THAT''S ALL'

TABLE ¢« 2 99 15 o 1.016283 1.11984 1.61582...
TIE ¢ 368

After the global workspace variables, the function names are
listed in alphabetic order. For example:

FUNCTIONS:
ADDEMP EMPLOYEES NINPUT UNLESS
CATEMP IF RCAT
CINPUT LISTEMP SELECT
DELEMP MESSAGE SQZEMP

Finally, the lines of each function are displayed as in QDOC.
However, function lines which are too long (for the page width)
are broken into multiple lines with care taken not to break a
line in the middle of an identifier or numeric constant. If a
function will not fit on the remainder of a page, it is started
on the top of the next page. Functions which are longer than
one page are broken into multiple pages with care taken not to

-192-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

display a long line on more than one page. At the bottom right
corner of each page is a footnote which displays the first and
last functions included on the page. For example:

IF » SELECT
All local variables and labels within WSDOC are prefixed by aAA

to minimize the number of variables and functions which are not
recognized because of shadowing.

Let’'s list the possible problems we may encounter when using such a
self-contained WSDOC function:

1.

A WS FULL error may occur if there is insufficient available
workspace to copy WSDOC. This problem is greater in
implementations of APL (such as APL2) in which a function is
copied by moving its canonical (matrix) representation. The
canonical representation of WSDOC is quite large if it has a
lengthy header. To get around this problem, you may remove all
local variables from the header and erase all variables
beginning with ’'aAA' on the last line of the function.
Alternately, you may load the WSDOC workspace and copy the
workspace to be documented. However, bear in mind that the
nondefault system variables will not be copied.

A SYMBOL TABLE FULL error may occur if there are insufficient
available entries in the symbol table for the local variables
and labels in WSDOC.

Another object which happens to be named WSDOC will be erased
and replaced by the WSDOC function when it is copied into the
workspace.

If your APL implementation does not support a visual representation
system function (e.g. OVR or 1 OFD), you will also need to copy in
the function CRAVR. In this event, WSDOC requires CRAVR and is not
strictly self-contained.

The writing of WSDOC is left as an exercise at the end of the chapter.

The use of this WSDOC function is a simple way to get a neat and
thorough listing of the contents of your workspace. If your
workspace documentation requirements go beyond the capabilities of
this function, you may want to acquire a more comprehensive workspace
documentation software package available from your APL vendor. Such

-193-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

packages typically include capabilities for listing cross-reference
information. For example, you can list the functions in which each
workspace identifier is used, or list the identifiers used within
each function, or display a "tree" diagram which shows which
functions are called by other functions, and so on.

AUNUALAY AUAUAUAY RUAUAUNU AUAUNUAY AR RUAUALAY AUNUAUNS T AU N AUy

PROBLEM: A function named IDENTIFY analyzes the visual representation
of a function to determine which identifiers are used
within the function and how. It then displays any known
or potential errors or inconsistencies (e.g. assigning a
value to a name which is also used as a label). Make a list
of all such errors or inconsistencies.

TOPIC: Function Identifiers

The IDENTIFY function as described above is useful for a final
validation on any function you have written, especially a large
function. After using IDENTIFY, it is a simple matter to edit the
function to correct the reported problems.

Here are the problems and illustrations:

1. Redundant 1label.
[3] L6:A€35

£17]1 L6:QeB*2

2. Unused identifier localized.
vV MODEL;A
(A is not mentioned anywhere in MODEL, though it may be

used within a character constant argument to ¢ or in a
subfunction called by MODEL)

-194-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

3. Identifier localized but not assigned.

vV MODEL:;A

[91 Q€ALK
(A is not directly assigned, e.g. A¢B+2, anywhere in MODEL,

though it may be assigned within a character constant
argument to ¢ or in a subfunction called by MODEL)

4. Redundant local variable.
vV Re€MODEL A;:;B:R

or
vV MODEL;:;A;B:;A;:;R

5. Localized label.

V MODEL;LOOP;I

[8]1 LOOP:-»>(LIM<I)/END

6. Unused label.

v MODEL

[6] L4:Ke2+B
(No reference is made to L4, e.g. L4 or -(L3,L4,L5)[I1],
anywhere in MODEL, though it may be used within a character

constant (e.g. ¢(T>0)/'->L4’') or may be...gasp...referenced
in a subfunction called by MODEL)

7. Assigned label.
vV MODEL
[3] END¢«799

{251 END:0OeV

8. Identifier assigned but not localized.

vV MODEL;A;J

[71 Belpd

(B is not localized in MODEL, though it may be localized in
a function which calls MODEL)

-195-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

9. Identifier used and not localized.
Vv MODEL:A
[61] Ae2+B

(B is not localized in MODEL, though it may be localized in
a function which calls MODEL or it may be a subfunction
required by MODEL)

10. Result not assigned.
vV ReMODEL PARAMS

(R is not assigned in MODEL, though it may be assigned
within a character constant to ¢ or in a subfunction called
by MODEL)

11. Argument not used.
vV R¢MODEL PARAMS

(PARAMS is not used in MODEL, though it may be used within
a character constant argument to ¢ or in a subfunction
called by MODEL)

The task of writing the IDENTIFY function is beyond the scope of this
chapter. It is included as a problem in the Boolean Techniques
chapter. IDENTIFY is monadic. Its right argument is the visual
representation of the function to be analyzed. For example, to
analyze the function MODEL, do the following:

IDENTIFY OVR ’'MODEL’ in APL*PLUS
IDENTIFY 1 OFD 'MODEL’ in SHARP APL
IDENTIFY CRAVR OCR 'MODEL’ in another APL system

(CRAVR is defined earlier in this chapter.)

There are three related functions also developed in the Boolean
Techniques chapter which warrant mention here. They are: RELABEL,
LOCALIZE and UNCOMMENT. The right argument of each function, like
IDENTIFY, is the visual representation of a function. The result of
each function is a modified version of the visual representation,
modified to accomplish a particular task. The functions are
described below.

-196-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

Syntax: NEWVR¢LABLIST RELABEL OLDVR

The RELABEL function changes the labels in the visual representation
so that they become L1, L2, L3 and so on. In many functions,
expecially large ones, labels serve simply as branch targets for
downward flowing logic. It is difficult and pointless to think up a
meaningful name for each label. It is more convenient to the reader
to have the labels sequentially numbered so that they can be quickly
located. Some labels, however, ‘are best left as meaningful names
(e.g. LOOP, END, START, CALC). The left argument LABLIST is a
character vector of the names of the labels (separated by spaces)
which are not to be renamed. Provide an empty character vector left
argument (i.e. '') if all labels are to be renamed.

Do not use RELABEL on any function which contains local variables L1,
1.2, and so on. Otherwise, these names will refer to both labels and
local variables. The resulting function will no longer work
correctly.

REIABEL ignores all identifiers within quotes so some labels may not
be modified as desired. For example, in the expression,

ELX¢'->BELOW'

the reference to the label BELOW will not be detected and modified.
To handle this potential problem, you may choose to write such
expressions in the following way:

ELX¢'>' ,3BELOW

Likewise, the names of labels included in comments are not detected
by RELABEL. You should avoid placing labels in comments. For
example,

use: A Branch if quota exceeded
not: A Go to L17 if quota exceeded

RELABEL does not correct any of the problems with labels listed by
IDENTIFY.

Syntax: NEWVR&¢VARLIST LOCALIZE OLDVR

The LOCALIZE function changes the local variables in the header of
the visual representation so that the header includes only those
variables which are assigned within the visual representation. The
LOCALIZE function tends to correct problems 2, 3, 4, 5 and 8 listed
by IDENTIFY. Some variables, however, are assigned within a function
but should be left global or are not assigned (i.e. are assigned in
subfunctions) but should be localized. The left argument VARLIST is
a character vector of the names of variables (separated by spaces)
which are to be included in the header if not assigned or are to be
excluded from the header if assigned. Provide an empty character

-197-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

vector left argument (i.e. '’) if all and only the assigned variables
are to be localized. The localized variables will be included in the
header in alphabetic order.

Syntax: NEWVR¢UNCOMMENT OLDVR

The UNCOMMENT function removes all comments from the visual
representation. End-of-line comments are removed completely,
including the comment symbol (A). The comment symbols which precede
full-line comments are not deleted so that all function lines remain
and do not renumber. Strangely, the UNCOMMENT function allows you to
include more comments in functions you write. One argument for
omitting or skimping on comments is that comments use up valuable
workspace. The UNCOMMENT function allows you to write one set of
functions which contain extensive comments (the "maintenance
version'") and another set which is functionally equivalent but
contains no comments (the "production version'").

Since the functions RELABEL, LOCALIZE and UNCOMMENT each require a
visual representation right argument and each return a visual
representation result, they may be '"chained" together to perform
several functions at once. For example:

NEWVRe¢'LOOP' RELABEL '’ LOCALIZE UNCOMMENT OVR 'MODEL’

However, the visual representation of a function is of little value
to you unless you can convert it back into a function. Some APL
systems have a system function which will do this directly (ODEF in
APL*PLUS and 3 OFD in SHARP APL). The right argument of the system
function is the visual representation of a function and the result is
the character vector name of the function defined.

Therefore, to relabel a function named MODEL:

N«ODEF '' RELABEL OVR 'MODEL'’' in APL*PLUS
Ne3 OFD '’ RELABEL 1 OFD 'MODEL’ in SHARP APL

For APL implementations which do not have such a system function, you
must use the system function OFX (fix). The right argument to OFX is
the canonical (i.e. matrix) representation of a function (as returned
by OCR) and the result is the character vector name of the function
defined (fixed).

Our task then is to write a function VRACR which will convert the
visual representation result of RELABEL, LOCALIZE or UNCOMMENT into a
canonical representation so that the function may be defined via

OFX. Given the VRACR function, we may relabel a function named MODEL
as follows:

NeOFX VRACR '’ RELABEL CRAVR OCR 'MODEL’

-198-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

The following VRACR function will perform the necessary conversion.

[WSID: FNREPI]

Vv CR¢VRACR VR;[0IO0O;B;C;D;I;LEN;NL;R;TCNL
{11 @A Converts visual representation of fn to canonical
[2] A representation. Return empty matrix if VR empty
[31 A (locked fn):
(4] CR¢ 0 0 p'"!
(51 2(pVR)IO
[6] @A Use origin 1:
[71 O0I0¢«1
[8]1] n Construct newline character:
[o] TCNL«OTCNL a APL*PLUS
[10] A TCNLe«OTCL2] A APL2
[11] A TCNL¢DBAVI[157] na SHARP APL
[121 n
[13]1 A Select header line (less newline):
[14] CRe¢(I¢« 1+VRLTCNL)pVR
[15] A Drop off header:
[16]1] VReIIVR
[17]1 A Delete leading V and spaces from header:
[18]1 CRe(+/A\CRe’ V')IICR
[19] A Locate newlines which precede and follow
[20] A each line:
[21] NLeVR=TCNL
[22] A Flag starts and ends of contiguous digits
[23]1 A (e.g. line no.s):
[24] D¢«VRe'0123456789"'
[25]1 D¢D#(pD)p0,D
[261 A Flag char following ']l' after line no.:
[271 D¢~1¢D\ 714D/ "2¢0NL
[28] A Flag starts and ends of contiguous blanks
[29] a (e.g. after line no.s):
[30] BeVR=' !
[31] Be¢B#(pB)pO,B
[32]1 A Flag first nonblank char in each line, as indices:
[33] D&«(D>B)VB\~"14¢B/D
[341 DeD/1pD
[351 A Compute lengths of lines:
[36] LENe(1l71INL/1pNL3)-D
[371 A No. of columns in result:
[381 C¢(pCR)IT/LEN
[39] A No. of rows in result:
[40] Re¢1l+pLEN
[41]1 A Initialize result as raveled matrix:
[42] CR€(RXC)ITCR
[43]1 A Construct index vector I«(ULLEN[11),(LLEN[21),...:
[44] T€¢LEN/-"110,+\LEN
[451 TeI+ipl
[46]1 A Insert fn lines into raveled result:
[47]1] CRII+LEN/CX1pLEN]¢VRILI+LEN/T1+4D]
[481 A Reshape result to matrix:
[49] CR¢(R,C)pCR

v

-199-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

This function borrows a number of the techniques discussed in the
Boolean Techniques chapter. See that chapter for clarification.

AUAUAUAL AURUAUAY AUAUAUAY AUAUAUAY AUNUAUAY AUNUAUAY AN AvAU AU A

PROBLEM: Design a monadic function USEDBY whose argument is a list of
functions (character matrix with one name per row or a
character vector with names delimited by spaces) and which
shows all subfunctions and global variables required by
those functions.

TOPIC: Workspace Identifiers

When you inherit the maintenance of an APL application, there are
three pieces of documentation which are invaluable to your
comprehension of the system. They are:

1. Function listings. If missing, you can reconstruct them by
using the WSDOC function defined in this chapter.

2. File structure documentation. If missing, you can hopefully
reconstruct it by displaying the data from the files and by
inferring meaning from the context in which the files are used
(by reading the function listings).

3. System flow charts. If missing, you can hopefully reconstruct

them by running the USEDBY function on the user level functions
and by reading the function listings.

The following is an illustration of USEDBY on the EMPLOYEES function
of the MSF workspace listed earlier in this chapter.

-200-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

USEDBY 'EMPLOYEES'
EMPLOYEES
SELECT
CINPUT
IF
MESSAGE
UNLESS
ADDEMP
NINPUT
IF
MESSAGE
UNLESS
IF
UNLESS
ENUM (global)
CINPUT
MESSAGE
UNLESS
CATEMP
ENUM (global)
NUM (ADDEMP - local)
ENAME (global)
RCAT
NAME (ADDEMP - local)
EAGE (global)
AGE (ADDEMP - local)
DELEMP
IF
ENUM (global)
SQZEMP
ENUM (global)
ENAME (global)
EAGE (global)
LISTEMP
ENUM (global)
EAGE (global)
ENAME (global)

The USEDBY function does pretty much what you would do to manually
diagram the subfunction and global variable structure of a system.

It starts by evaluating the visual representation of the highest
level function for global identifiers referenced (i.e. all
identifiers but labels, results, arguments or localized variables).
For those global identifiers which are themselves functions, it
evaluates each one in the same fashion. And so on it recurses deeper
or less deep in the fashion of the state indicator during execution
of the system.

The writing of USEDBY is left as an exercise at the end of the
chapter.

The USEDBY function is extremely powerful and quite complex. It
draws heavily on the materials presented in the Boolean Techniques

-201-

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

chapter. It may help you to read that chapter before writing the
function or reviewing the solution.

AUALALAL T NUNUAUAY AUAUNUAY NUNUAUAY AUNUALAY AUALALNY AUALNUNS AU AU AU A

PROBLEMS: (Solutions on pages 367 to 382)

1. Design other "visual representation manipulation" functions which
may be useful. Pattern their syntax and behavior after the
IDENTIFY, RELABEL, LOCALIZE and UNCOMMENT functions described in
this chapter.

2. Sketch a flowchart of the WSDOC function described in this
chapter. Compare it to the flow of the WSDOC function listed in
the solutions at the back of the book.

3. Sketch a flowchart of the USEDBY function described in this
chapter. Compare it to the USEDBY function listed at the back of
the book.

-202-

Chapter 14

FILE DESIGN AND UTILITIES

When APL was first implemented, the language included no file
capabilities. This shortcoming was quickly recognized as an obstacle
to the acceptance of APL as a viable business programming language.
Two approaches were taken to overcome the obstacle.

In one approach (shared variables), facilities were developed (0OSVO,
OSVR, ...) to provide access to existing non-APL file structures.
From APL, you can do anything with files that you can do from another
programming language. While this approach enables the APL user to
communicate with non-APL environments, it leaves the APL purist
unsatisfied. It is difficult and disappointing to the APL programmer
to work with the concise and consistent APL primitive functions on
the one hand and the messy world of records, tracks, blocks,
cylinders and disks on the other hand.

In the other approach (shared files), facilities were developed
(OFCREATE, OFREAD, ...) to provide access to APL file structures. 1In
the spirit of APL simplicity, an APL file was defined as a list of
APL objects residing outside of the active workspace. A file can
have any number of objects (called '"components') and each object can
be of any type, rank or shape. The components are numbered
consecutively from 1. A large object can replace a small object
without the APL programmer knowing or caring how the storage is being
managed on the physical storage device.

If you want to work with APL files but your APL implementation
supports only shared variables, look for a public library workspace
which uses shared variables to emulate APL files (e.g. the IBM
workspace 2 VAPLFILE).

In this chapter, we will discuss some of the more common APL file
organizations and the trade-offs between them. We will also discuss
the value of quality file documentation and file utility functions.

AUAUNLAL T NUAUAUNY AUNUNUAY NUNURUAY NUAUNUAY AUALAUAY AURUNU RS AU AL AU A

-203-

Chapter 14 FILE DESIGN AND UTILITIES

PROBLEM: Suppose you want to build an APL system for maintaining a
database of information about insurance policyholders. For
each policyholder, you will keep track of: policy number,
issue age, issue date, sex, classification and face
amount. Design a file organization for this application.

TOPIC: APL Database File Organization

The ideal file organization for a given application depends upon the
size of the database and upon how it is used. Since this information
is missing in the description of the problem, we will present several
alternative organizations. In the next section, we will discuss the
factors to consider when deciding among these organizations.

For simplicity, we will assume that all of the policyholder
information may be expressed as numbers (e.g. sex as 0 or 1). We will
refer to the items by the abbreviations: POLNO, IAGE, IDATE, SEX,
CLASS, AMT.

The descriptions of 8 alternative APL file organizations follow:

1. Record Oriented

Ccomp
No. Description
1 POLNO, IAGE, IDATE, SEX, CLASS, AMT for 1lst policy
2 " 11} " " " " 11 2nd 11}
3 1" " ”" " 1" 17" " 3rd 1"
2. Record Oriented with Deletion Flag
Comp.
No. Description
1 STATUS, POLNO, IAGE, IDATE, SEX, CLASS, AMT for 1st policy
(STATUS=1 if active record, 0 if "deleted")
1" ”" " " " 1" " " znd "
" " " " 1"t " 1" 1t 3rd 7"

o 0 LD N

-204-~

Chapter 14 FILE DESIGN AND UTILITIES

3. Directory

Comp.
No. Description
1 Numeric vector (directory) of POLNO for every policy
2 IAGE, IDATE, SEX, CLASS, AMT for 1lst policy (whose
POLNO is the 1lst element of the directory)
3 " " " " " for an policy 11} "
.I " " 1" 1" " " (I_l)th 1" 1" "
4. Directory with Deletion Flag
Comp.
No. Description
1 Boolean vector of STATUS for every policy (STATUS=1 if
active record, 0 if 'deleted")
2 Numeric vector (directory) of POLNO for every policy
3 IAGE, IDATE, SEX, CLASS, AMT for 1st policy (whose
POLNO is the 1st element of the directory)
4 " " " " " for 2nd pollcy " 1] "
i " 1" " " 1" (I_2)nd 1 " " "

5. Transposed

No. Description
1 Numeric vector of POLNO for every policy
2 1" 1" ” IAGE " 1" "
3 " " " IDATE " 1" 1]
4 " " 1" SEX " " "
5 " 11 " CI_LASS " " 1t
6 1" " ”" AMT 1" 1" "

-205-

Chapter 14

FILE DESIGN AND UTILITIES

6. Transposed with Deletion Flag

NoOodbh Wi

Description

Boolean vector of STATUS for every policy
(STATUS=1 if active record, 0 if "deleted")

Numeric vector

"

"

"

"

"

7. Multi-Set Transposed

(e BN}

o e0 e oo

(1+6xI-1)
(2+6xI-1)

.
.
.

Numeric vector

”"

Nunmeric

Nuneric
1"

"

vector
1"

vector

of POLNO

"

of

of

"

IAGE
IDATE
SEX
CLASS
AMT

1"

"

"

for every policy

"

Description

POLNO
IAGE
IDATE
SEX
CLASS
AMT

POLNO
TIAGE

POLNO
IAGE

"

"

-206-

for 2nd 2000 policies
"

7" 1"

for Ith 2000 policies
"

" ”"

Chapter 14 FILE DESIGN AND UTILITIES

8. Multi-Set Transposed with Deletion Flag

Comp.
No. Description
1 Boolean vector of STATUS for 1lst 2000 policies
(STATUS=1 if active record, 0 if '"deleted")
2 Numeric vector of POLNO for 1st 2000 policies
3 " " " IAGE " " " '
4 " " " IDATE " " 1" "
5 11 ”" " SEX " " " 1"
6 1" " " CLASS " " T "
7 " " " AMT " 1" " "
Boolean vector of STATUS for 2nd 2000 policies
Numeric vector of POLNO for 2nd 2000 policies
l " " " IAGE " " 1" "

e e OO O

(1+7xI-1) Boolean vector of STATUS for Ith 2000 policies
(2+7xI-1) Numeric vector of POLNO for Ith 2000 policies
(3+7XI_1) " ”" " IAGE 11} 1" " "

v oo

This list of file organizations is not exhaustive. It merely
illustrates some typical APL file organizations.

At the two extremes are the record oriented and the transposed
organizations. The directory organization is a hybrid of the two.
The multi-set transposed organization is a modification of the
transposed organization designed to avoid WS FULL errors when working

with large databases.

The "deletion flag" alternative exists for any file organization.
When you need to delete records from a database, you have two
alternatives: delete the record now (shifting other records if
necessary to fill the void); or flag the record to be deleted but do
not delete it until later (by a procedure which restructures the file
to remove all flagged records or by the gradual process of replacing
flagged records by new records as they are added).

AUAUAUAL AUALAUAY AUAUAUALY AUNUNUAL AUNUAUAY AUNUAURS AUAUAUAY AUAU AU AL

-207-

Chapter 14 FILE DESIGN AND UTILITIES

PROBLEM: List the factors to consider when choosing among
alternative APL file organizations.

TOPIC: File Design Considerations

To choose among file organizations, you must know how much
information is to be stored and how it is to be used. For each type
of task, consider how well each file organization will stand up to
the demands made upon it. In particular, ask yourself:

1. How may file accesses (i.e. read or write operations) will be
required? These take time.

2. How CPU efficient will the task be? Does the organization require
significant amounts of processing?

3. How efficient will the task be in terms of workspace storage? Are
WS FULL errors likely?

4. How complex is the file structure? Will the programs be difficult
to write, to read and to debug?

5. Is redundant file storage required? If so, might the file become
excessively large? Could its data get out of synch?

The following is a list of representative tasks which are performed
on databases. When choosing a file organization, consider each
task. Will this task be performed in this application? How often?
How well is it performed in this file organization given the
performance measures suggested above?

Add 1 record

Add 100 records

Find/change 1 record (1 item)
Find/change 1 record (all items)
Find/change 100 records (1 item)
Find/change 100 records (all items)
Find/delete 1 record

Find/delete 100 records

Find/list 1 record (5 items)

10. Find/list 1 record (all items)
11. Find/1list 100 records (5 items)
12. Find/list 100 records (all items)
13. Summarize all records (1 item)
14. Summarize all records (10 items)

WO WK

The chart below rates the 8 file organizations presented in the last
section for each of these 14 tasks. The letters A (excellent) to F
(horrible) are used for rating. These ratings are subjective and

-208-

Chapter 14

FILE DESIGN AND UTILITIES

will vary from application to application but this chart is a good

guideline.

File Organization

1 2 3 4 5 6 7 8
A A A B ¢ D C D
A A A B A B A B
F F A A A B A B Change
F F A A B B B B Change
E E €C ¢C A B A B Change
E E B B B B B B Change
F F B A B A B A Delete
F E C A B A B A Delete
¥F F A A B B B B List 1
F F A A C C C ¢C List 1
E E € €C B B B B
E E B B B B B B
F F F F A A A A
E E E E A A A A

Add 1 record
Add 100 records

1 record, 1 item

1 record, all items
100 records, 1 item
100 records, all items
1 record

100 records

record, 5 items
record, all items

List 100 records, 5 items

List 100 records, all items
Summarize all records, 1 item
Summarize all records, 10 items

Several conclusions may be drawn from this chart:

1. If you intend to do much summarizing or cross-tabulating, you
should choose a transposed file organization.

2. Unless you intend to add records and do nothing else, you should
avoid a record oriented file organization.

3. No file organization is ideal for all tasks. The best file
organization is frequently the one which has the fewest and least
severe shortcomings rather than the most strengths. Sometimes a
hybrid organization will be the best solution for a given

application.

AUNUAUAL AUNUALAL T AUNUALAL S AUNUAUAY AUNUAUAL NURUAUAL AUALAUAY ALRUAUAL

-209-

Chapter 14 FILE DESIGN AND UTILITIES

PROBLEM: For a 1,000,000 record APL database, it is critical that a
specified record (e.g. policy) be located instantly. How
would you organize the file?

TOPIC: Efficient Record Location

The record oriented file organization is out. We do not have the
time to do up to 1,000,000 file read operations. Even the multi-set
transposed file organization has problems. If blocked at 2000
records per set of components, there will need to be up to 500 file
read operations. That is fine for ad hoc file analyses but is
unacceptable for instant access.

To solve this problem, we need to utilize the information contained
within the key value (record identifier) itself. For example,
suppose our records are insurance policies and the record identifier
is a policy number. We must use a portion of that number to get us
quickly to the vicinity in which the record is located. Consider the
following "inverted" directory file:

Comp
No. Description
1 Two-row matrix with one column per policy whose policy
number ends with 000:
[1:;] policy number
[2;] record index where policy data are stored
2 Ditto for policies ending 001
3 Ditto for policies ending 002
1000 Ditto for policies ending 999

This file could be a companion file for any of the file organizations
discussed above. The meaning of "record index'" depends upon which
file organization is used. For example, if the record oriented file
organization is used, the record index can simply be the number of
the component in which the record is stored. If a transposed file
organization is used, the record index can be a number whose format
is SSSSIIII where SSSS is the number (index) of the set of components
in which the record resides and IIII is the exact index within the
components of that set where the record is located.

Given this directory file, any one of the 1,000,000 policies may be

located with a single file read operation. For example, to find
policy 613821904, read component 905 (i.e. 1+904) of the directory

-210-

Chapter 14 FILE DESIGN AND UTILITIES

file and search its first row for this number. The corresponding
element of the second row contains the record index for the policy.

The term "inverted'" is used to refer to a file which stores record
indices (or pointers) rather than data values. The trade-off for
realizing such rapid record location is that the directory must be
set up initially and must be updated as records are added or deleted
(or their policy numbers changed). This will slow down the record
maintenance process somewhat and will make it more complex.
Consequently, such a directory should be included only if essential.

An alternative to the inverted file organization is the '"layered"
file organization. Suppose the file is layered by the last three
digits of the policy number. Rather than maintaining a list of the
record indices for each possible value (000 to 999), the records are
physically segregated by the values. For example, all records whose
policy number end with 904 are kept together on file.

This "layering'" is fairly easily accomplished with the multi-set
transposed file organization. Each set of components contains
records for only a single layer value. For example, the first set of
components could contain the information for policies whose policy
number ends with 625, the second set with 904, the third set with
707, and so on. If there are more policies with numbers ending in
904 than you can place in one set, use more than one set for the
records with that layer value.

Suppose you employ a multi-set transposed file organization blocked
at 2000 (maximum) records per set of components and layered by the
last three digits of the policy number to store the 1,000,000 records
discussed above. On average, each set will contain 1000 records.
Some more. Some less. If any layer value (e.g. 000) is so popular
that it belongs to more than 2000 records, the records of that layer
will occupy more than one set. A directory of layer values is
maintained as a vector with one element per set and is stored as a
single component of the file.

Given this file organization, any one of the 1,000,000 policies may
be located with 2 or 3 or so file read operations. For example, to
find policy 613821904, read the layer values vector and search it for
904. The matching element(s) identify the set(s) whose records have
policy numbers ending with 904. Then, read the policy number
component for that set (or sets) and search for the policy number.
The result is the index within the set at which that record is
located.

L Vi VIV V] AN LV e VEL VEV] e Ve Vi W V2 ~ AU N A Ao A AU A A AU A fa YR VEA VY

-211-

Chapter 14 FILE DESIGN AND UTILITIES

PROBLEM: What should be included in written file documentation?

TOPIC: File Documentation

Since a file has no value except as employed in an application, its
documentation should be couched in terms relevant to the
application. For example, if the file is activated by "tying" it to
an arbitrary number, show the tie number which is actually used in
the application.

When components are read into the active workspace from the file,
they may technically be assigned to any variable name. Show the
names which are actually used in the application. When describing a
file component, indicate its shape and type and the significance of
its value.

The following is an illustration of proper file documentation. Do
not waste your time studying its intricacies. Rather, use it to

become comfortable with the general structure of good file
documentation.

FILE NAME: POLICY TIE NUMBER: 321

DESCRIPTION: Contains policyholder information

Comp.
No. VARIABLE DESCRIPTION
1 TDATE Integer scalar of the transaction date
(YYYYMMDD) when policyholder information
was last added to the file from the
administration system.
2 CTYPES Integer vector of the available
underwriting classification codes.
3 CNAMES 10 column character matrix of brief names
for the underwriting classes; the rows of
CNAMES are in 1-to-1 correspondence with the
elements of CTYPES.
4 FIV Field identification vector. Integer vector

with one element per field of information on
file (e.g. policy number, issue age, sex,
+e¢). The value indicates the type of array

-212~-

Chapter 14

FILE DESIGN AND UTILITIES

8-10

FP

ARPS

RPS

(latent)

F+10+FP[31xS-1

The fields of data are:

FIELD
NO. (F)

VARIABLE

NAME
STATUS
POLNO
TAGE
IDATE
SEX
CLASS

AMT

FI
10
14
13
13
12
13

13

used to store the information:
10: Deletion flag Boolean vector (1:
active record)
11l: Boolean vector
12: Character vector
13: Integer vector
14: Floating point vector
nn2: Character matrix with nn columns

File parameters vector.

FP[11: Number of active records

FP[2]1: Number of records (including
deleted)

FP[3]: Number of fields (i.e. pFIV)

FP{41: Maximum number of records, per set
of FPL3] components

FPI[5]1: Number of sets of FPL3] components

Active records per set. Integer vector with
one element per set (FPI[5]1) of the number of
active (not deleted) records per set. Note:
(+/ARPS)=FPI[1]

Records per set. Integer vector with one
element per set (FP[5]1) of the number of
records (including deleted) per set. Note:
(+/RPS)=FP[2]

Empty numeric vector

Array of data for field F (1 to FPI31) in
set S (1 to FP[51). The type and rank of
this array is defined by FIVIF]l. The length
of its first dimension is RPSIS].

\Y DESCRIPTION
Deletion flag (l=active; O=deleted)
Policy number (up to 13 digits)
Issue age (NN)
Issue date (YYYYMMDD)
Sex ('M' or 'F' or ' ' if unknown)
Underwriting classification code
(an element of CTYPES)
Face amount (cents)

-213-

Chapter 14 FILE DESIGN AND UTILITIES

If you inherit the maintenance responsibility for an application
system which has no file documentation, your first task is to
reconstruct the file documentation. This is usually possible by
carefully reviewing the functions which access the files and by
reviewing the file components themselves. To display the functions
for your review, use the QDOC or WSDOC functions defined in the
Workspace Design and Documentation chapter.

To display the file components, use the FILEDOC function described
here. The right argument is the same as that of WSDOC: page height,
width, top margin, bottom margin, left margin, right margin (e.g. 66
85 3 3 10 5). The left argument identifies the file to be documented
(e.g. file tie number). The output is paged and looks like:

FILE: 21368 POLICY (521 COMPONENTS) * 11/27/86 12:06 PAGE 1

COMPONENT SHAPE p VALUE

1 19861025

2 11 o 31 32 33 34 41 42 42 51 52 53 99

3 11 10 o 'STANDARD P38K4 P39K4 P3...

4 7 o 10 14 13 13 12 13 13

5 5 o 801625 801643 7 2000 401

6 401 p 2000 1998 2000 2000 2000 2000 1995 2000...

7 401 p 2000 2000 2000 2000 2000 2000 2000 2000...
8-10 0 p 10

11 2000 p 13156281325 21065134890 21065338190...

COMPONENTS 1 TO 67

The writing of FILEDOC is left as an exercise at the end of the
chapter.

AURUAUAY AUALANUAY S AUAUAUALY S AUANUAUAY T AUAUAUAY S AUNUAUAY AUNUAUAL AUAL AU AL

-214-

Chapter 14 FILE DESIGN AND UTILITIES

PROBLEM: Design a set of utility functions for accessing APL files.
The functions should be intuitive (i.e. be analagous to APL
primitive functions) and should have a syntax which is
independent of the chosen file organization and independent
of your implementation of APL files.

TOPIC: File Utility Functions

By designing and using such a set of file utility functions, you can
become more productive. The procedure for working with files becomes:

1. Design the file organization for a given application;
2. Implement these utility functions for the given file organization;

3. Use the utility functions instead of primitive (e.g. OFREAD or
OREAD) file access functions.

By using a consistent set of utility functions, you can work on many
application systems without having to continually reorient yourself
to the different file organizations. In effect, the utility
functions shelter you from the intricacies of each file organization.

Below is a recommended set of file utility functions. In each
function, the variable FP (file parameters) represents a numeric
scalar or vector which distinctly identifies the file to be used
(e.g. file tie number or tie number and blocking factors). If your
application deals with just one file and its organization is
sufficiently unusual that you are unlikely to need these functions
for a similar file, you may omit the FP argument altogether.

The philosophy behind the design of these file utility functions is
to treat the file as a matrix in your workspace. The rows of the
matrix are called "records'". The columns are called '"fields'". Each
utility function emulates some common matrix operation. For example,
imagine the data stored in a workspace matrix named FILE. A common
matrix operation is adding new records:

FILE¢FILE, [1INEWDATA
The corresponding file utility function has the syntax:
FP¢«FP CATREC NEWDATA

Along with the syntax of each utility function is listed the
analogous APL expression for operating on a matrix named FILE.

There are two important distinctions to keep in mind. One is that a
field does not need to represent a vector of data. It may be a
matrix. For example, a field of employee names may be stored on file
as a 20 column character matrix. Here, we treat the names as a

-215-

Chapter 14 FITLE DESIGN AND UTILITIES

single field. Hence, the analogous APL expression will treat them as
a single column.

The second distinction is that "record indices'" means values that are
understood by the utility functions to identify particular records.
They do not necessarily mean U indices. For example, for a multi-set
transposed file organization, a single record index might be a two
element vector whose first element is the index of the set and whose
second element is the array index within the set.

It is not expected that you will implement all of the following
utility functions. Rather, you should select those most useful for
the application and implement them.

(STSC's File Manager product -- originally marketed as "EMMA" --
provides a comprehensive set of such file utility functions for an
APL*PLUS-based multi-set transposed file organization.)

SYNTAX: FP INITFILE FT
FILE€FPoFT

INITFILE is used to build an "empty'" file whose file parameters are
FP and whose field types are defined in FT.

SYNTAX: FP«FP CATREC MAT
FILE<FILE, [1IMAT

CATREC is used to add (catenate) records to the end of the file. MAT
is a matrix of information to be catenated (or inserted into records
flagged for deletion). Each row of MAT represents a single new
record. Each column of MAT corresponds to a single field, or column
of a matrix field, of data (excluding the deletion flag field, if
any). If MAT is a vector, it is treated like a one-row matrix. If a
scalar or one-element array, it is catenated to the bottom of each
field as a single record. The result is the modified value of FP.

SYNTAX: FP¢«FP CATRECWS NREC
FILE¢FILE,[1]1F1,F2,F3,...

CATRECWS is used to add (catenate) records to the end of the file.
NREC is an integer scalar whose value represents the number of
records to be catenated (or inserted into records flagged for
deletion). The data for these new records are located in the global
field variables Fl1, F2, F3, ... where Fl is a vector of values for
the first field of the record (or a matrix with one row per record),
F2 is for field 2, F3 is for field 3, and so on. One variable is
required per field (excluding the deletion flag field, if any).
Regardless of the magnitude of NREC, any field variable may be a

-216-

Chapter 14 FILE DESIGN AND UTILITIES

one-row matrix, a vector with one element per column of the matrix
field, or a scalar or one-element array. The data will be reshaped
and catenated to the bottom of the field for NREC records. The
result is the modified value of FP. The field variables are erased
upon successful completion of the function.

SYNTAX: RINDS«(FP,KFLD) IOTA VALUES
RINDS«FILEL ; KFLDILVALUES

IOTA searches through the file (ignoring deleted records) for the
first occurrences of records whose key value (e.g. policy number,
employee number, transaction number) is specified in VALUES. IOTA
behaves like dyadic i. That is, its result contains one index per
value in the right argument, in 1-to-1 correspondence. The elements
of RINDS are record indices which can be used to directly locate the
records. The elements of RINDS are ~1 for those elements of VALUES
not found. The left argument of IOTA may be just FP if there is only
one key (identifying) field. Otherwise, the number of the key field
(KFLD) is included in the left argument.

SYNTAX: RINDS«IOTARHO FP
RINDS«11TpFILE

IOTARHO returns the record indices of all active (not deleted)
records in the file. IOTARHO behaves like monadic l1p. That is, its
result contains all of the indices for the specified array (file).
The elements of RINDS are record indices which can be used to
directly locate the records.

SYNTAX: RINDS¢SVEC SLASHIOTARHO FP,SFLDS
RINDS«(¢SVEC)/11TpFILE

SLASHIOTARHO returns the record indices of all active (not deleted)
records in the file which satisfy a specified criterion. SVEC is a
character vector APL expression (e.g. '(F3>50)AF2#0') which defines
the desired criterion. The expression is stated in terms of field
variables Fl1, F2, F3, ... which represent the data stored in the 1st,
2nd, 3rd, ... fields of each record. The expression should be
constructed such that when executed, its result is a Boolean vector
with one element per record (i.e. per element or row of F1l, F2, F3,
.+.) in which ones marks records selected. SLASHIOTARHO behaves like
dyadic /i1p. That is, its result contains all of the indices for the
specified array (file) which satisfy the specified criterion. The
elements of RINDS are record indices which can be used to directly
locate the records. The right argument (beyond FP) is an integer
vector of the indices of the field variables to be constructed before
executing the expression (e.g. 2 3 for '(F3>50)AF2#0' or 1 3 7 for

' 0<PROCESS F3' where F1 and F7 are required by PROCESS as global

-217-

Chapter 14 FILE DESIGN AND UTILITIES

variables). If SVEC and SFLDS are empty, SLASHIOTARHO returns the
record indices of all active records in the file.

SYNTAX: FPe«FP DELREC RINDS
FILE«(~(L1TpFILE)€RINDS)#FILE

DELREC deletes specified records from the file. The elements of
RINDS are the indices of the records to be deleted (as returned by
IOTA, IOTARHO or SLASHIOTARHO). The result is the modified value of
FP (if modified).

SYNTAX: FP«SVEC COMPRESS FP,SFLDS
FILE¢«(¢SVEC)#FILE

COMPRESS deletes all records in the file which do not satisfy a
specifed set of criteria.

FP¢«SVEC COMPRESS FP,SFLDS
has the same effect as
FP¢FP DELREC ('~',SVEC) SLASHIOTARHO FP,SFLDS

Notice that the former expression does not need to construct
intermediate record indices for the selected records and so is more
efficient than the latter expression. If SVEC and SFLDS are empty,
no records are deleted.

SYNTAX: MAT¢RINDS INDEX FP,FLDS
MAT¢FILELRINDS;FLDS]

INDEX is used to retrieve from file the data (MAT) from selected
fields (FLDS) for specified records (RINDS). The elements of RINDS
are the indices of the records to be retrieved (as returned by IOTA,
IOTARHO or SLASHIOTARHO). The elements of FLDS are indices of the
fields to be retrieved. The result is a matrix of the retrieved data
with one row per element of RINDS and one column per element of FLDS.

SYNTAX: RINDS INDEXWS FP,FLDS
F1¢FILELRINDS;1] ¢ F2¢FILELRINDS;21 ¢ ...

INDEXWS is used to retrieve from file the data from selected fields
(FLDS) for specified records (RINDS). The elements of RINDS are the
indices of the records to be retrieved (as returned by IOTA, IOTARHO
or SLASHIOTARHO). The elements of FLDS are indices of the fields to
be retrieved. The retrieved data are assigned to global variables

-218-

Chapter 14 FILE DESIGN AND UTILITIES

named Fn where n is the number of the field retrieved (e.g. F3 and F7
for FLDS«3 7). The global variables are vectors with one element (or
matrices with one row) per element of RINDS.

SYNTAX: MAT¢SVEC SELECT FP,FLDS,0,SFLDS
MAT«(¢SVEC)#FILEIL ; FLDS]

SELECT is used to retrieve from file the data (MAT) from selected
fields (FLDS) for all active (not deleted) records in the file which
satisfy a specified set of criteria (SVECQC).

MAT¢«SVEC SELECT FP,FLDS,0,SFLDS
has the same effect as
MAT¢(SVEC SLASHIOTARHO FP,SFLDS) INDEX FP,FLDS

Notice that the former expression does not need to construct
intermediate record indices for the selected records and so is more
efficient than the latter expression. If SVEC and SFLDS are empty,
SELECT retrieves data for all active records in the file.

SYNTAX: SVEC SELECTWS FP,FLDS,0,SFLDS
F1€(¢SVEC)AFILE[L ;1] © F2¢(¢SVEC)#FILEL;2] © ...

SELECTWS is used to retrieve from file the data from selected fields
(FLDS) for all active (not deleted) records in the file which satisfy
a specified set of criteria (SVEC).

SVEC SELECTWS FP,FLDS,0,SFLDS
has the same effect as
(SVEC SLASHIOTARHO FP,SFLDS) INDEXWS FP,FLDS

Notice that the former expression does not need to construct
intermediate record indices for the selected records and so is more
efficient than the latter expression. If SVEC and SFLDS are empty,
SELECTWS retrieves data for all active records in the file.

SYNTAX: FP«RINDS INDEXA (FP,FLDS) ASSIGN MAT
FILELRINDS ; FLDS J¢«MAT

INDEXA is used to replace on file the data in selected fields (FLDS)
for specified records (RINDS). The elements of RINDS are the indices
of the records to be replaced (as returned by IOTA, IOTARHO or
SIASHIOTARHO). The elements of FLDS are indices of the fields to be
replaced. MAT is a matrix of the data to be replaced with one row

-219-

Chapter 14 FILE DESIGN AND UTILITIES

per element of RINDS and one column per field (or per column of a
matrix field) identified in FLDS. Mat may be a vector if FLDS
identifies a single vector field. Regardless of the number of
records identified by RINDS, MAT may be a one-row matrix or vector
with one element per column of the fields, or a scalar or one-element
array. The data will be reshaped and assigned to the specified
records. The result is the modified value of FP. The ASSIGN
function simply assigns its right argument to <assign> and returns
its left argument. INDEXA erases the variable <assign> when done
with it.

SYNTAX: FP¢«RINDS INDEXWSA FP,FLDS
FILELRINDS;1]¢«F1 ¢ FILELRINDS;21¢F2 ¢ ...

INDEXWSA is used to replace on file the data in selected fields
(FLDS) for specified records (RINDS). The elements of RINDS are the
indices of the records to be replaced (as returned by IOTA, IOTARHO
or SLASHIOTARHO). The elements of FLDS are indices of the fields to
be replaced. The replaced data is taken from global field variables
named Fn where n is the number of the field replaced (e.g. F3 and F7
for FLDS¢3 7). The global variables are vectors with one element (or
matrices with one row) per element of RINDS. If the field variable
is a one-row matrix or a vector with one element per column of the
matrix field, it will be applied across all records identified by
RINDS. 1If the field variable is a scalar or one-element array, it
will be applied across all records and all columns of the field. The
result is the modified value of FP. The field variables are erased
upon successful completion of the function.

SYNTAX: FP«(FP,XFLDS) EXECUTE XVEC
¢XVEC

EXECUTE is used to execute a specified (XVEC) character vector APL
expression (e.g. 'SUM¢SUM++/F4'). The expression i