

APL
Advanced Techniques and utilities

by Gary A. Bergquist

Zark Incorporated
53 Shenipsit street
Vernon, Connecticut 06066

APL Advanced Techniques and utilities
Gary A. Bergquist

copyright 1987 Zark Incorporated

All rights reserved, including the right to reproduce or translate
this document or any portion thereof in any form. Requests for
permission or further information should be addressed to the
publisher.

The material contained herein is supplied without representation or
warranty of any kind. Zark Incorporated therefore assumes no
responsibility and shall have no liability of any kind arising from
the supply or use of this document or the material contained herein.

Printed in the united states of America

APL*PLUS is a registered service mark of STSC, Inc.

Sharp APL is a registered service mark of I. P. Sharp Associates, Ltd.

TABLE OF CONTENTS

INTRODUCTION 1

1 LIMBERING UP 4

2 BRANCHING AND LOOPING 8

Conditional Branching 8

MUlti-target Branching 9

Looping ... 11

When to Loop in APL ... 15

PROBLEMS ... 20

3 COMPUTER EFFICIENCY CONSIDERATIONS ... 23

Timing Alternative Algorithms ... 23

A utility Function for Timing Algorithms ... 25

Fine-tuning Production Applications for Efficiency ... 28

APL Efficiency Considerations ... 33

PROBLEMS ... 38

4 POSITIONING CHARACTER DATA ... 40

Removing Extra Blanks from Character Vectors ... 40

Justifying Nonblank Segments within Character Arrays 42

Restructuring Skinny Matrices into Fat Ones ... 43

Delimited Character Vector to Justified Matrix ... 46

PROBLEMS ... 49

5 SORTING AND SEARCHING ... 53

Major-to-minor sorting 53

Character Matrix Sorting 56

Uppercase/Lowercase sorting ... 62

Array Searching 64

Range Searching 70

Character SUbstring Searching 75

Character Substring Replacement 76

PROBLEMS ... 78

6 SELECTING ... 80

Selection and Selection Assignment ... 80

Scattered Point Indexing 82

Unique (Distinct) Values 84

Translating Distinct Values to Distinct Indices ... 88

PROBLEMS ... 89

7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS ... 92

One-Way Plus Reductions 94

N-Way Plus Reductions 97

N-Way Maximum and Minimum Reductions ... 100

N-Way Logical Reductions ... 104

N-Way Reduction utility Functions ... 105

N-Way Reductions on Files ... 109

Milky-way Reductions ... 111

PROBLEMS ... 114

TABLE OF CONTENTS (continued)

8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS ... 116

Primitive Interactive Functions 116

utility Interactive Functions 119

utility Validation Functions 122

PROBLEMS ... 127

9 MANIPULATING DATES ... 129

Representation of Dates in APL 129

Entering and Validating Dates 131

Formatting Dates for Output 133

Manipulating Dates ... 135

PROBLEMS ... 144

10 WRITING REPORTS ... 145

Viewing the Report ... 146

constructing Titles and Headings ... 147

Row Oriented Formatting ... 150

Formatting Multi-Row Records Using Newlines 151

Directing Report Output to Print Files ... 152

PROBLEMS ... 156

11 SYSTEM DEVELOPMENT PROCEDURE ... 157

Familiarization 158

Specification 159

File Design 160

Workspace Design 160

User Documentation 161

Flow Charting ... 162

coding, Typing, Testing ... 162

Delivery, Training ... 163

12 PROGRAMMING STANDARDS ... 165

Familiarization 165

Specification 166

File Design 166

Workspace Design 167

User Documentation 168

Flowcharting ... 169

Coding, Typing, Testing ... 170

Delivery, Training ... 174

13 WORKSPACE DESIGN AND DOCUMENTATION ... 175

Subfunction Design ... 175

starting an Application 185

Function Documentation 188

Workspace Documentation 191

Function Identifiers 194

Workspace Identifiers 200

PROBLEMS ... 202

TABLE OF CONTENTS (continued)

14 FILE DESIGN AND UTILITIES ... 203

APL Database File Organization ... 204

File Design Considerations 208

Efficient Record Location 210

File Documentation ... 212

File utility Functions ... 215

Multi-set Transposed File Organization 222

An Illustration of File utilities ... 225

PROBLEMS ... 228

15 BOOLEAN TECHNIQUES ... 230

Logical Scalar Functions ... 231

Logical Reductions and Scans ... 233

Logical Shift-and-Compare (Map) Operations 236

Logical Partition Operations ... 237

An Illustration of Boolean Techniques ... 244

PROBLEMS ... 252

16 IRREGULAR ARRAYS ... 253

constructing Irregular Arrays ... 255

Emulating Nested Arrays on Non-Nested Systems ... 257

Catenating to Irregular Arrays 262

Selecting from Irregular Arrays 264

Replacing Items of Irregular Arrays 265

Determining Shapes of Irregular Items 266

Sorting Character Nests 267

Searching Character Nests 268

Reducing Numeric Nests ... 269

PROBLEMS ... 269

17 CURVE FITTING ... 271

Using Quad-Divide ... 272

Forecasting ... 274

Fitting Data to a Nonlinear Formula ... 277

Finding the Best Formula ... 278

PROBLEMS ... 279

18 FINANCIAL UTILITIES ... 282

Interest and Annuities ... 282

Loan Amortization Schedules 290

Internal Rate of Return ... 293

Bond Calculations ... 297

PROBLEMS ... 301

19 EXCEPTION HANDLING ... 303

Detecting the Error 304

Signalling the Error 307

Detecting the Attention 308

Suspending the Function 309

Controlling the State Indicator ... 311

PROBLEMS 314

POSTSCRIPT 316

TABLE OF CONTENTS (continued)

Solutions: 1 LIMBERING UP ... 320

Solutions: 2 BRANCHING AND LOOPING ... 324

Solutions: 3 COMPUTER EFFICIENCY CONSIDERATIONS ... 327

Solutions: 4 POSITIONING CHARACTER DATA ... 330

Solutions: 5 SORTING AND SEARCHING ... 334

Solutions: 6 SELECTING ... 337

Solutions: 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS ... 340

Solutions: 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS ... 362

Solutions: 9 MANIPULATING DATES ... 364

Solutions: 10 WRITING REPORTS ... 366

Solutions: 13 WORKSPACE DESIGN AND DOCUMENTATION ... 367

Solutions: 14 FILE DESIGN AND UTILITIES ... 383

Solutions: 15 BOOLEAN TECHNIQUES .. . 449

Solutions: 16 IRREGULAR ARRAYS ... 459

Solutions: 17 CURVE FITTING ... 474

Solutions: 18 FINANCIAL UTILITIES ... 476

Solutions: 19 EXCEPTION HANDLING ... 479

INDEX ... 483

INTRODUCTION

It is a mystery that APL is more than 20 years old and there are
no APL textbooks which treat the reader as if he or she has some
understanding of the language. The introductory APL textbooks
available are excellent at accomplishing their objectives. However,
they leave the novice APL programmer stranded in the real world. The
novice APLer has the tools but not the techniques, the knOWledge but
not the experience.

This book picks up where introductory APL textbooks leave off. Its
goal is to build your experience quickly by exposing you to
applications of APL. This is accomplished by presenting real world
problems and their APL solutions.

Most sections of the book begin with the presentation of a problem.
You should read the problem and formulate a solution to it, given
your knowledge of APL. Then read on. The problem is followed by a
"good" APL sOlution. Compare it to yours. If different, learn from
the differences.

Each chapter is followed by a set of problems. The purpose of the
problems is to confirm your understanding of the material presented
in the chapter. You will reinforce that understanding by working on
the problems. The solutions to the problems are in the back of the
book.

Some of the most valuable material in the book is presented as
utility function solutions to problems. Therefore, you should at
least scan the problems and solutions after reading each chapter,
even if you feel you need no reinforcement.

The book assumes you understand the APL primitive functions. If you
encounter a primitive function with which you are unfamiliar, look it
up in an introductory APL textbook. Though the book does not assume
you are using any particular implementation of APL, it does make
specific references to three versions: APL2, APL*PLUS, SHARP APL.
APL2 is a product of IBM; APL*PLUS is the trademark of a product of
STSC, Inc.; SHARP APL is the trademark of a product of I. P. Sharp
Associates, Ltd.

If you are using a different implementation of APL, the material in
the book will still be pertinent. Only one primitive function is

-1­

INTRODUCTION

assumed which you may not have: replicate C/). If your version of
APL supports compression but not replicate i.e. generates a DOMAIN9

ERROR on 3/4 9 you will need to sUbstitute your own replicate
function, say REPL, whenever replicate is used. The listing of one
such REPL function is included at the end of this Introduction.

Most experienced APL programmers collect a set of their favorite
utility functions. These utility functions are used to increase
programmer productivity by solving the same problem over and over
again. This book contains and describes more than 150 commented
utility functions. These functions are available on a floppy disk.
See the Postscript at the end of the book.

Notice the workspace ID CWSID:) displayed above the header of the
REPL function below. The WSID refers to the name of the workspace in
which the REPL function may be found. This convention is used
throughout the book. Every function for which a WSID is provided is
available on floppy disk.

In several sections of the book, you are asked to imagine extensions
to the APL language. Each extension is then implemented via a
utility function. These imaginary extensions to APL are intended as
instructive and mnemonic devices to help you to quickly understand
and remember the definition of the utility function. Please do not
misinterpret my intent. I do not seek to have these extensions
implemented in the current versions of APL. In some cases, the
extensions are half-baked or are inconsistent with existing APL
conventions. No matter. Use them as they are intended. Allow
yourself to imagine the extension and then view the utility function
as the implementation of that extension.

There is much emphasis in the book on efficiency considerations. A
chapter is devoted to the topic. In addition, relative efficiencies
of alternative algorithms are considered throughout the book.
Emphasis is placed upon efficiency because of its importance. At an
introductory level of APL, you can concentrate on the conciseness of
APL and on its elegance. But in the real world, the practical APL
programmer must take a blue collar approach.

sometimes a concise and elegant algorithm requires much more
processing time than a somewhat more complicated algorithm. The
difference may be significant enough to make an application feasible
or infeasible depending upon the algorithm chosen. However,
efficiency does not need to come at the cost of clarity. If comments
are used generously and subfunctions used judiciously, you can have
the best of both worlds: fast, readable functions.

solicit comments and suggestions about the topics presentation and9

utility functions contained herein. In fact, if you make a
suggestion that is incorporated into the text or utility functions of
the next edition of the book, you will receive a free copy of the
current version of the utility functions.

-2­

I

I

INTRODUCTION

wish to acknowledge the efforts of everyone who has contributed to
the creation of this book, especially: Bob Richmond, Christine Bell,
Daryl Burbank-Schmitt, George Dobbs, Joe Hatfield, Bruce Hitchcock,
Roger Hui, Don Lagosz-Sinclair, Lori McNichols, Jack Reynolds, David
Routhier, Tapan Roy, Jerry Turner and Andi.

Gary A. Bergquist
Zark Incorporated
53 Shenipsit street
Vernon, CT 06066

March 1987

[WSID: UTILITY]
V R~B REPL V;I;N;P;T;DIO

[1] R Emulates the replicate function (R~B/V), where B
[2] R may be non-Boolean. Works for scalar/vector right
[3] A argument only.
[4] A Branch if right argument not a singleton:
[5] ~(1~N+--x/pV)pL1

[6] R~(+/B)pV

[7] -+0

[8J R Branch if left argument not a singleton:

[9] Ll:-+(1;tX/pB)pL2
[10] R~,~(B,N)pV

[11] -+0
[12] A Origin 0 logic is simpler:
[13] L2:DIO+-O
[14] A Flag nonzero replication factors:
[15] P~xB

[16] A Indices into V of values to replicate:
[17] N~pI~P/tN

[18] A Indices into result of starts of runs:
[19] T+--+\P/B
[20] A All-zero vector with length of result:
[21] R~(-ltT)pO

[22] A Insert 1st differences for subsequent +\:
[23] R[NpO,T]~I-NpO,I

[24] A Replicate selected elements of V:
[25] R+-V[+\RJ

V

-3­

Chapter 1

LIMBERING UP

The purpose of this chapter is to give you an opportunity to
crack your knuckles and stretch you muscles on some APL problems. If
you have not used APL for awhile, you will want to spend some time
solving these problems. The effort will put your mind in the proper
APL orientation to get the most out of the book. If the solutions
are different from your own, spend some time studying them. Review
any primitive functions with which you are unfamiliar.

If you use APL daily and the problems seem simple to you, skip this
chapter altogether. (Solutions on pages 320 to 323).

1.	 What expression will change the value 645 in the vector AMOUNT to
845?

2.	 What expression will return the scalar 1 if all elements of the
numeric vector PREMS are between 100 and 500, and will return the
scalar a otherwise?

3.	 What expression will return the number of elements in the numeric
vector WEIGHT which are approximately equal to 24?
"Approximately" means the numbers are rounded to the nearest
integer before comparing to 24.

4.	 What expression will return the number of elements in the matrix
MAT?

-4­

Chapter 1	 LIMBERING UP

5. Given a variable ANS which represents a numeric scalar (say 56.5),
what expression will return the character vector 'ANSWER IS 56.5
YEARS'?

6.	 What expression will cause the character vector NAME to be
catenated as a new row of the character matrix NAMES, assuming
the number of elements in NAME is less than or equal to the
number of columns in NAMES?

7.	 What is the effect of the expression, -+p12 ?

A.	 Proceed to the next statement

B.	 Proceed to line 12

c.	 Proceed to line 1

D.	 Exit the function

E.	 RANK ERROR

8.	 Given an integer vector V of length 2xN, construct an N-element
vector R by adding the odd elements of V (1, 3, 5, ...) to the
even elements (2, 4, 6, ...) times 256.

9.	 What is the result of lllO and why?

10. What is the meaning of -\VECTOR?

11. How do you resume execution of a function after an error has
occurred and been corrected?

-5­

Chapter 1	 LIMBERING UP

12. What happens when closing function definition mode after editing
the header of a suspended function?

13. What is the meaning of ••VECTOR?

14.a. What expression describes the shape of the result of A+.xB?

b. If either argument is a scalar?

I5.a. What expression describes the shape of the result of Ao.>B?

b. If either argument is a scalar?

16.	 What system function can be used to determine the amount of CPU
time consumed by an APL expression?

17.	 What expressions may be used to display the character vector
PROMPT and to allow the user to enter a response CR) on the same
line as, and following, the display of PROMPT?

18.a.	 What expression will .construct a character matrix which will
generate N blank lines when displayed?

b.	 What expression will construct a character vector which will
produce the same effect?

19. What expression will cause all variables in the workspace to be
erased?

-6­

Chapter 1	 LIMBERING UP

20.a.	 What would you type before running the function MODEL to cause
the computer to stop before executing each of the lines 12 and 14?

b. The following is a partial display of the function MODEL:

[11] T~A+2

[12] Q~INTERPOLATE T
[13] T~TJQ

By executing MODEL with the stops specified above, the value of T
after the first stop is 6 11 13 and after the second stop is 6 11
10. What corrective action would you take?

21.	 What expression will return the number of lines in the function
CALC?

22.	 Given two vectors, Vl and V2, an INDEX ERROR is signalled by the
last of the following expressions:

IND~VllV2

GOOD~IND~pVl

K~(VIXlpVl)[GOOD/IND]

Why?

-7­

Chapter 2

BRANCHING AND LOOPING

Branching in APL is a paradox. The definition of the branch
function (~) is simple but its application is not. In this chapter
we discuss applications of the branching function for: conditional
branching, multi-target branching and looping. Finally, the
efficiency considerations of looping in APL are discussed.

PROBLEM:	 Branch to the line labeled CALC if the value of the
variable X is greater than 5.

TOPIC: Conditional Branching

This problem requires a conditional branch statement. If the
condition ex>s) is true, you want the program's flow of execution to
proceed to the line labeled CALC. If untrue, you want to continue at
the next statement. The conditional branch statement can be
expressed in many ways, the following being some of the more typical:

1. -+(X>S)/CALC 4. -+CALCXlX>5 7. -+(X:sS)J,CALC
2. -+(5)5)pCALC 5. -+CALCrlX>5 8. -+CALC UNLESS X:SS
3. -+(X>5)fCALC 6. -+CALC IF X>5

While all of these expressions appear to be adequate, there exist
subtle differences between them. Algorithm 1 (/) is the most
commonly used conditional branching algorithm. Algorithm 2 (p) is
the fastest. Algorithm 3 (t) is a graphic complement to algorithm 7
(J,). Algorithms 4 (Xl) and 5 (ft) are more readable than algorithms
1, 2 and 3 since the word "IF" may be read in place of the Xt or ft.
However, Xl does not work in index origin 0 and ft does not allow
branching to line 0 (i.e. exiting the function) in origin 1.

-8­

Chapter 2	 BRANCHING AND LOOPING

Algorithm 6 (IF) is the most readable algorithm but requires the
existence of the subfunction IF (which is a problem if your function
must be self-contained) and is slightly slower than the other
algorithms.

Algorithms 7 C~) and 8 (UNLESS) require the logical negation of the
condition and so may be read as "unless". They may be used when the
condition is expressed in such a way that the opposite condition
requires the branch (e.g. ~(M€MVEC)~APPEND instead of
~(~M€MVEC)/APPEND). Algorithm 8 (UNLESS) has the same slight
disadvantages of algorithm 6 (IF).

Given such a variety of conditional branching algorithms 9 which
should you use? I prefer to use IF and UNLESS when extreme
efficiency and self-containment are unnecessary (most of the time).
otherwise 9 I use p and!. Whichever algorithm you use, be
consistent. APL code is easier to read when conventions are used
consistently.

PROBLEM:	 Branch to the line labeled CALC if the value of the
variable X is 4, to ENTER if X is 7, to STOP if X is 9 and
to LOOP if X is 10.

TOPIC: Multi-target Branching

This problem requires a multi-target branch statement. You want the
program's flow of execution to jump to one of four different
locations within the program depending upon the value of the variable
x. The branch statement can be constructed in many ways, the
following being two of the more typical:

1. ~(X= 4	 7 9 10)/CALC 9ENTER,STOP,LOOP

2. ~(CALC,ENTER9STOP,LOOP)[47 9 10 LX]

In general 9 the first algorithm (/) is used unless the branch
variable (X) is an index value (1 9 2, 3, ...) which corresponds to the
index of the desired label in the list of labels. Then indexing ([])
is used. For example, if the problem is restated such that X will
have the value 1, 2, 3 or 4, then use the expression:

~(CALC,ENTER,STOP,LOOP)[X]

Notice that the first algorithm (/) actually causes a branch to one
of five locations, not four. The fifth location is the next

-9­

Chapter 2 BRANCHING AND LOOPING

statement and is reached when the condition is untrue for all values
supplied (e.g. if X is 6). This bonus branch location is not
available when using the second algorithm ([]) since an invalid
branch value (e.g. if X is 6) causes an INDEX ERROR. You may avoid
the INDEX ERROR by including an additional label to which the branch
should take place if there is no match:

~(CALC,ENTER,STOP,LOOP,OTHER)[47 9 10 lX]

The additional label not only prevents an INDEX ERROR but has a
possible advantage over the first algorithm (/) in that you are not
forced to drop through to the following statement when there is no
match.

Both algorithms cause a branch to the label corresponding to the
first true condition. In the above example, the conditional
expression (x= 4 7 9 10) may have at most one true condition.
However, if the expression is rewritten (e.g. Xs4 7 9 10), there may
be more than one true condition (e.g. if X~8), in which case only the
first true condition will be honored.

When using mUlti-target branching algorithms, it is easy to overlook
the fact that the expression

~(Ll,L2,L3,L4,L5,L6,L7)[TYPE]

requires 8 primitive functions (~""'J[])' not 2 (~[]). The
catenation commas are readily dismissed as mere aesthetic
punctuation. When extreme efficiency is important, the labels should
be catenated once, outside of any loops in which the multi-target
branching is being employed:

LABS~Ll,L2,L3,L4,L5,L6,L7

LOOP:

~LABS[TYPEJ

~LOOP

-10­

Chapter 2	 BRANCHING AND LOOPING

PROBLEM:	 Construct looping logic which will allow the function
PROCESS to be executed N times. The right argument of
PROCESS is I, where I is the index number of the iteration
(1,2,3, ••• ,N).

TOPIC: Looping

The simplest looping logic is:

I+-l
LOOP:PROCESS I

I+-1+1

--+LOOP IF I~N

However, this logic breaks down when N=O. The check for completion
is not made until after PROCESS has been executed at least once. A
safer, but less simple, set of logic is:

I+-1
LOOP:~ENDLOOP IF I>N

PROCESS I

I+-1+1

-+LOOP

ENDLOOP:

Naturally, the conditional branch in both sets of logic above may be
replaced by any valid form of conditional branching (discussed above).

Notice the looping overhead which takes place within each iteration.
In particular, the counter (!) is incremented, a comparison (» is
made and a conditional branch (-+ENDLOOP IF ...) is performed. When
extreme efficiency is important, some of this overhead can be removed
from the looping logic by precalculating the branch labels:

I+-1
~LAB+-(NpLOOP),ENDLOOP

LOOP:PROCESS I

1+-1+1

~LAB[I]

ENDLOOP:

Notice that this logic works correctly for the N=O case. This
looping logic is the most efficient possible. However, you should be
careful when using it. The shortcoming of this approach is that you
must have available workspace for the entire label vector. For
example, if you plan to iterate 5000 times, you must have room for a
5001 element integer label vector.

-11­

Chapter 2	 BRANCHING AND LOOPING

There are two other rather unconventional algorithms for looping
which "loop" without branching back. One involves the use of execute
(51!) :

~(N~I~l)/LOOP~'PROCESS I 0 I~I+l 0 ~(I~N)/LOOP'

(Note: 0 is an APL statement separator and is not available in all
APL installations.) The other involves the use of a recursive
function:

LOOP N

where the function LOOP is defined as:

v LOOP I
[1] -+1J.O
[2] PROCESS l+N-I
[3]	 LOOP I-I

V

These two looping algorithms are confusing, inefficient and may cause
unexpected complications Ce.g. STACK FULL or WS FULL).

Some extended APL systems which support nested arrays have a
primitive "iterating" operator named "each" C··). The problem stated
above can be solved via:

This expression is significantly simpler and more efficient than the
sets of looping logic above. However, it has two drawbacks. The
first is the same drawback which the precalculated label vector logic
has, namely that you must have available workspace for the entire
vector of counter (I) values.

The second drawback is that this expression will not work (as is) if
N=O. A DOMAIN ERROR or NONCE ERROR will result because the nested
array system does not know what fill value (prototype) to associate
with the empty result of PROCESS, should it have a result. For
example, if the normal result of PROCESS is a character scalar for a
numeric scalar argument, you would expect the result of PROCESS··lO to
be an empty character vector, not an empty numeric vector. The APL
system has no way of knowing the nature of the result of PROCESS
without executing it at least once.

Viewing the "each" operator as an "iterator" rather than as a
parallel processor can quickly lead to expressions which over-kill a
problem. For example, consider this file-summarizing logic:

-12­

Chapter 2	 BRANCHING AND LOOPING

N~lOOO

SUM+--O

I+-l

LOOP:SUM~SUM++/READ I
1+-I+1
-:,LOOP IF I:sN

This logic loops through 1000 components of an APL file, reading and
summing the SOaO-element numeric vectors found in each component.
The equivalent nested arrays expression is:

SUM+-+ / + /. ·READ.... tN

The expression is certainly concise. However, at one point during
the execution of the expression, the contents of the entire 5,000,000
element file exist in the workspace as a temporary nested variable.
This problem can be circumvented by writing a function SUMREAD which
returns the sum of the elements of a specified component:

V R~SUMREAD I
[1]	 Rf.+/READ I

TV

Then, the expression can be rewritten as:

SUM~+ / SUMREAD--tN

Now we have only the temporary lOOO-element vector result of
SUMREAD""tN as extra baggage from the nested arrays approach.

One of the recurring criticisms of APL is its lack of primitive
looping constructs. Because of APL's array-handling capabilities,
looping is not required as often as in other programming languages.
However, despite nested array extensions to APL, the need to loop
still exists.

Imagine a looping primitive (&) which solves our PROCESS problem as
follows:

I&ENDLOOP,N
PROCESS I
&1

ENDLOOP:

The left argument of dyadic loop (&) or the right argument of
monadic loop is the counter variable. The right argument of dyadic
loop may contain from 1 to 4 elements:

-13­

Chapter 2	 BRANCHING AND LOOPING

[1]	 the line number (exit line) to which execution will proceed
at the completion of the loop;

[2]	 the number of iterations (infinite if omitted);

[3]	 the value of the counter variable during the first iteration
COlO if omitted);

[4]	 the amount by which the counter variable is to be incremented
or decremented after each iteration (1 if omitted).

The monadic loop function increments the counter variable and
branches back to the line immediately following the line containing
the dyadic loop function if there are more iterations to perform.
otherwise, the counter variable is erased and the flow of execution
proceeds to the exit line.

APL	 utility functions can be written to approximate this behavior:

~LOOPI ENDLOOP,N

PROCESS I

~NEXTI

ENDLOOP:

The	 definitions of the LOOPI and NEXTI functions follow:

[WSID: LOOP]
v R+-LOOPI LAB

[lJ R Initializes globals CI,loopi) for looping.
[2] A LAB: line to branch to when loop complete,
[3] R no. iterations, starting I, increment.
[4] A Used in conjunction with NEXTI as:
[5] A
[6] R ~LOOPI END,lOO
[7] A PROCESS I

[8J R -+NEXTI

[9] REND:

[10] R

[Ill R Default values of l~right arg if omitted:

[12] A +infinity, 010, 1
[13] R~LAB,l(p,LAB)~O,(l/lO),OIO,l

[14] A Exit if no iterations at all:
[15] ~(R[1+DIO]<1)pO

[16] I~R[2+DIO]

[17] A Top line, exit line, number of iterations,
[18] A current I, increment, current counter:
[19] R~loopi~(l+DLC[l+DIO]),R,l

v

-14­

Chapter 2	 BRANCHING AND LOOPING

[WSID: LOOP]
v R~NEXTI;DIO

[1] R Used in conjunction with LOOPI. Returns line
[2] R number for next iteration of loop. Requires
[3] R (may erase) globals: I;loopi.
[4] DIO~l

[5] R Increment I:
[6] I~loopi[4]~loopi[4]+loopi[5]

[7] R~loopi[l]

[8] R Increment current counter; exit if not done:
[9] ~(loopi[3J~loopi[6]~loopi[6]+1)pO

[10] R Else return exit line; erase I and loopi:
[11] R~loopi[2J

[12]	 R~R,OpDEX '1 loopi'
v

PROBLEM:	 Suppose you want to compute the running balance of your
savings account for the last 24 months. You have made a
single deposit at the end of each month. DEPOSIT is a 25
element vector of the opening balance and the 24 monthly
deposits. RATE is a 24 element vector of the monthly
interest rates during this time, expressed as fractions
(e.g.. 0075 .0081 .0078 ...). You may compute the balances
iteratively with the following formula:

BALANCE[T+l] = DEPOSIT[T+lJ + CBALANCE[TJ x CRATE[T]+l))

where T goes from 2 to 25 and where BALANCE[l]=DEPOSIT[lJ.
What APL algorithm may be used to compute this stream of
cash balances without looping?

TOPIC: When to Loop in APL

Because APL code is interpreted and not compiled, a looping algorithm
is generally less efficient than a non-looping algorithm. For
example, the expression SUM~+/VECT will be significantly faster than
the looping algorithm:

-15­

Chapter 2	 BRANCHING AND LOOPING

!+--SUM+-O
LOOP:~ENDLOOP !F I~pVECT

I+--!+l

SUM+-SUM+VECT[!J

~LOOP

ENDLOOP:

During each iteration of the loop, every symbol of code is
reinterpreted. The addition function is actually a small portion of
the processing being performed during the loop.

This situation leads to two conclusions:

1.	 Avoid looping in APL when possible;

2.	 When looping is necessary, remove as much code as possible from
within the loop.

To illustrate, let us solve the above problem in a casual, looping
fashion:

[WSID: CASHBALJ
v BALANCE+--RATE CASHl DEPOSIT;I;N

[1] R Returns stream of cash balances for deposits
[2] A DEPOSIT and corresponding rates RATE.
[3] N+-pDEPOSIT
[4] BALANCE~(pDEPOSIT)pO

[5] BALANCE[l]~DEPOSIT[l]

[6] I~l

[7] LOOP:~END IF I~N

[8J I~I+l

[9] BALANCE[I]~DEPOSIT[I]+BALANCE[I-l]XRATE[I-l]+l

[10] -+LOOP
[11]	 END:

V

-16­

Chapter 2 BRANCHING AND LOOPING

Now let's squeeze everything possible from the loop:

[WSID: CASHBALJ
v BALANCE~RATE CASH2 DEPOSIT;B;I;LAB;N

[1] A Returns stream of cash balances for deposits
[2] A DEPOSIT and corresponding rates RATE.
[3] N~pDEPOSIT

[4] BALANCE~NpO

[5] BALANCE[l]~B~DEPOSIT[l]

[6] RATE~RATE+1

[7] LAB~CNpLOOP),END

[8] ~LAB[I~2]

[9] LOOP:B~BALANCE[I]~DEPOSIT[I]+BxRATE[I-l]

[10] ~LAB[I~I+l]

[11] END:
v

Given these modest modifications, we can expect the function CASH2 to
take perhaps 60% to 70% as long to run as CASHl.

Now let's look for a non-looping solution. Let's refer to the
elements of l+RATE as Rl, R2, R3, ... Let's refer to the elements of
DEPOSIT as 01, D2, 03, ... Then the elements of BALANCE which we seek
may be computed by the following expressions:

Dl RlxDl R1xR2xDl RlxR2xR3xDl , ...
+D2 +R2xD2 +R2xR3xD2

+D3 +R3xD3
+D4

Our objective is to find some APL expression which will generate this
vector. We will accomplish this by performing a series of
transformations to these elements until the resulting elements can be
easily produced with an APL expression. We will then apply APL
expressions which will reverse the transformations.

Let's begin by defining the vector RSCAN:

1 R1 RlxR2 R1xR2xR3 , ...
We will divide our desired result by RSCAN, giving:

02 D2 D3 D2 D3 D4
D1 D1+-­ Dl+--+----­ 01+--+-----+-------­ , ...

R1 R1 R1xR2 Rl R1xR2 R1xR2xR3

Take the first difference eV[I+l]-V[IJ) of these elements, giving:

D2 D3 D4
D1 , ...

Rl RlxR2 RlxR2xR3

-17­

Chapter 2	 BRANCHING AND LOOPING

Multiply the result by RSCAN, giving DEPOSIT:

D1 D2 D3 D4 , ...
Now, undo each transformation in reverse order. Undo the
multiplication by RSCAN:

DEPOSIT+RSCAN

To undo the first difference, you must realize that the cumulative
sum (+\V) is the inverse of the first difference (V--l~O,V):

+\DEPOSIT+RSCAN

Undo the division by RSCAN:

RSCANx+\DEPOSIT+RSCAN

There it is. Expressed as a function:

[WSID: CASHBALJ
V BALANCE~RATE CASH3 DEPOSIT;RSCAN

[1] R Returns stream of cash balances for deposits
[2] A DEPOSIT and corresponding rates RATE.
[3] R Performs:
[4] A BALANCE[I]~DEPOSIT[I]+BALANCE[I-l]xRATE[I-l]+l

[5] RSCAN~(pDEPOSIT)pl,X\RATE+l

[6] BALANCE~RSCANx+\DEPOSIT+RSCAN

V

We can expect the function CASH3 to take perhaps 2% to 5% as long to
run as CASHl! This significant improvement in speed does come at the
cost of clarity. The algorithm in CASH3 screams out for comments,
the least of which should be:

A Performs: BALANCE[I]~DEPOSIT[I]+BALANCE[I-l]xRATE[I-l]+l

After seeing an elegant application of the APL scan functions to
perform an inherently iterative function, it is easy to become
obsessed with the pursuit of non-looping algorithms. Beware! You
may invest a greater value of human time than is saved in machine
time. As a further irony, you may find that your elegant and
sophisticated non-looping algorithm is slower than a compact looping
algorithm.

As a guideline, do not spend your time looking for a non-looping
algorithm unless all of the following are true:

1.	 You suspect one exists;

2.	 The function is used frequently and the looping algorithm is a
"bottleneck" in the function;

-18­

Chapter 2	 BRANCHING AND LOOPING

3.	 The loop involves at least 20 iterations;

4.	 Transplanting all possible logic from within the loop to
outside the loop does not give you satisfactory performance.

5.	 You do not have access to an APL "compiler". For example, STSC
provides a product used in conjunction with its mainframe
APL*PLUS System product which can be used to compile selected
APL functions to improve their execution speed. The compiling
process requires a good deal of both programmer and computer
time but can produce dramatic efficiency improvements,
especially on highly iterative functions.

If you choose, or are forced, to employ a looping algorithm, you may
still solve the overall problem in an efficient manner by considering
the context in which the loop is performed. To illustrate, let us
consider the problem of computing the yield-to-maturity rates for
1000 coupon-bearing bonds.

Given the parameters which define the cash flows of a bond, it is
necessary to solve for the yield by a method of successive
approximations (looping). The APL solution to this problem is
described in detail in the Financial utilities chapter. For now, let
us assume that we have an algorithm which can be used to determine
the yield rate (to satisfactory precision) in no more than 10
iterations.

To compute the yield rates for the 1000 bonds, are we compelled to
perform 10,000 iterations?

No. We are forced to loop by successive approximation (10
iterations) but we are not forced to loop by bond. To efficiently
solve the problem, we may perform the 10 iterations on the parameters
of all 1000 bonds at once. After 10 iterations, we will have the
1000 desired yield rates. Computing yield rates by such an
"iterative" APL approach is quite efficient. The processing speed
will rival or surpass that of any compiled language.

-19­

Chapter 2	 BRANCHING AND LOOPING

PROBLEMS:	 (Solutions on pages 324 to 326)

1.	 What are the problems with the following conditional branch

expression?

~CALCx(X>5)?1

2.	 Assuming index origin 1, what expression will cause a branch to
the line labeled NEGATIVE if N is negative, ZERO if N is zero or
POSITIVE if N is positive?

3.	 Assuming index orlgln 1, write the looping logic which will add

together the 100 matrices in file components 11, 14, 17, ... ,

308. Assume the existence of the monadic function READ whose
right argument is the number of the component to be read and
whose explicit result is the matrix stored in that component
(e.g. MAT~READ 11). Use each of the following techniques:

a.	 Normal APL looping logic (increment, compare, branch);

b.	 Precalculated label vector logic;

c.	 The hypothetical looping primitive (~);

d.	 The LOOPI, NEXTI utility functions.

e.	 The each C··) operator.

4.	 write non-looping APL logic which is equivalent to the following
formula:

OPRIN[IJ = OPRIN[I-1J-CPMT-RATEXOPRIN[I-l])

for I from 1 to TERM, where OPRIN[OJ=LOAN.

-20­

1

Chapter 2	 BRANCHING AND LOOPING

5.	 write a function CASH4 which uses another approach to perform the
same task as that of functions CASHl, CASH2 and CASH3 listed in
this chapter. Begin by defining a vector ACCUM:

RlxR2xR3x ... R2xR3xR4x ... R3xR4xR5x ...

Perform the following transformations on the elements of BALANCE:

A.	 MUltiply by ACCUM

B.	 Take the first difference

c.	 Divide by ACCUM

What is the result? Undo the transformations to construct the
new algorithm and use it to write CASH4.

6.	 The following function WRAPLP modifies its character vector right
argument so that it will display in the width (number of
characters) specified in the left argument. The modification
consists of inserting a newline (carriage return) character in
place of the last blank character on each line. In that way,
words (groups of contiguous nonblank characters) are not broken
from one line to the next. Existing newline characters are left
unaltered and are used to separate "sentences" within which the
above word-wrap logic takes place. For example:

pTEST
70

TEST

THIS EXAMPLE IS NOT VERY BIG.

THE FUNCTION WORKS ON LARGE VECTORS TOO.

15 WRAPLP TEST

THIS EXAMPLE

IS NOT VERY

BIG.

THE FUNCTION

WORKS ON LARGE

VECTORS TOO.

Rewrite the WRAPLP function to eliminate looping where possible.

-21­

Chapter 2	 BRANCHING AND LOOPING

[WSID: WP]

v	 R~WID WRAPLP CVEC;DIO;BL;BREAK;I;L;LAST;LEN;LIM;NL;S;

START;TCNL
[1] A Wraps text CVEC into lines of length WIn
[2] A or less by inserting newline characters.
[3] R Origin 1:
[4] DIO~l

[5] A Newline character:
[6] TCNL~DTCNL R APL*PLUS
[7] R TCNL~DTC[2] A APL2
[8] A TCNL~OAV[157] A SHARP APL
[9] A Flag newline characters:
[10] NL~CVEC=TCNL

[11] A Index before start of each sentence:
[12] START~O,NL/tpNL

[13] A Lengths of sentences (between newlines):
[14] LEN~-I+(1!START,1+pCVEC)-START

[15] A Flag valid break points (blank followed by nonblank):
[16] BL~CVEC=' ,
[17] BREAK~BL>l<t>BL

[18] A Initialize result from argument:
[19] R'-CVEC
[20] R Loop by sentence:
[21] I~O

[22] LIM+-pLEN
[23] LOOP1:~(LIM<I+-I+l)/O

[24] L+-LEN[IJ
[25] S~START[I]

[26] R Loop by line within sentence:
[27] LOOP2:~(L~WID)/LOOPI

[28] R Find last break point within WID chars of line:
[29] LAST+-+/V\BREAK[S+$tWID]
[30] A Advance start to new break point:
[31] S+-S+IAST
[32] R Insert newline:
[33] R[SJTCNL
[34] A Decrement remaining length:
[35] L+-L-LAST
[36] A Repeat:
[37]	 --+LOOP2

V

-22­

Chapter 3

COMPUTER EFFICIENCY CONSIDERATIONS

Time is money. The faster an APL function will run, the less it
will cost. This is true whether you are using APL on a commercial
remote timesharing service or on your dedicated personal computer.
In this chapter, we discuss computer efficiency: measuring time
consumption and understanding the factors which affect processing
efficiency.

PROBLEM:	 Which expression will execute quicker on a 4000 element
numeric vector V?

1. R.-+/V+pV
2. R~(+/V)+pV

TOPIC: Timing Alternative Algorithms

The niladic APL system function DAr (accounting information) returns
a numeric vector of miscellaneous usage statistics. The meanings of
the elements of the result vary among the different implementations
of APL. One element (usually the second) measures the amount of
processing time (CPU time) consumed since the current APL session
began. It is usually expressed in milliseconds, or 60ths of a second
or seconds. We will assume in our discussion that the index origin
is 1 and that DAI[2J is the measure of processing time.

Timing an algorithm is then a simple matter of checking the
ttstopwatch" before and after executing the algorithm:

TIME1+-DAIE2J

R+-(+/V)+pV

TIME2+-DAI[2J

USEDt-TIME2-TIMEl

-23­

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

These expressions should not be executed in immediate execution mode
unless they are executed all at once on a single line:

TIMEl~DAI[2J 0 R~(+/V)+pV 0 TIME2~DAI[2J 0 USED~TIME2-TIMEI

If your implementation of APL does not have a statement separator
(e.g. 0), the expressions should be specified as lines of a
function. The reason for avoiding immediate execution mode is that
CPU time is being consumed as you are typing each expression. In
fact, on a dedicated (i.e. personal) computer, the measure of CPU
time is equivalent to the measure of clock time. That is, the value
for DAI[2J increases by 60 seconds every minute whether or not APL
expressions are being executed. Therefore, the measured time will
include typing time.

Let us solve the problem above:

V~4000?4000

T~DAI[2J 0 R~+/V+pV 0 DAI[2J-T

675

T~DAI[2J 0 R~(+/V)+pv 0 DAI[2J-T

162

From this example, we can begin to see the importance of well placed
parentheses. In the first algorithm, the computer performs 4000
divisions and 4000 additions. In the second, it performs 4000
additions and 1 division.

What happens if we time the algorithms again?

T~DAI[2J 0 R~+/V+pV 0 OAI[2J-T
692

T~DAI[2] 0 R~(+/V)+pv 0 DAI[2J-T
155

We get the same approximate results but they are not exactly the
same. Why? On a multi-user computer, the results will vary
primarily because of the varying requirements of other users at the
moment of execution. Even on a dedicated computer, the results may
vary because of "house-cleaning" operations performed automatically
and sporadically by the APL system and because of imprecise clock
resolution. Therefore, if the accuracy of your timings is important,
you should perform several timings and average the results.

-24­

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

PROBLEM: write a dyadic function TIMER to time the execution of a
specified algorithm. The algorithm is provided as an
executable character vector right argument. TIMER runs the
algorithm N times, where N is the left argument, and
returns the average CPU time consumed. For example:

25 TIMER 'R~+/V+pV'

638.44

TOPIC: A Utility Function for Timing Algorithms

In writing the TIMER function, we will attempt to isolate the time
consumed during the execution of the algorithm. Any time consumed
during the overhead of the timing process itself will be deducted.
In this way, and by averaging many samples, we can get timing results
which are as precise as possible.

There are two methods in APL for executing a character vector
expression under program control. The first is to use the execute
(~) primitive and the second is to construct and execute a local
function which has the expression as one of its lines.

The first approach (~) is simpler but not as accurate. When a
character vector expression is executed, the expression must first be
"parsed" so that the APL interpreter may correctly identify
variables, APL primitive functions, character constants and numeric
constants. It is during this parsing phase that variable names and
function names are translated into pointers and addresses, the
natural vocabulary of the computer. This parsing takes place when
you enter an expression in immediate execution mode or in function
definition mode or when you define a function under program control.
Therefore, when you execute the expression as the line of a function,
it has already been parsed and will execute quicker than if the
expression is executed as the argument to the execute (~) primitive.

We will therefore use the second method, constructing and executing a
local function, to time the specified algorithm. Our task is to
define a function local to TIMER under program control which looks
something like the following (say, to time R~(+/V)+pV):

v ELAPSED~RUNl N;I
[1] ELAPSED~DAI[2]

[2] I+-O
[3] LOOP:~(N<I~I+l)pEND

[4] DOIT:R~(+/V)+pV

[5] ~LOOP

[6] END:ELAPSED~DAI[2]-ELAPSED

V

-25­

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

This function will run the specified algorithm (on line [4]) N times,
where N is the right argument (e.g. RUNl 25). It will return the
amount of elapsed processing time consumed during its execution.

We will define a second local function RUN2 which is identical to
RUNl except for line [4], which is defined to do nothing:

[4] DOlT:

We may then execute both RUNl and RUN2 with the same argument,
subtract the results (to eliminate the non-algorithm overhead) and
divide by the number of iterations to determine the average
processing time for a single execution of the specified algorithm.
Therefore, TIMER will look something like:

V R~N TIMER CVEC;RUNl;RUN2

define RUNl and RUN2

[7]
[8]

v

R~(RUNI

R~R+N

N)-RUN2 N

How do we define RUNl and RUN2? There are
defining functions under program control.

two
One

popular meth
is to build

ods
a

for

character matrix which "looks" like the function, less the dels (V)

and the bracketed line numbers. Each function line, including the
header, occupies exactly one row of the character matrix. Each
function line is padded with blanks to have as many characters as the
longest function line. Such an array is called the "canonical
representation" of the function and may be used as the definition of
a new function in the workspace. The function is defined by a system
function COFX in APL2, DDEF in APL*PLUS or DFD in SHARP APL).

The second method is to build a character vector which "looks"
exactly like the function. The lines of the function are separated
by the newline (i.e. carriage return) character. Such an array is
called the "visual representation" of the function. The function is
defined by a system function (ODEF in APL*PLUS or OFD in SHARP APL).

There is one final comment to make before defining the TIMER
function. Since the algorithm being timed may involve variables or
functions having any valid names, it is possible that these
identifiers may coincidentally be the same as the variables local to
TIMER and RUNl. We should take some effort to name the local
variables so that the chances of a name conflict are minimized. The
RUNl function we will construct will thus look like:

-26­

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

v ~E~~~F~ ~N~;~I~
[1] ~E~~DAI[1+DIO]

[2] ·~I~~O

[3] ~L~:~(~N~<~I~~~I~+1)p~Z~

[4] ~D~:R~(+/V)+pV

[5] ~~L~

[6] ~Z~:~E~~DAI[l+DIO]-~E~

V

Let us define the TIMER function using the "visual representation"
method. We will leave the "canonical representation" method as an
exercise at the end of the chapter. We shall use the monadic DDEF
system function to define the function. Its result is the character
vector name of the function defined. The niladic system function
DTCNL returns a character scalar newline character.

[WSID: TIMING]
V ~R~~~N~ TIMER ~C~;~A~;~B~;~F~;~G~;~NLA

[1] R Times the execution of the character vector
[2] A ACA by running it ANA times. Returns a numeric
[3] A scalar of the average CPU time consumed per run.
[4] A
[5] A Prepare to build local functions ...
[6] A Newline character:
[7] ~NL~~OTCNL A APL*PLUS
[8] A ~NL~~DAV[156+DIO] A SHARP APL
[9] ~A~~'vAE~~~F~ ~NA;AI~',~NL~,'[1]~E~~DAI[1+DIO]'

[10] AA~~~A~,~NLA,'[2]~I~~0',~NL~

[11] ~A~~~A~,'[3]~LA:~(ANA<~I~~~I~+1)p~Z~'

[12] ~A~~~A~,~NL~,'[4]~D~: '

(13] ~B~~~NL~,'[5]~AL~' ,~NL~

[14] ~B~~~B~,'[6]AZ~:~EA~DAI[1+DIO]-~E~V'

[15] A
[16] A
[17] A Define local fn ~FA to run ~C~:
[18] ~R~~ODEF ~A~,~C~,~B~ A APL*PLUS
[19] A ~R~~3 DFD AA~,~C~,~BA A SHARP APL
[20] A
[21] A Define local fn AGA to run nothing:
[22] ~A~[~AAt'F']~'G'

[23] ~R~~ODEF ~A~,~B~ A APL*PLUS
[24] A ~R~~3 DFD ~AA,~B~ A SHARP APL
[25] A
[26] A Run the functions (disallow negative result):
[27] ~RA~Or(~FA AN~)-~GA ~N~
[28] A Return the average:
[29] ~R~+-~R~7AN~

v

-27­

----- -----

Chapter 3	 COMPUTER EFFICIENCY CONSIDERATIONS

PROBLEM:	 Define a procedure whereby the individual lines of a
specified function may be timed so that possible
inefficiencies can be quickly located within the function.
The ideal end result of such a procedure will be a display
like the following (for a 5 line function):

TIMES TOTAL AVG MIN MAX
LINE RUN CPU CPU CPU CPU

1 3 450 150 122 171
2 3 15 5 3 7
3 153 918 6 3 8
4 150 9,280 62 55 66
5 3 1,065 355 240 380

----_

312 11,728 38

TOPIC: Fine-tuning Production Applications for Efficiency

After designing and implementing an application system in APL, you
may find that it operates slower than you anticipated. In fact, the
system may be so slow or so expensive that it is infeasible to
operate. What can you do?

A procedure such as the one suggested in the problem above allows you
to examine the functions for bottlenecks. You begin with the highest
level cover functions and work your way into suspicious
subfunctions. Having identified the major inefficiencies, you are in
an ideal position to correct them. A discussion of the causes and
cures for some of the inefficiencies encountered in APL is contained
later in this chapter.

To aid in our discussion, suppose the function we wish to time is the
following:

V MODEL
[1] SETUP
[2] LIM~50 0 I~O

[3] LOOP:~END IF LIM<I~I+1

[4J PROCESS ¢ ~LOOP

[5] END: CLOSE
v

To time the lines of this function, we need to click our "stopwatch tt

at the beginning and end of each line. This suggests the placement
of timer functions at the start and end of each line. For example:

[lJ START ¢ SETUP ¢ STOP

-28­

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

This idea breaks down for lines which involve branches:

[4] START 0 PROCESS 0 4LOOP 0 STOP

In this example, the branch to the line labeled LOOP occurs before
the STOP function is executed.

since functions placed at the end of function lines are not reliably
executed (due to branching). we must be satisfied with placing timer
functions only at the start of function lines. The timer function
must then perform two tasks: to stop the stopwatch for the previous
line (which may not be the line directly above the current line) and
to start the stopwatch for the current line. If we call our timer
function ~, we may be able to time the MODEL function above by
placing the timer function as follows:

v MODEL
[1] Ii! 0 SETUP
[2] ~ 0 LIM~50 0 I~O

[3] LOOP:~ 0 4END IF LIM<I~I+l

[4] Ii! 0 PROCESS 0 4LOOP
[5] END:~ 0 CLOSE
[6] ~

V

Notice that a new line must be added (line 6) to stop the stopwatch
for the last line of the function Cline 5).

If your implementation of APL does not support statement separators
(e.g. OJ, you are compelled to insert the timer function on the line
before each function line:

v MODEL
[1] ~

[2] SETUP
[3] l:!
[4] LIM~50

[5] ~

[6] I~O

[7] LOOP:~

[8] ~END IF LIM<I~I+l

[9] t!!

[10] PROCESS
[11] I::!
[12] ~LOOP

[13] END:~

[14] CLOSE
[15] ~

v

-29­

Chapter 3	 COMPUTER EFFICIENCY CONSIDERATIONS

It	 is the job of the timer function (~) to do the following:

1.	 Record OAI[2J.

2.	 Look at a global variable (say ~T) which contains the value of
DAI[2J when ~ was last executed. Subtract this value from the
value recorded in step 1. The result is the time consumed by
the previously executed line.

3.	 Look at a global variable (say ~L) which contains the number of
the line for which ~ was last executed. Using this line number
and the consumption value computed in step 2, update the global
variable accumulation matrix (say ~M) which has one row per
function line and 4 columns: times run, total CPU, minimum CPU,
maximum cpu.

4.	 Update ~L to contain the number of the current line.

5.	 Update ~T to contain the value of DAI[2J at the start of the
current line.

To write the timer function (~), we will assume the following initial
values for the required global variables:

~L~O

~M~(N,4)pO O,(l/tO),O

No initial value is set for ~T since ~ will not refer to it when it
is first executed (on line 1) since ~L is o. The N used in the
assignment of ~M is the number of lines in the function being timed.
The (lItO) is used to generate the largest possible number (the
identity element for mimimum) for your APL system. We cannot
initialize the minimum value to 0 since the 0 will remain as the
minimum value. No timing result could be less.

Let us write the timer function (assuming statement separators):

-30­

Chapter 3	 COMPUTER EFFICIENCY CONSIDERATIONS

[WSID: TIMING]
v ~;TIME;USED;DIO

[1] TIME~DAI

[2] R Records time since last called and resets
[3] R stopwatch. Checks the , stopwatch' before
[4] R anything else.
[5] OIO~l

[6] A Branch if first time called:
[7] ~(XAL)J,Ll

[8] R Compute time consumed since last called:
[9] USED+-TIME[2]-~T

[10] R Update accumulation matrix:
[11] ~M[~L; 1 2]~~M[~L; 1 2J+l,USED
[12] ~M[~L;3]~~M[~L;3]LUSED

[13] ~M[~L;4]+-~M[~L;4]rUSED

[14] R Update line number:
[15] Ll:~L~DLC[2]

[16] A Set ~L to 0 if bottom of function:
[17] ~L~~LX~Ls(p~M)[l]

[18] A Update , stopwatch' as last step:
[19] ~T~DAI[2]

V

Notice the use of OLe (line counter) to compute the number of the
current line on which A is being called. If your implementation of
APL does not support statement separators, and the number of lines in
your function has been doubled because of the insertions of ~, the
computation of ~L would be changed to:

~L+-(1+DLC[2])+2

Along with the ~ timer function, we need 3 other functions:

TIME~DEFINE 'MODEL' The TIME~DEFINE function modifies the
function named in its character vector right
argument by inserting the ~ timer function
before each function line. It also initializes
the global variables ~L and ~M.

TIME~DISPLAY	 The niladic TIME~DISPLAY function generates and
displays a formatted report of the contents of
the global accumulation matrix ~M.

TIME~RESET	 The niladic TIME~RESET function resets the
global variables ~L and ~M to their initial
(zeroed out) settings. Then, the function whose
lines are being timed may be rerun and the
results redisplayed.

-31­

Chapter 3	 COMPUTER EFFICIENCY CONSIDERATIONS

The definition of the TIME~DEFINE function is fairly complex,
especially if you attempt to write it without looping. Techniques
for writing the function are discussed in a sUbsequent chapter
(Boolean Techniques). The definition of TIME~DEFINE is a problem at
the end of that chapter.

The definition of the TIME~DISPLAY function is a straightforward
formatting problem.

[WSID:	 TIMING]
v TIME~DISPLAY:A;B;M;DIO

[1] A	 Displays timing data stored in global arrays.
[2] O~, TIMES TOTAL AVG MIN MAX'
[3] D~' LINE RUN CPU CPU CPU CPU'
[4] D~' ---- ----- ----- -----	 -----,
[5] 010+--1
[6] A	 Squeeze out rows of ~M not updated:
[7] M+--~M[(~M[;1]~O)/l1ip~M; 112 2 3 4]
[8] A~M[;2]
[9] B+-M[;3J
[10] M[;lJ+-lpA
[11] M[; 4] +-B+A
[12] A	 APL*PLUS, SHARP APL:
[13] D+-'I4,CBI8,Xl,4BCK3I8' OFMT M

(14] R APL2:

[15]	 A 0+-('5550 555,559 ' ,32p' 555,559')~M[;1 2J,lOOOXM[;3 4

5]
[16] 0+-'	 -----,
[17] A+-+/A
[18] B+-+/B
[19] R	 APL*PLUS, SHARP APL:
[20] O+-'CB112,X1,2BCK318' DFMT 1 3 pA,B,B+A
[21] R	 APL2:
[22] A	 0+-(' 555,559 ',16p' 555,559')~A,B,B+A

v

The	 definition of the TIME~RESET function is trivial:

[WS1D: TIMING]
v T1ME~RESET

[1] AL+-O
[2]	 ~M+-(p~M)p 0 0 ,Cl/lO),O

V

Some final notes on this line-timing procedure:

1.	 Since TIME~DEF1NE will permanently modify the function being
timed, be sure to save a copy of the function before running
TIME~DEFINE on it.

-32­

Chapter 3	 COMPUTER EFFICIENCY CONSIDERATIONS

2.	 Functions timed by this procedure are sUbject to certain

constraints:

a.	 Avoid sudden exits (e.g. ~O) and insure that the function
always exits through its bottom Clast line);

b.	 Avoid branches to absolute or relative line numbers (e.g. ~5

or ~DLC-l or ~NEXTL) if your implementation of APL does not
support statement separators, since TIME~DEFINE will change
the line numbers.

The mainframe implementation of APL*PLUS provides a system function
DMF (monitor facility) which enables you to time the individual lines
of a function in much the same way as the utility functions above.
If you use a mainframe APL*PLUS system, you should read the
documentation to learn how to use DMF and its companion utility
functions.

PROBLEM:	 What factors influence the efficiency of a user-defined APL
function?

TOPIC: APL Efficiency Considerations

So far in this chapter we have discussed techniques for timing
segments of APL code. Using these techniques, you can isolate
inefficiencies in existing functions and you can choose between
alternate algorithms. But how can you learn to write efficient APL
functions	 in the first place?

You can develop a feel for the efficiencies and inefficiencies of APL.

If you were to go on a timing rampage and time every stitch of APL
code in sight, some patterns would begin to emerge. You would begin
to anticipate the relative speeds of algorithms without timing them.
More important, you would find yourself formulating a mental model of
the inner workings of the computer. MUltiplication is more painful
to the computer than addition and exponentiation more painful than
mUltiplication. out of sympathy for the machine, you will find
yourself writing N+N instead of 2xN, and AxA instead of A*2.

While there is no sUbstitute for such an encounter, below are some of
the efficiency considerations which you may want to assimilate.

-33­

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

1. Addition (e.g. A+-2) is faster than subtraction (e.g. A-2) which
is faster than mUltiplication which is faster than division which is
faster than exponentiation which is faster than doing it by hand.
For example, (X\Np2) will typically be faster than (2*lN).

2. Integers are easier Cquicker) to manipulate than fractional
(floating point) numbers. An array of integers will generally be
stored internally in a more compact form (2 or 4 bytes per element)
than an array of floating point numbers (8 bytes per element).
Integers can be moved about (e.g. ¢, t, [], /) quicker than floating
point numbers and can be more easily operated on computationally
(e.g. +, x , T, I).

3. Boolean arrays (alIOs and ls) are stored as bits Cone-eighth byte
per element) in many implementations of APL. On such
implementations, operations involving Boolean arrays are either
lightening fast or quicksand slow depending upon the implementation.
If they are fast, it is because the bits are being manipulated one
byte (8 bits) or so at a time or because the CPU is optimized for
Boolean operations. If they are slow, it is because each bit has to
be yanked from its byte and processed by a CPU which is better suited
to working with 4, 8, 16, 32 or 64 bits at a time. Examples of
functions so influenced include: AI, v\, +.A, I, ~\.

4. Elements of arrays are stored internally in raveled order. If you
picture in your mind's eye this internal "vector" representation of a
matrix M, you should appreciate the reason that +/M is somewhat
faster then +~M. If M is a Boolean matrix (in which each element
occupies one-eighth byte) the difference can be dramatic.

5. Execute (~) is slower than branching because its argument must be
parsed. For example:

is slower than:

-+CI::s99)pL1

ME15;]+--A+B

Ll:

6. The workspace may be viewed as a chain of bytes. In a clear
workspace, all of the bytes are "clean" (unused). As you execute
expressions (e.g. A~2 or B~l50 or C~A+B), the bytes become occupied
by variables. When variables are reassigned (e.g. A+--l+A), the old
value of the variable is left as so much garbage. The same fate
befalls temporary results which are the products of multiple
expressions. For example, the expression A~3+2Xt5 produces the
temporary results from t5 and from 2Xl5. As you proceed, the

-34­

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

workspace becomes cluttered with a mixture of active variables and
functions and garbage (unused) variables and functions. The symbol
table is used to keep track of the locations of the active objects.

Eventually, the computer will be asked to perform a function for
which it cannot find sufficient clean space for the result. At that
moment, the CPU will take a break from its APL function execution
chores and will perform spring cleaning. All of the valid objects
are shuffled back to the beginning of the workspace chain, the symbol
table is updated and the remaining bytes are swept clean, ready to be
reused. The CPU then resumes its APL function execution chores.

It is because of these occasional workspace cleanups that you may
notice seemingly random peaks when doing timings. Logic which
requires a lot of temporary storage will tend to be less efficient
than that which requires less storage. For example, index assignment
tends to be more efficient than catenation reassignment:

LOOP:VEC[I]~CRUNCH I
vs.

LOOP:VEC~VEC,CRUNCH I

Consider the storage requirements of the second expression when
constructing VEe to be 1000 elements, one element at a time. For
example, the catenate C,) function must find space for its 932
element result while the 931 element VEe still exists. Of course, a
moment later the 932 element vector is assigned the name VEe and the
931 element vector is left to smolder in the ashes. On the other
hand, the index assignment approach creates a 1000 element vector
just once and then changes individual elements. Much less data
shuffling is involved.

7. Shape Cp) and reshape Cp) are the most primitive of primitives.
The rank and shape of a variable are included as part of its internal
representation. The shape function does not have to count its
elements; it simply extracts the shape directly. Shape and reshape
are extremely fast. For example, ~BpL is faster than ~B/L or ~BiL.

Also 9 IppMAT is faster than lipMAT. To construct a 100 by 100
identity matrix (all zeros, but ones along the diagonal) 9 the
expression (llOO)O.=llOO may seem simple enough to you but that's
because you do not have to perform the 10 9 0 0 0 mindless comparisons.
The less intuitive expression 100 lOOpl,lOOpO is dramatically faster
because of its use of reshape.

8. When performing scalar operations, time consumption can be
measured with a ruler. Because APL is interpretive, it does not
check for syntax errors, value errors or argument conformability
until it executes the expression. When working with scalars, the
time consumed making these checks tends to dwarf the time consumed
performing the desired function. Therefore, when considering the
efficiency of APL expressions dealing with scalars 9 it is more

-35­

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

pertinent to count the number of functions being executed than to
dwell on the nature of the functions. Consider the expression:

R[I-l]~R[I-l]+(1+T[I-l])+R[I-l]xG[I-l]*2

If we count the functions being performed (counting index assignment
as 2 functions), the result is 16. Let us rewrite the expression
(assuming T1~1+T):

J~I-l

R[J]~R[J]-Tl[J]+R[J]XG[J]*2

These expressions have the same effect as the original expression but
involve 12 functions instead of 16. We can expect these expressions
to run approximately 25% faster.

Let us label the approximate time consumed when performing a function
on scalars a "tad". Then the original expression used 16 tads and
the second used 12 tads.

It is important to develop the proper perspective on tads. APL is an
efficient language and performs tads extremely quickly. A tad is a
miniscule unit of time. APL can perform a hundred tads in a blink of
the eye. Tads do not become important until you write functions
which consume thousands or tens of thousands of tads. i.e. when you
loop.

The lesson here is to avoid looping when APL's array handling
capabilities can be effectively employed. Your avoidance should not
develop into a mania, however. Looping in APL is fast if there are
not too many iterations (say, two dozen) or if the number of tads
within the loop is not too large. Do what you can to keep the tads
from getting into the tens or hundre~s of thousands.

9. Get to know the peculiarities of your APL implementation. For
example, say you have a 100,000 element Boolean vector BV which
contains only five 15. Further, say you have only 1000 bytes of
available workspace. Many implementations of APL will allow you to
execute the expression I~BV/lpBV without producing a WS FULL error
message. How can this be when lpBV results in an integer vector of
100,000 elements (400,000 bytes or so)?

In one set of implementations, the APL interpreter is clever enough
to construe the two symbols Il as a single function. Therefore thet

monadic t is never executed. Instead, the It ttfunction" scans its
Boolean left argument for 15 and returns their indices. In these
implementations, it is ironic to find a section of ttoptimized" code
like the following:

I+-lpA

IA+-A/I

IB~B/I

-36­

Chapter 3 COMPUTER EFFICIENCY CONSIDERATIONS

The more conventional expressions will typically be much more
efficient since they employ /1 as a single function and do not
require as much workspace:

IA+-A/1pA
IB~B/lpB

In a second set of implementations, the result of monadic 1 is an
arithmetic progression vector and is stored internally as a "J
vector". Specifically the computer stores only the vector's length,
its starting value and its value-to-value increment. When executing
the expression I~BV/lpBV, the compression (/) function works with its
"J" vector right argument without ever building the entire index
vector.

Expressions like 2xlO+l1000 are extremely fast on APL systems which
use J vectors. In this expression, a single addition and a single
multiplication are performed to generate the 1000 element J vector
result.

If you do not know whether your APL system employs J vectors, try
V+-l1E9. If no WS FULL message is generated, you have J vectors.

10. Use "compiled" functions when available. Some vendors of APL
provide workspaces of utility functions which are written in machine
code rather than in APL. These functions are extremely fast and
behave like regular APL utility functions. They may be copied into
or erased from your workspace and they can have arguments and
results. Take some time to explore available workspaces of utility
functions.

In addition, much research has been conducted toward compiling APL
code. For example, STSC provides a product used in conjunction with
its mainframe APL*PLUS System product which can be used to compile
selected APL functions to improve their execution speed. The
compiling process requires a good deal of both programmer and
computer time but can produce dramatic efficiency improvements when
applied to bottleneck functions which consume a large portion of the
processing time of an application system.

Some APL systems and some related software products allow you to run
non-APL programs from within the APL environment. For example, if
you have available a program written in another language (say, C or
COBOL) which is very efficient and which performs a desired task, you
may be able to invoke the program without ever leaving the APL
workspace environment.

A final caveat. This list of computer efficiency considerations can
create a distorted perspective. Your primary goal as an APL
programmer is not to write APL functions which run fast. Your goal

-37­

Chapter 3	 COMPUTER EFFICIENCY CONSIDERATIONS

is to get the job done. If getting the job done means writing faster
functions, then keep the above efficiency considerations in mind.

In any case, you should also keep in mind these nonefficiency
considerations:

1. Your time is more valuable than the computer's. If you find
yourself laboring to find a faster algorithm, ask yourself, "Why?"
Will the savings in computer time result in a more responsive system
which is less frustrating to use and which saves people time? will
the efficiency improvements result in lower computer allocation
charges or lower timesharing bills? If you cannot foresee material
benefits from your efforts, you are wasting your time.

In general, when writing a function which will perform a one-time
task, forget efficiency. Use the code which flows most rapidly from
your mind. Get the job done.

2. A readable function is better than a fast one. It is a crime
against nature to insert fast, obscure, uncommented code in a
production application. Any algorithm which can be understood can be
adequately commented. If you do not have the inclination to insert
the comments, then do not use the code. By taking a moment to
include comments with your efficient algorithm, you will write code
which is both fast and readable. Remember, in six months the person
who cannot understand your code may be you.

PROBLEMS:	 (Solutions on pages 327 to 329)

1.	 write a niladic function COST which will produce a display like

the following:

13.15 DOLLARS CONSUMED
65.12 DOLLARS SINCE SIGNON

The first line of the display will not appear the first time COST
is run and will thereafter display the dollars consumed since the
prior execution of COST. Assume your CPU charge is 75 cents per
unit of DAI[2J.

-38­

Chapter 3	 COMPUTER EFFICIENCY CONSIDERATIONS

2.	 write the TIMER function described in this chapter to work with
the canonical representation method of local function definition.

3.	 In the Sorting and Searching chapter, a function CMIOTA is
presented for searching through the rows of pne character matrix
for the location of the rows of a second. The function is
designed to use one of two different algorithms depending upon
the number of rows in its arguments. Time CMIOTA (as defined in
that chapter) for character matrix arguments of 10, 50, 100, 500
and 1000 rows (12 columns) in all combinations (e.g. 50 row left
argument and 100 row right argument). Then, change the line

L2:~CF~1)pL4

to

L2:~(F1l)pL5

and do all the timings again. The first set of timings uses a
sorting algorithm and the second set uses a looping algorithm.
Record these numbers. They are required by a problem in the
Curve Fitting chapter which determines the constants to be
plugged into CMIOTA for automatically choosing the fastest
algorithm.

construct your character matrices such that the rows of your left
argument are distinct (or nearly so) and the rows of your right
argument are found throughout the left argument. For example:

L~50 12pDAV[?CSox12)p256J (50 row left argument)
R~L[?100p1ppL] (100 row right argument)

-39­

Chapter 4

POSITIONING CHARACTER DATA

Many problems in APL involve the realignment of characters. For
example, the title of a report may need to be centered above the body
of the report; or a character vector entered by the user may need to
have any extraneous blanks deleted from it. In this chapter, we
discuss techniques for positioning the nonblank character elements of
an array for a variety of different applications.

PROBLEM: write the monadic functions DLB, DTB and DEB for deleting
leading, trailing and extraneous blanks from a specified
character vector.

TOPIC: Removing Extra Blanks from Character Vectors

The DLB f DTB and DEB functions are frequently used when accepting
character input or when generating report output. For example, say
you have a character matrix MONTHS of month names, left justified, an
integer scalar MNO of the current month C1 to 12) and an integer
scalar YR of the current year Ce.g. 1987). You want to construct a
character vector of the current month and year (e.g. 'JUNE 1987').
The following expression will perform the task:

CDTB MONTHS[MNO;]),' , ,~YR

Say you want to build a 30 column character matrix NAMES of employee
names by prompting for one name at a time. You want each name to be
left-justified in the matrix and to contain no extra spaces between
the segments of the name. Use the following expression:

NAMES~NAMES,[1]30iDEB,~

-40­

Chapter 4	 POSITIONING CHARACTER DATA

The following functions will perform the desired tasks. Notice that
alternative algorithms are included in each function. The relative
speed of each of the algorithms depends upon the implementation of
APL you use. You may want to time them (as discussed in the Computer
Efficiency Considerations chapter) to determine which is fastest for
your APL environment.

[WSID: FORMAT]
v R~DLB C

[1] A Deletes leading blanks from character vector c.
[2] R~(v\C;i' ')/C
[3] A R+-(+/A\C=' ')J,C
[4] A R+-(((C:;t' ')tl)-DIO).J,C

v

[WSID: FORMAT]
v R+-DTB C

[1] A Deletes trailing blanks from character vee C.
[2] R+-(+ / v \' ';t<l>C) pC
[3] A R+-(<I>v\' , ~<t>C) / C
[4] A R~(-+/A\' '=<I>C)J,C

[5] R R~(DIO-C' '¢<1>C)tl)J,C
[6]	 A R+--(l-CC=' ,)l.l)J,C

V

[WSID: FORMAT]
V R+-DEB C;N

[1] R Deletes extraneous (leading, trailing,
[2] R contiguous) blanks from character vector C.
[3] N~C;t"

[4] R~(~ltN)~(NV1~N,O)/C

[5] A
[6] R C+-' " C
[7] R N~c;t' ,
[8J R R~lJ,CNvl$N)/C

v

-41­

Chapter 4	 POSITIONING CHARACTER DATA

PROBLEM:	 write the monadic functions LJUST, CJUST and RJUST for
left-justifying, centering and right-justifying the
nonblank text within a specified character vector or matrix.

TOPIC: Justifying Nonblank Segments within Character Arrays

The LJUST, CJUST and RJUST functions are useful for constructing
report titles and for merging character matrices. For example, to
display ACME INC. centered within a width of 75 characters, use the
following expression:

CJUST 75t'ACME INC.'

As another illustration, say you have two 15 column character
matrices of left-justified names, LNAMES and FNAMES. You would like
to construct a 32 column character matrix of left-justified names in
which the names of LNAMES precede the names of FNAMES and are
separated by a comma and a single space (e.g. SMITH, JOHN). Use the
following expression:

LJUST(RJUST LNAMES),',',' ',FNAMES

The	 following are the definitions of these functions:

[WSrD: FORMAT]
V R+-IJUST C

[1]	 R+-(+/A\C=")<I>C

V

[WSrD: FORMAT]
V R+-RJUST C

[1] R+-(+ / v \' ,)t<!>C) <l>C

v

[WSID: FORMAT]
V R+-CJUST C;B

[1] B+-C="
[2] R+-(r((+/A\B)-+/A\~B)+2)~C

v

-42­

Chapter 4 POSITIONING CHARACTER DATA

PROBLEM: Given a 20 column character matrix of employee names (in
alphabetical order), construct an 80 column matrix of the
names such that the names run down the resulting matrix in
4 "columns". The resulting matrix will have one-fourth (or
so) as many rows as the original matrix has.

TOPIC: Restructuring Skinny Matrices into Fat Ones

Let's illustrate this problem on a simple character matrix of first
names.

ANNE
BILL
CAL
DOT
ED
FRED
GAIL ANNE FRED KEN RICK
HAL BILL GAIL LISA VI
IKE CAL HAL MIKE
JOAN DOT IKE NED
KEN ED JOAN PAT
LISA
MIKE
NED
PAT
RICK

VI

In this illustration, the initial matrix has 7 columns instead of the
specified 20 and the resulting matrix has 28 columns instead of 80.
still, you can see what we want to do. We will solve the problem for
this simple 7 column matrix and then modify the solution to work for
the specified 20 column matrix.

The brute-force approach to this problem involves breaking the matrix
apart into 4 pieces and then sticking them together side-by-side.
Assume the name of the character matrix is CMAT. The number of rows
in the desired result is computed as:

NR~r(ltpCMAT)+4

NR is 5 in our illustration.

The pieces can be extracted by using the take (i) and drop (!)
functions:

Pl~(NR97)tCMAT

P2~(NR,7)t(NR90)!CMAT

P3~(NR,7)t((2XNR),O)~CMAT

P4~(NRt7)t((3XNR),O)~CMAT

-43­

Chapter 4 POSITIONING CHARACTER DATA

In our illustration, P2 is:

FRED

GAIL

HAL

IKE

JOAN

Notice that the last expression pads P4 at the bottom with blank rows
if there are fewer than 4xNR rows in CMAT. The last step catenates
the 4 pieces together:

Rf-Pl,P2,P3,P4

A more elegant solution to this problem involves the use of dyadic
transpose. We begin by padding CMAT so that its number of rows is
divisible by 4:

NR~r(ltpcMAT)+4

CMAT~((4XNR),7)tCMAT

Second, reshape the matrix into a 3 dimensional array:

CMAT~(4,NR,7)pCMAT

In our illustration, CMAT is now:

ANNE

BILL

CAL

DOT

ED

FRED

GAIL

HAL

IKE

JOAN

KEN
LISA
MIKE
NED
PAT

RICK

VI

-44­

Chapter 4 POSITIONING CHARACTER DATA

Notice that each of the planes in CMAT corresponds to one of the
"columns" of names in the desired result.

Third, use dyadic transpose to shuffle the planes and rows so that
the shape changes from C4,NR,7) to CNR,4,7). Since the first
coordinate (4) becomes the 2nd coordinate, the next CNR) becomes the
1st and the last (7) remains the 3rd, use 2 1 3 as the left argument
(or 1 0 2 in origin 0):

CMAT~2 1 3~CMAT

In our illustration, CMAT is now:

ANNE

FRED

KEN

RICK

BILL

GAIL

LISA

VI

CAL

HAL

MIKE

DOT

IKE

NED

ED

JOAN

PAT

By performing this transpose, the characters of the array cif
raveled) are in the same order as those in the desired result Cif
raveled) .

Finally, reshape the array into the desired two-dimensional result:

R+-CNR,28)pCMAT

The final solution for the 20 column problem is:

NR+-rCltpcMAT)+4
R+-CNR,80Jp2 1 3~C4,NR,20JpCC4XNRJ,20)tCMAT

-45­

Chapter 4	 POSITIONING CHARACTER DATA

The dyadic transpose approach is generally more efficient than the
brute-force approach. Its work is performed primarily by the
relatively efficient reshape and transpose functions. The
brute-force approach makes heavy use of the less efficient take, drop
and catenate functions.

PROBLEM:	 write a function TITLES which will return a character
matrix of titles which will be displayed at the top of a
report. The left argument is an integer scalar of the
width of the resulting character matrix (i.e. the width of
the report). The right argument is a delimited character
vector Ce.g. 'nOPERATING STATEMENTnDEC. 31, 1987n($OOO' 'S)')
whose "partitions" each begin with one of the delimiters
c Cleft-justify), n (center) or ~ (right-justify). The
result has one row per partition. Each partition is
justified within the row according to the delimiter. For
example:

HDG~50 TITLES'~PAGE InOPERATING STATEMENTn1987c($OOOs)'
HOG

PAGE 1
OPERATING STATEMENT

1987
($OOOs)

TOPIC: Delimited Character Vector to Justified Matrix

Let us define the header of the TITLES function:

V R~WID TITLES CS

We will use origin 0 throughout:

DIO~O

Determine	 which elements of CS are justification symbols:

JUST~'cn~'lCS

BJUST~JUST<3

BJUST is a Boolean vector with 18 corresponding to justification
symbols.

-46­

Chapter 4 POSITIONING CHARACTER DATA

JUST~BJUST/JUST

NROWS~pJUST

JUST is an integer vector with one element per justification symbol
and whose values indicate which symbol CO: left; 1: center; 2:
right). NROWS is the number of titles (delimiters). Determine the
length (LEN) of each delimited partition (i.e. each title), excluding
the justification symbol:

T~BJUST/lpBJUST

LEN~(l!T,pBJUST)-T+l

Reduce (truncate) those lengths which exceed the specified width WID:

LEN~WIDLLEN

Determine the indices into CS of the characters which start each
title (i.e. the character after the justification symbol):

ARGSTART~l+T

Determine the number of leading blanks required per title to justify
it (left, center or right) within the matrix result:

LEAD~(JUST~O)xl(WID-LEN)+l+JUST=l

Determine the indices into the raveled matrix result of the
characters which start each title:

RESSTART~LEAD+WIDxlNROWS

Initialize the result to have the correct number of characters but to
be all-blank and raveled:

R~(NROWSXWID)p' ,

All that remains is to extract the titles from CD (we know the
starting positions, ARGSTART, and the lengths, LEN, of each title),
insert them into R (we know the starting positions, RESSTART, and the
lengths, LEN) and then reshape R to the proper shape. If there was
but one title, we could do the following:

R[RESSTART+tLEN]~CS[ARGSTART+1LEN]

Unfortunately, monadic ~ will only work with a one element argument.
Imagine an enhanced monadic 1 function which exhibits the following
vector behavior:

l5 2 4
01234 010 123 (remember: 010=0)

-47­

Chapter 4	 POSITIONING CHARACTER DATA

Let us assume a function MONIOTA which will work with vectors as
above. Then we can finish the function:

R[(LEN/RESSTART)+MONIOTA LEN]~CS[(LEN/ARGSTART)+MONIOTALEN]
R~(NROWS,WID)pR

The	 definition of the MONIOTA function we need follows:

[WSID: UTILITY]
'V R~MONIOTA LEN

[1] A Performs: (~LEN[1]),(~LEN[2]),(tLEN[3]),...
[2] A In APL2: Rf-Et··LEN
[3] R~LEN/--l~O,+\LEN

[4]	 R~R+tpR

V

As an exercise, you should reread the TITLES logic above to see what
happens when some of the partitions are empty (e.g. 80 TITLES
'nBALANCE SHEETnnnDEC. 31n').

Finally, let us redefine the TITLES function slightly to allow it to
function as a typical character "vector to matrix" converter. Such a
function takes a delimited character vector argument and converts it
to a character matrix with one row per partition and with as few
columns as possible (equal to the length of the longest partition).
The rows of such a matrix result are usually left-justified (padded
to the right). We will redefine the left argument of TITLES to be
either the width of the resulting matrix or an empty vector if the
width is to be automatically determined as the length of the longest
partition.

To implement this enhancement, we need only precede the line,
LEN~WIDlLEN, by the following:

WID+-ltwID,r/LEN

Now	 the TITLES function may be used in the following way:

" TITLES 'cREDcORANGEcYELLOWcGREENcBLUE'
RED
ORANGE
YELLOW
GREEN
BLUE

(The APL purist may prefer to express the empty vector left argument
to TITLES as an empty numeric vector such as OpO rather then the
empty character vector". In that way, the WID,r/LEN operation does
not engender a conceptual domain error from the catenation of
character and numeric data. However, since most implementations of
APL "forgive" the catenation of character and numeric datatypes when
one of the arguments is empty, this preference is academic.)

-48­

Chapter 4	 POSITIONING CHARACTER DATA

The completed TITLES function is listed below.

[WSID: FORMAT]
v R~WID TITLES CS;DIO;ARGSTART;BJUST;JUST;LEAD;LEN;NROWS

;RESSTART;T
[1] R Creates report titles from text cs within page
[2] A width WID. CS is delimited by 'cn~' indicating
[3] R left, center, right justification respectively.
[4] OIO~O

[5] R O:left; 1:center; 2:right; 3:not a delimiter:
[6] BJUST~3>JUST~'cn~'lCS~,CS

[7] A Select just delimiters; determine no. titles:
[8J NROWS~pJUST~BJUST/JUST

[9] R Title lengths:
[10] T~BJUST/lpBJUST

[11] LEN~(1!T,pBJUST)-T+1

[12] R Set WIn as largest title length if empty WID
[13] R provided; truncate titles to specified width:
[14] LEN~LENLWID~1twID,r/LEN

[15] R Index of char following each delimiter:
[16] ARGSTART~l+T

[17] R Leading blanks per title, to justify:
[18] LEAD~(JUST10)xL(WID-LEN)+1+JUST=1

[19] RInd in raveled result where each segm. starts:
[20] RESSTART~LEAD+WIDxlNROWS

[21] R Blank, raveled result:
[22] R~(NROWSXWID)p' ,
[23] R T~MONIOTA LEN:
[24] T~T+lpT~LEN/--1~O,+\LEN

[25] R[T+LEN/RESSTART]~CS[T+LEN/ARGSTART]

[26] R~(NROWS,WID)pR

V

PROBLEMS:	 (Solutions on pages 330 to 333)

1.	 Given a character vector TEXT which contains embedded newline
characters (carriage returns) and given the scalar NL which is
the newline character, what expression will return the first line
of text Cup to, but not including, the first newline)?

-49­

Chapter 4	 POSITIONING CHARACTER DATA

2.	 Given a character vector CODE, find all occurrences of the string
'/l'. Return a bit vector which has the same length as CODE,
with a 1 in each element which corresponds to the 'I' in a 'It'
pair. All other elements are zero.

3.	 write a dyadic function CENTER which returns a character vector
whose length is specified by the left argument and in which the
character vector right argument is centered. For example:

pD~50 CENTER 'ACME'

ACME

50

Test your function on each of the following:

50 CENTER 'ACME'

49 CENTER 'ACME'

3 CENTER 'ACME'

11	 CENTER 'A'

4.	 Suppose you have a dyadic function COLFMT which formats a numeric
matrix into a character matrix. Its right argument NMAT is the
numeric matrix to be formatted and its left argument CTL is an
integer vector with one element per column of NMAT. The integers
indicate the number of decimal places, for each numeric column,
to be displayed in the character matrix result CMAT. Each number
is formatted in a width of <width> characters (e.g. 10), where
<width> is an integer scalar global variable. For example:

pD~3 o 1 COLFMT 4 3pl12
1.000 2 3.0
4.000 5 6.0
7.000 8 9.0

10.000 11 12.0

4 30

write a function ROWFMT which has the same syntax as COLFMT
except the elements of its left argument correspond to the rows
of	 the numeric matrix argument rather than to the columns. For
example:

-50­

Chapter 4	 POSITIONING CHARACTER DATA

pD~3 0 1 2 ROWFMT 4 3pl12
1.000	 2.000 3.000

456

7.0 8.0 9.0
10.00 11.00 12.00

4 30

ROWFMT should use COLFMT.

5.	 write a dyadic function COLUMNIZE which will restructure a skinny
matrix into a fat one as described in this chapter. The right
argument of COLUMNIZE, CMAT, is the original skinny character
matrix and the left argument is the number of "columns" of CMAT
across the width of the fat character matrix result. For
example, to solve the problem presented in that section, you
would use:

R~4	 COLUMNIZE CMAT

Allow a 1 or 2 element left argument. If 2 elements, the first
is the number of rows per "page" and the second is the number of
"columns" as discussed above. The result is a 3 dimensional
character array with one plane per page. For example, using the
7 column character matrix illustrated in this chapter:

2 3 COLUMNIZE CMAT

ANNE CAL ED

BILL DOT FRED

GAIL IKE KEN

HAL JOAN LISA

MIKE PAT VI

NED RICK

6.	 write a function HEADINGS which will behave as described below:

SYNTAX: CMAT~WIDS HEADINGS CVEC

DESCRIPTION:

HEADINGS is used to convert a delimited character vector into a
character matrix of column headings whose respective widths are
given by the vector WIDS. Each substring of CVEC is preceded by
a delimiter Cn) and may contain any number of newline delimiters
C~). The newline delimiters therefore separate sub-substrings.
Typically, one width (element of WIDSJ is provided for each

-51­

Chapter 4 POSITIONING CHARACTER DATA

heading (substring). However, if fewer widths are provided, they
are repeated to match the number of headings in CVEC. The
headings are formatted into a character matrix according to the
following procedure: the sub-substrings of each heading are
truncated if necessary to the corresponding width for that
heading; the sub-substrings are padded to the left and right with
spaces to bring each sub-substring up to the width for that
heading; the sub-substrings are catenated together as rows
(centered with respect to one another); a row of underlines
(hyphens) is catenated to the bottom of each heading; the
headings are padded on the top so that each heading has the same
number of rows; the headings are catenated together separating
them by 2 columns of blanks (if there are more elements in WID
than there are headings defined by the right argument, the
remaining elements are used as the numbers of columns of blanks
to be inserted between each of the pairs of headings):

10 13 8 HEADINGS 'nNAMESnHIRE~DATEnAGE~AT~HIRE'

AGE
HIRE AT

NAMES DATE HIRE

10 13 8 4 1 HEADINGS 'nNAMESnHIRE~DATEnAGE~AT~HIRE'

AGE
HIRE AT

NAMES DATE HIRE

Empty sUbstrings in CVEC are displayed without underlines. To
include an all-blank heading which is underlined, insert at least
one blank character in the corresponding sUbstring.

-52­

Chapter 5

SORTING AND SEARCHING

Many applications in the real world deal with lists of things.
In APL those things are typically represented as numbers and the
lists as vectors; or the things are represented as character vectors
(rows) and the lists as matrices. That is, real world lists are
usually represented in APL as numeric vectors or character matrices.

since the most common operations performed on lists include sorting,
searching and selecting, these too are among the most important APL
operations on vectors and matrices. In this chapter, we discuss
primitive and utility APL functions for performing sorting and
searching. In the next chapter, we discuss selecting.

PROBLEM:	 Suppose you have three 1000 element numeric vectors, ENUM
(employee identification number), AGE (employee age) and
OFFICE (office identification number), that these vectors
are in one-to-one correspondence and that each element
corresponds to a single employee. How can you reorder
these three vectors such that they remain in one-to-one
correspondence (i.e. the same index in each vector still
corresponds to a single employee) but are sorted by office,
and within office by age, and within age by employee number?

TOPIC: Major-to-minor Sorting

Sorting in APL is a two-step process: determine the "grade vector"
of the vector to be sorted; and reorder the original vector by
indexing the original vector with the grade vector. Therefore, to
sort a vector SALARY in ascending order, you would employ the
following expression:

SORTEDSAL~SALARY[4SALARY]

-53­

Chapter 5 SORTING AND SEARCHING

The grade-up function (!) returns the grade vector and the indexing
function ([]) reorders the elements. Note that while we have "sorted
SALARY", the variable SALARY remains unsorted (unless we reassign
it: SALARY~SALARY[.SALARY]).

Why does sorting require two steps in APL? Because the grade vector
is required if we are dealing with several corresponding vectors
whose elements must remain in one-to-one correspondence. For
example, if we want to reorder ENUM, AGE and OFFICE such that the
values of ENUM are in ascending order but still have corresponding
elements in AGE and OFFICE, we must do the following:

GRADE~4ENUM

ENUM~ENUM[GRADE]

AGE~AGE[GRADE]

OFFICE~OFFICE[GRADE]

Note that the values of AGE and OFFICE are now not in ascending
order. They have simply been reordered to continue to correspond to
ENUM which is in ascending order.

The sort required in the problem stated above is called a
"me j o r-vto-m.Lnor" sort. It is not possible (usually) to sort all
three variables and to maintain the one-to-one correspondence. Only
one variable can be strictly sorted (the ttmajor" sort variable). The
other variables can at best be sorted within each of the distinct
values of the major variable, since only such reordering will
maintain the sorted order of the major variable's values. The second
variable sorted is said to be "more minor" than the major variable.
The third variable is more minor still and may be sorted only within
each combination of the distinct values of the two more major sort
variables. And so it goes. The last sort variable is called the
"mi.nor'" sort variable.

How do you do a major-to-minor sort in APL? Backwards. Reorder all
the sort variables (to maintain correspondence) by sorting the minor
sort variable. Then reorder them by the next more major variable.
And so on. The last variable sorted will be the major sort variable
and so it will be in strictly sorted order. Since sorting does not
change the relative order of the values which are equal, the effects
of the earlier sorts will be preserved within each of the distinct
values of the major sort variable.

The solution is therefore:

GRADE+-4ENUM
ENUM~ENUM[GRADE]

AGE+-AGE[GRADE]

OFFICE+-OFFICE [GRADE J

GRADE+-4AGE
ENUM~ENUM[GRADE]

AGE+-AGE [GRADE J
OFFICE~OFFICE[GRADEJ

-54­

Chapter 5 SORTING AND SEARCHING

GRADE~40FFICE

ENUM~ENUM[GRADE]

AGE~AGE[GRADE]

OFFICE~OFFICE[GRADE]

If you study this solution, it may strike you that there is much
reordering (indexing) going on needlessly. In particular, rather
than reorder every variable after each grade operation, you can just
reorder the grade vector. Using this approach, the solution becomes:

GRADE~.ENUM

GRADE~GRADE[4AGE[GRADE]]

GRADE~GRADE[.OFFICE[GRADE]]

ENUM~ENUM[GRADE]

AGE~AGE[GRADE]

OFFICE~OFFICE[GRADE]

The processing cost using this latter solution increases linearly as
the number of sort variables increases. Using the former solution,
the processing cost increases exponentially. However, the latter
solution lacks the clarity of the first solution and requires
comments. In fact, the latter solution is sUfficiently unclear that
many APL programmers feel little remorse at jamming the first three
lines together using embedded assignment. That solution is included
here so that you will recognize it, not as an endorsement:

GRADE~GRADE[.OFFICE[GRADE~GRADE[!AGE[GRADE~4ENUM]]]]

ENUM~ENUM[GRADE]

AGE~AGE[GRADE]

OFFICE~OFFICE[GRADE]

Some implementations of APL support numeric matrix right arguments to
grade-up and grade-down. If so, the resulting grade vector is the
result of grading the columns of the matrix (from left to right) as
major-to-minor variables. If your APL implementation supports this
feature, you may solve the above problem with the following
expressions:

GRADE~!OFFICE,AGE,[1.5]ENUM (in origin 1)

ENUM~ENUM[GRADE]

AGE~AGE[GRADE]

OFFICE~OFFICE[GRADE]

-55­

Chapter 5	 SORTING AND SEARCHING

PROBLEM:	 Suppose you have a 1000 row, 8 column character matrix,
CMAT, of part numbers, one per row (e.g. 'AKI0632B'). How
can you construct a 1000 element grade vector which can be
used to reorder the rows of CMAT such that the part numbers
are in ascending (alphabetic) order?

TOPIC: Character Matrix sorting

In the previous problem, all sorting was performed on numbers. When
numbers are sorted up, they are in ascending order. That means
smaller numbers precede bigger numbers. In this problem, we will
sort characters, not numbers. What does that mean? If the
characters are letters of the alphabet, it means that the earlier (in
the alphabet) letters precede the later letters. For characters not
in the alphabet we must decide their relative sorting "magnitude" and
extend the alphabet accordingly. Such an extended alphabet is called
a "collating sequence" and is used as a reference to determine which
characters are bigger or smaller than a given character for sorting
purposes. The following character vector represents a typical
collating sequence.

CS~' .,: ;-/G123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ~D'

A different collating sequence may define a different result when
sorting a given character array. Therefore the collating sequence is
a necessary parameter to the solution of the problem. To solve the
problem, we will define a dyadic function CGRADEUP whose left
argument is the collating sequence, whose right argument is the
character matrix to be sorted and whose result is the desired grade
vector:

V GRADE~CS CGRADEUP CMAT

If the rows of a character matrix are in sorted order, what
characteristics do they have? The characters of the first column are
in strictly ascending order (as defined by the collating sequence).
The characters of the second column are in strictly ascending order
within any distinct character in the first column. The third column
is sorted within distinct combinations of values in the first and
second columns. And so on. In other words, the rows of the matrix
are reordered by using the columns (first to last) as the
major-to-minor sort keys.

Some APL systems have defined primitive dyadic grade-up and
grade-down to solve this problem directly. The left argument of • or
, is the collating sequence. There is no need to define a CGRADEUP
function. The solution to this problem is:

GRADE+-CS4CMAT

-56­

Chapter 5	 SORTING AND SEARCHING

On APL systems for which dyadic grade-up and grade-down are not
implemented, a different approach is required. The most
straightforward converts the character matrix to an integer matrix
with the same shape whose values are the indices into the collating
sequence of the corresponding characters. Then the integer matrix is
sorted in major-to-minor order as done in the previous section.
Since dyadic l is used to convert characters to indices, the
characters in the character matrix which are not in the collating
sequence will translate to 1 greater than the length of the collating
sequence (or to the length of the collating sequence if the index
origin is 0). Therefore, all characters not included in the
collating sequence are treated as if they are at the end of the
collating sequence.

[WSID: SORT]
v GRADE~CS CGRADEUP1 CMAT;I

[1] R Returns grade vector for sorting rows of
[2] R CMAT with collating sequence cs.
[3] R convert characters to indices:
[4] CMAT~CSlCMAT

[5] A Index of last column as a scalar:
[6] I~(pCMAT)[l+DIO]-~DIO

[7] R Return trivial result of no columns:
[8] ~CI~DIO)pLl

[9] GRADE~llppCMAT

[10] ~O

[11] A Grade rightmost Cminor) column:
[12] Ll:GRADE~.CMAT[;I]

[13] A Decrement column index and exit if done:
[14] L2:~(OIO>I~I-1)pO

[15] A Grade next more major column:
[16] GRADE~GRADE[4CMAT[GRADE;I]]

[17]	 ~L2

V

A more sophisticated technique packs several columns together at once
so that fewer applications of grade-up (4) are required. For
example, suppose you have a 9 column character matrix whose indices
into the collating sequence are the following:

3 27 16 9 8 4 15 8 33
31 30 19 9 10 8 24 2 23

2 3 19 16 12 4 19 14 15

By grouping the matrix into 3 groups of 3 columns and by packing each
group into 1 column by respectively multiplying its columns by 10000,
100 and 1 and adding, the result is:

-57­

Chapter 5 SORTING AND SEARCHING

32716 90804 150833
313019 91008 240223

20319 161204 191415

Because of the nature of major-to-minor sorting and because of the
scheme used to pack these numbers 9 you can then determine the grade
vector of this 3 column matrix (third column first) and it will be
the same as that of the 9 column matrix. The approach will probably
be more efficient than the original approach because only 3 grade-up
operations are needed rather than the original 9.

Taking this approach to its logical extreme 9 you may argue to pack
all 9 columns into a single column (vector) of large numbers:

32716090804150833
313019091008240223

20319161204191415

However 9 the computer internally maintains only 16 or 17 digits of
precision on any number. It sees the numbers as:

3271609080415083

3130190910082402

2031916120419141

Therefore, the last digit or two of these large packed numbers are
insignificant to the computer when it is grading the vector and may
produce incorrect grade indices for rows of the character matrix
which are identical except in the last column or two.

So how many characters can be packed together at once? This is a
function not only of the internal precision of your APL
implementation but also of the length of the collating sequence. In
the illustration above, the indices were packed by mUltiplying by
consecutive powers of 100. Smaller powers (say 80) can be used to
result in smaller packed numbers and to allow more columns to be
packed at once. But if the powers used are too smal1 9 the indices
will not always pack to distinct numbers.

For example, if the power 10 is used to pack the numbers 3 2 4 and 3
1 14 9 the results will be the same. This problem arises only if the
range of indices is greater than the power used. Since the range of
indices is one greater than the length of the collating sequence,
that is the power you should use.

The following solution packs as many columns at once and performs as
few grade-up operations as possible.

-58­

Chapter 5 SORTING AND SEARCHING

[WSID: SORT]
v GRADE~CS CGRADEUP2 CMAT;I;COLS;N;P

[1] R Returns grade vector for sorting rows of
[2] A CMAT with collating sequence CS.
[3] ~ convert characters to origin 0 indices:
[4] CMAT~CCStCMAT)-OIO

[5] A Number of columns as a scalar:
[6] If-(pCMAT) [l+DIOJ
[7] A Return trivial result of no columns:
[8] -'CI>O)pLl
[9] GRADE~tlppCMAT

[10] -)0
[11] R Compute max. no. eols. to pack cif 16 digits
[12] A precision):
[13] Ll:COLS~lCP~I+pCS)®IE16

[14] A Number of cols. to pack for first grade:
[15] N~IlCOLS

[16] GRADE~.P~~CMAT[;CI-N)+tN]

[17] A Decrement columns and exit if done:
[18] L2:~C02::I~I-N)pO

[19] A Grade next group of more major cols.:
[20] N~IlCOLS

[21] GRADE~GRADE[.P~~CMAT[GRADE;CI-N)+tN]]

[22] -)L2
v

This solution is an improvement over the prior solution only if the
packing operation is fast relative to the grade operation. The
relative speeds differ among APL implementations and hardware
configurations. You should time the two solutions for your
implementation. Use the fastest, unless you are paid by the hour.

If you are familiar with the issue of comparison tolerance (system
variable OCT) , you are aware that APL systems typically do not
distinguish between values which differ only beyond the 14th Cor so)
significant digit. Yet, here we are packing numbers out to 16
significant digits. We can do this because grade-up c.) and
grade-down Cf) are primitive functions which do not consider
comparison tolerance Cas do =, >, t, E, 1, etc.) If your
implementation of grade-up and grade-down does consider comparison
tolerance, you should modify the above function to localize OCT in
the header and to set OCT~O (full precision) on the first line of the
function.

Finally, APL implementations store small integer numbers more
compactly than large integer numbers. Because of these differences
in internal storage, grade-up is faster on small integers than on
large ones. This difference may be so dramatic that you should pack
fewer columns and do more grade-up operations on the small integer
values. If so, you should change the reference to lE16 in the above
function to 2147483647 or 32767 or whatever your largest integer is
Ci.e. the largest number not stored as an 8 byte floating point
number) •

-59­

Chapter 5 SORTING AND SEARCHING

When working with character matrices which are wide and which have
rows whose values are all significantly different (e.g. names),
another solution to this problem becomes practical. The approach is
to work with the columns in major-to-minor order.

Sort the first column. Compare the sorted characters to their
neighbor (prior and next row) characters. If both neighbor
characters are different, the row is distinct and belongs in its
current (sorted) position. If one or both of its neighbors have the
same value as it has, we must proceed to the second column. Consider
the second column for only the rows whose value is not distinct for
the first column. Sort the second column within the values of the
first column. Compare the sorted characters to its neighbors and
again identify the rows which are still not distinct for the first
two columns. And so on.

Consider each successive column until all rows are known to be
distinct or until you run out of columns. As fewer and fewer
nondistinct rows remain, the grade-up operation will be performed on
shorter and shorter vectors. Since the grade-up operation is quicker
on short vectors than on long ones, this solution can be quite fast
on matrices whose row values are mostly different.

[WSID: SORT]
v GRADE~CS CGRADEUP CMAT;C;F;G;I;M;N;R;ROWS

[1] A Returns grade vector for sorting rows of
[2] A CMAT with collating sequence CS.
[3] R Index of last column as a scalar:
[4] N~(pCMAT)[1+0IO]-~DIO

[5] A Return trivial result of no columns:
[6] ~(N~OIO)pLl

[7] GRADE~llppCMAT

[8] ~o

[9] R Select first column:
[10] Ll:C~CMAT[;I~DIO]

[11] R Convert characters to indices and grade them:
[12] GRADE~.CSlC

[13] R Exit if 1 column or 1 or less rows:
[14] ~((I=N)Vl~lppCMAT)pO

[15] R Sort characters:
[16] C~C[GRADE]

[17] R Flag first of groups of equal values:
[18] F~C~-l~C

[19] R Handle incorrect result if all values equal:
[20] F[OIO]~l

[21] R Flag values still unresolved (i.e. more than
[22] R 1 equal value):
[23] M~FA1~F

[24] R Squeeze down flag-first vector:
[25] F~M/F

[26] R Exit if none left to resolve:
[27] ~(pF)~O

[28] R Indices into GRADE of unresolved values:
[29] ROWS~M/tpM

-60­

Chapter 5	 SORTING AND SEARCHING

V CGRADEUP (continued)
[30] A Indices into CMAT of unresolved values:
[31] LOOP:R~GRADE[ROWS]

[32] A Increment column index:
[33] 1+-1+1
[34] A Select Ith column for unresolved rows:
[35] C~CMAT[R;I]

[36] A Convert and grade characters:
[37] G~.CSlC

[38] A Reorder grade vee to maintain sorted prior columns:
[39] G+-G[4(+\F)[G]]
[40] A Insert reordered grade vee:
[41] GRADE[ROWS]+-R[G]
[42] A Exit if no more columns:
[43] -+(I~N)pO

[44] A Sort characters:
[45] C+-C[GJ
[46] A Flag first, considering prior columns too:
[47] F+-FvC~-l<1>C

[48] A Flag values still unresolved:
[49] M+-FA1<t>F
[50] A Squeeze down flag-first vector:
[51] F+-M/F
[52] A Exit if none left to resolve:
[53] -+(pF)J,O
[54] A Squeeze down unresolved indices into GRADE:
[55] ROWS+-M/ROWS
[56]	 -+LOOP

v

PROBLEM: Sort the following char~cter matrix, SUBJECTS.

Lincoln
troops
liberty
lasting
brothers
Grant
Lee

-61­

Chapter 5 SORTING AND SEARCHING

TOPIC: Uppercase/Lowercase sorting

Since this matrix contains both uppercase and lowercase letters, the
collating sequence must contain both the uppercase and lowercase
alphabets. Let's try catenating them:

CS~' ABCDEF... XYZabcdef ... xyz'
SUBJECTS[CS!SUBJECTS;] (use CGRADEUP if

Grant dyadic! is unavailable)
Lee
Lincoln
brothers
lasting
liberty
troops

No good. Words beginning with the letter L should be together,
whether the L is uppercase or lowercase. Let's try interleaving the
uppercase and lowercase alphabets:

cs~, AaBbCcDcEeFf ... XxYyZz'
SUBJECTS[CS4SUBJECTS;]

brothers
Grant
Lee
Lincoln
lasting
liberty
troops

Not quite. Although words beginning with the letter L are now
together, those beginning with an uppercase L precede those beginning
with a lowercase 1, regardless of the second letter in each word. We
want all Ls to be treated equally, regardless of case.

since equality is our aim, let us promote each lowercase letter to an
uppercase letter and try again. Suppose UPPERCASE is a monadic
function which converts its character array argument to an array of
the same shape and values except each lowercase letter has been
replaced by the corresponding uppercase letter. Then, lowercase
letters can be omitted from the collating sequence. The following
solution does the job.

CS~' ABCDEF... XYZ'
SUBJECTS[CS4UPPERCASE SUBJECTS;]

brothers
Grant
lasting
Lee
liberty
Lincoln
troops

-62­

Chapter 5	 SORTING AND SEARCHING

Notice that the character matrix is converted to uppercase letters
for purposes of grading only. The original mixed case matrix is used
for indexing.

The technique of converting an array to uppercase letters is also
useful for searching through mixed case arrays whenever the uppercase
and lowercase characteristics of letters are to be ignored. For
example, to list the words which begin with "LI":

((UPPERCASE SUBJECTS[;l 2])A.='LI')fSUBJECTS
Lincoln
liberty

The following function will perform the desired translation to
uppercase letters.

[WSID: SORT]
V R~UPPERCASE C;FOUND;IND;LOWER;UPPER

[1] R Converts the lowercase letters in the character
[2] A array C into the corresponding uppercase
[3] A letters. Useful for sorting or searching
[4] A character arrays when the case distinction is
[5] A to be ignored.
[6] LOWER~'abcdefghijklmnopqrstuvwxyz'

[7] UPPER~'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

[8] RE-, C
[9] A Inds of arg in LOWER (l+last ind if not found):
[10] IND~LOWERlR

[11] A Mark those found:
[12] FOUND~IND<DIO+pLOWER

[13] A Insert UPPER elements in place of LOWER ones:
[14] R[FOUND/lpFOUND]~UPPER[FOUND/IND]

[15] R Reshape to original shape:
[16] R~(pC)pR

[17] A
[18] A In APL2, no need to reshape:
[19] A IND~LOWERl,C

[20] R FOUND~IND<DIO+pLOWER

[21] R R~C

[22] R (FOUND/,R)~UPPER[FOUND/IND]

[23] R
[24] A Alternate algorithm...
[25] A construct DAV of only uppercase letters:
[26] R ~AV~DAV

[27] R ~AV[DAVlLOWER]~UPPER

[28] A Perform transl from lower/upper DAV to upper 6AV:
[29]	 R R~6AV[DAVlC]

V

Implementations of APL which provide dyadic grade-up typically also
provide a facility for handling this uppercase/lowercase problem
directly. Specifically, the collating sequence left argument may be

-63­

Chapter 5	 SORTING AND SEARCHING

a matrix which contains both alphabets as two corresponding rows.
For example:

CS~' ABCDEF... XYZ' ,[0.5J' abcdef ... xyz'
SUBJECTS[CS4SUBJECTS;J

brothers
Grant
lasting
Lee
liberty
Lincoln
troops

You should read your documentation for dyadic grade-up to understand
the subtleties of this facility. Given the facility, the UPPERCASE
function is not needed for sorting uppercase/lowercase character
matrices. However, it is still useful for searching through
uppercase/lowercase arrays.

PROBLEM:	 Given the policy numbers of 1000 existing policyholders (as
a 1000 row, 12 column character matrix since the policy
"numbers" may contain letters) and the policy numbers of
600 non-smokers (600 rows, 12 columns), determine the index
of the existing policy (1 to 1000) to which each of the 600
non-smokers corresponds. The resulting integer vector will
have 600 elements. Return the "index" 1001 if the policy
number is not found.

TOPIC: Array Searching

If the two lists of policy numbers were numeric vectors rather than
character matrices, the solution would be trivial. Suppose BASE is
the name of the 1000 element vector of existing policy numbers, VALS
is the name of the 600 element vector of non-smoker policy numbers
and INDS is the desired result. The following expression will solve
the problem:

INDS+-BASEtVALS

(Note that the default comparison tolerance, i.e. OCT, will need to
be reduced to make accurate comparisons between numbers with more
than 14 or so digits.)

-64­

Chapter 5 SORTING AND SEARCHING

In APL implementations which support nested arrays, the dyadic 1

function may be used to solve this problem, even on character
matrices. The first step is to convert the matrix arguments to
nested vector arguments
follows directly:

(e.g. c[2]BASE in APL2). The solution then

INDS~(c[2]BASE)1(C[2]VALS)

INDS~(~[2]BASE)1(~[2]VALS)

INDS~«ol BASE)l«ol VALS)

(in APL2)
'(in APL* PLUS)
(in SHARP APL)

In APL implementations which do not support nested arrays, a more
creative approach is required since the dyadic t function does not
operate as hoped for on character matrix lists.

One effective approach is to convert the character matrix arguments
into numeric vector arguments by converting the columns of characters
into columns of indices and then packing the numbers together by the
techniques of the previous sections. As mentioned there, only a
limited number of characters may be packed into a single number
without losing precision (say 8 to 12 character columns, depending
upon the length of the character vector collating sequence used to
convert the characters to indices). Further, since dyadic t uses
comparison tolerance, the value of OCT should be set to zero to make
comparisons which are as precise as possible.

The following function uses this technique to emulate dyadic t on
character matrices:

[WSID: SEARCH]
V INDS~BASE CMIOTAI VALS;CS;P;DCT

[1] A Returns the row indices of BASE at which the
[2] R rows of VALS first match.
[3] R Set comparison tolerance to maximum precision:
[4] DCT~O

[5] A Determine collating sequence:
[6] CS~((DAV€BASE)vDAVEVALS)/DAV

[7] R Packing factor:
[8] P~l+pCS

[9] R Pack and search:
[10] INDS~(P~(CSt~BASE)-DIO)tP~(CSt~VALS)-DIO

v

Unfortunately, this technique will not work on wide character
matrices. Further in some APL implementations, the decode (~)9

function is slow. Under either of these conditions, another approach
is desired.

Suppose BASE is a numeric vector and VAL is a numeric scalar. How
can we find the index of the first occurrence of VAL in BASE?

BASEtVAL

-65­

Chapter 5 SORTING AND SEARCHING

How can we identify (by bits) all of the occurrences of VAL in BASE?

BASE=VAL

If VALS is a vector, how can we identify (by bits) all of the
occurrences of VALS in BASE?

BASEo.=VALS

If BASE is a character matrix and VAL is a character vector (i.e. one
policy number), how can we identify (by bits) all of the occurrences
of VAL in BASE?

BASEA.=VAL

If VALS is also a character matrix, how can we identify (by bits) all
of the occurrences of VALS in BASE?

BASEA.=~VALS

The information we seek is contained in the Boolean matrix result of
this expression. Specifically, the column index of the first bit in
each row is the index we seek. By using a Boolean scan, we can
extract the indices:

We will modify this algorithm somewhat to replace row-wise (e.g. A\)
functions by the usually faster column-wise (e.g. A\) functions and
to eliminate the not (~) function.

[WSID: SEARCH]
V INDS~BASE CMIOTA2 VALS

[1] A Returns the row indices of BASE at which the
[2] R rows of VALS first match.
[3] INDS~DIO++/A\VALSv.t~BASE

v

This algorithm is an excellent illustration of the power of APL.
Unfortunately, it has some drawbacks. For this example, the result
of the v.t function is a 600 row, 1000 column Boolean matrix (600,000
elements) which might generate a WS FULL error message. Even if it
does work, the function will consume a large amount of CPU time while
making the 600,000 comparisons.

A different approach takes advantage of the speed of sorting
algorithms. The following discussion assumes 010=1.

1. Combine the two arguments via catenation into a 1600 row matrix:

A~BASE,[l]VALS

-66­

Chapter 5 SORTING AND SEARCHING

2. Sort the combined matrix using the CGRADEUP function developed in
a previous section (or using dyadic 4 if available) and using OAV as
the collating sequence:

GRADE~OAV CGRADEUP A

A~A[GRADE;]

By sorting the matrix, like rows are now contiguous.

3. Shift the rows of the matrix down one row and compare:

FLAG is a 1600 element Boolean vector whose 1s flag the first of each
set of contiguous like-valued rows.

4. For each of the 1600 rows, determine the index into the original
unsorted catenated matrix of the first row of each set of contiguous
like-valued rows:

FIRST~(FLAG/GRADE)[+\FLAGJ

The 1600 elements of FIRST correspond to the rows of the sorted
catenated matrix.

5. Reorder the elements so they correspond to the rows of the
unsorted catenated matrix:

INDS'-CpFIRST)pO

INDS[GRADEJ"'FIRST

6. Select only those elements of INDS which correspond to the rows of
VALS (not the rows of BASE):

L'-l1'pBASE
INDS~LJ,INDS

7. Set the elements of INDS which correspond to rows of VALS for
which no matching row was found in BASE to the "not found" index (1
plus the number of rows in BASE):

INDS+--INDSL1+L

This approach is quite efficient for large arguments. However,
because it requires so many steps, other algorithms may be more
efficient for small arguments. In particular, inner product (A.=) is
typically quite fast when one argument is a matrix and the other is a
vector. Therefore for a small (few rows) right argument of CMIOTA,
it may actually be faster to loop on the rows of the right argument
(using A.= to search through the rows of the matrix left argument)
than to employ this catenating, sorting, shifting, comparing
algorithm.

-67­

Chapter 5 SORTING AND SEARCHING

But how small should the right argument to CMIOTA be before we switch
to a looping algorithm? Let us assume the arguments to CMIOTA are L
and R:

I+-L CMIOTA R

The CPU time consumed by the looping algorithm increases linearly
with the number of rows in R (for a constant L) and linearly with the
number of rows in L (for a constant R). Therefore, the CPU time
consumed will be a function of the formula:

CPUL = Cl+(RRxCC2+(C3xRL)))

where CPUL is the amount of CPU time consumed by the looping
algorithm, RR and RL are the number of rows in Rand L respectively,
and Cl, C2 and C3 are constants to be determined.

The CPU time consumed by the sorting algorithm increases linearly
with the sum of the numbers of rows in R and in L. Therefore, the
CPU time consumed will be a function of the formula:

CPUS = C4+(C5xCRR+RL))

where CPUS is the amount of CPU time consumed by the sorting
algorithm and C4 and C5 are constants to be determined.

The values of Cl, C2, C3, C4 and C5 for the formulas above will
depend upon the particular machine and APL implementation. To
determine them for your environment, you must time the two algorithms
for a variety of arguments and then use the techniques of least
squares to find the constants which define the "best" curves to fit
the empirical data. There is a problem at the end of the chapter on
Computer Efficiency Considerations which performs the first task and
a problem at the end of the chapter on Curve Fitting which performs
the second task. Work these problems and plug the derived values
into the CMIOTA function below (in place of Cl, C2, C3, C4, CS).

(The formulas above do not consider the number of columns in the
matrix arguments nor the nature of the data, i.e. whether and where
the values are found. Therefore they are not precise formulas.
However, they will be sufficiently accurate to insure that the best
algorithm is used in all but borderline cases.)

The following CMIOTA function uses the approaches discussed above and
has been extended to handle origin 0 and to treat the trivial cases
(empty or 1-row arguments) separately.

-68­

Chapter 5 SORTING AND SEARCHING

[WSID: SEARCH]

V INDS~BASE CMIOTA VALS;A;F;G;I;L

[1] A Returns the row indices of BASE at which the
[2] A rows of VALS first match.
[3] A Branch if right arg a matrix:
[4] ~(2=ppVALS)pLl

[5] R Handle vec or scalar right arg:
[6] INDS~(BASEA.=VALS)ll

[7] a+O
[8] Ll:L~(pBASE)[DIO]

[9] A+--(pVALS) [010]
[10] ~ Branch unless no rows in either arg:
[11] ~(XF~ALL)pL2

[12] ~ Handle empty arg:
[13] INDS~ApDIO

[14] ~o

[15] R Branch if both args have more than 1 row:
[16] L2:-+(F;f1)pL4
[17] R Branch unless left arg has 1 row:
[18] a+(Lt1)pL3
[19] A Handle 1 row left arg:
[20] INDS~DIO+VALSV.~9BASE

[21] ~o

[22] R Handle 1 row right arg:
[23] L3:INDS~9(BASEA.=9VALS)ll

[24] ~o

[25] R Branch if sort alg. costs more than looping alg.:
[26] R (remove A after replacing C1 9C2 9C3 9C4 by
[27] R computed constants):
[28] L4: A-+((C4+C5 XL+A»C1+AxC2+C3 XL)pL5
[29] A Combine args. and sort (like values together)
[30] A (use CGRADEUP if dyadic. unavailable):
[31] G~DAV4A~BASE9[DIO]VALS

[32] A~A[G;]

[33] R Flag 1st of distinct rows by shifting and comparing:
[34] F,-v/A~-leA

[35] A Insure 1st elt is 1 (in case all rows the same):
[36] F[OIO]~l

[37] R Indices of 1st distinct rows:
[38] I+-F/G
[39] A Replicate for each like row:
[40] F[OIO]+-DIO
[41] I~I[+\F]

[42] R Unsort indices (to catenated order):
[43] INDS+-I
[44] INDS[G]+-I
[45] A Keep those corresponding to right arg:
[46] INDS+-LJ.INDS
[47] A Set 'not found' inds to 'one greater':
[48] INDS~INDSlL+OIO

[49] ~o

[50] R Use looping algorithm if more efficient:
[51] L5:INDS~ApO

[52] L+-CApL6),0

-69­

Chapter 5	 SORTING AND SEARCHING

V CMIOTA (continued)
[53] I~DIO

[54] L6:INDS[I]~(BASEA.=VALS[I;])ll

[55] ~L[I~I+1]

V

PROBLEM:	 Suppose you have a 1000 element vector of ages. You wish
to group the ages into the 10 ranges: 0 to 9, 10 to 19, 20
to 24, 25 to 29, 30 to 34, 35 to 39, 40 to 49, 50 to 59, 60
to 64, 65 and up. What approach would you take to translate
these 1000 ages into 1000 corresponding range indices (i.e.
numbers between 1 and 10)?

TOPIC: Range searching

Suppose the 1000 element vector of ages is named AGES. Let us define
a 10 element vector LOWER of the lower limits for the specified
ranges:

LOWER~O 10 20 25 30 35 40 50 60 65

We need to compare each element of AGES to each element of LOWER and
to determine the index into LOWER of the last element which is less
than or equal to the element of AGES. outer product may be used to
solve this directly:

INDS~+/AGESo.~LOWER

This expression is simple and powerful but suffers from the malady of
all outer product solutions. Since every element of the left
argument is being compared to every element of the right argument,
the number of comparisons increases exponentially as the lengths of
the two arguments increase linearly. Hence, the solution is slow and
expensive when performed on two long vectors.

A more efficient (for long arguments) algorithm can be developed
using the same sorting technique employed in the prior section.

1. Combine the two arguments and determine the grade vector:

A~LOWER,AGES

GRADE~.A

-70­

Chapter 5	 SORTING AND SEARCHING

2. Rather than reorder the elements of the catenated array, reorder
the elements of an array of Is and Os where the Is mark elements of
LOWER and the Os mark elements of AGES:

FLAG~CCpA)tCpLOWER)pl)[GRADEJ

3. Determine the index into LOWER of each element of the sorted
catenated array:

FIRST~+\FLAG

4. The elements of FIRST correspond to the elements of the sorted
catenated array. Reorder the elements so they correspond to the
elements of the unsorted catenated array:

INDS+-CpFIRST)pO
INDS[GRADEJ~FIRST

5. Select only those elements of INDS which correspond to the
elements of AGES Cnot the elements of LOWER):

INDS~CpLOWER)tINDS

The following function LIOTA uses this approach but is extended to
handle origin 0 and to return 1 greater than the largest index if the
corresponding value is less than the smallest lower limit. The left
argument is assumed to be in ascending order.

[WSID: SEARCH]
V INDS+-LOWER LIOTA VALS;A;F;G;I;L

[lJ A Returns the indices of LOWER at which the
[2 J R elements of VALS first match or exceed.
[3J ~ Branch unless right argument empty:
[4] ~CxpVALS)pLl

[5] INDS~lO

[6] ~O

[7J A Combine arguments and sort:

[8J Ll:G~.A~LOWER,VALS

[9] R Flag elements from LOWER in sorted array:
[10] L~pLOWER

[11] F+-C CpA)tLpl) [GJ
[12] R Determine indices into LOWER Corigin dependent):
[13] F[DIO]~F[DIO]-~DIO

[14] I+-+\F
[15] A Unsort indices cto catenated order):
[16] INDS+-I

[17J INDS[G]+-I

[18] R Keep those corresponding to right argument:
[19] INDS~L!INDS

[20] A Set 'not found' indices to 'one greater':
[21]	 INDS[CINDS=DIO-l)/lpINDS]~L+DIO

V

-71­

Chapter 5 SORTING AND SEARCHING

The solutions presented here are oriented around lower limits of
ranges (in ascending order). If upper limits are considered (e.g.
UPPER~9 19 24 29 34 39 49 59 64 99), the solutions must be modified
accordingly:

Lower limits (ascending): +/AGESo.~LOWER

or: LOWER LIOTA AGES

Upper limits (ascending): l++/AGESo.>UPPER

or: UPPER UlOTA AGES

Lower limits (descending): l++/AGESo.<LOWER

Upper limits (descending): +/AGESo.~UPPER

The following function UIOTA works like LIOTA but requires a vector
left argument of range upper limits in ascending order.

[WSID: SEARCH]
v INDS~UPPER UIOTA VALS;A;F;G;I;L

[1] A Returns the indices of UPPER at which the
[2] R elements of VALS last match or are less than.
[3] A Branch unless right argument empty:
[4] -+(xpVALSJpL1
[5] INDS+-tO
[6] ~o

[7] R Combine arguments and sort:

[8J Ll:G+-4A~VALS,UPPER

[9] R Flag elements from UPPER in sorted array:
[10] L+-pUPPER
[11] Ff-o ((- pA) r Lp 1) [G]
[12] R Determine indices into UPPER (origin dependent):
[13] I+-+\-IJ,OIO,F
[14] A Unsort indices (to catenated order):
[15] INDS+-I
[16] INDS[G]+-I
[17] R Keep those corresponding to right argument:
[18] INDS+-(pVALS)pINDS

v

You should be aware that the LIOTA and UIOTA functions may not
produce correct results when operating on floating point numeric
vectors whose values are approximately equal (within comparison
tolerance) to elements in the lower limit or upper limit vector.
This aberration occurs because the grade-up (4) function used in
LIOTA and UIOTA does not consider comparison tolerance when sorting.
Thus, two numbers which would be treated as equal by the relational
functions (say ~ or » are treated as distinctly different numbers by
grade-up. If this is a likely problem for a particular application,
you should use the appropriate outer product solution.

Let's consider an alternate algorithm for solving this range
searching problem. The algorithm involves "ranking vectors". The

-72­

Chapter 5 SORTING AND SEARCHING

ranking vector of a vector V is computed via .!V and indicates the
relative magnitudes of the values of V. The smallest value in V is
assigned the index 1 (in origin 1), the second smallest the index 2,
the third 3 and so on. For example,

••15 5 10 15 20

31245

Notice that in the event of ties, the earlier values receive the
lower rankings. In this example, the first 15 is ranked 3rd and the
next is ranked 4th.

Consider what happens to the rankings of these values when more
values are catenated to the vector. For example,

••15 5 10 15 20,13 17

4125736

Notice that the corresponding rankings (4 1 2 5 7) have increased by
the number of catenated values which are less than the respective
values.

4 1 2 5 7-3 1 2 4 5

10012

That is, no catenated values are less than the 5 or 10; one catenated
value (13) is less than the two 15s; and two catenated values (13 17)
are less than the 20.

Consider what happens when some of the catenated values are equal to
values in the original vector. For example, catenating 13 15 instead
of 13 17:

••15 5 10 15 20,13 15

4125736

We get the same result. However, notice what happens when the
catenated values are placed at the front of the vector:

••13 15,15 5 10 15 20

3451267

5 1 2 6 7-3 1 2 4 5

2 002 2

The result now indicates the number of catenated values which are
less than or equal to each value, not just less than.

Given this behavior, the LIOTA and UIOTA algorithms follow directly:

LIOTA: INDS~(CpLOWER)~.4LOWER,AGES)-••AGES

UIOTA: INDS~I+((pAGES)t ••AGES,UPPER)- ••AGES

-73­

Chapter 5 SORTING AND SEARCHING

These algorithms produce correct results for origin 1. The LIOTA
algorithm returns 0 (instead of l+pLOWER) for values of AGES which
are less than the smallest value in LOWER. The two functions listed
below, LIOTAI and UIOTA1, work like the LIOTA and UIOTA functions
above but use these ranking vector algorithms. The algorithms have
been modified to work correctly in either origin and to return the
correct "not found" value COIO+pLOWER).

Further, a more efficient method for computing the ranking vector is
employed. When sorting a grade vector, traditional sorting logic is
not needed. Index assignment will suffice. The following four sets
of expressions generate equivalent results:

G~4V G~.V G~.V

R+-4.G R~(pV)pO R~G

R[G]~lpG R[G]~lpG

The last set of expressions is the most efficient. since it is not
as clear as the first expression, it should include a comment:

A R~.4V :
R~G+-4V

R[G]~lpG

using this technique, the LIOTAl and UIOTAl functions each perform
only two grade-up operations instead of four. However, the LIOTA and
UIOTA functions above each perform only one grade-up operation and so
will typically be the faster functions. Time them in your APL
implementation.

[WSID: SEARCH]
V INDS~LOWER LIOTAI VALS;G;L;R;S

[1] R Returns the indices of LOWER at which the
[2] R elements of VALS first match or exceed.
[3] L+-pLOWER
[4] A R~ ••VALS
[5] R+-G~.VALS

[6] R[G]~lpG

[7] R S~4.LOWER,VALS

[8J S~G~.LOWER,VALS

[9] S[G]~lpG

[10] A Origin 1 indices:
[11] INDS+-CL~S)-R

[12] R Set 'not found' indices to 'one greater':
[13] INDS[(INDS=O)/lpINDS]~L+l

[14] A Change from origin 1 to origin 0 if needed:
[15] ~DIOpO

[16] INDS+-INDS-l
V

-74­

Chapter 5	 SORTING AND SEARCHING

[WSID: SEARCH]
v INDS~UPPER UIOTA1 VALS;G;R;S

[1] R Returns the indices of UPPER at which the
[2] R elements of VALS last match or are less than.
[3] A R~44VALS

[4] R+-G+-4VALS
[5] R[G]+-lpG
[6] A S~44VALS,UPPER

[7] S~G+-"'VALS,UPPER

[8] S[G]+-tpG
[9] R Origin 0 indices:
[10] INDS~CCpVALS)pS)-R

[11] R Change from origin 0 to origin 1 if needed:
[12] -+OIOJ,O
[13] INDS+-INDS+1

V

PROBLEM:	 write a function named aSS (string search) which will
locate every occurrence of a character vector substring
(right argument) in a character vector Cleft argument).
The result is a Boolean vector of the same length as the
left argument whose 1s flag the indices at which each match
begins. For example:

'THIS IS A TEST' ~ss 'IS'
o 0 1 0 0	 100 0 0 0 0 0 0

TOPIC: Character SUbstring Searching

Some APL implementations have primitive functions which solve this
problem directly:

APL*PLUS:

V BIT~CVEC ~SS SUB
[1] BIT~CVEC OSS SUB

V

-75­

Chapter 5	 SORTING AND SEARCHING

APL2:

V BIT~CVEC ~SS SUB
[1] BIT~SUB~CVEC

v

If such a primitive function is unavailable to you, you must work a
little to get the desired result:

[WSID: SEARCH]
V BIT~CVEC ~SS SUB;C;S

[1] A Returns bit vector of length (peVEC) with Is
[2] R flagging starts of substrings which match SUB.
[3] C~pCVEC

[4] S~p,SUB

[5] BIT~Ct(-S)tSUBA.=(S,C+XC)pCVEC

V

PROBLEM:	 write functions REPLACE and BY which will replace all
occurrences of a character vector substring in a character
vector by a second sUbstring. For example:

'THIS IS A TEST' REPLACE 'IS' BY 'ARE'
THARE ARE A TEST

Use the function ~ss defined in the prior section.

TOPIC: Character SUbstring Replacement

The BY function is used simply as a syntactic convenience to provide
three arguments to the REPLACE function. One approach is to assign
the right argument to a global variable (say <by» and to return the
left argument as the explicit result.

[WSID: SEARCH]
V R~A BY B

[1] R Used in conjunction with REPLACE as:
[2] A
[3] R 'THIS IS A TEST' REPLACE 'IS' BY 'ARE'
[4] R
[5] by~B

[6] R~A

V

-76­

Chapter 5	 SORTING AND SEARCHING

The REPLACE function will generate a result by analyzing its two
arguments and its third global "argument" <by>. When done, REPLACE
erases <by> so that it will not be left global.

The	 approach taken by REPLACE is the following:

1. Use ~SS to find the occurrences of the old substring in the
character vector. Convert the bits to indices.

2. Create a replication vector Ci.e. left argument to /) which can be
used to both squeeze out the old sUbstring and to allow room for the
new sUbstring. Perform the replication on the character vector.

3. Since the length of the character vector has changed Cunless the
new substring has the same length as the old sUbstring) 9 adjust the
indices computed in step 1 to point to where the new substrings must
be inserted.

4. Insert the new sUbstrings.

[WSID: SEARCH]
V NVEC~OVEC REPLACE SUB;BIT;IND;NHITS;REP;SIZE;DIO

[1] R Replaces all occurrences of SUB in aVEC by <by> Cset
[2] R in BY), erases <by> and returns the modified aVEC.
[3] R Requires subfn ~SS (or DSS or s).
[4] R The logic is a bit simpler using origin 0:
[5] OIO~O

[6] R Locate the starts of the old sUbstring:
[7] BIT~OVEC ~SS SUB
[8] A Convert the bits to indices:
[9] NHITS~pIND~BIT/lpBIT

[10] R Initialize replication vector as 1s:
[11] REP~CpBIT)p1

[12] R Insert Os where old substrings are:
[13] REP[INDo.+lp,SUB]~O

[14] R Insert new sUbstring length where new substrings
[15] A will begin:
[16] REP[IND]~SIZE~P9by

[17] R Squeeze and expand aVEC with replicate:
[18] NVEC~REP/aVEC

[19] R Adjust old indices to get new indices:
[20] IND~IND+(SIZE-P9SUB)XlNHITS

[21] A Insert new substrings:
[22] NVEC[INDo.+lSIZE]~CNHITS9SIZE)pby

[23] R Erase <by>:
[24]	 BIT~DEX 'by'

V

-77­

Chapter 5	 SORTING AND SEARCHING

PROBLEMS:	 (Solutions on pages 334 to 336)

1.	 Given a 3 column integer matrix PNUM of telephone numbers (area

code, phone number, extension, e.g. 213 5550123 1234), how can

you sort the numbers in ascending order?

2.	 Modify the CMIOTA function described in this chapter to define a
function IOTA which works on numeric vector arguments instead of
character matrix arguments. Test it in your APL implementation.
Which is faster, IOTA or dyadic l (see Computer Efficiency
Considerations chapter)? What is the consequence of the
dependence of dyadic t on OCT (comparison tolerance) and the
independence of • on OCT?

3.	 Given a 3 column integer matrix PNUM of telephone numbers (area

code, phone number, extension) and a 3 element integer vector P

which represents a particular telephone number, determine the

index of the first row of PNUM in which P is located.

4.	 Using the LIOTA function developed in this chapter, determine in
which salary grouping each of the elements of the vector SALARY
belong. The groupings are: (1) 1000 to 9999; (2) 10,000 to
19,999; (3) 50,000 to 69,999; (4) 100,000 and up. Return the
index 5 for elements of SALARY in none of these groupings.

5.	 Using the ASS function developed in this chapter, write a monadic
function DEB which will delete extraneous (leading, trailing or
contiguous) blanks from its argument and will return the
compressed result. For example:

DEB' TOO MANY SPACES.

TOO MANY SPACES.

6.	 In a numeric vector NVEC, the value -1 represents "unknown".
Display NVEC, showing each occurrence of -1 as the characters
'N/A' (not applicable).

-78­

Chapter 5	 SORTING AND SEARCHING

7.	 Suppose you have a 25 column character matrix of employee names,
ENAMES. Each row contains one name, left-justified. The names
contain both uppercase and lowercase letters. Display the names
which contain the string "son" anywhere in the name.

-79­

Chapter 6

SELECTING

This chapter deals with the task of data selection in APL.
Selection is the process of extracting elements from an APL array.
The reverse process, replacing the values of elements within an
array, or selection assignment, is also considered. Finally, a
special selection task is covered: the task of selecting those
values in an array which are unique (or distinct).

PROBLEM:	 Given a three element vector NVEC, what APL expression will
return the first two elements? What expression will
replace these elements in NVEC by the values 10 and 20?

TOPIC: Selection and Selection Assignment

There are	 basically 3 selection techniques available in APL.

1. Indexing. Use indexing ([]) when you know the positions within
the array of the elements to be selected. For example (in origin 1):

NVEC[l 2]

2. Take/drop. Use take CtJ or drop (!) or both when the elements to
be selected are contiguous, especially at the start or end of the
array. For example:

2fNVEC
-l~NVEC

-80­

Chapter 6 SELECTING

3. compression. Use compression (/) when you have a corresponding
Boolean compression vector whose ones flag elements to be selected.
For example:

1 1 O/NVEC

Typically, the compression vector is the result of a relational or
logical expression which defines some criteria by which elements are
to be selected.

Though there are 3 selection techniques, the only selection
assignment technique available in APL is index assignment. For
example:

NVEC[l 2]~10 20

If the nature of the selection assignment problem is oriented more
toward take/drop or compression logic, you must convert the selection
values to indices so that you may use index assignment. For example:

NVEC[2tlpNVEC]~10 20
NVEC[-ltlpNVEC]~10 20
NVEC[l 1 0/lpNVEC]~10 20

It is because of this need to convert to indices when performing
selection assignment that the APL idioms lp and /lp are so common.

In APL2, the APL language has been extended to allow direct selection
assignment without first converting to indices. For example:

NVEC[l 2]~10 20
(2tNVEC)~10 20
C-l~NVEC)~lO 20
(1 1 O/NVEC)~lO 20

In fact, fairly complex selection assignment expressions are
permitted. The expression,

(3pl~~NVEC)~10

is equivalent to:

NVEC[3plt~lpNVEC]~10

The enhancement, when not abused, is a welcome extension to the
language.

-81­

Chapter 6	 SELECTING

PROBLEM:	 Suppose you have constructed a matrix DEPN of annual
depreciation rates to be used for assets which have
depreciable lives of 20 years. DEPN has 20 rows and 12
columns. DEPN[Y;MJ is the fraction of the asset to be
depreciated in the Yth year of its life for an asset
purchased in month M (1 for January, 2 for February, and so
on). Suppose YEAR is a 1000 element vector of the ages (1
to 20) of 1000 assets and MONTH is a 1000 element vector of
the months of purchase (1 to 12) for the corresponding
assets. Determine the annual depreciation rates for these
assets.

TOPIC: Scattered Point Indexing

A common mistake made when solving this problem is to try the
following:

DEPN[YEAR;MONTHJ

This expression shows nicely what you want to do but unfortunately
does not do it. The shape of the result of matrix indexing is the
catenation of the shape of the row indices with the shape of the
column indices. Since YEAR has shape 1000 and MONTH has shape 1000,
the result has shape 1000 1000. These 1,000,000 elements are the
rates for every combination of the elements of YEAR and the elements
of MONTH.

If you can picture this 1000 by 1000 element matrix in your mind's
eye, you can see that the desired rates are sitting on the diagonal.
The other rates are superfluous. If you have experimented much with
dyadic transpose (~), you know that it can return the diagonal
elements of a matrix argument by providing a left argument of 1 1 (in
origin 1). Therefore, a correct expression to solve this problem is:

1 1 ~DEPN[YEAR;MONTH]

Unfortunately, this expression requires room in your workspace for
the temporary 1000 by 1000 table. This may cause a WS FULL error.
Even if available workspace is not a problem, the extraction of
1,000,000 rates when you need only 1000 is extremely inefficient.

An alternate approach to this problem is to view DEPN as a vector.
The vector has 240 elements and is derived by raveling the matrix
DEPN. Our job is to pack the vectors YEAR and MONTH into a single
vector of indices into the raveled DEPN. The desired indices may be
computed by the expression,

MONTH+12XYEAR-l

-82­

Chapter 6 SELECTING

Thus, the desired result may be computed from the expression,

C,DEPN)[MONTH+12xYEAR-1J

This type of problem is called a "scattered point indexing" problem
because the desired elements to be selected from the matrix are
scattered throughout it. Normal matrix indexing CMAT[ROWS;COLS]) is
useful only when the elements to be selected are in a rectangular

pattern.

Let us state the scattered point indexing solution in general terms:

(,MATRIX)[COLUMNINDEX+NUMCOLSXROWINDEX-IJ

For a 3-dimensional array, the solution is:

(,ARRAY)[COLUMNINDEX+(NUMCOLSXROWINDEX-l)+(NUMCOLSxNUMROWS)x
PLANEINDEX-IJ

or:

C,ARRAY)[COLUMNINDEX+NUMCOLSXCROWINDEX-l)+NUMROWSx
PLANEINDEX-IJ

When performing scattered point indexing in origin 0 (DIO~O), the
"-1" portions of the above expressions disappear:

Matrix (origin 0):

(,MATRIX)[COLUMNINDEX+NUMCOLSXROWINDEXJ

3-D array (origin 0):

(,ARRAY)[COLUMNINDEX+NUMCOLSXROWINDEX+NUMROWSXPLANEINDEX]

For this reason, scattered point indexing is frequently done in
origin o.

-83­

Chapter 6	 SELECTING

PROBLEM:	 What algorithm may be used to return the unique values CUN)
from a numeric vector CNV)? The unique values CUC) from a
character vector CCV)?

TOPIC: Unique CDistinct) Values

Determination of the unique, or distinct, values is a common problem
in the world of data processing. For example, given 1000 sales
transactions which each include the salesperson number, you may want
to compile a list of the numbers of the salespeople who had sales.
If only 60 salespeople accounted for all 1000 sales, you would want
to determine the numbers of those 60 salespeople. (You might also
want to know the number of sales and the total dollar value of the
sales attributed to each salesperson. These topics are covered in
the next chapter.)

To illustrate the algorithms discussed in this section, we will use
the following vectors:

NV

30 20 20 30 10 50 10 10

CV

BOOKKEEPER

Our task is to return the vectors UN and UC:

UN
30 20 10 50

UC

BOKEPR

since the problem of determining distinct values can be viewed as a
searching problem, the most obvious algorithm uses the APL searching
primitive, dyadic t. Consider the result when you search the
elements of a distinct vector for its own elements:

8 9 7 15 t 8 9 7 15

1 2 3 4

However, if the elements are not distinct, the pattern of the result
is not so regular:

NVtNV

12215 655

In fact, wherever the result deviates from the vector of generated
indices (tpNVJ, the corresponding element is a repeat value, i.e. has
occurred earlier in the vector. To flag the distinct values then:

CNVtNVJ=tpNV

110 0 110 0

-84­

Chapter 6 SELECTING

And to select the distinct values:

D~UN~((NVlNV)=tpNV)/NV * Algorithm 1 *
30 20 10 50

Notice that this algorithm returns the distinct values in the same
order as they first appear in the target vector. This algorithm also
works on character vectors:

(CCVtCV)=tpCV)/CV
BOKEPR

since this algorithm depends upon the behavior of dyadic 1, it may
also be used with functions which emulate dyadic t. For example, if
your task is to determine the distinct rows in the character matrix
NAMES, you may do so with the following expression (given CMIOTA from
the previous chapter):

(CNAMES CMIOTA NAMES)=tlppNAMES)fNAMES

When using this algorithm on a large vector (say, 2000 or more
elements), the dyadic 1 portion of the algorithm may require a
significant amount of processing time. A more efficient algorithm
may be constructed which uses the (typically very efficient) grade-up
c.) primitive function.

Sort the vector:

D~SORTED~NV[4NV]

10 10 10 20 20 30 30 50

Shift the elements of the sorted vector to the right and compare to
the sorted vector to flag the first distinct value in each run of
like values:

-l~SORTED

50 10 10 10 20 20 30 30
O~FIRST~SORTED~-l~SORTED

10010 1 a 1

Unfortunately, if the values in the vector SORTED are all the same,
the vector FIRST will be all zeros. Yet the first value of FIRST
should be 1. The following expression will set the first (in either
origin) element to 1, and will have no effect if FIRST is an empty
vector:

FIRST[lXpFIRST]~l

Finally, select the first distinct value in each run:

D~UN~FIRST/SORTED

10 20 30 50

-85­

Chapter 6 SELECTING

Notice that this algorithm returns the distinct values in ascending
order (descending if , is used). The entire algorithm follows:

SORTED~NV[!NV] * Algorithm 2 *
FIRST~SORTED1-1~SORTED

FIRST[lXpFIRST]~l

UN~FIRST/SORTED

The algorithm works on character vectors once you manage to sort the
characters. If your implementation of APL supports dyadic grade-up,
you may replace the first statement by:

SORTED~CV[DAV4CV]

If it does not, you may replace the first statement by:

SORTED~CV[.OAVtCV]

As with numeric vectors, the distinct elements in the final result
are in ascending order (where DAV, the atomic vector, defines the
collating sequence).

You may determine the distinct rows (UNAMES) of a character matrix
(NAMES) using this algorithm if you are able to sort the matrix. If
your implementation of APL supports dyadic grade-up, do the following:

SORTED~NAMES[OAV.NAMES;]

FIRST~V/SORTED~-leSORTED

FIRST[XtpFIRST]~l

UNAMES~FIRSTfSORTED

If your implementation does not support dyadic grade-up, use the
CGRADEUP function developed in the previous chapter.

The expression CV[40AVtCV] in the statement above suggests another
algorithm for determining the distinct elements of a character
vector. Consider the meaning of the expression CVtDAV, or better
still, the expression DAVecv. The result of the latter expression is
a 256 element Boolean vector that flags the elements of DAV which are
in ev. since the elements of OAV are distinct by definition, the
remaining step is to use the Boolean vector to select the
corresponding elements from DAV. The complete algorithm:

UC~(DAVECV)/OAV * Algorithm 3 *

Like algorithm 2, this algorithm returns the distinct values in
ascending order (according to DAV). In some implementations of APL,
E is extremely fast on character data. In others, it is not. If
not, use algorithm 1 or 2.

Extending this algorithm to numeric (or at least integer) data will
produce ridiculous expressions like:

UN~((llE30)€NV)/tlE30

-86­

Chapter 6 SELECTING

which will hopefully generate a WS FULL error message rather than run
into the next century. When we stop to consider the philosophy of
the algorithm rather than its implementation, however, a very clever
algorithm emerges.

The philosophy is to consider the nature of the values in NV. The
expression above assumes that all elements of NV are integers between
1 and lE30 (origin 1). A more realistic problem would have the
values between, say, 1 and 100. Let us view these values as indices
rather than numbers and use them as such. Initialize a Boolean
vector to have 100 zeros:

BIT~lOOpO

Use the numeric (index) vector to index assign 1s into the Boolean
vector:

BIT[NV]~l

Duplicates in NV are essentially discarded. The final step is
similar to the final step in algorithm 3:

UN~BIT/tl00

Notice that this algorithm returns the distinct values in ascending
order, that it works only on positive integers COlO and up), that the
maximum value (MAX) must be known and not too large Celse WS FULL on
MAXpO). This algorithm is extremely fast on vectors of any size and
for any APL implementation. The entire algorithm follows:

BIT~CMAX+~DIO)pO * Algorithm 4 *
BIT[NV]~l

UN~BIT/lpBIT

-87­

Chapter 6	 SELECTING

PROBLEM:	 For each of the unique-value algorithms presented in the
last section, what additional logic must be included to
also return the indices (INDS) of the numeric vector CNV)
or character vector CCV) into the vector of distinct values
CUN or UC)? For example, suppose NV and UN have the
following values:

NV
30 20 20 30 10 50 10 10

UN
30 20 10 50

The desired value if INDS is:

INDS
1 2 2 1 3 4 3 3

TOPIC: Translating Distinct Values to Distinct Indices

The obvious solution to this problem is:

1NDS+-UNtNV or INDS+-UCtCV

These indices are useful when performing frequency counts or
accumulations. These topics are covered in the next chapter.

While obvious, the dyadic t approach may not be the most efficient
technique for computing these indices, depending upon the
unique-value algorithm being used.

In the case of Algorithm 1, a dyadic t is already being performed so
there is no need to do it again. Instead:

UN~(B~(I~NVtNV)=lpNV)/NV * Algorithm 1 *

INDS+-CB\lpUN) [I]

or: INDS+-(+\B)[I]-~OIO

The expansion in the second statement or the cumulative sum in the
third are typically more efficient than another dyadic t.

In the case of Algorithm 2, the grade-up operation removes the need
to perform dyadic t. Instead:

SORTED+-NV[G~4NVJ * Algorithm 2 *
FIRST~SORTED~-l~SORTED

FIRST[tXpFIRST]~l

UN+-FIRST/SORTED
FIRST[tXpFIRST]~DIO

INDS+-(pFIRSTJpO

1NDS[G]+-+\FIRST

-88­

Chapter 6	 SELECTING

The fifth statement sets the first element of FIRST to 1 or 0
depending upon the index origin. The statement is needed only if you
may be working in origin 0 since the first element of FIRST will
already be 1 Cunless FIRST is empty). The plus scan C+\) and
indexing operations in the last statement are typically more
efficient than another dyadic 1. The last two statements are
required to "unsort·· the indices so that they are in the order of the
elements of NV rather than of SORTED. A simpler, though less
efficient, statement may be used in place of the last two statements:

INDS~C+\FIRST)[.G]

In the case of Algorithm 3, there is no way to avoid the dyadic 1.
So:

UC~CDAVECV)/DAV * Algorithm 3 *
INDS~UC1CV

In the case of Algorithm 4, there is no need to do the dyadic 1 for
the same reason there is no need to do any searching when determining
the distinct values:

BIT+-CMAX+,,-,DIO)pO * Algorithm 4 *
BIT[NV]+-l
UN+-BIT/1pBIT
INDS~(BIT\lpUN)[NV]

PROBLEMS:	 (Solutions on pages 337 to 339)

1.	 What APL expression will select every other element (1st, 3rd,

5th, ...) of a vector V which has an even number of elements?

2.	 What APL expression will return a vector of the elements on the

diagonal of the square matrix M?

3.	 What APL expression will return the Nth column of the matrix M as
a vector, where N is the value of the last element of the vector
V?

-89­

Chapter 6	 SELECTING

4.	 In a character matrix NAMES of passenger names, the last names
precede the first names and are separated from them by a slash
C/). What APL expressionCs) will replace the slashes with commas
(,) ?

5.	 As an actuary, you need to determine the mortality rates for a
set of 500 policyholders. You have a 3 dimensional ttselect and
u l.tLmat;e " table of mortality rates named RATES. RATES has shape
2 100 16. The first dimension is sex Cfemale, male). The second
dimension is issue age CO to 99). The third dimension is
duration from issue co to 15 years). You have three 500 element
vectors: SEX, IAGE, DUR. The elements of these vectors are in
I-to-l correspondence with the 500 policyholders. SEX indicates
the policyholder's sex CO=female; 1=male). IAGE indicates the
issue age CO to 99). DUR indicates duration from issue co to 15
years) .

A.	 Construct the 500 element vector MRATES of the mortality rates
for these 500 policyholders.

B.	 Suppose some of the durations from issue (elements of DUR)
exceed 15. For these policies, use duration 15 Cthe
"uLt.Lmatie " duration) but increase the issue age by the amount
that the duration exceeds 15. Construct MRATES.

c.	 Suppose you receive a memo which informs you that 40 of the
elements in RATES are incorrect and must be modified. From
the information in the memo, you construct 4 vectors of length
40: NEWRATES, the correct rates; NEWSEX, the sexes for the
new rates; NEWIAGE, the issue ages for the new rates; NEWDUR,
the durations for the new rates. Insert the new rates into
RATES.

6.	 write the monadic function UNQNV which returns the distinct
elements of its numeric vector argument. write UNQCV to return
the distinct elements of its character vector argument. write
UNQCM to return the distinct rows of its character matrix
argument.

write the dyadic functions UNQIl and UNQIO which return the
distinct elements of their index vector right arguments Corigin 1
or	 0 indices respectively). The left argument of UNQll or UNQIO
is	 a scalar of the number of possible indices. For example, a
left argument of 5 for UNQIO implies that all indices in the
right argument are elements of the set 0 1 2 3 4.

In addition to the distinct values, each function should compute
the indices of the right argument values into the resulting

-90­

Chapter 6 SELECTING

distinct values. Assign the indices to the global variable
<ind>. Place lamps (R) in front of the lines which compute <ind>
so that the indices are not computed unless the lamps are removed.

-91­

Chapter 7

FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

The often used APL expression +/A adds up the elements of the
array A in such a way that one of the dimensions of A is eliminated,
or "reduced". If A is a 1000 element vector, the result is a scalar
whose one element is the sum of the 1000 elements of A. Typically,
the elements of a vector represent measurements or counts of
respective real world items. Then, the result of the expression +/A
represents the sum of the measurements or counts for all items.

Frequently in the business world, we tend to categorize items rather
than lump them together. For example, 1000 sales transactions may be
categorized by retail outlet or by salesperson or by product or by
day, and so on. In such an environment, we may want to "reduce" the
1000 element vector of invoice amounts into 10 sums (say, by
salesperson) rather than into just a single grand total. Such a
problem has traditionally been called an "accumulation" problem in
APL. Naturally, to solve such a problem, we need a corresponding
1000 element vector whose values indicate the salesperson responsible
for each transaction (e.g. salesperson number). Such a vector is
called a "classification" vector.

By analyzing the classification vector alone, we can answer questions
such as, "For how many transactions was each salesperson
responsible?" Such a problem has been called a "frequency count"
problem in APL.

If a second classification vector is available which represents, say,
day of the week of the sale, we may want to look at sales broken down
(i.e. added up) by both salesperson and day of the week. In this
case, we want to reduce the 1000 element vector of invoice amounts
into a 10 (salesperson) by 7 (days of the week) matrix. Such a
problem has been called a "cross-tabulation" problem in APL.

To avoid ambiguity from existing terminology, we present the
following terminology and definition:

-92­

------ ----- -------- ------ -------

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

"n-way plus reduction on dimension d of array A by
classification 1, classification 2, ... , and classification n"

The summarization of array A across dimension d such that
dimension d is replaced by n new dimensions whose magnitudes
are the number of classes defined for the corresponding
classifications 1, 2, ... , n.

Let us try this terminology on an example. Suppose you have
information on 1000 life insurance policies. A subset of the
information is listed below:

Issue Underwriting
Age Sex Class Death Annual

[0 to 99] [M, FJ [S,A,B,C,DJ Benefit Premium
CrAGE) (SEX) (UCLASS) (DBEN) CAPREM)

36 M C 150 130
27 M S 100 75
42 F S 80 85
50 M B 100 210

The names rAGE, SEX, UCLASS, DBEN and APREM represent the names of
the APL variables containing the corresponding data. Each variable
is a 1000 element vector. SEX and UCLASS are character vectors and
the rest are numeric vectors. Here are a few of the plus reductions
that can be performed on these data:

1. The O-way plus reduction of APREM. This is simply +/APREM.

2. The 1-way plus reduction of APREM by SEX. This is the 2 element
vector (+/CSEX='M')/APREM),C+/CSEX='F')/APREM).

3. The 3-way plus reduction of DBEN by AGE, SEX and UCLASS. This is
a 100 Cages) by 2 (sexes) by 5 (underwriting classes) array whose
elements contain the sums of the elements of DBEN for each
combination of AGE, SEX and UCLASS. Notice that the result
coincidentally has 1000 elements, the same number of elements as
DBEN, the vector being "reduced". The number of elements has not
been reduced at all. In fact, if another classification were added,
the result would contain more elements than the vector being
reduced. Most of the elements of the result will be o. The data
will have become so finely classified that each "cell" Ci.e.
combination of classes) in the result contains at best a few policies.

4. The 1-way plus reduction of 1 (or CpSEX)pl) by SEX. This is the
frequency count by sex: (+/SEX='M'),(+/SEX='F').

-93­

Chapter 7 FREQUENCY COUNTS 9 ACCUMULATIONS AND CROSS-TABULATIONS

5. The 2-way plus reduction on dimension 1 of DBEN,[1.5JAPREM by AGE
and UCLASS. This is a 100 (ages) by 5 (underwriting classes) by 2
(columns ... the dimension not reduced) array whose elements contain
the sum of the elements of DBEN (column 1) and APREM (column 2) for
each combination of age and underwriting class.

PROBLEM:	 What is the frequency count (or 1-way plus reduction of 1)
by issue age (IAGE) for the above insurance policies? Call
the result F. Accumulate (or I-way plus reduce) APREM by
the same ages. Call the result A.

TOPIC: One-Way Plus Reductions

Let us solve this problem first by using the classical APL approach,
which is simple but ignores efficiency considerations. The distinct
issue ages can be determined by using an algorithm discussed in the
previous chapter:

DIA~((IAGElIAGE)=lpIAGE)/IAGE

Next 9 use outer product to compare the vector of issue ages to the
vector of distinct issue ages:

M~DIAo.=IAGE

The result is a Boolean matrix with one row per distinct issue age
(say 40) and one column per policy (say 1000). Each column has
exactly one 1 9 marking the distinct age (row) to which that policy
(column) corresponds. The frequency count by distinct issue age
follows directly:

F~+/M

and the accumulation of APREM by distinct issue age is not far behind:

A~M+.xAPREM

The dimensions of M (say 40 by 1000) and APREM (say 1000) conform
along their inner coordinates allowing the matrix multiplication
(+.x) which reduces the inner coordinates (1000) and returns a vector
with the same number of elements as M has rows (40).

This approach is simple. However 9 it is inefficient and is prone to
WS FULL errors. Its inefficiencies stem from the many needless

-94­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

comparisons and computations which take place in the 0.= and +.x
functions. Its WS FULL tendencies are caused by the potentially
gigantic result of the outer product (0.=).

A more efficient approach uses the sort-and-shift techniques employed
in the previous chapter. Begin by sorting the ages in ascending
order (retaining the grade vector):

GRADE~.IAGE

SORTED~IAGE[GRADE]

Shift the elements of the sorted vector to the left and compare to
the sorted vector to flag the last distinct value in each run of like
values:

LAST~SORTED11~SORTED

Unfortunately, if the values in the vector SORTED are all the same,
the vector LAST will be all zeros. Yet the last value of LAST should
be 1. To avoid this problem, you may instead use an odd expression
like the following (which assumes that no policyholder has issue age
-99):

LAST~SORTED11!SORTED,-99

sometimes, using an arbitrary number such as -99 is not feasible.
Perhaps the vector could contain any conceivable value. The
following alternate expressions will set the last (in either origin)
element to 1, and will have no effect if SORTED is an empty vector:

LAST~SORTED11~SORTED

LAST[(-l+pLAST)+tXpLAST]~l

Select the last distinct value in each run:

DIA~LAST/SORTED

You may have noticed that we determined the distinct values
differently than in the previous chapter. There, we constructed a
bit vector FIRST which flagged the first 1 of each run of like
values; here, we constructed a bit vector LAST which flagged the last
1 of each run. The reason for this minor change of algorithm is that
LAST is more useful for determining the I-way plus reductions.
Consider the meaning of the expression:

CUM~LAST/tpLAST

CUM has one element per distinct issue age. The values are the
cumulative frequency counts (in origin 1). If we can undo the
cumulative effect, we will have the frequency counts. Cumulative
sums are undone by taking the first differences:

F~CUM-(pCUM)pO,CUM

-95­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

To accumulate APREM, we use the same approach. Reorder APREM to be
in I-to-l correspondence with the sorted issue ages (SORTED);
determine the cumulative sum; select the last element for each run:

CUM~LAST/+\APREM[GRADE]

Compute the first differences to get the desired result:

A~CUM-(pCUM)pO,CUM

This algorithm is extremely efficient, especially on large vectors.
As vectors get larger, the required processing time generally
increases linearly for this grade-up (4) based algorithm; but it
increases exponentially for the outer product (0.=) based algorithm.

This algorithm works just as well on character classification vectors
(e.g. UCLASS or SEX) as it does on numeric classification vectors
Ce.g. IAGE). Just begin by converting the characters to indices.
For example:

GRADE~4'SABCD'lUCLASS

or

GRADE~'SABCD'4UCLASS

Use the latter expression if your implementation of APL supports
dyadic grade-up, and the former expression if it does not.

PROBLEM:	 Generate a 3 by 10 by 2 by 5 array CSMRY) which summarizes
Cor 3-way plus reduces) the above insurance policies by
age, sex and underwriting class. The definition of SMRY
follows:

SMRY[l;;;] Total death benefits

SMRY[2;;;] Total annual premiums

SMRY[3;;;] Frequency count (number of policies)

SMRY[;I;;] Age group I (1 is 0-9; 2 is 10-19; ... ,

10 is 90-99)

SMRY[;;J;] Sex group J (1 is male; 2 is female)

SMRY[;;;KJ Underwriting group K C1 is standard; 2 is A;
3 is B; 4 is C; 5 is DJ

-96­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

TOPIC: N-Way Plus Reductions

This problem is awkward to solve using inner product and outer
product techniques. The solution is confusing, WS FULL prone and
inefficient.

A neater solution arises when you look at the problem backwards.
Consider the result SMRY. The three elements defined by SMRY[;I;J;KJ
are affected by just those policies belonging to age group I, sex
group J and underwriting group K. Conversely, each policy affects
exactly one set of three elements in the result.

To simplify the discussion, let's consider just SMRY[3;;;], i.e.
frequency counts. The first element of this array represents the
number of policies in age group 1, sex group 1 and underwriting group
1. The second element of this (raveled) array represents the number
of policies in age group 1, sex group 1 and underwriting group 2.
And so on. The last (looth) element of this (raveled) array
represents the number of policies in age group 10, sex group 2 and
underwriting group 5.

By considering the result as a vector, you may treat this problem as
a 1-way plus reduction (100 classes) rather than as a 3-way plus
reduction (10 by 2 by 5 classes). All that remains is to pack
together the values of the three classification vectors (IAGE, SEX,
UCLASS) such that the resulting packed classification vector has
values which distinctly identify the cell of the result affected by
the corresponding policy.

The ideal packing scheme is one which converts the classification
values for each policy directly into the index of the affected
element in the raveled result. For example:

Raveled
Result

rAGE SEX UCLASS Index (RRI)
-----­ ----­ -----­ ----------­
36 (4) M (1) C (4) 34 (origin 1)
27 (3) M (1) S (1) 21
42 (5) F (2) S (1) 46
50 (6) M (1) B (3) 53

The formula being used here is:

RRI~UCLASSINDEX+(5xSEXINDEX-1)+(10xIAGEINDEX-1)

When working in origin 0, the formula is a bit simpler:

-97­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

Raveled
Result

rAGE SEX UCLASS Index CRRI)
-----­ ----­ -----­ ----------­
36 (3) M (0) C (3) 33 (origin 0)
27 (2) M CO) S CO) 20
42 (4) F (1) S CO) 45
50 (5) M CO) B (2) 52

RRI~UCLASSINDEX+(5xSEXINDEX)+C10xIAGEINDEX)

The 5 in the above formula refers to the number of elements in each
row of the result (i.e. the number of UCLASS classes). The 10 refers
to the number of elements in each plane (i.e. the number of UCLASS
classes times the number of SEX classes).

The computations of UCLASSINDEX, SEXINDEX and IAGEINDEX are
straightforward:

OIO~O

UCLASSINDEX~'SABCD'lUCLASS

SEXINDEX~'F'=SEX

IAGEINDEX~lIAGE+I0

The elements of the vector RRI are all integers between 0 and 99.
You may then use logic from the prior section to determine the
distinct values in RRI and the corresponding frequencies Cl-way plus
reduction of 1) and I-way plus reductions of APREM and DBEN. If you
initialize the result to be an all-zero vector of the desired length
Cthe length of the raveled result), you may simply index assign the
derived frequencies and sums using the corresponding distinct indices
from RRI. Finally, reshape the result to the proper shape.

The complete logic follows:

R Use origin 0 throughout:
010+-0

A Index in result of column affected by policy:
UCLASSINDEXf-'SABCD'lUCLASS

A Index of row affected:
SEXINDEX~'F'=SEX

A Index of plane affected:
IAGEINDEX~lIAGE+I0

A Index in raveled SMRY[O;;;] affected:
RRI+-UCLASSINDEX+5xSEXINDEX+2xIAGEINDEX

A Sort result indices in ascending order:
GRADE+-.RRI
SORTED+-RRI[GRADEJ

A Shift to left and compare to flag last distinct values:
LAST~SORTED~l!SORTED,-l

R Select last distinct value in each run:
URRI~LAST/SORTED

-98­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

R Initialize 3 raveled all-zero arrays for SMRY[O;;;],
R SMRY[l;;;] and SMRY[2;;;]:
SMRYO~SMRY1~SMRY2~(10x2X5)pO

R One-way plus reduce DBEN and insert into SMRYO:
CUM~LAST/+\DBEN[GRADE]

SMRYO[URRI]~CUM-(pCUM)pO,CUM

R Ditto for APREM into SMRY1:
CUM~LAST/+\APREM[GRADEJ

SMRY1[URRI]~CUM-(pCUM)pO,CUM

~ Ditto for frequency count into SMRY2 (origin 0):
CUM~LAST/lpLAST

SMRY2[URRI]~CUM-(pCUM)p-l,CUM

A Catenate and reshape:

SMRY~3 10 2 5 pSMRYO,SMRY1,SMRY2

OIO~l

The logic above can be shortened somewhat if you choose to view the
problem as a single 3-way plus reduction on the last dimension of the
three row matrix whose rows are DBEN, APREM and all Is. Then, the
logic is:

URRI~LAST/SORTED

SMRY~(3,10X2X5)pO

CUM~LAST/+\(DBEN,[0]APREM,[-O.5]1)[;GRADE]

SMRY[;URRI]~CUM-(pCUM)to,CUM

SMRY~3 10 2 5 pSMRY

DIO~1

Once this 4 dimensional array has been constructed, many questions
can be answered by performing a few simple indexing and plus
reduction operations. For example (origin 1):

1.	 How many males and females?

+/[1]+/[3JSMRY[3;;;]

2.	 What is the total death benefit by sex and underwriting class
(2 row, 5 column matrix)?

+/[1]SMRY[1;;;]

3.	 What is the average annual premium by age group and sex C10
row, 2 column matrix)?

+/[1]+/[4JSMRY[23;;;]

4.	 What is the death benefit, annual premium and frequency
breakdown by age group and underwriting class, where ages are
broken into 5 groups: 0 to 19; 20 to 39; ... ; 80 to 99?

+/[3] 3 5 2 5 p+/[3JSMRY

-99­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

PROBLEM:	 Generate a 2 by 10 by 5 array (MAX) which contains the
maximums of (or 3-way maximum reduces) the above insurance
policies by age, sex and underwriting class. The
definition of MAX follows:

MAX[l;;;] Maximum death benefits

MAX[2;;;] Maximum annual premiums

MAX[;I;J;KJ	 Maximum death benefit and annual premium
for age group I, sex group J, underwriting
group K.

TOPIC: N-Way Maximum and Minimum Reductions

This problem is no different from the problem in the prior section
except an n-way maximum reduction is being performed instead of an
n-way plus reduction. Consequently, the same solution works, up to a
point. That point in the above solution is:

SMRYO~SMRY1~SMRY2~(10X2X5)pO

CUM~LAST/+\DBEN[GRADE]

SMRYO[URRI]~CUM-(pCUM)pO,CUM

Unfortunately, you may not simply sUbstitute r\ for +\. The
algorithm happens to work for +\ because of the nature of addition.
We must find a comparable algorithm which will work for maximum (and
hopefully minimum).

One such algorithm involves the grade-up c.) function. The idea
behind the algorithm is to sort the values within their respective
classes (i.e. within like values of SORTED) and then use LAST to
select the maximum in each class. stated differently, you must
perform a two-key sort where RRI is the major key and the data (DBEN)
is the minor key. Do the minor key first:

G~.DBEN

and then the	 major key:

G~G[.RRI[G]]

Use this grade vector to reorder the values, and use LAST to select
the maximum in each class:

MAX~LAST/DBEN[G]

-100­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

or quicker:

MAX+-DBEN[LAST/GJ

The final step is to index assign MAX into the result variable
CMAXO). When performing the n-way plus reduction, we initialized
SMRYO as all zeros so that those classes which were not represented
by any policies (i.e. cells not index assigned) would show a plus
reduction result of zero (just as +/to is 0). In mathematical
terminology, the "identity element" of plus is o. Likewise, you
should initialize MAXO as a vector filled with the identity element
for maximum, which is negative infinity and is returned as nearly as
possible by the expression r/to. The rest of the solution is:

MAXO~MAX1+-(10X2X5)pr/lO

MAXO[URRI]~MAX

G+-4APREM
G+-G[.t.RRI[GJ]

MAX+-APREM[LAST/G]

MAXI [URRI] f-MAX

MAX+-2 10 2 5 pMAXO,MAX1

DIO+-1

A different algorithm solves the problem without the use of
grade-up. It uses instead maximum scan Cr\). In order for maximum
scan to be useful, the values in each subsequent class must first be
shifted up the number scale so that the maximum value of an earlier
class does not shadow the maximum value of a subsequent class. To
illustrate, suppose the values of LAST and DBEN[GRADEJ are as follows:

LAST

a 0 100 010 1 1

DBEN[GRADEJ

20 10 15 15 35 20 25 20 25 30

Suppose we add 100 to each value in the first class, 200 to the
second class, 300 to the third class and 400 to the fourth class:

120 110 115 215 235 220 225 320 325 430

The maximum scan of this vector is:

120 120 120 215 235 235 235 320 325 430

Using LAST to select from this vector produces:

120 235 325 430

SUbtracting 100, 200, 300 and 400 from the respective classes gives
the desired maximums by class:

20 35 25 30

-101­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

For this logic to work, you must shift Cadd to) the values of each
class an amount which is at least equal to the difference between the
maximum value in the preceding class and the minimum value in this
class. Since your task is to determine these very maximums, you
cannot use these precise numbers. Rather, you can determine the
difference between the maximum and minimum values for the entire data
vector and use that amount.

The following are expressions which implement this algorithm as well
as numbers which illustrate the procedure:

D+--DBEN[GRADEJ 20 10 15 15 35 20 25 20 25 30
DIF~(r/D)-L/D 25
FIRST~-l<t>LAST 100 100 010 1
T~+\FIRST\DIF 25 25 25 50 50 50 50 75 75 100
U~LAST/T 25 50 75 100
R+--D+T 45 35 40 65 85 70 75 95 100 130
R+-- r \R 45 45 45 65 85 85 85 95 100 130
MAX+--CLAST/RJ-U 20 35 25 30

The solution to the above problem using this algorithm can be written
as follows:

URRI~LAST/SORTED

MAXO+--MAX1~(10x2x5)pr/lO

D+-DBEN[GRADEJ

DIF+-Cr/DJ-L/D

T~+\(-l$LAST)\DIF

MAXO[URRI]+-CLAST/r\D+T)-LAST/T

D+-APREM[GRADEJ

DIF~(r /DJ-l \D

T+-+\(-l~LAST)\DIF

MAX1[URRI]~(LAST/r\D+T)-LAST/T

MAX+-2 10 2 5 pMAXQ,MAXl

010+-1

You can do both DBEN and APREM at once with some minor modifications:

URRI+--LAST/SORTED
MAX~C2,10x2x5)pr/tO

D~(DBEN,[-O.5JAPREM)[;GRADE]

DIF+-Cr/D)-L/D

T+-DIFo.x+\-l$LAST

MAX[;URRI]+--CLAST/r\D+T)-LAST/T

MAX~2 10 2 5 pMAX

-102­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

There are potential problems with the maximum scan algorithm. If
there are many classes (i.e. 1s in LAST) and if the difference
between the maximum and minimum values of the data vector is large,
the values in the vector on which the maximum scan is being performed
will become immense. If they become too large (beyond 16 or so
significant digits), precision will be lost and the results may be
incorrect. Even if precision is not lost, the numbers may get large
enough to require internal floating point (usually 8 bytes per
element) representation rather than integer (usually 2 or 4 bytes per
element) representation. Consequently, the chances of a WS FULL
error will increase and processing speed will decline since floating
point numbers require more processing time than do integers.

Despite these potential problems, the maximum scan algorithm is a
useful and efficient algorithm.

If the problem at the beginning of this section were stated as a
minimum reduction problem rather than a maximum reduction problem,
the same two approaches could have been taken, with slight
modifications. Here are the solutions:

[grade-up algorithm]

URRI~LAST/SORTED

MINO~MINl~(10X2X5)pl/lO

G~'DBEN

G~G[4RRI[G]]

MINO[URRI]~DBEN[LAST/G]

G~'APREM

G~G[4RRI[G]]

MIN1[URRI]~APREM[LAST/G]

MIN~2 10 2 5 pMINO,MIN1

DIO~l

[minimum scan algorithm]

URRI~LAST/SORTED

MIN~(2,10X2X5)pl/lO

D~(DBEN,[-O.5]APREM)[;GRADE]

DIF~(r/D)-l/D

T~DIFo.x+\-l~LAST

MIN[;URRI]~(LAST/L\D-T)+LAST/T

MIN~2 10 2 5 pMIN

-103­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

PROBLEM:	 Suppose the variable ACTIVE is a Boolean vector with the
same length as rAGE, SEX, DBEN, ... whose values indicate
whether the corresponding policies are active. Generate a
10 by 2 by 5 Boolean array (ALL) whose elements indicate
whether (1) or not (0) all of the insurance policies (as
defined above) are active within each possible age, sex and
underwriting class. That is, perform the 3-way
and-reduction (AI) of ACTIVE by age, sex and underwriting
class.

ALL[I;J;K]	 The and-reduction of ACTIVE for age group I,
sex group J, underwriting group K.

TOPIC: N-Way Logical Reductions

Once again, the solution to this problem is similar to that of an
n-way plus reduction. However, you need to devise an algorithm for
AI comparable to that for +1:

SMRYO~(lOX2X5)pO

CUM~LAST/+\DBEN[GRADE]

SMRYO[URRI]~CUM-(pCUM)pO,CUM

Unfortunately, you may not simply sUbstitute A for + in the above
logic. One simple solution may be derived from the knowledge that
the AI is true if the +1 equals the frequency count. As with the rl
and II problems of the last section, you must begin by initializing
the result with the identity element for the reduction function. The
identity element for A is one, i.e. l=A/tO. The explanation for the
identity element is: for any Boolean array B, (lAB) and (BA1) always
return exactly B, so 1 is the identity element for A. The algorithm
is:

ALL~(10X2X5)pl

CUM~(LAST/tpLAST)-LAST/+\ACTIVE[GRADE]

ALL[URRI]~CUM=(pCUM)p-l,CUM (-1 for origin 0)

A second algorithm takes advantage of the fact that (AlB) produces
the same result as (~v/~B). To perform the vI, we need not compute
the frequency count. Instead, we know that the vi is true if the +1
is not equal to o. The algorithm is:

ALL~(10X2X5)pl

CUM~LAST/+\~ACTIVE[GRADE]

ALL[URRI]~CUM=(pCUM)pO,CUM

-104­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

A third algorithm may be employed which is based entirely on Boolean
techniques. Since these techniques are discussed in the Boolean
Techniques chapter, the algorithm is presented here without
explanation:

ALL~(10X2X5)pl

B~ACTIVE[GRADE]

CUM~(LAST~B)/LAST

ALL[URRI]~(LAST/B)ACUM/-l$CUM

Notice that this algorithm uses no arithmetic function and makes
heavy use of Boolean functions (~, A and I). In some implementations
of APL, Boolean functions have been optimized to be extremely fast.
In such implementations, the third algorithm will dramatically
out-perform the first two. You should time the alternative
algorithms in your own environment before deciding among them.

If the problem at the beginning of this section were stated instead
as an or-reduction (any) problem rather than an and-reduction (all)
problem, similar approaches could have been taken,
modifications. Here are the solutions:

with slight

[sum algorithm]

ANY~(10X2X5)pO

CUM~LAST/+\ACTIVE[GRADE]

ANY[URRI]~CUM~(pCUM)pO,CUM

(note: O=v/tO)

[Boolean techniques algorithm]

ANY~(10X2X5)pO

B~ACTIVE[GRADE]

CUM~(LASTvB)/LAST

ANY[URRI]~(LAST/B)~CUM/-1~CUM

PROBLEM:	 Define the syntax of utility functions for performing
frequency counts, accumulations and cross-tabulations in
APL.

TOPIC: N-Way Reduction utility Functions

We will approach this problem by first imagining an extension to APL
which can solve the problems of the previous sections. Imagine an

-105­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

extension to the definition of the primitive APL reduction operator
(@/) so that it will accept the following dyadic syntax:

r~(dshape;civecl;civec2;... ;civecN)@/[dJarray

where:

array = array being reduced;

d = dimension of array being reduced;

dshape = the shape to which dimension d is "reduced"; dshape has
N elements if an N-way reduction is to be performed;

civeci = the class index vector for classification i Clsi~N for
an N-way reduction); civeci has the same length as
dimension d and its values are indices Corigin
dependent) which identify the class indices into which
the corresponding dimension d arrays are to be grouped;
the values of civeci are all elements of ldshape[iJ;

r = the N-way (where N=pdshape) @ reduction Cwhere @ is any
scalar dyadic function) on dimension d of array by
classifications cvecl, cvec2, ... , cvecN.

This syntax calls for multiple left arguments CN+l for an N-way
reduction) where the arguments are separated by semicolons C;) and
are enclosed in parentheses. Since the monadic form of reduction is
a a-way reduction, it is equivalent to the dyadic form in which a
single empty vector left argument is provided.

r+-(tO)@/[dJarray r~@/[dJarray

Note that the dyadic reduction functions Cexcept a-way reduction) are
origin sensitive since the left arguments contain indices.

We may illustrate the use of this syntax by using it to solve the
problems of the previous sections. We assume origin 1.

One-Way Plus Reductions:

DIA~((IAGE1IAGE)=tpIAGE)/IAGE

IAGEINDf-DIAtIAGE

F+-(pDIA;IAGEIND)+/l

A~CpDIA;IAGEIND)+/APREM

-106­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

N-Way Plus Reductions:

UCLASSIND~'SABCD'lUCLASS

SEXIND~'MF'lSEX

IAGEIND~l+LIAGE+IO

SMRY~(10 2 5;IAGEIND;SEXIND;UCLASSINDJ+/DBEN,[lJAPREM,[.5Jl

N-Way Maximum and Minimum Reductions:

MAX~(lO 2 5;IAGEIND;SEXIND;UCLASSINDJf/DBEN,[.5JAPREM
MIN~(10 2 5;IAGEIND;SEXIND;UCLASSINDJLfDBEN,[1.5JAPREM

N-Way Logical Reductions:

ALL~(10 2 5;IAGEIND;SEXIND;UCLASSINDJA/ACTIVE
ANY~(lO 2 5;IAGEIND;SEXIND;UCLASSINDJv/ACTIVE

The syntax of dyadic reduction as described in here is adequate as a
model for user-defined utility functions. Unfortunately, current APL
systems do not allow mUltiple left arguments (unless they are packed
together into a single "nested" array.)
(e.g. the d in +/[dJ) are not allowed.
compromises.

Also,
Theref

optional arguments
ore, we must make

One possible syntax is the following:

r~(dshape,cindl,cind2,... ,cindN,{d})	 PLUSRED array
MAXRED
MINRED
ANDRED
ORRED

where:

array =	 array being reduced;

d = dimension of array being reduced;

dshape =	 the shape to which dimension d is "reduced"; dshape has
N elements if an N-way reduction is to be performed; d
is optional and defaults to the last dimension of array
if omitted;

cindi =	 the numeric suffix of the name of the global class index
vector for classification i (l~i~N for an N-way
reduction); the name of the vector is 'I',~cindi (e.g.
13 or 16); the class index vectors have the same length
as dimension d of array and their values are indices
(origin dependent) which identify the class indices into

-107­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

which the corresponding dimension d arrays are to be
grouped; the values of the class index vectors are all
elements of ldshape[iJ;

r =	 the N-way (where N=pdshape) @ reduction (where @ is +
for PLUSRED, r for MAXRED, ...) on dimension d of array
by the classifications identified by cindl, cind2, ... ,
cindN.

In the case of a scalar right argument (e.g. 1), PLUSRED replicates
the scalar to a vector with the same length as the class index
vectors. The effect is to return a frequency count by class (times
the value of the scalar).

We may illustrate the use of these utility functions by using them to
solve the problems of the previous sections. We assume origin 1.

One-Way Plus Reductions:

DIA~((IAGElIAGE)=lpIAGE)/IAGE

Il~DIAlIAGE

F~((pDIA),l) PLUSRED 1

A~((pDIA),l) PLUSRED APREM

N-Way Plus Reductions:

12~'SABCD'lUCLASS

13~'MF'tSEX

14~1+lIAGE+I0

SMRY~(10 2 5, 4 3 2) PLUSRED DBEN,[lJAPREM,[0.5Jl

N-Way Maximum and Minimum Reductions:

MAX~(10 2 5, 4 3 2) MAXRED DBEN,[O.5]APREM
MIN~(10 2 5, 4 3 2, 1) MINRED DBEN,[1.5JAPREM

N-Way Logical Reductions:

ALL~(10 2 5, 4 3 2) ANDRED ACTIVE

ANY~(10 2 5, 4 3 2) ORRED ACTIVE

Notice that the following pairs of expressions produce identical
results:

-108­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

(to)
DID

2

PLUSRED array
PLUSRED array
PLUSRED array

~~

~~

~~

+/array
+farray
+/[2Jarray

The writing of these utility functions
end of this chapter.

is left as an exercise at the

PROBLEM:	 Suppose you wish to compute the 3-way plus reduction by
age, sex and underwriting class of death benefits, annual
premiums and frequency counts (as presented in the N-Way
Plus Reduction section above.) How would you do this on
one million policies?

TOPIC: N-Way Reductions on Files

So far, we have considered only arrays which can be easily
manipulated within the active workspace. In this problem however, we
would need several 1,000,000 element vectors: rAGE, SEX, UCLASS,
DBEN, APREM. In many implementations of APL, the active workspace is
not large enough to contain these variables. They must be broken
into smaller pieces and stored on a file.

The chapter, File Design and utilities, discusses the application of
APL files for storing and manipulating large amounts of information.
In that chapter, a number of alternative file organizations are
described. One of them, the multi-set transposed file organization,
is a likely candidate for storing the one million policies introduced
above. Using that organization, the information is broken into
smaller pieces and each piece is stored as a single file component.
Suppose the pieces are 5000 element vectors. The file will consist of
1000 components (200 sets of 5 variables), each component containing
a 5000 element vector.

To compute the required 3-way reduction, you will read in one set of
the 5 variables Ci.e. 5000 policies) at a time and apply the PLUSRED
function on them. Accumulate the results as you go. After 200
iterations (i.e. sets), you will be done.

The file utility function EXECUTE is designed for this type of
problem. It reads from file one set of information at a time for
specified variables and then performs any specified computations on
those variables. The left argument of EXECUTE identifies the file
being used CFP) and the variables ("fields") required. The right
argument of EXECUTE is a character vector representation of an APL

-109­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

expression to be executed once for each set. The variables FI,
F2, ... (where the n in Fn is included in the list of field numbers in
the left argument) are assigned the values of the respective fields
for the current set.

Suppose the variables required for this problem are located in the
following fields of the file:

Field

Number Variable

3 IAGE
4 SEX
9 UCLASS

12 DBEN
13 APREM

You can add up the APREM variable (field 13) for all records on file
with the following statements:

SUM~O

CFP,13) EXECUTE 'SUM~SUM++/F13'

The EXECUTE function will execute the expression SUM~SUM++/F13 once
for each set on file. Before executing the expression, it will read
from file the 5000 element vector of APREM values for the current set
and will assign it to the variable name F13 (because the number 13 is
in the left argument of EXECUTE).

To perform the desired 3-way reduction, we write the following
function:

v SUM~XTAB;I3;I4;I9

[1] A Returns the 3-way plus reduction by age, sex and
[2] A underwriting class of death benefits, annual
[3] R premiums and frequency counts. Requires globals:
[4] R F3 CIAGE), F4 (SEX), F9 CUCLASS), F12 CDBEN),
[5] R F13 CAPREM). Requires fn: PLUSRED. Origin 1.
[6] R Which age class?
[7] 13~1+lF3+10

[8] A Which sex class?
[9] 14~'MF'tF4

[10] R Which underwriting class?
[11] 19~'SABCD'lF9

[12] R Perform the 3-way plus reduction:
[13] SUM~(10 2 5, 3 4 9) PLUSRED F12,[lJF13,[O.5J1

v

Then we use EXECUTE to execute this function once for each set of
5000 policies:

SUM~O

CFP,3 4 9 12 13) EXECUTE 'SUM~SUM+XTAB'

-110­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

PROBLEM:	 Suppose you need to perform a 2-way plus reduction by A and
B, another by Band C, and another by A and C. You could
perform the 3-way plus reduction by A, Band C and then
respectively plus reduce dimensions 3, 1 or 2 of the result
to generate the desired arrays. Taking this approach to
its extreme, you would always perform a single n-way plus
reduction by every possible classification and then use
monadic plus reduction to eliminate those dimensions not
needed for particular reports. What are the problems which
arise from taking this extreme approach? How can the
problems be overcome?

TOPIC: Milky-Way Reductions

We define	 a new term:

Milky-Way	 reduction: an n-way reduction in which you reduce by
every classification variable under the sun, generating a result
which may	 have an astronomical number of elements.

Performing Milky-Way reductions can improve your productivity and
reduce computer processing time consumed. Compare the following:

17~1+lIAGE+I0 (by rAGE)
I8~'MF'tSEX (by SEX)
19~'SABCD'tUCr~ss (by UCLASS)

Milky-Way: SMRY~(lO 2 5, 7 8 9) PLUSRED APREM

By SEX and UCLASS:

N-way: (2 5, 8 9) PLUSRED APREM

Milky-way: +/[lJSMRY

By IAGE and UCLASS:

N-way: (10 5, 7 9) PLUSRED APREM

Milky-Way: +/[2JSMRY

By Sex:

N-way: (2. 8) PLUSRED APREM

Milky-Way: +/[1]+/[3JSMRY

Unfortunately, the number of elements in the result of a Milky-Way
reduction may be astronomical. Your active workspace may not be big

-111­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

enough to contain them. Even if it can contain them, the process of
plus reducing the array to a manageable size will be costly and time
consuming because of the tremendous number of values.

Ironically, the majority of the values are zeros. For example, if
you perform a 7-way reduction in which the 7 classifications
respectively involve 5, 6, 7, 8, 9, 10 and 11 classes, the result (on
a vector) will contain 1,663,200 elements (5X6x7X8x9xlOxll),
regardless of the length of the vector being reduced. If the vector
contains 5000 elements, the result will contain at most 5000 nonzero
values. If the entities represented by the 5000 elements are
somewhat similar to one another, many of the entities will be
classified the same. Then there will be fewer than 5000 nonzero
values in the result, perhaps much fewer.

If we discard the zeros and retain just the nonzero values, the
result of a Milky-Way reduction is more manageable. Of course, we
must keep track of where the nonzero values belong in the result.

We propose the following functions:

~r~(dshape,cindl,cind2,... ,cindN,{d}) ~PLUSRED array
AMAXRED
~MINRED

~ANDRED

~ORRED

The meaning and syntax of these functions are identical to those of
the PLUSRED, MAXRED, MINRED, ANDRED and ORRED functions introduced
earlier in the chapter. The only difference between those functions
and these is the result. The result of these functions is a
"compressed Milky-Way array" which is a numeric vector whose elements
are defined as follows (origin 0):

6r[OJ R -- rank of the array right argument
~r[l] D -- dimension being reduced (origin 0)
.6r[2J N -- shape of dshape, i.e. the N for an N-way

reduction
~r[3+lRJ S -- shape of the reduced, but not expanded

(i.e. zero-filled), result
Ar[C3+R)+lNJ DS -- resulting shape of dimension reduced,

i.e. dshape
ar[(3+R+N)+lS[DJ]	 RIND -- indices (origin 0) into the raveled

dshape dimensions of the existing (i.e.
nonzero) values

Ar[(3+R+N+S[DJ)+lX/SJ DATA -- raveled existing (i.e. nonzero) values

since the results of these functions are not in very useful forms, we
need another set of utility functions to convert them back to the
more familiar multi-dimensional forms (including zeros where
appropriate). We propose the following functions:

-112­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

r~ways ~PLUSWAY ~r

~MAXWAY

~MINWAY

~ANDWAY

f10RWAY

The right argument of these functions is a compressed Milky-Way array

as returned by the corresponding functions ~PLUSRED, .6MAXRED,

6MINRED, .6ANDRED or ~ORRED. The left argument is a vector of the

ways (i.e. indices from IN for an N-way reduction) to be returned.

The result is the normal X-way reduction (where X=p.ways) as returned

by the functions PLUSRED, MAXRED. MINRED, ANDRED or ORRED.

For example:

A~(5 6 7 8 9 10 II, 1 2 3 4 5 6 7) ~PLUSRED NVEC
DIO~l

p2 4 6 ~PLUSWAY A
6 8 10

pI 7 6PLUSWAY A
5 11

p2 .6PLUSWAY A
6

pp(lO) .6PLUSWAY A
0

Finally, we need to address the problem of performing Milky-Way
reductions on files. When using PLUSRED, we execute an expression
like the following, once for each set of, say, 5000 records on file:

SUM~SUM+A PLUSRED B

This solution will not work with the Milky-Way reduction functions
since the values in SUM (after the first set) and the values in the
result of ~PLUSRED are not corresponding data values. They are,
instead, both compressed Milky-Way arrays. We propose the following
functions:

~C~~A ~PLUS ~B

~MAX

6MIN
6AND
~OR

These functions perform the +. r. L, A and v functions. respectively,
between two compressed Milky-Way arrays, returning a compressed
Milky-way array. If either argument is an empty array, the other
argument is returned.

The solution for working with files. then, needs to be modified only
slightly when performing Milky-Way reductions:

~SUM~lO (before loop)
6SUM~6SUM ~PLUS A 6PLUSRED B (within loop)

-113­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

The writing of these functions is left as an exercise below.

PROBLEMS:	 CSolutions on pages 340 to 361)

1.	 Given a 500 element character vector TZONE whose values represent
the time zones CE, C, M, P, H) in which each of your 500 fast
food restaurants are located, how many restaurants are located in
each time zone?

2.	 If SALES is a 500 element numeric vector whose values represent

the annual sales, in dollars, of the corresponding 500

restaurants of the prior problem, what are the annual sales by

time zone?

3.	 If TYPE is a 500 element character vector whose values represent
the restaurant types CB, C, P, S) of the corresponding 500
restaurants, how many CFRQ) restaurants of each type are located
in each time zone? What are the annual sales CAMT) for each of
these type/zone breakdowns? How large (MAX) was the largest
restaurant in each of these type/zone breakdowns?

4.	 write one or more of the utility functions PLUSRED, MAXRED,

MINRED, ANDRED, ORRED defined in this chapter. Compare your

functions to the listings of those functions included in the

solutions at the back of the book.

5.	 write one or more of the utility functions 6PLUSRED, ~MAXRED,

~MINRED, ~ANDRED, AORRED, APLUSWAY, AMAXWAY, AMINWAY, ~ANDWAY,

~ORWAY, ~PLUS, ~MAX, ~MIN, ~AND, ~OR defined in this chapter.
See the listings at the back of the book.

-114­

Chapter 7 FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABULATIONS

6.	 Given the 500 element vectors TZONE, SALES and TYPE defined in
the questions above, suppose you also have the following data:

STATE	 500 row, 2 column character matrix of state (postal code)
abbreviations indicating the states in which the
corresponding 500 restaurants are located.

MGR	 500 element integer vector whose values represent the
regional managers responsible for the corresponding 500
restaurants; there are 6 managers and their respective
numeric codes are 301, 304, 310, 322, 329 and 333.

FIT	 500 element numeric vector whose values represent the
annual federal income tax, in dollars, of the
corresponding 500 restaurants.

Using the utility functions presented in this chapter, generate
the following information:

1.	 Number of restaurants whose annual sales were $0 to $1
million, $1 million to $5 million, $5 million and up.

2.	 Number of restaurants, total sales and total FIT by state
(given a 50 row, 2 column matrix ALLSTATES of the distinct
state postal codes).

3.	 Total sales and total FIT by manager, annual sales volume
(0-1, 1-5, 5+ million) and type of restaurant.

4.	 Number of restaurants by state and type.

5.	 FIT by type and sales volume.

-115­

WRITING

Chapter 8

USER-FRIENDLY INTERACTIVE FUNCTIONS

An interactive function is one which "prompts" you to enter
information at the keyboard. In this chapter we discuss the
primitive capabilities available in APL for writing interactive
functions. We also define utility functions which make the primitive
functions easier to apply and friendlier to use.

PROBLEM:	 write a function ASKUSER which prompts you to "ENTER
EMPLOYEE NAME", assigns the character vector response to
the variable NAME, prompts to "ENTER SALARY" and assigns
the numeric scalar response to SALARY.

TOPIC: Primitive Interactive Functions

The primitive niladic APL functions 0 (quad) and ~ equote-quad) allow
user interaction. When invoked, both functions causes execution to
pause while you type information at the keyboard. When you press the
RETURN (or ENTER) key, the typed information is returned explicitly
and execution resumes. Graphically, the 0 and ~ represent "windows"
through which information passes to the computer from the outside
world. In general, 0 is used to enter numeric information and ~ is
used to enter character information.

A simple solution to the stated problem follows:

V ASKUSER
[1] 'ENTER EMPLOYEE NAME'

[2J NAME+-I!J

[3] 'ENTER SALARY'
[4]	 SALARY+-D

V

-116­

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

On the 1st and 3rd lines, the prompts are expressed as constant
character vectors. Since the vectors are not assigned to variable
names or otherwise used as arguments to functions, they are
displayed. This behavior is one of the great simplifications in
APL: to generate output, just construct an array (as a constant or
as the result of an expression) and do not assign it to a variable or
otherwise use it. This is why the expression 2+3 causes 5 to display
but the expressions A~2+3 or 6X2+3 do not cause 5 to display, even
though the same 2+3 operation is being performed.

This convention for generating output in APL is a mixed blessing.
While it is simple to generate output, it is sometimes unclear from
context whether or not output is being generated. For example, does
the following function line generate output?

[15] CRUNCH I

The answer depends upon whether or not the monadic function CRUNCH
returns an explicit result. If so, the result is not being assigned
and so will be displayed. If not, nothing will appear (unless output
is generated during the execution of CRUNCH). Because of this lack
of clarity, some APL programmers choose to show output explicitly by
assigning it to D. For example:

[15] O~CRUNCH I

Note that the "window" analogy still holds when using 0 in this
context. Now information is passing from the computer to the outside
world. Not only does the D~ convention add clarity, it also enables
you to locate (under program control) occurrences of output in case
you wish to direct output elsewhere (say, replace 'D~' by 'OUTPUT ')
or turn it off altogether (say, replace 'D~' by '0 Op').

Using this convention, let us rewrite our simple solution:

v ASKUSER
[1] D~'ENTER EMPLOYEE NAME'
[2] NAME+-rl
[3] D~'ENTER SALARY'
[4] SALARY~D

v

When executing this function, you will see the following:

ENTER EMPLOYEE NAME

where the "_" symbol represents the location of the cursor (or print
mechanism) while the computer is awaiting your response.

Why is the cursor located at the beginning of the line below the
prompt? Output in APL (via D~ or automatic output) is automatically
followed by a "carriage return" (i.e. a newline). The only way to
suppress the succeeding carriage return is by assigning the output to

-117­

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

~, the other "window". In fact, the inclusion or exclusion of the
carriage return is the only difference between O~ and ~~. For
example, consider the following function:

v DISPLAY
[1] ~~'VALUES: '
[2] rl+-2 3 4
[3] D~'.'

v

When you execute this function, you will see the following:

VALUES: 2 3 4.

Notice that the last statement uses D~, causing the cursor to move to
the start of the next line for any subsequent output (including the 6
space indent you get in immediate execution mode).

How can we modify our solution to display the prompt and leave the
cursor beyond the prompt on the same line?

ENTER EMPLOYEE NAME:

Given the behavior of ~~ described above, we are compelled to try the
following:

[1] ~+-'ENTER EMPLOYEE NAME:
[2] NAME+-[!J

Sure enough, it behaves as we want it to:

ENTER EMPLOYEE NAME: LANDER, KEVIN

Unfortunately, when we check the value of the variable NAME, we find
that it contains not only the name but the prompt as well:

pNAME
34

NAME
ENTER EMPLOYEE NAME: LANDER, KEVIN

The ~ function returns every character on the line, whether put there
by ~~ or by user entry. (Some APL systems return the ~~ characters
as blanks or stars or other designated characters.) Clearly, we need
to drop the prompt characters from the result of ~:

[1] ~+-'ENTER EMPLOYEE NAME: '
[2] NAME+-21!1!J

The number 21 is the length of the prompt (including the trailing
blank) .

-118­

Chapter 8	 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

Can
input

we apply the same technique
causes the characters "0:"

to the SALARY
to display.

prompt?
For exam

No.
ple:

Quad CO)

ENTER SALARY
0:

If we use ~~'ENTER SALARY: all we accomplish is to put the "0:" at
the end of the prompt line:

ENTER SALARY: 0:

If we want to eliminate the "0:" from the prompt 9 we must use ~

input. However 9 the result will then be character valued. To
convert the characters to the numbers they represent 9 we must use
execute (~). Our final solution is therefore:

V ASKUSER
[1] ~~'ENTER EMPLOYEE NAME:
[2] NAME~21J,rl

[3] ~~'ENTER SALARY:
[4] SALARY~~14J,rl

v

PROBLEM:	 write utility functions which prompt for character vectors
or numeric vectors and which handle the problems associated
with each.

TOPIC: utility Interactive Functions

First 9 we will define a monadic function CPROMPT (character prompt)
which will display its character vector right argument as a prompt
and will allow you to enter a response at the end of the same line
returning your response as a character vector.

[WSID: INPUT]
v R~CPROMPT PROMPT

[1] A Displays character vector PROMPT 9 allows
[2] A keyboard input on same line and returns
[3] A character vector response.
[4] [!]~PROMPT

[5]	 R~(p9PROMPT)~~

V

-119­

9

Chapter 8	 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

Note the use of ravel C,) on the 2nd line to handle the case in which
PROMPT is a scalar (e.g. R~CPROMPT '?').

Given this utility function, the solution to the problem of the last
section may be rewritten:

v ASKUSER
[1] NAME~CPROMPT 'ENTER EMPLOYEE NAME:
[2]	 SALARY~~CPROMPT 'ENTER SALARY:

v

This function is an improvement over the previous solution. However,
problems remain. If you accidentally type a non-numeric character
(e.g. 3B5) in response to the 'ENTER SALARY:' prompt, an APL error
message will appear (from ~) and the function will suspend. This is
not user-friendly behavior.

We could use 0 input C"evaluated Lnput;'") to avoid the suspension.
When an error occurs in evaluated input mode, the error message is
displayed and you are reprompted. For example:

ENTER SALARY
0:

3B5

VALUE ERROR

0 3B5

1\

0:

However, evaluated input mode has several disadvantages. The first
is that its appearance (0:) is odd to a naive user. The second is
that the error messages are technical APL messages (e.g. SYNTAX
ERROR), not user-oriented messages (e.g. DEPARTMENT NUMBER MUST BE
NUMERIC). The third is that you may inadvertently invoke other
functions in the workspace. The fourth is that the response will not
be accepted on the same line as the prompt.

Therefore, we will stick with rl input (ttcharacter input tt). We will
define a function NINPUT (numeric input) which will display its
character vector prompt right argument and will allow you to enter a
response at the end of the same line. The response will be converted
to numbers if possible and returned. If not possible, the message
,** ENTER NUMBERS ONLY **' will be displayed and you will be
reprompted.

How	 then do we convert a character vector which looks like numbers
(e.g. '67 15') into a numeric vector (e.g. 67 15)? A number of APL
implementations (e.g. APL*PLUS, SHARP APL) have available the
companion monadic functions OFI (fix input or format inverse) and DVI
(verify input). The OF! function is just what we are looking for.
It converts its character vector or scalar right argument into a
numeric vector result. Each group of contiguous nonblank characters
is converted into a single numeric element. If the group of

-120­

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

characters does not represent a valid number, it is returned as O.
For example:

OF! '67.5 3B6 5 0 HI'
67.5 0 5 0 0

since invalid groups are returned as 0, another function is required
to tell the good as from the bad as. This is what DVI does. The DVI
function converts its character vector or scalar right argument into
a Boolean vector result. Each group of contiguous nonblank
characters is converted into a single bit: 1 if a valid number, 0 if
not. For example:

DVI '67.5 3B6 5 0 HI'

1 0 110

The OFI and DVI functions always return vectors, never scalars. For
example:

pDF! '6'
1

pDFI '
o

Using OFI and OVI, the definition of NINPUT is:

[WSID: INPUT]
v R~NINPUT PROMPT

[1] A Displays character vector PROMPT, allows
[2] R keyboard input on same line and returns
[3] R numeric vector response. Requires CPROMPT.
[4] L1:R~CPROMPT PROMPT
[5] ~(A/OVI R)pL2
[6] D~'** ENTER NUMBERS ONLY **'
[7] -+L1
[8] L2:R~OFI R

v

If OFI and DVI are unavailable in your implementation of APL, you
must write an APL function which performs a similar function. Such a
"parsing" function is quite complicated and is not included here.

In APL2, which does not have OF! and DVI, exception handling may be
used to execute the character vector and to display appropriate
messages if it can not be successfully executed. The system function
OEA (execute alternate) is used. It executes its right argument and
returns the result. If an error occurs while executing its right
argument, its left argument is executed.

-121­

Chapter 8	 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

In APL2, the definition of NINPUT is:

[WSID: INPUT]
V R~NINPUT2 PROMPT

[1] A Displays character vector PROMPT, allows
[2] A keyboard input on same line and returns
[3] A numeric vector response. Requires CPROMPT.
[4] Ll:R~CPROMPT PROMPT
[5] A Return empty numeric vector if all-blank response:
[6] ~ (R v • 1-' ') P L2
[7] R~lO

[8J ~O

[9] R Allow only characters which may be parts of numbers
[10] R (so that other functions will not be executed):
[11] L2:~(A/R€'0123456789.-E ')!L3
[12] A Make sure any E (exponential notation) is not
[13] A preceded by a blank:
[14] ~ (v /' E' ~' " R) p L3
[15] A Ravel when assigning to insure a vector result:
[16] '4L3' DEA 'R~,',R

[17] ~o

[18] L3:0~'** ENTER NUMBERS ONLY **,
[19] ~Ll

v

PROBLEM:	 write a function ASKUSER which prompts for employee name,
salary and project codes (numeric) and assigns the
respective responses to NAME, SALARY and CODES. Verify
that the name is not all-blank, that the salary is a
positive integer less than 100,000 and that no more than 5
project codes are entered. Terminate ASKUSER immediately
if the user types END in response to any question. The
explicit result of ASKUSER is 0 if END is typed and is 1
otherwise.

TOPIC: utility Validation Functions

Let us take a reverse-engineering approach to this problem. We will
write the	 ASKUSER function, employing imaginary utility functions as
needed. Then, we will write the utility functions. Here is the
finished solution:

-122­

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

v R+-ASKUSER
[1] R(-O
[2]
[3]

L1:~O ESCAPE NAME(-CPROMPTE 'ENTER EMPLOYEE NAME:
~Ll IF CNAMEA.=' ') MESSAGE ,** YOU MUST ENTER A NAME'

[4] L2:~O ESCAPE SALARY(-l NPROMPTE 'ENTER SALARY: '
[5] ~L2 IF ((SALARY#rSALARy)vSALARY~O)MESSAGE '** SALARY

MUST BE A POSITIVE INTEGER'
[6J ~L2 IF (SALARY>lOOOOO) MESSAGE ,** SALARy'IS

EXCESSIVE'
[7] L3:~O ESCAPE CODES(-O NPROMPTE 'ENTER PROJECT CODES: '
[8J ~L3 IF C5<pCODES) MESSAGE '** TOO MANY PROJECTS'
[9] R(-l

v

This function was easy to write and is easy to read. Comments are
unnecessary. Our task now is to write the utility functions such
that the function is "user-friendly" as well.

The CPROMPTE (character prompt with escape) function behaves like the
CPROMPT function written earlier with one exception. It checks for
the "escape" word END and returns the numeric scalar 1 if entered.
Otherwise, it returns the character vector entered via the keyboard.
The CPROMPTE function is listed below.

Since some applications permit the use of more than one escape word
(e.g. END, QUIT, BACKUP, ABORT, HELP, PRINT, etc.), we have written
CPROMPTE to illustrate the use of several escape words, specifically
END, BACKUP, and ABORT. CPROMPTE returns the scalar 1, 2 or 3 if the
respective escape word is entered.

-123­

Chapter 8	 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

[WSID: INPUT]
V R~CPROMPTE PROMPT;S

[1] ~ Displays character vector PROMPT, allows
[2J A keyboard input on the same line and returns
[3] ~ character vector response. Checks for entry
[4] ~ of escape words END, BACKUP or ABORT and
[5] ~ returns corresponding numeric scalar 1, 2 or 3
[6] ~ if even partially entered. (Modify to include
[7] R your own set of escape words or to use exact
[8] R matching.) Requires: CPROMPT.
[9] R+-CPROMPT PROMPT
[10] R Exit if empty entry:
[11] ~(XS~pR).j,O

[12] R Branch unless 'END' partially entered:
[13] ~(Rv.1St'END')pLl

[14] R For exact (not partial) match:
[15] R ~((3¢S)V'END'v.¢3tR)pLl

[16] R Or, if = is available:
[17] R ~('END'=R).j,Ll

[18] R Else return scalar 1 (in origin 1):
[19] R~DIO

[20] ~O

[21] R Return 2 if , BACKUP' entered:
[22] Ll:~(RV.1St'BACKUP')pL2

[23] R~1+0IO

[24] ~o

[25] R Return 3 if 'ABORT' entered:
[26] L2:~(RV.1St'ABORT')pO

[27]	 R+-2+DIO

v

The ESCAPE function is a dyadic function which checks to see if its
right argument is a scalar. If so, it returns its label left
argument. If not, it returns an empty vector so that no branch will
take place. The ESCAPE function is listed below.

The ESCAPE function has been written to accomodate multiple escape
words. For example, the expression,

~(L99,Ll,O) ESCAPE NAME~CPROMPTE 'ENTER EMPLOYEE NAME: '

will cause a branch to one of the "labels" L99, Ll or 0 if the
corresponding escape word END, BACKUP or ABORT is entered. If a
single label is provided as ESCAPE's left argument, that label is
returned if any of the escape words is entered.

-124­

Chapter 8 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

[WSID: INPUT]
V R~LABELS ESCAPE CODE

[1] R Used as:
[2] R
[3] ~ ~(Ll,L2,O) ESCAPE NAME~CPROMPTE 'ENTER NAME: '
[4] A
[5] A Returns LABELS[CODEJ if code is a scalar.
[6] A Otherwise, returns to so no branch occurs.
[7] A If LABELS is a singleton, it is returned for
[8] A any scalar CODE.
[9] A Return empty vector for non-scalar CODE:
[10] R~tO

[11] 4(xppCODE)pO
[12] A Return LABELS for singleton LABELS:
[13] R+-LABELS

[14J ~(lJ\.=pLABELS)pO

[15] A Otherwise, return label for corresp escape code:
[16] R~LABELS[CODE]

v

The IF function is the standard conditional branching function.

[WSID: INPUT]
v R~L IF C

[1] A Conditional branch function. Used as:
[2] A ~LABEL IF I>50
[3] R~C/L

v

The MESSAGE function is a dyadic function which returns its Boolean
left argument and which displays its character vector right argument
only if the left argument is 1.

[WSID: INPUT]
V R~BIT MESSAGE CVEC

(1] A Displays err msg CVEC if BIT=l. Used as:
[2] A
[3] A ~ASK IF (X<O) MESSAGE 'VALUE IS NEGATIVE'
[4] R

[5] R~BIT

[6] ~BITJ.O

[7] D~CVEC

V

The NPROMPTE (numeric prompt with escape) function is dyadic. Its
left argument is the number of numbers required. Since a check for
the exact number of numbers entered (usually 1) is the most common
numeric input check, we will build the check into the function. If
the left argument is 0, we will accept any number of numbers. Since
the result of NPROMPTE is passed as the right argument of ESCAPE, we
will use CPROMPTE within NPROMPTE and will return a numeric scalar

-125­

Chapter 8	 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

(escape) result directly instead of the normal numeric vector
response.

The	 NPROMPTE function for APL*PLUS or SHARP APL follows:

[WSID: INPUT]
V R~NUM NPROMPTE PROMPT

[1] R Displays character vector PROMPT, allows
[2] R keyboard input on same line and returns
[3] A numeric vector response of length NUM
[4] A Cor of any length if NUM=O). Returns
[5] R numeric scalar escape code if escape word
[6] A entered. Requires: CPROMPTE.
[7] Ll:R~CPROMPTE PROMPT
[8J R Exit if scalar escape code:
[9] ~CppR)J,O

[10] ~(J\/OVI R)/L2
[11] D~'** ENTER NUMBERS ONLY **'
[12] ~Ll

[13] L2:R~DFI R
[14] A Exit if NUM is 0 or is length of input:
[15] ~NUMJ,O

[16] ~CNUM=pR)/O

[17] O~'** ENTER ',(~NUM),' NUMBER',CNUM=l)!'S **,
[18]	 4Ll

V

-126­

Chapter 8	 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

The	 NPROMPTE function for APL2 follows.

[WSID: INPUT]
V R~NUM NPROMPTE2 PROMPT

[1] A Displays character vector PROMPT, allows
[2] R keyboard input on same line and returns
[3] R numeric vector response of length NUM
[4] R (or of any length if NUM=O). Returns
[5] R numeric scalar escape code if escape word
[6] A entered. Requires: CPROMPTE.
[7] Ll:R~CPROMPTE PROMPT
[8] A Exit if scalar escape code:
[9] -?(ppR)J,O
[10] A Return empty numeric vector if all-blank response:
[11] -?(Rv • "#' ') PL2
[12] R~lO

[13] -?L4
[14] A Allow only characters which may be parts of numbers
[15] R (so that other functions will not be executed):
[16] L2:~(A/RE'0123456789.-E ')~L3

[17] A Make sure any E (exponential notation) is not
[18] A preceded by a blank:
[19] ~(V/' E's' ',R)pL3
[20] A Ravel when assigning to insure a vector result:
[21] '~L3' DEA 'R~,',R

[22] ~L4

[23] L3:D~'** ENTER NUMBERS ONLY **'
[24] ~Ll

[25] A Exit if NUM is 0 or is length of input:
[26] L4:~NUMJ,0

[27] ~(NUM=pR)/O

[28] D~'** ENTER ',(~NUM),' NUMBER' ,(NUM=l)J,'S **,
[29]	 ~Ll

V

PROBLEMS:	 (Solutions on pages 362 to 363)

1.	 write a function LPROMPTE (letter prompt with escape) which
prompts for a single letter. The right argument is the character
vector prompt. The left argument is a character vector of
allowable single characters which the user may enter. The result
is a one element vector index into the left argument of the

-127­

Chapter 8	 WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

character entered or is the numeric scalar escape code if an
escape word is typed. To illustrate:

[10] ~O ESCAPE ACTION~'ACD' LPROMPTE 'ADD, CHANGE, DELETE: '
Ell] ~(ADD,CHANGE,DELETE)[ACTION]

2.	 Suppose you are writing interactive functions for a user who does
not have an APL terminal. without an APL terminal, the user
cannot enter a negative symbol (-). What modifications would you
make to the utility functions described in this chapter to allow
the user to enter a minus symbol (-) for negative numbers (e.g.
-38)?

3.	 write a niladic function PROPOSAL which generates a proposal for
life insurance as follows:

PROPOSAL
NAME: Fred
NUMBER OF KIDS: 3
AGES OF KIDS: 3 4 8
PRESS ENTER WHEN READY ... (press ENTER key)

Dear Fred:

As a proud parent of 3 kids (whose

average age is 5), you need insurance.

(press ENTER key)

GENERATE ANOTHER PROPOSAL? N

Use the utility functions developed in this chapter.

-128­

Chapter 9

MANIPULATING DATES

In the field of data processing, one of the more commonly
processed forms of data is dates. Dates tell us when employees were
hired, when bonds mature, when insurance policies take effect, when
commissions are due, when materials must be reordered, when expenses
are incurred, and so on. Despite the many uses of dates, the number
of different tasks performed on dates is small. This chapter
discusses those tasks: representing dates in APL, entering dates,
displaying dates and manipUlating dates.

PROBLEM:	 Given that APL supports only two datatypes (numbers and
characters), how should dates be represented?

TOPIC: Representation of Dates in APL

Suppose you wish to keep track of the date March 22, 1986. What are
the different possible conventions you might employ to store this
date? Here are several:

1. DATE+-'MARCH 22, 1986'	 ('MONTH DD, YYYY')
2. DATE+-3221986 CMMDDYYYY)

3 • DATE+-19860322 (YYYYMMDD)

4. DATE+-860322	 (YYMMDD)
5. DATE+-1986 3 22	 CVyyy MM DD)
6.	 DATE+-1986 81 CVYYY DOD, days from December 31

of the previous year)
7. DATE+-31127	 (Days from December 31, 1899)

In order to choose the best convention, you must consider the ways in
which the date is to be used. Different representations are better
for different applications.

-129­

Chapter 9 MANIPULATING DATES

For example, the first representation (DATE~'MARCH 22, 1986') is
ideal if all you want to do with the date is display it. However,
the representation requires 14 bytes (characters) of storage which is
more than any of the other representations and it does not lend
itself to chronological sorting or to date arithmetic (say, adding 3
months to it).

The second representation (DATE~3221986) requires less storage (4 or
8 bytes depending upon the APL implementation) and is still fairly
easy to display in a meaningful form (say 3/22/1986). However, it
also requires transformation before it can be sorted or used in date
arithmetic (since 3221986 is greater than 1221987 but 3/22/1986
occurs earlier than 1/22/1987).

The third representation (DATE~19860322) requires the same storage as
the prior representation and is fairly easy to display in a
meaningfUl form (say 1986/03/22) and can be sorted with or compared
to other dates directly, without transformation. For example, since
19870122 is greater than 19860322, it occurs later.

The fourth representation (DATE~860322) is similar to the prior
representation. Its advantage is that it displays in two fewer
character positions (say 86/03/22 vs. 1986/03/22), though the storage
requirements are the same. Its disadvantage is that the year is
ambiguous and may not sort properly when comparing to dates in the
next century (e.g. 15/03/22 for 2015/03/22).

The fifth representation (DATE~1986 3 22) has different storage
requirements than the prior three representations (more or less
depending upon the APL implementation). It is easier to work with
for some manipulations (say, year arithmetic) but harder for others
(say, comparing dates to see which is later).

The sixth representation (DATE~1986 81) makes day arithmetic easier
but meaningful display harder. For example, it is simple to see that
the date 50 days beyond 1986 81 is 1986 131. However, it is not as
simple to see that 1986 131 is May 11, 1986.

The seventh representation (DATE~31127) makes day arithmetic, date
comparisons and chronological sorting trivial operations. However,
converting the date to a meaningfUl form (year, month, day) is a
complex task.

Depending upon the specific requirements of your application, you may
decide to pick anyone of these or another form of date
representation. If you are undecided, representations 3
(DATE~19860322) and 5 (DATE~1986 3 22) are good choices. These
representations seem to provide a nice balance between the extreme
forms 1 and 7.

-130­

Chapter 9	 MANIPULATING DATES

PROBLEM:	 write a monadic function IPDATEMDY (input date in month,
day, year order) which may be used to convert a date, as
entered, into the internal representation of the date. The
right argument of IPDATEMDY is the character vector
representation of the date in month, day, year order and
the result is the numeric scalar representation (YYYYMMDD)
of the date. For example: DATE~IPDATEMDY CPROMPT 'ENTER
DATE OF HIRE: ' (where CPROMPT returns the character vector
response to the prompt provided as its right argument).
The result is 0 if the right argument does not represent a
valid date.

TOPIC: Entering and validating Dates

To be as friendly as possible, the function must allow you to enter
the date in any reasonable form. For example, if the date being
entered is March 22, 1986, the right argument (i.e. your response)
may be in any of the following forms:

3/22/86
3.22.1986
3 22 1986
3 22 Cif the current year is 1986)
3-22
3-22-86
and so on

To be as safe as possible, the function must verify that the date
entered is a valid date. For example, some dates which should be
rejected are 13/25/86 and 2-29-86.

The function follows:

-131­

Chapter 9	 MANIPULATING DATES

[WSID: DATES]

V YYYYMMDD~IPDATEMDY CVEC;DD;MM;NVEC;YY;DIO

[1] A Converts the character vector representation
[2] A of a date Ce.g. '6/15' or '3-22-1986' or
[3] R'3 22' or '3.22.86') to an integer scalar
[4] R representation CYYYYMMDD) of the date.
[5] A The items in the right argument are in month,
[6] A day, year order. The result is 0 if the
[7] A date is invalid.
[8] A

[9]	 OIO~1

[10] A Ravel CVEC in case a scalar; replace '1-.'
[11] A by space:
[12]	 CVEC~,CVEC

[13]	 CVEC[CCVECE'I-. ')/lpCVEC]~' ,
[14] A Set result to 0 and exit if date not valid:
[15]	 YYYYMMDD~O

[16] A Date must contain only digits and spaces
[17] A (once 1 and - are converted):
[18]	 ~(A/CVEC€' 0123456789')!O
[19] A Convert character vector to numeric vector:
[20]	 NVEC~,~CVEC

[21] A Date must have 2 or 3 elements (MM DD or
[22] A MM DD YY):
[23]	 ~((pNVEC)€ 2 3)!O
[24] A stick on current year if omitted:
[25]	 ~(3=pNVEC)pL1

[26]	 NVEC~NVEC,1pDTS

[27] A Convert yy to YYYY using current century:
[28] L1:YY~NVEC[3]

[29]	 ~(YY>99)pL2

[30]	 YY~YY+100xLDTS[1]+100

[31] A Validate month:
[32] L2:MM~NVEC[1]

[33]	 ~(MMel12)~0

[34] R Validate day of month:
[35]	 DD~NVEC[2]

[36]	 ~((DD<1)vDD>(31 29 31 30 31 30 31 31 30 31 30 31)[MM])
pO

[37] A Check 2/29 if a leap year:
[38]	 ~((MM~2)VDD~29)pL3

[39] A Leap year every 4 years except at centuries
[40] R (except 4th centuries):
[41]	 ~((O~4IYY)V(O=100IYY)AO~400IYY)pO

[42] A Pack date into YYYYMMDD format:
[43]	 L3:YYYYMMDD~100iYY,MM,DD

V

-132­

Chapter 9	 MANIPULATING DATES

PROBLEM:	 Given the three element vector DATE which represents a
single date (in YYYY MM DD format), write the APL
expressions which will generate each of the following date
formats (for DATE~1986 3 22):

a. MAR 22, 1986
b. March 22, 1986
c. 3/22/86

TOPIC: Formatting Dates for Output

In the first format (MAR 22, 1986), we must convert the month from an
integer (e.g. 3) to a 3 element character vector (e.g. 'MAR'). The
most direct way to do this is to first construct a 3 column character
matrix which has one row per possible month:

MON~12 3p'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC'

Then we may use the month number as the row index into MON. Here is
one approach (showing 1986 3 5 as MAR 05, 1986):

This approach does not work for a matrix (3 columns) of dates. It
must be modified, as in the following:

DAY~2 O~DATE[;3J

DAy[e' '=DAY)/lpDAYJ~'O'

DAY~CC1tpDATE),2)pDAY

MON[DATE[;2J;],' ',DAY,',',5 O~DATE[;,l]

If your implementation of APL supports the system function DFMT, you
may construct this date format with the following:

One date:

MON[DATE[2];],,'Xl,ZI2,<,>,I5' DFMT CDATE[3J;DATE[lJ)

Matrix of dates:

'3A1,X1,ZI2,<,>,I5' DFMT CMON[DATE[;2];J;DATE[;3 1])

In APL2, you may do the following:

One date:

MON[DATE[2J;J,' OS, 5555'~DATE[3 1]

Matrix of dates:

MON[DATE[;2J;],' 05, 5555'~DATE[;3 1]

-133­

Chapter 9 MANIPULATING DATES

In the second format (MARCH 22, 1986), the entire month name is
displayed. This format differs from the first in that the length of
the formatted result is not fixed but depends upon the length of the
month name and upon the number of digits in the day.

One approach to selecting the month name portion of the date is to
build a character matrix of month names (padded to the right with
blanks), extract the appropriate row and squeeze out the blanks:

MONTH~12 9p'JANUARY FEBRUARY MARCH APRIL MAY ••• '

MON~MONTH[DATE[2];]

MON~(MON#' ')/MON

A second approach is to build a character vector of month names and a
corresponding vector of the lengths of the names. The vector of
lengths may be used to locate the corresponding name:

MONTH~'JANUARYFEBRUARYMARCHAPRILMAYJUNEJULYAUGUST... '
MLEN~ 7 8 5 5 3 4 4 6 9 7 8 8
MON~MONTH[(O,+\MLEN)[DATE[2]]+lMLEN[DATE[2]]]

Using either approach, once the name is selected, the formatting of
the date is simple:

MON,' ',(iii DATE [3]) , " " <I) DATE [1]

Generally, the second format (MARCH 22, 1986) is not used when
formatting many dates at once since they will have a ragged
appearance:

MARCH 22, 1986
MAY 3, 1986
SEPTEMBER 17, 1987
JULY 4, 1988

On the other hand, you may choose to align the days and years:

MARCH 22, 1986

MAY 03, 1986

SEPTEMBER 17, 1987

JULY 04, 1988

To construct this result, you can simply use the same approaches
discussed for the first format (MAR 22, 1986), but create a 9 column
character matrix of right-justified month names instead of a 3 column
character matrix of abbreviated month names:

MON~12 9p' JANUARY FEBRUARY MARCH APRIL MAY ••• '

In the third format (3/22/86), the month number does not need to be
translated into a month name. However, the first two digits of the
year must be truncated. Here is one approach:

(iDATE[2]),'I' ,C-2t'0' ,~DATE[3]),'/',-2t~DATE[l]

-134­

Chapter 9	 MANIPULATING DATES

This approach does not work for a matrix (3 columns) of dates. It
must be modified, as in the following:

('1',4 O~DATE[;,1],DATE[;3]+100xDATE[;2])[;67 189 145]

If your implementation of APL supports DFMT, you may do the following:

One date:

,'I2,</>,ZI2,</>,Z12' DFMT CDATE[2];DATE[3J;100IDATE[1])
or

,'G<Z9/99/99>' DFMT 100~DATE[2 3J,100IDATE[lJ

Matrix of	 dates:

'I2,</>,ZI2,<I>,ZI2' DFMT CDATE[;2 3J;100IDATE[;lJ)
or

'G<Z9/99/99>' DFMT CIOOIDATE[;lJ)+100XDATE[;3]+10QxDATE[;2J

In APL2, you may do the following:

One date:

'56/06/05'~DATE[2 3 1]

Matrix of dates:

'56/06/05'~DATE[;2 3 1]

PROBLEM:	 Since some tasks involving dates are more easily solved
from certain date representations than from others, design
and write a set of date conversion functions which can be
used to convert between the various date representations.

TOPIC: Manipulating Dates

Suppose you limit yourself to 4 different date representations. You
will need 24 different date conversion functions to handle every
possible conversion (4 types times 3 remaining types times 2
directions: to or from). If you handle 5 different date
representations, you will need 40 different functions.

You can reduce the number of functions needed by assuming a "base"
date representation. If you define just enough functions to be able

-135­

Chapter 9	 MANIPULATING DATES

to convert any date representation to or from the base
representation, you can do any possible conversion, though it may
require two steps instead of one. For example, to convert dates from
a first representation to a second, neither of which is the base
representation, you can convert the dates from the first
representation to the base representation and then from the base
representation to the second representation.

Let us use YYYYMMDD (e.g. DATE~19860322) as the base representation.
We choose this representation because it can serve a number of
functions directly, without conversions:

a.	 Such dates can be sorted chronologically using grade-up (~) or
grade-down (,).

b.	 Such dates can be compared chronologically (before or after)
using the relational functions (=, 1, >, <, ~, ~).

c.	 Such dates can be displayed directly (or with minor formatting)
and be readily interpreted by the reader.

If you prefer a different base date representation for your
applications, you may modify the functions below to suit your needs.

Assuming the YYYYMMDD base date representation, we propose the
following date utility functions:

1.	 MMDDYYYY~TOMDY YYYYMMDD

Converts from YYYYMMDD format to MMDDYYYY format. For example:

TOMDY 19860322 19870209

3221986 2091987

2.	 YYYYMMDD~FROMMDY MMDDYYYY

Converts from MMDDYYYY format to YYYYMMDD format. For example:

FROMMDY 3221986 2091987

19860322 19870209

3.	 DAYS~TODAYS YYYYMMDD

Converts from YYYYMMDD format to number of days since
February 29, 0000. For example:

TODAYS 19860322 19870209

725393 725717

-136­

Chapter 9 MANIPULATING DATES

4. YYYYMMDD~FROMDAYS DAYS

Converts from numbers of days since February 29, 0000 to
YYYYMMDD format. For example:

FROMDAYS 725393 725717
19860322 19870209

5. QTS~TOQTS YYYYMMDD

converts from YYYYMMDD format to 3iOTS format (i.e. YYYY MM DO).
The shape of the result is the catenation of 3 and the shape of
the right argument. For example:

TOQTS 19860322 19870209
1986 1987

3 2
22 9

6. YYYYMMDD~FROMQTS QTS

converts from 3iDTS format (i.e. YYYY MM DD) to YYYYMMDD format.
The first element of the shape of the right argument must be 3.
The shape of the result is all but the first element of the
shape of the right argument. For example:

FROMQTS 3 2 P 1986 1987 3 2 22 9
19860322 19870209

7. DAYS360~TODAYS360 YYYYMMDD

Converts from YYYYMMDD format to number of days since
January 1, 0000, assuming a 30 days per month, 12 months per
year, 360 days per year calendar (the 31st day of the month is
treated like the 30th day). Financial institutions frequently
assume 360 days per year. For example:

TODAYS360 19860322 19870209
715041 715358

8. YYYYMMDD~FROMDAYS360 DAYS360

converts from number of days since January 1, 0000 to YYYYMMDD
format, assuming a 30 days per month, 12 months per year, 360
days per year calendar. For example:

FROMDAYS360 715041 715358
19860322 19870209

-137­

Chapter 9	 MANIPULATING DATES

February 29, 0000 was chosen as a base date in the TODAYS and
FROMDAYS functions for computational reasons. At the end of that
leap day, a 400 year cycle of leap years began. The conversion from
dates to days or vice versa is easier when March 1 is considered the
first day of the year. When a leap year occurs, the leap day is the
last day of the year.

Let us illustrate the application of these functions by using them to
solve a variety of problems. The following problems assume that the
variable DATES is a vector of dates whose values are assigned in the
YYYYMMDD format (e.g. DATES~19860322 19870209 19851225 ...).

A.	 How many dates occur in 1987?

+/CDATES~19870101)ADATES~19871231 (no conversion needed)

B.	 Display in MM/DD/YYYY format the dates derived by adding 30
years to each date.

'G<Z9/99/9999>' DFMT TOMDY 300000+DATES (assuming DFMT)
'55/55/5555'~TOMDY 30000+DATES	 (assuming APL2J

c.	 What dates result when adding 90 days to each date?

FROMDAYS 90+TODAYS DATES

D.	 Which dates occur in any September?

C9=(TOQTS DATES)[2;])/DATES

E.	 Assuming a 360 day year (as in bond calculations), how many whole
6 month periods (i.e. semiannual coupons) are there from each date
to the date July 4, 1995?

LCCTODAYS360 19950704)-TODAYS360 DATES)+180

F.	 Display (in YYYY/MM/DD format) the dates in the past (before
today's date), in reverse chronological order (present to past).

D~(DATES<FROMQTS 3tDTS)/DATES
'G<9999/99/99>' OFMT D[fDJ	 Cassuming DFMTJ
'555/55/55'~D['D]	 (assuming APL2)

-138­

Chapter 9	 MANIPULATING DATES

G.	 Compute the ages (age last birthday) today of people born on each
of the dates.

TODAY~3tDTS

YMD~TOQTS DATES
(TODAY[1]-YMD[1;])-(100~TODAY[2 3])<100~YMD[2 3;]

The definitions of these date utility functions follow. In those
instances for which two substantially different algorithms are
available to perform the same task two functions have been provided,9

one with the name suggested above and the second with the same name
followed by '~' (e.g. FROMDAYS and FROMDAYS~). You may want to time
the alternate functions for your APL installation to determine which
is faster (see the Computer Efficiency Considerations chapter).

[WSID: DATES]
V MMDDYYYY~TOMDY YYYYMMDD

[1] R Converts dates in form YYYYMMDD to form
[2] R MMDDYYYY by numerical manipulations.
[3] R The steps: 19860322 ~ 322 ~

[4] R (32200000000-322) ~ 32219860000 ~ 3221986
[5] R
[6] MMDDYYYY~l(YYYYMMDD+99999999x10000IYYYYMMDD)+10000

v

[WSID: DATES]
V MMDDYYYY~TOMDY~ YYYYMMDD

[lJ R Converts dates in form YYYYMMDD to form MMDDYYYY
[2] R by unpacking 9 rotating and re-packing the digits.
[3] R The steps: 19860322 ~ 1986 322 ~ 322 1986 ~ 3221986
[4] R
[5] MMDDYYYY~ 10000 1 +.xe a 10000 TYYYYMMDD
[6] R Alternative:
[7] R MMDDYYYY~ a 10000 ~e 0 10000 TYYYYMMDD

V

[WSID: DATES]
v YYYYMMDD~FROMMDY MMDDYYYY

[1] R Converts dates in form MMDDYYYY to form
[2J R YYYYMMDD by numerical manipulations.
[3] R The steps: 3221986 ~ 1986 ~

[4] R (198600000000-1986) ~ 198603220000 ~ 19860322
[5] R
[6]	 YYYYMMDD~L(MMDDYYYY+99999999X10000IMMDDYYYY)+10000

V

-139­

Chapter 9	 MANIPULATING DATES

[WSID: DATES]

v YYYYMMDD~FROMMDY~ MMDDYYYY

[1] A Converts dates in form MMDDYYYY to form YYYYMMDD
[2] R by unpacking, rotating and re-packing the digits.
[3] A The steps: 3221986 ~ 322 1986 ~ 1986 322 ~ 19860322
[4] A
[5]	 YYYYMMDD~ 10000 1 +.xe a 10000 TMMDDYYYY
[6] R Alternative:
[7] A YYYYMMDD~ 0 10000 ~e 0 10000 TMMDDYYYY

v

[WSID: DATES]

v DAYS~TODAYS YYYYMMDD;DD;YYYYMM;MM;YYYY;DIO

[1] A Converts date (YYYYMMDD) to number of days since
[2] A Feb. 29, 0000.
[3]	 DIO~l

[4]	 DD~100IYYYYMMDD

[5]	 YYYYMM~(YYYYMMDD-DD)+100

[6]	 MM~100IYYYYMM

[7] YYYY~(YYYYMM-MM)+100

[8J A Treat Jan and Feb as if in prior year (to have
[9] A leap day at end of yr)
[10]	 YYYY~YYYY-MM~2

[11] R Days from Feb. 29, 0000 to prior Feb. 28/29 (leap
[12] R year every 4th year, no leap year every looth year,
[13] A leap year every 400th year):
[14]	 DAYS~(365xYYYY)+-/LYYYYo.+4 100 400
[15] R Add in DD days and days from prior Feb. 28/29
[16]	 DAYS~DAYS+DD+(306 337 a 31 61 92 122 153 184 214 245

275)[MM]

[WSID: DATES]

v DAYS~TODAYS~ YYYYMMDD;DD;MM;YYYY;YYYYMM;DIO

[1] R converts date (YYYYMMDD) to no. of days
[2] R since Feb. 29, 0000.
[3]	 DD~100IYYYYMMDD

[4]	 YYYYMM~CYYYYMMDD-DD)+100

[5]	 MM~100IYYYYMM

[6]	 YYYY~(YYYYMM-MM)+100

[7] R Treat Jan and Feb as if in prior year (to
[8] A have leap day at end of year):
[9]	 YYYY~YYYY-MM~2

[10] A Days from Feb. 29, 0000 to prior Feb. 28/29
[11l R (146097, 36524, 1461, 365 days in 400, 100,
[12] R 4, 1 year cycles):
[13]	 DAYS~ 146097 36524 1461 365 +.x 0 4 25 4 TYYYY
[14] R Add in DD days and days from prior Feb. 28/29:
[15]	 DAYS~DAYS+DD+(306 337 0 31 61 92 122 153 184 214 245

275)[MMJ

v

-140­

Chapter 9	 MANIPULATING DATES

[WSID: DATES]

V	 YYYYMMDD~FROMDAYS DAYS;DD;IND;MM;PDAYS;RDAYS;SHAPE;Y;

YYYY;DIO
[1] A Converts number of days since Feb. 29, 0000
[2] R to date (YYYYMMDD).
[3]	 010+--1
[4] A Work with array as a vector and reshape when done:
[5]	 SHAPE~pDAYS

[6]	 DAYS+--, DAYS
[7] A Approximate year Conly off for some 2/28,
[8J R 2/29 and 3/1 dates); 365.2425 is used because
[9] A there is a leap year every 4th year (+.25),
[10] R no leap year every loath year (-.01), leap
[11] R year every 400th year (+.0025):
[12]	 YYYY+--lDAYS+365.2425
[13] R Number of days from Feb. 29, 0000 to Feb. 28/29 of
[14J A prior year:
[15]	 PDAYS+--C365xYYYY)+-/lYYYYo.+ 4 100 400
[16] A Number of days from start of year to specified date:
[17]	 RDAYS+--DAYS-PDAYS
[18] A Branch unless year may be too small by 1 (e.g. 3/1):
[19]	 ~(XpIND+--CRDAYS~366)/lpRDAYS)!Ll

[20]	 YYYY[IND]~Y~YYYY[IND]+l

[21]	 RDAYS[IND]~DAYS[IND]-(365XY)+-/lYo.+4 100 400
[22] A Branch unless year too big by 1 (e.g. 2/29 looks
[23] A like 3/0):
[24] L1:~(xpIND+--(RDAYS~0)/lpRDAYS)!L2

[25]	 YYYY[IND]~Y+--YYYY[IND]+-l

[26]	 RDAYS[IND]~DAYS[IND]-(365xY)+-/lYo.+4 100 400
[27] A Determine month no. from no. days from start of yr:
[28]	 L2:MM~C31 30 31 30 31 31 30 31 30 31 31 29 /2~l12)[

RDAYS]
[29] A Determine day no. from no. days from start of mon.:
[30]	 DD~RDAYS-(306 337 0 31 61 92 122 153 184 214 245 275)[

MMJ
[31] R Correct for fact that Jan. and Feb. are treated
[32] R as if in prior yr (to have leap day at end of yr):
[33]	 YYYY+-YYYY+MM:c:2
[34] R Repack and reshape result:
[35]	 YYYYMMDD~SHAPEpDD+(100XMM)+10000XYYYY

v

-141­

Chapter 9	 MANIPULATING DATES

[WSID: DATES]
v YYYYMMDD~FROMDAYS~ DAYS;L4;L400;MM;Nl;N4;NlOO;N400;

YYYY;OIO
[1] A Converts number of days since Feb. 29, 000
[2] A to date (YYYYMMDD).
[3] DIO~l

[4] A Reduce no. days by 1 so day a is Mar. 1, 0000:
[5] DAYS+-DAYS+-1
[6] A No. of 400 year cycles (146097 days) preceding
[7] A each date:
[8] N400+-lDAYS+146097
[9] A No. days since last 400 year cycle:
[10] DAYS~DAYS-N400X146097

[11] A Flag 400 year leap dates (e.g. Feb. 29, 1600)
[12] R and change to Feb. 28:
[13] L400~DAYS=146096

[14] DAYSf-DAYS-L400
[15] A No. of 100 year cycles (36524 days) preceding
[16] R each date:
[17] N100~lDAYS+36524

[18] A No. days since last 100 year cycle:
[19] DAYS~DAYS-N100x36524

[20] A No. of 4 year cycles (1461 days) preceding each
[21] A date:
[22] N4~lDAYS+1461

[23] R No. days since last 4 year cycle:
[24] DAYS~DAYS-N4X1461

[25] R Flag 4 year leap dates (e.g. Feb. 29, 1988)
[26] A and change to Feb. 28:
[27] L4~DAYS=1460

[28] DAYS+-DAYS-L4
[29] A No. of 1 year cycles (365 days) preceding each
[30] A date:
[31] N1+-lDAYS+365
[32] A No. days since last 1 year cycle:
[33] DAYS+-DAYS-Nlx365
[34] A Increase no. days by 1 so days are 1 to 365:
[35] DAYS+-DAYS+l
[36] A Determine month no. from no. days from start of yr:
[37] MM~(31 30 31 30 31 31 30 31 30 31 31 28 12$t12)[DAYS]
[38] A Determine day no. from no. days from start of man.:
[39] DAYS+-DAYS-(306 337 0 31 61 92 122 153 184 214 245 275)

[MMJ
[40] A Add back in leap days:
[41] DAYS+-DAYS+L4+L400
[42] A Determine year from no.s of 400, 100, 4, 1 year
[43] A cycles:
[44] YYYY+-N1+(4xN4)+(10QxNIOO)+400xN400
[45] A Correct for fact that Jan. and Feb. are treated as
[46] A if in prior year (to have leap day at end of yr):
[47] YYYY~YYYY+MM~2

[48] A Pack year, month, day together:
[49]	 YYYYMMDD+-DAYS+I00xMM+I00XYYYY

V

-142­

Chapter 9	 MANIPULATING DATES

[WSID: DATES]

V QTS~TOQTS YYYYMMDD

[1] R converts date CYYYYMMDD) to DTS format CYYYY MM DD).
[2] QTS~ a 100 100 TYYYYMMDD

v

[WSID: DATES]

v YYYYMMDD~FROMQTS QTS

[1] R Converts date from DTS format CVYYY MM DO)
[2] ~ to YYYYMMDD format.
E3] YYYYMMDD~ 10000 100 1 +.xQTS
[4] A Alternative:
[5]	 ~ YYYY~ a 100 100 ~QTS

v

[WSID: DATES]

V DAYS~TODAYS360 YYYYMMDD

[1] R Converts dates in form YYYYMMOD to days since
[2] R January 1, 0000 assuming a 30 days per month,
[3] A 12 months per year, 360 days per year calendar.
[4] A The 31st day is treated like the 30th.
[5] R
[6] R Change 00=31 to OD=30 and subtract 1 from all days
[7] Rand 1 from all months:
[8] YYYYMMDO~YYYYMMDD-101+31=100IYYYYMMDD

[9] DAYS~ 360 30 1 +.x a 100 100 TYYYYMMDD
[10] A Alternative:
[11]	 R DAYS~ 0 12 30 i 0 100 100 TYYYYMMDD

v

[WSID: DATES]

V YYYYMMDD~FROMDAYS360 DAYS

[1] R Converts days since December 30, -1 to dates in
[2] A form YYYYMMDD assuming a 30 days per month, 12
[3] R months per year, 360 days per year calendar.
[4] R

[5] A Add 1 to all days and 1 to all months (101):
[6] YYYYMMDD~101+ 10000 100 1 +.x a 12 30 TDAYS
[7] A Alternative:
[8J	 R YYYYMMDD~101+ a 100 100 ~ 0 12 30 TDAYS

v

-143­

Chapter 9	 MANIPULATING DATES

PROBLEMS:	 (Solutions on pages 364 to 365)

1.	 Most bonds pay semi-annual coupons (interest payments). That is,
every six months the holder of the bond receives one coupon
payment to compensate the holder for the use of his or her
money. The bond has printed on it a maturity date, i.e. the date
when the final semi-annual coupon is to be paid and when the face
(par) value is to be repaid. When a bond is sold prior to
maturity, the purchase date usually falls somewhere between two
coupon dates. Since the seller and the buyer each hold the bond
during a portion of the 6 month coupon period, each is entitled
to a portion of the next coupon payment. Traditionally, the
buyer pays the seller a portion (called the accrued interest) of
the next coupon in addition to the agreed-upon purchase price.
The number of days the bond was held by the seller is compared to
the number of days the bond will be held by the buyer and the
coupon is divided proportionately. The number of days is
computed using a 360 day year (12 months of 30 days).

Given two vectors PDATES and MDATES which respectively represent
the purchase dates and maturity dates (in YYYYMMDD representation)
of a set of bonds, determine the fractions of the coupons paid
for accrued interest at purchase.

2.	 Suppose you borrow $1000 and agree to pay .1% (.001) of the
outstanding balance per day. If the variables BDATE and RDATE
represent the dates (in YYYYMMDD format) on which you
respectively borrow and repay the loan, how much interest do you
pay?

3.	 Dates stored in the YYYYDDD representation (e.g. 1986081 for
March 22, 1986) are sometimes called "Julian" dates. The last
three digits represent the number of days from the previous
December 31. Write the utility function TOYD and FROMYD which
may be used to convert dates in the YYYYMMDD representation to or
from the Julian representation.

4.	 What expressions will return the day of week today as a character
vector (e.g. 'TUESDAY')? (Hint: Feb. 29, 000 was a Tuesday.)

-144­

----------------- ------ ------ ----------

Chapter 10

WRITING REPORTS

Report formatting in APL is an afterthought. It was an
afterthought to those who designed and implemented APL. And it is
frequently an afterthought to those who use APL. The APL language
excels at manipulating large multi-dimensional arrays. not at
inserting dollar signs and decimal points. The task of designing and
implementing reports is slow and tedious and not relished by many
programmers. APL or otherwise.

Excellent report formatting capabilities have evolved in the various
implementations of APL over the years. These have greatly improved
the productivity of the APL programmer but probably not to the extent
that report formatting is fun. The capability available in APL*PLUS
and in SHARP APL is DFMT. In APL2 it is format by example (dyadic ~

with character vector left argument). In unenhanced versions of APL.
it is format (dyadic ~ with numeric vector left argument).

In this chapter. we will describe techniques and utilities which can
be employed to make report formatting easier and almost enjoyable.

PROBLEM: How would you construct the following report?

CAMPBELL CARPET CLEANING
ANNUAL SUMMARY

12/31/1986

PERCENT
ACCOUNT BUDGET ACTUAL DIFFERENCE

GROSS REVENUES 650 625 -3.8
LESS DISCOUNTS 50 45 10.0

NET REVENUES 600 580 -3.3
EXPENSES 500 510 -2.0
NET INCOME 100 70 -30.0

Chapter 10 WRITING REPORTS

TOPIC: Viewing the Report

Imagine transcribing this report onto a piece of graph paper (evenly
spaced vertical and horizontal lines) by placing each letter, digit
or other character into a single square. Viewed in this way, the
report appears to be a simple character matrix. Your task is to
construct the character matrix.

At the simplest conceptual level, you need only use reshape (p):

REPORT~12 45p' CAMPBELL CARPET -30.0

This is the most computationally direct and efficient way to
construct the report. While the burden is light on the computer,
however, it is enormous on you. You must count spaces and type them
in precisely and you must type in the numbers whose values are
probably already in the computer as vector or matrix variables. This
is a tremendous waste of your time.

It is more natural to view the report as a set of submatrices which
can be pieced together to form the overall report. Then your task is
to construct each piece and to catenate them together to construct
the whole report.

How do you subdivide the report? You should break it into as few
pieces as possible where each piece may be constructed by a single
straightforward procedure. Here is one possibility:

CAMPBELL
ANNUAL

ACCOUNT
~--~----~--------

GROSS REVENUES
LESS DISCOUNTS

NET REVENUES
EXPENSES
NET INCOME

CARPET CLEANING
SUMMARY

12/31/1986

BUDGET
-----­

ACTUAL
-----­

PERCENT
DIFFERENCE
---------­

650
50

600
500
100

625
45

580
510

70

-3.8
10.0
-3.3
-2.0

-30.0

By using formatting utility functions or APL primitive functions, you
can construct each of these blocks with relative ease. Once
constructed, they may be pieced together by a single statement:

REPORT~TOP,[l]MIDDLE,[l]LEFT,RIGHT

If you do not have access to utility functions or are using poorly
designed functions, you will be forced to break the report into

-146­

Chapter 10	 WRITING REPORTS

smaller pieces and construct it in more steps. More steps means less
productivity.

Of the four blocks above, the one which may be constructed directly
by using APL primitive functions is the matrix of numbers in the
lower right of the report. Assuming a 3 column numeric matrix of
values named DATA, you may construct the block by the following:

RIGHT~(7 0 8 0 11 1 ~DATA),((lppDATA),2)p' ,
or:

RIGHT~2~9	 0 8 0 11 l~DATA

(Note that the 2 columns of trailing blanks could have been
considered a fifth block of the report.)

If your APL implementation has an enhanced formatting capability, you
may choose to use it rather than~. For example, with DFMT, you may
use:

RIGHT~'I7,I8,Fl1.1,X2' DFMT DATA

In APL2, you may use:

RIGHT~'5555550 5555550 5555550.00 '~DATA

PROBLEM:	 Design utility functions which will construct the three
remaining blocks in the report above.

TOPIC: Constructing Titles and Headings

The top block is a block of titles. When you look at that block, you
see the words and date, not the blanks. You see three strings of
nonblank characters on three separate lines, centered within the
width of the report. The information which completely specifies this
block is:

* the width of the report (45 characters)

* the fact that each line is centered within the report width

-147­

Chapter 10 WRITING REPORTS

* the nonblank strings to be used, one per line (4 lines):

CAMPBELL CARPET CLEANING
ANNUAL SUMMARY
12/31/1986
(empty)

The left block is a block of row names. It is similar to the block
of titles except the nonblank strings are left-justified within the
width of the block (except for one indented line). The information
which specifies this block is:

* the width of the block (17 characters)

* the fact that each line is left-justified within the block

* the nonblank strings to be used, one per line C5 lines):

GROSS REVENUES
LESS DISCOUNTS

NET REVENUES
EXPENSES
NET INCOME

The specifications for these two blocks suggest the syntax for a
formatting utility function which we will call TITLES. Let us
illustrate the syntax before we define it:

TOP~45 TITLES 'nCAMPBELL CARPET CLEANINGnANNUAL SUMMARY
n12/31/1986n'

LEFT~17 TITLES 'eGROSS REVENUESc LESS DISCOUNTS
cNET REVENUEScEXPENSEScNET INCOME'

The left argument is an integer scalar of the width of the resulting
character matrix. The right argument is a delimited character vector
whose partitions each begin with one of the delimiters c Cleft­
justify), n (center) or ~ (right-justify). The result has one row
per partition. Each partition is justified within the row according
to the delimiter.

The TITLES function is developed and explained in the Positioning
Character Data chapter.

The remaining (middle) block is a block of column headings. When you
look at the block, you see four headings. The rightmost heading has
two lines. The lines are centered with respect to each other. Every
heading is underlined. Each set of underlines is separated from its
neighbors by two spaces. The headings are centered with respect to
the underlines.

We will illustrate and then define the syntax for a formatting
utility function which we will call HEADINGS.

-148­

Chapter 10	 WRITING REPORTS

MIDDLE~17 6 6 10 HEADINGS 'nACCOUNTnBUDGETnACTUAL
nPERCENT~DIFFERENCE'

The right argument is a delimited (by leading n symbols) character
vector whose partitions each represent one heading. The partitions
themselves may be delimited by newline delimiters (~) which indicate
the points at which headings are broken into multiple lines. The
left argument is an integer vector of the widths of the fields into
which the headings are inserted. Typically, one width is provided
for each heading (partition). However, if fewer widths are provided,
they are repeated to match the number of partitions.

The subpartitions of each partition are truncated if necessary to the
corresponding width for that heading. The subpartitions are centered
above one another within the width for that heading. A row of
underlines (hyphens) is placed below each heading across the width of
the heading. The headings are separated by 2 blank columns. If a
separation of more or less than 2 blank columns is desired, you may
include a vector of the desired separations after the vector of
widths in the left argument. They will be repeated if necessary to
match the number of partitions. For example, to have one blank
column between each heading in the example above:

MIDDLE~17	 7 7 11 1 HEADINGS 'nACCOUNTnBUDGETnACTUAL... '

The HEADINGS function is developed as a problem at the end of the
Positioning Character Data chapter.

PROBLEM:	 Most primitive APL formatting capabilities are column
oriented. That is, each column of a numeric matrix to be
formatted is treated as a separate entity. Every row of
the column is formatted in the same way as every other
row. This is not true of every column. For example:

6 0 6 1 6	 2 ~ 3 3 pl9
1 2.0 3.00
4 5.0 6.00
7 8.0 9.00

What approach would you take to do row oriented formatting.
For example, how would you generate the following?

1 2 3
4.0 5.0 6.0

7.00 8.00 9.00

-149­

Chapter 10	 WRITING REPORTS

TOPIC: Row Oriented Formatting

A common approach to this problem is to simply format each row
separately. For example:

R~3 18p' ,
R[1;]~6 O~MAT[l;]

R[2;]~6 I~MAT[2;]

R[3;]~6 2~MAT[3;]

This process may be tedious if the matrix has many rows. The problem
may be solved noniteratively by transposing the data, formatting it
with a column oriented formatting function and then transposing it
back. Both monadic and dyadic applications of transpose (~) are
required. The specific logic required is presented as a problem at
the end of the Positioning Character Data chapter. Using the ROWFMT
function developed there, the solution is:

width~6

R~O 1 2 ROWFMT MAT

PROBLEM:	 You wish to print 50 checks. You are given 5 global
variables: CNUM (50 element integer vector of check numbers,
e.g. 305); CDATE (50 element integer vector of check dates
in MMDDYY format. e.g. 121586); VENDOR (50 row, 25 column
character matrix of vendor names, e.g. 25i'ACME SUPPLIES');
CAMT (50 element integer vector of check amounts in cents,
e.g. 518250); DESe (50 row, 40 column character matrix of
check descriptions, e.g. 40t'LOOSELEAF NOTEBOOKS'). write
a function to print the information on continuous form blank
checks loaded in the printer. The following is an
illustration of the layout and characters to be printed for
a single check:

NO. QQ~Q2 DEC 15, 1986

TO: ACME	 SUPPLIES $5,182.50

FOR: LOOSELEAF NOTEBOOKS

-150­

Chapter 10 WRITING REPORTS

TOPIC: Formatting Multi-Row Records Using Newlines

When doing simple formatting of a numeric matrix Ce.g. 7 O~NMAT), the
character matrix result contains one row per row of the matrix being
formatted. In the problem above, the result appears to contain one
matrix Ca check) per row Cor element) of the arrays being formatted.
The term "appears" is used because the "matrix" may in fact be a
vector with embedded newline Ccarriage return) characters. Let us
look at the above example in a special way:

NO. 00305bbbbb_____ DEC 15, 1986nnn TO: ACME SUPPLIES
$5,182.50nnnFOR: LOOSELEAF NOTEBOOKS nnnnnn'

The n represents a newline character and the b represents a backspace
character. Notice how the backspaces are being used to underline the
check number. The entire vector, including newlines, backspaces and
blanks is 174 characters long. The problem becomes much simpler if
you consider that your task is to format and combine the arrays into
a 174 column matrix, with one row per element or row of the arrays.

Begin by breaking the CDATE variable into two parts: the month Cas a
3 letter abbreviation) and the day/year portion cnoyy):

MON~12 3p'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC'
MON~MON[lCDATE+I0000;]

ODYY~10000ICDATE

Let us solve the problem first for those APL implementations which
have DFMT (e.g. APL*PLUS and SHARP APL). Given the appropriate
format string CFS) left argument to DFMT, the desired matrix result
CCRKS) may be constructed as:

CHKS~FS DFMT CCNUM;MON;DDYY;VENDOR;CAMT;DESC)

The format string left argument of DFMT may contain special
characters such as newline and backspace. Construct the variables NL
and BS to contain the newline and backspace character scalars
respectively:

APL*PLUS SHARP APL

BS~DTCBS BS~DAV[158+DIO]

NL~DTCNL NL+-DAV[156+DIOJ

The format string is constructed by carefully piecing together the
control characters needed to produce the special 174 column matrix.

FS~'X36,<NO. >,ZI5,<', C5pBS), C5p' ..:». '>,X3 ,3A1,'
FS~FS,'S<9?>G< ?? 19??>,<' ,C3pNL),' TO: >,'
FS~FS,'25Al,P<$>CK-2FI5.2,<',C3pNL),'FOR: >,'
FS+-FS,'40Al,<' ,C6pNL),'>'

To print the checks, just display the variable CHKS on the printer.

-151­

Chapter 10	 WRITING REPORTS

Now let us solve the problem using format by example (dyadic ~ with
character vector left argument, an APL2 enhancement). The approach
is basically the same. However, ~ does not allow more than one array
in its right argument. We must therefore build the result in
sections and then combine the sections.

BSf-DTC[DIOJ
NL~DTC[l+DIO]

ROWSf-pCNUM

Slt--(C36p'	 '),'NO. 05555',(5pBS),CSp'_'),3p' ')tf)

(ROWS,lJpCNUM
S2+-MON (MON and DDYY from above)
83+-(' 05,_5555', C3pNLJ,' TO: ')~(ROWS,1)p1900+10000~

o lOOTDDYY
S4+-VENDOR
S5+-C'$555,555,553.50',C3pNL),'FOR: ')~(ROWS,1)pCAMT+I00

S6f-DESC
S7+-CROWS,6)pNL

CHKS+-Sl,S2,S3,S4,S5,S6,S7

PROBLEM:	 Frequently, when an APL application produces multi-page
reports, the reports are sent to a "print file" rather than
printed directly. Why? How should such a print file be
organized? How should its contents be printed?

TOPIC: Directing Report Output to Print Files

There are several reasons for directing report output to a print file
rather than printing/displaying it immediately:

1.	 To avoid the interruption caused by printing when many different
reports are to be generated. You may generate them all (to a
print file) and then let them print unattended.

2.	 To enable simple and inexpensive restarting. If the paper jams
or runs out (or the line to a remote computer drops), you may
reprint the report without having to regenerate it.

3.	 To make mUltiple copies of a report. The print file may be
printed repeatedly without regenerating the report.

-152­

Chapter 10	 WRITING REPORTS

4.	 To print the report on a remote (batch) high-speed line printer.
A print file must exist in order for you to submit a batch
request for remote printing.

5.	 To spot-check a lengthy report. If a lengthy report is appended
to a print file by an applicaton, selected pages may be printed
and reviewed when deciding whether or not to print the entire
report.

The following is a reasonable organization for a print file (assuming
your APL implementation allows APL files or a reasonable emulation):

Component Description

1 to 10 (latent, i.e. empty character matrices: 0 Op")

9+2xI Character matrix (or character vector with embedded
newline characters) representation of page I (1,2,3, ...)
of the report. When displayed, the array will require no
more lines than can be accomodated by the paper on which
the page is to be printed (typically 66, i.e. 6 lines per
inch on paper which is 11 inches high).

10+2xI One column all blank character matrix with as many rows
as are required at the bottom of page I to reach the
bottom of the paper (typically 66 minus the number of rows
in	 the matrix stored in component 9+2xI).

The first 10 (latent) components are included in case your
implementation has a remote (batch) high-speed line printer
capability. Typically, these batch facilities require several
control components at the beginning of your print file. The precise
significance of these control components is a function of your APL
implementation. Include whatever components are needed in your
environment.

After the first 10 components, the print file is organized into pairs
of components, one pair per page. Two components are used per page
instead of one so that your printfile will not be filled with 80
column (or so) blank rows whose only function is to move the printer
to the top of the next page. In fact, if file storage is a major
consideration, you should break each page into many pieces (some
pieces only one line) so that excess spaces can be omitted. However,
the file organization would then not allow direct access to a page in
the middle of the file since you could not determine the component in
which it begins except by trial and error or by maintaining a
directory.

with this file organization, you can immediately tell how many pages
are on the print file C.5X-10+number of components) and you can
determine exactly where any page is stored (component 9+2xr for page
I).

-153­

Chapter 10 WRITING REPORTS

To send the contents of a print file to a remote (batch) high-speed
line printer, you must follow the directions which apply to that
facility in your environment. However, if you want to print pages on
your local printer (or hardcopy terminal) or just wish to spot-check
pages on your CRT terminal, the following PRINT function may be
useful. To use it, you tie (or otherwise activate) the print file
and provide the tie number (or other file identification) as the
right argument of PRINT. The dialog will then look something like
this:

73 PAGES ON THE PRINTFILE.

BEGIN ON WHICH PAGE (OR END): 25

ALIGN PAPER TO PERFORATION AND PRESS RETURN.

(page 25 prints)

(page 26 prints)

(page 73 prints)

ERASE PAGES? YES

NO PAGES ON FILE.

If you respond YES to the ERASE PAGES? question, all pages on file
will be erased. That is, all but the first 10 components of the
print file will be dropped.

In this function, some attention handling code has been included (for
APL*PLUS or SHARP APL) in case the BREAK key is pressed while the
pages are printing. In that event, the printing immediately stops
and you are again asked for the page number on which to begin.

-154­

Chapter 10	 WRITING REPORTS

[WSID: PRTFILEJ

V PRINT TIE;A;I;N;P;DALX;DPW

[1] A Prints some or all pages in the printfile tied
[2] A to TIE. Pages are in components 11, 13, 15, ...
[3] A APL*PLUS attention handling (put DALX in header):
[4] DALX~'~L1'

[5] A SHARP APL attention handling (put DTRAP in header):
[6] A DTRAP~'V 1000 E ~L1'

[7] A Set print width to avoid APL wrap on long lines:
[8] OPW~250

[9] A Number of pages in the file:
[10] N~CCDFSIZE TIE)[2J-l1)+2 A APL*PLUS
[11] A N~((DSIZE TIE)[2]-11)+2 A SHARP APL
[12] D~(~N),' PAGE',CN=1)!'S ON THE PRINTFILE.'
[13] A Branch if 0, 1 or many pages:
[14] I~1

[15] ~CEND,L2,Ll)[I+NL2]

[16] A Ask for starting page if more than one:
[17] Ll:D~"

[18] ~~P~'BEGIN ON WHICH PAGE (OR END): '
[19] A~(pP)!~

[20] A Reprompt on empty response:
[21] ~(pA)!Ll

[22] A Exit if END entered (even partially):
[23] ~(AA.=(pA)t'END')pL4

[24] A Convert response to numeric and validate:
[25] I~OFI A A Available on APL*PLUS and SHARP APL
[26] ~((1=pI)AA/IElN)pL2

[27] D~'** INVALID PAGE NUMBER.'
[28] D~'** VALID PAGE NUMBERS ARE 1 THROUGH ',(~N),'.'

[29] D~'** TYPE' 'END" TO STOP PRINTING.'
[30] ~Ll

[31] A Align paper:
[32] L2:~~P~'ALIGN TO PERFORATION AND PRESS RETURN.'
[33] A~CpP)!~

[34] A Exit if END entered:
[35] ~((1~pA)AAA.=(pA)t'END')pL4

[36] A Print page and spacing to next page:
[37] L3:D~DFREAD TIE,9+2xr A APL*PLUS
[38] A L3:D~DREAD TIE,9+2xI ~ SHARP APL
[39] D~DFREAD TIE,10+2XI ~ APL*PLUS
[40] A D~DREAD TIE,10+2xI A SHARP APL
[41] A Branch if more pages:
[42] ~(N~I~I+1)pL3

[43] A Erase pages, if desired:
[44] L4:~~P~'ERASE PAGES? '
[45] ~C'Y'11t(pP)!~)pEND

[46] DFDROP TIE,OL11-CDFSIZE TIE)[2] A APL*PLUS
[47] A DDROP TIE,Ol11-CDSIZE TIE)[2] A SHARP APL
[48] D~'NO PAGES ON FILE. '
[49]	 END:

V

-155­

Chapter 10	 WRITING REPORTS

PROBLEMS:	 (Solutions on page 366)

1.	 Using the HEADINGS function introduced in this chapter, construct
the following set of column headings.

LAST YEAR THIS YEAR GROWTH
--------------- --------------- IN

AVG. TOTAL AVG. TOTAL TOTAL
SALE SALES SALE SALES SALES

_..... ------ ------- ------ ------- ------ ­

2.	 Using the numeric scalar DATE which is today's date in the form

MMDDYY and the numeric scalar PNO which is the current page

number, construct the following set of titles using the TITLES

function introduced in this chapter.

PAGE 17

FINANCIAL SUMMARY
12/15/86

WESTERN REGION

3.	 Given the following numeric matrix,

NMAT

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

how would you format it to appear as follows?

CMAT

1 2 3 4

5.0 6.0 7.0 8.0

9 10 11 12

13.0 14.0 15.0 16.0

17 18 19 20

21.0 22.0 23.0 24.0

-156­

Chapter 11

SYSTEM DEVELOPMENT PROCEDURE

Because APL is so concise, powerful and unrestricted, almost
anyone can toss together an application system. While experience and
discipline are useful to have, they are not essential. This is one
of the reasons why so many APL programmers do not come from
traditional data processing backgrounds. (The other reason being
that prolonged use of COBOL tends to rot the brain.)

If you can solve a problem in APL in one-fifth the time it takes to
solve it using FORTRAN, it follows that you can develop 5 unreadable,
unmaintainable APL systems in the time it takes you to develop one
unreadable, unmaintainable FORTRAN system. To some computer
scientists, this improvement in productivity leads to a new
philosophy of system development: throw-away code. The basic idea
is to write the system fast to get the job done. Then, when
requirements change and the system is no longer adequate, throw it
away and build a new one.

Those who foster the view that APL is the ideal language for writing
throw-away code are those who would like to see APL thrown away.
They also tend to kick their pets.

In many respects, APL is not unlike any other programming language.
System development should be planned, documented and implemented
meticulously. If done properly, the system will be a pleasure to use
and to maintain. If done improperly, the system will be a living
hell for all those associated with it. Documentation will be scarce,
if existent. Code will be mystifying, if readable. The user will be
suicidal, if not homicidal.

A well-developed system, on the other hand, is easy to recognize. It
is easy to use so the user rarely needs to refer to the extensive
user guide. It is reliable and efficient so the technical support
person rarely needs to scan through the readable code or the
extensive technical documentation. The word "enhancement" is used
more frequently than "maintenance" and neither word causes the system
developer to tremble with anxiety.

-157­

Chapter 11 SYSTEM DEVELOPMENT PROCEDURE

In this chapter we describe eight steps which should be part of any
APL system development procedure:

1. Familiarization
2. Specification
3. File design
4. Workspace design
5. User documentation
6. Flow charting
7. coding§ typing, testing
8. Delivery, training

Yes, in that order. Compare this list to the procedure for the usual
throw-away APL system:

1. Coding, typing, testing
2. Delivery, training
3. Familiarization COh! So that's what you wanted!)

I implore you. Please do not dismiss the system development
procedure outlined here without trying it once. The procedure will
increase your productivity, improve the quality of your system and
make the development process more fun. Try it.

TOPIC: Familiarization

During this phase, you become familiar with the problem, not the
solution. Emphasis is on the needs of the user, not the tools of the
programmer.

If a manual system exists and is to be replaced, now is the time to
study the manual system. If there is no manual system, you should
talk with the user and "brain-storm" about an ideal system. Sketch
sample reports and sample input sheets.

Where will the data come from? Is it readily available? will the
value of the system justify the installation and updating of the
data? How much will the data requirements of the system grow? will
the system need to supply data to other computer systems? How
frequently will reports be generated? Who will use them and why?
How often will the report formats change? What is the expected life
of the system?

The unasked questions which should permeate your thinking are: Is
this system feasible? Does the user have a clear picture of what
such a system will be like and how it will interact with the

-158­

Chapter 11 SYSTEM DEVELOPMENT PROCEDURE

organization? Is the value of the finished system going to justify
the time and effort required to develop it?

The familiarization phase could also be called the feasibility phase.

The phase is complete when both you and the user have a clear
qualitative understanding of how the system should operate, and are
both convinced that the system is a good idea.

TOPIC: Specification

At the heart of the word "specification" is the word "specific".
That is what the specification phase is all about: getting
specific. Put in writing all the details which define the system.

Bear in mind during this phase that any system has three major
aspects: input, processing, output.

Input: What data items must be supplied to the system? Are there
other items which are not needed now but may be needed later? How
many records of data items will the system contain? How fast will it
grow? From what different sources will the data come? How
frequently? What is the exact record layout of any data from
external media (e.g. computer tape)? What is the exact layout of the
input sheets used to manually enter data? How clean will the data
be? What data integrity checks must be performed (e.g. salary must
be a positive integer less than 50,000)? What inter-data
restrictions must be imposed (e.g. date-of-hire must be earlier than
date-of-termination)?

Processing: What data items must be computed from input data items?
with what formulas? What regular processing operations are to be
conducted? How frequently? What steps are involved in these
operations? How often will these steps change and how dramatically?

Output: What reports will need to be generated by the system? How
frequently? What is the exact layout of each report? How is each
report item derived from the input and computed data items? How
often will the report formats change and how dramatically? will
other areas need access to certain data items? In what format?

The specification phase is complete when you have a written document
(the "specification") which so thoroughly and specifically describes
the system that, ideally, it could be given to any expert programmer
who could then develop the system without conferring with the user.

-159­

Chapter 11 SYSTEM DEVELOPMENT PROCEDURE

TOPIC: File Design

During this phase, you draw pictures of alternative file designs.
You then consider the pros and cons of each design given the input
and output requirements of the system.

How many file accesses are required to add one record? To add 100
records? To change a few items on one record? On 100 records? To
delete one record? To delete 100 records? To display the entire
contents of one record? Of 100 records? To search the entire file
for records which match a set of logical criteria? To generate each
of the reports included in the specification? How often will each of
these operations be performed? will the cost and response time
resulting from these file accesses be acceptable?

The file design phase is complete when the structure of each file,
including its name, is completely documented in written form.

TOPIC: Workspace Design

During this phase, you sketch sample terminal sessions. The terminal
sessions illustrate the actual operation of the system including
system prompts and typical user responses.

You should work closely with the user during this phase since the
user must live with the system interaction being designed now.

Begin with a general flow chart of the operations to be performed by
the system. Break the flowchart into functional blocks, each of
which will be implemented as a single APL function. Then, for each
function, write down the dialog (sample terminal session) produced by
the function.

Does the dialog allow for all required input? Does it provide
control of every processing step? Can any and all reports be
requested easily? Can the user gracefully exit the system from
anywhere without losing any input? Can the user quickly navigate
among the most commonly used operations of the system? Are the
prompts meaningful? Does the prompting structure allow for optimal
use of the files, given their design?

-160­

Chapter 11 SYSTEM DEVELOPMENT PROCEDURE

The workspace design phase is complete when sample terminal sessions
have been sketched for all contingencies and the user accepts the
flow of the system without reservation. The major functions of the
system are identified named and documented in general terms. The9

file design is updated if necessary.

TOPIC: User Documentation

User documentation may be written before or after the system is
implemented. It is better to write it before. The only reason for
writing the documentation after the system is built is that you may
be able to talk the user out of any documentation at all. Not a
noble reason.

By writing the user documentation before the system is implemented,
you will find that the documentation is much easier to write (fewer
constraints) and the system is easier to implement. For example,
before implementation you can write, "Type STOP at any time to
terminate the system." After implementation you must write, "Type
STOP to terminate the system when adding records; type END when
generating reports; type HALT when closing the accounting period; and
type O-backspace-U-backspace-T if none of these works."

If you have never documented a system before implementing it, you may
be reluctant to try it now. Please! Please try it! It will make
the overall system development task easier and will result in a
better system. rt's more fun too. Try it once. What can it hurt?

The user documentation is an instruction manual which explains to an
inexperienced user how to use the system. It begins with an
explanation of the purpose of the system and any background
information required to understand the system. After the
introduction, the manual consists mainly of the sample terminal
sessions along with comments explaining the various options. After
reading a well-written manual, the user should be able to use every
facet of the system without help from you.

As you write the manual, you should update the specifications and
file design if such change is suggested by the documentation
process. The user documentation phase is complete when the manual
has been read by the user and accepted without reservation.

-161­

Chapter 11 SYSTEM DEVELOPMENT PROCEDURE

TOPIC: Flow Charting

During this phase, you will diagram the program logic which underlies
each of the major functions identified during the workspace design
phase. You will do this with the documented file structure on one
side of your desk and the user documentation on the other side.

The flow charting phase can be called the "divide and conquer"
phase. Divide each major function into the general steps which it
must perform. Then divide the general steps into more specific
steps. continue in this fashion until the steps can be translated
directly into APL code.

During this subdivision process, you will identify common steps which
are required in several locations of the system. If such steps are
not at the low level in which they may be translated into APL code,
you may choose to label these steps as subfunctions and write their
comprising steps but once. As you identify each subfunction, you
should name it, define its syntax, list the variables and functions
which are global to its operation and write a brief description of
what it does. This will become a permanent part of the technical
documentation.

The flow charting phase is complete when coding is all that remains.
You will have written descriptions of all functions, subfunctions and
global variables. You will have flow charts which diagram every
logical step during the use of the system. The steps will be
described at such a precise level of detail that they may be
translated directly (without much logical reasoning) into APL code.

TOPIC: Coding, Typing, Testing

without having written a symbol of APL code or pulled your chair up
to your APL terminal, you are more than half done with the system.
The user has been getting constant feedback from you, has a user's
manual on his or her desk and has complete confidence in your ability
to deliver the exact system needed. All this without a symbol of APL.

If you do not know APL, now is the time to learn it. Quickly.

During the coding, typing, testing phase, you do just that. The
three tasks are clumped together because they need not each be
performed to completion before starting the next task. For example,
you may want to code 5 or 10 functions, type them, test them and
repeat this process for the next 5 or 10 functions.

-162­

Chapter 11 SYSTEM DEVELOPMENT PROCEDURE

While it is possible to code the entire system before typing a single
keystroke, there are disadvantages to such extreme behavior. For one
thing, a coding flaw will not be picked up until you begin testing.
You may have made the same mistake dozens of times throughout the
system. Second, when you are testing the code, you may not remember
your intentions in a difficult piece of code. Finally, if doing
nothing but writing code for 3 weeks does not drive you crazy, then
doing nothing but typing APL code for 3 days will. And if that does
not, then 2 weeks of testing will.

At the other extreme, you may choose to code, type and test one
function at a time. There are disadvantages to this mode of
programming. Some design flaws will not be uncovered until you get
further into the system. Such flaws may require you to rewrite or
scrap functions written earlier. Any time spent typing or testing
now obsolete code will have been wasted.

The coding, typing t testing phase is complete when everything is
tested and you are ready to turn the system over to the user.

TOPIC: Delivery, Training

During this phase t you will transfer the system from your control to
the user's control. You will initialize any files which have not yet
been initialized and will move the workspace or workspaces to the
user's library if they need to be moved.

When the system is ready to roll, you will meet with the user to take
a spin. Having read the user documentation (and helped you design
the dialogl t the user should require little guidance or training from
you. As the system is tested, you will need to make two lists. The
first list refers to bugs which are encountered. If your testing
process was careful and thorough, this list will be empty.

The second list refers to suggested enhancements to the system.
There is nothing like a live system to suggest what is wrong with
it. The user will be happy to mention these. since you worked
together closely to design and document the system, you will not be
blamed for delivering an imperfect system. Rathert you will be
commended for delivering what you agreed to deliver.

The delivery and training phase is complete when the user accepts the
system as is. If there are enhancements to be made to the system t
you should implement them as you did the system: familiarization t

-163­

Chapter 11 SYSTEM DEVELOPMENT PROCEDURE

specification, file design, etc. For simple enhancements, you may
get through all the phases in a few minutes. Do not forget to update
the technical and user documentation.

-164­

Chapter 12

PROGRAMMING STANDARDS

The reason for programming standards is to create a conformist
world in which every programmer thinks and programs the same way.
What these programmer clones lose in creativity they more than make
up in productivity. After all, when picking up a program written by
Clone A, Clone B has no trouble reading it. Not only is the language
familiar; so too is the dialect and the handwriting.

The purpose of this chapter is to present a set of APL programming
standards. They are not presented as the perfect set nor even as the
author's preferred set. Rather, they are a set. pick and choose as
they suit you. The important thing here is that the set you choose
be accepted by all those in your organization who will work on the
same systems as you.

The standards are organized by the phases of the system development
procedures presented in the prior chapter. Along with the dogma of
each standard is a brief justification for it. If the justification
is omitted, you may assume it is, "To improve readability by use of
consistent conventions."

TOPIC: Familiarization

1-1 Select, or have appointed, another programmer to review your
work.

WHY:	 To spot design and logic flaws and otherwise help you see the
forest from the trees. This is also one of the best ways to
learn new design and programming techniques.

-165­

Chapter 12	 PROGRAMMING STANDARDS

1-2 Make certain a single user has been assigned the responsibility
of working with you.

WHY:	 You need a single person to accept your design and to be held
responsible for it.

TOPIC: Specification

2-1	 Include hand drawn input sheets and full-screen input forms.

WHY:	 To insure that you and the user and you see input

requirements eye to eye.

2-2 Include hand drawn reports containing exact headings, line names
and number formats.

WHY:	 To insure that you and the user and you see output

requirements eye to eye.

2-3	 Have someone else review the specification.

TOPIC: File Design

3-1	 All file components are assigned a meaningful variable name
(first letter underscored) which is used when the component is read
into the workspace.

WHY:	 To help anyone reading the code to identify objects from file.

3-2 The file directory, if there is one, is stored in component 1 of
the file.

3-3 On-line file documentation, if any, is stored in component 2 of
the file.

-166­

Chapter 12	 PROGRAMMING STANDARDS

3-4 Leave at least 10 latent (empty vector) components at the start
of the file for future design modifications.

3-5 Files are documented on paper (preferably using word processing
software) and include the component number, variable name, shape and
description of each object in the file.

3-6	 Have someone else review the file design.

TOPIC: Workspace Design

4-1 Along with each user prompt, list all possible error messages in
the sample terminal sessions.

WHY:	 To insure consistent error messages.

4-2 Use the following standard user keywords when needed:

ADD: Add more data to database.

CHANGE: Replace an existing value with another.

DELETE: Remove data from database.

SHOW: Display data from database.

INSERT: Add more data among existing data in a database where
order of data is important.

END:	 Normal termination of the current phase of the program.

HALT: Terminate program abruptly and compeltely.

WHY:	 To be consistent so the effect of various responses to a
prompt can be anticipated.

-167­

Chapter 12	 PROGRAMMING STANDARDS

4-3 The system is invoked by loading an autostarted workspace Cusing
DLX). The functions do not return to immediate execution mode until
the system is terminated. All input is accepted via character input
(~) mode or full-screen input mode rather than evaluated input CO)
mode.

WHY:	 To eliminate the possibility of accidentally invoking
non-user functions or of getting APL system error messages
(e.g. SYNTAX ERROR).

4-4 Applications are terminal independent unless special features
are expressly desired.

WHY:	 To allow switching from one terminal to another without
requiring program modifications.

4-5 All reports are directed to a printfile rather than to the
terminal. The contents of the printfile must be displayed in a
separate step.

WHY:	 To allow easy, inexpensive report restarting in the event of
line noise, line drop, printer malfunction or complete
crash; to allow reference by page number when printing; to
allow flexibility in directing reports to terminal, line
printer or remote printer.

4-6	 Have someone else review the workspace design.

TOPIC: User Documentation

5-1 Include all possible prompts in the documentation, along with
descriptive text.

WHY:	 To ease the transition from text to terminal.

5-2 Write the documentation using whatever word processing software
is commonly used in your department or company.

WHY:	 To insure professional appearance of documentation; to allow
quick, easy modifications; to ease the transfer of system
support since the same word processing software is used by
all.

-168­

Chapter 12	 PROGRAMMING STANDARDS

5-3 If the dialog or options of the system are necessarily
complicated, include a brief summary of the workspaces, functions,
keywords, choices, and so on for quick reference.

WHY:	 So the user does not have to thumb through the lengthy
documentation.

5-4	 Include a complete Table of Contents.

5-5	 Have someone else review the documentation.

TOPIC: Flowcharting

6-1 The purpose of each function is documented in a one-sentence
description, including the function syntax and its dependence upon
global variables and subfunctions. All functions have meaningful
names or abbreviations.

6-2 The purpose of each global variable is documented in a
one-sentence description.

6-3	 Functions with same names in different workspaces are identical.

6-4 Subfunctions are chosen judiciously. They have well defined
arguments, produce well defined results or effects and require or
create a minimum number of global variables or other subfunctions.
The state indicator does not get deeper than 5 levels.

WHY:	 All user defined functions call other functions Cat a
minimum, APL primitive functions). The key to readability is
that the subfunctions can be understood without reference to
further documentation. If there are too many subfunctions
and they are not neatly defined, the reader will spend too
much time flipping back and forth among function listings
instead of reading code. The state indicator in the human
brain can generally go no deeper than 5 levels without losing
track.

-169­

Chapter 12	 PROGRAMMING STANDARDS

6-5	 Flowchart using words and diagrams, not APL code.

WHY:	 To compel the programmer to organize her thoughts and plans
before getting bogged down in coding details. If coding is
all that remains, flowcharting is done.

6-6	 Include all error checks in flowchart.

WHY:	 To remember them when coding and to not underestimate the
complexity of the function.

6-7	 Have someone else review the flowcharts.

TOPIC: Coding, Typing, Testing

7-1 All workspaces contain the global variable <wsid> which contains
the workspace identification (WSID) of the saved workspace.

7-2 All workspaces contain the global variables <fnums> and <fnames>
which contain the file numbers and file names of the files which are
assumed to always be tied.

7-3 File tie numbers are assigned to global variables whose
meaningful names are prefixed with 'f' (e.g. fSMRY, fEMPL). These
variables reference files which mayor may not be tied (see
<fnums». The tie number of the printfile is assigned to fPRINT.

7-4	 The name of the printfile is 'PRINTFILE'.

7-5 All workspaces contain the function TIEFILES which ties those
files in <fnums> and <fnames>.

7-6 Workspaces which alter their DLX contain the global <Ix> which
is assigned the original value of DLX.

7-7 Variables global to the workspace have meaningful names and are
completely underscored (except for global variables containing file
tie numbers).

-170­

Chapter 12	 PROGRAMMING STANDARDS

7-8 Variables from file and localized variables used globally by
other functions have meaningful names and have their first character
underscored.

7-9 Functions on file, like variables on file, have meaningful names
with the first character underscored.

7-10 Strictly local variables (localized and not used within
subfunctions) contain no underscores in their names. Meaningful
variables have meaningful names or abbreviations. Temporary,
intermediate or useless (e.g. from DEX) results are assigned to
single letter variable names and are not used further than 5
statements beyond the assignment.

7-11 The meaning of a variable is commented when first assigned
unless the comment is the name, or the variable is read from a
documented file, or the meaning can be inferred from a prompt.

7-12 The first line or two of every function is a comment which
explains the purpose and syntax of the function, and lists the global
variables and subfunctions required by the function.

7-13 When calling a subfunction, include a comment which lists the
global variables and subfunctions required by the subfunction.

7-14 The intent of every function line is commented.

WHY:	 To help the program maintainer quickly locate and decipher
code which needs fixing or enhancing. Writing code is the
process of converting the intent to the code. Reading code
is the process of attempting to reconstruct the original
intent based on the code. Since the intent is obvious during
coding, it can be included in a fraction of the time (and
mental effort) it would take to reconstruct it later. Lines
that contain prompts or error messages are often
self-commenting. Examples of comments which unsuccessfully
and successfully comment the intent:

~ Squeeze out the flagged rows of the matrix. (no good)
~ Ignore inactive profit centers. (good)

~ Set DELX to capture error messages. (no good)
~ Prepare for file reservation errors. (good)

A Increment and repeat if not done. (no good)
A Loop by region. (good)

-171­

Chapter 12	 PROGRAMMING STANDARDS

7-15 Line labels are Ll, L2, L3, ... and are kept in ascending order
even	 if not sequential. Significant labels, which segment the
function or identify key steps, may have meaningful names. For
example:

~('ACDE'=ltR)/ADD,CHANGE,DELETE,END

7-16 Branching is always to a line label or empty vector (never ~o

or ~).

WHY:	 Without -+0, the program must exit through its "bottom" which
is better style than having many exit points. For example,
you may be certain that a statement added to the end of a
function will always be executed. The use of naked branch
(-+) removes control from cover functions which may call the
function.

7-17 Recommended branching techniques are:

-+LABEL

-+CONDITION/LABEL

-+CONDITIONS/LABELS

-+CONDITIONtLABEL

-+LABELS[INDEXJ

-+CONDITION~LFALSE,LTRUE

7-18 Recommended looping technique is:

I~l

LOOP:~ENDLOOP IF I>LIM

process I

I~I+l

-+LOOP

ENDLOOP:

7-19 Use -2147483647 for numeric values which are "not applicable";
assign this constant to the variable <huge> if used frequently.

7-20 All output to the terminal is through 0 or~. For example:

D~'ENTER YOUR CHOICE'

WHY:	 To help locate all terminal output if the need arises (e.g.
to direct output to a file) and to improve readability (e.g.
D~PROCESS MAT vs. PROCESS MAT).

-172­

Chapter 12	 PROGRAMMING STANDARDS

7-21 Evaluated input mode CO) is not used.

WHY:	 To avoid unintentional escapes via)LOAD or)OFF, to avoid
unintentional execution of defined functions, and to avoid
technical error messages (e.g. SYNTAX ERROR) to the user.

7-22 Maintain 010=1 globally. Localize 010 if assigned as o.

7-23 The local result variable is used only for the result and not
for temporary values.

WHY:	 To avoid unintended results upon premature function
termination and to avoid confusion when reading the function.

7-24 The local argument variables are never reassigned except to
ravel them.

7-25 Every function line is restartable. That is, no other
functions should be performed on the same function line once a
function has been executed whose effect should not be repeated. For
example, T~2+V~V,R is unrestartable.

WHY:	 So that any function line may be restarted from its beginning
after it has been stopped, say by an error. For example, the
following suspension cannot be properly restarted via ~3

since V will have been extended twice:

WS FULL
MODEL[3J T~2+V~V,R

A

7-26 Error messages or other error handling logic immediately follow
detection. For example:

[10] ~(X>O)/L2

[11] D~'** VALUE MUST BE POSITIVE'
[12] ~L1

[13] L2: etc.

WHY:	 To avoid having to search through the function to find the
code which handles each error condition.

7-27 Lines containing multiple statements perform a single, logical
operation.

-173­

Chapter 12	 PROGRAMMING STANDARDS

7-28 All error messages are passed through an error-displaying
function named ERRMSG.

WHY:	 To allow consistent presentation of error messages (e.g.
preceding them by two stars or beeping twice or displaying in
a specified position on the screen). To enable you to find
all error messages for inclusion as an appendix in the user
manual.

7-29 Testing is performed methodically by stopping on every function
line, not experimentally (i.e. by jumping from bug to bug).

7-30 Test all edge (e.g. empty vector) conditions.

7-31 Have someone else review the code.

TOPIC: Delivery, Training

8-1 The contents of all workspaces are documented using whatever
workspace documentation software is commonly used in your department
or company. This software produces a printed, paged listing of the
definitions of all functions and at least the names and shapes of all
global variables.

8-2 Functions are not locked unless you have a significent reason
for doing so.

-174­

Chapter 13

WORKSPACE DESIGN AND DOCUMENTATION

For a given computer application~ two different programmers will
design and implement it differently. In fact~ a single programmer
will develop the application diffqrently at different times in her
own career. Because of the flexibility of APL 9 a spectrum of
approaches are both possible and feasible for any problem. How then
is one to choose between plausible approaches when designing an
application system? In this chapter, we discuss workspace design and
documentation considerations. The aims are to expand your
appreciation of the trade-offs involved during the design process 9

and to help you document an existing application.

PROBLEM:	 Develop an application which will maintain a list of
employees. For each employee, maintain the employee's
number C4 digits), name Clast name first) and age. Do not
use files for this application. Rather 9 store the
information in the global variables ENUM (integer vector),
ENAME (25 column character matrix) and EAGE (integer
vector). Provide capabilities for adding 9 deleting and
listing employees.

TOPIC: Subfunction Design

As simple as this application iS 9 no two programmers will develop it
exactly the same way. The most pronounced difference between
solutions is the degree to which subfunctions are employed. At one
extreme, a single function is written which calls no subfunctions.
At the other extreme 9 a primary (or main or cover or driver) function
is written which calls a variety of subfunctions which in turn call
subfunctions and so on as desired.

-175­

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

The following is an illustration of the APL code written to implement
the application as a single function.

[WSID: FLFJ
v EMPLOYEES;AGE;G;GOOD;NAME;NUM;P;R

[1] R Ask for choice on same line:
[2] CHOOSE:~~P~'ADD, DELETE, LIST OR END: '
[3] R~(pP)!~

[4] R Branch based on 1st char of response:
[S] ~('ADLE'=liR)/ADD,DELETE,LIST,END

[6] O~'** INVALID CHOICE. CHOOSE FROM: ADLE'
[7] ~CHOOSE

[8] R
[9] R

[10J ADD:D~'EMPLOYEE NUMBER COR 0 IF DONE)'

[11] NUM~,D

[12] A continue if exactly 1 number entered:
[13] ~(1=pNUM)/A1

[14] D~'** ENTER 1 NUMBER'
[IS] ~ADD

[16] R Branch to choice question if 0 entered:
[17] A1:~(O=NUM)/CHOOSE

[18] R continue unless employee number already exists:
[19] ~(NUMEENUM)tA2

[20] D~'** EMPLOYEE ',(~NUM),' ALREADY IN LIST'
[21] ~ADD

[22] A2:~~P~'EMPLOYEE NAME (MAX 25 CHARACTERS): '
[23] ~ Ask for name at end of same line:
[24] NAME~(pP)t~

[25] ~ continue unless name too long:
[26] ~(2S~pNAME)/A3

[27] D~'** NAME TOO LONG'
[28] ~A2

[29J A3:D~'EMPLOYEE AGE'
[30] AGE~,D

[31] A continue if exactly 1 number entered:
[32] ~(1=pAGE)/A4

[33] D~'** ENTER 1 NUMBER'
[34] ~A3

[35] ~ Continue if a valid age:
[36] A4:~((AGE=rAGE)A(AGE~17)AAGE~99)/A5

[37] D~'** AGE MUST BE INTEGER FROM 17 TO 99'
[38] ~A3

[39] ~ Catenate new values and ask for more:
[40J A5:ENUM~ENUM,NUM

[41] ~ Pad name to length 25:
[42] ENAME~ENAME,[1]25tNAME

[43] EAGE~EAGE,AGE

[44] ~ADD

[45] A
[46] A
[47] DELETE:D~'ENTER EMPLOYEE NUMBERS TO DELETE'
[48] A Ravel to insure a vector not scalar:9

[49] NUM~,D

-176­

Chapter 13	 WORKSPACE DESIGN AND DOCUMENTATION

V EMPLOYEES (continued)
[50] R	 continue if all valid numbers:
[51]	 4(A/GOOD~NUMEENUM)/Dl

[52]	 D~'** NOT FOUND: ' 9~(~GOOD)/NUM

[53]	 4DELETE
[54] A	 Flag those employees to keep:
[55] D1:GOOD~~ENUMENUM

[56] R	 Squeeze out deleted employees:
[57]	 ENUM~GOOD/ENUM

[58]	 ENAME~GOODfENAME

[59]	 EAGE~GOOD/EAGE

[60]	 4CHOOSE
[61] R
[62] R
[63] LIST:D~'NUMBER AGE NAME'
[64]	 D~"

[65] R	 Prepare to sort employees by number:
[66]	 G~.ENUM

[67] A	 Sort and display:
[68]	 D~(5 0 7 0 ~ENUM[G]9[1.5]EAGE[G]),(((pENUM),3)p' '),

ENAME[G;J
[69]	 D~"

[70]	 ~CHOOSE

[71] A

[72] A
[73] END:

V

The following is an illustration of the APL code written to implement
the application in highly subfunctionized fashion. EMPLOYEES is the
driver function.

[WSID: MSF]
v ADDEMP;AGE;NAME;NUM

[1] A1:NUM~NINPUT 'EMPLOYEE NUMBER COR 0 IF DONE)'
[2] A	 Exit if 0 entered:
[3]	 -+0 IF Q=NUM
[4] A	 Continue unless employee number already exists:
[5]	 ~A2 UNLESS NUMEENUM
[6]	 O~'** EMPLOYEE ' 9(~NUM),' ALREADY IN LIST'
[7]	 -+A1
[8] A2:NAME~CINPUT 'EMPLOYEE NAME (MAX 25 CHARACTERS): '
[9] A	 continue unless name too long:
[10]	 -+A2 IFC25<pNAME)MESSAGE ,** NAME TOO LONG'
[11] A3:AGE~NINPUT 'EMPLOYEE AGE'
[12]	 ~A3 IFCCAGEtrAGE)vCAGE<17)vAGE>99)MESSAGE ,** AGE MUST

BE INTEGER FROM 17 TO 99'
[13] A	 Catenate new values and ask for more:
[14]	 CATEMP
[15]	 -+Al

V

-177­

Chapter 13	 WORKSPACE DESIGN AND DOCUMENTATION

[WSID: MSFJ
V CATEMP

[1] ENUM~ENUM,NUM

[2] R Pad name to length 25:
[3] ENAME~ENAME RCAT NAME
[4]	 EAGE~EAGE,AGE

v

[WSID: MSFJ
V R~CINPUT PROMPT

[1] R Display prompt and ask for response on same line:
[2] rl~PROMPT

[3]	 R~(pPROMPT)~~

V

[WSID: MSFJ
v DELEMP;GOOD;NUM

[1] Ll:D~'ENTER EMPLOYEE NUMBERS TO DELETE'
[2] R Ravel to insure a vector, not scalar:
[3] NUM~,O

[4] ~ Continue if all valid numbers:
[5] ~L2 IFA/GOOD~NUM€ENUM

[6] D~'** NOT FOUND: ',~(~GOOD)/NUM

[7] ~Ll

[8] R Flag those employees to keep:
[9] L2:GOOD~~ENUMENUM

[10] A Squeeze out deleted employees:
[11] SQZEMP GOOD

V

v EMPLOYEES;R
[WSID: MSFJ

[1] R Ask for choice:
[2]
[3]

CHOOSE:R~'ADLE' SELECT 'ADD,
A Branch based on response:

DELETE, LIST OR END: '

[4] ~(ADD,DELETE,LIST,END)[R]

[5] R

[6] ADD:ADDEMP
[7] ~CHOOSE

[8] A
[9] DELETE:DELEMP
[10] -+CHOOSE
[11] A

[12] LIST:LISTEMP
[13] ~CHOOSE

[14] R
[15]	 END:

v

-178­

Chapter 13	 WORKSPACE DESIGN AND DOCUMENTATION

[WSID: MSFJ

v R~LINE IF CONDITION

[1]	 R~CONDITION/LINE

v

[WSID: MSFJ

v LISTEMP;G

[1]	 D~'NUMBER AGE NAME'
[2]	 O+-' ,
[3] R Prepare to sort employees by number:
[4]	 G~.ENUM

[5] A Sort and display:
[6]	 D~(5 a 7 a ~ENUM[G],[1.5]EAGE[G]),(((pENUMJ,3)p' '),

ENAMEEG;]
[7]	 O+-' ,

v

[WSID: MSF]

V R+-CONDITION MESSAGE CVEC

[1]	 R+-CONDITION
[2]	 ~O UNLESS CONDITION
[3]	 D+-CVEC

v

[WSID: MSFJ

v R+-NINPUT PROMPT

[1] L1:D~PROMPT

[2] A Ravel response to insure a vector, not scalar:
[3]	 R~,D

[4] R Exit if exactly 1 number entered:
[5]	 ~L1 IF(11pRJMESSAGE '** ENTER 1 NUMBER'

v

[WSID: MSFJ

V R+-M RCAT V

[1]	 R+-M,[l](l!pMJiV
v

[WSID: MSFJ

v IND~CHOICES SELECT PROMPT;R

[1] R Ask for choice:
[2] ASK:R+-CINPUT PROMPT
[3] A Search vector of choices for 1st char of response:
[4J IND~CHOICESl1tR

[5] A Ask again if not a valid choice:
[6J ~ASK IFCIND>pCHOICESJMESSAGE '** INVALID CHOICE.

CHOOSE FROM: ' ,CHOICES
v

-179­

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

[WSID: MSFJ
v SQZEMP BIT

[1] ENUM~BIT/ENUM

[2] ENAME~BITfENAME

[3] EAGE~BIT/EAGE

v

[WSID: MSF]
V R~LINE UNLESS CONDITION

[1] R~CONDITION!LINE

v

By any measure, this sample application is tiny. Yet the advantages
and disadvantages of these two extreme approaches emerge even ln an
application of this size. As the application grows, the differences
become more important, even critical. For easy reference, we will
use the abbreviations FLF (few large functions) and MSF (many small
functions) to refer to the two extreme approaches illustrated above.
Let us discuss the pros and cons of each. These considerations
should be kept in mind when developing an application system so that
the cons are minimized.

1. utility Functions

A util~ty function is a usually small (under 20 statements)
subfunction which performs a common task and which usually gets its
inputs entirely from its arguments (vs. from global variables) and
returns its outputs as an explicit result. A well designed utility
function will resemble a primitive APL function in its behavior.
Some examples of the application of utility functions in the
illustrations above include:

~A2 UNLESS NUMeENUM

~A2 IF (25<pNAME) MESSAGE '** NAME TOO LONG'

NAME~CINPUT 'EMPLOYEE NAME (MAX 25 CHARACTERS): '

The FLF approach avoids the use of utility functions while the MSF
approach uses them generously. This is a pro for MSF and a con for
FLF. utility functions provide two distinct advantages, both of
which improve programmer productivity. The first is that a utility
function can replace several lines of common code, allowing you to
write and test code faster. For example, compare the following:

-180­

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

AGE~NINPUT 'EMPLOYEE AGE'

vs.

Ll:D~'EMPLOYEE AGE'
AGE+-, °
-+(!=pAGE)/L2
0+-'** ENTER 1 NUMBER'
-+Ll

L2:

The second advantage is that utility functions can improve code
clarity, allowing you to read code faster. For example, compare the
following:

-+A2 UNLESS NUMeENUM

VS.

-+(NUMEENUM)!A2

or -+(~NUMeENUM)/A2

2. Global Changes

After coding and testing an application, you may be asked by the user
to make a change which is pervasive. For example, "Remove the dollar
signs from all the numbers being displayed," or "Precede all error
messages by a 10 space indent and 3 stars," or "When prompting for
numbers, await the response on the same line as the prompt." If you
have taken the MSF approach and have used your subfunctions
consistently, you may be lucky enough to only have to change a single
function. For example, if all error messages are being displayed
within a subfunction MESSAGE, you may be able to implement the second
request above by changing the line of MESSAGE,

D+-CVEC
to

0+-' ***, ,CVEC

This is a pro for MSF and a con for FLF. However, if you have not
used your subfunctions consistently, much of the advantage will be
lost. For example, if some error messages are being displayed
directly and not within the subfunction MESSAGE, you will be forced
to conduct an extensive search for those messages. This ,is exactly
what you need to do if you used the FLF approach. Since FLF involves
fewer functions than MSG, a slight advantage goes to FLF.

-181­

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

3. Function Size

There exists a school of thought in the community of APL programmers
that the ideal size of a function is a page. No line should be wider
than a page (i.e. 80 characters or so) and no function should have
more lines than will fit on a page (i.e. 50 lines or so). The
rationale for this conviction is that the eye and the brain can
retain no more than a page or so at a time. Further, by confining
each function to a page, the programmer is forced to discern the
forest from the trees. The outline of the program logic is placed in
the higher level function and the detailed logic is included in
subfunctions. The FLF approach violates this standard without
remorse. The MSF approach adheres to it rigorously.

Score one for MSF if you want to see the forest and not the trees.
Score one for FLF if you want to see the forest and the trees. You
can find the trees with the MSF approach but not without leaving the
forest (i.e. flipping to another page).

At any rate, smaller function size is a definite pro for MSF when it
comes to function editing. If you use a full-screen editor, a small
function will fit nicely on a single screen. If you use a
line-oriented editor, a large function will suffer more from line
renumbering (due to line additions or deletions) than will a small
function. For example, if line 15 of a 300 line function is deleted,
285 lines will be renumbered and may need to be reprinted. If line
15 of a 30 line function is deleted, only 15 lines will be renumbered.

4. Self-Containment

The issue of self-containment becomes most obvious when you load the
workspace and explore its contents. For FLF:

)FNS
EMPLOYEES

For MSF:

)FNS
ADDEMP CATEMP CINPUT DELEMP EMPLOYEES IF
LISTEMP MESSAGE NINPUT RCAT SELECT
SQZEMP UNLESS

If you decided to merge this application with another, it will be
easier to accomplish with the FLF approach. Since the entire
application is contained within a single function, the application
can be moved about (copying or erasing) as easily as moving the
function. with the MSF approach however, you need to be careful that
name conflicts (i.e. functions with the same name in two different
applications) do not exist.

-182­

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

For example, if you copy the above MSF functions into another
application workspace in which a different SELECT function is
defined, one of the two SELECT functions will be erased (depending on
whether COpy or peopy is used). Likewise, if you then erase the
above MSF functions from the merged application workspace, the
remaining application may no longer work without the IF or CINPUT
functions.

Finally, any good written technical documentation will include at
least a brief description of each function in an application. The
task of writing that documentation is considerably simpler for FLF
than for MSF since there are fewer functions to document.

5. Global Passing

Another school of thought in the community of APL programmers states
that global variables should be avoided as much as possible. Data
should be passed to functions as arguments. There are three reasons
for this view:

A. Less confusion. When you are reading a function and you encounter
an undocumented global variable your reading flow is interrupted.9

What is this variable? Where did it come from? Did I just overlook
its assignment? Did the programmer just forget to localize it in the
header? Is it a niladic function and not a variable at all? Is it
global to this function and assigned outside of it or is it local to
this function and assigned within a subfunction to which it is global?

B. Less documentation. To alleviate some of the confusion associated
with the use of global variables, you should document a global
variable at two points: in the first few lines of any subfunction
which requires the global variable; and at the point where any
subfunction is called which requires the global variable. For
example, the ADDEMP and CATEMP functions defined above should include
the following comments:

V ADDEMP

[0] A Catenate new values and ask for more:
[0] A (Requires globals: NUM,NAME,AGE)
[0] A (Modifies globals: ENUM,ENAME,EAGE)
[0] CATEMP

V CATEMP
[1] A Called by ADDEMP.
[2] A Requires globals: NUM,NAME,AGE
[3] A Modifies globals: ENUM,ENAME,EAGE

-183­

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

c. Fewer localization problems. When a system makes extensive use of
global variables, it is easier to forget to localize a variable at
the proper level or to localize it at the wrong level. Poorly
localized variables can cause some of the most mystifying errors.

since the FLF approach has fewer functions then the MSF approach it9

has fewer subfunction calls and less global variable passing. This
is a pro for FLF and a con for MSF.

On the other hand, the MSF approach is easier to employ when you need
to use a new name in a function. It is easy to scan a small function
to see whether a meaningful name has already been used. with FLF 9

you may inadvertently re-use the name of a variable still containing
valuable information.

6. state Indicator Depth

When you pick up a system written by someone else (or written by you
a long time ago), you will most likely start by reading the cover
function and then each subfunction as it is called. In order to
retain the meaningfulness of what is going on, you must maintain a
mental state indicator as you delve into subfunctions. As you finish
reading each sUbfunction, you must remember which function called it
and in what context so that you can flip back to that function and
continue reading. This process is analogous to the procedure
followed by the computer as it is executing the code.

Unfortunately, the human brain cannot maintain its state indicator as
flawlessly as the computer. At a depth of 5 or 6, our memories get
flaky. If the current state indicator is not kept on paper, you may
get lost and have to start again.

In the MSF approach, the state indicator depth grows very rapidly.
Even in the tiny application above, it occasionally gets 5 levels
deep. For example:

UNLESS[lJ *

MESSAGE[2J

NINPUT[5J

ADDEMP[ll

EMPLOYEES[6l

In an MSF system of any respectable size, the state indicator will
occasionally get 10 to 15 levels deep and will average 5 to 9
levels. Such a system is extremely difficult to read until you
become familiar enough with the subfunctions that you know what they
do without looking into them (like primitive APL functions).

The problem of deep state indicators is especially apparent when you
are called upon to handle an error in an unknown MSF system. The
first natural step after generating the error is to check the state

-184­

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

indicator. If the state indicator is 9 levels deep, the next natural
step is to go to lunch.

Having explored some pros and cons of the FLF and MSF approaches,
which should you use? Typically, neither. The most readable and
maintainable system is one which employs a moderate number of
medium-sized functions, each performing a well-defined task. utility
functions which are self-contained and well-documented should be used
generously.

PROBLEM: How is the above application invoked?

TOPIC: starting an Application

In deciding how to start an application, you must first decide
whether or not immediate execution mode will be needed. If so, the
user should load the application workspace and then execute (from
immediate execution mode) whatever functions are user functions (e.g.
EMPLOYEES) .

If immediate execution mode is not needed, which is most often the
case, you should stay out of that mode until the termination of the
application. The main reasons to avoid immediate execution mode are
simplicity and security. The application will be simpler to use if
the user is prompted for choices rather the having to remember the
names of functions. The application will be more secure if non-user
functions cannot accidentally or intentionally be invoked.

To "autostart" an application, you should assign the system variable
DLX (latent expression) to be the name of the desired cover function
before saving the application workspace. For example:

DLX+-'EMPLOYEES'
)SAVE EMPLOYEES

SAVED.....

To initiate the application, the user only needs to load the
application workspace. In some installations of APL, even the
loading step is unnecessary. A workspace may be specified to be
automatically loaded when APL is invoked. In either case, the
expression assigned to DLX will be automatically executed. For
example:

-185­

Chapter 13	 WORKSPACE DESIGN AND DOCUMENTATION

)LOAD EMPLOYEES
SAVED •••••
ADD, DELETE, LIST OR END:

In this simple application, no special steps need to be taken after
the workspace is loaded and before the cover function is executed.
In larger applications, this is less likely to be true. Files may
need to be tied or shared variables activated and global variables
may need to be assigned. In such instances, the value of DLX is more
likely to be 'START' or '~RESTART'.

A typical START function will have the following layout:

[WSID: MSFJ
V START

[1] R Workspace driver function. Used as:
[2] R
[3] R DLX~'START'

[4J R
[5]

[6]
R Display any messages.

D+-' ,
For example:

[7] O+-'WELCOME TO THE EMPLOYEE MAINTENANCE SYSTEM'
[8J D+-' ,
[9] A Assign any global variables. For example:
[10] OPW+-150
[11] fEMP+-345
[12] R Tie any files or share any variables. For example:
[13] 'EMPDATA' OFTIE fEMP
[14] R Read any global variables from file. For example:
[15] ENUM+-DFREAD fEMP,l
[16] ENAME+-DFREAD fEMP,2
[17] EAGE~DFREAD fEMP,3
[18] R Call the cover function. For example:
[19] EMPLOYEES
[20] R Do any followup work. For example:
[21] ENUM DFREPLACE fEMP,l
[22] ENAME OFREPLACE fEMP,2
[23] EAGE DFREPLACE fEMP,3
[24] DFUNTIE fEMP
[25] D~' ,
[26] D~'HAVE A NICE DAY'
[27]	 D~' ,

V

A RESTART function (used as DLX~'~RESTART') performs the same tasks
as the START function but handles "line drops" in those APL
environments which support CONTINUE workspaces. For example, suppose
you are connected via terminal, modem and telephone line to a remote
APL system. If the telephone line is interrupted (say due to
telephone line noise or by accidentally unplugging your modem or
terminal), the APL system will detect the drop and will save your
active workspace into a stored workspace named CONTINUE. When you
next sign on, the CONTINUE workspace will be automatically loaded and

-186­

Chapter 13	 WORKSPACE DESIGN AND DOCUMENTATION

its OLX executed. (In some installations of APL, you may need to
load the CONTINUE workspace manually.)

In such an instance, you do not want to run the START function
again. Rather, you want to redo any steps undone by the drop (e.g.
retie the files or reshare the variables) and then resume execution
at the line on which the function at the top of the state indicator
is suspended. The RESTART function therefore checks the state
indicator (via OLC) and either executes START if there is no
suspension or performs restart logic. The final task performed by
RESTART is to explicitly return the line number of the suspended
function so that execution can resume.

A typical RESTART function will have the following layout:

[WSID: MSF]
V R~RESTART

[1] A Workspace driver function and line drop handler.
[2] A Used as:
[3] A

[4] A OLX~'~RESTART'

[5] A

[6] A Return the line number of any suspended function
[7] A (beyond RESTART):
[8] R~l~DLC

[9] R Remove O's from any ~:

[10] R~CR~O)/R

[11] R Branch if restart logic is necessary:
[12] ~(XpR)/L1

[13] R Otherwise, run START and return R as an empty vector:
[14] START
[15] ~o

[16] R Restart logic. Display any messages. For example:
[17J L1:D~"

[18] D~'EMPLOYEE MAINTENANCE SYSTEM BEING RESTARTED'
[19] D~"

[20J R Tie any files or share any variables. For example:

[21] 'EMPDATE' DFTIE fEMP
[22] R Upon exit, line number result will be branched to
[23] A cif DLX~'~RESTART') and execution will resume at
[24]	 R point of suspension.

v

-187­

Chapter 13	 WORKSPACE DESIGN AND DOCUMENTATION

PROBLEM: write a niladic function QDOC (quick documentation) which
will display the contents of each function in the
workspace, as if you typed Vfnname[O]V for each function,
in alphabetic order.

TOPIC: Function Documentation

The first step is to determine, under program control, which
functions exist in the workspace. The system function DNL (name
list) can be used to this end. When used monadically with the right
argument 3 (for functions), DNL returns a character matrix of the
names of the functions in the active workspace, one row per
function. If your implementation of DNL does not return the names in
sorted order, sort them (see the sorting and Searching chapter).

(Some APL implementations have different system functions for
returning the names of identifiers. For example, APL*PLUS has
DIDLIST and SHARP APL has lOWS. However, these implementations also
support ONL.)

The next step is to display the functions, under program control, one
at a time. Since APL systems generally do not support an expression
like ~'Vfnname[D]V', a system function must be used. The APL*PLUS
system function OVR (visual representation) and the SHARP APL system
function 1 OFD (function definition) both return a character vector
"visual representation" of the function whose name is provided as the
right argument to the system function. The result, when displayed,
looks exactly like the display produced by Vfnname[O]V. This is
possible because the character vector result contains newline
(carriage return) characters at the end of each function line
substring. For example:

v UNLESS[O]V

v R~LINE UNLESS CONDITION

[1]	 R+-CONDITIONJ-LINE

v

CV~DVR 'UNLESS'
pCV

59
CV

V R~LINE UNLESS CONDITION

[1] R~CONDITIONJ,LINE

V

A Replace newline characters by ,~, to see them:
CV[(CV=DTCNL)/tpCV]+-'~'

CV
V R+-LINE UNLESS CONDITION~[l] R+-CONDITION~LINE~ V@

-188­

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

The result of DVR is an empty character vector if the function
specified is locked. For implementations which provide such visual
representation system functions, the solution to this problem is
straightforward:

[WSID: QDOCJ
v QDOC;FNS;1;N;V;OIO

[1] A Displays continuous listing of all functions in ws.
[2] A origin 1:
[3] 010+-1
[4] A Determine functions:
[5] FNS+-DNL 3
[6] R Exclude QDOC from list:
[7] FNS~(FNSv.~(l!pFNS)t'QDOC')rFNS

[8J A FNS~(A/FNsv.~~(2,1!pFNS)t2 5p'QDOC CR~VR')fFNS R APL2
[9] A Sort fn names if not already: FNS~FNS[DAV.FNS;]

[10] A Loop on rows of FNS:
[11] 1+-0
[12] N+-ltpFNS
[13] LOOP:~(N<I~I+l)/O

[14] V+-DVR FNS[1;] A APL*PLUS
[15] R V+-1 DFD FNS[I;] A SHARP APL
[16] R V+-CR~VR OCR FNS[I;] A APL2
[17] A Ignore if function locked:
[18] ~(xpV)J,LOOP

[19] D~V

[20] R Blank line:
[21] Of-' ,
[22] ~LOOP

v

Please note that QDOC will not list functions in the workspace whose
names happen to be the same as any of the local identifiers in QDOC
(e.g. FNS or LOOP). The system function DNL 3 returns the names of
identifiers which are functions at the most local level. Since FNS
is a variable and LOOP is a label at the local level, any global
function with the same name is "shadowed" and will not be seen.
Likewise, OVR (or 1 OFD) returns only the visual representation of
identifiers which are interpreted as functions at the local level.

For implementations which do not provide a visual representation
system function, you must work with the "canonical" (matrix)
representation system function OCR (available in SHARP APL as 2
DFD). The function OCR returns a character matrix representation of
the function whose name is provided as the right argument. The
result has one row per function line (including the header) and as
many columns as the length of the longest function line. The
function lines are not numbered, are left justified within their
respective rows and are padded to the right with blanks. For example:

-189­

Chapter 13	 WORKSPACE DESIGN AND DOCUMENTATION

eMf-OCR 'UNLESS'

pCM

2 23

eM

R~LINE UNLESS CONDITION

R+-CONDITION!LINE

The result of OCR is an empty character matrix if the function
specified is locked.

To write QDOC, we need a function which will convert this canonical
representation result to the more aesthetic visual representation
form. The following function will do the trick:

[WSID: FNREP]
v VR+-CR~VR CR;DIO;C;D;KEEP;L;N;TCNL

[1] R Converts canonical representation of fn to visual
[2] R representation. Return empty vector if CR empty
[3] R Clocked fn):
[4]	 VR+-' ,
[5]	 ~cx/pCR).LO

[6] A Use origin 1:
[7]	 010+-1
[8] R Construct newline character:
[9]	 TCNLf-DTCNL R APL*PLUS
[10] A TCNL+-DTC[2] A APL2
[11] A TCNL+-OAV[157] R SHARP APL
[12] A

[13] A Format header, deleting trailing blanks:
[14]	 VR+-CR[l;]
[15]	 VR+-' V ',(+/v\' '~<t>VR)pVR

[16] A Characters which may begin identifiers:
[17]	 L~'ABCDEFGHIJKLMNOPQRSTUVWXYZ~abcdefghijklmnopqrstuvwx

YZAO'
[18] A First character in each line:
[19]	 C+-CR[;l]
[20] A Flag comment or label lines:
[21]	 D~l~(C='A')V(CEL)Av/(CR=':')A<\~CR€L,'0123456789'

[22] A Drop header and include leading blank column:
[23]	 CR~(l -1 -pCRJtCR
[24] A De-indent comment or label lines:
[25]	 CRf-D<PCR
[26] R Number of lines:
[27]	 N+-lipCR
[28] A Line numbers right justified with right bracket:
[29]	 L+-(((3rp~N),O)~(N,1)plN),']'

[30] A Line numbers left justified, with both brackets
[31] A and newline:
[3 2]	 L+-TCNL,' [, , (L+ . :::' ') <l>L
[33] A Attach line numbers to lines:
[34]	 CR+-L,CR
[35] R Flag trailing blanks to drop from each line:
[36]	 KEEP+-<Pv\' '~<PCR

[37] A Squeeze out trailing blanks:

-190­

Chapter 13	 WORKSPACE DESIGN AND DOCUMENTATION

v CR~VR (continued)
[38] CR~(,KEEP)/,CR

[39] A Include header and trailer:
[40] VR~VR,CR,TCNL,' v' ,TCNL

v

Given the CRAVR function, the QDOC function can be rewritten for OCR
implementations by replacing the lines:

FNS~(FNSV.1(1!pFNS)i'QDOC')fFNS

V~DVR FNS[I;]

in	 the QDOC function above by the corresponding lines:

FNS~(A/FNSV.1~(2,1!pFNS)i25p'QDOC CR~VR')fFNS

V~CR~VR OCR FNS[I;]

PROBLEM:	 Design a function WSDOC (workspace documentation) which will
display the entire contents of the workspace.

TOPIC: Workspace Documentation

One possible solution to this problem is to design a single
self-contained function WSDOC which may be copied into the workspace
to be documented. Since the function is self-contained, it requires
no subfunctions. Therefore, it may be copied into the workspace or
erased from the workspace with minimal impact.

Let's establish the differences between the proposed WSDOC function
and the QDOC function of the previous section:

1.	 The output of WSDOC is paged, not continuous.

2.	 WSDOC is monadic. The elements of its integer vector argument
represent: number of rows per page (usually 66), number of
columns per page (say 85), lines in top margin (say 3), lines
in bottom margin (say 3), columns in left margin (say 5),
columns in right margin (say 5).

-191­

----- -----

Chapter 13	 WORKSPACE DESIGN AND DOCUMENTATION

3.	 At the top of each page is a title which includes the workspace
ID, the current date and time and the page number. For example:

36150 MODEL * 11/15/1986 15:43	 PAGE 4

4.	 The nondefault workspace environment is included at the top of
the first page. The workspace environment includes the latent
expression, the index origin, the print precision, the random
link, the comparison tolerance and any other programmer­
controlled workspace settings. Only those settings are
displayed whose current values differ from those in a clear
workspace. For example:

NONDEFAULT WORKSPACE ENVIRONMENT:

DLX+-'START'

DPP+-12

5.	 After the nondefault workspace environment, the global
workspace variables are listed in alphabetic order, along with
their shapes and up to one line of their raveled values. For
example:

GLOBAL WORKSPACE VARIABLES:

NAME +- SHAPE P VALUE

CODE ~ 'X'
MONTHS ~ 12 9 P 'JANUARY FEBRUARY MARCH ... '

MSG ~ 10 p 'THAT' , S ALL'
TABLE ~ 2 99 15 p 1.016283 1.11984 1.61582 ...

TIE ~ 368

6.	 After the global workspace variables, the function names are
listed in alphabetic order. For example:

FUNCTIONS:

ADDEMP EMPLOYEES NINPUT UNLESS
CATEMP IF RCAT
CINPUT LISTEMP SELECT
DELEMP MESSAGE SQZEMP

7.	 Finally, the lines of each function are displayed as in QDOC.
However, function lines which are too long (for the page width)
are broken into multiple lines with care taken not to break a
line in the middle of an identifier or numeric constant. If a
function will not fit on the remainder of a page, it is started
on the top of the next page. Functions which are longer than
one page are broken into multiple pages with care taken not to

-192­

Chapter 13	 WORKSPACE DESIGN AND DOCUMENTATION

display a long line on more than one page. At the bottom right
corner of each page is a footnote which displays the first and
last functions included on the page. For example:

IF	 ~ SELECT

8.	 All local variables and labels within WSDOC are prefixed by ~~

to minimize the number of variables and functions which are not
recognized because of shadowing.

Let's list the possible problems we may encounter when using such a
self-contained WSDOC function:

1.	 A WS FULL error may occur if there is insufficient available
workspace to copy WSDOC. This problem is greater in
implementations of APL (such as APL2) in which a function is
copied by moving its canonical (matrix) representation. The
canonical representation of WSDOC is quite large if it has a
lengthy header. To get around this problem, you may remove all
local variables from the header and erase all variables
beginning with '~~' on the last line of the function.
Alternately, you may load the WSDOC workspace and copy the
workspace to be documented. However, bear in mind that the
nondefault system variables will not be copied.

2.	 A SYMBOL TABLE FULL error may occur if there are insufficient
available entries in the symbol table for the local variables
and labels in WSDOC.

3.	 Another object which happens to be named WSDOC will be erased
and replaced by the WSDOC function when it is copied into the
workspace.

If your APL implementation does not support a visual representation
system function (e.g. DVR or 1 OFD), you will also need to copy in
the function CR~VR. In this event, WSDOC requires CR6VR and is not
strictly self-contained.

The writing of WSDOC is left as an exercise at the end of the chapter.

The use of this WSDOC function is a simple way to get a neat and
thorough listing of the contents of your workspace. If your
workspace documentation requirements go beyond the capabilities of
this function, you may want to acquire a more comprehensive workspace
documentation software package available from your APL vendor. Such

-193­

Chapter 13	 WORKSPACE DESIGN AND DOCUMENTATION

packages typically include capabilities for listing cross-reference
information. For example, you can list the functions in which each
workspace identifier is used, or list the identifiers used within
each function, or display a "tree" diagram which shows which
functions are called by other functions, and so on.

PROBLEM:	 A function named IDENTIFY analyzes the visual representation
of a function to determine which identifiers are used
within the function and how. It then displays any known
or potential errors or inconsistencies (e.g. assigning a
value to a name which is also used as a label). Make a list
of all such errors or inconsistencies.

TOPIC: Function Identifiers

The IDENTIFY function as described above is useful for a final
validation on any function you have written, especially a large
function. After using IDENTIFY, it is a simple matter to edit the
function to correct the reported problems.

Here are the problems and illustrations:

1. Redundant label.

[3] L6:A+-35

[17] L6:Q+-B*2

2. Unused	 identifier localized.

V MODEL;A

CA is not mentioned anywhere in MODEL, though it may be
used within a character constant argument to ~ or in a
subfunction called by MODEL)

-194­

Chapter 13	 WORKSPACE DESIGN AND DOCUMENTATION

3. Identifier localized but not assigned.

v MODEL;A

CA is not directly assigned, e.g. A~B+2, anywhere in MODEL,
though it may be assigned within a character constant
argument to ~ or in a subfunction called by MODEL)

4. Redundant local variable.

V	 R~MODEL A;B;R

or

V MODEL;A;B;A;R

5.	 Localized label.

v MODEL;LOOP;I

[8] LOOP:~CLIM<I)/END

6.	 Unused label.

V MODEL

[6] L4:K~2+B

CNo	 reference is made to L4, e.g. ~L4 or ~(L3,L4,L5)[I],

anywhere in MODEL, though it may be used within a character
constant Ce.g. ~CT>O)/'~L4') or may be ... gasp ... referenced
in a subfunction called by MODEL)

7.	 Assigned label.

v MODEL

[3] END+--99

[25] END:D+-V

8.	 Identifier assigned but not localized.

v MODEL;A;J

[7] B~lpJ

(B is not localized in MODEL, though it may be localized in
a function which calls MODEL)

-195­

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

9. Identifier used and not localized.

v MODEL;A

[6] A~2+B

(B is not localized in MODEL, though it may be localized in
a function which calls MODEL or it may be a subfunction
required by MODEL)

10. Result not assigned.

V R~MODEL PARAMS

CR is not assigned in MODEL, though it may be assigned
within a character constant to ~ or in a subfunction called
by MODEL)

11. Argument not used.

V R~MODEL PARAMS

(PARAMS is not used in MODEL, though it may be used within
a character constant argument to ~ or in a subfunction
called by MODEL)

The task of writing the IDENTIFY function is beyond the scope of this
chapter. It is included as a problem in the Boolean Techniques
chapter. IDENTIFY is monadic. Its right argument is the visual
representation of the function to be analyzed. For example, to
analyze the function MODEL, do the following:

IDENTIFY DVR 'MODEL' in APL*PLUS
IDENTIFY 1 DFD 'MODEL' in SHARP APL
IDENTIFY CR~VR OCR 'MODEL' in another APL system

CCRAVR is defined earlier in this chapter.)

There are three related functions also developed in the Boolean
Techniques chapter which warrant mention here. They are: RELABEL,
LOCALIZE and UNCOMMENT. The right argument of each function, like
IDENTIFY, is the visual representation of a function. The result of
each function is a modified version of the visual representation,
modified to accomplish a particUlar task. The functions are
described below.

-196­

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

Syntax: NEWVR~LABLIST RELABEL OLDVR

The RELABEL function changes the labels in the visual representation
so that they become Ll, L2, L3 and so on. In many functions,
expecially large ones, labels serve simply as branch targets for
downward flowing logic. It is difficult and pointless to think up a
meaningful name for each label. It is more convenient to the reader
to have the labels sequentially numbered so that they can be quickly
located. Some labels, however, 'are best left as meaningful names
(e.g. LOOP, END, START, CALC). The left argument LABLIST is a
character vector of the names of the labels (separated by spaces)
which are not to be renamed. Provide an empty character vector left
argument (i.e. ") if all labels are to be renamed.

Do not use RELABEL on any function which contains local variables Ll,
L2, and so on. otherwise, these names will refer to both labels and
local variables. The resulting function will no longer work
correctly.

RELABEL ignores all identifiers within quotes so some labels may not
be modified as desired. For example, in the expression,

ELX~'~BELOW'

the reference to the label BELOW will not be detected and modified.
To handle this potential problem, you may choose to write such
expressions in the following way:

Likewise, the names of labels included in comments are not detected
by RELABEL. You should avoid placing labels in comments. For
example,

use: A Branch if quota exceeded
not: A Go to L17 if quota exceeded

RELABEL does not correct any of the problems with labels listed by
IDENTIFY.

Syntax: NEWVR~VARLIST LOCALIZE OLDVR

The LOCALIZE function changes the local variables in the header of
the visual representation so that the header includes only those
variables which are assigned within the visual representation. The
LOCALIZE function tends to correct problems 2, 3, 4, 5 and 8 listed
by IDENTIFY. Some variables, however, are assigned within a function
but should be left global or are not assigned (i.e. are assigned in
subfunctions) but should be localized. The left argument VARLIST is
a character vector of the names of variables (separated by spaces)
which are to be included in the header if not assigned or are to be
excluded from the header if assigned. Provide an empty character

-197­

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

vector left argument (i.e. ") if all and only the assigned variables
are to be localized. The localized variables will be included in the
header in alphabetic order.

Syntax: NEWVR~UNCOMMENT OLDVR

The UNCOMMENT function removes all comments from the visual
representation. End-of-line comments are removed completely,
including the comment symbol CR). The comment symbols which precede
full-line comments are not deleted so that all function lines remain
and do not renumber. Strangely, the UN COMMENT function allows you to
include more comments in functions you write. One argument for
omitting or skimping on comments is that comments use up valuable
workspace. The UNCOMMENT function allows you to write one set of
functions which contain extensive comments (the "maintenance
version") and another set which is functionally equivalent but
contains no comments Cthe "production version").

since the functions RELABEL, LOCALIZE and UNCOMMENT each require a
visual representation right argument and each return a visual
representation result, they may be "chained" together to perform
several functions at once. For example:

NEWVR~'LOOP' RELABEL" LOCALIZE UNCOMMENT DVR 'MODEL'

However, the visual representation of a function is of little value
to you unless you can convert it back into a function. Some APL
systems have a system function which will do this directly CODEF in
APL*PLUS and 3 DFD in SHARP APL). The right argument of the system
function is the visual representation of a function and the result is
the character vector name of the function defined.

Therefore, to relabel a function named MODEL:

N~DDEF " RELABEL DVR 'MODEL' in APL*PLUS
N~3 OFD " RELABEL 1 OFD 'MODEL' in SHARP APL

For APL implementations which do not have such a system function, you
must use the system function DFX (fix). The right argument to OFX is
the canonical Ci.e. matrix) representation of a function (as returned
by OCR) and the result is the character vector name of the function
defined (fixed).

Our task then is to write a function VR~CR which will convert the
visual representation result of RELABEL, LOCALIZE or UNCOMMENT into a
canonical representation so that the function may be defined via
OFX. Given the VR~CR function, we may relabel a function named MODEL
as follows:

N~DFX VR~CR " RELABEL CR6VR OCR 'MODEL'

-198­

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

The following VR~CR function will perform the necessary conversion.

[WSID: FNREP]
V CR~VR~CR VR;DIO;B;C;D;I;LEN;NL;R;TCNL

[1] R Converts visual representation of fn to canonical
[2] R representation. Return empty matrix if VR empty
[3] A (locked fn):
[4] CR+- 0 0 p '
[5] -+(pVR)J,O
[6] A Use origin 1:
[7] OIO~1

[8] R Construct newline character:
[9] TCNL~DTCNL A APL*PLUS
[10] A TCNL+-DTC[2] A APL2
[11] A TCNL+-DAV[157J A SHARP APL
[12] A
[13] A Select header line Cless newline):
[14] CR~CI~-1+VRtTCNL)pVR

[15] A Drop off header:
[16] VR+-IJ,VR
[17] A Delete leading V and spaces from header:
[18] CR+-(+/A\CRE' V')J,CR
[19] R Locate newlines which precede and follow
[20] R each line:
[21] NL+-VR=TCNL
[22] A Flag starts and ends of contiguous digits
[23] A (e.g. line no.sJ:
[24] D+-VRe'OI23456789'
[25] D+-D;i(pDJpO,D
[26] A Flag char following ']' after line no.:
[27J D+--l~D\-1~D/-2$NL

[28] A Flag starts and ends of contiguous blanks
[29] A (e.g. after line no.s):
[30] B+-VR=' ,
[31] B+-B'l-CpBJpO,B
[32] A Flag first nonblank char in each line, as indices:
[33] D~(D>B)vB\-l~B/D

[34] D~D/tpD

[35] R Compute lengths of lines:
[36] LEN~(lJ,-lJ,NL/tpNL)-D

[37] A No. of columns in result:
[38] C~(pCRJrr/LEN

[39] A No. of rows in result:
[40] R+-l+pLEN
[41] R Initialize result as raveled matrix:
[42] CR~(RxC)iCR

[43] A Construct index vector I+-CtLEN[1]J,(tLEN[2]J, •.. :
[44] I+-LEN/--l~O,+\LEN

[45] I+-I+tpI
[46] A Insert fn lines into raveled result:
[47] CR[I+LEN/cxtpLEN]~VR[I+LEN/-l+D]

[48] A Reshape result to matrix:
[49] CR+-(R,CJpCR

V

-199­

Chapter 13	 WORKSPACE DESIGN AND DOCUMENTATION

This function borrows a number of the techniques discussed in the

Boolean Techniques chapter. See that chapter for clarification.

PROBLEM:	 Design a monadic function USEDBY whose argument is a list of
functions (character matrix with one name per row or a
character vector with names delimited by spaces) and which
shows all subfunctions and global variables required by
those functions.

TOPIC: Workspace Identifiers

When you inherit the maintenance of an APL application, there are
three pieces of documentation which are invaluable to your
comprehension of the system. They are:

1.	 Function listings. If missing, you can reconstruct them by
using the WSDOC function defined in this chapter.

2.	 File structure documentation. If missing, you can hopefully
reconstruct it by displaying the data from the files and by
inferring meaning from the context in which the files are used
(by reading the function listings).

3.	 System flow charts. If missing, you can hopefully reconstruct
them by running the USEDBY function on the user level functions
and by reading the function listings.

The following is an illustration of USEDBY on the EMPLOYEES function
of the MSF workspace listed earlier in this chapter.

-200­

Chapter 13 WORKSPACE DESIGN AND DOCUMENTATION

USEDBY 'EMPLOYEES'

EMPLOYEES

SELECT

CINPUT

IF

MESSAGE

UNLESS

ADDEMP

NINPUT

IF

MESSAGE

UNLESS

IF

UNLESS

ENUM (global)

CINPUT

MESSAGE

UNLESS
CATEMP

ENUM (global)
NUM (ADDEMP - local)
ENAME (global)
RCAT
NAME CADDEMP - local)
EAGE (global)
AGE (ADDEMP - local)

DELEMP

IF

ENUM (global)

SQZEMP

ENUM (global)
ENAME (global)
EAGE (global)

LISTEMP

ENUM (global)

EAGE (global)

ENAME (global)

The USEDBY function does pretty much what you would do to manually
diagram the subfunction and global variable structure of a system.
It starts by evaluating the visual representation of the highest
level function for global identifiers referenced (i.e. all
identifiers but labels, results, arguments or localized variables).
For those global identifiers which are themselves functions, it
evaluates each one in the same fashion. And so on it recurses deeper
or less deep in the fashion of the state indicator during execution
of the system.

The writing of USEDBY is left as an exercise at the end of the
chapter.

The USEDBY function is extremely powerful and quite complex. It
draws heavily on the materials presented in the Boolean Techniques

-201­

Chapter 13	 WORKSPACE DESIGN AND DOCUMENTATION

chapter. It may help you to read that chapter before writing the
function or reviewing the solution.

PROBLEMS:	 (Solutions on pages 367 to 382)

1.	 Design other "visual representation manipulation" functions which
may be useful. Pattern their syntax and behavior after the
IDENTIFY, RELABEL, LOCALIZE and UNCOMMENT functions described in
this chapter.

2.	 Sketch a flowchart of the WSDOC function described in this
chapter. Compare it to the flow of the WSDOC function listed in
the solutions at the back of the book.

3.	 Sketch a flowchart of the USEDBY function described in this
chapter. Compare it to the USEDBY function listed at the back of
the book.

-202­

Chapter 14

FILE DESIGN AND UTILITIES

When APL was first implemented, the language included no file
capabilities. This shortcoming was quickly recognized as an obstacle
to the acceptance of APL as a viable business programming language.
Two approaches were taken to overcome the obstacle.

In one approach (shared variables), facilities were developed (OSVO,
DSVR, ...) to provide access to existing non-APL file structures.
From APL, you can do anything with files that you can do from another
programming language. While this approach enables the APL user to
communicate with non-APL environments, it leaves the APL purist
unsatisfied. It is difficult and disappointing to the APL programmer
to work with the concise and consistent APL primitive functions on
the one hand and the messy world of records, tracks, blocks,
cylinders and disks on the other hand.

In the other approach (shared files), facilities were developed
(DFCREATE, OFREAD, ... J to provide access to APL file structures. In
the spirit of APL simplicity, an APL file was defined as a list of
APL objects residing outside of the active workspace. A file can
have any number of objects (called "components") and each object can
be of any type, rank or shape. The components are numbered
consecutively from 1. A large object can replace a small object
without the APL programmer knowing or caring how the storage is being
managed on the physical storage device.

If you want to work with APL files but your APL implementation
supports only shared variables, look for a public library workspace
which uses shared variables to emulate APL files (e.g. the IBM
workspace 2 VAPLFILE).

In this chapter, we will discuss some of the more common APL file
organizations and the trade-offs between them. We will also discuss
the value of quality file documentation and file utility functions.

-203­

Chapter 14 FILE DESIGN AND UTILITIES

PROBLEM: Suppose you want to build an APL system for maintaining a
database of information about insurance policyholders. For
each policyholder, you will keep track of: policy number,
issue age, issue date, sex, classification and face
amount. Design a file organization for this application.

TOPIC: APL Database File organization

The ideal file organization for a given application depends upon the
size of the database and upon how it is used. Since this information
is missing in the description of the problem, we will present several
alternative organizations. In the next section, we will discuss the
factors to consider when deciding among these organizations.

For simplicity, we will assume that all of the policyholder
information may be expressed as numbers (e.g. sex as a or 1). We will
refer to the items by the abbreviations: POLNO, rAGE, IDATE, SEX,
CLASS, AMT.

The descriptions of 8 alternative APL file organizations follow:

1. Record Oriented

Camp.
No. Description

1
2
3

POLNO,
"
"

IAGE,
"
"

I DATE
"
"

, SEX,
"
"

CLASS,
"
"

AMT for
""
""

1st policy
2nd
3rd

"
"

2. Record Oriented with Deletion Flag

Comp.
No. Description

STATUS, POLNO, IAGE, IDATE, SEX, CLASS, AMT for 1st policy
(STATUS=! if active record, 0 if "deleted")

1

2 " " 2nd" " " " " "
3 " " " " 3rd ft"" " "

-204­

Chapter 14 FILE DESIGN AND UTILITIES

3. Directory

Comp.

No. Description

Numeric vector (directory) of POLNO for every policy1

IAGE, IDATE, SEX, CLASS, AMT for 1st policy (whose
POLNO is the 1st element of the directory)

2

tt tt tt tt3 " for 2nd policy" "

tt tt tt tt tt tt ttI tt (I - 1) th tt

4. Directory with Deletion Flag

Comp.

No. Description

1 Boolean vector of STATUS for every policy (STATUS=l if
active record, 0 if ttdeleted tt)

2 Numeric vector (directory) of POLNO for every policy

3 IAGE, IDATE, SEX, CLASS, AMT for 1st policy (whose
POLNO is the 1st element of the directory)

tt tttt tt tt tt tt tt4 for 2nd policy

tt tt tt tttt tt tt tt ttI (I-2)nd

5. Transposed

Comp.

No. Description

---~-------------~~-------------------------------

1 Numeric vector of POLNO for every policy
tt tt tttt2 rAGE " "

tt tt3 IDATE" " " " tttt tt tt tt4 SEX" ., tt tt tt tt tt5 CLASS
tt tt tt tt tt6 AMT "

-205­

Chapter 14 FILE DESIGN AND UTILITIES

6. Transposed with Deletion Flag

Camp.
No. Description

Boolean vector of STATUS for every policy
(STATUS=l if active record, 0 if "deleted")

1

2 Numeric vector of POLNO for every policy
tt3 rAGE "" " " "

4 IDATE "" " " " "
5 SEX " "" " " "
6 CLASS tt" " " " "

ff7 AMT" " " " "

7. Multi-set Transposed

Camp.
No • Description

.-..-.--
--~~-~~--~--~--~~-~~--~--~--~~--~~--~---------~---

1 Numeric vector of POLNO for 1st 2000 policies
2 " " " IAGE " " " "
3 " " " IDATE " " " "
4 " " " SEX " " " "
5 " " " CLASS " " " "
6 " " " AMT " " " "

7 Numeric vector of POLNO for 2nd 2000 policies
8 " " " IAGE " " " "

Cl+6xI-l) Numeric vector of POLNO for Ith 2000 policies
C2+6xI-l) " " "IAGE " " " "

-206­

Chapter 14 FILE DESIGN AND UTILITIES

8. Multi-set Transposed with Deletion Flag

Comp.
No. Description

----­ ---­
1 Boolean vector of STATUS for 1st 2000 pOlicies

(STATUS=l if active record, 0 if "deleted")

2 Numeric vector of POLNO for 1st 2000 policies
3 " " tt IAGE " tt " "
4 tt " tt IDATE tt tt tt rt

5 tt rt tt SEX rt tt tt rt

6 tt " " CLASS " tt " "
7 " " ft AMT tt " tt tt

8 Boolean vector of STATUS for 2nd 2000 policies
9 Numeric vector of POLNO for 2nd 2000 policies

10 tt tt tt IAGE " tt tt "

Cl+7xI-l) Boolean vector of STATUS for Ith 2000 policies
C2+7xI-l) Numeric vector of POLNO for Ith 2000 policies

tt ttC3+7xI-l) IAGE" " " " "

This list of file organizations is not exhaustive. It merely
illustrates some typical APL file organizations.

At the two extremes are the record oriented and the transposed
organizations. The directory organization is a hybrid of the two.
The multi-set transposed organization is a modification of the
transposed organization designed to avoid WS FULL errors when working
with large databases.

The "deletion flag" alternative exists for any file organization.
When you need to delete records from a database 9 you have two
alternatives: delete the record now Cshifting other records if
necessary to fill the void); or flag the record to be deleted but do
not delete it until later Cby a procedure which restructures the file
to remove all flagged records or by the gradual process of replacing
flagged records by new records as they are added).

-207­

Chapter 14	 FILE DESIGN AND UTILITIES

PROBLEM:	 List the factors to consider when choosing among
alternative APL file organizations.

TOPIC: File Design Considerations

To choose among file organizations, you must know how much
information is to be stored and how it is to be used. For each type
of task, consider how well each file organization will stand up to
the demands made upon it. In particular, ask yourself:

1.	 How may file accesses (i.e. read or write operations) will be
required? These take time.

2.	 How CPU efficient will the task be? Does the organization require
significant amounts of processing?

3.	 How efficient will the task be in terms of workspace storage? Are
WS FULL errors likely?

4.	 How complex is the file structure? will the programs be difficult
to write, to read and to debug?

5.	 Is redundant file storage required? If so, might the file become
excessively large? Could its data get out of synch?

The following is a list of representative tasks which are performed
on databases. When choosing a file organization, consider each
task. Will this task be performed in this application? How often?
How well is it performed in this file organization given the
performance measures suggested above?

1.	 Add 1 record
2.	 Add 100 records
3.	 Find/change 1 record (1 item)
4.	 Find/change 1 record (all items)
5.	 Find/change 100 records (1 item)
6.	 Find/change 100 records (all items)
7.	 Find/delete 1 record
8.	 Find/delete 100 records
9.	 Find/list 1 record (5 items)

10. Find/list 1 record (all items)
11. Find/list 100 records (5 items)
12. Find/list 100 records (all items)
13. Summarize all records (1 item)
14. Summarize all records (10 items)

The chart below rates the 8 file organizations presented in the last
section for each of these 14 tasks. The letters A (excellent) to F
(horrible) are used for rating. These ratings are sUbjective and

-208­

Chapter 14	 FILE DESIGN AND UTILITIES

will vary from application to application but this chart is a good
guideline.

File Organization

1	 2 3 4 5 6 7 8 Task

A A A B C D C D Add 1 record
A A A B A B A B Add 100 records
F F A A A B A B Change 1 record, 1 item
F F A A B B B B Change 1 record, all items
E E C C A B A B Change 100 records, 1 item
E E B B B B B B Change 100 records, all items
F F B A B A B A Delete 1 record
F E C A B A B A Delete 100 records
F F A A B B B B List 1 record, 5 items
F F A A C C C C List 1 record, all items
E E C C B B B B List 100 records, 5 items
E E B B B B B B List 100 records, all items
F F F F A A A A Summarize all records, 1 item
E E E E A A A A Summarize all records, 10 items

Several conclusions may be drawn from this chart:

1.	 If you intend to do much summarizing or cross-tabulating, you
should choose a transposed file organization.

2.	 Unless you intend to add records and do nothing else, you should
avoid a record oriented file organization.

3.	 No file organization is ideal for all tasks. The best file
organization is frequently the one which has the fewest and least
severe shortcomings rather than the most strengths. sometimes a
hybrid organization will be the best solution for a given
application.

-209­

Chapter 14	 FILE DESIGN AND UTILITIES

PROBLEM:	 For a 1,000,000 record APL database, it is critical that a
specified record (e.g. policy) be located instantly. How
would you organize the file?

TOPIC: Efficient Record Location

The record oriented file organization is out. We do not have the
time to do up to 1,000,000 file read operations. Even the multi-set
transposed file organization has problems. If blocked at 2000
records per set of components, there will need to be up to 500 file
read operations. That is fine for ad hoc file analyses but is
unacceptable for instant access.

To solve this problem, we need to utilize the information contained
within the key value (record identifier) itself. For example,
suppose our records are insurance policies and the record identifier
is a policy number. We must use a portion of that number to get us
quickly to the vicinity in which the record is located. Consider the
following "inverted" directory file:

Camp.

No. Description

1	 Two-row matrix with one column per policy whose policy
number ends with 000:

[1;] policy number
[2;] record index where policy data are stored

2	 Ditto for policies ending 001
3	 Ditto for pOlicies ending 002

1000	 Ditto for policies ending 999

This file could be a companion file for any of the file organizations
discussed above. The meaning of "record index" depends upon which
file organization is used. For example, if the record oriented file
organization is used, the record index can simply be the number of
the component in which the record is stored. If a transposed file
organization is used, the record index can be a number whose format
is 88881111 where SSSS is the number (index) of the set of components
in which the record resides and IIII is the exact index within the
components of that set where the record is located.

Given this directory file, anyone of the 1,000,000 policies may be
located with a single file read operation. For example, to find
policy 613821904, read component 905 (i.e. 1+904) of the directory

-210­

Chapter 14 FILE DESIGN AND UTILITIES

file and search its first row for this number. The corresponding
element of the second row contains the record index for the policy.

The term "inverted" is used to refer to a file which stores record
indices (or pointers) rather than data values. The trade-off for
realizing such rapid record location is that the directory must be
set up initially and must be updated as records are added or deleted
(or their policy numbers changed). This will slow down the record
maintenance process somewhat and will make it more complex.
Consequently, such a directory should be included only if essen'tial.

An alternative to the inverted file organization is the "layered"
file organization. Suppose the file is layered by the last three
digits of the policy number. Rather than maintaining a list of the
record indices for each possible value (000 to 999), the records are
physically segregated by the values. For example, all records whose
policy number end with 904 are kept together on file.

This "layering" is fairly easily accomplished with the multi-set
transposed file organization. Each set of components contains
records for only a single layer value. For example, the first set of
components could contain the information for policies whose policy
number ends with 625, the second set with 904, the third set with
707, and so on. If there are more policies with numbers ending in
904 than you can place in one set, use more than one set for the
records with that layer value.

Suppose you employ a multi-set transposed file organization blocked
at 2000 (maximum) records per set of components and layered by the
last three digits of the policy number to store the 1,000,000 records
discussed above. On average, each set will contain 1000 records.
Some more. Some less. If any layer value (e.g. 000) is so popUlar
that it belongs to more than 2000 records, the records of that layer
will occupy more than one set. A directory of layer values is
maintained as a vector with one element per set and is stored as a
single component of the file.

Given this file organization, anyone of the 1,000,000 policies may
be located with 2 or 3 or so file read operations. For example, to
find policy 613821904, read the layer values vector and search it for
904. The matching elementCs) identify the set(s) whose records have
policy numbers ending with 904. Then, read the policy number
component for that set (or sets) and search for the policy number.
The result is the index within the set at which that record is
located.

-211­

Chapter 14	 FILE DESIGN AND UTILITIES

PROBLEM:	 What should be included in written file documentation?

TOPIC: File Documentation

since a file has no value except as employed in an application 9 its
documentation should be couched in terms relevant to the
application. For example, if the file is activated by "tying" it to
an arbitrary number. show the tie number which is actually used in
the application.

When components are read into the active workspace from the file,
they may technically be assigned to any variable name. Show the
names which are actually used in the application. When describing a
file component, indicate its shape and type and the significance of
its value.

The following is an illustration of proper file documentation. Do
not waste your time studying its intricacies. Rather, use it to
become comfortable with the general structure of good file
documentation.

FILE NAME: POLICY	 TIE NUMBER: 321

DESCRIPTION: contains policyholder information

Camp.

No. VARIABLE DESCRIPTION

1 TDATE	 Integer scalar of the transaction date
CYYYYMMDD) when policyholder information
was last added to the file from the
administration system.

CTYPES	 Integer vector of the available
underwriting classification codes.

3 CNAMES	 10 column character matrix of brief names
for the underwriting classes; the rows of
CNAMES are in I-to-l correspondence with the
elements of CTYPES.

4 FIV	 Field identification vector. Integer vector
with one element per field of information on
file (e.g. policy number, issue age, sex,
f •• J, The value indicates the type of array

-212­

2

Chapter 14	 FILE DESIGN AND UTILITIES

used to store the information:
10:	 Deletion flag Boolean vector (1:

active record)
11:	 Boolean vector
12:	 Character vector
13:	 Integer vector
14: Floating point vector

nn2: Character matrix with nn columns

S FP File parameters vector.
FPC1]: Number of active records
FP[2]: Number of records (including

deleted)
FP[3]: Number of fields (i.e. pFIV)
FP[4]: Maximum number of records, per set

of FP[)] components
FP[S]: Number of sets of FP[)] components

6 ARPS	 Active records per set. Integer vector with
one element per set (FP[5J) of the number of
active Cnot deleted) records per set. Note:
(+/ARPS)=FP[1J

7 RPS	 Records per set. Integer vector with one
element per set CFP[S]) of the number of
records Cincluding deleted) per set. Note:
(+/RPS)=FP[2J

8-10 (latent) Empty numeric vector

F+10+FP[3JxS-l	 Array of data for field F (1 to FP[3J) in
set S (1 to FP[SJ). The type and rank of
this array is defined by FIV[FJ. The length
of its first dimension is RPS[SJ.

The	 fields of data are:

FIELD VARIABLE

NO. (F) NAME FIV DESCRIPTION

1 STATUS 10 Deletion flag Cl=active; O=deleted)

2 POLNO 14 Policy number Cup to 13 digits)

3 IAGE 13 Issue age CNN)

4 I DATE 13 Issue date CYYYYMMDD)

5 SEX 12 Sex ('M' or 'F' or ' , if unknown)

6 CLASS 13 Underwriting classification code

(an element of CTYPES)

7 AMT 13 Face amount (cents)

-213­

Chapter 14 FILE DESIGN AND UTILITIES

If you inherit the maintenance responsibility for an application
system which has no file documentation, your first task is to
reconstruct the file documentation. This is usually possible by
carefully reviewing the functions which access the files and by
reviewing the file components themselves. To display the functions
for your review, use the QDOC or WSDOC functions defined in the
Workspace Design and Documentation chapter.

To display the file components, use the FILEDOC function described
here. The right argument is the same as that of WSDOC: page height,
width, top margin, bottom margin, left margin, right margin (e.g. 66
85 3 3 10 5). The left argument identifies the file to be documented
(e.g. file tie number). The output is paged and looks like:

FILE: 21368 POLICY (521 COMPONENTS) * 11/27/86 12:06 PAGE 1

COMPONENT SHAPE P VALUE

1 19861025

2 11 p 31 32 33 34 41 42 42 51 52 53 99

3 11 10 p 'STANDARD P38K4 P39K4 P3 •••

4 7 10 14 13 13 12 13 13
P

P
5 5 801625 801643 7 2000 401

6 401 P 2000 1998 2000 2000 2000 2000 1995 2000 ...

7 401 2000 2000 2000 2000 2000 2000 2000 2000 .•.
P

8-10 0 p to

11 2000 p 13156281325 21065134890 21065338190 ...

COMPONENTS 1 TO 67

The writing of FILEDOC is left as an exercise at the end of the
chapter.

-214­

Chapter 14	 FILE DESIGN AND UTILITIES

PROBLEM:	 Design a set of utility functions for accessing APL files.
The functions should be intuitive (i.e. be analagolls to APL
primitive functions) and should have a syntax which is
independent of the chosen file organization and independent
of your implementation of APL files.

TOPIC: File utility Functions

By designing and using such a set of file utility functions, you can
become more productive. The procedure for working with files becomes:

1. Design	 the file organization for a given application;

2.	 Implement these utility functions for the given file organization;

3.	 Use the utility functions instead of primitive (e.g. DFREAD or
DREAD) file access functions.

By using a consistent set of utility functions, you can work on many
application systems without having to continually reorient yourself
to the different file organizations. In effect, the utility
functions shelter you from the intricacies of each file organization.

Below is a recommended set of file utility functions. In each
function, the variable FP (file parameters) represents a numeric
scalar or vector which distinctly identifies the file to be used
(e.g. file tie number or tie number and blocking factors). If your
application deals with just one file and its organization is
sufficiently unusual that you are unlikely to need these functions
for a similar file, you may omit the FP argument altogether.

The philosophy behind the design of these file utility functions is
to treat the file as a matrix in your workspace. The rows of the
matrix are called "records". The columns are called "fields". Each
utility function emulates some common matrix operation. For example,
imagine the data stored in a workspace matrix named FILE. A common
matrix operation is adding new records:

FILE~FILE,[l]NEWDATA

The corresponding file utility function has the syntax:

FP~FP CATREC NEWDATA

Along with the syntax of each utility function is listed the
analogous APL expression for operating on a matrix named FILE.

There are two important distinctions to keep in mind. One is that a
field does not need to represent a vector of data. It may be a
matrix. For example, a field of employee names may be stored on file
as a 20 column character matrix. Here, we treat the names as a

-215­

Chapter 14	 FILE DESIGN AND UTILITIES

single field. Hence 9 the analogous APL expression will treat them as
a single column.

The second distinction is that "record indices" means values that are
understood by the utility functions to identify particular records.
They do not necessarily mean t indices. For example 9 for a multi-set

9transposed file organization a single record index might be a two
element vector whose first element is the index of the set and whose
second element is the array index within the set.

It is not expected that you will implement all of the following
utility functions. Rather, you should select those most useful for
the application and implement them.

(STSC's File Manager product -- originally marketed as "EMMA" - ­
provides	 a comprehensive set of such file utility functions for an
APL*PLUS-based multi-set transposed file organization.)

SYNTAX:	 FP INITFILE FT
FILE+-FPpFT

INITFILE	 is used to bU.ild an "empty" file whose file parameters are
FP and whose field types are defined in FT.

SYNTAX:	 FP+-FP CATREC MAT
FILE+-FILE 9[lJMAT

CATREC is used to add (catenate) records to the end of the file. MAT
is a matrix of information to be catenated (or inserted into records
flagged for deletion). Each row of MAT represents a single new
record. Each column of MAT corresponds to a single field, or column
of a matrix field, of data (excluding the deletion flag field, if
any). If MAT is a vector, it is treated like a one-row matrix. If a
scalar or one-element array, it is catenated to the bottom of each
field as a single record. The result is the modified value of FP.

SYNTAX:	 FP+-FP CATRECWS NREC
FILE+-FILE,[lJF1,F2,F3, ..•

CATRECWS is used to add (catenate) records to the end of the file.
NREC is an integer scalar whose value represents the number of
records to be catenated (or inserted into records flagged for
deletion). The data for these new records are located in the global
field variables FI, F2, F3, ... where Fl is a vector of values for
the first field of the record (or a matrix with one row per record),
F2 is for field 2, F3 is for field 3, and so on. One variable is
required per field (excluding the deletion flag field, if any).
Regardless of the magnitude of NREC, any field variable may be a

-216­

Chapter 14	 FILE DESIGN AND UTILITIES

one-row matrix, a vector with one element per column of the matrix
field, or a scalar or one-element array. The data will be reshaped
and catenated to the bottom of the field for NREC records. The
result is the modified value of FP. The field variables are erased
upon successful completion of the function.

SYNTAX:	 RINDS~(FP,KFLD) IOTA VALUES
RINDS~FILE[;KFLD]lVALUES

IOTA searches through the file (ignoring deleted records) for the
first occurrences of records whose key value (e.g. policy number,
employee number, transaction number) is specified in VALUES. IOTA
behaves like dyadic 1. That is, its result contains one index per
value in the right argument, in 1-to-1 correspondence. The elements
of RINDS are record indices which can be used to directly locate the
records. The elements of RINDS are -1 for those elements of VALUES
not found. The left argument of IOTA may be just FP if there is only
one key (identifying) field. Otherwise, the number of the key field
CKFLD) is included in the left argument.

SYNTAX:	 RINDS~IOTARHO FP
RINDS~llipFILE

IOTARHO returns the record indices of all active (not deleted)
records in the file. IOTARHO behaves like monadic lp. That is, its
result contains all of the indices for the specified array (file).
The elements of RINDS are record indices which can be used to
directly locate the records.

SYNTAX:	 RINDS~SVEC SLASHIOTARHO FP,SFLDS
RINDS~(~SVEC)/tlipFILE

SLASHIOTARHO returns the record indices of all active (not deleted)
records in the file which satisfy a specified criterion. SVEC is a
character vector APL expression (e.g. '(F3>50)AF2#O') which defines
the desired criterion. The expression is stated in terms of field
variables Fl, F2, F3, ... which represent the data stored in the 1st,
2nd, 3rd, ... fields of each record. The expression should be
constructed such that when executed, its result is a Boolean vector
with one element per record (i.e. per element or row of F1, F2, F3,
...) in which ones marks records selected. SLASHIOTARHO behaves like
dyadic Itp. That is, its result contains all of the indices for the
specified array (file) which satisfy the specified criterion. The
elements of RINDS are record indices which can be used to directly
locate the records. The right argument (beyond FP) is an integer
vector of the indices of the field variables to be constructed before
executing the expression (e.g. 2 3 for 'CF3>50)AF2tO' or 1 37 for
'O<PROCESS F3' where F1 and F7 are required by PROCESS as global

-217­

Chapter 14	 FILE DESIGN AND UTILITIES

variables). If SVEC and SFLDS are empty, SLASHIOTARHO returns the
record indices of all active records in the file.

SYNTAX:	 FP~FP DELREC RINDS
FILE~(~(lltpFILE)€RINDS)fFILE

DELREC deletes specified records from the file. The elements of
RINDS are the indices of the records to be deleted (as returned by
IOTA, IOTARHO or SLASHIOTARHO). The result is the modified value of
FP Cif modified).

SYNTAX:	 FP~SVEC COMPRESS FP,SFLDS
FILE~(~SVEC)rFILE

COMPRESS	 deletes all records in the file which do not satisfy a
specifed	 set of criteria.

FP~SVEC COMPRESS FP,SFLDS

has the same effect as

FP~FP DELREC ('~',SVEC) SLASHIOTARHO FP,SFLDS

Notice that the former expression does not need to construct
intermediate record indices for the selected records and so is more
efficient than the latter expression. If SVEC and SFLDS are empty,
no records are deleted.

SYNTAX:	 MAT~RINDS INDEX FP,FLDS
MAT~FILE[RINDS;FLDS]

INDEX is used to retrieve from file the data (MAT) from selected
fields (FLDS) for specified records (RINDS). The elements of RINDS
are the indices of the records to be retrieved (as returned by IOTA,
IOTARHO or SLASHIOTARHO). The elements of FLOS are indices of the
fields to be retrieved. The result is a matrix of the retrieved data
with one row per element of RINDS and one column per element of FLDS.

SYNTAX:	 RINDS INDEXWS FP,FLDS
Fl~FILE[RINDS;l] ¢ F2~FILE[RINDS;2] ¢

INDEXWS is used to retrieve from file the data from selected fields
CFLDS) for specified records (RINDS). The elements of RINDS are the
indices of the records to be retrieved (as returned by IOTA, IOTARHO
or SLASHIOTARHO). The elements of FLDS are indices of the fields to
be retrieved. The retrieved data are assigned to global variables

-218­

Chapter 14	 FILE DESIGN AND UTILITIES

named Fn where n is the number of the field retrieved (e.g. F3 and F7
for FLDS~3 7). The global variables are vectors with one element (or
matrices with one row) per element of RINDS.

SYNTAX:	 MAT~SVEC SELECT FP,FLDS,O,SFLDS
MAT~(tSVEC)fFILE[;FLDS]

SELECT is used to retrieve from file the data (MAT) from selected
fields (FLDS) for all active (not deleted) records in the file which
satisfy a specified set of criteria (SVEC).

MAT~SVEC	 SELECT FP,FLDS,O,SFLDS

has the same effect as

MAT~(SVEC SLASHIOTARHO FP,SFLDS) INDEX FP,FLDS

Notice that the former expression does not need to construct
intermediate record indices for the selected records and so is more
efficient than the latter expression. If SVEC and SFLDS are empty,
SELECT retrieves data for all active records in the file.

SYNTAX:	 SVEC SELECTWS FP,FLDS,O,SFLDS
Fl~(~SVEC)fFILE[;l] 0 F2~(~SVEC)fFILE[;2] 0

SELECTWS is used to retrieve from file the data from selected fields
(FLDS) for all active (not deleted) records in the file which satisfy
a specified set of criteria CSVEC).

SVEC SELECTWS FP,FLDS,O,SFLDS

has the same effect as

(SVEC SLASHIOTARHO FP,SFLDS) INDEXWS FP,FLDS

Notice that the former expression does not need to construct
intermediate record indices for the selected records and so is more
efficient than the latter expression. If SVEC and SFLDS are empty 9

SELECTWS	 retrieves data for all active records in the file.

SYNTAX:	 FP~RINDS INDEXA CFP,FLDS) ASSIGN MAT
FILE[RINDS;FLDS]~MAT

INDEXA is used to replace on file the data in selected fields (FLDS)
for specified records (RINDS). The elements of RINDS are the indices
of the records to be replaced (as returned by IOTA 9 IOTARHO or
SLASHIOTARHO). The elements of FLOS are indices of the fields to be
replaced. MAT is a matrix of the data to be replaced with one row

-219­

Chapter 14	 FILE DESIGN AND UTILITIES

per element of RINDS and one column per field (or per column of a
matrix field) identified in FLDS. Mat may be a vector if FLDS
identifies a single vector field. Regardless of the number of
records identified by RINDS, MAT may be a one-row matrix or vector
with one element per column of the fields, or a scalar or one-element
array. The data will be reshaped and assigned to the specified
records. The result is the modified value of FP. The ASSIGN
function simply assigns its right argument to <assign> and returns
its left argument. INDEXA erases the variable <assign> when done
with it.

SYNTAX:	 FP~RINDS INDEXWSA FP,FLDS
FILE[RINDS;l]~Fl 0 FILE[RINDS;2]~F2 0 ...

INDEXWSA is used to replace on file the data in selected fields
CFLDS) for specified records (RINDS). The elements of RINDS are the
indices of the records to be replaced Cas returned by IOTA, IOTARHO
or SLASHIOTARHO). The elements of FLDS are indices of the fields to
be replaced. The replaced data is taken from global field variables
named Fn where n is the number of the field replaced (e.g. F3 and F7
for FLDS~3 7). The global variables are vectors with one element (or
matrices with one row) per element of RINDS. If the field variable
is a one-row matrix or a vector with one element per column of the
matrix field, it will be applied across all records identified by
RINDS. If the field variable is a scalar or one-element array, it
will be applied across all records and all columns of the field. The
result is the modified value of FP. The field variables are erased
upon successful completion of the function.

SYNTAX:	 FP~(FP,XFLDS) EXECUTE XVEC
~XVEC

EXECUTE is used to execute a specified (XVEC) character vector APL
expression (e.g. 'SUM~SUM++/F4'). The expression is stated in terms
of field variables Fl, F2, F3, ... which represent the data stored in
the 1st, 2nd, 3rd, ... fields of each active (not deleted) record.
The expression is executed once for each block of records on file
(each active record in a record oriented file organization or each
set of records in a multi-set transposed file organization). The
left argument (beyond FP) is an integer vector of the indices of the
field variables involved in the expression. Positive indices
indicate fields to be read from file before execution of the
expression; negative indices indicate fields to be replaced on the
file after execution of the expression. The result is the modified
value of FP. For example:

-220­

Chapter 14	 FILE DESIGN AND UTILITIES

FP~(FP,-7 7 2 4) EXECUTE 'F7~F7rF2+F4'

SUM~O

A XTAB is a function which assumes globals F3, F6, F9:
FP~(FP,3 6 9) EXECUTE 'SUM~SUM + XTAB'

SYNTAX:	 FP~(FP,XFLDS,O,SFLDS) EXECUTE XVEC FOR SVEC
~XVEC

In this context, EXECUTE is used to execute a specified (XVEC)
character vector APL expression for only those active (not deleted)
records which satisfy a specified set of criteria (SVEC). The FOR
function simply catenates and returns its two character vector
arguments, separating them by a newline character. Both expressions
are stated in terms of field variables FI, F2, F3, ... which
represent the data stored in the 1st, 2nd, 3rd, ... fields of each
record. SVEC should be constructed such that, when executed, its
result is a Boolean vector with one element per record (i.e. per
element or row of Fl, F2, F3, ...) in which ones mark records to be
selected for subsequent construction of the field variables to be
included in the execution of XVEC. XFLDS and SFLDS are integer
vectors of the indices of the field variables involved in the
respective expressions XVEC and SVEC. Negative elements of XFLDS
indicate	 fields to be replaced after execution of XVEC. The result
is the modified value of FP. For example:

FP~(FP,-7 7 2 4 0 3) EXECUTE 'F7~F7rF2+F4' FOR 'F3>1'

SYNTAX:	 RINDS~(FP,KFLD) IOTA VALUES LAYERS Z
RINDS~IOTARHO FP LAYERS Z
RINDS~SVEC SLASHIOTARHO FP,SFLDS LAYERS Z
FP~SVEC COMPRESS FP,SFLDS LAYERS Z
MAT~SVEC SELECT FP,FLDS,O,SFLDS LAYERS Z
SVEC SELECTWS FP,FLDS,O,SFLDS LAYERS Z
FP~(FP,XFLDS) EXECUTE XVEC LAYERS Z
FP~(FP,XFLDS,O,SFLDS) EXECUTE SVEC FOR SVEC LAYERS Z

LAYERS can be used when the file is layered (see Efficient Record
Location section in this chapter). When used, the scope of the file
utility function is limited to just those records whose layer value
is in the list of layer values Z. All other records are ignored.
The LAYERS function simply assigns its right argument to <layers> and
returns its left argument. The file utility function erases the
variable <layers> when done with it.

-221­

Chapter 14	 FILE DESIGN AND UTILITIES

PROBLEM:	 Design and document a precise file layout to implement the
file utility functions of the previous section for a
multi-set transposed file organization. Keep the layout
general enough to allow a deletion flag or not, and to
allow layers or not.

TOPIC: Multi-set Transposed File Organization

Here is a possible file layout for a multi-set transposed file
organization. A discussion follows it.

FILE NAME: up to you	 TIE NUMBER: up to you

DESCRIPTION: Multi-set transposed file with optional record
deletion flags and optional layers.

COMP.
NO. VARIABLE DESCRIPTION

1 DOC Character matrix or vector (with embedded
newlines) description of the purpose and
contents of this file. [optional]

2 FN Character matrix of abbreviated field names
(as valid identifier names) with one left
justified name per row. [optional]

(ltpFN)=(l~pFT)

3 FD Character matrix of full
with one description per

field descriptions
row. [optional]

(ltpFD)=CltpFT)

4 FT Two row integer matrix of field type
information with one column per field
columns). The meanings of the values

(FP[3J
are:

FT[l;] Field width. If 0, the field is
inactive (latent). If 1, the field is
a vector field. Otherwise, the field
is a matrix field with this many
columns.

FT[2;] Field datatype. options: 1
2 (character) 9 3 (integer),
4 (floating point).

(Boolean),

5-6 (latent) Available for custom requirements. contain: lO.

-222­

Chapter 14 FILE DESIGN AND UTILITIES

COMP.
NO • VARIABLE DESCRIPTION

7 FP Integer vector of file parameters. The
meaning of the values are:

FP[1J Field number of layer value field
(origin 1) or a if file not layered.

FP[2J Tie number used when accessing file

FP[3J Number of fields, including latent
fields. FP[3J=(1~pFT).

FP[4J Number of components preceding the
data components. FP[4]~10.

FP[SJ Maximum number of records per set of
components. A/FP[5]~RPS.

FP[6J Number of sets, including sets with
no active records.
FP[6J=(pRPS)=(pARPS).

FP[7] Number of records, including records
flagged for deletion. FP[7J=(+/RPS).

FP[SJ Number of active (not latent) fields~

including the deletion flag field if
one exists. FP[S]=(+/xFT[l;])

FP[9J Number of active (some active records)
sets. FP[9J=(+/01ARPS).

FP[lOJ Number of active (not flagged for
deletion) records. FP[10]=(+/IARPS).

FP[11] Magnitude is field number of deletion
flag Boolean vector field (origin 1)
or 0 if no deletion flag. If nonzero:
1A.=FT[;IFP[11JJ. If negative: FP[5J
inactive records are added for each
new set, i.e. FP[SJA.=RPS.

S RPS Integer vector with one element per set (FP[6J
elements) of the number of records, including
those flagged for deletion, in each set.

9 LV Layer values. LV is a vector with one element
per set (FP[6J elements) if FT[l;FP[l]]=l or
a matrix with one row per set if FT[l;FP[l]]>l.
LV is not used (empty numeric vector) if
FP[lJ=O.

-223­

Chapter 14 FILE DESIGN AND UTILITIES

COMI) •

NO. VARIAI~IJl~: DESCRIPTION

10 ARF'S Integer vector with one element per set (FP[6J
elements) whose magnitude is the number of
active (not flagged for deletion) records in
each set. If positive, the active records in
the corresponding set are the leading records
(no interspersed deleted records). If
negative, the active records are not
exclusively the leading records. This
component is not used (empty numeric vector) if
FP[11]=O.

11 to (latent) Available for custom requirements. contain: lO.
}J'p [4]

(F+FP[4]) DA'I1A Array of data for field F in set S. The array
+(FP[)]x is an empty numeric vector (latent) if

8-1) FT[l;Fl=O. It is a vector if FT[l;FJ=l. It is
an n-column matrix (n~FT[I;F]) if n11. The

where: array (if not latent) has RPS[S] elements or
rows. of which IARPS[Sl are active. i.e. not

I~F:$FP[3] flagged (by a corresponding 0 in field IFP[ll])
1:sS:5FP[6] for deletion. The array will never have more

than FP[5l elements or rows (i.e. records), and
will always have exactly FP[Sl elements or rows
if FP[11]<O.

Components 1 (DOC), 2 CFN) and 3 CFD) are not essential pieces of the
file. However. since they serve to document the file. they are
included and recommended.

Components 4 CFT) and 7 CFP) completely define the structure of the
file. They are constructed to satisfy the requirements of the
particular application. After creating an empty file (via OFCREATE
or DCREATE) and assigning values to FT and FP, you initialize the
file by calling INITFILE with FP and FT as its arguments.

Components 5 and 6 contain empty vectors and are not used. It is a
good practice to leave a few "latent" components for future
unanticipated requirements.

Components 8 CRPS). 9 (LV) and 10 (ARPS) are used and updated as
needed by the utility functions.

Components 11 to FP[4l are additional latent components in case more
than 2 (components 5 and 6) are needed for the partiCUlar application.

All components beyond FP[4l are reserved for the data.

-224­

Chapter 14	 FILE DESIGN AND UTILITIES

The implementation of the file utility functions for this specific
file layout is left as an exercise in the problems at the end of the
chapter.

This file layout is illustrated and discussed further in the next
section.

PROBLEM:	 Construct a file for maintaining a database of information
about 45 9000 insurance policyholders. For each
policyholder, you will keep track of: policy number (12
digits/letters), issue age, issue date 9 sex CM or F)9
classification (S9A 9B 9C 9DJ and face amount. Layer the file
by classification.

TOPIC: An Illustration of File utilities

The first	 step is to define the fields for this file. They are:

1. Policy	 number
2. Issue age
3. Issue date
4. Sex
5. Classification
6. Face amount
7. Deletion bit

The last field, deletion bit, is optional. You should consider how
the file will be used before you decide whether or not to employ a
deletion bit field. If employed record deletion is quick because9

deleted records are not physically removed from file. They are
simply flagged for deletion (bit=OJ. However, record searching and
retrieval will be slower because "deleted" records must be detected
and ignored.

For this illustration, we will employ the deletion bit field.

We have defined 7 fields but let's allow room for another 3 fields
for future expansion:

8. (latent)
9. (latent)

10. (latent)

-225­

Chapter 14 FILE DESIGN AND UTILITIES

The next step is to specify the nature of each field precisely by
constructing FT, which will be component 4 of the file.

WIDTH~12 1 1 1 1 1 1 0 0 0

TYPE ~ 2 3 3 2 2 4 1 1 1 1

FT~WIDTH.[.5]TYPE

since the policy numbers (field 1) may contain letters as well as
digits. they will be stored in a 12 column character (type 2) matrix
field. Issue age (field 2) and issue date (field 3) will be stored
as integer (type]) vector (width 1) fields. The dates will be
stored in YYYYMMDD format. Sex (field 4) and classification (field
5) will be stored as character vector fields. Face amount (field 6)
will be stored as a floating point (type 4) vector field since the
values may contain cents but will be stored in dollar units.
Deletion bit (field 7) must be stored as a Boolean (type 1) vector
field. Fields 8 to 10 are stored as latent (width 0) Boolean fields.

Next, define the elements of FP. which will be component 7 of the
file. The file will be layered by classification which is field 5:

LAYER~5

Let's pick a tie number to which the file will be tied when used:

TIE~987

There are 7 active fields and 10 fields in all:

AFLDS~7

INCR~10

The file begins with 10 reserved components. Let's include another
40 latent components (11 through 50) in case we later need a place to
store related items.

DISP~50

The file will contain 45,000 or so records. Let's keep our
components down to some manageable size so WS FULL errors are kept to
a minimum and so new records may be added without having to read
giant objects. Let's arbitrarily limit each data object to 2000
records. This means the 45.000 record file will contain at least 23
sets of data components. To read one field for all records will
require at least 23 file read operations. By increasing the blocking
factor. the number of sets decreases. and vice versa. For some
applications, you may want a block size of 30.000. For others, a
block size of 10 may be ideal. Here. we will use 2000.

BLK~2000

since we are using a deletion bit field. we can choose either of two
methods for adding new sets. After the 2000th record is added to the
last set of the file and another record is to be added, a new set

-226­

Chapter 14 FILE DESIGN AND UTILITIES

must be appended to the file. This set mayh be appended with just
the single new record, or with 2000 records, 1999 of which are
flagged deleted. If the latter approach is taken, SUbsequent new
records will simply replace "deleted" records.

From your point of view, as the programmer using the file utility
functions, the utility functions behave the same regardless of the
approach chosen. Which approach you should use is a function of your
APL file system implementation. Some systems behave poorly (i.e.
gobble up much disk storage) when asked to replace an object in a
component by a larger object. On such systems, you should choose the
latter approach so that all the records of the set are added at
once. Then, the components in that set will not grow.

Here, we will choose the latter approach by specifying the number of
the deletion field as a negative number:

Let's construct FP:

We will name the file 'POLDATA'. Create the file and run INITFILE:

'POLDATA' DFCREATE TIE (or DCREATE on SHARP APL)
FP INITFILE FT

At this point the file has 50 (i.e. DISP) components, no records and
no sets. Before we start adding records, let's take a valuable
moment to construct and replace the 3 documentation components:

DOC~'Insurance policyholder database'

FN~7 5p'PNUM IAGE IDATESEX CLASSFACE DBIT '

FD~(15t'Policy number'),[lJ ... ,[.5J15f'Deletion bit'

DOC DFREPLACE TIE,1 (or OREPLACE on SHARP APL)

FN DFREPLACE TIE,2

FD DFREPLACE TIE,3

From this point on, we can simply use the file utility functions.
Let's catenate 4 records:

F1~(12t'ABCD'),[1]C12t'A1'),[1](12t'XYZ99'),[.5]12t'P55'

(policy number)
F2~25 55 45 35 Cissue age)
F3~19820715 19850123 19851230 19860402 (issue date)
F4~'M' (sex, all male)
F5~'SASS' (classification)
F6~50000 30000 40000 25000 (face amount)

FP+-FP CATRECWS 4

-227­

Chapter 14	 FILE DESIGN AND UTILITIES

Which ones are 45 or older?

'F2~45' SELECT FP tl a 2
XYZ99
Al

Make the 45 year old a female:

FP~((FPt2) IOTA 45) INDEXA FP,4 ASSIGN 'F'

Increase each face amount by a factor of 100 for those with standard
(S)	 classification:

FP~(FP, -6 6) EXECUTE 'F6~100XF6' LAYERS '8'

Return	 the ages of those with standard (S) classification:

" SELECT FP,2 LAYERS '8'
25	 45 35

Delete policyholder records with issue dates in 1985:

FP~'19851lF3+10000' COMPRESS FP,3

When done using the file, untie it:

DFUNTIE FP[2J (or DUNTIE on SHARP APL)

To use the file again later, retie the file and read the file
parameters vector from component 7:

'POLDATA' OFTIE 987 (or DTIE on SHARP APLJ
FP~DFREAD 987 7 (or DREAD on SHARP APL)

You can then use the file utility functions again.

PROBLEMS:	 (Solutions on pages 383 to 448)

1.	 Suppose you have developed an application and are encountering

frequent WS FULL error messages. Perhaps there are too many

functions in the workspace. Design and implement a set of file

utility functions which may be used to store some of these

functions on file and to retrieve them when needed.

-228­

Chapter 14	 FILE DESIGN AND UTILITIES

2.	 Sketch a flowchart of the FILEDOC function described in this
chapter. Compare it to the flow of the FILEDOC function listed
in the solutions at the back of the book.

3.	 In the Workspace Design and Documentation chapter. a simple
application system is developed for maintaining a list of
employees. Rewrite the EMPLOYEES function (the large one) to
assume that employee information will be kept on file rather than
in global workspace variables. Do not design a precise file
organization. Rather use the file utility functions introduced9

in	 this chapter.

4.	 Try your hand at writing one or more of the file utility
functions for the specific multi-set transposed file layout
presented in this chapter. Compare your function to the listing
of that function included in the solutions at the back of the
book. The functions listed require an APL*PLUS system. If you
use SHARP APL or APL2 9 see the next problem.

5.	 What general modifications must be made to the APL*PLUS system
file utility functions written in the previous problem so that
they will work on a SHARP APL system? On an APL2 system?

-229­

Chapter 15

BOOLEAN TECHNIQUES

The treatment of logical conditions in APL is simple and
powerful. The concept of "true" is represented by the numeric value
1 and "false" by o. These values may be manipulated with the same
ease as those of any other numeric values. An array which contains
only Is and Os is called a "Boolean" array (after the mathematician
George Boale) or a "bit .. array (after the unit of computer storage).

The APL language contains 7 primitive functions which return
exclusively Boolean results (=~t,>,~,<,~,E). These are called
relational functions. There are 5 primitive functions which not only
return Boolean results, but also require exclusively Boolean
arguments (~,A,V,A,¥). These are called logical functions.

On the surface, these 12 functions provide an adequate but not9

wonderful, set of capabilities for working with logical data.
However, by applying the APL operators (such as reduction and scan)
to these functions and by utilizing the "shift and compare"
techniques available in APL, you can begin to appreciate the rich
Boolean functionality of APL. Extremely complex problems can be
solved directly using noniterative Boolean techniques that would
never even be considered in another programming language.

This chapter presents no new or complex APL primitive functions.
Rather it presents deeper interpretations of existing simple
functions. The aim of the chapter is to develop your Boolean
vocabulary and to broaden your thinking when faced with Boolean
problems.

-230­

Chapter 15	 BOOLEAN TECHNIQUES

PROBLEM:	 The dyadic logical functions A, v, A, ~ require Boolean
arguments and return Boolean results. Since they are
scalar functions, the result is a scalar when both
arguments are scalars. For the set of four possible pairs
of arguments (0 and 0; a and 1; 1 and 0; 1 and 1), each
function returns its four distinct Boolean results. For
example, the results of the A (and) function may be
expressed in the table:

Right Argument

(A) o 1

Left 0

Argument

1

o o

o 1

Viewing this table of A results as a vector CO 0 0 1), you
can see that the results for v, A, ~ are respectively:
o 1 1 1, 1 1 1 0, 1 0 0 o. There are 16 possible
combinations of 4 bits. These 4 functions produce only 4
of them. What functions may be used to generate the rest?
What logical interpretations can be given to each of these
functions?

TOPIC: Logical Scalar Functions

For a left argument L~O 0 1 1 and a right argument R~O 1 0 1, the 16
possible combinations of results may be generated by the following
expressions:

-231­

Chapter 15	 BOOLEAN TECHNIQUES

Expression
(L~O 0 1 1)

Result CR+-O 1 0 1) Interpretation Equivalent
------ ­ ---------- ­ --------------------------- ­ --------- ­
0 0 0 0 (pL) pO Always false
0 0 0 1 LI\R And (both; "multiplication")
0 0 1 0 L>R Except (unless; and not; LAC"'R)

"subtraction")
0 0 1 1 L Left argument
a 1 0 0 L<R Nor not C"-'L)AR
0 1 0 1 R Right argument
0 1 1 0 L;tR Toggle if (exclusive or)
0 1 1 1 LvR Or (ttaddition")
1 0 0 0 LvR Nor (neither) "-'CLvR)
1 0 0 1 L=R Toggle if not
1 0 1 0 ""R Not right argument
1 a 1 1 L~R Or not Lv ("-'R)
1 1 0 0 ""L Not left argument
1 1 0 1 L:sR Nand not (""LJvR
1 1 1 0 LAR Nand (not both) "-'CLAR)
1 1 1 1 CpLJpl Always true

To illustrate the use of these logical expressions, let us solve some
problems.

A.	 Given a vector DEP of bank deposits, how many deposits are
between (inclusive) 100 and 200?

+/CDEP~lOO)ADEP~200 (and)
+/CDEP<100)¥DEP>200 (nor)

B.	 How many are greater than 250, ignoring those which are exactly
500?

+/CDEP>250»DEP=500 (except, and not)
+/CDEP=500)<DEP>250 (nor not)

CIt is easy to see why the second expression is typically read
"how many deposits where CDEP>250) except where (DEP=500)"9
rather than "how many deposits where CDEP=500) nor not where
CDEP>250)".)

c.	 How many are either 100 or greater than 250, ignoring those
which are exactly 500?

+/(DEP>250)~DEP€100 500 (toggle if)
+/CDEP~250)=DEP€100 500 (toggle if not)

-232­

Chapter 15	 BOOLEAN TECHNIQUES

D. How many are smaller than 10 or larger than 1000?

+/(DEP<10)vDEP>1000
+/(DEP~10)ADEP~1000

+/(DEP<10)~DEP~1000

+/(DEP~10)~DEP>1000

(or)
(nand)
(or not)
(nand not)

PROBLEM:	 There are 10 scalar dyadic relational or logical functions
(=, 1, >, ~, <, ~, A, V, A, v). All of these may be used
with the reduction or scan operators to derive functions
which can operate on Boolean arrays. Which of these 20
derived functions have useful interpretations? What are
the interpretations?

TOPIC: Logical Reductions and Scans

Obviously, the word "useful" is subjective. So let us be
subjective. Only two of the reductions have useful interpretations.
However, we will throw in a third reduction (+/) since its
interpretation becomes "how many" rather than "add up" when its
argument is Boolean.

Expression Interpretation

+/R How many

AIR All

vIR Any

To	 illustrate these functions, let us solve some problems.

A.	 Given a character vector CVEC, how many nonblank elements does
it contain?

+/CVEC;w!'	 Chow many)

B.	 Are all of the elements nonblank?

A/CVEC-I' (all)
",v/CVEC=' (not any: none)

-233­

Chapter 15	 BOOLEAN TECHNIQUES

six of the scans have useful interpretations.

Expression Interpretation

A\R Leading

v\R Not leading not (leading as)

<\R First

=s\R Not first not (first 0)

;f \R Leading I-poles to l-maps

=\R Leading a-poles to a-maps

Let us solve some problems using these functions.

A.	 How many leading blanks (blanks before the first nonblank) exist
in the character vector CVEC?

+/A\CVEC=' ,	 Chow many leading)

B.	 Delete the leading blanks from CVEC, returning the elements

beyond the leading blanks.

(v\CVEC~' ')/CVEC	 (leading Os)

c.	 Is the first nonblank character in CVEC a digit?

v/((<\CVEc;t' ,)/CVEC)€'0123456789' Cfirst)

(VI, i.e. any, is used in case there is no first nonblankJ

D.	 Delete the first',' from CVEC, returning the rest of CVEC.

(~\CVEC~',')/CVEC	 (first 0)

The remaining two scans (1\ and =\) require some explanation before
using them to solve problems. A "maps" vector is a Boolean vector
which consists of sets of contiguous 1s (I-maps) separated by one or
more Os CO-maps). For example, the following bit vector contains 3
I-maps (each of which is underlined) and 4 a-maps:

o 0 1 1 110 0 0 110 0 1 111 100

A "leading I-poles" vector is a Boolean vector which consists of
pairs of Is, separated by zero or more Os. The ls are called
"poles". The left pole in each pair may be viewed as the starting
element of a set of contiguous elements. The right pole in each pair
may be viewed as the next element beyond the ending element of the

-234­

Chapter 15	 BOOLEAN TECHNIQUES

set. For example, the following bit vector contains 3 pairs of
leading 1-poles.

o 0 1 a 0 0 100 1 0 101 0 0 0 0 1 a

Notice that I-maps and leading I-poles are alternate means of
conveying the same information. Specifically, they each identify
spans of contiguous elements. I-maps do so by using Is to flag the
elements within the spans. Leading I-poles do so by using 1s to flag
the starts of spans and the starts of non-spans Chence the word
"leading").

The "#\ function converts bit vectors from the leading I-pole
representation to the I-maps representation:

0+-1\0+-0 0 1 0 0 0 1 0 0 1 a 1 a 1 0 0 0 0 1 0
0 0 1 0 o 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0
0 0 1 1 1 1 0 0 a 1 1 0 a 1 1 1 1 1 0 0

The =\ function converts bit vectors from the leading a-poles
representation (use Os as poles instead of Is) to the a-maps
representation (use Os as maps instead of 1s).

D+a=\O+al 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 1 1 0 1
1 1 0 1 110 1 1 0 1 a 1 0 1 1 1 1 0 1
1 1 a 0 o 0 1 1 1 0 a 1 1 a 0 0 0 0 1 1

Let us solve some problems.

E.	 Given a character vector CVEC, return all characters within

quotes.

C~\CVEC='" ')/CVEC

(This expression also returns the leading quote of each quote
pair and the second quote from each pair of ttdoubled" quotes
within quote pairs.)

F.	 Return everything in CVEC except quote characters or characters
within quotes.

T+-= \CVEC¢ , , , ,

CT"-l<l>T)/CVEC

-235­

Chapter 15	 BOOLEAN TECHNIQUES

PROBLEM:	 In the last expression of the final illustration in the
prior section. a shift-and-compare operation CTA-l$T) is
performed to produce the effect of extending each a-map to
the right by one element. What other shift-and-compare
operations have useful interpretations when applied on
Boolean arrays? What are the interpretations?

TOPIC: Logical Shift-and-Compare (Map) Operations

In the following list of shift-and-compare operations, the catenate
and drop technique (e.g. -ltO,B) is used instead of the rotate
technique (e.g. -l~B). The reason for this choice is that the rotate
technique has the undesirable effect of "filling" the first element
(or last element if l~B) with the arbitrary value of the last Cor
first) element of the array, rather than with the 1 or a needed to
make the comparison work in every case.

Also notice that the catenate is done before the drop (e.g. -l!O,BJ
instead of the other way around (e.g. O,-l!B) so that the expression
will behave correctly when the argument is empty.

Expression Interpretation
_____ ____ IIIIIIIIIoIIfI ___
-_...---_ --­

R;t-1!O.R I-maps to leading 1-poles

R=-1~1,R a-maps to leading a-poles

R>-lJ-O,R 1-maps to first 1 bits

R~-l!l,R a-maps to first a bits

RV-I-l-O,R extend 1-maps to right by 1

(shorten a-maps from left by 1)

RA-lil.R extend a-maps to right by 1

(shorten 1-maps from left by 1)

since each shift-and-compare operation transforms a map, these
operations are sometimes called "map" operations.

Let us solve some problems using these operations.

A.	 Given a character vector SENTENCE, return the lengths of the

words in it. A word is any set of contiguous letters.

LETTERS~'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef xyz'...
MAPS~(SENTENCEELETTERS),O CO to insure last element

not a letter)
POLES~MAPS~-l~O,MAPS (I-maps to leading I-poles)
INDS~POLES/tpPOLES (indices of poles)
INDS~C((pINDS)+2),2)pINDS (reshape to 2 column matrix)
-/<I>INDS (subtract in pairs)

-236­

Chapter 15	 BOOLEAN TECHNIQUES

B.	 Determine the indices of the first letter of each word.

MAPS~SENTENCEELETTERS

(MAPS>-l~O,MAPS)/lpMAPS (I-maps to first 1 bits)

c.	 Given a numeric vector BAL, how many times do the values go from
positive to negative or vice-versa?

MAPS+-BAL<O

+/I~MAPS~-I~O,MAPS (I-maps to leading I-poles)

D.	 Delete the extraneous (leading, trailing or redundant) blanks
from a character vector CVEC.

NB+-CVECi'

CVEC+-(NBV-l~O,NB)/CVEC (extend I-maps to right by 1)

CVEC~(-' '=-ltCVEC)~CVEC (drop last element if blank)

PROBLEM:	 Some applications, such as text processing, are well-suited
to the Boolean techniques discussed in the prior sections.
These techniques allow you to analyze an array without
iterating by character. For example, (+/A\R=' ') tells you
how many leading blanks are in the array R. At times, you
will want to work with an array which is the catenation of
several arrays (e.g. the sentences in a paragraph). Then
you may want to apply the Boolean operations on each
respective "subarray" (e.g. the number of leading blanks in
each sentence of a paragraph). Design and implement a set
of Boolean utility functions which will perform the
operations described in the prior sections, for each of the
sUbarrays in a specified array.

TOPIC: Logical Partition Operations

We will use the term "partition" to refer to each subarray of an
array. For example, we may view the following character vector as
consisting of 3 partitions (sentences):

, HELLO. THIS IS A SAMPLE. WHAT DO YOU THINK?'

There are a number of different methods which may be used to define
where in this character vector each of the partitions begins and

-237­

Chapter 15 BOOLEAN TECHNIQUES

ends. For example, we could specify the indices of the starting
elements and of the ending elements for each partition; or we could
specify the starting indices and the lengths of each partition.

since we will be using Boolean techniques discussed above, we will
define the locations of the partitions by specifying a Boolean vector
which has as many elements as the character vector and which has Is
in the indices which correspond to the first element of each
partition. Such a Boolean vector will be called a "partition vector".

A partition vector for the character vector above is defined below
(with spaces removed from the display of the partition vector for
clarity) :

CVEC~'HELLO. THIS IS A SAMPLE. WHAT DO YOU THINK?'

PV ~ 100000100000000000000000010000000000000000000

We desire a set of functions which will perform each of the Boolean
operations described in prior sections, but will do so independently
on each of the partitions of a specified array. Since the functions
require the knowledge of how the array is partitioned, the partition
vector must be an argument to each function. For example, if +/ and
A\ were defined to permit a partition vector left argument, we could
determine the number of leading blanks in each sentence of CVEC with
the following expression:

PV+/PVA\CVEC=' ,

The result would contain one element per partition (e.g. 0 2 2).

since +/ and A\ do not, in fact, accept partition vector left
arguments, we will design our own set of "partition functions tt •

Non-Partition Partition (PV)

Expression Expression

+/R PV pPLUSRED R

AIR PV pANDRED R

viR PV pORRED R

A\R PV pANDSCAN R

v\R PV pORSCAN R

<\R PV pLTSCAN R

:s\R PV pLESCAN R

;t\R PV pNESCAN R

=\R PV pEQSCAN R

R;t!-lJ,O,R PV pNEMAP R

R=-l!l,R PV pEQMAP R

R>-lJ,O,R PV pGTMAP R

R~-1J,1,R PV pGEMAP R

RV-IJ,O,R PV pORMAP R

R"-1,J,1,R PV pANDMAP R

-238­

Chapter 15	 BOOLEAN TECHNIQUES

(Notice that the logical scalar functions (e.g. L>R) are not included
here since the scalar functions work correctly whether or not their
arguments are partitioned.)

The	 number of leading blanks in each sentence in CVEC is:

PV pPLUSRED PV pANDSCAN CVEC=' ,

The use of these functions will be further illustrated in the next
section.

The definitions of these functions make heavy use of the Boolean
techniques described in prior sections. You may want to study the
definitions of some of the functions to become better acquainted with
actual applications of Boolean techniques.

(The algorithms underlying many of these functions were conceived by
Robert A. smith of STSC and are introduced in the publication,
Boolean Functions and Techniques, 1975, Scientific Time Sharing
Corporation.)

[WSID: BOOLEAN]
V R~P pPLUSRED B;T

[1] R Returns +/8 for each partition 8 of B,
[2] R where P is the corresponding Boolean
[3] R partition vector whose Is mark the first
[4] R element of each partition.
[5] R
[6] R Works on Boolean B only. For numeric B:
[7] A R~C1<1>P)/+\B

[8J R R~R--IJ.O,R

[9] A
[10] R Compress partition vec for just 1 bits and
[11] R leading bits:
[12] T~pR~(PVB)/P

[13] A Convert to indices:
[14] R+--R/lT
[15] R Lengths of compressed partitions:
[16] R+--Cl.J-R,OIO+T)-R

[17J A Deduct 1 for partitions with leading 0 bit:

[18]	 R+-R-"'vp/B

v

-239­

Chapter 15	 BOOLEAN TECHNIQUES

[WSID: BOOLEAN]
V Rf-P pANDRED B

[1] A Returns ~/S for each partition S of B,
[2] R where P is the corresponding Boolean
[3] A partition vector whose 1s mark the first
[4] A element of each partition.
[5] R Compress partition vee for just a bits and
[6] A leading bits:
[7] R+-(P2:B)/P
[8] A Which partitions have no as beyond leading bit?
[9] Rf-R/l<1>R
[10] R ••• and have a leading 1 bit:
[11] R+--R~P/B

v

[WSID: BOOLEAN]
V R+-P pORRED B

[1] A Returns viS for each partition S of B,
[2] A where P is the corresponding Boolean
[3] A partition vector whose 1s mark the first
[4] R element of each partition.
[5] A Compress partition vee for just 1 bits and
[6] A leading bits:
[7] R+-(PVB)/P

[8J R Which partitions have no 1s beyond leading bit?

[9] R+-R/l<t>R
[10] A Leading 1 bit or any trailing 1s:
[11]	 R+-R::sP/B

V

[WSID: BOOLEAN]
V R+-P pANDSCAN B;T

[1] A Returns A\S for each partition S of B,
[2] A where P is the corresponding Boolean
[3] A partition vector whose Is mark the first
[4] A element of each partition. Uses fact
[5] R that A\A +-~ ~V\~A.

[6] R Consider just 0 bits and leading bits:
[7] T+-P2:B
[8] R All Is except leading 1 bits (as as):
[9] R+-~T/B

[10] A l-maps to I-poles and expand:
[11] R+--T\R1-1J,O,R
[12] A I-poles to I-maps and toggle:
[13] R+-"'1\R

V

-240­

Chapter 15 BOOLEAN TECHNIQUES

[WSID: BOOLEAN]
v R~P pORSCAN B;T

[1] A Returns v\S for each partition S of B,
[2] A where P is the corresponding Boolean
[3] R partition vector whose Is mark the first
[4] A element of each partition.
[5] A Consider just 1 bits and leading bits:
[6] T+-pvB
[7] RAIl 1s except leading 0 bits:
[8J R+-T/B
[9] A 1-maps to 1-poles and expand:
[10] R~T\R;t-1J,O,R

[11] A 1-poles to I-maps:
[12] R~1\R

v

[WSID: BOOLEAN]
V R+-P pLTSCAN B;T

[1] A Returns <\5 for each partition S of B,
[2] A where P is the corresponding Boolean
[3] A partition vector whose 1s mark the first
[4] A element of each partition.
[5J A Consider just 1 bits and leading bits:
[6] T+-pvB
[7] A All Is except leading 0 bits:
[8J R+-T/B
[9] A 1-maps to leading 1 bits and expand:
[10] R+-T\R>-lJ-O,R
[11] A Set leading 1 bits to 1:
[12] R+-RVPAB

V

[WSID: BOOLEAN]
v R+-P pLESCAN B;T

[1] A Returns ~\S for each partition S of B,
[2] R where P is the corresponding Boolean
[3] A partition vector whose Is mark the first
[4] A element of each partition.
[5] R Consider just 0 bits and leading bits:
[6] T~P~B

[7] R All Is except leading 1 bits (as Os):
[8J R~"vT/B

[9] R I-maps to leading 1 bits and expand:
[10] R+-T\R>-lJ-O,R
[11] A Set leading 0 bits to 0; subtract other
[12] R leading 1 bits:
[13] R~R<B~P

v

-241­

Chapter 15	 BOOLEAN TECHNIQUES

[WSID: BOOLEAN]
v R~P pNESCAN B

[1] ~ Returns 1\8 for each partition S of B,
[2] A where P is the corresponding Boolean
[3] A partition vector whose Is mark the first
[4] A element of each partition.
[5] A I-poles to I-maps, shift right, mark overlap
[6] A leading bits:
[7] R+--P/-l,J,0,1\B
[8] R I-maps to I-poles, expand, marking leading
[9] R bits to toggle:
[10] R~P\R;i-lJ,O,R

[11] A Toggle selected leading bits, I-poles to I-maps:
[12] R~;t\B;tR

V

[WSID: BOOLEAN]
v R~P pEQSCAN B

[lJ A Returns =\8 for each partition S of B,
[2] A where P is the corresponding Boolean
[3] A partition vector whose Is mark the first
[4] R element of each partition.
[5] A O-poles to a-maps, shift right, mark overlap
[6] A leading bits, toggle:
[7] R~"'P/-1J,1,=\B

[8] A I-maps to I-poles, expand, marking leading
[9] R bits to toggle:
[10] R+-P\R;t-1J,O,R
[11] A Toggle selected leading bits, a-poles to a-maps:
[12]	 R~=\B~R

V

[WSID: BOOLEAN]
V R+-P pNEMAP B

[1] R Returns S~-l!O,S for each partition S of B,
[2] R where P is the corresponding Boolean
[3] A partition vector whose ls mark the first
[4] A element of each partition.
[5] R I-maps to leading I-poles:
[6] R+-B1-1!O,B
[7] A Toggle leading bits which are not correct:
[8]	 R+-R;tPI\B;I!R

v

-242­

Chapter 15 BOOLEAN TECHNIQUES

[WSID: BOOLEAN]
v R+-P pEQMAP B

[1] R Returns S=-l~l,S for each partition S of B,
[2] A where P is the corresponding Boolean
[3] R partition vector whose Is mark the first
[4] A element of each partition.
[5] A a-maps to leading a-poles:
[6J R+-B=-lJ,l,B
[7] R Toggle leading bits which are not correct:
[8J R+-R;tPAB;tR

v

[WSID: BOOLEAN]
V R+-P pGTMAP B

[1] R Returns S>-ltO,S for each partition S of B,
[2] R where P is the corresponding Boolean
[3] R partition vector whose Is mark the first
[4] A element of each partition.
[5] R I-maps to first 1 bits:
[6] R+-B>-ltO,B
[7] R Toggle leading bits which are not correct:
[8] R+-R;tPAB;tR

v

[WSID: BOOLEAN]
V R+-P pGEMAP B

[1] R Returns S~-ltl,S for each partition S of B,
[2] A where P is the corresponding Boolean
[3] A partition vector whose 1s mark the first
[4] A element of each partition.
[5] R O-maps to first 0 bits:
[6] R+-B~-ltl,B

[7] A Toggle leading bits which are not correct:
[8J R+-R;tPI\B;tR

V

[WSID: BOOLEAN]
V R+-P pORMAP B

[1] R Returns SY-l!O,S for each partition S of B 9

[2] A where P is the corresponding Boolean
[3] A partition vector whose Is mark the first
[4] A element of each partition.
[5] A Extend I-maps to right by 1:
[6] R+-BY-l!O,B
[7] R Toggle leading bits which are not correct:
[8] R+-R1PI\B1R

V

-243­

Chapter 15	 BOOLEAN TECHNIQUES

[WSID: BOOLEAN]
v R+-P pANDMAP B

[1] A Returns SA-l~l,S for each partition S of B,
[2] R where P is the corresponding Boolean
[3] A partition vector whose Is mark the first
[4] A element of each partition.
[5] A Extend a-maps to right by 1:
[6] Rf-BA-l~l,B

[7] A Toggle leading bits which are not correct:
[8J	 R+-R1PAB;fR

v

PROBLEM:	 write a monadic function RELABEL which will locate and
modify all of the line labels (and references to those
labels) in any specified function (whose character vector
visual representation is provided as the argument to
RELABEL) such that the labels become LI, L2, L3, ... The
result of RELABEL is the modified visual representation.

TOPIC: An Illustration of Boolean Techniques

The visual representation of a function is a character vector which,
when displayed, looks just like the display produced by the command
VFNNAME[O]V. In order to be a character vector, not matrix, which
displays on several lines, the visual representation necessarily
contains "newline" (carriage return) characters. For example,
suppose VR is the visual representation of the simple AVG function:

pVR
36

VR

V R~AVG V

[1] R+-(+/V)+pV
V

To get a more revealing view of VR and why it has the shape displayed
above, we can replace all newline characters by the "@tt symbol, and
all blank characters by the" "symbol. Suppose NL is a scalar
newline character.

-244­

Chapter 15 BOOLEAN TECHNIQUES

T+-VR
T[CT=NL)/tpTJ+-'@'
T[CT=' ')/tpTJ '_'
T

____V_R+-AVG_V@[lJ __ R.... (+/V)+pV@ V@

The visual representation of a function may be generated by using the
OVR system function in APL*PLUS, or 1 DFD in SHARP APL, or the CRAVR
function (and OCR) developed in the Workspace Design and
Documentation chapter. The newline character may be generated by
using DTCNL in APL*PLUS, DTC[2J (origin 1) in APL2 or by selecting
the newline character from DAV (the index of the element depends upon
the APL implementation; it is 157 in origin 1 for SHARP APL).

Let us define the header of the desired RELABEL function:

V NEWVR+-RELABEL VR

We will find it convenient to view the visual representation as a
partitioned array, where each line of the function is a partition.
We will construct a partition vector whose Is flag the first
character on each line. Since every line is preceded by a newline,
except the header line, and since the last character in the visual
representation is a newline, we may construct the partition vector as
follows:

(Use DTC[2J in APL2 or DAV[157J in SHARP APL instead of DTCNL.)

To solve this task, we must locate all identifiers, including labels,
referred to in the visual representation. Identifiers are
consecutive strings of alphanumeric characters whose first letter is
alphabetic. However, we must be careful to ignore all such strings
located within comments or within quotes, since such strings are
probably words and not identifiers. Further, we cannot simply ignore
everything beyond the first comment symbol (R) on each line. The
first comment symbol may be located within quotes and so will not
actually represent the beginning of a comment. (Note: many APL
implementations now permit end-of-line comments, in addition to
full-line comments, and so we cannot assume that the comment symbol
will appear in a specific position on the line.)

Our first step is to find and ignore all characters within quotes
(even quotes within comments). Then, the comment symbols not within
quotes begin genuine comments, so we can use them to find and ignore
all characters within comments. Finally, by ignoring all characters
either within quotes or within comments, we can proceed with our job
of finding identifiers.

As we saw in a prior section, =\ can be used to ignore characters
within quotes, using an expression like:

(=\CVEC#'" ')/CVEC

-245­

Chapter 15 BOOLEAN TECHNIQUES

However, this expression cannot be blindly applied to VR since a
comment may contain an odd quote character (e.g. A YOU DON'T SAY!)
which will cause mismatching of quote characters. Instead, we must
perform the =\ CO-poles
of VR individually.

to a-maps) on each partition (function line)

[2]
[3]

NQ~VR;t""

NCCON~NL pEQSCAN NQ

NQ flags the non-quote characters. NCCON is a map vector of the
characters which are not within quote pairs (i.e. character
constants) within each function line. Note that the closing quotes
of each quote pair are included in the map while the opening quote is
not.

We can now use NCCON to help us locate all valid comment symbols.

NC flags the non-comment characters COs flag the valid comment
symbols). For each line of the visual representation, we wish to
propagate the 0 which flags the comment symbol in NC so that all
following characters are flagged with as (to subsequently ignore
them). For a single partition, we can use A\. For all partitions,
we must use pANDSCAN:

[5] NCMT~NL pANDSCAN NC

NCMT is a map vector of the characters which do not follow a valid
comment symbol. Note that the comment symbols themselves are not
included in the map.

It is now a simple matter to construct a map vector, PARSE, of the
characters which are not within quote pairs and which do not follow a
comment symbol within each function line:

[6] PARSE~NCMTANCCON

Our next thrust is to look at the characters flagged by PARSE and to
construct a pole vector whose poles (pairs of Is) flag the
identifiers. First, flag the digit characters, the letters, the
alphanumeric characters and blanks:

[7] NUM~PARSEAVR€'0123456789'

[8] ALP~PARSEAVRE'ABCD... XYZAabcd ... xyz~'

[9J AN+-NUMvALP
[10] BL~PARSEAVR=' ,

Then, construct a pole vector of the alphanumeric maps.

Some of these pole pairs flag identifiers (e.g. COUNT or AMT85 or J)
while others do not (e.g. 5B or lE6). We must "turn off" the pole

-246­

Chapter 15 BOOLEAN TECHNIQUES

pairs whose first pole does not correspond to an alphabetic
character. The technique used to do this follows:

[12] T+-PAN/ALP
[13] PID+-PAN\Tv-1~T

Notice that the compression (/) places the pole values next to each
other, the map operation extends the value of the first pole (lor 0)
into the second pole, and the expansion (\) replaces the poles (some
Os now) into their original positions. PID is a pole vector which
flags identifiers.

Since some identifiers begin with the '0' symbol (e.g. OIO or opp or
DEX), we must adjust the poles in PID to include the '0'.

[14] T+-l4>PID
[15] T+-T\'D'=T/VR
[16] PID+-TvPID>-l4>T

Now that we have located all identifiers within the visual
representation, we must locate the labels. Labels are identifiers
which immediately follow the bracketed function line number (ignoring
spaces) and which immediately precede a colon (:).

Let us find the line numbers. Construct a pole vector of the numeric
digit maps.

[17] PNUM+-NUM1-1tO,NUM

If the first pole in the PNUM pole pairs is exactly 2 characters
after a newline character, that pair of poles identifies a line
number. Flag the character following the "]" character after the
line number at the beginning of each line.

Notice that / and \ are again used to place the pole values next to
each other. In this case, the rotate operation changes 1 0 poles to
o 1 poles so that the last pole of the numeric pole vector
(corresponding to the "]") is flagged.

The next step is to move the bits in START to the right so that they
correspond to the first nonblank after the bracketed line number.
Construct a pole vector of the blank maps.

Flag the first nonblank character in each line:

[20] START~(START>BL)vPBL\-l$PBL/START

The CSTART>BL) term is included for lines which do not have any
blanks between the bracketed line number and the next nonblank
character.

-247­

Chapter 15 BOOLEAN TECHNIQUES

By matching up START and PID, we can construct a pole vector of
identifiers which begin with the first nonblank character of a
function line:

[21] T~PID/START

[22] PSID~PID\TV-l~T

construct a pole vector of labels (i.e. identifiers at the beginnings
of function lines which are followed by a colon):

[23] T~': '=PSID/VR
[24] PLAB~PSID\Tvl$T

using the pole vector, determine the starting and ending (plus 1)
indices of the identifiers in the function (as a 2 column matrix, one
row per identifier):

[25] IND~PID/lpPID

[26] NID~(pIND)+2

[27] IND~(NID,2)pIND

Determine the length of each identifier name:

[28] IDSTART~IND[;OIO]

[29] IDLEN~IND[;l+DIO]-IDSTART

From here on, Boolean techniques are not required. The techniques
used are discussed in other chapters, most notably the Positioning
Character Data chapter and the Sorting and Searching chapter.

The RELABEL function is presented below in its entirety. The
function uses the Boolean techniques described above. However, it
has been modified in a number of ways. The logical partition
functions (e.g. pANDSCAN) have been replaced by the equivalent logic
so that RELABEL does not require their presence. The variables have
been localized. RELABEL also has a left argument: a character
matrix or vector (blank-delimited) of the names of the labels which
are not to be renamed. Provide an empty character vector if all
labels are to be renamed. For example, to relabel the function MODEL:

DDEF " RELABEL OVR 'MODEL' (on APL*PLUS)
3 DFD " RELABEL 1 DFD 'MODEL' (on SHARP APL)
DFX VR~CR " RELABEL CR~VR OCR 'MODEL' (otherwise)

-248­

Chapter 15	 BOOLEAN TECHNIQUES

[WSID: FNIDS]
V	 R~KEEP RELABEL VR;ALP;AN;BL;COLS;FOUND;IDLEN;IDS;

IDSTART;IND;KLABS;KLEN;KSTART;LABS;NB;NC;NCCON;NCMT;
NEW;NID;NKEEP;NL;NLAB;NLEN;NQ;NSTART;NUM;PAN;PARSE;PBL
;PID;PLAB;PNUM;PSID;S;START;T;DIO

[ll A Modifies the vector representation eVR) of a
[2] A function such that its labels and references to
[3] ~ same are changed to L1, L2, L3, ... for all labels
[4] A but those specified in KEEP, a character matrix
[5] ~ or vector Cblank delimited) of label names.
[6] ~ Requires subfunction: CMIOTA.
[7] DIO~O

[8J ~ Flag newline chars CBoolean partition vector):

[9]	 NL~-l~VR=DTCNL ~ APL*PLUS
[10] A NL~-l~VR=DTC[l] A APL2
[11] A NL~-1~VR=DAV[156] A SHARP APL
[12] A Flag nonquotes:
[13] NQ~VR;t , , , ,

[14] A Map of chars not in quote pairs Ci.e. char constants)

[15] A within each fn line CNCCON~NL pEQSCAN NQ):
[16]	 NCCON~=\NQ1NL\T1-1~O,T~~NL/=\-1~1,NQ

[17]	 NQ~O

[18] A Flag non-R chars (includes AS in quotes):
[19]	 NC+-NCCONAVR='A'
[20] A Map of chars which do not follow a A (ignoring AS

[21] A within quotes) within each fn line. AS are flagged O.
[22] A CNCMT+-NL pANDSCAN NC):
[23]	 S~NL?:NC

[24]	 NCMT+-~1\S\T~-1~09T~~S/NC

[25]	 S+-T~NC~O

[26] A Map of chars which are not included within RS or ".
[27]	 PARSE+-NCMTANCCON
[28]	 NCCON~NCMT~O

[29] A Flag digits, letters, blanks:
[30]	 NUM+-PARSEAVRE'0123456789'
[31]	 ALP~PARSEAVRE'ABCDEFGHIJKLMNOPQRSTUVWXYZAabcdefghijklm

nopqrstuvwxyzA'
[32]	 BL+-PARSEAVR=' ,
[33]	 PARSE~O

[34] ~ Flag alphanumeric chars:
[35]	 AN~NUMVALP

[36] ~ Pole vec of contiguous digits:
[37]	 PNUM~NUM1-1!09NUM

[38]	 NUM+-O
[39] A Pole vec of contiguous digits/letters:
[40]	 PAN+-AN~-l!O,AN

[41]	 AN~O

[42] A Pole vee of identifiers:
[43]	 PID+-PAN\Tv-1$T+-PAN/ALP
[44]	 ALP+-PAN+-O
[45] R Flag '0' before identifiers CDnames):
[46]	 T~l~PID

[47]	 T+-T\ ' 0 ' =T/VR

-249­

Chapter 15 BOOLEAN TECHNIQUES

v RELABEL (continued)
[48] A Shift leading poles of Dnames to include 0:
[49] PID~TvPID>-l~T

[50] T~O

[51] A Flag char following] after line no.:
[52] START~-l~PNUM\-l$PNUM/-l~NL

[53] NL~PNUM~O

[54] A Pole vee of contiguous blanks:
[55] PBL~BL1-1iO,BL

[56] A Flag 1st nonblank char in each line:
[57] START~(START>BL)vPBL\-l$PBL/START

[58] BL~PBL~O

[59] A Pole vee of identifiers at start of line:
[60] PSID~PID\Tv-l~T~PID/START

[61] START~O

[62] A Pole vee of labels:
[63] PLAB~PSID\TV1$T~':'=PSID/VR
[64] PSID~O

[65] A start and end (+1) indices of identifiers:
[66] IND~PID/lpPID

[67] A No. of identifiers:
[68] NID~(pIND)+2

[69] IND~(NID,2)pIND

[70] A start indices of identifiers:
[71] IDSTART~IND[;O]

[72] A Lengths of identifiers:
[73] IDLEN~IND[;l]-IDSTART

[74] IND~O

[75] R Map vee of nonblanks in labels to keep:
[76] NB~' '~KEEP~9' , 9KEEP
[77] A start indices in KEEP of identifiers:
[78] NKEEP~pKSTART~(NB>-l~NB)/lpNB

[79] A Lengths of KEEP identifiers:
[80] KLEN~(l+(NB>l~NB)/LpNB)-KSTART

[81] A Length of longest identifier:
[82] COLS~(r/KLEN)rr/IDLEN

[83] A Raveled blank matrix of identifier names:
[84] IDS~(NIDxCOLS)p' ,
[85] A Fill them in (T~MONIOTA IDLEN):
[86] T~T+lpT~IDLEN/--l!O,+\IDLEN

[87] IDS[T+IDLEN/COLSXtNID]~VR[T+IDLEN/IDSTART]

[88] A Reshape to mat of identifiers:
[89] IDS~(NID,COLS)pIDS

[90] A Mat of label names:
[91] LABS~(((NID,2)pPID/PLAB)[;O])fIDS

[92] PID~PLAB~O

[93] A Raveled blank matrix of labels to keep:
[94] KLABS~(NKEEPXCOLS)p' ,
[95] A Fill in (T~MONIOTA KLEN):
[96] T~T+tpT~KLEN/--l!O,+\KLEN

[97] KLABS[T+KLEN/COLSX1NKEEP]~KEEP[T+KLEN/KSTART]

[98] A Reshape to mat of labels to keep:
[99] KLABS~(NKEEP,COLS)pKLABS

-250­

Chapter 15 BOOLEAN TECHNIQUES

v RELABEL (continued)
[100] A Squeeze out labels in KEEP:
[101] LABS~(NKEEP=KLABS CMIOTA LABS)fLABS
[102] ~ Row indices in LABS where rows of IDS are found:
[103] IND~LABS CMIOTA IDS
[104] A No. of labels:
[105] NLAB~lppLABS

[106] A Flag identifiers which are labels:
[107] FOUND+-IND<NLAB
[108] A start indices of label identifiers:
[109] IDSTART~FOUND/IDSTART

[110] A Lengths of same:
[111] IDLEN~FOUND/IDLEN

[112] A Indices into LABS of same:
[113] IND+-FOUND/IND
[114] ~ Building new labels: 'L1L2L3 ... ':
[115] NEW~' ',<Ji1+1NLAB
[116] A start indices in NEW of new labels:
[117] NSTART~(NEW=' ')/tpNEW
[118] ~EW[NSTART]~'L'

[119] A Lengths of new labels:
[120] NLEN~(l!NSTART,pNEW)-NSTART

[121] A Lengths replicated for all label identifiers:
[122] NLEN~NLEN[IND]

[123] R start indices replicated as well:
[124] NSTART~NSTART[IND]

[125] ~ Initialize replication vee:
[126] R~(pVR)p1

[127] A Use as to squeeze out old identifiers
[128] A (T~MONIOTA TOLEN):
[129] T~T+lpT+-IDLEN/--l!O,+\IDLEN

[130] R[T+IDLEN/IDSTART]~O

[131] A Insert lengths to expand for new identifiers:
[132] R[IDSTART]+-NLEN
[133] A Squeeze/expand vis rep as needed:
[134] R~R/VR

[135] A Adjust for new lengths:
[136] IDSTART+-IDSTART++\-1~09NLEN-IDLEN

[137] A Insert new labels CT+-MONIOTA NLEN):
[138] T+-T+lpT+-NLEN/--l~O,+\NLEN

[139] R[T+NLEN/IDSTART]~NEW[T+NLEN/NSTART]

v

-251­

Chapter 15	 BOOLEAN TECHNIQUES

PROBLEMS:	 (Solutions on pages 449 to 458)

1. What expression will tell you whether all of the elements of the
numeric vector NVEC are integers?

2.	 Delete the trailing blanks from the character vector CVEC.

3.	 Left justify the rows of the character matrix NAMES (i.e. shift
each row left until its first character is a nonblank).

4.	 How many numbers (set of contiguous digit characters) are there
in the character vector INPUT?

5.	 write the function TIME6DEFINE as described in the Computer
Efficiency Considerations chapter.

6.	 write one or more of the functions IDENTIFY, LOCALIZE and
UNCOMMENT as described in the Workspace Design and Documentation
chapter.

-252­

-------- -------- ------

Chapter 16

IRREGULAR ARRAYS

APL derives much of its power from its conciseness and
consistency. Unfortunately. the real world is not nearly so concise
and consistent. While APL sees the world as a set of rectangular
arrays of data. the world is nonrectangular by nature.

In this chapter. we deal with irregular Cnonrectangular) arrays. We
will present a typical problem which involves irregular arrays and
will attempt to perform a variety of tasks on these arrays. We will
examine alternative methods available in APL for performing these
tasks on the irregular arrays.

As an illustration of irregular arrays. suppose you wish to keep
track of customer information for a business you operate. The
following table shows some of the	 information.

CUSTOMER INFORMATION

UNPAID BILLS
ID TERR
NO. NO. NAME DATE INV. NO. AMOUNT

3 5 ACME CORPORATION	 3/15/86 372 586.25
4/10/86 395 406.15
4/25/86 407 100.00

65 3 FASTENERS INC.	 4/20/86 405 802.16

74 5 KLINGLEY & SONS. INC.

89 2 GHR CORP.	 2/12/86 350 5.25
4/10/86 396 59.60

How would you store this information in APL variables?

The ID numbers can be assigned as a vector with one element per
customer:

10+-365 74 89 ...

-253­

Chapter 16 IRREGULAR ARRAYS

Likewise for territory numbers:

TERR+-5 3 5 2 •••

The customer names may be stored as a character matrix with one row
per customer and as many columns as the widest customer name (or an
arbitrary maximum number of columns). Assuming 500 customers and a
width of 25 character columns,

NAME+-500 25pC25t'ACME CORPORATION'),(25t'FASTENERS INC.') ...

While this approach to storing the customer names in a matrix is
tolerable, it has some disadvantages. First, if a customer's name is
longer than the allowable width (here 25), it must be abbreviated or
truncated. Second, short customer names must be padded with blanks
to the maximum width, implying a waste of storage. Third, when
extracting a customer's name from this character matrix, as for a
form letter, the trailing blanks may need to be deleted, requiring
more complex programming and more processing time.

If these disadvantages are not major, you will do well to store the
names in a character matrix and tolerate the disadvantages. If the
disadvantages are great enough to be unworkable, you must use some
other method to work with this irregular information.

Conceptually, the customer names define an irregular array, a
"vector" of character vectors. Each "element" of the "vector" is
itself the character vector name for a single customer. In this
chapter, we will refer to this type of array as a "nest of character
vectors" or simply a "character nest". We will refer to the
character vector "elements" as "items".

Likewise, the unpaid bills information cannot be fit neatly into a
conventional APL array. If we assign the values to a 3 column
numeric matrix, there will not be one row per customer (as there are
in a character matrix of customer names) and so we must maintain
additional information which tells us which rows belong to which
customer.

Conceptually, the unpaid bills information defines an irregular
array, a "vector" of 3 column numeric matrices. Each "element" of
the "vector" is itself the 3 column numeric matrix for a single
customer. In this chapter we will refer to this type of array as a
"nest of numeric matrices" or simply a "matrix nest". We will refer
to the numeric matrix "elements" as "items".

In this chapter, we will present 4 different approaches to the
problem of working with irregular arrays:

1. APL2 nested arrays
2. APL*PLUS nested arrays
3. SHARP APL nested arrays
4. Conventional APL arrays

-254­

Chapter 16	 IRREGULAR ARRAYS

You will notice that the APL2 and APL*PLUS implementations of nested
arrays are similar. The primary differences are in the function
symbols chosen for the particular nested array operations.

PROBLEM:	 Construct a character nest of customer names and a matrix
nest of unpaid bills information.

TOPIC: Constructing Irregular Arrays

In APL2, APL*PLUS and SHARP APL, character nests and matrix nests may
be stored as nested arrays. In particular, they are stored as
vectors of items, where the items are character vectors (character
nests) or 3 column numeric matrices (matrix nests). The conventions
for constructing these arrays are different for each of the different
implementations of APL.

In APL2 and APL*PLUS, the arrays may be constructed by "vector
notation" or "strand notation":

NAME~'ACME CORPORATION' 'FASTENERS INC.' ...
UBILLS~(3 3p31586 372 58625 41086 395 40615 42586 407 10000)

(1 3p42086 405 80216) (0 3pOJ ...

Alternately, the arrays may be initialized to have the correct number
of items, after which the items are individually index assigned
(assume 500 customers):

NAME~UBILL~500pO

NAME[l]~c'ACME CORPORATION'

NAME[2]~c'FASTENERS INC.'

UBILLS[1]~c3 3p31586 372 58625 41086 395 40615 42586 407
10000

UBILLS[2]~c1 3p42086 405 80216

UBILLS[3]~cO 3pO

The monadic enclose ee) function converts its right argument into a
ttnested scalar". In APL2 9 a tidier notation may be employed to
perform the index assignment:

-255­

Chapter 16 IRREGULAR ARRAYS

NAME~UBILLS~500pO

(lJNAME)~'ACME CORPORATION'

(2JNAME)~'FASTENERS INC.'

(lJUBILLS)~3 3p31586 372 58625 41086 395 40615 42586 407
10000

(2~UBILLS)~1 3p42086 405 80216

(3::>UBILLS)~O 3pO

In SHARP APL, the arrays may be constructed by repeatedly applying
the link (::» function:

NAME~'ACME CORPORATION'~'FASTENERSINC.'J
UBILLS~(3 3p31586 372 ... 407)~(1 3p42086 405 80216)J

(0 3pO):> ...

Alternately, the arrays may be initialized to have the correct number
of nested items, after which the items are individually index
assigned:

NAME~UBILLS~500p<O

NAME[l]~<'ACME CORPORATION'

NAME[2]~<'FASTENERS INC.'

UBILLS[1]~<3 3p31586 372 58625 41086 395 40615 42586 407
10000

UBILLS[2]~<1 3p420B6 405 80216

UBILLS[3]+-<Q 3pO

Notice that the less than «) symbol is used to perform the enclose
function.

If you already have your customer names in the form of a character
matrix (CMAT) with one row per name, you may convert the matrix
directly into a character nest by one of the following:

NAME~c[2]CMAT CAPL2)
NAME~J,[2]CMAT CAPL*PLUS)
NAME~<ol CMAT (SHARP APLJ

Each of the items of the reSUlting nest will be a character vector of
the same length, namely the number of columns in the character matrix
CCMAT). To delete the trailing blanks from each character vector
item of a character nest, you must do the following:

NAME~DTB·· NAME (APL2, APL*PLUS)
NAME+- (+ /" \' , :#4>CMAT) P ··>NAME (SHARP APL)

where DTB (delete trailing blanks) is a user-defined monadic function
which deletes the trailing blanks from its character vector right
argument. For example:

-256­

Chapter 16	 IRREGULAR ARRAYS

v R+-DTB CVEC
[1]	 R+-C+/A\' , ;t<t>CVEC)pCVEC

v

When generating reports which include the customer names, you may
need to convert the character nest back into a character matrix with
a specified number of columns. Each name must be left-justified in a
single row of the matrix. Suppose you want a 25 column matrix. You
may do this as follows:

CMAT+-::> [2] 25 r --NAME	 CAPL2)
or: CMAT+-25t[2]::>[2JNAME	 CAPL2)

CMAT+-t [1.5] 25t-·NAME	 (APL*PLUS)
CMAT+-25to>NAME	 (SHARP APL)

The second APL2 algorithm is more efficient that the first but will
require more workspace storage than the first if any name is longer
than 25 characters. If much longer, a WS FULL may occur.

PROBLEM:	 How can you work with irregular arrays if your
implementation of APL does not support nested arrays?

TOPIC: Emulating Nested Arrays on Non-Nested Systems

Skip this	 section if your implementation of APL has nested arrays.

To solve the tasks above using conventional APL, we must devise a
scheme wherein a character nest or a matrix nest may be stored as one
or more conventional APL arrays. We will deal first with the
character nest problem.

One approach is to catenate the names together, preceding each name
by a delimiter character. For example:

NAME+-'®ACME CORPORATION®FASTENERS INC.~KLINGLEY ... '

(In SHARP APL, NAME can be converted into the nested array by the
expression: -10< NAME).

Unfortunately, this scheme does not allow an efficient means to
directly access the name for a specified customer since the array
must first be searched for the occurrences of the delimiter
character. For example, the name of the fifth customer may be
extracted with the expression:

-257­

Chapter 16 IRREGULAR ARRAYS

1!C5=+\NAME=lpNAME)/NAME

which works but is inefficient.

If the delimiter character is not going to be used to locate the
sUbstrings of the character nest, you may omit them altogether. Let
us catenate the names together as a single character vector:

NAME~'ACME CORPORATIONFASTENERS INC.KLINGLEY ... '

We need a second array to tell us where each name starts. One
possibility is a Boolean "partition" vector which has one element per
element of NAME and whose Is mark the corresponding first elements of
each name:

NPV~l 0 0 0 0 a a 0 0 0 0 a 0 0 0 0 1 a 0 0 0 0 0 000 ...

Together. these two arrays contain all the information you need to
determine the name for a specified customer. For example, the name
of the fifth customer may be extracted with the expression:

C5=+\NPV)/NAME

(In SHARP APL. NPV and NAME can be converted into the nested array by
the expression: NPV 10< NAME).

Unfortunately, the partition vector approach can be awkward to work
with and has an inherent flaw: it will not handle an empty name.
For example, if one of the customer names is unknown, you would
naturally store it as an empty character vector. However, the
partition vector requires each name to have at least one element (for
the 1 in the partition vector).

Instead of constructing a Boolean partition vector to keep track of
where the names start and end in the vector NAME, construct a vector
of the lengths of each name (including Os for empty names).

NLEN~16 14 21 9 15 0 11 ...

The sum of these elements should be the same as the number of
elements in NAME, i.e. C+/NLEN)=pNAME. Using NLEN, you may extract
the name of the fifth customer with the expression:

NAME[(-1!O,+\NLEN)[5J+tNLEN[5]]

This expression works properly even for empty customer names (i.e.
for elements of NLEN which are 0).

Note that the (-l!O,+\NLEN) portion of the expression is merely
computing the starting indices (i.e. the index before the first
character) of the names. To improve the efficiency of the name
extraction process, you may perform this operation once:

NSTART~-l~O,+\NLEN

-258­

Chapter 16	 IRREGULAR ARRAYS

after which the extraction process (for customer 5) becomes:

NAME[NSTART[SJ+tNLEN[5JJ

Unfortunately, the price you pay for the greater efficiency is
greater complexity. You must maintain 3 arrays (NAME, NLEN, NSTART)
when working with customer names. Any utility functions you write to
work with this character nest (e.g. to emulate the capabilities
illustrated above on nested array systems) must cope with at least
these 3 arguments.

utility function design will be greatly simplified if we can weld
these three arrays into a single array. Unfortunately, numbers (NLEN
and NSTART) do not cohabitate well with characters (NAME) in the
arrays of conventional APL systems. (Note: the APL2 and APL*PLUS
nested array implementations a l l.ow "het e roqeneous " arrays which
contain both character and numeric elements.) You must first convert
them to a common datatype. Suppose we convert the character vector
NAME into a numeric vector (e.g. DAVtNAME) and then catenate the
three arrays together, along with the number of customers:

CNEST~(pNLEN),NLEN,START,DAVtNAME

This array is a single object which contains all of the customer name
information. Since it is a single array, you may design utility
functions which take CNEST as one argument and the other parameters
of the problem as the other argument. For example, you can write a
function EXTRACT whose left argument is this "character nest" array
and whose right argument is the index of the nest for which the
character vector name is to be returned:

CNEST EXTRACT 3

KLINGLEY & SONS, INC.

The	 definition of the EXTRACT function is straightforward:

v R~CNEST EXTRACT I;N
[1] N~1iCNEST

[2]	 R~DAV[CNEST[(CNEST[l+N+I]+l+N+N)+tCNEST[l+I]]]

v

Unfortunately, this definition of a character nest is probably no
improvement over padded character matrices. On an APL system in
which small integers (i.e. 1 to 256) are stored with 4 bytes per
element, each name in this character nest requires 8+4XC bytes, where
C is the number of characters in the name. Since concern for storage
is one of the reasons for exploring character nests, a better
solution is needed.

A big improvement can be made if you can manage to squeeze more than
one character into an integer. since integers are stored in 2 bytes
or 4 bytes, depending upon your implementation of APL, it is possible
to translate 2 or 4 characters into a single integer. For example,
in APL implementations which store integers in 4 bytes, the range of

-259­

Chapter 16 IRREGULAR ARRAYS

integers is -2,147,483,648 to 2,147,483,647. Beyond this range,
integers are stored in 8 bytes. The procedure for converting 4
characters into one integer is to convert each character into an
integer from 1 to 256 (by finding its index in the atomic vector,
DAV) and then pack these 4 numbers into a number between
-2,147,483,648 and 2,147,483,647. Given a 4 element character vector
CVEC4, a single integer may be produced as follows:

OIO+-O (origin a is simpler)
INT~r-2147483648+256iOAV1CVEC4

To convert the integer back to a 4 element character vector:

010+-0
CVEC4+-DAV[(4p256)TINT+2147483648J

Using such a packing and unpacking algorithm, each name in the
character nest will require only 8+4xrC+4 bytes, where C is the
number of characters in the name. This is a big improvement in
storage but comes at the expense of processing efficiency. The
packing and unpacking takes time.

Some APL implementations provide primitive functions for converting
between datatypes, e.g. for converting one 4-byte integer into 4
l-byte characters or vice versa. Such functions are extremely
efficient since no modification is made to the internal
representation of the data, only to the "header" of the variable
which indicates its shape and datatype. Such implementations are
ideal candidates for manipulations of character nests by conventional
means (i.e. not nested arrays).

APL*PLUS PC is one such implementation. Integers are stored in 2
bytes (-32768 to 32767) per element.
representation) converts between
expression

data
The

types
system function

For example,.
DDR
the

(data

NVEC~163 DDR CVEC

converts an N element character vector to an N+2 element integer
vector. The expression

CVEC+-82 DDR NVEC

converts an M element integer vector to an Mx2 element character
vector.

Here is one possible design for storing character nests on an
APL*PLUS PC system (origin 1):

-260­

Chapter 16	 IRREGULAR ARRAYS

CNEST[lJ number	 of character vector sUbstrings CN)

CNEST[2 to N+IJ	 index CDIO=O) into this vector of the starts
of the sUbstrings (8)

CNEST[SJ length	 of this character substring CLJ

CNEST[S+l to s+rL+2J	 integer representation C163 DDR) of this
character substring, padding with 1 space if
necessary to produce an even number of
characters

For example, the character nest which stores the 3 character
substrings 'TREE', 'DOG' and 'ELEPHANT' is:

CNEST~3 4 7 10 4 21076 17733 3 20292 8263 8 19525
20549 16712 21582

Note that:

163 DDR 'TREEDOG ELEPHANT'
21076 17733 20292 8263 19525 20549 16712 21582

Given this design, you may write utility functions which will allow
you to work with character nests with the same (or greater) ease and
efficiency as when working with nested array systems. For example,
to construct the character nest from a character matrix of customer
names:

NAME~CNEST CMAT

(The CNEST function and all other character nest utility functions
suggested below are written for the APL*PLUS PC implementation of APL
as exercises at the end of the chapter.)

To convert a character nest back into a character matrix with a
specified number of columns (say 25), use the CN~M function:

CMAT~25 CN~M NAME

We will deal now with the matrix nest problem. In one regard, the
problem is more difficult to work with than the character nest
problem and in another regard it is simpler. It is more difficult
because the items are matrices instead of vectors and it is simpler
because the values are numeric, not character, and so do not need to
be converted into numbers.

View the matrices as vectors (i.e. ravel them). The number of
elements in each vector is a mUltiple of 3 since the matrices have 3
columns. Viewed in this waYt the nest of numeric matrices becomes a
nest of numeric vectors, which we will call a "numeric nest".

-261­

Chapter 16	 IRREGULAR ARRAYS

One possible design for storing numeric nests is patterned after the
design proposed above for character nests (origin 1):

NNEST[lJ number of numeric vector segments CN)

NNEST[2 to N+IJ	 index (010=0) into this vector of the starts of
the segments (S)

NNESTrSJ length of this numeric segment CLJ

NNEST[S+1 to S+LJ numeric segment

For example, the	 numeric nest which stores the 3 segments (30 17 15),
(25) and (82 93 95 98) is:

NNEST~3 4 8 10 3	 30 17 15 1 25 4 82 93 95 98

Given this design, you may write utility functions for working with
numeric nests. For example, to construct the numeric nest of unpaid
bills information:

A Number of elements per customer/segment:
LEN~3x3 102...

R Values:
VAL~31586 372 58625 41086 395 40615 42586 407 10000 42086 ...

A Construct numeric nest:
UBILLS~LEN NNEST VAL

(The NNEST function and all other numeric nest utility functions
suggested below are written as exercises at the end of the chapter.)

PROBLEM: Add to your customer information database a new customer,
number 33, TOP DOG LTD., territory 4, which has no unpaid
bills.

TOPIC: Catenating to Irregular Arrays

Use catenation to update the two regular arrays:

ID~ID,33

TERR~TERR,4

-262­

Chapter 16 IRREGULAR ARRAYS

Likewise, use catenate to update the two irregular arrays if they are
stored as nested arrays:

NAME~NAME,c'TOP DOG LTD. ' CAPL2, APL*PLUS)
NAME~NAME,<'TOP DOG LTD. ' (SHARP APL)
UBILLS~UBILLS,cO 3pO CAPL2, APL*PLUS)
UBILLS~UBILLS,<O 3pO (SHARP APL)

The enclose function (c or <) must be used to construct a nested
scalar before it is catenated to the nested array. The enclose
function is not needed when catenating more than one customer since
vector notation (or the SHARP APL link function) performs the
enclosing. For example:

NAME~NAME,'TOP DOG LTD.' 'BOTTOM CAT CORP.' CAPL2, APL*PLUS)
NAME~NAME,'TOP DOG LTD. '~'BOTTOM CAT CORP.' (SHARP APL)

Using conventional APL, you may write a function CNCAT which will
catenate a character nest to a character vector, "enclosing" the
character vector and catenating it as a new item:

NAME~NAME CNCAT 'TOP DOG LTD. '

If both arguments to CNCAT are character vectors, the result is a 2
item character nest in which each item comes from a corresponding
argument. This allows you to catenate more than one customer name at
a time via the notation:

NAME~NAME CNCAT 'TOP DOG LTD.' CNCAT 'BOTTOM CAT CORP. '

Likewise, a function NNCAT may be written which will catenate two
numeric nests. Unfortunately, the function cannot readily discern
between an argument which is a numeric nest and an argument which is
a simple numeric vector. (With CNCAT, a character nest is numeric
and a character vector is character.) One way to solve this problem
is to write 4 functions (NNCATSS, NNCATVS, NNCATSV, NNCATVV) which
will respectively handle the 4 possible combinations of arguments.
For example, NNCATVS will catenate a numeric nest ("vector") left
argument to a simple numeric vector ("scalar") right argument:

UBILLS~UBILLS NNCATVS ,0 3pO

You may catenate the unpaid bills information for more than one
customer at a time via the notation:

UBILLS~UBILLS NNCATVV (,0 3pO) NNCATSS ,1 3p40986 400 1000

Another approach is to provide the "scalar" (i.e. not numeric nest)
argument as a matrix. Then, the function can tell its numeric nest
(vector) arguments from its non-numeric-nest (matrix) arguments:

UBILLS~UBILLS NNCAT (0 3pO) NNCAT 1 3p40986 400 1000

-263­

Chapter 16	 IRREGULAR ARRAYS

PROBLEM:	 Return the name and unpaid bills information for the 5th
customer. as a character vector and a 3 column numeric
matrix. Return the names and unpaid bills information for
the 2nd. 8th and 12th customers. as a 3 item character nest
and a 3 item matrix nest. respectively.

TOPIC: Selecting from Irregular Arrays

Using nested arrays. the 5th name and matrix of unpaid bills
information may be returned by selecting and disclosing (converting
from a nested scalar to a simple array):

N~::>NAME[5] (APL2, APL*PLUS)

U~~UBILLS[5]

N+->NAME[5] (SHARP APL)

U+->UBILLS[SJ

The select-and-disclose operation is performed so frequently when
working with nested arrays that a specific function ("pick") is
available in APL2 and APL*PLUS to do just that:

N+-5=>NAME (APL2, APL*PLUS)

U+-5::>UBILLS

To select several items from a nested vector to return a subset
nested vector, you may use indexing directly:

N3+-NAME[2 8 12] CAPL2, APL*PLUS, SHARP APL)
U3+-UBILLS[2 8 12]

using conventional APL, you may write functions CNIDX and NNIDX which
will extract the desired information:

N+-NAME CNIDX 5

U+-UBILLS NNIDX 5

U+-(((pU)+3),3)pU

N3+-NAME CNIDX 2 8 12

U3+-UBILLS NNIDX 2 8 12

These functions return nests Ccharacter or numeric) if the right
argument is a vector and simple arrays (character or numeric vector)
if the right argument is a scalar. Since the unpaid bills
information is stored as a vector, the third statement above is
necessary to reshape the resulting vector into a 3 column matrix.

-264­

Chapter 16	 IRREGULAR ARRAYS

PROBLEM:	 Replace the name and unpaid bills information of the 5th
customer by the character vector 'NEW CORP.' and by the 3
column numeric matrix NEWBILLS. Replace the names and
unpaid bills information of the 2nd, 8th and 12th customers
by those of the 4th, 5th and 6th customers.

TOPIC: Replacing Items of Irregular Arrays

Using nested arrays, the 5th name and matrix of unpaid bills
information may be replaced by any of the following:

NAME[5]~c'NEW CORP. ' CAPL2, APL*PLUS)
UBILLS[5]~cNEWBILLS

(5~NAME)~'NEW CORP. ' CAPL2)

(5~UBILLS)~NEWBILLS

NAME[5]~<'NEW CORP. ' (SHARP APL)
UBILLS[5]~<NEWBILLS

The 2nd, 8th and 12th customers may be modified directly by indexing
and index assignment:

NAME[2 8 12]~NAME[4 5 6] CAPL2, APL*PLUS, SHARP APL)
UBILLS[2 8 12]~UBILLS[4 5 6]

Using conventional APL, you may write functions CNIDXA, NNIDXA and
ASSIGN which will replace the desired information:

NAME~NAME CNIDXA 5 ASSIGN 'NEW CORP. '
UBILLS~UBILLS NNIDXA 5 ASSIGN ,NEWBILLS

NAME~NAME CNIDXA 2 8 12 ASSIGN NAME CNIDX 4 5 6
UBILLS~UBILLS NNIDXA 2 8 12 ASSIGN UBILLS NNIDX 4 5 6

The function ASSIGN is a simple function provided for your
convenience. The CNIDXA and NNIDXA functions require 3 arguments
(original nested array, indices to be replaced, simple or nested
array to be inserted). Since APL syntax allows only 2 arguments, the
3rd argument must be passed as a global variable. The function
ASSIGN assigns its right argument to the global variable <assign> and
returns its left argument as its explicit result.

The CNIDXA and NNIDXA functions require a nest (in <assign» if their
right argument is a vector; they require a simple array if their
right argument is a scalar.

-265­

Chapter 16	 IRREGULAR ARRAYS

PROBLEM:	 What is the average length CANLEN) of customer names?
How many unpaid bills CNUBILLS) exist?

TOPIC: Determining Shapes of Irregular Items

Using nested arrays, you must determine the shape of each item and
then manipulate the resulting vector accordingly:

ANLEN~(+ / € P ··NAME) +pNAME CAPL2)
ANLEN~ (:>+ / P ··NAME) +pNAME CAPL*PLUS)
ANLEN~(+/,po>NAME)+pNAME (SHARP APL)

Each of these expressions requires one more step than intuition
suggests (€, :> and ,J. This additional step is needed because the
result after performing the p .. Cor po» function is still a nested
vector (or 1 column matrix), whose items (or rows) are each one
element vectors, since monadic p always returns a vector. The array
of one element vectors must be converted into a simple vector of
scalars.

The solutions for the second part of the problem are similar:

NUBILLS+-+ / r: p ··UBILLS CAPL2)
NUBILLS~+ /=>•.P··UBILLS (APL*PLUS)
NUBILLS~+/,O -lipo>UBILLS (SHARP APL)

since the items of UBILLS are 3 column matrices, logic is included
Ct··, :> •• and ,0 -Ii) to look at only the number of rows in each matrix
(i.e. the	 first element of the shape of each matrix).

Using conventional APL, you may write functions CNLEN and NNLEN which
return a vector of the lengths of the items in the specified
character or numeric nest:

ANLEN~(+/CNLEN NAME)+lfNAME

NUBILLS+-(+/NNLEN UBILLS)+3

-266­

Chapter 16	 IRREGULAR ARRAYS

PROBLEM:	 Sort the database of customer information by customer name,
alphabetically.

TOPIC: Sorting Character Nests

To sort the database of customer information, we need the grade-up
vector which would put the names in alphabetically sorted order.
Given this vector, say GRADE, the database may be reordered as
follows:

ID+-ID[GRADEJ
TERR~TERR[GRADE]

NAME~NAME [GRADE] (nested arrays)
UBILLS+-UBILLS[GRADEJ

NAME~NAME CNIDX GRADE (conventional APL)
UBILLS~UBILLS NNIDX GRADE

How do we determine GRADE? Using nested arrays, you must first
convert NAME into a character matrix and then apply 4 or CGRADEUP
(see Searching and sorting chapter) on the character matrix.

ALP~' . ,;:-/ABCDEFGHIJKLMNOPQRSTUVWXYZ'

GRADE+-ALP4=>NAME CAPL2)
GRADE+-ALP4~,NAME CSHARP APL)
GRADE~ALP4 r (:::> r / p --NAME) r -NAME CAPL*PLUS)

Using conventional APL, you may write a function CNGRADEUP which
returns the grade vector that may be used to reorder the character
vector items of a specified character nest into sorted order.

GRADE~ALP	 CNGRADEUP NAME

The CNGRADEUP function may be written employing techniques discussed
in the Searching and sorting chapter. As such, it does not need to
convert its character nest right argument into a character matrix
with as many columns as the longest item. In this way, the CNGRADEUP
function is superior to the algorithms listed above for nested
arrays. Each of these algorithms constructs a character matrix from
the nest. If one name is very long, a WS FULL error may be generated.

-267­

Chapter 16	 IRREGULAR ARRAYS

PROBLEM:	 How many times does the name 'FASTENERS INC.' occur as a
customer name? Which customer is 'ABC CORP.'? Which is
'DEF CORP.'? Which is 'GHR CORP.'?

TOPIC: Searching Character Nests

Using nested arrays, the number of times the name 'FASTENERS INC.'
occurs may be determined by one of the following:

+/NAMEEc'FASTENERS INC.' (APL2, APL*PLUS)
+/NAMEE<'FASTENERS INC.' (SHARP APL)

Using conventional APL, you may write a function CNEQ which compares
each item of a specified character nest to a specified character
vector and returns a bit vector with one element per item in the
character nest, the Is corresponding to items which match the
character vector.

+/NAME CNEQ 'FASTENERS INC.'

The CNEQ function may take two character nest arguments, or one
character nest and one character vector argument (in either order) or
two character vector arguments (returning a bit scalar). In other
words, its behavior is parallel to that of the primitive scalar
dyadic function equals (=).

The second part of the problem begs for an index result. Therefore,
dyadic iota (l) is the logical choice. Using nested arrays,

NAMEt'ABC CORP.' 'DEF CORP.' 'GHR CORP.' (APL2, APL*PLUS)
NAMEt'ABC CORP. '~'DEF CORP. '~'GHR CORP.' (SHARP APL)

Using conventional APL, you may write a function CNIOTA which
searches through its character nest left argument for the first
occurrence of each of the items in its character nest right
argument. If the right argument is a character vector, the result is
a scalar.

NAME CNIOTA 'ABC CORP.' CNCAT 'DEF CORP.' CNCAT 'GHR CORP.'

-268­

Chapter 16	 IRREGULAR ARRAYS

PROBLEM:	 Determine the total amount of unpaid bills for each
customer, returning a numeric vector AMT with one element
per customer.

TOPIC: Reducing Numeric Nests

Using nested arrays, the "each", "on" or "with" operators are needed:

AMT~3::>--+f--UBILLS CAPL2, APL*PLUS)
AMT~+/Cr/,o -lJ,po>UBILLS)1'o>,o>C<O 2)J,.-->UBILLS (SHARP APL)

Using conventional APL, you may write a function NNSUMCOL which will
sum the Nth column of each M-column matrix item stored as a numeric
vector item in the specified numeric nest.

AMT~UBILLS NNSUMCOL 3 3

The first 3 in the right argument of NNSUMCOL is the number of
columns in the raveled matrix items. The second 3 is the index of
the column to be summed.

PROBLEMS:	 (Solutions on pages 459 to 473)

1.	 Suppose you have a numeric nest (vector of numeric vectors) named
SALES which contains one item per customer and for which each
item is a vector of the customer's monthly sales. The length of
each vector is a function of how long the customer has been
generating sales. What expression will produce a vector (AVG)
with one element per customer, where each element is the average
monthly sales for the corresponding customer?

2.	 Given a character nest NAMES, what expression will return a

character nest of its distinct (unique) items CUNAMES)?

-269­

Chapter 16	 IRREGULAR ARRAYS

3.	 write one or more of the character nest functions mentioned in
this chapter for your implementation of APL Cif it does not have
nested arrays). The functions are: CNEST, CN~M, CNCAT, CNIDX,
CNIDXA, ASSIGN, CNLEN, CNGRADE, CNEQ, CNIOTA.

4.	 write one or more of the numeric nest functions mentioned in this
chapter if your implementation of APL does not have nested
arrays. The functions are: NNEST, NNCATSS, NNCATVS, NNCATSV,
NNCATVV, NNCAT, NNIDX, NNIDXA, ASSIGN, NNLEN, NNSUMCOL.

-270­

Chapter 17

CURVE FITTING

In both the business and scientific disciplines, the need
occasionally arises to fit mathematical curves to empirical data.
The process of curve fitting is a wonderful, magical process. Like
most magic, curve fitting is illusion based upon reality. The
reality is that rigorous mathematical algorithms are applied by the
computer to determine the precise parameters of a "best" curve. The
illusion is that this "best" curve somehow possesses more knowledge
than the data; that it can be used to predict the future. This can
be a dangerous and foolhardy view.

This is not to say that curve fitting is useless. Far from it.
Curve fitting is not only useful; it is fun. Just be careful that
you are not lured into thinking that the computer's intuition is
better than your own.

In this chapter, we discuss the most complex of all the APL primitive
functions, quad-divide (ffi). The chapter does not presume that you
understand the concepts of numerical analysis and linear algebra
needed to appreciate the algorithms applied within quad-divide.

PROBLEM: Given the following sample data and the function of a
curve, find the coefficients of the curve.

T X Y Z
Curve: T=CAxX)+(BxY)+(CxZ)

9 0 3 0
20 1 2 3 Problem: find scalars A, B, C
19 4 1 2

-271­

Chapter 17 CURVE FITTING

TOPIC: using Quad-Divide

To provide some meaning to this example, suppose the three
observations represent three salespeople. The first salesperson
received no base salary ex) last year, was paid $3 in stock options
CY) and received no bonuses CZ). He generated 9 new customers CT).
The second salesperson received $1 in base salary, $2 in stock
options, $3 in bonuses and generated 20 new customers. The third
salesperson received $4 in base salary, $1 in stock options, $2 in
bonuses and generated 19 new customers.

We have a hypothesis that the number of new customers generated by a
salesperson (T) is a direct function of the base salary (X), stock
options CY) and bonuses CZ), and that the function is in the form:

T=CAxX)+CBxY)+CCxZ)

If we can determine the constants (coefficients) A, Band C in this
formula, we can predict the number of new customers CT) which will be
generated by a salesperson who is paid a specified base salary, stock
option amount and bonus amount. Since we have three equations
C9=3xB; 20=A+C2xB)+(3xC); 19=C4xA)+B+C2xC)) in three unknowns (A, B,
C), the problem can be solved by algebraic manipulations and
sUbstitutions. After tedious work, we discover that A=2, B=3, C=4.

Quad-divide cm) can be used to solve this problem directly. Provide
the dependent values CT) as its vector left argument, and the
independent values CX, Y, Z) as its 3 column matrix right argument.
The result is a vector of the three desired constants Ccoefficients).

T~9 20 19
XYZ~3 3pO 3 0 1 2 3 4 1 2
C~TmXYZ

C

234

Once the coefficients are known, it becomes a simple matter to apply
the formula to hypothetical values. For example, how many new
customers do we expect to be generated by a salesperson who is paid 0
in base salary, $3 in stock options and $4 in bonuses?

o 3 4+.XC A (OxA)+(3xB)+C4xC)
25

In order to solve problems like these Csystems of linear equations),
the data must satisfy certain requirements. For one thing, we must
provide one equation (observation) for each unknown. Since there
were three unknown constants CA, B, C) in the above example, we
needed three observations. If we do not provide enough observations,
there are an infinite number of solutions (values of A, B, C) which
will satisfy the specified observations. Quad-divide will generate a
DOMAIN ERROR.

-272­

Chapter 17 CURVE FITTING

Second, even if we provide one observation per unknown, there may be
insufficient data to determine a unique solution. For example, in
the following set of data, the third observation provides the same
information as the second. The values are simply doubled.

T X Y Z

903 0
20 1 2 3
40 2 4 6

No amount of algebraic manipulation will produce a unique solution.
To have a unique solution, each observation must be independent.
That is, no observation may be a linear combination of the other
observations.

If observations are not independent, quad-divide will generate a
DOMAIN ERROR. The matrix right argument is said to be "singular" and
cannot be "inverted". No unique solution exists.

Third, if we provide more observations that there are unknowns, there
will likely be contradictory data so that no single set of
coefficients will satisfy all of the observations. In such an
instance, the best we can hope for is a set of coefficients which
defines a formula which is reasonably accurate for all of the
observations 9 though it may not be precise for any of them.

This is, in fact, what quad-divide returns. It does so by using the
method of least squares. Simply stated, it returns those
coefficients which when applied against the independent values will
return a dependent value (the "expected") which is as close as
possible to the specified dependent value (the "actual"). One
measure of "noncloseness" Ccalled the "mean squared error tt) is the
mean of the squares of the differences between each of the actuals
and their corresponding expecteds. The algorithm within quad-divide
determines the set of coefficients which produces the smallest value
of this noncloseness measure Chence, "least squares").

To illustrate this "best fit" behavior of quad-divide, let us add one
more salesperson to our example and then determine the coefficients:

T X Y Z

903 0
20 1 2 3
19 4 1 2
11 2 2 1

-273­

Chapter 17 CURVE FITTING

T~9 20 19 11
XYZ~4 3pO 3 0 1 2 3 4 1 2 2 2 1
C~TffiXYZ

C
1.6667 2.6667 4.3333

We may determine the expecteds by applying the computed coefficients
against the matrix of independent values:

8 20

E~XYZ+.XC

E
18 13

While only one
other values are

of these values exa
reasonably close. The

ctly match
mean

es
sq

the actuals
uared error

CT),
is:

the

1.5
(CE-T)+.*2)+pE

PROBLEM: During the last 5 years, the annual sales figures for your
firm have been 27, 29, 35, 41, 44. If you assume that
sales are growing at a linear rate, what do you project
sales to be next year?

TOPIC: Forecasting

Forecasting is just curve fitting in disguise. Instead of expressing
a formula in terms of several independent variables (such as X, Y,
Z), we express it in terms of time (T). In this problem, we are
searching for a formula which looks like:

SALES=A+(BxT)

where T is some measure of time (such as 1, 2, 3, 4, 5 for the last 5
years) and A and B are the constants to be determined.

If we express our data in the same form as the data in the previous
section, the solution becomes obvious.

-274­

Chapter 17 CURVE FITTING

SALES 1 T

27 1 1
29 1 2
35 1 3
41 1 4
44 1 5

The column of Is is used to indicate that the first constant CA) is
multiplied by 1 in each observation (i.e. in SALES=A+(BxT)).

MAT~5 2pl 1 1 2 1 3 1 4 1 5
SALES~27 29 35 41 44
C+wSALESIHMAT
C

21.4 4.6

The two elements in C are our constants A and B. To project the
sales for next year, we need only plug the time 6 into our formula:

1 6+.xC
49

If we wish to see how closely our formula tracks the past five years,
we can apply the constants to the time periods 1 to 5:

MAT+.xC
26 30.6 35.2 39.8 44.4

We can compare these values to the actual sales (27, 29, 35, 41, 44).

Suppose we assume that sales are growing at a quadratic rate instead
of a linear rate. The formula instead looks like:

SALES=A+(BxT)+(CxT*2)

Our data can be expressed in an expanded table:

SALES 1 T T*2

27 1 1 1
29 1 2 4
35 1 3 9
41 1 4 16
44 1 5 25

-275­

Chapter 17 CURVE FITTING

The solution is no more complex:

MAT~(l5)o.*0 1 2

SALES~27 29 35 41 44

C~SALESmMAT

C
22.4 3.742857 .142857

Nor is the projection:

1 6 36+.XC
50

Nor is the tracking:

MAT+.XC

26.2857 30.4571 34.9143 39.6571 44.6857

Notice that a quadratic formula tracks better than a linear one.
This in no surprise since the linear formula is just a special case
of the quadratic formula (the case in which the coefficient of the
squared term is 0). If the line fits better than any other quadratic
form, the third coefficient will be zero.

After realizing that a quadratic formula fits better than a linear
formula, we may jump to the conclusion that'a cubic formula (e.g.
SALES=A+(BxT)+(cxT*2)+(CxT*3)) fits better still. And it does.
However, we must bear two thoughts in mind before carrying this logic
to its extreme. The first is that we must provide at least one
observation per unknown constant. Otherwise, quad-divide will
generate a DOMAIN ERROR because there are an infinite number of
possible solutions. Hence, for our 5 observations (years), the most
terms we can have in our formula is 5.

The second thing to consider is that the reason a higer-order formula
fits better to the data is that it exhibits more helter-skelter
behavior than a lower-order formula. It has more mood swings. Thus,
the formula which is selected by quad-divide to perfectly match your
5 observations may send you into outer space when you project the
sixth period.

The bottom line in this discussion is that despite the difficulty of
the nUmber-crunching task faced by the computer, your task is more
difficult. It is your job, after all, to determine which formula you
think your data fits. There are an infinity of possible formulas.
The computer merely has to crunch out coefficients.

-276­

Chapter 17	 CURVE FITTING

PROBLEM:	 As in the previous section, we wish to project forward one
time period the sales figures from the past 5 years (27,
29, 35, 41, 44). We believe the data conforms to the
formula, SALES=+(A+(BxT)).

TOPIC: Fitting Data to a Nonlinear Formula

Our problem here is that we need to determine two constants (A and B)
but the formula is not expressed as an additive combinati.on of two
terms, each mUltiplied by one of the constants. We must transform
the formula so that it is in a form suitable to quad-divide.

If we multiply both sides of the formula by A+(BXT), we get:

l=(SALESxA)+(SALESxBxT)

From this	 linear form, we can solve directly for A and B:

SALES~27 29 35 41 44

TIME~l5

MAT~SALES,[1.5]SALESXTIME

C~((pSALES)p1)mMAT

C

.040625 -3.7567

The projection follows directly:

+C+.x1 6
55.295

While we have accomplished our projection via this transformation, we
must concede that quad-divide provides us the best coefficients for
the transformed formula, not for the original formula. Hopefully,
this distinction is not important. However, we must bear it in mind
whenever we transform a formula.

Let us try fitting the data to another formula which is nonlinear and
requires a transformation.

Formula:	 SALES=Ax*BxT

Transformed formula: (~SALES)=(~A)+(BXT)

Solution:	 MAT~TIMEo.*O 1

C~(~SALES)mMAT A Returns: (@A) and B

(*C[1])x*C[2lx6

51.426

-277­

Chapter 17	 CURVE FITTING

PROBLEM:	 In the previous sections, we use four different formulas to
project 5 years of sales figures one year:

1. SALES=A+(BxT)
2. SALES=A+(BxT)+(CXT*2)
3. SALES=+(A+(BxT))
4. SALES=Ax*BxT

For each of these formulas, we obtain a different set of
coefficients and a different projection (sales figure for
the sixth year). Which projection is the best?

TOPIC: Finding the Best Formula

The best projection is that which exactly matches the actual.
Unfortunately, the actual sixth year sales figure is not yet known.
Therefore, we must determine the best projection in another way.
Let's choose the projection that comes from the formula which most
closely fits the data. (Bear in mind that the best fitting curve is
not necessarily the best projector of the data.)

Which formula fits the best? Just as the mean squared error is used
to determine the best coefficients for a given formula, so too can it
be used to determine the best formula for a given set of data. The
formula which produces the least mean squared error is the best
fitting formula. Remember: the mean squared error is the mean of
the squares of the differences between each of the actuals and thier
corresponding expecteds.

Let us compute the mean squared error for each formula:

SALES~27 29 35 41 44

TIME~l 2 3 4 5

1. SALES=A+(BxT)

MAT~TIMEo.*O 1
C~SALESmMAT

EXP~MAT+.xC

(CSALES-EXP)+.*2)+pSALES
1.04

-278­

Chapter 17	 CURVE FITTING

2.	 SALES=A+(BxTJ+(CxT*2)

MAT+-TIMEo.*O 1 2
C+-SALESEBMAT
EXP+-MAT+.xC
((SALES-EXP)+.*2J+pSALES

0.983

3.	 SALES=+CA+(BxT))

MAT~SALES9[1.5]SALESXTIME

C+-((pSALES)plJffiMAT
EXP+-+CTIMEo.*O l)+.xC
(CSALES-EXP)+.*2)+pSALES

1.85

4.	 SALES=Ax*BxT

MAT+-TIMEo.*O 1
C~(~SALES)mMAT

EXP+-(*C[1])x*C[2]xTIME
((SALES-EXP)+.*2)+pSALES

1.10

The smallest mean squared error for the above formulas is the one for
the second formula. Therefore the second formula is the "best"9

formula (of the four selected) and the best projection is the one
from that formula (50).

PROBLEMS:	 (Solutions on pages 474 to 475)

1.	 Each month, you buy 4 styles of envelopes from your paper
supplier Cstyles A, B, C, DJ. The supplier has never bothered to
itemize the different styles on the invoice. The invoice shows a
total amount only. Suppose you bought the following quantities
of envelopes during the previous 4 months:

Total

A B C D Invoice

32 61 15 82 $60.62

35 104 10 82 S59.57

37 83 5 85 $56.70

25 62 14 85 860.42

-279­

Chapter 17	 CURVE FITTING

Assuming prices have remained constant during this period and
that the invoice does not include volume discounts or other
credit or debit adjustments, what are the unit prices for the 4
styles of envelopes?

2. During the last 2 months, you have been making weekly checks of
your inventory of muffler bearings. The results are given here:

Week: 1 2 3 4 5 6 7 8 9

On hand: 1850 1772 1705 1508 1490 1250

(During week 4 the plant was closed and during weeks 7 and 8 you
were on vacation.) Assuming the supply of bearings is being
depleted at a steady (linear) rate, when will the supply be
exhausted (assuming no restocking)?

3.	 What is the radius and center of the circle which best fits the
points (4,1), C3,2), (2,3), (4,5), (7,2), (6,4), i.e. for which
X~4 3 2 4 7 6 and Y~l 2 3 5 2 4? The general formula for a
circle is:

(R*2) = ((X-CXl*2) + ((Y-CYJ*2J

where R is the radius, and CCX,CY) is the center.

4.	 In the Sorting and Searching chapter, a function CMIOTA is
presented for searching through the rows of one character matrix
for the location of the rows of a second. The function is
designed to use one of two different algorithms depending upon
the number of rows in its arguments. In the Computer Efficiency
Considerations chapter, the two algorithms are timed for a
variety of different size arguments (in a problem at the end of
that chapter). Suppose you have constructed 4 vectors which
contain the results of those timings:

L:	 The number of rows for left arguments;

R:	 The number of rows for right arguments;

Tl:	 The average time required to run CMIOTA using the first
(sorting) algorithm for a left argument with L rows and a
right argument with R rows;

-280­

Chapter 17 CURVE FITTING

T2: The average time required to run CMIOTA using the second
(looping) algorithm for a left argument with L rows and a
right argument with R rows.

According to the logic in the Sorting and Searching chapter, the
vectors are related according to the approximate formulas:

Tl C4+CC5XCR+L))

T2 = Cl+(RxCC2+(C3xL)))

Determine the values for Cl, C2, C3, C4 and C5. You may replace
the like-named variables in the CMIOTA function so that it will
use the fastest algorithm for any combination of arguments in
your APL environment.

-281­

Chapter 18

FINANCIAL UTILITIES

In a variety of business oriented computer applications,
sophisticated financial calculations are required. Many of these
calculations deal with the time-value-of-money concept i.e. the9

concept of interest. In this chapter 9 we develop utilities which
handle some of the more common financial calculation requirements.

This chapter does not provide a comprehensive treatment of the theory
of interest or of financial analysis. It provides only as much
material as is needed for you to grasp the important concepts. Nor
does it provide a comprehensive library of financial software. It
provides some generally useful utility functions.

PROBLEM:	 You are considering the purchase of a new machine. The
amount you must borrow from the bank is $225,000 to be
repaid in monthly installments at 13% interest over 10
years. What will be the monthly payment?

TOPIC: Interest and Annuities

We will work toward the solution to this problem gradually.

Suppose you deposit $100 in your bank account at the beginning of the
year. If at the end of the year your balance is $112, you have
earned $12 on your $100 deposit and so your "effective" (annual or
APR) interest rate is .12 (12+100). At the end of two years (if
interest rates remain the same) 9 you will have $125.44 ($112 +
S112X.12 or $112xl.12). After three years, you will have $140.49
($125.44xl.12). And so on. In general 9 after N years, you will have
$100xl.12*N. The factor 1.12 (1 plus the interest rate) is called
the annual "accumulation factor".

-282­

Chapter 18 FINANCIAL UTILITIES

Suppose we look at your banking situation in a reverse way, from the
present back into the past. If you have a S100 balance today, how
much must you have had in the account one year ago? If we call the
desired amount AMT, we know from the logic above that AMTX1.12 =
$100. Therefore, AMT = 1100+1.12 = $89.28. Two years ago, you had
$79.72 ($89.28+1.12). And so on. In general, N years ago, you had
$100+1.12*N. The factor +1.12 (the reciprocal of the annual
accumulation factor) is called the annual "discount factor tt

) .

If instead of paying you 12% per year, the bank offers to pay you 1%
per month, how much money will you have at the end of the year?
Since the monthly accumulation factor is 1.01, you will have $101
($lOOxl.Ol) after one month, $102.01 ($101x1.01) after two months,
$103.03 ($102.01xl.Ol) after three months, ... and $112.68
($111.57xl.Ol or S100xl.Ol*12) after twelve months. Since you have
earned $12.68 on your $100 deposit, your effective interest rate is
.1268. This rate may also be called a "nominal" rate of .12,
compounded monthly (.12 = .Olx12 months). The term "compounded" (or
converted) refers to the periodic process of applying the
accumulation factor to the balance to derive the new balance.

Since an interest rate may be expressed in "effective" or "nominal"
terms, it is important to understand the distinction between the two
and to be able to convert between them. The relationship between
them follows:

(l+EINT) = (l+NINT+CONV)*CONV

where:

EINT = effective interest rate (e.g.. 1268)
NINT = nominal interest rate (e.g.. 12)
CONV = number of interest conversion (compounding) periods

per year

It is instructive to note that for a given nominal interest rate, the
equivalent effective interest rate increases as the conversion
frequency increases. That is, the more frequently the bank compounds
your nominal interest, the more you will have at the end of the
year. However, the amount of increase in the effective interest rate
drops off as the conversion frequency gets bigger and bigger. In
fact, it makes little difference whether you compound weekly or every
second. This brings up the concept of "continuous" compounding.
That is, by using a bigger and bigger value of CONV in the formula
above, the value of C1+EINT) will eventually (when CONV becomes
infinitely large) become constant. This value (called the "force of
interest 1t

) may be computed by using a large value of CONV (say,
10000) or by using the following formula (which may be derived
mathematically):

(l+EINT) = *NINT (when CONV is infinitely large)

Because of marketing appeal or because of the mathematical
simplicity, financial institutions occasionally quote interest rates

-283­

Chapter 18 FINANCIAL UTILITIES

"compounded continuously". You may convert them to equivalent
effective rates by applying the above formula.

The following functions may be used to convert between nominal and
effective interest rates.

[WSID: INTEREST]
V E~C EFFECTIVE N;R;S;T

[1] R Converts the nominal interest rates in N,
[2] R compounded C times per year, into effective
[3] R (annual) interest rates. A value of -1 for
[4] A C implies continuous compounding. C and N
[5] R may have any shapes as long as they are
[6] R scalar conformable.
[7] R

[8J A Determine shape of result:

[9] S~pC+N

[10] R Construct all zero raveled result:
[11] R+-pE+-(x/S)pO
[12] R Convert arguments to same-length vectors:
[13] C+-RpC
[14] N+-RpN
[15] A Select rates with noncontinuous compounding:
[16] T+-C1-1
[17] E[T/tpTJ+--l+(l+(T/N)+T/C)*T/C
[18] A Select continuous rates:
[19] T+-"'T
[20] E[T/tpT]+--l+*T/N
[21] R Reshape result:
[22] E+-SpE

v

-284­

Chapter 18	 FINANCIAL UTILITIES

[WSID: INTEREST]
v N~C NOMINAL E;R;S;T

[1] A Converts the effective (annual) interest rates
[2] A in E into nominal interest rates compounded C
[3] A times per year. A value of -1 for C implies
[4] A continuous compounding. C and E may have any
[5] A shapes as long as they are scalar conformable.
[6] A
[7] A Determine shape of result:

[8J S+-pC+E

[9] R Construct all zero raveled result:
[10] R+-pN+-(x/S)pO
[11] R convert arguments to same-length vectors:
[12] C+-RpC
[13] Efo-RpE
[14] R Select rates with noncontinuous compounding:
[15] T+-C~-l

[16] N[T/tpT]~(T/C)X-1+(1+T/E)*+T/C

[17] A Select continuous rates:
[18] T~""'T

[19] N[T/tpTJ+-o(8)l+T/E

[20J ~ Reshape result:

[21]	 N+-SpN

v

Let us extend our discussion to include annuities. An "annuity" is a
regular series of payments. Suppose, for example, you plan to
deposit $100 in your bank account at the beginning of each year for
the next 10 years. If the effective interest rate is .12, what will
be your balance at the end of 10 years?

The first payment will have compounded 10 times, the second 9 times,
and so on. The sum of these amounts is the balance:

BALANCE = CIOOxl.12*10) + (100xl.12*9) + ••• + CIOOXl.12*1)

By dividing each side of this equation by 1.12 to get a second
equation, by sUbtracting the second equation from the first equation
and by algebraic manipulation, we discover that:

BALANCE = lOQX1.12XCC1.12*10)-1)+.12

By performing the calculations, we learn that the "future value" of
this 10 year annuity is $1,965.46.

Suppose we look at a 10 year annuity in a reverse way, from the
beginning of the annuity rather than the end. What is the value
today (the "present value") of an annuity in which you deposit $100
at the beginning of each year for the next 10 years? That is, what
single amount can you deposit today that will compound to $1,965.46
at the end of 10 years, i.e. that will result in the same future
value as will the annuity?

-285­

Chapter 18	 FINANCIAL UTILITIES

If PV	 (present value) is the amount we are seeking, the equation we
need	 to solve is:

(PVxl.12*10) = lOOXl.12x(Cl.12*10)-1)+.12

from	 which we get:

PV =	 lOOX1.12xCl-l.12*-10)+.12

By performing the calculations, we learn that the present value of
this 10 year annuity is $632.83. That is, a single payment today of
$632.83 is equivalent to a 10 year annuity of $100 starting today.
Each will compound to $1,965.46 at the end of 10 years.

Having presented some examples to expose you to the concepts of
compounding, annuities and present value, let us now take a leap
forward and work with more general annuities. First, some
definitions:

TERM: the number of years during which the annuity is paid;

PAY:	 the annual payment amount;

PER:	 the number of payments per year CPAY+PER per payment);

PDEF:	 the fraction of a payment period preceding (deferring)
each payment; 0 if the payment occurs at the beginning of
the payment period and 1 if at the end;

DEF:	 the number of years from the valuation date to the first
period; 0 if the present value of the annuity is desired
and -TERM if the future value is desired;

CONV:	 the number of interest conversion (compounding) periods
per year;

INT:	 the nominal annual interest rate.

We will illustrate these terms by depicting a sample annuity on a
"time" diagram. Below is the time diagram of an annuity for which
the present value is desired. The annuity will be paid for 3 years
CTERM=3), will be $200 per year CPAY=200) paid semiannually CPER=2)
at the end CPDEF=l) of each half year payment period and will
commence after 1 year CDEF=l) without payments. The present value is
to be computed at a nominal interest rate of 12% CINT=.12) compounded
monthly CCONV=12).

-286­

Chapter 18	 FINANCIAL UTILITIES

~----DEF=1----~~-----------------TERM=3-----------------4

year: a 0.5 1 1.5 2 2.5 3 3.5 4
I I I I I I I I I
t	 6100 $100 $100 $100 $100 $100

PRESENT PDEF=l-~

CINT=.12J ~---PAY=200---4

CCONV=12) ~----PER=2----~

The general formula for the value of an annuity is:

VAL = PAYxCV*DEF+PDEF+PER)xCI-V*TERM)+PERXI-V*+PER

where:

VAL:	 the value (present~ future or otherwise) of an annuity
as of DEF years before the first payment period;

V: the annual discount factor~ computed from INT and CONV,

v = Cl+INT+CONV)*-CONV

Some modifications to this formula are needed for some possible
extreme conditions. First, if TERM is infinite (such an annuity is
called a "perpetuity") 9 the V*TERM term of the formula becomes 0 and
may be omitted. Second, if CONV is infinite (continuous interest
compounding), the definition of V becomes:

v = *-INT

Third, if PER is infinite ("continuous payments", a theoretical
concept), the PDEF+PER term of the formula becomes a and may be
omitted, and the PERxl-V*+PER term becomes -~v.

Given this formula and these possible modifications, a niladic
function VALUE can be written which computes the value of an annuity
given all of its parameters as global variables. The global
variables have the same names as the parameters defined above except
the first letter is from the alternate character set (tERM, pAY, pER,
pDEF, dEF, cONV, iNT). Infinite values are represented by the value
-1 (for tERM, pER or cONV). The global variables may have any shape
as long as they are all scalar conformable with one another, that is
as long as the expression,

tERM+pAY+pER+pDEF+dEF+cONV+iNT

does	 not generate a RANK ERROR or a LENGTH ERROR.

All of the global values (except iNT) have default values which are
used if that global variable does not exist.

-287­

Chapter 18 FINANCIAL UTILITIES

[WSID: INTEREST]
V VAL~VALUE;CONV;DEF;E;INT;N;NDPP;PAY;PD;PDEF;PER;R;

SHAPE;TERM;V
[1] A Returns the present or future value of a stream
[2] A of uniform cash flows defined by the optional
[3] A global variables:
[4] A
[5] R default name description
[6] A ------­
[7] R 1 tERM no. years of payments C-l=perpetuity)
[8] A 1 pAY annual payment amount
[9] R 1 pER no. payments per year C-l=continuous)
[10] A 1 pDEF is payment at start CO) or end (1) of
[11] A payment period (or fractional)
[12] R o dEF no. years from valuation date to
[13J R first payment period
[14] A 1 cONV no. interest conversion (compounding)
[15] R periods per year C-l=continuous)
[16] R iNT nominal annual interest rate (or force
[17] R of interest if cONV=-l)
[18] A
[19] A Determine values from globals or defaults:
[20] E~xDNC N~'tERM'

[21] TERM~~(E/N),(~E)/'l'

[22] E~XONC N~'pAY'

[23] PAY~~(E/N),(~E)/'1'

[24] E+--xONC N~'pER'

[25] PER~~(E/N),(~E)/'l'

[26] E+--xDNC N~'pDEF'

[27] PDEF~~(E/N),(~E)/'l'

[28] E~xDNC N+--'dEF'
[29] DEF~~(E/N),(~E)/'O'

[30] E+-xDNC N~'cONV'

[31] CONV+-~(E/N),(~E)/'l'

[32] INT+-iNT
[33] A
[34] R Construct result as a vector; reshape when done:
[35] SHAPE~pTERM+PAY+PER+PDEF+DEF+INT+CONV

[36] R+-x/SHAPE
[37] TERM~RpTERM

[38] PAY+-RpPAY
[39] PER+-RpPER
[40] PDEF+-RpPDEF
[41] DEF+-RpDEF
[42] INT+-RpINT
[43] CONV+-RpCONV
[44] R Convert interest to annual discount factor:
[45] V~RpO

[46] R Noncontinuous compounding:
[47] E+-CONV;t!-l
[48] V[E/tpV]~(l+CE/INT)+E/CONV)*-E/CONV

[49] R continuous compounding:
[50] E+-f'VE
[51] V[E/tpV]~*-E/INT

-288­

Chapter 18 FINANCIAL UTILITIES

v VALUE (continued)
[52] R
[53] R Period deferral as a fraction of a year:
[54] E~PER1-1

[55] PD~ExPDEF+PER+~E

[56] A
[57] R Determine nominal (by payment period) discount:
[58] NDPP~RpO

[59] R Noncontinuous payments:
[60] NDPP[E/lpNDPP]~(E/PER)Xl-(E/V)*+E/PER

[61] R continuous payments:
[62] E~~E

[63] NDPP[E/tpNDPP]~-@E/V

[64] A
[65] A Value at valuation date:
[66] E~TERM1-1

[67] VAL~SHAPEpPAyx(V*PD+DEF)X(1-EXV*EXTERM)7NDPP

V

Using the VALUE function, you can now answer the problem which began
this section. The repayment schedule of a loan is simply an
annuity. The present value of that annuity is exactly equal to the
amount borrowed from the bank. We know the following:

tERM~10

pER~12

pDEF~l

dEF~O

cONV~12 (probably, but ask the bank)
iNT~.13

The only unknown parameter is pAY, whose value we seek. However, we
know the present value (225000) which will be the result of VALUE if
we provide the correct value of pAY. We may use VALUE iteratively,
modifying the value of pAY in a trial and error fashion until the
result of VALUE is 225000. Alternatively, since we know that the
result of VALUE is directly proportional to the value of pAY, we may
arbitrarily set pAY to 12 (i.e. 1 per month) and divide the result of
VALUE into 225000 to determine the factor by which pAY must be
mUltiplied to produce the desired present value.

pAY~12

225000+VALUE

3359.49

This is the monthly payment.

If you wish to experiment with the rate of interest to determine its
effect upon the monthly payment, you may do it as follows:

iNT~.10 .11 .12 .13 .14 .15
225000+VALUE

2973.39 3099.38 3228.1 3359.49 3493.49 3630.04

-289­

Chapter 18	 FINANCIAL UTILITIES

To produce a table of the monthly payments for each of these six
interest rates, for 5, 10, 15 and 20 years, you may do it as follows:

iNT~.10 .11 .12 .13 .14 .15 0.+ 0 0 0 0
tERM~O 0 0 0 0 0 0.+ 5 10 15 20
9 2~225000+VALUE

4780.59 2973.39 2417.86 2171.30
4892.05 3099.38 2557.34 2322.42
5005.00 3228.10 2700.38 2477.44
5119.44 3359.49 2846.79 2636.05
5235.36 3493.49 2996.42 2797.92
5352.73 3630.04 3149.07 2962.78

PROBLEM:	 Having borrowed $225,000 from the bank to be repaid in
monthly installments at 13% interest over 10 years, how
much will you have paid after one year? Of that amount,
how much will have gone toward payment of interest and how
much toward repayment of the original principal of $225,000?

TOPIC: Loan Amortization Schedules

From the function presented in the prior section, we can answer the
first part of the problem.

tERM~10

pER~12

pDEF~l

dEF~O

cONV~12

iNT~.13

pAY~1

D~ANNUAL~225000+VALUE

40313.9

This annual loan repayment consists of an interest portion and a
principal repayment portion. To determine the two portions, we need
only determine the remaining principal at the end of the year. The
difference between the original principal ($225,000) and the
remaining principal is the amount of principal repaid. The
difference between the total annual payment ($40,313.90) and the
principal repaid is the interest paid.

So how do we determine the remaining principal at the end of the
year? The principal is the present value of the remaining payments.

-290­

Chapter 18	 FINANCIAL UTILITIES

That is, the amount you owe the bank at any given time (the
principal) is equivalent to the value at that time of the remaining
payments. For this reason, the bank is indifferent (theoretically)
to whether you repay the principal of the loan or continue to make
the loan payments.

The principal at the end of the year may be computed by the following:

tERM+-9

pAY+-ANNUAL

D~REMAINING~VALUE

213252.48

The principal repaid and interest paid follow directly:

D~PRINCIPAL+-22500u-REMAINING

11747.52
D+-INTEREST~ANNUAL-PRINCIPAL

28566.38

By applying the logic in this section, we may write an APL function
which will generate a "loan amortization table". A loan amortization
table shows the breakout of each loan payment into its interest and
principal repayment portions. The monadic function SCHEDULE takes a
6 element vector right argument which defines the parameters of the
loan:

[1]	 TERM: the number of years of loan repayment;

[2]	 PAY: the annual repayment amount;

[3]	 PER: the number of payments per year;

[4]	 DEF: the number of years from the loan to the first
repayment period;

[5]	 CONV: the number of interest conversion (compounding)
periods per year;

[6]	 INT: the nominal interest rate.

The result of SCHEDULE is a two column matrix of the loan
amortization table. The matrix has one row per loan payment
CTERMxPER). The values in the first column are the portions of each
payment which represent principal repayment. The values in the
second column are the portions which represent interest payments.

We may solve the problem above as follows:

MAT~SCHEDULE 10,ANNUAL,12 0 12 .13

where ANNUAL was computed above by the VALUE function. MAT has 120
rows (one row per loan payment). The principal repaid and interest
paid during the first year are:

-291­

Chapter 18 FINANCIAL UTILITIES

+fMAT[t12;]

11747.52 28566.38

There are two identities about the loan amortization table which
should be noted. The sum of each row is the periodic payment amount:

(+/MAT)A.=ANNUAL+12
1

The total of the principal repayment column is the original loan
amount:

225000=+/MAT[;1]

1

[WSID: INTEREST]
V MAT~SCHEDULE PARAMS;CONV;DEF;INT;INTER;PAY;PER;PRIN;

TERM;V;VAL
[1] A Returns a two column matrix of the loan payment
[2] A schedule for the loan defined by the parameters
[3] A in the vector right argument. The result has one
[4] A row per payment:
[5] A
[6] A MAT[;l] principal repaid
[7] A MAT[;2J interest paid
[8] A
[9] A The parameters in the argument are:
[10] A

[11] R PARAMS[lJ TERM no. years of payments
[12] A PARAMS[2] PAY annual payment amount
[13] R PARAMS[3] PER no. payments per year
[14] A PARAMS[4] DEF no. years from date of loan to
[15] R first payment period CO=no
[16] R repayment deferral)
[17] R PARAMS[SJ CONV no. interest conversion
[18] R (compounding) periods per
[19] A year C-1=continuous)
[20] A PARAMS[6J INT nominal annual interest rate
[21] R (or force of interest if
[22] A CONV=-l)
[23] R
[24] TERM~PARAMS[l]

[25] PAY~PARAMS[2]

[26] PER~PARAMS[3]

[27] DEF~PARAMS[4]

[28] CONV~PARAMS[5]

[29] INT~PARAMS[6]

[30] A Convert interest to annual discount factor:
[31] A Branch if noncontinuous compounding:
[32] ~(CONV¢-1)pLl

[33] R continuous compounding:
[34] V~*-INT

[35 J ~L2

-292­

Chapter 18	 FINANCIAL UTILITIES

v SCHEDULE (continued)
[36] R Noncontinuous compounding:
[37] Ll:V~(l+INT+CONV)*-CONV

[38] R Determine present value (principal balance) at
[39] R start of each payment period:
[40] L2:VAL~(PAyxV*+PER)X(1-V*($lTERMxPER)+PER)+PERx1-V*+PER

[41] R Reset first value to loan amount if repayment
[42] R is	 deferred:
[43] VAL[1]~VAL[1]XV*DEF

[44] A Principal repaid:
[45] PRIN~VAL-1tVAL,O

[46] R Interest paid:
[47] INTER~(PAY+PER)-PRIN

[48] A Adjust interest to keep it from exceeding
[49] A periodic payment:
[50] INTER~C+\INTER)L+\(pINTER)pPAY+PER

[51] INTER~INTER--ltO,INTER

[52] PRIN~(PAY+PER)-INTER

[53] MAT~PRIN,[1.5]INTER

V

PROBLEM:	 You have been presented an opportunity to invest $10,000
of your money now in exchange for the promise of several
future cash payments. The schedule of payments follows:

May 12, 1987 You pay $10,000
Jan. 1, 1989 You receive 82,000
Jan. 1, 1990 $3,000
Jan. 1, 1991 $4,000
Jan. 1, 1992 $5,000
May 12, 1992 $1,000

Is this a good investment? Are you better off leaving your
money in the bank at 10%?

TOPIC: Internal Rate of Return

One approach to this problem is to explore two scenarios. In the
first scenario, you deposit $10,000 in your bank now (May 12, 1987)
and leave it there. At the end of 5 years (May 12, 1992), at 10%
effective interest, your money has compounded to $16,105.10
($10,OOOxl.l0*5). In the second scenario, you deposit nothing now
but instead deposit $2,000 on Jan. 1, 1989, $3,000 on Jan. 1, 1990,

-293­

Chapter 18 FINANCIAL UTILITIES

and so on as in the schedule above. Compute the balance as of May
12,1992.

To compute the balance for the second scenario, you must convert the
dates to more manageable measurements of time. By using the TODAYS
function presented in the Manipulating Dates chapter, you can
translate the dates into days from May 12, 1992:

DAYS~TODAYS 19890101 19900101 19910101 19920101
19920512

D~DAYS~DAYS[5]-DAYS

1227 862 497 132 0

We can translate these days into "years" by dividing by 365. Then,
it is a simple matter to accumulate each amount (the annual
accumulation factor is 1.10) for the corresponding number of years.

2000 3000 4000 5000 lOOQ+.xl.10*DAYS+365
17242.31

since $17,242.31 is greater than $16,105.10, you will be better off
to accept this investment opportunity than to leave your $10,000 in
the bank.

will the conclusion be the same if the rate of interest offered by
the bank is 12%? How about 15%? The higher the rate of interest,
the less important are future cash flows and the more important are
current flows. At what interest rate will the accumulated value of
the investment cash flows be exactly the same as the accumulated
value of your money left in the bank? That is, at what interest rate
will you be indifferent (ignoring the riskiness of the investment)
between making the investment and leaving your money in the bank?
This rate of interest is called the ttinternal rate of return" CrROR)
of the investment cash flows. If you can realize a higher interest
rate than the IROR by an alternative investment (such as leaving your
money in the bank), you should not invest. However, an investment is
a good investment if the IROR of its cash flows is higher than any
alternative investment.

To determine the IROR of a set of cash flows, you must employ an
iterative Ctrial and error) technique known as "successive
approximations". Your task is to determine the interest rate (I) for
which the following equation is true:

CIOOOOxCl+IJ*TO) = C2000X(1+!)*Tl) + C3000xCl+I)*T2) + •••

where TO, T1, T2, ... are the numbers of years from the corresponding
cash flow to the date of the last cash flow.

You may try different interest rates and see which produces the best
results. From these observations you can choose better interest
rates and try again. By repeating this procedure, you will gradually
narrow in on the correct IROR.

-294­

Chapter 18 FINANCIAL UTILITIES

To speed up this process, you may apply a technique known as the
Newton-Raphson Method which uses the results of the previous guess to
make an intelligent next guess. The guesses converge to the correct
result much faster than standard interpolation procedures because the
method considers the derivative (slope) of the formula.

The method is:

NEXTl = fCLASTIJ+f'(LASTI)

where:

NEXT!: the next interest rate to try;

LAST!: the previous interest rate tried;

fel): the formula as a function of the interest rate I;

f'e!): the derivative with respect to I of the formula fCl).

Given this method. we may write a function IROR which returns the
internal rate of return for a specified set of cash flows. The left
argument is a vector of the dates CYYYYMMDD) of the cash flows and
the right argument is a vector of the amounts of the corresponding
flows. where outflows are represented as negative numbers and inflows
are represented as positive numbers (or vice versa). The solution to
this problem is then:

DATES~19870512 19890101 19900101 19910101 19920101
19920512

AMTS~-10000 2000 3000 4000 5000 1000
DATES IROR AMTS

0.12165

From this, we conclude that the investment should be made if we have
available no alternative investments which will generate more than
12.165%.

If an investment opportunity involves several outflows interspersed
among the inflows. it is possible that the flows may not define a
distinct internal rate of return. That is, several different
interest rates may be used to accumulate (or discount) all the
outflows to the same value as the inflows. Beware.

The IROR function is listed below. Note that it expresses the
formulas as present value formulas in terms of the annual discount
factor V (i.e. the reciprocal of the accumulation factor) rather than
in terms of the interest rate. Also note that the iterations stop
once the discount factor is determined within .0000001 or when 10
iterations have occurred. If the result is not determined in 10
iterations, the result is set to o. Modify the function if you
desire greater accuracy or more iterations or if you wish to try a
starting value other than 10%.

-295­

Chapter 18	 FINANCIAL UTILITIES

[WSID: INTEREST]
v INT~DATES IROR AMTS;DAYS;DIFF;I;TAMTS;TYRS;V;YRS

[1] A Computes the internal rate of return, as an
[2] R effective (annual) interest rate, for the stream
[3] A of	 cash flows defined by the left argument vector
[4] A of	 dates (in YYYYMMDD format) and the
[5] A corresponding right argument vector of amounts.
[6] A positive amounts are inflows and negative amounts
[7] A are outflows. Requires subfunction: TODAYS.
[8] A

[9] A Translate dates into days since Feb. 29, 0000:
[10] DAYS~TODAYS DATES
[11] A Translate days into years (365 days per year)
[12] A since the day of the first cash flow:
[13] YRS~(DAYS-l/DAYS)+365

[14] A Precompute factors needed in formula below:
[15] TAMTS~AMTSXYRS

[16] TYRS~-l+YRS

[17] A start with an effective interest rate of 10 pet.:
[18] V~+1.1

[19] A Number of iterations performed so far:
[20] I~O

[21] R Apply Newton-Raphson to get new V:
[22] LOOP:V~V-DIFF~(AMTS+.xV*YRS)+TAMTS+.xV*TYRS

[23] R Exit if done (change less than .0000001):
[24] ~(lE-7~IDIFF)pDONE

[25] R Branch to next iteration unless 10 itns. already:
[26] ~(10)I~I+1)pLOOP

[27] R Else set discount factor to 1 if unknown in 10 itns.:
[28] V~l

[29]	 DONE:INT~-l++V

V

PROBLEM:	 Suppose you purchase a bond on February 17, 1987 for
$4225. On April 1, 2003 (the maturity date), the bond will
mature and you will receive $5000 (the par or redemption
value). From the purchase date to the maturity date, you
will receive semiannual interest payments (coupons) of $300
on April 1 and October 1 of each year. (The annual coupon
rate is 12%, i.e.. 12=(2xS300)+S5000). In addition to the
$4225 purchase price, you must pay the seller his portion
of the upcoming CApril 1) coupon. The computation of this
payment (the accrued interest) is a proration based upon
the number of days of the 6 month coupon period during
which the bond was held by the seller. What is the
internal rate of return of this investment?

-296­

Chapter 18 FINANCIAL UTILITIES

TOPIC: Bond Calculations

The internal rate of return of a bond is called its "yield to
maturity". The IROR may be determined by the methods described in
the previous section. That is, you may construct a vector of the 34
dates on which cash flows occur (19870217 19870401 19871001 19880401
... 20030401) and a corresponding vector of the amounts payable on
those dates. You may then use the IROR function directly.

However, since the cash flows of the bond consist of a simple annuity
(the coupon payments) and a single maturity payment, a relatively
simple formula exists to describe the present value of the bond's
future cash flows. By taking the derivative of this forumla (tedious
but not difficult) and applying the Newton-Raphson Method, the yield
to maturity may be determined in a few iterations.

Suppose you need to determine the yields to maturity for an entire
portfolio of bonds (say 500 bonds). If you use the former approach
(the IROR function), you will need to create the date and amount
vectors individually for each bond (since they may be of different
lengths and may involve different dates). If you use the second
approach (the formula), you may perform the successive approximation
process on all the bonds at once. After a few iterations, you will
have the yields for all the bonds.

The function FCYIELD ("fixed coupon yield"), listed below, uses this
latter approach to compute the yield to maturity for one or more
bonds. Once the yield is determined for a given bond, that bond is
excluded from the successive approximation process. This function is
a extremely efficient solution to a problem which is iterative by
nature and is generally viewed as a "processing hog" when solved
using APL.

The result of FCYIELD is a "cQuponly" rate (e.g. a 6 month rate for
semiannual coupons). To convert the result to an effective (annual)
rate, use the EFFECTIVE function presented earlier in this chapter.

One final note: this approach uses the formula for a regular
annuity. However, because of leap years and months of irregular
lengths, the coupon payments are not perfectly regular. The FCYIELD
function (and the investment community in general) assumes that the
year consists of 12 30-day months. Dates which have a day portion of
31 (e.g. 5/31/87) are treated like the 30th day of the same month
(e.g. 5/30/87). Therefore, the results are not as precise as they
would be if more care were taken when counting days. However, for
most purposes the accuracy of the results is adequate.

-297­

Chapter 18 FINANCIAL UTILITIES

[WSID: INTEREST]
v YLD~FCYIELD PARAMS;COST;CQUP;CRATE;CRY;DAYS;DIFF;F;Fl;

F2;F3;I;IND;MCOST;MDATE;MORE;MVAL;N;NCOUPS;NEW;OK;PAR;
PDATE;RY;W;Y

[1] A Returns couponly yield rates for fixed-coupon
[2] A securities defined in PARAMS, one row per security.
[3] R
[4] A PARAMS[;1J par value
[5] A [; 2] purchase cost excluding accrued
[6] R interest (no coupon rec'd nor interest
[7] A paid if purchased on a coupon date)
[8J A [; 3] purchase date CYYYYMMDD)
[9] R [; 4] maturity date CYYYYMMDD)
[10] A [; 5] annual coupon rate
[11] A [; 6] number of coupons per year
[12] R [; 7] (optional) maturity value (par value if
[13] A omitted)
[14] A
[15] PAR~MVAL~PARAMS[;l]

[16] COST+--PARAMS[;2]
[17] PDATE+--PARAMS[;3J
[18] MDATE~PARAMS[;4J

[19] CRATE~PARAMS[;5]+NCOUPS~PARAMS[;6]

[20] ~(6=1~pPARAMS)pSTART

[21] MVAL~PARAMS[;7]

[22] A
[23] A Formula:
[24] A
[25] A COST = (Cl+Y)*-F)xCMVALxCl+Y)*-W)+PARxCRATExl+
[26] A (l-Cl+Y)*-W)+Y
[27] A
[28] A Where: Y = couponly yield rate
[29] A F = the fraction (O<F~1) of a coupon period
[30] A from PDATE to the next coupon
[31] A W = the number of whole coupon periods
[32] A remaining from PDATE to MDATE (less 1 if
[33] A purchased on a coupon date)
[34] A COST = purchase cost including accrued interest
[35] A
[36] R Convert the formula to a function in Y by moving COST
[37] R to the right side:
[38] A
[39] R fCY) = (-COST)+(Cl+YJ*-FJX(MVALxCl+Y)*-W)+PARX
[40] A CRATExl+Cl-(l+Y)*-W)+Y
[41] A
[42] A The problem is to determine Y for which fCY)=O. Solve
[43] A by the method of successive approximations, using
[44] A different values of Y. Start by trying Y=CRATE. Then
[45] R use Newton-Raphson method to determine successive
[46] A values of Y:
[47] A
[48] A YCN+l) = YCN)-fCYCN))+f'(YCN))
[49] A

-298­

Chapter 18	 FINANCIAL UTILITIES

V FCYIELD (continued)
[50] R Determine frey) by taking the derivative of fey).
[51] R After tedious computations:
[52] R
[53] A f'CY) = (C1+Y)*-F)x((Cl+Y)*-1-W)xC(W+F)xCPARx
[54] R	 CRATE+Y)-MVAL)+(PARXCRATExl+Y)+Y*2)­
[55] A	 PARxCRATExCF+Y)++Y*2
[56] A

[57] R Let us define the following:
[58] A
[59] A F1=1+Y F2=(1+Y)*-F F3=Cl+Y)*-W COUP=PARxCRATE
[60] A N=F+W RY=+Y CRY=COUP+Y MCOST=-COST
[61] A
[62] A The formulas for fCY) and frey) become:
[63] A
[64] A fCY) = MCOST+F2xCMVALxF3)+COUP+CRyxl-F3
[65] ~

[66] A f'CY) = F2xCCF3+F1)xCNxCRY-MVAL)+FlxCRYxRYJ
[67] A	 -CRYxF+RY
[68] A

[69] A Compute approx days (360 days/yr) from purchase to
[70] A maturity (change 31 days to 30):
[71] START:DAYS~ 360 30 1 +.x 0 100 100 TMDATE-31=100IMDATE
[72]	 DAYS~DAYS- 360 30 1 +.x 0 100 100 TPDATE-31=100IPDATE
[73] A No. coupon periods from purchase to maturity:
[74]	 N~CDAysxNCOUPS)+360

[75] A Fractional and whole coupons from purch to matur:
[76]	 F~N-W~rN+-l

[77]	 COUP~PARXCRATE

[78] A Include accrued interest Cprorated) in purch cost:
[79] COST~COST+COUpxI-F

[SO] MCOST~-COST

[81] A start with couponly rates from approximate yield
[82] A formula:
[83]	 YLD~Y~(MVAL+MCOST+NXCOUP)+(MVALXN)+(CN+l)XCOST-MVAL)+2

[84] A Indices into YLD of yields not yet known:
[S5] IND~lpYLD

[86] A Number of next iteration:
[87]	 I~l

[88] A
[89] LOOP:Fl~l+Y

[90]	 F2~Fl*-F

[91]	 F3~F1*-W

[92]	 CRY~COUpxRY~+Y

[93] A Apply Newton-Raphson to get new Y:
[94]	 DIFF~(MCOST+F2xCMVALxF3)+COUP+CRyxI-F3)+F2X(CF3+Fl)x(N

xCRY-MVAL)+FlxCRyxRY)-CRYxF+RY
[95]	 NEW~Y-DIFF

[96] R Flag those found (changed less than .0000001):
[97]	 OK~lE-72:IDIFF

[98] A Compute indices of remaining elts:
[99]	 MORE~(~OK)/lpOK

[100]	 A Branch if no elts found:
[101] ~((pOK)=pMORE)pNEXT

-299­

Chapter 18 FINANCIAL UTILITIES

v FCYIELD (continued)
[102] A Insert found elements:
[103] YLD[OK/IND]~OK/NEW

[104] A Exit if no remaining elts:
[105] ~(xpMORE)J,END

[106] A Else, squeeze down arrays:
[107] MVAL~MVAL[MORE]
[108] F~F[MORE]

[109] W(-W[MOREJ
[110] N~N[MORE]

[111] COUP(-COUP[MORE]
[112] MCOST(-MCOST[MOREJ
[113] IND(-IND[MORE]
[114] A Update current yields to latest values:
[115] NEXT:Y(-NEW[MORE]
[116] A Branch to next iteration unless 10 itns. already:
[117] ~(10~I(-I+l)pLOOP

[118] R Else, set yield to 0 if unknown in 10 iterations:
[119] YLD[IND](-Q
[120] A
[121] END:

v

We will use the two approaches to solve the problem stated at the
beginning of this section.

Approach 1: Using IROR

(note: purchase price includes 5226.67 accrued interest)

DATES(-19870217,C,CIOOOOX1986+t16)o.+401 1001),20030401
AMTS(--4451.67,C32p300),5300
DATES IROR AMTS

0.150274

Approach 2: Using FCYIELD

Y(-FCYIELD 1 6p5000 4225 19870217 20030401 .12 2
2 EFFECTIVE 2xY

0.150305

The slight difference between these two yield rates is the result of
using an exact-days assumption (and 365 days per year) in the first
approach, and a 30-days-per-month, regular annuity assumption in the
second approach.

-300­

Chapter 18	 FINANCIAL UTILITIES

PROBLEMS:	 (Solutions on pages 476 to 478)

1.	 You deposit $1000 in an 18 month certificate of Deposit at 11%
compounded daily. What will be the value of your deposit when it
matures?

2.	 You make a deposit of $10 each week for 40 weeks into your bank's
Christmas Club plan. Your bank pays 8%9 converted monthly. How
much will you have at the end of the 40 weeks?

3.	 You borrow $10 9000 from your bank to buy a car. The term of the
loan is 4 years and the interest rate is 14%. What will your
monthly payment be? If you decide to repay the loan after 3
years, how much must you pay the bank (assuming no prepayment
penalty)? How much interest will you have paid during the 3
years?

4.	 Your brother-in-law is opening a new restaurant and has
approached you with the opportunity to invest in his venture. He
is asking for an immediate outlay of $10 9000 and a second outlay
of $5,000 in 6 months. Starting 5 years from now, he will pay
you $3 9000 a year for 15 years. What is the internal rate of
return of this investment (assuming all payments will be made as
scheduled)?

5.	 When the purchase price of a bond is less than its par (face)
value, the bond is said to be selling at a "discount tt. When its
price is greater than its par value, it is selling at a
ttpremium". In general, a bond sells at a discount when interest
rates are higher than the bond's coupon rate, and sells at a
premium when interest rates are lower than the bond's coupon
rate. Fluctuating interest rates hence cause inverse
fluctuations in the market values (purchase costs) of bonds.
When interest rates are up, bond prices are down and vice versa.
As the maturity date of a bond gets nearer, the fluctuations of
its market value are less pronounced. On the maturity date, the
market value of the bond is exactly equal to its par value,
regardless of prevailing interest rates.

When you buy a bond, its value on your books (its "book value")
is the purchase cost. When the bond matures~ its value on your

-301­

Chapter 18 FINANCIAL UTILITIES

books is the par value. These two values are not the same when
you bUy the bond at a discount or a premium. Since the book
value of the bond changes from the purchase date to the maturity
date~ and since you do not want the change to appear as an abrupt
change at maturity, you must "amortize" the amount of the
discount or premium over time~ modifying the book value of the
bond accordingly.

In general 9 the book value of a bond on a given date is computed
by using its yield-to-maturity and the present value formula in
the FCYIELD function to determine the present value of the bond
on the coupon dates before and after the given date and by
interpolating between the two dates.

write a function FCBOOK (fixed coupon book value) which returns
the book values of a specified portfolio of bonds as of a
specified date. The left argument of FCBOOK is the scalar date
CYYYYMMDD) as of when the book values are to be computed. The
right argument is a matrix of bond parameters with one row per
bond. The 6 columns contain~ respectively, par value, maturity
date CYYYYMMDD), annual coupon rate, number of coupons per year~

cQuponly yield rate (as from FCYIELD)9 maturity value (par value
if omitted). The result is a vector of book values with one
element per bond Crow of the right argument).

-302­

Chapter 19

EXCEPTION HANDLING

In this chapter we discuss the concepts of exception handling in
APL, and illustrate exception handling techniques on some of the
popular implementations of APL.

An exception is an event which, if not handled, will cause a function
to suspend. Specifically, it is an error or an attention (pressing
the BREAK key). When an exception occurs and is not handled,
diagnostic information displays and the user is left in immediate
execution mode. In other words, the function being executed no
longer has control of what will happen. For better or worse, the
user must decide what action to take next.

The concept of exception handling is that facilities are provided to
enable the programmer to insert code into a system which will detect
an exception when it occurs and will take some action other than
simple suspension.

What kinds of action is the function (i.e. the programmer) likely to
take when handling an exception? There are 4 typical choices:

1.	 Do something and then return to immediate execution mode with
the function suspended on the exception line. This is the
default Cunhandled) behavior where the "something" is to
display diagnostic information.

2.	 Do something and then resume execution at the exception line.
Hopefully, the "something" (e.g. allocating more disk storage)
removes the cause of the exception so that the line will
complete without exception this time.

3.	 Branch to another line of the exception function where special
logic has been included to evaluate the exception and to take
appropriate action. After taking such action, the function may
choose to branch back to the exception line or to branch
elsewhere.

4.	 Leave the exception function altogether by signalling an error
(i.e. exception) to the environment which called the exception
function. This is the behavior taken by primitive APL
functions. For example, if you attempt to divide by 0, the
divide primitive (+) does not suspend within its assembler code

Chapter 19	 EXCEPTION HANDLING

but rather signals an error (DOMAIN ERROR) to the function line
on which divide was called:

DOMAIN ERROR

CALC[15J A~B+C

A

Likewise, it may be desirable to have the exception function
(e.g. SQRT) signal an error to its calling environment:

DOMAIN ERROR

CALC[25J A~SQRT B

A

The calling environment may then handle or not handle the
exception as appropriate.

There are a number of different implementations of exception handling
in APL. Each of these implementations takes a different approach to
allow the 4 choices above. We will illustrate the 3 major exception
handling implementations (APL*PLUS, SHARP APL, APL2) in this chapter.

PROBLEM:	 Given a character vector named INPUT which contains a
user-entered APL expression, execute the expression and
return its result. If the execution of the expression (or
its assignment to the result variable R) generates an error,
report the error and reprompt by branching to the line
labeled PROMPT.

TOPIC: Detecting the Error

In APL*PLUS, the system variable DELX (error latent expression) may
be assigned any executable character vector (as with DLX). The
character vector is executed only if an error occurs. The niladic
system function ODM (diagnostic message) returns a character vector
representation (with embedded newline, i.e. carriage return,
characters) of the diagnostic message of the most recent exception.
The default setting of DELX in a clear workspace is 'ODM'.

-304­

Chapter 19	 EXCEPTION HANDLING

The solution to the problem using APL*PLUS:

[OJ ..• ; DELX
[1] DELX+-'DDM' If an error occurs on lines 2 to 14,

display the diagnostic message and
suspend.

[15] DELX+-'--+ERR' Branch to ERR if an error on line 16.
[16] ~ 'R~' ,INPUT
[17] OELX+-'DDM'

[25] ERR:D+-DDM	 Display diagnostic message.
[26] ~PROMPT	 Ask again.

In SHARP APL, the system variable DTRAP may be assigned a delimited
character vector (say, delimited by the 'V' character) or a character
matrix where each partition or row specifies the action to be taken
for a given class of errors. For example, the expression

OTRAP+-'VQ E ~ERR'

says to execute (E) the expression ~ERR if any (0) error occurs.
The system variable OER (event report) contains a 3-row character
matrix representation of the most recent exception. The first 5
characters of the first row of DER contain the "event number" (e.g. 4
for RANK ERROR). The default setting of OTRAP in a clear workspace
is ".

The solution to the problem using SHARP APL:

[0] ... ;DTRAP
[1]	 DTRAP+-' , Normal message and suspension if

error on lines 2 to 14.

[15] DTRAP+-'V 0 E ~ERR' Branch to ERR if an error on
[16] ~ , R+-' , INPUT	 line 16.
[17] DTRAP+-' ,

[25] ERR:D+-5!OER[OIO;] Show error message but not event
[26] O~l O!DER number. Show rest of diagnostic
[27] ~PROMPT	 message. Ask again.

In APL2, the dyadic system function DEA (execute alternate) takes an
executable expression as its character vector right argument and
executes it ala~. If the expression can be executed without
exception, the left argument of OEA is not considered. However, if
the execution of the right argument of OEA generates an exception,
the left argument is executed. The system variable OEM (event
message) contains a 3-row character matrix representation of the
diagnostic message of the most recent exception having occurred at
the current level of the state indicator.

-305­

Chapter 19	 EXCEPTION HANDLING

The solution to the problem using APL2:

[16]	 '~ERR' OEA 'R~' ,INPUT Branch to ERR if an error
during ~.

[25] ERR:O~DEM Display	 diagnostic message.
[26] ~PROMPT Ask again.

A different APL2 solution is possible by using the monadic system
function DEC (execute controlled). DEC is like DEA in that its
character vector right argument is an executable expression.
However, the result of DEC is a 3 item nested array which contains
information about the attempt to execute the right argument. The
result can be evaluated to determine whether or not an error has
occurred. DEC distinguishes among the various types of executable
expressions and so allows messages which are more specific than those
possible from OEA.

See an APL2 reference manual for more complete documentation on DEC.
Here is the solution using DEC in APL2:

[16] Z~DEC INPUT
[17] ~ERR UNLESS Z[l]El 2 Branch unless result or
[18] R~3~Z assignment.

[25] ERR:~(Z[l]=O 3 4 5)/ERR1,ERR2,ERR3,ERR3
[26] ERR1:D~DEM

[27] ~PROMPT

[28] ERR2:D~'EXPRESSION HAS NO RESULT'
[29] ~PROMPT

[30] ERR3:D~'BRANCHING NOT ALLOWED'
[31] ~PROMPT

PROBLEM:	 Suppose you have written a dyadic function STAT whose
arguments are same-length numeric vectors and whose result
is a numeric vector of various statistics. The function is
self-contained, i.e. it requires no subfunctions or global
variables and it assigns no global variables. Because of
its syntax and self-containment, STAT behaves like a dyadic
primitive function (once copied into the workspace) in all
regards but one: error handling. When provided with faulty
arguments, STAT suspends on one of its lines after
displaying one of: RANK ERROR, LENGTH ERROR or DOMAIN
ERROR. Rewrite STAT to signal these errors and others
(say, WS FULL) to its calling environment rather than
suspending.

-306­

Chapter 19	 EXCEPTION HANDLING

TOPIC: Signalling the Error

In APL*PLUS, the monadic system function DERROR takes a character
vector error message argument and signals that message to the
environment from which was called the function in which DERROR is
executed. For example:

V TEST N
[1]	 DERROR 'OOPS'
[2]	 V

TEST 5

OOPS

TEST 5

A

Once the error occurs within STAT, the message may be found as the
first line of the result of DDM. The first line is defined as all
characters up to the first newline character (represented in APL*PLUS
as OTCNL).

The solution to the problem using APL*PLUS:

[0] ••• ; DELX
[1]	 DELX~'DERROR(A\DDM~DTCNL)/ODM'

In SHARP APL, the dyadic system function DSIGNAL takes an optional
character vector error message left argument and a corresponding
event number right argument and signals the message (and event number
as the first 5 characters of DER) to the environment from which was
called the function in which DSIGNAL is executed. For example:

v TEST N

[lJ 'OOPS' DSIGNAL 599

[2]	 v

TEST 5

OOPS

TEST 5

A

The function DSIGNAL may also be used monadically. Its argument is
an integer event number in the range 1 to 999 (e.g. 2 for the
standard APL error message SYNTAX ERROR).

The solution to the problem using SHARP APL:

[OJ ... ;DTRAP
[1]	 DTRAP~'vO E DSIGNAL~5pDER'

or, using DEC (environment condit.ion) :

[OJ ••• ; DEC
[1]	 DEC~1 ~ Disallow suspension

-307­

Chapter 19	 EXCEPTION HANDLING

In APL2, the monadic system function DES (event simulation) takes a
character vector error message argument or a 2-element integer vector
event type code (e.g. 1 3 for WS FULL) and signals the message to the
environment from which was called the function in which DES is
executed. For example:

V TEST N
[1]	 DES 'OOPS'
[2]	 v

TEST 5

OOPS

TEST 5

A

The system variable DET (event type) contains the 2-element integer
vector event type code of the most recent exception having occurred
at the current level of the state indicator.

The	 solution to the problem using APL2:

[1]	 'DES DET' DEA 'line 1 of STAT'
[2]	 'DES DET' DEA 'line 2 of STAT'
[3]	 'DES DET' DEA 'line 3 of STAT'

If self-containment were not an issue, the solution using APL2 would
be to rename STAT to STATl and to write a new STAT function:

V R~A	 STAT B
[1]	 'DES DET' DEA 'R~A STATl B'

v

PROBLEM:	 Given a 70-1ine function of critical code named PROCESS,
incorporate exception handling such that an interrupt (the
BREAK key) will cause the message PLEASE BE PATIENT to
display and execution to resume.

TOPIC: Detecting the Attention

In APL*PLUS, the system variable OALX (attention latent expression)
may be assigned any executable character vector (as with DLX or
DELX). The character vector is executed only if an attention is
signalled (via the BREAK key). The default setting of DALX in a

-308­

Chapter 19	 EXCEPTION HANDLING

clear workspace is 'ODM'. That iS t the default behavior of the
system is to display the diagnostic message generated by the
attention and to suspend.

The niladic system function OLe (line counter) returns an integer
vector of the numbers of the suspended or pendent lines in the state
indicator. The first number corresponds to the top (most recent)
level in the state indicator and the last number corresponds to the
bottom level. Since the branch primitive function (~) only considers
the first element of its argument, the expression ~DLC will cause the
flow of execution to proceed to the line on which the expression was
executed.

The solution to
separator) :

the problem using APL*PLUS (0 is a statement

[0]
[1]

... ; DALX
DALX~'O~' 'PLEASE BE PATIENT" 0 ~DLC'

In SHARP APL t the
solution using S

event number
HARP APL:

1000 represents any interrupt. The

[0]
[1]

.•. ;DTRAP
DTRAP~'V1000 E O~, 'PLEASE BE PATIENT" 0 ~DLC'

In APL2 t an attention is not considered an exception which can be
handled.	 Therefore this problem as stated cannot be solved usingt

APL2. If the PLEASE BE PATIENT message is omitted from the problem,
you may solve the problem in APL2 by "conditioning" the PROCESS
function to not be interruptable:

o 0 1 0 OFX OCR 'PROCESS'

PROBLEM:	 You wish to install a fully-tested production system such
that if any unexpected (i.e. unhandled) error accurSt the
message "AN UNEXPECTED ERROR HAS OCCURRED; CONTACT J. SMITH
IMMEDIATELY" will display and the system will suspend on
the exact line of the error. How will you modify the
system to do so?

TOPIC: Suspending the Function

In APL*PLUS, the default behavior of the system when handling an
exception is to suspend on the exception line. In fact, if OELX is

-309­

Chapter 19 EXCEPTION HANDLING

set to ", that is all that will happen. Since this behavior would
be confusing to the user (suddenly in immediate execution mode with
no indication of an exception), the default setting of DELX is
'DDM'. with this setting, the diagnostic message is returned and
displayed and then the function is suspended. The only way to not
suspend the function is to branch (e.g. DELX~'~ENTER') so that
execution may resume or to signal an error (e.g. DELX~'DERROR

, 'OOPS"') which may be handled by a more global DELX.

The solution to the problem using APL*PLUS is to assign DELX globally:

DELX~'O~' 'AN UNEXPECTED ... IMMEDIATELY'"

If an error occurs, OELX will be executed causing the message to
display. Then execution will suspend. When Smith arrives, he will
type DDM to display the diagnostic message and may resume execution
by typing ~DLC after correcting the error.

If a function lacks exception handling but is a high security
function, you may not want to allow the function to be left suspended
after an exception. For example, a function which updates a payroll
file may contain sensitive salary information in its local variables
during execution. To prevent a function from suspending (i.e. to
perform a ~ when entering immediate execution mode) in APL*PLUS,
localize the system variable DSA estop action) and assign it the
value 'EXIT'. The default setting of DSA is ".

In SHARP APL, if an exception is not handled by the current setting
of DTRAP, the diagnostic message will display and the function will
suspend on the exception line. As with APL*PLUS, the only way to not
suspend the function is to branch (e.g. DTRAP~'VO E ~ENTER') so that
execution may resume or to signal an error (e.g. DTRAP~'VO E ' 'OOPS' ,
DSIGNAL 599') which may be handled by a more global DTRAP.

The solution to the problem using SHARP APL is to assign DTRAP
globally:

DTRAP~'VO E D~' 'AN UNEXPECTED... IMMEDIATELY'"

If an error occurs, the message will display and execution will
suspend. When Smith arrives t he will type DER to display the error
report and may resume execution by typing ~DLC after correcting the
error.

To prevent a high security function from suspending in SHARP APL,
include the partition 'V2001 D EXIT' in the current (local)
definition of DTRAP. Event number 2001 represents the "immediate
execution mode" event. D stands for "do".

In APL2 t if an exception occurs outside the execution of the right
argument to OEA (or DEC, a similar function), the diagnostic message
will display and the function will suspend on the execution line. To
keep the diagnostic message from displaying, each statement which may
generate an error must be executed within the right argument of DEA,

-310­

Chapter 19	 EXCEPTION HANDLING

or must be on a line of a function which is executed within the right
argument of OEA, or must be on a line of a function called by a
function called by DEA, and so on.

Therefore, if COVERFN is the name of a function to which all of the
other functions in the system are subfunctions, you may control the
display of the diagnostic message by invoking the system with an
expression such as:

, HANDLER'	 DEA 'COVERFN'

Unfortunately, if an unhandled exception occurs anywhere within
COVERFN, a suspension will not occur. Rather, the levels of the
state indicator associated with COVERFN will be reset and HANDLER
will be executed. Hence, we can choose either to detect the error
but lose the suspension or to suspend by not detecting the error.
For example, the expression

'D~' 'AN UNEXPLAINED ... IMMEDIATELY' DEA 'COVERFN'

will cause the proper message to display. However, when Smith
arrives, he will type OEM to display the event message and will find
that it is empty and the state indicator is empty (unless an old
suspension is lying around).

To prevent a high security function from suspending in APL2, you may
"condition" the function (say, PAYROLL) to not be suspendable:

o 1 0 0 OFX OCR , PAYROLL'

PROBLEM:	 Given a 20-1ine function MAINFN which calls a multitude of
subfunctions, you would like to incorporate exception
handling in MAINFN such that any error (even if in a
subfunction with no exception handling) causes a branch to
the line labeled ERRCODE in MAINFN and any attention causes
a branch to the line labeled ATTNCODE.

TOPIC: Controlling the state Indicator

In APL*PLUS, there is no direct capability for solving this problem.
Suppose MAINFN calls SETUP which calls READVARS which encounters an
error on its 5th line. If there is no exception handling, the
READVARS function will suspend and the state indicator will look
something like:

-311­

Chapter 19	 EXCEPTION HANDLING

)S1
READVARS[5J *
SETUP[19]
MAINFN[4J

A naive solution to the problem would be to include the following in
MAINFN:

V MAINFN; ;OALX;DELX
[1]	 DALX~'~ATTNCODE'

[2]	 DELX~'~ERRCODE'

[31] ERRCODE:etc.

[41] ATTNCODE:etc.

However, when the error in READVARS occurs, the value of DELX
('~ERRCODE') will be executed, causing a branch to line 31 (the value
of ERRCODE unless shadowed by a different ERRCODE local to SETUP or
READVARS) of READVARS, not to line 31 of MAINFN. Somehow, we must
get out of Ci.e. 40) both READVARS and SETUP before branching to the
line labeled ERRCODE. The only way to do this without landing in
immediate execution mode (which would happen if you localized
DSA~'EXIT' in both READVARS and SETUP) is to use OERROR.

The approach we will take is this: set DELX to check whether DELX
has been localized at the current top level of the state indicator;
if so (i.e. if in MAINFN), branch to ERRCODE; if not (i.e. if in
SETUP or READVARS), use DERROR to reset the top level of the state
indicator and to signal an error (say, the same error message) to the
next level; since DERROR will trigger DELX, the process will be
repeated until MAINFN is at the top of the state indicator. This
process is called "propagating the error message".

The monadic system function DIDLOC (identifier localization) returns
a 1 row integer matrix of localization codes for the identifier whose
name is provided as the character vector right argument. Each column
of the result corresponds to one level of the state indicator (local
to global) and the code -1 represents unlocalized. Therefore, if the
result of IpOIDLOC 'OELX' is -1, then DELX is not localized at the
top level of the state indicator.

The initial solution to the problem using APL*PLUS:

v MAINFN; ... ;DELX
[1]	 DELX~'~C-1=lpDIDLOC''OELX' ')/' 'DERRORCA\ODM1DTCNL)/

DDM' , <>--+ERRCODE'

This handles errors. What about attentions? We will use a similar
approach: set DALX to check whether DALX has been localized at the
current top level of the state indicator; if so Ci.e. if in MAINFN),
branch to ATTNCODE; if not (i.e. if in SETUP or READVARS), use DERROR
to reset the top level of the state indicator and to signal an error

-312­

Chapter 19	 EXCEPTION HANDLING

(say 'ATTN') to the next level; OELX will be triggered at the next
level and will behave as described above except it will branch to
ATTNCODE rather than ERRCODE if the error message is 'ATTN'.

The final solution to the problem using APL*PLUS:

V MAINFN; ... ;DALX;DELX
[1]	 OALX~'~(-1=lpDIDLOC''DALX' ')/' 'OERROR'" 'ATTN"""

O~ATTNCODE'

[2]	 DELX~'~(-l=lpDIDLOC''DELX' ')/' 'DERROR(A\ODM1DTCNL)/
ODM' 'O~(' 'ATTN' 'A.=4tODM)~ERRCODE,ATTNCODE'

In SHARP APL, there is a direct capability for solving this problem.
The action code C (cut) can be specified within the OTRAP definition
to specify that the state indicator should be "cut back" (i.e. reset)
to the level at which DTRAP is local.

The solution to the problem using SHARP APL:

V MAINFN; ... ;OTRAP
[1]	 OTRAP~'VO C ~ERRCODE VIGOO C ~ATTNCODE'

In APL2, the only way to solve the problem is to execute each of the
20 lines of MAINFN as the right argument of DEA. If an exception
occurs during the execution of the line, the state indicator is
automatically "cut back" so that MAINFN is at the top level; then the
left argument of OEA is executed. Since attentions cannot be
detected as exceptions in APL2, no branch to ATTNCODE is possible.

The solution to the problem using APL2:

v MAINFN; ... ;ELX
[1]	 ELX~'~ERRCODE'

[2]	 ELX DEA 'line 1 of MAINFN'
[3]	 ELX DEA 'line 2 of MAINFN'
[4]	 ELX DEA 'line 3 of MAINFN'

[26]	 ERRCODE:etc.

The only problem with this solution is its brute force appearance. A
typical APL2 solution to the problem involves restating the problem:
rename MAINFN to be MAINFNl and write a new MAINFN which will handle
any exceptions occurring within MAINFN1.

Here is the alternative APL2 solution:

v MAINFN
[1]	 '~ERRCODE' DEA 'MAINFN1'
[2]	 ~O

[3] ERRCODE:etc.

-313­

Chapter 19	 EXCEPTION HANDLING

PROBLEMS:	 CSolutions on pages 479 to 482)

1.	 The following function displays the records of a file. The user
is asked for the number of the record at which displaying is to
begin. Then the function reads and displays every record from
the specified record to the end of the file. Incorporate
exception handling so that the user may press the BREAK key to
halt the display and to ask again for the number of the record at
which displaying is to begin. Assume that the READ function uses
exception handling such that an attention within READ causes READ
to signal the error message 'ATTN' to its calling environment.

V SHOWFILE NAME;LIM;N
[1] LIM~TIEFILE NAME
[2] ASK:D~'BEGIN WITH WHICH RECORD?'
[3] N+-D
[4] -'CO=N)/O
[5] LOOP: D+-' ,
[6] O+- (<t>N) , ': ',READ N
[7] O+-' ,

[8J ~(LIM~N+-N+l)/LOOP

v

2.	 write a dyadic function NXPROMPTE which prompts for and returns a
vector of numbers. Its right argument PROMPT is a character
vector which is displayed to prompt the user for input. Input is
accepted beyond the prompt on the same line. The left argument
is the number of numbers required. If 0, the function will allow
any number of numbers. If the word END is entered, the result is
the scalar 1. Any primitive APL expression may be entered and
will be executed. User defined functions or variables may not be
included in the response. Note that this function is identical
to the NPROMPTE function developed in the chapter, Writing
User-Friendly Interactive Functions, except APL expressions are
allowed. For example:

Q+-O NXPROMPT 'ENTER PROJECT NO.8:

ENTER PROJECT NO.S: 10+t8

Q
11	 12 13 14 15 16 17 18

-314­

Chapter 19	 EXCEPTION HANDLING

3.	 write a dyadic function ERRATTN to initialize the exception
handling facilities such that any subsequent error will be
handled as directed by its arguments. If the left argument, ELX,
is a character vector, it will be executed directly if any error
should occur; if the left argument is a numeric line label, the
state indicator will be reset (cut back) to the level at which
ERRATTN is called and a branch to the scalar will take place.
The meaning of the right argument, ALX, is the same as that of
the left argument but is for attention handling rather than error
handling. If either argument is empty (e.g. ' '), the response to
the respective exception is to display the diagnostic message and
suspend. For example:

[1] "ERRATTN' ,

[6] 'FIXFILE 0 ~DLC' ERRATTN L5
[7] L4:APPEND DATA
[8] ~MORE

[9] L5:D~'FILE INCOMPLETE DUE TO INTERRUPT.'

On	 line 1, the error and attention handling is set to its default
behavior (if an exception, display diagnostic message and
suspend). On line 6, a character vector error handler and a
numeric line label attention handler are provided. If an error
occurs (say, within the APPEND function), the FIXFILE function is
executed and execution is resumed. If an attention occurs,
execution is resumed on the line labeled L5 (even if the error
occurs within the APPEND function).

-315­

POSTSCRIPT

The functions described and listed in this book are available on
a floppy disk for the APL*PLUS PC system. To order one or more of
these floppy disks, please send your check or money order to:

ADVANCED APL FUNCTIONS
ZARK INCORPORATED
53 SHENIPSIT STREET
VERNON, CT 06066

specify the number of disks desired and enclose $15 per disk.
Postage and handling charges are included. Connecticut residents,
please include sales tax.

The following is a list of the workspaces and functions included on
the disk.

)WSID BOOLEAN
pANDMAP
pLESCAN
pPLUSRED

pANDRED
pLTSCAN

pANDSCAN
pNEMAP

pEQMAP
pNESCAN

pEQSCAN
pORMAP

pGEMAP
pORRED

pGTMAP
pORSCAN

CASH1
)WSID CASHBAL

CASH2 CASH3 CASH4

)WSID CNFNS
ASSIGN
CNIDXA

CNCAT
CNIOTA

CNEQ
CNLEN

CNEST
CNflM

CNGRADEUP
CN~V

CNIDX

)WSID COMMENTS
UNCOMMENT UNLAMP

)WSID CRTIMING
TIMER TIME~DEFINE

-316­

POSTSCRIPT

)WSID DATES
FROMDAYS FROMDAYS360 FROMDAYSA FROMMDY FROMMDY6.
FROMQTS FROMYD IPDATEMDY TODAYS TODAYS360
TODAYSA TOMDY TOMDYA TOQTS TOYD

)WSID ERROR
ERRATTNP ERRATTNS

)WSID FILEDOC
FILEDOC

)WSID FLF
EMPLOYEES

)WSID FNIDS
IDENTIFY LOCALIZE OBFUSCATE RELABEL UNDIAMOND
UNOBFUSCATE

)WSID FNREP
CRt:.VR VRACR

)WSID FNSFILE
DROPFN FNCREATE GETFN PUTFN

)WSID FORMAT
CENTER CJUST COLFMT COLUMNIZE DEB OLB
DTB HEADINGS LJUST RJUST ROWFMT THORN
TITLES

)WSID INPUT
CPROMPT CPROMPTE ESCAPE IF LPROMPT LPROMPTE
MESSAGE NINPUT NINPUT2 NPROMPT NPROMPT2 NPROMPTE
NPROMPTE2 NXPROMPTE PROPOSAL UNLESS

)WSID INTEREST
EFFECTIVE FCBOOK FCYIELD IROR NOMINAL SCHEDULE
VALUE

)WSID LOOP
LOOPI NEXTI

-317­

POSTSCRIPT

)WSID MSF
ADDEMP CATEMP CINPUT DELEMP
LISTEMP MESSAGE NINPUT RCAT
SQZEMP START UNLESS

)WSID MULTI2
ASSIGN CATREC
EXECUTE FCREATE
FREPLACE FTIE
INDEXWS INDEXWSA
LAYERS NREC~RECL

)WSID MULTI FLO
ASSIGN CATREC
EMPLOYEES EXECUTE
INDEXWS INDEXWSA
LAYERS SELECT

)WSID MULTISA
ASSIGN CATREC
EXECUTE FOR
INDEXWSA INITFILE
SELECT SELECTWS

)WSID NNFNS

CATRECWS
FERASE
FUNTIE
INITFILE
SELECT

CATRECWS
FOR
INITFILE
SELECTWS

CATRECWS
INDEX
IOTA
SLASHIOTARHO

EMPLOYEES IF
RESTART SELECT

COMPRESS DELREC
FOR FREAD
INDEX INDEXA
IOTA IOTARHO
SELECTWS SLASHIOTARHO

COMPRESS DELREC
INDEX INDEXA
IOTA IOTARHO
SLASHIOTARHO

COMPRESS DELREC
INDEXA INDEXWS
IOTARHO LAYERS

ASSIGN
NNIDX

NNCAT
NNIDXA

NNCATSS
NNLEN

NNCATSV
NNSUMCOL

NNCATVS NNCATVV NNEST

PRINT
)WSID PRTFILE

QDOC
)WSID QDOC

)WSID REDUCE
ANDRED MAXRED
.6ANDWAY .6MAX
.60R .60RRED

MINRED
flMAXRED
flORWAY

ORRED
~MAXWAY

flPLUS

PLUSRED
~MIN

~PLUSRED

t!1AND
.6MINRED
.6PLUSWAY

f1ANDRED
.6MINWAY

)WSlD SEARCH
BY CMIOTA CMIOTAl
LIOTA1 REPLACE UlOTA
UNQIl UNQNV ~ss

CMIOTA2
UlOTAl

DEB
UNQCM

IOTA
UNQCV

LIOTA
UNQIO

-318­

POSTSCRIPT

)WSID SORT
CGRADEUP CGRADEUPl CGRADEUP2 UPPERCASE

)WSID TIMING
COST TIMER TIME~DEFINE TIME~DISPLAY TIME~RESET

~

)WSID USEDBY
USEDBY

)WSID UTILITY
MONIOTA REPL

)WSID WP
WRAP WRAPLP

)WSID WSDOC
WSDOC

-319­

Chapter 1 Solutions

LIMBERING UP

1. AMOUNT[AMOUNTt645]~845

or
AMOUNT[(AMOUNT=645)/tpAMOUNT]~845

or
C(AMOUNT=645)/AMOUNT)~845

2. A/CPREMS>100)APREMS<500

3. +/24=LO.5+WEIGHT

4. x/pMAT or p,MAT

5. 'ANSWER IS ',(~ANS),' YEARS'

6. NAMES~NAMES,[l](l~pNAMES)tNAME

Cif exactly one
occurrence of 645)

Cif 0 or more
occurrences)

CAPL2)

(origin 1)

7.	 A. Since a scalar has no shape, its shape is an empty vector.
Therefore, the result of p12 is an empty vector. When the right
argument of branch (~) is an empty vector, no branch takes
place. Control proceeds to the next statement.

-320­

Chapter 1 Solutions	 LIMBERING UP

8.	 R~(((pV)pl O)/V)+256 X((pV)pO l)/V
or

R~256.L~<J>(N92)pV

or

or

9.	 The reduction of an empty vector returns the identity element for
the dyadic function involved in the reduction. The identity
element is that value which when supplied as one of the arguments
of the dyadic function will return the other argument. For
example 9 since 0+5 is 5 and lx5 is 59 the identity element for
plus (+) is 0 and for times (x) is 1. The only argument to
minimum (l) which will always return the other argument is
positive infinity. Since positive infinity cannot be represented
as a number 9 APL returns the next best thing the largest9

possible number which can be represented on the computer. This
value varies from implementation to implementation but is
generally some value like lE77 or 2E300. For non-commutative
functions (like +)9 the identity element is that value which when
supplied as the right argument of the dyadic function will return
the	 left argument. For example 9 since 5+1 is 59 the identity
element for divide is 1.

10.	 The running alternating sum.

-\	 3 8 6 5

11.	 Display the state indicator (via ")SI") to see where the
suspension occurred and branch to the line number shown on the
top of the state indicator. Alternately:

-+DLC

3 -5 1 -4

12.	 Most implementations of APL insist that the header of a function
not be changed once the function is called. It is too tricky to
handle the problems which arise when you make a global variable
local, or vice versa while the function is suspended. Likewise,9

labels may not be added or deleted (or possibly moved to
different lines) in a suspended function, since the values of

-321­

Chapter 1 Solutions	 LIMBERING UP

labels are assigned at the moment the function is called. Most
implementations of APL will allow you to make such editing
changes to a suspended function but will display a message like
51 DAMAGED or 51 ERROR or SI WARNING and will not allow you to
resume execution at the point of the error. You will need to
reset the state indicator and rerun the function from the
beginning.

13.	 The "rank tt or "ranking" of VECTOR. For example, if 6 students
have these test scores,

SCORES~87 99 83 85 65 100

the ranks of the respective students are:

44SCORES

452 3 1 6

where the 1 corresponds to the student with the lowest score and
the 6 corresponds to the student with the highest score.

14.a.

b. ditto

15.a.	 (pA),pB

b. ditto

16.	 DAI (accounting information), a niladic system function. Usually
the second element of the result of DAI is a measure of CPU time
consumed since signon to APL.

17.	 (!J+--PROMPT ~+-PROMPT

R+-(pPROMPT)J,[!] (or: OARBOUT to in APL*PLUS)
R+-~

-322­

Chapter 1 Solutions	 LIMBERING UP

18.a.	 CN,l)p' , Cor: CN, 0) p " in APL2)

b.	 CN-l)pDTCNL (APL*PLUS)

CN-1)pDAV[156+DIOJ (SHARP APL)

CN-l)pDTC[1+DIOJ CAPL2)

Note:	 None of these three expressions works correctly if N=O.
They generate a DOMAIN ERROR.

19.	 DEX DNL 2 CAPL*PLUS, SHARP APL, APL2)
DERASE DIDLIST 2 CAPL*PLUS)
6 DFD 1 DWS 2 (SHARP APL)

20.a.	 S~MODEL+-12 14 (APL*PLUS, SHARP APL, APL2)
12 14 DSTOP 'MODEL' CAPL*PLUS PC, APL*PLUS UNX)

b.	 Localize T in INTERPOLATE. T was somehow reassigned after
line 11 and before line 13. Since the reassignment does not
take place on line 12, it must take place within INTERPOLATE
(or a subfunction of INTERPOLATE).

21. Including the header in the count of lines,

1tpOCR 'CALC'	 CAPL*PLUS, APL2)
Itp2 DFD 'CALC'	 (SHARP APL)
-1++/DTCNL=OVR 'CALC'	 (APL*PLUS)
-1++/OAV[156+DIOJ=1 DFD 'CALC' (SHARP APL)

22. Because 010=0 and some elements of V2 are not found in Vl.

-323­

Chapter 2 Solutions

BRANCHING AND LOOPING

1.	 The expression does not work correctly in index or1g1n 0; it
modifies the random link CORL); and it labels the programmer as
having brain damage.

2.	 ~(XN)~ZERO,POSIT1VE,NEGATIVE

or
~(NEGATIVE,ZERO,POSITIVE)[2+xN]

or

~(-1 0 l=xN)/NEGATIVE,ZERO,POSITIVE

3.	 a. SUM+--O b. SUM+-O
1+--11 CMPS+--8+3XtlOO
LOOP:~ENDLOOP IF 1>308 1+-1
SUM~SUM+READ I LAB+--(lOOpLOOP),ENDLOOP
1+-1+3 LOOP:SUM+-SUM+READ CMPS[!]
~LOOP 1+--1+1

ENDLOOP:	 -+LAB[IJ

ENDLOOP:

c.	 SUM+--O d. SUM+-O
I&ENDLOOP,lOO 11 3 ~LOOPI ENDLOOP,lOO 11 3
SUM+-SUM+READ I SUM+--SUM+READ I
&1 -+NEXTI

ENDLOOP:	 ENDLOOP:

e.	 SUM+--O where: v SUMUP CMP
SUMUp··	 8+3XtlOO [1] SUM+-SUM+READ CMP

v

-324­

Chapter 2 Solutions	 BRANCHING AND LOOPING

4 • 010+-1
RSCAN~(l+RATE)*tTERM

OPRIN+-RSCANxLOAN-+\PMT+RSCAN

5.	 After performing the transformations, the result is DEPOSIT.
Undoing the transformations yields the following function:

[WSID: CASHBALJ
v BALANCE~RATE CASH4 DEPOSIT;ACCUM

[1] A Returns stream of cash balances for deposits
[2] A DEPOSIT and corresponding rates RATE.
[3] A Performs:
[4] A BALANCE[I]~DEPOSIT[I]+BALANCE[I-l]xRATE[I-l]+l

[5] ACCUM~~X\l,$l+RATE

[6] BALANCE~(+\DEPOSITXACCUM)+ACCUM

v

Note to actuaries: The approach taken here is to compute the
future value of each deposit as of the last period, subtotal the
future values, and then discount each subtotal back to the
deposit date. Alternately, the approach in CASH3 is to compute
the present value of each deposit as of the start of the first
period, subtotal the present values, and then accumulate each
subtotal back to the deposit date.

6.	 Notice that the WRAP function below will iterate only as many
times as the number of lines generated by the longest sentence.

[WSID: WPJ
v R~WID WRAP CVEC;DIO;BL;BREAK;LAST;LEN;MORE;NL;START;

TCNL
[1] R Wraps text CVEC into lines of length WID
[2] R or less by inserting newline characters.
[3] R Origin 1:
[4] OIO~1

[5] R Newline character:
[6] TCNL~OTCNL R APL*PLUS
[7] R TCNL~DTC[2] A APL2

[8J R TCNL~DAV[157] R SHARP APL

[9] R Flag newline characters:
[10] NL~CVEC=TCNL

[11] R Index before start of each sentence:
[12] START~O,NL/lpNL

[13] A Lengths of sentences (between newlines):
[14] LEN~-l+(l~START,l+pCVEC)-START

-325­

Chapter 2 Solutions	 BRANCHING AND LOOPING

v WRAP (continued)
[15] A Flag valid break points (blank followed by
[16] A nonblank):
[17] BL~CVEC=' ,
[18] BREAK~BL>l~BL

[19] A Initialize result from argument:
[20] R~CVEC

[21] R Flag sentences still to be broken:
[22] LOOP:MORE~LEN>WID

[23] R Select just those remaining:
[24] LEN~MORE/LEN

[25] A Exit if none left:
[26] ~(O=pLEN)/O

[27] START~MORE/START

[28] A Find last break point within WID chars of line:
[29] LAST~+/v\BREAK[STARTo.+~tWID]

[30] A Advance start to new break point:
[31] START~START+LAST

[32] A Insert newlines:
[33] R[START]~TCNL

[34] A Decrement remaining lengths:
[35] LEN~LEN-LAST

[36] A Repeat:
[37]	 ~LOOP

V

-326­

Chapter 3 Solutions

COMPUTER EFFICIENCY CONSIDERATIONS

1.
[WSID: TIMING]

v COST;T
[1] R Displays dollars consumed since COST was last
[2] R run (as recorded in global ~AI) and since
[3] A signon, assuming 75 cents per unit of DAI[2].
[4] R Record time consumed so far:
[5] T~DAI[1+0IO]

[6] R Check for global ~AI and branch unless found:
[7] -+(xDNC '.6AI')J,Ll
[8] A Display consumption since last use of COST:
[9] (10 2 ~0.75XT-.6AI),' DOLLARS CONSUMED'
[10] R Display consumption since signon:
[11] L1:(10 2 ~0.75XT),' DOLLARS SINCE SIGNON'
[12] R Reassign global .6AI:
[13]	 .6AI+-T

V

2 •
[WSID: CRTIMINGJ

V ~R~+-~N~ TIMER ~C~;~A~;ABA;~F~;~GA

[1] R Times the execution of the character vector AC~

[2J R by running it AN~ times. Returns a numeric scalar
[3] R of the average CPU time consumed per run.
[4] R
[5] A Prepare to build local functions ...
[6] R No. of columns in canonical representation:
[7] ABA+-24r4+p,AC~

[8J AAA+-(7,ABA)p'

[9] AA~[DIO;]+-ABAt'AEA+-~FA ANA;AIA'
[10] AAA[DIO+1;J+-ABAi'AEA+-DAI[1+DIO]'
[11] ~AA[DIO+2;]~ABAt'AIA~O'

[12J ~AA[OIO+3;]+-~BAt'~LA:-+(AN~<AIA+-AIA+1)p~ZA'

[13] AA~[DIO+4;]+-ABAt'ADA:',~CA

[14] AA~[DIO+5;]+-~BAt'~~LA'

[15] ~A~[DIO+6;]~~B~t'~Z~:AE~+-DAI[1+DIO]-AE~'

[16] A

-327­

Chapter 3 Solutions COMPUTER EFFICIENCY CONSIDERATIONS

v TIMER (continued)
[17] R Define local fn ~F~ to run ~CA:

[18] ~R~~OFX ~A~

[19] R

[20] R Define local fn AG~ to run nothing:
[21] ~A~[DIO;5+0IO]~'G'

[22] ~A~[DIO+4;]~~BAt'AD~:'

[23] ~R~~DFX ~AA

[24] R
[25] A Run the functions (disallow negative result):
[26] ~R~~Or(~F~ ~N~)-~G~ ~N~

[27] A Return the average:
[28] ~R~~~R~+AN~

V

3 •
V T~TRY SIZES;L;R;1

[1] A Use as: TRY 50 100 for 50 row left arg, 100 right
[2] L~SIZES[l]

[3] R~SIZES[2]

[4] L~(L,12)pDAV[?(LX12)p256]

[5] R~L[?Rp1ppL]

[6] R Run it 5 times:
[7] T~5 TIMER 'I~L CMIOTA R'

v

Define the numbers of rows for the left arguments:

L~5/10 50 100 500 1000

and for the right arguments:

R~25pl0 50 100 500 1000

Then time them all:

v T~L DOlT R
[1] T+- (P L) P 0
[2] 1'-0
[3] LOOP:~((pL)<I~I+l)pO

[4] T[I]+-TRY L[I],R[I]
[5] -+LOOP

v

Tl+-L DOlT R

-328­

Chapter 3 Solutions COMPUTER EFFICIENCY CONSIDERATIONS

Change CMIOTA as instructed (to activate the looping algorithm)
and run DOlT again:

v CMIOTA

(edit it)

v

T2+-L DOlT R

The variables L, R, Tl and T2 will be needed in a problem at the
end of the Curve Fitting chapter. Record and save them:

)SAVE CMTIMES

-329­

Chapter 4 Solutions

POSITIONING CHARACTER DATA

1.
or

or

R~(A\TEXT~NL)/TEXT

R~((TEXTtNL)-DIO)pTEXT

R~(+/A\TEXT~NL)pTEXT

2. R~(CODE='/')A't'=l~CODE,'*'

(What is wrong with: R~(CODE='/')A't'=l$CODE
(Try it on: CODE~'tI~B/tpB R USES I')

?)

R~CODE DSS ' It'
R~' It' ~CODE

CAPL*PLUS)
(APL2)

3.

[1]
[2]
[3]
[4]
[5]

[WSID:
v R+-W CENTER C

A Pads character vector C to width W,
A it within that width.
R~Wt((L(OrW-p,C)+2)p' '),C

A Alternative:
R R~Wt(-l(W+p,C)+2)tC

V

FORMAT]

centering

-330­

Chapter 4 Solutions	 POSITIONING CHARACTER DATA

4 •
[WSID: FORMAT]

V R~D ROWFMT N
[1] R Formats a numeric matrix N into a character matrix.
[2] A D is an integer vector with one element per row
[3] A of N. The integers indicate the number of decimal
[4] A places for each numeric row 9 to be displayed in9

[5] R the character matrix result. Each number is
[6] R formatted in a width of <width> characters (e.g. 10),
[7] R where <width> is an integer scalar global variable.
[8J A Requires subfunction: COLFMT
[9]	 R~D COLFMT~N

[10]	 R~(C1,width)xpN)p 2 1 3 ~(C~pN),width)pR

V

5.
[WSID: FORMAT]

v R~RC COLUMNIZE CMAT;C;COLS;PGS;ROWS;DIO
[1] A Restructures skinny character matrix CMAT into
[2] A a fat one. RC is scalar or 1 or 2 element
[3] R vector. Last element is no. of "columns" of
[4] R CMAT running down each page of the result.
[5] A If RC has 1 element~ result is a short
[6] A CrClipCMAT)+RC rows)~ fat CRC X 1 ! pCMAT columns)
[7] A matrix. If RC has 2 elements~ first element is
[8] A number of rows per page. Result is a 3
[9] R dimensional character array with
[10] A CrC1ipCMAT)+X/RC) planes~ Re[l] rows and
[11] A CRCX1!pCMAT) columns.
[12]	 DIO~l

[13]	 RC~~RC

[14]	 COLS~-1iRC

[15]	 C+--IJ,pCMAT
[16] A Branch if 3 dimensional result:
[17]	 ~C2=pRC)pLl

[18] A 2 dimensional result:
[19]	 ROWS~rCltpcMAT)+COLS

[20]	 R~(ROWS~COLSXC)p 2 1 3 ~(COLS~ROWS~C)p(CCOLSXROWS),C)i

CMAT
[21]	 ~o

[22] A 3 dimensional result:
[23] Ll:ROWS~ltRC

[24]	 PGS~rCltpcMAT)+ROWSXCOLS

[25]	 R~(PGS,ROWS,COLSXC)p 1 3 2 4 ~(PGS,COLS,ROWS,C)p((PGSx

COLSxROWS),C)tCMAT
v

-331­

Chapter 4 Solutions POSITIONING CHARACTER DATA

6.

[1]
[2]
[3]

[4]
[5]

[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47J
[48]
[49]

[WSID: FORMAT]
V R~WID HEADINGS CS;DIO;A;ARGSTART;B;BHDG;BSEG;HDGLEAD;

LEN;NCOLS;NHDG;NROWS;NSEG;RESSTART;S;SEGLEAD;SEGROWS;T
A Creates column headings from text cs within
~ field widths WID. CS is a character vector with
R text for successive headings separated by 'n'.
A The format of WID is: (widths of headings, not
A including spacing),Cspacing between columns).
R If WIn has fewer elements than CS has segments,
A its values are repeated; if it does not include
A spacing specification, 2 is used. Empty headings
A are not underlined. Separate lines of multi-line
A heading by '~'.

~

DIO~O

A Is for hdg starts:

BHDG+--CS='n'

R 1s for segment starts:

BSEG+-CSE'n~'

A

A Flag end of hdgs C1 elt per segment):

BHDG~l<t>BSEG/BHDG

A No. segments per hdg:

T+-BHDG/LpBHDG

NHDG~pNSEG~T--l~-l,T

A Segment lengths:

T+-BSEG/lpBSEG

LEN+-Cl!T,pBSEG)-T+l

A Spacing between hdgs (2s if omitted):

S+-NHDGJ,WID

S+-NHDGpS,CO=pSJp2

R Reshape widths to conform with headings:

WID+-NHDGpWID

A Truncated segment lengths:

LEN+-LENlNSEG/WID

~ Leading blanks per segment, to center:

SEGLEAD~r((NSEG/WID)-LEN)+2

A Col in which each hdg begins:

HDGLEAD+--l!O,+\WID+S

A Index of char. following delim. of each segment:

ARGSTART+-l+BSEG/lpBSEG

A No. of rows and columns in result CA is no. rows

R without underlines):

NROWS+-l+A+-r/NSEG
NCOLS~(+/(NHDG+-l)pS)++/WID

A No. whole rows before each segment:

T+-NSEG/A-+\NSEG

SEGROWS+-T+tpT

A Index in raveled result where each segment starts:
RESSTART~SEGLEAD+CNSEG/HDGLEAD)+SEGROWSxNCOLS

A Create blank, raveled result:

R~(B+-NROWSXNCOLS)p' ,

-332­

Chapter 4 Solutions	 POSITIONING CHARACTER DATA

V HEADINGS (continued)
[50] A Flag nonempty headings:
[51] T~NHDGpO

[52] T[(xLEN)/NSEG/lNHDG]~l

[53] A Indices of underlines in raveled result:
[54] A+-T/WID
[55] A+-A/CT/+\-l!(B-NCOLS),WID+S)--l!O,+\A
[56] A+-A+lpA
[57] A Insert underlines:
[58] R[A]+-'-'
[59J A T~MONIOTA LEN:
[60] T~T+tpT~LEN/--l~O,+\LEN

[61] R[T+LEN/RESSTARTJ+-CS[T+LEN/ARGSTARTJ
[62] R Reshape result to matrix:
[63]	 R~(NROWS,NCOLS)pR

V

-333­

Chapter 5 Solutions

SORTING AND SEARCHING

1. If your APL implementation supports matrix right arguments to ~:

otherwise Cmajor-to-minor sorting done in minor-to-major order):

G~.PNUM[; 3]

G~G[.PNUM[G;2]]

G+-G[4PNUM[G;1]]

SPNUM+-PNUM[G;]

Or	 pack and sort:

SPNUM~PNUM[41E3 lE? lE4~~PNUM;]

Note: Numbers are packed to 14 digit floating point numbers
(the lE4 assumes 4 digit extensions). since the 14 digits
do	 not exceed the 16 or 17 digits of available precision
and since. works with the full precision (i.e. does not
refer to OCT), the result will be accurate.

2.	 Since dyadic l is dependent upon OCT (for floating point
arguments), it will "find" matches which are very close but not
exact. The IOTA function will overlook such close values and
will "find" only those values which match exactly (to 16 or 17
digits of precision). This will usually not be a problem since
IOTA will most often be used on integer arguments or on floating
point arguments whose values have not been computed. Only
through such computations will "equal" values become slightly
different.

-334­

Chapter 5 Solutions SORTING AND SEARCHING

[WSID: SEARCH]

v INDS~BASE IOTA VALS;A;F;G;I;L

[1] A Returns the indices of BASE at which the
[2] R elements of VALS first match, i.e.
[3] R INDS~BASEtVALS (but maybe faster)
[4] A Branch if right arg a vector:
[5] ~(l=ppVALS)pLl

[6] R Handle scalar right arg:
[7] INDS~BASELVALS

[8J ~o

[9] L1:L~(pBASE)[DIO]

[10] A~(pVALS)[DIO]

[11] R Branch unless no elts in either arg:
[12] ~(XF~AlL)pL2

[13] A Handle empty arg:
[14] INDS~ApDIO

[15] ~O

[16J A Branch if both args have more than 1 elt:

[17] L2:~(F~1)pL4

[18] A Branch unless left arg has 1 elt:
[19] ~(L11)pL3

[20J A Handle 1 elt left arg:

[21] INDS~DIO+VALS~BASE

[22] -+0
[23] R Handle 1 elt right arg:
[24] L3:INDS~BASElVALS

[25] -+0
[26] A Branch if sort alg. costs more than looping alg.:
[27] A (remove A after replacing C1,C2,C3,C4 by
[28] A computed constants):
[29] L4: A~((C4+C5XL+A»C1+AXC2+C3XL)pL5

[30] R Combine args. and sort (like values together):
[31] G~!A~BASE,VALS

[32] A+-A[GJ
[33] A Flag 1st of distinct elts by shifting and comparing:
[34] F~A;t-l<t>A

[35] R Insure 1st elt is 1 (in case all rows the same):
[36] F[DIO]+-l
[37] A Indices of 1st distinct elts:
[38J I+-F/G
[39] A Replicate for each like elt:
[40] F[DIO]~DIO

[41] I+-I[+\FJ
[42] A Unsort indices (to catenated order):
[43] INDSf-I
[44] INDS[G]~I

[45] A Keep those corresponding to right arg:
[46] INDS+-L!INDS
[47] A Set 'not found' inds to 'one greater':
[48] INDS+-INDSlL+DIO
[49] -+0
[50] A Use looping algorithm if more efficient:
[51] L5:INDS+-BASEtVALS

V

-335­

Chapter 5 Solutions	 SORTING AND SEARCHING

3 • I~(PNUMI\.=P)tl

or
I~(lE3 IE7 IE4~~PNUM)tlE3 IE? lE4~P

4. LOWER~1000 10000 20000 50000 70000 100000
R~(l 2 5 3 5 4 5) [LOWER LIOTA SALARY]

5.
[WSID: SEARCH]

V R+-DEB CVEC
[1] A Deletes extraneous (leading, trailing or
[2] A redundant) blanks from its argument and
[3] A returns the compressed result.
[4] R Put extra blank on beginning and end:
[5] CVEC~ , " CVEC,' ,
[6] R Search for 2 contiguous blanks:
[7]	 Rf--1J..IJ..(""CVEC f1SS' ,)/CVEC

v

6. D~-1!((~NVEC),' ') REPLACE '-1 ' BY 'N/A '

7. D~(v/O -2~(pENAMES)p(,UPPERCASE ENAMES)f1SS 'SON')fENAMES

(Note: the last 2 Boolean columns are dropped to avoid
coincidental wrap-around matches, e.g. if row 5 ends with
'SO' and row 6 starts with 'N')

In APL2:

O~(V/'SON'sUPPERCASE ENAMES)fENAMES

-336­

Chapter 6 Solutions

SELECTING

1. ((pV)p1 O)/V
or

V[(-DIO)+2 XtCpV)+2J

or
(((CpV)+2),2)pV)[;OIO]

2.	 (2pDIO)~M

or
(,CpMJpC1+1ppM)tl)/,M

or
(((-OIO)+llppM)~M)[;DIOJ

3.	 The expressions (-ltV) or V[pVJ return one element vectors, not
scalars. Therefore, the result of M[;-lfVJ is a one column
matrix, not a vector. The following produce correct results:

,M[;-lfV]
or

,M[;V[(pV)-~OIO]]

or

or
M[;CtOJp<PV]

4.	 Approach 1:

SHAPE~pNAMES

NAMES+- , NAMES
NAMES[(NAMES='/')/tpNAMES]~','

NAMES +-SHAPEp NAMES

-337­

Chapter 6 Solutions	 SELECTING

Approach 2:

Al~A2~(DAVENAMES)/DAV

Al[(Al='/')/tpAl]~'"
NAMES~Al[A2lNAMES]

Approach 3 CAPL2):

(('/'=,NAMES)/,NAMES)~'"

5.	 A. 010(-0
MRATES~(,RATES)[DUR+16xIAGE+IOOxSEX]

B.	 010(-0

t:,.DUR(-15lDUR

t:,.IAGE~IAGE+DUR-~DUR

MRATES(-(,RATES)[f:,.DUR+16X~IAGE+100XSEX]

C.	 010'-0
VRATES'-,RATES
VRATES[NEWDUR+16xNEWIAGE+I00xNEWSEX]+-NEWRATES
RATES+-(pRATESJpVRATES

6.
[WSID: SEARCH]

V R(-UNQNV NV;FIRST;G;SORTED
[1]	 A Returns the distinct elements of the
[2]	 A numeric vector NV.
[3] SORTED+-NV[G(-4NV]
[4] F1RST~SORTED1-1~SORTED

[5]	 A Set 1st elt to 1 in case FIRST alIOs:
[6] FIRST[tXpFIRST]+-l
[7] R(-FIRST/SORTED
[8]	 R FIRST[lXpFIRST](-DIO
[9]	 R ind+-G
[10]	 A ind[G](-+\FIRST

v

[WSID: SEARCH]
v R+-UNQCV CV

[1]	 A Returns the distinct elements of the
[2]	 A character vector CV.
[3] R+-(OAveCV)/OAV
[4] ind+-RtCVr:t

V

-338­

Chapter 6 Solutions	 SELECTING

[WSID: SEARCH]

v R~UNQCM CM;FIRST;G;SORTED

[1] A Returns the distinct rows of the character
[2] R matrix eM.
[3] G~DAV.CM

[4] A If dyadic. unavailable:
[5] A G~DAV CGRADEUP eM
[6] SORTED~CM[G;]

[7] FIRST~V/SORTED~-leSORTED

[8] A Set 1st elt to 1 in case FIRST alIOs:
[9] FIRST[XlpFIRST]~l

[10] R~FIRSTfSORTED

[11] A FIRST[lXpFIRST]~DIO

[12] A ind+-G
[13] A ind[G]~+\FIRST

v

[WSID: SEARCH]
v R~N UNQl1 IV;BIT;DIO

[1] A Returns the distinct elements of the
[2] A origin 1 index vector IV. All elements
[3] A of IV must be elements of IN.
[4] 010+-1
[5] BIT+-NpO
[6] BIT[IV]+-l
[7] R+-BIT/lN
[8] A ind+-(BIT\tpR)[IV]
[9] A Alternative:
[10]	 A ind+-(+\BIT) [IV]

v

[WSID: SEARCH]
V R+-N UNQIO IV;BIT;DIO

[1] A Returns the distinct elements of the
[2] A origin 0 index vector IV. All elements
[3] A of IV must be elements of IN.
[4] 010+-0
[5] BIT+-NpO
[6] BIT[IV]+-l
[7] R+-BIT/tN
[8J A ind+-CBIT\tpR)[IV]
[9] A Alternative:
[10] A ind+-(+\BIT) [IV]-l

V

-339­

Chapter 7 Solutions

FREQUENCY COUNTS 9 ACCUMULATIONS AND CROSS-TABULATIONS

1. R~+/'ECMPH'o.=TZONE

or
Il1~'ECMPH'lTZONE (utility function)
R+-5 11 PLUSRED 1

or
R+-(5;'ECMPH'tTZONE)+/1 (hypothetical)

2. R~('ECMPH'o.=TZONE)+.xSALES

or
111~'ECMPH'tTZONE (utility function)
R+-5 11 PLUSRED SALES

or
R+-CS;'ECMPH'tTZONE)+/SALES (hypothetical)

3 • A~ ' ECMPH ' 0 • =TZONE
B~TYPEo.='BCPS'

FRQ+-A+.J\B
AMT+-CAX(pAJpSALESJ+.xB
MAX+-(AX(pAJpSALESJr.xB

or
Il1+-'ECMPH'tTZONE (utility functions)
112+-'BCPS'tTYPE
FRQ+-5 4 11 12 PLUSRED 1
AMT+-5 4 11 12 PLUSRED SALES
MAX+-S 4 11 12 MAXRED SALES

or
Il1+-'ECMPH'tTZONE (hypothetical)
112+-'BCPS'tTYPE
FRQ+-CS 4;I11;112)+/1
AMT+-(S 4;Il1;I12)+/SALES
MAX+-(S 4;Ill;I12JrISALES

-340­

Chapter 7 Solutions FREQUENCY COUNTS 9 ACCUMULATIONS AND CROSS-TABS

4 •
[WSID: REDUCE]

v R~L PLUSRED ARRAY;CIND;CUM;DIM;DSHAPE;GRADE;I;LAST;M;N
;RANK;RRI;SORTED;URRI

[1] A No. of ways for N-way reduction:
[2] N~L(p,L)+2

[3] R Which dimension to be "reduced"?
[4] DIM~li((N+N)!L)9-1tlRANK~ppARRAY

[5] A Branch unless a-way reduction:
[6] -+ (xN) p Ll
[7] R~+/[DIM]ARRAY

[8J -+0

[9] R Separate left arg into its pieces:
[10] L1:DSHAPE~NpL

[11] CIND+-NpNJ-L
[12] R Begin to compute "raveled result indices tt :

[13] I~DIO

[14] A Index from tDSHAPE[IJ to cause index error if
[15] R invalid indices:
[16] RRI+-(tDSHAPE[I])[~'I'9~CIND[I]]

[17] A Branch if origin is 1:
[18] -+DIOpLOOPl
[19] A Continue computing RRI CN iterations for N-way
[20] A reduction):
[21] LOOPO:-+(N~I~I+1)pENDLP

[22] RRI+-(tDSHAPE[I])[C~'I',~CIND[I])]+DSHAPE[I]XRRI

[23] -+LOOPO
[24] LOOP1:-+(N<I~I+1)pENDLP

[25] RRI+-(tDSHAPE[I])[(~'I',~CIND[I])J+DSHAPE[I]XRRI+-l

[26] -+LOOPl
[27] R Determine unique elements of RRI:
[28] ENDLP:GRADE+-4RRI
[29] SORTED~RRI[GRADE]

[30] LAST~SORTED#l~SORTED

[31] LAST[(xpLAST)p(pLAST)-~DIO]+-l

[32] URRI~LAST/SORTED

[33] R Branch unless ARRAY a scalar Ci.e. freq. count):
[34] -+(XRANK)pL3
[35] A Perform partitioned frequency count:
[36] CUM~LAST/tpLAST

[37] CUM~CUM-(pCUM)pC-l+0IO),cUM

[38] A Branch if ARRAY is 1 (usually):
[39] ~(1=ARRAY)pL2

[40] A Multiply freq. counts by scalar:
[41] CUM+-ARRAYxCUM
[42] A Initialize result with O's:
[43] L2:R~(X/DSHAPE)pO

[44] A Insert result of partitioned freq. count:
[45] R[URRI]~CUM

[46] R Reshape to desired shape:
[47] R+--DSHAPEpR
[48] ~O

-341­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

v PLUSRED (continued)
[49] A Reorder ARRAY to conform with SORTED:
[50] L3:M~DIM-OIO

[51] ARRAY~~'ARRAY[',(Mp';'),'GRADE',((RANK-M+l)p';')~']'

[52] R Perform partitioned reduction:
[53] CUM~LAST/[DIM]+\[DIM]ARRAY

[54] CUM~CUM-(pCUM)to,[DIM]CUM

[55] A Initialize result. Fill with identity elt.
[56] R Ravel the DSHAPE dim.s:
[57] R~((-M)$(X/DSHAPE),l!M$pARRAY)pO

[58] R Insert result of partitioned reduction:
[59] ~'R[' ,CMp';'),'URRI' , (CRANK-M+l)p' ;'),']~CUM'

[60] A Reshape to desired shape (unravel DSHAPE dim.s):
[61] R~((-MJ~DSHAPE,l~M~pARRAY)pR

v

[WSID: REDUCE]
v R~L MAXRED ARRAY;CIND;DIF;DIM;DSHAPE;GRADE;I;LAST;M;N;

RANK;RRI;SORTED;URRI
[1] R No. of ways for N-way reduction:
[2] N+-LCp,LJ+2
[3] R Which dimension to be "reduced"?
[4] DIM~lt((N+NJ~L),-litRANK+-ppARRAY

[5] R Branch unless a-way reduction:
[6] -+(XNJpL1
[7] R~r/[DIM]ARRAY

[8] -+0
[9] A Separate left arg into its pieces:
[10] Ll:DSHAPE~NpL

[11J CIND+-NpN4-L
[12] R Begin to compute "raveled result indices":
[13] 1+-010
[14] A Index from tDSHAPE[I] to cause index error if
[15] A invalid indices:
[16] RRI~(lDSHAPE[I]J[t'I',~CIND[I]]

[17] R Branch if origin is 1:
[18] -+DIOpLOOPl
[19] R continue computing RRI CN iterations for
[20] A N-way reduction):
[21] LOOPO:-+(N~I~I+IJpENDLP

[22] RRI+-(lDSHAPE[I]J[(~'I',~CIND[I])]+DSHAPE[I]XRRI

[23] -+LOOPO
[24] LOOP1:-+(N<I~I+1JpENDLP

[25] RRI+-(lDSHAPE[I])[(~'I',~CIND[I])]+DSHAPE[I]XRRI+-l

[26] -+LOOPl
[27] R Determine unique elements of RRI:
[28] ENDLP:GRADE+-!RRI
[29] SORTED+-RRI[GRADEJ
[30] LAST+-SORTED~l~SORTED

[31] LAST[(XpLASTJpCpLASTJ-~OIO]+-l

[32] URRI+-LAST/SORTED

-342­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

v MAXRED (continued)
[33] R Reorder ARRAY to conform with SORTED:
[34] M+-DIM-DIO
[35] ARRAY+-~'ARRAY[' ,CMp' ;'),'GRADE' , ((RANK-M+1)p' ;'),']'
[36] A Perform partitioned reduction:
[37] DIF+-Cf/[DIMJARRAY)-L/[DIMJARRAY
[38] DIF~(.DIM=lRANK)~DIFo.x+\-1¢LAST

[39] DIF~CLAST/[DIM]f\[DIM]ARRAY+DIF)-LAST/[DIM]DIF

[40] A Initialize result. Fill with identity elt.
[41] ~ Ravel the DSHAPE dim.s:
[42] R~((-M)$CX/DSHAPE),l!M~pARRAY)pf/LO

[43] A Insert result of partitioned reduction:
[44] ~ 'R[' , (Mp' ; , i , 'URRI' , (CRANK-M+l)p' ; '),']~DIF'

[45] A Reshape to desired shape (unravel DSHAPE dim.s):
[46] R~(C-M)¢DSHAPE,l!M¢pARRAY)pR

v

[WSID: REDUCE]
V R~L MINRED ARRAY;CIND;DIF;DIM;DSHAPE;GRADE;I;LAST;M;N;

RANK;RRI;SORTED;URRI
[1] A No. of ways for N-way reduction:
[2] N~L(p,L)+2

[3] A Which dimension to be "reduced"?
[4] DIM~liC(N+N)!L),-1ilRANK~ppARRAY

[5] A Branch unless O-way reduction:
[6] -+(xN)pL1
[7] R~L/[DIM]ARRAY

[8] -+0
[9] R Separate left arg into its pieces:
[10] Ll:DSHAPE~NpL

[11] CIND~NpN!L

[12] R Begin to compute "raveled result indices":
[13] I~DIO

[14] R Index from lDSHAPE[IJ to cause index error
[15] A if invalid indices:
[16] RRI~(lDSHAPE[I])[~'I',~CIND[I]]

[17] R Branch if origin is 1:
[18] -+DIOpLOOPl
[19] A continue computing RRI CN iterations for
[20] A N-way reduction):
[21] LOOPO:~(N~I~I+l)pENDLP

[22] RRI~(LDSHAPE[I])[(~'I',~CIND[I])J+DSHAPE[I]XRRI

[23] -+LOOPO
[24] LOOP1:-+CN<I~I+1)pENDLP

[25] RRI~(lDSHAPE[I])[(~'I',~CIND[I])]+DSHAPE[I]xRRI+-l

[26] ~LOOPl

[27] A Determine unique elements of RRI:
[28] ENDLP:GRADE~4RRI

[29] SORTED~RRI[GRADE]

[30J LAST~SORTEDtl~SORTED

[31] LAST[(xpLAST)p(pLAST)-~DIO]~l

[32] URRI~LAST/SORTED

-343­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

v MINRED (continued)
[33] R Reorder ARRAY to conform with SORTED:
[34] M+-DIM-OIO
[35] ARRAY+-~'ARRAY[',(Mp' ;'),'GRADE' , (CRANK-M+l)p' ;'),']'
[36] R Perform partitioned reduction:
[37] DIF~(r/[DIM]ARRAY)-l/[DIM]ARRAY

[38] DIF+-(4DIM=tRANK)~DIFo.x+\-1~LAST

[39] DIF~(LAST/[DIM]l\[DIM]ARRAY-DIF)+LAST/[DIM]DIF

[40] A Initialize result. Fill with identity elt.
[41] A Ravel the DSHAPE dim.s:
[42] R+-CC-M)$(x/DSHAPE),l!M~pARRAY)pl/tO

[43] R Insert result of partitioned reduction:
[44] ~'R[' ,(Mp';'),'URRI',(CRANK-M+l)p' ;'),']+-DIF'
[45] R Reshape to desired shape (unravel DSHAPE dim.s):
[46]	 R~CC-M)~DSHAPE,l!M$pARRAY)pR

v

[WSID: REDUCE]
V R+-L ANDRED ARRAY;CIND;CUM;DIM;DSHAPE;GRADE;1;LAST;M;N;

RANK;RRI;SORTED;URRI
[1] A No. of ways for N-way reduction:
[2] N~L(p,L)+2

[3] R Which dimension to be "reduced"?
[4] DIM+-ll(CN+N)J..L),-lttRANK+-ppARRAY
[5] A Branch unless O-way reduction:
[6] -+(xN)pLl
[7] R+-A/[DIMJARRAY
[8 J -+0
[9] R Separate left arg into its pieces:
[10] Ll:DSHAPE+-NpL
[11] CIND+-NpNJ,L
[12] R Begin to compute "raveled result indices":
[13] 1+-010
[14] A Index from tDSHAPE[IJ to cause index error
[15] R if invalid indices:
[16] RRI~CtDSHAPE[I])[t'I',~CIND[I]]

[17] A Branch if origin is 1:
[18] -+DIOpLOOPl
[19] R continue computing RRI CN iterations for
[20] R N-way reduction):
[21] LOOPO:-+(N~I~I+l)pENDLP

[22] RRI+-(tDSHAPE[I])[(~'I',~CIND[I])]+DSHAPE[I]XRRI

[23] -+LOOPO
[24] LOOP1:-+CN<1+-I+!)pENDLP
[25] RRI+-(lDSHAPE[I])[Ct'I',~CIND[I])]+DSHAPE[I]xRRI+-l

[26] -+LOOPI
[27] A Determine unique elements of RRI:
[28] ENDLP:GRADE+-4RRI
[29] SORTED+-RRI[GRADEl
[30] LAST+-SORTED~l~SORTED

[31] LAST[CxpLAST)p(pLAST)-~DIO]+-l

[32] URRI+-LAST/SORTED

-344­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

v ANDRED (continued)
[33] A Reorder ARRAY to conform with SORTED:
[34] M~DIM-DIO

[35] ARRAY~~'ARRAY[',(Mp';'),'GRADE' , (CRANK-M+l)p' ;'),']'
[36] R Perform partitioned reduction (note: AI ~~ ~v/~):

[37] CUM~LAST/[DIM]+\[DIM]~ARRAY

[38] CUM~CUM=(pCUM)ta,[DIM]CUM

[39] A Initialize result. Fill with identity elt.
[40] A Ravel the DSHAPE dim.s:
[41] R~CC-M)~cx/DSHAPE)t1!M~pARRAY)p1

[42] A Insert result of partitioned reduction:
[43] ~'R[' ,(Mp' ;'),'URRI' , (CRANK-M+l)p' ;'),']~CUM'

[44] A Reshape to desired shape (unravel DSHAPE dim.s):
[45] R~((-M)$DSHAPE,l!M~pARRAY)pR

V

[WSID: REDUCE]
V R~L ORRED ARRAY;CIND;CUM;DIM;DSHAPE;GRADE;I;LAST;M;N;

RANK;RRI;SORTED;URRI
[1] A No. of ways for N-way reduction:
[2] N+-LCp,L)+2
[3] A which dimension to be "reduced"?
[4] DIM~liC(N+N)!L),-lilRANK~ppARRAY

[5] A Branch unless a-way reduction:
[6] ~(XN)pLl

[7] R~V/[DIM]ARRAY

[8] -+0
[9] R Separate left arg into its pieces:
[10] Ll:DSHAPE~NpL

[11] CIND~NpNJ.L

[12] A Begin to compute "raveled result indices":
[13] 1+-010
[14] A Index from lDSHAPE[IJ to cause index error
[15] A if invalid indices:
[16] RRI~(lDSHAPE[I])[~'I',~CIND[I]]

[17] A Branch if origin is 1:
[18] -+OIOpLOOPl
[19] A continue computing RRI CN iterations for
[20] A N-way reduction):
[21] LOOPO:-+(N~I~I+l)pENDLP

[22] RRI~(lDSHAPE[I])[(~'I',~CIND[I])]+DSHAPE[I]XRRI

[23] ~LOOPO

[24] LOOP1:-+(N<I~I+l)pENDLP

[25] RRI~CtDSHAPE[I])[C~'I',~CIND[I])]+DSHAPE[I]XRRI+-1

[26] -+LOOPl
[27] R Determine unique elements of RRI:
[28] ENDLP:GRADE+-!RRI
[29] SORTED~RRI[GRADE]

[30] LAST~SORTED~l$SORTED

[31] LAST[(XpLAST)p(pLAST)-~OIO]~l

[32] URRI~LAST/SORTED

-345­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

v	 ORRED (continued)
[33] A Reorder ARRAY to conform with SORTED:
[34] M+-DIM-DIO
[35] ARRAY~~'ARRAY[' ,CMp' ;'),'GRADE' ,CCRANK-M+l)p';'),']'
[36] A Perform partitioned reduction:
[37] CUM+-LAST/[DIM]+\[DIMJARRAY
[38] CUM+-CUM~(pCUM)tO,[DIM]CUM

[39] R Initialize result. Fill with identity elt.
[40] R Ravel the DSHAPE dim.s:
[41] R+-(C-M)$(X/DSHAPE),l~M$pARRAY)pO

[42] A Insert result of partitioned reduction:
[43] ~'R[' ,CMp';'),'URRI',(CRANK-M+1)p';'),'J+-CUM'
[44] R Reshape to desired shape (unravel DSHAPE dim.s):
[45]	 R+-(C-M)$DSHAPE,l~M$pARRAY)pR

v

5.
[WSID: REDUCE]

V	 R+-L APLUSRED ARRAY;CIND;CUM;DIM;DSHAPE;GRADE;I;LAST;M;
N;RANK;RRI;SORTED;URRI

[1] R No. of ways for N-way reduction:
[2] N+-LCp,L)+2
[3] R which dimension to be "reduced"?
[4] DIM~li((N+N)!L),DIOr-lttRANK~ppARRAY

[5] R Branch unless O-way reduction:
[6] -+(XN)pL1
[7] ARRAY~+/[DIM]ARRAY

[8] A Construct milky-way result:
[9] R+-C(ppARRAY),CDIM-OIO),N,pARRAY)"ARRAY
[10] ~o

[11] A Separate left arg into its pieces:
[12] Ll:DSHAPE~NpL

[13] CINDE-NpN!L
[14] R Begin to compute "raveled result indices":
[15] 1+-010
[16] A Index from lDSHAPE[I] to cause index error if
[17] A invalid indices:
[18] RRI~(tDSHAPE[I])[~'I',~CIND[I]]

[19] R Branch if origin is 1:
[20] -+DIOpLOOP1
[21] R continue computing RRI (N iterations for N-way
[22] R reduction):
[23] LOOPO:-+(N~I~I+l)pENDLP

[24] RRI+-(lDSHAPE[I])[(~'I',~CIND[I])]+DSHAPE[I]XRRI

[25] -+LOOPO
[26] LOOPl:-+CN<I+-I+l)pENDLP
[27] RRI~(tDSHAPE[I])[(~'I',~CIND[I])]+DSHAPE[I]XRRI+-l

[28] -+LOOPl
[29] A Determine unique elements of RRI:
[30] ENDLP:GRADE+-.RRI
[31] SORTED~RRI[GRADE]

-346­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

v ~PLUSRED (continued)
[32] LAST~SORTED~l~SORTED

[33] LAST[(XpLAST)p(pLAST)-~DIO]~l

[34] URRI~LAST/SORTED

[35] ~ Branch unless ARRAY a scalar (i.e. freq count):
[36] ~(XRANK)pL3

[37] A Perform partitioned frequency count:
[38] CUM~LAST/lpLAST

[39] CUM~CUM-(pCUM)p(-l+DIO)tCUM

[40] R Branch if ARRAY is 1 (usually):
[41] -+(1=ARRAY)pL2
[42] A Multiply freq. counts by scalar:
[43] CUM~ARRAyxCUM

[44] R Construct milky-way result:
[45] L2:R~C(1 0 tN,(pCUM),DSHAPE),URRI-OIO),CUM
[46] -+0
[47] A Reorder ARRAY to conform with SORTED:
[48] L3:M~DIM-DIO

[4S)J ARRAY~~'ARRAY[' ,CMp' ;'),'GRADE',(CRANK-M+1)p' ;'),']'

[50] A Perform partitioned reduction:
[51] CUM~LAST/[DIM]+\[DIM]ARRAY

[52] CUM~CUM-(pCUM)iO,[DIM]CUM

[53] A Construct milky-way result:
[54]	 R~(CRANK,M,N,(pCUM),DSHAPE),URRI-DIO)"CUM

v

[WSID: REDUCE]
v R~L ~MAXRED ARRAY;CIND;DIF;DIM;DSHAPE;GRADE;I;LAST;M;N

;RANK;RRI;SORTED;URRI
[1] A No. of ways for N-way reduction:
[2J Nt-LCp,L)+2
[3] A Which dimension to be "reduced"?
[4] DIM~li((N+N)~L),DIOr-1ilRANK~ppARRAY

[5] A Branch unless a-way reduction:
[6] ~(XN)pLl

[7] ARRAYt-r/[DIMJARRAY
[8J R Construct milky-way result:
[9] R~((ppARRAY),CDIM-DIO),N,pARRAY)"ARRAY

[10] -+0
[11] R Separate left arg into its pieces:
[12J L1:DSHAPE~NpL

[13] CIND~NpN~L

[14] f=l Begin to compute "raveled result indices":
[15] It-DIO
[16] A Index from lDSHAPE[IJ to cause index error if
[17] R invalid indices:
[18J RRI~(lDSHAPE[I])[~'I',~CIND[I]]

[19] A Branch if origin is 1:
[20] -+OIOpLOOPl
[21] A continue computing RRI eN iterations for
[22] R N-way reduction):
[23] LOOPO:-+(NSI~I+l)pENDLP

[24] RRI~(lDSHAPE[I])[(~'I't~CIND[I])]+DSHAPE[I]XRRI

-347­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

V ~MAXRED (continued)
[25] -+LOOPO
[26] LOOPl:-+(N<I~I+l)pENDLP

[27] RRI~(lDSHAPE[I])[(~'I',~CIND[I])]+DSHAPE[I]XRRI+-l

[28] -+LOOPl
[29] R Determine unique elements of RRI:
[30] ENDLP:GRADE~.RRI

[31] SORTED~RRI[GRADE]

[32] LAST~SORTED¢l~SORTED

[33] LAST[CxpLAST)p(pLAST)-~DIO]~l

[34] URRI~LAST/SORTED

[35] R Reorder ARRAY to conform with SORTED:
[36] M~DIM-DIO

[37] ARRAY~~'ARRAY[',CMp';'),'GRADE',(CRANK-M+l)p';'),']'
[38] R Perform partitioned reduction:
[39] DIF~(r/[DIM]ARRAY)-l/[DIM]ARRAY

[40] DIF~(4DIM=lRANK)~DIFo.x+\-1~LAST

[41] DIF~(LAST/[DIM]r\[DIM]ARRAY+DIF)-LAST/[DIM]DIF

[42] A Construct milky-way result:
[43] R~((RANK,M,N,CpDIF),DSHAPE),URRI-DIO)"DIF

V

[WSID: REDUCE]
v R~L ~MINRED ARRAY;CIND;DIF;DIM;DSHAPE;GRADE;I;LAST;M;N

;RANK;RRI;SORTED;URRI
[1] A No. of ways for N-way reduction:
[2] N~l(p,L)+2

[3] A Which dimension to be "reduced"?
[4] DIM~lt(CN+N)~L),DIOr-lflRANK~ppARRAY

[5] A Branch unless O-way reduction:
[6] -+(XN)pLl
[7] ARRAY~l/[DIM]ARRAY

[8] A Construct milky-way result:
[9] R~((ppARRAY),(DIM-OIO),N,pARRAY)"ARRAY

[10] -+0
[11] A Separate left arg into its pieces:
[12] Ll:DSHAPE~NpL

[13] CIND~NpN-!-L

[14] A Begin to compute "raveled result indices":
[15] 1+-010
[16] A Index from lDSHAPE[IJ to cause index error if
[17] R invalid indices:
[18] RRI~(lDSHAPE[I])[~'I',~CIND[I]]

[19] A Branch if origin is 1:
[20] -+OIOpLOOPl
[21] R Continue computing RRI CN iterations for
[22] A N-way reduction):
[23] LOOPO:-+(N~I+-I+l)pENDLP

[24] RRI~(tDSHAPE[I])[(~'I',~CIND[I])]+DSHAPE[1]XRRI

[25] -+LOOPO
[26] LOOP1:-+(N<I~I+1)pENDLP

[27] RRI~(lDSHAPE[I])[(~'I',~CIND[I])]+DSHAPE[I]xRRI+-l

[28] -+LOOPl

-348­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

v 6MINRED (continued)
[29] A Determine unique elements of RRI:
[30] ENDLP:GRADE~4RRI

[31] SORTED~RRI[GRADE]

[32] LAST~SORTED11~SORTED

[33] LAST[cxpLAST)p(pLAST)-~DIO]~l

[34] URRI~LAST/SORTED

[35] A Reorder ARRAY to conform with SORTED:
[36] M+-DIM-DIO
[37] ARRAY+-~'ARRAY[' ,CMp' ;'),'GRADE' , (CRANK-M+l)p' ;'),']'
[38] A Perform partitioned reduction:
[39] DIF~(r/[DIM]ARRAY)-l/[DIM]ARRAY

[40] DIF+-(.DIM=LRANK)~DIFo.x+\-l$LAST

[41] DIF~(LAST/[DIM]l\[DIM]ARRAY-DIF)+LAST/[DIM]DIF

[42] R construct milky-way result:
[43] R~((RANK,M,N,(pDIF),DSHAPE),URRI-DIO)"DIF

V

[WSID: REDUCE]
v R~L AANDRED ARRAY;CIND;CUM;DIM;DSHAPE;GRADE;I;LAST;M;N

;RANK;RRI;SORTED;URRI
[1] A No. of ways for N-way reduction:
[2] N~L(p,L)+2

[3] R Which dimension to be "reduced"?
[4] DIM+-liCCN+N)~L),DIOr-lttRANK~ppARRAY

[5] A Branch unless a-way reduction:
[6] ~(XN)pLl

[7] ARRAY~A/[DIM]ARRAY

[8] A Construct milky-way result:
[9] R~(CppARRAY),eDIM-OIO),N,pARRAY)"ARRAY

[10] ~O

[11] A Separate left arg into its pieces:
[12] Ll:DSHAPE~NpL

[13] CIND~NpNJ.L

[14] A Begin to compute "raveled result indices":
[15] I~DIO

[16] R Index from tDSHAPE[IJ to cause index error if
[17] A invalid indices:
[18] RRI~eLDSHAPE[I])[~'I',~CIND[I]]

[19] A Branch if origin is 1:
[20] ~DIOpLOOPl

[21] A continue computing RRI eN iterations for
[22] A N-way reduction):
[23] LOOPO:~eN~I~I+l)pENDLP

[24] RRI~(tDSHAPE[I])[e~'I',~CIND[I])]+DSHAPE[I]XRRI

[25] -+LOOPO
[26] LOOPl:~(N<I~I+l)pENDLP

[27] RRI~(lDSHAPE[I])[(~'I',~CIND[I])]+DSHAPE[I]XRRI+-l

[28] -+LOOPI
[29] A Determine unique elements of RRI:
[30] ENDLP:GRADE~.RRI

[31] SORTED~RRI[GRADE]

[32] LAST~SORTED~l$SORTED

-349­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

v ~ANDRED (continued)
[33] LAST[(xpLAST)p(pLAST)-~DIO]~l

[34] URRI~LAST/SORTED

[35] A Reorder ARRAY to conform with SORTED:
[36] M~DIM-DIO

[37] ARRAY~~'ARRAY[' ,CMp';'),'GRADE',CCRANK-M+l)p' ;'),']'
[38] A Perform partitioned reduction (note: AI ~~ ~v/~):

[39] CUM~LAST/[DIM]+\[DIM]~ARRAY

[40] CUM~CUM=(pCUM)to,[DIM]CUM

[41] A Construct milky-way result:
[42] R~((RANK,M,N,(pCUM),DSHAPE),URRI-DIO)"CUM

v

[WSID: REDUCE]
V R~L 60RRED ARRAY;CIND;CUM;DIM;DSHAPE;GRADE;I;LAST;M;N;

RANK;RRI;SORTED;URRI
[1] A No. of ways for N-way reduction:
[2] N+-lCp,L)+2
[3] A which dimension to be "reduced"?
[4] DIM~lt((N+N)~L),DIOr-lttRANK~ppARRAY

[5] R Branch unless a-way reduction:
[6] ~(XN)pLl

[7] ARRAy~v/[DIM]ARRAY

[8] R Construct milky-way result:
[9] R~(CppARRAY),(DIM-DIO),N,pARRAY)"ARRAY

[10J --+0
[11] A Separate left arg into its pieces:
[12] Ll:DSHAPE~NpL

[13] CIND+-NpNJ.L
[14] A Begin to compute "raveled result Lnd Lces v s
[15] I~OIO

[16] A Index from tDSHAPE[IJ to cause index error if
[17] A invalid indices:
[18] RRI~(lDSHAPE[I])[~'I',~CIND[I]]

[19] A Branch if origin is 1:
[20] --+DIOpLOOP1
[21] A Continue computing RRI CN iterations for
[22] A N-way reduction):
[23] LOOPO:~(N~I~I+l)pENDLP

[24] RRI~(tDSHAPE[I])[(~'I',~CIND[I])]+DSHAPE[I]XRRI

[25] 4LOOPO
[26] LOOP1:~(N<I+-I+l)pENDLP

[27] RRI~ClDSHAPE[I])[C~'I',~CIND[I])]+DSHAPE[I]XRRI+-l

[28] ~LOOPl

[29] A Determine unique elements of RRI:
[30] ENDLP:GRADE~4RRI

[31] SORTED~RRI[GRADE]

[32] LAST~SORTED~l$SORTED

[33] LAST[(xpLAST)p(pLAST)-~DIO]~l

[34] URRI+-LAST/SORTED
[35] A Reorder ARRAY to conform with SORTED:
[36] M~DIM-DIO

[37] ARRAY~~'ARRAY[',CMp' ;'),'GRADE' ,(CRANK-M+l)p';'), ']'

-350­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

v aORRED (continued)
[38] A Perform partitioned reduction:
[39] CUM~LAST/[DIM]+\[DIM]ARRAY

[40] CUM~CUM1(pCUM)tO,[DIM]CUM

[41] A Construct milky-way result:
[42]	 R~((RANK,M,N,(pCUM),DSHAPE),URRI-DIO),.CUM

v

[WSID: REDUCE]
V R~W aPLUSWAY ARRAY;DIM;DS;GRADE;LAST;M;N;NDS;RANK;RRI;

S;SORTED
[1] ~ Force W to be a vector:
[2] W~.W

[3] A Rank; dimension reduced (origin 0); no. ways:
[4] RANK~ARRAY[DIO]

[5] DIM~DIO+M~ARRAY[DIO+1]

[6] N~ARRAY[DIO+2]

[7] A Shape of reduced array; new/old resulting shape
[8] ~ of reduced dimension:
[9] S~ARRAY[3+LRANK]

[10] DS~ARRAY[(3+RANK)+LN]

[11] ~ New resulting shape of reduced dimension:
[12] NDS~DS[W]

[13] A Branch unless a-way reduction:
[14] ~(XN)pLO

[15] R~SpC3+RANK)!ARRAY

[16] ~o

[17] ~ Result indices; reduced array:
[18] LO:RRI~ARRAY[(3+RANK+N)+lS[DIM]]

[19] ARRAY~Sp(3+RANK+N+S[DIM])~ARRAY

[20] R Treat special if W is empty:
[21] ~(01pW)pLl

[22] R~+/[DIM]ARRAY

[23] ~O

[24] R Treat special if W is lpDS (i.e. all dimensions):
[25] L1:~((pW)ipDS)pL2

[26] ~(WA.=lpDS)pL3

[27] A New result indices:
[28] L2:RRI~NDSi(DSTRRI)[W;]

[29] A Determine unique elements of RRI:
[30] GRADE~!RRI

[31] SORTED~RRI[GRADE]

[32] LAST~SORTED11~SORTED

[33] LAST[(xpLAST)p(pLAST)-~DIO]~l

[34] RRI~LAST/SORTED

[35] A Reorder ARRAY to conform with SORTED:
[36] ARRAY~~'ARRAY[',CMp' ;'),'GRADE' , (CRANK-M+l)p' ;'),']'
[37] A Perform partitioned reduction:
[38] ARRAY~LAST/[DIM]+\[DIM]ARRAY

[39] ARRAY~ARRAY-(pARRAY)tO,[DIM]ARRAY

[40] A Initialize result. Fill with identity elt.
[41] ~ Ravel the DSHAPE dim.s:
[42] L3:R~((-M)¢(X/NDS),1~M$pARRAY)pO

-351­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

V 6PLUSWAY (continued)
[43] A Insert result of partitioned reduction:
[44] ~'R[' ,(Mp' ;'),'DIO+RRI' ,((RANK-M+l)p';'),']~ARRAY'

[45] R Reshape to desired shape (unravel NDS dim.s):
[46] R~((-M)~NDS,l~M$pARRAY)pR

v

[WSID: REDUCE]
V R~W ~MAXWAY ARRAY;DIF;DIM;DS;GRADE;LAST;M;N;NDS;RANK;

RRI;S;SORTED
[1] R Force W to be a vector:
[2] W~,W

[3] R Rank; dimension reduced (origin 0); no. ways:
[4] RANK~ARRAY[DIO]

[5] DIM~DIO+M~ARRAY[DIO+l]

[6] N~ARRAY[DIO+2]

[7] R Shape of reduced array; new/old resulting shape
[8J A of reduced dimension:
[9] S~ARRAY[3+tRANK]

[10] DS~ARRAY[C3+RANK)+tN]

[11l A New resulting shape of reduced dimension:

[12] NDS~DS[W]

[13] R Branch unless a-way reduction:
[14] ~CXN)pLO

[15] R~Sp(3+RANK)~ARRAY

[16] 40
[17] A Result indices; reduced array:
[18l LO:RRI~ARRAY[(3+RANK+N)+tS[DIM]]

[19] ARRAY~Sp(3+RANK+N+S[DIM])~ARRAY

(20] R Treat special if W is empty:
[21] 4(O~pW)pL1

[22] R~r/[DIM]ARRAY

[23] ~O

[24] A Treat special if W is tpDS (i.e. all dimensions):
[25] L1:~((pW)~pDS)pL2

[26] ~(WA.=tpDS)pL3

[27] A New result indices:
[28] L2:RRI~NDS~(DSTRRI)[W;]

[29] A Determine unique elements of RRI:
[30] GRADE~.RRI

[31] SORTED~RRI[GRADE]

[32] LAST~SORTED~1$SORTED

[33] LAST[(xpLAST)p(pLAST)-~DIO]~l

[34] RRI~LAST/SORTED

[35] A Reorder ARRAY to conform with SORTED:
[36] ARRAY~t'ARRAY[',(Mp';'),'GRADE',(CRANK-M+l)p';'),']'
[37] A Perform partitioned reduction:
[38] DIF~(r/[DIM]ARRAY)-l/[DIMJARRAY

[39] DIF~(.DIM=tRANK)~DIFo.x+\-l~LAST

[40] ARRAY~(LAST/[DIM]r\[DIM]ARRAY+DIF)-LAST/[DIM]DIF

[41] A Initialize result. Fill with identity elt.
[42] R Ravel the DSHAPE dim.s:
[43] L3:R~((-M)~(x/NDS),1!M~pARRAY)pr/lO

-352­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

V ~MAXWAY (continued)
[44] A Insert result of partitioned reduction:
[45] ~'R[' tCMp' ;'),'DIO+RRI' ,((RANK-M+l)p';'),']~ARRAY'

[46] A Reshape to desired shape (unravel NDS dim.s):
[47] R~((-M)$NDStltM~pARRAY)pR

v

[WSID: REDUCE]
v R~W ~MINWAY ARRAY;DIF;DIM;DS;GRADE;LAST;M;N;NDS;RANK;

RRI;S;SORTED
[1] A Force W to be a vector:
[2] W~,W

[3] A Rank; dimension reduced (origin 0); no. ways:
[4] RANK~ARRAY[DIO]

[5] DIM~DIO+M~ARRAY[OIO+1]

[6] N~ARRAY[DIO+2]

[7] A Shape of reduced array; new/old reSUlting shape
[8] A of reduced dimension:
[9] S~ARRAY[3+tRANK]

[10] DS~ARRAY[(3+RANK)+lN]

[11] A New reSUlting shape of reduced dimension:
[12] NDS~DS[W]

[13] A Branch unless a-way reduction:
[14] ~(XN)pLO

[15] R~Sp(3+RANK)!ARRAY

(16] ~O

[17] A Result indices; reduced array:
[18] LO:RRI~ARRAY[(3+RANK+N)+lS[DIM]]

[19] ARRAY~Sp(3+RANK+N+S[DIM])~ARRAY

[20] A Treat special if W is empty:
[21] ~(01pW)pLl

[22] R~l/[DIM]ARRAY

[23] ~O

[24] A Treat special if W is tpDS (i.e. all dimensions):
[25] Ll:~(CpW)1pDS)pL2

[26] ~(WA.=lpDS)pL3

[27] A New result indices:
[28] L2:RRI~NDS~(DSTRRI)[W;]

[29] A Determine unique elements of RRI:
[30] GRADE~.RRI

[31] SORTED~RRI[GRADE]

[32] LAST~SORTED11$SORTED

[33] LAST[CxpLAST)p(pLAST)-~DIO]~l

[34] RRI~LAST/SORTED

[35] A Reorder ARRAY to conform with SORTED:
[36] ARRAY~~'ARRAY[',CMp' ;'),'GRADE' , (CRANK-M+l)p' ;'),']'
[37] A Perform partitioned reduction:
[38] DIF~(r/[DIM]ARRAY)~l/[DIM]ARRAY
[39] DIF~(.DIM=tRANK)~DIFo.x+\-l$LAST

[40] ARRAY~(LAST/[DIM]l\[DIM]ARRAY-DIF)+LAST/[DIM]DIF

[41] A Initialize result. Fill with identity elt.
[42] A Ravel the DSHAPE dim.s:
[43] L3:R~((-M)$(x/NDS),ltM$pARRAY)pL/tO

-353­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

v ~MINWAY (continued)
[44] A Insert result of partitioned reduction:
[45] ~'R[' ,CMp';'),'DIO+RRI' ,((RANK-M+l)p';'),']~ARRAY'

[46] A Reshape to desired shape (unravel NDS dim.s):
[47] R~(C-M)$NDS,1~M$pARRAY)pR

v

[WSID: REDUCE]
V R~W ~ANDWAY ARRAY;DIM;DS;GRADE;LAST;M;N;NDS;RANK;RRI;S

; SORTED
[1] A Force W to be a vector:
[2] W~,W

[3] A Rank; dimension reduced (origin 0); no. ways:
[4] RANK~ARRAY[DIO]

[5] DIM~DIO+M~ARRAY[DIO+l]

[6] N~ARRAY[DIO+2]

[7] A Shape of reduced array; new/old resulting shape
[8] A of reduced dimension:
[9] S~ARRAY[3+tRANK]

[10] DS~ARRAY[(3+RANK)+lN]

[11] R New resulting shape of reduced dimension:
[12] NDS~DS[W]

[13] R Branch unless a-way reduction:
[14] ~(XN)pLO

[15] R~SpC3+RANK)!ARRAY

[16] ~o

[17] R Result indices; reduced array:
[18] LO:RRI~ARRAY[C3+RANK+N)+LS[DIM]]

[19] ARRAY~Sp(3+RANK+N+S[DIM])~ARRAY

[20] A Treat special if W is empty:
[21] ~(O~pW)pLl

[22] R~A/[DIM]ARRAY

[23] ~O

[24] A Treat special if W is LpDS (i.e. all dimensions):
[25] L1:~((pW)1pDS)pL2

[26] ~(WA.=lpDS)pL3

[27] A New result indices:
[28] L2:RRI~NDS~CDSTRRI)[W;]

[29] ~ Determine unique elements of RRI:
[30] GRADE~4RRI

[31] SORTED~RRI[GRADE]

[32] LAST~SORTED11~SORTED

[33] LAST[(XpLAST)p(pLAST)-~DIO]~l

[34] RRI~LAST/SORTED

[35] R Reorder ARRAY to conform with SORTED:
[36] ARRAY~~'ARRAY[',CMp';'),'GRADE',CCRANK-M+1)p';')9']'
[37] A Perform partitioned reduction:
[38] ARRAY~LAST/[DIM]+\[DIM]~ARRAY

[39] ARRAY~ARRAY=CpARRAY)to,[DIM]ARRAY

[40] A Initialize result. Fill with identity elt.
[41] A Ravel the DSHAPE dim.s:
[42] L3:R~((-M)~(x/NDS),1~M~pARRAY)p1

-354­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

V ~ANDWAY (continued)
[43] A Insert result of partitioned reduction:
[44] ~ 'R[' , CMp' ;'),' DIO+RRI' , ((RANK-M+1)p' ;'),']~ARRAY'

[45] A Reshape to desired shape (unravel NOS dim.s):
[46] R~((-M)$NDS,l~M~pARRAY)pR

V

[WSID: REDUCE]
v R~W AORWAY ARRAY;DIM;DS;GRADE;LAST;M;N;NDS;RANK;RRI;S;

SORTED
[1] A Force W to be a vector:
[2] W~,W

[3] R Rank; dimension reduced (origin 0); no. ways:
[4] RANK~ARRAY[OIO]

[5] DIM~OIO+M~ARRAY[DIO+1]

[6] N~ARRAY[DIO+2]

[7] A Shape of reduced array; new/old resulting shape
[8] A of reduced dimension:
[9] S~ARRAY[3+lRANK]

[10] DS~ARRAY[(3+RANK)+lN]

[11] ~ New resulting shape of reduced dimension:
[12] NDS~DS[W]

[13] A Branch unless a-way reduction:
[14] -+(xN)pLO
[15] R~Sp(3+RANK)!ARRAY

[16] -+0
[17] A Result indices; reduced array:
[18] LO:RRI~ARRAY[(3+RANK+N)+lS[DIM]]

[19] ARRAY~SpC3+RANK+N+S[DIM])~ARRAY

[20] R Treat special if W is empty:
[21] -+C01pW)pLl
[22] R~V/[DIM]ARRAY

[23] -+0
[24] ~ Treat special if W is lpDS (i.e. all dimensions):
[25] L1:~C(pW)1pDS)pL2

[26] -+CWA . =l p DS) pL3
[27] A New result indices:
[28J L2:RRI~NDSLCDSTRRI)[W;]

[29] R Determine unique elements of RRI:
[30] GRADE+-4.RRI
[31] SORTED+-RRI[GRADEJ
[32J LAST+-SORTEDtl¢SORTED
[33] LAST[CxpLAST)p(pLAST)-~DIO]+-l

[34] RRI~LAST/SORTED

[35] R Reorder ARRAY to conform with SORTED:
[36] ARRAYf-~'ARRAY[',CMp' ;'),'GRADE' , (CRANK-M+1)p' ;'),']'
[37] ~ Perform p~rtitioned reduction:
[38] ARRAY+-LAST/[DIMJ+\[DIMJARRAY
[39] ARRAY+-ARRAY1(pARRAY)fO,[DIM]ARRAY
[40] R Initialize result. Fill with identity elt.
[41] R Ravel the DSHAPE dim.s:
[42] L3:R~((-M)¢(x/NDS),1~M¢pARRAY)pO

-355­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

v ~ORWAY (continued)
[43] A Insert result of partitioned reduction:
[44] ~'R[' ,CMp' ;'),'OIO+RRI' , ((RANK-M+l)p' ;'),']~ARRAY'

[45] R Reshape to desired shape (unravel NDS dim.s):
[46]	 R~((-M)$NDS,l~M~pARRAY)pR

TV

[WSID: REDUCE]
v R~A ~PLUS B;ARRAY;CUM;DIM;DS;GRADE;LAST;N;RANK;RRI;S;

SORTED;URRI;DIO
[1] R Adds together two compressed Milky-Way arrays,
[2] R returning a third such array_
[3] A
[4] A Return left argument if right is empty:
[5] -+(OEpB)J,L1
[6] R~A

[7] -+0
[8] A Return right if left is empty:
[9] Ll:~(O€pA)J.L2

[10] R+--B
[11] ~O

[12] A Extract components from left argument:
[13] L2:DIO+-O
[14] RANK~A[O]

[15] DIM~A[l]

[16] N+-A[2J
[17] R Branch unless a O-way reduction:
[18] .-+(xNJpL3
[19] R~((3+RANK)pA),((3+RANK)J,A)+(3+RANK)J.B

[20] -+0
[21] L3:S+-A[3+tRANK]
[22] DS+-A[C3+RANK)+lN]
[23] RRI+-A[(3+RANK+N)+tS[DIM]]
[24] ARRAY+-SpC3+RANK+N+S[DIM])~A

[25] A Include components from right argument:
[26] S+-B[3+lRANKJ
[27] RRI~RRI,B[(3+RANK+N)+lS[DIM]]

[28] ARRAY+--ARRAY,[DIMJSpC3+RANK+N+S[DIM])J.B
[29] A Use same logic as in ~PLUSRED:
[30] GRADE+-4RRI
[31] SORTED+-RRI[GRADEJ
[32] LAST+-SORTED¢l~SORTED

[33] LAST[(XpLAST)p-l+pLAST]~l

[34] URRI+-LAST/SORTED
[35] ARRAY+-t'ARRAY[' ,(DIMp' ;'),'GRADE' ,(CRANK-DIM+l)p';'),'

] ,
[36] CUM~LAST/[DIM]+\[DIM]ARRAY

[37J CUM~CUM-(pCUM)tO,[DIM]CUM

[38] R~((RANKtDIM,Nt(pCUM),DS)tURRI)"CUM

v

-356­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

rWSID: REDUCE]
v R~A ~MAX B;ARRAY;DIF;DIM;DS;GRADE;LAST;N;RANK;RRI;S;

SORTED;URRI;OIO
[1] R Adds together two compressed Milky-Way arrays,
[2] A returning a third such array_
[3] ~

[4] R Return left argument if right is empty:
[5] -+COEpB)J,Ll
[6] R~A

[7] -+0
[8] A Return right if left is empty:
[9] Ll:~(OEpA)J,L2

[10] R~B

[11] ~O

[12] A Extract components from left argument:
[13] L2:0IO~O

[14] RANKf-A[OJ
[15] DIMf-A[1J
[16] N+-A[2J
[17] A Branch unless a a-way reduction:
[18] ~(xN)pL3

[19] R~(C3+RANK)pA),C(3+RANK)J,A)r(3+RANK)J,B

[20] ~o

[21] L3:St-A[3+lRANK]
[22] DS~A[C3+RANK)+lN]

[23] RRlt-A[C3+RANK+N)+lS[DIMJ]
[24] ARRAYf-Sp(3+RANK+N+S[DIM])~A

[25] A Include components from right argument:
[26] S+-B[3+lRANKJ
[27] RRI~RRI,B[(3+RANK+N)+lS[DIM]]

[28] ARRAY+-ARRAY,[DIM]SpC3+RANK+N+S[DIM])~B

[29] A Use same logic as in ~PLUSRED:
[30] GRADE~.RRI

[31] SORTEDf-RRI[GRADEJ
[32] LAST~SORTED11$SORTED

[33] LAST[(XpLAST)p-l+pLAST]~l

[34J URRI+-LAST/SORTED
[35J ARRAY~~'ARRAY[' ,CDIMp' ;'),'GRADE' , (CRANK-DIM+l)p' ;'),'

] ,
[36] DIFt-Cr/[DIMJARRAY)-L/[DIMJARRAY
[37] DIF+-(.DIM=lRANK)~DIFo_x+\-l$LAST

[38] DIF+-CLAST/[DIMJr\[DIMJARRAY+DIF)-LAST/[DIM]DIF
[39] Rt-(CRANK,DIM,N,(pDIF),DS),URRI)"DIF

V

[WSID: REDUCE]
v R~A ~MIN B;ARRAY;DIF;DIM;DS;GRADE;LAST;N;RANK;RRI;S;

SORTED;URRI;DIO
[1] A Adds together two compressed Milky-Way arrays,
[2] A returning a third such array_
[3] A
[4] A Return left argument if right is empty:
[5] ~(OEpB)!Ll

-357­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

V ~MIN (continued)
[6] R~A

[7] ~O

[8J A Return right if left is empty:

[9] L1:~(O€pA)J,L2

[10] R~B

[11] -+0
[12] A Extract components from left argument:
[13] L2:DIO~O

[14] RANK~A[O]

[15] DIM~A[l]

[16] N~A[2]

[17] A Branch unless a a-way reduction:
[18] -+(XN)pL3
[19] R~((3+RANK)pA)9(C3+RANK)!A)l(3+RANK)J,B

[20] -+0
[21] L3:S+-A[3+lRANKJ
[22] DS+-A[(3+RANK)+lN]
(23] RRI+-A[(3+RANK+N)+tS[DIM]]
[24] ARRAY+-Sp(3+RANK+N+S[DIM])~A

[25] A Include components from right argument:
[26] S+-B[3+lRANKJ
[27] RRI+-RRI,B[(3+RANK+N)+lS[DIMJ]
[28] ARRAY+-ARRAY 9 [DI M] S p e3 +RANK+N+S [DI M]) J, B
[29] R Use same logic as in ~PLUSRED:
[30] GRADE+-4RRI
[31] SORTED~RRI[GRADE]

[32] LAST+-SORTED~l~SORTED

[33] LAST[eXpLASTJp-l+pLAST]+-l
[34] URRI~LAST/SORTED

[35] ARRAY+-~'ARRAY[',eDIMp':'),'GRADE',((RANK-DIM+l)p';'),'
] ,

[36] DIF+-Cr/[DIMJARRAY)-l/[DIMJARRAY
[37J DIF~(4DIM=tRANK)~DIFo.x+\-1~LAST

[38] DIF~(LAST/[DIM]l\[DIM]ARRAY-DIF)+LAST/[DIM]DIF

[39] R~((RANK,DIM,N,(pDIF),DS),URRI)"DIF

V

[WSID: REDUCE]
v R+-A AAND B;ARRAY;CUM;DIM;DS;GRADE;LAST;N;RANK;RRI;S;

SORTED;URRI;DIO
[1] A Adds together two compressed Milky-Way arrays,
[2] R returning a third such array.
[3] A
[4] R Return left argument if right is empty:
[5] -+COEpB)J,Ll
[6] R+-A
[7] -+0

[8J ~ Return right if left is empty:

[9] Ll:~(O€pA)!L2

[10] R~B

[11] -+0

-358­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

V ~AND (continued)
[12] R Extract components from left argument:
[13] L2:DIO+-O
[14] RANK+-A[OJ
[15] DIM~A[lJ

[16J N+-A[2J
[17] A Branch unless a O-way reduction:
[18J ~(XN)pL3

[19] R~((3+RANK)pA),((3+RANK)~A)A(3+RANK)~B

[20] ~o

[21] L3:S~A[3+tRANK]

[22] DS~A[C3+RANK)+tNJ

[23] RRI~A[(3+RANK+N)+tS[DIM]J

[24] ARRAY~Sp(3+RANK+N+S[DIM])~A

[25] A Include components from right argument:
[26] S+-B[3+tRANK]
[27] RRI~RRI,B[(3+RANK+N)+tS[DIM]]

[28] ARRAY~ARRAY,[DIM]Sp(3+RANK+N+S[DIM])~B

[29] R Use same logic as in ~PLUSRED:

[30] GRADE~!RRI

[31] SORTED~RRI[GRADEJ

[32] LAST+-SORTED~l~SORTED

[33] LAST[(XpLAST)p-l+pLAST]~l

[34] URRI~LAST/SORTED

[35] ARRAY~~'ARRAY[',CDIMp' ;'),'GRADE' , (CRANK-DIM+l)p' ;'),'
] ,

[36] CUM+-LAST/[DIM]+\[DIM]~ARRAY

[37J CUM~CUM=(pCUM)to,[DIM]CUM

[38] R~((RANK,DIM,N,(pCUM),DS),URRI)"CUM

V

[WSID: REDUCE]
V R~A ~OR B;ARRAY;CUM;DIM;DS;GRADE;LAST;N;RANK;RRI;S;

SORTED;URRI;OIO
[1] A Adds together two compressed Milky-Way arrays,
[2] A returning a third such array.
[3] A
[4] A Return left argument if right is empty:
[5] ~COEpB)~L1

[6] R~A

[7] ~O

[8] A Return right if left is empty:
[9] Ll:~(OEpA)tL2

[10] R~B

[11] ~o

[12] A Extract components from left argument:
[13] L2:DIO~O

[14] RANK~A[O]

[15] DIM~A[l]

[16] N+-A[2J
[17] R Branch unless a a-way reduction:
[18] ~(xN)pL3

[19] R~C(3+RANK)pA),((3+RANK)!A)V(3+RANK)!B

-359­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

V AOR (continued)
[20] ~o

[21] L3:S~A[3+lRANK]

[22] DS~A[(3+RANK)+lN]

[23] RRI~A[(3+RANK+N)+lS[DIM]]

[24] ARRAY~Sp(3+RANK+N+S[DIM])!A

[25] A Include components from right argument:
[26] S~B[3+tRANK]

[27] RRI~RRI,B[(3+RANK+N)+lS[DIM]]

[28] ARRAY~ARRAY,[DIM]Sp(3+RANK+N+S[DIM])!B

[29] A Use same logic as in 6PLUSRED:
[30] GRADE~.RRI

[31] SORTED~RRI[GRADE]

[32] LAST~SORTED#l~SORTED

[33] LAST[(XpLAST)p-l+pLAST]~l

[34] URRI~LAST/SORTED

[35] ARRAY~~'ARRAY[',(DIMp';'),'GRADE',((RANK-DIM+l)p';'),'
] ,

[36] CUM~LAST/[DIMJ+\[DIM]ARRAY

[37] CUM~CUM~CpCUM)iO,[DIM]CUM

[38]	 R~((RANK,DIM,N,(pCUM),DS),URRI)"CUM

v

6. DIO~l

Il~'ECMPH'tTZONE (5 classes)
12~'BCPS'lTYPE (4 classes)
13~+/SALESo.~0 lE6 5E6 (3 classes)

(or: 13~0 lE6 5E6 LIOTA SALES)
CLIOTA is defined in Sorting and Searching chapter)

14~ALLSTATES CMIOTA STATES (50 classes)
CCMIOTA is defined in Sorting and Searching chapter)

15~301 ~04 310 322 329tMGR (6 classes)

SUM~C5 4 3 50 6,1 2 3 4 5)~PLUSRED 1,[lJSALES,[.5JFIT

A Returns a 3 (frequency, SALES, FIT) by 5 by 4 by 3 by 50
A by 6 result as a compressed Milky-Way result.

1. (3 ~PLUSWAY SUM)[1;]
or

3 3 PLUSRED 1

2. 4 ~PLUSWAY SUM
or

50 4 PLUSRED 1,[1JSALES,[.5JFIT

-360­

Chapter 7 Solutions FREQUENCY COUNTS, ACCUMULATIONS AND CROSS-TABS

3.
or

(5 3 2 ~PLUSWAY SUM)[2 3;;;]

6 3 4 5 3 2 PLUSRED SALES,[.5]FIT

4.
or

(4

50

2

4

~PLUSWAY SUM)[l;;]

4 2 PLUSRED 1

5.
or

(2 3 ~PLUSWAY SUM)[3;;]

4 3 2 3 PLUSRED FIT

-361­

Chapter 8 Solutions

WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

1.
[WSID: INPUT]

V R~CHOICES LPROMPTE PROMPT
A Prompts for a single letter. PROMPT is the
A character vector prompt. CHOICES is a character
R vector of allowable single characters to be
A entered. R is a one element vector index into
A CHOICES of the character entered or is a numeric
A scalar escape code if an escape word is typed.
A Requires: CPROMPTE.
Ll:R~CPROMPTE PROMPT
A Exit if scalar escape code:

-+CppRJJ,O
-+Cl=pRJpL2
D~'** ENTER ONE CHARACTER ONLY'
-+Ll

A Convert R to index:
L2:R~CHOICESlR

-+CR<DIO+pCHOICES)pO
~~'** INVALID CHOICE. ENTER ONE OF: '
O~1~,'t't[DIO+O.5]CHOICES

-+Ll

[1]
[2]
[3]

[4]
[5]

[6]
[7]
[8J
[9]
[10]
[11]
(12]
[13]
[14]
[15]
[16]
[17]
[18]
[19J

V

2. Insert the expression

R[(R='-')/tpR]~'-'

in the functions NINPUT and NPROMPTE
Insert the APL2 expression

just before using DVI on R.

((R= , - ,) /R) +- ' r:»

in the functions NINPUT2
numeric characters.

and NPROMPTE2 just before checking R for

-362­

Chapter 8 Solutions WRITING USER-FRIENDLY INTERACTIVE FUNCTIONS

3 •
[WSID: INPUT]

v PROPOSAL;AGES;NAME;NKIDS;R

[1] A Illustration of input utility functions.
[2] Ll:~O ESCAPE NAME~CPROMPTE 'NAME: '
[3] L2:~O ESCAPE NKIDS~l NPROMPTE 'NUMBER OF KIDS: '
[4] ~L2 IFC~NKIDS€O,l2Q)MESSAGE ,** 0 TO 20 KIDS ONLY'
[5] ~L4 UNLESsxNKIDS
[6] L3:4Q ESCAPE AGES~NKIDS NPROMPTE 'AGES OF KIDS: '
[7] ~L3 IFCCAGESv.¢rAGES)v(AGESV.<O)VAGESv.>99)MESSAGE ,**

o TO 99 AGES ONLY'
[8J A Allow alignment of paper:
[9] L4:~O ESCAPE CPROMPTE 'PRESS ENTER WHEN READY ... '
[10] A 3 blank lines:
[11] O+- 3 1 p ' ,
[12] D+-'Dear ',NAME,':'
[13] ~ 1 blank line:
[14] 0+-"
[15] ~+-'As a proud parent of ' ,(~NKIDS),' kid'
[16] O+-((1#NKIDSJp's'J,' (whose'
[17] ~+-'average age is ' ,~(+/AGES)+NKIDS

[18] D~'), you need insurance.'
[19] D~ 3 1 p ' ,
[20] ~ Allow alignment of paper:
[21] ~o ESCAPE CPROMPTE "
[22] ~o ESCAPE R~'YN' LPROMPTE 'GENERATE ANOTHER PROPOSAL?

[23] A Do another if response is Y:
[24]	 ~Ll IF R=l

v

-363­

Chapter 9 Solutions

MANIPULATING DATES

1. 1-1ICCTODAYS360 MDATESJ-TODAYS360 PDATESJ+180
or

liCCTODAYS360 PDATESJ-TODAYS360 MDATES)+180

These two expressions return different results if the purchase
date occurs on a coupon date (1 and 0 respectively). The first
expression is correct if the buyer receives the coupon and the
second is correct if the seller receives the coupon.

2. CIOOOxl.001*-/TODAYS RDATE,BDATE)-lOOO

3.
[WSID: DATES]

v YYYYDDD~TOYD YYYYMMDD;DD;LEAP;MM;MMDD;YYYY;DIO
[1] R	 Converts dates CYYYYMMDD) to Julian dates CYYYYDDD
[2] R	 where DOD is number of days since prior Dec. 31J.
[3] DIO~l

[4] DD~100IYYYYMMDD

[5] MMDD~10000IYYYYMMDD

[6] MM+-CMMDD-DD)+lOO
[7] A	 Year and year times 1000 (e.g. 1986000):
[8] YYYY~(YYYYMMDD-MMDD)+10000

[9] YYYYDDD~1000xyyyy

[10] R	 Add in days from start of month, and from start
[11] R	 of year to start of month:
[12]	 YYYYDDD+-YYYYDDD+DD+(O 31 59 90 120 151 181 212 243 273

304 334)[MM]
[13] R	 Determine whether a leap year:
[14] LEAP~(O=4IYYYY)A(O¢100IYYYY)VO=400IYYYY

[15] R	 Add in leap day if month is March or later:
[16] YYYYDDD~YYYYDDD+LEAPAMM~3

V

-364­

Chapter 9 Solutions	 MANIPULATING DATES

[WSID: DATES]

V YYYYMMDD~FROMYD YYYYDDD;DD;DDD;FEB29;LEAP;MM;YYYY;DIO

[1] A Convert Julian dates CYYYYDDD where DDD is number of
[2] A days since prior Dec. 31) to YYYYMMDD dates.
[3]	 010+--1
[4]	 DDD+--1000IYYYYDDD
[5] A Year and year times 10000 (e.g. 19860000):
[6]	 YYYY~(YYYYDDD-DDD)+1000

[7] YYYYMMDDf--1000QxYYYY
[8J A Determine whether a leap year:
[9]	 LEAP~(O=4IYYYY)A(O~100Iyyyy)vO=400IYYYY

[10] A Is day a leap day (i.e. Feb. 29)?
[11]	 FEB29~LEAPADDD=60

[12]	 R Subtract leap day if Feb. 29 or later to determine
month:

[13]	 DDD~DDD-LEAPADDD~60

[14]	 MM~(31 28 31 30 31 30 31 31 30 31 30 31 /t12)[DDDJ
[15] A Days since start of month:
[16]	 DD~DDD-(O 31 59 90 120 151 181 212 243 273 304 334)[MM

]

[17] R Add back one day if Feb. 29:
[18]	 DD~DD+FEB29

[19]	 YYYYMMDD~YYYYMMDD+DD+100xMM

V

4.	 WKDAYS~7 9p'MONDAY TUESDAY WEDNESDAYTHURS ... SUNDAY
WKDAY~WKDAYS[DIO+711+TODAYS FROMQTS 3pDTS;J
CWKDAYi' ')/WKDAY

-365­

Chapter 10 Solutions

WRITING REPORTS

1.	 Hl~15 15 3 HEADINGS 'nLAST YEARnTHIS YEAR'
HDG~'nAVG.~SALEnTOTAL~SALESnAVG.~SALEnTOTAL~SALES'

HDG~HDG,'nGROWTH~IN~TOTAL~SALES'

HDG~6 7 6 7 7 2 3 2 3 HEADINGS HDG
HDG[l 2;tl!pHl]~H1

2.	 A Format the date:
FDATE~,'G<Z9/99/99>' DFMT DATE R APL*PLUS or SHARP APL
FDATE~'55/55/50'~DATE R APL2
FDATE~l 1 0 1 1 0 1 1\6 O~DATE ROther APL systems
FDATE[3 6]~'/' A Other APL systems

TITLE~'~PAGE ',(~PNO),'nnFINANCIALSUMMARYn',FDATE
TITLE~TITLE,'nWESTERN REGION'
TITLE~65	 TITLES TITLE

3. Approach 1 (using the newline character):

TCNL~OTCNL A APL*PLUS
TCNL~OAV[156+DIO] R SHARP APL
TCNL~DTC[1+0IO] A APL2
TCNL~OAV[???] ROther APL systems

CMAT~('4(I5,X2),<',TCNL,'>,4F7.1')DFMT 3 8pNMAT R	 APL*PLUS,
SHARP APL

CMAT~((28p'55550 '),TCNL,28p' 5550.0')~NMAT R APL2

CMAT~((8p7 O),8p7 1)~3 BpNMAT A Other APL systems
CMAT~(O 2~3 28tCMAT),TCNL,3 -28tCMAT A Other APL systems

Approach	 2 Cusing dyadic transpose):

CMAT~(6p2 O)~6 28p2 1 3~4 6 7p(12p7 0 7 l)~&NMAT

-366­

Chapter 13 Solutions

WORKSPACE DESIGN AND DOCUMENTATION

1.	 The following are good candidates for "visual representation
manipulation" functions. Their listings are not presented here
but are available on disk. See the Postscript at the end of the
book.

Syntax: NEWVR~UNLAMP OLDVR

The UNLAMP function removes all comments from the visual
representation. Both end-af-line and full-line comments are removed
completely, including the comment symbol (R). The function lines are
renumbered as needed to allow for deleted full-line comments. UNLAMP
is different from UNCOMMENT in that UNCOMMENT does not delete the
comment symbol on full-line comments and so has no line-renumbering.

Syntax: NEWVR~OBFUSCATE OLDVR

The OBFUSCATE function modifies all local identifiers (labels, result
variable, argument variables localized variables) by prefixing their9

names by the characters '~6'. In this way, the identifiers of the
function are obfuscated so that chances of a name conflict are
minimized when the function uses execute (~) to access variables or
functions whose definitions are global to the function being
obfuscated. WSDOC is an example of an obfuscated function.

Syntax: NEWVR~UNOBFUSCATE OLDVR

The UNOBFUSCATE function deletes all occurrences of the characters
'~~', thereby undoing the effects of OBFUSCATE. Since UNOBFUSCATE
does not limit its seach to just local identifiers, it will delete
even those occurrences of 'AA' which were not inserted by OBFUSCATE
(such as in character constants, in comments or in the middle of
identifier names).

-367­

Chapter 13 Solutions	 WORKSPACE DESIGN AND DOCUMENTATION

Syntax: NEWVR~UNDIAMOND OLDVR

The UNDIAMOND function breaks all multi-statement lines (0 delimited)
into single-statement lines, renumbering lines as needed. For
example:

v TEST	 V TEST
[1] A+-O 0 B~A+2 o C~A+B ~ [1] A+-O
[2] A Proceed:	 ~ [2] B+-A+2
[3]	 CALC ~ [3] C+-A+B

V [4] A Proceed:
[5] CALC

v

The UNDIAMOND function may be used when moving a function from an APL
environment which supports statement separators (0) to one which does
not; or you may find single-statement lines easier to read than
multi-statement lines.

2.

[WSID: WSDOC]

v	 WSDOC AAPAGE;AAB;AABOTTOM;AAC;6AD;AdDATA;AADONE;AAF;
AAFIRST;AAFNS;AAFOOT;AAHEIGHT;AAI;AAIND;AALAST;AALEFT;
AALEN;AALIM;AALINES;AAMARGIN;AAN;AANAME;AANL;
AANONDISPLAY;AAP;AAPNO;AAQUOTE;AAR;A~S;A~T;~~TCNL;

AATITLE;~ATOP;AATXT;~~VARS;AAVR;~AW;AAWIDTH

[1] A Displays paged WS documentation. All output
[2] R is via o~ so replace all D~ by custom fn
[3] R (e.g. PRINT) to redirect output. PAGE: rows 9

[4] A columns, margins (top, bottom, left, right).
[5] ~ATOP~AAPAGE[2+0IO]

[6] AABOTTOM~AAPAGE[3+0IO]

[7] AAHEIGHT+-AAPAGE[DIO]-~~TOP+AABOTTOM

[8J AALEFT+-AAPAGE[4+DIO]
[9] ~6WIDTH~A~PAGE[1+DIO]-AAPAGE[5+DIO]

[10] A Construct newline character:
[11] AATCNL~DTCNL R APL*PLUS

[12J R TCNL~DTC[l+DIO] R APL2

[13] R TCNL~OAV[156+0IO] R SHARP APL
[14] A Format today's date:
[15] A~D+-~DTS[l 2 0 +010]
[16] AAD[(AAD=' ')/tpAAD]~'/'

[17] A Format the time:
[18] AAT~(~OTS[3+DIO]),':',-2t'O',~DTS[4+DIO]

[19] R Format the WSID:
[20] AATITLE+-DWSID A APL*PLUS
[21] A TITLE~2 DWS 1 A SHARP APL
[22] A S~100 DSVO 'e' A APL2 CTSO)
[23] R S~O 0 1 1 DSVC 'e' A APL2 CTSO)
[24] A C~')WSID' R APL2 (TSO)
[25] A TITLE~C[DIO;]~' , A APL2 CTSOJ

-368­

Chapter 13 Solutions	 WORKSPACE DESIGN AND DOCUMENTATION

V WSDOC (continued)
[26] R S~DSVR 'c' R APL2 (TSO)
[27] A Provide WSID as left arg otherwise:
[28] A TITLE~WSID R APL2 (eMS)
[29] A Delete leading/trailing blanks:
[30]	 ~~TITLE~(-+/I\\<1>~~TITLE=' ,)!-(+/A\~~TITLE=' ,)!~~TITLE

[31] A Format page title:
[32]	 ~~TITLE~(A~TOPp6~TCNL)t~~WIDTHt(~~LEFTp''),~~TITLE,'

* ' t ~AD,' " Ii.~ T
[33] R Insert page number:
[34]	 ~APNO+-1

[35]	 ~AT~'PAGE l'
[36]	 ~~TITLE[(-pli.aT)tlp~6TITLE]~~~T

[37] R Build first page:
[38]	 ~ATXT~A~TITLE,~ATCNL

[39] R Keep track of lines used so far (below
[40] R top margin) in TXT:
[41]	 AALINES~2

[42] R Build nondefault environment:
[43]	 AAT~~~TCNL,(AALEFTp' '),'NONDEFAULT WORKSPACE

ENVIRONMENT: ' ,A~TCNL

[44]	 ~AMARGIN~(A~LEFT+3)p' ,
[45]	 A~QUOTE~""

[46] A Define chars which don't display normally:
[47]	 ~ANONDISPLAY~DTCNL,DTCLF,OTCBS,DTCBEL,DTCDEL,DTCNUL~

DTCESC,DTCFF A APL*PLUS
[48] ~ ~ANONDISPLAY~OAV[DIO+O 1 156 158 159] A SHARP APL
[49] A ~ANONDISPLAY~DTC A APL2
[50] A Format nondefaults:
[51] A Branch if default DLX:
[52]	 ~(p~6DATA~,DLX)!~~L2

[53] A Replace nondisplayable chars by m:
[54]	 ~~DATA[(~aDATAE~aNONDISPLAY)/lpaADATA]~'m'

[55] R Double up quote chars:
[56]	 AIi.DATA~A~QUOTEt((l+~~DATA=A~QUOTE)/A~DATA),~AQUOTE

[57] A width available (after' DLX~'):

[58]	 ~AW~~~WIDTH-A~LEFT+7

[59] A Branch if data will fit on a single line:
[60]	 ~(~AW~p~~DATA)/~ALl

[61] A Else truncate and show' ... ':
[62]	 Ii.ADATA~((6Ii.W+-3)p~ADATA),'..• '
[63] AALl:~AT~~6T,6ATCNL,AAMARGIN,'DLX~',A~DATA

[64] ~~L2:A~T~A~T,(1~DIO)/~~TCNL,~~MARGIN~'OIO~',~OIO

[65]	 AAT~~AT,(10~DPP)/~~TCNL,A~MARGIN,'DPP~',~Opp

[66]	 AAT~AATt(16807tDRL)/AIi.TCNL,~~MARGIN,'ORL~',~ORL

[67] A Perform precise comparison for OCT:
[68]	 A6C+-OCT
[69]	 DCT~O

[70]	 A6T~AIi.T,(AACi2*-46)/A~TCNL,AAMARGIN,'DCT~',~~AC

[71] A Use lE-13 instead of 2*-46 for APL2
[72]	 DCT+-AAC
[73] A Other nondefault workspace environment
[74] ~ parameters which may be included are: state
[75] R indicator, workspace size, workspace available,

-369­

Chapter 13 Solutions	 WORKSPACE DESIGN AND DOCUMENTATION

V WSDOC (continued)
[76] A symbols reserved and used, error latent
[77] R expression (trap definition), attention latent
[78J R expression, etc.
[79] A
[80] R Include blank line after any nondefaults:
[81] ~6T~~~T,AATCNL

[82] A Attach nondefaults, if any, to page:
[83] 6AN~+/AAT=6ATCNL

[84] ~~N~~~NxA6N>3

[85] A~TXT~66TXT,CX6AN)/AAT

[86] AALINES~AALINES+AAN

[87] A

[88] R Variables:
[89] AAVARS~DNL 2
[90] A Squeeze out local CWSDOC) variables:
[91] AAVARS~(AAVARS[; 0 1 +DIO]v.~'A')fAAVARS

[92] AAMARGIN~A~LEFTp' ,
[93] R Branch if no variables:
[94]	 ~(ltpAAVARS)~~~L7

[95]	 ~6TXT~AATXT,A~TCNL,~AMARGIN,'GLOBALWORKSPACE
VARIABLES: ' ,A6TCNL

[96]	 ~ALINES~~ALINES+2

[97] A Sort variable names if not already:
[98] A VARS~VARS[OAV.VARS;]

[99] A Right justify variable names:
[100] ~~T~~~VARS+.=' ,
[101] AAVARS~(-A~T)~A~VARS

[102]	 A Drop leading all blank columns (possible by
[103]	 R deleting vars):
[104] ~AVARS~(O,l/AAT)!~AVARS

[105]	 A Indent variable names for left margin plus 3:
[106] ~~VARS~(((ltp~~VARS),~ALEFT+3)p' '),AAVARS
[107]	 A Include heading:
[108]	 A~T~A~TCNL,((-lip~~VARS)t'NAME'),'~ SHAPE P VALUE'

,~ATCNL

[109] AATXT~AATXT,AAT,((-l!pAAVARS)t'----'),' ---- ­
----,

[110] AALINES~AALINES+2

[111]	 A Loop by variable:
[112] ~AI~OIO+-l

[113] A~LIM~(ltpA~VARS)-~DIO

[114]	 AAL3:~(AALIM<A~I~AAI+1)/AAL6

[115]	 R Format shape:
[116] AAS~(~pAADATA~~AANAME~AAVARS[AAI;]),'p ,
[117]	 R omit shape and p if a scalar; pad to line up
[118]	 R with p's:
[119] AAS~(-11rpAAS)t(3<pAAS)/AAS

[120]	 A Combine name and shape; compute remaining width:
[121] AAS~~ANAME,' ~, ,AAS
[122] AAW~6AWIDTH-pAAS

[123]	 A Branch if a numeric variable:
[124] ~(O=ltOpAADATA)pA~L4

-370­

Chapter 13 Solutions WORKSPACE DESIGN AND DOCUMENTATION

v
[125]
[126]
[127]
[128]
[129]
[130]
[131]
[132]
[133]
[134]
[135]
[136]
[137]
[138]
[139]
[140]
[141]
[142]
[143]
[144]
[145]
[146]
[147]
[148]
[149]
[150]
[151]
[152]
[153]
[154]
[155]
[156]
[157]
[158]
[159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]
[167]
[168]
[169]

[170]
[171]

[172]

[173]

WSDOC (continued)

A Else data is character; consider only up to

A W chars:

A6DATA~(6AWlX/pAADATA)p~6DATA

A Replace nondisplayable chars by ffi:
A6DATA[(AADATAEAANONDISPLAY)/lpAADATA]~'m'

A Double up quote chars:
AADATA~AAQUOTE9((1+A6DATA=~6QUOTE)/AADATA)96AQUOTE

A Branch if data will fit on a single line:
~(A6W~pAADATA)/6AL5

R Else truncate and show' ... ':
AADATA~((AAW+-3)pA6DATA)9'.•. '
~AAL5

R If data is numeric 9 consider only up to
A 1+W+2 elements:
AAL4:A~DATA~((1+rAAW+2)Lx/p6ADATA)pAADATA

R Format numbers to 10 digits (CLEAR WS default):
AAP~DPP

DPP~10

AADATA~<!>6ADATA

OPP~66P

A Format value from empty array as to:
AADATA~AADATA9(O=PA6DATA)/'lO'

A Branch if data will fit on a single line:
~(~~W~p~~DATA)/~~L5

R Else truncate at last space within width and
R show ' ••• ':
6~DATA~((+/v\' '=$(~AW+-3)p~~DATA)p~aDATA),'... '

R
A Append variable definition to page:
6AL5:~ATXT~6~TXT,AATCNL,AAS,~ADATA

~~LINES~AALINES+l

R Branch for more vars unless bottom of page:
~(AALINES<AAHEIGHT)/~AL3

R Display page:
D~~ATXT,(A~BOTTOM+AAHEIGHT-a~LINES)pAATCNL

R Format new page:
AATXT~AATITLE9AATCNL

AAPNO~AAPNO+l

AAT~'PAGE '9~AAPNO

AATXT[(-pAAT)tlpAATITLE]~AAT

AALINES~2

A Branch if no more vars:
~(AAI~AALIM)/AAL7

A Else insert new heading:
AATXT~A~TXT,A6TCNL,AAMARGIN,'GLOBAL WORKSPACE

VARIABLES (CONT.):' 9A6TCNL
AALINES~AALINES+2

A6T~AATCNL,((-1~pAAVARS)t'NAME')9' ~ SHAPE P VALUE'
,AATCNL
A6TXT~AATXT,AAT,((-1~pAAVARS)t'----')9'

----,
A~LINES~AALINES+2

-371­

Chapter 13 Solutions	 WORKSPACE DESIGN AND DOCUMENTATION

v WSDOC (continued)
[174]	 A Branch for more vars:
[175] -+~~L3

[176]	 A
[177]	 R No more vars (include blank line):
[178]	 ~~L6:~~TXT~~~TXT,~6TCNL

[179] 6~LINES~66LINES+1

[180]	 A
[181]	 f=l Functions:
[182]	 f1~L7:AAFNS~DNL 3
[183]	 A Squeeze out this CWSDOC) function:
[184] Af1FNS~(f1f1FNsv.~(1~p~6FNS)t'WSDOC')fAAFNS

[185]	 A Use next, not prior, line if CRAVR is used below:
[186]	 A FNS~(A/FNsv.~~(2,1~pFNS)t2 5p'WSDOCCRAVR')fFNS
[187]	 A
[188]	 A Branch if some fns:
[189] ~(XAALIM~ltpAAFNS)/AAL8

[190]	 R Exit if nothing on page:
[191] ~(AALINES=2)/O

[192]	 R Else display page and exit:
[193] O~AATXT,(~ABOTTOM+AAHEIGHT-AALINES)pA6TCNL

[194] ~O

[195]	 A Branch if at least 4 lines left on page:
[196]	 6~L8:~(AALINES~A6HEIGHT+-4)/66L9

[197] A Else display page:
[198l O~AATXT,(AABOTTOM+AAHEIGHT-AALINES)pA~TCNL

[199]	 A Format new page:
[200] AATXT~AATITLE,AATCNL

[201] A~PNO+-A~PNO+l

[202] ~AT~'PAGE ',~AAPNO

[203] A6TXT[(-pAAT)ttpAATITLE]~AAT

[204] AALINES+-2
[205]	 R
[206]	 A~L9:~ATXT~AATXT,AATCNL,AAMARGIN,'FUNCTIONS:' ,A~TCNL

[207] AALINES+-AALINES+2
[208]	 A Sort fn names if not already:
[209]	 A FNS+-FNS[OAV4FNS;]
[210]	 R
[211]	 R Pad fn names with 3 leading blank columns:
[212] AAFNS~(O -3 -pAAFNS)tAAFNS
[213]	 F=l How many "columns" of fn names will fit across pg?
[214] AAW+-l~p~AFNS

[215] AAN+-LAAWIDTH+~AW

[216]	 A How many rows will this take?
[217] AAR~r~ALIM+AAN

[218]	 R Pad bottom of fn list for SUbsequent reshape:
[219] AAFNS+-((AARXAAN),AAW)fAAFNS
[220]	 A Shuffle fn list to get names in desired order:
[221]	 A.6F+-((AAR,AALEFTJp' '),(AAR,AANXA~W)p(DIO+ 1 0 2)~(

AAN,AAR,AAW)pAAFNS
[222]	 R How many will fit on this page?
[223]	 AALIO:AAN+-ClppAAF)lAAHEIGHT-AALINES
[224]	 Fl stick them on:
[225] AATXT~AATXT"AATCNL,(AAN,l~p~AF)t~~F

-372­

Chapter 13 Solutions WORKSPACE DESIGN AND DOCUMENTATION

v
[226]
[227]
[228]
[229]
[230]
[231]
[232]
[233]
[234]
[235]
[236]
[237]
[238]
(239]

[240]
[241]
[242]
[243]
[244]
[245]
[246]
[247]
[248]
[249]
[250]
[251]
[252]
[253]
[254]
[255]
[256]
[257]
[258]
[259]
[260]
[261]
[262]
[263]
[264]
[265]
[266]
[267J
[268]
[269]
[270]
[271]
[272]
[273]
[274]
[275]
[276]

WSDOC (continued)
~~LINES~~~LINES+A~N

A Drop them off:
A~F~(~~N,O)~AAF

R Branch if none left:
~(lip~~F)J-A.6&Ll1

A Display page:
D~AATXT,AABOTTOMpAATCNL

R Format new page:
AATXT~AATITLE,AATCNL

AAPNO~AAPNO+l

~~T~'PAGE ' ,~AAPNO

AATXT[(-pAAT)tlpAATITLE]~AAT

AALINES+-2
AATXT~~ATXT,AATCNL,AAMARGIN,'FUNCTIONS

AATCNL
AALINES~AALINES+2

A Put remaining fns on this page:
~AALI0

A

R Include 5 blank lines after fn list:
A~Ll1:AAN~5lAAHEIGHT-AALINES

AATXT~A~TXT,AANpAATCNL

AALINES+-AALINES+AAN
R

(CONT.):',

A Loop by function (keep track of 1st one for
R footnote):
AAFIRST~a8FNS[DIO;]

AaFIRST~(A8FIRST~' ')/AAFIRST

AALAST~' ,

AAI~DIO+-l

A8LIME-Af1LIM-""OIO
8aL12:~(f18DONE~8ALIM<AAI~AAI+1)/AAL18

AANAME~AAFNS[AAI;]

AANAME+-(AANAME1' ')/AANAME
8AVR~DVR AANAME R APL*PLUS

R VR~l DFD NAME R SHARP APL
R VR+-CRAVR OCR NAME A APL2
A Get next fn if this one locked:
~(paAVR)!AAL12

A Find newline characters:
AANL~(AAVR=AATCNL)/lpA8VR

A Lengths of lines:
AALEN~-l+aANL--l!(DIO+-l),AANL

~ Branch if no lines too long:
~(v/AAT~AALEN>AAWIDTH-AALEFT)!AAL15

R Retain starting indices and lengths of too
R long lines:
AANL~AaT/-l~(DIO+-l),AANL

AALEN+-AAT/AALEN
A Flag chars which shouldn't be ,broken when
A contiguous:
AAB~AAVR€'ABCDEFGHIJKLMNOPQRSTUVWXYZAabcdefghijklmnop

qrstuvwxyz~0123456789.-D'

-373­

Chapter 13 Solutions WORKSPACE DESIGN AND DOCUMENTATION

v
[277]
[278]
[279]
[280]
[281]
[282]
[283]
[284]
[285]
[286]
[287]
[288]
[289]
[290]
[291]
[292]
[293]
[294]
[295]
[296]
[297]
[298]
[299]
[300]
[301]
[302]
[303]
[304]
[305]
[306]
[307]
[308]
[309]
[310]
[311]
[312]
[313]
[314]
[315]
[316]
[317]
[318]
[319]
[320]
[321]
[322]
[323]
[324]
[325]
[326]
[327]
[328]
[329]

WSDOC (continued)

A Break points exist everywhere but where these

A chars occur and are followed by another one of

A these chars:

AAB+-~~BA1<1>AAB

A Indices of break chars found so far:
AAIND+-lO

A Relative indices of first WIDTH chars
A following known breaks:
AAR+-(~DIO)+~lAAWIDTH-AALEFT

R Displacement to next break points:

A6L13:6AD+-+/V\AAB[AANLo.+AAR]

A Use full length if break point under 1/2 line:

AAD[(AAD«pAARJ+2)/tPAAD]~pAAR

A Update vars for new break points:
A~NL~AANL+AAD

AAIND~AAIND,~ANL

Ab.LEN~A~LEN-I.16.D

R Any lines still too long (addl 6 space indent)?
R Branch if not:
1.16R~I.1I.1WIDTH-I.16.LEFT+6

I.1AT+--6.ALEN>~AR

~6.LEN~A6.T/Al1LEN

-+(pA~LEN)J,A6.L14

66NL+--aAT/A6.NL
AI.1R+-C,,-,OIO)+<J)tAAR

A Repeat:
-+~AL13

A Build replication vector to
A6.L14:6.6.R+-(pAAVRJpl
A Allow 8 positions for char,

aAR[6.AIND]+-B

insert line breaks:

newline, 6 spaces:

A Expand visual representation:
AAVR~.6AR/AAVR

A Adjust indices for new VR:
AAIND+-AAIND[4A.6IND]+7 X(tp.66.IND)-DIO

R Insert break characters:
AAVR[AAINDo.+(~OIO)+l7]+-((pAAIND),7)pl.16.TCNL,6p',

R Redefine NL:
AANL~(A6.VR=6.I.1TCNL)/tp6.6.VR

R Branch if no left margin:
AALI5:-+~ALEFT~A6.L16

A Build replication vector to insert left margin:
At1R+-Cpb.AVR)pl

R Allow positions for margin:
A6.R[-l!~ANL]~AALEFT+l

R Expand visual representation:
AI.1VR+-66MARGIN,AAR/t16.VR

R Adjust newline indices for new VR:
6.I.1NL~6.t1NL+6.ALEFTxClpAI.1NL)+~DIO

R Insert left margin:
AAVR[(-l~AANL)o.+C"'DIO)+lAALEFT]~' ,

R Branch if fn won't fit on current page:
AAL16:~(AAHEIGHT<1+AALINES+pAANL)/AAL18

-374­

Chapter 13 Solutions WORKSPACE DESIGN AND DOCUMENTATION

v
[330]
[331]
[332]
[333]
[334]
[335]
[336]
[337]
[338]
[339]
[340]
[341]
[342]

[343]
[344]
[345]

[346]
[347]
[348]
[349]
[350]
[351]
[352J
[353]
[354]
[355]
[356]
[357]
[358]
[359]
[360]
[361]
[362]
[363]
[364]
[365]
[366]
[367]
[368]
[369]
[370]
[371]
[372]
[373]
[374]
[375]
[376]
[377J

V

WSDOC (continued)
~~L17:~~TXT~~~TXT,~~TCNL,~~VR

~~LINES~A~LINES+1+p~6NL

~~LAST~6~NAME

A
A Incl. 2 blank lines after each fn
A already):
~AN~ll~6HEIGHT-66LINES

~6TXT~~~TXT,~ANp~~TCNL

~ALINES~A~LINES+~~N

R Get next fn:
~A6L12

A Prepare footnote:

(1 in VR

AAL18:6AFOOT~AAFIRST,(((p~AFIRST)fp~ALAST)VAAFIRSTv.1(

pAAFIRST)t~~LAST)/' ~ , ,AALAST
~AFOOT~(XpAALAST)/(-AAWIDTH)t~AFOOT

A Display page:
O~AATXT,((AAHEIGHT-AALINES)pAATCNL),~AFOOT,AABOTTOMp

~ATCNL

A Exit if no functions left:
~~f.\DONE/O

A Format new page:
AAFIRST~~IlNAME

~~TXT~AATITLE,AATCNL

A~PNO~AAPNO+l

A6T~'PAGE ' ,~AAPNO

A6TXT[(-pAAT)itpAATITLE]~AAT

AALINES~2

A Branch if fn will fit on the new page (with
f=t footnote):
~(A~HEIGHT~1+A~LINES+pAANL)/~AL17

R Flag newlines which end entire (not broken)
A fn lines:
AAB~(AAVR[(l+AALEFT)+-l~AANL]='['),l

R Compute no. of newlines to take for current pg:
Af.\N~+/V\~(6AHEIGHT-2+AALINES)p~~B

A~LINES~AALINES+A~N+l

AAT~AAN!AANL

A Compute no. of chars to take for current page:
~AN~(~DIO)+~ANL[AAN-~DIO]

AANL~AAT-AAN

A Include these chars on page and squeeze from VR:
AATXT~AATXT,AATCNL,AANpA~VR

AAVR+-~AN.J,AAVR

AALAST+--AANAME
A Include fn name at top of remainder of VR:
AAT~(AALEFTp' '),' V ',AANAME,' (CONT.)' ,AATCNL
6AVR~A~T,~AVR

AANL~(AATtAATCNL),~ANL+p~AT

A Branch to display page:
-+A~L18

-375­

Chapter 13 Solutions WORKSPACE DESIGN AND DOCUMENTATION

3 •
[WSID: USEDBYJ

v USEDBY ~~FNS;DIO;~~ALP;~~AN;a~ARGS;~~B;AABL;~AC;AACOLS

;A~GDSP;A~GLOBAL;AAGNUM;AAHDR;~~I;AAIDLEN;A~IDS;

AAIDSTART;AAIDTYPES;AAIND;AAINDENT;AAINDEX;AAJ;6ALAB;
AALCGLOBAL;AaLCPARSED;AALDSP;AALEN;aALIM;aALNUM;AALOC;
AALOCAL;AALTYPE;AAN;AANAME;AaNAMES;AANC;AANCCON;AANCMT
;AANID;AANL;AANQ;AANUM;AAPAN;AAPARSE;AAPARSED;a6PBL;
AAPID;AAPLAB;aAPNUM;aAPSID;AAR;AARESULT;AaRVAR;AAS;
AASTART;AAT;AATCNL;AAVR

[1] A Displays chart of fns and vars called by the fns
(2] A specified in the character matrix or vector
[3] A (delimited by spaces) argument. Requires subfns:
[4] R CMIOTA; (and CRAVR if not APL*PLUS or SHARP APL).
[5] A Use origin 1:
[6] OIO+-1
[7] A Indent per level:
[8] AAINDENT+-3
[9] R Branch unless fns a matrix:
[10] ~(2~ppAAFNS)pAALl

[11] A Left justify char mat:
[12] A~FNS~(+/A\~6FNS=' ')$6~FNS

[13] ~6~L2

[14] R Flag blank before and last char of each name:
[15] 6AL1:A~FNS+-' ',6AFNS
[16] 6~B~AAFNS=' ,
[17] 6AT+-(~6B~1$6AB)/lp~AB

[18l 6AT+-(((pAAT)+2),2)pA~T

[19] R Lengths and starts of each name:
[20] ~ALEN+--/$AAT

[21] AASTART~AAT[;1]

[22] A Number of rows and eols in desired matrix:
[23] AAR+-pAALEN
[24] AAC+-Orr/AALEN
[25] R Blank, raveled array:
[26] AAT~(AARXAAC)p' ,
[27] A Compute indices: (tLEN[1]),(tLEN[2]), ...
[28] AAI+-AALEN/--l~O,+\AALEN

[29] A~I+-AAI+tpAAI

[30] R Insert fn names into raveled matrix:
[31] AAT[AAI+AALEN/AACX-l+tpAALEN]~AAFNS[AAI+AALEN/AASTART]

[32] A Reshape to matrix:
[33] AAFNS~(AAR,AAC)pAAT

[34] R Exit if no fns specified:
[35] AAL2:AAR~1ppAAFNS

[36] -+AARJ,O
[37] A Construct newline character:
[38] AATCNL+-DTCNL R APL*PLUS
[39] R AATCNL~DTC[l+DIO] R APL2
[40] A AATCNL~DAV[156+0IO] R SHARP APL
[41] R Initialize tracking variables ...
[42] A Character matrix of all distinct identifiers
[43] R found so far:
[44] AANAMES~((AAFNS CMIOTA AAFNS)=lA~R)f~~FNS

-376­

Chapter 13 Solutions	 WORKSPACE DESIGN AND DOCUMENTATION

V USEDBY (continued)
[45] ~ Index (into NAMES) vector of fns analyzed
[46] R so far (-l=initial call):
[47]	 ~APARSED~,-l

[48] A Index (into NAMES) vector of global names for
[49] A fn in PARSED:
[50]	 6AGLOBAL~~ANAMES CMIOTA ~~FNS

[51] A No. of globals in GLOBAL for fn in PARSED:
[52]	 ~AGNUM~A~R

[53] A No. of globals in GLOBAL before those for fn
[54] A in PARSED:
[55]	 AAGDSP~,O

[56] R Index (into NAMES) vector of local names for
[57] A fn in PARSED:
[58]	 AALOCAL~lO

[59] A No. of locals in LOCAL for fn in PARSED:
[60]	 AALNUM~,O

[61] A No. of locals in LOCAL before those for fn
[62] A in PARSED:
[63]	 AALDSP~,O

[64] A Integer vector of local var types for each elt
[65] A of LOCAL Cl:1abel; 2:result; 3:argument; 4:1ocal):
[66]	 AALTYPE~lO

[67] A Index into PARSED of object whose globals are
[68] A currently being evaluated:
[69]	 AALCPARSED~,l

[70] A Index into partition of GLOBAL (for the object
[71] A whose globals are currently being evaluated) of
[72] R the object being evaluated:
[73]	 A6LCGLOBAL~,1

[74] A
[75] A Determine index into NAMES of object being evaluated:
[76]	 AALOOP:AAINDEX~AAGLOBAL[6AGDSP[AALCPARSED[1]]+

AALCGLOBAL[l]]
[77] A What's its name?
[78]	 AANAME~AANAMES[A~INDEX;]

[79]	 aANAME~(AaNAME~' ')/aANAME
[80] R Loop on elts of LCPARSED from local to global
[81] A (1=2,3, •..) (to check whether object is locally
[82] A defined at higher level):
[83]	 AAI~l

[84]	 AALIM~-l+pAALCPARSED

[85] AALPl:~(AALIM<AAI~AAI+1)pAAL3

[86]	 AAIND~AALCPARSED[~AI]

[87] R List of local objects at this level:
[88]	 AAT~AALOCAL[AALDSP[~AIND]+l~ALNUM[AAIND]]

[89] A Search for this object:
[90]	 AAJ~AATlAAINDEX

[91] A Move up a level if not found:
[92]	 ~(A~J>pAAT)pAALP1

[93] A If found, determine type of local:
[94]	 AAT~~ALTYPE[AALDSP[A~IND]+~AJ]

[95] ~ Display object name, fn where local, type:
[96]	 AAR~AANAMES[A6PARSED[A6INDJ;]

-377­

Chapter 13 Solutions WORKSPACE DESIGN AND DOCUMENTATION

v
[97]
[98]
[99]
[100]

[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
[112]
[113]
[114]
[115]
[116]
[117]
[118]
[119]
[120]
[121]
[122]
[123]
[124]
[125]
[126]
[127]
[128]
[129]
[130]
[131]
[132]
[133]
[134]
[135]
[136]
[137]
[138]
[139]
[140]
[141]
[142]
[143]
[144]
[145]
[146]
[147]
[148]

USEDBY (continued)

~~R~(6AR1' ')/oAR

h~T~(4 8 p'label result argumentlocal ')[~hT;]

~hT~(h6T¢' ')/~~T

O~((~~INDENTX-l+p6~LCPARSED)p' '),~~NAME,' (',b~R,' ­
',66T,')'
~h~LI0

A
A Branch if object is a function:
A~L3:~(3=ONC b6NAME)p~AL4

R Display object name and global indicator:
O~((66INDENTX-1+p6ALCPARSED)p' '),6ANAME,' (global)'
~b6LIO

F=t

R Display object name:
AAL4:D~((6AINDENTX-1+pA6LCPARSED)p''),A~NAME

A Branch if fn has already been parsed:
4((p66PARSED)~6AJ~~6PARSEDt~~INDEX)p~~L9

AAPARSED~~~PARSED,66INDEX

F=t

A Analyze fn for global, local identifiers ...
A Construct visual representation:
AAVR~OVR 6ANAME R APL*PLUS

R AAVR~l DFD 6ANAME R SHARP APL
A AAVR~CR6VR OCR 6ANAME A Other APL systems
A Update selected vars:
66GDSP~6AGDSP,pAAGLOBAL

AALDSP~AALDSP,pA6LOCAL

A Branch unless fn locked:
4(XpAAVR)pA6L5

A No identifiers found if locked:
A6GNUM~6AGNUM,O

AALNUM~A6LNUM,O

-+AAL9
A Use origin a for fn parsing:
6AL5:DIO~O

A Where does header end?
AAT....6AVRlA6TCNL

A Grab header of fn (less newline):
A6HDR+-6ATpA6VR

A Drop header from vis rep:
6AVR~AAT.J,6.AVR

A Where does fn syntax end?
AAT+-6AHDRl' ; ,

A Localized vars:
A6LOC....6.6T.J,A6HDR

A Drop local vars:
A6HDR....h6Tp~AHDR

A Drop leading junk:
AAHDR~(v\~6AHDRE' V')/A6HDR

R Is there an explicit result?
A6T.... CpA6HDR»A6IND~AAHDRt'~'

A Explicit result Cif any):
~ARESULT~(AOTX66IND)p6AHDR

-378­

Chapter 13 Solutions WORKSPACE DESIGN AND DOCUMENTATION

v USEDBY (continued)
[149] R Remove result from header:
[150] ~~HDR~' , ,((xp~~RESULT)+p~~RESULT)~~~HDR

[151] A Starting indices of fn name, args:
[152] ~6START~1+(~~HDR=' ')/tp~~HDR

[153] A Lengths of names:
[154] AaLEN~(l~~ASTART,l+p~AHDR)-l+A~START

[155] A No. of args:
[156] ~6.T+--1+p~~LEN

[157] A Indices of args (if any):
[158] A~N+-p~AIND~((6~T=2)pO),(X~AT)p~AT

[159] R Don't consider fn name:
[160] A~START+-AASTART[AAIND]

[161] 6~LEN~~ALEN[~6.IND]

[162] ~ Length of longest arg:
[163] ~ACOLS~r/O,.6..6.LEN

[164] A Raveled, blank mat of args:
[165] ~AARGS+-(6ANX~.6.COLS)p' ,
[166] A Compute indices: (tLEN[1]),(tLEN[2]), •••
[167] ~~I~A~LEN/--l~O,+\~ALEN

[168] ~AI~.6~I+tpAAI

[169] A Insert names into raveled matrix:
[170] .6.~ARGS[AAI+A.6.LEN/AACOLsxLA~N]~6.6.HDR[AAI+AALEN/AASTART

]

[171] A Reshape to mat of args:
[172] AAARGS~(A6N,~~COLS)pAAARGS

[173] A Flag newline chars:
[174] ~ANL~AAVR=~ATCNL

[175]
[176]

A Flag nonquotes:
AANQ+-~AVR;f , , , ,

[177] A Map of chars not in quote pairs (i.e. char
[178] A constants) within each fn line (i.e. an open
[179] A quote is closed at the end of the fn line).
[180] A Leading quotes are flagged 0; closing quotes are
[181] A flagged 1 (including 1st of double-quote pairs):
[182] AANCCON~=\.6.~NQ1AANL\~ATi-1~O,AAT~~~ANL/=\AANQ

[183] AANQ+-O
[184] A Flag non-A chars (includes AS in quotes):
[185] ~ANC~AANCCONAA.6.VR='A'

[186] A Flag newlines or AS (except AS in quotes):
[187] ~~S+-~ANL~~ANC

[188] A Map of chars which do not follow a A (ignoring AS
[189] A within quotes) within each fn line. AS are
[190] A flagged 0:
[191] A.6.NCMT+-~1\AAS\.6..6.T1-1~O,~AT+-~AAS/A~NC

[192] A6S+-A~NC~O

[193] A Map of chars which are not included within AS or ".
[194] AAPARSE+-AANCMTAAANCCON
[195] AANCCON+-AANCMT+-Q
[196] A Flag digits and letters:
[197] ~ANUM+-6APARSEAAAVR€'0123456789'

[198] A~ALP+-A~PARSEA~AVRE'ABCDEFGHIJKLMNOPQRSTUVWXYZAabcdef

ghijklmnopqrstuvwxyz~'

-379­

Chapter 13 Solutions WORKSPACE DESIGN AND DOCUMENTATION

v USEDBY (continued)
[199] A Flag blanks:
[200] ~6BL~A~PARSEAA~VR=' ,
[201] D.~PARSE~O

[202] R Flag alphanumeric chars:
[203] ~6AN~.6.~NUMvA~ALP

[204] R Pole vee of contiguous digits:
[205] AAPNUM~~ANUM1-1~O,A~NUM

[206] ~ANUMfooO

[207] A Pole vee of contiguous digits/letters:
[208] ~APAN~AAAN1-1tO,AAAN

[209] AAAN+-O
[210] R Pole vee of identifiers:
[211] ~APID~~APAN\AATv-l$A6T~AAPAN/~AALP

[212] ~AALP~AAPAN+-O

[213] R Flag '0' before identifiers COnames):
[214] AAT~6~T\'D'=(A~T~1$AAPID)/AAVR

[215] A Shift leading poles of Dnames to include 0:
[216] AAPID~AATVAAPID>-l~AAT

[217] Ai:J.T+-O
[218] R Flag char following] after line no.:
[219] AASTART~-1~A~PNUM\-1~A~PNUM/-2~~~NL

[220] AANL~A~PNUM+-O

[221] A Pole vee of contiguous blanks:
[222] AAPBL~AhBL1-1~0,~ABL

[223] A.6BL~O

[224] A Flag 1st nonblank char in each line:
[225] AASTART~(AASTART>AAPBL)V6APBL\-1~6APBL/A6START

[226] AAPBL~O

[227] A Pole vee of identifiers at start of line:
[228] AAPSID~AAPID\6ATV-l$66T~AAPID/~ASTART

[229] A Pole vec of labels:
[230] AASTART~O

[231] AAPLAB~AAPSID\AATvl~AAT~':'=AAPSID/AAVR
[232] A.6.PSID~O

[233] A start and end (+1) indices of identifiers:
[234] AAIND~A.6.PID/lp6APID

[235] A No. of identifiers:
[236] .6.6NID~(pAAIND)+2

[237] AAIND~(6ANID,2)p~AIND

[238] A start indices of identifiers:
[239] AAIDSTART~AAIND[;O]

[240] R Lengths of identifiers:
[241] ~AIDLEN~~AIND[;l]-AhIDSTART

[242] A starting indices of local vars:
[243] AASTART~l+(A.6.LOC=';')/tpAALOC
[244] A Lengths of local vars:
[245] A.6.LEN~(1~AASTART,1+p.6.ALOC)-1+6ASTART

[246] A Length of longest ident.:
[247] AACOLS~(r/AALEN)r(r/AAIDLEN)r(pAARESULT)rl!pAAARGS

[248] A Pad arg names to conform:
[249] AAARGS+-(ClpPAAARGS),AACOLS)tAAARGS
[250] R 0 row mat if no result:
[251] AARESULT~((XpAARESULT),A~COLS)p66COLStAARESULT

-380­

Chapter 13 Solutions	 WORKSPACE DESIGN AND DOCUMENTATION

TV USEDBY (continued)
[252]	 A Raveled blank mat of local vars:
[253] ~~T~(~~COLSX~6N~P6~START)p' ,
[254]	 R Compute indices: (tLEN[1]),(tLEN[2]), ...
[255] 66I~~~LEN/--ltO,+\6~LEN

[256] ~t1I~At1I+lpA~I

[257]	 A Insert names into raveled matrix:
[258] t1~T[A6I+A6LEN/AACOLSxtA6N]~~ALOC[A6I+AALEN/~ASTART]

[259]	 A Reshape to mat of local vars:
[260] 6ALOC~(AAN,AACOLS)pAAT

[261]	 A Raveled blank mat of identifiers:
[262] A6T~(6ACOLsxAAN~p~AIDSTART)p' ,
[263]	 A Compute indices: (tIDLEN[1]),(tIDLEN[2]), ...
[264] AAI~A6IDLEN/--1iO,+\AAIDLEN

[265] A6I+-A.6I+tpAAI
[266]	 A Insert names into raveled matrix:
[267]	 AAT[~AI+.6~IDLEN/A~COLSX16~N]~.6~VR[~6I+hAIDLEN/

AAIDSTARTJ
[268]	 A Reshape to mat of identifiers:
[269] A6IDS~(~AN,6~COLS)pA~T

[270]	 A Mat of label names:
[271] A~LAB~(AAS~((AAN,2)pAAPID/~APLAB)[;O])fAAIDS

[272] AAPID~A6PLAB~O

[273]	 A Mat of referenced vars less labels:
[274] AARVAR~(~A6S)fA~IDS

[275]	 R Combine different types of vars and a vector
[276]	 A of their types:
[277]	 A~IDS~(AALAB,[OJAARESULT,[O]AAARGS,[O]AALOC),[O]

AARVAR
[278]	 AAIDTYPES~((lpPAALAB),(lppAARESULT),(lPPAAARGS),(lpp

AALOC),lpp~6RVAR)/ 1 2 3 4 5
[279]	 R Select just the first distinct name (and type):
[280] AAT~((~AIDS CMIOTA AAIDS)=tpA.6IDTYPES)/tp.6AIDTYPES
[281] AAIDS+-~AIDS[6AT;]

[282] AAIDTYPES~AAIDTYPES[A6T]

[283]	 A Branch if no columns in IDS (i.e. no identifiers):
[284] ~(ltp~AIDS)!AAL5A

[285]	 A Retain O-names only for system variables (add other
[286]	 A system vars on your APL system):
[287] AAS+- 5 4 p'OIO OPP DRL OCT DLX '
[288] AAT~'O'=AAIDS[;O]

[289] AAI~AAT/tPAAT

[290] A~R~(lPP~AS)~AAS CMIOTA((p~.6I),4)i~AIDS[~AI;]

[291]	 A Branch if all O-names are in this list:
[292] ~(V/AAR)J,AAL5A

[293] AAT~"vAAT\AAR

[294]	 A Squeeze out D-names which are system fns (e.g. DEX):
[295] A.6IDS~A~Tfa6.AIDS

[296] ~~IDTYPES~.6~T/AAIDTYPES

[297]	 A Return to origin 1:
[298]	 AAL5A:DIO~1

[299]	 A Insert new names into NAMES and convert to indices:
[300] ~(X(AAS~1~pAANAMES)-~~T~1!pA~IDS)$~~L8,A6L6,~6L7

-381­

Chapter 13 Solutions	 WORKSPACE DESIGN AND DOCUMENTATION

v USEDBY (continued)
[301] A NAMES has more columns than Ins:
[302] ~6L6:~~IDS~(ClpP~AIDS),~~S)t~~IDS

[303] ~~~L8

[304] R IDS has more columns than NAMES:
[305] A~L7:~~NAMES~((lpp~~NAMES),~AT)tA~NAMES

[306] A
[307] ~~L8:~AIND~~6NAMES CMIOTA ~6IDS

[308] R Flag those not found:
[309] ~~T~AAIND>A~R~lPP~ANAMES

[310] R Add to NAMES and compute indices:
[311] AANAMES~A~NAMES,[l]AATfAAIDS

[312] AAS~AAT/lpAAT

[313] AAIND[AAS]~AAR+lPAAS

[314] AAIDS~~AIND

[315] R How many identifiers are locals?
[316] AAN~-1+6AIDTYPESl5

[317] AALNUM~A~LNUM,AAN

[318] AALOCAL~a~LOCAL,AANpAAIDS

[319] AALTYPE~AALTYPE,A~Np~~IDTYPES

[320] A How many identifiers are globals:
[321] ~AIDS~A~NJ,Afl.IDS

[322] ~AGNUM~6~GNUM,p~AIDS

[323] AAGLOBAL~~~GLOBAL,AAIDS

[324] A
[325] R Branch unless this object has globals:
[326] A~L9:~(XA6GNUM[AAJ])~~ALI0

[327] A Add a level to the "state indicator":
[328] AALCPARSED~AAJ,AALCPARSED

[329] AALCGLOBAL~l,AALCGLOBAL

[330] -+~u~.LOOP

[331] A
[332] R Increment "state indicator" line:
[333] ~ALI0:AAT~A~LCGLOBAL[l]~1+~ALCGLOBAL[1]

[334] R Resume if more globals at this level:
[335] ~(AATSAAGNUM[AALCPARSED[1]])pA6LOOP

[336] R Else drop a level from the "state indicator":
[337] AALCPARSED~lJ,AALCPARSED

[338] AALCGLOBAL~l!AALCGLOBAL

[339] A continue if any levels left:
[340]	 ~(xpAALCPARSED)pAaLI0

V

-382­

Chapter 14

FILE DESIGN

Solutions

AND UTILITIES

1. Here is a possible file structure for the "functions file":

FILE NAME: FNS TIE NUMBER: up to you

DESCRIPTION: contains representations of functions

COMP.
NO • VARIABLE DESCRIPTION

1 DIR Character matrix directory of the names (one
per row) of the functions whose representations
are stored on file. The matrix has as many
columns as the longest function name has
elements. The shorter names are left justified
(padded to the right with spaces).

1+1 VR Character vector visual representation of the
function whose name is DIR[I;] (or canonical
representation if your APL implementation of
APL does not support visual representations).

[WSID: FNSFILE]
v FNAME FNCREATE TIE;DIR;T

[1] A Inititlizes an empty functions file named FNAME,
[2] A tied to TIE.
[3] FNAME OFCREATE TIE A APL*PLUS
[4] R FNAME DCREATE TIE ~ SHARP APL
[5] ~ Construct empty directory:
[6] DIR~ 0 0 p"
[7] ~ Append as 1st component:
[8] T~DIR DFAPPEND TIE A APL*PLUS if DFAPPEND has result
[9] ~ DIR DFAPPEND TIE A APL*PLUS if DFAPPEND has no result
[10]	 A DIR DAPPEND TIE R SHARP APL

v

-383­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

[WSID: FNSFILEJ
v ~~R~~~TIE PUTFN ~~NAME;DIO;~~DIR;6AIND;6~T;6AVR

[1] A Appends or replaces to the functions file tied
[2] A to A~TIE the visual representation (or canonical
[3] A representation) of the function named AANAME.
[4] R Note: will not file functions whose names are
[5] A local to PUTFN. Returns A~NAME if successful,
[6] R else empty vector.
[7] A Origin 1:
[8]	 DIO~l

[9] A Construct visual representation:
[10]	 6AVR~DVR AANAME A APL*PLUS
[11] A AAVR~l DFD AANAME ~ SHARP APL
[12] A AAVR~DCR ~ANAME ~ On other systems
[13] A Return empty vector if function locked:
[14]	 6AR~"

[15]	 ~(X/pAAVR)!O

[16] A Read directory of function names:
[17]	 AADIR~DFREAD AATIE,l A APL*PLUS
[18] A AADIR~OREAD AATIE,l A SHARP APL
[19] A Delete any blanks in name:
[20]	 AAR~AANAME~(AANAME1' ')/AANAME
[21] A Search directory for function name (branch if
[22] A not found):
[23]	 ~((ltp~ADIR)<pAANAME)p~ALl

[24]	 AAIND~(A~DIRA.=(l~pA~DIR)t~ANAME)ll

[25]	 ~(AAIND>lppAADIR)p~~Ll

[26] A Replace existing visual representation with
[27] R new one:
[28]	 AAVR DFREPLACE AATIE,l+AAIND R APL*PLUS
[29] A AAVR OREPLACE AATIE,l+~AIND A SHARP APL
[30]	 ~O

[31] R Add name to directory. Branch unless AANAME
[32] A too long:
[33] AAL1:~((pAANAME)~1~pAADIR)pAAL2

[34] R Pad columns in directory to length of AANAME:
[35]	 AADIR~((lppAADIR),pAANAME)tAADIR

[36] AAL2:AADIR~A~DIR,[1](ltpAADIR)tAANAME

[37] R Replace directory:

[38J ~~DIR DFREPLACE 6ATIE,1 A APL*PLUS

[39] R AADIR DREPLACE AATIE,l A SHARP APL
[40] A Append function representation:
[41]	 AAT~AAVR DFAPPEND AATIE A APL*PLUS if DFAPPEND has

result
[42]	 R AAVR OFAPPEND AATIE A APL*PLUS if DFAPPEND has no

result
[43]	 R AAVR OAPPEND AATIE A SHARP APL

v

-384­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

[WSID: FNSFILEJ
v A~R~6ATIE GETFN ~ANAME;DIO;~6DIR;A6IND;~AVR

[1] R Reads from the functions file tied to a6TIE the
[2] R visual representation (or canonical representation)
[3] R of the function named A8NAME and defines that
[4] A function in the active workspace. Note: will not
[5] A define functions whose names are local to GETFN.
[6] R Returns ~~NAME if successful, empty vector if
[7] R function not found, numeric code if function not
[8J R definable.
[9] R Origin 1:
[10] DIO~1

[11] A Read directory of function names:
[12] A~DIR~DFREAD AATIE,l A APL*PLUS
[13] R A6DIR~DREAD 6ATIE,1 A SHARP APL
[14] A Delete any blanks in name:
[15] ~ANAME~(AANAME#' ')/66NAME
[16] A Search directory for function name (exit if not
[17] A found):
[18] ~~R~"

[19] ~((l~p~~DIR)<pA~NAME)pO

[20] ~6IND~(A~DIRA.=(1!p~ADIR)t~ANAME)ll

[21] ~(~AIND>1pp~~DIR)pO

[22] A Read visual (or canonical) representation from
[23] A file:
[24] AAVR~OFREAD 6~TIE,1+~AIND A APL*PLUS
[25] A ~~VR~OREAD ~ATIE,l+AAIND A SHARP APL
[26] A Define function in workspace (result is function
[27] A name or numeric code indicating WS FULL, SYMBOL
[28] A TABLE FULL, ...):
[29] ~~R~DDEF ~~VR A APL*PLUS
[30] A a~R~3 OFD ~AVR A SHARP APL
[31]	 A A~R~DFX ~~VR A On other systems

v

[WSID: FNSFILEJ
v R~TIE DROPFN NAME;OIO;DIR;IND;LAST

[1] R Removes from the functions file tied to TIE
[2] R the visual representation (or canonical
[3] A representation) of the function named NAME.
[4] R Returns NAME if successful, empty vector if
[5] R function not found.
[6] A Origin 1:
[7] DIO~l

[8] A Read directory of function names:
[9] DIR~DFREAD TIE,1 R APL*PLUS
[10] A DIR~DREAD TIE,1 R SHARP APL
[11] A Delete any blanks in name:
[12] NAME~(NAME#' ')/NAME
[13] R Search directory for fn name (exit if not found):
[14] R~"

[15] ~((l!pDIR)<pNAME)pO

[16] IND~(DIRA.=(ltpDIR)tNAME)ll

-385­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

V	 DROPFN (continued)
[17] ~(IND>lppDIR)pO

[18] A Replace this name with last one in directory:
[19] LAST~(pDIR)[l]

[20] DIR[IND;]~DIR[LAST;]

[21] DIR~ -1 0 ~DIR

[22] A Replace this vis. rep. with last one
[23] (OFREAD TIE,l+LAST)OFREPLACE TIE,l+IND
[24] DFDROP TIE,-l
[25] A (DREAD TIE,1+LAST)DREPLACE TIE,l+IND
[26] A DDROP TIE,-l
[27] R Replace directory:
[28] DIR OFREPLACE TIE,1 R APL*PLUS
[29] A DIR DREPLACE TIE,1 R SHARP APL

V

2.

on file:
A APL*PLUS

A	 SHARP APL

[WSID: FILEDOCJ
V	 FILE FILEDOC PAGE;DIO;DPP;BOTTOM;CMPS;D;DATA;DONE;

FIRST;FOOT;HEIGHT;I;LAST;LEFT;LIM;LINES;MARGIN;N;NEW;
NONDISPLAY;OLDCMP;PNO;QUOTE;S;START;T;TCNL;TITLE;TOP;
TXT;W;WIDTH

[1] R Displays paged	 file documentation. All output is
[2] A via o~ so replace all D~ by custom fn (e.g. PRINT)
[3] R to redirect output. PAGE: rows, columns, margins
[4] R (top, bottom, left, right) FILE:
[5] A APL*PLUS or SHARP APL; otherwise a
[6] A Use origin 1:
[7] DIO~l

[8J R Format no.s to 10 digits (CLEAR WS
[9] DPP~10

[10] R Activate file	 if IBM's workspace 2
[11] R USE FILE
[12] TOP~PAGE[3]

[13] BOTTOM~PAGE[4]

[14] HEIGHT~PAGE[l]-TOP+BOTTOM

[15] LEFT~PAGE[5]

[16] WIDTH~PAGE[2]-PAGE[6]

[17] A Construct newline character:
[18] TCNL~DTCNL R APL*PLUS
[19] R TCNL~DTC[2] A	 APL2
[20] R TCNL~DAV[157]	 A SHARP APL
[21] A Format today's	 date:
[22] D~~DTS[2 3 1]
[23] D[CD=' ')/tpD]~'/'

[24] R Format the time:
[25] T~(~DTS[4]),':',-2f'O' ,~DTS[5]

[26] R Format the file	 name:

tie no. if
file name.

default):

VAPLFILE:

[27] TITLE~,DFNAMES[DFNUMStFILE;]A APL*PLUS
[28] R TITLE~,DNAMES[DNUMStFILE;] R SHARP APL
[29]	 R TITLE~FILE A Otherwise

-386­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]
[47]

[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]

[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71J
[72]
[73]
[74]
[75]
[76]
[77]
[78]
[79]

v FILEDOC (continued)
R Delete leading/trailing blanks:
TITLE~(-+/A\~TITLE=' ')~(+/A\TITLE=' ')~TITLE

R Number of file components and first one:
S~DFSIZE FILE A APL*PLUS

A S~DSIZE FILE A SHARP APL

A S~1,1+rHO FILE R 2 VAPLFILE

START~S[l]

LIM+-S[2J
N+-LIM-START

A If 2 VAPLFILE:

R CMPS~EXITttS~RHo FILE

A LIMf-Nf-pCMPS~CMPS/tpCMPS

A Exit if none:

~NJ,O

R Format page titl~:

TITLE~TITLE,' (' ,(~N),' COMPONENT' ,((l~N)p'S'),') * '
D,' ',T

R If 2 VAPLFILE:
A TITLEf-TITLE,' (' ,C~N),' COMPONENT' ,((l~N)p'S'),' OF '
,(~S),') * ' ,D,' ',T
TITLE+-(TOPpTCNL),WIDTHtCLEFTp' '),'FILE: ',TITLE

A Insert page number:

PNO+-l

T+-'PAGE l'

TITLE[(-pT)itpTITLE]+-T

R Build first page:
TXT~TITLE,TCNL

A Keep track of lines used so far (below top

R margin) in TXT:

LINES+-2

QUOTE~' , , ,

A Define characters which don't display normally:

NONDISPLAY+-OTCNL,DTCLF,DTCBS,OTCBEL,DTCDEL,OTCNUL,

DTCESC,DTCFF R APL*PLUS

R NONDISPLAY+-DAV[l 2 157 159 160] R SHARP APL

A NONDISPLAY+-DTC A APL2

MARGIN+-LEFTp' ,

R Include heading:

T+-TCNL,MARGIN,'COMPONENT SHAPE P VALUE' ,TCNL

TXT+-TXT,T,MARGIN,'-------- ­ -----,

LINES~LINES+2

A Loop by component:

OLDCMP+-O

FIRST~START

I+-START+-l

A If 2 VAPLFILE:

A FIRST+-CMPS[lJ

A I~O

LOOP:~(DONE+-LIM~I+-I+l)/L2

R LOOP:~(DONE~LIM<I+-I+l)/L2 R 2 VAPLFILE

A Read data from file:

NEW~DFREAD FILE,I A APL*PLUS

A NEW~DREAD FILE,I A SHARP APL

-387­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

V FILEDOC (continued)
[80] ~ NEW~GET CMPS[I] A 2 VAPLFILE
[81] A
[82] ~ Branch unless this is the first component:
[83] ~(xOLDCMP)/L1

[84] R Last distinct object read from file:
[85] DATA~NEW

[86] A Earliest such component of that object:
[87] OLDCMP~I

[88] A OLDCMP~CMPS[IlLIM] A 2 VAPLFILE
[89] ~LOOP

[90] A Get next object if this one is identical (to
[91] A last one):
[92] Ll:~((ppDATA)~ppNEW)/L2

[93] A If 2 VAPLFILE:
[94] A L1:~(CMPS[I]11+CMPS[I+-l])/L2

[95] A ~((ppDATA)~ppNEW)/L2

[96] ~((pDATA)V.~pNEW)/L2

[97] ~(A/,DATA=NEW)/LOOP

[98] A Format DATA (components OLDCMP to I-1) ...
[99] A Format shape:
[100] L2:S~(~pDATA),' p ,
[101] A Omit shape and p if a scalar; pad to line up
[102] A with p's:
[103] S~(-11rpS)i(3<pS)/S

[104] A Combine component no.(s) and shape; compute
[105] A remaining width:
[106] T~OLDCMP1I+-1

[107] ~ T~OLDCMP~CMPS[I+-1] R 2 VAPLFILE
[108] T~(~OLDCMP),T/'-',~I+-l

[109] A T~(~OLDCMP),T/'-',~CMPS[I+-l] A 2 VAPLFILE
[110] T~(9rpT)i(-5rpT)iT

[111] S~MARGIN,T,'~',S

[112] W~WIDTH-pS

[113] A Branch if a numeric variable:
[114] ~(0=ltOpDATA)pL3

[115] A Else data is char; consider only up to W chars:
[116] DATA~(Wlx/pDATA)pDATA

[117] A Replace nondisplayable chars by ~:

[118] DATA[(DATA€NONDISPLAY)/tpDATA]~'m'

[119] A Double up quote chars:
[120] DATA~QUOTE,((l+DATA=QUOTE)/DATA),QUOTE

[121] R Branch if data will fit on a single line:
[122] ~(W~pDATA)/L4

[123] R Else truncate and show' ... ':
[124] DATA~((W+-3)pDATA),'... '
[125J ~L4

[126] A If data is numeric, consider only up to
[127] A 1+W+2 elements:
[128] L3:DATA~((1+rW+2)lx/pDATA)pDATA

[129] DATA~~DATA

[130] A Format value from empty array as to:
[131] DATA~DATA,(O=pDATA)/'lO'

-388­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v
[132]
[133]
[134]
[135]
[136]
[137]
[138]
[139]
[140]
[141]
[142]
[143]
[144]
[145]
[146J
[147]
[148]
[149]
[150]

[151]
[152]
[153]
[154]
[155]
[156]
[157]
[158]
[159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]
[167]
[168]

V

FILEDOC Ccontinued)
A Branch if data will fit on a single line:

-+(W2:pDATA)/L4
A Else trunc. at last space within wid and show' ... ':
DATA~C(+/V\' '=~CW+-3)pDATA)pDATA),'... '

A
A Append variable definition to page:
L4:TXT~TXT,TCNL,S,DATA

LINES+-LINES+l
DATA~NEW

OLDCMP+-I
A OLDCMP~CMPS[I]

LAST+-I+-1
R LAST+-CMPS[I+-IJ
A Branch for more

A 2 VAPLFILE

~ 2 VAPLFILE
unless bottom of page (2 lines

A for footnote) or end of file:
~(DONE<LINES<HEIGHT+-2)/LOOP

~ Construct footnote:
L5:T+-FIRST"l-LAST

FOOT+-(-WIDTH)f'COMPONENT' ,CTp'S'),' , ,(~FIRST),T/' TO
, , CliLAST

R Display page:
D~TXT,((HEIGHT-LINES)pTCNL),FOOT.BOTTOMpTCNL

FIRST+-LAST+-I
A FIRST+-LAST~CMPS[IlLIM] R 2 VAPLFILE
R Exit if no more components:

-+DONE/O
R Format new page:
TXT~TITLE,TCNL

PNO+-PNO+l
T~' PAGE ',a>PNO
TXT[(-pT)ttpTITLE]~T

LINES+-2
R Insert new heading:
T~TCNL,MARGIN,'COMPONENT

TXT~TXT,T,MARGIN,'--------­

LINES+-LINES+2
A Branch for more components:

-+LOOP

SHAPE P VALUE' ,TCNL
-----,

-389­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

3.
[WSID: MULTIFLO]

v EMPLOYEES;Fl;F2;F3;G;GOOD;IND;NUM;P;R
[1] A ILLUSTRATION OF FILE UTILITY FUNCTIONS.
[2] A Assumes employee information is on file. The file
[3] A is identified by the global variable FP (file
[4] A parameters). Fields of file are:
[5] A 1. Employee number
[6] A 2. Employee name
[7J A 3. Employee age
[8J A Uses subfns: IOTA,CATRECWS,DELREC,SELECTWS.
[9] A Ask for choice on same line:
[10] CHOOSE:~~P~'ADD, DELETE, LIST OR END: '
[11] R~(pP)!~

[12] A Branch based on 1st char of response:
[13] 4('ADLE'=ltR)/ADD,DELETE,LIST,END
[14] O~'** INVALID CHOICE. CHOOSE FROM: ADLE'
[15] ~CHOOSE

[16] A
[17] R
[18] ADD:O~'EMPLOYEE NUMBER (OR 0 IF DONE)'
[19] Fl~,O

[20] A continue if exactly 1 number entered:
[21] ~(l=pFl)/Al

[22] D~'** ENTER 1 NUMBER'
[23] ~ADD

[24] A Branch to choice question if 0 entered:
[25] Al:~(O=Fl)/CHOOSE

[26] A continue unless employee number already exists:
[27] ~(-l=lp(FP,l)IOTA Fl)pA2
[28] O~'** EMPLOYEE ' ,(~F1),' ALREADY IN LIST'
[29] ~ADD

[30] A2:~~P~'EMPLOYEE NAME (MAX 25 CHARACTERS): '
[31] A Ask for name at end of same line:
[32] F2~(pP)!~

[33] A continue unless name too long:
[34] ~(25~pF2)/A3

[35] O~'** NAME TOO LONG'
[36] 4A2
[37] A3:D~'EMPLOYEE AGE'
[38] F3~,D

[39] A Continue if exactly 1 number entered:
[40] 4Cl=pF3)/A4
[41] O~'** ENTER 1 NUMBER'
[42] ~A3

[43] A continue if a valid age:
[44] A4:4(CF3=rF3)A(F3~17)AF3~99)/A5

[45J O~'** AGE MUST BE INTEGER FROM 17 TO 99'
[46] ~A3

[47] A Pad name to length 25:
[48] A5:F2~25tF2

[49] R Catenate new values and ask for more:
[50] FP~FP CATRECWS 1
[51] ~ADD

-390­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

V EMPLOYEES Ccontinued)
[52] t=I

[53] t=I

[54] DELETE:D~'ENTER EMPLOYEE NUMBERS TO DELETE'
[55] R Ravel to insure a vector, not scalar:
[56]	 NUM~,D

[57] R continue if all valid numbers:
[58]	 IND~(FP,l)IOTA NUM
[59]	 ~(A/GOOD~-11(pNUM)pIND)/Dl

[60]	 D~'** NOT FOUND: ' ,~(~GOOD)/NUM

[61]	 ~DELETE

[62] A Squeeze out deleted employees:
[63] Dl:FP~FP DELREC IND
[64]	 ~CHOOSE

[65] A
[66] R

[67] LIST:D~'NUMBER AGE NAME'
[68]	 D~"

[69] A Prepare to sort employees by number:
[70]	 "SELECTWS FP, 1 2 3
[71]	 G~.Fl

[72] A Sort and display:
[73]	 O~C5 0 7 0 ~Fl[G],[1.5]F3[G]),((CpFl),3)p' '),F2[G;J
[74]	 D~"

[75]	 -+CHOOSE
[76] R
[77] R
[78] END:

V

4.
[WSID: MULTIFLO]

V FP INITFILE FT;BLK;DEL;DISP;INCR;L;LAY;R;TIE;W;OIO
[1] A Initializes file. Assumes the file already
[2] A exists, contains no components and is tied to FP[2J.
[3]	 DIO~1

[4] A Check validity of arguments:
[5]	 DERRORC(11ppFP)V2~ppFT)/'RANKERROR'
[6]	 DERROR(C2#lppFT)Vl1~pFP)/'FPLENGTH ERROR'
[7]	 INCR+--FP[3]
[8]	 DERROR(CINCR11~pFT)vFP[8]1+/xFT[1;])/'FTLENGTH ERROR'
[9]	 DERROR(FPv.~rFP)/'FP DOMAIN ERROR'
[10]	 OERROR((A/(CFT[1;]>O)/FT[2;])€14)~CFT[1;]V.<O)VFT[1;JV

.trFT[l;])/'FT DOMAIN ERROR'
[11]	 TIE~FP[2]

[12]	 DERROR(~TIE€DFNUMS)/'FILENOT TIED'
[13]	 DISP~FP[4]

[14]	 DERRORCDISP<10)/'DISPLACEMENT ERROR'
[15]	 BLK+--FP[5J
[16]	 DERROR(BLK~O)/'BLOCKSIZE ERROR'
[17]	 DERRORCFP[67 9 10]V.~O)/'USE a FOR FP[6 7 9 10J'

-391­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

V	 INITFILE (continuedJ
[18]	 DEL+-FP[11]
[19]	 ~CxDEL)J,Ll

[20]	 DERRORC~(IDEL)€tINCR)/'NONEXISTENTDELETION FIELD
NUMBER'

[21]	 DERROR(lV.~FT[;IDEL])/'USEFT=l 1 FOR DELETION FIELD'
[22] Ll:L+-tO
[23]	 LAY+-FP[1J
[2 4]	 ~ Cx LAY) J.L2
[25]	 DERROR(~LAY€tINCR)/'NONEXISTENTLAYER FIELD NUMBER'
[26]	 DERRORCO=W+-FT[1;LAY])/'LAYER FIELD INACTIVE'
[27J	 DERRORCLAY=IDELJ/'LAYER AND DELETION FIELDS ARE THE

SAME'
[28]	 L+-CO,(W~1)pW)pO

[29]	 ~(2¢FT[2;LAY])pL2

[30]	 L+-(O,(W¢1)pW)p"
[31] L2:R+-" OFAPPEND TIE
[32]	 R+-(O 0 p' ')DFAPPEND TIE
[33]	 R+-(O 0 p' ')OFAPPEND TIE
[34]	 R+-FT DFAPPEND TIE
[35]	 R+-(lO)OFAPPEND TIE
[36]	 R+-(lOJOFAPPEND TIE
[37]	 R+-FP OFAPPEND TIE
[38]	 R+-(tOJOFAPPEND TIE
[39]	 R~L OFAPPEND TIE
[40]	 R+-(tOJOFAPPEND TIE
[41]	 ~(DISP~lOJpO

[42]	 R~lO

[43] LOOP:~(DISP>R DFAPPEND TIEJpLOOP
V

[WSID: MULTIFLOJ
v	 NFP~FP CATREC MAT;ARPS;BIT;BLK;C;CMP;DATA;DCMP;DEL;

DISP;F;FLD;FREC;FT;FILL;GOOD;I;INCR;INDS;LAYER;LC;LEAD
;LV;M;MIN;N;NFLD;NREC;RMAT;RPS;S;SDISP;SETS;T;TIE;VEC;
W;WID;DIO

[1] A Catenates rows of MAT to file.
[2]	 OERROR((2<ppMAT)Vl~ppFP)/'RANKERROR'
[3]	 DERROR(11~pFPJ/'LENGTHERROR'
[4]	 NFP+-FP
[5] A Convert scalar or vector to matrix:
[6]	 ~(2=ppMAT)pL1

[7]	 MAT~(-2t 1 1 ,pMATJpMAT
[8] R Exit if no records to catenate:
[9] Ll:~(x1ppMATJ!O

[10]	 DIO~l

[11]	 TIE~FP[2J

[12]	 INCR~FP[3]

[13]	 DISP+-FP[4]
[14]	 BLK+-FP[5J
[15]	 DEL+-I FP[11]
[16]	 FILL+-FP[ll]<Q
[17]	 FT~OFREAD TIE,4

-392­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

V CATREC (continued)
[18] A Widths (ne. eels.) of fields:
[19] WID~FT[l;]

[20] ~ Indices of active fields:
[21] FLD~(xWID)/tINCR

[22] A Exclude deletion field:
[23] NFLD~pFLD~(FLD¢DEL)/FLD

[24] OERROR((l~x/pMAT)A(l!pMAT)#+/WID[FLD])/'LENGTHERROR'
[25] DERROR((2¢FT[2;FLD])v.~O=ltOpMAT)/'DOMAINERROR'
[26] A Extend singleton across all columns:
[27] ~(1¢x/pMAT)pL2

[28] MAT~(l,+/WID[FLD])pMAT

[29] L2:ARPS~RPS~DFREAD TIE,8
[30] ~ Branch unless ARPS should be read:
[31] ~(=/FP[7 lO])pL3
[32] ARPS~DFREAD TIE,lO
[33] A Branch unless layered file:
[34] L3:~(xFP[1])~L7

[35] A Read layer values:
[36] LV~DFREAD TIE,9
[37] A Compute the col inds of MAT with layer values:
[38] LC~(O,+\WID[FLD])[FLDtFP[l]]+tWID[FP[l]]

[39] A Convert to scalar if vector fld:
[40] VEC~1=pLC

[41] LC~(VEC~pLC)pLC

[42] A Use layer value of 1st row of MAT:
[43] L4:LAYER~MAT[1;LC]

[44] A Branch if a vector layer field:
[45] 4VECpL5
[46] A Flag rows of MAT in this layer:
[47] GOOD~MAT[;LC]A.=LAYER

[48] A ••• and sets with this layer value:
[49] SETS~LVA.=LAYER

[50] ~L6

[51] L5:GOOD~MAT[;LC]=LAYER

[52] SETS~LV=LAYER

[53] A Put remaining rows in RMAT:
[54] L6:RMAT~(~GOOD)fMAT

[55] MAT~GOODfMAT

[56] A Consider only non-full sets in this layer
[57] A or empty sets in any layer:
[58] SETS~(ARPS=O)VSETSAARPS1BLK

[59] ~L8

[60] L7:SETS~ARPS~BLK

[61] A Convert to indices:
[62] L8:SETS~SETS/lpSETS

[63] NREC~lppMAT

[64] A No. records filed so far:
[65] FREC~O

[66] A Branch if no slots available in existing sets:
[67] L9:~(BLK~MIN~l/IARPS[SETS])pL25

[68] A Branch if more than 1 set needed:
[69] T~NREC-FREC

[70] ~(T>BLK-MIN)pLIO

-393­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

V CATREC (continued)
[71] A Choose fullest set which will hold all recs:
[72] S~BLK-IARPS[SETS]

[73] S~SETS[Sll/(S~T)/S]

[74] ~Ll1

[75] A Choose set with most empty slots:
[76] L10:S~SETS[(IARPS[SETS])tMIN]

[77] A No. records to be inserted within the set:
[78] L11:M~TLRPS[S]-IARPS[S]

[79] R No. records to be catenated within the set:
[80] N~CT-M)lBLK-RPS[S]

[81] A Displacement (no. components) before this set:
[82] SDISP~DISP+INCRxS+-l

[83] R Branch if no deletion field:
[84] ~(xDEL)tL12

[85] R Read deletion field for set s:
[86] BIT~DFREAD DCMP~TIE,DEL+SDISP

[87] R Branch if no records to be inserted:
[88] ~(xM)!L12

[89] R Indices of available insertion slots:
[90] INDS~Mp(~BIT)/lpBIT

[91] R Columns of MAT filed so far:
[92] L12:C~O

[93] A Next field index:
[94] I~l

[95] A Loop by active field:
[96] L13:~(I>NFLD)pL19

[97] R Field number:
[98] F~FLD[I]

[99] A Field width Cno. columns):
[100] W~WID[F]

[101] R Read field F for set s:
[102] DATA~DFREAD CMP~TIE,F+SDISP

[103] R Branch if a matrix field:
[104] ~(W>1)pL15

[105] R Column of MAT if a vector field:
[106] C~C+1

[107] R Branch if no records to insert:
[108] ~(xM)~L14

[109] DATA[INDS]~MAT[FREC+lM;C]

[110] A Branch if no records to catenate:
[111] ~CXN)!L18

[112] L14:DATA~DATA,MAT[(FREC+M)+lN;C]

[113] ~L18

[114] R Branch if no records to insert:
[115] L15:~(xM)~L16

[116] DATA[INDS;]~MAT[FREC+tM;C+lW]

[117] A Branch if no records to catenate:
[118] ~(xN)~L17

[119] L16:DATA~DATA,[1]MAT[(FREC+M)+lN;C+lW]

[120] L17:C~C+W

[121] L18:DATA DFREPLACE eMP
[122] I~I+l

[123] ~L13

-394­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v
[124]
[125]
[126]
[127]
[128]
[129]
[130]
[131]
[132]
[133]
[134]
[135]
[136]
[137]
[138]
[139]
[140]
[141]
[142]
[143]
[144]
[145]
[146]
[147]
[148]
[149]
[150]
[151]
[152]
[153]
[154]
[155]
[156]
[157]
(158]
(159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]
[167]
[168]
[169]
[170]
[171]
[172]
[173]
[174J
[175]
[176]

CATREC (continued)

R Branch if no deletion field:

L19:LEAD+-l

~(XDEL)J,L22

A Branch if no records to insert:
~(xMJiL20

R Turn active record bits on:
BIT[INDS]+-l
LEAD+-I\/BIT=I\\BIT

A Branch if no records to catenate:
~(xN) J,L21

L20:BIT+-BIT,Npl
L21:BIT DFREPLACE DCMP
A Increment FREe by no. records added to this set:
L22:FREC+-FREC+M+N

RPS[SJ+-RPS[S]+N
FP[9]+-FP[9]+T+-O=ARPS[SJ

R Replace layer value if file layered and
A set initially empty:
~(Tl\xFP[1])J,.L24

R Branch if a vector layer field:
-+VECpL23
LV[S;]+-LAYER
-+L24

L23:LV[S]+-LAYER
L24:ARPS[S]+-(-1 l)[l+LEADJxM+N+IARPS[SJ

FP[7]+-FP[7]+N
A Exit if all of MAT filed:

4CNREC=FREC)pL34
~L9

A Add new set; no. fields to be appended:
L25:NFLD~FP[3]

A No. records to be appended in next set:
N+-BLKlNREC-FREC

A Columns of MAT filed so far:
C+-O

A Next field number:
F~l

A Loop by field:
L26: 4 CF>NFLDJ p L3 2
W~WID[F]

A Branch unless a latent field:
~CXW)pL27

DATA+-lO
~L31

A Branch if a matrix field:
L27:~(W>1)pL29

A Branch unless it's the deletion field:
4CDEL;fFJpL28
DATA+-Npl
-+L30

R Column of MAT if a vector field:
L28:C~C+l

DATA~MAT[FREC+lN;C]

-395­

•••

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

v
[177]
[178]
[179]
[180]
[181]
[182]
[183]
[184]
[185]
[186]
[187]
[188]
[189]
[190]
[191]
[192]
[193]
[194]
[195]
[196]
[197]
[198]
[199]
[200]
[201]
[202]
[203]
[204]
[205]
[206]
[207]
[208]
[209]
[210]
[211]

v

CATREC (continued)
-+L30
L29:DATA~MAT[FREC+lN;C+lW]

C~C+W

A Branch unless set must be padded to
L30:-+FILLJ,L31
DATA~(BLK,ltpDATA)tDATA

L31:T~DATA DFAPPEND TIE
F~F+l

....L26
R Increment FREC by no. records added
L32:FREC~FREC+N

ARPS~ARPS,N

RPS~RPS,T~NrBLKxFILL

FP[7]~FP[7]+T

FP[6]~FP[6]+1

FP[9]+-FP[9]+1

BLK records:

to this set:

R	 Catenate layer value if file layered:
~CXFP[1])J,L33

LV+-LV, [1] LAYER
R	 continue unless all of MAT
L33:-+(NREC~FREC)pL25

L34:FP[10]~FP[10]+NREC

R Branch unless layered:
.... CxFP[1])J.L36

R Branch if no data left to
.... cXlppRMAT)J,L35

R Put remaining rows in MAT,
MAT+-RMAT
-+L4

L35:LV DFREPLACE TIE,9
L36:RPS DFREPLACE TIE,8
~(XDEL)~L37

ARPS DFREPLACE TIE,lO
L37:FP DFREPLACE TIE,7
NFP~FP

filed:

file:

continue:

[WSID: MULTIFLO]
V	 NFP~FP CATRECWS NREC;ARPS;BIT;BLK;CMP;DATA;DCMP;DEL;

DISP;F;FILED;FLD;FREC;FT;FILL;GOOD;I;INCR;INDS;LAYER;
LEAD;LV;M;MIN;N;NFLD;NR;RANK;RPS;S;SDISP;SETS;SHAPE;T;
TIE;VAR;VEC;W;WID;DIO

[1] A Catenates elements/rows of Fl,F2,F3 9 to file.
[2] DERROR(Cl~ppFP)vlv.~pNREC)/'RANKERROR'
[3] NREC~lpNREC

[4] DERRORCl1~pFP)/'LENGTHERROR'
[5] NFP~FP

[6] DIO~l

[7] TIE~FP[2]

[8] INCR+-FP[3]
[9] DISP+-FP[4]
[10] BLK+-FP[5J

-396­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

v CATRECWS (continued)
[11]	 DEL+-IFP[11]
[12]	 FILL+-FP[11J<O
[13]	 FTf-DFREAD TIE,4
[14] R widths (no. eols.) of fields:
[15]	 WID+-FT[l;]
[16] R Indices of active fields:
[17] FLD+-(xWID)/tINCR
[18J R Exclude deletion field:
[19]	 NFLD+-pFLD+-CFLD~DEL)/FLD

[20] R Index of next active field:
[21]	 If-I
[22] R Loop by active field to verify field vars
[23] A (bypass this loop to make the fn faster and
[24] A to live dangerously):
[25] L1:~(I>NFLD)pL2

[26] A Field number:
[27]	 F+-FLD[IJ
[28] A Field width (no. columns):
[29]	 W+-WID[F]
[30] A Look at field variable:
[31]	 RANK+-pSHAPE+-pVAR+-~'F',~F

[32]	 DERROR((2~FT[2;F])10=1tOpVAR)/'DOMAINERROR'
[33] A continue if singleton data:
[34]	 I~I+1

[35]	 -+(lA.=SHAPEJpLl
[36]	 DERRORCRANK>2)/'RANK ERROR'
[37]	 DERRORC(CRANK=l)A(W=ltSHAPE)vCW=l)ANREC=ltSHAPE)vCRANK

=2)A(SHAPEA.=NREC,W)VSHAPEA.=1,W)/'LENGTH ERROR'
[38]	 -+Ll
[39] R Exit if no records to catenate:
[40] L2:~(xNREC)J,O

[41]	 ARPS+-RPS+-DFREAD TIE,S
[42] R Branch unless ARPS should be read:
[43]	 -+(=/FP[7 lO])pL3
[44]	 ARPSf-DFREAD TIE,lO
[45] A Branch unless layered file:
[46] L3:-+(xFP[1])J,L7
[47] A Read layer values:
[48]	 LV+-DFREAD TIE,9
[49] R Flag records filed so far:
[50]	 FILED+-NRECpO
[51] A Look at layer field:
[52] L4:VARf-~'F' ,~FP[1]

[53]	 W+-WID[FP[l]]
[54]	 VAR+-(NREC,CW>1)pW)pVAR
[55] A Branch if vector field:
[56]	 VEC+-W=l
[57]	 -+VECpL5
[58] A Flag records with layer of 1st unfiled rec:
[59]	 LAYER+-VAR[FILEDtO;]
[60]	 GOOD~VARA.=LAYER

[61] R ••• and sets with this record:
[62]	 SETS~LV".=LAYER

-397­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

V CATRECWS (continued)
[63] ~L6

[64] L5:LAYER~VAR[FILEDlO]

[65] GOOD~VAR=LAYER

[66] SETS~LV=LAYER

[67] A Convert to indices:
[68] L6:GOOD~GOOD/lpGOOD

[69] NR~pGOOD

[70] R Consider only non-full sets in this layer or
[71] A empty sets in any layer:
[72] SETS~(ARPS=O)vSETSAARPS#BLK

[73] ~L8

[74] L7:GOOD~tNR~NREC

[75] SETS~ARPS~BLK

[76] A Convert to indices:
[77] L8:SETS~SETS/tpSETS

[78] A No. records filed so far:
[79] FREC~O

[80] A Branch if no slots available in existing sets:
[81] L9:~(BLK~MIN~l/IARPS[SETS])pL24

[82] A Branch if more than 1 set needed:
[83] T~NR-FREC

[84] ~CT>BLK-MIN)pLI0

[85] A Choose fullest set which will hold all recs:
[86] S~BLK-IARPS[SETS]

[87] S~SETS[Sll/(S~T)/S]

[88] ~Ll1

[89] A Choose set with most empty slots:
[90] LI0:S~SETS[(IARPS[SETS])tMIN]

[91] A No. records to be inserted within the set:
[92] Lll:M~TlRPS[S]-IARPS[S]

[93] R No. records to be catenated within the set:
[94] N~(T-M)lBLK-RPS[S]

[95] A Displacement (no. components) before this set:
[96] SDISP~DISP+INCRxS+-l

[97] R Branch if no deletion field:
[98] ~(XDEL)!L12

[99] A Read deletion field for set s:
[100] BIT~DFREAD DCMP~TIE,DEL+SDISP

[101] A Branch if no records to be inserted:
[102] ~(XM)~L12

[103] A Indices of available insertion slots:
[104] INDS~Mp(~BIT)/tpBIT

[105] A Next field index:
[106] L12:I~1

[107] R Loop by active field:
[108] L13:~(I>NFLD)pL18

[109] A Field number:
[110] F~FLD[I]

[111] R Field width (no. columns):
[112] W~WID[F]

[113] A Look at field variable:
[114] VAR~~'F' ,~F

-398­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v CATRECWS (continued)
[115] R Reshape singletons, vectors and 1-row matrices
[116] R to proper rank, shape:
[117] VAR~(NREC,(W>l)pW)pVAR

[118] R Read field F for set s:
[119] DATA~DFREAD CMP~TIE,F+SDISP

[120] R Branch if a matrix field:
[121] ~(W>1)pL15

[122] A Branch if no records to insert:
[123] ~(xM)J,L14

[124] DATA[INDS]~VAR[GOOD[FREC+tM]]

[125] ~ Branch if no records to catenate:
[126] ~(xN)!L17

[127] L14:DATA~DATA,VAR[GOOD[(FREC+M)+lN]]

[128] ~L17

[129] R Branch if no records to insert:
[130] L15:~(xM)J,L16

[131] DATA[INDS;]~VAR[GOOD[FREC+lM];]

[132] R Branch if no records to catenate:
[133] ~(xN)J,L17

[134] L16:DATA~DATA,[1]VAR[GOOD[(FREC+M)+lN];]

[135] L17:DATA OFREPLACE eMP
[136] I+-1+1
[137] -+L13
[138] R Branch if no deletion field:
[139] L18:LEAD~1

[140] -+(XDEL)J,L21
[141] A Branch if no records to insert:
[142] -+(xM)J,L19
[143] A Turn active record bits on:
[144] B1T[INDS]~1

[145] LEAD~A/BIT=A\BIT

[146] A Branch if no records to catenate:
[147] -+(xN) J,L20
[148] L19:BIT~BIT,Npl

[149] L20:BIT DFREPLACE DCMP
[150] R Increment FREe by no. records added to this set:
[151] L21:FREC~FREC+M+N

[152] RPS[S]~RPS[S]+N

[153] FP[9]~FP[9]+T~O=ARPS[S]

[154] A Replace layer value if file layered and
[155] R set initially empty:
[156] ~(TAxFP[1])J,L23

[157] A Branch if a vector layer field:
[158] ~VECpL22

[159] LV[S;]~LAYER

[160] ~L23

[161] L22:LV[S]+-LAYER
[162J L23:ARPS[S]~(-1 1)[1+LEADJxM+N+IARPS[SJ
[163] FP[7]~FP[7]+N

[164] R Exit if all of data in field vars. filed:
[165] o?(NR=FREC)pL33
[166] -+L9

-399­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

V
[167]
[168]
[169]
[170]
[171]
[172]
[173]
[174]
[175]
[176]
[177]
[178]
[179]
[180]
[181]
[182]
[183]
[184]
[185]
[186]
[187]
[188]
[189]
[190]
[191J
[192]
[193]
[194]
[195]
[196]
[197]
[198]
[199]
[200]
[201]
[202]
[203]
[204]
[205]
[206]
[207]
[20S]
[209]
[210]
[211]
[212]
[213]
[214]
[215]
[216]
[217]
[218]
[219]

CATRECWS (continued)

R No. records to be appended in next set:

L24:N~BLKlNR-FREC

R Next field number:
F~l

R Loop by field:
L25:~(F>INCR)pL31

W~WID[F]

R Branch unless a latent field:
-+(XWlpL26
DATA~lO

-+L30
R Branch unless it's the deletion field:
L26:-.CDELiF)pL27
DATA~Np1

-+L29
R Look at field variable:
L27:VAR~~'F' ,tt>F
R Reshape singletons, vectors
A to proper rank, shape:
VAR~(NREC,(W>1)pW)pVAR

A Branch if a matrix field:
-+(W>1)pL28
DATA~VAR[GOOD[FREC+lN]]

-+L29
L28:DATA~VAR[GOOD[FREC+lN];]

and 1-row matrices

R Branch unless set must be padded to BLK records:
L29:-+FILLJ..L30
DATA~(BLK,l~pDATA)tDATA

L30:T~DATA DFAPPEND TIE
F~F+1

-+L25
A Increment FREe by no. records added to this set:
L31:FREC~FREC+N

ARPS~ARPS,N

RPS~RPS,T~NrBLKXFILL

FP[7]~FP[7]+T

FP[6]~FP[6]+1

FP[9]~FP[9]+1

R Catenate layer value if file layered:
~(XFP[1])J,L32

LV~LV , [1] LAYER
~ continue unless all of data in field vars. filed:
L32:~(NR1FREC)pL24

R Branch unless layered:
L33:~(XFP[1])tL34

R Branch if no data left to
FILED[GOOD]~1

-+(A/FILEDJJ,.L4
LV DFREPLACE TIE,9

L34:RPS DFREPLACE TIE,S
~(XDEL)J,L35

ARPS DFREPLACE TIE,lO
L35:FP[10]~FP[lO]+NREC

file:

-400­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

v	 CATRECWS Ccontinued)
[220] FP OFREPLACE TIE,7
[221] NFP~FP

[222] A Erase global field variables:
[223] F~<t>CNFLD,l)pFLD

[224] F~'F' ,C+/' '=F)<1>F
[225]	 Ff-DEX F

V

[WSID: MULTIFLO]
V	 INDS~FP IOTA VALS;ARPS;BIT;DATA;DEL;DISP;FLD;FOUND;FT;

INCR;IND;LV;NDEL;NSET;NUM;RPS;S;SDISP;SET;SETS;SHAPE;T
;TIE;VIND;WID;DIO

[1] A Searches through field FP[12J for VALS and
[2] A returns 2-row matrix of indices. First row
[3] A is set number Corigin 1); second row is index
[4] A Corigin 1) within set. Result contains -Is
[5] A where corresponding value is not found.
[6] A Shape of result is 2,pVALS. Requires CMIOTA
[7] A function if a character matrix field.
[8] DERRORClfppFP)/'RANK ERROR'
[9] DERRORC121pFP)/'LENGTH ERROR'
[10] DIO~l

[11] INCRf--:FP[3J
[12] DELf--IFP[ll]
[13] FLD~FP[12]

[14] OERRORCCFLDE1INCR)AFLDtDEL)/'INVALID FIELD NUMBER'
[15] TIE~FP[2]

[16] FT~OFREAD TIE f4

[17] A width Cno. columns) of specified field:
[18] WIDf--FT[l;FLDJ
[19] DERRORCO=WID)/'INACTIVE FIELD'
[20] OERRORCCWID~1)ACXppVALS)AWID1-1ipVALS)/'LENGTHERROR'
[21] A Numeric field?
[22] NUM~21FT[2;FLD]

[23] DERRORCNUM#O=lfOpVALS)/'DOMAIN ERROR'
[24] A Branch unless VALS is a scalar for a mat fld:
[25] ~((WID=l)VXppVALS)pLl

[26] R Treat a scalar as a vector if a matrix field:
[27] VALS~WIDpVALS

[28] A Determine shape of result; then 'ravel' VALS:
[29] Ll:SHAPE~(-WID11)~pVALS

[30] VALS~(CX/SHAPE),(WID11)pWID)pVALS

[31] A Initialize 'raveled' result:
[32] INDS~(2,X/SHAPE)p-l

[33] A Exit if VALS is empty or if no records on file:
[34] ~CCOESHAPE)VO=FP[lO])pL14

[35] DISP+-FP[4J
[36] ARPS~RPS~OFREAD TIE,8
[37] A Branch unless ARPS should be read:
[38] ~(=/FP[7 lO])pL2
[39] ARPS~OFREAD TIE,lO

-401­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

V IOTA (continued)
[40] A Consider only nonempty sets:
[41] L2:SETS~01ARPS

[42] A ••• and sets specified in <layers>:
[43] ~(xFP[l])!L6

[44] ~(xDNC 'layers')!L6
[45] R Read layer values:
[46] LV~DFREAD TIE,9
[47] A Branch if matrix layers field:
[48] ~(2=ppLV)pL3

[49] SETS~SETSALV€layers

[50] ~L6

[51] A Convert <layers> to matrix if not already:
[52] L3:DERROR(FT[1;FP[1]]~-liplayers)/'LENGTHERROR'
[53] ~(2=pplayers)pL4

[54] layers~((x/-l!players),-ltplayers)players

[55] A Branch if numeric matrix field:
[56] L4:~(O=ltOpLV)pL5

[57] SETS~SETSA(layers CMIOTA LV)~lpplayers

[58] 4L6
[59] L5:SETS~SETSAv/LVA.=~layers

[60] A Convert to indices; erase <layers>:
[61] L6:SETS~SETS/tpSETS

[62] NSET~pSETS

[63] LV~OEX 'layers'
[64] A Indices into INDS of values not yet found:
[65] VIND~llppVALS

[66] R Last set index:
[67] S~O

[68] A Loop by nonempty set:
[69] L7:~(S~NSET)pL14

[70] A Current set index and number:
[71] S~S+l

[72] SET~SETS[S]

[73] A Displacement (no. components) before this set:
[74] SDISP~DISP+INCRxSET+-l

[75] R Read field FLD for set SET:
[76] DATA~DFREAD TIE,FLD+SDISP
[77] R Branch if deletion field unneeded:
[78] 4(NDEL~ARPS[SET]=RPS[SET])pL9

[79] A Branch if deletion field needed:
[80] ~(NDEL~ARPS[SET]>O)!L8

[81] A Active records are leading records:
[82] DATA~(ARPS[SET],(WID>l)pWID)pDATA

[83] ~L9

[84] A Read and apply deletion field for set SET:
[85] L8:BIT~OFREAD TIE,DEL+SDISP
[86] DATA~BITfDATA

[87] A Branch if a matrix field:
[88] L9:~(WID>1)pLI0

[89] R Search algorithm for vector field:
[90] IND~DATAtVALS

[91] ~L12

-402­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

V IOTA (continued)
[92J A Branch if a numeric matrix field:
[93J LI0:~NUMpLll

[94] A Search algorithm for character matrix field:
[95J IND~DATA CMIOTA VALS
[96] ~L12

[97] R Search algorithm for numeric matrix field:
[98] L11:IND~1++/A\VALSV.~~DATA

[99] R Determine those values found in this set:
[100] L12:FOUND~IND~lppDATA

[101] A Continue to next set if none found:
[102] IND~FOUND/IND

[103] ~CxpIND)~L7

[104] R Consider deletion field if applicable:
[105] ~NDELpL13

[106] IND~(BIT/lpBIT)[1ND]

[107] A Insert indices in result:
[108] L13:INDS[;FOUND/VIND]~SET,[O.5]IND

[109] A Compress indices of remaining values:
[110] BIT~~FOUND

[111] VIND~BIT/VIND

[112] R Exit if all found:
[113] ~(XpVIND)!L14

[114] R Else, compress remaining values:
[115] VALS~BITfVALS

[116] ~L7

[117]	 L14:INDS~(2,SHAPE)pINDS

V

[WSID: MULTIFLO]
v INDS~IOTARHO FP;ARPS;BIT;CMPS;DEL;FT;I;LV;NSET;RPS;

SETS;START;TIE;DIO
[1] A Returns 2 row matrix of indices of all active records
[2] R on file. First row is set number (origin 1); second
[3] R row is index (origin 1) within set.
[4] DERROR(l~ppFP)/'RANKERROR'
[5] DERRORC111pFP)/'LENGTH ERROR'
[6] DIO~l

[7] R Branch if some records of file:
[8J ~(XFP[10])pL1

[9] INDS~ 2 0 pO
[10] 4L8
[11] L1:TIE~FP[2]

[12] ARPS~RPS~DFREAD TIE,8
[13] R Branch unless ARPS should be read:
[14] ~(=/FP[7 lO])pL2
[15] ARPS~DFREAD TIE,lO
[16] R Consider only nonempty sets:
[17] L2:SETS~01ARPS

[18] R ••• and sets specified in <layers>:
[19] ~(xFP[1])!L6

[20] ~(xDNC 'layers')!L6

-403­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

v IOTARHO (continued)
[21] A Read layer values and fId types:
[22] LV~DFREAD TIE,9
[23] FT~DFREAD TIE,4
[24] A Branch if matrix layers field:
[25] ~(2=ppLV)pL3

[26] SETS~SETSALVElayers

[27] ~L6

[28] A Convert <layers> to matrix if not already:
[29] L3:DERROR(FT[1;FP[1]]~-ltplayers)/'LENGTHERROR'
[30] ~(2=pplayers)pL4

[31] layers~((x/-1!players),-ltplayers)players

[32] R Branch if numeric matrix field:
[33] L4:~(O=ltOpLV)pL5

[34] SETS~SETSA(layers CMIOTA LV)~lpplayers

[35] ~L6

[36] L5:SETS~SETSAv/LVA.=~layers

[37] A Convert to indices; erase <layers>:
[38] L6:SETS~SETS/lpSETS

[39] LV~OEX 'layers'
[40] R Construct 2 rows: set inds, rec inds:
[41] INDS~IARPS[SETS]

[42] A I~MONIOTA INDS:
[43] I~I+lpI~INDS/-l!O,+\-INDS

[44] INDS~(INDS/SETS),[O.5]I

[45] A Exit if no deleted records:
[46] ~(ARPS[SETS]A.=RPS[SETS])pL8

[47] A Deletion field number:
[48] DEL~IFP[ll]

[49] A Set no.s for which deletion bits are to be read:
[50] SETS~(ARPS[SETS]<O)/SETS

[51] NSET~pSETS

[52] A Exit if none:
[53] ~(XNSET)~L8

[54] A Component numbers of deletion bit fields:
[55] CMPS~(DEL+FP[4])+FP[3]xSETS+-l

[56] A starts of each selected set's indices in result:
[57] ARPS~IARPS

[58] START~(O,+\ARPS)[SETS]

[59] A Compress ARPS to selected sets:
[60] ARPS~ARPS[SETS]

[61] R Next set index:
[62] I~l

[63] A Loop by set; read deletion bits:
[64] L7:BIT~OFREAD TIE,CMPS[I]
[65] A Insert correct indices in result:
[66] INDS[2;START[I]+lARPS[I]]~BIT/lpBIT

[67] R Increment and repeat if more:
[68] I~I+l

[69] ~(I~NSET)pL7

[70J	 L8:I~DEX 'layers'
v

-404­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

[WSID: MULTIFLOJ

v	 66INDS~a~EXPR SLASHIOTARHO ~~FP;~6ACTIVE;~~ALL;~AARPS;

~~BIT;~~DATA;~~DEL;~ADISP;~~F;8~FLD;A~FLDS;A~FNAM;~~FT

;86INCR;~~IND;~6LV;A6NDEL;~6NFLD;8ANSET;~ARPS;6AS;

~~SDISP;~ASEL;AASET;A8SETS;AATIE;~AWID:DIO

[1] A Loops through active sets doing the following:
[2] A reads the fields specified in IltFP (calling them
[3] R F5, F9, etc. for fields 5, 9, etc.), executes the
[4] A character vector EXPR, converts the resulting bit
[5] R vector to indices and returns the indices of all
[6] A records found for which EXPR returns a 1. Result
[7] R is a 2 row matrix: first row is set number (origin
[8] A 1); second row is index (origin 1) within set. If
[9] A EXPR and 11!FP are empty, all records are selected.
[10] A Note that EXPR is executed in origin 1; e.g.
[11] A 'F3[;2]' always refers to 2nd column.
[12] DERRORCC11pp~~FP)Vl<pp~6EXPR)/'RANKERROR'
[13] DERRORCO=1fOp66EXPR)/'DOMAIN ERROR'
[14] OIO~l

[15] 6~ALL~O=66NFLD~p~AFLDS~11~6AFP

[16] DERROR((~6ALL=~6EXPRV.~' ')Vl1>pA6FP)/'LENGTH ERROR'
[17] 6~INCR~~AFP[3]

[18] ~6DEL~166FP[11]

(19] DERRORC(A/~~FLDS€tA~INCR)~A~DELE~~FLDS)/'INVALIDFIELD
NUMBER'

[20] ~6TIE~AAFP[2]

[21] AAFT~DFREAD A~TIE,4

[22] A width (no. columns) of specified fields:
[23] AAWID~~AFT[1;A6FLDS]

[24] OERRORCOEAAWID)/'INACTIVE FIELD'
[25] A Initialize result as empty:
[26] AAINDS~ 2 0 pO
[27] A Exit if no records on file:
[28] ~(XAAFP[10])~O

[29] A Field names (e.g. 'F5 F9') to be erased below:
[30] ~AFNAM~~(6~NFLD,1)p6~FLDS

[31] 66FNAM~'F' ,(+/' '=AAFNAM)$A~FNAM

[32] ~~DISP~AAFP[4]

[33] A6ARPS~A~RPS~OFREAD AATIE,8
[34] A Branch unless ARPS should be read:
[35] ~(=/66FP[7 10])p6~Ll

[36] A~ARPS~OFREAD ~6TIE,lO

[37] A Consider only nonempty sets:
[38] ~~Ll:~~SETS~O~~~ARPS

[39] A ••• and sets specified in <layers>:
[40] 4(xAAFP[1])~AAL5

[41] ~(xONC 'layers')!~~L5

[42] A Read layer values:
[43] ~~LV~DFREAD AATIE,9
[44] A Branch if matrix layers field:
[45] ~(2=PPA~LV)pA~L2

[46] ~~SETS~~~SETSAAALVElayers

[47] ~A~L5

-405­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

v SLASHIOTARHO (continued)
[48] A Convert <layers> to matrix if not already:
[49] ~~L2:DERROR(6~FT[1;~~FP[1]]~-liplayers)/'LENGTHERROR'
[50]	 ~(2=pplayers)pA6L3

[51]	 layers~((x/-l!players),-ltplayers)players

[52] A Branch if numeric matrix field:
[53] A~L3:~(O=ltOp6ALV)p6AL4

[54]	 A~SETS~6~SETSA(layers CMIOTA AALV)~lpplayers

[55]	 ~AAL5

[56] AAL4:A~SETS~AASETSAv/AALVA.=~layers

[57] A Convert to indices; erase <layers>:
[58] AAL5:A~SETS~AASETS/lpAASETS

[59]	 AANSET~p6ASETS

[60]	 A~LV~OEX 'layers'
[61] A Last set index:
[62]	 AAS~O

[63] A Loop by nonempty set:
[64] AAL6:~(AAS~AANSET)pO

[65] R Current set index and number:
[66]	 AAS~AAS+1

[67]	 6ASET~AASETS[AAS]

[68] A Displacement (no. components) before this set:
[69]	 AASDISP~AADISP+AAINCRXAASET+-l

[70] A Branch if deletion field unneeded:
[71]	 ~(AANDEL~AAARPS[~ASET]>O)pAAL7

[72] A Read deletion field for set SET:
[73]	 A~BIT~DFREAD AATIE,A~DEL+~~SDISP

[74] A Branch if no selection expression:
[75] ~~L7:~~SEL~1

[76]	 ~~AALLp~aL12

[77] A Are all records in this set active?
[78]	 ~~ACTIVE~AAARPS[~ASET]=~~RPS[aASET]

[79] A Last field index:
[80]	 AAF~O

[81] A Loop by field specified:
[82] ~aL8:~(AAF~6ANFLD)p66Lll

[83] A Current field index and number:
[84]	 A~F~AAF+l

[85]	 ~~FLD~~AFLDS[AAF]

[86] A Read field FLD for set SET:
[87]	 AADATA~DFREAD 6ATIE,AAFLD+A~SDISP

[88] R Branch if all records in this set active:
[89]	 ~~AACTIVEpA~L10

[90] A Branch if deletion field needed:
[91]	 ~A~NDEL~AAL9

[92] A Active records are leading records:
[93]	 AADATA~(AAARPS[AASET],(AAWID[AAF]>l)paAWID[AAF])p

AADATA
[94]	 ~~ALI0

[95] A Apply deletion field:
[96] AAL9:~ADATA~AABIT~A6DATA

[97] A Assign data to global variable Fn:
[98J AALI0:~'F',(~A6FLD),'~AADATA'

[99]	 ~6AL8

-406­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v
[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
[112]

v

V

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]

SLASHIOTARHO (continued)

A Once all fields have been read, execute EXPR:

6~L11:~ASEL~~~AEXPR

A Erase field variables (e.g. F5, F9, ...):
AAIND~DEX ~6FNAM

A continue to next set if none found:
AAL12:~6IND~~ASEL/ll~AARPS[6~SET]

-+(Xp~6IND)J,~.6.L6

A Consider deletion field if applicable:
-+A~NDELp~AL13

~AIND~(AABIT/tPAABIT)[AAIND]

A Catenate indices to result:
AAL13:~AINDS~AAINDS,AASET,[O.5]AAIND

-+AAL6

[WSID: MULTIFLOJ
NFP~FP DELREC INDS;BIT;CMP;DEL;DISP;F;FLD;FLDS;INCR;
IND;NEW;NFLD;NSET;OLD;RPS;S;SDISP;SET;SETS;TIE;UNQ;DIO

A Deletes records identified by file indices matrix
A INDS. First row is set number (origin 1); second
A row is index (origin 1) within set. INDS may be
A of any dimension as long as its first coordinate
R is 2.

DERRORC11ppFP)/'RANK ERROR'
DERRORC(11#pFP)V211fpINDS)/'LENGTH ERROR'

A Exit if nothing to delete:
NFP+-FP
~(OEpINDS)pO

SETS~~ 1 0 fINDS

INDS+-, 0 1 fINDS

OIO+-1

TIE+-FP[2J

INCR+-FP[3]

DISP+-FP[4]

DEL+-IFP[11J

A RPS will be changed if DEL=O; ARPS will be changed
A if DEL>O. Read and replace only one or the other:
RPS~DFREAD TIE,8+2XXDEL

A Determine active fields if no deletion field:
-+(XDEL)pL1
NFLD~pFLDS+-(x(DFREAD TIE~4)[1;])/tINCR

A Determine distinct set numbers
Ll:UNQ~SETS[.SETS]

NSET~pUNQ~(UNQ~-lt-1,UNQ)/UNQ

A Last set index:
S+-O

R Loop by distinct set:
L2:-+(S~NSET)pL5

A Current set index and number:
8+-8+1
SET+-UNQ[SJ

(deleting -1s):

-407­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

v DELREC (continued)
[34] R Displacement (no. components) before this set:
[35] SDISP~DISP+INCRXSET+-l

[36] R Indices to delete in this set:
[37] IND~(SET=SETS)/INDS

[38] R Branch unless deletion field exists:
[39] ~(XDEL)tL3

[40] A Read deletion field for set SET:
[41] BIT~DFREAD CMP~TIE,DEL+SDISP

[42] R Turn off specified indices and replace:
[43] BIT[IND]~O

[44] BIT DFREPLACE eMP
[45] R Compute new no. records:
[46] NEW~+/BIT

[47] OLD~IRPS[SET]

[48] A Reset parameters:
[49] NFP[9]~NFP[9]-NEW=O

[50] NFP[10]~NFP[10]+NEW-OLD

[51] RPS[SET]~NEWx(-l l)[l+NEW=+/A\BIT]
[52] ~L2

[53] A
[54] R Turn off specified indices:
[55] L3:0LD~RPS[SET]

[56] BIT~OLDpl

[57] BIT[IND]~O

[58] R Compute new no. records:
[59] NEW~+/BIT

[60] R Reset parameters:
[61] NFP[9]~NFP[9]-NEW=0

[62] NFP[7]~NFP[10]~NFP[7]+NEW-OLD

[63] RPS[SET]~NEW

[64] R Last field index:
[65] F~O

[66] A Loop by active field:
[67] L4:~(F~NFLD)pL2

[68] R Current field index and number:
[69] F~F+l

[70] FLD~FLDS[F]

[71] R Read, compress, replace field FLD for set SET:
[72] CMP~TIE,FLD+SDISP

[73] CBITfOFREAD CMP)OFREPLACE CMP
[74] ~L4

[75] R File either RPS or ARPS:
[76] L5:RPS DFREPLACE TIE,8+2xXDEL
[77]	 NFP OFREPLACE TIE,7

V

-408­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

[WSID: MULTIFLOJ
v 6~NFP~~~EXPR COMPRESS ~~FP;A~AFLDS;AAALL;A~ARPS;~6BIT;

~ACMP;6~DATA;~ADEL;A~DISP;AAF;AAFLD;A~FLDS;A~FNAM;66FT

;~~INCR;A6LV;~~NAFLD;~~NDEL;~6NEW;A~NFLD;AANSET;~AOLD;

AARPS;AAS;AASDISP;AASEL;AASET;aASETS;AATIE;6AWID;DIO
[1] A Loops through active sets doing the following:
[2] A reads the fields specified in 11~FP (calling
[3] A them F5, F9, etc. for fields 5,9, etc.),
[4] A executes the character vector EXPR, and deletes
[5] A the records of that set which correspond to Os
[6] A in the resulting bit vector. If EXPR and l1tFP
[7] A are empty, all records are selected (none are
[8] R deleted). Note that EXPR is executed in origin
[9] A 1; e.g. 'F3[;2]' always refers to 2nd column.
[10] OERROR((11pp~~FP)vl<pp6AEXPR)/'RANKERROR'
[11] DERROR(O=ltOp6~EXPR)/'DOMAINERROR'
[12] OIO~l

[13] AAALL~O=~ANFLD~pAAFLDS~11!A~FP

[14] OERRORC(AAALL=AAEXPRv.#' ')V11>pAAFP)/'LENGTH ERROR'
[15] R Exit if all records selected:
[16] ~A~ALLpO

[17] ~AINCR~AAFP[3]

[18] AADEL~IA~FP[ll]

[19] DERROR((A/~AFLDSEtAAINCR)sAADEL€AAFLDS)/'INVALIDFIELD
NUMBER'

[20] AATIE~AAFP[2]

[21] A~FT~DFREAD A6TIE,4
[22] R Width (no. columns) of fields:
[23] AAWID~AAFT[l;]

[24] DERRORCO€AAWID[AAFLDS])/'INACTIVE FIELD'
[25] R Exit if no records on file:
[26] AANFP~11pAAFP

[27] ~(X~AFP[10])~O

[28] A Field names (e.g. 'F5 F9') to be erased below:
[29] AAFNAM~~(AANFLD,l)pAAFLDS

[30] AAFNAM~'F' ,(+/' '=AAFNAM)$AAFNAM
[31] AADISP~AAFP[4]

[32] AAARPS~AARPS~OFREAD AATIE,8
[33] ~ Branch unless ARPS should be read:
[34] ~(=/A6FP[7 10])pAALl
[35] ~~ARPS~DFREAD AATIE,lO
[36] A Determine active fields if no deletion field:
[37] AALl:~(X~ADEL)pAAL2

[38] A~NAFLD~pAAAFLDS~(x~AWID)/tA~INCR

[39] A Consider only nonempty sets:
[40] AAL2:AASETS~01AAARPS

[41] A ••• and sets specified in <layers>:
[42] ~(X~AFP[1])tAAL6

[43] 4(xONC 'layers')!AAL6
[44] A Read layer values:
[45] AALV~DFREAD 6ATIE,9
[46] R Branch if matrix layers field:
[47] ~(2=PPAALV)pA~L3

[48] 6ASETS~~6SETSA6ALV~layers

-409­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

V COMPRESS (continued)
[49] ~6~L6

[50] A Convert <layers> to matrix if not already:
[51] ~~L3:0ERROR(~~FT[1;~6FP[1]]f-liplayers)/'LENGTHERROR'
[52] ~(2=pplayers)p~6L4

[53] layers~((x/-l~players),-liplayers)players

[54] A Branch if numeric matrix field:
[55] ~~L4:~(O=liOp~~LV)p~6L5

[56] 6~SETS~A~SETSA(layers CMIOTA ~ALV)~lpplayers

[57] ~~AL6

[58] A~L5:A6SETS~AASETSAV/AALVA.=~layers

[59] A Convert to indices; erase <layers>:
[60] A~L6:A~SETS~A~SETS/tpAASETS

[61] AANSET~pA~SETS

[62] AALV~DEX , layers'
[63] R Last set index:
[64] AAS~O

[65] A Loop by nonempty set:
[66] A~L7:~(AAS~A~NSET)p6AL17

[67] A Current set index and number:
[68] AAS~~AS+l

[69] AASET~AASETS[AAS]

[70] A Displacement (no. components) before this set:
[71] AASDISP~6~DISP+AAINCRXAASET+-l

[72] A Branch if deletion field unneeded:
[73] 4(6ANDEL~~6ARPS[A~SET]>O)p~6L8

[74] A Read deletion field for set SET:
[75] A~BIT~DFREAD AATIE,~ADEL+A6SDISP

[76] R Are all records in this set active:
[77] ~AL8:~AALL~A~ARPS[A~SET]=AARPS[A~SET]

[78] A Last field index:
[79] AAF~O

[80] A Loop by field specified:
[81] AAL9:~(~AF~AANFLD)pAAL12

[82] A Current field index and number:
[83] AAF~AAF+l

[84] A~FLD~AAFLDS[AAF]

[85] R Read field FLD for set SET:
[86] AADATA~OFREAD AATIE,AAFLD+AASDISP
[87] A Branch if all records in this set active:
[88] ~AAALLpA~Ll1

[89] R Branch if deletion field needed:
[90] ~A~NDEL~AAL10

[91] A Active records are leading records:
[92] AADATA~(~AARPS[AASET],(AAWID[AAFLD]>l)pA~WID[A~FLD])p

~ADATA

[93] 4AAL11
[94] R Apply deletion field:
[95] AALI0:AADATA~AABITfAADATA

[96] R Assign data to global variable Fn:
[97] 6AL11:~'F',(~AAFLD),'~A~DATA'

[98] ~AAL9

[99] A Once all fields have been read, execute EXPR:
[100] ~AL12:~ASEL~iA6EXPR

-410­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
[112]
[113]
[114]
[115]
[116]
[117]
[118]
[119]
[120]
[121]
[122]
[123]
[124]
[125]
[126]
[127]
[128]
[129]
[130]
[131]
[132]
[133]
[134]
[135]
[136]
[137]
[138]
[139]
[140]
[141]
[142]
[143]
[144]
[145]
[146]
[147]

V

COMPRESS (continued)

R Erase field variables (e.g. F5, F9, ...):

6~OLD+-DEX A~FNAM

R Continue to next set if all records selected:
--+("/~~SEL)pA~L7

R Branch unless deletion field exists:
4(xAADELJ,J,AAL15

A Branch if deletion field not read in:
4AANDELpAAL13

A Reset BIT:
AABIT~AABIT\A~SEL

4~AL14

AAL13:AABIT~AARPS[AASET]tAASEL

R Replace deletion field:

~AL14:A~BIT DFREPLACE AATIE,AADEL+AASDISP

R Compute new no. records:

AANEW~+/AABIT

~AOLD~IAAARPS[AASET]

A Reset parameters:
AANFP[9]+-AANFP[9]-AANEW=O
AANFP[10]~AANFP[10]+AANEW-~~OLD

~AARPS[~ASET]~A~NEWx(-l l)[l+A~NEW=+/A\A~BIT]

-+AAL7
A Compute new no. records:
A~L15:AANEW~+/~ASEL

AAOLD~A~RPS[AASET]

A Reset parameters:
AANFP[9]~AANFP[9]-AANEW=O

AANFP[7]~AANFP[10]~AANFP[7]+AANEW-AAOLD

AARPS[AASETJ+-AANEW
A Last field index:
AAF~O

R Loop by active field:
AAL16:~(AAF~A6.NAFLD)pA6.L7

A Current field index and number:
AAF~AAF+l

AAFLD~A~AFLDS[AAF]

R Read~ compress~ replace field FLD for set SET:
~ACMP~AATIE,AAFLD+A~SDISP

(AASELfDFREAD AACMP)OFREPLACE AACMP
~AAL16

AAL17:AANFP DFREPLACE AATIE,7
R RPS has been changed if DEL=O; ARPS has been changed
R if DEL>O. Replace only one or the other.

4(XAADEL)ptlAL18

AARPS DFREPLACE AATIE,8

~O

AAL18:AAARPS DFREPLACE AATIE,lO

-411­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

[WSID: MULTIFLO]
V	 MAT~INDS INDEX FP;CHR;COL;COLS;DATA;DEL;DISP;F;FLD;

FLDS;FT;INCR;IND;NFLD;NREC;NSET;S;SDISP;SET;SETS;SHAPE
;TIE;UNQ;W;WID;DIO

[1] A Returns data from fields 11!FP for records
[2] A identified by file indices matrix INDS.
[3] A First row of INDS is set number (origin 1);
[4] R second row is index (origin 1) within set.
[5] RINDS may be of any dimension as long as its
[6] A first coordinate is 2. Result has same number
[7] A of columns as fields 11!FP have columns.
[8J A Leading shape of result is l~pINDS.

[9] DERROR(l~ppFP)/'RANKERROR'
[10] DERROR(Cl1>pFP)V211ipINDS)/'LENGTH ERROR'
[11] DIO~1

[12] NFLD~pFLDS~11!FP

[13] INCR~FP[3]

[14] DEL~IFP[11]

[15] DERROR((A/FLDS€lINCR)~DEL€FLDS)/'INVALIDFIELD NUMBER'
[16] TIE~FP[2]

[17] FT~(DFREAD TIE,4)[;FLDSJ
[18] A Width (no. columns) of specified fields:
[19] WID~FT[l;J

[20] DERRORCOeWID)/'INACTIVE FIELD'
[21] A Fields must be all character or all numeric:
[22] CHR~2=liFT[2;]

[23] DERROR(CHRV.~2:FT[2;])/'DOMAINERROR'
[24] A Shape of result (excluding columns):
[25] SHAPE~l~pINDS

[26] COLS~+/WID

[27] R Break apart indices:
[28] NREC~pSETS~, 1 0 fINDS
[29] INDS~, 0 1 fINDS
[30] A Construct all-zero or all-blank result:
[31] ~CHRpLl

[32] MAT~(NREC,COLS)pO

[33] ~L2

[34] Ll:MAT~(NREC,COLS)p' ,
[35] R Exit if no indices or no fields:
[36] L2:~(xNRECxCOLS)tL6

[37] DISP~FP[4]

[38] R Determine distinct set numbers (deleting -Is):
[39] UNQ~SETS[4SETS]

[40] NSET~pUNQ~(UNQ1-1!-1,UNQ)/UNQ

[41] R Last set index:
[42] s~o

[43] R Loop by distinct set:
[44] L3:~(S~NSET)pL6

[45] R Current set index and number:
[46] S~S+l

[47J SET~UNQ[S]

[48] R Displacement (no. components) before this set:
[49] SDISP~DISP+INCRxSET+-1

-412­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

V INDEX (continued)
[50] R Indices of INDS to retrieve in this set:
[51] IND~(SET=SETS)/tNREC

[52] A Last field index, and columns inserted so far:
[53] F~COL~O

[54] R Loop by specified field:
[55] L4:4(F~NFLD)pL3

[56] A Current field index, number and width:
[57] F~F+l

[58] FLD~FLDS[F]

[59] W~WID[F]

[60] R Read data:
[61] DATA~DFREAD TIE,FLD+SDISP
[62] R Branch if matrix field:
[63] ~(W>I)pL5

[64] R Insert vector of data:
[65] COL~COL+l

[66] MAT[IND;COL]~DATA[INDS[IND]]

[67] ~L4

[68] R Insert matrix of data:
[69] L5:MAT[IND;COL+tW]~DATA[INDS[IND];]

[70] COL~COL+W

[71] 4L4
[72] A Exit if result has correct shape already:
[73] L6:~(1=pSHAPE)pO

[74]	 MAT~(SHAPE,COLS)pMAT

v

[WSID: MULTIFLOJ
v	 INDS INDEXWS FP;DATA;DEL;DISP;F;FLD;FLDS;FT;INCR;IND;

LAB;NFLD;NREC;NSET;S;SDISP;SET;SETS;SHAPE;T;TIE;UNQ;W;
WID;DIO

[1] A Retrieves data from fields 11!FP for records
[2] A identified by file indices matrix INDS.
[3] R First row of INDS is set number (origin 1);
[4] R second row is index (origin 1) within set.
[5] RINDS may be of any dimension as long as its
[6] R first coordinate is 2. The retrieved data are
[7] R assigned to global variables named Fn where n
[8J R is the number of the field retrieved (e.g. F3
[9] Rand F7 for 11!FP of 3 7). Global variables
[10] R have same number of columns as corresponding
[11] R fields. Leading shape is l!pINDS.
[12] OERROR(l~ppFP)/'RANKERROR'
[13] DERROR(Cl1>pFP)v211ipINDS)/'LENGTH ERROR'
[14] DIO~l

[15] NFLD~pFLDS~11!FP

[16] INCR~FP[3]

[17] DEL~IFP[11]

[18] DERROR((A/FLDS€tINCR)~DEL€FLDS)/'INVALIDFIELD NUMBER'
[19] TIE~FP[2]

[20] FT~(DFREAD TIE,4)[;FLDS]

-413­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v INDEXWS (continued)
[21] A Width (no. columns) of specified fields:
[22] WID~FT[l;]

[23] DERRORCOEWID)/'INACTIVE FIELD'
[24] A Shape of result (excluding columns):
[25] SHAPE~l!pINDS

[26] A Break apart indices:
[27] NREC~pSETS~, 1 0 fINDS
[28] INDS~, 0 1 fINDS
[29] R Construct all-zero or all-blank globals.
[30] A Label vector needed below based upon field
[31] A rank and type (nvec, nmat, cvec, cmat):
[32] LAB~CL2,L3,L4,L5)[(2LWID)+2X2=FT[2;]]

[33] A Last field index:
[34] F~O

[35] R Loop by specified field:
[36] Ll:~(F~NFLD)pL7

[37] R Current field index and number:
[38] F~F+l

[39] FLD~FLDS[F]

[40] R Branch based upon type and width:
[41] ~LAB[F]

[42] L2:DATA~NRECpO

[43] ~L6

[44] L3:DATA~(NREC,WID[F])pO

[45] ~L6

[46] L4:DATA~NRECp' ,
[47] ~L6

[48] L5:DATA~(NREC,WID[F])p' ,
[49] L6:~'F' ,(~FLD),'~DATA'

[50] ~Ll

[51] R Exit if no indices or no fields:
[52] L7:~(xNRECXNFLD)!L11

[53] DISP~FP[4]

[54] R Determine distinct set numbers (deleting -1s):
[55] UNQ~SETS[.SETS]

[56] NSET~pUNQ~(UNQ~-1!-1,UNQ)/UNQ

[57] R Last set index:
[58] S~O

[59] R Loop by distinct set:
[60] L8:~(S~NSET)pLl1

[61] R Current set index and number:
[62] S~S+l

[63] SET~UNQ[S]

[64] A Displacement (no. components) before this set:
[65] SDISP~DISP+INCRxSET+-1

[66] R Indices of INDS to retrieve in this set:
[67] IND~(SET=SETS)/lNREC

[68] A Last field index:
[69] F~O

[70] A Loop by specified field:
[71] L9:~(F~NFLD)pL8

[72] R Current field index, number and width:
[73] F~F+l

-414­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

v INDEXWS (continued)
[74] FLD+-FLDS[FJ
[75] W+-WID[F]
[76] A Read data:
[77] DATA+-DFREAD TIE,FLD+SDISP
[78] R Branch if matrix field:
[79J -+CW>l)pLIO
[80] R Insert vector of data:
[81] ~'F' ,(~FLD),'[IND]~DATA[INDS[IND]]'

[82] -+L9
[83] A Insert matrix of data:
[84] LIO:t'F' ,(~FLD),'[IND;J~DATA[INDS[IND];]'

[85] -+L9
[86] A Exit if globals have correct shape already:
[87] Ll1:~Cl=pSHAPE)pO

[88] A Last field index:
[89] F+-O
[90] A Loop by specified field:
[91] L12:-+CF::=:NFLDJpO
[92] A Current field index and number:
[93] F+-F+l
[94] FLD+-FLDS[FJ
[95] R Reshape globals Fn to conform with shape of indices:
[96] DATA+-~T+-'F' , ~FLD

[97] DATA+-(SHAPE,l~pDATAJpDATA

[98] ~T, , +-DATA'
[99]	 -+L12

V

[WSID: MULTIFLO]
V AAMAT+-~AEXPR SELECT AAFP;AAACTIVE;AAALL;AAARPS;AABIT;
AACHR;6~COL;AACOLS;A~DATA;~~DEL;AADISP;A6F;AAFILL;

AAFLD;AAFLDS;AAFNAM;AAFT;AAINCR;A6IND;AAINDS;AALAB;
AALV;AANDEL;A6NFLD;AANSET;AANSFLD;AANUM;AAROWS;AARPS;
~AS;~ASDISP;A~SEL;AASET;AASETS;AASFLDS;AAT;AATIE;AAW;

A~WID;DIO

[1] A Loops through active sets doing the following:
[2] R reads the fields specified in (11+(11~FP)10)~FP

[3] A (calling them F5, F9, etc. for fields 5, 9, etc.),
[4] A executes the character vector EXPR, and returns
[5] A data from fields C-l+Cl1!FP)tO)il1!FP for the
[6] R records of that set which correspond to 1s in the
[7] A resulting bit vector. Result has one row per
[8] A record found and same number of columns as the
[9] A latter set of fields has columns. If EXPR and
[10] R selection fields are empty, all records are
[11] A selected. Note that EXPR is executed in origin 1;
[12] A e.g. 'F3[;2]' always refers to 2nd column.
[13] DERRORCC1¢ppAAFP)V1<ppAAEXPR)/'RANK ERROR'
[14] OERRORCO=liOpAAEXPRJ/'DOMAIN ERROR'
[15] 010+-1
[16] A Extract 2 sets of fields from FP:
[17] ~~T~ll+(ll~~~FP)tO

-415­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

v SELECT (continued)
[18]	 ~~NFLD~p~6FLDS~11!C~~T+-l)p~~FP

[19]	 ~8ALL~0=~~NSFLD~p~~SFLDS~~6T~~AFP

[20]	 OERROR((A~ALL=66EXPRv.~' ')vl1>p~~FP)/'LENGTHERROR'
[21]	 AAINCR+-A~FP[3]

[22]	 AADEL+--16AFP[11J
[23]	 AAT~AASFLDS9~6FLDS

[24]	 DERROR(CA/AATEt~6INCR)~~ADEL€AAT)/'INVALID FIELD
NUMBER'

[25]	 AATIE~AAFP[2]

[26]	 AAFT~OFREAD A~TIE94

[27] R Width (no. columns) of fields:
[28]	 AAWID~AAFT[l;]

[29]	 DERRORCO€AAWID[AAT])/'INACTIVE FIELD'
[30] A Fields must be all character or all numeric:
[31]	 AAT~2=A~FT[2;AAFLDS]

[32]	 AACHR~lt~t.\T

[33]	 DERROR(t.\ACHRV.~~AT)/'DOMAINERROR'
[34] A Columns in result:
[35]	 A~COLS~+/AAWID[AAFLDS]

[36] A Construct empty result:
[37]	 ~AACHRpAALl

[38]	 AAMAT+-(O,AACOLS)pAAFILL~O

[39]	 --+A~L2

[40] a~Ll:A~MAT~(O,~~COLS)p~AFILL~' ,
[41] A Exit if no records:
[42] ~~L2:~(x~~FP[10])~O

[43] R Field names Ce.g. 'F5 F9') to be erased below:
[44]	 A~FNAM~~(a6NSFLD,1)p6~SFLDS

[45]	 ~6FNAM~'F',(+/' '=6AFNAM)~~~FNAM

[46]	 A~DISP~AAFP[4]

[47] R Label vector needed below based upon field rank
[48] A and whether in WS or onfile when needed
[49] R (vfile,mfile,vws 9mws):

[50]	 A~LAB~(A~L17,6AL18,AAL199AAL21)[(2lAAWID[6AFLDS])+2X

~~FLDS€~~SFLDS]

[51]	 AAARPS+-A~RPS+-DFREAD AATIE,S
[52] R Branch unless ARPS should be read:
[53]	 ~C=/~~FP[7 10])pA~L3

[54]	 A~ARPS~DFREAD AATIE 9 1 0
[55] A Consider only nonempty sets:
[56] AAL3:~~SETS~O~AAARPS

[57] R ••• and sets specified in <layers>:
[58]	 ~(XAAFP[1])iAAL7

[59]	 ~(xDNC 'layers')~AAL7

[60] A Read layer values:
[61]	 AALV~DFREAD ~ATIE,9

[62] A Branch if matrix layers field:
[63]	 ~(2=PPA~LV)pAAL4

[64]	 AASETS~A~SETSAAALVElayers

[65]	 ~AAL7

[66] A Convert <layers> to matrix if not already:
[67] AAL4:DERRORCA~FT[1;AAFP[1]]~-ltplayers)/'LENGTHERROR'
[68]	 ~(2=pplayers)p~6L5

-416­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

V SELECT (continued)
[69] layers~((x/-ltplayers),-ltplayers)players

[70] A Branch if numeric matrix field:
[71] A~L5:~(O=ltOpAALV)pAAL6

[72] A~SETS~A~SETSA(layers CMIOTA ~~LV)~lpplayers

[73] ~AAL7

[74] ~AL6:AASETS~~~SETSAV/AALVA.=~layers

[75] R Convert to indices; erase <layers>:
[76] AAL7:AASETS~AASETS/lpAASETS

[77] AANSET~PAASETS

[78] AALV~DEX , layers'
[79] A Last set index:
[80] AAS~O

[81] A Loop by nonempty set:
[82] ~AL8:~(AAS~AANSET)pO

[83] A Current set index and number:
[84] AAS~AAS+l

[85] AASET~6ASETS[AAS]

[86] A Displacement (no. components) before this set:
[87] AASDISP~AADISP+AAINCRxAASET+-l

[88] A Branch if deletion field unneeded:
[89] ~(AANDEL~AAARPS[~ASET]>O)p~6L9

[90] A Read deletion field for set SET:
[91] aABIT~DFREAD ~~TIE,AADEL+AaSDISP

[92] A Branch if no selection expression:
[93] 6~L9:~~SEL~1

[94] ~A~ALLpAAL14

[95] A Are all records in this set active:
[96] AAACTIVE~AaARPS[AASET]=AARPS[A6SET]

[97] A Last field index:
[98] A~F~O

[99] A Loop by field specified:
[100] A~L10:4(6AF~6ANSFLD)p6AL13

[101] A Current field index and number:
[102] A~F~6AF+l

[103] A~FLD~A6SFLDS[A~F]

[104] R Read field FLD for set SET:
[105] ~~DATA~DFREAD AATIE,AAFLD+~ASDISP

[106] A Branch if all records in this set active:
[107] ~~AACTIVEpAAL12

[108] A Branch if deletion field needed:
[109] ~A~NDEL~AALl1

[110] A Active records are leading records:
[111] AADATA~(AAARPS[AASET],(AAWID[~~FLD]>l)pAAWID[AAFLD])p

~ADATA

[112] ~AAL12

[113] R Apply deletion field:
[114] 6AL11:a6DATA~aABITf6ADATA

[115] R Assign data to global variable Fn:
[116] AAL12:~'F' ,(~~~FLD),'~AADATA'

[117] ~A6LI0

[118] R Once all fields have been read, execute EXPR:
[119] 66L13:6ASEL~~AAEXPR

-417­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

v SELECT (continued)
[120] A Indices to retrieve (after squeezing deletions):
[121] 6~L14:~~IND~~6SEL/llh~ARPS[~6SET]

[122] A continue to next set if no records selected:
[123] ~(X6~NUM~pA~IND)t6AL23

[124] A No. records found before this set:
[125] A~ROWS~lpPA6MAT

[126] A Expand result for new records:
[127] 66MAT~~AMAT,[1](~ANUM,~ACOLS)p~6FILL

[128] A Indices to retrieve (before squeezing deletions):
[129] ~~INDS~~f:J.IND

[130] A Branch if deletion field unneeded:
[131] ~66NDELp6AL15

[132] A Reset INDS, considering deletion field:
[133] A6INDS~(66BIT/lpA6BIT)[6AIND]

[134] A Last field index and columns inserted so far:
[135] A6L15:~6F~~ACOL~0

[136] A Loop by field to retrieve:
[137] A~L16:~(A6F~~ANFLD)p66L23

[138] A Current field index, number and width:
[139] A6F+--66F+l
[140] AAFLD~AAFLDS[6AF]

[141] A6W+-6AWID[66FLD]
[142] A Branch depending on field width and whether
[143] R already in workspace:
[144] ~A6LAB[A6F]

[145] 66L17:A6DATA+--(OFREAD AATIE,A6FLD+~ASDISP)[66INDS]

[146] ~AAL20

(147] ~6L18:6ADATA+--(DFREAD A~TIE,6f:J.FLD+66SDISP)[A~INDS;]

[148] ~AAL22

[149] AAL19:6ADATA~(~'F',~A6FLD)[AAIND]

[150] A6L20:AACOL+-AACOL+l
[151] AAMAT[A6ROWS+lAANUM;AACOL]~AADATA

[152] ~L\.AL16

[153] A~L21:A6DATA~(~'F',~6AFLD)[6~IND;]

[154] AAL22:A6MAT[AAROWS+lAANUM;AACOL+l66W]+-AADATA
[155] AACOL+--A6COL+AAW
[156] -+A6L16
[157] A Erase field variables (e.g. F5, F9, .•.):
[158] AAL23:6AT+-DEX AAFNAM
[159]	 ~AAL8

v

-418­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

[WSID: MULTIFLO]
v a~EXPR SELECTWS 66FP;~~ACTIVE;A6ALL;A~ARPS;~~BIT;~~COL

;AACOLS;A~DATA;A~DEL;AADISP;AAF;AAFLD;AAFLDS;AAFNAM;

AAFT;A~INCR;AAIND;~AINDS;AALAB;AALAB2;~ALV;A~Ml;AAM2;

AAM3;6AM4;6ANDEL;bANFLD;~ANSET;AANSFLD;AANUM;~AROWS;

AARPS;AAS;AASDISP;A6SEL;AASET;AASETS;AASFLDS;AASTART;
AAT;AATIE;A~TYPES;A6W;A~WID;DIO

[1] R Loops through active sets doing the following:
[2] A reads the fields specified in (11+(11~FP)tO)!FP

[3] A (calling them F5, F9, etc. for fields 5, 9, etc.),
[4] A executes the character vector EXPR, and retrieves
[5] A data from fields (-1+(11tFP)lO)tl1~FP for the
[6] A records of that set which correspond to 1s in the
[7] A resulting bit vector. The retrieved data are
[8J R assigned to global variables named Fn where n is
[9] A the number of the field retrieved (e.g. F3 and F7
[10J R if 3 7 are the numbers of the latter set of
[11] A fields). Global variables have same number of
[12] R columns as corresponding fields. If EXPR and
[13] R selection fields are emptYt all records are
[14] R selected. Note that EXPR is executed in origin 1;
[15] A e.g. 'F3[;2]' always refers to 2nd column.
[16]	 DERROR((11ppA~FP)Vl<ppAAEXPR)/'RANKERROR'
[17]	 DERROR(O=liOpA~EXPR)/'DOMAINERROR'
[18]	 DIO~l

[19] R Extract 2 sets of fields from FP:
[20]	 66T~11+(11!~AFP)lO

[21]	 66NFLD~p~AFLDS~11!(A~T+-l)pA~FP

[22]	 A6ALL~O=AANSFLD~pAASFLDS~AAT!AAFP

[23]	 DERRORC(AAALL=~AEXPRV.~' ')Vl1>pA6FP)/'LENGTH ERROR'
[24]	 AAINCR~AAFP[3]

[25]	 AADEL~IAAFP[11]

[26]	 AAT~AASFLDStAAFLDS

[27]	 DERROR((A/A~TtlAAINCR)~AADEL€AAT)/'INVALIDFIELD
NUMBER'

[28]	 ~ATIE~~~FP[2]

[29]	 ~AFT~OFREAD AATIE t 4
[30] ~ width (no. columns) of fields:
[31]	 AAWID~A~FT[l;]

[32]	 OERRORCOEA6WID[A6T])/'INACTIVE FIELD'
[33] A Exit if no fields:
[34]	 ~(XA~NFLD)~AAL36

[35] A Datatypes (1,2,3,4) of fields to be retrieved:
[36]	 ~ATYPES~A~FT[2;AAFLDS]

[37] A No. preceding eols. for each fId within its datatype:
[38]	 6AT~(t4)o.=AATYPES

[39]	 A~START~+fAATx(p~AT)to,AAS~+\AATx(pAAT)pAAWID[AAFLDS]

[40] A No. columns of each datatype:
[41]	 A~COLS~, 4 -1 tA~S

[42] A Construct empty result matrices (one per datatype):
[43]	 ~AM1~(O,~~COLS[1])pO

[44]	 AAM2~(O,AACOLS[2])p"

[45]	 AAM3~(0,AACOLS[3])pO

[46]	 8~M4~(O,66COLS[4])pO

-419­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

V SELECTWS (continued)
[47] A Exit if no records:
[48]	 ~(X~~FP[10])~19

[49] A Field names (e.g. 'F5 F9') to be erased below:
[50]	 ~AFNAM~~(~ANSFLD,l)pAASFLDS

[51]	 AAFNAM~'F',(+/' '=A~FNAM)~AAFNAM

[52]	 AADISP~AAFP[4]

[53] A Label vector needed below based upon field rank
[54] A and whether in WS or onfile when needed
[55] R (vfile,mfile,vws,mws):
[56]	 AALAB~(AAL15,AAL16,AAL17,AAL19)[C2lAAWID[AAFLDS])+2x

AAFLDS€6ASFLDS]
[57] A Label vector based upon datatype:
[58]	 AALAB2~(AAL22,AAL23,AAL24,AAL25)[AATYPES]

[59]	 AAARPS~AARPS~DFREAD A6TIE,8
[60] A Branch unless ARPS should be read:
[61]	 4(=/AAFP[7 10])pAALl
[62]	 AAARPS~DFREAD A~TIE,10

[63] R Consider only nonempty sets:
[64] AALl:AASETS~O~AAARPS

[65] A ••• and sets specified in <layers>:
[66]	 ~CxAAFP[1])~AAL5

[67]	 4(xDNC 'layers')~AAL5

[68] A Read layer values:
[69]	 ~6LV~DFREAD A6TIE,9
[70] A Branch if matrix layers field:
[71]	 ~(2=PPA6LV)pA6L2

[72]	 ~~SETS~~ASETSA~~LVElayers

[73]	 ~~6L5

[74] R Convert <layers> to matrix if not already:
[75] ~AL2:DERROR(A~FT[1;AAFP[1]]~-lfplayers)/'LENGTHERROR'
[76]	 ~(2=pplayers)p6AL3

[77]	 layers~((x/-l!players),-ltplayers)players

[78] A Branch if numeric matrix field:
[79] A~L3:4(0=ltOp~ALV)p~6L4

[80]	 ~6SETS~AaSETSA(layers CMIOTA 6ALV)~lpplayers

[81]	 ~AAL5

[82] AAL4:A6SETS~6ASETSAv/A6LVA.=~layers

[83] A Convert to indices; erase <layers>:
[84] AAL5:A6SETS~66SETS/lp6ASETS

[85]	 A6NSET~P66SETS

[86]	 A6LV~DEX 'layers'
[87] A Last set index:
[88]	 6~S~O

[89] A Loop by nonempty set:
[90] A6L6:~(~AS~~6NSET)p~AL27

[91] R Current set index and number:
[92]	 AAS~A6S+1

[93]	 A~SET~A6SETS[~AS]

[94] A Displacement (no. components) before this set:
[95]	 ~~SDISP~AADISP+~AINCRx~~SET+-l

[96] A Branch if deletion field unneeded:
[97]	 ~(6~NDEL~A~ARPS[6ASET]>0)pA6L7

-420­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

v SELECTWS (continued)
[98] A Read deletion field for set SET:
[99]	 ~~BIT~OFREAD ~~TIE,AADEL+AASDISP

[100]	 A Branch if no selection expression:
[101]	 A~L7:~6SEL~1

[102] ~6~ALLpAAL12

[103]	 A Are all records in this set active:
[104] ~AACTIVE~AAARPS[AASET]=A6RPS[AASET]

[105]	 ~ Last field index:
[106] h..6F+-O
[107]	 A Loop by field specified:
[108]	 .6h.L8:~(.6AF~AANSFLD)pAh.Ll1

[109]	 A Current field index and number:
[110] 6.6Ft-A.6F+1
[111] AAFLD~AASFLDS[AAF]

[112]	 A Read field FLD for set SET:
[113] AADATA+-OFREAD A.6TIE,AAFLD+A6SDISP
[114]	 A Branch if all records in this set active:
[115] ~.6AACTIVEpAALIO

[116]	 A Branch if deletion field needed:
[117] ~AANDEL~AAL9

[118]	 ~ Active records are leading records:
[119]	 AADATA+-(AAARPS[AASET],(AAWID[aAFLD]>l)pA~WID[A~FLD])p

6ADATA
[120] -+6ALIO
[121]	 A Apply deletion field:
[122]	 ~AL9:6~DATA~A.6BITfAADATA

[123]	 A Assign data to global variable Fn:
[124]	 AAL10:~'F' ,(~~AFLD), '~AADATA'

[125] -+~AL8

[126]	 A Once all fields have been read, execute EXPR:
[127]	 AAL11:6ASEL~iAAEXPR

[128]	 A Indices to retrieve (after squeezing deletions):
[129]	 AAL12:A6IND~AASEL/tIAAARPS[~ASET]

[130]	 A continue to next set if no records selected:
[131] ~(XAANUM~pAAIND)~AAL26

[132]	 A No. records found before this set:
[133] AAROWS~lppAAM1

[134]	 A Expand result matrices for new records:
[135] A~Ml~~AM1,[1](AANUM,AACOLS[1])pO

[136] 6AM2~AAM2,[1](AANUM,AACOLS[2])p' ,
[137] AAM3~AAM3,[1](AANUM,AACOLS[3])pO

[138] AAM4~AAM4,[1](AANUM,AACOLS[4])pO

[139]	 A Indices to retrieve (before squeezing deletions):
[140] AAINDS+-AAIND
[141]	 A Branch if deletion field unneeded:
[142] -+AANDELpA~L13

[143]	 A Reset INDS, considering deletion field:
[144] AAINDS~(AABIT/lpAABIT)[AAIND]

[145]	 A Last field index:
[146]	 AAL13:AAF+-O
[147]	 A Loop by field to retrieve:
[148]	 AAL14:~(AAF~A~NFLD)pA~L26

-421­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

V
[149]
[150]
[151]
[152]
[153]
[154]
[155]
[156]
[157]
[158]
[159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]
[167]
[168]
[169]
[170]
[171]
[172]
[173]
[174]
[175]
[176]
[177]
[178]
[179]
[180]
[181]
[182]
[183]
[184]
[185]
[186]
[187]
[188]
[189]
[190]
[191]
[192]
[193]
[194]
[195]
[196]
[197]
[198]
[199]
[200]
[201]

SELECTWS (continued)
R Current field index, number and width:

6f1F+-hAF+l
~f1FLD~AAFLDS[f1~F]

~hW+-~~WID[~~FLD]

A Branch depending on field width and whether
R already in workspace:
~f1~LAB[8~F]

~f1L15:AADATA+-(DFREAD Af1TIE,hAFLD+~ASDISP)[Af1INDS]

--+~AL18

AALI6:AADATA~(DFREAD AATIE,AAFLD+AASDISP)[AAINDS;]
~A~L20

~~L17:AADATA+-(~'F',~~AFLD)[AAIND]

AALI8:AACOL+-AASTART[~AF]+1

~A~L21

AAL19:~ADATA+-(~'F',~AAFLD)[A8IND;]

AAL20:~ACOL+-A~START[~AF]+lA~W

A Branch based upon datatype:
AAL21:~A8LAB2[A~F]

AAL22:8AM1[A8ROWS+tA~NUM;A~COL]~~ADATA

-+~AL14

AAL23:~AM2[AAROWS+lAANUM;~ACOL]~AADATA

~A8L14

AAL24:A~M3[8AROWS+lAANUM;AACOL]~AADATA

~AAL14

AAL25:AAM4[AAROWS+lAANUM;AACOL]~AADATA

-+A~L14

R Erase field variables (e.g. F5, F9, ...):
AAL26:AAT~OEX AAFNAM

-+AAL6
R Label vector by datatype needed below:
AAL27:AALAB~(AAL31,AAL32,AAL33,AAL34)[AATYPES]

R Last field index:
8AF~O

R Loop by field to retrieve:
A~L28:~(AAF~A8NFLD)pO

A Current field index, number and width:
8AF~AAF+l

AAFLD~8AFLDS[AAF]

AAW+-AAWID[AAFLDJ
A Branch if matrix field:
~(6.AW>1)pA6.L29

AACOL+-AASTART[AAF]+1
~AAL30

AAL29:AACOL+-6.ASTART[AAF]+lAAW
R Branch based upon datatype:
AAL30:-+AALAB[AAFJ
AAL31:AADATA~AAM1[;AACOL]

-+A~L35

AAL32:~ADATA~AAM2[;AACOL]

-+AAL35
AAL33:AADATA~AAM3[;AACOL]

-+AAL35
6~L34:A6DATA~~AM4[;AACOL]

-422­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

V	 SELECTWS Ccontinued)
[202] R Assign to Fn vars.:
[203] aaL35:~'F' ,(~6~FLD),'~a~DATA'

[204] ~a~L28

[205]	 A~L36:6~S~DEX 'layers'
V

[WSID: MULTIFLO]
V R~A ASSIGN B

[1] A Used as: rinds INDEXA CFP,flds) ASSIGN mat
[2] R~A

[3] assign~B

V

[WSID: MULTIFLOJ
V	 NFP~INDS INDEXA FP;A;AFLD;ARPS;BAD;BIT;BLK;CMP;COL;

COLS;DATA;DCMP;DEL;DISP;F;FILED;FILL;FLD;FLDS;FREC;FT;
GOOD;I;IINDS;INCR;IND;LAY;LAYER;LEAD;LSETS;LV;LVAR;M;
MIN;N;NF;NFLD;NR;NREC;NSET;RPS;S;SD;SDISP;SET;SETS;
SHAPE;SIND;SINGLE;T;TIE;UNQ;VAR;VEC;W;WID;DIO

[1] A Used as: FP~rinds INDEXA CFP,flds) ASSIGN mat
[2] A Inserts data from global matrix <assign> into
[3] A fields 11~FP for records identified by file
[4] A indices matrix INDS. First row of INDS is set
[5] A number Corigin 1); second row is index (origin 1)
[6] A within set. INDS may be of any dimension as long as
[7] A its first coordinate is 2. <assign> has same number
[8J A of columns as fields 11~FP have columns.
[9] A Leading shape of <assign> is ItpINDS. <assign> is
[10] R erased upon completion.
[11] DERROR(11ppFP)/'RANK ERROR'
[12] DERRORC(11)pFP)V211tpINDS)/'LENGTH ERROR'
[13] OIO~l

[14] NFLD~pFLDS~11!FP

[15] NFP~11pFP

[16] INCR~FP[3]

[17] DEL~IFP[11]

[18] FILL~FP[11]<O

[19] OERRORC(A/FLDSElINCR)~DEL€FLDS)/'INVALIDFIELD NUMBER'
[20] TIE~FP[2J

[21] FT~DFREAD TIE,4
[22] A width (no. columns) of specified fields:
[23] WID~FT[l;]

[24] COLS~+/W~WID[FLDS]

[25] OERRORCOeW)/'INACTIVE FIELD'
[26] R Fields must be all character or all numeric:
[27] S~2=ltT~FT[2;FLDS]

[28] DERRORCSV.12=T)/'DOMAIN ERROR'
[29] R Break apart indices:
[30] SHAPE~l~pINDS

[31] NREC~pSETS~, 1 0 fINDS
[32] INDS~, a 1 fINDS

-423­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

V INDEXA (continued)
[33] R Singleton data?
[34]	 SINGLE~lA.=passign

[35]	 4SINGLEpL3
[36] R Branch unless singleton (vector) record:
[37]	 ~((COLS~l)AIA.=-l~passign)~Ll

[38]	 DERROR(COLS~-ltpassign)/'LENGTHERROR'
[39]	 ~L2

[40]	 Ll:DERROR((pSHAPE)A.~(ppassign)+-l,(COLS=l)pO)/'RANK

ERROR'
[41]	 S~(l+pSHAPE)p(passign),l

[42]	 DERROR(SV.~SHAPE,COLS)/'LENGTHERROR'
[43]	 4C2=ppassign)pL3
[44] L2:assign~(NREC,COLS)passign

[45] R Exit if no records or no fields:
[46] L3:~(XNRECxNFLD)~L43

[47]	 LAY~FP[l]

[48]	 DISP~FP[4]

[49]	 BLK~FP[5]

[50] A Read LV, RPS, ARPS if layer fld being assigned:
[51]	 ~(LAYEFLDS)~L4

[52]	 LV~DFREAD TIE,9
[53]	 RPS~ARPS~DFREAD TIE,8
[54]	 ~(=/FP[7 10])pL4
[55]	 ARPS~DFREAD TIE,lO
[56] R Determine distinct set numbers (deleting -Is):
[57] L4:UNQ~SETS[.SETS]

[58]	 NSET~pUNQ~(UNQ~-l!-l,UNQ)/UNQ

[59] R Last set index:
[60]	 SIND~O

[61] A Loop by distinct set:
[62] L5:~(SIND~NSET)pL43

[63] A Current set index and number:
[64]	 SIND~SIND+l

[65]	 SET~UNQ[SIND]

[66] R Displacement (no. components) before this set:
[67]	 SDISP~DISP+INCRXSET+-l

[68] R Indices and elts of INDS to retrieve in this set:
[69]	 IND~(SET=SETS)/lNREC

[70]	 I~INDS[IND]

[71] R Elts of INDS of recs whose layer value changes:
[72]	 BAD~lO

[73] R Last field index, and columns filed so far:
[74]	 F~COL~O

[75] R Loop by specified field:
[76] L6:~(F~NFLD)pL13

[77] A Current field index, number and width:
[78]	 F~F+l

[79]	 FLD~FLDS[F]

[80] R Is this the layer field being changed?
[81]	 LAYER~LAY=FLD

[82]	 W~WID[FLD]

[83] R Read data:
[84]	 DATA~DFREAD CMP~TIEtFLD+SDISP

-424­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

V INDEXA (continued)
[85] A Branch if matrix field:
[86] ~(W>1)pL9

[87] A Insert vector of data.
[88] A Branch if singleton:
[89] ~SINGLEpL7

[90] COL~COL+l

[91] DATA[I]~assign[IND;COL]

[92] ~L8

[93] L7:DATA[I]~assign

[94] A Branch unless layer field:
[95] L8:~LAYER!L12

[96] A Flag recs whose layer val has changed:
[97] BAD~(LV[SET]~DATA[I])/I

[98] ~L12

[99] ~ Insert matrix of data.
[100] A Branch if singleton:
[101] L9:~SINGLEpLIO

[102] DATA[I;]~assign[IND;COL+tW]

[103] COL~COL+W

[104] ~Ll1

[105] LI0:DATA[I;]~assign

[106] A Branch unless layer field:
[107] Ll1:~LAYER~L12

[108] A Flag recs whose layer val has changed:
[109] BAD~(DATA[I;]V.~LV[SET;])/I

[110] A Replace data on file:
[111] L12:DATA DFREPLACE CMP
[112] ~L6

[113] A Next set if layer values unchanged:
[114] L13:~(XpBAD)~L5

[115] A Indices of active fields:
[116] AFLD~(xWID)/tINCR

[117] A Exclude deletion field:
[118] NF~pAFLD~(AFLD~DEL)/AFLD

[119] A Flag records filed so far:
[120] FILED~(pBAD)pO

[121] A Look at layer field:
[122] LVAR~OFREAD TIE,LAY+SDISP
[123] A Branch if vector field:
[124] VEC~WID[LAY]=l

[125] L14:~VECpL15

[126] R Flag records with layer of 1st unfiled rec:
[127] LAYER~LVAR[BAD[FILEDLO];]

[128] GOOD~LVAR[BAD;]A.=LAYER

[129] A ••• and sets with this record:
[130] LSETS~LVA.=LAYER

[131] ~L16

[132] L15:LAYER~LVAR[BAD[FILEDtO]]

[133] GOOD~LVAR[BAD]=LAYER

[134] LSETS~LV=LAYER

[135] R Update FILED; convert to indices:
[136] L16:FILED~FILEDvGOOD

[137] GOOD~GOOD/BAD

-425­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

V INDEXA (continued)
[138] NR+-pGOOD
[139] R Consider only non-full sets in this layer or
[140] R empty sets in any layer:
[141] LSETS~(ARPS=O)vLSETSAARPS1BLK

[142] A Convert to indices:
[143] LSETS+-LSETS/tpLSETS
[144] A No. records filed so far:
[145] FREC~O

[146] A Branch if no slots available in existing sets:
[147] L17:~(BLK~MIN~l/A~IARPS[LSETS])pL32

[148] A Branch if more than 1 set needed:
[149] T+-NR-FREC
[150] ~(T>BLK-MIN)pL18

[151] A Choose fullest set which will hold all recs:
[152] S+-BLK-A
[153] S+-LSETS[Sll/CS~T)/S]

[154] ~L19

[155] R Choose set with most empty slots:
[156] L18:S~LSETS[A1MIN]

[157] R No. records to be inserted within the set:
[158] L19:M~TlRPS[S]-IARPS[S]

[159] R No. records to be catenated within the set:
[160] N+-CT-M)lBLK-RPS[SJ
[161] R Displacement (no. components) before this set:
[162] SD+-DISP+INCRxS+-l
[163] A Branch if no deletion field:
[164] ~(xDEL)!L20

[165] A Read deletion field for set s:
[166] BIT~DFREAD DCMP~TIE,DEL+SD

[167] A Branch if no records to be inserted:
[168] ~(xM) J,L20
[169] R Indices of available insertion slots:
[170] IINDS~MpC~BIT)/lpBIT

[171] A Next field index:
[172] L20:F~1

[173] A Loop by active field:
[174] L21:-'+CF>NFJpL26
[175] R Field number:
[176] FLD~AFLD[F]

[177] R Field width (no. columns):
[178] W~WID[FLD]

[179] A Look at original set:
[180] VAR~OFREAD TIE,FLD+SDISP
[181] A Read field F for set s:
[182] DATA~DFREAD CMP~TIE,FLD+SD

[183] A Branch if a matrix field:
[184] ~(W>1)pL23

[185] A Branch if no records to insert:
[186] ~ CxM) J.L2 2
[187] DATA[IINDS]+-VAR[GOOD[FREC+lM]]
[188] A Branch if no records to catenate:
[189] ~CXN)J,L25

[190] L22:DATA+-DATA,VAR[GOOD[CFREC+M)+tN]]

-426­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v
[191]
[192]
[193]
[194]
[195]
[196]
[197]
[198]
[199]
[200]
[201]
[202]
[203]
[204]
[205]
[206]
[207]
[208]
[209]
[210]
[211]
[212]
[213]
[214]
[215]
[216]
[217]
[218]
[219]
[220]
[221]
[222]
[223]
[224]
[225]
[226]
[227]
[228]
[229]
[230]
[231]
[232]
[233]
[234]
[235]
[236]
[237]
[238]
[239]
[240]
[241]
[242]
[243]

INDEXA (continued)
-+L25

A Branch if no records to insert:
L23:-+(xM)J,L24
DATA[IINDS;]~VAR[GOOD[FREC+tM];]

R Branch if no records to catenate:
-+(xN) J.-L25
L24:DATA~DATA,[1]VAR[GOOD[(FREC+M)+tN];]

L25:DATA OFREPLACE eMP
F+--F+l
~L21

R Branch if no deletion field:
L26:LEAD~1

-+(xDEL)~L29

R Branch if no records to insert:
-+(XM)~L27

A Turn active record bits on:
BIT[IINDS]+-l
LEAD~J\/BIT=J\\BIT

R Branch if no records to catenate:
-+(xN)~L28

L27:BIT+-BIT,Np1
L28:BIT DFREPLACE DCMP
R Increment FREe by no. records added to this set:
L29:FREC~FREC+M+N

RPS[S]+*RPS[S]+N
NFP[9]~NFP[9]+T~O=ARPS[S]

A Replace layer value if set initially empty:
-+TJ.-L31

R Branch if a vector layer field:
-+VECpL30
LV[S;]+-LAYER
--+L31

L30:LV[S]+--LAYER
L31:ARPS[S]~(-1 l)[l+LEAD]xM+N+IARPS[SJ

NFP[7]+--NFP[7]+N
A Exit if all of data in field vars. filed:
~(NR=FREC)pL40

"'L17
A No. records to be appended in next set:
L32:N~BLKlNR-FREC

A Next field number:
F+-l

A Loop by field:
L33:~(F>INCR)pL39

W~WID[F]

R Branch unless a latent field:
~(xW)pL34

DATA+--lO
-+L38

A Branch unless it's the deletion field:
L34:~(DEL;tF)pL35

DATA~Npl

"':'L37

-427­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v
[244]
[245]
[246]
[247]
[248]
[249]
[250]
[251]
[252]
[253]
[254]
[255]
[256]
[257]
[258]
[259]
[260]
[261]
[262]
[263]
[264]
[265]
[266]
[267]
[268]
[269]
[270]
[271]
[272]
[273]
[274]
[275]
[276]
[277]
[278]
[279]
[280]
[281]
[282]
[283]
[284]
[285]
[286]
[287]
[288]
[289]
[290]
[291]
[292]
[293]
[294]
[295]

INDEXA (continued)

A Look at original set:

L35:VAR~DFREAD TIE,F+SDISP

A Branch if a matrix field:

-+(W>1)pL36
DATA~VAR[GOOD[FREC+lNJ]

~L37

L36:DATA~VAR[GOOD[FREC+lN];]

A Branch unless set must be padded
L37:~FILLJ,L38

DATA~(BLKt1J,pDATA)tDATA

L38:T~DATA DFAPPEND TIE
F+--F+l
-+L33

to BLK records:

R Increment FREC by no. records added to this set:
L39:FREC~FREC+N

ARPS+-ARPS,N

RPS+-RPS,T+-NrBLKxFILL

NFP[7J+-NFP[7]+T

NFP[6]+-NFP[6]+1

NFP[9]+-NFP[9]+1

R Catenate layer value:
LV+-LV, [1] LAYER

R continue unless all of data in field vars. filed:
-+(NR1FREC)pL32

A Branch if no data left to file:
L40:~(A/FILED)!L14

R

A Branch unless deletion field exists:

~(xDEL)!L41

R Read deletion field for set SET:
BIT+-DFREAD CMP~TIE,DEL+SDISP

R Turn off specified indices and replace:
BIT[BAD]+--O
BIT DFREPLACE CMP

R Compute new no. records:
N~+/BIT

M+-IRPS[SETJ
A Reset parameters:
NFP[9J~NFP[9]-N=O

ARPS[SET]+-NxC-l l)[l+N=+/A\BITJ
~L5

R
A Turn off specified indices:
L41:M~RPS[SET]

BIT~Mpl

BIT[BADJ+-O
R Compute new no. records:

N+-+/BIT
A Reset parameters:

NFP[9]+-NFP[9]-N=Q
NFP[7J+-NFP[7J+N-M
RPS[SET]~N

-428­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

v	 INDEXA (continued)
[296] A Last field index:
[297] F~O

[298] A Loop by active field:
[299] L42:-+(F~NF)pL5

[300] ~ Current field index and number:
[301] F+-F+1
[302] FLD+-AFLD[FJ
[303] ~ Read, compress, replace field FLD for set SET:
[304] CMP+-TIE,FLD+SDISP
[305] (BITfDFREAD CMPJOFREPLACE eMP
[306] -+L42
[307] A
[308] A Erase <assign> and exit:
[309] L43:F~DEX 'assign'
[310] A Replace LV, RPS, ARPS if layer field assigned:
[311] -+(LAY€FLDS)J,O
[312] LV DFREPLACE TIE,9
[313] NFP DFREPLACE TIE,7
[314] RPS DFREPLACE TIE,8
[315] -+(xDEL)J;O
(316]	 ARPS OFREPLACE TIE,lO

V

[WSID: MULTIFLO]
V	 NFP+-INDS INDEXWSA FP;A;AFLD;ARPS;BAD;BIT;BLK;CMP;DATA;

DCMP;DEL;DISP;F;FILED;FILL;FLD;FLDS;FREC;FT;GOOD;I;
IINDS;INCR;IND;LAY;LAYER;LEAD;LSETS;LV;LVAR;M;MIN;N;NF
;NFLD;NR;NREC;NSET;RPS;S;SD;SDISP;SET;SETS;SHAPE;SIND;
T;TIE;UNQ;VAR;VEC;W;WID;OIO

[1] A Inserts data from global field variables (e.g. F3,
[2] A F5, ... for fields 3, 5, ...) into fields 11~FP for
[3] A records identified by file indices matrix INDS.
[4] R First row of INDS is set number (origin 1);
[5] R second row is index (origin 1) within set.
[6] A INDS may be of any dimension as long as its
[7] A first coordinate is 2. Global field variables
[8] A have same number of columns as corresponding
[9] A fields. Leading shape is l~pINDS. Global field
[10] ~ variables are erased upon completion.
[11] DERROR(11ppFP)/'RANK ERROR'
[12] OERROR((11>pFP)v2~ltpINDS)/'LENGTHERROR'
[13J A Exit if no fields:
[14] NFLD~pFLDS+-l1~FP

[15] NFP+-l1pFP
[16] -+(xNFLD)J;O
[17] OIO~1

[18] INCRt-FP[3J
[19] DEL+-IFP[11J
[20] FILL~FP[11]<O

[21] DERROR((A/FLDSElINCR)sDEL€FLDS)/'INVALID FIELD NUMBER'
[22] TIE+-FP[2]
[23] FT~OFREAD TIE,4

-429­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

V INDEXWSA (continued)
[24] A width (no. columns) of specified fields:
[25] WID~FT[l;]

[26] DERRORCOEWID[FLDS])/'INACTIVE FIELD'
[27] A Shape of field variables (excluding columns):
[28] SHAPE~l~pINDS

[29] R Last field index:
[30] F~O

[31] R Loop by specified field to verify field vars
[32] R (bypass this loop to make the function faster
[33] R and to live dangerously):
[34] Ll:~(F~NFLD)pL3

[35] R Current field index, number and width:
[36] F~F+l

[37] FLD~FLDS[F]

[38] W~WID[FLD]

[39] A Look at field variable:
[40] S~pDATA~~'F' ,~FLD

[41] DERROR((2¢FT[2;FLD])~O=liOpDATA)/'DOMAINERROR'
[42] R Done if singleton data:
[43] ~(lA.=S)pLl

[44] A Branch unless 'singleton' record:
[45] ~((W~1)AIA.=-1~S)~L2

[46] OERROR(W~-liS)/'LENGTHERROR'
[47] ~Ll

[48] L2:DERROR((pSHAPE)A.~(pS)+-1,(W=1)pO)/'RANKERROR'
[49] N~(l+pSHAPE)pS,l

[50] DERROR(Nv.~SHAPE,W)/'LENGTHERROR'
[51] ~L1

[52] R Break apart indices:
[53] L3:NREC~pSETS~, 1 0 fINDS
[54] INDS~, 0 1 fINDS
[55] A Exit if no indices:
[56] ~(XNREC)~L43

[57] LAY~FP[l]

[58] DISP~FP[4]

[59] BLK~FP[5]

[60] R Read LV, RPS, ARPS if layer fId being assigned:
[61J ~(LAY€FLDS)~L4

[62] LV~OFREAD TIE,9
[63] RPS~ARPS~DFREAD TIE,S
[64] ~(=/FP[7 lO])pL4
[65] ARPS~DFREAD TIE,lO
[66] A Determine distinct set numbers (deleting -15):
[67] L4:UNQ~SETS[4SETS]

[68] NSET~pUNQ~(UNQ¢-l!-l,UNQ)/UNQ

[69] R Last set index:
[70] SIND~O

[71] A Loop by distinct set:
[72] L5:~(SIND~NSET)pL43

[73] A Current set index and number:
[74] SIND~SIND+l

[75] SET~UNQ[SIND]

-430­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v INDEXWSA (continued)
[76] A Displacement (no. components) before this set:
[77] SDISP~DISP+INCRXSET+-l

[78] A Indices of INDS to retrieve in this set:
[79] IND~(SET=SETS)/tNREC

[80] I~INDS[IND]

[81] R Elts of INDS of recs whose layer value changes:
[82] BAD~tO

[83] A Last field index:
[84] F~O

[85] A Loop by specified field:
[86] L6:4(F~NFLD)pL13

[87] A Current field index, number and width:
[88] F~F+1

[89] FLD~FLDS[F]

E90] A Is this the layer field being changed?

[91] LAYER~LAY=FLD

[92] W~WID[FLD]

[93] A Read data:
[94] DATA~DFREAD CMP~TIE,FLD+SDISP

[95] A Current field var:
[96] VAR~~'F',~FLD

[97] A continue if singleton:
[98] ~(lA.=pVAR)pLI0

[99] A Branch if 'singleton' record:
[100] ~((W11)A1A.=-1~pVAR)pL7

[101] A Branch if rank OK already:
[102] ~((ppVAR)=2lW)pL8

[103] L7:VAR~(NREC,(W>1)pW)pVAR

[104] ~ Branch if matrix:
[105] L8:~(W>1)pL9

[106] VAR~VAR[IND]

[107] ~L10

[108] L9:VAR~VAR[IND;]

[109] A Branch if matrix:
[110] LI0:~(W>1)pLl1

[111] A Insert data:
[112] DATA[I]~VAR

[113] A Branch unless layer field:
[114] ~LAYER~L12

[115] A Flag recs whose layer val has changed:
[116] BAD~(LV[SET]~VAR)/I

[117] ~L12

[118] Ll1:DATA[I;]~VAR

[119] R Branch unless layer field:
[120] ~LAYER~L12

[121] R Flag recs whose layer val has changed:
[122] BAD~(VARv.tLV[SET;])/I

[123] R Replace data on file:
[124] L12:DATA DFREPLACE eMP
[125] ~L6

[126] A Next set if layer values unchanged:
[127] L13:4CxpBAD)~L5

-431­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v
[128]
[129]
[130]
[131]
[132]
[133]
[134]
[135]
[136]
[137]
[138]
[139]
[140]
[141]
[142]
[143]
[144]
[145]
[146]
[147]
[148]
[149]
[150]
[151]
[152]
[153]
[154]
[155]
[156]
[157]
[158]
[159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]
[167]
[168]
[169]
[170]
[171]
[172]
[173]
[174]
[175]
[176]
[177]
[178]
[179]

INDEXWSA (continued)

A Indices of active fields:

AFLD~(XWID)/lINCR

R Exclude deletion field:
NF~pAFLD~(AFLD1DEL)/AFLD

R Flag records filed so far:
FILED+--(pBADJpO

A Look at layer field:
LVAR~DFREAD TIE,LAY+SDISP

A Branch if vector field:
VEC+-WID[LAYJ=l

L14: 4VECpL15

R Flag records with layer of 1st unfiled rec:
LAYERf-LVAR[BAD[FILEDtO];]
GOOD+-LVAR[BAD;]A.=LAYER

R ••• and sets with this record:
LSETS~LVA.=LAYER

4L16
L15:LAYER+--LVAR[BAD[FILEDlO]]
GOOD~LVAR[BAD]=LAYER

LSETS+--LV=LAYER
A Update FILED; convert to indices:
L16:FILED~FILEDVGOOD

GOOD~GOOD/BAD

NRf-pGOOD
R Consider only non-full sets in this layer or
A empty sets in any layer:
LSETSf-(ARPS=O)vLSETSAARPS~BLK

R Convert to indices:
LSETS+--LSETS/lpLSETS

A No. records filed so far:
FREC+--O

A Branch if no slots available in existing sets:
L17:~(BLK~MIN~L/A~IARPS[LSETS])pL32

R Branch if more than 1 set needed:
T~NR-FREC

-+CT>BLK-MIN)pL18
R Choose fullest set which will hold all recs:

S+-BLK-A
S+-LSETS[Sll/(S~T)/S]

-+L19
R Choose set with most empty slots:
L18:S~LSETS[AlMIN]

A No. records to be inserted within the set:
L19:M~TlRPS[S]-IARPS[S]

R No. records to be catenated within the set:
N~(T-M)LBLK-RPS[S]

R Displacement (no. components) before this set:
SD+--DISP+INCRxS+-l

R Branch if no deletion field:
4(xDEL)!L20

A Read deletion field for set s:
BIT~DFREAD DCMP+--TIE,DEL+SD

-432­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v
[180]
[181]
[182]
[183]
[184]
[185]
[186]
[187]
[188]
[189]
[190]
[191]
[192]
[193]
[194]
[195]
[196]
[197]
[198]
[199]
[200]
[201]
[202]
[203]
[204]
[205]
[206]
[207]
[208]
[209]
[210]
[211]
[212]
[213]
[214]
[215]
[216]
[217]
[218]
[219]
[220]
[221]
[222]
[223]
[224]
[225]
[226]
[227]
[228]
[229]
[230]
[231]

INDEXWSA (continued)
R Branch if no records to be inserted:

4(xM)J,L20
A Indices of available insertion slots:
IINDS~Mp(~BIT)/tpBIT

A Next field index:
L20:F~1

A Loop by active field:

L21:-+CF>NF)pL26

A Field number:

FLD~AFLD[FJ

R Field width (no. columns):
W~WID[FLD]

R Look at original set:
VAR~DFREAD TIE,FLD+SDISP

R Read field F for set s:
DATA~DFREAD CMP~TIEtFLD+SD

A Branch if a matrix field:
~(W>1)pL23

R Branch if no records to insert:
-+ (xM) J,L2 2
DATA[IINDS]~VAR[GOOD[FREC+tM]]

R Branch if no records to catenate:
~(xN)J,L25

L22:DATA~DATA,VAR[GOOD[(FREC+Ml+tN]]

a+L25
R Branch if no records to insert:
L23:-+(xMlJ,L24
DATA[IINDS;]~VAR[GOOD[FREC+tM];]

A Branch if no records to catenate:
a+(xNlJ,L25
L24:DATA~DATAt[1]VAR[GOOD[(FREC+M)+tN];]

L25:DATA DFREPLACE eMP
F~F+l

~L21

A Branch if no deletion field:
L26:LEAD~1

-+(xDELlJ,L29
A Branch if no records to insert:
~(xM)J,L27

R Turn active record bits on:
BIT[IINDS]~l

LEAD~I\/BIT=A\BIT

R Branch if no records to catenate:
~(xN),J..L28

L27:BIT+-BIT,Npl
L28:BIT DFREPLACE DCMP
A Increment FREe by no. records added to this set:
L29:FREC~FREC+M+N

RPS[S]~RPS[S]+N

NFP[9]~NFP[9]+T~O=ARPS[S]

A Replace layer value if set initially empty:
--+TJ,L31

-433­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

V
[232]
[233]
[234]
[235]
[236]
[237]
[238]
[239]
[240]
[241]
[242]
[243]
[244]
[245]
[246]
[247]
[248]
[249]
[250]
[251]
[252]
[253]
[254]
[255]
[256]
[257]
[258J
[259]
[260]
[261]
[262J
[263]
[264]
[265]
[266]
[267]
[268]
[269]
[270]
[271]
[272]
[273]
[274]
[275]
[276]
[277]
[278]
[279]
[280]
[281]
[282]
[283]

INDEXWSA (continued)

R Branch if a vector layer field:

~VECpL30

LV[S;]~LAYER

~L31

L30:LV[S]~LAYER

L31:ARPS[S]~(-1 l)[l+LEAD]xM+N+IARPSrSJ
NFP[7]+-NFP[7]+N

A Exit if all of data in field vars. filed:
-.+(NR=FREC)pL40
-+L17

A No. records to be appended in next set:
L32:N~BLKLNR-FREC

A Next field number:
F+--l

A Loop by field:
L33:~(F>INCR)pL39

W+--WID[FJ
A Branch unless a latent field:
~(XW)pL34

DATA+-lO
-+L38

R Branch unless it's the deletion field:
L34:~(DEL~F)pL35

DATA+-Npl
-+L37

A Look at original set:
L35:VAR~DFREAD TIE,F+SDISP
A Branch if a matrix field:

-+CW>1)pL36
DATA~VAR[GOOD[FREC+tN]]

-+L37
L36:DATA+--VAR[GOOD[FREC+lN];]
A Branch unless set must be padded to
L37:-+FILLJ,L38
DATA+--CBLK,l~pDATA)tDATA

L38:T~DATA OFAPPEND TIE
F~F+l

-+L33
R Increment FREe by no.
L39:FREC+-FREC+N
ARPS~ARPS,N

RPS+--RPSJT~NrBLKxFILL

NFP[7]+-NFP[7]+T

NFP[6]+-NFP[6]+1

NFP[9]+--NFP[9]+1

R Catenate layer value:
LV+--LV,[lJLAYER

records added

A Continue unless all of data in field
--+(NR~FREC)pL32

A Branch if no data left to file:
L40:4(A/FILED)~L14

A

BLK records:

to this set:

vars. filed:

-434­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v
[284]
[285]
[286]
[287]
[288]
[289]
[290]
[291]
[292]
[293]
[294]
[295]
[296]
[297]
[298]
[299]
[300]
[301]
[302]
[303]
[304]
[305]
[306]
[307]
[308]
[309]
[310]
[311]
[312]
[313]
[314]
[315]
[316]
[317]
[318]
[319]
[320]
[321]
[322]
[323]
[324]
[325]
[326]
[327J
[328]
[329]
[330]

V

INDEXWSA (continued)
A Branch unless deletion field exists:

-+(xDEL)J.L41
A Read deletion field for set SET:
BIT~DFREAD CMP~TIE,DEL+SDISP

A Turn off specified indices and
BIT[BAD]~O

BIT OFREPLACE eMP
A Compute new no. records:
N~+/BIT

M~IRPS[SET]

A Reset parameters:
NFP[9]~NFP[9]-N=O

ARPS[SET]~NX(-l l)[l+N=+/A\BIT]
~L5

R
A Turn off specified indices:
L41:M+-RPS[SETJ

BIT+-Mpl
BIT[BAD]+-O

A Compute new no. records:
N~+/BIT

A Reset parameters:
NFP[9]+-NFP[9]-N=Q
NFP[7]+-NFP[7]+N-M
RPS[SET]+-N

R Last field index:
F+-Q

A Loop by active field:
L42:-+CF?;NFJpL5

replace:

A Current field index and number:
F+-F+l
FLD+-AFLD[F]

A Read 9 compress, replace field FLD for set SET:
CMP~TIE,FLD+SDISP

(BITfOFREAD CMPJOFREPLACE CMP
-+L42

R
~ Erase global field variables:
L43:F~~(NFLD,1)pFLDS

F+-DEX 'F' ,(+/' '=F)<I>F
A Replace LV, RPS, ARPS if layer field assigned:
~(LAYEFLDSJJ,Q

LV DFREPLACE TIE,9

NFP DFREPLACE TIE,7

RPS DFREPLACE TIE,S

~(XDELJJ,O

ARPS DFREPLACE TIE,lO

-435­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

[WSID: MULTIFLOJ

v R~A FOR B

9[1] R Catenates arguments together separating by a
[2] R newline character. Used as:
[3] R CFP,-77 2 4 a 3) EXECUTE 'F7~F7rF2+F4' FOR 'F3>1'
[4] R~A9DTCNLtB

V

[WSID: MULTIFLOJ
v ~~NFP~~~FP EXECUTE ~~EXPR;~~A;~~AFLDS;A~ALL;66ARPS;

66BAD;~6BIT;66BLK;6~CMP;~~DATA;~~DCMP;~ADEL;A6DISP;~~F

;~~FILED;~AFILL;~~FLD;~AFLDS;~AFN1;~AFN2;~~FN3;AAFREC;

AAFT;A~GOOD;6AIINDS;AAINCR;AAIND;AAINDS;AALAB;AALAY;

AALAYER;A~LEAD;A6LSETS;A~LV;6ALVAR;AAM;6AMIN;A6N;

A~NAFLD;AANDEL;AANF;AANFLD;AANR;AANSET;AANSFLD;A~RPS;

AAS;AASD;AASDISP;AASEL;AASET;AASETS;AASFLDS;AASIND;88T
;AATIE;6AVAR;AAVEC;~AW;~~W1D;A~XEQ;010

[1] R Used as: CFP,-7 7 2 4) EXECUTE 'F7~F7rF2+F4' or:
[2] R (FP,-7 7 2 4 0 3) EXECUTE 'F7~F7rF2+F4' FOR 'F3>1'
[3] A Loops through active sets doing the following:
[4] A reads the fields specified beyond the 0 in the
[5] A left argument (calling them F3, F5, etc. for
[6] A fields 3, 5, etc.); executes the character vector
[7] A expression beyond the newline character (inserted
[8] R by FOR) in the right argument; retrieves data
[9] R from fields specified before the 0 (and positive)
[10] A in the left argument (calling them F7, F2, etc.
[11J A for fields 7, 2, etc.) for the records of that
[12] A set which correspond to Is in the resulting bit
[13] R vector (or all active records if no selection
[14] A expression provided); executes the character
[15] A vector expression before the newline character in
[16] A the right argument; replaces on file data for
[17] R fields specified before the 0 (and negative) in
[18] A the left argument Cassuming their existence in
[19] A variables F7, F8, etc. for fields -7, -8, etc.)
[20] R for the records selected. All "Fn" variables are
[21] A erased upon completion. Note that EXPR is
[22] A executed in origin 1; e.g. 'F3[;2J' always refers
[23] A to 2nd column.
[24] OERROR((11pp~~FP)V1<ppA~EXPR)/'RANKERROR'
[25] OERRORCO=ltOpA6EXPR)/'DOMAIN ERROR'
[26] 010+-1
[27] A Extract 3 sets of fields from FP:
[28] AAT~11+(11~6~FP)tO

[29] AAFLDS~11~(~AT-1)pA~FP

[30] AASFLDS~AAT~A~FP

[31] ~AAFLDS~I(AAT~AAFLDS<O)/AAFLDS

[32] AAFLDS+-(~AAT)/AAFLDS

[33] A Extract 2 expressions from EXPR:
[34] AAEXPR~,AAEXPR

[35] AAT+-~AEXPRlDTCNL

[36] ~bXEQ~(66T-l)p~~EXPR

-436­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

v EXECUTE (continued)
[37]	 AAEXPR~~~T~AAEXPR

[3S]	 OERROR((0=p~~FLDS)vCl1~p~~FP)VC' 'A.=~~EXPR)10=p

A6SFLDS)/'LENGTH ERROR'
[39]	 A~INCR~~AFP[3]

[40]	 ~6DEL~IAAFP[11]

[41]	 ~AFILL~~~FP[11]<O

[42]	 ~6T~~AFLDS,6AAFLDS,~6SFLDS

[43]	 DERROR(CA/~ATEl~AINCR)~AADEL€AAT)/'INVALID FIELD
NUMBER'

[44]	 ~ATIE~AAFP[2]

[45]	 66FT~DFREAD AATIE,4
[46] A width Cno. columns) of fields:
[47]	 6~WIDt-6AFT[1;]

[48]	 DERRORCOEA6WID[66T])/'INACTIVE FIELD'
[49] A Numbers of sets with records in wrong layer:
[50]	 AABAD+-tO
[51] R Exit if no records:
[52]	 ~6NFP+-l1p~~FP

[53]	 ~(x6~FP[10])~~6L29

[54] A Make field vectors distinct:
[55]	 ~AT~AAINCRpO

[56]	 66T[6ASFLDS]+-1
[57]	 A6NSFLD~PA6SFLDS+-66T/lp~~T

[58]	 6~T[]+-O

[59]	 /::,.AT[AAAFLDS](-l
[60]	 A~NAFLD~p6AAFLDS~A6T/tp6/::"T

[61]	 66T[]+-0
[62]	 A6T[/::,.6FLDS]+--1
[63]	 A/::"NFLD~p6AFLDS(-/::"AT/lpAAT

[64] R Names of fields to erase:
[65]	 ~AFN1~(~A6SFLDSEA/::"FLDS)/AASFLDS

[66]	 66FN1+-i((pAAFN1),1)p6AFNl
[67]	 AAFN1~'F' ,(+/' '=~AFN1)~AAFNl

[68]	 6AFN2~(~AAFLDSE6~AFLDS)/AAFLDS

[69]	 A~FN2+-~((pAAFN2),1)p/::"AFN2

[70]	 6AFN2~'F' ,C+/' '=/::"~FN2)~6~FN2

[71]	 AAFN3~~(AANAFLD,1)p~/::"AFLDS

[72]	 A6FN3~'F',(+/' '=AAFN3)~~AFN3

[73] A Label vector needed below based upon whether
[74] A field in ws or on file when needed Cfile,ws):
[75]	 A6LAB~CAAL17,AAL19)[1+A/::"FLDSE~~SFLDS]

[76]	 AALAY~AAFP[l]

[77]	 AADISP+-AAFP[4J
[78]	 h.6.BLK+-AAFP[SJ
[79] A6.ARPS~AARPS+-DFREAD AATIE,8
[SO] ~ Branch unless ARPS should be read:
[81]	 ~(=/A6FP[7 lO])pAALl
[82]	 A6ARPS~DFREAD A~TIE,lO

[83] R Consider only nonempty sets:
[84] 6AL1:A6SETS~O~A6ARPS

[85] A ••• and sets specified in <layers>:
[86]	 ~(X~ALAY)!A6L5

[87]	 ~6T~xONC , layers'

-437­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v
[88]
[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]
[97]
[98]
[99]
[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
[112]
[113]
[114]
[115]
[116]
[117]
[118]
[119]
[120]
[121]
[122]
[123]
[124]
[125]
[126]
[127]
[128]
[129]
[130]
[131]
[132]
[133]
[134]
[135]
[136]
[137]
[138]
[139]
[140]

EXECUTE (continued)
~(a~TvA~LAYE~~AFLDS)p~~L5

A Read layer values:
~8LV~DFREAD 6~TIE,9

~~AT!A~L5

A Branch if matrix layers field:
~(AAWID[A~LAY]>1)pA~L2

~ASETS~A~SETSAAALVElayers

~AAL5

A Convert <layers> to matrix if not already:
A6L2:DERROR(A6FT[1;~ALAY]t-ltplayers)/'LENGTHERROR'
~(2=pplayers)p6AL3

layers~((x/-l~players)9-1tplayers)players

A Branch if numeric matrix field:
~AL3:~(O=ltOpAALV)pAAL4

AASETS~6ASETSA(layers CMIOTA A~LV)slpplayers

~AAL5

AAL4:AASETS~AASETSAv/AALVA.=~layers

A Convert to indices; erase <layers>:
6AL5:A6SETS~~ASETS/tPAASETS

AANSET~PAASETS

AAT~DEX 'layers'

A Last set index:
AAS~O

A Loop by nonempty set:
AAL6:~(~AS~AANSET)pA~L29

R Current set index and number:
AAS~AAS+1

AASET~AASETS[AAS]

A Displacement (no. components) before this set:
AASDISP~AADISP+AAINCRxAASET-1

R Branch if deletion field unneeded:
~(AANDEL~AAARPS[AASET]>0)pAAL7

R Read deletion field for set SET:
AABIT~DFREAD AATIE 9AADEL+AASDISP

R Are all records in this set active:
AAL7:AAALL~AAARPS[AASET]=AARPS[AASET]

A Branch if a selection expression:
~(XAANSFLD)pAAL9

A Branch if all records active:
~AAALLpAAL15

R Branch if deletion field unneeded:
~AANDELpAAL8

R Indices of active records:
AAINDS~AABIT/lpA6BIT

~AAL15

AAL8:AAINDS~tAAARPS[6ASET]

~AAL15

R Last field index:
~AL9:AAF~0

R Loop by selection field:
AALI0:~(AAF~AANSFLD)pAAL13

R Current field index and number:
~~F~6AF+l

-438­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v
[141]
[142]
[143]
[144]
[145]
[146]
[147]
[148]
[149]
[150]
[151]
[152]
[153]
[154]
[155]
[156]
[157]
[158J
[159]
[160J
[161]
[162]
[163]
[164]
[165]
[166]
[167]
[168]
[169]
[170]
[171]
[172]
[173]
[174]
[175]
[176]
[177]
[178]
[179]
[180]
[181]
[182]
[183]
[184]
[185]
[186]
[187]
[188]
[189]
[190]
[191]
[192]
[193]

EXECUTE (continued)
~~FLD~~~SFLDS[~~F]

A Read field FLD for set SET:
~~DATA~DFREAD ~ATIE,~AFLD+A~SDISP

A Branch if all records in set active:
~A~ALLpAAL12

A Branch if deletion field unneeded:
4A~NDELpAAL11

A Apply deletion field:
AADATA~AABITrAADATA

~~AL12

A Active records are leading records:
~AL11:A~DATA~(A~ARPS[~ASET],ltpAADATA)pAADATA

A Assign data to global variable Fn:
~AL12:~'F' ,(~A~FLD),'~AADATA'

-+AALIO
A Once all selection fields read, execute EXPR:
~AL13:AASEL~~AAEXPR

A Erase fields in SFLDS and not in FLDS:
AAT+-DEX ~~FNl

R Indices to retrieve (after squeezing deletions):
~~IND+-AASEL/tpA~SEL

A Branch if some records selected:
-+(XpA6IND)p6~L14

A Erase field variables;
AAT+-DEX A~FN2

AAT+-DEX AAFN3
-+AAL6

R Branch if all records

get next set:

on file selected:
A~L14:~(AAALL+-AAALLA(pAAIND)=pAASEL)p~AL15

A Indices to retrieve (before squeezing deletions):
~AINDS+-A~IND

R Branch if deletion field unneeded:
-+AANDELpAAL15

R Reset INDS, considering deletion field:
6AINDS+-(AABIT/tpAABIT) [AAIND]

R Last field index:
~AL15:AAF+--O

R Loop by execution field:
AAL16:-+(AAF~AANFLD)pAAL22

A Current field index and number:
AAF~AAF+l

AAFLD~A~FLDS[~AF]

R Branch depending on whether already in ws:
-+~ALAB[A~F]

AAL17:AADATA+-DFREAD AATIE,AAFLD+AASDISP
-+AAALLpAAL21

A Branch if matrix field:
~(AAWID[AAFLD]>1)pAAL18

AADATA~AADATA[~AINDS]

-+~AL21

AAL18:AADATA~~ADATA[AAINDS;]

-+AAL21
6~L19:~~~ALLp~~L16

-439­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v
[194]
[195]
[196]
[197]
[198]
[199]
[200]
[201]
[202]
[203]
[204]
[205]
[206]
[207]
[208]
[209]
[210]
[211]
[212]
[213]
[214]
[215]
[216]
[217]
[218]
[219]
[220]
[221]
[222]
[223]
[224]
[225]
[226]
[227]
[228]
[229]

[230]
[231]
[232]
[233]
[234]
[235]
[236]
[237]
[238]
[239]
[240]
[241]
[242]
[243]
[244]
[245]

EXECUTE (continued)
6ADATA~~'F',~AAFLD

R Branch if matrix field:
~(AAWID[AAFLD]>1)pAAL20

~~DATA~AADATA[A~IND]

-+A6L21
A6L20:AADATA~AADATA[A6IND;]

R Assign data to global variable Fn:
AAL21:~'F',(~AAFLD),'~AADATA'

-+AAL16
A Once all execution fields read, execute XEQ:
AAL22:~AAXEQ

A Erase fields in FLDS and not in AFLDS:
AAT~OEX AAFN2

A Last field index:
A6.F+-O

A Loop by assignment field:
AAL23:~(AAF~AANAFLD)pAAL28

R Current field index, number and width:
6AF~AAF+l

AAFLD~AAAFLDS[AAF]

AAW~AAWID[AAFLD]

6ACMP~AATIE,~AFLD+~6SDISP

~ADATA~~'F' ,~AAFLD

R Branch if all records selected:
~A.6ALLpAIi.L25

6 li.VAR+-AA DATA
R Read field from file:
AIi.DATA~OFREAD A.6CMP

R Branch if matrix field:
-+(AAW>1)pAAL24
AADATA[AAINDS]~AIi.VAR

~AAL25

AAL24:Ii.Ii.DATA[AAINDS;]~AAVAR

A Check that data is OK before filing:
AAL25:DERROR((2lAAW)~ppAIi.DATA)/'RANKERROR'
OERROR((AAW~-ltl,l!pAADATA)VAARPS[AASET]~lpPAADATA)/'

LENGTH ERROR'
OERROR((2~AAFT[2;AAFLD])~0=ltOpAIi.DATA)/'DOMAIN ERROR'

A Replace data on file:
Ii.Ii.DATA OFREPLACE AIi.CMP

A continue loop unless layer field:
~(AALAY¢Ii.AFLD)pIi.Ii.L23

~AAALLJ..6.AL26

AIi.VAR+-A6 DATA
R Branch if matrix field:
AAL26: 4(Ali.W>1)pAAL27

R Continue if layer values ok:
~(Ii.AVARA.=AALV[Ii.ASET])pAAL23

R Else keep track of bad set:
AABAD~AABADfAASET

-+AAL23
AAL27:~(A/AAVARA.=Ii.ALV[AASET;])pAAL23

6~BAD~66BADt66SET

-440­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v
[246]
[247]
[248]
[249]
[250]
[251]
[252]
[253]
[254]
[255]
[256]
[257]
[258J
[259]
[260]
[261]
[262]
[263]
[264]
[265]
[266]
[267]
[268]
[269]
[270]
[271]
[272]
[273]
[274]
[275]
[276]
[277]
[278]
[279]
[280]
[281]
[282]
[283]
[284]
[285]
[286]
[287]
[288]
[289]
[290]
[291]
[292]
[293]
[294]
[295]
[296]
[297]

EXECUTE (continued)
"'~~L23

R Erase fields in AFLDS:
AAL28:~AT~DEX 66FN3

... .o..o.L6
6AL29:66T~OEX , layers'
A Exit if no sets with wrong
~(XA~NSET~p~~BAD)~O

AASETS+-~6BAD

A Indices of active fields:
AAAFLDS+-(x6AWIDJ/lAAINCR

A Exclude deletion field:

layer recs:

A6NF~PAAAFLDS~(6AAFLDS1A~DEL)/aAAFLDS

A Is layer field a vector field?
AAVEC+-AAWID[AALAY]=1

A Last set index:
AASIND+-O

A Loop by bad set:
AAL30:~(A~SIND~6ANSET)pAAL64

A Current set index and number:
AIi.SINDt-~ASIND+l

~~SETt-A~SETS[~~SIND]

R Displacement (no. components)
~ASDISPt-AADISP+Ii.AINCRxAASET-l

before this set:

A Branch if deletion field unneeded:
~(A~NDELt-Ii.Ii.ARPS[AASET]>O)p~AL31

~ Read deletion field for set SET:
AABIT+-OFREAD Ii.~TIE,~ADEL+AASDISP

R Indices of active records:
AAINDS~AABIT/lpIi.ABIT

-+AAL32
AAL31:Ii.AINDS~lAIi.ARPS[AASET]

A Look at layer field:
A.o.L32:Ii.ALVAR~DFREAD Ii.ATIE,AALAY+Ii.~SDISP

A Branch if vector field:
--+~Ii.VECp~t::.L33

A Indices of recs with changed layer value:
AABAD~(AIi.LVAR[AAINDS;]v.1~ALV[AIi.SET;])/AAINDS

--+AIi.L34
AAL33:Ii.ABAD~(AALVAR[AIi.INDS]~AALV[AIi.SET])/AAINDS

A Flag records filed so far:
AAL34:AAFILED~(pIi.ABAD)pO

A Branch if vector field:
AAL35:-+AAVECpA~L36

A Flag records with layer of 1st unfiled rec:
Ii.~LAYER~AALVAR[AABAD[6AFILEDtO];]

AIi.GOOD~Ii.ALVAR[AABAD;]A.=AALAYER

A ••• and sets with this record:
~ALSETS~~ALVA.=AALAYER

~A6.L37

AAL36:A6LAYER~AALVAR[AABAD[AAFILEDtO]]

AAGOOD~Ii.ALVAR[~ABAD]=AALAYER

AALSETS~AALV=AALAYER

-441­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v EXECUTE (continued)
[298] R Update FILED; convert to indices:
[299] 88L37:~8FILED~86FILEDV~8GOOD

(300] ~8GOOD~8~GOOD/~6BAD

[301] t,.8NR~p66.GOOD

[302] A Consider only non-full sets in this layer or
[303] A empty sets in any layer:
[304] ~6.LSETS~(t,.6ARPS=0)V86.LSETSA~6ARPS#~8BLK

[305] R Convert to indices:
[306] ~~LSETS~AALSETS/tP6ALSETS

[307] R No. records filed so far:
[308] AAFREC~O

[309] A Branch if no slots available in existing sets:
[310] AAL38:~(AABLK~AAMIN~L/A6A~I6.8ARPS[6ALSETS])pA8L53

[311] A Branch if more than 1 set needed:
[312] 6AT~AANR-6.AFREC

[313] ~(88T>6.ABLK-~6MIN)p~AL39

[314] R Choose fullest set which will hold all recs:
[315] AAS~f:,.6BLK-A!:J.A

[316] AAS~AALSETS[A!:J.SlL/(bAS~AAT)/A6S]

[317] ~Af:,.L40

[318] A Choose set with most empty slots:
[319] AAL39:6AS~6ALSETS[A~AtAAMIN]

[320] R No. records to be inserted within the set:
[321] AAL40:f:,.6.M~AATL8l:J.RPS[~AS]-IAAARPS[8AS]

[322] R No. records to be catenated within the set:
[323] AAN~(AAT-AAM)lA6.BLK-AARPS[AAS]

[324] A Displacement (no. components) before this set:
[325] AASD~AADISP+AAINCRxAAS+-l

[326] A Branch if no deletion field:
[327] ~(xAADEL)J.A8L41

[328] R Read deletion field for set s:
[329] A6BIT~DFREAD AADCMP~AATIE,AADEL+AASD

[330] R Branch if no records to be inserted:
[331] ~(xA6M)J,AAL41

[332] A Indices of available insertion slots:
[333] AAIINDS~A6Mp(~A6.BIT)/tp8ABIT

[334] A Next field index:
[335] AAL41:Af:,.F~1

[336] A Loop by active field:
[337] AAL42:~(AAF>f:,.6.NF)pAAL47

[338] A Field number:
[339] A6.FLD~AAAFLDS[AAF]

[340] A Field width (no. columns):
[341] AAW~86WID[Af:,.FLD]

[342] A Look at original set:
[343] AAVAR~DFREAD AATIE,AAFLD+A6SDISP
[344] A Read field F for set S:
[345] AADATA~DFREAD AACMP~~ATIE,AAFLD+A~SD

[346] A Branch if a matrix field:
[347] ~(I:1f:J.W>1)pl::t.6L44

[348] A Branch if no records to insert:
[349] ~(xI:16M)J,~~L43

[350] ~6DATA[AAIINDS]~6~VAR[~6GOOD[6~FREC+l66M]]

-442­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

v EXECUTE (continued)
[351]	 A Branch if no records to catenate:
[352] -+(xD.f1N)J,D.~L46

[353]	 6D.L43:~6DATA~6~DATA,aD.VAR[D.~GOOD[(~AFREC+AD.M)+l~~N]]

[354] -+f16L46
[355]	 R Branch if no records to insert:
[356]	 ~~L44:~(XA6M)~~8L45

[357] ~6DATA[~6IINDS;]~A6VAR[8AGOOD[A~FREC+tAAM];]

[358]	 R Branch if no records to catenate:
[359] -+(xAaN)~A6L46

[360]	 A6L45:A~DATA~D.ADATA,[1]~AVAR[A6GOOD[(~AFREC+A~M)+l~~N]

;]

[361]	 66L46:A6DATA DFREPLACE AACMP
[362] A.6.F~6AF+l

[363] -+AAL42
[364]	 A Branch if no deletion field:
[365]	 AAL47:66LEAD+-l
[366] ~(X~~DEL)J,~AL50

[367]	 R Branch if no records to insert:
[368] ~(XAAM)J,.6.AL48

[369]	 A Turn active record bits on:
[370] A~BIT[AAIINDS]+-l

[371] ~~LEAD~A/~ABIT=A\~aBIT

[372]	 R Branch if no records to catenate:
[373] -+(X6~N)J..6.AL49

[374]	 A~L48:A~BIT~AABIT,A~Npl

[375]	 ~AL49:AaBIT OFREPLACE A~DCMP

[376]	 A Increment FREe by no. records added to this set:
[377]	 AAL50:A~FREC+-6aFREC+AAM+AAN

[378] D.aRPS[AAS]+-D.ARPS[AAS]+AAN
[379] AANFP[9J~AANFP[9]+A~T~O=A~ARPS[AAS]

[380] A Replace layer value if set initially empty:
[381l ~AATJ,AAL52

[382]	 A Branch if a vector layer field:
[383] ~6AVECpl1AL51

[384] AALV[AAS;]~AALAYER

[385] --+AAL52
[386]	 AAL51:A~LV[AAS]~AALAYER

[387]	 AAL52:AAARPS[AAS]~(-1 1)[1+AALEAD]xAAM+AAN+IAAARPS[~6S

]

[388] aANFP[7]~AANFP[7]+AAN

(389] A Exit if all of data in field vars. filed:

[390] ~(AANR=AAFREC)pAAL61

[391] 4AAL38
[392]	 A No. records to be appended in next set:
[393]	 AAL53:AAN+-AABLKl~ANR-AAFREC

[394]	 A Next field number:
[395] AAF~l

[396]	 R Loop by field:
[397]	 AAL54:~(AAF>AAINCR)p~AL60

[398] A6W+-AAWID[6AFJ
[399]	 A Branch unless a latent field:
[400] ~(X.6AW)pAAL55

[401] 6~DATA+--tO

-443­

Chapter 14 Solutions FILE DESIGN AND UTILITIES

v
[402]
[403]
[404]
[405]
[406]
[407]
[408]
[409]
[410]
[411]
[412]
[413]
[414]
[415]
[416]
[417]
[418]
[419]
[420]
[421]
[422]
[423]
[424]
[425]
[426]
[427]
[428]
[429]
[430]
[431]
[432]
[433]
[434]
[435]
[436]
[437]
[438]
[439]
[440]
[441]
[442]
[443]
[444]
[445]
[446]
[447]
[448]
[449]
[450]
[451]
[452]
[453]

EXECUTE (continued)
-+~AL59

A Branch unless it's the deletion field:
AAL55:-+(AADEL~~AF)pA~L56

AADATA~AANpl

-+AAL58
R Look at original set:
AAL56:AAVAR~DFREAD AATIE,AAF+AASDISP
A Branch if a matrix field:

-+(AAW>1)pAAL57
~ADATA~AAVAR[AAGOOD[AAFREC+t~AN]]

-+~AL58

AAL57:AADATA~AAVAR[AAGOOD[AAFREC+lAAN];]

A Branch unless set must be padded to BLK records:
AAL58:-+AAFILL~AAL59

6ADATA~(AABLK,1!pAADATA)tAADATA

AAL59:AAT~AADATA DFAPPEND AATIE
AAF~AAF+l

-+AAL54
R Increment FREe by no. records added
A~L60:66FREC~a6FREC+A6N

~6ARPS~~~ARPS,~~N

6aRPS~AaRPS,aAT~A6Nr6ABLKxAaFILL

AANFP[7]~AANFP[7]+A~T

AANFP[6]~AANFP[6]+1

AANFP[9]~6ANFP[9]+1

A Catenate layer value:
AALV~AALV,[l]AALAYER

R continue unless all of data in field
-+(AANR~AAFREC)pAAL53

A Branch if no data left to file:
A6L61:~(A/AAFILED)!AAL35

R
A Branch unless deletion field exists:

to this set:

vars. filed:

-+(X~ADEL)J,~aL62

aaBIT~DFREAD AaCMP~AATIE,~6DEL+AASDISP

A Turn off specified indices and replace:
AABIT[A6BAD]~O

A6BIT OFREPLACE AACMP
R Compute new no. records:

AAN....+/AABIT
AAM~IA~RPS[A~SET]

R Reset parameters:
AANFP[9]~AANFP[9]-AAN=O

AAARPS[AASET]~AANX(-l 1)[1+A6N=+/A\AABIT]
~AAL30

R

R Turn off specified indices:

AAL62:AAM~AARPS[AASET]

A6BIT~AAMpl

AABIT[AABAD]~O

R Compute new no. records:
~AN+-+/AABIT

-444­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

v EXECUTE (continued)
[454] A Reset parameters:
[455] ~6NFP[9]~~ANFP[9]-6AN=O

[456] ~6NFP[7]~A~NFP[7]+AAN-AAM

[457] ~ARPS[.6.ASET]~AAN

[458] A Last field index:
[459] AAF~O

[460] A Loop by active field:
[461] AAL63:~(AAF~AANF)pAAL30

[462J A Current field index and number:
[463] AAF~6.6F+l

[464] AAFLD~AAAFLDS[AAF]

[465] A Read, compress, replace field FLD for set SET:
[466] AACMP~AATIE,AAFLD+AASDISP

[467] (AABITfDFREAD 6ACMPJOFREPLACE 6ACMP
[468] ~.6.AL63

[469] A
[470] A Replace LV, FP, RPS, ARPS:
[471] A.6.L64:AALV OFREPLACE AATIE,9
[472] 6.6.NFP OFREPLACE AATIE,7
[473] AARPS OFREPLACE AATIE,B
[474] -+(XAADEL)J.O
[475] AAARPS OFREPLACE ~~TIE,10

V

[WSID: MULTIFLO]
v R~A LAYERS B

[1] R Used as:
[2] A
[3] R RINDS+-(FP,KFLD)IOTA VALUES LAYERS Z
[4] R RINDS+-IOTARHO FP LAYERS Z
[5] A RINDS+-SVEC SLASHIOTARHO FP,SFLDS LAYERS Z
[6] A FP~SVEC COMPRESS FP,SFLDS LAYERS Z
[7] R MAT~SVEC SELECT FP,FLDS,O,SFLDS LAYERS Z
[8l R SVEC SELECTWS FP,FLDS,O,SFLDS LAYERS Z
[9] A CFP,XFLDS)EXECUTE XVEC LAYERS Z
[10] R (FP,XFLDS,O,SFLDS)EXECUTE XVEC FOR SVEC LAYERS Z
[11] R
[12] A where Z is a vector (if FP[lJ is a vector field)
[13] R or a matrix (if FP[lJ is a matrix field) of the
[14] R larger values for those sets of records to be
[15] R considered in the operation being performed. The
[16] R global variable <layers> is erased after performing
[17] R the operation (e.g. by IOTA or EXECUTE).
[18] R
[19] R+-A
[20]	 layers+--B

V

-445­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

5.	 The APL*PLUS file utility functions listed above should be
changed as follows to work on a SHARP APL system:

A. Make the following direct replacements wherever they occur:

APL*PLUS SHARP APL

oFREAD DREAD

DFREPLACE OREPLACE

DFAPPEND OAPPENDR

OFNUMS ONUMS

OTCNL OAV[156+DIO]

B.	 Wherever DERROR is used, replace the expression with an

equivalent DSIGNAL expression. For example:

DERROR Cl~ppFP)/'RANK ERROR'

'RANK ERROR' OSIGNAL Cl~ppFP)/599

While not listed in this book, the SHARP APL versions of the file
utility functions are available on disk. See the Postscript.

Unfortunately, the modifications required to make the file utility
functions operational in APL2 are much more dramatic. Since files
are limited to fixed length records rather than variable size
components, we must take a different approach.

One approach is to use a set of file access functions which emulate
the behavior of the file access functions on APL*PLUS and SHARP APL
systems. For example, the functions in the IBM public workspace 2
VAPLFILE (CREATE, USE, SET, GET, ...) perform such an emulation. When
the file is created, you specify the record length, the number of
records and the number of components. The utility functions break
apart arrays which are too large for a single record and maintain
directories to locate and reassemble the pieces of such arrays. If
you take this approach, your most difficult tasks are choosing a
record length and estimating the number of records the file will
ultimately require.

Another approach is to assume that a record length is chosen which is
sUfficiently large that any of the objects of the file may fit within
it. Since the data components of a multi-set transposed file are
limited to a specified block size CFP[S]), the maximum object size
can be determined in advance. The maximum size of each data
component is a function of its field type, its field width and the
block size. Therefore, given the parameters of a file CFT and FP),
you can determine a record length which is just long enough to
accomodate any single file component. Further, if the maximum number

-446­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

of records and sets are specified, you can compute the total number
of records required.

Given the record length and number of records, the file may be
created with all of its records. These records may then be accessed
directly (using BDAM) to read or replace objects. In fact, it is a
simple matter to write functions FREAD and FREPLACE which behave like
the APL*PLUS system functions DFREAD and OFREPLACE.

Appending new records, however, is not so easy. Therefore, the file
should be initialized with its maximum number of records, all of
which are flagged deleted. The sUbsequent "catenation" of new
records will actually be performed by replacing these deleted records.

Let's pursue the latter approach. To implement it, you can do the
following:

A.	 Write a dyadic function NREC~RECL whose left argument is FP,
whose right argument is FT and whose result is the 2 element
vector indicating the number of records and the record length
required for the file. FP[6J must be the maximum number of
sets needed, FP[?] the maximum number of records, and FP[11]
the number of the deletion bit field as a negative number. For
example:

FT~2 lOp12 1 1 1 1 1 1 0 0 0 2 3 3 2 2 4 1 1 1 1
FP~5 987 10 50 2000 25 50000 7 0 0 -7
NL~FP NREC6RECL FT
NL

300 24020

B.	 Write a dyadic function FCREATE whose left argument is the name
of the file to be created, whose right argument is a 3 element
integer vector: "tie number", number of records and record
length. The file is created, and variables (e.g. CTL987,
REC987) are shared with BDAM using the tie number to distinctly
identify this file from other files. The records are appended
via QSAM or via the FMT option of BDAM. For example:

'POLDATA.DATA' FCREATE FP[2J,NL

c.	 write functions FREAD and FREPLACE to emulate the APL*PLUS
system functions DFREAD and DFREPLACE. Assume variables shared
with BDAM using the tie number to distinctly identify the file
from other files.

D.	 Modify the INITFILE function (listed above for APL*PLUS
systems) to require FP[11J to be negative and to fill the
entire file CFP[6J sets) with "deleted" records. Use FREPLACE

-447­

Chapter 14 Solutions	 FILE DESIGN AND UTILITIES

in place of DFAPPEND since the file already contains all of its
"components". For example:

FP	 INITFILE FT

E.	 Modify the APL*PLUS file utility functions CCATREC, CATRECWS,
IOTA, IOTARHO, ... J with the following direct replacements:

APL*PLUS APL2

DFREAD FREAD
OFREPLACE FREPLACE
DTCNL OTC[1+0IO]
oERROR DES

F.	 Modify CATREC, CATRECWS, INDEXA, INDEXWSA and EXECUTE to
eliminate the "append new sets" logic since the file is
initialized with the maximum needed number of sets. If all
sets are full and more records are to be catenated, signal a
FILE FULL error.

G.	 Write functions FTIE, FUNTIE and FERASE to emulate the APL*PLUS
system functions DFTIE, DFUNTIE and DFERASE. Share variables
with BDAM using the tie number to distinctly identify one file
from another. For example:

FUNTIE FP[2J

While not listed in this book, the APL2 versions of the file utility
functions (including NREC~RECL, FCREATE, FREAD, ...) are available on
disk. See the Postscript.

-448­

Chapter 15 Solutions

BOOLEAN TECHNIQUES

1. A/NVEc=rNVEC
or

/\/O=lINVEC

(Note: The first expression checks whether the elements
are integers within comparison tolerance, i.e. OCT. The
second expression checks whether the elements are exactly
integers to full internal precision. comparison tolerance
is not meaningful for "0=".)

2 • (~V\' '#~CVEC)/CVEC

or
(-+/1\\' '=$CVEC)~CVEC

3. (+/A\CMAT=' ')$CMAT

4. MAP~INPUTE'0123456789'

+/MAP>-l~O,MAP

-449­

Chapter 15 Solutions	 BOOLEAN TECHNIQUES

5.
[WSID: TIMING]

V TIME~DEFINE ~~NAME;DIO;~~ALP;~AAN;~~BL;~~I;AAN;~ANL;

~ANUM;~APAN;AAPBL;AAPNUM;AAT;AATCNL;AAVR

[1]	 DIO~l

[2] A Remove blanks from fn name:
[3]	 AANAME~(AANAMEt' ')/AANAME
[4] A APL*PLUS:
[5]	 DERROR(3~DNC AANAMEJ/'NOT A DEFINED FUNCTION'
[6]	 DERROR(V/(,'*' ,DSIJDSS '*' ,AANAME,'[')/'FUNCTION

SUSPENDED'
[7] DERROR(O=pAAVR~DVR AANAMEJ/'FUNCTION LOCKED'
[8J AATCNL~DTCNL

[9] R SHARP APL:
[10] A 'NOT A DEFINED FUNCTION' DER (31DNC NAMEJp599
[11] A T~2 OWS 2 A STATE INDICATOR
[12]	 A 'FUNCTION SUSPENDED' DER (v/((ClppTJ,l+pNAMEJiT)A.=

NAME,'['Jp599
[13] R 'FUNCTION LOCKED' DER (O=pVR~l OFD NAMEJp599
[14] R TCNL~DAV[157]

[15] A Flag newline chars (Boolean partition vector):
[16]	 AANL~-I~AAVR=AATCNL

[17] A Flag digits:
[18]	 AANUM~AAVR€'0123456789'

[19] A Pole vector of contiguous digits:
[20]	 6APNUM~A~NUM~-1~~~NUM

[21] A Flag char following] after line no.:
[22]	 AANL~-l~AAPNUM\-l~AAPNUM/-l~AANL

[23]	 AAPNUM~O

[24] A Flag blanks:
[25]	 AABL~AAVR=' ,
[26] R Pole vector of contiguous blanks:
[27]	 A~PBL~AABL1-1~AABL

[28] A Flag 1st nonblank char in each line:
[29]	 ~ANL~(AANL>AABLJVAAPBL\-l~AAPBL/AANL

[30]	 AABL~AAPBL~O

[31] A Flag letters:
[32]	 AAALP~AAVR€'ABCDEFGHIJKLMNOPQRSTUVWXYZAabcdefghijklmno

pqrstuvwxyz~'

[33] R Flag digits or letters:
[34]	 AAAN~A6ALPV6ANUM

[35]	 AANUM~O

[36] A Pole vector of contiguous digits/letters:
[37]	 AAPAN~AAAN1-1~AAAN

[38]	 AAAN~O

[39] R Pole vector of identifiers:
[40]	 AAPAN~AAPAN\AATv-l~AAT~AAPAN/AAALP

[41]	 AAALP~O

[42] A Pole vec of identifiers at start of line:
[43]	 AAPAN~AAPAN\AATv-l~AAT~A~PAN/AANL

[44] A Pole vector of labels:
[45]	 AAPAN~A~PAN\AATV1$AAT~':'=AAPAN/AAVR
[46] A Flag 1st nonblank after label or at start:
[47]	 AANL~(AANL>AAPAN)V-l$AAPAN\-l~AAPAN/AANL

-450­

Chapter 15 Solutions	 BOOLEAN TECHNIQUES

V	 TIME~DEFINE (continued)
[48] 6~PAN~O

[49] A Expand VR for 2 more chars on each line (~O):

[50] ~~VR~(1+~6NL+~~NL)/~6VR

[51] DIO~O

[52] A6I~l6~N~+/~6NL

[53] A Insert the 2 chars:
[54] ~6VR[((aANL/tp~~NL)+6aI+A~I)o.+0 1]~CAAN,2)p'A¢'

[55] A~I~DDEF ~6VR A APL*PLUS
[56] A Add a last fn line too:
[57] AaI~DDEFL AANAME,'[' ,(~AAN+l),']~' A APL*PLUS
[58] A I~3 DFD C-6!VR),'[' ,C~l++/NL),']~V' A SHARP APL
[59] A Initialize stopwatch var:
[60] ~M~(AAN,4Jp 0 0 ,Cl/10J,O
[61] A Last line run:
[62] ~L~O

v

6.
[WSID: FNIDSJ

V	 IDENTIFY VR;ALP;AN;ARGS;AVAR;BL;COLS;HDR;IDLEN;IDS;
IDSTART;IND;LAB;LEN;LOC;N;NC;NCCON;NCMT;NID;NL;NQ;NUM;
PAN;PARSE;PBL;PID;PIDA;PLAB;PNUM;PSID;R;RESULT;RVAR;S;
START;T;TCNL;DIO

[1] A Evaluates the vector representation eVR) of a
[2] A function and displays all possible inconsistencies
[3] R involving the use of identifiers.
[4] R Requires subfunction: CMIOTA.
[5] DIO~O

[6] A Construct a scalar newline character:
[7] TCNL~DTCNL

[8] A TCNL~OTC[l] A APL2
[9] A TCNL~DAV[156] A SHARP APL
[10] ~ Where does header end?
[11] T~VR1TCNL

[12] ~ Grab header of fn Cless newline):
[13] HDR~TpVR

[14] A Drop header from vis rep:
[15] VR~T~VR

[16] A Where does fn syntax end?

[17J T~HDR1';'

[18] A Localized vars:
[19] LOC~T!HDR

[20] A Drop local vars:
[21] HDR~TpHDR

[22] A Drop leading junk:
[23] HDR~(v\~HDR€' V')/HDR
[24] A Is there an explicit result?
[25] T~(pHDR»IND~HDR1'~'

[26] A Explicit result Cif any)
[27] RESULT~CTXIND)pHDR

-451­

Chapter 15 Solutions BOOLEAN TECHNIQUES

V IDENTIFY (continued)
[28] R Remove result from header:
[29] HDR~' ',CTxIND+l)!HDR
[30] R starting indices of fn name, args:
[31] START~l+CHDR=' ')/lpHDR
[32] R Lengths of names:
[33] LEN~Cl!START,l+pHDR)-l+START

[34] R No. of args:
[35] T"--l+pLEN
[36] A Indices of args Cif any):
[37] N"-pIND"-(CT=2)pO),CXT)pT
[38] A Don't consider fn name:
[39] START~START[IND]

[40] LEN~LEN[IND]

[41] R Length of longest arg:
[42] COLS~r/O,LEN

[43] A Raveled, blank mat of args:
[44] ARGS~(NXCOLS)p' ,
[45] R Fill them in (T~MONIOTA LEN):
[46] T~T+lpT~LEN/--l!O,+\LEN

[47] ARGS[T+LEN/COLSX1N]~HDR[T+LEN/START]

[48] R Reshape to mat of args:
[49] ARGS"'CN, COLS) pARGS
[50] R Flag newline chars (Boolean partition vector):
[51] NL~-l~VR=TCNL

[52] R Flag nonquotes:
[53] NQ~VR;f""

[54] R Map of chars not in quote pairs (i.e. char constants)
[55] R within each fn line (NCCON~NL pEQSCAN NQ):
[56] NCCON~=\NQ~NL\T~-l!O,T"'~NL/=\-l~l,NQ

[57] NQ~O

[58] R Flag non-R chars Cincludes Rs in quotes):
[59] NC~NCCONAVR='R'

[60] R Map of chars which do not follow a R (ignoring RS
[61] R within quotes) within each fn line. AS are flagged o.
[62] A (NCMT~NL pANDSCAN NC):
[63] S~NL2:NC

[64] NCMT"'~~\S\T~-l~O,T~~S/NC

[65] S~T~NC'-O

[66] R Map of chars which are not included within AS or ".
[67] PARSE~NCMTANCCON

[68] VR~PARSE/VR

[69] NL~PARSE/NL

[70] PARSE~NCCON~NCMT~O

[71] R Flag digits, letters, blanks:
[72] NUM"'VRe'0123456789'
[73] ALP~VRe'ABCDEFGHIJKLMNOPQRSTUVWXYZ~abcdefghijklmnopqrs

tuvwxyz~'

[74] BL'-VR=' ,
[75] R Flag alphanumeric chars:
[76] AN~NUMvALP

[77] R Pole vec of contiguous digits:
[78] PNUM~NUM~-l~O,NUM

[79] NUM~O

-452­

Chapter 15 Solutions BOOLEAN TECHNIQUES

V IDENTIFY (continued)
[80] A Pole vee of contiguous digits/letters:
[81] PAN~AN~-l~O,AN

[82] AN~O

[83] R Pole vee of identifiers:
[84] PID~PAN\Tv-l~T~PAN/ALP

[85] ALP~PAN~O

[86] A Flag '0' before identifiers COnames):
[87] T~l$PID

[88] T~T\'D'=T/VR

[89] A Shift leading poles of Dnames to include D:
[90] PID~TvPID>-l$T

[91] T~O

[92] ~ Flag char following] after line no.:
[93] START~-1$PNUM\-1$PNUM/-1$NL

[94] NL~PNUM~O

[95] A Pole vee of contiguous blanks:
[96] PBL~BL1-1~O,BL

[97] A Flag 1st nonblank char in each line:
[98] START~CSTART>BL)VPBL\-l~PBL/START

[99] BL~PBL~O

[100] A Pole vee of identifiers at start of line:
[101] PSID~PID\Tv-1$T~PID/START

[102] START~O

[103] A Pole vee of labels:
[104] PLAB~PSID\Tv1~T~':'=PSID/VR
[105] PSID~O

[106] A Pole vee of direct assignment identifiers:
[107] PIDA~PID\Tv1~T~'~'=PID/VR

[108] A start and end (+1) indices of identifiers:
[109] IND~PID/tpPID

[110] A No. of identifiers:
[111] NID~(pIND)+2

[112] IND~(NID,2)pIND

[113] A start indices of identifiers:
[114] IDSTART~IND[;O]

[115J R Lengths of identifiers:
[116] IDLEN~IND[;l]-IDSTART

[117] A Starting indices of local vars:
[118] START~l+(LOC=';')/lpLOC
[119] A Lengths of local vars:
[120] LEN~(l~START,l+pLOC)-l+START

[121] A Length of longest ident.:
[122] COLS~Cr/LEN)r(r/IDLEN)r(pRESULT)rltpARGS

[123] A Pad arg names to conform:
[124] ARGS~((lppARGS),COLS)tARGS

[125] A 0 row mat if no result:
[126J RESULT~((XpRESULT),COLS)pCOLSiRESULT

[127] A Raveled blank mat of local vars:
[128] T~(COLSXN~pSTART)p' ,
[129] A Fill them in (S~MONIOTA LEN):
[130] S~S+tpS~LEN/--l~O,+\LEN

[131] T[S+LEN/COLSXtN]~LOC[S+LEN/START]

-453­

Chapter 15 Solutions	 BOOLEAN TECHNIQUES

v IDENTIFY CcontinuedJ
[132]	 A Reshape to mat of local vars:
[133] LOC+-CN,COLSJpT
[134]	 A Raveled blank mat of identifiers:
[135] T+-CCOLSXN+-pIDSTARTJp' ,
[136]	 R Fill them in (S~MONIOTA IDLEN):
[137] S+-S+tpS~IDLEN/--ltOt+\IDLEN

[138] T[S+IDLEN/COLSXlN]+-VR[S+IDLEN/IDSTARTJ
[139]	 A Reshape to mat of identifiers:
[140] IDS+-CN,COLS)pT
[141]	 A Mat of label names:
[142] LAB+-CS+-(CN,2)pPID/PLAB)[;O]JfIDS
[143] PLAB+-O
[144]	 A Mat of assigned vars:
[145] AVAR+-(T~(CN,2)pPID/PIDA)[;O])fIDS

[146] PID+-PIDA+--Q
[147]	 A Mat of referenced vars:
[148] RVAR~(S"lfiT)fIDS

[149]	 A Make distinct:
[150] AVAR~((AVAR CMIOTA AVAR)=t1ppAVARJfAVAR
[151] RVAR+-(CRVAR CMIOTA RVAR)=tlppRVAR)fRVAR
[152]	 R
[153]	 R Flag distinct labels:
[154] ~(A/T~(LAB CMIOTA LAB)=llppLAB)pLl
[155] N~' 'Jl!S~,' ',C~T)fLAB

[156] LAB+-T fLAB
[157] O~'REDUNDANT LABEL: ',l!(Nvl~N)/S

[158]	 R Flag distinct locals:
[159]	 L1: R+-' ,
[160] 4(A/T~(LOC CMIOTA LOC)=tlppLOC)pL2
[161] R~,' ',("'T) -fLOC
[162] LOC+-TfLOC
[163]	 L2:4(v/T~(1ppRVAR)~RVAR CMIOTA LOC)!L3
[164] N+-' , ;tS(-,' ',TfLOe
[165] D~'IDENTIFIER LOCALIZED BUT NOT USED: ' ,1t(NV1~N)/S

[166]	 R Any unassigned local vars?
[167]	 L3:~(V/T+-(lppAVAR)~AVARCMIOTA LOC)tL4
[168]	 N~' , j1!S~,' , ,TfLOe

'[169]	 D+-'IDENTIFIER LOCALIZED BUT NOT ASSIGNED:
/5

[170]	 A Include result and args in local vars:
[171]	 L4:LOCf-CRESULT,[OJARGS),[O]LOC
[172]	 ~ Flag distinct locals:
[173] ~(A/T(-(LOC CMIOTA LOC)=tlppLOC)pL5
[174] R+-R,,' , ,(~T)fLOC

[175] LOCf-TfLOC
[176]	 L5:-+(xpR)!L6
[177] N~' 'j1!R
[178] D~'REDUNDANT LOCAL VARIABLE: ',1!CNV 1$ N) / R
[179]	 R Any localized labels?
[180]	 L6:~(V/T~(lppLOC»LOCCMIOTA LAB)!L7
[181] N+-' , 18(-,' , ,TfLAB
[182] O~'LOCALIZED LABEL: 'tl!CNV1~N)/S

,1!CN V l $N)

-454­

Chapter 15 Solutions	 BOOLEAN TECHNIQUES

v	 IDENTIFY (continued)
[183] A Any unreferenced labels?
[184] L7:~(V/T~(lppRVAR)~RVARCMIOTA LAB)~L8

[185] N~' '~S~,' , ,TfLAB
[186] D~'UNUSED LABEL: ' ,1~(NV1~N)/S

[187] A Any assigned labels?
[188] L8:~(V/T~(lppAVAR»AVARCMIOTA LAB)!L9
[189] N~' '~S~,' , , TfLAB
[190] D~'ASSIGNED LABEL: ' ,1~(NV1~N)/S

[191] A Any unlocalized assigned vars?
[192] L9:~(v/T~(lppLOC)~LOCCMIOTA AVAR)!LIO
[193] N~' '1S~,' , ,TfAVAR
[194] D~'IDENTIFIER ASSIGNED BUT NOT LOCALIZED: ' ,1!(NV1¢N)

IS
[195] R Any unlocalized referenced vars?
[196] L10:~(v/T~((lppLOC)+lppLAB)~(LOC,[O]LAB)CMIOTARVAR)!

Ll1
[197] N~' '1S~,' , ,TfRVAR
[198] D~'IDENTIFIER USED AND NOT LOCALIZED: ' ,1!(NV1¢N)/S
[199] L11:~(V/(lppAVAR)~AVARCMIOTA RESULT)!L12
[200] D~'RESULT NOT ASSIGNED: ' "RESULT
[201] L12:~(V/T~(lppRVAR)~RVARCMIOTA ARGS)!O
[202] N~' '1S~,' , ,TfARGS
[203]	 D~'ARGUMENT NOT USED: ' ,1~(NV1~N)/S

v

[WSID: FNIDS]
V	 R~KEEP LOCALIZE VR;ALP;AN;ARGS;COLS;HDR;IDLEN;IDS;

IDSTART;IND;KIDS;KLEN;KSTART;LLEN;LOCAL;N;NB;NC;NCCON;
NCMT;NID;NKEEP;NL;NQ;NUM;PAN;PARSE;PID;PIDA;RESULT;S;T
;TCNL;DIO

[1] R Modifies the vector representation eVR) of a
[2] R function such that its header contains as localized
[3] A variables all and only those variables which are
[4] A assigned within the function. KEEP is a character
[5] A matrix or vector (blank delimited) of names of
[6J A variables to not localize though assigned, or to
[7] A localize though not assigned.
[8J A Requires subfunction: CMIOTA.
[9] DIO~O

[10] A Construct scalar newline character:
[11] TCNL~DTCNL

[12] R TCNL~DTC[I] A APL2
[13] A TCNL~OAV[156] A SHARP APL
[14] R Flag newline chars (Boolean partition vector):
[15] NL~-l$VR=TCNL

[16] A Flag nonquotes:
[17] NQ~VR1""

[18] A Map of chars not in quote pairs (i.e. char constants)
[19] A within each fn line (NCCON~NL pEQSCAN NQ):
[20] NCCON~=\NQ~NL\T~-ltO,T~~NL/=\-ltl,NQ

[21] NQ~O

-455­

Chapter 15 Solutions BOOLEAN TECHNIQUES

v LOCALIZE (continued)
[22] A Flag non-A chars (includes AS in quotes):
[23] NC~NCCONAVR='A'

[24] R Map of chars which do not follow a A (ignoring AS
[25] A within quotes) within each fn line. AS are flagged o.
[26] A (NCMT~NL pANDSCAN NC):
[27] S~NL~NC

[28] NCMT~~1\S\T1-1~O,T~~S/NC

[29] S~T~NC~O

[30] A Map of chars which are not included within AS or ".
[31] PARSE~NCMTANCCON

[32] NCCON~NCMT~O

[33] A Flag digits, letters:
[34] NUM~PARSEAVR€'0123456789'

[35] ALP~PARSEAVRE'ABCDEFGHIJKLMNOPQRSTUVWXYZ~abcdefghijklm

nopqrstuvwxyz~'

[36] PARSE~O

[37] ~ Flag alphanumeric chars:
[38J AN~NUMvALP

[39] NUM~O

[40] A Pole vec of contiguous digits/letters:
[41J PAN~AN1-1~0,AN

[42] AN~O

[43] A Pole vec of identifiers:
[44] PID~PAN\Tv-l~T~PAN/ALP

[45] ALP~PAN~O

[46] A Flag '0' before identifiers (Onames):
[47] T~l~PID

[48J T~T\'O'=T/VR

[49] A Shift leading poles of Dnames to include 0:
[50] PID~TvPID>-l~T

[51] T~O

[52] A Pole vec of direct assignment identifiers:
[53] PIDA~PID\Tvl~T~'~'=PID/VR

[54] R start and end (+1) indices of identifiers:
[55] IND~PID/tpPID

[56] A No. of identifiers:
[57] NID~(pIND)+2

[58] IND~(NID,2)pIND

[59] R start indices of identifiers:
[60] IDSTART~IND[;O]

[61] A Lengths of identifiers:
[62] IDLEN~IND[;1J-IDSTART

[63] A Map vec of nonblanks in exception identifiers:
[64] NB~' '~KEEP~,' ',KEEP
[65] A start indices in KEEP of identifiers:
[66] NKEEP~pKSTART~(NB>-l~NB)/tpNB

[67] A Lengths of KEEP identifiers:
[68] KLEN~(l+(NB>l~NB)/lpNB)-KSTART

[69] R Length of longest identifier:
[70] COLS~(r/KLEN)rr/IDLEN

[71] A Raveled blank matrix of identifier names:
[72] IDS~(NIDXCOLS)p' ,

-456­

Chapter 15 Solutions BOOLEAN TECHNIQUES

v LOCALIZE (continued)
[73] A Fill them in (T~MONIOTA IDLEN):
[74] T~T+lpT~IDLEN/--l~O,+\IDLEN

[75] IDS[T+IDLEN/COLSXlNID]~VR[T+IDLEN/IDSTART]

[76] A Reshape to mat of identifiers:
[77] IDS~(NID,COLS)pIDS

[78] R Prepare to look at header syntax:
[79] T~VRlTCNL,';'

[80] A Take up to local vars:
[81] HDR~(L/T)pVR

[82J A Drop leading junk:
[83] HDR~Cv\~HDRE' V')/HDR
[84] T~(pHDR»IND~HDRl'~'

[85] A Explicit result Cif any):
[86] RESULT~(T,COLS)pCOLStINDpHDR

[87] A Remove result from header:
[88] HDR~(TXIND+l)!HDR

[89] A No. of arguments:
[90] S~+I' , =HDR
[91] A Arguments (if any):
[92] ARGS~IDS[T+((S=2)pO),(xS)pS;]

[93] R Mat of assigned identifiers:
[94] LOCAL~(((NID,2)pPID/PIDA)[;0])fIDS

[95] PID~PIDA+-O

[96] A Remove redundancies:
[97] LOCAL~((LOCAL CMIOTA LOCAL)=tlppLOCAL)fLOCAL
[98] A Raveled blank matrix of exception identifiers:
[99] KIDS~CNKEEPXCOLS)p' ,
[100] A Fill in CT+-MONIOTA KLEN):
[101] T~T+lpT~KLEN/--l~O,+\KLEN

[102] KIDSrT+KLEN/COLSxtNKEEP]+-KEEP[T+KLEN/KSTARTJ
[103] ~ Reshape to mat of exception identifiers:
[104] KIDS~(NKEEP,COLS)pKIDS

[105] R No. of syntax local vars:
[106] N~lppT~RESULT,[O]ARGS

[107] A Squeeze out identifiers in KEEP (globally assigned)
[108] R or syntax local vars:
[109] LOCAL~(S~(N+NKEEP)=IND~CKIDS,[O]T)CMIOTALOCAL)fLOCAL
[110] A Include identifiers in KEEP which are not assigned
[111] A (assigned within subfns):
[112] T~(l+N+NKEEP)pl

[113] T[IND]~O

[114] LOCAL~LOCAL,[O](NKEEPpT)fKIDS

[115] A Place local vars in sorted order:
[116] LOCAL~LOCAL[OAV.LOCAL;]

[117] R Lengths of local vars:
[118] LLEN~+/LOCAL~' ,
[119] A Indices after each header local semicolon:
[120] T~+\1+0,LLEN

[121] A Initialize local var segment of header:
[122] HDR+-C-1+-1tTJp';'
[123] R Insert (S~MONIOTA LLEN):
[124] S~S+lpS~LLEN/--l!O,+\LLEN

[125] HDR[S+LLEN/-l!T]~(,LOCAL)[S+LLEN/COLSXtpLLEN]

-457­

Chapter 15 Solutions	 BOOLEAN TECHNIQUES

v LOCALIZE (continued)
[126] T~VR1TCNL9';'

[127]	 R~((l/T)pVR),HDR9T[O]!VR

V

[WSID: COMMENTS]
V R~UNCOMMENT VR;BL;NC;NCCON;NCMT;NL;NQ;NUM;PARSE;PBL;

PNUM;S;START;T
[1] A Modifies the vector representation eVR) of a
[2] A function such that its comments are removed (but
[3] R the lamp symbols remain for full-line comments).
[4] A Flag newline chars (Boolean partition vector):
[5] NL~-l<1>VR=DTCNL

[6] A NL~-l~VR=DTC[l+DIO] A APL2
[7] A NL~-1~VR=DAV[156+DIO] A SHARP APL
[8] A Flag nonquotes:
[9] NQ~VR~' , , ,
[10] A Map of chars not in quote pairs (i.e. char constants)
[11] A within each fn line (NCCON~NL pEQSCAN NQ):
[12] NCCON~=\NQ#NL\T¢-1!09T~~NL/=\-1!19NQ

[13] NQ+-O
[14] A Flag non-A chars (includes RS in quotes):
[15] NC~NCCONAVR='R'

[16] A Map of chars which do not follow a R (ignoring RS
[17] A within quotes) within each fn line. RS are flagged O.
[18] A (NCMT~NL pANDSCAN NC):
[19] S+-NL~NC

[20] NCMT~~~\S\T~-l~O,Tf-~S/NC

[21] S~T+-NC+-O

[22] A Always include newline chars (extend maps left by 1):
[23] NCMT~NCMTvl~NCMT

[24] A Map of chars which are not included within AS or ":
[25] PARSE+-NCMTANCCON
[26] NCCON+-O
[27] A Flag digits, blanks:
[28] NUM+-PARSEAVRe'0123456789'
[29] BL+-PARSEAVR=' ,
[30] PARSE+-O
[31] A Pole vee of contiguous digits:
[32] PNUM+-NUM~-l~O,NUM

[33] NUM+-O
[34] R Flag char following] after line no.:
[35] START+--l~PNUM\-l~PNUM/-l~NL

[36] NL+-PNUM+-O
[37] R Pole vee of contiguous blanks:
[38] PBL~BL1-1!O,BL

[39] R Flag 1st nonblank char in each line:
[40] START+-(START>BL)vPBL\-l¢PBL/START
[41] BL+-PBL+-O
[42] R Squeeze out cmnts except cmnt symb for full line:
[43]	 Rf-(NCMTvSTART)/VR

V

-458­

Chapter 16 Solutions

IRREGULAR ARRAYS

1. AVG~€ (+ / ··SALES) +p ··SALES (APL2)

AVG+-, t (+ / ··SALES) +p ··SALES (APL*PLUS)

T~,po>SALES (SHARP APL)
AVG+-(+/Tfo>SALES)+T

AVG+-CSALES NNSUMCOLS 1 l)+NNLEN SALES (Conventional APL)

2 • UNAMES~((NAMESLNAMES)=lpNAMES)/NAMES CAPL2, APL*PLUS,
SHARP APLJ

UNAMES+-NAMES CNIDX ((NAMES CNIOTA NAMES)=
tlfNAMES)/tltNAMES (Conventional APL)

or
SORTED~NAMES CNIDX DAV CNGRADEUP NAMES (Conventional APL)
UNAMES+-SORTED CNIDX (-1!1,~SORTED CNEQ

SORTED CNIDX l$tltSORTED)/tltSORTED

3 •
[WSID: CNFNS]

V R+-CNEST M;A;B;L;N;S;E;I;DIO
[1] R CNEST is used to convert a character vector or
[2] A matrix into a character nest. If a character
[3] A vector, the first character is taken as the
[4] A delimiter; each set of characters between
[5] R delimiters defines one segment. If a character
[6] A matrix, each row Cless the trailing blanks)
[7] A defines one segment. The rows of a character
[8] R matrix are assumed to be left justified, i.e.
[9] R to have no blanks to the left of the leftmost
[10] R nonblank character.
[11] A Branch if scalar or vector:
[12J ~Cl~ppM)pL2

[13] 010+-0

-459­

Chapter 16 Solutions	 IRREGULAR ARRAYS

V CNEST (continued)
[14] ~ Insure even no. cols:
[15] ~(0=211tpM)pLl

[16] M~M,' ,
[17] ~ Lengths:
[18] Ll: L+-- + / v \' , ~ <t>M
[19] ~ Cvt to int mat, incl lengths:
[20] M~L,163 ODR M
[21] A No. elts to take from each row, incl length:
[22] N~pL~1+rL+2

[23] ~ start elts of raveled mat:
[24] S~(l~pM)xtN

[25] ~ R~MONIOTA L:
[26] R+--R+tpR+--L/--1~O,+\L

[27] R+--(N,(+\-l~O,L)+l+N),(,M)[R+L/S]

[28] -+0
[29] ~ Word starts,lengths:
[30] L2:DIO~1

[31] B+--M=1tM
[32] N+-pS+-B/tpB
[33] L+--l+(1~S,1+pB)-S

[34] I+-+\-1!Cl+N),E+-l+B~rL+2

[35] R 8224=163 ODR' , :
[36] OIO~O

[37] R~(N,I),E/8224

[38] REIJ+-L
[39] R+-82 ODR R
[40] DIO~l

[41] A A+-MONIOTA L:
[42] A+-A+lpA+-L/--l!O,+\L
[43] REA+L/2+I+I]+-M[A+L/SJ
[44]	 R+-163 ODR R

V

[WSID: CNFNSJ

v R+-W CN~M M;J;L;N;S;X;DIO

[1] R CN~M is used to convert a character nest CM) to a
[2] A character matrix CR) with W columns and one row
[3] A per segment. If W is lO, the matrix will have as
[4] R many columns as the longest segment in M. If W
[S] R has two elements, the first is the number of columns
[6] R of the result and the second is the justification
[7] R indicator: 1 Cleft justify each segment within its
[8] R row); 2 (right justify each segment within its row);
[9] A 3 (center each segment within its row). If the
[10] R second element is omitted, a value of 1 Cleft
[11] R justify) is assumed. If the first element is
[12] R negative (e.g. -1), the matrix will have as many
[13] R columns as the longest segment in M.
[14] A J €l 2 3 CL,R,CJ:
[15] J+-1tCl~W),1

[16] A Handle char vee or scalar arg:
[17] ~(82~ODR MJpLl

-460­

Chapter 16 Solutions IRREGULAR ARRAYS

v CN~M (continued)
[18] L~pM~,M

[19] W~lt(((O=p,W)VO>ltW)/L),W

[20] R+-WtM
[21] R~Cl,W)p((J~l)XOrl(W-L)+lrJ-l)~R

[22] -+0
[23] A No., starts, lengths:
[24] Ll:0IO~1

[25] X+-lN~M[DIO]

[26] DIO~O

[27] L~M[S+-M[X]]

[28] ~CO>1iW,-1)!L2

[29] W~Orr/L

[30] ~ Truncate too-long segments:
[31] L2:L+-LlW+-liW
[32] R Blank, raveled result:
[33] R+-CNxW)p' ,
[34] 8+-8+1
[35] ~ X+-MONIOTA L:
[36] X~X+tpX+-L/--ltO,+\L

[37] M+-(82 DDR M)[X+L/S+SJ
[38] -+CL3,L4,L5)[J+-l]
[39] f=t Left:
[40] L3:R[X+L/WXLN]+-M
[41] -+L6
[42] R Right:
[43] L4:R[X+L/CWX1N)+W-L]+-M
[44] --+L6
[45] A Center:
[46] L5:R[X+L/CWXlN)+lO.5xW-L]+-M
[47] L6:R+-CN,W)pR

V

[WSID: CNFNSJ
v R~C CN~V CNEST;N;L;S;T;E;DIO

[1] A CN~V is used to convert a character nest
[2] R CNEST to a character vector with the
[3] A character string C between each segment.
[4] -+C82tDDR CNESTJpLl
[5] R+-CNEST
[6J ~O

[7] ~ No., starts, lengths:
[8J Ll:DIO~l

[9] T~lN+-CNEST[OIO]

[10] DIO+-O
[11] L+-CNEST[S+-CNEST[T]]
[12] S~S+l

[13] R+-pC+-,C
[14] E~(Or-l+N+N)p 1 0
[15] A Lengths of segments Cincl separators):
[16] L+-R+E\L-R
[17] A starts of segments (in c, CNEST):
[18] S~E\R+S-4-S

-461­

Chapter 16 Solutions IRREGULAR ARRAYS

V CN6V (continued)
[19] A R~MONIOTA L:
[20] R~R+tpR~L/--l!O,+\L

[21] R~(C,82 ODR CNEST) [R+L/S]
v

[WSID: CNFNSJ

V R~A CNCAT B;D;E;F;G;L;DIO

[1] A CNCAT is used to catenate two character nests and
[2] A return the catenated character nest result. Either
[3] A argument may be a character nest or a character
[4] A vector t I . e. a character nest "scalar',,).
[5] DIO~O

[6] A VoV,VoS,SoV,SoS:
[7] ~(Ll,L2,L3,L4)[2~82=(DDRA),DDR BJ
[8J L1:D10~1

[9] D~lE+-A[DIO]

[10] F+-tG+-B[OIO]
[11] 010+-0
[12] D+-A[O]
[13] F~B[F]

[14] R+-((G+E,D),F+-l+pA),((l+E)~A)t(l+G)~B

[15] -+0
[16] L2:L+-pB+-,B
[17] F+-rL+2
[18] DIO+-1
[19] D+--tE+-A[OIO]
[20] OIO+-O
[21] D+-A[DJ
[22] R+-(1+E,D,pA),(Cl+E)~A),L,163 DDRCF+F)tB
[23] -+0
[24] L3:L+-pA+-,A
[25] F+--fL+2
(26] DIO~l

[27] D+-lE+-B[OIOJ
[28] DIO+-O
[29] D+-B[D]
[30] R+-((E+ 1 2),CD+2+F),L,163 ODRCF+F)tAJ,Cl+E)!B
[31] -+0
[32] L4:D+-pA+-,A
[33] E+-rO+2
[34] F+-pB+-,B
[35] G+-rF+2
[36] R+-C2 3 ,E+4),CD,163 DDRCE+E)tA),F,163 DDRCG+GJtB

V

-462­

Chapter 16 Solutions IRREGULAR ARRAYS

[WSID: CNFNS]
V R~CNEST CNIDX INDS;L;S;N

[1] A CNIDX is used to extract one or more segments
[2] A from a character nest (CNEST). INDS is an
[3] A integer vector or scalar of the indices of the
[4] A segments to be extracted. If
[5] R array extracted CR) will be a
[6] R If a scalar, the array will be
[7] L~CNEST[DIO+S~CNEST[1+INDS]]

[8J R Branch if nest result:
[9] -+CO~pN+-pINDS)pL1

[10] R~Lp82 ODR CNEST[(S+1)+lrL+2J
[lll -+0
[12] L1:L+-l+rL+2
[13] R R+-MONIOTA L:
[14] R+-R+lpR+-L/--l~O,+\L

a vector, the
character nest.

a character vector.

[15] R+-(N,+\-l~(l+N),L),CNEST[R+L/S]

V

[WSID: CNFNSJ
v R+-A ASSIGN B

[1] R+-A 0 assign+-B
v

[WSID: CNFNSJ
V R+-CNEST CNIDXA INDS;L;S;NL;N;A;B;C;NS;I;U

[1] R CNIDXA is used to replace one or more segments
[2l R into a character nest (CNESTJ. INDS is an
[3] A integer vector or scalar of the indices of the
[4] R segments to be replaced. If a vector, the
[5] A array replaced Cassign) will be a character nest.
[6J A If a scalar, the array will be a character
[7J A vector. The function ASSIGN simply assigns its
[8J A right argument to the global variable <assign>
[9J R and returns its left argument. After being
[10] R replaced, <assign> is erased.
[11] N~CNEST[DIO]

[12] R Branch unless a scalar index:
[13] -+(xppINDS)pL2
[14] L+-CNEST(DIO+S~CNEST[l+INDS]]

[15] NL+-passign~,assign

[16] A Index assign if same length:
[17] A+-rL+2
[18] B+-fNL+2
[19] -+CAj'fB)pLl
[20] R+-CNEST
[21J R[S+ll+B]+-NL,163 DDRCB+B)tassign
[22] -+L9
[23] Ll:R+-(S+1)pCNEST
[24] I+-(l+INDS+~DIO)+lN-INDS+~OIO

[25J R[IJ+-R[IJ+B-A
[26] R[S+DIO]+-NL

-463­

Chapter 16 Solutions IRREGULAR ARRAYS

V CNIDXA (continued)
[27] R~R,(163 DDRCB+B)tassign),CS+A+1J!CNEST
[28] ~L9

[29] R Branch if nothing to assign:
[30] L2:~(0=U~pINDS)pL7

[31] I+-l+lN
[32] L+-CNEST[DIO+S~CNEST[I]]

[33] A~rL+2

[34] A Branch if char vee to assign:
[35] ~(C~82=DDR assign)pL3
[36] R+-lU
[37] NL~assign[OIO+NS+-assign[l+R]]

[38] B(-rNL+2
[39] -+L4
[40] L3:R(-tl
[41] NL~passign+-,assign

[42] NS~O

[43] B~rNL+2

[44] assign+-NL,163 DDRCB+BJfassign
[45] A Index assign if same length.
[46] R Branch if any lengths change:
[47] L4:-+CA[INDS]V.~B)pL8

[48] A Drop header data off nest if multi-segments:
[49] ~CpL5

[50] assign+-CU+l)~assign

[51 J -+L6
[52] L5:B+-UpB
[53] R Repeat data if scalar assignment:
[54] assign+-CUxpassignJpassign
[55] L6:R+-CNEST
[56] I+-S[INDS]
[57] L+-1+B
[58] A S+-MONIOTA L:
[59] S+-S+tpS+-L/--l~O,+\L

[60] R[S+L/IJ+-assign
[61] -+L9
[62] L7:R+-CNEST
[63] -+L9
[64] L8:I[INDSJ+-N+R
[65] L+-l+CA,B)[I]
[66] S+-CS,NS+pCNESTJ[IJ
[67] R R+-MONIOTA L:
[68] R~R+lpR+-L/--l!O,+\L

[69] R+-(N,+\-l~(l+N),L),(CNEST,assign)[R+L/S]

[70] L9:0ERASE 'assign'
v

-464­

Chapter 16 Solutions IRREGULAR ARRAYS

[WSID: CNFNS]

V L~CNLEN CNEST;OIO

[1] R CNLEN is used to return the lengths of the
[2] R segments of the character nest right argument.
[3] DIO~1

[4] L~lCNEST[l]

[5] DIO~O

[6] L~CNEST[CNEST[L]]

v

[WSIO: CNFNSJ
v R~CSEQ CNGRAOEUP CNEST;A;B;D;G;I;L;M;N;P;R;S;T;Z

[1] R CNGRADEUP is used to determine the grade vector
[2] R which can be used (with CNIDX) to sort the
[3] R segments of CNEST into ascending order. The
[4] R collating sequence used is in CSEQ.
[5] N~CNEST[DIO]

[6] R start, lengths:
[7] S~DIO+CNEST[l+lN]

[8] L~rCNEST[S]+2

[9] A Empty segments precede others in call. seq.:
[10] R~4B~L>0

[11] A Z:indices into CNEST of remaining elts (i.e. R[AJ):
[12] Z~BI IN
[13] R Done if 0 or 1 segments or all empty:
[14] ~((N>1)AXpZ)~0

[15] R A:indiees into R of remaining elts (always
[16] R ascending), B[RJ/tN:
[17J A~(N-pZ)+lpZ

[18] A 1st col (2 chars as an integer) of data:
[19] D~CNEST[S[Z]+I~1]

[20] R Reorder grade vee:
[21] R[A]~Z[G~CSEQ4((pD),2)p82DDR OJ
[22] D~D[G]

[23] R Flag 1st elts of grps of like values (partition vee):
[24] P~D~-1<f>D

[25] R Flag elts of >1 elt grps (map vee):
[26] LP:M~PA1<1>P

[27] ~(pA~M/A)~O

[28] P+--M/P
[29] R Skip following logic if no segments end here:
[30] ~(A/B~L[Z~R[A]]>I)pLl

[31] A Shift enders to front or end of grps:
[32] G~4B

[33] G~G[.(T~+\P)[G]]

[34] R[A]~Z(G]

[35] B~B[G]

[36] D~B/T

[37] P~D;f-l<t>D

[38] M+-PAl4>P
[39] ~(pA+--M/B/A)~O

[40] Z+-R[Al
[41] P+-M/P

-465­

Chapter 16 Solutions	 IRREGULAR ARRAYS

V CNGRADEUP (continued)
[42] Ll:I~I+l

[43] D~CNEST[S[Z]+I]

[44] G~CSEQ!((pD),2)p82 ODR D
[45] G~G[.(+\P)[G]]

[46] R[A]~Z[G]

[47] D~D[GJ
[48] P~PVD1-1<t>D

[49]	 ~LP

V

[WSID: CNFNS]
V R~A CNEQ B;C;D;E;S;T;L;K;Z;DIO

[1] A CNEQ is used to compare two character nests of the
[2] A same length (i.e. number of segments) for matching
[3] A segments. The result is a Boolean vector with as
[4] A many elements as segments and with a 1 for each
[5] A segment which is the same in both arguments. A
[6] A character vector argument (or arguments) is
[7] A treated as a character nest "scalar" and is
[8J A compared against all the segments of the other
[9] A argument. Thus, if both arguments are character
[10] R vectors, the result will be a scalar 1 if the
[11] A vectors are equivalent and will be 0 otherwise.
[12] A VoV,VoS,SoV,SoS:
[13] DIO~O

[14J ~(Ll,L2,L3,L4)[2i82=(DDRA),DDR BJ
[15] L1:0IO+-l
[16] T+-lA[l]
[17] DIO~O

[18] R Extract starts, lengths:
[19] S+-A[TJ
[20J T+-B[T]
[21] Z+--O;tL+-B[TJ
[22] A Compare values when same nonzero lengths:
[23] E~ZAR+--A[S]=L

[24] L~r CE/L)+2
[25] S+-E/S
[26] T~E/T

[27] 010+-1
[28] A Z~MONIOTA L:
[29] Z+-Z+lpZ+--L/--l!O,+\L
[30] S~Z+L/S

[31] T~Z+L/T

[32] DIO~O

[33] R Compare values:
[34] K~+\A[S]=B[T]

[35] OIO+-1
[36] K~K[+\L]

[37] R Are they all equal?
[38] R[E/lpE]~L=K--l!O,K

[39] ~O

[40] L2:0IO~1

-466­

Chapter 16 Solutions IRREGULAR ARRAYS

v CNEQ Ccontinued)
[41] S+-tA[!]
[42] DIO+-O
[43] S+-A[S]
[44] R+-A[S]=L+-pB+-,B
[45] -+CxL)J,O
[46] DIO+-l
[47] S+-(RIS)o.+lL+-rL+2
[48] 010+-0
[49] R~R\A[S]A.=163 DDRCL+L)tB
[50] -+0
[51] R Reverse SoV args and use VoS logic:
[52] L3:T+-A
[53] A+-B
[54] B+-T
[55] -+L2
[56] L4:A~,A

[57] B~,B

[58] -+CR+-CpA)A.=pB)J,O
[59] R+-AA.=B

v

[WSID: CNFNS]
v INDS+-CNEST CNIOTA VALS;A;B;BASE;C;F;G;I;L;LAB;LL;M;S;

SHAPE;SS;cseq
[1] A CNIOTA searches through the character nest left
[2] A argument CNEST for the character nest, vector
[3] A or scalar right argument VALSe The result is
[4] R an integer vector (for nest right arg.) or
[5] R scalar (for character right arg.) of the
[6] R segment index in which the character vector was
[7] R first located (as an exact, not partial, match)
[8] R or 1 greater than the number of segments if not
[9] A found (ala dyadic t).
[10] A Requires subfns: CNGRADEUP,CNCAT,CNIDX,CNEQ.
[11] A Branch if right arg a nest:
[12] C~CNEST[DIO]

[13] ~(82~DDR VALS)pLl
[14] A Handle char. vec or scalar right arg:
[15] L~pVALS~,VALS

[16] SHAPE+-tO
[17] A Length of arg. in integers:
[18] M+-rL+2
[19] A Convert arg. to integers:
[20] VALS~163 DDRCM+M)fVALS
[21] ~L5

[22] Ll:A~VALS[DIO]

[23] R Branch unless no segments in either arg:
[24] ~(XF+-AlC)pL2

[25] A Handle empty arg:
[26] INDS+-ApDIO
[27] -+0

-467­

Chapter 16 Solutions IRREGULAR ARRAYS

V CNIOTA (continued)
[28] A Branch if both args have more than 1 segment:
[29] L2:~(F~1)pL7

[30] A Branch unless left arg has 1 segment:
[31] ~(C;tl)pL4

[32] A Handle 1 segment left arg:
[33] L~CNEST[2+0IO]

[34] Mf-fL+2
[35] A Extract segment as integers:
[36] CNEST~CNEST[3+tM]

[37] S~OIO+VALS[1+1A]

[38] Bf-L=VALS[SJ
[39] A Branch if segment empty:
[40] -+(xL)J,L3
[41] A Indices of same-length segments:
[42] S~((~OIO)+B/S)o.+lM

[43] B~B\VALS[S]A.=CNEST

[44] L3:INDSf-DIO+~B

[45] ~o

[46] A Handle 1 segment right arg:
[47] L4:SHAPE~1

[48] L~VALS[2+DIO]

[49] M~rL+2

[50] VALS~VALS[3+tM]

[51] L5:S~DIO+CNEST[1+lC]

[52] A Flag same-length segments in left arg:
[53] B~L=CNEST[S]

[54] A Branch if segment empty:
[55] ~(xL)J,L6

[56] R Indices of same length segments:
[57] S~((~OIO)+B/S)o.+tM

[58] B~B\CNEST[S]A.=VALS

[59] L6:INDS~SHAPEpBll

[60] ~O

[61] R Branch if sort alg. costs more than looping alg.:
[62] R (remove R after replacing Cl,C2,C3,C4 by
[63] R computed constants):
[64] L7: R~((C4+C5XL+A»Cl+AXC2+C3XL)pL5

[65] A Combine args. and sort (like values together):
[66] cseq+-DAV
[67] F~G+-DAV CNGRADEUP Af-CNEST CNCAT VALS
[68] A F~4G:

[69] F[G]+-tpG
[70] A Flag 1st of distinct rows by shifting and comparing:
[71] F+-(~A CNEQ A CNIDXC-l$G)[F])[G]
[72] A Insure 1st elt is 1 (in case all rows the same):
[73] F[DIO]~l

[74] A Indices of 1st distinct rows:
[75] I+-F/G
[76] R Replicate for each like row:
[77] F[OIO]+-DIO
[78] I+-I[+\FJ
[79] A Unsort indices (to catenated order):
[80] INDS~I

-468­

Chapter 16 Solutions	 IRREGULAR ARRAYS

v CNIOTA (continued)
[81] INDS[G]+-I
[82] R Keep those corresponding to right arg:
[83] INDS+-C~INDS

[84] A Set 'not found' inds to tone greater':
[85] INDS+-INDSLC+DIO
[86] -+0
[87] A Use looping algorithm if more efficient:
[88] L8:INDS+-ApO
[89] LAB+-CApL9),0
[90] LL+-CNEST[SS+-D10+CNEST[l+lCNEST[OIO]]]
[91] A Starting indices from which to add lM:
[92] S8+-88+"'010
[93] 1+-010
[94] L9:B+-LL=L+-VALS[S+-DIO+VALS[1+I]]
[95] M+-fL+2
[96] B+-B\CNEST[CB/SS)o.+lM]A.=VALS[CS+"'DIO)+lMJ
[97] INDS[I]+-Bll
[98] ~LAB[I+-I+l]

V

4.
[WS1D: NNFNSJ

V R+-P NNEST V;OIO;E;I;N
[1] R NNEST is used to convert a numeric vector V into
[2] R a numeric nest. P is the replication vector used
[3] R to partition the vector. That is,
[4] R (pP/O)=CPtV). If P is a singleton, it is
[5] R replicated as much as necessary to encompass V.
[6] R Replicate left arg.:
[7] 010+-0
[8] V+-,V
[9] -+(1~N+-pP+-tP)pLl

[10] A Repeat P if singleton:
[11] N+-pP+-((pVJ+PJpP
[12] Ll:I+-+\-l~Cl+N),E+-l+P

[13] R Fill with 2s for now:
[14] R+-CN t I) , E / 2
[15] A Insert lengths:
[16] R[I]+-P
[17] 010+-1
[18] R E+-MONIOTA P:
[19] E+-E+tpE+-P/--ltO,+\P
[20] 010+-0
[21] R Insert data:
[22]	 R[E+P/I]+-V

V

-469­

Chapter 16 Solutions	 IRREGULAR ARRAYS

[WSID: NNFNS]
v R~A NNCATSS B;D;F

[1] A NNCATSS is used to catenate two numeric vectors (i.e.
[2] A numeric nest ttscalars tt) to form a 2-segment numeric
[3] A nest.
[4] D+-pA+-,A
[5] F+-pB+-,B
[6]	 R+-(2 3 ,D+4),D,A,F,B

V

[WSID: NNFNS]
v R+-A NNCATVS B;D;E;L;DIO

[1] R NNCATVS is used to catenate a numeric nest CAJ to a
[2] A numeric vector (B, i.e. a numeric nest ttscalartt).
[3] L+-pB+-,B
[4] DIO+-l
[5] D+-tE+-A[l]
[6] 010+-0
[7] D+-A[DJ
[8J R+-Cl+E,D,pA),C(l+E)~A),L,B

v

[WSID: NNFNSJ
V R+-A NNCATSV B;D;E;L;OIO

[1] R NNCATSV is used to catenate a numeric vector
[2] A CA, i.e. a numeric nest "scalartt) to a
[3] R numeric nest (B).
[4] L+-pA+-,A
[5] OIO+-1
[6] D+-tE+-B[l]
[7] DIO+-O
[8J D+-B[DJ
[9] R+-((E+ 1 2),(D+2+L),L,A),(1+E)~B

v

[WSID: NNFNSJ
V R+-A NNCATVV B;D;E;F;G;DIO

[1] A NNCATVV is used to catenate two numeric nests to form
[2] A a longer numeric nest.
[3] DIO+-l
[4] D+-tE+-A[l]
[5] F+-tG+-B[l]
[6] OIO+-O
[7] D+--A[D]
[8J F+-B[FJ
[9]	 R+-((G+E,D),F+-l+pA),((l+E)~A),(l+G)!B

V

-470­

Chapter 16 Solutions IRREGULAR ARRAYS

[WSID: NNFNS]
V R~A NNCAT B;D;E;F;G;L;010

[1] A NNCAT is used to catenate two numeric nests
[2] R and/or vectors. The non-nest arguments are
[3] R provided as matrices.
[4] OIO~O

[5] R SOS;VoS;SoV;VoV:
[6] ~(L1,L2,L3,L4)[(1=ppA)+2x1=ppB]

[7] Ll:D~pA.... ,A
[8] F~pB+-,B

[9] R~(2 3 ,D+4),D,A,F,B
[10] 40
[11] L2:L~pB+-,B

[12] DIO~l

[13] D+-tE+-~pA

[14] OIO+-O
[15] D+-A[D]
[16] R~(1+E,D,pA),((1+E)!A),L,B

[17] -+0
[18J L3:L+-pA+-,A
[19] 010+-1
[20] D+-tE+-~pB

[21] 010+-0
[22] D+-B[D]
[23] R+-CCE+ 12J,CD+2+L),L,A),Cl+E)iB
[24] -+0
[25] L4:DIO+-1
[26] D+-lE+-~pA

[27] F+-tG+-~pB

[28] 010+-0
[29] D+-A[D]
[30] F+-B[FJ
[31] R+-((G+E,D),F+-l+pAJ,((l+E)~AJ,(l+G)!B

V

rWSID: NNFNS]
V R+-NEST NNIDX INDS;r;L;S;N

[1] R NNIDXA is used to replace one or more segments
[2] A into a numeric nest (NEST). INDS is a
[3] A numeric vector or scalar of the indices
[4] R of the segments to be replaced. If a vector,
[5] R the array replaced (assign) will be a
[6] R numeric nest. If a scalar, the array will be
[7] R a numeric vector. The function ASSIGN simply
[8J R assigns its right argument to the global
[9] R variable <assign> and returns its left argument.
[10] A After being replaced, <assign> is erased.
[11] L+-NEST[OIO+S~NEST[l+INDS]]

[12] R Branch if nest result:
[13] ~(O~pN~pINDS)pLl

[14] R~NEST[(S+l)+lL]

[15] -+0
[16] Ll:L+-l+L

-471­

Chapter 16 Solutions IRREGULAR ARRAYS

V NNIDX (continued)
[17J A I~MONIOTA L:
[18] I~I+lpI~L/--l!O,+\L

[19] R~(N,+\-l~(l+N),L),NEST[I+L/S]

v

[WSID: NNFNS]
V R~A ASSIGN B

[1] R~A ¢ assign~B

v

[WSID: NNFNSJ
v R~NEST NNIDXA INDS;L;S;D;NL;N;NS;I;U

[lJ A NNIDXA is used to replace one or more segments
[2] A into a numeric nest (NEST). INDS is a
[3] R numeric vector or scalar of the indices of the
[4] A segments to be replaced. If a vector, the
[5J A array replaced (assign) will be a numeric
[6] A nest. If a scalar, the array will be a
[7] R numeric vector. The function ASSIGN simply
[8J A assigns its right argument to the global
[9] A variable <assign> and returns its left argument.
[10] A After being replaced, <assign> is erased.
[11] N~NEST[DIO]

[12] A Branch unless a scalar index:
[13] 4(xppINDS)pL2
[14] L~NEST[OIO+S~NEST[l+INDS]J

[15] NL~pD~,assign

[16] A Index assign if same length:
[17] 4(L~NL)pL1

[18] R~NEST

[19] R[(S+l)+lL]~D

[20] ~L5

[21] Ll:R~(S+l)pNEST

[22] I~(l+INDS+~DIO)+tN-INDS+~DIO

[23] R[I]~R[I]+NL-L

[24] R[S+DIO]~NL

[25] R~R,Dt(S+L+1)~NEST

[26] ~L5

[27] A Branch if nothing to assign:
[28] L2:~(O=pINDS)pL3

[29] I~1+lN

[30] R~lU~(D~assign)[DIO]

[31] L~NEST[DIO+S~NEST[I]]

[32] NL~D[DIO+NS~D[l+R]]:

[33] A Index assign if same length:
[34] ~(L[INDS]v.~NL)pL4

[35] R~NEST

[36] I~S[INDS]

[37] L~l+NL

[38] A N~MONIOTA L:
[39] N~N+tpN~L/--l~O,+\L

-472­

Chapter 16 Solutions	 IRREGULAR ARRAYS

V NNIDXA (continued)
[40] R[N+L/I]~(U+l)!D

[41] ~L5

[42] L3:R+-NEST
[43] ~L5

[44] L4:I[INDS]~N+R

[45] L~l+(L,NL)[I]

[46] S+-(S,NS+pNEST)[I]
[47] A I~MONIOTA L:
[48] I~I+lpI~L/--l~O,+\L

[49] R~(N,+\-l~(l+N),L),(NEST,D)[I+L/S]

[50] L5:DERASE 'assign'
v

[WSID: NNFNSJ

v L~NNLEN NEST;OIO

[1] A NNLEN is used to return the lengths of the
[2] A segments of the numeric nest right argument.
[3] DIO~l

[4] L+-lNEST[l]
[5] 010+-0
[6] L+-NEST[NEST[L]]

v

[WSID: NNFNS]

V R+-NEST NNSUMCOL COLS;I;L;N;S

[1] A NNSUMCOL is used to sum the Nth column of each
[2] A M column matrix item (raveled) in the numeric
[3] A nest NEST. eOLS is M,N.
[4] N+-NEST[OIOJ
[5] S+-NEST[l+lNJ+DIO
[6] L+-NEST[S]+COLS[OIOJ
[7] I+-I+tpI+-L/--lto,+\L
[8J R+-+\NEST[(L/S+(~DIO)+COLS[l+DIOJ)+COLS[DIO]XI-OIOJ

[9] R+-R[(-~DIO)++\L]

[10]	 R+-R--l~O,R

V

-473­

Chapter 17 Solutions

CURVE FITTING

1.	 AMT~60.62 59.57 56.70 60.42
MAT~4 4p32 61 15 82 35 104 10 82 37 83 5 85 25 62 14 85
AMTIBMAT

0.15 0.05 0.73 0.51

2. The formula is: SUPPLY = A+CBxTIME)

The supply is	 exhausted when SUPPLY=O, i.e. when:

o = A+(BxTIME)

-A = BxTIME

TIME = -CA+B)

Use mto determine A and B and then plug into the last equation:

SUPPLY~1850 1772 1705 1508 1490 1250
TIME~l 2 3 5 6 9
C~SUPPLYml,[1.5]TIME CC is A,BJ
-+/c

25.6

The supply will be exhausted between weeks 25 and 26.

3. The formula is: CR*2J = C(X-CX)*2)+(CY-CY)*2)
or: CR*2) = eX*2)+(Y*2)+(CX*2)+(CY*2)+(-2xXxCX)+(-2XYxCY)

so: (X*2)+(Y*2) = ((R*2)+(-CX*2)+(-CY*2))+(2xXxCX)+(2XYxCY)

-474­

Chapter 17 Solutions	 CURVE FITTING

Use m to determine the coefficients:

X+-4 3 2 4 7 6
Y+-l 2 3 5 2 4
LEFT+-(X*2)+(Y*2)
MAT+-l,2XX,[1.5]Y
C+--LEFTHIMAT
O+-CX+-C[2]

4.6

D+-CY+-C[3J

2.9

Since: e[l] = CR*2)+(-CX*2)+(-CY*2)

then: (R*2) = C[1]+(CX*2)+(CY*2)

so:

D~R+--(C[lJ+(CX*2)+(CY*2))*.5

2.2

Therefore, the center is (4.6,2.9) and the radius is 2.2.

4. For: Tl = C4+(C5x(R+L))

C+-TIEBl,[1.5]R+L
C4+-C[lJ
C5+-C[2J

For:	 T2 = Cl+(Rx(C2+(C3xL)))

T2 = Cl+(C2xR)+(C3xRxL)

C+-T2ffil,R,[1.5JRXL
Cl+-C[l]
C2+-C[2J
C3+-C[3J

-475­

Chapter 18 Solutions

FINANCIAL UTILITIES

1. 1000xCl+365 EFFECTIVE .11)*1.5
1179.36

or
1000xCl+.11+365)*365xl.5

1179.36

2. tERM~40+52

pAY~10x52

pER~52

pDEF+-O
dEF~-tERM

cONV+-12
iNT+-.08
VALUE

412.84
or

V+-+Cl+.08+12)*12
lOxCV*-40+52)xCI-V*40+52)+1-V*+52

412.84

3. PI~SCHEDULE 4 12 12 0 12 .14 (48 rows)
TOTPRIN+-+/PI[;lJ CLoan amt. at $1 per month)
PI+-PlxlOOOO+TOTPRIN ccvt. loan amt. to S10,000)
+/PI[l;J (Monthly pmt.; sum any row)

273.26
+/-12fPI[;lJ (Repayment amt. is principal

3043.47 outstanding, i.e. remaining
principal payments)

+/36fPI[;2J (Sum 3 years of interest pmts.)
2881.01

-476­

Chapter 18 Solutions	 FINANCIAL UTILITIES

4.	 DATES~19870101 19870701,lOl+10000x1991+t15
AMTS~1000x-I0 -S,15p3
DATES IROR AMTS

0.1058

5.
[WSID: INTEREST]

v	 BV~DATE FCBOOK PARAMS;COUP;CRATE;D;DAYS;F;MDATE;MVAL;N
;NCOUPS;P;PAR;S;YLD

[1] R Returns	 book values as of DATE CYYYMMDD), a scalar,
[2] A for fixed-coupon securities defined in the matrix
[3] R PARAMS,	 one row per security. Value is computed
[4] R after coupon is received if DATE is a coupon date.
[5] R Result has shape: C1ipPARAMS).
[6] R
[7] A PARAMS[;lJ par value
[8J A [;2] maturity date CYYYYMMDD)
[9] A	 [;3] annual coupon rate
[10] A	 [;4] number of coupons per year
[11] A	 [;5] couponly yield rate
[12] A	 [;6] (optional) maturity value (par value
[13] R	 if omitted)
[14] A
[15] PAR~MVAL~PARAMS[;l]

[16] MDATE~PARAMS[;2]

[17] CRATE~PARAMS[;3]+NCOUPS~PARAMS[;4]

[18] YLD~PARAMS[;5]

[19] ~(5=1~pPARAMS)pSTART

[20] MVAL~PARAMS[;6]

[21] R
[22] R Formula:
[23] R
[24] A BVCt) = CMVALxC1+Y)*-WCt))+PARXCRATEx(1-Cl+Y)*
[25] R -wct))+y
[26] R
[27] R where:	 BVCt) = book value at time t (a coupon date)
[28] A	 Y = couponly yield rate
[29] A wct) = the number of (whole) coupon periods
[30] A	 remaining from time t to MDATE
[31] R
[32] R Compute	 approx days (360 days/yr) from specified
[33] A DATE to	 maturity (change 31 days to 30):
[34] START:DAYS~ 360 30 1 +.x a 100 100 TMDATE-31=100IMDATE
[35] DAYS~DAYS- 360 30 1 +.x 0 100 100 TDATE-31=100IDATE
[36] R No. coupon periods from specified date to maturity:
[37] N~(DAysxNCOUPS)+360

[38] R Coupon payment:

[39J COUP~PARxCRATE

[40] R Book value at prior coupon:
[41] D~(l+YLD)*-rN

[42] P~(MVALXD)+COUpx(l-D)+YLD

-477­

Chapter 18 Solutions FINANCIAL UTILITIES

v FCBOOK (continued)
[43] A Book value at subsequent coupon:
[44] D~(l+YLD)*-lN

[45] S~(MVALXD)+COUpx(l-D)+YLD

[46] ~ Fraction of per. from specified date to next coupon:
[47] F~N-lN

[48] R Interpolate between prior and subsequent book vals:
[49] BV~(pxF)+SXI-F

v

-478­

Chapter 19 Solutions

EXCEPTION HANDLING

1. APL*PLUS:

v SHOWFILE NAME;LIM;N;DALX;DELX
[1] DALX~DELX~'DDM'

[2] LIM~TIEFILE NAME
[3] DALX~'~ASK'

[4] DELX~'~(' 'ATTN' 'A.=4tDDMJ/ASK 0 DDM'
[5] ASK:D~'BEGIN WITH WHICH RECORD?'

etc.

SHARP APL:

v SHOWFILE NAME;LIM;N;OTRAP
[1] DTRAP~' ,
[2] LIM~TIEFILE NAME
[3] DTRAP~'V1000 C ~ASK va c ~("ATTN' 'A.=4t5~DER[DIO;])

IASK'
[4] ASK:O~'BEGIN WITH WHICH RECORD?'

etc.

APL2:	 Cannot be solved since attentions are not detected as
exceptions

2.
[WSID: INPUT]

V R~NUM NXPROMPTE PROMPT;DELX
[1] R	 Displays character vector PROMPT, allows keyboard
[2] A	 input on same line and returns numeric vector
[3] R	 response of length NUM (or of any length if NUM=O).
[4] R	 Returns numeric scalar escape code if escape word
[5] A	 entered. Allows and executes primitive APL
[6] R	 expressions. Requires: CPROMPTE.
[7] A APL*PLUS version.

[8J R SHARP APL: localize DTRAP instead of DELX.

[9J R APL2: localize neither DELX or DTRAP.

[10] DELX~'DDM' A APL*PLUS
[11] A	 DTRAP~" R SHARP APL
[12] Ll:R~CPROMPTE PROMPT

-479­

Chapter 19 Solutions	 EXCEPTION HANDLING

V NXPROMPTE (continued)
[13] A Exit if scalar escape code:
[14]	 ~(ppR)J,O

[15] A Branch if any letters (but E) in response:
[16]	 ~(v/RE'ABCDFGHIJKLMNOPQRSTUVWXYZ~abcdefghijklmnopqrstu

VWxyzA') /L2
[17] A Branch if any E not used in exponential notation:
[18]	 ~(V/CR='E')A-IJ,1,~RE'01234567890')/L2

[19] A Execute expression and ravel (trapping error):
[20]	 DELX~'~L4' R APL*PLUS
[21] R DTRAP~'VO E ~L4' A SHARP APL
[22]	 R~,~R R APL*PLUS or SHARP APL
[23] R '~L4' DEA 'R~,',R R APL2
[24] R Check that result is numeric:
[25]	 4CO=lfOpRJ/L3
[26] L2:D~'** ENTER NUMBERS OR APL EXPRESSIONS ONLY **'
[27]	 ~Ll

[28] A Exit if NUM is 0 or is length of input:
[29] L3:~NUMJ,O

[30]	 -+CNUM=pR)/O
[31]	 D~'** ENTER ',(~NUM),' NUMBER',CNUM=l)~'S **'
[32]	 ~Ll

[33] L4:D~'** INVALID EXPRESSION CAUSING: ' ,ODM R APL*PLUS
[34]	 R L4:0~'** INVALID EXPRESSION CAUSING: ' ,5J,DER[OIO;] R

SHARP APL
[35] A D~l O!DER A SHARP APL
[36]	 R L4:D~'** INVALID EXPRESSION CAUSING: ' tDEM[OIO;] A

APL2
[37] A D~l O~DEM A APL2
[38]	 D~' ,
[39]	 -+Ll

V

3.	 Below are the SHARP APL CERRATTNS) and APL*PLUS CERRATTNP)
solutions to the problem. The problem cannot be solved with APL2
because attentions are not considered exceptions (to be handled)
and because the DEA and DEC system functions are not designed to
allow the type of "environment conditioning" required in the
problem.

[WSID: ERROR]
V ELX ERRATTNS ALX

[1] R SHARP APL version.
[2] R Sets DTRAP so that error will cause -+ELX at
[3] R the SI level at which DTRAP is local; and
[4] R break will cause -+ALX at that level. If ELX
[5] R or ALX is a character vector, it is executed
[6] A at the level at which the error ar attention
[7] R occurs. If ELX or ALX is empty, no special
[8] R error or attention handling is included in
[9] A the local DTRAP. Be sure to localize DTRAP

-480­

Chapter 19 Solutions	 EXCEPTION HANDLING

V ERRATTNS (continued)
[10] R in the calling function.
[11] DTRAP~"

[12J 4(OEpELX)pL2
[13] R Branch if numeric ELX:
[14]	 ~(O=ltOpELX)pL1

[15]	 OTRAP~'V a E ' ,ELX
[16]	 ~L2

[17] L1:DTRAP~'V 0 C 4' ,~ELX

[18] L2:~CO€pALX)pO

[19] R Branch if numeric ALX:
[20]	 ~CO=ltOpALX)pL3

[21]	 DTRAP~DTRAP,'V 1000 E ' ,ALX
[22]	 ~o

[23]	 L3:DTRAP~DTRAP,'V 1000 C ~, ,~ALX

V

[WSID: ERROR]

V ELX ERRATTNP ALX

[1] R APL*PLUS version.
[2] R Sets DELX and possibly DALX so that error
[3] R will cause ~ELX at the 51 level at which
[4] R DELX is local; and break will cause ~ALX

[5] A at the 81 level at which OALX is local (uses
[6] A DERROR to percolate to proper level). If
[7] A ELX or ALX is a character vector, it is
[8] A executed at the level at which the error or
[9] R attention occurs. If ELX is empty, DELX is
[10] R set to 'ODM'. If ALX is empty, DALX is set
[11] R to 'ODM' if DALX is localized in the calling
[12] A function, and otherwise is not modified. Be
[13] R sure to localize DELX in the calling function.
[14] R Localize DALX only if ALX is not empty.
[15]	 ~(OEpALX)pL2

[16] A Branch if numeric ALX:
[17]	 ~(O=ltOpALX)pLl

[18] R Character ALX:
[19]	 DALX~ALX

[20]	 ~L3

[21] A Numeric ALX:
[22]	 Ll:DALX~'~(-l=lpOIDLOC''DALX' ')/' 'DERROR'" 'ATTN"""O

~, ,~ALX

[23]	 ~L3

[24] R Empty ALX; branch if DALX not local to calling fn:
[25] L2:~(-1=1tlt~DIDLOC 'DALX')pL3
[26]	 DALX~'DDM'

[27] L3:~(O€pELX)~L4

[28]	 ELX~'DDM'

[29] R Branch if numeric ELX:
[30] L4:~(0=ltOpELX)pL6

[31] A Branch if non-empty numeric ALX:
[32]	 ~((O~ltOpALX)VO€pALX)tL5

-481­

Chapter 19 Solutions	 EXCEPTION HANDLING

v ERRATTNP (continued)
[33] R Character ELX; character or empty ALX:
[34]	 DELX+-ELX
[35]	 ~O

[36] A Character ELX; numeric ALX:
[37]	 L5:0ELX+-'t(C-l#lpDIDLOC' 'DALX' ')A' 'ATTN' 'A.=4fDDM)/' ,~,

,C~ALX)," 'ODERROR(' 'ATTN"A.=4fDDM)/4tDDMO',ELX
[38]	 --+0
[39] L6:~CCO#ltOpALX)VO€pALX)~L7

[40] A Numeric ELX; character or empty ALX:
[41]	 DELX~'~(-l=lpDIDLOC"DELX' ')/' 'OERRORCA\ODM¢OTCNL)/ODM

, , <>--+' , ct>ELX
[42]	 -+0
[43] A Numeric ELX; numeric ALX:
[44]	 L7:0ELX~'t(-1=lpDIDLOC' 'DELX' ')/' 'OERROR(A\ODMIOTCNL)/

DDM' '¢-+(' 'ATTN' 'A.=4tDDM)~',~(lt,ELX),lt,ALX

V

-482­

INDEX

accumulation 92
acknowledgements 3
ADDEMP (wsid: MSF) 177
age computation 139
DAI, accounting information 23

322
DALX, attention latent

expression 308
amortization 302
ANDRED (wsid: REDUCE) 344
annuity 285
APL files 203
APL2 1
APL*PLUS 1
ASSIGN (wsid: CNFNS) 463
ASSIGN (wsid: MULTIFLO) 423
ASSIGN (wsid: NNFNS) 472
attention detection 308
attention handling 154
autostarting 185
DAV, atomic vector 86 151 245 260

BDAM 447
best fit 278
blank manipulation 40
bond accrued interest 144
bond calculations 297
book value 301
Boolean storage 34 105
Boolean techniques 105 230 244
BOOLEAN ws 316
branching 8 172
BY (wsid: SEARCH) 76

C 37
canonical representation 26 189
CASHBAL ws 316
CASHl (wsid: CASHBAL) 16
CASH2 (wsid: CASHBAL) 17

CASH3 (wsid: CASHBAL) 18

CASH4 (wsid: CASHBAL) 325

CATEMP (wsid: MSF) 178
CATREC 216
CATREC (wsid: MULTIFLO) 392
CATRECWS 216
CATRECWS (wsid: MULTIFLO) 396
CENTER (wsid: FORMAT) 330
centering 50
CGRADEUP 86 267
CGRADEUP (wsid: SORT) 60
CGRADEUP1 (wsid: SORT) 57
CGRADEUP2 (wsid: SORT) 59
character data positioning 40
character matrix searching 64
character matrix sorting 56
character nest 254
character SUbstring replacement

76
character substring searching 75
CINPUT (wsid: MSF) 178
circle 280
CJUST (wsid: FORMAT) 42
classification 92
CMIOTA 39 85 280
CMIOTA Cwsid: SEARCH) 69
CMIOTA1 (wsid: SEARCH) 65
CMIOTA2 (wsid: SEARCH) 66
CNCAT (wsid: CNFNS) 462
CNEQ (wsid: CNFNS) 466
CNEST (wsid: CNFNS) 459
CNFNS ws 316
CNGRADEUP (wsid: CNFNS) 465
CNIDX Cwsid: CNFNS) 463
CNIDXA (wsid: CNFNS) 463
CNIOTA (wsid: CNFNS) 467
CNLEN (wsid: CNFNS) 465
CN~M (wsid: CNFNS) 460
CN~V (wsid: CNFNS) 461
COBOL 37 157
coding 162 170

-483­

INDEX

collating sequence 56

COLUMNIZE Cwsid: FORMAT) 331

comments 171

COMMENTS ws 316

compiled functions 37

compiler 19 37

compounding 283

COMPRESS 218

COMPRESS (wsid: MULTIFLO) 409

compressed Milky-Way array 112

conditional branching 8

CONTINUE workspace 186

continuous payments 287

COST Cwsid: TIMING) 327

CPROMPT (wsid: INPUT) 119

CPROMPTE (wsid: INPUT) 124

CPU time 23

OCR, canonical representation

189 245

cross-tabulation 92

CRTIMING ws 316

CR6VR 193 198 245

CR~VR (wsid: FNREP) 190

OCT, comparison tolerance 59 64

65 72 449

curve fitting 271

data storage 34

date formatting 133

date manipulation 135

date representation 129

date utility functions 136

date validation 131

DATES ws 317

day of week 144

DEB (wsid: FORMAT) 41

DEB (wsid: SEARCH) 336

DDEF, define 26 198

DELEMP (wsid: MSF) 178

deletion flag 207 227

delivery 163 174

DELREC 218

DELREC (wsid: MULTIFLO) 407

diagonal 82 89

diamond 24

diamonds 29

directory files 205

distinct values 84

DLB (wsid: FORMAT) 41

DDM, diagnostic message 304

DDR, data representation 260

DROPFN (wsid: FNSFILE) 385

DTB 256

DTB (wsid: FORMAT) 41

DEA, execute alternate 121 305

each 12

DEC, execute controlled 306

DEC, error conditioning 307

EFFECTIVE (wsid: INTEREST) 284

efficiency 23 33

DELX, error latent expression 304

OEM, event message 305

embedded assignment 55

EMMA 216

EMPLOYEES (wsid: FLF) 176

EMPLOYEES (wsid: MSF) 178

EMPLOYEES (wsid: MULTIFLO) 390

enclose 255

OER, event report 305

ERRATTNP Cwsid: ERROR) 481

ERRATTNS Cwsid: ERROR) 480

DERROR 307

error detection 304

error messages 173

error signalling 307

ERROR ws 317

escape from input 123

ESCAPE (wsid: INPUT) 125

DES, event simulation 308

OET, event type 308

evaluated input 120

exception handling 303

execute 12 25 34 119

EXECUTE 109 220

EXECUTE (wsid: MULTIFLO) 436

familiarization 158 165

FCBOOK (wsid: INTEREST) 477

FCYIELD (wsid: INTEREST) 298

OFD, function definition 26 188

198 245

OFI, fix input 120

fields 215

file block size 226

file design 160 166 203 208

file documentation 212

file efficiency 210

File Manager 216

file organization 204

file utilities 203 215 225

FILEDOC 214

FILEDOC ws 317

FILEDOC (wsid: FILEDOC) 386

files, inverted 210

-484­

INDEX

files, layered 211

financial utilities 282

first difference 95

FLF 180

FLF ws 317

floating point storage 34 59 103

floppy disk 316

flowcharting 162 169

OFMT, format 133 135 145 151

FNCREATE (wsid: FNSFILE) 383

FNIDS ws 317

FNREP ws 317

FNSFILE ws 317

FOR 221

FOR (wsid: MULTIFLO) 436

forecasting 274

format by example 133 135 145 152

FORMAT ws 317

formatting by row 50

formatting with newlines 151

FORTRAN 157

frequency counts 92

FROMDAYS (wsid: DATES) 141

FROMDAYS~ (wsid: DATES) 142

FROMDAYS360 (wsid: DATES) 143

FROMMDY (wsid: DATES) 139

FROMMDY~ (wsid: DATES) 140

FROMQTS (wsid: DATES) 143

FROMYD (wsid: DATES) 365

function documentation 188

function identifiers 194

function size 182

functions on file 228

future value 285

DFX, fix 26 198 309 311

GETFN (wsid: FNSFILE) 385

global changes 181

global passing 183

global variables 170

grade vector 53

grade-up, dyadic 56 63 67 86 96

267

HEADINGS 148

HEADINGS (wsid: FORMAT) 332

heterogeneous arrays 259

IDENTIFY 194

IDENTIFY (wsid: FNIDS) 451

identity element 30 101 104 321

DIDLOC, identifier localization
312

IF (wsid: INPUT) 125

IF (wsid: MSF) 179

INDEX 218

INDEX (wsid: MULTIFLO) 412

INDEXA 219

INDEXA (wsid: MULTIFLO) 423

INDEXWS 218

INDEXWS (wsid: MULTIFLO) 413

INDEXWSA 220

INDEXWSA Cwsid: MULTIFLO) 429

INITFILE 216

INITFILE (wsid: MULTIFLO) 391

inner product 67 94

input validation 122

INPUT ws 317

integer storage 34 59 259

interactive functions 116

INTEREST ws 317

interest, effective 282

interest, force of 283

interest, nominal 283

introduction 1

IOTA 217

IOTA (wsid: MULTIFLO) 401

IOTA (wsid: SEARCH) 335

IOTARHO 217

IOTARHO (wsid: MULTIFLO) 403

iota, dyadic 65 85

iota, monadic 47

IPDATEMDY (wsid: DATES) 132

IROR 294

IROR (wsid: INTEREST) 296

irregular arrays 253

J vectors 37

Julian dates 144

justification 42 47 148

keywords 167

label vector 11

labels 172

LAYERS 221

LAYERS (wsid: MULTIFLO) 445

OLe, line counter 31 187 309

leap years 138

least squares 273

limbering up 4

link 256

-485­

INDEX

LIOTA Cwsid: SEARCH) 71
LIOTAl Cwsid: SEARCH) 74
LISTEMP Cwsid: MSF) 179
LJUST Cwsid: FORMAT) 42
loan amortization schedule 290
LOCALIZE 197
LOCALIZE Cwsid: FNIDS) 455
logical partition operations 237
logical reductions 233
logical scalar functions 231
logical scans 234
loop avoidance 15
LOOP ws 317
LOOPI Cwsid: LOOP) 14
looping 8 11 36 172
looping primitive 13
lower limits 72
LPROMPTE (wsid: INPUT) 362
DLX, latent expression 168 170

major-to-minor sort 54
map operations 236
maps 234
matrix nest 254
matrix sorting 55
maximum scan 101
MAXRED (wsid: REDUCE) 342
mean squared error 273 278
MESSAGE (wsid: INPUT) 125
MESSAGE Cwsid: MSF) 179
DMF, monitor facility 33
Milky-Way reduction 111
Milky-Way reduction on files 113
MINRED Cwsid: REDUCE) 343
MONIOTA Cwsid: UTILITY) 48
mortality tables 90
MSF 180
MSF ws 318
MULTIFLO ws 318
MULTISA ws 318
MULTI2 ws 318
multi-set transposed files 206

222
mUlti-target branching 9

naming conventions 171
nested array emulation 257
nested arrays 253
Newton-Raphson Method 295
NEXTI Cwsid: LOOP) 15
NINPUT (wsid: INPUT) 121
NINPUT (wsid: MSFJ 179

NINPUT2 Cwsid: INPUT) 122
DNL, name list 188
NNCAT (wsid: NNFNS) 471
NNCATSS (wsid: NNFNS) 470
NNCATSV Cwsid: NNFNS) 470
NNCATVS Cwsid: NNFNS) 470
NNCATVV (wsid: NNFNS) 470
NNEST (wsid: NNFNS) 469
NNFNS ws 318
NNIDX Cwsid: NNFNS) 471
NNIDXA Cwsid: NNFNS) 472
NNLEN Cwsid: NNFNS) 473
NNSUMCOL Cwsid: NNFNS) 473
NOMINAL (wsid: INTEREST) 285
nonlinear curve fitting 277
NPROMPTE Cwsid: INPUT) 126
NPROMPTE2 Cwsid: INPUT) 127
NREC~RECL 447
numeric nest 261
NXPROMPTE Cwsid: INPUT) 479
n-way logical reduction 104
n-way max/min reduction 100
n-way plus reduction 97
n-way reduction on files 109
n-way reductions 93

OBFUSCATE 367
origin 173
ORRED Cwsid: REDUCE) 345
outer product 70 94
output 172

packing columns 57
pANDMAP (wsid: BOOLEAN) 244
pANDRED (wsid: BOOLEAN) 240
pANDSCAN Cwsid: BOOLEAN) 240
partition utilities 238
partition vector 238 258
pEQMAP Cwsid: BOOLEAN) 243
pEQSCAN (wsid: BOOLEAN) 242
perpetuity 287
pGEMAP (wsid: BOOLEAN) 243
pGTMAP (wsid: BOOLEAN) 243
pLESCAN Cwsid: BOOLEAN) 241
pLTSCAN (wsid: BOOLEAN) 241
PLUSRED Cwsid: REDUCE) 341
pNEMAP (wsid: BOOLEAN) 242
pNESCAN Cwsid: BOOLEAN) 242
poles 234
pORMAP (wsid: BOOLEAN) 243
pORRED Cwsid: BOOLEAN) 240
pORSCAN Cwsid: BOOLEAN) 241

-486­

INDEX

pPLUSRED (wsid: BOOLEAN) 239

precision 58 103

present value 285

print files 152

PRINT (wsid: PRTFILE) 155

programming standards 165

PROPOSAL Cwsid: INPUT) 363

prototype 12

PRTFILE ws 318

PUTFN (wsid: FNSFILE) 384

QDOC 214

QDOC ws 318

QDOC (wsid: QDOC) 189

quad input 116 173

quad output 117

quadratic formula 275

quad-divide 271

quote-quad input 116

quote-quad output 118

range searching 70

ranking vector 73 322

rate of return 293

RCAT (wsid: MSF) 179

readability 38

record indices 216

record oriented files 204

records 215

recursion 12

REDUCE ws 318

reduction, dyadic 106

RELABEL 197 244

RELABEL (wsid: FNIDS) 249

REPL (wsid: UTILITY) 3

REPLACE (wsid: SEARCH) 77

report headings 51

report titles 46

report writing 145

RESTART (wsid: MSF) 187

restartability 173

restarting 186

RJUST (wsid: FORMAT) 42

row formatting 149

ROWFMT (wsid: FORMAT) 331

same line input 119

sample terminal sessions 160

DSA, stop action 310

scalar operations 35

SCHEDULE Cwsid: INTEREST) 292

SEARCH ws 318

searching 53

SELECT 219

SELECT (wsid: MSF) 179

SELECT (wsid: MULTIFLO) 415

selection 80

selection assignment 81

SELECTWS 219

SELECTWS (wsid: MULTIFLO) 419

self-containment 182

shared variables 203

SHARP APL 1

shift and compare 236

DSIGNAL 307

singular matrix 273

SLASHIOTARHO 217

SLASHIOTARHO Cwsid: MULTIFLO) 405

Smith, Robert A. 239

sort and shift 85 95

SORT ws 319

sorting 53

sorting character nests 267

specification 159 166

SQZEMP (wsid: MSF) 180

START (wsid: MSF) 186

state indicator cutting 311

state indicator depth 184

strand notation 255

subfunction design 169 175

successive approximations 294

suspending the function 309

system development procedure 157

system of linear equations 272

tads 36

OTC, terminal control 152 245

DTCBS, backspace 151

DTCNL, newline 151 245

testing 162 170 174

throw-away code 157

time diagram 287

TIMER (wsid: CRTIMING) 327

TIMER (wsid: TIMING) 27

TIME~DEFINE (wsid: TIMING) 450

TIME~DISPLAY (wsid: TIMING) 32

TIME~RESET (wsid: TIMING) 32

timing function lines 28

TIMING ws 319

timings 23

TITLES 148

TITLES Cwsid: FORMAT) 49

scattered point indexing 82 97 TODAYS (wsid: DATES) 140

-487­

INDEX

TODAYS~ (wsid: DATES) 140

TODAYS360 (wsid: DATES) 143

TOMDY Cwsid: DATES) 139

TOMDY6 (wsid: DATES) 139

TOQTS Cwsid: DATES) 143

TOYD (wsid: DATES) 364

training 163 174

transposed files 205

transpose, dyadic 44 82

DTRAP 305

tree diagram 201

DTS, time stamp 137

typing 162 170

UIOTA Cwsid: SEARCH) 72

UIOTA1 (wsid: SEARCH) 75

UNCOMMENT 198

UNCOMMENT (wsid: COMMENTS) 458

UNDIAMOND 368

unique values 84

UNLAMP 367

UNLESS (wsid: MSFJ 180

UNOBFUSCATE 367

UNQCM (wsid: SEARCH) 339

UNQCV (wsid: SEARCH) 338

UNQl1 (wsid: SEARCH) 339

UNQIO Cwsid: SEARCH) 339

UNQNV (wsid: SEARCH) 338

unsorting 89

upper limits 72

UPPERCASE (wsid: SORT) 63

uppercase/lowercase searching 79

uppercase/lowercase sorting 62

USEDBY 201

USEDBY ws 319

USEDBY (wsid: USEDBY) 376

user documentation 161 168

utility functions 180 316

UTILITY ws 319

VALUE (wsid: INTEREST) 288

VAPLFILE 203 446

vector notation 255

DVI, validate input 120

visual representation 26 188 244

DVR, visual representation 188

245

VR6CR 198

VR6CR (wsid: FNREP) 199

word wrap 21

workspace cleanups 35

workspace design 160 167 175

workspace documentation 175 191

workspace environment 192

workspace identifiers 200

WP ws 319

WRAP (wsid: WP) 325

WRAPLP (wsid: WP) 22

WSDOC 214

WSDOC ws 319

WSDOC (wsid: WSDOC) 368

XTAB 110

yield to maturity 297

~ (wsid: TIMING) 31

AAND (wsid: REDUCE) 358

AANDRED (wsid: REDUCE) 349

AANDWAY (wsid: REDUCE) 354

AMAX (wsid: REDUCE) 357

6MAXRED (wsid: REDUCE) 347

6MAXWAY (wsid: REDUCE) 352

6MIN Cwsid: REDUCE) 357

AMINRED (wsid: REDUCE) 348

AMINWAY Cwsid: REDUCE) 353

60R (wsid: REDUCE) 359

60RRED (wsid: REDUCE) 350

AORWAY (wsid: REDUCE) 355

APLUS (wsid: REDUCE) 356

6PLUSRED (wsid: REDUCE) 346

6PLUSWAY (wsid: REDUCE) 351

ASS (wsid: SEARCH) 76

-488­

