

In the early part of the computer era,
the cost of the computer itself
overshadowed all other costs associated
with computing. Over the years,
however, engineering advances (in
particular the integrated circuit) have
steadily chipped away at the cost of
computing hardware, and it is no
longer the dominant component of
computing costs. Labor costs/
particularly systems and programming,
are the largest component of
computing activity today. This situation
has encouraged many researchers to
augment the features and usage
conventions of traditional computing
languages to squeeze more efficiency
from them.

APL IN PRACTICE deals neither with
new approaches nor with facelifts of
proven concepts. Rather, it reports the
state of APL, a method of interactive
computing introduced in the 1960s.
APL is one of the most concise,
consistent, and powerful programming
languages ever devised. The
simplification and efficiency offered by
its rich and powerful handling of work
involving multiple data structures have
saved a great deal of time and money
for the organizations that have used it.
Its proven benefits, howev r, have
been largely obscured in the literature
by the many incremental
improvements made to more
traditional languages.
This book offers some compelling
arguments for considering APL for
business computing. It also serves as a
handbook for those who know APL's
advantages, but need help in preparing
to use APL for a wide range of
applications. APL IN PRACTICE offers
the collective experience of over fifty
proven APL practitioners from virtually
every area of practical APL usage.
Three goals dominated the selection
and editing of topics in the book:

• To provide general management with
sufficient knowledge of APL to cut
through the mystique that surrounds
the data processing profession.

• To aid data processing managers and
working professionals in bridging the
gap between their familiar turf and
new fields that are easily mastered with
APL.

• To broaden the horizons of
convinced APL use,s so that they can
better relate to the real problems of
general management and data
processors.

(Continued on back flap)

(Continued from front flap)

To these ends, the editors have
approached the full range of
computer-related tasks required of
modern business. Included here are
innovative applications of APL to
applications as diverse as financial
planning, marketing management,
general ledger, budgeting,
manufacturing, and electronic mail.
Attention is also given to the special
interests of systems management and
professional programmers-formatting
and reporting, writing maintainable
programs, and managing outside
computer services.
While intended to encourage adoption
of APL solutions to business problems,
the depth and diversity of these
contributions will also give general
management and systems management
a clear pidure of both the possibilities
and limitations of APL for solving their
data processing requirements.

ABOUT THE EDITORS

ALLEN J. ROSE is Vice President &
Techni al Director for STSC, Inc. Prior
to assuming his current responsibilities,
Mr. Rose was the APL Program
Administrator for IBM Corporation. He
has also worked as an industrial
statistician for Procter and Gamble. Mr.
Rose received his B.A. in Psychology
from Duke. University. He is the co
author of APL: An Interactive
Approach (Wiley 1976).

BARBARA A. SHICK is currently
Manager of Publications for STSC, Inc.
Before joining STSC, she was a writer /
editor for the Kiplinger Washington
Editors. Ms. Schick has a B.A. in English
Literature from The Catholic University
of America and is urrently pursuing
her M.B.A. at the University of
Maryland.

APL IN PRACIlCE

The Practical APL Conference
Washington, D.C.

9-11 April 1980

STSC, Inc.

APt IN PRACTICE
What You Need to Know

To Install and Use
Successful APL Systems
And Major Applications

Edited by
ALLEN J. ROSE

BARBARA A. SCHICK
and

Staff from STSC, Inc.

JOHN WILEY & SONS, INC.
New York, Chichester, Brisbane, Toronto

Copyright © 1980 by STSC, Inc.

All rights reserved. Published simultaneously in Canada.

i{eproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the
1976 United States Copyright Act without the permission
of the copyright owner is unlawful. i{equests for
permission or further information should be addressed
to the Permissions Department, .John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data

Main entry under title:

APL in practice.

Includes index.
1. APL (Computer program language)

2. Interactive computer systems, I. Rose,
Allen J. II. Schick, Barbara A., 1951-
QA76.73,A27AI8 001.64'2 80-5351
ISBN 0-471-08275-9

Printed in the United States of America.

10987654321

APL 'PLUS is a service mark and trademark of STSC.lnc..
registered in the United States Patent and Trademark Office.

Foreword

In the early part of the computer era, the cost of the computer itself
overshadowed all other costs associated with computing. Over the years,
however, engineering advances (in particular the integrated circuit) have
steadily chipped away at the cost of computing hardware, and it is no longer
the dominant component of computing costs.

Labor costs, particularly systems analysis and programming, are the
largest component of computing activity today. This situation has encouraged
many researchers to augment the features and usage conventions of tradition
al computing languages to squeeze more efficiency from them.

This book deals neither with new approaches nor with facelifts of proven
concepts. Rather, it reports the state of the technology of AP L, a method of
interactive computing introduced in the late 1960s. AP L is one of the most
concise, consistent, and powerful programming languages ever devised. The
simplification and efficiency offered by its rich and powerful handling of work
involving multiple data structures have saved a great deal of time and money
for the organizations that have used it. Its proven benefits, however, have been
largely obscured in the literature by the many incremental improvements
made to more traditional programming languages.

This book offers some compelling arguments for considering AP L for
business computing. It also serves as a handbook for those who know AP L 's
advantages, but need help in preparing to use AP L for a wide range of
applications. As with any expanding technology, it would be presumptuous for
us to claim we have all the answers, although there are some of us who have
worked toward making APL applicable to the full range of computer-related
tasks required of modern business. What we do offer is the collective experi
ence of over fifty proven AP L practitioners-approximately 250 people-years'
worth--drawn from virtually every area of practical AP L usage.

The papers in this book were prepared as background for presentations
given at "The Practical APL Conference", which was sponsored by STSC, Inc.,
and held in Washington, D.C., on 9-11 April 1980. Three goals dominated the
selection and editing of the topics covered:

• To provide general management with sufficient knowledge of
AP L to cut through the mystique that surrounds the data process
ing profession.

• To aid data processing managers and working professionals in
bridging the gap between their familiar turf and new fields-such

as financial planning and conceptual information manage
ment-that are easily mastered with AP L.

• To broaden the horizons of convinced APL users so that they can
better relate to the real problems of general management and
data processors.

Although we were always aware of these goals while editing, many of the
topics (necessarily) contribute to more than one theme. We suggest that you
begin in that part of the book with which you most closely identify, but that
you sample the wares of the other parts as well. Most importantly, we hope
that this volume will encourage you to apply an APL solution to some business
problem.

Although the book implies that APL can be used for the full range of
computer activities, we recognize that successful advances in data processing
application come by evolution, rather than revolution. In that spirit we
suggest that you start with some small project. Only after success with a
variety of applications should you begin addressing the main question: Should
APL be used for all new application development in your organization?

Many of the presentations in this book contain examples illustrating the
use of APL. To aid you in distinguishing between user entries and system
output, user entries are given in APL boldface type.

We are grateful to all the contributing authors who shared their experi
ences and knowledge in this book. So that you can put each author's
contribution in perspective, we have included biographies at the end of each
article.

We are also grateful to the following people from STSC, Inc., who assisted
in the editing and production of this book: Sarah R. Beirn, Shelly L. Dimmick,
Connie L. Kiernan, Karen M. Kromas, Laurie A. Russell, Nancy T. Vernon,
and James G. Wheeler, editors; and Donna E. Kromas and Jean Medinger,
publications assistants.

Allen J. Rose
Yorktown Heights, New York

10 April 1980

Barbara A. Schick
Silver Spring, Maryland

Contents

Part I-The Data Processing Viewpoint
AP L Concepts for Systems Management 1
Evaluating Telecommunications Networks 14
Managing an APL Installation 21
An Overview of Reporting and Formatting in AP L 28
QUICKPLAN: A Reporting Tool for the Non-Programmer 33
The EMMA Report Generator 39
When APL Is Inappropriate 43
Managing Outside Computer Services: An Organizational
Relationship 49
Selecting and Managing Outside Computer Services 53
Converting External Datasets into AP L Files 56
A Fully Automated Interface Between Systems in Boston and
Bethesda 61
Making the Inhouse Decision: Some Considerations 67
Variations in APL Flat Major 70
Travels in VM Land: A Virtual APL Primer 76
Using Shared Variables and Auxiliary Processors in VS APL 88
Practical VS APL-FORTRAN Interfacing 98
Optimization Modeling Systems: An APLlMPSX Interface 104
Real-Life Applications of VM/370 111
APL and The Relational Model of Data 114

Part 2-The General Management Viewpoint
APL Tutorial for General Management 121
APL in the High School Curriculum 130
A Business School's Approach to Better Business with APL 132
Computer-Assisted Instruction at the Undergraduate Level 135
Career Growth in an APL Environment 138
The Upjohn Company Customized Financial Planning Model 142
Financial Planning Applications of AP L in J. Ray McDermott 147
Marketing Management Applications 156
Magazine Distribution Management 161

Computers Ain't Cool 168
Financial Reporting Systems: A Case Study 173
Using AP L for Construction Accounting 177
Flexibility in Accounting Systems 185
Manufacturing Applications of APL 190
Managing and Computing 195
What If: The Making of a Vice President of Finance 204
An Evolutionary View of Business Computer Systems 210
Development of the STSC Accounting System 220
APL in the Corporate Service Environment 226
Electronic Mail 232
Business Graphics 241

Part 3-The Core of APL
User-to-Application Interface: A Command Processor Approach 249
Data Sharing in Large Application Systems 263
Maintenance Systems 272
Design Considerations of a Financial Planning System 279
QUICKPLAN Design Considerations 285
A Data Management Technique Using a Graph Structure 290
Writing Maintainable APL Programs 306
Making APL Palatable 312
The Use of APL in Applied Econometric Analysis 323
Management Statistics with APL 328
APL and Optimization Modeling 333
The Professional Programmer's Tool Kit 339
STSC's Design and Development Considerations 345
Nested Arrays: The Tool for the Future 350
A Consumer's Guide to Choosing an APL Terminal 356

Index 369

Part 1

The Data Processing
Viewpoint

J. Murray Spencer

APL Concepts
For Systems Management

"The dogmas of the quiet past are inadequate to the
stormy present. The occasion is piled high with difficulty,
and we must rise with the occasion. As our case is new, so
we must think anew."

-Lincoln, Second Annual
Message to Congress.

Information processing successes have led information processing clients
to expect more and better applications. At the same time, pressures of inflated
costs and limited budgets require planners to wisely balance human, software.
and hardware resources to meet these expectations.

The price of human effort is steadily rising, while the cost offast hardware
is going down. As fast hardware becomes more available and as its speed
increases, improved software is needed to make wise use of the new speed. As
"people time" costs go up, it becomes increasingly desirable to require less of it
to implement and maintain applications. AP L serves both of these needs by
transferring many of the tedious, error-prone tasks in coding from the
programmer to the CPU (central processing unit). APL also provides many
powerful language and system support features with which to design applica
tions. Not only are the tools more powerful, but because AP L language
features more naturally represent data and calculations, the user's initial
perception of a problem translates more readily and directly into APL than
into other programming languages.

In fact, programmers often find that knowledge of AP L notation improves
their ability to represent, and consequently to analyze, problems. APL accom
plishes this improved representation through a variety of data structures and
a large, carefully chosen set of primitive functions. The primitives are written
in a concise notation that allows complex algorithms to be represented
compactly. The APL language subsumes detail through array-oriented primi
tives that reduce the need for explicit control structures. These features reduce
the need for housekeeping to a bare minimum and permit the user to state
only the essence of the problem. Programmer productivity is improved by
working in a higher-level language; AP L is as much higher than FORTRAN,
COBOL, ALGOL, or PLil as these are higher than Assembler language.

2 APL Concepts for Systems Management

It is often agreed that a programmer can work effectively with a page of
program code at a time. A page of AP L code is so concise that it is able to
represent five to ten times as much algorithm as a page of FORTRAN, COBOL,
ALGOL, or PL/l. Therefore, in APL a programmer can work with much more
of a problem at one time. This reduces the amount of time the programmer
spends switching between blocks of code, because there are fewer blocks.
Shorter programs also reduce the work of typing the code. This saves time
handling code, and reduces the chance of typing errors.

Most APL language processors execute code interpretively. Originally this
was dictated by the language requirements and the available development
resources. The interpretive approach allowed addition of powerful debugging
aids as the workspace concept was employed and strengthened. APL language
processors come with permanent storage facilities for workspaces (as devel
oped by IBM) and permanent storage for data in files (as first developed by
STSC, Inc., in 1970). Regardless of the CPU architecture or operating system,
APL language processors provide a complete working environment for appli
cation developers and users. At the heart of APL design philosophy for the
language and its use is the premise that the programmer and user should be
required to know absolutely as little as possible about computer hardware and
system software.

AP L is a tool for thinking about data and algorithms. How to use AP L to
design algorithms is not the topic ofthis presentation. Readers who would like
to pursue this direction are referred to the paper entitled "Making APL
Palatable", which appears elsewhere in this book, and to K. E. Iverson's "1979
Turing Lecture", which is to be published in Communications of the ACM. The
presentation that follows will concentrate on how APL accomplishes its
wonders via features such as the active workspace, the symbol table, the file
system, and the efficiency of the APL interpreter.

The Active Workspace: A Dynamic Execution Area

One of the obstacles to executing a conventional assembled or compiled
program in most operating systems is the work involved in linking together
the assorted routines from various libraries and loading them into an execu
tion area. In APL systems, the user is always "in" a working execution area
called the active workspace. Linking is done automatically among all programs
in the active workspace, so all that is required is to copy or load the programs
into the workspace. If they are present in the active workspace, they will run.
A main program and all of its subroutines are easily saved as a permanent
workspace in the user's workspace library with a single command called
)SAVE.

In addition to programs, the active workspace contains data stored in
variables. The user can enter any APL statement from his terminal and the
statement will be executed immediately in the context of the active workspace.
Such an immediate execution statement can reference a variable in the active
workspace, and it can call any program in the active workspace as a
subroutine. In fact, there is no need for a "run" command in APL systems,
since entering the name of a program in the active workspace causes it to run;
it is simply a matter of a valid APL statement being entered by the user.

Any AP L statement that will execute in the active workspace can be a
statement in an AP L program. Thus it is normal to test algorithms one

APL Concepts for Systems Management 3

statement at a time in immediate execution mode before storing them as lines
of a program. Immediate execution of statements is a benefit to be expected of
an interpretive language processor. It is such an important benefit that in
some non-AP L systems there are separate interpretive language processors
solely for testing and debugging (i.e., in addition to the compiler that generates
the production version of the tested code). The existence of separate interpret
ers and compilers for other programming languages raises the question: "How
efficient is the APL interpreter?" Rather efficient, as will be seen below.

Programs exist to process data, and while some programs get by with
small amounts of data, an important measure of a computer system is how
much data it can process at one time. In general, the more data that can be
referred to at one time by a program, the simpler the program will be. This
results from less need for control structures in the program to iterate a
solution through repetitions of the fundamental algorithms acting on seg
ments of the data. All data used by AP L statements is dynamically managed in
the active workspace so that the space used by the data can be reused as soon
as the data is no longer needed. In a conventionally compiled program, a data
array is declared to occupy a certain amount of space. It occupies this space for
the entire program execution---even if the array is needed only by a few lines
of code constituting one step in the algorithm. Some programmers will
actually reuse such an array one or more times elsewhere in their program to
save execution space-which does not make the program easier to document
and maintain! In APL, local variables are automatically erased upon return
from a subroutine, and there is an executable erase that can be used (but is
rarely needed) right in the subroutine or main program.

The dynamic storage allocation in AP L systems allows an array, or
variable, to become larger or smaller at any time. The array is always exactly
the size needed by the data being processed. This exact-size quality eliminates
the need for accessory variables in programs that keep a count of the number
of rows or columns in a table (a considerable coding simplification). It also
means that as one array gets smaller, space is immediately available to be used
by another array that may be getting larger. Since the language processor does
not need to know the size and shape of arrays beforehand, the APL pro
grammer is relieved of having to use declaration statements to specify data
type or data size and shape. Arrays are allowed to change size, shape, and data
type any time a statement reassigns the array variable.

It may be claimed that some documentation is lost by not reqUIrmg
variable declarations in the program code. However, the rank and type of an
array is often quite obvious from its context in an AP L statement. If it is not,
and the programmer believes the code should note these specifications, he is
encouraged to add a comment explaining the variable's attributes. Such a
comment is likely to be more helpful to the reader than a program statement
like the DIMENSION statement in FORTRAN-that only tells how big the
data can become.

The Symbol Table: Signpost to All Identifiers

All APL programs, whether main programs or subroutines, are called
functions. The names of functions and variables are called identifiers. All
identifiers are cataloged with descriptive and location information in the
symbol table. The language processor keeps the symbol table completely up to
date as each statement executes, because some statements will create new
variables and functions as well as change the size of existing variables. The

4 APL Concepts for Systems Management

programmer does not explicitly manipulate the symbol table, although most
AP L statements implicitly reference and modify the symbol table entries.
Actually, most APL programmers know little or nothing of the existence of the
symbol table, and the explanation in this paper is only for those systems
oriented people who are interested in how the language processor works.

Perhaps the most obvious use of the symbol table is in workspace storage
management. The location of all items in the workspace is maintained in the
symbol table along with information about each item's status. For example,
when returning from a subroutine, all the local variables ofthe subroutine are
flagged "to be removed". The actual removal and reorganization of the space
waits until an APL statement needs to create an array requiring more space
than is available in a contiguous block. At that time, items in the workspace
that are still in use are moved next to each other and items flagged for removal
are discarded. This process is known as "garbage collection". Garbage collec
tion is timed asynchronously. It occurs not when garbage is created, but when
the space occupied by the garbage is needed for an array or function.

Other uses of the symbol table support various APL language features and
language processor efficiencies. For example, the fact that the symbol table is
maintained in real time during execution provides late binding of identifiers.
Thus, in this program statement:

'25Al, 12CF10.2, CF13.2' DFMT (NAMES;NUMS)

the identifier NUMS could bf' i:.~her a variable or a function. During debugging,
NUMS might be a workspace variable to test the program until completion of
the application module that will manage the application data. When that
module is completed, a function NUMS could be defined in the workspace,
perhaps like this one:

V NUMBERS + NUMS
[1] NUMBERS+DFREAD DEPTFILE,CURRENT~DEPARTMENT

V

The format statement above continues to operate without modification,
because the language processor does not make a syntactic distinction between
a variable and a function that has no argument and that returns an array
result. At the moment of execution, it is clear from the context in the
workspace what NUMS is, because there is always only one current (visible)
definition of any identifier. Late binding of identifiers and interpretive
execution allow the application implementer to test changes in his application
design or coding with a minimum of typing and waiting at the keyboard.

More than one item in a workspace can be named with a particular
identifier, but only the most recently created item will be referred to by an
APL statement. A given identifier could be a global function or variable and it
could be local to one or more functions currently executing. Only if an
identifier is declared as local in a function header statement can there be more
than one item with the same name in a workspace. (There is a declaration
statement in APL after all-only one-and it is the function header statement
that declares the function's syntax and its optional local variables.) When a
function is called, the local identifiers in the function header statement are
marked in the symbol table so that when a value or function is first defined in
the function for the local identifier, it does not disturb the previous definition
ofthe identifier, but rather creates a new item referred to by the identifier. An
APL statement always references the most recent item created for any
identifier. Ifthere is no local definition in the currently executing function, the
reference is to the most recently defined variable or function with this

APL Concepts for Systems Management 5

identifier. "Most recently defined" implies a scan backward through the chain
of function calls to see which, if any, calling function localized (and defined)
this identifier. If no calling function localized the identifier, the global
definition is used.

Thus APL uses "umbrella localization". That is, an identifier defined as
local in a function protects the previously defined items with this identifier,
but is available to be read or modified in any functions called by this
function-unless one of the called functions localizes this same identifier.
When execution "returns" from this function, all the local identifiers are
flagged to be erased in the symbol table, and the most recent previous
definition of the identifier is again revealed for reference by APL statements.

When formal parameters are passed to functions (subroutines), the APL
language uses "call by value". That is, no action in the subroutine can modify
the array specified as the argument to the calling function, because the
arguments of the function are considered local variables inside the function.
For example, if

[9] I+-1
[10] XG+-COMP2 I
[11] ISQ+-I*2

calls this function:

v RESULT+-COMP2 NUM
[1] RESULT+-NUM
[2] NUM+-NUM+1
[3] RESULT+-RESULT,NUM x 2

v

the calculation on line [11] will use a value of 1 for I. Of course, line [2]
does change the local variable NUM, which uses as its starting value the same
data as was in I when the function was called.

This call by value is considered a very important protection for functions
that call each other. However, when the arguments to functions are large
arrays requiring thousands of bytes of storage, the CPU time required to set up
the local variable arguments-and the very important space taken up by
them-can be costly, because often a function will look at but not modify its
arguments. If the arguments are not modified, the duplicate copy of the array
is unnecessary. However, the symbol table is used to circumvent the inefficien
cies of this form of duplication. Without disturbing the APL language
definition of protecting the arguments to functions, the language processor
uses the symbol table information to establish synonyms for arrays. If one
array is assigned to another name, as in

X2+-X 1

the entries for both X 1 and X 2 in the symbol table will point to the same data
stored in the workspace. Thus, X 1 and X 2 are two different names for the
same data, or synonyms. This will continue to be the case until either X 1 or X 2
is assigned a new array-even one that differs only minutely from the other
at which time the reassigned identifier will point to its new version ofthe data.
Use of such synonyms reduces CPU time spent on data replication; it also saves
space in the workspace and postpones the need to "collect garbage".

When a function is called, its argument local variables are not given
duplicate copies of the data arrays supplied to the function; rather, the
argument local variables are treated as synonyms to the data array arguments
until the argument local variables are modified by an assignment. The
synonym feature-sometimes called data chaining-was not part of early AP L

6 APL Concepts for Systems Management

implementations. Without it, when coding in a cramped workspace, it was
necessary to use a less readable style of function coding in which arguments
were not explicitly named in the header. Instead, data to be used by the
function was made available through global variables.

The synonym feature provided by having the symbol table maintained in
real time gives the protection of call by value with the space and CPU time
savings of call by name (when these savings are possible).

Because of the protection of arguments supplied to a function as it is called
and the protection of local variables used to control an algorithm, functions
can be used recursively with no effort on the programmer's part other than to
localize variables to control the flow of processing. Since it is good practice in
any case to localize all variables not needed outside the function, AP L
functions are naturally recursive without any extra effort or caution.

Another way in which the symbol table allows increased efficiency is that
the language processor passes a pointer to data for the result of a calculation
when the calculation happens not to modify the data given to it. Take, for
example, the following statement:

XCOMP+B/XTABLExlO

If B happens to contain a scalar (single element) 1, or even if it contains alII's
and no O's (as it well might, in some cases), the compression function (/) does
not create a new data array. That is because with a left argument such as
these, compression does not change the data. The symbol table already points
to the temporary array result of XTABLEx 10, so the identifier XCOMP is
made to point to this same array, which is then no longer considered
temporary because there is an identifier referring to it.

APL Interpreter Efficiency: A Contradiction in Terms?

Is it a contradiction to use "efficient" and "interpreter" to describe the
same language processor? It need not be. AP L language processors started out
with some powerful strengths and development has continued on them for
over ten years. New ones are still being developed. This paper has already
looked at several ways in which efficiency of execution has been designed into
the language processor.

What further efficiencies should be considered? Efficiency may be consid
ered in terms of the availability and use of particular resources such as CPU
time, main memory space, disk memory space, high-speed swapping device
space, terminal ports or telecommunications ports, terminals, development
programmer time, application user time, and so on. Installations will have
varying assortments of resources in short supply, which therefore must be
used "efficiently".

Many systems managers are conditioned to think of efficiency first in
terms of CPU time used, since this was uniformly expensive when computers
first came into use. In recent years, CPU speeds have increased; thus the
bottleneck in a system today might more likely be the number of disk accesses
per second, or the number of page faults per second. On some systems the high
speed or low-speed input/output capacity may be used up before CPU usage
approaches saturation.

As a general technique, interpretation is not always a poor choice. For
example, it takes a lot of hardware circuitry to implement every 370 instruc
tion in a CPU. For smaller models of the 370-up to the 3701148-the
hardware logic gates do not implement a 370 at all. Rather, they implement a
simpler machine capable of emulating (interpreting) a 370. The emulation

APL Concepts for Systems Management 7

(shows pointers)

(25 elements)

(31 bytes)

(9 functions)

code is stored in fast, read-only memory control store. The CPU determines
which 370 instruction is to be performed. Then, using a (rather complicated)
subroutine of fundamental machine instructions (microcode) from the control
store, the CPU emulates the 370 instruction. Considering their performance
per-cost, 370/148s and 4331s have their rightful place in the hardware lineup.

Another example of hardware interpretation that is dear to the pocket
books of its lucky users is the AP L assist microcode option available on
370/148s and 370/138s. This feature speeds up execution of the VS AP L
language processor by implementing, in extended control store, additional
CPU "instructions" much more powerful than 370 instructions and specially
designed to replace sections of Assembler code in the VS AP L language
processor. The hardware does not implement these instructions with addi
tional logic circuitry; again, they are subroutines of microcode instructions.
This is interpreting at the hardware level, and it causes a 370/148 to
considerably outperform a 370/158 when executing APL programs.

During program debugging and testing stages, the CPU time saved by not
having to compile the language source code is very considerable. For jobs that
do not run many times in production mode, the CPU savings alone completely
cost justify AP L.

Perhaps the discussion so far sounds like an apology for a slow language
processor that uses a lot of CPU time. The fact is that one can easily find
benchmark programs to show that FORTRAN, for example, is faster than
AP L. But it is just as easy to come up with benchmark programs showing that
AP L executes faster than the best code from optimizing compilers. This
standoff quickly resolves to the wise saying: "Use only benchmarks that are
representative of one's actual workload." Sometimes that is hard to do, since
one's actual workload may not yet be coded in AP L. So the systems manager
continues to be wary of claims about interpretive language processors, even
after hearing that great effort has been spent to make them use less CPU time.

It is worth looking more carefully at considerations of speed. Usability of
the language by humans should be taken into account, because this is a very
important speed factor too: "How much people time is needed to design,
implement, document, and maintain applications in one language versus
another?"

An interpretive language processor is a collection of carefully coded
algorithms whose processing efficiency is as high as possible, given the
resources used to develop algorithms. Existing AP L language processors on
IBM computers execute subroutines coded entirely in Assembler language for
greatest speed. The language supported by the interpreter invokes a sequence
ofthese algorithms. To achieve "processing efficiency", the ratio oftime spent
executing the carefully coded algorithms to time spent deciding which al
gorithms to execute should be high. APL programs are stored in the workspace
in partially translated code strings in which all identifiers (function and
variable names) have been resolved into pointers to symbol table entries.
Relatively few AP L symbols and pointers in a code string need be parsed to
invoke powerful execution routines. In the following example, only 25 code
string elements contain the statement:

Tl+NAMES[(NAMES[;tpNV]A.=NV)/tltpNAMES;]

Pl+ P2 [(P2 [;tpP3]A.=P3)/11tp P2;]

AS C DE F GHIJ KLMNO PQRSTUV W XY

21 2 11 2 1111 21111 2111111 2 11

1 2 3 45 6 7 89

8 APL Concepts for Systems Management

Only 31 bytes of code need be parsed to invoke the 9 execution subroutines to
evaluate the statement. (Byte count and function count rules are for the XM6
based APL*PLUS System; other systems may vary slightly.) What does this
statement accomplish?

"Store in table Tl the complete names from table NAMES, which are
selected because their leading characters are identical to the carac
ters in NV."

The flexibility in this program statement is noteworthy. The table NAMES
can have 0, 1, 2, 3, or 10,000 rows (or names). The lookup candidate in N V can
be expressed with minimum truncation. That is, if "JONES, ROB" uniquely
distinguishes an entry, the entire entry "JONES, ROBERT JAMES, JR." need
not be entered in NV. Conversely, if NV contained only "JO", Tl will contain
all names beginning with "JO", whether there are 0, 1, 2, 3, or thousands of
them. No rank, type, or size declarations have been made for the variables T 1,
NAMES, or NV, because none are needed. This same statement will work
whether NAMES is 1, 2, 3, 20, or hundreds of columns wide.

Efficiency in APL is a consequence of the use of powerful primitive
functions: larger blocks of processing are meaningfully conveyed with briefer
code statements. This produces two important efficiencies. First, the interpret
er spends less time parsing statements than in a language with less powerful
functions, and relatively more time doing "useful work"-that is, working
directly upon data. Second, and perhaps more importantly, the programmer
spends less time writing and maintaining the shorter code statements!

Processing efficiency in AP L execution routines gets a lot of development
attention. Often there are alternative execution subroutines for a particular
APL primitive function. The subroutine actually executed will be chosen based
on the amount of data to be processed, whether the data is integer or floating
point, and so on. In the previous example, the table lookup (the" . = matrix
inner product) uses an algorithm especially optimized for character data. Also
in that figure, /1 is recognized as a special composite function and executed by
a single subroutine, although the APL language defines compression (/)
completely independently of the index generator (1).

The use of alternative execution subroutines to achieve processing speed
for the simple arithmetic primitive functions (such as +, -, x, +, r, L, and *)
goes as far as generating object code tailored to the exact data given with each
function call. This object code is discarded after its one use. Generation and
execution of object code for such simple arithmetic is much faster than a
generalized subroutine execution, except when very little data is given with
the function. Where five or fewer data elements are given, the "old-fashioned",
but in this case faster, general subroutine is used.

The AP L language abounds with powerful primitive functions. The
following simple statement:

CUMSUMS++\TABLE

produces cumulative sums for each row of TABLE and stores them in
CUMSUMS, a table with the same number of rows and columns as TABLE. As
always, storage allocation for the tabl.es-and special cases for empty, or very
large, tables-is not the concern of the programmer.

APL interpreters are highly engineered for processing speed. Their ability
to surpass the speed of optimized FORTRAN (or other compiled languages) in
many instances is based on the fact that a small selection of powerful APL

APL Concepts for Systems Management 9

primitives does a job that may require many pages of FORTRAN. The
FORTRAN object code produced from these pages of source code has to
compete with carefully tuned, hand-coded AP L execution routines called with
a modest overhead of parsing concise statements.

While presently available interpretive language processors are fast
enough to be very useful, competition between software suppliers continues to
improve the speed of execution. Indeed, APL language processors are begin
ning to appear that generate and save object code for every statement so that
subsequent executions are faster than interpretive execution. As these lan
guage processors become available for the CPU of the manager's choice, the
issue of processing speed will disappear. The use of AP L will then become even
more desirable, given all its other advantages.

Manipulating APL Programs: Poof, It's a Program

"Quick, call me a taxi!" "All right, already, you're a taxi."

As this old joke suggests, magical transformations unlock many possibili
ties for the application implementer. Perhaps the most useful program
transformation is a general change of state from executable program (com
piled if need be, linked, and loaded in the execution area) to data that a
companion program can modify, and back again to executable program. This
allows an executing program with self-knowledge to modify its subroutines.
Such modifications can be as simple as storage management to free up
execution space occupied by infrequently used (large) programs, or as compli
cated as creating programs to perform contingent, case-dependent code selec
tion and optimization for efficient execution.

A less complicated but frequent use of program-to-data and back-to
program transformations is in APL programs that are themselves program
development aids and that modify a program while it is in the data state. The
program development aids in APL systems will continue to grow in versatility
without the need for intervention of a systems programmer.

In addition to conveniently formatted program listings with various cross
reference tables (comparable to the listings available to an Assembler pro
grammer-except that they are much shorter!), APL application implemen
ters use program development aids of the type exemplified in the Appendix at
the end of this paper. These programming aids recognize the syntactic rules of
APL and can make useful organizational and syntactic changes to a program
as well as perform traditional editing chores. There is, of course, a system
provided function editor quite suitable for simple entry and modification of
programs.

The APL language processor uses a stack to store the control information
for the execution in process. An execution may halt with a processing error
during debugging. Another execution can be started, and when it is finished,
the original execution can be restarted. This I'llows the use of programs to help
analyze and correct problems that occur during debugging. If a program will
not halt where it needs to be analyzed, program stops can be set to force a halt.
Program traces can be set to cause the language processor to display interme
diate results and the flow of processing as each selected statement executes.

Certain data conditions and external events can cause errors that nor
mally halt execution. However, the APL application implementer has lan
guage and system features permitting him to maintain processing control
when an error occurs, treat the error condition if he knows what measures to
take, and keep on processing. This "exception handling" allows simplification
of the control structures of some sequences of program code, since the program

10 APL Concepts for Systems Management

does not have to test for obscure cases of bad data. Exception handling allows
the application designer to further protect the end user from the unexpected
events that can occur during processing, including those events caused by the
user not following directions!

The File System: Unlimited Storage

The active workspace can be, and often is, permanently saved. While
workspaces can contain data, workspaces are saved primarily to save the
programs in them. The need for data organization and storage goes beyond
having variables in a workspace. In 1971 STSC released its AP L *P L US File
Subsystem, which has become the one to which other APL file systems are
compared. The STSC file system is well documented elsewhere, but a brief
summary is in order here.

The items stored in a file are entire arrays from a workspace. Every
attribute of the array-its rank, shape, type, and all its data-is stored in the
file as a single entity, called a component. An array stored in a workspace is
stored as a variable with an alphanumeric identifier. The variable name that
might be assigned to an array when it is stored in a workspace is not part of the
file component. It is identified in the file by its position number in the sequence
of components. This is appropriate, because it is often useful to process many
components identically with an algorithm that repeats once for each compo
nent. This is done by reading the components into the active workspace one at
a time and storing them in the same variable on each iteration of the
algorithm.

Components of a file can be randomly read or replaced by specifying the
component number. A component can be replaced with a completely different
array component~ifferentin rank, shape, type, and size. Multiple files can
be tied, or "open" at one time. If correctly planned, multiple users can update
the same file concurrently. The system provides access tools to control the
sequence of updates and prevent one user from modifying the file until
another user completes his update.

Files are completely private when created, but after creation, the file
owner can allow carefully controlled (with passnumber protection), fine
grained access to users of his choice. For example, the file owner can allow one
user to read the file with one password; allow other users to append to the file
(but not read it) with another password; and allow certain maintenance users
to read, append, and erase the file.

Considerable development effort has gone into designing a file system that
cooperates with the multiuser scheduler for maximum system throughput.
One technique is to coordinate the swapping of users with the expected
completion of file operations. Multiple file operations proceed concurrently.

The file system interface presented to the AP L programmer is compatible
with overall APL language design considerations. The file operations are
invoked with system functions that behave like APL language primitives in
syntax and error messages. All file operations can be done under program
control.

A Summary Statement: APL Is Cost Effective

In the early days of APL, it acquired a reputation for being "for
mathematicians and scientists only". This was partly due to the extended

APL Concepts for Systems Management 11

character set and partly to some system support limitations of early implemen
tations (e.g., lack of a file system, lack of an output formatter, and small active
workspace size).

AP L service companies such as STSC have welcomed use by mathemati
cians and scientists, but over the years business users have come to account for
more and more of the usage (currently 80 to 90 percent for STSC). The very
users who should care the most about cost comparisons are the ones who use
AP L the most. Probably it is because of APL's effectiveness!

Appendix-APL Program Development Aids

This appendix lists some of the program development aids frequently used
by users of STSC's AP L *P L US Service. All of these programming aids are
APL programs that use the program-to-data transformation (0 VR) and the
data-to-program transformation (DDEF). The programming aids work on the
data that represents the AP L program under consideration.

Workspace 11 TOOLS contains several functions that search and/or
manipulate other functions. Following are brief descriptions for each of the
functions in workspace 11 TOOLS.

• The function BRKOUT modifies a given function to break out
embedded assignments into individual statements. For example,

H+pDFREADCR+1tF),C+F[1+0+11J

would become

0+11 0 C+F[1+0J 0 R+1tF 0 H+pDFREAD R,C

• The function FNIDS searches a given function for identifiers in
certain categories (locals, labels, direct assignments, indexed
assignments, or 0 names). Combinations of identifiers may also be
specified (e.g., intersection, union, and complement).

• The function LOCALIZE localizes specified functions in a given
function.

• The function ORDLOC reorders the local identifiers in the header
of a given function.

• The function R E LA BEL modifies a given function to use the set of
labels L 1, L 2, and so on. This function also converts occurrences
of T HIS Land NEXT L to their corresponding labels. (Also see
!iELABEL.)

• The function SNUFF removes comment text from a given func
tion.

• The function UNPAREN removes superfluous parentheses from a
given function.

• The function XREF displays a cross-reference of a given function.

• The function RE LA BEL modifies a given function to use the set of
labels A, B, and so on. This function also converts occurrences of
T HIS Land NEXT L to their corresponding labels. (Also see
RELABEL.)

Workspace 11 FNED contains the function FNED, which edits func
tions quickly and conveniently, including those whose lines are longer than
workspace or terminal widths. FNED uses conventions that provide:

12 APL Concepts for Systems Management

• ordinary string searching or syntactic element searching

• single or multiple replacements

• large deletions, moves, copies, and insertions.

Workspace 11 FNR contains the functions FNREPL and BY, which
can be copied into the active workspace. These functions are used to modify
programs by replacing one character string with another. Their syntax is

'function list' FNREPL 'old' BY 'new'

where both' old' and' new' are character vectors; 'old' must not be empty,
but 'new' may be empty; 'function list' can be a character array of any rank
(nominally a vector), with the individual function names separated by spaces
(nominally), new-line characters, structural significance (rows of a matrix), or
any combination of the three.

FNREP L searches all unlocked functions in 'function list' for the syntactic
elements represented in 'old'. For each function in which FNREP L detects
, old' , an indication of how many occurrences is given and 'old' is replaced
by 'new' in that function.

Workspace 11 WSS contains the functions WSFIND and WSSHOW,
which (when copied into the active workspace) are used to find or show all
occurrences of a character string. Their syntax is

WSFIND 'characterstring'
WSSHOW 'characterstring'

Only unlocked functions are searched. WSFIND prints the function names,
followed by the line and print position in the line. If the character string
appears more than once in the line, an indication is given. WSSHOW prints the
function name and the number of occurrences of the character string in the
function; it then prints the text of each line in which the character string
occurs.

Workspace 11 WSSEARCH contains the functions SEFIND and
SESHOW, which (when copied into the active workspace) find or show all
consecutive occurrences of the syntactic elements represented in the right
argument in all unlocked functions in the workspace. Their syntax is

S EFIND' characterstring'
SESHOW 'characterstring'

For example, the expression

SEFIND 'BCD 234'

would find 'BCD 234+5' or 'A+BCD 234', but would ignore
'BCD 2345' and 'ABCD 234'. SEFIND prints the function names,
followed by the line and print position in the line. If the character string
appears more than once in the line, an indication is given. SESHOW prints the
function name and the number of occurrences of the character string in the
function, and then prints the text of each line in which the character string
occurs.

Murray Spencer joined STSC in 1970 as branch manager of the company's
Washington, D.C., office. He subsequently held the positions of branch manager
in San Francisco, APL applications analyst, and manager ofproduct planning

APL Concepts for Systems Management 13

and support. Spencer is currently manager of small computer products for
STSC.

Prior to joining STSC, Spencer was a systems programmer for Bell Telephone
Laboratories and an EDP product planner for RCA Information Systems. He
has a B.S. in applied mathematics from Clemson University.

Fred B. Lear and John W. Myrna

Evaluating Telecommunications
Networks

With the availability of packet carriers and specialized common carriers,
you, the communications manager, have viable alternatives to meeting your
network needs inhouse. "Should you use a packet or specialized carrier rather
than doing it yourself? How do you evaluate your options? What, in fact, are
your options?"

Over the years, STSC has asked these questions. After considerable
technical and financial study, we concluded that the most effective approach
for us was to use a mix of packet carrier services with a central inhouse
network. We would like to share Our analysis, experience, and conclusions
with you. Though the conclusions you reach may be different from ours, our
analysis and experience should prove useful.

Some Background on STSC

To set the stage we'd like to outline STSC's experience in the communica
tions area. This will help you understand the problem we were addressing
when looking at the options.

STSC was founded in 1969 to provide an interactive computer time
sharing service based on the AP L programming language. We decided on a
national marketing strategy, which was uncommon at that time. This required
a national network from the start. We originally used a simple Time Division
Multiplexer network, but we quickly outgrew it. As we increased the trunk
speeds to 4800 BPS and expanded our services to cover smaller cities, we
became painfully aware of the limitations of the telephone company's network
and the quality of available modems and multiplexers.

We eagerly evaluated each new communications offering, hoping that it
would hold the solution to our problem. Alas, none solved all of our problems
completely, so we were forced to combine offerings that would collectively
meet our needs.

Through the years, STSC's communications service has evolved to meet
the needs of its customers. The table below shows the growth in this area from
1972 through 1979.

1972 Used Western Union Data Communications Service.
1973 Reviewed and rejected inhouse minicomputer network

ing.
1974 Began using specialized common carriers--MCI and

DATRAN.

14

Evaluating Telecommunications Networks 15

1975

Interfaced to the TYMNET network.

Began using DDS.

Became the first user of the minicomputer-based
SMART/MUX.

1976

1977

1978

Became the first customer of TELENET.

Converted to Infotron multiplexers (240, 180).

Added Infotron smart multiplexers (780).

Installed Comten 3670 front ends, with RPQ code for
demuxing (A.M.X.).

1979 Upgraded to Comten 3690 front-end processors.

To this day, we are still searching for the system or technology that will solve
the bulk of our problems with one bold stroke.

In 1977, we had reached a pivotal point in our network planning and felt
that there were three approaches available to us:

• Develop and extend our inhouse network using intelligent mul-
tiplexers.

• Leave the network business entirely and use only a packet carrier.

• Use some combination of the two approaches.

We determined which approach to take based on the answers we found to
the following questions:

• What were our objectives?

• What were our options?

• How should we evaluate the options?

Of course, these three questions apply to just about every decision made in
business.

STSC's Objectives

Our primary communications objective was to provide an acceptable, cost
effective means of connecting user terminals to our host computers. The
importance of understanding the company's objective cannot be
overemphasized. To determine the best way to meet our objective, we consid
ered the following questions:

• What type of terminals must we support?

low-speed asynchronous?

high-speed bisynchronous?

polled bisynchronous?

• Where is access required?

in major cities?

in small, out-of-the-way plant locations?

internationally?

• What service level is acceptable?

are users generally insensitive to errors?

are users very sensitive to errors?

are users very sensitive to system availability?

16 Evaluating Telecommunications Networks

• What is the volume and distribution of usage?

a few hours per month from many locations?

hundreds of hours per month from a few locations?

• What are the characteristics of usage?

short holding times with dial access?

hardwired terminals logged on all day?

• What is an acceptable cost?

less than long distance?

less than using a local minicomputer?

STSC's Options

As mentioned before, our three options were to build and operate an
inhouse network, use a commercial Value-Added Network (VAN) such as the
packet carriers TELENET and TYMNET, or use some combination of the two.

STSC's Evaluation Process

How did we evaluate the options? We used five basic criteria:

• cost of service

• quality of service

• scope of service

• service sparkle (image)

• the ever popular "other".

What follows is a discussion of the five criteria and issues STSC considered
in 1977. Even today, STSC continually reevaluates its communications needs
in terms of these considerations.

1. Cost of Service

The cost of providing service is based on the location of users, the usage
profile, and the volume of usage. One way to characterize the location of users
is high density, low density, and off-net. A high-density location for a packet
carrier is usually a major city such as New York. Because of the large number
of users sharing common facilities, the cost per user of providing service is less
than it is in a low-density location. The packet carriers, therefore, can charge
less because of economies of scale. In addition, they may choose to charge less
for competitive reasons.

In most systems there are users in locations not serviced by the network.
In our case, these are typically small branch offices of client corporations
whose major usage is on the network. The relatively low-volume usage from
these locations makes some variation of long distance-such as WATS-an
acceptable, though relatively expensive, method of support. We were amazed
to find that this small percentage of our usage represented 29 percent of our
costs.

The usage profile has a dramatic effect on the cost of using a packet
carrier. The number of characters transmitted per hour and the number of
characters per transaction has a noticeable effect on the final bill, since the
carrier's charge is based on those factors.

The volume of usage affects cost in three ways. First, the cost of the
computer's telecommunications front end must be amortized over the total

Evaluating Telecommunications Networks 17

traffic. As the front end typically has a large, fixed element of cost, the greater
the number of usage hours, the lower the cost per hour. Second, packet carriers
require a connection to the network-another fixed monthly expense to be
amortized. And third, with sufficient volume from a given location the packet
carrier may give a price cut and inhouse equipment may be better utilized.

What is a typical breakdown of network costs? The figures in Table 1 are
derived from an analysis of providing 20,000 hours of service per month in 90
cities in the United States and Canada. For the analysis, the network was
assumed to be 100 percent inhouse or 100 percent packet carrier. For the
assumed volume and distribution of usage, a 100 percent packet carrier
approach was projected to cost 20 percent less than the equivalent inhouse
network. Although the percentages will differ for a different combination of
cities and volume, it is still instructive to review costs in this way.

Table 1 - A Cost Comparison

Inhouse Packet Carrier

Staff 14% 6%

Front-€nd Processor 8% 12'%

Off-Net Access 29% ;3'Yc,
Network

Long Lines and Modems 20'Yo
Multiplexers 10%
Local Lines and Data Sets golo
Site Rental 4'%
High-Density 34%
Low-Density 42%
Van Connection 3%

Other 6%

100'}'o 100%

Looking at Table 1, you will note how large the staff expense is for the
inhouse network (14 percent oftotal expenses). These expenses are much lower
for packet carriers, because the carrier provides his own staff and, since the
carriers are available in so many cities, there are fewer users off-net.

Economies of scale will decrease costs. As total volume increases in a part
of the network, the use of long lines, local lines, datasets, and modems
increases. As usage increases, the average cost per usage hour will decrease.

Another cost consideration is that the packet carrier's domestic charges
are not dependent on distance. The packet carrier will charge the same
amount for one hour of usage in the city where the computer is located as it
charges for one hour of usage in a city on the other side of the country. Since
long-line rates are distance sensitive, the cost of providing service via an
inhouse network increases with increased distance from the host. Thus, a
packet carrier may provide the lowest cost for a national network, while an
inhouse system may be better for a regional network.

There are additional costs for installation, maintenance, training, soft
ware, and equipment. In a dynamic network like STSC's, where we are
constantly adding or deleting parts, installation charges can actually exceed
the regular monthly charges. In this case, there is an advantage in using a
packet carrier.

One additional concern is how to prepare for growth in usage volume.
Packet carriers charge for usage as it occurs, so if you must double your usage
in a city, you simply do so. With an inhouse network, however, there are new
local lines and datasets to be ordered and installed, equipment to be upgraded,
and so on.

18 Evaluating Telecommunications Networks

2. Quality of Service

STSC examines three measures of quality of service: reliability, availabili
ty, and response time. Reliability is defined as the probability that a user will
complete his work without being disconnected by the network. We consider
values greater than 97 percent to be acceptable. Availability is defined as the
probability that a user will be able to connect to the host during scheduled
hours. We consider an availability greater than 98 percent to be acceptable.
Response time is defined as the time the network adds to the user's interaction.
We consider values less than one second to be acceptable.

Packet carriers have characteristics that should provide high availability
and reliability. They use minicomputers to detect and correct line errors,
redundant equipment to minimize outages, and a large number of local-dial
lines in each location. Where an inhouse network might be able to provide 90
percent availability, a packet carrier (because of the larger number of lines in
each rotor group) could provide 99 percent availability.

However, the response time on a packet carrier tends to be longer than on
an inhouse network. This is generally due to the fact that the packet carrier
routes users through more intermediate nodes. Another potential problem is
that a company's need for increased capacity in a given city may not concur
with the packet carrier's schedule for an upgrade, resulting in longer lead
times to respond to growth needs. Similarly, mean time to fix problems can
become extended, primarily due to the coordination effort necessary between
the numerous parties involved.

3. Scope of Service

In comparing VANs such as TELENET and TYMNET, it is important to
determine how many of the cities serviced by you are directly served by the
VAN. You should also verify that the terminals and features used in your
network are supported; for example, in 1977 we desired support for the IBM
3767 and for transmissions of up to 120 characters per second (CPS).

4. Service Sparkle

Our decisions also consider a number of items that may be best described
as vendor "sparkle". If poorly handled, these details can be a major irritant to
users. For example: "What is the sign-on ritual? How many steps are involved
to sign on? How solid is the automatic baud rate detection? If a user makes an
error when connecting to the network does he have to hang up and dial again?
Does the network support multiple hosts? Does the packet carrier cater to
specific needs?" (In our case, one special requirement is the support of APL
terminals.)

5. Other Considerations

We include a number of other considerations in our decisions. The terms
of the contract and its conditions are important as is the availability of
technical assistance and the guaranties available on service and price. In
addition, there are several broader considerations, such as:

• What are future product directions?

• What economies of scale apply? Today a packet carrier may be
ideal, but in a couple of years the same may not be true.

• Reducing the size of inhouse staff may be irreversible.

• Does it make sense to have a networking capability as part of
corporate vertical integration?

• Who has control over cost, quality, and innovation?

• Does using a packet carrier affect corporate image?

Evaluating Telecommunications Networks

• Will building and supporting an inhouse network detract from
other opportunities, or drain management resources?

• Does using a packet carrier increase vulnerability?

• How flexible will future services be?

STSC's Decision

19

After much consideration of the technical and financial aspects of commu
nications, STSC decided to use an inhouse network, supplemented by a VAN.
Eighty percent of the network load is handled inhouse; the other 20 percent is
handled by packet carriers.

You might well ask: "What has happened since this decision was made?"
For one thing, the primary packet carrier we chose was slower in meeting our
needs than we had anticipated. Consequently, we were unable to move the
substantial share of usage to the carrier as planned.

On the other hand, the rapid expansion of the packet carriers (particularly
internationally) has been an asset to us, allowing us to substantially reduce
our off-net expenses. We also have relied on the packet carriers to provide
special services to our customers, such as 33.33 CPS access for IBM 3767
terminals and 120 CPS dial access. Both of these services would have been
expensive to add to our network. In addition, TYMNET has served as a backup
to our own network. We have relied on the packet carriers to smooth sudden,
but temporary, increases in usage. This has saved us the high installation costs
of rapidly expanding our own network.

Conclusion

STSC has reaffirmed the value of the packet carriers. They are an integral
part of our network. However, with our scale of usage it appears that it will
always make sense for us to use a substantial inhouse network.

One last point is that, as a communications manager, you should deter
mine whether you actually have a need for a network. If you have only one
application that requires an extensive network, or your network requirements
are low, you should consider running the application on a time sharing service.

As has been said before, but is so true, there are no simple solutions-only
intelligent choices.

Fred Lear joined STSC in 1979 as manager of communications. He is in charge
of STSC's international telecommunications network, which provides access to
the APL*PLUS Service in over 200 cities throughout the world. Prior to
joining STSC, he spent eight and one-half years with Boeing Computer Services,
where his positions included operations manager (Philadelphia), Washington
area communications manager, and supervisor of hardware configurations.

Lear attended the Institute of Computer Management for one year and also
holds certificates from several IBM and COMTEN training programs.

John Myrna joined STSC in 1971 as manager of operations; in this position he
organized STSC's Computing Center and nationwide communications network.

20 Evaluating Telecommunications Networks

He was subsequently promoted to manager of communications in 1973, director
of development and design in 1975, director of development in 1977, and to his
current position as vice president of development in 1979.

Myrna directs STSC's Operations Group and is a member of its Executive
Committee and Technical Management Committee. He is responsible for the
production and delivery of computing and telecommunications services and for
the development of new applications, products, system features, and technolo
gies.

Myrna holds a B.S.E.E. degree from the New Jersey Institute of Technology and
an M.S.E.E. degree from Montana State University.

Michael E. Handelman

Managing an APL Installation

In operating and managing an AP L installation, many complex problems
arise. We at STSC, Inc., have addressed these problems and, in this paper, I
will present our solutions to you. For purposes of discussion, I have divided the
process of developing and operating an APL service into four distinct areas:
software requirements, hardware requirements, commercial considerations,
and staffing requirements.

Software Requirements

Running an APL service is similar to operating any other form of
computer service; the major difference is the software. Software requirements,
which affect all other areas of the operation, are the operating system, the
supporting software, and upgrades and other changes.

1. Operating System

An exhaustive analysis was performed by STSC to determine which APL
supporting operating system, of all those currently on the market, best fit our
particular requirements. IBM's OS/MVT and VM systems proved superior in
our ratings. Although VM consumes more resources than other systems
investigated, it is an extremely powerful system, and is both reliable and truly
dedicated to teleprocessing. OS/MVT, although a batch-oriented system, has
been modified by STSC to be a highly reliable and stable operating system.
STSC currently operates both OS/MVT-based and VM-based services.

2. Supporting Software

The reliability of any operating system depends on the supporting soft
ware. It is necessary for supporting software to be as "bug-free" as possible to
ensure satisfactory support of both systems development and pure applica
tions. A stable operating system and an excellent record of vendor support are
critical components of bug-free supporting software. STSC has developed a
System Support Team (SST) to diagnose problems and determine their origins,
whether caused by hardware, the operating system, or STSC. Our team is
staffed with dedicated system programmers who recognize the need to keep
their knowledge and abilities current with fluid technology and stringent
company standards. The benefit is minimal down time and a diminished need
to rely on other sources-including the vendor-for problem solution.

3. Upgrades

Upgrades and other APL system changes must successfully complete
three preparatory stages before being installed on STSC's production system.

21

22 Managing an APL Installation

The first stage involves the identification of a problem and formulation of a
solution or upgrade by our design team. In stage two, our development team
installs the potential upgrade on a system identical to our production system.
Once the potential upgrade is proven reliable, its modules (code) are passed to
SST personnel who perform a technical walk through (TWT) in stage three.
When the code has been debugged, stage three results in an upgrade that has
survived rigorous testing procedures and standards. An upgrade, having met
the challenges of the three-stage preparatory system, is finally incorporated
into our production system. It is important to note that the ability to back out
of any modification at any stage of the process is designed to be as simple as
possible.

Hardware Requirements

Continuing advances in technology, coupled with outstanding price and
performance improvements, have caused the hardware area of data processing
to change at an astonishing rate. For example, the capabilities of STSC's
Amdahl 470V/6 Central Processing Unit (CPU) are astounding when com
pared with units available just fifteen years ago. Technological advances such
as IBM's new 64-bit chip show that for hardware the future is just beginning.

For advocates of APL-who are sharing in the resultant interactive
language boom-the industry is showing new life and growth. At STSC, we
have emphasized the importance of keeping abreast of changes and trends in
the industry. Attendance at seminars, the reading of trade journals, and active
interface with vendors are encouraged as valuable learning tools. Awareness
of hardware requirements for the CPU and peripherals also requires investiga
tion, planning, implementation, and monitoring.

1. Central Processing Unit

In a teleprocessing environment, the CPU-the core of any system's
performance-must be constantly monitored to determine if it is overused.
When overused, specific bottlenecks must be identified. At STSC we use a
hardware monitor designed by TESTDATA and software modified by STSC to
provide these results. This enables us to determine the type of upgrade
necessary (e.g., more swapping devices rather than more memory or another
disk controller to decrease channel busy status occurrences). All this permits
the fine tuning of the system to attain optimal use.

2. Peripherals

When discussing hardware requirements we must also mention
peripherals. For an APL installation, the major form of storage is online
storage. This includes swapping devices and file storage units, but excludes
communications controllers that are regarded as a separate system in today's
world. Tape drives, printers, and card readers are also made available, of
course, but their importance is low in a telecommunications system.

Swapping devices-high-speed, fixed-head disks with low storage capabili
ty-are used to establish storage areas proportionate to the workspace size.
(Workspace size is the actual size of real memory assigned to each user when
logged on to APL.) Although virtual systems allow for swapping to relatively
low-speed storage devices, it is a process that slows down the response time to
the end user. Therefore, as the number of users or workspace size increases,
high-speed swapping devices become a necessity in keeping pace with user
needs. It is the duty of the paging or swapping manager to monitor the
performance of the swapping function. Knowing the optimal number of users
and the size of real memory on the system, the swapping manager can
determine when low-speed swapping is occurring, and when additional high
speed swapping devices would benefit system response time.

Managing an APL Installation 23

File storage of user data, normally kept on an online storage device, must
be flexible. Although user data may be stored on tape, cards, or other types of
machine-readable media, these methods are entirely unacceptable for normal,
interactive use in this era of instant computing. Recognizing the current three
to six-month lead time involved in the acquisition of new hardware disk
modules, we must maintain a constant awareness of user storage needs. Only
by carefully plotting historical and current usage can proper storage planning
be accomplished.

When planning the back-up considerations of file storage, archival and
emergency needs must be examined. STSC currently performs nightly incre
mental back-ups that copy files to a tape, and include any file updates
performed that day. A full dump, a tedious process that places all disk files on
tape, is run once a week-usually on Friday night. The tape created by the
dump is scanned to check for any tape errors or other improper processing. All
of the file disk packs are then taken offline and a new set put online. Next, a
full restore is run to copy all information from the tapes that were used for the
full backup to the new set of disk packs. The results ofthese procedures are two
sets of tapes (one of which is stored offsite in a fireproof vault) and two sets of
disk packs.

These backup and restore procedures illustrate the great care that is
taken to preserve the integrity of user data. This is all performed as standard
procedure for users of our APL *P L US Service.

Commercial Considerations

Commercial considerations are all nontangible items required to support
the user community. They include the billing method, scheduling, hardware
reliability, and system security.

1. Billing Method

When viewing commercial considerations, it is important to understand
the billing method. In addition to charges for online and offline storage,
communications needs, and any special services provided, actual CPU and
related costs must be calculated. These are presented through Computer
Resource Unit (CRU) charges. The CRU is a unit of measure, developed on a
base central processor, which is portable to other CPUs by adapting the
measure to allow for quantitative differences in machine capabilities. The
CRU not only measures the time involved in executing a program, but also
recognizes all potential resource usage, thereby simplifying billing through
reduction to a simple rate.

2. Scheduling

Scheduling of computer resources-the ability to assign load according to
a set of priorities-is another important factor. The most important considera
tion is the scheduling of external or billable users versus internal or nonbilla
ble users. For example, to make the system load sensitive, user sign-on
identifications can be biased so that external users are assigned a high-priority
level and internal users a low-priority level.

During light to moderate usage periods, users are unaffected by the
priority scheduling. However, during heavy usage, resource availability is
weighted in favor of external users. Simply, as resource requests are made
they enter a queue and are identified by a timestamp and a user priority level.
Adding the priority level to the timestamp determines the access priority.
Since the queuing system adheres to first-in-first-out (FIFO) guidelines, an
external user who submits a request less than the predetermined number of
timestamps after an external user will have first access to available resources.

24 Managing an APL Installation

A hypothetical example of biasing user identifications, using a .0 priority
level for external users and a .3 priority level for internal users, is presented in
Table 1. STSC uses a similar type of load-sensitive system to maintain
excellent response time for our customers.

Table 1- Biasing User IDs: An Example

Order of
Requests 1 (ext.) 2 (int.) 3 (ext.) 4 (ext.) 5 (int.) 6 (int.) 7 (ext.)

Timestamp 1.1 1.3 1.4 1.5 L7 1.9 2.1
Priority
Level +.0 +.3 +.0 +.0 +.3 +.3 +.0
Biased
Timestamp 1.1 1.6 1.4 1.5 2.0 2.2 2.1
Biased Order
of Access 4 2 3 5 7 6

3. Hardware Reliability

In conjunction with providing rapid response time, systems must be
available and reliable. One method of assuring both availability and reliability
is to maintain redundant hardware. Since economics do not allow 100 percent
redundancy, an effective manager must determine the optimum percentage of
redundancy. Each system must be rated on importance to the normally
operating system and the impact of any resulting operational degradation due
to loss of the component.

An example of the process is typified in rating a disk controller versus a
single disk unit. Loss of a controller could cause the loss of a whole string of
disks-up to 32 drives. When compared to the loss of a single unit, a back-up
controller is justified. Further, the primary and back-up controllers could split
the 32-unit disk string, each controlling 16 drives. Not only would this afford
optimal performance through two-channel switching, but each controller
would back up the other allowing improved response time and a back-up disk
controller in case of failure of one of the units.

4. System Security

System security is another important consideration in running an AP L
service. In defining and implementing security measures, both physical
security and software security must be considered.

The physical security of computer installations is a growing concern, and
the marketplace is responding with a variety of security systems. A brief list of
considerations regarding the physical security of an installation, and some
possible remedies are given below.

• Machine room access. Limited access to computer facilities can be
attained through the installation of a card key or electronic lock
system. These systems can allow entry to a secure waiting area
where a guard or receptionist screens individuals before admit
tance to more highly classified areas. Alarms should, of course, be
placed on all doors to and from the facility.

• Fire protection. The best method currently available is a Halon
fire protection system in conjunction with a cross-zoned detection
smoke-protector system. When two detectors in separate cross
zones are activated, an alarm sounds, access doors are automati
cally closed, and the time-delayed Halon system is enabled. If
determined to be a false alarm, the time delay provides for

Managing an APL Installation 25

manually aborting release of the Halon. Detectors for this system
should be inside the ceiling and below all raised flooring for
maximum effectiveness.

• Water detection. Although professed to be waterproof, underfloor
cables can present a hazard if subjected to water leakage. Water
detectors are inexpensive compared to the cost of potential water
damage.

• Sealed room. The machine room should be sealed against the
entry of outside water leakage and dust. The facility designer
must anticipate water leakage from floors above the machine
room and should plan for the installation of a drainage system
under the raised flooring.

With a significant rise in the incidence of computer crime, physical
security alone does not offer sufficient protection of resources. Software
security is rapidly becoming a prime concern. The most visible software
security measure in an AP L installation is the sign-on password; users must
understand the significance of password protection. Each user should be as
possessive of his password as he is of his toothbrush or any other highly
personal property. Further protections have been added to the APL *P L US
System, as described below:

• Both workspaces and files can be locked with a password.

• Files cannot be addressed by anyone other than the owner, unless
the owner overrides the default by specifically giving access to
other users.

• By applying privileged levels, the owner of a file can give others
permission to read, add, modify, copy, or delete file information (or
any combination of these).

• A daily report of possible system security violations is produced.
As an added feature of the APL *P L US System, STSC can set a
limit on the maximum number of such incidents allowed during a
single user's session. Ifthis limit is exceeded, a "burglar" alarm is
triggered to notify the AP L *P L US System Operator of a possible
violation, and pertinent information is displayed.

Physical and software security are critical components of an effective
security system, but properly executed manual procedures are equally as
important. These manual security procedures provide an effective buffer for
the automated physical and software security measures. Operator logs, for
example, provide a narrative of daily occurrences at the installation and have
proved to be valuable security tools.

Staffing Requirements

Staffing requirements can be divided into three areas: Operations, Com
munications, and Systems. Figure 1 depicts the organization chart for an APL
installation, and the sections that follow describe each area in more detail.

1. Operations

Operations at STSC is comprised of all personnel who run the machine
room. This excludes Communications staff, but includes the receptionists,
clerks, and computer operators who handle day-to-day operations. In an APL
installation, the operator not only handles normal duties such as mounting
tapes, running consoles, operating high-speed printers, and maintaining
trouble logs, but also acts as a system user. The operator must both run APL
user programs and interface with the users, incorporating a knowledge of

26 Managing an APL Installation

overall operations with more detailed knowledge of specific operations. Train
ing in the specific aspects gives the operator confidence in his abilities and
gives the user confidence in the overall operation.

OPERATORS COMM
TECHNICIANS

SYSTEMS
SOFTWARE

Figure I-Organization Chart for Operations

Candidates for the position of APL operator are carefully evaluated, based
on willingness and desire to learn. Although past experience and knowledge of
operations, hardware, and operating systems is important, being open to new
learning experiences is the quality that will allow growth in the position. At
STSC, we view computer operators as entry or junior-level personnel who, with
dedication and training, can find rewarding careers in the data processing
field.

2. Communications

Communications requirements, which should include all real-time com
munications support, differ among installations. In a small installation, the
Operations and Communications functions can be easily combined. In a larger
installation, however, the two should be separate and distinct functions.
Responsibilities of Communications personnel should encompass installations,
upgrades, network maintenance, and terminal hardware support. Communi
cations personnel should also support communications software which in
cludes development, maintenance, and the interface with both Operations and
vendors.

3. Systems

Systems staff at STSC comprises a Technical Support Team (TS) and a
Systems Support Team (SST).

TS staff are systems experts who deal with users at all levels. TS is
responsible for maintaining system centralization, carrying out special pro
jects and programs, providing customer interface that cannot be handled by
Operations, and furnishing all non-APL supporLTS also provides training and
designs tools for all users.

SST staff must possess a high level of technical ability to be fully
responsive to the wide range of problems that are encountered. Additionally,
the main departmental function-system upgrades-must be allocated accord
ing to individual capabilities. Specific areas of an upgrade include thorough
testing and debugging, a technical walk through, complete documentation, a
weekly upgrade cycle, and fast back-out and recovery procedures. Further,

Managing an APL Installation 27

SST staff provide training and develop tools for the other departments in the
Computing Center.

Conclusion

The most important consideration in managing an AP L installation is
service to the user. Quality service can only be provided if the installation is
reliable and the organization is qualified. Thus, there must be adequate
coverage of the Operations, Communications, and Systems areas of the
organization. Additionally, security measures must be constantly monitored to
ensure the privacy of users' files and programs. To foresee and prepare for
future needs, a planning analyst should-under the auspices of the manager
direct full-time effort to capacity planning and software monitoring.

The single most important, yet most overlooked, influence on service is the
people. A manager must maintain a responsive team of qualified professionals
backed with a strong training program, especially for entry-level staff. The
effective installation manager recognizes the direct correlation between the
quality of support staff and the quality of service provided by the installation.

Michael Handelman joined STSC in 1979 as manager of operations for the
STSC Computing Center. Prior to that he had several years' experience at the
George Washington University Computer Center, where from 1976 until 1979 he
was the supervisor of computer operations.

Handelman holds B.B.A. and M.B.A. degrees from George Washington Univer
sity.

Janet H. Faltz

An Overview of Reporting
And Formatting in APL

Report formatting is the process by which raw data is transformed into a
pleasing and readable format. Ideally, the data is presented so that its full
import is obvious to the reader and key information can be extracted easily
from the report. This may involve manipulating the data in some way, such as
performing calculations on it or changing the order in which it is presented, or
it may require adorning the data with explanatory material that will assist the
reader in understanding its content.

Computers should be ideal tools for aiding in the process of reporting.
Data-the reason for the existence of a report in the first place---can be
manipulated by computers in large quantities, at amazingly fast speeds, and
with virtually no probability of error. However, the embellishment of the data
is often a nontrivial task.

In the AP L environment, character data is presented exactly as it is
defined, allowing for the effects of terminal printing width. Numeric data is
displayed according to a set offairly complex conventions that may differ from
one APL implementation to another, and may be subject to change. Even this
is an improvement upon other computer language environments, where the
process of removing data from the heart of the machine and displaying it
elsewhere can be painful. The skillful APL programmer can manipulate AP L
data-display conventions to his advantage, but the less sophisticated user must
either have APL formatting tools available or be content with system conven
tions.

AP L formatting tools should assist the user in many ways. For example,
they should provide the ability to:

• Mix text with numeric data, such as in report titles, row names,
column headings, and footnotes.

• Display numeric data in a format different from its internal
representation; for example, round decimal data and display it as
integer data.

• Display decorative text such as currency markers, percent signs,
and commas.

• Handle several data arrays concurrently.

• Control the precision of numeric display.

• Support patterned data formats.

The format primitive ('f), sometimes called "thorn", is familiar to many
users of APL implementations. When used monadically, format produces a

28

An Overview of Reporting and Formatting in APL 29

character array whose visual appearance is identical to the original data.
Thus, for character data, monadic format produces no changes; for numeric
data, it is subject to system conventions.

A+3 Sp'BLUE RED GREEN' ¢ A
BLUE
RED
GREEN

'A
BLUE
RED
GREEN

\10
1 2 3 4 5 6 7 8 9 10

pliO
10

'l10
1 2 3 4 5 6 7 8 9 10

p'l10
20

3.5
4.2
5.25

2.8
4.2
3.15

4.55
0.35
2.45

When used dyadically, format also produces character output, but allows
control over the precision and spacing applied to the data. Pairs of control
numbers are the left arguments to dyadic format, where each pair applies to
one scalar, one element of a vector, or one column of a matrix right argument.
These control numbers specify the width of the resultant formatted field and
the data type and precision of the presentation.

TABLE
1. 05
1.4
5.6

4 0 , TABLE

1 5 3 4
1 0 4 4
6 2 3 5

4 1 6 2 6 3 8 4 , TABLE

1.0 4.55 2.800 3.5000
1.4 .35 4.200 4.2000
5.6 2.45 3.150 5.2500

Integer format.

Fixed-point format.

3 , TABLE Default width.

1.050 4.550 2.800 3.500
1.400 .350 4.200 4.200
5.600 2.450 3.150 5.250

By producing character output, the format primitive provides the first
step in report generation. Only one array may be passed to format at a time.
Furthermore, if decorative text or titles are desired, they must be forcibly
inserted into the character data result.

SALES
1401 300.2 416.3 299.5 317 245.5 247.5
1765 247.5 299.6 300.2 416.3 299.5 317
1900 416.5 444 506.6 509 511.1 499.6
2316 267.5 397.5 305.4 399.6 399.6 417.5

4 0 8 2 8 2 8 2 8 2 8 2 8 2 , SALES
1401 300.20 416.30 299.50 317.00 245.50 247.50
1765 247.50 299.60 300.20 416.30 299.50 317.00
1900 416.50 444.00 506.60 509.00 511.10 499.60
2316 267.40 397.50 305.40 399.60 399.60 417.50

30 An Overview of Reporting and Formatting in APL

p ~ 0 8 2 8 2 8 2 8 2 8 2 8 2 , SALES
4 52

FINAL+-(52t' SIX MONTHS SALES DATA'),[.5]' ,
FINAL+-FINAL,[1] 52t' REP JAN FEB MAR APR MAY
FINAL+-FINAL,[1] ~ 0 8 2 8 2 8 2 8 2 8 2 8 HSALES
DTCNL ¢ FINAL

SIX MONTHS SALES DATA

REP JAN FEB MAR APR MAY JUN
1401 300.20 416.30 299.50 317.00 245.50 247.50
1765 247.50 299.60 300.20 416.30 299.50 317.00
1900 416.50 444.00 506.60 509.00 511.10 499.60
2316 267.50 397.50 305.40 399.60 399.60 417.50

JUN'

On other APL systems, formatting capabilities such as alpha (a) go a few
steps further than the format primitive by supporting patterned data display
and some decorative text.

On STSC's APL*PLUS System, the function OFMT provides all the
facilities listed above as desired features of a formatting tool. OFMT allows
concurrent formatting of many arrays; allows character arrays to be formatted
at the same time as numeric arrays; provides patterned data display; allows
automatic handling of report titles, column headings, and row names; supports
decorative text; and supports absolute and relative tabulation. OFMT is a
dyadic system function whose representation is

result +- 'formatstring' DFMT (datal; data2;. • .; datan)

where ' formatstring' contains the instructions that control the display of the
data arrays and determine where special features will be invoked in the
display. Each part of the format string (excluding tabs and blank spaces)
applies to one scalar right argument, one element of a vector argument, or one
column of a matrix argument specified in the data list. For example,

COLORS+- 3 5p'RED GREENBLUE'
COLORS

RED
GREEN
BLUE

QUANT+-5

NUMBERS+-3
NUMBERS

1. 25
1.4
0.65

2p 1.25 6.3 1.~ 7.~5 0.65 3.95

6.3
7.45
3.95

6.30
7.45
3.95

RED
GREEN
BLUE

3 21

OUTPUT+-'5A1,X~,I1,X2,F3.1,X2,F~.2'

OUTPUT
5 1.3

1.4
0.6

pOUTPUT

DFMT (COLORS; QUANT; NUMBERS)

A complete description of OFMT is beyond the scope of this paper. The
reader is referred to the publication entitled Formatting in the APL*PLUS
System (STSC, 1977) for more information. Several examples showing key
features of OFMT follow.

An Overview of Reporting and Formatting in APL 31

Pattern Editing:

PHONES+ 3 lp3016578220 919~932~78 91~~286910

PHONES
3016578220
9194932478
9144286910

'Gc(999) 999-9999~' DFMT PHONES
(301) 657-8220
(919) 493-2478
(914) 428-6910

44.265
71.505
27.24
20.43

68.1
57.885
57.885
30.645

74.91
34.05
-6.81
78.315

47.67
54.48
23.835
61.29

Parentheses around Negative Numbers:

MAT
54.48
10.215
61.29
51.075

'M«>N<»Q< >F9.3' DFMT MAT

(54.480)
10.215
61.290
51.075

47.670
54.480
23.835
61.290

74.910
34.050
(6.810)
78.315

(68.100)
(57.885)
57.885
30.645

(44.265)
71.505

(27.240)
20.430

Floating Dollar Signs:

'M«$>N<»P<$> Q< >F9.2,X2' DFMT MAT

($54.48)
$10.22
$61.29
$51.08

$47.67
$54.48
$23.84
$61.29

$174.91
$34.05
($6.81)
$78.32

($68.10)
($57.88)
$57.89
$3.65

($44.26)
$71.51

($27.24)
$20.43

Check Protection:

MONEY
100.45 1.53 17.99 4055.75

'Rc*~CLpc$~Fl0.2' DFMT MONEY
$100.45***
$1.53*****
$17.99****
$4,055.75*

Accounting Notation:

'M< >N< CR>Q< DR>F10.2.X2' DFMT MAT

54.48 CR
10.22 DR
61. 29 DR
51.08 DR

47.67 DR
54.48 DR
23.84 DR
61. 29 DR

174.91 DR
34.05 DR
6.81 CR

78.32 DR

68.10 CR
57.88 CR
57.89 DR
3.65 DR

44.26 CR
71.51 DR
27.24 CR
20.43 DR

Workspace 1 FORMAT on STSC's APL*PLUS System contains func
tions that allow you to place titles and row and column names on a report. In
the following example, we will format with ease the report obtained from a
previous example using the functions CENTER and COLNAMES from work
space 1 FORMAT.

SALES
1401 300.2
1765 247.5
1900 416.5
2316 267.5

416.3
299.6
444
397.5

299.5
300.2
506.6
305.4

317
416.3
509
399.6

245.5
299.5
511.1
399.6

247.5
317
499.6
417.5

32 An Overview of Reporting and Formatting in APL

V R+FORM DATA;FS
[1] FS+'I4,6(X2,F6.2)'
[2] R+FS CENTER 'SIX MONTHS SALES DATA' 0 R+R,[l] , ,
[3] R+R,[l] FS COLNAMES 'oREPoJANoFEBoMARoAPRoMAYoJUN'
[4] R+R,[l] FS DFMT DATA

V

DTCNL ¢ FORM SALES

SIX MONTHS SALES DATA

REP JAN FEB MAR APR MAY JUN
1401 300.20 416.30 299.50 317.00 245.50 247.50
1765 247.50 299.60 300.20 416.30 299.50 317.00
1900 416.50 444.00 506.60 509.00 511.10 499.60
2316 267.50 397.50 305.40 399.60 399.60 417.50

The system function OFMT is an extremely powerful formatting tool for
AP L technicians. Its use requires familiarity with APL data arrays, AP L
syntax, and OFMT commands and capabilities.

There is also a great need for formatting tools for non-programmers.
These tools should allow the businessman to focus on the key elements of the
desired report: the data and the verbal information. The businessman should
not have to be concerned with the technical aspects of the supporting system.
Two such facilities provided by STSC-QUICKPLAN"', The Quick Planning
and Reporting System, and the EMMA Report Generator-are discussed in
papers that appear elsewhere in this book: "QUICKPLAN: A Reporting Tool
for the Non-Programmer" and "The EMMA Report Generator".

Janet Faltz started with STSC in 1974 as a marketing representative and is
currently branch manager of STSC's Southeast Branch located in Chapel Hill,
North Carolina. Before joining STSC she worked as an applications pro
grammer and publications editor at the University ofNorth Carolina Computa
tion Center and as a management information systems analyst for Continental
Can Company.

Faltz has a B.A. in mathematics from Douglass College and an M.A. in
educational technology from Columbia University.

David L. Hopkins

QUICKPLAN: A Reporting
Tool for the Non-Programmer

Reporting. What is it? Who does it? Most importantly, how does
QUICKPLAN"', STSC's Quick Planning and Reporting System, meet the
requirements of a reporting system? These are the questions I propose to
answer.

Reporting is the process of organizing and presenting data or information
in a useful form, with one or more purposes in mind. Reporting is done by
virtually everyone, from elementary school students reporting "current
events" to large corporations reporting to their shareholders. Reports are as
varied as their creators and users, and can contain any combination of text,
pictures, graphs, plots, and tables of numbers.

In business and government, a simple report can be generated by an
analyst working with pen and paper and, perhaps, a calculator. The report so
generated will probably be typed to appear more uniform and legible. Or, the
analyst will take a set of specifications for a report, with a request for
computer resources, to his company's data processing center.

Both of these procedures, however, have obvious drawbacks. The typist
may make mistakes, and the process of correcting them is often time
consuming and annoying. Requesting reports from the data processing center
may be time consuming as well, as there will typically be many other demands
placed on the center. Furthermore, adjustments or changes to the report
specifications are more difficult to accomplish. In both cases, turnaround time
may not be as quick as the report user would like.

What the businessman needs is often more than either of the above
methods can provide. He needs the ability to produce reports using data that
may be entered specifically for a particular report, or that may be retrieved
from an existing data file. In either case, substantial data calculations or
manipulations may be required to complete a report.

In other words, the businessman needs access to all sorts of data, and he
needs to be able to work with that data. He wants the capability to present the
data in many different, and sometimes unexpected, formats. And, most
importantly, he wants the resulting reports available in a timely manner. A
system that meets these requirements is more than a reporting mechanism-it
is a tool with which the businessman increases his productivity and the
accuracy of his decisions.

If this is all within reach by using high-speed computers (and it is), then
why doesn't everyone with access to a computer perform his own report
generation? The answer to this question is not the lack of native intelligence

33

34 QUICKPLAN: A Reporting Tool for the Non·Programmer

on the part of the average user; the answer is, however, related to intelligence.
That intelligence is the method of accomplishing the task.

In a batch computer environment, the user may find it necessary to learn
such programming languages as COBOL, FORTRAN, or PL/l. In addition, he
has to contend with the detailed mechanics of how information is entered into
the computer (on punched cards, for example). He is also subject to the
turnaround time. Even in a time sharing environment, languages such as APL
prove to be too complex for the businessman to use directly. Too often, a
businessman finds it necessary to take the additional time necessary to learn
and use commands and symbols that bear little relation to the finished report.

Let's look at a typical, though simplified, business report (see Figure 1).
Though reports have widely varying formats, this report has a common
format. It presents numeric data in rows across the page and columns down
the page. The rows and columns have labels, and the report has titles at the top
and comments at the bottom.

CAPITAl. COMPAR\SON FOR MII)WEST e,A~\(S

BANK CAPITAl. TO AS'SETS (f"Mirr~)
PE~T TO CAPITAL

0/0

61G BANK t+.Ji 501.0 25.0

I=REl)'S RAN\(* !f.b 11103.0 :l2.1f-

a,t.NCo »EL. OBO &AN~ 5.1 %.0 15.0
WWY BAJIll{ _._

--- --- ~---""-- 5'l.O :l1f.2

FASTe>AN\(5.3 217.0 25.'l-

"*AS OF MARCH 31, ,Q7Q.

Figure I-A Typical Report

Ideally, the user who wishes to create a report like that shown in Figure 1
should be concerned only with describing the key components and specifying
the order in which those components should appear. This ideal situation is
rarely the case, though, as most businessmen do not have the proper tools.
QUICKPLAN was developed to provide the tools. Its English style commands,
simplifying assumptions, and full database interaction make it a natural tool
for reporting.

To see firsthand how QUICKPLAN meets the requirements of a useful
reporting tool, we will use the system to create the report shown in Figure l.
After signing on to STSC's APL *P L US System, we access the QUICKPLAN
System and the tools it provides:

)LOAD 333 QUICKPLAN
SAVED

Next, we create a filing area called QUICK for the Report Generating System
(RGS) and its data and programs.

GPCREATE
GIF SYSTEM NAME? QUICK

9999999 QUICK CREATED.

Now we're ready to create the RGS, which we'll call BANK. The RGS is
used to store information for report titles, headings, line names, line numbers,
and data.

QUICKPLAN: A Reporting Tool for the Non-Programmer 35

BUILDRGS
RGS NAME: BANK
HOW MANY COLUMNS?
0:

3
BANK CREATED.

With these steps completed, we are ready to enter the specific information for
our report. It is important to note that the above steps are necessary only when
setting up a report for the first time. Many reports can be generated using the
same "file" (QUICK) and the same HGS (BANK).

Next, let's enter the character information for our report (titles, column
headings, and line names). For each item, we must specify a number (used for
later reference), the justification (left, right, or centered), and, of course, a
name. Line names also offer two additional options for the data that will
appear in each line-formats and scale factors-but we will not use these
options.

ENTERTITLES First we enter the titles.

RGS NAME: BANK
DEFAULT: LJUST, CENTER, ftJUST C
SEQUENTIAL? NO-
ENTER TITLE NUMBER
0:

12
12: ICAPITAL COMPARISON FOR MIDWEST BANKS
ENTER TITLE NUMBER
0:

END
MORE? NO
TITLE NAMES STORED.

ENTERHEADINGS Next we enter the headings.

RGS NAME: BANK
ITEMS TO BE ENTERED: NAME, FORMAT, SCALE: NAME
DEFAULT - LJUST, CENTER, RJUST: R
USE C, n, OR ~ TO-OVERRIDE DEFAULT. USE ~ FOR NEW LINE
SEQUENTIAL? NO
ENTER HEADING NUMBER
0:

o
o NAME: IcBANK+----
ENTER HEADING NUMBER
0:

1
1 NAME: ICAPITAL TO ASSETS+-----------------
ENTER HEADING NUMBER
0:

2
2 NAME: ICAPITAL+($MILLION)+
ENTER HEADING NUMBER
0:

3
3 NAME: IDEBT TO CAPITAL+
ENTER HEADING NUMBER
0:

END
MORE? NO
HEADINGS STORED

---------------01 0 ~

ENTERLINES And, finally, we enter the line names.

RGS NAME: BANK
ITEMS TO BE ENTERED: ~AME, fORMAT, QCALE: NAME
SEQUENTIAL? NO
ENTER LINE NUMBER
0:

10
10 NAME: IBIG BANK

36

ENTER LINE NUMBER
0:

QUICKPLAN: A Reporting Tool for the Non-Programmer

12
12 NAME: IFRED'S BANK*
ENTER LINE NUMBER
0:

20
20 NAME: IBANCO DEL ORO BANK
ENTER LINE NUMBER
0:

24
24 NAME: !WHY BANK*
ENTER LINE NUMBER
0:

31
31 NAME: IFAST BANK
ENTER LINE NUMBER
0:

END
MORE? NO
LINE NAMES STORED.

Now we can try a "first cut" at our report. All we need to do is enter a
simple program that specifies the order in which the components should be
printed:

VREPORT
[lJ FIELDS 26 18 18 18 nFIELD WIDTH FOR PRINTING COLUMNS
[2J TITLES 12 0 0 nPRINT TITLES 12 0 0 (0 PRODUCES A BLANK LINE)
[3J HEADINGS 0 1 2 3 nOVER THE COLUMNS. PRINT HEADINGS 0 1 2 3
[4J LINES 0 THRU 99 nPRINT VALID LINES IN THE RANGE 0 TO 99
[5J V

We run our report program at this point to check the format ofthe report (the
resulting "report" is shown in Figure 2):

REPORT

CAPITAL COMPARISON FOR MIDWEST BANKS

BANK

BIG BANK
FRED'S BANK-
BANCO DEL ORO BANK
WHY BANK-
FAST BANK

CAPITAL TO ASSETS
CAPITAL DEBT TO CAPITAL

($MILLION) 0/0

Figure 2-Checking the Report Format

If the report format is correct, we can begin to enter the data. A simple
data input program like the one given below shows us what data must be
entered.

VINPUT
[lJ GETSYSPGM 'PENTERDATA'
[2J 1 2 3 PENTERDATA 0 THRU 99
[3J n ENTER DATA IN COLS. 1 2 3 FOR LINES 0 THRU 99
[4J V

We run the input program and enter the appropriate data:

INPUT
10: BIG BANK ~ 0 0 0
0:

4.4 501 25

QUICKPLAN: A Reporting Tool for the Non-Programmer

12 : FRED'S BANK* = 0 0 0
0:

~.6 1903 22.~

20 : BANCO DEL ORO BANK 0 0 0
0:

5.1 ~01 15
24: WHY BANK* 0 0 0
0:

5.2 5~0 2~.2

31 : FAST BANK = 0 0 0
0:

37

5.3 217 25.~

We modify our report program slightly to add cosmetic additions such as
spacing and comments.

VREPORTl
[1] 'ALIGN PAPER'¢PAUSE A STOP TO LET USER ALIGN PAPER
[2] FIELDS 26 18 18 18
[3] FORMAT '1' A SHOW ONE DECIMAL PLACE
[4] TITLES 12 0 0
[5] HEADINGS 0 1 2 3
[6] LINES S,(O THRU 99),S,S A'S' GIVES BLANK LINE
[7] COMMENT'* AS OF MARCH 31, 1979.'
[8] v

Finally, we run the modified report program, and we have a finished
report as shown in Figure 3.

REPORTl

CAPITAL COMPARISON FOR MIDWEST BANKS

BANK CAPITAL TO ASSETS
CAPITAL DEBT TO CAPITAL

($MILLION) 0/0

BIG BANK
FliED'S BANK-
BANCO DEL ORO BANK
WEiY BANK-
FAST BANK

4.4
4.6
5.1
5.2
5.3

501.0
1,903.0

401.0
540.0
217.0

25.0
22.4
15.0
24.2
25.4

- AS OF MARCH 31, 1979.

Figure 3-The Finished QUICKPLAN Report

QUICKPLAN can do much more than produce reports, since it contains
its own database manager called the GET/PUT facility. Data is stored with
PUT commands and retrieved with GET commands. The user need not be
concerned with the structure of files; he addresses all data items by names that
he has chosen. GET/PUT databases can be shared, and many people can
simultaneously put data into a database or retrieve data from it.

To expand our example, let's assume that one QUICKPLAN GET/PUT
database contains data about banks. It might contain all the operating data on
every bank in the United States, or in a specific state. Once this database
exists, the user can select data that meets any given criteria. In our example
the report was for midwest banks, but we could as easily have selected data for
another region or for banks with greater than a specified capital level. If data
were stored in the database by year, we would have yet another dimension in
our database. The user could then produce reports for specified time periods.

Having selected any subset of the stored data, the user can perform
calculations and produce reports, or put the calculated data back in the

38 QUICKPLAN: A Reporting Tool for the Non-Programmer

database for later access. The possibilities for manipulating and reporting data
become endless. Better yet, these possibilities are all within the reach of
QUICKPLAN and its database system.

Conclusion

Stepping back from the mechanics of QUICKPLAN, let's repeat the
necessary elements of a complete reporting system. We can then decide
whether QUICKPLAN meets these requirements.

• The reporting system must be clear, concise, and unambiguous.

• It must contain all the necessary commands, including the selec
tion criteria, to facilitate interaction between the user and the
databases in which relevant data is stored.

• The user should not be asked to deal directly with the underlying
programming language (in our case, AP L). That is, all error
messages and data manipulations should be handled by the user
oriented language of the reporting system.

• The system should be column or line oriented, or both, and should
provide headings for columns and lines.

• Numbers should be presented, by default, with standard business
notation (using dollar signs, commas, parentheses, and decimal
points).

• The system should prevent the user from doing harm to a
database.

• The system should allow the user (and the database manager) to
change anything he has done--easily and quickly.

• Finally, the reporting system should be compatible with other
systems written in the same language so that the systems can be
easily linked.

When these requirements are met, the reporting system will best meet the
needs of the businessman. It will also be a useful tool for programmers.

QUICKPLAN does, in fact, meet these requirements. Furthermore, one
can easily learn to use QUICKPLAN. In one day, the average person can
master QUICKPLAN's reporting capabilities. Little additional time is re
quired to learn the database management capabilities.

Let's return to the original questions. It is fairly obvious what reporting is.
With QUICKPLAN, the answer to "Who does it?" is "Anyone with a need for
reports, a few minutes, and access to a terminal". Does that sound too simple?
If so, that's because QUICKPLAN makes business reporting so simple that
most users can master the system in a day.

Dave Hopkins earned his B.S. in computing and information science at Trinity
University in Texas, where he worked part-time for two years at the university's
computing center. After receiving his M.B.A. from Southern Methodist Univer
sity, Hopkins joined STSC in 1978 as an applications consultant.

Hopkins has developed many customized QUICKPLAN reporting systems for
STSC customers, particularly for major oil and energy producing companies
located in Houston.

Robert R. DeCloss

The EMMA Report Generator

In physics we learn that an "erg" is a unit of energy or work. The ERG
System (EMMA- Report Generator System) allows a user to define and obtain
numerous reports easily and quickly, making his work more productive, and
saving him the time and effort spent otherwise collecting that data.

ERG is a system designed for non-programmers who, with a surprisingly
small "vocabulary", can generate virtually unlimited reports in formats they
specify. For that reason, ERG is particularly useful to management. Manage
ment's reporting requirements vary almost daily. Since ERG requires no
programming, an executive can define reports and have them in minutes.

The ERG System operates from an EMMA file. EMMA (Extended Manage
ment Macros in AP L) is a proprietary collection of programs developed by
STSC to manipulate, select, replace, and compare data. In contrast to EMMA,
ERG has only a few user programs, which I will explain a bit later. First, I
would like to share some of the history of ERG's development.

ERG was the result of a great design process; we spent hours considering
alternatives and options. Here is how it all began:

One of our clients needed many different kinds of reports for its
management. They had been using PERT*PLUS, STSC's Interactive
Project Management System, but they had come to realize that the
system was solving only parts of their problem at an expensive price.
One Friday afternoon, they gave us a list of the capabilities they
wanted. For example, they wanted to be able to print different
columns and have data paged for easy separation and distribution to
different departments. They also wanted the ability to total columns
of data based on a major category and to subtotal based on a
subcategory.

From this "wish list" we had a better idea of what the client's needs
were. When we went to see the client on Monday, we proved that we
had not only satisfied their needs, but had also added the capability
for the user to format his own reports.

After the client registered mild shock at the speed with which we had
solved their problem, we asked if our design was acceptable. It was; we
were off and running; and ERG was born!

I suppose I could be accused of heresy, but I believe a majority of products
and packages are developed in this way-at least a majority of useful products.
APL is the only language I'm aware of that will let you accomplish what I've
just described. With APL you can have results within a couple of hours of

39

40 The EMMA Report Generator

receiving ideas from a client. The client reviews the initial design, and usually
thinks of additional requirements. After input and suggestions from both
sides, you go back and add some "features" (a technical term for "bells and
whistles"). Soon you've met the client's requirements, and probably given him
much more!

The best way to substantiate my claims of the value and simplicity of ERG
is to describe its characteristics.

The current version of ERG (others are under development) works from a
single EMMA file. It can be installed quite easily by anyone who understands
the basic concepts and nomenclature of the system.

That brings me to an extremely valuable overall design consideration in
any product or package I develop: ease of use. This may be an overused phrase,
but I do go to great lengths to avoid computer jargon and to implement ideas
that fit the customer's business, not the computer business. But, I digress.

To return to ERG, five of the main user programs are

• REPORT-A conversational program that asks what fields to
print, how to sort the data, what fields to total, where to put page
breaks, and what field to break on within a page.

• SUMMARY-A program similar to REPORT. The only difference
is that the data is summarized and no detail information is
printed. Break totals and page totals are printed on the report.

• PRINT-A program that prints a previously created report. The
report specified can be printed at a terminal or can be submitted
for printing on a remote, high-speed printer.

• DIRECTORY-A program that displays all report files currently
existing.

• ERASE-A program that erases a report file.

To store the report information, the user fills out a worksheet and enters
the information into the system. Editing features allow the user to set or
change formats or column headings very easily. Once satisfied with the
headings, formats, tables, and names, the user saves the information. A
variety of reports are now ready for production, waiting only for a request from
the user.

In generating reports, a user must become familiar with the following
eight concepts.

• print fields

• sort fields

• page break field

• page total fields

• break field

• break total fields

• selection criteria

• report name.

Most of these concepts are relatively straightforward and become second
nature quickly.

The print fields specify the columns of data the user wishes to display in
the report. The sort fields indicate how the printed fields should be sorted, in
major to minor order. The sort fields do not have to be included in the print
fields.

The EMMA Report Generator 41

The page break field is used to force a new page every time the specified
column of data, after being sorted, changes. The page total fields allow the user
to specify which columns of data are to be totaled before each page break. (If no
page breaks are specified, the user is prompted for grand total fields rather
than page total fields.)

The break field allows a subtotal within a page break field. Thus, a user
can get branch totals within each cost center or subtask totals within each
task. The break total fields allow a user to select which columns of printed
fields are to be subtotaled. Page total fields can be different from break total
fields.

Now, for the only slightly complex part of the whole system-selection
criteria. The selection criteria specify what data is to be printed, using
abbreviations of English words such as: FROM, BETW, EQ, GT (greater than),
AND, and OR.

Parentheses can be used to alter a definition or form complex statements.
For example:

SELECTION CRITERIA: (SAL BETW 1000 2000) AND EARN GT 100000

For experienced APL programmers, the same selection criteria can be speci
fied using raw APL:

SELECTION CRITERIA: (SAL>1000)A(SAL<2000)AEARN>100000

Let's consider an example. Suppose we want to generate a report that
prints the cost center, branch number, employee number and name, employee
salary, and revenue generated by each employee. We want to sort it by cost
center and by branch within cost center, and we want only cost centers less
than 400. We are only interested in the top producers, so we want only those
who have generated year-to-date revenues in excess of $130,000.

Here is all we do:

)LOAD 9999999 ERGDEMO
SAVED

REPORT
PRINT FIELDS: HELP
VALID FIELD NAMES AND NUMBERS ARE LISTED BELOW:
(NOTE: WHEN USING NAMES YOU MUST USE A COMMA AS A SEPARATOR).
CC=l • BR=2 • EMP=3 ,NAME=4, SAL=5 ,DATE=6, EARN=7 • STA1'E=8

PRINT FIELDS: CC,BR,EMP,NAME,SAL,EARN
SORT FIELDS: CC,BR
PAGE BREAK FIELD: SKIP
GRAND TOTAL FIELDS: SAL ,EARN
BREAK FIELD: CC
BREAK TOTAL FIELDS: SAL, EARN
SELECTION CRITERIA: (CC LT 400) AND (SAL FROM 1000 3000) AND EARN GT 130000
REPORT NAME: MYREPORT
REPORT TITLE: TOP PERFORMERS FISCAL YEAR 1980
FIRST SUBTITLE: (SPACE,RETURNj
DONE

After entering the report specifications in this manner, you can run the
program PRINT and produce the report, as shown in Figure 1. Using slightly
different report specifications, and other ERG options not demonstrated here,
you can produce many variations of this basic report.

I can't stress enough how easy it is to use ERG. The user does not have to
learn a programming language, nor does he have to figure out what a work file
is or even how to create one. All the user has to know is what data should
appear on the report, and in what order. This gives each user more time to
review reports containing exactly the information he wants to see-no more
and no less. Each report is customized so that the user sees only the columns

42 The EMMA Report Generator

and headings pertinent to him. Managers don't get detailed reports crowded
with data that doesn't interest them, or worse, annoys them.

OFFICE PRODUCTS SERVICE COMPANY
TOP PERFORMERS FISCAL YEAR 1980

PAGE 1 ; 2/19/80

COST BRANCH EMPLOYEE EMPLOYEE EMPLOYEE DOLLARS
CENTER NUMBER NUMBER NAME SALARY EARNED

-------- -------- -------- -------
311 1 1137 FLANIGAN, JOAN 2,900 136,500
311 3 1069 RYAN, KAREN E. 1,600 133,500
311 3 1087 ESKINAZI, KEVIN 1,600 147,500

6,100 417,500

332 1107 GURGOLD, JOHN 2,800 144,000

2,800 144,000

341 1 1115 DAAR, ARLENE 2,700 138,500
341 1 1007 CARTER, CLIF 1,000 137,500
341 1 1122 CHANDLER, JAK 2,700 138,000
341 1 1108 WEAVER, JEFF S. 2,500 143,500
341 3 1028 KARPF, ELEANOR T. 1,300 133,000
341 3 1098 KRANISH, RON S. 1,200 132,000

11,400 822,500

~===================

20,300 1,384,000

Figure I-A Sample ERG Report

The combination of ERG and AP L provides managers with a powerful tool
for producing reports that meet their requirements, even if those require
ments change daily. Furthermore, valuable information is provided on time
and at a very reasonable price. What better way to work? That is the key to
ERG-making work better and easier.

Bob DeCloss joined STSC in 1973 as a programmer. He took a leave of absence
in 1975 to become treasurer of the Irwin Trading Company and Irwin Manage
ment Company, but later in 1975 rejoined STSC in the APL Development
Department. Since 1978 he has been the branch manager of STSC's Denver
office.

DeCloss co-authored with Roy A. Sykes, Jr., a paper for the AP L 75 Conference
in Pisa, Italy, titled "EMMA : Extended Management Macros in APL" (APL75
Conference Proceedings, ACM, 1975). In 1977 he wrote the EMMA Reference
Manual (STSC, 1978). He has designed and implemented several systems
dealing with report generation, database management, and construction ac
counting.

DeCloss has an M.A. in mathematics from Claremont Graduate School.

Richard W. Butterworth

When APL Is Inappropriate

The use of AP L, or any high-level programming language, can be inap
propriate for a given application, particularly when the use of a different
language offers a lower overall cost to achieve the objectives of the user and the
application. From this somewhat over-simplified beginning, we will discuss
several issues that help determine when AP L (or any high-level language) is
appropriate. These issues frequently become the deciding factors in choosing a
programming language.

Of course, there are few, if any, hard and fast rules in a field whose
technology is changing so rapidly. The following discussion and examples will
provide some principles that can be examined when resolving the issue of
whether APL is appropriate.

Program Readability

The primary issue in language choice is program readability. For purposes
of this discussion, program readability refers to the inherent difficulty and
associated costs of reading a program, determining precisely what the pro
grammer intended the program to do, and executing the program. This issue
includes not only "people" readability (a person learning the input, process,
and output characteristics), but also "machine" readability (the initial inter
pretation of the program into machine-executable code and subsequent execu
tions of the program). As might be expected, high-level languages favor people
readability, while low-level languages favor machine readability.

The issue of readability fits naturally into the concept of a program's total
life-eycle cost. A program's life-eycle cost can be viewed as the sum of its people
readability costs and its machine readability costs. The former might be
measured in manhours, and the latter in machine cycles. These two costs are
determined by the amount of "reading" the program is subject to over it's life
and the associated costs. Hence, a program that is read primarily by machines,
such as a system utility, will have life-cycle costs dominated by machine
readability costs. Conversely, a program read primarily by people, such as a
program for quantitative support of management decisions, will have life-cycle
costs dominated by the people readability costs. Proper language selection,
then, entails knowing the program's intended use and environment and
selecting the language that minimizes the composite costs.

Foretelling total people readability costs is a subjective process. People
readability costs, for example, include not only the original programmer's
time, but also the time of subsequent persons (programmers and users) who

43

44 When APL Is Inappropriate

need to understand the program from a conceptual, technical, or operational
viewpoint. These costs are usually underestimated.

People readability costs also contribute heavily to a program's develop
ment cycle time, since during the development phase a program is read almost
exclusively by people. In a linguistic sense, as with high-level spoken lan
guages, a high-level programming language greatly assists the communication
of ideas among designers and programmers, thereby reducing the time it takes
to understand the problem. This asset, and the ease of translating the
algorithmic concepts into executable programming statements, shortens de
velopment time significantly. This suggests that some programs requiring
short development cycles may be infeasible unless undertaken in a high-level
language.

Machine readability costs are equally difficult to estimate. The primary
factors are the cost of machine resources and the execution cost of the
program. Though CPU power is becoming increasingly cheap, additional
machine cycles cannot always be purchased. For example, many products
today contain dedicated microcomputers or minicomputers; the application
environment is precisely defined and the CPU power restricted. Another
example sometimes occurs with the Federal Government, which occasionally
chooses low-level languages for their ability to conserve CPU resources made
scarce not by financial or architectural restrictions, but rather by an extreme
ly slow procurement process. Thus, machine readability, like people readabili
ty, may be constrained by a variety of cost parameters. These parameters,
which include opportunity costs as well as actual costs incurred, usually have
highly subjective attributes.

Readability and the Performance Issue

The life-cycle costs of computer applications are then a combination of the
reading costs incurred by people and machines. To minimize expected total
cost, a compromise is usually sought between costs of software development
and maintenance, and costs of hardware capacity and sophistication. APL,
with its natural ability to manipulate data arrays and its user-oriented
implementations, offers distinct benefits in reducing software development
costs. Predictably, APL is most effective in applications such as modeling
systems and decision support systems, where software development costs are
highest. In these systems, primary design criteria are ease of use, ease of
program adaptability, a short development cycle, and frequently, a customized
approach.

Today, however, a majority of computer applications are characterized by
repetitive processes. Programs that are changed infrequently and that do not
require interactive processing are less able to take advantage of AP L's assets.
Moreover, on most implementations, the interactive interpreter makes it
difficult to move these processes out of the very busy (and, consequently, the
most expensive) prime operating time.

The current trend toward distributed processing provides another exam
ple where programs are duplicated to run at many locations or on many
machines at the same location. This reduces software cost per unit hardware
cost, and creates leverage for low-level languages. Take, for example, the
system supporting a large retailer's point-of-sale terminals. Hardware costs
are amplified many times by the number of terminals involved, but software,
once written, is likely to remain very stable. It is clear from this discussion
that the language issue cannot be decided outside the application's context.

In current machine architecture, which requires that a programmer's
code be reduced to common machine code before execution, the performance

When APL Is Inappropriate 45

requirements of a program can become a major issue in language selection.
Some programs are read primarily by machines; programmers read the code
only for development and maintenance and the end users do not read it at all.
In these cases, machine performance is a main concern, and a low-level
language is clearly preferred. Examples of this are utilities such as file sorts,
random number generators, and internal checks and balances.

A different example involves a scientific simulation project. The operation
and maintenance of emergency diesel generators at nuclear power plants were
simulated to study the effect of the maintenance and test plan on the
generators' reliability and availability. Though extensive documentation of
the program was not required, people readability was an issue, since the model
being simulated was not completely specified and was likely to undergo
change.

These factors would appear to indicate that APL would be a good
programming language for the project. However, performance became the
deciding issue, as the precision of the results depended heavily on multiple
replications over long horizons. A few short programs had to be executed
hundreds of thousands of times to evaluate each scenario. Consequently, the
associated machine costs became a limiting factor to the system's use.
FORTRAN was finally chosen as the programming language for the project;
the random number generator was provided by the host compiler, probably in
Assembler language. The complexity of the model precluded any low-level
language approach, due to the people readability issue.

A secondary issue in the simulation project was machine portability (i.e.,
the ability to move and maintain an application on two or more computer
systems). The portability requirement, while essentially a machine readability
issue, is usually resolved by using a high-level language. In this case, APL was
not available on the alternate system, but FORTRAN was. The FORTRAN
simulation program, when moved to the alternate installation, ran and
duplicated earlier results with a change to only one line of source code.

Another type of problem not generally handled in APL is the linear
programming (LP) problem. Linear programs are comprised of "matrix gener
ators" that develop application data in a canonical LP format. The LP
problem, an optimization of a linear function of independent variables subject
to linear constraints, is then solved using the simplex algorithm, or some
variation ofthe simplex technique. Finally, the solution is translated back into
the terms of the problem and output reports are produced.

Although LP problems are characterized by matrix data structures, only
relatively small problems (those having 50 or fewer equations) seem suited to
an APL approach due to the nonlinear increase in iterative computations.
Even when an LP problem is small, other factors must also be present to
suggest an APL solution (e.g., a fluid problem definition requiring constant
revision).

Readability and the Intelligence Issue

As the prerequisite intelligence of a program increases, so does the need
for increased people readability. (The word "intelligence" in this paper refers
to a program's ability to handle complex sets of logical rules and to deal
gracefully with unanticipated input.) Complex ideas are difficult to commu
nicate with the limited "vocabulary" of low-level languages and are nearly
impossible to grasp by reading a program written in a low-level language. Just
as high program intelligence generally supports the use of a high-level
language, low program intelligence generally favors use of a low-level lan
guage (i.e., the non-AP L solution).

46 When APL Is Inappropriate

An example of a low-intelligence task that can become expensive when
undertaken in AP L is large-volume record processing to update and maintain
a database. Large personnel systems, for example, usually maintain a record
on each individual, perhaps in a sequential dataset consisting of many tapes.
The database must be updated weekly, or even daily, and update reports must
be produced. The procedures for performing such updates are relatively
simple; consequently, the matrix manipulation capabilities of APL would be
largely under utilized. The machine expense associated with constant inter
pretation of the code to simply process the next record creates a situation in
which the system's overall cost is dominated by the machine readability of the
program.

It is worth noting, however, that non-APL programs can build APL
databases that can subsequently serve many information needs. These data
bases generally condense entity data into frequency of occurrence data that
summarizes the activity. Such databases can become excellent sources of top
down management information, supporting the increasingly popular decision
support systems (DSS).

In our experience, two personnel systems have been implemented in this
manner. One tracks 30,000 persons and the other tracks over 500,000 individu
als. In both systems, APL was judged inappropriate for the database develop
ment because of the large number of record manipulations required. However,
management models that used the data were developed in APL specifically to
obtain ease of model development and flexibility. This illustrates that large
systems can easily contain applications appropriate for both non-APLand
APL programs.

In fact, it is typical in large application systems for APL to be appropriate
for some programming tasks, but not for others. One such case is a flight
routing system called OPARS (Optimum Path Air-Routing System). OPARS
provides flight plans on a production basis for a subset of the Navy's flight
community. Flight plans are requested a few hours before flight time by naval
weather personnel or flight personnel, but seldom by computer personnel. To
request a flight plan, the user responds to a few questions in an interactive
terminal session. The result of the session is a request file, which is forwarded
to a batch input queue. The flight plan is printed at the user's terminal five to
ten minutes later, and can be revised if necessary before takeoff.

The flight plan consists of an optimum routing from point of departure to
point of arrival. The criterion for optimality is minimum fuel consumption,
which may be subject to user constraints such as mandatory fly-overs or fly
arounds, or use or nonuse of FAA jet routes. Wind and temperature forecasts
from real-time databases are used to develop a dynamic network to which a
shortest path branch-and-bound algorithm is applied. The final result is a
formatted flight plan showing the suggested routing, expected fuel consump
tion, forecasted winds enroute, and a checkpoint schedule.

Because of the machine performance issue, APL was inappropriate for the
production version of this shortest path network optimization program. The
nature of the network algorithm, which sequentially examines arcs for
potential inclusion in the shortest path, precluded the use of "matrix-type"
calculations, and suggested a "looping" design instead. However, APL was
used during the design effort to test the network and algorithm design
concepts by developing a prototype program for the optimization. The APL
program contributed to a proof of concept, but was relatively inefficient for
repetitive execution of the algorithm in a large-scale production environment.

APL was also found to be inappropriate for implementing the main flight
routing program, which begins with the request input file and terminates with
a formatted flight plan file. In spite of the complexity of the program, the

When APL Is Inappropriate 47

performance issue was overriding. The number of flight plans to be prepared
daily could not be forecasted; however, as system activity increased, the
number was expected to grow from between 10 and 20 plans to between 100
and 500 plans. Given the turnaround requirement of 10 minutes, the applica
tion required a language that kept machine performance high and machine
readability costs low. The languages selected were FORTRAN (for the flight
routing) and Assembler (for the input!output operations).

The interactive request generator, though developed in FORTRAN be
cause of institutional constraints, was a suitable candidate for APL implemen
tation. This interface had to be interactive and "user friendly", had to handle
sparse amounts of data, and had to have a fair amount of intelligence to
determine whether requests were well formed and complete. Requirements for
this program were expected to change as system capabilities were added or
temporarily suspended-another factor favoring the use of APL.

Conclusion

The readability theme of this presentation focuses on the reading and
interpretation costs of programs. Readability costs are accumulated by ma
chines, in machine cycles, and by people, in manhours. The key to resolving
the language issue is to look at the relative costs of having the program read by
people and by machines. If the life-eycle program costs will be dominated by
machine costs, APL may not be the best language choice, in spite of its more
productive use of people's time.

Language choices are still likely to be somewhat subjective, however, as
factors affecting hardware costs and personnel costs continually change.
Examples of factors directly influencing the choice of APL are the decreasing
costs of hardware, the continual improvements to the APL interpreter, and
the possibilities of bringing native hardware operations structurally closer to
APL primitive operations. In the foreseeable future, however, many situations
will arise where compelling cases can be made for low-level language ap
proaches. The best solutions, APL or not, will capitalize on the assets of both
high- and low-level languages, in composite solutions.

Some points discussed in the examples are summarized as follows:

• General support utilities, such as file sorts, are good candidates for
non-APL implementation.

• Simple tasks that require little intelligence and emphasize high
volume processing (e.g., sequential record updates) are generally
not recommended for APL implementation.

• Real-time performance requirements of complex tasks may not
permit a responsive solution with APL. These applications tend to
become "expensive" to implement because of a somewhat con
strained language choice.

• Portability, which usually favors the high-level language ap
proach, can work against APL until such time as APL is imple
mented on a wider range of machines.

• Hybrid solutions offer numerous benefits. While AP L has many
attractive features, there are valid and compelling reasons to
select other languages for certain system segments to complement
the segments written in APL.

48 When APL Is Inappropriate

Richard Butterworth, technical director of the Advanced Analytical Applica
tions Division of SEI, is experienced in operations research, with specific
interests and applications including military manpower analysis, energy sys
tems reliability, statistical time-series forecasting, and interactive decision
support systems. At SEI he led the development ofDELIS, the Navy's Executive
Level Information System, and OPARS, a global Navy flight-routing system.

Prior to joining SEI, Butterworth was associate professor ofoperations research
at the Naval Postgraduate School, where he developed a new course in
interactive computing. He holds a Ph.D. in operations research from the
University of California at Berkeley.

Thomas A. Gull

Managing Outside Computer Services:
An Organizational Relationship

The Basic Relationship

If you are a time sharing coordinator or an important user of an outside
computer service, your organization holds you responsible for meeting certain
objectives. These objectives may be quite specific, or they may be very general.
In either case, you are responsible for using resources to meet those objectives,
and your management will examine the difference between the costs of
resources used and the value derived from those resources.

The resources allocated to you may include budgeted funds, personnel,
supplies, and time. Availability of these resources may give you the option of
buying various services from another organization. When you use an outside
computer service, you are going to build a business relationship between two
organizations, and that relationship must be carefully managed.

In real life, of course, the "relationship" between two organizations really
can be thought of as some function of all the personal relationships between
members of the organizations. These personal relationships, however, work
well when there is general agreement on why the people interact on a
continuing basis. This agreement occurs when goals have been set by the
leaders of each organization, the goals are supported by members of both
organizations, and everyone can see that the personal interactions help meet
those goals. In effect, this is a "business relationship" regardless of the goal of
either organization.

Simply stated, your organization is going to get services and pay for them
in some way. You, personally, are not receiving or paying for services; by the
same logic, no one person in the vendor organization is serving you and being
paid for it. Your understanding of the distinctions between organizational
relationships and personal relationships has a huge effect on the quality ofthe
service you will receive.

Identifying the Common Ground

Whether a vendor is a profit or non-profit organization, goals will have
been defined for the entire organization. When you first choose an outside
computer service, spend some time ferreting out those corporate goals. For a
vendor shooting for monetary profit, the goals may be well publicized and easy
to understand. A non-profit vendor may survive with vague goals, though some
research or service groups have very clear objectives. You do not know if you
can get service from a vendor until you know what they want in trade for that
service. As harsh as it may sound, your goodwill by itself may not keep you on

49

50 Managing Outside Computer Services

as a client of a service having difficulty meeting its goals. In other words,
getting services free sets up an unbalanced relationship in which you will have
little or no influence when circumstances change. You will get what you pay
for.

When you know what motivates the vendor to give you service, you can
examine your available resources to see if you can afford the service you need.
Most vendors will prefer to deal with organizations that can contribute to
meeting goals at some significant level. For example, getting service from a
giant firm can be a problem if you would be its smallest client. You should be
realistic about what you expect to spend on computer services, since this will
give your vendor an honest picture of what resources to set aside for your use.
Your estimates of what you will need will be used by the vendor to manage the
allocation of his resources; bad estimates may contribute heavily to bad
management in either organization, perhaps increasing your costs or even
preventing you from meeting your objectives.

Common ground for any business relationship has four main components:

1. What services does your organization need?

2. What can you pay for those services?

3. Can the vendor provide those services?

4. Are you giving the vendor enough incentive to provide those
services?

This approach implies that you will receive the most useful service when
you and the vendor can both (1) meet your respective goals, and (2) avoid using
resources unnecessarily. If you have identified the common ground correctly,
you should be able to predict what level of service you will receive from any
vendor.

Communications with the Vendor

Your vendor will assign one or more persons to work with you and your
organization. Your basic communications with the vendor organization will go
through this assigned person, so you must be able to deal effectively with this
representative of the vendor. You will receive the best service when both of
you take the time to identify the "common ground", and this process requires
honesty and skill. If you have trouble dealing with the assigned person, ask for
another representative.

As you work with your representative, be aware of what organizational
goals he has been given. In a company like STSC, for example, the marketing
representative has been hired to increase revenue at a reasonable expense.
That is the focus around which decisions will be made. However, the manner
in which goals are met will vary widely from vendor to vendor. For example,
one vendor may sell only machine time and provide no other services. Another
vendor may provide machine time, consulting, educational programs, and so
forth.

The overall quality of a computer service is actually more dependent on
the manner in which the service is delivered than on the hard economics of the
vendor's goals. To have a complete picture of what service a vendor will deliver
to you, you should consider not only the vendor's goals, but also his business
philosophy and his level of involvement with the customer.

Some vendors concentrate on high business volume mixed with low
personal service. Their favored customers will probably not interact much
with the marketing representatives. Other vendors may concentrate on
medium level volume coupled with high personal service. In the former case,

Managing Outside Computer Services 51

vendors will not have many highly trained support personnel available, since
personalized service is discouraged. In the latter case, there will be support
personnel spread throughout the organization.

The presence or absence of support personnel and a listing ofthe resources
available to a marketing representative, and, therefore, to a customer, can
outline a company's basic business philosophy very clearly; these factors are a
direct communication to you describing how a vendor intends to meet his
goals. If his intentions don't match your needs, look for another vendor.

When you work with a marketing representative for an AP L-based service
company, there is a subtle trap both you and the marketing representative can
fall into. In some cases, particularly when using APL, your representative may
have enough technical skill to solve many of your problems directly. This may
give you the impression that the representative can, and should, personally
solve all your technical problems. In practice, it is better to hold the represen
tative responsible for obtaining the resources you need, without necessarily
being the resource himself. This distinction in attitude helps to ensure that the
business relationship between your two organizations is not overdependent on
the skill and goodwill of one or two individuals.

Overdependence on one person seems to be fairly common in the APL
environment. The productivity of each APL analyst is very high compared to,
say, a FORTRAN or COBOL analyst, and many projects are completed from
start to finish by only one person. If you, as the user, deal only with that
person, you are encouraging bad habits in your vendor that may ultimately
hurt both organizations.

For example, if you have a vendor build a general ledger system in APL, it
may take only one person to do the job. During development of the system,
communications about concerns will go to that person. When the system is
completed, a crucial moment occurs. Ifyou continue to call the developer when
something needs changing or fixing, none of the other vendor personnel will
gain experience with the project. The net effect is that you will get quick
service only as long as the developer remains available; should he move on,
your vendor may lose the ability to serve you easily on that project.

The average analyst using AP L works so quickly that customers are
usually convinced that the analyst assigned to their project is uniquely
competent, and so the customer prefers to be served by that analyst. Since
many customers may feel this way, the cumulative effect upon the analyst can
be devastating. Actually, a professional analyst works in such a way that
another analyst could easily deal with many of the questions asked about a
project. It is part of the analyst's job to complete projects with advice from
other analysts, with the expectation that others will modify or support the
project in the future. If there is such interaction, the vendor organization is
able to give you good service even if a particular analyst is on vacation or has
switched jobs.

For example, the Washington, D.C., marketing branch of STSC handles
customer needs by assigning a different person each day to screen incoming
phone calls. Problems taking up to roughly 20 minutes to solve are handled
directly by the "hotline" person. More complex problems are referred to the
appropriate marketing representative or to the manager of the branch
technical resources. These complex problems can then be worked into a
flexible schedule involving the entire branch. If one analyst is on vacation, a
customer will be readily and effectively served by another STSC analyst, and
problems of overdependence on one person disappear.

52

Conclusion

Managing Outside Computer Services

You can get the computer services you need from an outside vendor, but
you will need to analyze such a relationship carefully. The crucial distinction
suggested in this paper involves the difference between organizational and
personal relationships. If your job involves meeting organizational objectives,
then your relationship with an outside vendor should focus at that level. Some
ways of working person-to-person seem effective but actually will not help you
accomplish your job. Your vendor should be aware of this fact, and the
organizational structure of the vendor ought to reflect an ongoing concern
with what makes good business sense. If you lay the ground rules for a business
relationship, personal relationships between members of the two organiza
tions are likely to be effective and comfortable.

Dealing with an outside computer service effectively involves using an
organizational approach and having the willingness to communicate honestly
with your vendor's representatives. Ideally, those representatives should
approach you in the same manner.

Tom Gull joined STSC in 1974 and has held positions as an applications
consultant, marketing representative, and account manager. In his current
position as an applications consultant manager he is responsible for managing
the technical resources of the Washington, D.C., branch office, including the
scheduling and planning of technical consulting activities. Gull has also
helped develop and implement new business methods and applications and acts
as a liaison between marketing and the Design and Development Department.

Gull graduated from Cornell University in 1974 with a B.A. in sociology.

Frank Vagt

Selecting and Managing
Outside Computer Services

Selecting and managing outside computer resources effectively is impor
tant to business and government users of computer applications. It is an
interesting and complex task that requires juggling a diverse assortment of
components including hardware, software, maintenance, technical support,
communications, training, and documentation.

Proper management must cover the entire cycle of outside services; that
is, the selection, utilization, and termination processes. Selection is the process
of evaluating, comparing, and contracting with the vendors to service one's
applications. Utilization is the day-to-day procurement of the services selected.
Termination is the end of such utilization-normally due to the end of an
application (in its present form), a transition to an inhouse system, or a
transition to another outside vendor.

Note the phrase "day-to-day procurement of services". It is important to
bear in mind that such services are generally ordered "by the drink" and that
the source of supply can vary throughout the life of an application-that is,
one can always "go to another bar".

This paper will highlight some critical aspects of choosing and managing
outside computer services. The points presented are intended to stimulate and
help organize the thinking of the person undertaking this task. The presenta
tion will be grounded largely in government terminology and philosophy; this
is due to my background as a government teleprocessing user and my current
involvement in implementing existing government procedures for competitive
acquisition of such resources.

Government awareness and policy have evolved considerably in this area
during the past few years. Much has been learned, often at painful expense. It
is hoped that this paper will help readers, from both the public and the private
sector, to avoid going through the same trials.

We will address the following topics:

• connect!communications

• storage

• processing

• software

• performance

• account administration role.

53

54 Selecting and Managing Outside Computer Services

The management of connect/communications is critical to many applica
tions. The marketplace offers a variety of coverage, pricing plans, and types of
service.

The selection of baud rates to be used is a basic decision; charges by
suppliers will vary by baud rate, by the volume of data transmitted, or both.
Terminal availability will be a strong factor in this decision.

One approach to data transmission is to employ intelligent terminals in an
application. Using intelligent terminals means that data can be entered
locally at leisure, corrected later, and finally transmitted to the remote service
in a very efficient fashion.

Some applications may justify a distributive network or more sophisticat
ed equipment to collect and perform a portion of the data manipulation locally.
Some may justify a user-implemented network to supplement or optimize the
use of a supplier's network.

A decision must be made concerning bulk terminals; cost tradeoffs must
be considered when determining whether to lease or share lines and whether
to rent or purchase equipment.

Approximately 20 to 25 percent of teleprocessing charges fall in the area
of connect!communications.

Storage has been judged by many to be the most misused and abused
aspect of remote computing services. It is available in many different forms.
Immediate Access Storage (lAS) can be purchased by the character-either at
one pricing plan or by the track, sector, or pack at rates that differ considera
bly.

Offline storage may be the better choice for part of an application; the
data can be kept on magnetic tapes or on the client's own mountable disk pack.
In either case, large savings will be realized. It is crucial for the client to
determine how long he can wait to access his various files and what guarantees
the vendor will make regarding mount and read time.

Old versions of programs on data files should be policed regularly;
meticulous archiving practices can enormously benefit budget and operations.
"Junk files" should be moved to a very low cost medium for later cleanup.

Often the operating system or database management system will allocate
and control storage. This can result in some surprisingly large storage charges
and thus should be monitored carefully.

Storage charges constitute 20 to 30 percent of charges to the average user.

Processing costs typically are responsible for about half of the dollars
spent by users of outside computing services. Understanding prime and
nonprime pricing structures can lead to a noticeable decrease in costs as well
as an increase in throughput. For example, west coast users might get better
performance at reduced costs from an east coast mainframe by running large
jobs at the end of the work day.

Proper use of batch processing and established priorities is essential.
Discipline is also essential to this aspect of an application.

The benchmark programs employed in the process of selecting outside
services should be carefully chosen to test the capability, timing, and pricing of
the system appropriate to the client's needs. Without a benchmark, processing
costs will be essentially unknown.

Choice of software is of major importance. The remote service vendor is
usually the best source of software support pertinent to his system; the user
should make his needs clear to the vendor. Client needs and vendor support
must be blended carefully.

Selecting and Managing Outside Computer Services 55

A recent General Accounting Office estimate quoted $8.00 per line for
software development in languages such as FORTRAN and COBOL. With a
language as powerful as APL, the number of program lines required is greatly
reduced, but the per line costs may be higher. At these rates, it is crucial to use
skilled personnel to get the most from your software development expendi
tures.

After programs are in place, it is important to create a system for the
modifications that will be required as needs change. Assistance from remote
service vendors varies in price, availability, and quality. This service, and the
availability of vendor-written software, are deciding factors in selecting or
using a remote service. Prewritten application packages can result in dramatic
savings. But much of the prewritten software will entail an extra charge
forcing a rent, create, or buy decision.

The performance of a remote system should be looked at very carefully,
both when it is selected and throughout its usage. The hardware and opera
tions will be managed by the vendor-not the client's own staff. Run times
should be measured and monitored, as should job costs. A variance resulting in
budget or mission problems must be dealt with. It is often a good idea to get
post-selection benchmark runs to police performance and justify possible
billing adjustments.

Any remote service usage, regardless of size, requires account administra
tion. This duty could be full time or simply a portion of a particular user's
responsibilities.

The account administrator should control user identifications to permit
proper access; work with management to estimate and justify expenditures;
verify billings by benchmark runs as well as by actual usage; monitor storage
and access patterns to optimize the use of available pricing plans; monitor
priority usage and assign priorities based on management goals; track and
project usage for budgeting purposes; and work with the remote service
vendor.

A "single-point interface" with the vendor need not be a rule, but it will
enhance the relationship with the vendor, reduce redundant queries, and
enable trends to be recognized and remedied.

Proper management of outside computer resources is not a trivial task.
Basic common sense will rule, but familiarity with the services provided and a
comprehensive approach are required.

Frank Vogt is currently an independent telecommunications consultant and a
general partner in TSP Training Associates. He previously worked as a
technical advisor for the General Services Administration (GSA). In this
capacity, he acted as a negotiator on many contracts for GSA's teleprocessing
services program. He assisted in developing a structure for evaluating time
sharing service vendors for the government's procurement services.

Vogt has a B.A. in mathematics from the Collif!ge of Steubenville and has done
graduate work in mathematics at Denver University. He served as an officer in
the Air Force and previously worked as a mathematician with the Navy, as an
operations research analyst for the Army, and as a data system manager for the
state of Ohio.

cur Kranish

Converting External Datasets
Into APL Files

APL files on STSC's AP L *P L us Time Sharing System are structured to
work efficiently with the powerful primitive functions of the APL language.
Consequently, it is often useful to convert data files produced on other
computer systems or by programs written in other languages into APL files so
that the data can be accessed and manipulated by APL programs. This paper
describes methods used at STSC to perform these conversions.

What Is an APL File System?

On early APL systems, such as APL \ 3 6 0, the only way to store data was
as a variable in the APL workspace. While this was satisfactory at first, it was
soon found to be too restrictive, since all data for an application had to fit into a
single workspace. In fact, the most common criticism of the APL language was
that "AP L couldn't handle large amounts of data". It didn't seem to matter
how much the workspace size was increased; as long as there was an upper
limit, APL programmers quickly reached it.

Another problem with early APL systems was that there was no way for
APL to get at data produced by programs in other languages, even if these
programs were running on the same computer as the APL system. The often
heard complaint was that "APL couldn't talk to therest of the world". The
only way to make this data accessible to APL programs was to type it in at a
terminal.

Other shortcomings of early APL systems were their inability to store and
retrieve data under program control and their cumbersome procedures for
sharing databases among several users.

To address these problems, most commercial vendors of APL developed
file subsystems to go along with their APL systems. These file subsystems
allowed data to be stored outside the workspace and made managing large
amounts of data much easier. Although each single data object was still
limited by the size of a workspace, there was no real limit on the total amount
of data that could be stored.

In 1970, STSC offered one of the first APL file subsystems, called the
APL *P L US File Subsystem. Soon after, other vendors such as Burroughs and
Digital Equipment Corporation (DEC), offered files with their APL systems.
Although the storage and access methods are different, all of these systems
store data outside the workspace.

One important advantage of storing data outside the APL workspace is
that programs written in other languages can access the data. In effect, the

56

Converting External Datasets into APL Files 57

AP L file systems opened a "window" to the rest of the world. Data could be
interchanged between APL programs and other languages.

What Is an APL File?

An AP L file is made up of components containing AP L data that can be
stored as variables in a workspace. Thus an APL file can contain components
of different rank, shape, or data type. Data is stored outside the AP L
workspace, and the amount of data is not subject to workspace size constraints.
System functions are used to transfer data between files and workspaces.

Most AP L users aren't concerned with the internal representation of data
or the use of different data types (except for the distinction between character
and numeric data). Conversion from one numeric data type to another is done
automatically.

However, the internal representation of data does affect the amount of
storage required for an APL data item. It often affects the amount of computer
resources required to perform some arithmetic operations on the data. The
data representation is also important when considering a conversion from
some external medium to an APL file.

All data stored on a computer is represented internally as a sequence of
binary (0 or 1) values or bits. The meaning of each bit sequence depends on the
type of data it represents. Most systems based on APL \ 3 60, including the
APL*PLUS System, support four different data types. The four APL data
types and the number of bits required for a single value are

• Boolean-1 bit

• Character-8 bits

• Integer-32 bits

• Real---64 bits.

Why Is Conversion Necessary?

External files, called datasets, are structured differently from APL files.
These datasets are described in terms of logical records. For example, for a
dataset on 80-column punched cards, each card is a logical record. For a
dataset on magnetic tape the records may be grouped into blocks for efficient
storage and processing.

To use APL programs to process data on external datasets, the datasets
must first be converted into APL files. For external datasets consisting
entirely of data in one of the four APL data types, conversion can be
accomplished without interpretation using a simple batch program. The
program reads the data on the cards or tape and appends the data to an APL
file.

Sometimes, however, it is necessary to convert external datasets that
contain more than one AP L data type, or that contain data types that don't
exist in AP L (e.g., packed decimal). To convert these datasets, more sophisti
cated techniques are required. STSC offers one such technique, known as the
File Conversion Generator (FCGEN).

How the File Conversion Generator Works

Data in an external dataset is described in terms of fields and records.
Each field generally contains one type of information. These fields often have
different data representations depending on the type of data that is stored. For
example, one field in a personnel file may contain social security numbers,
another field may contain names.

58 Converting External Datasets into APL Files

A record contains the information for a single entity in the file. For
example, one record in a personnel file may contain the social security
number, name, and other information for one individual. A programmer using
COBOL or other high-level languages includes, as part of the program that
processes the data, a description of each field in the input record.

To convert an external dataset into an AP L file, the user must specify how
the various fields and records are to be handled. This could be done using a
program written in a language other than APL, but not without great
difficulty. The special nature of APL*PLUS System files makes it difficult to
deal with AP L data representations in languages other than APL.

In addition, the AP L *P L US System provides special security checks not
available with the OS/MVT operating system under which it runs. Con
sequently, it is advantageous to write the initial conversion program in APL.

But what about the COBOL programmer who is unfamiliar with APL? It
seems unfair to ask him to learn APL so that he can write a conversion
program.

This is where FCGEN proves most useful. FCGEN is a package of APL
subroutines that are used to write an APL conversion program. The unique
characteristic of FCGEN is that its subroutines accept data descriptions in
notation closely resembling that commonly used in COBOL for describing
record formats. Other APL programs check the APL conversion program for
syntax and consistent specifications and generate a COBOL program, which
actually performs the file conversion.

Advantages to this approach are twofold:

• The notation used in the APL program is familiar to both COBOL
and APL programmers.

• Indirect generation of the COBOL conversion program allows the
user to take advantage of the security checks provided on the
APL*PLUS System.

In writing the APL conversion program, the user must specify the
following information.

• The fields in the input record to be converted. Each field in the
input record is listed. If the field is to be converted, the FIELD
statement is used. For fields that are to be skipped, the FILLER
statement is used.

• The records to be converted. Normally each record from the input
dataset is read and converted. To select only certain records, an
OSF I LE statement is used. Records can be selected by specifying
the first or last record to be read or by specifying that every nth
record is to be read.

• The records to select, by field values. It is often useful to select only
certain records by the values of certain fields. For example, if the
value of an "amount" field is zero, that record could be ignored by
using a DISCARD statement.

• The data type and length of each field. Each field of the input
record can contain character data or numeric data in decimal or
other representations. Each field description must include the
data type and length in standard COBOL notation.

• The translation of character data. Character data on external
media is generally not in the AP L character representation, but in
EBCDIC or ASCII. A standard translate table has been defined for
characters with a direct correspondence. For example, the digits 0

Converting External Datasets into APL Files

to 9 and the uppercase letters A to Z are translated to their APL
equivalents. For special graphics, "reasonable" translations are
defined. Extensions or changes to the default translate table can
be made using the TRANSLATE statement.

• The distribution of data in a file. When converted to an AP L file,
data is stored in file components as numeric or character matrices
with values from successive records occupying successive rows of a
matrix. Character and numeric values must, of course, occupy
separate components. However, it may be useful to store a field in
a component of its own if it is to be accessed frequently, or it may
be useful to store related fields in the same component. The
distribution of fields into AP L file components is specified by
using TARGET statements.

• The file structure. The data can be directed to several different
files or to consecutive components of a single file.

• The blocking factor. The maximum number of input records to be
stored in a single component is specified with the BLOCKING
option. A large blocking factor will be more efficient in that it will
require fewer file accesses, but the resulting components will
require more workspace area when manipulating the data. If the
file is ordered by a certain field, it may be useful to start a new
component when the value of that field changes. This is done with
the NEWBLOCK option.

• The name of the summary file. As part of the conversion process
some error checking is performed. Defects such as incorrect
characters, translation errors, nonnumeric values in numeric
fields, numeric overflow, and magnetic tape errors are reported in
a summary file.

Sample Conversion Program

59

The following sample input file contains six records. Arrows indicate the
field breaks.
ALBANI 50000DENSE 1859
CARLSBERG 2900HELLERUP 1847
CERES 8000AARHUS 1856
FAXE 4640FAKSE 1901
THOR 8000AARHUS 1910
TUBORG 2900HELLERUP 1847
t t t t

The records of the sample input file are processed with the following FCGEN
program.

V DKBREW
[lJ APLFILES BLOCKING 5
[2J '12345 SUMMARY' GETS SUMMARY
[3J '12345 DATA' GETS CHARDATA
[4J '12345 DATA' GETS NUMDATA
[5J F1:FIELD 'X(10)' ~ BYTES 1-10 NAME
[6J F2:FIELD 'S9(4)' ~ BYTES 11-14 CODE
[7J F3:FIELD 'X(10)' ~ BYTES 15-24 LOCATION
[8J F4:FIELD 'S9999' ~ BYTES 25-28 EST
[9J FILLER 'xx' ~ fOGICAL RECORD fENGTH IS 30

V

The program creates three files: a summary file to report the outcome of
the conversion and errors, if any; a file to collect character data; and a file to
collect numeric data. All four fields of all six records are converted.

60

Conclusion

Converting External Datasets into APL Files

FCGEN allows programmers to control the way in which external
datasets are converted into APL files. Many different data representations can
be converted into APL data using FCGEN. In addition, both APL and COBOL
programmers can easily write the conversion programs using simple FCGEN
notation.

Notes

1. C. Kranish, STSC Working Memorandum No. 127, FCGEN-File Conver
sion Generator, (STSC, 1978).

2. L. Gilman and A. J. Rose, APL: An Interactive Approach, (Wiley, 1976).

Clif Kranishjoined STSC as an operator/programmer and is currently a senior
programmer in the company's Technical Support Group. He participated in the
design and development of STSC's Source Level Transfer System, which
provides a means for transferring a workspace from one APL system to another.
He also participated in the implementation of STSC's File Conversion Genera
tor (FCGEN) and authored Working Memorandum No. 127, FCGEN-File
Conversion Generator (STSC, 1978).

Kranish currently provides support for programs written in PL/1, COBOL, and
370 Assembler, as well as APL. He has taught introductory AP L courses for
STSC personnel and customers and currently teaches introductory pro
gramming at George Washington University.

Kranish has a B.S. in systems and information science from Syracuse Universi
ty and is currently pursuing a master's degree in computer science at George
Washington University.

John A. Estep, Richard C. Geden,
Jack S. Reynolds, and Howard M. Sternlieb

A Fully Automated Interface between
Systems In Boston and Bethesda

This paper describes the evolution and implementation of a fully auto
mated interface that transfers data from the Gillette Safety Razor Division in
Boston, Massachusetts, to STSC in Bethesda, Maryland. The interface runs
weekly and requires no involvement from a user at a time sharing terminal.

The Safety Razor Division (SRD) at Gillette has implemented a manufac
turing resource planning system that runs on STSC's APL *P L US Time
Sharing Service and that is based on STSC's Comprehensive Manufacturing
Control System, CMCS" (see notes 1 and 2). Before this implementation, some
of the inventory balance information required by CMCS was already being
maintained by a Purchasing and Material Reporting System running on
Gillette's inhouse IBM System/370, Model 158 computer. Gillette and STSC
personnel developed-in stages-an interface that now automatically trans
fers status of open purchase orders and raw material inventory from Gillette's
system to STSC's system.

Interface Specifications

When the interface specifications were developed two years ago, the
CMCS installation was in its early stages. Contributing to the specifications
were STSC representatives, SRD's Manufacturing Systems and Production
and Material Control Departments, and Gillette's Management Information
Systems (MIS) Department. An interface of this kind had not been previously
attempted at Gillette, and its development had to be coordinated with the
CMCS installation. Consequently, it was important to involve both users and
systems personnel.

The group defined the following steps (similar in concept to manufactur
ing process routings) through which each purchasing transaction was to
progress:

1. Issue purchase requisition.

2. Issue purchase order.

3. Receive material.

4. Inspect material.

5. Dispose of rejected material and post accepted material to stock.

The users selected a pilot group of parts, monitoring their progress step by
step using the CMCS worksheet facility and manually posting information
from the inhouse system to CMCS. This simulation identified conceptually the
tasks that the interface would be required to perform. It also helped the users

61

62 A Fully Automated Interface

develop their own procedures, giving them confidence in their ability to use
the system to accomplish their tasks. The group determined that the informa
tion should be passed weekly from Gillette's system to CMCS.

Gillette's MIS and Manufacturing Systems Departments then developed
two programs---one for each end-incorporating the lessons learned from the
simulation. On Gillette's end, the program created two files containing
purchase order progress and material status transactions. On STSC's end, the
program validated the transactions and used them to update the CMCS
database. Activity transactions (rather than a snapshot of status) were used in
the initial implementation because the information could be captured easily
and required only minor changes to Gillette's existing systems. This approach
did require, however, some duplication of the Purchasing and Material
Reporting System's logic at STSC's end. With AP L, this task was accomplished
with little difficulty.

Transmission

With the programs in place, the only task remaining was to actually move
the data. At first the data was written to tape and physically carried to STSC.
However, the resulting two-day turnaround did not meet Gillette's timing
requirements. To save time, Howard Sternlieb of SRD's Manufacturing Sys
tems Department introduced a Hewlett Packard 7260 table-top card reader.
The information was punched on cards, read into the card reader (which was
connected to an ordinary time sharing terminal), and transmitted to STSC
over the telephone lines at 300 baud and later at 1200 baud. This cut down the
cycle time considerably-from two days to as little as two hours. Unfortunate
ly, the card system was susceptible to line noise and card jamming, so it was
necessary for someone to "babysit" the terminal. Sometimes the job took as
long as half a day.

The next improvement came with the elimination of the card reader and
the direct transfer of data from a disk file on Gillette's system to a disk file at
STSC. This was accomplished using two facilities:

• STSC's High-Speed Data Terminal Service (HSDTS), which moves
data at high speed (2400 or 4800 baud) in either direction between
STSC and a HASP terminal (see note 3).

• The HASP Remote Workstation (HRWS) program. (HRWS, which
was originally the IBM program HASP.RMI360, was extensively
modified by the University ofIowa and has been further modified
by STSC).

HRWS is run as an ordinary batch job on Gillette's system, but it copies
the two files from disk to the computer's communications interface, which the
operator has connected (by dialing) to STSC. HRWS makes Gillette's computer
appear to be a HASP terminal to STSC's system. HRWS and HSDTS reduced
turnaround time for the transmission to approximately 12 minutes.

Complete Automation

Once the transmission time was reduced to an acceptable level, we turned
our attention to STSC's interface program, which verifies the data received
and updates the CMCS database. The program was interactive, requiring a
user to sign on, run it, and answer a lengthy series of questions. This process
was inconvenient, since it meant that the one person responsible had to sign on
every Monday by 7:30 AM (the file transmission took place on Saturday) to
complete the database update before other users arrived. Since the data was
coming from a file-not from the operator-the answers to the questions were
invariably the same every week. This was a good opportunity for automation

A Fully Automated Interface 63

using STSC's Deferred Execution System, a facility which allows the automat
ic scheduling of production jobs (see notes 4 and 5).

The goal for this part of the interface was to have the update performed
automatically each week. The job had to be completed by 7:30 AM every
Monday, and it had to be performed without user intervention. By running the
job as a "deferred task", we could not only free the user from the drudgery of
entering repetitive data, but we could also take advantage of the substantial
discount available to deferred jobs with batch priority.

Before automation of the CMCS update, the following procedure was
performed on a weekly basis:

1. Gillette's computer operations staff initiates HRWS, which trans
mits the data.

2. HASP updates the AP L files.

3. A Gillette user runs the interface program, which updates the
database and prints the reports.

4. The Gillete user "cleans up" and prepares for the next transmis
sion.

To complete file updates and generate reports by 7:30 AM on Monday, we
were having the data transmitted (step 1) sometime over the weekend. This
still left steps 3 and 4 in the above procedure as obvious candidates for
automation.

To automate these steps it was necessary to examine the procedure more
carefully and make some changes. First, it was necessary to insert a new step
between steps 2 and 3. This new step was to verify the completion of the
transmission and the creation of the APL files (i.e., to verify the successful
completion of steps 1 and 2). In fact, this verification was already being
performed. It was, however, a simple check at the beginning of the interface
(step 3). By automating the data transmission, we had introduced some
uncertainty into the procedure; that is, we could not know exactly when, over
the weekend, the transmission would be performed. Consequently, the verifi
cation step became a more important part of the procedure.

The second change in the procedure was to separate (in step 3) the
generation of the reports from the printing of the reports. We decided not to
automate the final printing of the reports; instead this task was left for the end
user to complete on Monday morning.

With these changes implemented, the procedure looked as follows:

1. Gillette's computer operations staff initiates HRWS, which trans-
mits the data.

2. HASP updates the AP L files.

3. A deferred task verifies the successful completion of steps 1 and 2.

4. The deferred task runs the interface program, which updates the
database and generates the reports.

5. The deferred task "cleans up" and prepares for the next transmis
sion.

6. A Gillette user prints the reports.

Now, with the additional automation of steps 3 through 5, all file updates
and report generations are performed before Monday morning. The only
exception to this is on rare occasions when the data transmission fails over the
weekend, or when there is some system problem that prevents steps 3 through
5 from being run as scheduled.

The automation of steps 3 through 5 in this procedure was accomplished
using STSC's Deferred Execution System. This system allows users to request

64 A Fully Automated Interface

that APL programs be run at some future time. A key feature of the system is
that submission and monitoring of the deferred jobs is accomplished with APL
programs. This makes it possible for one deferred job to submit additional
deferred execution requests. In this way, ajob that is to run on a regular basis
(weekly, in the case of our interface) can perpetuate itself indefinitely into the
future without any involvement from the end user.

A secondary goal of the automation was to take advantage of the lower
CRU (Computer Resource Unit) rates offered for deferred overnight process
ing. This presented a problem because the lower rates apply only if the job is
run with a batch priority class. This means that the actual scheduling of the
job is left up to the Deferred Execution System. Uncertainty regarding when
the deferred task would run, together with uncertainty regarding when the
data would be transmitted, presented the only complication in automating the
interface.

We resolved our problem by scheduling two overnight jobs each weekend.
One job runs on Saturday night and performs the interface if, in fact, the data
was transmitted on Saturday. The other job runs on Sunday night and does
nothing if the interface was successfully completed on Saturday. If, however,
the data was not transmitted until Sunday, the Sunday night job performs the
interface.

At first glance, it might seem easier to have just one job on Sunday
perform the interface. With this approach, you would not have to worry about
when the data was actually transmitted. Indeed, this approach was considered
and rejected because of the possibility of a system problem occurring on
Sunday that would prohibit the interface from successfully running. The "two
job" approach was selected because it gives the system two nights to complete
the interface, and therefore increases the probability of its being successfully
completed by Monday morning.

Once the two-job approach was selected, the only task that remained was
establishing conventions for each job so that it could communicate its progress
to other jobs and to the end user on Monday morning. With these conventions
established, the weekly procedure was quickly and easily automated.

The Future

The last step in the automation of Gillette's interface is to convert from
processing purchase transactions to transferring a snapshot of the entire file.
The transaction approach currently being used has two principal disadvan
tages: (1) the logic is complex and expensive to maintain, and (2) recovery from
failures is hampered by the lack of a clean restart point. Snapshot logic is
simple and recovery from failures is accomplished by merely rerunning the
job.

The transaction approach can be more suitable than the snapshot ap
proach when the volume of data involved is significantly less using the
transaction approach. For Gillette, the amount of data is the same using either
approach. The switch to the snapshot approach did, however, require writing a
new interface program at each end, but the logic has proved so simple that the
task was accomplished in less than three days. At this writing, final testing is
in progress.

Conclusion

Interface development is a combined systems and user effort. Specifica
tions must be clear and represent a consensus; results must be closely
monitored.

A Fully Automated Interface 65

During each stage of development at Gillette, the interface continued to
provide vital inventory status information to CMCS so that planning could
proceed. Gillette's interface has evolved in the direction of maximizing the use
of computer system capabilities and reducing clerical involvement. At the
same time, each improvement in the interface has reduced both the time to
transfer the information and the cost of operating the interface.

An important side benefit of the interface effort at Gillette is the
relationships established between Gillette's users and systems personnel and
STSC's representatives. These relationships not only aided the interface effort,
but have also proved invaluable in other work undertaken by these groups.

Notes

1. R. G. Brown, Materials Management Systems: A Modular Library, (Wiley,
1977).

2. Comprehensive Manufacturing Control System User's Guide, (STSC, 1978).

3. J. J. Prats, Working Memorandum No. 104, High-Speed Data Terminal
User's Guide, (STSC, 1978).

4. J. G. Wheeler, Deferred Execution Reference Manual, (STSC, 1979).

5. J. G. Wheeler, Deferred Execution User's Guide, (STSC, 1979).

John Estep joined STSC in 1977 and is currently a materials management
consultant, responsible for the sale, customization, installation, and support of
systems for finished goods management, production and capacity planning, and
production control. Prior to coming to STSC, he worked in operations research
and systems design for the Talon Division of Textron and for the Connecticut
General and Massachusetts Mutual life insurance companies.

Estep holds a B.S. in mathematics from Allegheny College and an M.S. in
electrical and computer engineering from the University of Massachusetts,
where he is currently a candidate for a Ph.D.

Dick Geden has worked with the Gillette Company for over 11 years. He
previously managed the Blade Dispenser Loading Department and Machine
Shop Planning Department, and was the project manager for MRP (Material
Requirements Planning) development. Currently he is manager of manufactur
ing systems.

Geden holds a B.S.B.A. degree from Boston College and an M.B.A. from Babson
College. He is a certified practitioner of APICS, the American Production and
Inventory Control Society.

Jack Reynolds is currently an applications consultant manager in STSC's
Boston office. Before joining STSC, he was with IBM where he learned AP L
and developed expertise in a variety of database design and data storage and
retrieval techniques. Recently he completed installation of a portfolio manage
ment package for an insurance company, and he is currently directing develop
ment ofan inventory cost accounting system for a national manufacturing firm.

Reynolds holds a B.A. in mathematics from Dartmouth College.

66 A Fully Automated Interface

Howard Sternlieb is currently a technical coordinator in the manufacturing
systems department of Gillette Company's Safety Razor Division. He has
responsibility for all technical aspects of computing, including programming,
hardware selection, user support, and inhouse education. Sternlieb joined
Gillette in 1974. He previously worked as manager of sales support with Wang
Laboratories, and as a senior materials analyst at Honeywell.

Sternlieb earned his B.S.B.A. from Northeastern University and his M.B.A. in
computer science from Boston College. He is on the staff of the Computer
Information Systems Department at Bentley College.

Robert E. Cook

Making the Inhouse Decision:
Some Considerations

As the popularity of AP L grows, more APL users are looking beyond the
traditional APL time sharing vendors for alternative ways of getting the
computer power they need. Because of the dramatic decline in the per function
cost of computer hardware over the past ten years, large users question the
variable costs of commercial time sharing. They search for ways to lower and
bound costs for APL and other time sharing usage.

To objectively evaluate the alternatives to commercial APL time sharing,
more than hardware costs must be examined. A full understanding of the time
sharing vendor's environment must be reached, as well as a reasonable
understanding of the hardware and system software environments. Making a
decision to move a series of APL systems from commercial time sharing to an
inhouse processing environment, without detailed investigation of these vari
ous environments, is a disservice not only to the APL user, but also to the
general management of the user's enterprise.

The scope of this discussion does not permit a detailed investigation of the
relative merits and drawbacks of commercial APL time sharing versus an
inhouse processing environment. Rather, a "road map" to and "background
briefing" for this kind of investigation will be provided from the perspective of
the APL time sharing vendor. A brief discussion of the vendor environment,
the hardware environment, and the software environment will be provided,
together with observations concerning the trends in technology and pricing
that should be considered when evaluating the long-term implications of
alternative means of delivering APL computer power.

When an analyst evaluates the environment of an APL time sharing
vendor, he usually assumes that the vendor is fully aware of technological
trends and will act in his own best interests to ensure the continued viability of
his particular approach to business. The continued trend toward reduced
hardware cost per computing function, when viewed on a relative CPU cycle
cost basis, makes the inhouse time sharing environment quite attractive.
However, the time sharing vendor provides much more than a CPU service; in
fact, CPU power is a relatively minor portion (less than 10 percent for STSC) of
the cost. Although most commercial APL vendors find it convenient to charge
customers in terms of CPU (or "CRU") usage, services such as "free" customer
training and "free" telephone customer assistance are bundled into the
seemingly simple charges. The analyst must consider the impact of removing
these "free" services from the user environment.

When pricing an inhouse APL service, the analyst must also consider the
disruption caused by removal of ancillary software services; ancillary software

67

68 Making the Inhouse Decision: Some Considerations

is seldom provided in a readily installed form by the hardware vendor. Prime
examples of this are the administrative or "housekeeping" software that
provide services such as file backups, accounting and billing, sorting and
merging, and high-volume printing. These functions are of critical importance
to only a small subset of the total user population and, therefore, might be
easily overlooked in an evaluation.

Additionally, AP L language enhancements and proprietary application
software-the most important assets of an APL time sharing vendor-are
often woven into many of the user's own application programs. This transpar
ent, proprietary software is usually designed to enhance the already high
productivity of APL programmers and, for that reason, is of great value to
users. The cost of losing this proprietary software must also be factored into
the ultimate investment decision.

The hardware environment, of the costs to be discussed, is probably the
least complex. Hardware prices will continue to plunge. Not only will prices
for CPU power drop, but relative prices for all kinds of storage will also drop.
Again, one must assume that the hardware vendors will act in their own best
interests and protect the viability of their enterprises.

If hardware prices are to continue their downward trend, and if the costs
of hardware manufacturers are to remain relatively constant, where will the
manufacturers get their profit margin? At least some of the margin will come
from economies of scale based on increased sales volume. Before long, however,
competition for market share will drive high-volume hardware prices down,
again squeezing the profit margins of the hardware vendor.

One method available to assist the hardware vendor in addressing this
quandary is a substantial increase in the use of microcode or firmware to
implement application and system software. The use of proprietary microcode
both improves system performance and allows the hardware vendor to
establish a proprietary edge that permits reestablishment of high-margin
pricing.

A careful investigation of the true long-term costs of an inhouse hard
ware/software alternative to commercial AP L time sharing must include a
recognition of the trends established by the hardware vendors toward "unbun
dled", or individual, pricing of all proprietary system and application software.
This unbundling implies a dramatic increase in the price of software vended by
the manufacturer. A Computerworld article (Lundell, "Software for IBM 4300
May Cost More than Hardware", Computerworld, 30 April 1979) documented
that software charges from IBM could exceed hardware charges for an IBM
4300-series computer over the life of the system. This trend, and the costs
associated with it, must be recognized by the time sharing user community in
investment analyses.

The single most important consideration in evaluating alternative means
of delivering AP L computing power is software-both system software and
APL-related software. Proprietary application software may also have rele
vance to this decision.

With regard to software, response time is a major consideration. It is
impossible, or at least unrealistic, to plan on maintaining a "happy" AP L user
community with terminal response time of more than two seconds for a trivial
terminal command. This is an extremely important consideration, since users
will reject an otherwise robust and well-rounded APL system if the terminal
response time is unacceptably high.

The competition of an inhouse AP L system is usually the commercial time
sharing system that preceded it; users measure the new system accordingly. At
STSC, for example, a 0.5-second response time is the standard at which the
acceptability ofterminal response is measured. A two-second response time-a

Making the Inhouse Decision: Some Considerations 69

400 percent degradation from STSC's standard-appears to be a reasonable
measure of the tolerance of the AP L user community in an inhouse AP L
environment.

A primary question, then, must be "What operating system or system
control program (SCP) is best suited for delivering acceptable response time in
an interactive terminal environment?" After a full calendar year of testing,
STSC concluded that IBM's VM/370 SCP is the best available choice. VM/370
(or its unbundled successor) is a superior interactive time sharing system with
terminal response time in the two-second range. Moreover, it is adequate for
an ancillary, low-volume batch workload. IBM OS/VS2 (MVS) was also
carefully evaluated and then rejected as an APL processor. In the opinion of
STSC, MVS is a superior system for batch processing and an adequate system
for an ancillary, low-volume interactive time sharing workload (if five-second
terminal response time is acceptable to the user community).

It is important that a fully supported SCP be used rather than a heavily
modified, unsupported operating system such as DOS. The trends toward
firmware and microcode options mentioned earlier necessitate a system
approach that will allow the user to take advantage of at least some of the
relative economies offered by the hardware vendors' microcode, without
impacting the system's ability to process the APL workload.

In summary, weighing the relative benefits of an inhouse decision re
quires thorough investigation, especially of the less obvious aspects of provid
ing APL processing facilities. Too often, decisions are based on insufficient
data and fail to recognize the true costs associated with them. Complete, in
depth analysis, careful planning, and superior plan execution are critical to
the successful conversion of the user community to the alternative system.

Bob Cook joined STSC in 1977 as director of corporate planning and has been
vice president of market development since April 1978. His current responsibili
ties include project management for STSC's inhouse AP L systems marketed for
use on IBM-compatible hardware. Cook previously held management positions
with Basic Four Corporation, Boeing Computer Services, and U.S. Time
Sharing, Inc.

Cook earned a B.S. in mathematics from Indiana University of Pennsylvania
and an M.S. in business administration from George Washington University.

Michael F. C. Crick

Variations in API Flat Major

This paper is a personal survey of the interesting features found in APL
systems produced by IBM and other mainframe manufacturers such as
Control Data Corporation (CDC) and Burroughs. It is intended to give the
audience a general view of what is going on outside the cozy environment of
STSC's APL*PLUS System.

Overview

Most users work with one or perhaps two different APL implementations
and, thus, rarely have the opportunity to see a large variety of APL systems.
As an independent consultant, I am in the position of working with one version
of APL one week and a different version the next. I would like to share with
you some of my personal observations.

In the short space allotted it is clearly not practical to provide a detailed
comparison of all available versions of APL-nor would such a comparison be
very interesting. What I have attempted to do here is discuss a selected set of
APL systems and to present only those details that to me seemed interesting
and memorable. I shall thus discuss in turn APLSV, VS APL, APLUM
(CDC), APL / 7 0 0 (Burroughs), APLSF (DEC), and Harris APL all in relation
to STSC's APL*PLUS System (see note 1).

Is IBM Drowning in Its Own Alphabet Soup?

IBM has two major APL systems at this time: APLSV (APL Shared
Variables) and VS APL (Virtual Systems APL). APLSV is a descendant of
the famous XM-6 version from which the STSC implementations of the
APL *P L US System are derived. VS APL is IBM's official Program Prod
uct. It is much cleaner internally since it was written from scratch, whereas
APLS V evolved from a series of earlier implementations. VS APL relies on
its host system to provide many services such as swapping and terminal
support, whereas APLSV provides its own. The new version of the
APL *P L US System running under VM is an extension of VS APL. The
APL on the 5110 and 5120 is a direct crib of APLSV.

Current IBM implementations are mainly notable for what they do not
have. There is no support for the diamond statement separator (0), for error
trapping, or for anything corresponding to Automatic Control of Execution
(ACE), a proprietary product of STSC that provides the system facilities
necessary to run production programs automatically without a user signed on

70

Variations in APL Flat Major 71

at a terminal. Additionally, the file systems offered by IBM are very hard to
use and have significantly fewer capabilities than those offered by STSC.

At present, IBM is suffering a severe case of schizophrenia about APL.
The idea evolved early in the development of APL that it was a "scientific
language"-a fact reflected in STSC's original name, "Scientific Time Sharing
Corporation". Since APL was designed as an extension of mathematics, that
assumption was not unreasonable. Yet, everyone who has contact with the real
commercial world knows that APL has in practice triumphed as a commercial
language. IBM's persistence of the vision of APL as a scientific or engineering
language only shows how far IBM is out of touch with reality.

The illusion of schizophrenia is further fostered by the fact that IBM has,
at this writing, both two APLs and two groups working on APL-the research
group at Watson Research Center in Yorktown Heights, New York, and the
development group in San Jose, California.

IBM is developing an interesting research version of APL at Yorktown
Heights that supports operators, non-simple and homogenous arrays, and
many other major new features (see note 2). What the development group is
doing is not known. Whether IBM can get its act together and produce a single
new APL that reflects the reality of user requirements remains to be seen.

Contrast at Control Data

The first versions of APL distributed by CDC were total disasters. An
unofficial version written by Jim Burrill and Clark Weidmann at the Universi
ty of Massachusetts (APLUM) moved in to fill the void. CDC now recognizes
APLUM as the official CDC APL and has sole rights to distribute the product.
The University of Massachusetts has complete control of development.

CDC APL operates under a handicap---Control Data machines are scien
tific machines and not commercial machines. CDC machines are poor at
manipulating bit and character data, and their operating system is not
designed for major file-sharing applications.

We all know the sort of person who is "handicapped" by being very short
(or very tam, or by being from a foreign country. A person with such a
handicap usually responds by trying harder and being more adaptable. That is
how I would characterize APLUM. The implementers, as outsiders, were
always insecure. They had to do a better job despite the limitations of the
hardware and software they had.

The result is an APL that is everywhere characterized by what I think of
as "good" design. Their innovations are always extremely clean and logical,
and they have managed to avoid perpetuating many of the strange features of
APL that have been supported over the years almost as acts of faith.

For example, why are certain APL operations such as) COP Y only
permitted as manual operations? In the days of Automatic Control of Execu
tion, this makes no sense. Some vendors have bypassed this limitation by
allowing the execute primitive (.t) to operate on system commands or by
sharing a variable with the input stack. APLUM has done it right. It uses
DLOAD, DCOPY and the whole implementation is "clean". Other APLs should
copy this approach.

Why does every major APL lack a decent context editor? Context editors
are usually to be found as functions or perhaps as part of the host system.
APL UM has integrated the context editor into the standard APL editor. Again
the implementation is simple and clean. Another feature other APLs should
copy.

Why do most AP Ls force you to preallocate space for symbols and the
stack, not to mention the shared variable processor or the user workspace?

72 Variations in APL Flat Major

APL{fM has one pool that is allocated automatically as needs dictate. If the
pool runs out, the system asks the host for a bigger swap area in which to run
itself-all performed automatically with no user intervention. This is a design
standard that other AP Ls should emulate where possible.

APL{fM has an extremely simple form of error trapping and its batch
support is reasonably good. Its main defects are the curious and idiosyncratic
file system and the lack of support for the diamond statement separator. It is
very fast for floating-point operations, but can take forever to perform such
character operations as catenating two character arrays.

Overall, the group at the University of Massachusetts has done a superb
job. Despite the unsuitability of the host machine and the operating system,
and despite their lack of clout as a group external to CDC, they have produced
an excellent APL. Their current direction is toward developing an APL
compiler to let APL compete with FORTRAN and perhaps ultimately be
accepted by engineers.

Burroughs and APL / 700

Burroughs APL is another non-IBM APL that is worth considering in
some detail. It is a "liberal", user-friendly APL that owes much of its character
to Jim Ryan. It has numerous minor but useful extensions-many of which
deserve to become a permanent part of the language.

For example, APL / 700 supports set operations. These are perhaps more
useful than one might suspect. The most common use is to eliminate duplicates
from a set of numbers thus:

(10) U ARRAY

It would seem logical to define a monadic form of union (unique?) to eliminate
the need for the lOon the left.

APL / 7 00 has introduced the use of assignment as an operator, taking
any scalar dyadic function as its left argument. For example:

I+.... 1 (Meaning 11 + 1.)

This feature comes into its own when the variable being incremented has a
large and complex subscript. Curiously, catenate is not allowed with this
construction-one might have thought that would be the most useful case.

APL / 7 0 0 has extended transpose (to turn vectors into column matrices)
and reshape (to operate on empty vectors). The axis operator has also been
extended to operate on scalar dyadic functions thus:

(2 3p112)+[1] 10 20 30
11 22 33
14 25 35

This eliminates the need for a lot of wasteful reshaping and should be used
more widely.

APL / 700 offers reasonable support for ASCII terminals using a visually
pleasing character substitution approach. On an ASCII terminal one can
enter:

X<IS>3 4<RHO><IOTA>12

There are also a number of useful extensions to tracing and editing that
are not described easily, but are very useful. The file system uses special
symbols such as 8 and El. There are some new goodies like "pop", "map", and
compress. The file system is generally like that of STSC's APL *P L {fS System,

Variations in APL Flat Major 73

differing only in detail. For example, files are accessed by name rather than by
tie number, and security is handled by the host rather than by access matrices.
APL / 700 does not support the diamond statement separator and generally
shows up poorly when benchmarked. This is partly compensated for by the fact
that Burroughs machines can support a large number of central processors on
one system.

In 1977 Jim Ryan went to work at Data Resources, Inc., but he is now back
at Burroughs working on SYBIL-a new language derived from APL which
uses words instead of special characters. The new language will have an
extended notion of workspaces known as namespaces. Meanwhile, APL / 700
is fully supported by a separate group at Burroughs.

Diversity at DEC

If AP L /700 bears the stamp of Jim Ryan, DEC's APLSF bears the stamp
of Alan Perlis. As developed by the group at Carnegie-Mellon University in the
early seventies, DEC APL was ahead of its time. Now that the rest of the world
has caught up, DEC APL has been forced to do a certain amount of back
tracking to become consistent with everyone else. There are, for example,
three format functions in the language-the official IBM "thumbtack" (l"), a
version of DFMT (using the symbol $), and the pioneering monadic encode (T)
that will now probably be phased out.

For the same reasons, execute may be performed by E, .l, or .t. Not only
may one execute system functions, but one may also execute a character
matrix. This brings APL closer to LISP, where data and functions are all the
same thing.

My favorite extension is the omega function, which performs a "where"
operation as shown below:

wB B /1 pB

w 1 0 1 101
1 3 1+ 6

This is particularly useful when B is a complex expression. I gather that this
primitive is being phased out to allow for future inclusion of alpha and omega
as defined by Kenneth Iverson.

APLSF has an elaborate file system that uses special symbols, system
functions, and system variables-powerful but messy. There is no support for
the diamond statement separator. As a whole, DEC APL illuminates the
pitfalls one faces for being too liberal. It must have been infuriating as well as
gratifying to those at Carnegie-Mellon to see IBM use many of their ideas in
slightly modified form.

Another DEC innovation is to provide two levels of AP L at different
prices. The inexpensive beginners version lacks certain enhancements, nota
bly the file system. A major disadvantage of AP L compared with other major
languages is that it comes in only one size. Nobody selling shoes or houses of
only one size would stay in business, but in the case of AP L the general policy
has always been all or nothing. The market for a small, carefully chosen subset
of AP L has not been properly served.

We must commend DEC for its pioneering efforts to expand the language.
Just as the first platoon out of the trenches suffers the heaviest casualties,
DEC has had to pay the penalty for being first.

Doing It Straight at Harris

If AP LSF is liberal, the new Harris AP L is conservative. One is reminded
of the eager new member of the club whose dress is always a little too correct

74 Variations in APL Flat Major

and who can be relied upon never to raise an eyebrow. Such an attitude
probably befits a newcomer-only the old guard can break new ground and get
away with it.

The new Harris APL is quite impressive. Its file system is very close to
that of STSC's APL*P L US System, as is its support for error trapping. It
supports batch processing, and shared variable support is imminent.

The only real differences are the use of OST and OTR for stop and trace,
and a variant definition for the diamond symbol. On Harris APL, if three
statements are placed on a line, the next line gets the line number plus three
rather than the next sequential number, as on the APL *P L US System. Thus,
diamond can be considered as an instruction to the function display module
rather than as a piece of punctuation. One cannot write:

+NEXTL IF B>5 ¢ 'B IS TOO SMALL' ¢ +E5

This, and the fact that Harris APL does not support OFMT, would appear to
make conversion from STSC's APL *P L US System to Harris APL infeasible
for major applications, despite the correspondence of most other features.
Conversion from Harris APL to STSC's system, on the other hand, is likely to
be particularly easy.

Harris APL is fast-impressively so according to their benchmarks. One
should be aware that this speed is achieved in part by doing all numeric
operations in floating point, with 39 bits (11 decimal places) of precision. This
makes Harris APL unsuitable for financial applications requiring precision to
the penny for large dollar amounts.

...And What About the APL*PLUS System?

Since this presentation was prepared at the request of STSC, I have
assumed, possibly incorrectly, that all readers are familiar with the
APL*P L US System. The discussion has been largely in terms of how other
APL systems compare to the APL*PLUS System. This is because the
APL*PLUS System is a recognized leader in theAP L community; what STSC
does, others copy.

There are many new developments in APL, and STSC is a major force in
initiating them. Since I write this paper without being privy to what STSC is
going to unveil at its April 1980 conference, to talk at length about the unique
features of the APL*P L US System would be to talk about those features that
others have not yet copied. Much work is going on in areas like relations,
support for systems on different hardware, systems software, and generalized
arrays. Other presentations in this book (e.g., "Nested Arrays: The Tool for the
Future") address these subjects in detail.

Notes

1. The latest manuals for the APL systems discussed are properly obtained
by contacting the local sales office of the company involved.

2. J. A. Brown, "Evaluating Extensions to APL", APL79 Conference Proceed
ings and APL Quote Quad, Vol. 9, No.4, June 1979.

Michael Crick is an independent software consultant and financial advisor in
Seattle, Washington. His involvement with APL began while he was employed
by IBM, where he received an outstanding contribution award for his efforts in

Variations in APL Flat Major 75

the development ofAPL (CMS). Crick was also instrumental in the development
ofMA INSTREAM- APL at Boeing Computer Services and was branch manager
of the Seattle office of 1. P. Sharp Associates.

Crick holds both a B.Sc. and M.Sc. from the University of London.

Robert L. McGhee and James G. Wheeler

Travels in VM Land:
A Virtual APL Primer

Virtual adj. Existing or resulting in essence or effect
though not in actual fact, form, or name.

-American Heritage Dic
tionary.

Many of our readers will already know that VM stands for "Virtual
Machine", but far fewer will have a clear grasp of just what the term means to
them as APL users. Simply introducing the idea of a machine may worry some
APL users. STSC's APL*PLUS System running under OS/MVT has tradi
tionally isolated the user from the details of real machines, for APL naturally
tends to make the computer on which it is executing invisible to the user. A
programmer can work successfully on the APL *P L US System without think
ing about computers at all; instead, he can imagine that he has a magic
terminal that executes APL, and he can let things go at that.

There are many positive things to say about this isolation, in particular
the way it lets the programmer keep his thoughts on the conceptual, problem
solving plateau instead of worrying about physical hardware or the internals
of software. But this isolation also tends to limit the types of solutions that the
programmer can choose. Three of the biggest limitations are these:

1. APL programs cannot access data that is used by programs
written in other programming languages. Traditional APL pro
vides no means for an APL program to use the same data as a
program written, say, in FORTRAN.

2. This isolation from other languages also prevents APL users from
enjoying the use of software packages that are not written in APL
(and, all chauvinism aside, some of the best software around is
written in other languages).

3. A less awesome limitation, but still an irksome one, is that APL
traditionally has a fixed workspace size. This severely limits the
size of the data objects that can be used by an APL program and
often requires that applications be divided into multiple work
spaces.

Using STSC's APL *P L US VM System, an AP L programmer can conquer
all of these limitations and still enjoy the full problem-solving power of APL.
VM is, however, unfamiliar territory to most AP L users and the bookcase full
of manuals on the subject may discourage the uninitiated, no matter how
much they may want to exploit the new capabilities VM offers.

76

Travels in VM Land: A Virtual APL Primer 77

The purpose of this paper is to present the basic concepts involved in using
VM. Because of the size of the subject, we will not try to present even the
minimum knowledge needed to be a successful VM user. Instead, we will try to
convey the basic ideas needed for a user to feel at home learning about VM and
understanding it intuitively. We will present three different views of VM:

1. The virtual machine perspective. This is the "hardware" point of
view. Since VM simulates a private computing center for each
user, this perspective is essential to understanding the capabili
ties of the virtual machine.

2. The software perspective. Working in VM means moving into and
out of the APL environment. This perspective is important in
understanding the relationships among the various software en
vironments of the VM system.

3. The APL user's perspective. Our interest in VM is due primarily to
the way it complements and extends the power of APL. We will
use a case study of transferring an APL workspace to VM to show
just how valuable these new capabilities can be.

The Virtual Machine Perspective

The central idea behind VM, indeed the one that gives it its name, is the
virtual machine. VM/370 simulates a complete, private computing center for
each time sharing user. Simply by signing on to VM (a process known as
"logging on"), you can in effect obtain the exclusive use of hundreds of
thousands of dollars worth of computer equipment. Of course, it's almost all
virtual hardware, which means that it will not perform as briskly in real time
as actual equipment. But since APL users are quite accustomed to doing
without real-time capability, no significant sacrifice is involved. In fact,
considering that one real computer is giving each of its many users the illusion
of having a personal computer, the performance is really quite good.

Each user's virtual machine is configured at log-on to a predetermined
initial configuration. A typical VM user at STSC might be given the following
virtual hardware at log-on:

• An IBM 370-series mainframe (CPU) with 512 kilobytes of main
storage.

• An "operator's console", which is simply the terminal that the
user is using.

• A virtual line printer (known to most APL users as a "high-speed
printer").

• A virtual card reader (AP Lers who gasp at this idea should catch
their breaths before reading the next item).

• A virtual card punch (how else would we produce virtual card
decks for the virtual card reader?)

• Three virtual disk drives, otherwise known as Direct-Access
Storage Devices, or DASDs.

This virtual hardware can be put to a number of good uses, giving the user
the following capabilities and more:

• Printing files by spooling them to the virtual line printer, in a
manner similar to that provided by the Fileprint Facility on
STSC's OS/MVT system. The files are printed on real paper by a
real high-speed printer shortly after the spooling operation is
"closed".

• Transmitting files to other virtual machines (Le., other VM users)
by punching virtual card decks for them. In reality, the "cards"

78 Travels in VM Land: A Virtual APL Primer

are records in system spool files that magically appear in the
"input hopper" of the other user's virtual card reader.

• Reading virtual card decks from the virtual card reader, complet
ing the transfer of files between virtual machines. Virtual card
decks are not the only means by which data can be transferred
from one virtual machine to another, but they are useful for
sending a file to another user when that user is not signed on.

• Reading from and writing to files residing on virtual disk drives.
These disks may belong to the user's virtual machine or may be
shared by other users.

• Disconnecting the console (i.e., the terminal), leaving the virtual
machine running; this provides a facility comparable to the
Detached Execution Facility available on STSC's OS/MVT sys
tem.

In VM jargon, a virtual disk drive is referred to as a minidisk. This term
reinforces the concept that minidisks are in fact portions of real disks
dedicated to specific users. The term "virtual disk" is discouraged because,
unlike virtual main storage, the amount of permanent storage available on
minidisks cannot be altered by the user.

The three disks typically available to the user at log-on are

• The user's private minidisk, called the A disk.

• A system minidisk, called the S disk, containing system software.

• Another system minidisk, called the Y disk, containing system
and application software.

The A disk contains the user's private files and the user is permitted to
both read from and write to this disk. The A disk is analogous to an AP L user's
private library. In fact, the user's private saved workspaces are presently
stored on this disk.

The S disk and Y disk are analogous to public libraries in an APL system.
Both are read-only disks in that the user can read files from the disk but not
modify the files. All virtual machines have access to these disks. The Sand Y
disks contain such things as the AP L interpreter, the FORTRAN compiler,
and applications like SCRIPT (a text formatter developed by the Department
of Computer Services at the University of Waterloo), BMDP (Biomedical
Computer Programs, P-Series), and SPSS" (Statistical Package for the Social
Sciences).

Each minidisk contains a number of files. Unlike APL, where files store
only APL data values, these files are of many different types and are used for
widely varying purposes. Some files contain data, and a wide variety of
different data formats are possible. Other files contain compiled programs that
can be invoked by using the file name as a command. Still other files, called
EXECs, are programs made up of sequences of VM system commands.

The user's virtual hardware configuration can be selectively modified as
needs for resources change. For example, the typical virtual machine that we
have discussed is illustrated in Figure 1. The size of the user's AP L workspace
is directly related to the amount of main storage in his virtual machine. If this
user finds he does not have a big enough workspace, he can increase the
amount of main storage to, say, two megabytes. If he needs a large amount of
temporary file space, he can create a new virtual disk drive (this file space is
lost at sign-om. If he needs a tape drive to read from or write to a tape, he can
have a real tape drive attached to his virtual machine. After performing these
actions, the same virtual machine would have the configuration shown in
Figure 2.

Travels in VM Land: A Virtual APL Primer 79

I
A DISK S DISK Y DISK

LINE PRINTER

/

CPU WITH 512 KILOBYTES
OF MAIN STORAGE

j----------i

OPERATOR'S CONSOLE

/

Figure I-Typical Default Virtual Machine

CPU WITH 2 MEGABYTES
OF MAIN STORAGE

" REAL TAPE DRIVE

I

I
TEMPORARY
DISK

Figure 2-Reconfigured Virtual Machine

Software Perspective

The VM/370 operating system is divided into two main components-the
Control Program (CP) and the Conversational Monitor System (CMS). CP's role
is management of the real hardware; system resources are distributed among
users so that each has the illusion of controlling a full-scale, private computer.
CMS is an operating system designed to give the time sharing user a friendly
and yet versatile way of working in the virtual machine created by CPo While
it is possible to run different operating systems under CP (including STSC's

80 Travels in VM Land: A Virtual APL Primer

OS/MVT system), CMS has been built specifically to run efficiently in a
virtual machine and to serve a single user at a single terminal.

CMS runs under the control of CP, providing interactive use of various
applications and language processors, notably the APL*P LUS System inter
preter. CMS processes commands entered from the terminal, including CMS
and CP commands. By using the proper tools, it is also possible to execute some
CP and CMS commands from within the APL environment.

This hierarchy of environments and the various routes between them can
be very confusing to the new VM user, particularly one who has previously
been accustomed to using AP L on a system that provides only APL computing.
To help the reader develop an intuitive sense of the hierarchy and relation
ships between the multiple environments, we'll use a spatial and architectural
model.

In this model, we'll imagine that a virtual machine is equivalent to a
house. The real computer can be considered a small community of many users,
each living in a private house (see Figure 3). The control program CP can then
be thought of as the main street in this community. Each user enters his
private house from the street and departs it by the same route.

USER 0

/

[8BJ B8

Figure 3-Main Street in VM Land

Logging on to the VM system is accomplished by communicating with CPo
The CP command LOGON is roughly equivalent to a request to "build me a
house". Each user has a set of master blueprints stored in a CP directory, and
CP constructs the user's default house according to these blueprints. As can be
seen from Figure 3, different users can have houses of different sizes and types.
If a user wants to change the size of his house, he must "move out" temporarily
while the old house is torn down and CP builds a new one.

The walls of the houses provide ample isolation and privacy for each user,
and each user's computing is done entirely within the boundaries of his own
house. Facilities exist for appropriate interaction between houses (virtual
machines); these will be described a little later. Communication and transfer of
data between houses requires mutual cooperation, however. One user cannot
invade someone else's house or impinge on his privacy without invitation.

Travels in VM Land: A Virtual APL Primer 81

Each user's private minidisk is something like a storage shed in the back
yard (see Figure 4). The user can put things in the shed and retrieve them at
will, and what he stores in the shed is his own business. Extending this
analogy, the system (S and Y) disks are more like department stores down the
street. The user can get merchandise (data from files) from the department
store, but most users never supply anything to the department store.

SYSTEM DISK

\ili·.o000 ~
DODO ij
o000 .

7
USER'S PRIVATE MINIDISK

\
~tE rnMi

/
READ/WRITE

PRIVATE DISK

Figure 4-Relationships of Private and System Disks

It is possible for one user to give another user a key to his storage shed by
setting a password on his private disk and supplying the other user with that
password. A read-only password gives other users the ability to retrieve things
from your private disk, which is something like allowing your neighbors to
borrow your lawnmower from your storage shed while insisting that they not
stash any of their own garden supplies there. A read/write password gives
neighbors permission to both store in and retrieve from your storage shed. The
storage-shed analog also holds in that one user can use another user's storage
shed, even when that user is not currently "at home" (signed on). Note that
once you've given someone a key, you cannot prevent him from giving the key
to others. You can, however, keep everyone out of your storage shed by
changing the padlock (password).

Giving out keys to storage sheds is only one of the ways that data can be
shared between houses. If you want to give a copy of a file to another user
without giving him a key to your storage shed, you can use the technique of
spool punching. This is like using a parcel service to send a package to someone
else's house. Using the CP command DISK DUMP, you give the "CP Delivery
Service" a "package" containing a copy of your file on virtual punched cards
(which are punched on your virtual card punch). As is customary with any
good parcel service, the CP Delivery Service does not deliver any packages
without the recipient's permission and only when the recipient is "at home".
Thus, spooling is a good way to transfer data to virtual machines that are not
currently signed on. When the recipient logs on, he is notified by CP that a
package is waiting. By executing the CP command DISK LOAD, the recipient
accepts delivery of the package and stores its contents in his own storage shed.
(From the hardware perspective, the user loads punched cards into a file using
his virtual card reader).

82 Travels in VM Land: A Virtual APL Primer

The other way of communicating between virtual machines is the Virtual
Machine Communication Facility (VMCF), which is more like a telephone
service. With VMCF, two virtual machines can have a conversation, sharing
data immediately. The advantage of VMCF is that the data is transferred at
once instead of waiting to be delivered. The disadvantage, as with the
telephone, is that the other user has to be at home to answer the phone. VMCF
cannot be used directly by CMS commands, but it can be built into application
packages. In fact, a facility exists whereby APL users can transfer data via
VMCF.

The boundary between the inside and the outside of the house neatly
defines the respective roles of CP and CMS. All of the transfer between houses
is handled by CPo The role of CMS is to manage the activity inside the house.
Figure 5 shows a view of the interior environment of a virtual machine. Within
the house, CMS is the main hallway. Leading off from the hall are separate
rooms, each of which is a distinct computing environment. The APL room is
the one that concerns us most, but there are also many other rooms, including
the BASIC room, the COBOL, FORTRAN, and PL/l compiler rooms, the SPSS
room, the BMDP room, and many others. In most cases, one enters one of these
rooms from CMS and can move to another room only by leaving the room and
walking down the hall to the other door.

/". -
/,/// "';::..::-~ ...-.............. _- ...

/

/

Figure 5---Inside the User's Computing Environment

Notice that the APL room in Figure 5 has no windows, only the door into
the CMS hallway. This implies that when one is within the APL environment,
one is isolated from CMS and the outside world of CP and the other virtual
machines. APL users do not always have to be isolated, however. At the time
that the user enters APL from CMS, he can specify the creation of a workroom
of a certain size within the APL environment. This workroom houses auxiliary
processors, which are programs that can interface AP L to the outside world.

Travels in VM Land: A Virtual APL Primer 83

There is a window between the auxiliary processor and the rest of the AP L
environment. Data and commands can be passed through this window to the
auxiliary processor. The auxiliary processor can then relay the data or
commands to the outside world through other windows. The window through
which APL communicates with the auxiliary processor is formally called a
shared-variable interface.

Several different auxiliary processors are available and each has different
capabilities. Some perform special-purpose computation on the data passed
from the APL environment and pass the results back through the window to
AP L. Other auxiliary processors, such as the one shown in Figure 6, have other
windows into the CMS hallway or even into the outside world. Using these
auxiliary processors, an APL user can execute many useful CMS and CP
commands, read from and write to files in the "storage shed", and so on. One
cannot, however, enter the FORTRAN compiler through an auxiliary proces
sor, because using the compiler requires leaving the APL environment. (It is
possible to automate the movement from APL to FORTRAN and back again
using an auxiliary processor.) One auxiliary processor even uses the VMCF to
permit conversation with another user in the APL room of another house.

INTERFACE WITH CMS
AUXILIARY PROCESSORS

CMS

------INTERFACE WITH CP

Figure 6---Auxiliary Processors Interface APL to Outside World

The APL User's Perspective

We will show the APL user's perspective on VM by demonstrating a
process that many users who begin working under VM will wish to perform
transferring a workspace from another AP L system onto STSC's APL *P L US
VM System. The process of producing a copy of a workspace from another AP L
system and transferring it to tape will not be described here; see Working
Memorandum No. 125, Source Level Transfer Using the Workspace In
terchange Standard (STSC, 1978) for details. We will assume that the tape has

84 Travels in VM Land: A Virtual APL Primer

been produced, delivered to the STSC Computing Center, and catalogued into
its tape library.

The demonstration begins at the point where we log on to VM to install
the transfer workspace. The first step is to dial the STSC network number and
enter the terminal speed-setting character; the system then responds:

TYPE SYSID
VN)
VM CONNECTED

VM/370 ONLINE

CP

At this point, we are in the CP environment, but we do not yet have a
virtual machine defined. By logging on, we ask CP to construct our virtual
machine:

LOGON USER
ENTER PASSWORD:
gggggggg
LOGON AT 12:24:23 EST TUESDAY 02/12/80 05201
CMS VER 5.07.008 -- 11MAR79
R; T=0.01/0.01 12:24:26

Now, we have entered the front door of our house and are in the CMS
"hallway". Our terminal is now controlling our default virtual machine.

To enter the APL environment from CMS, we use the CMS command
APL. We also specify an optional argument to the APL command that asks for
a large shared storage space to be used by an auxiliary processor in the
transfer process.

APL 150K
APL015I INSUFFICIENT STORAGE FOR MINIMUM-SIZED WORKSPACE.
R;

This is an error message meaning, in effect, that the size of the APL room
containing the auxiliary processor workroom exceeds the size of our house.
The amount of main storage in our default virtual machine is not enough. The
CP command QUERY STORAGE can be used to find out the current size ofthe
virtual machine. Although we are now in the CMS hallway, CMS recognizes
the CP command and passes it outside to CPo

CP QUERY STORAGE

STORAGE = 00512K
R; •••

The report indicates that we currently have 512 kilobytes of main storage
in our virtual CPU. Here's a fine chance to exploit our ability to increase the
size of our virtual machine. In a matter of moments, we can double the amount
of main storage:

DEFINE STORAGE 1024K
STORAGE = 01024K
AUTOIPL CMS
CMS VER 5.07.008 -- 11MAR79
R; •••

Travels in VM Land: A Virtual APL Primer 85

Now, with this larger machine, we can try again to enter the AP L
environment with a large shared storage space:

APL 150K

APL*PLUS SERVICE

CLEAR WS

Now, we can further change our virtual machine configuration by adding
a tape drive, which we will need to read the transfer workspace from tape. The
AP L *P L US VM System Operator can attach the tape drive to our virtual
machine after mounting the transfer tape for us.

)OPR PLEASE MOUNT TAPE VOL 123ABC. BIN NO. 123~ AS 181. THANKS.
SENT

Now, we wait for the operator to fetch the tape from the tape library,
mount it on a tape drive, and attach it to our virtual machine at virtual
address hex' 181 ' . The process usually takes a few minutes, and a message is
displayed when the tape drive is ready.

TAPE 181 ATTACHED
MESSAGE FROM OPERATOR: TAPE MOUNTED AND READY. /OPR

The tape drive is now ready to use and, since we're monopolizing a real
tape drive, we should finish the job promptly. The first step in installing the
transfer workspace is making sure the present workspace is clear.

) CLEAR
CLEAR WS

To get ready to read the data from the tape, we'll use Auxiliary Processor
100, the CMS/CP Command Processor. It provides us with a means of
executing CMS and CP commands from within the APL environment. On
STSC's VM Service, this auxiliary processor is set up for us each time we enter
the APL environment. We communicate with the auxiliary processor by a
technique known as shared variables, an explanation of which is beyond the
scope of this paper. (For a tutorial on shared variables, see the paper entitled
"Using Shared Variables and Auxiliary Processors in VS APL", which
appears elsewhere in this book.)

X+'CMS' 0 100 DsVO 'X'
2

The preceding statements shared the variable X with the auxiliary
processor. X will now serve as a means of communicating with CMS through
the auxiliary processor. We will use the CMS command FILEDEF to define the
tape (TAPI) as a CMS file named SLT:

X+'FILEDEF SLT TAPl SLl VOLID 123ABC (RECFM U BLOCK 32760)'
X

o

The value of X has changed to 0, indicating that the FILEDEF command
has been executed successfully. Now that we can treat the tape drive as if it
were a regular CMS file, we can use the source level transfer functions in
workspace 99 S LT to install the workspace:

86

SAVED

DERASE 'X'
)COpy 99 SLT SLTIN

'TRANSWS' WSIN 'SLT'

Travels in VM Land: A Virtual APL Primer

The left argument to WSIN is the name of the workspace as it is recorded
on the tape. The right argument is the CMS file name identifying the tape.
WSI N uses Auxiliary Processor 110, the CMS Disk Input/Output Processor,
which lets an APL program read from and write to a CMS file (in our case, the
tape drive).

WSI N produces a lot of output, not shown here, as it installs each
transferred function and variable in the active workspace. The following
message is displayed when the installation is complete.

')ERASE SLTIN' AND SAVE THIS WS WITH PROPER NAME

)ERASE SLTIN
)WSID TRANSWS

WAS CLEAR WS
)SAVE

. TRANSWS

Now, we will use the CMS/CP command processor to detach the tape
drive. The operator is responsible for attaching the tape drive, but we can
detach it ourselves.

X~'CMS' 0 100 DsVO 's'
2

X~'CP DETACH 181' 0 X
TAPE 181 DETACHED
o

)OPR PLEASE DISMOUNT TAPE AND SCRATCH IT. THANKS
SENT

Conclusion

We hope these perspectives have whetted the reader's appetite for the new
tools and techniques available to the APL programmer working in the VM
environment. Many programmers have bemoaned the traditional isolation of
APL from the rest of the computing world. Perhaps VM, with the aid of
auxiliary processors, will help bridge that barrier.

There are, of course, those AP L enthusiasts who believe that the isolation
of AP L from other programming environments is beneficial and who would
rather not bother with other programming languages. For them, techniques
exist to make the VM operating system as invisible as is on STSC's other
system, while still giving them the benefits of large workspaces. VM's benefits
thus extend to proponents of either philosophy.

Bob McGhee joined STSC in 1973 as a marketing representative and is
currently a systems programmer in the company's System Product Department.
In this position, he packages, installs, and supports STSC's system software
products.

McGhee received his B.S. degree in electrical engineering from Virginia
Polytechnical Institute. Before coming to STSC, he developed electronic instru
mentation at DuPont, commercializing an ultrasonic imager and solving

Travels in VM Land: A Virtual APL Primer 87

production problems in a spectrophometer using APL simulation. He is cur
rently interested in applications of APL operators in electrical engineering.

As a design specialist for STSC, James Wheeler is responsible for the design and
specification of user-visible features of the AP L *P L US System. Before joining
STSC in 1977 a.s a technical writer, Wheeler taught scientific writing at the
State University of New York at Buffalo, where he also worked on computer
techniques for literary analysis. As a technical writer, Wheeler wrote the
Automatic Control of Execution (ACE) series of manuals and prepared the
manuals for the VMI370 version of the APL*PLUS System. An avid APL
programmer, Wheeler developed the text-editing system used by STSC to
produce its photocomposed manuals.

Wheeler's background includes current graduate studies in computer science at
the University of Maryland, an M.A. in English from the State University of
New York at Buffalo, and a B.A. in art from the University of Maryland.

Mark L. Osborne

Using Shared Variables and
Auxiliary Processors in VS APL

The use of shared variables and auxiliary processors in VS AP L
permits the integration of programs written in APL with programs written in
other languages running in the CP/CMS environment. Processors are avail
able to execute CMS and CP commands; stack CMS input; access CMS, QSAM,
and VSAM files; communicate between virtual machines; and control
input/output lines. Other processors can be built to interface with any
operation in the CP environment.

Particularly useful is access to the file systems that run in the CMS
environment, giving APL a way to share large volumes of data with programs
written in FORTRAN, PLl1, COBOL, and other languages. These include a
large number of commercially available application packages such as SCSS"
(SPSS" Conversational Statistical System) and MPSX/370 (Mathematical Pro
gramming System Extended).

The CP/CMS Stack Input Processor provides a means for passing control
in and out ofthe AP L environment. Using this processor, an AP L function can
stack APLand CMS commands that checkpoint the APL environment, cause
exit from the APL environment, and then invoke CMS commands, EXEC files,
or executable program modules. Typically, a CMS EXEC is used that invokes a
program. When the program completes, the EXEC stacks a series of commands
to resume in the AP L environment.

Any named variable can be used as an interface between the APL
environment and an auxiliary processor. A variable is established as a
"shared" interface through use of the system function OS VO. Once this is
done, communicating with the auxiliary processor is simply a matter of
referencing the variable or assigning values to it. The values have different
effects, depending on the auxiliary processor being used. Another system
function, DSVC, can be used to impose control on the sequence of accesses of
the variable. Finally, the system function DSVQ is provided to query the status
of shares.

A brief description of these functions is in order. They are more complete
ly documented in the manual APL Language (IBM, 1978).

r +- p Dsvo n

An offer to share the variable named in n is extended to the auxiliary
processor identified by the numeric value in p. The explicit result is
known as the degree of coupling. A result of 2 indicates that the offer
is matched by an offer from p. A result of 1 indicates that the offer is

88

Using Shared Variables and Auxiliary Processors in VB APL

currently unmatched. If the share is successfully matched, communi
cation has been established between the AP L environment and the
auxiliary processor. Multiple shares can be established with one use
of OS V0 when p is a vector of auxiliary processor numbers and n is a
matrix of variable names.

r +- Dsvo n

The degree of coupling is returned for each variable named in n. Note
that a result of a is valid if no offer has been made by or to the active
user for a variable named in n.

r +- c DsVC n

An access control setting is established for the shared variable named
in n. This setting is the logical-or of the four-element Boolean vector c
and the last access setting specified by the share partner. The explicit
result is a Boolean vector representing the new access setting. The
access setting controls how the shared variable is used by inhibiting
multiple uses by one share partner without specific intervening
action by the other share partner (a share partner may be either a
user or an auxiliary processor). When an element ofthe access setting
is 1, it inhibits use in the following way:

• The first element of the access setting inhibits two successive
assignments by partner A without intervening access (assign
ment or reference) by partner B.

• The second element inhibits two successive assignments by
partner B without intervening access by partner A.

• The third element inhibits two successive references by part
ner A without an intervening assignment by partner B.

• The fourth element inhibits two successive references by
partner B without an intervening assignment by partner A.

The arguments can be extended to matrices, in which case each row of
c must contain an access setting for the variable whose name is in the
corresponding row of n.

r +- DsVC n

The current access settings for the variables named in n are returned
as an explicit result.

89

r +- DSVR n

The existing share offers for variables named in n are retracted. The
explicit result is a vector containing the degree of coupling of each
variable before the retraction.

r +- DSVQ p

If p is an empty vector, the explicit result is a vector of processor
numbers of auxiliary processors extending share offers to the user. If
p is a vector of processors, the result is a matrix of names of the
variables offered by those processors, but not yet matched by the user.

Most uses of auxiliary processors in VS AP L include the following
sequence of steps:

• Initialize the shared variable. The initial value communicates
information to the auxiliary processor, such as the name of a file
and various processor options.

90

APL

Using Shared Variables and Auxiliary Processors in VS APL

• Extend the share offer to the processor. The resultant degree of
coupling is usually two, since most (but not all) auxiliary proces
sors extend a return share automatically. An application program
should check this returned value to be sure the offer was recipro
cated.

• Access the shared variable to check the return code from the
auxiliary processor. This will verify that the processor options
specified were valid. The form and values returned here are
dependent on the processor being used.

• Proceed to access and or reference the shared variable according
to the conventions of the auxiliary processor. Note that use of
most processors does not require setting of the access vector, since
the auxiliary processor generally sets the necessary access.

• Retract the share when the interaction with the processor is
finished.

Now for some examples of shared variable and auxiliary processor use:

APL*PLUS SERVICE

CLEAR WS

First, we initialize the variable DMK with a value that indicates that we
want to pass commands to CPo OS V0 is used to share the variable with
Auxiliary Processor 100; the result of 2 is the degree of coupling and indicates
that AP100 matched our offer. DMK has a return code as its value when next
referenced, and the value of 0 indicates that all is well.

DNK+'CP' ¢ 100 DsvO 'DNK'
2

DNK
o

DNK+'Q SET' What are our virtual machine options?

MSG ON , WNG ON , EMSG TEXT, ACNT ON , RUN OFF
LINEDIT OFF, TIMER OFF , ISAM OFF, ECMODE ON
ASSIST ON SVC NOTMR, PAGEX OFF, AUTOPOLL OFF
IMSG ON , AFFINITY NONE , NOTRAN OFF
VMSAVE OFF, AUTOBEGN OFF, AUTOIPL ON

DNK+'SET ENSG ON'

DNK+'Q SET'

We want to see complete error
messages from CP and CMS.

Did SET EMSG work?

MSG ON , WNG ON , EMSG ON , ACNT ON , RUN OFF
LINEDIT OFF, TIMER OFF, ISAM OFF, ECMODE ON
ASSIST ON SVC NOTMR, PAGEX OFF, AUTOPOLL OFF
IMSG ON , AFFINITY NONE , NOTRAN OFF
VMSAVE OFF, AUTOBEGN OFF, AUTOIPL ON

CMS commands can also be executed by APIOO. This time we'll initialize
another variable to indicate CMS and offer the share.

DNS+'CNS' ¢ 100 DSVO 'DNS'
2

DNS
o

Using Shared Variables and Auxiliary Processors in YS APL 91

DNS+'LIST (DATE'
FILENAME FILETYPE FM
EDITAPL EXEC Al
EDIT2 VSAPLWS Al
LEFTWS VSAPLWS Al
MAILING ADDRESS Al
SVDEMO SCRIPT Al

FORMAT
V 14
F 800
F 800
F 80
F 80

Tell us what files we have.

RECS BLOCKS DATE TIME
6 1 2/12/80 16:18

15 15 2/12/80 16:05
11 11 2/12/80 17:22

6 1 2/12/80 15:08
125 13 2/12/80 15:08

DNS+'TYPE NAILING

MARK OSBORNE (MLO)
STSC. INC.
7316 WISCONSIN AVE.
BETRESDA MARYLAND 20014

ADDRESS' Display a file.

PLACE IN VMDEV MAIL SLOT

MAILING ADDRESS is a must for anyone who wants his computer
printouts mailed to him. It is simply a file with the filename MAI LING and
the filetype ADDRESS. It must have no more than eight lines, and no line can
be more than 30 characters long. It is automatically tagged on all printouts
generated by your virtual machine. MAI LING ADDRESS can be created
with the eMS editor.

RDR
PUN

PRT

DNK+'Q UR'
DOC ALL NOCONT
ODD STD NOCONT
ODD FOR SVDEMOI
ODE AOOI NOCONT
ODE FOR SVDEMOI

Ask CP about the status of our unit record devices.

NOROLD EOF READY
NOROLD COpy 01 READY
DIST SVDEMOI
NOROLD COpy 01 READY
DIST SVDEMOI

Let's put any printer output we generate "on hold". We can then query the
printer (at virtual address hex '0 OE') to be sure the hold worked.

DNK+'SPOOL PRT HOLD'

DNK+'Q DOE'
PRT ODE AOOI NOCONT HOLD COPY 01 READY

ODE FOR SVDEMOI DIST SVDEMOI

Next, let's define a print file the way APll1 (QSAM I/O) likes 'em.

DNS+'FILEDEF PRINT PRINTER(RECFN Y BLKSIZE 132'

DNS+'Q FILEDEF'
PRINT PRT

We get that right?
Guess so.

PRINTY+' PRINT (APL' Initialize a variable for APl11.

P R I NT corresponds to the name specified in the F I L EDE F command;
APL is a translate option.

111 DSYO 'PRINTY' Share it.
2

o
PRINTY Check the return code.

Good. Now we'll write something directly to the print queue:

PRINTV+'THIS LINE GOES DIRECTLY TO NY PRINT QUEUE.'
PRINTV+'WHEN WE RETRACT THE SHARE. THE PRINT FILE IS CLOSED.'
PRINTV+'IF WE RELEASE THE HOLD WE SET ON THE PRINTER.'
PRINTV+'THIS FILE WILL PRINT ON THE LINE PRINTER AT THE'
PRINTV+'STSC CONPUTER CENTER.'
PRINTV+'SINCE WE WON"T GET TO SEE THAT. WE"LL CHECK OUR PRINT'
PRINTV+'QUEUE AND TRANSFER THE PRINT TO OUR VIRTUAL CARD READER.'
PRINTV+'FRON THERE. WE CAN READ THE TEXT INTO A CNS FILE AND'
PRINTV+'TYPE IT AT THE TERNINAL.'

92 Using Shared Variables and Auxiliary Processors in VS APL

DSVR 'PRINTV' Retract the share.
PRT FILE 3163 FOR SVDEM01 COpy 01
2 Looks promising.

HOLD

DNK..... ' Q PRT ALL' Ask CP if there's a spool file for us.
FILE FORM RECDS COpy HOLD DATE TIME DIST NAME TYPE ROUTE
3163 A001 000009 01 USER 02/1221:14 SVDEM01 Nine lines. Looks right.

DNK..... ' TRANS PRT RDR 3163' Transfer it to our reader.
PRT FILE 3163 TRANSFERRED FROM SVDEM01
0001 FILE TRANSFERRED

DNK..... 'Q RDR ALL'
FILE FORM RECDS ORIGIN
3163 A001 000009 SVDEM01

Is it there?
HOLD DATE TIME DIST
USER 02/12 21:14 SVDEM01

NAME TYPE

DNK..... 'CHANGE RDR 3163 NOHOLD'
0001 FILE CHANGED

Better take it off hold to read.

Now, we'll read this spool file from the virtual card reader to a eMS file
named Faa FILE A (the good stuff is always named Faa).

DNS..... 'READ FOO FILE A'
DMSRDC738I RECORD LENGTH IS '132' BYTES. Just as we suspected!

DNS..... 'LIST (DATE'
FILENAME FILETYPE FM
EDITAPL EXEC A1
EDIT2 VSAPLWS A1
LEFTWS VSAPLWS A1
MAILING ADDRESS A1
SVDEMO SCRIPT A1
FOO FILE A1

The file
FORMAT
V 14
F 800
F 800
F 80
F 80
F 132

FOO should now show up here.
RECS BLOCKS DATE TIME

6 1 2/12/80 16:18
15 15 2/12/80 16:05
11 11 2/12/80 17:22

6 1 2/12/80 15:08
125 13 2/12/80 15:08

9 2 2/12/80 21:23

DNS..... 'TYPE FOO FILE' Let's see what's in it.
THIS LINE GOES DIRECTLY TO MY PRINT QUEUE.
WHEN WE RETRACT THE SHARE, THE PRINT FILE IS CLOSED.
IF WE RELEASE THE HOLD WE SET ON THE PRINTER,
THIS FILE WILL PRINT ON THE LINE PRINTER AT THE
STSC COMPUTER CENTER.
SINCE WE WON'T GET TO SEE THAT, WE'LL CHECK OUR PRINT
QUEUE AND TRANSFER THE PRINT TO OUR VIRTUAL CARD READER.
FROM THERE, WE CAN READ THE TEXT INTO A CMS FILE AND
TYPE IT AT THE TERMINAL.

And my fingers never left my hands! And now, for a finale, the disappear
ing file trick:

DNS..... 'ERASE FOO FILE'

DNS..... ' LIST'
EDITAPL EXEC
EDIT2 VSAPLWS
LEFTWS VSAPLWS
MAILING ADDRESS
SVDEMO SCRIPT

Let's use the short form.
A1
A1
A1
A1
A1

Sure enough, the file Faa is gone. Now, we need only retract both
outstanding shares and we're done.

DSVR 2 3p'DNKDNS'
2 2

)OFF HOLD
R; T=1.22/4.35 21:30:36

Using Shared Variables and Auxiliary Processors in VS APL 93

Move to next line.

Move back to top of file.

EDIT2 Workspace

The EDIT2 workspace contains a set of functions to be used in conjunc
tion with the CMS EXEC, EDITAPL, to edit APL functions or character
matrices with the CMS Editor. (The functions in the EDIT2 workspace are
listed in the Appendix at the end of this paper.) To use this facility, simply
type:

EDIT 'fnname'

The argument fnname is the name of the function or variable you wish to edit.
You will then be placed in the CMS editor. When you enter the editor
command FILE, your function will be moved back into the original workspace
and you will resume in the APL environment.

The facilities used to achieve this are the CMS File Auxiliary Processor
(APllO), the CMS Stack Input Processor (APlOl), and the CP/CMS Command
Processor (APlOO).

A running example of the use of the functions in this workspace follows.
We will edit the function APPEND by converting the representation of the
function to a CMS file. Then we leave APL, move into the CMS environment,
invoke the CMS editor, change the function-representation file, reenter AP L,
read the edited file, and define the function in the workspace. All of the file
manipulations and movement between environments is done automatically.
The user enters only the commands for the CMS editor.

APL
APL*PLUS SERVICE

CLEAR WS
)LOAD EDIT2

SAVED 16.13.12 02/13/80
EDIT 'APPEND'

R; T=0.45/1.27 17:05:58
EDIT APPEND VRAPLFN A
EDIT:
T * Type entire file.
TOF:
R+MAT APPEND VEC;COLS
A CATENATES A VECTOR VEC AS A NEW ROW OF MATRIX MAT.
COLS+(pVEC)r1tpMAT

MAT+((1 tpMAT) , COLS) tMAT

R+MAT,[DIOJ COLStVEC

EOF:
TOP
TOF:
N

R+MAT APPEND VEC;COLS

R R~H CATENATE V;COLS Replace with this line.

N
A CATENATES A VECTOR VEC AS A NEW ROW OF MATRIX MAT.
CH I VEC I V I Change VEC to V.
A CATENATES A VECTOR V AS A NEW ROW OF MATRIX MAT.
CHI HAT.I H.I Change MAT. toM.
A CATENATES A VECTOR V AS A NEW ROW OF MATRIX M.
N Next line.
COLS+(pVEC)r1tpMAT
CH/HATIHI* * Change all occurrences of MAT to M.
COLS+(pVEC)f1tpM
M+((ltpM),COLS)tM
R+M,[DIOJ COLStVEC
EOF:

94 Using Shared Variables and Auxiliary Processors in VB APL

LU / i. Search from bottom to top; locate next occurrence of 1 •.

COLS~(pVEC)rl.pM

CH/VEC/V/ Change VEC to V.
COLS~(pV) rHpM
CH / VEC / V / * * Do it for all occurrences (from current line on).

R~M • [OI 0 J COL S t V
EOF:
LU / i. Locate 1. again.

COLS~(e.V) rHpM
CH / H / 1t / Change.

COLS~(pV) r-ltpM
EDIT:
FILE Rewrite the file; exit from the editor.

Rj T=0.17/0.62 17:10:52
APL*PLUS SERVICE

CLEAR WS
SAVED
CATENATE DEFINED

DVR'CATENATE'
V R~M CATENATE VjCOLS

[lJ ~ CATENATES A VECTOR V AS A NEW ROW OF MATRIX M.
[2J COLS~(pV)r-ltpM

[3J M~«ltpM).COLS)tM

[4J R~M.[OIOJCOLStV

V

)JIBID
IS EDIT2

)OFF HOLD
Rj T=0.48/1.28 17:11:31

Appendix-The EDIT2 Workspace

The functions used in demonstrating how the eMS Editor can be used to
edit an APL function are listed in this appendix.

V EDIT NAMEjWSIDjSINKjVAR
[lJ ~ ALLOWS EDITING OF AN APL FUNCTION OR CHAR MATRIX VIA THE CMS EDITOR.
[2J ~ NAME CONTAINS THE FUNCTION OR VARIABLE NAME OR THE NAME OF
[3J ~ AN UNDEFINED OBJECT.
[4J WSID~OWSID ~ SAVE THE WS ID.
[5J ~ GET VARIABLE REPRESENTATION OF OBJECT NAMED IN NAME.
[6J VR~GETVR NAME
[7J ~ WRITE VR TO CMS FILE NAME.' VRAPLFN A'
[8J VR WRITE NAME
[9J ~ STACK COMMANDS TO SAVE WS. EXIT APL. AND INVOKE EDAPLFN EXEC.
[10J REEDIT:STACKEDIT
[llJ ~ READ FILE NAME.' VRAPLFN A'
[12J VR~READ NAME
[13J ~ RE-ESTABLISH FUNCTION OR VARIABLE IN ORIGINAL FORM.
[14J ~ BRANCH TO REEDIT IF USER WANTS TO RE-EDIT INVALID FN.
[15J ~REEDIT IF VR FIX NAME
[16J ~ ERASE NAME.' VRAPLFN A'
[17J ERASE NAME

V

V VR~GETVR NAME
[lJ ~ PLACE ENTITY NAMED IN NAME INTO VARIABLE YR.
[2J ~ IF IT IS A FUNCTION. THE CANONICAL REPRESENTATION IS PLACED IN YR.
[3J ~ IF IT IS A CHARACTER MATRIX. THE VALUE IS ASSIGNED TO YR.
[4J ~ IF IT IS AN UNDEFINED NAME. VR IS CREATED AS A 1 BY 130
[5J ~ ARRAY CONTAINING THE NAME.
[6J ~ IF IT IS ANYTHING ELSE. AN ERROR MESSAGE IS PRINTED AND
[7J ~ AN EXIT IS TAKEN.
[8J ~ THE ORIGINAL NAME CLASS IS SAVED IN VAR FOR USE WHEN THE
[9J ~ OBJECT IS RE-ESTABLISHED FROM THE EDITED FILE.

Using Shared Variables and Auxiliary Processors in VB APL 95

[10] ~(O 2 3 =VAR+ONC NAME)/NONENT,VARIABLE,FUNCTION 0 ~BADNAME

[11] NONENT:VR+ 1 130 p130tNAME 0 ~O

[12] VARIABLE:VR+_NAME 0 ~BADNAME IF(' '~ltOpVR)v2~ppVR 0 ~O

[13] FUNCTION:VR+DCR NAME 0 ~O

[14] BADNAME:'ARGUMENT MUST BE NAME OF FN, CHARACTER MATRIX, OR UNDEFINED' 0 ~

V

V VR WRITE NAME;OUT
[1] ~ VIA APll0 (CMS FILE PROCESSOR), WRITE VR TO FILE NAME, 'VRAPLFN A'
[2] ~ INITIAL VALUE OF SHARED VARIABLE IS FILENAME AND OPTIONS OF
[3] ~ U (UNFORMATTED), AND APL (TRANSLATION FOR FULL CMS APL CHARACTER SET).
[4] OUT+(8tNAME),' VRAPLFN A(U APL'
[5] ~ EXTEND SHARE AND CHECK DEGREE OF COUPLING AND RETURN CODE.
[6] ~ERROR IF 2~110 Dsvo 'OUT'
[7] ~ERROR IF O~ltOUT

[8] ~ WRITE VR ONE LINE AT A TIME.
[9] TOP:~END IF O=ltpVR 0 OUT+VR[OIO;] 0 VR+ 1 0 ~VR 0 ~TOP

[10] ~ RETRACT SHARE AND EXIT.
[11] END:SINK+DSVR 'OUT' 0 ~O

[12] ERROR: 'ERROR WRITING TO ',(8tNAME),' VRAPLFN A' 0 ~

V

EXECUTION HERE.
WS NAME.
FROM STACK.

V STACKEDIT;STACK
~ STACK THE NECESSARY COMMANDS IN THE CMS STACK TO SAVE THE WS,
~ EXIT FROM APL, AND INVOKE THE CMS EDITOR.
~

~ INITIALIZE VARIABLE AND SHARE IT.
~ LIFO (LAST IN FIRST OUT) WILL CAUSE COMMANDS TO BE EXECUTED
~ IN REVERSE ORDER. APL SPECIFIES THE CMS CHARACTER SET TRANSLATION.

STACK+'CMS(LIFO APL' 0 SINK+l0l OSVO 'STACK'
~ NOTE: THE FOLLOWING COMMAND IS NOT STACKED BUT TAKES EFFECT WHILE
~ THE STACK IS BEING READ.

STACK+'HT' ~ HALT TYPING WHILE READING FROM STACK.
~ STACK INVOCATION OF OUR EDIT EXEC.
STACK+'EDITAPL ',(8tNAME),' VRAPLFN A'
STACK+')OFF HOLD' ~ TO EXIT FROM THE APL ENVIRONMENT.
STACK+')SAVE' ~ SAVE THE WS.
STACK+')WSID EDTEMP' ~ GIVE WS A FIXED NAME SO EDIT EXEC CAN)LOAD IT.
S~STACKEDIT+RESUMEl A STOP AT THIS LINE. NEXT READ WILL BE FROM STACK.

~ WHEN THE EDITOR IS EXITED, EDITAPL EXEC WILL STACK AN
~ APL COMMAND AND A ~RESUME1.

~ WE RE-ESTABLISH THE SHARE WITH AP10l SINCE IT WAS LOST WHEN WE
~ LEFT APL.
RESUME1:STACK+'CMS(LIFO APL' 0 SINK+l0l DsVO 'STACK'

STACK+'HT' ~ HALT TYPING AGAIN.
STACK+'~RESUME2' ~ AFTER EXECUTING)WSID, RESUME
STACK+')WSID ',WSID ~ WE'LL WANT TO RE-ESTABLISH
S~STACKEDIT+RESUME2 ~ STOP HERE SO WE READ)WSID

RESUME2:STACK+'RT' ~ RESUME TYPING.
SINK+DSVR 'STACK' ~ RETRACT SHARE.

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]

V

V VR+READ NAME;IN;TEMP
[1] ~ VIA APll0 (CMS FILE PROCESSOR), READ FILE NAME,' VRAPLFN A'
[2] ~ INITIAL VALUE OF SHARED VARIABLE IS FILENAME AND OPTIONS OF
[3] ~ U (UNFORMATTED) AND APL (TRANSLATION FOR FULL CMS APL CHARACTER SET).
[4] IN+(8tNAME),' VRAPLFN A(U APL'
[5] ~ EXTEND SHARE AND CHECK DEGREE OF COUPLING AND RETURN CODE.
[6] ~ERROR IF 2~110 Dsvo 'IN'
[7] ~ERROR IF O~ltIN

[8] ~ INITIALIZE VR. THEN READ SUCCESSIVE RECORDS TILL WE GET AN EMPTY ONE.
[9] VR+ 0 0 p' ,
[10] TOP:~END IF O=pTEMP+IN 0 VR+VR APPEND TEMP 0 ~TOP
[11] ~ RETRACT SHARE AND EXIT.
[12] END:SINK+DSVR 'IN' 0 ~O

[13] ERROR: 'ERROR READING FROM ',(8tNAME).' VRAPLFN A' 0 ~
V

96 Using Shared Variables and Auxiliary Processors in VS APL

V REED+VR FIX NAME;TEMP
A RE-ESTABLISH THE ENTITY VR WITH THE NAME CONTAINED IN VARIABLE NAME.
A IF IT WAS A VARIABLE USE AN EXECUTED ASSIGNMENT.
Q IF IT WAS A FUNCTION OR UNDEFINED, USE DFX.
Q IF THE FUNCTION CANNOT BE RE-ESTABLISHED, ASK USER IF THEY
A WANT TO RE-EDIT THE FUNCTION. SET REED TO 1 IF SO.

REED+O
+FN IF 2~VAR 0 tNAME, '+VR' 0 +0

FN:TEMP+OFX VR 0 +FXERR IF ' '~ltOtTEMP 0 TEMP,' DEFINED' 0 +0
FXERR:'DFX ERROR: ',.TEMP 0 +0 IF REED+'Y'=ltAKI 'REENTER EDIT? '

'FUNCTION TEXT IS IN VARIABLE <VR>'

[lJ
[2J
[3J
[4J
[5J
[6J
[7J
[8J
[9J
[10J

V

V ERASE NAME;DMS
[lJ A VIA CMS COMMAND PROCESSOR, ERASE THE FILE NAME,' VRAPLFN A'
[2J DMS+'CMS' 0 SINK+l00 DsVO 'DMS'
[3J DMS+'ERASE ',(8tNAME),' VRAPLFN A'
[4J SINK+DSVR 'DMS'

V

V R+MAT APPEND VEC;COLS
[lJ A CATENATES A VECTOR VEC AS A NEW ROW OF MATRIX MAT.
[2J COLS+(pVEC)rl.pMAT
[3J MAT+«ltpMAT),COLS)tMAT
[4J R+MAT,[DIOJ COLStVEC

V

V R+AKI TXT
[lJ A A SIMPLE MINDED PROMPTING FN.
[2J Q DISPLAYS TXT AND RETURNS USERS INPUT.
[3J ~+TXT 0 R+DROPLB ~

V

V R+DROPLB X
[lJ Q DROP LEADING BLANKS FROM X.
[2J R+(v\X~' ')/X

V

V R+A IF B
[1] R+B/A

V

The CMS EXEC ED I TAP L is used in conjunction with the AP L functions
above:

EDIT E:1 E:2 E:3
E:BEGSTACK LIFO
+RESUME
)LOAD ED TEMP
APL
END

Mark Osborne joined STSC in 1974 as a systems programmer and is currently
manager of the company's VM Development Group. At STSC he implemented
chained variables and managed the System Support Team for one year. More
recently, he implemented an interpreter interface for the VS APL demonstra
tion project file system.

Using Shared Variables and Auxiliary Processors in VS APL 97

Osborne learned APL while working at GTE Laboratories, where he built a
digital logic simulator for a large-scale integration project and was responsible
for installing, maintaining, and modifying GTE's APL / 3 6 0 and APLS V
systems.

Stuart A. Bell

Practical VB APL-FORTRAN
Interfacing

This paper describes a practical means for interfacing a FORTRAN
program with a VS APL workspace or series of workspaces. The interface
described is conceptually easy to understand, not difficult to implement, and
provides complete control of the FORTRAN and VS APL environment.
Data is shared between the two environments and sufficient control informa
tion is available to let the application user control the phasing of the
application.

The paper contains examples of code that is easy to follow but lacks
elegance. In each VS APL workspace, one function is illustrated independ
ently of the others and separated by sufficient comments to permit clear
understanding of the desired concepts.

Background

Historically, the APL family of dialects existed in a world by itself. Unique
data structures, unusual input and output conventions, and isolated data
management techniques resulted in the generation of "closed" applications.
These applications became large and sophisticated in many cases, but general
ly all the data had to be available at the beginning of the application and the
results had to be managed totally by APL throughout the life of the applica
tion. Attempts to mate the excellent features of APL 's data handling with the
more traditional packages such as large linear programming systems were
often contrived and difficult to use.

The introduction of shared variables and Time Shared Input/Output
(TSIO) files into the APL environment created opportunities for importing and
exporting much larger amounts of data. Soon after the introduction of shared
variables, several installations began permitting APL applications to submit
batch jobs in a stream. The ability to submit batch jobs in this way allowed an
APL application to control the more traditional batch-type jobs. Hybrid
applications began to evolve. This step forward permitted interface between
APL applications and preexisting non-APL applications.

However, shared variable TSIO applications required a batch/APL inter
face and presented a foreign environment to the end user accustomed to the
near immediate response of a well-tuned APL system. Batch scheduling delays
of several hours were often experienced between the time the AP L segment
completed and the time the batch segment was scheduled and ran to comple
tion. Additionally, the two different environments required vastly different
systems skills, since the mastery of Job Control Language can be a full time
project for specialists in that area.

98

Practical VB APL-FORTRAN Interfacing 99

The introduction of VS AP L into the conversational time sharing envi
ronment simplified the interface problem between APLand non-APL seg
ments of an application. It became quite practical to consider APL segments of
an application as closed routines to be used where the unique advantages of
APL can be employed. It also became practical to integrate APLand non-APL
applications. The majority of development code can be done in APL and the
older code can be retained as long as its value exceeds the rewrite costs.

The feature of VS APL that makes such applications practical is its
single-service nature. Each user of VS AP L is served by a single copy
(conceptually) of the APL environment, and the user retains complete control
of the entrance into and exit from that environment. For example, a
VS AP L terminal user can create a file using the Shared Storage Manager
(slightly different from the Shared Variable Manager) and exit from
VS APL to the native TSO or CMS environment. The file can then be edited
by the system editor or serve as input to another application program (the
FORTRAN Compiler, for example). All this can take place with a unified
command set covered by the system's macro processor: CLIST in the TSO
environment, or EXEC in the VM/CMS environment.

It is important to understand that when using APL, the Shared Storage
Manager, VS APL, and the entire application package library run conversa
tionally under control of the terminal session. It is this control that makes the
examples that follow possible. VS APL can stand aside and permit pro
grams written in other languages to execute for the duration of an application
process.

Examples

The clearest method of illustrating the unique feature of VS AP L is by
way of a contrived example. In this example, a sample terminal session is
shown along with supporting functions and a user-written command file
(EXEC) that are transparent to the terminal user.

In the sample terminal session, a user ofIBM's Conversational Monitoring
System, VM/CMS, logs onto the system and enters the application process via
a pseudo-eommand QLOAD. This command invokes a user-written EXEC file.
The QLOAD EXEC executes as follows:
&STACK HT
&STACK FIFO)LOAD SAB.LOADWS
EXEC APL

The QLOAD EXEC procedure quietly enters the VS AP L environment,
suppresses the welcoming banner from VS AP L, and loads the initial work
space LOADWS. In the EXEC statements, the & character signifies that the
next command is an EXEC directive. The HT command signifies "halt typing",
and its effect is to turn off terminal output. The second &STACK directive
places the material following it into a console stack in First-In-First-Out order.
The lines stacked in the console stack eliminate the need for the user to enter
these commands from the terminal keyboard. While the stack in not empty,
the system will read lines of stacked input and treat them as if they had been
keyed from the terminal. The remainder of the text,)LOAD SAB.LOADWS, is
read by VS APL. It is a normal APL load command that causes the
workspace to be loaded without the user's participation. Since terminal output
is disabled, the user need not be aware that he has moved into AP L or that the
workspace has been loaded.

The workspace's latent expression executes STARTUP, whose first action
is to counter the "halt typing" request issued in the QLOAD EXEC. This is
done by invoking the stack auxiliary processor, AP101, and specifying the RT
(resume typing) command. This auxiliary processor makes it possible to load

100 Practical VS APL-FORTRAN Interfacing

the console stack from within the APL environment, producing an effect
equivalent to the &STACK command in the QLOAD EXEC.

V STARTUP;STACK
[lJ STACK~'CMS (APL BEG'
[2J 0 0 p101 Dsvo 'STACK'
[3J A SHARE <STACK> WITH AUXILIARY PROCESSOR 101, AND
[4J A DISCARD THE RESULT OF DSVO.
[5J STACK~'RT' A RESUME TYPING
[6J 0 0 pDSVR 'STACK' A CLEAN UP AFTER MYSELF
[7J 'THIS IS A SAMPLE FUNCTION'
[8J 'ENTER CHANGEWS TO ENTER ANOTHER WORKSPACE'

V

STARTUP also displays instructions to the terminal user:

THIS IS A SAMPLE FUNCTION
ENTER CHANG~WS TO ENTER ANOTHER WORKSPACE

)flSID
IS SAB.LOADWS

At this point, entering CHANGEWS causes another workspace to be
loaded. The CHANGEWS function performs the actual workspace transfer by
stacking an HT and a) LOAD command in a manner similar to the QLOAD
EXEC.

V CHANGEWS;STACK
[lJ A THIS FUNCTION QUIETLY LOADS ANOTHER WORKSPACE.
[2J STACK~'CMS (APL BEG'
[3J 0 0 p101 DsVO 'STACK'
[4J 'YOU WILL NOW ENTER THE WRITEAPL WS'
[5J STACK~'HT' A SUSPEND TERMINAL OUTPUT FOR AWHILE.
[6J STACK~')LOAD SAB.WRITEAPL'

V

The stack input processor can also be used to pass application values
between workspaces by stacking the values prior to transfer and reading them
into the second workspace or alternate language application. In our sample
terminal session, however, no parameters are passed since each workspace is
essentially independent.

By executing CHANGEWS, the terminal session user enters the workspace
named WRITEAPL. The latent expression executes STARTWS, and a message
is displayed as shown:

CHANGEfiS

ENTER 'WRITE' TO START A PROGRAM THAT WRITES A FILE FOR
READING FROM FORTRAN. ENTER 'FORTRAN' TO ENTER THE FORTRAN
ENVIRONMENT. READ THE FILE USING THE PROGRAM <APLREAD>.
MORE INSTRUCTIONS FOLLOW (FROM FORTRAN):

Again, STARTWS must execute the RT (resume typing) command before
the user's next terminal input. This function could be performed by a general
utility but is included here for clarity.

V STARTUP;STACK
[lJ A THIS FUNCTION STACKS AN RT 'RESUME TYPING' AND PRINTS INSTRUCTIONS.
[2J STACK~'CMS (APL BEG'
[3J 0 0 p101 DsVO 'STACK'
[4J STACK+'RT'
[5J 0 0 pDSVR 'STACK'
[6J 'ENTER "WRITE" TO START A PROGRAM THAT WRITES A FILE FOR'
[7J 'READING FROM FORTRAN. ENTER "FORTRAN" TO ENTER THE FORTRAN'
[8J 'ENVIRONMENT. READ THE FILE USING THE PROGRAM <APLREAD>.'
[9J 'MORE INSTRUCTIONS FOLLOW (FROM FORTRAN):'

V

Practical VS APL-FORTRAN Interfacing 101

The WRITE function, listed below, is the most complex ofthe functions in
the illustration. It creates a file in external format for later reading by another
language processor (in this case, FORTRAN).

v WRITE;OUTPUT;CMS;TEMP
o 0 pl00 DsVO CMS+'CMS' ~ SHARE A VARIABLE WITH THE CMS COMMAND

~ PROCESSOR AND THROW AWAY THE SHARE RESULTS
CMS+'ERASE SAMPLE APLFILE' ~ ERASE THE OLD COPY OF THE SAMPLE FILE
o 0 pDSVR 'CMS' ~ RETRACT THE SHARE
OUTPUT+'SAMPLE APLFILE (192 FIX' ~ USE FULL APL-EBCD1C TRANSLATION

~ THE DEFAULT FILETYPE IS VARIABLE - WE WANT FIXED FILES.
o 0 pll0 Dsvo 'OUTPUT' ~ THROW AWAY SHARE RESULTS
o 0 pOUTPUT ~ AND INITIAL REFERENCE OF FILE
OUTPUT+80t'THIS IS A SAMPLE FILE' ~ THE FIRST SPEC DETERMINES THE BLKSIZE
'ENTER DATA UNTIL TIRED AND END WITH A <CR>'
+NEXTL IF O=pTEMP+~ 0 OUTPUT+80tTEMP 0 +THISL

~ RETRACT THE SHARE - READ AND ECHO THE DATA
o 0 pDSVR 'OUTPUT'
OUTPUT+'SAMPLE APLFILE (192' ~ RE-SPECIFY FOR RESHARE
o 0 pll0 DsVO 'OUTPUT' ~ AND RE-OFFER FOR INPUT
o 0 pOUTPUT ~ THROW AWAY INITIAL VALUE SHOWING SPECIFICATIONS OF FILE
+NEXTL IF O=pTEMP+OUTPUT 0 D+60tTEMP 0 +THISL ~ TRIM TO FIT ON 3270

~ END OF FILE IS INDICATED BY A SHAPE OF O.
o 0 pDSVR 'OUTPUT' ~ AND CLEAN UP AGAIN

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

V

Lines [1] through [4] erase any file of the same name
, SAMP LE APLFI LE' , if any exist. If this is not done, the material being
entered will be written to the end of the existing file. The same format
specifications must be used when appending data to an existing file or the
material may be unreadable. Also, any shared variables associated with the
file must be retracted prior to erasing it. In the eMS environment, severe
damage may be done to the file tables and Shared Storage Manager if a file is
renamed or erased when it is also shared.

Line [5] establishes the file name, format, and conversion options,
mapping each element of DA V into a unique external character. In most cases,
the external characters are the obvious ones, namely A-Z and 0-9. Other
conversion options and several functions are available to translate from one of
these character sets into another. The FI X parameter indicates that the file is
to contain fixed-length records and that each record is to be padded to the
length of the first record.

Line [7] establishes the actual share. At this point, an empty file exists
containing fixed-length records of a yet unspecified size and having the name
, SAMP LE APLFI LE ' . Any set of eight or fewer characters can be used for
either part of the name.

Line [8] is not really necessary for files that are to be read. If the result
were printed, it would be a four-element vector containing the condition code
ofthe share, a pointer to the first record to be read, a pointer to the first record
to be written, and the blocking factor of the file (0 1 1 1, in our case).

Line [9] establishes the file as a fixed-length file with 80 characters per
record.

Line [11] reads in the actual data and assigns it to a temporary variable.
When only a RETURN is entered, the shape of the input vector is zero,
indicating the end of terminal input in this application.

After completing the input, line [13] retracts the share and closes the
file. Lines [14] through [19] read the file back, trimming the displayed
data to 60 characters to fit conveniently on the screen of a video-display
terminal.

The function FORTRAN listed below causes the application to exit from
the VS AP L environment, run a previously compiled FORTRAN program
(named AP LREAD), and reenter VS AP L. Line [4] of the function in-

102 Practical VB APL-FORTRAN Interfacing

v
[1 J
[2 J
[3J
[4J
[5J
[6J
[7J
[8J
[9J
[10J

v

structs the stack processor to place the material on a push down stack in such a
manner that the last command entered is the first executed. The commands
HT and HX are exceptions to the stacking rule-they are executed immediate
ly.

FORTRAN; STACK
A THIS FUNCTION LINKS AND ACCESSES <SAB>'S 'A' DISK, INVOKES THE
A FORTRAN PROGRAM <APLREAD> FROM <SAB>'S DISK AND FINALLY REENTERS
A APL. ALL QUIETLY (HOPEFULLY).

STACK+'CMS (LIFO APL'
o 0 p101 DsVO 'STACK'
STACK+'HT' A SHUT OFF PRINTING OF THE FOLLOWING MATERIAL
STACK+'EXEC QLOAD'
STACK+'APLREAD'
STACK+')OFF HOLD' A THIS EXITS FROM APL INTO CMS ENVIRONMENT
o 0 pDSVR 'STACK' A RETRACT SHARE AND UNSTACK THE STACK

The FORTRAN program APLREAD is listed below. It has already been
compiled and set up so that it will begin running when its name is used as a
command in the CMS environment. No external job control language or
command language is used. The calls to OPSYS provide the necessary pointers
to the disk file and the terminal.
C
C THIS PROGRAM USES THE COMPANION WORKSPACE WRITEAPL TO CREATE A PILE
C

INTEGER RECNO,MSG(20)
C
C SET UP THE NECESSARY DEFAULT FILEDEFS:
C FTOSF001 - READ (S,XXX) - TERMINAL INPUT
C FT08F001 - WRITE (8,XXX) - TERMINAL OUTPUT
C FT10F001 - READ (10,XXX) - DISK INPUT - FROM VS APL
C
C
C OPSYS IS AVAILABLE IN OBJECT FO~! ON DON'S 'S' DISK
C

CALL OPSYS('$'. 'FILEDEF FT08F001 TERM$' ,IRET)
CALL OPSYS('$', 'FILEDEF FTOSF001 TERM$' ,IRET)
CALL OPSYS('$', 'FILEDEF FT10P001 DISK SAMPLE APLFILE$' ,IRET)

10 READ (10,100,END=20) MSG
100 FORMAT (20A4)

IF (MSG(1) .EO.FLAG) GO TO 20
WRITE (8,200) MSG

200 FORMAT (20A4)
GO TO 10

20 STOP
END

After reading in the file, this routine exits back to CMS and executes the
QLOAD EXEC that was stacked by line [7] of the function FORTRAN.

Conclusion

The examples in this presentation are obviously contrived and have no
practical value as written. In an actual application, the VS AP L work
spaces could prepare input for a package such as a statistical reduction
program or a linear programming model.

Canned packages that have evolved over many years are often very
efficient internally but cumbersome to use. APL permits ease of use through
human-engineered interface, but sometimes lacks the sophisticated support
routines present in a full-service data processing environment.

VS APL permits the programmer to take advantage of the "best of both
worlds"-human engineering through AP L and applications processing
through preexisting batch packages-in a smooth and efficient operating
environment.

Practical VS APL-FORTRAN Interfacing 103

Stuart Bell, head of systems and operations with Sigma Data Services, Inc., is
currently managing a data processing installation at the Goddard Modeling
and Simulation Facility in Greenbelt, Maryland. Bell has been working for over
ten years in systems programming and real-time systems design. He was
previously employed by Computer Science Corporation and STSC, Inc.

Bell holds a B.S. in physics from Drexel University in Philadelphia and has
done graduate work in computer science at the University ofFlorida, University
of Maryland, and Johns Hopkins University.

Mary Lou Fox

Optimization Modeling Systems:
An APLIMPSX Interface

Virtual Machine Facility/370 (VM/370) is a very versatile operating
system from the perspective of the optimization modeling system designer. In
the VM environment, it is possible to interface the interactive and computa
tional power of APL with the advanced, high-performance software compo
nent MPSX/370 to create user-oriented modeling systems for solving complex
optimization problems. This paper will illustrate such a system, albeit a trivial
one.

Optimization Problems

Optimization problems are those that seek to find a best solution among
many feasible solutions to a set of constraints that are often numerous,
complex, and conflicting. Some objective is sought, such as maximizing profits,
minimizing costs, or minimizing fuel consumption. Typical optimization prob
lems include:

• Investment problems such as finding the best investment strategy
given many possible opportunities.

• Transportation problems such as finding the best route and
schedule for trucks going between several warehouses.

• Production problems such as determining the best mix of products
to produce, given constraints such as raw material costs and
factory limitations.

Mathematical programming is a proven technique for solving optimiza
tion problems. A model of the problem is built that involves an objective
function and a number of constraints; that is, a number of equations and
inequalities. The solution to the problem is the best of the many feasible
solutions, the one that maximizes (or minimizes) the objective function and
satisfies all constraints. Usually the sheer number of constraints makes
solving an optimization problem impossible without a computer.

MPSX/370

IBM's MPSX/370 (Mathematical Programming System Extended) is a
proven, state-of-the-art software system for solving optimization problems.
MPSX/370 consists of a series of Assembler macros and procedures that are
efficient, powerful, and reliable.

MPSX/370 requires as input a card deck containing the row, column, and
right-hand side values of the model matrix. MPSX/370 is executed by calling a

104

Optimization Modeling Systems: An APLIMPSX Interface 105

control program that consists of macro and procedure calls to MPSX to solve
the problem. During the optimization process, a solution file is created,
recording the optimal seeking process and the final solution. Additional
features of MPSX/370 include a report generator and restart procedures.
Solving a model using MPSX/370 requires computer sophistication-it is not
for the casual user.

Optimization Modeling Systems

An interactive user-oriented modeling system for optimization problems
using MPSX usually contains the following:

• An interactive program that accepts data in a straightforward
format that is comfortable for the user.

• A database of information that can be updated and stored over a
period of time.

• A matrix generator program that creates the correct mathemati
cal model for the problem, and translates this into the card deck
for MPSX/370.

• An MPSX Control Language Program that contains the macro
and procedure calls to find the optimal solution.

• A report writer program to interpret the solution file and print
the solution in a report format easily understood by the user.

VM/370 is an excellent operating system for optimization modeling
because it permits communication between programs written in APL, FOR
TRAN, PLll, and Assembler. Thus a typical modeling system might have an
interactive data input program written in APL; a database consisting of CMS
files; a matrix generator written in APL, PLll, or FORTRAN; a CMS EXEC
procedure that calls the MPSX/370 control program; and an AP L program to
print reports. What is remarkable from the perspective ofthe typical APL user
is that all of the above programs can be executed automatically from a single
APL program.

On the VM system, APL can communicate outside its environment with
the virtual processor. The vehicle for this is the set of auxiliary processors
available in VS APL that makes it possible to do the following from within
the APL environment:

• Create CMS files that can be read by FORTRAN, PL/l, or
Assembler programs.

• Read CMS files that have been created by a program written in
one of these languages.

• Set up a sequence of commands to exit from the APL environ
ment, run a CMS EXEC procedure, and return to APLin a way
that is automatic and transparent to the user.

Table 1 illustrates the data used in a simple model on the VM system. This
example, a linear model of oil refinery operations, is quite simple and really
does not require MPSX/370 to solve. Yet it illustrates the facets of a modeling
system for the purposes of this discussion.

The problem is this: At regular intervals, a refinery wants to know how
much of each type of raw gasoline it should blend to make each of its
products-regular and premium gasoline-to maximize its profit. Costs and
selling prices fluctuate greatly, so that the blend that is most profitable in one
time period may not be the most profitable blend in the next.

The modeling system discussed here is designed to allow the refinery to
enter costs and other relevant data. The system uses a linear model of the

106 Optimization Modeling Systems: An APLIMPSX Interface

refinery's operations and solves it using mathematical programming tech
niques.

Table 1 - Oil Refinery Operations

l\efinery
()etane Capacity Vapor

Gasoline l\ating (in barrels) Pressure

Type I 10K :30,000 4
Type 2 ~jO 20,000 IU
Type :3 7:3 40,O(lO G
Premium ~I;) (j

l\egular X:) 9

The Model

The solution to the problem is that combination of values of each variable
below that produces the maximum profit:

R 1 number of barrels of raw gasoline of type 1 to be used in
the regular gasoline blend.

R 2 number of barrels of raw gasoline of type 2 to be used in
the regular gasoline blend.

R 3 number of barrels of raw gasoline of type 3 to be used in
the regular gasoline blend.

P 1 number of barrels of raw gasoline of type 1 to be used in
the premium gasoline blend.

P 2 number of barrels of raw gasoline of type 2 to be used in
the premium gasoline blend.

P 3 number of barrels of raw gasoline of type 3 to be used in
the premium gasoline blend.

The profit to be gained from the production of the gasoline blends is the
difference between the selling price of the particular blend and the cost of the
raw gasoline for each variable above (see Table 2).

Table 2 - Gasoline Cost and Selling Price

Type I
Type :2
'j\pe :3
Premium
I{egular

Cost

:)):3;)
S2;-)
~20

~elling l'riee

Using the costs in Table 2, the profit equation becomes

PROFIT = BRl + 2R2 + 7R3 - 5Pl + 5P2 + lOP3

The model also includes constraints that restrict the values of the
variables, In this problem, there are three basic constraints: octane ratings,
refinery capacity, and vapor pressures.

Octane constraints require that the octane rating of a blend be at least 95
for premium and 85 for regular. The inequalities that reflect this are for
regular gas:

lOBRl + 90R2 + 73R3 ~ B5(Rl + R2 + R3)

Optimization Modeling Systems: An APLIMPSX Interface

or:

23Rl + 5R2 - l2R3 ~ 0

and for premium gas:

10BPl + 90P2 + 73P3 ~ 95(Pl + P2 + P3)

or:

107

Gasoline

l3Pl - 5P2 - 22P3 ~ 0

Capacity constraints restrict the amount of each type of raw gasoline that
can be produced at the refinery.

Gas Type 1:

Rl + Pl ~ 30000

Gas Type 2:

R2 + P2 ~ 20000

Gas Type 3:

R3 + P3 ~ 40000

Vapor pressure constraints require that the gasoline blends have suffi
ciently low vapor pressure. The inequality for regular gas is

4Rl + 10R2 + 5R3 ~ 9(Rl + R2 + R3)

or:

5Rl + R2 - 4R3 ~ 0

and for premium gas:

4Pl + 10P2 + 5P3 ~ 6(Pl + P2 + P3)

or:

2Pl + 4P2 - P3 ~ 0

Additional constraints could be introduced, such as a minimum produc
tion schedule to meet existing contracts:

Contractual Obligations
(Minimum Production)

Premium

Regular

8000

3200

The corresponding constraints would be for regular gas:

Rl + R2 + R3 ~ 3200

and for premium gas:

Pl + P2 + P3 ~ BOOO

A last set of constraints requires the nonnegativity of barrels produced:

Rl ~ O. R2 ~ O. R3 ~ 0, Pl ~ O. P2 ~ O. P3 ~ 0

Thus the final model expressed as a programming problem would be given
as follows:

Maximize:

PROFIT

subject to:

-BRl + 2R2 + 7R3 - 5Pl + 5P2 + 10P3

108 Optimization Modeling Systems: An APLIMPSX Interface

23Rl + 5R2 - 12R3 ;l: 0
13Pl - 5P2 - 22P3 ;l: 0

Rl + Pl S 30000
R2 + P2 s 20000

R3 + P3 s 40000
-5Rl + R2 - 4R3 s 0

2Pl + 4P2 - P3 s 0
Rl + R2 + R3 ;l: 3200

Pl + P2 + P3 ;l: 8000

and:

Rl. R2. R3. Pl. P2. P3 ;l: 0

Modeling System

A modeling system for this refinery would allow the user to easily enter
the costs, selling prices, and contractual obligations of the gasolines. In
addition, the system would return the result in report format. Such a system is
illustrated below with the sample inputs from the above discussion. Figure 1
shows the report containing the results.

REFINERY
ENTER COSTS OF GAS TYPES: 1. 2. 3
0:

35 25 20
ENTER SELLING PRICE OF PREMIUM AND REGULAR GAS
0:

30 27
ENTER MINIMUM PRODUCTION (CONTRACTS) FOR PREMIUM AND REGULAR GAS
0:

8000 3200
ENTER OCTANE RATINGS FOR GAS TYPES 1. 2 AND 3. PREMIUM AND REGULAR GAS
0:

108 90 73 95 85
ENTER VAPOR PRESSURE FOR GAS TYPES 1. 2 AND 3. PREMIUM AND REGULAR GAS
0:

4 10 5 6 9
ENTER REFINERY CAPACITY FOR GAS TYPES 1. 2 AND 3
0:

30000 20000 40000

PRODUCTION SCHEDULE - GASOLINE BLENDS

PREMIUM REGULA R
BARRELS PRODUCED COST BARRELS PRODUCED COST

GAS TYPE: (COST)

($35) 5028.6 175.861 14.971.4 $523.999

($25) 0.0 20.000.0 .1500.000

($20) 2971.4 .159,428 37.028.6 .1740.57 '2

TOTAL PRODUCTION: 8000.0 1235.289 72,000.0 $1.761+.571

PROFIT

GAS BLEND BARRELS PRODUCED COST SALES PPOF IT--------- -- --- - - - ----- - --

PREMIUM 80 00 1235,289 1240.000 ,(4711

REGULA R 72.000 .11.764.571 11,944,000 ..«'179.4.29

TOTAL: 80. 000 .11,999,860 12.184,000 ."lA 4 ,140

Figure I-Optimization Results

Optimization Modeling Systems: An APLIMPSX Interface 109

This paper illustrates the construction of an optimization modeling
system that combines the powerful, interactive potential of APL with the rich
variety of the VM/370 environment. Much more complex modeling systems
have been developed using these techniques. A quite sophisticated system can
be written in VM/370 whereby the only user-required command is the log-on
command. All the subsequent commands to enter the APL environment, load
a workspace, run an APL program, exit from AP L, run a CMS program, return
to APL, load a workspace, run a program, and log-off can be handled
automatically. VM/370 is a truly remarkable operating system!

What is interesting from the perspective of this paper is that what is
happening during the execution of the REFINER Y program is totally trans
parent to the user. As far as the user is aware, he signs on to VS APLand
runs a program REFINERY, which produces a report. In fact, the following
chain of events have occurred:

1. The user enters the APL environment, loads a workspace, and
executes an APL program REFI NERY.

2. The user enters run-dependent data.

3. An APL matrix generator subprogram is executed, creating the
model matrix.

4. A CMS file is created using Auxiliary Processor 110. This file
contains the card image of the model matrix required as input to
MPSX. Figure 2 illustrates this file.

5. A "stack" of commands is created to exit from APL, run a CMS
EXEC, and return to APL.

6. The CMS EXEC calls the MPSX macros. Figure 3 illustrates a
portion of the solution file created by the MPSX macros.

7. Execution returns to APL and begins the report program. The
solution data for the report is read from the CMS solution file
using Auxiliary Processor 110. .

Figure 3-MPSX Solution File

NAME GAS FREE
ROWS

N PROFIT
L GAS1
L GAS2
L GAS3
G POCTANE
G ROCTANE
L RVAPOR
L PVAPOR
G CONTRACT

COLUMNS
R1 PROFIT -8
R1 GAS1 1
R1 ROCTANE 23
R1 RVAPOR -5
R2 PROFIT 2
R2 GAS2 1
R2 ROCTANE 5
R2 RVAPOR 1
R3 PROFIT 7
R3 GAS3 1
R3 ROCTANE -12
R3 RVAPOR -4
P1 PROFIT -5
P1 GAS1 1
P1 POCTANE 13
P1 PVAPOR -2
P1 CONTRACT 1
P2 PROFIT 5
P2 GAS2 1
P2 POCTANE -5
P2 PVAPOR 4
P2 CONTRACT 1
P3 PROFIT 10
P3 GAS3 1
P3 POCTANE -22
P3 PVAPOR -1
P3 CONTRACT 1

RHS
MIX GAS1 30000
MIX GAS2 20000
MIX GAS3 4Q.000
MIX POCTANE 0
MIX ROCTANE 0
MIX RVAPOR a
MIX PVAPOR a
MIX CONTRACT 8000

ENDATA

Figure 2-CMS
Card Image File

• .UPPER LIMIT.
~()NP.

NONE
NONF
NONF'
NONF
NONE:

..LOWF'R LIMIT .• . INP/JT COST ••
8. 0000n
2. oooon
7. 00000
5.00000
S .OOOOf)

10. aonao

.•. ACT IV ITY. ••
14-971.4- 28 57
'l00aO .oooon
37028. ')7143

50:?8 . 57143

MPSCL F.XFCUT IONIMPSX/370 [fl~.'4 PTF?
OSECT JON? - CO[,{IMNS

NUf.!REF: .COLUMNS AT
10 Rl r~s

11 p.'2 P8
12 R3 AS
13 PI as
14 P2 LL
15 P3 BS ;:>971.4-2857

IMPSX!370 VIM4- PTP7 MPSCL EXECUTION
OEXIT - TIME = 0.05

Conclusion

Mary Lou Fox, currently an applications analyst in STSC's Management
Technology Division, has been an active user ofAP L since 1968. At STSC she is
responsible for the design, development, and implementation of user-oriented
modeling systems and software tools. Before joining STSC she was a research
associate at Fairfield University, responsible for the design and development of

110 Optimization Modeling Systems: An APLIMPSX Interface

APL applications, including the university's AP L libraries, CAl (Computer
Assisted Instruction) courses, instructional applications, and simulations.

Fox has a B.S. in mathematics from Boston College, a master's in math
education from Fairfield University, and a master's in computer science from
Polytechnic Institute of New York.

Christian Hocquet and Gerard Lacourly

Real-Life Applications of VM/370

Societe de Traitements et de Services Conversationnels, the French
distributor for APL *P L US Service, has for the past 18 months been promot
ing and supporting VM/370 products and services. VM provides a much wider
range of facilities than those available on OS-based APL systems, and some of
these facilities will be illustrated via the four different applications discussed
in this paper.

EOLE is a programming package designed and developed for opinion
research via surveys, with applications in the behavorial sciences. The major
features and capabilities of the package are described below:

• EOLE can process large arrays resulting from questionnaires (up
to 30,000 respondents with up to 50 questions each).

• Analytical features range from simple cross-tabulations to ad
vanced statistical analyses-segmentation, typology, and factor
analysis.

• The input data is bulk processed to convert it to a more convenient
internal format, and subsequent studies are performed on the
converted data.

• The main file need not be kept online. Instead, facilities are
provided so that the user can manage the archived data directly.

The system was implemented using VS AP L on a VM system for
several reasons. The user (who is a behavioral scientist, not a computer
scientist) had a distinct preference for using APL, and the ability of
VS APL to process very large arrays (as contrasted with the ones available
in APL implementations with fixed workspace sizes) made it easy to manage
the data in a natural fashion. And, because VM is an interactive system rather
than a batch system, the user maintains full control, in real time, of his data.

A major application in energy flow control employs linear programming
to optimize the production of hydroelectric plants. The application has three
major steps: collecting, controlling, and processing the input data; linear
programming analysis; and the post-processing of results to prepare manage
ment and engineering reports. Originally, the entire application was proto
typed in VS APL (including the linear programming model). However,
because of the vast amount of data involved, we decided to use MPSX 1370
(IBM's Mathematical Programming System Extended) for the linear pro
gramming step. This produced a system with the best mix of features: it kept
the flexibility and ease of change for the input and output processing, and
employed auxiliary processors (APs) to communicate with MPSX. MPSX itself

111

112 Real-Life Applications of VM/370

is a highly developed linear programming system; its use greatly improved
processing speed.

A major French manufacturing company had independently developed a
personnel management system several years ago on an OS-based AP L system
that featured files resembling those of the APL *P L US System. After much
operating experience, they decided to adapt the application to VS AP L on
the AP L *P L US VM System. The main reasons for the change were (1) data
could be moved more easily from non-AP L storage to the file system of the
APL *P L US VM System than to OS-based AP L files, and (2) the file-sharing
capabilities of the AP L *P L US VM System were more flexible.

A consulting firm specializing in economic and statistical analyses sought
a computer service both for processing their clients' applications and for
creating and offering new software packages. After evaluating several comput
er service suppliers, they chose APL*PLUS VM Service for the following
reasons:

• It provides access to several programming languages (FORTRAN,
COBOL, and PLl1 were the most important).

• It offers several well-known statistical packages such as the
Biomedical Computer Programs, P-Series (BMDP); the Statistical
Analysis System (SAS); and the SPSS" Conversational Statistical
System (scssa).

• It provides advanced tools for conversational programming of new
applications.

• It gives the user full control of the machine environment when he
needs it.

The four applications described above give many of the reasons why our
clients like VS APLand VM. From our vantage point, as suppliers of the
service, we see the following benefits:

• VM is a real-time system with a wide range of capabilities.

• Most commercially available VM/370 systems, such as the
APL *P L US VM System, feature numerous application libraries
and well-developed tools for rapid application programming in a
variety of programming languages.

• While VM systems are fundamentally interactive, it is easy to
change the interfacing mechanism so that applications can be run
either in the traditional interactive mode, or (using predefined
calling sequences) in a mode resembling batch or remote batch
processing.

In the early days of VM/370 usage, it was often disparagingly said that
one had to be a computer scientist to be able to use VM. This is no longer the
case, for there are many cataloged procedures that can be invoked to tailor the
system (as the user sees it) to match his own skills. Thus, the computer novice,
who is interested only in applying predeveloped programs to his data, uses the
system at one level, while the professional data processing person has access to
the full scope of the system-a system that gives more facility and flexibility
than the naked machine itself.

Perhaps the most significant benefit of VM is the ease with which one can
develop the various phases of an application in whatever language is most
appropriate. The user can be confident that transferring data, or sharing files
among phases of processing, is convenient, not prone to error, and well
disciplined.

Real-Life Applications of VM/370 113

From 1975 to 1978 Christian Hocquet was an applications consultant at CISI
(Compagnie Internationale de Services en Informatique), where he developed
database applications in personnel database management and medical labora
tories data management using an IMS DB/DC System. At CISI he also
managed the programming methodology and technical support groups and a
development group using IMS. In 1978 Hocquet joined the Societe de Traite
ments et de Services Conversationnels, an independent distributor of
APL*P Lus Service in France. Hocquet is currently an applications consultant
manager at the Societe.

Hocquet has a master's degree in computer science and a doctorate in manage
ment science.

Gerard Lacourly has been managing director of the Societe de Traitements et de
Services Conversationnels since 1978. In this capacity, he manages all activities
of the company, an independent distributor of APL *P L us Service in France.
Before joining the Societe, Lacourly was head of the APL Department at
SLIGOS and held several management positions with CISI (Compagnie Inter
nationale de Services en Informatique).

Lacourly has a graduate degree in electrical and mechanical engineering from
the Ecole Nationale Superieur d 'Electricite et de Mecanique, a doctoral degree
in mathematical statistics from the Institut Superieur de la statistique at Paris
University, and an M.A. in applied mathematics from Harvard University.

Brian C. Hagenbuch

APL and the Relational
Model of Data

When AP L first appeared, many people thought of it as a "toy" language.
While it was well suited to scientific applications involving complex calcula
tions on relatively small amounts of data, it was completely unsuitable for
business applications involving relatively simple calculations on large
amounts of data. Time has shown this opinion to be false. Today the primary
use of APL is in the very realm where it was once thought to be unsuitable-
business data processing.

Some reasons for the success of APL in the business environment follow:

• The extraordinary expressive power of the language is as well
suited to straightforward calculations as it is to more arcane sorts
of computing.

• Most APL time sharing systems now include facilities to aid the
programmer of business applications: file processors for storing
large amounts of data outside the APL workspace, formatting
utilities to reduce the cost of enhancing output, and other miscel
laneous system enhancements such as shared variables.

• As the APL programming community gained experience with
business applications, software libraries evolved to simplify the
task for future system developers. Many APL time sharing
systems now include routines (and even general-purpose applica
tion packages) to deal with file management, financial analysis
and planning, inventory control and material requirements plan
ning, and so on.

While for many the initial attraction to APL was its expressive power, the
evolution of system facilities and APL software is what made the migration of
AP L into the realm of business data processing possible. Today we are on the
verge of the next stage of evolution of APL time sharing-the marriage of APL
with database management.

The 1970s have been aptly called the decade of the database. The use of
computers in business has led to an increased awareness ofthe potential value
of information. To realize this potential value a new kind of software
emerged-the database management system (DBMS). The goals of a DBMS are
to allow diverse applications to access a common collection of data and to allow
these applications to be developed more easily, more inexpensively, and more
flexibly than would be possible otherwise. DBMSs attempt to achieve these
goals in several ways.

114

APL and the Relational Model of Data 115

One of the most important ways is through data independence. Data
independence refers to the insulation of application programs from the details
of how their data are stored. APL programmers enjoy quite a bit of data
independence in that they need not be concerned with such matters as how a
matrix of numbers is actually represented within the APL system. Users of
DBMSs can be similarly unconcerned with how their databases (usually much
more complex than matrices) are represented internally.

Consider the advantage of being able to refer to "the salaries of the
employees in department 50", rather than "the values in components 31
through 40 that correspond to occurrences of 50 in components 61 through 70".
The notion of data independence goes further than this, however. In addition
to freeing application programs from the details of the physical representation
of the database, many DBMSs supply forms of logical data independence, thus
allowing different applications to view the same data with entirely different
logical organizations. (One man's field is another man's record.)

Another important advantage of a DBMS follows from the notion of
logical data independence; to wit, the ability to avoid duplication of data.
Without benefit of a DBMS, it is common to find two or more applications
working with separate copies of the same data. Whether this is due to
conflicting access requirements (the need for different logical views of the
data) or just the lack of communication between application designers, the
result is the same. In addition to the obvious increase in storage costs, the risk
that these separate copies will not stay the same is introduced. As the copies
drift apart, the applications will inevitably produce inconsistent results.
Avoiding this risk is one of the main attractions of DBMSs.

A sophisticated DBMS will also provide capabilities such as:

• Programming language interfaces that allow access to the DBMS
from familiar environments and that make possible the develop
ment of complex procedures using the data.

• Maintenance and utility programs that free the application pro
grammer from the need to develop special solutions to routine
problems.

• Data reorganization facilities that improve storage and perform
ance characteristics.

• Data security and integrity controls that help ensure that data is
maintained in a correct and consistent fashion.

• Sharing capabilities that allow applications to support multiple
users without concern for interlocks and other such items.

• Access controls that protect the privacy of sensitive information.

• Restart capabilities that eliminate the need to adopt obscure
recovery tactics within individual applications.

• Tuning capabilities that allow the performance of the DBMS to be
balanced dynamically as new applications are incorporated and
old ones retired.

Although APL applications that incorporate many of these capabilities
are occasionally written, they always address fairly specific problems. Thus,
while new applications often benefit from techniques used in old ones, the new
ones must usually be designed and written from scratch. The situation is one
in which the substantial part of the effort of developing an application is aimed
at maintaining the data for the application, rather than at solving the real
world problem. The need for a database management capability for APL
applications is clear.

But what should an AP L database management capability look like? The
discussion above concentrated on the common characteristics of DBMSs.

116 APL and the Relational Model of Data

Obviously, not all DBMSs are alike. In addition to superficial differences in the
features they provide, DBMSs differ dramatically in the way they represent
data to users; that is, in their choice of a data model. It is here that we will
concentrate our discussion.

All DBMSs represent data as simple collections of related items. Such
collections are usually called records and might, for example, contain the
number, name, salary, and date of hire of an employee. The term data model,
however, refers not to records, but to the way collections of records are
organized. There are three data models used in current systems. While some
systems claim to support more than one model, most can be neatly classified as
either hierarchical, network, or relational.

In the hierarchical model, records are organized according to a simple tree
structure. A typical record is seen as subordinate to one record and as superior
to a collection of records. For example, consider an enterprise that is organized
into departments, each of which is solely responsible for several projects.
These projects are, in turn, individually staffed. In a hierarchical database for
this enterprise, a project record could be subordinate to a record associated
with the department charged with the project, and superior to a group of
records, each of which is associated with an employee who works on the
project. This organization seems quite natural in many contexts, and it
conveniently supports a wide range of applications.

The network model may be viewed as a generalization of the hierarchical
model. It organizes records according to what is called a plex structure. A plex
structure is one in which a typical record may have several superior as well as
several subordinate records. If the example above were changed slightly so
that several departments could share the responsibility for a single project
(and a single employee could work on several projects), the network model
would seem a more natural choice for handling the data.

In both the hierarchical and network models, a database is represented in
terms of two distinct kinds of conceptual objects: records and links between
records. The relational model differs from both the hierarchical and network
models in that it omits the concept of a link between records. Rather, records
are organized into tables. Each table is a collection of unique records of the
same type; that is, all the records in a table have the same field descriptions.
Within the relational model the effect of links between records is achieved by
reference to the values stored in the records.

An example may help make this distinction clearer. In the hierarchical
structure described above, there are five "objects" to consider:

1. Department records containing department number (DNO), de
partment name (DNAME), and budget (BUDGET).

2. Links relating each department to a set of project records.

3. Project records containing project number (PNO), project name
(PNAME), and budget (BUDGET).

4. Links relating each project record to a set of employee records.

5. Employee records containing employee number (ENO), employee
name (ENAME), salary (SAL), and date of hire (DOH).

We can represent this hierarchical scheme as follows:

DEPAHTMENT(DNO,DNAME,BUDGET)

One DEPARTMENT links to many PROJECTs

APL and the Relational Model of Data

PROJECT(PNO,PNAME,BUDGET)

One PROJECT links to many EMPLOYEEs

117

EMPLOYEE(ENO,ENAME,SAL,DOH)

In the relational model, the "one-to-many" links of the hierarchical model
can be expressed as data items in the subordinate records. Thus, a relational
version of the hierarchical scheme might look like:

DEPARTMENT(DNO,DNAME,BUDGET)

PROJECT(DNO,PNO,PNAME,BUDGET)

EMPLOYEE(PNO,ENO,ENAME,SAL,DOH)

(Underlined data items are keys; that is, they have unique values within the
table in which they appear.) Thus, by reference to the PNO value of an
employee record, we may uniquely identify the project records to which it is
linked, and similarly the department to which a project is linked.

The example of a network structure may also be recast in the relational
model. Recall that in the network example the "one-to-many" links of the
hierarchy are replaced by "many-to-many" links. We might represent a
network scheme as:

DEPARTMENT(DNO,DNAME,BUDGET)

Many DEPARTMENTs link to many PROJECTs

PROJECT(PNO,PNAME,BUDGET)

Many PROJECTs link to many EMPLOYEEs

EMPLOYEE(ENO,ENAME,SAL,DOH)

In the relational model, this more complicated structure can be represent-
ed as follows:

DEPARTMENT(DNO,DNAME,BUDGET)

DEPTVSPROJ(DNO,PNO)

PROJECT(PNO,PNAME,BUDGET)

PROJVSEMP(PNO,ENO)

EMPLOYEE(ENO,ENAME,SAL,DOH)

The important observation here is that, in the relational model, some of
the structural characteristics of the other models (links) are recast simply as
contents of the basic structure common to all the models (the record). This
simplification is apparent in data manipulation languages designed to work
with the relational model, and is one of the main benefits of the relational
approach.

While all three data models are capable of expressing the same range of
interrelationships between records (procedures exist to recast one model in
terms of another), the relational model has clear advantages for APL. The
"tables" of the relational model are quite similar to the arrays handled by
AP L. Further, the lack of nonrectangular link structures makes the relational
model seem "more natural" to APL programmers.

To my knowledge, there are no current implementations in which AP L is
effectively interfaced with a relational DBMS (although the time is ripe).
Nevertheless, the results ofthe work that led to the relational model can be of
immediate benefit to the designer of database applications in AP L. Foremost
among those results is the concept of normalization. Normalization is a
database design technique with the goal of simple, consistent representation of

118 APL and the Relational Model of Data

the relationships inherent in the data for an application. Although normaliza
tion techniques are applicable to all the data models discussed, they are most
easily understood and applied in the context of the relational model.

Most discussions of the relational model deal implicitly with tables in
what is called "first normal form" (lNF). INF simply means that the value of a
particular field in a particular record is atomic; that is, cannot be decomposed
into a simpler form. (A non-atomic value would, itself, be a table.) INF,
therefore, deals with the structure of tables. Higher normal forms are more
interesting in that they deal with the meaning of tables. It is impossible to look
at a table and tell whether, for example, it is in third normal form, unless you
have some additional information about the real-world situation represented
by the table. Take, for example, the following table:

DEPARTMENT COURSE STUDENT

ENGLISH LIT210 JONES
ENGLISH LIT210 BLAKE
PHYSICS OPTICS402 JONES

The table is meant to represent a real situation in which students are
enrolled in courses offered by the departments in a university. What is not
apparent from the table alone is the fact that a particular course is always
offered by one and only one department. In light of this fact, some system
designers (even those not familiar with normalization techniques) may feel
uncomfortable with our table. Some problems they might uncover include:

• The association between a department and a course that it offers
cannot be represented in the table unless at least one student is
enrolled in the course. There is nowhere in the table to record the
fact that the MATH Department offers ALGEBRA 1 0 2 until some
student enrolls in the course.

• Correspondingly, when the last student enrolled in a course drops
it and the pertinent record is deleted, additional information is
lost. If Jones decides to drop OPTICS402, we'll also lose track of
the fact that OPTICS402 is offered by the PHYSICS Depart
ment.

• In the course of updating values in the table, it is possible to
violate the correspondence of departments to courses. Suppose
BLAKE decides to move from LIT210 to OPTICS402. Unless
the associated change to DEPT is made at the same time, we may
find that OPTICS402 is offered by both the PHYSICS and
ENGLISH departments, in violation of our knowledge of the real
state of affairs.

In the terminology of normalization theory, our table suffers from three
kinds of anomalies: insertion anomalies, deletion anomalies, and update
anomalies. These problems can be solved by recasting the table as two separate
tables:

DEPARTMENT COURSE

ENGLISH LIT210
PHYSICS OPTICS402

COURSE STUDENT

LIT210 JONES
LIT210 BLAKE
OPTICS402 JONES

Each of the new tables is in what is termed fourth normal form. The
original table was not. (It was, however, in third normal form.) As a result of

APL and the Relational Model of Data 119

the further normalization of our table, it is now free from the anomalies
described above.

Normalization theory is too complex a topic to treat here in detail. It is,
nevertheless, worth the attention of anyone who designs databases. What it
amounts to is a formalization of "common sense design". It is especially
appropriate in the AP L environment, where the native data structure is the
rectangular array.

For excellent discussions of normalization theory (and the whole area of
database management), the reader is directed to the two books listed in the
notes at the end of this paper.

Conclusion

The continuing success of APL in business data processing is due not only
to the power of the language itself, but also to the ever increasing range of
system facilities designed to aid the application programmer, and to the
expertise of the APL programming community. Computerized information
systems have led the business community to appreciate the immense value of
accessible, well-organized information. To keep pace, APL time sharing
systems must eventually be extended to include the capabilities of a DBMS. In
the meantime, it would behoove the designer of database applications in APL
to look into the general area of database management. Of particular interest is
the relational model of data and its associated discipline of normalization.

Notes

1. James Martin, Computer Database Organization, Second Edition, (Pren
tice-Hall, 1977).

2. C. J. Date, An Introduction to Database Systems, Second Edition, (Addison
Wesley, 1977).

Brian Hagenbuch studied physics at Pennsylvania State University for one year
before transferring to St. John's College in Annapolis, where he earned his B.A.
in liberal arts. He then spent a year with Leasco Response, Inc., a time sharing
vendor, working on an interactive file management system. In 1974 Hagenbuch
joined STSC as an applications consultant, and in 1978 he joined STSC's
Applications Development Department, where he is currently an APL applica
tions analyst.

At STSC, Hagenbuch has taught AP L courses for STSC personnel and custom
ers and worked on several application development projects. He recently
completed a study on database management in AP L.

Part 2

The General Management
Viewpoint

John E. Suwara

APL Tutorial
For General Management

With labor costs to business--especially for white-collar and managerial
workers-rising steadily, it becomes more and more important to make people
productive in all areas. What AP L does, and does well, is to make people more
productive in implementing computer solutions. It is not uncommon for people
working with APL to improve their speed in implementing applications by a
factor ranging from 5 to 15. This is particularly true for "quick and dirty"
applications where an immediate answer is needed on a one-time basis.

This paper is derived from seminar material presented in a single day to
nontechnical managerial personnel. Its purpose is to provide the reader with a
sense of what it is APL does to speed the work of its users, with particular
reference to some of APL's uses in a business context.

Why APL?

APL came into being in the late 1950s because of a Harvard University
mathematician's search for a more effective way to express certain algorithms.
In working with conventional mathematical notations, Kenneth Iverson had
found them to be inconsistent; he also found he had to step out of mathematics
and use English to represent phenomena such as sorting. He looked into the
computer languages that were then available and also found them to be
inconsistent.

Being resourceful, Iverson invented his own notation-a notation that
also serves as a very elegant computer programming language. His invention
is sometimes called Iverson's Notation, but is more commonly known as APL
(a programming language). Iverson's starting point for APL was conventional
mathematics. From it, he developed a notation that is mathematical in nature
but has a richness and consistency that allow it to be applied to a wide variety
of commercial and scientific applications. This notation, by the way, allows
sorting to be represented.

In 1962 Iverson set forth his notation in a book called A Programming
Language (Wiley, 1962). At about the same time Iverson joined IBM, where he
worked on applying APL to the expression and solution of problems in a
variety of disciplines. In 1965 IBM implemented Iverson's AP L notation on a
computer for the first time. This initial implementation-using an IBM
System/360 computer and AP L as an interactive programming language
was so good that it was until just recently IBM's mainline AP L product.

121

122 APL Tutorial for General Management

Moreover, it is the "granddaddy" for the APL currently offered by most time
sharing companies that use IBM-type equipment, including STSC.

APL at IBM was originally an underground phenomenon. However, in the
early 1970s it achieved such widespread use that it gained formal product
support at IBM. Today APL is the most widely used interactive system at IBM.

The reason APL has achieved wide acceptance at IBM and other large
companies is that it is an exceptionally powerful computing language. It
derives its power first of all from the fact that it is interactive. APL users are
online, working directly and immediately with the computer. This means that
APL can be readily used by people in their daily work; they can "get on" the
system and get results fast. An interactive capability immediately improves
productivity. Furthermore, users do not have to be expert programmers, nor
do they have to be familiar with a lot of data processing jargon to use APL.

AP L is powerful because it is concise. A one-line statement in APL is the
equivalent of many lines of code in other programming languages. APL is
powerful because it is a rich language. Built into it are more than 40
"primitive" operations that can be run by simply typing the appropriate
symbol on the APL keyboard. These primitives go far beyond the standard
addition and subtraction to functions that allow sorting by various criteria,
identification of maximums and minimums, logarithms, and so on. And APL is
powerful in its consistency. APL primitive functions can be consistently
applied both to varying quantities of data and to varying configurations of
data.

APL may also legitimately be termed a universal programming language.
A first look at APL can easily give the impression that it is great for scientific
applications, but not very useful for business applications. In fact, STSC's
original name was Scientific Time Sharing Corporation because the founders
had that impression. In actuality, AP L is extremely well suited to handling
business applications. This is because a surprisingly large number of business
applications involve tables and APL is strongly table oriented. For example,
most budgeting applications are table oriented; I've personally written approx
imately fifteen budgeting applications in my eleven years of selling and
writing APL systems. In fact, the principal example we will work through will
be a budgeting application.

Last, and perhaps most importantly, APL is a language that allows its
users to deal with data dynamically. The same program that can be used to
handle three numbers can also be used to handle a hundred or even several
thousand numbers. During a given run, the user can change matrix sizes. Rows
and columns can be added; they can also dynamically be deleted. APL has a
whole set of primitives for dynamic data management.

Now let's take a look at APL in action. We go to the terminal and sign on
to STSC's APL*PLUS System. We type

3 + ~

press the RETURN key, and immediately get back:

7

APL is in "desk-calculator" or immediate execution mode, and we can perform
operations such as:

7 - 2
5

3 + ~

.75
6 x 2

12

APL Tutorial for General Management 123

Note that the computer's responses are printed at the left margin of the
paper. When it is our turn to enter a statement, the terminal automatically
creates a six-space indent and "waits" for our input.

The foregoing are scalar to scalar operations-that is, operations on
individual numbers. Addition, subtraction, division, and multiplication are
available directly on the keyboard and are "scalar dyadic pri~itive functions".

Such a demonstration shows the highly interactive nature of AP L. Each
time we type a statement and press the RETURN key, the information is
transmitted from the terminal over a telephone line to the computer. The
computer then processes the statement and returns the answer. All of this
takes place in less than a second. This type of responsiveness is typical of APL
interactions and is part of what makes them so powerful.

APL can be extended in a consistent fashion to work with groups of
numbers. Suppose a company has three products and last year's sales for these
products are 8, 13, and 16. We want to know what happens if current sales
increase 10 percent over last year's. We enter:

1.1 x 8 13 16

and get back:

8.8 14.3 17.6

The computer has multiplied 1. 1 x 8, 1. 1 x 13, 1. 1 x 16. This
is a scalar to vector (chain of numbers) operation.

If the sales expenses associated with each product are 5, 6, and 8, then the
gross sales margin would be

8 13 16 - 5 6 8
378

In this case, the group of numbers on each side of the subtraction function
are subtracted element by element: the 5 from the 8, the 6 from the 13, and the
8 from the 16. This is a vector to vector operation.

What is reflected in these operations is the consistency of APL and the
way in which its primitive functions can be consistently applied to varying
quantities of data. The examples happen to involve vectors of three numbers.
They could just as well have contained three hundred or three thousand
numbers-such is the capacity of AP L.

Variables and Assignment

There are two main features of a digital computer that make it such a
powerful tool. One is that it can store very large amounts of data; the other is
that it allows the user to run defined procedures against that data. The term
commonly applied to these defined procedures is "computer program".

In AP L, the basic way data is defined and stored is through the use of
variables. To assign one or more values to a variable such as SALES, we use
the assignment function, an arrow (+), as follows:

SALES-+-4 5 6 4

From now on, every time we type SALES, the computer will return the values
we entered:

SALES
4 5 6 4

We can perform scalar to vector operations on the variable SALES.
Suppose sales go up by 10 percent and we want to know what the resulting
sales figures are

1.1 x SALES
4.4 5.5 6.6 4.4

124 APL Tutorial for General Management

The computer has multiplied each element of SALES by 1.1.

We can also assign the result of a mathematical expression to a variable.
For example:

GRTH....l. 1 x SALES

In this case, the computer does not respond to what we enter. However, it
does store the information in the variable GRTH, and if we now type in GRTH
we will get back 1. 1 x SALES:

GRTH
4.4 5.5 6.6 4.4

The answer is not lost somewhere in the innards of the computer. The ease
of getting output from APL will be particularly appreciated by users familiar
with other programming languages.

APL is "human engineered"; throughout its structure and operations, the
AP L language reflects a concern for people and how they can use computers
more effectively. As much as possible it is designed to free its users from
thinking about the computer and let them focus on implementing their
applications.

To continue, we can define a variable called EXP for sales expenses:

EXP....2 3 2 1

To obtain gross margins, we enter:

GN....SALES - EXP
GN

2 2 4 3

A variable name, incidentally, can contain up to 77 alphabetic or numeric
characters; however, it must always start with an alphabetic character.

Dynamic. Nature of APL

Thus far we have seen APL operating with variables of stable size. APL
also makes it extremely easy to change the size of a variable. For example,
suppose we want to add sales figures for three more products to our variable
SALES. Sales are 10, 9, and 8 for the three new products. We adci these figures
as follows:

SALES....SALES.l0 9 8

Now, if we look at SALES we see that the additional figures are included:

SALES
4 5 6 4 10 9 8

The comma specifies this enlarging operation (. 10 9 8)-known as catena
tion. By means of catenation, the variable SA LES has changed its size-or, in
APL terminology, its "shape"-from four elements to seven. We have simply
added three elements to the end of the vector SALES and stored the expanded
vector back in SALES. We can do the same thing for EXP:

EXP....EXP.6 ~ 7
EXP

2321647

Suppose we need to know the number of elements in a variable. Do we
have to print them out and count them? Not at all. APL offers a primitive
function on the keyboard that allows us to determine the number of elements.
This is the shape function (p). Thus:

pSALES
7

p3 ~ 6 7

APL Tutorial for General Management 125

Indexing

We have seen how APL allows operations to be performed on entire
vectors; it also makes it possible to select and work with one or more elements
within a given vector. This is done by means of the indexing (also known as
subscripting) function, represented on the APL keyboard as brackets [] . Let's
look at SALES:

SALES
4 5 6 4 10 9 8

We can address any number in SALES by specifying the location that
number occupies within the vector (first from left, second from left, etc.). For
example, if we want to look at the sales figures for the second product in
SALES, we enter:

SALES [2]
5

Or, if we want to look at the sales figures for the third and fifth products, we
enter:

SALES [3 5]
6 10

This ability to address specific locations can be used to change information as
well as to display it. For example, to change the sales figures in the fourth,
fifth, and seventh locations of SALES, we enter:

SALES [4 5 7]+6 8 9

This assigns new values to the locations specified so that looking once again at
SALES we see it now contains the new values:

SALES
4 566 8 9 9

Extension of APL to Matrices

A two-dimensional matrix is nothing more than a table. To define a
matrix in APL, we simply specify to the system the number of rows and
columns we want the matrix to have. To do this, we turn again to the APL
primitive function p, as follows:

NAT+3 2 p 1 2 3 4 5 6
NAT

1 2
3 4
5 6

This is the dyadic or reshape function of p. It takes the elements on its right
(1 2 3 4 5 6) and rearranges them according to the specifications on its
left (3 2}-that is, in 3 rows and 2 columns.

Just as it does with vectors, APL allows us to readily perform standard
arithmetic operations on entire matrices. Thus, if we want to increase the
values in MA T by 10 percent, we enter:

1.1)(NAT
1.1 2.2
3.3 4.4
5.5 6.6

We can address any specific location in MAT by entering, for example:

NAT [2;1]
3

This gives us the value for the data located in the second row, first column.

We can change values in MAT:

126

HAT [2; 1]+-9
HAT

APL Tutorial for General Management

1 2
9 4
5 6

We can create a second matrix called MEXP:

HEXP+-3 2 P 1 1 2 1 1 1
HEXP

1 1
2 1
1 1

and subtract its contents from those of the first matrix:

HAT - HEXP
o 1
7 3
4 5

We can store the result in the variable 0 UT by entering:

OUT+-HAT - HEXP
OUT

o 1
7 3
4 5

Reduction and Scan

One of APL's most useful functions-used extensively in business applica
tions-is reduction (/). What reduction does is reduce an array of data to a
single element. Returning to our variable SALES, suppose we are interested
in knowing the total sales for all products. In APL we simply enter:

+/SALES
47

This returns the sum of all the numbers in SALES. This is known as plus
reduction. In combination with the shape function (p), plus reduction can be
used to determine value averages by means of an extremely concise expres
sion:

(+/SALES) + pSALES
6.7142857

Here we take the sum of the values in SALES and divide it by the number of
elements in SALES. This is the classic illustration of APL's power. The
equivalent FORTRAN or BASIC program usually contains 10 or more state
ments.

Reduction is not confined to plus reduction. It can be used with any valid
APL primitive dyadic function. A practical example would be to define a
variable called I NT that contains annual interest rates for four years:

INT+-. 1 .12 .1~ .15

To obtain the compound interest rate for the four-year period, we use times
reduction:

x./1+INT
1.615152

In the same family of functions as reduction is scan (\). Scan performs a
series of partial reductions. Plus scan calculates a series of partial sums.

Suppose we define a series of monthly sales for six months:

HSALES+-3 2 8 ~ 9 3

To obtain the cumulative sales for each month, we use plus scan:

APL Tutorial for General Management 127

+\MSALES
3 5 13 17 26 29

Returning to the compound interest example, we can apply times scan to
get the cumulative compound interest at the end of each year:

X\l+INT
1.1 1.232 1.40448 1.615152

Writing a Program Using APL

It was stated earlier that digital computers derive a great deal of power
from their ability to run defined programs against large amounts of stored
data. How are such programs defined in AP L? In AP L, another name for a
program is function. Programs are called defined functions. Defining a
function extends the capability of the computer. Let's assume that we want to
concentrate on calculating averages. We can define a function to do this for us,
as shown below:

VZ.....Ave x
[1] Z..... (+!X)+px
[2] V

By typing in the del (V), we inform the AP L system that we are leaving
immediate execution mode and entering a mode that allows us to define our
own programs (called function definition mode). After entering the function,
we type another V to switch us back to immediate execution mode. In between
the two Vs we have defined a function named A VG that will accept data
through X and display the result through Z. Now when we enter:

Ave SALES
6.7142857

we call on a predefined function called A VG to manipulate the SALES data.

The next step is to take what we have learned about defining and storing
data and about defining functions and apply it to an actual AP L application:
building a small budgeting system.

System Definition

The first requirement is to define the system. With a real-world applica
tion, we would consult with the application's user to work out this definition.
The key at this stage is to determine what kind of output is desired and in what
format it is to be reported. From that information we can work backwards and
decide where the data is to come from and what processing is necessary to get
it in the desired format. Figure 1 shows the kind of report our budgeting
application will be designed to produce.

An important part of determining the report format is to define the
relationships between the rows and the columns in the report. We must specify
which data is to be entered and which is to be calculated. From this
information we can now design the system and write the programs.

Writing the Programs

We will write three programs: one to enter the data, a second to perform
the specified calculations, and a third to print the report.

First, we will write the data storage program. We define a program that
will create a two-dimensional matrix or table to store numbers (statement
[1 J) and that will then enter the appropriate numbers (statements [2 J
through [1 0 J).

128 APL Tutorial for General Management

STSC SAMPLE BUDGET
FISCAL YEAR 1980

QTR QTR QTR 9TR
1 2 3 4 TOTAL

APL REVENUES input
CONSULTING input
SOFTWARE input

TOTAL REVENUES calculated totals

SALARIES input
TRAVEL input
TELEPHONE input
OFFICE SPACE input
OTHER EXPENSES input

TOTAL EXPENSES calculated totals

PROFITABILITY calculated (rev - exp)
YTD PRF calculated (ytd of prf)
0/0 EXP/REV calculated (exp rev)
0/0 SAL/REV calculated (sal . rev)

Figure I-Sample Budget Information

A TOTAL REVENUES
A TOTAL EXPENSES

A PROFITABILITY
A TOTAL COLUMN
A YTD PROFITABILITY
A FIXUP YTD TOTAL COLUMN
A a/a EXP/REV
A a/a SAL/REV

VENTER
[lJ D+1 .. 5pO
[2J 'ENTER APL REVENUES' 0 D[1;J+5tD
[3J 'ENTER CONSULTING REVENUES' 0 D[2;J+5tD
[4J 'ENTER SOFTWARE REVENUES' 0 D[3;J5tD
[5J A ENTERING EXPENSES
[6J 'ENTER SALARIES' 0 D[5;J+5tD
[7J 'ENTER TRAVEL' 0 D[6;]+5tD
[8J 'ENTER TELEPHONE' 0 D[7;J+5tD
[9J 'ENTER OFFICE SPACE' 0 D[8;]+5tD
[10J 'ENTER OTHER EXPENSES' 0 D[9;]+5tD
[llJ "0 'END OF INPUT'
[12J V

Second, we define the program that performs the calculations:

VCALCULATE
D[.. ;]++fD[1 2 3;]
D[10;]++fD[5 6 7 8 9;]
D[11;]+D[4;] - D[10;]
D[;5]++/D[;1 2 3 4]
D[12;]++\D[11;]
D[12; 5]+D[11; 5]
D[13;]+100XD[10;]+D[.. ;]
D[14;]+100XD[5;]+D[.. ;]
'END OF CALCULATIONS'
V

[1]
[2J
[3J
[4J
[5J
[6J
[7]
[8J
[9J
[10J

Last comes the program to print the report. To write this program we will
use STSC's enhanced utility programs for report formatting to format titles,
column headings, and row names.

The first thing we will do is copy these formatting utilities from the public
library in which they are stored. This is done by entering:

APL Tutorial for General Management

)COPY 1 FORMAT

129

SAVED

Now we write the REPORT program:

VREPORT
[1] 'ALIGN PAPER - PRESS RETURN' ¢ T+~

[2] FS+'20Al, 5CBF10.2'
[3] FS CENTER 'STSC SAMPLE BUDGET'
[4] FS CENTER 'FISCAL YEAR 1980'
[5] , ,
[6] FS COLNAMES 'IIQTRIQTRIQTRIQTR'
[7] FS COLNAMES 'II 11 21 31 ~/TOTAL'

[B] RN+20 ROWNAMES '-APL REVENUES-CONSULTING-SOFTWARE'
[9] RN+RN,[l] 20 ROWNAMES '-TOTAL REVENUES-SALARIES-TRAVEL'
[10] RN+RN,[l] 20 ROWNAMES '-TELEPHONE-OFFICE SPACE'
[11] RN+RN,[l] 20 ROWNAMES '-OTHER EXPENSES-PROFITABILITY'
[12] RN+RN,[l] 20 ROWNAMES '-YTD PRF-olo EXPIREV-olo SALIREV'
[13] FS DFMT (RN;D)
[14] v

We can put these three programs together in a little system called MAlN
by entering:

VMAIN
[1] ENTER
[2] CALCULATE
[3] REPORT
[4] v

That's all it takes. Our budget application is now complete. Applying this
simple package of three programs to the appropriate financial data will
quickly produce the report shown in Figure 1.

Conclusion

This paper has offered a brief overview of APL syntax and style with a
view to illustrating the programming language's singular economy and power.
With APL, users can implement applications many times faster than is
possible with other high-level programming languages. We have seen some of
the quick, practical applications possible with AP L; there are many, many
more that make people more productive in implementing computer solutions.
And nothing is more crucial in today's competitive business environment than
increasing "people productivity".

John Suwara joined STSC in 1975 and was a branch manager and regional
manager before he assumed his current position as vice president of western
u.s. marketing. Suwara previously worked as a systems engineer and market
ing representative for IBM. He is a co-founder of TSR, where he worked from
1969 to 1974.

Suwara holds a bachelor's degree in electrical engineering from City College of
New York and a master's degree in electrical engineering from New York
University. He also completed courses at St. John's University toward an
M.B.A.

Linda Alvord

APL in the
High School Curriculum

Since 1967, we at Scotch Plains-Fanwood HighSchool in New Jersey have
been actively developing a new approach to teaching mathematics. We have
incorporated AP L, with its traditional symbolic notation, into the teaching of
mathematics at the secondary level. Based on our experiences, I would like to
share with you a few of my reasons for believing that APL expands, as well as
expresses, the concepts normally developed in a high school mathematics
program, and consequently offers students exposure to numerous career
options.

The study of APL has immediate value to students because it makes
mathematics more real to them. With the addition of APL, mathematics may
be perceived as more comprehensive, but it also becomes more applicable,
exciting, and relevant. Students and teachers benefit in two ways. First,
teaching and learning secondary school math becomes a more exciting, and
therefore a somewhat easier, process. Second, the important concepts learned
in math courses are more apt to be extended-by the students themselves-to
the world around them.

One significant goal of teaching mathematics is to encourage students to
develop and use a written symbolic language to communicate abstract ideas.
APL not only provides an excellent mathematical language to cover all high
school math concepts, but it also provides an excellent means for demonstrat
ing the use of a computer programming language.

In a recent lesson on probability and statistics, we considered a moderate
ly complex problem: finding all possible sums that could be obtained if three
dice-one tetrahedron (4 faces), one icosahedron (20 faces), and one
dodecahedron (12 faces)-were tossed. The sample contains 384 possible
outcomes. To count the number of times any specific sum could occur is quite
tedious. With APL, we used arrays of data and produced the expected values.
By creating a frequency table, we actually experienced the sampling process.
Using APL notation alone, without executing expressions at a terminal, the
students were able to understand the relevant aspects of the problem.
Increased understanding is a major benefit of using APL in the learning
process.

As a student's knowledge of a language increases, visual images will often
appear in his "mind's eye" as expressions are read and understood. The clarity
of each APL expression, combined with the visualization of results at a
terminal, can have dramatic effects on the thinking and learning process. Just
as there seems to be some magical moment when one begins to think in terms
of a new (spoken) language, there is a parallel jump in using APL to process

130

APL in the High School Curriculum 131

numeric data and learn mathematics. Difficult concepts are more easily
understood as they are worked through using APL, because the student can
"see" each step of a problem sequentially.

Diagrams or pictures are often very helpful when learning mathematical
concepts. Again, APL lends itself nicely. Using outer product (0 • x), for
example, we can illustrate the "how" and "why" of complex multiplications.

The use of APLin our mathematics curriculum has provided more
significant motivation for our students to explore mathematics and related
fields. Moreover, they do so in creative ways not typically inspired by
conventional teaching techniques. They find that their experiences relate to
science, psychology, sports, theoretical mathematics, and other fields. The
inspired investigation ofthese diverse areas leads to career opportunities often
not formerly considered by students.

A student with a fundamental knowledge of APL can easily begin a
computer-oriented career. At least two recent graduates have been employed
by the computer science department of Bell Telephone Laboratories im
mediately after graduation. Consider that this occurred without their having
college degrees or specialized training. Another student had a sufficient start
in his education to complete both his graduate and undergraduate work in
only four years.

Although many students leave high school long before their careers are
shaped, their introduction to APL and computers at the high school level
provides them with a more substantial mathematical background and a
foundation for understanding computer systems. And perhaps more important
in the long run, the exposure to APL presents them with diverse career
opportunities for the future.

Linda Alvord has been chairperson of the Mathematics Department at Scotch
Plains High School, New Jersey, for the past 18 years and has taught
mathematics for 21 years. In 1968, assisted by fellow teachers, Alvord developed
an AP L teaching program that has been running successfully ever since.

Alvord has a B.A. from Montclair State College, an M.A. from Columbia
Teachers College, and is currently enrolled in a doctoral program at Rutgers
University for creative arts in education.

Andrew D. Luzi

A Business School's Approach
To Better Business with APL

It is no secret that government and business are becoming increasingly
more dependent on computers in all management functions. Business
schools-to "stay in business" as well as to provide a relevant education to
their students-are increasingly realizing the value of offering practical
coursework in computers to students studying all areas of business.

Once a school has made such a commitment, two general objectives are
likely to emerge:

1. Students should be knowledgeable in, and comfortable with, the
use of a business-oriented computing language.

2. The use of that language should be incorporated into coursework
across disciplines to strengthen students' skills with the language
and to enhance the content of the individual courses and the
entire business program.

My experience in teaching and using AP L in a business school shows me
that APL is an ideal language for meeting these objectives. Benefits are
obtained not only by students, but also by professors, future employers, and
the business school itself.

Students benefit in ways I will make clearer later. Basically, they gain a
general knowledge of computers and specific knowledge of a programming
language. Through the use of computers, they also gain deeper insights in
related subject matter, such as accounting, marketing, and operations re
search.

Professors benefit because their jobs are made more interesting, though
not necessarily easier. It is easier, however, to point out the value of particular
course material if you can make it both interesting and relevant. There are
obviously numerous ways professors can use computers for their own personal
research and class management.

Potential employers save time and money when they are able to hire a
person already knowledgeable in the use and value of computers.

The business school that offers practical coursework in computers is
aware of the benefits that accrue when it notes the number of applications per
opening for each entering class and the average profile of the applicants.
Students carefully evaluate business schools. One of their criteria for selection
is how well business schools can sell their "product"-the students-to
employers. An increasingly large factor in that transaction is how well
equipped students are to enter the business world and contribute. Relevant
experience is highly desirable, and knowledge of computers is still one of the

132

A Business School's Approach to Better Business with APL 133

best attributes a graduating student can have. Schools that offer the best, and
most relevant, business experience will attract potential employers and,
consequently, the best students.

At Pennsylvania State University we have introduced the use of comput
ers in several courses. We have found that a one-semester course in computing
and introductory AP L provides the necessary background on which to build
practical coursework in various disciplines.

For example, one accounting course requires a major project using APL
for personal computing, terminal remote batch processing, text editing, and
APL programming. Students work alone and in groups to complete projects,
which may take as long as three or four weeks. The modular aspect of APL
function syntax allows a group to partition the project so that everyone obtains
programming experience. Having the students program in parallel paths
forces a thorough understanding of project design before the project begins.

Perhaps a more interesting, but equally successful, use of APL at
Pennsylvania State University is student participation in projects outside
specific coursework. A student, or group of students, acts as a consultant to a
company or government agency. Because these projects are undertaken in
real-world settings, they can result in part-time employment. The high
probability of having their own ideas actually implemented serves as an
excellent motivation for students. In most cases, the potential outside users
attend the final student demonstration of the project.

Examples of past projects include setting up:

• A radioactive material inventory.

• A history of human exposure to radioactive material.

• Payroll deduction tables for use by a manual payroll system.

• Inventory systems for a small car dealership.

• A patient history and hearing-aid selection system (to be pre
sented at the Pennsylvania Speech and Hearing Association).

• A program to predict student enrollment (through analysis of a
questionnaire filled out by all accounting majors).

• Computer-aided instruction programs to teach students advanced
AP L concepts.

The students and the school benefit when the objectives mentioned earlier
are met through coursework and extracurricular work such as that described.
Students gain a deeper knowledge of programming and the subject material,
because writing programs and designing systems requires a solid understand-
ing of concepts and relationships, not simply facts or formulas. .

An example of this is the student who, while programming an accounting
package for a small car dealership, exclaimed: "I don't know enough account
ing!" The programming project forced him to recognize his lack of knowledge,
to ask for help, and to complete a self-study of advanced accounting before
continuing to program. Students are motivated to do this extra work because
they know the value of hands-on experience and feel a sense of accomplish
ment when a project is done well.

In conclusion, classroom projects and assignments using computers in
troduce students to interactive computing, allow for development of interper
sonal communicative skills, reinforce real-world and classroom concepts in an
applied environment, and provide the student with experience that can be
used beneficially in future employment.

134 A Business School's Approach to Better Business with APL

Andrew Luzi is an assistant professor in the Department of Accounting and
Management Information Systems at Pennsylvania State University. He holds
an M.S. and a Ph.D. in accounting, both earned at the University of Kansas.
Luzi is currently involved in research on developing audit systems for the
Pennsylvania Department of the Aging. Research interests include a process
concept of control and controls, quantity accounting: an interactive model,
systems training in the public sector, and the relationship between performance
information systems and group problem solving processes.

Luzi is a member of the American Accounting Association, the National
Association of Accountants, and ACM.

Mary Lou Fox

Computer-Assisted Instruction
At the Undergraduate Level

During the past two decades the instructional use of computers at
universities and colleges has mushroomed. Professors and researchers have
long recognized the benefits of using computers in their own professional
endeavors. Now there is increasing recognition that the use of computers by
students during their undergraduate years also has great value.

Part of the value lies in removing the mystique about computers and in
increasing students' awareness of the potential benefits and problems as
sociated with the ubiquitous use of computers in a technologically advanced
society. But, more importantly, using computers in instruction fundamentally
alters approaches to learning in many subject areas and has broad implica
tions for the future careers of students who learn in this fashion.

In my experience as an instructor of computer programming and applica
tions at Fairfield University, I have found there are significant benefits
associated with students' exposure to, and use of, the APL language and
programming concepts. The concise expressions and algorithmic nature of
APL allow fundamental concepts of computing to be learned without the
obfuscation of programming details. The fundamentals of APL are easily and
quickly learned, thus allowing students to tackle worthwhile problems within
a reasonable period of time.

At Fairfield University, all students with a business major and most
students with a mathematics, science, or social science major study AP L in a
one-credit course in their freshman year. This early exposure to computing
serves two important purposes. One is to introduce students to computing so
that they will have a basic knowledge of a computer's capabilities and so they
can use that knowledge during their undergraduate career. The second
purpose is to help students discover that computing is an exciting and
worthwhile career. Making this discovery during the freshman year permits
students to orient their studies and career goals in this direction. Not all
students want to be programmers, but many may want to include computing
as an integral part of their future. This desire comes from a growing
recognition of the usefulness ofthe computer as a tool in learning and problem
solving.

Fairfield University's approach to learning is reinforced with the wide
spread use of computers in the instructional process in many subject areas.
Some examples illustrate this point:

• Freshmen studying chemistry are tested on prerequisite skills in
mathematics and chemistry during orientation. Students requir
ing remedial help are told to sign on to the Computer-Assisted

135

136 Computer-Assisted Instruction at the Undergraduate Level

Instruction (CAl) programs, which are written in AP L and which
attempt to remove the deficiencies in the student's background.

• Students studying chemistry or mathematics frequently attend
laboratory sessions in the terminal room. During these sessions
APL is used to illustrate basic concepts such as limits or deriva
tives, to grind out terms of series to demonstrate convergence or
divergence, or to develop algorithms to solve problems such as
plotting a great circle course for a ship. Emphasis is on problem
solving and clear, concise algorithms.

• Sophomore sociology majors find that one of the three weekly
classes in the required statistics course is held in the terminal
room. The usual approach to statistics involves a great deal of
calculation with too little understanding of what is being com
puted! In this new approach, students quickly learn to use APL to
calculate statistics. This introductory course focuses on a database
of sociological research data, and on the correct use and interpre
tation of statistical tests to report on this database. Feedback from
students has indicated that interest in this traditionally dull
subject is quite high. Students enjoy analyzing real data and
making judgments based on statistical tests. They become quite
involved in the quantitative aspects of sociology.

• A biology professor conducts a course on ecology and the environ
ment. He complements the lectures with field trips and computer
laboratory sessions. The topic of water pollution is viewed from
the perspective of field trips to a pond and a river, and students
use a computer model to simulate effects of pollution in bodies of
water. The computer model, written in APL, permits students to
thoroughly explore many problems that can only be alluded to in
a lecture. Students enjoy experimenting with this and other
models as they attempt to solve realistic problems that generally
could not be solved without such models.

• Some students find that their interests lie in the area of computer
applications or computer science. The initial exposure to APL
gives the students experience in manipulating data arrays and
provides a firm foundation in clear, concise algorithmic expres
sion. This is a great aid in further study of other programming
languages, data structures, and applications.

The examples above illustrate how students can become deeply involved
in subject matter when an interactive AP L computing system is used in the
learning process. The key benefits of instructional computing are summarized
below.

1. Instructional computing emphasizes problem solving using realis
tic problems not generally within the grasp of undergraduates.

2. Instructional computing focuses on clear and concise algorithmic
expression.

3. Instructional computing motivates students to learn more about a
subject and to become more deeply involved in the learning
process.

Students who have been actively involved with computing during their
undergraduate years frequently seek career opportunities in this field. Some
areas where they have sought opportunities include:

Computer-Assisted Instruction at the Undergraduate Level 137

• Graduate work in computer science or diverse quantitative areas
such as operations research, management science, statistics,
biostatistics, econometrics, and financial analysis.

• Teaching computer programming and applications.

• Employment in computer programming, systems analysis, the
broad range of application areas, systems programming, or com
puter systems design.

• Medical research on the myriad possibilities for using computers
in medicine, such as monitoring patients and implanting
microcomputers.

• Research and data analysis.

• Scientific computing and numeric analysis.

• Developing modeling systems to solve problems in areas as diverse
as economics, the environment, medicine, business, criminal jus
tice, and traffic safety.

• Developing financial planning systems, forecasting systems, and
financial analyses.

• Development of instructional computing applications that include
drills and practice sessions, tutorials, computer-assisted testing,
simulations, and games.

As our society becomes increasingly dependent on computers, students
who can work with computers, develop and use algorithms effectively, and
deal with quantitative analyses will increase their career opportunities
dramatically.

Mary Lou Fox, currently an applications analyst in STSC's Management
Technology Division, has been an active user ofAPL since 1968. At STSC she is
responsible for the design, development, and implementation of user-oriented
modeling systems and software tools. Before joining STSC she was a research
associate at Fairfield University, responsible for the design and development of
AP L applications, including the university's APL libraries, CAl (Computer
Assisted Instruction) courses, instructional applications, and simulations.

Fox has a B.S. in mathematics from Boston College, a master's in math
education from Fairfield University, and a master's in computer science from
Polytechnic Institute of New York.

Gayle E. Abbott

Career Growth
In an APL Environment

APL is a powerful and efficient tool that can be used in a multitude of
environments to accomplish a wide range of tasks. Originally the language
was primarily thought to be useful for scientific or mathematical applications.
In the past ten years, however, STSC and other APL service companies have
enhanced the language to increase the efficiency of automated applications in
a business environment. Typical examples include financial planning systems
and manufacturing and material requirements planning systems. The advent
of features such as Automatic Control of Execution (ACE) has dramatically
expanded the ability of APL applications to take on "batch-like" charac
teristics, when appropriate.

In looking at careers, the addition of APL programming skills to one's
background can open the door to a wider range of opportunities than would
otherwise be available. While the knowledge of other programming languages
can also lead to career growth, APL has distinct advantages. The ease with
which one can learn the language allows one to seek interesting and rewarding
jobs a very short time after the initial introduction to the language. Other key
advantages include the relative "newness" of APL, the rapidly growing
popularity and use of the language, and the diversity of the applications
written in APL.

These are some of the reasons why APL is emphasized at STSC. It has
been found, however, that skill in APL alone is not sufficient for career
growth. In some cases, individuals are brought into STSC without any specific
knowledge of APL, but with a desire and aptitude to learn the language.

APL is a tool that, when combined with other skills and characteristics,
can provide a wide range of career opportunities. Most companies have a
greater demand for qualified personnel than the marketplace can supply. This
phenomenon-which is expected to continue well into the 1980s-provides
many opportunities for the individual with initiative. While emphasis is
placed on recruiting individuals with bachelor's or master's degrees, pertinent
work experience, or both, opportunities also exist for those with technical
training or a high school diploma. A key factor is evidence of initiative
indicated perhaps by the pursuit of additional education on one's own or
involvement in special projects. The emphasis on college degrees has arisen
from the need for flexibility and a broad understanding of the business
environment.

The other skills and personal characteristics that have been found to
complement technical skills are communications skills (both written and oral);
specialized knowledge in a field such as finance, insurance, or manufacturing;

138

Career Growth in an APL Environment 139

pride in personal accomplishments; a positive attitude; the ability to work
independently with minimal supervision, yet function as part of a team; the
ability to accept responsibility; and the ability to think analytically.

Once we find individuals with these qualifications, what can we do to
retain them? It is important for corporations to recognize individual career
objectives and to make the best use of them in meeting corporate objectives. A
key point is flexibility-eompanies need to be flexible in defining jobs and
career opportunities. Definition of career progression opportunities is a
common request made by data processing personnel today. Limited definition
of career paths, combined with unlimited opportunities, provides an environ
ment where an individual need only change companies to satisfy career and
personal needs. It is a challenge to the industry to provide a means for
educating data processing personnel in career planning and for assisting them
in defining and achieving their goals.

Responsibility for career development rests at three levels-on the Per
sonnel Department, on the employee, and on the employee's manager. It
should be noted that top management is responsible for providing a climate
that encourages and is open to career development.

The role of the Personnel Department (or its equivalent) is to provide the
resources. It can provide assistance on planning a career and can counsel
employees by answering questions or by asking questions designed to "guide"
the employee. Personnel is a resource only. It cannot set the path an employee
is to follow; it can only present the options.

Each employee has the primary responsibility for his own career develop
ment. He must determine where he has been and where he wants to go,
evaluate his needs, communicate his career intentions to the organization, and
negotiate his career.

The employee's manager must learn to move from the role of "boss" to
that of career counselor. The manager must be open to discussing an employ
ee's needs and desires, strengths and weaknesses, career opportunities, and
the skills that need to be acquired or enhanced to meet the employee's career
objectives.

Career paths in the data processing industry need not be clearly defined.
To do so would take away flexibility. Creativity and initiative-factors that are
highly valued in many jobs and that STSC feels have been a crucial ingredient
in the success of the company-would be reduced. While some positions
require guidelines and structure, many are flexible, giving the individual the
freedom for initiative and creativity. It is found throughout the structure,
however, that it is important to unleash motivation by ensuring that work has
a purpose, that it allows the full use of abilities and education (note the term
"abilities", rather than "experience"), and that it allows some measure of
autonomy and decision making. In addition to being challenging, positions
should involve full project responsibility wherever possible.

Career development or progression does not refer just to movement from
one position to another, but to the molding and shaping of positions, when
appropriate, to provide for individual needs and to use the individual's
abilities. It is important for jobs to be designed so that each person is
challenged and needs to stretch a little to succeed. Job expansion and lateral as
well as upward movement should be recognized and encouraged. The variety of
duties and responsibilities in a general job classification (e.g., programmer)
must be recognized, as well as movements between different departments in
the company (e.g., from a technical to a sales department).

Frequently it is seen how individual career growth parallels the career
growth of the organization. As an organization grows, so do its needs and the
variety of opportunities-it only takes personal initiative for an individual to

140 Career Growth in an APL Environment

seize these opportunities and grow himself. As mentioned earlier, it is the
individual who works to broaden his knowledge and skills who will grow in his
career and who will find the greatest number of options for growth available to
him.

A broad range of jobs are available in the data processing industry. Any of
these might be highly suitable for the individual with skills in APL. Positions
start at the clerical or technician level (that point where most people with only
a high school diploma or limited technical training might begin) and run to
professional and managerial positions that emphasize any combination of
higher education and experience. Opportunities exist in applications and
systems programming, product and system development, communications,
consulting, sales, management, or any combination of these.

Thus far we've covered the career benefits of APL, the opportunities
available in the marketplace, and the need for career development. One might
well ask: "How are opportunities communicated, and how are individual
abilities recognized at a corporate level?" At STSC, we have (or are in the
process of developing) the following systems to aid our internal communica
tions and career development program:

• All job openings are currently announced via an online system
(which was, of course, written in APL). Descriptions of most jobs
and the required qualifications are entered into the system as
soon as the jobs become available. Any employee can access
current job openings by simply loading a workspace. Openings are
posted for a minimum of one week or until the job is filled. In
addition to informing internals of opportunities available to them,
it provides a means whereby employees can refer qualified
friends. This system has worked extremely well, resulting in a
significant amount of lateral and upward movement.

• Communication between managers and employees is encouraged
and emphasized. In addition to ongoing interaction, a perform
ance evaluation system exists to encourage interaction and stress
individual development. Performance reviews are scheduled
every six months and are usually separated from salary reviews
by at least three months. The latter guideline is set so that
preoccupation with salary is avoided and development is empha
sized. In addition to reviewing performance against individual
standards set at the preceding review, these sessions allow discus
sion of skills the employee needs to acquire, methods for acquiring
them, and the employee's own feelings regarding his career. It is
necessary to devote adequate time to performance evaluations,
since they are a key to career growth and planning.

• A recent development, not yet finalized, is a personnel database or
skills inventory file. The system contains biographical summaries
of all employees. If a job arises that requires a certain key skill,
the database can be accessed to see which employees have the
required background. For instance, if you wanted to see which
employees have an engineering background, you would load the
workspace and request "engineering". The database can also be
accessed by type of degree, college attended, name, previous
employers, skill, or title-to name just a few.

• Lastly, a career development folder is in preparation. This pam
phlet, which will be available to all employees, will provide
assistance in evaluating and defining career experiences and
goals. It will also provide a broad definition of opportunities
available within the company, and it will describe the related,
required, or desirable qualifications. In summary, the folder will

Career Growth in an APL Environment 141

be a resource manual, assisting employees in the responsibilities
they have for planning their careers.

Training must be mentioned, if only briefly, as an important segment of
the career management process. Training programs can strengthen existing
skills; develop new skills; or orient individuals to a concept, job, or organiza
tion. Internal training and company support of continuing education (as
expressed by tuition aid, seminar attendance, and a liberal leave of absence
policy) are important.

Conclusion

We have discussed the characteristics important to career development,
the definition and responsibilities of the career planning process, and the
components of a working career management system. Career planning is
important in the data processing industry, and it can work effectively. The key
factors are flexibility, initiative, and creativity. AP L is a useful tool both in the
formal career planning system and as a skill that an individual can use in any
number of environments, for any number of purposes. AP L is another highly
marketable skill that can and does increase the opportunity for exciting,
challenging, and varied careers.

Gayle Abbott has been director ofpersonnel at STSC since August 1978. Prior to
joining STSC, she was personnel manager for the Computer Network Corpora
tion and a personnel specialist for the Food and Drug Administration.

Abbott has a B.A. in political science from American University and has
completed coursework toward an M.B.A., also at American University. She is
active in numerous professional associations and recently authored an article,
"Headhunting", which appeared in the Roundtable Discussion Section of the
October 1979 issue of Insiders' Letter, published by International Computer
Programs, Inc.

Ollie Chambers

The Upjohn Company
Customized Financial Planning Model

The modern business era is one of international conglomerates (with their
common multicurrency, multibusiness lines) and worldwide inflation. These
factors make automated financial planning systems a must for financial
planners. These systems must invariably be somewhat sophisticated, very
flexible, and accessible from many different geographic locations.

Few companies have the inhouse expertise and staff to provide the kind of
intermittent low-cost support required by most financial planners. Because of
this, many companies like Upjohn have turned to time sharing vendors such as
STSC, Inc. In this paper I will give you a brief overview of my unit's
involvement with STSC and our expectations for the future.

Before I get too involved with our financial planning system, let me give
you a brief overview of the Upjohn Company.

In 1979 Upjohn had annual sales of about $1.5 billion and net earnings of
$149 million. As shown below, we have seven major divisions with, for
financial planning purposes, a total of 17 separate businesses.

1. Domestic Pharmaceutical Business Group

• U.S. Prescription Medicine Business

• U.S. Consumer Products Business
2. U.S. Pharmaceutical Chemical Business

3. International Business Group

• Pharmaceuticals Business

• Animal and Plant Health Business

• Pharmaceutical Chemical Business
4. Agricultural Business Group

• U.S. Animal Health Business

• Vegetable Seed Business

• Agronomic Seed Business

• Florida Farm Supply Business

• U.S. Plant Health Business

• Poultry Breeding Business
5. Chemical Business Group

• Polymer Chemicals Business

142

The Upjohn Company Customized Financial Planning Model 143

• Urethane Systems Business

• Fine Chemicals Business

6. Upjohn Healthcare Services

7. Clinical Laboratory Business

The Upjohn planning process (see Figure 1) starts with strategic planning
where the divisions decide what they want to do. Next comes resource
planning to determine the capital requirements and to develop a financing
plan that determines where we will obtain the necessary capital. Before
approval is granted, financial plans are presented to our senior management
for comparison with corporate financial objectives.

ANNUAL STRATEGIC

Bt1
ET
~AT :~A::TO~

r---'-------------,

FINANCING PLAN

RESOURCE PLANNING

WHAT WILL
IT TAKE

BY
LEGAL ENTITY

FINANCIAL
POSITION

EARNINGS
STATEMENT

FINANCIAL
REPRESENTATION

EARNINGS FINANCIAL
STATEMENT POSITION

CASH FINANCIAL
FLOW INDICATORS

RESULTS TO
BE ACHIEVED

CASH
FLOW

FINANCIAL
INDICATORS

WHERE WE'LL OBTAIN CAPITAL

Figure I-The Upjohn Company Long Range Planning Process

We rely heavily on a customized financial planning model that was
developed with STSC using their APL*PLUS Service and the modeling
language available in their Financial Planning System (FPS). The Upjohn
model has the following characteristics:

• It is a time sharing application accessed in several geographic
locations (e.g., Michigan, Connecticut, Texas, and California) via
remote terminals.

• It is operated by professionals and accounting technicians.

• It is c:ost effective-a forecast costs about $40 and a merge costs
about $35.

• It is highly user oriented and heavily prompted.

• It is coordinated by a one-man corporate staff located in Kalamaz
oo, Michigan.

• It is adaptable to changes in accounting principles or management
preferences.

144 The Upjohn Company Customized Financial Planning Model

• It includes three years of historical data and five years of forecast
data.

• Its output includes a complete set of financial statements-income
statement, balance sheet, cash flow, and ratios.

Like most Fortune 500 companies, the Upjohn Company has had some
form of financial planning for several years. In 1968 our efforts were mostly
manual and limited to a five-year projection of earnings. We produced only
income statements for our seven divisions. By 1970 we were using a "canned"
package offered by Citibank to prepare balance sheets and cash flow state
ments to accompany the income statements for the seven divisions and
Agronomic Seed Growers. In addition, we were able to perform consolidations
and to conduct limited sensitivity analyses.

By 1973 we were getting pretty serious about financial planning. We
expanded our planning to cover our business worldwide for a ten-year period.
Our senior management began to play formalized objective-setting and feed
back-generating roles.

It was at this point that we ran into problems; it became evident that a
customized model was an absolute necessity. Citibank could not accommodate
our operating management's desire for tiered financial statements and histori
cal data, and a task force was organized to select a company that could best
meet our needs. After several weeks of hard work, six finalists were chosen.
They were International Timesharing Systems (ITC), National CSS,
Comshare, Cyphernetics (now ADP), First National Citibank/General Electric,
and Scientific Time Sharing Corporation (now STSC, Inc.).

Although we had a lengthy list of detailed musts and wants, we had but
two groups of basic requirements. First, we needed the ability to generate
tiered financial statements. These statements would provide four levels of
earnings: earnings by business responsibility, earnings by division responsi
bility, net earnings before corporate allocations, and net earnings.

The second group of requirements dealt with flexibility. They are de
scribed below.

• Flexibility in detail. We required 20 revenue categories, 150
operating expense categories, and 25 inventory categories.

• Flexibility in forecasting. We needed the ability to express
forecasts in dollar amounts, growth rates, percent of sales, percent
of cost of goods, and percent of any related variable. We also
needed numerous special forecasting codes.

• Flexibility in output. We needed the ability to produce income
statements, balance sheets, cash flow statements, and financial
ratios. We also needed the ability to select information by line or
by statement, to produce tiered statements by responsibility, and
to footnote statements as appropriate.

There were several things we liked about STSC. Their development costs
were by far the lowest, and they could meet our tight development schedule.
Their APL *P L US Service was by far the most powerful, and the Management
Technology Division could provide support for their proprietary language
enhancements. Further, their FPS modeling language used English-language
commands rather than symbols, and they offered onsite support.

There were, however, some factors involved with choosing STSC that we
didn't like. At that time, STSC was a young company; it had only been in
business since 1969 and had been profitable for only two years. Consequently,
the organization was thin; they lacked Citibank's experience and financial
expertise, and they had not yet demonstrated the ability to provide a strong
consolidation capability. In addition, several terminals would have to be

The Upjohn Company Customized Financial Planning Model 145

replaced to accommodate the AP L programming language. As you can see
from this paper, we chose STSC to develop our system.

In 1975 our customized model was developed. It included full allocation of
expenses and assets, identification of earnings and cash flow by responsibility,
inclusion of historical data, and graphics.

Since 1975 we have focused on the content of our planning and develop
ment efforts. We have also developed several other customized financial
planning models: the Eighteen-Month Quarterly Cash Flow Forecasting Model
and the Post-Planning Review Model.

We began our transition from form to content in 1976 with emphasis on a
capitalization/earnings ratio, improved communications and internal consist
ency, and a six-step senior management review process.

Our focus on content expanded in 1978-1979, emphasizing reduced plan
ning costs and condensed presentations, return on net assets, post-planning
review data, industry data, and operating management follow-up.

Because we did not want our divisional staffs to have to become familiar
with too many programming languages, we have subsequently used STSC for
much of our capital evaluation work including an economic evaluation model,
a lease versus buy model, a post-evaluation model, and a capital aggregation
model.

We are very pleased with the service we have received from STSC, and
look forward to continuing to work with them in the future. In fact, we are
currently waiting for them to perfect a graphics package that will allow us to
achieve the quality ofterminal graphics required to support our post-planning
review efforts.

In closing, let me summarize the major reasons I support working with a
time sharing company like STSC for financial planning:

• Development costs are relatively low and projects are completed
on time.

• Operating costs are truly flexible, since projects can be discon
tinued when and if unfavorable cost/benefit ratios appear.

• The flexibility of APL and of the FPS modeling language makes it
easy for us to use these languages in meeting special project
requirements.

• Their system can be accessed throughout the United States and in
many locations throughout the world, thus facilitating communi
cation with staff in remote locations.

• They provide capable onsite support to take care of unforeseen
problems and new requirements.

Ollie Chambers, currently manager of corporate long-range planning at The
Upjohn Company, has been in the finance and accounting areas of the company
since he joined the financial management program in 1972. Drawing on his
experience with internal auditing, information systems, product profitability
analysis, capital expenditure requests, budget preparation, property accounting,
accounts payable, and cash flow management, Chambers was instrumental in
guiding STSC's implementation of Upjohn's long-range financial planning
system. He currently uses that system to analyze and present the consolidated
long-range plan to senior management each year.

146 The Upjohn Company Customized Financial Planning Model

Before joining Upjohn, Chambers worked as an economist in the U.S. Office of
Management and Budget and with Southern Pacific Railroad. He earned his
M.B.A. from Indiana University after graduating from the University of
Oregon's School of Economics.

Randall S. Robinson

Financial Planning Applications
Of APL in J. Ray McDermott

In the McDermott company, Operations Research (OR) is a chargeback
department that does analytical studies and advanced computer system
development for corporate, group, and division managers. Recently our OR
business has been booming. One important reason for the boom, I think, is that
we apply and aggressively promote APL.

This paper briefly discusses two key inhouse financial systems that we
have implemented employing APL: the FINANCIAL INFORMATION NET
WORK, which encompasses three different multiuser reporting systems; and
the SHORT-TERM INVESTMENT PORTFOLIO SYSTEM, which is a single
user system composed of four related programs emphasizing analysis.

I'll begin my discussion with a few comments about our general approach
to APL-based financial system development. Then, for each of the two selected
financial systems, I'll discuss system features, experience in development and
implementation, and current status.

Background Information about McDermott

J. Ray McDermott is an energy services company. Our operations are
organized into two multinational units-McDermott and Babcock & Wilcox
(B&W).

The McDermott operating unit serves the oil and gas industry, primarily
in marine projects. Major activities include the construction of offshore
platforms and the laying of undersea pipelines.

B&W builds steam-generating systems for electric utilities. In addition,
B&W manufactures related products such as industrial boilers and specialty
steel tubing.

During fiscal year 1979 (ended 31 March 1979), the company realized $3.14
billion in revenue and employed approximately 61,000 people.

Why and How We Use APL

The main reason we in OR like APL is that we believe it provides a lot
more bang for the buck. That is, when preparing a time sharing/interactive
computer program-the type of program which usually seems best in applica
tions pursued by OR-we feel AP L enables us to do the job much faster and
with much less expense charged back to the user than other computer
languages.

147

148 Financial Planning Applications of APL in J. Ray McDermott

Underlying the basic advantages of speed and lower cost are considera
tions probably well known to APL enthusiasts. Since AP L is naturally
interactive, it hastens all coding, including the coding of input and output
routines for users. Furthermore, APL frees the system designer from the need
to design in bits-and-bytes detail; it permits him to design, instead, in terms of
spreadsheets, tables, and similar application-oriented concepts.

When compared with other programming languages, APL is often said to
speed up design and coding by a factor of five to ten. We have estimated a gain
in our own productivity of about that order of magnitude. We attribute the
gain in speed to inherent capabilities of raw APL, to adopting good practices,
such as organizing code into modules and having simple conventions for
variable names, and to drawing upon a library of general functions-particu
larly groups of functions constituting general higher-level languages (for
financial planning, database management, plotting, statistical modeling, and
so on).

Our own approach to system development using APL is, I suspect, about
the same as that taken by the majority of APLers. I mention highlights here to
indicate our endorsement of this approach.

In conventional, pre-APL system development the following procedure
might be followed: plan every detail before you start coding; have the user
certify that the plan contains exactly what he wants; proceed with coding; and
require that the user go through a formal request process if he wishes to make
a change after coding has begun. The language very likely is COBOL.

Because APL facilitates rapid coding, its use has allowed us to adopt a
different approach: begin coding early; and move ahead in steps, with code
running at each step, and with each step more advanced than the one before. A
key difference is that we actually encourage the user to propose improve
ments, or perhaps just change his mind, at any and all stages of development.
We think making operational code available to tryout and think about-in a
series of steps-matches the typical user's preference for working with
tangible, realistic examples and improving them in successive evaluations.

The bottom line of our APL-oriented approach is that it produces, we
believe, really superior results while taking less time and costing less.

Financial Applications

Before describing the selected financial systems, I'd like to note two
general points about our financial applications.

First, at McDermott we see many promising financial applications of APL.
And, although the best probably is yet to come, our company already has
experienced the favorable impact of APL programming in a variety of areas.
In addition to the financial network and investment portfolio projects, there
have been APL projects related to such important company functions as
divisional financial planning, divisional cash-flow forecasting, and corporate
screening of proposed capital expenditures.

The second point has to do with what often is called "decision support".
For years, managers and specialists have discussed their belief that really big
payoffs will come from computer applications which support management
decisions---especially large dollar-value decisions.

The basic purpose of computerization in a decision-support application is,
you might say, to improve the depth and overall quality of the analysis
management looks at when considering decision alternatives. Through its
ability to handle data retrieval and "number crunching", the computer can

Financial Planning Applications of APL in J. Ray McDermott 149

conveniently do certain types of useful analysis that wouldn't be attempted
manually. Some examples are forecasting by complex methods, developing
"what if' projections, finding the best plan among a large number of possible
plans, and including risk or uncertainty in the analysis.

Members of our OR Department certainly subscribe to the proposition
that decision-support applications promise large payoffs; after all, decision
support is our specialty. APL makes the development of decision-support
systems much more practical because of the factors enumerated before-faster
development and program modification, plus lower total cost.

I think the ideal arrangement is one in which the bread-and-butter aspects
of an application (e.g., accounting, consolidation, and reporting) are combined
with the decision-support aspects in a single, coordinated system. We have
been striving for this in our financial network and investment portfolio
systems.

Acknowledgment

The systems to be described were made possible by the combined efforts of
many different individuals in user departments and the OR Department. So I
am writing on behalf of a large group of contributors, sponsors, and supporters
in McDermott.

The Financial Information Network

1. System Description

The Financial Information Network consists of three similar, computer
based systems (programs and procedures) covering three similar, but neverthe
less different, applications.

The Business Planning Model-2 System (BPM-2) generates financial re
ports for the annual business plan, covering financial histories, forecasts, and
analyses. BPM-2 is used primarily by the Corporate Controller, Corporate
Planning, and all B&W divisions and groups. The Quarterly Forecast and
Analysis System, utilized by the Corporate Controller and all B&W divisions
and groups, prepares quarterly financial reports, again including histories,
forecasts, and analyses. The Capital Planning and Analysis System produces
quarterly capital investment reports (with histories, forecasts, and analyses).
Users of this system are the Corporate Controller plus all B&W divisions and
groups. Top management reviews selected reports from all three systems.

All programs in the Financial Information Network are available online
and used interactively. The term "network" refers to the fact that each system
ties divisions, groups, and the corporate office together via telephone commu
nication with a central computer. The transmittal of information from one
unit to another in this network can be accomplished in minutes or even
seconds.

2. Features

The basic idea ofthe Information Network is summarized as follows. First,
every user-whether in the corporate office, a group, a division, or a subsidiary
-communicates with the same central computer. Strict privacy is provided
to each user, however. Each user has his own files and workspaces in which he
can prepare, check, and revise his reports. Results are released to a higher
level only when the user authorizes it. Second, every user gains entry to the
system through a terminal. The computer responds immediately most of the
time, day or night. Reports can be produced on a terminal or on a high-speed
printer.

150 Financial Planning Applications of APL in J. Ray McDermott

The Network's technical features are quite interesting, I believe. But the
most important point about capabilities is that the Network accomplishes
certain things management wants accomplished. Here, then, is a brief list of
pertinent management requirements together with a summary of how the
Network satisfies those requirements:

• Reduce manual workload, especially at the corporate level. Compu
terization eliminates many time-consuming manual activities.
Time saved is greatest in connection with consolidations, analyses
entailing extensive calculations, and report revisions following
changes in input data.

• Speed up transmission of information. Network replaces the
previous procedure of mailing reports, which involved days of
delay, with transmission by phone, which takes only minutes.

• Obtain more and better analyses. Previously, it was felt that
participants spent so much time preparing reports they had little
time to think about them. Also, there was corporate reluctance to
add new analysis-and-reporting requirements for fear of increas
ing already heavy workloads. After Network implementation,
time was freed to reflect upon contents, and it became easier to
add requirements without overwhelming users.

• Have rapid turnaround when data is changed. Formerly, it was
slow going, and sometimes not feasible before a deadline, to revise
all affected calculations and reports when input data was
changed. The Network facilitates making such revisions very
quickly.

• Improve accuracy and consistency of reports. In manual, pre
Network systems, undetected errors arose occasionally during the
conversion of input data into reports. Furthermore, people at
divisional, group, and corporate levels occasionally disagreed
about the latest values for a given information item. Now, in the
Network, data-to-report errors are essentially eliminated. Also,
all people authorized to see a given item look at the same value.

• Implement new reporting requirements quickly and uniformly.
When new reporting requirements are established, the Network
speeds up implementation and ensures uniform compliance. This
is true because the user needs only to learn new inputs (if any); the
Network handles all revised calculations and report formats.

• Achieve smooth operation in the Network, even though personnel
working hands-on at terminals may begin without experience and
may have a high turnover rate. Among numerous Network aspects
intended to simplify life for terminal operators are (1) general
procedures in the three systems are similar-if an individual
knows one system, he can readily learn the other two; (2) complete
written instructions are available; (3) the OR Department periodi
cally conducts training sessions at user locations; (4) OR encour
ages every user to telephone for help immediately when any
problem arises; (5) system programs extensively check user inputs
and respond with informative messages if mistakes are found; (6)
special edit routines help operators to easily revise online data;
and (7) for less experienced users there are full prompts to guide
data entry, while for more experienced users there are fast entry
procedures.

Financial Planning Applications of APL in J. Ray McDermott 151

• Allow Network systems to be easily modified and reasonably
efficient. Changes in line items, report formats, and other applica
tion details are being introduced at a rapid pace, which calls for
speed in making system enhancements. Such speed is achieved
because of the power of AP L, the adoption of good coding prac
tices, and the use of a library of coding aids. Operating efficien
cy-another important goal-is pursued through design and cod
ing choices and regular cost monitoring.

• Protect confidentiality of sensitive information. Access to data in
the Network is strictly controlled according to established ground
rules.

3. Development and Implementation

Development of BPM-2, the first Network system, started in March 1977,
sponsored jointly by Corporate Planning and the Corporate Controller at
Babcock & Wilcox. After a crash effort on the part of two OR staff members
responsible for design and coding, actual use of BPM-2 began at divisions in
early June and continued thereafter; debugging was essentially completed in
July.

Even though development was rapid, the initial version of BPM-2 incorpo
rated many advanced features, including: privacy for each user; operational on
both APLand non-AP L terminals; procedures involving action by a terminal
operator (e.g., entering data, writing reports, creating and erasing files) were
designed to keep the novice operator out of serious trouble; instructions for any
selected operator action could be displayed at the terminal; provided flexibility
to users in grouping and regrouping information; provided for consolidation;
and enabled users to pass information along, thereby connecting divisional,
group, and corporate levels.

Since BPM-2 represented a radical departure from past reporting prac
tices, its "installation in the field" deserved special attention. Each user was
visited by an OR staff member who gave an onsite demonstration and later
kept in close touch as the user's actual BPM-2 work progressed. Users phoned
OR immediately to report problems, and solutions were found quickly in most
cases. Onsite demonstrations and telephone problem solving proved extremely
productive, so they were continued as the Network expanded to include other
systems.

BPM-2 operated well in 1977 and, while undergoing occasional modifica
tion, has operated well ever since. The good results from BPM-2, plus other
factors, led B&W's Corporate Controller to authorize the development of the
quarterly and capital systems in September 1978.

BPM-2 initially contained reports that were very similar to those of its
predecessor manual system. The quarterly and capital programs, on the other
hand, started with a wholesale revision of reports, including the addition of
schedules that were thought to be too much work for a manual system.
Development of the two new systems slowed drastically for several months
during a period beginning in late September, when B&W corporate functions
were being moved from New York to McDermott headquarters in New
Orleans. Things eventually settled down so that by March 1979, three OR staff
members, working part time on this particular project, had the programs
operational.

Since March 1979, the quarterly and capital systems have been in regular
use for quarterly reporting throughout B&W. Some modifications were made
after March, and then, between December 1979 and January 1980, all
programs including BPM-2 were revised to implement basic reporting changes
desired by management.

152 Financial Planning Applications of APL in J. Ray McDermott

4. Status

The BPM-2, quarterly, and capital systems that make up the Financial
Information Network are now well-established production programs in the
B&W side of J. Ray McDermott.

Various additions and extensions to the system are under consideration.
For example, since the programs reside on the same computer, in the same
APL language, it is realistic to plan capabilities which coordinate several
applications. If a monthly reporting system were added, for instance, monthly
actuals reported in that system could be fed by computer into the quarterly
actuals needed in the quarterly system. Or, if a general inquiry feature were
added, the user could retrieve and work with data of his choice (where
authorized) from any or all systems. Other examples of possible enhancements
are pen-plotter graphics, aids for corporate "what if" projections to assess
business strategies, cash-flow forecasting routines, and extension of the
Network to cover the rest of the company.

Short-Term Investment Portfolio System

1. System Description

The Short-Term Investment Portfolio System, like the Financial Informa
tion Network, is a group of related online interactive computer programs
covering similar but different applications. It is not called a network because
normally there is just one user location-the Corporate Treasurer's Depart
ment. Of course, users can access the programs from different geographic
locations should they wish to do so.

All elements of the system help with administration of McDermott's
Short-Term Investment Portfolio, managed by the Corporate Treasurer's
Department. The Database Program for Operating and Accounting Reports
draws from online records of individual investment transactions plus addi
tional data to provide standard daily and monthly reports, and customized
unscheduled reports, on investment operations and accounting. The Database
Program for Performance Analysis uses the same database to provide standard
monthly and unscheduled reports that give an in-depth analysis of investment
performance. The Investment Alternative Evaluator (or Swap Program) prod
uces unscheduled analytical reports pertaining to daily investment decisions.
These reports show detailed analyses of anticipated investment performance,
based on user assumptions about future interest rates, cash flows, and buy,
hold, or sell actions. The program allows a user to evaluate single investments
or groups of investments. The Strategy Program generates unscheduled analyt
ical reports pertaining to monthly portfolio strategy. This program finds a
superior monthly strategy and reports on its anticipated performance, based
on user assumptions regarding future interest rates, cash flows, and policy
restrictions. It also compares strategies derived by the program with other
strategies proposed by the user.
2. Features

The basic purpose of the Portfolio System is to help sustain and improve
investment performance. Management felt-and we in OR agreed-that a
really good system should pay for itself many times over, because McDermot~'s
short-term portfolio is comparatively large. A small percentage change III

performance has a big dollar impact.
Some of the managerial needs listed for the Financial Network applied

here too. In this case, the main requirements were to: handle more work, both
routine and advanced, without overwhelming personnel; improve control by
supplying more complete and timely status information; and improve and
document investment decisions by performing more extensive analysis.

Financial Planning Applications of APL in J. Ray McDermott 153

The following are highlights of specific features III the four programs
implemented thus far.

• Database Program for Operating and Accounting Reports. The
terminal operator procedures built into the Database Program are
designed, as in the Financial Network, to be simple and trouble
free, while allowing a lot of flexibility. Using these input/output
procedures, Treasury personnel enter data and run reports daily,
when convenient.

Reports can be obtained in two ways. One is through the pro
gram's special Generalized Inquiry System (GIS) capability, which
enables the user to select exactly what he wants from the data
stored in the computer, and then develop customized reports on
that selected information. The other way is to call for a
prespecified report (e.g., a maturity schedule). There is flexibility
even with a prespecified report because the user can select any
desired data on which to run the report (e.g., select active time
deposits in just the largest of the various short-term portfolios;
run a maturity schedule). Numerous prespecified reports cover
the gamut of investment activities, and more reports can be added
if the need arises.

• Database Program for Performance Analysis. This portion of the
Database Program is a group of prespecified reports, together
with additional required input data, that permit doing a com
prehensive analysis of investment performance, similar to the in
depth analysis now commonplace for pension funds. The reports
describe performance in McDermott's various portfolios and then
compare that performance with benchmarks, based on other
actual portfolios and on indexes. Aspects covered include the
usual three dimensions: rate of return, safety, and liquidity.

• Investment Alternative Evaluator (Swap Program). This program,
currently not linked to the database, helps make projections of
anticipated investment performance. Its purpose is to give fast,
on-the-spot assistance to a manager who is analyzing different
investment choices under active consideration. A single possible
choice, or possible course of action, is called an "investment
alternative" in the program. The swap-selling a current holding
and reinvesting in a replacement-is just one of many types of
alternatives that can be analyzed.

The program handles various types of holdings (e.g., time deposits
and bonds), alone or in combination. It permits the user to look at
any number of different investment alternatives, each of which
may involve one holding, a sequence of successive holdings, or any
group of holdings. It converts interest-rate forecasts into forecasts
of market prices. Alternatives can be stored. The user has sub
stantial control over input and output; for instance, he can readily
edit data previously entered, select full or fast prompts, and adjust
the specific kinds of information included in reports to match his
immediate interests.

• Strategy Program. In this application, the term "strategy" refers
to a plan showing how much will be invested, held, and sold
(where policy permits trading) in each broad category of invest
ment, month by month over some period of time. An investment
category is a combination oftype (e.g., time deposits) and maturity
(e.g., six months to maturity).

154 Financial Planning Applications of APL in J. Ray McDermott

Analysis begins with one or more forecasts-supplied by the user,
not by the program-of future interest rates and cash flows. The
user also stipulates details of various policy restrictions on invest
ment action, such as a restriction to maintain desired liquidity.
The program then makes three basic analyses available. First, it
employs the computational method of linear programming (LP) to
find the strategy that maximizes anticipated rate of return. This
is done for every forecast, and entails a separate analysis for each
combination of policy restrictions the user wishes to consider.
Second, when the user has a particular strategy in mind, he can
evaluate it in the "simulation" portion of the program, which
shows the performance of a proposed strategy given any selected
forecast. The third basic option is a more complex LP analysis in
which the user recognizes uncertainty and risk by assigning
probabilities to alternative forecasts.

3. Development and Implementation

After preliminary investigation, including visits outside McDermott to see
what others were doing, development of the four programs began in April
1979. The level of effort varied from month to month. On average, the full time
equivalent of about 1.5 OR staff members worked on the project during the last
12 months.

Several milestones along the way were: Swap Program (version 1) com
pleted in June 1979; Treasury personnel began entering real data into the
database in October 1979; Strategy Program (version 1) completed in Decem
ber 1979; Database Program for Operating and Accounting Reports (version 1)
completed in February 1980; and Database Program for Performance Analysis
(version 1) completed in March 1980.

During development, Treasury staff members collaborated closely with
OR staff, usually through daily discussions. The result was programs which,
while high powered, are very practical.

4. Status

Since the four implemented programs are still new, as can be seen from
the milestone dates above, we do have a backlog of desired refinements and
enhancements. In addition, project plans call for considering the possibility of
adding separate programs to help with tasks such as storing and analyzing
investment research data, forecasting interest rates (or at least obtaining a
better understanding of them), and providing more advanced analysis in
support of daily investment decisions and strategy formulation. Consideration
may also be given to building separate programs focused on cash-management
topics beyond investment-debt, cash forecasting, customer financing, and
foreign-exchange exposure, for example.

Conclusion

The Financial Information Network and the Short-Term Investment
Portfolio System are two very practical applications of AP L at J. Ray
McDermott. While containing many completely modern, state-of-the-art capa
bilities, these systems are used for important production financial work in our
company.

Financial Planning Applications of APL in J. Ray McDermott 155

Randy Robinson is currently section manager, corporate applications, in J. Ray
McDermott's Operations Research Department. In this capacity, he carries out
analytical studies and develops advanced computer systems for corporate
management. Many of the management support systems developed by Robinson
and his colleagues have been implemented on STSC's APL *P L US Service.
Previously, as an independent financial consultant, and earlier as director of
the research division at the Bank Administration Institute, he had extensive
experience in financial analysis based on quantitative methods.

Robinson completed undergraduate and graduate work at the Massachusetts
Institute of Technology, earning his master's and Ph.D. from the Sloan School
of Management. Between periods of study for his two graduate degrees, he
served a tour of active duty in the U.S. Navy.

Patrick P. Gehl

Marketing Management
Applications

STSC, Inc., provides computing services---eollectively known as the
AP L *P L US Service-to meet the needs of modern business. Because we in the
STSC Marketing Department have our own business needs, we are avid
customers of the service we sell. We use the service for virtually every
management reporting and planning function. These include preparing bud
gets and tracking results, monitoring sales territories, ranking salespeople and
sales offices, determining pricing strategies, evaluating promotional activities,
and consolidating results through branch and regional levels. Let's examine a
few of these functions to see what the resulting reports look like and to discuss
how they are used.

Planning Reports

Planning for field marketing means putting together a budget for each
fiscal year. This is an online activity that allows each branch manager to enter
his forecast for revenues and expenses. The regional managers and vice
presidents then consolidate for their respective areas.

These first results always find the revenues too low and the expenses too
high. However, since the programs are online and each manager can use APL
to model his different strategies, we can iterate to an agreed-upon solution
within one or two weeks. The budgeting system, when used in conjunction with
MAILBOX (STSC's Electronic Message Processing System), provides instanta
neous communications and feedback. The budgeting activity normally takes
companies months, not weeks, to accomplish. However, the power of APLand
the manager's ability to use it online make planning a standard and quick, yet
flexible, process.

Figure 1 shows the details of a fictitious, but typical, branch office budget
report. With our budget in place, we launch into a new fiscal year and begin to
use systems written in AP L to generate reports of the results.

Monthly Operating Statements

Monthly operating statements are used by the marketing managers and
myself to compare the year-to-date actuals to the plan or budget. In addition to
containing very current information, the reports are very timely and readily
accessible. They are available within ten working days of the beginning of each
month and, since they are online, we can obtain them at any branch office in
the world (or, in fact, at any location that provides a terminal and network
access to the system). It should be pointed out that the STSC Accounting

156

Marketing Management Applications 157

STSC BUDGETING FY 1 g 70

SUMMARY BY COST CENTER 1/31/70

CUSl CMT/:;R: ':J~ q I/ILLDALE

DJ:, SC1l.1P'l'l ON JUN JUL AUG SEP OCT NOV DEC TOTAr,

Hi:;ADCOUNT 10.0 10.0 10.0 11.0 11.0 11. 0 11.0

CAPi ,"'AL Ei"PENDI7'UH8S 6000 0 0 6000 0 0 0 1200n

REVENUES
APL SERVICES 178000 177000 136000 124000 128000 145000 146000 1909000

eAPL SGRVICES 0 0 0 0 0 5850 10450 71100
BATCH SERVICES 1000 1000 1000 1000 1000 1000 1000 12000
VM CUiT6R SERVICES 4000 4000 4000 4000 4000 4000 4000 48000
PHOGEiAMMING 2000 2000 3000 3000 3000 4000 4000 46000
CONSULTlNG 1000 1000 2000 2000 1000 1000 1000 14000
MANUALS 50 50 50 50 50 50 50 600
MISCELLANEOUS 200 200 200 200 200 200 200 2400
TOTAL REVENUES 186250 185250 146250 134250 137250 155250 156250 2032000

eUPDA1'ED REVENUES 186250 185250 146250 134250 137250 161100 166700 2103100

E'i"PJ:,NSES
SALMIES - MANAGERS 2917 2917 2917 4473 4473 4473 4473 49008
SALAR1ES - PROFESSIO 11931 11931 12038 12038 12038 12038 12038 144698
SALARIES - CLERICAL 1075 1075 1075 1075 1075 1075 1075 12900
COMMISSION PLAiI 1747 1743 4819 2148 2338 6534 3245 47973
FICA 1009 1027 876 836 726 633 599 12726
FUTA 14 10 10 13 12 11 10 508
SUI 59 166 49 52 443 424 334 3820
GROUP INSURANCE 750 750 750 825 825 825 825 9675
RETIREMENT PLAN 707 707 834 790 797 965 834 10186
OVERNIGHT 1050 1050 1050 1050 1050 1050 1050 12600
LOCAL 820 820 820 820 820 820 820 9840
BOOKS/PUELICATIONS 100 0 0 0 0 0 0 100
SPACE RENT 3219 3219 3219 3219 3219 3219 3219 38628
UTILITIES 100 100 100 100 100 100 100 1200
AMOli'l - LEASE IMPTS 200 200 200 200 200 200 200 2400
TELEPHONE'S 1600 1600 1600 1600 1600 1600 1600 19200
POSTAGE AND DELIVERY 150 150 150 150 150 150 150 1800
STATIONERY ,PRINTING. 250 250 250 250 250 250 250 3000
COPYING 120 120 120 120 120 120 120 1440
E,"UIEMHiiT REPAIR AND 25 25 25 25 25 25 25 300
DEPRECIATION - OFFIC 100 100 100 100 100 100 100 1200
OTHEh 50 50 50 50 50 50 50 600
DUES AND SUBSCRIPTIO 25 25 25 25 25 25 25 300
TERMINAL RENT 1350 1350 1350 1350 1350 1350 1350 16200
TERMINAL DHPRECIATIO 185 185 185 185 185 185 185 2220
TOTAL EXPENSES 29553 29570 32612 31494 31971 36222 32677 ~02 522

PERFORMANCE 156697 155680 113638 102756 105279 119028 123573 1629478
eUPDATED PERFORMANCE 156697 155680 113638 102756 105279 124878 134023 1700578

CUMULA7IVE PERF. 156697 312377 426015 528771 634050 753078 876651
eUPDATED CUM. PEEiF. 156697 312377 426015 528771 634050 758928 892951

EXP./REV. (0/0) 15.9 16.0 22.3 23.5 23.3 23.3 20.9 19.8
eUPDATED Ei"P./REV. 0/0 15.9 16.0 22.3 23.5 23.3 22.5 19.6 19.1

TOT. COMPENSATION 17670 17666 20849 19734 19924 24120 20831 254579
eUPDATED TOT. COMPo 17670 17666 20849 19734 19924 24120 20831 254579

COMP./hEV. (0/0) 9.5 9.5 14.3 14.7 14.5 15.5 13.3 12.5
eUPDATED COMP. / REV . 9.5 9.5 14.3 14.7 14.5 15.0 12.5 12.1

Figure I-Typical Branch Office Budget

158 Marketing Management Applications

Department requires ten working days to close the books; in fact, online
operating statements that are 90 percent accurate are available within four to
five working days.

Operating statements are available on the territory level and can be
consolidated to a branch, regional, or company level using programs furnished
by the STSC Accounting Department. An example of such a report is given in
Figure 2.

c .c. gq') HILLD.4LE STSC. INC.
MUNTH ENDED f,/30/7~ OPERATING STA'I'F:MENT RUN DATF:: 7/31/75

CURRENT MONTH YEAR Tf) DArt;
!S' REV _ ACTUAL _ PLAN~ Fe REV ACTUAL PLAN VARIANcr

Rt,'V£'NliES
APL SERV lCt;S 96.5 234,589 155,000 79,5B9 93.4 1,370.614 1,189,000 ~81.514

BATCH SERV1et"S 2.5 6.184 5.000 1.184 1.6 24.177 ljO ,000 15,823
PhOCRAMMING ANI; CONSULTiN' 0.9 2,200 5,000 2

2
800 4.8 70,430 35,000 35!.430

OTHER HEVENI.i£'S 0.0 95 250 155 0.1 1,572 2,000 428

SUB'iOTAL 100.0 243,058 155.250 77 ,818 100 0 1,466.793 1.266.000 200.793
NURMALIZE R£T.TNUE, ADd. 0.0 a 0 0 0.0 a a 0

TOTAL 100.0 243,068 1&5,250 77 .818 100.0 1,466.793 l,2f:,f:, ,000 200.793

EJ;P£NS£S
SALARIE,'S 10.7 25,022 20,950 5~.on 11.1 163,051 161,744 1.307
PAYROLL TAXES 0.8 1.975 1,645 330 0.6 8,253 A,'358 705
FFr.lNCE B£NEHTS 0.8 2,009 1,663 34& 0.7 10,216 12.847 2,631
TRAVEL 1.8 4,260 1,870 2,390 1.5 21,391 14 .950 6,431

RECRUITING 0.9 2,249 a 2,249 0.3 5,085 0 5,085
OUTSIDE COMFENSATION 1.6 3,986 0 3,!986 0.3 3,986 0 3,986
t;MPWYEE TkAININC 0.1 '02 a 202 0.1 1.385 100 1,785

OFFICE SPACE 14 3,509 3,519 10 1.9 '27 ,347 28,15? 805
Tf.LEHIONES 0.8 1,946 1,600 .346 1.0 14.307 12.800 1,507
ADvERTlSING AND PNONO'j']ON 0.4 1,001 a 1.001 0.1 1,368 a 1,368
OFFICE: EXPE/~SES 0.5 1,168 695 473 0.4 5,865 5,560 lOS

OTHER ADMiNIStRATIVE 0.0 77 25 52 0.0 250 200 50
TEHMlNALS 0.4 1,015 1,535 520 o. & 8,897 12,280 3.383

SUBTOTAL 20.3 49,419 33,502 15, '317 18.5 271.401 257.601 13.800
NORMALIZE 6J,Pf;NSE ADJ. 0.0 a 0 0 0.0 a 0 a

TOTAL 20.3 49.419 33,502 15.917 18.5 271,401 257,601 13.800

Nt:T BEfOfi.£' ALLOCATIONS 79.7 193,649 131,748 61,901 81.5 1,195.392 1.008,399 186,993

ALLOCA1IVNS
CONNt;CT 9.8 23.805 23,806 9.8 144,171 144,171
CPU 22.1 53,698 53.698 21.4 313,524 313,524
STORACJ:; 3.7 8,990 8,990 4.0 59,124 59.124
/r/:,'CEl VABLES costs 0.3 616 &18 0.5 7!.954 7!.954
MANf'OwEii 0.0 0 a 0.0 575 575
EXPENSES 0.0 0 a 0.0 a 0

TOTAL 35.8 87,112 87.112 35.7 524,198 524,198

FtitFORMANCE 43.8 105.537 44,636 61.901 45.8 671.194 J~84, 201 186.993

Figure 2-A Sample Operating Statement

Monthly Ranking Report

The monthly ranking report (see Figure 3) is used to create a competitive
atmosphere among the marketing people and branch offices. This is accom
plished by ranking the salespeople by total dollar volumes for the current
month and by ranking the sales offices by year-to-date revenues as percent&ges
of their plans. In addition to creating the friendly competition I want, the
report serves as a continued reminder to each marketing manager of his
progress toward his yearly quota.

The monthly ranking report has proved to be a valuable tool for me over
the years. Since the data is stored in matrix form, I can change the report
format by simply sorting on different columns and providing the data as input
to STSC's report generator, DFMT. For example, if! want to stress the selling
of programming services for one or two quarters, I can sort the data on that
column of the matrix and present the report ranked as such. If batch revenue
was the emphasis, revenues would be sorted and ranked accordingly. Because
AP L is such a powerful programming language, and because the entire

Marketing Management Applications

7/31/75
STSC, INC.

STANDINGS REPO!?I'
JUN 1975

BY Tt1iFr.lTCh'!:
API'/M/SC BATCH VM CONSU{,TINC CURR8NT ,. LAST MONTH

REV j .'INK REV 1 fiNK REV I RNK REV t RNK BILLING P.C. .~

1 1248 CAhY b'Ofi.tJSJ.:. r '34,583 1 2,998 2 51 5 5,117 4 103,749 21 30,457
; 1234 MYf.!ON[EDliA/iDS 67,398 3 2,093 6 143 5 1,504 8 71.138 12 2S ,041
3 1125 SIDNEY ANSeLL 69,073 2 2,011 7 0 9 0 10 71.084 71,084
4 1166 DICK LEE SIj ,51'" 4 2,927 3 0 10 8,145 3 SS"SSD 4 4 ,954
5 1279 THOMAS RUSSELL 41.b80 6 2,123 5 1,227 2 12.750 2 57.780 146 43,081
6 1291 RAYMOND PETRY ~6 ,251 5 2,675 4 1,039 3 1,973 7 51,939 1 9 ll.j. ,030
7 1263 STEVEN TABS 37,083 7 3,503 1 613 4 4,58A 5 45,787 16 10 I 741
8 1393 RITA CRADOOCK 17.994 10 941 9 2,173 1 15.185 1 37./93 54 ::'0. Q3G
9 1313 WILLIAM GREEN 2'3,SOEi 8 4SS 10 36 7 780 q 30.777 37

10 1322 NELLIE SWEENEY 26.')57 9 1. 253 8 35 B 2,SOO 5 30HI~, 9

TOTALS: ~elo ,6J9 20,980 S,31R 54,S4? SfiS,Io 7 '! :IRS 17 7 ,1J7

Figure 3-Monthly Ranking Report

159

planning and control system is online, we experience a degree of flexibility not
often seen in the business community.

Research

The APL *P L US Service is used by the Marketing Department to conduct
most of its research and development efforts. These efforts consist mainly of
modeling the customer base to examine the effects of pricing strategies,
measuring the dollar return on various promotional schemes, and tracking the
sources of new business. In many of these activities, either raw APL or "throw
away" code is used effectively.

In many cases marketing managers write their own APL programs to
examine the effect of proposed activities on historical data. These programs
are written online and are disposed of once the results are obtained. By having
marketing managers use APL themselves to obtain these results, we avoid the
time delays involved in submitting requests through a programming depart
ment.

One example of the results are graphic reports of the new business for a
fiscal year. These reports are in the form of bar charts that describe revenue
derived from various entry-level products, revenue derived from promotional
sources, and the number of new customers by application area. Figure 4
illustrates one such bar chart.

START .."';nNTH: 1/7iJ

END /,!ONTlJ: L/7fJ
EN'I'RY USE: OF APL = 100)

MISCELLANEOUS 1111i 11'11 ij I rr' i IlilllllLOlli'LUIlill O!IJIll'Li.u N I (LrLDllr! I i

GEt.E,HAL ACCOUNTING! [ro·rrrGl'TTTrrrJ 0 ran J'ITITJTI:JCillTII:I:rTTII.mrrmITrUJlTITTTlfmTIl'rrrT'
SCIENTIFIC![[[lJ,!J

MODELING AND SIMULATION 1[llll!I1J[LI![[rrl!rr[[fIIIITrrITITlmn'rrIT1~II.:rTl'lT JITrrrflffT
S'l'OCk/tlNANCIAL MAHKETI~

MAN UFACTURI NG 1fTrrrrra:rn:U]!I.01.I![[llJ
INSUHANCEI==IJlITJ

PPSI=LIlllD=U~J
QUICKPLNII~[]]'JTITl'IIJm'rn[[]'fn1J'mmrnIDllTI'ITTll'T1TTmlrTl'r1fJ

STATISTICS lD..illl'fTl rrmrrrrt[i
CONSULTING ICIIII!lfIIIl![DUJ!ITrrrr[rr rrIlrr::rrJ

CUMMUNICATIONS (ARIES. ETC.) IITIIJl!lIII:rm1l!IJ
1----1----1----1----1----1----1----1----1----1--- -1----1----1----1----1----1- -1- 1
o 50U 1000 15002000 2500 3000 3500 10000 1J500 5000 5500 6000 6500 7000 7500 Roce BSOO

:F/NFlt' Ace

Figure 4-Bar Chart of New Business Origins

160 Marketing Management Applications

Summary

In summary, STSC's Marketing Department is an extensive user of APL
and of the APL*PLUS Service. We run the various management functions
using APL programs, and whenever possible we run the programs online. We
take advantage of our ability to instantly access the system from locations
throughout the world, our ability to update the marketing information file
with timely data, and our ability to efficiently sort and display the information
in a meaningful manner. This scheme has proven to be very effective for us,
and we would recommend a similar system for each and every marketing
organization, regardless of the type of product being offered.

Patrick Gehl has been executive vice president of marketing for STSC since 1976
and a Member of the Board of Directors since STSC's inception in 1969. From
1969 to 1976, he served as vice president of marketing. Prior to joining STSC,
Gehl organized and directed the first commercial APL time sharing service in
the United States while employed by Marquardt Corporation.

Gehl is a graduate of Indiana State University and holds a Master's degree in
physics from Purdue University.

Ronald J. Bohm

Magazine Distribution Management

The Circulation Management Decision System is used by Playboy Enter
prises, Inc., to plan and monitor the newsstand distribution of Playboy
magazine and Qui magazine. Playboy and Qui together have an audited
monthly paid circulation of over 6.4 million copies, of which over 4 million are
sold on newsstands in the United States, Canada, and Puerto Rico (for the six
months ended June 1979). To understand why we need such an impressively
named system to manage a seemingly mundane problem, you must first know
a few things about the domestic magazine distribution system.

The Distribution System

There are four links in the magazine distribution chain: the publisher, the
national distributor, the wholesaler, and the retailer (see Figure 1). Most
publishers, even those as large as Playboy Enterprises, Inc., prefer not to
establish the inhouse organizations necessary to distribute their products
widely. Instead, the publisher will sign a national distribution agreement for
newsstand circulation with one of the 12-15 national distributors. For the
services rendered by the national distributor, the publisher pays a commission
on sales net of returned copies. Each wholesaler sells to all the retailers in his
territory. Generally, each retailer deals with only one wholesaler. For exam
ple, if you were a retailer in Bethesda, Maryland, desiring to have certain
magazines displayed on your counter, you would have to contact District News
Company, Inc.

When the current issue is delivered to the retailer by the wholesaler, the
wholesaler takes back the unsold copies of the prior issue. The wholesaler gives
full credit to the retailer and passes the magazine covers of the unsold copies to
the national distributor who, in turn, gives full credit to the wholesaler. The
publisher, though, ultimately pays for all returns. Since the national distribu
tor works on commission, he is motivated to minimize returns. But he assumes
only the accounts receivable risk, not the returns risk.

The publisher's objectives are to:

• maximize sales

• minimize returns
• maximize market share.
But there are complications which make the distribution problem difficult

to manage. For instance, advertising revenue is dependent on copy sales (see
Figure 2). If a publisher reduces his print order to minimize returns, he may
find he has sacrificed sales and endangered his advertising rate base (the

161

162 Magazine Distribution Management

minimum net sales as promised to advertisers). The conventional wisdom in
this industry is "If you print more and display more, you'll sell more". The
problem is to determine when the cost of putting an extra copy on display
exceeds the expected revenue from the sale of that copy.

NATIONAL
DISTRIBUTOR

NATIONAL
DISTRIBUTOR

CENSUS

800
[3,000 TITLESI

12-15

450-480

160,000

Figure I-Magazine Distribution Chain: US and Canada

AD RATE BASE
($)

AD
($ PROfiT

AD REVENUE
($)

/.
/.

/.
/.

/
(COPIES) /.

/.
/

/. ----.
/. NET SALES

NEWSSTAND
PRINT ORDER
(COPIES)

($
NEWSSTAND

CIRCULATION
PROFIT

NET SALES
(%)

Figure 2-Circulation, Advertising, and Profit Relationships

Another complication in the distribution of magazines is the long delay
between the off-sale date and the date the last return arrives (when the issue is
"finalled"), By way of illustration, by the time we have final results on the
April 1980 Playboy, we will be preparing the distribution for the November
1980 issue. That means the issue we are forecasting is seven periods out from
the end of our history. I don't need to tell you what that does to forecasting

Magazine Distribution Management 163

accuracy. Some publishers are printing the Universal Product Code (UPC) on
the cover to speed return processing. Playboy, however, considers the cover too
important to its image to allow the use of the UPC.

Further complicating the problem is the recent increase in competition
among wholesalers for retail accounts. When a retailer switches from one
wholesaler to another, the history for both wholesalers no longer corresponds
to the market we are modeling. Measures have to be taken to estimate the
impact of the shift on the marketplace; and the history (and forecast) must be
restated accordingly.

By no means have I listed all the complications, but in the interest of time,
let's move on to a description of the Circulation Management Decision System.

The Circulation Management Decision System

Proper management of the distribution of a national magazine requires
that:

• For each issue, the optimal number of copies is printed.

• Each wholesaler has the same probability of selling all the
magazines allotted to him.

To determine the proper print order, two forecasts are required. The first
forecast is of the national demand for the issue being planned (top down). The
second forecast is the sum of the wholesale forecasts for that issue (bottom up).
Any number of techniques may be applied to the forecast of national demand.
Therefore, I will dwell instead on the forecast of the wholesale demand.

For each magazine in the Circulation Management Decision System, we
update monthly 475 demand models (one for each wholesale market). Con
sequently, we need a system that is efficient and self correcting. Using
workspace 74-7 COSMIC on STSC's APL*PLUS System, we are able to
account for seasonality, trends, and turnabouts in each market. We have
modified the workspace to allow both linear and exponential curve fitting.

Each month we update the history with the sales for the most recently
finaIled issue. Before any information is introduced to the database, it is
checked for reasonableness in two different ways (see Figure 3). In the first
check we screen for unreasonable return percentages. That is, we define a
range of acceptable return percentages, and those wholesalers whose return
percentages fall outside of this range are investigated. In the second check we
compare the reported sale with the forecasted sale. Any reported sale that falls
outside the confidence limits of the forecast is also examined.

Once the data have been posted to the database, we make one final
reasonableness check. If the model for a particular wholesaler is well con
ceived, the positive and negative forecast errors over time will cancel one
another out. By looking at the running total of the forecast errors, we can
determine if more recent sales are deviating from prior trends. In this way, the
system signals the model's obsolescence and a new model is created.

The forecasting process (see Figure 4) begins with the generation of a
market-by-market forecast, without considering the specific appeal ofthe issue
being planned. We add to this "average issue" forecast when we expect the
issue to be above average, and we subtract when we expect the issue to be
below average. This is a highly subjective and rarely successful enterprise.
Some issues succeed for reasons that escape us, while other issues, which we
had expected to do very well, sell disappointingly.

To this adjusted forecast, we make market-by-market adjustments that
reflect both changes in the marketplace and the local impact of the cover or
content of the issue. By way of example, the September 1976 issue of Playboy

164 Magazine Distribution Management

had very strong sales in Washington, D.C., which some of us attribute to the
pictorial on the girls of Washington.

is WHOLESALER'S RETURN PERCENT REASONABLE?

YES/\NO

1 ~ INVESTIGATE

.-- ~~E~~~
IS THE REPORTED SALE

WITHIN THE CONFIDENCE
LIMITS OF THE FORECAST?

10 \YES

iNVESTIGATE
AND CORRECT SPOST TO THE DATA
IF NECESSARY BASE

I•DOES THE CUMULATIVE FOReCAST
ERROR INDICATE MODEL BIAS?

Y~ ~
CREATE A NEW MODEL UPDATE OLD MODEL

~~'
CREATE MODEL

FORECAST

Figure 3--Circulation Management Decision System: Data Filter

TOP
DOWN

FORECAST

CREATE A MARKET - BY - MARKET
MODEL FORECAST

FOR THE "AVERAGE" ISSUE

J
ADD THE EDITORIAL FAClOR

TO ALL MARKETS

J
ADD THE LOCAL - INTEREST

FACTOR TO RELEVANT MARKETS

J
ADD IMPACT OF CHANGES

IN THE MARKETPLACE

t
COMPUTE THE NATIONAL

FORECAST

J
REVIEW

BOTTOM
UP
FORECAST

Figure 4--The Forecasting Process

After we have completed the forecasting process, we must then allocate
the print run to the wholesalers. Once again, control is essential. We learned
very early in this project that out of 475 mathematical models, a small
proportion of them can be expected to yield unreasonable representations. To
control against the distorting impact of these models, we impose limits on the
models to prevent our monthly allocations from unwarranted volatility.

Magazine Distribution Management 165

Once the allocation has been made, the wholesale allocations are reported
by sales region and by state. The allocation is then recorded on tape and is
shipped to the national distributor who must create the mailing labels to be
forwarded to the bindery. When the wholesalers are notified of their allot
ments, they prepare allotments for their retail accounts.

Monitoring the System

After the system had been programmed, we carried out two market
experiments on three consecutive issues. The purpose of the first test was to
see if, given no change in the print run for a set of experimental markets, we
could achieve a lower return percentage than the control group. In the second
experiment, we tested the hypothesis that we could use the system to help us
lower the print order, thereby increasing efficiency, while not sacrificing sales
volume. Both of these experiments were followed very closely. The results
confirmed both hypotheses.

From that point, our strategy for the system has been to gradually
increase the sales efficiency to the point where sales volume would be
measurably affected. When we discover this critical efficiency level, we will
then be in a position to analyze the tradeoffs between efficiency and profitabili
ty.

Other Applications of the System

The Circulation Management Decision System has proven valuable in a
number of other ways. Drawing on the database that was created for the
purpose of performing allocations, we can now prepare the series of reports
and analyses described below and graphically summarized in Figure 5.

TYPE MARKETS TIME FRAME RANKING HISTOGRAMS

MARKET TREND ANY SET LAST 12 ISSUES YES
ANALYSIS VARIANCE ANY SET LAST 12 ISSUES YES

EFFICIENCY ANY SET ANY ISSUES YES

SHARE ANY SET ANY ISSUES NO

MONTHLY IACTUAL VS. SALES PAST ISSUES NO
REPORTING FORECAST REGION

12 ISSUE SALES FUTURE ISSUES NO
OUTLOOK REGION

OTHER DETAILED MARKET FACTSHEETS

ESTABUSHMENT OF OBJECTIVES

ANALYSIS OF MARKET EXPERIMENTS

CREATION OF STRATIFIED SAMPLES

YES

YES

YES

NO

NO

NO

Figure 5-0ther Applications

• Detailed Fact Sheets by Market: Included on the fact sheets are the
last six years of history, the forecast for the next twelve issues, a
graph of the history, the forecast, and the confidence limits on the
forecast.

166 Magazine Distribution Management

• Trend Analysis: The twelve-issue history for each market. These
ratios are then ranked and reported from worst to best. A
histogram and summary statistics are provided.

• Variance Analysis: The standard error of the regression model is
normalized by the average sales volume for the last twelve issues.
These ratios are ranked and reported from worst to best. Histo
grams and summary statistics are also provided for this analysis.

• Efficiency Analysis: The net sales percentage can be computed for
any period of time. The sales percentages are ranked and reported
from worst to best. Histograms and summary statistics are also
available.

• Market Analysis: For any period of time, we can analyze any
region, edition, state, market, or set of markets with regard to its
share of a given marketplace. For example, the salesman for a
given region may want to know the issue-by-issue share of region
sales for each market in his region.

• Monthly Status Report: The performance of each region is re
ported with the forecast for that region along with measures of
trend and variance.

• Establishment of Objectives and Evaluation of Performance: The
objectives for the sales force are based not on last year's sales
volume, but on the forecasts made by the system for the next
twelve issues. The system also assists management in setting
objectives and monitoring performance regarding volatility of
sales by market. For example, if a salesman can help a wholesaler
reduce the volatility of his sales, the system can then improve its
forecIDlts and thereby improve the sales efficiency for that market.

• Analysis of Experiments: Quite often, promotion campaigns are
field tested in a number of markets before they are implemented
nationally. The system is used to help in the random selection of a
stratified sample. Once the promotion campaign has ended, the
system can then be used to compare actual market shares for
experimental and control markets with forecasted market shares.
Significant differences in the forecast error between experimental
and control markets are interpreted as being due to the promo
tional effort.

Conclusion

The Circulation Management Decision System has come a long way in a
very short time. What began as a special system to support a particular
operational decision has blossomed into a multipurpose database system. In
June 1977, STSC, Inc., was chosen as the vendor for the system, largely on the
strength of its materials management system. In September 1977, the first test
of the system commenced. From September until the following July, the
system was gradually enhanced to reflect the idiosyncrasies of the magazine
distribution system. Since April 1979 the system has been operating with very
little change.

Our plans call for the expansion of the system to include demographic
data, subscription data, and ABC (Audit Bureau of Circulations) data. The
demographic and subscription data will help us measure our sales penetration
of our target audience. The ABC data will help us identify markets where our
share is weak. This information will help us to allocate our promotion dollars
more productively.

Magazine Distribution Management 167

Ronald J. Bohm is a specialist in management science, holding master's and
doctoral degrees in that field from the Massachusetts Institute of Technology.
His undergraduate work was in mathematics. As director of management
decision systems for Playboy Enterprises, Inc., he designs and implements
decision models, management reporting schemes, and forecasts relating to book
publishing, book clubs, licensing, merchandising, foreign editions, and overseas
distribution.

Before joining Playboy in 1977, Bohm did consulting and special project
analysis for a number of firms, including Knight Ridder Newspapers and
Irving Trust Company of New York.

William M. Shaw

Computers Ain't Cool

It's no secret that consumer products companies spend billions annually
on advertising and promotion. In 1980 alone, U.S. companies will spend in
excess of $30 billion for promotion.

But there is a clear distinction between advertising and promotion.
Advertising is nonpersonal communication in measured media (television,
radio, print, outdoors) with clear sponsorship. Promotion is all other forms of
company-sponsored communications apart from advertising and personal
selling. Examples are

• trade shows/exhibits

• couponing (media, handout, in or on packages)

• sampling (at home, in store, in or on packages)

• premiums (self-liquidating or free)

• trade allowances.

Promotion also includes:

• sales and dealer incentives

• sweepstakes/contests

• refunds (coupons, cash, or product)

• cents-off packaging

• consumer education and demonstration activities

• rebates

• bonus packs

• point-of-purchase material

and not the least:

• direct mail.

While there is some overlap between advertising and promotion spending,
expenditures for the latter have been growing at a faster rate-in fact, about
twice as fast-as advertising.

One reason for such accelerated growth is the product management
system that many companies have adopted. This system basically emphasizes
the identity of brands, and rewards quick success. Since one of promotion's

168

Computers Ain't Cool 169

primary functions is to act as "an immediate consumer call to action", product
managers are increasingly relying on promotions to complement advertising.
The main reason for the growth in promotional spending, however, is that the
consumer does react. In consumer products especially, consumers are offered a
choice of many brands, some of which have few inherent distinctions. Promo
tion frequently produces strong economic incentives--especially today-to
consumers to try, and buy, particular products.

This favorable consumer response to economic incentives is largely
responsible for the huge growth in cents-off-couponing, which accounts for the
majority of promotional dollars in the package goods industry. In 1978 the food
and drug industries distributed an estimated 73 billion coupons; in 1979 the
total exceeded 80 billion. In 1960 only 350 companies used coupons; in 1980
more than 1000 will.

As competition increases and inflation spurs prices, the average face value
of coupons continues to climb. In 1971, the average face value was 10.2 cents,
while in 1979 the figure was 16.8 cents. An average of 60 coupons per
household were redeemed in 1978. Furthermore, the percent of households
using coupons has increased from about 58 percent in 1971 to about 85 percent
in 1979.

You might expect that well-established consumer products companies
would use the most sophisticated means available to control and oversee
promotional spending, especially since the economic effects on the company of
such spending cannot be ignored. Surprisingly enough, many companies do not
know:

• How much their industry spends on promotions.

• How much their primary competitors spend.

• How their competitors allocate that unknown sum.

• How much they themselves spend on promotions.

• How their own budget is allocated.

• What marketing objectives the individual promotions best serve.

• How various promotions interact.

• How their customers respond to promotions.

Too often, promotions are scheduled and tactics employed, simply because
"that was what was done last year". Few companies have developed promo
tional principles to guide planning and ensure agreement with corporate
objectives, though this practice is certainly increasing.

Since over $200 million is spent on promotion annually in the coffee
industry, we in the Maxwell House Division make a concerted effort to plan
and evaluate our promotional programs. The majority of our promotional
budget is spent on couponing. Consequently, the planning and evaluation of
couponing strategies seemed an ideal starting point for developing compu
terized information systems.

When we began the design of our system, we found numerous problems to
consider in planning and evaluating couponing strategies. Unfortunately, we
also found ourselves challenging an unexpected obstacle-the axiom among
marketers that "computers ain't cool".

"Big deal", you may say, "don't I 'know that computers put a guy on the
moon?" Sure, computers have been around for years, and they have tremen
dous capabilities, but not for the marketer. You see, a marketer is very much
like a pilot who learned to fly in the old days-by the seat of his pants. The
marketer and the pilot have other common attributes:

170 Computers Ain't Cool

• They have complete and utter confidence in their own judgments.

• They are known for the high-risk fields they're in.

• As a result they enjoy a special privileged status.

A computer is too predictably perfect for them. It removes too much of the
risk, and when the risk goes, so goes some of the mystique and most of the
glamour.

Yet it is undeniable that only with computers can product managers
organize and assimilate the multitude of data that affect consumer behavior
and therefore have an impact on promotional planning. The following is only a
sampling of the information a company might consider in comparing coupon
ing strategies:

1. Method of distribution.

2. Audience reached by the coupon.

3. Area of the country.

4. Brand's retail availability.

5. Size of brand's consumer franchise.

6. Consumer's "need" for the product.

7. Product class size.

8. Competitive activity.

9. Stage in the product life cycle (i.e., new or established brand).

10. Degree of consumer brand loyalty.

11. Design and appeal of the coupon advertisement.

12. Discount offered by the coupon.

13. Face value of the coupon.

To elaborate on point 1, the method of distribution, here are some
considerations relevant to most print media as vehicles for advertising and
promotions (these should give you some idea why marketers flew by the seat of
their pants):

Types of Print Media Considerations

Newspapers (regular) Demographic selectivity

Newspapers (coop) Lead-time requirements

Sunday supplements Speed of redemption

Free-standing inserts Ability to merchandize with the trade

Magazines (on-page) Long-term benefits

Magazines (pop-up) Editorial environment

Direct mail Advertising value and image

It becomes increasingly clear that only a computer can store all the vital
information gleaned from continuous promotion, evaluation, and testing.
Certainly the subjective evaluations, theories, and concepts to be tested, and
the questions to be asked, remain in the control of the product manager. But
the computer becomes an invaluable "product assistant" because of its ability
to store and juggle virtually unlimited quantities of information.

Once the value of the computer is recognized, we begin to understand that
computers can help us answer the most frequently asked marketing questions:

Computers Ain't Cool 171

"Who spent how much on what, and what benefit resulted?" The next step is
determining which system will best meet our needs; that is, which system will
give us the answers we need quickly while offering us maximum flexibility to
accommodate change.

A good system can sort through the result of past promotions to rank the
effectiveness of those programs among different criteria. Based on actual past
results, the system can instantly provide statistics affecting decisions about:

• type of premium or refund offer

• number of proofs of purchase or amount of money to require

• type of incentive to offer

• monetary value of the incentive

• duration of the offer

• methods of promoting the offer.

To give you an idea of the type of decisions we at Maxwell House must
make, consider the following: Which of two promotional advertisements for a
coffee would be more effective? One featuring a coupon alone, or one emphasiz
ing a reuseable jar, but also offering a coupon of equal value.

Other things being equal, coupon redemption in advertising like this may
be positively influenced from 2 to 20 percent depending on the promotional
"overlay" (type of promotion featured in the advertisement) delivered with it.
Other factors come into play, of course. For instance, if you violate a brand's
premium principle, you may stunt normal consumer involvement or hurt
brand image or long-term sales.

A computer can also assimilate geographically where a brand is spending
its promotion dollars and where its volume is coming from. It can easily factor
in which brand's sales it cannibalizes with each of its events and rank what
vehicles work best alone or in combination to accomplish basic marketing
objectives.

A computer can file away Diary Panel Data on different promotions'
impact on a brand's user group. Heavy users react differently to a brand offer
than a brand's light to occasional user, and you definitely need a different
tactic if you are going after "ANTS" (aware non-triers, in marketing lexicon).
Table 1 illustrates the practical information that the computer has provided.

We have accumulated an incredible amount of raw data on coupon
redemption patterns.

To use this information effectively, we asked Scientific Time Sharing
Corporation (now STSC, Inc.) to help us implement an APL application to
track our promotional activities and those of our competitors. We built
redemption tables based on historical observations. These tables predict quite
accurately the percentage of coupons that will be redeemed, given a coupon
value, geographic area, and type of media. With additional summary data
about each planned promotional event, the system calculates the number of
redemptions and the total cost of the promotion.

We can summarize events by brand, producing a "flow chart" of the
overall plan for each brand. This greatly helps our budgeting process. We are
also able to experiment with coupon values, investigating the cost effective
ness of changes in redemption rates and total costs. Using purchased data on
competitive promotions, we can similarly analyze competitors' activities, and
plan accordingly.

172 Computers Ain't Cool

Table 1 - Consumer Promotion Planning Guide

Technique

Bonus packs
Cash refunds

Single purchase
Multiple purchase

Can tests/sweepstakes
Couponing

Media/mail
In/on pack
Multiple

Premiums
Single purchase
Multiple purchase

Price-off
Sampling

Primary impact
Increase sales

Brand Attract new to present
awareness customers customers

•

•
•

•

•
•
•

•
•
•

•

As computer novices, we were certainly "flying by the seats of our pants"
in developing this tracking and planning system. Yet we found we could, by
taking advantage of the flexibilities offered by APL, experiment with nu
merous data entry, reporting, and analysis techniques. We were overjoyed to
discover our ability to answer unanticipated "what if' questions with little or
no additional programming effort.

We have by no means finalized our computer-assisted planning efforts, but
we are able to effectively use what we have, and we learn a little more at each
step. Of course, there is always one more thing to consider when making
strategic marketing decisions. So marketers will probably always be somewhat
flying by the seats of their pants; but good computer systems will make them
more durable pants.

William M. Shaw joined General Foods Corporation in 1961. After progressing
through the sales organization, he moved to Corporate Headquarters in 1966 as
staffassistant and sales planning manager in the Desserts Division. In 1968 he
was promoted to promotion planning manager for Kool-Aid and in 1970 to
national promotion manager for Burger Chef

Since 1975, Shaw has been promotion manager for the Maxwell House Division,
which makes all General Foods coffee brands. His responsibilities include
promotion planning, developments, execution, and evaluation as well as com
petitive tracking and long-range forecasting. Maxwell House is General Foods'
largest division and the largest coffee company in the world.

Shaw holds B.S. and M.B.A. degrees from Northeastern University.

William H. Bickford and Kenneth E. Golden

Financial Reporting Systems:
A Case Study

This paper discusses the design, implementation, and use of a financial
reporting system for a multinational, multidivisional corporation. The corpo
ration-Continental Diversified Operations (CDO)-sought to provide senior
management with timely financial reports through automation of its manual
reporting procedures.

Consultants from STSC, Inc. used the features and capabilities of STSC's
Financial Planning System (FPS) to deliver a fully automated, conversational
financial reporting system in two months' time-a full month ahead of
schedule. The system has been running for over six months now and has met or
exceeded all the goals set by the corporation.

The authors are indebted to Eugene R. Reilly, Director of Finance at CDO,
for his invaluable assistance in preparing this paper.

Background

CDO is one of five major operating groups belonging to the Continental
Group, Inc., located in Stamford, Connecticut. Three divisions and over 20
plants make up CDO's operations. These plants and divisions are scattered
over six countries: the United States, Canada, the Netherlands, Belgium,
Germany, and Mexico. The plants report to their respective divisions, and the
divisions report to corporate headquarters in Stamford.

Given the hierarchy of the reporting structure and the multinational
aspects of the corporation, manual production of consolidated financial state
ments for senior management is a monumental and time-consuming task.
Individual plant reports are prepared and submitted to divisional authorities
who correct, consolidate, and forward the reports to corporate headquarters.
At headquarters, the reports are again corrected and consolidated for senior
management.

The financial reports consist of selected Profit and Loss and Balance Sheet
items on both an actual and forecasted basis. Actual data, reflecting current
operations, is submitted on a monthly basis. Forecast data is submitted on a
weekly basis to provide monthly forecasts, and on a monthly basis to provide
detailed quarterly forecasts.

Problems arise in the areas of currency conversion, report formats,
timeliness, clerical errors, and management control. Many ofthe divisions use
local currencies in their reports, thereby requiring currency conversion during
consolidation of the reports. Various divisions use their own report formats,

173

174 Financial Reporting Systems: A Case Study

which means that extra effort is required to meld the various reports into one
format for corporate reporting.

Because six countries are involved, the financial data does not arrive at
the same time at corporate headquarters, which results in many delays in
getting the final reports completed. Due to errors made at plant and divisional
levels, the reports must be reviewed and corrected at divisional and corporate
levels. All this review and correction consumes valuable time and effort. Given
the multidivisional and multinational structure of the corporation, control
over the periodic reporting of financial data is delegated to individuals below
the corporate level, which results in some loss of control.

All these factors--<:urrency, timeliness, report formats, clerical errors,
and control-led COO to seek an automated solution to its financial reporting
needs.

Solution

Since STSC, Inc., had previously implemented a successful general ledger
product for CDO, STSC was invited to review the financial planning proce
dures and the reports, and to offer a possible solution that would overcome the
shortcomings of the current manual operations. Initial discussions with the
Director of Finance began in March 1979.

The financial planning and reporting system proposed by STSC consisted
of:

• A capability to automatically convert all foreign currencies to
U.S. dollars.

• An automated, conversational procedure to collect and verify data
at the plant level.

• Exact duplicates of the report formats, as they were being manu
ally produced.

• The ability to control access to data, at both plant and divisional
levels.

• The ability to consolidate respective plant reports into one divi
sional report.

• The ability to consolidate divisional reports into one corporate
report.

STSC was given the authority to develop an automated financial planning
and reporting system in June 1979, and the system was delivered in August-a
full month ahead of schedule. A major factor contributing to the early delivery
was the general nature and flexibility of FPS. Built-in data entry, modeling,
and report generator routines helped move systems development to a rapid
conclusion.

After six months of use, the financial planning and reporting system
developed by STSC is doing the job it was intended to do. All major goals have
been met, and additional capabilities and savings have been realized. Some of
the additional features are described below.

• Automatic currency conversion. Currency conversion is performed
automatically, rather than manually. Currently, each plant en
ters its financial data using the local currency and specifies the
rate of exchange to be used-the computer performs the tedious
conversions.

• Timely submission of reports; control over the reporting methodolo
gy; reduction in clerical time devoted to producing corporate
reports; local access to the computer from all plant and divisional
locations; computer-generated reports that need no retyping. Re-

Financial Reporting Systems: A Case Study 175

ports are available as soon as the data is entered. Under the
manual system, data was either phoned or wired to the division
and corporate offices. With the aid of the computer, data is
entered only once, at the plant location, and all reports for all
divisions and corporate headquarters can then be generated on
request. Automation has reduced the time required to prepare
and consolidate the reports, and deliver the finished reports to
management.

• Significant reduction in clerical errors. The financial planning
and reporting system has also significantly reduced clerical er
rors. Data is entered at only one location-the originating plant
where the people are most familiar with their particular set of
numbers. Under the manual scheme, data was entered at the
plant, again at the division for the divisional report to corporate
headquarters, and again at corporate headquarters for the consoli
dation to senior management. This triple entry and handling of
the same data was eliminated by the automated system.

Other standard features of FPS are now being studied and tested for
incorporation into the corporate planning and analysis functions. These
features are

• Sensitivity Analysis, which measures the impact of changes to, or
fluctuations in, the data.

• Value Seeking, which searches for the value of a data element that
will yield a desired report value.

• Graphics, which provides the ability to chart both data and report
elements over time or against other data and report elements.

• Risk Analysis, which provides the ability to assign probability
distributions to data elements and to measure their effects on key
results.

CDO is very pleased with the financial planning and reporting system
developed for them by STSC. The system has met their goals, which were to
automate the manual procedures and to give senior management timely
reports, and has additionally provided tighter control, cost reductions, and
automatic currency conversion. The rapid implementation of systems such as
this is made possible by the flexibility and power of STSC's Financial Planning
System.

Bill Bickford, currently branch manager of STSC's Westchester/Fairfield
office, began his career with the company as a marketing representative.
Working in three New York and New Jersey counties, he more than doubled
revenues from his territory, accomplishing this through steady growth and the
addition of five Fortune 500 companies as clients. He has broad experience in
implementing and updating accounting systems, having worked for United
Brands, Sybron Corporation, Harley-Davidson, Carborundum, and W. R.
Grace.
Bickford received his bachelor's degree in accounting from the University of
Idaho.

Ken Golden, who joined STSC in 1978, is a marketing representative in the
company's Westchester/Fairfield office. His responsibilities include marketing

176 Financial Reporting Systems: A Case Study

STSC products and services and designing, installing, and maintaining com
puter-based systems for customers. Golden has over nine years' experience in
designing and supporting information systems. Before joining STSC, he worked
as a systems analyst with the San Francisco Police Department, as a senior
consultant with Planmetrics, Inc., and as a project manager with General
Foods Corporation.

Golden has a RS.E. in electrical engineering from the University ofConnecticut
and an M.RA. in operations management from the University of California at
Berkeley.

Robert R. DeCloss

Using APL for Construction Accounting

229 billion dollars! According to the United States Bureau of the Census
Construction Reports, that is the total value of all types of new construction in
1979. (This amount is seasonally adjusted and annualized based on data
through August 1979.) In 1972 the construction industry employed 4.1 million
people in 921,000 companies.

As a businessman, I am intrigued by the sheer size of the construction
industry. It is undeniably dynamic and exciting. We're all aware of the huge
cranes hovering over immense steel frames, and we marvel as new buildings
take form and are finally completed. Even the "hard hats" fill us with awe as
they scurry across steel girders high in the air.

As exciting as the actual construction is to watch, the business side
presents management with financial situations that require quick decisions to
assure that particular ventures are profitable. For example:

• Government agencies and labor unions require frequent and
accurate reporting of labor performed on each phase of each job.

• Weekly payrolls must be met promptly; delays can cause penalties
that can impair or destroy the profitability of a job.

• So that management can determine the progress and profit of a
job, all labor, materials, direct job expenses, equipment, invento
ries, and subcontractor fees must be established early.

The construction industry is complex and highly competitive. An account
ing system for construction companies must be flexible enough to handle the
weekly-even daily--changes required by government agencies, labor unions,
management, and employees. It must be pertinent; that is, the data coming out
ofthe system must be usable-not so detailed as to obscure its importance, but
detailed enough to provide the right information to the right people at the
right time. It must be easy to use. The requirements of the industry are
intricate and numerous; time cannot be wasted trying to learn how to use a
complicated accounting system. A system must be cost effective. The hours
saved by personnel and the accuracy and completeness of the system all
contribute to the cost effectiveness of a system. It must be secure; confidential
data cannot get into the wrong hands. Finally, it must meet the particular
needs of each company using it.

The accounting requirements of the construction industry are some of the
most comprehensive of any industry. The most important functions that an
accounting system for the construction industry must provide are

177

178 Using APL for Construction Accounting

• payroll
• payables

• jobcost
• receivables

• equipment

• inventory
• general ledger.

The first three constitute an important trio. Payroll and payables feed the
jobcost function to provide management with accurate and timely informa
tion. This information is used to determine profitability and progress on each
job, problem areas on a job, and information useful for client billing and
estimating future job bids.

Payroll

Payroll must be able to handle the special accounting requirements of
labor unions. Since each union negotiates its own contract, a payroll system
must be able to meet the needs of several unions. For example, each union has
different employee fringe benefits, such as insurance funds, apprentice
ship/training funds, pension funds, welfare, contractor administrator funds,
education funds, dues, and vacations.

To mention just a few of the possibilities, some unions require that
employees get only straight vacation pay, while others require that the
employees get overtime vacation pay. Most unions require subsistence pay for
jobs beyond a certain distance from the employee's residence; a few unions,
however, require different pay rates depending on the zones in which their
members work. The trustee for the union fund, usually a bank, requires that
the employer file a monthly report detailing the wages, vacation, dues, and
hours worked by each employee in that union. A summary report is also
required showing the totals, by benefit, that the employer and the employees
pay into the union trust fund. All unions have apprentices who are employees
in training. Apprentices normally get paid less than the journeyman's rate
(typically a percentage), and they may, or may not, get the normal union
benefits.

Government agencies require extensive reporting on any government
contracts a company may have. One such report, the certified payroll, must be
submitted weekly. Certified payroll requires a breakdown, by employee, of:

• hours worked this week

• wage rate
• gross amount earned this week

• gross amount earned this job
• total fringe benefits paid

• union dues owed and paid
• FICA, federal tax, and state tax owed

• weekly net salary

• social security number
• wage rate decision number

• contract number
• job description.
It doesn't take too many unions with different requirements or too many

government jobs to make getting the payroll out and filing the appropriate

Using APL for Construction Accounting 179

reports on time an extremely complex, time consuming, and tedious job-
especially if done manually.

Payables

Payables has its own set of problems. Some vendors are subcontractors;
thus, the company may sometimes withhold a portion of the payment to the
vendor until the job is done. This practice is called retention and the amount
withheld is retainage. Sometimes not all vouchers for a particular vendor are
paid, but are withheld until verified.

Jobcost

Jobcost accumulates labor and materials costs; from this information
determinations are made as to the progress of a job. Several hundred tasks,
called codes, can be going on simultaneously on any given job. The magnitude
and sheer volume of data make manual organization an almost impossible
task. At least, the opportunity for error is greatly increased with each
additional job in progress.

STSC's Construction Accounting System

I would not mention all the difficulties facing accounting for the construc
tion industry if I did not also have some good solutions to those problems.

STSC and AP L have confronted and dealt with these problems effectively
and economically. I would like to address mainly the payroll portion of the
system. I will not go into all the details, but will highlight the pertinent points
to demonstrate the overall usefulness of the system.

First, the system is online. This virtually eliminates losing reports in the
mail or experiencing delays due to poor service. This also provides the level of
security that management demands. Although not likely, it is possible with a
service bureau that if several construction companies are clients, one client
could inadvertently get another client's jobcost report. With an online system
each client has access only to his own data. Also, because of STSC's system
availability (in excess of 99 percent over the last three years), a user can be
sure that the system will be there when he needs it. Therefore, payroll can be
met on time without incurring penalties. And, when necessary, special checks
(e.g., termination checks) can be issued immediately, avoiding unnecessary
costs that might be incurred if there were delays.

Second, the reports for management, government agencies, and unions
are readable. This was a major concern for me. Frankly, I was appalled at the
detail and physical arrangement of data on some of the reports I'd seen; many
were completely unreadable or just simply "busy". Our reports were designed
and approved by both mechanical contractors and general contractors.

Above all, the system is easy to use. Management's need for clear and
concise reports is matched by the data entry clerk's need for easy data entry
and retrieval. In our system, data entry is consistent throughout. Once the
user has learned how to enter data in one module, he can use the same
procedures in every other module. The data entry procedure for payroll is the
same as that for payables; printing the payroll register report is handled the
same way as printing an accounts payable by vendor report. It is, therefore,
easy to train a new person to use the system. One client expressed it this way:
he wanted a system so easy to use that if his accounting staff were sick or on
vacation, he could get the payroll out. And he is vice president of the firm!

Because data is easy to enter, and because the system is what I call
"pseudo-interactive", valuable manhours are saved. Time is not wasted trying
to decipher cryptic error messages; situations where the user finds his general

180 Using APL for Construction Accounting

ledger out of balance several days after submitting a job do not arise, as they
could with a service bureau. I call the entry system pseudo-interactive because
it combines the cost effectiveness of batch input with the responsiveness and
time savings of interactive reporting.

Some Examples

To illustrate how the construction accounting system works, I will present
some examples from the payroll module.

In the first example, the user collects all timecards for a week's payroll
run. After calculating hash totals on the hours, he signs on to the system and
enters the task TIMECARD, the payroll date, and the hash totals. The system
is completely interactive up to this point, checking for such items as valid
payroll dates. Now the system begins its batch input routine; timecards are
entered one at a time, with each employee's time entered on one line. To make
entry even quicker, the user can use a lO-key numeric pad if his terminal is so
equipped. No errors are checked during this phase of the entry, so the user is
not delayed waiting for the system to respond with approvals or error reports.
After all the timecards are entered, the system checks them all at once. If
errors are detected (such as invalid job code, no such employee number, or
hours out of range) the system reports all errors at once.

TASK: TIMECARD
PAYROLL DATE: 11079
HASH TOTALS: 279 8
1: 110 3 215~300 8, 3 215~000 ~, 3 2153~01 8, 3 215~100 2, 3 2157500 2
2: 110 3 2001507 11, 3 2003~07 5
3: 11~ 2153~01 ~O

4: 115 2153~01 32
5: 116 206 5107 ~O

6: 117 10000686 7
7: 213 1000610 ~O

8: 2n 6~3 ~o 8
9: 30~ 2003~01 ~, 2003300 3, 2005107 ~, 2297000 29
10: •
INVALID JOB CODE

6.1: 117 10000686 7

DIFFERENCE: 7.00 .00 .00
ADDING 16 TIMECARDS
END OF PROGRAM

The user can now go into a change task or adjustments task to correct
mistakes or to change pay rates, give bonuses, or make taxable or nontaxable
adjustments.

TASK: ADJUST
ADJUSTMENTS OR TIMECARD CHANGES: A
PAYROLL DATE: 11079
HASH TOTALS: 50 50 0 600
ENTER THE FOLLOWING:
EMPNO JOB CODE NONTXADJ TXADJ PAYRATE BONUS, [COMMA] JOBCODE ETC ...
1: 213 1000610 50 50 0 100
2: 21~ 6~3 0 0 0 500
3: •
ADJUSTMENTS COMPLETED
END OF PROGRAM·
~DJUSTMENTS OR IIMECARD CHANGES: •

Since the system is online, payroll checks are printed on a terminal in the
client's office. They can be mailed the same day, or delivered to the foreman in
the field to be distributed. Thus, employees receive their paychecks on time.

TASK: CHECKS
HAVE YOU ENTERED ADJUSTMENTS? YES
PAYROLL DATE: (MMDDYY): 11079

Using APL for Construction Accounting 181

HIGHEST EXISTING CHECK NUMBER: 600007
ENTER BEGINNING CHECK NUMBER: 600010
END OF PROGRAM

Once timecards and adjustments are entered and the checks calculated
and printed, the payroll register (a summary report of all information on the
employees' checks) is virtually done. The user enters the task PAYREG (short
for payroll register), requests the appropriate payroll date, and prints the
report (see Figure 1) using the PRINT task.

TASK: PAYREG
PAYROLL DATE (MMDDYY): 11079
END OF PROGRAM

TASK: PRINT
REPORT NAME: PAYREG
FILE STATUS: COMPLETE; 01/31/79 WITH 1 PAGES
START AT WHAT PAGE NUMBER: 1
PRINT PAGE NUMBERS? Y
ALIGN PAPER, PRESS RETURN WHEN READY

PAJF 1
.4!i" /'LUMEIfr; :HI!) :';'i:.:A'J'If';r;'
Pil 'INrjLL N~";f:;iF:!?

2""GO 418.?·, 71. '1 17.'/6 /77.'D

3bb. S6

j~' i 3 . 81 7 . '1 ~

J2. '1'.) (II) I (8.81) (313.27)

)1, 7

64.0::1 j i

37'2.

S22.tl'j]2. DC)

I b4. 00) (534

TXAD,/ NTXADJ PRINCt:

selO. 57.60 ~,7.(;O 571 5'1 20./1
2,6YLl6 1[;1. 1,4 110.58 1,712.38

r-ij}(i;'NDINC

!:-'M?;t. C.iii:"CK R HH';

ALLEN. RALT'lI
110 600010 ~ () . 0 J7'2.J2

BROWN, FREDERICK
114 tiJ:JOll 1.0. (1 11 c j ~j • 8:)

DURY,~ , 'JERALD
11, 600:)12

FLYNN. THOMAS
116 600013 1<0.0 '+70.JO

FLYNN, THONAD
116 600013 (40.0 (47U. (0)

HILL, STEl/FN
213 600014 48.0 32';, G')

HILL, STEVEN
213 600014 1110.01 (J2'~. ISO)

HUNTER, NICHOLA.'J
214 60001) 40.0 8J: 140.,JO

ILIFF, It;OR
304 600016 40.0 G:jiJ .40

TOTALS In.8 2,03'1.1[·

" .0

Figure I-A Payroll Register Report

After the weekly payroll is out, the company must summarize information
on government contracts for that week. The user specifies the task PAYCERT
(short for payroll certificates) and enters the payroll date and jobs to be
reported. If there is no data for a specified job, the system displays an
appropriate message so that the user will know what to expect in the final
reports (in our example, no data is available for job 220). Certified payroll
reports are now done and ready to be printed. The sample report illustrated in
Figure 2 shows clearly the time that can be saved by not having to manually
produce one of these reports, let alone 20 or 30 of them.

TASK: PAYCERT
PAYROLL DATA: 11079
WHAT JOBS: 215 220
NO TIMECARDS FOR JOB 220
END OF PROGRAM

REPORT NAME: PAYCERT
FILE STATUS: COMPLETE; 01/31/79 WITH 1 PAGES
START AT WHAT PAGE NUMBER: 1
PRINT PAGE NUMBERS? NO
ALIGN PAPER, PRESS RETURN WHEN READY

182 Using APL for Construction Accounting

ABeD HfJ1TH'(; COMPANY
eAYf?:)LL CEl1'Tl!-·TI~ATE.'; f:,'NDING: 01/10/79

O/JF:RATliJN.'; B!jlLijIN'~' - TRANSPORTATION TEST Cf.NTER
TR/;-IN-]')-~rG4t46 f.,'ACt' RATE DECISION NUMBER: MCl<f,-18J8 D/,TED ~JUU' ll.j, 1'l78

FJ1 'iROLL NUMBER:

SSN
II.'ORK

G.T. TOT/!!, ;;R Fle/l FRfl!o';-
G.T./RF:C fiRS wORKED IREV' BASE FRII,; /f.,'/{LY /,q,'T UN/n,'li I.'KLY

Til PI? SA SU .'10 TU i·iF: HR[: F?An PAIl' N!:."}'

:'lSS-1:?-1224
FLij;',IPER-FITT£H

PERCFI,,']' - 3RD C MONT!!

F'LUMREP-F'ITTER

I'LUMBl::R - F ITTEh' .9.0 8.0

B.O

8.0 [:. (1

8.0 8.0

24.0 9.31

l'O.OlJ.cn

j?O 13.0"1

1.18,;'(1
'11R.2 1• 71

;J.",I(

O.T. HONRS:
RED, HOURS: <IS, 0 ,]G.R

Figure 2-A Payroll Certificate Report

At month's end, the trustee for the union usually requires a report giving
detailed information on all employees who are members of that union. Since
books have to be closed-in addition to other month-end duties-time is
important. To produce the union reports, the user simply enters the task
UNIONRPT (short for union report) and specifies a range of payroll dates.
Since each union not only requires detailed information on its members (see
Figure 3), but also summary data on fringe benefits (see Figure 4), you can
appreciate how difficult and time consuming it would be to produce these
reports manually.

TASK: UNIONRPT
ENTER INCLUSIVE PAYROLL DATES (MMDDYY): 10379 13179
UNIONS COMPLETED: 20 208
END OF PROGRAM

REPORT NAME: UNIONRPT
FILE STATUS: COMPLETE; 01/31/79 WITH ~ PAGES
START AT WHAT PAGE NUMBER: 1
PRINT PAGE NUMBERS? NO
ALIGN PAPER, PRESS RETURN WHEN READY

ABeD PLUMB INC AND HEATING COMPANY
3869 WEST MAIN
COLORADO SPRINGS. COW. 80904
FED. I.D. FED 98-1734567

PIPE INDUSTRY FUNDS - weAL 20
EMPWYEE FRINGE BE~FI7' SUMMARY

12/28/781 THRU 1/31/79

E,'1PLOYEE

ALLEN. RALPH
lUFf, ICDR

••••••••••••• HOURS •••••••••••••••
s.s .< GROSS WAGES DUES VACATION TOTAL REGULAR TlME+ 1/2 DOUBLE COMMENTS

----- -----

555- J2-1234 744.64 14.90 80.00 80.00 55 PERCENT - 3RD 6 MONTH
567-02-3957 1. ?75. 80 25.54 80.00 80 .00

TOTALS: 2,021.44 40.44 160.00 160.00

Figure 3-Union Report Summary by Member

Unions impose so many reporting requirements that they deserve discus
sion. However, because not all employees are members of a union, we needed
the capability of providing both union and nonunion personnel information.

Using APL for Construction Accounting

PIPE INDUSTRY FUNDS - LOCAL 20
EMPLOYEE FRINGE BENEFIT SUMMARY

12128/78 THRU 1/31/73

183

TYPE HOURS RATP.

DUES
INSURANCE FUND 150.00 0.850
PIPE TRADES FUND 150.00 0.110
PENSION FUND 150.00 1. 150
APP-JOUR TRAININC FUND 150.00 0.080
CONTRACTOR ADM FUND 160.00 0.040

AMOUNT

40.41J
136.00
17.60

184.00
12.80
6.40

** TOTAL DIIE: 397.24

Figure 4-Union Report Summary by Benefit

Some staff employees don't belong to a union, per se, but their companies may
give them some union benefits, such as pension, insurance, and welfare.
Unions have many work classifications and pay rates depending on the zone in
which their employees work, so we also had to provide a system that would
handle many pay rates without requiring that the rates be entered for each
employee at each run.

Since an apprentice gets a percentage of a journeyman's rate (which
varies depending on length of apprenticeship), we wanted to design the system
so that it would take care of all the details and the user would only have to add
an employee as an apprentice. Different unions have different fringe benefits
and different rates for those benefits. Again, we wanted to provide an easy
method for a user to assign an employee to a specific union and let the system
take care of all fringe calculations automatically.

To address these challenges, we devised what we (cleverly) call the UN ION
file. For each union, it keeps track of all work classifications by name and
number and up to four zone pay rates for each work classification. It also keeps
track of up to 17 different fringe benefits for each union and has two methods
to compute dues-as a percentage of gross and as cents per hour.

The file also keeps track of apprenticeship complications-it automati
cally computes the apprenticeship pay rate based on the apprenticeship
percentage and the journeyman's rate for each union. It automatically
determines correct vacations for apprentices and journeymen.

Conclusion

The STSC Construction Accounting System is a complete system-one
that fulfills the seven functions mentioned earlier, meets the needs of the
industry, and is easy to use, reliable, and cost effective. Although the
installation fee and operating costs of the system are higher than some others
on the market, this system does provide the most cost-effective processing
when all factors are considered. Personnel costs to the client are lower because
most of the time-consuming manual tasks are eliminated. Moreover, the
required reports are produced in a timely manner, which helps the client to
avoid incurring penalties. Because the system is online, the client needs only a
terminal in his office. No expensive hardware or other paraphernalia are
required. An expensive programming staff is not required, and no expensive
programs must be purchased.

Moreover, the system can be customized if the existing reports do not meet
the client's needs. Calculations can be altered if special computations are

184 Using APL for Construction Accounting

required. Because of a good design, constant communication with several
construction companies during development, and the power and flexibility of
AP L, this construction accounting package is what I believe to be the best on
the market today.

Bob DeCloss joined STSC in 1973 as a programmer. He took a leave of absence
in 1975 to become treasurer of the Irwin Trading Company and Irwin Manage
ment Company, but later in 1975 rejoined STSC in the APL Development
Department. Since 1978 he has been the branch manager of STSC's Denver
office.

DeCloss co-authored with Roy A. Sykes, Jr., a paper for the APL 75 Conference
in Pisa, Italy, titled "EMMA to; Extended Management Macros in APL" (AP L 75
Conference Proceedings, ACM, 1975). In 1977 he wrote the EMMA Reference
Manual (STSC, 1978). He has designed and implemented several systems
dealing with report generation, database management, and construction ac
counting.

DeCloss has an M.A. in mathematics from Claremont Graduate School.

Vess E. Irvine

Flexibility in Accounting Systems

Many different accounting packages are available for use through time
sharing or service bureau companies, or for purchase to be run on inhouse
hardware. Very few of these systems are written in APL, primarily because of
the traditional belief that APL is inefficient for highly repetitive, transaction
driven applications.

When reviewing the documentation for these accounting systems, it is
easy to find built-in limitations forced upon the designers because of language
constraints, whether written in COBOL, PL/l, or another of the "traditional"
programming languages. For example, a user may be restricted to a chart of
accounts with, say, three digits to identify a main account number and two
digits to identify a subaccount number. He may also be forced to use
predetermined ranges of numbers for different types of accounts (100-299 for
assets, 300-499 for liabilities, and so on). Another common constraint is a
limitation on the total number of a particular type of journal entry made each
month.

In September 1978, I was asked to design a general ledger/budget tracking
system for a nonprofit subsidiary of a major southwestern utility corporation.
The outcome of this request was the development of STSC's General Ledg
er/Budget Tracking System (G L * 3), a general-purpose accounting application
written in AP L and available on the APL *P L US Time Sharing Service.
Before I describe the development process and capabilities of GL * 3, let me
first tell you why I chose APL as the programming language for the system.

Since my primary programming language skills are in APL, I decided to
investigate the suitability of the language for this accounting application. The
first consideration was, "Will the application run efficiently in APL ?" It is one
thing to build a system that does everything the user desires; but if he cannot
afford the resource costs to run it, the project will be a failure. I can say with
some assurance that 10 years from now we systems designers will no longer be
concerned with the run-time efficiencies of different languages. Unfortunate
ly, we could not wait that long since the utility company needed the applica
tion this year.

I concluded that AP L could be used for 90 percent of the system,
particularly in those areas that required a high degree of interaction (conver
sation) between the terminal operator and the computer. This included the
tasks of defining the chart of accounts; entering starting balances, budget data,
and actual journal transactions; printing trial balances and other manage
ment reports; and printing the detailed transaction data or ledgers. The only
operation that would not be performed in AP L corresponds to the manual

185

186 Flexibility in Accounting Systems

function of posting journal transactions to account ledgers. (The analogous
computer operation is a sorting of all transactions for a given period.) Here I
decided to use IBM's SORT/MERGE Program Product (5734-SMl), a system
written in Assembler language that has been optimized to sort large volumes
of data very efficiently and that can be automatically started and run on
STSC's APL*PLUS System.

The next consideration was to develop a system that did not contain the
limitations described earlier in this presentation. From the start of the project,
the aim was to design a flexible system that could also be used by other
business organizations. With the intensive programming that would be in
volved, I did not want to end up with a system useful only to other nonprofit
subsidiaries of utility companies. So, for each specification requested by the
user, I evaluated the impact of the request on the generality of the programs.
Once a decision was made to allow for a certain flexible feature, each program
in the system was written to handle that feature. The best way to explain this
approach to the development of the system is through the examples that
follow.

Categories for Tracking Expenses

All accounting systems have a chart of accounts, but often a user wants to
track additional expense categories as well. The utility company wanted to
track expenses according to three classifications: account number, responsi
bility center, and work order number. To meet this need, the system was
designed to handle a minimum of one category, with the added flexibility of
defining any number of additional categories.

Each expense category was designed to have its own name, number
format, description width, code word, budgeting status, and double-entry
balancing status. (A double-entry balancing status is a category such as
"company" or "subsidiary" for which the system requires debits and credits to
always be in balance. With this feature, one general ledger computer system
could be used to maintain a complete set of books for any number of separate
organizations within the corporation.)

The need for a budgeting status for each category became c] ~ar when the
utility company requested that computer space be allocated for toring budget
subtotals by account number and responsibility center, but not oy work order
number. So, the system was designed to allow users to set a budgeting status
for any category.

Since GL * 3 was first installed on 1 January 1979, many different expense
categories have been demonstrated. These include: vendor number, product
number, aircraft engine number, oil/gas drilling property number, franchise
number, customer number, cost center, and data type. The data type category
was used to differentiate between dollar amounts and number of hours for
projects where both types of resources-money and time-were tracked.

Creating Ledger Subtotal Files

After deciding that this accounting system would handle an unlimited
number of categories, the next problem to be faced was how to store the
monthly subtotals. The size of the file would increase dramatically as the
number of categories increased.

For example, a typical system may save monthly subtotals (13 numbers,
including the starting balances) by account number (120 accounts), by respon
sibility center (say, 30), by work order number (say, another 30), and by actual
or budget numbers (2 numbers). The maximum number of monthly subtotals
using one file, then, would be

Flexibility in Accounting Systems 187

13 X 120 x 30 x 30 x 2 = 2,808,000

Considering this figure at current rates for online storage, the file would cost
almost $3,400 per month to store. Clearly there has to be a better method of
storing these numbers.

The solution was to ask management ifthey really needed the information
broken down in five different ways. Perhaps they really wanted to see
financial statements by account numbers only, a budget versus actual report
by responsibility centers with different accounts down the rows, and a work
order progress report by expense account numbers. Knowing the true require
ments when establishing a new general ledger allows decisions to be made on
whether a large, single file might be more economical if broken down into
several smaller files.

Instead of using a single subtotal file for the utility company, three
subtotal files were defined. Each of the three files contained only the
information needed to produce a particular report. A recalculation of the
estimated online storage costs is shown in Table 1.

Table I - Monthly Subtotals Using Three Files

File

I
2
:3

Budget!
Actual

1
2
I

No.
Months

t:3
12
12

No.
Accounts

12U
120
120

No.
Responsibility

Centers

:~U

No. Work
Orders

:~o

Total

1.:"'>60
iI fi,100
4:L~00

1:H,l6U

By knowing the true requirements of the user, and taking advantage of our
ability to split the subtotals into multiple files, we were able to recognize a 95
percent cost savings over our original estimate.

Starting Balances and Budgeting Status

In Table 1 you may have noticed that the number of months can be either
12 or 13. In GL * 3 the 13th month is an extra column in which starting
balances are stored. Since a company has a beginning balance sheet each year,
the subtotal file by account numbers was allocated additional space for storing
the initial balances of asset and liability accounts.

Not so obvious is the need for extra columns in other accounts. In a file
containing subtotals by work order numbers, for example, extra columns may
be useful for containing the dollar amount spent since the inception of the
project, total expected cost over a multiyear period, or expected profit from the
job. Future users will, no doubt, think of many other uses for extra columns of
subtotals. GL * 3 was designed to carry as many "starting-balance" columns in
each file as are needed by the user.

As illustrated in Table 1, the user also has the option of allocating space in
each file for storing budget data. The only restriction is that all categories in a
"budgeted" file must also be defined as "budgeted". The result is twice the
number of columns in each file; thus, a 13-month file which is budgeted will
have space for 26 columns of data.

How does the data get into the subtotal files? Budget data and starting
balances are entered directly at a terminal with the interactive programs
ENTERBUDGET and ENTERSTARTBAL. The "actual" subtotals must pass
the entire monthly accounting cycle of journal entries and ledger postings

188 Flexibility in Accounting Systems

before they arrive in monthly subtotal files, and a complete audit trail is
maintained in the process.

Creating Reports

At this point, the system had flexibility in number of categories, number
ing schemes, sorting sequences, budgeting status, subtotal files, and starting
balances. The next problem was to design a printing program that would
present the data in meaningful management reports. But how does one write a
program that will print, for example, a trial balance sheet handling any
combination of the above choices?

The answer is that you don't. Instead, you create a report generator that
allows the implementer, in a very short time, to custom design the reports to
management's exact specifications. The features of QUICKPLAN'", STSC's
Quick Planning and Reporting System, were incorporated into the GL * 3
system. QUICKPLAN's report generator permits any combination of titles,
headings, comments, and row and column totaling of budget and actual data
from the subtotal files.

For instance, using QUICKPLAN, a production program can be produced
in just a few hours to generate a management control report with responsibili
ty centers across the columns and accounts down the rows, and with alternat
ing rows of actual, budgeted, and variance data, including a forecast for future
months in the current fiscal year.

This report generation feature further reinforces an appreciation of the
full advantages of AP L, especially in the GL * 3 System. GL * 3 contains every
feature of STSC's QUICKPLAN System, including a number of data retrieval
programs designed to access the correct subtotal data in each subtotal file.

APL and Flexibility

Although most of the GL * 3 system capabilities described could probably
be implemented in any computer language, certain features of the APL
language are well suited to this application. Heavy use is made of the execute
primitive function (1) to differentiate between global variables, which contain
definitions of categories, and subtotal files. For example, an accounting system
with three categories would require three different global variables containing
the names of each category.

NAME1~'ACCOUNT NUMBERS'
NAME2~'RESPONSIBILITY CENTERS'
NAME3~'WORK ORDER NUMBERS'

If a particular program requires the printing of a specific name in the heading
of the report, the following APL statement will give the correct name under
program control.

I~2

NAME~" NAME' • 'I

The local variable NAME now contains for the heading the characters
'RESPONSIBILITY CENTERS'.

The global variables which customize each general ledger are created by
interactive programs. For example, defining the various subtotal files is
performed by a program called BUILDFILES. This program prompts the
user for responses to specific questions such as: "Is this file budgeted?", and
"How many starting balances?" The program then sets up the global variables
in their proper form, and the customized system is permanently saved as an
APL workspace.

Flexibility in Accounting Systems

Conclusion

189

The commercial success of GL * 3 is an indication of the future potential of
AP L in large accounting applications. As of 1 November 1979, there were five
GL * 3 systems in operation, including one for a firm that sells franchise
dealerships, and one for a firm that explores and develops coal and uranium
sources.

Vess Irvine, currently branch manager of STSC's Dallas office, has been
working for 12 years with computer applications in end-user environments. He
spent several years in the aerospace industry developing engineering design
systems in aerodynamics and structural dynamics. He was introduced to APL
upon joining STSC in 1976 and has developed and marketed AP L applications
in accounting, finance, and operations.

Irvine has a B.E.S. degree from Johns Hopkins University, a master's in
engineering from Cornell University, and a M.S. in management science from
the University of Southern California. He also holds a professional mechanical
engineering license in California.

Eric M. Landau

Manufacturing Applications of APL

This paper briefly describes the development of commercially available
manufacturing systems written in AP L, and provides some speculations as to
the direction such development will take in the near future. "Manufacturing
applications" in the title refers to applications of direct relevance to a
manufacturing operation, such as inventory management or production plan
ning, rather than to more generally applicable systems-such as those for
accounting or capital budgeting-that are used in a manufacturing environ
ment.

History of APLin Manufacturing Applications

The history of APL's use in manufacturing applications is largely the
story of one man, Robert Goodell Brown. Brown-eurrently president of
Materials Management Systems, Inc.-is generally acknowledged as one of the
world's foremost authorities on the design and implementation of manufactur
ing systems. He has written half a dozen books and countless papers on
forecasting, inventory management, manufacturing, and manufacturing sys
tems design. His most recent book, Materials Management Systems: A Modular
Library (Wiley, 1977), is rapidly gaining acceptance as the leading textbook on
the design of computer-based systems for manufacturing and materials man
agement applications.

Brown first became known for his work in operations research at Arthur
D. Little. In the mid-1960s, he moved more heavily into the systems field at
IBM, where he first encountered APL and gained an appreciation for the
power and versatility that the then new programming language could bring to
bear on manufacturing problems. While at IBM, Brown designed and imple
mented several manufacturing-related software packages, some of which are
still marketed by IBM today, more than ten years after they were originally
written.

In the early 1970s, Brown struck out on his own and formed the
independent consulting firm known today as Materials Management Systems,
Inc. Shortly thereafter he formed a lasting affiliation with STSC. Since then,
STSC has underwritten the development of a series of program libraries that
address the concerns of manufacturing and distribution organizations. These
libraries, offered commercially through the AP L *P LUS Time Sharing Ser
vice, are written in an enhanced version of AP L that is a proprietary product
of STSC.

The first manufacturing program library written by Brown was called
Materials Management Interactive Analyses and Simulations, and was known

190

Manufacturing Applications of APL 191

to its user community by the much shorter name Library 707. As the formal
name implied, Library 707 was a suite of analytical, simulation, teaching, and
gaming programs designed to explore the concepts and applications of tech
niques in the materials management area. Library 707 originally emphasized
forecasting and inventory management techniques, although it was later
expanded to include tools for analysis and simulation in the areas of produc
tion scheduling, material requirements planning (MRP), and physical distribu
tion planning.

Having written Library 707, Brown turned his attention to designing and
writing AP L programs that would provide manufacturers not with analytical
tools or simulations, but rather with production systems that would be of use
in planning and controlling the day-to-day operation of a manufacturing
enterprise. The first library of such programs was called 7 4 7 FOR E CAS T.
It was a production system for sales forecasting, based on the adaptive
smoothing methodology that Brown developed and first described in the mid
1960s in his book Smoothing, Forecasting, and Prediction of Discrete Time
Series (Prentice-Hall,1962).

747 FORECAST was released to the manufacturing community via
the APL*PLUS Time Sharing Service in 1972. By early 1973, it had gained a
fair amount of exposure, largely due to the article "Forecasting Infosystem
with Efficiency", which appeared in the November 1972 issue of Infosystems.
Not long afterwards, Brown and STSC released a second-generation system in
the 7 4 7 series, called 7 4 7 S TRETCH. 7 4 7 S T RETCH added to the
original forecast system a set of production programs for applying state-of-the
art inventory management techniques that had first appeared in program
form in Library 7 0 7.

Then, in 1975, Brown produced the first AP L MRP system. It was called
COSMIC, the Comprehensive Operating System for Manufacturing and Inven
tory Control, and was marketed by STSC as MMSL, the AP L *P L US Materials
Management Systems Library. MMSL covered both the new COSMIC System
and the still-expanding Library 707. COSMIC was a fully integrated modular
library for demand forecasting, inventory management, production schedul
ing, material requirements planning, and shop floor control.

Through COSMIC, manufacturers could, for the first time, use the power
of APL for the primary planning functions of their operations. Within a few
months of its introduction by STSC, COSMIC was in use as a planning tool in a
variety of industries manufacturing products as diverse as business machines,
pharmaceuticals, industrial equipment, bulk chemicals, and photographic
film. Suddenly, a systems technology that had previously required its users to
install and maintain large, complex, and inflexible COBOL or PL/1 programs
became available on an APL system, and could be readily adapted and used by
manufacturing firms with no knowledge or desire to develop large inhouse
MRP systems.

Once COSMIC had led the way by demonstrating APL's usefulness as a
tool for building manufacturing systems, it was only a matter of time before
APL spread through the manufacturing environment. Within STSC, systems
were designed that interfaced the planning tools in COSMIC with other AP L
systems for such fundamental functions as inventory accounting, order entry,
job costing, and long-range business planning. Other APL service companies
also began using APLin manufacturing environments, writing systems for
customers that provided them with COSMIC-like facilities and taking ad
vantage of APL to do so flexibly and cost-effectively. Despite these develop
ments, STSC is, at this writing, the only AP L service company to offer an off
the-shelf, general-purpose manufacturing package.

STSC's current offering in the manufacturing systems area is CMCSw, the
APL*PLUS Comprehensive Manufacturing Control System. CMCS was re-

192 Manufacturing Applications of APL

leased in 1977 as Brown's fourth-generation production system for manufac
turers. At the time of its release, CMCS provided all the facilities described in
Materials Management Systems, including everything that had previously
been available in COSMIC plus a new set of programs for physical distribution
planning and control.

By the end of 1979, CMCS was at Release 19, with each successive release
adding new, improved, and expanded capabilities to the original system. While
Brown continues to design new functional enhancements to CMC~particu

larly in the areas of forecasting and distribution-most of the advanced state
of-the-art extensions to the production planning and control facilities are the
result of ongoing theoretical and technical design work done by James S.
Russell, manager of manufacturing systems for STSC. Russell is responsible
for the first, and up to now the only, implementations in APL (within CMCS) of
net-change MRP, full-scale capacity requirements planning, time-phased criti
cal resource load analysis, production limits analysis, and inventory target
based production schedule smoothing. Russell's work has also provided com
plete interactive simulation and "what if' capabilities for use by production
planners in writing and modifying master schedules.

As a result of the work done by Brown and Russell, CMCS is widely
recognized today as the most advanced manufacturing package on the market.
There can be little doubt as to why this is so: APL allows system designers to
implement new techniques and to integrate them with existing systems almost
as fast as the theoretical work underlying the new developments takes place.
Designers working with systems programmed in other languages have to wait
years before they can see their designs programmed into working systems.
Now, as the 1980s get under way, the current state of manufacturing
applications of APL largely reflects the ongoing use of CMCS by dozens of
companies for planning and control of manufacturing operations in the United
States and abroad.

Future Trends

What trends can we expect over the next few years in the application of
APL to the manufacturing environment? The most obvious one is a simple
expansion in the use of current technology. CMCS will continue to gain
acceptance and the number of organizations using it will grow. Other APL
service companies will bring APL systems like CMCS to the market. Organiza
tions currently providing remote computing services for manufacturing plan
ning and control using older and more cumbersome languages and technolo
gies will begin to use AP L as they see evidence of the increased power,
flexibility, and maintainability of AP L-based systems and ofthe tremendously
increased level of productivity that APL provides in developing and imple
menting such systems.

Meanwhile, the companies on the leading edge of APL manufacturing
systems development-like STSC and Materials Management Systems, Inc.
will continue to provide the commercial market with additional AP L-based
systems and capabilities. Development efforts should proceed in two broad
directions. As new methods and techniques are developed-or new applica
tions found for existing techniques that can be used to solve real-world
manufacturing problems-such work will be incorporated into CMCS and,
hopefully, into other AP L-based manufacturing systems as well. A good
example of this is the theoretical work currently being done by Brown on the
application of MRP techniques to physical distribution planning, which can be
expected to be incorporated into CMCS before the end of 1980.

The other direction in which the use of AP L in the manufacturing
environment will continue to grow is downward. Until now the interactive,
algorithmic use of AP L within the programming community has resulted in its

Manufacturing Applications of APL 193

being used in manufacturing primarily for planning and control systems. The
use of AP L for low-level, repetitive, data-handling tasks (such as inventory
record-keeping, order entry, cost accounting, payables, and purchase order
control) has been limited to meeting the needs of organizations requiring
unusual functional capabilities, special interfaces with other APL systems, or
very rapid implementation. The next few years should see the introduction
and widespread use of APL for developing software systems available to
manufacturing companies off the shelf. These systems will provide cost
effective capabilities for handling the "bread and butter" functional require
ments now being met in most manufacturing organizations with old, largely
outdated, batch-oriented software written in the more "traditional" pro
gramming languages.

By far the largest impetus to the growth of manufacturing applications of
APL in the 1980s, however, will not come from new techniques, new applica
tions, or the expanding market for services. It will come, rather, from the
continuing, rapid advancements in computing hardware technology. The
1980s will see a continuation of the dramatic trends of the late 1970s toward
more powerful, more compact, more efficient, and-most important of all
less expensive computer mainframes and related hardware.

More and more of the world's computing will be done on inexpensive
minicomputers and microcomputers operated by the end user, instead of on
large-scale mainframes supported by traditional computer centers and data
processing organizations. Manufacturers will no longer face the choice of
investing hundreds of thousands of dollars and years of effort in bringing up
full-scale modern manufacturing planning and control systems or of hiring an
outside vendor, which requires an ongoing justification of a significant
operating expense. Moreover, manufacturers will not be forced to place their
faith in an outside vendor, who must be entrusted with the firm's most vital
and sensitive data, and who must be counted on to have his system-over
which the user lacks complete control-running reliably and continuously so
as not to disrupt the daily business of producing, stocking, and distributing the
product.

APL has already been implemented on some minicomputers. Before 1980
is over we can expect to see some of these and others available commercially
with AP L language software. Nor will it be too long before APL becomes
available on various microcomputers. With minis that use APL and that have
the speed and power to support large and complex systems such as CMCS, it
will soon be possible for manufacturing companies to purchase everything
they need for automated planning and control of their production, inventory,
and distribution in a bundled package that includes hardware, operating
system software, AP L, manufacturing applications software, service, training,
and support. And manufacturers who don't need large or integrated systems
will be able to buy micro-based "black boxes" that will quickly and cheaply
provide them with answers in critical areas such as sales forecasting, invento
ry management, and shop loading.

Looking even further into the future, the time will come when the small
black boxes will be replaced by software modules with shared peripherals that
will be designed to plug into desk-top or pocket computers. The executive ofthe
future, who will still require printed reports, is likely to carry a pocket unit on
which he can generate those reports in storage. He will then be able to walk up
to a printer, plug in his pocket computer or some detachable module of it, and
have the reports printed on the spot, in much the same way as he now makes
photocopies. These devices will replace the modern calculator as surely and
completely as electronic calculators have replaced the mechanical adding
machine and the slide rule.

194 Manufacturing Applications of APL

In short, advancements in computer technology over the next decade will
dramatically affect the way manufacturers plan and control their operations.
Although it may be too soon to tell just how this will affect manufacturing
operations, it's not too soon to be sure that they will.

Eric Landau joined STSC in 1973 as a marketing representative and is
currently product manager of the company's manufacturing systems. He has
worked in computer systems design for the U.S. Government, Intermac Corpora
tion, and Burroughs, as well as for STSC. He has taught operations research
and forecasting and has published several papers, including "On the Non
Statistical Aspects of Statistical Forecasting" (1976 APICS Conference Pro
ceedings) and "On Defining Customer Service" (1979 APICS Conference
Proceedings).

Landau holds a B.A. and an M.A., both in economics, from the University of
Rochester. He is a Fellow of the American Production and Inventory Control
Society.

Daniel Dyer

Managing and Computing

Several papers in this book address the subject of managing your company
using AP L. This paper addresses that subject from a chief executive officer's
point of view. It describes the installation of a planning, budgeting, and
reporting system.

Planning, Computing, and the CEO

Planning is a determinant of the ability to effect change. For this reason,
planning is at the core of the activities of a chief executive officer (CEO). As the
chief executive of STSC, a company with annual revenues of $20 million, most
of my time is devoted to introducing change into the organization. Of course,
that's true for any manager-his job is to make the current year significantly
better than the year before. A chief executive's goal is to coordinate significant
improvements throughout the entire company.

If one is to introduce change that will affect the operations of an entire
company, it is vital to have a planning system. If the planning system is to
succeed, it must include an efficient and responsive information system,
because planning must be integrated with budgeting and reporting at all levels
of management and operations. For information systems to be responsive to a
dynamic management, they must be able to accomplish the following:

• Identify problem areas, and thereby highlight the need for
change.

• Provide analyses on the types of change that might be desirable.

• Show responsibilities for revenues, costs, and results after a
change is effected.

That's where APL comes in. The ability to respond quickly to change is a
significant feature of APL in contrast to other languages. The pace at which a
CEO can implement changes depends on the lead time required to install the
information systems to support the changes. APL reduces that lead time. It
helps the CEO assign or reassign responsibilities within the organization,
knowing that the tools, at least with respect to information systems, will be
available immediately to enable managers to assume and carry out new
responsibilities.

I have seen APL facilitate effective changes at many levels within STSC
in accounting, financial reporting, market analysis, capacity planning, elec
tronic message processing, and others. I would like to describe how APLand
APL enhancements have supported strategic and operational planning. STSC
developed its own internal planning system from scratch in only two and one-

195

196 Managing and Computing

half years and could not have accomplished this without the use of AP L. The
fact that STSC uses its own product should not make this experience any less
relevant to other organizations.

STSC has a relatively short history of formalized planning-about five
years. The company has been in business for eleven years, and did not do any
formalized planning in its first six years. I don't know if our experience is
typical, but our approach to planning has changed in each of the past five
years.

It seems strange now, but for years we ran a successful and growing
business without knowing what our future profits would be. Although we were
frequently asked for projections, we simply couldn't provide them. This must
be anathema to many large organizations that regard profits as a "managed
number", but thousands of organizations find themselves somewhere in
between a "seat of the pants" and a totally planned approach. Having
progressed rapidly along the path from the former approach to the latter,
perhaps sharing our experience will have some value to the many organiza
tions that find themselves somewhere on that path.

Managing for profit is different from merely forecasting future profit. A
managed profit implies greater commitment than a forecasted profit, and
obtaining commitment throughout an entire organization is not a trivial task.
APL helped STSC in obtaining commitment at all levels of the company, and
since we like to stress the practicality of APL, I'd like to tell you how we used
APL to improve our planning process.

STSC-Before Formalized Planning

STSC entered the computer time sharing business in 1969 with $250,000
of invested capital. Perhaps it was a foolish venture, considering that the
company's purpose was to provide a service using a computer programming
language called APL-a language that few people had ever heard of. Computer
programmers are as conservative about the computer programming languages
they use as any of us are about the languages we speak. They change slowly.

Although the marketing task was difficult, offering just APL meant that
the company had a narrow, and therefore desirable, product focus in the first
years. Success breeds its own problems, however, and we soon found that AP L
was useful across the spectrum of industries and management disciplines. In a
few years the focus had dissipated somewhat. With increasing frequency, we
were asking "Where should STSC concentrate its efforts? In what industries?
In which management disciplines? In which computer applications?"

By 1975 our "seat of the pants" approach was clearly becoming inade
quate. We who had started the company had then been working on the growth
of the company for six years. Although we collectively had a great deal of
experience with large companies, we had fallen behind in knowledge of
current professional management techniques associated with large, successful
companies. Since our objective was to become a large company, it was clear
that "seat ofthe pants" and autocratic management would no longer suffice to
enable the company to meet its objectives.

The Beginning of Change-1975

The rapid change in management approach that occurred from late 1975
to mid-1978 started in December 1975 with my attending the American
Management Association's (AMA) "Management Course for Presidents". It is
a one-week course presented by The President's Association, one of the
operating groups of the AMA. The course is given solely for chief executive
officers or, in the case of large corporations, for unit presidents of subsidiary
companies.

Managing and Computing 197

From the course, I gained some practical techniques for implementing
participative management. Each member of our management committee
attended a similar four-day course for top executives during the next three
months. This helped us to use the same terminology when discussing manage
ment practices.

The greatest significance of the course, however, was that it included a
tasteful pitch by the AMA for its "team planning process". Several case
studies, similar to the one you are now reading, were presented by CEOs
describing experiences with the AMA's team planning process. Since we had
been struggling with planning and not doing a very good job of it, I decided to
try the team planning process. The attendance of our management committee
in the four-day course was the first step.

The Team Planning Process-1976

For a fee, the AMA will take a CEO and a small top management team to a
remote location to help with strategic and operational planning. After gather
ing company financial data for the past five years, the team spends one week
outlining goals and action plans. Then, lower levels of management spend a
couple of months further developing those action plans. The top management
team reassembles at the AMA location for a second week to determine which
action plans to undertake. Finally, the plans are put into effect-hopefully
with a beneficial effect on the bottom line.

What happened during the first week is worth explaining in some detail,
because it showed us quickly why our previous stabs at planning had failed to
produce significant results. We had not appreciated the complexities of the
planning process.

Essentially, the process recognizes that planning is not simple, but since
the results can have a substantial payoff, one can justify considerable efforts to
achieve good results. A CEO quickly realizes how little an effect he can have on
what the results will be in his business in the weeks ahead, but how great an
effect he can have on what they will be in years ahead. In that sense,
management is planning. Is it possible to spend too much time on planning? At
the lowest levels of management, possibly yes, but at the higher levels, no.

During that week, we considered each problem from at least a dozen
different directions. This is not an approach that we would have come up with
intuitively on our own. There's considerable overlap between the different
directions. No one direction alone gave the solution, but in combination they
all did. To be more explicit, we analyzed our business from the standpoint of
strengths; weaknesses; problems; opportunities; competition; trends in regula
tion, technology, and society; threats to our business; and even the personal
objectives of the individuals making up the top management team. Although
many of these viewpoints overlapped, each provided some additional insight
into what was opportunity for us and what was not.

Once this analysis was completed, it was a relatively straightforward task
for our top management team to come up with action plans to close the gap
between where we wanted to go and where extrapolation of our present trend
was taking us. We had 77 action plans at the end of our first week of planning,
which was probably too many. The large number reflected our management
committee's strong orientation toward development in 1976.

This approach to planning is a fantastic experience in delegation for the
CEO, because each team member looks at the business from the point of view
of the CEO. I found each team member more than willing to put himself in my
shoes. In fact, while the process was going on, I sometimes had to restrain
myselfto keep quiet and allow the process to work. In delegating responsibility
for particular action plans, each team member ends up with at least a couple of

198 Managing and Computing

action plans that may intrude upon the responsibilities of several of his
associates. But each action plan names just one individual responsible for
seeing that it gets planned in detail. Since everyone knows who has what
responsibility, in just one week the CEO accomplishes the delegation of a large
number of complex assignments.

Another important result of the first week of planning was a reassessment
of goals. In 1976 we looked at goals for each of the next five years. Our
planning now focuses on a three-year horizon. Three-year goals enable
managers at all levels to see where the company is going and to operate their
departments accordingly. It's important that all managers know the planned
rate of expansion of the company in each product and industry for more than a
one- or two-year time frame.

Goals must reflect the key measures of management performance. Typical
goals might include benchmark figures or percent increases in sales, income
before tax, income after tax, return on invested capital, return on equity, and
earnings per share.

At the end ofthe first week we had established some tentative goals, some
strategies, and dozens of action plans. We then returned to our own locations
to involve lower levels of management in the process. The action plans had to
be quantified; during the first week's session they were barely outlined. Before
the end of the process many would be dropped, almost all the rest would be
modified, and some new ones would be proposed. The action plans as struc
tured by the AMA are similar to decision packages used in Zero-Base
Budgeting (ZBB). In fact, we became involved with ZBB a year after our
original AMA experience and merged the two approaches.

It took a couple of months for lower management to assess the plans;
develop them more fully; suggest new ones; and assign revenue, expense,
capital expenditure, and headcount estimates to each plan.

When that was completed, our top management team reassembled for a
second week, meeting with the same AMA planning director as during the first
week. At first we had had reservations that this director had too little
background in our "technical" industry. Before we got through, we concluded
that his lack of familiarity with the computer service industry was an
advantage, because he maintained an objective, unbiased point of view and
examined the assumptions that we had made about the company and the
industry.

During the second session, each team member presented the case for his
action plans. The plans were ranked and tentative decisions were made as to
which plans would be undertaken and which would be dropped. The accumula
tion of financial estimates-from the tentative set of "approved" plans
permitted reevaluation at this stage of the long-range financial goals that had
been set in the first week. The plans and goals could then be adjusted
accordingly. In any case, the goals were not determined by simply totaling the
approved or highest-ranking action plans. The goals determined the plans, not
vice versa. In fact, we approved an excess of plans to meet the goals because it
might turn out later that some plans would not be feasible or desirable.

Careful notes were taken during both planning sessions. This simplified
the important task of documenting the strategic plan at the completion of the
formal process. Presenting the plan to the Board of Directors and, after
approval, to the entire company, was essential in obtaining commitment from
all levels of the company.

Because of the participative approach taken in 1976 to arrive at our first
formal strategic and operational plan, there was little problem in obtaining
acceptance of the plan throughout the organization. Acceptance, though, is a
far cry from commitment, and our first plan had not been developed to the

Managing and Computing 199

level of detail necessary to assure that everyone in the organization was
committed to meeting his portion ofthe plan. Nevertheless, it was a major first
step, and it had been accomplished in six months.

The planning process had not yet imposed any new requirements on the
existing information systems. It had been possible-although a bit of a chore
to manually rank and summarize all of the quantitative information contained
in the action plans. So far, so good.

Each later stage in the development of a planning system, however,
required an exceptionally responsive automated information system. An
outside planning consultant, such as the AMA, can get a company started in
formal planning, but the real payoff in the planning process comes in the later
stages. A computer service company, such as STSC, may find it extremely
valuable to pick up where the AMA leaves off by installing the information
systems necessary to carry planning information to all levels of management.

Automation of the Operating Plan-1977

In 1977, the second year of formalized planning, we used the AMA's
"update" service. We held a week-long strategic planning session with the
same AMA planning director. We then developed decision packages and
evaluated these in another week-long meeting (at which no outside consultant
was present). The decision packages were developed with full accounting detail
(revenues, expenses, capital expenditures, and headcount) by chart of account
and by month.

This level of detail required computer implementation, and we achieved
this in the time that was available by using AP L. By flagging each decision
package that was approved, we quickly produced the financial operating plan
and budget for the following year. We could never have coped with this much
detail, nor could we have met our planning schedules, without using APL to
develop and implement this integrated ZBB planning system. The time and
staff that was available did not even permit us to consider using another high
level language.

Automated Projections-1978

In 1978, our third year of formalized planning, our practices once again
evolved considerably. Again we ran strategic planning sessions without
outside consultants and used ZBB techniques to develop the operational plan.
But in 1978, we also ran projected balance sheet, profit and loss, and funds
statements automatically, in addition to producing the operating plan from
the approved decision packages.

Each manager entered his own decision packages from a terminal at his
own location. Once decision packages were entered, modified as necessary, and
approved, obtaining the operating plan and projected financials was literally a
button-pushing operation. And, this made it possible to do "what if" games not
only quickly, but in complete detail.

The supporting information system was implemented by one person
working part-time on this project, and the projection system was implemented
using the part-time efforts of a financial analyst with limited programming
experience. If these individuals were unavailable, they were backed up by
other individuals with similar skills. Other organizations might prefer to work
with an outside service organization that could be relied on to provide essential
continuity for similar projects supporting top management's functions. The
point I want to stress is how little effort was required, rather than how few
individuals were involved. They used AP L and its enhancements to produce
the planning system to our requirements.

200 Managing and Computing

The ease of an online system was essential to STSC at this stage, because
STSC management was geographically dispersed throughout the United
States. The APL *P L US System provided a very necessary and efficient
communications facility (its Electronic Message Processing System, called
MAILBOX) in addition to its computational ability.

Closing Some of the Gaps-1979

In 1979 we lengthened the planning cycle somewhat by developing
"business plans" before going into detailed financial plans to support the
decision packages that made up the ZBB method. The business plans covered
what was to be done, and by whom, but without a great deal of financial detail.
The decision packages, as before, contained complete financial detail and
directly produced the operating budget when approved. Thus, in 1979 we
moved closer to the ITT planning approach, wherein business plans are
negotiated with top management prior to preparation of detailed operating
plans. This approach avoids gathering financial detail on decision packages
that have small likelihood for acceptance.

Closing All of the Gaps-1980

In 1980 we will again prepare a three-year strategic plan for the corpora
tion as a whole and an operating plan that follows exactly the organizational
structure of the company (i.e., an operating plan for each manager in the
company). The difference in 1980 is that we will have comprehensive business
plans that will bridge all of the gaps between the strategic plan and the
operating plan. The business plans will be comprehensive in the sense that
they will cover every industry to which we sell, and each of the company's five
product lines. This will be a matrix approach-five product lines cutting across
six industry groups. The result we expect is a further delegation of responsi
bility for planning, and consequently more creative ideas and increased
involvement in attaining short- and long-term goals.

The 1980 approach will enhance opportunities for individuals in the
company to specialize by industry, as well as by product. It will also help
ensure that as the company adds product lines, each line will be well conceived
and well executed.

Planning-Only One Element in the Management System

A complete management system has many elements. We've discussed
planning and budgeting from the standpoint of how to begin and how to obtain
help from an outside organization. However, certain additional elements of a
management system are closely integrated with the planning and budgeting
processes.

Planning was a good place to start because it shows how goals are derived
or confirmed. Goals are also a logical place to start a discussion of managing
and computing, which is a circular topic. It is circular because anyone
management process or computer procedure uses the results of some previous
procedure, and, in turn, feeds the next step in the chain. You have to jump into
the process at some point to begin to explain it. It's good to start with goals
because they involve only a few numbers, are relatively easy to understand,
and reflect the ultimate objectives of a company. Also, a tried and true practice
in looking at both management and computing problems is to take a top-down
approach, which generally means starting with end objectives.

Managing and Computing 201

Financial Reports

Having established well-examined goals by means of a careful planning
process, it is equally important to keep track of how well you are progressing in
meeting those goals. Every company produces financial statements to show its
progress. At STSC, financial reports are produced monthly and are just one
portion of a complete monthly financial reporting package which includes a
number of other reports and graphic displays.

Typical financial statements, by themselves, show only how well the
corporation as a whole is doing. More numerous and detailed reports are
required to show the contribution of individual departments to the corpora
tion's overall position.

General Ledger System

The financial reports are an end product of a general ledger system. A
good general ledger system summarizes the detailed accounting transactions
of every period, and is therefore essential to support a good management
system. If managers are going to commit themselves to meeting measured
results, they have to believe in the basis on which they are being measured.
That requires a confidence in the entries to the general ledger system, which
keeps track of transactions by cost center as well as by account. A cost center is
created to correspond to a particular manager's responsibility.

Financial Reporting System-Operating Statements

Since the general ledger system keeps track of transactions by cost center
as well as by account, it can feed data to a financial reporting system to
produce operating statements as well as overall corporate financial state
ments. An operating statement shows only the financial transactions involv
ing a single cost center. It's an individual manager's portion of the financial
statement. At STSC, a manager's operating statement shows only those
expenses over which he has direct control. For example, a sales branch
manager sees the revenues generated by his office and the expenses over which
he has direct control.

Every cost center, however, shows a performance figure that is its bottom
line-its revenues minus its expenses. The performance figure for a sales
branch office is expected to be a positive number that is a large percentage of
an expanding revenue total. In other words, we control the expense-to-revenue
ratio in marketing very tightly. The performance figure for a development or
operations department is generally a negative figure (little or no revenues in
relation to expenses). The control in this case is based on planned expenditures
and results, usually in relation to total revenue for a particular product line.

The operating plan for each manager, and for the company as a whole, is
stored in the computer in a structure that is the exact counterpart of the chart
of accounts. It uses the same set (chart) of accounts and the same structure of
cost centers, which corresponds to the organization chart of managers. The
operating plan, in other words, is maintained in a set of files that constitute an
extension to the general ledger files. In effect, it is the budget. Forecasts are
reviewed monthly for the balance of the fiscal year.

An operating statement would have limited value to a manager if it
showed only actual revenues and expenses with no relation to plan. Our
operating statements show actual figures versus budget and the resulting
variance for the current month and for the fiscal year-to-date. STSC provides
actual online data on a continuous basis for each cost center. This helps each
manager prepare his plan and monitor his progress since he can easily obtain
current, year-to-date actual data, and comparisons with plan at any time.

202 Managing and Computing

Thus, the operating statements provide a crucial check for every manager
on current performance and year-to-date performance in relation to plan.
These reports are summarized for each higher level of management so that the
performance of every manager, regardless of his position in the management
structure, is available. The highest level operating statement contains the
same figures as the financial statements for the corporation.

Corporate-level financial reports show comparisons to results in the
previous year in addition to the variances from plan for the current year.

Zero-Base Budgeting (ZBB)

If Zero-Base Budgeting is used, the operating plan (budget) can be
prepared while decision packages are being prepared. ZBB facilitates the
shifting of resources from marginal to more promising efforts by breaking the
spending requests of any management unit down into small, manageable
packages, each of which can be evaluated, and accepted or rejected on its own
merits. It avoids the problem of accepting or rejecting the budget plan of a
subordinate in its entirety. It permits the ranking of budget requests for
dissimilar activities and thereby provides a way for top management to ensure
that strategic plans are reflected and carried out in the operating plans. It
fosters cooperation in the management team when peers are allowed to
examine, question, and support or resist understandable components of each
other's plans. If you are being squeezed, it's reassuring to know that everyone
else is being squeezed just as hard.

One concern with ZBB is that a pet project will be buried within a
mandatory project and, therefore, never get reviewed. Close scrutiny of all
packages by a staff analyst, close review by management, good intentions on
the part of all participants, and the occasional rejection of a package with
mixed merits reduces the probability of approving undesirable projects.

A key to achieving success with ZBB is to be able to control the dollar
magnitude and number of decision packages that are reviewed at higher levels
of management. A management team can consider a large number ofindividu
al decision packages only if it has an appropriate computerized decision
support system. While ZBB can work manually, the manner in which data is
consolidated and rearranged in the ZBB process is a natural for computer
processing. I can't conceive of achieving the result STSC achieved with ZBB
without computer support. Even with computer support, however, it's impor
tant to manage the process so that top management's attention can be focused
on decision packages that are discretionary and marginal, rather than those
that are obviously needed or obviously not needed.

ZBB satisfied an important requirement in the evolution of STSC's
planning system. It permitted planning at the first level of management,
without sacrificing some degree of higher-level management control of the
process. Now that planning is well advanced at STSC, we plan to make the
ZBB technique an option available to the first-level manager in preparing his
operating plan. The use of business plans as explained earlier will ensure that
all managers work with the same planning assumptions when developing their
operating plans.

Conclusion

The use of adaptive, online computer systems to organize and report
planning and operating data is crucial to many organizations because it
enables the chief executive officer to introduce changes in the organization
more rapidly than would otherwise be possible. To evolve from an organization
with no formalized planning to one with a fully automated planning informa
tion system, STSC took advantage of the development flexibility of the

Managing and Computing 203

APL *PLUS System to make necessary and radical changes in its approach to
planning and budgeting.

The information systems that supported these changes were developed by
one person who was concurrently responsible for additional projects of
comparable complexity. His productivity resulted not only from the use of
APL, but also from programming aids and systems designed specifically to
enhance programmer productivity for financial applications. These pro
gramming systems are commercially available to any organization to use
either in the form of an outside service or on its own computer.

APL and the APL*PLUS System helped us improve growth, change,
planning, commitment, incentive, control, productivity, and profit. That's
bottom line for any CEO.

A founder of STSC, Daniel Dyer has served as president and Chairman of the
Board of Directors since the company's inception in 1969. Prior to forming
STSC, Dyer was with Westinghouse Electric Corporation, IBM Corporation,
and U.S. Time Sharing, Inc. He is a director of the Computer and Communica
tions Industry Association.

Dyer holds a B.S. in electrical engineering from Yale University and an M.B.A.
from Harvard University's Graduate School of Business Administration.

Robert C. Fick

What If: The Making of a
Vice President of Finance

In most companies-especially in service companies-the majority of data
processing applications relate to the financial and administrative side of
business. Since this is true, it occurred to me that the job description of the
individual responsible for the financial and administrative functions of a
business (usually the vice president of finance) should provide a reasonable
outline for the topic of this paper.

As Vice President of Finance for STSC, the following functions are in my
domain, and are probably similar to the functions controlled by the financial
vice presidents of many other companies:

• purchasing

• contracts
• payroll and accounting

• planning and budgeting

• funding

.' reporting
• financial control

• pricing
• asset protection

• personnel management

• publications

• facilities management.
Other papers in this book address the use of AP L in some of the areas

mentioned above. For example, "Managing and Computing" discusses the
corporate planning function, and HAP L in the Corporate Service Environ
ment" covers the areas of purchasing, contracts, and publications. In this
paper, I will approach these functions, and several of the others, from a
slightly different perspective. My discussion will focus on applications of AP L
that can be divided into two broad groups: production applications and
decision-support applications.

Production applications include such functions as purchasing, payroll,
and accounting. All of these functions are primarily transaction oriented and
tend to deal with history. Once written, these applications are used on a
routine, scheduled basis to produce paychecks, support daily operations, or
provide information.

204

What If: The Making of a Vice President of Finance 205

The decision-support applications, what I call the "what if' applications,
aid management in dealing with the future. Since these are the applications I
myself use, I will devote the major portion ofthis paper to discussing them. But
first, a brief review of some of our production applications is in order.

One very important group of production applications is our accounting
applications. Our general ledger, billing, accounts receivable, and accounts
payable systems are all written in AP L. Our payroll system is also written in
APL and includes features for automatically accruing and reporting vacation
hours, reimbursing travel expenses, and calculating commission payments.

APL is also used by our personnel department to monitor the status of
employment applicants. An online JOBS system is used to announce job
opportunities to our employees. New hires, promotions, and transfers are also
announced internally using an APL-based news system. Our online personnel
system provides the data necessary for Equal Employment Opportunity
reporting and for preparing the company's affirmative action plan.

There are many other APL production applications in use at STSC, but
the point is clear from these examples: all of us at STSC use APL in almost
every aspect of our day-to-dayoperations.

So much for production and operational systems written in APL. Let's
move on to the use of APL for handling the "what if' aspects of managing a
business. "What if' applications come into play in the following environment:

• a key decision is pending

• time is short

• there is a need for flexibility

• there are many interrelated factors to be considered.

Typical examples of a pending decision might be

• Should we acquire ABC Corporation?

• Should we go public?

• Should we increase prices?

The applications written to help answer these questions must be

• completed quickly

• compact and controllable

• easily modified.
These applications also happen to be

• thrown away after one use, or changed frequently

• dependent on an existing database

• a lot of fun.
If you're "into" APL, these applications are also so engrossing that:

• time passes unnoticed

• skipped meals and lost sleep are not missed

• marriages and other relationships are temporarily threatened.

It's true that the productivity of APL provides significant leverage in the
development of transactions such as payroll and general ledger. It's also true
that, as a result of the drastic reduction in hardware prices, more companies
will be run using AP L exclusively. But the applications that are really critical
to the ongoing success of a corporation are those that allow top management to
quickly and effectively respond to questions such as: "Should we acquire ABC
Company?" This is where APL and the APL user gain visibility within a
company, and where many controllers become financial vice presidents.

206 What If: The Making of a Vice President of Finance

Here's a more complete list of such application areas:

• pricing decisions

• lease versus buy analyses

• acquisition analyses

• incentive plan design

• capital funding decisions

• investment scenario analysis.

There are other such areas, I'm sure, but these have had the most significance
at STSC. In the sections that follow, I'll discuss each in more detail.

Pricing Decisions

Pricing has always been a challenging discipline, but given the inflation
we've had to deal with in the late 1970s, pricing has never before been such a
delicate issue. The costs of running a business are constantly increasing.
Effective pricing management, in addition to the management of productivity,
is key in maintaining satisfactory profit margins and the financial viability of
an ongoing business.

Like other key business decisions, pricing decisions are complex because
they depend on several factors, such as:

• Product mix. How will a change in price for one product affect
sales for related products?

• Existing contractual commitments. How will a change in price
affect total company revenues if some contracts (e.g., government
contracts) limit price increases?

• Product demand. Will a price increase negatively impact demand
for our product?

• Competitive pricing. Will a price increase result in a significant
competitive disadvantage?

• Product cost. What does it cost to create, sell, and service the
product?

• Product value. Should the market price be independent of product
cost?

All of these factors require making assumptions. The objective is to
maximize revenue and profit. What happens to total company revenue if the
price for product X is increased by 8 percent? If the product is new, when will
the break-even point occur? What will margins be if we undercut competitive
pricing by 10 percent?

Lease versus Buy Analyses

Financial officers are frequently faced with lease versus buy decisions.
Consequently, this type of application system will probably be used over and
over again once it is written.

For example, you're buying a piece of equipment, and you want to know
the least costly alternative-owning or leasing. The choice depends on many
factors: (1) the equipment's economic life to you; (2) its economic life in the
marketplace (i.e., the expected value of the equipment in the marketplace
when your company no longer has use for it); (3) your ability to use the
investment tax credit and accelerated depreciation; (4) who pays other ongoing
costs (e.g., maintenance, insurance, and personal property taxes); (5) purchase
options available during the lease term; (6) the cost of funds to your company;

What If: The Making of a Vice President of Finance 207

(7) the ratio of the purchase price to the pure lease price; and (8) your
company's required investment hurdle.

Each alternative-buying or leasing-has its own projected cash flow. For
example, the buy alternative may have cash flowing out of the corporation to
repay debt and to pay for maintenance. It also results in cash flowing into the
corporation from tax savings and from the sale of the equipment at some
future date. A comparison of the present value of the cash flows of each
alternative will indicate which alternative is best. If the expected market
value of the equipment is difficult to predict, you can assign probabilities to
alternative market values, run the model for each alternative, and then graph
the results.

Acquisition Analyses

Like a lease versus buy decision, the decision to acquire another company
at a given price is binary-should we or shouldn't we?

The answer, to a significant extent, is derived from an analysis of the
consolidation of projected financial results for both companies. If the marriage
of the two companies results in cost savings due to the elimination of
redundant activities, this should be factored into the analysis.

If the projected financial results of the marriage are superior to the
projected results of the acquiring company alone, then it makes sense
(financially, at least) for the acquisition to be pursued. Ultimately, an improve
ment in earnings per share must result if the acquisition is to be considered
successful.

Incentive Plan Design

If your environment is dynamic (like STSC's is), incentive plan models will
probably have a limited life. You'll create an incentive model for one year and
then throw it away when the basic incentive algorithm becomes obsolete.

The objective here, of course, is to optimize the cost of your incentive plan,
realizing that you don't know exactly what the financial results will be-for
the company as a whole or for its various performance centers and cost
centers. The controlling assumption is that the size of incentive payments is
related directly to performance. You wish to fairly and competitively reward
individual performance; however, total compensation should not exceed an
established percentage of revenue.

Frequently, under such constraints, creating an incentive plan is a trial
and-error process. Alternative incentive algorithms must be tested under
varying assumptions. What if some performance centers exceed plan, while
others fall below plan? What if the total company exceeds plan or falls behind
plan? How will each ofthese scenarios affect the cost and the incentive value of
our plan? The more you play the "what if" game, the closer you will get to the
optimum incentive plan.

Occasionally, it may be necessary to create and throwaway several
incentive plan models in one year. APL offers the power and the flexibility to
do this and still meet targeted completion dates.

Capital Funding Decisions

Capital funding decisions encompass some very familiar and basic deci
sions on how to run a business. Should we go public? Should we fund our
growth with bank debt or with a private placement of debt, or should we sell
additional stock?

208 What If: The Making of a Vice President of Finance

Of all business decisions, this is certainly one of the most complex. More
debt probably means a weaker corporate balance sheet and possible restraints
in the way the business is run. But, it can also mean a higher return to existing
stockholders if the corporate return on investment (ROI) exceeds the cost of
borrowed capital. On the other hand, more equity in the business means a
stronger balance sheet and probably more flexibility in the way the business is
run. But, it can also mean a lower return for existing stockholders if the new
capital is put to work at a lower ROI than that which the corporation has been
enjoying.

The number and combinations of "what if' possibilities here are enor-
mous:

• What if interest rates rise? Fall? By how much?

• What if the stock market rises? Falls?

• What if our company grows 15 percent? 20 percent? 25 percent?

• What if additional capital is $2 million? $10 million? $100 million?

• What if our margins increase? Decrease?

The decision is made by calculating the impact of the most likely set of
values for these factors on earnings per share. The alternative that results in
the highest projected earnings per share is probably the best choice.

Investment Scenario Analysis

Typically, the financial planning process includes at least the following
three elements:

• Goals in key results areas (e.g., earnings per share and return on
equity).

• A limited number of financial resources. This includes any or all
of the following: (1) cash flow demand internally; (2) some limited
capacity to borrow additional capital; and (3) the ability to sell
stock to bring in equity capital.

• A list of alternative investment opportunities (e.g., new products,
cost-saving programs, training, and new equipment). The return
from each alternative mayor may not vary directly with the
amount of investment in that alternative.

The problem then is to decide how much money, if any, to allocate to each
investment alternative. This usually involves an iterative process using a
number of "what if' questions. What if investment in product A is increased at
the expense of product B? What if all funds are invested in opportunities D and
E, and all others are dropped? What will the result be on the corporate balance
sheet, on the company's revenue growth rate, and on earnings per share in
each case?

Conclusion

Computers are used in business for two broad groups of applications
those that are transaction oriented and those that are decision oriented.
Transaction-oriented applications are exemplified by systems such as payroll
and general ledger. As people costs rise and people productivity becomes
increasingly significant in computing, APL will be used more for these types of
applications. Once written in APL, these applications will create and update
databases that will support decision-oriented applications. Using APL, trans
action-oriented applications can be completed sooner and can be updated with
much less effort than that required for applications written in other lan
guages.

What If: The Making of a Vice President of Finance 209

However, it is in the other group of applications-the "what if" or
decision-support group-that AP L really stands out. AP L can provide the user
and the manager with the response, flexibility, and compact power needed to
create timely and optimal decision-support systems. "Easier said than done"
that's true-but easier done using APL!

Bob Fick, vice president of finance and treasurer for STSC, has been the chief
financial officer of the company for five years. Prior to that, he was employed by
Electronic Memories and Magnetics, Inc., and Computer Science Corporation in
financial and systems management positions. While associated with these
companies and others, Fick developed expertise in the design and implementa
tion of management systems, including accounting, planning, forecasting, and
business modeling.

Fick is a graduate of the University of Arizona.

James S. Russell

An Evolutionary View
Of Business Computer Systems

Throughout the short history of computers and data processing in busi
ness, the end user has frequently wondered: "What has Babbage wrought?"
Computers now play such a vital role in modern business that few business
men would argue that they could run their businesses better without them.
But there is, nevertheless, a surprisingly wide-spread and deep-seated feeling
that it might be fun to try.

Why? Because the promise of automation seems always to be just around
the corner. Despite innumerable system improvements, a host of problems
such as late schedules, growing budgets, disappointing results, data but no
information, burdensome operating restrictions, and system inflexibilities,
feed a lack of confidence in data processing.

Rarely does a company brag about the service and responsiveness of its
data processing department. Rarely does a user of a computer system view his
system as an invaluable tool or consider his system (like his executive
secretary) an invaluable extension of himself. And, it seems reasonable to ask:
"Why, with machines that can add millions of numbers in a second, does it
take 17 days to close the books each month? Why, with printers that can print
thousands of lines in a minute, does it take five months to add one simple
column of numbers to a standard report? Why has the phrase 'the system'
become one of the most popular excuses in modern business?"

Some of the blame for the user's "distrustful dependence" on computer
systems lies in the rapid evolution of the industry. To complicate matters,
significant developments (as well as white elephants) are shrouded from
understanding by the ever-present jargon. Terms like batch, time sharing,
transaction systems, RJE, and access methods may describe the greatest
technological advancements since the wheel, or they may be short-lived
buzzwords convenient for winning budget approval or explaining delays or
poor results. So, it is easy to see why end users are unable to keep pace with the
real developments in the industry.

Let's review the evolution of computer applications for business and then
look at how data processing is answering today's business requirements.
Examples in the following discussion are taken from a manufacturing setting,
particularly from Material Requirements Planning (MRP) systems.

The Early Systems

Early systems saw a high interaction between the computer and the
operator, who was frequently the system designer, programmer, and end user

210

An Evolutionary View of Business Computer Systems 211

rolled into one. Those systems could be described, if I may take some liberties
with current definitions, as "time shared", "online", and "interactive". They
were time shared because each user shared the system during his assigned
time (e.g., 11:30 P.M. to 3:00 A.M.), online in the sense that the primary input
and output devices (card reader, line printer, and console typewriter) were
connected to the computer, and interactive because the operator interacted
directly with his program via the console typewriter.

Interactions between the computer and the "systagramerator" (systems
analyst/programmer/operator) were often identical to interactions still used
today, such as "please enter... " and "do you want to...". However, this was of
concern primarily to the operator, who generally was the only one interactive
ly involved with an application.

For end users who were not "systagramerators", the interface with the
computer system was-as it continues to be today for the majority of inhouse
applications-"batch".

The Batch Mode

Batch has been characterized a number of ways (usually unkindly). The
essence of a batch environment might be described as follows.

The user's opportunities to enter input into the system occur at presche
duled times. All input, including updates, requests, and corrections, must be
complete by the input "deadline". Each deadline is fixed with little regard to
when questions need to be answered, when significant events take place, or
when needs for change are recognized.

A batch system's output is typically:

• late (most of the time)

• outdated before received (all of the time)

• full of data that is not needed

• missing data that is needed
• delivered in six carbon copies, all of which, while barely legible,

can mysteriously manage to turn fingers and clothing a remarka
ble black.

Furthermore, users who prepare input and review subsequent output
frequently find that:

• Some input didn't "take" (whatever that means).

• Some of the batch input transactions conflicted, resulting in
completely strange, unexpected, and incomprehensible output.

• In spite of "foolproof', expensive, and elaborate features-such as
key verification, data checks, batch balances, control logs, check
digits, and serialized input-some transactions did not survive the
translation from input to output.

• At least one critical input transaction was invalid, and scores of
subsequent transactions were rejected as a result.

To relate the impact of a batch mode on manufacturing applications,
perhaps some MRP background will help. Using a master schedule at the
product level, an MRP system "explodes" material requirements to calculate
two main types of information:

• The quantity of material necessary to build a product and its
components.

• The date at which all components and material must be available
to meet final demand without delaying production.

212 An Evolutionary View of Business Computer Systems

For example, to meet the build schedule for a product, the first step yields
material requirements at the next lower level of the bill of material struc
ture-usually various assembly level items. To meet the requirements for the
assembly level items, a build schedule for those items must be developed. That
build schedule in turn creates material demands at a subassembly level. The
process continues, filtering down through multiple assembly, subassembly,
fabricated part, purchased item, and raw material levels, until the production
and replenishment schedules at all levels are complete.

But in a typical batch MRP system, a significant schedule change at one
level may not be felt throughout the product structure for several weeks. The
direct subordinates of the rescheduled item are the subjects of a flurry of
"recommended order action" notices. Unfortunately, it will be next week
before the planner has his first chance to heed or disregard those recommenda
tions. Meanwhile-so as not to interrupt the batch MRP run-the "system"
has to assume that the recommendations will not be followed, and continues
planning the lower levels based on the original (and still current) orders that
were recommended for change. When the order actions are implemented next
week, a new cycle starts with recommended changes to the next lower levels.

It's easy to see that with an n-Ievel product it will take n weeks to see the
impact of one change at all levels. When the change finally does filter down to
the lowest level (and the suppliers respond that they cannot deliver to the
earlier schedule), the exercise may have been for naught. Since the world
doesn't stand still for n weeks, and since other, often conflicting, changes are
filtering down at the same time, it's not surprising that the system is always
out of date (that means wrong!) and not too useful.

There are two other characteristics of a batch MRP environment:

• The "Long Weekend". Due to the volume of data required and, in
part, to the "chained file" approach of the MRP system, the
typical "weekend" processing usually begins with a Thursday
second-shift cutoff, but nevertheless runs through Tuesday.

• The "Short Work Week". After input is prepared (keypunched,
verified, etc.), the inevitable rerun made, and output printed,
decollated, and distributed, the manufacturing staff often has
only a few days to react to last Tuesday's output before preparing
input for this Thursday.

In a batch environment, a manufacturing planner simply does not have
the tools necessary to create and maintain a complete and workable total
production and replenishment plan. He cannot see the impact at all levels of a
proposed change. He cannot test alternate schedules. He cannot determine if
he can, or must, increase the availability of subordinate material or ifhe has to
instead reduce demand at the product level. So the batch production plan
becomes just a wish list that is impossible to meet.

If I've created the impression that batch is a terrible operating mode
inflicted on users by data processing departments, let me speak in defense of
the latter. Ifit is any consolation, batch is just as cumbersome and unwelcome
to data processing professionals as it is to users. As constant computer users,
systems and programming staffs suffer the same problems many times over as
the end users. The plight of the production planner is similar to that of a
COBOL programmer who must code his programs on coding sheets, have them
keypunched, submit the deck for a compile (if lucky, overnight), and start a
multiweek sequence of "fix it a bit today", "compile it tonight", "fix it a bit
more tomorrow", and so on.

Worse yet, not only do programmers have to cope with the same system
and problems, but they have to work harder to develop applications that
actually run in a batch mode. For example:

An Evolutionary View of Business Computer Systems

• Because a batch application has no immediate access to a user,
questionable or incorrect input can't be corrected on the spot. The
best alternative a programmer has, then, is to design and imple
ment reject error listings, suspense files, error audit trails, and
numerous other subapplications and provisions that may mean
something to the programmer, but almost certainly detract from,
obscure, and delay the primary applications to the user.

• Having lost the natural "first come, first served" sequence of
input transactions, the designer must implement a strategy to
presort and process input in some artificial sequence, and try to
foresee those transactions that might conflict with others. For
example, must "adds" be done before "deletes"? What happens if
there are two conflicting "change" transactions?

• Not knowing how output will be used, the only logical strategy is
to try and answer all possible questions. Hence, batch designers
helped contribute to the popular implication of "report"-pages
and pages of "data" (not quite information) that try to provide
answers to any potential questions.

213

Multiprogramming

With the advent of multiprogramming systems, batch was still batch, but
at least more than one batch process could occupy the computer at a time.
Multiprogramming greatly increased the usage of the computer equipment
and made the job of scheduling in the data processing center considerably
easier. Programmers loved it, because they now had a chance to get more than
one compile or test run per day. Program decks were simply added to the
system input queue and, with luck, processed that day. A lucky programmer
could see his errors and maybe start a second or third round of corrections on
the same day.

But to the application user, the advantages of multiprogramming were
mostly lost. Production planners still had an "end of second-shift Thursday"
batch input cutoff, and the output reports from the weekend runs were no
more likely than before to be available until Tuesday morning. The increased
programmer productivity was an indirect benefit. Now urgent bug fixes-like
those to the stock status system, which would occasionally "lose" a complete
part entry from the inventory master tape file--could be completed in only 4
or 5 months, instead of the usual 9 to 12 months.

The Isolation of the Computer

As computer usage and demand grew (and with it data processing
organizations, staffs, and budgets), a growth in control, formality, procedures,
and standardization was a necessary reaction to the horror stories of bad runs,
lost input, or general data processing foulups. One early effect was the
elimination of the "systagramerator" and the complete separation of the user
and the computer. System interaction via the console typewriter was eliminat
ed and either replaced with input decks or "run-book" documents, with a
professional computer operator provided to type the responses to the friendly
"do you want to..." and "please enter... " messages. The computer room was
locked, and lines started to form in front ofthe new glass-windowed input/out
put (110) counters. The demand for magnetic scheduling boards took off!

Early Time Sharing

The academic community was the first to use time sharing as a way to side
step the 110 window. The key to time sharing was the discovery that a simple
teletype device, a length of twisted-pair wire, and a lot of help from a tricky

214 An Evolutionary View of Business Computer Systems

operating system could replace the card reader, the console typewriter, and
the line printer. Best of all, the combination effectively bypassed the queues at
the I/O window and greatly reduced the need for schedulers, magnetic
scheduling boards, keypunch departments, expediters, operators-in other
words, all the layers that had separated the users from the computer.

The magic time sharing operating system seemed to do everything. By
allocating its attention, in millisecond time slices, to all users, each had the
illusion of a dedicated system. By some accounts, the effect was almost a step
backward to the days in which each user hunched over the computer console
during his assigned block of time. But the users loved it!

As the use of time sharing applications grew, there were some strange
developments. Some were due to the languages (primarily BASIC) available in
early time sharing. Others were just the normal triumph of bad luck over poor
planning.

BASIC, with its limited I/O ability, encouraged the type of "conversa
tional" dialog that system designers had found so cute on the console terminal.
The dialog inevitably started with "hello, I'm..." or "welcome to..." and
continued with as many "do you want to..." and "please enter..." queries as
were required to collect operating parameters and set run options for the
application in use.

The style was further encouraged because time sharing applications were
impressive to demonstrate. To enhance demonstrations, the conversational
interactions and the detailed prompts frequently reflected the level of prompt
ing required by a novice user. On first viewing, the typical application, with its
messages, prompts, and guidance, was amazing! On second viewing, the
interaction was comforting and helped the user. During the third through the
fifth uses of an application, the messages and prompts were tolerable. But from
then on, a frequent user of the system began to hate the dull chatter of the
teletype that kept him from getting to the "answer" part of the application.

Instead of "conversational", "interrogational" might be a better word to
describe a BASIC time sharing application. Unlike a conversation between
equals, the dialog between the system and the user is normally limited to
questions and answers with the system playing the role of the interrogator.
There was not much relief for the user who didn't want to answer some
questions, who wanted to answer them in a convenient order, or who knew
(from using the system umpteen times) all the answers and really didn't want
to watch all the old questions print out one at a time at 10 characters-per
second.

However, early BASIC gave a programmer controlled interaction with the
BASIC text editor. While he was entering and updating his program, he was in
charge; he took the initiative and really directed the activities of the computer
system. To change a line, he typed a line number and the new line; the order in
which he made his changes was entirely up to him.

The programmers, though, were not inclined to pass this flexibility or
control on to the end users. It's unlikely that BASIC would have ever enjoyed
much popularity if the BASIC editor (used by a programmer to enter his
BASIC program) had interacted in the same interrogational mode that the
programmers inflicted on their users. For example, how would you like to
write a basic program in this manner:
HELLO: WELCOME TO BASIC
YOU HAVE YOUR CHOICE OF ADDING NEW PROGRAM LINES,
CHANGING EXISTING LINES, LISTING YOUR PROGRAM,
OR RUNNING YOUR PROGRAM.
PLEASE ENTER YOUR REQUEST
(1=ADD,2=CHANGE,3=LIST,4=RUN)? 1

YOU HAVE ASKED TO ADD LINES TO YOUR PROGRAM,
IS THAT CORRECT (1-YES,2=NO)? 1

An Evolutionary View of Business Computer Systems 215

GOOD. PLEASE ENTER THE LINE YOU WISH TO ADD
(THE LAST WAS 30)? 40

NOW PLEASE ENTER LINE 40? LET A = 2+2
LINE 40 ADDED.
PLEASE ENTER YOUR REQUEST (l=ADD.

Ridiculous? Yes, but not much more than many of the early application
programs written in BASIC for time sharing.

Another peculiarity of early time sharing applications was that they
suffered from what I call "application omnipotence", or "application ar
rogance". Because the terminal appeared to be a dedicated computer, because
the programmer was usually the operator and the user, and because BASIC
did not include provisions to share common program modules, to communicate
between users, to share files, or to cleanly jump from one program to the next,
the applications became insular and ad hoc. There were no provisions to
recognize the existence pf more than one user, no way for a user to interact
with more than one application in the same session, and no way to share data
or files among simultaneous users or to coordinate the activities of simultane
ous cooperating users.

Instead, once the command RUN was typed, a BASIC program became
omnipotent-it took control ofthe terminal and retained that control until the
process was done. It was, in fact, almost a batch process. Though the user could
exercise some control over the process (when the designer thought to ask the
user for input), the application was always in one oftwo states-running or not
running. And while the user's imaginary, dedicated computer (represented by
the terminal) was running one application, no other application could start
until the current one had finished. The user was almost back in the world of
batch.

Another characteristic of early time sharing applications was the dual
role of the first programmer/user. The programmer knew his audience
himself. As a result, the programmer/user had faith in his ability to reply
correctly to each prompt. Thus the need for input checks and edits in the
programs was slight, and programs were written that trusted the validity and
reasonableness of user responses.

Perhaps the new user who replied YES to the query
PLEASE SELECT ACTIVITY (1=ADD,2=CHANGE,3=DELETE)?

deserved to generate a program error and get an octal dump on his teletype.
But the poor user who received the prompt:
PLEASE ENTER GAMMA COEFFICIENT?

and was unaware that only the value of pi or the reciprocal of the natural log
of 8E-l 7 would keep the program from aborting, was sure to be in a lot of
trouble.

As time sharing usage grew, it encountered more problems:

• The number of potential users exceeded the number of program
mers willing to learn BASIC. Applications written for personal
use started to be used, and misused, by users other than the
original designer.

• The number of users exceeded the number of available teletypes,
and it became necessary to start scheduling terminal time
sometimes using a magnetic scheduling board!

• The number of people wanting answers from time shared applica
tions exceeded the number of people willing to sit at the keyboard,
and secretaries and typists were drafted to fill the new role of
"operator".

216 An Evolutionary View of Business Computer Systems

There were some early manufacturing/MRP systems implemented in the
time sharing mode. But, for the most part, they:

• Were conversational (interrogational) and cumbersome to oper
ate.

• Recognized only the mode in which a single user at a single
terminal interacts with a single application, so they could not
provide simultaneous access.

• Were ill equipped to handle input errors, were not forgiving, and
frequently had no restart provisions-a complete session's or
day's work could be lost due to a system failure.

Online Query Systems

In spite of the time sharing trend in the academic community, data
processing staffs in industry had successfully avoided a move to time sharing.
They had argued that they would lose control, and the discipline and standards
that had been painfully established to avoid some of the early "systagramera
tor" abuses of computers would be lost. They had some good points, and those
arguments, coupled with the fact that there were few aspiring BASIC pro
grammers in industry, kept time sharing systems out of the inhouse data
processing departments.

Data processing staffs, though unwilling to learn BASIC and be their own
programmers, were also unwilling to remain isolated from the resources of
their computers. Because batch was still not an acceptable solution to many
business needs, data processing staffs finally decided that online access was
worth a try. Purchase orders were written for terminals, controllers, more core
and disk storage, and assorted strange boxes that held the key (according to
the data processing staff) to bringing the power of the computer to everybody's
fingertips.

In most cases it didn't work out quite that well. New terminals were
delivered, but sat unused for months (except for occasional visits by program
mers), waiting for "final system checkout". Changes and fixes to existing
systems were slow or nonexistent because everybody was working on the
online system implementation and check out. Computer capacity was scarce,
because the online system folks needed more and more test time, and, for some
reason, the online system didn't quite fit with the normal batch work or was
too inclined to crash the system.

When the users were finally given first tentative access to the new
terminals, they were disappointed to find that:

• The "power of the computer at their fingertips" was available
only from 10:00 A.M. to 1:00 P.M. (due to the conflicts with batch
work).

• The system usually didn't make it through that schedule without
at least two or three crashes.

• Most of the online time was spent with the "system unavailable"
message lit.

The hot topic of conversation became the state of the system, and the greeting
"good morning" was replaced with "systems up!" or "systems down!".

The worst part was that even when the system was up, it didn't do much.
It seemed that with all the work of reconfiguring the batch computer, adding
remote access devices and controllers, and worrying about access methods,
protocols, and message interfaces, nobody had any time to rethink the
applications in terms of an online environment. Instead, the approach was to
add the ability to retrieve and format data from batch report files. The

An Evolutionary View of Business Computer Systems 217

terminal operator could request a part number status display, but the
information that was displayed was the same data that was previously
available on printed batch reports. The display still represented the Thursday
second-shift cutoff, was still not available until Tuesday of the following week,
and was completely static! All that time, effort, and money, and the most
tangible improvement was that your fingers no longer turned black (at least,
not between 10:00 A.M. and 1:00 P.M.)!

Online Input

The data processing staffs assured the users: "Don't worry, we have
crossed the threshold, and invested in the future; it is only a matter of time
until online input is available". So the users waited (inevitably longer than
originally scheduled) and one day, sure enough, online input arrived.

But the bad news-in more than a few cases, online input was a
disappointment. Just as online output had only created a substitute for the
high-speed printer and report distribution section of the data processing
operations department (or would have, had the terminals been available
longer than from 10:00 A.M. to 1:00 P.M.), the online input capability seemed to
only create a substitute for the keypunch department. The input transactions
that Production Planning had painfully inscribed on input forms were now
typed at the terminal keyboard. And the worst part-the transaction input
didn't do anything but sit there until after second-shift Thursday when the
update (still a batch process) was started!

Online Update

Progress, while at times too slow, was inevitable, and there are now
inhouse systems in industry that do more than just display static report files or
collect batch input data. Some systems now allow online update of the master
files and generate status reports from the same master files. Now a user can
enter a request to change a standard cost field, immediately display the master
file data for that item, and see the change.

While that represents a step forward, it isn't enough. The user still doesn't
have the power of a computer at his fingertips. Keeping the master files
current and up to date is important-it's the tidy and good and clean thing to
do, by all means. But, except in all but a few "electric blackboard" applica
tions, it is not the main objective of the computer system.

For example, in the case of a manufacturing/MRP system, changing the
schedule date or expected quantity of a work order in the master file is one
thing-seeing the impact of that change on subordinate materials, department
workloads, and projected stock balances is quite another. If the impact of a
change is not seen until the next regularly scheduled update run, the user still
does not have the access he needs to the capabilities of the computer.

Transaction Systems

A transaction environment addresses the needs of application service to
multiple online terminals distributed throughout the departments of a busi
ness. The characteristics of a transaction-oriented system are somewhat
different from those of a conventional time sharing environment in two major
respects:

• Multiple users share one or several common applications. The
application programs provide simultaneous service to, and coordi
nate the activities of, all users.

• The users are not programmers or proficient terminal operators,
but instead are performing "line" functions, using the terminals

218 An Evolutionary View of Business Computer Systems

for inquiries and activity-recording tasks related to those func
tions.

The concept of a transaction-oriented system is an important and power
ful one, particularly in support of activity-level systems that can be best served
by direct computer access. First, the transaction concept forces system design
ers to think in terms of real-world activities, events, and information needs,
and eliminates a preoccupation with card layouts, batch report formats, and
job streams. Second, the transaction-oriented approach creates an environ
ment in which the system designer can (but, unfortunately, doesn't automati
cally) create a dynamic, online system that can react to real-world events as
they occur.

There is a tendency to evaluate online system capabilities using time as a
basis. A daily batch run can be justified on the basis of: "A turnaround time of
24 hours is fine. I can live with data that is as much as one day old; ergo, I don't
need an online system." However, time is the wrong measure. Just as I don't
expect an airlne to sell me a seat based on how many seats were available last
Thursday, I cannot ask a stock clerk to locate a receipt based on where it was
yesterday, or decide the availability of stock to fill a miscellaneous withdrawal
request based on last week's production requirements for that material. Data
that is not current is not correct. There may be degrees of being "up to date",
from "totally obsolete" to "almost current", but right versus wrong is a binary
decision!

A serious problem with many transaction systems relates to their per
formance. To avoid "race conditions" and conflicts between simultaneous
users, many transaction systems adopt a strategy of staging the terminal
requests and passing them one at a time to a single copy of an application
program that services each request in turn. Because the resulting application
activities cannot be overlapped, the capacities of these systems can be severely
limited. If the application has more than a trivial amount of work to do, and if
there are more than a few users contending for service, the pessimistic queuing
theory predictions of service level are demonstrated, and response times
increase exponentially as additional terminals are added.

Conclusion

Perhaps as important as a list of the points I have been trying to make is a
list of those that, although they might have been implied, I was not trying to
make. First, my intent is not to criticize data processing staffs. It's easy, in
retrospect, to point to examples of poor systems design and poor systems, but it
is important to consider the technology that was available when systems were
designed. Data processing is one field in which it is frequently necessary to do
something "wrong" several times before a "right" way begins to emerge. The
main lesson is that progress is being made, and so to adhere to yesterday's
capabilities in an attempt to protect an "investment" in old systems is a sure
way to deny yourself the fruits of that progress.

A second nonpoint: I have not been trying to claim that some modes of
operation are good and others bad. All have uses for which they are appropri
ate. But there are applications for which each is completely inappropriate, and
a mismatch between need and available operating modes can be disastrous.
There are two points to be made here:

1. Make sure your systems designers have the ability and technologi
cal capability to deliver applications in the best and most effective
mode to meet the need.

2. Don't be content struggling with a system that suffers from
misapplied technology-insist that it be changed to address your
real requirements. Those requirements can be met.

An Evolutionary View of Business Computer Systems 219

While it may be hard to predict when a system will suffer from misapplied
technology, it is easy to diagnose when you see it. Some symptoms are

• The system is cumbersome and difficult to use.

• You have little or no control over what the system does. Instead
you find that you have to sit back while it does something for (to)
you.

• You find your system is more of a burden than a tool.

The last point that I wasn't trying to make was that you should fire any
systems designers that fail to develop logical, completely human-engineered
systems. I would also strongly recommend that you don't spend a great deal of
time looking for perfect systems designers-or even perfect systems. If there
were a perfect system designer, he would know that there is no perfect system
(because that implies a static, unchanging need), so he would just design
systems that support and accept change. Finally, as you encounter systems
that are inflexible and cannot be changed, replace them and learn to avoid
whatever technology may have led to the original inflexibility.

This paper should reveal my own bias regarding the contribution that
APL can make to the solution of everyday business data processing challenges.
That bias, which was developed after more than ten years in a batch COBOL
data processing environment, is simply that AP L represents a "better idea".
APL systems in general and STSC's APL*PLUS System in particular have
created an environment in which:

• A choice of operating modes is available-batch where appropri
ate, interactive when needed, transaction-oriented as required.

• The actual program implementation becomes a relatively small
element of the total system development job. Consequently, mis
takes can be corrected, and poor design decisions can be changed
without losing major investments in program development.

• Users can be brought closer to computer resources, and computer
systems can become the vital and responsive tools that they
should be.

Jim Russell is currently manager of manufacturing systems at STSC. He has
accumulated twenty years experience in the computer and data processing field,
primarily in developing and installing manufacturing systems. Before joining
STSC, he held positions as data processing manager and manager of manufac
turing industry systems with SCM and Control Data.

In addition to being a Fellow of APICS (the American Production and
Inventory Control Society), Russell has earned the title of Certified Data
Processor from the Data Processing Management Association.

Jack R. Becker

Development of the STSC
Accounting System

When STSC first started business in 1969, only the invoicing of customers
was computerized-a natural outgrowth of obtaining APL resource usage data
as a modest matrix in a workspace. Now, ten years later, all our billing,
accounting, marketing, and financial reports are produced by APL systems.

Maintaining the earliest system and producing invoices for a monthly
billing of about $13,000 was a part-time job requiring only one to two days of
work each month. Now, three full time people are required to maintain the
combined billing!accounting systems and to produce invoices for more than
$1.3 million per month. A 100-fold increase in revenue and a vastly expanded
system have required only a 30-fold increase in man-hours of support.

This paper will briefly outline the growth of our accounting system,
showing how APL simplified development along the way. It will also show how
APL helps us maintain the current system of closely interrelated accounting
and billing modules. Particular attention will be given to the updating of
outgrown modules and to the addition of new capabilities.

Design of the System

The basis of the first version of our accounting system was the hand
system we were using at the time. The new computerized system contained
four basic modules:

1. General Ledger. This provided a breakdown of amounts by cost
center and a grouping of cost centers into regions. The only
financial reports produced initially were trial balances, balance
sheets, and profit and loss statements.

2. Accounts Receivable. Provision was made to assign payments to
individual invoices. Aging and customer statement reports were
also provided. Invoice data was obtained directly from the billing
system and posted automatically by the sales journal.

3. Accounts Payable. This was essentially a mirror image of the
accounts receivable module. Aging of payables and vendor state
ments were available. Payables journals produced checks auto
matically.

4. Employees/Payroll. This module maintained payroll and employ
ee expense data. The first version of the payroll journal did not
calculate payroll deductions-these had to be supplied as input.
(At the time the first version was produced there were few
employees, and work on the accounting system was still a part-

220

Development of the STSC Accounting System 221

time job. Production of a complete module was postponed because
of the need to provide programming support for marketing.)
Paychecks were produced automatically by the payroll journal.

Many of the features built into that first version of the system survive in
the current version:

1. Data is entered through "journal" programs which are similar to
the journals of a hand system. Each run of a journal program
produces a formatted journal sheet containing all the data entered
at the terminal. All the journal programs that require input from
the terminal have the same logical flow. They check data for
consistency and require input of control totals.

2. Modules interface with the general ledger on the transaction
level. In some cases, data from a single journal run is summarized
before posting to the general ledger (e.g., sales data is summarized
by revenue type and cost center, removing the customer detail),
but data from separate journal runs is always distinct.

The interface at the transaction level provides several benefits.
The subsidiary modules are always in balance with their respec
tive general ledger accounts. Closing for the month is a very
simple operation; profit/loss is posted to the appropriate general
ledger account and the data files are flagged so that no further
entries for the month will be accepted. A side benefit, not
consciously planned, has proved very useful. If a manager ques
tions any of his expenses for a given month, we can easily supply
the transaction items that made up the total for his cost center.

3. A consequence of the transaction-level interface is that many of
the subsidiary modules are interdependent. For example, the cash
disbursements journal of the accounts payable module also ac
cesses and can alter data in the employee/payroll module (pay
ment of employee expenses, expense advances).

4. Each module has a dataset associated with it. This dataset may
contain one or more APL *P L US System files. A given file is
always tied to the same tie number, and the tie number is always
included in the code as a literal constant.

Updating the System

As STSC grew, updates to the accounting system were inevitable. Changes
have been made to incorporate new features of the APL *P L US System and to
provide expanded modules when the old versions were outgrown. The employ
ee/payroll module has been recoded twice; accounts receivable and accounts
payable modules have each been recoded once. While expanded report capa
bilities have been added to the general ledger, the basic design of that module
(the data structure) has not yet been changed.

When a module is updated, the major effort is put into the redesign of the
data structure. We start by discussing the module with those who use it
directly and with those who use the reports generated by it. The old data
structure is examined to determine if any data items are no longer necessary.
The result of these discussions is a "wish list" for features of the new module.
Design of the new data structure then proceeds. Items no longer needed are
dropped; new data items are included to support as many of the "wish list"
features as possible. Data may be included for which there are no current
requests if it seems likely they may be useful in the future. This is a difficult
judgment to make and sometimes data is provided for which we never generate
a use. We attempt to err on the side of including too much data rather than not
enough.

222 Development of the STSC Accounting System

Finally, we design free space in the data structure at every level. This
procedure has often allowed us to make significant additions to a module
without having to redesign the dataset.

After we determine the structure of a new dataset, we search the entire
accounting system for all references to the old module. With nearly 80
workspaces in the system, this search could be a difficult task were it not for
the design feature of including file tie numbers as literal constants in the code
and for the string searching capabilities of APL. Character representations of
the functions of all workspaces are maintained in document files, and a master
directory is kept relating these files to the workspaces. The search function is
only 12 lines long and locates all occurrences in the system ofa given character
string in less than ten minutes.

Copies are made of all workspaces that reference the module being
changed and these are then altered to reference the new dataset. As a special
precaution, the new data file is given a name different from that of the old file,
and a different tie number is used. If a reference is overlooked, it would at
worst result in a FILE NAME ERROR or FILE TIE ERROR; there
would be no chance of storing garbage in the new file.

After all the coding changes have been made, a function is written to
convert data for the module from the old file structure to the new. The new file
is created on a test number and any other data files needed to test the new
module are also copied to the number. All workspaces are then carefully
tested.

Once testing is completed, installation of the new module is quite simple:
the new data file is transferred to the "live" system and all new workspaces
moved to the "live" library. Rarely does this take more than an hour to
complete. It is normally done late in the afternoon when the system is not
needed by the Accounting Department. If the operating procedures are not
changed, the users need not be aware of the update.

A look at the last revamp of our employee/payroll module will help to put
all ofthe above in perspective. The entire job, including complete file structure
and user documentation, required about three months of work, sandwiched
between a number of other major projects over an eight-month period. All the
coding, testing, and documentation was done by one person. Shortly after the
system was installed, we had to add a voluntary deduction for the United
Fund. However, we had left room for additional voluntary deductions in the
data structure. Addition of this feature (coding, testing, documentation, and
installation) required less than one week of work.

Adding New Modules

When adding new modules to the system, the procedure is much the same
as that for updating an existing module. The job is somewhat simpler in that
an existing feature does not have to be researched and its performance
duplicated. After the data structure is defined for a new module, subfunctions
are written to create the data from other accounting system datasets. These
functions are then inserted in the appropriate workspaces and the dataset for
the new module is created. Sections of the module that provide reports using
the new data may be written before the module is installed or may be produced
at a later time. Typically, some reporting capabilities are provided at the
beginning, and more are added as users become familiar with the new module
and begin requesting additional capabilities.

This points out one of the major benefits of APL: coding is so concise, and
development of systems so rapid, that improvements to systems can be
provided when they are needed. Report generators can be produced quickly; if
they do not exactly hit the mark, they can usually be changed readily. This

Development of the STSC Accounting System 223

allows systems to grow and respond to current needs rather than to needs that
are six months or a year old.

I would like to outline briefly an actual addition to our accounting system
to amplify the dynamics of this procedure. Early in 1974 the call for some
online means of determining historical customer usage was coming so loudly
from so many directions that it had to be answered. A very simple dataset was
defined-H1STDATA. This was an AP L *P L US System file, organized by
customer. For each customer there was a table of data, one row for each month.
Columns of the table included:

• Date
• Invoice Number

• Territory Number

• APL Resources Used (Connect, CPU, Storage)

• Amount Billed
All data needed for this file was available for the current month in the

billing system. A function was written to transfer this data from the billing
system dataset to the new HIST DATA file. The function was inserted in the
sales journal program. Since this journal had to be run once a month to
transfer invoice data from the billing system to the accounting system,
HISTDATA was assured of automatic updating each month. Design and
implementation of this much of the system took about two weeks. It was
installed as soon as it had been tested so that it was able to gather data while
the interrogation portion of the system was designed.

Already in place was a system that allowed marketing representatives to
obtain monthly statements of their territories' performance. The routines that
obtained customer usage data were added to this system, and controls were
provided so that a marketing representative could obtain data only for his own
customers. This completed the installation of the system, which supplied
customer histories for almost two years before additional capabilities were
needed.

By 1976 large customers were increasingly being serviced by more than
one representative. The secondary representatives had no way to obtain
historical data on their portion of the account. Non-AP L billings (batch and
consulting) were now significant and these were not included in the history
file. Credits and adjustments were also lacking. HIST DATA was clearly no
longer adequate, yet it did produce very useful resource usage data.

We decided to retain HISTDATA and to generate a totally new module
with a new dataset-REVENUES. This dataset contained all transactions
involving revenue accounts. The following data fields were included for each
transaction:

• Date
• Journal Reference Number

• Territory Number

• State Number

• Customer Number

• Invoice Number
• General Ledger Account Number

• Amount
• Entry Description

This dataset was first used to produce improved monthly territory reports.
The reports could now include all revenues for a given territory and could be

224 Development of the STSC Accounting System

broken down by revenue type. Transfers and adjustments could be determined
from the entry description and journal reference code. The territory reports
were now complete, accurate, and fully automated.

The structure of the new dataset suggested a number of new applications.
As the amount of data in the file grew, these applications were produced.
Analysis of revenue by state was automated. A monthly ranking of customers
by total revenues was produced. However, the major benefit of the
REVENUES dataset is not in the formalized reports we produce using it;
rather, it is in the ability it gives us to respond to questions like:

Who were the top 20 accounts in 1977 and what is their billing history
for the last two years?

Can I see a plot of APL sales, batch, and consulting revenues (each
separate) for the last three years?

What have allowances been as a percentage of total revenues over the
last two years?

The REVENUES file was developed using an EMMA'" file structure. EMMA,
which stands for Extended Management Macros in APL, is a proprietary data
management tool developed by STSC to simplify, standardize, and extend the
user's ability to manage large amounts of data. Because the REVENUES file
has an EMMA structure, accessing the data is very simple. Answers to any of
the previous questions can be obtained with no more than half an hour's work,
unless a fancy formatted report is needed. In that case it might take two hours.

Early in 1979 a design flaw in REVENUES was encountered. Revenues
could not be tied reliably to cost centers. Territory numbers were related to
cost centers, but that relationship could change with time and no history was
being maintained. A replacement data structure was defined called
REVDATA, which contained all the data in REVENUES plus two new fields:

Cost Center

City Code

This change, which required about two weeks of work, allowed us to break
down revenues by city as well as by cost center.

Maintenance of the System

Because the accounting system is so large and contains so many interre
lated modules, good documentation is vital to its survival. The system has
grown according to need; we did not begin with a design specification for the
entire system, nor for any of the individual modules. However, the data
structures are always formally documented before coding begins on a module.
As key utilities are produced, their functions and methods of use are carefully
documented. As each user workspace is completed, a formal user document is
produced, outlining all the features and giving detailed usage instructions for
each.

This documentation is maintained online by a system we developed
specifically for the accounting system. The documentation system keeps track
of the workspace location of all user-accessible functions. Documentation may
be added or altered by any of the programmers working on the system. The
system maintains a record of all updates and provides a facility by which
updates can be printed. This allows us to always maintain up-to-date printed
documentation.

A second documentation system keeps character representations of the
functions on file. This system also keeps track of updates, allowing all
programmers to maintain up-to-date listings of the functions in the system. It

Development of the STSC Accounting System 225

also provides a means of searching the entire system for a specific function or
for occurrences of any portion of code.

Our programming staff is split between two locations. I work in Los
Angeles, California, and the other two programmers work in Bethesda,
Maryland. We maintain a complete set of printed documentation at each
location. Development or maintenance work can then take place at either
location. The documentation system, coupled with the use of STSC's Electronic
Message Processing System, make communication by long distance phone
rarely necessary. When calls are required because of a critical problem, the
duplicate sets of printed documentation provide the means of getting to the
heart of the problem very quickly.

Summary

The conciseness and flexibility of APL are the factors that have made
production of our accounting system possible. Without APL the system could
never have grown fast enough to keep pace with our changing needs over the
last ten years. APL has also made it possible for us to accomplish the work
with an amazingly small staff. Though the system is enormously complex, it is
still possible for one person to have a good overview of the design of the entire
system. I don't think that would be possible with any other programming
language.

Our decision to make the modules interrelated and always in phase with
one another has proved to be beneficial. A new application can acquire data
from any dataset without the implementer having to be concerned with the
status of the dataset; it is always current.

The keynote of our system is its flexibility-its ability to respond quickly
to new requirements both small and large. Even when a need is not fully
defined, it is feasible, in terms of the effort expended, to try many different
approaches over time, iterating toward a satisfactory result. APL has freed us
from the drudgery of producing mountains of code and has allowed us to turn
our energies to the concern of what information our system provides and can
be made to provide.

Jack Becker, manager of accounting applications for STSC, has been with the
company for more than ten years, having joined STSC shortly after its
formation. He is currently responsible for the design and implementation of
accounting and billing systems. Prior to coming to STSC, he had ten years'
experience in scientific programming for the aerospace industry and, with
Patrick Gehl, helped establish the first commercial AP L time sharing service in
the United States.

Becker has a bachelor's degree in physics from Occidental College.

Marilyn J. Pritchard

APL in the Corporate
Service Environment

Before preparing this presentation, I asked the individuals responsible for
the various areas in STSC's Corporate Services how they use the AP L *P L US
Time Sharing System, and in particular AP L, to run their departments. They
each came up with a half-dozen or more ways in which the system has become
an integral part of their daily operations. In the space allotted here, I will
describe those that have the greatest benefit.

Corporate Services comprises the areas of publications, word processing,
contracts, legal and SEC matters, pricing, purchasing, general office services,
and policy development. Much of the work in these administrative areas
requires a large amount of accurate recordkeeping, text processing, and quick
storage and retrieval of information. Therefore, many of our uses of the system
involve the maintenance of small-to-medium size databases.

MAILBOX Service-The Most Important Tool

Perhaps the most important need we have in Corporate Services is to
communicate efficiently and cost-effectively with people in other STSC loca
tions in the United States and Europe. The most important tool for doing this
is our Electronic Message Processing System, called MAILBOX. Besides
serving as a means to broadcast to other STSC people news of important
events, changes in policies and procedures, and so on, MAILBOX is especially
valuable to Corporate Services personnel in routinely carrying out their
responsibilities.

In the Purchasing Department, MAILBOX is used by STSC employees to
submit requisitions for goods and services and, in turn, is used by Purchasing
to confirm or to request any necessary clarifications to those requisitions.
Managers of the cost centers being charged for the order are often carbon
copied on such messages in lieu of waiting for their specific approval.
Purchasing also uses MAILBOX to disseminate important information quick
ly, such as impending price increases for widely used items like computer
printout paper, terminal ribbons, and printwheels. By keeping MAILBOX
messages on file, Purchasing can retrieve any previous correspondence and
information on a particular requisition.

With MAILBOX, the Contracts Department corresponds with field mar
keting personnel several times a day regarding contract terms, rates, and
other customer and billing information. The contracts administrator notifies
marketing representatives of contract expiration dates and of accounts ap
proaching dollar limits on purchase orders. Using MAILBOX in these situa-

226

APL in the Corporate Service Environment 227

tions is less expensive than using the telephone, and provides written backup
for the transaction, which is kept in the customer's file.

One area of Office Services-the Mailroom-relies heavily on MAILBOX
to receive and acknowledge requests from branch offices for publications,
terminal paper and ribbons, and other office supplies. Since some vendors (for
example, the telephone company and an office supply firm) are also users of
MAILBOX, our Office Services staff can message these vendors directly with
telephone additions and changes and routine office supply orders.

Address Management System-Another Commonly Used Tool

Next to MAILBOX, the application most commonly used by Corporate
Services is the APL*PLUS Address Management System, called ADDRESS.
Having one central database divisible by 50 or so attributes (such as "custom
er", "vendor", "employee", "stockholder", and "media") simplifies updating
such information, affords flexibility in retrieving information, and avoids
duplication of effort in maintaining information that is useful to various
groups in different locations in the company.

Routinely, Corporate Services uses ADDRESS to prepare labels for send
ing purchase orders to vendors, notifying customers of new services or price
changes, and sending material to other STSC offices. With the fileprint and
special formatting capabilities of ADDRESS, we are able to produce a comput
er printout of more than 20,000 labels in a format that can be processed
automatically by Cheshire® mailing equipment. We do this for bulk mailings
like the STSC newsletter, the corporate brochure, and the seminar schedule.

In the following sections, I will relate several more specialized ways in
which some departments in Corporate Services use the APL*PLUS System.

Purchasing

Purchasing has set up an online "tickler" system which tracks a mul
titude of distinct tasks that require action at a later date. Their system stores
an unlimited number of items with associated dates and priority levels. Later,
they can revise the text of any item, reschedule any item without recopying it,
and alter any priority settings. Items are held until the specified date, and
then displayed in priority order.

APL allows Purchasing to perform extensive calculations easily. For
example, a photocopier vendor recently presented the purchasing agent with
nine different pricing plans for placing various photocopiers in STSC branch
offices. Within a few minutes, the purchasing agent translated the nine plans
into a one-line APL function which took the monthly volume of copies in each
office (already known) and produced the monthly cost for each office under the
plan. Prior to that, the vendor's salesman had suggested that he return for the
information in a week or two!

One of Purchasing's responsibilities is to evaluate new terminals on the
market. Being able to use APL greatly simplifies this process. By typing only a
dozen or so characters, it is possible to produce pages of data to test a specific
feature or pinpoint a possible weakness. For example, experience has shown
that the expression 50 13 Op 'ABCDEFGHI!' is a good test of a termi
nal's overstrike capability, and 500 1 p 1 500 is a good indication of its
ability to handle short lines.

Several small databases are also maintained online by Purchasing. These
include a file containing purchase order numbers and the date each needs to be
renewed; an inventory file of terminals identifying who has each and its last
reported condition; and a file of employees who have Day-Timer calendars

228 APL in the Corporate Service Environment

containing the style, size, and refill date so that they can be reordered
automatically.

Purchasing has also set up a workspace of AP L programs for the Office
Services staff to maintain an up-to-date directory of employees at the corporate
headquarters office located in Bethesda, Maryland. Employee names and their
MAILBOX codes and telephone extensions can be easily added, changed, or
deleted. Car license plate numbers are also recorded for monitoring the
restricted parking.

Contracts

Many of the programs and databases used by the Contracts Department
involve customer account and billing information and are also used by the
Accounting Department. One workspace contains programs that list all the
marketing representatives assigned to a specific branch office as well as all the
customer accounts assigned to any specific marketing representative.

Another workspace is used by marketing representatives to assign new
account numbers to customers. In response to prompts, a marketing represen
tative enters information about a customer-name, address, billing rates and
their effective dates, name of person to notify if contract changes occur,
customer's primary product or service, marketing data on how the customer
first learned of STSC, and what the firm's initial use of the system will be.
After a marketing representative assigns an account, Contracts reads the
information and enters it into the online billing system via other programs,
thus establishing the customer as a billable account.

To maintain accurate customer records, Contracts must update informa
tion in the billing system, so there are programs to change customer names
and addresses, delete or cancel accounts, lock or unlock accounts, change
purchase order numbers, change rates or billable status, change service levels,
and move user numbers from one account to another.

As part of its contract compliance responsibility, Contracts maintains an
online file of accounts with expiration dates and maximum or minimum dollar
or resource limits, and updates this file as contract renewals or changes are
received. Information in this file includes cumulative monthly amounts billed
against each account. Contracts reviews this file regularly and notifies
appropriate marketing personnel of the status of any account nearing its limit.

When a request has been received for cancellation of an account, Con
tracts can access online month-to-date computer usage data to identify any
subsequent usage. A file of stored tapes maintained by the Computing Center
can also be accessed by Contracts to determine whether a particular customer
has tapes in storage at the time of cancellation.

When review of an account's billing status is required (for example, at
contract renewal time), Contracts can access an accounts receivable file and
run programs to produce an aging or complete statement of account. Contracts
then advises the marketing representative of the customer's billing status so
that he can notify the customer.

It is important for STSC, both in developing its marketing plan for new
services and in meeting its public reporting requirements, to know the
percentage of revenue derived from specific industries. To help in this effort,
Contracts assigns a Standard Industrial Classification (SIC) code to each new
customer based on the information supplied by the customer when the account
is initially set up. SIC codes are entered into the billing system, allowing us to
determine revenue percentage by industry over any period of time.

APL in the Corporate Service Environment 229

Word Processing

STSC's Word Processing Department prepares a wide variety of printed
material, including proposals and contracts, SEC reports, form letters, techni
cal papers, some user documentation, and internal publications like the
Employee Manual. On the average, the department's two operators turn out
500 pages of material per month.

Instead of using more conventional word processing equipment, like
Vydec or Wang, the operators use SCRIPT, a text formatting system developed
by the Department of Computer Services at the University of Waterloo, and
the CMS (Conversational Monitoring System) Editor. Both facilities are
offered on STSC's APL*PLUS VM Service. Using a large application system
like SCRIPT has several important advantages over a more conventional
approach: more sophisticated and extensive editing capabilities, shared files,
security, simple archiving procedures, high-speed printing, and the flexibility
to process large documents as well as small ones. All of this can be accom
plished without developing new software or hardware interfaces.

The word processing operators enter and edit text via video-display
terminals and print drafts of large documents on a high-speed line printer in
the STSC Computing Center. To print letters and other small documents and
to run final camera-ready copy, they keep two hard-copy terminals (one 30
characters-per-second, and the other 120-characters-per-second) finely tuned
to their strict quality specifications.

Perhaps the most important benefit to us in using SCRIPT is that text files
can be shared. Several people in different locations can work on one file,
simultaneously or not. Because of this, someone 3000 miles away can review
portions of a file at his terminal, while other portions of the text are being
revised at headquarters. Obviously, this saves untold amounts of time and
reduces shipping and related charges.

Other advantages of using an online text processing system will be
covered in the next section as we look at how the Publications Department
uses the APL *P L US System to prepare most of STSC's technical publications.

Publications

The Publications Department mainly comprises technical writers and
publications assistants who are responsible for producing technical publica
tions distributed outside the company to customers and prospects. Technical
writers originate the material or edit material that has already been written
by others using old-fashioned tools like pen, pencil, or typewriter. Publications
assistants then take over and enter the text online.

Like the word processing operators, the publications assistants use video
display terminals to enter and edit text. However, instead of using SCRIPT on
the VM System, they use an editing and composition system called COMPOSE
on the APL*PLUS OS/MVT System. (COMPOSE and SCRIPT have similar
capabilities, and it is mostly for historical reasons that Publications uses
COMPOSE.)

The benefits of using an online text processor are the usual ones: the
entire text of a document needs to be typed only once, an entire document can
be searched for certain text strings and changes or replacements can be made
throughout the document; different output media can be used such as video
display or hard-copy terminals, high-speed line printers, or tape; and access to
the text can be tightly controlled by specifying who can read or change it.

All of STSC's major publications are now being photocomposed rather
than having their camera-ready copy produced on a terminal or line printer
using the APLFULL print train (with roman and APL type fonts). For

230 APL in the Corporate Service Environment

preparing manuals that are to be photocomposed, publications assistants use
another text processor, which is upwardly compatible with COMPOSE and
simulates the way the text will be produced in final, photocomposed form.
Besides text entry and editing, the photocomposition system has extensive
error-checking features, can produce a table of contents automatically, has the
ability to format typesetter input for the line printer in interim drafts, and
interfaces with an offsite photocomposition service for actual production. Our
manuals are usually typeset on one pass through the photocomposer!

The photocomposition system also includes a semi-automatic indexing
system. The author builds a database of ideas from the manual, and a typeset
index is generated automatically from the database. Other features of the
photocomposition system include headings and footings (specified only once),
two-level headings, standard table formats, and a wide choice of typefaces.
Perhaps most importantly, the system has automatic page-makeup capabili
ties.

A more technical advantage of having the APL*PLUS Time Sharing
System available is exemplified by the part-time efforts of a technical writer in
producing a volume of custom software for the department over the past two
years. In other computing environments, this part-time effort might have
required a full-time programmer.

For example, we recently were faced with the large and tedious job of
designing our standard table formats for photocomposing tabular material,
trying to anticipate all of the table formats we would ever need. Instead of
designing the tables manually, we wrote an artificial intelligence program in
AP L that did the whole job automatically. The program was designed and
implemented by a technical writer in three days, while we estimate that
developing a similar program in, say, COBOL would have required about a
month. Furthermore, because of the ease of developing, testing, and installing
an APL program, the Publications staff often modifies existing programs or
develops new ones within hours, or even minutes, of the time a need is
perceived.

The Publications staff uses a wide variety of application programs in their
work. Writing all of these programs in APL gives them a consistent, comforta
ble protocol that does not scare nontechnical staffers away from learning new
applications. In addition, APL 's interactive, forgiving nature saves the staff a
lot of time. People can teach themselves, get immediate feedback, and progress
at their own speed. When an error occurs, a few keyboard entries from a
publications assistant or from a helper summoned to the scene usually suffice
to fix the problem and allow an operator to pick up work from the point of the
error.

Deferred Execution, one feature of STSC's Automatic Control of Execu
tion (ACE) facility, has automated the routine aspects of document production
and moved text processing runs to non-prime time when customer usage is
lighter.

The Publications production supervisor uses other programs that the staff
has developed to perform routine calculations like estimating costs of all
printing jobs. Having different printing and paper costs for various printing
methods online, she can enter data such as the number of pages in a
publication and quickly determine the most cost-effective printing method and
the optimum number of copies to print.

The production supervisor also maintains an online publications invento
ry system. Each month, branch offices enter the number of copies of each
publication they have in stock. The system compiles the data and reports the
stock levels (grand totals or totals by branch) of all publications distributed by
STSC. The production supervisor also uses STSC's internal news system
(similar to our customer news system available in workspace 1 NEWS) to

APL in the Corporate Service Environment 231

announce the arrival of new publications, their prices, and the schedule of
delivery to branch offices.

Conclusion

Surprisingly enough, although it has taken several pages to relate the
most beneficial ways we in Corporate Services use APL and the AP L *P L US
Service, I have actually omitted many more that we have come to take for
granted. As we have grown, we have automated those jobs that were most
repetitive and tedious, those that were most important to meeting commit
ments to customers, and those that could be done with the staff programming
resources on hand at the time.

There are, however, additional applications where use of APL could
simplify our work by automating more tasks and integrating them with
existing programs. An online requisition and purchase order system and an
online contract compliance system are only two examples of operations that
would benefit by complete, cohesive automation of remaining manual proce
dures. With our continued growth, APL will serve as a valuable tool in
producing these more comprehensive systems for our own internal use.

Marilyn Pritchard holds two degrees in mathematics from Purdue University, a
B.S. and an M.S. While teaching mathematics at Syracuse University, she took
programming courses and then began work as a programmer/analyst at IBM
Federal Systems Division in Gaithersburg, Maryland, and later at the Syracuse
University Computing Center.

Since joining STSC in 1973, Pritchard has worked as publications editor, APL
system librarian, and manager of publications. In December 1978 she was
promoted to her current position as director ofcorporate services, where she is in
charge of purchasing, contracts and other legal matters, pricing, publications,
facilities management, policy development, internal controls, and general
administrative support services. In July 1979, she was elected assistant secre
tary of the corporation.

Pritchard is a member of the Association for Computing Machinery. From 1976
to 1979 she was editor of APL Quote Quad, the principal technical journal
serving the APL community; in 1979 she was elected Secretary-Treasurer of
STAPL, the APL special-interest group within ACM.

John W. Myrna

Electronic Mail

Probably no technology is currently receiving more coverage in business
publications than electronic mail. To many, electronic mail is still a futuristic
concept. At STSC, it is a fact of life. Over the past ten years, it has become the
lifeblood of our corporate communications system, and it is a very important
factor in our sustained growth rate of 25 to 35 percent annually. This paper
discusses the reasons electronic mail concepts are so important in today's
business; describes the attributes of STSC's Electronic Message Processing
System, called MAILBOX; and, finally, looks at the economic benefits of
installing such a system.

Today's Business Environment

In today's business environment, there is no pressure more critical than
that of inflation. The dollars available to us today have less value than they did
yesterday, and we can be assured that tomorrow they will be still less valuable.
Inflation is making it continually more difficult to achieve the level of
profitability we would like for our organizations. We must make a greater
number of critical decisions in shorter periods of time than ever before. We
must find ways for improving overall productivity while controlling the cost of
doing business.

In most organizations, the cost of doing business is labor intensive. In fact,
it is very common to find that labor costs represent 80 to 85 percent of the total
cost of doing business (see note 1). However, this also means that labor costs
represent a major area of opportunity for reducing costs.

Years ago, American industry recognized the opportunity for increasing
the productivity of the blue-collar labor force. By applying new technologies
and supporting blue-collar workers with capital equipment, the cost of blue
collar labor has been decreased. Very recently, we have seen a similar process
begin to affect the clerical labor force with the application oftechnologies such
as word processing.

In spite of these advances, office costs now account for 50 percent of the
total cost of doing business (where before they were 20 to 30 percent), and they
are rising at an annual rate of about 20 percent. Office costs are not only for
clerical workers, but for the very expensive professional and managerial labor
force.

In fact, 77 percent ofthe total office costs in the average business today are
associated with professionals and managers. Yet, in most organizations, the
capital equipment available to support this particularly expensive segment of

232

Electronic Mail 233

the labor force is limited to a telephone, a dictating machine, and possibly a
calculator. Expanding and improving this support holds immense potential for
increasing managerial and professional productivity and for reducing operat
ing costs. Booz-Allen Hamilton projects that within ten years office systems
advancements could save American businesses more than 60 percent of the
amount they currently spend for their entire professional-managerial labor
force.

Before considering how to improve the productivity of managers and
professionals, it is important to understand their role. A manager's role may
be defined as follows: to gather information; to use that information to manage
his decision process; and then, after making the decision, to disseminate
information so that appropriate actions and plans can be executed. If we agree
on that definition, then we also agree that the flow of information to and from
the manager must have a very significant impact on his productivity and,
correspondingly, on the expenses associated with the managerial labor force.

This concept is supported by Henry Mintzberg in The Nature of Manageri
al Work (see note 2). Figure I shows the percentage of time the typical
manager spends each day in five major activity categories and the percentage
of the day's significant activities achieved within each of these categories. The
figure makes it apparent that the typical manager spends 78 percent of his
time in mostly verbal activities relating to information gathering or dissemi
nation-that is, on the telephone or in meetings of one kind or another. A
significant portion of his remaining time-that allocated to desk work-is
spent on paperwork. These are also information flow activities.

100 5
90

10%
80

24%

70 22%

60
19%

PER
CLIENT 50 DESK WORK

40

SCHEDULED 33%
30 55%

MEETINGS

20

10 19%

0
TIME SIGNIFICANT

ACTIVITIES
(~lHTJ~f~I~Yz~EBLAL WORK HANDLED

Figure I-Management Time and Activity Analysis

Mintzberg's findings suggest that meetings are extremely inefficient and
that the telephone represents the most efficient medium available to the
manager. On the other hand, a recent study published in Fortune Magazine
(see note 3), shows managers throughout the country identifying the telephone
as the top time waster. The second and third factors they named as contribut
ing to their inefficiencies were also related to communications-memos and
meetings.

There are several reasons for telephone-related inefficiencies. We are all
aware of the frustration of trying to reach someone by telephone. On the
average, we will have to make four calls before we reach the person we want.
Because telephone communication is verbal and impermanent, its quality will
only be as good as our concentration and memory ofthe moment. And of course

234 Electronic Mail

no phone call is complete without the necessary social amenities. Finally, if we
are attempting to telephone across time zones, we introduce an additional set
of complexities. If we want to communicate between the east and west coasts,
the "window" available for verbal communications during business hours is no
greater than five hours, including lunchtime. Ifeither party takes an extended
lunch, or if our friend on the west coast arrives at the office a little late, that
five-hour window can quickly be reduced to nothing.

Memos solve, or at least relieve, problems of organization and retention,
but they introduce other limitations. Most managers feel that only 25 percent
of the information they receive through memos is relevant. A high percentage
of the information required by management is of a time-sensitive nature; for
this kind of material, the ll-step process required to generate a memo and get
it from one desk to another is too slow. As for meetings, inefficiencies
associated with them have to do largely with insufficient planning and
structuring and, to some extent, communications issues.

What the managers in the Fortune study are saying is that communica
tions-which is nothing more than information flow-is a vital part of their
ability to function productively, but that conventional means of communica
tions leave much to be desired. It was a similar feeling that gave rise to the
development of STSC's MAILBOX System some ten years ago.

The MAILBOX System

MAILBOX moves information electronically. Direct interaction with a
computer-via an interactive terminal-replaces dictation, handwritten
drafts, typewriters, and, in many cases, secretaries. Every MAILBOX user has
access to a terminal. The user may choose to use the terminal himself or to
have his secretary operate it. It has been STSC's experience that the typical
manager or professional prefers to use the terminal himself.

The MAILBOX user simply types into the terminal to receive and send
"mail". MAILBOX is easy to learn. Working with a concise set of commands,
most users master MAILBOX within a matter of days. To check his incoming
mail, the user types the word PREVIEW. The system responds by displaying
the number of messages pending and the identification codes of their respec
tive senders. To read some or all of these messages, the user specifies the level
of confidentiality and enters the word PRINT (he also has the option of
signing off and reading his mail at another time); the system then prints all of
the messages he requested.

To send a message, the user simply types the command SEND. The system
responds by prompting for the names of the recipients. When this information
is entered, the system prompts for the text to be sent. After typing in the text,
the user initiates the action to send the message. With this, the message is
registered in our system in Bethesda, Maryland, and is immediately available
for its recipients to read-whether they are in Omaha, Nebraska, or Paris,
France.

The MAILBOX System automatically provides each message with a date,
timestamp, sender identification, and a unique serial number. In addition,
simple "actions" typed in by the sender make it possible to classify the message
by level of confidentiality (personal, confidential, or nonconfidential) and to
specify distribution. The message sender can "carbon copy" as many people as
he likes, using regular carbon copies (which all recipients will be aware of) or
blind copies (which will be visible only to those so copied). A message can also
be designated "urgent", in which case it will be displayed before all other
pending messages at the recipient's terminal. Figure 2 illustrates a sample
MAILBOX message.

Electronic Mail

[1] CONFIDENTIAL
NO. 1234567 SENT 5 MAR 1980 18.55.24
FROM DDII
TO EXEC
CC BAS KMK JEAN DEK

RE: AGENDA FOR EXECUTIVE COMMITTEE MEETING
MONDAY, 10 MARCH 1980

HERE IS THE UPDATED AGENDA FOR OUR EXEC. COMMITTEE MEETING
NEXT MONDAY AFTERNOON. PLEASE LET ME HAVE ANY FURTHER COMMENTS
OR ADDITIONS BY DAY AFTER TOMORRO', AT THE LATEST.

1. VICE PRESIDENT-FINANCE WILL GIVE FINANCIAL REPORTS FOR
LAST MONTH.

2. PROPOSED CHANGE IN EMPLOYEE STOCK PURCHASE PLAN: REDUCE
REOUIREMENTS FOR ELIGIBILITY FROM TIVO YEARS TO ONE.

3. ESTABLISH SCHEDULE FOR DEVELOPING OPERATING PLAN FOR FY 81.
4. TENTATIVE PRICING FOR PROGRAMMING AND CONSULTING, VM SERVICE.

THANKS. /DAVID

P.S. YOU'LL NOTICE THAT ITEM 5, SAN DIEGO ACQUISITION, HAS BEEN
DELETED. WE'LL DISCUSS THIS AT APRIL MEETING. /D

Figure 2-Sample MAILBOX Message

235

As can be seen, a MAILBOX message looks very much like a memo.
However, unlike a memo, it is available immediately upon creation by the
sender. Because MAILBOX is so direct, dispensing with a number of interme
diary persons and processes, it eliminates the costs and delays associated with
conventional memo distribution. Because the message is in machine-readable
form, it may be automatically filed, indexed, retrieved, or printed. In addition,
the recipient of a message may forward it to someone else without retyping
anything except its serial number. If he likes, he may extend the message or
add a footnote.

Most executives will agree that their time seems to belong to everyone but
themselves. MAILBOX is a significant factor in putting executives and other
participants more in control of their own time. The receiver of a message is not
interrupted by the sender. Nor does the sender waste valuable time making
call after call to reach the receiver. Messages are sent and received at the
convenience of both sender and receiver, in total privacy, and in a cost
effective and timely manner.

MAILBOX also has the advantage of being enormously secure-so much
so that at STSC we use it to communicate such highly confidential information
as payroll changes. Every user has an established password that is known only
by him. Furthermore, MAILBOX provides three possible levels of message
confidentiality. When a user checks his mail, the system automatically
prompts him for the level of confidentiality he wishes to see. The user who
finds someone looking over his shoulder would probably ask only for his
nonconfidential mail. However, if he were in his office alone, he would likely
ask for all mail, including personal. The system will immediately respond by
printing out all mail up to and including the confidentiality level designated
by the user.

With MAILBOX, a manager or professional is no longer tied to his office
for information access or secretarial support. With today's lightweight ter
minals, office conveniences and communications are extended to any place
where there is a telephone-home, hotel room, or customer's office. If a
MAILBOX user expects not to be reading MAILBOX messages for any period
of time (e.g., when he's on vacation) he may put a "note" to that effect in the

236 Electronic Mail

system so that anyone sending him a message will be aware that it will not be
received immediately. He can also choose to have mail automatically for
warded to someone else for action during his absence. Upon his return, the
accumulated messages provide a chronologically ordered account of activities
that have taken place during his absence.

The immediacy of MAILBOX makes possible the completion of written
work across great geographic distances in time frames that would be simply
inconceivable using conventional communications. For instance, one recent
Wednesday afternoon the project director at STSC's Paris affiliate found
himself "stuck" on a proposal that was due on a client's desk before the close of
business on Thursday. Before the proposal could be completed, more technical
information was required-information that was not available in Paris.

So, at 2:00 P.M. Paris time, the project director sent a message stating his
need to the vice president of international in New York. The vice president
read it with his Wednesday morning mail and found that he was able to
provide only part of the missing information. This he sent right away in a
return message to Paris; at the same time he forwarded the original query
along with a note of his own to the technical vice president in Bethesda.

The technical vice president in turn identified a technical expert on his
staff who could come up with the information still needed. The technical
expert worked out of STSC's San Francisco office. By noon Eastern Standard
Time, a message was on its way to San Francisco.

The San Francisco staffer was consulting at a client's location and did not
see the message until lunchtime, when he checked his mail from a terminal in
the client's office. He then spent the afternoon working up the rather
complicated technical data required. By the time he was done, it was 7:00 P.M.
in San Francisco and the middle of the night in Paris-useless to place a trans
Atlantic call. But the San Francisco man sat down at his terminal and sent the
information to Paris via a MAILBOX message, with copies to the technical vice
president in Bethesda and the vice president of international in New York.

By the time the anxious project director reached his office in Paris the
next morning at 7:30, all the information he needed was waiting. Within four
hours it was written into the proposal. An hour later the completed proposal
was sitting on the client's desk-well before the deadline and less than 24
hours after the project director's original MAILBOX message was sent.

We have found within STSC that MAILBOX has considerably improved
the effectiveness of our meetings; it has also enabled us to reinforce our
commitment to participative management, despite the fact that we have key
managers headquartered at great geographical distances from one another.
MAILBOX speeds up scheduling of meetings. It allows agenda items to be
entered quickly and easily, and it facilitates discussion and agreement on the
items from widely scattered participants. An agenda can also be changed at
the last minute, with the knowledge of everyone involved. In effect, MAILBOX
generates the positive dynamics of a meeting before the meeting takes place.

It is easy to envision applications that could only be handled with
electronic mail techniques like those of MAILBOX. Group messages are a good
example. MAILBOX groups are made up of users that have something in
common. For example, a group named MKTG might hold address codes of
persons with a special interest or expertise in matters relating to marketing. A
single message addressed to MKTG will automatically go to all members of that
group, whether there are 20 or 200 of them.

Imagine another hypothetical group identified as INSAP (for insurance
applications). One of its members is John Jones, a customer representative
who is having difficulty with an installation for a large insurance company. He
wishes he could consult with other company representatives working in the

Electronic Mail 237

same field, but he doesn't actually know who all of them are or which ones
would be most helpful. By sending one message to INSAP, he has instant
access to everyone in the company who's doing anything with insurance. We
can see that this kind of communications capability can be immensely useful
in terms of quality customer service.

Economic Benefits

Several studies have recently been completed regarding patterns in
electronic mail use. The results are significant to anyone interested in using
this technology. It is clear from these studies that MAILBOX directly affects
the area of greatest expense and greatest opportunity within most organiza
tions today: 70 to 80 percent of MAILBOX use is by management and
professional people. It is much more than a clerical tool.

The typical daily volume for each user is 5 to 10 messages sent and 10 to 15
messages received. Owens-Corning Fiberglass recently completed a study
indicating that each message handled in an electronic mail system saves them
roughly $4.72 over any other communications method. Multiply this saving by
a per user daily message volume of 15 to 25 messages. It is easy to see that in a
company with, say, 200 MAILBOX users, very substantial dollar benefits can
be realized from the use of electronic mail.

There are other direct cost savings: telephone costs go down and memo
generations will typically drop by approximately 15 percent. These are among
the results of a recent survey of some 600 users of electronic mail conducted by
Yankee Group Consultants. The increased productivity that one can expect
with MAILBOX is evident in the survey finding that 20 percent of electronic
mail use occurs outside business hours. In other words, the manager or
professional is able to significantly extend the hours in which he can actively
receive and send information.

Probably the most striking of all of the survey results is the last one. The
profile of user response indicates that productivity increases typically range
from 5 to 15 percent, with 8 percent as the norm. That factor alone would
represent a 200 percent return on investment for a MAILBOX user.

Conclusion

Can the use of an electronic message service help your organization? Aside
from the direct cost savings and convenience it offers, a system like MAILBOX
can more than justify itself solely on the grounds of its potential for improving
managerial effectiveness. If a company can provide its managers and profes
sionals with better information-or more timely information-on which to
base their important decisions in today's intense business environment, the
payoff can be very significant. Its impact can be felt in such vital areas as span
of control, cash flow, sales productivity, or on any number of other elements
important to the profitability of the organization.

While the cost of managerial and professional labor has been escalating at
an extremely rapid rate, the unit cost of electronic communications, computer
processing, and computer storage is at an all-time low. Thus, the option of
applying these technologies has never been more reasonable.

The Appendix that follows contains technical information on STSC's
MAILBOX System. Our own experience has been that electronic mail has
substantially improved our profitability. We believe we are not unique.

Appendix-Technical Notes on MAILBOX

The AP L *P L US Message Processing System is the fourth major system
STSC designed for communications between its customers and employees.

238 Electronic Mail

Evolving from a very primitive system, the various generations of MAILBOX
have been in continuous use by employees and customers since January 1970.
Since the current system was installed in July 1974, there have been 1.25
million messages sent. The current average traffic is about 35,000 messages
per month.

MAILBOX is a message-oriented computer conferencing system. The
package consists of a text editor, message posting and access functions, and a
set of standard cover functions for private message handling. The system is
designed so that individual users can tailor their use of the system to:

• allow private text management

• allow alternate sources of text (e.g., function listings, plots, text
from manuals, and tables)

• allow control of messages to form conferences (e.g., capacity
planning group, new feature testing, and technical review)

• allow the running of contests (e.g., name a new computer system
or name a new product).

Computer conferencing is more a state of mind than a particular technolo
gy. While the MAILBOX may lack some of the formal cosmetics that
characterize today's computer conferencing, it is computer conferencing
nonetheless. It is the use of shared files, remote terminal equipment, and
telecommunications networks to facilitate group communications where face
to-face contact is either not possible or less desirable. Ten years of continuous
use have produced a very stable and valuable tool.

System Environment

Because MAILBOX was implemented with the AP L *P L US Service, there
were major parts of the system already available:

1. The Time Sharing System

• support for multiple users

• support for multiple systems (production and experimental)

• support for a variety of terminals

• an existing telecommunications network.

2. The AP L Programming Language

• general purpose

• good interactive interface

• powerful language facilities to manipulate character vectors.

3. The APL*PLUS File System

• good language (AP L) interface, completely integrated

• standard, high-level, logical support-the application program
does not worry about disk management, physical record size, or
buffering; file recovery and daily file backup are an automatic
part of the service.

• designed for file sharing applications-every file has a file access
matrix that controls 14 types of access per user; there are 16,383
different ways to specify access; system-level queuing commands
"hold" a file during critical updates.

Electronic Mail 239

Design Characteristics

There were three goals:

1. Security

• no one can read anyone else's mail-not through system crash;
not through user prying; not even if he is the MAILBOX steward

• once a message is posted, the system will never lose it

• messages can be read only by the recipient.

2. Flexibility

• easy to use-the system is self documenting; two prompt levels are
provided: brief prompts for frequent users and more detailed
prompts for infrequent users less familiar with the system

• easy to customize-functions are modular; easy access to other
text sources is provided

• detailed documentation is provided.

3. Efficiency

• advanced APL coding techniques are used to select algorithms
that are most efficient.

The system consists of one shared file and three workspaces. The file
contains directories of users, directories of messages pending, control tables for
the file, and messages. The user workspace BOX contains a small text entry
and editing system, BOX posting and access functions, and interactive cover
functions to send and print messages. The steward workspace ENROLL adds,
deletes, or changes enrollees. The steward workspace MAI NT provides file
maintenance, automatic spooling, message purges, statistics, and creation of a
new MAILBOX.

Implementation Problems

1. There were no language constraints. AP L is quite up to this type
of problem.

2. The amount of user memory available in a workspace at the time
MAILBOX was first implemented (64 kilobytes) was a major
constraint. This was solved by using one directory and "packing"
data tightly; keeping functions on file and moving a copy into the
workspace when needed; printing warning messages as users
approached the end of available storage; and increasing the
workspace size.

3. The design goal of extreme reliability and security taxed the
design because it required extensive testing for breaks in execu
tion during critical sections; the use of special features to seal the
package and "hide" function names from view; verifying the
message header with the user number after retrieving it from file,
but before printing; and designing the steward function so that it
can't find the file passnumber even during initialization.

4. The File System interlocks are such that there are no absolute
holds---code must check and check again to ensure that file
updates are synchronized.

Doing It Better

In general the current system serves its purpose well. Most of the ideas for
improving it are either extensions to the current system or have to do with new
time sharing features for major new facilities.

240 Electronic Mail

Notes

1. This and much of the other data presented in this paper derive from a
study conducted by William H. Wood, an independent consultant.

2. H. Mintzberg, The Nature of Managerial Work (Harper and Row, 1973).

3. Fortune Magazine, 6 November 1978.

John Myrna joined STSC in 1971 as manager of operations; in this position he
organized STSC's Computing Center and nationwide communications network.
He was subsequently promoted to manager of communications in 1973, director
of development and design in 1975, director of development in 1977, and to his
current position as vice president of development in 1979.

Myrna directs STSC's Operations Group and is a member of its Executive
Committee and Technical Management Committee. He is responsible for the
production and delivery of computing and telecommunications services and for
the development of new applications, products, system features, and technolo
gies.

Myrna holds a B.S.E.E. degree from the New Jersey Institute of Technology and
an M.S.E.E. degree from Montana State University.

Judson G. Rosebush
1

Business
Graphics

This paper describes the VISIONS Business Graphics System. developed
by Digital Effects Inc., and available for use on STSC's APL*PLUS Service.
VI 810 NS facilitates the design and generation of graphic displays. including
multiple-line word formats (text charts), and line. bar. and pie graphs. The
Business Graphics System uses consistent conversational behavior and com·
mon code.

The use of APL primitives for computer graphics notation has received
some attention in recent years (see notes 1 through 6); however, design efforts
toward large, integrated systems have concentrated mostly on task-specific or
device-specific single workspaces (e.g., a workspace to plot line graphs on a
Tektronix Plotter).

The VISIONS Business Graphics System gives any user a flexible
method of generating a wide variety of graphs and textual formats-quickly,
accurately, and efficiently-<m a device of arbitrary description. Each graphics
system within VISIONS (e.g., TEXT, PIEGRAPH, LINEGRAPH, and
BARGRAPH) embodies uniform design considerations and features, at. the user
level and at. the implementation level. The balance of this paper describes the
construction of the system, its basic features, and use. Digital Effects suspects
its work is not unique to the area of graphics, and encourages further
discussion in the larger AP L community regarding topics such as general
arrays, dialog rules, and manipulation of functions in and out of workspaces.

I wish to thank the following people who cont.ribut.ed to t.he design of
VISIONS: Steve Bartels, David Cox, C. Robert Hoffman, Donald Leich, Jan
Prins, and David Schnebele.

System Overview

Each of t.he graphics systems consists of a shell of applicat.ion primitives
t.hat. use the VISIONS NUCLEUS, a database management system called
VFILE, and a defined set of user interaction rules, called DIALOG. The
application systems may be used interactively, off-the-shelf, or the application
primitives may be incorporated by a programmer into any APL environment
with unique data access methods, customized front ends, or automated
processes. The application primitives-as well as the functions in NUCLEUS,
VFILE, and DIALOG-are well defined. and documented online.

The VlSI0 NS NUC LEUS consists of primitives for generalized. graphic
manipulation and display. A more detailed explanation of the basic concepts of

241

242 Business Graphics

the VISIONS NUCLEUS may be found in "VISIONS: A Computer
Graphics Notation" (see note 6).

The VFILE system enters data and related descriptive information and
stores it in a tree-structured file, much like a general array. An interactive
application called FILE helps users enter, list, copy, delete, and rename data
of all types and shapes. Data is identified by a complex name composed of data
identifiers, separated by delimiters. For example, a file may be named
EX CHAN GE • DATA. STOC K. A name may be used to describe either a single
piece of data, or many pieces of similar data. For example,
EXCHANGE .DATE .STOCK might specify the closing information for a
specific stock on a certain day, while EXCHANGE .DATE might specify the
closings for all stocks on a single day, and EXCHANGE • • STOCK, all daily
closings for a single stock on file. More details are available in the VISIONS
User Manual (see note 7).

The DIALOG facility solicits and evaluates user input by issuing question
prompts, accepting and validating the user's responses, and storing the results
in variables. These variables may then be used by functions of the application
systems. DIALOG features include prompting, unified response rules, optional
defaults, optional validity checking for ranges or choices, conditional prompt
ing, implicit commands, error trapping, "help" messages, and abort pathways.
Automated processes-including command expressions that may be saved for
future use-may be implemented using a "type-ahead" feature of DIALOG in
conversational mode, or directly as input to an AP L function.

The VISIONS Business Graphics System is device-independent, so that
output may be directed to printers, plotters, video-display terminals, or film
recorders of any manufacturer. Color or black and white displays are possible,
and vector as well as raster displays are supported. Additional systems exist
for enrolling users, tailoring prompts, measuring usage, and installing and
maintaining systems.

Operation

VISIONS, when used in an interactive mode, is managed by a master
driver function that queries for system selection and, upon response, gathers
the appropriate functions into a workspace. Each graphics application, such as
BARGRAPH or PIEGRAPH, may contain a latent expression; this is executed
and transfers control to a specific function. When one task is complete, such as
the display of charts or graphs, control returns to the driver function,
application-dependent code is purged from the workspace, and the user is
again prompted to select a system. The master driver of VI S ION S is actually
a general-purpose utility and might be used for applications unrelated to
graphics.

Following are a few examples of VI S IONS. The first example demon
strates the PIEGRAPH system.

)LOAD 4876000 VISIONS
SAVED
SrSTEM}PIEGRAPH
DATA ID}EXANPLE.PIEGRAPH
FONTNAME}NACHINEB
CHANGE DEFAULT COLORS? N
ONE LINE TITLE}PROFIT CENTERS
TITLE COLOR} (RETURN)
PULL OUT SLICES? 2
2 IS NOT A VALID CHOICE
PULL OUT SLICES? Y
SLICE TO PULL: 2
AMOUNT OF PULL: .6
SLICE TO PULL: (RETURN)
ROUTE)DISPLAY
DISPLAY) TEK4662

Business Graphics 243

This sequence creates the pie graph shown in Figure 1, using data stored in the
file EXAMPLE .PIEGRAPH.

Figure I-A Sample Pie Graph

The following sequence creates a bar graph (Figure 2) and includes several
uses of ? to view available options.

SYSTEM} ?
FILE
TEXT
LINEGRAPH
BARGRAPH
PIEGRAPH
SYSTEM}BARGRAPH
DATA ID}EXAHPLE.LINEGRAPH
FONTNAME}HELVETICA
CHANGE DEFAULT COLORS? N
ONE LINE TITLE}TESTGRAPH
TITLE COLORS} (RETURN)
BARWIDTH: ?
1 VALUE REQUIRED
MIN AND MAX (ONE ROW PER VALUE): DEFAULTS ARE LAST COLUMN

o 1 0.8
BARWIDTH: (RETURN)
BARGROUP WIDTH: (RETURN)
ROUTE}DIS
DISPLAY}?
VALID CHOICES ARE: (DEFAULT IS FIRST ROW)
TEK4013
TEK4027
SD4020
TEK4662
FR80
HP7221
DIABLO
DICOMED
AJ832
SOLTEC
TEK4025
DISPLAY}HP7221

In this example some questions were answered by pressing the RETURN
key, resulting in automatic use of the default value. On monochrome displays,
all colors are displayed in a single color.

Business GraphiClJ

Figure 2-Bar Graph Format

The following sequence produces the same graph as Figure 2, but uses the
type-ahead mode. The insertion of double slashes (II) in an entry string
substitutes for pressing RETURN.

SYSTEMIBARCRAPH
DATA ID)EXANPLE.LINECRAPH HELVETICA II
ONE LINE TITLE)TESTGRAPH II II II II II
ROUTE)DIS HP7221

The above examples use previously stored data. The following example
shows how a new file is created, and illustrates some of VISIONS' prompting
features.

SYSTEMIFILE
ACTIVITY}?
VALID CHOICES ARE: (DEFAULT IS FIRST ROW)
COPY
RENAME
TYPE
DIRECTORY
DELETE
ENTER
HELP
LIBRARY
SHARE
}ENTER
ENTER NAME OF INDEPENDENT VARIABLE}YEARS
ENTER NAME OF MEASUREMENT UNITS} (RETURN)
NUMBER OF INTERVALS OR CATEGORIES IN YEARS: 3
DO YOU WISH TO LABEL EACH INTERVAL? Y
LABEL1}1980
LABEL2119B1
LABELJ 11982
ENTER NAME OF DEPENDENT VARIABLE)REVENUE BY DISTRICT
ENTER NAME OF MEASUREMENT UNIT)OOO,OOO
NUMBER OF ROWS IN REVENUE BY DISTRICT: 3
DO YOU WISH TO LABEL EACH ROW? Y
LABELl)EASTERN
LABEL2}HIDWEST
LABEL3}VESTERN

ENTER 3 ROWS WITH 3 COLUNNS EACH. SEPARATE VALUES WITH CONNAS.
ROWl: 3."5
3.45 IS 1 ITENS. NEED 3
ROWl: 3."5.".55.5.2"
ROW2: 1.09
1.09 IS 1 ITENS. NEED 3
ROW2: 1.09.1."".1.78
ROW3: 2.55.3.00.3.""
OUTPUT DATA ID)DIST.FORCAsr3

This data is now stored under DATA ID 'DIST.FORCAST3' and is
used to generate Figure 3.

19IJ Tfll 82 U]STR1C ~UfflR3,.0.-------,

Figure~A Sample Bar Graph

The following sequence uses the T EXT system to create a chart of text (see
Figure 4). The? prompt is used again to reflect the help feature.

STSTEN}TEZT
FONTNAME} 1
VALID CHOICES ARE: (DEFAULT IS FIRST ROW)
MACHINES
HELVETICA
CALCOHP
,ONTNAME I (RETURN)
TEXT STRING}STSC
TEXT STRING}PBESENTS
TEXT STRINGIBUSI'ESS GRAPHICS
TEXT STRING} (RETURN)
LEADING: (RETURN>
LETTER SPACING: 1
1 VALUE REQUIRED
HIN AND HAX (ONE ROW PER VALUE): DEFAULTS ARE LAST COLUHN

o 1 0.2
LETTER SPACING: (Rt:rtJRN)
,fUSTIFICATION) 1
VALID CHOICES ARE: (DEPAULT IS FIRST ROW)
CENTER
LEFT
RICHT
,fUSTIFICATION) (RETURN)
OVERALL COLOR) CR~
HIGHLIGHT LINES OR WORDS} ~RN)

246

OVERRIDE AUTOMATIC SCALING? (RETURN)
ROUTE)DIS
DISPLAY)SOLTEC

Business Graphics

Figure 4-A Sample Text Graphic

For additional examples or explanation of the operation of VI S ION S,
refer to the VISIONS User Manual (see note 7).

Conclusion

The components and features of the conversational Business Graphics
System can support many different applications. The problems involved
include not only graphic manipulation and display, but also data management,
user interaction, and system operation.

We continue to find APL a superior notation for the description and
manipulation of graphic objects; we suspect the widespread work on general
arrays (see notes 8 through 11) will encourage even more use of APLin
computer graphics. Our investigation of the user interaction issue shows many
attempts to formalize conversational style (see note 12; also workspace
6 INPUT on the APL*PLUS System); we wonder if there exists an algebra
in the domain of responses to a prompt? Finally, we wonder if the language
requires a built-in method for constructing a task from one or more groups of
functions (see note 13) and then transferring control to that task.

Notes

1. S. Baron, S. Bartels, and G. Martin, Programmes Graphiques APL Pour
Terminal Tektronix 4013, (Compagnie Internationale de Services en Infor
matique, 1974).

2. D. Galbraith, "Primitive Functions for Graphics in APL", APL Quote
Quad, (Volume 7, Issue 2, Summer 1976).

3. A. J. Rose, Sketch, (STSC, 1973).

4. Sharp APL Graphics, (LP. Sharp Associates, 1978).

5. IBM 5100 APL Graphpak, (IBM Corporation, 1978).

6. J. G. Rosebush, "VISIONS: A Computer Graphics Notation", APL79
Conference Proceedings, (Association for Computing Machinery, 1979).

7. VISIONS Busi.ness Graphics System User Manual and Reference Guide,
(Digital Effects Inc., 1979).

8. T. More, "The Nested Rectangular Array as a Model of Data", APL79
Conference Proceedings, (Association for Computing Machinery, 1979).

Business Graphics 247

9. W. Gull and M. Jenkins, "Recursive Data Structures in AP L", Communi
cations of the ACM, (Association for Computing Machinery, Volume 22,
Number 2, February 1979).

10. R. A. Smith, "A Programming Technique for Non-Rectangular Data",
APL79 Conference Proceedings, (Association for Computing Machinery, 1979).

11. A. Hassitt and L. E. Lyon, "Array Theory in an APL Environment",
APL79 Conference Proceedings, (Association for Computing Machinery, 1979).

12. J. Sigle and J. Howland, "Structured Development of Menu-Driven
Application Systems", APL79 Conference Proceedings, (Association for Com
puting Machinery, 1979).

13. S. D. Crossley and G. R. Streeter, "An Overlay Method for the Effective
Organization of AP L Systems", APL79 Conference Proceedings, (Association
for Computing Machinery, 1979).

Judson Rosebush is president of Digital Effects Inc., a New York-based firm
that specializes in computer animation systems and that produces film and
video tape for television and motion pictures. Rosebush is also a practicing
computer artist who has exhibited drawings and film in North America,
Europe, and Japan. His primary software package, VISIONS, has been widely
used by programmers and designers requiring three-dimensional color graphics
capabilities. Rosebush has published several technical papers and has written
for mass circulation media such as Rolling Stone and The Village Voice.

Rosebush holds a B.A. in art history from the College of Wooster in Ohio and an
M.S. in television/radio from Syracuse University. He is a member of the
Association for Computing Machinery.

Part 3

The Core of APL

Jak Eskinazi

User-to-Application Interface:
A Command Processor Approach

The designer of large systems is challenged by many different design
criteria:

• database design

• security of programs and data

• designing and building utility programs that simplify pro-
gramming and ease subsequent application maintenance.

This list is by no means complete. The seasoned AP L user knows that these
topics are closely interrelated and that they invariably have wrinkles peculiar
to each application.

Many of these topics are covered in other papers presented in this book. In
this paper, I will describe a flexible and adaptable "command language
processor". The focal point ofthe discussion will be the user interface (or "front
end") for a hospital financial planning system that was designed and imple
mented in cooperation with end users and other analysts.

The term "command language processor" sounds quite formidable, but the
reader should not be intimidated by such flowery terminology. There really is
nothing new about it. It simply describes a mechanism that allows end users to
interact with a suite of preprogrammed functions. The simpler applications, or
those targeted to AP L users, may access programs using built-in AP L system
features. A sequence of) LOAD commands followed by function calls with or
without arguments is the simplest form of a command processor.

Many applications have been designed in this manner and many more will
be written in the future. However, it has been my experience that the real
world is quite naive about data processing in general and about APLin
particular. Consider a data entry clerk entering what appears to be a valid
command in immediate execution mode and being admonished with a
SYNTAX ERROR. The cause of the error may be very simple (e.g., the user
forgot to load the right workspace), but the naive user's reaction can be quite
traumatic.

When designing applications, regardless of the language used for the
actual implementation, we designers are obliged to deliver a human-en
gineered system that makes the user's life simple. It should respond in
everyday language, isolate the user from the actual computer mechanics, and
protect the user and especially the data and programs from inadvertent errors
or vicious attempts to breach security.

249

250 User-to-Application Interface: A Command Processor Approach

Briefly, our system is a financial model designed specifically for a hospital.
Hospital financial management uses basic financial planning and modeling
techniques. However, hospital services is a highly regulated industry; con
sequently, many reporting and reimbursement algorithms are required.
Third-party payors such as Medicare, Medicaid, and Blue Cross typically
reimburse hospitals on the basis of very stringent cost-based regulations; they
may even require different cost-allocation algorithms when overhead is
distributed. Our model performs these required computations so that the
financial analysts can obtain true reimbursement figures from early budget
preparation through the end of their fiscal year, when actual reports are filed
with the proper agencies.

In the fall of 1979, we had fifteen users and handled the local regulations
of four or five states.

Our Design Requirements

In designing the hospital financial planning system, we set the following
requirements:

• Our target user population would be composed of chief financial
executives and hospital administrators.

• Typically our users would not be APL'ers. In fact, they would not
care about the actual language used to implement their financial
model.

• Our users have a jargon all their own. They talk about cost
reimbursement, allocations, the bottom line, and so on. Since they
are comfortable with those terms, we felt compelled to abide by
them and to minimize the introduction of new terms.

• Most of our users either had never used a terminal or had mixed
emotions about computers. Yes, they knew that the computer was
a very useful tool but they did not like the tortuous mechanical
contortions needed to obtain an answer. We wanted to reduce the
"computerese" chore to simply dialing a number and signing on.

• Our target environment would be very volatile and variety would
be the rule rather than the exception. Certain features or reports
would be very meaningful to one user, but meaningless to another.
We needed a simple mechanism to add and remove commands on
a per-user basis.

• The model would be complex enough to warrant isolating the user
from the actual programs and data. Catastrophic errors had to be
prevented.

• The system should be easy for the newcomer to use, a system that
could almost teach the user how it behaved and what options were
available. Yet, we wanted a way to short-circuit long prompting
sequences for the more seasoned user who knew exactly what had
to be done and how to get there.

• We were psychologically opposed to "menu" prompting and felt
that it would be impractical with an expected vocabulary of more
than 300 commands. Our main objections to this technique were
that it slows down user interaction by displaying the options in
each prompt and that it becomes quite boring once the user is
familiar with the system.

• The mechanism should allow the user to progress down a certain
path and then abort the whole thing at any point before data was
actually altered. This is a very important feature where the
system is so rich that it is easy to pick the wrong path.

User-to-Application Interface: A Command Processor Approach 251

Certain limitations and requirements were also imposed by the internal
design of the system:

• We wanted to handle 15 to 30 distinct workspaces and to automate
workspace switching so that it would be transparent to the user.
(It should be noted that extremely large workspaces would not
help. Most of our workspaces provide different kinds of working
environments and would still be segregated for maintenance and
security reasons.)

• We needed a table-driven system that could be changed without
reprogramming.

• We desired a mechanism that would let us easily phase new
commands into the mainstream of the application. We would
prerelease new commands to a selected and willing set of test
users until we were certain that they were sturdy enough for
public release.

• We needed a way to predefine and execute frequently used
sequences of commands. This feature would allow sensitivity runs
where a model element is changed, the affected section of the
model is recomputed, and certain results are recorded. The
process would be repeated for a whole set of input variables before
a final report was generated.

• We wanted to make a set of maintenance and stewardship utilities
available to ourselves through the same mechanism, and yet be
sure that end users could never see or access them.

This paper covers two modules that were developed to address these needs.
The command processor handles most user input involved with the selection
and the execution of user commands. The system supervisor manages the
programs and allows implementers and production code to "call" functions by
name without worrying about the support environment they require or their
actual location in the system.

The Command Processor

Some of our problems could be quickly addressed and solved.

System access was simplified and computer mechanics were reduced to a
bare minimum by adopting a design that always signs the user off with
) CONTINUE. The DLX in the CONTINUE workspace places the user under
control, and in interaction with, the command processor at sign-on. After
dialing through the STSC network, the user enters only one line of magic:

OAPLC)1234567:LOCK

A nice side effect of keeping the user under program control is tremendously
enhanced security and data integrity. The user cannot access programs and
data from outside the system.

The ability to abort any given sequence was achieved by recognizing the
word QUIT in all our auxiliary prompters and immediately returning control
to the topmost level of the command processor. The keys to this feature are
STSC's Exception Handling Facility (which allows AP L programs to react
automatically to errors and certain other events that can occur during
execution) and our ability to retain program control if the user presses the
BREAK or ATTN key. We opted to interpret the BREAK or ATTN signal as a
request to "quit" while processing. Actual interrupt handling in critical
computation-bound sections is subtle and beyond the scope of this paper, but
pressing BREAK or ATTN invariably results in a return to the topmost system
prompt.

252 User·to-Application Interface: A Command Processor Approach

ADD

CHANGE
BUDGET

ALLOCATION
METHOD
SEQUENCE
STATISTICS

EXPENSES
REVENUES
SENSITIVITY
SPREAD

CODES
DEFINITIONS
NAMES

DEPARTMENT
ID
NAME
MANAGER
WORKLOAD

USER
NAME
PROFILE

DELETE
INPUT
PRINT
SET

Figure I-A Part of
the Command
Structure

Two features make the command processor easy to learn:

• At any point the keyword HELP can be entered by the user. It
results in the display of a detailed description of the available
options and of their effects. One of our pending projects is to cross
index these HELP messages to the user's manual such that the
user would also be directed to the section containing detailed
discussion and examples.

• An even shorter version of HELP can be obtained by simply
pressing the RETURN key (entering an empty line) while in the
command processor. In this case, the user is simply given a list of
options currently available to him. Because we used mnemonic
command names, pressing RETURN usually answers questions
such as "Is the command spelled ALSTATS or ALLOCSTATS?"

These features are by far the simplest to address and implement. We still
have the problem of naming and managing hundreds of commands. The brute
force approach would be to concoct a unique mnemonic name for each
command and leave it at that. We did not consider it as an option. Instead, we
made hierarchical lists of commands.

The Prompt Matrix

The user would need to enter data, delete data, print reports, set
parameters, add new departments, change department definitions, and so on.
Some of the obvious action verbs are ADD, CHANGE, DELETE, INPUT,
PRINT, SET, and the like.

Simply specifying that entry is to be performed is not sufficient; one must
also specify what is to be entered. If you were to take a real application and
analyze its user-accessible features, you would quickly realize that the com
mand structure can be defined as a tree structure. An example of part of a
command structure appears in Figure 1. This is but a small and simplified
section of our real structure, but it suffices to explain how the command
processor interacts with the user.

The commands shown in Figure I are arranged very much like a reporting
or departmental structure, with the indents identifying the parent-subordi
nate relationship.

When the command processor is entered, it simply prints a double colon
(: :) and waits for the user to enter a command. At this point, the user may
enter any of the top-level commands. For instance, Figure I indicates that ADD
and CHANGE are two of the top-level commands. If the user enters CHANGE,
the next prompt he will see will be CHANGE OPTION::, since he is not at
the lowest possible level of the prompt structure. Now, assume that the user
enters DEPARTMENT. The next prompt will be CHANGE DEPARTMENT
OPTION: :. When the user ultimately enters ID, reaching one of the lowest
level prompts in the chosen path, the command processor causes an APL
function to execute and service the request.

Thus, the user may simply walk the prompts in a way that is conceptually
similar to walking a tree until he reaches a leaf. Of course, the commands do
not need to be entered in the tedious manner just described. The user could
have entered CHANGE DEPARTMENT ID directly and achieved the same
result. In fact, barring errors, the processor will accept multiple words at any
level and pick them up one at a time as it walks down the hierarchy. These
concepts are illustrated in the examples that follow.
:: CHANGE
CHANGE OPTION:: (RETURN) User enters an empty line.
CHANGE OPTIONS ARE:

BUDGET DEPARTMENT USER

User-to-Application Interface: A Command Processor Approach 253

CHANGE OPTION:: DEPARTMENT
CHANGE DEPARTMENT OPTION:: ID

At this point the command is fully described and the service routine takes
over.

The next examples illustrate use of the QUIT option and how the
processor reacts to unknown commands.

:: CHANGE DEPARTMENT
CHANGE DEPARTMENT OPTION:: QUIT
SEQUENCE ABORTED

:: CHANGE BUDGET SPRAED CODES
IGNORED ENTRIES: SPRAED CODES
(UNKNOWN COMMAND)

CHANGE BUDGET OPTION:: SPREAD CODES

Interaction with the command processor can be further shortened because
the full words need not be entered. Provided enough letters of each word are
entered to differentiate the entry from other valid entries at that level, the
prompter will recognize them and act accordingly. For instance, the last
example could have been as terse as CH BUD SPR C. If the user entry is so
short that more than one match is found, the function will print the message
'UNABLE TO DIFFERENTIATE FROM:', followed by the words lead
ingtotheambiguity.Themessage 'PLEASE BE MORE SPECIFIC' is
then displayed. Entries following the ambiguous word are ignored, as shown in
the following example.

:: CH BUD SPR
CHANGE BUDGET SPREAD OPTION:: QUIT
SEQUENCE ABORTED.

:: CH BUD S C
UNABLE TO DIFFERENTIATE FROM:

SENSITIVITY SPREAD
PLEASE BE MORE SPECIFIC.
IGNORED ENTRIES: S C

CHANGE BUDGET OPTION:: SP C

The command processor is actually driven by a character matrix almost
identical to that shown in Figure 1. The only difference is that all top-level
prompts are left justified and that lower-level prompts are successively
indented by a single space instead of the two spaces used for clarity in the
figure. As can be seen, this matrix contains all the necessary information to
drive and control the behavior of the command processor as far as the user is
concerned.

The Executable Handler Matrix

Up to this point, we have alluded to the fact that the command processor
takes some action when a leaf is reached, but we have not gone into the actual
details. It turns out that the mechanism is a simple execute (~) of a
predetermined string of characters. Figure 2 shows the original commands in
Figure 1 and the accompanying executable statements for the change option
and its subordinates. We refer to these statements as executable "handlers".

Thus, if the user enters the command CHANGE BUDGET SPREAD
DEFINITIONS, the function named CHSPDEFS is executed to service the
request. That function performs the desired task and drops back into the
command processor. The user is then presented with another double colon and
is free to enter another command.

254 User·to-Application Interface: A Command Processor Approach

PROMPTS

ADD

CHANGE
BUDGET

ALLOCATION
METHOD
SEQUENCE
STATISTICS

EXPENSES
REVENUES
SENSITIVITY
SPREAD

CODES
DEFINITIONS
NAMES

DEPARTMENT
ID
NAME
MANAGER
WORKLOAD

USER
NAME
PROFILE

DELETE

INPUT
PRINT
SET

HANDLERS

HELP 58
HELP 76
HELP 82
CHBALMETH
CHBALSEQ
CHBALSTATS
CHBEXP
CHBREV
CHBSENSDEF
HELP 109
CHSPCODES
CHSPDEFS
CHSPNAM
HELP 101
CHDEPID
CHDEPNAM
CHDEPMGR
CHDEPWKLD
HELP 111
CHUSERNAM
CHUSERPROF

Figure 2-Association between Commands and Handlers

The process is very simple, and it is incredibly easy to use and maintain. A
steward need only maintain two matrices in order to change the command
structure, add new commands, or discard old ones. Of course, the service
routines must still be written. We still have not found a way out ofthat chore.

Based on the description so far, one may suspect that the executable
handlers for top and intermediate options are never executed and are
superfluous. They are not. Indeed, the command processor executes service
routines only when a leaf is reached, but the handlers for the other levels are
used by the HELP option. Whenever a user enters HELP, the handler at that
level is executed. In our case, these refer to a function HELP that reads a text
component from a file containing appropriate HELP messages.

The concepts described above are easily implemented in a simple dyadic
function that takes the command matrix as one argument, the handler matrix
as the other argument, and thereby controls an application that fits in a single
workspace.

The Behavior and Access Control Matrix

A few more problems still need to be addressed:

• For consistency, we wanted to let the user supply data to the
service routine via the command processor if desired. For exam
ple, if spread code S lOis to be altered, a construction like
CHANGE BUDGET SPREAD DEFINITION S10 would be
allowed. The command processor would not know the meaning of

User-to-Appiication Interface: A Command Processor Approach 255

the data element S 1 0, but it could conceivably pass this informa
tion along to the service routine in the form of a right argument.

• We needed a way to make different commands available to
different users, based on their needs and stewardship status.

Figure 3 contains the same example as that in Figure 2, but a Boolean
matrix that provides behavior and access restriction information to the
command processor has been added.

BOOLEAN MATRIX

ACCESS MODULES PROFILE
-~--

PROMPTS HANDLERS SUP ARG PRV SP OPN 12340 123450

ADD

CHANGE HELP 58 1 11 1
BUDGET HELP 76 1 1 1

ALLOCATION HELP 82 1 1 1
METHOD CHBALMETH 1 1 1
SEQUENCE CHBALSEQ 1 1 1
STATISTICS CHBALSTATS 1 1 1

EXPENSES CHBEXP 1 1 1
REVENUES CHBREV 1 1 1
SENSITIVITY i.CHBSENSDEF 1 1 1
SPREAD HELP 109 1 11 1

CODES i.CHSPCODES 1 11 1
DEFINITIONS i.CHSPDEFS 1 11 1
NAMES i.CHSPNAM 1 11 1

DEPARTMENT HELP 101 1 1 1
ID CHDEPID 1 1 1 1
NAME CHDEPNAM 1 1 1 1
MANAGER CHDEPMGR 1 1 1 1
WORKLOAD CHDEPWKLD 1 1 1

USER HELP 111 1 1
NAME i.CHUSERNAM 1 1
PROFILE i.CHUSERPROF 1 1

DELETE
INPUT
SET

Figure 3--The Behavior and Access Control Matrix

The first column of the Boolean matrix is entitled S UP and it indicates
whether or not the handler is to be handed over to the system supervisor for
execution. (The supervisor and its features will be described later.)

• If the bit is set, the service routine is not resident in the same
workspace and the supervisor must find and execute it in such a
fashion that control returns to the command processor. The
execute (~) in front of the handlers having this bit set is a
supervisor command. It is not an APL statement that is executed
directly.

• If the bit is not set, the service routine is workspace resident and a
simple execute (~) is adequate.

The second column of the behavior matrix, entitled ARC, indicates
whether or not the service routine expects an argument.

• If the bit is set and the user provides data tokens beyond those
required by the command processor, the extra tokens are passed
to the service routine as a character right argument. The mecha-

256 User-to-Application Interface: A Command Processor Approach

nism is such that this argument is carried along even if the
supervisor is involved and a workspace switch occurs.

• If the bit is set but the user does not provide extraneous informa
tion, the service routine is given an empty vector as its argument.
Typically, in our service routines, this is a trigger to prompt for
the required data or, if appropriate, to assume a default value.

• If the bit is not set and the user provides extraneous tokens, they
are "ignored" and the service routine is invoked.

• If the bit is not set and the user does not provide extra data, the
service routine is simply called with no right argument.

The discussion so far has made no assumption about the size or length of
the commands except that the prompt matrix, the handler matrix, and the
behavior control matrix must have the same number of rows. The command
processor's behavior is controlled by the relative position and indent of the
prompts. This implies that it would be quite simple to disallow commands
simply by compressing the matrices to remove rows that are not of interest.
This concept gave us the key to controlling access to the commands based on
the individual user's requirements and conscious actions.

This command screening process is described in the remaining columns of
the behavior and access matrix, which are segregated into the ACCESS
section, the MODULES section, and the PROFI LE section. The access section
deals with command screening based on security related tests. The module
section deals with tests related to the operating environment parameters that
are under each user's control. The profile section deals with screens based on
an internal description of the user. The user profile is derived from the user's
geographic location and can only be altered by stewards.

The data contained in the behavior and access matrix is used to develop a
dynamic mask that is applied to the prompt and handler matrices before the
command processor uses them to prompt for and recognize commands. Any
command that the user should not use is compressed out of the matrices. If a
set of commands is not present, there is no way for the processor to recognize
them. This masking technique also paves the way to allowing the system
stewards or privileged users to use maintenance utilities that are invisible to
production users. Similarly, new features can be released to a selected subset
of users known as "secondary privs".

• The P R V (privileged) column indicates that the command is only
available to system stewards whose user identifications are con
tained in a special list. These commands are not available to other
users. All of our stewardship commands, including the one used to
alter the control matrices, and all new features still under
development have this bit set.

• The SP (secondary privileged) column indicates that the com
mand is only available to users whose user identifications appear
in the secondary priv list. These are typically users who un
derstand the model very well and who have volunteered to be
guinea pigs for testing new features.

• The OPN (open) column contains an access bit that is automati
cally generated and set by our maintenance utility if the other two
restrictions are not in force.

• The MODULES column contains bits that indicate which modules
must be active before the command is made available to the user.
Modules are logical subsets of the entire model. Modules may be
selectively activated or deactivated by the user to control the
source and level of detail of the base data. Note that in some
circumstances more than one module may be specified for a

User-to-Application Interface: A Command Processor Approach 257

command. This indicates that the command is available if any of
the specified modules is active. The last module bit (0 in Figure 3)
is the "module-doesn't-matter" bit; it is set automatically by our
utilities if access to the command does not depend on which
modules are active.

The PROFI LE column contains a set of identifying tags that are
attached to each user at the time that the user is installed in the
system. Each profile number has a certain meaning. Some indi
cate the state in which the user operates (this is handy when
dealing with local regulations, tax algorithms, or reporting
requirements). Others may indicate the user's level of training
(e.g., he has been trained to define and run sensitivity analyses
properly). Profile 0 is the "user-profile-doesn't-matter" bit; it is
automatically set if the command is not given any user profile
restrictions.

In the general case, the bits described above can have any meaning
whatsoever that applies to the system under consideration. The command
processor only uses these bits to determine if a command is available. Actual
column assignments are the system designer's prerogative.

In our particular example (Figure 3), the logic to generate the mask would
be as follows:

1. Pick up the open access bit and the privileged or secondary
privileged bit, if appropriate to this user. Or-reduce (v /) these to
obtain the access mask.

2. Similarly, get the module-doesn't-matter bit and other module
columns applicable to the user. Or-reduce these to obtain the
module mask.

3. Do the same for the user profile bits.

4. And-reduce (/\ /) all three resultant bits to obtain a preliminary
selection mask.

The availability of intermediate commands is determined by a fairly
complex procedure. Their availability is based strictly on the availability of
their subordinates. Thus, it is necessary to:

5. Reset the selection bit locations for the top and intermediate
prompts. That is, only retain the bits for the leaves of the
command tree.

6. Use partition function techniques, specifically or-sub-reduce, to
walk up the prompt tree to identify the prompts that should be
retained. A prompt is retained if any of its subordinates are
retained.

7. Apply this final mask to the prompter and handler matrices to
select the subset applicable to the user, given his present environ
ment and profile.

The System Supervisor

A system as complex as a comprehensive financial management model
requires extensive bookkeeping, tracking, security, and handshake and restart
mechanisms. In our case, the collection of programs that handles most of these
tasks is known as the supervisor.

Some of the supervisor's duties include:

258 User-to-Application Interface: A Command Processor Approach

• Ensuring that files are properly tied at all times.

• Taking care of automatic updates to user files and performing
routine maintenance chores at sign-on.

• Providing a restart mechanism to handle the inevitable line drops
as well as the occasional hardware failures.

• Providing a simple and consistent method for trapping internal
errors and hard AP L errors such that the problem is logged and
reported to the stewards before the user is softly shut down with
an explanatory message.

• Providing a way to catalog functions that reside in a file or in
workspaces so that they can be invoked by name.

• Last but not least, handling workspace chaining and complex "job
streams" automatically.

In the remainder of this paper, we will address only these last two aspects
of the supervisor.

The function catalog is an integral part of the supervisor and is usually
accessed only through a function called SUPER. The entry for each function in
the catalog consists of the function's name, a file pointer, a workspace address,
and a workspace list.

• The function name is encoded and represented by a single value in
a floating-point vector. This directory has no duplicate entries.

• The file pointer parallels the function name directory and con
tains each function's file address. A positive entry indicates that
the character representation of the function will be found in that
component of the file, while a zero entry indicates that the
function is workspace resident. An element with a zero entry in
this list must have a positive entry in the workspace address
vector. An element with positive entries mayor may not have a
nonzero workspace address. Both are well-defined situations.

• The workspace address indicates whether or not the function must
be executed in a specific workspace and, if so, which workspace. A
zero entry indicates that the function is file resident and execut
able in any environment. A positive entry indicates that the
function must be executed in a specific workspace and points to
the name of this workspace in the workspace list. The function
may actually reside either in the said workspace or on the file; the
determining factor is the function residence pointer.

• The workspace list is a character matrix in which each row
contains a workspace name. By convention, the first row contains
the name of the main workspace that contains the command
processor.

A few examples may help clarify how the function catalog is used. Let us
assume that the workspace list looks like the following matrix (the user
numbers and extra spaces have been elided):

PROMPTER
DATAEDIT
ALLOCATION
MAINT

A hypothetical function catalog could then look like this (note that function
names would be encoded into floating-point numbers in an actual function
catalog);

User-to-Application Interface: A Command Processor Approach 259

FUNCTION FILE WORKSPACE
NAME POINTER ADDRESS INTERPRETATION

SUPFNS 83 0 SUPFNS resides in file component 83 and can be
executed in any workspace.

ADDGRP 0 2 ADDGRP resides in workspace DATAEDIT and can
be executed only there.

MGMTPREP 96 3 MGMTPREP resides in file component 96 and must
be executed in workspace ALLOCATION.

The supervisor uses this function catalog to link between workspaces and
to access functions residing on files. The catalog also enables a calling function
to request execution of another function without worrying about the other
function's true location.

SUPER accepts commands in two different ways.

• Immediately as a right argument.

• Indirectly via a file-resident execution buffer. The importance of
this feature will become evident as we discuss stacked sets of
commands.

The Supervisor Commands

.*. Execute the function that immediately follows. The name of the
function is assumed to be the characters between the .*. and the
first blank encountered in the statement.

• If the function is file resident and requires no special environ
ment, it is brought in and executed.

• If the function is file resident and the workspace in which it
must be executed is not the one at hand, a "quietload"
(OQLOAD) ofthe required workspace is performed before the
function is brought in from file.

• If the function resides in a different workspace, that work-
space is quietloaded.

In any event, any and all characters after the first blank in the
statement are passed to the function at the time of the call, as if
they were a right argument. For example:

SUPER '!!CHSPNAM'
SUPER '!!CHSPCODES USERDATA'

... Fetch the function from the file. The function is brought into the
workspace, but not executed. All characters after the first blank
in the statement are disregarded.

t Quietload another workspace. Two variants are recognized. A
statement like tALLOCATION means "quietload the workspace
ALLOCATION". A statement like t 1 means "quietload the first
workspace in WS LIST" and is typically used whenever a user
enters the word QUIT in response to any prompt in the system.
This has the effect of immediately returning control to the
command processor. In all cases where SUPER is forced to
quietload another workspace, it does so only after taking the
remaining unexecuted job stream and depositing it in the execu
tion buffer. This is also true of loads implied through a .*.
command.

It should be noted that our users never interact directly with the
supervisor by using these commands. Instead, the supervisor is given argu
ments by cover functions. For instance, suppose the command processor
receives a "change budget spread codes" command with a declared handler of

260 User-to-Application Interface: A Command Processor Approach

~CHSPCODESand the supervisor bit is set (as shown in Figure 3). When the
prompter detects this particular command, it will call SUPER with the
argument' tCHSPCODES' to service the request. This kind of clean inter
facing and division of responsibilities allow for a much simpler command
processor design. The command processor need not be concerned with the
mechanics that may be required to execute a service function. These tasks are
delegated to the supervisor and the command processor only worries about
accepting and matching user commands.

The supervisor is also capable of accepting a stream of multiple commands
at once and executing them in sequence. The diamond statement separator (0)
is used to separate commands. For example,

SUPER '.SUPFNS 0+3 O+CHARIN O+IGET O+IPUT O+PUT OMGMTCAL 0+7890 PROMPTER'

is a job stream that executes functions, fetches others, and swaps workspaces.
Once the primitives are known, most job streams are as readable as this one.

Typically such complex job streams are generated when the user requests
a report that requires execution of the model. In that case, the job stream is
composed of the model elements (functions) that must be executed to generate
the desired report. (This particular mechanism is described in detail in
another paper entitled "A Data Management Technique Using a Graph
Structure", which appears elsewhere in this book.)

In the last example, note that the statement MGMTCAL contains no
supervisor command. These types of statements are executed directly in the
workspace that happens to be active. They are assumed to be executable by
SUPER without error.

The assumption made in this example is that all of the workspaces loaded
contain the statement SUPER " in their latent expressions. When exe
cuted with an empty argument, SUPER checks the execution buffer that is
maintained on file. If commands are found there, SUPER processes those
commands. If a command requires a workspace swap, the unexecuted portion
of the command is written back into the execution buffer before the new
workspace is quietloaded. This mechanism provides continuity in moving from
workspace to workspace.

SUPER is reentrant and can always be called upon to perform a task even
if the caller is executing as part of ajob stream. No limitations are imposed on
the level of nesting. When SUPER is called with 8U argument, the commands
in the argument are executed directly without affecting a job stream in
progress, provided the new commands do not require swapping workspaces.

For instance, if the user wants to send a MAILBOX (STSC's Electronic
Message Processing System) message to another user or to a steward, the
command processor will execute SUPER '~MBSEND'.The supervisor then
switches to the proper workspace (if necessary), fetches MBSEND from file (if
necessary), and then executes it. However, MBSEND requires two subfunc
tions: TEXTEDIT, which is a text collector/editor, and XMIT, which ulti
mately transmits the edited message. Both of these functions are file resident.
MBSEND has been called by the supervisor, and it in turn executes
SUPER ''''MBSEND()-+XMIT' to install its subfunctions in the workspace.
This is an example of a reentrant call to SUPER that does not cause a
quietload.

If a quietload must be executed, the balance of the command stream is
deposited in the execution buffer, so that the new job stream overwrites the
original one. For instance, still using our MAILBOX example, suppose that the
user typed a message and then changed his mind and typed QUIT. All of our
input processors recognize this keyword and execute SUPER 't l' which,
in this case, is a reentrant call that requires a quietload. The effect is to empty
the execution buffer and to immediately return to the command processor.

User-to-Application Interface: A Command Processor Approach 261

The practice of aborting any unfinished job stream in the execution buffer
when a workspace is swapped has proved useful in this particular application.
Such a drastic action is not, however, required by the workspace-chaining
technique in general. The supervisor could, for example, modify the existing
job stream instead of simply overwriting it.

As you can see, the concept ofthe supervisor isjust about as simple as that
of the command processor. This elegant simplicity should not, however,
disguise the power and flexibility that is gained by the implementers. Isolated
from purely process-oriented chores, the implementer can operate at a higher
conceptual plateau that is much closer to the real problem-solving environ
ment.

Conclusion

Both the command processor and the supervisor described here are stand
alone subsystems that can be used independently. However, even a loose
coupling between them produces a structure and programming environment
that is quite flexible and an implementer's delight. One can start with a
modest set of user commands and add new ones, including stewardship
utilities, as the need arises.

While space and the proprietary nature of the code does not allow me to
publish the actual programs, the following statistics should give you a feel for
the modest size of these functions and the size of the system they have been
able to manage with ease.

• The command processor is 18 lines of code and occupies 1808
bytes. It uses five small, general-purpose utilities that occupy
another 828 bytes.

• Development of the user mask at sign-on is by far the most
complex operation. That particular function is 11 lines long and
occupies 824 bytes.

• The main supervisor function that handles the commands de
scribed here (as well as some error-trapping features) is 23 lines
long and occupies 2008 bytes.

• We have 630 prompts, and the most complex path is presently
four levels deep.

• The whole system is estimated to have 1100 unique functions, 720
of which are main functions known to and managed by the
supervisor. The other functions are for support operations and for
other modules such as a data manager and a report generator.

• The supervisor manages 18 different workspaces.

Readers interested in another aspect of this model-and the way we
generate job streams to control the model logic-may want to refer to a paper
entitled "A Data Management Technique Using a Graph Structure", which
also appears in this book.

My intent in presenting this paper is to share some ideas that worked well
for me and that increased my productivity as well as the quality of a large
system. These concepts are transportable and applicable to a variety of
systems. I hope that J have sparked some interest in implementers to adapt
these ideas to their particular needs.

262 User-to-Application Interface: A Command Processor Approach

Jak Eskinazi joined STSC in 1974 and is currently a small systems analyst,
involved in planning and marketing small systems software. He previously held
positions with STSC as a marketing representative, applications consultant,
and applications consultant manager. Major projects he has worked on include
the Hospital Financial Management System and the Moebs Remote Order
Entry System.

Eskinazi has a B.A. in chemistry and a Ph.D. in education, both from Syracuse
University.

Jack S. Reynolds

Data Sharing
In Large Application Systems

When designing large application systems that involve the sharing of data
(i.e., more than one person has access to the same data), there are many
questions that need to be asked and answered. The questions generally revolve
around one key question: "How sophisticated do you wish to be about the
control of data sharing?" Any level of control you want can be provided. There
are, however, costs (programming costs and ongoing operational costs) as
sociated with each control implemented. There are also risks (usually the
likelihood of unauthorized access to the data and the possibility of file damage)
associated with each control not implemented. The design process consists of
weighing the estimated costs against the possible risks, and developing a
compromise that satisfies specific requirements.

The first part of this paper discusses several general questions about
application design. These questions are of a background nature; the answers
are used primarily to help evaluate the costs and risks associated with various
controls. The second part of the paper discusses specific controls that can be
implemented, and indicates how to evaluate the costs and risks associated with
these controls. And finally, the third part of the paper discusses how the
various controls associated with data sharing relate to other areas of large
application design.

General Questions

There are several general questions that are important to ask and answer
before design begins. Unfortunately, the questions are often left unasked and
therefore there is no standard answer. Each designer and implementer has his
own answers which may be in conflict with others' answers. Even in the case of
a single designer, if the questions are not asked, a wrong answer may be
assumed and the design can become needlessly complex.

As an example, the designer may believe the data to be highly confidential
and, therefore, design the system with elaborate controls over data security. In
fact, the data may not be highly confidential, so many or all of the controls
designed into the system could be eliminated, thus saving a lot of pro
gramming time and expense.

It is a good idea for the designers to have a well-established consensus
about what problem the application will solve, who will use the system, how
the system will be used, and in what environment the system will be written
and used.

263

264 Data Sharing in Large Application Systems

1. The Nature of the Application
What is the nature of the application? It is important to know how the

application will be used. A general ledger application that will be reviewed by
auditors needs to have tight control over the quality of the data right down to
the penny, so there is a need to have tight control over the interaction among
the different users. For example, since the confidentiality of the data in the
general ledger is likely not to be very high, many users will have access. It
could be disastrous if one person deleted the transaction detail before the
books had been closed for that month.

On the other hand, a long-range planning system might be dealing in
millions of dollars, and discrepancies in the input data of several thousand
dollars might not be very significant. The results of the system are projected
operating results of the corporation five years from now that are dependent
upon the selection of one of several possible paths. In this application, the
quality of the data needs to be good only at a very gross level, and tight controls
are probably not necessary. The output reports, however, represent the basis
for making key decisions, and access to them should probably be very tightly
controlled.

These examples illustrate three questions that need to be asked about the
nature of the application:

• How confidential is the data? The confidentiality or sensitivity of
the data ranges from nonconfidential (such as data that is part of
the public domain) to very confidential or personal (such as
personnel or payroll data). There is, of course, an entire range of
varying degrees of confidentiality lying between these two ex
tremes. Even though the data may be considered nonconfidential
when looked at in small amounts, care should be taken to evaluate
the importance of having the data available on a computer. The
power of the computer makes it possible to aggregate the noncon
fidential data into highly confidential analyses and summaries.

• How good does the data have to be? It is also necessary to consider
the importance of data integrity. The old kitchen axiom "too
many cooks spoil the broth" applies to the world of data process
ing as well. Too many people entering, editing, and displaying the
same data can spoil the data. Fortunately, it is possible to control
this, but first you should determine if it is really necessary.

• What procedures are involved in running the application? Are
there any normal operating procedures that could be affected by
having more than one person using the system? For example, in a
general ledger application a trial balance must be run before
closing the books for a month, and the books must be closed for a
month before transaction detail for that month can be erased.
With more than one person using the system, the chances of these
events happening out of sequence are greatly increased. Another
example is a budgeting system where each division is given access
to the database to enter and edit their requested budget. After all
divisional budgets have been entered, no more entry or editing is
allowed while the divisional budgets are consolidated into a
corporate budget. Decisions are made at this time about which
expenses to authorize. After the final decisions are made, the
individual divisions are again given access to the database, but
only to display their final, revised budget. In both of these
examples, it is necessary that the events happen in the proper
order. Safeguards can be programmed into the system, or you can
rely upon the staff to make certain that events proceed in the
correct sequence.

Data Sharing in Large Application Systems

2. The Users

265

Who are the users of the system? What classes or types of users are
needed? These may include, for example, data entry clerks who only enter and
edit the data, analysts who are allowed to display the reports, and a system
steward who controls all aspects of the system such as adding a new user or
installing a new program. What sort of people will be filling these roles? Are
they naive users or sophisticated programmers?

In many design areas the answers to these questions will allow you to
make the proper decisions in regard to which controls to implement. For
example, it is probably unnecessary to build in a lot of controls to prohibit the
data entry clerks from examining the data when they lack the necessary
programming skills to get at the data. It might, however, be necessary to
implement procedural controls to protect the integrity of the data.

3. The Environment

Another important consideration is the environment in which the system
will be written and used. In particular:

• Are there any enhancements to the programming language that
can reduce the amount of programming required? Since you are
programming in AP L, you will want to know what features are
available with the implementation you are using. The most
important question here is that of files. Do you have a file system
that allows the sharing of data? Without such a file system, it is
almost impossible to write a shared application. This failing can
be circumvented to a certain extent if there is a way to execute
system commands (e.g.,)SAVE and)COPY) under program
control. If you do have such a file system, find out what features
are provided to control data sharing. For example, the
APL *P L US File Subsystem (see note 1) provides three features
that facilitate the sharing of data. The file access matrix makes it
possible to allow very specialized types of access. File "holds"
allow the programmer to avoid race conditions that result when
two or more people are trying to update the same file at the same
time. And finally, the file component information provides help in
designing an audit trail. An example of another feature, available
on some AP L systems, is the ability to make programs uninter
ruptable. This allows the programmer to avoid worrying about
what happens when a program is halted and what local variables
may be available for inspection.

• What procedures are followed at the computing center and your
office that could affect your design? Standard operating proce
dures at the computing center can greatly influence your design.
It would probably be unnecessary to design tight controls over the
security of the data if the security at the computing center is
below the level that you require. It would also be unnecessary to
provide these controls if printouts are left lying around the office,
or if users share sign-on and file passwords. Another example is
that of backup. Does the computing center back up your data?
How often? The answer to this question can help determine the
consequences of your data becoming damaged. It can also influ
ence your design of an audit trail that will help recovery, if it
becomes necessary.

The above discussions only touch upon some of the many questions that
can and should be asked. There will, no doubt, be several concerns unique to

266 Data Sharing in Large Application Systems

your particular environment. You should take the time and effort to fully
understand the environment in which you will be working before going on to
design the specific controls that will make your system successful.
Specific Areas of Control

This section discusses several specific areas of control that can be
programmed into a system. The specific controls discussed relate to security,
data integrity, simultaneous access, and an audit trail. Finally, a method of
designing and implementing a system that facilitates the use of controls in all
of the above areas is briefly discussed.
1. Security

Security is frequently the most important control to implement. It relates
to the prevention of unauthorized use of the data. Because the controls
implemented for security purposes often indicate what a particular user is and
is not allowed to do with data, these controls are also very closely related to
those used to protect the integrity of the data.

For example, in a general ledger application, you may give data entry
clerks access to post (append) transactions to the file, but not to print (read) the
summary reports (e.g., balance sheet and income statement). Other users
should be allowed to print these reports, but not to post transactions. There
might be other functions (e.g., dropping transaction detail for months that
have been closed) reserved for a single person designated as the system
steward.

Another example is a personnel system. Each record in this system might
contain the following information for one employee: employee number, name,
address, manager, salary, age, race, and sex. Because ofthe highly confidential
and sensitive nature of this data, it is essential to have strict controls. For
example, several people could be given access to employee number, name, and
address; managers could be given access to the salary information only for
those employees reporting to them; the corporate salary administrator could
be given access to salary information for all employees; and the equal
employment opportunity officer could be given access to summary reports
showing race, sex, age, and salary, but no detail information.

A simple method of controlling the access involves giving all users
unlimited access to all of the programs and data, and simply telling them what
they can and cannot do. This will work very well if your users are naive. If,
however, your users are sophisticated, this technique provides no real control.
Yet, it can still be a viable option if the data is nonconfidential. The advantage
of this technique is that no special programming is required.

Another slightly more restrictive approach is to provide unlimited access
. to the data, but control access to the programs. This assumes that the data will

be accessed through programs that are provided by the application pro
grammer. Again, the system is not protected against the sophisticated user
who can get at the data directly, but is protected against a naive user
inadvertently doing something he shouldn't. The implementation of such a
design is usually only slightly more difficult than the first approach. You must
spend the time and effort to make certain that each user is provided with
exactly the programs he should have. One easy way of doing this is to put a
validation program at the beginning of each user-level program. An example
of such a program is shown below.

v VALIDATE
[1] ~«ltDAI)€VALID~USERS)pO

[2] D~'*** YOU DO NOT HAVE ACCESS TO THIS PROGRAM,' 0 ~

v
A much more elaborate and secure method of accomplishing this is

described in the paper "User-to-Application Interface: A Command Processor
Approach", which is presented elsewhere in this book.

Data Sharing in Large Application Systems 267

Another, more powerful method of control is available on those systems
that have shared file systems with some sort of file access control. Use of this
facility makes it impossible for the clerk who has been denied read access to
the general ledger file to read data from the file. Indeed, the program will stop
with a FILE ACCESS ERROR. This method usually requires some careful
examination of the problem, and most likely requires some additional pro
gramming or a rethinking of the file structure. The reason for this is that
although the posting of data in the general ledger application is essentially an
appending process, what usually is done is not only an append, but the
updating of one or more directories (read, catenate, and replace). The only way
around this is to give the clerk both read and replace access in addition to
append access. A sophisticated user will quickly find his way around this.
Rather than granting this sort of access, the directories can be put in separate
files, and the user granted append access to the transaction file, and read/re
place access only to the directory file. This works nicely in simple situations,
but in most situations makes the file structure needlessly complex.

The three methods of access control mentioned so far (i.e., tell the users
what they can do, restrict access to the programs, and set file access controls)
provide increasing levels of control over the use of the data, with a correspond
ing reduction in the possibility of a security violation. All of the methods are
good for preventing naive users from accessing the wrong data. None of them,
however, will prevent a sophisticated and sufficiently motivated user from
getting at some of the data (except perhaps by using file access controls and
being very careful with the file design). The nice thing about all of these
approaches is that they are relatively easy to implement since they require
very little additional programming. If the nature of your application is such
that the possible risks inherent in these approaches is not a problem, there is
no need to use more control.

A final method providing a great deal of security involves using locked
APL programs to control access to files (possibly involving passnumbers). For
example, a person that is allowed to look only at the first two fields of a record
might be given a locked function that looks as follows:

v R+READ COMP
[1] R+2tDFREAD 1,COMP,123456789

~

Because access to the file is through locked functions, even sophisticated
users cannot get at the data without using the functions provided. Therefore,
they will be able to perform only those activities for which they are authorized.
If security is a major concern, this is probably the way to go. However, the
extra programming associated with providing this type of control is usually
high because of the necessity to examine every line of code, thinking about
areas where a security violation could occur. If many types of access are
required (such as in the personnel system example), maintaining and updating
the system can become a major task. It is also wise to take the time to
reexamine the file structure since the choice of a different file structure could
make these controls much easier to implement.

2. Data Integrity

As already mentioned, the problem of protecting the integrity of the data
is very closely related to the problem of security already discussed. Indeed, the
possibility of damage is greatly reduced simply by controlling access to the
data.

The only additional controls that might need to be implemented are
controls to ensure that certain key events happen in the proper sequence. This
is easily accomplished by granting all users access to a file that contains a set
of status flags. For example, in the general ledger application, one flag could be
used to hold the value of the last month closed. The program that closes the

268 Data Sharing in Large Application Systems

books for a month would have to increment this flag when the job was
completed. The program for dropping transactions for closed months, then,
would ask for the month through which transactions should be dropped,
compare this against the flag, and either continue (if the month has been
closed) or stop. A simple function demonstrating this technique is shown
below.

v CHECKMONTH MONTH
[lJ ~(MONTH~LASTdMONTHdCLOSED)pO

[2] 0+'*** BOOKS CLOSED ONLY THROUGH MONTH '.fLASTdMONTHdCLOSED 0 ~

v
Such checks and controls are usually fairly easy to implement. It can,

however, take a lot of time in the design process to make certain that all the
necessary checks flow together and that they are properly located in the
system. Thought should also be given to the possible necessity for overriding
these controls when the normal flow of events shouldn't be followed.

3. Simultaneous Access

Allowing users to access the data simultaneously presents even more
possibilities for damaging the data. A "race condition" results when two or
more users try to update the same file at the same time. The final result
depends on the sequence in which the different users are serviced by the APL
system.

As an illustration ofthis condition, consider once again the example ofthe
personnel system database. What happens when one user tries to update an
employee's salary while another user tries to update the same employee's age?
Suppose each user reads the employee's record into his active workspace and
makes his respective change. Then both attempt to replace the record into the
database at the same time. The final result will depend upon the order in
which the file replacements are made. In one case, the record will show a new
age and the old salary, while in the other case, the record will show the new
salary and the old age. Clearly this situation needs to be anticipated.

One easy way to avoid this problem is to prohibit simultaneous use of the
files. This is easily accomplished on systems that provide two methods of file
access: access for exclusive use and access for shared use. If all programs are
written using exclusive access, then race conditions will not occur. Another
way around the problem is available on systems that provide some mechanism
for temporarily holding a file (i.e., preventing other users from using the file
until it is released). The program for updating the record can then be written
as: hold file, read record, change field, replace record, and release file.

It is important to realize that there are problems with both of these
methods if you are also providing your users with the ability to restart their
programs after a line drop. Suppose the first user reads in a personnel record
and changes the salary field, but is dropped before replacing the record in the
database. Before the first user has a chance to sign on again, a second user
signs on and completes an update to the employee's age. Finally, the first user
signs on again, restarts the program, and completes his update. The change to
the employee's age made by the second user is then erased. This problem can
be avoided by a careful examination of the programs to determine where a
restart procedure should continue from the point of suspension, and where it
should "back up" before continuing.

Status flags (discussed earlier in conjunction with preventing file damage)
provide a more positive method of controlling simultaneous access. They also
help to avoid the problems resulting from restarting programs. To implement
status flags, the program updating the file should set an "update in progress"
flag before starting the update, and should reset the flag when the update is

Data Sharing in Large Application Systems 269

completed. Before setting the flag, the program should check to see if the flag
has already been set by another user and, if so, should not allow the update to
proceed.

Fortunately, the only situation where simultaneous access is a major
problem is with simultaneous updating. Two users printing a report at the
same time does not cause a problem. If a report is printed at the same time that
an update is in progress, the report may be incorrect (and it may be desirable to
prevent this from happening), but at least there is no danger of file damage.

Allowing simultaneous access can be very costly in terms of programming
time because of the need to consider all possible user interactions that can
occur. Because many of the situations rarely occur, they are often overlooked.
Designers realize this fact and, therefore, spend a lot of time convincing
themselves that they have indeed considered all possibilities.

4. Audit Trail

The final area of control is that of providing an audit trail. Essentially, an
audit trail indicates who did what to the files, and when. In many applications,
audit trails are used only to help track down problems. In such a situation, a
good audit trail is invaluable. But an audit trail can also provide useful
information about how the system is being used. If some information indicat
ing execution costs is included, the audit trail can help to indicate areas where
improvements can be made to help reduce costs.

Implementing an audit trail is usually not too difficult. In fact, some AP L
file systems provide information on each file record indicating who last
changed the record and when the record was changed. In many applications,
this information is sufficient. This has the wonderful advantage of not
requiring any additional programming. A more detailed audit trail can also be
provided by recording all activity in a separate file. Even this approach is
fairly easy to implement. However, if the volume of activity is large, the audit
trail file can become very expensive to store. In this case, procedures and
programs should be developed for dumping this data when it is no longer
needed.

5. Remote Service

The final part of this section presents an approach for designing and
implementing systems called remote service (see note 2). Remote service differs
from the traditional approach of "self-service", where user programs read and
update the system files directly. In remote service, a master task---eonstantly
running on a separate user number--does all reading and updating of the
main system files. User programs communicate requests to this task through
an auxiliary request file, and then wait for responses through an auxiliary
response file. This approach provides advantages in all the areas of control
discussed in this paper. Some key advantages follow:

• Security. The users only have append access to the request file,
read access to the response file, and no access at all to the main
system files. The master task determines which requests are
allowable and which should not be processed because of a security
problem.

• Data Integrity. Because users do not have direct access to the main
system files, the possibility of damaging the data is greatly
reduced.

• Simultaneous Access. Because all requests for a file update are
appended to a request file and are processed sequentially by the
master task, race conditions cannot occur.

• Audit Trail. The request file can be used as an audit trail.

270 Data Sharing in Large Application Systems

There are clearly additional advantages to this approach in other areas of
system design (e.g., restart procedures and maintenance). But, this approach
may not be suitable for all applications, and it may require that the pro
grammer learn new programming techniques. However, when the approach is
suitable, its advantages can easily compensate for the time spent in learning.

Relationship to Other Design Areas

As already indicated, the controls used to manage data sharing are highly
interrelated to other areas of large application design. This final section
describes a few of the interrelationships with respect to restart procedures and
crash recovery, maintenance and update, and designing a file structure.

Restartability in a system forces the designers into considerations of
simultaneous access. The status flags used to prevent simultaneous updating
of the files are very useful in determining how to recover from a system crash.
For example, if none of the status flags are set, recovery is probably unneces
sary since nothing critical was interrupted. If a flag is set, you've got a starting
place for further determination of any necessary recovery actions. A good
audit trail can also aid in the recovery procedure by indicating what was done
just prior to a crash. Further, an audit trail can eliminate the reentry of
numerous transactions if the files must be backed up to a previous state.

Maintenance of a system is generally made more difficult with each
control implemented. This is simply because each additional control means
more lines of code and more code to maintain. Also, whenever a control
requires the use of locked functions, it becomes necessary to maintain two
copies of the programs (one locked copy available to the users and one
unlocked copy unavailable to the users). When actually performing a program
update, care must be taken to avoid impacting the users. The status flags
discussed in relation to simultaneous access can be used to determine when to
perform program updates.

Designing a good file structure is probably the key to a good overall design.
In fact, every area of control discussed in this paper has an impact upon the file
design. In the case of security, establishing who should have access to what
data helps to determine the content of the files. For example, if some users are
allowed access to summary data, but not to detail data, it may be best to have
two files. One file would contain only detail data, while the other file would
contain only summary data. Those users who are allowed access only to
summary data would then be given access only to the summary file.

In the case of data integrity and simultaneous access, the status flags used
are stored on files and, therefore, must be considered in the file design. With
simultaneous access, thought should be given to structuring the files so as to
reduce the possible occurrences of race conditions. Finally, in the case of audit
trails, if you plan to take advantage of the audit information provided by the
file system you need to make certain that the file is structured so this
information is meaningful. Audit trails are often maintained in separate files.

Conclusions

The design and implementation of a large application system can be a
formidable task. The control of data sharing is only one of the many aspects
that must be considered. This paper has discussed key areas where the control
of data sharing is possible. In each area, methods for implementing the
controls have been indicated and evaluated.

Data Sharing in Large Application Systems 271

Notes
1. L. M. Breed, APL*PLUS File Subsystem Instruction Manual, (STSC, 1971).

2. D. A. Link and M. W. Gardner, "Deferred Execution: An 'ACE' of an
Application", APL79 Conference Proceedings, (ACM, 1979).

Jack Reynolds is currently an applications consultant manager in STSC's
Boston office. Before joining STSC, he was with IBM where he learned AP L
and developed expertise in a variety of database design and data storage and
retrieval techniques. Recently he completed installation of a portfolio manage
ment package for an insurance company, and he is currently directing develop
ment ofan inventory cost accounting system for a national manufacturing firm.

Reynolds holds a B.A. in mathematics from Dartmouth College.

Charles E. Yates

Maintenance Systems

In users' and programmers' attempts to quickly obtain "working" sys
tems, it is not surprising that features of a system that will not be apparent
immediately, but may be strongly influential in the future, are pushed to the
background during program development and design. This is somewhat ironic,
as features that are ignored during development may in fact have a large
impact on the usefulness and extendibility of a system in the near future.

More specifically, the set of files, programs, and variables that constitute
the solution to a problem (applicationkoupled with the set of interrelated
ideas, procedures, and flow that describe the interactions (system)-frequently
fall short of addressing ancillary problems such as:

• Updating and maintaining programs without affecting users.

• Providing for alternate programs for specific users.

• Tracking program modifications.

• Allowing the user to revert to using a previous set of code.

• Providing for prerelease testing of new or modified programs.

In many cases "end-runs" are devised from necessity, such as doing the
maintenance in off-hours, providing special workspaces, or copying programs
from other workspaces for an individual user. This approach may be accepta
ble for a system serving few users, but when additional users are added the
system may deteriorate rapidly.

Users, especially those who are not data processing professionals, prefer to
operate in an environment of stability and control. Furthermore, users, and
system stewards or maintainers, particularly dislike calling or being called at
3:00 A.M. because a program is not working, and find it even more annoying if
the program worked fine the last time.

A maintenance system will help alleviate some of these problems and can
be devised for most any application system. It can coordinate multiple
maintainers, shield users from ongoing maintenance and development activi
ty, and provide an organized basis for library updates and consistency.

When Are Maintenance Systems Required

Definite candidates for maintenance systems are applications that service
more than one or two users, contain more than 100 programs, span more than
three workspaces, or must be updated frequently. As the user community
grows, so does the likelihood that changes will be needed to meet individual

272

Maintenance Systems 273

requirements. The task of implementing those changes becomes more and
more formidable. A maintenance system will help assure orderly change and
growth without disruptions. Increasing numbers of programs-especially
specialized programs-add to the burden of the maintenance programmer.
Frequent updates to those programs, which must be communicated to the
users, force the steward to seek some scheme other than) LOAD,) COP Y, and
)SAVE to accomplish this task. Figure 1 shows a progression from a simple
application with no maintenance system to a more complex application and
maintenance system.

@
--~SINGLE

\\Q:KSPACE

BACKU;--l
WORKS::J

RELEASE
WORKSPACE BACKUP

WORKSPACE

RELEASE
WORKSPACE

~~
FUNCTIONS FUNCTIONS

ON DIRECTORY ~ USER
FILE FILE PROFILE

MOOFICATIOHS

LOOKUP tl ~ LOCAT~ VECTOR

RELEASE
REFERENCE LIST

RELEASE
WORKSPACE

Figure I-Progression of Maintenance Systems

Requisite Conditions

One requisite for instituting a maintenance scheme is adherence to good
programming standards, such as program consistency and modularity of
design. These features should assure that unrelated programs in different
workspaces will not have the same name, and that individual programs can be
replaced by updated ones without impairing routines interfacing with them.

Another requisite is the ability to maintain functions-on-file, which are
pulled into workspaces as needed. This allows the system to be configured by
specific "user profiles" that define the variation of the program to be used for
each user. This idea will be discussed in more detail later.

STSC's Comprehensive Manufacturing Control System (CMCS'") consists of
over 2800 programs, including numerous versions of most. To demonstrate the
features of a large maintenance system, the scheme devised for coordinating
the maintenance, update, and program release activities of CMCS will now be
briefly described.

Structure and Procedures of CMCS's Maintenance System

Figure 2 is a visual representation that will aid discussion of CMCS's
maintenance system. An application is made up of many programs; these
programs may be imagined as lying sequentially next to each other on a shelf.
Each program in an application may be thought of as beginning in version one,

274 Maintenance Systems

which lies at the bottom of each stack. As time progresses and the application
evolves, many programs may change. These changes can reflect simple bug
fixes, new developments, format changes, and so forth.

VERSION
NUMBER

I 6 1- ------- -------__ 6

[5 1-----1 6 1_ - - - - - _5

I 4 1-----1 5
1_______ 4

4 1-----1 3 1-----1 4
1_______ 3

3 1-----1 2 II 4 II 3 1_ - - - - __ 2

1 I~JI 1 I[1 II 2* II 3* 1__ 1

I
PROGRAM 1 2 3 4 5 6NUMBER

Release number is on the front of each box.
* Programs 5 and 6 were not created until releases 2 and 3 respectively.

Figure 2-A "Shelf' of Application Programs

If a maintainer can create a new version of a program (to be placed on top
of the appropriate stack) without impairing the operation of the previous
versions (beneath it in the stack), then he can test enhancements and new
developments and fix bugs before releasing a new version to users. When he
creates the new version, the maintainer specifies whether it is a special version
for a particular user or group, or for general use.

Each unique program name is referenced by a serially assigned number.
The combination of this reference number and the version number denotes a
specific program stored on the file. As existing programs are modified to create
new versions, they retain the same program number, but advance in version
number.

When the maintainer has finished modifying and testing a new version he
makes a release to the system. A release may be thought of as the latest version
of each program in the application system, or, using the shelf analogy, as
placing a marker (denoting the release number) on the top member of each
changed stack. As such, a release constitutes a set of programs that become the
"new standard" as of one point in time. Unless otherwise specified, the default
version each user then begins to use is this new standard.

A unique program-names list and a numeric location vector constitute the
Release Reference List. In the program number position ofthe numeric vector,
the Library index (functions-on-file component number) of the "standard" is
stored (see Figure 3). This reference list is stored in a central place and is keyed
by release number. The creation of this reference list and the running of a
workspace update utility (to bring new copies of utilities, if required, into each
workspace) constitute the "release".

A "user profile" identifies which versions of which programs a user wishes
to use. It is commonly stored in the database. It may specify special versions of
programs, or indicate that the default will suffice. It consists of a release
number if other than the latest release is to be used, or 0 if the latest release is
to be used. To identify overrides, it also contains a mapping of the alternate
program number and that program's Library index. The alternate version

Maintenance Systems 275

POST
AJ,LOCATE
PLAN
SCHEDULE
LOAD
POST
FORECAST
COMMIT
PERFORMANCE
WAD
PROGRl\SS
POST
BUDGET

USER
PROFILE

SELECTED
6 LOCATION

2 --- PGM. OVERRIDE

~ "T:j;f8 --- __ I

9

11

13

LATEST RELEASE
REFERENCE UST
PROGRAM NAME STANDARD

POST 12 LOCATION

ALLOCATE 2

PLAN 3
SCHEDULE 4

LOAD 10

PORECAST 7

COMMIT 8

PERFORMANCE 9

PROGRESS 11

BUDGET 13

FUNCTIONS ON FILE
LOCATIONS

1
2
3
4
5
6
7
8
9

10
11
12
13

Figure 3-Defining the Desired Release

number (to determine the Library index) is usually communicated from the
steward to the user for subsequent lookup and selection of the alternate to be
placed in the user profile. A lookup in a directory file is required to determine
the Library index from the program name and version number. This is
provided by a program that also allows the user to display and modify his
profile. For instance, at any time the user has the option of reverting to a
previous release or version by simply selecting the previous number and
storing it in his profile.

Whenever a program is requested by a user, it is brought into the
workspace from a file so that it can be executed. This is done either by trapping
a VALUE ERROR exception or through the use of small cover functions,
either of which call a lookup utility. This lookup utility uses the Release
Reference List for the release selected in the "user profile", modified by any
variations identified. Each program uses the lookup utility to identify and call
its own required subroutines.

If a user encounters a problem during execution, the maintainer may
correct the problem in the program on file "in place" or create a "new version"
(to be made available in the next release) to make the desired correction. He
may allow the user to access the updated program prior to its official release,
so the routine may be rerun. A program that has destroyed data, however, may
have to be completed manually by the steward rather than being rerun by the
user after the correction is made.

Information on every program is stored in a function directory file, which
is an EMMA'" file (see Extended Management Macros in APL, STSC, 1977). As
the first version of a program is filed, a maintenance routine gathers
information from the file and makes some "next function" assignments. The
function directory keeps track of:

276 Maintenance Systems

• program name

• program number (serially assigned to unique program names)

• version number

• library index (component number in the file)

• who last changed the program

• when the program was last changed

• status (tested or untested)

• workspace map (in which workspaces can this program be re
ferred to)

• encoded program name (for sorting)

• release number (0 if special, or the release number it is scheduled
for)

• whether the program is workspace resident (when a release is
made, is it to be installed in the workspace).

Using a functions-on-file maintenance routine, a programmer can create
new versions of programs from existing ones. This routine looks in the function
directory file for the latest standard version of the program specified, pulls the
program into the workspace for editing, and files it in a new slot. The function
directory maintenance routine assigns the next available version number to
this new program and gathers the information necessary for tracking the
evolution of the program as well as for reference and lookup or search.

An existing version is edited using another maintenance routine. A
specific program name and version number must be specified to use this
routine. When used on released programs, this routine may impact the
production system. Therefore, its use should be confined to prerelease func
tions.

As each new program or version is edited or added to the file, the
maintainer briefly explains what changes were made, and why, and the
directory is updated. Through file holds and reservations, maintenance tasks
can be shared by multiple, simultaneous maintainers.

Once a new program or version has been filed, it is available for prerelease
testing. All the maintainer need do is "select" the appropriate version of the
program and store it in his user profile; henceforth that new version will be
used whenever a reference is made to the program name. This gives the
maintainer the ability to run tests on prerelease programs in their natural
environments.

Features

In addition to location information, the fields of the function directory file
provide the basis for searching. Each field may be used in relational tests or in
combination with retrieval functions for displaying specific information. Some
examples of questions that might be asked are

• Who last changed a program?

• Which programs have been changed since last week?

• Which programs have not been tested?

Using a string-search program (8EARCHFILE) in combination with some
test and retrieval utilities (see Figure 4), the maintainer can perform text
matches against the program file, as in the following example:

(LIB OF THOSEWITH NAME EQ 'UPDATE') SEARCHFILE 'DFREAD'

Maintenance Systems 277

This statement displays the lines of programs on file whose names are
UPDATE and in which the string DFREAD appears.

NAME
NUMBER
VERSION
LIB
WHO
WHEN
WHY
STATUS
WSMAP
RF:LEASE

OF THOSEWITH

P/.4 /,JE
NUMBER
veRSION
LIB
rmo
flHEN
flH Y
STATUS
ilSMAP
HELEASE

EQ
Nt:
LT
!JT data SEARC/iFILE 'text'
i,E
f~'E

iN

Figure 4-Test and Retrieval Utilities

The previous example works in the following manner:

• The expression NAME EQ 'UPDATE' tests the directory
field called NAME for any programs with the name' UPDATE'
(this yields a Boolean result).

• THOSEWITH translates the Boolean result into directory in
dexes.

• LIB OF retrieves the contents of the Library index field for
those indexes.

• The result is fed to SEARCHFILE, which searches each of those
functions for the string DFREAD and displays all lines containing
that string.

Any test statement used provides for selective searching of the program file.
Variables can be used to reference field numbers (e.g., NAME may have the
value 1),

Since the programs are brought in from a file, rather than residing in
workspaces (with the exception of a few utilities), the maintenance task is
easily coordinated, and it is no longer necessary to be "signed on to the right
user number" or to worry about accounting for multiple copies of workspaces.
File access and maintenance utilities and procedures govern the update
process.

Each time a program is updated, a description is stored that explains what
changes were made and why, when they were made, and by whom. This
provides a clean audit trail so that others need not spend time making the
same update or fixing the same problem. This information may also be printed
on listings to show the evolution of a program.

Combining the directory file searching capabilities with the program
search for a particular string allows the maintainer to make faster and more
accurate mass updates to programs. This is often useful; for example, when
replacing all bare file reads with cover functions, or when replacing fixed tie
numbers with consistently named variables.

Conclusion

Updates and enhancements are necessary to keep a system viable, but
they must be implemented without interrupting ongoing computer use. New
features that will benefit all users should be easily extendible, but special
modifications should be feasible without disrupting other users.

278 Maintenance Systems

Special user requests for particular operations should not necessarily
imply change for "all or none". The ability to grant such requests, with little or
no modification to documentation and no undesirable impact on other users,
adds to the user's sense of individuality and to his confidence in the system. It
also makes life easier for the system steward.

The use of functions-on-file and a maintenance system add a great deal of
flexibility and utility to most large systems. These features allow maintainers
to work normal schedules, make changes without affecting users, and devote
attention to users' individual needs. The maintainer can easily leave a clean
trail for others to follow. The user feels secure knowing he can "fall back" on
programs that "worked the last time", as well as move ahead in an orderly
manner.

Chuck Yates joined STSC in 1973 and is currently manager of application
development for STSC's Comprehensive Manufacturing Control System
(CMCS"'). In this capacity, he is responsible for CMCS maintenance and
development and for customer installations and support.

Yates has more than eight years of experience as an APL programmer,
designing and implementing custom applications for scheduling, operations
planning, and information systems. In 1977 he began specializing in manufac
turing systems and has since been instrumental in developing many of the
CMCS features. He has also taught AP L courses for STSC personnel and
customers.

Ralph L. Fox, Jr.

Design Considerations of a
Financial Planning System

STSC's APL*PLUS Financial Planning System (FPS) is a comprehensive
software product for financial modeling, planning, reporting, and analysis.
This paper will examine some of the design decisions and trade-offs that
occurred during the development of FPS. The more comprehensive a software
package, the more numerous, diverse, and occasionally conflicting the criteria
are in both initial and subsequent stages of development. Therefore, a close
look at the design decisions in implementing FPS can be a valuable aid for
other software developers. First, a brief description of FPS is in order.

FPS: An Overview

STSC's Financial Planning System consists of two interacting parts: a
common library of FPS workspaces and a user-created database. The database
contains the types of information described below.

• Input data:
financial time series

ratios and parameters

names and other character text

application-specific data structures.

• Processing definitions:

models

merges and consolidations

sensitivity analysis sessions

value-seeking and optimization sessions

risk analysis sessions.

• Output results:

financial time series

summary measures of performance.

• Display definitions:

report definitions

tabulation definitions.

279

280 Design Considerations of a Financial Planning System

The FPS workspaces contain:

• Maintenance programs to create, modify, summarize, and dispose
of databases.

• Conversational and nonconversational programs to enter input
data.

• Conversational programs to enter processing and display defini
tions.

• Nonconversational data management programs that make up the
modeling language.

• An extensive library of specialized financial, forecasting, and
statistical routines to supplement the modeling language.

• A flexible report generator.
• Programs to plot and analyze model results.

• Miscellaneous programs to provide system documentation, orien
tation, and assistance.

The initial installation and development of a software product such as
FPS might typically follow these steps (though the user's needs might be
satisfied at some intermediate point):

Installation of the initial system: A demonstration system is installed with
the standard FPS conversational modules for system creation, data input,
model calculation, and report generation. Simplifying assumptions are
made to get a general idea of the system.

Enhancements and customization: The revelations of the initial system
lead to a formulation of more detailed relationships and more complicated
calculations, and the system begins to be modified. For example, the
report production process might be customized by including application
specific prompting or by modifying some of the standard formats.

Familiarity: The routine operations of the system are turned over to a less
technical person for whom custom data input and checking programs are
written.

Growth: Use of the system spreads to other departments, so a custom
utility for system generation and maintenance is provided.

Integration: The application stabilizes and is "systematized"; that is, the
customized pieces are sewn together to produce the ultimate system
written in the user's terms and reflecting his environment.
FPS was designed to be particularly easy to implement and use with the

above scenario in mind. Given the ease of installation of FPS, the swiftness
with which one application proceeds to total systematization is frequently
limited only by the speed with which the user and his organization become
accustomed to the system and its capabilities.

Design Considerations

The primary requirements of the FPS design were (l) it had to have an
extensive "financial modeling language" that would compete aggressively in
the financial software marketplace, and (2) it had to provide for a variety of
financial analyses, but it had to be "easy to use" in order to appeal to naive as
well as sophisticated users. To satisfy these requirements, the following
characteristics were set as goals throughout the development of FPS:

• comprehensive technical capabilities
• ease of use
• modularity
• operating alternatives

Design Considerations of a Financial Planning System 281

• execution efficiencies

• flexibility/adaptability.

As might be expected, the interaction of these goals necessarily resulted in
compromises. Moreover, there were additional considerations because FPS
was to be offered in a time sharing environment. The following discussion will
share some insights about how FPS evolved, taking into consideration these
goals.

Comprehensive Technical Capabilities

The first builders of FPS recognized that the most important task facing a
financial analyst is the construction and application of meaningful and
accurate financial models. Therefore, they established a bias toward computa
tional prowess in FPS. AP L was the natural choice for the "host" language of
the FPS system because of its inherent powers. Not only were statistical,
forecasting, and analytical routines easily programmed into FPS, but they
were implemented in the style most appropriate for each technique.

By programming FPS in APL, sophisticated routines for sensitivity
analysis, value seeking, optimization modeling, risk analysis, simultaneous
equations solution, and consolidations were quickly made available to users in
a library of stand-alone routines, or as capabilities that could be switched on
and off as needed. Furthermore, the power of APL was always available to any
person, from end user to system developer, to use at any point in the system.

Ease of Use

Most financial modeling packages claim to be "easy to use", but realistic
financial models must simulate extremely complex relationships. A real
danger is that "ease-of-use" demands might impose simplistic rigidities upon
the models, making it difficult to construct an accurate and valid model
acceptable to the end user.

Using the sophistication of APL, valid, comprehensive modeling systems
can be designed and enhanced easily, thereby avoiding the pitfalls of imple
menting a limited structure and limited vocabulary with a "messy", general
purpose language. Yet, with only very basic knowledge, a relatively naive user
can learn and apply independent sections of FPS sequentially, mastering and
fine-tuning the most basic and crucial parts first, while allowing the standard
FPS modules to handle the rest.

Modularity

Espousing modularity in software applications is nothing revolutionary,
but the course of FPS development has convinced us that modularity is
intimately tied to a system's ease of use. Nevertheless, customers have
suggested that the FPS modules be systematized with a program which, at the
end of one task, would prompt the user for the next task to be performed. To do
this would detract from many of the benefits derived from modularity. In fact,
we have found, through experience, that modifications to the individual
modules of FPS systems are best made before the modules are tied into the
user's application.

Operating Alternatives

The initial implementation of FPS had a mixture of operating modes.
There were conversational sections (prompted input) and nonconversational
sections (programs requiring arguments and producing explicit results). For
example, model creation was originally implemented as a nonconversational

282 Design Considerations of a Financial Planning System

activity because it was usually unique to each user, almost always underwent
change, and would have taken extensive resources to implement in a conversa
tional fashion. Report production, on the other hand, was implemented as a
conversational process because it was simpler to implement and the initial
developers were able to conceive how it could satisfy most users' needs,
provided it was capable of modification.

However, as FPS evolved, noneonversational alternatives were offered for
original conversational segments and vice versa. Now a user can often choose
between being prompted for model logic or programming his own models. He
can define a report "noisily" or "quietly", and he has a choice of several
options when invoking the report generator. These modifications were made
possible by several years of familiarity with customers' needs, as well as
several years of APL*PLUS System development (e.g., STSC's proprietary
Exception Handling Facility, which allows AP L programs to react automati
cally to execution errors). It became possible to offer some standard modeling
capabilities as the difficult implementation tasks became less intractable.
Furthermore, users seemed to develop a taste for much more sophisticated
features than were originally envisioned, so some segments, such as the report
generator, have been undergoing continual enhancement.

An application is initially implemented based on expected later modes of
operation. However, should circumstances or needs change, the application
should be designed to accommodate modifications with relative ease. That is, a
conversational piece should be constructed with cleanly specified interfaces
and special-purpose data management programs. Conversely, a nonconversa
tional piece should include a consistent set of single-purpose programs upon
which a flexible front end can be based.

Execution Efficiencies

Execution efficiencies were built into FPS in numerous ways. For exam
ple, offering alternate modes of operation, such as conversational or noncon
versational, helped improve performance and contributed to ease-of-use.
Programs reacting to state settings before performing specific tasks were
naturally more efficient than general-purpose routines that had to handle all
cases. Other efficiencies in FPS were achieved using the following tools and
techniques:

• The power of APL for parallel processing of entire data arrays.
Numerous "naturally looping" algorithms are replaced by sophis
ticated nonlooping AP L expressions.

• Meticulous data-blocking techniques within the modeling lan
guage.

• Switchable error checking, so that once a model has been
debugged, it can execute without validity checks.

• Alternate algorithms and methodologies (looping versus nonloop
ing, for example) selected in reaction to the shape of the problem.

• An alternate report generator that sacrifices some standard frills
to do bulk formatting.

However, some execution efficiencies may infringe on certain user
oriented features or require more expertise on the part of a user. For example,
a system that does not check for errors is more efficient than one that does. But
the user must either be more familiar with the system or willing to risk
changing the model or entering incorrect data without being monitored by the
system. Or he might have to refer more often to documentation to learn
program syntax and arguments, rather than depending on prompts or "help"
messages.

Design Considerations of a Financial Planning System

Flexibility/ Adaptability

283

As comprehensive as a financial modeling system may be, it must allow
for customization, when necessary, to meet specific user needs. Numerous
"hooks" are interspersed throughout FPS for this purpose. They are switches,
variables, or programs placed at points in the system where a user might want
access to the internal workings. Ample documentation is crucial at these
points, so a user knows the possibilities and can achieve the desired results. An
example of a hook is found in the FPS report generator, which will pause to
execute programs defined by the user. Such programs might print special text,
temporarily modify formats or decorations, or change the structure of the
report.

These hooks may, but do not necessarily, affect the efficiency of FPS. For
example, a hook may offer the user the option of inserting either an extremely
efficient, special-purpose data retrieval program or a real "grinder".

Time Sharing Considerations

Additional impact on the design of FPS came from the fact that FPS
currently is a time sharing product, residing in a common library on the
APL *P L US System. The problem is not that a particular application might
have multiple users sharing the database and doing simultaneous updates;
those situations are infrequent, and are solved in the underlying structure of
the APL *P L US File Subsystem. The difficult task is to deliver enhancements
and upgrades to users who may save a MODEL, or occasionally an INPUT or
REPORT, workspace in their private libraries.

Though FPS enhancements are designed to be upwardly compatible, it is
important to give the user the option of not receiving a program update that
would overwrite a customized version of the original program. For example, a
French user might replace the FPS utility program in which all "yes" or "no"
responses are made; an update to the system should not automatically destroy
those efforts. Some update-related features of FPS are described below.

• Workspace identification and timestamp are saved in each work
space.

• A program is provided to examine the workspace identification
and determine any differences between program lists for that
workspace and the related common library workspace.

• A program is provided to examine the workspace identification
and timestamp and perform any necessary redefinitions of pro
grams from an FPS maintenance file.

• A program-on-file system is provided for the larger, enhancement
prone programs, where each call to the program results in its
being defined from an always-current version on an FPS mainte
nance file. (For execution efficiency, the heavily used programs of
the modeling language are workspace resident.)

• A program called START is included in each workspace to
establish all global variables and otherwise initialize the work
space. For workspaces apt to be saved in private libraries, START
is actually on an FPS file where system stewards keep it up-to
date.

• Version tracking is provided in the database structure so that the
underlying file architecture can be enhanced.

284 Design Considerations of a Financial Planning System

• An online documentation system is maintained, which reads
program descriptions from a file and reflects the most current
program improvements.

• Online workspace cross references and program tree displays are
provided.

These update and version-tracking tools do not affect the technical
capabilities of the system and are generally independent of efficiency consider
ations. The benefits that accrue in terms of use, confidence, reliability, and
appeal of the system greatly aid the promotion and acceptance of this time
sharing application.

Ralph Fox, currently manager of STSC's Financial Planning Development
Group, has been with the company for over four years. He is responsible for the
engineering and continuing enhancement of STSC's Financial Planning Sys
tem (FPS). He is also the developer of a maintenance system that permits the
documentation and continual upgrade of the 30 FPS workspaces.

Fox holds an A.B. in mathematics from Boston College, and an M.S. and
M.Phil. also in mathematics from Yale University. Prior to coming to STSC,
Fox was on the mathematics faculty at Fairfield University. He is a member of
the Society for Industrial and Applied Mathematics.

Gary A. Bergquist

QUICKPLAN Design Considerations

This paper reviews the considerations underlying the design and imple
mentation of QUICKPLAN", STSC's Quick Planning and Reporting System,
and looks at certain QUICKPLAN features that are the result of these
considerations.

Why QUICKPLAN?

QUICKPLAN was designed to help business users construct financial
plans and reports-quickly, simply, and cost-effectively. Its specific aim was to
automate financial spreadsheet planning and reporting.

During the last two decades, the sophistication of financial planning and
modeling techniques has increased dramatically. Nevertheless, the backbone
of financial planning remains the "spreadsheet" (the vertically and horizon
tally lined sheets of paper used by accounting managers and financial
analysts), the sharp pencil, and the desk-top calculator. Typically, spreadsheet
planning is not complex. Time frames are clearly specified (e.g., the 12 months
of the next fiscal yearr Line items are well defined and understood (e.g., a
subset of the company's chart of accounts). Calculations rarely get more
complex than addition, subtraction, ratios, and percent changes. Typical
examples of spreadsheet planning are budgeting and long-range planning.

Although this kind of planning is not complex, it can be tedious. It is
common in spreadsheet planning for the analyst to go through several
versions, changing numbers and recalculating totals and other summary
figures. The purpose of QUICKPLAN is to make life easier for the analyst by
automatically performing the calculations and retyping the spreadsheet.
Freed from the drudgery, the analyst can concentrate instead on analyzing
end results and asking meaningful "what if" questions.

Figure 1 shows a typical QUICKPLAN report. The report was defined by
the following calculation instructions:

V CALC
[lJ 1000 LEQ LADD 1100 THRU 1500
[2J 2000 LEQ LADD 2100 2200
[3J 3000 LEQ LADD 1000 2000
[4J 3 CEQ CPCT 2 1

V

and the following print instructions:

285

286 QUICKPLAN Design Considerations

V REPORT
[1] FIELDS 30 10 10 10
[2] TITLES 1 23,S
[3] HEADINGS 0 1 2 3
[4] COMMENT 'ASSETS'
[5] COMMENT 'CURRENT ASSETS:'
[6] LINES (1100 THRU 1500),U,1000,D
[7] COMMENT 'FIXED ASSETS:'
[8] LINES 2100 2200 ,U,2000,S,3000,D,B
[9] COMMENT '(NOTE: 1977 FIGURES ARE UNAUDITED.)'

V

GARSDEN CORPORATION
COMPARATIVE BALANCE SHEET

(1976 - 1977)

0/0
1976 1977 INCREASE

ASSETS
CURRENT ASSETS:

1100 CASH 13,449 13,793 9.97
1200 SECURITIES 246 264 7.32
1300 RECEIVABLES 6,829 7,539 10.40
1400 INVENTORY 12,623 13,671 8.30
1500 PREPAID EXPENSE 379 417 10.03

1000 TOTAL CURRENT ASSETS n3,526 125,684 9.17

FIXED ASSETS:
2100 PROPERTY, PLT, < EQMT. .131,525 134,380 9.06
2200 (LESS DEPRECIATION) (13,507) (14,628) 8.30-------- --------
2000 TOTAL FIXED ASSETS 118,018 /19,752 9.62

3000 TOTAL ASSETS .141,544 $45,436 9.37
:::::::::::::::::: :::::;:::::::::::;:::;

(NOTE: 1977 FIGURES ARE UNAUDITED.)

Figure I-Typical QUICKPLAN Report

QUICKPLAN was not intended to provide sophisticated financial model
ing capabilities. Such capabilities-automated sensitivity analysis, value seek
ing, solution of simultaneous equations, and Monte Carlo risk analysis-are
available through financial modeling systems such as STSC's Financial
Planning System (FPS).

What QUICKPLAN was designed to provide are the basic modeling
capabilities required in typical spreadsheet applications. QUICKPLAN appli
cations have the flexibility to grow in terms of time periods, line items, report
complexity, and number of reports. The keys to this flexibility are
QUICKPLAN's simplicity and practicality.

Simplicity

QUICKPLAN assumes that its users are not necessarily experienced
computer programmers. The system must enable such users to communicate
easily with the computer; at the same time, they must give it enough
information so that it can generate a spreadsheet plan or a report.

The QUICKPLAN user who must convey his plan specifications to the
computer via a sequence of keystrokes is in a situation not unlike that of the
financial executive who is out of town and must telephone to his secretary the
instructions for a report he needs done within 24 hours. In both cases, the
executive is forced to communicate all the necessary specifications without
waving his hands or illustrating what he means on a piece of paper.

QUICKPLAN Design Considerations 287

CASH
SECURITIES
RECEIVABLES
INVENTORY
PREPAID INTEREST
END

Time pressures force the executive specifying his report format by phone
to be as concise as possible. This conciseness is necessary--even desirable,
considering the value of managerial time-but it means that the secretary
must work with less than complete information. Consequently, the report
produced is likely not to be exactly what the executive wants and often must be
redone, sometimes more than once. This means more effort and, above all,
more time. Only if the executive can identify and communicate the needed
changes clearly and quickly to the secretary and only if the secretary has
nearly the patience and speed of a computer-only then is there a chance that
the report will be done when needed.

QUICKPLAN allows the user to keep the conciseness that saves him so
much time; an important design goal of the system is to allow the user to be as
concise as possible when defining the calculations and report formatting for
his spreadsheet plan. Specification must be simple. In general, highly repeti
tive specifications are defined via simple conversational programs, such as
ENTERLI NES. The following is a sample terminal session illustrating the use
of ENTERLINES:

ENTERLINES
RGS NAME: CBS
ITEMS TO BE ENTERED - EAME, fORMAT, ~CALE: N
SEQUENTIAL? YES
ENTER INCREMENT
0:

100

ENTER LINE NUMBER
0:

1100
1100 NAME:
1200 NAME:
1300 NAME:
1400 NAME:
1500 NAME:
1600 NAME:
MORE? NO
LINE NAMES STORED

Less standard specifications are defined via flexible nonconversational
commands. Some examples are

FORMAT '-$'
SCALE 1000
3 CEQ CPCT 2 1
NUMBERS OFF

What distinguishes QUICKPLAN is that it allows the user this simplicity
and conciseness without exacting a high price in delayed results. When
iterations are necessary, when the report must be run out again and again, the
computer makes the process a great deal easier, faster, and more accurate. The
report can be specified, changed, and run out in several versions-all in less
than 24 hours.

Practicality

To allow the user to be concise, QUICKPLAN must be practical. It must
exercise common sense if the user has specified insufficient or contradictory
information. Like the secretary who receives report specifications by phone, it
must do the best it can with the information it has.

If a particular specification is unknown, QUICKPLAN will make a
reasonable guess. Such guesses are known as default assumptions. For exam
ple, if the title for a report is specified but its horizontal positioning on the page
is not specified, QUICKPLAN's assumption will be that the title should be
centered. The primary advantage of using defaults is that it saves time. In

288 QUICKPLAN Design Considerations

defining a report, the user may swiftly specify the salient features without
paying attention to the unimportant details. All features not specified take on
default interpretations. Once the report is generated, the user can attend to
any annoying details whose default settings may be inappropriate for the
particular report.

The defaults assumed by QUICKPLAN are oriented toward spreadsheet
planning and financial reporting needs. For example, unless specified other
wise:

• Titles will be centered.

• Negative numbers will be formatted in parentheses, for example,
(58 . 00) , rather than with a minus sign, for example, - 5 8 . 00.

• Large numbers will be printed with commas, for example,
56 • 1 8 4 • 100 . 0, rather than without, for example,
56184100.0.

• Line names will be printed with line numbers, for example,
1100 CASH $3,449 $3,793 9.97
1200 SECURITIES 246 264 7.32

When defining a report, the QUICKPLAN user has the choice of accepting
standard default settings, such as the ones above, or of overriding them with
his own special settings. Given this flexibility, the user may accidentally define
a report whose details are logically inconsistent with each other. For example,
the title may be wider than the report width; nonzero numbers may be divided
by zero; formatted numbers (with commas, decimal points, and parentheses)
may not fit in their specified field widths; or columns may be formatted
differently from rows.

How are such discrepancies resolved? If the user has provided specifica
tions which are contradictory, QUICKPLAN will improvise. It will use its
financially oriented common sense to "best guess" the intent of the specifica
tions and will act accordingly. The advantage of the improvisation is, again, to
save time. The user need not worry about remaining consistent. When
encountering an inconsistency, QUICKPLAN will not print out a cryptic
diagnostic message and abruptly terminate, bringing the report to a halt.
Rather, it will proceed to completion, doing the best it can with the specifica
tions it has been supplied. Then, if QUICKPLAN's improvisations are inade
quate, the user can correct his inconsistent specifications.

For example if specified column headings will not fit into specified field
widths, as much of the heading as possible will be printed. In a field width of
five, the heading

0/0
INCREASE

will become

0/0
INCRE

If special row and column formatting is specified, the column formatting will
override the row formatting for numbers encompassed by both.

6,829
12,623

379
Row ----"$23,526

7,539
13,671

417
$25,684

10.40
8.30

10.03
~

t
Column

QUICKPLAN Design Considerations 289

If you try to display titles that have not yet been defined, they will be printed
as all-blank:

TITLES 1 2 999 999 3
ACME CORPORATION

COMPARATIVE BALANCE SHEET

52
o

95

3499
o

246

(1980 - 1981)

If a nonexistent line number is referenced during calculations, the line will be
treated as if it did exist and contained all zeros:

L 1100 9999 1200
3793 9.97

o 0
264 7.32

If division by zero has been specified, zero will be returned as the result:

25 2 60 DIY 5 0 6
5 0 10

If too few numbers are provided as input to a specified line, the last number
provided will be replicated as necessary:

1900 LEQ 25 26
L 1900

25 26 26 26

Conclusion

QUICKPLAN was designed to help the financial analyst do quick plan
ning. To accomplish this objective, the attributes of simplicity and practicality
were built into QUICKPLAN. The simplicity manifests itself in the concise
ness ofthe user-QUICKPLAN interface, which is conversational or nonconver
sational, as appropriate. The practicality manifests itself in the system's
capacity to compensate for inadequate or contradictory specifications by
making default assumptions or by improvising.

The key advantage of QUICKPLAN is its simple and speedy user inter
face. The immense appeal of this feature has, at times, led users to apply
QUICKPLAN to problems that should have been solved with some other tool.
QUICKPLAN was developed for a limited, but very important financial
purpose-spreadsheet planning and reporting. It is in these uses that
QUICKPLAN finds its best and most powerful application, in them that it can
grow and evolve to meet the needs of its users.

Gary Bergquist--eurrently branch manager of STSC's Hartford, Connecticut,
office-has been with the company for over five years. He started as an
applications consultant in Houston, where he helped develop QUICKPLAN,
STSC's Quick Planning and Reporting System. He also worked as a marketing
representative in the Houston office before moving to Hartford.

Bergquist has a B.S. in management from the Massachusetts Institute of
Technology.

Jak Eskinazi

A Data Management Technique
Using a Graph Structure

While playing around with the embryonic concept and design alternatives
for a large hospital financial planning system, we quickly identified a real
need and a wish.

The need was to manage a large amount of data efficiently, both from the
machine's and the implementer's points of view and in terms of flexibility,
utility, and ease of use. If you have ever done serious work on large systems,
you can appreciate our dilemma even at this early stage; the various aspects of
this need always seem to be at odds with one another. Faster execution almost
invariably dictates less flexibility and usually more workspace load.

We expected the final model to be quite large and we wanted to develop an
intelligent mechanism that could determine which sections of the model
needed to be reexecuted if a data element was changed. Typically, when data is
changed in a model, the whole works must be rerun to obtain accurate reports.
Our wish was embodied in my favorite battle cry: "There has got to be a better
way (in this case, to control execution of a model). "

In this paper, I will attempt to share with you some of the avenues that
were available to us and the way in which we solved our dilemma. With
hindsight, things always seem simpler and results appear obvious. I hope that
this paper will provide the hindsight. The object of the paper is to share a real
and working solution to fairly general problems and to provide enough fine
detail so that you can build upon these ideas and produce even more powerful
or elegant solutions.

It is very difficult to describe isolated modules of a large system by
themselves, especially when they complement and interact with one another.
Toward the end of this paper you will find references to a "command
processor" and a "supervisor". These two modules are independently described
in a companion paper entitled "User-to-Application Interface: A Command
Processor Approach", which is also published in this volume. You may wish to
read that paper first to get a picture of the whole system and the way in which
the modules interact through their interfaces.

The Alternatives

When designing a database, the obvious choices available to the APL
programmer are to use something that already exists, to write something from
scratch, or to use the available file system (in our case, STSC's APL *P L US
File Subsystem) in the raw with fixed component locations (e.g., all expenses

290

A Data Management Technique Using a Graph Structure 291

are in component 1023). Each approach has its merits and shortcomings. Our
process of discovery went something like this:

• Fundamentally, our system would be a single user system. This
immediately removed concerns related to simultaneous data ac
cesses. (With the advent of Detached and Deferred Execution,
however, this early and apparently reasonable assumption proved
wrong and we were forced to design interlocking mechanisms to
prevent cross-talk between tasks.)

• In terms of size, our data elements would be fairly stable.
Structural changes could occur, but would be rare.

• Like most financial models, time always seemed to be one of our
data coordinates. This suggested that we could use STSC's Finan
cial Planning System (FPS) in whole or in part. In addition, FPS's
rich library of integrated financial routines could ease the devel
opment of the model logic itself.

• If all of our data could be represented in terms of line items and
fields-such as expenses, revenues, and the like-STSC's EMMA'"
Data Management System could be used. While EMMA does not
provide any financial routines, it has proved an incredibly power
ful tool in the hands of an AP L programmer.

• We needed simulation capabilities that would allow users to make
copies of the model to play "what if' games, without affecting the
base data. EMMA layering techniques would address that need,
nicely and cleanly.

• We expected the model to require large volumes of data as input
as well as intermediate results. We had to plan for a database size
in the range of 200,000 to 2 million bytes. This made the raw file
approach less desirable and the FPS and EMMA solutions more
palatable since they both offer features for managing large
amounts of data.

The fly in the ointment did not show up until we started thinking about
the data elements themselves. Our database would be constructed of model
elements with widely varying shapes. Some arrays had two coordinates, along
the lines of department by adjustment types. Others had three coordinates, as
in departments by expense type by periods. The rank of our data elements also
varied from vectors to three-coordinate arrays. In addition, the length of each
coordinate was usually different (at the present time, we have defined 34
unique coordinate lengths). The complexity of this collection of matrices made
a strictly rectangular solution, such as that provided by EMMA, totally
impractical.

Need I say more? In the spirit of true APL 'ers, we decided to implement
our own flavor of a data management system that would address our
particular needs.

The Data Manager

Our data manager's primary charter is to let the model access the data as
a conceptual array, regardless of its real physical location or makeup. The
access method is very similar to the AP L concepts of indexing and index
assignment. The caller refers to the desired data element in the form of a data
array identifier and the planes, rows, and/or columns that must be fetched and
brought into the workspace. Alternatively, the caller may specify a data array,
coordinates, and data that must be deposited in those locations as if an indexed
assignment were to be made.

292 A Data Management Technique Using a Graph Structure

We opted to identify data elements by unique numeric values and we
adopted the term nodes to refer to them. The reason for the node nomenclature
will become clear when we address our controlling structure.

Fundamentally, our file design is quite straightforward. The top portion of
our data file is reserved for fixed directory locations and scratch-pad working
storage. File components beyond a certain boundary are used for node storage.
The directory into this area consists of two vectors: a main directory contain
ing a list of node numbers, and a location pointer vector indicating the
corresponding true physical locations of the data. Consider the following main
directory and location pointer vectors:

MAINDIR.... •• 828 632 498 816 ...
LOCPNTR.... • • 123 782 109 438 . . .

Node 498 would be found in AP L file component number 109. Even this
scheme is not new and resembles many GET/PUT databases that have been
designed and used very successfully at this level of simplicity. However, we
had to handle an added wrinkle: some of our nodes, especially the three
coordinate nodes, had a design limit of 312,000 bytes. We could not realistically
expect to manipulate arrays even half this size in one chunk, regardless of
workspace size. We needed to break up or slice nodes into consecutive file
components of manageable size and design access utilities that would handle
the boundary problems.

Typically, all models provide for a simulation or "what-if" capability that
allows the user to model the effect of different assumptions (e.g., what would
happen if inflation is 14 percent and sales are 10 percent lower than expected).
Generally, simulations are performed on a copy of the base data in order not to
compromise the contents of the original. Quite often a copy of the whole
database is made for each simulation. Alternatively, using our two directories,
MAINDIR and LOCPNTR, it is possible to make a copy of the variable data
and to operate with a new set of directories pointing to it. While on the surface
this option does not seem to offer any advantages over a duplicate database
design, we will describe how we enhanced this simple idea. But first, let's
formally describe our directories.

The Directories

After a few false starts, we settled on the following formal directory
definitions:

DND

This is the directory of nodes and is the main entry into the other
pointers. Attempts to access data nodes which do not exist here cause
various error conditions that are trapped and reported.

COO

This contains the coordinate definitions. It is of same length as DND
and contains data-node rank and size information in packed form. The
generalized format is 'AAABBBCCC' where

A +--+ length of the first coordinate.

B +--+ length of the second coordinate.

C +--+ length of the third coordinate.

If a coordinate does not apply to the array, its length must be set to O.
Some examples follow:

123000000 +--+ a 123-element vector.
15056000 +--+ a 15-row, 56-column matrix.

5103034 +--+ a 5-plane, 103-row, 34-column array.

A Data Management Technique Using a Graph Structure

SDIR

This is the simulation directory. The entry is a hash of the form
'JTFFFFFNN' where

!... +--+- the coordinate to be sliced, if the need arises.

f +--+ the node data type, defined as:

1 Boolean

2 character

3 integer

4- floating point.

E... +--+ the true data file component number, which contains the node
or the lead component if the node is sliced. For sliced nodes, the "set"
of components making up the node is sequential starting with this
component.

N +--+ the number of components (including the lead component in
the set).

The sliced coordinate can be anyone of the coordinates of the data
array. For instance, a matrix can be sliced along the first coordinate,
in which case a certain number of rows ofthe logical matrix are stored
in a file component (see Figure 1). Alternatively, if a matrix is sliced
along the second coordinate, vertical slices of the matrix (collections
of columns) are stored in individual components (see Figure 2).

The selection of the sliced coordinate is very important and can affect
data access times drastically. If a matrix is sliced along the first
coordinate and most of the accesses manipulate whole rows (read or
write), things are fine since all of a row is always found in a single file
component. However, to access whole columns, all the file com
ponents in the set must be manipulated. The sliced coordinate should
be selected such that cross-grained accesses are minimized.

The node data type is used to determine the size of each data element
and to compute how many rows or columns of an array can be stored
in a single file component in a way consistent with the value of the
blocking factor ELK.

For example, an SD I R entry of 230005304 identifies an integer node
sliced along the second coordinate and occupying the file components
53, 54, 55, and 56.

A file component and set length of 0 are valid, indicating that the
node has been obliterated. Such entries may be found for any node in
the main directories on file. These indicate nodes that are formally
defined but that do not presently exist (i.e., they need to be recom
puted by a certain process).

USE
This Boolean vector is of same length as DND and indicates whether
or not the data identified in the corresponding element of SDIR is
being used by another simulation. This global is generated at the time
that SDIR is extracted, and it is then maintained in the workspace.
Its use will be explained when the simulation mechanism is discussed.

FREE
A Boolean vector of length equal to the number of components in the
file. It indicates which file components are free for reuse. When new
data storage locations are needed, the data manager always attempts
to fill gaps and holes instead of appending new components to the file.
This pointer is used to quickly locate such unused components.

293

COMPONENTS---------"::"1 512
~~1513
_______~1514

Figure I-Matrix Sliced
Along First Coordinate

L1iJ[][]
COMPONENTS 53 54 55 56

Figure 2-Matrix Sliced
Along Second Coordinate

294

SIM

A Data Management Technique Using a Graph Structure

A pointer identifying which simulation is presently active. This
variable identifies the set of directories that should be used at any
given point in time.

ELK

The blocking factor, indicating the maximum file component size in
bytes. The data manager slices nodes such that the size of a file
component will never exceed this value.

This design does impose certain limitations. The major ones are listed
below.

1. The data manager cannot handle files with more than 99999
components. If more than 99999 components exist, a
FI LE INDEX ERROR or SYNTAX ERROR will result.

2. It is assumed that no single node will ever need more than 99
components for storage.

3. Scalars (rank 0) or arrays of rank greater than 3 cannot be
handled.

These limits are high enough, however, that they have not hindered us in any
way.

Figure 3 shows an example of directory entries for two simulations. It
would be useful to go through a few nodes in detail.

__________£IM~kdIIQM_Q__________ __________£IM~kdfIQM_l__________

121W. ____I2QQ ____
~£f. ____£1213. ____ ____iZQQ ____ !J.~f. ____@I3.____

35 005 000 000 1 00190 01 005 000 000 1 1 00190 01
36 007 005 000 1 00216 01 007 005 000 1 1 00216 01

601 061 006 012 0 00393 04 061 006 012 0 3 00191 04
602 061 012 000 1 00153 01 061 012 000 1 3 00153 01
603 061 005 012 1 00137 04 061 005 012 1 3 00137 04
604 032 005 012 0 00167 02 040 005 012 0 3 00217 03
605 032 005 012 0 00000 00 032 005 002 0 3 00169 02
606 005 012 000 1 00184 01 005 012 000 1 3 00184 01
608 051 006 012 0 00408 04 061 006 012 0 3 00149 04

Figure 3-Directory Entries for Two Simulations

Node 36

Node 603

Node 604

is a matrix having 7 rows and 5 columns; the data is in
use by another simulation. If necessary, the data could be
sliced along the first coordinate. The node contains Boole
an data and occupies file component 216 for both simula
tions.

is a three-coordinate array having 61 planes, 5 rows, and
12 columns. The same data is being used by another
simulation. The slice coordinate is 1; data type is integer;
and the data can be found in file components 137, 138,
139, and 140.

has a USE of 0, indicating that each simulation contains
different data. The SDIR entries substantiate that fact.
The data related to simulation 0 is located in components
167 and 168, while the data for simulation 1 is in
components 217,218, and 219. Another interesting thing
about this node is that in simulation 0 it has 32 planes
while in simulation 1 it has 40 (the user may be simulat
ing the addition of eight cost centers).

A Data Management Technique Using a Graph Structure 295

Node 605 has an interesting SD I R entry for simulation O. The node
has 32 planes, 5 rows, and 12 columns; it is not being
shared with simulation 1; it will be sliced along the first
coordinate; and it contains integers. However, it does not
as yet exist (it resides in component 0 and requires no
components for storage). This is an invalid node. Its
contents must, at some point, be created by the model.
Node validity will be discussed in detail in the section
dealing with the graph structure.

Handling Simulations

Another nice side effect ofthe DND, COO, and SDIR pointer scheme is the
neat and highly space-efficient way in which simulations are generated and
maintained. In reality, these directories are matrices having one row per
simulation. The first time a data access takes place, the appropriate rows (as
indicated by SIM) are extracted and deposited in the workspace for use by
subsequent data manager calls.

With our design, generating a new simulation turned out to be tanta
mount to making a duplicate entry in the three directories DND, COO, and
SDIR. Note that we duplicate only the directories, not the data. The new
simulation points to the same physical data locations as the source simulation.

Provided that data is accessed for read-only purposes, this situation is
ideal. However, when data must be written back, we obviously cannot put it in
the original locations since the nodes are being shared or are in use by another
simulation. The USE pointer, which is generated when the directories are
materialized, provides a rapid way of identifying these nodes. On an update
operation involving a shared node, our utilities would have to make a copy of
the data before updating it and change the pointers in SDIR as appropriate.
That is exactly what happens. From that point on, further read references to
that node will result in accessing the new location and all updates can be
performed in place. Thus, our simulations share data as much as possible and
duplicate storage only to the extent that they have truly different nodes.

Obviously, this complicates the logic of the update utilities (it does not
affect read utilities) and costs more when a copy must be made. However, for a
given simulation, a node will be copied only once in its lifetime and then only if
absolutely necessary. In our environment, it turns out that the small extra
CPU overhead is more than offset by the storage costs that would have been
incurred if all the nodes were duplicated when a simulation was created.

The running code or the model proper is indifferent to simulations and the
associated logic. These are handled entirely within the data manager and are
transparent to the model, which simply reads and updates nodes by number.
For all practical purposes, there is total isolation between simulations, a great
boon to the analyst developing the model logic.

In nearly three years of existence, the data manager has never failed us in
any way or breached the simulation wall.

Data Manager Interface Functions

The right argument to the main data manager access functions can be a
specially formed character vector or a numeric scalar. The character vector
argument is a statement that must be well formed according to the following
syntax rules:

1. The leftmost entry is the node to be accessed; it is separated from
the rest of the statement with a colon (:).

296 A Data Management Technique Using a Graph Structure

2. The rest of the statement consists of executable expressions-one
for each coordinate of the data node-that select specific parts of
the array. The expressions produce either indices or Boolean
selection vectors as appropriate. An elided expression has the
same meaning as an elided index in APL. The expressions for each
coordinate are separated by diamonds (0).

3. The executable expressions may not refer to or make use of two
letter variables starting with a delta (i.e., I1A-I1I1). All internal
labels are single-letter, underlined identifiers and are also not
available for use in the executable statements.

4. The caller should not make any assumptions about the order in
which these expressions are executed. For instance, a specification
like' 605: A vB 0 B....COLID ~MIN' is bound to create prob
lems since the first statement depends on the previous execution
of the second statement. Among other things, the order of execu
tion is dependent on the coordinate that is sliced, and it is best to
treat it as if it were erratic and unpredictable.

5. As long as the other rules are followed, embedded assignments are
valid and may be used if so desired (for example, '605:
IND....BI lpB 0').

A numeric scalar right argument refers to the data node as a whole entity
that is to be manipulated in its entirety, even if it has been internally sliced.

Four main access/update functions are supported:

r BGET spec

Boolean get, a direct equivalent to the APL compression operation. The
shape of the result and the conformability rules are the same. Here are a
few examples:

r + BGET '345: BIT' ~ r + BIT/VECTOR345
r + BGET '605: 0 BIT' ~ r + BIT/[2] MATRIX605
r + BGET '605: BIT 0' ~ r + BIT/[l] MATRIX605
r + BGET '8023: BIT 0 0 B' ~ r + BIT/[l] B/[3] ARRAY8023

r IGET spec

Indexed get, equivalent to an APL indexing operation. The shape of the
result adheres to the indexing rules of APL and the same restrictions
apply. Here are some examples with their APL equivalents:

r + IGET '345: IND' ~ r + VECTOR345[IND]
r + IGET '605: ROWS 0 COLS' ~ r + MATRIX605[ROWS;COLS]
r + IGET '8023: 0 ROWS 0' ~ r + ARRAY8023[;ROWS;]

r data BP UT spec

Boolean put, with no direct APL equivalent. It is used to perform
assignments with Boolean index specifications. An example would be

data BPUT '605: ROC' ~ MATRIX605 [R /1 pR; C/1 pC]+data

r data IPUT spec

Indexed put, the equivalent of an APL indexed assignment. A few
examples follow:

data IPUT '345: IND' ~ VECTOR345[IND]+data
data IPUT '605: 0 COLS' ~ MATRIX605[;COLS]+data
data IPUT '8023: P 0 ROC' ~ ARRAY8023[P;R;C]+data

The logic followed by the retrieval functions is fairly simple and can be
understood quite readily. However, the logic followed by the PUT functions is

A Data Management Technique Using a Graph Structure 297

and deserves more careful analysis. Four distinct cases are

Case 2

quite complex
handled:

Case 1

Case 4

Case 3

Read existing data, do an indexed assignment, and re
place the new data into the previous file locations.

Read existing data, do an indexed assignment, but re
place into free slots (Le., make a copy on the way).

The node does not exist. Create an empty node of the
correct rank, size, and data type; index assign new values;
and replace into free slots.

The whole data array is supplied. Slice and replace into
free slots.

The decision as to which algorithm should be used is based on a number of
criteria:

1. Is the node found in DND (i.e., known to the system)?

2. Is the node already in the file (Le., does it contain data)?

3. Is the node shared with another simulation (in use)?

4. Is the whole node to be changed?

These decisions can be arranged in a truth table, as shown in Table 1.

Table 1 - Truth Table

In In
DND File Use Whole Logic

y y y y Compute blocking, allocate new
components, use Case 4.

y Y Y N Allocate new components, use Case 2.

y Y N Y Release slots presently in use,
recompute blocking, allocate
components, use Case 4.

y Y N N Use Case 1.
y N Y Compute blocking, allocate

components, use Case 4.
y N N Use Case :3.
N Value Error.

We also support a few other access functions that give us additional
capabilities. These are

(node.coord) DMCOMP bv

Equivalent to a node compression operation that removes planes,
rows, or columns that are no longer needed. The left argument is a
two-element vector identifying the node to be manipulated and the
compression coordinate. The right argument is a Boolean of the
correct length. Once the operation is performed, the coordinate
pointer COO is also appropriately modified.

123 2 DMCOMP BIT ~ MATRIX123+BIT/[2]MATRIX123

(node. coord) DMEXP bv

Very similar to DMCOMP, except that it performs an expansion
operation. Its logic equivalent is

123 1 DMEXP BIT +~ MATRIX123+BIT\[1]MATRIX123

298 A Data Management Technique Using a Graph Structure

r +- node DMSUM spec
This function is dyadic and mayor may not return an explicit result,
depending on the manner in which it is called. As the name suggests,
this is a data manager node-summing utility. The right argument
may be numeric or character. A numeric right argument is expected
to be a two-element vector. The first element indicates the node that
should be summed and the second element indicates the coordinate
along which the summation should be performed. This operation is
equivalent to APL plus-reduction (+ /). If the right argument is a
character vector, it is assumed to be a data manager executable
statement similar to the ones used with the main access utilities. In
addition to those rules, DMSUM imposes the following restrictions:

• An executable statement may be specified for one and only one
coordinate.

• When the summation is performed, it will be done along the
coordinate that contains the executable statement.

• Only the elements specified in the executable expression will
participate in the summation.

The left argument of DMSUM is expected to be a numeric scalar or an
empty vector. A numeric scalar indicates that the results of the
summation specified by the right argument are to be deposited in this
node. It is the caller's responsibility to ensure compatibility between
the result generated and the definition of the target node. If the left
argument is empty, the results of the summation are returned to the
workspace as the function's explicit result. Some examples follow:

r +" DMSUM 815 2 +-+ r ++/[2J NODE815
r +" DMSUM '802: P 0<>' +-+ r ++/[1J NODE802[P;;J
210 DMSUM 815 1 +-+ NODE218++/[1J NODE815
218 DMSUM '802: 0 R 0' +-+ NODE218++/[2J NODE802[;R;J

I

The data manager and its utilities satisfied our data manipulation needs
very cleanly and quite efficiently. Once implemented, it relieved us from the
detailed chore of handling filed data and file directories. It also appreciably
hastened the development of the model proper.

Our wish to find a smart mechanism to control the execution of the model
logic still remained unsatisfied, however.

• We wanted a mechanism that would allow selective recomputa
tion of model elements to save on processing time. For instance, if
only data affecting Blue Cross were changed, we did not want to
recompute Medicare and Medicaid deductions.

• From an implementer's point of view, our environment is very
volatile in terms of relationship definitions and data content.
Health care is highly regulated. Federal, state, and local regula
tions change frequently. We wanted to segment the model into
smaller, more manageable pieces that would lend themselves to
quick redefinition without having to recode a monolithic model.

• Being in a growth situation, we wanted a structure that would
simplify the addition of new features or the deletion of those that
were no longer in use.

• With the large number of model functions that were expected, we
wanted to create an environment that would catalog our functions
and quickly describe their interrelationships and interfaces in
terms of the input and output data.

We addressed these needs almost by accident. It was a matter of being in
the right frame of mind at the right time.

A Data Management Technique Using a Graph Structure 299

The Tree/Graph Structure

While organizing the data manager nodes, we started writing documenta
tion that would identify a model function (e.g., cost allocation) and we started
listing its input and output nodes (e.g., the initial expenses, allocation
sequence, allocation statistics, and so on produce the final expense and
allocation detail nodes). These lists started looking like a tree where we were
linking nodes in terms of predecessors and successors. A few years prior to this,
I had seen an efficient and elegant solution to a departmental reporting
structure handled as a tree and fully described as two integer vectors. I
borrowed the idea and reworked it to describe the predecessor-successor
relationships among our nodes. The only new concept was the definition and
tracking of the model function that transformed the predecessor (input) nodes
into the successor (output) nodes in a third vector. In other words, we not only
identified the relationships but we also named the paths.

Once we had developed the tree structure, we found that it was not really
a tree in the formal sense, but a graph (an acyclic-directed graph, to be specific).
Still, we found that the terminology of trees seemed to describe what we were
doing better than graph terms. We have, therefore, tended to use terms loosely
and have applied tree and graph terms interchangeably.

Before defining and using our graph representation, we will describe a few
terms and ease into the graph structure itself through an example.

Glossary of Terms

Starting with the word "graph", this mechanism requires a good under
standing of the terms that will be used to describe its various components. A
clear understanding of the terminology involved is a prerequisite to under
standing the concepts and structures that will be described in the rest of this
paper. The terms will not be defined in alphabetical order, but in a sequence
that will make them easier to understand.

Graph or "Tree"

A graph is a formal definition of relationships between the various
elements of a structure. It defines which elements are used to produce
or arrive at another element. Conversely, a graph structure can be
used to identify which elements are prerequisites to creating another
element.

In our environment, each element is either a data object or a
relationship between data objects. Relationships are in fact programs
that manipulate data objects.

A departmental reporting structure is a graph with certain limita
tions imposed on the nature of the relationships. Loosely termed, this
structure can also be called a "tree". The only restrictions we impose
on our structure are that closed loops are not allowed and that
relationships have a certain direction associated with them (i.e.,
inputs create outputs, outputs may not create inputs).

If you are not familiar with such graphs, it would be adequate to think
of our structure as a tree. Because the tree concept is more useful in
understanding relationships between elements, we use terms that
apply to tree structures.

Node

A node is a data element, identical in our case to a data manager node.
The node nomenclature used by the data manager is identical to the
nomenclature and numbering used in the graph.

300

Task

A Data Management Technique Using a Graph Structure

A task is a real APL function that performs operations on the
contents of nodes. In the purest sense, tasks are paths that transform
some nodes (input) into other nodes (output). At times the output may
take the form of a report, but the definition still holds if paper is seen
as a repository for results and data.

Predecessors

When used in conjunction with a task, a predecessor node is one of the
inputs to the task. When used in conjunction with a node, a predeces
sor is one of the nodes required before the said node can be created.
The term immediate predecessor refers to the direct input nodes to a
task. The term may also be applied to a node to identify its "parents".

Starting with a node (or task), if we were to locate its immediate
predecessors and all of their predecessors until we reached the
highest level of nodes input by the user, we would have located aU
predecessors.

Successors

When used in conjunction with a task, a successor node is one of the
outputs to the task. In the context of nodes, a successor is a node that
depends on the contents of the node in question.

The term immediate successor identifies the direct outputs to a task
(or node), without taking the relationships any further.

All successors to a task (or node) are all nodes that depend on its
results directly or indirectly through the chain of relationships.

Creating Task

When a node is the result of operations and transformations per
formed on its predecessors, the function performing the operations is
referred to as the node's creating task. In our environment, a node
may not have more than one unique creating task. However, a node
may have no creating task (top nodes input by the user), and different
nodes may have the same creating task (multiple outputs).

Top Nodes

These nodes are the highest elements in the hierarchy and must be
entered from a terminal. In tree terminology, all nodes that have no
predecessors are top nodes. By definition, top nodes have no creating
task unless the input processor used to manipulate them is considered
to be part of the "tree".

Intermediate Nodes

These nodes have predecessors as well as successors. Intermediate
nodes always have a creating task.

Leaves

Leaves are terminal nodes or the ultimate outputs. These nodes do not
have successors.

Walking

This term is used to indicate that one is following one or more of the
"tree" paths. One can walk up the "tree"; this indicates that one is
starting from a leaf and locating all paths all the way up to top nodes.
In this case, one keeps locating predecessors. Walking down refers to
the reverse operation, where one starts with top nodes and identifies
all successors.

A Data Management Technique Using a Graph Structure

Node Validity

301

The graph is simply a structure; it really is independent of true data
content. However, in our environment, the graph uses the same
nomenclature as the data manager, and the data manager has the
task of tracking the data content of each node. The "tree-walking"
utilities need to know if nodes are present (valid) or if their contents
are outdated or not present (invalid). This is accomplished via the
DND and SDIR vectors that are maintained by the data manager.
This is the only interface between the data manager and the tree-like
graph structure.

A node is valid if, and only if, the 100 residue of its SDIR entry is
nonzero (i.e., it occupies file components). Otherwise the node is said
to be invalid. In Figure 3 all nodes except node 605 for simulations 0
are valid.

Levels

The level of a node is defined as the number of tasks in the longest
path that must be traveled from top nodes to arrive at it. All top nodes
are assigned a level of 1. The level of all other nodes is computed from
this point.

The level of a task is defined as the highest level of its immediate
predecessors (input nodes). Levels are used by the "tree" walkers to
properly sequence the predecessor task(s) that must be run to gener
ate a report or a given node.

Formally, in a tree structure, all predecessors to a node exist exactly
one level up. In our case, predecessors may be any node any number of
levels up. We also allow paths to diverge and rejoin even ifthe length
of each divergent path is different. These are the major differences
between a tree and an acyclic-directed graph such as ours.

Figure 4 shows an example that may clarify some of the terms used.

Nodes: NI, N2, N3, N5, N7, N8, N9, N50,
N56, N57, N60, N6l, N62, N75

Top Nodes: NI, N2, N3, N5, N7, N8, N9
Intermediate Nodes: N50, N56, N57

Leaves (Nodes): N60, N6l, N62, N75
Tasks: TIOO, TIOI, T34, T40, T200, T300

Leaves (Tasks): T2 00, T300
Immediate Preds. to N75: N57, N9
All Predecessors to N75: N57, N9, N5, N7, N8

Immediate Successor to N9: N56, N57, N75
All Successors to N9: N56, N57, N60, N6l, N62, N75

Creating Task for N50: TIOO

Figure 4-An Example of the Graph Structure

302 A Data Management Technique Using a Graph Structure

PRED TASK SUCC

1 100 50
2 100 50
3 100 50
5 101 56
5 101 57
7 101 56
7 101 57
8 101 56
8 101 57
9 101 56
9 101 57

50 34 60
56 34 60
50 34 61
56 34 61
50 34 62
56 34 62

9 40 75
57 40 75
61 200 9999
62 200 9999
75 300 9999

Figure 5-Representation
of the Graph Structure

Definition of the Graph

Our graph is represented by three integer vectors known asPRED, TASK,
and SUCC. These three vectors are sufficient to thoroughly describe the
structure.

The best way to describe the contents of the graph is to build it to
represent the small example given in Figure 4. Let us look at task T101 and its
immediate predecessors and successors. This task has four inputs and two
outputs. Somehow we must be able to show these relationships. The way this is
accomplished in our system is by listing each predecessor-task-successor triplet
in corresponding elements of three vectors. For instance, this task would have
the following entries in our three vectors:

PRED+ 5 7 8 9 5 7 8 9
TASK+ 101 101 101 101 101 101 101 101
SUCC+ 56 56 56 56 57 57 57 57

Note that all unique input-output combinations are included in the represen
tation and that each task requires as many entries as the product of the
number of inputs and the number of outputs. This results in space inefficien
cies, but we preferred to keep these definitions rather than increasing CPU
costs and the complexity of the graph-related utilities.

The graph in the example would be represented as shown in Figure 5.

The relative positions of the triplets in the vectors are totally immaterial,
and the tree is totally defined. For instance, to find the inputs to task 101, the
algorithm would be

INPUTS+ UNIQUE (TASK=101)/PRED

To find the outputs, we simply need:

OUTPUTS+ UNIQUE (TASK=101)/SUCC

Top nodes are defined as not having predecessors. That is, any node
appearing in the PRED list but not appearing in the SUCC list are top nodes:

TOP+ UNIQUE (~PRED€SUCC)/PRED

By using, transforming, and combining these elementary operations, the
graph can be walked in all directions to determine all parental relationships.
Walks performed on this structure are quite reasonable and the required
utilities are very simple to write.

The graph is an integral part of our system. In fact, with the exception of
supervisory and maintenance tasks, it has the responsibility of identifying the
function or functions that are needed to satisfy a user request, locating them,
sequencing them, and ultimately causing their execution.

The graph is nothing more than a conceptual picture and a formal
definition of the interplay between data elements and programs. It just
happens that, if properly defined and used, it can free the user and the
stewards from operational details involved with the running of a multitude of
functions to achieve a desired end result.

At this stage it may be reasonable to ask what such a graph could
contribute to a complex financial model. The answer lies in our fundamental,
immovable, and ever present design specifications:

• The system should be user oriented and easy to use. Part of this
design specification is satisfied by our command processor (see the
paper entitled "User to Application Interface: A Command Proc
essor Approach", which appears elsewhere in this book). Part of it
is expanded in design specification two.

• Given a certain report that must be produced, the system should
automatically execute the appropriate model segments if the

A Data Management Technique Using a Graph Structure 303

environment affecting the report has changed since the last time
it was produced. The graph addresses this design specification.

Fundamentally, our users perform only two logical operations. They enter
or modify data (e.g., revenues) or model parameters (e.g., allocation method
and sequence) and ask for results in the form of reports. Our users should not
be hampered by the model logic. Obviously, through training and documenta
tion, they should be aware of the logic and data interrelationships, but at any
given point in time-if they change some data or assumptions-they should be
able to simply ask for a report without worrying about which tasks should be
reexecuted. The graph fills the gap and provides us with the logic necessary to
generate the required report from the changed data.

Our decision was to let our users change data at will. Changing data would
simply flag successor nodes as being outdated or invalid, but would not force
their recomputation. When you think about it, intermediate and leaf nodes
need not be recomputed until a report requiring the affected intermediate data
is requested.

Interacting with the graph can be summarized in two primitive opera
tions:

1. When the user manipulates input data (top nodes in the tree-like
graph) and subsequently files the changes, the system must
identify all its successor nodes as being invalid (i.e., they must be
recomputed).

2. When the user asks for a report, the system must determine the
correct actions that must be taken to generate the predecessor
nodes that feed data to the report.

The Interface Functions

INVALIDATE node

The argument to IN VALIDATE is a list of nodes that have just been
changed by some user action. Typically, these are top nodes that have
been changed via the input processor. The function checks the nodes
that are supplied and walks down the graph to identify all successor
nodes that are related to the supplied argument. These successor
nodes are located in the data manager directories and they are
thrown away. That is, their SDIR entries are set to point to no
component (trailing zeros) and all space previously occupied by these
intermediate nodes is flagged as FREE. Thus, all nodes that are
successors to the nodes being invalidated are thrown away and will
have to be recomputed the next time the "tree" is walked up. Note
that INVALIDATE does not affect the nodes given as arguments in
any way, only their successors.

TASKWALK tasks

This function expects as its right argument a set of report (leaf) tasks,
such as T200 and T300 in our example. A quick check is made against
the data manager directories to see if the immediate predecessor
nodes are pointing to data file components (i.e., are they valid). The
validity of all predecessors implies that the reports can be immediate
ly generated. In this case, the function terminates and returns an
empty explicit result.

If some of the nodes are not valid according to the data manager, the
"tree" is walked up from the supplied task(s) to identify all predeces
sor nodes. The job stream that must be run to ensure the validity of
these nodes is returned as a character vector. This vector is the

304 A Data Management Technique Using a Graph Structure

argument that should be passed to our supervisor for execution to
validate the nodes.

In the event that a walk is to be performed, the following logic is used:

1. The "tree" is walked up to identify all predecessor nodes that
are prerequisites to the given report(s).

2. The data manager pointers are used to identify which one of
these predecessor nodes may be invalid.

3. For all nodes that are found invalid in step 2, the creating task
is identified and retrieved into a matrix. In effect, this matrix
contains the functions that must be executed to create the
desired nodes.

4. The tasks obtained in step 3 are sequenced in ascending order
according to their level; only unique occurrences of each
function are retained to ensure that each function is called
only once. This list is then massaged into a job stream that is
palatable to the supervisor and returned as the explicit result.
The supervisor program can then reexecute the appropriate
parts of the model, as directed by the result of TASKWALK.

Typically, TASKWALK is used when the user asks for reports through the
PBI NT command. The function that services this command simply validates
the user-supplied report names, transforms them to their task numbers, calls
TASKWALK to generate the prerequisite job stream (if any), catenates the true
report function names to this job stream, and turns the whole thing over to the
supervisor for execution.

Note that this logic does not necessarily reexecute the whole model. Only
those tasks that are absolute prerequisites to the reports of interest are
executed. All other paths are left in their original state of validity or
invalidity.

To give you a feel for the size of our tree, here are a few interesting
statistics:

• Our tree has 1978 entries in each vector.

• All told, we have 268 tasks; 108 of these are report (leaf) tasks. The
others are intermediate tasks in the model logic.

• We presently support 381 unique nodes. Interestingly enough, 205
of these are input nodes.

• The longest path in the tree is 14 levels deep.

• I NVA LIDATE is 11 lines long and occupies 960 bytes.

• TASKWALK is 30 lines long and takes 3016 bytes. However, it
should be noted that our version prompts the user for report codes
and thoroughly validates the entries. Close to 20 lines are devoted
to that necessary chore.

As can be seen from our interpretation and use, tree/graph structures are
not very esoteric concepts. They are easily understood and useful in many
cases.

For some reason, non-AP L'ers and even certain accomplished users
operate under the misconception that AP L does not lend itself to graphs or
trees and that they are too cumbersome and inefficient to use. In a small way, I
hope that I have been able to dispel some of these misconceptions and that you
will at least keep these concepts in your bag of tricks. They may come in handy
and solve a problem when you least expect it.

A Data Management Technique Using a Graph Structure 305

Jak Eskinazi joined STSC in 1974 and is currently a small systems analyst,
involved in planning and marketing small systems software. He previously held
positions with STSC as a marketing representative, applications consultant,
and applications consultant manager. Major projects he has worked on include
the Hospital Financial Management System and the Moebs Remote Order
Entry System.

Eskinazi has a B.A. in chemistry and a Ph.D. in education, both from Syracuse
University.

Paul A. Geller

Writing Maintainable APL Programs

Maintainable programs, by being well structured and easy to read, are
easy to repair and modify-so what? Indeed, why bother to write maintainable
programs? After all, we set out to write programs which correctly solve
problems. Because computer programmers are notorious optimists, we imag
ine that our programs will neither break down nor need modification. And yet,
most professional programmers spend more time maintaining existing pro
grams than writing new ones. We write maintainable programs to conserve
the programmer's time and the program user's time, thereby conserving
money. This paper discusses why and how to write maintainable APL
programs.

Why Write Maintainable APL Programs?

Simply stated, we write maintainable APL programs to save the pro
grammer's time and the user's time. But why is program maintenance such a
drain on the programmer's time?

Programmers make mistakes.

To disguise our mistakes, we call them "bugs", but they are mistakes by
any name. We make mistakes because we don't fully understand the
problem to be solved, or because we are pressed for time, or because we are
careless. In any case, the error must be corrected. And while we dive into
the heart of the program to perform surgery, the user sits in the waiting
room hoping for the patient's speedy recovery.

Users make mistakes.

Not without their share of the blame, users too make mistakes. The
common euphemism for the user's mistake is "specification change" (the
specification is the description of what the program is supposed to do).
Again, there are many reasons why specifications change. The most
common reason is probably that the actual results of the program are not
what the user imagined them to be. And again, surgery is required.

Many computer programs are orphans.

By the time some mistakes are discovered, the parent (programmer) is
nowhere to be found (typically he or she has moved on to another project
or job). So a foster programmer must nurture the ailing program and help
bring the bloom of health back to its cheeks. To do this, the foster
programmer must learn the idiosyncrasies of the child (program), and this
can be a difficult task. Once again, the user waits.

306

Writing Maintainable APL Programs 307

Broken programs are difficult to fix.

Of course this isn't always true. Occasionally, a well-placed kick will fix an
ailing television set, and sometimes it's that easy with computer pro
grams. Happily, televisions usually have the same problems over and over.
The owner learns to fix these problems, and the fix becomes a simple
procedure. Unhappily, computer programs often seem capable of generat
ing an endless variety of problems. And while we seek an endless variety
of solutions, the user waits.

The program user has been waiting too long, and the programmer has
wasted far too much valuable time. The next section is a guide to writing easily
maintainable programs.

How to Write Maintainable APL Programs

Three important factors that contribute to program maintainability are
design, documentation, and style. The three sections that follow outline
practices in each of these areas that will produce more easily maintainable
programs.

1. Invest Time in Design.

The design for a computer program is like the blueprint for a house. The
reason we hire architects to plan houses is not that carpenters (and masons,
plumbers, electricians, etc.) are not skilled craftsmen; we hire architects
because drawing the blueprint is a necessary first step in building a house. The
blueprint ensures that all the parts fit properly. For example, we don't want
the plumbing for the kitchen sink to wind up in the bedroom. The same is true
for computer programs. Even the highly skilled programmer must begin with
a good design. Design before programming.

To produce a good design, start with a brief overview of the problem to be
solved. Work with the user to produce a written statement of the problem in
one or two concise paragraphs. Make sure the user agrees with the problem
statement, and make sure you understand it. Refer to this statement often
during the design process to ensure that you solve the right problem. Write a
concise statement of the problem.

As far as the user is concerned, the most important element of your
solution is its output. Get a clear description (with examples) of the output
needed. If a report is needed, get an actual sample from the user. If no sample
is available (as in the case of a new report), have the user draw one. The sample
should include all necessary details (titles, headings, etc.), and the numbers
should be realistic. Refer to the problem statement to make sure that this
output (which is exactly what your program will produce) meets the user's
needs. Get sample output.

To produce output, your program probably requires input. List all input
items and describe their characteristics. For numbers, determine acceptable
upper and lower limits, whether they are whole or fractional, and so on. For
characters, find out how many characters are allowed for each input item, and
find out if an item must be one of a list of choices. For example, an input item
might be store numbers, and the input might have to be one of a list of existing
store numbers. In a case like this, you must also determine the source of the
list of existing store numbers. List and describe input items.

To complete the picture of what the program will do, find out how the
input items are processed to produce the desired output. That is, find out how
each input item is used to produce the output. Some items may appear in the
output just the way they were given; other items may not appear in the visible
output, but still contribute in the processing. For example, some input items
may be used in calculations, and while the results ofthe calculations appear in

308 Writing Maintainable APL Programs

the output, the original input does not. After going through all of the input
items, make sure you know how all of the output is produced. Define how
inputs are used to produce output.

Now you've collected the problem statement, input items, process descrip
tions, and sample output. It's time to begin drawing the blueprint.

Inputs, calculation results, and sometimes output are stored in variables
or files. These data structures are the working raw materials for the program.
Structure the data to make the processing easy. For example, if a list of names
is to be alphabetized, the names should probably be stored as a character
matrix (one name per row) rather than as a character vector. The proof of this
assertion is found by comparing the processing required for the two structures.
It's relatively easy to reorder the rows of a matrix; it's not easy to reorder
pieces of a vector (like names in a character vector). Consider all the processing
requirements. If there are conflicting requirements (and there always are),
order them by frequency or importance (the problem statement should be a
helpful reference) and optimize your data structure designs for the most
important processes. Design and test the data structures.

By now you're anxious to begin programming. Your fingers long for the
familiar feel of your terminal keyboard, and you want to see tangible results of
your efforts. The user is eager to try the new toy you are creating, and your
manager scowls when he looks in to see that you are at your desk rather than
at your terminal. Resist a little longer.

Before casting your design in the relative concrete of a computer program,
review it with someone else. By now you are so engrossed in the problem that
you may miss the forest for the trees. Gaining another programmer's point of
view is a good way to improve your design. Your design can now reflect the
experience of two programmers instead of one. And you may discover changes
to the design that save programming time and result in a better final program.
Review your design with another programmer.

Finally, you're ready to begin programming. Following the guidelines in
Sections 2 and 3 will help you to write programs that are easy to read, debug,
and modify.

The guidelines in the next two sections are excerpted from Guidelines for
Writing APL Applications (STSC, 1979). They were written by the branch
applications consultant managers at STSC. These people are experienced
programmers who manage professional AP L programmers. The guidelines
were not developed in an academic atmosphere; they do not suggest idealized
or untested practices. Rather, they reflect the collected wisdom of years of
practical experience writing and maintaining AP L programs.

2. Document thoroughly.

In workspaces:

• Every workspace has aDESCRIBE that tells what the workspace
does and points to more detailed information.

• Every workspace has a WSID variable (a character vector con
taining the workspace identification in the same form returned by
OWSID). In case a user saves a private version of the workspace,
this variable identifies its origin.

• Workspaces built around public library workspaces such as
STSC's Financial Planning System (FPS) include a comment in
the autostarted function of the form: A THIS WORKSPACE
IS BUILT AROUND WORKSPACE '702 MODEL'.

• In the autostarted function, document the source of any locked
utility functions that are used (e.g., workspace 244 EMMA or
workspace 901 0 UTP UT).

Writing Maintainable APL Programs

In functions:

• Document the source of locked, stand-alone utility functions (like
functions from workspace 6 DATES or 6 SORT) in the call
ing function.

• Comments must be accurate-they must agree with the code.
When updating code or files, be sure to add, delete, or change
function comments as needed.

• Comment unavoidably obscure statements.

• Function comments include descriptions of arguments and re
sults.

• The first line of every function includes a comment telling what
the function does.

• Document functions before coding them.

• Use function comments to describe what is being done, not how
it's being done; clear code does not require a translation. For
example, use:

n ADD A NEW TRANSACTION

rather than:
n CATENATE A ROW TO THE BOTTOM OF THE MATRIX

• Include your suspicions about problem areas in function com
ments. For example:

n THIS ALGORITHM WILL FAIL IF THERE ARE NO
EMPLOYEES IN A DEPARTMENT

• Use appearance-oriented techniques to help make listings more
readable. For example, isolate the code in the body of a loop by
inserting a function line containing only a comment before and
after the code.

3. Follow practices of good coding style.

In workspaces:

• Use a single function to tie all files so that it can be used in
restarting as well as autostarting.

• Name the function that ties the files TIEFILES.

• Initialize and describe all variables global to the workspace in a
function called GLOBALS.

• Distinguish global variables by underlining.

• Use as few global variables as possible. This means that data is
passed via function arguments and results instead of globals;
function identifiers that don't need to be global are localized.

• OLX contains 'AUTOSTART' or'~ AUTOSTART'.

• Use naming conventions. For example, TFI LENAME names a
variable containing the file tie number-of the file named in
FILENAME.

In functions:

• Don't modify function arguments.

• Assign the result variable only when ready to exit.

• Write restartable function lines.

• Name function results consistently.

• Avoid [!J output unless immediately followed by [!J input.

309

310 Writing Maintainable APL Programs

• "Launder" input, especially before filing it.

• Replace repetitive expressions with calls to a common function.

• Write code in "building blocks" that can be independently tested.

• In general, write for clarity rather than efficiency. An algorithm
that's fast today may not be fast tomorrow, but clearly written
code is a joy forever.

• Limit nested parentheses to three levels.

• Don't embed constants that may change. Put them in global
variables or in a file.

• Use tools like RELABEL or ORDLOC (both from workspace
11 TOOLS), or 901 FCL to clean up code.

• Code only after documenting.

• Don't use embedded assignments.

• Don't reinvent the wheel; use proprietary utility functions.

• Don't use modified versions of public library functions.

• Use meaningful identifier names except for temporary values; use
and reuse single letter identifier names for them.

• Avoid reusing identifier names for new purposes.

• Avoid using confusing identifier names. Avoid similar adjacent
characters (like 0 and 0); avoid long identifier names that differ
only in the last few characters.

• Keep error messages with the error-checking code.

• Write functions that can be listed comfortably on a single page.

Looping and branching:

• Always branch to line labels or zero.

• Keep label names within an application consistent.

• Use L 1, L 2, and so on or ~.. !i., and so on to name line labels.

• Keep the normal flow downward, error handling to the right.

• Branch ahead except for loops and retries.

• Branch in a consistent fashion. (The most common forms are
-+BfA, -+A[B], -+ApB, and -+A.B.)

• Never use the bare (niladic) branch.

• Loop in a consistent fashion. Use a leading, rather than a trailing,
test.

Paul Geller earned a degree in computer-assisted literary analysis from Vassar
College in 1974. In 1976 he joined STSC as a marketing representative, and two
years later assumed his current position as a technical training specialist in
STSC's Marketing Education Department.

As a technical training specialist, Geller is responsible for designing and
implementing educational programs for STSC personnel. One such program,
the Marketing Organization Development (MOD) program, is an innovative and
highly successful two-week course for marketing representatives and applica
tions consultants. Guidelines for Writing APL Applications (STSC, 1979), a by-

Writing Maintainable APL Programs 311

product of the MOD program, was compiled and edited by Geller and contains
extensive checklists and advice for writing AP L applications.

Allen J. Rose

Making APL Palatable

APL has been available on computers since the mid-1960s and by now
most people who are active in computing have at least heard of it. Why isn't
the whole world using it? To answer this question, we have to review APL 's
history.

APL was originally developed by people with a scientific bent, and the
early system facilities reflected this. There were no commercial formatting
features, and data storage was severely limited. But APL did appeal to the
scientific and academic communities as a "quick and dirty" way to get
answers.

In the early days, most APL presentations were oriented toward the
scientific community, and those few people from the world of business
computing who saw it were horrified by its funny-looking symbols (and to a
lesser extent, by the terse and intense presentation of many of the early
promoters of APL). By 1970 both formatting facilities and files were developed
on most APL time sharing services to make the language more tractable for
commercial computing. Unfortunately, by this time APL had already devel
oped a public reputation of "scientific only", so it was difficult to get people
who had been turned off by early viewings to look at it again.

A small but discriminating group of business people did come to tolerate
APL in the 1970s. Typically, this acceptance came when, out of desperation,
they engaged some wild-eyed APLer to solve a critical business problem that
probably would have gone unsolved without APL. Over the years, they
tolerated the funny-looking symbols because APL got them results.

APL can continue to grow modestly by employing small, isolated cells of
APL devotees to deliver results to harried managers who can't get them using
more traditional techniques. But there is a better way for APL to grow and to
benefit management much more fully than through the occasional "mission
impossible".

People who have enough intelligence to use a hand calculator (this
includes most managers) can learn to use APL productively for their own
calculations. Likewise, for larger projects, they can gain enough understand
ing of how and why APL works to improve their statements of requirements to
their staffs. However, most managers don't seem to want to learn APL, either
out of fear, embarrassment, or lack of time. For those of us concerned with the
future of APL, the challenge is to present the topic to a fundamentally
uninterested, but potentially very influential, audience of our peers and
management.

312

Making APL Palatable 313

This paper discloses a technique for presenting APLin a tutorial style
that has won the respect of many business people. While the presentation can
be accomplished in less than an hour, it teaches enough AP L to cope with at
least 50 percent of the typical calculations needed to support business
decisions. Moreover, performing these calculations in APL can result in a
savings ratio of at least four to one over manual or calculator efforts.

Success in this presentation (or any other, for that matter) comes from
keeping the audience's attention. Attention will wane if the presentation is
dull. It will disappear should the audience miss any of the key points on which
subsequent topics are built. Of course, the presentation will also suffer if it
isn't organized to capitalize on the self-reinforcing effect of properly sequenced
exposition.

The risk of a dull presentation can be minimized by presenting APL using
an online terminal. Surprisingly, the quality of the visual image produced on
the terminal isn't critical: it seems that the motion or sound of the terminal is
what matters.

The most important aspects ofthe presentation are a logical progression of
APL features and facilities (lavishly portrayed through easily understood
examples), and a clean cutoff point to terminate the presentation. The
examples don't have to be directly relevant to your audience's computational
needs; indeed, if your examples hit too close to home, your listener may be
distracted by the temptation to internally compare his concept of his problem
with yours. Thus, it's better to select common examples that are likely to be
understood by everyone, regardless of professional interests and backgrounds.

The goals of the presentation are to provide the audience with enough
APL instruction to appreciate the use of array calculations (otherwise, there
would be no advantage over BASIC or similar languages), and to show how
easy it is to develop APL programs. This approximates the material covered in
detail in Chapters 2, 3, 4, 7, and 10 of APL: An Interactive Approach (Wiley,
1976).

Script for the Presentation

Editors' Note: The text that follows is meant to be used as a script by a speaker
actually giving a presentation. Stage directions for the speaker are italicized.

Begin your presentation with the audience positioned so that they can see
the printer or screen of the terminal. Show them the keyboard, or a picture of it
such as that given in Figure 1.

The keyboard we'll be using is very much like a typewriter keyboard,
except for a few unfamiliar (or funny-looking) symbols, most of which we won't
need for today's purposes.

The terminal can solve arithmetic problems much like a simple hand-held
calculator, except that the "smarts" are not in the terminal itself, but rather
in a central computer that is accessed by telephone, Dial the access number
and sign on.

As I was saying, the terminal can be used much like a calculator:

Addition:

5+2
7

Multiplication:
5)(2

10 If the audience has computer experience, comment on the use of x rather
than *,

314

(LOCK

Subtraction:

5-2
3

2-5
3

Division:

5+2
2.5

Making APL Palatable

SPACE

Figure I-An APL Keyboard

Comment on the symbols used for subtraction and negative numbers, ifa
question is raised.

5+7
0.7142857143

Calculations are accurately made to 16 decimal places, although the default
setting of the system is to print no more than 10 significant digits. That's easily
changed. (You can optionally demonstrate)DIGITS here, but remember to set
it back to 10.)

One of the most popular features of modern calculators is their ability to
store one or a few constants that you're likely to use repeatedly in your
calculations. That's usually done in calculators using a key labeled M (for
memory) or STO (for store). Most computer languages have similar features,
but on computers they are much richer-you can usually associate a mnemon
ic name with the data you're storing.

For example, if I needed the value 3.14159 repeatedly in calculations, I
would give it some memorable name, like PI. Here's how you do it:

PI+-3.1~159

The arrow symbol is what makes it happen. The symbol is called store or
assign. Regardless of what you call it, what is important is that when you need
that value again, you can get it simply by mentioning its name:

PI+l0
13.14159

2xPI
6.28318

Suppose you need the value 6.28318 for subsequent steps in your sequence
of calculations. Quite simple-just think up a name for it and assign it:

TWICEPI+-2xPI

Making APL Palatable 315

Now observe the difference in the last two lines I typed. On the last line, I
typed 2 xPI and the computer didn't print an answer. However, on the line
above it, I also typed 2 xPI and the computer printed an answer. What is it
that causes the computer to print an answer on the paper? Obviously, it
depends on whether the arrow is there or not. Stated simply, if you calculate
anything and tell the computer where to store the answer, the computer will
store it and leave the paper unmarked. On the other hand, if you calculate
something but don't tell APL where to put it, it will put the answer on the
paper. And we've just learned how you control output in APL! Output happens
if you don't give the answer a better place to go. It's just that simple.

Compare this (for those of you with prior computing experience) with how
you learned to get output from other computing systems. It was a task of
moderate difficulty to learn how to calculate the answers to your problems.
But where were those answers? They were somewhere in the innards of the
computer. You had to learn another task, equally difficult, but much more
clerical in nature, to figure out how to print the answers. Many people who
struggled through learning to print the answers from computers using systems
other than APL are convinced that computers are tough to "talk to". However,
we've just shown that computer output need not be any more difficult than
producing an answer on a hand-held calculator.

If you forget what you've got stored away, there's a simple command that
lists what is stored, in alphabetic order:

)VARS
PI TWICEPI

VARS stands for "variables", which is the proper name for stored data.

So far, we've discussed addition, subtraction, multiplication, and division,
as well as how to get answers printed out. Surely, if that's all that's available,
we'd be as well off using a hand-held calculator. How do we decide whether to
do calculations on a computer or a calculator?

The deciding factor is not the complexity of the problem. The first time
you solve any problem, you must go through it one step at a time, translating
your thoughts into actions by pressing the keys of either your calculator or
your computer terminal. But, if you have to go through those same steps
repeatedly with different data, then you need more automation in your life.
That means computers. In other words, the thing that decides whether a given
set of calculations should be done on a calculator or a computer is somehow
related to the amount of repetition that is inherent in the work.

Let's see how APL deals with repetition. Here is a trivial example.
Suppose I'm running a store with only three products, and I have two weeks of
sales volumes:

WEEK I
WEEK 2

A
9

3

B
-7-

4

..£.
8
5

We already know how to obtain the total sales by products:

9+3
12

7+1J
11

8+5
13

But it saves time to enter:

9 7 8 + 3 IJ 5
12 11 13

316 Making APL Palatable

and get all three answers at once. Here we see something that can't be done as
easily on hand-held calculators (nor for that matter, on most computing
systems). What did we do? We added the list (or vector, which is the proper
name) consisting of the three numbers 978 to the corresponding list, or vector,
3 4 5. It's obvious that the computer performed pairwise additions. And don't
think that we're stuck with vectors of only three numbers. We could just as
easily have solved a problem involving 30 numbers, or 300, or 3000. The
practical upper limit for how many numbers you can calculate in one vector is
in the range of 10,000 to 20,000, but you can have as many vectors as your
business problems require.

We'll be using this data over and over again, so let's assign them to
variables:

VEEK1+9 7 8
VEEK2+3 ~ 5
VEEK1+VEEK2

12 11 13

If we now wanted to save the total (so we could add to it in future weeks), we
could enter:

TOTAL+VEEK1+VEEK2

Let's add a twist to the problem. Suppose in week 2 we had sold 5 units of
product A, 5 of B, and 5 of C. One way to get that answer is

VEEK1+5 5 5
14 12 13

but having to count the appropriate number of 5's seems like a subhuman task,
and indeed AP L permits either of the following:

VEEK1+5
14 12 13

5+VEEKl
14 12 13

Let's abstract what we've learned so far. If you add two vectors together,
they must have the same number of numbers. The result is a vector:

V+-V+V
If you add a single number to a vector (a single number is called a scalar), the
scalar is repeated enough times to match the vector, and the result is again a
vector:

V+-V+S
V+-S+V

And, of course, if you add two scalars together, as in our very first example
5+2, you get a scalar result:

S+-S+S
This looks very promising for addition, but how about multiplication,

subtraction, and division? For example, suppose the respective volumes sold
for products A, B, and C were 9 7 8 and the unit costs for each were 3 4 5? The
total costs are

9 7 8x3 ~ 5
27 28 40

and the generalization is that any time you multiply two vectors with the same
number of numbers, you get a vector containing the pairwise multiplications:

V+-VxV
Now, let's take a great leap forward and replace the +'s and the x's in the

above rules with the symbol 0, where 0 means that you can use any of +
x +:

Making APL Palatable 317

S+-SoS
Y+-YOS
Y+-YOS
Y+-YOY

For example, if your starting inventory for each of the products A, B, and
C is 20, how much is left after the first week's sales (9 7 8)?

20-rlEEKl
11 13 12

That's an example of scalar minus vector. At this point pause, take a deep
breath, and summarize.

What have we got so far? We have:

1. The ability to enter single data items (scalars) and store them with
mnemonic names.

2. The ability to enter lists (vectors) of data and store them with
mnemonic names.

3. The ability to calculate combinations of that stored data using
addition, multiplication, subtraction, and division.

4. The ability to store the results ofthose calculations for use in some
subsequent step.

5. Alternatively, the ability to not store the results, which will cause
them to print on the paper or screen, where we can see them and
make management decisions on the basis of what we see.

Reflect on these abilities. They make up around 80 percent of the useful
calculations that most business people perform in a lifetime. After all, in our
business lives we perform relatively simple, step-by-step calculations, but we
certainly do them on vast quantities of numbers. So, if part of your life consists
of taking a column of numbers, doing something to it, and making another
column of numbers out of it (I myself have not been able to escape this activity
entirely), then what we've learned so far will eliminate all the drudgery in
those aspects of our business lives. And there are still a few more useful things
I'd like you to know.

Lists of numbers are a popular and convenient way to store business data
because much business information is naturally a series of numbers, such as a
sequence of sales volumes for a product over many time periods, or the sales
volumes of a sequence of products such as our A, B, and C. But suppose the data
involves both time periods and different products? For instance, the two weeks
of sales for the three products that we started with

WEEK I
WEEK 2

A
9
3

8
7
4

.-£..
X
5

may be better thought of as a table with two rows and three columns, rather
than as two distinct vectors. Moreover, suppose the data shown above is the
sales report from our downtown store, while our suburban store has the
following results:

WIIK I
wrTK 2

A
6
7

B
7
()

2
J

We'd probably want to consolidate the data for a corporate report:

318

WEEK I
WEEK 2

-1L -lL -C..
I) 14 I ()
I () 4 X

Making APL Palatable

This is how we put the data from the downtown store into a table:

DOWNTOWN~ 2 3 p 9 7 8 3 ~ 5

The funny looking symbol p (rho) takes the data on its right and makes it into
a table whose rows and columns are given by the data on the left (2 3). This is
evident when we print the result.

DOWNTOWN
978
31+5

Similarly, we enter the data from the other store:

SUBURBAN~ 2 3 p 6 7 2 7 0 3
SUBURBAN

672
703

and the consolidation is done by simply entering:

DOWNTOWN+SUBURBAN
15 11+ 10
10 1+ 8

In other words, just as two vectors of the same size can be added together,
two tables of the same size and shape can be added.

T..-T+T
The next example calculates the percentage of total sales that were made

in the suburban store.

100xSUBURBAN+(DOWNTOWN+SUBURBAN)
1+0 50 20
70 0 37.5

Obviously, not only can tables be added to tables, but tables can be divided
by tables, and tables can be multiplied by scalars. In fact, any of + - x +
can be used to perform calculations on tables. Here are all the generalizations
we've made so far:

S..-soS
y,,-yoy y..-soy Y..-YoS
T..-ToT T"-SoT T..-ToS

The sales tables that we just used had to be entered into the computer by
typing in each data item individually. However, there are certain types of
tables that don't require each data item be entered. Consider this table of
taxes:

TAX TAX RATI,S

TABLE 01 .02 .05

COST I OJ .02 05

2 02 .04 .10

OF 3 .03 .0(, 15

4 .04 .ox .20

ITEM 5 05 10 .25

The fifteen numbers in the body of the table could be calculated by performing
every possible multiplication of the numbers 1 2 3 4 5 with the num
bers . 0 1 . 02 . 05. In APL that is done as follows:

Making APL Palatable 319

1 2 3 ~ 5 o.x .01 .02 .05
0.01 0.02 0.05
0.02 0.04 0.1
0.03 0.06 0.15
0.04 0.08 0.2
0.05 0.1 0.25

The symbols 0 • tell the computer to perform every possible combination ofthe
operation (in our case, x) using the numbers on the left and the numbers on the
right. Calculations like this result in a table with as many rows as there are
numbers on the left, and as many columns as there are numbers on the right.
The calculations aren't restricted to multiplication, either. They can be any
of + - x +, and the generalization is

T+-Vo .ov
There are many professional people who spend much of their working

lives calculating entries in tables. While hardly anyone does that sort of work
manually these days, most computer programming languages still require
several lines of programming (using DO-loops or the equivalent to force the
iteration) to get it done. In APL, however, it's a very direct and straightfor
ward activity using 0 ••

We've seen many useful things that can be done with our old friends + -
x +, but is that all there is to arithmetic? There are several other arithmetic

operations that are very useful in business calculations, but because ofthe way
most of us were taught our arithmetic originally, we don't recognize them as
such. I'm going to introduce two of them now; time doesn't permit covering
them all.

The two operations are called maximum and minimum, and their symbols
are rand L. They work much like addition or multiplication in that they
compute a scalar answer based on combining two scalar numbers, one to the
left and one to the right. Instead of resulting in a sum or a product, however,
they result in the larger of the two numbers (for r) and the smaller of the two
numbers (for L).

2+5
7

2)(5
10

5

2

H5

215

Just like + - x +, rand L can be used in the formulas we've covered
wherever 0 appears. For example, suppose five people entered a bar with a
floor show. The first person consumes $3.00 worth of refreshments, the second
person drinks $10.00 worth, the third person doesn't have anything, the fourth
person orders a $2.50 drink, and the last person has a $3.50 drink. On the way
out, they learned that there was a $3.00 minimum charge for each. How much
did they each pay?

The respective bills are $3.00, $10.00, $3.00, $3.00, and $3.50. That's trivial
to do by hand, but how do you tell a computer to do it?

3r10 3 0 2.5 3.5
10 3 3 3 3.5

The formal business terminology for a situation like this is "minimum order
size", and it is a very common business calculation.

Here is another example. For 1980, your Social Security withholding will
be computed as 6.13 percent of the lesser of your 1980 salary or $25,900. In
AP L, it's expressed as:

.0613 x SALARY L 25900

320 Making APL Palatable

So far we have seen operations that work on pairs of numbers, or that
produce new vectors or tables by pairing up other vectors or tables. A different
class of calculations involves adding up all the numbers in a vector, or
multiplying all the numbers in a vector. For instance, suppose we wanted to
know the total bill of all five barflies in the previous example. First, we store
the vector of individual debts as X:

x+3fl0 3 0 2.5 3.5
X

10 3 3 3 3.5

Mathematicians have a notation for obtaining the sum over X. It looks like
this:

and it has always seemed like a lot of pompous notation for such a simple
concept. APL's notation for the sum over X is both shorter and more graphic:

+/x
22.5

You can think of APL performing the work this way:

10 + 3 + 3 + 3 + 3.5

As you can see, the + is inserted between adjacent numbers in the vector. Of
course, you aren't restricted to additions-any of the members of the family
+ - x + r L can be used. The generalization is

So/y

Other useful examples of this operation, called reduction, are

f / X The largest value in X.

10
L/ X The smallest value in X.

3

7

(f/X)-(L/X) The difference between the largest and

the smallest value, called the range.

When dealing with tables of data, sometimes you need to sum across and
sometimes you need to sum down. Summing across a table uses the same
notation as summing over a vector:

+/DOWNTOWN
24 12

while summing down is signified by placing a bar (-) through the slash (/).

+fDOWNTOWN
12 11 13

The generalizations are
y o/T
y ofT

Now that we know how to obtain sums, let's see how we can calculate
averages. Everyone knows this is done by adding the numbers together and
dividing that sum by the number of numbers that were added. However, it is
not a trivial task to calculate an average using most computing systems. In
fact, the example of calculating the ordinary arithmetic average is often the
first significant example chosen by authors of computer textbooks. In most
computer languages it requires simultaneous considerations of such advanced
concepts as storage allocation, input, output, initialization, and looping. But in
AP L it is simply expressed as (+ / V) +p V. The symbol p used in this context
gives the number of numbers in the following data. For our previous example
of the bar bills:

Making APL Palatable

X
10 3 3 3 3.5

pX
5

(+/x)+px

321

4.5

As brief as the above solution is, it is a bore. to have to type in those
characters repeatedly if you have many sets of numbers to average. And that's
where computer programming comes on the scene. What we want to do is to
have the computer retain (memorize) the rule, or algorithm, for how to
compute an average. Then we can later refer to it by a mnemonic shorthand
whenever we need to find an average, much as we used PI to stand for the
value 3.14159.

We tell AP L that we're starting to enter a program by typing the
character del (V) followed by a template, or pattern, ofthe new program. In our
example, we'll call the program AVG and enter it like this:

v H+-AVC v
[1]

The computer replies with [1 J, indicating that we are in the process of
entering a program, and it's now time to enter the first line of the program.
[1] H+-(+/V)+pv
[2]

The computer replies with [2], waiting for the next line of instruction. But
there isn't anything else to do in this program, so we type V, which completes
program entry:

[2] v
We can now use the new program:

ANS+-AVG x
ANS

4.5

It worked, but how does it do it? When we typed the line ANS+-A VG X, what
was at that time in X (10 3 3 3 3. 5) was transferred to V inside the
program. Then the average of those values was calculated on line [1] and the
result was placed in R. When the program finished, what was in R was
transferred to ANS. Then (on the next line) we displayed ANS. Thus, just as
the operation o. x can be used wherever it is needed in your solution of
problems, the new program A VG can be used wherever and whenever you need
to calculate an average.

Programs can be much more complicated than the little one we just wrote
to calculate an average. However, every APL program is built using exactly
the same principles shown here. When compared to equivalent programs
written in other programming languages, AP L typically requires around one
fourth to one-tenth of the programming effort.

We've just spent about an hour introducing APL. If you are exhausted
from the experience, I'm not surprised, because in that hour we've covered as
many capabilities as it would take six to eight hours to master if we were
talking about any language other than APL.

Epilogue

Readers of this paper may be dismayed by the apparent naivete of the
presentation. However, this presentation has been given hundreds of times,
and it invariably works. For people with no programming experience, it
presents AP L using a hand-held calculator as an analogy-a comparison that
seems to scare no one. For people who are programming experts, the style of
presentation is sufficiently different from most other programming language

322 Making APL Palatable

introductions to deter them from prematurely comparing APL with what they
already know.

Indeed, its not until the last ten minutes that programming per se is
discussed. By that time, the battle is won. All one needs to do is compare the
program A VG with one written in a more familiar language such as FOR
TRAN, COBOL, or BASIC to be convinced.

Allen Rose has been STSC's vice president/technical director and a Member of
the Board of Directors since STSC's inception in 1969. From 1968 to 1969, Rose
served as program administrator for APL in the Data Processing Division of
IBM. From 1965 to 1968, as an IBM research staff member, he taught and
promoted the use of APL within IBM and to its customers. Prior to that he was
a research statistician for Procter and Gamble.

Rose is co-author ofAP L: An Interactive Approach (Wiley, 1976), a widely used
APL textbook. He served as a national lecturer for the Association for
Computing Machinery from 1974 to 1979, and is currently a speaker for the
Data Processing Management Association.

Edward R. Novicky and Arlene E. Ryan

The Use of APL
In Applied Econometric Analysis

APL is ideally suited to perform regression analysis, the principal tool of
econometrics. With the increasing use of econometrics to anticipate the effects
of economic change on businesses and the economy as a whole, the APL
language is quickly becoming the programming ally of corporate, financial,
government, and academic forecasters. In particular, the power of APLin
econometrics lies in its inherent ability to do matrix algebra with ease.

In econometrics, the method of ordinary least squares (OLS) is perhaps the
best known and most widely used technique of regression analysis. Given a set
of observations, such as a time series on a particular variable, the econometri
cian is usually interested in examining how this variable is affected by
movements of other variables, termed independent or explanatory variables.
For example, business analysts might be concerned with how sales are
influenced by the degree of competition and by expenditure outlays on
advertising. The econometrician is furthermore interested in statistically
testing the significance of the explanatory variables. A useful format for
performing these analyses is that provided by matrix algebra.

The following section illustrates the compatibility of APL with matrix
algebra in applying the OLS method. It is followed by a macroeconomic
example that estimates the "marginal propensity to consume" of the U.S.
economy.

The General Mathematical Model

If y is a linear function of the independent variables Xl' Xz, ... , X m , plus the
error term e, then the ith observation of y, denoted Yi' can be written as:

Yi = bl + bzXi2 + ... + bmxim + ei
where the subscript i refers to the ith observation, and bl , bz, ... , bm are the
coefficients of the terms. If all Y observations are stacked into a column vector,
the linear function can be expressed as illustrated in Figure 1, or in more
compact matrix algebra notation as Y = XB + e.

The objective of the ordinary least squares technique is to minimize the
sum ofthe squares ofthe error terms e; that is, to fit a line (or plane, or n-space,
depending on the number of variables) through the observations such that the
summed squares of the differences between the predicted values of y and the
observed values of yare minimal. The maximum likelihood estimate, or least
squares estimate, is found by calculating the value of13 (the vector of estimated
coefficients) that minimizes the sum of the squared error terms (eZ).

~ez = e'e = (y - XB)'(y - XB)

323

324 The Use of APL in Applied Econometric Analysis

1 x 12 x l3

1 x22 x23

1 x32 x33

+

brn

Figure I-The Mathematical Model

Applying the calculus to minimize the summed squared error terms, it can
be shown that the estimated coefficientsB can be computed as follows (see note
1):

B = (X'X)-I(X'y)

The applicability of AP L to solving this problem can now be presented
explicitly. APL 's facility in manipulating matrices is readily demonstrated.
For example, to build a matrix X with n rows and m columns, the APL
statement takes the form:

x +- CN • M) p (X data values in row sequence)

To build a column vector Y of n values, one uses;

Y +- CN • 1) p (Y data values, n of them)

The real power of AP L, however, can be seen in its ability to solve matrix
algebra problems directly. The APL notation that applies to this problem can
be summarized as follows:

• X' (the transpose of matrix X) is written is!X.

• XY (the product of matrices X and Y) is written as X + • x Y.

• X-I (the inverse of matrix X) is written as ffiX.

Thus, we can apply APL to estimate B from the formula:

B = (X'X)-I(X'y)

simply by converting it into AP L:

B +- CffiCCis!X) +.x X)) +.x CCis!X) +.x Y)

The result B is an m-element column vector whose elements are the
estimated coefficients of the independent variables. As terse as this statement
is, AP L can express this least squares estimate in an even shorter form:

B +- YffiX

The Use of APL in Applied Econometric Analysis 325

Example-The Keynesian Consumption Function

The AP L statements for solving the least squares estimate can now be
applied to a macroeconomic problem---estimating the economy's "marginal
propensity to consume".

One of the most common consumption functions in the economic litera
ture is the Keynesian consumption function,

c = bo + bJYd

which states that the level of consumption purchasing c that will occur in an
economy is equal to some minimum level of purchasing bo that will occur even
if there is no disposable income in the economy, plus some proportion b} of
each addition to the economy's level of disposable income yd. The parameter b}
is the marginal propensity to consume, the fraction of each additional amount
of disposable income that will be spent for consumption purposes.

To estimate the parameters bo and b}, we have extracted annual data for
personal consumption and disposable income (in billions of real dollars) for the
years 1960 through 1978. A scatter diagram of consumption versus income is
shown in Figure 2. Intuitively, the objective of the OLS technique is to fit a
regression line through the points to minimize the sum of the squared error
terms, that is, the sum of the squares of the vertical distances between the
regression line and the actual observations. In Figure 2, the vertical distance ei
between the fitted line and the ith observation is the error term corresponding
to that observation.

1000.00f----- --,

C 900.00
0
N ·ins
u
M
P 800.00
T
I c =5.1 + 0.91 yd
0

\N

E 700.00
X
P
F
N
D
I 600.00
T
U
R
F
S

500.00

900.00 1000.00600.00 700.00 800.00

DISPOSABLF INCONF
500.00

400. OO:L- ...:L- ...i.. ~ __''__ .s..___--'

400.00

Figure 2-Relationship between Consumption and Income

326 The Use of APL in Applied Econometric Analysis

In matrix notation, the problem of estimating boand b1 from the historical
data can be expressed as shown in Figure 3. Alternatively, this expression can
be written as c = XB + e.

c X b

452.988 1 487.100

[:~462.234 1 500.725 +
482.863 1 521.825
501.361 1 539.075
528.686 1 577.050
558.102 1 612.575
586.062 1 643.550
603.157 1 669.825
633.410 1 695.150
655.409 1 712.700
668.909 1 741.425
691.936 1 769.275
733.021 1 801. 300
767.674 1 854.525
760.695 1 841.975
774.562 1 859.675
820.564 1 891.875
861.693 1 929.400
900.771 1 972.600

e

Figure 3-An Example of the Mathematical Model

An analyst working at a terminal can solve this problem readily by
entering the appropriate values and then executing the AP L expression for
the OLS estimate:

CONS ~ 453 462 483 501 529 558 586 603 633 655 668 692
CONS ~ CONS, 733 768 761 775 821 862 901
YD ~ 487 501 522 539 577 613 644 670 695 713 741 769
YD ~ YD. 801 855 842 860 892 929 973
X~1.[1.5JYD

The last statement constructed a two-column matrix X where the first
column is all 1 and the second column is the values in YD, as in Figure 3. Now
the estimates of b can be computed directly:

B .. CONS I!l X
B A DISPLAY THE ESTIMATED COEFFICIENTS:

5.08 0.91

The first element of B is the minimum level of purchasing bo, and the
second element is the marginal propensity to consume, estimated to be 0.91 for
the U.S. economy in the given time period.

Conclusion

This simple example shows how the econometrician can develop his own
AP L programs for performing economic analysis. Besides the powerful facility
offered by raw AP L, economic analysts can also use econometric and statistical
packages such as those available on STSC's APL*PLUS System. These
packages include tools for econometric modeling and forecasting. Interactive
programs are provided for building models easily, and the estimation tech
niques include not only ordinary least squares, but also generalized least
squares, two-stage least squares, principal components, and polynomial dis
tributed lags.

The Use of APL in Applied Econometric Analysis 327

Applications on the AP L *P L US System provide tools for the analyst to
create and use his own database via simple storage, retrieval, and update
functions. National economic time series data-such as GNP, prices, employ
ment, and industrial output-are available on the APL*PLUS System from
the Citibank Economic Database. International data is available through the
International Financial Statistics (IFS) Database. User-specific data can be
linked with these and other external data sources to formulate and test
relationships between economic variables, and to construct economic models
for analysis and forecasting.

Notes

1. For complete details, see J. Johnston, Econometric Methods (New York:
McGraw-Hill Book Company, 1972), chapter 5.

Ed Novicky joined STSC in 1978 and is currently manager of economic systems
in the company's Management Technology Division. He has extensive experi
ence in the development and use of microeconomic and macroeconomic models
to analyze economic issues and events. He is currently directing analyses for the
Department of Energy related to assessing the economic impacts of the second
national energy plan, including the analysis of the macroeconomic impacts of
the President's 1979 energy message on domestic crude oil decontrol. He has also
developed and used inter-industry, energy supply and demand, and macroeco
nomic models.

Novicky holds an M.B.A. in economic analysis from Cornell University.

Arlene E. Ryan is an economist with the Economic Systems Group of STSC's
Management Technology Division. She has accumulated five years of experi
ence in energy analysis, specializing in econometric modeling of energy supply
and demand, OPEC pricing and production strategies, and solar market
penetration. Ryan is currently involved in a project for the Office of Conserva
tion and Solar Applications in the Department ofEnergy, analyzing investment
and capital flows in the U.S. economy and their implications for energy
investment.

Ryan received an M.A. degree from Georgetown University, where she special
ized in mathematical economics and econometrics.

Ronald S. Karpf

Management Statistics
With APL

AP L is the most appropriate computer language for carrying out statisti
cal analysis due to three aspects of the language that characterize and
distinguish it from other computer languages. First, APL allows matrices or
arrays as data elements. Next, the APL language contains a powerful set of
(primitive) operators that manipulate arrays of data including not only basic
linear algebraic operations, but also logical operators. Lastly, the interactive
nature of APL is precisely suited to the iterative nature of statistical analysis.
Thus, APL provides an atmosphere that reinforces and facilitates the proper
performance of statistical analysis.

This paper is directed to managers who must solve statistical application
problems. The basic message is that the best tool for solving such problems is
APL. This is because of APL 's interactive nature and the kinds of data objects
on which APL operates~haracteristics that distinguish APL from all other
languages.

The technical superiority of APL for statistical computing is easy to
establish. The language of statistics is matrix algebra. In the APL language,
matrices are basic data elements with a complete set of primitive operators to
manipulate them. It is this capability to perform statistical computing in the
language of statistics that makes APL so appropriate.

But more important than its technical advantages is the environment that
APL provides for performing statistical analyses. The easy access to data and
analysis routines that APL affords invariably leads to a real understanding of
the information provided in a set ofdata. Such insight is the proper objective of
statistical analysis.

The importance of the interactive nature of APL for statistical computing
cannot be overemphasized. It removes the "black box" feeling that is as
sociated with so many statistical packages. Statistical analysis is basically
iterative in nature, and so the tools to undertake analysis must enhance this
type of process. In this sense, APL advances the purposes of analysis, rather
than hindering it as so many other languages do.

In the remainder of this presentation, I will indicate who should be using
APL for statistical analysis, amplify the arguments for using APL and identify
some of the basic AP L resources for statistical analysis.

Who Should Perform Statistical Analyses?

There is an incorrect notion that statistical analyses should be performed
only by statisticians-at least, that the work called statistics should be

328

Management Statistics with APL 329

performed only by someone in that profession. While this is true in some
circumstances, such as basic research or the design of industrial experiments,
it is not so in many of the day-to-day applications encountered by managers.
Statistics touch our everday lives-they are used or calculated by many people
on a daily basis.

Statistics are used and calculated routinely by everyone. For instance, we
all have our own sets of personal probabilities that we somehow calculate,
without even being aware that we do it. From them we decide on courses of
action. Actions are based on subjective personal assessments of the probabili
ties of outcome. Successful outcomes are what we strive for.

Also, many of us have at one time or another tried to estimate gas mileage
or cost per gallon. These are simple problems that most of us can carry out
without thinking of them as statistics. But, if I presented the problem to you in
terms of ratio estimators and homoscedasticity of variances, and told you to
consult your family statistician for a solution, many of you would think I had
gone too far.

What characterizes managerial and statistical applications? Basically,
they are descriptive problems that require the processing of large amounts of
information and the summarizing of that information into a smaller set of
numbers that represent the relevant results. This smaller set of numbers, or
statistics, must be able to impart information that can be easily understood by
a variety of people. Often, important decisions will be made based on these
results. Whereas computers can quickly process large masses of information,
people cannot. They require statistics to summarize information.

Many managerial statistical applications can be adequately solved by
managers-by those who understand the problems and the data and who are
most concerned with solutions. All it requires is a positive attitude (rather
than a fear of mountains of seemingly unrelated numbers), close proximity to
the data, and the application of common sense.

This brings us to APL. The most appropriate tool available for total
involvement with data and problem solving is the interactive APL language.

Reasons for Using APL for Statistical Analysis

In this section, I would like to present some of the reasons for using APL
for statistical analysis. Certainly, if we carefully choose the structure of the
problems presented, any language can appear to be the proper medium in
which to solve the problem. Consequently, I will not argue from a specific
analytical viewpoint. Rather, the argument for APL is that for a rather large
number of applications, it is the proper tool to use. Our presentation stresses
those aspects of APL that facilitate analysis in a natural way.

An analysis can be thought of as comprising three separate steps:

• data preparation

• analysis

• presentation of results.

In each stage, APL has distinct advantages over other languages due to its
interactive nature and the types of data items on which it operates. As such,
these advantages are almost unique to APL.

The preparation of data for analysis is the total process of organizing and
entering data into the computer. This includes data entry, editing, data
verification, the handling of missing data, and the database design. Needless to
say, incorrect implementation of the data will invalidate subsequent analyses,
and poor database design can be an impediment to a smooth analysis.

330 Management Statistics with APL

The data entry facility of AP L is probably the easiest to use of any
programming language. The AP L statement X+O requests data input from the
terminal and stores it into a data vector named X.

The natural organization of the raw information in statistics is a two
dimensional array-observations by variables. This organization is also natu
ral to APL, since AP L allows arrays as elements of the language. Also, AP L
has powerful operators that can be applied to such structures, paralleling
theoretical functions in statistics, and data subset selection is easy using APL
logical and compress operations. If the data is presented in character form, the
symbolic operators of APL are useful.

The analysis of information is basically an iterative process during which
reasonable procedures are applied to data to understand what the data
implies. Analysis is characterized by striving to get to the essence of the
information (for future decision making), the application of algorithmic
procedures to the data, and basing present actions on previous answers.

The most frequently used statistical methodologies use one or more of the
following statistics:

• means
• sums of squares

• ranks.
The strength of APL for statistical programming is derived partly from the
ease with which these statistics can be written in APL. The mean of a vector of
numbers X, for example, is simply represented as:

MEAN + (+/X) + pX

Sums of squares are similarly easy to write. It is from these statistics that
variance estimates, the keystone of statistics, are calculated. For instance, the
variance of a vector X is easily written as:

(+/(X-MEAN)*2) + pX

Analysis of variance statistics can similarly be coded by correctly choosing
X and MEAN.

Nonparametric procedures are coming into increasing use and promi
nence today, and are based on functions of the ranks, which are also easily
written as:

X[!X]

One aspect of APL that, more than any other, makes it appropriate for
statistical analysis is its interactive nature. Basically, APL gives you a large,
incomprehensibly powerful calculator that can be used to perform operations
as simple as adding two numbers, or as complicated as multivariate analytical
procedures. In either case, the user is totally involved. The data is there for you
to immediately examine, as are the results of an analysis. New ideas can be
acted upon at once. Problems can be investigated. Thus, APL actually helps to
create the proper environment in which to perform statistics. No other
language achieves this as successfully as AP L.

The last stage of an analysis is the presentation of results. It is a
communications problem-we must communicate the knowledge gained dur
ing the analysis stage. In this regard, graphing and tabular techniques are
very powerful in summarizing and easily relating the essential facts. Once
again, powerful elements of the AP L language and available software provides
managers with the tools to generate the precise reports they require.

In summary, there are very powerful and compelling reasons for using
APL for statistical application problems. When APL's advantages are com
bined with preprogrammed algorithms for statistical analysis, graphing, and

Management Statistics with APL 331

table generation, we have an arsenal of tools that cannot be matched by any
other language.

APL Resources for Statistical Analysis-How to Get Started

The organization of data is important in analysis. The manner in which
the information is packaged should not get in the way of analyses. For
statistical analysis, we generally conceptualize the dataset as a two-dimen
sional matrix with columns for variables and rows for individual observations.
Many of the available AP L functions for statistical analysis will require that
the input data be organized in this manner.

The first set of workspaces you will want to investigate is in Library 2 on
STSC's APL *P LUS System; the workspaces are collectively referred to as
STATPAK and were written by Professor W. K. Smillie. Working Memoran
dum Number 110, STATPAK: An APL Statistical Package (STSC, 1975), is
available to explain how to use these workspaces.

STATPAK contains AP L functions to perform many of the most frequent-
ly encountered statistical procedures, such as:

• Analysis of variance for simple balanced designs.
• Simple and multiple regression.
• Basic descriptive statistics.
• Histograms and two-way contingency tables.

• Correlation analysis.
• Residual analysis.

An example is provided by the function DSTAT in workspace 2 STP1.
DSTAT calculates basic descriptive statistics for a vector of input data. A
sample of statistics generated by DSTAT follows:

x ~ 65 63 67 64 68 62 70 66 68 67 69 71
DSTAT x

SAMPLE SIZE 12
MAXIMUM 71
MINIMUM 62
RANGE 9
MEAN 66.66666667
VARIANCE 7.696969697
STANDARD DEVIATION 2.774342309
MEAN DEVIATION 2.222222222
MEDIAN 67
MODE 67 68

As simple as it is, DSTAT is an extraordinarily valuable tool in basic
analysis. It summarizes and imparts a lot of information, and is easy to use.
Other functions in the workspace are similarly useful and simple.

A second package of useful statistical software, IBM's AP L Statistical
Library (STATLIB), is available in Library 1+2 on STSC's APL*PLUS VM
System. This package duplicates and expands on the functions available in
STATPAK. Between the two packages, you should find all of the methodologi
cal approaches you will require in application problems.

STATLIB contains functions for:
• Analysis of variance for balanced and unbalanced design.
• Simple and multiple regression.
• Nonlinear regression.
• Basic descriptive statistics.
• Analysis of covariance.
• Contingency table analysis.

332 Management Statistics with APL

• Acceptance sampling planning.

• Correlation analysis.

A nice aspect of the package is that many standard statistical tests are
conveniently packaged as functions with annotated results.

Lastly, the remaining workspaces in Library 2 on STSC's APL*PL{fS
System should be investigated. The functions in these workspaces, and those in
workspace lOP LOT, greatly facilitate the graphic presentation of results.
They provide the capability for scatter plots, bar charts, time series charts, and
so on. These methods of presentation are of prime importance for adequately
communicating information.

The ultimate resource for analysis, though, is not contained in these
workspaces, but rather in the combination of AP L with common sense and
native intelligence. The judicious use of these facilities and of preprogrammed
software will lead to successful applications.

Ron Karpf is currently a statistician with the Insurance Institute for Highway
Safety. Prior to joining IIHS, he worked as a statistician with the Management
Technology Division of STSC, Inc.

Karpf earned his Ph.D. in statistics from the American University. He is an
active member of the Association for Computing Machinery, the American
Statistical Association, and the American Association for the Advancement of
Science.

Christopher T. Stathes

APL and Optimization Modeling

A true optimization process must determine the best possible answer to a
given problem. Optimizing processes work with mathematical models that
represent the real-world situation under study. These models allow for
multiple solutions and the investigation of alternatives without impact on
operations. The models also force critical analysis of the relationships that
govern the situation or process being studied, often providing valuable insight
in itself. Further, through the use of developed techniques, the models can be
optimized.

Mathematical programming is a class of optimization modeling tech
niques that satisfy demanding requirements and that have proved efficient in
determining the optimal solution to complex problems involving large num
bers of possible activities and operating constraints. Mathematical pro
gramming provides the precise information required for evaluating competing
processes, conflicting alternatives, and interacting activities, and is essential
for analyzing economic tradeoffs.

The mathematical programming approach efficiently solves problems in
which:

• A large number of feasible combinations of activities exist.

• It is possible to measure which solutions are better than others.

• There are many concurrent activities, some of which can sub
stitute for others.

• Interactions between activities are multidimensional, and the
activities compete for limited resources.

• Problems cannot be partitioned and solved piece by piece.

• Finding the best solution is more beneficial than finding just any
feasible solution.

• "What if' questions about the optimal solution need to be in
vestigated.

Mathematical programming algorithms determine the best obtainable
solution that achieves a designated objective and satisfies all of the specified
requirements and constraints. For example, the objectives might be to maxi
mize productivity, minimize production costs, or minimize the number of
product changeovers.

333

APL and Optimization Modeling

Information for Better Management

Planning the use of company resources----capital, people, time, equipment,
materials, and facilities-is a complex task. The "right answer" must satisfy
numerous and often conflicting constraints----constraints that are affected by
capital limitations, plant configuration, distribution networks, market
forecasts, product-mix requirements, warehouse capabilities, and company
policies. To deal effectively with these complex business decisions, managers
and planners are turning to the proven optimization technique of mathemati
cal programming.

Usually the tradeoffs among the many possible answers are complex and
multifaceted. Optimization models enable the decision maker to properly
evaluate the countless alternatives and tradeoffs that often confuse and delay
the decision process. Optimization modeling provides management with the
precise information required to make the right business decision.

An effective optimization model must offer decision makers the ability to
obtain answers quickly and in a form that is easily interpreted. STSC's
Management Technology Division (MTD) has developed a user-oriented op
timization modeling concept that has been used in the development and
implementation of interactive systems that meet these requirements. Op
timization models developed by MTD have provided the answers to difficult
user problems including:

• How should available capital be allocated to investment opportu
nities?

• Where should manufacturing and distribution facilities be locat
ed, and how should they be sized?

• Where are the bottlenecks in the production/distribution system,
and what is the payoff associated with removing such constraints?

• How should production be scheduled to minimize inventory costs
while maintaining desired service levels?

• What are the effects of new technological processes on the overall
production system?

• What is the most profitable mix of products?

• What are the economic impacts of governmental regulations
regarding various environments?

• What is the proper allocation of shipments between a company-
controlled truck fleet and common carriers?

• How should company-owned truck fleets be routed and scheduled?

• How can the effects of potential energy shortages be minimized?

• What is the best way to sequence and size manufacturing runs?

• How should an available staff be assigned-by location or task-to
maximize the efficiency and utility of the organization?

• Where and when should new staff be assigned?

The range of problems that can be solved effectively by using optimization
modeling is unusually broad. MTD has applied optimization modeling to help
managers make the right decisions about investment strategies, materials
management, capital budgeting, vehicle routing and scheduling, product mix,
plant expansion, inventory control, cash management, machine loading,
production scheduling, productivity problems, market forecasting, economic
impacts, facility sizing and location, contingency planning, product distribu
tion, energy price effects, network analysis, and resource allocation.

APL and Optimization Modeling 335

Except for the most trivial problems, optimization modeling requires the
use of a computer to perform the optimizing calculations. To be optimized, the
problem must be systematized for representation on the computer, and
analysis must be performed using the results. More specifically, for a success
ful systematization and optimization, certain functions must be completed.
First, a problem definition must be formulated. Second, data types and data
sources must be defined. Next, the interfaces between the external data and
user, and the internal model and system, must be defined.

These steps are followed by specification of the information and results to
be produced by the analysis (often termed the "reports"). Then, program
specifications are written and a choice of programming language is made.
Finally, programming, testing, debugging, implementation (installation and
solution of the actual problem), and analysis of the results are performed.
System components must also be created to handle the tasks of data input,
data storage, model generation, model solution, and reporting of results.

User-Oriented Systems for Decision Makers

Until recently, the power and benefits of optimization modeling were
available only to those managers with expertise in mathematics and data
processing, as well as management. Now MTD has freed the decision maker
from these technical restrictions by developing user-oriented modeling sys
tems.

MTD designs modeling systems that can be used by the business analyst or
manager without reliance on computer programmers or mathematicians. User
interaction with the system is straightforward and requires no programming
experience. This is because MTD constructs model-generator programs that
accept problem-descriptive data in a context familiar to the user. The system
then translates this information automatically into the correct mathematical
representation of the problem. The resulting model-which defines the objec
tives of and restrictions on the problem under investigation-is then optimized
using MPSX/370 (IBM's Mathematical Programming System Extended). Once
the optimal solution is found, the modeling system uses a report writer built by
MTD to translate the model's mathematical representation into a series of
management-oriented reports using the format and terminology specified by
the user.

MTD's modeling systems are effective management decision tools because
many user-oriented capabilities have been incorporated into them:

• Communication with the modeling system is in a format and
context familiar and comfortable to the user.

• The model is easily modified by the user through data changes. No
reprogramming is required.

• The modeling system is data driven so that a whole class of models
can be generated and solved without reformulation. This means
that the user can specify additional variables (products, plants,
warehouses, processes, vehicles, and investments) or revise con
straints (limitations, capacities, requirements, demands, and poli
cies) by changing only the data.

• The user need not be concerned with the mathematical considera
tions underlying the model structure, nor with the algorithms and
computer techniques required to optimize his model.

• The modeling system presents the solution in terminology and
context familiar to the user and appropriate for the kind of
management decisions he wishes to make.

336 APL and Optimization Modeling

• The modeling system provides the capability to answer a wide
range of "what if" questions without reformulation or repro
gramming of the modeling system.

Analyzing Sensitivity to Changing Conditions

The use of an optimization modeling system typically involves entering
problem-specific data, computing the optimal solution, determining the op
timal solution's sensitivity to change (by systematically computing alternative
solutions based on changes to key data), and preparing management reports.
The most powerful, and usually the most difficult, step in this process is
analyzing the problem's sensitivity to change. In essence, the user determines
how the optimal solution changes when specific assumptions or conditions
change.

MTD-implemented modeling systems offer the ability to answer these
important "what if" questions quickly and precisely. Frequently asked sensi
tivity questions include:

• What if product demand changes from that forecasted; how should
production get back on course?

• What if a plant's production capacity is increased; what are the
expected changes in product profitability?

• What if a new warehouse is added or an existing one expanded;
how are distribution costs affected?

• What if the cost of capital changes or the inflation rate changes;
how does the investment plan have to be changed?

• What if the price of certain raw materials increases dramatically;
what are the best substitutes at each plant?

• What if a production or distribution facility is shut down; how
should work be distributed?

• What if wage scales change; how can productivity be maintained?

• What if marketing runs a promotion for a product line; what costs
will manufacturing incur in order to satisfy increased demand?

• What if a division is sold or a new subsidiary is bought; how will
the rest of the operation be affected?

• What if energy prices continue to rise significantly; what are the
benefits of new technological processes?

• What if service levels are revised; what will be the impact on
costs?

• What if environmental regulations are relaxed or tightened; what
will be the impact on productivity?

• What if competitors change product prices or marketing strate
gies; what is the best response?

It is not unusual for the user of a modeling system to make many
sensitivity runs to gain insight on the true nature of the problem being solved.
The already powerful sensitivity analysis capabilities available through the
use of mathematical programming techniques have been enhanced signifi
cantly in the optimization modeling system implemented by MTD. Sophisticat
ed, user-oriented features allow the decision maker to perform sensitivity
analysis efficiently. In a typical MTD modeling system, sensitivity solutions
can be determined for less than ten percent of the cost of obtaining the optimal
solution. Such efficiency allows the user to rigorously test a proposed decision
before its implementation.

APL and Optimization Modeling 337

When developing an optimization modeling system, a critical choice arises
when the programming language for system implementation is selected. A
well-suited language will facilitate system development and operation. All of
the major programming languages have been used with varying degrees of
success, and many proto-languages have been developed specifically for
modeling and optimization. The key function of the language is to support logic
that will serve as a bridge between data input and the representation of the
model in a solvable form.

Criteria have been established for the selection of a programming lan
guage. The language should be flexible, modifiable, maintainable, efficient,
and easy to use. The language should also have workable interfaces-as
needed-with other file types, packages, and languages. Additionally, the
language should provide for cost-effective development (productivity, imple
mentation speed, and debugging time), and should allow for unambiguous
modeling that accurately reflects both the model formulation and the data of
the situation being studied.

APL, as a language and as an environment, answers the question of which
language to select. Why APL? There are many reasons:

• Interactive data input serves to help the user create and modify
the data for quick and efficient use. APL supports both vector- and
matrix-oriented data structures which closely corresponds to the
way most data is tabulated or thought of in the "real world" (i.e.,
groupings of like things).

• Data storage is dealt with through the component concept. Data
files are manipulated as workspaces, which allows for efficient
movement of vector and matrix files of data. APL, when properly
used, gives the ability to dynamically vary the amount of data
stored-to add, replace, and delete data elements, vectors, matri
ces, and files using file functions and other AP L *P L US System
features.

• During model generations, APL gives modeling systems tremen
dous power to do matrix-type operations. These tend to lie at the
heart of most data manipulations in a modeling system. APL has
the ability to handle data and name matrices concurrently and to
do multiple-indexed referencing. APL also has the power to index
submatrices, reshape vectors and matrices, and perform other
operations that lead to the desired structure of the resultant
matrix. Encoding and decoding operations are well handled in
APL; conversion of literal information to the equivalent numeric
values is straightforward. APL operators provide a powerful bit
manipulation capability; therefore the breadth of standard sub
matrix forms can be automatically constructed from short state
ments or functions.

• For generating model solutions, the AP L notation is itself concise
and powerful. This leads to rapid and efficient implementation of
algorithms and heuristics when the optimizer is to be embedded
within the system.

• Linkage to other languages and packages is made efficient
through the use of shared variables to produce CMS files (under
VM), or to retrieve files produced by other languages and pack
ages. All these routines, programs, or packages can be called from
APL. This means that all environmental changes are transparent
to users of the modeling systems.

338 APL and Optimization Modeling

• Report writing is enhanced by the use of APL tools like STSC's
DFMT report formatter. These tools facilitate the creation of
formatted management reports.

Conclusion

In summary, an effective optimization modeling system, coupled with a
language such as APL that facilitates system development and operation,
enables decision makers to enjoy the benefits of this comprehensive manage
ment tool.

Chris Stathes joined STSC in 1978 and is currently manager of optimization
systems in the company's Management Technology Division. Through over
eight years' experience in technical consulting, he has acquired expertise in
numerous operations research and modeling applications, as well as in the
areas of economic analysis, optimization systems, database design, and data
storage and retrieval techniques. Currently, Stathes is developing operations
research applications, most notably for mathematical modeling systems.

Stathes has degrees from Cornell University and the Wharton School of
Finance and Commerce.

Scott N. McAuley and James R. Nelson

The Professional Programmer's
Tool Kit

What powers does the expert programmer possess that allow him to build
working systems in such a short time? Intuition? Analytical ability? Experi
ence? These are three of the qualities that distinguish excellent programmers.
However, none can be acquired overnight.

When we peer up an expert's sleeve we invariably discover something that
can be acquired quickly by any programmer-a set of "tools" to increase
productivity. A programmer working without tools to aid in the development,
debugging, and documentation of systems should seem as incongruous as a
plumber without a wrench or a carpenter without a hammer.

In this paper, we will describe the types of programming tools available to
users of STSC's AP L *P L US Service, and show advantages of using these tools
at different stages of program development.

Why Tools?

Behind all programming activity is a single driving force: the quick
delivery of a working system to an end user. To accomplish this goal, it is
desirable to minimize the time and resources spent on:

• developing the system

• running the system

• maintaining the system

• modifying the system.

Any technique that minimizes the time spent on system development and
maintenance is an aid in quickly accomplishing the final objective. In this
paper, we will describe the use of AP L functions, which we call "tools", as aids
to development and maintenance.

The programmer's tools serve the same purpose as the carpenter's tools
they are a means to an end, a way of doing otherwise difficult tasks with
relative ease. These tools aid in accomplishing tasks that are common to many
programmers; some tools are common to many applications (e.g., routines for
file access, input, sorting, and reporting); some involve changes made to the
elements of a system (editing the functions); and some are concerned with
documenting the system (both as a development aid and in generating
reference lists). In every case, the use of tools allows the programmer to
concentrate on the real job-that of developing an efficient system quickly.

Programming tools can be divided into three main classes:

339

340 The Professional Programmer's Tool Kit

• Utilities, which accomplish routine tasks like entering, for-
matting, and manipulating data.

• Documentors, which display and analyze pieces of a system.

• Function fixers, which modify the elements of the system.

The sections that follow describe the general characteristics of each class
of programming tools. The Appendix at the end of the paper lists some of the
utilities, documentors, and function fixers available on STSC's APL *P L US
System.

Utilities

Utilities are functions that accomplish the routine tasks of an application.
Since these tasks exist in many applications and their usefulness often
overlaps sufficiently from application to application, generalized functions
that perform routine tasks may be used. Often, it would not be difficult to
construct working "custom" functions to accomplish these tasks for the
application at hand. However, the time required to design, code, and document
a set of functions for entry, sorting, data management, and date formatting is
considerable-maybe as great as the effort required to deal with the "heart" of
the application (i.e., that part of the application that is not generalized).

Utilities save the programmer time because they are prewritten,
pretested, and predocumented. Their designers have generally done a thor
ough job in testing for "edge conditions" and optimizing for efficiency. What's
more, many people use them, and their use promotes the standardization of
techniques across applications and among different programmers. This in turn
makes the learning process simpler for the new programmer who must
maintain or enhance a system he did not write.

As an example, many of the applications written by STSC programmers
use the EMMA" Data Management System as a tool. EMMA is a system for
maintaining large amounts of data. EMMA functions save programming and
maintenance time. The maintenance programmer need only know that the
system is EMMA-based to understand the mechanics of adding, sorting, and
deleting data. And, he can take comfort in the knowledge that EMMA functions
are robust and well documented.

Documentors

Documentors have a dual purpose: to display in a convenient format the
elements and interrelationships within a system, and to reduce testing and
debugging time. Unlike utilities, these functions are rarely incorporated in
user applications; nor is their design usually a simple matter.

For example, tools like STSC's Workspace Documentation Package
(WSDOC) provide an "automatic" means of producing technical documenta
tion. WSDOC can list definitions of all workspace elements and provide a
complete cross-reference of these elements to answer the following questions:

Which functions are called by other functions?

Where are global variables used and where are they specified?

Which functions or variables are shadowed by others of the same
name?

Documentors can also be put to use during the debugging and testing stage
of a system. Tools like the function SESHOW in workspace 11 WSSEARCH
can save a great deal of time in locating the occurrences of syntactic elements
that aren't performing as expected. The function DET VARS in workspace
9 01 UTI L displays the contents of relevant variables. These documenting
tools save time and reduce the effort required to find and list important

The Professional Programmer's Tool Kit 341

information. Again, the programmer is free to concentrate on solving problems
unique to the application at hand.

Function Fixers

Function fixers are functions that are used to change the definitions of
other functions. Function fixers allow the user to make significant alterations
to other functions more quickly and easily than with function line editing.
Function fixers are used in the following circumstances:

• To make the same change to many functions. For example, the
functions FNREPL and CHANGE are used to change all occur
rences of one function or variable name to another (e.g., NAME 1 to
NAME2).

• To make multiple changes within a function. For example, the
function FCL can rename all labels in a function; the function
FNED makes changes to subsets of lines in a function.

• To make changes that require substantial analysis. For example,
the function FCL can localize variables; the functions UNPAREN
and BRKOUT improve readability and restartability.

• To make a change to a function line that can't be changed any
other way. For example, the function F NED edits lines of a
function that are longer than the print width.

Humans tend to err when performing repetitive tasks; function fixers do
not. Function fixers take advantage of the power of AP L to use a list of
functions as data and to manipulate these functions in the same manner that
other programs manipulate data in applications. They perform repetitive
tasks at great speed, without error.

When Can Tools Be Used?

Tools are useful in designing, coding, and maintaining an application.
Let's look at the benefits of using these tools during these three stages of
programming.

• In the design stage, utilities can form a significant part of the
overall design. Since they are predesigned, the programmer is free
to concentrate on designing the unique, difficult parts of the
system.

• In the coding stage, utilities save time since they are precoded and
pretested. Also, documentors can be used to list and help debug
parts of the system as the system is built. Function fixers allow
the programmer to alter the system while it is being developed.

• In ongoing maintenance, documentors are used to locate problems
and function fixers are used to resolve problems. Utilities help in
two ways: their existence provides familiar ground for the mainte
nance programmer, and they are almost never the cause of errors
themselves. Consequently, they simplify error diagnosis.

Conclusion

Up the sleeve of the expert programmer are not magical powers, but
rather a set of tools to speed programming tasks. These tools, like the mason's
trowel or the surgeon's scalpel, are virtually indispensable. By handling
common or repetitive tasks, tools allow the programmer to concentrate on the
important task-that of quickly developing an efficient system.

342 The Professional Programmer's Tool Kit

Appendix-Programming Tools on the APL*PLUS System

Description

The EMMA Data Management System in
corporates facilities for storing, manipu
lating, retrieving, and deleting data from
a conceptual matrix stored in a file on the
APL*PLUS System. EMMA simplifies the
design and documentation of file struc
tures, the programming and testing of
access mechanisms, and the implementa
tion of changes in application scope or
size.

Following are descriptions for the most widely used utilities, documentors,
and function fixers available on STSC's APL *P L US System. More informa
tion can be obtained by loading the appropriate workspace and entering
DESCRIBE.

Utility

EMMA

FILESORT

Input Manipulation

Sorting Arrays

Partitioning Arrays

Date Manipulation

Directing Output

File Printing

The File Sort Facility is an APL interface
to the IBM SORT/MERGE Program
Product. FILESORT provides an efficient
means of sorting large volumes of data
contained in APL *P L US System files.

Workspace 6 INPUT contains func
tions that accept character input; numer
ic input; forced-choice input; bulk input;
and combined character, numeric, and
forced-choice input.

Workspace 6 SORT contains utilities
for grading, ranking, and sorting arrays.
One group of functions handles numeric
arrays as a collection of independent row
vectors; a second group is used to grade,
rank, and sort rows of a matrix relative to
one another.

Workspace 6 PARTFNS contains
user-defined functions that apply certain
APL primitive functions independently
to each partition of an array.

Workspace 6 DATES contains func
tions for converting, formatting, and veri
fying dates, and for performing miscella
neous manipulations on dates based on
the Gregorian calendar.

Workspace 901 OUTPUT contains
functions for directing output to a termi
nal, line printer, or high-speed data ter
minal (HSDTS). The workspace also con
tains functions for controlling paging,
upper and lower margins, titles, and
other aspects of formatted reports.

Workspace 1 FILEPRINT contains
functions that aid in submitting requests
for files to be printed on a high-speed
printer or at a high-speed data terminal
(HSDTS).

The Professional Programmer's Tool Kit 343

Tab Setting Workspace 1 '+ TAB S contains func
tions to establish and verify the horizon
tal tab stops on a variety of terminals.

Plotting Workspace lOPLOT contains a flexi
ble set of programs for displaying data in
graphic form.

Documentor Description

WSDOC Workspace gO 1 WSDOC contains
functions to list the contents of a work
space-names and definitions of func
tions and variables, and extensive cross
reference reports. Output may be directed
to a terminal or to a high-speed printer.

FILEDOC Workspace gOlFI LEDOC contains
functions that produce a formatted list of
AP L *P L US System files. Options allow
listing of directory components of EMMA
and QUICKPLAN'" files.

gOlFL Workspace gOlFL contains the func
tion F L, which produces a list offunctions
in the active workspace. The function also
provides some cross-reference capabili
ties.

11 WSSEARCH This workspace contains functions that
find and display character strings and
syntactic elements in some or all func
tions in the active workspace.

11 TOOLS This workspace contains the function
FNIDS, which searches a given function
for identifiers belonging to certain cate
gories (locals, labels, and so on). It also
contains the function XREF, which dis
plays a cross-reference for a given func
tion.

gO 1 UTIL This workspace contains the function
DETVARS, which produces an abbreviat
ed display of the values of some or all
variables in the active workspace.

gOlFDF NS This workspace contains the function GL,
which produces a list of the names and
definitions of functions, variables, and
groups in the active workspace.

Function Fixer Description

Editing Workspaces 11 FNED and
11 FLE contain the functions FNED
and FLE, respectively. These functions
perform editing under program control
and perform syntactic and nonsyntactic
replacement on some or all function lines.
They also edit lines that are too long for
function line editing, or that contain em
bedded new-line characters.

344

Localizing

CHANGE

11 FNR

11 TOOLS

The Professional Programmer's Tool Kit

The function FCL in workspace
901 FC L can localize identifiers refer
enced in a function. FCL can change the
names of identifiers, sequentially
rename labels, insert or strip diamond
statement separators, strip comments,
and list a function in one of several for
mats.

Workspace 901 FDFNS contains the
function CHANGE, which replaces one or
more syntactic elements in some or all
functions in the workspace. Character
constants and comments may optionally
be included in changes.

The function FNREPL in workspace
11 FNR replaces a syntactic element in
one or more functions in the active work
space.

Functions in this workspace remove em
bedded assignments, localize variables, al
phabetize locals, sequentially rename la
bels, remove comments, and remove extra
parentheses.

Scott McAuley joined STSC in 1977 as a marketing representative and is
currently an applications consultant in the company's Los Angeles office. Before
joining STSC he spent a summer as a junior systems analyst for Sunkist
Growers, Inc., and taught APL, accounting, and finance at the UCLA Graduate
School of Management.

McAuley has a B.A. in economics from the University of California and an
M.B.A. in accounting and finance from the UCLA Graduate School ofManage
ment.

Jim Nelson holds two degrees in mathematics from Michigan State University,
a B.S. and an M.S. He worked for two and one-half years as an associate
mathematician with the Upjohn Company, where he assisted in the inhouse
installation of APLSV.

Nelson came to STSC in 1975 as an applications consultant. He designed and
implemented a wide range of customized applications, including a worker's
compensation cost control system, a billing system for mental health hospitals
in Ventura County, California, and a long-range planning model for ARCO. In
1978 he assumed his current position as applications consultant manager in
STSC's Los Angeles office. His responsibilities now include defining standards
for APL programming style and managing AP L software development efforts.

John W. Myrna

STSC's Design
And Development Considerations

STSC's APL *P L us System is constantly being enhanced. There is never
a shortage of ideas or proposals about possible features or systems that could
be useful. How are these suggestions sorted out, and how does STSC implement
those that are selected?

This paper discusses the main criteria used by STSC to evaluate new
features proposed for design and implementation; it also discusses three
additional considerations. The four essential questions are, therefore:

• What are the decision criteria?

• Who is the audience?

• How will the feature be used?

• What is the best medium for implementation?

Individuals involved in developing applications, as well as users, may find
these considerations relevant to their own interests. STSC has recognized that
a greater awareness of the underlying development criteria, as well as
objectives, leads to more productive development, and produces results with
improved consistency and quality.

What Are the Decision Criteria?

Literally hundreds of enhancements to the APL *P L US System have been
proposed over the past years. Just about everyone of them could provide some
useful capability. But there is no way that every proposal can be, or should be,
implemented. Since development resources can implement only a small
fraction of those suggestions, a careful selection process is important. Of
course, the most fundamental criterion is the cost/benefit ratio of the develop
ment.

When estimating costs, all potential cost elements must be examined.
Design and documentation are the major front-end costs, while ongoing user
training and program maintenance are the major recurring costs. Coding a
program typically accounts for only about 10 percent of the total cost.

Estimating benefits is more difficult than estimating costs. Asking users
to estimate how much time they would save if they had a particular feature
provides one measure of value and productivity. For enhancements that
provide totally new solutions, an estimate of new revenues, deferred costs, or
time and money savings helps indicate the value of the enhancement.

345

346 STSC's Design and Development Considerations

We attempt to verify that the cost is more than outweighed by the benefit
before continuing the process. Naturally we always keep an eye open for
"bargain enhancements"-features that have modest implementation costs,
but that provide significant improvements in the system. Very few features,
however, fall into that category. Furthermore, as problems and solutions are
always dynamic, never static, it is never easy to predict costs or benefits
accurately.

Usually features are not both "the answer to people's prayers" and easy to
implement. Rather, they fall into either one of the following categories:

• They improve productivity by providing a better (quicker, cheap
er, easier) method of accomplishing a task.

• They provide the first means for accomplishing a previously
infeasible task.

Most proposals fall into the first category. When a large number of users
are working on the same problems with the same applications, ideas for
improving their productivity flow easily. Someone doing function editing, for
example, can imagine many improvements that would save a few seconds
every day. Examples of this type of enhancement that have been implemented
are multiple line deletion, editing oflonger lines, dot-comma editing, and most
recently, semicolon editing.

Since enhancements of this type are, for the most part, incremental
features to existing facilities, they are usually simple to implement, document,
become familiar with, and use. However, because they are incremental and
may not have been perceived as crucial enough to have been implemented
initially, they also tend to add only a small increment of value. For one thing,
they tend to address the needs of a relatively small set of users who perform
the particular improved task frequently enough to appreciate nuances of
design. Enhancements ofthis type are implemented when it is anticipated that
many users will find them valuable, or when they are part of a larger
enhancement or system currently planned.

The greatest value usually comes from the second category of enhance
ments. Reasonably enough, these enhancements generally involve substantial
design, development, and implementation efforts, as well as documentation.
Furthermore, since they address heretofore uncharted application areas, it
takes longer to learn to master and use them. Examples of such enhancements
are DFMT, report formatting, the APL*PLUS File System, and ACE (Auto
matic Control of Execution).

Because of the varying efforts and payoffs corresponding to both types of
development, we attempt to balance the efforts devoted to implementing
small, easy features with the efforts put toward more substantial develop
ments addressing new applications.

A final criterion for judging a proposal is whether it is a special case of a
more general problem. By stepping back to take a broader view, we may be
able to solve a whole family of problems rather than only one specific case. One
pitfall to avoid, however, is generalizing to the point of dismissing a problem by
judging that it is a special case of a more general, unsolvable problem.

Who Is the Audience?

It is reasonable to divide users into two broad categories: application users
and professional programmers. Since the two groups impose different require
ments on their computer usage, different system designs may be suitable
depending on who will be using the system more frequently. The usage of a
feature can be significantly reduced if its design is aimed at the wrong
audience. If both groups have use for a new feature, but a compromise

STSC's Design and Development Considerations 347

approach is taken in an attempt to meet the needs of both groups, utility for
both groups may be reduced. On the other hand, a program that meets the
needs of its audience will inspire program loyalty and continued use and
development.

When designing for application users, designers keep in mind that these
users are more knowledgeable about their particular tasks and applications
than about AP L or even computers. Therefore, enhancements are purposely
made more casual and less primitive; they tend to use free-form syntax, as in
system commands. Applications specifically designed for end users also tend to
neatly format results, have few edge conditions or side effects that might
confound the user, and are more likely to be written in AP L. These charac
teristics are aimed at removing unnecessary complexities from the application
to make it easier for the user to understand and to use. However, they also
tend to make the programs somewhat less flexible, and remove a degree of
control from the user.

On the other hand, when designing for professional programmers, design
ers keep in mind that these users are technically trained and versed in
software engineering and computing. Therefore, enhancements can be less
casual and more primitive and can require explicit syntax. These programs
offer more options, more control, and more flexibility than programs designed
for application users only. However, they assume ofthe user, and indeed often
require, a high degree of skill and technical knowledge about the program's
content and workings.

Enhancements specifically designed for professional programmers tend to
be programmatic (as in system functions), and might return results in forms
suitable for further program manipulation. They may have edge conditions or
side effects, and are more likely to be written in low-level languages for the
sake of efficiency. These features are generally aimed at increasing a pro
grammer's productivity and providing the facility for complete, explicit, and
precise control of particular functions. Generally, the more control a user has,
the greater the complexity offered by the facility.

How Will the Feature Be Used?

Two characteristics of use have an impact on how a feature is designed:
the expected frequency of its use and the amount of programming knowledge
assumed of the average primary user. These characteristics are correlated to
generally classify use, by feature, as one of the following three "styles":
interactive casual, interactive programmatic, and noninteractive program
matic.

Interactive casual is characteristic of features (or parts of a feature) that
are accessed infrequently. Ideal design will allow use without reference to a
manual. Values returned, as well as diagnostic information, are usually
displayed in an easily understood format. Examples of features tailored to this
style of usage are system commands and application systems such as the
1 NEWS Facility on the APL*PLUS System.

Interactive programmatic usage is characterized by more frequent use of a
feature or by enough use to warrant the effort of writing functions or an input
script to automatically perform the frequently used task. Exceptional condi
tions, however, are still assumed to be handled casually by the user at the
terminal. System functions that signal errors (e.g., OX LOAD) are representa
tive of this style of usage.

The third type of usage is noninteractive programmatic. A program
designed for this type of use is expected to handle any exceptional condition.
System functions that return "error codes" (e.g., ODEF) are examples of
features designed for this usage class.

348 STSC's Design and Development Considerations

Some enhancements, in fact, are developed specifically to convert applica
tion styles from the second to the third class, and back again. For example,
OERROR can convert an error code into an exception, and OELX can convert
an exception into an error code.

Enhancements, however, are used in all three styles at one time or
another. STSC attempts, when it can, to serve more than one class of use when
designing a new feature. A good example of this can be found in STSC's
Deferred Execution Facility, which allows the automatic scheduling of APL
production tasks. All the casual, interactive user needs to do is load work
space 935 DEFEX and enter DEFER. He will then be prompted for all
other entries. DEFER will accept times and dates in a variety of forms and will
report on its progress in an understandable format. At the other end of the
spectrum (noninteractive programmatic), Deferred Execution has self-con
tained primitive functions like DFREQ, which can be copied into a workspace
and incorporated into any application. Results of these primitive functions are
unformatted, but organized to simplify programmatic analysis.

What Is the Best Medium for Implementation?

Select an implementation medium that best fits the needs of the user and
the requirements of the new feature. The choices of media include APL user
defined functions, "magic" functions (AP L user-defined functions that are
installed as part of the language interpreter), auxiliary processors, system
functions, and APL language primitives. A general rule of thumb, however, is
that the quicker the means of implementation, the less efficient the end result.
The inverse, unfortunately, also tends to be true.

The choice of medium involves two separate, but generally interdepen
dent, aspects: nature of access (e.g., APL function call or shared-variable access
to an auxiliary processor) and implementation approach (e.g., APL-coded
magic function or PASCAL-coded system function). The examples that follow
illustrate these aspects:

• Implement an auxiliary processor in Assembler language to
access a collection of preexisting statistical programs written in
FORTRAN.

• Implement OnEF L in AP L and install it in VS AP L as a magic
function to quickly provide users with the capability of this system
function, while avoiding expensive implementation in Assembler
language.

• Implement a database and reporting system like QUICKPLAN"
(STSC's Quick Planning and Reporting System) in APL to allow
individual customization.

• Implement the APL *P L US File System in Assembler language
with access to system functions to support high volume and high
efficiency shared use.

• Implement the utility functions in workspace 6 INPUT in
AP L as a working prototype for a future set of system functions.

• Implement the batch APL Deferred Execution System in APL to
manage complexity and to allow the facility to be transported to
other AP L time sharing systems.

Conclusion

At STSC the development process involves selecting features with good
cost/benefit ratios and carefully considering the audience and type of usage so
that the feature will be implemented using the best media to meet the
requirements of the user and the feature. But more than that, it is the process

STSC's Design and Development Considerations 349

of careful planning and attention to detail. Care must be taken to avoid
implementing an enhancement capriciously, or working a system into a
corner. STSC wishes to maintain consistency with what has proved worthwhile
in the past and to continue to be compatible with current APL implementa
tions; however, STSC also strives to be at the forefront of development, leading
the pack.

John Myrna joined STSC in 1971 as manager of operations; in this position he
organized STSC's Computing Center and nationwide communications network.
He was subsequently promoted to manager of communications in 1973, director
of development and design in 1975, director of development in 1977, and to his
current position as vice president of development in 1979.

Myrna directs STSC's Operations Group and is a member of its Executive
Committee and Technical Management Committee. He is responsible for the
production and delivery of computing and telecommunications services and for
the development of new applications, products, system features, and technolo
gies.

Myrna holds a B.S.E.E. degree from the New Jersey Institute of Technology and
an M.S.E.E. degree from Montana State University.

Robert A. Smith

Nested Arrays:
The Tool for the Future

I find myself in the peculiar position of one who is "selling" AP L to people
already convinced of its value. Similar to carrying coals to Newcastle.
However, what I'm selling promises to be as powerful compared to current
APL as APL is compared to FORTRAN. It is an important new extension
called "nested arrays". So, since new ideas require changes in one's thinking,
some justification is needed before one undertakes the effort of understanding,
much less accepting, these new APL tools.

Introducing nested arrays to APL programmers is similar to introducing
APL to FORTRAN programmers. We use similar "sales" techniques:

"This new facility has more powerful data structures that adapt more
naturally to the problems at hand."

"It also has a rich set of primitive functions and operators that are
tailor-made to manipulate these new data structures."

"By using this facility, you will be more productive."

It does sound as though I'm talking about AP L to a room full of FORTRAN
programmers!

To be honest, though, the most important common statement is
"To take full advantage of this powerful new tool, you will have to
change your way of thinking, even to the extent of unlearning some
bad habits."

We've been saying this all along to programmers first learning AP L; the
same will apply to those of you when first learning about nested arrays.

Some of the unlearning may come easy. No longer will non-rectangular
data have to be forced into rectangular structures. No more trying to fit round
pegs into square holes!

Many data with which you now deal are non-rectangular. For example,
the names of the months vary in length, yet are frequently stored in a 12-row
matrix, with each name padded out to a common length. Typically, upon
selecting a row from this matrix, the pad characters must be removed. Clearly,
the pad characters are an artifact of the need for rectangularity, and as such
contribute nothing to the use of the data. They only get in the way.

You can get an inkling of why a matrix might not be the best data
structure for the names of the months when you consider that, of the two
dimensions of this matrix, only one is used to access the data. In other words,
the data has row significance, but no column significance. A much better
structure for this data is a nested array, which is a 12-element vector whose

350

Nested Arrays: The Tool for the Future 351

scalars are the individual months' names. Of course, this representation isn't
available in current AP L, but it is with nested arrays.

MONTHS (Blanks are shown as '0 '.)

JANUARYo 0

FEBRUARYo
MARCHoooo
APRILoooo
MAYo 0 0 0 0 0

JUNEooooo
JULYooooo
AUGUSTo ° °
SEPTEMBER
OCTOBERoo
NOVEMBER °
DECEMBER °

MONTHS[3:]

MARCHoooo
The view along the rows has significance.

HONTHS[; 3] The view along the columns does not.

NBRRYNLGPTVC

The above example actually makes two important points. The first is that
nested arrays allow a more natural representation of data; in particular, such
artifacts as pad characters become unnecessary. The second is that, in fact, not
all dimensions are of the same importance. This latter point leads to another
piece of unlearning.

In current APL, we have only one level of dimension to exploit (the one
obtained by the primitive function shape). Until now we have not considered
the relative importance of dimensions; rather, all dimensions are at the same
level. In a 12 by 9 matrix there is nothing to indicate the relative importance of
the length 12 dimension from the one oflength 9. With nested arrays, however,
we can have multiple levels of dimension, and so their relative importance can
be implied. It makes more sense, for example, to store the above set of months'
names as a vector of vectors than as a matrix.

Be careful not to conclude that this distinction is made because of the non
rectangularity of the months' names. Rather, the distinction is based upon the
inherent, relative importance of the dimensions. For example, consider appro
priate data structures in which to store the three-letter abbreviations of the
months' names. Certainly, one possibility is to use a 12 by 3 matrix. However,
there is still no cohesion ofthe data along the columns; the values in no column
of the data have any particular meaning. This suggests that a better data
structure is a nested array which is a 12-element vector whose scalars are 3
element vectors (the abbreviations of the months' names)-again, a vector of
vectors. Thus, instead of the length 12 and the length 3 dimensions appearing
at the same level (as in a 12 by 3 matrix), they appear at different levels. The
more important dimension of the two is on the outside; the less important on
the inside.

What Are Nested Arrays?

We've been talking about nested arrays in somewhat vague terms. The
time has come to be a bit more precise. Simple arrays in AP L are rectangular
collections of scalars. At that level of description, nested arrays are no
different. That is, a nested array is still an array as we know it. Where nested
arrays differ from simple arrays is in their scalars. A scalar in a simple array is
a single number or character, whereas a scalar in a nested array can be any
array!

This may seem strange at first, but it represents a powerful extension.
Transforming an array into a scalar can be thought of as akin to stepping back

352 Nested Arrays: The Tool for the Future

from a problem to get a better perspective. In both cases detail is subsumed,
allowing you to see the larger aspects or structure.

Actually, those of you who have used the APL*PLUS File Subsystem
have been doing this all along. Think of an APL file as a vector whose scalars
are arbitrary arrays. If we say that a simple array has a depth of zero, then a
file has a depth of one. That is, in a simple array there is an outer structure (its
shape), but no inner structure-all scalars are single, simple objects. However,
in a file there is an outer structure (the file's length or number of components)
and an inner structure (the shapes of the arrays in each component). Since an
array always has an outer structure, depth is a measure of inner structure.

Now, generalize the structure of a file to allow the outer structure to be
shaped arbitrarily (for example, as a matrix), and to allow the scalars (the
components) themselves to be nested arrays. You can then begin to see the
power and breadth 0f nested arrays.

Also, files store data of varying shapes and types (numeric or character).
This data is placed in components without concern for the variations. That is,
the file's information content is divided into two levels: the outer level is the
distinction between component numbers, and the inner level is the distinction
between values within a given component. This same division is offered by
nested arrays, but in a richer way, through an arbitrary number of levels on
which to make such distinctions.

So, a nested array is an array whose scalars may contain arrays them
selves. Moreover, with such general structures, there is no longer any reason
to bar numbers and characters from being contained in the same array.
Consider the advantages of no longer having to segregate the numeric and
character portions of a data record, or, perhaps better yet, no longer having to
encode one data type in the other. Another happy bit of unlearning!

With nested arrays, the two types of data can be stored together without
the user having to take any special action. While there are still no meaningful
arithmetic computations to be performed on character data, there can be
structural and/or content similarities between the two types which may
encourage you to store thilm together in the same array. For example, an
employee record might contain character information of the employee's name
and address, and numeric information such as the date of hire and salary. This
information can be joined together in one array (probably as a vector of
arrays-some scalars, some vectors) and manipulated as one entity (for
instance, stored in a single file component). However, don't get the impression
that all the character data must be gathered together in one spot and all the
numeric data in another. The two types can be interspersed in any manner,
even as they might naturally appear.

What Can We Do with Nested Arrays?

The availability of nested arrays opens whole new areas which become
more feasible to address.

Let's expand upon the last example and build a nested array containing
employee data. In the process, we'll introduce some of the primitives of nested
arrays. By the way, as of this writing, the symbols used to represent these
functions and operators have not been fixed, so don't take the ones used below
as final.

An employee record might consist of the following items:

• name (character vector)

• address (character vector)

Nested Arrays: The Tool for the Future 353

• date of hire (numeric scalar)

• salary (numeric scalar)

First we need to make each of these items into scalars, for which there is a
primitive function called enclose (symbol c). The enclosed scalars can be joined
together into a four-element employee vector as follows:

EMP+(cNAME).(cADDR).(cDOH).cSAL

A collection of employees might form a department, which can be
represented as either a vector of employee vectors, or as a four-column matrix,
each row of which is an employee vector. The choice between the two is a
matter of taste. Note that with the matrix form there is significance for both
the row and column views. A row contains all data about a single employee; a
column contains a single attribute (for instance, salary) about all employees.
Let's use the matrix form. To append a new employee, we use the familiar:

DEPT+DEPT.[l] EMP

Some simple inquiries about this department can be formulated such as:

Select the names and addresses of employees hired in 1980 or later:
(800101~DEPT[;3])fDEPT[; 1 2]

The above code fragment is quite straightforward, as it should be. A simple
request should require a simple piece of code. What is important is how
naturally these familiar functions apply to nested arrays.

To extract the name of an employee (say the third one in the matrix
DEPT) we first index to that scalar (via DEPT [3; 1]), and then apply disclose
(symbol :::J) which is the inverse function to enclose:

~DEPT[3;1]

The result is the simple character vector of the employee's name.

This nested array of employee data can be enlarged in several ways. One
way is to add more outer structure, such as incorporating the department into
a higher level of organizational structure, say, divisions. The divisions them
selves might not have any higher-dimensional structure, so they would be
collected together in a vector:

DIV+(cDEPT1).(cDEPT2) • •••

The variable DI V is a vector of matrices. Now to find out how many employees
are in each department of this division, we need another primitive, this time
an operator. The key to the problem is in the word "each". We want to apply
something to each item of DIV. This concept is already familiar to us with
scalar functions. A description of the expression 2 +A might be to add 2 to each
scalar of A. In this case, we want to determine the shape, or size, of each item in
DIV. To the rescue comes the each operator (symbol·"), which applies its
argument (a function) to each item of the data. For example, to determine the
shape of each item of DI V, use

p··DIV

The idea of the each operator is that it makes its function argument into a
scalar function. Hence, the derived function that results from applying the
operator obeys the same rank- and shape-conformability rules as scalar
functions. In particular, the rank and shape of the result in this case is
identical to that of the argument. In general, when applying a function f to an
array, the items of the result are obtained as follows:

1. Select a scalar from the array.

2. Disclose the result of step 1.

3. Apply the function f to the result of step 2.
4. Enclose the result of step 3.

354 Nested Arrays: The Tool for the Future

In symbols, with R + ('A,

R [I] +--+ cf:>A [I]

Note how disclose is used to peel away the scalar wrapping of A [I]. The
function is applied to this uncovered array; the following enclose ensures that
the result is a scalar. It is this interaction that enables the each operator to
apply its function argument in the manner of a scalar function.

Back to the problem of determining the number of employees in each
department, we first apply monadic shape to each item of DI V using:

p"DIV
12 4 6 4 20 4

There are 12 employees in the first department, 6 in the second, and 20 in
the third. Note that the actual format for displaying this result has not yet
been decided.

Since the each operator applied the shape function as a scalar function,
the number of elements in the result is the same as the number of elements in
DI V. The items of the result are themselves the enclose of the shape of the
items of DI V. The items of DI V are all four-column matrices, so the result is a
vector of two-element vectors. In each two-element subvector, the first element
is the number of rows (number of employees), the second is the number of
columns (four).

From here, we can proceed in several ways to obtain just the first element
(the number of employees) from each subvector. One way is to apply the each
operator again, this time to the dyadic function reshape where we are
reshaping each two-element subvector to a scalar. That code would be

, 'p"p"DIV
12 6 20

Conclusion

Let me recall my first impressions upon encountering AP L. Perhaps you,
too, had similar impressions. I recall thinking that something must be wrong,
that there were things missing. It couldn't be as easy as it looked. Up to that
point, programming had been a hard task. There were so many things to keep
track of. So much work was necessary to accomplish anything. But that feeling
wasn't present when I began programming in APL. To me, APL represented a
major step forward in programming.

Now that feeling of programming being difficult has returned. Certainly,
the problems have gotten harder, but knowing about better tools like nested
arrays sheds a different light on programming tasks. I see how to accomplish
these tasks more easily using nested arrays.

Why do we need nested arrays? Because the programming tasks of the
future are going to be harder. To address these more challenging tasks we
must be prepared to accept new ideas, and to use new and better tools. Nested
arrays are one of the APL programmer's most powerful tools for the future.

Bob Smith joined STSC in 1971 as a marketing representative and subsequently
held the positions of regional marketing manager, director of systems, and
applications analyst. In 1979 he assumed his current position as senior research
associate. Smith has used AP L since 1970 and has in-depth experience in all
facets of the language. He has written numerous articles and manuals, and has
designed and implemented several APL enhancements, applications, and

Nested Arrays: The Tool for the Future 355

systems. Smith is currently leading STSC's project to design and implement
nested arrays.

Smith has a B.A. in mathematics from the University of Vermont and has
completed graduate coursework in mathematics at the University of Maryland.
He is a member of ACM and helped form the Washington, D.C., chapter of
STAPL.

Carl M. Cheney and Scott N. McAuley

A Consumer's Guide to
Choosing an APL Terminal

Much has been said about the language features and applications avail
able on different computer systems running APL; in fact, many papers in this
book deal with these things. If we are going to use APL, we also need another
machine-a terminal to communicate with the computer. This' paper is
concerned with that "other" machine-the faithful APL terminal.

Finding the right APL terminal can be a difficult, expensive, frustrating,
and time-consuming task. In this paper, we provide a guide for the consumer
shopping for terminals. We offer some pointers on what to look for in an APL
terminal, and we compare the features of some popular terminals. We have
limited our discussion to "start-stop" devices capable of displaying APL
characters; data storage devices, remote job-entry stations, synchronous ter
minals, and graphics devices are, therefore, not covered in this presentation.

We wish to thank David Michelson for his comments and information,
Allen Rose for his encouragement and anecdotes, and Judy Syfers for her
assistance in the research necessary to prepare this paper.

What's So Special about APL Terminals?

APL is an interactive language, demanding close communications be
tween the user and the system. Since this contact occurs through a terminal,
the interface between user and terminal is important. Seemingly small factors
can become important-just ask anyone who has discovered the location ofthe
BREAK key by accidentally interrupting an executing program at a non
restartable point, or who has had to squint to discern the difference between
the printed character sequences - / and = / in a function listing. The APL user
typically is thinking analytically, and is in the process of solving a problem
under some time pressure. The last thing he needs is a clumsy terminal.

So, what's important in an APL terminal? First, there's the keyboard.
APL is both a computer language and a notation. As a notation, it uses graphic
symbols not found on a traditional typewriter keyboard. For a terminal to
properly display APL notation, all the characters shown in Table 1 must be
available on the terminal.

Table 1 shows 140 distinct APL characters; however, only 94 printing
characters are defined in the USASCII code used by most terminals (and only
88 in the IBM EBCDIC code). The need for additional characters is met by
overstriking two characters. In fact, 52 of the characters in Table 1 are formed
using overstrikes. These 52 overstruck characters are transmitted to and from
the APL system as three distinct characters-the two characters to be

356

A Consumer's Guide to Choosing an APL Terminal 357

overstruck, joined by a "backspace" character (for instance, the AP L character
f is sent as /, BACKSPACE, and

Table l-APL Notation

S DOLLAR-SIGN . NOT-EQUAL " NAND
¢ {::ENT-SIGN • ALPHA ... NOR
[LEPT BRACKET < EPSILON • LAMP
] RIGHT BRACKET 1 IOTA GRADEUP
(LEFT PARENTHESIS p RHO GRADEDOWN
) RIGHT PARENTHESIS w OMEGA e ROTATE-MINUS

SEMICOLON COMMA f SLASH-MINUS
/ SLASH SHRIEK " BACKSLASH-MINUS
\ BACKSLASH <j> ROTATE [jJ DOMINO
<- LEFT ARROW " DECODE • THORN
-> RIGHT ARROW T ENCODE • HYDRANT

DIERESIS 0 CIRCLE o DIAMOND
+ PLUS ? QUERY -< RIGHT TACK
- MINUS - LOGICAL-NOT l- LEFT TACK
x TIMES TAKE J RIGHT BRACE

DIVIDE DROP (LEFT BRACE
* POWER c IMPLICATION A - Z ALPHABET

CEILING ~ REVERSE IMPLICATION ~ DELTA
FLOOR INTERSECT ION A - Z UNDERSCORED ALPHA
MODULUS UNION t; DELTA-UNDERSCORED

A AND UA'DE RSCO RE "0 - 9 NUMERALS
v OR ~ TRANSPOSE PERIOD
< LESS-THAN I I-BEAM NEGATIVE-SIGN

LESS-THAN-OR-EQUAL NUL , QUOTE
EQUAL 0 QUAD COLON

~ GREATER-THAN-OR-EQUAL I!J QUOTE-QUAD ~ DEL
> GREATER-THAN .. LOGARITHM ,. DEL-TILDE
~ DANISH AND NORWEGIAN A GERMAN A UMLAUT o GERMAN 0 UMLAUT
U GERMAN U UMLAUT .L BRIT ISH POUND l' JAPANESE YEN
N SPANISH N TILDE

For a terminal to display an overstruck character, it must be capable of
either

• displaying the first character, stopping, backspacing, and then
displaying the second character, or

• accepting the three-character sequence containing the overstruck
character as a "valid" overstrike and displaying its representa
tion.

Because of the need to overstrike characters, APL terminals present a
greater challenge to their designers and manufacturers than do terminals for
"ordinary" computing or word processing. Compromises in design frequently
lead to less-than-perfect performance; many of the features discussed later in
this paper relate to the presence or absence of compromises.

A Little APL History

When Kenneth Iverson wrote A Programming Language (Wiley, 1962), he
probably gave little thought to how his notation would be displayed. A few
years later, though, an APL group at the IBM Research Center realized the
difficulty of setting "Iverson notation" in type for publication,

Legend has it the group paid a visit to an IBM typewriter factory in
Lexington, Kentucky, in the mid-1960s and looked through available Selec
tric® type faces to see what might be used. They knew it was important to
distinguish ordinary alphabetic characters from symbols used in APL nota
tion; for example, to establish a clear difference between the alphabetic "T",
"X", and "I" and the APL "encode" (T), "times" (x), and "modulus" (I),
Consequently, they chose italic font for the AP L alphabet. Upright numerals

358 A Consumer's Guide to Choosing an APL Terminal

were chosen to distinguish "0" and "I" from "0" and "1". Of the 88 keys on
the Selectric, 36 were used for the alphabet and numerals.

The group, suspecting that additional AP L symbols might be added in the
future, decided to use overstrikes to form some of the special symbols in
Iverson's notation. These symbols were chosen from the character sets then
available to align well when overstruck. A collection of 88 APL characters was
made into a Selectric typesphere. Soon, this typesphere was used on the first
APL terminal-the IBM 1050.

This character set remained the standard for APL terminals until the
design of the Tektronix 4013 terminal. This machine had the capacity to
generate characters in software, since it was fundamentally a graphic display
device. The terminal could transmit six more characters than an IBM
terminal, since it used the ASCII communications code. Its designers chose to
add the six characters { } $ 0 --i and I- to fill the gap (the $ and 0 could be
formed on the IBM terminal, but only as odd-looking overstrikes).

The mapping of APL symbols into the ASCII character set, as defined by
Tektronix, was proposed as a standard by members of the APL Users Group
and accepted by the APL Project of SHARE (an IBM users' group). It has since
become the de facto standard of the APL terminal industry. This overlay
standard is described in STSC Working Memorandum No. 105, APL-ASCII: An
ASCII Overlay Standard (STSC, 1974), written by L. M. Breed.

Currently, there are about a dozen manufacturers of APL terminals and
perhaps 30 distinct terminal models available. Manufacturers offer a wide
range of features at a wide range of prices. Terminals can display output on a
screen, on paper, or on both. Printing terminals can use plain or thermal
sensitive paper and can print using a typesphere, "daisy-wheel", or dot matrix.
Terminals can display from 64 to 218 columns and can weigh from 10 to 150
pounds. Some have built-in graphics capabilities and some may connect
directly to telephone receivers or telephone lines. And, depending on their
capabilities, terminals can cost from $1500 to $13,000.

Nevertheless, the multiplicity of features available on APL terminals
need not bewilder the buyer. Features vary greatly in importance depending
on the intended use of the terminal. To help the prospective buyer in
systematically evaluating the features of importance to him, we have or
ganized our discussion around three classes of terminal features:

• Features of concern to all users.

• Features specific to printing or display terminals.

• Features specific to different types of use.

The sections that follow discuss these features in detail, and Tables 2 and 3
provide summary guides for printing and video-display terminals, respective
ly. The information in the tables was collected carefully and to the best of our
knowledge is correct. Not all terminals and manufacturers are represented.
Prices are current as of February 1980, and in some cases represent only one
distributor of a product. Readers are asked to use this information as a
representative guide to the features that are available and to determine for
themselves the suitability of a terminal to their particular needs.

Features of Concern to All Users

All AP L terminal users will be concerned with these fundamental
terminal capabilities:

• communications speeds and connection to the host computer

• entry and display features

Table 2-Features of Video Display Terminals >
~

Computer Computer
;
I:

Transciever Transciever a
Computer Systems Systems ~

"l
Anderson Anderson Devices Inc., Inc. , Qume Texas Texas 'lJw

Agile Jacobson Jacobson Inc. , Execuport Execuport Decwriter Sprint Tally Instruments Instruments Trendata Diablo ~

A155 630 832 1132 4000 4080 LA 36 V T-1612 745 820 4000 1640 s.
Q.
~...

Supports tabs? Y Y Y N Y Y Y Y Y Y Y Y Y
0

Numeric keypad? Y N Y N Y Y Y Y Y N Y Y Y ~
t:l"

Speed range in characters 0
0

per second 30-120 10-30 10-30 10-30 10-30 10-30 10-30 10-120 30-960 10-30 10-960 10-30 10-960 'IJ

Programmable soft keys? N N N N N N N N N N N N N
;.

EIA accessory jack? N N N Y Y Y N N N N N N N
CIC.

Powers up with tabs set? N N N N Y Y Y N Y N Y N N §
Modular phone connection? N N N N Y Y N N N N N N N :to
Built in modem available? N Y N Y Y Y N N N Y Y Y N ."
Dials access number? N N N N y y N N N N N N N

t"o

Pedestal? Y N Y N N N Y N Y N N Y Y '"3
~

Side tables? N N Y N N N Y N Y N N Y N

~.Maximum printing width 158 140 158 132 136 80 132 158 132 80 132 158 158
Repeat key? Y Y N Y Y Y Y Y Y N N Y N e..Selected repeating keys? N N N N N N N N N N N Y N
All keys repeat? Y N Y N N N N N N Y Y N Y
Suitable for programmer? Y Y Y Y Y Y N Y Y Y Y Y Y
Suitable for user? Y Y Y Y Y Y Y Y Y Y Y Y Y
Single unit purchase

price 3.995 1,200 3.495 3,530 3.495 1,975 2.500 3.275 2,395 1.695 1,995 3.995 2,878
Single unit one year

lease (per month) 200 65 140 157 158 135 244 140 100 100 140
A~L keycaps available? Y Y Y Y Y Y Y N Y Y Y
Portable? N N N Y Y Y N N N Y N N N
Printer type Qume Thermal Qume Thermal Thermal Thermal Impact Qume Impact Thermal Impact Diablo Diablo

Matrix Matrix Matrix Matrix Matrix Matrix Matrix Matrix
Requires special paper? N Y N Y Y Y N N N Y N N N
Form feeds? Y N Y N N N Y Y Y N Y Y Y
Vertical tabs? Y N Y N N N Y r y N Y Y Y
Forms tractor available? Y N Y N N N Y r y ~ y y y

Pin-feed platen available? Y N Y N N N N Y Y N N Y Y
Friction platen available? Y N Y Y Y Y N Y N Y N Y Y

~
Supports X-on X-off go

protocol? Y N N N N N N N Y N Y N Y
CCl

Keeps up with output at
highest speed? N Y Y Y Y Y Y N N Y N Y N

Dot Matrix Dimensions 5x8 5x7 5x7 5x7 ?x7 7x7 5x7 9x7

Table 3-Features of Printing Terminals

Human
Designed

Systems Research Research
Anderson Hewlett Inc. , Inc. , Inc. ,
Jacobson Packard Concept tektronix Tektronix Teleray Teleray

510 2641A APL 40 13 4014 11 3931

Supports tabs? y y y N N Y Y
Numeric keypad? y y y N N Y Y
Speed range in characters per second 10-960 10-960 5-960 10-960 10-960 5-960 5-960
Programmable so ft keys? N y Y N Y Y N
ETA accessory jack? y y y y y y y

>Powers up with tabs set? N N Y N N N Y
Modular phone connection? N N N N N Y N n

0Buil t in modem available? N N N N N N N =Dials number? N N CIlaccess N N N N N .:
Pedestal? N N N Y Y N N 8
Side tables? N N N N Y N N /D

"t.Maximum printing width 80 80 80 74 133 60 80 CIl
Repeat key? N N Y N N Y Y 0
Selected repeating keys? N N Y N N N N .:

s:All keys repeat? y y N Y Y Y N /DSuitable for programmer? y y y y y y y
Suitable for user? y y y y y y y 0

nSingle unit purchase price 1,995 4 • 100 1,750 7,395 12,195 1.590 1,960 :rSingle unit one year lease 87 160 444 733 85 60 0
APL key caps available? y y y y y y y i
Portable? N N N N N N N S'
Dot matrix dimensions 7xl0 9x15 7x9 7x9 7x9 8x 11 5x9 IIll
Screen dimensions in characters 24x80 24x80 24x80 35x74 64x133 24x80 24x80 10

=True overstrike? N N Y Y Y Y Y :t.Illegal overstrik.es produce what? last char out actual actual actual actual actual ~
formatted screen mode? y y y N N Y N too
Character color green white white green green white white >-3

/DRecall things that have gone off screen? N y y N Y N N ~Addressable cursor? y y y y y y N S'Line block mode with local editing? y y y N N Y N !.Detachable keyboard? N y Y N N Y N

A Consumer's Guide to Choosing an APL Terminal 361

• usabilty and portability

• reliability and availability of service.

1. Communications Features

Two related factors influence the communications end of AP L terminals
the speed of transmission and the method of connection to the host computer.
Transmission speeds are typically expressed in CPS-characters per second.
Terminals may operate at speeds ranging from 10 to 960 CPS; however,
terminals operating at speeds over 120 CPS must be "hard-wired" to the host
computer; a dial-up telephone line cannot be used.

Terminals using IBM's EBCDIC code can operate at 14.9 or 33.3 CPS;
those using the ASCII code can operate at 10, 15, 30, 60, 120, 240, 480, or 960
CPS. Speeds of up to 30 CPS are considered "low" to "standard" for AP L
terminals, and transmission over phone lines is accomplished through a
modem like the Bell 103. The 30-CPS speed is the most popular for time
sharing terminals and is adequate for most purposes. At this speed, display of a
full 8 1/2 by 11 inch page takes less than three minutes (even less time is
required if you allow for blank lines and the use of tabs).

At higher speeds, there is no universal modulation standard for transmis
sion over phone lines. For example, at 120 CPS, two popular but incompatible
protocols are available: one associated with the Bell 212 modem and one
associated with the Vadic 3400 modem. The Bell modem is more prevalent;
however, it must be connected directly to the phone line rather than through
an acoustic coupler. This limits the portability of the terminal. The two types
of modems cannot "talk" to each other, so it is important to check the protocol
of the modem chosen to make sure that it is supported by the host computer
system.

Some terminals include built-in modems with acoustic couplers for tele
phone handset coupling or for direct connection to the line. Some direct
connect modems include auto-dialer circuits that remember access numbers.
and sign-on protocols.

2. Entry and Display Features

A number of terminal features center around the entry and display of data
at the terminal. A main consideration, then, is the keyboard. Some of the
important questions to ask include: "Are AP L characters printed on the keys,
or will I have to look at a chart or paste on APL decals? Is the BREAK key in a
place where I won't accidentally hit it? Are the BACKSPACE and LINEFEED
keys placed conveniently for AP L editing? Is a 10-key numeric pad available?"
(It will be helpful if you'll be entering significant amounts of numeric data.)
"Do any of the keys repeat, and, if so, do they repeat using a shift-type
REPEAT key or by being held down? Does the terminal have extra, pro
grammable 'soft' keys to recall often-used commands like) COP Y or sign-on
arguments? If so, are the contents of these keys retained in memory when the
terminal is switched off?"

Some primary display considerations include display width, display quali
ty, and support of tabs.

Display width (OPW) is the number of character columns the terminal can
represent. Two standards have evolved from historical accidents-80 charac
ters (from the Hollerith punched card and the standard typed page) and 132
characters (from the IBM 1403 line printer). However, terminals are available
that support maximum widths of 64 characters (the IBM 5110 portable
computer), 136 characters (Execuport), 158 characters (many daisy-wheel
printers, if pitch is set to 12 columns per inch), and even 218 characters (the
Texas Instruments 820 in "compressed print" mode).

362 A Consumer's Guide to Choosing an APL Terminal

Obviously, using more columns, more information can be presented on a
single page or screen. However, there is a corollary-display formats designed
for wide terminals look awful when displayed on narrow terminals. Long lines
that exceed the shorter print width will spill over to the left of the following
line, preceded by the six spaces inserted by the AP L system. This will cause
reports to appear somewhat different from the way they were originally
designed.

The legibility ofthe input and output on paper or on the terminal screen is
determined by the quality of the display. Printing terminals using Selectric or
daisy-wheel mechanisms generally provide good to excellent resolution. Vir
tually all display terminals and many printing terminals form images by using
a matrix of dots. Two factors affect readability: the number of dots used for
each character "cell" and the design of the character set. A few dot-matrix
representations are excellent (the Hewlett/Packard 2641A has high resolution
and distinct characters), and a few are poor (the Texas Instruments 745 and
the Decwriter have very small alphabetic characters). Dot matrix printing will
serve most users well, but users wanting camera-ready copy should choose
Selectric or daisy-wheel mechanisms.

An APL terminal's effective display speed can be increased substantially
through the use of tabs. As on a typewriter, tab stops are defined as
predetermined columns. The APL system sends a number of "tab" characters
and spaces forward or backward to reach the first nonblank column on a line.
Use of this feature can decrease the time required to print tabular reports by
40 to 50 percent. But tabs and backspaces can sometimes cause overflow
problems in printing terminals (the terminal may not be able to execute the
tab or backspace motion at its rated speed).

3. Usability and Portability

A number of terminal characteristics fall into a vague category we'll call
"usability". For instance, the "feel" of the keyboard to the typist is an
important, if somewhat unquantifiable, quality. Another intangible is the
quality of the instruction manual. Many calls to support programmers or
terminal service people can be avoided if users know how to reset switches or
can find answers in the reference manual.

A third intangible feature is the noise a terminal makes. APL systems
return a "bell" character and beeping noise to signify acceptance of the last
input line; can you and your coworkers live with the sounds your terminal
makes? Many a terminal has been emasculated (the Xerox 1600-1700 series
comes to mind) by a distraught user driven into a frenzy by loud, long beeps.

Terminals are often more useful if they can be moved easily. In the
earliest days of AP L, the desk-sized IBM 1050 and 2741 were the only AP L
terminals. STSC Vice President Allen Rose, then of IBM, had a 2741 sawed in
half to make it a "portable" 130 pounds. Similarly, in the early days of STSC, a
resourceful manager named Murray Spencer rigged up a pack frame to carry
the "lightweight" (60 pounds) Datel terminal.

Today some AP L terminals are portable in the sense that they can be
rolled from room to room (the 150-pound Tektronix 4015 and the 75-pound
Anderson/Jacobson 832A, for instance). Others come with a handle or carry
ing case and weigh about 40 pounds, fitting the "portable" description much
like the average television. A few terminals are truly portable-in particular,
the 16-pound Execuport 4000, the 18-pound cm 1203 Miniterm, and the 14
pound Texas Instruments 745. These can easily be carried across town to a
client or across the country under an airplane seat. However, don't check them
as luggage-if you do, you'll likely need to read the next section carefully!

A Consumer's Guide to Choosing an APL Terminal 363

4. Reliability and Service
It is inevitable that one day your terminal will break. Furthermore, it will

not break on a Monday, but on a Friday afternoon. It will not break while
you're playing games such as STARTREK or ADVENTURE, but while you're
printing the chairman's monthly report or, even worse, your paycheck. If your
terminal is portable, it will break while you're passing through Fargo, North
Dakota.

There is little you can do to prevent these failures-consider them acts of
God. You can ease the pain by finding a rugged terminal or a responsive
service organization or both. In our experience, daisy-wheel printing terminals
fail most often (though usually with some prior warning), followed by portable
terminals (probably because of rough handling). Display terminals almost
never require service.

Check the maintenance options available when you shop for a terminal.
Maintenance contracts are available from most manufacturers and are usual
ly a good investment. Many lease agreements require or include purchase of a
maintenance contract. Sometimes a friendly vendor will provide "loaner"
terminals on an emergency basis to ease the inevitable crisis.

Features Specific to Printing and Display Terminals

A primary feature of printing terminals is the mechanism used to print
images on paper. Some terminals use a mechanism like the IBM Selectric
typewriter ball, some use a daisy-wheel printer like that made by Diablo, and
some form images through use of a dot matrix. Dot-matrix printers can impact
the paper through an inked ribbon, or by applying spots of heat to sensitized
paper.

The choice of mechanism affects print quality and terminal operation.
Print quality is usually best on Selectric-based or daisy-wheel terminals
because characters are formed continuously rather than from several single
points. Carbon ribbons can be used to obtain camera-ready copy. The thermal
paper used in some dot-matrix printers is quite expensive, and the image may
fade in a year or so. On the other hand, a simple flip of a switch will change
character sets on a dot-matrix terminal, and there are fewer parts in the print
mechanism.

When you're shopping for a printing terminal, check the path of the paper
through the machine. Does the paper skew to one s.ide while printing several
pages continuously? Is a pinfeed platen (which holds the paper by the holes on
either side) available? If you choose a pinfeed platen, can you still use the
friction platen to print single sheets of bond paper?

The printhead on some terminals obscures the line currently being
printed. This can be bothersome when entering text, but it is particularly
frustrating when editing APL functions. Manufacturers have come up with
several cures for this problem, but unfortunately some of the solutions only
cause more problems. Some terminals have a "scroll" feature (Xerox 1700
Diablo 1600), which causes the paper to jump up an inch each time the
terminal stops printing for a half-second or so. When another character comes
down the line, the paper jumps back to its original position. It's fortunate that
this feature is usually defeatable; for a slow typist, its effect is something like
that of playing the piano on a crowded bus. On some terminals (Decwriters in
particular), the printhead moves sideways rather than up. For the typist, this
may be an improvement, but for the APL programmer it is a nightmare.
Insertions and deletions do not occur directly above the position of the
printhead, but several spaces to the right. (Or, is it to the left?)

Finally, some printing terminals are plagued by a problem called "buffer
overflow", which occurs when a terminal can't keep up with its rated print
speed. An overflow condition occurs when text is coming in faster than the

364 A Consumer's Guide to Choosing an APL Terminal

terminal can display it, and the terminal does not have sufficient internal
storage to hold the incoming text until it catches up. When this happens, the
terminal may lose character text, beep loudly, or generally misbehave.
Sometimes it won't function at all until you turn it off and allow it to forget the
terrible trauma of buffer overflow; of course, this prevents you from signing off
normally. Consider what happens when we print a typical report (see Figure
1).

PAGE 1
UNIVERSAL DOOHICKEY, INC.

INVOICE 1 APRIL 1980

!2EJHl.llI.E'l.I.QrJ..
DOOHICKEYS

THINGIES
DOODADS

THINGAMABOBS

EllI.r.E.
$9.95
$1. 47

$12.98
$6.49

Q[jA.rJ..'l.I.'l.X
2

10
1

10

E.X'l..
$19.90
$14.70
$12.98
$64.90

TOTAL 23 $112.48

Figure I-A Typical Report

The APL system sends the report shown in Figure 1 to the terminal as a
stream of characters. There is a character called RETURN which means
"move the printhead back to the left margin and advance the paper one line".
Doing this takes longer than printing a character like the letter "A". The same
is true, to a lesser extent, of BACKSPACE and TAB characters. In our sample
report, (assuming that tabs are set), the system may send

[TAB] [TAB] [BACKSPACE] UNIVERSAL DOOHICKEY, INC. [RETURN]
PAGE 1 [TAB] INVOICE [TAB] 1 APRIL 1980 [RETURN] [RETURN]

Rather than build terminals capable of executing 30 or 120 RETURNS in
a second (as would be required for 30 CPS and 120 CPS terminals without any
buffer capability), manufacturers incorporate a small (10- to 150-character)
memory to store incoming text. Text so stored is then printed in a first-in, first
out manner. Unfortunately, this buffer sometimes gets entirely full. This is
likely to happen when:

• "idle" characters are suppressed

• tabs are in use and there is a large blank space in the middle of
output lines

• the text is heavily laced with overstrikes.

A good way to determine whether a particular terminal is prone to buffer
overflow is to set tabs and) TERM NOIDLES, and then print 15 pages of
workspace documentation, particularly function and cross-reference listings.
The overstriking and tabbing involved in printing this type of report will
exercise the terminal to its fullest. Ifthe printed pages show symptoms such as
skipped lines, unaligned tabular columns, and spurious characters, the termi
nal is prone to buffer overflow, and you will need to slow down its printing
speed by inserting idle characters or by not using tabs.

There is greater similarity among APL display terminals than among
printing terminals. With a single exception, all use television-type displays,
storing a screenful of information in internal memory (the Tektronix
4013/4015 terminals use "storage" display tubes to prevent "TV flicker").
There are, however, some differences in the following characteristics:

A Consumer's Guide to Choosing an APL Terminal 365

• screen size

• character quality

• internal memory

• connections to auxiliary devices

• optional transmission modes.

We have already discussed display width and related features and prob
lems. Most display terminals display 24 lines on a screen and 80 characters
across each line (a notable exception is the Tektronix 4015, capable of any of
the following display sizes: 35 lines by 74 characters, 38 by 81,58 by 121, or 64
by 133). Warnings mentioned earlier about spillover of wide report lines hold
here. Another consideration is the physical screen size. Display tubes in
popular terminals range from 5 to 19 inches, measured diagonally. On a five
inch screen, a 64-character width leaves only one sixteenth of an inch per
character-late in the day, that may be difficult to read!

Another factor affecting legibility is the quality of the character set. The
number of dots per character cell (ranging from 5 by 9 in a Teleray terminal to
9 by 15 in the Hewlett/Packard 2641A) determines the absolute resolution.
The choice of patterns to represent characters will vary among manufacturers.
There are two basic approaches to displaying AP L overstrikes on display
terminals:

• Display any overstrike by interleaving two "screen memories".

• Maintain an internal overstrike table, displaying the appropriate
character when [CHARACTERI J, [BACKSPACE], [CHARAC
TER2J are received.

The first approach (used by Datamedia in its model 1520), allows any
overstrike. If, in the future, an APL system were to define the overstrike of 0
and X as a valid character, the terminal would display II just like the simplest
printer. This is an advantage, but there are also drawbacks: the extra screen
memory adds to manufacturing costs, "flicker" is likely to be more noticeable,
and the clarity of the pattern of overstruck characters may not be optimal.

However, if a terminal maintains a table of valid overstrikes and displays
one character when a valid overstrike sequence is transmitted, a single
memory can be used. This is the approach taken by Hewlett/Packard with the
2641A and by Anderson/Jacobson with the 510. When an undefined overstrike
sequence is received, the H/P terminal will display 0 UT along the diagonal of
the affected cell, and the AJ will display the last character sequence received.
One disadvantage in displaying the last character sequence is that "security
blots" (such as those displayed for the entry of passwords) are not secure.
Consider what happens when you sign on to STSC's APL*PLUS Service. The
system overstrikes the three character sequences

GHBGSBHSGBSBGBS
MI+M4MI+MI+MNMNMNM
585858HEHEHEHEH

to create a security blot. It then backspaces so that the entry of your user
number and password

)1231+567:SECRET

will be obscured. If the terminal displays the last character sequence entered,
the password SECRET will be clearly visible.

Some display terminals have the capacity to store more than a single
screenful of information in memory. The ability to recall the previous screen,
or several screens, is a valuable option for programmers and those needing to
display long reports.

366 A Consumer's Guide to Choosing an APL Terminal

Some display terminals can be connected to devices other than the host
computer. There may be a composite video output, suitable for connection to
monitors for observation by a number of people. There may be a data
connection to a printer or data recorder. On some terminals, the speed of
transmission to the printer may be different than that to the host computer.
The user may choose to print everything coming down the line, or send a
screenful of information to the printer.

When a display terminal is used for text or data entry, optional "line" or
"screen" transmission modes can be very useful. In these modes, data can be
sent to the host computer one line or one screen at a time, rather than
character by character. The benefit is that before the data is transmitted, it
may be edited "locally" without any processing from the host. When used with
a "protected-fields" feature, a form can be shown on the screen, so that the
user can fill in the blanks. Then the data on the screen (without the text of the
form) is sent to the host computer.

Features Specific to Different Types of Use

Different APL users use different features of the language, and so are
concerned with different terminal features. Consider these four types of APL
users:

• The casual interactive user-typically signs on for about one half
hour.

• The APL programmer-signs on for hours at a time, to develop
and test code.

• The data entry operator-transcribes large amounts of informa
tion via the keyboard.

• The report printer-produces long reports at the terminal.
Most APL users fall into the casual interactive class. Typically, this type

of user signs on to the system, enters a few items of data, and prints a one- or
two-page report; he may then repeat the cycle. The total elapsed time is 15 to
30 minutes. These users typically are not APL experts, nor are they good
typists. They place few demands on a terminal, other than that it be reliable
and easy to use and that it provide good print quality.

The APL programmer typically signs on for several hours at a time to
enter, edit, and test APL programs. Since the level of interaction with the
computer is high, it is important that the programmer find the terminal easy
to use. In addition to the fundamental features important to all users,
convenience of editing, keyboard touch, and other human-engineering features
are important.

The data entry operator will appreciate high transmission speeds and
features supporting local editing. After several hours at the terminal, image
quality also becomes very important. This type of user may not need a "true"
APL terminal-if only numbers and normal alphabetic characters are being
entered, a terminal with the ASCII character set may be a lower-cost solution.

The user printing very long reports at the terminal will be concerned with
print quality, freedom from buffer overflow, and excellent paper tracking.
Higher print speeds will be appreciated, as will an end-of-paper alarm.

Paying for an APL Terminal

Once you have evaluated the requirements for a particular application,
look at the prices of terminals fitting those requirements. You'll probably find
that more features cost more money. You'll also find that terminal prices fall
into the following ranges:

A Consumer's Guide to Choosing an APL Terminal 367

• around $2000 (thermal printers, simple display terminals)

• around $3000 (daisy-wheel printers)

• around $4000 (120 CPS printers, feature-packed display ter
minals).

An important price consideration is not just initial cost, but lifetime cost;
reliability is important, and a terminal for which service isn't available is no
bargain at any price.

Furthermore, you needn't buy a terminal in order to have one. Many
manufacturers and vendors make lease arrangements available, and a few
dealers will even rent terminals on a short-term basis. Rental for a few weeks
or months can be an aid during periods of heavy use, or as an extended trial
before purchase.

Of the three options, rental is the most expensive. The difference between
purchasing and leasing, however, isn't clear-cut. Leasing is advantageous
because the owner has an interest in servicing the terminal to keep it in prime
condition, and there's likely to be a cheaper, better terminal to lease for your
application next year. Ownership can be cheaper, particularly when the tax
advantages of depreciation are considered. A typical terminal selling for $3000
might be available on a one-year lease for $150 per month, maintenance
included. The cost of a three-year loan at 15 percent interest is roughly $103
per month. When the monthly cost of a maintenance contract ($20-$25 per
month), is considered, the lease commands a premium of perhaps $25 per
month. This premimum may be worth paying, however, if you're likely to want
to replace the terminal before two years are over.

Conclusion

The wise buyer in the market for an APL terminal will compare features
and prices, just as he would for any important purchase. By taking some time
in advance to determine the needs of the terminal users, the buyer can chart a
much easier course through the sometimes bewildering waters of the APL
terminal market.

Carl Cheney, currently an applications consultant in STSC's San Francisco
office, has been with the company for almost five years. He previously worked
for two years at Dallas County Community College and for two years at the
University of Texas at Arlington. In 1973 he co-authored, with Harley M.
Courtney, a paper titled "An Application of the Binomial Distribution to Sales
Planning", which appeared in The Proceedings of the Fifth International APL
Users' Conference (AP L Technical Committee, 1973).

Cheney attended El Centro College in Dallas, Texas.

Scott McAuley joined STSC in 1977 as a marketing representative and is
currently an applications consultant in the company's Los Angeles office. Before
joining STSC he spent a summer as a junior systems analyst for Sunkist
Growers, Inc., and taught APL, accounting, and finance at the UCLA Graduate
School of Management.

McAuley has a RA. in economics from the University of California and an
M.RA. in accounting and finance from the UCLA Graduate School of Manage
ment.

Index

This index references the authors of the papers
in this book, along with each occurrence of selected
keywords.

Abbott, Gayle E., 138, 141
Accountants, 134
Accrue, 132, 284
ACE, 70,87,138,230,270,346
Acoustic, 361
Acquisition, 23, 53, 154, 206-7
Adaptive, 191, 202
Advertisers, 162
Advertising, 161, 168, 170-2, 323
Aerodynamics, 189
Aerospace, 189, 225
Agencies, 177-9,250
Aging, 134, 220, 228
Agricultural, 142
Agronomic Seed Growers, 142,144
Aircraft, 186
Algebra, 118, 246, 323, 328
ALGOL, 2
Alvord, Linda, 130-1
Amdahl, 22
Amortized, 16
Animation, 247
Annapolis, 119
AP, 90-1, 93, 95, 99
APLFULL, 229
APLSF, 70, 73
APLSV, 70,97,344
APLUM, 70-1
Append, 10,93,95-6,266-7,269, 353
Application, 1-2,4,6-7,9-10, 13, 19-21,32,38, 43

7 , 52-4, 56, 65, 68, 71, 74, 76, 78, 80, 82, 87
9,98-102, 109, 111-5, 117, 119, 121 -2, 124,
126-7, 129, 132, 135-8, 140, 143, 147-51, 153
4, 156, 159, 165, 171, 185, 188-93, 196, 203-6,
208,210 -8, 224-5, 227, 229-32, 236, 238, 240
2, 246-7, 249, 251-2, 254, 260, 262-3, 265-7,
269 -74, 278-84, 286, 289-90, 302, 305, 308,
310-1, 326-32, 338-42, 344-6 , 354, 356, 366-7

369

Apprentice, 183
Aptitude, 138
Architecture, 2, 44, 283
Archival, 23
Archived, 111
Arithmetic, 8, 57, 125, 313, 319-20, 352
Artist, 247
Arts, 119, 131
ASCII, 58, 72, 358, 361, 366
Assembler, 2, 7, 9, 45, 47, 60, 104-5, 186, 348
Asset, 19, 44, 187, 204
Assets, 35,44,47,68, 145, 185, 286
Asynchronous, 15
Atmosphere, 158, 308, 328
Atomic, 118
Audit, 134, 166, 188, 213, 265, 269-70, 277
Autostart, 308-9

Backlog, 154
Backspace, 357, 361-2, 364-5
Backup, 19,23,68,227,238,265
Bar graph, 241-4
Batch, 21,34,46,54,57,62,64,69,72,74,98,102,

111-2,133,138,158,179-80,193,210-3,215-
9, 223-4, 348

Baud, 18, 54, 62
Becker, Jack R., 220,225
Beep, 364
Bell, 13, 131,361-2
Bell, Stuart A., 98, 103
Benchmark, 7, 54-5, 72, 74, 153, 198
Bergquist, Gary A., 285, 289
Bickford, William R., 173, 175
Billing, 23, 55, 68, 178, 205 , 220, 223-6, 228, 344
Binary, 57,207,218
Binomial, 367
Biology, 136
Biomedical, 78, 112
Block, 4,86, 214
Blot, 365
BMDP, 78,82,112

370

Bohm, Ronald J., 161, 167
Bookkeeping, 257
Boolean, 57,89,255,277,293-4,296-7
Bottleneck, 6
Branching, 310
Broad, 135, 137-8, 140, 153, 175, 192, 204, 208,

335,346
Brown, Robert G., 65, 190-2
Budget, 54-5, 116-7, 129, 145, 156, 158, 169, 171,

185-7, 199-202,210, 250, 252-3, 259, 264
Budgeting, 55, 122, 127, 156, 172, 186-8, 190, 195,

198,200,202,204,264,285,335
Burroughs, 56, 70 , 72-3, 194
Butterworth, Richard W., 43,48

Calcomp, 245
Calculus, 324
Capitalize, 47, 313
Career, 26, 130-1, 135-6, 138-41, 175
Cash, 144-5, 148, 152-4, 168, 207-8, 221, 237, 287-

8,335
Chaining, 5, 258, 260
Chambers, Ollie, 142, 145
Channel, 22, 24
Chargeback, 147
Checkpoint, 46, 88
Cheney, Carl M., 356, 367
Circuitry, 6
Clerical, 65, 140, 173, 175, 232, 237, 315
CMCS, 61-2, 65, 191-3, 273, 278
CMS, 74,79,82, 84-5, 88, 90-6, 99-102, 105, 109,

229, 337
Co-author, 42, 184, 322, 367
Co-founder, 129
COBOL, 2, 34, 51, 55, 58, 60, 82, 88, 112, 148, 185,

191,212,219,230,322
Coding, 1,3-4,6, 148, 150-1,212,222, 224, 239,

309,341,345
Coefficients, 323-5
Collections, 116, 293, 351
Commercial, 16,21,23,56,67-8,71,121, 160"

189,192,225,312
Compiler, 3, 7, 45, 72, 78, 82, 99
Computer-Aided Instruction (CAD, 110, 135, 137
Conferencing, 238
Confidential, 177, 234, 263-4, 266
Construction, 42, 72, 109, 147, 177, 179·80, 183,

241,254,281
Consultants, 173, 199, 237, 311
Consumer, 142, 168, 170-1, 356
Controller, 22, 24, 149, 151 , 205, 216
Cook, Robert E., 67, 69
Coordinator, 49,66
Corporations, 16, 33, 139, 196
Correlation, 27, 331-2
Costs, 1, 16-7, 19,23, 43-4, 47, 49-50, 54, 67-9, 99,

104,106,108, 115, 121, 143-5, 172, 179, 183,
185, 187, 195, 206, 208, 230 , 232, 235, 237,
263,269,295,302,316,334,336,345,365

Coupon, 170-1
Covariance, 331
Creating, 9, 109, 112, 130, 151, 158, 186, 188, 207,

299-300,304, 308

Index

Creativity, 139, 141
Crick, Michael F. C., 70,74
Criminal, 137
Cryptic, 179, 288
Currency, 28, 173-5
Curriculum, 130-1

Daisy, 358, 362 -3, 367
Damage, 25, 101, 263, 267-8
Database, 34,37-8,42,46,54,62-3,65, 105, 113-7,

119, 136, 140, 148, 152-4, 163, 165-6, 184,
205,227,230,241,249,264,268,271,274,
279,283,290,292,326,329,338,348

DATAEDIT, 258-9
Dataset, 17,46,56-8,60,221-3,225,331
DBMS, 114-5, 117, 119
Deactivated, 256
Deadline, 150, 211, 236
Dealer, 168, 367
Dealership, 133, 189
Debits, 186
Debt, 35, 154, 207
DeCloss, Robert R., 39, 42, 177, 184
Decoding, 337
Decollated, 212
Deductions, 220,222, 298
DEFEX, 348
Degradation, 24, 69
Delimiters, 242
Demographic, 166, 170
Demuxing, 15
Deposits, 153
Derivatives, 136
Design, 1-2,4, 7, 10, 19, 22, 39-40, 44, 46, 52, 60,

65,71-2, 87, 103, 109, 117, 119, 127, 133, 137,
148, 150, 169-70, 173, 183, 185-6, 188 -90,
192, 194,206-7, 209, 212, 218-21, 223-5, 239,
241, 249-51, 260, 263, 265-73, 279-80, 283,
285, 287, 290-2, 294-5, 302, 307-8 , 329-31,
338, 340-2, 345-7, 349, 355, 357-8, 362

Designer, 10,25,44,104,115,117-9,148,185,
192, 210, 213-5, 218, 247, 249, 257, 263, 269
70,340,347,357-8

Detached, 78, 86, 291
Dictionary, 76
Directory, 40,81, 222, 228, 239, 244, 258, 267,

275-7, 292-5, 298, 303, 343
Disconnected, 18
Disks, 22, 24, 78, 81
Distributed, 44, 71, 79, 169, 181, 212, 217, 229-30,

250,325,336
Document, 3, 7, 153,222, 224, 229-30, 308-9, 340,

346
Documentor, 340-1,343
Drawings, 247
Dyer, Daniel, 195, 203

Earnings, 142, 144-5, 198, 207-8
EBCDIC, 58, 101, 356, 361
Echo, 101
Econometrics, 137, 323, 325-7
Economics, 24,50, 137, 145, 194,327, 344, 367

Index

Efficiency, 2, 6-8, 138 , 150, 165-6, 191, 239, 283,
310, 334, 336, 340, 347-8

Electronic, 24, 86, 156, 193, 195, 200, 209, 225-6,
232,236-7,260

Elegant, 121, 261, 290, 299
DELX, 348
EMMA, 32,39-40,42, 184,224,275,291,308,340,

342-3
Emulation, 6-7, 72
Enhancement, 68, 73 , 114, 144, 150, 152, 154,

192, 195, 199,265, 274, 277, 280, 282-3, 345,
347-8,354

Equity, 198, 208
Eskinazi, Jak, 249,261-2, 290, 305
Estep, John A., 61, 65
Estimate, 44, 55, 163, 187, 230, 323-5, 329, 345
Estimating, 178, 230, 325, 345
Evolution, 61, 114 , 202, 210, 276-7
Exception, 9, 63, 102, 250-1, 275, 277, 282, 302,

348, 364
Executable, 3, 9, 43-4, 88, 253-4, 258, 260, 296,

298
Expediters, 214
Extendible, 277

Factory, 104, 357
Faltz, Janet H., 28, 32
FCGEN, 57,60
FC L, 310, 341, 344
FICA, 178
Fick, Robert C., 204, 209
FIFO, 23,99
File, 2,10,22,25,33,35,39-41,45-7,56-7,59-60,

62-4, 68, 71-4, 78, 81, 85, 88-96, 99-102, 105,
109, 111-2, 114, 119, 140, 159, 178 , 181-3,
186-8, 212-3, 217, 221-4, 226-9, 238-9, 242-4,
254, 258-60, 263, 265, 267-70, 273-7, 283, 290,
292-3 , 297-8, 301, 303, 309-10, 337, 339, 342
3,346,348,352

Filed, 235,250,276,298
FILEDEF, 85, 91
FILEDOC, 343
Filename, 90, 92, 95, 309
Fileprint, 77, 227, 343
Files, 2, 10,23,25,27,37,40,54,56-7,59,61-3,

72,77-8,81,83,88,90,98,101,105,112,
149, 151, 186-8, 201, 213, 215-7, 221-2, 229,
238, 258-9, 265, 267-70, 272, 276, 294, 303,
308-9, 312, 337, 342-3, 352

FILESORT, 342
Finance, 139, 145, 173-4, 189, 204, 209, 338, 344,

367
Financials, 199
Financing, 143, 154
Fireproof, 23
Firmware, 68-9
Fiscal, 41, 129, 147, 156, 159, 188, 201, 250, 285
Fleet, 334
DFMT, 4, 30-1, 73-4, 129, 158, 338, 346
FNED, 11,341,343
FNR, 12,344
FNREPL, 12,341,344

371

Foreman, 180
Formatting, 28, 30-1 , 114, 128,227, 229, 282,

287,289,312,340,342,346
FORTRAN, 2-3, 7-8, 34, 45, 47, 51, 55, 72, 76, 78,

82,88,98-102,105,112,126,322,348,350
Fox, Mary Lou, 104, 109, 135, 137
Fox, Ralph L., Jr., 279, 284
FPS, 143-5, 173-4, 279-80 , 286, 291, 308
Franchise, 170, 186, 189
Fund, 178,207,222
Funds, 49,153,178,199,206,208
DFX, 96

Galbraith, D., 246
Games, 137, 199, 291, 363
Gaming, 191
Gardner, Martin W., 270
Geden, Richard C., 61, 65
Gehl, Patrick P., 156, 160, 225
Geller, Paul A., 306, 310
Gilman, L., 60
Global, 5-6, 48, 188, 283, 293, 309-10, 340
GNP, 326
Golden, Kenneth E., 173, 175
Government, 33, 44, 53, 55 , 132-3, 177-9, 181,

194,206,323
Graph, 165,207,243-4,260-1,290,295,299,301-4
Graphing, 330
Gull, Thomas A., 49, 52

Hagenbuch, Brian C., 114, 119
Halon, 24
Handelman, Michael E., 21, 27
Handshake, 257
Hardwired, 16
Headcount, 198-9
Headhunting, 141
Headings, 28, 30, 34-6, 38, 40-1, 128, 188,230, 286,

288, 307
Health, 142, 298, 306, 344
Heuristics, 337
Hierarchy, 80, 117, 173, 252, 300
Histogram, 166, 331
Hocquet, Christian, 111, 113
Hopkins, David L., 33, 38
Horizon, 45, 198
Hospital, 249-50, 262, 290, 305, 344
Host, 15, 17-8, 45, 70-2, 210, 281, 358, 366
Hotline, 51
Housekeeping, 1, 68
HSDTS, 62, 342

Icosahedron, 130
IFS, 326
Implementer, 4, 9, 188, 225, 261, 263, 290, 298
Impractical, 250, 291
IMS, 113
Income, 144, 198, 266, 325
Indices, 296

372

Industrial, 147, 191,228,284,326, 329
Industry, 22, 139-41, 145, 147, 162, 169, 177, 179,

183,189,198,200,203,210,216-7,219,225,
228,232 , 250,327, 358

Inflation, 142, 206, 232, 292, 336
Inhouse, 14, 16-8,53,61,66-9, 142, 147, 161, 185,

191,211,216-7,344
Insiders, 141
Instructor, 135
Insurance, 65,139,178,183,206,236,271,332
Integration, 18,88,97,280
Integrity, 23, 115,251 ,264-7,269-70
Intelligence, 34, 45, 47, 230, 312, 332
Interactive, 14, 22-3, 39, 44, 46-8, 60, 62, 69, 80,

104-5, 109, 111-2, 119, 122-3, 133, 136, 147,
152,179-80,187-8,191-2,211,219,230,234,
238-9 , 242, 313, 322, 325, 328-30, 334, 337,
347,356,366

Interface, 10,22,25-6, 47, 55, 61-4, 83, 88, 96, 98
9,102,104,211,221,238,249,266,289-90,
295,301-2, 342, 356

Interleaving, 365
Interlocks, 115, 239
Interpreter, 2-3,6-8,44,47, 78, 80, 96, 348
Interrupt, 211, 251
Invention, 121
Inventory, 61, 65, 114, 133, 140, 144, 178, 190-1,

193-4, 213, 219, 228, 230, 271, 287, 317, 334-5
Invoice, 220, 223, 364
Irvine, Vess E., 185, 189
ISAM, 90
Iteration, 10, 319

Jargon, 40, 78, 122 , 210, 250
Journeyman, 178, 183

Karpf, Ronald S., 328,332
Keynesian, 325
Keyword, 252, 260
Kranish, Clif, 56, 60

Label, 244, 310
Labor, 121, 177-9, 232-3, 237
Laboratory, 136, 142
Lacourly, Gerard, 111, 113
Landau, Eric M., 190, 194
Language, 1, 3-10, 14,22,28, 38, 40-1, 43-5 , 47,

55-6, 58,68, 71-3, 80, 88, 98, 100, 102, 105,
112, 114-5, 119, 121-2, 124, 129-30, 132, 135,
138, 143-5, 148, 151, 158, 185-6, 188, 190,
193,196,199,225,238-9,246,249,265,280
-3,312,321-3,328-30,335,337-8, 348, 354,
356-7,366

Languages, 1,3,9,34,43-5,47,55-6, 58, 73, 76,
86,88,99,105,112,117,121-2,124,129,136,
138, 145, 147 , 185, 192, 195-6, 208, 214, 313
4,319-21,328-9,337,347

Lear, Fred B., 14, 19
Learning, 22,26,43,77, 130, 135-6,230,270,315,

340, 350

Index

Lease, 54, 145, 206-7, 363, 367
Leasing, 206-7,367
Ledger, 51, 174, 178-9, 185-6, 201, 205, 208, 220-

1, 223, 264, 266-7
Legal, 226, 231
Legibility, 33, 211, 362, 365
Liabilities, 185
Liability, 187
Library, 2, 65, 78, 84-5, 99, 110, 112, 114, 128,

137,148,150,190,222,244,272,274,276-7,
279-80 , 283, 291, 308, 310, 331-2

Licensing, 167
Linear Programming, 45, 153
Linefeed, 361
Linguistic, 44
Liquidity, 153
LISP, 73
Loan, 367
Localization, 5, 344
Logarithms, 122
Loop, 299, 309-10, 319
Looping, 46, 282, 310, 320
Luzi, Andrew D., 132-3
DLX, 251,309

Machinery, 231, 247, 322, 332
Mail, 91,168,170,179,232,234-7,239
MAILBOX, 156, 200, 226-8, 232, 234-9, 260
Mailroom, 227
Mainframes, 193
Maintainable, 306-7,337
Maintenance, 10, 17, 26, 44-5, 53, 115,206-7,224

6,239,249,251,256,258,270,272,276-8,
280, 283, 302, 306, 339-40 , 345, 363, 367

Management, 1, 4, 9, 19, 32, 38-9, 42-3, 46, 49-50,
53-5, 61, 65, 67, 69, 79, 98, 109, 111-5, 119,
121, 123, 132, 134, 137, 139-41, 143 -5, 148-9,
151-2, 154-6, 159, 161, 163, 165-8, 172-3, 175,
177-9,184-5,187-90,192-3,195-200,202,204
5 , 209, 219, 224, 227, 231, 234, 236, 238,
240-1, 246, 250, 257, 260-2, 271, 275, 280,
282, 289-91, 305, 312, 317, 322, 327-8, 332,
334-5, 338, 340, 342, 344, 349, 367

Manhours, 43, 47, 179
Margin, 68, 123 , 364
Marketing, 14, 32, 50-2, 86, 129, 132, 156, 158-9,

169-72, 175, 194, 196, 201,220-1,223,226,
228,236,261,289,305,311,336,344,354,
367

Marketplace, 24, 54, 138, 140, 163, 166, 206, 280
Materials, 65-6, 166, 177, 179, 190 , 192, 217, 308,

334-6
Mathematics, 13, 32, 42, 55, 65, 69, 71, 110, 113,

121,130-1,135,137,167,184,231,271,284,
335, 344, 355

Matrix, 8, 12, 29-30, 45-6, 59, 72-3, 89, 93, 95 -6,
104, 109, 115, 122, 125-7, 158, 200, 220, 238,
252-8,265,291-7,304,308-9,323-5,328,331,
337, 342, 350-1 ,353-4,358, 362-3

Maximizing, 65, 104
McAuley, Scott N., 339,344,356,367
McGhee, Robert L., 76, 86

Index

Measurement, 154, 244
Media, 23,58,168,170,172,227,229,247,348
Merging, 68
Messages, 10, 38, 90, 150, 179, 213-4, 226, 234-6,

238-9, 242, 252, 254, 282, 310
Microcode, 7, 68-9
Milestone, 154
Minicomputer, 14, 16
Minidisk, 78, 81
Minimize, 18, 44, 104, 161, 250, 323, 325, 333, 339
Modeling, 44, 103-5, 108-9, 137, 143-5, 148, 159,

163,174,209,250,279-83,285-6,325,327,
333-6

Models, 6,46, 116-7, 136, 145, 163-4, 167,207,
279,281-2,291-2, 325-6, 333-5, 358

Modems, 14, 17, 361
Monetary, 49,170
MPSX, 88, 104-5, 109, 111, 335
MRP (Material Requirements Planning), 65, 191-

2, 210-2, 216-7
Multiplexer, 14
Multiuser, 10, 147
Multivariate, 330
MVS, 69
MVT, 21, 58, 76-7, 80, 229
Myrna, John W., 14, 19, 232, 240, 345, 349

Namespaces, 73
Negotiate, 139
Nelson, James R. 339, 344
Nested Arrays, 351
Nesting, 260
Net, 16-7,19,51,142,144-5,161-2,166,178,192
Network, 14, 16-9,26,46, 54, 84, 116-7, 141 , 147-

52,154,158,238,240,251,335,349
Networks, 14, 238, 334
News, 161,205,217,226,230,347
Newspapers, 167, 170
Nodes, 18,292-5, 299-304
Nonlinear, 45, 331
Nonlooping, 282
Normalized, 166
Notation, 1,31, 38, 58, 60 , 121, 130,241-2,246,

320, 323, 325, 337, 356-7
Novicky, Edward R., 323,327

Obfuscation, 135
Obsolescence, 163
Offsite, 23, 230
Online, 22-3,84, 111, 122, 140, 149-50, 152, 156,

158-9, 179-80, 183, 187, 200-2, 205, 211, 216
7, 222, 224, 227-30 , 241, 284, 313

Onsite, 144-5, 151
Operations Research, 147
Optics, 118
Optimization, 9, 45-6, 104-5, 109, 279, 281, 333-8
Osborne, Mark L., 88, 90, 96
OSFILE, 58
Outages, 18
Overhead, 9,250,295
Overlay, 171, 247, 358
Overtime, 178

373

Package, 40, 58, 65, 78, 81, 99, 102, 111, 129, 133,
144-5, 169, 184, 191 , 193, 199, 201-2, 238-9,
247, 271, 279, 331-2, 340

Packet, 14-8
Paperwork, 233
Partition, 133, 257, 342
Passwords, 265, 365
Paycheck, 363
Payments, 205,207,220
Payroll, 133, 178-80, 182, 204-5, 208, 220-2, 235,

264
Performance, 7, 22, 24, 44 , 46-7, 53-5, 68, 77, 104,

115, 134, 140, 152-4, 166, 198, 201, 207, 218,
222-3, 279, 282, 328, 357

Peripherals, 22, 193
Personalized, 51
PERT, 39
Photocomposition, 230
Photographic, 191
Physics, 39, 103, 118-9, 160, 225
Pie graph, 241-2
Planning, 13, 15, 22-3, 27 , 32-3, 52, 61, 65, 69,

114, 137-45, 147-9, 151, 156, 159, 169, 172-5,
188, 190-3, 195, 197-200,202, 204,208 -10,
212,214,217,234,238,249-50,261,264,278
9, 284-6, 288-91, 305, 308, 331, 334-5, 344,
348, 367

Plotters, 242
Pointer, 6, 101, 258-9, 292-5, 297
Polled, 15
Portability, 45, 47, 361-2
Portfolio, 65, 147-8, 152 , 154, 271
Postings, 188
Practical, 70, 98-9, 102, 126, 129, 132, 149, 154,

197,287,295,308,316
Practicality, 196, 286-7, 289
Predeveloped, 112
Prepare, 17, 27, 102, 111, 144, 149, 165, 175, 200

1,211,227,229,356
Pricing, 54-5, 67, 156, 159, 204, 206, 226-7 , 231,

327
Pritchard, Marilyn J., 226, 231
Processor, 3-7,9, 23, 69, 71, 83-5, 88-9, 93, 95-6,

99-101, 105, 109, 219, 229, 249, 251-6, 258-61,
266 , 290, 300, 302, 348

Productivity, 1, 33, 51, 68, 122, 129, 148, 192, 203,
205-6, 208, 213, 232-3, 237, 261, 333, 335-7,
339, 345, 347

Profit, 49, 68, 106-7, 173, 177, 187, 196, 199, 203,
206, 220-1, 242

Programmers, 1, 3-4, 21, 32, 38 -9, 41, 43-4, 56,
58,60,6~ 86, 11~ 117, 122,135,196,212-7,
224,247,265,272,286,306,308,335,339,
346, 350, 362, 365

Promotional, 156, 159, 166, 168-9, 171

Prompts, 150, 153, 188, 214, 228, 234-5 , 239, 242,
252-3, 256-7, 261, 282, 304

Proprietary, 39, 68, 70, 144, 190, 224, 261, 282,
310

Protection, 5-6, 10, 24-5, 31, 204
Prototype, 46, 348
Purchase, 54, 61-2, 64, 168, 170, 185, 193, 206,

216,227-8,231, 363, 367

374

DQLOAD, 99, 102,259
QSAM, 88,91
Queue, 23,46, 91-2, 213
Queuing, 23, 218, 238
QUICKPLAN, 32-4,37-8,188,285-7,289,343,348
Quietload, 259-60

Raster, 242
Readability, 6,23,28, 43, 45, 47, 179, 235, 260,

309,341,362
Receivables, 178, 287
Records, 57-9,78,95, 101, 116-7, 152, 228
Recruiting, 138
Redundancy, 24
Reentrant, 260
Regression, 166, 323, 325, 331
Reinvesting, 153
Relational, 114, 116-7, 119,276
Reliability, 17-8, 21, 23, 45, 48, 239, 284, 361, 363,

367
Remote, 40,54-5,62, 112, 133, 143, 145, 149, 192,

197, 216, 238, 262, 269, 305 , 356
Rental, 367
Repair, 306
Reports, 33-5, 37-41, 45, 63, 105, 111, 149-54, 156,

158-9, 165, 173-5, 177-83, 186, 188, 193, 201
2, 213, 217, 220-3 , 228, 230, 250, 252, 264-6,
285-6, 290, 303-4, 330, 335, 338, 343, 362,
365-6

Restartable, 309
Restarting, 269, 309
Retail, 163, 165, 170
Retract, 90-2, 95, 101-2
Retrieval, 65, 149, 179, 188, 226, 271, 276, 283,

296, 326, 338
Reynolds, Jack S., 61, 65, 263 , 271
RJE, 210
Robinson, Randall S., 147, 154
ROI (return on investment), 208
Rose, Allen J., 60, 246, 312, 322, 356, 362
Rosebush, Judson G., 241,246-7
Russell, James S., 192, 210, 219
Ryan, Arlene E., 323, 327

Safeguards, 264
Savings, 6-7,54-5,174,179,187,207,237,313,

345
Scheduler, 10
Scheduling, 23,52,63-4,98, 191,213-5,236, 278,

335, 348
Schnebele, David, 241
Searching, 12, 15 , 222, 225, 276-7
Seasonally, 177
Securities, 287-8
Security, 23-5,27,57-8, 72, 115, 178-9,229, 239,

249,251, 256-7, 263, 265, 267, 269-70, 319,
365

Sensitivity, 144, 175, 251, 253, 256, 264, 279, 281,
286,336

Shadowed, 340

Index

Shared, 37, 70-1 , 74, 78, 81,83-5, 88-9, 95, 98-9,
101, 114, 193, 211,215, 229, 238-9, 265, 267
8,276,295,297,337,348

Shareholders, 33
Shaw, William M., 168, 172
Shield, 272
Shutdown, 258
Simplex, 45
Simulation, 45,61, 86, 103, 136, 154, 191-2, 281,

291-3 , 297
Simultaneous, 215-7,266,268-70,276,281,283,

286, 291, 320
SLT, 85
Smith, Robert A., 247,350,354
Snapshot, 62, 64
Solar, 327
Spencer, J. Murray, 1, 12, 362
Standards, 21-2, 140, 216, 273, 344, 361
Stathes, Christopher T., 333,338
Statistical, 48, 78, 88, 102, 111-2, 136, 148, 194,

280-1, 325 , 328-32,348
STATPAK, 331
Sternlieb, Howard M., 61-2,66
Stewardship, 251, 255-6, 261
Stock, 61, 207, 213, 217-8, 230, 242
Stockholders, 208
Structured, 56-7, 198, 242, 247, 270, 306
Style, 6, 34, 129, 214, 228, 246, 281, 307, 309, 313,

321,344,347
Subaccount, 185
Supervisor, 19, 27, 230, 251, 255 , 257-61, 290, 304
Supplier, 54
Surveys, 111
Suspended, 47
Suwara, John E., 121, 129
Swap, 72, 152-4, 260
Swapping, 6, 10, 22, 70, 260
Synchronized, 239

Tabulation, 30, 279
Tape, 22,57,59,62,78,83,85,165,213,229,247
Tapes, 23, 25, 46, 54, 228
Task, 28, 34, 41, 46, 53, 55, 62-4, 114, 144, 173,

179-82, 196, 198, 222, 241-2, 246, 253, 260,
267,269-70,273, 277,281, 283, 299-303, 306,
315-6,320,334,341,346-7,354,356

Tasks, 1,46-7,61, 138, 154, 179, 183, 185, 192,
217,227,231,257,260,276,282,291,299,
301-4,335,339, 341, 347-8, 354

Taxes, 206, 318
Teachers, 130-1
Team, 21-2,26-7,96, 139, 197-8, 202
Techniques, 57,65,86, 98, 106, 109, 115, 118,

131, 163, 172, 191-2, 196, 199,236,239,250,
257,270-1,282,285,291,309,312,325,330,
333,335-6,338,340,350

Telephone, 13-4,62,67,82, 123, 128-9, 131, 149-
51,227-8,233-5,237,286,313 , 358, 361

Teleray, 365
Teletype, 213, 215
Template, 321

Index

Terminal, 3, 6, 11,26,28, 38, 40, 46, 54, 56, 61-2,
65, 68, 70-2, 76-7, 80, 84, 91-2, 99-102, 123,
130, 133, 136, 145, 149-51, 153, 158, 180, 183,
185,187,199,214-7,221,226-7,229,234,
236,238,246,250,287,300,308,313,315,
325, 330, 342, 347, 356-8, 361-3, 365-7

Territory, 76, 158, 161, 175, 223
Throughput, 10,54
Tickler, 227
Tie, 72, 221-2, 277, 309
Timecards, 180-1
Timesharing, 144
Timestamp, 23,234,283
Timing, 54, 62
Traffic, 17, 137, 238
Transaction, 16, 61, 64, 132, 185-6, 204, 208, 210

1,217,219,221,223,227,264,266-7,309
Transactions, 62,64, 152, 185, 201, 205, 211, 213,

217,223,266-7,270
Trap, 51
Travel, 128-9, 205
Treasury, 153-4
Tree, 116,242, 252, 257, 284, 299-304
Trustee, 178, 182
TSIO, 98
TSO, 99
Turnover, 150
Typeset, 230
Typewriter, 211,213-4,229,234, 313, 356-7, 362-3

Unambiguous, 38,337
Unlocked, 12,270
Upgrade, 18,21,26,284
Usability, 7,362
Utility, 43, 100, 115, 128, 185-7, 242, 249, 256,

274-5,278,280,283,290,298,308,310,334,
342,347-8

Validation, 266
Variance, 55, 166, 188,201,330-1
Vehicle, 105, 335
Vendor, 18,21,49-55,67-8, 119, 166, 179 , 186,

193,220,227,363
Verification, 63,211,329
Versatility, 9, 190
Video, 101,229,242,247,358,366
Visibility, 205
Visual, 29, 130, 273, 313
VM, 21, 69-70, 76-8, 80, 83-6, 96, 99, 104-5, 109,

111-2,229, 331, 337
Vogt, Frank, 53, 55
Volatility, 164, 166
Vouchers, 179
VS APL, 7,69-70,85,88-9,96,98-9,101-2,105,

109, 111, 348
VSAM, 88

Wages, 178
Warehouses, 104, 335
Weighted, 23

375

Wheeler, James G., 65, 76, 87
Wholesalers, 163, 165
Withholding, 319
Wood, William H., 240
Word Processing, 229
Worksheet, 40,61
Workspace, 2, 4-7, 10-2, 22, 31, 56 , 59-60, 72,76

8,83,85-6,92-4,98-100, 109, 111, 114, 140,
163,188,220,224,228,230,239,241-2,246,
249, 251, 254-5, 258-60, 268, 274-5, 283, 290-1,
293,295,298,308-10, 331-2, 340, 342-4, 348,
364

Workstation, 62
WSDOC, 340,343
WSFIND, 12
WSSEARCH, 12,340,343
WSSHOW, 12

OXLOAD, 347
XREF, 11,343

Yates, Charles K, 272, 278

ZBB (Zero-Base Budgeting), 198-200, 202

This manual is typeset in lO-point Century
Schoolbook and lO-point Video APLand
Video APL Bold. The text was edited on
STSC's APL*PLUS System using a
photocomposition text editing system de
veloped by James G. Wheeler, a design
specialist for STSC. The index was pre
pared by STSC Vice President Allen J.
Rose using the APL*PLUS FULLTEXT
System.

Computerized photocomposition and page
make-up were performed by Computer
Data Systems, Inc., of Bethesda, Mary
land.

