IN PRACTICE

WHAT YOU NEED

TO KNOWTO
INSTALL AND USE

SUCCESSFUL
APL SYSTEMS
AND MAJOR
APPLICATIONS

EDITED BY

ALLEN |. ROSE
BARBARA A. SCHICK
AND

STAFF OF STSC, INC.




In the early part of the computer era,
the cost of the computer itself
overshadowed all other costs associated
with computing. Over the years,
however, engineering advances (in
particular the integrated circuit) have
steadily chipped away at the cost of
computing hardware, and it is no
longer the dominant component of
computing costs. Labor costs,
particularly systems and programming,
are the largest component of
computing activity today. This situation
has encouraged many researchers to
augment the features and usage
conventions of traditional computing
languages to squeeze more efficiency
from them.

APL IN PRACTICE deals neither with
new approaches nor with facelifts of
proven concepts. Rather, it reports the
state of APL, a method of interactive
computing introduced in the 1960s.
APL is one of the most concise,
consistent, and powerful programming
languages ever devised. The
simplification and efficiency offered by
its rich and powerful handling of work
involving multiple data structures have
saved a great deal of time and money
for the organizations that have used it.
Its proven benefits, however, have
been largely obscured in the literature
by the many incremental
improvements made to more
traditional languages.

This book offers some compelling
arguments for considering APL for
business computing. It also serves as a
handbook for those who know APL’s
advantages, but need help in preparing
to use APL for a wide range of
applications. APL IN PRACTICE offers
the collective experience of over fifty
proven APL practitioners from virtually
every area of practical APL usage.

Three goals dominated the selection
and editing of topics in the book:

m To provide general management with
sufficient knowledge of APL to cut
through the mystique that surrounds
the data processing profession.

m To aid data processing managers and
working professionals in bridging the
gap between their familiar turf and
new fields that are easily mastered with
APL.

® To broaden the horizons of
convinced APL users so that they can
better relate to the real problems of
general management and data
processors.

(Continued on back flap)



(Continued from front flap)

To these ends, the editors have
approached the full range of
cormputer-related tasks required of
modern business. Included here are
innovative applications of APL to
applications as diverse as financial
planning, marketing management,
general ledger, budgeting,
manufacturing, and electronic mail.
Attention is also given to the special
interests of systems management and
professional programmers—formatting
and reporting, writing maintainable
programs, and managing outside
computer services.

While intended to encourage adoption
of APL solutions to business problems,
the depth and diversity of these
contributions will also give general
management and systems management
a clear picture of both the possibilities
and limitations of APL for solving their
data processing requirements.

ABOUT THE EDITORS

ALLEN ). ROSE is Vice President &
Technical Director for STSC, Inc. Prior
to assuming his current responsibilities,
Mr. Rose was the APL Program
Administrator for IBM Corporation. He
has also worked as an industrial
statistician for Procter and Gamble. Mr,
Rose received his B.A. in Psychology
from Duke University. He is the co-
author of APL: An Interactive
Approach (Wiley 1976).

BARBARA A. SHICK is currently
Manager of Publications for STSC, Inc.
Before joining STSC, she was a writer/
editor for the Kiplinger Washington
Editors. Ms. Schick has a B.A. in English
Literature from The Catholic University
of America and is currently pursuing
her M.B.A. at the University of
Maryland.



ALSO OF INTEREST...

A PROGRAMMING LANGUAGE

Kenneth E. Iverson

The book that introduced APL—
illustrates the universality and
versatility of this concise, powerful
programming language, its capacity
to compass a complex and detailed
topic in a short space, and its utility
in theoretical work. Iverson, who
invented APL while at Harvard,
describes the language,
microprogramming, representation
of variables, search techniques,
metaprograms, sorting, and the
logical calculus.

1962

APL
An Interactive Approach
2nd Ed., Revised Reprinting

Leonard Gilman and Allen ). Rose

““...this textbook is still top of the
line—the finest APL textbook
around.”

—Data Processing Digest

“If you can have only one APL
book, there is none better.”
—Computing Reviews

This critically acclaimed guide to
APL features a “hands-on”’
approach that enables readers to
run programs after only two
chapters. Covers the language,
programming documentation
techniques, programming styles,

and function definition—using new

problems from business and
managements—and highlights
recent developments in STSC’s

APL*PLUS System and IBM’s APLSV.

1976

MATERIALS MANAGEMENT SYSTEMS:
A Modular Library

Robert Goodell Brown

Covers theoretical aspects of
system design considerations in
forecasting, inventory
management, production planning
and scheduling, shop floor control,
and physical distribution. The book
is rapidly gaining acceptance as the
leading textbook on the design of
computer-based systems for
manufacturing and materials
management applications.

1977

WILEY-INTERSCIENCE

a division of JOHN WILEY & SONS
605 Third Avenue, New York, N.Y. 10158
New York m Chichester m Brisbane m Toronto

ISBN 0 471-08275-9



3 | WILEY () ﬁ
- ROSE / SCHICK IN PRACTICE INTERSCIENCE 253 M






Rase
Schick

Wiley-Interscience




- ..,,._.g_»—'j

e e e A e e R e e

m..:;
«

R




APL IN PRACTICE



The Practical APL Conference
Washington, D.C.
9-11 April 1980

STSC, Inc.



APL IN PRACTICE

What You Need to Know
To Install and Use
Successful APL Systems
And Major Applications

Edited by

ALLEN ). ROSE
BARBARA A. SCHICK
and

Staff from STSC, Inc.

JOHN WILEY & SONS, INC,
New York, Chichester, Brisbane, Toronto



Copyright © 1980 by STSC, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the

1976 United States Copyright Act without the permission
of the copyright owner is unlawful. Requests for
permission or further information should be addressed

to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data
Main entry under title:
APL in practice.

Includes index.

1. APL (Computer program language)
2. Interactive computer systems, I. Rose,
Allen J. II. Schick, Barbara A., 1951-
QA76.73.A27A18 001.64°2 80-5351
ISBN 0-471-08275-9

Printed in the United States of America.
100987654321

APL*PLUS is a service mark and trademark of STSC, Inc.,
registered in the United States Patent and Trademark Office.



Foreword

In the early part of the computer era, the cost of the computer itself
overshadowed all other costs associated with computing. Over the years,
however, engineering advances (in particular the integrated circuit) have
steadily chipped away at the cost of computing hardware, and it is no longer
the dominant component of computing costs.

Labor costs, particularly systems analysis and programming, are the
largest component of computing activity today. This situation has encouraged
many researchers to augment the features and usage conventions of tradition-
al computing languages to squeeze more efficiency from them.

This book deals neither with new approaches nor with facelifts of proven
concepts. Rather, it reports the state of the technology of APL, a method of
interactive computing introduced in the late 1960s. APL is one of the most
concise, consistent, and powerful programming languages ever devised. The
simplification and efficiency offered by its rich and powerful handling of work
involving multiple data structures have saved a great deal of time and money
for the organizations that have used it. Its proven benefits, however, have been
largely obscured in the literature by the many incremental improvements
made to more traditional programming languages.

This book offers some compelling arguments for considering APL for
business computing. It also serves as a handbook for those who know APL’s
advantages, but need help in preparing to use APL for a wide range of
applications. As with any expanding technology, it would be presumptuous for
us to claim we have all the answers, although there are some of us who have
worked toward making APL applicable to the full range of computer-related
tasks required of modern business. What we do offer is the collective experi-
ence of over fifty proven APL practitioners—approximately 250 people-years’
worth—drawn from virtually every area of practical APL usage.

The papers in this book were prepared as background for presentations
given at “The Practical APL Conference”, which was sponsored by STSC, Inc.,
and held in Washington, D.C., on 9-11 April 1980. Three goals dominated the
selection and editing of the topics covered:

e To provide general management with sufficient knowledge of
APL to cut through the mystique that surrounds the data process-
ing profession.

e To aid data processing managers and working professionals in
bridging the gap between their familiar turf and new fields—such



as financial planning and conceptual information manage-
ment—that are easily mastered with APL.

¢ To broaden the horizons of convinced APL users so that they can
better relate to the real problems of general management and
data processors.

Although we were always aware of these goals while editing, many of the
topics (necessarily) contribute to more than one theme. We suggest that you
begin in that part of the book with which you most closely identify, but that
you sample the wares of the other parts as well. Most importantly, we hope
that this volume will encourage you to apply an AP L solution to some business
problem.

Although the book implies that APL can be used for the full range of
computer activities, we recognize that successful advances in data processing
application come by evolution, rather than revolution. In that spirit we
suggest that you start with some small project. Only after success with a
variety of applications should you begin addressing the main question: Should
APL be used for all new application development in your organization?

Many of the presentations in this book contain examples illustrating the
use of APL. To aid you in distinguishing between user entries and system
output, user entries are given in APL boldface type.

We are grateful to all the contributing authors who shared their experi-
ences and knowledge in this book. So that you can put each author’s
contribution in perspective, we have included biographies at the end of each
article. ‘

We are also grateful to the following people from STSC, Inc., who assisted
in the editing and production of this book: Sarah R. Beirn, Shelly L. Dimmick,
Connie L. Kiernan, Karen M. Kromas, Laurie A. Russell, Nancy T. Vernon,
and James G. Wheeler, editors; and Donna E. Kromas and Jean Medinger,
publications assistants.

Allen J. Rose Barbara A. Schick
Yorktown Heights, New York Silver Spring, Maryland

10 April 1980



Contents

Part 1—The Data Processing Viewpoint
APL Concepts for Systems Management 1
Evaluating Telecommunications Networks 14
Managing an APL Installation 21
An Overview of Reporting and Formatting in APL 28
QUICKPLAN: A Reporting Tool for the Non-Programmer 33
The EMMA Report Generator 39
When APL Is Inappropriate 43
Managing Outside Computer Services: An Organizational
Relationship 49
Selecting and Managing Outside Computer Services 53
Converting External Datasets into APL Files 56

A Fully Automated Interface Between Systems in Boston and
Bethesda 61

Making the Inhouse Decision: Some Considerations 67

Variations in APL Flat Major 70

Travels in VM Land: A Virtual APL Primer 76

Using Shared Variables and Auxiliary Processors in VS APL 88
Practical VS APL—FORTRAN Interfacing 98

Optimization Modeling Systems: An APL/MPSX Interface 104
Real-Life Applications of VM/370 111

APL and The Relational Model of Data 114

Part 2—The General Management Viewpoint
APL Tutorial for General Management 121
APL in the High School Curriculum 130
A Business School’s Approach to Better Business with APL 132
Computer-Assisted Instruction at the Undergraduate Level 135
Career Growth in an APL Environment 138
The Upjohn Company Customized Financial Planning Model 142
Financial Planning Applications of APL in J. Ray McDermott 147
Marketing Management Applications 156
Magazine Distribution Management 161



Computers Ain’t Cool 168

Financial Reporting Systems: A Case Study 173

Using APL for Construction Accounting 177

Flexibility in Accounting Systems 185

Manufacturing Applications of APL 190

Managing and Computing 195

What If: The Making of a Vice President of Finance 204
An Evolutionary View of Business Computer Systems 210
Development of the STSC Accounting System 220

APL in the Corporate Service Environment 226
Electronic Mail 232

Business Graphics 241

Part 3—The Core of APL
User-to-Application Interface: A Command Processor Approach 249
Data Sharing in Large Application Systems 263
Maintenance Systems 272
Design Considerations of a Financial Planning System 279
QUICKPLAN Design Considerations 285
A Data Management Technique Using a Graph Structure 290
Writing Maintainable APL Programs 306
Making APL Palatable 312
The Use of APL in Applied Econometric Analysis 323
Management Statistics with APL 328
APL and Optimization Modeling 333
The Professional Programmer’s Tool Kit 339
STSC’s Design and Development Considerations 345
Nested Arrays: The Tool for the Future 350
A Consumer’s Guide to Choosing an APL Terminal 356

Index 369



Part 1

The Data Processing
Viewpoint






J. Murray Spencer

APL Concepts
For Systems Management

“The dogmas of the quiet past are inadequate to the
stormy present. The occasion is piled high with difficulty,
and we must rise with the occasion. As our case is new, so
we must think anew.”

—Lincoln, Second Annual
Message to Congress.

Information processing successes have led information processing clients
to expect more and better applications. At the same time, pressures of inflated
costs and limited budgets require planners to wisely balance human, software,
and hardware resources to meet these expectations.

The price of human effort is steadily rising, while the cost of fast hardware
is going down. As fast hardware becomes more available and as its speed
increases, improved software is needed to make wise use of the new speed. As
“people time” costs go up, it becomes increasingly desirable to require less of it
to implement and maintain applications. APL serves both of these needs by
transferring many of the tedious, error-prone tasks in coding from the
programmer to the CPU (central processing unit). APL also provides many
powerful language and system support features with which to design applica-
tions. Not only are the tools more powerful, but because APL language
features more naturally represent data and calculations, the user’s initial
perception of a problem translates more readily and directly into APL than
into other programming languages.

In fact, programmers often find that knowledge of AP L notation improves
their ability to represent, and consequently to analyze, problems. AP L accom-
plishes this improved representation through a variety of data structures and
a large, carefully chosen set of primitive functions. The primitives are written
in a concise notation that allows complex algorithms to be represented
compactly. The APL language subsumes detail through array-oriented primi-
tives that reduce the need for explicit control structures. These features reduce
the need for housekeeping to a bare minimum and permit the user to state
only the essence of the problem. Programmer productivity is improved by
working in a higher-level language; APL is as much higher than FORTRAN,
COBOL, ALGOL, or PL/1 as these are higher than Assembler language.



2 APL Concepts for Systems Management

It is often agreed that a programmer can work effectively with a page of
program code at a time. A page of APL code is so concise that it is able to
represent five to ten times as much algorithm as a page of FORTRAN, COBOL,
ALGOL, or PL/1. Therefore, in APL a programmer can work with much more
of a problem at one time. This reduces the amount of time the programmer
spends switching between blocks of code, because there are fewer blocks.
Shorter programs also reduce the work of typing the code. This saves time
handling code, and reduces the chance of typing errors.

Most APL language processors execute code interpretively. Originally this
was dictated by the language requirements and the available development
resources. The interpretive approach allowed addition of powerful debugging
aids as the workspace concept was employed and strengthened. AP L language
processors come with permanent storage facilities for workspaces (as devel-
oped by IBM) and permanent storage for data in files (as first developed by
STSC, Inc., in 1970). Regardless of the CPU architecture or operating system,
APL language processors provide a complete working environment for appli-
cation developers and users. At the heart of APL design philosophy for the
language and its use is the premise that the programmer and user should be
required to know absolutely as little as possible about computer hardware and
system software.

APL is a tool for thinking about data and algorithms. How to use APL to
design algorithms is not the topic of this presentation. Readers who would like
to pursue this direction are referred to the paper entitled “Making APL
Palatable”, which appears elsewhere in this book, and to K. E. Iverson’s “1979
Turing Lecture”, which is to be published in Communications of the ACM. The
presentation that follows will concentrate on how APL accomplishes its
wonders via features such as the active workspace, the symbol table, the file
system, and the efficiency of the APL interpreter.

The Active Workspace: A Dynamic Execution Area

One of the obstacles to executing a conventional assembled or compiled
program in most operating systems is the work involved in linking together
the assorted routines from various libraries and loading them into an execu-
tion area. In APL systems, the user is always “in” a working execution area
called the active workspace. Linking is done automatically among all programs
in the active workspace, so all that is required is to copy or load the programs
into the workspace. If they are present in the active workspace, they will run.
A main program and all of its subroutines are easily saved as a permanent
v)vorkspace in the user’s workspace library with a single command called

SAVE.

In addition to programs, the active workspace contains data stored in
variables. The user can enter any APL statement from his terminal and the
statement will be executed immediately in the context of the active workspace.
Such an immediate execution statement can reference a variable in the active
workspace, and it can call any program in the active workspace as a
subroutine. In fact, there is no need for a “run” command in APL systems,
since entering the name of a program in the active workspace causes it to run;
it is simply a matter of a valid APL statement being entered by the user.

Any APL statement that will execute in the active workspace can be a
statement in an APL program. Thus it is normal to test algorithms one



APL Concepts for Systems Management 3

statement at a time in immediate execution mode before storing them as lines
of a program. Immediate execution of statements is a benefit to be expected of
an interpretive language processor. It is such an important benefit that in
some non-APL systems there are separate interpretive language processors
solely for testing and debugging (i.e., in addition to the compiler that generates
the production version of the tested code). The existence of separate interpret-
ers and compilers for other programming languages raises the question: “How
efficient is the APL interpreter?”’ Rather efficient, as will be seen below.

Programs exist to process data, and while some programs get by with
small amounts of data, an important measure of a computer system is how
much data it can process at one time. In general, the more data that can be
referred to at one time by a program, the simpler the program will be. This
results from less need for control structures in the program to iterate a
solution through repetitions of the fundamental algorithms acting on seg-
ments of the data. All data used by AP L statements is dynamically managed in
the active workspace so that the space used by the data can be reused as soon
as the data is no longer needed. In a conventionally compiled program, a data
array is declared to occupy a certain amount of space. It occupies this space for
the entire program execution—even if the array is needed only by a few lines
of code constituting one step in the algorithm. Some programmers will
actually reuse such an array one or more times elsewhere in their program to
save execution space—which does not make the program easier to document
and maintain! In APL, local variables are automatically erased upon return
from a subroutine, and there is an executable erase that can be used (but is
rarely needed) right in the subroutine or main program.

The dynamic storage allocation in APL systems allows an array, or
variable, to become larger or smaller at any time. The array is always exactly
the size needed by the data being processed. This exact-size quality eliminates
the need for accessory variables in programs that keep a count of the number
of rows or columns in a table (a considerable coding simplification). It also
means that as one array gets smaller, space is immediately available to be used
by another array that may be getting larger. Since the language processor does
not need to know the size and shape of arrays beforehand, the APL pro-
grammer is relieved of having to use declaration statements to specify data
type or data size and shape. Arrays are allowed to change size, shape, and data
type any time a statement reassigns the array variable.

It may be claimed that some documentation is lost by not requiring
variable declarations in the program code. However, the rank and type of an
array is often quite obvious from its context in an AP L statement. If it is not,
and the programmer believes the code should note these specifications, he is
encouraged to add a comment explaining the variable’s attributes. Such a
comment is likely to be more helpful to the reader than a program statement—
like the DIMENSION statement in FORTRAN—that only tells how big the
data can become.

The Symbol Table: Signpost to All Identifiers

All APL programs, whether main programs or subroutines, are called
functions. The names of functions and variables are called identifiers. All
identifiers are cataloged with descriptive and location information in the
symbol table. The language processor keeps the symbol table completely up to
date as each statement executes, because some statements will create new
variables and functions as well as change the size of existing variables. The



4 APL Concepts for Systems Management

programmer does not explicitly manipulate the symbol table, although most
APL statements implicitly reference and modify the symbol table entries.
Actually, most APL programmers know little or nothing of the existence of the
symbol table, and the explanation in this paper is only for those systems-
oriented people who are interested in how the language processor works.

Perhaps the most obvious use of the symbol table is in workspace storage
management. The location of all items in the workspace is maintained in the
symbol table along with information about each item’s status. For example,
when returning from a subroutine, all the local variables of the subroutine are
flagged “to be removed”. The actual removal and reorganization of the space
waits until an APL statement needs to create an array requiring more space
than is available in a contiguous block. At that time, items in the workspace
that are still in use are moved next to each other and items flagged for removal
are discarded. This process is known as “garbage collection”. Garbage collec-
tion is timed asynchronously. It occurs not when garbage is created, but when
the space occupied by the garbage is needed for an array or function.

Other uses of the symbol table support various AP L language features and
language processor efficiencies. For examplie, the fact that the symbol table is
maintained in real time during execution provides late binding of identifiers.
Thus, in this program statement:

'2541, 12CF10.2, CF13.2' OFMT (NAMES;NUMS)

the identifier NUMS could be ¢ :sher a variable or a function. During debugging,
NUMS might be a workspace variable to test the program until completion of
the application module that will manage the application data. When that
module is completed, a function NUMS could be defined in the workspace,
perhaps like this one:

V NUMBERS + NUMS
[1] NUMBERS«[FREAD DEPTFILE,CURRENTADEPARTMENT
v

The format statement above continues to operate without modification,
because the language processor does not make a syntactic distinction between
a variable and a function that has no argument and that returns an array
result. At the moment of execution, it is clear from the context in the
workspace what NUMS is, because there is always only one current (visible)
definition of any identifier. Late binding of identifiers and interpretive
execution allow the application implementer to test changes in his application
design or coding with a minimum of typing and waiting at the keyboard.

More than one item in a workspace can be named with a particular
identifier, but only the most recently created item will be referred to by an
APL statement. A given identifier could be a global function or variable and it
could be local to one or more functions currently executing. Only if an
identifier is declared as local in a function header statement can there be more
than one item with the same name in a workspace. (There is a declaration
statement in APL after all—only one—and it is the function header statement
that declares the function’s syntax and its optional local variables.) When a
function is called, the local identifiers in the function header statement are
marked in the symbol table so that when a value or function is first defined in
the function for the local identifier, it does not disturb the previous definition
of the identifier, but rather creates a new item referred to by the identifier. An
APL statement always references the most recent item created for any
identifier. If there is no local definition in the currently executing function, the
reference is to the most recently defined variable or function with this



APL Concepts for Systems Management 5

identifier. “Most recently defined” implies a scan backward through the chain
of function calls to see which, if any, calling function localized (and defined)
this identifier. If no calling function localized the identifier, the global
definition is used.

Thus APL uses “umbrella localization”. That is, an identifier defined as
local in a function protects the previously defined items with this identifier,
but is available to be read or modified in any functions called by this
function—unless one of the called functions localizes this same identifier.
When execution “returns” from this function, all the local identifiers are
flagged to be erased in the symbol table, and the most recent previous
definition of the identifier is again revealed for reference by APL statements.

When formal parameters are passed to functions (subroutines), the APL
language uses “call by value”. That is, no action in the subroutine can modify
the array specified as the argument to the calling function, because the
arguments of the function are considered local variables inside the function.
For example, if

[91l I+1
[10] XG+«COMP2 I
[11] I8Q+I=*2

calls this function:

V RESULT+COMP2 NUM
1] RESULT«NUM
[21 NUM<NUM+1
{31 RESULT+RESULT ,NUMx2
v

the calculation on line [ 11 ] will use a value of 1 for I. Of course, line [ 2]
does change the local variable ¥UM, which uses as its starting value the same
data as was in I when the function was called.

This call by value is considered a very important protection for functions
that call each other. However, when the arguments to functions are large
arrays requiring thousands of bytes of storage, the CPU time required to set up
the local variable arguments—and the very important space taken up by
them—can be costly, because often a function will look at but not modify its
arguments. If the arguments are not modified, the duplicate copy of the array
is unnecessary. However, the symbol table is used to circumvent the inefficien-
cies of this form of duplication. Without disturbing the APL language
definition of protecting the arguments to functions, the language processor
uses the symbol table information to establish synonyms for arrays. If one
array is assigned to another name, as in

X2+X1

the entries for both X1 and X 2 in the symbol table will point to the same data
stored in the workspace. Thus, X1 and X2 are two different names for the
same data, or synonyms. This will continue to be the case until either X1 or X 2
is assigned a new array—even one that differs only minutely from the other—
at which time the reassigned identifier will point to its new version of the data.
Use of such synonyms reduces CPU time spent on data replication; it also saves
space in the workspace and postpones the need to “collect garbage’.

When a function is called, its argument local variables are not given
duplicate copies of the data arrays supplied to the function; rather, the
argument local variables are treated as synonyms to the data array arguments
until the argument local variables are modified by an assignment. The
synonym feature—sometimes called data chaining—was not part of early APL



6 APL Concepts for Systems Management

implementations. Without it, when coding in a cramped workspace, it was
necessary to use a less readable style of function coding in which arguments
were not explicitly named in the header. Instead, data to be used by the
function was made available through global variables.

The synonym feature provided by having the symbol table maintained in
real time gives the protection of call by value with the space and CPU time
savings of call by name (when these savings are possible).

Because of the protection of arguments supplied to a function as it is called
and the protection of local variables used to control an algorithm, functions
can be used recursively with no effort on the programmer’s part other than to
localize variables to control the flow of processing. Since it is good practice in
any case to localize all variables not needed outside the function, APL
functions are naturally recursive without any extra effort or caution.

Another way in which the symbol table allows increased efficiency is that
the language processor passes a pointer to data for the result of a calculation
when the calculation happens not to modify the data given to it. Take, for
example, the following statement:

XCOMP+«B/XTABLEx10

If B happens to contain a scalar (single element) 1, or even if it contains all 1’s
and no 0’s (as it well might, in some cases), the compression function (/) does
not create a new data array. That is because with a left argument such as
these, compression does not change the data. The symbol table already points
to the temporary array result of XTABLEx10, so the identifier XCOMP is
made to point to this same array, which is then no longer considered
temporary because there is an identifier referring to it.

APL Interpreter Efficiency: A Contradiction in Terms?

Is it a contradiction to use “efficient” and “‘interpreter” to describe the
same language processor? It need not be. AP L language processors started out
with some powerful strengths and development has continued on them for
over ten years. New ones are still being developed. This paper has already
looked at several ways in which efficiency of execution has been designed into
the language processor.

What further efficiencies should be considered? Efficiency may be consid-
ered in terms of the availability and use of particular resources such as CPU
time, main memory space, disk memory space, high-speed swapping device
space, terminal ports or telecommunications ports, terminals, development
programmer time, application user time, and so on. Installations will have
varying assortments of resources in short supply, which therefore must be
used “efficiently”.

Many systems managers are conditioned to think of efficiéency first in
terms of CPU time used, since this was uniformly expensive when computers
first came into use. In recent years, CPU speeds have increased; thus the
bottleneck in a system today might more likely be the number of disk accesses
per second, or the number of page faults per second. On some systems the high-
speed or low-speed input/output capacity may be used up before CPU usage
approaches saturation.

As a general technique, interpretation is not always a poor choice. For
example, it takes a lot of hardware circuitry to implement every 370 instruc-
tion in a CPU. For smaller models of the 370—up to the 370/148—the
hardware logic gates do not implement a 370 at all. Rather, they implement a
simpler machine capable of emulating (interpreting) a 370. The emulation



APL Concepts for Systems Management 7

code is stored in fast, read-only memory control store. The CPU determines
which 370 instruction is to be performed. Then, using a (rather complicated)
subroutine of fundamental machine instructions (microcode) from the control
store, the CPU emulates the 370 instruction. Considering their performance-
per-cost, 370/148s and 4331s have their rightful place in the hardware lineup.

Another example of hardware interpretation that is dear to the pocket-
books of its lucky users is the APL assist microcode option available on
370/148s and 370/138s. This feature speeds up execution of the VS APL
language processor by implementing, in extended control store, additional
CPU “instructions” much more powerful than 370 instructions and specially
designed to replace sections of Assembler code in the VS APL language
processor. The hardware does not implement these instructions with addi-
tional logic circuitry; again, they are subroutines of microcode instructions.
This is interpreting at the hardware level, and it causes a 370/148 to
considerably outperform a 370/158 when executing APL programs.

During program debugging and testing stages, the CPU time saved by not
having to compile the language source code is very considerable. For jobs that
do not run many times in production mode, the CPU savings alone completely
cost justify APL.

Perhaps the discussion so far sounds like an apology for a slow language
processor that uses a lot of CPU time. The fact is that one can easily find
benchmark programs to show that FORTRAN, for example, is faster than
APL. But it is just as easy to come up with benchmark programs showing that
APL executes faster than the best code from optimizing compilers. This
standoff quickly resolves to the wise saying: “Use only benchmarks that are
representative of one’s actual workload.” Sometimes that is hard to do, since
one’s actual workload may not yet be coded in APL. So the systems manager
continues to be wary of claims about interpretive language processors, even
after hearing that great effort has been spent to make them use less CPU time.

It is worth looking more carefully at considerations of speed. Usability of
the language by humans should be taken into account, because this is a very
important speed factor too: “How much people time is needed to design,
implement, document, and maintain applications in one language versus
another?”

An interpretive language processor is a collection of carefully coded
algorithms whose processing efficiency is as high as possible, given the
resources used to develop algorithms. Existing APL language processors on
IBM computers execute subroutines coded entirely in Assembler language for
greatest speed. The language supported by the interpreter invokes a sequence
of these algorithms. To achieve “processing efficiency”, the ratio of time spent
executing the carefully coded algorithms to time spent deciding which al-
gorithms to execute should be high. AP L programs are stored in the workspace
in partially translated code strings in which all identifiers (function and
variable names) have been resolved into pointers to symbol table entries.
Relatively few APL symbols and pointers in a code string need be parsed to
invoke powerful execution routines. In the following example, only 25 code
string elements contain the statement:

T1+«NAMES[ (NAMESL ;1 pNVIA.=NV)/114pNAMES; ]

Pl« P2 [( P2 [;1pP3]A.=P3)/114p P2 ;] (shows pointers)
AB C DE F GHIJ KLMNO PQRSTUV W XY (25 elements)
21 2 11 2 1111 21111 2111111 2 11 (31 bytes)

1 2 3 45 6 7 89 (9 functions)



8 APL Concepts for Systems Management

Only 31 bytes of code need be parsed to invoke the 9 execution subroutines to
evaluate the statement. (Byte count and function count rules are for the XM6-
based APL*PLUS System; other systems may vary slightly.) What does this
statement accomplish?

“Store in table T1 the complete names from table NAME S, which are
selected because their leading characters are identical to the carac-
ters in NV.”

The flexibility in this program statement is noteworthy. The table NAME S
can have 0, 1, 2, 3, or 10,000 rows (or names). The lookup candidate in NV can
be expressed with minimum truncation. That is, if “JONES, ROB” uniquely
distinguishes an entry, the entire entry “JONES, ROBERT JAMES, JR.” need
not be entered in NV. Conversely, if NV contained only “JO”, T1 will contain
all names beginning with “JO”, whether there are 0, 1, 2, 3, or thousands of
them. No rank, type, or size declarations have been made for the variables T'1,
NAMES, or NV, because none are needed. This same statement will work
whether NAMES is 1, 2, 3, 20, or hundreds of columns wide.

Efficiency in APL is a consequence of the use of powerful primitive
functions: larger blocks of processing are meaningfully conveyed with briefer
code statements. This produces two important efficiencies. First, the interpret-
er spends less time parsing statements than in a language with less powerful
functions, and relatively more time doing “useful work”—that is, working
directly upon data. Second, and perhaps more importantly, the programmer
spends less time writing and maintaining the shorter code statements!

Processing efficiency in AP L execution routines gets a lot of development
attention. Often there are alternative execution subroutines for a particular
APL primitive function. The subroutine actually executed will be chosen based
on the amount of data to be processed, whether the data is integer or floating
point, and so on. In the previous example, the table lookup (the A . = matrix
inner product) uses an algorithm especially optimized for character data. Also
in that figure, / 1 is recognized as a special composite function and executed by
a single subroutine, although the APL language defines compression (/)
completely independently of the index generator (1).

The use of alternative execution subroutines to achieve processing speed
for the simple arithmetic primitive functions (such as +, -, x, +, [, |, and *)
goes as far as generating object code tailored to the exact data given with each
function call. This object code is discarded after its one use. Generation and
execution of object code for such simple arithmetic is much faster than a
generalized subroutine execution, except when very little data is given with
the function. Where five or fewer data elements are given, the “old-fashioned”,
but in this case faster, general subroutine is used.

The APL language abounds with powerful primitive functions. The
following simple statement:

CUMSUMS++\TABLE

produces cumulative sums for each row of TABLE and stores them in
CUMSUMS, a table with the same number of rows and columns as TABLE. As
always, storage allocation for the tables—and special cases for empty, or very
large, tables—is not the concern of the programmer.

APL interpreters are highly engineered for processing speed. Their ability
to surpass the speed of optimized FORTRAN (or other compiled languages) in
many instances is based on the fact that a small selection of powerful APL



APL Concepts for Systems Management 9

primitives does a job that may require many pages of FORTRAN. The
FORTRAN object code produced from these pages of source code has to
compete with carefully tuned, hand-coded AP L execution routines called with
a modest overhead of parsing concise statements.

While presently available interpretive language processors are fast
enough to be very useful, competition between software suppliers continues to
improve the speed of execution. Indeed, APL language processors are begin-
ning to appear that generate and save object code for every statement so that
subsequent executions are faster than interpretive execution. As these lan-
guage processors become available for the CPU of the manager’s choice, the
issue of processing speed will disappear. The use of AP L will then become even
more desirable, given all its other advantages.

Manipulating APL Programs: Poof, It’s a Program

“Quick, call me a taxi!™ “All right, already, you're a taxi.”

As this old joke suggests, magical transformations unlock many possibili-
ties for the application implementer. Perhaps the most useful program
transformation is a general change of state from executable program (com-
piled if need be, linked, and loaded in the execution area) to data that a
companion program can modify, and back again to executable program. This
allows an executing program with self-knowledge to modify its subroutines.
Such medifications can be as simple as storage management to free up
execution space occupied by infrequently used (large) programs, or as compli-
cated as creating programs to perform contingent, case-dependent code selec-
tion and optimization for efficient execution.

A less complicated but frequent use of program-to-data and back-to-
program transformations is in APL programs that are themselves program
development aids and that modify a program while it is in the data state. The
program development aids in APL systems will continue to grow in versatility
without the need for intervention of a systems programmer.

In addition to conveniently formatted program listings with various cross-
reference tables (comparable to the listings available to an Assembler pro-
grammer—except that they are much shorter!), APL application implemen-
ters use program development aids of the type exemplified in the Appendix at
the end of this paper. These programming aids recognize the syntactic rules of
APL and can make useful organizational and syntactic changes to a program
as well as perform traditional editing chores. There is, of course, a system-
provided function editor quite suitable for simple entry and modification of
programs.

The AP L language processor uses a stack to store the control information
for the execution in process. An execution may halt with a processing error
during debugging. Another execution can be started, and when it is finished,
the original execution can be restarted. This allows the use of programs to help
analyze and correct problems that occur during debugging. If a program will
not halt where it needs to be analyzed, program stops can be set to force a halt.
Program traces can be set to cause the language processor to display interme-
diate results and the flow of processing as each selected statement executes.

Certain data conditions and external events can cause errors that nor-
mally halt execution. However, the APL application implementer has lan-
guage and system features permitting him to maintain processing control
when an error occurs, treat the error condition if he knows what measures to
take, and keep on processing. This “exception handling” allows simplification
of the control structures of some sequences of program code, since the program



10 APL Concepts for Systems Management

does not have to test for obscure cases of bad data. Exception handling allows
the application designer to further protect the end user from the unexpected
events that can occur during processing, including those events caused by the
user not following directions!

The File System: Unlimited Storage

The active workspace can be, and often is, permanently saved. While
workspaces can contain data, workspaces are saved primarily to save the
programs in them. The need for data organization and storage goes beyond
having variables in a workspace. In 1971 STSC released its APL*PLUS File
Subsystem, which has become the one to which other APL file systems are
compared. The STSC file system is well documented elsewhere, but a brief
summary is in order here.

The items stored in a file are entire arrays from a workspace. Every
attribute of the array—its rank, shape, type, and all its data—is stored in the
file as a single entity, called a component. An array stored in a workspace is
stored as a variable with an alphanumeric identifier. The variable name that
might be assigned to an array when it is stored in a workspace is not part of the
file component. It is identified in the file by its position number in the sequence
of components. This is appropriate, because it is often useful to process many
components identically with an algorithm that repeats once for each compo-
nent. This is done by reading the components into the active workspace one at
a time and storing them in the same variable on each iteration of the
algorithm.

Components of a file can be randomly read or replaced by specifying the
component number. A component can be replaced with a completely different
array component—different in rank, shape, type, and size. Multiple files can
be tied, or “open’ at one time. If correctly planned, multiple users can update
the same file concurrently. The system provides access tools to control the
sequence of updates and prevent one user from modifying the file until
another user completes his update.

Files are completely private when created, but after creation, the file
owner can allow carefully controlled (with passnumber protection), fine-
grained access to users of his choice. For example, the file owner can allow one
user to read the file with one password; allow other users to append to the file
(but not read it) with another password; and allow certain maintenance users
to read, append, and erase the file.

Considerable development effort has gone into designing a file system that
cooperates with the multiuser scheduler for maximum system throughput.
One technique is to coordinate the swapping of users with the expected
completion of file operations. Multiple file operations proceed concurrently.

The file system interface presented to the AP L programmer is compatible
with overall APL language design considerations. The file operations are
invoked with system functions that behave like APL language primitives in
syntax and error messages. All file operations can be done under program
control.

A Summary Statement: APL Is Cost Effective

In the early days of APL, it acquired a reputation for being “for
mathematicians and scientists only”. This was partly due to the extended



APL Concepts for Systems Management 11

character set and partly to some system support limitations of early implemen-
tations (e.g., lack of a file system, lack of an output formatter, and small active
workspace size).

APL service companies such as STSC have welcomed use by mathemati-
cians and scientists, but over the years business users have come to account for
more and more of the usage (currently 80 to 90 percent for STSC). The very
users who should care the most about cost comparisons are the ones who use
APL the most. Probably it is because of APL’s effectiveness!

Appendix—APL Program Development Aids

This appendix lists some of the program development aids frequently used
by users of STSC’s APL*PLUS Service. All of these programming aids are
APL programs that use the program-to-data transformation (OVR) and the
data-to-program transformation (ODEF). The programming aids work on the
data that represents the APL program under consideration.

Workspace 11 TOOLS contains several functions that search and/or
manipulate other functions. Following are brief descriptions for each of the
functions in workspace 11 TOOLS.

* The function BRKOUT modifies a given function to break out
embedded assignments into individual statements. For example,

H+p(FREAD(R+1tF) ,C+F[1+0+11]

would become
0+11 & C+F[1+0] & R+1tF O H+«p[FREAD R.C

e The function FNIDS searches a given function for identifiers in
certain categories (locals, labels, direct assignments, indexed
assignments, or [1 names). Combinations of identifiers may also be
specified (e.g., intersection, union, and complement).

¢ The function LOCALI ZE localizes specified functions in a given
function.

e The function ORDLOC reorders the local identifiers in the header
of a given function.

¢ The function RELABF L modifies a given function to use the set of
labels L1, L2, and so on. This function also converts occurrences
of THISL and NEXTL to their corresponding labels. (Also see
RELABEL.)

¢ The function SNUFF removes comment text from a given func-
tion.

¢ The function UNPAREN removes superfluous parentheses from a
given function.

¢ The function XREF displays a cross-reference of a given function.

¢ The function RELABE L modifies a given function to use the set of
labels 4, B, and so on. This function also converts occurrences of
THISL and NEXTL to their corresponding labels. (Also see
RELABEL.)

Workspace 11 FNED contains the function FNED, which edits func-
tions quickly and conveniently, including those whose lines are longer than
workspace or terminal widths. FNED uses conventions that provide:



12 APL Concepts for Systems Management

¢ ordinary string searching or syntactic element searching
e single or multiple replacements
e large deletions, moves, copies, and insertions.

Workspace 11 FNR contains the functions FNVREPL and BY, which
can be copied into the active workspace. These functions are used to modify
programs by replacing one character string with another. Their syntax is

'function list' FNREPL 'old' BY 'new'

where both 'old ' and 'new! are character vectors; 'old ' must not be empty,
but 'new' may be empty; ' function list' can be a character array of any rank
(nominally a vector), with the individual function names separated by spaces
(nominally), new-line characters, structural significance (rows of a matrix), or
any combination of the three.

FNREPL searches all unlocked functions in ' function list' for the syntactic
elements represented in 'old'. For each function in which FNREPL detects
'old ', an indication of how many occurrences is given and 'old " is replaced
by 'new' in that function.

Workspace 11 WSS contains the functions WSFIND and WSSHOW,
which (when copied into the active workspace) are used to find or show all
occurrences of a character string. Their syntax is

WSFIND ‘'characterstring'
WSSHOW 'characterstring’

Only unlocked functions are searched. WSFIND prints the function names,
followed by the line and print position in the line. If the character string
appears more than once in the line, an indication is given. ¥SSHOW prints the
function name and the number of occurrences of the character string in the
function; it then prints the text of each line in which the character string
occurs.

Workspace 11 WSSEARCH contains the functions SEFIND and
SESHOW, which (when copied into the active workspace) find or show all
consecutive occurrences of the syntactic elements represented in the right
argument in all unlocked functions in the workspace. Their syntax is

SEFIND 'characterstring'
SESHOW 'characterstring"'

For example, the expression
SEFIND 'BCD 234!

would find 'BCD 23u4+5' or 'A+BCD 234", but would ignore
'BCD 2345' and 'ABCD 234'. SEFIND prints the function names,
followed by the line and print position in the line. If the character string
appears more than once in the line, an indication is given. SESHOW prints the
function name and the number of occurrences of the character string in the
function, and then prints the text of each line in which the character string
occurs.

Murray Spencer joined STSC in 1970 as branch manager of the company’s
Washington, D.C,, office. He subsequently held the positions of branch manager
in San Francisco, APL applications analyst, and manager of product planning



APL Concepts for Systems Management 13

and support. Spencer is currently manager of small computer products for
STSC.

Prior to joining STSC, Spencer was a systems programmer for Bell Telephone
Laboratories and an EDP product planner for RCA Information Systems. He
has a B.S. in applied mathematics from Clemson University.



Fred B. Lear and John W. Myrna

Evaluating Telecommunications
Networks

With the availability of packet carriers and specialized common carriers,
you, the communications manager, have viable alternatives to meeting your
network needs inhouse. “Should you use a packet or specialized carrier rather
than doing it yourself? How do you evaluate your options? What, in fact, are
your options?”

Over the years, STSC has asked these questions. After considerable
technical and financial study, we concluded that the most effective approach
for us was to use a mix of packet carrier services with a central inhouse
network. We would like to share our analysis, experience, and conclusions
with you. Though the conclusions you reach may be different from ours, our
analysis and experience should prove useful.

Some Background on STSC

To set the stage we’d like to outline STSC’s experience in the communica-
tions area. This will help you understand the problem we were addressing
when looking at the options.

STSC was founded in 1969 to provide an interactive computer time
sharing service based on the APL programming language. We decided on a
national marketing strategy, which was uncommon at that time. This required
a national network from the start. We originally used a simple Time Division
Multiplexer network, but we quickly outgrew it. As we increased the trunk
speeds to 4800 BPS and expanded our services to cover smaller cities, we
became painfully aware of the limitations of the telephone company’s network
and the quality of available modems and multiplexers.

We eagerly evaluated each new communications offering, hoping that it
would hold the solution to our problem. Alas, none solved all of our problems
completely, so we were forced to combine offerings that would collectively
meet our needs.

Through the years, STSC’s communications service has evolved to meet
the needs of its customers. The table below shows the growth in this area from
1972 through 1979.

1972 Used Western Union Data Communications Service.

1973 Reviewed and rejected inhouse minicomputer network-
ing.

1974 Began using specialized common carriers-MCI and
DATRAN.

14



Evaluating Telecommunications Networks 15

Interfaced to the TYMNET network.

1975 Began using DDS.
Became the first user of the minicomputer-based
SMART/MUX.
Became the first customer of TELENET.

1976 Converted to Infotron multiplexers (240, 180).

1977 Added Infotron smart multiplexers (780).

1978 Installed Comten 3670 front ends, with RPQ code for
demuxing (A.M.X)).

1979 Upgraded to Comten 3690 front-end processors.

To this day, we are still searching for the system or technology that will solve
the bulk of our problems with one bold stroke.

In 1977, we had reached a pivotal point in our network planning and felt
that there were three approaches available to us:

* Develop and extend our inhouse network using intelligent mul-
tiplexers.

¢ Leave the network business entirely and use only a packet carrier.
e Use some combination of the two approaches.

We determined which approach to take based on the answers we found to
the following questions:

e What were our objectives?
e What were our options?
e How should we evaluate the options?

Of course, these three questions apply to just about every decision made in
business.

STSC’s Objectives

Our primary communications objective was to provide an acceptable, cost-
effective means of connecting user terminals to our host computers. The
importance of understanding the company’s objective cannot be
overemphasized. To determine the best way to meet our objective, we consid-
ered the following questions:

e What type of terminals must we support?
low-speed asynchronous?
high-speed bisynchronous?
polled bisynchronous?

¢ Where is access required?
in major cities?
in small, out-of-the-way plant locations?
internationally?

¢ What service level is acceptable?
are users generally insensitive to errors?
are users very sensitive to errors?

are users very sensitive to system availability?



16 Evaluating Telecommunications Networks

e What is the volume and distribution of usage?
a few hours per month from many locations?
hundreds of hours per month from a few locations?

What are the characteristics of usage?
short holding times with dial access?
hardwired terminals logged on all day?

What is an acceptable cost?
less than long distance?
less than using a local minicomputer?

STSC’s Options

As mentioned before, our three options were to build and operate an
inhouse network, use a commercial Value-Added Network (VAN) such as the
packet carriers TELENET and TYMNET, or use some combination of the two.

STSC’s Evaluation Process

How did we evaluate the options? We used five basic criteria:
e cost of service

¢ quality of service

¢ scope of service

¢ service sparkle (image)

¢ the ever popular “other”.

What follows is a discussion of the five criteria and issues STSC considered
in 1977. Even today, STSC continually reevaluates its communications needs
in terms of these considerations.

1. Cost of Service

The cost of providing service is based on the location of users, the usage
profile, and the volume of usage. One way to characterize the location of users
is high density, low density, and off-net. A high-density location for a packet
carrier is usually a major city such as New York. Because of the large number
of users sharing common facilities, the cost per user of providing service is less
than it is in a low-density location. The packet carriers, therefore, can charge
less because of economies of scale. In addition, they may choose to charge less
for competitive reasons.

In most systems there are users in locations not serviced by the network.
In our case, these are typically small branch offices of client corporations
whose major usage is on the network. The relatively low-volume usage from
these locations makes some variation of long distance—such as WATS—an
acceptable, though relatively expensive, method of support. We were amazed
to find that this small percentage of our usage represented 29 percent of our
costs.

The usage profile has a dramatic effect on the cost of using a packet
carrier. The number of characters transmitted per hour and the number of
characters per transaction has a noticeable effect on the final bill, since the
carrier’s charge is based on those factors.

The volume of usage affects cost in three ways. First, the cost of the
computer’s telecommunications front end must be amortized over the total



Evaluating Telecommunications Networks 17

traffic. As the front end typically has a large, fixed element of cost, the greater
the number of usage hours, the lower the cost per hour. Second, packet carriers
require a connection to the network-—another fixed monthly expense to be
amortized. And third, with sufficient volume from a given location the packet
carrier may give a price cut and inhouse equipment may be better utilized.

What is a typical breakdown of network costs? The figures in Table 1 are
derived from an analysis of providing 20,000 hours of service per month in 90
cities in the United States and Canada. For the analysis, the network was
assumed to be 100 percent inhouse or 100 percent packet carrier. For the
assumed volume and distribution of usage, a 100 percent packet carrier
approach was projected to cost 20 percent less than the equivalent inhouse
network. Although the percentages will differ for a different combination of
cities and volume, it is still instructive to review costs in this way.

Table 1 — A Cost Comparison

Inhouse Packet Carrier

Staff 14% 6%
Front-end Processor 3% 12%
Off-Net Access 29% 3%
Network

Long Lines and Modems 20%

Multiplexers 10%

Local Lines and Data Sets 9%

Site Rental 4%

High-Density 34%

Low-Density 42%

Van Connection 3%
Other 6%

100% 100%

Looking at Table 1, you will note how large the staff expense is for the
inhouse network (14 percent of total expenses). These expenses are much lower
for packet carriers, because the carrier provides his own staff and, since the
carriers are available in so many cities, there are fewer users off-net.

Economies of scale will decrease costs. As total volume increases in a part
of the network, the use of long lines, local lines, datasets, and modems
increases. As usage increases, the average cost per usage hour will decrease.

Another cost consideration is that the packet carrier’s domestic charges
are not dependent on distance. The packet carrier will charge the same
amount for one hour of usage in the city where the computer is located as it
charges for one hour of usage in a city on the other side of the country. Since
long-line rates are distance sensitive, the cost of providing service via an
inhouse network increases with increased distance from the host. Thus, a
packet carrier may provide the lowest cost for a national network, while an
inhouse system may be better for a regional network.

There are additional costs for installation, maintenance, training, soft-
ware, and equipment. In a dynamic network like STSC’s, where we are
constantly adding or deleting parts, installation charges can actually exceed
the regular monthly charges. In this case, there is an advantage in using a
packet carrier.

One additional concern is how to prepare for growth in usage volume.
Packet carriers charge for usage as it occurs, so if you must double your usage
in a city, you simply do so. With an inhouse network, however, there are new
local lines and datasets to be ordered and installed, equipment to be upgraded,
and so on.



18 Evaluating Telecommunications Networks

2. Quality of Service

STSC examines three measures of quality of service: reliability, availabili-
ty, and response time. Reliability is defined as the probability that a user will
complete his work without being disconnected by the network. We consider
values greater than 97 percent to be acceptable. Availability is defined as the
probability that a user will be able to connect to the host during scheduled
hours. We consider an availability greater than 98 percent to be acceptable.
Response time is defined as the time the network adds to the user’s interaction.
We consider values less than one second to be acceptable.

Packet carriers have characteristics that should provide high availability
and reliability. They use minicomputers to detect and correct line errors,
redundant equipment to minimize outages, and a large number of local-dial
lines in each location. Where an inhouse network might be able to provide 90
percent availability, a packet carrier (because of the larger number of lines in
each rotor group) could provide 99 percent availability.

However, the response time on a packet carrier tends to be longer than on
an inhouse network. This is generally due to the fact that the packet carrier
routes users through more intermediate nodes. Another potential problem is
that a company’s need for increased capacity in a given city may not concur
with the packet carrier’s schedule for an upgrade, resulting in longer lead
times to respond to growth needs. Similarly, mean time to fix problems can
become extended, primarily due to the coordination effort necessary between
the numerous parties involved.

3. Scope of Service

In comparing VANs such as TELENET and TYMNET, it is important to
determine how many of the cities serviced by you are directly served by the
VAN. You should also verify that the terminals and features used in your
network are supported; for example, in 1977 we desired support for the IBM
3767 and for transmissions of up to 120 characters per second (CPS).

4. Service Sparkle

Our decisions also consider a number of items that may be best described
as vendor “sparkle”. If poorly handled, these details can be a major irritant to
users. For example: “What is the sign-on ritual? How many steps are involved
to sign on? How solid is the automatic baud rate detection? If a user makes an
error when connecting to the network does he have to hang up and dial again?
Does the network support multiple hosts? Does the packet carrier cater to
specific needs?”’ (In our case, one special requirement is the support of APL
terminals.)

5. Other Considerations

We include a number of other considerations in our decisions. The terms
of the contract and its conditions are important as is the availability of
technical assistance and the guaranties available on service and price. In
addition, there are several broader considerations, such as:

¢ What are future product directions?

* What economies of scale apply? Today a packet carrier may be
ideal, but in a couple of years the same may not be true.

¢ Reducing the size of inhouse staff may be irreversible.

* Does it make sense to have a networking capability as part of
corporate vertical integration?

¢ Who has control over cost, quality, and innovation?
¢ Does using a packet carrier affect corporate image?



Evaluating Telecommunications Networks 19

¢ Will building and supporting an inhouse network detract from
other opportunities, or drain management resources?

¢ Does using a packet carrier increase vulnerability?

o How flexible will future services be?

STSC’s Decision

After much consideration of the technical and financial aspects of commu-
nications, STSC decided to use an inhouse network, supplemented by a VAN.
Eighty percent of the network load is handled inhouse; the other 20 percent is
handled by packet carriers.

You might well ask: “What has happened since this decision was made?”
For one thing, the primary packet carrier we chose was slower in meeting our
needs than we had anticipated. Consequently, we were unable to move the
substantial share of usage to the carrier as planned.

On the other hand, the rapid expansion of the packet carriers (particularly
internationally) has been an asset to us, allowing us to substantially reduce
our off-net expenses. We also have relied on the packet carriers to provide
special services to our customers, such as 33.33 CPS access for IBM 3767
terminals and 120 CPS dial access. Both of these services would have been
expensive to add to our network. In addition, TYMNET has served as a backup
to our own network. We have relied on the packet carriers to smooth sudden,
but temporary, increases in usage. This has saved us the high installation costs
of rapidly expanding our own network.

Conclusion

STSC has reaffirmed the value of the packet carriers. They are an integral
part of our network. However, with our scale of usage it appears that it will
always make sense for us to use a substantial inhouse network.

One last point is that, as a communications manager, you should deter-
mine whether you actually have a need for a network. If you have only one
application that requires an extensive network, or your network requirements
are low, you should consider running the application on a time sharing service.

As has been said before, but is so true, there are no simple solutions—only
intelligent choices.

Fred Lear joined STSC in 1979 as manager of communications. He is in charge
of STSC’s international telecommunications network, which provides access to
the APL*PLUS Service in over 200 cities throughout the world. Prior to
Joining STSC, he spent eight and one-half years with Boeing Computer Services,
where his positions included operations manager (Philadelphia), Washington
area communications manager, and supervisor of hardware configurations.

Lear attended the Institute of Computer Management for one year and also
holds certificates from several IBM and COMTEN training programs.

John Myrna joined STSC in 1971 as manager of operations; in this position he
organized STSC’s Computing Center and nationwide communications network.



20 Evaluating Telecommunications Networks

He was subsequently promoted to manager of communications in 1973, director
of development and design in 1975, director of development in 1977, and to his
current position as vice president of development in 1979.

Myrna directs STSC’s Operations Group and is a member of its Executive
Committee and Technical Management Committee. He is responsible for the
production and delivery of computing and telecommunications services and for
the development of new applications, products, system features, and technolo-
gies.

Myrna holds a B.S.E.E. degree from the New Jersey Institute of Technology and
an M.S.E.E. degree from Montana State University.



Michael E. Handelman

Managing an APL Installation

In operating and managing an AP L installation, many complex problems
arise. We at STSC, Inc., have addressed these problems and, in this paper, 1
will present our solutions to you. For purposes of discussion, I have divided the
process of developing and operating an APL service into four distinct areas:
software requirements, hardware requirements, commercial considerations,
and staffing requirements.

Software Requirements

Running an APL service is similar to operating any other form of
computer service; the major difference is the software. Software requirements,
which affect all other areas of the operation, are the operating system, the
supporting software, and upgrades and other changes.

1. Operating System

An exhaustive analysis was performed by STSC to determine which APL-
supporting operating system, of all those currently on the market, best fit our
particular requirements. IBM’s OS/MVT and VM systems proved superior in
our ratings. Although VM consumes more resources than other systems
investigated, it is an extremely powerful system, and is both reliable and truly
dedicated to teleprocessing. OS/MVT, although a batch-oriented system, has
been modified by STSC to be a highly reliable and stable operating system.
STSC currently operates both OS/MVT-based and VM-based services.

2. Supporting Software

The reliability of any operating system depends on the supporting soft-
ware. It is necessary for supporting software to be as “bug-free” as possible to
ensure satisfactory support of both systems development and pure applica-
tions. A stable operating system and an excellent record of vendor support are
critical components of bug-free supporting software. STSC has developed a
System Support Team (SST) to diagnose problems and determine their origins,
whether caused by hardware, the operating system, or STSC. OQur team is
staffed with dedicated system programmers who recognize the need to keep
their knowledge and abilities current with fluid technology and stringent
company standards. The benefit is minimal down time and a diminished need
to rely on other sources—including the vendor—for problem solution.

3. Upgrades

Upgrades and other APL system changes must successfully complete
three preparatory stages before being installed on STSC’s production system.

21



22 Managing an APL Installation

The first stage involves the identification of a problem and formulation of a
solution or upgrade by our design team. In stage two, our development team
installs the potential upgrade on a system identical to our production system.
Once the potential upgrade is proven reliable, its modules (code) are passed to
SST personnel who perform a technical walk through (TWT) in stage three.
When the code has been debugged, stage three results in an upgrade that has
survived rigorous testing procedures and standards. An upgrade, having met
the challenges of the three-stage preparatory system, is finally incorporated
into our production system. It is important to note that the ability to back out
of any modification at any stage of the process is designed to be as simple as
possible.

Hardware Requirements

Continuing advances in technology, coupled with outstanding price and
performance improvements, have caused the hardware area of data processing
to change at an astonishing rate. For example, the capabilities of STSC’s
Amdahl 470V/6 Central Processing Unit (CPU) are astounding when com-
pared with units available just fifteen years ago. Technological advances such
as IBM’s new 64-bit chip show that for hardware the future is just beginning.

For advocates of APL—who are sharing in the resultant interactive
language boom—the industry is showing new life and growth. At STSC, we
have emphasized the importance of keeping abreast of changes and trends in
the industry. Attendance at seminars, the reading of trade journals, and active
interface with vendors are encouraged as valuable learning tools. Awareness
of hardware requirements for the CPU and peripherals also requires investiga-
tion, planning, implementation, and monitoring.

1. Central Processing Unit

In a teleprocessing environment, the CPU—the core of any system’s
performance—must be constantly monitored to determine if it is overused.
When overused, specific bottlenecks must be identified. At STSC we use a
hardware monitor designed by TESTDATA and software modified by STSC to
provide these results. This enables us to determine the type of upgrade
necessary (e.g., more swapping devices rather than more memory or another
disk controller to decrease channel busy status occurrences). All this permits
the fine tuning of the system to attain optimal use.

2. Peripherals

When discussing hardware requirements we must also mention
peripherals. For an APL installation, the major form of storage is online
storage. This includes swapping devices and file storage units, but excludes
communications controllers that are regarded as a separate system in today’s
world. Tape drives, printers, and card readers are also made available, of
course, but their importance is low in a telecommunications system.

Swapping devices—high-speed, fixed-head disks with low storage capabili-
ty—are used to establish storage areas proportionate to the workspace size.
(Workspace size is the actual size of real memory assigned to each user when
logged on to APL.) Although virtual systems allow for swapping to relatively
low-speed storage devices, it is a process that slows down the response time to
the end user. Therefore, as the number of users or workspace size increases,
high-speed swapping devices become a necessity in keeping pace with user
needs. It is the duty of the paging or swapping manager to monitor the
performance of the swapping function. Knowing the optimal number of users
and the size of real memory on the system, the swapping manager can
determine when low-speed swapping is occurring, and when additional high-
speed swapping devices would benefit system response time.



Managing an APL Installation 23

File storage of user data, normally kept on an online storage device, must
be flexible. Although user data may be stored on tape, cards, or other types of
machine-readable media, these methods are entirely unacceptable for normal,
interactive use in this era of instant computing. Recognizing the current three-
to six-month lead time involved in the acquisition of new hardware disk
modules, we must maintain a constant awareness of user storage needs. Only
by carefully plotting historical and current usage can proper storage planning
be accomplished.

When planning the back-up considerations of file storage, archival and
emergency needs must be examined. STSC currently performs nightly incre-
mental back-ups that copy files to a tape, and include any file updates
performed that day. A full dump, a tedious process that places all disk files on
tape, is run once a week—usually on Friday night. The tape created by the
dump is scanned to check for any tape errors or other improper processing. All
of the file disk packs are then taken offline and a new set put online. Next, a
full restore is run to copy all information from the tapes that were used for the
full backup to the new set of disk packs. The results of these procedures are two
sets of tapes (one of which is stored offsite in a fireproof vault) and two sets of
disk packs.

These backup and restore procedures illustrate the great care that is
taken to preserve the integrity of user data. This is all performed as standard
procedure for users of our APL*PLUS Service.

Commercial Considerations

Commercial considerations are all nontangible items required to support
the user community. They include the billing method, scheduling, hardware
reliability, and system security.

1. Billing Method

When viewing commercial considerations, it is important to understand
the billing method. In addition to charges for online and offline storage,
communications needs, and any special services provided, actual CPU and
related costs must be calculated. These are presented through Computer
Resource Unit (CRU) charges. The CRU is a unit of measure, developed on a
base central processor, which is portable to other CPUs by adapting the
measure to allow for quantitative differences in machine capabilities. The
CRU not only measures the time involved in executing a program, but also
recognizes all potential resource usage, thereby simplifying billing through
reduction to a simple rate.

2. Scheduling

Scheduling of computer resources—the ability to assign load according to
a set of priorities—is another important factor. The most important considera-
tion is the scheduling of external or billable users versus internal or nonbilla-
ble users. For example, to make the system load sensitive, user sign-on
identifications can be biased so that external users are assigned a high-priority
level and internal users a low-priority level.

During light to moderate usage periods, users are unaffected by the
priority scheduling. However, during heavy usage, resource availability is
weighted in favor of external users. Simply, as resource requests are made
they enter a queue and are identified by a timestamp and a user priority level.
Adding the priority level to the timestamp determines the access priority.
Since the queuing system adheres to first-in-first-out (FIFQO) guidelines, an
external user who submits a request less than the predetermined number of
timestamps after an external user will have first access to available resources.



24 Managing an APL Installation

A hypothetical example of biasing user identifications, using a .0 priority
level for external users and a .3 priority level for internal users, is presented in
Table 1. STSC uses a similar type of load-sensitive system to maintain
excellent response time for our customers.

Table 1 — Biasing User IDs: An Example

Order of

Requests 1(ext) 2(nt) 3(ext) 4(ext) 5(int) 6(nt) 7(ext.)
Timestamp 1.1 1.3 14 1.5 L7 1.9 2.1
Priority

Level +.0 +.3 +.0 +.0 +.3 +.3 +.0
Biased

Timestamp 1.1 1.6 14 1.5 2.0 2.2 2.1
Biased Order

of Access 1 4 2 3 5 7 6

3. Hardware Reliability

In conjunction with providing rapid response time, systems must be
available and reliable. One method of assuring both availability and reliability
is to maintain redundant hardware. Since economics do not allow 100 percent
redundancy, an effective manager must determine the optimum percentage of
redundancy. Each system must be rated on importance to the normally
operating system and the impact of any resulting operational degradation due
to loss of the component.

An example of the process is typified in rating a disk controller versus a
single disk unit. Loss of a controller could cause the loss of a whole string of
disks—up to 32 drives. When compared to the loss of a single unit, a back-up
controller is justified. Further, the primary and back-up controllers could split
the 32-unit disk string, each controlling 16 drives. Not only would this afford
optimal performance through two-channel switching, but each controller
would back up the other allowing improved response time and a back-up disk
controller in case of failure of one of the units.

4. System Security

System security is another important consideration in running an APL
service. In defining and implementing security measures, both physical
security and software security must be considered.

The physical security of computer installations is a growing concern, and
the marketplace is responding with a variety of security systems. A brief list of
considerations regarding the physical security of an installation, and some
possible remedies are given below.

* Machine room access. Limited access to computer facilities can be
attained through the installation of a card key or electronic lock
system. These systems can allow entry to a secure waiting area
where a guard or receptionist screens individuals before admit-
tance to more highly classified areas. Alarms should, of course, be
placed on all doors to and from the facility.

¢ Fire protection. The best method currently available is a Halon
fire protection system in conjunction with a cross-zoned detection
smoke-protector system. When two detectors in separate cross-
zones are activated, an alarm sounds, access doors are automati-
cally closed, and the time-delayed Halon system is enabled. If
determined to be a false alarm, the time delay provides for



Managing an APL Installation 25

manually aborting release of the Halon. Detectors for this system
should be inside the ceiling and below all raised flooring for
maximum effectiveness.

¢  Water detection. Although professed to be waterproof, underfloor
cables can present a hazard if subjected to water leakage. Water
detectors are inexpensive compared to the cost of potential water
damage.

¢ Sealed room. The machine room should be sealed against the
entry of outside water leakage and dust. The facility designer
must anticipate water leakage from floors above the machine
room and should plan for the installation of a drainage system
under the raised flooring.

With a significant rise in the incidence of computer crime, physical
security alone does not offer sufficient protection of resources. Software
security is rapidly becoming a prime concern. The most visible software
security measure in an APL installation is the sign-on password; users must
understand the significance of password protection. Each user should be as
possessive of his password as he is of his toothbrush or any other highly
personal property. Further protections have been added to the APL*PLUS
System, as described below:

¢ Both workspaces and files can be locked with a password.

* Files cannot be addressed by anyone other than the owner, unless
the owner overrides the default by specifically giving access to
other users.

* By applying privileged levels, the owner of a file can give others
permission to read, add, modify, copy, or delete file information (or
any combination of these).

¢ A daily report of possible system security violations is produced.
As an added feature of the APL*PLUS System, STSC can set a
limit on the maximum number of such incidents allowed during a
single user’s session. If this limit is exceeded, a “burglar’ alarm is
triggered to notify the APL*PLUS System Operator of a possible
violation, and pertinent information is displayed.

Physical and software security are critical components of an effective
security system, but properly executed manual procedures are equally as
important. These manual security procedures provide an effective buffer for
the automated physical and software security measures. Operator logs, for
example, provide a narrative of daily occurrences at the installation and have
proved to be valuable security tools.

Staffing Requirements

Staffing requirements can be divided into three areas: Operations, Com-
munications, and Systems. Figure 1 depicts the organization chart for an APL
installation, and the sections that follow describe each area in more detail.

1. Operations

Operations at STSC is comprised of all personnel who run the machine
room. This excludes Communications staff, but includes the receptionists,
clerks, and computer operators who handle day-to-day operations. In an APL
installation, the operator not only handles normal duties such as mounting
tapes, running consoles, operating high-speed printers, and maintaining
trouble logs, but also acts as a system user. The operator must both run APL
user programs and interface with the users, incorporating a knowledge of



26 Managing an APL Installation

overall operations with more detailed knowledge of specific operations. Train-
ing in the specific aspects gives the operator confidence in his abilities and
gives the user confidence in the overall operation.

MANAGER OF THE
INSTALLATION

|
| | |

COMPUTER COMMUNICATIONS SYSTEMS
OPERATIONS NETWORK STAFF
OPERATORS [| SUPPORT COMM COMM TECHNICAL || SYSTEMS

STAFF | |TECHNICIANS|[SOFTWARE|| SUPPORT || SOFTWARE

Figure 1—Organization Chart for Operations

Candidates for the position of AP L operator are carefully evaluated, based
on willingness and desire to learn. Although past experience and knowledge of
operations, hardware, and operating systems is important, being open to new
learning experiences is the quality that will allow growth in the position. At
STSC, we view computer operators as entry or junior-level personnel who, with
dedication and training, can find rewarding careers in the data processing
field.

2. Communications

Communications requirements, which should include all real-time com-
munications support, differ among installations. In a small installation, the
Operations and Communications functions can be easily combined. In a larger
installation, however, the two should be separate and distinct functions.
Responsibilities of Communications personnel should encompass installations,
upgrades, network maintenance, and terminal hardware support. Communi-
cations personnel should also support communications software which in-
cludes development, maintenance, and the interface with both Operations and
vendors.

3. Systems

Systems staff at STSC comprises a Technical Support Team (TS) and a
Systems Support Team (SST).

TS staff are systems experts who deal with users at all levels. TS is
responsible for maintaining system centralization, carrying out special pro-
jects and programs, providing customer interface that cannot be handled by
Operations, and furnishing all non-4PL support.. TS also provides training and
designs tools for all users.

SST staff must possess a high level of technical ability to be fully
responsive to the wide range of problems that are encountered. Additionally,
the main departmental function—system upgrades—must be allocated accord-
ing to individual capabilities. Specific areas of an upgrade include thorough
testing and debugging, a technical walk through, complete documentation, a
weekly upgrade cycle, and fast back-out and recovery procedures. Further,



Managing an APL Installation 27

SST staff provide training and develop tools for the other departments in the
Computing Center.

Conclusion

The most important consideration in managing an APL installation is
service to the user. Quality service can only be provided if the installation is
reliable and the organization is qualified. Thus, there must be adequate
coverage of the Operations, Communications, and Systems areas of the
organization. Additionally, security measures must be constantly monitored to
ensure the privacy of users’ files and programs. To foresee and prepare for
future needs, a planning analyst should—under the auspices of the manager—
direct full-time effort to capacity planning and software monitoring.

The single most important, yet most overlooked, influence on service is the
people. A manager must maintain a responsive team of qualified professionals
backed with a strong training program, especially for entry-level staff. The
effective installation manager recognizes the direct correlation between the
quality of support staff and the quality of service provided by the installation.

Michael Handelman joined STSC in 1979 as manager of operations for the
STSC Computing Center. Prior to that he had several years’ experience at the
George Washington University Computer Center, where from 1976 until 1979 he
was the supervisor of computer operations.

Handelman holds B.B.A. and M.B.A. degrees from George Washington Univer-
sity.



Janet H. Faltz

An Overview of Reporting
And Formatting in APL

Report formatting is the process by which raw data is transformed into a
pleasing and readable format. Ideally, the data is presented so that its full
import is obvious to the reader and key information can be extracted easily
from the report. This may involve manipulating the data in some way, such as
performing calculations on it or changing the order in which it is presented, or
it may require adorning the data with explanatory material that will assist the
reader in understanding its content.

Computers should be ideal tools for aiding in the process of reporting.
Data—the reason for the existence of a report in the first place—can be
manipulated by computers in large quantities, at amazingly fast speeds, and
with virtually no probability of error. However, the embellishment of the data
is often a nontrivial task.

In the APL environment, character data is presented exactly as it is
defined, allowing for the effects of terminal printing width. Numeric data is
displayed according to a set of fairly complex conventions that may differ from
one APL implementation to another, and may be subject to change. Even this
is an improvement upon other computer language environments, where the
process of removing data from the heart of the machine and displaying it
elsewhere can be painful. The skillful APL programmer can manipulate APL
data-display conventions to his advantage, but the less sophisticated user must
either have APL formatting tools available or be content with system conven-
tions.

APL formatting tools should assist the user in many ways. For example,
they should provide the ability to:

¢ Mix text with numeric data, such as in report titles, row names,
column headings, and footnotes.

* Display numeric data in a format different from its internal
representation; for example, round decimal data and display it as
integer data.

* Display decorative text such as currency markers, percent signs,
and commas.

¢ Handle several data arrays concurrently.
* Control the precision of numeric display.
¢ Support patterned data formats.

The format primitive (¥), sometimes called “thorn”, is familiar to many
users of APL implementations. When used monadically, format produces a

28



An Overview of Reporting and Formatting in APL 29

character array whose visual appearance is identical to the original data.
Thus, for character data, monadic format produces no changes; for numeric
data, it is subject to system conventions.

A+«3 5p'BLUE RED GREEN' O A

BLUE
RED
GREEN
FA
BLUE
RED
GREEN
110
123456789 10
p1L10
10
¥110
123456 789 10
p¥110
20

When used dyadically, format also produces character output, but allows
control over the precision and spacing applied to the data. Pairs of control
numbers are the left arguments to dyadic format, where each pair applies to
one scalar, one element of a vector, or one column of a matrix right argument.
These control numbers specify the width of the resultant formatted field and
the data type and precision of the presentation.

TABLE
1.05 4.55 2.8 3.5
1.4 0.35 4.2 y.2
5.6 2.45 3.15 5.25
4 O ¥ TABLE Integer format.
1 5 3 4
1 0 4 4
6 2 3 5
416 2 6 3 8 4 ¥ TABLE Fixed-point format.
1.0 4.55 2.800 3.5000
1.4 .35 4,200 4.2000
5.6 2.45 3.150 5.2500
3 ¥ TABLE Default width.

1.050 4.550 2.800 3.500
1.400 .350 4.200 4.200
5.600 2.450 3.150 5.250

By producing character output, the format primitive provides the first
step in report generation. Only one array may be passed to format at a time.
Furthermore, if decorative text or titles are desired, they must be forcibly
inserted into the character data result.

SALES
1401 300.2 416.3 299.5 317 245.5 247.5
1765 247.5 299.6 300.2 416.3 299.5 317
1900 416.5 by 506.6 509 511.1 499.6
2316 267.5 397.5 305.4 399.6 399.6 417.5

4 082828282828 2 ¥ SALES
1401 300.20 416.30 299.50 317.00 245.50 247,50
1765 247.50 299.60 300.20 416.30 299.50 317.00
1900 416.50 444,00 506.60 509.00 511.10 499.60
2316 267.40 397.50 305.40 399.60 399.60 417.50



REP
1401
1765
1900
2316

RED
GREEN
BLUE

1.2
1.4
0.6

RED
GREEN
BLUE

3 21

30 An Overview of Reporting and Formatting in APL

p 4% 08 28282828328 2% SALES
FINAL+<(52¢* SIX MONTHS SALES DATAt'),[.5]1' !
FINAL<FINAL,[1] 52¢' REP JAN FEB MAR APR MAY JUN"'
FINAL«FINAL,[1] 4 0 8 2 8 2 8 2 8 2 8 2 8 2¥SALES
OTCcNL & FINAL
SIX MONTHS SALES DATA
JAN FEB MAR APR MAY JUN
300.20 416.30 299.50 317.00 245.50 247.50
247,50 299.60 300.20 416.30 299,50 317.00
416.50 444,00 506.60 509.00 511.10 1499.60
267.50 397.50 305.40 399.60 399.60 417.50

On other APL systems, formatting capabilities such as alpha (a) go a few
steps further than the format primitive by supporting patterned data display
and some decorative text.

On STSC’s APL*PLUS System, the function (JFMT provides all the
facilities listed above as desired features of a formatting tool. JFMT allows
concurrent formatting of many arrays; allows character arrays to be formatted
at the same time as numeric arrays; provides patterned data display; allows
automatic handling of report titles, column headings, and row names; supports
decorative text; and supports absolute and relative tabulation. JFMT is a
dyadic system function whose representation is

result +« 'formatstring' OFMT {(datal;data2;. . .;idatan)

where ' formatstring' contains the instructions that control the display of the
data arrays and determine where special features will be invoked in the
display. Each part of the format string (excluding tabs and blank spaces)
applies to one scalar right argument, one element of a vector argument, or one
column of a matrix argument specified in the data list. For example,

COLORS+ 3 5p'RED GREENBLUE '
COLORS
QUANT+5
NUMBERS+3 2p 1.25 6.3 1.4% 7.45 0.65 3.95
NUMBERS
5 6.3
7.45
5 3.95
OUTPUT«*'5A1,X4,I11,X2,F3.1,X2,F4.2' OFMT (COLORS;QUANT ;NUMBERS)
oUTPUT
5 1.3 6.30
1.% 7.45
0.6 3.95
pOUTPUT

A complete description of (JFMT is beyond the scope of this paper. The
reader is referred to the publication entitled Formatting in the APL*PLUS
System (STSC, 1977) for more information. Several examples showing key
features of [(JFMT follow.



An Overview of Reporting and Formatting in APL 31

Pattern Editing:

PHONES+ 3 1p3016578220 9194932478 9144286910
PHONES

3016578220

9194932478

9144286910

'6c(999) 999-9999>' [OFMT PHONES
(301) 657-8220
(919) 493-2478
(914) 428-6910

Parentheses around Negative Numbers:

MAT
54,48 47.67 74,91 768.1 “uy . 265
10.215 54,48 34,05 ~57.885 71.505
61.29 23.835 “6.81 57.885 T27.2u
51.075 61.29 78.315 30.645 20.43

TM<(>N<)>Q< >F9.3" [OFMT MAT

(54.480) 47.670 74.910 (68.100) (44.265)
10.215 54,480 34,050 (57.885) 71.505
61.290 23.835 (6.810) 57.885 (27.240)
51.075 61.290 78.315 30.645 20.430

Floating Dollar Signs:
TM<($>N<)>P<$> Q< >F9.2,X2'" [OFMT MAT

($54.48) $47.67 $174.91 ($68.10) ($44.26)
$10.22 $54.48 $34.05 (8$57.88) $71.51
$61.29 $23.84 ($6.81) $57.89 ($27.24)
$51.08 $61.29 $78.32 $3.65 $20.43

Check Protection:

MONEY
100.45 1.53 17.99 4055.75

tRc*>CLPc$5F10.2' [(OFMT MONEY
$100.45%%x
$1.53%%k*x*
$17.99% k%%
$4,055.75+%

Accounting Notation:
'M< >N< CR>Q< DR>F10.2,X2' OFMT MAT

S4.u48 CR 47.67 DR 174.91 DR 68.10 CR 4y .26 CR
10.22 DR 54.48 DR 34.05 DR 57.88 CR 71.51 DR
61.29 DR 23.84 DR 6.81 CR 57.89 DR 27.24 CR
51.08 DR 61.29 DR 78.32 DR 3.65 DR 20.43 DR

Workspace 1 FORMAT on STSC’s APL*PLUS System contains func-
tions that allow you to place titles and row and column names on a report. In
the following example, we will format with ease the report obtained from a
previous example using the functions CENTER and COLNAMES from work—
space 1 FORMAT.

SALES
1401 300.2 416.3 299.5 317 245.5 247.5
1765 247.5 299.6 300.2 416.3 299.5 317
1900 416.5 by 506.6 509 511.1 499.6
2316 267.5 397.5 305.4 399.6 399.6 417.5



32 An Overview of Reporting and Formatting in APL

V R«FORM DATA;FS
[1] FS«'T4,6(X2,F6.2)"
[2] R<FS CENTER 'SIX MONTHS SALES DATA' & R<R,[1} ' '
[31] R<R,[1] FS COLNAMES 'oREPoJANoFEBoMARoAPRoMAYoJUN"
[u] R«R,[1] FS [FMT DATA

OTcNL O FORM SALES
SIX MONTHS SALES DATA

REP JAN FEB MAR APR MAY JUN
1401 300.20 416.30 299.50 317.00 245.50 247.50
1765 247.50 299.60 300.20 416.3C 299.50 317.00
1900 416.50 444.00 506.60 509.00 511.10 499.60
2316 267.50 397.50 305.40 399.60 399.60 417.50

The system function JFMT is an extremely powerful formatting tool for
APL technicians. Its use requires familiarity with APL data arrays, APL
syntax, and [JFMT commands and capabilities.

There is also a great need for formatting tools for non-programmers.
These tools should allow the businessman to focus on the key elements of the
desired report: the data and the verbal information. The businessman should
not have to be concerned with the technical aspects of the supporting system.
Two such facilities provided by STSC—QUICKPLAN™, The Quick Planning
and Reporting System, and the EMMA Report Generator—are discussed in
papers that appear elsewhere in this book: “QUICKPLAN: A Reporting Tool
for the Non-Programmer” and “The EMMA Report Generator”.

Janet Faltz started with STSC in 1974 as a marketing representative and is
currently branch manager of STSC’s Southeast Branch located in Chapel Hill,
North Carolina. Before joining STSC she worked as an applications pro-
grammer and publications editor at the University of North Carolina Computa-
tion Center and as a management information systems analyst for Continental
Can Company.

Faltz has a B.A. in mathematics from Douglass College and an M.A. in
educational technology from Columbia University.



David L. Hopkins

QUICKPLAN: A Reporting
Tool for the Non-Programmer

Reporting. What is it? Who does it? Most importantly, how does
QUICKPLAN™®, STSC’s Quick Planning and Reporting System, meet the
requirements of a reporting system? These are the questions I propose to
answer.

Reporting is the process of organizing and presenting data or information
in a useful form, with one or more purposes in mind. Reporting is done by
virtually everyone, from elementary school students reporting “current
events” to large corporations reporting to their shareholders. Reports are as
varied as their creators and users, and can contain any combination of text,
pictures, graphs, plots, and tables of numbers.

In business and government, a simple report can be generated by an
analyst working with pen and paper and, perhaps, a calculator. The report so
generated will probably be typed to appear more uniform and legible. Or, the
analyst will take a set of specifications for a report, with a request for
computer resources, to his company’s data processing center.

Both of these procedures, however, have obvious drawbacks. The typist
may make mistakes, and the process of correcting them is often time
consuming and annoying. Requesting reports from the data processing center
may be time consuming as well, as there will typically be many other demands
placed on the center. Furthermore, adjustments or changes to the report
specifications are more difficult to accomplish. In both cases, turnaround time
may not be as quick as the report user would like.

What the businessman needs is often more than either of the above
methods can provide. He needs the ability to produce reports using data that
may be entered specifically for a particular report, or that may be retrieved
from an existing data file. In either case, substantial data calculations or
manipulations may be required to complete a report.

In other words, the businessman needs access to all sorts of data, and he
needs to be able to work with that data. He wants the capability to present the
data in many different, and sometimes unexpected, formats. And, most
importantly, he wants the resulting reports available in a timely manner. A
system that meets these requirements is more than a reporting mechanism—it
is a tool with which the businessman increases his productivity and the
accuracy of his decisions.

If this is all within reach by using high-speed computers (and it is), then
why doesn’t everyone with access to a computer perform his own report
generation? The answer to this question is not the lack of native intelligence

33



34 QUICKPLAN: A Reporting Tool for the Non-Programmer

on the part of the average user; the answer is, however, related to intelligence.
That intelligence is the method of accomplishing the task.

In a batch computer environment, the user may find it necessary to learn
such programming languages as COBOL, FORTRAN, or PL/1. In addition, he
has to contend with the detailed mechanics of how information is entered into
the computer (on punched cards, for example). He is also subject to the
turnaround time. Even in a time sharing environment, languages such as APL
prove to be too complex for the businessman to use directly. Too often, a
businessman finds it necessary to take the additional time necessary to learn
and use commands and symbols that bear little relation to the finished report.

Let’s look at a typical, though simplified, business report (see Figure 1).
Though reports have widely varying formats, this report has a common
format. It presents numeric data in rows across the page and columns down
the page. The rows and columns have labels, and the report has titles at the top
and comments at the bottom.

—_
CAPITAL COMPARISON FOR MIDWESY BANKS
PITAL TO CAPY
BANK CAPITAL TO ASSETS ( f‘?mhlon) pEBT o}.’, AL
BIG BANK 4.y 501.0 25.0
ERED'S BANK * 4.6 i903.0 22.4
BANCO DEL ORO BANK 5. 40.0 15.0
 wevBank ¥ 52 54.0 242
FAST BANK 5.3 217.0 254
*AS OF MARCH 31, 1974.

Figure 1—A Typical Report

Ideally, the user who wishes to create a report like that shown in Figure 1
should be concerned only with describing the key components and specifying
the order in which those components should appear. This ideal situation is
rarely the case, though, as most businessmen do not have the proper tools.
QUICKPLAN was developed to provide the tools. Its English style commands,
simplifying assumptions, and full database interaction make it a natural tool
for reporting.

To see firsthand how QUICKPLAN meets the requirements of a useful
reporting tool, we will use the system to create the report shown in Figure 1.
After signing on to STSC’s APL*PLUS System, we access the QUICKPLAN
System and the tools it provides:

YLOAD 333 QUICKPLAN
SAVED .

Next, we create a filing area called QUI CK for the Report Generating System
(RGS) and its data and programs.
GPCREATE
G/P SYSTEM NAME? QUICK
9999899 QUICK CREATED.

Now we’re ready to create the RGS, which we’ll call BANK. The RGS is
used to store information for report titles, headings, line names, line numbers,
and data.



QUICKPLAN: A Reporting Tool for the Non-Programmer 35

BUILDRGS
RGS NAME: BANK
HOW MANY COLUMNS?
O:

3
BANK CREATED.

With these steps completed, we are ready to enter the specific information for
our report. It is important to note that the above steps are necessary only when
setting up a report for the first time. Many reports can be generated using the
same “file” (QUICK) and the same RGS (BANK).

Next, let’s enter the character information for our report (titles, column
headings, and line names). For each item, we must specify a number (used for
later reference), the justification (left, right, or centered), and, of course, a
name. Line names also offer two additional options for the data that will
appear in each line—formats and scale factors—but we will not use these
options.

ENTERTITLES First we enter the titles.

RGS NAME: BANK

DEFAULT: LJUST, CENTER, RJUST ¢€
SEQUENTIAL? NO

ENTER TITLE NUMBER

O:

12
12: | CAPITAL COMPARISON FOR MIDWEST BANKS
ENTER TITLE NUMBER
0O:

END
MORE? NO
TITLE NAMES STORED.

ENTERHEADINGS Next we enter the headings.

RGS NAME: BANK
ITEMS TO BE ENTERED: NAME, FORMAT, SCALE: NAME
DEFAULT - LJUST, CENTER, RJUST: R
USE <, n, OR > TO OVERRIDE DEFAULT. USE <« FOR NEW LINE
SEQUENTIAL? NO
ENTER HEADING NUMBER
0O:
0

0 NAME: |cBANK« ~
ENTER HEADING NUMBER
0:

1 NAME: |CAPITAL TO ASSETS<«
ENTER HEADING NUMBER
O:

2
2 NAME: |CAPITAL+($MILLION)« ~~~ "~~~
ENTER HEADING NUMBER

0:

3
3 NAME: | DEBT TO CAPITAL+ ofo « T TTTTTTTTTTT
ENTER HEADING NUMBER
O:

END
MORE? NO
HEADINGS STORED

ENTERLINES And, finally, we enter the line names.

RGS NAME: BANK

ITEMS TO BE ENTERED: NAME, FORMAT, SCALE: NAME
SEQUENTIAL? NO

ENTER LINE NUMBER

10
10 NAME: | BIG BANK



36

ENTER LINE NUMBER
d:

QUICKPLAN: A Reporting Tool for the Non-Programmer

12
12 NAME: |FRED'S BANK~*
ENTER LINE NUMBER
d:

20
20 NAME: |BANCO DEL ORO BANK
ENTER LINE NUMBER
0:

24
24 NAME: |WHY BANK*
ENTER LINE NUMBER
0d:

31
31 NAME: |FAST BANK
ENTER LINE NUMBER
[0:

END
MORE? NO

LINE NAMES STORED.

Now we can try a “first cut” at our report. All we need to do is enter a
simple program that specifies the order in which the components should be

printed:

VREPORT

FIELDS 26 18 18 18
TITLES 12 0 O
HEADINGS 0 1 2 3
LINES O THRU 99

v

AFIELD WIDTH FOR PRINTING COLUMNS

APRINT TITLES 12 0 0 (0 PRODUCES A BLANK LINE)
AOVER THE COLUMNS, PRINT HEADINGS 0 1 2 3
APRINT VALID LINES IN THE RANGE 0 TO 99

We run our report program at this point to check the format of the report (the
resulting “report” is shown in Figure 2):

REPORT

BANK

BIG BANK

FRED'S BANK~»

BANCO DEL ORO BANK
WHY BANK=*

FAST BANK

CAPITAL COMPARISON FOR MIDWEST BANKS

CAPITAL DEBT TO CAPITAL
CAPITAL T0 ASSETS (EMILLION) o/

coooo
coococoo
cooocoo

Figure 2—Checking the Report Format

If the report format is correct, we can begin to enter the data. A simple
data input program like the one given below shows us what data must be

entered.

VINPUT
[1] GETSYSPGM

*

PENTERDATA'

[2] 1 2 3 PENTERDATA 0 THRU 99
[3] A ENTER DATA IN COLS. 1 2 3 FOR LINES 0 THRU 99

[u] v

We run the input program and enter the appropriate data:

INPUT
10: BIG BANK =
O:

h.4 501 25

0

00



QUICKPLAN: A Reporting Tool for the Non-Programmer 37

12: FRED'S BANK=* =000
a:
4.6 1903 22.4
20: BANCO DEL ORO BANK = 0 0 0
d:
5.1 401 15
24 WHY BANK=* =000
0:

5.2 540 24,2
31: FAST BANK = 0
0:

5.3 217 25.4

We modify our report program slightly to add cosmetic additions such as
spacing and comments.

VREPORT1
[1] YALIGN PAPER'QPAUSE n STOP TO LET USER ALIGN PAPER
[2] FIELDS 26 18 18 18
[3] FORMAT '1' na SHOW ONE DECIMAL PLACE
[4] TITLES 12 0 0
[5] HEADINGS 0 1 2 3
[6] LINES S,(0 THRU 99),S,S A 'S' GIVES BLANK LINE
[71 COMMENT'* AS OF MARCH 31, 1979.!
v

Finally, we run the modified report program, and we have a finished
report as shown in Figure 3.

REPORT1
CAPITAL COMPARISON FOR MIDWEST BANKS

CAPITAL DEBT TO CAPITAL
BaNK CAPITAL_TO_ASSETS (SMILLION) o/
BIG BANK 4.y 501.0 25.0
FRED'S BANK~ 4.6 1,903.0 22.4
BANCO DEL ORO BANK 5.1 401.0 15.0
WHY BANK~x 5.2 540.0 24,2
FAST BANK 5.3 217.0 25.4

* AS OF MARCH 31, 1979.

Figure 3—The Finished QUICKPLAN Report

QUICKPLAN can do much more than produce reports, since it contains
its own database manager called the GET/PUT facility. Data is stored with
PUT commands and retrieved with GET commands. The user need not be
concerned with the structure of files; he addresses all data items by names that
he has chosen. GET/PUT databases can be shared, and many people can
simultaneously put data into a database or retrieve data from it.

To expand our example, let’s assume that one QUICKPLAN GET/PUT
database contains data about banks. It might contain all the operating data on
every bank in the United States, or in a specific state. Once this database
exists, the user can select data that meets any given criteria. In our example
the report was for midwest banks, but we could as easily have selected data for
another region or for banks with greater than a specified capital level. If data
were stored in the database by year, we would have yet another dimension in
our database. The user could then produce reports for specified time periods.

Having selected any subset of the stored data, the user can perform
calculations and produce reports, or put the calculated data back in the



38 QUICKPLAN: A Reporting Tool for the Non-Programmer

database for later access. The possibilities for manipulating and reporting data
become endless. Better yet, these possibilities are all within the reach of
QUICKPLAN and its database system.

Conclusion

Stepping back from the mechanics of QUICKPLAN, let’s repeat the
necessary elements of a complete reporting system. We can then decide
whether QUICKPLAN meets these requirements.

¢ The reporting system must be clear, concise, and unambiguous.

¢ It must contain all the necessary commands, including the selec-
tion criteria, to facilitate interaction between the user and the
databases in which relevant data is stored.

* The user should not be asked to deal directly with the underlying
programming language (in our case, APL). That is, all error
messages and data manipulations should be handled by the user-
oriented language of the reporting system.

¢ The system should be column or line oriented, or both, and should
provide headings for columns and lines.

¢ Numbers should be presented, by default, with standard business
notation (using dollar signs, commas, parentheses, and decimal
points).

¢ The system should prevent the user from doing harm to a
database.

* The system should allow the user (and the database manager) to
change anything he has done—easily and quickly.

e Finally, the reporting system should be compatible with other
systems written in the same language so that the systems can be
easily linked.

When these requirements are met, the reporting system will best meet the
needs of the businessman. It will also be a useful tool for programmers.

QUICKPLAN does, in fact, meet these requirements. Furthermore, one
can easily learn to use QUICKPLAN. In one day, the average person can
master QUICKPLAN'’s reporting capabilities. Little additional time is re-
quired to learn the database management capabilities.

Let’s return to the original questions. It is fairly obvious what reporting is.
With QUICKPLAN, the answer to “Who does it?” is “Anyone with a need for
reports, a few minutes, and access to a terminal”. Does that sound too simple?
If so, that’s because QUICKPLAN makes business reporting so simple that
most users can master the system in a day.

Dave Hopkins earned his B.S. in computing and information science at Trinity
University in Texas, where he worked part-time for two years at the university’s
computing center. After receiving his M.B.A. from Southern Methodist Univer-
sity, Hopkins joined STSC in 1978 as an applications consultant.

Hopkins has developed many customized QUICKPLAN reporting systems for
STSC customers, particularly for major oil and energy producing companies
located in Houston.



Robert R. DeCloss

The EMMA Report Generator

In physics we learn that an “erg” is a unit of energy or work. The ERG
System (EMMA™ Report Generator System) allows a user to define and obtain
numerous reports easily and quickly, making his work more productive, and
saving him the time and effort spent otherwise collecting that data.

ERG is a system designed for non-programmers who, with a surprisingly
small “vocabulary”, can generate virtually unlimited reports in formats they
specify. For that reason, ERG is particularly useful to management. Manage-
ment’s reporting requirements vary almost daily. Since ERG requires no
programming, an executive can define reports and have them in minutes.

The ERG System operates from an EMMA file. EMMA (Extended Manage-
ment Macros in APL) is a proprietary collection of programs developed by
STSC to manipulate, select, replace, and compare data. In contrast to EMMA,
ERG has only a few user programs, which I will explain a bit later. First, I
would like to share some of the history of ERG’s development.

ERG was the result of a great design process; we spent hours considering
alternatives and options. Here is how it all began:

One of our clients needed many different kinds of reports for its
management. They had been using PERT*PLUS, STSC’s Interactive
Project Management System, but they had come to realize that the
system was solving only parts of their problem at an expensive price.
One Friday afternoon, they gave us a list of the capabilities they
wanted. For example, they wanted to be able to print different
columns and have data paged for easy separation and distribution to
different departments. They also wanted the ability to total columns
of data based on a major category and to subtotal based on a
subcategory.

From this “wish list” we had a better idea of what the client’s needs
were. When we went to see the client on Monday, we proved that we
had not only satisfied their needs, but had also added the capability
for the user to format his own reports.

After the client registered mild shock at the speed with which we had
solved their problem, we asked if our design was acceptable. It was; we
were off and running; and ERG was born!

I suppose I could be accused of heresy, but I believe a majority of products
and packages are developed in this way—at least a majority of useful products.
APL is the only language I'm aware of that will let you accomplish what I've
just described. With APL you can have results within a couple of hours of

39



40 The EMMA Report Generator

receiving ideas from a client. The client reviews the initial design, and usually
thinks of additional requirements. After input and suggestions from both
sides, you go back and add some “features” (a technical term for “bells and
whistles”). Soon you’ve met the client’s requirements, and probably given him
much more!

The best way to substantiate my claims of the value and simplicity of ERG
is to describe its characteristics.
The current version of ERG (others are under development) works from a

single EMMA file. It can be installed quite easily by anyone who understands
the basic concepts and nomenclature of the system.

That brings me to an extremely valuable overall design consideration in
any product or package I develop: ease of use. This may be an overused phrase,
but I do go to great lengths to avoid computer jargon and to implement ideas
that fit the customer’s business, not the computer business. But, I digress.

To return to ERG, five of the main user programs are

* REPORT—A conversational program that asks what fields to
print, how to sort the data, what fields to total, where to put page
breaks, and what field to break on within a page.

o SUMMARY—A program similar to REPORT. The only difference
is that the data is summarized and no detail information is
printed. Break totals and page totals are printed on the report.

e PRINT—A program that prints a previously created report. The
report specified can be printed at a terminal or can be submitted
for printing on a remote, high-speed printer.

e DIRECTORY—A program that displays all report files currently
existing.
e ERASE—A program that erases a report file.

To store the report information, the user fills out a worksheet and enters
the information into the system. Editing features allow the user to set or
change formats or column headings very easily. Once satisfied with the
headings, formats, tables, and names, the user saves the information. A
variety of reports are now ready for production, waiting only for a request from
the user.

In generating reports, a user must become familiar with the following
eight concepts.

¢ print fields

» sort fields

* page break field

s page total fields

¢ break field

¢ break total fields
¢ selection criteria
* report name.

Most of these concepts are relatively straightforward and become second
nature quickly.

The print fields specify the columns of data the user wishes to display in
the report. The sort fields indicate how the printed fields should be sorted, in
major to minor order. The sort fields do not have to be included in the print
fields.



The EMMA Report Generator 41

The page break field is used to force a new page every time the specified
column of data, after being sorted, changes. The page total fields allow the user
to specify which columns of data are to be totaled before each page break. (If no
page breaks are specified, the user is prompted for grand total fields rather
than page total fields.)

The break field allows a subtotal within a page break field. Thus, a user
can get branch totals within each cost center or subtask totals within each
task. The break total fields allow a user to select which columns of printed
fields are to be subtotaled. Page total fields can be different from break total
fields.

Now, for the only slightly complex part of the whole system—selection
criteria. The selection criteria specify what data is to be printed, using
abbreviations of English words such as: FROM, BETW, EQ, GT (greater than),
AND, and OR.

Parentheses can be used to alter a definition or form complex statements.
For example:

SELECTION CRITERIA: (SAL BETW 1000 2000) AND EARN GT 100000

For experienced APL programmers, the same selection criteria can be speci-
fied using raw APL:

SELECTION CRITERIA: (SAL>1000)A(SAL<2000)AEARN>100000

Let’s consider an example. Suppose we want to generate a report that
prints the cost center, branch number, employee number and name, employee
salary, and revenue generated by each employee. We want to sort it by cost
center and by branch within cost center, and we want only cost centers less
than 400. We are only interested in the top producers, so we want only those
who have generated year-to-date revenues in excess of $130,000.

Here is all we do:

JLOAD 9999999 ERGDEMO
SAVED . . .
REPORT
PRINT FIELDS: HELP
VALID FIELD NAMES AND NUMBERS ARE LISTED BELOW:
(NOTE: WHEN USING NAMES YOU MUST USE A COMMA AS A SEPARATOR).
cc=1 , BR=2 , EMP=3 , NAME=4% , SAL=5 , DATE=6, EARN=7 , STATE=8

PRINT FIELDS: CC,BR,EMP,NAME,SAL,.EARN

SORT FIEFLDS: CC,BR

PAGE BREAK FIELD: SKIP

GRAND TOTAL FIELDS: SAL,EARN

BREAK FIELD: CC

BREAK TOTAL FIELDS: SAL, EARN

SELECTION CRITERIA: (cC LT 400) AND (SAL FROM 1000 3000) AND EARN GT 130000
REPORT NAME: MYREPORT

REPORT TITLE: TOP PERFORMERS FISCAL YEAR 1980
FIRST SUBTITLE: (SPACE,RETURN)

DONE

After entering the report specifications in this manner, you can run the
program PRINT and produce the report, as shown in Figure 1. Using slightly
different report specifications, and other ERG options not demonstrated here,
you can produce many variations of this basic report.

I can’t stress enough how easy it is to use ERG. The user does not have to
learn a programming language, nor does he have to figure out what a work file
is or even how to create one. All the user has to know is what data should
appear on the report, and in what order. This gives each user more time to
review reports containing exactly the information he wants to see—no more
and no less. Each report is customized so that the user sees only the columns



42 The EMMA Report Generator

and headings pertinent to him. Managers don’t get detailed reports crowded
with data that doesn’t interest them, or worse, annoys them.

OFFICE PRODUCTS SERVICE COMPANY
TOP PERFORMERS FISCAL YEAR 1980

PAGE 1; 2/19/80

COST BRANCH EMPLOYEE EMPLOYEE EMPLOYEE DOLLARS
CENTER NUMBER NUMBER NAME SALARY EARNED
311 1 1137 FLANIGAN, JOAN 2,900 136,500
311 3 1069 RYAN, KAREN E. 1,600 133,500
311 3 1087 ESKINAZI, KEVIN 1,600 147,500

6,100 417,500

332 L3 1107 GURGOLD, JOHWN 2,800 144,000

2,800 144,000

341 1 1115 DAAR, ARLENE 2,700 138,500
341 1 1007 CARTER, CLIF 1,000 137,500
341 1 1122 CHANDLER, JAK 2,700 138,000
341 1 1108 WEAVER, JEFF S. 2,500 143,500
341 3 1028 KARPF, ELEANOR T. 1,300 133,000
341 3 1098 KRANISH, RON S. 1,200 132,000

20,300 1,384,000

Figure 1—A Sample ERG Report

The combination of ERG and AP L provides managers with a powerful tool
for producing reports that meet their requirements, even if those require-
ments change daily. Furthermore, valuable information is provided on time
and at a very reasonable price. What better way to work? That is the key to
ERG—making work better and easier.

Bob DeCloss joined STSC in 1973 as a programmer. He took a leave of absence
in 1975 to become treasurer of the Irwin Trading Company and Irwin Manage-
ment Company, but later in 1975 rejoined STSC in the APL Development
Department. Since 1978 he has been the branch manager of STSC’s Denver
office.

DeCloss co-authored with Roy A. Sykes, Jr., a paper for the APL75 Conference
in Pisa, Italy, titled “EMMA : Extended Management Macros in APL” (APL75
Conference Proceedings, ACM, 1975). In 1977 he wrote the EMMA Reference
Manual (STSC, 1978). He has designed and implemented several systems
dealing with report generation, database management, and construction ac-
counting.

DeCloss has an M.A. in mathematics from Claremont Graduate School.



Richard W. Butterworth

When APL Is Inappropriate

The use of APL, or any high-level programming language, can be inap-
propriate for a given application, particularly when the use of a different
language offers a lower overall cost to achieve the objectives of the user and the
application. From this somewhat over-simplified beginning, we will discuss
several issues that help determine when APL (or any high-level language) is
appropriate. These issues frequently become the deciding factors in choosing a
programming language.

Of course, there are few, if any, hard and fast rules in a field whose
technology is changing so rapidly. The following discussion and examples will
provide some principles that can be examined when resolving the issue of
whether APL is appropriate.

Program Readability

The primary issue in language choice is program readability. For purposes
of this discussion, program readability refers to the inherent difficulty and
associated costs of reading a program, determining precisely what the pro-
grammer intended the program to do, and executing the program. This issue
includes not only “people* readability (a person learning the input, process,
and output characteristics), but also “machine” readability (the initial inter-
pretation of the program into machine-executable code and subsequent execu-
tions of the program). As might be expected, high-level languages favor people
readability, while low-level languages favor machine readability.

The issue of readability fits naturally into the concept of a program’s total
life-cycle cost. A program’s life~cycle cost can be viewed as the sum of its people
readability costs and its machine readability costs. The former might be
measured in manhours, and the latter in machine cycles. These two costs are
determined by the amount of “reading” the program is subject to over it’s life
and the associated costs. Hence, a program that is read primarily by machines,
such as a system utility, will have life-cycle costs dominated by machine
readability costs. Conversely, a program read primarily by people, such as a
program for quantitative support of management decisions, will have life-cycle
costs dominated by the people readability costs. Proper language selection,
then, entails knowing the program’s intended use and environment and
selecting the language that minimizes the composite costs.

Foretelling total people readability costs is a subjective process. People
readability costs, for example, include not only the original programmer’s
time, but also the time of subsequent persons (programmers and users) who

43



44 When APL Is Inappropriate

need to understand the program from a conceptual, technical, or operational
viewpoint. These costs are usually underestimated.

People readability costs also contribute heavily to a program’s develop-
ment cycle time, since during the development phase a program is read almost
exclusively by people. In a linguistic sense, as with high-level spoken lan-
guages, a high-level programming language greatly assists the communication
of ideas among designers and programmers, thereby reducing the time it takes
to understand the problem. This asset, and the ease of translating the
algorithmic concepts into executable programming statements, shortens de-
velopment time significantly. This suggests that some programs requiring
short development cycles may be infeasible unless undertaken in a high-level
language.

Machine readability costs are equally difficult to estimate. The primary
factors are the cost of machine resources and the execution cost of the
program. Though CPU power is becoming increasingly cheap, additional
machine cycles cannot always be purchased. For example, many products
today contain dedicated microcomputers or minicomputers; the application
environment is precisely defined and the CPU power restricted. Another
example sometimes occurs with the Federal Government, which occasionally
chooses low-level languages for their ability to conserve CPU resources made
scarce not by financial or architectural restrictions, but rather by an extreme-
ly slow procurement process. Thus, machine readability, like people readabili-
ty, may be constrained by a variety of cost parameters. These parameters,
which include opportunity costs as well as actual costs incurred, usually have
highly subjective attributes.

Readability and the Performance Issue

The life-cycle costs of computer applications are then a combination of the
reading costs incurred by people and machines. To minimize expected total
cost, a compromise is usually sought between costs of software development
and maintenance, and costs of hardware capacity and sophistication. APL,
with its natural ability to manipulate data arrays and its user-oriented
implementations, offers distinct benefits in reducing software development
costs. Predictably, APL is most effective in applications such as modeling
systems and decision support systems, where software development costs are
highest. In these systems, primary design criteria are ease of use, ease of
program adaptability, a short development cycle, and frequently, a customized
approach.

Today, however, a majority of computer applications are characterized by
repetitive processes. Programs that are changed infrequently and that do not
require interactive processing are less able to take advantage of AP L’s assets.
Moreover, on most implementations, the interactive interpreter makes it
difficult to move these processes out of the very busy (and, consequently, the
most expensive) prime operating time.

The current trend toward distributed processing provides another exam-
ple where programs are duplicated to run at many locations or on many
machines at the same location. This reduces software cost per unit hardware
cost, and creates leverage for low-level languages. Take, for example, the
system supporting a large retailer’s point-of-sale terminals. Hardware costs
are amplified many times by the number of terminals involved, but software,
once written, is likely to remain very stable. It is clear from this discussion
that the language issue cannot be decided outside the application’s context.

In current machine architecture, which requires that a programmer’s
code be reduced to common machine code before execution, the performance



When APL Is Inappropriate 45

requirements of a program can become a major issue in language selection.
Some programs are read primarily by machines; programmers read the code
only for development and maintenance and the end users do not read it at all.
In these cases, machine performance is a main concern, and a low-level
language is clearly preferred. Examples of this are utilities such as file sorts,
random number generators, and internal checks and balances.

A different example involves a scientific simulation project. The operation
and maintenance of emergency diesel generators at nuclear power plants were
simulated to study the effect of the maintenance and test plan on the
generators’ reliability and availability. Though extensive documentation of
the program was not required, people readability was an issue, since the model
being simulated was not completely specified and was likely to undergo
change.

These factors would appear to indicate that APL would be a good
programming language for the project. However, performance became the
deciding issue, as the precision of the results depended heavily on multiple
replications over long horizons. A few short programs had to be executed
hundreds of thousands of times to evaluate each scenario. Consequently, the
associated machine costs became a limiting factor to the system’s use.
FORTRAN was finally chosen as the programming language for the project;
the random number generator was provided by the host compiler, probably in
Assembler language. The complexity of the model precluded any low-level
language approach, due to the people readability issue.

A secondary issue in the simulation project was machine portability (i.e.,
the ability to move and maintain an application on two or more computer
systems). The portability requirement, while essentially a machine readability
issue, is usually resolved by using a high-level language. In this case, APL was
not available on the alternate system, but FORTRAN was. The FORTRAN
simulation program, when moved to the alternate installation, ran and
duplicated earlier results with a change to only one line of source code.

Another type of problem not generally handled in APL is the linear
programming (LP) problem. Linear programs are comprised of “matrix gener-
ators” that develop application data in a canonical LP format. The LP
problem, an optimization of a linear function of independent variables subject
to linear constraints, is then solved using the simplex algorithm, or some
variation of the simplex technique. Finally, the solution is translated back into
the terms of the problem and output reports are produced.

Although LP problems are characterized by matrix data structures, only
relatively small problems (those having 50 or fewer equations) seem suited to
an APL approach due to the nonlinear increase in iterative computations.
Even when an LP problem is small, other factors must also be present to
suggest an APL solution (e.g., a fluid problem definition requiring constant
revision).

Readability and the Intelligence Issue

As the prerequisite intelligence of a program increases, so does the need
for increased people readability. (The word “intelligence” in this paper refers
to a program’s ability to handle complex sets of logical rules and to deal
gracefully with unanticipated input.) Complex ideas are difficult to commu-
nicate with the limited “vocabulary” of low-level languages and are nearly
impossible to grasp by reading a program written in a low-level language. Just
as high program intelligence generally supports the use of a high-level
language, low program intelligence generally favors use of a low-level lan-
guage (i.e., the non-4P L solution).



46 When APL Is Inappropriate

An example of a low-intelligence task that can become expensive when
undertaken in APL is large-volume record processing to update and maintain
a database. Large personnel systems, for example, usually maintain a record
on each individual, perhaps in a sequential dataset consisting of many tapes.
The database must be updated weekly, or even daily, and update reports must
be produced. The procedures for performing such updates are relatively
simple; consequently, the matrix manipulation capabilities of APL would be
largely under utilized. The machine expense associated with constant inter-
pretation of the code to simply process the next record creates a situation in
which the system’s overall cost is dominated by the machine readability of the
program.

It is worth noting, however, that non-APL programs can build APL
databases that can subsequently serve many information needs. These data-
bases generally condense entity data into frequency of occurrence data that
summarizes the activity. Such databases can become excellent sources of top-
down management information, supporting the increasingly popular decision
support systems (DSS).

In our experience, two personnel systems have been implemented in this
manner. One tracks 30,000 persons and the other tracks over 500,000 individu-
als. In both systems, AP L was judged inappropriate for the database develop-
ment because of the large number of record manipulations required. However,
management models that used the data were developed in APL specifically to
obtain ease of model development and flexibility. This illustrates that large
systems can easily contain applications appropriate for both non-APL and
APL programs.

In fact, it is typical in large application systems for AP L to be appropriate
for some programming tasks, but not for others. One such case is a flight-
routing system called OPARS (Optimum Path Air-Routing System). OPARS
provides flight plans on a production basis for a subset of the Navy’s flight
community. Flight plans are requested a few hours before flight time by naval
weather personnel or flight personnel, but seldom by computer personnel. To
request a flight plan, the user responds to a few questions in an interactive
terminal session. The result of the session is a request file, which is forwarded
to a batch input queue. The flight plan is printed at the user’s terminal five to
ten minutes later, and can be revised if necessary before takeoff.

The flight plan consists of an optimum routing from point of departure to
point of arrival. The criterion for optimality is minimum fuel consumption,
which may be subject to user constraints such as mandatory fly-overs or fly-
arounds, or use or nonuse of FAA jet routes. Wind and temperature forecasts
from real-time databases are used to develop a dynamic network to which a
shortest path branch-and-bound algorithm is applied. The final result is a
formatted flight plan showing the suggested routing, expected fuel consump-
tion, forecasted winds enroute, and a checkpoint schedule.

Because of the machine performance issue, APL was inappropriate for the
production version of this shortest path network optimization program. The
nature of the network algorithm, which sequentially examines arcs for
potential inclusion in the shortest path, precluded the use of “matrix-type”
calculations, and suggested a “looping” design instead. However, APL was
used during the design effort to test the network and algorithm design
concepts by developing a prototype program for the optimization. The APL
program contributed to a proof of concept, but was relatively inefficient for
repetitive execution of the algorithm in a large-scale production environment.

APL was also found to be inappropriate for implementing the main flight-
routing program, which begins with the request input file and terminates with
a formatted flight plan file. In spite of the complexity of the program, the



When APL Is Inappropriate 47

performance issue was overriding. The number of flight plans to be prepared
daily could not be forecasted; however, as system activity increased, the
number was expected to grow from between 10 and 20 plans to between 100
and 500 plans. Given the turnaround requirement of 10 minutes, the applica-
tion required a language that kept machine performance high and machine
readability costs low. The languages selected were FORTRAN (for the flight
routing) and Assembler (for the input/output operations).

The interactive request generator, though developed in FORTRAN be-
cause of institutional constraints, was a suitable candidate for APL implemen-
tation. This interface had to be interactive and “user friendly”, had to handle
sparse amounts of data, and had to have a fair amount of intelligence to
determine whether requests were well formed and complete. Requirements for
this program were expected to change as system capabilities were added or
temporarily suspended—another factor favoring the use of APL.

Conclusion

The readability theme of this presentation focuses on the reading and
interpretation costs of programs. Readability costs are accumulated by ma-
chines, in machine cycles, and by people, in manhours. The key to resolving
the language issue is to look at the relative costs of having the program read by
people and by machines. If the life-cycle program costs will be dominated by
machine costs, APL may not be the best language choice, in spite of its more
productive use of people’s time.

Language choices are still likely to be somewhat subjective, however, as
factors affecting hardware costs and personnel costs continually change.
Examples of factors directly influencing the choice of APL are the decreasing
costs of hardware, the continual improvements to the APL interpreter, and
the possibilities of bringing native hardware operations structurally closer to
APL primitive operations. In the foreseeable future, however, many situations
will arise where compelling cases can be made for low-level language ap-
proaches. The best solutions, APL or not, will capitalize on the assets of both
high- and low-level languages, in composite solutions.

Some points discussed in the examples are summarized as follows:

* General support utilities, such as file sorts, are good candidates for
non-APL implementation.

¢ Simple tasks that require little intelligence and emphasize high-
volume processing (e.g., sequential record updates) are generally
not recommended for APL implementation.

¢ Real-time performance requirements of complex tasks may not
permit a responsive solution with AP L. These applications tend to
become “expensive” to implement because of a somewhat con-
strained language choice.

o Portability, which usually favors the high-level language ap-
proach, can work against APL until such time as APL is imple-
mented on a wider range of machines.

e Hybrid solutions offer numerous benefits. While APL has many
attractive features, there are valid and compelling reasons to
select other languages for certain system segments to complement
the segments written in APL.



48 When APL Is Inappropriate

Richard Butterworth, technical director of the Advanced Analytical Applica-
tions Division of SEI, is experienced in operations research, with specific
interests and applications including military manpower analysis, energy sys-
tems reliability, statistical time-series forecasting, and interactive decision
support systems. At SEI he led the development of DELIS, the Navy’s Executive
Level Information System, and OPARS, a global Navy flight-routing system.

Prior to joining SEI, Butterworth was associate professor of operations research
at the Naval Postgraduate School, where he developed a new course in
interactive computing. He holds a Ph.D. in operations research from the
University of California at Berkeley.



Thomas A. Gull

Managing Outside Computer Services:
An Organizational Relationship

The Basic Relationship

If you are a time sharing coordinator or an important user of an outside
computer service, your organization holds you responsible for meeting certain
objectives. These objectives may be quite specific, or they may be very general.
In either case, you are responsible for using resources to meet those objectives,
and your management will examine the difference between the costs of
resources used and the value derived from those resources.

The resources allocated to you may include budgeted funds, personnel,
supplies, and time. Availability of these resources may give you the option of
buying various services from another organization. When you use an outside
computer service, you are going to build a business relationship between two
organizations, and that relationship must be carefully managed.

In real life, of course, the “relationship” between two organizations really
can be thought of as some function of all the personal relationships between
members of the organizations. These personal relationships, however, work
well when there is general agreement on why the people interact on a
continuing basis. This agreement occurs when goals have been set by the
leaders of each organization, the goals are supported by members of both
organizations, and everyone can see that the personal interactions help meet
those goals. In effect, this is a “business relationship” regardless of the goal of
either organization.

Simply stated, your organization is going to get services and pay for them
in some way. You, personally, are not receiving or paying for services; by the
same logic, no one person in the vendor organization is serving you and being
paid for it. Your understanding of the distinctions between organizational
relationships and personal relationships has a huge effect on the quality of the
service you will receive.

Identifying the Common Ground

Whether a vendor is a profit or non-profit organization, goals will have
been defined for the entire organization. When you first choose an outside
computer service, spend some time ferreting out those corporate goals. For a
vendor shooting for monetary profit, the goals may be well publicized and easy
to understand. A non-profit vendor may survive with vague goals, though some
research or service groups have very clear objectives. You do not know if you
can get service from a vendor until you know what they want in trade for that
service. As harsh as it may sound, your goodwill by itself may not keep you on

49



50 Managing Outside Computer Services

as a client of a service having difficulty meeting its goals. In other words,
getting services free sets up an unbalanced relationship in which you will have
little or no influence when circumstances change. You will get what you pay
for.

When you know what motivates the vendor to give you service, you can
examine your available resources to see if you can afford the service you need.
Most vendors will prefer to deal with organizations that can contribute to
meeting goals at some significant level. For example, getting service from a
giant firm can be a problem if you would be its smallest client. You should be
realistic about what you expect to spend on computer services, since this will
give your vendor an honest picture of what resources to set aside for your use.
Your estimates of what you will need will be used by the vendor to manage the
allocation of his resources; bad estimates may contribute heavily to bad
management in either organization, perhaps increasing your costs or even
preventing you from meeting your objectives.

Common ground for any business relationship has four main components:
1. What services does your organization need?

2. What can you pay for those services?

3. Can the vendor provide those services?
4

Are you giving the vendor enough incentive to provide those
services?

This approach implies that you will receive the most useful service when
you and the vendor can both (1) meet your respective goals, and (2) avoid using
resources unnecessarily. If you have identified the common ground correctly,
you should be able to predict what level of service you will receive from any
vendor.

Communications with the Vendor

Your vendor will assign one or more persons to work with you and your
organization. Your basic communications with the vendor organization will go
through this assigned person, so you must be able to deal effectively with this
representative of the vendor. You will receive the best service when both of
you take the time to identify the “common ground”, and this process requires
honesty and skill. If you have trouble dealing with the assigned person, ask for
another representative.

As you work with your representative, be aware of what organizational
goals he has been given. In a company like STSC, for example, the marketing
representative has been hired to increase revenue at a reasonable expense.
That is the focus around which decisions will be made. However, the manner
in which goals are met will vary widely from vendor to vendor. For example,
one vendor may sell only machine time and provide no other services. Another
vendor may provide machine time, consulting, educational programs, and so
forth.

The overall quality of a computer service is actually more dependent on
the manner in which the service is delivered than on the hard economics of the
vendor’s goals. To have a complete picture of what service a vendor will deliver
to you, you should consider not only the vendor’s goals, but also his business
philosophy and his level of involvement with the customer.

Some vendors concentrate on high business volume mixed with low
personal service. Their favored customers will probably not interact much
with the marketing representatives. Other vendors may concentrate on
medium level volume coupled with high personal service. In the former case,



Managing Outside Computer Services 51

vendors will not have many highly trained support personnel available, since
personalized service is discouraged. In the latter case, there will be support
personnel spread throughout the organization.

The presence or absence of support personnel and a listing of the resources
available to a marketing representative, and, therefore, to a customer, can
outline a company’s basic business philosophy very clearly; these factors are a
direct communication to you describing how a vendor intends to meet his
goals. If his intentions don’t match your needs, look for another vendor.

When you work with a marketing representative for an AP L-based service
company, there is a subtle trap both you and the marketing representative can
fall into. In some cases, particularly when using AP L, your representative may
have enough technical skill to solve many of your problems directly. This may
give you the impression that the representative can, and should, personally
solve all your technical problems. In practice, it is better to hold the represen-
tative responsible for obtaining the resources you need, without necessarily
being the resource himself. This distinction in attitude helps to ensure that the
business relationship between your two organizations is not overdependent on
the skill and goodwill of one or two individuals.

Overdependence on one person seems to be fairly common in the APL
environment. The productivity of each APL analyst is very high compared to,
say, a FORTRAN or COBOL analyst, and many projects are completed from
start to finish by only one person. If you, as the user, deal only with that
person, you are encouraging bad habits in your vendor that may ultimately
hurt both organizations.

For example, if you have a vendor build a general ledger system in APL, it
may take only one person to do the job. During development of the system,
communications about concerns will go to that person. When the system is
completed, a crucial moment occurs. If you continue to call the developer when
something needs changing or fixing, none of the other vendor personnel will
gain experience with the project. The net effect is that you will get quick
service only as long as the developer remains available; should he move on,
your vendor may lose the ability to serve you easily on that project.

The average analyst using APL works so quickly that customers are
usually convinced that the analyst assigned to their project is uniquely
competent, and so the customer prefers to be served by that analyst. Since
many customers may feel this way, the cumulative effect upon the analyst can
be devastating. Actually, a professional analyst works in such a way that
another analyst could easily deal with many of the questions asked about a
project. It is part of the analyst’s job to complete projects with advice from
other analysts, with the expectation that others will modify or support the
project in the future. If there is such interaction, the vendor organization is
able to give you good service even if a particular analyst is on vacation or has
switched jobs.

For example, the Washington, D.C., marketing branch of STSC handles
customer needs by assigning a different person each day to screen incoming
phone calls. Problems taking up to roughly 20 minutes to solve are handled
directly by the “hotline” person. More complex problems are referred to the
appropriate marketing representative or to the manager of the branch
technical resources. These complex problems can then be worked into a
flexible schedule involving the entire branch. If one analyst is on vacation, a
customer will be readily and effectively served by another STSC analyst, and
problems of overdependence on one person disappear.



52 Managing Outside Computer Services

Conclusion

You can get the computer services you need from an outside vendor, but
you will need to analyze such a relationship carefully. The crucial distinction
suggested in this paper involves the difference between organizational and
personal relationships. If your job involves meeting organizational objectives,
then your relationship with an outside vendor should focus at that level. Some
ways of working person-to-person seem effective but actually will not help you
accomplish your job. Your vendor should be aware of this fact, and the
organizational structure of the vendor ought to reflect an ongoing concern
with what makes good business sense. If you lay the ground rules for a business
relationship, personal relationships between members of the two organiza-
tions are likely to be effective and comfortable.

Dealing with an outside computer service effectively involves using an
organizational approach and having the willingness to communicate honestly
with your vendor’s representatives. Ideally, those representatives should
approach you in the same manner.

Tom Gull joined STSC in 1974 and has held positions as an applications
consultant, marketing representative, and account manager. In his current
position as an applications consultant manager he is responsible for managing
the technical resources of the Washington, D.C., branch office, including the
scheduling and planning of technical consulting activities. Gull has also
helped develop and implement new business methods and applications and acts
as a liaison between marketing and the Design and Development Department.

Gull graduated from Cornell University in 1974 with a B.A. in sociology.



Frank Vogt

Selecting and Managing
Outside Computer Services

Selecting and managing outside computer resources effectively is impor-
tant to business and government users of computer applications. It is an
interesting and complex task that requires juggling a diverse assortment of
components including hardware, software, maintenance, technical support,
communications, training, and documentation.

Proper management must cover the entire cycle of outside services; that
is, the selection, utilization, and termination processes. Selection is the process
of evaluating, comparing, and contracting with the vendors to service one’s
applications. Utilization is the day-to-day procurement of the services selected.
Termination is the end of such utilization—normally due to the end of an
application (in its present form), a transition to an inhouse system, or a
transition to another outside vendor.

Note the phrase “day-to-day procurement of services”. It is important to
bear in mind that such services are generally ordered “by the drink” and that
the source of supply can vary throughout the life of an application—that is,
one can always “go to another bar”.

This paper will highlight some critical aspects of choosing and managing
outside computer services. The points presented are intended to stimulate and
help organize the thinking of the person undertaking this task. The presenta-
tion will be grounded largely in government terminology and philosophy; this
is due to my background as a government teleprocessing user and my current
involvement in implementing existing government procedures for competitive
acquisition of such resources.

Government awareness and policy have evolved considerably in this area
during the past few years. Much has been learned, often at painful expense. It
is hoped that this paper will help readers, from both the public and the private
sector, to avoid going through the same trials.

We will address the following topics:
e connect/communications

* storage

® processing

s software

¢ performance

¢ account administration role.

53



54 Selecting and Managing Outside Computer Services

The management of connect/communications is critical to many applica-
tions. The marketplace offers a variety of coverage, pricing plans, and types of
service.

The selection of baud rates to be used is a basic decision; charges by
suppliers will vary by baud rate, by the volume of data transmitted, or both.
Terminal availability will be a strong factor in this decision.

One approach to data transmission is to employ intelligent terminals in an
application. Using intelligent terminals means that data can be entered
locally at leisure, corrected later, and finally transmitted to the remote service
in a very efficient fashion.

Some applications may justify a distributive network or more sophisticat-
ed equipment to collect and perform a portion of the data manipulation locally.
Some may justify a user-implemented network to supplement or optimize the
use of a supplier’s network.

A decision must be made concerning bulk terminals; cost tradeoffs must
be considered when determining whether to lease or share lines and whether
to rent or purchase equipment.

Approximately 20 to 25 percent of teleprocessing charges fall in the area
of connect/communications.

Storage has been judged by many to be the most misused and abused
aspect of remote computing services. It is available in many different forms.
Immediate Access Storage (IAS) can be purchased by the character—either at
one pricing plan or by the track, sector, or pack at rates that differ considera-
bly.

Offline storage may be the better choice for part of an application; the
data can be kept on magnetic tapes or on the client’s own mountable disk pack.
In either case, large savings will be realized. It is crucial for the client to
determine how long he can wait to access his various files and what guarantees
the vendor will make regarding mount and read time.

Old versions of programs on data files should be policed regularly;
meticulous archiving practices can enormously benefit budget and operations.
“Junk files” should be moved to a very low cost medium for later cleanup.

Often the operating system or database management system will allocate
and control storage. This can result in some surprisingly large storage charges
and thus should be monitored carefully.

Storage charges constitute 20 to 30 percent of charges to the average user.

Processing costs typically are responsible for about half of the dollars
spent by users of outside computing services. Understanding prime and
nonprime pricing structures can lead to a noticeable decrease in costs as well
as an increase in throughput. For example, west coast users might get better
performance at reduced costs from an east coast mainframe by running large
jobs at the end of the work day.

Proper use of batch processing and established priorities is essential.
Discipline is also essential to this aspect of an application.

The benchmark programs employed in the process of selecting outside
services should be carefully chosen to test the capability, timing, and pricing of
the system appropriate to the client’s needs. Without a benchmark, processing
costs will be essentially unknown.

Choice of software is of major importance. The remote service vendor is
usually the best source of software support pertinent to his system; the user
should make his needs clear to the vendor. Client needs and vendor support
must be blended carefully.



Selecting and Managing Outside Computer Services 55

A recent General Accounting Office estimate quoted $8.00 per line for
software development in languages such as FORTRAN and COBOL. With a
language as powerful as AP L, the number of program lines required is greatly
reduced, but the per line costs may be higher. At these rates, it is crucial to use
skilled personnel to get the most from your software development expendi-
tures.

After programs are in place, it is important to create a system for the
modifications that will be required as needs change. Assistance from remote
service vendors varies in price, availability, and quality. This service, and the
availability of vendor-written software, are deciding factors in selecting or
using a remote service. Prewritten application packages can result in dramatic
savings. But much of the prewritten software will entail an extra charge
forcing a rent, create, or buy decision.

The performance of a remote system should be looked at very carefully,
both when it is selected and throughout its usage. The hardware and opera-
tions will be managed by the vendor—not the client’s own staff. Run times
should be measured and monitored, as should job costs. A variance resulting in
budget or mission problems must be dealt with. It is often a good idea to get
post-selection benchmark runs to police performance and justify possible
billing adjustments.

Any remote service usage, regardless of size, requires account administra-
tion. This duty could be full time or simply a portion of a particular user’s
responsibilities.

The account administrator should control user identifications to permit
proper access; work with management to estimate and justify expenditures;
verify billings by benchmark runs as well as by actual usage; monitor storage
and access patterns to optimize the use of available pricing plans; monitor
priority usage and assign priorities based on management goals; track and
project usage for budgeting purposes; and work with the remote service
vendor.

A “single-point interface” with the vendor need not be a rule, but it will
enhance the relationship with the vendor, reduce redundant queries, and
enable trends to be recognized and remedied.

Proper management of outside computer resources is not a trivial task.
Basic common sense will rule, but familiarity with the services provided and a
comprehensive approach are required.

Frank Vogt is currently an independent telecommunications consultant and a
general partner in TSP Training Associates. He previously worked as a
technical advisor for the General Services Administration (GSA). In this
capacity, he acted as a negotiator on many contracts for GSA’s teleprocessing
services program. He assisted in developing a structure for evaluating time
sharing service vendors for the government’s procurement services.

Vogt has a B.A. in mathematics from the Colbege of Steubenville and has done
graduate work in mathematics at Denver University. He served as an officer in
the Air Force and previously worked as a mathematician with the Navy, as an
operations research analyst for the Army, and as a data system manager for the
state of Ohio.



Clif Kranish

Converting External Datasets
Into APL Files

APL files on STSC’s APL*PLUS Time Sharing System are structured to
work efficiently with the powerful primitive functions of the APL language.
Consequently, it is often useful to convert data files produced on other
computer systems or by programs written in other languages into APL files so
that the data can be accessed and manipulated by APL programs. This paper
describes methods used at STSC to perform these conversions.

What Is an APL File System?

On early APL systems, such as APL\ 360, the only way to store data was
as a variable in the APL workspace. While this was satisfactory at first, it was
soon found to be too restrictive, since all data for an application had to fit into a
single workspace. In fact, the most common criticism of the AP L language was
that “APL couldn’t handle large amounts of data”. It didn’t seem to matter
how much the workspace size was increased; as long as there was an upper
limit, APL programmers quickly reached it.

Another problem with early APL systems was that there was no way for
APL to get at data produced by programs in other languages, even if these
programs were running on the same computer as the APL system. The often
heard complaint was that “APL couldn’t talk to the rest of the world”. The
only way to make this data accessible to APL programs was to type it in at a
terminal.

Other shortcomings of early AP L systems were their inability to store and
retrieve data under program control and their cumbersome procedures for
sharing databases among several users.

To address these problems, most commercial vendors of APL developed
file subsystems to go along with their APL systems. These file subsystems
allowed data to be stored outside the workspace and made managing large
amounts of data much easier. Although each single data object was still
limited by the size of a workspace, there was no real limit on the total amount
of data that could be stored.

In 1970, STSC offered one of the first APL file subsystems, called the
APL*PLUS File Subsystem. Soon after, other vendors such as Burroughs and
Digital Equipment Corporation (DEC), offered files with their APL systems.
Although the storage and access methods are different, all of these systems
store data outside the workspace.

One important advantage of storing data outside the APL workspace is
that programs written in other languages can access the data. In effect, the

56



Converting External Datasets into APL Files 57

APL file systems opened a “window” to the rest of the world. Data could be
interchanged between APL programs and other languages.

What Is an APL File?

An APL file is made up of components containing AP L data that can be
stored as variables in a workspace. Thus an APL file can contain components
of different rank, shape, or data type. Data is stored outside the APL
workspace, and the amount of data is not subject to workspace size constraints.
System functions are used to transfer data between files and workspaces.

Most AP L users aren’t concerned with the internal representation of data
or the use of different data types (except for the distinction between character
and numeric data). Conversion from one numeric data type to another is done
automatically.

However, the internal representation of data does affect the amount of
storage required for an AP L data item. It often affects the amount of computer
resources required to perform some arithmetic operations on the data. The
data representation is also important when considering a conversion from
some external medium to an APL file.

All data stored on a computer is represented internally as a sequence of
binary (0 or 1) values or bits. The meaning of each bit sequence depends on the
type of data it represents. Most systems based on APL\ 360, including the
APL*PLUS System, support four different data types. The four APL data
types and the number of bits required for a single value are

¢ Boolean—1 bit
Character—8 bits
Integer—32 bits
Real—64 bits.

Why Is Conversion Necessary?

External files, called datasets, are structured differently from APL files.
These datasets are described in terms of logical records. For example, for a
dataset on 80-column punched cards, each card is a logical record. For a
dataset on magnetic tape the records may be grouped into blocks for efficient
storage and processing.

To use APL programs to process data on external datasets, the datasets
must first be converted into APL files. For external datasets consisting
entirely of data in one of the four APL data types, conversion can be
accomplished without interpretation using a simple batch program. The
program reads the data on the cards or tape and appends the data to an APL
file.

Sometimes, however, it is necessary to convert external datasets that
contain more than one APL data type, or that contain data types that don’t
exist in APL (e.g., packed decimal). To convert these datasets, more sophisti-
cated techniques are required. STSC offers one such technique, known as the
File Conversion Generator (FCGEN).

How the File Conversion Generator Works

Data in an external dataset is described in terms of fields and records.
Each field generally contains one type of information. These fields often have
different data representations depending on the type of data that is stored. For
example, one field in a personnel file may contain social security numbers,
another field may contain names.



58 Converting External Datasets into APL Files

A record contains the information for a single entity in the file. For
example, one record in a personnel file may contain the social security
number, name, and other information for one individual. A programmer using
COBOL or other high-level languages includes, as part of the program that
processes the data, a description of each field in the input record.

To convert an external dataset into an APL file, the user must specify how
the various fields and records are to be handled. This could be done using a
program written in a language other than APL, but not without great
difficulty. The special nature of APL*PLUS System files makes it difficult to
deal with APL data representations in languages other than APL.

In addition, the APL*PLUS System provides special security checks not
available with the OS/MVT operating system under which it runs. Con-
sequently, it is advantageous to write the initial conversion program in APL.

But what about the COBOL programmer who is unfamiliar with APL? It
seems unfair to ask him to learn APL so that he can write a conversion
program.

This is where FCGEN proves most useful. FCGEN is a package of APL
subroutines that are used to write an APL conversion program. The unique
characteristic of FCGEN is that its subroutines accept data descriptions in
notation closely resembling that commonly used in COBOL for describing
record formats. Other APL programs check the APL conversion program for
syntax and consistent specifications and generate a COBOL program, which
actually performs the file conversion.

Advantages to this approach are twofold:

¢ The notation used in the APL program is familiar to both COBOL
and APL programmers.

¢ Indirect generation of the COBOL conversion program allows the
user to take advantage of the security checks provided on the
APL*PLUS System.

In writing the APL conversion program, the user must specify the
following information.

e The fields in the input record to be converted. Each field in the
input record is listed. If the field is to be converted, the FTELD
statement is used. For fields that are to be skipped, the FILLER
statement is used.

e The records to be converted. Normally each record from the input
dataset is read and converted. To select only certain records, an
OSFILE statement is used. Records can be selected by specifying
the first or last record to be read or by specifying that every nth
record is to be read.

¢ The records to select, by field values. 1t is often useful to select only
certain records by the values of certain fields. For example, if the
value of an “amount” field is zero, that record could be ignored by
using a DISCARD statement.

¢ The data type and length of each field. Each field of the input
record can contain character data or numeric data in decimal or
other representations. Each field description must include the
data type and length in standard COBOL notation.

o The translation of character data. Character data on external
media is generally not in the AP L character representation, but in
EBCDIC or ASCII. A standard translate table has been defined for
characters with a direct correspondence. For example, the digits 0



Converting External Datasets into APL Files

to 9 and the uppercase letters A to Z are translated to their APL
equivalents. For special graphics, “reasonable” translations are
defined. Extensions or changes to the default translate table can
be made using the TRANSLATE statement.

The distribution of data in a file. When converted to an APL file,
data is stored in file components as numeric or character matrices
with values from successive records occupying successive rows of a
matrix. Character and numeric values must, of course, occupy
separate components. However, it may be useful to store a field in
a component of its own if it is to be accessed frequently, or it may
be useful to store related fields in the same component. The
distribution of fields into APL file components is specified by
using TARGET statements.

The file structure. The data can be directed to several different
files or to consecutive components of a single file.

The blocking factor. The maximum number of input records to be
stored in a single component is specified with the BLOCKING
option. A large blocking factor will be more efficient in that it will
require fewer file accesses, but the resulting components will
require more workspace area when manipulating the data. If the
file is ordered by a certain field, it may be useful to start a new
component when the value of that field changes. This is done with
the NEWBLOCK option.

The name of the summary file. As part of the conversion process
some error checking is performed. Defects such as incorrect
characters, translation errors, nonnumeric values in numeric
fields, numeric overflow, and magnetic tape errors are reported in
a summary file.

Sample Conversion Program

59

The following sample input file contains six records. Arrows indicate the
field breaks.

ALBANT 50000DENSE 1859
CARLSBERG 2900HELLERUP 1847
CERES 8000AARHUS 1856
FAXE 4640FAKSE 1901
THOR 8000AARHUS 1910
TUBORG 2900HELLERUP 1847
4 + 4 +
The records of the sample input file are processed with the following FCGEN
program.
V DKBREW
(1]  APLFILES BLOCKING 5
[2] '12345 SUMMARY' GETS SUMMARY
[3] '12345 DATA' GETS CHARDATA
[u] 112345 DATA' GETS NUMDATA
(5] F1:FIELD 'X(10)' A BYTES 1-10 NAME
[6]1 F2:FIELD 'S9(4)' a BYTES 11-14 CODE
{7] F3:FIELD 'X(10)' a BYTES 15-24 LOCATION
[8]1 Fu:FIELD 'S9999' A BYTES 25-28 EST
[9]1 FILLER 'XX' a LOGICAL RECORD LENGTH IS 30

v

The program creates three files: a summary file to report the outcome of
the conversion and errors, if any; a file to collect character data; and a file to
collect numeric data. All four fields of all six records are converted.



60 Converting External Datasets into APL Files

Conclusion

FCGEN allows programmers to control the way in which external
datasets are converted into APL files. Many different data representations can
be converted into APL data using FCGEN. In addition, both APL and COBOL
programmers can easily write the conversion programs using simple FCGEN
notation.

Notes

1. C. Kranish, STSC Working Memorandum No. 127, FCGEN—F:ile Conver-
sion Generator, (STSC, 1978).

2. L. Gilman and A. J. Rose, APL: An Interactive Approach, (Wiley, 1976).

Clif Kranish joined STSC as an operator/programmer and is currently a senior
programmer in the company’s Technical Support Group. He participated in the
design and development of STSC’s Source Level Transfer System, which
provides a means for transferring a workspace from one AP L system to another.
He also participated in the implementation of STSC’s File Conversion Genera-
tor (FCGEN) and authored Working Memorandum No. 127, FCGEN—File
Conversion Generator (STSC, 1978).

Kranish currently provides support for programs written in PL/1, COBOL, and
370 Assembler, as well as APL. He has taught introductory APL courses for
STSC personnel and customers and currently teaches introductory pro-
gramming at George Washington University.

Kranish has a B.S. in systems and information science from Syracuse Universi-
ty and is currently pursuing a master’s degree in computer science at George
Washington University.



John A. Estep, Richard C. Geden,
Jack S. Reynolds, and Howard M. Sternlieb

A Fully Automated Interface between
Systems In Boston and Bethesda

This paper describes the evolution and implementation of a fully auto-
mated interface that transfers data from the Gillette Safety Razor Division in
Boston, Massachusetts, to STSC in Bethesda, Maryland. The interface runs
weekly and requires no involvement from a user at a time sharing terminal.

The Safety Razor Division (SRD) at Gillette has implemented a manufac-
turing resource planning system that runs on STSC's APL*PLUS Time
Sharing Service and that is based on STSC’s Comprehensive Manufacturing
Control System, CMCS™ (see notes 1 and 2). Before this implementation, some
of the inventory balance information required by CMCS was already being
maintained by a Purchasing and Material Reporting System running on
Gillette’s inhouse IBM System/370, Model 158 computer. Gillette and STSC
personnel developed—in stages—an interface that now automatically trans-
fers status of open purchase orders and raw material inventory from Gillette’s
system to STSC’s system.

Interface Specifications

When the interface specifications were developed two years ago, the
CMCS installation was in its early stages. Contributing to the specifications
were STSC representatives, SRD’s Manufacturing Systems and Production
and Material Control Departments, and Gillette’s Management Information
Systems (MIS) Department. An interface of this kind had not been previously
attempted at Gillette, and its development had to be coordinated with the
CMCS installation. Consequently, it was important to involve both users and
systems personnel.

The group defined the following steps (similar in concept to manufactur-
ing process routings) through which each purchasing transaction was to
progress:

1. Issue purchase requisition.

2. Issue purchase order.

3. Receive material.

4. Inspect material.

5. Dispose of rejected material and post accepted material to stock.

The users selected a pilot group of parts, monitoring their progress step by
step using the CMCS worksheet facility and manually posting information
from the inhouse system to CMCS. This simulation identified conceptually the
tasks that the interface would be required to perform. It also helped the users

61



62 A Fully Automated Interface

develop their own procedures, giving them confidence in their ability to use
the system to accomplish their tasks. The group determined that the informa-
tion should be passed weekly from Gillette’s system to CMCS.

Gillette’s MIS and Manufacturing Systems Departments then developed
two programs—one for each end—incorporating the lessons learned from the
simulation. On Gillette’s end, the program created two files containing
purchase order progress and material status transactions. On STSC’s end, the
program validated the transactions and used them to update the CMCS
database. Activity transactions (rather than a snapshot of status) were used in
the initial implementation because the information could be captured easily
and required only minor changes to Gillette’s existing systems. This approach
did require, however, some duplication of the Purchasing and Material
Reporting System’s logic at STSC’s end. With AP L, this task was accomplished
with little difficulty.

Transmission

With the programs in place, the only task remaining was to actually move
the data. At first the data was written to tape and physically carried to STSC.
However, the resulting two-day turnaround did not meet Gillette’s timing
requirements. To save time, Howard Sternlieb of SRD’s Manufacturing Sys-
tems Department introduced a Hewlett Packard 7260 table-top card reader.
The information was punched on cards, read into the card reader (which was
connected to an ordinary time sharing terminal), and transmitted to STSC
over the telephone lines at 300 baud and later at 1200 baud. This cut down the
cycle time considerably—from two days to as little as two hours. Unfortunate-
ly, the card system was susceptible to line noise and card jamming, so it was
necessary for someone to “babysit” the terminal. Sometimes the job took as
long as half a day.

The next improvement came with the elimination of the card reader and
the direct transfer of data from a disk file on Gillette’s system to a disk file at
STSC. This was accomplished using two facilities:

¢ STSC’s High-Speed Data Terminal Service (HSDTS), which moves
data at high speed (2400 or 4800 baud) in either direction between
STSC and a HASP terminal (see note 3).

* The HASP Remote Workstation (HRWS) program. (HRWS, which
was originally the IBM program HASP.RMI360, was extensively
modified by the University of Iowa and has been further modified
by STSC).

HRWS is run as an ordinary batch job on Gillette’s system, but it copies
the two files from disk to the computer’s communications interface, which the
operator has connected (by dialing) to STSC. HRWS makes Gillette’s computer
appear to be a HASP terminal to STSC’s system. HRWS and HSDTS reduced
turnaround time for the transmission to approximately 12 minutes.

Complete Automation

Once the transmission time was reduced to an acceptable level, we turned
our attention to STSC’s interface program, which verifies the data received
and updates the CMCS database. The program was interactive, requiring a
user to sign on, run it, and answer a lengthy series of questions. This process
was inconvenient, since it meant that the one person responsible had to sign on
every Monday by 7:30 am (the file transmission took place on Saturday) to
complete the database update before other users arrived. Since the data was
coming from a file—not from the operator—the answers to the questions were
invariably the same every week. This was a good opportunity for automation



A Fully Automated Interface 63

using STSC’s Deferred Execution System, a facility which allows the automat-
ic scheduling of production jobs (see notes 4 and 5).

The goal for this part of the interface was to have the update performed
automatically each week. The job had to be completed by 7:30 Am every
Monday, and it had to be performed without user intervention. By running the
job as a “deferred task”, we could not only free the user from the drudgery of
entering repetitive data, but we could also take advantage of the substantial
discount available to deferred jobs with batch priority.

Before automation of the CMCS update, the following procedure was
performed on a weekly basis:

1. Gillette’s computer operations staff initiates HRWS, which trans-
mits the data.

2. HASP updates the APL files.

3. A Gillette user runs the interface program, which updates the
database and prints the reports.

4. The Gillete user “cleans up” and prepares for the next transmis-
sion.

To complete file updates and generate reports by 7:30 AM on Monday, we
were having the data transmitted (step 1) sometime over the weekend. This
still left steps 3 and 4 in the above procedure as obvious candidates for
automation.

To automate these steps it was necessary to examine the procedure more
carefully and make some changes. First, it was necessary to insert a new step
between steps 2 and 3. This new step was to verify the completion of the
transmission and the creation of the APL files (i.e., to verify the successful
completion of steps 1 and 2). In fact, this verification was already being
performed. It was, however, a simple check at the beginning of the interface
(step 3). By automating the data transmission, we had introduced some
uncertainty into the procedure; that is, we could not know exactly when, over
the weekend, the transmission would be performed. Consequently, the verifi-
cation step became a more important part of the procedure.

The second change in the procedure was to separate (in step 3) the
generation of the reports from the printing of the reports. We decided not to
automate the final printing of the reports; instead this task was left for the end
user to complete on Monday morning.

With these changes implemented, the procedure looked as follows:

1. Gillette’s computer operations staff initiates HRWS, which trans-
mits the data.

2. HASP updates the APL files.
3. A deferred task verifies the successful completion of steps 1 and 2.

4. The deferred task runs the interface program, which updates the
database and generates the reports.

5. The deferred task ““cleans up” and prepares for the next transmis-
sion.

6. A Gillette user prints the reports.

Now, with the additional automation of steps 3 through 5, all file updates
and report generations are performed before Monday morning. The only
exception to this is on rare occasions when the data transmission fails over the
weekend, or when there is some system problem that prevents steps 3 through
5 from being run as scheduled.

The automation of steps 3 through 5 in this procedure was accomplished
using STSC’s Deferred Execution System. This system allows users to request



64 A Fully Automated Interface

that APL programs be run at some future time. A key feature of the system is
that submission and monitoring of the deferred jobs is accomplished with APL
programs. This makes it possible for one deferred job to submit additional
deferred execution requests. In this way, a job that is to run on a regular basis
(weekly, in the case of our interface) can perpetuate itself indefinitely into the
future without any involvement from the end user.

A secondary goal of the automation was to take advantage of the lower
CRU (Computer Resource Unit) rates offered for deferred overnight process-
ing. This presented a problem because the lower rates apply only if the job is
run with a batch priority class. This means that the actual scheduling of the
job is left up to the Deferred Execution System. Uncertainty regarding when
the deferred task would run, together with uncertainty regarding when the
data would be transmitted, presented the only complication in automating the
interface.

We resolved our problem by scheduling two overnight jobs each weekend.
One job runs on Saturday night and performs the interface if, in fact, the data
was transmitted on Saturday. The other job runs on Sunday night and does
nothing if the interface was successfully completed on Saturday. If, however,
the data was not transmitted until Sunday, the Sunday night job performs the
interface.

At first glance, it might seem easier to have just one job on Sunday
perform the interface. With this approach, you would not have to worry about
when the data was actually transmitted. Indeed, this approach was considered
and rejected because of the possibility of a system problem occurring on
Sunday that would prohibit the interface from successfully running. The “two-
job” approach was selected because it gives the system two nights to complete
the interface, and therefore increases the probability of its being successfully
completed by Monday morning.

Once the two-job approach was selected, the only task that remained was
establishing conventions for each job so that it could communicate its progress
to other jobs and to the end user on Monday morning. With these conventions
established, the weekly procedure was quickly and easily automated.

The Future

The last step in the automation of Gillette’s interface is to convert from
processing purchase transactions to transferring a snapshot of the entire file.
The transaction approach currently being used has two principal disadvan-
tages: (1) the logic is complex and expensive to maintain, and (2) recovery from
failures is hampered by the lack of a clean restart point. Snapshot logic is
simple and recovery from failures is accomplished by merely rerunning the
job.

The transaction approach can be more suitable than the snapshot ap-
proach when the volume of data involved is significantly less using the
transaction approach. For Gillette, the amount of ddta is the same using either
approach. The switch to the snapshot approach did, however, require writing a
new interface program at each end, but the logic has proved so simple that the
task was accomplished in less than three days. At this writing, final testing is
in progress.

Conclusion

Interface development is a combined systems and user effort. Specifica-
tions must be clear and represent a consensus; results must be closely
monitored.



A Fully Automated Interface 65

During each stage of development at Gillette, the interface continued to
provide vital inventory status information to CMCS so that planning could
proceed. Gillette’s interface has evolved in the direction of maximizing the use
of computer system capabilities and reducing clerical involvement. At the
same time, each improvement in the interface has reduced both the time to
transfer the information and the cost of operating the interface.

An important side benefit of the interface effort at Gillette is the
relationships established between Gillette’s users and systems personnel and
STSC’s representatives. These relationships not only aided the interface effort,
but have also proved invaluable in other work undertaken by these groups.

Notes

1. R. G. Brown, Materials Management Systems: A Modular Library, (Wiley,
1977).

2. Comprehensive Manufacturing Control System User’s Guide, (STSC, 1978).

3. J. d. Prats, Working Memorandum No. 104, High-Speed Data Terminal
User’s Guide, (STSC, 1978).

4. J. G. Wheeler, Deferred Execution Reference Manual, (STSC, 1979).
5. J. G. Wheeler, Deferred Execution User’s Guide, (STSC, 1979).

John Estep joined STSC in 1977 and is currently a materials management
consultant, responsible for the sale, customization, installation, and support of
systems for finished goods management, production and capacity planning, and
production control. Prior to coming to STSC, he worked in operations research
and systems design for the Talon Division of Textron and for the Connecticut
General and Massachusetts Mutual life insurance companies.

Estep holds a B.S. in mathematics from Allegheny College and an M.S. in
electrical and computer engineering from the University of Massachusetts,
where he is currently a candidate for a Ph.D.

Dick Geden has worked with the Gillette Company for over 11 years. He
previously managed the Blade Dispenser Loading Department and Machine
Shop Planning Department, and was the project manager for MRP (Material
Requirements Planning) development. Currently he is manager of manufactur-
ing systems.

Geden holds a B.S.B.A. degree from Boston College and an M.B.A. from Babson
College. He is a certified practitioner of APICS, the American Production and
Inventory Control Society.

Jack Reynolds is currently an applications consultant manager in STSC’s
Boston office. Before joining STSC, he was with IBM where he learned APL
and developed expertise in a variety of database design and data storage and
retrieval techniques. Recently he completed installation of a portfolio manage-
ment package for an insurance company, and he is currently directing develop-
ment of an inventory cost accounting system for a national manufacturing firm.

Reynolds holds a B.A. in mathematics from Dartmouth College.



66 A Fully Automated Interface

Howard Sternlieb is currently a technical coordinator in the manufacturing
systems department of Gillette Company’s Safety Razor Division. He has
responsibility for all technical aspects of computing, including programming,
hardware selection, user support, and inhouse education. Sternlieb joined
Gillette in 1974. He previously worked as manager of sales support with Wang
Laboratories, and as a senior materials analyst at Honeywell.

Sternlieb earned his B.S.B.A. from Northeastern University and his M.B.A. in
computer science from Boston College. He is on the staff of the Computer
Information Systems Department at Bentley College.



Robert E. Cook

Making the Inhouse Decision:
Some Considerations

As the popularity of APL grows, more APL users are looking beyond the
traditional APL time sharing vendors for alternative ways of getting the
computer power they need. Because of the dramatic decline in the per function
cost of computer hardware over the past ten years, large users question the
variable costs of commercial time sharing. They search for ways to lower and
bound costs for APL and other time sharing usage.

To objectively evaluate the alternatives to commercial APL time sharing,
more than hardware costs must be examined. A full understanding of the time
sharing vendor’s environment must be reached, as well as a reasonable
understanding of the hardware and system software environments. Making a
decision to move a series of APL systems from commercial time sharing to an
inhouse processing environment, without detailed investigation of these vari-
ous environments, is a disservice not only to the APL user, but also to the
general management of the user’s enterprise.

The scope of this discussion does not permit a detailed investigation of the
relative merits and drawbacks of commercial APL time sharing versus an
inhouse processing environment. Rather, a “road map” to and “background
briefing” for this kind of investigation will be provided from the perspective of
the APL time sharing vendor. A brief discussion of the vendor environment,
the hardware environment, and the software environment will be provided,
together with observations concerning the trends in technology and pricing
that should be considered when evaluating the long-term implications of
alternative means of delivering APL computer power.

When an analyst evaluates the environment of an APL time sharing
vendor, he usually assumes that the vendor is fully aware of technological
trends and will act in his own best interests to ensure the continued viability of
his particular approach to business. The continued trend toward reduced
hardware cost per computing function, when viewed on a relative CPU cycle-
cost basis, makes the inhouse time sharing environment quite attractive.
However, the time sharing vendor provides much more than a CPU service; in
fact, CPU power is a relatively minor portion (less than 10 percent for STSC) of
the cost. Although most commercial APL vendors find it convenient to charge
customers in terms of CPU (or “CRU”) usage, services such as “free” customer
training and “free” telephone customer assistance are bundled into the
seemingly simple charges. The analyst must consider the impact of removing
these “free” services from the user environment.

When pricing an inhouse AP L service, the analyst must also consider the
disruption caused by removal of ancillary software services; ancillary software

67



68 Making the Inhouse Decision: Some Considerations

is seldom provided in a readily installed form by the hardware vendor. Prime
examples of this are the administrative or “housekeeping” software that
provide services such as file backups, accounting and billing, sorting and
merging, and high-volume printing. These functions are of critical importance
to only a small subset of the total user population and, therefore, might be
easily overlooked in an evaluation.

Additionally, APL language enhancements and proprietary application
software—the most important assets of an APL time sharing vendor—are
often woven into many of the user’s own application programs. This transpar-
ent, proprietary software is usually designed to enhance the already high
productivity of APL programmers and, for that reason, is of great value to
users. The cost of losing this proprietary software must also be factored into
the ultimate investment decision.

The hardware environment, of the costs to be discussed, is probably the
least complex. Hardware prices will continue to plunge. Not only will prices
for CPU power drop, but relative prices for all kinds of storage will also drop.
Again, one must assume that the hardware vendors will act in their own best
interests and protect the viability of their enterprises.

If hardware prices are to continue their downward trend, and if the costs
of hardware manufacturers are to remain relatively constant, where will the
manufacturers get their profit margin? At least some of the margin will come
from economies of scale based on increased sales volume. Before long, however,
competition for market share will drive high-volume hardware prices down,
again squeezing the profit margins of the hardware vendor.

One method available to assist the hardware vendor in addressing this
quandary is a substantial increase in the use of microcode or firmware to
implement application and system software. The use of proprietary microcode
both improves system performance and allows the hardware vendor to
establish a proprietary edge that permits reestablishment of high-margin
pricing.

A careful investigation of the true long-term costs of an inhouse hard-
ware/software alternative to commercial APL time sharing must include a
recognition of the trends established by the hardware vendors toward “unbun-
dled”, or individual, pricing of all proprietary system and application software.
This unbundling implies a dramatic increase in the price of software vended by
the manufacturer. A Computerworld article (Lundell, “Software for IBM 4300
May Cost More than Hardware”, Computerworld, 30 April 1979) documented
that software charges from IBM could exceed hardware charges for an IBM
4300-series computer over the life of the system. This trend, and the costs
associated with it, must be recognized by the time sharing user community in
investment analyses.

The single most important consideration in evaluating alternative means
of delivering APL computing power is software—both system software and
APL-related software. Proprietary application software may also have rele-
vance to this decision.

With regard to software, response time is a major consideration. It is
impossible, or at least unrealistic, to plan on maintaining a “happy” AP L user
community with terminal response time of more than two seconds for a trivial
terminal command. This is an extremely important consideration, since users
will reject an otherwise robust and well-rounded APL system if the terminal
response time is unacceptably high.

The competition of an inhouse AP L system is usually the commercial time
sharing system that preceded it; users measure the new system accordingly. At
STSC, for example, a 0.5-second response time is the standard at which the
acceptability of terminal response is measured. A two-second response time—a



Making the Inhouse Decision: Some Considerations 69

400 percent degradation from STSC’s standard-—appears to be a reasonable
measure of the tolerance of the APL user community in an inhouse APL
environment.

A primary question, then, must be “What operating system or system
control program (SCP) is best suited for delivering acceptable response time in
an interactive terminal environment?”” After a full calendar year of testing,
STSC concluded that IBM’s VM/370 SCP is the best available choice. VM/370
(or its unbundled successor) is a superior interactive time sharing system with
terminal response time in the two-second range. Moreover, it is adequate for
an ancillary, low-volume batch workload. IBM OS/VS2 (MVS) was also
carefully evaluated and then rejected as an APL processor. In the opinion of
STSC, MVS is a superior system for batch processing and an adequate system
for an ancillary, low-volume interactive time sharing workload (if five-second
terminal response time is acceptable to the user community).

It is important that a fully supported SCP be used rather than a heavily
modified, unsupported operating system such as DOS. The trends toward
firmware and microcode options mentioned earlier necessitate a system
approach that will allow the user to take advantage of at least some of the
relative economies offered by the hardware vendors’ microcode, without
impacting the system’s ability to process the APL workload.

In summary, weighing the relative benefits of an inhouse decision re-
quires thorough investigation, especially of the less obvious aspects of provid-
ing APL processing facilities. Too often, decisions are based on insufficient
data and fail to recognize the true costs associated with them. Complete, in-
depth analysis, careful planning, and superior plan execution are critical to
the successful conversion of the user community to the alternative system.

Bob Cook joined STSC in 1977 as director of corporate planning and has been
vice president of market development since April 1978. His current responsibili-
ties include project management for STSC’s inhouse AP L systems marketed for
use on IBM-compatible hardware. Cook previously held management positions
with Basic Four Corporation, Boeing Computer Services, and U.S. Time
Sharing, Inc.

Cook earned a B.S. in mathematics from Indiana University of Pennsylvania
and an M.S. in business administration from George Washington University.



Michael F. C. Crick

Variations in 4P! Flat Major

This paper is a personal survey of the interesting features found in APL
systems produced by IBM and other mainframe manufacturers such as
Control Data Corporation (CDC) and Burroughs. It is intended to give the
audience a general view of what is going on outside the cozy environment of
STSC's APL*PLUS System.

Overview

Most users work with one or perhaps two different AP L implementations
and, thus, rarely have the opportunity to see a large variety of APL systems.
As an independent consultant, I am in the position of working with one version
of APL one week and a different version the next. I would like to share with
you some of my personal observations.

In the short space allotted it is clearly not practical to provide a detailed
comparison of all available versions of AP L—nor would such a comparison be
very interesting. What I have attempted to do here is discuss a selected set of
APL systems and to present only those details that to me seemed interesting
and memorable. I shall thus discuss in turn APLSV, VS APL, APLUM
(CDC), APL /700 (Burroughs), APLSF (DEC), and Harris APL all in relation
to STSC’s APL*PLUS System (see note 1).

Is IBM Drowning in Its Own Alphabet Soup?

IBM has two major APL systems at this time: APLSV (APL Shared
Variables) and VS APL (Virtual Systems APL). APLSV is a descendant of
the famous XM-6 version from which the STSC implementations of the
APL*PLUS System are derived. VS APL is IBM’s official Program Prod-
uct. It is much cleaner internally since it was written from scratch, whereas
APLSYV evolved from a series of earlier implementations. VS APL relieson
its host system to provide many services such as swapping and terminal
support, whereas APLSV provides its own. The new version of the
APL*PLUS System running under VM is an extension of VS APL. The
APL on the 5110 and 5120 is a direct crib of APLSYV.

Current IBM implementations are mainly notable for what they do not
have. There is no support for the diamond statement separator (0), for error
trapping, or for anything corresponding to Automatic Control of Execution
(ACE), a proprietary product of STSC that provides the system facilities
necessary to run production programs automatically without a user signed on

70



Variations in APL Flat Major 71

at a terminal. Additionally, the file systems offered by IBM are very hard to
use and have significantly fewer capabilities than those offered by STSC.

At present, IBM is suffering a severe case of schizophrenia about APL.
The idea evolved early in the development of APL that it was a “scientific
language”—a fact reflected in STSC’s original name, “‘Scientific Time Sharing
Corporation”. Since APL was designed as an extension of mathematics, that
assumption was not unreasonable. Yet, everyone who has contact with the real
commercial world knows that APL has in practice triumphed as a commercial
language. IBM’s persistence of the vision of APL as a scientific or engineering
language only shows how far IBM is out of touch with reality.

The illusion of schizophrenia is further fostered by the fact that IBM has,
at this writing, both two AP Ls and two groups working on AP L—the research
group at Watson Research Center in Yorktown Heights, New York, and the
development group in San Jose, California.

IBM is developing an interesting research version of APL at Yorktown
Heights that supports operators, non-simple and homogenous arrays, and
many other major new features (see note 2). What the development group is
doing is not known. Whether IBM can get its act together and produce a single
new APL that reflects the reality of user requirements remains to be seen.

Contrast at Control Data

The first versions of APL distributed by CDC were total disasters. An
unofficial version written by Jim Burrill and Clark Weidmann at the Universi-
ty of Massachusetts (APLUM) moved in to fill the void. CDC now recognizes
APLUM as the official CDC APL and has sole rights to distribute the product.
The University of Massachusetts has complete control of development.

CDC APL operates under a handicap—Control Data machines are scien-
tific machines and not commercial machines. CDC machines are poor at
manipulating bit and character data, and their operating system is not
designed for major file-sharing applications.

We all know the sort of person who is “handicapped” by being very short
(or very tall), or by being from a foreign country. A person with such a
handicap usually responds by trying harder and being more adaptable. That is
how I would characterize APLUM. The implementers, as outsiders, were
always insecure. They had to do a better job despite the limitations of the
hardware and software they had.

The result is an AP L that is everywhere characterized by what I think of
as “good” design. Their innovations are always extremely clean and logical,
and they have managed to avoid perpetuating many of the strange features of
APL that have been supported over the years almost as acts of faith.

For example, why are certain APL operations such as )COPY only
permitted as manual operations? In the days of Automatic Control of Execu-
tion, this makes no sense. Some vendors have bypassed this limitation by
allowing the execute primitive (¢) to operate on system commands or by
sharing a variable with the input stack. APLUM has done it right. It uses
OLOAD,[COPY and the whole implementation is “clean”. Other AP Ls should
copy this approach.

Why does every major AP L lack a decent context editor? Context editors
are usually to be found as functions or perhaps as part of the host system.
APLUM has integrated the context editor into the standard APL editor. Again
the implementation is simple and clean. Another feature other AP Ls should
copy.

Why do most AP Ls force you to preallocate space for symbols and the
stack, not to mention the shared variable processor or the user workspace?



72 Variations in APL Flat Major

APLUM has one pool that is allocated automatically as needs dictate. If the
pool runs out, the system asks the host for a bigger swap area in which to run
itself—all performed automatically with no user intervention. This is a design
standard that other APLs should emulate where possible.

APLUM has an extremely simple form of error trapping and its batch
support is reasonably good. Its main defects are the curious and idiosyncratic
file system and the lack of support for the diamond statement separator. It is
very fast for floating-point operations, but can take forever to perform such
character operations as catenating two character arrays.

Overall, the group at the University of Massachusetts has done a superb
job. Despite the unsuitability of the host machine and the operating system,
and despite their lack of clout as a group external to CDC, they have produced
an excellent APL. Their current direction is toward developing an APL
compiler to let APL compete with FORTRAN and perhaps ultimately be
accepted by engineers.

Burroughs and APL/700

Burroughs APL is another non-IBM APL that is worth considering in
some detail. It is a “liberal”, user-friendly APL that owes much of its character
to Jim Ryan. It has numerous minor but useful extensions—many of which
deserve to become a permanent part of the language.

For example, APL /700 supports set operations. These are perhaps more
useful than one might suspect. The most common use is to eliminate duplicates
from a set of numbers thus:

(10) U ARRAY

It would seem logical to define a monadic form of union (unique?) to eliminate
the need for the 10 on the left.

APL /700 has introduced the use of assignment as an operator, taking
any scalar dyadic function as its left argument. For example:

I++1 (Meaning I+I+1.)

This feature comes into its own when the variable being incremented has a
large and complex subscript. Curiously, catenate is not allowed with this
construction—one might have thought that would be the most useful case.

APL /700 has extended transpose (to turn vectors into column matrices)
and reshape (to operate on empty vectors). The axis operator has also been
extended to operate on scalar dyadic functions thus:

(2 3p112)+[1] 10 20 30
11 22 33
14 25 36

This eliminates the need for a lot of wasteful reshaping and should be used
more widely.

APL /700 offers reasonable support for ASCII terminals using a visually
pleasing character substitution approach. On an ASCII terminal one can
enter:

X<IS>3 4 <RHO> <IOTA>12

There are also a number of useful extensions to tracing and editing that
are not described easily, but are very useful. The file system uses special
symbols such as M and H. There are some new goodies like “pop”, “map”, and
compress. The file system is generally like that of STSC’s APL*PLUS System,



Variations in APL Flat Major 73

differing only in detail. For example, files are accessed by name rather than by
tie number, and security is handled by the host rather than by access matrices.
APL /700 does not support the diamond statement separator and generally
shows up poorly when benchmarked. This is partly compensated for by the fact
that Burroughs machines can support a large number of central processors on
one system.

In 1977 Jim Ryan went to work at Data Resources, Inc., but he is now back
at Burroughs working on SYBIL—a new language derived from APL which
uses words instead of special characters. The new language will have an
extended notion of workspaces known as namespaces. Meanwhile, APL/700
is fully supported by a separate group at Burroughs.

Diversity at DEC

If APL /700 bears the stamp of Jim Ryan, DEC’s AP L SF bears the stamp
of Alan Perlis. As developed by the group at Carnegie-Mellon University in the
early seventies, DEC AP L was ahead of its time. Now that the rest of the world
has caught up, DEC APL has been forced to do a certain amount of back-
tracking to become consistent with everyone else. There are, for example,
three format functions in the language—the official IBM “thumbtack” (¥), a
version of [JFMT (using the symbol $), and the pioneering monadic encode (T)
that will now probably be phased out.

For the same reasons, execute may be performed by €, 1, or ¢. Not only
may one execute system functions, but one may also execute a character
matrix. This brings APL closer to LISP, where data and functions are all the
same thing.

My favorite extension is the omega function, which performs a “where”
operation as shown below:

wB ++ B/1pB

w 101101
1 3 46

This is particularly useful when B is a complex expression. I gather that this

primitive is being phased out to allow for future inclusion of alpha and omega
as defined by Kenneth Iverson.

APLSF has an elaborate file system that uses special symbols, system
functions, and system variables—powerful but messy. There is no support for
the diamond statement separator. As a whole, DEC APL illuminates the
pitfalls one faces for being too liberal. It must have been infuriating as well as
gratifying to those at Carnegie-Mellon to see IBM use many of their ideas in
slightly modified form.

Another DEC innovation is to provide two levels of APL at different
prices. The inexpensive beginners version lacks certain enhancements, nota-
bly the file system. A major disadvantage of AP L compared with other major
languages is that it comes in only one size. Nobody selling shoes or houses of
only one size would stay in business, but in the case of APL the general policy
has always been all or nothing. The market for a small, carefully chosen subset
of APL has not been properly served.

We must commend DEC for its pioneering efforts to expand the language.
Just as the first platoon out of the trenches suffers the heaviest casualties,
DEC has had to pay the penalty for being first.

Doing It Straight at Harris

If APLSF is liberal, the new Harris APL is conservative. One is reminded
of the eager new member of the club whose dress is always a little too correct



74 Variations in APL Flat Major

and who can be relied upon never to raise an eyebrow. Such an attitude
probably befits a newcomer—only the old guard can break new ground and get
away with it.

The new Harris APL is quite impressive. Its file system is very close to
that of STSC’s APL*PLUS System, as is its support for error trapping. It
supports batch processing, and shared variable support is imminent.

The only real differences are the use of JST and [JTR for stop and trace,
and a variant definition for the diamond symbol. On Harris APL, if three
statements are placed on a line, the next line gets the line number plus three
rather than the next sequential number, as on the APL*PLUS System. Thus,
diamond can be considered as an instruction to the function display module
rather than as a piece of punctuation. One cannot write:

+NEXTL IF B>5 O 'B IS TOO SMALL' O —E5

This, and the fact that Harris APL does not support JFMT, would appear to
make conversion from STSC’s APL*PLUS System to Harris APL infeasible
for major applications, despite the correspondence of most other features.
Conversion from Harris APL to STSC’s system, on the other hand, is likely to
be particularly easy.

Harris APL is fast—impressively so according to their benchmarks. One
should be aware that this speed is achieved in part by doing all numeric
operations in floating point, with 39 bits (11 decimal places) of precision. This
makes Harris AP L unsuitable for financial applications requiring precision to
the penny for large dollar amounts.

..And What About the APL*PLUS System?

Since this presentation was prepared at the request of STSC, I have
assumed, possibly incorrectly, that all readers are familiar with the
APL*PLUS System. The discussion has been largely in terms of how other
APL systems compare to the APL*PLUS System. This is because the
APL*PLUS System is a recognized leader in the AP L community; what STSC
does, others copy.

There are many new developments in APL, and STSC is a major force in
initiating them. Since I write this paper without being privy to what STSC is
going to unveil at its April 1980 conference, to talk at length about the unique
features of the APL*PLUS System would be to talk about those features that
others have not yet copied. Much work is going on in areas like relations,
support for systems on different hardware, systems software, and generalized
arrays. Other presentations in this book (e.g., "Nested Arrays: The Tool for the
Future”) address these subjects in detail.

Notes

1. The latest manuals for the APL systems discussed are properly obtained
by contacting the local sales office of the company involved.

2. J. A. Brown, “Evaluating Extensions to APL”, APL79 Conference Proceed-
ings and APL Quote Quad, Vol. 9, No. 4, June 1979.

Michael Crick is an independent software consultant and financial advisor in
Seattle, Washington. His involvement with APL began while he was employed
by IBM, where he received an outstanding contribution award for his efforts in



Variations in APL Flat Major 75

the development of APL (CMS). Crick was also instrumental in the development
of MAINSTREAM—-APL at Boeing Computer Services and was branch manager
of the Seattle office of 1. P. Sharp Associates.

Crick holds both a B.Sc. and M.Sc. from the University of London.



Robert L. McGhee and James G. Wheeler

Travels in VM Land:
A Virtual APL Primer

Virtual adj. Existing or resulting in essence or effect
though not in actual fact, form, or name.

—American Heritage Dic-
tionary.

Many of our readers will already know that VM stands for “Virtual
Machine”, but far fewer will have a clear grasp of just what the term means to
them as APL users. Simply introducing the idea of a machine may worry some
APL users. STSC’'s APL*PLUS System running under OS/MVT has tradi-
tionally isolated the user from the details of real machines, for APL naturally
tends to make the computer on which it is executing invisible to the user. A
programmer can work successfully on the APL*PLUS System without think-
ing about computers at all; instead, he can imagine that he has a magic
terminal that executes APL, and he can let things go at that.

There are many positive things to say about this isolation, in particular
the way it lets the programmer keep his thoughts on the conceptual, problem-
solving plateau instead of worrying about physical hardware or the internals
of software. But this isolation also tends to limit the types of solutions that the
programmer can choose. Three of the biggest limitations are these:

1. APL programs cannot access data that is used by programs
written in other programming languages. Traditional APL pro-
vides no means for an APL program to use the same data as a
program written, say, in FORTRAN.

2. This isolation from other languages also prevents APL users from
enjoying the use of software packages that are not written in APL
(and, all chauvinism aside, some of the best software around is
written in other languages).

3. A less awesome limitation, but still an irksome one, is that APL
traditionally has a fixed workspace size. This severely limits the
size of the data objects that can be used by an APL program and
often requires that applications be divided into multiple work-
spaces.

Using STSC’s APL*PLUS VM System, an AP L programmer can conquer
all of these limitations and still enjoy the full problem-solving power of APL.
VM is, however, unfamiliar territory to most AP L users and the bookcase full
of manuals on the subject may discourage the uninitiated, no matter how
much they may want to exploit the new capabilities VM offers.

76



Travels in VM Land: A Virtual APL Primer 77

The purpose of this paper is to present the basic concepts involved in using
VM. Because of the size of the subject, we will not try to present even the
minimum knowledge needed to be a successful VM user. Instead, we will try to
convey the basic ideas needed for a user to feel at home learning about VM and
understanding it intuitively. We will present three different views of VM:

1. The virtual machine perspective. This is the “hardware” point of
view. Since VM simulates a private computing center for each
user, this perspective is essential to understanding the capabili-
ties of the virtual machine.

2. The software perspective. Working in VM means moving into and
out of the APL environment. This perspective is important in
understanding the relationships among the various software en-
vironments of the VM system.

3. The APL user’s perspective. Our interest in VM is due primarily to
the way it complements and extends the power of APL. We will
use a case study of transferring an AP L workspace to VM to show
just how valuable these new capabilities can be.

The Virtual Machine Perspective

The central idea behind VM, indeed the one that gives it its name, is the
virtual machine. VM/370 simulates a complete, private computing center for
each time sharing user. Simply by signing on to VM (a process known as
“logging on”), you can in effect obtain the exclusive use of hundreds of
thousands of dollars worth of computer equipment. Of course, it’s almost all
virtual hardware, which means that it will not perform as briskly in real time
as actual equipment. But since APL users are quite accustomed to doing
without real-time capability, no significant sacrifice is involved. In fact,
considering that one real computer is giving each of its many users the illusion
of having a personal computer, the performance is really quite good.

Each user’s virtual machine is configured at log-on to a predetermined
initial configuration. A typical VM user at STSC might be given the following
virtual hardware at log-on:

e An IBM 370-series mainframe (CPU) with 512 kilobytes of main
storage.

* An “operator’s console”, which is simply the terminal that the
user is using.

e A virtual line printer (known to most APL users as a “high-speed
printer”).

¢ A virtual card reader (AP Lers who gasp at this idea should catch
their breaths before reading the next item).

e A virtual card punch (how else would we produce virtual card
decks for the virtual card reader?)

e Three virtual disk drives, otherwise known as Direct-Access
Storage Devices, or DASDs.

This virtual hardware can be put to a number of good uses, giving the user
the following capabilities and more:

* Printing files by spooling them to the virtual line printer, in a
manner similar to that provided by the Fileprint Facility on
STSC’s OS/MVT system. The files are printed on real paper by a
real high-speed printer shortly after the spooling operation is
“closed”.

¢ Transmitting files to other virtual machines (i.e., other VM users)
by punching virtual card decks for them. In reality, the “cards”



78 Travels in VM Land: A Virtual APL Primer

are records in system spool files that magically appear in the
“input hopper” of the other user’s virtual card reader.

¢ Reading virtual card decks from the virtual card reader, complet-
ing the transfer of files between virtual machines. Virtual card
decks are not the only means by which data can be transferred
from one virtual machine to another, but they are useful for
sending a file to another user when that user is not signed on.

¢ Reading from and writing to files residing on virtual disk drives.
These disks may belong to the user’s virtual machine or may be
shared by other users.

e Disconnecting the console (i.e., the terminal), leaving the virtual
machine running; this provides a facility comparable to the
Detached Execution Facility available on STSC’s OS/MVT sys-
tem.

In VM jargon, a virtual disk drive is referred to as a minidisk. This term
reinforces the concept that minidisks are in fact portions of real disks
dedicated to specific users. The term “virtual disk” is discouraged because,
unlike virtual main storage, the amount of permanent storage available on
minidisks cannot be altered by the user.

The three disks typically available to the user at log-on are
e The user’s private minidisk, called the A disk.
* A system minidisk, called the S disk, containing system software.

¢ Another system minidisk, called the Y disk, containing system
and application software.

The A disk contains the user’s private files and the user is permitted to
both read from and write to this disk. The A disk is analogous to an APL user’s
private library. In fact, the user’s private saved workspaces are presently
stored on this disk.

The S disk and Y disk are analogous to public libraries in an APL system.
Both are read-only disks in that the user can read files from the disk but not
modify the files. All virtual machines have access to these disks. The S and Y
disks contain such things as the APL interpreter, the FORTRAN compiler,
and applications like SCRIPT (a text formatter developed by the Department
of Computer Services at the University of Waterloo), BMDP (Biomedical
Computer Programs, P-Series), and SPSS™ (Statistical Package for the Social
Sciences).

Each minidisk contains a number of files. Unlike AP L, where files store
only APL data values, these files are of many different types and are used for
widely varying purposes. Some files contain data, and a wide variety of
different data formats are possible. Other files contain compiled programs that
can be invoked by using the file name as a command. Still other files, called
EXECs, are programs made up of sequences of VM system commands.

The user’s virtual hardware configuration can be selectively modified as
needs for resources change. For example, the typical virtual machine that we
have discussed is illustrated in Figure 1. The size of the user’s APL workspace
is directly related to the amount of main storage in his virtual machine. If this
user finds he does not have a big enough workspace, he can increase the
amount of main storage to, say, two megabytes. If he needs a large amount of
temporary file space, he can create a new virtual disk drive (this file space is
lost at sign-off). If he needs a tape drive to read from or write to a tape, he can
have a real tape drive attached to his virtual machine. After performing these
actions, the same virtual machine would have the configuration shown in
Figure 2.



Travels in VM Land: A Virtual APL Primer

OPERATOR'S CONSOLE

CPU WITH 512 KILOBYTES

/OF MAIN STORAGE
nan
nm
\\

CARD RE\ADER

LINE PRINTER
CARD PUNCH A DISK S DISK Y DISK

Figure 1—Typical Default Virtual Machine

CPU WITH 2 MEGABYTES
OF MAIN STORAGE
N\ REAL TAPE DRIVE

r
Q/ it ; Y O
T

|

Figure 2—Reconfigured Virtual Machine

Software Perspective

79

The VM/370 operating system is divided into two main components—the
Control Program (CP) and the Conversational Monitor System (CMS). CP’s role
is management of the real hardware; system resources are distributed among
users so that each has the illusion of controlling a full-scale, private computer.
CMS is an operating system designed to give the time sharing user a friendly
and yet versatile way of working in the virtual machine created by CP. While
it is possible to run different operating systems under CP (including STSC’s



80 Travels in VM Land: A Virtual APL Primer

OS/MVT system), CMS has been built specifically to run efficiently in a
virtual machine and to serve a single user at a single terminal.

CMS runs under the control of CP, providing interactive use of various
applications and language processors, notably the APL*PLUS System inter-
preter. CMS processes commands entered from the terminal, including CMS
and CP commands. By using the proper tools, it is also possible to execute some
CP and CMS commands from within the APL environment.

This hierarchy of environments and the various routes between them can
be very confusing to the new VM user, particularly one who has previously
been accustomed to using AP L on a system that provides only AP L computing.
To help the reader develop an intuitive sense of the hierarchy and relation-
ships between the multiple environments, we’ll use a spatial and architectural
model.

In this model, we’ll imagine that a virtual machine is equivalent to a
house. The real computer can be considered a small community of many users,
each living in a private house (see Figure 3). The control program CP can then
be thought of as the main street in this community. Each user enters his
private house from the street and departs it by the same route.

USER A
7~

USER C

USER D

Figure 3—Main Street in VM Land

Logging on to the VM system is accomplished by communicating with CP.
The CP command LOGON is roughly equivalent to a request to “build me a
house”. Each user has a set of master blueprints stored in a CP directory, and
CP constructs the user’s default house according to these blueprints. As can be
seen from Figure 3, different users can have houses of different sizes and types.
If a user wants to change the size of his house, he must “move out” temporarily
while the old house is torn down and CP builds a new one.

The walls of the houses provide ample isolation and privacy for each user,
and each user’s computing is done entirely within the boundaries of his own
house. Facilities exist for appropriate interaction between houses (virtual
machines); these will be described a little later. Communication and transfer of
data between houses requires mutual cooperation, however. One user cannot
invade someone else’s house or impinge on his privacy without invitation.



Travels in VM Land: A Virtual APL Primer 81

Each user’s private minidisk is something like a storage shed in the back
yard (see Figure 4). The user can put things in the shed and retrieve them at
will, and what he stores in the shed is his own business. Extending this
analogy, the system (S and Y) disks are more like department stores down the
street. The user can get merchandise (data from files) from the department
store, but most users never supply anything to the department store.

USER'S VIRTUAL MACHINE

D ﬂ ﬂ [] fs' ] USER'S PRIVATE MINIDISK
0000 . e P
0000 = i ,

1L

EEL i

READ/WRITE
PRIVATE DISK

N

Figure 4—Relationships of Private and System Disks

It is possible for one user to give another user a key to his storage shed by
setting a password on his private disk and supplying the other user with that
password. A read-only password gives other users the ability to retrieve things
from your private disk, which is something like allowing your neighbors to
borrow your lawnmower from your storage shed while insisting that they not
stash any of their own garden supplies there. A read/write password gives
neighbors permission to both store in and retrieve from your storage shed. The
storage-shed analog also holds in that one user can use another user’s storage
shed, even when that user is not currently “at home” (signed on). Note that
once you’ve given someone a key, you cannot prevent him from giving the key
to others. You can, however, keep everyone out of your storage shed by
changing the padlock (password).

Giving out keys to storage sheds is only one of the ways that data can be
shared between houses. If you want to give a copy of a file to another user
without giving him a key to your storage shed, you can use the technique of
spool punching. This is like using a parcel service to send a package to someone
else’s house. Using the CP command DISK DUMP, you give the “CP Delivery
Service” a “package” containing a copy of your file on virtual punched cards
(which are punched on your virtual card punch). As is customary with any
good parcel service, the CP Delivery Service does not deliver any packages
without the recipient’s permission and only when the recipient is “at home”.
Thus, spooling is a good way to transfer data to virtual machines that are not
currently signed on. When the recipient logs on, he is notified by CP that a
package is waiting. By executing the CP command DISK LOAD, the recipient
accepts delivery of the package and stores its contents in his own storage shed.
(From the hardware perspective, the user loads punched cards into a file using
his virtual card reader).



82 Travels in VM Land: A Virtual APL Primer

The other way of communicating between virtual machines is the Virtual
Machine Communication Facility (VMCF), which is more like a telephone
service. With VMCF, two virtual machines can have a conversation, sharing
data immediately. The advantage of VMCEF is that the data is transferred at
once instead of waiting to be delivered. The disadvantage, as with the
telephone, is that the other user has to be at home to answer the phone. VMCF
cannot be used directly by CMS commands, but it can be built into application
packages. In fact, a facility exists whereby APL users can transfer data via
VMCF.

The boundary between the inside and the outside of the house neatly
defines the respective roles of CP and CMS. All of the transfer between houses
is handled by CP. The role of CMS is to manage the activity inside the house.
Figure 5 shows a view of the interior environment of a virtual machine. Within
the house, CMS is the main hallway. Leading off from the hall are separate
rooms, each of which is a distinct computing environment. The APL room is
the one that concerns us most, but there are also many other rooms, including
the BASIC room, the COBOL, FORTRAN, and PL/1 compiler rooms, the SPSS
room, the BMDP room, and many others. In most cases, one enters one of these
rooms from CMS and can move to another room only by leaving the room and
walking down the hall to the other door.

Figure 5—Inside the User’s Computing Environment

Notice that the APL room in Figure 5 has no windows, only the door into
the CMS hallway. This implies that when one is within the APL environment,
one is isolated from CMS and the outside world of CP and the other virtual
machines. AP L users do not always have to be isolated, however. At the time
that the user enters APL from CMS, he can specify the creation of a workroom
of a certain size within the AP L environment. This workroom houses auxiliary
processors, which are programs that can interface APL to the outside world.



Travels in VM Land: A Virtual APL Primer 83

There is a window between the auxiliary processor and the rest of the APL
environment. Data and commands can be passed through this window to the
auxiliary processor. The auxiliary processor can then relay the data or
commands to the outside world through other windows. The window through
which APL communicates with the auxiliary processor is formally called a
shared-variable interface.

Several different auxiliary processors are available and each has different
capabilities. Some perform special-purpose computation on the data passed
from the APL environment and pass the results back through the window to
APL. Other auxiliary processors, such as the one shown in Figure 6, have other
windows into the CMS hallway or even into the outside world. Using these
auxiliary processors, an APL user can execute many useful CMS and CP
commands, read from and write to files in the “storage shed”, and so on. One
cannot, however, enter the FORTRAN compiler through an auxiliary proces-
sor, because using the compiler requires leaving the APL environment. (It is
possible to automate the movement from APL to FORTRAN and back again
using an auxiliary processor.) One auxiliary processor even uses the VMCF to
permit conversation with another user in the APL room of another house.

INTERFACE WITH CMS

AUXILIARY PROCESSORS

T~

INTERFACE WITH CP

Figure 6—Auxiliary Processors Interface APL to Outside World

The APL User’s Perspective

We will show the APL user’s perspective on VM by demonstrating a
process that many users who begin working under VM will wish to perform—
transferring a workspace from another APL system onto STSC’s APL*PLUS
VM System. The process of producing a copy of a workspace from another APL
system and transferring it to tape will not be described here; see Working
Memorandum No. 125, Source Level Transfer Using the Workspace In-
terchange Standard (STSC, 1978) for details. We will assume that the tape has



84 Travels in VM Land: A Virtual APL Primer

been produced, delivered to the STSC Computing Center, and catalogued into
its tape library.

The demonstration begins at the point where we log on toc VM to install
the transfer workspace. The first step is to dial the STSC network number and
enter the terminal speed-setting character; the system then responds:

TYPE SYSID
VM)
VM CONNECTED

VM/370 ONLINE
CP
At this point, we are in the CP environment, but we do not yet have a

virtual machine defined. By logging on, we ask CP to construct our virtual
machine:

LOGON USER

ENTER PASSWORD:

EEEEEEEE

LOGON AT 12:24:23 EST TUESDAY 02/12/80 05201
CMS VER 5.07.008 -- 11MAR79

R; T=0.01/0.01 12:24:26

Now, we have entered the front door of our house and are in the CMS
“hallway”. Our terminal is now controlling our default virtual machine.

To enter the APL environment from CMS, we use the CMS command
APL. We also specify an optional argument to the APL command that asks for
a large shared storage space to be used by an auxiliary processor in the
transfer process.

APL 150K
APLQO1SI INSUFFICIENT STORAGE FOR MINIMUM-SIZED WORKSPACE.
R; .

This is an error message meaning, in effect, that the size of the APL room
containing the auxiliary processor workroom exceeds the size of our house.
The amount of main storage in our default virtual machine is not enough. The
CP command QUERY STORAGE can be used to find out the current size of the
virtual machine. Although we are now in the CMS hallway, CMS recognizes
the CP command and passes it outside to CP.

CP QUERY STORAGE

STORAGE = 00512K
R . .

The report indicates that we currently have 512 kilobytes of main storage
in our virtual CPU. Here’s a fine chance to exploit our ability to increase the
size of our virtual machine. In a matter of moments, we can double the amount
of main storage:

DEFINE STORAGE 1024K
STORAGE = 01024K

AUTOIPL CMS

CMS VER 5.07.008 -— 11MAR79
b



Travels in VM Land: A Virtual APL Primer 85

Now, with this larger machine, we can try again to enter the APL
environment with a large shared storage space:

APL 150K

APL*PLUS SERVICE

CLEAR WS

Now, we can further change our virtual machine configuration by adding
a tape drive, which we will need to read the transfer workspace from tape. The
APL*PLUS VM System Operator can attach the tape drive to our virtual
machine after mounting the transfer tape for us.

JOPR PLEASE MOUNT TAPE VOL 123ABC, BIN NO. 1234 AS 181. THANKS.
SENT

Now, we wait for the operator to fetch the tape from the tape library,
mount it on a tape drive, and attach it to our virtual machine at virtual
address hex ' 181 '. The process usually takes a few minutes, and a message is
displayed when the tape drive is ready.

TAPE 181 ATTACHED
MESSAGE FROM OPERATOR: TAPE MOUNTED AND READY. /OPR

The tape drive is now ready to use and, since we’re monopolizing a real
tape drive, we should finish the job promptly. The first step in installing the
transfer workspace is making sure the present workspace is clear.

YCLEAR
CLEAR WS

To get ready to read the data from the tape, we’ll use Auxiliary Processor
100, the CMS/CP Command Processor. It provides us with a means of
executing CMS and CP commands from within the APL environment. On
STSC’s VM Service, this auxiliary processor is set up for us each time we enter
the APL environment. We communicate with the auxiliary processor by a
technique known as shared variables, an explanation of which is beyond the
scope of this paper. (For a tutorial on shared variables, see the paper entitled
“Using Shared Variables and Auxiliary Processors in VS APL”, which
appears elsewhere in this book.)

X+'CMS' ¢ 100 0Osvo 'Xx!

The preceding statements shared the variable X with the auxiliary
processor. X will now serve as a means of communicating with CMS through
the auxiliary processor. We will use the CMS command FILEDEF to define the
tape (TAP1) as a CMS file named SLT:

X+'FILEDEF SLT TAP1 SL1 VOLID 123ABC (RECFM U BLOCK 32760)"
X

The value of X has changed to 0, indicating that the FILEDEF command
has been executed successfully. Now that we can treat the tape drive as if it
were a regular CMS file, we can use the source level transfer functions in
workspace 99 SLT to install the workspace:



86 Travels in VM Land: A Virtual APL Primer

OERASE 'X!

)COPY 99 SLT SLTIN
SAVED . . .
'TRANSWS' WSIN 'SLT'

The left argument to ¥SIN is the name of the workspace as it is recorded
on the tape. The right argument is the CMS file name identifying the tape.
WSIN uses Auxiliary Processor 110, the CMS Disk Input/Output Processor,
which lets an AP L program read from and write to a CMS file (in our case, the
tape drive).

WSIN produces a lot of output, not shown here, as it installs each
transferred function and variable in the active workspace. The following
message is displayed when the installation is complete.

'"YERASE SLTIN' AND SAVE THIS WS WITH PROPER NAME

JERASE SLTIN
YWSID TRANSWS
WAS CLEAR WS
)SAVE
. TRANSWS

Now, we will use the CMS/CP command processor to detach the tape
drive. The operator is responsible for attaching the tape drive, but we can
detach it ourselves.

X<'CMS' O 100 [JSVO 'S?
2

X«<'CP DETACH 181" O X
TAPE 181 DETACHED

0
YOPR PLEASE DISMOUNT TAPE AND SCRATCH IT. THANKS

SENT

Conclusion

We hope these perspectives have whetted the reader’s appetite for the new
tools and techniques available to the APL programmer working in the VM
environment. Many programmers have bemoaned the traditional isolation of
APL from the rest of the computing world. Perhaps VM, with the aid of
auxiliary processors, will help bridge that barrier.

There are, of course, those AP L enthusiasts who believe that the isolation
of APL from other programming environments is beneficial and who would
rather not bother with other programming languages. For them, techniques
exist to make the VM operating system as invisible as is on STSC’s other
system, while still giving them the benefits of large workspaces. VM’s benefits
thus extend to proponents of either philosophy.

Bob McGhee joined STSC in 1973 as a marketing representative and is
currently a systems programmer in the company’s System Product Department.
In this position, he packages, installs, and supports STSC’s system software
products.

McGhee received his B.S. degree in electrical engineering from Virginia

Polytechnical Institute. Before coming to STSC, he developed electronic instru-
mentation at DuPont, commercializing an ultrasonic imager and solving



Travels in VM Land: A Virtual APL Primer 87

production problems in a spectrophometer using APL simulation. He is cur-
rently interested in applications of APL operators in electrical engineering.

As a design specialist for STSC, James Wheeler is responsible for the design and
specification of user-visible features of the APL*PLUS System. Before joining
STSC in 1977 as a technical writer, Wheeler taught scientific writing at the
State University of New York at Buffalo, where he also worked on computer
techniques for literary analysis. As a technical writer, Wheeler wrote the
Automatic Control of Execution (ACE) series of manuals and prepared the
manuals for the VM/370 version of the APL*PLUS System. An avid APL
programmer, Wheeler developed the text-editing system used by STSC to
produce its photocomposed manuals.

Wheeler’s background includes current graduate studies in computer science at
the University of Maryland, an M.A. in English from the State University of
New York at Buffalo, and a B.A. in art from the University of Maryland.



Mark L. Osborne

Using Shared Variables and
Auxiliary Processors in VS APL

The use of shared variables and auxiliary processors in VS APL
permits the integration of programs written in AP L with programs written in
other languages running in the CP/CMS environment. Processors are avail-
able to execute CMS and CP commands; stack CMS input; access CMS, QSAM,
and VSAM files; communicate between virtual machines; and control
input/output lines. Other processors can be built to interface with any
operation in the CP environment.

Particularly useful is access to the file systems that run in the CMS
environment, giving AP L a way to share large volumes of data with programs
written in FORTRAN, PL/1, COBOL, and other languages. These include a
large number of commercially available application packages such as SCSS"
(SPSS* Conversational Statistical System) and MPSX/370 (Mathematical Pro-
gramming System Extended).

The CP/CMS Stack Input Processor provides a means for passing control
in and out of the AP L environment. Using this processor, an AP L function can
stack APL and CMS commands that checkpoint the APL environment, cause
exit from the AP L environment, and then invoke CMS commands, EXEC files,
or executable program modules. Typically, a CMS EXEC is used that invokes a
program. When the program completes, the EXEC stacks a series of commands
to resume in the APL environment.

Any named variable can be used as an interface between the APL
environment and an auxiliary processor. A variable is established as a
“shared” interface through use of the system function JSVO0. Once this is
done, communicating with the auxiliary processor is simply a matter of
referencing the variable or assigning values to it. The values have different
effects, depending on the auxiliary processor being used. Another system
function, SV, can be used to impose control on the sequence of accesses of
the variable. Finally, the system function SV @ is provided to query the status
of shares.

A brief description of these functions is in order. They are more complete-
ly documented in the manual APL Language (IBM, 1978).

r < p 0OSVo n

An offer to share the variable named in n is extended to the auxiliary
processor identified by the numeric value in p. The explicit result is
known as the degree of coupling. A result of 2 indicates that the offer
is matched by an offer from p. A result of 1 indicates that the offer is

88



Using Shared Variables and Auxiliary Processors in VS APL 89

currently unmatched. If the share is successfully matched, communi-
cation has been established between the APL environment and the
auxiliary processor. Multiple shares can be established with one use
of [JSV 0 when p is a vector of auxiliary processor numbers and n is a
matrix of variable names.

r <« [OSVo n

The degree of coupling is returned for each variable named in n. Note
that a result of 0 is valid if no offer has been made by or to the active
user for a variable named in n.

r < c QOsve n

An access control setting is established for the shared variable named
in n. This setting is the logical-or of the four-element Boolean vector ¢
and the last access setting specified by the share partner. The explicit
result is a Boolean vector representing the new access setting. The
access setting controls how the shared variable is used by inhibiting
multiple uses by one share partner without specific intervening
action by the other share partner (a share partner may be either a
user or an auxiliary processor). When an element of the access setting
is 1, it inhibits use in the following way:

¢ The first element of the access setting inhibits two successive
assignments by partner A without intervening access (assign-
ment or reference) by partner B.

¢ The second element inhibits two successive assignments by
partner B without intervening access by partner A.

* The third element inhibits two successive references by part-
ner A without an intervening assignment by partner B.

e The fourth element inhibits two successive references by
partner B without an intervening assignment by partner A.

The arguments can be extended to matrices, in which case each row of
¢ must contain an access setting for the variable whose name is in the
corresponding row of n.

r < 0Sve n

The current access settings for the variables named in n are returned
as an explicit result.

r <« JSVR n

The existing share offers for variables named in n are retracted. The
explicit result is a vector containing the degree of coupling of each
variable before the retraction.

r < [Osvqg p

If p is an empty vector, the explicit result is a vector of processor
numbers of auxiliary processors extending share offers to the user. If
p is a vector of processors, the result is a matrix of names of the
variables offered by those processors, but not yet matched by the user.

Most uses of auxiliary processors in VS APL include the following
sequence of steps:

¢ [Initialize the shared variable. The initial value communicates
information to the auxiliary processor, such as the name of a file
and various processor options.



90 Using Shared Variables and Auxiliary Processors in VS APL

¢ Extend the share offer to the processor. The resultant degree of
coupling is usually two, since most (but not all) auxiliary proces-
sors extend a return share automatically. An application program
should check this returned value to be sure the offer was recipro-
cated.

* Access the shared variable to check the return code from the
auxiliary processor. This will verify that the processor options
specified were valid. The form and values returned here are
dependent on the processor being used.

e Proceed to access and or reference the shared variable according
to the conventions of the auxiliary processor. Note that use of
most processors does not require setting of the access vector, since
the auxiliary processor generally sets the necessary access.

e Retract the share when the interaction with the processor is
finished.

Now for some examples of shared variable and auxiliary processor use:

APL
APL*PLUS SERVICE

CLEAR WS

First, we initialize the variable DMK with a value that indicates that we
want to pass commands to CP. [JSV0 is used to share the variable with
Auxiliary Processor 100; the result of 2 is the degree of coupling and indicates
that AP100 matched our offer. DMK has a return code as its value when next
referenced, and the value of 0 indicates that all is well.

DME+'CP' ¢ 100 OSVO 'DMK'

DMK

DME+'Q SET' What are our virtual machine options?

MSG ON , WNG ON , EMSG TEXT, ACNT ON , RUN OFF
LINEDIT OFF, TIMER OFF , ISAM OFF, ECMODE ON
ASSIST ON SVC NOTMR, PAGEX OFF, AUTOPOLL OFF
IMSG ON , AFFINITY NONE , NOTRAN OFF

VMSAVE OFF, AUTOBEGN OFF, AUTOIPL ON

DMK+'SET EMSG ON' We want to see complete error
messages from CP and CMS.

DMK+'Q SET' Did SET EMSG work?

MSG ON , WNG ON , EMSG ON , ACNT ON , RUN OFF
LINEDIT OFF, TIMER OFF , ISAM OFF, ECMODE ON
ASSIST ON SVC NOTMR, PAGEX OFF, AUTOPOLL OFF
IMSG ON , AFFINITY NONE , NOTRAN OFF
VMSAVE OFF, AUTOBEGN OFF, AUTOIPL ON

CMS commands can also be executed by AP100. This time we’ll initialize
another variable to indicate CMS and offer the share.

DMS+'CMS* ¢ 100 OSvOo 'DMS!

DMS



Using Shared Variables and Auxiliary Processors in VS APL 91

DMS«'LIST (DATE* Tell us what files we have.
FILENAME FILETYPE FM FORMAT RECS BLOCKS DATE TIME
EDITAPL EXEC A1V 14 6 1 2/12/80 16:18 ‘
EDIT?2 VSAPLWS Al F 800 15 15 2/12/80 16:05
LEFTWS VSAPLWS Al F 800 11 11 2/12/80 17:22
MAILING ADDRESS Al F 80 6 1 2/12/80 15:08
SVDEMO SCRIPT Al F 80 125 13 2/12/80 15:08
DMS+'TYPE MAILING ADDRESS' Display a file
MARK OSBORNE (MLO)
STSC, INC.

7316 WISCONSIN AVE.
BETHESDA MARYLAND 20014

PLACE IN VMDEV MAIL SLOT

MAILING ADDRESS is a must for anyone who wants his computer
printouts mailed to him. It is simply a file with the filename MAILING and
the filetype ADDRESS. It must have no more than eight lines, and no line can
be more than 30 characters long. It is automatically tagged on all printouts
generated by your virtual machine. MAILING ADDRESS can be created
with the CMS editor.

DME+'Q UR' Ask CP about the status of our unit record devices.
RDR 00C ALL NOCONT NOHOLD EOF READY
PUN 00D STD NOCONT NOHOLD CcOPY 01 READY

00D FOR SVDEMO1 DIST SVDEMO1
PRT OOF A001 NOCONT NOHOLD COPY 01 READY

O0E FOR SVDEMO1 DIST SVDEMO1

Let’s put any printer output we generate “on hold”. We can then query the
printer (at virtual address hex '00E"') to be sure the hold worked.

DME+"'SPOOL PRT HOLD'

DME+'Q 00E'
PRT O0O0F A001 NOCONT HOLD COPY 01 READY
00E FOR SVDEMO1 DIST SVDEMO1

Next, let’s define a print file the way AP111 (QSAM I/0) likes ’em.
DMS+'FILEDEF PRINT PRINTER(RECFM V BLKSIZE 132!

DMS«*'Q FILEDEF'  We get that right?
PRINT PRT Guess so.

PRINTV+*PRINT (APL' Initialize a variable for API11.

PRINT corresponds to the name specified in the FILEDEF command;
APL is a translate option.

111 0OSVO 'PRINTV' Share it.

PRINTV Check the return code.
Good. Now we’ll write something directly to the print queue:

PRINTV+'THIS LINE GOES DIRECTLY TO MY PRINT QUEUE.'

PRINTV+'WHEN WE RETRACT THE SHARE, THE PRINT FILE IS CLOSED.'
PRINTV<«'IF WE RELEASE THE HOLD WE SET ON THE PRINTER,'
PRINTV«+'THIS FILE WILL PRINT ON THE LINE PRINTER AT THE'
PRINTV+'STSC COMPUTER CENTER.'

PRINTV+'SINCE WE WON''T GET TO SEE THAT, WE''LL CHECK OUR PRINT'
PRINTV+'QUEUE AND TRANSFER THE PRINT TO OUR VIRTUAL CARD READER.'
PRINTV«'FROM THERE, WE CAN READ THE TEXT INTO A CMS FILE AND'
PRINTV«'TYPE IT AT THE TERMINAL.'



92 Using Shared Variables and Auxiliary Processors in VS APL

OSVR 'PRINTV' Retract the share.
PRT FILE 3163 FOR SVDEMO1 COPY 01 HOLD

2 Looks promising.
DME+'Q PRT ALL' Ask CP if there’s a spool file for us.
FILE FORM RECDS COPY HOLD DATE TIME DIST NAME TYPE ROUTE

3163 A001 000009 01 USER 02/12 21:14 SVDEMO1 Nine lines. Looks right.

DMK+'TRANS PRT RDR 3163! Transfer it to our reader.
PRT FILE 3163 TRANSFERRED FROM SVDEMO1
0001 FILE TRANSFERRED

DMR+'Q RDR ALL' Is it there?
FILE FORM RECDS ORIGIN HOLD DATE TIME DIST NAME TYPE
3163 4001 000009 SVDEMO1 USER 02/12 21:14% SVDEMO1

DMR+'CHANGE RDR 3163 NOHOLD' Better take it off hold to read.
0001 FILE CHANGED

Now, we’ll read this spool file from the virtual card reader to a CMS file
named FOO FILE A (the good stuff is always named F0O0).

DMS«+'READ F00 FILE A'
DMSRDC738I RECORD LENGTH IS '132' BYTES. Just as we suspected!

DMS+'LIST (DATE'! The file FOO should now show up here.
FILENAME FILETYPE FM FORMAT RECS BLOCKS DATE TIME

EDITAPL EXEC Al 14 14 6 1 2/12/80 16:18

EDIT?2 VSAPLWS Al F 800 15 15 2/12/80 16:05

LEFTWS VSAPLWS Al F 800 11 11 2/12/80 17:22

MAILING ADDRESS Al F 80 6 1 2/12/80 15:08

SVDEMO SCRIPT Al F 80 125 13 2/12/80 15:08

FOO FILE Al F 132 9 2 2/12/80 21:23
DMS«'TYPE FQ0O FILE' Let’s see what’s in it.

THIS LINE GOES DIRECTLY TO MY FRINT QUEUE.

WHEN WE RETRACT THE SHARE, THE PRINT FILE IS CLOSED.

IF WE RELEASE THE HOLD WE SET ON THE PRINTER,

THIS FILE WILL PRINT ON THE LINE PRINTER AT THE

STSC COMPUTER CENTER.

SINCE WE WON'T GET TO SEE THAT, WE'LL CHECK OUR PRINT
QUEUE AND TRANSFER THE PRINT TO OUR VIRTUAL CARD READER.
FROM THERE, WE CAN READ THE TEXT INTO A CMS FILE AND
TYPE IT AT THE TERMINAL.

And my fingers never left my hands! And now, for a finale, the disappear-
ing file trick:

DMS+'ERASE F00 FILE"

DMS+*'LIST! Let’s use the short form.
EDITAPL EXEC Al
EDIT?2 VSAPLWS Al

LEFTWS VSAPLWS Al
MAILING ADDRESS Al
SVDEMO SCRIPT Al

Sure enough, the file FOO is gone. Now, we need only retract both
outstanding shares and we’re done.

OSVR 2 3p'DMKDMS'

YOFF HOLD
R; T=1.22/%.35 21:30:36



Using Shared Variables and Auxiliary Processors in VS APL 93

EDIT?2 Workspace

The EDIT2 workspace contains a set of functions to be used in conjunc-
tion with the CMS EXEC, EDITAPL, to edit APL functions or character
matrices with the CMS Editor. (The functions in the EDIT?2 workspace are
listed in the Appendix at the end of this paper.) To use this facility, simply

type:
EDIT 'fnname'

The argument fnname is the name of the function or variable you wish to edit.
You will then be placed in the CMS editor. When you enter the editor
command FILE, your function will be moved back into the original workspace
and you will resume in the APL environment.

The facilities used to achieve this are the CMS File Auxiliary Processor
(AP110), the CMS Stack Input Processor (AP101), and the CP/CMS Command
Processor (AP100).

A running example of the use of the functions in this workspace follows.
We will edit the function APPEND by converting the representation of the
function to a CMS file. Then we leave APL, move into the CMS environment,
invoke the CMS editor, change the function-representation file, reenter APL,
read the edited file, and define the function in the workspace. All of the file
manipulations and movement between environments is done automatically.
The user enters only the commands for the CMS editor.

APL
APL*PLUS SERVICE
CLEAR WS
YLOAD EDIT?2
SAVED 16.13.12 02/13/80
EDIT 'APPEND'
R; T=0.45/1.27 17:05:58
EDIT APPEND VRAPLFN A
EDIT:
T * Type entire file.

TOF:

R+<MAT APPEND VEC;COLS

A CATENATES A VECTOR VEC AS A NEW ROW OF MATRIX MAT.
COLS«(pVEC)[ 1+pMAT

MAT+((14pMAT),COLS)+MAT

R+MAT,[0I0] COLS+VEC

EOF:

TOP Move back to top of file.

TOF:

N Move to next line.

RkR<MAT APPEND VEC;COLS

R R«M CATENATE V3;COLS Replace with this line.

N

A CATENATES A VECTOR VEC AS A NEW ROW OF MATRIX MAT.
CH/ VEC [/ Vv [/ Change VEC to V.

A CATENATES A VECTOR V AS A NEW ROW OF MATRIX MAT.
CH/ MAT./ M./ Change MAT . to M.

A CATENATES A VECTOR V AS A NEW ROW OF MATRIX M.
N Next line.

COLS+(pVEC)[1+pMAT
CH/MAT/M/* * Change all occurrences of MAT to M.

COLS+(pVEC)[14pM
M<((1tpM),COLS)M
R+M,[0I0] COLStVEC
EOF:



94 Using Shared Variables and Auxiliary Processors in VS APL

LU/1+ Search from bottom to top; locate next occurrence of 1+.
COLS«(pVEC)[14pM

CH/VEC/V/ Change VEC to V.

COLS«(pV)l1+pM

CH/VEC/V/* * Do it for all occurrences (from current line on).
R<«M,[01I0] COLStV

EOF:

LU/1+ Locate 1+ again.

COLS«(pV)[1toM

CH/1+/ 1t/ Change

COLS«(pV)[ 1toM

EDIT:

FILE Rewrite the file; exit from the editor.

R; T=0.17/0.62 17:10:52
APL*PLUS SERVICE

CLEAR WS

SAVED .

CATENATE DEFINED

OVR*CATENATE"
V R+«M CATENATE V;COLS
[1] » CATENATES A VECTOR V AS A NEW ROW OF MATRIX M.
[2] coLS«(pV)[ 14poM
[3] M<((14pM),COLS)tM
(4] R«M,[0I01COLStV
v

YWSID
IS EDIT?
JOFF HOLD
R; T=0.48/1.28 17:11:31

Appendix—The EDIT2 Workspace

The functions used in demonstrating how the CMS Editor can be used to
edit an APL function are listed in this appendix.

V EDIT NAME;WSID;SINK;VAR

A ALLOWS EDITING OF AN APL FUNCTION OR CHAR MATRIX VIA THE CMS EDITOR.
A NAME CONTAINS THE FUNCTION OR VARIABLE NAME OR THE NAME OF

A AN UNDEFINED OBJECT.

WSID<[(QWSID a SAVE THE WS ID.

A GET VARIABLE REPRESENTATION OF OBJECT NAMED IN NAME.

VR«GETVR NAME

A WRITE VR TO CMS FILE NAME,' VRAPLFN A'

VR WRITE NAME

A STACK COMMANDS TO SAVE WS, EXIT APL, AND INVOKE EDAPLFN EXEC.
REEDIT :STACKEDIT

A READ FILE NAME,' VRAPLFN A'

VR«READ NAME

A RE-ESTABLISH FUNCTION OR VARIABLE IN ORIGINAL FORM.

A BRANCH TO REEDIT IF USER WANTS TO RE-EDIT INVALID FN.

+REEDIT IF VR FIX NAME

A  ERASE NAME,' VRAPLFN A'

ERASE NAME

L W e W e B e W e s B e W W B e B e B e B e W e e |
RRRRERRRERRERBOONONFWN P
NOOFE WNNRPROUILILIL LIl LIl It

V VR<GETVR NAME

PLACE ENTITY NAMED IN NAME INTO VARIABLE VR.

IF IT IS A FUNCTION, THE CANONICAL REPRESENTATION IS PLACED IN VR.
IF IT IS A CHARACTER MATRIX, THE VALUE IS ASSIGNED TO VR.

IF IT IS AN UNDEFINED NAME, VR IS CREATED AS A 1 BY 130

ARRAY CONTAINING THE NAME.

IF IT IS ANYTHING ELSE, AN ERROR MESSAGE IS PRINTED AND

AN EXIT IS TAKEN.

THE ORIGINAL NAME CLASS IS SAVED IN VAR FOR USE WHEN THE

OBJECT IS RE-ESTABLISHED FROM THE EDITED FILE.

(anlonlanlen lanlan Fanl on o
OO F WN P
[ S T T S S S G |
DDO»DPDDDDD



Using Shared Variables and Auxiliary Processors in VS APL 95

[10] ~(0 2 3 =VAR+<[NC NAME)/NONENT,VARIABLE ,FUNCTION O ~BADNAME

[11] NONENT:VR+ 1 130 p130tNAME O 0

[12) VARIABLE:VR+&NAME O ~BADNAME IF(' 'x140pVR)v2zppVR ¢ -0

[13] FUNCTION:VR«<[CR NAME ¢ -0

[14] BADNAME:'ARGUMENT MUST BE NAME OF FN, CHARACTER MATRIX, OR UNDEFINED' & ~+
v

V VR WRITE NAME;O0UT
[11 a VIA AP110 (CMS FILE PROCESSOR), WRITE VR TO FILE NAME, 'VRAPLFN A'
[2] A INITIAL VALUE OF SHARED VARIABLE IS FILENAME AND OPTIONS OF
[3] A U (UNFORMATTED), AND APL (TRANSLATION FOR FULL CMS APL CHARACTER SET).
(4] QUT+(84+NAME),' VRAPLFN A(U APL'
[5] a EXTEND SHARE AND CHECK DEGREE OF COUPLING AND RETURN CODE.
[6] ~ERROR IF 22110 [0Svo 'ouT'
[7] ~ERROR IF 0z1+0UT
[8] a WRITE VR ONE LINE AT A TIME.
(9] TOP:+END IF 0=14pVR ¢ QUT<«VR[DIO;] © VR« 1 0 +VR O ~-TOP
[10] a RETRACT SHARE AND EXIT.
[11] END:SINK<+[ISVR '0UT' & -0
[12] ERROR:'ERROR WRITING TO ',(8tNAME),' VRAPLFN A' O —+
v

V STACKEDIT;STACK

(1] a STACK THE NECESSARY COMMANDS IN THE CMS STACK TO SAVE THE WS,

[2] A EXIT FROM APL, AND INVOKE THE CMS EDITOR.

[3] =~

(4] a INITIALIZE VARIABLE AND SHARE IT.

[5] A LIFO0 (LAST IN FIRST OUT) WILL CAUSE COMMANDS TO BE EXECUTED

[6] A IN REVERSE ORDER. APL SPECIFIES THE CMS CHARACTER SET TRANSLATION.

[7] STACK+'CMS(LIFO APL' O SINK+101 [SVO 'STACK'
(8] & NOTE: THE FOLLOWING COMMAND IS NOT STACKED BUT TAKES EFFECT WHILE
[9] a THE STACK IS BEING READ.

[10] STACK+'HT' a HALT TYPING WHILE READING FROM STACK.
[11] A STACK INVOCATION OF OUR EDIT EXEC.

[12] STACK«'EDITAPL ',(8tNAME),' VRAPLFN A'

[13] STACK+')OFF HOLD' & TO EXIT FROM THE APL ENVIRONMENT.

[14] STACK+')SAVE' a SAVE THE WS.

[15] STACK+')WSID EDTEMP' A GIVE WS A FIXED NAME SO EDIT EXEC CAN )LOAD IT.
[16] SASTACKEDIT+«RESUME1 o STOP AT THIS LINE. NEXT READ WILL BE FROM STACK.
[17] A WHEN THE EDITOR IS EXITED, EDITAPL EXEC WILL STACK AN

[18] & APL COMMAND AND A ~RESUME1.

[19] @ WE RE-ESTABLISH THE SHARE WITH AP101 SINCE IT WAS LOST WHEN WE

[20] a LEFT APL.

[21] RESUME1:STACK+'CMS(LIFO APL' & SINK+101 [OSVO 'STACK'

[22] STACK+'HT' a HALT TYPING AGAIN.

[23] STACK+'~RESUME2' a AFTER EXECUTING )WSID, RESUME EXECUTION HERE.

[24] GSTACK+')WSID ',WSID A WE'LL WANT TO RE-ESTABLISH WS NAME.

[25] SASTACKEDIT+«RESUME2 & STOP HERE SO WE READ )WSID FROM STACK.

[26] RESUME?2:STACK+'RT' n RESUME TYPING.

[27] SINK+<[QSVR 'STACK' n RETRACT SHARE.

v

V VR+READ NAME :;IN;TEMP

[1] A VIA AP110 (CMS FILE PROCESSOR), READ FILE NAME,' VRAPLFN A'

[2] a INITIAL VALUE OF SHARED VARIABLE IS FILENAME AND OPTIONS OF

(3] A U (UNFORMATTED) AND APL (TRANSLATION FOR FULL CMS APL CHARACTER SET).

(4] IN+(8+NAME),' VRAPLFN A(U APL'

[S] ® EXTEND SHARE AND CHECK DEGREE OF COUPLING AND RETURN CODE.

[6] ~ERROR IF 22110 [JSVO 'IN'

[7] ~+ERROR IF 0z=1+IN

Eg% nVRIﬂngAL{Z€ VR, THEN READ SUCCESSIVE RECORDS TILL WE GET AN EMPTY ONE.
+ P

[10] TOP:»END IF 0=pTEMP+IN & VR<«VR APPEND TEMP { —TOP

[11] @ RETRACT SHARE AND EXIT.

[12] END:SINK+[SVR 'IN' & -0

[13] ERROR:'ERROR READING FROM ‘', (8tNAME),' VRAPLFN A' O —

v



(1]

96 Using Shared Variables and Auxiliary Processors in VS APL

V REED+VR FIX NAME ;TEMP
A RE-ESTABLISH THE ENTITY VR WITH THE NAME CONTAINED IN VARIABLE NAME.
A IF IT WAS A VARIABLE USE AN EXECUTED ASSIGNMENT.
A IF IT WAS A FUNCTION OR UNDEFINED, USE [0OFX.
A IF THE FUNCTION CANNOT BE RE-ESTABLISHED, ASK USER IF THEY
A WANT TO RE-EDIT THE FUNCTION. SET REED TO 1 IF SO.

REED+Q

+FN IF 2zVAR & sNAME,'<VR' & -0

FN:TEMP<[JFX VR & -~FXERR IF ' 'z1404TEMP O TEMP,' DEFINED' { -0
FXERR:'0FX ERROR: ',STEMP { -0 IF REED<«'Y'=14A4AKI 'REENTER EDIT ? '

'FUNCTION TEXT IS IN VARIABLE <VR>'

V ERASE NAME ;DMS
n VIA CMS COMMAND PROCESSOR, ERASE THE FILE NAME,' VRAPLFN A'
DMS<'CMS' & SINK«100 OSVO 'DMS'
DMS<'"ERASE ',(B4NAME),' VRAPLFN A'
SINK<[OSVR 'DMS'
v

V R<MAT APPEND VEC;COLS
a6 CATENATES A VECTOR VEC AS A NEW ROW OF MATRIX MAT.
COLS+(pVEC)[1+pMAT
MAT<((14pMAT),COLS ) +MAT
R<MAT,[0I0] COLS+VEC
v

V R+~AKI TXT
a8 A SIMPLE MINDED PROMPTING FN.
n DISPLAYS TXT AND RETURNS USERS INPUT.
M«TXT & R<«DROPLB M
v

V R<DROPLB X
n DROP LEADING BLANKS FROM X.
R«<(v\Xz' ') /X

v

V R«A IF B
R<B/A
v

The CMS EXEC EDITAPL is used in conjunction with the APL functions
above:

EDIT €1 €2 €3
€BEGSTACK LIFO
~RESUME

YJLOAD EDTEMP
APL

END

Mark Osborne joined STSC in 1974 as a systems programmer and is currently
manager of the company’s VM Development Group. At STSC he implemented
chained variables and managed the System Support Team for one year. More
recently, he implemented an interpreter interface for the VS APL demonstra-
tion project file system.



Using Shared Variables and Auxiliary Processors in VS APL 97

Osborne learned APL while working at GTE Laboratories, where he built a
digital logic simulator for a large-scale integration project and was responsible
for installing, maintaining, and modifying GTE’s APL/360 and APLSV
systems.



Stuart A. Bell

Practical VS APL—FORTRAN
Interfacing

This paper describes a practical means for interfacing a FORTRAN
program with a VS APL workspace or series of workspaces. The interface
described is conceptually easy to understand, not difficult to implement, and
provides complete control of the FORTRAN and VS APL environment.
Data is shared between the two environments and sufficient control informa-
tion is available to let the application user control the phasing of the
application.

The paper contains examples of code that is easy to follow but lacks
elegance. Ineach VS APL workspace, one function is illustrated independ-
ently of the others and separated by sufficient comments to permit clear
understanding of the desired concepts.

Background

Historically, the AP L family of dialects existed in a world by itself. Unique
data structures, unusual input and output conventions, and isolated data-
management techniques resulted in the generation of *“closed” applications.
These applications became large and sophisticated in many cases, but general-
ly all the data had to be available at the beginning of the application and the
results had to be managed totally by APL throughout the life of the applica-
tion. Attempts to mate the excellent features of APL’s data handling with the
more traditional packages such as large linear programming systems were
often contrived and difficult to use.

The introduction of shared variables and Time Shared Input/Output
(TSIO) files into the AP L environment created opportunities for importing and
exporting much larger amounts of data. Soon after the introduction of shared
variables, several installations began permitting APL applications to submit
batch jobs in a stream. The ability to submit batch jobs in this way allowed an
APL application to control the more traditional batch-type jobs. Hybrid
applications began to evolve. This step forward permitted interface between
APL applications and preexisting non-APL applications.

However, shared variable TSIO applications required a batch/APL inter-
face and presented a foreign environment to the end user accustomed to the
near immediate response of a well-tuned AP L system. Batch scheduling delays
of several hours were often experienced between the time the APL segment
completed and the time the batch segment was scheduled and ran to comple-
tion. Additionally, the two different environments required vastly different
systems skills, since the mastery of Job Control Language can be a full time
project for specialists in that area.

98



Practical VS APL—FORTRAN Interfacing 99

The introduction of VS APL into the conversational time sharing envi-
ronment simplified the interface problem between APL and non-APL seg-
ments of an application. It became quite practical to consider AP L segments of
an application as closed routines to be used where the unique advantages of
APL can be employed. It also became practical to integrate APL and non-APL
applications. The majority of development code can be done in APL and the
older code can be retained as long as its value exceeds the rewrite costs.

The feature of VS APL that makes such applications practical is its
single-service nature. Each user of VS APL is served by a single copy
(conceptually) of the AP L environment, and the user retains complete control
of the entrance into and exit from that environment. For example, a
VS APL terminal user can create a file using the Shared Storage Manager
(slightly different from the Shared Variable Manager) and exit from
VS APL tothe native TSO or CMS environment. The file can then be edited
by the system editor or serve as input to another application program (the
FORTRAN Compiler, for example). All this can take place with a unified
command set covered by the system’s macro processor: CLIST in the TSO
environment, or EXEC in the VM/CMS environment.

It is important to understand that when using APL, the Shared Storage
Manager, VS APL, and the entire application package library run conversa-
tionally under control of the terminal session. It is this control that makes the
examples that follow possible. VS APL can stand aside and permit pro-
grams written in other languages to execute for the duration of an application
process.

Examples

The clearest method of illustrating the unique feature of VS APL isby
way of a contrived example. In this example, a sample terminal session is
shown along with supporting functions and a user-written command file
(EXEC) that are transparent to the terminal user.

In the sample terminal session, a user of IBM’s Conversational Monitoring
System, VM/CMS, logs onto the system and enters the application process via
a pseudo-command QLOAD. This command invokes a user-written EXEC file.
The QLOAD EXEC executes as follows:

&STACK HT
&STACK FIFO )LOAD SAB.LOADWS
EXEC APL

The QLOAD EXEC procedure quietly entersthe VS APL environment,
suppresses the welcoming banner from VS APL, and loads the initial work-
space LOADWS. In the EXEC statements, the & character signifies that the
next command is an EXEC directive. The HT command signifies “halt typing”,
and its effect is to turn off terminal output. The second &STACK directive
places the material following it into a console stack in First-In-First-Out order.
The lines stacked in the console stack eliminate the need for the user to enter
these commands from the terminal keyboard. While the stack in not empty,
the system will read lines of stacked input and treat them as if they had been
keyed from the terminal. The remainder of the text, )LOAD SAB.LOADWS, is
read by VS APL. It is a normal APL load command that causes the
workspace to be loaded without the user’s participation. Since terminal output
is disabled, the user need not be aware that he has moved into AP L or that the
workspace has been loaded.

The workspace’s latent expression executes STARTUP, whose first action
is to counter the “halt typing” request issued in the QLOAD EXEC. This is
done by invoking the stack auxiliary processor, AP101, and specifying the RT
(resume typing) command. This auxiliary processor makes it possible to load



100 Practical VS APL—FORTRAN Interfacing

the console stack from within the APL environment, producing an effect
equivalent to the &STACK command in the QLOAD EXEC.

V STARTUP;STACK
[1] STACK<«'CMS (APL BEG'
[2] 0 0 p101 OSVO 'STACK!
[3] n SHARE <STACK> WITH AUXILIARY PROCESSOR 101, AND
(4] =a DISCARD THE RESULT OF QSVvo0.
[5] STACK<'RT' a RESUME TYPING
[6] 0 0 pSVR "STACK' o CLEAN UP AFTER MYSELF
[7] 'THIS IS A SAMPLE FUNCTION'
[8] 'ENTER CHANGEWS TO ENTER ANOTHER WORKSPACE'
v

STARTUP also displays instructions to the terminal user:

THIS IS A SAMPLE FUNCTION
ENTER CHANGEWS TO ENTER ANOTHER WORKSPACE

YWSID
IS SAB.LOADWS

At this point, entering CHANGEWS causes another workspace to be
loaded. The CHANGEWS function performs the actual workspace transfer by
stacking an HT and a ) LOAD command in a manner similar to the QLOAD
EXEC.

V CHANGEWS ;STACK

[1] n THIS FUNCTION QUIETLY LOADS ANOTHER WORKSPACE.
[2] STACK+'CMS (APL BEG'

[3] 0 0 p101 OSVO 'STACK®

[u] 'YOU WILL NOW ENTER THE WRITEAPL WS'

[5] STACK+'HT' n SUSPEND TERMINAL OUTPUT FOR AWHILE.
[6] STACK+')LOAD SAB.WRITEAPL'

v

The stack input processor can also be used to pass application values
between workspaces by stacking the values prior to transfer and reading them
into the second workspace or alternate language application. In our sample
terminal session, however, no parameters are passed since each workspace is
essentially independent.

By executing CHANGEWS, the terminal session user enters the workspace
named WRITEAPL. The latent expression executes STARTW S, and a message
is displayed as shown:

CHANGEWS

ENTER 'WRITE' TO START A PROGRAM THAT WRITES A FILE FOR
READING FROM FORTRAN. ENTER 'FORTRAN' TO ENTER THE FORTRAN
ENVIRONMENT. READ THE FILE USING THE PROGRAM <APLREAD>.
MORE INSTRUCTIONS FOLLOW (FROM FORTRAN):

Again, STARTWS must execute the RT (resume typing) command before
the user’s next terminal input. This function could be performed by a general
utility but is included here for clarity.

V STARTUP;STACK

A THIS FUNCTION STACKS AN RT 'RESUME TYPING' AND PRINTS INSTRUCTIONS.
STACK+'CMS (APL BEG'

0 0 p101 [OSVO 'STACK'

STACK+«'RT'

0 0 pSVR 'STACK'

'"ENTER ''WRITE'' TO START A PROGRAM THAT WRITES A FILE FOR'

'READING FROM FORTRAN. ENTER ''FORTRAN'' TO ENTER THE FORTRAN'
"ENVIRONMENT. READ THE FILE USING THE PROGRAM <APLREAD>.'

*MORE INSTRUCTIONS FOLLOW (FROM FORTRAN):'



Practical VS APL—FORTRAN Interfacing 101

The WRITE function, listed below, is the most complex of the functions in
the illustration. It creates a file in external format for later reading by another
language processor (in this case, FORTRAN).

V WRITE;QUTPUT;CMS;TEMP

[1] 0 0 p100 OSVO CMS«'CMS' n SHARE A VARIABLE WITH THE CMS COMMAND
[2] @& PROCESSOR AND THROW AWAY THE SHARE RESULTS
[3] CMS+'ERASE SAMPLE APLFILE' A ERASE THE OLD COPY OF THE SAMPLE FILE
[4] 0 0 pSVR 'CMS' A RETRACT THE SHARE
[51] OUTPUT+'SAMPLE APLFILE (192 FIX' A USE FULL APL-EBCDIC TRANSLATION
[6] a THE DEFAULT FILETYPE IS VARIABLE - WE WANT FIXED FILES.
[7] 0 0 p110 OSVO 'OUTPUT' A THROW AWAY SHARE RESULTS
[8] 0 0 pOUTPUT A AND INITIAL REFERENCE OF FILE
[9] OUTPUT+80+'THIS IS A SAMPLE FILE' a THE FIRST SPEC DETERMINES THE BLKSIZE
[10] 'ENTER DATA UNTIL TIRED AND END WITH A <CR>'
[11] —+NEXTL IF 0=pTEMP<[1 & OUTPUT«804TEMP & +THISL
[12] a RETRACT THE SHARE - READ AND ECHO THE DATA
[13] 0 0 p0SVR 'OUTPUT'
[14] OUTPUT«'SAMPLE APLFILE (192' A RE-SPECIFY FOR RESHARE
[15] O 0 p110 (OSVO 'OUTPUT' a AND RE-OFFER FOR INPUT
[16] O O pOUTPUT A THROW AWAY INITIAL VALUE SHOWING SPECIFICATIONS OF FILE
[17] —NEXTL IF 0=pTEMP«QUTPUT O [+«604TEMP O +THISL a TRIM TO FIT ON 3270
[18] a END OF FILE IS INDICATED BY A SHAPE OF 0.
[19] O 0 p0SVR 'OUTPUT' a AND CLEAN UP AGAIN
v

Lines [1] through [4] erase any file of the same name
'SAMPLE APLFILE', if any exist. If this is not done, the material being
entered will be written to the end of the existing file. The same format
specifications must be used when appending data to an existing file or the
material may be unreadable. Also, any shared variables associated with the
file must be retracted prior to erasing it. In the CMS environment, severe
damage may be done to the file tables and Shared Storage Manager if a file is
renamed or erased when it is also shared.

Line [ 5] establishes the file name, format, and conversion options,
mapping each element of [JAV into a unique external character. In most cases,
the external characters are the obvious ones, namely A-Z and 0-9. Other
conversion options and several functions are available to translate from one of
these character sets into another. The FI X parameter indicates that the file is
to contain fixed-length records and that each record is to be padded to the
length of the first record.

Line [ 7 ] establishes the actual share. At this point, an empty file exists
containing fixed-length records of a yet unspecified size and having the name
'SAMPLE APLFILE"'. Any set of eight or fewer characters can be used for
either part of the name.

Line [ 8] is not really necessary for files that are to be read. If the result
were printed, it would be a four-element vector containing the condition code
of the share, a pointer to the first record to be read, a pointer to the first record
to be written, and the blocking factor of the file (0 1 1 1, in our case).

Line [ 9] establishes the file as a fixed-length file with 80 characters per
record.

Line [ 11 ] reads in the actual data and assigns it to a temporary variable.
When only a RETURN is entered, the shape of the input vector is zero,
indicating the end of terminal input in this application.

After completing the input, line [ 13 ] retracts the share and closes the
file. Lines [ 14 ] through [19] read the file back, trimming the displayed
data to 60 characters to fit conveniently on the screen of a video-display
terminal.

The function FORTRAN listed below causes the application to exit from

the VS APL environment, run a previously compiled FORTRAN program
(named APLREAD), and reenter VS APL. Line [ 4] of the function in-



102 Practical VS APL—FORTRAN Interfacing

structs the stack processor to place the material on a push down stack in such a
manner that the last command entered is the first executed. The commands
HT and HX are exceptions to the stacking rule—they are executed immediate-
ly.

V FORTRAN;STACK

[1] e THIS FUNCTION LINKS AND ACCESSES <SAB>'S 'A' DISK, INVOKES THE
[2] o FORTRAN PROGRAM <APLREAD> FROM <SAB>'S DISK AND FINALLY REENTERS
[3]1 a APL. ALL QUIETLY (HOPEFULLY).

[u] STACK+'CMS (LIFO APL'

[s1] 0 0 p101 OSVO 'STACK'

[6] STACK+'HT' » SHUT OFF PRINTING OF THE FOLLOWING MATERIAL

[71] STACK+'EXEC QLOAD'

[8] STACK+'APLREAD'

[9] STACK+«'")OFF HOLD' a THIS EXITS FROM APL INTO CMS ENVIRONMENT

(101 O 0 pOSVR 'STACK' » RETRACT SHARE AND UNSTACK THE STACK

v

The FORTRAN program APLREAD is listed below. It has already been
compiled and set up so that it will begin running when its name is used as a
command in the CMS environment. No external job control language or
command language is used. The calls to OPSYS provide the necessary pointers
to the disk file and the terminal.

C
c THIS PROGRAM USES THE COMPANION WORKSPACE WRITEAPL TO CREATE A FILF
C
INTEGER RFECNO,MSG(20)
C
C SET UP THE NECESSARY DEFAULT FILEDEFS:
C FTOS5F001 - READ (5,XXX) - TERMINAL INPUT
C FTO8FO01 - WRITE (8,XXX) -~ TERMINAL OUTPUT
C FT10F001 - READ (10,XXX) - DISK INPUT - FROM VS APL
C
C
C OPSYS IS AVAILABLE IN OBJECT FORM ON DON'S 'S' DISK
C

CALL OPSYS('$'.'FILEDEF FT08F001 TERM$',6IRET)
CALL OPSYS('$','FILEDEF FTOSF001 TERM$', IRET)
CALL OPSYS({'$‘,'FILEDEF FT10F001 DISK SAMPLE APLFILE$', IRET)
10 READ (10,100,END=20) MSG
100 FORMAT (20A4)
IF (MSG(1).EQ.FLAG) GO TO 20
WRITE (8,200) MSG
200 FORMAT (20Ad)
GO TO 10
20 STOP
END

After reading in the file, this routine exits back to CMS and executes the
QLOAD EXEC that was stacked by line [ 7] of the function FORTRAN.

Conclusion

The examples in this presentation are obviously contrived and have no
practical value as written. In an actual application, the VS APL work-
spaces could prepare input for a package such as a statistical reduction
program or a linear programming model.

Canned packages that have evolved over many years are often very
efficient internally but cumbersome to use. APL permits ease of use through
human-engineered interface, but sometimes lacks the sophisticated support
routines present in a full-service data processing environment.

VS APL permits the programmer to take advantage of the “best of both
worlds”—human engineering through APL and applications processing
through preexisting batch packages—in a smooth and efficient operating
environment.



Practical VS APL—FORTRAN Interfacing 103

Stuart Bell, head of systems and operations with Sigma Data Services, Inc., is
currently managing a data processing installation at the Goddard Modeling
and Simulation Facility in Greenbelt, Maryland. Bell has been working for over
ten years in systems programming and real-time systems design. He was
previously employed by Computer Science Corporation and STSC, Inc.

Bell holds a B.S. in physics from Drexel University in Philadelphia and has
done graduate work in computer science at the University of Florida, University
of Maryland, and Johns Hopkins University.



Mary Lou Fox

Optimization Modeling Systems:
An APL/MPSX Interface

Virtual Machine Facility/370 (VM/370) is a very versatile operating
system from the perspective of the optimization modeling system designer. In
the VM environment, it is possible to interface the interactive and computa-
tional power of APL with the advanced, high-performance software compo-
nent MPSX/370 to create user-oriented modeling systems for solving complex
optimization problems. This paper will illustrate such a system, albeit a trivial
one.

Optimization Problems

Optimization problems are those that seek to find a best solution among
many feasible solutions to a set of constraints that are often numerous,
complex, and conflicting. Some objective is sought, such as maximizing profits,
minimizing costs, or minimizing fuel consumption. Typical optimization prob-
lems include:

¢ Investment problems such as finding the best investment strategy
given many possible opportunities.

e Transportation problems such as finding the best route and
schedule for trucks going between several warehouses.

¢ Production problems such as determining the best mix of products
to produce, given constraints such as raw material costs and
factory limitations.

Mathematical programming is a proven technique for solving optimiza-
tion problems. A model of the problem is built that involves an objective
function and a number of constraints; that is, a number of equations and
inequalities. The solution to the problem is the best of the many feasible
solutions, the one that maximizes (or minimizes) the objective function and
satisfies all constraints. Usually the sheer number of constraints makes
solving an optimization problem impossible without a computer.

MPSX/370

IBM’s MPSX/370 (Mathematical Programming System Extended) is a
proven, state-of-the-art software system for solving optimization problems.
MPSX/370 consists of a series of Assembler macros and procedures that are
efficient, powerful, and reliable.

MPSX/370 requires as input a card deck containing the row, column, and
right-hand side values of the model matrix. MPSX/370 is executed by calling a

104



Optimization Modeling Systems: An APL/MPSX Interface 105

control program that consists of macro and procedure calls to MPSX to solve
the problem. During the optimization process, a solution file is created,
recording the optimal seeking process and the final solution. Additional
features of MPSX/370 include a report generator and restart procedures.
Solving a model using MPSX/370 requires computer sophistication—it is not
for the casual user.

Optimization Modeling Systems

An interactive user-oriented modeling system for optimization problems
using MPSX usually contains the following:

* An interactive program that accepts data in a straightforward
format that is comfortable for the user.

¢ A database of information that can be updated and stored over a
period of time.

* A matrix generator program that creates the correct mathemati-
cal model for the problem, and translates this into the card deck
for MPSX/370.

e An MPSX Control Language Program that contains the macro
and procedure calls to find the optimal solution.

¢ A report writer program to interpret the solution file and print
the solution in a report format easily understood by the user.

VM/370 is an excellent operating system for optimization modeling
because it permits communication between programs written in APL, FOR-
TRAN, PL/1, and Assembler. Thus a typical modeling system might have an
interactive data input program written in APL; a database consisting of CMS
files; a matrix generator written in APL, PL/1, or FORTRAN; a CMS EXEC
procedure that calls the MPSX/370 control program; and an AP L program to
print reports. What is remarkable from the perspective of the typical APL user
is that all of the above programs can be executed automatically from a single
APL program.

On the VM system, APL can communicate outside its environment with
the virtual processor. The vehicle for this is the set of auxiliary processors
available in VS APL that makes it possible to do the following from within
the APL environment:

¢ Create CMS files that can be read by FORTRAN, PL/1, or
Assembler programs.

* Read CMS files that have been created by a program written in
one of these languages.

e Set up a sequence of commands to exit from the APL environ-
ment, run a CMS EXEC procedure, and return to APL in a way
that is automatic and transparent to the user.

Table 1 illustrates the data used in a simple model on the VM system. This
example, a linear model of oil refinery operations, is quite simple and really
does not require MPSX/370 to solve. Yet it illustrates the facets of a modeling
system for the purposes of this discussion.

The problem is this: At regular intervals, a refinery wants to know how
much of each type of raw gasoline it should blend to make each of its
products—regular and premium gasoline—to maximize its profit. Costs and
selling prices fluctuate greatly, so that the blend that is most profitable in one
time period may not be the most profitable blend in the next.

The modeling system discussed here is designed to allow the refinery to
enter costs and other relevant data. The system uses a linear model of the



106 Optimization Modeling Systems: An APL/MPSX Interface

refinery’s operations and solves it using mathematical programming tech-
niques.

Table 1 — Qil Refinery Operations

Refinery
Octane  Capacity Vapor
Gasoline  Rating  (in barrels) Pressure

Type 1 108 30,000 4
Type 2 90 20,000 10
Type 3 3 40,000 H
Premium 559 b
Regular ®5 9

The Model

The solution to the problem is that combination of values of each variable
below that produces the maximum profit:

R1 number of barrels of raw gasoline of type 1 to be used in
the regular gasoline blend.

R2 number of barrels of raw gasoline of type 2 to be used in
the regular gasoline blend.

R3 number of barrels of raw gasoline of type 3 to be used in

the regular gasoline blend.

P1 number of barrels of raw gasoline of type 1 to be used in
the premium gasoline blend.

P2 number of barrels of raw gasoline of type 2 to be used in
the premium gasoline blend.

P3 number of barrels of raw gasoline of type 3 to be used in
the premium gasoline blend.

The profit to be gained from the production of the gasoline blends is the
difference between the selling price of the particular blend and the cost of the
raw gasoline for each variable above (see Table 2).

Table 2 — Gasoline Cost and Selling Price

Gasoline Lost Selling Price
Type 1 %35
Type 2 $25
Type 3 $20
Premium $30
Regular 527

Using the costs in Table 2, the profit equation becomes
PROFIT = "8R1 + 2R2 + 7R3 - S5P1 + 5P2 + 10P3

The model also includes constraints that restrict the values of the
variables. In this problem, there are three basic constraints: octane ratings,
refinery capacity, and vapor pressures.

Octane constraints require that the octane rating of a blend be at least 95
for premium and 85 for regular. The inequalities that reflect this are for
regular gas:

108R1 + 90R2 + 73R3 2 85(R1 + R2 + R3)



Optimization Modeling Systems: An APL/MPSX Interface 107

or:

23R1 + 5R2 - 12R3 2 O
and for premium gas:

108P1 + 90P2 + 73P3 2 95(P1 + P2 + P3)
or.

13P1 - 5P2 - 22P3 2 0

Capacity constraints restrict the amount of each type of raw gasoline that
can be produced at the refinery.

Gas Type 1:

R1 + P1 < 30000
Gas Type 2:

R2 + P2 s 20000
Gas Type 3:

R3 + P3 < 40000

Vapor pressure constraints require that the gasoline blends have suffi-
ciently low vapor pressure. The inequality for regular gas is

LR1 + 10R2 + 5R3 < 9(R1 + R2 + R3)
or:

“S5R1 + R2 - 4R3 < O
and for premium gas:

yP1 + 10P2 + 5P3 < 6(P1 + P2 + P3)
or:

T2P1 + 4P2 - P3 < O

Additional constraints could be introduced, such as a minimum produc-
tion schedule to meet existing contracts:

Contractual Obligations

Gasoline (Minimum Production)
Premium 8000
Regular 3200

The corresponding constraints would be for regular gas:
R1 + R2 + R3 2 3200
and for premium gas:
Pl + P2 + P3 2 8000
A last set of constraints requires the nonnegativity of barrels produced:
Rl > 0, R2 2 0, R3 2 0, P1 2 0, P2 2 0, P3 2 0

Thus the final model expressed as a programming problem would be given
as follows:

Maximize:
PROFIT = -8R1 + 2R2 + 7R3 - 5P1 + 5P2 + 10P3

subject to:



108 Optimization Modeling Systems: An APL/MPSX Interface

23R1 + 5R2 - 12R3 0
0
30000
20000

40000

13P1 - 5P2 - 22P3

R1 + P1

R2 + P2
k3 + P3
-5R1 + R2 - 4R3

- 2P1 + 4p2 - P3
R1 + R2 + R3 3200
8000

VNVNAKRKNAKWANYN

P1 + P2 + P3
and:
R1, R2, R3, P1, P2, P3 2 O

Modeling System

A modeling system for this refinery would allow the user to easily enter
the costs, selling prices, and contractual obligations of the gasolines. In
addition, the system would return the result in report format. Such a system is
illustrated below with the sample inputs from the above discussion. Figure 1
shows the report containing the results.

REFINERY
ENTER COSTS OF GAS TYPES: 1, 2, 3
0:

35 25 20
ENTER SELLING PRICE OF PREMIUM AND REGULAR GAS
O:

30 27
ENTER MINIMUM PRODUCTION (CONTRACTS) FOR PREMIUM AND REGULAR GAS
0:

8000 3200
ENTER OCTANE RATINGS FOR GAS TYPES 1, 2 AND 3, PREMIUM AND REGULAR GAS

O:
108 90 73 95 85
ENTER VAPOR PRESSURE FOR GAS TYPES 1, 2 AND 3, PREMIUM AND REGULAR GAS

0:

4 10 5 6 9
ENTER REFINERY CAPACITY FOR GAS TYPES 1, 2 AND 3
O:

30000 20000 40000

PRODUCTION SCHEDULE - GASOLINE BLENDS

PREMIUM RECULAR
BARRELS PRODUCED  COST BARRELS PRODUCED — COST

GAS TYPE (COST)

1 ($35) 5028.6 175,861 14,971.4 £523,999

2 ($25) 0.0 0 20,000.0 £500,000

3 (£20) 2971.4 £59,428 37,028.8 £740,572
TOTAL PRODUCTION: 8000.0  £235,289 72,000.0 21,764,571

PROFIT

GAS _BLEND BARRELS PRODUCED  COST SALES PPORIT
PREMIUM 8000 $235,289 $240,000 1711
REGULAR 72,000 £1,764,571  £1,945,000 £179,429
TOTAL: 80,000 $£1,999,860  £2,184,000 £184,140

Figure 1—Optimization Results



Optimization Modeling Systems: An APL/MPSX Interface 109

What is interesting from the perspective of this paper is that what is
happening during the execution of the REFINERY program is totally trans-
parent to the user. As far as the user is aware, he signsonto VS APL and
runs a program REFINERY, which produces a report. In fact, the following
chain of events have occurred:

1. The user enters the APL environment, loads a workspace, and
executes an APL program REFINERY.

2. The user enters run-dependent data.

3. An APL matrix generator subprogram is executed, creating the
model matrix.

4. A CMS file is created using Auxiliary Processor 110. This file
contains the card image of the model matrix required as input to
MPSX. Figure 2 illustrates this file.

5. A “stack” of commands is created to exit from APL, run a CMS
EXEC, and return to APL.

6. The CMS EXEC calls the MPSX macros. Figure 3 illustrates a
portion of the solution file created by the MPSX macros.

7. Execution returns to APL and begins the report program. The
solution data for the report is read from the CMS solution file
using Auxiliary Processor 110.
1MPSX/370 ViMy PTF7 MPSCL EXECUTION
OSECTION 2 - COLUMNS
- NUMREF LCOLUMNS AT - JACTIVITY. .. .. INPUT COST.. .LOWFR LIMTIT. ..UPPER LIMIT. REPUCED COST.
0 10 f1 RS 14971.42857 8.0000N~ . NONE .
11 R2 RS 200950.00000 2.00000 NONE
12 R2 RS 37028.57143 7.00000 NONE
13 F1 RS 5028.57143 5.00000- NONF
A 14 P2 LL . 5.00000 NONE
15 P3 BS 2971.u2857 10.00000 NONE
1MPSX/370 ViMu PTF7 MPSCL EXECUTION
QFEXIT - TIME = 0.05
Figure 3—MPSX Solution File
Conclusion

This paper illustrates the construction of an optimization modeling
system that combines the powerful, interactive potential of AP L with the rich
variety of the VM/370 environment. Much more complex modeling systems
have been developed using these techniques. A quite sophisticated system can
be written in VM/370 whereby the only user-required command is the log-on
command. All the subsequent commands to enter the APL environment, load
a workspace, run an APL program, exit from AP L, run a CMS program, return
to APL, load a workspace, run a program, and log-off can be handled
automatically. VM/370 is a truly remarkable operating system!

Mary Lou Fox, currently an applications analyst in STSC’s Management
Technology Division, has been an active user of AP L since 1968. At STSC she is
responsible for the design, development, and implementation of user-oriented
modeling systems and software tools. Before joining STSC she was a research
associate at Fairfield University, responsible for the design and development of

NAME
ROWS

Qb =

COLU

MIX
MIX
ENDA

GAS FREE

PROFIT
GAS1

GAS?2

GAS3
POCTANE
ROCTANE
RVAPOR
PVAPOR
CONTRACT
MNS

PROFIT -8
GAS1 1
ROCTANE 23
RVAPOR -5
PROFIT 2
GAS2 1
ROCTANE 5
RVAPOR 1
PROFIT 7
GAS3 1
ROCTANE -12
RVAPOR -4
PROFIT -5
GAS1 1
POCTANE 13
PVAPOR -2
CONTRACT 1
PROFIT 5
GAS2 1
POCTANE -5
PVAPOR 4
CONTRACT 1
PROFIT 10
GAS3 1
POCTANE -22
PVAPOR -1
CONTRACT 1

GAS1 30000
GAS2 20000
GAS3 40000
POCTANE Q
ROCTANE 0
RVAPOR 0
PVAPOR 0
CONTRACT 8000

TA

Figure 2—CMS
Card Image File



110 Optimization Modeling Systems: An APL/MPSX Interface

APL applications, including the university’s APL libraries, CAI (Computer-
Assisted Instruction) courses, instructional applications, and simulations.

Fox has a B.S. in mathematics from Boston College, a master’s in math
education from Fairfield University, and a master’s in computer science from
Polytechnic Institute of New York.



Christian Hocquet and Gerard Lacourly

Real-Life Applications of VM/370

Société de Traitements et de Services Conversationnels, the French
distributor for APL*PLUS Service, has for the past 18 months been promot-
ing and supporting VM/370 products and services. VM provides a much wider
range of facilities than those available on OS-based AP L systems, and some of
these facilities will be illustrated via the four different applications discussed
in this paper.

EOLE is a programming package designed and developed for opinion
research via surveys, with applications in the behavorial sciences. The major
features and capabilities of the package are described below:

e EOLE can process large arrays resulting from questionnaires (up
to 30,000 respondents with up to 50 questions each).

® Analytical features range from simple cross-tabulations to ad-
vanced statistical analyses—segmentation, typology, and factor
analysis.

* The input data is bulk processed to convert it to a more convenient
internal format, and subsequent studies are performed on the
converted data.

¢ The main file need not be kept online. Instead, facilities are
provided so that the user can manage the archived data directly.

The system was implemented using VS APL on a VM system for
several reasons. The user (who is a behavioral scientist, not a computer
scientist) had a distinct preference for using APL, and the ability of
VS APL to process very large arrays (as contrasted with the ones available
in APL implementations with fixed workspace sizes) made it easy to manage
the data in a natural fashion. And, because VM is an interactive system rather
than a batch system, the user maintains full control, in real time, of his data.

A major application in energy flow control employs linear programming
to optimize the production of hydroelectric plants. The application has three
major steps: collecting, controlling, and processing the input data; linear
programming analysis; and the post-processing of results to prepare manage-
ment and engineering reports. Originally, the entire application was proto-
typed in VS APL (including the linear programming model). However,
because of the vast amount of data involved, we decided to use MPSX 1370
(IBM’s Mathematical Programming System Extended) for the linear pro-
gramming step. This produced a system with the best mix of features: it kept
the flexibility and ease of change for the input and output processing, and
employed auxiliary processors (APs) to communicate with MPSX. MPSX itself

111



112 Real-Life Applications of VM/370

is a highly developed linear programming system; its use greatly improved
processing speed.

A major French manufacturing company had independently developed a
personnel management system several years ago on an OS-based APL system
that featured files resembling those of the APL*PLUS System. After much
operating experience, they decided to adapt the application to VS APL on
the APL*PLUS VM System. The main reasons for the change were (1) data
could be moved more easily from non-APL storage to the file system of the
APL*PLUS VM System than to OS-based APL files, and (2) the file-sharing
capabilities of the APL*PLUS VM System were more flexible.

A consulting firm specializing in economic and statistical analyses sought
a computer service both for processing their clients’ applications and for
creating and offering new software packages. After evaluating several comput-
er service suppliers, they chose APL*PLUS VM Service for the following
reasons:

e It provides access to several programming languages (FORTRAN,
COBOL, and PL/1 were the most important).

¢ It offers several well-known statistical packages such as the
Biomedical Computer Programs, P-Series (BMDP); the Statistical
Analysis System (SAS); and the SPSS* Conversational Statistical
System (SCSS™).

¢ It provides advanced tools for conversational programming of new
applications.

o It gives the user full control of the machine environment when he
needs it.

The four applications described above give many of the reasons why our
clients like VS APL and VM. From our vantage point, as suppliers of the
service, we see the following benefits:

e VM is a real-time system with a wide range of capabilities.

e Most commercially available VM/370 systems, such as the
APL*xPLUS VM System, feature numerous application libraries
and well-developed tools for rapid application programming in a
variety of programming languages.

o While VM systems are fundamentally interactive, it is easy to
change the interfacing mechanism so that applications can be run
either in the traditional interactive mode, or (using predefined
calling sequences) in a mode resembling batch or remote batch
processing.

In the early days of VM/370 usage, it was often disparagingly said that
one had to be a computer scientist to be able to use VM. This is no longer the
case, for there are many cataloged procedures that can be invoked to tailor the
system (as the user sees it) to match his own skills. Thus, the computer novice,
who is interested only in applying predeveloped programs to his data, uses the
system at one level, while the professional data processing person has access to
the full scope of the system—a system that gives more facility and flexibility
than the naked machine itself.

Perhaps the most significant benefit of VM is the ease with which one can
develop the various phases of an application in whatever language is most
appropriate. The user can be confident that transferring data, or sharing files
among phases of processing, is convenient, not prone to error, and well-
disciplined.



Real-Life Applications of VM/370 113

From 1975 to 1978 Christian Hocquet was an applications consultant at CISI
(Compagnie Internationale de Services en Informatique), where he developed
database applications in personnel database management and medical labora-
tories data management using an IMS DB/DC System. At CISI he also
managed the programming methodology and technical support groups and a
development group using IMS. In 1978 Hocquet joined the Société de Traite-
ments et de Services Conversationnels, an independent distributor of
APL*PLUS Service in France. Hocquet is currently an applications consultant
manager at the Société.

Hocquet has a master’s degree in computer science and a doctorate in manage-
ment science.

Gerard Lacourly has been managing director of the Société de Traitements et de
Services Conversationnels since 1978. In this capacity, he manages all activities
of the company, an independent distributor of APL*PLUS Service in France.
Before joining the Société, Lacourly was head of the APL Department at
SLIGOS and held several management positions with CISI (Compagnie Inter-
nationale de Services en Informatique).

Lacourly has a graduate degree in electrical and mechanical engineering from
the Ecole Nationale Superieur d’Electricite et de Mecanique, a doctoral degree
in mathematical statistics from the Institut Superieur de la statistique at Paris
University, and an M.A. in applied mathematics from Harvard University.



Brian C. Hagenbuch

APL and the Relational
Model of Data

When APL first appeared, many people thought of it as a “toy” language.
While it was well suited to scientific applications involving complex calcula-
tions on relatively small amounts of data, it was completely unsuitable for
business applications involving relatively simple calculations on large
amounts of data. Time has shown this opinion to be false. Today the primary
use of APL is in the very realm where it was once thought to be unsuitable—
business data processing.

Some reasons for the success of APL in the business environment follow:

¢ The extraordinary expressive power of the language is as well
suited to straightforward calculations as it is to more arcane sorts
of computing.

* Most APL time sharing systems now include facilities to aid the
programmer of business applications: file processors for storing
large amounts of data outside the APL workspace, formatting
utilities to reduce the cost of enhancing output, and other miscel-
laneous system enhancements such as shared variables.

¢ As the APL programming community gained experience with
business applications, software libraries evolved to simplify the
task for future system developers. Many APL time sharing
systems now include routines (and even general-purpose applica-
tion packages) to deal with file management, financial analysis
and planning, inventory control and material requirements plan-
ning, and so on.

While for many the initial attraction to AP [ was its expressive power, the
evolution of system facilities and AP L software is what made the migration of
APL into the realm of business data processing possible. Today we are on the
verge of the next stage of evolution of APL time sharing—the marriage of APL
with database management.

The 1970s have been aptly called the decade of the database. The use of
computers in business has led to an increased awareness of the potential value
of information. To realize this potential value a new kind of software
emerged—the database management system (DBMS). The goals of a DBMS are
to allow diverse applications to access a common collection of data and to allow
these applications to be developed more easily, more inexpensively, and more
flexibly than would be possible otherwise. DBMSs attempt to achieve these
goals in several ways.

114



APL and the Relational Model of Data 115

One of the most important ways is through data independence. Data
independence refers to the insulation of application programs from the details
of how their data are stored. APL programmers enjoy quite a bit of data
independence in that they need not be concerned with such matters as how a
matrix of numbers is actually represented within the APL system. Users of
DBMS:s can be similarly unconcerned with how their databases (usually much
more complex than matrices) are represented internally.

Consider the advantage of being able to refer to “the salaries of the
employees in department 50”, rather than “the values in components 31
through 40 that correspond to occurrences of 50 in components 61 through 70”.
The notion of data independence goes further than this, however. In addition
to freeing application programs from the details of the physical representation
of the database, many DBMSs supply forms of logical data independence, thus
allowing different applications to view the same data with entirely different
logical organizations. (One man’s field is another man’s record.)

Another important advantage of a DBMS follows from the notion of
logical data independence; to wit, the ability to avoid duplication of data.
Without benefit of a DBMS, it is common to find two or more applications
working with separate copies of the same data. Whether this is due to
conflicting access requirements (the need for different logical views of the
data) or just the lack of communication between application designers, the
result is the same. In addition to the obvious increase in storage costs, the risk
that these separate copies will not stay the same is introduced. As the copies
drift apart, the applications will inevitably produce inconsistent results.
Avoiding this risk is one of the main attractions of DBMSs.

A sophisticated DBMS will also provide capabilities such as:

* Programming language interfaces that allow access to the DBMS
from familiar environments and that make possible the develop-
ment of complex procedures using the data.

e Maintenance and utility programs that free the application pro-
grammer from the need to develop special solutions to routine
problems.

» Data reorganization facilities that improve storage and perform-
ance characteristics.

¢ Data security and integrity controls that help ensure that data is
maintained in a correct and consistent fashion.

¢ Sharing capabilities that allow applications to support multiple
users without concern for interlocks and other such items.

¢ Access controls that protect the privacy of sensitive information.

e Restart capabilities that eliminate the need to adopt obscure
recovery tactics within individual applications.

* Tuning capabilities that allow the performance of the DBMS to be
balanced dynamically as new applications are incorporated and
old ones retired.

Although APL applications that incorporate many of these capabilities
are occasionally written, they always address fairly specific problems. Thus,
while new applications often benefit from techniques used in old ones, the new
ones must usually be designed and written from scratch. The situation is one
in which the substantial part of the effort of developing an application is aimed
at maintaining the data for the application, rather than at solving the real-
world problem. The need for a database management capability for APL
applications is clear.

But what should an AP L database management capability look like? The
discussion above concentrated on the common characteristics of DBMSs.



116 APL and the Relational Model of Data

Obviously, not all DBMSs are alike. In addition to superficial differences in the
features they provide, DBMSs differ dramatically in the way they represent
data to users; that is, in their choice of a data model. It is here that we will
concentrate our discussion.

All DBMSs represent data as simple collections of related items. Such
collections are usually called records and might, for example, contain the
number, name, salary, and date of hire of an employee. The term data model,
however, refers not to records, but to the way collections of records are
organized. There are three data models used in current systems. While some
systems claim to support more than one model, most can be neatly classified as
either hierarchical, network, or relational.

In the hierarchical model, records are organized according to a simple tree
structure. A typical record is seen as subordinate to one record and as superior
to a collection of records. For example, consider an enterprise that is organized
into departments, each of which is solely responsible for several projects.
These projects are, in turn, individually staffed. In a hierarchical database for
this enterprise, a project record could be subordinate to a record associated
with the department charged with the project, and superior to a group of
records, each of which is associated with an employee who works on the
project. This organization seems quite natural in many contexts, and it
conveniently supports a wide range of applications.

The network model may be viewed as a generalization of the hierarchical
model. It organizes records according to what is called a plex structure. A plex
structure is one in which a typical record may have several superior as well as
several subordinate records. If the example above were changed slightly so
that several departments could share the responsibility for a single project
(and a single employee could work on several projects), the network model
would seem a more natural choice for handling the data.

In both the hierarchical and network models, a database is represented in
terms of two distinct kinds of conceptual objects: records and links between
records. The relational model differs from both the hierarchical and network
models in that it omits the concept of a link between records. Rather, records
are organized into tables. Each table is a collection of unique records of the
same type; that is, all the records in a table have the same field descriptions.
Within the relational model the effect of links between records is achieved by
reference to the values stored in the records.

An example may help make this distinction clearer. In the hierarchical
structure described above, there are five “objects” to consider:

1. Department records containing department number (DNQ), de-
partment name (DNAME), and budget (BUDGET).

Links relating each department to a set of project records.

3. Project records containing project number (PN 0), project name
(PNAME), and budget (BUDGET).

4. Links relating each project record to a set of employee records.

5. Employee records containing employee number (N 0), employee
name (ENAME), salary (SAL), and date of hire (DOH).

We can represent this hierarchical scheme as follows:

DEPARTMENT (DNO ,DNAME ,BUDGET)

One DEPARTMENT links to many PROJECTs



APL and the Relational Model of Data 117

PROJECT(PNO,PNAME ,BUDGET)
One PROJECT links to many EMPLOYEEs

EMPLOYEE(ENO ,ENAME ,SAL ,DOH)

In the relational model, the “one-to-many” links of the hierarchical model
can be expressed as data items in the subordinate records. Thus, a relational
version of the hierarchical scheme might look like:

DEPARTMENT (DNO ,DNAME ,BUDGET)
PROJECT(DNO,PNO,PNAME ,BUDGET)

EMPLOYEE (PNO,ENO ,ENAME ,SAL,DOH)

(Underlined data items are keys; that is, they have unique values within the
table in which they appear.) Thus, by reference to the PNO value of an
employee record, we may uniquely identify the project records to which it is
linked, and similarly the department to which a project is linked.

The example of a network structure may also be recast in the relational
model. Recall that in the network example the “one-to-many” links of the
hierarchy are replaced by “many-to-many” links. We might represent a
network scheme as:

DEPARTMENT (DNO ,DNAME ,BUDGET)

Many DEPARTMENTs link to many PROJECTs
PROJECT(PNO,PNAME ,BUDGET)

Many PROJECTs link to many EMPLOYEEs

EMPLOYEE(ENO ,ENAME ,SAL ,DOH)

In the relational model, this more complicated structure can be represent-
ed as follows:

DEPARTMENT (DNO,DNAME ,BUDGET)
DEPTVSPRQJ(DNO,PNO)

PROJECT (PNO ,PNAME ,BUDGET)
PROJVSEMP(PNO,ENO)

EMPLOYEE (ENO ,ENAME ,SAL,DOH)

The important observation here is that, in the relational model, some of
the structural characteristics of the other models (links) are recast simply as
contents of the basic structure common to all the models (the record). This
simplification is apparent in data manipulation languages designed to work
with the relational model, and is one of the main benefits of the relational
approach.

While all three data models are capable of expressing the same range of
interrelationships between records (procedures exist to recast one model in
terms of another), the relational model has clear advantages for APL. The
“tables” of the relational model are quite similar to the arrays handled by
APL. Further, the lack of nonrectangular link structures makes the relational
model seem “more natural” to APL programmers.

To my knowledge, there are no current implementations in which APL is
effectively interfaced with a relational DBMS (although the time is ripe).
Nevertheless, the results of the work that led to the relational model can be of
immediate benefit to the designer of database applications in AP L. Foremost
among those results is the concept of normalization. Normalization is a
database design technique with the goal of simple, consistent representation of



118 APL and the Relational Model of Data

the relationships inherent in the data for an application. Although normaliza-
tion techniques are applicable to all the data models discussed, they are most
easily understood and applied in the context of the relational model.

Most discussions of the relational model deal implicitly with tables in
what is called “first normal form” (1NF). 1NF simply means that the value of a
particular field in a particular record is atomic; that is, cannot be decomposed
into a simpler form. (A non-atomic value would, itself, be a table.) 1NF,
therefore, deals with the structure of tables. Higher normal forms are more
interesting in that they deal with the meaning of tables. It is impossible to look
at a table and tell whether, for example, it is in third normal form, unless you
have some additional information about the real-world situation represented
by the table. Take, for example, the following table:

DEPARTMENT COURSE STUDENT
ENGLISH LIT210 JONES
ENGLISH LIT210 BLAKE
PHYSICS OPTICS402 JONES

The table is meant to represent a real situation in which students are
enrolled in courses offered by the departments in a university. What is not
apparent from the table alone is the fact that a particular course is always
offered by one and only one department. In light of this fact, some system
designers (even those not familiar with normalization techniques) may feel
uncomfortable with our table. Some problems they might uncover include:

¢ The association between a department and a course that it offers
cannot be represented in the table unless at least one student is
enrolled in the course. There is nowhere in the table to record the
fact that the MATH Department offers ALGEBRA102 until some
student enrolls in the course.

¢ Correspondingly, when the last student enrolled in a course drops
it and the pertinent record is deleted, additional information is
lost. If Jones decides to drop OPTICSU402, we'll also lose track of
the fact that OPTICS402 is offered by the PHYSICS Depart-
ment.

¢ In the course of updating values in the table, it is possible to
violate the correspondence of departments to courses. Suppose
BLAKE decides to move from LIT210 to OPTICS402. Unless
the associated change to DEPT is made at the same time, we may
find that OPTICS402 is offered by both the PHYSICS and
ENGLISH departments, in violation of our knowledge of the real
state of affairs.

In the terminology of normalization theory, our table suffers from three
kinds of anomalies: insertion anomalies, deletion anomalies, and update
anomalies. These problems can be solved by recasting the table as two separate
tables:

DEPARTMENT COURSE

ENGLISH LIT210
PHYSICS OPTICS402
COURSE STUDENT
LIT210 JONES
LIT210 BLAKE
OPTICS402 JONES

Each of the new tables is in what is termed fourth normal form. The
original table was not. (It was, however, in third normal form.) As a result of



APL and the Relational Model of Data 119

the further normalization of our table, it is now free from the anomalies
described above.

Normalization theory is too complex a topic to treat here in detail. It is,
nevertheless, worth the attention of anyone who designs databases. What it
amounts to is a formalization of “common sense design”. It is especially
appropriate in the APL environment, where the native data structure is the
rectangular array.

For excellent discussions of normalization theory (and the whole area of
database management), the reader is directed to the two books listed in the
notes at the end of this paper.

Conclusion

The continuing success of APL in business data processing is due not only
to the power of the language itself, but also to the ever increasing range of
system facilities designed to aid the application programmer, and to the
expertise of the APL programming community. Computerized information
systems have led the business community to appreciate the immense value of
accessible, well-organized information. To keep pace, APL time sharing
systems must eventually be extended to include the capabilities of a DBMS. In
the meantime, it would behoove the designer of database applications in APL
to look into the general area of database management. Of particular interest is
the relational model of data and its associated discipline of normalization.

Notes

1. James Martin, Computer Database Organization, Second Edition, (Pren-
tice-Hall, 1977).

2. C.J.Date, An Introduction to Database Systems, Second Edition, (Addison-
Wesley, 1977).

Brian Hagenbuch studied physics at Pennsylvania State University for one year
before transferring to St. John’s College in Annapolis, where he earned his B.A.
in liberal arts. He then spent a year with Leasco Response, Inc., a time sharing
vendor, working on an interactive file management system. In 1974 Hagenbuch
Joined STSC as an applications consultant, and in 1978 he joined STSC’s
Applications Development Department, where he is currently an APL applica-
tions analyst.

At STSC, Hagenbuch has taught AP L courses for STSC personnel and custom-
ers and worked on several application development projects. He recently
completed a study on database management in APL.






Part 2

The General Management
Viewpoint






John E. Suwara

APL Tutorial
For General Management

With labor costs to business—especially for white-collar and managerial
workers—rising steadily, it becomes more and more important to make people
productive in all areas. What AP L does, and does well, is to make people more
productive in implementing computer solutions. It is not uncommon for people
working with APL to improve their speed in implementing applications by a
factor ranging from 5 to 15. This is particularly true for “quick and dirty”
applications where an immediate answer is needed on a one-time basis.

This paper is derived from seminar material presented in a single day to
nontechnical managerial personnel. Its purpose is to provide the reader with a
sense of what it is APL does to speed the work of its users, with particular
reference to some of APL’s uses in a business context.

Why 4PL?

APL came into being in the late 1950s because of a Harvard University
mathematician’s search for a more effective way to express certain algorithms.
In working with conventional mathematical notations, Kenneth Iverson had
found them to be inconsistent; he also found he had to step out of mathematics
and use English to represent phenomena such as sorting. He looked into the
computer languages that were then available and also found them to be
inconsistent.

Being resourceful, Iverson invented his own notation—a notation that
also serves as a very elegant computer programming language. His invention
is sometimes called Iverson’s Notation, but is more commonly known as APL
(a programming language). Iverson’s starting point for APL was conventional
mathematics. From it, he developed a notation that is mathematical in nature
but has a richness and consistency that allow it to be applied to a wide variety
of commercial and scientific applications. This notation, by the way, allows
sorting to be represented.

In 1962 Iverson set forth his notation in a book called A Programming
Language (Wiley, 1962). At about the same time Iverson joined IBM, where he
worked on applying APL to the expression and solution of problems in a
variety of disciplines. In 1965 IBM implemented Iverson’s AP L notation on a
computer for the first time. This initial implementation—using an IBM
System/360 computer and APL as an interactive programming language—
was so good that it was until just recently IBM’s mainline APL product.

121



122 APL Tutorial for General Management

Moreover, it is the “granddaddy” for the APL currently offered by most time
sharing companies that use IBM-type equipment, including STSC.

APL at IBM was originally an underground phenomenon. However, in the
early 1970s it achieved such widespread use that it gained formal product
support at IBM. Today APL is the most widely used interactive system at IBM.

The reason APL has achieved wide acceptance at IBM and other large
companies is that it is an exceptionally powerful computing language. It
derives its power first of all from the fact that it is interactive. APL users are
online, working directly and immediately with the computer. This means that
APL can be readily used by people in their daily work; they can “get on” the
system and get results fast. An interactive capability immediately improves
productivity. Furthermore, users do not have to be expert programmers, nor
do they have to be familiar with a lot of data processing jargon to use APL.

APL is powerful because it is concise. A one-line statement in APL is the
equivalent of many lines of code in other programming languages. APL is
powerful because it is a rich language. Built into it are more than 40
“primitive” operations that can be run by simply typing the appropriate
symbol on the APL keyboard. These primitives go far beyond the standard
addition and subtraction to functions that allow sorting by various criteria,
identification of maximums and minimums, logarithms, and so on. And APL is
powerful in its consistency. APL primitive functions can be consistently
applied both to varying quantities of data and to varying configurations of
data.

APL may also legitimately be termed a universal programming language.
A first look at APL can easily give the impression that it is great for scientific
applications, but not very useful for business applications. In fact, STSC’s
original name was Scientific Time Sharing Corporation because the founders
had that impression. In actuality, APL is extremely well suited to handling
business applications. This is because a surprisingly large number of business
applications involve tables and APL is strongly table oriented. For example,
most budgeting applications are table oriented; I’ve personally written approx-
imately fifteen budgeting applications in my eleven years of selling and
writing AP L systems. In fact, the principal example we will work through will
be a budgeting application.

Last, and perhaps most importantly, APL is a language that allows its
users to deal with data dynamically. The same program that can be used to
handle three numbers can also be used to handle a hundred or even several
thousand numbers. During a given run, the user can change matrix sizes. Rows
and columns can be added; they can also dynamically be deleted. APL has a
whole set of primitives for dynamic data management.

Now let’s take a look at APL in action. We go to the terminal and sign on
to STSC’s APL*PLUS System. We type

3+ 4
press the RETURN key, and immediately get back:
7

APL is in “desk-calculator” or immediate execution mode, and we can perform
operations such as:

7 - 2
5

3 + 4
.75

6 x 2
12



APL Tutorial for General Management 123

Note that the computer’s responses are printed at the left margin of the
paper. When it is our turn to enter a statement, the terminal automatically
creates a six-space indent and “waits” for our input.

The foregoing are scalar to scalar operations—that is, operations on
individual numbers. Addition, subtraction, division, and multiplication are
available directly on the keyboard and are “scalar dyadic primitive functions”.

Such a demonstration shows the highly interactive nature of APL. Each
time we type a statement and press the RETURN key, the information is
transmitted from the terminal over a telephone line to the computer. The
computer then processes the statement and returns the answer. All of this
takes place in less than a second. This type of responsiveness is typical of APL
interactions and is part of what makes them so powerful.

APL can be extended in a consistent fashion to work with groups of
numbers. Suppose a company has three products and last year’s sales for these
products are 8, 13, and 16. We want to know what happens if current sales
increase 10 percent over last year’s. We enter:

1.1 x 8 13 16
and get back:
8.8 14.3 17.6

The computer has multiplied 1.1 x 8, 1.1 x 13, 1.1 x 16. This
is a scalar to vector (chain of numbers) operation.

If the sales expenses associated with each product are 5, 6, and 8, then the
gross sales margin would be
8 13 16 — 5 6 8
378
In this case, the group of numbers on each side of the subtraction function
are subtracted element by element: the 5 from the 8, the 6 from the 13, and the
8 from the 16. This is a vector to vector operation.

What is reflected in these operations is the consistency of APL and the
way in which its primitive functions can be consistently applied to varying
quantities of data. The examples happen to involve vectors of three numbers.
They could just as well have contained three hundred or three thousand
numbers—such is the capacity of APL.

Variables and Assignment

There are two main features of a digital computer that make it such a
powerful tool. One is that it can store very large amounts of data; the other is
that it allows the user to run defined procedures against that data. The term
commonly applied to these defined procedures is “computer program”.

In APL, the basic way data is defined and stored is through the use of
variables. To assign one or more values to a variable such as SALES, we use
the assignment function, an arrow (+), as follows:

SALES+4 5 6 &4

From now on, every time we type SALE S, the computer will return the values
we entered:
SALES
4 5 6 4
We can perform scalar to vector operations on the variable SALES.
Suppose sales go up by 10 percent and we want to know what the resulting
sales figures are

1.1 x SALES
4.4 5.5 6.6 4.4



124 APL Tutorial for General Management

The computer has multiplied each element of SALES by 1.1.

We can also assign the result of a mathematical expression to a variable.
For example:

GRTH«1.1 x SALES

In this case, the computer does not respond to what we enter. However, it
does store the information in the variable GRTH, and if we now type in GRTH
we will get back 1.1 x SALES:

GRTH
4.4 5.5 6.6 4.4
The answer is not lost somewhere in the innards of the computer. The ease
of getting output from APL will be particularly appreciated by users familiar
with other programming languages.

APL is “human engineered”’; throughout its structure and operations, the
APL language reflects a concern for people and how they can use computers
more effectively. As much as possible it is designed to free its users from
thinking about the computer and let them focus on implementing their
applications.

To continue, we can define a variable called EXP for sales expenses:
EXP«2 3 2 1
To obtain gross margins, we enter:

GM<SALES — EXpP
GM
2 24 3
A variable name, incidentally, can contain up to 77 alphabetic or numeric
characters; however, it must always start with an alphabetic character.

Dynamic Nature of APL

Thus far we have seen AP L operating with variables of stable size. APL
also makes it extremely easy to change the size of a variable. For example,
suppose we want to add sales figures for three more products to our variable
SALES. Sales are 10, 9, and 8 for the three new products. We adc these figures
as follows:

SALES«+SALES,10 9 8
Now, if we look at SALES we see that the additional figures are included:

SALES
4 5 6 4% 10 9 8

The comma specifies this enlarging operation (, 10 9 8)—known as catena-
tion. By means of catenation, the variable SALFE S has changed its size—or, in
APL terminology, its “shape”—from four elements to seven. We have simply
added three elements to the end of the vector SALE S and stored the expanded
vector back in SALES. We can do the same thing for EXP:

EXP+«EXP,6 4 7
EXp
2 3216 47

Suppose we need to know the number of elements in a variable. Do we
have to print them out and count them? Not at all. APL offers a primitive
function on the keyboard that allows us to determine the number of elements.
This is the shape function (p). Thus:

pSALES
7

p3 4 6 7
"



APL Tutorial for General Management 125

Indexing

We have seen how APL allows operations to be performed on entire
vectors; it also makes it possible to select and work with one or more elements
within a given vector. This is done by means of the indexing (also known as
subscripting) function, represented on the AP L keyboard as brackets [ ]. Let’s
look at SALES:

SALES
4 5 6 4% 10 9 8

We can address any number in SALES by specifying the location that
number occupies within the vector (first from left, second from left, etc.). For
example, if we want to look at the sales figures for the second product in
SALES, we enter:

SALES [2]
5
Or, if we want to look at the sales figures for the third and fifth products, we
enter:

SALES [3 5]
6 10
This ability to address specific locations can be used to change information as
well as to display it. For example, to change the sales figures in the fourth,
fifth, and seventh locations of SALES, we enter:

SALES [4 5 7]+«6 8 9
This assigns new values to the locations specified so that looking once again at
SALES we see it now contains the new values:

SALES
456 6 8 9 9

Extension of APL to Matrices

A two-dimensional matrix is nothing more than a table. To define a
matrix in APL, we simply specify to the system the number of rows and
columns we want the matrix to have. To do this, we turn again to the APL
primitive function p, as follows:

MAT«3 2 p 1 2 3 4 5 6
MAT

W
N ERN

This is the dyadic or reshape function of p. It takes the elements on its right
(1 2 3 4 5 6)andrearranges them according to the specifications on its
left (3 2)—that is, in 3 rows and 2 columns.

Just as it does with vectors, APL allows us to readily perform standard
arithmetic operations on entire matrices. Thus, if we want to increase the
values in MAT by 10 percent, we enter:

1.1 x MAT
1.1 2.2
3.3 4.4
5.5 6.6

We can address any specific location in MAT by entering, for example:

MAT [2:31]
3

This gives us the value for the data located in the second row, first column.
We can change values in MAT:



126 APL Tutorial for General Management

MAT [2:1]«9

MAT
12
9 y
5 6
We can create a second matrix called MEXP:
MEXP«3 2 p 112111
MEXP
11
21
11

and subtract its contents from those of the first matrix:

MAT - MEXP
01
7 3
¥ 5
We can store the result in the variable OUT by entering:
OUT«MAT — MEXP
our
01
7 3
4 5

Reduction and Scan

One of AP L’s most useful functions—used extensively in business applica-
tions—is reduction (/). What reduction does is reduce an array of data to a
single element. Returning to our variable SALES, suppose we are interested
in knowing the total sales for all products. In APL we simply enter:

+/SALES
47
This returns the sum of all the numbers in SALES. This is known as plus
reduction. In combination with the shape function (p), plus reduction can be
used to determine value averages by means of an extremely concise expres-
sion:

(+/SALES) + pSALES
6.7142857
Here we take the sum of the values in SALES and divide it by the number of
elements in SALES. This is the classic illustration of APL’s power. The
equivalent FORTRAN or BASIC program usually contains 10 or more state-
ments.

Reduction is not confined to plus reduction. It can be used with any valid
APL primitive dyadic function. A practical example would be to define a
variable called INT that contains annual interest rates for four years:

INT«.1 .12 .14 .15

To obtain the compound interest rate for the four-year period, we use times
reduction:

x/1+INT
1.615152

In the same family of functions as reduction is scan (\). Scan performs a
series of partial reductions. Plus scan calculates a series of partial sums.

Suppose we define a series of monthly sales for six months:
MSALES+3 2 8 4 9 3
To obtain the cumulative sales for each month, we use plus scan:



APL Tutorial for General Management 127

+\MSALES
3 5 13 17 26 29

Returning to the compound interest example, we can apply times scan to
get the cumulative compound interest at the end of each year:

x\1+INT
1.1 1.232 1.40448 1.615152

Writing a Program Using APL

It was stated earlier that digital computers derive a great deal of power
from their ability to run defined programs against large amounts of stored
data. How are such programs defined in APL? In APL, another name for a
program is function. Programs are called defined functions. Defining a
function extends the capability of the computer. Let’s assume that we want to
concentrate on calculating averages. We can define a function to do this for us,
as shown below:

VZ<AVG X
[1] Z«(+/X)+pX
[2] ¥
By typing in the del (V), we inform the APL system that we are leaving
immediate execution mode and entering a mode that allows us to define our
own programs (called function definition mode). After entering the function,
we type another V to switch us back to immediate execution mode. In between
the two Vs we have defined a function named AV that will accept data
through X and display the result through Z. Now when we enter:

AVG SALES
6.7142857

we call on a predefined function called AVG to manipulate the SALES data.

The next step is to take what we have learned about defining and storing
data and about defining functions and apply it to an actual APL application:
building a small budgeting system.

System Definition

The first requirement is to define the system. With a real-world applica-
tion, we would consult with the application’s user to work out this definition.
The key at this stage is to determine what kind of output is desired and in what
format it is to be reported. From that information we can work backwards and
decide where the data is to come from and what processing is necessary to get
it in the desired format. Figure 1 shows the kind of report our budgeting
application will be designed to produce.

An important part of determining the report format is to define the
relationships between the rows and the columns in the report. We must specify
which data is to be entered and which is to be calculated. From this
information we can now design the system and write the programs.

Writing the Programs

We will write three programs: one to enter the data, a second to perform
the specified calculations, and a third to print the report.

First, we will write the data storage program. We define a program that
will create a two-dimensional matrix or table to store numbers (statement
[11) and that will then enter the appropriate numbers (statements [ 2]
through [101).



128

APL Tutorial for General Management

STS5C SAMPLE BUDGET
FISCAL YEAR 1980

QTR QTR QTR QTR

X 2 3 4 TOTAL
APL REVENUES input .
CONSULTING input .
SOFTWARE input .

TOTAL REVENUES

calculated totals

SALARIES input .
TRAVEL input . . .
TELEPHONE input . . .
OFFICE SPACE input . . .
OTHER EXPENSES input .

TOTAL EXPENSES

PROFITABILITY
YTD PRF
ofo EXP/REV

calculated totals

calculated (rev - exp)
calculated (ytd of prf)
calculated (exp *+ rev)

ofo SAL/REV calculated (sal : rev)

Figure 1—Sample Budget Information

VENTER
[1] D+14 5p0

[2] YENTER APL REVENUES' ¢ D[1:;]+5+0

[3] *ENTER CONSULTING REVENUES' ¢ D[23]1«5+0
[4] "ENTER SOFTWARE REVENUES' ¢ D[3:15+40
[51] A ENTERING EXPENSES

[61] 'ENTER SALARIES' ¢ D[53]+5+0

[71 *ENTER TRAVEL' ¢ D[63;]+540

[8] YENTER TELEPHONE' ¢ D[7:1«5+0

L9l YENTER OFFICE SPACE' ¢ D[8:;]+5+0

[10] T'ENTER OTHER EXPENSES' ¢ D[9:]1+«5+0
[11] ' & 'END OF INPUT'

[12] v

Second, we define the program that performs the calculations:

VCALCULATE
[1] DLy J«++D[1 2 3:]
[2] D[103]++#D[5 6 7 8 93]
[33 D[113]1«D[43]1 - D[103]
[4] DL35]«+/D[31 2 3 4]
[51] D[123]«+\D[11:]
(6] D[1235]«D[11;5]
[7] D[13;])+100xD[103]1+D[ 4]
[el DL143;]+100xD[S3;]+D[ 43 ]
[9l *END OF CALCULATIONS'
[10] vV

A TOTAL REVENUES

A TOTAL EXPENSES

A PROFITABILITY

TOTAL COLUMN

YTD PROFITABILITY
FIXUP YTD TOTAL COLUMN
o/o EXP/REV

o/o SAL/REV

Last comes the program to print the report. To write this program we will
use STSC’s enhanced utility programs for report formatting to format titles,
column headings, and row names.

The first thing we will do is copy these formatting utilities from the public
library in which they are stored. This is done by entering:



APL Tutorial for General Management 129

JCOPY 1 FORMAT
SAVED

Now we write the REPORT program:

VREPORT
[1] YALIGN PAPER — PRESS RETURN' O T+l
[2] FS+'2041, 5CBF10.2'
[3] FS CENTER 'STSC SAMPLE BUDGET'
[4] FS CENTER 'FISCAL YEAR 1980!
LK)

[6] FS COLNAMES '//QTR/QTR/QTR/QTR'

[71] FS COLNAMES '// 1/ 2/ 3/ 4/TOTAL'

[8] RN+<20 ROWNAMES '-APL REVENUES—-CONSULTING-SOFTWARE'

[9] RN«<RN,[1] 20 ROWNAMES '—-TOTAL REVENUES—-SALARIES-TRAVEL'
[10] RN<RN,[1] 20 ROWNAMES '-TELEPHONE-OFFICE SPACE'

[11] RN+RN,[1] 20 ROWNAMES '-OTHER EXPENSES—-PROFITABILITY'
[12] RN+«RN,[1] 20 ROWNAMES '-YTD PRF-o/o EXP/REV-c/o SAL/REV'
[13] FS OFMT (RN:D)

[14] V¥

We can put these three programs together in a little system called MAIN
by entering:
VMAIN
[1] ENTER
[2] CALCULATE

[33 REPORT
[u] v

That’s all it takes. Our budget application is now complete. Applying this
simple package of three programs to the appropriate financial data will
quickly produce the report shown in Figure 1.

Conclusion

This paper has offered a brief overview of APL syntax and style with a
view to illustrating the programming language’s singular economy and power.
With APL, users can implement applications many times faster than is
possible with other high-level programming languages. We have seen some of
the quick, practical applications possible with APL; there are many, many
more that make people more productive in implementing computer solutions.
And nothing is more crucial in today’s competitive business environment than
increasing “people productivity”.

John Suwara joined STSC in 1975 and was a branch manager and regional
manager before he assumed his current position as vice president of western
U.S. marketing. Suwara previously worked as a systems engineer and market-
ing representative for IBM. He is a co-founder of TSR, where he worked from
1969 to 1974.

Suwara holds a bachelor’s degree in electrical engineering from City College of
New York and a master’s degree in electrical engineering from New York
University. He also completed courses at St. John’s University toward an
M.BA.



Linda Alvord

APL in the
High School Curriculum

Since 1967, we at Scotch Plains-Fanwood High School in New Jersey have
been actively developing a new approach to teaching mathematics. We have
incorporated AP L, with its traditional symbolic notation, into the teaching of
mathematics at the secondary level. Based on our experiences, I would like to
share with you a few of my reasons for believing that AP L expands, as well as
expresses, the concepts normally developed in a high school mathematics
program, and consequently offers students exposure to numerous career
options.

The study of APL has immediate value to students because it makes
mathematics more real to them. With the addition of AP L, mathematics may
be perceived as more comprehensive, but it also becomes more applicable,
exciting, and relevant. Students and teachers benefit in two ways. First,
teaching and learning secondary school math becomes a more exciting, and
therefore a somewhat easier, process. Second, the important concepts learned
in math courses are more apt to be extended—by the students themselves—to
the world around them.

One significant goal of teaching mathematics is to encourage students to
develop and use a written symbolic language to communicate abstract ideas.
APL not only provides an excellent mathematical language to cover all high
school math concepts, but it also provides an excellent means for demonstrat-
ing the use of a computer programming language.

In a recent lesson on probability and statistics, we considered a moderate-
ly complex problem: finding all possible sums that could be obtained if three
dice—one tetrahedron (4 faces), one icosahedron (20 faces), and one
dodecahedron (12 faces)—were tossed. The sample contains 384 possible
outcomes. To count the number of times any specific sum could occur is quite
tedious. With AP L, we used arrays of data and produced the expected values.
By creating a frequency table, we actually experienced the sampling process.
Using APL notation alone, without executing expressions at a terminal, the
students were able to understand the relevant aspects of the problem.
Increased understanding is a major benefit of using APL in the learning
process.

As a student’s knowledge of a language increases, visual images will often
appear in his “mind’s eye” as expressions are read and understood. The clarity
of each APL expression, combined with the visualization of results at a
terminal, can have dramatic effects on the thinking and learning process. Just
as there seems to be some magical moment when one begins to think in terms
of a new (spoken) language, there is a parallel jump in using APL to process

130



APL in the High School Curriculum 131

numeric data and learn mathematics. Difficult concepts are more easily
understood as they are worked through using APL, because the student can
“see” each step of a problem sequentially.

Diagrams or pictures are often very helpful when learning mathematical
concepts. Again, APL lends itself nicely. Using outer product (o .x), for
example, we can illustrate the “how” and “why” of complex multiplications.

The use of APL in our mathematics curriculum has provided more
significant motivation for our students to explore mathematics and related
fields. Moreover, they do so in creative ways not typically inspired by
conventional teaching techniques. They find that their experiences relate to
science, psychology, sports, theoretical mathematics, and other fields. The
inspired investigation of these diverse areas leads to career opportunities often
not formerly considered by students.

A student with a fundamental knowledge of APL can easily begin a
computer-oriented career. At least two recent graduates have been employed
by the computer science department of Bell Telephone Laboratories im-
mediately after graduation. Consider that this occurred without their having
college degrees or specialized training. Another student had a sufficient start
in his education to complete both his graduate and undergraduate work in
only four years.

Although many students leave high school long before their careers are
shaped, their introduction to APL and computers at the high school level
provides them with a more substantial mathematical background and a
foundation for understanding computer systems. And perhaps more important
in the long run, the exposure to APL presents them with diverse career
opportunities for the future.

Linda Alvord has been chairperson of the Mathematics Department at Scotch
Plains High School, New dJersey, for the past 18 years and has taught
mathematics for 21 years. In 1968, assisted by fellow teachers, Alvord developed
an APL teaching program that has been running successfully ever since.

Alvord has a B.A. from Montclair State College, an M.A. from Columbia
Teachers College, and is currently enrolled in a doctoral program at Rutgers
University for creative arts in education.



Andrew D. Luzi

A Business School’s Approach
To Better Business with APL

It is no secret that government and business are becoming increasingly
more dependent on computers in all management functions. Business
schools—to “stay in business” as well as to provide a relevant education to
their students—are increasingly realizing the value of offering practical
coursework in computers to students studying all areas of business.

Once a school has made such a commitment, two general objectives are
likely to emerge:

1. Students should be knowledgeable in, and comfortable with, the
use of a business-oriented computing language.

2. The use of that language should be incorporated into coursework
across disciplines to strengthen students’ skills with the language
and to enhance the content of the individual courses and the
entire business program.

My experience in teaching and using APL in a business school shows me
that APL is an ideal language for meeting these objectives. Benefits are
obtained not only by students, but also by professors, future employers, and
the business school itself.

Students benefit in ways I will make clearer later. Basically, they gain a
general knowledge of computers and specific knowledge of a programming
language. Through the use of computers, they also gain deeper insights in
related subject matter, such as accounting, marketing, and operations re-
search.

Professors benefit because their jobs are made more interesting, though
not necessarily easier. It is easier, however, to point out the value of particular
course material if you can make it both interesting and relevant. There are
obviously numerous ways professors can use computers for their own personal
research and class management.

Potential employers save time and money when they are able to hire a
person already knowledgeable in the use and value of computers.

The business school that offers practical coursework in computers is
aware of the benefits that accrue when it notes the number of applications per
opening for each entering class and the average profile of the applicants.
Students carefully evaluate business schools. One of their criteria for selection
is how well business schools can sell their “product”—the students—to
employers. An increasingly large factor in that transaction is how well
equipped students are to enter the business world and contribute. Relevant
experience is highly desirable, and knowledge of computers is still one of the

132



A Business School’s Approach to Better Business with APL 133

best attributes a graduating student can have. Schools that offer the best, and
most relevant, business experience will attract potential employers and,
consequently, the best students.

At Pennsylvania State University we have introduced the use of comput-
ers in several courses. We have found that a one-semester course in computing
and introductory AP L provides the necessary background on which to build
practical coursework in various disciplines.

For example, one accounting course requires a major project using APL
for personal computing, terminal remote batch processing, text editing, and
APL programming. Students work alone and in groups to complete projects,
which may take as long as three or four weeks. The modular aspect of APL
function syntax allows a group to partition the project so that everyone obtains
programming experience. Having the students program in parallel paths
forces a thorough understanding of project design before the project begins.

Perhaps a more interesting, but equally successful, use of APL at
Pennsylvania State University is student participation in projects outside
specific coursework. A student, or group of students, acts as a consultant to a
company or government agency. Because these projects are undertaken in
real-world settings, they can result in part-time employment. The high
probability of having their own ideas actually implemented serves as an
excellent motivation for students. In most cases, the potential outside users
attend the final student demonstration of the project.

Examples of past projects include setting up:

¢ A radioactive material inventory.

e A history of human exposure to radioactive material.

¢ Payroll deduction tables for use by a manual payroll system.
¢ Inventory systems for a small car dealership.

e A patient history and hearing-aid selection system (to be pre-
sented at the Pennsylvania Speech and Hearing Association).

¢ A program to predict student enrollment (through analysis of a
questionnaire filled out by all accounting majors).

¢ Computer-aided instruction programs to teach students advanced
APL concepts.

The students and the school benefit when the objectives mentioned earlier
are met through coursework and extracurricular work such as that described.
Students gain a deeper knowledge of programming and the subject material,
because writing programs and designing systems requires a solid understand-
ing of concepts and relationships, not simply facts or formulas.

An example of this is the student who, while programming an accounting
package for a small car dealership, exclaimed: “I don’t know enough account-
ing!” The programming project forced him to recognize his lack of knowledge,
to ask for help, and to complete a self-study of advanced accounting before
continuing to program. Students are motivated to do this extra work because
they know the value of hands-on experience and feel a sense of accomplish-
ment when a project is done well.

In conclusion, classroom projects and assignments using computers in-
troduce students to interactive computing, allow for development of interper-
sonal communicative skills, reinforce real-world and classroom concepts in an
applied environment, and provide the student with experience that can be
used beneficially in future employment.



134 A Business School’s Approach to Better Business with APL

Andrew Luzi is an assistant professor in the Department of Accounting and
Management Information Systems at Pennsylvania State University. He holds
an M.S. and a Ph.D. in accounting, both earned at the University of Kansas.
Luzi is currently involved in research on developing audit systems for the
Pennsylvania Department of the Aging. Research interests include a process
concept of control and controls, quantity accounting: an interactive model,
systems training in the public sector, and the relationship between performance
information systems and group problem solving processes.

Luzi is a member of the American Accounting Association, the National
Association of Accountants, and ACM.



Mary Lou Fox

Computer-Assisted Instruction
At the Undergraduate Level

During the past two decades the instructional use of computers at
universities and colleges has mushroomed. Professors and researchers have
long recognized the benefits of using computers in their own professional
endeavors. Now there is increasing recognition that the use of computers by
students during their undergraduate years also has great value.

Part of the value lies in removing the mystique about computers and in
increasing students’ awareness of the potential benefits and problems as-
sociated with the ubiquitous use of computers in a technologically advanced
society. But, more importantly, using computers in instruction fundamentally
alters approaches to learning in many subject areas and has broad implica-
tions for the future careers of students who learn in this fashion.

In my experience as an instructor of computer programming and applica-
tions at Fairfield University, I have found there are significant benefits
associated with students’ exposure to, and use of, the APL language and
programming concepts. The concise expressions and algorithmic nature of
APL allow fundamental concepts of computing to be learned without the
obfuscation of programming details. The fundamentals of AP L are easily and
quickly learned, thus allowing students to tackle worthwhile problems within
a reasonable period of time.

At Fairfield University, all students with a business major and most
students with a mathematics, science, or social science major study APL in a
one-credit course in their freshman year. This early exposure to computing
serves two important purposes. One is to introduce students to computing so
that they will have a basic knowledge of a computer’s capabilities and so they
can use that knowledge during their undergraduate career. The second
purpose is to help students discover that computing is an exciting and
worthwhile career. Making this discovery during the freshman year permits
students to orient their studies and career goals in this direction. Not all
students want to be programmers, but many may want to include computing
as an integral part of their future. This desire comes from a growing
recognition of the usefulness of the computer as a tool in learning and problem
solving.

Fairfield University’s approach to learning is reinforced with the wide-
spread use of computers in the instructional process in many subject areas.
Some examples illustrate this point:

* Freshmen studying chemistry are tested on prerequisite skills in
mathematics and chemistry during orientation. Students requir-
ing remedial help are told to sign on to the Computer-Assisted

135



136 Computer-Assisted Instruction at the Undergraduate Level

Instruction (CAI) programs, which are written in APL and which
attempt to remove the deficiencies in the student’s background.

* Students studying chemistry or mathematics frequently attend
laboratory sessions in the terminal room. During these sessions
APL is used to illustrate basic concepts such as limits or deriva-
tives, to grind out terms of series to demonstrate convergence or
divergence, or to develop algorithms to solve problems such as
plotting a great circle course for a ship. Emphasis is on problem
solving and clear, concise algorithms.

¢ Sophomore sociology majors find that one of the three weekly
classes in the required statistics course is held in the terminal
room. The usual approach to statistics involves a great deal of
calculation with too little understanding of what is being com-
puted! In this new approach, students quickly learn to use APL to
calculate statistics. This introductory course focuses on a database
of sociological research data, and on the correct use and interpre-
tation of statistical tests to report on this database. Feedback from
students has indicated that interest in this traditionally dull
subject is quite high. Students enjoy analyzing real data and
making judgments based on statistical tests. They become quite
involved in the quantitative aspects of sociology.

¢ A biology professor conducts a course on ecology and the environ-
ment. He complements the lectures with field trips and computer
laboratory sessions. The topic of water pollution is viewed from
the perspective of field trips to a pond and a river, and students
use a computer model to simulate effects of pollution in bodies of
water. The computer model, written in AP L, permits students to
thoroughly explore many problems that can only be alluded to in
a lecture. Students enjoy experimenting with this and other
models as they attempt to solve realistic problems that generally
could not be solved without such models.

¢ Some students find that their interests lie in the area of computer
applications or computer science. The initial exposure to APL
gives the students experience in manipulating data arrays and
provides a firm foundation in clear, concise algorithmic expres-
sion. This is a great aid in further study of other programming
languages, data structures, and applications.

The examples above illustrate how students can become deeply involved
in subject matter when an interactive APL computing system is used in the
learning process. The key benefits of instructional computing are summarized
below.

1. Instructional computing emphasizes problem solving using realis-
tic problems not generally within the grasp of undergraduates.

2. Instructional computing focuses on clear and concise algorithmic
expression.

3. Instructional computing motivates students to learn more about a
subject and to become more deeply involved in the learning
process.

Students who have been actively involved with computing during their
undergraduate years frequently seek career opportunities in this field. Some
areas where they have sought opportunities include:



Computer-Assisted Instruction at the Undergraduate Level 137

¢ Graduate work in computer science or diverse quantitative areas
such as operations research, management science, statistics,
biostatistics, econometrics, and financial analysis.

¢ Teaching computer programming and applications.

* Employment in computer programming, systems analysis, the
broad range of application areas, systems programming, or com-
puter systems design.

¢ Medical research on the myriad possibilities for using computers
in medicine, such as monitoring patients and implanting
microcomputers.

¢ Research and data analysis.
s Scientific computing and numeric analysis.

¢ Developing modeling systems to solve problems in areas as diverse
as economics, the environment, medicine, business, criminal jus-
tice, and traffic safety.

¢ Developing financial planning systems, forecasting systems, and
financial analyses.

¢ Development of instructional computing applications that include
drills and practice sessions, tutorials, computer-assisted testing,
simulations, and games.

As our society becomes increasingly dependent on computers, students
who can work with computers, develop and use algorithms effectively, and
deal with quantitative analyses will increase their career opportunities
dramatically.

Mary Lou Fox, currently an applications analyst in STSC’s Management
Technology Division, has been an active user of APL since 1968. At STSC she is
responsible for the design, development, and implementation of user-oriented
modeling systems and software tools. Before joining STSC she was a research
associate at Fairfield University, responsible for the design and development of
APL applications, including the university’s APL libraries, CAI (Computer-
Assisted Instruction) courses, instructional applications, and simulations.

Fox has a B.S. in mathematics from Boston College, a master’s in math
education from Fairfield University, and a master’s in computer science from
Polytechnic Institute of New York.



Gayle E. Abbott

Career Growth
In an APL Environment

APL is a powerful and efficient tool that can be used in a multitude of
environments to accomplish a wide range of tasks. Originally the language
was primarily thought to be useful for scientific or mathematical applications.
In the past ten years, however, STSC and other APL service companies have
enhanced the language to increase the efficiency of automated applications in
a business environment. Typical examples include financial planning systems
and manufacturing and material requirements planning systems. The advent
of features such as Automatic Control of Execution (ACE) has dramatically
expanded the ability of APL applications to take on “‘batch-like” charac-
teristics, when appropriate.

In looking at careers, the addition of APL programming skills to one’s
background can open the door to a wider range of opportunities than would
otherwise be available. While the knowledge of other programming languages
can also lead to career growth, APL has distinct advantages. The ease with
which one can learn the language allows one to seek interesting and rewarding
jobs a very short time after the initial introduction to the language. Other key
advantages include the relative “newness” of APL, the rapidly growing
popularity and use of the language, and the diversity of the applications
written in APL.

These are some of the reasons why APL is emphasized at STSC. It has
been found, however, that skill in APL alone is not sufficient for career
growth. In some cases, individuals are brought into STSC without any specific
knowledge of APL, but with a desire and aptitude to learn the language.

APL is a tool that, when combined with other skills and characteristics,
can provide a wide range of career opportunities. Most companies have a
greater demand for qualified personnel than the marketplace can supply. This
phenomenon—which is expected to continue well into the 1980s—provides
many opportunities for the individual with initiative. While emphasis is
placed on recruiting individuals with bachelor’s or master’s degrees, pertinent
work experience, or both, opportunities also exist for those with technical
training or a high school diploma. A key factor is evidence of initiative—
indicated perhaps by the pursuit of additional education on one’s own or
involvement in special projects. The emphasis on college degrees has arisen
from the need for flexibility and a broad understanding of the business
environment,

The other skills and personal characteristics that have been found to
complement technical skills are communications skills (both written and oral);
specialized knowledge in a field such as finance, insurance, or manufacturing;

138



Career Growth in an APL Environment 139

pride in personal accomplishments; a positive attitude; the ability to work
independently with minimal supervision, yet function as part of a team; the
ability to accept responsibility; and the ability to think analytically.

Once we find individuals with these qualifications, what can we do to
retain them? It is important for corporations to recognize individual career
objectives and to make the best use of them in meeting corporate objectives. A
key point is flexibility—companies need to be flexible in defining jobs and
career opportunities. Definition of career progression opportunities is a
common request made by data processing personnel today. Limited definition
of career paths, combined with unlimited opportunities, provides an environ-
ment where an individual need only change companies to satisfy career and
personal needs. It is a challenge to the industry to provide a means for
educating data processing personnel in career planning and for assisting them
in defining and achieving their goals.

Responsibility for career development rests at three levels—on the Per-
sonnel Department, on the employee, and on the employee’s manager. It
should be noted that top management is responsible for providing a climate
that encourages and is open to career development.

The role of the Personnel Department (or its equivalent) is to provide the
resources. It can provide assistance on planning a career and can counsel
employees by answering questions or by asking questions designed to “guide”
the employee. Personnel is a resource only. It cannot set the path an employee
is to follow; it can only present the options.

Each employee has the primary responsibility for his own career develop-
ment. He must determine where he has been and where he wants to go,
evaluate his needs, communicate his career intentions to the organization, and
negotiate his career.

The employee’s manager must learn to move from the role of “boss” to
that of career counselor. The manager must be open to discussing an employ-
ee’s needs and desires, strengths and weaknesses, career opportunities, and
the skills that need to be acquired or enhanced to meet the employee’s career
objectives.

Career paths in the data processing industry need not be clearly defined.
To do so would take away flexibility. Creativity and initiative—factors that are
highly valued in many jobs and that STSC feels have been a crucial ingredient
in the success of the company—would be reduced. While some positions
require guidelines and structure, many are flexible, giving the individual the
freedom for initiative and creativity. It is found throughout the structure,
however, that it is important to unleash motivation by ensuring that work has
a purpose, that it allows the full use of abilities and education (note the term
“abilities”, rather than “experience”), and that it allows some measure of
autonomy and decision making. In addition to being challenging, positions
should involve full project responsibility wherever possible.

Career development or progression does not refer just to movement from
one position to another, but to the molding and shaping of positions, when
appropriate, to provide for individual needs and to use the individual’s
abilities. It is important for jobs to be designed so that each person is
challenged and needs to stretch a little to succeed. Job expansion and lateral as
well as upward movement should be recognized and encouraged. The variety of
duties and responsibilities in a general job classification (e.g., programmer)
must be recognized, as well as movements between different departments in
the company (e.g., from a technical to a sales department).

Frequently it is seen how individual career growth parallels the career
growth of the organization. As an organization grows, so do its needs and the
variety of opportunities—it only takes personal initiative for an individual to



140 Career Growth in an APL Environment

seize these opportunities and grow himself. As mentioned earlier, it is the
individual who works to broaden his knowledge and skills who will grow in his
career and who will find the greatest number of options for growth available to
him.

A broad range of jobs are available in the data processing industry. Any of
these might be highly suitable for the individual with skills in AP L. Positions
start at the clerical or technician level (that point where most people with only
a high school diploma or limited technical training might begin) and run to
professional and managerial positions that emphasize any combination of
higher education and experience. Opportunities exist in applications and
systems programming, product and system development, communications,
consulting, sales, management, or any combination of these.

Thus far we’ve covered the career benefits of APL, the opportunities
available in the marketplace, and the need for career development. One might
well ask: “How are opportunities communicated, and how are individual
abilities recognized at a corporate level?”’ At STSC, we have (or are in the
process of developing) the following systems to aid our internal communica-
tions and career development program:

e All job openings are currently announced via an online system
(which was, of course, written in APL). Descriptions of most jobs
and the required qualifications are entered into the system as
soon as the jobs become available. Any employee can access
current job openings by simply loading a workspace. Openings are
posted for a minimum of one week or until the job is filled. In
addition to informing internals of opportunities available to them,
it provides a means whereby employees can refer qualified
friends. This system has worked extremely well, resulting in a
significant amount of lateral and upward movement.

* Communication between managers and employees is encouraged
and emphasized. In addition to ongoing interaction, a perform-
ance evaluation system exists to encourage interaction and stress
individual development. Performance reviews are scheduled
every six months and are usually separated from salary reviews
by at least three months. The latter guideline is set so that
preoccupation with salary is avoided and development is empha-
sized. In addition to reviewing performance against individual
standards set at the preceding review, these sessions allow discus-
sion of skills the employee needs to acquire, methods for acquiring
them, and the employee’s own feelings regarding his career. It is
necessary to devote adequate time to performance evaluations,
since they are a key to career growth and planning.

* A recent development, not yet finalized, is a personnel database or
skills inventory file. The system contains biographical summaries
of all employees. If a job arises that requires a certain key skill,
the database can be accessed to see which employees have the
required background. For instance, if you wanted to see which
employees have an engineering background, you would load the
workspace and request “engineering”. The database can also be
accessed by type of degree, college attended, name, previous
employers, skill, or title—to name just afew.

¢ Lastly, a career development folder is in preparation. This pam-
phlet, which will be available to all employees, will provide
assistance in evaluating and defining career experiences and
goals. It will also provide a broad definition of opportunities
available within the company, and it will describe the related,
required, or desirable qualifications. In summary, the folder will



Career Growth in an 4PL Environment 141

be a resource manual, assisting employees in the responsibilities
they have for planning their careers.

Training must be mentioned, if only briefly, as an important segment of
the career management process. Training programs can strengthen existing
skills; develop new skills; or orient individuals to a concept, job, or organiza-
tion. Internal training and company support of continuing education (as
expressed by tuition aid, seminar attendance, and a liberal leave of absence
policy) are important.

Conclusion

We have discussed the characteristics important to career development,
the definition and responsibilities of the career planning process, and the
components of a working career management system. Career planning is
important in the data processing industry, and it can work effectively. The key
factors are flexibility, initiative, and creativity. AP L is a useful tool both in the
formal career planning system and as a skill that an individual can use in any
number of environments, for any number of purposes. APL is another highly
marketable skill that can and does increase the opportunity for exciting,
challenging, and varied careers.

Gayle Abbott has been director of personnel at STSC since August 1978. Prior to
Joining STSC, she was personnel manager for the Computer Network Corpora-
tion and a personnel specialist for the Food and Drug Administration.

Abbott has a B.A. in political science from American University and has
completed coursework toward an M.B.A., also at American University. She is
active in numerous professional associations and recently authored an article,
“Headhunting”, which appeared in the Roundtable Discussion Section of the
October 1979 issue of Insiders’ Letter, published by International Computer
Programs, Inc.



Ollie Chambers

The Upjohn Company
Customized Financial Planning Model

The modern business era is one of international conglomerates (with their
common multicurrency, multibusiness lines) and worldwide inflation. These
factors make automated financial planning systems a must for financial
planners. These systems must invariably be somewhat sophisticated, very
flexible, and accessible from many different geographic locations.

Few companies have the inhouse expertise and staff to provide the kind of
intermittent low-cost support required by most financial planners. Because of
this, many companies like Upjohn have turned to time sharing vendors such as
STSC, Inc. In this paper I will give you a brief overview of my unit’s
involvement with STSC and our expectations for the future.

Before I get too involved with our financial planning system, let me give
you a brief overview of the Upjohn Company.

In 1979 Upjohn had annual sales of about $1.5 billion and net earnings of
$149 million. As shown below, we have seven major divisions with, for
financial planning purposes, a total of 17 separate businesses.

1. Domestic Pharmaceutical Business Group
e U.S. Prescription Medicine Business
¢ U.S. Consumer Products Business

2. U.S. Pharmaceutical Chemical Business

3. International Business Group
e Pharmaceuticals Business
e Animal and Plant Health Business
¢ Pharmaceutical Chemical Business

4. Agricultural Business Group
e U.S. Animal Health Business
¢ Vegetable Seed Business
¢ Agronomic Seed Business
* Florida Farm Supply Business
e U.S. Plant Health Business
e Poultry Breeding Business

5. Chemical Business Group
e Polymer Chemicals Business

142



The Upjohn Company Customized Financial Planning Model 143

e Urethane Systems Business
¢ Fine Chemicals Business

6. Upjohn Healthcare Services

7. Clinical Laboratory Business

The Upjohn planning process (see Figure 1) starts with strategic planning
where the divisions decide what they want to do. Next comes resource
planning to determine the capital requirements and to develop a financing
plan that determines where we will obtain the necessary capital. Before
approval is granted, financial plans are presented to our senior management
for comparison with corporate financial objectives.

ANNUAL STRATEGIC
BUDGET PLANNING
T ¢ /N'HAT WE WANT TO N
FINANCIAL
REPRESENTATION RESOURCE PLANNING
EARNINGS | FINANCIAL BUSINESS |MANPOWER | FACILITIES
STATEMENT| POSITION CASH PLAN|  PLAN PLAN
CASH | FINANCIAL BY BY
FLOW [INDICATORS BUSINESS LEGAL ENTITY
RESULTS TO WHAT WILL
BE ACHIEVED IT TAKE

FINANCING PLAN

EARNINGS | FINANCIAL
STATEMENT | POSITION

CASH FINANCIAL
FLOW INDICATORS

WHERE WE'LL OBTAIN CAPITAL

Figure 1—The Upjohn Company Long Range Planning Process

We rely heavily on a customized financial planning model that was
developed with STSC using their APL*PLUS Service and the modeling
language available in their Financial Planning System (FPS). The Upjohn
model has the following characteristics:

e It is a time sharing application accessed in several geographic
locations (e.g., Michigan, Connecticut, Texas, and California) via
remote terminals.

e It is operated by professionals and accounting technicians.

¢ It is cost effective—a forecast costs about $40 and a merge costs
about $35.

¢ 1t is highly user oriented and heavily prompted.

e It is coordinated by a one-man corporate staff located in Kalamaz-
00, Michigan.

e It is adaptable to changes in accounting principles or management
preferences.



144 The Upjohn Company Customized Financial Planning Model

¢ It includes three years of historical data and five years of forecast
data.

¢ Its output includes a complete set of financial statements—income
statement, balance sheet, cash flow, and ratios.

Like most Fortune 500 companies, the Upjohn Company has had some
form of financial planning for several years. In 1968 our efforts were mostly
manual and limited to a five-year projection of earnings. We produced only
income statements for our seven divisions. By 1970 we were using a “canned”
package offered by Citibank to prepare balance sheets and cash flow state-
ments to accompany the income statements for the seven divisions and
Agronomic Seed Growers. In addition, we were able to perform consolidations
and to conduct limited sensitivity analyses.

By 1973 we were getting pretty serious about financial planning. We
expanded our planning to cover our business worldwide for a ten-year period.
Our senior management began to play formalized objective-setting and feed-
back-generating roles.

It was at this point that we ran into problems; it became evident that a
customized model was an absolute necessity. Citibank could not accommodate
our operating management’s desire for tiered financial statements and histori-
cal data, and a task force was organized to select a company that could best
meet our needs. After several weeks of hard work, six finalists were chosen.
They were International Timesharing Systems (ITC), National CSS,
Comshare, Cyphernetics (now ADP), First National Citibank/General Electric,
and Scientific Time Sharing Corporation (now STSC, Inc.).

Although we had a lengthy list of detailed musts and wants, we had but
two groups of basic requirements. First, we needed the ability to generate
tiered financial statements. These statements would provide four levels of
earnings: earnings by business responsibility, earnings by division responsi-
bility, net earnings before corporate allocations, and net earnings.

The second group of requirements dealt with flexibility. They are de-
scribed below.

o Flexibility in detail. We required 20 revenue categories, 150
operating expense categories, and 25 inventory categories.

e Flexibility in forecasting. We needed the ability to express
forecasts in dollar amounts, growth rates, percent of sales, percent
of cost of goods, and percent of any related variable. We also
needed numerous special forecasting codes.

o Flexibility in output. We needed the ability to produce income
statements, balance sheets, cash flow statements, and financial
ratios. We also needed the ability to select information by line or
by statement, to produce tiered statements by responsibility, and
to footnote statements as appropriate.

There were several things we liked about STSC. Their development costs
were by far the lowest, and they could meet our tight development schedule.
Their APL*PLUS Service was by far the most powerful, and the Management
Technology Division could provide support for their proprietary language
enhancements. Further, their FPS modeling language used English-language
commands rather than symbols, and they offered onsite support.

There were, however, some factors involved with choosing STSC that we
didn’t like. At that time, STSC was a young company; it had only been in
business since 1969 and had been profitable for only two years. Consequently,
the organization was thin; they lacked Citibank’s experience and financial
expertise, and they had not yet demonstrated the ability to provide a strong
consolidation capability. In addition, several terminals would have to be



The Upjohn Company Customized Financial Planning Model 145

replaced to accommodate the APL programming language. As you can see
from this paper, we chose STSC to develop our system.

In 1975 our customized model was developed. It included full allocation of
expenses and assets, identification of earnings and cash flow by responsibility,
inclusion of historical data, and graphics.

Since 1975 we have focused on the content of our planning and develop-
ment efforts. We have also developed several other customized financial
planning models: the Eighteen-Month Quarterly Cash Flow Forecasting Model
and the Post-Planning Review Model.

We began our transition from form to content in 1976 with emphasis on a
capitalization/earnings ratio, improved communications and internal consist-
ency, and a six-step senior management review process.

Our focus on content expanded in 1978-1979, emphasizing reduced plan-
ning costs and condensed presentations, return on net assets, post-planning
review data, industry data, and operating management follow-up.

Because we did not want our divisional staffs to have to become familiar
with too many programming languages, we have subsequently used STSC for
much of our capital evaluation work including an economic evaluation model,
a lease versus buy model, a post-evaluation model, and a capital aggregation
model.

We are very pleased with the service we have received from STSC, and
look forward to continuing to work with them in the future. In fact, we are
currently waiting for them to perfect a graphics package that will allow us to
achieve the quality of terminal graphics required to support our post-planning
review efforts.

In closing, let me summarize the major reasons I support working with a
time sharing company like STSC for financial planning:

* Development costs are relatively low and projects are completed
on time.

¢ Operating costs are truly flexible, since projects can be discon-
tinued when and if unfavorable cost/benefit ratios appear.

¢ The flexibility of APL and of the FPS modeling language makes it
easy for us to use these languages in meeting special project
requirements.

* Their system can be accessed throughout the United States and in
many locations throughout the world, thus facilitating communi-
cation with staff in remote locations.

¢ They provide capable onsite support to take care of unforeseen
problems and new requirements.

Ollie Chambers, currently manager of corporate long-range planning at The
Upjohn Company, has been in the finance and accounting areas of the company
since he joined the financial management program in 1972, Drawing on his
experience with internal auditing, information systems, product profitability
analysis, capital expenditure requests, budget preparation, property accounting,
accounts payable, and cash flow management, Chambers was instrumental in
guiding STSC’s implementation of Upjohn’s long-range financial planning
system. He currently uses that system to analyze and present the consolidated
long-range plan to senior management each year.



146 The Upjohn Company Customized Financial Planning Model

Before joining Upjohn, Chambers worked as an economist in the U.S. Office of
Management and Budget and with Southern Pacific Railroad. He earned his
M.B.A. from Indiana University after graduating from the University of
Oregon’s School of Economics.



Randall S. Robinson

Financial Planning Applications
Of APL in J. Ray McDermott

In the McDermott company, Operations Research (OR) is a chargeback
department that does analytical studies and advanced computer system
development for corporate, group, and division managers. Recently our OR
business has been booming. One important reason for the boom, I think, is that
we apply and aggressively promote APL.

This paper briefly discusses two key inhouse financial systems that we
have implemented employing APL: the FINANCIAL INFORMATION NET-
WORK, which encompasses three different multiuser reporting systems; and
the SHORT-TERM INVESTMENT PORTFOLIO SYSTEM, which is a single-

user system composed of four related programs emphasizing analysis.

T'll begin my discussion with a few comments about our general approach
to AP L-based financial system development. Then, for each of the two selected
financial systems, I'll discuss system features, experience in development and
implementation, and current status.

Background Information about McDermott

J. Ray McDermott is an energy services company. Qur operations are
organized into two multinational units—McDermott and Babcock & Wilcox
(B&W).

The McDermott operating unit serves the oil and gas industry, primarily
in marine projects. Major activities include the construction of offshore
platforms and the laying of undersea pipelines.

B&W builds steam-generating systems for electric utilities. In addition,
B&W manufactures related products such as industrial boilers and specialty
steel tubing.

During fiscal year 1979 (ended 31 March 1979), the company realized $3.14
billion in revenue and employed approximately 61,000 people.

Why and How We Use APL

The main reason we in OR like APL is that we believe it provides a lot
more bang for the buck. That is, when preparing a time sharing/interactive
computer program—the type of program which usually seems best in applica-
tions pursued by OR—we feel APL enables us to do the job much faster and
with much less expense charged back to the user than other computer
languages.

147



148 Financial Planning Applications of APL in J. Ray McDermott

Underlying the basic advantages of speed and lower cost are considera-
tions probably well known to APL enthusiasts. Since APL is naturally
interactive, it hastens all coding, including the coding of input and output
routines for users. Furthermore, APL frees the system designer from the need
to design in bits-and-bytes detail; it permits him to design, instead, in terms of
spreadsheets, tables, and similar application-oriented concepts.

When compared with other programming languages, APL is often said to
speed up design and coding by a factor of five to ten. We have estimated a gain
in our own productivity of about that order of magnitude. We attribute the
gain in speed to inherent capabilities of raw APL, to adopting good practices,
such as organizing code into modules and having simple conventions for
variable names, and to drawing upon a library of general functions—particu-
larly groups of functions constituting general higher-level languages (for
financial planning, database management, plotting, statistical modeling, and
SO on).

Our own approach to system development using APL is, I suspect, about
the same as that taken by the majority of AP Lers. I mention highlights here to
indicate our endorsement of this approach.

In conventional, pre-APL system development the following procedure
might be followed: plan every detail before you start coding; have the user
certify that the plan contains exactly what he wants; proceed with coding; and
require that the user go through a formal request process if he wishes to make
a change after coding has begun. The language very likely is COBOL.

Because AP L facilitates rapid coding, its use has allowed us to adopt a
different approach: begin coding early, and move ahead in steps, with code
running at each step, and with each step more advanced than the one before. A
key difference is that we actually encourage the user to propose improve-
ments, or perhaps just change his mind, at any and all stages of development.
We think making operational code available to try out and think about—in a
series of steps—matches the typical user’s preference for working with
tangible, realistic examples and improving them in successive evaluations.

The bottom line of our APL-oriented approach is that it produces, we
believe, really superior results while taking less time and costing less.

Financial Applications

Before describing the selected financial systems, I'd like to note two
general points about our financial applications.

First, at McDermott we see many promising financial applications of APL.
And, although the best probably is yet to come, our company already has
experienced the favorable impact of APL programming in a variety of areas.
In addition to the financial network and investment portfolio projects, there
have been APL projects related to such important company functions as
divisional financial planning, divisional cash-flow forecasting, and corporate
screening of proposed capital expenditures.

The second point has to do with what often is called “decision support”.
For years, managers and specialists have discussed their belief that really big
payoffs will come from computer applications which support management
decisions—especially large dollar-value decisions.

The basic purpose of computerization in a decision-support application is,
you might say, to improve the depth and overall quality of the analysis
management looks at when considering decision alternatives. Through its
ability to handle data retrieval and “number crunching”, the computer can



Financial Planning Applications of APL in J. Ray McDermott 149

conveniently do certain types of useful analysis that wouldn’t be attempted
manually. Some examples are forecasting by complex methods, developing
“what if” projections, finding the best plan among a large number of possible
plans, and including risk or uncertainty in the analysis.

Members of our OR Department certainly subscribe to the proposition
that decision-support applications promise large payoffs; after all, decision
support is our specialty. APL makes the development of decision-support
systems much more practical because of the factors enumerated before—faster
development and program modification, plus lower total cost.

I think the ideal arrangement is one in which the bread-and-butter aspects
of an application (e.g., accounting, consolidation, and reporting) are combined
with the decision-support aspects in a single, coordinated system. We have
been striving for this in our financial network and investment portfolio
systems.

Acknowledgment

The systems to be described were made possible by the combined efforts of
many different individuals in user departments and the OR Department. So I
am writing on behalf of a large group of contributors, sponsors, and supporters
in McDermott.

The Financial Information Network

1. System Description

The Financial Information Network consists of three similar, computer-
based systems (programs and procedures) covering three similar, but neverthe-
less different, applications.

The Business Planning Model-2 System (BPM-2) generates financial re-
ports for the annual business plan, covering financial histories, forecasts, and
analyses. BPM-2 is used primarily by the Corporate Controller, Corporate
Planning, and all B&W divisions and groups. The Quarterly Forecast and
Analysis System, utilized by the Corporate Controller and all B&W divisions
and groups, prepares quarterly financial reports, again including histories,
forecasts, and analyses. The Capital Planning and Analysis System produces
quarterly capital investment reports (with histories, forecasts, and analyses).
Users of this system are the Corporate Controller plus all B&W divisions and
groups. Top management reviews selected reports from all three systems.

All programs in the Financial Information Network are available online
and used interactively. The term “network” refers to the fact that each system
ties divisions, groups, and the corporate office together via telephone commu-
nication with a central computer. The transmittal of information from one
unit to another in this network can be accomplished in minutes or even
seconds.

2. Features

The basic idea of the Information Network is summarized as follows. First,
every user—whether in the corporate office, a group, a division, or a subsidiary
—communicates with the same central computer. Strict privacy is provided
to each user, however. Each user has his own files and workspaces in which he
can prepare, check, and revise his reports. Results are released to a higher
level only when the user authorizes it. Second, every user gains entry to the
system through a terminal. The computer responds immediately most of the
time, day or night. Reports can be produced on a terminal or on a high-speed
printer.



150

The Network’s technical features are quite interesting, I believe. But the
most important point about capabilities is that the Network accomplishes
certain things management wants accomplished. Here, then, is a brief list of
pertinent management requirements together with a summary of how the

Financial Planning Applications of APL in J. Ray McDermott

Network satisfies those requirements:

Reduce manual workload, especially at the corporate level. Compu-
terization eliminates many time-consuming manual activities.
Time saved is greatest in connection with consolidations, analyses
entailing extensive calculations, and report revisions following
changes in input data.

Speed up transmission of information. Network replaces the
previous procedure of mailing reports, which involved days of
delay, with transmission by phone, which takes only minutes.

Obtain more and better analyses. Previously, it was felt that
participants spent so much time preparing reports they had little
time to think about them. Also, there was corporate reluctance to
add new analysis-and-reporting requirements for fear of increas-
ing already heavy workloads. After Network implementation,
time was freed to reflect upon contents, and it became easier to
add requirements without overwhelming users.

Have rapid turnaround when data is changed. Formerly, it was
slow going, and sometimes not feasible before a deadline, to revise
all affected calculations and reports when input data was
changed. The Network facilitates making such revisions very
quickly.

Improve accuracy and consistency of reports. In manual, pre-
Network systems, undetected errors arose occasionally during the
conversion of input data into reports. Furthermore, people at
divisional, group, and corporate levels occasionally disagreed
about the latest values for a given information item. Now, in the
Network, data-to-report errors are essentially eliminated. Also,
all people authorized to see a given item look at the same value.

Implement new reporting requirements quickly and uniformly.
When new reporting requirements are established, the Network
speeds up implementation and ensures uniform compliance. This
is true because the user needs only to learn new inputs (if any); the
Network handles all revised calculations and report formats.

Achieve smooth operation in the Network, even though personnel
working hands-on at terminals may begin without experience and
may have a high turnover rate. Among numerous Network aspects
intended to simplify life for terminal operators are (1) general
procedures in the three systems are similar—if an individual
knows one system, he can readily learn the other two; (2) complete
written instructions are available; (3) the OR Department periodi-
cally conducts training sessions at user locations; (4) OR encour-
ages every user to telephone for help immediately when any
problem arises; (5) system programs extensively check user inputs
and respond with informative messages if mistakes are found; (6)
special edit routines help operators to easily revise online data;
and (7) for less experienced users there are full prompts to guide
data entry, while for more experienced users there are fast entry

procedures.



Financial Planning Applications of APL in J. Ray McDermott 151

* Allow Network systems to be easily modified and reasonably
efficient. Changes in line items, report formats, and other applica-
tion details are being introduced at a rapid pace, which calls for
speed in making system enhancements. Such speed is achieved
because of the power of APL, the adoption of good coding prac-
tices, and the use of a library of coding aids. Operating efficien-
cy—another important goal—is pursued through design and cod-
ing choices and regular cost monitoring.

* Protect confidentiality of sensitive information. Access to data in
the Network is strictly controlled according to established ground
rules.

3. Development and Implementation

Development of BPM-2, the first Network system, started in March 1977,
sponsored jointly by Corporate Planning and the Corporate Controller at
Babcock & Wilcox. After a crash effort on the part of two OR staff members
responsible for design and coding, actual use of BPM-2 began at divisions in
early June and continued thereafter; debugging was essentially completed in
July.

Even though development was rapid, the initial version of BPM-2 incorpo-
rated many advanced features, including: privacy for each user; operational on
both APL and non-APL terminals; procedures involving action by a terminal
operator (e.g., entering data, writing reports, creating and erasing files) were
designed to keep the novice operator out of serious trouble; instructions for any
selected operator action could be displayed at the terminal; provided flexibility
to users in grouping and regrouping information; provided for consolidation,;
and enabled users to pass information along, thereby connecting divisional,
group, and corporate levels.

Since BPM-2 represented a radical departure from past reporting prac-
tices, its “installation in the field” deserved special attention. Each user was
visited by an OR staff member who gave an onsite demonstration and later
kept in close touch as the user’s actual BPM-2 work progressed. Users phoned
OR immediately to report problems, and solutions were found quickly in most
cases. Onsite demonstrations and telephone problem solving proved extremely
productive, so they were continued as the Network expanded to include other
systems.

BPM-2 operated well in 1977 and, while undergoing occasional modifica-
tion, has operated well ever since. The good results from BPM-2, plus other
factors, led B&W’s Corporate Controller to authorize the development of the
quarterly and capital systems in September 1978.

BPM-2 initially contained reports that were very similar to those of its
predecessor manual system. The quarterly and capital programs, on the other
hand, started with a wholesale revision of reports, including the addition of
schedules that were thought to be too much work for a manual system.
Development of the two new systems slowed drastically for several months
during a period beginning in late September, when B&W corporate functions
were being moved from New York to McDermott headquarters in New
Orleans. Things eventually settled down so that by March 1979, three OR staff
members, working part time on this particular project, had the programs
operational.

Since March 1979, the quarterly and capital systems have been in regular
use for quarterly reporting throughout B&W. Some modifications were made
after March, and then, between December 1979 and January 1980, all
programs including BPM-2 were revised to implement basic reporting changes
desired by management.



152 Financial Planning Applications of APL in J. Ray McDermott

4. Status

The BPM-2, quarterly, and capital systems that make up the Financial
Information Network are now well-established production programs in the
B&W side of J. Ray McDermott.

Various additions and extensions to the system are under consideration.
For example, since the programs reside on the same computer, in the same
APL language, it is realistic to plan capabilities which coordinate several
applications. If a monthly reporting system were added, for instance, monthly
actuals reported in that system could be fed by computer into the quarterly
actuals needed in the quarterly system. Or, if a general inquiry feature were
added, the user could retrieve and work with data of his choice (where
authorized) from any or all systems. Other examples of possible enhancements
are pen-plotter graphics, aids for corporate “what if”’ projections to assess
business strategies, cash-flow forecasting routines, and extension of the
Network to cover the rest of the company.

Short-Term Investment Portfolio System

1. System Description

The Short-Term Investment Portfolio System, like the Financial Informa-
tion Network, is a group of related online interactive computer programs
covering similar but different applications. It is not called a network because
normally there is just one user location—the Corporate Treasurer’s Depart-
ment. Of course, users can access the programs from different geographic
locations should they wish to do so.

All elements of the system help with administration of McDermott’s
Short-Term Investment Portfolio, managed by the Corporate Treasurer’s
Department. The Database Program for Operating and Accounting Reports
draws from online records of individual investment transactions plus addi-
tional data to provide standard daily and monthly reports, and customized
unscheduled reports, on investment operations and accounting. The Database
Program for Performance Analysis uses the same database to provide standard
monthly and unscheduled reports that give an in-depth analysis of investment
performance. The Investment Alternative Evaluator (or Swap Program) prod-
uces unscheduled analytical reports pertaining to daily investment decisions.
These reports show detailed analyses of anticipated investment performance,
based on user assumptions about future interest rates, cash flows, and buy,
hold, or sell actions. The program allows a user to evaluate single investments
or groups of investments. The Strategy Program generates unscheduled analyt-
ical reports pertaining to monthly portfolio strategy. This program finds a
superior monthly strategy and reports on its anticipated performance, based
on user assumptions regarding future interest rates, cash flows, and policy
restrictions. It also compares strategies derived by the program with other
strategies proposed by the user.

2. Features

The basic purpose of the Portfolio System is to help sustain and improve
investment performance. Management felt—and we in OR agreed—that a
really good system should pay for itself many times over, because McDermott’s
short-term portfolio is comparatively large. A small percentage change in
performance has a big dollar impact.

Some of the managerial needs listed for the Financial Network applied
here too. In this case, the main requirements were to: handle more work, both
routine and advanced, without overwhelming personnel; improve control by
supplying more complete and timely status information; and improve and
document investment decisions by performing more extensive analysis.



Financial Planning Applications of APL in J. Ray McDermott 153

The following are highlights of specific features in the four programs
implemented thus far.

* Database Program for Operating and Accounting Reports. The
terminal operator procedures built into the Database Program are
designed, as in the Financial Network, to be simple and trouble
free, while allowing a lot of flexibility. Using these input/output
procedures, Treasury personnel enter data and run reports daily,
when convenient.

Reports can be obtained in two ways. One is through the pro-
gram’s special Generalized Inquiry System (GIS) capability, which
enables the user to select exactly what he wants from the data
stored in the computer, and then develop customized reports on
that selected information. The other way is to call for a
prespecified report (e.g., a maturity schedule). There is flexibility
even with a prespecified report because the user can select any
desired data on which to run the report (e.g., select active time
deposits in just the largest of the various short-term portfolios;
run a maturity schedule). Numerous prespecified reports cover
the gamut of investment activities, and more reports can be added
if the need arises.

* Database Program for Performance Analysis. This portion of the
Database Program is a group of prespecified reports, together
with additional required input data, that permit doing a com-
prehensive analysis of investment performance, similar to the in-
depth analysis now commonplace for pension funds. The reports
describe performance in McDermott’s various portfolios and then
compare that performance with benchmarks, based on other
actual portfolios and on indexes. Aspects covered include the
usual three dimensions: rate of return, safety, and liquidity.

¢ Tnvestment Alternative Evaluator (Swap Program). This program,
currently not linked to the database, helps make projections of
anticipated investment performance. Its purpose is to give fast,
on-the-spot assistance to a manager who is analyzing different
investment choices under active consideration. A single possible
choice, or possible course of action, is called an “investment
alternative” in the program. The swap—selling a current holding
and reinvesting in a replacement—is just one of many types of
alternatives that can be analyzed.

The program handles various types of holdings (e.g., time deposits
and bonds), alone or in combination. It permits the user to look at
any number of different investment alternatives, each of which
may involve one holding, a sequence of successive holdings, or any
group of holdings. It converts interest-rate forecasts into forecasts
of market prices. Alternatives can be stored. The user has sub-
stantial control over input and output; for instance, he can readily
edit data previously entered, select full or fast prompts, and adjust
the specific kinds of information included in reports to match his
immediate interests.

e Strategy Program. In this application, the term “strategy” refers
to a plan showing how much will be invested, held, and sold
(where policy permits trading) in each broad category of invest-
ment, month by month over some period of time. An investment
category is a combination of type (e.g., time deposits) and maturity
(e.g., six months to maturity).



154 Financial Planning Applications of APL in J. Ray McDermott

Analysis begins with one or more forecasts—supplied by the user,
not by the program—of future interest rates and cash flows. The
user also stipulates details of various policy restrictions on invest-
ment action, such as a restriction to maintain desired liquidity.
The program then makes three basic analyses available. First, it
employs the computational method of linear programming (L.P) to
find the strategy that maximizes anticipated rate of return. This
is done for every forecast, and entails a separate analysis for each
combination of policy restrictions the user wishes to consider.
Second, when the user has a particular strategy in mind, he can
evaluate it in the “simulation” portion of the program, which
shows the performance of a proposed strategy given any selected
forecast. The third basic option is a more complex LP analysis in
which the user recognizes uncertainty and risk by assigning
probabilities to alternative forecasts.

3. Development and Implementation

After preliminary investigation, including visits outside McDermott to see
what others were doing, development of the four programs began in April
1979. The level of effort varied from month to month. On average, the full time
equivalent of about 1.5 OR staff members worked on the project during the last
12 months.

Several milestones along the way were: Swap Program (version 1) com-
pleted in June 1979; Treasury personnel began entering real data into the
database in October 1979; Strategy Program (version 1) completed in Decem-
ber 1979; Database Program for Operating and Accounting Reports (version 1)
completed in February 1980; and Database Program for Performance Analysis
(version 1) completed in March 1980.

During development, Treasury staff members collaborated closely with
OR staff, usually through daily discussions. The result was programs which,
while high powered, are very practical.

4. Status

Since the four implemented programs are still new, as can be seen from
the milestone dates above, we do have a backlog of desired refinements and
enhancements. In addition, project plans call for considering the possibility of
adding separate programs to help with tasks such as storing and analyzing
investment research data, forecasting interest rates (or at least obtaining a
better understanding of them), and providing more advanced analysis in
support of daily investment decisions and strategy formulation. Consideration
may also be given to building separate programs focused on cash-management
topics beyond investment—debt, cash forecasting, customer financing, and
foreign-exchange exposure, for example.

Conclusion

The Financial Information Network and the Short-Term Investment
Portfolio System are two very practical applications of APL at J. Ray
McDermott. While containing many completely modern, state-of-the-art capa-
bilities, these systems are used for important production financial work in our
company.



Financial Planning Applications of APL in J. Ray McDermott 155

Randy Robinson is currently section manager, corporate applications, in J. Ray
McDermott’s Operations Research Department. In this capacity, he carries out
analytical studies and develops advanced computer systems for corporate
management. Many of the management support systems developed by Robinson
and his colleagues have been implemented on STSC’s APL*PLUS Service.
Previously, as an independent financial consultant, and earlier as director of
the research division at the Bank Administration Institute, he had extensive
experience in financial analysis based on quantitative methods.

Robinson completed undergraduate and graduate work at the Massachusetts
Institute of Technology, earning his master’s and Ph.D. from the Sloan School
of Management. Between periods of study for his two graduate degrees, he
served a tour of active duty in the U.S. Nauvy.



Patrick P. Gehl

Marketing Management
Applications

STSC, Inc., provides computing services—collectively known as the
APL*PLUS Service—to meet the needs of modern business. Because we in the
STSC Marketing Department have our own business needs, we are avid
customers of the service we sell. We use the service for virtually every
management reporting and planning function. These include preparing bud-
gets and tracking results, monitoring sales territories, ranking salespeople and
sales offices, determining pricing strategies, evaluating promotional activities,
and consolidating results through branch and regional levels. Let’s examine a
few of these functions to see what the resulting reports look like and to discuss
how they are used.

Planning Reports

Planning for field marketing means putting together a budget for each
fiscal year. This is an online activity that allows each branch manager to enter
his forecast for revenues and expenses. The regional managers and vice
presidents then consolidate for their respective areas.

These first results always find the revenues too low and the expenses too
high. However, since the programs are online and each manager can use APL
to model his different strategies, we can iterate to an agreed-upon solution
within one or two weeks. The budgeting system, when used in conjunction with
MAILBOX (STSC’s Electronic Message Processing System), provides instanta-
neous communications and feedback. The budgeting activity normally takes
companies months, not weeks, to accomplish. However, the power of APL and
the manager’s ability to use it online make planning a standard and quick, yet
flexible, process.

Figure 1 shows the details of a fictitious, but typical, branch office budget
report. With our budget in place, we launch into a new fiscal year and begin to
use systems written in APL to generate reports of the results.

Monthly Operating Statements

Monthly operating statements are used by the marketing managers and
myself to compare the year-to-date actuals to the plan or budget. In addition to
containing very current information, the reports are very timely and readily
accessible. They are available within ten working days of the beginning of each
month and, since they are online, we can obtain them at any branch office in
the world (or, in fact, at any location that provides a terminal and network
access to the system). It should be pointed out that the STSC Accounting

156



Marketing Management Applications

CUSY CENTER: 999 HILLDALFE
DLSCRIPTION JUN
HEADCOUNT 10.0
CAFPITAL EXPENDITUKES 6000
REVENUES
APL SERVICES 178000
®APL SLRVICES 0
BATCH SERVICES 1000
V& CENTEK SERVICES 4000
PKOGRAMMING 2000
CONSULTING 1000
MANUALS 50
MISCELLANEOUS 200
TOTAL REVEWUES 186250
eUPDATED REVENUES 186250
EXPENSES
SALARIES - MANAGERS 2917
SALARIES - PROFESSIO 11931
SALARIES - CLERICAL 1075
COMMISSION PLAN 1747
FICA 1009
FUTA 14
SUI 59
GROUP INSURANCE 750
RETIREMENT FLAN 707
OVERNIGHT 1050
LOCAL 820
BCOOKS/PUBLICATIONS 100
SPACE RENT 3219
UTILITIES 100
AMOKRY - LEASE IMPTS 200
TELEPHONES 1600
POSTAGE AND DELIVERY 150
STATIONERY ,PRINTING, 250
COPYING 120
E@UIPMENT REPAIR AND 25
DEPRECIATION - OFFIC 100
OTHEH 50
DUES AND SUBSCRIPTIO 25
TERMINAL RENT 1350
TERMINAL DEFRECIATIO 185
TOTAL EXPENSES 29553
PERFORMANCE 156697
®LPDATED PERFORMANCE 156697
CUMULATIVE PERF, 156697
®UPDATED CUM. PERF. 156697
EXP./REV. (o/e) 15.9
®UFPDATED EXP./REV. o/e 15.9
T0T. COMPENSATION 17670
®UPDATED TOT. COMP. 17670
COMF ./KEV. (o/¢) 9.5
®UPDATED COMP./REV. 9.5

JUL

10.0

177000
0

1000
4000
2000
1000
50

200

185250
185250

25
1350
185
29570

155680
155680

312377
312377

STSC BUDGETING

-~ FY

SUMMARY BY COST CENTER

AUG

10.0

136000
0

1000
4000
3000
2000
50

200
146250
146250

2917
12038
1075
4819
876
10
49
750
834
1050
820
0
3219
100
200
1600
150
250
120
25
100
50
25
1350
185
32612

113638
113638

426015
426015

SEP

11.0

6000

124000
0

1000
4000
3000
2000
50

200
134250
134250

25
1350
185
31494

102756
102756

528771
528771

ocT

11.0

128000
0

1000
4000
3000
1000
50

200
137250
137250

4473
12038
1075
2338
726
12
443
825
797
1050
820
0
3219
100
200
1600
150
250
120
25
100
50
25
1350
185
31971

105279
105279

634050
634050

19924
19924

Nov

11.0

145000
5850
1000
4000
4000
1000

50
200

155250
161100

4473
12038
1075
6534
633
11
424
825
965
1050
820
0
3219
100
200
1600
150
250
120
25
100
50
25
1350
185
36222

119028
124878

753078
758928

Figure 1—-Typical Branch Office Budget

1974

DEC

11.0

146000
10450
1000
4000
4000
1000
50

200
156250
166700

4473
12038
1075
3245
599
10
334
825
834
1050
820
0
3219
100
200
1600
150
250
120
25
100
50
25
1350
185
32677

123573
134023

876651
892951

157

1/31/7%

TOTAL

12000

1909000
71100
12000
48000
46000
14000
600
2400

2032000
2103100

49008
144698
12900
47973
12726
508
3820
9675
10186
12600
9840
100
38628
1200
2400
19200
1800
3000
1440
300
1200
600
300
16200
2220
402522

1629478
1700578

19.8
19.1

254579
254579

12.5
12.1



158 Marketing Management Applications

Department requires ten working days to close the books; in fact, online
operating statements that are 90 percent accurate are available within four to
five working days.

Operating statements are available on the territory level and can be
consolidated to a branch, regional, or company level using programs furnished
by the STSC Accounting Department. An example of such a report is given in
Figure 2.

C.C. 999 HILLDALE STSC, INC.
MUNTH ENDED  6/30/75 OPERATING STATEMENT RUN DATE:  1/31/75
CURRENT MONTH YEAR T DATE
EC KEV ___ACTUAL __ PLAN VARIANCE 8 REV ACTUAL PLAN _VARIANCE
REVENVES
APL SERVICES 96,5 234,589 155,000 739,589 93.4 1,370.614 1,189,000 181,614
BATCH SERVICES 2.5 6,184 5,000 1,184 1.6 24,177 40,000 15,823
PROGRAMMING AND CONSULTIN- 0.9 2,200 5,000 72,800 4.8 70,430 35,000 35,430
OTHER REVENUES 0.0 95 250 155 0.1 1,572 2,000 u28
SUBTOTAL 100.0 243,068 165,250 77,818 100 0 1,u66,793 1,266,000 200,793
NORMALIZE REVENUE ADJ. 0.0 0 0 0 0.0 0 0 0
TOTAL 100.0 243,068 165,250 77,918 100.0 1,466,793 1,266,000 200,793
EXPENSES ~ -
SALARIES 10.7 26,022 20,950 5,072 11.1 163,051  161,7uy 1,307
PAYROLL TAXES 0.8 1,975 1,645 7330 0.6 8,253 8,958 705
FRINGE BENEFITS 0.8 2,009 1,663 “3u6 0.7 10,216 12,847 2,631
TRAVEL 1.8 4,260 1,870 72,390 1.5 21,391 14,960 76,431
RECRUITING 0.9 2,249 0 72,249 0.3 5,085 0 75,085
OUTSIDE COMPENSATION 1.6 3,986 o 73,986 0.3 3,986 0 73,986
EMPLOYEE TRAINING 0.1 202 0 202 0.1 1.385 100 1,785
OFFICE SPACE 1.4 3,509 3,519 10 1.9 27,347 28,152 805
TELEHONES 0.8 1,946 1,600 T3ue 1.0 14,307 12,800 1,507
ADVERTISING AND PROMOTION — 0.4 1,001 0 71,001 0.1 1,368 0 "1,368
OFFICE EXPENSES 0.5 1,168 695 473 0.4 5,865 5,560 T308
OTHER ADMINISTRATIVE 0.0 77 25 752 0.0 250 200 “so
TEKMINALS 0.1 1,015 1,535 520 0.6 8,897 12,280 3.383
SUBTOTAL 20.3 49,419 33,502 15,917 18.5 271,401 257,601 13,800
NORMALIZE LXPENSE ADJ . 0.0 0 0 0 0.0 0 0 0
TOTAL 20.3 49,419 33,502 15,917 18.5 271,401 257,601 ~13,800
NET BEFCRE ALLOCATIONS 79.7 183,649 131,748 61,901 B81.5 1,195,392 1,008,399 186,993
ALLOCATIGNS
CONWECT 9.8 23,806 23,806 0 9.8 144,171 144,171 0
CPU 22.1 53,698 53.698 o 21.4 313,524 313,524 0
STORAGE 3.7 8,990 8,990 0 4.0 59,124 59,124 0
KECELVABLES COSTS 0.3 618 618 0 0.5 7,954 7,954 0
MANPOWER 0.0 0 0 0 0.0 7575 “575 [
EXPENSES 0.0 [ 0 0 0.0 [ 0 0
TOTAL 35.8 87,112 87,112 [ 35.7 524,198 524,198 0
PEAFORMANCE 43.8 106,537 4,636 61,901 %5.8 671,194 L8y, 201 186,993

Figure 2—A Sample Operating Statement

Monthly Ranking Report

The monthly ranking report (see Figure 3) is used to create a competitive
atmosphere among the marketing people and branch offices. This is accom-
plished by ranking the salespeople by total dollar volumes for the current
month and by ranking the sales offices by year-to-date revenues as percentages
of their plans. In addition to creating the friendly competition I want, the
report serves as a continued reminder to each marketing manager of his
progress toward his yearly quota.

The monthly ranking report has proved to be a valuable tool for me over
the years. Since the data is stored in matrix form, I can change the report
format by simply sorting on different columns and providing the data as input
to STSC’s report generator, JFMT. For example, if I want to stress the selling
of programming services for one or two quarters, I can sort the data on that
column of the matrix and present the report ranked as such. If batch revenue
was the emphasis, revenues would be sorted and ranked accordingly. Because
APL is such a powerful programming language, and because the entire



Marketing Management Applications 159

7/31/75
STSC, INC.
STANDINGS REPORT
JUN 1975
BY TERRITCHY:
APL/MISC BATCH %4 CONSUI,TING CURRENT > LAST MONTH
REV § KNK REV § FNK REV & RNK REV & RNK BILLING P.C. ]
1 1248 CARY BORUSKY 94,583 1 2,998 2 51 6 6,117 U 103,749 21 30,457
2 1234 MAYMOND EDWARDS 67,398 3 2,093 6 143 5 1,504 8 71,138 12 725,041
3 1125 SIDNEY ANSELL 69,073 2 2,011 7 0 9 0 10 71,084 xAx 71,084
4 1166 DICK LEE 54,514 4 2,927 3 0 10 8,145 3 65,586 kS 4,954
5 1279 THOMAS RUSSELL 41,680 6 2,123 5 1,227 2 12,750 2 57,780 146 43,081
6 1291 RAYMOND PETHY 46,251 5 2,676 0 1,039 3 1,973 7 51,939 19 14,030
7 1263 STEVEN TABB 37.083 7 3,503 1 613 4 4,588 5 45,787 16 10,741
8 1393 RITA CRADDOCK 17,994 10 941 9 2,173 1 16,1858 1 37,793 B4 20,926
9 1313 WILLIAM GREEN 29,506 8 455 10 36 7 78C q 30,777 ki 13,007
10 1322 NELLIE SWEENEY 26,557 9 1,253 8 36 8 2,500 6 30, 2uF g TR,137
TOTALS: ugy 639 20,980 5,318 54,502 565,478 288 177,112

Figure 3—Monthly Ranking Report

planning and control system is online, we experience a degree of flexibility not
often seen in the business community.

Research

The APL*PLUS Service is used by the Marketing Department to conduct
most of its research and development efforts. These efforts consist mainly of
modeling the customer base to examine the effects of pricing strategies,
measuring the dollar return on various promotional schemes, and tracking the
sources of new business. In many of these activities, either raw APL or “throw
away”’ code is used effectively.

In many cases marketing managers write their own APL programs to
examine the effect of proposed activities on historical data. These programs
are written online and are disposed of once the results are obtained. By having
marketing managers use AP L themselves to obtain these results, we avoid the
time delays involved in submitting requests through a programming depart-
ment.

One example of the results are graphic reports of the new business for a
fiscal year. These reports are in the form of bar charts that describe revenue
derived from various entry-level products, revenue derived from promotional
sources, and the number of new customers by application area. Figure 4
illustrates one such bar chart.

START MONTH : 1/74
END MONTH : 6/78
ENTEY USE OF APL L = 100)

MrsceLLaveous OO MO O oo oo e oo e
GENERAL ACCOUNTING | LLONCCCONTOOO L O PO T O T B000T DO TOOM CE T T COCL oL PO e O
SCIENTIFIC LT
MODELING AND SIMULATION |[(LOCCUO OO OO0 TOM O T IO T T e L oL e o
STOCK/FINANCTAL MARKET |(LUIMTULOMTIPIOIIES
MANUFACTURING ILL[EIILEEE[UDIDJ_LD[E[L
INSURANCE | OO0
I-PSHIIIHE[EEIIJDI[]IFEILL[TTLUJ!IITU!H
QuICKPLAN | TN OM O F (MU OO OOCOr L O OO DO T T T O U T M T e ey
STATISTICS | ULDML M TOOT 0D
CONSULTING | (OO0 UM OO (OO0 O0OrD
CUMMUNICATIONS (ARIES, ETC.) |DONMIOTUAIID
A e S Y A e e e e D
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 750C ROCC BSCD

FINEW ACC

Figure 4—Bar Chart of New Business Origins



160 Marketing Management Applications

Summary

In summary, STSC’s Marketing Department is an extensive user of APL
and of the APL*PLUS Service. We run the various management functions
using AP L programs, and whenever possible we run the programs online. We
take advantage of our ability to instantly access the system from locations
throughout the world, our ability to update the marketing information file
with timely data, and our ability to efficiently sort and display the information
in a meaningful manner. This scheme has proven to be very effective for us,
and we would recommend a similar system for each and every marketing
organization, regardless of the type of product being offered.

Patrick Gehl has been executive vice president of marketing for STSC since 1976
and a Member of the Board of Directors since STSC’s inception in 1969. From
1969 to 1976, he served as vice president of marketing. Prior to joining STSC,
Gehl organized and directed the first commercial APL time sharing service in
the United States while employed by Marquardt Corporation.

Gehl is a graduate of Indiana State University and holds a Master’s degree in
physics from Purdue University.



Ronald J. Bohm

Magazine Distribution Management

The Circulation Management Decision System is used by Playboy Enter-
prises, Inc., to plan and monitor the newsstand distribution of Playboy
magazine and Oui magazine. Playboy and Oui together have an audited
monthly paid circulation of over 6.4 million copies, of which over 4 million are
sold on newsstands in the United States, Canada, and Puerto Rico (for the six
months ended June 1979). To understand why we need such an impressively
named system to manage a seemingly mundane problem, you must first know
a few things about the domestic magazine distribution system.

The Distribution System

There are four links in the magazine distribution chain: the publisher, the
national distributor, the wholesaler, and the retailer (see Figure 1). Most
publishers, even those as large as Playboy Enterprises, Inc., prefer not to
establish the inhouse organizations necessary to distribute their products
widely. Instead, the publisher will sign a national distribution agreement for
newsstand circulation with one of the 12-15 national distributors. For the
services rendered by the national distributor, the publisher pays a commission
on sales net of returned copies. Each wholesaler sells to all the retailers in his
territory. Generally, each retailer deals with only one wholesaler. For exam-
ple, if you were a retailer in Bethesda, Maryland, desiring to have certain
magazines displayed on your counter, you would have to contact District News
Company, Inc.

When the current issue is delivered to the retailer by the wholesaler, the
wholesaler takes back the unsold copies of the prior issue. The wholesaler gives
full credit to the retailer and passes the magazine covers of the unsold copies to
the national distributor who, in turn, gives full credit to the wholesaler. The
publisher, though, ultimately pays for all returns. Since the national distribu-
tor works on commission, he is motivated to minimize returns. But he assumes
only the accounts receivable risk, not the returns risk.

The publisher’s objectives are to:
* maximize sales

¢ minimize returns

¢ maximize market share.

But there are complications which make the distribution problem difficult
to manage. For instance, advertising revenue is dependent on copy sales (see
Figure 2). If a publisher reduces his print order to minimize returns, he may
find he has sacrificed sales and endangered his advertising rate base (the

161



162 Magazine Distribution Management

minimum net sales as promised to advertisers). The conventional wisdom in
this industry is “If you print more and display more, you’ll sell more”. The
problem is to determine when the cost of putting an extra copy on display
exceeds the expected revenue from the sale of that copy.

CENSUS
800
PUBLISHER) * * + (PUBLISHER PUBLISHER) * * * ( PUBLISHER) (3000 TITLESI
NATIONAL NATIONAL 12-15
DISTRIBUTOR DISTRIBUTOR

WHOLESALER . WHOLESALER 450-480

(ETAILER - ( RETAILER ) CRETAILEFD (ETAILER) 160,000

Figure 1—Magazine Distribution Chain: US and Canada

AD RATE AD AD
BASE REVENUE () PROFIT

NET SALES AD RATE BASE ~"AD REVENUE
(COPIES) ]

NEWSSTAND NET SALES
PRINT ORDER (%)
(COPIES)

Figure 2—Circulation, Advertising, and Profit Relationships

Another complication in the distribution of magazines is the long delay
between the off-sale date and the date the last return arrives (when the issue is
“finalled”). By way of illustration, by the time we have final results on the
April 1980 Playboy, we will be preparing the distribution for the November
1980 issue. That means the issue we are forecasting is seven periods out from
the end of our history. I don’t need to tell you what that does to forecasting



Magazine Distribution Management 163

accuracy. Some publishers are printing the Universal Product Code (UPC) on
the cover to speed return processing. Playboy, however, considers the cover too
important to its image to allow the use of the UPC.

Further complicating the problem is the recent increase in competition
among wholesalers for retail accounts. When a retailer switches from one
wholesaler to another, the history for both wholesalers no longer corresponds
to the market we are modeling. Measures have to be taken to estimate the
impact of the shift on the marketplace; and the history (and forecast) must be
restated accordingly.

By no means have I listed all the complications, but in the interest of time,
let’s move on to a description of the Circulation Management Decision System.

The Circulation Management Decision System

Proper management of the distribution of a national magazine requires
that:

¢ For each issue, the optimal number of copies is printed.

e Each wholesaler has the same probability of selling all the
magazines allotted to him.

To determine the proper print order, two forecasts are required. The first
forecast is of the national demand for the issue being planned (top down). The
second forecast is the sum of the wholesale forecasts for that issue (bottom up).
Any number of techniques may be applied to the forecast of national demand.
Therefore, I will dwell instead on the forecast of the wholesale demand.

For each magazine in the Circulation Management Decision System, we
update monthly 475 demand models (one for each wholesale market). Con-
sequently, we need a system that is efficient and self correcting. Using
workspace 747 COSMIC on STSC’s APL*PLUS System, we are able to
account for seasonality, trends, and turnabouts in each market. We have
modified the workspace to allow both linear and exponential curve fitting.

Each month we update the history with the sales for the most recently
finalled issue. Before any information is introduced to the database, it is
checked for reasonableness in two different ways (see Figure 3). In the first
check we screen for unreasonable return percentages. That is, we define a
range of acceptable return percentages, and those wholesalers whose return
percentages fall outside of this range are investigated. In the second check we
compare the reported sale with the forecasted sale. Any reported sale that falls
outside the confidence limits of the forecast is also examined.

Once the data have been posted to the database, we make one final
reasonableness check. If the model for a particular wholesaler is well con-
ceived, the positive and negative forecast errors over time will cancel one
another out. By looking at the running total of the forecast errors, we can
determine if more recent sales are deviating from prior trends. In this way, the
system signals the model’s obsolescence and a new model is created.

The forecasting process (see Figure 4) begins with the generation of a
market-by-market forecast, without considering the specific appeal of the issue
being planned. We add to this “average issue” forecast when we expect the
issue to be above average, and we subtract when we expect the issue to be
below average. This is a highly subjective and rarely successful enterprise.
Some issues succeed for reasons that escape us, while other issues, which we
had expected to do very well, sell disappointingly.

To this adjusted forecast, we make market-by-market adjustments that
reflect both changes in the marketplace and the local impact of the cover or
content of the issue. By way of example, the September 1976 issue of Playboy



164 Magazine Distribution Management

had very strong sales in Washington, D.C., which some of us attribute to the
pictorial on the girls of Washington.

IS WHOLESALER'S RETURN PERCENT REASONABLE?

YES NO
IS THE REPORTED SALE INVESTIGATE
WITHIN THE CONFIDENCE AND CORRECT
LIMITS OF THE FORECAST ? IF NECESSARY
NO \vss
INVESTIGATE
AND CORRECT 2 & POST TO THE DATA
IF NECESSARY BASE

v
DOES THE CUMULATIVE FORECAST
ERROR INDICATE MODEL BIAS?
YES NO

CREATE A NEW MODEL UPDATE OLD MODEL

e

CREATE MODEL
FORECAST

Figure 3—Circulation Management Decision System: Data Filter

CREATE A MARKET-BY - MARKET ]
MODEL FORECAST
FOR THE “AVERAGE” ISSUE

ADD THE EDITORIAL FACTOR
TO ALL MARKETS

TOP BOTTOM
DOWN uP
FORECAST FORECAST

ADD THE LOCAL - INTEREST
FACTOR TO RELEVANT MARKETS

ADD IMPACT OF CHANGES
IN THE MARKETPLACE

COMPUTE THE NATIONAL
FORECAST

> REVIEW _

Figure 4—The Forecasting Process

After we have completed the forecasting process, we must then allocate
the print run to the wholesalers. Once again, control is essential. We learned
very early in this project that out of 475 mathematical models, a small
proportion of them can be expected to yield unreasonable representations. To
control against the distorting impact of these models, we impose limits on the
models to prevent our monthly allocations from unwarranted volatility.



Magazine Distribution Management 165

Once the allocation has been made, the wholesale allocations are reported
by sales region and by state. The allocation is then recorded on tape and is
shipped to the national distributor who must create the mailing labels to be
forwarded to the bindery. When the wholesalers are notified of their allot-
ments, they prepare allotments for their retail accounts.

Monitoring the System

After the system had been programmed, we carried out two market
experiments on three consecutive issues. The purpose of the first test was to
see if, given no change in the print run for a set of experimental markets, we
could achieve a lower return percentage than the control group. In the second
experiment, we tested the hypothesis that we could use the system to help us
lower the print order, thereby increasing efficiency, while not sacrificing sales
volume. Both of these experiments were followed very closely. The results
confirmed both hypotheses.

From that point, our strategy for the system has been to gradually
increase the sales efficiency to the point where sales volume would be
measurably affected. When we discover this critical efficiency level, we will
then be in a position to analyze the tradeoffs between efficiency and profitabili-

ty.
Other Applications of the System

The Circulation Management Decision System has proven valuable in a
number of other ways. Drawing on the database that was created for the
purpose of performing allocations, we can now prepare the series of reports
and analyses described below and graphically summarized in Figure 5.

TYPE MARKETS TIME FRAME  RANKING  HISTOGRAMS
MARKET | TREND ANY SET  LAST 12 ISSUES  YES YES
ANALYSIS | \ARIANCE ~ ANY SET  LAST 12ISSUES YES YES

EFFICIENCY ANY SET  ANY ISSUES  YES YES

SHARE ANY SET ANY ISSUES NO NO
MONTHLY | ACTUAL VS. SALES PAST ISSUES  NO NO

REPORTING | FORECAST ~ REGION
12 ISSUE SALES FUTURE ISSUES NO NO

OUTLOOK REGION

OTHER | DETAILED MARKET FACTSHEETS
ESTABLISHMENT OF OBJECTIVES
ANALYSIS OF MARKET EXPERIMENTS
CREATION OF STRATIFIED SAMPLES

Figure 5—Other Applications

¢ Detailed Fact Sheets by Market: Included on the fact sheets are the
last six years of history, the forecast for the next twelve issues, a
graph of the history, the forecast, and the confidence limits on the
forecast.



166 Magazine Distribution Management

» Trend Analysis: The twelve-issue history for each market. These
ratios are then ranked and reported from worst to best. A
histogram and summary statistics are provided.

¢ Variance Analysis: The standard error of the regression model is
normalized by the average sales volume for the last twelve issues.
These ratios are ranked and reported from worst to best. Histo-
grams and summary statistics are also provided for this analysis.

* Efficiency Analysis: The net sales percentage can be computed for
any period of time. The sales percentages are ranked and reported
from worst to best. Histograms and summary statistics are also
available.

® Market Analysis: For any period of time, we can analyze any
region, edition, state, market, or set of markets with regard to its
share of a given marketplace. For example, the salesman for a
given region may want to know the issue-by-issue share of region
sales for each market in his region.

¢ Monthly Status Report: The performance of each region is re-
ported with the forecast for that region along with measures of
trend and variance.

e Establishment of Objectives and Evaluation of Performance: The
objectives for the sales force are based not on last year’s sales
volume, but on the forecasts made by the system for the next
twelve issues. The system also assists management in setting
objectives and monitoring performance regarding volatility of
sales by market. For example, if a salesman can help a wholesaler
reduce the volatility of his sales, the system can then improve its
forecasts and thereby improve the sales efficiency for that market.

* Analysis of Experiments: Quite often, promotion campaigns are
field tested in a number of markets before they are implemented
nationally. The system is used to help in the random selection of a
stratified sample. Once the promotion campaign has ended, the
system can then be used to compare actual market shares for
experimental and control markets with forecasted market shares.
Significant differences in the forecast error between experimental
and control markets are interpreted as being due to the promo-
tional effort.

Conclusion

The Circulation Management Decision System has come a long way in a
very short time. What began as a special system to support a particular
operational decision has blossomed into a multipurpose database system. In
June 1977, STSC, Inc., was chosen as the vendor for the system, largely on the
strength of its materials management system. In September 1977, the first test
of the system commenced. From September until the following July, the
system was gradually enhanced to reflect the idiosyncrasies of the magazine
distribution system. Since April 1979 the system has been operating with very
little change.

Our plans call for the expansion of the system to include demographic
data, subscription data, and ABC (Audit Bureau of Circulations) data. The
demographic and subscription data will help us measure our sales penetration
of our target audience. The ABC data will help us identify markets where our
share is weak. This information will help us to allocate our promotion dollars
more productively.



Magazine Distribution Management 167

Ronald J. Bohm is a specialist in management science, holding master’s and
doctoral degrees in that field from the Massachusetts Institute of Technology.
His undergraduate work was in mathematics. As director of management
decision systems for Playboy Enterprises, Inc., he designs and implements
decision models, management reporting schemes, and forecasts relating to book
publishing, book clubs, licensing, merchandising, foreign editions, and overseas
distribution.

Before joining Playboy in 1977, Bohm did consulting and special project
analysis for a number of firms, including Knight Ridder Newspapers and
Irving Trust Company of New York.



William M. Shaw

Computers Ain’t Cool

It’s no secret that consumer products companies spend billions annually
on advertising and promotion. In 1980 alone, U.S. companies will spend in
excess of $30 billion for promotion.

But there is a clear distinction between advertising and promotion.
Advertising is nonpersonal communication in measured media (television,
radio, print, outdoors) with clear sponsorship. Promotion is all other forms of
company-sponsored communications apart from advertising and personal
selling. Examples are

* trade shows/exhibits
¢ couponing (media, handout, in or on packages)
¢ sampling (at home, in store, in or on packages)
e premiums (self-liquidating or free)
¢ trade allowances.
Promotion also includes:
e sales and dealer incentives
* sweepstakes/contests
¢ refunds (coupons, cash, or product)
¢ cents-off packaging
¢ consumer education and demonstration activities
* rebates
* bonus packs
¢ point-of-purchase material
and not the least:
e direct mail.

While there is some overlap between advertising and promotion spending,
expenditures for the latter have been growing at a faster rate—in fact, about
twice as fast—as advertising.

One reason for such accelerated growth is the product management
system that many companies have adopted. This system basically emphasizes
the identity of brands, and rewards quick success. Since one of promotion’s

168



Computers Ain’t Cool 169

primary functions is to act as “an immediate consumer call to action”, product
managers are increasingly relying on promotions to complement advertising.
The main reason for the growth in promotional spending, however, is that the
consumer does react. In consumer products especially, consumers are offered a
choice of many brands, some of which have few inherent distinctions. Promo-
tion frequently produces strong economic incentives—especially today—to
consumers to try, and buy, particular products.

This favorable consumer response to economic incentives is largely
responsible for the huge growth in cents-off-couponing, which accounts for the
majority of promotional dollars in the package goods industry. In 1978 the food
and drug industries distributed an estimated 73 billion coupons; in 1979 the
total exceeded 80 billion. In 1960 only 350 companies used coupons; in 1980
more than 1000 will.

As competition increases and inflation spurs prices, the average face value
of coupons continues to climb. In 1971, the average face value was 10.2 cents,
while in 1979 the figure was 16.8 cents. An average of 60 coupons per
household were redeemed in 1978. Furthermore, the percent of households
using coupons has increased from about 58 percent in 1971 to about 85 percent
in 1979.

You might expect that well-established consumer products companies
would use the most sophisticated means available to control and oversee
promotional spending, especially since the economic effects on the company of
such spending cannot be ignored. Surprisingly enough, many companies do not
know:

e How much their industry spends on promotions.

¢ How much their primary competitors spend.

¢ How their competitors allocate that unknown sum.

¢ How much they themselves spend on promotions.

¢ How their own budget is allocated.

¢ What marketing objectives the individual promotions best serve.
¢ How various promotions interact.

¢ How their customers respond to promotions.

Too often, promotions are scheduled and tactics employed, simply because
“that was what was done last year”. Few companies have developed promo-
tional principles to guide planning and ensure agreement with corporate
objectives, though this practice is certainly increasing.

Since over $200 million is spent on promotion annually in the coffee
industry, we in the Maxwell House Division make a concerted effort to plan
and evaluate our promotional programs. The majority of our promotional
budget is spent on couponing. Consequently, the planning and evaluation of
couponing strategies seemed an ideal starting point for developing compu-
terized information systems.

When we began the design of our system, we found numerous problems to
consider in planning and evaluating couponing strategies. Unfortunately, we
also found ourselves challenging an unexpected obstacle—the axiom among
marketers that “computers ain’t cool”.

“Big deal”, you may say, “don’t I know that computers put a guy on the
moon?” Sure, computers have been around for years, and they have tremen-
dous capabilities, but not for the marketer. You see, a marketer is very much
like a pilot who learned to fly in the old days—by the seat of his pants. The
marketer and the pilot have other common attributes:



170 Computers Ain’t Cool

¢ They have complete and utter confidence in their own judgments.
¢ They are known for the high-risk fields they’re in.
¢ As a result they enjoy a special privileged status.

A computer is too predictably perfect for them. It removes too much of the
risk, and when the risk goes, so goes some of the mystique and most of the
glamour.

Yet it is undeniable that only with computers can product managers
organize and assimilate the multitude of data that affect consumer behavior
and therefore have an impact on promotional planning. The following is only a
sampling of the information a company might consider in comparing coupon-
ing strategies:

1. Method of distribution.

Audience reached by the coupon.
Area of the country.

Brand’s retail availability.

Size of brand’s consumer franchise.
Consumer’s “need” for the product.
Product class size.

Competitive activity.

B A o

Stage in the product life cycle (i.e., new or established brand).

—
o

Degree of consumer brand loyalty.

[ S
N =

Design and appeal of the coupon advertisement.
Discount offered by the coupon.
13. Face value of the coupon.

To elaborate on point 1, the method of distribution, here are some
considerations relevant to most print media as vehicles for advertising and
promotions (these should give you some idea why marketers flew by the seat of
their pants):

Types of Print Media Considerations

Newspapers (regular) Demographic selectivity

Newspapers (coop) Lead-time requirements

Sunday supplements Speed of redemption

Free-standing inserts Ability to merchandize with the trade
Magazines (on-page) Long-term benefits

Magazines (pop-up) Editorial environment

Direct mail Advertising value and image

It becomes increasingly clear that only a computer can store all the vital
information gleaned from continuous promotion, evaluation, and testing.
Certainly the subjective evaluations, theories, and concepts to be tested, and
the questions to be asked, remain in the control of the product manager. But
the computer becomes an invaluable “product assistant” because of its ability
to store and juggle virtually unlimited quantities of information.

Once the value of the computer is recognized, we begin to understand that
computers can help us answer the most frequently asked marketing questions:



Computers Ain’t Cool 171

“Who spent how much on what, and what benefit resulted?”’ The next step is
determining which system will best meet our needs; that is, which system will
give us the answers we need quickly while offering us maximum flexibility to
accommodate change.

A good system can sort through the result of past promotions to rank the
effectiveness of those programs among different criteria. Based on actual past
results, the system can instantly provide statistics affecting decisions about:

* type of premium or refund offer

¢ number of proofs of purchase or amount of money to require
¢ type of incentive to offer

* monetary value of the incentive

¢ duration of the offer

* methods of promoting the offer.

To give you an idea of the type of decisions we at Maxwell House must
make, consider the following: Which of two promotional advertisements for a
coffee would be more effective? One featuring a coupon alone, or one emphasiz-
ing a reuseable jar, but also offering a coupon of equal value.

Other things being equal, coupon redemption in advertising like this may
be positively influenced from 2 to 20 percent depending on the promotional
“overlay” (type of promotion featured in the advertisement) delivered with it.
Other factors come into play, of course. For instance, if you violate a brand’s
premium principle, you may stunt normal consumer involvement or hurt
brand image or long-term sales.

A computer can also assimilate geographically where a brand is spending
its promotion dollars and where its volume is coming from. It can easily factor
in which brand’s sales it cannibalizes with each of its events and rank what
vehicles work best alone or in combination to accomplish basic marketing
objectives.

A computer can file away Diary Panel Data on different promotions’
impact on a brand’s user group. Heavy users react differently to a brand offer
than a brand’s light to occasional user, and you definitely need a different
tactic if you are going after “ANTS” (aware non-triers, in marketing lexicon).
Table 1 illustrates the practical information that the computer has provided.

We have accumulated an incredible amount of raw data on coupon
redemption patterns.

To use this information effectively, we asked Scientific Time Sharing
Corporation (now STSC, Inc.) to help us implement an APL application to
track our promotional activities and those of our competitors. We built
redemption tables based on historical observations. These tables predict quite
accurately the percentage of coupons that will be redeemed, given a coupon
value, geographic area, and type of media. With additional summary data
about each planned promotional event, the system calculates the number of
redemptions and the total cost of the promotion.

We can summarize events by brand, producing a “flow chart” of the
overall plan for each brand. This greatly helps our budgeting process. We are
also able to experiment with coupon values, investigating the cost effective-
ness of changes in redemption rates and total costs. Using purchased data on
competitive promotions, we can similarly analyze competitors’ activities, and
plan accordingly.



172 Computers Ain’t Cool

Table 1 — Consumer Promotion Planning Guide

Technique Primary impact
Increase sales
Brand Attract new to present
awareness customers customers
Bonus packs .
Cash refunds
Single purchase N
Multiple purchase .
Contestsisweepstakes .
Couponing
Media/mail .
Infon pack .
Multiple .
Premiums
Single purchase .
Multiple purchase o
Price-off .
Sampling .

As computer novices, we were certainly “flying by the seats of our pants”
in developing this tracking and planning system. Yet we found we could, by
taking advantage of the flexibilities offered by APL, experiment with nu-
merous data entry, reporting, and analysis techniques. We were overjoyed to
discover our ability to answer unanticipated “what if”’ questions with little or
no additional programming effort.

We have by no means finalized our computer-assisted planning efforts, but
we are able to effectively use what we have, and we learn a little more at each
step. Of course, there is always one more thing to consider when making
strategic marketing decisions. So marketers will probably always be somewhat
flying by the seats of their pants; but good computer systems will make them
more durable pants.

William M. Shaw joined General Foods Corporation in 1961. After progressing
through the sales organization, he moved to Corporate Headquarters in 1966 as
staff assistant and sales planning manager in the Desserts Division. In 1968 he
was promoted to promotion planning manager for Kool-Aid and in 1970 to
national promotion manager for Burger Chef.

Since 1975, Shaw has been promotion manager for the Maxwell House Division,
which makes all General Foods coffee brands. His responsibilities include
promotion planning, developments, execution, and evaluation as well as com-
petitive tracking and long-range forecasting. Maxwell House is General Foods’
largest division and the largest coffee company in the world.

Shaw holds B.S. and M.B.A. degrees from Northeastern University.



William H. Bickford and Kenneth E. Golden

Financial Reporting Systems:
A Case Study

This paper discusses the design, implementation, and use of a financial
reporting system for a multinational, multidivisional corporation. The corpo-
ration—Continental Diversified Operations (CDO)—sought to provide senior
management with timely financial reports through automation of its manual
reporting procedures.

Consultants from STSC, Inc. used the features and capabilities of STSC’s
Financial Planning System (FPS) to deliver a fully automated, conversational
financial reporting system in two months’ time—a full month ahead of
schedule. The system has been running for over six months now and has met or
exceeded all the goals set by the corporation.

The authors are indebted to Eugene R. Reilly, Director of Finance at CDO,
for his invaluable assistance in preparing this paper.

Background

CDO is one of five major operating groups belonging to the Continental
Group, Inc., located in Stamford, Connecticut. Three divisions and over 20
plants make up CDO’s operations. These plants and divisions are scattered
over six countries: the United States, Canada, the Netherlands, Belgium,
Germany, and Mexico. The plants report to their respective divisions, and the
divisions report to corporate headquarters in Stamford.

Given the hierarchy of the reporting structure and the multinational
aspects of the corporation, manual production of consolidated financial state-
ments for senior management is a monumental and time-consuming task.
Individual plant reports are prepared and submitted to divisional authorities
who correct, consolidate, and forward the reports to corporate headquarters.
At headquarters, the reports are again corrected and consolidated for senior
management.

The financial reports consist of selected Profit and Loss and Balance Sheet
items on both an actual and forecasted basis. Actual data, reflecting current
operations, is submitted on a monthly basis. Forecast data is submitted on a
weekly basis to provide monthly forecasts, and on a monthly basis to provide
detailed quarterly forecasts.

Problems arise in the areas of currency conversion, report formats,
timeliness, clerical errors, and management control. Many of the divisions use
local currencies in their reports, thereby requiring currency conversion during
consolidation of the reports. Various divisions use their own report formats,

173



174 Financial Reporting Systems: A Case Study

which means that extra effort is required to meld the various reports into one
format for corporate reporting.

Because six countries are involved, the financial data does not arrive at
the same time at corporate headquarters, which results in many delays in
getting the final reports completed. Due to errors made at plant and divisional
levels, the reports must be reviewed and corrected at divisional and corporate
levels. All this review and correction consumes valuable time and effort. Given
the multidivisional and multinational structure of the corporation, control
over the periodic reporting of financial data is delegated to individuals below
the corporate level, which results in some loss of control.

All these factors—currency, timeliness, report formats, clerical errors,
and control—led CDO to seek an automated solution to its financial reporting
needs.

Solution

Since STSC, Inc., had previously implemented a successful general ledger
product for CDO, STSC was invited to review the financial planning proce-
dures and the reports, and to offer a possible solution that would overcome the
shortcomings of the current manual operations. Initial discussions with the
Director of Finance began in March 1979.

The financial planning and reporting system proposed by STSC consisted
of:

e A capability to automatically convert all foreign currencies to
U.S. dollars.

* An automated, conversational procedure to collect and verify data
at the plant level.

e Exact duplicates of the report formats, as they were being manu-
ally produced.

e The ability to control access to data, at both plant and divisional
levels.

¢ The ability to consolidate respective plant reports into one divi-
sional report.

» The ability to consolidate divisional reports into one corporate
report.

STSC was given the authority to develop an automated financial planning
and reporting system in June 1979, and the system was delivered in August—a
full month ahead of schedule. A major factor contributing to the early delivery
was the general nature and flexibility of FPS. Built-in data entry, modeling,
and report generator routines helped move systems development to a rapid
conclusion.

After six months of use, the financial planning and reporting system
developed by STSC is doing the job it was intended to do. All major goals have
been met, and additional capabilities and savings have been realized. Some of
the additional features are described below.

e Automatic currency conversion. Currency conversion is performed
automatically, rather than manually. Currently, each plant en-
ters its financial data using the local currency and specifies the
rate of exchange to be used—the computer performs the tedious
conversions.

e Timely submission of reports; control over the reporting methodolo-
gy; reduction in clerical time devoted to producing corporate
reports; local access to the computer from all plant and divisional
locations; computer-generated reports that need no retyping. Re-



Financial Reporting Systems: A Case Study 175

ports are available as soon as the data is entered. Under the
manual system, data was either phoned or wired to the division
and corporate offices. With the aid of the computer, data is
entered only once, at the plant location, and all reports for all
divisions and corporate headquarters can then be generated on
request. Automation has reduced the time required to prepare
and consolidate the reports, and deliver the finished reports to
management.

¢ Significant reduction in clerical errors. The financial planning
and reporting system has also significantly reduced clerical er-
rors. Data is entered at only one location—the originating plant—
where the people are most familiar with their particular set of
numbers. Under the manual scheme, data was entered at the
plant, again at the division for the divisional report to corporate
headquarters, and again at corporate headquarters for the consoli-
dation to senior management. This triple entry and handling of
the same data was eliminated by the automated system.

Other standard features of FPS are now being studied and tested for
incorporation into the corporate planning and analysis functions. These
features are

¢ Sensitivity Analysis, which measures the impact of changes to, or
fluctuations in, the data.

*  Value Seeking, which searches for the value of a data element that
will yield a desired report value.

* Graphics, which provides the ability to chart both data and report
elements over time or against other data and report elements.

¢ Risk Analysis, which provides the ability to assign probability
distributions to data elements and to measure their effects on key
results.

CDO is very pleased with the financial planning and reporting system
developed for them by STSC. The system has met their goals, which were to
automate the manual procedures and to give senior management timely
reports, and has additionally provided tighter control, cost reductions, and
automatic currency conversion. The rapid implementation of systems such as
this is made possible by the flexibility and power of STSC’s Financial Planning
System.

Bill Bickford, currently branch manager of STSC’s Westchester/Fairfield
office, began his career with the company as a marketing representative.
Working in three New York and New Jersey counties, he more than doubled
revenues from his territory, accomplishing this through steady growth and the
addition of five Fortune 500 companies as clients. He has broad experience in
implementing and updating accounting systems, having worked for United
Brands, Sybron Corporation, Harley-Davidson, Carborundum, and W. R.
Grace.

Bickford received his bachelor’s degree in accounting from the University of
Idaheo.

Ken Golden, who joined STSC in 1978, is a marketing representative in the
company’s Westchester/Fairfield office. His responsibilities include marketing



176 Financial Reporting Systems: A Case Study

STSC products and services and designing, installing, and maintaining com-
puter-based systems for customers. Golden has over nine years’ experience in
designing and supporting information systems. Before joining STSC, he worked
as a systems analyst with the San Francisco Police Department, as a senior
consultant with Planmetrics, Inc., and as a project manager with General
Foods Corporation.

Golden has a B.S.E. in electrical engineering from the University of Connecticut
and an M.B.A. in operations management from the University of California at
Berkeley.



Robert R. DeCloss

Using APL for Construction Accounting

229 billion dollars! According to the United States Bureau of the Census
Construction Reports, that is the total value of all types of new construction in
1979. (This amount is seasonally adjusted and annualized based on data
through August 1979.) In 1972 the construction industry employed 4.1 million
people in 921,000 companies.

As a businessman, I am intrigued by the sheer size of the construction
industry. It is undeniably dynamic and exciting. We're all aware of the huge
cranes hovering over immense steel frames, and we marvel as new buildings
take form and are finally completed. Even the “hard hats” fill us with awe as
they scurry across steel girders high in the air.

As exciting as the actual construction is to watch, the business side
presents management with financial situations that require quick decisions to
assure that particular ventures are profitable. For example:

* Government agencies and labor unions require frequent and
accurate reporting of labor performed on each phase of each job.

¢ Weekly payrolls must be met promptly; delays can cause penalties
that can impair or destroy the profitability of a job.

* So that management can determine the progress and profit of a
job, all labor, materials, direct job expenses, equipment, invento-
ries, and subcontractor fees must be established early.

The construction industry is complex and highly competitive. An account-
ing system for construction companies must be flexible enough to handle the
weekly—even daily—changes required by government agencies, labor unions,
management, and employees. It must be pertinent; that is, the data coming out
of the system must be usable—not so detailed as to obscure its importance, but
detailed enough to provide the right information to the right people at the
right time. It must be easy to use. The requirements of the industry are
intricate and numerous; time cannot be wasted trying to learn how to use a
complicated accounting system. A system must be cost effective. The hours
saved by personnel and the accuracy and completeness of the system all
contribute to the cost effectiveness of a system. It must be secure; confidential
data cannot get into the wrong hands. Finally, it must meet the particular
needs of each company using it.

The accounting requirements of the construction industry are some of the
most comprehensive of any industry. The most important functions that an
accounting system for the construction industry must provide are

177



178 Using APL for Construction Accounting

* payroll

* payables

* jobcost

* receivables

¢ equipment

* inventory

¢ general ledger.

The first three constitute an important trio. Payroll and payables feed the
jobcost function to provide management with accurate and timely informa-
tion. This information is used to determine profitability and progress on each
job, problem areas on a job, and information useful for client billing and
estimating future job bids.

Payroll

Payroll must be able to handle the special accounting requirements of
labor unions. Since each union negotiates its own contract, a payroll system
must be able to meet the needs of several unions. For example, each union has
different employee fringe benefits, such as insurance funds, apprentice-
ship/training funds, pension funds, welfare, contractor administrator funds,
education funds, dues, and vacations.

To mention just a few of the possibilities, some unions require that
employees get only straight vacation pay, while others require that the
employees get overtime vacation pay. Most unions require subsistence pay for
jobs beyond a certain distance from the employee’s residence; a few unions,
however, require different pay rates depending on the zones in which their
members work. The trustee for the union fund, usually a bank, requires that
the employer file a monthly report detailing the wages, vacation, dues, and
hours worked by each employee in that union. A summary report is also
required showing the totals, by benefit, that the employer and the employees
pay into the union trust fund. All unions have apprentices who are employees
in training. Apprentices normally get paid less than the journeyman’s rate
(typically a percentage), and they may, or may not, get the normal union
benefits.

Government agencies require extensive reporting on any government
contracts a company may have. One such report, the certified payroll, must be
submitted weekly. Certified payroll requires a breakdown, by employee, of:

¢ hours worked this week

* wage rate

¢ gross amount earned this week
¢ gross amount earned this job

e total fringe benefits paid

* union dues owed and paid

e FICA, federal tax, and state tax owed
e weekly net salary

¢ social security number

¢ wage rate decision number

e contract number

¢ job description.

It doesn’t take too many unions with different requirements or too many
government jobs to make getting the payroll out and filing the appropriate



Using AFPL for Construction Accounting 179

reports on time an extremely complex, time consuming, and tedious job—
especially if done manually.

Payables

Payables has its own set of problems. Some vendors are subcontractors;
thus, the company may sometimes withhold a portion of the payment to the
vendor until the job is done. This practice is called retention and the amount
withheld is retainage. Sometimes not all vouchers for a particular vendor are
paid, but are withheld until verified.

Jobcost

Jobcost accumulates labor and materials costs; from this information
determinations are made as to the progress of a job. Several hundred tasks,
called codes, can be going on simultaneously on any given job. The magnitude
and sheer volume of data make manual organization an almost impossible
task. At least, the opportunity for error is greatly increased with each
additional job in progress.

STSC’s Construction Accounting System

I would not mention all the difficulties facing accounting for the construc-
tion industry if I did not also have some good solutions to those problems.

STSC and APL have confronted and dealt with these problems effectively
and economically. I would like to address mainly the payroll portion of the
system. I will not go into all the details, but will highlight the pertinent points
to demonstrate the overall usefulness of the system.

First, the system is online. This virtually eliminates losing reports in the
mail or experiencing delays due to poor service. This also provides the level of
security that management demands. Although not likely, it is possible with a
service bureau that if several construction companies are clients, one client
could inadvertently get another client’s jobcost report. With an online system
each client has access only to his own data. Also, because of STSC’s system
availability (in excess of 99 percent over the last three years), a user can be
sure that the system will be there when he needs it. Therefore, payroll can be
met on time without incurring penalties. And, when necessary, special checks
(e.g., termination checks) can be issued immediately, avoiding unnecessary
costs that might be incurred if there were delays.

Second, the reports for management, government agencies, and unions
are readable. This was a major concern for me. Frankly, I was appalled at the
detail and physical arrangement of data on some of the reports I’d seen; many
were completely unreadable or just simply “busy”. Our reports were designed
and approved by both mechanical contractors and general contractors.

Above all, the system is easy to use. Management’s need for clear and
concise reports is matched by the data entry clerk’s need for easy data entry
and retrieval. In our system, data entry is consistent throughout. Once the
user has learned how to enter data in one module, he can use the same
procedures in every other module. The data entry procedure for payroll is the
same as that for payables; printing the payroll register report is handled the
same way as printing an accounts payable by vendor report. It is, therefore,
easy to train a new person to use the system. One client expressed it this way:
he wanted a system so easy to use that if his accounting staff were sick or on
vacation, he could get the payroll out. And he is vice president of the firm!

Because data is easy to enter, and because the system is what I call
“pseudo-interactive”, valuable manhours are saved. Time is not wasted trying
to decipher cryptic error messages; situations where the user finds his general



TASK:

180 Using APL for Construction Accounting

ledger out of balance several days after submitting a job do not arise, as they
could with a service bureau. I call the entry system pseudo-interactive because
it combines the cost effectiveness of batch input with the responsiveness and
time savings of interactive reporting.

Some Examples

To illustrate how the construction accounting system works, I will present
some examples from the payroll module.

In the first example, the user collects all timecards for a week’s payroll
run. After calculating hash totals on the hours, he signs on to the system and
enters the task TIMECARD, the payroll date, and the hash totals. The system
is completely interactive up to this point, checking for such items as valid
payroll dates. Now the system begins its batch input routine; timecards are
entered one at a time, with each employee’s time entered on one line. To make
entry even quicker, the user can use a 10-key numeric pad if his terminal is so
equipped. No errors are checked during this phase of the entry, so the user is
not delayed waiting for the system to respond with approvals or error reports.
After all the timecards are entered, the system checks them all at once. If
errors are detected (such as invalid job code, no such employee number, or
hours out of range) the system reports all errors at once.

TIMECARD

PAYROLL DATE: 11079
HASH TOTALS: 279 8

: 110
110
114
115
116
117
213
214
1 304
10: .

WO ODNFWN B
e oo as s ss es ee

3 2154300 8, 3 2154000 4, 3 2153401 8, 3 2154100 2, 3 2157500 2
3 2001507 11, 3 2003407 5

2153401 40

2153401 32

206 5107 40

10000686 7

1000610 40

643 40 8

2003401 4, 2003300 3, 2005107 &, 2297000 29

INVALID JOBCODE

6.1:

117 10000686 7

DIFFERENCE: 7.00 .00 .00

ADDING

16 TIMECARDS

END OF PROGRAM

TASK:

The user can now go into a change task or adjustments task to correct
mistakes or to change pay rates, give bonuses, or make taxable or nontaxable
adjustments.

ADJUST

ADJUSTMENTS OR TIMECARD CHANGES: A

PAYROLL DATE: 11079

HASH TOTALS: 50 50 0 600

ENTER THE FOLLOWING:

EMPNO JOBCODE NONTXADJ TXADJ PAYRATE BONUS,[COMMA] JOBCODE ETC...

1: 213
2: 214
3:

1000610 50 50 0 100
643 0 0 0 500

ADJUSTMENTS COMPLETED

END OF PROGRAM.
ADJUSTMENTS OR TIMECARD CHANGES: .

TASK:

Since the system is online, payroll checks are printed on a terminal in the
client’s office. They can be mailed the same day, or delivered to the foreman in
the field to be distributed. Thus, employees receive their paychecks on time.

CHECKS

HAVE YOU ENTERED ADJUSTMENTS? YES
PAYROLL DATE: (MMDDYY): 11079



Using APL for Construction Accounting 181

HIGHEST EXISTING CHECK NUMBER: 600007
ENTER BEGINNING CHECK NUMBER: 600010
END OF PROGRAM

Once timecards and adjustments are entered and the checks calculated
and printed, the payroll register (a summary report of all information on the
employees’ checks) is virtually done. The user enters the task PAYREG (short
for payroll register), requests the appropriate payroll date, and prints the
report (see Figure 1) using the PRINT task.

TASK: PAYREG
PAYROLL DATE (MMDDYY): 11079
END OF PROGRAM

TASK: PRINT

REPORT NAME: PAYREG

FILE STATUS: COMPLETE; 01/31/79 WITH 1 PAGES
START AT WHAT PAGE NUMBER: 1

PRINT PAGE NUMBERS? Y

ALIGN PAPER, PRESS RETURN WHEN READY

FASE 1

Ak PLUMBING AND HEATING
PAYRULL
FOR PAYPERIOD ENDING 01/10/79

EMPz CHECK R HRJS O7 HRS

ALLEN, RALPH

110 600010 40.0 372,32 372.32 272.8% 622 13.81 7.4b 252,
BROWN, FREDERICK

114 630011 u0.¢ 495,80 32.00 522.89  2.30 32,00 7ae7 15.503 366,
DURYEA, GERALD

115 600212 37,0 332,64 25.60 L18,2% 25,60 25,64 71,31 17,786 PENA]
FLYNN, THOMAS

116 690013 40.0 470,00 H4.00 534,30 wi4.J0 32,73 9508 22.1u 8.01 3L
FLYNN, THOMAS

116 500013 (40.0; {(470.00) tb4.00) €536.001064.00) {32.733032, 4% (L2180 (B.01)(313.
HILL, STEVEN

213 600014 49.0 325,62 150.00  50.00  4.0C 529,00 4,00 26,40 .l 20,17 4.00 375,
HILL, STEVEN

213 600014 40.01 (325.60) (150.00)(50.00) (4,70} (529,60} (4 20y £29.40)794.90) (22.17) (4.00}(37%.
HUNTER, NICHOLAS

214 600015 40.0 8.0 140,00 #2.00 500.00 BR2, N0 41.80 200.50 30.37 ung.
ILIFF, IG0R

304 600016 140.0 638.40 39.13 149,84 30.11 12.77 406,
TOTALS 192.0 2,034 .16 500,20 57.60 57.60 571.54 20.22

8.0 42,00 2,633.76 161,44 110.58 1,712,
Figure 1—A Payroll Register Report

After the weekly payroll is out, the company must summarize information
on government contracts for that week. The user specifies the task PAYCERT
(short for payroll certificates) and enters the payroll date and jobs to be
reported. If there is no data for a specified job, the system displays an
appropriate message so that the user will know what to expect in the final
reports (in our example, no data is available for job 220). Certified payroll
reports are now done and ready to be printed. The sample report illustrated in
Figure 2 shows clearly the time that can be saved by not having to manually
produce one of these reports, let alone 20 or 30 of them.

TASK: PAYCERT

PAYROLL DATA: 11079

WHAT JOBS: 215 220

NO TIMECARDS FOR JOB 220
END OF PROGRAM

REPORT NAME: PAYCERT

FILE STATUS: COMPLETE; 01/31/79 WITH 1 PAGES
START AT WHAT PAGE NUMBER: 1

PRINT PAGE NUMBERS? NO

ALIGN PAPER, PRESS RETURN WHEN READY

27)

13

1)



182 Using APL for Construction Accounting

ARY

RICD ENDING: 01/10/79 FAYRCLL NUMBER:
- TRANSPORTATION TEST CENTER

WAGE RATE DECISION NUMBER: MUu6-3838 DATED JULY 14, 1978

JOB 319:

CONTRACT

O.T./REG #RS5 WORKED
TH FR S& 50 MO TU WE HRS

8.¢
ERICK 3%4%-12-4003 G20080 0 30004 3000
PLUMBER-FITTER 2.0 8.¢C 8.0 8.0 B.0 40.0 13.07 &7.6Q 27,80 7107 6L SE
1111 18
B P N TSN A
8.0 8.0 8.0 8.0 32.0 13,97 vQ.08 4l8.2u 71,51 Exkieyl
- -- - I
0.7, HOURS:
RE(, HOURS: 96,0 JOR GROZS: 116444

Figure 2—A Payroll Certificate Report

At month’s end, the trustee for the union usually requires a report giving
detailed information on all employees who are members of that union. Since
books have to be closed—in addition to other month-end duties—time is
important. To produce the union reports, the user simply enters the task
UNIONRPT (short for union report) and specifies a range of payroll dates.
Since each union not only requires detailed information on its members (see
Figure 3), but also summary data on fringe benefits (see Figure 4), you can
appreciate how difficult and time consuming it would be to produce these
reports manually.

TASK: UNIONRPT

ENTER INCLUSIVE PAYROLL DATES (MMDDYY): 10379 13179
UNIONS COMPLETED: 20 208

END OF PROGRAM

REPORT NAME: UNIONRPT

FILE STATUS: COMPLETE; 01/31/79 WITH 4 PAGES
START AT WHAT PAGE NUMBER: 1

PRINT PAGE NUMBERS? NO

ALIGN PAPER, PRESS RETURN WHEN READY

ABCU PLUMBING AND HEATING COMPANY

3869

WEST MATN

COLORADO SPRINGS, COLO. BOSOu4

FED.

I.D. FED 38-1234567

PIPE INDUSTRY FUNDS - LOCAL 20
EMPLOYEE FRINGE BENEFIT SUMMARY
12/28/78/ THRU 1/31/73
wakgankwrkhnn HOURS wwaxwuvemnhatun

EMPLOYEE §.5.= GROSS WAGES DUES  VACATION  TOTAL REGULAR TIME+1/2 DOUBLE COMMENTS
ALLEN, RALPH S$55-12-1234 THy . B4 16.90 80.00 80.00 55 PERCENT - 3RD 6 MONTH
ILIFF, IGOR 567-02-3957 1,?76.80 25.54 80.00 80.00

TOTALS: 2,021.44 4044 160.00 160.00

Figure 3—Union Report Summary by Member

Unions impose so many reporting requirements that they deserve discus-
sion. However, because not all employees are members of a union, we needed
the capability of providing both union and nonunion personnel information.



Using APL for Construction Accounting 183

PIPE INDUSTRY FUNDS - LOCAL 20
EMPLOYEE FRINGE BENEFIT SUMMARY
12/28/78 THRU 1/31/73

TYPE HOURS RATE AMOUNT

DUES 40,44
INSURANCE FUND 160.00 0.850 136.00
PIPE TRADES FUND 160.00 0.110 17.60
PENSION FUND 160.00 1.150 184,00
APP-JOUR TRAINING FUND 160.00 0.080 12.80
CONTRACTOR ADM FUND 160.00 9.040 6.40
** TOTAL DUE: 337.24

Figure 4—Union Report Summary by Benefit

Some staff employees don’t belong to a union, per se, but their companies may
give them some union benefits, such as pension, insurance, and welfare.
Unions have many work classifications and pay rates depending on the zone in
which their employees work, so we also had to provide a system that would
handle many pay rates without requiring that the rates be entered for each
employee at each run.

Since an apprentice gets a percentage of a journeyman’s rate (which
varies depending on length of apprenticeship), we wanted to design the system
so that it would take care of all the details and the user would only have to add
an employee as an apprentice. Different unions have different fringe benefits
and different rates for those benefits. Again, we wanted to provide an easy
method for a user to assign an employee to a specific union and let the system
take care of all fringe calculations automatically.

To address these challenges, we devised what we (cleverly) call the UNTON
file. For each union, it keeps track of all work classifications by name and
number and up to four zone pay rates for each work classification. It also keeps
track of up to 17 different fringe benefits for each union and has two methods
to compute dues—as a percentage of gross and as cents per hour.

The file also keeps track of apprenticeship complications—it automati-
cally computes the apprenticeship pay rate based on the apprenticeship
percentage and the journeyman’s rate for each union. It automatically
determines correct vacations for apprentices and journeymen.

Conclusion

The STSC Construction Accounting System is a complete system—one
that fulfills the seven functions mentioned earlier, meets the needs of the
industry, and is easy to use, reliable, and cost effective. Although the
installation fee and operating costs of the system are higher than some others
on the market, this system does provide the most cost-effective processing
when all factors are considered. Personnel costs to the client are lower because
most of the time-consuming manual tasks are eliminated. Moreover, the
required reports are produced in a timely manner, which helps the client to
avoid incurring penalties. Because the system is online, the client needs only a
terminal in his office. No expensive hardware or other paraphernalia are
required. An expensive programming staff is not required, and no expensive
programs must be purchased.

Moreover, the system can be customized if the existing reports do not meet
the client’s needs. Calculations can be altered if special computations are



184 Using APL for Construction Accounting

required. Because of a good design, constant communication with several
construction companies during development, and the power and flexibility of
APL, this construction accounting package is what I believe to be the best on
the market today.

Bob DeCloss joined STSC in 1973 as a programmer. He took a leave of absence
in 1975 to become treasurer of the Irwin Trading Company and Irwin Manage-
ment Company, but later in 1975 rejoined STSC in the APL Development
Department. Since 1978 he has been the branch manager of STSC’s Denver
office.

DeCloss co-authored with Roy A. Sykes, Jr., a paper for the APL75 Conference
in Pisa, Italy, titled "EMMA™: Extended Management Macros in APL” (APL75
Conference Proceedings, ACM, 1975). In 1977 he wrote the EMMA Reference
Manual (STSC, 1978). He has designed and implemented several systems
dealing with report generation, database management, and construction ac-
counting.

DeCloss has an M.A. in mathematics from Claremont Graduate School.



Vess E. Irvine

Flexibility in Accounting Systems

Many different accounting packages are available for use through time
sharing or service bureau companies, or for purchase to be run on inhouse
hardware. Very few of these systems are written in AP L, primarily because of
the traditional belief that APL is inefficient for highly repetitive, transaction-
driven applications.

When reviewing the documentation for these accounting systems, it is
easy to find built-in limitations forced upon the designers because of language
constraints, whether written in COBOL, PL/1, or another of the “traditional”
programming languages. For example, a user may be restricted to a chart of
accounts with, say, three digits to identify a main account number and two
digits to identify a subaccount number. He may also be forced to use
predetermined ranges of numbers for different types of accounts (100-299 for
assets, 300-499 for liabilities, and so on). Another common constraint is a
limitation on the total number of a particular type of journal entry made each
month.

In September 1978, I was asked to design a general ledger/budget tracking
system for a nonprofit subsidiary of a major southwestern utility corporation.
The outcome of this request was the development of STSC’s General Ledg-
er/Budget Tracking System (G L * 3), a general-purpose accounting application
written in APL and available on the APL*PLUS Time Sharing Service.
Before I describe the development process and capabilities of GL* 3, let me
first tell you why I chose APL as the programming language for the system.

Since my primary programming language skills are in APL, I decided to
investigate the suitability of the language for this accounting application. The
first consideration was, “Will the application run efficiently in APL?”’ 1t is one
thing to build a system that does everything the user desires; but if he cannot
afford the resource costs to run it, the project will be a failure. I can say with
some assurance that 10 years from now we systems designers will no longer be
concerned with the run-time efficiencies of different languages. Unfortunate-
ly, we could not wait that long since the utility company needed the applica-
tion this year.

I concluded that APL could be used for 90 percent of the system,
particularly in those areas that required a high degree of interaction (conver-
sation) between the terminal operator and the computer. This included the
tasks of defining the chart of accounts; entering starting balances, budget data,
and actual journal transactions; printing trial balances and other manage-
ment reports; and printing the detailed transaction data or ledgers. The only
operation that would not be performed in APL corresponds to the manual

185



186 Flexibility in Accounting Systems

function of posting journal transactions to account ledgers. (The analogous
computer operation is a sorting of all transactions for a given period.) Here 1
decided to use IBM’s SORT/MERGE Program Product (5734-SM1), a system
written in Assembler language that has been optimized to sort large volumes
of data very efficiently and that can be automatically started and run on
STSC’s APL*PLUS System.

The next consideration was to develop a system that did not contain the
limitations described earlier in this presentation. From the start of the project,
the aim was to design a flexible system that could also be used by other
business organizations. With the intensive programming that would be in-
volved, I did not want to end up with a system useful only to other nonprofit
subsidiaries of utility companies. So, for each specification requested by the
user, I evaluated the impact of the request on the generality of the programs.
Once a decision was made to allow for a certain flexible feature, each program
in the system was written to handle that feature. The best way to explain this
approach to the development of the system is through the examples that
follow.

Categories for Tracking Expenses

All accounting systems have a chart of accounts, but often a user wants to
track additional expense categories as well. The utility company wanted to
track expenses according to three classifications: account number, responsi-
bility center, and work order number. To meet this need, the system was
designed to handle 2 minimum of one category, with the added flexibility of
defining any number of additional categories.

Each expense category was designed to have its own name, number
format, description width, code word, budgeting status, and double-entry
balancing status. (A double-entry balancing status is a category such as
“company”’ or “‘subsidiary” for which the system requires debits and credits to
always be in balance. With this feature, one general ledger computer system
could be used to maintain a complete set of books for any number of separate
organizations within the corporation.)

The need for a budgeting status for each category became c! :ar when the
utility company requested that computer space be allocated for toring budget
subtotals by account number and responsibility center, but not by work order
number. So, the system was designed to allow users to set a budgeting status
for any category.

Since G L* 3 was first installed on 1 January 1979, many different expense
categories have been demonstrated. These include: vendor number, product
number, aircraft engine number, oil/gas drilling property number, franchise
number, customer number, cost center, and data type. The data type category
was used to differentiate between dollar amounts and number of hours for
projects where both types of resources—money and time—were tracked.

Creating Ledger Subtotal Files

After deciding that this accounting system would handle an unlimited
number of categories, the next problem to be faced was how to store the
monthly subtotals. The size of the file would increase dramatically as the
number of categories increased.

For example, a typical system may save monthly subtotals (13 numbers,
including the starting balances) by account number (120 accounts), by respon-
sibility center (say, 30), by work order number (say, another 30), and by actual
or budget numbers (2 numbers). The maximum number of monthly subtotals
using one file, then, would be



Flexibility in Accounting Systems 187

13 x 120 x 30 x 30 x 2 = 2,808,000

Considering this figure at current rates for online storage, the file would cost
almost $3,400 per month to store. Clearly there has to be a better method of
storing these numbers.

The solution was to ask management if they really needed the information
broken down in five different ways. Perhaps they really wanted to see
financial statements by account numbers only, a budget versus actual report
by responsibility centers with different accounts down the rows, and a work
order progress report by expense account numbers. Knowing the true require-
ments when establishing a new general ledger allows decisions to be made on
whether a large, single file might be more economical if broken down into
several smaller files.

Instead of using a single subtotal file for the utility company, three
subtotal files were defined. Each of the three files contained only the
information needed to produce a particular report. A recalculation of the
estimated online storage costs is shown in Table 1.

Table | — Monthly Subtotals Using Three Files

No.
Budget/ No. No. Responsibility  No. Work
File  Actual Months  Accounts Centers Orders Total
1 1 13 120 — — 1,560
2 2 12 120 30 — 26,400
3 1 12 120 — 30 43,200

131,160

By knowing the true requirements of the user, and taking advantage of our
ability to split the subtotals into multiple files, we were able to recognize a 95
percent cost savings over our original estimate.

Starting Balances and Budgeting Status

In Table 1 you may have noticed that the number of months can be either
12 or 13. In GL*3 the 13th month is an extra column in which starting
balances are stored. Since a company has a beginning balance sheet each year,
the subtotal file by account numbers was allocated additional space for storing
the initial balances of asset and liability accounts.

Not so obvious is the need for extra columns in other accounts. In a file
containing subtotals by work order numbers, for example, extra columns may
be useful for containing the dollar amount spent since the inception of the
project, total expected cost over a multiyear period, or expected profit from the
job. Future users will, no doubt, think of many other uses for extra columns of
subtotals. GL * 3 was designed to carry as many “starting-balance” columns in
each file as are needed by the user.

As illustrated in Table 1, the user also has the option of allocating space in
each file for storing budget data. The only restriction is that all categories in a
“budgeted” file must also be defined as “budgeted”. The result is twice the
number of columns in each file; thus, a 13-month file which is budgeted will
have space for 26 columns of data.

How does the data get into the subtotal files? Budget data and starting
balances are entered directly at a terminal with the interactive programs
ENTERBUDGET and ENTERSTARTBAL. The “actual” subtotals must pass
the entire monthly accounting cycle of journal entries and ledger postings



188 Flexibility in Accounting Systems

before they arrive in monthly subtotal files, and a complete audit trail is
maintained in the process.

Creating Reports

At this point, the system had flexibility in number of categories, number-
ing schemes, sorting sequences, budgeting status, subtotal files, and starting
balances. The next problem was to design a printing program that would
present the data in meaningful management reports. But how does one write a
program that will print, for example, a trial balance sheet handling any
combination of the above choices?

The answer is that you don’t. Instead, you create a report generator that
allows the implementer, in a very short time, to custom design the reports to
management’s exact specifications. The features of QUICKPLAN"®, STSC’s
Quick Planning and Reporting System, were incorporated into the GL*3
system. QUICKPLAN’s report generator permits any combination of titles,
headings, comments, and row and column totaling of budget and actual data
from the subtotal files.

For instance, using QUICKPLAN, a production program can be produced
in just a few hours to generate a management control report with responsibili-
ty centers across the columns and accounts down the rows, and with alternat-
ing rows of actual, budgeted, and variance data, including a forecast for future
months in the current fiscal year.

This report generation feature further reinforces an appreciation of the
full advantages of AP L, especially in the GL x 3 System. &L * 3 contains every
feature of STSC’s QUICKPLAN System, including a number of data retrieval
programs designed to access the correct subtotal data in each subtotal file.

APL and Flexibility

Although most of the GL * 3 system capabilities described could probably
be implemented in any computer language, certain features of the APL
language are well suited to this application. Heavy use is made of the execute
primitive function (#) to differentiate between global variables, which contain
definitions of categories, and subtotal files. For example, an accounting system
with three categories would require three different global variables containing
the names of each category.

NAME1+'ACCOUNT NUMBERS'
NAME2+'RESPONSIBILITY CENTERS'
NAME3+'WORK ORDER NUMBERS'

If a particular program requires the printing of a specific name in the heading
of the report, the following APL statement will give the correct name under
program control.
I«2
NAME«$'NAME' , %1
The local variable NAME now contains for the heading the characters
'RESPONSIBILITY CENTERS'.

The global variables which customize each general ledger are created by
interactive programs. For example, defining the various subtotal files is
performed by a program called BUILDFILES. This program prompts the
user for responses to specific questions such as: “Is this file budgeted?”’, and
“How many starting balances?” The program then sets up the global variables
in their proper form, and the customized systemis permanently saved as an
APL workspace.



Flexibility in Accounting Systems 189

Conclusion

The commercial success of ¢ L * 3 is an indication of the future potential of
APL in large accounting applications. As of 1 November 1979, there were five
GL*3 systems in operation, including one for a firm that sells franchise
dealerships, and one for a firm that explores and develops coal and uranium
sources.

Vess Irvine, currently branch manager of STSC’s Dallas office, has been
working for 12 years with computer applications in end-user environments. He
spent several years in the aerospace industry developing engineering design
systems in aerodynamics and structural dynamics. He was introduced to APL
upon joining STSC in 1976 and has developed and marketed AP L applications
in accounting, finance, and operations.

Irvine has a B.E.S. degree from Johns Hopkins University, a master’s in
engineering from Cornell University, and a M.S. in management science from
the University of Southern California. He also holds a professional mechanical
engineering license in California.



Eric M. Landau

Manufacturing Applications of APL

This paper briefly describes the development of commercially available
manufacturing systems written in APL, and provides some speculations as to
the direction such development will take in the near future. “Manufacturing
applications” in the title refers to applications of direct relevance to a
manufacturing operation, such as inventory management or production plan-
ning, rather than to more generally applicable systems—such as those for
accounting or capital budgeting—that are used in a manufacturing environ-
ment.

History of APL in Manufacturing Applications

The history of APL’s use in manufacturing applications is largely the
story of one man, Robert Goodell Brown. Brown—currently president of
Materials Management Systems, Inc.—is generally acknowledged as one of the
world’s foremost authorities on the design and implementation of manufactur-
ing systems. He has written half a dozen books and countless papers on
forecasting, inventory management, manufacturing, and manufacturing sys-
tems design. His most recent book, Materials Management Systems: A Modular
Library (Wiley, 1977), is rapidly gaining acceptance as the leading textbook on
the design of computer-based systems for manufacturing and materials man-
agement applications.

Brown first became known for his work in operations research at Arthur
D. Little. In the mid-1960s, he moved more heavily into the systems field at
IBM, where he first encountered APL and gained an appreciation for the
power and versatility that the then new programming language could bring to
bear on manufacturing problems. While at IBM, Brown designed and imple-
mented several manufacturing-related software packages, some of which are
still marketed by IBM today, more than ten years after they were originally
written.

In the early 1970s, Brown struck out on his own and formed the
independent consulting firm known today as Materials Management Systems,
Inc. Shortly thereafter he formed a lasting affiliation with STSC. Since then,
STSC has underwritten the development of a series of program libraries that
address the concerns of manufacturing and distribution organizations. These
libraries, offered commercially through the APL*PLUS Time Sharing Ser-
vice, are written in an enhanced version of APL that is a proprietary product
of STSC.

The first manufacturing program library written by Brown was called
Materials Management Interactive Analyses and Simulations, and was known

190



Manufacturing Applications of APL 191

to its user community by the much shorter name Library 707. As the formal
name implied, Library 7 0 7 was a suite of analytical, simulation, teaching, and
gaming programs designed to explore the concepts and applications of tech-
niques in the materials management area. Library 70 7 originally emphasized
forecasting and inventory management techniques, although it was later
expanded to include tools for analysis and simulation in the areas of produc-
tion scheduling, material requirements planning (MRP), and physical distribu-
tion planning.

Having written Library 7 07, Brown turned his attention to designing and
writing AP L programs that would provide manufacturers not with analytical
tools or simulations, but rather with production systems that would be of use
in planning and controlling the day-to-day operation of a manufacturing
enterprise. The first library of such programs was called 747 FORECAST.
It was a production system for sales forecasting, based on the adaptive
smoothing methodology that Brown developed and first described in the mid-
1960s in his book Smoothing, Forecasting, and Prediction of Discrete Time
Series (Prentice-Hall, 1962).

747 FORECAST was released to the manufacturing community via
the APL*PLUS Time Sharing Service in 1972. By early 1973, it had gained a
fair amount of exposure, largely due to the article “Forecasting Infosystem
with Efficiency”, which appeared in the November 1972 issue of Infosystems.
Not long afterwards, Brown and STSC released a second-generation system in
the 747 series, called 747 STRETCH. 747 STRETCH added to the
original forecast system a set of production programs for applying state-of-the-
art inventory management techniques that had first appeared in program
form in Library 707.

Then, in 1975, Brown produced the first APL MRP system. It was called
COSMIC, the Comprehensive Operating System for Manufacturing and Inven-
tory Control, and was marketed by STSC as MMSL, the APL xPLUS Materials
Management Systems Library. MMSL covered both the new COSMIC System
and the still-expanding Library 707. COSMIC was a fully integrated modular
library for demand forecasting, inventory management, production schedul-
ing, material requirements planning, and shop floor control.

Through COSMIC, manufacturers could, for the first time, use the power
of APL for the primary planning functions of their operations. Within a few
months of its introduction by STSC, COSMIC was in use as a planning tool in a
variety of industries manufacturing products as diverse as business machines,
pharmaceuticals, industrial equipment, bulk chemicals, and photographic
film. Suddenly, a systems technology that had previously required its users to
install and maintain large, complex, and inflexible COBOL or PL/1 programs
became available on an APL system, and could be readily adapted and used by
manufacturing firms with no knowledge or desire to develop large inhouse
MRP systems.

Once COSMIC had led the way by demonstrating APL’s usefulness as a
tool for building manufacturing systems, it was only a matter of time before
APL spread through the manufacturing environment. Within STSC, systems
were designed that interfaced the planning tools in COSMIC with other APL
systems for such fundamental functions as inventory accounting, order entry,
job costing, and long-range business planning. Other APL service companies
also began using APL in manufacturing environments, writing systems for
customers that provided them with COSMIC-like facilities and taking ad-
vantage of APL to do so flexibly and cost-effectively. Despite these develop-
ments, STSC is, at this writing, the only APL service company to offer an off-
the-shelf, general-purpose manufacturing package.

STSC’s current offering in the manufacturing systems area is CMCS®, the
APL*PLUS Comprehensive Manufacturing Control System. CMCS was re-



192 Manufacturing Applications of APL

leased in 1977 as Brown’s fourth-generation production system for manufac-
turers. At the time of its release, CMCS provided all the facilities described in
Materials Management Systems, including everything that had previously
been available in COSMIC plus a new set of programs for physical distribution
planning and control.

By the end of 1979, CMCS was at Release 19, with each successive release
adding new, improved, and expanded capabilities to the original system. While
Brown continues to design new functional enhancements to CMCS—particu-
larly in the areas of forecasting and distribution—most of the advanced state-
of-the-art extensions to the production planning and control facilities are the
result of ongoing theoretical and technical design work done by James S.
Russell, manager of manufacturing systems for STSC. Russell is responsible
for the first, and up to now the only, implementations in AP L (within CMCS) of
net-change MRP, full-scale capacity requirements planning, time-phased criti-
cal resource load analysis, production limits analysis, and inventory target
based production schedule smoothing. Russell’s work has also provided com-
plete interactive simulation and “what if” capabilities for use by production
planners in writing and modifying master schedules.

As a result of the work done by Brown and Russell, CMCS is widely
recognized today as the most advanced manufacturing package on the market.
There can be little doubt as to why this is so: APL allows system designers to
implement new techniques and to integrate them with existing systems almost
as fast as the theoretical work underlying the new developments takes place.
Designers working with systems programmed in other languages have to wait
years before they can see their designs programmed into working systems.
Now, as the 1980s get under way, the current state of manufacturing
applications of APL largely reflects the ongoing use of CMCS by dozens of
companies for planning and control of manufacturing operations in the United
States and abroad.

Future Trends

What trends can we expect over the next few years in the application of
APL to the manufacturing environment? The most obvious one is a simple
expansion in the use of current technology. CMCS will continue to gain
acceptance and the number of organizations using it will grow. Other APL
service companies will bring AP L systems like CMCS to the market. Organiza-
tions currently providing remote computing services for manufacturing plan-
ning and control using older and more cumbersome languages and technolo-
gies will begin to use APL as they see evidence of the increased power,
flexibility, and maintainability of AP L-based systems and of the tremendously
increased level of productivity that APL provides in developing and imple-
menting such systems.

Meanwhile, the companies on the leading edge of APL manufacturing
systems development—Ilike STSC and Materials Management Systems, Inc.—
will continue to provide the commercial market with additional AP L-based
systems and capabilities. Development efforts should proceed in two broad
directions. As new methods and techniques are developed—or new applica-
tions found for existing techniques that can be used to solve real-world
manufacturing problems—such work will be incorporated into CMCS and,
hopefully, into other AP L-based manufacturing systems as well. A good
example of this is the theoretical work currently being done by Brown on the
application of MRP techniques to physical distribution planning, which can be
expected to be incorporated into CMCS before the end of 1980.

The other direction in which the use of APL in the manufacturing
environment will continue to grow is downward. Until now the interactive,
algorithmic use of AP L within the programming community has resulted in its



Manufacturing Applications of APL 193

being used in manufacturing primarily for planning and control systems. The
use of APL for low-level, repetitive, data-handling tasks (such as inventory
record-keeping, order entry, cost accounting, payables, and purchase order
control) has been limited to meeting the needs of organizations requiring
unusual functional capabilities, special interfaces with other APL systems, or
very rapid implementation. The next few years should see the introduction
and widespread use of APL for developing software systems available to
manufacturing companies off the shelf. These systems will provide cost-
effective capabilities for handling the “bread and butter” functional require-
ments now being met in most manufacturing organizations with old, largely
outdated, batch-oriented software written in the more “traditional” pro-
gramming languages.

By far the largest impetus to the growth of manufacturing applications of
APL in the 1980s, however, will not come from new techniques, new applica-
tions, or the expanding market for services. It will come, rather, from the
continuing, rapid advancements in computing hardware technology. The
1980s will see a continuation of the dramatic trends of the late 1970s toward
more powerful, more compact, more efficient, and—most important of all—
less expensive computer mainframes and related hardware.

More and more of the world’s computing will be done on inexpensive
minicomputers and microcomputers operated by the end user, instead of on
large-scale mainframes supported by traditional computer centers and data
processing organizations. Manufacturers will no longer face the choice of
investing hundreds of thousands of dollars and years of effort in bringing up
full-scale modern manufacturing planning and control systems or of hiring an
outside vendor, which requires an ongoing justification of a significant
operating expense. Moreover, manufacturers will not be forced to place their
faith in an outside vendor, who must be entrusted with the firm’s most vital
and sensitive data, and who must be counted on to have his system—over
which the user lacks complete control—running reliably and continuously so
as not to disrupt the daily business of producing, stocking, and distributing the
product.

APL has already been implemented on some minicomputers. Before 1980
is over we can expect to see some of these and others available commercially
with APL language software. Nor will it be too long before APL becomes
available on various microcomputers. With minis that use APL and that have
the speed and power to support large and complex systems such as CMCS, it
will soon be possible for manufacturing companies to purchase everything
they need for automated planning and control of their production, inventory,
and distribution in a bundled package that includes hardware, operating
system software, AP L, manufacturing applications software, service, training,
and support. And manufacturers who don’t need large or integrated systems
will be able to buy micro-based “black boxes” that will quickly and cheaply
provide them with answers in critical areas such as sales forecasting, invento-
ry management, and shop loading.

Looking even further into the future, the time will come when the small
black boxes will be replaced by software modules with shared peripherals that
will be designed to plug into desk-top or pocket computers. The executive of the
future, who will still require printed reports, is likely to carry a pocket unit on
which he can generate those reports in storage. He will then be able to walk up
to a printer, plug in his pocket computer or some detachable module of it, and
have the reports printed on the spot, in much the same way as he now makes
photocopies. These devices will replace the modern calculator as surely and
completely as electronic calculators have replaced the mechanical adding
machine and the slide rule.



194 Manufacturing Applications of APL

In short, advancements in computer technology over the next decade will
dramatically affect the way manufacturers plan and control their operations.
Although it may be too soon to tell just how this will affect manufacturing
operations, it’s not too soon to be sure that they will.

Eric Landau joined STSC in 1973 as a marketing representative and is
currently product manager of the company’s manufacturing systems. He has
worked in computer systems design for the U.S. Government, Intermac Corpora-
tion, and Burroughs, as well as for STSC. He has taught operations research
and forecasting and has published several papers, including “On the Non-
Statistical Aspects of Statistical Forecasting” (1976 APICS Conference Pro-
ceedings) and “On Defining Customer Service” (1979 APICS Conference
Proceedings).

Landau holds a B.A. and an M.A., both in economics, from the University of
Rochester. He is a Fellow of the American Production and Inventory Control
Society.



Daniel Dyer

Managing and Computing

Several papers in this book address the subject of managing your company
using APL. This paper addresses that subject from a chief executive officer’s
point of view. It describes the installation of a planning, budgeting, and
reporting system.

Planning, Computing, and the CEO

Planning is a determinant of the ability to effect change. For this reason,
planning is at the core of the activities of a chief executive officer (CEO). As the
chief executive of STSC, a company with annual revenues of $20 million, most
of my time is devoted to introducing change into the organization. Of course,
that’s true for any manager—his job is to make the current year significantly
better than the year before. A chief executive’s goal is to coordinate significant
improvements throughout the entire company.

If one is to introduce change that will affect the operations of an entire
company, it is vital to have a planning system. If the planning system is to
succeed, it must include an efficient and responsive information system,
because planning must be integrated with budgeting and reporting at all levels
of management and operations. For information systems to be responsive to a
dynamic management, they must be able to accomplish the following:

¢ Identify problem areas, and thereby highlight the need for
change.

* Provide analyses on the types of change that might be desirable.

¢ Show responsibilities for revenues, costs, and results after a
change is effected.

That’s where APL comes in. The ability to respond quickly to change is a
significant feature of APL in contrast to other languages. The pace at which a
CEO can implement changes depends on the lead time required to install the
information systems to support the changes. APL reduces that lead time. It
helps the CEO assign or reassign responsibilities within the organization,
knowing that the tools, at least with respect to information systems, will be
available immediately to enable managers to assume and carry out new
responsibilities.

I have seen APL facilitate effective changes at many levels within STSC—
in accounting, financial reporting, market analysis, capacity planning, elec-
tronic message processing, and others. I would like to describe how APL and
APL enhancements have supported strategic and operational planning. STSC
developed its own internal planning system from scratch in only two and one-

195



196 Managing and Computing

half years and could not have accomplished this without the use of APL. The
fact that STSC uses its own product should not make this experience any less
relevant to other organizations.

STSC has a relatively short history of formalized planning—about five
years. The company has been in business for eleven years, and did not do any
formalized planning in its first six years. I don’t know if our experience is
typical, but our approach to planning has changed in each of the past five
years.

It seems strange now, but for years we ran a successful and growing
business without knowing what our future profits would be. Although we were
frequently asked for projections, we simply couldn’t provide them. This must
be anathema to many large organizations that regard profits as a “managed
number”, but thousands of organizations find themselves somewhere in
between a “seat of the pants” and a totally planned approach. Having
progressed rapidly along the path from the former approach to the latter,
perhaps sharing our experience will have some value to the many organiza-
tions that find themselves somewhere on that path.

Managing for profit is different from merely forecasting future profit. A
managed profit implies greater commitment than a forecasted profit, and
obtaining commitment throughout an entire organization is not a trivial task.
APL helped STSC in obtaining commitment at all levels of the company, and
since we like to stress the practicality of APL, I'd like to tell you how we used
APL to improve our planning process.

STSC—Before Formalized Planning

STSC entered the computer time sharing business in 1969 with $250,000
of invested capital. Perhaps it was a foolish venture, considering that the
company’s purpose was to provide a service using a computer programming
language called AP L—a language that few people had ever heard of. Computer
programmers are as conservative about the computer programming languages
they use as any of us are about the languages we speak. They change slowly.

Although the marketing task was difficult, offering just APL meant that
the company had a narrow, and therefore desirable, product focus in the first
years. Success breeds its own problems, however, and we soon found that APL
was useful across the spectrum of industries and management disciplines. In a
few years the focus had dissipated somewhat. With increasing frequency, we
were asking “Where should STSC concentrate its efforts? In what industries?
In which management disciplines? In which computer applications?”

By 1975 our “seat of the pants” approach was clearly becoming inade-
quate. We who had started the company had then been working on the growth
of the company for six years. Although we collectively had a great deal of
experience with large companies, we had fallen behind in knowledge of
current professional management techniques associated with large, successful
companies. Since our objective was to become a large company, it was clear
that “seat of the pants” and autocratic management would no longer suffice to
enable the company to meet its objectives.

The Beginning of Change—1975

The rapid change in management approach that occurred from late 1975
to mid-1978 started in December 1975 with my attending the American
Management Association’s (AMA) “Management Course for Presidents”. It is
a one-week course presented by The President’s Association, one of the
operating groups of the AMA. The course is given solely for chief executive
officers or, in the case of large corporations, for unit presidents of subsidiary
companies.



Managing and Computing 197

From the course, 1 gained some practical techniques for implementing
participative management. Each member of our management committee
attended a similar four-day course for top executives during the next three
months. This helped us to use the same terminology when discussing manage-
ment practices.

The greatest significance of the course, however, was that it included a
tasteful pitch by the AMA for its “team planning process”. Several case
studies, similar to the one you are now reading, were presented by CEOs
describing experiences with the AMA’s team planning process. Since we had
been struggling with planning and not doing a very good job of it, I decided to
try the team planning process. The attendance of our management committee
in the four-day course was the first step.

The Team Planning Process—1976

For a fee, the AMA will take a CEO and a small top management team to a
remote location to help with strategic and operational planning. After gather-
ing company financial data for the past five years, the team spends one week
outlining goals and action plans. Then, lower levels of management spend a
couple of months further developing those action plans. The top management
team reassembles at the AMA location for a second week to determine which
action plans to undertake. Finally, the plans are put into effect—hopefully
with a beneficial effect on the bottom line.

What happened during the first week is worth explaining in some detail,
because it showed us quickly why our previous stabs at planning had failed to
produce significant results. We had not appreciated the complexities of the
planning process.

Essentially, the process recognizes that planning is not simple, but since
the results can have a substantial payoff, one can justify considerable efforts to
achieve good results. A CEO quickly realizes how little an effect he can have on
what the results will be in his business in the weeks ahead, but how great an
effect he can have on what they will be in years ahead. In that sense,
management is planning. Is it possible to spend too much time on planning? At
the lowest levels of management, possibly yes, but at the higher levels, no.

During that week, we considered each problem from at least a dozen
different directions. This is not an approach that we would have come up with
intuitively on our own. There’s considerable overlap between the different
directions. No one direction alone gave the solution, but in combination they
all did. To be more explicit, we analyzed our business from the standpoint of
strengths; weaknesses; problems; opportunities; competition; trends in regula-
tion, technology, and society; threats to our business; and even the personal
objectives of the individuals making up the top management team. Although
many of these viewpoints overlapped, each provided some additional insight
into what was opportunity for us and what was not.

Once this analysis was completed, it was a relatively straightforward task
for our top management team to come up with action plans to close the gap
between where we wanted to go and where extrapolation of our present trend
was taking us. We had 77 action plans at the end of our first week of planning,
which was probably too many. The large number reflected our management
committee’s strong orientation toward development in 1976.

This approach to planning is a fantastic experience in delegation for the
CEO, because each team member looks at the business from the point of view
of the CEO. I found each team member more than willing to put himself in my
shoes. In fact, while the process was going on, I sometimes had to restrain
myself to keep quiet and allow the process to work. In delegating responsibility
for particular action plans, each team member ends up with at least a couple of



198 Managing and Computing

action plans that may intrude upon the responsibilities of several of his
associates. But each action plan names just one individual responsible for
seeing that it gets planned in detail. Since everyone knows who has what
responsibility, in just one week the CEO accomplishes the delegation of a large
number of complex assignments.

Another important result of the first week of planning was a reassessment
of goals. In 1976 we looked at goals for each of the next five years. Our
planning now focuses on a three-year horizon. Three-year goals enable
managers at all levels to see where the company is going and to operate their
departments accordingly. It’s important that all managers know the planned
rate of expansion of the company in each product and industry for more than a
one- or two-year time frame.

Goals must reflect the key measures of management performance. Typical
goals might include benchmark figures or percent increases in sales, income
before tax, income after tax, return on invested capital, return on equity, and
earnings per share.

At the end of the first week we had established some tentative goals, some
strategies, and dozens of action plans. We then returned to our own locations
to involve lower levels of management in the process. The action plans had to
be quantified; during the first week’s session they were barely outlined. Before
the end of the process many would be dropped, almost all the rest would be
modified, and some new ones would be proposed. The action plans as struc-
tured by the AMA are similar to decision packages used in Zero-Base
Budgeting (ZBB). In fact, we became involved with ZBB a year after our
original AMA experience and merged the two approaches.

It took a couple of months for lower management to assess the plans;
develop them more fully; suggest new ones; and assign revenue, expense,
capital expenditure, and headcount estimates to each plan.

When that was completed, our top management team reassembled for a
second week, meeting with the same AMA planning director as during the first
week. At first we had had reservations that this director had too little
background in our “technical” industry. Before we got through, we concluded
that his lack of familiarity with the computer service industry was an
advantage, because he maintained an objective, unbiased point of view and
examined the assumptions that we had made about the company and the
industry.

During the second session, each team member presented the case for his
action plans. The plans were ranked and tentative decisions were made as to
which plans would be undertaken and which would be dropped. The accumula-
tion of financial estimates—from the tentative set of “approved” plans—
permitted reevaluation at this stage of the long-range financial goals that had
been set in the first week. The plans and goals could then be adjusted
accordingly. In any case, the goals were not determined by simply totaling the
approved or highest-ranking action plans. The goals determined the plans, not
vice versa. In fact, we approved an excess of plans to meet the goals because it
might turn out later that some plans would not be feasible or desirable.

Careful notes were taken during both planning sessions. This simplified
the important task of documenting the strategic plan at the completion of the
formal process. Presenting the plan to the Board of Directors and, after
approval, to the entire company, was essential in obtaining commitment from
all levels of the company.

Because of the participative approach taken in 1976 to arrive at our first
formal strategic and operational plan, there was little problem in obtaining
acceptance of the plan throughout the organization. Acceptance, though, is a
far cry from commitment, and our first plan had not been developed to the



Managing and Computing 199

level of detail necessary to assure that everyone in the organization was
committed to meeting his portion of the plan. Nevertheless, it was a major first
step, and it had been accomplished in six months.

The planning process had not yet imposed any new requirements on the
existing information systems. It had been possible—although a bit of a chore—
to manually rank and summarize all of the quantitative information contained
in the action plans. So far, so good.

Each later stage in the development of a planning system, however,
required an exceptionally responsive automated information system. An
outside planning consultant, such as the AMA, can get a company started in
formal planning, but the real payoff in the planning process comes in the later
stages. A computer service company, such as STSC, may find it extremely
valuable to pick up where the AMA leaves off by installing the information
systems necessary to carry planning information to all levels of management.

Automation of the Operating Plan—1977

In 1977, the second year of formalized planning, we used the AMA’s
“update” service. We held a week-long strategic planning session with the
same AMA planning director. We then developed decision packages and
evaluated these in another week-long meeting (at which no outside consultant
was present). The decision packages were developed with full accounting detail
(revenues, expenses, capital expenditures, and headcount) by chart of account
and by month.

This level of detail required computer implementation, and we achieved
this in the time that was available by using APL. By flagging each decision
package that was approved, we quickly produced the financial operating plan
and budget for the following year. We could never have coped with this much
detail, nor could we have met our planning schedules, without using APL to
develop and implement this integrated ZBB planning system. The time and
staff that was available did not even permit us to consider using another high-
level language.

Automated Projections—1978

In 1978, our third year of formalized planning, our practices once again
evolved considerably. Again we ran strategic planning sessions without
outside consultants and used ZBB techniques to develop the operational plan.
But in 1978, we also ran projected balance sheet, profit and loss, and funds
statements automatically, in addition to producing the operating plan from
the approved decision packages.

Each manager entered his own decision packages from a terminal at his
own location. Once decision packages were entered, modified as necessary, and
approved, obtaining the operating plan and projected financials was literally a
button-pushing operation. And, this made it possible to do “what if”’ games not
only quickly, but in complete detail.

The supporting information system was implemented by one person
working part-time on this project, and the projection system was implemented
using the part-time efforts of a financial analyst with limited programming
experience. If these individuals were unavailable, they were backed up by
other individuals with similar skills. Other organizations might prefer to work
with an outside service organization that could be relied on to provide essential
continuity for similar projects supporting top management’s functions. The
point I want to stress is how little effort was required, rather than how few
individuals were involved. They used APL and its enhancements to produce
the planning system to our requirements.



200 Managing and Computing

The ease of an online system was essential to STSC at this stage, because
STSC management was geographically dispersed throughout the United
States. The APL*PLUS System provided a very necessary and efficient
communications facility (its Electronic Message Processing System, called
MAILBOX) in addition to its computational ability.

Closing Some of the Gaps—1979

In 1979 we lengthened the planning cycle somewhat by developing
“business plans” before going into detailed financial plans to support the
decision packages that made up the ZBB method. The business plans covered
what was to be done, and by whom, but without a great deal of financial detail.
The decision packages, as before, contained complete financial detail and
directly produced the operating budget when approved. Thus, in 1979 we
moved closer to the ITT planning approach, wherein business plans are
negotiated with top management prior to preparation of detailed operating
plans. This approach avoids gathering financial detail on decision packages
that have small likelihood for acceptance.

Closing All of the Gaps—1980

In 1980 we will again prepare a three-year strategic plan for the corpora-
tion as a whole and an operating plan that follows exactly the organizational
structure of the company (i.e., an operating plan for each manager in the
company). The difference in 1980 is that we will have comprehensive business
plans that will bridge all of the gaps between the strategic plan and the
operating plan. The business plans will be comprehensive in the sense that
they will cover every industry to which we sell, and each of the company'’s five
product lines. This will be a matrix approach—five product lines cutting across
six industry groups. The result we expect is a further delegation of responsi-
bility for planning, and consequently more creative ideas and increased
involvement in attaining short- and long-term goals.

The 1980 approach will enhance opportunities for individuals in the
company to specialize by industry, as well as by product. It will also help
ensure that as the company adds product lines, each line will be well conceived
and well executed.

Planning—Only One Element in the Management System

A complete management system has many elements. We've discussed
planning and budgeting from the standpoint of how to begin and how to obtain
help from an outside organization. However, certain additional elements of a
management system are closely integrated with the planning and budgeting
processes.

Planning was a good place to start because it shows how goals are derived
or confirmed. Goals are also a logical place to start a discussion of managing
and computing, which is a circular topic. It is circular because any one
management process or computer procedure uses the results of some previous
procedure, and, in turn, feeds the next step in the chain. You have to jump into
the process at some point to begin to explain it. It’s good to start with goals
because they involve only a few numbers, are relatively easy to understand,
and reflect the ultimate objectives of a company. Also, a tried and true practice
in looking at both management and computing problems is to take a top-down
approach, which generally means starting with end objectives.



Managing and Computing 201

Financial Reports

Having established well-examined goals by means of a careful planning
process, it is equally important to keep track of how well you are progressing in
meeting those goals. Every company produces financial statements to show its
progress. At STSC, financial reports are produced monthly and are just one
portion of a complete monthly financial reporting package which includes a
number of other reports and graphic displays.

Typical financial statements, by themselves, show only how well the
corporation as a whole is doing. More numerous and detailed reports are
required to show the contribution of individual departments to the corpora-
tion’s overall position.

General Ledger System

The financial reports are an end product of a general ledger system. A
good general ledger system summarizes the detailed accounting transactions
of every period, and is therefore essential to support a good management
system. If managers are going to commit themselves to meeting measured
results, they have to believe in the basis on which they are being measured.
That requires a confidence in the entries to the general ledger system, which
keeps track of transactions by cost center as well as by account. A cost center is
created to correspond to a particular manager’s responsibility.

Financial Reporting System—OQOperating Statements

Since the general ledger system keeps track of transactions by cost center
as well as by account, it can feed data to a financial reporting system to
produce operating statements as well as overall corporate financial state-
ments. An operating statement shows only the financial transactions involv-
ing a single cost center. It’s an individual manager’s portion of the financial
statement. At STSC, a manager’s operating statement shows only those
expenses over which he has direct control. For example, a sales branch
manager sees the revenues generated by his office and the expenses over which
he has direct control.

Every cost center, however, shows a performance figure that is its bottom
line—its revenues minus its expenses. The performance figure for a sales
branch office is expected to be a positive number that is a large percentage of
an expanding revenue total. In other words, we control the expense-to-revenue
ratio in marketing very tightly. The performance figure for a development or
operations department is generally a negative figure (little or no revenues in
relation to expenses). The control in this case is based on planned expenditures
and results, usually in relation to total revenue for a particular product line.

The operating plan for each manager, and for the company as a whole, is
stored in the computer in a structure that is the exact counterpart of the chart
of accounts. It uses the same set (chart) of accounts and the same structure of
cost centers, which corresponds to the organization chart of managers. The
operating plan, in other words, is maintained in a set of files that constitute an
extension to the general ledger files. In effect, it is the budget. Forecasts are
reviewed monthly for the balance of the fiscal year.

An operating statement would have limited value to a manager if it
showed only actual revenues and expenses with no relation to plan. Our
operating statements show actual figures versus budget and the resulting
variance for the current month and for the fiscal year-to-date. STSC provides
actual online data on a continuous basis for each cost center. This helps each
manager prepare his plan and monitor his progress since he can easily obtain
current, year-to-date actual data, and comparisons with plan at any time.



202 Managing and Computing

Thus, the operating statements provide a crucial check for every manager
on current performance and year-to-date performance in relation to plan.
These reports are summarized for each higher level of management so that the
performance of every manager, regardless of his position in the management
structure, is available. The highest level operating statement contains the
same figures as the financial statements for the corporation.

Corporate-level financial reports show comparisons to results in the
previous year in addition to the variances from plan for the current year.

Zero-Base Budgeting (ZBB)

If Zero-Base Budgeting is used, the operating plan (budget) can be
prepared while decision packages are being prepared. ZBB facilitates the
shifting of resources from marginal to more promising efforts by breaking the
spending requests of any management unit down into small, manageable
packages, each of which can be evaluated, and accepted or rejected on its own
merits. It avoids the problem of accepting or rejecting the budget plan of a
subordinate in its entirety. It permits the ranking of budget requests for
dissimilar activities and thereby provides a way for top management to ensure
that strategic plans are reflected and carried out in the operating plans. It
fosters cooperation in the management team when peers are allowed to
examine, question, and support or resist understandable components of each
other’s plans. If you are being squeezed, it’s reassuring to know that everyone
else is being squeezed just as hard.

One concern with ZBB is that a pet project will be buried within a
mandatory project and, therefore, never get reviewed. Close scrutiny of all
packages by a staff analyst, close review by management, good intentions on
the part of all participants, and the occasional rejection of a package with
mixed merits reduces the probability of approving undesirable projects.

A key to achieving success with ZBB is to be able to control the dollar
magnitude and number of decision packages that are reviewed at higher levels
of management. A management team can consider a large number of individu-
al decision packages only if it has an appropriate computerized decision
support system. While ZBB can work manually, the manner in which data is
consolidated and rearranged in the ZBB process is a natural for computer
processing. I can’t conceive of achieving the result STSC achieved with ZBB
without computer support. Even with computer support, however, it’s impor-
tant to manage the process so that top management’s attention can be focused
on decision packages that are discretionary and marginal, rather than those
that are obviously needed or obviously not needed.

ZBB satisfied an important requirement in the evolution of STSC’s
planning system. It permitted planning at the first level of management,
without sacrificing some degree of higher-level management control of the
process. Now that planning is well advanced at STSC, we plan to make the
ZBB technique an option available to the first-level manager in preparing his
operating plan. The use of business plans as explained earlier will ensure that
all managers work with the same planning assumptions when developing their
operating plans.

Conclusion

The use of adaptive, online computer systems to organize and report
planning and operating data is crucial to many organizations because it
enables the chief executive officer to introduce changes in the organization
more rapidly than would otherwise be possible. To evolve from an organization
with no formalized planning to one with a fully automated planning informa-
tion system, STSC took advantage of the development flexibility of the



Managing and Computing 203

APL*PLUS System to make necessary and radical changes in its approach to
planning and budgeting.

The information systems that supported these changes were developed by
one person who was concurrently responsible for additional projects of
comparable complexity. His productivity resulted not only from the use of
APL, but also from programming aids and systems designed specifically to
enhance programmer productivity for financial applications. These pro-
gramming systems are commercially available to any organization to use
either in the form of an outside service or on its own computer.

APL and the APL*PLUS System helped us improve growth, change,
planning, commitment, incentive, control, productivity, and profit. That’s
bottom line for any CEO.

A founder of STSC, Daniel Dyer has served as president and Chairman of the
Board of Directors since the company’s inception in 1969. Prior to forming
STSC, Dyer was with Westinghouse Electric Corporation, IBM Corporation,
and U.S. Time Sharing, Inc. He is a director of the Computer and Communica-
tions Industry Association.

Dyer holds a B.S. in electrical engineering from Yale University and an M.B.A.
from Harvard University’s Graduate School of Business Administration.



Robert C. Fick

What If: The Making of a
Vice President of Finance

In most companies—especially in service companies—the majority of data
processing applications relate to the financial and administrative side of
business. Since this is true, it occurred to me that the job description of the
individual responsible for the financial and administrative functions of a
business (usually the vice president of finance) should provide a reasonable
outline for the topic of this paper.

As Vice President of Finance for STSC, the following functions are in my
domain, and are probably similar to the functions controlled by the financial
vice presidents of many other companies:

e purchasing

e contracts

¢ payroll and accounting
¢ planning and budgeting
s funding

s reporting

¢ financial control

* pricing

* asset protection

¢ personnel management
¢ publications

¢ facilities management.

Other papers in this book address the use of APL in some of the areas
mentioned above. For example, “Managing and Computing” discusses the
corporate planning function, and “APL in the Corporate Service Environ-
ment” covers the areas of purchasing, contracts, and publications. In this
paper, I will approach these functions, and several of the others, from a
slightly different perspective. My discussion will focus on applications of APL
that can be divided into two broad groups: production applications and
decision-support applications.

Production applications include such functions as purchasing, payroll,
and accounting. All of these functions are primarily transaction oriented and
tend to deal with history. Once written, these applications are used on a
routine, scheduled basis to produce paychecks, support daily operations, or
provide information.

204



What If: The Making of a Vice President of Finance 205

The decision-support applications, what I call the “what if”’ applications,
aid management in dealing with the future. Since these are the applications I
myself use, I will devote the major portion of this paper to discussing them. But
first, a brief review of some of our production applications is in order.

One very important group of production applications is our accounting
applications. Our general ledger, billing, accounts receivable, and accounts
payable systems are all written in AP L. Our payroll system is also written in
APL and includes features for automatically accruing and reporting vacation
hours, reimbursing travel expenses, and calculating commission payments.

APL is also used by our personnel department to monitor the status of
employment applicants. An online JOBS system is used to announce job
opportunities to our employees. New hires, promotions, and transfers are also
announced internally using an AP L-based news system. Our online personnel
system provides the data necessary for Equal Employment Opportunity
reporting and for preparing the company’s affirmative action plan.

There are many other APL production applications in use at STSC, but
the point is clear from these examples: all of us at STSC use APL in almost
every aspect of our day-to-day operations.

So much for production and operational systems written in APL. Let’s
move on to the use of APL for handling the “what if”’ aspects of managing a
business. “What if”’ applications come into play in the following environment:

¢ a key decision is pending
* time is short
e there is a need for flexibility
e there are many interrelated factors to be considered.
Typical examples of a pending decision might be
¢ Should we acquire ABC Corporation?
* Should we go public?
* Should we increase prices?
The applications written to help answer these questions must be
¢ completed quickly
¢ compact and controllable
e easily modified.
These applications also happen to be
e thrown away after one use, or changed frequently
¢ dependent on an existing database
¢ a lot of fun.
If you're “into” APL, these applications are also so engrossing that:
* time passes unnoticed
* skipped meals and lost sleep are not missed
* marriages and other relationships are temporarily threatened.

It’s true that the productivity of AP L provides significant leverage in the
development of transactions such as payroll and general ledger. It’s also true
that, as a result of the drastic reduction in hardware prices, more companies
will be run using AP L exclusively. But the applications that are really critical
to the ongoing success of a corporation are those that allow top management to
quickly and effectively respond to questions such as: “Should we acquire ABC
Company?” This is where APL and the APL user gain visibility within a
company, and where many controllers become financial vice presidents.



206 What If: The Making of a Vice President of Finance

Here’s a more complete list of such application areas:
* pricing decisions

* lease versus buy analyses

® acquisition analyses

¢ incentive plan design

¢ capital funding decisions

¢ investment scenario analysis.

There are other such areas, I’m sure, but these have had the most significance
at STSC. In the sections that follow, I’ll discuss each in more detail.

Pricing Decisions

Pricing has always been a challenging discipline, but given the inflation
we’ve had to deal with in the late 1970s, pricing has never before been such a
delicate issue. The costs of running a business are constantly increasing.
Effective pricing management, in addition to the management of productivity,
is key in maintaining satisfactory profit margins and the financial viability of
an ongoing business.

Like other key business decisions, pricing decisions are complex because
they depend on several factors, such as:

® Product mix. How will a change in price for one product affect
sales for related products?

e Existing contractual commitments. How will a change in price
affect total company revenues if some contracts (e.g., government
contracts) limit price increases?

¢  Product demand. Will a price increase negatively impact demand
for our product?

e  Competitive pricing. Will a price increase result in a significant
competitive disadvantage?

* Product cost. What does it cost to create, sell, and service the
product?

® Product value. Should the market price be independent of product
cost?

All of these factors require making assumptions. The objective is to
maximize revenue and profit. What happens to total company revenue if the
price for product X is increased by 8 percent? If the product is new, when will
the break-even point occur? What will margins be if we undercut competitive
pricing by 10 percent?

Lease versus Buy Analyses

Financial officers are frequently faced with lease versus buy decisions.
Consequently, this type of application system will probably be used over and
over again once it is written.

For example, you’re buying a piece of equipment, and you want to know
the least costly alternative—owning or leasing. The choice depends on many
factors: (1) the equipment’s economic life to you; (2) its economic life in the
marketplace (i.e., the expected value of the equipment in the marketplace
when your company no longer has use for it); (3) your ability to use the
investment tax credit and accelerated depreciation; (4) who pays other ongoing
costs (e.g., maintenance, insurance, and personal property taxes); (5) purchase
options available during the lease term; (6) the cost of funds to your company;



What If: The Making of a Vice President of Finance 207

(7) the ratio of the purchase price to the pure lease price; and (8 your
company’s required investment hurdle.

Each alternative—buying or leasing—has its own projected cash flow. For
example, the buy alternative may have cash flowing out of the corporation to
repay debt and to pay for maintenance. It also results in cash flowing into the
corporation from tax savings and from the sale of the equipment at some
future date. A comparison of the present value of the cash flows of each
alternative will indicate which alternative is best. If the expected market
value of the equipment is difficult to predict, you can assign probabilities to
alternative market values, run the model for each alternative, and then graph
the results.

Acquisition Analyses

Like a lease versus buy decision, the decision to acquire another company
at a given price is binary—should we or shouldn’t we?

The answer, to a significant extent, is derived from an analysis of the
consolidation of projected financial results for both companies. If the marriage
of the two companies results in cost savings due to the elimination of
redundant activities, this should be factored into the analysis.

If the projected financial results of the marriage are superior to the
projected results of the acquiring company alone, then it makes sense
(financially, at least) for the acquisition to be pursued. Ultimately, an improve-
ment in earnings per share must result if the acquisition is to be considered
successful.

Incentive Plan Design

If your environment is dynamic (like STSC’s is), incentive plan models will
probably have a limited life. You'll create an incentive model for one year and
then throw it away when the basic incentive algorithm becomes obsolete.

The objective here, of course, is to optimize the cost of your incentive plan,
realizing that you don’t know exactly what the financial results will be—for
the company as a whole or for its various performance centers and cost
centers. The controlling assumption is that the size of incentive payments is
related directly to performance. You wish to fairly and competitively reward
individual performance; however, total compensation should not exceed an
established percentage of revenue.

Frequently, under such constraints, creating an incentive plan is a trial-
and-error process. Alternative incentive algorithms must be tested under
varying assumptions. What if some performance centers exceed plan, while
others fall below plan? What if the total company exceeds plan or falls behind
plan? How will each of these scenarios affect the cost and the incentive value of
our plan? The more you play the “what if”’ game, the closer you will get to the
optimum incentive plan.

Occasionally, it may be necessary to create and throw away several
incentive plan models in one year. AP L offers the power and the flexibility to
do this and still meet targeted completion dates.

Capital Funding Decisions

Capital funding decisions encompass some very familiar and basic deci-
sions on how to run a business. Should we go public? Should we fund our
growth with bank debt or with a private placement of debt, or should we sell
additional stock?



208 What If: The Making of a Vice President of Finance

Of all business decisions, this is certainly one of the most complex. More
debt probably means a weaker corporate balance sheet and possible restraints
in the way the business is run. But, it can also mean a higher return to existing
stockholders if the corporate return on investment (ROI) exceeds the cost of
borrowed capital. On the other hand, more equity in the business means a
stronger balance sheet and probably more flexibility in the way the business is
run. But, it can also mean a lower return for existing stockholders if the new
capital is put to work at a lower ROI than that which the corporation has been
enjoying.

The number and combinations of “what if”’ possibilities here are enor-
mous:

* What if interest rates rise? Fall? By how much?

* What if the stock market rises? Falls?

¢ What if our company grows 15 percent? 20 percent? 25 percent?
e What if additional capital is $2 million? $10 million? $100 million?
* What if our margins increase? Decrease?

The decision is made by calculating the impact of the most likely set of
values for these factors on earnings per share. The alternative that results in
the highest projected earnings per share is probably the best choice.

Investment Scenario Analysis

Typically, the financial planning process includes at least the following
three elements:

® Goals in key results areas (e.g., earnings per share and return on
equity).

¢ A limited number of financial resources. This includes any or all
of the following: (1) cash flow demand internally; (2) some limited
capacity to borrow additional capital; and (3) the ability to sell
stock to bring in equity capital.

» A list of alternative investment opportunities (e.g., new products,
cost-saving programs, training, and new equipment). The return
from each alternative may or may not vary directly with the
amount of investment in that alternative.

The problem then is to decide how much money, if any, to allocate to each
investment alternative. This usually involves an iterative process using a
number of “what if” questions. What if investment in product A is increased at
the expense of product B? What if all funds are invested in opportunities D and
E, and all others are dropped? What will the result be on the corporate balance
sheet, on the company’s revenue growth rate, and on earnings per share in
each case?

Conclusion

Computers are used in business for two broad groups of applications—
those that are transaction oriented and those that are decision oriented.
Transaction-oriented applications are exemplified by systems such as payroll
and general ledger. As people costs rise and people productivity becomes
increasingly significant in computing, AP L will be used more for these types of
applications. Once written in AP L, these applications will create and update
databases that will support decision-oriented applications. Using APL, trans-
action-oriented applications can be completed sooner and can be updated with
much less effort than that required for applications written in other lan-

guages.



What If: The Making of a Vice President of Finance 209

However, it is in the other group of applications—the “what if”’ or
decision-support group—that AP L really stands out. AP L can provide the user
and the manager with the response, flexibility, and compact power needed to
create timely and optimal decision-support systems. “Easier said than done”—
that’s true—but easier done using APL!

Bob Fick, vice president of finance and treasurer for STSC, has been the chief
financial officer of the company for five years. Prior to that, he was employed by
Electronic Memories and Magnetics, Inc., and Computer Science Corporation in
financial and systems management positions. While associated with these
companies and others, Fick developed expertise in the design and implementa-
tion of management systems, including accounting, planning, forecasting, and
business modeling.

Fick is a gradu