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PREFACE
 

Applied mathematics is largely concerned with the design and analysis of 
explicit procedures for calculating the exact or approximate values of 
various functions. Such explicit procedures are called algorithms or 
programs. Because an effective notation for the description of programs 
exhibits considerable syntactic structure, it is called a prograrnrning 
language. 

Much of applied mathematics, particularly the more recent conlputer­
related areas which cut across the older disciplines, suffers from the lack 
of an adequate programming language. It is the central thesis of this book 
that the descriptive and analytic power of an adequate progranlnling 
language amply repays the considerable effort required for its mastery. 
This thesis is developed by first presenting the entire language and then 
applying it in later chapters to several major topics. 

The areas of application are chosen primarily for their intrinsic interest 
and lack of previous treatment, but they are also designed to illustrate the 
universality and other facets of the language. For example, the Inicro­
programming of Chapter 2 illustrates the divisibility of the language, i.e., 
the ability to treat a restricted area using only a small portion of the 
complete language. Chapter 6 (Sorting) shows its capacity to compass a 
relatively complex and detailed topic in a short space. Chapter 7 (The 
Logical Calculus) emphasizes the formal manipulability of the language 
and its utility in theoretical work. 

The material was developed largely in a graduate course given for 
several years at Harvard and in a later course presented repeatedly at the 
IBM Systems Research Institute in New York. It should prove suitable 
for a two-semester course at the senior or graduate level. Although for 
certain audiences an initial presentation of the entire language TIlay be 
appropriate, I have found it helpful to motivate the developlnent by 
presenting the minimum notation required for a given topic, proceeding 
to its treatment (e.g., microprogramming), and then returning to further 
notation. The 130-odd problems not only provide the necessary finger 
exercises but also develop results of general interest. 
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Chapter I or sonle part of it is prerequisite to each of the remaining 
"applications" chapters, but the applications chapters are virtually 
independent of one another. A complete appreciation of search techniques 
(Chapter 4) does, however, require a knowledge of methods of representa­
tion (Chapter 3). The cross references which do occur in the applications 
chapters are either nonessential or are specific to a given figure, table, or 
program. The entire language presented in Chapter 1 is summarized for 
reference at the end of the book. 

I n any work spanning several years it is impossible to acknowledge 
adequately the many contributions made by others. Two major acknowl­
edgnlents are in order: the first to Professor Howard Aiken, Director 
Emeritus of the Harvard Computation Laboratory, and the second to 
Dr. F. P. Brooks, Jr. now of IBM. 

It was Professor Aiken who first guided me into this work and who 
provided support and encouragement in the early years when it mattered. 
The unusually large contribution by Dr. Brooks arose as follows. Several 
chapters of the present work were originally prepared for inclusion in a 
joint work which eventually passed the bounds of a single book and 
evolved into our joint Automatic Data Processing and the present volume. 
Before the split, several drafts of these chapters had received careful 
review at the hands of Dr. Brooks, reviews which contributed many 
valuable ideas on organization, presentation, and direction of investiga­
tion, as well as numerous specific suggestions. 

The contributions of the 200-odd students who suffered through the 
development of the material must perforce be acknowledged collectively, 
as must the contributions of many of my colleagues at the Harvard 
Computation Laboratory. To Professor G. A. Salton and Dr. W. L. 
Eastman, I am indebted for careful reading of drafts of various sections 
and for comments arising from their use of some of the material in courses. 
Dr. Eastman, in particular, exorcised many subtle errors fronl the sorting 
programs of Chapter 6. To Professor A. G. Oettinger and his students 
r am indebted for many helpful discussions arising out of his early use of 
the notation. My debt to Professor R. L. Ashenhurst, now of the Univer­
sity of Chicago, is apparent from the references to his early (and un­
fortunately unpublished) work in sorting. 

Of my colleagues at the IBM Research Center, Messrs. L. R. Johnson 
and A. D. Falkoff, and Dr. H. Hellerman have, through their own use of 
the notation, contributed many helpful suggestions. I am particularly 
indebted to L. R. Johnson for many fruitful discussions on the applications 
of trees, and for his unfailing support. 

On the technical side, r have enjoyed the assistance of unusually compe­
tent typists and draughtsmen, chief among them being Mrs. Arthur 
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Aulenback, Mrs. Philip J. Seaward, Jr., Mrs. Paul Bushek, Miss J. L. 
Hegeman, and Messrs. William Minty and Robert Burns. Miss Jacquelin 
Sanborn provided much early and continuing guidance in matters of style, 
format, and typography. I am indebted to my wife for assistance in 
preparing the final draft. 

KENNETH E. IVERSON 

May,1962 
Mount Kisco, New York 
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chapter 1 

THE LANGUAGE 

1.1 INTRODUCTION 

Applied nlathenlatics is concerned with the design and analysis of 
algorithnls or prograrns. The systelnatic treatment of conlplex algorithms 
requires a suitable prografnrning language for their description. and such a 
programming language should be concise. precise. consistent over a wide 
area of application. mnemonic. and economical of synlbols; it should 
exhibit clearly the constraints on the sequence in which operations are 
perfornled; and it should pernlit the descri ption of a process to be inde­
pendent of the particular representation chosen for the data. 

Existing languages prove unsuitable for a variety of reasons. Conlputer 
coding specifies sequence constraints adeq uately and is also comprehensive. 
since the logical functions provided by the branch instructions can, in 
principle. be elnployed to synthesize any finite algorithm. However. the 
set of basic operations provided is not. in general. directly suited to the 
execution of commonly needed processes, and the numeric symbols used 
for variables have little mnemonic value. Moreover. the description 
provided by computer coding depends directly on the particular represen­
tation chosen for the data. and it therefore cannot serve as a description of 
the algorithm per see 

Ordinary English lacks both precision and conciseness. The widely used 
Goldstine-von Neumann (1947) flowcharting provides the conciseness 
necessary to an over-all view of the process. only at the cost of suppressing 
essential detail. The so-called pseudo-English used as a basis for certian 
autonlatic programming systems suffers from the same defect. Moreover. 
the potential mnemonic advantage in substituting familiar English words 
and phrases for less familiar but nlore conlpact mathenlatical symbols fails 
to materialize because of the obvious but un\vonted precision required in 
their use. 

Most of the concepts and operations needed in a progralnming language 
have already been defined and developed in one or another branch of 
mathematics. Therefore, much use can and will be made of existing 
notations. However. since n10st notations are specialized to a narrow 
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field of discourse~ a consistent unification must be provided. For exanlplc~ 

separate and conflicting notations have been developed for the treatment 
of sets~ logical variables~ vectors~ matrices~ and trees~ all of which may~ in 
the broad universe of discourse of data processing~ occur in a single 
algorithnl. 

t.2 PROGRAMS 

A program statement is the specification of some quantity or quantities 
in terms of some finite operation upon specified operands. Specification is 
symbolized by an arrow directed toward the specified quantity. Thus ".II 

is specified by sin x" is a statement denoted by 

Y +-- SIn x. 

A set of statements together with a specified order of execution consti­
tutes a program. The program is .finite if the number of executions is 
finite. The results of the program are some subset of the quantities 
specified by the program. The sequence or order of execution will be 
defined by the order of listing and otherwise by arrows connecting any 
statement to its successor. A cyclic sequence of statements is called a loop. 

z +- 1 

v +- x x 3.1416 2 z~yxz 

2 v~vxx 3 z+-2xz 

Program 1.1 Finite Program 1.2 Infinite 

program progran1 

Thus Program 1.1 is a program of two statements defining the result l' as 
the (approximate) area of a circle of radius :r~ whereas Program 1.2 is an 
infinite program in which the quantity z is specified as (2y)n on the nth 
execution of the two-statement loop. Statements will be numbered on the 
left for reference. 

A number of similar programs may be subsumed under a single more 
general progranl as follows. At certain branch points in the program a 
finite number of alternative statements are specified as possible successors. 
One of these successors is chosen according to criteria determined in the 
statelnent or statements preceding the branch point. These criteria are 
usually stated as a comparison or test of a specified relation between a 
specified pair of quantities. A branch is denoted by a set of arrows leading 
to each of the alternative successors~ with each arrow labeled by the 
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comparison condition under which the corresponding successor is chosen. 
The quantities compared are separated by a colon in the statenlent at the 
branch point, and a labeled branch is followed if and only if the relation 
indicated by the label holds when substituted for the colon. The conditions 
on the branches of a properly defined program must be disjoint and 
exhaustive. 

Program 1.3 illustrates the use of a branch point. Statement ~5 is a 
comparison which determines the branch to statements /1 I, () I, or }' I, 
according as z > n, z == n, or z < n. The program represents a crude but 
effective process for determining x == n'2:\ for any positive cube n. 

x +- y x y,---------- ~3
 

~4 z +- y x x
 

<> --)'1k +-- k -7 2 ~ ~5 z : nf31 k+-kx2 

y+--y+k{J2 ~ y +-71 - k y2 

(51 

Program 1.3 Progranl for.c = 1/;\ 

Program 1.4 shows the preceding program reorganized into a compact 
linear array and introduces two further conventions on the labeling of 
branch points. The listed successor of a branch statement is selected if 
none of the labeled conditions is met. Thus statement 6 follows statement 
5 if neither of the arrows (to exit or to statement 8) are followed, i.e., if 
z < n. Moreover, any unlabeled arrow is always followed ~ e.g., statement 
7 is invariably followed by statement 3, never by statement 8. 

A program begins at a point indicated by an entry arrOH' (step I) and ends 
at a point indicated by an exit arrOH' (step 5). There are two useful 
consequences of confining a program to the form of a linear array: the 
statenlents may be referred to by a unique serial index (statement number), 
and unnecessarily complex organization of the program manifests itself in 
crossing branch lines. The importance of the latter characteristic in 
developing clear and comprehensible programs is not sufficiently appre­
ciated. 
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2 

3 

4 

5 

6 

7 

8 

9 

Program 1.4 

2 

3
 

4
 

5
 

6
 

>
7
 

8
 
>

9 

10 
>11 

y ~O 

k ~ 1 

x ~y x y 

z~yxx 

> z . n 

k~kx2 

y~y+k 

k~k+2 

y~y-k 

~ 

Linear arrangenlent of Progran1 1.3 

i +- peA) 

j +- v(B) 

k +- v(A) 

C/ ~O 

C/ ~ Cji + Aki 

k~k-l 

k 0 

j ~j - 1 

j:O 

i ~ i-I 

i 0 

X Bjk 

~ 

Program 1.5 Matrix lTIultiplication 

A process which is repeated a nunlber of times is said to be iterated, and 
a process (such as Program ] .4) which includes one or more iterated 
subprocesses is said to be iteratire. Program 1.5 shows an iterative process 
for the matrix multiplication 

C~AB 



1.2 PrograJJlS 5 

defined in the usual way as 

v(A) r i = 1,2, ,p,(A),C/ = L Akl x B/" lj = 1,2, , v(B),k=l 

where the dimension of an fn X n rectangular nlatrix X (of 111 rows and n 

columns) is denoted by p(X) x veX). 

Program 1.5. Steps 1-3 initialize the indices, and the loop 5-7 continues to 
add successive products to the partial sum until k reaches zero. When this 
occurs, the process continues through step 8 to decrement j and to repeat the 
entire sunlnlation for the new value ofj, providing that it is not zero. Ifj is zero, 
the branch to step 10 decrements i and the entire process overj and k is repeated 
fronl j = v(B), providing that i is not zero. If i is zero, the process is cOl1lplete, 
as indicated by the exit arrow. 

]n all exarTIples used in this chapter, emphasis will be placed on clarity 
of description of the process, and considerations of efficient execution by a 
computer or class of computers will be subordinated. These considerations 
can often be introduced later by relatively routine modifications of the 
program. For example, since the execution of a computer operation 
involving an indexed variable is normally more costly than the corre­
sponding operation upon a nonindexed variable, the substitution of a 
variable s for the variable C/ specified by statement 5 of Progranl 1.5 
would accelerate the execution of the loop. The variable s would be 
initialized to zero before each entry to the loop and would be used to 
specify C/ at each termination. 

The practice of first setting an index to its maxirTIum value and then 
decrementing it (e.g., the index k in Program 1.5) pernlits the ternlination 
conlparison to be made with zero. Since zero often occurs in conlparisons, 
it is convenient to omit it. Thus, if a variable stands alone at a branch 
point, comparison with zero is impfie-d. Moreover, since a corrip~lrisoj'--olf 

an index frequeniiy'·occurs immedtatei"y after it is modified, a branch at the 
point of modification will denote branching upon conlparison of the 
indicated index with zero, the comparison occurring ({fier rTIodification. 
Designing programs to execute decisions irTImediately after modification of 
the controlling variable results in efficient execution as well as notational 
elegance, since the variable must be present in a central register for both 
operations. 

Since the sequence of execution of statements is indicated by connecting 
arrows as well as by the order of listing, the latter can be chosen arbitrarily. 
This is illustrated by the functionally identical PrograrTIs 1.3 and 1.4. 
Certain principles of ordering may yield advantages such as clarity or 
sinlplicity of the pattern of connections. Even though the advantages of a 
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particular organizing principle are not particularly nlarked, the uniformity 
resulting fronl its consistent application will itself be a boon. The schenle 
here adopted is called the Inethod o.lleading decisions: the decision on each 
parameter is placed as early in the program as practicable, nornlally just 
before the operations indexed by the paranleter. This arrangenlent groups 
at the head of each iterative segment the initialization, ITIodiflcation, and 
the ternlination test of the controlling paranleter. Moreover, it tends to 
a void progranl flaws occasioned by un usual values of the arguments. For 

i -(- fleA) + 1 

2 i-(-i-l 

3 .i ~- vCR) + 1 

4 .i ~-.i - 1 

5 k ~-- v(A) + 1 

6 C/ -(- 0 

7 k-(-k-l 

8 C/ ~- C/ + Aki x B/.; 

Program 1.6 1\1atrix n1ultiplication using leading decisions 

exanlple, Progranl 1.6 (which is such a reorganization of Program 1.5) 
behaves properly for matrices of dinlension zero, whereas Progrc.uTI 1.5 
treats every nlatrix as if it were of dinlension one or greater. 

Although the labeled arrow representation of progranl branches 
provides a complete and graphic description, it is deficient in the following 
respects: (I) a routine translation to another language (such as a conlputer 
code) would require the tracing of arrows, and (2) it does not pernlit 
prograITInled nlodification of the branches. 

The following alternative fornl of a branch stateITIent will therefore be 
llsed as well: 

:r : y, r -~ s. 

This denotes a branch to statement nunlber Si of the program if the relation 
:rr,.IJ holds. The paranleters rand S may themselves be defined and re­
defined in other parts of the prograITI. The null elenlent 0 will be used to 
denote the relation which complenlents the renlaining relations r i ; in 
particular, (0) -~ (s), or sinlply -~s, will denote an unconditional branch to 
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statenlent s. Program 1.7 shows the use of these conventions in a refa fill u­
lation of Prograrn 1.6. More generalIy~ two or rnore otherwise independent 
progranls may interact through a statenlent in one progranl specifying a 
branch in a second. The statenlent nunlber occurring in the branch rllust 

then be augrnented by the name of the progranl in which the branch is 
effected. Thus the statenlent (0) -~ Program 2.24 executed in Progranl I 
causes a branch to step 24 to occur in Program 2. 

~ i +-p(A) + 1 

i +- i-I, (=ft, =) -* (3, 9) 2 

3 j +- v(B) + 1 

4 j +-j - 1, (~f~~ =) -* (5, 2) 

5 k +- v(A) + 1 

7 k +- k - 1, (/, =) -* (8, 4) 

Program 1.7 A refornlulation of Progranl 1.6, using an algebraic 
statenlent of the branching 

One statement in a program can be modified by another statclllcnt 
which changes certain of its parameters, usually indices. Morc gencral 
changes in statements can be effected by considering the progranl itself as a 
vector P whose components are the individ uaL serially n unlbered state­
ments. All the operations to be defined on general vectors can then bc 
applied to the statements themselves. For exanlple, the jth statenlent can 

be respecified by the ith through the occurrence of the statement Pj ~ Pi. 
The interchange of two quantities y and or (that is, .r specifies y and the 

original value of y specifies .r) will be denoted by the statement y ~~ > .r. 

1.3 STRUCTURE OF THE LANGUAGE 

Conventions 

The Sunlrnary of Notation at the end of the book sunlnlarizes the nota­
tion developed in this chapter. Although intended prinlarily for reference, 
it supplements the text in several ways. It freq uently provides a nl0rc 
concise alternative definition of an operation discussed in the text, and it 
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also contains inlportant but easily grasped extensions not treated explicitly 
in the text. By grouping the operations into related classes it displays 
their family relationships. 

A concise progralnming language Inust incorporate falnilies of opera­
tions whose nleInbers are related in a systenlatic manner. Each fanlily will 
be denoted by a specific operation sYInbol~ and the particular nlenlber of the 
family will be designated by an associated controlling paranleter (scalar~ 

vector. Inatrix~ or tree) which inlnlediately precedes the nlain operation 
symbol. The operand is placed illlmediately after the nlain operation 
synlbol. For exanl ple~ the operation k t x (left rotation of x by k places) 
Inay be viewed as the kth melnber of the set of rotation operators denoted 
by the symbol t. 

Operations involving a single operand and no controlling paranleter 
(such as l.r]' or rrl) will be denoted by a pair of operation syInbols which 
enclose the operand. Operations involving two operands and a controlling 
paralneter (such as the mask operation la~ U, bl) will be denoted by a pair 
of operation symbols enclosing the entire set of variables~ and the con­
trolling parameter will appear between the two operands. In these cases 
the operation symbols themselves serve as grouping synlbols. 

In interpreting a compound operation such as k t (j ~ x) it is inlportant to 
recognize that the operation symbol and its associated controlling paraln­
eter together represent an indivisible operation and must not be separated. 
]t would~ for example, be incorrect to assunle that j t (k ~ x) were 
equivalent to k t (j ~ x), although it can be shown that the conlplete opera­
tions j ~ and k t do commute, that is, k t (j ~ x) === j ~ (k t x). 

The need for parentheses will be reduced by assunling that conlpound 
statenlents are, except for intervening parentheses~ executed fronl right to 
left. Thus k t j ~ x is equivalent to k t (j ~ x), not to (k t j) ~ x. 

Structured operands such as vectors and nlatrices, together with a 
systenlatic component-by-conlponent generalization of elenlentary opera­
tions, provide an important subordination of detail in the description of 
algorithms. The use of structured operands will be facilitated by selection 
operations for extracting a specified portion of an operand, reduction 
operations for extending an operation (such as logical or arithInetic 
multiplication) over all components~ and permutation operations for 
reordering components. Operations defined on vectors are extended to 
nlatrices: the extended operation is called a rOlf operation if the under­
lying vector operation is applied to each row of the nlatrix and a colurnn 
operation if it is applied to each column. A colunln operation is denoted 
by doubling the symbol employed for the corresponding row (and vector) 
operation. 

A distinct typeface will be used for each class of operand as detailed in 
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Table 1.8. Special quantities (such as the prefix vectors a/ defined in Sec. 
1. 7) will be denoted by Greek letters in the appropriate typeface. For 
mneIllonic reasons, an operation closely related to such a special quantity 

I 

Typc of 
Operand 

Rcpresentation 

Printed Typed 
I 

Literal 
Alphabetic 
Nunleric 

Variable 
Alphabetic 
Nunlcric 

Vector 

Matrix 

Tree 

Ronlan, u.c. and I.c. 
Standard nunleral 

Italic. u.c. and I.c. 
Italic nunleral 

Lc. boldfacc italic 

u.c. boldface italic 

u.c. boldface rOinan 

Circled u.c. and I.c. rOlllall. 
Standard nunleral 

Unnlarked 
Underscore 

Underscore 

Underscore 

Wavy underscorc 

I 

Table 1.8 Typographic conventions for classes of operands 

will be denoted by the )ame Greek letter. For exalnple, 'Y.ju denotes the 
maxiIllum prefix (Sec. 1.10) of the logical vector u. Where a Greek letter 
is indistinguishable from a Roman, sanserif characters will be used, e.g" 
E and I for the capitals epsilon and iota. 

Literals and variables 

The power of any nlathematical notation rests largely on the use of 
symbols to represent general quantities which, in given instances, are 
further specified by other quantities. Thus PrograITI 1.4 represents a 
general process which deternlines.r = 11'2:\ for any suitable value of 11. In a 
specific case, say 11 = 27, the quantity .r is specified as the number 9. 

Each operand occurring in a llleaningful process nlust be specified 
ultimately in terms of commonly accepted concepts. The synlbols 
representing such accepted concepts will be called literals. Exanlples of 
literals are the integers, the characters of the various alphabets, punctua­
tion nlarks, and ITIiscellaneous syITIbols such as S and ~~. The literals 
occurring in Program 1.4 are 0, 1, and 2. 

It is important to distinguish clearly between general synlbols and 
literals. In ordinary algebra this presents little difficulty, since the only 
literals occurring are the integers and the decinlal point, and each general 
sylnbol employed includes an alphabetic character. In describing nlore 
general processes, however, alphabetic literals (such as proper naITIes) also 
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appear. Moreover, in a computer program, numeric symbols (register 
addresses) are used to represent the variables. 

In general, then, alphabetic literals, alphabetic variables, numeric 
literals, and nunleric variables may all appear in a complex process and 
must be clearly differentiated. The symbols used for literals will be roman 
letters (enclosed in quotes when appearing in text) and standard numerals. 
The synlbols used for variables will be italic letters, italic numerals, and 
boldface letters as detailed in Table 1.8. Miscellaneous signs and symbols 
when used as literals will be enclosed in quotes in both programs and text. 

It is sonletimes desirable (e.g., for mnemonic reasons) to denote a 
variable by a string of alphabetic or other symbols rather than by a single 
symbol. The monolithic interpretation of such a string will be indicated 
by the tie used in musical notation, thus: inL', inv, and INV may denote 

'-' ---------- ~ 

the variable "inventory," a vector of inventory values, and a matrix of 
inventory values, respectively. 

In the set of alphabetic characters, the space plays a special role. For 
other sets a similar role is usually played by some one element, and this 
element is given the special name of null elenlent. In the set of numeric 
digits, the zero plays a dual role as both null element and numeric quantity. 
The null element will be denoted by the degree symbol 0. 

In any detenninate process, each operand Inust be specified ultinlately in 
terms of literals. In Program 1.4, for example, the quantity k is specified 
in terms of known arithmetic operations (multiplication and division) 
involving the literals 1 and 2. The quantity n, on the other hand, is not 
determined within the process and must presumably be specified within 
some larger process which includes Program 1.4. Such a quantity is called 
an arglllnent of the process. 

Domain and range 

The class of arguments and the class of results of a given operator are 
called its domain and range, respectively. Thus the domain and range of 
the magnitude operation (Ixl) are the real numbers and the nonnegative 
real numbers, respectively. 

A variable is classified according to the range of values it may assume: 
it is logical, integral, or numerical, according as the range is the set of 
logical variables (that is, 0 and 1), the set of integers, or the set of real 
numbers. Each of the foregoing classes is clearly a subclass of each class 
following it, and any operation defined on a class clearly applies to any of 
its subclasses. A variable which is nonnumeric will be called arbitrary. In 
the Summary of Notation, the range and domain of each of the operators 
defined is specified in terms of the foregoing classes according to the 
conventions shown in Sec. S.l. 
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1.4 ELEMENTARY OPERATIONS 

The elementary operations employed include the ordinary arithmetic 
operations~ the elementary operations of the logical calculus~ and the 
residue and related operations arising in elementary number theory. In 
defining operations in the text, the symbol <=> will be used to denote 
equivalence of the pair of statements between which it occurs. 

Arithmetic operations 

The ordinary arithmetic operations will be denoted by the ordinary 
symbols +, -, x, and --:-- and defined as usual except that the domain and 
range of multiplication will be extended slightly as follows. If one of the 
factors is a logical variable (0 or I), the second may be arbitrary and the 
product then assumes the value of the second factor or zero according as 
the value of the first factor (the logical variable) is I or O. Thus if the 
arbitrary factor is the literal "q~" then 

Oxq=qxO=O 

and 1 x q = q X 1 = q. 

According to the usual custom in ordinary algebra, the multiplication 
symbol may be elided. 

Logical operations 

The elementary logical operations and, or, and not will be denoted by A , 

V , and an overbar and are defined in the usual way as follows: 

H' ~ u A v<=> vi' = 1 if and only if u = 1 and l1 = I, 

H' ~ U V v<=> H' = 1 if and only if u = 1 or v = I, 

H' ~ U <=> H~ = 1 if and only if u = O. 

If ~r and yare numerical quantities, then the expression x < !J implies 
that the quantity x stands in the relation "less than" to the quantity y. 

More generally, if (X and /1 are arbitrary entities and :!Il is any relation 
defined on them~ the relational statement ('l)!Il;J) is a logical variable which 
is true (eq ual to I) if and only if (X stands in the relation :!Il to /-J. For 
example, if x is any real number, then the function 

(x > 0) - (x < 0) 

(commonly called the sign junction or sgn x) assumes the values I, O~ or 
- 1 according as x is strictly positive, 0, or strictly negative. Moreover~ 

the magnitude function Ixl may be defined as Ixl = x X sgn x = x X 

((~r 0) - (x <:: 0)). 
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The relational statement is a useful generalization of the Kronecker 
delta, that is, 6/ == (i == j). Moreover, it provides a convenient expression 
for a number of fanliliar logical operations. The exclusice or, for example, 
may be denoted by (u =1= c), and its negation (i.e., the equivalence function) 
may be denoted by (u == r). 

Residues and congruence 

For each set of integers l1,j, and b, with b > 0, there exists a unique pair 
of integers q and I' such that 

n == bq + 1', j:S:: r < j + b. 

The quantity I' is called the j-residue o.l n n10dulo b and is denoted by b Ij n. 
For example, 3109 == 0, 3119 == 3, and 310 10 == I. Moreover, if n 2 0, 
then b 10 n is the remainder obtained in dividing n by band q is the integral 
part of the quotient. A number n is said to be of ecen parity ifits O-residue 
modulo 2 is zero and of odd parity if 210 n == I. 

If two numbers n and In have the same j-residue Inodulo b, they differ 
by an integral multiple of b and therefore have the saIne k-residue Inodulo 
b for any k. If b /j n == b /j m, then In and n are said to be congruent rnod b. 
Congruency is transitive and reflexive and is denoted by 

In == n (nlod b). 

In classical treatments, such as Wright (1939), only the O-residue is 
considered. The use of I-origin indexing (cf. Sec. 1.5) accounts for the 
interest of the I-residue. 

.A number represented in a positional notation (e.g., in a base ten or a 
base two nUlnber system) Inust, in practice, employ only a finite nunlber of 
digits. It is therefore often desirable to approxilnate a nunlber or by an 
integer. For this purpose two functions are defined: 

I. the.fioor oj' or (or integral part of .r), denoted by l.rJ and defined as the 
largest integer not exceeding .r, 

2. the ceiling (~l,r, denoted by rorl and defined as the snlallest integer not 
exceeded by .r. 

Thus 

f3. 141==4, l3.14J==3, l-3.14J == -4, 

f3.001 == 3, l3.00J == 3, l-3.00J == -3. 

Clearly for1== -l-·rJ and lorJ .r f·rl· Moreover, n == bln -:- bJ+ b 10 n 
for all integers n. Hence the integral quotient In -:- bJ is equivalent to the 
quantity q occurring in the defInition of the j-residue for the case j == O. 
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1.5 STRUCTURED OPERANDS 

Elementary operations 

Any operation defined on a single operand can be generalized to apply 
to each member of an array of related operands. Similarly, any binary 
operation (defined on two operands) can be generalized to apply to pairs 
of corresponding elenlents of two arrays. Since algorithrTIs conlnlonly 
incorporate processes which are repeated on each member of an array of 
operands, such generalization permits effective subordination of detail in 
their description. For example, the accounting process defined on the 
data of an individual bank account treats a number of distinct operands 
within the account, such as account number, name, and balance. More­
over, the over-all process is defined on a large number of sirTIilar accounts, 
all represented in a conlmon format. Such structured arrays of variables 
will be called structured operands, and extensive use will be made of three 
types, called rector, rnatrix, and tree. As indicated in Sec. S.l of the 
SunllTIary of Notation, a structured operand is further classified as logical, 
integral, nUlnerical, or arbitrary, according to the type of elenlents it 
contains. 

A rector x is the ordered array of elements (Xl' X2, X3' ••• ,x,'(x»). The 
variable Xi is called the ith component of the vector x, and the number of 
components, denoted by vex) (or simply v when the detennining vector is 
clear from context), is called the dinlension of x. Vectors and their conl­
ponents will be represented in lower case boldface italics. A nUlnerical 
vector X may be rnultiplied by a numerical quantity k to produce the 
scalar n1ldtiple k x X (or kx) defined as the vector z such that Zi == k X Xi. 

All elementary operations defined on individual variables are extended 
consistently to vectors as component-by-corTIponent operations. For 
exarTIple, 

w == (x < y)¢>wi == (Xi < yJ. 

Thus if X == (1, 0, ], 1) and y == (0, 1, 1, 0) then X + y == (], 1, 2, 1), 
X /\ Y == (0, 0, 1, 0), and (x .::: y) == (0, 1, 0, 0). 
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Matrices 

A matrix III is the ordered two-dimensional array of variables 

MIl, M 2l, MJ~(M) 

2 2M 1 , M 2 , MI~(M) 

Mf1(M) M/I(M)
1 , JI(M) 

The vector (M/, M 2i, ... , M/) is called the ith rOH' rector of M and is 
denoted by Mi. Its dimension v(M) is called the rOH' dimension of the 
matrix. The vector (M/, M j 2, ... , M/l) is called the jth colunul rector 
of M and is denoted by M j • Its dimension f-1(M) is called the colulnn 
dinlension of the matrix. 

The variable M/ is called the (i,j)th component or element of the matrix. 
A matrix and its elements will be represented by upper case bol.dface 
italics. Operations defined on each element of a matrix are generalized 
component by component to the entire matrix. Thus, if 0 is any binary 
operator, 

P = M 0 N<:=>P/ = M/ 0 N/.
 

Index systems
 

The subscript appended to a vector to designate a single component is 
called an index, and the indices are normally chosen as a set of successive 
integers beginning at 1, that is, x = (Xl' X2, ••• ,x~!). It is, however, 
convenient to admit more general j-origin indexing in which the set of 
successive integers employed as indices in any structured operand begin 
with a specified integer j. 

The two systems of greatest interest are the common I-origin systelTI, 
\vhich will be employed almost exclusively in this chapter, and the O-origin 
system. The latter system is particularly convenient whenever the index 
itself must be represented in a positional nUlTIber system and will therefore 
be employed exclusively in the treatment of COlTIputer organization in 
Chapter 2. 

1.6 ROTATION 

The left rotation of a vector X is denoted by k t X and specifies the 
vector obtained by a cyclical left shift of the components of x by k places. 
Thus if a = (1,2,3,4,5,6), and b = (c, a, n, d, y), then 2 t a = 

(3,4, 5, 6, 1,2), and 3 t b = 8 t b = (d, y, c, a, n). Fornlally, * 
Z = k t X<:=>Zi = Xj' where j = vlI(i + k). 

* Restating the relation in ternlS of the O-residue will illustrate the convenience of the 
I -residue used here. 
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Right rotation is denoted by k ~ x and is defined analogously. Thus 

where) == vll(i - k). 

If k == 1, it may be elided. Thus t b == (a, n, d, y, c). 
Left rotation is extended to matrices in two ways as follows: 

A ~j t B~Ai ==jl t Bi 

C ~ k 11 B<=>-C j == k j t B j • 

The first operation is an extension of the basic vector rotation to each row 
of the matrix and is therefore called rOlt' rotation. The second operation is 
the corresponding column operation and is ,therefore denoted by the 

doubled operation synlbol 11. For example, if 

k==(0,1,2), 
and 

a b C) 
B = d e .~' 

( 
g h I 

then 

and k Ii B == :).~) (~: ~
 
h g b .( 

Right rotation is extended analogously. 

1.7 SPECIAL VECTORS 

Certain special vectors warrant special synlbols. In each of the following 
definitions, the parallleter n will be Llsed to specify the dinlcnsion. The 
interred rector lJ(n) is defined as the vector of integers beginning \vith j. 
Thus l O( 4) == (0, 1, 2, 3), II ( 4) == (1, 2, 3, 4) , and l-' ( 5) == (- 7, - 6, - 5, 

-4, -3). Four types of logical vectors are defined as follo\vs. The jth 
lInit rector €J(n) has a one in the )th position, that is, (€J(n))k == (k == j). 
Thejul! rector €(n) consists of all ones. The vector consisting of all zeros 

is denoted both by °and by "€(n). The prefix rector (~llt'eight j is denoted 
by a/(n) and possesses ones in the fIrst k positions, where k is the lesser ofj 

and n. The sl~!fix rector wJ(n) is defIned analogoLlsly. Thus €~(3) == 
(0., I, 0),€(4) == (I, 1, 1, 1),a:3(5) == (1,1, ],0,0),w:3(5) == (0,0, I, I, I),and 
a'(5) == a 5(5) == (I, 1, 1, 1, 1). Moreover, wJ(n) == j t aJ(n), and a J(Il) :::::: 

j +wJ(n). 
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A logical vector of the form all(n) 1\ u)i(n) is called an if?!ix rector. An 
infix vector can also be specified in the fornl j t o.l''(n) , which displays its 
weight and location more directly. 

An operation such as x 1\ y is defined only for c0171patihle vectors x and 
y, that is, for vectors of like dinlension. Since this cornpatibility 
req uirement can be assunled to specify inlplicitly the dinlension of one of 
the operands, elision of the parameter n nlay be pernlitted in the notation 
for the special vectors. Thus, if y == (3,4, 5, 6, 7), the expressions E X Y 
and E

j X Y inlply that the dinlensions of E and E
j are both 5. Moreover, 

elision of j will be permitted for the interval vector lj(n) (or lj), and for the 
residue operator Ij when j is the index origin in use. 

It is, of course, necessary to specify the index origin in use at any given 
time. For example, the unit vector E:~(5) is (0,0, 1,0,0) in a l-origin 
system and (0, 0, 0, I, 0) in a O-origin systern, even though the definition 
(that is, (Ej(n)h~ == (k == j)) remains unchanged. The prefix and suffix 
vectors are, of course, independent of the index origin. Unless otherwise 
specified, I-origin indexing will be assumed. 

The vector E(O) is a vector of dimension zero and \vill be called the null 
rector. It should not be confused with the special null elenlent D. 

1.8 REDUCTION 

An operation (such as sumnlation) which is applied to allcornponents 
of a vector to prod uce a result of a sirTI pier structure is called a reduction. 
The C-reduction of a vector x is denoted by (~)x and defined as 

z +- C)lx<¢:>z == (... ((Xl x2) x:~) ... ) 0 X,,), 

where 0 is any binary operator with a suitable dornain. Thus +Ix is the 
surn, X Ix is the product, and V Ix is the logical sunl of the components of 
a vector x. For example, x Il I (5) == I x 2 x 3 x 4 x 5, X Il1(n) == n~, 

and +Il1(n) == n(n + 1)/2. 
As a further example, De Morgan's law may be expressed as 1\ lu == 

V lu, where u is a logical vector of dimension two. Moreover, a sinlple 
inductive argument (Exercise 1.10) shows that the foregoing expression is the 
valid generalization of De Morgan's law for a logical vector u of arbitrary 
dimension. 

A relation "~ incorporated into a relational statement (..c~y) becomes, 
in effect, an operator on the variables x and y. Consequently, the reduction 
:!Jllx can be defined in a manner analogous to that of olx, that is, 

"!IiIx == (... ((Xl ~3fx2) "~x:J 3f ... ) "!!lx,,). 

The parentheses now inlply relational staternents as well as grouping. 
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The relational reductions of practical interest are ~/~/u, and =/u, the 
exclusire-or and the equiralence reduction, respectively. 

The inductive argument of Exercise 1.10 shows that ~F/U = 210 (+/u). 
For example, if U = (1,0,1,1,0), then 

-~ / II = ((((I :1'= 0) I) * 1) 0) 

=(((1 1)~ 1)=1=0) 

= ((0 ::/= I) 0) 

=(1 0)=1, 

and 2 10 (+ /u) = 2 10 3 = ]. Similarly, = /u = 2 10 (+ Iii), and as a con­
sequence, 

=I)U = =/ii, 

a useful companion to De Morgan's law. 
To complete the system it is essential to define the value of cJ/e(O), the 

reduction of the null vector of dimension zero, as the identity elelnent of 
the operator or relation . Thus +/e(O) = V /e(O) = 0, and x /e(O) = 
A /e(O) = 1. 

A reduction operation is extended to matrices in two ways. A rOH' 
reduction of a matrix X by an operator () is denoted by 

Y~ ,:)/X 

and specifies a vector y of dimension fleX) such that Yi = c)Xi. A 
COIUJ11n reduction of X is denoted by Z ~ all X and specifies a vector z of 
dimension veX) such that Zj = c)/Xj • 

For example, if 

u = (~ ~ I ~) 
then +/U = (2,2,3), +//U = (2, L 3, I), A//U = (0,0, 1,0), /)U == 
(0,0,1), =//U = (0, I, I, I), and +/(=//U) = 3. 

1.9 SELECTION 

Compression 

The effective use of structured operands depends not only on generalized 
operations but also on the ability to specify and select certain elenlents or 
groups of elements. The selection of single elements can be indicated by 
indices, as in the expressions Vi' Mi, M j , and M/. Since selection is a 
binary operation (i.e., to select or not to select), nlore general selection is 
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conveniently specified by a logical vector, each unit component indicating 
selection of the corresponding component of the operand. 

The selection operation defined on an arbitrary vector a and a compat­
ible (i.e., equal in dimension) logical vector u is denoted by c +- uja and 
is defined as follows: the vector c is obtained from a by suppressing from 
a each cOlnponent a i for which U i === 0. The vector u is said to c(unpress 
the vector a. Clearly v( c) === + ju. For example, if u === (1,0,0,0, I, I) 
and a === (M, 0, n, d, a, y), then uja === (M, a, y). Moreover, if n is even 
and v === (2£) 10 ll(n) === (1,0, 1,0, I, ...), then vjl l(n) === (I, 3, 5, ... , n - I), 
and +j(vjl l(n)) === (nj2)2. 

Row compression of a matrix, denoted by ujA, compresses each row 
vector Ai to form a matrix of dimension fleA) x +ju. Column compres­
sion, denoted by ujjA, compresses each column vector A j to form a 
matrix of dimension +ju x v(A). Compatibility conditions are v(u) === 

v(A) for row compression, and v(u) === fleA) for column compression. 
For example, if A is an arbitrary 3 x 4 matrix, u === (0, 1,0, I) and 
v === (I, 0, 1); then 

A	 1 A 1(A/ AI) (A 1 A1)
ul A === A 

2
2 A:2

, vilA === 
3A~3 A 

2 

A 
3 

3 A> ' 
A 2 

3 A 4 
3	 2 3 

41(A 1 A )and ulvll A === vllul A === A:3 A 3 
4 

It is clear that rOlf compression suppresses columns corresponding to 
zeros of the logical vector and that column compression suppresses rOlfS. 
This illustrates the type of confusion in nomenclature which is avoided by 
the convention adopted in Sec. 1.3: an operation is called a rOH' operation 
if the underlying operation from which it is generalized is applied to the 
row vectors of the matrix, and a column operation if it is applied to columns. 

Example 1.1. A bank makes a quarterly review of accounts to produce the 
following four lists: 

1.	 the name, account number, and balance for each account with a balance 
less than two dollars. 

2.	 the nan1e, account nun1ber, and balance for each account with a negative 
balance exceeding one hundred dollars. 

3.	 the nan1e and account nun1ber of each account with a balance exceeding 
one thousand dollars. 

4. all unassigned account nun1bers. 
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The ledger nlay be described by a Illatrix 
I.) 

L'I/ 

with colunln vectors L 1 , L'2' and L 3 representing nanles, account nUIllbers, and 
balances, respectively, and with row vectors LI, L'2, ... , LI/I representing 
individual accounts. An unassigned account nunlber is identified by the word 
"'none" in the nanle position. The four output lists will be denoted by the 
Illatrices P, Q, R, and S, respectively. They can be produced by PrograIll 1.9. 

Program 1.9. Since L 3 is the vector of balances, and 2€ is a conlpatible vector 
each of whose conlponents equals two, the relational statenlent (L:3 2€) defIIles 
a logical vector having unit conlponents corresponding to those accounts to be 

1 ~ P +-(L3 < 2 €)jjL 

2 Q +- (L 3 < -100 €)jjL 

3 R +- (L 3 > 1000 €)jja2/L 

4 S +- (L 1 = none €)j/€2/L ~ 

L 

L k
3 

L1k 

Bank ledger. 

kth account. 

Balance of kth account. 

Account number of kth 
account. 

Name of kth account or 
"none" if account number 
L 2k unused. 

Legend 

Program 1.9 Selection on bank ledger L (Exanlple 1.1) 

included in the list P. Consequently, the coluIlln conlpression of step 1 selects 
the appropriate rows of L to define P. Step 2 is sinlilar, but step 3 incorporates 
an additional row cOIllpression by the conlpatible prefix vector ex'2 = ( I, I, 0) to 
select colunlns one and two of L. Step 4 represents the conlparison of the n~lIne 

(in coluIlln L 1) with the literal ""none," the selection of each row which shows 
agreenlent, and the suppression of all coluIllns but the second. The expression 
"'none €" occurring in step 4 illustrates the usc of the extended deflnitioll of 
nlul t ipI ica t ion. 

Mesh, mask, and expansion 

A logical vector u and the two vectors a == til c and b == ul c, obtained 
by conlpressing a vector c, collectively deternline the vector c. The 
operation which specifies c as a function of a, b, and u is called a rnesh and 
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is defined as follows: If a and b are arbitrary vectors and if u is a logical 

vector such that +Iti == v(a) and +Iu == v(bL then the 111esh (~la and bOil 
u is denoted by \\a, u, b\ and is defined as the vector c such that til c == a 
and ul c == b. The nlesh operation is equivalent to choosing successive 
components of c fronl a or b according as the successive conlponents of u 

are 0 or I. If, for example, a == (s, e, k), b == (1, a), and u == (0, 1,0, I, OL 
then \,a, u, b\., == (s, L e, a, k). As a further exarTIple, Progranl 1.1 Oa 

2 

3 

4 

5 

6 

7 

8 

9 

10 

i +- ° 
j+-O 

k ~O 

k v(a) +v(b) 

k~k+l 

3/ 1k 1 

j ~j + 1 

c k ~ b j 

i ~ i + 1 

ck -(- (Ii 

2 

(b) 

C ~ \a,u,b\ 

a, b 

c 

j 

k 

u 

Given vectors. 

c = (al,bl,b2,a2,b3,b4,a3, ...). 

Index of a. 

Index of b. 

Index of c. 

u = (0,1,1,0,1,1,0, ...). 

(a) 
Legend 

Program 1.10 Interfiling progran1 

(which describes the merging of the vectors a and b, with the first and every 
third component thereafter chosen from a) can be described alternatively 
as shown in Program 1.1017. Since II == (I, 2, 3, 4, 5, 6, ... ), then 

(3€) 10 II == (1,2,0, 1,2,0, ...), and consequently the vector u specified by 
step 1 is of the form u == (0, 1, I, 0, 1. 1, 0, ... ). 

Mesh operations on matrices are defined analogously, row mesh and 
column mesh being denoted by single and double reverse virgules, respec­
tively. 

The catenation of vectors x, y, ... , z is denoted by x y z 
and is defined by the relation 

x y EB ... EB z == (Xl' x2, ... , XJ'(X)' YI' Y2' ... , ZI'(Z))' 

Catenation is clearly associative and for two vectors x and y it is a special 
case of the mesh \x, u, y\ in which u is a suffix vector. 
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In nunlerical vectors (for which addition of two vectors is defIned), the 
effect of the general nlesh operation can be prod uced as the sunl of two 
nleshes~ each involving one zero vector. Specifically~ 

\,x~ u~ y\\ == \x~ U~ 0\ + \O~ U~ y\ 

== \O~ Ii, x\ + \0, U, y\. 

The operation \O~ U~ y\ proves very useful in numerical work and \vill be 
called expansion of the vector y~ denoted by u\y. Compression of u\y by 
II and by uclearly yield y and O~ respectively.Moreover~any nunlerical 
vector x can be deconlposed by a compatible vector u according to the 
relation 

x == u\ulx + u\ulx. 

The two terms are vectors of the same dimension which have no nonzero 
conlponents in common. Thus if u == (1,0, 1,0, 1), the decolnposition of 
x appears as 

Row expansion and column expansion of matrices are defined and 
denoted analogously. The decomposition relations become 

x == u\\ulX + u\ulX, 
and X == u\\uIIX + u\\uIIX. 

The nlask operation is defined formally as follows: 

C +---Ia~ u~ bl<;~ulc == lila, and ulc == ulb. 

The vectors C~ a~ u, and b are clearly of a common dimension and C i == a i 

or b i according as u i == °or u l == 1. Moreover, the conlpress, expand, 
mask, and mesh operations on vectors are related as follows: 

la, u, bl == \ula, u, ulb\, 
\a, u~ b\ == Iii \a, u, u\bl. 

Analogous relations hold for the row mask and row Inesh and for the 
colulnn mask and colulnn rnesh. 

Certain selection operations are controlled by logical nlatrices rather 
than by logical vectors. The rOll' cOfnpressiol1 VIA selects clernents of A 
corresponding to the nonzero elenlents of V. Since the nonzero elenlcnts 
of V nlay occur in an arbitrary pattern, the result nl ust be construed as a 
vector rather than a nlatrix. More precisely, VI A denotes the catenation 
of the vectors V) Ai obtained by row-by-row compression of A by V. 
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The colunln conlpressiol1 V II A denotes the catenation of the vectors VJ! A j. 

Ie for example, 

u == (~ ~ ~ ~) 
° ° ° 

then VIA == (A 2\ A 4 1, A.")l, A 12, A 22, A 2a, A:3:3), 

and VilA == (A]2, A 21, A~2, A 2:3, Aaa, A41, A;)l). 

Compression by the full matrix E (defined by E == 0) produces either a 
r()\\, list (EI A) or a colurnn list (Ell A) of the matrix A. Moreover, a nunleri­
cal nlatrix X can be represented jointly by the logical nlatrix V and the 
row list VIX (or the column list VIIX), where V == (X 0). If the nlatrix 
X is sparse (i.e., the components are predominantly zero), this provides a 
conlpact representation which may reduce the computer storage req uired 
for X. 

The compression operations controlled by matrices also generate a group 
of corresponding mesh and mask operations as shown in Sec. S.9. 

1.10 SELECTION VECTORS 

The logical vector u involved in selection operations lTIayitself arise in 
various ways. It may be a prefix vector ai, a suffix Wi, or an infIX (i t a i ); 

the corresponding compressed vectors ailx, wilx, and (i t aJ')lx are called 
a prefix, suffix, and infix of x, respectively. 

Certain selection vectors arise as functions of other vectors, e.g., the 
vector (x ~~ 0) can be used to select all nonnegative conlponents of x, and 
(b *€) serves to select all components of b which are not equal to the 
literal "*." Two further types are important: the selection of the longest 
unbroken prefix (or suffix) of a given logical vector, and the selection of the 
set of distinct components occurring in a vector. The first is useful in left 
(or right) justification or in a corresponding compression intended to 
eliminate leading or trailing "filler components" of a vector (such as left 
zeros in a number or right spaces in a short name). 

For any logical vector u, the Inaximum prefix of u is denoted by :xlu and 
defined as follows: 

v ~ :xlu<=-~v == ai, 

where j is the maximum value for which 1\ I(ailu) == 1. The maXilTIUnl 
suffix is denoted by (I)IU and is defined analogously. If, for example, 
u == (1,1,1,0,1,1,0,0,1,1), then :xju == (1,1,1,0,0,0,0,0,0,0), 
(I)/U == (0,0,0,0,0,0,0,0,1,1), +I:xju == 3, and +I(I)IU == 2. 
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The leading zeros of a numerical vector x can clearly be renloved either 
by compression: 

y +-- ('X/(x == O))/x, 

or by left j ustiflcation (nornlalization): 

z +-- (+I'X/(x == 0)) t x. 

The extension of the maximum prefix operation to the rows of a logical 
nlatrix V is denoted by 'XI V and defined as the compatible logical Illatrix 
V, such that Vi == 'XI Vi. The corresponding maximuIn colunln prefix 
operation is denoted by 'XII V. Right justification of a nuIllerical Illatrix X 
is achieved by the rotation k t X, where k == +IU)/(X == 0), and top 
just{jication is achieved by the rotation (+ 11'XII(X == 0)) 11 X (see Sec. S.6.) 

A vector whose components are all distinct will be called an ordered set. 
The.!,orlt'ard set selector on b is a logical vector denoted by alb and defined 
as follows: the statement v +-- alb implies that v j == 1 if and only if b j 

differs frOIn all preceding components of b. Hence vlb is a set which 
contains all distinct conlponents of b, and +Iv/l is a Inininlunl. For 
example, if c == (C, a, n, a, d, a), then (alc)/c == (C, a, n~ d) is a list of the 
distinct letters in c in order of occurrence. Clearly (alb)lb == b if and only 
if b is a set. 

The backward set selector Tlb is defined analogously (e.g., (71 c)1 c == 
(C, n, d, a)). Forward and backward set selection are extended to Illatrices 
by both rows (aIB, and TIB) and col unl ns (aIIB, and TilB) in the es ta b­
lished Inanner. 

1.11 THE GENERALIZED MATRIX PRODUCT 

The ordinary matrix product of nlatrices X and Y is conlnl0nly denoted 
by ..YYand defined as follows: 

v(x) 

i (i == 1,2, .. . /l(X)
Z +-- XY <-~.:> Z/ == .2 X k X Y/', 

1.'=1 t.i == 1, 2, . . . 1'( Y). 

It can be defined alternatively as follows: 

(XY)/ == +/(X' X Y). 

This fonn ulation enlphasizes the fact that nla trix nl ultipl ication incorpor­
ates two elCIllentary operations (+, x) and suggests that they be displayed 
explicitly. The ordinary Inatrix product will therefore be written as 
X Y. 
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More generally, if 0 1 and O 2 are any two operators (whose dornains 
include the relevant operands), then the generali:?ed Inatrix product 

X (_ ~ Y is defined as follows: 

ri = 1, 2, ... , /1( X)
(X ~ Y)/ = 0I/(Xi 0 2Yj), tj = 1, 2, ... , v( Y) . 

For example, if 
4 1 

0 3
A= 1 0 and B= 

0 2(~ 
3 2

!)0 0 
2 0 

then 5 , A ~A~B=(l~ 14) 
20 4 

B= GD' 
A 'j B = and (A T 0) ; B =(l :), (~ D·,6 

The generalized matrix product and the selection operations together 
provide an elegant formulation in several established areas of nlathe­
matics. A few examples will be chosen from two such areas, synlbolic 
logic and nlatrix algebra. 

In synlbolic logic, De Morgan's laws (/\ lu = V ju and =ju = -/(ii) 
can be applied directly to show that 

u V = U: v. 

In matrix algebra, the notion of partitioning a matrix into subnlatrices of 
contiguous rows and columns can be generalized to an arbitrary parti­
tioning specified by a logical vector u. The following easily verifiable 
identities are typical of the useful relations which result: 

X ~ Y = eliI X) ~ eliII Y) + (til X) t (uII }T), 

ul(X ~ y?) = X ~ (uIY), 

ul/(X ~ Y) = (u/IX) ~ Y. 

The first identity depends on the commutativity and associativity of the 
operator + and can clearly be generalized to other associative conlmu­
tative operators, such as /\, \j, and ~f=. 

The generalized matrix product applies directly (as does the ordinary 
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matrix product X ~. Y) to vectors considered as row (that is, I x n) or as 
column matrices. Thus: 

Z ~ X ~ Y<=>Zi == C'l!CX i 
02 y), 

Z ~ Y ~ X<=>Zj == C)l!(Y CJ 2 X j), 

Z ~ Y ;,~ x<=>z == 0I/Cy 02 x). 

The question of whether a vector enters a given operation as a row 
vector or as a column vector is normally settled by the requirement of 
conformability, and no special indication is required. Thus Y enters as 
a column vector in the first of the preceding group of definitions and as 
a row vector in the last two. The question remains, however, in the case 
of the two vector operands, which may be considered with the pre-operand 
either as a row (as in the scalar product Y '-: x) or as a column. The 
latter case produces a matrix Z and will be denoted by 

where Z/ == Yi C)2 x j , tt(Z) == v(y), and v(Z) == vex). * For example, if 
each of the vectors indicated is of dimension three, then 

Y2' Yl' 

€ ~ Y == Y ~ € == Y2'Yl' Y2' Y2'
(Yl' :~) ; 

(Yl' ::) ; 
Yl' Y2' Y3 Y:3' Y:3' Y:3 

1.12 TRANSPOSITIONS 

Since the generalized matrix product is defined on columns of the 
post-operand and rows of the pre-operand, convenient description of 
corresponding operations on the rows of the post-operand and columns 
of the pre-operand demands the ability to transpose a matrix B, that is, to 
specify a matrix C such that C/ == B/. In ordinary matrix algebra this 
type of transposition suffices, but in 1110re general work transpositions 

* Since each "'vector" Yi () 2 X j is of dimension one, no scan operator 0 1 is required, 
and the syn1bol 0 may be interpreted as a "'null" scan. 
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about either diagonal and about the horizontal and the vertical are also 
useful. Each of these transpositions of a matrix B is denoted by a superior 
arrow whose inclination indicates the axis of the transposition. Th us: 

C~B C/ == B/ 
C/ == B~::;~; i == 1,2, ,11(B) 

---+ 

C~B C/ == Bj +l-i j == 1,2, , v(B) 

-.. I 

For a vector x, either x or x will denote reversal of the order of the com­

ponents. For ordinary matrix transposition (that is, B), the commonly 

used notation B will also be employed. 
Since transpositions can effect anyone or more of three independent 

alternatives (i.e., interchange of row and column indices or reversal of 
order of row or of column indices), repeated transposition can produce 
eight distinct configurations. There are therefore seven distinct transfornla­
tions possible ~ all can be generated by any pair of transpositions having 
nonperpendicular axes. * 

1.13 SPECIAL LOGICAL MATRICES 

Certain of the special logical vectors introduced in Sec. 1.7 have useful 
analogs in logical matrices. Dimensions will again be indicated in paren­
theses (with the column dimension first) and may be elided whenever the 
dilllension is determined by context. If not otherwise specified, a matrix is 
assumed to be sq uare. 

Cases of obvious interest are the ju!1 matrix fern x n), defined by 

fern x n) == 0, and the identity matrix I(m x n), defined by 1/ == (i == j). 
More generally, superdiagonal matrices kl(m X n) are defined such that 
kl/(m X n) == (j == i + k), for k :2: 0. Clearly °1 == I. Moreover, for 
sq uare matrices hi 1"1 == (hr-k)/. 

Four triangular matrices will be defined, the geometrical Sylllbols 
employed for each indicating the (right-angled isosceles) triangular area of 

* These transpositions generate the rotation group of the square [cf. Birkhoff and 
MacLane (1941) Chap. VI]. A pair of transpositions commute if and only if their axes 
are perpendicular. Hence the pair +-- and t may be written unambiguously as-<t- . 
Moreover, ~t- = X. The remaining two transformations can be denoted by 4 and~, 
with the convention that the operator nearest the operand (i.e., the horizontal) is 
executed first. 
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the 111 X n rectangular matrix which is occupied by ones. Thus 

C +-- ...-J (111 X 11) <=> C/ 

C ~- '~ (111 

C +-- ~-=j (111 

X 

X 

11) <=> C:+1 _ j 

11) <--:? C jl + 1 ­ i 
== (i +.i In i 11 (111, 11 ) ) 

for i == 
andj == 

1, 2, 
1,2, 

, 111 

,11. 

C +---~ (111 X J1) <=> C~: ll~ J 

The use of the matrices E and I will be illustrated briefly. The relation 
u ;, v == 2 10 (u v) can be extended to logical matrices as follovvs: 

U / V == (2E) 10 (u ~ V) ~ 

the trace of a square numerical matrix X may be expressed as t == +/1/ X. 
The triangular matrices are employed in the succeeding section. 

1.14	 POLYNOMIALS AND POSITIONAL NlJMBER 
SYSTEMS 

Any positional representation of a number n in a base b number systcln 
can be considered as a numerical vector x whose base b ralue is the quantity 
n == w ~< x, where the lreighting rector w is defined by w == (hl'(X)}, 

b11 
(X)--2, ••• , b2 , bI, 1). More generally, x may represent a number in a 

mixed-radix system in which the successive radices (from high to low order) 
are the successive components of a radix rector y. 

The base y calue oj' x is a scalar denoted by y J__ x and defincd as the 
scalar product y ~ x == w x, where w == n / y is the \veighting vector. 
For example, if y == (7, 24, 60, 60) is the radix vector for the con1n10n 
temporal system of units, and if x == (0, 2, 1, 18) represents elapsed tinlC in 
days, hours, minutes, and seconds, then 

t == w ~ x == (86400, 3600, 60, 1) ~ (0, 2, 1, 18) == 7278 

is the elapsed time in seconds, and the weighting vector w is obtained as 
the product 

0 1 1 1 

" ; y == 0 

0 

0 

0 

1 

0 

1 

1 

0 0 0 0 

7 

24v 

60 

60 

x /(24, 60, 60) 

x /(60, 60) 

x /(60) 

X /£(0) 

86400 

3600 

60 

1 

If b is any integer, then the value of x in the fixed base b is denoted by 
(be) _L x. For example, (2e) _L a 2(5) == 24. More generally, if y is any real 
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number, then (YE) ~ x is clearly a polynomial in y with coefficients Xl' 

X2' ••• , Xl" that is, 

(YE) ~ X == xlyV(X)-l + ... + Xv-I?! + Xv. 

Writing the definition of y ~ X in the form 

y J_ X == (D 7y) : X 

exhibits the fact that the operation is of the double operator type. Its 
use in the generalized matrix product therefore requires no secondary scan 
operator. This will be indicated by a null placed over the syrnbol _l. Thus 

z +---- Xl Y<=>Z/ == Xi Y~j. 

For example, (YE) 1 X represents a set of polynomials in ?! with coeffi­

cients Xl' X 2, ••• , Xl" and Y l X represents a set of eval uations of the 
vector x in a set of bases yl, y2, ... , Y/l. 

1.15 SET OPERATIONS 

In conventional treatments, such as Jacobson (1951) or Birkhoff and 
Mac Lane (1941), a set is defined as an unordered collection of distinct 
elenlents. A calculus of sets is then based on such elementary relations as 
set membership and on such elementary operations as set intersection and 
set union, none of which imply or depend on an ordering anlong mernbers 
of a set. In the present context it is more fruitful to develop a calculus of 
ordered sets. 

A vector whose components are all distinct has been called (Sec. 1.10) 
an ordered set and (since no other types are to be considered) will hereafter 
be called a set. In order to provide a closed system, all of the "set opera­
tions" will, in fact, be defined on vectors. However, the operations will, in 

the special case of sets, be analogous to classical set operations. The 
following vectors, the first four of which are sets, will be used for illustra­
tion throughout. 

t == (t, e, a) 

a == (a, t, e) 

s == (s, a, t, e, d) 

d == (d, u, s, k) 

n == (n, 0, n, s, e, t) 

r == (r, e, d, u, n, d, a, ll, t) 

A variable z is a Inell1ber of a vector x if ,: == Xi for sorne i. Menlbership 
is denoted by,: E x. A vector X includes a vector y (denoted by either 
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x ;2 Y or Y s; x) if each element Yi is a menlber of x. If both x 2 yand 
x S; y, then x and yare said to be similar. Sinlilarity of x and y is denoted 
by x == y.For example, t S; s, t s; r, t S; a, a S; t, t == a, and t r. If 
x S; y and x ¢ y, then x is strict~y included in y. Strict inclusion is denoted 
by x c y. 

The characteristic rector of x on y is a logical vector denoted by €yX, and 
defined as follows: 

u == €yx¢>v(u) == v(y), and u j == (Yj EX). 

sFor example, €/ == (0, I, I, I, O),€/ == (I, I, l)'€sd == (1,0,0,0,1), €d == 
( I, 0, I, 0), and €n r == (1, 0, I, 0, I, 1). 

The intersection of y with x is denoted by y (\ x, and defined as follows: 

y (\ x == €yXjy. 

For example, S (\ d == (s, d), d (\ S == (d, s), S (\ r == (a, t, e, d) and 
r (\ s == (e, d, d, a, t). Clearly, x (\ y == Y (\ x, although x (\ y is not, in 
general, equal to y (\ x, since the conlponents nlay occur in a different 
order and may be repeated a differing number of tinles. The vector 
x (\ y is said to be ordered on x. Thus a is ordered on s. If x and y contain 
no common elements (that is, (x (\ y) == €(O)), they are said to be di.y·oint. 

The set diJference of y and x is denoted by y ~ x and deflned as follows: 

y ~ x == €yXjy. 

Hence y ~ x is obtained fronl y by suppressing those conlponents which 
belong to x. For exalnple, e/ == (1,0,0,0, I) and s Ll t == (s, d). More­
over, €/ == (0, 0, 0) and t ~ s == €(O). 

The union of y and x is denoted by y u x and defined as follows: * 
y U x == y (x ~ y). For exanlple, sud == (s, a, t, e, d, u, k), d u s == 
(d, u, s, k, a, t, e), sUa == s U t == s, and nut == (n, 0, n, s, e, t, a). 
In general, x U y == y U x, and x == (x (\ y) u (x ~ y). If x and yare 

disjoint, their union is equivalent to their catenation, that is, x (\ Y == €(O) 

implies that x U y == x y. 
In the foregoing developnlent, the concepts of inclusion and sinlilarity 

are equivalent to the concepts of inclusion and equality in the conventional 
treatrnent of (unordered) sets. The renlai ning deflnitions of intersect ion, 
difference, and union differ fronl the usual fornlulation in that the result of 
any of these operations on a pair of ordered sets is again an ordered set. 
With respect to sinlilarit)', these operations satisfy the Sallle identities as do 
the analogous conventional set operations on unordered sets \vith respect 
to equality. 

:1: The sY/11bols u and n (and the operations they denote) arc conlnlonly called cup 
and cap, respectively. 
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The forward selection alb and the backward selection Tlb defined in 
Sec. l.10 can both be used to reduce any vector b to a similar set, that is, 

(alb)lb == (Tlb)lb == b. 

Moreover, if f = (alx)lx, g = (aly)ly, and h = (alz)lz, then x = y n z 
implies that f = g n h, and x = y u z implies that f = g u h. 

The unit vector Ei(n) will be recognized as a special case of the charac­
teristic vector E/ in which x consists of the single component j, and 
y = l"(n), where h is the index origin in use. In fact, the notation E:" can be 
used to make explicit the index origin h assumed for E i . 

If z is any vector of dimension two such that Zl E x and Z2 E y, then z is 
said to belong to the Cartesian product of x and y. Thus if x = (a, b, c) 
and y = (0, I), the rows of the matrix 

a 0 

a 1 

A= 
b 0 

b 1 

c 0 

c 1 

are a complete list of the vectors z belonging to the product set of x and 
y. The matrix A will be called the Cartesian product of x andy and will be 
denoted by x @ y. 

The foregoing definition by example will be formalized in a more 
general way that admits the Cartesian product of several vectors (that is, 
u ('9 v 09 ... 09 y) which need not be sets, and which specifies a unique 
ordering of the rows of the resulting matrix. Consider a family of vectors 
Xl, x2, .•. , x' of dimensions d l , d 2, ... , do' Then 

I? "A 1 : d (k -- €) (1 0 , )A +- X 0) x- (9 ... (9 x' <=>. , = Xk" Xh" ... , xl" ' 

for all vectors k such that I ::s:: k i ---: d i . Clearly v(A) = s, and ,u(A) = 

x Id. As illustrated by Table 1.11, the rows of the Cartesian product A are 
not distinct if anyone of the vectors Xi is not a set. 

If the vectors Xi are all of the same dimension, they may be considered 
as the columns of a matrix X, that is, Xi = Xi. The product Xl (>9 x2 

':'J' . . x' = Xl @ X 2 09 ... 09 x, may then be denoted by (il X, or 
alternatively by (2,IIY, where Y is the transpose of X. For example, if 

X = l0(2) E(3) = (0 0 0), 
I I I 

the n @IX is the matrix of arguments of the truth table for three variables. 
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Xl = (a, b, a) 

x 2 = (#, *) A 

x:3 = (0,1) 

d = (3, 2,2) 

Rank. in?: 31 

a # 0 

a # 1 

a 0* 
a 1*
 
b # 0
 

b # 1
 

b 0
*
 
b 1
*
 

a # 0
 

a # 1
 

a 0
* 
a 1* 

Table 1.11 The Cartesian product A = Xl x 2 X 3 

1.16 RANKING 

The rank or index of an elenlent C E b is called the b index (~l c and IS 

defined as the smallest value of i such that c ~ bi. To establish a closed 
system, the b index of any elelllent a ¢ b will be deflned as the null character 
0. The b index of any elelllent (' will be denoted by b Ie; if necessary, the 
index origin in use will be indicated by a sUbscript ap?ended to the 
operator l. Thus, if b ~ (a, p, e), b 10 P == I, and b II P == 2. 

The b index of a vector c is deflned as follo\vs: 

k +- b I c<-:>-k; == b I Ct. 

The extension to nlatrices 111ay be either row by row or (as indicated by a 
doubled operator symbol ll) colulnn by column, as follows: 

J +- B l C<=->Ji == Bi l Ci,
 

K +- B II G'f<=;>Kj == B j I Cj .
 

Use of the ranking operator in a lnatrix prod uct reg uires no secondary 
scan and is therefore indicated by a superior null synlbol. Moreover, 
since the result lnust be linlited to a two-dinlensional array (nlatrix), either 
the pre- or post-operand is required to be a vector. Hence 

J ~- B~) C<:-~->Ji ~ Bi I C, 

K +- b{ C<~>Kj == b I Cj . 

The fi rs t 0 f these ra nks the co III po nents 0 f c \v ith respect toeachoI' a set 
of vectors B1, B'2, ... , B/I, whereas the second ranks each of the vectors 
C I , (''2' ... , C)O with respect to the fIxed vector b. 
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The use of the ranking operation can be illustrated as follows. Consider 
the vector b = (a, b, c, d, e) and the set of all 35 three-letter sequences 
(vectors) formed from its components. If the set is ordered lexically, and 
jf x is the ith lnember of the set (counting from zero), then 

) = (v(b)e) -L (b to x). 

For example, if x = (c, a, b), then (b to x) = (2,0,1), and) = 51. 

1.17 MAPPING AND PERMUTATIONS 

Reordering operations 

The selection operations employed thus far do not permit convenient 
reorderings of the components. This is provided by the mapping operation 
defined as follows: * 

For example, if a = (a, b, ... , z) and k = (6, 5,4), then C = (f, e, d). 
The foregoing definition is meaningful only if the components of k each 

lie in the range of the indices of a, and it will be extended by defining a j as 
the null element ° if) does not belong to the index set of a. Formally, 

am. if m i E ll(v(a)) 
C +-- am<=>ci = { l 

if m i ¢ ll(v(a)).° 
The ability to specify an arbitrary index origin for the vector a being 

mapped is provided by the following alternative notation for mapping: 

am. if m i E li(v(a)) 

{c+-mS;a<=?c;=,o ' 
if m i ¢ li(v(a)), 

where i-origin indexing is assumed for the vector a. For example, if a 
is the alphabet and m = (5,0,0,4,27,0,3), then C = m Jo a = (f, 0, 0, e, 
0,0, d), and (c * oe)/c = (f, e, d). Moreover, mJ2a = (d, 0,0, c, Z, 0, b). 
Elision of j is permitted. 

If a ~ b, and m = b lj a, then clearly m.L b = a. If a $ b, then 
m Jj b contains (in addition to certain nulls) those components common to 
b and a, arranged in the order in which they occur in a. In other words, 

(m * oe)/(m.Lb) = a n b. 

* For the purposes of describing algorithms, this notation is superior to the classical 
"disjoint cycles" notation for permutations [cf. Birkhoff and MacLane, (1941)] because 
(1) the direction of the transformation (from a to c) is unequivocally indicated, and (2) 
the notation directly indicates a straightforward and efficient method for actual execu­
tion, namely, indirect addressing. 
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Consequently, if p, q, ... , t are vectors, each contained in b, then each 
can be represented jointly by the vector b and a mapping vector. If, for 
example, b is a glossary and p, q, etc., are texts, the total storage required 
for b and the mapping vectors might be considerably less than for the 
entire set of texts. 

Mapping may be shown to be associative, that is, m l Ji (m2.L a) = 
(ml.L m 2)Jj a. Mapping is not, in general, commutative. 

Mapping is extended to Inatrices as follows: 

A ~ M r B<=:>Ai = Mil' BiJ II J h , 

C ~ MJJII B<=:>Cj = MjJh B j . 

Rowand column mappings are associative. A row mapping 1M and a 
column mapping 2M do not, in general, commute, but do if all rows of 
1M agree (that is, 1M = e 0 p), and if all columns of 2M agree (that is, 
2M = q ~ e). The generalized matrix product is defined for the cases 

m J
o 

A, and M J
0 

a. 
The alternative notation (that is, c = an}), which does not incorporate 

specification of the index origin, is particularly convenient for matrices and 
is extended as follows: 

A ~ B,n <=> Ai = Bn1,., 

A ~ B n1 <=:> Ai = B,ni' 
Permutations 

A vector k of dimension n is called a j-origin per/nutation rector if 
k == lj(n). A permutation vector used to map any set of the same dinlen­
sion produces a reordering of the set without either repetition or suppres­
sion of elements, that is, k.L a == a for any set a of dimension v(k). For 
example, if a = (f, 4, *, 6, z), and k = (4,2, 5, 1,3), then k Xl a = (6,4, 
Z, f, *). 

If p is an h-origin permutation vector and q is any j-origin permutation 
vector of the same dimension, then q .L p is an h-origin permutation vector. 

Since 

the interval vector lj(n) will also be called the j-origin identity pernultation 
vector. If p and q are two j-origin permutation vectors of the same 
dimension n and if q .L p = lien), then p .L q = lien) also and p and q are 
said to be inrerse permutations. If p is any j-origin permutation vector, 
then q = p lj li is inverse to p. 

The rotation operation k t x is a special case of permutation. 
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Function mapping 

A function f which defines for each element b i of a set b a unique 
correspondent ale in a set a is called a mapping fronl b to a. Iff(b i ) = ale, 
the element bi is said to map into the element ale. If the elements f(b i ) 

exhaust the set a, the functionfis said to map b onto a. If b maps onto a 
and the elements j'(bi ) are all distinct, the mapping is said to be one-to-one 
or biunique. In this case, v(a) = v(b), and there exists an inverse mapping 
from a to b with the same correspondences. 

A program for performing the mapping f from b to a must therefore 
determine for any given element b E b, the correspondent a E a, such that 
a = feb). Because of the convenience of operating upon integers (e.g., 
upon register addresses or other numeric synlbols) in the automatic 
execution of programs, the mapping is frequently performed in three 
successive phases, determining in turn the following quantities: 

1. the index i = b l h, 
2. the index k such that ale = f(bJ, 
3. the element ale. 

The three phases are shown in detail in Program l.I2a. The ranking is 
performed (steps 1-3) by scanning the set b in order and comparing each 
element with the argument b. The second phase is a permutation of the 
integers 1,2, ... , v(b), which may be described by a permutation vector 
j, such that Ii = k. The selection of ji (step 4) then defines k, which, in 
turn, determines the selection of ale on step 5. 

Example 1.2. If 
b = (apple, booty, dust, eye, night), 

a = (Apfel, Auge, Beute, Nacht, Staub) 

are, respectively, a set ofEnglish words and a set of German correspondents (both 
in alphabetical order), and if the function required is the n1apping of a given 
English word b into its German equivalent a according to the dictionary corre­
spondences: 

English: apple booty dust eye night 

German: Apfel Beute Staub Auge Nacht 

thenj = (1,3,5,2,4). If b = "night," then i = 5,ji = 4, and a = a 4 = Nacht. 

If k is a permutation vector inverse to j, then Program I.I2b describes a 
mapping inverse to that of Program I.I2a. If j = (1,3,5,2,4), then 
k = (1,4,2,5,3). The inverse mapping can also be described in terms of 
j, as is done in Program I.I2e. The selection of the ith component of the 
permutation vector is then necessarily replaced by a scan of its components. 
Programs 1. I2d and 1.12e show alternative formulations of Program 1.12a. 



i+-O 

2 i~-i+l 

3 b b i 

4 k +-ii 

5 a +- a7,~ 

(0) b i <=> ah 

2 

3 

4 

5 

~ 
6 

7 

i -<-0 

i +- i + 1 

a a i 

k -<-0 

k+-k+l 

i : il; 

h +-- bk 

(c) a; <=> bki 

i+-O 

2 i +- i + 1 

3 a a j 

4 k -<-ki 

5 b +- b1.: 

(b) a j <=> b k i 

i+-blb 

k -<-ii 

a -<- a k 

(d) b i <=> aji 

k +- (b € = b)/i 

a +-ak 

(e) b i <=> aji 

a Set of correspondents in 
Programs (a, d, e) and set 
of arguments in Programs 
(b, c). 

b Set of arguments in Pro­
grams (a, d, e) and set 
of correspondents in Pro­
grams (b, c). 

j, k Mutually inverse 
permutation vectors. 

Legend 

Program 1.12 Mapping defined by a permutation vector j 
35 
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Ordering vector 

If x is a numeric vector and k is a j-origin permutation vector such that 
the components of Y = k.L x are in ascending order, then k is said to order 
x. The vector k can be determined by an ordering operation defined as 
follows: 

k +- 8j jx 

implies that k is a j-origin permutation vector, and that if Y = k Jj x, then 
either Yi < Yi+1 or Yi = Yi+1 and k i < k i +1. The resulting vector k is 
unique and preserves the original relative order among equal components. 
For example, if x = (7, 3, 5, 3), then ()ljX = (2,4, 3, 1). 

The ordering operation is extended to arbitrary vectors by treating all 
nonnumeric quantities as equal and as greater than any numeric quantity. 
For example, if a = (7,0,3, ,0 5,3), then ()lja = (3,6,5, 1,2,4), and if 
b is any vector with no numerical components, then ()jjb = li(v(b)). 

Ordering of a vector a with respect to a vector b is achieved by ordering 
the b-index of a. For example, if a = (e, a, s, t, 4,7, t, h), and b is the 
alphabet, then m = b II a = (5, 1, 19,20,0,0,20,8) and ()ljm = (2, 1,8, 
3, 4, 7, 5, 6). 

The ordering operation is extended to matrices by the usual convention. 
If K = ())/A, then each column of the matrixB = KJ.LAisinascending 
order. 

1.18 MAXIMIZATION 

In determining the maximum In over components of a numerical vector 
x, it is often necessary to determine the indices of the maximum components 
as well. The maximization operator is therefore defined so as to determine 
a logical vector v such that vjx = m€. 

Maximization over the entire vector x is denoted by €rx, and is defined as 
follows: if v = €rx, then there exists a quantity In such that vjx = In€ and 
such that all components of vjx are strictly less than n1. The maximum is 
assulned by a single com.ponent of x if and only if + jv = I. The actual 
value of the maxin1um is given by the first (or any) component of vjx. 
Moreover, the .i-origin indices of the maximum components are the 
components of the vector vjt i . 

More generally, the maximization operation v +- urx will be defined so 
as to determine the maximum over the subvector ujx only, but to express 
the result v with respect to the entire vector x. More precisely, 

v +- urx<=> v = u\(€r(ujx)). 

The operation n1ay be visualized as follows-a horizontal plane punched 
at points corresponding to the zeros of u is lowered over a plot of the 
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components of x, and the positions at which the plane first touches them 
are the positions of the unit components of v. For example, maximization 
over the negative components of x is denoted by 

v+---Cx < 0)[x 

and if x = (2, -3,7, -5,4, -3,6), then (x < 0) = (0,1,0,1,0,1,0), 
v = (0, 1,0,0,0, 1,0), v/x = (-3, -3), (V/X)l = -3, and. V/l1 = (2,6). 
Minimization is defined analogously and is denoted by ulx. 

The extension of maximization and minimization to arbitrary vectors is 
the same as for the ordering operation, i.e., all nonnumeric quantities are 
treated as equal and as exceeding all numeric quantities. The extensions 
to matrices are denoted and defined as follows: 

v +--- V [X <=> Vi = Vi rXi, 

V +--- V rrX<=> V j = V j [Xj, 

Jl +--- U [
\'"; 

x<=> Vi = Vi[x, 
n 

V +--- U [ X<=> V j = u [X j • 

As in the case of the ordering operation, nlaximization in a vector a with 
respect to order in a set b is achieved by maximizing over the b-index of a. 
Thus if 

H = (d c h d h s h d c h c h d) 

a6kq435k82j92 

represents a hand of thirteen playing cards, and if 

c, d, h, s, 0, 0, 0, 0, 0, 0, 0, 0, 0)
B= ,( 2, 3, 4, 5, 6, 7, 8,9, 10, j, q, k, a 

1, 0, 2, 1, 2, 3, 2, 1, 0, 2, 0, 2, 1) 
then BloH= ,( 

12,4,11,10,2,1,3,11,6,0,9,7, ° 
(4,13) 1_ (B i o H) = (25,4,37,23,28,40,29,24,6,26,9,33,13), 

and (e[((4, 13) ~ (B i O H)))/H = (s, 3) 

is the highest ranking card in the hand. 

1.19 INVERSE FUNCTIONS 

To every biunique* function f there corresponds an illl'erse function g 
such that g(f(x)) = ::c for each argunlent x in the donlain of the function f 

* If the function f is many-to-one, the specification of a unique inverse g is achieved 
by restricting the range of g to sonle set of "principar' values, as is donc, for cxanlplc, 
for the inverse trigonometric functions. 
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It is common practice either to introduce a distinct symbolism for the 
inverse function, as for the inverse functions of logarithm (logo x) and 
exponentiation (b3), or to use a superscript -1, as in sin-1 x or f-l(X). 

The first alternative doubles the number of distinct operator symbols 
required and obscures the relation between pairs of inverse functions; 
the second raises other difficulties. The solution adopted here is that of 
implicit specification; i.e., a statement is permitted to specify not only a 
variable but also any function of that variable. Functions may therefore 
appear on both sides of the specification arrow in a statement. For 
example, 

(2£) 1- x +- z 

specifies the variable x as the vector whose base two value is the number z. 
Certain ambiguities remain in the foregoing statement. First, the 

dimension of x is not specified. For example, if z = 12, x = (1, 1, 0, 0) is 
an admissible solution, but so are (0, 1, 1, 0, 0) and (0, 0, 0, 1, 1, 0, 0). 
This could be clarified by compatibility with a specified dimension of E. 

Thus the statement 
(2£(5)) x+-z 

specifies x unambiguously as (0, 1, 1, 0, 0). More generally, however, any 
previously specified auxiliary variables will be listed to the right of the 
main statement, with a semicolon serving as a separation symbol. The 
current example could therefore be written as 

vex) +- 5 

(2£) 1- x +- z; vex). 

The second ambiguity concerns the permissible range of the individual 
components of x. For example, the base two value of x = (5, 2) is also 
twelve. For certain functions it is therefore necessary to adopt some 
obvious conventions concerning the range of the result. The assulnption 
implicit in the preceding paragraph is that each component of x is limited 
to the range of the residues modulo the corresponding radix. This con­
vention will be adopted. Hence the pair of statements 

y +- (7, 24, 60, 60) 

Y x+- 7278; y 

determines x unan1biguously as the vector (0, 2, 1, 18). 
It is also convenient, though not essential, to use selection operations on 

the left of a statement. Thus the statement 

u/b +- a 
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is understood to respecify only the selected components of b and to leave 
all others unchanged. It is therefore equivalent to the statement 

b~ \ulb, u, a\. 
Similarly, 

ulb ~ ula 
is equivalent to 

b ~ Ib, u, al. 

1.20 LEVELS OF STRUCTURE 

Vectors and matrices are arrays which exhibit one level and two levels of 
structure, respectively. Although in certain fields, such as tensor analysis, 
it is convenient to define more general arrays whose rank specifies the 
number of levels of structure (i.e., zero for a scalar, one for a vector of 
scalars, two for a vector of vectors (matrix), three for a vector of matrices, 
etc.), the notation will here be lilnited to the two levels provided by the 
matrix. * The present section will, however, indicate methods for ren10ving 
this limitation. 

The only essential particularization to two levels occurs in the provision 
of single and double symbols (e.g., "I" and "II", "~" and "Jl") for row 
and column operations, respectively, and in the use of superscripts and 
subscripts for denoting rows and columns, respectively. In applications 
requiring multiple levels, the former can be generalized by adjoining to the 
single symbol an index which specifies the coordinate (e.g., "'II" and "/2'" 
for row and for column compression, and, in general, "//'.) The latter can 
be generalized by using a vector index subscript possessing one con1ponent 
index for each coordinate. 

The generalized notation can be made conlpatible with the present 
notation for vectors and matrices by adopting the nam.e tensor and a 
symbol class (such as capital italics) for the general array of arbitrary rank. 

1.21 SUBROUTINES 

Detail can be subordinated in a more general n1anner by the use of 
subroutines. The nanle of one program appearing as a single statenlent in 
a second prograln implies execution of the nanled progranl at that point; 
the named program is called a subroutine of the second progran1. I f, for 
example, "Cos" is the name of a progran1 which specifies z as the cosine of 

* Further levels can, of course, be handled by considering a fanlily of Illatriccs 1M, 
2M, ... , riM, or falnilies of faolilies /M. 
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the angle between the vectors x and y, then Program l.13a uses the pro­
gram "Cos" as a subroutine to determine r as the cosine of the angle 
between the vectors p and q. 

X+-P Cos (p, q) --1 r - Cos (p , q) ~ 
y +-q r +- Z 

Cos 

r +- Z 

(a) (b) (c) 

Program 1.13 Modes of subroutine reference 

It is sometimes convenient to include the names of the arguments or 
results or both in the name of the subroutine as dummy variables. Thus if 
"Cos (x, y)" is the name of a subroutine which determines z as the cosine 
of the angle between x and y, then Program l.13b uses Cos (x, y) as a 
subroutine to determine r as the cosine of the angle between p and q. 
Similarly, the program "z +- Cos (x, y)" can be used as in Progranl 1.13c 
to produce the same result. 

1.22 FILES 

Many devices used for the storage of information impose certain restric­
tions upon its insertion or withdra\val. The items recorded on a magnetic 
tape, for example, may be read from the tape much more quickly in the 
order in which they appear physically on the tape than in some other 
prescribed order. 

Certain storage devices are also self-indexing in the sense that the item 
selected in the next read from the device will be determined by the current 
state or position of the device. The next itenl read from a magnetic tape, 
for example, is determined by the position in which the tape was left by the 
last preceding read operation. 

To allow the convenient description of algorithlTIs constrained by the 
characteristics of storage devices, the following notation will be adopted. 
A file is a representation of a vector x arranged as follows: 

The null elements denote the "unused" portion of the file not employed in 
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representing x. Each partition Pj determines a position (position j) in the 
file. If a file (1) is in position j, then a forward read, denoted by 

x, p +- 0(1), 

specifies x by the cOluponent Xj' the auxiliary variable p by the succeeding 
partition Pi-i-l' and stops the file in the position j + 1. 

The position of a file cD will be denoted by 7T(W). Thus the statenlent 
j +- 7T(cD) specifies j as the position of (1), whereas 7T(I)) +- j positions the 
file to j. I n particular, 7T(cD) +- 1 denotes the rewinding of the file and 
7T(!)) +- v denotes lvinding, i.e., positioning to the extreme end of the file. 
Any file for which the general positioning operation 7T(<l») +- j is to be 
avoided as impossible or inefficient is called a s.erial or serial-access file. 

Each terminal partition (that is, PI and p~,(P») assumes a single fixed 
value denoted by}... Each nonterminal partition Pi may assume one of 
several values denoted by AI' A2, ••• ,Av(A)' the partitions with larger 
indices normally demarking larger subgroups of components within the 
file. Thus if x were the row list of a matrix, the last conlponent might be 
followed by the partition A3 , the last cOluponent of each of the preceding 
rows by A2, and the remaining components by AI. The auxiliary variable p 
specified by the partition symbol during the read of a file is nornlally used 
to control a subsequent branch. 

A file may be produced by a sequence of jorH'ard record staternents: 

where p is the partition synlbol recorded after the component Xj. As in 
reading, each forward record operation increments the position of the file 
by one. A file which is only recorded during a process is called an output 
file of the process; a file which is only read is called an input file. 

Different files occurring in a process will be distinguished by righthand 
subscripts and superscripts, the latter being usually ernployed to denote 
major classes of files, such as input and output. 

Example 1.3. A set of 171 input files <I)il, i E LI(nl), each tcrn1inatcd by a partition 
A2 , is to be copied to a single output file <1\ 2 as follows. Successive iten1s (C0I11­
ponents) are chosen in turn fron1 files (D 11, (1)/, ... , <I) till, (1)/, (1)/, ... , always 
on1itting from the sequence any exhausted file. A partition A2 is to be recorded 
with the last item recorded on <1\2 

, and all files are to be rewound. The process is 
described by Progran1 1.14. 

Program 1.14. Step 8 cycles k through the values 1 to nl, and step 9 allows the 
read on step 10 to occur only if Uk = O. The logical vector U is of di111cnsion 171 

and designates the set of exhausted files. 1ts kth component is set to unity by 
step 11 when file k is exhausted, as indicated by the occurrence of the partition A2 • 

Each read is normally followed by step 13, which records on the output tl1e the 
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2 
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4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

U ~ e(m) 

k ~O 

7T(<I>12) ~ 1 

i +- m 

n{<I>l) +- 1 

i+-i-l 

u:e 

k +- ml1(k + 1) 

Uk : 1 

b,p +-<I>k1 

Uk ~(p = A2) 

u:e 

<1>12 +- b, Al 

2<D1 +- b, A2 

Program 1.14 

<I> .1 
1, 

<1>2
1 

u 

i= 
b 

Input files for i E "l(m). 
Each has terminal 
partition A2 • 

Output file. 

File <I> l is exhausted if 
and only if u i = 1. 

I tern to be recorded. 

Legend 

Program for Example 1.3 

item read. However, when the last file becomes exhausted, step 14 is executed 
instead to record the last item, together with the final partition A2 • 

Steps 1-6 initialize the parameters u and k and rewind all files. After the last 
item is recorded by step 14, the file rewinds are repeated before the final termina­
tion on step 7. 

It is sometimes convenient to suppress explicit reference to the partition 
symbol read from a file by using a statement of the form 

.Al I fh I A2 . 
~x+-o'-V~, 

where the indicated branches depend on the value of the partItIon Pj+l 
which terminates the read. Thus the left or the right branch is taken 
according to whether Pj+I = Al or Pj+l = A2 • Certain files (such as the 
IBM 7090 tape files) permit only such "immediate" branching and do not 
permit the partition symbol to be stored for use in later operations, as was 
done in Program 1.14. 

In recording, the lowest level partition Al may be elided. Thus statement 
13 of Program 1.14 may be written as 

<D I 2 +- b. 
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A file n1ay be read or recorded backward as well as forward. A backward 
read is denoted by 

x, P +-- I(I>, 

and if <I) is initially in position j + I, then x == Xj' P == Pj' and the final 
position becomes j. Backward recording is defined analogously. The 
zero prescript may be omitted frOITI the syn1bol 0(1) for both fOf'Nard 
reading and recording. 

The conventions used for matrices can be applied in an obvious way to 
an array of files (1)/. For example, the statement 

7T«DI) +-- €
 

denotes the rewinding of the rOlV ofJiles (D/, j E ll(V(V)): the staten1cnt
 

7T((I)J +-- €
 

denotes the rewinding of the colunlll of Jiles <:1)/, i E llCU«D)); and the
 
statement 

ul(Di +-- ulx, ulp 

denotes the recording of the vector con1ponent x j on file (D/ together \vith 
partition Pj for all j such that u j == 1. 

As for vectors and matrices, j-origin indexing D1ay be used and \vill 
apply to the indexing of the file positions and the partition vector A as well 
as to the array indices. I-Iowever, the prescripts (denoting direction of 
read and record) are independent of index origin. O-origin indexing is 
used in the following example. 

Example 1.4. Files <Doo and <1\0 contain the vectors x andy, respectively, each 
of dinlension n. In the first phase, the conlponents are to be nlerged in the order 
x o, Yo, Xl' Y1' ... 'XlI-I' Yjl-l' and the first n conlponents of the resulting vector 
are to be recorded on file (1)01, and the last n on file <1\1. In other words, the 
vectors Xl = anlz, andy1 = wnlz are to be recorded on (1)01 and (1)/, respectively, 
where z = \x, U, y\, and U = (0, 1, 0, 1, ... , 0, 1). In the next phase, the roles 
of input and output files are reversed, and the sanle process is perfornled on Xl 

and yl, that is, x2 = an lexl, u, yl J, and y2 = w n lexl, U, yl J are recorded on 
files <1)00 and <1)1°, respectively. The process is to be continued through IJl phases. 

Program 1.15. The program for Exanlple 1.4 begins with the rewind of the 
entire 2 x 2 array of flIes. To obviate further rewinding, the second (and each 
subsequent even-nunlbered) execution is perfornled by reading and recording all 
files in the backward direction. Step 6 perfornls the essential read and record 
operation under control of the logical vector u, whose conlponents u o, u l ' u 2 

detennine, respectively, the subscript of the file to be read, the subscript of the 
file to be recorded, and the direction of read and record. The 11le superscripts 
(determining which classes serve as input and output in the current repetition) are 
also determined by u 2' the input being u 2 and the output u2 . The loop 6-8 copies 
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7T(<D) +- E(2 x 2) 

U +- £(3) 
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m+-m-1 

U +-U 
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<DU2 +- <D u2 
U 2 U 1 U 2 U o 

U o +- U o 
> k+-k-l 

u 1 +- U 1 

i~ 
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O-origin indexing 

<]) File array of dimension 
2 x 2; original input <Do; 
original output <])1. 

U Control vector. 

U o Column index of input 
file. 

u 1 Column index of output 
file. 

u 2 Row index of current 
input file, and direction 
of read and record. 

n Number of items per 
file. 

m Required number of 
merges. 

Legend 
Program 1.15 Program for Example 1.4 

n iten1s, alternating the input files through the negation of U o on step 7. When 
the loop terminates, u 1 is negated to interchange the outputs, and the loop is 
repeated unless u 1 = u 2 - Equality occurs and causes a branch to step 3 if and 
only if all 2n items of the current phase have already been copied. 

Step 3 decrements 111 and is followed by the negation of U on step 4. The con1­
ponent u 2 must, of course, be negated to reverse direction, but the need to negate 
U oand u 1 is not so evident. It arises because the copying order was prescribed for 
the forward direction, beginning always with the operation 

An equivalent backward copy must therefore begin with the operation 

Not all computer files have the very general capabilities indicated by the 
present notation. Some files, for example, can be read and recorded in the 
forward direction only and, except for rewind, cannot be positioned 
directly. Positioning to an arbitrary position k must then be performed by 
a rewind and a succession of (k - 1) subsequent reads. In some files, re­
cording can be performed in the forward direction only, and the positions 
are defined only by the recorded data. Consequently, recording in posi­
tion k makes unreliable the data in all subsequent positions, and recording 
must always proceed through all successive positions until terminated. 
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1.23 ORDERED TREES
 

Directed graphs
 

For many processes it is convenient to use a structured operand with the 
treelike structure suggested by Fig. 1.16. It is helpful to begin with a more 

114 

1311 n16 

2 2221 n21 

3 

223 n22 

22231 n25 

Figure 1.16 A general triply rooted tree with ).(T) = 16, 'J(T) = (3, 3, 4, 3, 2), 
veT) = 5, ~(T) = (3, 7, 8, 5, 3), and {leT) = 26 
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general structure (such as Fig. 1.17) in which a unidirectional association 
may be specified between any pair of its components. 

A directed graph comprises a vector n and an arbitrary set of unilateral 
associations specified between pairs of its components. The vector n is 
called a node rector and its components are also called nodes. The associa­
tions are conveniently specified by a (logical) connection matrix U of 
dimension v(n) X v(n) with the following convention: there is an associa­
tion, called a branch, fronl node i to node j if and only if Uj ; = 1. 

A directed graph admits of a simple graphical interpretation, as 
illustrated by Fig. 1.17. The nodes might, for example, represent places, 
and the lines, connecting streets. A two-way street is then represented by 
a pair of oppositely directed lines, as shown between nodes 3 and 4. 

If k is any mapping vector such that 

for i = 2, 3, ... , v(k), 

then the vector p = kJn is called a path rector of the graph (n, U). The 
dimension of a path vector is also called its length. Nodes k1 and kv are 
called the initial and final nodes, respectively; both are also called 
tenninal nodes. If j is any infix of k, then q = jJn is also a path. It is 
called a subpath of p and is said to be contained in p. If v(q) < v(p), then 
q is a proper subpath of p. If k1 = k" and p = kJn is a path of a length 
exceeding one, p is called a circuit. For example, if k = (6, 1,7,7,2, 6, 
1, 5), then p = (n6, n 1, n 7, n 7, n 2, nfl' n 1, n 5) is a path vector of the graph 
of Fig. 1.17, which contains the proper subpaths (n7, n 2, n 6), (n1, n 7, 

n 7, n 2, n 6, n 1), and (n7, n 7), the last two of which are circuits. Node j 
is said to be reachable from node i if there exists a path from node i to 
node j. 

Ordered trees 

A graph (such as Fig. 1.16) which contains no circuits and which has 
at most one branch entering each node is called a tree. Since each node 
is entered by at most one branch, a path existing between any two nodes 
in a tree is unique, and the length of path is also unique. Moreover, 
if any two paths have the same final node, one is a subpath of the 
other. 

Since a tree contains no circuits, the length of path in a finite tree is 
bounded. There therefore exist maximal paths which are proper subpaths 
of no longer paths. The initial and final nodes of a maximal path are 
called a root and leaf of the tree, respectively. A root is said to lie on the 
first leeel of the tree, and, in general, a node which lies at the end of a path 
of length j from a root, lies in the jth level of the tree. 
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n2 

n5 
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0 0 0 0 0 

0 0 0 0 0 0 
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0 0 0 0 0 

n4 

Figure 1.17 A graphical representation of the directed graph (n, U). 

A tree which contains n roots is said to be n-tup~v rooted. The sets of 
nodes reachable from each of the several roots are disjoint, for if any 
node is reachable by paths from each of two disjoint roots, one is a proper 
subpath of the other and is therefore not maximal. Similarly, any node 
of a tree defines a subtree of which it is the root, consisting of itself and 
all nodes reachable from it, with the same associations as the parent 
tree. 

If for each level j, a simple ordering is assigned to each of the disjoint 
sets of nodes reachable from each node of the preceding level, and if the 
roots are also simply ordered, the tree is said to be ordered. Attention will 
henceforth be restricted to ordered trees, which will be denoted by upper­
case boldface roman characters. The height of a tree T is defined as the 
length of the longest path in T and is denoted by veT). The nunlber of 
nodes on level j is called the moment oflel'el j and is denoted by fLlT). The 
vector (L(T) is called the moment l'ector. The total number of nodes in T is 
called the moment of T and is denoted by /leT). Clearly, v(fL(T)) = veT), 
and +/fL(T) = /leT) = v(n). The number of roots is equal to fLI(T), and 
the number of leaves will be denoted by ).(T). 

The number of branches leaving a node is called its branchinK ratio or 
degree, and the maximum degree occurring in a tree T is denoted by beT). 
The dispersion rector of a tree T is denoted by veT) and is defined as 
follows: vI(T) = (LI(T), and for j = 2,3, ... , veT), vlT) is equal to the 
maximum over the branching ratios of the nodes on level j - I. For the 
tree of Fig. 1.16, veT) = (3, 3, 4, 3, 2). The number of roots possessed by 
a tree T (that is, vI(T)) is called its dispersion. A tree possessing unity 
dispersion is called rooted or singular. 
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Each node n i of a graph (and hence of a tree) may be identified by its 
index i. Since a tree admits of more convenient index vectors, the under­
lying index i will henceforth be referred to as the graph index. 

In an ordered tree, any path of length k from a root can be uniquely 
specified by an index vector i of dimension k, where i 1 specifies the partic­
ular root, and the remaining components specify the (unique) path as 
follows: the path node on level) is the ijth element of the set of nodes on 
level) reachable from the path node on level )-1. The node at the end of 
the path can therefore be designated uniquely by the index vector i. The 
degree of node i will be denoted by b(i, T). The index vectors are shown 
to the left of each node in Fig. 1.16. 

The path from a root whose tenninal node is i will be denoted by T i . 

In Fig. 1.16, for example, T i == (n 2 , ~8' n 13 , n 24 ) if i == (2, 2, 2, 3). A 
vector i is said to be an index of T if it is the index of some node in T. 

The subtree of T rooted in node i will be denoted by T i . Thus in Fig. 
1.16, P == T(~.~,2) is a rooted subtree with v(P) == (1, 3, 2), and fJ.(P) == 
(1,3,3). A path in T i is denoted by (Ti)i. For example, if G is an 
ascending genealogical tree* with the sword and distaff sides denoted by 
the indices 1 and 2, respectively, then any individual x and the nearest 
(Il - I) paternal male ancestors are represented by the path vector (Gi)€(n), 
where i is the index of x in G. 

Example 1.5. Deternline the index i such that the path T i is equal to a given 
argunlent x and is the "first" such path in T; that is, the function 

(ex"(X) jv(T)) 

is a nlini111U111. 

Program 1.18. The index vector i specifies the path currently under test. Its 
last conlponent is incremented repeatedly by step 7 until the loop 6-8 is terminated. 
If the path T i agrees with the corresponding prefix of the argument x, ternlination 
occurs through the branch to step 9, which tests for conlpletion before step 10 
augnlcnts i by a final zero component. Step 5 then respecifies d as the degree of 
the penultilnate node of the set of d paths next to be tested by the loop. Termina­
tion by a branch from step 6 to step 2 occurs if all d possible paths are exhausted 
without finding agreement on step 8. I n this event, retraction by one level occurs 
on step 2, and d is again respecified. Jf 1'( i) = I, the paths to be searched conl­
prise the roots of the tree and d nlust therefore be specified as the nU111ber of 
roots. This is achieved by executing step 3 and skipping step 5. Retraction to a 
vector i of dinlension zero occurs only jf all roots have been exhausted, and final 
ternlination from step 4 indicates that the tree possesses no path equal to the 
argunlent x. 

* Although such a genealogical tree is not necessarily a tree in the n1athen1atical 
sense, it will be assumed so for present purposes. 
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i +- e(2) 

2 i +- wi/i 

3 d +- fJ.l(T) 

4 < v(i) 1 

5 d +- (5(;)1/i, T) 

6 w i /; : d 

7 ; +- i + wI 

8 =I- T i al'(i)/x 
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I-origin indexing 

Given tree.
 

Given path vector.
 

Path index vector to
 
be determined.
 

Number of roots of T.
 

Degree of node i.
 

Legend 

9 v(i) : vex) 

10 i +- wI\i 

Program 1.18 Deternlination of i such that Ti = x 

If d is a vector of dinlension v(n) such that d i is the degree of node n i of 
a tree T, then d is called the degree vector associated lrith n. In Fig. 1.16, 
for example, 

d = (3, 2, 4, 0, 0, 0, 2, ... , 1, 0, 0). 

Moreover, if n is itself the alphabet (that is, n = (a, b, c, ... , z)), then 
the vector n' of Table 1.19a is a permutation of n, and d' is the associated 
degree vector. Table 1.19b shows another such pair, nil and d". 

The degree vector provides certain useful infornlation lTIOSt directly. 
For example, since each leaf is of degree zero, }.(T) = +/(d = 0). More­
over, the number of roots is equal to the number of nodes less the total of 
the degrees, that is, flol(T) = v(d) - +/d, and the 11laxinlunl degree 
occurring in T is given by beT) = ((€f d)/d)l. Finally, the degree vector 
and the node vector together can, in certain permutations (those of Table 
1.19), provide a complete and compact descri ption of the tree. 

Right and left list matrices 

If each one of the /-leT) index vectors i of a tree T is listed together with 
its associated node (Ti)l'(i)' the list determines the tree conlpletely. Since 
the index vectors are, in general, of different dimensions, it is convenient 
to append null components* to extend each to the common lnaxinlunl 
dimension veT). They may then be combined in an index /JIatrix of 

* In the I-origin indexing system used here it would be possible to use the nUI11eric 
zero to represent the null. In O-origin indexing, however, zeros occur as con1ponents of 
index vectors and must be distinguishable from the nulls used. 
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n' ]' 

a 1 0 0 0 0 

4 c 1 1 0 0 0 

0 f 1 1 1 0 0 

0 d 1 1 2 0 0 

0 r 1 1 3 0 0 
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1 11 1 3 0 0 0 
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P 
q 
u 
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t 
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10 0 0 0 

20 0 0 0 

30 0 0 0 

1 10 0 0 

1 20 0 0 

1 30 0 0 

2 10 0 0 

2 20 0 0 

3 10 0 0 

3 20 0 0 

1 1 10 0 

1 1 20 0 

1 1 30 0 

1 1 40 0 

1 3 10 0 

2 2 10 0 

2 2 20 0 

2 2 30 0 

1 3 1 10 

1 3 1 20 

2 2 :2 10 

2 2 :2 :20 

2 2 2 3 
2 2 2 2 1 
0 

2 2 2 :2 :2 
2 2 2 3 1 

I 

Table 1.19 Full list 111atrices of the tree of Fig. 1.16 

dimension /leT) X veT), which, together with the associated node vector, 
completely describes the tree, If, for example, the node vector n is the 
alphabet, the tree of Fig. 1.16 is described by the node vector n' and index 
matrix I' of Table l.l9a or, alternatively, by n" and I" of Table 1.19b. 

Because of the utility of the degree vector, it 'will be annexed to the array 
of node vector and index matrix, as shown in Table 1.19a~ to form a full 
list lnatrix of the tree. The degree vector and node vector together will be 
called a list lnatrix. As remarked, the list Inatrix can~ in certain pernluta­
tions, alone describe the tree. 

Formally, the full list matrix M of a tree T is defined as follows: a2
/ M 

is an index matrix of the tree, M 1 is the associated degree vector, and M;!. 

Full right list 111atrix ]T 
(b) 
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is the associated node vector. Thus for each k E llCU(T)), M/;: = b(i, T), 
and M/~ = (Ti).l'(i)' where i is the nonnull portion of -a,2/M\ that is, i = 
((fi2/Mk) * 0€)/fi2/ Mk). The corresponding list matrix is a2/ M. 

Since a full list matrix provides a complete description of a tree regard­
less of the order in which the nodes occur in the list, any column permu­
tation MP (that is, any reordering among the rows) is also a full list matrix. 
Two particular arrangements of the full list nlatrix are of prime interest 
because each possesses the following properties: (1) the nodes are grouped 
in useful ways, and (2) the list matrix (i.e., the degree vector and node 
vector) alone describes the tree without reference to the associated index 
matrix. They are called the full left list matrix and full r(r;lzt list matrix and 
are denoted by [T and ]T, respectively. Table 1.19 shows the fuHleft and 
full right lists of the tree of Fig. 1.16. 

The left list index matrix I is left justified, * that is, the null elements are 
appended at the right of each index. The rows Ij are arranged in increasing 
order on their values as decimal (or rather (b(T) + 1)-ary) fractions with 
the radix point at the left and the nulls replaced by zeros. More precisely, 
the rows are arranged in increasing order on the function (1'(o)€) 
(a to Ij), where a = (0, 1, 2, ... , ()(T)). t 

The right list Inatrix is right justified and is ordered on the sanle function, 
namely (v(a)€) ~ (a Lo Ij). The rows are therefore ordered on their values 
as integers, i.e., with the decimal point at the right. Fronl the exalnple of 
Table I.I9b it is clear that the right list groups the nodes by levels, i.e., 

llevel j is represented by the infix (i Ja ,)//(]T), where k = fJ-lT), and 
i = +/aj-1/fJ-(T). In Table 1.19b, for exanlple, fJ-(T) = (3, 7, 8, 5, 3), and 
if j = 3, then k = 8, i = 10, and level j is represented by rows i + 1 = II 
to i + k = 18. The right list is therefore useful in executing processes 
(such as the pth degree selection sort) \vhich require a scan of successive 
levels of the tree. 

The left list groups the nodes by subtrees, i.e., any node i is followed 
inl111ediately by the remaining nodes of its subtree T i. Fornlally, if I = 
cx2/[T, and if i = (II,; :F o€)/II,', then the tree T i is represented by the infix 
((k - I) Ja/I(Ti ))//[T. In Fig. 1.19a, for exa111ple, if k = 16, then i = 

(2,2,2), {l(T;) = 7, and T i is represented by rows 16 to 22 of [T. The left 
list is therefore useful in processes (such as the construction of a H uffnlan 
code and the evaluation of a cOlnpound statenlent) which require a 
treatnlent of successive subtrees. 

The row index of a node in a right (left) list nlatrix is a graph index of 
the node and will be called the right (left) list index. 

* The term left list and the notation [T are both intended to suggest left justification. 
-j- These statements hold only for I-origin indexing. ]n O-origin indexing, a = 

(~, 0,1, ... ,()(T) -1). 
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Well fornlation 

A two-colulnn matrix which forms the right list of son1e tree is said to 
be a It'ell fornled right list. Since the ordering of the nodes in a right list of 
a given tree is unique, the right list of a given tree is unique. Conversely, 
any well fonned right list specifies a unique tree according to the algorithm 
of Progran1 1.20. 

Identical relnarks apply to the left list, except that Progran1 1.20 is 
replaced by PrograIn 1.21. Moreover, the necessary and sufficient 
conditions for the well formation of a left list are identical with those for a 
right list and are derived by virtually identical arguments. The case will 
be stated for the right list only. 

If R is a well fornled right list representing a tree T, then the dispersion 
(i.e., the nUlnber of roots) vl(T) = v(R I ) - (+ IR I ) must be strictly 
positive. Moreover, if S = CiJIIR is any suffix of R, then S is a right list of 
the tree obtained by deleting from T the first j nodes of the original list. 
For, such level-by-Ievel deletion always leaves a legitin1ate tree with the 
degrees of the remaining nodes unchanged. Consequently, the nun1ber of 
roots deternlined by every suffix of R l must also be strictly positive. In 
other words, all components of the suffix dispersion rector s defined by 

Inust be strictly positive. The condition is also sufficient. 
Sufficiency is easily established by induction on the column din1ension 

of R. The condition is clearly sufficient for v(R l ) = 1. Assun1e it sufficient 
for din1ension v(R l ) - 1. If s, the suffix dispersion vector of R, is strictly 
positive, then aIls, the suffix dispersion vector of filIIR, is also positive, 
and by hypothesis aliiR represents a tree G possessing S2 roots. Moreover, 

implies that S2 :2:: R I \ and the number of roots possessed by G therefore 
fulfills the nUlnber of branches required by the added node R 21. A 
legitinlate tree corresponding to R can therefore be fornled by joining the 
last R/ roots of G to the node R 21. 

Tests for well formation can therefore be incorporated in any algo­
rithm defined on a right or left list lnatrix M by computing the components 
of the suffix dispersion vector s. The recursion Si-l = Si + 1 - MJ-l is 
convenient in a backward scan of M, and the equivalent recursion 
Si = Si-l - 1 + Mf--l serves for a forward scan. The starting condition 
for a forward scan is Sl = v(Ml ) - (+IMI ), and for a backward scan is 
51' = 1 - MIll. Since the criteria of well fonnation are identical for right 
and left lists, a nlatrix may be characterized sinlply as well or ill fonned. 
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The purpose served by the degree vector d in the description of a tree is 
sometimes served instead [e.g., Burks et a1. (1954)] by the vector g == 

€ - d. It is sonlewhat 1110re convenient in the analysis of well fOflnation, 
since the expression for the suffix dispersion vector then sinl.plifies to 

or s == (I + 0);-1 g. 

The index matrix as a function of the degree vector 

The complete determination of the tree corresponding to a given list 
111atrix Al is best described as the determination of the associated index 
matrix I. For both left and right lists this can be achieved by a single 
forward scan of the rows of M and of I. 

For a right list R it is first necessary to deternline r, the nUlnber of roots. 
The first r components of R are then the roots of the tree in order, the 
next R1l components of R are the second-level nodes reachable fronl the 
first root, and so forth. Programs 1.20 and 1.21 describe the processes for a 
right list and a left list, respectively. 

Program 1.20. In each execution of the nlain loop 13--16, the ith row of the 
right list R is exanlined to deternline the index vector of each node on the succeed­
ing level which is directly reachable fronl it. The nunlber of such nodes is con­
trolled by the paranleter d, initialized to the degree of the ith node by step 12. 
The (right list) index of the nodes reachable fronl node i is deternlined byj, \vhich 
is incremented on step 14 as the index vector of each node is detern1ined. The 
index vectors of the successive nodes reachable fronl node i have the final con1­
ponents 1, 2, 3, ... , and each nlust be prefixed by the index vcctor of node i. 
This assignnlent is effected by the vector v, which is initialized by thc indcx vector 
of node i rotated left by one (step 11), and which is incren1cnted by step 15 before 
each assignment occurring on step 16. At the outset, v is set to zero and d is sct 
to the nunlber of roots as deternlined by step 4. 

Sincej is, at step 10, equal to the current nunlber of roots r augnlented by the 
cumulative degrees of the first i-I nodes, then r = j - i + 1 and the exit on 
step 10 therefore occurs always and only in the event of ill forn1ation. ;-\Itcrna­
tively, the test can be viewed as an assurance that each row of the ll1atrix 1 is 
specified before it is itself used in specification. 

When step 5 is first reached, the index n1atrix I is cOlllplete but is cxprcssed in 
I-origin indexing with zeros representing the null elen1cnts. Steps 5-7 translate 
the matrix to the origin ¢ and nlask in the nccessary null elen1cnts. 

Program 1.21. The index vectors lj are detennined in order under control of 
the paranletcrj. The loop 5-18 traces a continuous path through the tree, deter­
mining the index of each successive node of the path by rotating the index of the 
preceding node (step 17) and adding one to the last con1ponent (step 13), and 
maintaining in the connection vector c a record C i+1 of the indexj of the successor 
of node i in the path traced. The path is interrupted by the occurrellce of a leaf 
(that is, L1j = 0 on step 18), and the degree vector L 1 is then scanned by the loop 
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15 

16 

i+-O 

j+-O 

v+-o 

d +- ~{Rl) ­

TJ +- (I = 0) 

I +- I + (¢> -

I ~-II, U,oEI 

i : peR) 

i +- i + 1 

>	 i :j 

v +- t Ii 

d -(-R1i 

d+-d-l 

j +-j + 1 

v -(- v + WI 

Ii +- v 

R 

I 

(+ IR]) 
i 

I)E j 

v 

¢> 

< 

I-origin indexing 

Right list of T.
 

Right index matrix of
 
T. 

Index of row of R cur­
ren tly examined. 

Right list index of node 

reachable from node i. 

Current index vector. 

Origin with respect to 
which I is finally ex­
pressed. 

Legend 

Program 1.20 Deternlination of the index n1atrix I associated 
\vith a right list nlatrix R 

(19-20) to deternline the index i of the last preceding node whose branches renlain 
inconlpleted. Steps 22-23 then respecify v as the index vector of the node follow­
ing node i in the path last traced, and step 21 decren1ents the conlponent L1i of 
the degree vector. The branch fron1 step 19 to step 22 occurs at the con1pletion 
of each rooted subtree. The test for well fonnation (step 12) is the sanlC as that 
applied to the right list in Program 1.20, except that the notation for the relevant 
paranleters differs. The concluding operations (6-9) include left justification on 
step 7. 

Tree, path, and level compression 

The tree cOlnpressiol1
 

P +-- U/T
 

specifics a tree P obtained fron1 T by suppressing those nodes corre­
sponding to zeros of the logical tree U, and reconnecting so that for every 
pair of nodes ::C, y of P, x belongs to the subtree of P rooted in y if and only 
if x belongs to the subtree of T rooted in y. If, for exalnple, T is the tree of 
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i~O 

V~O 

r ~ veL}) - (+IL1) 

j /1(L) 

U ~ (1 = 0) 

1 ~ ( +1lJ.(U) t 1 

1 ~ 1 + (1) - I)E 

1 +-- 11, U, 0 E1 

j ~j + 1 

r ~r + L/ 

j r 

v ~- v + w} 

C i+I -(- j 

i -(-j 

i -(- i-I 

k ~- cHI 

V ~- II.' 
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22 

23 

I-origin indexing 

L 

1 

j 

i 

C i +1 

r 

v 

Left list of T. 

Left index matrix of T. 

Index of row of 1 being 
determined. 

Left list index of path 
node preceding node j 
in current path (Step 
16), or index of last 
previous node whose 
branches remain un­
exhausted (step 22). 

Index of node follow­
ing node i in last path 
traced from i. 

Parameter for testing 
well formation. 

Current index vector. 

Origin with respect to 
which 1 is expressed. 

Legend 

Program 1.21 Deternlination of the index Inatrix 1 associated 
with a left list nlatrix L 

Fig. 1.16 with n as the alphabet, and U is the tree of Fig. 1.22a, then P 
is the tree of Fig. 1.22b. The new indices are shown to the left of each node 
of P. The set of nodes 221, 222, ... ,226, are all on the sanle level of P 
although they have been shown with branches of different lengths to 
permit easy identification with the nodes of the original tree T. 
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111 f 

131 

21 k 

2 

b 

U U/T 

(a) (b) 

Figure 1.22 Compression of tree T of Fig. 1.16 (with n = alphabet) 

The compress operation is best executed on the left list because of the 
grouping by subtrees. Program 1.23 gives a suitable algorithlTI which also 
serves as a formal definition of the compress operation. 

Program 1.23. The vector u is specified as the node vector of the left list of the 
controlling logical tree U and controls the subsequent process. Step 4 deternlines 
j as the index of the first zero conlponent of u. Steps 6 and 7 then delete the corre­
sponding nodes of u and of the left list of T, but only after step 5 has deternlined d 
as the change in degree which this deletion will occasion to the root of the sIllallest 
subtree containing the deleted node. Steps 9-1 I perfornl a back\\'ard scan of the 
degree vector to deternline j as the index of the root of the subtree, and step 12 
effects the requisite change in its degree. The exit on step 9 occurs only if the node 
deleted is a root of the original tree, in which event no change is produced in the 
degree of any other node. 

Two further compress operations controlled by logical vectors are 
defined as follows. Path cornpressiol1 is denoted by 

P +- u/T. 
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10 

11 

12 

I-origin indexing 

u Left node vector of U. 

L Left list of T. 

j Index of first zero of u 
(Steps 4-8). Index of root 
of smallest subtree contain­
ing deleted node (Step 12). 

d Change of degree caused by 
deletion of node j. 

r Number of roots indicated 
by infix (aj 

;\ -a.J')jjL, where 
j is initial value and k + 1 
is current value of j. 

u ~ ([U)2 

L ~ a2 j([T) 

U E 

j~(+j'l.ju)+1 

d ~-- L1j - 1 

U -o(-ejju 

r~l 

j ~j - 1 

> 
r 1 

Legend 

Program 1.23 Determination of the left list L = a 2 j[(UjT) 

P is obtained fronl T by suppressing every node on level j if u j == 0, and 
reconnecting as in tree compression. Leref conlpressioll is denoted by 

P *- ulIT, 

and P is obtained from T by deleting each rooted subtree T i for which 
U i == O. 

Path compression by a unit vector €j produces a tree of hcight onc. 
Such a tree is, in effect, a vector and will be treated as one. 

Two related special logical trees are defined: the path tree UE such that 
u!UE == 0 and u!UE is the full tree E whose nodes are all unity, and the 
level tree uE such that ulluE == 0, and ulluE == E. 

Extension of other operations to trees 

Two trees are cornpatible if they have the sanle structure. Elenlcntary 
binary operations are extended node by node to conlpatible trees. For 
example, 

implies that node i of Z is the product of node i of X and node i of y for all 
i. Similarly, 
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specifies M as a tree (of the saIne structure as T) such that node i of M is 
the j-origin b-index of node i of T. 

The lnapping operation is extended to trees so as to pennute the rooted 
subtrees of a tree. Forn1aIly 

P ~ rn •f·J T 

implies that fLl(P) == vern), that Pi is a single null character if rn i ¢ ti(fLl(T)), 
and otherwise Pi == T m.' where j-origin indexing is used for T. 

Permutation of the s'ubtrees rooted in node i of T can be effected as 
follows: 

The notation ciiT will denote the application of the binary operator or 
relation c to the nodes of T in right list order (i.e., dOl1'n successive levels) 
and G /T will denote the san1e application in left list order (i.e., across 
paths). If the operator is sYlnn1etric (i.e., its operands con1mute), then 

oilT == OfT. 
Maximization (UrT) and minin1ization (UlT) are extended to trees in 

the obvious \vay. 
The operations 'l./u, (!)/u, a/a, and T/a are each extended in two ways: 

across paths and down levels. Examples of each appear in Fig. 1.24. 
Operations extending down levels are denoted by double virgules and 
represent an application of the corresponding vector operation to each 
level of the tree considered as a vector. For example, the staten1ent 

V~(JIIA 

implies that each level of V is the forward set selection of the corresponding 
level of A, that is, €j /V == a/€j/A. Operations extending across paths are 
denoted by single virgules and are defined in tern1S of subtrees. Thus 

V~'l./U 

implies that V is obtained fron1 the logical tree U by setting to zero all 
nodes of any subtree rooted in a zero node, and 

V ~ (/)/U 

implies that V is obtained fron1 U by setting to zero every node whose 
subtree contains a zero node. The definitions of a/U and T/U are analo­
gous. 

Homogeneous trees 

If, for all j, every node on level j of a tree T is either of degree zero or of 
degree 'V j ;l(T), then the tree T is said to be unij()rn7. If all leaves of a 
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uniform tree T lie in the same level (necessarily the top), then the tree is 
said to be hOIJ1ogeneous. The structure of a homogeneous tree is completely 
characterized by its dispersion vector veT). All maxin1al paths in a homo­
geneous tree are clearly of the same length, nan1ely veT) == v(v(T)). Figure 
1.25 shows a homogeneous tree and its associated dispersion vector. 

U 

a/IVa/U 

w/u w/IV 

(J/U O-//V 

r/U r//U 

I----~O 

1 o 

~-_....>@ ~I---->"'@ 

1 1 

~I-----~""CD ~I----"~CD 

o 
o o 

~I---_->~@ ~f----""'>@ 

1 

~--->-CD 

--~1 

o 

~I---->~CD 
Figure 1.24 Set selection and 111axin1unl prefix and suffix operations 
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A tree T for which veT) = 111€ is called an I1z-waJ' tree, and a tree for 
which vI(T) = 1 and (iI/v(T) = m€ is called a singular I1z-lray tree. 

The jth component of the mOlnent vector of 
a homogeneous tree is clearly equal to the prod­
uct of the first j components of the dispersion

n 
vector, that is, fL(T) = (0 + I) / veT). The dis­
persion vector is, in turn, uniquely deternlined 
by the moment vector. The total nunlber of 
nodes is given by [leT) = +/fL(T), and it can also 
be shown that fl(T) = Y J_ y, where y is the 
dispersion vector in reverse order. 

Tree compression of a honl0geneous tree H 
g (that is, lJ/H) does not generally produce a 

homogeneous tree, and, in fact, any tree P of 
arbitrary structure can be represented by a pair 
of homogeneous trees U and H such that P = 
U/H. On the other hand, both path and level 

q compression of homogeneous trees produce 
homogeneous trees. Moreover, ifP = u/H, then r 
v(P) = u/v(H), and if P = u//H, then v(P) = 
v(H) - (+ /u)a]. 

Since the structure of a homogeneous tree is 
completely specified by its dispersion vector k, 

h the structure of the special logical trees can be 
specified in the forms E(k), UE(k), and uE(k). 

In a homogeneous tree, the right list or left 
list index of a node can be detennined as an 
explicit function of its index vector. Conversely, 
the index vector i can be determined directly 
from the corresponding left list index, to be 
denoted by I(i), or from the right list index rei). 

U In developing the relations between indices it' 

II(H) = (2,3,2) will be convenient to use O-origin indexing 
M(H) = (2,6,12) throughout. 

Figure 1.25 Homogen­ The right list index is given by 
eous tree H and disper­

rei) = f(i) + g(i),sion and moment vectors 

where f(i) = + /aJ/(i) -1 /fL(T) 

is the number of nodes in the first 1'(i) - 1 levels, and 

g(i) = (a1'(i)/v(T)) 1- i 

is the rank of node i in the v(i)th level. For exampIe, if i = (I, 0, 1) in the 
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tree of Fig. 1.25, then fJ-(H) = (2, 6, 12), j(i) = +/(2, 6) = 8, and 
g(i) = (2,3,2) (1,0,1) = 7. 

Since j(i) depends only on v(i), the index i may be detennined fron1 r by 
first determining v(i) as the largest value for which j'(i) :s: r, and then 
determining i such that 

(cx'J(i)jv(l')) _L i = r - f(i). 

In tracing a path through a tree, the kth node of the set reachable fron1 
node i is the node j = i .2:) (k). It is therefore useful to express r(j) as a 
function of rei). Clearly 

f(j) = f(i) + (fJ-(T))I'(i)--l, 

g(j) = g(i) X (v(T))IJ(i) + jl'-l. 

In the special case of a singular hon10geneous In-way tree, 

f(i) = 1 + 1n + n1 2 + ... + 1111'(i)-::' = (111e) l- e(v(i) - 1) 
m 1!(i)-1 _ 1 

111 - 1 

Hencej(j) = 1 + m X j(i), and g(j) = nl X g(i) + 11'-1' Recursion can 
therefore be performed simply upon the single function rei) as follows: 

r( j) = 111 X r( i) + 1 + jl' - 1. 

The left list index lei) is most conveniently expressed as a function of 
v(i) and of the vector z(i) (zero extension of i), where z = cx1'(i>Cv(T))\i. 
Clearly v(z) = veT) and z is the index of the "earliest" leaf reachable froIn 
node i. In Fig. 1.25, for example, z((I, 2)) = (1,2,0). 

The zero extension has the obvious property that every node above the 
path TZ(i) precedes node i in the left list, and every node belo\v the path 
follows it. The number of nodes in the path which precede node i is 
v(i) - 1. 

The number of leaves above the path TZ(i) is veT) ~ z(i), and n10re 
generally, the number of (j - 1)th level nodes above it is given by 
(cxj/v(T)) ~ (cxj/z(i)). Consequently, 

l'(T) 

lei) = v(i) - 1 + 2 (cxi/v(T)) l- (cxijz(i)). 
j=l 

For example, if i = (1,0) in Fig. 1.25, then z(i) = (1,0,0) and 

lei) = v(i) - 1 + (2) ~ (1) + (2, 3) ~ (1,0) + (2,3,2) l- (1,0,0) = 11. 

The foregoing result may be written alternatively as 

lei) = v(i) - 1 + w : z(i), 

where W v = 1, and Wi-~ = 1 + (Wi X vieT)). In the foregoing exan1p1e, 
w = (10,3, 1), and w;- z(i) = 10. This form is most convenient for 
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determining i as a function of I, for since w t z = I + 1 - v(i), then 
zo(i) = II -7- woJ, zI(i) = l((wo II) - 1) -7- wIt etc. for all positive values 
of the quotient, and all components thereafter are zero. The dimension 
v(i) is then determined from the relation v(i) = I + 1 - w ~ z(i). 
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EXERCISES 

Organize each of the programs according to the method of leading decisions. 
Except where otherwise indicated, use I-origin indexing. The conventions of 
Sec. S.I of the Summary of Notation will be used in the statement of each 
of the exercises. 

1.1 Let d = (a, 2,3,4,5,6,7,8,9, 10,j, q, k), S = (c, d, h, s), u = (1,0, 1,0,1), 
v = (0, I, I, 1, 0), x = (16, 8, 4, 2, I), and y = (2, 3, 4, 5, 6). Determine 

(a) the dimensions v(d), v(s), and vex). 

(b) the vectors x + y, x - y, x x y, x -:- y, and u + v. 
(c) the logical vectors u /\ v, u V v, (u =/-= v), and (u = v). 

(d) the reductions +lx, x IY, /\ lu, and V Iv. 
(e) the base two values of u and of v, that is, +/(x x u), and +/(x x v). 
(f) the rotated vectors 2 t d, 4 i s, and iy. 
(g) the unit vector £1(5) in a I-origin system, and £3(5) in a O-origin system. 
(h) the infixes (a5(7) /\ w 5(7)) and 2 t a 3(7). 
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1.2 Show that 
(a)	 x /L l(n) = 11! (Include the case n = 0.) 
(b)	 + /Lj(n) = n(n + 2j - 1) -:- 2. 
(c)	 xj(k i x) = x/x. 

(d) (k i x) + (k i y) = k i (x + y). 

1.3 Write detailed (i.e., conlponent-by-conlponent) progran1s for the following 
operations. Include tests for conlpatibility of the operands. 

(a)	 w ~- U 1\ v. (g) u ~- a)(k). 
(b) W ~- V V V. (h) u -(-- i 1a)(k). 

(c)	 b ~ - u/a. (i) c ~- \a, u, b " 

(d)	 B +-- u/A. (j) c -(- la, u, b/. 
(e)	 B ~- u/vjIA. (k) c ~- u,a. 
(f)	 x +-- (x > O)/x. 

1.4 Establish the identities 
(a)	 la, u, b/ = \u/a, u, u/b;. 
(b)	 \a, u, b, = /u\a, U, u'\b/. 

1.5 The classic "rings-o-seven" puzzle can be posed as follows: an ordered 
collection of n rings is to be placed on (renl0ved fronl) a bar under the following 
constraints: 

(i)	 ring n nlay be placed on or renloved at \vill. 
(ii) ring k may be placed on or removed only if ring (k + 1) is on and all 

succeeding rings are off. 
The state of the rings can be described by a logical vector u, with Uk = 1 if ring k 
is on. Write programs on U which describe the removal of the rings beginning 
with 

(a)	 U = € [The successive values of u represent a r~flected Gray code; see 
Phister (1958).] 

(b)	 u arbitrary. 

1.6 The ordered array of variables used to represent a variable x in S0111e coding 
system 111ay be considered as a vector representation of ::r, denoted by p(~r). In the 
8421 code for decimal digits, for exanlple, p(O) = (0,0,0,0), pel) = (0,0,0, 1), 
and, in general, p(x) is defined by the relation + /[w x p(x)] = x, where w = (8,4, 
2, 1). For each of the following coding systems, (see Richards, pp. 183-184 for 
definitions), write a concise expression for p(::c): 

(a)	 the excess-three code for decimal digits. 
(b)	 any chosen two-out-of-five code. 
(c)	 any chosen biquinary code. 
(d)	 the semaphore code for the alphabet (see any good dictionary). Denote 

each code by a two-component vector p(x) S; lO(8). Use a l:t', where 
a = (a, b, c, ... , z). 

1.7 Let X be a square sparse matrix represented by the logical nlatrix V = 
(X * 0) and either or both of the vectors r = V/X, and c = VIIX. Write pro­
grams to determine the product Y = X ~- X, using the argunlents 

(a)	 r, c, and U. 

(b)	 rand V. 
(c)	 c and U. 



64 The language 

1.8 Prove that 
(a)	 r·rl = -l-.TJ. 
(b)	 lla --:- bJ --:- cJ = la --:- bcJ for all positive integers a, b, and c. 

1.9 Let r = E/A, and c = EllA be the row list and colunln list, respectively, of 
the nlatrix A, and let r ll , A/, and C k be corresponding elenlents of the three 
representations of A.Deternline: 

(a)	 h as a function of k, v(A), and fleA). 

(b)	 k as a function of h, v(A), and fleA). 

(c)	 the pernlutation vector h such that c = h Jr. 

1.10 Show that 

(a) /u = /ii (Use De Morgan's law for two variables and induction.) 
(b) ;/ /u = 210 + /u (Use induction.) 

(c)	 =/u = 210 +/u. 
(d) /u = =/ii. 
(e)	 U'~ v = (2e) 10 (U ~- v). 

(f)	 U c~\ V = U v V. 
(g)	 (t Xu) !\ (v Xw) = (t Aw) /\ (v 7\ u). 

1.11 (a) Show that +/x = +/(u/x) + +/(u/x). (Include the case u = 0.) 
(b) What properties are required of an operator 0 that it satisfy the relation 
established for + in part (a)? 

1.12 Show that 
(a)	 X x Y = (ii/X) (iiIIY) + (u/X) ~ (uIIY). 
(b)	 u/(X Y) = X ;, (u/Y). 

(c)	 ull(X Y) = (uIIX) ~ Y. 
(d)	 (u v)/a = (u/v)/(u/a). 

1.13 Use the result of Exercise 1.Il(b) to extend the results of Exercise I. 12(a-c) 
to logical operators. 

1.14 Write progranls to determine: 
(a)	 the value of the polynomial x at the point a, that is, to evaluate (I/e) __L x 

for.ll = a. Use no nlore than vex) multiplications. 
(b)	 the derivative of the polynomial x, that is, the vector z such that 

d 
(IJe) ~ Z = - ((I/e) x), and l'(Z) = lJ(X).

dy 

(c) the integral z of the polynonlial x satisfying the boundary condition 

(ae) J_ Z = b. 

(d)	 the quotient q and remainder r obtained in dividing the polynonlial n by 
the polynonlial d, for l'(d) ~ v(n}. 

(e)	 the value of the polynonlial n at the point a by using part (d) with d = 

(I, -a). 

(f)	 the value of -
d 

((ye) _L n) at the point a by t\\'O applications of part (e).
dy 

(g) an approxinlate real root of the equation (ye) 1_ x = 0, using parts (e) and 
(f) and the Newton-Raphson formula [Kunz (1957)]. 
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1.15 Let the conlponents of the vector r be the real roots of a polynolllial x. 
Write a progralll to 

(a)	 deterllline the synlnletric functions of r. [Dickson (1939), Ch. X.] 
(b)	 deternline x as a function of r. 

1.16 Write a progralll to deternline the polynolllial x consisting of the fIrst 11 

terms of the exponential series 1 +,1/ + y2/2! -+- .... 
1.17 Write a progranl to deternline the nloduli of all roots of the polynonlial x, 

using the Graeffe method [Kunz (1957)]. Assunle that operations for the logar­
ithm and exponential functions are available as subroutines. 

1.18 List all the I-origin perlllutation vectors of dinlension four which are self­
lnverse. 

1.19 Using I-origin indexing, write progranls to derive 
(a)	 the pernlutation k which is inverse to the pernlutation j. 
(b)	 a pernlutation j which transfornls a given logical vector u to a prefix vector. 

1.20 A square logical lllatrix U such that +/U = +//U = € is sonletinlCs called 
a per/11utation nlatrix, since prenlultiplication of a nUlnerical vector x deterlllines 
a pernlutation of x. Write programs to deternline 

(a)	 the permutation matrix U corresponding to the I-origin pernlutation vector 
k, that is, deternline U such that U x = k J1 x. 

(b)	 the pernlutation k corresponding to a given pernlutation 11latrix U. 
(c)	 the pernlutation V which is inverse to the pernlutation U. 

1.21 Let p be the vector representation of a pernlutation and let c be the 
standard representation in ternlS of disjoint cycles, including all cycles of one 
[Jacobson (1951), p. 34.] Each cycle of c is enclosed in square brackets, each 
half-bracket being considered as a component of c. For exanlple, if c = (L I, 3, 
5,], L 2,4,], L 6,]), then p = (3,4,5,2, 1,6), v(c) = 12, and v(P) = 6, and, in 
general, v( c) = v(P) + 2k where k is the nunlber of disjoint cycles in p. The 
usual elision of cycles of one would give c = (L 1, 3, 5, ], L 2,4, ]), but this deter­
Dlines a unique correspondent p only if the dimension of p is otherwise specified, 
and inclusion of all cycles of one will therefore be aSSUDled. If each infix of 
numerical cOlllponents in c is preceded by a left bracket and followed by a right 
bracket, and if c determines a legitimate pernlutation vector p, then c is said to be 
well./()rnlcd. 

(a)	 Write a progranl to deternline p as a function of a well fornled pernlutation 
c.	 Include determination of the dimension of p. 

(b)	 Modify the program of part (a) to incorporate checks on the well fornlation 
of c. If c is ill formed, the vector p is to be defined as the literal "ill 
formed." 

(c)	 Modify part (b) to process a sequence of vectors cl, c2 , ••• ,each pair being 
separated by a single null element, and the end of the sequence being 
indicated by a pair of successive null elenlents, i.e., to process z = 
c 1 (0) c2 C,. (0,0). Include checks on the well fornlation 
of each pernlutation. 

(d)	 Write a progranl to deternline the parity [Jacobson (1951), p. 36] of a 
pernlutation vector p. 
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1.22 Write detailed progranls for the following processes: 

(a)	 k -(- 01/x (i) nl-(--blo a 

(b) y -(~- nl JI x (j) M -(- B ~o a 

(c)	 V +- u r x (k) u -(- €b(l 

o 

(d)	 V-(ur X (I) c -(- b n a 

(e)	 v -(- 'l..lu (nl) c -(-- b L\, a 

(f)	 V-(wjjU (n) c -(- b u a 

(g)	 v -( alb (0) C -(- a (:) b 

(h)	 V -(- TjjB 

1.23	 (a) Copy onto file (1)1 2 successive groups of itenls fronl the row of flies (1)1 

in cyclic order, onlitting any exhausted files. The end of each group is 
denlarked by a partition A2 , and the end of each file by a partition Aa. 

(b)	 A file which is always recorded in the forward direction and read in the 
backward direction functions as a stack. Using flle (1)22 as a stack, 
nlodify the progranl of part (a) so as to reverse (in the output tile (1\2) 

the order of the itenls within each group. 

1.24 The acconlpanying node vector n and connection nlatrix C together specify 
a directed graph (C/ = 1 indicates a branch fronl node i to node j) which is, in 
fact, a tree. 

n = (a, h, C, d, c, ,f, g) 

0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 

C= 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 

(a)	 Draw one of the possible ordered trees represented by nand C. 
(b)	 For the tree T of part (a) show the full left list [T. 
(c)	 Show the full right list ]T. 

1.25 Write progranls which include tests on conlpatibility and which deternline 
(a) L =	 [T fronl R = ]T 
(b) S =	 ](u/T) fronl fJ.(T), ]T, and u 

(c) M =	 [(ujjT) fronl L = [T and u 
(d) M =	 [(k II T) fronl L = [T and k 

1.26	 (a) Give an exalnple of a well fonned right list which denl0nstrates that a 
prefix of a right list is not, in general, well fornled. 

(b)	 Show clearly where the argunlent used in establishing the well fornla­
tion of any suffix of a well fornled list breaks down when applied to a 
prefix. 



1.27 Give fornlal proofs for the facts that 
(a)	 a left list groups nodes by subtrees. 
(b)	 a right list groups nodes by levels. 
(c)	 ~l(T) = lo(ll) - + Ill, where II is the degree vector of T. 

1.28 Write progranls to deternline ~(T) as a function of 
(a)	 the left list degree vector of T. 
(b)	 the right list degree vector of T. 

1.29 Trace Progranls 1.20 and 1.21 for the tree of Exercise 1.24. 

1.30 Show that for a honlogeneous tree H, ,1f(H) = Y Y, where y = v(H). 

1.31 If H is honlogeneous, v(H) = (3,2,3,4), and i = (1,0,2), deternline, in a 
O-origin systenl 

(a)	 the left list index I(i). 
(b)	 the right list index rei). 
(c)	 the index j of the nodc whose left list index is 27. 

1.32 (a) If K = LO(Il) 1 (€(11) ~ LO(I1)), show that K + K = n(E - n. 
(b)	 If Y is any pernlutation of x and l'(x) = 11, show that x K /', x 

Y K;~~ y. 
1.33 Using the Euclidean algorithm, write progranls to deternline: 

(a)	 d as the greatest conlnlon divisor of positive integers ,I' and /f. 

(b)	 II as the g.c.d. of x and y where ct, x, and y represent polynonlials in ,: 
(e.g., (: €) x). 

1.34 To assure uniqueness, the nunlber of different digits (synlbols) used in a 
base h nunlber systenl nlust not exceed h. The linlitation to the particular range 
o (li' h is, however, not essential. For exanlple, a base three systcnl can be 
constructed using digits -1, 0, and 1, for which it is convenient to adopt the 
synlbols -,0, and +, respectively. The positive nunlbers beginning at zero are 
then represented by the sequence 0, +, + -, +0, + +, + - -, + -0, + - +, 
+0 -, +00, etc. The negative nunlbers beginning at zero are 0, -, - +, -0, 
- -, - + +, - +0, - + -, -0+, -00, etc. 

(a)	 Construct addition and nlultiplication tables for this nunlber systenl and 
calculate the sunl and the product of the nunlbers 0 - and - -. Usc the 
decinlal systenl to check all results. 

(b)	 Negative nunlbers are represented in this systenl without the attachnlcnt 
of a special sign position. Spccial rules regarding sign are therefore 
banished except that it is nece~sary to fornlulate a rule for changing the 
sign of a nunlber, i.e., to nlultiply by nlinus one. Fornlulate such a 
rule. 

1.35 For any integer 11, let.('~ = 21n n, ·1'3 = 31011'.('5 = sin n, and ·1'7 = 71n 11. 

As shown by Garner (1959), the ordered array(.('~, ·1':3' .1'5' ·1'7) provides a representa­
tion of the integer n in a so-called residue nunlber systenl. 

(a)	 Write the residue representations of the flrst ten nonnegative integers. 
(b)	 For integers 11 in the range 0 n (2 x 3 x 5 x 7) show:<' 

(1)	 that the representation is unique. 
(2)	 that an addition algorithnl nlay be defined which treats the several 
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colunlns independently, i.e., there are no carries. (The sunlS must 
also lie within the specified range.) 

(c)	 Discuss the choice of moduli for extending the range of the representa­
tion. 

(d)	 Show that the algorithm derived in part (b) is valid for all positive and 
negative integers in the range -a12 :::;: n < al2 for a = 2 x 3 x 5 x 7. 

(e)	 Derive an algorithm for obtaining -n fronl n. 
(f)	 Derive an algorithm for multiplication. 
(g)	 The sign of the number (i.e., its relation to zero) is not displayed 

directly by this representation. Convince yourself that its deternli­
nation is nontrivial. 

1.36 Let x, y, and z be the positional representations of the nunlbers .r, .'I, and z 
respectively. Using the floor and residue operations, write progranls to deter­
mine z as a function of x andy, where z = J~ + y and the representation in use is 

(a)	 base b. 
(b) mixed base b. 

(c)	 the +, -,0 base three system (of Exercise 1.34). 
(d)	 the residue nunlber system (of Exercise 1.35). 

1.37 Write programs for the multiplication z = x X y for each of the cases of 
Exercise 1.36. 

1.38 Write programs to convert in each direction between the following pairs of 
number systems: 

(a)	 base bl and base b2 • 

(b) base b l and base b2 • 

(c)	 base three and the +. -, 0 base three of Exercise 1.34. 
(d) residue and base b (Exercise 1.35). 

1.39 (a) Show that the superdiagonal matrices satisfy j/ t 7,'/ = U ! 0/. 

(b) A matrix of the form J = (xl + II) is called a Jordan box. Write the 
expansion of the nth power of J. 

(c)	 Show that X t y = Xl ~ yl + X 2 ~ y2 + ... + XI'(X) ~ yl'(X). 

(d)	 Determine an explicit solution to the set of linear equations A .~ x = y, 
where ulx = a and vlY = b are known and where +Iu + +Iv = 
v(A) = II(A). State the conditions for the existence of a unique solu­
tion. 

1.40 Any nonsingular matrix A can be reduced to the identity / by a sequence of 
row operations of the form Ai +-- xAi + yAi, or Ai +-----). Aj. The process which 
accomplishes this (using row operations only) by reducing successive column 
vectors to the successive unit vectors is called Jordan or c0l11plete elilnination. 
If the same sequence of row operations is executed upon the identity nlatrix, it 
will be transfornled to the matrix B such that B t A = I. The inverse of A can 
therefore be obtained by performing Jordan elinlination on the matrix M = 

A / so as to reduce the first l{A) colunlns to the identity. The last v(A) 
columns are then the inverse of A. 

(a) Write a program to detennine the inverse of A by Jordan elimination. 
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(b)	 The sequence of operations which reduce the ith colunln of A to e i is callec 
the ith step of the process, and the ith diagonal elenlent at the beginning of 
the ith step is called the ith pivot elelnent. Modify the progranl of part (a) 
so that each step is preceded by a colunln pernlutation which yields the 
largest (in absolute value) pivot element possible. This nlodification tends 
to reduce the accunlulation of round-off errors. 

(c)	 In the Jordan elinlination of part (a), it is unnecessary to store the identity 
matrix explicitly, and, since the ith colunln is first affected at the ith step, 
only one new colunln need be brought in at each step. Moreover, the ith 
colunln of A may be discarded after its reduction to e i on the ith step, and 
it is therefore necessary to store only a square nlatrix at all ti!nes. Show 
that by shifting all columns to the left and by nloving the rows upward 
cyclically, a very unifornl process results, with the pivot elenlent in the 
leading position at every step [Iverson (1954) or Rutishauser (1959)]. 
Write a progranl for the process. 

(d)	 Modify part (c) to allow the choice of pivot elenlents as in part (b). The 
effects of the pernlutation on the not explicitly recorded identity cannot be 
indicated directly, but the performance of the sanle set of pernlutations in 
reverse order upon the rows of the resulting inverse produces the sanle 
result. Verify this and prograrTI the process. 

1.41	 (a) Show that a group [Jacobson (1951)] can be represented by a square 
matrix M such that each row and each colunln is a pernlutation vector. 

(b)	 Show that M i = M; = II for sonle i. 
(c)	 What are the necessary and sufficient conditions that the group repre­

sented by M be Abelian? 
(d)	 Write a program to deternline all cyclic SUbgroups of a group repre­

sented by M. 

1.42 If U is a logical nlatrix whose rows are each nonzero, nlutually disjoint, and 
collectively exhaustive (that is, (+/U e) = e, and +//U = e), then U defines 
an 111-way partition of n, where 111 = li(U), and n = v(U). The partition is nlore 
commonly represented by the vector p = +/U [Riordan (1958), p. 107]. Clearly 
+ /p = n. Write a program to generate 

(a) all partitions U of a given integer n. 
(b)	 all distinct partitions of n, where U and V are considered equivalent if 

p = +/U is a permutation of q = +/V. 

1.43 Let x be a .'pace vector (i.e., of dinlension three), and let R(x) be the square 
nlatrix l j (e !\ x). Sho\v that 

(a)	 +/R(x x y) = (x x y) X e 

(b)	 e; (x x y) = x x y 
(c)	 (+ /R (x x y» x (w x z) = (x ~- y) x (w ~- z) 

(d)	 (x ~- y) x (x x y) = (x x y) x (x x y) + 2(lx x jy) ~ (lx x jy). 

1.44 Let x . y = (j x x ly) - (lx x jy) be the vector product of x and y for 
vectors of dinlension three. Show that 

(a)	 this agrees with the usual definition [Margenau and Murphy (1943)]. 
(b)	 x' y = -(y' x) 
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(c)	 x· y is perpendicular to x, that is, x t (x . y) = o. (Use the fact that 
t x = 21 x for a vector of dinlension three.) 

---	 x +y 
1.45 Let [x] = \/ (x t x) be the length ofx, let x J! y = [ ] x [ be the cosine of 

. x x y] 

the angle between x andy, and let x a y = '/1 - (x y y)2 be the sine of the angle. 
Use the results of Exercises 1.43 and 1.44 to show that for space vectors 

(a)	 [x· y] = [x] x [y] x (x a y). Note that [x . y] is the area enclosed by the 
parallelogram defined by x and y. 

(b)	 (x . y) . z = (x t z) x y - (y t z) x x 
(c)	 (x· y) ; z = x t (y . z). 



chapter 2 

MICROPROGRAMMING 

The algorithms to be executed by an automatic computer must be 
described in the restricted set of operations .(called instructions or C0111­
mands) provided in a given computer, and an algorithm so described is 
called a C0111puter progran1. Since computer instructions are relatively 
complex, they may be described in turn by 111icroprogra111S employing 
more elementary operations. 

Microprograms may be used to define a computer instruction set for the 
programmer, to define the detailed algorithms by \vhich the computer 
circuits produce the operations of the instruction set, or for a variety of 
other purposes. In the design and development ofa computer, for example, 
it is important to maintain precise and complete communication between 
the computer programmer, the computer (or system) designer, and the 
logical circuit (or hardware) designer. The systeITI designer will, in fact, 
ordinarily begin with a description at the programmer's level and proceed 
through increasing detail to the hardware designer's level. Meanwhile, the 
programmers concerned with evaluating potential performance and with 
developing systems of nletaprograms (so-called autoITIatic programming 
systems) should be enabled to follow and to influence the evolving de­
sign. 

The use of microprogramnling will be illustrated by a description of the 
IBM 7090 computer (to be called the 7090) at a level approximately suited 
to the programmer and the system designer. The final section treats 
some problems in the extension to the hardware design level. 

The programs together with the lists of operands constitute a self­
contained description of the 7090 which, to readers already familiar with 
computer organization and with the relevant sections (1.1 to 1.11 and 1.14) 
of Chapter 1, should prove readable without reference to the text. The 
text serves only to elucidate the microprograms and does not treat all of 
the instructions described by them. Tables 2.1, 2.13, and 2.14 sumnlarize 
the dimensions, format, and significance of the various operands and 
should be consulted as each is first encountered. O-origin indexing will be 
used throughout. 

71 
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2.1 INSTRUCTION PREPARATION 

The operation of an automatic digital computer splits naturally into two 
phases which normally alternate: the instruction fetch and preparation and 
the instruction execution. The former involves the selection from sonle 
information store C,ne/nory) of the next instruction to be executed, its 
transfer to one or more control registers, and perhaps some modification 
of the instruction introduced into the control registers through so-called 
indexing, indirect addressing, or relocation. The execution phase begins 
with the decoding of the operation code segment of the instruction in the 
control registers to select the particular execution microprogranl to be 
enlployed, and contin ues through the execution of the selected micro­
progran1 upon variables in certain central registers and in certain menlory 
registers determined by the address portion or portions of the control 
registers. 

The n1ain memory of the 7090 will be denoted by a logical matrix M of 
dimension 215 x 36. Selection from M is limited to the selection of a row 
Mi; each such row is called a It'ord, and Mi is called It'ord i or register i. 

Dimension 

215Memory M x 36 

I ndex accumulators I 3 x 15 

Sequence vector s (instruction counter) 15 

Command vector C 36 

Upper accumulator u (s, q,p, 1,2, ... ,35) 38 

Lower accumulator (Quotient register) I (s, 1, 2, ... , 35) 36 

Upper accumulator overflow II 

Lower accumulator overflow 

Trapping n10de indicator 

o. norn1al 
] nstruction fetch mode f 1: skip channel trap{

2: skip trap and fetch phase 

o. no indexing 
Indexing class kO(c) 1: normal indexing (15 bit){

2: restricted indexing (9 bit) 

k 1( fo: no indirect addressingIndirect addressing class 
C) ll: indirect addressing 

Console start signal (run) r 

Binary representation of z p( z) 

Table 2.1 Central COlnputer operands 
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Each instruction is a full word selected from M, and the seq uence in 
which instructions are selected is controlled by a control register called the 
instruction counter or sequence register. This register represents a logical 
vector s of dimension 15 whose base two value determines the word i to be 
selected in the next instruction phase. The quantity*Ls is increnlented 
after each instruction fetch and therefore selects instruction words in 
natural ascending sequence. The value of s may, however, be respecified 
by the execution of certain branch instructions. 

c +- M ls 

Program 2.2 Basic instruction fetch 

The current instruction will be denoted by c. It is stored in a 36-bit 
conunand register. 

The basic instruction fetch involves only the variables M, s, and c, and 
is described by Program 2.2. The second step shows that the increnlenta­
tion of _Ls is reduced modulo 215 and that the selection of instructions 
from the 2 15 word memory is therefore cyclic. 

Additive indexing 

It is convenient to the programlTIer to be able to add (or subtract) an 
jndex quantity i to (fronl) the address portion of an instruction in the 
comnland register c before its execution. This quantity is represented in 
base two by a logical vector a and is stored in a special index register. In 
the 7090, the data address portion of c is the fifteen-bit suffix w 1:>/ c and the 
indexing is su btractive: 

_lw};>/c +-- 21;> I CLw 1:>/c - J_a). 

The reduction lTIodulo 21:> again indicates cyclic treatnlent of addresses. 
The 7090 contains three index registers or index accul11ulators which 11lay 

be used independently or jointly. They will be denoted by the index 
In:ltri I of dimension 3 x 15. One or nlore (or none) of the index regis­
ters Ij are selected according to the value of the vector i == (18 t 0.:3)/ C, the 
three-bit index tag portion of the conl11land, as follows: 

~_ w 1.)/ c +-- 21;) I C~ _W I :>/ C - j J(( I8 t 0.3) / c) I) ). 

The address in the conlmand register is clearly decrelnented by the base 

* Since nurnber bases other than two will be used but rarely in the present chapter, 
the elided form -.L x will be used instead of (2e) _~ x. 
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two value of the vector obtained by oring together the selected rows of [. 
The oring of the index accumulators permits simple circuits for their 
selection. It is, however, of questionable value to the programnler, and 
the 7090 index registers are normally used individually. 

Indirect addressing 

It is often convenient (as in the execution of a pernlutation) for a 
programmer to specify a data address indirectly, i.e., to specify the address 
of the word containing the desired data address. Such indirect addressing 
could proceed through several levels, but in the 7090 it is limited to one. 

C12 /\ : 0C13 

wI8jc -(_ w I8 jM Jw15
jc 

Program 2.3 Indirect addressing 

Only the last half of c is respecified by the corresponding portion of the 
selected word, as described by Program 2.3. The occurrence of indirect 
addressing is determined by components and of the operationC 12 C13 

code. 

Dynamic relocation 

The correct execution of any computer program requires that each 
instruction and each operand be stored in the register assigned in the 
construction of the program. A program can, however, be relocated by an 
integral amount n if each word originally assigned to address j is assigned 
to address j + 11, and if each address in the program is also incremented by 
11. The incrementation of program addresses can be performed explicitly 
by an assembler or other metaprogram, or it can be performed dynanlically 
by an additive index register containing the number 11. An index register 
employed exclusively for this purpose is called a base address register. 

More generally, the provision of a table of base addresses pernlits 
independent dynamic relocation of different blocks of a program, where 
each block is confined to a set of successive registers. This is equivalent to 
one-level indirect addressing in which a certain portion of the address 
(e.g., vj(W15j c)) selects from memory one of a table of base addresses to 
respecify the same portion vj(wl.~jc) thus: 

V;'(W15jC) +--- Vj(W15jM~Vj(w15jC)). 

If, for exalnple, v = a 7 
, and the format is otherwise as in the 7090, then 

columns 21-27 of registers 0 to (27 - 1) provide the base addresses for 
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successive blocks of 28 registers each. The 7090 provides no dyncunic 
relocation. 

Branching, interruption, and trapping 

The nornlal sequence of instructions (fetched from successive ll1enlory 
registers) can be interrupted by respecifying the sequence register s. Such 
respecification is perfornled in the execution phase of certain instructions, 
prinlarily those called transjers, and skips. The sinlplest branch is the 
TRA * (transfer), whose execution effects the following operation 

The normal sequence can also be broken by the insertion of an instruc­
tion in the cOlllllland register without disturbing the sequence register. 
Unless the inserted instruction is itself a branch, the nornlal sequence is 
resulned immediately. 

If just before a branch (or insertion) the present value of s is stored in 
sonle chosen memory register i, then the data in register i can be used in a 
subsequent branch to reestablish the original sequence at the point reached 
before the first branch. The storage of s and immediate branch are jointly 
called an interruption. An interruption which is performed autonlatically 
upon the occurrence of certain special conditions is called a trap. A trap 
provides a convenient device for inserting in the nornlal progranl sequence 
a subprograln delnanded by the occurrence of the special. conditions. 

In the 7090, the so-called channel trap is controlled by an 8 x 3 logical 
matrix T whose elements are determined by three different conditions 
existing in each of the 8 input-output channels of the cOlnputer. A corre­
sponding enable n1atrix E (also 8 x 3) and an enahle toggle e deternline 
which elelnents of T are effective. 

The channel trap is effected in the first phase of the instruction fetch 
(Program 2.4) as described by steps 2-8. If the matrix eE /\ T is zero, the 
branch on step 2 skips the trap operation and begins the nornlal fetch on 
step 9. If not, step 3 determines j as the index of the first nonzero row, 
step 4 stores s in a memory register detennined by j, and step 5 stores the 
nonzero row (which indicates the particular condition causing the inter­
ruption) in another portion of the same register. Step 6 resets the indi­
cators which occasioned the trap. Step 7 resets the enable toggle e and 
hence (as is clear from step 2) prevents the occurrence of further traps 
until e is again set to one by the execution of a special enahle instruction 
ENS. (The reset of e to zero prevents the uncontrolled interruption of 
interruptions.) Step 8 performs the actual insertion by transferring to the 

* 7090 instructions will be referred to by the mnemonic codes used in the IBM Alan[{a! 

(1960). 
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command register the content of a second memory register determined by 
j. The seq uence register is undisturbed. 

The 7090 can also be operated in a special trap nl0de which effectively 
converts all transfer instructions (but not skip instructions) into inter­
ruptions. Discussion of this type of trapping will be deferred since it is not 
relevant to the instruction fetch phase. 

Complete instruction fetch 

The complete instruction fetch comprises three phases: channel 
trapping, the fetch proper, and the instruction preparation by indirect 
addressing and j ndexing. They are described by steps 2-8, 9-10, and 11-18, 
respectively, of Program 2.4. 

Certain of the three phases may be skipped according to the setting of 
the fetch mode indicator f In the normal case (j' == 0) none are skipped. 
Iff == I, the trap phase only is skipped. This case occurs after execution 
of an instruction such as the RDS (read select), which must be followed by 
a certain auxiliary instruction within a fixed time limit. Iff == 2 (a case 
which occurs only after execution of the XEC (execute) instruction), the 
trap and the fetch proper are both skipped, and the comlnand already in c 
is merely prepared by indexing and indirect addressing. In every case, j' 
is reset to its normal zero value by step 11. 

Not all instructions are subject to indexing. The indexability of a 
command c is determined by a class function kO( c), which assumes the values 
0, 1, or 2, according to whether c is subject to no indexing, nonnal indexing 
(affecting all fifteen bits of the address), or restricted indexing (affecting 
the last nine bits of the address), respectively. This behavior is determined 
by the branch on step 13. 

A second class function k 1( c) determines whether the instruction c is of 
a type subject to indirect addressing. Actual indirect addressing of any 
particular instruction of the appropriate type is initiated by the configura­
tion C 12 == I and C 13 == 1. The function k 1( c) is itself independent of C 12 

and C13 . 

The class functions kO( c) and k 1( c) will themselves be specified by 
prefacing the mnemonic code of each instruction described by a pair of 
digits. Thus, 

11 CLA 

indicates that clear and add is subject to both indexing and indirect 
addressing, and 

10 CHS 

indicates that change sign is subject to indexing but not to indirect ad­
dressing. 



77 §2.2 Instruction execution 

2 

3 

4
 

.. 5
 

7 

8 

9 

10 

]1 

12 

13 

14 

15 

16 

1R 

> 
.l: 1 

eE /\ T : 0 

.i +- + jaj /\ j(eE /\ T) 

M lO-+2j -<-- W 15(36)\s 

(15 ~ (1.3)j M 10--j2j ~- (eE /\ T)j 

e «- 0 

c -<- Mll+2j 

e -<-M~s 

J.s -<-2151 (I + _s) 

f' ~O 

a -<- k 1( e) /\ e12 /\ e13 

kO(e) : 1 
> 

~w15je -<- 215 I (J_w15 je - L(i XI))
 

Jw 9 je -<- 29 1 (J w 9 jc - J (i ::: w 9 jl)
 

a : 0 

(/ -<-- 0 

i = (1 8 t (1.3) Ic 

Program 2.4 Complete instruction fetch 

The phases of instruction preparation are performed in the following 
order: 

indexing (if indicated); indirect addressing (if indicated). 

Moreover, if indirect addressing is performed, the new address is itself 
re-indexed (if indicated). As shown by steps 12, 16, and 18, the indirect 
addressing is limited to a single level. 

2.2 INSTRUCTION EXECUTION 

The execution phase begins with the "decoding" of the operation part 
of the command c to select the appropriate microprogram to be executed. 
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Except for the format of the operation code* (which in the comn10n case 
occupies the prefix a 12/ c) the details of the decoding are, however, of no 
interest to the programmer, and attention will be confined to the execution 
microprogran1s. These may be grouped into a small number of falnilies; 
for the 7090 they are load and store, branch, logical, arithnletic, shift, 
concert, and input-output. 

Certain of the arguments and results of the computer instructions are 
represented by three central data registers to be denoted by I, u, and d. 
The registers u and I serve as accumulators in the addition and other 
arithmetic operations, and, since u and I jointly represent double precision 
numbers (i.e., carries are in some operations propagated between the high 
order end of I and the low order end of u), they will be called the upper and 
lower accumulator, respectively. Since I receives the multiplier in a 
multiplication and the quotient in division, it is called (in the 7090 manual) 
the Multiplier-Quotient or MQ register, and the letter Q occurs in the 
mnemonic code for instructions affecting it. 

Signed numeric quantities are represented in base two with the sign in the 
first component, i.e., register i represents the quantity y = (1 - 2 MOi) x 
(~al/Mi). The lower accumulator I is, like each memory register, of 
dimension 36, and the sign of a numeric quantity is represented by 10 , 

The upper accumulator is of dimension 38 and represents the number 
(1 - 2uo) x (~a.l/U). The two extra components u 1 and u 2 are called 
orerfioH' positions and are excluded from normal transfers of data fron1 u 

to the memory. The component u 2 (called the p-bit) is, however, included 
instead of the sign bit U o in certain logical instructions. The component 
u 1 (called the q-bit) is made accessible only by certain shift operations. 

The register d (distributor) serves only as intermediary in transfers 
between main memory and the central data registers u and I and is not 
accessible to the programmer. 

Load and store 

In each member of the family of basic load and store instructions 
(Program 2.5), the memory word involved is selected by W 15/ c, the address 
portion of the instruction. The instruction STA stores only the address 
part of u, and STD stores the decrement part, so called because it is used 
in certain instructions to specify the amount of decrement to be applied to 
an index register. The STP stores the p-bit and the first two digits of the 
magnitude part of u; that is, the three-bit prefix of the logical part of u 
which enters into logical operations. The STO instruction stores the 

* The operation code representing instruction x is a logical vector to be denoted by 
p(x). Thus p(CLA) = (000101000000). 
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Load Q 11 LDQ 

Store Q 11 STQ 

Store left half Q 11 SLQ 

Store 11 STO 

Store zero 11 STZ 

Store address 11 STA 

Store decrement ] I STD 

Store prefix II STP 

Store tag J I STT 

Store instruction 
location counter 11 STL 

Store logical \vord 11 SLW 

Instruction execution 

I *- M. w 
15 

jc 

M.; w 15 jc -0(­ I 

a18jM' w 15 jc +-­ a 18 jl --+ 

M - w 
15 

jc +-- ( ~ a,2)/U --+ 

M ~ w 15 jc +-- 0 

W15/M.:.w15jc +-- W 15 /U 

(3 ~ ( 15)/Ml.w 15 
jC -0(­ (5 ~ ( 15)/u 

a 3/M .w 
15 

jc +-- (2 ~ ( 3)/u 

(18 ~ ( 3)/M .Lw
15 

jc -0(­ (20 ~ ( 3)/u 

W 15/M! w 15 jc +-- S 

M w 15 jc -(- (j2/U 

Program 2.5 Load and store instructions 

normal numeric part of u (that is, all but the overflow bits), whereas SLW 
(store logical word) stores the p-bit instead of the sign. 

The instructions which load and store the index accumulators (ProgralTI 
2.6) are of four types, as indicated by the leading letter of each of the 
mnemonic codes, L for load index from memory, S for store index in 
memory, A for load index from the address of the command register~ and 
P for place the index in the upper accumulator or the upper accumulator 
in the index. The portion of nlenl0ry, command register~ or upper 
accumulator involved in each of the ten instructions which specify the 
index is shown in steps 1-10. The last fi ve of these differ from the corre­
sponding nlembers of the first five only by complenlentation on 215~ as 
shown in step 11. Since the subtraction occurring in indexing (step 14 of 
Program 2.4) is reduced modulo 21.\ the effect of complenlentation is to 
add rather than subtract the quantity used to load the index aCCUlTIU­
lator. 

Step 12 shows that the index accumulators specified are selected by the 
three-bit tag vector i == (18 1a.3)jc and that each receives the same specifying 
quantity. Since the tag vector is used to select the index registers to be 
specified, it cannot also be used to specify indexing of the instruction 
itself, and, consequently, none of the load and store index instructions are 
indexable. Neither do they permit indirect addressing. 
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Load index from address 00 LXA 

Load index from 
decrement 00 LXO 

Address to index true 00 AXT x +- W 15/c 

x +- w 151uPlace address in index 00 PAX 

Place decrement in index 00 POX 

Load complement of 
address in index 00 LAC 

Load complen1ent of 
decrement in index 00 LOC 

Address to index 
complemented 00 AXC 

Place address in index 
complemented 00 PAC 

Place decrement in 
index complemented 00 POC X +- (5 ~ a15)lu 

_L x +- 215 I ( - _l x) 

i III +- e( +Ii) ;, x 

W151M, w1f>/c -«- i XIStore index in address 00 SXA 

(3 ~ a15)IM ~_w15/C -«- i \ IStore index in decrement 00 SXO 

Place index in address 00 PXA u -(-- w 15(38)\(i X1) 

tl -(- (5 ~ a 15(38))\(i I)Place index in decrement 00 PXO 

(i = (18 ~ a3 )lc)
 

Program 2.6 Load and store index instructions
 

The last four steps show the storing of the index accun1ulators. 

§2.2 
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J3 

14 

15 

]6 

The 
quantity stored is the or function of the accumulators selected by the tag 
(18 1a:3)jc. 

Branch instructions 

The basic branch instructions are of two main types, the transfer 
z.Jenoted by a leading Tin the mnenlonic code) and the skip. The behavior 
of the skip instructions is shown in steps 1-10 of Progranl 2.7, and is 
typified by the PST (p-bit test) of steps 1 and 10. If the p-bit of the upper 
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accumulator is not zero, the sequence vector is increnlented so as to skip 
the next instruction in the sequence; if the p-bit is zero, the instruction has 
no effect. The various skip instructions differ in the particular tests nlade, 
and the last two (CAS and LAS) differ also in providing three alternatives, 

p-bit test 

Low order bit test 

Storage zero test 

Storage nonzero 
test 

Compare accum­
ulator with storage 

Logical compare 
accumulator with 
storage 

Execute 

Store location and 
trap 

Leave trapping 
mode 

Enter trapping 
mode 

Trap transfer 

Console clear or 
reset 

10 PBT 

10 LBT 

11 ZET 

11 NZT 

11 CAS 

11 LAS 

It XEC 

00 STR 

10 LTM 

10 ETM 

11 TTR 

s -(-- U 
37 2 

S +- € 6c M _~w15jc 

S -(- E: \~:c M _Lw 
15 

jc 4 

5 

6 

s ~- (d 0) + (d 

_Ls +- 21ii l(s + J_S) 

c +-1\"11- w 
15 

jc 

f~- 2 

wF)jM°+-s 

0) 

8 

<} 

10 

11 

12 

13 

.-is -(- 2 

t -(- 0 

14 

----+ 15 

t ~- 1 --+ 16 

S +-wl.'jc 

(1, f, [(, I, h) +- 0 

--+ 17 

~~18 

Program 2.7 Skip type and other special branches 

skipping 2, 1, or 0 instructions according to whether the quantities COIll­

pared stand in the relation <, =, or >, respectively. 
When operating in the 110ntrapping 11lode (t = 0), the essential operation 

of the transfer type of branch (Program 2.8) is the (conditional) respecifl­
cation of the sequence vector s by the address portion of c. The HTR 
(halt and transfer) also suspends operation of the conlputer until a run 
signal is received from the console (steps 27-29). 

Jn the trapping 11lode, all transfer operations are converted to inter­
ruptions; the sequence vector is first stored in register zero, and a 
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Transfer on index high 

Transfer on index low 
or equal 

Transfer on index 

Transfer on no index 

Transfer with index 
incremented 

Transfer and set index 

Transfer 
Halt and transfer 

Transfer on zero 

Transfer on nonzero 

Transfer on plus 

Transfer on minus 

Transfer on overflow 

Transfer on no over­
flow 

Transfer on Q plus 

Transfer on Quotient 
overflow 

Transfer on low Q 

00 TXH 

00 TXL 

00 TIX 

00 TNX 

00 TXI 

00 TSX 

II TRA)
]1 HTR 

11 TZE 

]1 TNZ 

11 TPL 

11 TMI 

11 TOY 

11 TNO 

11 TQP 

11 TQO 

11 TLQ 

-=1= 

=1= 

b +- (~(i XI) ~(3 t o.};)jc) 

b -(-- ( ~ (i XI) ~ J_ (3 t o.15)jC) 

b ..;- (~(i XI) -i (3 t o.1 ;)jc) 

Y -(- _L(i XI) - .l(3 t o.1;)jc 

.Li/II -(- (215IY)€( +ji) 

b -(- (~(i XI) ~ ~ (3 t o.1;)jc) 

.If -(- I (i XI) + ~ (3 t o.1;)jc 

_L ilII -(.- (21:Jly)€( + ji) 

J. il II -(- (2151( - _Ls»€( + ji) 

h -(-- 1 

h +-(a. 1ju) L E 

h ~- (a.Iju) '!;: € 

(h, u) -(- (u, 0) 

(b, u) -(- (ii, 0) 

(b, !) -(- (I, 0) 

b..;-«(l - 2IoLL~ljl·< (l - 2Uo)~a1jU) 

b -(- b V «I ~ 0. 1
) 1\ (u ~ e» 

t: ] 

b : 0 

S -(-W 15 jc 

w 15 jMO -(- s 

b : 0 

-is +- ] 

o.12 jc : p(HTR) 

r -(- 0 

r : 0 

=1= 
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Program 2.8 Basic transfer type branches 



83 §2.2 Instruction execution 

(conditional) branch is made to register one. This behavior is useful in 
trace programs. The conditions for the various transfers are indicated 
in the setting of the logical variable b. Special indicators (such as the 
overflow toggle u) are reset by the transfer instructions which they control. 

Transfers based on the condition of the index accumulators (steps 1-9) 

are combined with modification of the index registers. The quantity from 
the index accumulators is again the or function of the accurTIulators 
selected by (181 a.3)jc. This quantity is compared with the decrenlent part 
of the command (that is, (31 0.15

)/c)to control the conditional branches and 
is decremented or augmented by the decrement part to nlodify the selected 
index accumulators. 

The TSX (transfer and set index) inserts the complement (on 21;») of the 
sequence vector into the selected index accurTIulators before effecting an 
unconditional transfer. This instruction is convenient for incorporating 
closed subroutines or other interruptions, since a subsequent TRA 
(transfer) with a zero address and indexed by the same index register 
restores the program sequence to the point of interruption. 

As shown in Prograrl1 2.7, only the TTR (trap transfer) is exenlpt fronl 
trapping. The trap indicator is set by the ETM (enter trap nl0de) and is 
reset by the LTM (leave trap mode) as well as by a console clear or reset. 
The XEC (execute) instruction performs no operation upon the central 
data registers but inserts in the normal instruction sequence (without 
breaking it) the instruction in the register specified by the data address 
accompanying the XEC. This is effected by sinlply loading the specifIed 
register into c and (by setting! == 2) skipping the trap and the fetch proper 
of the instruction fetch phase. 

Logical instructions 

The logical operations (Progranl 2.9) concern the logical part of ll, 

which differs from the numeric part by including the p-bit rather than the 
sign, and hence comprises a,2/U. The first instruction of the family (ORS) 
produces the logical or of the word selected fronl storage with the vector 
a2/u and returns the result to the sanle location in storage. The instruction 
ANS (and to storage) is similar. In the ORA (or to accumulator) the 
result u is of dimension 38, and the second operand (that is, M w 

15
/C) is 

expanded to this dimension by inserting two leading zeros before oring 
it with u. The instruction ANA is similar. It is easily verified that ORA 
leaves the extra bits unchanged and that ANA resets them. The ERA 
(exclusive or to accumulator) is anomalous in that it resets the extra bits. 

The ACL (add and carry logical) is normally used only in certain parity 
check algorithms. It adds the selected word to the logical part of u, 
treating both as 36-bit positive base two numbers, again adds any resulting 
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Or to storage 11 ORS 

Or to accumulator II ORA 

And to storage II ANS 

And to accumulator 11 ANA 

Exclusive or to accumulator 11 ERA 

Complement magnitude 10 COM 

Clear magnitude 10 CLM 

Change sign 10 CHS 

Set sign plus 10 SSP 

Set sign minus 10 SSM 

Store logical word 11 SLW 

Clear and add logical 11 CAL 

Add and carry logical J 1 ACL 

§2.2 

wM_Lw 
15 /C +- (a2ju) V M 15 /C 

u +- u V (a2\MI w 
15/C) 

M L w15(C+- (a2 ju) 1\ M J w15/C 

u +- u 1\ (a2\MLw15
/C) 

15 u +- (u * (a2\Mlw /C)) 

a2ju +- 0 

Cilju +- Cilju 

a1ju +-0 

U o +- U o 

U o +- 0 

U o +- 1 

M_i_ w15 /C +- a2ju 

u +- a 2\M_Lw 15
/c 

15y +- _L(a2ju) + J_M_Lw (c 

l-a2ju -(- (236 jy) + (y ~ 236) 

Program 2.9 Logical operations 

overflow to the low order end, and places the result (which will not exceed 
2~~(j - 1) in the logical part of u. The behavior of the remaining logical 
instructions is evident from Program 2.9. As shown by the class functions 
kO and k\ five of them do not permit indirect addressing. * 

Arithmetic instructions 

The description of arithmetic instructions will be illustrated by the family 
of fixed pointt add instructions shown in Program 2. 10. The CLA (clear 
and add) transfers the selected memory register to u, resetting the two 

* Since each of these five instructions involves the accumulator only, the normal 
address portion W 15Ie does not represent an address, and its last three components are 
used in representing the operation code itself. The possibility of indirect addressing 
would suggest to the programmer the nonexistent possibility of specifying an arbitrary 
indirect address in w 15 je. 

t The 7090 incorporates three arithmetic functions: addition, multiplication, and 
division, each of which nlay be performed in either a fixed (radix) point or floating point 
nlode. 
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Clear and 
add 11 CLA u +- ( f (i2)\M Jw

15 /c 

Clear and 
subtract 11 CLS u +-- ( f ( 2)\(al :f M _~w15/C) 

Add 11 ADD d +- M-- w 
15/c 

Subtract 11 SUB d +- (al ~~ M J w 
15 

/C) 

Add 
magnitude 11 ADM d *- (il 1\ M: w 

15 /c 

Subtract 
magnitude 11 SBM 

Round 11 RND 

~al/u +-237 1(lzl)
 

II *- U V «x :j= u 2) 1\ (U o = do))
 

U o +- (z < 0) V (u o 1\ (z = 0))
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Program 2.10 Add instructions 

overflow positions. The CLS (clear and subtract) differs only in that the 
sign is reversed in transfer. 

The instructions ADD, SUB, ADM, and SBM each transfer the 
selected word to d with an appropriate sign, add it to the nun1ber repre­
sented by u (including the overflow positions), and place the sum reduced 
modulo 237 in u. The sign of a zero result is (as indicated by step 12) the 
sign of the number originally contained in u. 

'The overflow indicator u is set only by a carry (but not a borrow) [ron1 
u 3 to u 2. This indicator controls, and is reset by, certain branch in­
structions. 

The RND (round) instruction is used to round up the n1agnitude of the 
number represented jointly by the upper and lower accun1ulator by one 
unit in the high order position of the lower accumulator. As shown in 
Program 2.10, the content of the upper accumulator only is actually 
affected. 

Shift instructions 

In describing computer instructions, the term left shift of a vector x by r 
places refers either to the left rotation x +- r i x or to the left rotation 
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combined with a reset to zero of the last r "vacated positions," that is, 

rx +- (r i x) 1\ w • 

Both types of shift occur in the 7090 and concern various portions of the 
entire accumulator u EB 1, as shown in Program 2.11. The portion affected 
is determined by the mask vector m. 

u +- U V (a r X(mj(u I)) 

mj(u EB I) +- (r t (m/(u 8) I))) 1\ wl' 

Accumulator left 
m +- (il(38) (f) £(36)shift 10 ALS 

m +- (il(38) ~E\ (il(36)Long left shift 10 LLS 

m +-- (il(38) ffi e(36)Logical left shift 10 LGL 

Accumulator right 
m ~- (il(38) £(36)shift 10 ARS 

m ~- (il(38) c±) (il(36)Long right shift 10 LRS 

m +- (il(38) (]) e(36)Logical right shift 10 LGR 

m/(u 8) I) +- (r ~ (m/(u CB I))) 1\ (il' 

I+-rt lRotate MQ 10 RQL 

Exchange accumu­
lator and MQ 00 XCA ( ~ a2)/u ~-~ 1 

( ~ (i2)/U -0(- 0 

Exchange logical 
accumulator and MQ 00- XCL 

r = _lw 8 jc 

Program 2.11 Shift instructions 

The first three instructions are left shifts. Each sets the accumulator 
overflow indicator if any nonzero bits are lost, i.e., if any of the first r 

positions of the affected portion are nonzero. The next three are analogous 
right shifts, which do not, however, set the overflow indicator. In the 
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"long" shifts LLS and LRS, one sign position specifies the other, although 
the sign positions are otherwise excluded from the shift by the mask m. 

The LGR shifts all positions save the sign of u; RQL rotates MQ 
without resetting any positions; and XCA, which "exchanges" the 
accumulators, is effectively a rotation except that it resets the overflow 
bits. The amount of shift r is in each case determined by the base two 

value ofw8/c. 

Convert instructions 

Each convert instruction (Program2.12) selects a six-bit infix of one of the 
accumulators, adds its base two value to a "base address" initially specified 
by the address portion of the instruction, and selects the men10ry register 

00 CAQ} 
00 CRQ 

00 CVR 

d +- c 

1+-6t 1 

j +-j - 1
 

a +- 215 / (_,_W15III + _L a.6II)
 

a.lOlc : p(CAQ)
 

a.6II +- a.6Id
 

_La.! lu +- 237 /( _~Cil/u + :d)
 

a +- 2l5 j( lW151d + ~w6Iu) 

d +-Ma 

Cil/u +- (6 f (al/u)) /\ Ci6 

a.6 j"a2lu +- (a.6lCi2lu) V a.61d 

d +- c 

j +-j ­ 1 < 

2 

3 

4 

5 

6 

7 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Program 2.12 Convert instructions 
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specified by the resulting address. Part of the selected register is used to 
respecify the base address and part to modify one or other of the accumu­
lators. The process is reapplied to successive six-bit infixes in cyclic order 
a number of times determined by the base two value of (10 1( 8)/ c. If 
c20 = 1, the last fifteen bits of the last word selected in the operation are 
transferred to index accumulator ]0. 

Input-output instructions 

Because the data transmission rates of input-output equipment serving 
a computer are n1uch lower than those of the computer proper, computer 
systems are normally designed to permit concurrent operation of the 
computer and one or more input-output units. The units are therefore 
more or less autonomous. 

In the 7090, the autonomy of input-output equipment is carried further 
by providing eight data channels which transmit data to, and are controlled 
by, the computer proper, and which in turn control and accept data from 
the individual input-output units. The entire input-output process there­
fore con1prises three levels of microprograms: a semiautonomous input­
output unit controlled by a semiautonomous data channel controlled by 
the cOlnputer proper. 

Attention will be restricted to the magnetic tape input-output units of 
the 7090. Each unit is available to one specific data channel i (for i = 

o - 7), and a particular unit can be characterized as the file $/. The unit 
is completely autonomous only in certain simple operations, such as 
reH'ind, write end offile, backspace, and continue to end of record. Except 
for these special operations, a given data channel can control only one of 
its files at a time. The eight data channels may, however, operate con­
currently under control of the computer proper. 

Each channel i behaves as a subcomputer with its own sequence vector 
Si, command vector Ci, data register Di, and other miscellaneous operands, 
as shown in Table 2.13. The instructions of the subcomputer (listed in the 
matrix K) are called channel commands and differ from the instructions of 
the computer proper in both format and function. 

Tape Units. Each tape unit behaves as a file (Sec. 1.22); each recorded 
component is an alphanumeric character represented in a seven-bit odd­
parity error-detecting code, the lowest level partition Ao is represented by 
the intercharacter space on the tape, the second level partition Al (called 
an end of record gap) is a longer blank space on tape. 

Each record gap is immediately preceded by a parity check character 
which is appended to the normal data of the record to permit an even 
parity "longitudinal" parity check on each of the seven-bit positions of the 



Dimension 

Channel data registers D 8 x 36 

Channel sequence vectors S 8 x 15 

Channel command vectors C 8 x 36 

rToi : End of file A2 

Channel trap T ~ T i : Parity check 8 x 3 
I I 
I .L T 2 'l : Channel command 

Channel trap enabled E 8 x 3 

Channel trap enabled e 

Tape position limits L Li: (Beginning, End) 8 x 2 

Limit position on tape v (Determined by reflective marker) 

Busy indicator b 8 

Write or read indicator w 8 

Tape unit index 8 

o : Normal read-\vrite 

Functions	 f 1 : Backspace record or write end of 
file 8 

2 : Backspace to file mark 

3 : Rewind 

Load channel waiting r (reload) 8 

Write record gap (AI) next g 8 

Current character X Xi is the 7-bit representation 8 x 7 

yCurrent parity check 8 x 7 

Interlock vector X Xi = 1 if character Xi is loaded 8 

Current character selector V Vi jDi is current character 8 x 36 

End of file indicator Q Qi : (Counter, Potential error) 8 x 2 

Input-output indicator h 
c d 

Channel commands K 

r 

r 

c 

p 

t 

P 
c t 

s P 
s t 

IOCD 

TCH 

IORP 

IORT 

IOCP 

IOCT 

IOSP 

lOST 

Table 2.13 Channel operands 

89 
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preceding record. The check character is recorded automatically and when 
read from the tape is used in the parity check but is not translnitted with 
the data of the preceding record. 

The third and highest level partition (called end offile) is represented by 
a special recorded character A2 which has the seven-bit representation 
p(A2) = (0, 0, 0, ], ], ], 1). I t is recorded together with the appropriate 
check character (which, since the check is of even-parity is also A~) as a 
separate record. The character A2 alone is not recognized as an end of file 
partition; only the sequence AI' A2 , A2 , Al is so recognized. Tapes are 
normally stopped only at a record gap so that, on restarting, the tape is 
fully accelerated before the end of the record gap (and hence data) is 
reached. 

Dinlension 
Character buffer Zl 
Partition buffer PI 
Logical association (connection) AI 

Busy indicator B ~ 8 x # of units per channel 
Write-read status wi 
Function status F 1 

End of file counter RI
J 

AO intercharacter gap
 
File partitions A Al inter-record gap


{ 
A2 end-of-file symbol (000 1111) 

Table 2.14 Input-cutput unit operands 

The tape unit parameters are listed in Table 2.14, and the operation of 
tape unit (1)/ is described by Program 2.] 5. The unit idles at step 5 until its 
busy indicator B/ is turned on by data channel i. After a starting delay of 
about 650 microseconds reg uired to accelerate the tape and reach the 
beginning of the record, one of four functions (listed under f in Table 2.13) 
is perfornled as determined by the function indicator F/. 

If F/ = 0, a normal read or write is perfornled under direct control of 
the data channel as detailed in steps 18-37. If F/ * 0, one of the several 
completely autononlOUS operations is initiated. If F/ is not zero and 
W/ (write indicator) is unity, the autonOITIOUS function write end oj'file 
is performed by steps 1-3, after which the busy indicator is turned off and 
the unit returns to idle status. The end linlit indicator Lli is set by step 3 
if the tape position exceeds a limit v set by a reflective marker attached to 
the tape a short way before its extreme end. 

If W/ = 0 and if F/ = ], 2, or 3, the unit backspaces to the next earlier 
record gap, to the next earlier end of file position, or to position zero, 
respectively. The last is called relt'ind. If, in backspacing, the tape becomes 
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Xi ~ 1 

pji : AO
 

record gap delay
 

~ 
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3 I I ~ r i J\ (kl = t) : 1 

4 III I (b i, A:) +- 0 

5 II I I (b i V B:i) : 1 

6 III I (B: , FI , W: , Xi) +- (l,fi' Wi, Wi) 
i i i 

IJi : 0
 
: III delay
 

9 II~ri+-O 

10 I I I r i : 0
 

11 I I I (Pi EB A: EB Qi) +- (Ao' 1, 3, 0)
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12 I I I (gi EB r i EB yi) +- 0 

13 I ~ Ci +-M.lSi 

14 rl.-LS i 
<- 21510 + .-LSi) 

15 I eft a 3;Ci : p(TCH) 

16 Si +- w15jCi 
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-
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Di +-0 

Vi +- a:6 (36) 

(ko =1= r) J\ ((3 t a:15)jCi ~ e) : 1 

(k° =F c) J\ (p i = AI) : 0 

Pi +-Ao 
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Xi +-0 
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(=jXi) J\ Eli : 1 

Qo
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Q o
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+- QI
i V (Qoi > 0)
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30 I I Xi ~ (:l-jVijDi) E8 VijDi 
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33 V~ : a 6 
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T1i ~ T1i V (V jyi)
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rewound before the appropriate partition is found, the process is terminated 
and the beginning limit indicator Loi is turned on (steps 10-11). 

The file is read backward repeatedly by step 12. When a record gap 
occurs, step 16 is executed, and if F/ = 1, the branch to step 4 returns the 
unit to idle status. If F/ = 3, termination can occur only from step 11, at 
which point the tape is rewound. The counter R ji is used to detect an end 
of file partition. It is reduced by one (step 14) if the character read is A2 or 
to zero if it is not. Since R/ is set to 3 after each record gap, step 17 is 
reached with R / = 1 if and only if the end of file sequence AI, A2 , A2 , Al has 
occurred. 

20 WEF 

20 BSR 

20 BSF 

20 REW 

k +-4 

k +-1 

i +- (-l(9 t w 4)jc) - 1 

b i : 1 

Ii +- k - 3 (k = 4) 

Wi +- (k = 4) 

2 

3 

4 

5 

6 

8 

9 

Program 2.17 Instructions for special tape unit functions 

Before completing the discussion of the remaining functions of the tape 
unit, it may be helpful to follow through the entire process initiated by the 
BSR (back space record) instruction. The channel idles (Program 2.16) on 
step 5 with the busy indicator hi off. The BSR instruction (Program 2.17) 
first determines the index i of the channel addressed, waits on step 6 until 
the selected channel becomes free, sets the tape index t i = j to select the 
particular unit Q)/, the function indicatorii to unity, the write indicator Wi 

to zero, and the busy indicator hi to unity. This last action initiates oper­
ation of channel i, which, as soon as unit <l> / becomes free (B/ = 0), executes 
steps 6-7 and then (since ii > 0) returns the channel immediately to idle 
status. Step 6 transfers to the parameters of the selected unit the relevant 
channel parameters which were themselves specified by the BSR instruction. 
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Step 6 also makes the selected unit busy (B/ == 1), and hence starts it in 
operation. 

The normal read-write functions of the tape unit are described by steps 
18-37. They are initiated by a branch from step 7 in the event that the 
function indicator is zero. Over-all control by the channel is exercised 
primarily through the association indicator A/, which is equal to unity if 
unit j is logically associated with channel i, that is, if data are pennitted to 
flow between them. If writing is in progress (Wji == 1) and A/ beconles 
zero, the unit stops; if reading is in progress, the channel is freed ilnmedi­
ately but the tape continues to a record gap. 

Step 20 performs the read from tape, and if A / == 1, the partition read 
is transferred to Pi' the seven-bit representation of the character read is 
transferred to Xi (both for use by the channel), and the channel-unit 
interlock Xi is set to unity to initiate appropriate disposition of the 
character by the channel. If P/ is not a record gap reading continues, the 
intercharacter delay (not shown) permitting time for the channel to 
dispose of the character before the next is actually read. If P/ is a record 
gap, the corresponding delay elapses before A/ is tested. If A/ == 0, 
the branch to step 4 stops the unit. The tape stops only at a record 
gap although transmission of data may be discontinued earlier by step 
21. 

The writing process begins at step 37 and nlay be discontinued before 
any writing occurs (although the current record gap will be lengthened by 
a few inches of blank tape). The main writing is perfornled by the loop 
28-32, employing the channel interlock Xi. Step 31 sets the tape end lilllit 
indicator. The loop terminates (step 32) when the HTite record gap 
indicator gi is set to unity by the channel. Steps 33-36 then write the 
longitudinal parity check character Yi supplied by the channel, together 
with the inter-record gap partition AI. The write loop is then re-entered 
unless A/ == O. 

Channel operation. Operation of a channel is initiated either by one of the 
special functions (WEF, BSR, BSF, REW) already described, or by a 
WRS (write select), or an RDS (read select). The loading of the channel 
command Ci required to control the two latter functions is, however, 
controlled by a subsequent RCH (reset load channel), which transfers to 
Si the address in memory of the desired channel conlnland. 

The WRS (Program 2.18) selects the channel i specified by a portion of 
its address, waits until the channel is free, sets its tape unit index t i as 
specified by another portion of the address, sets the write indicator Wi to 
unity and the function indicator ii to zero, and, finally, sets b i to start the 
channel. The fetch mode indicator j' is also set to one so as to skip the 
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11 RCH 

b i : 1 

h +-1 

i +- -L(1 t all)jc - (8e) ~ (5, 4, 0) + Co 
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h---J 18 
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Program 2.18 Select unit and load channel instructions 
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channel trap on the next instruction fetch. This prevents a trap frolll 
intervening between the WRS and the following instruction (which is 
nornlally an RCH). The RDS differs only in the setting of Wi on step 4. 

If the channel is not busy (i.e., not selected), the RCH instruction 
(Program 2.18) selects the channel specif1ed by a portion of the operation 
code, sets the input-output indicator h, and copies the instruction address 
to the channel sequence vector Si. If the channel is busy, the RCH 
instruction sets the selected channel to its step 9, whereupon" the channel 
waits on the interlock at step 10. Meanwhile, step 18 of the RCH sets 
Si and step 19 sets the interlock 1'"i so that the channel Inay proceed. 

Steps 13 and 14 of the channel operation load the channel conllnand 
register Ci and increment the channel seq uence register Si. Ifthe comnland 
is a TCH (Transfer in Channel), step 16 causes a branch to a new seq uence 
of commands. If not, the ll'ord count, represented by (3 1a.L»/Ci, is 
tested. Ifit is zero and if the current command is either an IOSP or IOCP, 
the branch to step 13 immediately fetches the next COlnn1and in seq uence. 
Otherwise, indirect addressing of the conlInand occurs (step 19) unless 
C{K is zero. 

Step 20 specifies k according to the class of the command being executed. 
The cOlnnlands are listed in the nlatrix K of Table 2.13. 

The first cOlnponent KOi assumes the value c, r, or s according as the 
COl1lnland having code i is terminated by a word count test, a record gap, 
or by either (signal). The second component K 1 i assunles the value d, p, 
or t according as the channel discontinues operation, proceeds to the next 
cOlnmand in sequence (as determined by SI), or transfers to an LCH 
(Load Channel) instruction which may be awaiting execution by the 
computer proper. Execution of the LCH (Progranl 2.18) is delayed at 
step 1I and branches to step 18 (to respecify Si in the nlanner of the RCH) 
only if the channel reaches step 3. 

Channel operation continues on the right-hand segn1ent (steps 35-65) if 
the operation is a read (w i == 0), and on the left (steps 22-34) if it is a 
uTite. In the latter case, a zero word count causes in1nlediate ternlination 
of the current command. 

The norn1al tern1ination of a command in either read or write n10de 
occasions a branch to step 1, where the tests for continuation begin. Step 
1 sets the Channel Conllnand Trap indicator T./ if the current conlInand is 
of the transfer type and an LCH (Load Channel) is not awaiting execution 
in the con1puter proper. If the con1nland is of the proceed type, step 2 
branches to step 13, where the next comn1and in sequence is fetched. If the 
comnland is of the transfer type and an LCH is waiting (1'"i == 1), step 3 
branches to step 9 to reset parameters and permit the channel to be reloaded. 
1Il all other circulllstances step 4 is executed to disassociate the unit fro III the 
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channel and to return the channel to idle status. In read status, certain 
abnornlal events-the occurrence of a parity error, or an end of file 
partition-return the channel to idle status ilnmediately, regardless of the 
type of command being executed. 

The write operation (steps 22-34) is relatively simple. If the word 
count in (3 10. 15

)/Ci is zero, steps 23-24 ternlinate the current conlnland 
but first initiate the writing of an end of record gap* if the comlnand is of 
the "record" type (e.g., an IORP). If the word count is not zero, step 25 
transfers to the channel data register Di the memory word selected by the 
address portion of the command. The loop 28-33 transfers to the tape 
unit successive six-bit infixes of Di and maintains the longitudinal parity 
check Yi (originally reset on step 12). When all six have been transferred, 
the branch to step 34 decrements the word count and, unless it beconles 
zero, repeats the entire process from step 25. 

The read operation (steps 35-65) begins by resetting D i to zero and the 
infix selector Vi to a G• Step 37 ternlinates the current conlnland if it is of 
the count or signal type and the word count is zero. Steps 38-39 tenl1inate 
the command if it is of the record or signal type and if the last file partition 
read is a record gap. The partition indicator Pi is reset to Ao by step 39. 
Thus a record gap present when termination is caused by a zero count is 
still present on the first execution of the succeeding conlmand, whereas a 
gap which itself causes termination is not present on the succeeding 
command. 

Steps 40-43 show the data interlock, the deternlination of the longi­
tudinal parity check, and the setting of the parity error trap T1 i in the 
event of a parity error in the character. If the corresponding channel trap 
is enabled, step 44 causes immediate ternlination in the event of a parity 
error. Steps 45-48 detect an end of file configuration (using a counter, 
Qoi in a manner similar to that used in Program 2.15), set the indicator 
Q/ if a partition character A2 appears at the beginning of a word, and 
cause termination (from step 49) \vith the end of file trap Toi set if an end 
of file configuration occurs. If the character A2 occurring at the beginning 
of a word is not part of an end of file configuration, step 50 sets the tape 
error trap TIl, and step 51 causes termination if the corresponding channel 
trap is enabled. 

Steps 53-56 are executed only if Pi is a record gap. They reset the 
counters Qi controlling the end of fIle test, test and reset the longitudinal 
parity vector yi, and may cause termination in the event of an error. Step 
57 causes the character transfer of step 58 to be ski pped if the character is 

* Since the partition Al is represented by a gap, the writing of one gap inlnlcdiately 
following anothcr, with no intervcning data, has the effect (whcn subsequently rcad) of a 
single rccord gap. 
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~s *- 2151(1 + _Ls) 

h : 0 

h *- 0 

Beginning of tape test 10 BTT 

End of tape test 10 ETT 

Input-output test 10 lOT 

k *- 1 

Transfer on channel 11 TEF 
end of file 

Transfer on channel 11 TRC 
redundancy 

Transfer on channel 11 TeO 
in operation 

Transfer on channel 11 TCN k *-1 
not in operation 

i *­ ~(1 ~ all)jc - (8e) _L(6, 0) 

b *-(b i "*- k) 

t : 

b : 0 

MO ~ wI5(36)\s 

b : 0 

Program 2.19 Input-output branch operations 
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a potential end of file. Steps 62-65 decrement the word count and transfer 
completed words to successive memory locations unless Cfn is zero. Step 
61 suspends these operations when the word count reaches zero. Since 
step 56 is followed by step 61, the occurrence of a record gap occasions the 
(potential) transfer of a word to memory even though it is incomplete. 
Because of the reset of Di on step 35, the incompleted part of the word is 
zero. 

Auxiliary channel instructions. Program 2.19 shows those branch instruc­
tions which are controlled by indicators associated with the data channels. 
Each indicator tested is also reset. The last four instructions shown are 
subject to the trap mode. 

11 SCH 

11 ENB 

10 RCT 

i ~ 2 _1 (9 ~ a.:~) jC + Co 

y ~ e(36) 

b i : 0 

y~Ci 

(3 ~ a.,15)jy ~ Si 

(Y18' Y20) ~ 0 

M .lw15
/C +-- y 

y ~ MLw15/c 

Eo ~w8jy 

E 1 ~ (10 ~ a8)jy 

E 2 ~w8jy 

-+ 

E~E 

~e ~ 1 

Program 2.20 Trap control and store channel 

The channel indicators T may also cause interruptions as detailed in the 
instruction fetch phase. They are controlled by the enable matrix E and 
the enable trigger e which are set by the ENS (enable) and RCT (reset 
traps) instruction of Program 2.20. The instruction SCH (Program 2.20) 
pernlits storage of the channel registers. 
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2.3 DETAILED LOGICAL DESIGN 

Although a description couched at the progranllner~s level specifies 
completely the functions of a computer~ it requires considerable extension 
to provide a basis for the so-called logical design of circuits for realizing 
the computer. The extensions include: (I) the specification of seq uence in 
the lnicroprograms themselves; (2) further detailing of certain cOlnplex 
functions; (3) reduction of the number of operands (registers) required; 
and (4) economization in the underlying functions provided. The nature 
of these extensions will be indicated briefly. 

In principle~ the problem of seq uence control in the microprogranls does 
not differ from the sequence control in computer progranls. However~ the 
function served by the sequence vector s (a base two representation of the 
address of the succeeding instruction) is freq uently served instead by a ring 
or combination of rings. A ring is a logical vector r of weight one (that is, 
+/r = 1) capable of rotation (i r or lr) and of resetting to one of several 
initial positions Pi (that is, r +- ePi .) 

Certain steps of a microprogram, which at the progralnlner~s level nlay 
be considered as monolithic, must themselves be realized in circuitry as 
more detailed microprograms. The addition of two unsigned (positive) 
nunlbers represented in base two by the vectors x and y might~ for exanlple, 
be performed as in Program 2.21. The result x produced is correct only if 
the sum is less than 21

'(x). 

Economization in the underlying functions provided is achieved by 
restricting the "data paths" provided between the various operands (i.e., 
registers) and by restricting the operands to which certain operations 
apply. Restriction of data paths implies that it is not possible for each 
operand to specify every other operand directly. For exanlple, nlemory 
nlay be restricted to communicate only with the buffer register d so that 
any transfer fronl memory such as 

y:o 

~y 

y ~ t (x 1\ z) 

x +- (x ::/= z) 

Program 2.21 Base two addition 
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M 
r: E (36) ,-----r 

Adder 

Address 
decoder 

s 

Figure 2.22 Data paths 

111ust in fact be perfonned in two steps: 
d~Ml-.S 

c~d. 

An operation such as address decoding (i.e., conversion of the nonnal 
base two representation of an address i into a one-out-of-n code of the 
fornl €i suitable for selecting word i from memory) is relatively costly and 
is not normally provided for all relevant operands (such as sand w I :>/ c in 
the 7090). Instead, decoding 111ay be provided on a single auxiliary 
operand a; the selection of an instruction in the 7090 would then be 
executed in two steps: 

a~s 

c ~ M·~_a. 

All microprograms specified at the programmer's level nlust, of course, 
be translated into equivalent microprogranls which satisfy the path 
constraints. Path restrictions are perhaps best displayed as a "block 
diagram" showing the data paths provided between the various registers 
and operations units. Figure 2.22 illustrates a convenient representation in 
which the paths are shown as connecting lines with arrowheads indicating 
the possible directions of transfer. If the indicated paths are further rc­
stricted to selected components of the operands, this restriction 11lay bc 
indicated by a pair of selection vectors separated by a colon. Thus the 
notation 

W 15(36) : €(15) 

on the path between d and s of Fig. 2.22 indicates that transfers occur 
between w 1;)/d and s. The symbols rand c denote the selection of a rnatrix 
row and a nlatrix column, respectively, as illustrated by the path betwccn 
M and d. Pernlutations may be rcpresented in the fornl pJ. Thus if the 
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vector d were to be transposed (reversed in order) in the transfer to c, the 
path would be labeled with the expression 

pS : €, 

where p = Il-35(36)1 = (35,34, ... , 1,0). 
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EXERCISES 

2.1 Write 7090 progranls for each of the following operations: 
(a) M8 +-- M8 V M9 

(b) M8 +- M8 

f~M6 +--
236 (~M8 + ~M9)1 

(c) LiM7 +_ ((~M8 + ~M9) 236) 

(d) M6 -(-IM7, a 6 , M 91 
(e) M6 +--IM7, w 6 , M 91 
(f) MG -(- IN17 , (8 1a IO), M 91 
(g) MG +-IM7, M8, M 91 [Use lx, u, YI = (x 1\ u) V (y 1\ u)] 
(h) MG -(- U1W1 

2.2 I n the nlagnetic core technology enlployed in the 7090, logical disjunction 
(or) and negation are nluch easier to produce than conjunction (and). Linliting 
the logical functions employed to disjunction and negation, write microprogranls 
for the following 7090 instructions: 

(a) ANS (Use De Morgan's law, Sec. 1.8) 
(b) ERA 

2.3 In the nlagnetic core technology used in the 7090, each transfer of a quantity 
Y into a register x is actually an or with the present content of the register, i.e., 
x +- Y V x. A register lnay also be reset to zero. Subject to the foregoing 
restriction, write microprograms for 

(a) the operation I +-- Mi. (Use two steps.) 
(b) the operations of Exercise 2.2(a). 

2.4 Describe the nlain portion of the instruction fetch of the 7090 (steps 9-18 
of Progranl 2.4) in an algorithnl which satisfies the data path constraints of Fig. 
2.22. 

2.5 Repeat Exercise 2.4 so as to satisfy the constraints of Exercises 2.2 and 2.3 
as well. 

2.6 A vector p which pernlits only the follo\ving types of operation: 
(i)	 p -(- \p, wI, ,t\
 
.. {y -(- w1jp
 

(11) ·lp -11p-(~W 
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is called a pushdown or stack vector. If the successive conlponents of a stack 
vector p are represented by successive 111enl0ry registers, then the operations 
affecting it can be controlled by a single address counter v, which is autoinatically 
increnlented at each operation of type (i) (addition of a new final conlponent) and 
is autolnatically decrenlented at each operation of type (ii) (reference to the final 
conlponent acco111panied by its deletion). 

(a)	 Using the 7090 registers and formats augnlcnted by an address counter l' 

of dinlension 15, write a nlicroprogra111 for an operation LOS (load stack) 
which transfers M· w 

15
/c to the top of the stack [operation type (i)]. 

(b)	 Write a 111icroprogranl for STS (store stack) which transfers the top of the 
stack to M_w 15

/c [operation type (ii)]. 
(c)	 Write a nlicroprogranl for an operation AND which produces the and 

function of the top two components of the stack, deletes thenl, and appends 
the result as a new final conlponent. [The net reduction in v(P) is olle]. 

(d)	 The AND of part (c) has no associated address. Show that aJl 7090 
instructions (other than input-output) can be redefined so that only the 
L OS and STS require associated addresses. 

2.7 In the 7090, a decinlal digit ,r is represented in direct binary coding in a 
six-bit logical vector x, (that is, x = :c), and each register accomnl0dates six 
decinlal digits. Use the cOllvert instructions (Progra111 2.12) in a 7090 progranl to 

(a)	 convert froln binary to decinlal. 
(b)	 convert fronl decill1al to binary. 
(c) replace aJl	 leading zeros (i.e., all preceding the first significant digit) of a 

number represented in deciInal. 

2.8 Write a 7090 program to convert 
(a) froll1 a 36-bit binary code to a 36-bit reflected Gray code [see Phister (1958)]. 

(b)	 fronl a reflected Gray code to binary. 

2.9 A ll1enlory M is called a tqr: or associative nlemory if for any argunlent x 
it yields a direct indication of the row or rows of M \vhich agree with x. If the 
resulting indication is in the forll1 of a vector 5 such that the 111atrix 5//M contains 
the indicated rows, then 5 = M (I, x. More generally, a logical JJlask vector m is 
added to the system so that mlM is cOll1pared with the argunlent mix and sonlC 
desired function of miMI; is represented by miMI; for each k. In the following 
exercises M is assull1ed to be a logical 111atrix. 

(a)	 Use De Morgan's laws (Secs. 1.8 and 1.11 or Sec. 7.1) to derive froIll the 
relation 5 = M x an expression for 5 which would be suited to a circuit 
technology in which disjunction and negation are easier to perform than 
conjunction. 

(b)	 Write a detailed algorithnl using a row-by-row scan of M to deternline 
5 = (mIM) I~ (mix). 

(c)	 Repeat part (b) using a colunln-by-column scan of M. 
(d)	 Use a colunln-by-eolumn seanof Mtodetermine 5 such that 5//Mcontains 

the rows of M of ll1aximull1 base two value [see Falkoff (1961)]. 



chapter 3 

REPRESENTATION OF 
VARIABLES 

3.1 ALLOCATION AND ENCODING 

Although the abstract description of a program may be presented in any 
suitable language, its automatic execution must be perfonned on sonle 
specified representation of the relevant operands. The specification of this 
representation presents two distinct aspects-allocation and encoding. 

An allocation specifies the correspondences between physical devices and 
the variables represented thereby. An encoding specifies the correspond­
ences between the distinct states of the physical devices and the literals 
which they represent. If, for example, certain numerical data are to be 
represented by a set of 50 two-state devices, the two-out-of-five coding 
systenl of Exercise 1.6 might be chosen, and it would then remain to 
specify the allocation. The two-digit quantity "hours worked" might be 
allocated as follows: devices 31-35 represent components 1-5, respectively, 
of the first digit, and devices 29, 16, 17,24, and 47 represent components 
1, 2, 3, 4, 5, respectively, of the second digit. 

The encoding of a variable will be specified by an encoding nlatrix C and 

associated fornlat vector f such that the rows of flC list the representands 
and the rows of flC list the corresponding representations. The encoding 
is normally fixed and normally concerns the programmer only in the 
translation of input or output data. Even this translation is usually 
handled in a routine manner, and attention will therefore be restricted 
primarily to the problem of allocation. 

However, the encoding of numeric quantities warrants special comment. 
It includes the representatIon of the sign and of the scale, as well as the 
representation of the significant digits. Small numbers, such as indices, ad­
nlit not only of the usual positional representation but also of the use of the 
unit vector €j to represent the number j (i.e., a one-out-of-n coding systenl), 
or of the use of a logical vector of weight j (i.e., a base 1 nunlber systenl). 

Allocation will be described in terms of the physical rector 1t, which 
denotes the physical storage elements of the cOInputer. Each conlponent 
of 1t corresponds to one of the v(1t) similar physical devices available, its 
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range of values is the set of physical states achievable by each device, and 
its index is the address of the device. Each component of 1t Inay corre­
spond to a computer register, an individual character position in a register, 
or an individual binary digit within a character, depending on the degree of 
resolution appropriate to the allocation problem considered. The O-origin 
indexing normally used for cOlnputer addresses will be used for the physical 
vector, but I-origin indexing will, throughout this chapter, normally be 
enlployed for all other structured operands. 

An index of the physical vector will be called an address and will itself 
be represented in the (perhaps mixed) radix appropriate to the given com­
puter. The Univac, for example, employs base ten addressing for the 
registers, and (because of the use of ]2-character words) a radix of twelve 
for finer resolution. The address of the fourth character of register 675 
nlight therefore be written as 675.3. In computers which have two or 
nlore independent addressing systems (e.g., the independent addressing 
systems for main menlory and for auxiliary storage in the IBM 705), 
superscripts may be used to identify the several physical vectors 1tJ• 

In general, the representation of a quantity x is a vector (to be denoted 
by p(x)) whose components are chosen from the physical vector 1t. Thus 
p(x) == kJ1t, where k is a mapping vector associated with x. The dimension 
of the representation (that is, v(p(x))) is called the dimension oj'::c in 1t. If, 
for example, p(x) == (1tlO ' 1tn, 1t17 , 1tIH ), then k == (10, 9, 17, 18), and the 
dilnension of x in 1t is four. If p(x) is an infix of1t, then the representation 
of x is said to be solid. A solid representation can be characterized by two 
parameters, its dimension d and its leading address f, that is, the index in 1t 
of its first component. Then p(::c) == (j'1 ad )/1t. 

3.2	 REPRESENTATION OF STRUCTURED 
OPERANDS 

The grid matrix 

If each component of a vector x has a solid representation, then the 
representation of the entire vector is said to be solid and may be charac­
terized by the grid matrix rex), of dimension vex) x 2, defined as follows: 
rli(x) is the leading address of p(xJ, and r2 

i (x) is the dimension of Xi in 1t. 
If, for example, the vector x is represented. as shown in Fig. 3.1 a, then 

17 2 

19 4 

rex) == 27 5 

23 1 

32 3 
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Any structured operand can first be reduced to an equivalent vector, and 
the grid 111atrix therefore suffices for describing the representation of any 
construct, providing only that the representation of each of its elements is 
solid. Thus a matrix X 111ay be represented by either the row-by-row list 
r == E/ X or the column-by-column list c == Ell X, and a tree T 111ay be 
represented by the left list matrix [T or the right list matrix ]T, either of 
which may be represented, in turn, by a vector. 

If a process involves only a sn1all number of variables, it is practical to 
n1ake their allocation implicit in the algorithn1, i.e., to incorporate in the 
algorithm the selection operations on the vector 1t necessary to extract the 
appropriate variables. This is the procedure usually en1ployed, for 
example, in simple con1puter progran1s. In processes involving numerous 
variables, implicit allocation lTIay become too cumberSOlTIe and confusing, 
and more systelTIatic procedures are needed. 

Linear representations 

The representation of a structured operand is said to be lincar if each 
component is represented by an infix of the form (/1 ad )/1t, where I is a 
linear function of the indices of the component. For exalTIple, the 
representation of the matrix X indicated by Fig. 3.2 is linear, with d == 2 
and I == - 11 + 5i + 8). 

A linear representation is solid and can clearly be characterized by a 
small number of paran1eters-the dilTIension d of each component and the 
coefficients in the linear expression /. The representation of a vector x is 
linear if and only if r 2(x) == de and the difference () == r/(x) - r~ lex) is 
constant for i == 2, 3, ... , vex). 

If I == P + qi + 'i is the function defining a linear representation of a 
matrix X and if a is the leading address of a given element, then the leading 
address of the succeeding element in the row (or column) is sin1ply a + r 
(or a + q). Freq uently, the succession must be cyclic, and the resulting 
sum must be reduced modulo veX) x r (or p(X) x q). The inherent 
convenience of linear representations is further enhanced by index registers, 
which provide efficient incrementation and comparison of addresses. 

Linear representation of a structured operand req uires that all COlTI­
ponents be of the san1e dimension in 1t. This common din1ension n1ay, 
however, be achieved by appending null elements to the shorter C0I11­
ponents. The convenience of the linear representation n1ust then be 
weighed against the waste occasioned by the null elen1ents. Moreover, if 
several vectors or matrices are to be represented and if each is of unspecifIed 
total dimension in 1t, it n1ay be in1possible to allot to each an infix suffi­
ciently large to permit linear representation. Consequently, a linear 
representation is not always practicable. 
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Nonlinear representations 

Since the use of the grid matrix imposes only the condition of solidity 
for each component, it permits an allocation which is sufficiently general 
for most purposes. The grid matrix serves in two distinct capacities: (1) 
as a useful conceptual device for describing an allocation even when the 
actual allocation is implicit in the program, and (2) as a paranleter 
which enters directly into an algorithm and explicitly specifies the allo­
cation. 

If the grid matrix is used in a program as an explicit specification of the 
allocation, then the grid matrix must itself be represented by the physical 
vector. There remains, therefore, the problem of choosing a suitable 
allocation for the grid matrix itself; a linear allocation is illustrated by 
Fig.3.lb. 

If the grid matrix rex) itself employs a linear representation, its use 
offers advantages over the direct use of a linear representation of x only if 
the total dimension of r in 7t is much less than the total dimension of x in 
7t when linear representations are employed for both. This is frequently 
the case, since each element of a grid matrix belongs to the index set of 7t 

(that is, to lO(V(7t))), and the dimension of each element in 7t is therefore 
both uniform and relatively small. Program 3.3 shows the use of the grid 
matrix rex) and the encoding matrix C in determining the kth conlponent 
of the vector x. 

Program 3.3. A linear representation is assumed for rex), with elenlent r/(x) 
represented by the infix ((p + qi + ~i) 1 aJJ)!Tt. Moreover, each eleI11ent of rex) 
is assunled to be represented in a base b nunlber systenl. Step 1 detennines the 
leading address of the representation of r lk(X). Step 2 specifies.1' as the base b 
value of this representation, i.e., as the leading address of p(xk ). Steps 3 and 4 
specify d as the dimension of x k in Tt, and step 5 therefore specifies z as the 
representation of x k' 

Steps 7-9 perfornl the decoding of z = p(x k ) to obtain z as the actual value of 
xl." Since this process is normally perforI11ed by hUI11an or I11echanical I11eanS 
(e.g., a printer) outside the purview of the programmer, it is here expressed directly 
in terms of the encoding matrix C rather than in tenns of its representation. The 
left-pointing exit on step 7 is followed only if z does not occur as an entry in the 
encoding matrix. 

The fornl chosen for the grid matrix is one of several possible. The two 
columns could, for example, represent the leading and final addresses of 
the corresponding representations or the dimensions and final addresses. 
The present choice of leading address / and dimension d is, however, the 
nlost convenient for use in conjunction with the notation adopted for 
infixes; the logical vector (/1 ad) selects the appropriate infix. 
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O-origin indexing for rt only 

I +- P + qk + r x 1 

2 .f +- b.l.((l t aY)jrt) 

3 l+-l+r 

4 d +- b.l.((l t ag)jrt) 

5 z +- ([ ~ ad)/rt 

6 h ..;- /leC) + 1 

7 h+-h-l 

8 z : ljCk 

9 z +-liCk 

=I­

-------+ 

Program 3.3 Detennination of Z = 
tion of the grid matrix rex) 

Chained representations * 

p, q, r 

b 

lJ 

.1' 
d 

Z 

C 

f 
z 

Constant, coefficient of row 
index, and coefficient of column 
index in the linear function for 
the representation of rex). 
Base used in representing ele­
ments of rex).
 
Dimension in rt of each element
 
of rex).
 
Leading address of p(xJJ. 

Dimension of p(xk ) in rt. 

p(xk ). 

Encoding matrix for com­

ponents of x.
 

Format vector for C.
 

Character encoded by x Ie'
 

Legend 

p(xk ) and z = x k fronl a linear representa­

If a linear representation is used for a vector, then the deletion of a 
component (as in a compress operation) necessitates the moving (i.e., 
respecification) of the representations of each of the subseq uent conl­
ponents. Similarly, mesh operations (insertion) and permutations 
necessitate extensive respecification. The use of a grid matrix rex) 
obviates such respecification in x, since appropriate changes can instead be 
lnade in rex), where they may be much simpler to effect. If, for exanlple, 
x is the vector represented as in Fig. 3.1 a, and z is a quantity of dimension 
six in 7t, then the mesh operation 

nlay be effected by specifying the physical infix (70 1 aY)/7t by p(z) and by 

* Chained representations have received extensive treatnlent, frequently under the 
name ·"Iists." See, for example, Shaw et al. (1958) and Blaauw (1959). 
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respecifying rex) as follows: 

17 2 

19 4 

70 6
rex) = 

27 5 

23 1 

32 3 

However, if the representation of rex) is itself linear, then insertions, 
deletions, and permutations in x will occasion changes in all components of 
rex) whose indices are affected. The need for a linear representation of the 
grid matrix (and hence for all linear representations) can be obviated by 
the use of a chained representation defined as follows. 

Consider a vector Y, each of whose components Yk has a solid represen­
tation P(Yk) whose infixes (g 1a.Y)/p(Yk) and a.g/P(Yk) are, respectively, 
the dimension of p(Y,J in 1t and the leading address of the representation of 
the (cyclically) succeeding component of Y (both in a base b system), and 
whose suffix -a.2gIp(Y,J is the representation of the kth component of SOlne 
vector x. Then (the representation of) Y is called a chained representation 
oj' x. In other words, the representation of Y incorporates its own grid 
matrix (with the address column r1(y) rotated upward by one place) as 
well as the representation of the vector x. 

For example, if g = 2, b = 10€, and x = (365,7,24), then 

P(Yl) = (1t17 , 1t18 , 1t19 , 1t20 , 1t21 , 1t22 , 1t23 ) = (6, 8, 0, 7, 3, 6, 5), 

P(Y2) = (1t68 , 1t69 , 1t70 , 1t71 , 1t72 ) = (2, 6, 0, 5, 7), 
and 

is a suitable chained representation of x. 

The parameters required in executing an algorithm on a chained 
representation yare g, the conlnl0n dimension in 1t of the elenlents of the 
grid nlatrix r(y); b, the base of the number system employed in their 
representation; and f and h, the leading address and index, respectively, 
of the representation of some one component of y. The paranleters g and 
b are usually common to the entire set of chained representations in use. 
Program 3.4 illustrates the type of algorithnl required to deternline p(x/,.) 
froln a given chained representation of x. 

Program 3.4. The loop (1-3) is executed l{X) 10 (k - 11) times, with the result 
that at step 4 the paranleter.{ is the leading address of p(y /.'). Step 4 therefore 
specifies d as the dinlension of p(yk), that is, as the base b value of r /'(y). Step 5 
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2 

3 ----+ 

4 

5 

6 

h +-- vex) 11 (h + 1) 

.r +-- b l-((f +a.U)/1t) 

h : k 

d +-- bl-C(f +g) +a. fJ )!1t 

Z +- (/+a.d)/1t 

p(xk ) +-- -a2 (J /z 

+--­
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O-origin indexing for 1t only 

h"r j'is the leading address of the 
11th component of the chained 
representation of x. 

b Base used for representation 
of the elements of the grid 
matrix. 

g Dimension in 1t of elements of 
the grid matrix. 

d Dimension in 1t of kth com­
ponent of the chained represen­
tation of x. 

z kth component of the chained 
representation of x. 

Legend 

Program 3.4 Determination of p(xk ) fron1 a chained representation of x 

then specifies z as P(Yk). Step 6 deletes those con1ponents of z which represent 
the elements of the grid I11atrix, leaving p(x/l)' 

The parameters.{ and hare then1selves respecified in the execution of the 
algorithm so that Iz becomes k and,f becomes , appropriately, the leading address 
of p(Y,J. A subsequent execution then begins from this new initial condition. 

The chained representation used thus far is cyclic and contains no 
internal identification of the first or the last con1ponents. Such an identi­
fication can be incorporated by adding a null component between the last 
and first components of x. Alternatively the identification may be achieved 
without augmenting the dimension but by sacrificing the end-around 
chaining~ i.e., by replacing the last component of jr1(y) by a null element. 
Moreover, a chained representation may be entered (i.e., the scan Inay be 
begun) at anyone of several points, provided only that the index 17 and 
corresponding leading address f are known for each of the points. 

The number of cOlnponents of a chained representation scanned (steps 
1-3 of Program 3.4) in selecting the kth component of x is given by 
1-{x) 10 (k - h), where 17 is the index of the component last selected. The 
selection operation is therefore most efficient when the components are 
selected in ascending order on the index. The chaining is effective in the 
forward direction only, and the component (17 - 1) would be obtained 
only by a complete cyclic forward scan of vex) - 1 components. The 
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representation is therefore called a forlt'ard chain. A backlt'ard chain can 
be formed by incorporating the vector lrI(y) instead of irI(Y)' and a 
double chain results fron1 incorporating both. 

A vector x which is respecified only by either deleting the final COIl1­
ponent or by adding a new final component (i.e., by operations of the 
form x +- WI/X, or x +- x EB (z)) behaves as a stack (cf. Exercise 2.6). A 
backward-chained representation is clearly convenient for such a stack. 

A simple example of the use of a chained stack occurs in representing 
the available (i.e., unused) segments of the physical vector 1t. This will be 
illustrated by a progranl for the vector cOln.pression 

x +- v/x 

executed on a forward-chained representation of x. The unused segments 
representing the components of ii/x are returned to a backward-chained 
stack or pool of available cOlnponents. A linear representation can usually 
be used for logical control vectors such as v; in any case the problellls 
involved in their representation are relatively trivial and will be subordi­
nated by expressing each operation directly in ternlS of the logical vectors 
and not in terms of the physical components representing them. 

Program 3.5. In the major loop (6-23), k deternlines the index of the current 
component VI,', and i andj determine the leading addresses of p(x /,·) and p(x/; !1), 

respectively. These three parameters are cycled through successive values by 
steps 7, 8, and 12 and are initialized by steps 2,5, and 12. lf VI,: = 0, the infix 
p(x/;) is returned to the pool by steps 21, 22, 23, and 6 so as to construct a back­
ward chain. 

The paranleter.r specifies the leading address of p(x1 ) unless l'(X) = 0, in which 
case J: is null. Step 1 ternlinates the process if ll(X) = 0, and otherwise step 4 
respecifies.r as the null elenlent. If V = 0, this null value of.r renlains ~ if not, the 
first nonzero component of v causes a branch to step 14. Since T = 0, step 15 is 
executed to respecify :c as the leading address of p( (vi X)I). Step 16 then specifies 11, 
the leading address of the last conlpleted conlponent of vlx. Step 15 is never 
again executed. 

Components of vjx other than the first nlust each be chained (in a forward 
chain) to the preceding one. Hence the leading address i of a newly added conl­
ponent nlust be inserted in the last preceding conlponent (whose leading address 
is h). This is normally done by steps 18, 19, and 6 ~ step 20 respecifies h. If, how­
ever, the component X k - 1 were also included, it would appear as the last conl­
pleted component of vlx and would already be chained to the new C0111pOnent XI,'. 

This situation is recognized by step 17 and occasions a branch to step 16. Step 16 
then respecifies h and repeats the loop without executing steps 18, 19, and 6. 

The process ternlinates when the cycle through the chained representation of X 

is conlpleted, that is, when i returns to the original value of .r, preserved as t by 
step 3. Step 10 is then executed, ternlinating the process directly if r(vlx) = 0. 
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Otherwise, step 11 is executed to close the chain of v jx, that is, to insert f, the 
leading address of p((vjX)l)' in the representation of the last con1ponent of vjx. 

O-origin indexing for rt only
0~c 

i+-x2 x Leading address of p(x1) 

if vex) > 0; otherwiset+-x3 
:.c = 0
 

4
 ~(; +- 0 

v Logical vector.
 

5 k +-1
 k Index of v. 

i Leading address of p(x,J.bl((r f a 9 )jrt) +- S 

j Leading address of P(Xk+1). 

6 

k+-k+l7 
h Leading address of last 

i +-j8 preceding C0111pOnent of 
# vjx.9 

p Leading address of last 
~) ;10 preceding component of 

11 pool of available seg­
ments. 

b L((h f a 9 )jrt) +- x 

j +- b _L((i f a 9 )jrt)12 
g Dimension in rt of ele­

13 VI.: 0 ments of grid matrices. 

b Base of representation of014 * x 
elements of grid matrices. 

x +- i15 

h +- i - Legend 

17 

16 

0 

18 r+-h 

19 s +- i 

20 h +- i 

21 r +- i 

22 s +-p 

23 P +- i 

Vk - 1 

Program 3.5 Program for x -(- vjx on a forward chained representation of x 
and a backward chained stack of available segments 

A chained representation can be generalized to allow the direct represen­
tation of more complex constructs, such as trees, by incorporating the 
address of each of the successor components associated with a given 
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component. This notion is fonnalized in the chain list nlatrix of Sec. 3.4. 
The same scheme can also be employed to produce an efficient combined 
representation of two or more vectors which share certain COInnlon 
components. If, for example, x j = Z!" , and chained representations are 
used for both x and z, then x may be represented in standard form except 
that component xj incorporates a secondary address, which is the leading 
address of Zk+l. Moreover Z has a standard representation except that 
Zk-I is chained to Xj' with an indicator to show that the secondary address 
of the succeeding conlponent is to be used. Deletion of any vector 
conlponent in such a shared systenl must occasion only the corresponding 
change in the address chain of the vector, the actual representation of the 
conlponent being deleted only when no associated address renlains. 

Partitions 

If the set a is the range of the cOlllponents of the physical vector 1t, and 
if SOIne element, say aI' is reserved as a partition sYlnhol and is excluded 
from use in the normal representation of quantities, it can be inserted to 
denlark the end (or beginning) of an infix of 1t. If the vector Y is repre­
sented by a single infix of 1t such that the beginning of component Yj+l 
follows imnlediately after the terminal partition ofYj' then the structure of 
Y is completely represented by the partitions, and Y is called a partitioned 
representation. A partitioned representation can be used for more cOlnplex 
operands, such as matrices, if a set of two or nlore distinct partition 
symbols are provided, one for each level of structure. The distinct 
partition symbols can, of course, be represented by multiple occurrences of 
a single symbol al rather than by distinct Inenlbers of a. 

A partitioned representation is sinlilar to a double-chained representa­
tion without end-around chaining in the following particular: beginning 
from component Yi, the component Yj can be reached only by scanning 
all intervening components between i and j in increasing or decreasing 
order according as i < j or i > j. The fIle notation introduced in Sec. 
t .22 clearly provides the operations appropriate to a partitioned repre­
sentation of a vector, with conventions which suppress all inessential 
references to the partitions themselves. 

The use of a partition to demark the end of an infix is particularly 
convenient when the infix must be processed conlponent by conlponent 
for other reasons, as in the use of nlagnetic tape or other serial storage. 
The partition also appears to be more economical than the grid lnatrix, 
which it replaces. This apparent economy is, however, somewhat illusory, 
since the reservation of a special partition symbol reduces the infornlation 
content of each nonpartition component by the factor log2 (v(a) - 1) -:­
log2 v(a), where a is the range of the conlponents of 1t. 
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Partitions can be employed in chained representations. For example, 
the dimension in 7t of each component of a chained representation y can be 
specified implicitly by terrninal partitions instead of explicitly by the vector 
r 2(y) of the grid matrix. Thus if the elements of rI(y) are of dimension !S 
in 7t, then w1/p(Yj) = aI' and (a9 1\ w1)/p(Yj) = p(x j ), where x is the 
vector represented by y. Program 3.6 shows the determination of p(xk ) 

from a chained representation y with terminal partitions a l . 

2 

3 

40 

4b 

4c 

4d 

5 

6 

h +-- v(x) 11 (h + 1) 

.l +-- b ~ (c'f t aJJ)jn) 
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f is the leading address of the 
hth component of the chained 
representation of x. 

Base used for representation of 
the elements of the grid matrix. 

Dimension in n of the elements 
of the grid matrix. 

Partition symbol. 

kth component of the chained 
representation of x exclusive of 
the terminal partition symbol. 

Dimension of z in n. 

Legend 

Program 3.6 Deternlination of p(xk) from a chained representation of x with 
terminal partitions a1 

Program 3.6. The program is similar to Progranl 3.4 and the step nunlbering 
indicates the correspondences. The dimension d is so determined (steps 4a-d) as 
to exclude the terminal partition itself from the quantity z specified by step 5. 
Since only the first column of the grid matrix is incorporated in the partitioned 
representation, step 6 excises a prefix of dimension g rather than 2g as in 
Progranl 3.4. 

Pools 

Components of the physical vector 7t in use for the representation of one 
quantity must not be allocated to the representation of sonle other quantity. 
The construction of a chained representation therefore poses one problem 
not encountered in its use, namely, the specification and observation of 
restrictions on the availability of components of 7t. The restrictions can 
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conveniently be specified as a pool, consisting of the available components 
of 1t. Each allocation made must then be reflected in a corresponding 
change in the pool. Moreover, as each piece of data is deleted, the com­
ponents allocated to it are returned to the pool. 

If, as in Program 3.5, a pool is treated as a stack, then the component 
next taken from the pool is the component last added to it. The queue of 
components in the pool thus obeys a so-called last in first out, or LiFO 
discipline. The dimension in 1t of the last component of a pool will not, in 
general, agree with the dimension required for the next quantity it is called 
on to represent. If it exceeds the requirements, the extra segment may be 
left in the pool, and the pool therefore tends to accrue more and Inore 
components of smaller and smaller dimension. Hence it nlay be wise, or 
even essential, to revise the pool occasionally so as to coalesce the segments 
into the smallest possible number of infixes. This process can even be 
extended to allow substitutions in other vectors in order to return to the 
pool short segments which may unite existing segments of the pool. This, 
however, will require a systematic scan of the chained vectors. 

If the dimension of the last component (or perhaps of all components) 
of the pool falls short of the requirements for representing a new quantity, 
segments of the pool can be chained together. This requires the use of a 
special partition symbol or other indication to distinguish two types of 
links, one which marks the end of a given representation and one which 
does not. More generally, it may be convenient to use multilevel partition 
symbols to distinguish several levels of links, as was suggested for the 
representation of a matrix. 

Queue disciplines other than LIFO may be used. Three other types of 
primary interest in allocation queues are the FI FO (first in first out), the 
dirnensiol1-ordered, and the address-ordered disciplines. FI FO uses a 
forward chain and may be preferred over LIFO because it uses the entire 
original pool before using any returned (and usually shorter) segnlents. 

The components of a dimension-ordered pool are nlaintained in 
ascending (or descending) order on their dimensions in 1t. This arrange­
ment is convenient in selecting a pool element according to the dimension 
required. The components of an address-ordered pool are arranged in 
ascending order on their leading addresses. This arrangement facilitates 
the fusion of components which together form an infix of 1t. 

If each of the available components of 1t is set to a special value which 
is used for no other purpose, then the available conlponents can be 
determined by a scan of 1t. Such a pool has no structure inlposed by 
chaining and will be called a rnarked pool. 

A marked pool requires little maintenance, since conlponents returned 
to it are simply marked, but selection from it requires a scan of 1t and is 
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therefore relatively slow. The use of marked and chained pools nlay also 
be cOITIbined-all returned conlponents go to a marked pool which is left 
undisturbed until the chained pool is exhausted, at which time the entire 
nlarked pool is organized into a chained pool. 

Summary 

Since any structured operand can first be reduced to an equivalent 
vector, the problems of representation can be discussed in terms of vectors 
alone. The characteristics of the linear, chained, and partitioned repre­
sentations of a vector may be sunlmarized as follows. A linear representa­
tion permits the address of any conlponent to be computed directly as a 
linear function of its indices and hence req uires no scanning of the vector. 
However, the strict limitations which it imposes on allocation ITIay en­
gender: (1) conflicts with allocations for other operands, (2) waste of storage 
due to the imposition of a common dimension in 1t for all cOlnponents, or 
(3) uneconomical execution due to the extensive reallocations occasioned 
by the insertion or deletion of other than terminal conlponents. 

The concept of the grid matrix is helpful even when the corresponding 
allocation is ilTIplicit in the progranl. The explicit use of a grid ITIatrix 
which is itself in a linear representation removes the restrictions on the 
allocation of the vector itself while retaining the advantage of direct 
address computation. The address computation differs frolTI the linear 
case only in the addition of a single reference to the grid nlatrix and hence 
requires no scanning. The difficulties enulTIerated for the direct linear 
representation are not elinlinated but merely shifted to the linearly 
represented grid matrix itself, where they nlay, however, prove much less 
serious. 

A chained representation allows virtually arbitrary allocation, relatively 
simple operations for the insertion and deletion of components, the direct 
representation of more complex structures such as trees, and econonlical 
joint representations of vectors which have one or more COITIpOnents in 
COmITIOn. However, a chained representation requires extra storage for 
the grid matrix which it incorporates and occasions additional operations 
for scanning when the components are selected in other than serial order. 
The required scanning can be reduced by the retention of auxiliary 
information which allows the chained representation to be entered at 
several points. 

A partitioned representation req uires the allocation of a single infix of 
1t, and selection requires a fine scan, i.e., a component-by-component scan 
of 1t to detect partition synlbols. Partitioning removes the need to 
incorporate the grid matrix explicitly and does not impose a conlnlon 
dimension in 1t for all components. 
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Mixed systems employing conlbinations of linear, chained, and parti­
tioned representations are frequently advantageous. Block chaining, for 
example, involves the chaining of blocks, each consisting of an infix of 1t 

and each serving as a linear representation of some infix of the represented 
vector. Alternatively, each chained block may be a partitioned represen­
tation of some infix. 

3.3 REPRESENTATION OF MATRICES 

Structured operands other than vectors may be represented by first 
reducing them to equivalent vectors which can, by employing the tech­
niq ues of the preceding section, be represented, in turn, in the physical 
vector 1t. In the case of a matrix A, t\VO alternative red uctions are of 
interest, the row list' = EjA = Al E8 A2 ... E8 All and the colunln 
list c = EllA. If 1"11' A/, and ck are corresponding elements of the three 
alternative representations, then in a O-origin system: 

h = vi + j, 
k = i + /-1j. 

Consequently, 

i = lh -:- vJ = /-1 10 k, 

and j = v 10 h = lk -:- /-1J. 
The dependence of h on k can be obtained directly by substituting the 

foregoing expressions in the identity 

h = v x lh -:- vJ + v 10 h 

to yield h = v x (/-110 k) + lk -:- IlJ. 

Similarly, k = /-1 x (v 10 h) + lh -:- vJ. 
The pernlutation h which carries the row list r into the colunln list C 

(that is, C = hJor) can be obtained directly from the foregoing expression 
for h as follows: 

The expression for the kth component of h is identical with the expression 
for h above. Hence, if C = hJor, then ck = = 'Ii as required.rhk 

If the row list (or column list) is itself represented linearly, then the 
address of any component A / is obtained as a linear function of the indices 
i and j. If either a file or a chained representation is to be used for the list 
vector, then the components are processed most efficiently in serial order, 
and the use of column list or row list is dictated by the particular processes 
to be effected. 
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If a large proportion of the elements of a matrix are null elements, it is 
called a sparse matrix. Sparse matrices occur frequently in numerical 
work (where zero serves as the null element), particularly in the treatment 
of partial difference equations. A sparse matrix A can be represented 
conlpactly by the row list r == Uj A, and the logical matrix U, where 
U == (A 1= 0). The matrix A may then be obtained by expansion: 

A == U\r. 
Alternatively, the column list c == (A i= O)jjA may be used. The 

transformation between the column list c and row list rmust, in general, 
be performed as a sequential operation on the elenlents of U. Since it is 
frequently necessary to scan a given nlatrix in both row and column order 
(e.g., as either pre- or post-multiplier in a matrix multiplication), neither 
the row list nor the column list alone is satisfactory. A chaining systelTI 
can, however, be devised to provide both row and colunln scanning. 

Let L be a matrix such that L1 is a list of the nonzero elements of a 
matrix A in arbitrary order, L/ is the column index in A of elenlent L 1i, 

and L 3 i is the row index in L of the next nonzero element following L 1 i in 
its row of A. If L/ is the last nonzero element in its row, La' == Letj~0. 

be the row index in L of the first nonzero element of row AJ, and let 
jj == ° if Ai == O. The following example shows corresponding values of 
A, L, and j: 

8 2 7 

6 0 0 9 

0 3 0 0 

A 0 0 0 0 L== 

7 8 0 4 

0 0 5 0 

5 3 

6 1 5 

3 2 f== 

9 4 ° 
7 1 

4 4 0 

The matrix L will be called a row-chained representation of A and nlay be 
used, together with the vector j, for the efficient scanning of any row A i as 
illustrated by Program 3.7. The vector L3 can be modified so as to give the 
address in 1t directly rather than the row index in L of the next element in 
the row, and Program 3.7 can then be easily re-expressed in terms of the 
physical vector 1t. 

Program 3.7. Step 2 yields the index in L of the first elel11ent of the ith row of A. 
Step 4 deternlines its COlUI11n index j, and step 6 deternlines the index of the 
succeeding conlponent. The process ternlinates at step 3 when the scan of the 
row is c0111pleted. 

If L 1 is chosen as a row list, the vector L:3 reduces to the form L:/, == k + I 
or L:/ == c. Its function can then be served instead by incrementation of 
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Ai +-0 

2 k +-li 

3 k 0 

4 j +- L 2k 

5 Aji +- L
1

k 

6 k +- Ll; 

I-origin indexing 

Ii Row index in L of first nonzero 
element of row Ai.Ii = 0 if Ai = O. 

k Row index in L of next element. 

L 1 

L 
2

k 

L 
3

k 

List of nonzero elements of A. 

Column index in A of L/". 

Row index in L of next nonzero 
element following L 1k in its row in 
A. L 3k = 0 if no such element 
exists. 

Legend 

Program 3.7 Determination of the row vector Ai fronl a row-chained represen­
tation of A 

the index k and by the use of the logical vector u = (L3 = O€) for deter­
mining the end of each row. 

The construction of a column-chained representation is analogous to 
that of a row-chained representation, and the two representations can be 
combined in a single matrix L which gives both row and colunln chaining 
employing but a single representation (that is, L 1) of the nonzero elelnents 
of A. 

3.4 REPRESENTATION OF TREES* 

A tree T may be represented by a matrix and hence, in turn, by a vector 
in a number of useful ways as follows: 

1.	 by a full right list matrix ]T or by any column permutation thereof 
(Sec. 1.23), 

2.	 by a full left list matrix [T or by any column permutation thereof, 
3.	 by a right list matrix cx2/]T, 
4.	 by a left list matrix cx2/[T, 
5.	 by various chain list matrices. 

The full left and right lists seldom prove more convenient than the more 
concise left and right lists. Except for the special case of a homogeneous 

* Johnson (1962) provides a comprehensive treatment of the representations of trees 
and discusses the suitability of each representation for a variety of search procedures. 
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tree~ both the right list and the left list are awkward to use for path tracing. 
This function is better served by the chain list matrix, to be defIned as a 
formalization of the chaining schenle suggested in Sec. 3.2. 

Simplified list matrices 

In certain important special cases, the various list representations of 
trees may be sin1plified. If the degree of each node is a known function () 
of the value of the node, then for any list matrix M, M/ == b(M2t)~ and the 

degree vector M l 111ay be elinlinated with­
out loss. The node vector alone then repre­
sents the tree and n1ay be referred to as a 
right or left list rector as the case nlay be. 

For example, in the tree of Fig. 3.8 
(\vhich represents the compound logical 

/\ statement x 1\ (y V z))~ a fixed degree is 
associated with each of the logical operators 
and, or~ and not (nalnely, 2~ 2~ and 1)~ and the 
degree zero is associated with each of the vari­
ables. The statement can therefore be repre_ 

Figure 3.8 The compound sented unambiguously by the left list vector 
logical staten1ent i' ,\ (If V z) 

v==(/\, ,x, V~y,z). 

This is the so-called Lukasielricz, Polish, or parenthesis-free form of the 
compound statement [Lukasiewicz (1951) and Burks et al. (1954)]. 
Frequently, the only significant nodes of a tree T are its leaves (e.g.~ in 
Example 3.2 and in a certain key transfornlation of Fig. 4.7) and all other 
nodes may be considered as nulls. Hence if M is any list matrix~ the 
significant portions of M l and M 2 are (M1 =F 0)/ M1 and (M1 == 0)/M2~ 

respectively. These significant portions may then be coalesced to form the 
single vector 

which, together with the logical vector (Ml == O)~ fonns a leaf'list nlatrix 
that describes the tree. Moreover~ if the values of the leaves are distin­
guishable from the components of the degree vector~ the logical vector 
(Ml == 0) may also be dropped. 

The use of left lists 

The use of the right list nlatrix is illustrated by the repeated selection 
sort treated in Sec. 6.4. The use of left lists will be illustrated here by two 
examples, each of interest in its own right: the partitioning of the left list 
of an n-tuply rooted tree to yield the left lists of the component singular 
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p +- €(O) 

2 i+-O 

3 i : {l(Z) 

4 m +-0 

5 r+-O 

6 i : {l(Z) 

7 i+-i+1 

8 m+-m+l 

9 r +- r + 1 - Zli 

10 r : 1 < 

11 p +- p E8 (m) 

Z 

i 

r 

m 

P 

I-origin indexing 

Given left list of T. 

Row index of Z in ascending
 
scan.
 

Indicated number of roots of
 
current rooted subtree.
 

Moment of current rooted
 
subtree.
 

Partition vector of Z, that is,
 
Pj = p:(T j). 

Legend 

Program 3.9 Partitioning of the left list of an n-tuply rooted tree 

subtrees and the construction of a Hufflnan minimum-redundancy prefix 
code. 

Example 3.1. Partitioning of an n-tuply rooted tree. Progranl 3.9 shows a 
schenle for partitioning a left list Z of a tree T into conlponent subtrees, i.e., for 
deternlining the vector p such that Pj is the monlent of the singular subtree T j . 

Thus v(p) = fJ.l(T), Pj = /l(T j ), and the infix ((p .~. a j
-

1) t aPj)!!Z is the left list 
of T j • 

The loop 6-10 scans successive components of the degree vector Zl (in ascend­
ing order) and computes r, the indicated number of roots. The value of r in­
creases by, at most, one per iteration, and when r becomes unity, the end of a 
singly rooted tree has been reached. Its monlent In is then appended (step 11) as 
a new final component of the partition vector p, the paranleters 111 and r are reset, 
and the scan of the next rooted tree is begun. Nornlal ternlination occurs at 
step 3; tennination at step 6 indicates ill fonnation of Z. 

Example 3.2. Huffman minimum redundancy prefix code. If b is any set such 
that ll(b) > 1, then any other finite set a can be encoded in b, that is, represented 
by b. (The sets a and b may be called the "alphabet" and "basic alphabet," 
respectively.) If l{a) <; v(b), the encoding nlay be described by a nlapping vector 
k such that p(a i ) = bk . Ifl'(a)., v(b), then each a i nlust be represented by a 
vector Xi := b. For exa~lple, if a = lO( 10) and b = l °(2), then the decinlal digits a 
nlay be encoded in the so-called 8421 systenl: 

(2 € (4») ~ Xi = a i' 
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0.380 (0) 

(1 000) 

(1001) 

(101) 

(1 1 0) 

(111) 

Figure 3.10 Construction of a H uffnlan prefix code 

In so-called fixed length coding the vectors Xi have a conlmon dinlension d, and 
the decoding of a nlessage m (consisting of the catenation of vectors Xi) involves 
the selection of successive infixes of dinlension d. If the probability distribution 
of the characters Q I occurring in messages is not unifornl, more compact encoding 
may be achieved by using variable length codes and assigning the shorter codes to 
the more frequent characters. Decoding of a nlessage in variable length coding 
can be perfornled only if the boundaries between the successive Xl are indicated in 
some way. 

The boundaries between characters in a message in variable length code nlay 
be demarked by special partition symbols (which is inefficient) or by using a 
prefix code in which no legitimate code point Xi is the prefix of any other legitinlate 
code point, including itself. The index vectors of the leaves of any tree possess 
this property; conversely, any set of prefix codes can be arrayed as the leaves of 
sonle tree. Hence if each character of the set to be encoded is assigned as the leaf 
of a conl11l0n tree, and if each character is encoded by the associated index vector, 
a so-called prefix code is attained. Figure 3.10 furnishes an exanlple of a binary 
code (i.e., the branching ratios do not exceed two) constructed in this nlanner. 
O-origin indexing is used. The discussion will be limited to binary trees. 

] fii is the freq uency of the ith character and 1i is the length of the assigned code 
(i.e., the length of path to the root), then the nl0st efficient code is attained by 
minimizing the scalar producti x 1. This nlay be achieved by the following con­
struction, shown to be optimal by Huffman (1952). First, the characters to be 
encoded are all considered as roots, and the two roots of lowest frequency are 
rooted to an auxiliary node (shown as a null elenlent in Fig. 3.10), which is then 
assigned their combined frequency. The process is repeated until only two roots 
relnain. The tree of Fig. 3.10 is optilnal with respect to the frequencies shown to 
the left of the leaves. The appropriate conlbined frequencies are shown to the left 
of each of the nonleaves. 

Programs 3.11 and 3.12 show the construction of the tree T representing a 
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T ~c 

2 fJ.l(T) : 2 

3 T ~ (8/I)ST
 

4
 T +- \\(0) EB a 2//T, al, -a2//T\\ 

5 I +- (8/I)Sf 

6 I ~ \ + ja2 jj, al, a2 jI\ 

Program 3.11 Construction of the binary Huffman code T for characters c 

with frequency I 

H uffnlan code for a set of characters c i with frequencies Ii' the former in ternlS 
of the tree itself and the latter in ternlS of its left list. 

Program 3.11. The frequency vectorI is permuted (step 5) to bring it to ascend­
ing order, and the tree is subjected (step 3) to the sanle pernlutation. Step 4 
replaces the first two rooted subtrees of T by the single subtree obtained by root­
ing them in a null, and step 6 nlakes the corresponding alterations in the 
frequency vector. The tree is initialized (step 1) as a one-level tree whose roots 
are the given characters, and the process tenninates when the nunlber of roots of 
T has been reduced to two. 

Program 3.12. The tree T of Program 3.11 is represented by the left list node 
vector z, in conjunction with the inlplicit degree vector d = 2 x (z = oe). The 
algorithnl differs fronl Progranl 3.11 primarily in the reordering of the subtrees 
(steps 6-9). Step 7 appends to x the left list of the ith subtree (of the reordered 
tree) selected by the partition vector p according to the conventions of Progranl 
3.9. Step 1a prefixes x by the new null root, and steps 11-12 redefine p 
appropriately. 

Program 1.21 can be applied to the left list produced by Progranl 3.12 to deter­
nline the associated index nlatrix (in a a-origin systenl), and hence the actual 
codes assigned. 

It is not essential that the characters be assigned to leaves in precisely the order 
specified by Programs 3.11 and 3.12, and it is sufficient that the dinlension of the 
leaf index increase monotonically with decreasing frequency of the character. It 
is therefore unnecessary to carry the characters themselves through the process ~ 

it suffices to deternline the structure of the tree, sort the corresponding index 
matrix to right list order (which is ordered on dinlension of the index vectors), 
and assign the characters (in decreasing order by frequency) to successive leaves. 
Since the structure of such a tree (whose nodes have a conlnlon irrelevant value 
and whose nonleaves all have a conlmon branching ratio equal to the nunlber of 
roots) is sufficiently determined by the moment vector ~(T), the process of Pro­
gram 3.12 can be simplified. 
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1--+ z+-c I-origin indexing 

P +- e(v(z)) c Given character set. 

3 ~ v(f) : 2 

4 i +- 1 

5 x +- e(O) 

6 ~ j +- (Olf)i 

7 x +- x CD (((p t ex j 
- I ) ~ exPi)lz) 

8 i +- i + 1 

9 
:::; i : v(f) 

10 z +- (0) ffi x 

11 P +- (O/f)Sp 

12 p +- (1 + (p ~- ex2)) CD -a2 /p 

z 

fi 

P 

x 

Left list of Huffman
 
tree.
 

Frequency of ith sub-

tree of z.
 

Partition vector Pi is
 
the moment of the ith
 
subtree of z.
 

Reordered left list
 
with subtrees in
 
ascending order on
 
frequency.
 

Legend 

Program 3.12 Construction of the 
13 f +- (Olf )Sf left list z of the binary Huffnlan 

14- f +- ( -1- lex2/f) ffi -a21f code for 
quency f 

characters c with fre­

Chain list matrices 

The full chain list matrix of a tree T is a matrix P of dimension peT) x 
(b(T) + 2) defined as follows: P 2 is some node vector of T, PI is the 
associated degree vector, Pj+2 is null if j exceeds the associated degree P Ii 

and is otherwise the row index in P of the jth node emanating from node 
P2i. Table 3.13 shows a full chain list matrix for the tree of Fig. 1.16. A 
full chain list matrix is called a full right (left) chain list matrix if the nodes 
occur in right (left) list order. 

The full chain list matrix is a formalization of the scheme suggested in 
the discussion of chained representations (Sec. 3.2). Its convenience in 
forward path tracing is obvious. Since it does not identify the roots of the 
tree, an auxiliary vector must be provided for this purpose. However, if 
the ordering chosen for the nodes is that of a right list, the roots occur 
first in the list, their number r = yep!) - (+/PI ) is specified by the degree 
vector Pv and the need for the auxiliary vector vanishes. Moreover, since 
a right list groups all nodes emanating from a given node, each row of 
0.2/ P is simply a sequence of integers followed by null elements, and the 
information necessary to path tracing is provided by the column P3 alone. 

The right chain list matrix of a tree T is therefore defined as a 3/ P, where 
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1 
2 

3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Qd' n' 

n 18 0 00I 
g 16 00262 
u0 0 00 0 

t0 0 00 0 

a 24 013 9 
20 002 b 8 

v0 0 00 0 

k 0 0 0 00 
z0 00 0 0 

0 0 0 0 00 

f 00 0 00 
r0 0 0 0 0 

y0 0 00 0 

s2 0 04 19 
d 0 0 0 00 

0 0 0 0 0j 
m 3 0233 14 

22 0 0252 i 
w0 0 0 0 0 

3 010h 17 7 
e0 0 0 0 0 

p0 0 0 00 

x 13 0 0 01 
15 12 21c 114 

c 0 0 00 q 
0 0 00 01 

d" nil p 
-­-­-­

3 a 4 
2 b 7 
2 g 9 
4 c 11 
0 z 0 

1 n 15 
a k 0 

3 h 16 
0 j 0 

0 I 0 

0 f 0 

0 d 0 

0 r 0 

0 e 0 

2 i 19 
0 0 0 

3 nl 21 
0 v 0 

0 p 0 

0 q 0 

0 u 0 

2 s 24 
1 x 26 
0 t 0 

0 w 0 

0 y 0 

d' n' f h 
- -­-­I­

1 n 0 18 
2 g 0 16 
0 u 14 0 

0 t 19 0 

3 a 6 24 
2 b 2 8 
0 v 0 0 

0 k 20 0 

0 z 1 0 

a 0 17 0 

0 f 15 0 

0 r 21 0 

0 y 0 0 

2 s 23 4 
0 d 12 0 

0 j 26 ,') 

3 nl 7 3 
2 i 0 22 
0 w 0 0 

3 h 0 10 
0 e 0 0 

0 P 25 0 

1 x 0 13 
4 c 9 11 
0 q ::; c 

0 1 0 ::) 

1 
2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

A full chain list Inatrix The right chain Filial-heir chain list 
list matrix 

(a) (b) (c) 

Table 3.13 Chain lists of the tree of Fig. 1.16 

P is the full right chain list matrix of T. It is illustrated by Table 3.13b 
Program 3.14 shows its use in path tracing. Although the degree vector PI 
is redundant (that is, PI and P3 can be determined one from the other), it 
provides a direct check (step 6) on the legitimacy of the index vector r 

which would be difficult to obtain from P3 alone. 
For a search of the type described by Program 3.14, it is necessary to 

scan down a level until agreement is reached and then across to the next 
level. For this type of scan, the filial-heir chain list is compact and con­
venient. 
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k +-1 

}+-O
 

3
 

2 

d +- v(PI ) - + jPI 

4 vCr).i 
5 j+-}+1 

>6 r j d
 

7 i+-k+rj-l
 

8 Pj +- p 2i
 

9 d +- pli
 

10 k +- p i
3

I-origin indexing 

r Given index vector. 

P Right chain list matrix of T. 

PI Degree vector of T. 

P 2 Node vector of T. 

P 3 Chaining vector of T. 

P Path vector Tr. 

d Degree of current node. 

k Base address of the infix con­
taining the current node. 

i Index of succeeding node in the 
path Tr. 

} Current index of index vector 
r. 

Legend 

Program 3.14 Determination of the path p = fronl the right chain listT r 

matrix P 

The set of (j + 1)th level nodes of the subtree T i are collectively called 
thejthfilial vector of node i, and the first member of the first filial vector of 
node i is called the heir of node i. (For brevity, the first filial vector of a 
node will also be called its filial vector.) If each node is chained only to its 
successor in the filial vector containing it and to its heir, the resulting 
representation is called a filial-heir chain list. Fornlally, the filial-heir 
representation of a tree T is a matrix F of dimension Il(T) x 4 such that 
F2 is a node vector of T, F1 is the associated degree vector, Fa is a .filial 
chain such that F:/ == j if node F 2 i is the successor of node F./ in the 
smallest filial set containing it and F:/ == ifnode F 2 

i has no such successor,0 

and F4 is an heir chain such that F4 i == h if node F2/1 is the heir of node F/ 
and F 4 i == 0 if F 2 i is a leaf. The filial-heir chain list is illustrated in Table 
3.13c. 
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EXERCISES 

The symbols a and c will be used exclusively to denote lower case and capital 
alphabets defined as follows: 

a = (0, a, b, c, , z, . , , , #, *, +). 
c = (0, A, B, C, , Z, . , , , #, *, +). 

The expression 1t S; x will be used to specify the set x as the range of the conl­
ponents of 1t. 

3.1 For each of the following cases, specify a suitable encoding n1atrix and 
fornlat vector and show the explicit value of the infix of 1t which (in a solid 
representation) represents the given exanlple vector x: 

(a)	 the decinlal digits d = LUCIO) in a ranked fixed-length code for 1t S; lO(2). 

Exanlple: x = (6, 8, 9). 
(b)	 the set a in a ranked fixed-length code for 1t S; lO(2).
 

Exan1ple: x = (c, a, t).
 

(c)	 the set a u c u lO( 10) in a fixed-length code for 1t S;; lO( 10).
 

Exanlple: x = (M, a, y, 0,3", 1,9,6,0, .).
 
(d)	 the set a u c in a two-case code (with single-character shift) for 1t S;; (I. 

(See Brooks and Iverson, 1962.) 
Exanlple: x = (T, r, 0, y, " N, . , Y, .). 

(e)	 the set a in a Huffman prefix code for 1t S; lO(2). Assunle the frequency 
distribution given in Dewey (1923). 
Example: x = (t, r, e, e). 

3.2 For each of the cases of Exercise 3.1 write a progranl which decodes the 
infix (i 1a.J)/1t, that is, which produces the vector z represented by the infix. The 
auxiliary physical vector 1t l S;; S may be employed to represent the first colun1n of 
the encoding matrix, where s is the set encoded. Perfornl a partial trace of each 
program for the example value used in Exercise 3.1. 
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3.3 The ordered set of nlonths nl = (JANUARY, FEBRUARY, ... , 
DECEM BER) is to be represented by the physical vector 1t S;; C U l()( 10). For 
each of the following types of representation, specify a particular representation 
and show the values of the relevant conlponents of 1t: 

(a)	 a linear representation (en1ploying null elenlents for tllling to a conlnl0n 
dinlension in 1t). 

(b)	 a solid representation for each elen1ent of 111 and an appropriate grid 
nlatrix itself represented linearly. 

(c)	 a chained r~presentation. 

(d)	 a double chained representation. 

3.4	 (a) For each of the cases of Exercise 3.3, write a progran1 which selects 

n10nth mIl'. 

(b)	 Trace each progranl for the case k = 2. 
(c)	 For case (d) of Exercise 3.3, write a progra111 \vhich selects 111 1,' by 

forward chaining if k l'(rn) -:- 2, and by backward chaining if 
k	 . vern) -:- 2. 

3.5 For each of the cases of Exercise 3.3, write a progran1 which "'prints out" 
the set of 1110nths in a n1inin1un1 nun1ber of n-character lines, inserting a single 
null between successive n10nths except where (i) further nulls n1ust be added to 
prevent the continuation of a single word fron1 one line to the next, or (ii) no null 
is needed between two successive \vords, the flrst of which is coternlinous with 
the line. I n other words, produce a nlatrix Z of row di111ension n and of nlinin1unl 
colulnn din1ension such that (Z ~E)/Z = (p(nl1) p(rn2) p(nll~)' 

and such that each ro\v Zi nlay be partitioned into one or n10re vectors of the 
fornl p(rn/J O€, all but the last of \vhich nlust be of din1ension l{p(nl l.,)] + I. 

3.6 Assunling a linear representation for each of the logical vectors involved, 
and a forward-chained representation for each of the ren1aining operands, write 
progranls for the following operations. Assunle in each case that the argunlents x 
and y need not be retained, and aSSU111e the use of a backward-chained pool 
where necessary. 

(a)	 z ~ x, u, y 
(b)	 z ~ lx, u,y/ 
(c)	 z ~ k i x 

(d)	 z ~ k 1 x 

3.7 Repeat Exercise 3.6(a), using separate grid nlatrices for x, y, and z instead 
of chained representations. Specify a suitable linear representation for each of 
the grid n1atrices. 

3.8	 (a) If a chained representation is used for a vector x, then the selection of a 
specitled con1ponent can be 111ade faster by providing a nUlnber of 
alternative starting points for the required scan. State precisely the 
quantities required in such a process and \\;Tite a progranl showing its 
usc. 

(b)	 If provision is nlade for starting the scan at any conlponent of x, the 
chained representation nlay itself be sinlplified. Sho\v precisely what 
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the Sill1plified forll1 is and identify the type of representation to which it 
is equivalent. 

3.9 Frequently a vector x kept in a partitioned representation (for efficient use 
of storage) ll1USt be "unpacked" to a linear or other 1110re accessible fornl for 
efficient processing. The converse operation of "packing" is also required. Let 
the partitioned representation be a file (I) enlploying an interconlponent partition 
AI' and a ternlinal partition A~, and write both packing and unpacking progranls 
for each of the following cases. Assunle that the nlaxinlunl dill1ension in 1t of any 
conlponent is n. 

(a) A solid linear representation eInploying null fill. 
(b) An allocation prescribed by a grid nlatrix G with G'2 = !lE. 

3.10 Let 1t S; lO(2), let the set a be encoded in a five-bit code such that (2E) 
p(ll/) = i, and let each conlponent of the vector x be an (uncapitalized) English 
word. Using a-origin indexing throughout, specify a suitable partitioned repre­
sentation in 1t for the vector x, and repeat Exercises 3.9(a) and 3.9(b), using it in 
lieu of the files. 

3.11 For each of the following pool organizations, write a progranl to convert 
a given ll1arked pool into a backward-chained pool: 

(a) dinlension-ordered. 
(b) address-ordered. 

3.12 For each of the following queue disciplines, write progranls which take 
fronl and return to the pool an infix of length n. Use secondary linking and 
·relegate to a Inarked pool any infix which is too short for linking. In each case 
choose the type of chaining best suited to the particular queue discipline. 

(a) LI FO (last-in-first-out). 
(b) FI FO (first-in-first-out). 
(c) Dinlension ordered. 
(d) Address-ordered (utilize the possibility of fusing adjacent infixes). 

3.13 Give a conlplete specification of a schenle for representing a tree T by a 
full chain list matrix which is not in right list order. Write a prograll1 (expressed 
in ternlS of the physical vector 1t) which deternlines the path vector T i for a given 
index vector i. 

3.14 Give a conlplete speciflcation of a schenle allowing joint representation of 
those conlponents shared by two or nl0re of a fanlily of vectors Xl, x'2, ... , Xii as 
suggested in Sec. 3.2. Write progranls to (i) select conlponent x/, and (ii) delete 
conlponent x/. 

23.15 Let 1t ;; II U l°(lO), and let xl, x , ... , x n be a fanlily of vectors whose 
cOll1ponents belong to the set o:l/[a U l°(lO)]. Let the average and the nlaxin1unl 
dinlensions of the vectors xi be a and Ill, respectively. AssunlC that the chaining 
index is represented in decinlaI, with each digit represented by one con1ponent 
of1t. Deternline (as a function of 17! and n) the value of a below which a chained 
representation provides nlore con1pact storage than a linear representation with 
null fill. 
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3.16 Write a program which uses the n1ininlization operation u.. I' l x to 
determine the ordering pernlutation vector p -( - 01/(a 'I b). 

3.17 Let U = (X 0) and r = UIX jointly represent the sparse l11atrix X. 
(a)	 Write a program \vhich detern1ines (as a function of U and r) a suitable 

row-chained and column-chained representation of X. 
(b)	 Write a program defined on the representation produced in part (a) to 

conlpute the product Y = X x X, itself represented in the fonn V = 

(Y 0) and p = VIY. 

(c)	 Write a progranl to deternline the trace (that is, +IIIX) of X fronl the 
representation produced in part (a). 

3.18 The unique assignment of Hufflnan codes produced by Progranl 3.12 is, 
in general, only one of nlany equally efficient assignnlents, since the syn1bols to be 
coded need only be assigned, in decreasing order on frequency, to the leaves of 
the code tree in increasing order on their levels. Show that the structure of the 
tree produced can be sufficiently described by its nloment vector alone, and write 
a progran1 for the construction of a Huffman code based on this fact. 

3.19 Following the notation and ternlinology used in Progranl 3.9 for the 
analogous case of a left list write a progranl which detern1ines fron1 the right 
list R of a tree T, the partition vector p which partitions it by levels. 

3.20 Write a progranl which detern1ines the right list R = cx~/]T as a function 
of the left list L = cx2 /[T. Incorporate tests of well forn1ation. 

3.21 Let [X8~]j) denote the pth power of the square nlatrix X with respect to the 
,operators 0 1 and 02' that is, [X8~]1) = XCl~ X~<~ ... ~j~X to p factors. 

(a)	 Show that ([C ]Ji)/ = 1 if and only If the-re is a ~path of length p fronl 
node i to node in the graph (n, C). 

(b)	 Show that [C ]11 = 0 for some p I'(C) if and only if (n, C) contains no 
circuits. 

(c)	 If (n, C) contains no circuits, the connection nlatrix C is said to be "con­
sistent. n The result of part (a) can be used to check consistency. Progran1 
the alternative nlethod of Marin10nt (1959). 

(d)	 If H = C I, then ([H ::~ ]11
)/ = 1 if and only if i =.i or there exists a path 

fronl node i to node.i of length n p + I. Show that for any connection 
n1atrix C, [H /: ]/1 converges to a linlit. 

3.22 Devise progranls to determine 
(a)	 whether a given connection nlatrix C represents a tree. 
(b)	 the left list of the tree (n, C). 

(c)	 the right list of the tree (n, C). 

(d)	 a node list n and connection matrix C as a function of 
(i)	 a left list I.J 

(ii)	 a right list R. 

3.23 Show that (n, C) and (np , CpP) represent the sanle graph for any pern1Llta­
tion p. 

3.24 lf (n, C) is a tree and if K = C ; C, then C can be detern1ined as a function 
of K (see Ross and Harary, 1960). Write a progranl for deternlining G' fr0l11 K. 
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SEARCH TECHNIQUES 

In classical applied 111athenlatics 1110st functions of interest ca n be 
approxinlated by some algorithm which beconles, for practical purposes, 
the deflnition of the function. In other areas, however, nlany functions of 
practical, if not general, interest (such as the correspondence bet\veen 
employee nalne and salary) can be specitled only by an exhaustive listing of 
each a rgunlent val ucand its correspo nding fun ction val ue. Such a fu nction 
will be called j()rtuitous. 

The basic algorithm applicable to the eval uation of a fortuitous function 
is a search of the list of argulnents, i.e., a cOlllparison of the givcn argu­
111ent with the list of argunlents to detenlline the correspondent to bc 
selected. In such an algorithlll it is convenient (as illustratcd by Progranl 
1.12a) to distinguish three phases which successively detenllinc thc 
following quantities: 

( I) the index or rank r == k I k of the argunlcnt k in k. 

(2) the index i == PI' of the correspondent in s. 
(3) the correspondent s == ,,'I' 

Step (2) is a perlllutation defined by the pernlutation vector p. Stcps (2) 

and (3) arc silnple selections from structured opcrands (nortllally in linear 
representations) and rcquire no further discussion. Step I is called 
ranking, and the nlethods for acconlplishing it nlcrit dctailed treatlllcnt. 

The argunlent k of a 1l1apping (and hence of a ranking) operation \vill bc 
called a key. The Gernlan-English dictionary nla pping of F~xalll pic 1.2 is 
typical of nlappings fronl key to correspondent. Ranking is itself a spccial 
nlapping from the key set k onto its own index set ll( }'(k)). 

If the represcntation used for sonlC or all of the data inlposes ccrtain 
restrictions (such as serial access), there nlay be sonlC advantage in 
coalescing the three phases of the Inapping operation so as not to dctcnnine 
the rank explicitly. It will, however, be convcnient to lilnit the discussion 
altnost exclusively to the problcln of ranking. 

There arc two Inain types of ranking processes: scanning and kcy 
transfonnations. A scanning process conlpares the key k sllccessively with 

133 



134 Search techniques 

selected elements of the key set k to determine the rank r == k l k. A key 

transjarlnation is any function or algorithITI t(k) which maps the set k into 
some subset of the integers. The set of deriL'ed keys is defined as the set 
d containing all derived keys arranged in ascending order. The set of all 
keys which map into d j is called the jth equicalence class defined by the 
transfonnation t. 

If v(d) == v(k), the key transformation is biunique and the ranking 
operation may therefore be completed by a permutation p such that 
Pj == i for j == t(k;). If v(d) < v(k), then at least two distinct elements of k 
map into the same element of d and the ranking process nlust be completed 
by a scan of one of the equivalence classes defined by t. 

If, for example, k == (n1, tu, w, th, f) is the ordered set of working days 
encoded according to the encoding matrix 

1 In 0 0 1 

2 tu 0 1 0 

3 G== w 0 1 1 

4 th 1 0 0 

5 f 1 1 1 

and fonnat vector f == (0, 1, 1, 1), then scanning can be accomplished by 
cOInparing p(k), the encoded representation of the key k, with successive 
rows of fiG to determine the rank r of the row on which agreeInent occurs. 
Moreover, the key transformation 

t(k) == (2€) _ p(k) 

is uniq ue, but req uires an associated mapping vector m == (1, 2, 3, 4, 0, 

0,5). Had p(f) (that is, fiG:)) been chosen as (1,0, 1), the mapping vector 
would not have been required. Finally, the key transfonnation 

t'(k) == 1 + p3(k) 

has the range d == (1, 2), is not uniq ue, and req uires a subseq uent scan of 
one or other of the equivalence classes e 1 == (tu, th), and e2 == (m, w, f), 
represented by (010, 100) and (00 L 0 II, Ill), respectively. 

Although a strict ranking operation maps elenlent k; into the integer i, 
any biunique mapping onto the index set ll(V(k)) will frequently serve as 
well. For, ifp is the permutation required to cOInplete the ranking process, 
and if a subsequent permutation j is required (as in step 4 of Progranl 
1.12a), the two permutations can be combined in the single pern1utation 
q == jJp. Sinlilarly, the ranking of a set k may be considered as equivalent 
to the ranking of any set obtained by pernluting k. 
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4.1 SCANNING METHODS FOR RANKING 

The two nlain methods of scan are called directed and controlled. A 
directed scan is begun in one of twopossiblc directions fronl a given initial 
point i~ either ascending (that is~ i~ i + I ~ i + 2~ ... ) or descending. The 
direction chosen may be determined by a conlparison bet\veen the given 
argunlent and the set element k i at the initial point i. A controlled scan is 
executed in a seq uence which is detennined by successivc cOlnparisons 
between the argument and each element scanned. In an effective controlled 
scan~ each comparison 11lust determine thc choice of the next clenlcnt for 
conlparison so as to (approximately) lllinilllize the expected nunlber of 
eleinents scanned. The directed scan is clcarly well suited to the use of a 
file or chained representation~ which illlposes serial access to the eleinents, 
whereas the controlled scan is 1l0t. 

The scan Iength (i. e.~ the nuIn ber 0 f key eIenl ents scann ed) \\/ iII be used as 
a Ineasure in analyzing and evaluating scanning 11lethods. The sanle 
nleasure and the same analysis apply also to the converse situation, \vhere 
the rank of an element is given and the element itself must be obtained 
from a chained or other representation which pennits only serial access. 
An alternative related nleasure is the norlllalized scan length or scan 

jj'action~ defined as the scan length divided by the nunlber of elenlents in 
the set of keys. 

A scan is said to be fooled if each exccution begins at the sanle point f. 

A rooted scan may be advantageous \vhen the freq uency distribution of the 
argunlents is nonunifonn and the nlost frequent keys can be grouped near 
the root. A scan is called catenated if each execution is begun at the end 
point of the preceding scan. A catenated scan Inay be elllployed in lIsing 
a file when the intervals between successive scans are so short as to allo\\' 
little or no time for return to a fixed root or \\;'hen the arguinents are 
arranged in the saIne relative order as the items in the file. 

Directed scan 

A directed scan is called cyclic if elenlent k1 follo\\/s k in an ascending•
j 

scan and if k ll follows k1 in a descending scan. It is called nonc~l'clic if the 
direction of scan is reversed whenever either of the ternlinal elenlents k1 or 
k

l
is encountered. A cyclic scan is appropriate to a chained representation• 

with end-around chaining: a noncyclic scan is appropriate to a flle or to a 
chained representation \vithout end-around chaining. 

The initial direction of scan nlay be chosen in several \vays, the nlore 
inlportant of \vhich are enuinerated and discussed belo\v. For independ­
ently and unifornlly distributcd argunlcnts, the expected scan fractions 
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are sUllllllarized in Table 4.1. Certain of the results are also plotted in 
Fig. 4.2. 

Initial direclionfixed (fixed scan). The ascending direction will beassulllcd. 
If the scan is rooted and cyclic, the root may, without loss of generality, be 
assulned to be one. The expected scan length for a set is then given by 

"(h) 

e == 2: f(kJ X i == f + II 
j= 1 

where j{k) is the normalized expected frequency of occurrence of the 
argument k i and j' is the corresponding frequency vector deflncd by 
ii == j{k j ). 

The DlOSt efficient fixed rooted scan is therefore obtained by Llsing the 
pernluted set a == (O/C - f))Jk such that the conlponents of a are arranged 

1.0 

t

...c ­

VI 
~ 

D.. 0.5 

0.5 1.0 1.5 2.0 
Scan length b ~ 

Figure 4.2 Plot of cunlulative probabilities of Table 4.1 (Nul11bers refer to the 
entries in Table 4.1) 
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in decreasing order on frequency. If the distribution of arguments is 
uniform (that is,fi === llv(f)), then the expected scan length is (v(k) + 1) -:-­
2, and the expected scan fraction is approximately one half. 

If a fixed scan is cyclic and catenated, the expected scan length depends 
on the distribution f, but if the arguments are independently distributed, 
then the expected scan length is independent of the ordering of the scanned 
set k. This may be shown as follows. The expected length lr of a scan 
rooted at r is given by Mr t f, where M is the square matrix such that 
Mr === (r - I) t LI . The probability of beginning a catenated scan at r is 
the probability of ending the previous scan at r, that is, fro Consequently, 

e === 1 ~ I === 1 t M t 1· 

Since, in general, 1 t M~- 1 === 1 t M x f, then 2e === (1 ~. N ;~ 1), 
where N === M + M. If, for example, v(k) === 4, then 

1 2 3 4 

M=== 
4 

3 

1 

4 

2 

1 

3 

2 
and N=== 

2 3 4 1 

2 6 6 6 

6 2 6 6 

6 6 2 6 

6 6 6 2 

It is easily shown that N is of the form 

-
N === 2£ + v(k)1 

and consequently Ng === N for any permutation p. But 1 +- N .~. f === 

(1p ) t (Ng); (1p ) in general, and since Ng === N, then 1 t N ~ 1 === 
(1p ) .~ N -~ (1p ). Hence the expected scan e === (~) x 1 .~ N x 1 remains 
the same for any permutation of1 or, equivalently, for any permutation of 
the key set k. 

If the arguments are not independently distributed, the analysis is, in 
the general case, very complex. However, a sirnple but effective use of 
correlation is made in the method of hatching. If a is a collection or batch 
of uncorrelated arguments, each of which is to be ranked in the set k, then 
the total expected scan time for a fixed catenated scan will be v(a) times the 
expected scan time for a single item. If, however, the set a is ordered on k 
(that is, a === k n a), then the entire set a may be ranked in a fixed cate­
nated scan whose normalized length does not exceed one. * If a given 

* The length of the scan will be determined by the maximum rank (in k) occurring in 
the set a. The expected value of the scan fraction is approximately equal to the expected 
value of the maximum occurring in a sample of size n = l'(a) chosen from the continuous 
interval from zero to one. This value is known for various distributions [e.g., Cramer 
(I 951) p. 370]; for a uniform distribution it is n -:- (n + 1). 
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argunlent set z is not ordered on k, it nlay first be permuted by sonle sorting 
process to yield the set a == pJz which is ordered on k. The set a may then 
be ranked in k and, if required, the set of ranks I11ay then be subjected to 
the inverse pernlutation q == p (1 L

1 to yield the ranks in the original set z. 
The decrease in the total expected scan length nlay far outweigh the effect 
of the additional permutations required. 

If a fixed scan is noncyclic and rooted at one, the expected scan length is 
the same as for the fixed cyclic rooted scan. The fixed noncyclic scan is 
generally unsuited to any initial points r other than one (e.g., to a catenated 
scan), since the first (I' - 1) elements of k are then reached only after a 
reversal of direction and a rescan of the set firIk. 

For the case of a uniform distribution, the behavior of the fixed scan is 
sUI11marized in entries 1, 3, and 4 of Table 4.1. The derivation will be 
illustrated in discussing entry 7. 

Initial direction gil'ing shortest scan. For a fixed root r, the mlnlnlunl 
expected scan is achieved if the items are disposed on either side of the root 
so that the frequency fi is a monotone decreasing function of Ii - 1'1, the 
scan length in a direct scan to the argument. In a cyclic scan, the position 
of the root is inlmaterial; in a noncyclic scan it is best centered at the floor 
(or ceiling) of (v(k) + 1) --:- 2. In a O-origin system this expression 
becomes v(k) --:- 2. 

For an arbitrary frequency function, the expected scan length is given by 
the scalar productf >/ 1, where 1 == ILl - rEI. For a uniform distribution, 
the results are given in entries 2 and 5 of Table 4.1. For a catenated scan, 
the corresponding results appear in entries 2 and 6. 

The possibility of choosing the initial direction so as to give the shortest 
scan to the argument depends on the infonnation available. If the elements 
of k are strictly ranked on some function g(k;), then the shortest direction 
from root r to argument x can, in the noncyclic case, be deternlined by a 
cOlnparison of g(x) and K(k ). For the cyclic case this does not suffice, andr 

it is necessary* to know the index in k of the argument.r. This case is 
therefore of interest primarily in selecting a specifled elenlent fronl a 
serial-access representation and is of little interest in an actual ranking 
operation. However, any double-chained representation or reversible tIle 
can be used in a noncyclic as well as a cyclic manner and hence adnlits of a 
choice of direction which is best in the noncyclic sense. 

Initial direction to nearer (farther) terminal. If the value of the root I' is 
known for each individual scan in a catenated scan, the direction to the 
nearer terminal can be determined by c0I11paring r with the I11id point 

* Approximating functions may, however, be used for estinlating the index and the 
probable best direction. 
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(v(k) + 1) -:- 2. A noncyclic scan starting toward the nearer end is clearly 
less efficient than one starting toward the argument, but it may be useful 
when the most direct route to the argument cannot be determined. The 
expected scan fraction is shown in entry 7 of Table 4.1; its analysis will 
illustrate the method used in constructing the entire table. 

It is assumed that the number of elements v(k) is sufficiently large that 
the scan fraction / may be considered as a continuous variable. Let 
pr (/ ::::;: b) be the probability that scan fraction f does not exceed b, and let 
the function be represented in three parts such that pr c.r ::::;: b) == prj (j' s:: h) 
in the ith half-unit interval in b. Let x be the normalized initial position of 
a given scan. Then 0 ::::;: x ::::;: 1, and, since the scan always begins toward 
the nearer terminal, the fraction of the set covered in a scan of length b is 
the same for the starting point (1 - x) as for x. Using this symmetry, 
attentioncan be restricted to valuesof x in the range 0 to ~~' For the function 
pr1 ([ ::::;: b), the value of b is also restricted to the range 0 to J. 

Consider fixed values of b and x with h ::::;: J. If 0 ::::;: x ::::;: b/2, the fraction 
of the file covered by a scan of length b is given by b - x, for the scan 
begins at x, proceeds a distance x to the nearer terminal, and returns to 
the point b - x. If b/2 ::::;: x ::::;: b, the fraction covered is clearly x, for the 
scan will reach the nearer terminal but will not return past x. If h ::::;: x ::::;: t, 
the scan does not reach the nearer terminal, and the fraction scanned is 
therefore b. Since x is uniformly distributed, the function pr1 (j' :s: b) is 
obtained by integration as follows: 

[l b/2 (1) l~ i 17 2J 
pr1 (f ::::;: b) == 2 (b - x) dx + ". x dx + 17 dx == =- + b. 

o ~ /1/2 b 2 

The factor of two arises from the syn1n1etry in x and the restriction of .r 
to the interval 0 :=:;: x ::::;: -!. Similarly, 

[lb/2 l~i J 17 2 1 
pr2 (j'::::;: b) == 2 (b - ::r)dx + xdx == - +-, 

o ')/2 2 4 
and 

pr:3 (f ::::;: b) = 2[lb-ldx +l~i (b - .1:) dxJ = -b2 + 3b - ~ . 
o 4b-l 

Entry 8 shows the behavior of the scan starting toward the farther 
terminal. Although the distribution differs n1arkedly fronl that obtained 
for starting toward the nearer terminal, it has the same expected value of -~' 

As may be expected, the function obtained for a fixed scan (entry 4) is 
the average of the functions obtained for cases 7 and 8 and is linear in h. 
Case 7 (toward nearer terminal) yields the smallest maximum scan length 
of the three. 
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Initial dircction rcccrsed (continued)fronl precious scan. In the absence of 
any other basis of choice, the initial direction can be chosen as a reversal 
or continuation of the direction which ternlinated the preceding scan. The 
behavior is shown in entries 9 and 10 of Table 4.1. The relations between 
the functions for fixed scan (F), continuation (C), and reversal (R) are 

F - R == - (F - C) ~ 0 for b 1, 

and F - R == -(F - C) :?:: 0 for b 2 1. 

Controlled scan 

The seq uence followed in a controlled scan.is comnl0nly detennined by 
a conlparison which determines the relative ranking of any pair of elements 
x and y in the set k. It will therefore be assumed that comparison of the 
argument x == k h with the element k j determines whether h < j, h == j, or 

i~l 

k ~ v(k) 

j +-lCi + k) -:- 2J 

> 
k +-j - 1 

i +-j + 1 

Program 4.3 Ranking of;(' in k by binary search 

h ::=:> j. The subsequent scan may then be limited to one or other of the 
two subsets a/-- 1jk and aJjk. Themaxinluln dimension of the subset renlain­
ing to be scanned is therefore minimized by choosing j == l( v(k) + I) -:- 2j. 
If each subsequent element for comparison is chosen so as to (approxi­
mately) halve the dimension of the set renlaining to be scanned, the 
process is called binary search. Program 4.3 shows the details of binary 
search ~ i and k are the indices of the tenninal elenlents of the renlaining 
subset, and j is the index of the element selected for cOlnparison. 

If v(k) == 2k 
, then anyone of 2J -- 1 different argunlents Inay be isolated on 

the jth comparison, for j E ll(k), and the one remaining argunlent will be 
located on the (k + 1)th cOlnparison. Hence for a unifornl distribution of 
arguments, the expected number of c0I11parisons required in a binary 
search is gi ven by 

e,/2/,) == (1 .2° + 2 . 21 + 3 . 22 + ... + k .2/,'-1 + (k + 1)) -:- 2/,'. 
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It can be shown (e.g., by induction on k) that 

e,/2k
) == [(k - 1)27\' + k + 2] --:- 27,;. 

The expected number of comparisons is therefore approximately (k - 1), 
and for a general valueofv(k), the number is approximately rlog2 v(k)l - 1. 
The expected value thus differs but slightly from the maximum value 
flOg2 (v(k) + 1)1­

If e..,(v(k)) is the expected number of comparisons required in a fixed 
scan of k and if r is the ratio of the execution time for one step of binary 
search to the execution time for one step of fixed scan, binary search is 
(for a uniform distribution) the more or the less efficient according as es 

exceeds or is exceeded by relJ' Although the simplicity of Program 4.3 
suggests that the ratio r is small, it will be large if the representation of the 
elements of k permits serial access only. 

The methods may be combined by using k steps of binary search to 
select one of 2k subsets, which is then subjected to a fixed scan. If the 
remaining subset contains m elements, the (approximate) reduction in the 
expected number of comparisons achieved by one further step of binary 
search is esCm) - es(/nI2), and binary search should therefore be discon­
tinued when e.sCm) - esC/nI2) -s;: r. For a uniform distribution, this result 
yields the following approximate expression for the optimum number of 
steps of binary search: 

The ranking type of comparison required in determining the sequence 
in a controlled scan is always attainable for any arbitrary set k or for 
some permutation thereof. For, if p(kJ is the representation of k i in 7t, 

if 7t ~ lOeb), if t i == (be) ~ p(kJ, and if a == (8It)Jk, then the relative 
ranking of any pair of elements of a can be determined by comparing the 
base b values of their representations. If, for example, b == 10, and the 
four successive elements of k are represented by (1, 0, 9), (0, 6,4), (7, I, 3) 
and (5, 0, 6), then a is represented by (0, 6, 4), (1, 0, 9), (5, 0, 6), and 
(7, I, 3), and relative ranking in a is determined by comparing elements as 
decimal numbers. 

In the execution of the binary search, the calculation of the index j (next 
element for comparison), and the explicit determination of the terminal 
indices i and k can be avoided by associating with each element k j a pair of 
indices which indicate the two possible succeeding choices for j. More 
precisely, if M is a matrix of dimension v(k) x 3, whose first column is the 
set k, and whose second and third columns are vectors of indices (or nulls) 
from the set ll(V(k)) U (0), then Program 4.4 describes a directed scan of k. 
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.i ~ l(p(M) + 1) ~ 2J 

>
.i ~ M 2 j 

.i +- M 3 j 

Program 4.4 Generalized binary search 

The elements of M 2 and M 3 can be so chosen as to execute a binary search 
equivalent to that of Program 4.3. This is true~ for example~ for the 
matrix M of Fig. 4.5. 

The ordering of the elements of M 1 is clearly immaterial, i.e.~ if M 1 were 
permuted~ then columns M 2 and M 3 could be respecified so as to yield the 
original scanning order. One consequence of this is the fact that the rows 
can be reordered so that the scan conveniently begins with the first row 
rather than with row lCu(M) + 1) --:- 2]. A more important consequence 
is the possibility of applying the method to the problem of multiple keys~ 

which will be raised in the treatment of key transformations. 
As illustrated by Fig. 4.5~ the matrix M specifies a tree whose nodes are 

the elements of Ml~ whose branching ratios are two, and whose paths are 
traced by Program 4.4. The columns M 2 and M a can clearly be chosen to 
specify a scan sequence other than that of binary search. In particular, the 
element M/ selected for comparison may be chosen so as to equalize (as 
far as possible) the total probability of the arguments in the two resulting 
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Figure 4.5 Tree traced by Progran1 4.4 
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subsets rather than to equalize the number of elements. This procedure 
yields the most efficient controlled scan. ]f the probability distribution is 
uniform, the method reduces to binary search. If the argunlents are 
drawn froln two or more sets having distinct probability distributions, the 
matrix M may be enlarged to include two index columns for each distinct 
set. Each such pair of columns may then be designed to provide an 
optimum scan for the associated distribution. 

4.2 KEY TRANSFORMATIONS 

Since a key transformation maps the set of keys k into a set of integers 
(the set of derived keys d), any unique key transformation produces a 
derived key which can be used to select the component of a mapping vector 
directly and thus complete a ranking operation without the use of a 
scan. If the transformation is not unique, it lnay still be used to partition 
the original set k into v(d) subsets for scanning and so reduce the expected 
scan time. Ideally a key transfornlation should be both simple and unique 
and should produce a derived set d having a narrow spread; in practice, 
compromises must be made. 

Let k be the domain and d the range (in ascending order) of a key 
transformation t(k i ) and let eJ be the equivalence class in k which maps 
into d j , that is, t(x) = d j for all x E eJ. The coalescence of t ill k is then 
defined as the vector c such that c j = v(eJ), for j E ll(V(d)). Since the 
equivalence classes are disjoint and collectively exhaust k, then +/C = 

v(k). The spread of t ill k is defined as 1 + d" - d i . Thus if k is the set 
(Sunday, Monday, ... , Saturday), and if t maps each day into the rank 
(in the alphabet) of its leading letter, then d = (6, 13, 19, 20, 23), the 
spread s = 18, c = (1,1,2,2,1), and +/c = v(k) = 7. 

The key transformation is biunique if and only if C = €. Moreover, if 
the transformation t is biunique, the ranking operation (i.e., the deternlina­
tion of the index of the argument in k) can be completed by a nlapping 
vector whose components are selected by the index j = t(kJ - d l + 1, 
and whose dimension is equal to the spread of t in k. The key transfornla­
tion of the preceding example is biunique when restricted to the set x = 

(Sunday, Monday, Tuesday), the set of derived keys is (13, 19, 20), and 
the mapping vector m = (2, 0, 1, 3) of dimension eight serves0, 0, 0, 0, 

to cOlnplete the mapping if its cOlnponents are selected by the index 
j = t(x;) - 12. 

A key transformation is called j-or/gin if d l = j. Since the origin can be 
changed by subtraction of a constant, attention will be restricted to 
I-origin transformations. The spread of a I-origin transformation is 
clearly d". 
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A biuniq ue key transfonnation is always
 
attainable since, as renlarked in the treat­
 o 
ment of directed scan, the base h value of 
the representation of the elements of the 
domain k can be used. The spread of such 
a transformation may, however, be im- 0 

practicably large. Ie for example, x were 
some small subset of the set of all ten­
letter sequences, (e.g., all Ineaningful ten­
letter words), then s would be 2610, and 
the required dimension of the associated 
mapping vector would be impracticably 
large. o 

In general, if each element of k is of 
dimension h in 1t and if the (used) range 
of each element of 1t is the set lO(h), then the 
Inapping vector required is of dimension 
bh

• The use of the base b va~ue of the rep­
resentation in selecting the cornponent of 
the mapping vector is equivalent to select­
ing a path through a uniform h-way tree as 
illustrated (using O-origin indexing) in Fig. 
4.6, for h == 3 and h == 3. The branch to 
the jth level is selected according to the jth 
component of the representation. o 

Sequentiallevel-b/-level selection in the 
tree is less convenient than the direct use 
of the base b value, except that the former 2 

frequently allows the full tree to be greatly 
contracted. If, for example, the tree of Fig. 
4.6 is used for the set k == (200, 0 I 0, 120, 
001,022,202) (as indicated by the numeric 2 

leaves whose values are the O-origin ranks 
in k), then the full tree can be contracted 

to the nonhomogeneous tree of Fig. 4.7. Figure 4.6 
The contraction is defined formally as 111apping vector for the set k = 
follows: if the subtree rooted in a given (200,010, 120, 001, 022, 202) 

node contains no significant leaves, the 
subtree is replaced by a single null leaf~ if the subtree contains exactly 
one significant leaf, the subtree is replaced by that leaf. The contracted 
tree can then be represented by a chain list Inatrix or, since all nodes save 
the leaves are null, by a leaf list Inatrix M. For the exanlple of Fig. 4.6, 

Uniforl11 tree and 
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Figure 4.7 Contracted tree and associated leaf list matrix M 
for the set k = (200, 0 10, 120, 001, 022, 202) 

M is given in Fig. 4.7. The sequential biunique key transfonnation on 
the leaf list matrix of the contracted tree is described by Program 4.8. 

Program 4.8. The components of the argument x are scanned by the index j, 
and step 5 determines i as the index of the current node in the path. If node i is 
not a leaf, then step 6 determines k as the index of the first node reachable fronl 
node i. If node i is a leaf, then k is specified as the value of the leaf, and the right­
pointing exit is followed on step 8 unless the exit at step 7 is taken first. This exit 
occurs only if x is an illegitimate argument which leads to one of the null leaves 
(such as the last leaf of Fig. 4.7) remaining in the contracted tree. The contraction 
was performed in the specified manner so as to allow the incorporation of such a 
test. I f it is not required, the tree can be further contracted by eliminating the 
null leaves. The left-pointing exit on step 4 also indicates an illegitimate argu­
nlent x, but one of insufficient dimension for the particular path specified. 

The biunique key transformation provided by Program 4.8 is very 
effective when applied to a set whose dimension is small compared to the 
spread of the transformation prod uced by taking the base h val ue of the 
representation as, for example, in a glossary of English words. * A dis­
advantage of the process is the need to revise the entire leaf list matrix 
when additions to or changes in the argument set occur. The process can 

* See, for example, Lamb and Jacobsen (1961). 
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Program 4.8 Biunique transfornlation on key represented by x, using the leaf 
list of the contracted tree of key set k. 

be modified to produce a simpler but nonunique transfornlation by 
contracting the tree further so that some or all of the remaining leaves each 
represent two or more significant leaves of the original tree. 

Nonunique key transformations 

Although it is frequently impossible to obtain a sufficiently siInple 
biuniq ue transformation having a sufficiently sInall spread, it is always 
possible to produce a simple key transfonnation of arbitrarily snlall spread 
if the requirement of uniqueness is dropped. For example, the spread of 
the key transformation 

j +- l( (be) I p(.r)) -:- dJ 

varies inversely with d, but the transformation is usually nonunique for 
d 1. 

If a key transformation is not unique, the ranking must be conlpletcd by 
a scan of one of the equivalence classes which it defines. The scan of each 
of the equivalence classes eJ may, in general, be either directed or con­
trolled, and the individual subsets Inay be ordered by frequency of occur­
rence, by the base h value of their representations, or by sonle externally 
imposed (e.g., chronological) order. If a chained representation or fIle is 
used for each subset, a directed scan is normally used. 

The expected length of a directed scan of each of the equivalence classcs 
ej may be computed and weighted by the relative frequency of the class to 
yield an expected over-all scan length. If the distribution of argunlcnts is 
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uniform, the expected scan length for eJ is given by 

(v(eJ) + 1) -:-- 2 = (c j + I) -:-- 2, 

where c is the coalescence of the transformation. Moreover, the relative 
frequency of arguments from eJ is c j -:-- (+ / c). Consequently, the over-all 
expected scan length I is given by 

I = [(c + e) ~ cJ = [1 + C~ CJ -:-- 2. 
2(+/c) C ~ e 

For a fixed dimension of the derived set d (and hence of c), and for a 
necessarily fixed value of +/C = v(k), the value of I is clearly minimized 
if the coalescence vector c is uniform, i.e., if the components of c are all 
equal. Hence the expected scan length is minimized by a key transforma­
tion whose equivalence classes are of equal dimension. 

A given key transformation is frequently employed to rank a variety of 
subsets of its domain k rather than k itself. For example, if k is the set of 
English words in a given dictionary, then one of the subsets to be ranked 
may be the set of distinct words in a particular sample of English text. If 
a particular subset of k is specified, then the coalescence of the key trans­
formation in the specified subset x can be determined, and the transforma­
tion can be chosen accordingly. More generally (as in the case of samples 
of English text), the active domain x may be only partially specified. The 
transformation should then be chosen so that its coalescence is nearly 
uniform for the expected active domains. If, for example, k is the set of 
all five-letter sequences, and if each active domain is the set of five-letter 
sequences beginning with a specified letter, then the key transformation 
used should depend only on the last four letters. If the set of derived keys 
produced by a key transformation has a spread s and a random uniform 
distribution within that spread, then the expected length of a scan (of the 
equivalence classes) can be shown * to be 1 + v(k) -:-- 2s. 

Scanning of the equiralence classes. If an element x is to be ranked in k by 
a scan of k itself, no auxiliary information is required since the rank of 
component k j is simply its index j. If some permutation of k is used 
instead, then an auxiliary ranking vector r (i.e., a permutation vector) 
nlust provide the rank in the given set k. Specifically, if y = pJk is used 
for ranking, then r is the permutation vector inverse to p, and the rank of 
element Yj is r j . Finally, if the vector Y is itself to be scanned in some 
prescribed order other than simple cyclic order, the order may be repre­
sented by a chaining vector q. 

The vectors y and r or y, r, and q can be combined into a two-column 

* See Johnson (1961) and Exercise 4.4. 
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matrix S or a three-column nlatrix C which contains all infonnation 
requisite to the ranking operation. More generally~ a collection of Inat­
rices F~ V, etc., can be used, each representing some subset of the given key 
set k. 

The method of scanning the equivalence classes defined by a given key 
transformation is largely determined by the type of Inatrix or Inatrices used 
to represent the key set k. The five major methods of practical interest are 
enunlerated below. Each is illustrated in Fig. 4.9. A I-origin key trans­
formation t is assumed. 

(a) OrerfioH'. A two-column matrix F of column dilnension s = d" 
represents the first elements of the equivalence classes (and their ranks), as 
follows: 

]?Id J = e1 j ,j E II ( v(d) ), 

iFl = 0, i ¢ d. 

All remaining elements of the sets (i.e., aI/e') are represented in arbitrary 
order in a two-column ~~overftow" matrix V. 

The scan procedure is given by the Program of Fig. 4.9a. If the given 
argument x is not equal to F~(r\ then the overflow matrix V is scanned in 
ascending order. The left-pointing exit indicates that x ¢ k. 

For a uniform distribution, the expected scan length is clearly given by 

I = 1 + (Cu( V) + I) x (l( V) -:- 2v(k), 

where (l( V) = v(k) - v(d). The expected scan length is therefore large 
unless the average dimension of the equivalence classes (that is, lICk) -:- v(d)) 

is close to unity. For a known nonuniform distribution, the expected scan 
can be reduced by placing the most freq uent element of each eq uivalence 
class in F and ordering the elements in V according to their freq uency. 

(b) Orerfiow with chaining. The two-column matrices F and V used in 
method (a) can each be augmented by a third column chaining vector 
which chains each equivalence class. Thus F~k is the row index in V of 
element e/" if it exists, and is otherwise null. Similarly~ if V/I = e)i, then 
V3h is the row index in V of e,~ :-1 if it exists, and is otherwise null. The 
program is given in Fig. 4.9h. The expected scan length for a uniform 
distribution can, as shown earlier, be expressed in terms of the coalescence 
vector c as follows: 

(c) Single table lrith chaining. In the overflow methods [(a) and (b)], 

certain rows of the matrix F go unused, and a saving in storage can be 
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effected by combining the three-column matrices F and V in a single table 
T of column dimension 

fl(T) = max (s, v(k)), where s = d ll = fl(F). 

Let u be a logical vector such that U/l1(fl(F)) = d. Then ii/IF constitutes 
the unused and u//F the used rows of F. Let v be a vector of dimension 
f1( T) obtained by appending a zero suffix to u. The first two columns of 
T are then defined as follows: 

v//(a2/T) = u//(a2/F), 

v//(a2/T) = a2/(VP), 

where p ;2 llCU( J7)) and v(p) = +Iv. (The vector p permits an arbitrary 
reordering of the rows of V). The third column of T is a chaining vector 
which chains each of the equivalence classes e i 

• 

The appropriate scan program (Fig. 4.9c) is sinlilar to that of method 
(b), and the expected scan length is identical. The serious disadvantage of 
the method lies in the construction of the matrix T-all of the rows 
(specified by v) required for the leading elements of the equivalence classes 
must be known before any of the nonleading elements can be allocated. 
The table T is therefore usually constructed in two passes over the given 
key set. Moreover, any addition to, or change in, the active key set k 
which introduces a new equivalence class may occasion reallocation of 
some row of T. 

(d) Single table with chaining and mapping l'ector. The main deficiency 
remarked in method (c) is occasioned by the fixed vector v and the fixed 
order of the rows of v//T, both imposed by the given key transformation I. 
The difficulty can be shifted from the matrix T to a mapping vector m 
which is used (as indicated in the program of Fig. 4.9d) to effect a further 
transformation of the index i = I(X). The rows of T may then be arranged 
in any desired order, provided only that for each h E ll(V(d)), m i = j, 
where e/L = kk = T/, and I(e/L

) = i.Moreover, if T 1 = k, then the 
ranking vector T 2 may be omitted. 

Except for the extra step occasioned by the operation j ~ rn i , the 
expected scan length is again the same as for method (b). However, the 
requirement that fl( T) ~ max (s, v(k)) may now be relaxed to the form 
!l(T) ~ v(k), whereas vern) must equal or exceed s. Since the squared 
length of the coalescence vector (that is, etc) can, in generaL be reduced 
by increasing the spread s of the transformation I, the expected scan length 
can now be reduced at the cost of increasing the dimension of the nlapping 
vector tn rather than at the (usually much higher) cost of increasing the 
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column dimension of T. A similar advantage can be gained by employing 
the mapping vector m in methods (a), (b), and (c). 

(e) Open addressing system. * The open addressing system employs a 
single table T but requires neither the chaining vector T 3 nor the mapping 
vector m. As shown by the program of Fig. 4.ge, each argument ;r is 
obtained by a forwars ~~an of T1, beginning at component T~(.r). Since 
the scan is cyclic, it is necessarily successful. It can also be made fairly 
efficient by constructing T as follows. The matrix is first specified as a 
matrix of nulls. The elements of k are then assigned in order, element k j 

being assigned to the first unassigned row following row t(kJ - I. 
The program of Fig. 4.ge describes both the construction and the use of 

the table T. The branch on step 3 can occur only if the element x has not 
yet been entered in the matrix T, and steps 5 and 6 then complete its entry 
and the specification of the corresponding component of the ranking 
vector T 2• The use of T can, in fact, proceed concurrently with its con­
struction, i.e., each argument x presented to the program defines a new 
entry in T if it has not previously occurred, the k index of x being deter­
mined by some algorithm independent of T. 

If the active argument set k is not fixed, it may be desired either to add 
new elements or to respecify the rank of some element already defined in 
T. Respecification may be incorporated by allowing the scan used in 
defining an entry in T to terminate on encountering either the null element 
or the argument itself. Although respecificati~n of an entry may be 
allowed, deletion of an entry and its replacement by the null element cannot, 
for the occurrence of such an inserted null element between the beginning 
point i = t(kj ) and the point at which k j is entered in T would later cause 
an erroneous indication that k j was not defined in T. Replacement of a 
deleted entry by a special "'deletion character" distinct from the null 
element could, however, be used. 

The expected scan length in the open addressing system exceeds that for 
Jnethod (d), since the expected length of scan of each equivalence class is 
increased by the potential interleaving of elements from different equiva­
lence classes. Thus, in the example of Fig. 4.ge, the expected scan lengths 
for each of the equivalence classes (Sunday, Monday, Saturday), (Tuesday, 
Thursday), (Wednesday), and (Friday) are (1 + 2 + 6)/3, (2 + 3)/2, I, 
and I, respectively, yielding an over-all expected scan length of 16/7. The 
corresponding scan lengths for a chained scan (e.g., method Cd» are 
(1 + 2 + 3)/3, (1 + 2)/2, 1 and I, with an over-all expected scan length of 
11/7. However, since it uses a fixed scan, the open addressing system is 
better suited to a serial store than is the chained system. 

* The open addressing system appears to have been first used by A. L. Samuel, G. M. 
Amdahl, and E. Boehm in constructing address tables for an assembly program. 
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If the derived keys are uniformly distributed in the range 1 to /-leT) 
then, as shown by Schay and Spruth (1961), the expected scan length is 
1 + p -:- 2(1 - p), where p = v(k) -:- /-leT). For a nonuniform distribu­
tion, the expected scan length can be reduced by allocating the most 
frequent elements first, i.e., by defining T from the set k reordered in 
descending order on frequency. 

Bucket files. In certain files the locations divide naturally into blocks or 
buckets of n successive locations each, such that the entire contents of any 
bucket can be scanned in virtually the same time required to scan anyone 
location in the bucket. Such a file is called a bucket file (Peterson, 1957). 
In a magnetic disc file, for example, each track forms a bucket. Each of the 
foregoing methods of scanning equivalence classes can be adapted to suit 
the characteristics of a bucket file. The equivalence classes can be 
grouped in buckets, with chaining provided only from bucket to bucket. 

Clustering. * The active argument sets of interest may be relatively small 
subsets of the complete set k. Moreover, their elements commonly share 
some characteristic so that a key transformation which gives uniform 
coalescence and uniform spacing of the derived keys with respect to k 
may yield highly nonuniform coalescence or nonuniform spacing, or both, 
with respect to a given active domain x. This effect is called' clustering. If, 
for example, each element of k is represented by a vector of decimal digits 
of dimension ten, then the key transformation 

t(x) = l((lOe) ~ p(x)) -:- I07J 

yields a mapping onto the range lO(l03) which has both uniform coalescence 
and uniform spacing. On the active domain x, whose elements are all 
represented by vectors p(x) such that a3 jp(x) = (2,4, 7), however, all 
elements "cluster" in the single derived key 247. 

The deleterious effects of such correlations among elements of the 
active domain can be reduced by employing key transformations which 
depend on all components of the representation and do so in a manner 
which shows no systematic relationship to the structure of the representa­
tion. The mid-square method, for example, consists in squaring the given 
key and extracting the middle digits of the resulting product. A commonly 
used transformation is the taking of residues modulo some number m 

such that m ~ vex) and is either prime or contains few factors. 

* Note added in proof: M. Hanan and F. P. Palermo offer an important solution 
to clustering by the application of Bose-Chaudhuri codes. R. T. Chien and C. v. 
Freiman have remarked a similar application of Fire codes (private communications). 
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4.3 MULTIPLE KEYS* 

If in some mapping operation the access to both the key set and the set 
of correspondents is serial (or partially serial), considerable advantage can 
be gained by replacing the vector T 2 of ranks by the suitably reordered set 
of correspondents, that is, T/ becomes the correspondent of the key T/. 
For, the ranking operation on the argument k j which gives access to the 
element T 1 i = k j also gives immediate access to the correspondent T 2i in 
the same row Ti. This is equivalent to eliminating the permutation 
operation (through reordering of the set of correspondents) and coalescing 
the ranking and selection phases so that together they require a single 
access to the (partially) serial memory. 

For a single functional correspondence, the coalescing of the ranking 
and selection phases can (by a suitable ordering of T) be accomplished by 
the single-table process (Fig. 4.9c) without introducing the mapping 
vector m of process (d). Frequently, however, a number of related func­
tional correspondences must be provided between pairs of a family of 
vectors OJ so ordered that 0/' corresponds to 0/ for all i, j, and k. In an 
accounting system, for example, 0 1, O2 , 0 3 , and 0 4 might be, respectively, 
the vector of account numbers, names, addresses, and balances in a given 
ledger. Those vectors which may occur as arguments in a mapping process 
are called key vectors ~ those which never occur as arguments are called 
satellite rectors. 

o may be reordered (and augmented by a suitable chaining vector) so as 
to permit the use of the program of Fig. 4.9c for some selected key set Oi. 
However, for any other key set OJ' the order will, in general, be unsuitable. 
The program of Fig. 4.9d may, however, be used together with an appro­
priate mapping vector m j and chaining vector qj. For the sake of uni­
formity and the advantage of allowing an arbitrary ordering for 0, the 
distinguished key set Oi may also be provided with a mapping vector m i 

and treated like the rest. 
The generalized binary search of Program 4.4 can be applied to the case 

of multiple keys by providing a pair of chaining vectors (M2 and M 3 ) for 
each key. The open addressing system is clearly unsuited to Inultiple keys. 
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EXERCISES 

4.1 Give a formal proof of the fact that the binary search of Program 4.3 will 
not work properly if steps 5 and 6 are replaced by the statenlents k +- j and i +- j, 
respectively. 

4.2	 (a) The argument k i in the set of keys k = (kI , k 2 , ••• , kl') occurs with the 
relative unnormalized frequency i. For the case v(k) = 10, design the 
nlatrix M which will minimize the expected scan length when applying 
Program 4.4. 

(b)	 Show how additional keys may be incorporated in the system of part (a) 
without revising the entire matrix M. Discuss the effects on the expected 
scan length. 

4.3 Consider the ledger L defined as 

3 1 2 5 AD A M S, S. H. 0 0 

o 1 6 8 B A K E R, J. C. 0 0 

7 9 2 6 FOX, R. L. 0 0 0 0 

L= 
3 4 2 0 
1 9 2 5 

FOX, R. L. 0 0 0 0 

H ILL, K. 0 0 0 0 0 

2 4 8 6 JON E S, J. C. 0 0 

9 1 2 7 JON E S, J. C. 0 0 

6 1 3 5 KIN G, K. M. 000 

435 o ASHooooooo 
76 o ELMoooooooo 
435 o LAURELoooo 
435 o LAURELoooo 
118 o LINDENoooo 
61 oMAPLEooooo 0 

736 o LINDENoooo 
76oELMooooooo 0 

and the argument domains k I , k 2, and k 3, consisting of a1l4-digit decimal numbers 
(account numbers), all 12-letter names (in capitals, with null fill), and all 14­
character addresses (alphanumeric with null fill), respectively, and let the rows of 
'a 4 jL, (4 t aI2 )jL, and w I4 jL represent the corresponding active domains xl, x 2 , 

3and x . 

(a) Specify a simple key transformation on the set k I whose range lies in the 
set lI(p(L»), which, when applied to the active key set xl, yields a derived 
key set of dimension three or greater. 

(b)	 Reorder the ledger L and add a chaining vector to chain the equivalence 
classes so that the resulting matrix M may be used with the key trans­
formation of part (a) and a program of the type of Progranl 4.9c. Show 
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the resulting nlatrix M and the specific progranl used for selecting the row 
Mi deternlined by an argument a E Xl. 

(c) Specify simple key	 transfornlations on each of the sets k'!. and k 3 which 
yield derived sets of dimension not less than three when applied to the 
active donlains x'!. and x3 , respectively. 

(d)	 Augnlent the nlatrix M of part (b) by a pernlutation vector and a chaining 
vector suited to each of the key transfornlations of part (c). 

(e)	 Write a program which selects, as a function of a and j, the row of M 
corresponding to the argunlent a E x j

, for j = I, 2, or 3. 

4.4 Let t i = f(k i), where f is a key transfornlation such that t S; LI ( t'(k)). The 
vector t takes on n ft distinct values (where n = l'(k)), which are assunled to be 
equiprobable. For n = 2, the cases are (I, I), (I, 2), (2, I), and (2, 2), with 
expected scan lengths 1, -}, I, and }. 

(a)	 Show that the over-all expected scan length is 1.25 for n = 2. 
(b)	 Calculate the expected scan lengths for n = 3 and for n = 4. 
(c)	 Generalize the result of part (b) to show that the expected scan length 

rapidly approaches 1.5. [See Johnson (1961) for an alternative derivation.] 

4.5 Design an open addressing system for the ledger L of Exercise 4.3 and the 
key transformation of part (a). 

4.6 Program and discuss the extension of binary search to Ill-way search. 

4.7 Let I i be the time required to scan over the ith elenlent of a vector x which 
is represented in a chained (or other serially-scanned) representation, and let Ii 
be the frequency of occurrence of the argunlent Xi. Discuss the role of the 
"standardized frequency" s = I -:- I in deternlining the optinlUI11 ordering of the 
vector x. 

4.8 The ne{[{hbors problenl requires that the near neighbors of an object in 
n-dimensional space be found. The technique used depends on the dinlensional­
ity and the particular criteria of adjacency. 

(a)	 The position of a vehicle on a turnpike is represented by the distance in 
nliles of the vehicle from the south end, and Pi is the coordinate of the ith 
patrol car. Write programs to: 
(i)	 identify the patrol car nearest an accident at position a, 

(ii) identify the two cars nearest to each other. 
(b) A	 three-column nlatrix V specifies the locations and radio call-signs of a 

fleet of nlerchant vessels on a flat lake, where VIi is the call-sign of the ith 
vessel, V 2i is its distance in miles fronl the meridian tangent to the lake on 
the west, V3 i is its distance in miles fronl the perpendicular tangent to the 
lake on the south. Write a progranl to deternline the call-sign of the neigh­
bor nearest to a distressed vessel whose call-sign c is given. 

(c)	 The matrix of part (b) is used to specify call-signs and locations at til11e f 

of a fleet of b0l11bers over a flat territory. When each b0l11b is released, 
neighboring planes must be at a safe distance. Construct a progranl which 
will find the call-signs of all pairs of planes within r nliles of each other at 
time f. 

(d)	 In a certain hydrodynamic calculation, the nl0tion of each elel11entary 
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volUlne of fluid is traced. The ith elementary volume is described by row Li 
of a matrix: (4 t (3) 1L represents the three space coordinates (in a recti­
linear system), and a71L represents the remaining parameters. At each 
time step the parameters of volume i are redetermined by those of the four 
elements nearest it. Write a program to determine a 41Li as the set of 
indices of the four nearest neighbors of element i. Hint. Attach an explicit 
index vector before sorting. 



chapter 5 

lVIETAPROGRAMS 

It is frequently necessary to treat a program as an argument of sonle 
process, as in the systematic analysis of a faulty program or in the trans­
lation of a program expressed in one language to an equivalent prograrn 
expressed in a second language. Such a process defined on prograrTIs may 
itself be formalized as a nletaprogram. 

Formally, a n1etaprogranl is defined as a program whose domain is a set 
of programs, each element of the domain being called an argunlent 
program. If the range of a nletaprogram is also a set of prograrTIs, the 
lTIetaprogram is called a translator. An element of the range of a translator 
is called a function program; i.e., a translator operates on argurTIcnt 
programs to produce function programs. A metaprogram whose range is 
not a set of programs is called an ana(vzer. Th us an analyzer prod uces, not 
a function program, but data useful in the analysis or application of the 
argument program. If, for example, the instructions of a corTIputer 
program are sorted on the data address and listed, the list brings together 
all data references to each register used and therefore facilitates analysis of 
the (possibly conflicting) uses of registers in the program. A metaprogranl 
which schedules and directs the execution of other progranls (and nlcta­
programs) is called a director or superl'isor. 

Four main types of translator are distinguished: compilers, assenlblers, 
generators, and interpreters. A compiler accepts programs expressed in a 
given language (the argument language) and produces corresponding 
programs expressed in a second language (the junction language). 

An assembler is a special case of a compiler which is limited as follows: 
(1) the statements of the argument program are virtually independent and 
may therefore be treated one at a time, and (2) the statements of the 
argument program are simple (not compound) and need not be analyzed 
into component statements. There usually exists a fixed correspondence 
between the operations of the argument program and those of the function 
progranl; the translation thus consists essentially of a substitution of 
symbols for the operations and/or operands. 

A generator produces, by specialization, anyone of a fanlily of function 

159 
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programs. Thus a single generator might, for each specified value of n, 
produce a specialized program for evaluating the function :rn 

. The 
argument of a generator is usually viewed as two distinct parts; the 
skeleton prograrn, \vhich determines the family of potential function 
programs, and the specification, which determines the particular melnber 
of the family produced. Generators are frequently incorporated in 
compilers. 

A translator is called an interpreter if it (1) executes the segment of 
function program corresponding to a statement of the argument program 
immediately after it is produced, and (2) selects the statements of the 
argument program in a seq uence determined by the execution of the 
function program. The function program itself is normally treated as an 
intermediate result, and only the outputs of the executed argument program 
are retained. The execution of an interpreter can therefore be viewed as 
follows: each statement of the argument program is first "interpreted" 
in the function language and is then executed. 

The trace progranl and the utility progranl are special cases of the inter­
preter. The former executes the argument prograrrl without modification 
but produces, in addition to the normal outputs of the argument program, 
a trace of the argument program listing each instruction executed and the 
intermediate results produced. In a narrow sense, a utility program is an 
interpreter whose argument program is supplied directly by a computer 
operator via the control console. More broadly, the term is used to denote 
any program frequently used by the computer operator. 

The present discussion of metaprograms will be limited to one important 
aspect of compilers, the analysis of cOlnpound statements occurring in the 
argument program. The treatment embraces the translation between the 
common parenthesis notation and the Lukasiewicz (1951) notation which 
proves most convenient in the analysis of compound statements. 

5.1 COMPOUND STATEMENTS 

Each statement of a program can be considered as an operator which 
maps the given operands into the specified result. If the operator corre­
sponding to a given statement belongs to a given set of operators p, the 
statement is said to be elementary in p. A finite program whose operators 
all belong to a set p is called a program in p. A statement which is not 
elementary in p but which can be expressed as a finite program in p is said 
to be compound in p. The analysis in p of a compound statement is the 
specification of a corresponding finite program in p. 

For exanlple, the statement 

z +- (x + y) X r + (s - t)H 
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is compound in the operator set 

p = (addition, subtraction, multiplication, exponentiation), 

and Program 5.1 a shows one possible analysis in p. Program 5.1 b shows a 
similar analysis in the set 

q = (addition, subtraction, nlultiplication, branch). 

A metaprogram that translates all statements which are eleInentary in a 
set of operations p can be extended to translate statements which are 

-) a+-x+y a+-x+y 

b+-axr b+-axr 

e +- s - t e +- s - t 

d +- en d+-1 

z+-b+d ~ i+-n 

< i+-i-1 

z+-b+d 

Analysis in p Analysis in q 
(a) (b) 

Program 5.1 Analysis of the conlpound statenlcnt ,: -(- (.r + y) x r + (s - f)" 

compound in p by the addition of a metaprograIn for analyzing cOIn pound 
statements. The conventions adopted for the representation of conlpound 
statements must, of course, be complete and precise so that interpretation 
is unequivocal. These conventions should be fanliliar and convenient to 
the progranlmer and should also permit easy analysis by a nletaprograIn. 
The comInon parenthesis notation of elenlcntary algebra is congenial to 
programmers, whereas statements in Lukasiewicz notation are easier to 
translate and evaluate, easier to transfonn to an optinlunl fornl which 
minimizes the amount of intermediate data storage and execution tinlC 
required in their evaluation or translation, and possess the sinlple criterion 
for well formation developed for the left list matrix of a tree in Sec. 1.23. 
The analysis of conlpound statements will therefore be discussed in ternlS 
of Lukasiewicz notation, and algorithnls for translating between the 
parenthesis and Lukasiewicz notations will be presented. 
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Figure 5.2 shows several alternative representations of a compound 
statement. The tree representation (5.2a) is perhaps the most graphic, and 
the other forms may be viewed as alternative representations of the tree. 
The common parenthesis form of Fig. 5.2e, for exalnple, specifies the 
requisite structure primarily by grouping the nodes of each subtree within 
parentheses with the root in the middle of the group. As shown in Sec. 
3.4, the left list nlatrix of Fig. 5.2c can be supplanted by the simpler left 
list vector of Fig. 5.2d, providing that the degree of each operator p is a 
known function 6(p). 

The left list vector notation for a COIn pound statelnent is also called 
Lukasiewicz, * Polish, or parenthesis~ff'ee notation. The Lukasiewicz and 
the parenthesis notations will hereafter be referred to asY:;-notation and 
Y-notation, respectively. 

5.2 LUKASIEWICZ NOTATION 

Although !f-notation can be viewed as the left list vector of a tree 
representing a compound statement, it is helpful to develop an alternative 
equivalent formulation as follows. Let I and p be two disjoint sets whose 
elements are literals and operators, respectively, and whose union v == 
1 P is called a l'ocabularJ'. A strictly positive integral degree function 
6(p) is defined on each element of p, and each operator p of degree d 
accepts d elements of 1 as operands to define a result or value in 1. In 
synlbolic logic, for exanlple, 1 == (0, 1), P == (l\, V, -), 6( A ) == r)( V) == 
2, and ()( -) == 1. Consistent with these notions. the degree of each literal 
is defined to be zero. t 

Each operator p of degree v( q) defines a function (i.e., a nlapping) fronl 
each vector q s; 1 into an elenlent y E 1. This function is denoted by the 
vector f == (p) ffi q. The vector f is called an !//-phrase (~l/ength v(I), and 
the elenlent y is called its ra/ue. Table 5.3 shows, for exanlple, theY)­
phrases in the system for symbolic logic based on and, or, and not. The 
vector f is clearly contained in the vocabulary v, that is, f s; v. Where its 
omission raises no ambiguity, the prefix will be dropped fronl the tenn 
"Y-phrase" and from similar terms to be defined. 

A vector z s; v is called an !£~rornlu/a (~llength l'(z). In particular, 
every phrase is a formula. The degree rector of a fornlula z will be denoted 
by 6(z) and defined by the relation (r)(z))i == ()(Zi). 

* First proposed by Lukasiewicz (1951) and first analyzed by Burks et al. (1954). 
t The system is extended to include variables as well as literals by considering the 

vocabulary v = x 1 p, where x is the set of variables, and x n (l p) = e(O). 
The degree of each variable is, like that of a literal, defined as zero. The domain of the 
operators is still confined to the set I, and in any legitimate algorithm each variable is 
specified as a literal by some statement before it enters as an argument. 
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Phrase Value 

(V, 0, 0) °(V,O, 1) 1 
(V, 1,0) 1 
(V, 1,1) 1 
(/\ , 0, 0) °(/\,0,1) °(/\,1,0) °(/\,1,1) 1 
(-,0) 1 
(-,1) ° 

Table 5.3 Phrases in~-systeln for syn1bolic 
logic based on operators and, or, not 

If sonle infix of z is a phrase, and if the infix is replaced by its val ue, then 
the resulting vector y is called an2-reduction of z. If y is any Y-reduction 
of z which cannot be further reduced, it is called a conlplete reduction of z 
or, since it can be shown to be unique, the complete reduction of z. Com­
plete reduction of z will be denoted by 2(z). A formula z is said to be 
singular* if its complete reduction is a single literal, i.e., if l'(Y(z)) = 1 and 
2(z) E 1. Thus q = (/\,1, V, 0,1) and r = (1) are singular, but s = 

(/\ , 1, 1, 0) and t = (/\ ) are not. 
For exanlple, complete reduction of the singular formula z = (/\ , ,1, 

/\ , 0, I, V, 1, -, 1) may be performed as follows: 

z = (/\, V, 1, /\, 0, 1, v, 1, -, 1) 

Zl = (1\, V, 1, /\, 0, 1, v, 1, 0) 

Z2 = (/\, V, 1, /\,0,1,1) 

Z3 = ( /\, V, 1, 0, 1) 

Z4 = (/\,1,1)

Z5 = 

Program 5.4 shows the complete reduction of a formula z, including tests 
of singularity. 

Program 5.4. The components of the given forn1ula Z are examined in reverse 
order and assembled into a stack vector y = (Zi, Zi+l, ... , z,,), where Zi is the 

* The term well fOr/ned used by Burks et al. (1954) and others is avoided here because 
singularity implies not only that the formula represents a well formed tree but also that 
the tree is singuldr. 
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I-origin indexing 

Z Given formula. 

y Reduced suffix of z. 

i Index of Z in descending scan. 

j Dimension of phrase to be 
reduced. 

s Singularity indicator. 

Legend 

> 

Program 5.4 Evaluation of the formula z 

conlponent currently exanlined. When an operator (i.e., a node of nonzero de­
gree) is first encountered, the prefix ofy fornls a phrase of dimensionj = ()(Yl) + 
I, which is inlmediately reduced (i.e., evaluated) on step 10 and is then replaced 
by its reduced value on step II. Singularity of the vector z is indicated by a non­
zero value of s, which is set to one only if the exit occurs fronl step I with v(y) = 1. 
The case ~'(y) 1 can occur if the fornlula represents a well fornled but nonsingu­
lar tree, i.e., if the formula contains two or more singular formulas. The exit 
fronl step 9 occurs if the indicated dimension of any phrase exceeds the current 
dimension of y and leaves the indicator s at its initial zero value. 

The singular fornlulas are clearly the meaningful compound statements 
in the system. Moreover, if L 2 is a singular fonnula and if L 1 === ()(L'!.), 
then L is the left list of a singular tree. The singularity of a given formula 
z can therefore be determined froln its associated degree vector d === r5(z). 
The necessary and sufficient condition for singularity of the associated tree 
is simply v(d) - (+ jd) === I. As shown in Sec. 1.23, the necessary and 
sufficient condition for well formation is that all components of the suffix 
dispersion vector s defined by* 

s === (I + ~) ~ (€ - d) 

must be strictly positive. The nlaxinlum over the components of s will be 
called the fnaximunl suffix dispersion 0.[ z. 

* The suffix dispersion vector describes the dispersion (nunlber of roots) of all suffIxes 
of Z, as may be more easily seen from the alternative expression 

5 j 1 = ~'(aj /d) - (+ /aJ)d). 
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5.3 THE MINIMAX FORM OF AN 2-FORMULA 

Two formulas are said to be equiL'alent if they have the same value for 
each possible specification of their variables. If z is any formula whose 
operators are all symmetric (i.e., whose operands commute), then any 
reordering of the component singular formulas of z which leaves the span 
of each operator unchanged leads to an equivalent formula. For example, 
since the operators /\ and V are symmetric, the formulas 

z = (/\, V, /\, V, }i', /\, u, v, r, q, p) 

and q = (/\ ,p, V, q, /\, r, V, }i', /\, u, v) 

are equivalent, as may be easily verified. In the tree representation this 
reordering appears as a reordering of the group of subtrees rooted in a 
common node. 

A formula whose maximum suffix dispersion is minimal with respect to 
the set of all equivalent formulas is said to be in minimax form. 

The dimension of the stack vector y employed in the evaluation of a 
formula z (cf. Program 5.4) takes on successive values equal to the number 
of roots in the tree represented by the suffix of z currently scanned. It 
therefore assumes the values (in reverse order) of the components of the 
associated suffix dispersion vector s. The maximum dimension of the 
stack vector determines, in turn, the amount of auxiliary storage required 
in the evaluation of the formula or in the compilation of a function 
program for its evaluation. It also detern1ines, in part, the number of 
transfers of intermediate results to and from storage in evaluating the 
formula in a computer having a limited number of central registers. A 
formula in minimax form minimizes the maximum dimension of the 
stack vector and is therefore to be preferred. 

The transformation of a singular formula z to equivalent minimax form 
is based on the following theorem: if each of the O(Zl) component singular 
formulas of (iljz is in minimax form, then the entire formula can be 
brought to minimax form by arranging the component singular formulas 
in ascending order on their maximum suffix dispersion. 

For example, if z = (1\, V, /\, a, b, /\, C, d, V, e,!), then <5(Zl) = 2, 
and (iljz contains two singular formulas, yl = (V, 1\, a, b, 1\, C, d), and 
y2 = (v, e, f), each in minimax form and possessing maximum suffix 
dispersions of 3 and 2, respectively. Moreover, 

q = (Zl) ffi y 2 ffiyl = (1\, V, e,j, V, 1\, a, b, 1\, C, d) 

is an equivalent formula in minimax form, with a maximum suffix dis­
persion of 3 as compared with a value of 4 for the same function of z. 
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To establish the theorenl, let z be any singular fornlula, let r(z) be its 
dispersion (that is, the number of roots), let s(z) be the Inaxinlunl suffix 
dispersion of z, let d == b(Zl), and let 

be the unique (cf. Program 3.9) partitioning of (iljz into its conlponent 
singular formulas. Then yi yi-tl yi I,' -1 represents a k-tuply 
rooted tree and r(y! E8 yi~l 1) == k. Moreover, 

== max [S(yl) + d - 1, S(y2 

yff)J 

d . 
== Inax [s(y]) + d - jJ 

j=l 
d . 

== d + max [s(yJ) - jJ. 
j=l 

Since the component formulas are in minimax fonn, the s(yJ) are individ­
ually minimal, and the maximum over S(yi) - j is clearly mininlized by 
arranging the s(yj) in ascending order. This concludes the proof. 

To ensure that each component fornlula is itself optinlal, it suffices to 
apply this reordering procedure in turn to the successive singular fonnulas 
encountered in scanning the given formula from right to left, as shown in 
Program 5.5. 

Program 5.5. The vector y is the suffix al'!z pernluted to optinlal [orI11, p is its 
j 1partition vector* (that is, ((p; a - ) 1aPj)/y is thejth singular formula of y), and 

g is its maximum suffix dispersion vector (that is, gj is the nlaxinlunl suffix dis­
persion of thejth singular formula of y). The nlain control parameter i is decre­
mented on step 11, and, if it is not zero, the degree d = ()(z i) of the next 
component to be added to y is examined. If Z; is not an operator, the branch 
to step 8 occurs with h = I. The component Zi is then a fornlula of length 1 
and steps 8-10 add it to y and nlake the appropriate changes in p and g. 

If Zi is an operator (of degree d), the loop 15-22 scans the vector g and reorders 
the first d component formulas of y so that their nlaximunl suffix dispersions are 
brought to ascending order. This is accol11plished by the sinlple, but not necessar­
ily efficient, sorting process of conlparing successive pairs of adjacent conlponents 
of g and interchanging the corresponding C0l11pOnent fornlulas of y (by rotation 

* The conventions used for p are those established in the subtree partitioning of 
Program 3.9. 
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I-origin indexing 

z Given formula. 

y The transformed suffix 
-ai/z. 

P Partition vector of y; 
P j is the dimension of 
the jth singular form­
ula of y. 

gj Maximum suffix dis­
persion of the jth 
singular formula of y. 

d 

s 

Degree of Zi' 

Singularity indicator. 

Legend 

> 

:::; 

Ph~Ph+l 

Program 5.5 Transfornlation of the fornlula Z to nlininlax fornl 

of the infix representing the pair) if an interchange is required. Steps 21 and 22 
effect the corresponding interchanges in the vectors p and g. The loop is ternli­
nated by the branch fronl step 17 to step 6, the first d fornlulas of y (fornling the 
prefix a)/ /y, where n = (+ lad /p)) are then in ascending order on their maxinlunl 
suffix dispersions, and the new fornlula (Zi) all/y is therefore in optinlal fornl. 
Its nlaximuIll suffix dispersion is conlputed by steps 6 and 7 and replaces the 
prefix ad jg (step 8) so that g beconles the nlaximuIll suffix dispersion vector of 
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(zJ y. The partition vector p is respecified by step 9. The one conlponent of g 
remaining at the conclusion is the maxinlum suffix dispersion of the optinlized 
statement y. 

The minimax form of a formula is, in general, not unique. It can be 
made unique, however, by using some assigned orderings of the operators, 
literals, and variables (e.g., the ordering specified by the vocabulary 
v = x I ffi p) as a minor category in the reordering of cOlnponent 
formulas. Such a unique form is helpful in detecting the occurrence of 
equivalent compound statements within a formula, with the ainl of 
obviating repeated segments in a corresponding function progranl. 

5.4	 TRANSLATION FROM COMPLETE 
PARENTHESIS TO LUKASIEWICZ 
NOTATION 

Ordinary parenthesis notation is complicated by the occasional or 
consistent use of certain conventions for eliding parentheses. For example, 
the expression 

(x + (y x z)) 

may also be written as 
(x + y x z) 

by the convention that nlultiplication takes precedence over addition, or as 

x + y x z, 

with the understanding that the entire expression need not be enclosed in 
parentheses. 

The problem posed by the use of such conventions can be segregated by 
considering a cOfnplete parenthesis notation in which all inlplied paren­
theses are included, i.e., in which each operator and its associated operands 
are enclosed in parentheses. The analysis of a statelnent in parenthesis 
notation can therefore be performed in two steps, a translation to conl­
plete parenthesis notation according to the prescribed conventions, fol­
lowed by the analysis of the resulting statement. The present discussion 
will be limited to expressions in conlplete parenthesis form. 

The conlplete parenthesis notation will be referred to as ;~-notation and 
the terminology adopted for Y/-notation will be extended analogously. 
Thus, z = ([, [, x, +, y, ], x, r,]) is a ;~-formula more conlnlonly 
denoted by (x + y) X r. To avoid confusion with the nonnal use of 
parentheses (e.g., in enclosing vectors), brackets will be Llsed (as in the 
foregoing vector z) to represent the cfJ-notation. 
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The discussion will be limited to a system of unary and binary operations 
only (i.e., ()(p) = I or 2) and will again be illustrated by the systelTI of 
logical operations. Assuming a vocabulary of the form v = x ffi 1 ffi p c±) 
([, ]), the rules of composition for :YJ-notation may be formulated as 
follows: 

1.	 If rEX (B 1, then v is a singular &-fornlula. 
2.	 If z is any singular formula, if U E p, and if ()(u) = 1, then (D (B (u) 8j 

z ffi (]) is a singular :3'-form ula. 
3.	 If Y and z are both singular formulas, if b E p, and if ()(b) = 2, 

then (D y ffi (h) 8) z (]) is a singular &-formula. 

In particular, ([, y, /\, z, ]) is singular but (y, /\, z) is not; (y) is singular 
but ([, .If, ]) is not, and ([, -, y, ]) is singular but (-, y) is not. 

7T(W) +- € 

:c +- <!)1 
A2 

2 ~ 

3 x 

4 :c 

5 <I)2+(x E p) +- :c 

6 <1>2 +-1<1>3 

I-origin indexing 

<1>1 Input in .9'-notation (terminated by 0, A2). 

<D 2 Output in eSe-notation (reversed in order). 

<1>3 Auxiliary stack file. 

p Set of operators. 

Legend 

Program 5.6 Translation fron1 con1plete parenthesis to Lukasiewicz notation 

The translation frolll &- to 2-notation can be performed with the aid 
of one auxiliary file or stack vector. Program 5.6 shows a suitable process 
which will correctly translate any singular formula, but which includes no 
tests for singularity. It is noteworthy that all left parentheses are simply 
ignored. A sinlilar process can, of course, be designed to use only the left 
parentheses and to ignore all right parentheses. * Any translation which 
tests for singularity clearly must use all parentheses. If the !f- and &­
notations enlploy different sets of operator symbols (e.g., /\, V, , and 
x, +, r--;), the appropriate translation can easily be incorporated in the 
progranl. 

Program 5.6. The original staten1cnt is assun1ed to be recorded on a file <1>1' 

with partitions Al following each syn1bol and with a null itenl and partition A2 at 

* Oettinger (1960) analyzes three types of parenthesis notation: left, r(~ht, and COfll­

plete. 
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the end. File <1>2 receives the resulting.!f-formula in reverse order, i.e., fronl right 
to left. The stack file <1>3 receives each operator synlbol as it is read from <1>1 and 
transfers thenl one at a time in reverse order (i.e., by a backward read) to <1>2 at 
each occurrence of a right parenthesis. A trace of the progranl shows, for 
example, that the :3J-formula ([, [, x, V, y, ], !\ ,[, -, z, ], ]) translates correctly 
into the ~-formula (:r, y, V, z, -, 1\ ) reversed fronl normal order. 

A partial test of singularity can be provided by testing each component 
for compatibility with its predecessor, the ordered pair being declared 
compatible if and only if it can occur in some singular formula. For 
example, an operator may be followed by either a left parenthesis or a 
variable, but not by a right parenthesis or another operator. These first­
order compatibility constraints can be expressed, in terms of the following 
classes: left parenthesis, unary operator, binary operator, variable or 
literal, and right parenthesis. These classes will be denoted by [, u, b, l\ and 
], or alternatively by 1, 2, 3, 4, and 5. The constraints are sumnlarized in 
the nlatrix M of Program 5.7. 

The test of singularity provided by the first-order constraints is not 
complete, * but can be conlpleted by the following expedient.-j- The 
auxiliary file which receives the operators (file <1)3 of Program 5.7) also 
receives the left parentheses in their turn. The following tests are then 
added: 

1.	 Each operator is accepted and replaces the previous entry in the 
auxiliary file if and only if the previous entry is a left parenthesis. 

2.	 The transfer of one component from the auxiliary file to the output 
file normally occasioned by the appearance of a right parenthesis is 
accepted by the right parenthesis if and only if the component trans­
ferred is an operator. 

3.	 The possible exhaustion of the auxiliary file is tested each time it is 
read. 

The first test prevents the acceptance of two successive operators without 
an intervening left parenthesis. At each application of the test, the corre­
sponding left parenthesis is removed from the file. Since the auxiliary fIle 
may now contain left parentheses as well as operators, the second test is 
required to prevent their acceptance as operators. The complete testing 
and translation process is described by Program 5.7. 

Program 5.7. The current conlponent .r is read fronl the input file on step 8 and 
its class k is deternlined before the repetition of the nlain loop at step 5. Step 5 

* The tests provided in conlpilers have frequently been lirnited to essentially this type. 
See, for example, Carr (1959). 

t This procedure is due to Oettinger (1960). 
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Program 5.7 Translation fronl conlplete parenthesis to Lukasiewicz notation 
with full checking of singularity 

determines the first-order compatibility of k with its preceding value j. (The 
singularity indicator s is set to unity only at the exit on step 10.) Each conlponent 
occasions the recording (step 6) of one itenl on one file-the auxiliary file (1)3 if 
k 4, or the output file (1)2 if k 4. The item recorded is the current conlponent 
unless it is a right parenthesis. I n the latter event, the variable .r is first respecified 
(step 20) by a backward read from the stack file. The test on step 21 assures that 
the itenl read is an operator. 

] f the current component is an operator, the previous item recorded on the 
auxiliary file nlust first be read, conlpared with ""[," and discarded. This occurs 
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on steps 15 and 16. The exits on steps 15 and 20 indicate nonsingularity due to 
the exhaustion of the stack file. Step 9 provides a final test to ensure that the 
stack file is exhausted when the input file beconles exhausted. Since the first 
component of any singular fornlula must be either a variable, literal, or left 
parenthesis, the initial setting ofj to 2 on step 4 provides the appropriate initial 
conlpatibility condition. 

Each of the translation programs considered produces the resulting 
2-fornlula in reverse order. This is the order in which it is nlost easily 

evaluated and, consequently, the order in which the synthesis of a corre­

sponding function program is most easily performed. Synthesis nlay 
therefore proceed concurrently with analysis. The analysis Inay, on the 
other hand, be completed first, and the output file (1)2 rewound before 

beginning the synthesis. The latter alternative allows the use of separate 

metaprogranls for analysis and synthesis, and hence makes lesser denlands 

for nletaprogram storage. It also allows the application of an intervening 
transformation of the ,2-formula to some preferred equivalent fornl. 
However, as shown by Program 5.4, the transfornlation to nlininlax I'ornl 

also treats the Y-formula in reverse order. It can therefore be perforIned 

concurrently with the translation from parenthesis notation. 

5.5	 TRANSLATION FROM LUKASIEWICZ TO 
COMPLETE PARENTHESIS NOTATION 

The inverse translation fronl Lukasiewicz to conlplete parenthesis 
notation is, unlike the evaluation of the Lukasiewicz forn1ula, best 

performed by a forward scan. The suffix dispersion criterion of singularity 

must then be applied in the following way. The dispersion of the entire 
stateIl1ent is assun1ed to be one, and the dispersions of successively shorter 
suffixes are obtained by subtracting (1 - ()(.r)) for each succeeding con1­

ponent .r. The suffix dispersion thus COIl1puted n1ust reach zero when and 
only when the remaining suffix is null ~ if not, the staten1ent is nonsingular. 

The translation of Program 5.8 provides cOlnplete checking of singularity. 

Program 5.8. The resulting ·jP-fornlula is produced on file (I):! in reverse order. 
Each operator encountered is recorded in the auxiliary file together with a preced­
ing left parenthesis, and it also causes a right parenthesis to be recorded in the 
output (steps 9-11). Each variable encountered is recorded (step 12) in the output 
file and initiates a transfer fronl the auxiliary file to the output file which terrni­
nates (step 19) only when an operator of degree two is encountered or (step 13) 
when the file beconles exhausted. I n the latter event, steps 14 and 15 are executed 
as a final check on singularity-exhaustion of the stack file, exhaustion of 
the input file, and the first zero value of the suffix dispersion III nlust occur 
together. 
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Program 5.8 Translation from Lukasiewicz to complete parenthesis notation 
with complete test of singularity 
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EXERCISES 

5.1 For each of the follo\ving logical functions, exhibit an equivalent (i) tree, 
(ii) .5I'-fornlula, and (iii) Y-fornlula: 

(a) ,l(~r, y, z) = :r /\ (y V z). 

(b) g(w, x, y, z) = (w V (y z» /\ (x V (w = y». 
(c) the function of part (b), limiting the operators elnployed to and, or, and nol. 

5.2 Let,l(:r, y, z) be a logical function of three variables, let q be an equivalent 
formula in :JP-notation, and let r be an equivalent fornlula in YJ-notation. Write 
progranls to determine the intrinsic vector i(t') (cf. Sec. 7.2) as a function of 

(a) the :1'-formula q. 
(b) the 2"-fornlula r. 

5.3	 Leta=(/\,-,O,V,I,O) 
b = ( , 0, V, 1, 0) 
c = (/\, V,O, V~ 1,0) 
d=(/\, V,q,f, -,I) 
e = ( V, q, r, , I) 

q = ([, [, q, \/, 1', ], /\ , [, -, I, ], ]) 

r = ([, q, V, f, ], /\ ,[, -, I, ], ]) 

Trace the operation of 
(a) Progranl 5.4 for each of the cases z = a, Z = b, and z = c. 
(b) Program 5.5 for z = d. 
(c) Progranl 5.6 for (1\ containing q. 
(d) Program 5.7 for (}\ containing q and for q)l containing r. 
(e) Program 5.8 for (1\ containing d and for q\ containing e. 

5.4 Write a program for translating from :5I'-notation to Y-notation which is 
analogous to Program 5.6 except that it ignores right rather than left parentheses. 

5.5 Write a program to extend the mininlax transformation of Progranl 5.5 to 
the case of an operator set of the form p = pI p2, where pI and p:!. are a set of 
symmetric and asymmetric operators, respectively. 

5.6 Write a program which extends the nlinimax transfornlation of PrograITI 5.5 
to include ordering on the variables and operators so as to bring the fornlula to 
unique canonical form, as suggested in Sec. 5.3. 

5.7 Write a progranl which will recognize all identical singular subfornlulas 
occurring in a singular ,~-fornlula z and which will produce a record of the 
associations in some convenient forn1. 
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SORTING 

The order in which a set of items is arranged in a large-capacity store 
often has a marked effect on the simplicity and speed of execution of 
algorithms defined on them, and it therefore becomes necessary to sort or 
rearrange groups of items. 

The problem of sorting may be described as follows: given a vector a, 
determine the ordering vector p = 6j(k(a)) and the permuted vector 
c = pJa, where k(a,J is a numeric function defined on the components of 
a, and k(a) is the vector defined by (k(a))j = k(aJ. The function k is 
called the key of the sorting process, and k(a) is called the key vector 
associated with a. The key function is frequently an index in some set b, 
that is, k(a) = b l a. The components of a will also be called items; since 
the vector a is commonly represented in a file, it will also be called a file. 

Most sorting processes determine the ordered vector c= pJa without 
explicitly determining the permutation vector p. A sorting process which 
explicitly determines and uses the permutation p is called an address table 
sort. 

Sorting processes fall into two major classes, called serial- or random­
access, according to whether the files used to represent the original and the 
intermediate vectors produced are serial-access or not. Random-access 
processes are also called internal, for they are normally performed in the 
"internal" storage of a computer. Combinations of serial processes and 
internal processes are used, but the two types can and will be described, 
analyzed, and evaluated independently. 

Input Output Name of Process 

Single Single Duplication 
Single Multiple Classification 
Multiple Single Merging (or Merge) 
Multiple Multiple Revision 

Table 6.1 Types of file operations 

176 
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Four types of operations on files are distinguished, according to whether 
one file or several files are used in input and in output. They are shown in 
Table 6.1. A classification (merge) involving nl output (input) files is called 
an nl-way classification (merge). 

6.1 SERIAL SORTING METHODS 

Copy operations 

A serial sorting process is executed as a sequence of copy operations. 
A copy operation is defined as follows: all items from a given set of input 
files are transferred to a given set of output files, and each item read froIn 
any input file must be transferred to some output file before a further itenl 
is read from the same input. 

Input Item Output
 
Files Positions Files
 

Figure 6.2 Copy operation 

Figure 6.2 provides a graphic description of the copy operation. The 
m components PI' P2' ... 'Pm denote storage for nl items, the kth input 
file may be read to the kth item position only, and the occupant of any 
item position may be transferred to anyone of the output files. Once an 
item is so transferred, the evacuated position may be refilled by the next 
item from the corresponding input file. Any copy operation can clearly be 
performed by serial input files and serial output files, with each itenl being 
read and recorded but once, and with no auxiliary repositioning of the files. 

A copy operation is also called rank-preserl'ing, since it satisfies the 
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following definition of that term. [The concept of rank preservation and 
its use in the analysis of sorting processes were first introduced by 
Ashenhurst (1953).] Any item may be specified by a pair of coordinates 
(f, r), the file coordinate.f designating the file to which it belongs, and the 
rank coordinate r designating its rank (i.e., its index) in the file. Two items 
with initial coordinates (11' r 1 ) and (j~, r 2 ) and with final coordinates (11" r/) 

and (/2" 1'2'), respectively, are said to be relatable if and only ifj~ = .f2 and 
1/ = 12'· An operation is called rank-preserving if precedence relations 
are maintained for all relatable items, i.e., 

1'1 < r2 ¢>r/ < r2'· 

Henceforth the terms nlerge and classification will, unless otherwise 
specified, refer to rank-preserving merge and rank-p1'eserL'ing classification, 
respectively. A merge in which each input file forms an infix of the output 
file is called a simple merge, and a classification in which each output file is 
formed from an infix of the input is called a simple classification. 

An m-way classification and a subsequent m-way merge together effect a 
rearrangement from a single file to a single file. If the classification and 
merge are both rank-preserving, the possible rearrangement effected is 
restricted. However, a sequence of such orderings using alternate classi­
fication and merge can effect an arbitrary reordering. In particular, the 
following two important subclasses of such orderings will each be shown 
to suffice: 

1. simple classification and merge, 
2. classification and simple merge. 

A sequence of copy operations of the first type used to effect complete 
ordering on some key is also referred to as a merge sort. A sequence of the 
second type is called a colunln sort. 

Simple classification and merge 

An infix in a file vector for which the key is a monotone increasing 
(decreasing) function of the rank is called an increasing (decreasing) string. 
The length of a string is the number of itenls it contains, and a maximal 
string is a string contained in no longer string. A file containing a single 
maximal string is ordered on the key. 

For example, the sequence of keys 

1, 3, 5, 8, 4, 7,9 

contains several increasing strings including 1, 3; 1, 3, 5, 8; and 7, 9, but 
it contains only two maximal increasing strings, 1, 3, 5, 8 and 4, 7, 9 and 
six maximal decreasing strings. Henceforth the term string will normally 
refer to a maximal string. 
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Two flies, each contaInIng one string, may be nlerged to produce a 
single string by selecting at each step the item with the slllaller key of the 
two next available from the input flies. More generally, if the inputs each 
contain 11 strings, and if the foregoing process is generalized to produce the 
longest possible output strings, each output string will contain precisely 
one string from each input. If the inputs contain III and 11'2 strings, re­
spectively, then J1 == nlax (111' 11;?) strings are produced in the output. A 
subsequent simple two-way classification which assigns rl1 --:- 21 strings to 
the first file and the remaining strings to the second, yields the greatest 
possible reduction in the maximum n unlber of strings in anyone file. 
Repetition of the merge and classification phases eventually produces an 
ordered file. 

The generalization of the process to an H1-way Inerge and H1-way classi­
fication is inlmediate, * the optimum nUlnber of strings assigned to each 
output file by the classification process being linlited to rn --:- In1. Referring 
to Fig. 6.2, the 111-way merge Inay be described as follows: those itenl 
positions containing keys which eq ual or exceed the key last recorded on 
the single output file are said to be el(f!;ihle, and the next itenl chosen for 
recording is the eligible item with the mininlum key. When no eligible 
items remain, all positions are again Inade eligible and the process 
continues, initiating another string in the output file. The number of 
output strings produced is clearly the maxilnum of the nUlllber occurring 
in an input file. Figure 6.3 illustrates the process for 111 == 3. The vertical 
strokes in the figure indicate the division into maxilnal strings and do not 
denote infonnation represented directly within the files. 

In any sorting procedure, the smallest subprocess which treats the entire 
set of items once is called a phase. The sinai lest subprocess which by 
simple iteration prod uces the sorting process is called a stage. A stage 
may comprise one or nlore phases. In the Inerge sort described above, for 
example, the classification phase and the subsequent Inerge phase together 
constitute a stage which is iterated until order is achieved ~ the process 
is therefore called a two-phase rnerge. The use of a revision operation 
(Table 6.1) permits the classification and the Inerge to be coalesced into a 
single phase, and the resulting process is called a sil1gle-phase l11crgc. The 
single-phase merge requires rn input files and 111 output tIles, whereas the 
two-phase merge requires only (111 + I) files-one input and In outputs 
in the classification phase, and 111 inputs and one output in the Illerge 

phase. 
The followillg fonnat will be assullled for the original files in all programs 

in this chapter: the terminal item is a d ulllnlY (null) which is not to be 

* This method, comnlonly credited to Goldstine and von Neunlann (t (48), was 
presented by J. W. Mauchly in July 1946 in the Moore School lectures (t94H). 
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sorted and which is accompanied by a terminal partition AFt-I, where j is 
the index origin in use; all other items are separated by the partition Aj • 

The final dummy item facilitates the use of the immediate branching 
convention introduced in Sec. 1.22. 

lTwo-phase merge. The (m + 1) files used will be labeled <1>11, <1>21, ... , <l> m , 
and <1\2, the last serving as initial input and as input during each classi­
fication phase. Program 6.4 describes the entire merge. 

Program 6.4. The merge phase is shown on the left and the classification phase 
on the right. The heart of the former is the loop 7-17. Its operation is controlled 
by the logical vectors v and z (of dimension nl), which specify the set of exhausted 
files and the set of ineligible items, respectively. An eligible iten1 is one which has 
been read to one of the nl item positions Pi, is not a dumn1y, (i.e., null), and 
possesses a key which equals or exceeds r, the key of the item last recorded. 

The merge phase terminates on step 7, when all files are exhausted. Step 8 
initializes the vector z (ineligible item positions) to the value v (exhausted files), 
and step 9 increments the output string count s. Each execution of the subloop 

210-14 records on cD1 the item Pj having the smallest key of all eligible items. 
Steps 10-12 select and record the item Pi and preserve its key as the variable r. 
Step 13 reads the next item fron1 file j. If this exhausts the file, the branch to 
step 15 is followed. Step 15 adds j to the set of exhausted files and step 16 adds it 
(since the new item Pi is a final dummy) to the set of ineligible items. Step 17 
then repeats the subloop if any eligible items remain and otherwise re-enters the 
major loop at step 7. If the files are all exhausted, step 7 branches to step 18 to 
begin the classification. If not, the production of a new maxin1al string is begun 
on step 8. 

If step 13 does not exhaust the file, it is followed by the decision on step 14, 
which repeats the subIoop if r does not exceed the new key, and otherwise adds} 
to the set of ineligible items on step 16. 

The necessary initialization is perforn1ed by steps 3-6. Step 3 rewinds all input 
and output files. Steps 4 and 5 perform the initial read from each unexhausted 
file to the corresponding item position and respecify v to indicate any file which 
may be exhausted by the initial read itself. The vector v is itself specified external 
to the process, so that the initial set of input files may be restricted at will. On 
subsequent repetitions of the merge, all files are n1ade available by step 2. 

The classification phase begins by terminating the output file with a dun1n1Y 
item and final partition A2, and rewinding it. The /11 input files are also rewound 
to serve as output files in the subsequent Ill-way classification, and the process is 
terminated by step 20 if the output string count is equal to one. Step 21 redefines s 
as the maximum number of strings to be allotted to the output files in turn, and 
step 22 reads the first item from the input file (I\~. 

The output files are selected in ascending order by the index i. The variable j, 
which counts the strings, is initialized on step 25 and decren1ented on step 30 each 
time a break is indicated by the preceding comparison on step 29. When s strings 
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have been recorded, the branch from step 30 to step 24 is followed to repeat the 
process for the next output file. 

The classification phase is terminated by the occurrence of the partition A2 on 
step 28. Step 1 then records a dummy and a final partition on each output tile 
(including any which may have received no items), and step 2 resets the vector v 

to zero. 

The merge phase with which Program 6.4 begins is essential, even though 
the original data are contained in a single file, since it also serves to 
determine the string count s needed in the subsequent classification. The 
need for the string count can be avoided by using a classification process 
which merely assigns successive strings to successive files in cyclic sequence. 
This process does not satisfy the definition of a simple classification, and 
it will be given the name string classification. String classification is 
frequently more convenient to use than silTIple classification, particularly 
in processes such as the single-phase merge to be described next. Two 
successive strings assigned to a given file in string classification can coa­
lesce to form a single string, but the probability of such an occurrence is 
small, especially in later stages. 

Single-phase merge. The two phases of the merge sort can be coalesced in 
a single revision operation employing nl input and r1'1 output files. The 
two rows of files (1)1 and <D2 serve alternately as input and output on 
successive stages. 

Program 6.5. The Dlain subprocess (15-22) differs fronl the corresponding seg­
ment (10-17) of Progranl 6.4 only in the control of file selection, the alternation 
of input and output being controlled by the alternator G, which alternates between 
1 and 2 (step 2) on successive stages. The classification is controlled by the variable 
i, which selects the particular output file on step 17 and which is itself cycled 
through the integers I to /11 by step 14. When all files are exhausted, the branch 
to step 2 is followed, resetting the vector v to zero, ternlinating the output files, 
and rewinding all files. The final output is contained in file <1\([. 

Elimination ojjile rewind. Each of the sorting processes described req uires 
a rewind of all files between successive stages. If the files enlployed are 
capable of backward read, the processes can be ITIodified so as to elinlinate 
the need for rewind. Since each file is alternately read and recorded in 
successive stages, each will always be read in a fixed direction and recorded 
in the other. Since the space needed for recording is not known in advance, 
it is necessary to do all recording in the forward direction and therefore 
to read in the backward direction. The changes required will be illustrated 
by modifying the single-phase merge of Program 6.5. 

Program 6.6. Since the alternate forward record and backward read effectively 
reverse the order of all files on successive stages, alternate stages nlust assenlble 
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Program 6.5 m-way single phase merge sort 

ascending strings and descending strings, respectively. This is achieved by re­
versing the algebraic sign of the key in statements 20 and 24 (by use of the alter­
nator a) on even-numbered stages. 

Except when the entire process is terminated by failure to follow the branch 
from step 8 to step 11, the output files are never terminated by a partition, nor 
rewound, but are simply read backward as in statements 13 and 23. To ensure 
that the backward read of a file terminates properly, each is provided with an 
initial dummy item (step 11), and the branch on step 23 occurs on either the 
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terminal partition A2 or the permanent initial partition J.. The entire process is 
ternlinated by equality of s and a-Ion step 8, which can occur only if s = 1 
and a = 2. This pair of conditions ensures not only that the nunlber of strings is 
unity but also that an odd number of stages has been executed, and hence that the 
final output (on (1)1 2) is in ascending order. 

Since the initial input file must normally be read forward, an exception is made 
through the agency of the variable c. On the first pass only, c = 0, and the 
reads on steps 13 and 23 are therefore forward. The forward read on the first 
pass necessitates a subsequent rewind of the input files, which is provided by 
step 6. 

A commonly used variant of the m-way merge sort (called string­
doubling from its behavior in the case nl = 2) treats the initial input as if 
the maximal strings contained were each of length one, and therefore 
prod uces strings of uniform length nl in the output. These uniform strings 
may not be maximal but are treated on the next stage as if they were, i.e., 
output strings of length m 2 are produced. In general, the kth stage pro­
d uces strings of uniform length ml.', and rlogm n1 stages are required to 
order n items. The number of stages does not depend on the initial number 
of maximal strings, and no use is made of possible inherent order in the 
original array. The comparison operations may, however, be somewhat 
simplified, since the need to test eligibility is replaced by counts of the 
items read from each file or by recording partitions between successive 
strings. If 11 is not an integral power of m, some of the strings will be 
shorter than the normal length. They can be expanded by dummy items, 
although the use of partitions renders this unnecessary. 

Classification and simple merge 

The classification and simple merge sort is also referred to as a column 
or digital sort, for the successive classification phases are controlled by 
successive columns (digit positions) of a positional representation of the 
key. The behavior of the process is not so obvious as the behavior of the 
merge of the previous section, and a formal proof of its ability to produce 
ordering will be given at the end of this section. Since the process is based 
on a positional representation of the key, it will be convenient to use 
O-origin indexing for all operands. 

Let k be the (nonnegative) sorting key, let d be its digital representation 
in a base b number system (that is, (bE) ~L d = k), and let q = v(d), 
where bq exceeds the largest existing key. The complete column sort 
comprises q stages, each stage consisting of a b-way classification 
followed by a b-way simple merge. The classification on stage j is based on 
dl'j (the jth digit of the key counting from the low-order end), and each 
item is assigned to file (J)i' where i = d l • j. The simple merge is defined 
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such that the output file has the form <Po, (PI' ... , <Db-I' where the (Pi are 
the b output files of the preceding classification. 

Two-phase COlUn1l1 sort. Like the merge sort, the base b column sort may 
either be two-phase (classification followed by simple merge and using 
b + 1 files) or single-phase (using 2b files); the two nlethods are described 
by Programs 6.7 and 6.8, respectively. 
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Program 6.7 Two-phase column sort 

Program 6.7. Steps 1-7 constitute the classification and steps 8-14 the n1erge 
phase. File <Do0 is the single input to the classification and the single output of the 
simple merge. The remaining b files are denoted by <D /, i E l O(b). 

The component of d which controls the current classification (step 6) is selected 
by j, which scans d from right to left. In the (implicit) specification of d on step 5, 
b serves as an auxiliary variable (cf. Sec. 1.19). When the classification phase ends 
with the exhaustion of <1>0 0 (step 4), the output files are terminated, all files are 
rewound, and the simple merge is performed (steps 10-13) to re-collect on <Do

o the 
results of the preceding classification. This file is then terminated by step 14, and 
the entire process is repeated from step 2 for the next lower value of j. The 
dimension of d is specified (by compatibility with e(q) on step 5) as q, and q is, 
of course, specified externally. 
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Program 6.8. The alternator a again determines the roles of the two sets of files 
(input or output) on successive stages, but because of the use of O-origin indexing, 
it alternates between the values 0 and 1. The classification process (steps 7-11) 
differs from that of Program 6.7 only in the control exercised by the alternator a, 
and in the specification of a sequence of input files <1>oa, <1>la, ••• , <1>~_I instead of 
the single file <1>0°. 
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Program 6.8 Single-phase column sort (output on b files) 

The program is deficient in two respects: it requires that the original input be 
on a full set of b files, and it produces a final output on b files rather than one. 
The first defect may be remedied by the use of an externally specified logical 
vector v to designate the input files which are unused in the original stage. The 
second may be remedied by a final simple merge following the qth stage. This 
could be added as a separate program, but it can be effected more simply by 
replacing q with q + 1 to ensure that the high order digit do is identically zero and 
so restricts the final output to a single file. 

Validity of the column sort. * If d is the q-digit, base b representation of the 
key k of an item p, then the (q - j)th pass of the base b column sort assigns 

athe item to file <D i , where i = d j • The subsequent simple merge collects 
athe files in the order <Do , <DI

a, ••• ,<Dba_I. Consider any two items PI and P2 
with distinct keys k l and k 2 represented by d l and d 2, respectively. It may 

* This proof is due to Ashenhurst (1953). 
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be assumed, without loss of generality, that k i < k 2• Since the keys are 
distinct, there exists an integer r such that d r 

i < d r
2 and that arid l = 

a rld2• Thus r is the (O-origin) index of the highest order column in which 
the keys differ. 

In the (n - r)th pass, the items PI and P2 are therefore assigned to files 
a a<Dh and <D i such that h < i. Hence at the conclusion of the subsequent 

merge, item PI precedes item P2. In each subsequent stage the two items 
are always assigned to the same file (since d ..,! = d s 

2, S < r), and the two 
items are therefore always relatable with respect to these operations. 
Since each stage is a copy operation, and therefore rank-preserving, the 
relative ordering of all relatable items is preserved, and PI thus precedes P2 
at the conclusion of the process. Thus for any pair of items PI and P2 with 
keys k i and k 2, such that k i < k 2, item PI precedes P2 in the final arrange­
ment. 

Vector keys and categories. The column sort is actually based on the 
components of the vector d and only indirectly on the numerical key it 
represents. The process can therefore be generalized to any numerical 
vector key y defined on each item a i . It can be further extended to an 
arbitrary key vector b belonging to the prod uct set 

c = CO @ ci @ ... Cl/(b) 1 

as follows: on the classification stage based on component bj , the itenl is 
assigned to file c j 

l bj • An obvious generalization of the foregoing proof 
of validity shows that the resulting ordering is that of the product set C. 

The component set c j is called the jth category, CO is called the nlajor 
category, cV(b)--l the minor category, and the ordering is said to be defined 
on category cv(b) ~l within c V (b)-2 •• • within co. For example, a nine-
column employee number b = (bo' b I , b2 , ba) may be based on four 
categories, the first component bo representing the eInployee's one-bit 
payrOll classification (hourly or salaried), the second his two-decimal­
digit department number, the third his two-alphabetic-character job code, 
and the fourth his four-decimal-digit identification number. The colunll1 
sort on the base b representation of a numerical key is clearly a special case 
of a vector key in which each of the categories is the set lO(b). 

It is frequently necessary to order a set of items on certain subsets of the 
given categories, and on different rankings of the categories. In general, if 
b is a vector key and m is any compatible mapping vector, then a related 
ordering may be defined on the vector d = bm . If-continuing the previous 
example-it is required to produce a list ordered by employee's department 
within job classification, then m = (2, 1) and d = (b2, bI). 

Any infix of b defines a related ordering which is actually achieved at 
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some stage of the column sort on b, and the ordering defined by it is there­
d r 1fore said to be contained in the ordering b. If the orderings dO, d 1, ..• , ­

are all contained in b, they can all be achieved at some stage in the ordering 
b, and the total number of passes required may be less than that required 
to achieve the r different orders independently. For example, dO = (b2, bI)' 

d 1 = (bo, b2 , bI)' and d 2 = (b2 , bI , bo' b3 , b4 ) are all contained in 1 = 
(bo' b2, b I , bo' b3, b4 ) and can be achieved jointly by sorting on the six 
components of1 rather than on the ten components of dO, d 1, and d 2• 

The usefulness of this result is further extended [Ashenhurst (1953)] by 
the following fact: if a given component recurs in an ordering vector, its 
later occurrences may be ignored. For example, the second occurrence of 
bo in the vector 1 (as 13) may be ignored, and 1 therefore contains the 
ordering d 3 = (bo, b2, bI , b3 , b4 ) as well. 

The propriety of suppressing later recurrences of a component of an 
ordering vector is easily established. Let b be a given ordering vector and 
let d = b and c = bn be two related orderings. Moreover, let d bem 

obtainable fronl c by suppressing all later recurrences of components of b. 
This implies that the mapping vector rn is obtained from the mapping 
vector n by the same process, i.e., rn = (ajn)jn. If PI and P2 are two 
items whose (distinct) keys c i and c2 agree in all components up to but not 
including the jth, then their relative order is determined by the component 
cj = bn .. In the corresponding keys d 1 and d 2 it is clear that the first 
compol{ent in which the items differ is again bn and that the same relative 
order is therefore determined by d. Since a third ordering v = bp is also 
equivalent to the ordering c = bn if P is also reducible to rn, the result 
concerning equivalent orderings can be extended as follows: two orderings 
y = zm and w = Zn are equivalent if (ajrn)jrn = (ajn)jn. 

Choice oj'number base. In the merge process of Program 6.4, the value of 
m may be chosen to suit the number n offiles available, that is, 111 = n - 1. 
In the column sort, on the other hand, the number of files required is 
determined directly by b, the base of the number system representing the 
key. If the choice of b is otherwise arbitrary, it can be chosen as n - 1 for 
any n > 2. However, explicit execution of the base conversion indicated 
by the statement 

(be) ~ d +- k(P) 

is usually avoided by using the base in which the key is represented in the 
original files. If a base conversion is required, it can be performed once on 
the first stage and the resulting vector d incorporated with the item for use 
on subsequent stages. 

Base conversion may sometimes be inconvenient or impossible as, for 
example, in the case of special purpose sorting equipment devoid of 
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arithmetic units. In this event the stage required for each digit (b-way 
classification and subsequent merge) may be executed as a series of copy 
operations each utilizing fewer than (b + I) files. If, for instance, the 
digits are represented in a ranked binary n-bit code, a series of n two-way 
classifications and two-way simple merges will effect the desired ordering 
on one digit of the key. More generally, a group of p successive binary 
digits can be treated at each pass, providing that 2P + 1 does flot exceed 
the number of files available. 

Repeated block sort. If a set of items is classified on the high-order 
column of an associated vector key, each of the resulting subvectors can be 
separately ordered and then nlerged in a final sinlple merge. Thus each of 
the subvectors forms an infix or block in the final arrangement. Such 
block sorting can be used to distribute the labor among a number of 
independent sorters. 

Block sorting can also be repeated by further classifying each block on 
the next lower-order column of the key. For a key vector of dimension q, 
q repetitions of the block sort yield a conl plete classification, and ordering 
can then be achieved by a subsequent sinlple merge. However, since the 
number of blocks produced is (except for duplicate keys) equal to the 
original number of items, the use of repeated block sorting is unattractive 
unless simplified by special schemes for keeping record of and controlling 
the numerous blocks. Two such schemes will be discussed. The radix 
exchange sort (Sec. 6.4) is appropriate to random-access storage only: the 
amphishaenic sort is appropriate to serial files. 

Partial pass methods 

Each of the sorting schemes discussed thus far is constrained to treat the 
entire collection of items at each stage. Partial pass nlethods obtained by 
relaxing this requirement normally achieve a reduction in the total nUlnber 
of items handled, but at the cost of some increase in conlplexity. The 
partial pass methods gain their advantage by largely obviating explicit 
merge phases. 

The basic column sort gives rise to two partial pass nlethods of interest, 
the an1phisbaenic sort and the partial pass colurnn sort. The cascade sort 
arises from the use of partial passes in a merge sort. 

Partial pass column sort. * This method achieves the effect of one stage of 
a column sort on a base b key with fewer than (h + I) files by using a 
sequence of partial passes. The method will be illustrated by an example 
[taken from Ashenhurst (1953)] involving four files and a decinlal key. 

* Presented by John Mauchly in the Moore School lectures (1948) and treated morc 
fully by Ashenhurst (1953). 
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Table 6.9. This table describes the partial pass column sort for reordering on a 
single column of the decimal key (thejth). The parenthetical expression follow­
ing each file (1) i indicates that it contains all itenls whosejth key digit equals one 
of the enclosed integers. A second pair of parentheses indicates a second set of 
itenls in the file following, and grouped separately from, the first set. Thus the 
original input file (})o is described by (1)0(0, 1, 2, 3, ... , 9) or by any pernlutation 
of the decimal digits enclosed in a single pair of parentheses. 

Step Input File 

Output Files 

Remaining from previous steps Copied 

Pass 
Fraction 

<1>0: (0, 1,2,3,4,5,6,7,8,9) <1>1: 
<I>.~ : 
<j>~ : 

(0,2,4,7) 
(l, 5, 6) 
0,8,9) 

1.0 

<1>1: (0,2; 4, 7) 

<!):.!: (l, 5, 6)(2, 7) 

<I>.): (l, 5, 6) 
<I);: (3,8,9) 
(V o : ' 

(1)3: (3, 8, 9)(4) 
(1)0: (0) 
(1)1: 

(2,7) 
(4) 
(0) 

(5) 
(1)(2) 
(6)(7) 

0.4 

0.5 

4 (J)3: (3, 8, 9)(4)(5) (j)o: (0)(1)(2) 
(})1: (6)(7) 
(j):!: 

(3)(4)(5) 
(8) 
(9) 

0.5 

<1>1: (6)(7)(8) <})o: (0)(1)(2)(3)(4)(5) 
(1)2: (9) 
(1)3 : 

(6)(7)(8) 0.3 

<I):.!: (9) <1>0: (0)( I )(2)(3)(4)(5)(6)(7)(8) 
(1)3 : 

(1)1: 

(9) 

Total 

0.1 

2.8 

Table 6.9 The partial pass column sort 

The first step copies each item whosejth key digit is (0, 2,4,7) to file <1\, itenls 
(1, 5, 6) to file (1)2, and items (3, 8, 9) to file (T)~3. After each step, only the previous 
input file and the next input file are rewound, in this case <I>o and <I>1. In step two, 
itenls (2,7) are copied to (1)2, and therefore.follow the group (1, 5, 6), as indicated 
by the separate parentheses. Sinlilarly, items (4) and (0) are copied to (1)3 and <Do, 
respectively. 

Step three is preceded by a rewind of (1)2 and (1\. Since items (I) and (2) occur 
in separate groups in the new input file $2' they can be copied to <1)0 in separate 
groups (I) (2) as indicated. Similar remarks apply to items (6) and (7) copied to 
(}\. The three subsequent steps complete the required ordering, producing in the 
original input file (1)0 the ordered array (0) (1) ... (9). The rightnl0st colunln 
shows that fraction of the original file (assuming a unifornl distribution of the key 
digits) copied on each pass. The total at the bottonl indicates that the expected 
execution tinle is equivalent to 2.8 full passes. 

The partial pass process of Table 6.9 is described more concisely by the 
O-origin matrix M of Table 6.10. Element M/ specifies the file to which 
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Digit 0 

Digit 

Digit 2 

Digit 3 

Digit 4 

Digit 5 

Digit 6 

Digit 7 

Digit 8 

Digit 9 

Input 

1 0 

2 0 

1 2 0 

3 0 

1 3 0 

2 3 0 

2 1 0 

1 2 1 0 

3 1 0 

3 2 0 

0 1 2 3 1 2 

Table 6.10 Matrix M describing the partial pass COIUlllll sort of Table 6.9 

items with key digit s are to be assigned in the rth step of the process, for 
r E lO(6) and s E lO(10). The eleventh and last row of M specifies the input 
files, i.e., M/l is the index of the input file in the rth step. An algorithlll 
based upon the matrix M is described by Program 6.11. 

Program 6.11. The subloop 14-18 perfornls the classifIcation according to the 
element M/, using file i (specified by M/) on step 9) as input. When the file is 
exhausted, the branch to step 6 increnlents r and repeats the process unless 
r = v(M). Equality indicates conlpletion of the jth colullln and causes a branch 
to step 4 to decrenlent j and reset r. The conlparison on j is deferred to line 13 
so as to follow the ternlination and rewind of the new input file. The branch on 
step 10 prevents the recording of a dunlnlY itenl on the original input file. The 
previous input file is rewound by step 8. 

Program 6.11 includes the two-phase column sort as a special case, for 
if (b + 1) files <Do, <D1, ••• , <Db are available, the nlatrix shown on p. 194 
specifies a process essentially identical with that of Progranl 6.7. File (1)/1 

ocorresponds to file <Do , the first column of M deternlines the b-way 
classification, and each of the b succeeding colunlns specifies the copying 
of one file in the b-way simple nlerge onto file <1)/). 

The method of partial passes is frequently used in the sorting of alpha­
betic data. Variants include the 1-} pass-per-character nlethod of sorting 
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0 

1 h 

I 
2 b 

M== . 

~ 
j +-q 

1+-02 

7T(D) +- €3 

j +-j - 14 

I' +- - 15 

1'+-1'+16 

I' l{M)7 

7T«D i ) -+- 08 

1 +- M/)9 

j - r q - 110 

<[); +- C), Al11 

7T(<I);) +- 012 

13 j 0 

P +- (1) i14 

(b€(q)) ~d +- kCp); b15 

s +- d j16 

k +- M/i17 

<!)k +- P18 

0 

< 

Al 

<D i 
M 

d 

b 

j 
I' 

i 

O-origin indexing 

Files (i = 0 for initial data).
 

As in Table 6.10.
 

Positional representation of
 
key (r(d) = q).
 

Base of representation.
 

Column stage = q -.i.
 
Partial pass stage.
 

Current input file.
 

Legend 

Program 6.11 Method of partial passes for III files 
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punched cards * and the proced ure described by McCracken et al. (1959), 
p.312. 

Anlphishaenic sort. The amphisbaenic sort (Nagler, 1959) is a particular 
arrangement of the repeated block sort employing partial passes. For a 
base b key it requires b + 1 files and proceeds as a sequence of classi­
fications, with a simple merge of the last b subblocks produced occurring 
immediately after each classification on the low-order colulnn. Each 
classification allots digits to the available output files according to the rank 
of the file index, e.g., if file $0 is the input, the digits 0, 1,2, ... , h - 1 are 
allotted to files 1, 2, 3, ... , h, and if file (P:3 is the in put, they are allotted 
to files 0, 1, 2, 4, 5, ... ,b. The files are recorded forward and (except for 
the initial input) are read backward without intervening re\vind. The 
subblocks are designated by the key digits on which they have been 
classified, e.g., by 0, 1,2, ... , b - 1, 00,01,02, etc. The block chosen 
for classification at each step is the one with the smallest designation 
among those not yet n1erged, the designations being ranked according to 
their values as decimal (h-ary) fractions. Thus block 213 precedes block 
214, which precedes block 22. 

Table 6.12 shows the steps of an amphisbaenic sort on a three-digit, 
base three key using files <Po, <D1, <D 2, and <1):3' with the initial and final data 
on file <Do. The input files are designated by asterisks. Thus file (Do is the 
input to step 1, and blocks 0, 1, 2, are classified to files (P t , <D:!, and (f):3 as 
indicated. Step 2 classifies the smallest block (0) from file <PI to files <1)0' <D:!, 
and <D3 . Step 3 classifies blocks 000, 00 I, and 002 to files <D t , <])2' and (P:~. 

The next step merges these blocks to file (1\), and the following step begins 
classification of the next smallest block (01) on file <D:!. It is clear that if 
the files are read backward, the next block to be classified is always 
immediately available. The general process for a q-digit, base b key is 
described by Program 6.13. 

Program 6.13. O-origin indexing is used throughout. Each classification is con­
trolled by the ""current" vector c (of dinlension b), whose conlponents are the 
successive indices of the available output files. Thus ck is the index of the file to 
which digit k is classified (steps 16-19). The current vector is deternlined by 
step 10 so as to omit the index i of the current input file. The selection of the 
block to be classified is determined by the vector h (of dimension q), the next 
block to be classified on digitj being determined by the prefix a j +1 jh. Because the 
classifications proceed for increasing values of j and the blocks just produced 
appear last on the files, the selection can be determined by the last component of 
the prefix alone, i.e., by h j • This is done on step 7, where the index i of the input 

* Described in I Bl'Yt Form 22-3177-2 Sorter A1allllal, p. 12. 



Step I 2 4 (merge) I 5 16 (merge) I 7 1 8 (merge) 1 
9 __1 10 III (merge) 

<Do 00 000-002 000-002,010 000-012 00-012,020 000-022 000-022, 10 000-022* 000-102 
<1>1 ° 000 OIl 021 11 11,100 11* 
<D"
<D; 

1 
2 

1,01 
2,02 

1,01,001 
2,02,002 

1,0·1 * 
2,02* 

I * 
2,02,012 

1 
2,02* 

1,022 
2* 

1* 
2 2, 12 

101 
2, 12, 102 2, 12* 

h (0,0,0) (0,0,0) (0,0,0) (0, 1,0) (0, 1,0) (0,2,0) (0,2,0) (1,0,0) (1,0,0) (1,0,0) (I, 1,0) 

° I ° I 2 1 3 ° 2 ° 2 
j ° 1 2 I 2 1 2 ° 1 2 1 
s (0,0,0) (0,1,0) (0, 1,0) (0,1,2) (0,1,3) (0,2,3) (0,2,0) 
c (1,2,3) (0,2,3) (1,2, 3) (0,1,3) (0,1,2) (0, 1,3) (l, 2, 3) 

~ 

'0 
0'\ 

~ 
g-. 
~ 

Step 12 13 (merge) 14 15 (merge) 16 17 18 (merge) 1-9 20 (merge) I 21 122 (merge) 

<Do 000-102, 110 000-112 000-1 12, 120 000-122 000-122,20 000-122* 000-202 000-202,210 000-212 000-212,220 000-222 
$1 * 121 * 21 21,200 21* * 221 * 
<1>2 111 * 122 * 22 22, 201 22* 22,21 I 22* * 
<1>3 2,12,112 2,12* 2* 2 * 202 * 212 * 222 * 
h (1, 1,0) (l, 2,0) (1,2,0) (2,0,0) (2,0,0) (2,0,0) (2, 1,0) (2, 1,0) (2,2,0) (2,2,0) (0,0,0) 
i 1 2 3 ° 3 ° 3 I 3 2 
j 2 1 2 ° 1 2 1 2 1 2 -I 
s (0, 2, 1) (0,2,3) (0,3,3) (0,3,0) (0,3,1) (0,3,2) 
c (0,2,3) (0,1,2) (0, 1,2) (l, 2,3) (0,2,3) (0, 1,3) 

I 

Table 6.12 Amphisbaenic sort on 3-digit base 3 key em 
?' 
~ 



O-origin indexing 

<l>i Files (i = 0 for initial 
and final data); 
i E loeb + 1). 

b Base of representation. 

) d j controls current 
classification. 

i Jndex of current input. 

.f Controls forward read 
and rewind of initial 
input. 

v = q 

20 

21 

22 

23 

24 

25 
Al 

26 

27 

28 

29 

30 
< 31 

32 

33 

34 

35 

Legend 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 
<

15 

16 

17 

18 

1T(<I» +- e(b) 

[+-0 

h +- £(q) 

S +- £(q) 

i+-O 

j+-O 

i +- (eijlO(b))h
j 

j+-j+l 

Sj +- i
 

c +- eijlO(b)
 

k +-(j = q - 1) 1\ (co = 0)
 

<l>Ck +- 0, Al 

<D +- 0, AoCk 

k+-k+l 

k : b 

P +- f<l>i 

(bE(q)) ~ d +- k(p) ; b 

k +-dj 

<l>Ck +- P 

Al 

c 

h 

S 

d 

Indices of current out­
put files. v(c) = b. 

aj+Ijh specifies input 
block to classification 
on digit}. 

S j is index of input 
file to classification on 
digit). 

Positional representa­
tion of key. 

~l 
[:0 

[+-1 

1T(<I>O) +- 0 

P +-l<1>i 

) : q - 1 

k +-(co = 0) 

P +-1cI>Ck 

<1>0 +- P 

P +-l<DCk 

k+-k+l 

< k : b 

)+-)-1 

h j +- b 10 (h j + 1) 

i +- Sj 

<1>0 +- 0, Al 

1T(<I>O) +- 0 

Program 6.13 Amphisbaenic sort 

197 

19 
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to the preceding stage deternlines the vector €.ijlO(h) of output indices, fronl which 
the new input index is selected as the h}h conlponent. The succes~ive values of h, 

i, j, S, and c listed in the example of Table 6.12 I11ay be helpful in tracing the 
operation of the prograI1l. 

When classification on the last digit is conlpleted, the last subblocks are nlerged 
(steps 25-30) onto the output file (1)0. The variable j nlust then be decrenlented 
and the component h j incremented I1lodulo b (steps 31-32). When h j conlpletes 
a cycle (becomes zero), the corresponding subblocks are exhausted and j nlust be 
decrenlented repeatedly until the corresponding h j does not beconle zero. The 
nlain process through increasing values ofj is then repeated. 

Although h j deternlines the input subblock for the classification on digit j, it 
deternlines the index of the input file only indirectly (step 7) through the vector 
of output files, itself determined by the input file i used in the classification on the 
preceding digit. When j is increasing, the value of i is sinlply the value fronl the 
preceding stage. However, when j is decrenlented (steps 31-32), it is necessary to 
deternline the input i used in an earlier classification. A record of the value of i 
corresponding to each classificationj is therefore kept (step 9) in the vector s, and 
is used to redefine i on step 33. 

Each file to be used as output (except possibly file (1)0) is first closed with a 
partition (steps] 2-] 5) to demark the beginning of each of the subblocks to be 
recorded. Since back\\-'ard read is to be used, two dunlnlY itenls are provided so 
that the branch on Al coincides with the read of a dunlnlY itenl. An extra read 
then disposes of the extra dunlnlY. Any partition recorded on the final output 
file (1)0 before a fully classified subblock (when j = q - ]) would renlain in the 
final output. Step]] prevents this by initializing the index k to ] ifj = q - ] and 
the index of the first output file (that is, co) is zero. In a sinlilar manner, step 25 
prevents the attenlpt to copy file (1)0 to itself during the nlerge phase (steps 25-30). 
Step 28 reads the extra dumnly item recorded in the partitioning operation of 
steps ]2-]5. 

All files are read backward except the initial input in the first stage. This 
behavior is controlled by the logical variable.r (steps] 6 and 20-2]). The branch 
on step 20 fails the first tinle only, allowing/'to be respecified as 1 and rewinding 
file <1>0. On subsequent stages, the branch to step 23 causes the read of the extra 
dunlnlY partition. 

Cascade sort. * The cascade sort is a partial pass merge sort, with each 
stage proceeding as follows. The strings are initially distributed (unequally) 
among In of the 111 + 1 available files; an m-way merge to the empty tile is 
perfonned until sonle input is exhausted; an In - 1 way merge to the 
newly emptied file is then performed from the relnaining inputs, and so on 
to a final two-way merge. The effectiveness of the process depends on a 
particular initial distribution of the input strings. 

Table 6.14 illustrates the process for 190 strings distributed anlongfive 
of six available files as shown in the first row. Succeeding rows show the 

* Due to Betz and Carter (1959). See also Gilstad (1960) and Carter (1962). 
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IStage Distribution of strings 

0 
1 
2 

3 
4 

IS 
5 
1 
1 
0 

29 
9 
2 

1 
0 

41 
12 
3 
1 
0 

50 
14 
4 
1 
0 

55 
15 
5 
I 
I 

Table 6.14 (~ascade nlerge sort 

distribution of strings at the end of the succeeding stages. * The process 
requires but four passes~ only the last of which is a conlplete pass (e.g., the 
last five strings need not be copied in stage 1). 

The power of a nlerge process ITIay be defined as the (average) factor by 

which the nunlber of strings decreases per pass, i.e., as \jl-;, \vhere s is the 
nun1 ber of strings whose ordering can be con1 pleted in p passes. For the 
given exan1ple, the power is approxinlately 3.7. This surpasses the po\ver 
of 3.0 attainable in a three-way single phase Inerge sort using the saine 
nun1ber of files. 

Gilstad (1960) has proposed a variant of the cascade sort (called 
pO~l'phase) in \vhich every phase is an In-way n1erge, i.e.~ each newly 
recorded output enters ilnmediately as input in the follo'Ning phase. Its 
power is slightly greater than that of the cascade sort. 

6.2 EVALUATION OF SERIAL SORTING METHODS 

Three Inajor factors enter the eval uation of a serial sorting process: 
the amount of program storage required~ the nun1ber of serial-access flies 
used, and the execution time. The first two factors require little analysis~ 

and attention will be limited prin1arily to the third. 
Because the execution tinle of a serial sorting process is nOrInally 

determined almost cOITIpletely by the tilTIe required to transfer inforInation 
to and from the serial files~ the execution time is assun1ed to be directly 
proportional to the number of passes of the files required. Each phase 
corresponds to a pass or (as in partial pass Inethods) to SOITIe fraction of a 
pass, and the number of passes per stage is detern1ined by sun1n1ation over 
the component phases. 

The constant of proportionality relating actual execution tin1e and 
number of passes depends on such factors as the average length of the 
items, the reading and recording rate of the serial files~ and (in processes 

* The jth column of the table refers not to a specific file but to that tIle which 
ranks jth in nunlber of strings. 
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requiring rewinding after each phase) the rewinding speed. Since these 
factors are specific to particular eq uipn1ent and particular tasks, and since 
the nature of the dependence is obvious, the present analysis is lin1ited to 
consideration of the nun1ber of passes. 

Consideration is also given to related orderings (cf. vector keys and 
categories), which may, in the use of colurnn sorting, be achieved more 

efficiently jointly than separately. 

Simple classification and merge 

The number of stages required in the tn-way merge sorting methods 
depends on So' the number of maximal strings in the original file, and on 
tn. For, if Sj is the nun1ber of (maximal) strings at the conclusion of the 

jth stage, then Sj rI ==' rSj -;- m1. Since the eventual string length must be 
one, the number of stages required is given by 

r == pogm sol, 

for which the approximation r -~ log;n So will be used. The number of 
passes is then 2r for a two-phase merge and r for a single-phase merge. If 
the "cost" of the process is assumed to be of the form 

c == (a + m)r == (a + nl) 10glll So, 

for some constant a, then the optimum choice of /11 is obtained as the 
solution of the equation 

loge m == 1 + a -;- /11. 

The two-phase and single-phase methods may be compared for a fixed 
number of files as follows. Let 11 == 2k be the number of files, * let S be the 
number of strings, and let tI and 12 be the execution tin1es for the single­
phase and two-phase methods, respectively. Then 

t2 2 logm 2 S 2 log(2k-I) S
 

tI logml s logk S
 

2 logs k 2 10gIo k 

logs (2k - I) loglo (2k - 1) log('(2k - 1) 

This ratio increases monotonically fron1 1.26 at k == 2 to an asymptotic 
value of two. Since it exceeds unity, the single-phase process is to be 
preferred. 

Expected nurnber ofstrings. Since the original file is frequently specified in 
terms of the nun1ber of items n rather than the number of maximal strings 

* An odd number n would prejudice the result against the single-phase method, since 
one file would necessarily be left idle. 
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s, it is desirable to determine the relation between 17 and the expected value 
of s for a random distribution of the keys. 

Let k be a vector of dimension 17 + 1 whose first n conlponents are the 
successive keys of the file and whose last cOIllponent is infinite, and let 
f = (k < lk), d = (k = lk), and b = (k ~.~ lk). 
If, for example, 

k=793558214x, 
then 

lk = x 7 9 3 5 5 8 2 1 4 

f= 1010001100 

d= 0000100000 

b= 0101010011. 

Each unit component of f marks the beginning of each nlaxinlal 
ascending string in the forward direction (left to right), each unit com­
ponent of t b marks the beginning of each maxinlal string in the backward 
direction, and a unit component of d marks each key which duplicates its 
predecessor. Consequently, + If, + Ib, and + Id are the nunlber of 
forward strings, backward strings, and duplicates, respectively. Since the 
relations <:, =, and > are exhaustive and ITIutually disjoint the three 
logical vectors are exhaustive and mutually disjoint, i.e., j' V d V b = E. 

and f 1\ d = f 1\ b = d 1\ b = O. 
Consequently 

(+/f) + (+Ib) + (+Id) = v(k) = 17 + 1. 

Denoting the expected value of ~r by e(x), it follows that 

e(+/f) + e(+lb) + e(+ld) = n + 1. 

Symmetry and the assumed random distribution together iInply that 
e( + If) = e(+ Ib). Consequently, the expected number of strings e(s) is 
given by 

e(s) = e(+ If) = (n + 1 - e(+/d) -:- 2. 

lf there are no duplicates, the expected number of strings is approxi­
mately n12, and the expected string length is therefore approximately two. 
Assuming a uniform distribution of keys in a range of g values, the proba­
bility that d i = I is clearly llg for all i El2(n - I). Therefore e( + jd) = 

(n - 1) -:- g. 

Classification and simple merge 

The number of stages required in the colunln sort is eq ual to q, the 
number of significant digits in the representation of the key. To facilitate 
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comparison between different nunlber bases, it is convenient to use the 
variable g denoting the range of the key. Thus in any base b, the number 
of significant digits q required in the key is given by q == f10glJ gl, or 
approxinlately by q == log,) g. For any pair of bases b i and b2, the corre­
sponding number of stages qi and q2 are related as follows: 

CfJ. == 10g'Jl g == logy h2 == 10g'Jl h2 == 10g b.).
b

q2 Jog,)~ g logr, hI log'q hI 1 ~ 

A lTIOre practical form for calculation is 

qi loglo h2 

q'2 loglo b i 

The foregoing expressions are identical in form to those obtained for the 
number of stages required in the merge sort, but with the range g replacing 
the initial number of strings SO' and with b replacing m. Moreover, the 
nunlber of files required depends on b in the same way that the corre­
sponding merge processes depend on In. This holds for both the two­
phase column sort (b + 1 files) and the single-phase colunln sort (2b files). 
The analysis concerning the optimal value of m therefore carries over 
directly to the choice of the base b, the only additional consideration being 
the possible need for base conversions on the key. The comparison 
between two-phase and single-phase processes also applies directly to the 
column sort, with the conclusion that the single-phase method is superior. 

Of the methods discussed, the column sort is the only one which shows 
significant advantages in the joint treatment of two or more related 
orderings. If x == zp and y == Zq are two vector keys, and if wijp == aijq, 
then the ordering defined by the key zr' for r == wijp will, when applied 
to the set of items ordered on y, suffice to produce ordering on x. The 
total number of columns sorted to achieve the two orderings jointly is then 
red uced by i. 

More generally, if wijp agrees with a selected subvector of the prefix 
ajjq and if the remaining elements of the prefix occur inwijp (in any order), 
then sorting on the columns corresponding to w1)p may again be elided. 
More precisely, if there exist integers i and j, and a logical vector u such 
that 

w1)p == u/(a j/q), 

and (wl)p) ;2 Ciij(ajjq)), 

then the ordering x can be achieved by applying the ordering wijp to the 
ordering y, and the total number of columns sorted is reduced by i. It is 
assumed that neither p nor q contains any repeated components, for if 
they do, each of the later occurrences nlay be suppressed. 
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Since the ordering on x can be performed before rather than after the 
ordering on y, the roles of p and q may also be reversed, and the case 
showing the larger reduction may be chosen. If three or Inore orderings 
are prescribed~ the foregoing method may be applied to evaluate each of 
the possible sequences of ordering. 

Partial pass methods 

In the absence of a general method for designing a partial pass colunln 
sort, its efficiency will be indicated only by an analysis of the four-fIle 
decimal key example of Table 6.9. If g is the range of the key, the number 
of passes is given by PI = 2.8q = 2.8 logio g. This may be compared with 
the value Pa = 2 loga g obtained for the straightforward base three column 
sort, which can also be performed with four files. The ratio 

!!.l = (2.8 logio g) -:- (2 log:3 g) = 1.4 loglo 3 = 0.668, 
P:3 

indicates the superior efficiency of the partial pass column sort for this case. 
The four files can also be used for a single-phase column sort in a base 
two number system, yielding the value P2 = log2 g for the number of 
passes. Hence PI!P2 = 0.843, and the method of partial passes is again the 
more efficient. 

In the amphisbaenic sort on n items with a q-digit base b key, h + I flies 
are required, and the total number of items handled in the classification 
phases is nq. In the merge phases, however, each item is handled at most* 
once, and the total number of passes is therefore less than (q + I). This 
may be compared with the 2q passes required in a two-phase column sort 
using the same number of files. Alternatively, conversion of the key to a 
base l(h + 1) -:- 2J representation could permit the use of a more efficient 
single-phase merge requiring approximately q log(h, 1)/~ h passes. 

The disadvantages of the amphisbaenic sort reside in the more complex 
program required and in the need for frequent reversal of the direction of 
the files, i.e., from forward record to backward read. The time lost in such 
reversal may be considerable for certain files. 

The power of the cascade sort is, as indicated by the example of Table 6.14, 
somewhat greater than that of the corresponding merge sort. Its behavior 
is most conveniently analyzed [in the manner developed by Carter (1962)] 
in terms of the difference equation satisfied by the number of strings 
occurring in successive states. The formulation of these equations is 
indicated in Exercise 6.19. Carter provides asymptotic solutions for cases 
of practical interest. 

* If the final output file (I)., is among the set of output files in the classifIcation on the 
low-order digit, the subblock assigned to it need not be recopied in the nlcrge phase. 
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In addition to its greater complexity, the cascade sort suffers from the 
need for a particular initial distribution of the strings, and from the 
dispersal of the file rewinds (which can be performed concurrently by n10st 
computers) throughout the process. Moreover, in the event of a computer 
error, a rerun froln the last correct input files is much Inore difficult to 
program than is a corresponding rerun for a straightforward merge. 

6.3 AIDS TO SERIAL SORTING PROCESSES 

Internal sorting normally enjoys a much higher basic execution rate than 
does serial sorting, but for large volulne files the limited size of internal 
storage nlay make serial sorting necessary. The anlount of serial sorting 
may, however, be reduced by some use of internal sorting. For example, a 
preliminary internal sort can produce maximal strings whose lengths are 
limited only by the size of the internal store and thus reduce the number of 
strings presented for subsequent serial merge sorting. 

The present section is devoted to methods of reducing serial sorting by 
the auxiliary use of internal sorting. For this discussion, the only knowl­
edge assumed concerning the internal sorting process is its capacity to 
order a specified number of items. 

Two classes of processes arise, one for aiding merge sorting and one for 
aiding colUInn sorting. The aid to Inerge sorting is the simpler, since it 
consists merely in assembling long strings by internal sorting before 
beginning the serial merge sort. A serial column sort, on the other hand, 
may be aided by a final internal sort performed after the column sort. 

If k = k(x) is a key vector associated with x, and if In is any positive 
integer, then a serial column sort performed on the key vector 

kl = lk -:- n1€J 

produces the vector XO CB Xl x P , where the vector Xi contains all 
items such that k/ = i. If the infix vectors Xi are then copied in turn from 
the file, individually reordered on the key 

k 2 = (nl€)!ok 

and recorded, the resulting file will be ordered on k. Table 6.15 shows an 
exanlple for m = 4. 

If internal storage allows the internal ordering of as ITIany as n iteIns, 
then the reordering of the infixes Xi can be accoInplished by an internal 
sort provided that m is so chosen that v(x 1

) ::::~ n for all i. If the original 
keys are all distinct, In may be chosen equal to n. 

]f the sort on k l is perfornled as a base b serial colunln sort, the number 
of stages required is reduced by approximately 10gb m fronl the number 
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Original Order 
x k k l k 2 

Xl 7 1 3 
x2 9 2 1 
x3 2 0 2 
x4 11 2 3 
Xs 6 1 2 
x6 4 1 0 
x7 3 0 3 

Ordered on k i 

X k k l k 2 

x3 

x7 

Xl 

2 
3 
7 

0 
0 
1 

2 
3 
3 

Sets of Dupli- Final Order 
cates in k l x k k l k 2 

, x3 2 0 2(XO 
x7 3 0 3 
x6 4 1 0 

j l 
Xs 6 1 2 Xl Xs 6 1 2I) {
x6 4 1 0 Xl 7 J 3 
x2 9 2 1 x2 9 2 1I x2 ( 
x4 11 2 3 x.t 11 2 3j l 

Table 6.15 Internal aid to column sort (nl = 4) 

required for a corresponding sort on the original key. The subsequent 
internal sort on k 2 therefore serves as an aid to the serial colunln sort. 

The arithmetic operations indicated in the definition of keys k l and k'2 
may be simplified if nl is chosen as an integral power of the base b of the 
original key. For, if the vector d is the q-digit base b representation of k i , 

and if n1 = h', then wIld, and wild are the base b representations of k/ and 
k i

2 , respectively. The keys are therefore obtained from k by extracting the 
specified columns, and the serial sorting is reduced by exactly t stages. 

6.4 INTERNAL SORTING METHODS 

Since the range of practical sorting nlethods is clearly broadened by the 
use of random-access storage, internal sorting methods include all of the 
serial processes treated in Sec. 6.1. However, since the use of randonl­
access storage introduces certain new problems in the execution of these 
processes, they will be reconsidered before proceeding to nlethods suited to 
random-access storage only. 

If the available random-access storage is divided into a number of areas 
or fields, these fields can be used in lieu of the serial tIles. The serial 
sorting methods then carryover unchanged except that the autolnatic 
self-indexing property of the serial files must be replaced by an explicitly 
programmed indexing of the corresponding fields. 

The efficacy of an internal sorting process depends not only on the speed 
of execution but also on the nUlnber n of items which can be ordered, using 
a given storage capacity c (measured in nUlnber of items). Since n is nearly 
linear in c, this property is measured in tenns of the storage ratio r = c -7- n. 

In using random-access storage, the effect of a sinlple merge or a silnple 
classification can be achieved rather easily through address nlodiflcation. 
Hence there is little advantage in splitting either the nlerge or the column 
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sort into two separate phases, and attention will be limited to the single­
phase processes. The two-phase processes can prove superior if efficient 
block transfer of data is available in the execution of the program, but 
their behavior should, in any event, be clear from the treatment of the 
analogous single-phase processes. 

Simple classification and merge 

An internal single-phase merge analogous to the serial single-phase 
merge of Program 6.5 can be based on the assignment of two matrices 1X 
and 2 X to correspond to the sets of input and output files. The rows I( Xi of 
the matrices a X correspond to the files <D ia of the serial process, each item 
being represented by a single matrix element. Items are read sequentially 
from and to fields; for each input field I( Xi, an index r j indicates the 
elenlent axr ) to be read next; for each output field (3- a )Xi, an index 5 i 

indicates th~ element next to be specified. The items in each field occupy 
the leading positions in the field, and the index of the first unoccupied 
element in the input field a Xj is indicated by the parameter t j • The process 
is described by Program 6.16. 

Program 6.16. As in Program 6.5, the vectors v and z specify exhausted fields 
(files) and ineligible fields (positions), respectively. The paranleters a and tare 
initially specified external to the process. At the beginning of each stage the 
vector v (exhausted fields) is specified (step 3) according to the unit conlponents 
of t. At each stage except the first, t is respecified (step 2) by the final value of s 
from the previous stage. When only one string renlains, each conlponent of s, 
save the first, will remain at its initial value of unity, and this condition is used to 
terminate the process at step 1. The vector k represents the keys of the current 
itenls in the 111 input fields and is initiaJ)y specified (step 7) by the keys of the 
colunln vector aXI of initial items of the input fields. The renlainder of the 
process is closely analogous to Progranl 6.5. 

If the total number of items to be sorted is n, then each of the 2m fields 
aXj 111uSt accommodate n items, and the total storage allocated nlust be 
2nm. The storage ratio is therefore 2m. It can be reduced to two by 
putting the output in a single field and keeping a record of the beginning 
location of each successive set of s' = rs -:- In1strings, where s is the 
maximum number of strings in anyone input field. 

Let the input be represented by the single field xa, let b be a vector of 
dimension m + 1, whose kth component specifies the beginning location 
of the kth set of maximal strings, for k = 1, 2, ... ,j, thejth set n um bering 
possibly less than s', and let b j \ I be the location of the first unused position 
of the field. Obviously j ~ m, and if j < m, the remaining undefined 
components of b are immaterial. If the j sets are to serve as inputs to an 
m-way merge, then the prefix ant /b serves to initialize the vector r of 
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al/S € 

2 t-+-s 

3 v -+- (t = €) 

4 s -+- € 

5 r -+- € 

6 a -+-21 l (a + 1) 

7 v/k -+- k(v/aXl) 

8 i-+-O 

9 v € 

10 Z -+- v 

11 

12 

i -+- lJl 11 (i + 1) 

.i -+- ((zlk)/ll)l 

13 

14 

15 

16 

17 

r ~kJ 

3-aXi-+- aX j 
si rJ 

r j +- rj + 1 

Si -+- Si + 1 

rj t j 

18 

19 

20 

21 

22 

~ 

> 

-::j:. 

k J -+- k(aX r/) 

r k J 

V j -+- 1 

Zj ~ 1 

Z € 
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aXkh 

3-aX7/~ 

rh 

Sh 

tit 

kit 

v 

Z 

a 

i 

.i 
n 

I-origin indexing 

I tern k of input field 
h. !i = lJl. 

I tenl k of output v= n. 

field h. 

Index of current 
input from field h. 

Index of next output 
to field h. 

Index of first unused 
v = 111. 

location of field h. 

Key of current item 
from input field h. 

Exhausted fields. 

Ineligible fields. 

Alternator (1, 2). 

Current output field. 

Current input field . 

Total number of items. 

Legend 

Program 6.16 Internal single-phase In-way nlerge using 21J1 fields 

current input indices, and the suffix wmjb defines the ternlinating 
locations t. 

x
The strings produced by the merge from the sets of 111axinlal strings in 

a can be transferred without classification to the single output field 
X 3 -

a
• If the vector b is redefined by the beginning locations in the output 

field of successive sets of rs' --:- n11 items, it can be used to define the input 
fields in a subsequent merge from the field X:l-a. Progranl 6.17 shows a 
convenient arrangement of the process. 
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b i+I +- U 
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V €
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1 
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Z +- v 

r +- k j 
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1I+-11+1 

> 
vj +- 1 

Zj +- 1 

Z € 

I-origin indexing 

Input field. "\ v = n 
Output field. f 
Beginning of }
 
subfield d in v = 111 + 1
 
output.
 

I ndex of current in­
put for subfield d. 

Index of first loca­
tion following sub­
field d. V= In 

k d Key of current item 
fron1 subfield d. 

v Exhausted subfields. 

Z Ineligible subfields. 

u I ndex of next output. 

a Alternator (1, 2). 

h Output string counter. 

i Index of current output sub­
field. 

j Index of current input sub­
field. 

n Total number of iten1s. 

Legend 

Program 6.17 Internal single-phase 
merge using two fields 

208 
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Program 6.17. As in Progranl 6.16, the vector r determines the current set of 
items being examined, and t determines the terminal value of r. The first II/ 

components of b initialize r (step 7), and the last 111 components initialize t 
(step 8). The index u determines the component of the output vector X3~a, which 
is next to be specified (step 24). 

The remainder of the process differs fronl Progranl 6.16 primarily in the deter­
Inination of b. The counter Iz allows i and b i to be respecified (steps 19-20) at 
the end of each group of s strings. The last specified component of b is deter­
mined separately by step 5. Step 6 redeternlines v for the next stage. 

Since some of the initial values so' vo, and bO may be unknown, the 
initialization of the process (steps 1-3) merits some attention. If So alone is 
known, VO and bO may be chosen as follows: VO == (il; b I

O = 1, b2
0 = veX). 

The effect is to perform the first merge from a single input area. Con­
sequently, the first stage performs no rearrangement but does determine 
the vectors v and b. 

If So is unknown, S may be determined by a preliminary string count. 
Alternatively, it may be set to any integer val ue y =2 So. The process 
remains valid, but the required number of stages is increased by [Iogm yl ­
pogm Sol 

Since So cannot exceed the number of items, the initial value s = veX) is 
always valid, and for an assumed random distribution it exceeds the 
expected value by a factor of two only. If greater initial order is expected. 
it may be desirable to modify Program 6.17 to allow a small initial choice 
of s, accompanied by automatic respecification in the event that it proves 
too small. The modification may be simply made by inserting a branch on 
eq uality of i and m, following step 18. The branch would succeed only in 
the event that the initial specification of s were too small and should lead 
to a process for increasing (e.g., doubling) s and repeating the process. 

The case m = 2 is of especial interest, partly because it leads to signi­
ficant simplification in the storage allocation, and partly because the 
advantages which large values of m enjoy in serial sorting largely disappear 
in internal sorting. These advantages arise fronl the reduction in the 
number of stages with increasing m, with a nearly constant time per stage 
due to the fixed reading and recording time for the serial files. In internal 
sorting, the time required for key comparisons and address calculations in 
choosing the minimum key becomes relatively more inlportant and, since 
the key comparison time is an increasing function (frequently linear) of nl. 

the advantage may lie with small values of m. 
The sinlplification of storage allocation arises in the following way. A 

two-way string classification on n items may be used in conjunction \vith a 
single output field with a total capacity of n items by assigning the odd­
numbered strings from the beginning of the field in normal order and the 
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S2 : veX) 

2 a+-2 II (a + 1) 

r -(- (1, veX))3 

S +- r4 

i +- 15 

r +--006 

> r 1 : r 27 

8 .i +- 1 + (k(Xr1a) > k(X r2a)) 

S9 r : k(Xria) 

10 j +- 2 11 (j + 1) 
S 

r : k(Xrja)11 

12 .i ~- 2 11 (j + 1) 

i +-21 1 (i + 1)13 

14 r +- k(Xria) 

I-origin indexing 

xa 

X3-a 

rk 

Sk 

j 

Input field. 

Output field. 

Index of kth input sub­
field, k E (1, 2). 

Index of output subfield, 
k E (1, 2). 

Index of current input 
subfield. 

i Jndex of current output 
subfield . 

r Key of last recorded 
itenl. 

a Alternator (1, 2). 

x:3-a +- X a Legend15 
S i ri 

16 r +-r + Qj 

17 S +- S + Qi 

Program 6.18 Two-way internal single-phase merge 

even-numbered strings from the end of the field in reverse order. Thus if 
sj is the jth string of 2k strings so classified, the output field would contain 
the array 

Sl EB S3 EB S5 EB ... EB S2k-l EB S2k EB ... EB S6 EB S4 EB S2, 

-----------~-0(----------­

where the arrows indicate the increasing directions of the associated 
strings. The restriction to an even number of strings in the foregoing 
example is clearly not essential. The corresponding two-way internal 
single-phase merge is described by Program 6.18. 

Program 6.18. Since the current index vectors r (for input) and S (for output) 
may always be initialized as shown in steps 3 and 4, and since termination of a 
phase occurs when r1 exceeds r2 (step 7), explicit use of the vectors band t of 
Program 6.17 is obviated. The only added complication lies in the different 
treatnlent of indices r1 and Sl' which must be increnlenfed whenever used, and of 
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indices r2 and S2' \vhich nlust be decrenzenfed. This treatnlent is effected by 
addition (steps 16-17) of the rows Qi and Qi of the nlatrix 

It is interesting to note that the use of indexed variables to allow conlparisons 
with the larger (or snlaller) of two keys (steps 9 and II) reduces the requisite 
number of comparisons from four to three. 

The method of string-doubling also permits some simplification In 
storage allocation and address calculations. 

Classification and simple merge 

As in the case of the internal merge sort, the internal column sort differs 
from the corresponding serial sort primarily in the problem of storage 
allocation. Again, the straightforward solution lies in the allocation of 2h 
fields of n item positions each, and the use of b-dimensional indexing 
vectors f, S, and t to control the input and output fields. The sorting 
process used is identical with that of Program 6.8 (serial single-phase 
column sort), and the indexing problems are analogous to those of Pro­
gram 6.16 (internal single-phase merge using 2m fields). 

As in the corresponding merge sort using 2m fields, the foregoing process 
has a high storage ratio which can be reduced to two by a two-field process. 
Unlike the corresponding case for the internal merge of Program 6.17, 
the explicit classification process cannot be avoided. Consequently, it is 
necessary to determine in advance the size of field required for each of the 
b classes corresponding to digits 0, I, ... , (h - I ). This leads to the 
so-called pre-count column sort of Program 6.19, in which each stage 
incorporates an examination of the next higher order position of the key 
and a count of each of the digits occurring. 

Program 6.19. O-origin indexing is used, and the vectors XO and X(( (for a = 0 
or I) serve as input and output fields. The classification on the key digit d i is 
performed so that all itenls which agree in thejth colunln of the key fornl an infix 
in the output X((, and so that the value of d j associated with successive infixes 
increases monotonically. The output indexing is deternlined by the vector s, 
which is, in turn, initialized by the vector b. The value of b for the succeeding 
stage is deternlined by steps 13 and 14*, according to the value of the next higher 
key digit dj~l. The initial value of b is assunled to be defined externally. It I1lust 

* Statement 14 is, for most computers, an inefficient procedure for deternlining b. 
Normally it is preferable to make a simple count of each of the digits and to sunl th~ 

counts to determine s at the beginning of the next stage. 
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1~ 

2~ 
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6 
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8~ 

9 

1O 

11 

12 

13 

14 

j+-q+l 

j+-j-l 

a ~- ii 

s+-b 

b +- e(b) 

i +- -1 

i +- i + 1 

i veX) 

(be(q + 1))~ d +- k(xia); b 

h ~- d j 

X a +- X·a 
Sh l 

Sli -- Sit + 1 

k ~- d j ­ 1 

b ~- b + Cik+l 

~ 

~ 

O-origin indexing 

Xa Input field. 

Xii Output field. 

Sh Index of output 
subfield h. 

v=b 
bk Beginning of out­

put subfield k for 
next stage, 
k E l O (b). 

d Positional re- } 
presentation v = q + 1 
of key. 

h Base of representation. 

j Current colunln of key. 

i rndex of currrent input. 

h Current output subfield. 

a Alternator (0, 1). 

Legend 

Program 6.19 Pre-count colunln sort 

be deternlined by a prelinlinary count, perhaps perfornled when reading the 
items into the initial field. The use of q + 1 instead of q in steps 1 and 9 ensures 
that the pre-count quantity d j _ 1 is properly defined even for the final stage. 

Special internal sorting methods 

The present section is devoted to internal sorting methods which are 
specifically unsuited to serial files. The storage ratio provides a lnajor 
categorization of methods; a method either possesses unity storage ratio 
or it does not. 

Unity storage ratio is achieved by methods which proceed by the inter­
change of item pairs. The type of interchange may be limited to the 
transposition of adjacent items, to "insertion" of an item acconlpanied by 
a movement of all intervening itenls toward the evacuated position, or to 
the exchange of an arbitrary pair. The corresponding methods are 
characterized as transposition, insertion, and exchange methods, respec­
tively. 

Exchange methods include the radix exchange sort. This is an arrange­
ment of the repeated block sort for a base two key, for which the operation 
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count (number of elementary operations required to order n items) is of the 
order of n log2 n. 

Transposition methods include the bubble sort, odd-eren transposition, 
and the ranking sort. They are characterized by relatively simple progranls, 
an operation count of the order of n2 for random initial order, and the 
capacity to utilize existing order to reduce the operation count. 

The only insertion method treated is ranking by insertion. The operation 
count (counting comparisons only and not counting the individual iteITI 
transfers of the block movements associated with each insertion) is of the 
order of n log2 n for random order, and is reduced by existing order. It is 
n10st attractive in a computer providing efficient block movement of 
items. 

Methods having a storage ratio greater than unity include the merge and 
column sorts previously discussed. One additional method of this type is 
treated-the ptll-degree repeated selection sort. The operation count is of 
the order pn", where q == (p + I) -7- p. 

Any internal sorting method can be broken into two distinct phases, the 
first utilizing only the keys to determine the permutation required on 
the items, and the second effecting the perrTIutation of the items. Since the 
permutation vector is, in effect, a table of addresses of the iteITIS, the 
process is called an address table sort. Address table sorting is particularly 
advantageous if the volume of data in the item is large cOInpared to the 
data in its key. 

Any sorting method in which each stage isolates the item with the 
smallest key (among the items remaining from previous stages) can be 
modified to produce longer strings by the use of one auxiliary serial input 
file and one auxiliary serial output file. The modification is called sorting 
lrith replacement. It consists in recording the selected nlinimulTI itenl in the 
output file and reading from the input file a replacement iteITI which enters 
in the subsequent stages only if it is eligible for continuation of the string 
already recorded. 

The internal methods are evaluated and conlpared in Sec. 6.5, and the 
results are summarized in Table 6.37. 

Radix exchange. Radix exchange is a form of the repeated block sort for a 
base two key. The high-order column of the key is scanned first. The fIrst 
zero itenl (item with key digit zero) is exchanged with the last unit itenl, the 
second zero item is exchanged with the second last unit itelTI, and so on, 
until the first stage of the block sort is completed. The zero itenls no\\' 
form a prefix in the vector of iteITIS, and the unit itenls fornl a suffix. The 
process is then repeated on the next colUlnn of the key, first on the prefIX 
obtained from the first stage, and then independently on the suffix. Each 
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column of the key is treated in turn, the exchange process being performed 
independently on each of the disjoint infix vectors defined by the preceding 
stage. O-origin indexing will be used throughout the discussion. 

Primary control of the process is exercised by the vector b, whose 
successive components specify the beginning index of successive subblocks 
(infixes). In particular, bo = 0, and bl'~l = vex), and at the beginning of 
the kth stage, v(b) = 21\'~1 + 1. The storage required for b is therefore 
significant but may be reduced by either of two expedients. The vector b 
may be replaced by a logical vector u such that U/lo = b. Determination 
of the next component of b then requires a scan of the components of u. 
The use of U is thus normally unattractive except in a computer equipped 
for the efficient determination of the location of the leading nonzero 
component of a logical vector. The second expedient leads to a more 
complex but more practicable process. The straightforward use of b will 
be treated first. 

Program 6.20. Steps 10~21 perfornl the exchange on the subblock with indices 
k in the interval b i :::; k ,,;: b if1 . The indices Yo and Y1 designate the pair last 
exchanged, k is the index of the current item exanlined,.i is the current colunln 
of the key, and a is an alternator which is zero during the forward scan of the zero 
section and unity during the backward scan of the unit section. The alternator a 

determines which of the indices Yo and Y1 will initialize k (step 13), the direction 
of the scan (step 14), the type of key digit (0 or 1) sought in the next itenl to be 
exchanged (step 18), and which of the indices Yo and Y 1 is to be redefined by k 
(step 19) when the search ternlinates through failure of the branch at step 18. 
If a does not beconle zero from negation on step 20, the process is repeated fronl 
step 13 with a = 1, producing a backward search for a unit digit in the key. If a 
beconles zero, both the forward and backward scans have been conlpleted, and 
the required item exchange is perfornled on step 21. The final exit fronl the entire 
loop 13~21 occurs when k = that is, when k = Yo on a backward scan orYii , 

k = Y1 on a forward scan. In either event, the final value of k is the beginning 
index of the new subblock defined by the exchange, and it is used inlnlediately to 
specify C I: on step 16. The vector c is eventually meshed with b (step 6) to re­
specify b as (bo, co, b1 , c1 , ... ). The initial specification of b on step 1 ensures 
that the first subblock treated is the entire vector x. 

The number of subblocks which must be distinguished at anyone titne 
can be reduced to the dimension of the key by a method due to Hilde­
brandt and Isbitz (1959). The process is controlled by a partition vector p 
of dimension q + 1, whose successive nonzero components specify the 
beginning indices of the subblocks of x remaining to be ordered. At each 
stage, the first remaining subblock is exchanged on the appropriate key 
digit d j , i.e., for j increased by one over the value used in generating the 
particular subblock. When the exchange occurs for j = q - I, the order­
ing of the two leading subblocks is complete, and they are rernoved froln 
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Program 6.20 Radix exchange with l{b) 2"(£1) 

further consideration by respecifying Po by Pil and resetting Pil and PI' to 
zero, where Pil and PI' are the first nonzero components of a1/p. The end 
of the new leading subblock is now determined by PU" the new leading 
nonzero component of a1/p, and the exchange is executed on the appro­
priate column,j. 

Record of the value of j appropriate to a given subblock is kept by 
recording its terminal partition as Pflj. This is achieved, first, by recording 
each new partition generated by exchange on column j - I in component 
Pr/-j, and, second, by advancing the cOIllponent Pw (determined in the 
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Program 6.21 Radix exchange with ~{p) = J{d) + 1 

prefix removal phase) to Pw-I and resetting P/(j to zero. Incidentally, this 
procedure ensures that P It and Pv always occur as PI and P2• In practice, 
these two components need not be reset if the scan for Pw is begun with P3' 

Program 6.21. The reader nlay find it helpful to trace the progranl (i.e., record 
successive values of all paralneters in tabular fornl) for a sinlple case of a few keys 
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of snlall dinlension. The exchange phase (15-22) is identical with that of Prograrl1 
6.20 except that the specification of C i is onlitted. If j ,- q - I at the conclusion 
of the exchange, j is incremented (step 10), r o is reset to Po - 1, and the ne\\' 
partition k specifies both P(l-J and r1 . If) = q - I, the prefix renl0val is executed 
by steps 4-8. Step 4 respecifies Po, and the scan of steps 5-6 (which begins with 
P3) locates a nonzero component PQ-J which is advanced to P'l~ (J; 1) (indirectly by 
steps 7, 10, and 12) and is reset to zero by step 8. Steps 0- I provide the initial 
specification of Po and (via step 12) of Prj' 

Bubble sort. The basic operation of the bubble sort is the conlparison and 
possible transposition of a pair of adjacent itenls so as to place the smaller 
of the two keys earlier in the sequence. The first stage consists of such 

operations performed in sequence on the item pairs (Xt , l' X,.), (X" ~,X'I I)' 
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Table 6.22 Bubble sort example 

... , (Xl' X2). The result is to bubble each item upward in the sequence 
until it encounters an item with a smaller (or equal) key and then to leave 
it and continue bubbling the ne\v smaller item. In particular, the smallest 
item is bubbled to the top. Successive stages repeat the process, but since 
the jth stage brings the jth smallest item to the jth position, the () + I )th 
stage need not treat the first j positions. It is clear that v(x) - 1 stages 
suffice, but it is advantageous to allow termination at the end of the first 
stage during which no transpositions occur. 

Table 6.22 shows the arrangements prevailing at the end of each stage 
of a bubble sort. The items above the staircase line are not re-examined. 
Although the items are in correct order at the end of stage three, there is 
no available indication of the fact until stage four is executed without the 
occurrence of a transposition. 

Program 6.23. The detailed behavior of the bubble sort process described by 
this progranl should be clear from the foregoing discussion. It may, however, be 
renlarked that at most I' = }I(x) - I stages are executed, even though the final 
order is achieved only at the rth stage. 

I 
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4 
Stage 
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8 Xl I9 x4 

11 x:3 
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Program 6.23 Bubble sort 

If a given set of items is completely ordered except for a single item 
which is displaced upward from its proper position by j places, j stages of 
the bubble sort will be required to complete the ordering. On the other 
hand, a single stage of the bubble sort performed in the alternate direction 
(i.e., scanning from Xl to XlI and bubbling the large items downward) 
would suffice. In general, there is some advantage in perfornling successive 
stages of the bubble sort in alternate directions. 

If on a backward scan (from XlI to Xl) no transposition occurs between 
items xj and Xj-l, then x j and x j + l are in correct relative order. 
Consequently, if x j and (the possibly new) x j - l are not transposed on the 
succeeding forward scan, then xj and xj +l will suffer no transposition. This 
result may be extended to strings of items which suffer no transpositions, 
and a record of this existing order can be used to obviate the corresponding 
comparIsons. 

More precisely, if S is a logical vector such that Sj = 1 if and only if no 
transposition occurred between items x j and x j - l in a backward scan, then 
no transposition between items x j - 1 and x j on the succeeding forward scan 
will also imply no transposition (i.e., no need for comparison) between x j 

and Xj-t-l if Sj = 1. More generally, if a = ± 1 is an alternator such that 
a = 1 on the forward scan, then Sj may be defined as unity if and only if 
no transposition occurs between x j and Xj +W Program 6.24 shows the 
entire process. This variant of the bubble sort is attractive only for 
conlputers in which the indicated scan of the logical vector can be per­
formed efficiently. 
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Program 6.24. Multiplication of each key by the alternator a provides the 
required alternation in the behavior of the branch on step 10. The behavior is 
best appreciated by tracing a sinlple case. 
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Program 6.24 Forward and backward bubble sort with string indicator 

Odd-ecen transposition sort. Like the bubble sort, the transposition sort 
has unity storage ratio and involves the comparison and possible trans­
position of adjacent items. Each stage consists of two phases or half~stages. 

In the first half-stage, each item with an odd index (except the last if it is 
odd) is compared with its successor; in the second, each item with an odd 
index (except the first) is compared with its predecessor. Table 6.25 
provides an example. 
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Table 6.25 Odd-even transposition sort example 
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Program 6.26. The subloop 6-10 perfornls the first or the second half-stage of 
the transposition sort according as the alternator a is 0 or 1. Final ternlination 
occurs on step 3 as soon as one half-stage is conlpleted without a transposition 
occurring, except that a mininlunl of two half-stages nlust be executed. The 
nlininlunl of two half-stages is assured by the initialization of t on step 1. 
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Program 6.26 Odd-even transposition sort 

The validity of the termination conditions of Prograrn 6.26 follows from 
the following proposition: if any half-stage except the first effects no 
transpositions, the items are conlpletely ordered. If the half-stage is odd, 
then 

Since no transpositions occur, the conditions of the previous stage (which 
exists by hypothesis) also remain valid, i.e., 

The two sets of inequalities together inlply ordering. * A similar argument 
applies for the case of an even half-stage. 

1n Sec. 6.5 the transposition sort is shown to be less efficient than the 
bubble sort. However, it enjoys the unique advantage that all cornparisons 

* This result may be combined with the fact (established in Sec. 6.5) that the nunlbcr 
of transpositions required is finite to establish convergence of the transposition sort. 
For, if the set is not ordered, each half-stage must effect at least one transposition. 
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and transpositions in a given half-stage are independent and nlay therefore 
be executed in parallel. 

Ranking sort. If one new iteITI is added to a vector of itenls already ordered 
on a given key, the resulting vector can be ordered by ranking the ne\V 
iteITI, i.e., by comparing it with the iteITIS of the original vector in succession 
until the appropriate rank of the added item is deternlined. Moreover. 11 

repetitions of this process, which draw the new iteITIS fronl a given vector 
of n itenls, will order the entire vector. Table 6.27 shows an exaITIple in 
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Table 6.27 Ranking sort example 

which the individual ranking operations are each perfornled by conlparing 
the added item with the ranked itenls in turn (starting with the largest), 
moving forward by one place each item whose key exceeds that of the 
added item. 

Program 6.28. The index i controls the selection of successive itenls to define 
the itenl z (step 4) which is to be added to the ranked set by steps 6-9. The indexj 
controls the selection of successive itenls of the ranked set for conlparison with ::, 
and each execution of the subloop ternlinates if either j beC0I11eS zero or if 
k(z) k(xj ). In either event, step 9 inserts the new itenl ;:, into the position x j l' 

which was last evacuated. Fronl the initialization of the index i it is clear that the 
process is actually c0I11pleted in vex) - 1 rather than l'(x) stages. 

Ranking by insertion. Since each stage of the ranking sort ranks one ne\V' 
item in an already ranked set, the determination of its position can be 
accomplished by a binary search. This sharply reduces the required 
number of comparisons. However, once the new position is deternlined. 
each of the succeeding items in the ranked set must be moved down one 
place to make way for the new item to be inserted. This ITIethod is par­
ticularly good where (due either to suitable facilities in the COITIputer or to 
the use of a chained representation for the vector of items x) such block 
transfer is easy to perform. 

I 
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Program 6.29 Ranking by insertion 
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Program 6.29. The binary search is perfornled by the loop II-IS, which so 
determines j that the new itenl x i is to be inserted after x j • Since the floor opera­
tion is used on step 12, j will eventually reach the value p, and step 14 therefore 
ternlinates the loop in a finite nunlber of steps. Step 3 perfonns the required 
insertion by a right rotation of the infix of x bounded by x j and Xi' The cases 
where Xi lies outside the previously ranked set are treated by the con1parisons on 
steps 7 and 9. Incidentally, step 7 takes full advantage of any initial order in the 
itenls, e.g., if the set is initially ordered, steps 8-15 are never executed. 

Repeated selection sort. The process of scanning all items of a vector for 

the smallest key and transferring the selected item to a separate output 
area (in a serial or random access file) will be called selection. Repeated 
selection on the successive remaining (unselected) items will serve to 
transfer the items in the order determined by the specified key. This 
method of ordering is called a (first-degree) selection sort. 

If the given vector of n items is divided into m subvectors of at n10st 
rn -:- ml items each, then a selection from each subvector will produce a 
vector of m items, thejth of which is the smallest of the jth subvector. A 
selection performed on the m items of the resulting vector will then select 
the smallest item of the entire original set. If the selected item canlC 
from the kth subvector, it is then replaced by a further selection on the 
remaining items of the kth subvector. Repetition of the process n tilnes 
serves to order the items. Because selection is performed on two levels, 

the process is called second-degree selection. 
In general, the smallest (first-level) item may be selected from a set of v? 

second-Ieeel items, each of which is selected as the smallest of V:3 third-Ieeel 
itenlS. The process can clearly be extended to any desired number of levels. 
Ifp levels of selection are used, the process is termed pth-degree selection or 
repeated selection. It may be represented as a singular homogeneous tree 
T of height p + I, as illustrated by Fig. 6.30. 

Figure 6.30 shows the initial filling of the lower levels in a third-degree 
selection sort performed on the sixteen items at the top of the tree T, with 
veT) == (1,2,2,4). The keys are indicated in parentheses. The positions 
of the third level are the nodes (I, I, I), (I, I, 2), (I, 2, I), and (I, 2, 2). 

They are first filled by items x3(6), x6(2), xn( I), and X 14(4), respectively, each 
selected as the smallest among the second-level nodes of the corresponding 

subtrees TO,I,U' T O ,1.2)' T O ,2,1)' and T O ,2,2)' respectively. The first position 
of level two is then filled by x6(2), selected as the smallest among the second­
level nodes in its subtree, and so forth. Figure 6.3 I shows the continuation 
of the process through the selection of the first two output iten1s. 

If e is some value which exceeds the absolute value of all keys, then the 
selection process may be made more uniform by assuming either that the 
entire top level of the tree is occupied by the items to be sorted or that 



224 Sorting §6.4 

Level Level Level Level
 
1 2 3 4
 

xl(9) 

x3(6) ~::) 
x4(16) 

x6(2) 

~, xs(3) ~:::x7(7) 

x8(l3) 

~lt 

~XlO(ll) 
~ X12(5) 

Xll (8) 

~ 
xg(l) 

~X13(l5) 
~~M+ 

X14(4) 
xls(12) 

X16(lO) 
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unoccupied positions are filled with items having the key value e, and by 
replacing each item selected from the top level by an item with a similar 
key value. Termination of the process may then be determined by the 
appearance of such a key value at the output. Moreover, the initial filling 
may be simplified by filling all lower levels with dummy items having key 
values of (-e). These may be recognized and discarded at the output. 
The normal process will remove all the dummy items first, leaving all 
levels in the state which would be produced by a special initial fill. 

Program 6.32. The top level of the tree T initially contains the items to be 
sorted (completed if necessary by dummy items having the key value of e), and 
the remaining levels contain items with the key value (-e). The index vector s 
scans the second-level nodes of the subtree T w1/s (steps 14-18) to determine the 
index m of the node having the minimum key z. If z * e, step 10 replaces the 
root of the subtree by the selected node value and step 11 respecifies s to begin 
the scan of the subtree rooted in m. If z = e, then all second-level nodes contain 
dummy items with "infinite keys," and step 9 branches to step 1 to replace the 
root of the subtree by a dummy item as well. The branch from step 12 occurs 
when the scan of the top level has been completed; it also results in the insertion 
of a dummy item. 

Since each complete scan (over all levels) begins with s = (1, 1) (steps 3, 11, 15), 
the resulting minimum item is brought to the root of the tree. Step 2 specifies :: 
as its key, and steps 4 and 7 determine its disposal. If z = e, all legitimate itenls 
have been flushed fronl the tree, and the branch to step 5 terminates the output 
file, rewinds it, and ends the process. If z = -e, the item is a dummy initial fill 
and is discarded by skipping the recording of the output file on step 8. 

Since the selection process proceeds by levels in the tree, a corresponding 
computer program can best be based on a right list-specifically, on the 
right list node vector e2/]T and the dispersion vector veT). The computa­
tion of the list index res) required in the path tracing is described (for 
O-origin indexing) by the recursion on the functions f and g developed in 
Sec. 1.23. This recursion yields a relatively simple computer program for 
a general homogeneous tree. It will be shown, however, that a b-way 
rooted tree (i.e., a rooted tree with a common branching ratio b) is the case 
of greatest practical interest, and in this case the simpler recursion 

res) = b X r(w1/s) + 1 + s" 

(also developed in Sec. 1.23) can be used. Program 6.33 shows the repeated 
selection sort of Program 6.32 executed on the right node list vector r of a 
b-way rooted tree. 

Program 6.33. The initial conditions are as assumed for Progranl 6.32, and the 
steps of the two programs correspond very closely. The simple index modifica­
tion required from stage to stage is shown in step 11. 
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Program 6.32 Repeated selection sort 

The superiority of a common branching ratio is demonstrated as follows. 
The number of items scanned per item selected (ignoring initial fill and 
termination) is clearly the sum of the branching ratios, whereas the maxi­
mum number of items accommodated in the top level is equal to their 
product. It is therefore easily shown (e.g., by induction or by the use of 
Lagrange multipliers*) that for a fixed number of items, optimum execution 
is furnished by a common branching ratio. 

Sorting H'ith replacement. Certain of the internal sorting processes 
discussed (bubble and repeated selection) proceed in a succession of 
stages, each of which results in the selection of the smallest remaining 

* See, for example, Margenau and Murphy (1943), p. 205. 



§6.4 Internal sorting methods 227 

item. Since this item can be transferred immediately to an output area or 
serial output file, the evacuated position can be refilled by an item from a 
serial input file. Each output item can therefore be replaced by a new item 
from a serial input, and the resulting process is called sorting H'ith replace­
ment. 

If the key of the newly introduced item exceeds or equals the key of the 
last output item of a group, the new item may be treated as a member of 
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the original group. If not, the item must be allowed to retain its position 
but must be excluded from consideration in the sorting process. In general, 
sorting with replacement allows the production of longer output strings 
than would be otherwise possible with the same internal storage capacity. 
The expected increase is discussed in Sec. 6.5. Since the process terminates 
with the original positions completely occupied by ineligible items, the 
production of a further string can be begun simply by declaring all itenls 
eligible. . 

Repeated selection sort with replacement. In the repeated selection sort it is 
advantageous to apply the eligibility criterion at each level, i.e., to limit 
selection to keys which equal or exceed the key of the item being replaced. 
The item being replaced is, of course, the last on'e transferred (either to the 
output file or to the preceding level). The top level items are replaced from 
the input file or, when the file becomes exhausted, by dummy items. 
However, the use of the "infinite" dummy key value e as in Program 6.32 
raises serious difficulties, which are avoided by the use of the value 
-(e + I). This is done in Program 6.34. 

Program 6.34. This program is very similar to Program 6.32, and only the 
essential differences will be remarked. The main scan loop (15-20) differs only in 
the added comparison with w to prevent the selection of ineligi ble items. The 
variable w is normally specified (step 13) as the key of the item just transferred 
out of the position being filled. However, if all items are ineligible, then z 
remains unchanged from its initial value established by step 14, and the branch 
from step 21 to 22 occurs. The variable w is then set to -e to make eligible all 
items except the dummy fills [with key value (-(e + 1))]. which enter on exhaus­
tion of the input file. If only these dummies remain in the level scanned, the 
process returns again to step 22. This time, however, the branch to step 3 occurs. 

Step 3 is the file read (which replaces step 1 of Program 6.32). When the file 
becomes exhausted, the branch to step 2 replaces program statement P3 by Pl' so 
that step 3 thereafter provides the requisite dunlmy keys. 

Bubble sort with replacement. A straightforward bubble sort with re­
placement produces the same length strings as a first-order selection sort 
with replacement, and, indeed, differs from it mainly in the additional 
performance of item interchanges. Bubble sorting with replacement is 
therefore of interest only if the order induced in the remaining items by the 
interchanges can be used to reduce the number of items scanned. This can 
be achieved by accumulating the ineligible items in a growing suffix of the 
vector of items and restricting successive scans to the prefix of eligible 
items. This method is shown in Program 6.35. 

Program 6.35. In the loop 11-13, w denotes the current itenl with the smallest 
key, and it is interchanged with Xi if k(w) exceeds k(x i ). At step 14, w is therefore 
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the item with the smallest key among those scanned and (unless k(w) = e) is then 
recorded in the output file and used to define z, the key of the last recorded item. 
The main loop is then repeated from step 5, where w is respecified by reading 
an item from the input file. If the new item is eligible, the branch from step 6 to 
step lOis followed; if not, the parameter j (denoting the index of the first in­
eligible item xi) is decremented and w is interchanged with the last eligible item xi 
before continuing to step 10. Since step 10 initializes i to the value j, the sub­
sequent scan is limited to eligible items. 

Ifj becomes zero on step 7, the entire set of items including w is ineligible. 
Step 8 then restores j so as to make all items eligible and hence to start a new 
string. 

The branch from step 5 and the subsequent redefinition of step 5 on step 2 
serve to introduce "infinite" keys after the input file is exhausted. The immediate 
redefinition of j and z (steps 3 and 4) to make all items eligible may appear 
redundant. It may be verified that this procedure (1) does not increase the number 
of strings produced, and (2) avoids the potential error of omitting the last string. 
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Address table sort. A sorting process can, in principle, be accomplished in 
two distinct phases, a determination of the permutation required and the 
execution of the permutation. In serial sorting, however, the process 
cannot be effectively divided in this way. For, because of the limitation 
to rank-preserving operations, the items could not be transferred directly 
to their final positions even if they were known. In internal sorting this 
limitation does not apply. A sorting process embodying these two separate 
phases is called an address table sort. The method offers advantages when 
the time required to transfer a complete item is large compared to the time 
required to transfer its key. 

The permutation p must be so determined that the permuted vector 
y = x is ordered on the key. Let KI be the vector of keys associated withp 

the given vector x, i.e., K/ = k(xJ, and let K2 be the identity permutation 
LI • For example, if the successive keys of the vector x are 17, 9, 6, 11,4, 8, 
and 3, then 

9 6 11 4 8 
~).

2 3 4 5 6 

If the columns of K are reordered (by any desired sorting process), to 
produce the matrix P such that P/ is monotone increasing in i, then 
p = p2 is the desired permutation vector. In terms of the foregoing 
example, 

4 6 8 9 11 

5 3 6 2 4 

and p = (7,5,3,6,2,4, I). 

6.5	 EVALUATION OF INTERNAL SORTING 
METHODS 

In evaluating internal sorting methods, both the execution time and the 
internal storage requirements must be considered. For the execution 
times of the internal merge sort and the internal colurnn sort, the analysis 
of the corresponding serial sorting process applies directly. Since their 
storage requirements have also been discussed in Sec. 6.4, the present 
section will be limited to the special internal sorting methods. 

The measures of interest in the evaluation of these methods are four: 

I. the scan length 
2. the number of stages required 
3. the number of transpositions required 
4. the storage ratio. 
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The number of con1parisons executed is frequently used as a measure of 
execution time of a sorting process. However, since the selection of the 
keys to be compared (involving instruction modification and possibly 
extraction of key digits) usually accounts for the largest share of the time 
required in a comparison, the scan length (number of items scanned) is a 
more suitable measure. In a process which scans m items serially (as in 
each individual stage of a bubble or a ranking sort), the number of com­
parisons is (m - 1) and differs but little from m. However, for m small 
(as in the successive selections in a repeated selection sort); the ratio 
m -7- (m - 1) is significant, and the scan length is the better measure. 
Moreover, in a process which does not use a serial scan, the number of 
comparisons may differ markedly fron1 the scan length. For example, 
each half-stage of the interchange sort requires approximately ml2 
conlparisons for a scan of m items. 

The storage ratio is defined as the ratio of the number of item storage 
locations required to the number of items entering the sorting process 
(without replacement). The four measures will be determined for each 
method in turn and then compared. Table 6.37 summarizes the main 
results for an assumed random initial distribution of keys. The entire 
analysis is based on the assumption of distinct keys. 

Expected number of transpositions 

Let yen) be the total number of transpositions required to order all of 
the n! possible arrangements of n items. Since the (n + 1)th item added 
in the last position may rank first, second, ... , or last, requiring n, 
(n - ]), ... , or 0 additional transpositions, respectively, for each of the 
11! arrangements of the n items, then 

n 

y(n + 1) = (n + 1)y(n) + n! 2 k 
k =0 

= (n + l)y(n) + (~)(t1 + 1)!. 

The function 
n!(n2- n) 

y()n = 
4 

satisfies this difference equation as well as the obvious boundary condition 
yeO) = 0, and the expected number of transpositions is therefore given by 

yen) (n 2 
- 11) 

n! 4 

The maximum and minimum number of transpositions are (n 2 - n)/2 and 
zero, respectively. 
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A pair of items whose relative order differs from the final arrangement 
will be called a disordered pair. Thus in the set (2, 4, 3, 1), the disordered 
pairs are (2, 1), (4,3), (4, 1), and (3, 1). To establish order it is clearly 
necessary that each disordered pair be transposed. The sequential 
transposition of disordered pairs of adjacent items is also sufficient to 
produce ordering. Any transposition method which transposes only 
disordered pairs therefore achieves order with a minimunl number of trans­
positions and hence with an expected number of (n 2 - n)/4. The ranking 
sort, bubble sort, and interchange sort all fall into this category. The 
sequence in which the transpositions occur will, however, normally vary 
for different methods. Thus the sequence of arrangements realized in 
reordering the set (2, 4, 3, 1) is (2, 4, 1, 3), (2, 1, 4, 3), (I, 2, 4, 3), and 
(I, 2, 3, 4) for the bubble sort, and (2, 3, 4, 1), (2, 3, I, 4), (2, 1, 3, 4), and 
(1,2,3,4) for the ranking sort. 

Bubble sort 

In the bubble sort, both the number of stages and the scan length depend 
on the initial order. The minimum and maximum number of stages 
required are one and (n - 1), respectively. The minimum and maXimUl11 
scan lengths are nand (n 2 + n - 2)/2, respectively. 

The expected number of stages required for a randonl initial order is 
determined * as follows. If, at any stage, all itenls are ordered except for 
one which occupies a position below (later in the seq uence than) its proper 
position, then one further stage will complete the ordering. On the other 
hand, each item which appears above its terminal position at a given stage 
will be ITIoved down by exactly one position in the next stage. Conse­
quently, the number of stages required will be determined by d, the 
maximum upward displacement from its final position of any item in 
the original array. More precisely, if x is the given vector of items, y the 
corresponding vector of ordered items, p is a permutation such that 
y = xp ' and d = II - p, then d = ((e["d)/d)I. 

If the maximum upward displacement is d, then (assuming that all 
keys are distinct and that the final order is consequently unique) the last 
item in the final order (i.e., Y 71) can initially occupy anyone of the (d + I) 

components of the suffix W 
d+1/X. Similarly, y ii-I may initially occupy any 

one of the remaining (d + 1) positions of the suffix w d t-2/X, and so on for 
each of the (n - d) items of the suffix wn-d/y. The number of possible 
initial arrangements of the items ofwn-d/y is therefore (d + 1)(n-d). Since 
the d leading items (i.e., ad/y) can occupy anyone of the d remaining posi­
tions without restriction, the number of possible initial arrangements with a 

* The exact expression for the number of stages is due to Friend (1956). 
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II c(n) 
- ­

I 0.798 
5 0.853 

10 0.877 
IS 0.893 
20 0.904 
30 0.918 
40 0.927 
50 0.934 

Table 6.36 Coefficients for z(n) ~ c(n)V7Tn/2 

displacement not exceeding d is clearly d! (d + l)(n-d). The probability 
that the maximum displacement r does not exceed d is therefore given by 

(d + 1)(n-d) d! 
pr(r s: d) = . 

n! 
Similarly, 

d(n-d+l\d - 1)!
pr(r s: d - 1) = ,

n! 
and hence 

pr(r = d) = pr(r s: d) - pr(r ~ d - 1) 

(d + l)(n-d) d! - d(n-d+l)(d - I)! 

n! 
The expected value of r is given by 

n-l n-l
 

er = ~ d x pr(r = d) = I d x pr(r = d)
 
d=O d=1 

= l(nil 
d(d + l)(n-(l) d! - nil d X d(n-d+H(d - I)!). 

n! d=1 (/=1 

A change of dummy variable in the second summand (d = t + I) brings 
the two summands to similar form and yields the result 

e r = n - zen), 

where zen) = -
1 In 

sn-ss !. 
n! s= 1 

It is shown in the appendix to this chapter that zen) approaches the value 

V7rn/2 for large n, and Table 6.36 gives coefficients c(n) for the approxi­
mation 

zen) = c(n)"/7rn/2. 
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Since one extra stage is needed to determine that the ordering has been 
completed, the expected number of stages is given by 

e(J = n + 1 - ,zen). 

Since the scan length in the jth stage of the bubble sort is known to be 
n - j + ], a similar analysis can be used to determine the expected total 
scan length es' The result is 

2n - n - 2 
es = + (n + l)z(n + I) - nz(n),. 2 

or approximately, 
') /­~ Ir - 11 - 2 37T11
 

e s -- + AI •
 . 2 .~ 4 

Ranking sort 

The number of stages in the ranking sort is clearly (n - I). The ex­
pected scan length on the kth stage is determined as follows. The item may 
rank in anyone of (k + I) positions; first, second, ... , last, with eq ual 
probability. There are therefore (k + I) cases requiring scan lengths of 
2,3, ... ,k, (k + I), (k + I). The last case requires a scan length of 
(k + I) rather than (k + 2), since the process terminates on comparison 
with the last item regardless of the outcome of the comparison. The total 
scan length for the (k + I) cases is therefore 

k+2.) k2 + 5k + 2 
( I r - 1 = , 

r=2 ' 2 

and the expected scan length is consequently 2 + kj2 - Ij(k + I). 
Summing over the (n - 1) stages and denoting the expected total scan 
length by e yields the relation 

11/-] n-1 1 
e = 2(n - I) + - I k - I - ­

2 7;=1 7;=1 k + 1 

= /12 + 7/1 - 4 _ i !. 
4 7;=1 k 

But 
nIl II - = y + loge n + - - --.) 

1.'=1 k 211 1211­

approximately, * where y = 0.5772 ... is Euler's constant. Hence 

n2 + 711 1 1 
e= 1.577 - log/, 11 - - + -- ,

4 211 1211 2 

* See, for example, Cramer (1951) p. 125, or Woods (1926) p. 171. 
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correct to two decimal places for all n > 1. The maximum and minimum 
scan lengths are (n 2 + n - 2)/2 and 2(n - 1), respectively. 

The ranking sort takes advantage of initial order and the minimum scan 
length of 2(n - 1) is achieved for an initially ordered set of items. Ranking 
by insertion with binary search, as described by Program 6.29, requires 
approximately 2 + [log2 jl comparisons on the jth stage. Hence if n = 21.:, 
the number of comparisons required is given by 

e = (2 + k)21.: - (2 + 22 + 23 + ... + 21.'-1) 

~ (2 + k)2k 
- 21.: = (k + 1)21.:. 

In general, then, 
e . n(log2 n + 1). 

For a random distribution, ranking by insertion with binary search 
requires fewer comparisons than any other method, and, in the form 
described by Program 6.29, also takes advantage of initial order. The 
insertion operation requires, of course, a number of rotations of relatively 
lengthy vectors. 

Odd-even transposition sort 

Estimates of the efficiency of the transposition sort may be obtained as 
follows. Each half-stage requires the scanning of (approximately) n items 
in nl2 comparisons, and results in reducing the displacement (either up or 
down) of each item by at most one. The fact that the reduction in the 
displacement may be zero for certain items can be illustrated with the 
initial arrangement (5, 6, 1,2, 3,4). The number of half-stages must 
therefore equal or exceed the maximum displacement, which, in turn. 
equals or exceeds the maximum upward displacement d used in the analysis 
of the bubble sort. Moreover, one final half-stage is required to determine 
that order has been achieved, and the expected number of half-stages will 
necessarily exceed the corresponding value obtained for the bubble sort, 
namely, n + 1 - zen). Since the number of items scanned per stage in the 
transposition sort exceeds the corresponding number in the bubble sort, it 
follows that the transposition sort is much less efficient. Moreover, the 
transposition sort does not allow sorting with replacement. I ts sole 
advantage resides in the possibility of executing all operations in a given 
half-stage in parallel. 

Repeated selection sort 

The number of items scanned per item selected in a pth-degree selection 
sort is eq ual to the sum of the branching ratios of the associated tree. and, 
as already demonstrated, a minimum scan length is provided by a tree 
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with a common branching ratio m. Since m P :2:: n, the nunlber of items 
scanned per output item is given approximately by 

s = mp . m logm n. 

The resulting expression for the total number of items scanned (nm logm 11) 

is similar in form to the corresponding result for the m-way merge sort. 
The indicated optimum choice of m is Napier's number e. 

The optimum integral value of m is three, and its efficiency differs from 
the theoretical optimum by less than 1 %. The value 111 = 2 simplifies the 
required program and increases the expected amount of scan by only about 
5 %. This case (m = 2) is referred to as a tournament sort. Larger values of 
m may prove advantageous where the groups of items to be scanned are 
contained in a serial store whose scan time is not significantly reduced by 
reducing m. 

Since p itelTI transfers are required per item selected, a more realistic cost 
function for determining the optimum value of m may be given by the 
function 

c = (m + a)p = (m + a) logm n, 

where a is the ratio of the time required for an item transfer to the time 
required for the scan of a single key. As remarked in Sec. 6.2, the optimum 
value of m is obtained as a solution of the equation 

a 
loge m = 1 + -. 

In 

The amount of itenl storage required for a pth-degree selection sort is 
given by 

111 1)+1 - 1 
x = + m + m 2 + ... + 111J) = 

In - 1 
mn 

m - l' 

since n = m P • The storage ratio rem) is therefore given by rem) = 

m/(m - 1), a function which decreases with m, rapidly approaching unity. 
This ratio also represents the increase in execution time entailed in the 
initialization of the lower level positions. If sorting with replacement is 
used, initialization is required for the first string only. 

The ratio rem) changes significantly for the first few values; thus 

r(2) = 2.00; r(3) = 1.50; r(4) = 1.33. 

If the expected scan time sCm) is taken as a second criterion, then (since 
5(2) = 5(4) > 5(3)), the value m = 2 will be eclipsed by both 3 and 4. 
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2 + n - 2 I 2n _ 2Ranking n -1 n-] In -] --4- - 1.6 -logl'n- ~ 

2 4 

n(log2 n + 2) n(log2 n + 2) I 2n - 2Ranking by insertion (binary search) I n-l 
4I n~ 1 In~ 1 

n- - n 

n'n:n I 0 

p-th degree selection+ § n nmpnmp = nm logm n nmp np np I~ 
m-l(branching ratio m) 

• With optimum allocation (2 fields). t Parallel operation possible: estimates are lower bounds.
 
t Replacement possible. § All values exclusive of initial fill.
 

])~ ,
 

zen) = - ~ Sll- ~s! == \ TTfl/2

n! .s=l
 

Table 6.37 Characteristics of internal sorting methods (for random distribution of distinct keys) 

CO') 
Q"\ 

U. 
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Sorting with replacement 

The use of replacement with any internal sorting method offers the 
advantage of increasing the expected length of the strings produced. 
Gassner (1958) has shown that for n item positions and random keys, the 
expected length of the first string is (e - I) x n == 1.718n, and that for 
later strings the expected length rapidly approaches 2n. 

Comparison of internal sorting methods 

The results of the preceding sections are summarized in Table 6.37. The 
ranking, bubble, and transposition processes show the most favorable 
storage ratio, exactly one half of the best attainable in the merge and the 
column sort processes. In the case of repeated selection, the storage ratio 
depends on m and ranges from two to a limit of one. 

The execution time is approximately proportional to the function 

fen) = s + ct, 

where s is the scan length, t the number of item transfers or transpositions. 
and c the ratio of the cost (in time) of one item transfer to the cost of a scan 
of one key. For any given method with variable parameters (such as the 
repeated selection sort), these parameters may be chosen so as to nlinimize 
j'(n). The choice between various methods may then be nlade (subject to 
storage considerations) so as to minimize j'(n). 

Since the ranking, bubble, and odd-even transposition methods share 
the same number of transpositions, the choice between them depends on 
the scan length and auxiliary factors. The odd-even transposition sort is 
inferior to the bubble sort in this regard, and the bubble sort is, in turn. 
inferior (by a factor of two for large n) to the ranking sort for n > 8. The 
bubble sort retains the advantage that sorting with replacement may be 
used, and the transposition method allows parallel operation. 

APPENDIX TO CHAPTER 6 

The following derivation of the limit of the function 

1 ~ _,
z(n) = - L. s! sri .'i 

n! s=l 

arising in the evaluation of the bubble sort was suggested by Robert 
Church. Clearly 

L(n) = in g(s) ds <: zen) <: U(n) = f g(s + 1) ds, 
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s! 
where g(s) = - sn-s. Moreover,

n! 

(n (s + 1)n-S
V(n) = J -s- g(s) ds, 

o 

and since g(s) is monotone increasing with a large positive derivative for 
large values of s, only the upper end of the integral is significant. It can 
therefore be shown that 

lim V(n) = lim L(n). 
n-+oo n-+oo 

Consequently, 

lim L(n) = lim zen). 
n-+oo n-+oo 

Applying Stirling's formula, 

In ~-2 s+~ -s n-s d in 
I , L()' 7TS e S S n - (n +~) n + 1(, - s d1m n === = ens /~ e s.

/2 n+~-n
n-+oo 0 'V 7Tn e 0 

Setting t = 1 - s/n yields 

!~r: L(n) = enn-tn+!-i) Ll nn+!-i(l - t)n+!-ie-nerlln dt 

= n Ll (1- t)"+Herddt, 

= n Ll ent+tn+!-il]Og, n-tl dt. 

Expanding loge (1 - t) yields 

" 3lim L(n) = n e-t/2-(n+~)(t~/2+t 13+ , .. ) dt.II 

n-+ 00 0 

For n large, only small values of t will be significant, and all terms in the 
exponent may be dropped except -en + 1/2)t2/2. Similarly, the upper 
limit of integration may be extended to infinity. Hence, 

lim L(n) = n 
00 

e-(n+~)t 
2

!2dt = n(7T/(2n + l))~i1n-+oo 0 

. (7Tn/2)~. 
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EXERCISES 

6.1 A given file contains a set of 15 items Xl' ..• , with associated decinlal X I5 

keys 68, 9,60,14,60,73,79,15,67,5,9,41,57,9,41. For each of the serial files 
used, show the contents at the conclusion of each stage of the following processes: 

(a) a two-phase classification and merge using 
(i) four files. 

(ii) three files. 
(iii) six files. 

(b) a string classification and merge using four files. 
(c) a single-phase merge using 

(i) four files. 
(ii) six files. 

(d) a single-phase merge without rewind. 
(e) a base ten column sort using eleven files. 
(f) a base ten column sort using twenty files. 
(g) a base ten column sort using four files and the partial pass column sort. 
(h) a column sort using four files and a base three representation of the keys. 

6.2 Modify Program 6.4 so that it will work properly without dumnly terminal 
items (i.e., each terminal partition A

2 
is to be associated with a legitimate item). 

6.3 Write a program for the string-doubling merge sort. 

6.4	 (a) Write a program for a base b column sort which uses backward read to 
eliminate rewinding. 

(b) Program a variant of the two-phase colunln sort (b + 1 files) so as to 
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eliminate the copying of the "zero items" in each merge phase. Deter­
mine the relative efficiency of the method. 

(c)	 Program an analogous variant of the nl-way two-phase merge sort so as 
to eliminate the copying of part of the items in the classification phase. 

6.5 Construct the matrix M (cf. Table 6.10) specifying an efficient partial pass 
column sort for the following cases: 

(a) base ten and three files. 
(b) base ten and five files. 
(c)	 base eight and three files. 
(d) base ten and four files using no rewind, i.e., files are to be read backward. 
(e)	 base ten and three files using no rewind. 

6.6 Using a set of matrices 1M, 2M, ... , l 
JM, of the form of Table 6.10, write a 

progran1 to generalize the partial pass sort to the case of a mixed radix key. 

6.7	 (a) Reprogram the amphisbaenic sort (Progran1 6.13) so as to reverse the 
order of the final output. (This is the form used in Nagler, 1959.) 

(b)	 Program a generalization of the amphisbaenic sort which makes use of 
partial passes within columns of the key. 

6.8	 (a) Program a modification of the bubble sort process which on odd­
numbered stages bubbles the smallest item to the leading end and on 
even-numbered stages bubbles the largest item to the tail end. 

(b) By examining all 4! cases show that for four items the eApected nunlber 
of stages is slightly less for the method of part (a) than for the un­
modified bubble sort. 

(c)	 Program a bubble sort using a string indicator s as in Program 6.24 but 
using backward scan only. 

6.9	 (a) Program a modification of Program 6.17 to specify So = 2 and to auto­
matically double So and restart if necessary. 

(b)	 Compare the efficiency of the program of part (a) with that of the 
straightforward program in which the number s of strings is assumed 
equal to the number of items. 

6.10	 (a) Derive the relation loge 171 = 1 + alnl which must be satisfied by an 
optimal value of n1 in order to minimize the cost function c = (n1 + a) 

logrn n (cf. Sec. 6.2). 
(b)	 Determine the optimal integral value of 171 for each of the cases a = 0, 

1, e2• 

6.11 For the amphisbaenic sort on a set of bt items with distinct keys belonging 
to the set lO(b t ), determine 

(a)	 the number of item transfers required. 
(b)	 the number of file reversals (change of direction of read and record) 

required. 

6.12 Write a program describing the odd-even transposition sort in terms of 
vector operations so as to show clearly the parallel nature of the process. Treat 
all items with odd indices (plus a dummy item) as a vector and all even itenls (plus 
a dummy item) as a second vector. 
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6.13	 (a) For each of the following sorting methods, determine whether initial 
order of the items is preserved, i.e., whether the relative initial order of 
all item pairs wjth duplicate keys is preserved. 

(i) sinlple classification and merge. 
(ii) classification and simple merge. 

(iii)	 ranking sort. 
(iv) bubble sort. 
(v) odd-even transposition. 

(vi) radix exchange sort. 
(b) Prescribe a simple modification of the key which will ensure the preser­

vation of initial order. 

6.14 For the sequence of keys given in Exercise 6. I, show the explicit execution 
of the following internal sorting processes: 

(a) bubble sort with replacement (six item positions). 
(b) pth-degree selection sort with replacement, with p = 3 and 111 = 2. 
(c)	 ranking by insertion. 

6.15 If the key is represented in a base b nunlber system, with each digit repre­
sented in turn in a ranked binary code, then ordering can be achieved by a base 
two column sort on successive columns of the underlying binary representation. 

(a) Show	 more generally that ordering can be achieved by a base 21.' column 
sort on (the base two value of) successive groups of k binary digits. 

(b)	 Program the process suggested in part (a), including the deternlination of 
an optimum value of k for a given nunlber n of available files. Assume an 
original key of q digits, each represented by r binary conlponents. Do not 
neglect the problenl of terminal conditions. 

(c)	 If b = 10, r = 4, and if the successive decinlal digits are coded alternately 
in a (ranked) bi-quinary and qui-binary systenl, the binary digits can be 
grouped in twos and threes so as to allow column sorting with a nlaxinlunl 
of five output files. Progranl a suitable process. 

6.16 Program a sequence of rotations of infixes of the vector x which will 
reverse the order of its components. (See the Ranking by insertion progranl 
(6.29) for the case when the key defines a complete reversal of order.) 

6.17 Assuming that an item transfer takes c times as long as a comparison of 
two keys, determine a criterion for the choice of 171 in an 171-way internal revision 
merge for the following cases 

(a) assuming	 2111 comparisons per item (n1 comparisons for eligibility and 111 

for minimization). 
(b) assuming that a ranking sort is used on the 111 itenl positions. 

6.18	 (a) Let z be a vector key of dinlension three whose successive components 
represent department nunlber, job nunlber, and nanle, respectively. 
Two lists are to be produced, one ordered by name within department 
within job and the other by departnlent within job within name. Deter­
lnine a mapping vector p such that y = zp is the vector key of least 
dimension which contains the two required orderings. 

(b) Let yi	 = Zpi be a set of vector keys defining a set of related orderings. 
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Determine a vector key of nlinimum dimension which contains all of 
the related orderings for the case pI = (3, 4, 1, 5), p2 = (3, 1, 5, 6), and 
p3	 = (1, 4, 3, 5). 

(c) Analyze the effect of related orderings on the expected execution time 
of a merge sort. (Consider the effects of duplicate keys on expected 
string lengths.) 

6.19 Let D be a O-origin matrix of the form of Table 6.14 which describes the 
cascade sort, i.e., row Dj describes the distribution of strings at the completion of 
stage j. Using the special matrices of Sec. 1.13, write concise expressions for the 
lnatrices F and B such that 

(a)	 Dj-I = B ~ Dj 

(b)	 Dj = F ~ Dj-I 

(c)	 Show that F and B are inverse. 
(d)	 Determine the dominant eigenvalue of B when v(B) = 3, and show its 

relation to the power of the cascade sort for four files. (cf. Sec. 6.1 and 
Carter (1962).) 

6.20 Determine the relative efficiencies of serial column sorting and serial merge 
sorting for the following conditions. Internal sorting, with a maximum of 100 
item positions, is to be used as an aid to each of the processes, and the time for the 
internal sorting is assumed fixed. There are 10,000 items with 4-digit decimal 
keys, and each key value is associated with at most four items. The initial arrange­
ment contains 3500 maximal (increasing) strings. 

6.21 Program an address table sort. 

6.22	 (a) The determination of the permutation vector required in the address 
table sort can be considered as a mapping from each item onto its rank 
in the set. Show that for distinct keys this mapping can be performed 
by counting for each item the number of items having a smaller key. 

(b)	 Progranl the method of part (a). (This is known as a counting sort.) 

6.23 (a)	 Program a two-phase internal merge sort. 
(b)	 Program a two-phase internal column sort. 

6.24 Program an extension of Program 6.33 (pth-degree selection executed on 
the right list node vector e2/]T) to 

(a)	 sorting with replacement. 
(b) the case of a singular homogeneous tree with dispersion vector veT). 
(C)	 cover both cases (a) and (b). 

6.25 I f the transfer from a serial file can proceed concurrently with other opera­
tions, it is frequently advantageous to associate two fields of internal storage 
(called buffers) with each file and to transfer the next group of items to one of the 
fields while executing necessary operations on the items of the other. Buffers may 
be used similarly for output files. 

(a)	 Program an nz-way single-phase merge using two buffers for each of the 2m 
serial files. 

(b)	 Program a base b single-phase column sort using two buffers for each of the 
2b serial files. 
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6.26 If the nunlber of input buffers serving 111 files is reduced to I1Z -t- 1 sonle 
advantage nlay still be gained by "predicting" the file whose (currently) associ­
ated buffer will next be exhausted, and initiating a transfer from it to the idle 
buffer. Repeat parts (a) and (b) of Exercise 6.25 for (111 + 1) and (b + 1) input 
buffers, respectively. (See Friend, 1956.) 

6.27 Repeat parts (a) and (b) of Exercise 6.25 with the nunlber of output buffers 
also reduced as in Exercise 6.26. 

6.28 Since a given initial arrangement may be easier to bring to descending than 
to ascending order on the keys, and since a final reversal of order nlay be easy to 
achieve (by backward read in the case of serial files or by address modification in 
the case of internal storage), it nlay be advantageous to choose ascending or 
descending order according to some estimate based on the initial arrangenlent. 
Write a program which first counts the number of ascending strings and then 
executes a ranking sort by insertion to produce either ascending or descending 
order according to which appears to be the easier to achieve. 

6.29 For the first few values of n, compute and compare the following alterna­
tive evaluations of the expected nunlber of stages in a bubble sort 

'It sn-ss ! 
(a)	 n + 1 - zen), where zen) = 2: -,- . 

.'i 1 n. 
(b)n+l-v1Tn/2. 
(c)	 c/n!, where c is the total count of all stages required for the n! possible 

initial arrangements of n distinct keys. 



chapter 7 

THE LOGICAL CALCULUS 

The present chapter develops two fundamental areas of symbolic logic: 
canonical forms and the basic procedures of decomposition. a-origin 
indexing is used throughout. 

7.1 ELEMENTARY IDENTITIES 

Certain elementary identities will first be summarized for reference. 
The first of them (equation 7.1) merely defines a matrix of operators 
employed in equation 7.4. 

o = (V ~) (7.1)
\=F 

/\ Ix = V Ix (7.2) 

=FIx = =Ix (7.3)De Morgan's laws 

(7.4) 

=FIx = 21 +Ix (7.5) 

=FIx = ((x ~. y) =F (x /<= y)) (7.6) 

-# /X = ((X ry) -# (X ~ y)) (7.7) 

Z = (a f c) /\ (q A r) = (a /\ q) A (c /\ r) (7.8) 

VIv II(x r, y) = (\I Ix) /\ (V Iy) (7.9) 

=FI-#I/(x 7y) = (=FIx) /\ (=Fly) (7.10) 

Identities 7.2, 7.3, and 7.5 may be established by induction on the 
dimension of x. Equation 7.4 summarizes the sixteen identities obtained 
by extending equations 7.2 and 7.3 to arrays. For example, if 0 i

h and 
0 k 

j are the operators -# and /\, respectively, then equation 7.4 becomes 

X ~ y = X ~ Y. 
246 
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The foregoing relation may be verified as follows: 

(X < Y)/ == =l=/(X i 
/\ Y j ) 

== == I(Xi 1\ Y j ) (by equation 7.3) 

== ==/(X i V YJ (by equation 7.2) 

== (X = Y)/. 

Equation 7.7 is a direct extension of equation 7.6, which is itself derived 
as follows. Since the operator =1= is associative and commutative, then 

=1= Ix == ((:/= ICyIX)) i= (=1= I(yIX)). 
Moreover, 

i=(ylx == 2 I(+Iylx) == 2 I(+I(x 1\ y) == =f/(x 1\ y), 

the first and second and the third and fourth limbs being related by 
equation 7.5. Consequently, 

=1= Ix == (( =1= I(x /\ y)) =1= (~I (x /\ y))
 

== ((X ~\ y) i= (x <= y)).
 

The following argument establishes equation 7.8. By definition,
 

Z/	 == (a i 1\ c j ) 1\ (qi 1\ rJ 
== (a i 1\ qi) 1\ (c j 1\ r j ) 

== (a 1\ q)i 1\ (c 1\ r)j. 

Consequently, Z == (a 1\ q) c; (c 1\ r). 

Equation 7.9 IS obtained by noting that if M == x Xy, then M j == 
x 1\ Yj€. Then 

(v IIM)j == V IIMj == (v Ix) 1\ Yj' 
and (vIIM) == (v/x)e 1\ y. 
Finally, v/vllM == (v/x) 1\ (vly). 

The derivation of equation 7.10 is similar. 

7.2 CANONICAL FORMS
 

Intrinsic vector
 

Any function defined on a finite domain can be specified by listing each 
possible value of the argument together with the corresponding function 
value. For a logical function of n variables, the n arguments may be 
considered as the components of a logical vector x of dimension n, and the 
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domain of the function is then represented by the (rows of the) matrix 
T(n) of dimension 2 n x n defined as follows: 

~Tk = k. 

For n = 3, for example, T has the form shown in Table 7.1. 

T i(f) P = T /\ X 

0 0 0 1 Xo 1\ Xl 1\ x2 

0 0 1 0 Xo 1\ Xl 1\ x 2 

0 1 0 1 Xo 1\ Xl 1\ x2 

0 1 1 0 Xo 1\ Xl 1\ x 2 

1 0 0 1 X o 1\ Xl 1\ x2 

1 0 1 0 X o 1\ Xl 1\ x 2 

1 1 0 0 X o 1\ Xl 1\ x2 

1 1 1 0 X o 1\ Xl 1\ x 2 

.((X) = i(() XP 

= (xo 1\ Xl 1\ x2) V (xo 1\ Xl 1\ x2) V (xo 1\ Xl 1\ x2) 

Table 7.1 The disjunctive canonical form 

A logical function I can therefore be specified by its intrinsic vector i(/) 
defined by: 

Table 7.1 shows i(f) for the function 

I(x)	 = (xo 1\ Xl 1\ x2) V (xo 1\ Xl 1\ x2) V (xo 1\ Xl 1\ x2) 

= (xo V Xl) 1\ x2 • 

Applying the usual notation for operations on variables to operations 
on functions as well (e.g., j denotes the function inverse to f, and f 1\ g 
denotes the conjunction of the functions I and g) permits the expression 
of certain easily derived identities concerning intrinsic vectors: 

it!) = j(f) 

i(1 V g) = i(/) V i(g). 

More generally, the intrinsic vector of any function of functions is the 
same function of their intrinsic vectors. 

The two trivial functions identically one and identically zero will be 
called, respectively, the unit function and zero function, and will be denoted 
by 1 and O. Thus i(l) = €, and i(O) = e. 
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Characteristic vectors 

A vector which represents a function j' is called a characteristic rector of 
f The intrinsic vector i(f) is but one of several useful characteristic 
vectors. 

The expression Y ~ x denotes the function obtained by first negating 
each Xi for which Yi = 0 and then taking the conjunction (that is, and 
function) over the resulting vector. Such a function is called a minterm in 
x, and the components of the minterm rector 

P = T x 

comprise all possible minterms in x with no repetitions. 
The component Pi is a function of x which assumes the value one if and 

only if x = Ti. Consequently, for any functionJ, 

f(x) = V /(i(f)jp) 

= V /(i(f) /\ p) 

= i(f) p. 

This relation is illustrated by Table 7. I. 
The expression 

f(x) = i(f) i P = iCf) >(T ~ x) 

is called the disjunctive canonical form of the function f since it displays.r as 
a (unique) disjunctive (that is, or) function of minterms, each of which 
involves all variables and conjunction and negation only. The disjunctive 
is one of several canonical forms of interest, each of which assumes the 
form 

f(x) = Y(f)g~ sex), 

where the characteristic vector y(f) is a function off only, and the specific 
vector sex) is a function of the argument x only. Each of the four forms of 
interest is characterized by the particular over-all operator 0 1 occurring 
in it and is therefore called the disjunctice, conjunctice, exclusice disjunctice, 
or equicalence canonical form * according to whether 0 1 is the operator 
v,A,i=,or=. 

The characteristic vector and the specific vector appropriate to each forn1 
will be characterized by its over-all operator 01' Thus 

* The functions x V !J, x A y, (x i-: Y), and (x = y) are, except for the trivial functions, 
the only associative commutative functions of two variables. 
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j(x) = 
_ _ _ 

(xo V Xl) !\ X2 = 

(Xo II Xl /\ i;) V (0) V (XO /\ Xl !'I X2) V (0) V (XO !\ Xl ;\ X2) V (0) V (0) V (0) (Disjunctive) 

(1) !'I (XO V Xl V X2) 1\ (1) ;\ (XO V Xl V X2) /\ (1) /\ (XO V Xl V x2) A (xo V Xl V x 2) A (Xo V Xl V x2) (Conjunctive) 

[(1) i (X 2) # (0) # (0) # (0) F (0) #- (xo A Xl) #- (xo A Xl /\ x2)] (Exclusive disjunctive) 

[(1) = (x2) = (1) = (1) = (1) = (1) = (Xo V Xl) = (xo V Xl V x2)] (Equivalence) 

Table 7.2 Intrinsic, characteristic, and specific vectors 
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The forms are defined formally by the following expressions. * 
Y(f, V) X(T ~- x) (Disjunctive) (7.11a) 

y(f, /\) 0(T ~ x) (Conjunctive) (7.11b) 

f(x) = y(f, efe) :(c (f 0x) (Exclusive disjunctive) (7.11c) 

Y(f, =) v (T Xx) (Equivalence) (7.11d) 

Table 7.2 shows the intrinsic vector of the function f of Table 7.1 
together with corresponding pairs of characteristic and specific vectors. 
These may be substituted in equations 7.11 (a-d) to verify that they do 
represent the function f 

Since x = Tk = Tk for some k, equation 7.1la may be written as 

ik(f) =f(Tk
) = y(f, V) X(T). Tk ). 

Consequently, 

y(f, V) X(T ~ T) = y(f, V) X S(V) (7.12a) 

Y(f, A) 0 (T = T) = y(j~ A) '0 S( /\ ) (7.12b)
i(f) = 

y(f, #) ~~ (T~, T) = Y(f, #) ~ S( # ) (7.12c)
 

y(f, =) ~ (T /~ T) = Y(f, =) v S( = ) (7.12d)
 

Each of the matrices S( 0) appearing in the right limbs of equations
 
7.l2(a-d) is a fixed function of T and is called the o-specific (e.g., dis­

junctive specific) matrix. Since i(f) is a function of y(f, 0) and S( 0), the
 
relation between the intrinsic vector and each characteristic vector is
 
determined by the corresponding specific matrix. 

Since S( V) = (f ~ T) = (T ~ T), it is clear that S( V) = I. Conse­
quently, Y((, V) X S( V) = y(f, V), and therefore, 

y(f, v) = iC[)· (7.13) 

Similarly, S( /\) = I, and y(f, A) 0S( /\) = y(f, A), and again 

y(f, A) = i(f). (7.14) 

An explicit expression for S(#) may be obtained by induction on the 
dimension of the corresponding argument, and, to facilitate this, the 
notation T(n) and S(#, n) will be used for the matrices appropriate to an 
argument x of dimension n. T(n + 1) may be written in partitioned form 
as 

T(n + 1) = [E<,: __!~!!}]' 
E: T(n) 

* The expression T ~ x used here for the specific vector in the disjunctive form is 
equivalent to the expression T !;;. x used earlier. Its use increases the uniformity of the 
expressions for the canonical forms. 
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where € and E are both column vectors. Hence 

S(i=, n + 1) = [:-I--~~~~] 0 [-rt)- -T~~)] 
[E 1\ S(i=, n) . E 1\ S(i=, n)]= -:.------------------------[--------------------------, 

f 1\ S(#, n)! f 1\ S(#, n) 

since E \~ € = EvE = f, and EvE = f. Finally, 

[S(i=, n) S(i=, n)]S(#, n + 1) = -------~----------------------. (7.15) 

Since S(i=, 1) = 

1 1 

0 1 
S(=1=,2) = 

0 0 

0 0 

and so forth. * 

f 

[~ :] it is clear that 

1 1 

0 1 

1 1 

0 1 

, S(=1=,3) = 

S(#, n) 

1 1 1 1 1 1 1 1 

0 1 0 1 0 1 0 1 

0 0 1 1 0 0 1 1 

0 0 0 1 0 0 0 1 

0 0 0 0 1 1 1 1 

0 0 0 0 0 1 0 1 

0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 1 

The following useful properties of S(#) are easily verified for the fore­
going examples and may be established generally by formal induction. 
The matrix is self-inverse with respect to the operations (~), that is, 

S( =1=) ~ S( =1=) = I. (7.16) 

Moreover, since every row of the transpose S(#) save the zeroth has an 
even number of ones, 

(2£) I+IS(#) = EO. 

Hence by equation 7.5, 
#IS(#) = EO. (7.17) 

Since (by equation 7.4) S(=) = S(#) and since S( #) is of even dimension, 

the same result holds for S(=). 

* This result was first obtained by Muller (1954), who employed the matrix C of 

binomial coefficients and showed that S( i~) = (2f)loC. Also see Calingaert (1960). 
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Equation 7.12c gives i(f) as a function of y(f, i=) and S("*). This relation 
is more commonly written in transposed form and with i(f) replaced by the 
equivalent y(f, V) as follows: 

y(f, V) = S(=F) /\ y(f, =F). (7.18) 

Since S( =F) is self-inverse (equation 7.16), premultiplication of equation 

7.18 by S( =F) ~ yields an identical expression for y(f, =F) as a function of 
y(f, V), namely 

y(f, =F) = S("*) :il Y(f, V). (7.19) 

The characteristic vectors of the identity function 1 and of the zero 
function 0 may now be derived. Clearly i(l) = E and i(O) =€. Hence by 
equations 7.13 and 7.14, 

y(l, V) = y(l, !\) = E, 

and 
yeO, V) = yeO, !\) = e. 

Moreover, 

y(I, =F) = S(#) ~ E 

= "*/S("*). 
Hence, by equation 7.17, 

y(l, #) = EO. (7.20) 

Similarly, yeO, "*) = e. 
The relations between the characteristic vectors of a function f and of its 

inverse f may now be obtained. Since 

i(l) = £(/), (7.21) 

then, by equations 7. 13 and 7.14, 

y(f, V) = ref, V), 

and y(j~ !\) = r(f, !\). 

Moreover, y(f, #) = S( =F) ~: i(j) = S( =F) ~~ l(f), 

by equations 7.13,7.19, and 7.21. Hence 

(7.22) 

by equations 7.7, 7.17, 7.19, and 7.13. Characteristic vectors of a function 
and of its inverse are displayed in Table 7.2. 

The relation between y(f, =F) and y(f, =) may now be obtained by 
applying equation 7.22 to equation 7.12c to yield 

t(f) = iC/) = (y(f, =F) # EO) ~ S(=F). 



i([) Y(f, #-) Y(f, =) i(/) y(f, #-) y(f, =) 

i([) i([) S( #-) ~ Y(f, #-) S( =) vY(f, =) 1(/) S( =) v r(f, #-) S( #-) ~ r(f, =) 

Y(f, #-) S( #-) ~ i(/) Y(f, #-) (Y(f, =) = eO) S( #-) ~ .(/) (y(f, #-) #- eO) y(f, =) 

Y(f, =) S( =) vi([) (Y(f, #-) = eO) Y(f, =) S( =) v 1(/) r(f, #-) (y(f, =) #- eO) 

i(/) 1(/) S( =) v Y(f, #-) S( #-) ~ y(f, =) i(/) S( #-) ~ y(f, #-) S( =) v y(f, =) 

y(f, #-) S( #-) ~ 1(/) (Y(f, #-) #- eO) y(f, =) S( #-) ~ i(/) y(f, #-) (y(f, =) = eO) 

y(f, =) S( =) v 1(1) y( f, #-) (Y(f, =) #- eO) S( =) v i(/) (y(f, =) #- eO) y(f, =) 

N 
(.It 
~ 

~ 
~ 

~ 
~. 

~ -... 
~ 
~ 

~ 
~ 

~ 

(1) Y(f, V) = Y(f, /\) = i(/) 

(2) S( #-, n) = (T(n) 0T(n» i([) I : I e 

= 

-(3) S(#-, 1) = 

('~(F' n ­ 1) 

§~-~~--~-=--~-;-

c ~)1 

f ) 
-§~-~~-~-=--~-; 

Y(f, V) 

Y(f, /\) 

Y(f, #-) 

Y(f, =) 

I E 

E 

E 

EO 

I e 

I :0 
I e 

(4) S( =) = S( #-) Zero and identity functions 

Table 7.3 Relations among characteristic vectors 
CD) 
-...J 
N 
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Application of De Morgan's law and of the fact that S(=) = S(=F) yields 

i(f) = (Y(f, =F) =F eO) 7 S(=).
 

Comparison with equation 7.12d shows that
 

y(f, =) = (y(f, =F) =F eO) 

= (y(f, =F) = eO). 

The relations among the various characteristic vectors are summarized 
in Table 7.3. 

7.3 DECOMPOSITION 

A logical function f(x) is said to be decomposable on u if it can be written 
in the form 

f(x) = g(h(ulx), ulx), 

where g and h are logical functions. Since.f, g, and h are functions of 
v(u), (1 + +Iu), and +Iu variables, respectively, then if +Iu > 1, both 
g and h are functions of fewer variables than f Decomposition on u such 
that +lu > 1 thus permits f to be expressed in terms of simpler functions 
g and h and provides an important basis for simplification techniques. 

Every function is decomposable on u = e. Moreover, if +lu = 1, then 
u = ei for some i, and 

f(x) = [Xi 1\ f(x 1\ £i)] V [Xi 1\ f(x vel)]. 
i e iSince bothf(x 1\ e) andf(x V ) are expressible as functions ofeilx, then 

the foregoing expression is of the required form with h(ulx) = Xi. Con­
sequently, all functions are trivially decomposable for +Iii = ° or 
+Iii = 1. 

Disjunctive canonical form 

Ashenhurst (1957) determines nontrivial deco~positions of f(x) by 

arraying the intrinsic vector i(f) in a 2 +/u x 2 +/u matrix F defined as 
follows: F/ = ik(f), 

where k = (2e) ~ k 

i = (2e) (ulk) 

and j = (2e) ~ (ulk). 

If, for example, u = (1, 0, 1, 1, 0), then the index k of each component ik(f) 
appearing in F is given by the matrix* C of Table 7.4. The table also shows 

* Ashenhurst (1957) calls the matrix C a decomposition chart and represents F by 
circling each element of C which corresponds to a nonzero component of ;([). 



N 
Ut 
~ 

;(f> h b 'f r I/\ 
c Xr dVr 

/\ m Xr nVr 
/\ 

1 1 0 1 0 1 0 
0 0 0 1 0 1 0 
0 1 0 0 0 0 0 
0 0 0 0 0 0 0 
1 1 0 1 0 1 0 
0 0 0 1 0 1 0 
0 1 1 0 0 0 1 
1 0 1 0 0 0 1 
0 0 0 1 0 1 0 
1 1 0 1 0 1 0 
0 0 0 0 0 0 0 
0 1 0 0 0 0 0 
0 0 0 1 0 1 0 
1 1 0 1 0 1 0 
1 0 1 0 0 0 1 
0 1 1 0 0 0 1 
1 1 0 0 1 1 1 
1 0 0 0 1 1 1 
0 1 0 0 0 0 0 
0 0 0 0 0 0 0 
0 1 1 0 0 0 1 
1 0 1 0 0 0 1 
1 1 0 1 0 1 0 
0 0 0 1 0 1 0 
1 0 0 0 1 1 I 
1 1 0 0 1 1 1 
0 0 0 0 0 0 0 
0 1 0 0 0 0 0 
1 0 1 0 0 0 1 
0 1 1 0 0 0 1 
0 0 0 1 0 1 0 
1 1 0 1 0 1 0 

~ 
~u=(l 0 1 1 0)T 

~ '0 2 4 6 16 18 20o 0 0 0 0 0 
~. 

c= 0 3 22)5 7 17 19 21 23
 
2
 
1 0 0 0 0 1 

~10 12 14 24 26 28 300 0 0 1 0 -..
11 13 15 25 27 29 313 0 0 0 1 1 

~ 4 0 0 1 0 0 ~ 
a5 0 0 1 0 1 ~ 0 1 0 1 0 06 0 0 1 1 0 ~ 

0 0 1 1 0 17 0 0 1 1 1 S2"8 0 1 0 0 0 F= (~ 0 0 1 1 0 1 D (D C") 

0 1 0 1 0 0 
10 
9 0 1 0 0 1 

0 1 0 1 0 
11 0 1 0 1 1 
12 b = (0 0 0 1 0 0 1 0) 

13 
0 1 1 0 0 
0 1 1 0 1 

14 0 1 1 1 0 
15 c=(l 0 1 0 0 0 0 1) 

16 
0 1 1 1 1 
1 0 0 0 0 

17 1 0 0 0 1 
18 d = (0 0 0 0 1 0 0 0) 
19 

1 0 0 1 0 
1 0 0 1 1 

20 1 0 1 0 0 
21 m =(0 0 0 1 1 0 1 0) 
22 

1 0 1 0 1 
1 0 1 1 0 

23 1 0 1 1 1 
24 n=(l 0 1 0 1 0 0 1) 
25 

1 1 0 0 0 
1 1 0 0 1 

26 1 1 0 1 0 
27 1 1 0 1 1 
28 1 1 1 0 0 
29 1 1 1 0 1 
30 1 1 1 1 0 
31 1 1 1 1 1 

Table 7.4 Decomposition of the function I(x) on u 

CD') 
--I 
~ 
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corresponding values of i(/) and F. 

- 1\
Let P = T c:t-' x, 

q = T .~ (ii/x), 

and r = T ~ (u/x) 

be the minterm vectors of x, ii/x, and u/x, respectively. * Then the matrix 

P = q ~ r 

contains the components ofp arrayed in the same order as the components 
of i(f) in the matrix F. Consequently, t 

f(x) = i(f) XP = v/v//(F;\P). 

Decomposability depends on the structure of the matrix F. If each 
column of F is either zero or equal to the vector a, there exists a vector c 
such that 

F = a ~ c. (7.23) 

Hence, f(x) = v/v//M, 

where M = (a ~ c) ;\ (q Ar). (7.24) 

But by equation 7.8, M = (a ;\ q) ? (c ;\ r), (7.25) 

and hence by equation 7.9, 

f(x) = V/V//M = (v/(a;\ q);\ (\//(c;\ r» (7.26) 

= (a Xq) ;\ (c X r). 

Since the first and last terms on the right of equation 7.26 are, respec­
tively, functions of ii/x and of u/x only, the function f(x) is decomposable. 
The required functions are simply 

h = h(ii/x) = a Xq = a /~ [T ) (u/x)] 

f(x) = g(h, u/x) = h ;\ [c XrJ (7.27) 

r = T ~ (u/x) 

Since equation 7.27 does not represent the most general possible function 

of hand u/x, it appears that the characteristic matrix F = a A c does not 

* Although denoted by the same symbol, the matrices T are of differing dimensions 
as required by compatibility. 

'j- Since i(/) is equal to yet, V ), it may be substituted for it in the disjunctive canonical 
form. 
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represent the most general function decomposable on u. Ashenhurst 
(1957) has shown that the most general type of function decomposable on 
u is represented by a characteristic matrix of the form * 

F = (a Ab) v (a 7 c) V (E ? d) V (e ~, e), (7.28) 

where b, c, d, and e are mutually disjoint and collectively exhaustive, that 
IS, 

b + c + d + e = E. 

The fourth term of equation 7.28 is identically zero and is included only 
for formal completeness; hence 

F = (ii I~ b) V (a c) V (E 1\ d). (7.23') 

Equation 7.24 now becomes 

M = «li Ab) V (a Ac) V (E Ad) 1\ (q A r), (7.24' ) 

and since conjunction is distributive over disjunction, equation 7.8 may 
again be applied to yield 

M = «li 1\ q) l, (b 1\ r» V «a 1\ q) .~ (c 1\ r» V «E 1\ q) A(d 1\ r». 

(7.25') 

Moreover, since V I V II(X \/ Y) = (V I V IIX) V (V I V IIY), equation 7.9 
may again be applied to yield 

f(x) = V I V /IM 

= «aXq) 1\ (b :~ r» V «a /. q) /\ (c Xr» V (E Xq) 1\ (d Xr». (7.26' ) 

Since q is a specific vector of the disjunctive canonical form (i.e., a 
minterm vector), it is some column of the specific matrix S( V). Since 
S(v) = I, q therefore contains exactly one nonzero component, and 

consequently (li Xq) = (a Xq), and E Xq = 1. Equation 7.26 can thus 
be rewritten in decomposed form as 

h = h(iilx) = a q = a /\ (1' .~ (iilx» 

f(X) = g(h, ulx) = (ii 1\ (b Xr» V (h /\ (c X r» V (d Xr) (7.27') 

r = T (ulx) 

It is interesting to note that no use has been made of the fact that b, c, 
and d are disjoint. Relaxation of this restriction does not, however, 
increase the generality of the matrix F, since a V E = E, a V € = a, and 
a V a= E. It does suggest, however, that the matrix F nlay be expressed 
more compactly as 

F = (a Am) V (a n n), 

* In Ashenhurst's terminology, the matrix F must be of the following form: each 
column is either all zeros, all ones, the vector u, or the vector ii. 
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where m = b v d and n = c V d. The second line of equation 7.27' 
then becomes 

j'(x) = (h /\ (m /, r)) \j (h /\ (n /\ r)), (7.28) 

a reflection of the obvious fact that the third term (d r) of equation 7.27' 
can be incorporated in the preceding terms. 

Table 7.4 shows a complete example of the decomposition process for 
u = (1,0, I, 1,0). The characteristic matrix F is obtained by applying 
the matrix C to i(j'). Clearly 

F = (li b) V (a c) V (e !\ c) 

= (a m) V (a ~) n). 
Consequently, 

f(x) = (Fz /\ (b / r)) V (h /\ (c !\ r)) V (d r), 

where h = a q, q = T ~\ eii/x), and r = f '; (ujx). 

Since q = (Xl /\ X4, Xl /\ x4 ' Xl /\ X4, Xl /\ x4), 

and a = (I, 0, 0, I), 

then h = (Xl /\ X4 ) V (Xl /\ x4) = (Xl = x4 )· 

Similarly, b r = (xo /\ x2 /\ x~J V (Xo /\ x2 /\ x:~) 

= x2 /\ (xo =1= x3 ), 

'y o 3c r = (x /\ x
3 

) V (xo /\ x2 /\ x ), 

and d / r = Xo /\ x2 /\ xa. 

Alternatively, the use of the vectors m and n yields the solution 

j{x) = {h /\ [(in /\ x2 /\ x3 ) V (xo /\ x3 )]} V {h /\ [(xo /\ x3 ) 

V (xo /\ (x2 = x3))])· 

The entire decomposition process is described by Program 7.5. Steps 
1-7 determine the characteristic matrix F appropriate to the decomposition 
u. The loop 2-7 is repeated for each value of k from zero to 2J1 

(u) - I. 
Step 2 determines k as the vector (of dimension v(u)) whose base two 
value is k. Steps 3 and 4 then specify the indices i and j appropriate to k, 
and step 5 specifies element F/. 

Step II determines d as the vector which specifies all full column vectors 
of F, that is, d j = I if and only if F j = e. Step 12 determines e as the 
corresponding vector specifying the zero columns. 

If d and e together exhaust the columns (that is, d V e = e), then band 
c (and a arbitrarily) must be set to zero. Since this is done by steps 8-10, 
the exit branch on equality at step 13 terminates the process correctly. If 

(d V e) -#- €, then any column of the matrix (d V e) / F can be used to 
specify a; step 14 uses the first column. Step 15 determines b as the vector 
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1~ k -<- 0 

2 ,--------+ (2e(v(u)))_!_k -<- k 

3 i -<- (2e) ~(ujk) 

4 

5 

j -<- (2e)~(ujk) 

Fji -<- il/.f) 

6 

7 < 
' ­

k-<-k+l 

k : 2J1 (u) 

8 a ~ e( +ju) 

9 b -<- e( +ju) 

10 e +- e( +ju) 

11 d+-e~F 

12 e+-e~F 

13 e : (d V e) ~ 

14 a -(- ((d V e)jF)o 

15 b~a~F 

16 

17 L 
e 

e 

~a ~ F 

: (b V e V d V e) ~ 

[ 
U 

F 

i 

j 
k 

k 

a 

b 

e 

d 

e 

O-origin indexing 

Logical function of v(u) variables.
 

Logical vector specifying the de­
composition
 
.f(x) = g(h(iijx), ujx).
 

Characteristic matrix for the de­
composition u:
 

li (F) = 2 +/ii; v(F) = 2--1 lu.
 

Row index for F.
 

Column index for F.
 

Scan index for i([).
 

Base 2 representation of k.
 

Nontrivial column of F.
 

(bjF)j = a.
 
(ejF)j = a.
 

(djF)j = e.
 

(ejF)j = E.
 

Legend 

Program 7.5 Decolnposition of.f on u 

specifying the columns of F which are equal to 0, and step 16 determines c 
correspondingly for the vector a. 

The functionfis decomposable on u if and only if b, c, d, and e together 
exhaust all columns of F. The left-pointing exit on step 17 therefore indi­
cates nondecomposability on u. 

The algorithm can be extended to test all possible values of u successively 
and so determine all possible decompositions. Use can be made of the 
obvious fact that the matrix F appropriate to decomposition on u is the 
transpose of the matrix F appropriate to u. 

Other canonical forms 

Ashenhurst (1957) remarks that decomposability is an intrinsic property 
of a logical function j' and is independent of the form of its representation. 
It can also be shown that the particular algorithm of Program 7.5 is intrinsic 
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in that it applies (in a slightly generalized form) to the characteristic 
vectors of all four canonical forms. 

Since i(f) = YCf, A) = y(j~ V), it is clear that the decomposition 
algorithm applies directly to the disjunctive and conjunctive characteristic 
vectors. The case for the remaining forms will be developed for the 
exclusive disjunctive form only. 

Let F be defined as in Program 7.5 but with i(}') replaced py y(f, #). 
Moreover, let 

p = TO x 

q = T 0(li/x) 

r = T 0(u/x), 

and P = q A r. 

Then, clearlY.r(x) = */=I=//(F A P). 
As in the case of the intrinsic vector, the structure of F must be expressed 

in terms of the characteristic vectors of a given function h, of its inverse 17, 
and of the identity and zero functions. In the exclusive disjunctive form, 
y(I, *) = eO, yeO, *) = E, and if y(h, =1=) = a, then y(h, *) = (a =1= EO). 
The term in E nlay again be disregarded and the form required of F for 
decomposability may (following equation 7.23') be written as 

F = [(a * EO) AbJ V (a c) V (eO ~ d), (7.23") 

where b, c, and d are mutually disjoint. 
The matrix M such thatf(x) = */*//M may now (as in the analogous 

case of equation 7.25') be obtained by applying equation 7.8: 

M = (((a * eO) A q) A(b A r)) V (a A q) !I (c A r)) 

V (eO A q) A(d A r)), (7.25") 
Equation 7.25" will also be written as 

M = U V Vv W, 

where U, V, and W denote the successive matrices of the right limb. 
Since b, c, and d are disjoint, so also are the matrices U, V, and W. For 

any pair of disjoint matrices X and Y, it is easily shown that 

#/*//(X V Y) = «#/#//X) =1= (#/#//Y)). 
Hence 

f(x) = #/*//M = {[(*/=I=//U) * (*/*//V)] # (=I=/=I=/W)}. 
The application of equation 7.10 to each of the nlatrices U, V, and W no\v 
yields 

f(x) = {[«(a * EO) ~ q) A (b ~ r)) * «a 7~ q) A (c /\ r))J

* «eO ~ q) A (d'~ r))}. (7.26") 
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Since a, (a * eO), and eO are the characteristic vectors of the functions 
h, h, and 1, respectively, equation 7.26" may be written in the decomposed 
form 

h(lijx) = a .~ (T 0(li/x»
 

f(x) = (((h 1\ (b ~ r» * (h 1\ (c ; r») * (d ~ r»
 (7.27") 

r = T
-/\ 

v (ujx) 

For the example of Table 7.4, 

y(f, eTc) = (l, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0). 

Table 7.6 show its decomposition in the exclusive disjunctive form. 

a (a i~ eO) 

1 0 0 0 0 1 
1 0 1 1 1 1 

F 1 0 1 1 1 1= (i I) (i) (I)
0 0 0 0 0 0 

b= (0 0 0 1 1 1 0 1) 

c = (I 1 0 0 0 0 1 0) 

d= (0 0 0 0 0 0 0 0) 

Table 7.6 Decomposition in exclusive disjunctive form 

The only change required in Program 7.5 is in the specification of the 
vectors d and b on steps 11 and 15. These may be replaced by the following 
steps: 

11 d +- £0 /\ ]? 

15 b+-(a * eO) ~ F. 

The program may be made completely general (i.e., for y(f, 0» by simply 
replacing EO with y( 1, 0) in the foregoing steps, and replacing E with 
yeO, 0) in steps 8, 9, 10, and 12. 
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EXERCISES 

7.1 Use De Morgan's laws (equations 7.2 and 7.3) to establish 

(a) the identity U 0V = [j XV. 

(b) the identity U ~ V = U vV. 
(c) equation 7.4. 

7.2 Show that the expressions x = (y #- z) and y = (x #- z) are equivalent. 

7.3 For the function !(Xo, Xl' X 2) = (Xo /\ (Xl #- X 2» V (xo /\ x2), derive 
(a) the intrinsic vector iC,(). 
(b) the four characteristic vectors off 
(c) the intrinsic vector of f 
(d) the four characteristic vectors of f 

7.4 Use the matrix ® of equation 7.1 to summarize the canonical fonn expres­

sions (equations 7.11 (a-d» in a single equation. 

7.5 Show that y(1, /\) = Y(f, /\ ). 
7.6 Use De Morgan's laws and the result of Exercise 7.5 to derive equation 
7.11b from 7.11a. 

7.7 Show that if y /\ ·z = 0, then 

x ~ (y V z) = «X ~ y) #- (X ~ z». 

7.8 Let ,( and g be two disjoint functions (i.e., ,(x) /\ g(x) = °for all x), and 
let h = ,( V g. Derive expressions for the four characteristic vectors of h in terms 
of the four characteristic vectors of! and g. 
7.9 Each of the sixteen logical functions of two variables may be characterized 
by its intrinsic vector iC,() and be denoted by 

,(x, y) = flex, i(f'), y). 

For example, (x #- y) = flex, (0, 1, 1,0), y). (The function flex, iC,(), y) is some­
times called the kth Boolean,(unction and denoted by fl k (x, Y), where k = ~i(l).) 

This notation can be extended to vectors X and y so as to permit different func­
tions to be specified for each component. Thus 

z +- flex, F, y) <=> Zi = fl(x i , F i , Yi), 

where v(F) = vex) and p(F) = 4. Show that 
(a) if X = (0, 0, 0, 0, 0, 0, 1, 1), Y = (0, 1, 0, 1, 0, 1, 0, 1), 

and II F = (0,0,0,0,6,6,6,6), then (-l(x, F, y) 

= (0,0,0,0,0,1,1,0). 
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(b) ()(x, F, y) = ()(x, F, y) 
(c) (-J(x, F V G, y) = f3(x, F, y) V (J(x, G, y) 
(d) (J(x, F 1\ G, y) = (J(x, F, y) 1\ (3(x, G, y). 

7.10 The functions (3(x, F, y) defined in Exercise 7.9 can alternatively be ex­
pressed as (J(x,f, y), where f =Jl F. Develop relations on f corresponding to 
those of Exercises 7.9 (b-d). 



SUMMARY OF NOTATION
 

S.1	 CONVENTIONS 

Basic conventions 

(a)	 I-origin indexing assumed in this summary. 
(b)	 Controlling variables appear to the left, e.g., ujx, b y, k t x, and 

u r x. 
(c)	 Dirnension n may be elided (if determined by compatibility) fronl 

e(n), ek(n), ak(n), wk(n), and lj(n). 
(d)	 The parameter j may be elided from operators Ij, OJ' .L, and i j , and 

from the vector li if j is the index origin in use. 
(e)	 The parameter k may be elided from k t x if k = 1. 

Branching conventions 

(a)	 jf 

x:y~I I 
The statement to which the arrow leads is executed next if (x/!!y) 
= I; otherwise the listed successor is executed next. An unlabeled 
arrow is always followed. 

(b)	 x : y, r ~ S 

The statement numbered Si is executed next if (xri Y) = 1. The null 
synlbol 0 occurring as a component of r denotes the relation which 
complements the disjunction of the remaining relations in r. 

(c)	 ~ Program a, b 

Program a branches to its statement b. The symbol a may be elided 
if the statement occurs in Program a itself. 

Operand conventions used in summary 

Scalar Vector Matrix Tree 
Logical u, v, w u,v,w [T, V, W U,V,W 
Integral h, i,j, k h, i,j, k H,I,J,K H,I,J, K 
Numerical x,y, ::: x,y, z X, Y,Z X,Y,Z 
Arbitrary a,b,c a,b, c A,B,C A,B,C 

265 
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S.2 STRUCTURAL PARAMETERS, NULL 

Dimension 

Row dimension 

Column dimension 

Height 

Moment 

Dispersion vector 

Moment vector 

Degree of node i 

Degree 

Leaf count 

Row dimension 
of file 

Column dimension 
of file 

N ull character 

v(a) 

v(A) 

II(A) 

v(A) 

II(A) 

v(A) 

~(A) 

6(i, A) 

<5(A) 

A(A) 

v(<1» 

11(<1> ) 

Number of components in vector a §1.5 

Number of components in each row 
vector Ai 

Number of components in each 
column vector A j 

Length of longest path in A §1.23 

Number of nodes in A 

v1(A) = number of roots of A; 

viA) = maximum degree of nodes 
on levelj - I; v(v(A)) = v(A) 

~/A) = number of nodes on levelj 
of A; v(~(A)) = v(A) 

Degree of node i of tree A 

b(A) = max <5(i, A) 
i 

A(A) is the number of leaves in A 

N umber of files in each row of a §1.22 
file array 

Number of files in each column of a 
file array 

Null character of a set (e.g., space in §I.3 
the alphabet) or null reduction 
operator 



SumnlalY of notation 267 

S.3 RELATIONS 

Equality 

Membership 

Inclusion 

Strict inclusion 

Similarity 

Complementary 
relations 

Combined (ored) 
relations 

a=b 

aEb 

b;2a 
as;b 

b:J a 
acb 

b={1 

a and b are identical §1.15 

a = b i for some i 

aj E b for aU j 

b ;2 a and a ~ b 

b ;2 a and a ;2 b 

The relation which holds if and only 
if ff/l does not. Examples of comple­
mentary pairs~ E, ¢; ~, =P; >', >. 
A list of relations between two vari­
ables is construed as the or of the 
relations. Thus xc:::> y is equivalent 
to x :$ y. When equality occurs as 
one of the ored relations, it is indi­
cated by a single inferior line, e.g., 
~ and s;. 

S.4 ELEMENTARY OPERATIONS 

Negation 

And 

Or 

Relational state­
ment 

Sum 

Difference 

Product 

Quotient 

Absolute value 

Floor 

Ceiling 

j-Residue mod h 

w *- a 
w *- u 1\ v 

w *- u V L' 

w *- (a .jf b) 

z*-x+y 

z*-x-y 

z*-xxy 
z *- xy 
c*-aXlI 
c *-au 

z *- x y 

z *-/ x I 
k *- LxJ 
k *- rxl 
k *- h Ii i 

w=l<=>u=O §1.4 

w = 1<=> U = I and v = 1 

w = I <:=:> u = 1 or v = 1 

w = I <=> the relation a ,jf b holds 

z is the algebraic sum of x and y 

z is the algebraic difference of.r and y 

z is the algebraic product of numbers 
x and y, and c is the arbitrary character 
a or zero according to whether the 
logical variable u is one or zero. 

z is the quotient of x and y 

z = x X [(x> 0) - (x <:: 0)] 

kS=:x<:::k+1 

k x k - I 

i = hq + k ~ .i ~ k <.i + h; and q is 
integral. 
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S.5 VECTOR OPERATIONS 

Component-by­
component exten­
sion of basic 
operation 

Scalar multiple 

Reduction 

Ranking 
j-origin b-index 
ofa 

j-origin b-index 
ofa 

Left rotation 

Right rotation 

Base y value of x 

COlnpression 

Expansion 

Mask 

Mesh 

Catenation 

C ~ a 0 b 

z +- x X y 
Z +-xy 

c+-aXu 

C +-au 

+- Ola 

c +- k i a 

C ~-k ~ a 

z+-Y~x 

c +- ulb 

c +- u\b 

c +- la, u, b/ 
c +- \a, u, b\ 

c +-a b 

C i = a i 0 bi. Examples: x x y, ~1.5 

(a b), h Ii i, u 1\ v, fxl. 

c = (0 0 0«a l 0 a 2) 0 a3 ) 0 0 .) 0 (II')' §1.8 
where 0 is a binary operator or rela­
tion with a suitable don1ain. Examples: 
+Ix, x Ix, ~i: Iu. Reduction of the 
null vector e(O) is defined as the identity 
element of the operator o. Examples: 
+le(O) = 0; x /e(O) = {, V le(O) = 0, 

/\ le(O) = 1. 
§1.16 

c = if a ¢ b; otherwise c is thej­0 

origin index of the first occurrence of 
a in b. 

c i = aj, wherej = v(a) 11 (i + k) §1.6 

c i = aj, wherej = v(a) /1 (i - k) 

z = +I(p x x),wherePl' = {,and §1.14 
Pi-l = Pi X Yi 

c is obtained from a by suppressing §1.9 

each b i for which u i = 0 

tilc = 0, ulc = b 

tilc = ~/a,ulc = ulb 

tilc=a,u/c=b 

c = (aI' a 2 , ••• al'(a)' bI , ... bl'(b» = 
\a, WI'(b), b\ 
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S.5 VECTOR OPERATIONS (continued) 

Characteristic of 
xony 

jth unit vector 

Full vector 

Zero vector 

Prefix of weightj 

Suffix of weightj 

Maximum prefix 

Maximum suffix 

Forward set 
selector 

Backward set 
selector 

Maxima selector 

Minima selector 

Interval or 

j-origin 
identity permu­
tation vector 

j-origin permu­
tation vector 

j-origin mapping 

j-origin ordering 

XW +- Ey 

W +- Ej(h)
 

W +- E(h)
 

W -- e(h)
 

W +-0
 

W +- aj(h)
 

w+-wj(h) 

W +- 'Y./u 

W +- w/u 

W +- a/a 

W +- T/a 

W +- ufx 

W +- ulx 

k +- lj(h) 

k 

c *- ab 

c ~bLa 

k +- ()j/x 

Wi = (Yi E x) ~ v(w) = l'(Y) §1.15 

§1.7Wi = (i =j) 

Wi = 1 

Wi =0 

V(lV) = h 
First k of Wi are unity 
where k = min (j, h). 

Last k of Wi are uni ty 
where k = min (j, h). 

W is the max length prefix in fl. §1.1°
 
Example:
 
a/(I, 1,0,1,0, I) = (1,1,0,0,0,0).
 

W is the max length suffix in u.
 
Example:
 
w/(I, 1,0,1,0,1) = (0,0,0,0,0, I).
 

Wi = I if a j /= ai for allj < i 

Wi = u i 1\ (Xi = nl) where §1.18 
m = max (u/x)j 

j 

Wi = U i 1\ (Xi = nl) where 
nl = min (u/x)j 

j 

k = (j, j + 1, ... ,j + h - I) §1.7 

§1.17 

C i = 0 if b i ¢ lj(v(a»; otherwise 
C i = in aj-origin system for a. Inabi 

the first form (that is, c +- ab ), the 
origin cannot be specified directly. 

Y = kLx is in ascending order and 
original relative ordering is n1ain­
tained among equal components, that 

is, eitherYi < Yi-[-l orYi = )'i-1 1 and 
k i < k i+ 1 • 
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S.6a ROW GENERALIZATIONS OF VECTOR 
OPERATIONS 

Z~XOY Z/ = X/ 0 Y/ 
Z ~ O/x Zi = O/Xi 

C +-­ CZ:/A C = Al A 2 (2'; •.. 

... ~) A" 

M~BlItA Mi=Bil/lAi 

C ~ktA Ci = k i t Ai 

C ~k~A Ci = k i ~ Ai 

z~Y-lX Zi = yi _L Xi 

C ~Ab C j = A bj 

C + B Sit A Ci = Bi S/tAi 

K ~ 0/t/X Ki = (),JXi 

C +-- A B Ci =Ai Bi 

C ~u/B Ci = U/Bi 

c ~ U/B C = Ul/Bl 
... CD Ull/Bil 

C~u\B ti/C = 0, u/C = B 
C ~U'\b [J/C = 0, UjC = b 

C ~'\A,u,B\ ti/C = A, ujC = B 

C --(- ',a, U, b'\ D/c = a, U/C = b 

C ~ jA, u, BI ti/C = ii/A, u/C = ujB 

C ~ /A, U, B/ fJ/C = [J/A, U/C = U/B 

C ~ ja, U, bj C = jE.\a, U, E.\bj 

W~rJ./U Wi = rJ./Ui 

W~w/U Wi =w/Ui 

W ~ a/U Wi = a/Ui 

W~T/U Wi = T/Ui 

W~UrX Wi = UirXi 

W~U[X Wi = UitXi 

§1.5 

§l.8 

§1.15 

§l.16 

§l.6 

§l.14 

§l.17 

§l.9 

§1.10 

§l.18 
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S.6b COLUMN GENERALIZATIONS OF VECTOR 
OPERATIONS 

Z+--XOY Z·i, = X/ 0 y.i
J 

§1.5 

Z +-- o//X Zj = o/Xj §1.8 

C +-- 0//A C = AI OA2 (8 ... §1.15 
···@AII 

M +-- B tth A M j = B j tl! A j §1.l6 

C+--k,rA C j = k j t A j §1.6 

C+--kVA C j = k j ~ A j 

z<-YJlX Zj = Y j -L X j §1.14 

C +-- Ab Ci =Ab, §1.l7 

C +-- B HI! A C j = B j Sil A j 

K +-- O,j/X K j = (j,jX j 

C+--AGJffiB C j = A j CD B j §1.9 

C <- u//B C j = u/B j 

c+--V//B c = V1/B1 8:) ... 

... CD V..IBv 

C +-- u\\B ii//C = 0, u//C = B 

C <- V\\b iJ//c = 0, V//C = b 

C +-- \\A, u, B\\ ii//C = A, u//C = B 

C +-- \ la, V, b\\ U//C = a, V//C = b 

C ~ //A, u, B// ii//C = iii/A, u//c = u//B 

C +-- //A, V, B// Ui/c = Vi/A, V//C = V//B 

C +-- I/a, V, b// C = IE.I\a, V, E.\\b/ 

W+--(X//V W j = (X/V, §I.IO 

W +-- w//V w j = w/vj 

W+--a//V w j = a/Vj 
W <- TI/V W j = T/Vj 

W +-- VrrX W j = V,rXj 
§1.18 

W <- VLlX W j = V;lXj 
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S.7 SPECIAL MATRICES 

Full matrix W +- E(p, q) W/=l §1.13 

Zero matrix W +- F.(p, q) W/ =0 ,u(W) = P
W+-O 

v(W) = q, for 
Superdiagonal W +- kl(p, q) Wji = (i + k = j) p andq 
Identity W +-I(p, q) W = IO(p, q) integers. 

Upper left W +- [](p, q) Elision of 

(triangle) Wi P and q ift
:J	 

jdimensionsUpper right W +- [)(P,q)	 W~+l-j = (i + j ~ m), 
determinedLower left W +- ~(p,q) W~+l-iJm = min (p, q)) 
by

Lower right W ~- [](p,q) Wf1+ 1 - i 
v+l-i	 compatibility. 

S.8 TRANSPOSITION 

C.i	 §1.12Diagonal C+-B = , z 

C+-B 

/' 
cV(B)+l-~ = B·iCounter diagonal C+-B	 Jf1(B)+l-z 

C!~(B)+l-i =Horizontal C+-B 
J 

t 
Vertical C+-B C i ­f'(B)+l-i ­

Vector Y +- x Yi = xv+1 ­i 
t 

Y +- x 

S.9 SET OPERATIONS 

Intersection c+-bna c = EbOjb §1.15
 

Difference c+-b~a c = EbOjb
 

Union c+-bua c = b CD (a ~ b)
 

Cartesian C +- bi @ Cl +d l-(k-E) = (bk1 \ bk~ , ... bk~);
 

product bn	 d j = v(b j ); 1 s:: k j s:: d j 
Clearly, v( c) = n, and fi( c) = x jd 
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S.10 GENERALIZED MATRIX PRODUCT 

C/ = OI/(Ai O 2 B j ), where O 2 produces a vector §1.11 
(Le., is not the operator l-), and 0 1 is a reduction 
operator (and hence C/ is a scalar). 

Ci = (Ai 0 b), where 0 is any operator which 
produces a vector of dimension v(b). 

C j = (a 0 B j ), where 0 is any operator which 
produces a vector of dimension v(a). 

C/ = (a i 0 bj). 

S.ll FILES 

File	 <D/ A representation of a of the form §1.22 
(Pv aI' P 2 , a 2 , ••• , av(a), PV(ll) +1, 0, 

Pv(a) -f 2, • •. , Pv(P»), where Ph is the 
partition at position It, PI = P"'(P) = A, 
and (ttl /\ (1)/P S; A. 

Position file 7T(<D j
i ) +- h Set file to position It. Called rewind 

if h = 1, and wind if h = v(p). 
Record (fronl position h) 

Forward o<D/ +-a, Ale	 ah +- a, Ph-t-l +- Ak ; stop at position
 
It + 1. Zero prescript nlay be elided
 
and Al may be elided.
 

Backward a h- l -0(- a; Ph-l +- Ak ; stop at 
position It - 1. Al lllay be elided. 

Read (from position h) 

Forward a, b +- o(D/	 a +- aIL; b +- Ph-t--I; stop at position 
h + 1. Associated branch is controlled 
by Ph+I' and b may be elided. Zero 
prescript may be elided. 

Backward	 a +- ah - I ; b +- Ph-I; stop at position
 
It - 1. Associated branch is con­

trolled by Ph--I and b may be elided.
 

File array 
Full (T> Array offiles <1>/, for i E ll(/I«l»), 

j E ll(v(D)). 

Row Row of files <I>/, for} E ll(v(<l»). 

Column Column of files <1>/, for i E l\/I(<I»). 

Compression 
Row u/(f) Selection as in corresponding opera­

Colunln u//(I> tions on nlatrices. 
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S.12 TREES 

Path i C +-Ai 

Node i C +- (Ai)ll(i) 

Subtree i C +-Ai 
Component-by- C+-AOB 
component 

Path reduction C +- O/A 

Level reduction C +- O//A 

j-origin b-index B +- b lj A 

j-origin mapping C+-bLA 

Full right list C +-]A 
n1atrix 

Full left list C +-[A 
matrix 

Right list matrix C +- a 2IlA} 
Left list matrix C +- a 2/[A 

Tree compression C +- U /A 

Path compression C +- u/A 

Level com­ C +-u//A 
pression 

Level mesh C +- \ \A, u, B\\ 

Level mask C +- //A, u, B// 
Path catenation C +- A ''1 B 

C 1 is the i 1th root of A; c j is the ijth §1.23 
node of the nodes on level j reach­
able from node c j _ 1 . 

The final node of path Ai.
 

C is the subtree of A rooted in node i.
 

(Ci)l'(i) = (Ai)v(i) 0 (Bi)v(i). 

Reduction by operator or relation 0 
on nodes in left list order. 

Reduction by operator or relation 0 
on nodes in right list order. 

(Bi)u(i) = b lj «A i }l'(i») 

Rooted subtree C i is a single null 
character node if b i ¢ Lj(~I(A)); other­
wise C i = A bi , where A is treated in a 
j-origin system. 

The rows of the index matrix Ci2/C are 
the right (left) justified index vectors 
(with null fill to the common 
dimension v(A)) arranged in increasing 
order; C 1 and C 2 are the correspond­
ing degree and node vectors of A. 

The degree and node vector colun1ns 
of the full right (left) lIst. 

C is obtained from A by suppressing 
node i if node i of U is zero and re­
connecting so that for each remain­
ing pair of nodes, the one lies in the 
subtree rooted at the second if and 
only if it did so in A. 

C is obtained from A by suppressing 
all nodes on levelj if u j = 0, and re­
connecting as in the compression U/A. 

C is obtained from A by suppressing 
rooted subtree A j if u j = 0. 

ii//C = A; u//C = B 

ii//C = ii//A; u//C = u//B. 
C is obtained by connecting roots of 
B to leaves of A, allotting successive 
groups of at most r~I(B) ~- A(A)] 
roots of B to each successive leaf of A. 
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S.12 TREES (continued) 

Full tree W +-- E Each node ofW is unity and the ~ 1.23 
structure of W is deternlined by 
compatibility. 

W +-- E(k) Each node of W is unity; W is honlo­
geneous (i.e., all nodes on any level 
have a comnlon degree) and 'J(W) = k. 

Zero tree W +-- E Each node of W is zero and the 
W +--0 structure of W is deternlined by 

compatibility. 
W +-­ E(k) Each node of W is zero; W is honlo­

geneous and v(W) = k. 

Path tree W +-- UE u/W = 0; u/W = E; structure ofW 
determined by conlpatibility. 

W +-- UE(k) u/W =0; u/W = E; Wishonlo­
geneous and 'J(W) = k. 

Level tree W +-- u E u//W = 0, u//W = E; structure of W 
determined by conlpatibility. 

W +--uE(k) u//W = 0; u//W = E; W is honlo­
geneous and 'J(W) = k. 

Maximization W+--VrA W = U 1\ (A = 111E), where 111 is the 
Minimization W+--VlA maximum (mininlum) over all nodes 

of VIA. 

Maximum path W ~- ex/V W is obtained from V by zeroing all 
prefix nodes of every subtree rooted in a 

zero node. 

Maximum path W +-- w/V W is obtained fronl V by zeroing 
suffix every node which contains a zero 

node in its subtree. 

Forward path W ~- a/A (Wi)l'(i) = 1 if (Ai),'(i) differs fronl all 
set selector preceding nodes of path Ai. 

Backward path W *--T/A (Wi)"(i) = 1 if (Ai)l'(i) differs fronl all 
set selector other nodes of its subtree. 

Maximum level W ~- ex//V e
j
/W = a/e j/V 

prefix 

Maximum level W ~- w//V ej/W = w/ej/U 
suffix 
Forward level W+--a//A ej/W = a/ej/A 
set selector 
Backward level W ~- T//A ej/W = T/ej/A 
set selector 
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O-origin indexing, 71, 186 
O-residue, 14 
I-origin indexing, 12, 16 
I-residue, 14 

Abelian group, 69 
Accumulator, 78 

index, 73, 79, 83 
Active domain, 148, 153 
Add, clear and, 76 
Additive indexing, 73 
Address, 72 

leading, 106 
table sort, 176, 213, 231 

Address-ordered pool, 117 
Addressing, indirect, 32, 74, 76, 84 

system, open, 153 
Aids to serial sort, 204 
Algebra, rna trix, 24 
Algorithm, Euclidean, 67 
Allocation, implicit, 108 

of memory, 105 
Alternator, 184, 188 
Amdahl, G. 1\1., 153 
Anlphisbaenic sort, 191, 195, 203 
Analysis in p, 160 

Analyzer, 159 
Arbitrary variable, 10, 13 
Argunlent, 10 

prograrll, 159 
Ari thmetic instructions, 84 

opera tions, 11 
Arrow, 2 
Ashenhurst, !{. L., 188, 190, 191,255,258 
Assembler, 159 
Associa tive memory, 104 

Autonlatic programming, 71 
Auxiliary variables, 38 
Axis of transposi tion, 25 

Backward chain, 113 
Base address register, 74 

conversion, 190 
value, 27, 38, 146 

Batching, 138 
Betz, B. K., 198 
Binary opera tion, 13 

search, 141, 155, 221, 236 
Birkhoff, G., 26, 28, 32 
Biunique transformation, 144, 146 
Blaauw, G. A., 110 
Block chaining, 119 

sort, 191,213 
transfer, 206, 213, 221 

Boehrn, E., 153 
Boldface letters, 10 
Boolean function, 263 
Branch arrow, 2 

in files, 42, 181 
in a graph, 46 
instruction, 73, 80 
Inodifica tion, 6 

Branching, 75 
ratio, 47 

Brooks, F. P., 129 
Bubble sort, 213, 217, 229, 233, 239 
Bucket file, 154 
Burks, A. \;\~., 53, 122, 163, 164 
Busy indica tor, 94 

Calingaert, P., 252 
Canonical form, 247, 249, 255, 261 
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Cap, 29 
Carr, J. \V., 171 
Carter, \V. C., 198, 203, 244 
Cartesian product, 30 
Cascade sort, 191, 198, 203 
Category, 189 
Catenated scan, 135, 139 
Ca tena tion, 20, 21, 29 
Ceiling function, 12 
Central register, 72, 78 
Chain, 113, 117 

filial, 128 
list matrix, 121, 126 

Chained representation, 110, 116, 135, 
147, 221 

stack, 113 
Chaining block, 119 

end-around, 112, 135 
vector, 155 

Change sign, 76 
Channel-unit interlock, 95 
Channel, cornn1and, 88 

data, 88
 
input-output, 75, 95
 
instruction, 100
 
trap, 75, 97
 

Character, null, 31, 58 
Characteristic matrix, 258 
Characteristic vector, 29, 249, 253, 261 
Check, parity, 98 
Chien, R. T., 154 
Church, Robert, 239 
Circuit, 46 
Class of operand, 8 
Classification, 177 

and simple rnerge, 178, 186,201,211 
sirnple, 177, 20.1 
string, 183 

Clear and add, 76 
Clustering of keys, 154 
Coalescence, 144, 148, 152 
Code, Gray, 63 

Huffman, 51
 
operation, 72
 
point, 124
 
variable length, 124
 

Column-chained n1atrix, 121 
Column, compression, 22 

dimension, 14 
expansion, 21 

Column, list, 22, 108, 119 
rnapping, 33 
rnask, 21 
rllesh, 20 
of files, 43 
operation, 8, 18 
reduction, 17 
sort, 178, 186, 191, 193, 204, 211 
vector, 14 

Comrnand, 71
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in corllpression, 18
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Con1piler, 159 
Cornponents, 13, 22 
Cornpound operation, 8 

staternent, 160, 165 
Corllpression, 18, 21, 110, 113 

tree, 54, 60 
Cornputer fdes, 44 

instruction, 71 
progran1, 71 

Congruence, 12 
Conjunctive canonical fonn, 249 
Connection n1a trix, 46 
Contained in an ordering, 190 
Control register, 72 
Controlled scan, 135, 141, 147 
Controlling parameter, 8 
Conventions, 7 
Conversion, base, 190 
Convert instructions, 87 
Copy operation, 177, 189 
Counter, instruction, 73 
Crarner, I-I., 138, 235 
Cup, 29 
Cycles, disjoint, 32 
Cyclic scan, 135 

Da ta channels, 88 
path, 101 

De Morgan's law, 16, 24, 64, 103, 246 
Decisions, leading, 6 
Decon1position, 246, 255 
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Decrement, 78, 83
 
Degree, 47
 

vector, 49, 53, 163
 
Derived key, 134, 144, 148
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Difference, set, 29
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vector, 47, 59, 165
 
Distributor, 78
 
Domain, 10
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Dynamic relocation, 74
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Equivalent formulas, 166
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Evaluation, of internal sorting, 231
 

of serial sorti ng, 199
 
Exchange sort, 212
 
Exclusive disjunctive canonical fonn,
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Exclusive-or, 12
 

reduction, 17
 
Execu te instruction, 83
 
Execution, instruction, 72, 77
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tin1e of a sort, 199
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of transposi tions, 232
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Fortuitous function, 133 
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Friend, E. H., 233, 245 
Full list matrix, 50 

rna trix, 22, 26
 
vector, 15
 

Function, Boolean, 263 
ceiling, 12 
equivalence, 12 
floor, 12 
fortuitous, 133 
identity, 253 
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key, 176 
magnitude, 11 
mapping, 34 
program, 159, 169 
sign, 11 
trivial, 248 
unit, 248 
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Gap, record, 98 
Garner, H. L., 67 
Gassner, B. J., 239 
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Gilstad, R. L., 198 
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Graeffe method, 65 
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index, 48 
Gray code, 63, 104 
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Harary, F., 132 
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Height of a tree, 47 
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fetch mode, 95 
limit, 90 
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Input file, 41 
Input-output channel, 75, 95 

instructions, 88 
Insertion, of an instruction, 75 

ranking by, 213 
sort, 212 

Instruction, arithmetic, 84 
branch, 73, 80 
channel, 100 
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convert, 87 
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enable, 75 
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fetch, 72, 76 
input-output, 88 
logical, 78, 83 
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Interchange, 7 
Interchange sort, 232 
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minimax form, 166 

oC-notation, 163, 169 
oC-phrase, 163 
oC-reduction, 164 
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Left list, 122 
rotation, 8 
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scan, 135, 148 

Level compression, 54, 60 
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tree, 57 
of structure, 39 

LIFO discipline, 117 
Limit indicator, 90 
Linear representation, 108, 110, 118 
List, chain, 121 
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index, 51, 60 
leaf, 122, 145 
left, 122 
matrix, 49, 108, 121, 161 
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row, 22 
vector, 122, 163 
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Load and store, 78 
Logic, symbolic, 24 
Logical design, 101 
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operations, 11 
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column-chained, 121 
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single-phase, 179, 183, 206 
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string-doubling, 186 
two-phase, 179 

IVlesh, 19, 110 
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Microprograms, 71 
Mid-square method, 154 
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Mixed radix, 27 
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vector, 47, 60, 125 
Moore school, 178, 191 
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Multiple keys, 143, 155 
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Newton-Raphson formula, 64­
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Nonlinear represen ta tion, 109 
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parenthesis, 161, 169 
parenthesis-free, 122, 163 
Polish, 122, 163 
sunlnlary, 7 
translation of, 169, 173 

Null character, 31, 58 
element, 6, 10, 16, 32 
scan, 25, 28 
vector, 16, 17 

N umber base, choice of, 190 
NurTIber systerTI, 12, 14, 27 
Numerical variable, 10, 13 

Odd-even transposition sort, 213, 232 
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Open addressing system, 153 
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Operation, arithmetic, 11 

binary, 13 
code, 72 
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compound, 8 
copy, 177, 189 
count, 212 
elerTIentary, 11, 13 
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indexing, 31, 36 
logical, 11 
mapping, 58 
ordering, 36 
rank-preserving, 177, 189, 231 
ranking, 31, 34, 133 
revision, 183 
row, 8, 18 
set, 28 
shift, 78 



Operator, statement as, 160 
symnletric, 166 

Optimum m in m-way sort, 200 
Optinlum base for a sort, 202 
Ordered set, 23, 28 

tree, 45, 47 
Ordering, contained in, 190 

of stat emen ts, 5 
on x, 29 
opera tion, 36 
related, 189, 200, 202 
vector, 36, 176 

Output file, 41 
Outer product, 25 
Overflow indica tor, 85 

posi tions, 78 
search, 149 
toggle, 83 

CP-notation, 163, 169 
Palernlo, F. P., 154 
Parameter, controlling, 8 
Parenthesis, elision of, 8 

notation, 161, 169 
Parenthesis-free notation, 122, 163 
Parity, 12 

check, 98 
Partial pass sort, 191, 203 
Parti tion, 115 

file, 41, 181 
symbol, 115 

Partitioned representation, 115, 118 
Partitioning of a tree, 123 
Path compression, 56, 60 
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nlaximal, 46 
tree, 57 
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Permutation, 8, 32, 133, 139 
of a tree, 58 
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Phase, 179 
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Physical vector, 105 
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Polynomial, 27 
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Pool, 113, 116 
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Posi tion file, 41 
Power of a merge sort, 199 
Pre-count column sort, 211 
Prefix, code, 123 

maximum, 9, 22, 58 
vector, 15 

Probability of duplicate keys, 201 
Product, Cartesian, 30 

Ina trix, 23, 33 
outer, 25 
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argument, 159 
computer, 71 
function, 159, 169 
in p, 160 
interaction, 7 
meta-, 71 
skeleton, 160 
statement, 2 
trace, 83, 160 
utility, 160 
vector, 7 

Programming, automatic, 71 
language, 1 
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Radix exchange sort, 191, 212, 213 
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Random-access sort, 176 
storage, 205 
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I~ank-preserving operation, 177, 189, 231 
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of an array, 39 
Ranking, by insertion, 213, 236 

operation, 31, 34, 133 
sort, 213, 221, 235, 239 
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storage, 205, 212, 231, 237 

Read file, 41 
Record, file, 41 
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of a tree, 58 

Register, central, 72 
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index, 73, 108 
multiplier-quotient, 78 
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Related orderings, 189, 200, 202 
Relational statement, 11, 16 
Relocation, dynamic, 74 
Reordering, 32 
Repeated selection sort, 213, 223, 229, 

236 
Replacement sort, 213, 226, 239 
Representation, of variables, 105 

chained, 110, 116, 135, 147,221 
linear, 108, 110, 118 
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of matrices, 119 
of trees, 121 
partitioned, 115, 118 
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Residue, 12 
Revision operation, 183 
Rewind, 90 
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Roman letters, 10 
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vector, 52 
Rooted scan, 135 
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Row-chained matrix, 120 
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Search, 133 

binary, 141, 221, 236 
overflow, 149 
single table, 149 

Selection, 8, 17, 32, 38 
set, 30 
vector, 22 

Selector set, 23, 58 
Self-indexing, 40 
Sequence, of execution, 2, 5 

register, 73 
Serial access, 41, 135 

sort, 176, 199,204 
Set operations, 28 

selector, 23, 58 
Shaw, J. C., 110 
Shift instructions, 85 

opera tion, 78 
Sign function, 11 
Similar vectors, 29 
Simple classification, 177, 205 

classification and merge, 178, 200, 206 
merge, 177, 191,205 

Single table search, 149 
Single-phase merge, 179, 183, 206 

vs two-phase, 200 
Singular formula, 164 

tree, 47, 60, 165 
Skeleton program, 160 
Skip, 75, 80 
Solid representation, 106 
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Sort, address table, 176, 213, 231 
amphisbaenic, 191, 195, 203 
block, 191, 213 
bu~ble, 213, 217, 233, 239 
cascade, 191, 198, 203 
column, 178, 186, 204 
digital, 186 
exchange, 212 
execution time, 199 
insertion, 212 
internal, 176, 204, 205, 239 
merge, 178, 204 
odd-even interchange, 232 
optimum base, 202 
partial pass, 191, 203 
polyphase, 199 
radix exchange, 191, 213 
random-access, 176 
ranking, 213, 221, 235, 239 
repeated selection, 213, 223, 229, 236 
serial-access, 176 
string-doubling, 211 
tournament, 237 
transposition, 212, 219, 236, 239 
two-phase column, 187, 193 
two-phase vs single~phase, 200 
with replacement, 213, 226, 239 

Sparse matrix, 22, 120 
Special logical trees, 60 

matrices, 26 
vectors, 15 

Specific matrix, 251 
vector, 249, 258 

Specification, arrow, 2 
implicit, 38 
program, 160 

Spread, 144, 146, 154 
Spruth, W. G., 154 
Stack, 113, 117 

vector, 166, 170 
file, 172 

Stage, 179, 231 
Statement, compound, 160, 165 

elementary, 160 
equivalence, 11 
number, 3 
ordering,S 
program, 2 
relational, 11, 16 

Stirling's formula, 240 

Storage, allocation in sorting, 209 
random-access, 205 
ratio, 205, 212, 231, 237 

Store, information, 72 
String-doubling merge, 186, 211 
Strings, 178 

classification, 183 
distribu tion of, 198 
expected number, 200 

Structure, levels of, 39 
of the language, 7 

Structured operands, 8, 13, 45, 106 
Subpath, 46 
Subroutines, 39 
Subtree, 47, 48, 51, 58 
Suffix, dispersion, 165, 173 

maximum, 22, 58 
vector, 15 

Summary of notation, 7 
Superdiagonal matrix, 26 
Supervisor, 159 
Symbolic logic, 24 
Symbols, miscellaneous, 10 
Symmetric operators, 166 
System designer, 71 

Tag vector, 79 
Tape units, 88 
Tensor, 39 
Terminal node, 46 

parti tion of a file, 41 
Tie, 10 
Toggle, enable, 75 
Tou~nament sort, 237 
Trace, of a matrix, 27 

program, 83, 160 
Transfer, 75, 80 

block, 213, 221 
Transformation, key, 134, 144 

spread, 154 
Translation of notation, 169, 173 
Translator, 159 
'[ransposition, 231 

axis, 25 
sort, 212, 219, 236, 239 

Trap, 75, 81, 97 
Tree compatibility, 57 

compression, 54, 60 
homogeneous, 58, 121, 223 
level, 46, 57 
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Tree, logical, 60
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ordered, 45
 
parti tioning, 123
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permutation, 58
 
reduction, 58
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rooted, 47
 
singular, 47, 60, 165
 
uniform, 58, 145
 

Triangular matrix, 26
 
Trivial functions, 248
 
Two-phase, column sort, 187, 193
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vs single-phase sort, 200
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Union, 28
 
Unit function, 248
 

vector, 15, 30
 
storage ratio, 212
 

Univac, 106
 
Utility program, 160
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arbitrary, 10, 13
 
auxiliary, 38
 
integral, 10, 13
 
length code, 124
 
logical, 10, 13
 
numerical, 10, 13
 
representation, 105
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catenation, 20, 21, 29
 
chaining, 155
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coalescence, 148, 152
 
degree, 49, 53, 163
 
disjoint, 29
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index, 48, 60
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intrinsic, 248, 261
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list, 122, 163
 
logical, 18
 
mapping, 134
 
minterm, 249, 257, 258
 
moment, 47, 60, 125
 
node, 46, 49, 226
 
null, 16
 
of rna trices, 39
 
ordering, 36, 176
 
path, 46
 
permutation, 33,148,176,213,231
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prefix, 15
 
program, 7
 
representation, 78
 
root, 52
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special, 15
 
specific, 249, 258
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tag, 79
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