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From the Preface . ..

“Applied mathematics is largely
concerned with the design and analysis
of explicit procedures for calculating
the exact or approximate values of
various functions. Such explicit pro-
cedures are called algorithms or pro-
grams. Because an effective notation
for the description of programs exhibits
considerable syntactic structure, it is
called a programming language.

“Much of applied mathematics,
particularly the more recent computer-
related areas which cut across the
older disciplines, suffers from the lack
of an adequate programming language.
It is the central thesis of this book
that the descriptive and analytic power
of an adequate programming language
amply repays the considerable effort
required for its mastery. This thesis
is developed by first presenting the
entire language and then applying it
in later chapters to several major
topics.

“The areas of application are chosen
primarily for their intrinsic interest
and lack of previous treatment, but
they are also designed to illustrate the
universality and other facets of the
language. For example, the micropro-
gramming of Chapter 2 illustrates the
divisibility of the language, i.e., the
ability to treat a restricted area using
only a small portion of the complete
language. Chapter 6 (Sorting) shows
its capacity to compass a relatively
complex and detailed topic in a short
space. Chapter 7 (The Logical Cal-
culus) emphasizes the formal manipu-
lability of the language and its utility
in theoretical work.

(Continued on back flap.)



(Continued from front flap.)

“T'he  material was  developed
largely in a graduate course given for
several vears at Harvard and in a
later course presented repeatedly at
the IBM Systems Research Institute
in New York. It should prove suit-
able for a two-semester course at the
senior or graduate level. . . The 130-
odd problems not only provide the
necessary finger exercises but also
develop results of general interest.”
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PREFACE

Applied mathematics is largely concerned with the design and analysis of
explicit procedures for calculating the exact or approximate values of
various functions. Such explicit procedures are called algorithms or
programs. Because an effective notation for the description of programs
exhibits considerable syntactic structure, it is called a programming
language.

Much of applied mathematics, particularly the more recent computer-
related areas which cut across the older disciplines, suffers from the lack
of an adequate programming language. It is the central thesis of this book
that the descriptive and analytic power of an adequate programming
language amply repays the considerable effort required for its mastery.
This thesis is developed by first presenting the entire language and then
applying it in later chapters to several major topics.

The areas of application are chosen primarily for their intrinsic interest
and lack of previous treatment, but they are also designed to illustrate the
universality and other facets of the language. For example, the micro-
programming of Chapter 2 illustrates the divisibility of the language. i.e.,
the ability to treat a restricted area using only a small portion of the
complete language. Chapter 6 (Sorting) shows its capacity to compass a
relatively complex and detailed topic in a short space. Chapter 7 (The
Logical Calculus) emphasizes the formal manipulability of the language
and its utility in theoretical work.

The material was developed largely in a graduate course given for
several years at Harvard and in a later course presented repeatedly at the
IBM Systems Research Institute in New York. It should prove suitable
for a two-semester course at the senior or graduate level. Although for
certain audiences an initial presentation of the entire language may be
appropriate, I have found it helpful to motivate the development by
presenting the minimum notation required for a given topic, proceeding
to its treatment (e.g., microprogramming), and then returning to further
notation. The 130-odd problems not only provide the necessary finger
exercises but also develop results of general interest.
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viii Preface

Chapter 1 or some part of it is prerequisite to each of the remaining
“applications’ chapters, but the applications chapters are virtually
independent of one another. A complete appreciation of search techniques
(Chapter 4) does, however, require a knowledge of methods of representa-
tion (Chapter 3). The cross references which do occur in the applications
chapters are either nonessential or are specific to a given figure, table, or
program. The entire language presented in Chapter I is summarized for
reference at the end of the book.

In any work spanning several years it is impossible to acknowledge
adequately the many contributions made by others. Two major acknowl-
edgments are in order: the first to Professor Howard Aiken, Director
Emeritus of the Harvard Computation Laboratory, and the second to
Dr. F. P. Brooks, Jr. now of IBM.

It was Professor Aiken who first guided me into this work and who
provided support and encouragement in the early years when it mattered.
The unusually large contribution by Dr. Brooks arose as follows. Several
chapters of the present work were originally prepared for inclusion in a
joint work which eventually passed the bounds of a single book and
evolved into our joint Automatic Data Processing and the present volume.
Before the split, several drafts of these chapters had received careful
review at the hands of Dr. Brooks, reviews which contributed many
valuable ideas on organization, presentation, and direction of investiga-
tion, as well as numerous specific suggestions.

The contributions of the 200-odd students who suffered through the
development of the material must perforce be acknowledged collectively,
as must the contributions of many of my colleagues at the Harvard
Computation Laboratory. To Professor G. A. Salton and Dr. W. L.
Eastman, I am indebted for careful reading of drafts of various sections
and for comments arising from their use of some of the material in courses.
Dr. Eastman, in particular, exorcised many subtle errors from the sorting
programs of Chapter 6. To Professor A. G. Oettinger and his students
[ am indebted for many helpful discussions arising out of his early use of
the notation. My debt to Professor R. L. Ashenhurst, now of the Univer-
sity of Chicago, is apparent from the references to his early (and un-
fortunately unpublished) work in sorting.

Of my colleagues at the IBM Research Center, Messrs. L. R. Johnson
and A. D. Falkoff, and Dr. H. Hellerman have, through their own use of
the notation, contributed many helpful suggestions. I am particularly
indebted to L. R. Johnson for many fruitful discussions on the applications
of trees, and for his unfailing support.

On the technical side, I have enjoyed the assistance of unusually compe-
tent typists and draughtsmen, chief among them being Mrs. Arthur
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Aulenback, Mrs. Philip J. Seaward, Jr., Mrs. Paul Bushek, Miss J. L.
Hegeman, and Messrs. William Minty and Robert Burns. Miss Jacquelin
Sanborn provided much early and continuing guidance in matters of style,
format, and typography. I am indebted to my wife for assistance in
preparing the final draft.

KENNETH E. [VERSON
May, 1962
Mount Kisco, New York
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chapter 1

THE LANGUAGE

1.1 INTRODUCTION

Applied mathematics is concerned with the design and analysis of
algorithms or programs. The systematic treatment of complex algorithms
requires a suitable programming language for their description, and such a
programming language should be concise, precisc, consistent over a wide
area of application, mnemonic. and economical of symbols; it should
cxhibit clearly the constraints on the sequence in which operations are
performed; and it should permit the description of a process to be inde-
pendent of the particular representation chosen for the data.

Existing languages prove unsuitable for a variety of reasons. Computer
coding specifies sequence constraints adequately and is also comprehensive,
sincc the logical functions provided by the branch instructions can, in
principle, be employed to synthesize any finite algorithm. However, the
set of basic operations provided is not, in general, directly suited to the
execution of commonly needed processes, and the numeric symbols used
for variables have little mnemonic value. Moreover, the description
provided by computer coding depends directly on the particular represen-
tation chosen for the data, and it therefore cannot serve as a description of
the algorithm per se.

Ordinary English lacks both precision and conciseness. The widely used
Goldstine-von Neumann (1947) flowcharting provides the conciseness
necessary to an over-all view of the process, only at the cost of suppressing
essential detail. The so-called pseudo-English used as a basis for certian
automatic programming systems suffers from the same defect. Moreover,
the potential mnemonic advantage in substituting familiar English words
and phrases for less fumiliar but more compact mathematical symbols fails
to materialize because of the obvious but unwonted precision required in
their use.

Most of the concepts and operations needed in a programming language
have aiready been defined and developed in one or another branch of
mathematics. Therefore, much use can and will be made of existing
notations. However, since most notations are specialized to a narrow

1



2 The language §1.1

field of discourse, a consistent unification must be provided. For example,
separate and conflicting notations have been developed for the treatment
of sets, logical variables, vectors, matrices, and trees, all of which may, in
the broad universe of discourse of data processing, occur in a single
algorithm.

1.2 PROGRAMS

A program statement is the specification of some quantity or quantities
in terms of some finite operation upon specified operands. Specification is
symbolized by an arrow directed toward the specified quantity. Thus *‘y
is specified by sin ™ is a statement denoted by

9 < - sin .

A set of statements together with a specified order of execution consti-
tutes a program. The program is finite if the number of exccutions is
finite. The results of the program are some subset of the quantities
specified by the program. The sequence or order of execution will be
defined by the order of listing and otherwise by arrows connecting any
statement to its successor. A cyclie sequence of statements is called a /oop.

1] 2«1
1| v <2 x 3.1416 2| 2y x 2 :,
2l v+-vxz 3| 22 x2
Program 1.1 Finite Program 1.2 Infinite
program program

Thus Program 1.1 is a program of two statements defining the result ¢ as
the (approximate) area of a circle of radius x, whereas Program 1.2 is an
infinite program in which the quantity = is specified as (2y)" on the nth
exccution of the two-statement loop. Statements will be numbered on the
left for reference.

A number of similar programs may be subsumed under a single more
general program as follows. At certain branch points in the program a
finite number of alternative statements are specified as possible successors.
One of these successors is chosen according to criteria determined in the
statement or statements preceding the branch point. These criteria are
usually stated as a comparison or test of a specified relation between a
specified pair of quantities. A branch is denoted by a set of arrows leading
to each of the alternative successors, with each arrow labeled by the



§1.2 Programs 3

comparison condition under which the corresponding successor is chosen.
The quantities compared are separated by a colon in the statement at the
branch point, and a labeled branch is followed if and only if the relation
indicated by the label holds when substituted for the colon. The conditions
on the branches of a properly defined program must be disjoint and
exhaustive.

Program 1.3 illustrates the use of a branch point. Statement x5 is a
comparison which determines the branch to statements g1, o1, or 1,
according asz - n, = =n, orz — n. The program represents a crude but
effective process for determining = = »** for any positive cube .

al — y <0

o2 k<1
w3 Ty XYy
o4 2y XX
B1 kk=2 p—a5—1 z:n <—71—> k—k %2
p2 y—y—k = 22 Yy +k
d1

Program 1.3 Program for &« = n's

Program .4 shows the preceding program reorganized into a compact
linear array and introduces two further conventions on the labeling of
branch points. The listed successor of a branch statement is selected if
none of the labeled conditions is met. Thus statement 6 follows statement
S if neither of the arrows (to exit or to statement 8) are followed, i.e., if
= -Z n. Moreover, any unlabeled arrow is always followed; e.g., statement
7 is invariably followed by statement 3, never by statement &.

A program begins at a point indicated by an entry arrow (step 1) and ends
at a point indicated by an exit arrow (step 5). There are two useful
consequences of confining a program to the form of a linear array: the
statements may be referred to by a unique serial index (statement number),
and unnecessarily complex organization of the program manifests itself in
crossing branch lines. The importance of the latter characteristic in
developing clear and comprehensible programs is not sufficiently appre-
ciated.
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O ® N9 N VbW N

— y <0
k<1
ey Xy
z—y X

Zl z:on —
k<kx2
y<~y+k
k~k+2
y+~y—k

§1.2

Program 1.4 Linear arrangement of Program 1.3

=R S - NV B 7S I S T

_—
—-— O

i~ w(A)

k «~v(A)

Cii 0

Ci+Ci+ A4 xBf
k<~k—1
k:0

jej—1

j:0
i«—i—1

i:0

<
F—

Program 1.5 Matrix multiplication

A process which is repeated a number of times is said to be iterated, and
a process (such as Program 1.4) which includes one or more iterated
subprocesses is said to be irerative. Program 1.5 shows an iterative process
for the matrix multiplication

C <« AB



1.2 Programs 5
defined in the usual way as
y(A) fl

C/=Y3 4, x B/,
=1

k

(A,

1,2,
1,2,..., %8By,

j

where the dimension of an m x » rectangular matrix X (of m rows and »n
columns) is denoted by u(X) x »(X).

Program 1.5. Steps 1-3 initialize the indices, and the loop 5-7 continucs to
add successive products to the partial sum until & reaches zero. When this
occurs, the process continues through step 8 to decrement j and to repeat the
entirc summation for the new value of /, providing that it is not zero. If is zero,
the branch to step 10 decrements / and the entire process over jand & is repeated
from j = v(B), providing that / is not zero. [f i is zero, the process is complete,
as indicated by the exit arrow.

In all examples used in this chapter, emphasis will be placed on clarity
of description of the process, and considerations of efficient execution by a
computer or class of computers will be subordinated. These considerations
can often be introduced later by relatively routine modifications of the
program. For example, since the execution of a computer operation
involving an indexed variable is normally more costly than the corre-
sponding operation upon a nonindexed variable, the substitution of a
variable s for the variable C;’ specified by statement 5 of Program 1.5
would accelerate the execution of the loop. The variable s would be
initialized to zero before each entry to the loop and would be uscd to
specify C,” at each termination.

The practice of first setting an index to its maximum value and then
decrementing it (e.g., the index A& in Program 1.5) permits the termination
comparison to be made with zero. Since zero often occurs in comparisons,
it is convenient to omit it. Thus, if a variable stands alone at a branch
point, comparison with zero is implied. Moreover, since a compirison o
an index frequently occurs immediately after it is modified, a branch at the
point of modification will denote branching upon comparison of the
indicated index with zero, the comparison occurring after modification.
Designing programs to execute decisions immediately after modification of
the controlling variable results in efficient execution as well as notational
elegance, since the variable must be present in a central register for both
operations.

Since the sequence of execution of statements is indicated by connecting
arrows as well as by the order of listing, the latter can be chosen arbitrarily.
This is illustrated by the functionally identical Programs 1.3 and 1.4.
Certain principles of ordering may yield advantages such as clarity or
simplicity of the pattern of connections. Even though the advantages of a
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particular organizing principle are not particularly marked, the uniformity
resulting from its consistent application will itself be a boon. The scheme
here adopted is called the method of leading decisions: the decision on each
parameter is placed as early in the program as practicable, normally just
before the operations indexed by the parameter. This arrangement groups
at the head of each iterative segment the initialization, modification. and
the termination test of the controlling parameter. Moreover. it tends to
avoid program flaws occasioned by unusual values of the arguments. For

1 —{ i —p(A) +1

i—i—1 —>

J B +1

Jej—l
Kk <-w(A) + 1
Ci 0

E k<—k—1 —
Cji - C,ji + Aki X Bjk

Program 1.6 Matrix multiplication using leading decisions

S = T ¥ T~ VS B WO )

example. Program 1.6 (which is such a reorganization of Program 1.5)
behaves properly for matrices of dimension zero, whereas Program 1.5
treats every matrix as if it were of dimension one or greater.

Although the labeled arrow representation of program branches
provides a complete and graphic description, it is deficient in the following
respects: (1) a routine translation to another language (such as a computer
code) would require the tracing of arrows. and (2) it does not permit
programmed modification of the branches.

The following alternative form of a branch statement will therefore be
used as well:

This denotes a branch to statement number s, of the program if the relation
xry holds. The parameters v and s may themsclves be defined and re-
defined in other parts of the program. The null element o will be used to
denote the relation which complements the remaining relations r;; in
particular, (=) - » (s). or simply - »s, will denote an unconditional branch to
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statement s. Program 1.7 shows the use of these conventions in a reformu-
lation of Program 1.6. More generally, two or more otherwise independent
programs may interact through a statement in one program specifying a
branch in a second. The statement number occurring in the branch must
then be augmented by the name of the program in which the branch is
effected. Thus the statement (=) > Program 2.24 cxecuted in Program |
causes a branch to step 24 to occur in Program 2.

1 — i<~ (A) +1

J
k—k—1,(/,=)—>@18,4
Cj/«-C+ A x BF, 17

2 Pi—i—1,0f =)~39 |—
3 J—wB) + 1

4 Jj— LA =)~052

5 k <-2(A) + 1

6 Ci<-0

7

8

Program 1.7 A reformulation of Program 1.6, using an algebraic
statement of the branching

One statement in a program can be modified by another statement
which changes certain of its parameters, usually indices. More general
changes in statements can be effected by considering the program itself as a
vector p whose components are the individual, serially numbered state-
ments. All the operations to be defined on general vectors can then be
applied to the statements themselves. For example, the jth statement can
be respecified by the /th through the occurrence of the statement p; <— p,.

The interchange of two quantities  and . (that is. .« specifies y and the
original value of y specifies x) will be denoted by the statement 4 < > ..

1.3 STRUCTURE OF THE LANGUAGE

Conventions

The Summary of Notation at the end of the book summarizes the nota-
tion developed in this chapter. Although intended primarily for reference,
it supplements the text in several ways. It frequently provides a more
concise alternative definition of an operation discussed in the text, and it
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also contains important but easily grasped extensions not treated explicitly
in the text. By grouping the opcrations into related classes it displays
their family relationships.

A concise programming language must incorporate families of opera-
tions whose members are related in a systematic manner. Each family will
be denoted by a specific operation symbol, and the particular member of the
family will be designated by an associated confrolling parameter (scalar,
vector, matrix, or tree) which immediately precedes the main operation
symbol. The operand is placed immediately after the main operation
symbol. For example, the operation & * ¥ (left rotation of ¥ by A& places)
may be viewed as the Ath member of the set of rotation operators denoted
by the symbol *.

Operations involving a single operand and no controlling parameter
(such as |r], or [«]) will be denoted by a pair of operation symbols which
enclose the operand. Operations involving two operands and a controlling
parameter (such as the mask operation /a. u, b/) will be denoted by a pair
of operation symbols enclosing the entire set of variables. and the con-
trolling parameter will appear between the two operands. In these cases
the operation symbols themselves serve as grouping symbols.

Ininterpreting a compound operation such as k * () it is important to
recognize that the operation symbol and its associated controlling param-
eter together represent an indivisible operation and must not be separated.
It would. for example, be incorrect to assume thatj* (kA , ¥) were
equivalenttok * ( j , %), although it can be shown that the complete opera-
tions j , and & 1 do commute, thatis, & 1 (j, ®) =/, (k } %).

The need for parentheses will be reduced by assuming that compound
statements are, except for intervening parentheses, executed from right to
left. Thus & 1/, ¥ isequivalent to & % (j, %), notto (k * /), «

Structured operands such as vectors and matrices, together with a
systematic component-by-component generalization of elementary opera-
tions, provide an important subordination of detail in the description of
algorithms. The use of structured operands will be facilitated by selection
operations for extracting a specified portion of an operand. reduction
operations for extending an operation (such as logical or arithmetic
multiplication) over all components, and permutation operations for
reordering components. Operations defined on vectors are extended to
matrices: the extended operation is called a row operation if the under-
lying vector operation is applied to each row of the matrix and a column
operation if it is applied to each column. A column operation is denoted
by doubling the symbol employed for the corresponding row (and vector)
operation.

A distinct typeface will be used for each class of operand as detailed in
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Table 1.8. Special quantities (such as the prefix vectors a’ defined in Sec.
1.7) will be denoted by Greck letters in the appropriate typeface. For
mnemonic reasons. an operation closely related to such a special quantity

Type of Representation
Operand Printed Typed
Literal
Alphabetic Roman, u.c. and L.c. Circled u.c. and L.c. roman.
Numeric Standard numeral Standard numeral
Variable
Alphabetic Italic. u.c. and l.c. Unmarked
Numeric Italic numecral Underscore
Vector (.c. boldface italic Underscore
Matrix u.c. boldface italic Underscore
Tree u.c. boldface roman Wavy underscore

Table 1.8 Typographic conventions for classes of operands

will be denoted by the same Greek letter. For example, »/u denotes the
maximum prefix (Sec. 1.10) of the logical vector u. Where a Greek letter
is indistinguishable from a Roman, sanserif characters will be used, e.g..
E and I for the capitals epsilon and iota.

Literals and variables

The power of any mathematical notation rests largely on the use of
symbols to represent general quantities which, in given instances, arc
further specified by other quantities. Thus Program 1.4 represents a
general process which determines .« = 51°# for any suitable value of n. In a
specific case, say n = 27, the quantity .« is specified as the number 9.

Each operand occurring in a meaningful process must be specified
ultimately in terms of commonly accepted concepts. The symbols
representing such accepted concepts will be called /iterals. Examples of
literals are the integers, the characters of the various alphabets. punctua-
tion marks, and miscellancous symbols such as $ and %{. The hterals
occurring in Program [.4 are 0, 1, and 2.

It is important to distinguish clearly between general symbols and
literals. In ordinary algebra this presents little difficulty, since the only
literals occurring are the integers and the decimal point, and each general
symbol employed includes an alphabetic character. In describing more
general processes, however, alphabetic literals (such as proper names) also
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appear. Moreover, in a computer program, numeric symbols (register
addresses) are used to represent the variables.

In general, then, alphabetic literals, alphabetic variables, numeric
literals, and numeric variables may all appear in a complex process and
must be clearly differentiated. The symbols used for literals will be roman
letters (enclosed in quotes when appearing in text) and standard numerals.
The symbols used for variables will be italic letters, italic numerals, and
boldface letters as detailed in Table 1.8. Miscellaneous signs and symbols
when used as literals will be enclosed in quotes in both programs and text.

It is sometimes desirable (e.g., for mnemonic reasons) to denote a
variable by a string of alphabetic or other symbols rather than by a single
symbol. The monolithic interpretation of such a string will be indicated
by the tie used in musical notation, thus: ine, inv, and INV may denote

e —
L}

the variable “inventory,” a vector of inventory values, and a matrix of
inventory values, respectively.

In the set of alphabetic characters, the space plays a special role. For
other sets a similar role is usually played by some one element, and this
element is given the special name of null element. In the set of numeric
digits, the zero plays a dual role as both null element and numeric quantity.
The null element will be denoted by the degree symbol o.

In any determinate process, each operand must be specified ultimately in
terms of literals. In Program 1.4, for example, the quantity & is specified
in terms of known arithmetic operations (multiplication and division)
involving the literals 1 and 2. The quantity n, on the other hand, is not
determined within the process and must presumably be specified within
some larger process which includes Program 1.4. Such a quantity is called
an argument of the process.

Domain and range

The class of arguments and the class of results of a given operator are
called its domain and range. respectively. Thus the domain and range of
the magnitude operation (Jx[) are the real numbers and the nonnegative
real numbers, respectively.

A variable is classified according to the range of values it may assume:
it is logical, integral, or numerical, according as the range is the set of
logical variables (that is, 0 and 1), the set of integers, or the set of real
numbers. Each of the foregoing classes is clearly a subclass of each class
following it, and any operation defined on a class clearly applies to any of
its subclasses. A variable which is nonnumeric will be called arbitrary. In
the Summary of Notation, the range and domain of each of the operators
defined is specified in terms of the foregoing classes according to the
conventions shown in Sec. S.1.



§14 Elementary operations 11

1.4 ELEMENTARY OPERATIONS

The clementary operations employed include thc ordinary arithmetic
operations, the elementary operations of the logical calculus, and the
residue and related operations arising in elementary number theory. In
defining operations in the text, the symbol <= will be used to denote
equivalence of the pair of statements between which it occurs.

Arithmetic operations

The ordinary arithmetic operations will be denoted by the ordinary
symbols +, —, X, and = and defined as usual except that the domain and
range of multiplication will be extended slightly as follows. If one of the
factors is a logical variable (0 or I), the second may be arbitrary and the
product then assumes the value of the second factor or zero according as
the value of the first factor (the logical variable) is | or 0. Thus if the
arbitrary factor is the literal “*q,” then

O0xg=qx0=0
and I xg=qxl=q.

According to the usual custom in ordinary algebra, the multiplication
symbol may be elided.

Logical operations

The elementary logical operations and, or, and not will be denoted by A,
Vv, and an overbar and are defined in the usual way as follows:

w<—u A v<>w=1 ifandonlyif w=landec =1,
we—uvr<w=1 ifandonlyif u=1lorev=1,
W< i <>w =1 1ifand only if w =0.

If » and y are numerical quantities, then the expression x << y implies
that the quantity x stands in the relation “less than™ to the quantity y.
More generally, if « and 4 are arbitrary entities and # is any relation
defined on them, the relational statement (%) is a logical variable which
is true (equal to 1) if and only if « stands in the relation .# to 5. For
example, if x is any real number, then the function

(x> 0)— (2 0)

(commonly called the sign function or sgn x) assumes the values 1, 0, or
— 1 according as x is strictly positive, 0, or strictly negative. Moreover,
the magnitude function |x| may be defined as |r| = x X sgna =2 X

((x - 0) — (x = 0),
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The relational statement is a useful generalization of the Kronecker
delta, that is, 0,/ = (/ = j). Moreover, it provides a convenient expression
for a number of familiar logical operations. The exclusive or, for example,
may be denoted by (v -4 r), and its negation (i.e., the equivalence function)
may be denoted by (1 = 1).

Residues and congruence

For each set of integers 1, /, and b, with b > 0, there exists a unique pair
of integers ¢ and r such that

n=bg+r, j<i<j+b.

The quantity r is called the j-residie of n modudo b and is denoted by b ‘j .
For example, 3|,9 =0, 3,9 = 3, and 3,10 = 1. Moreover, if n >0,
then b |, n is the remainder obtained in dividing n by b and ¢ is the integral
part of the quotient. A number # is said to be of even parity if its O-residue
modulo 2 is zero and of odd parity if 2 |l, n=1

If two numbers # and m have the same j-residue modulo 5, they differ
by an integral multiple of b and therefore have the same k-residue modulo
bforany k. Ifbn=1»5 |j m, then m and n are said to be congruent mod b.
Congruency is transitive and reflexive and is denoted by

m = n (mod b).

In classical treatments, such as Wright (1939), only the O-residue is
considered. The use of l-origin indexing (cf. Sec. 1.5) accounts for the
interest of the I-residue.

A number represented in a positional notation (e.g.. in a base ten or a
base two number system) must, in practice, employ only a finite number of
digits. It is therefore often desirable to approximate a number @ by an
integer. For this purpose two functions are defined:

1. the floor of v (or integral part of .r), denoted by | x| and defined as the
Jargest integer not exceeding «,

2. the ceiling of x, denoted by [+] and defined as the smallest integer not
cxceeded by .

Thus
[3.14] =4,  [3.14] =3, [-3.14] = —4,
[3.00] = 3, [3.00] = 3. |—3.00] = —3.

Clearly [x] = —[—a|and |x] <~ & - [r]. Moreover,n = bln = b] + b |(, i
for all integers n. Hence the integral quotient ln = b]is equivalent to the
quantity ¢ occurring in the definition of the j-residue for the case j = 0.
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Structured operands

1.5 STRUCTURED OPERANDS

Elementary operations

Any operation defined on a single operand can be generalized to apply
to each member of an array of related operands. Similarly, any binary
operation (defined on two operands) can be generalized to apply to pairs
of corresponding elements of two arrays. Since algorithms commonly
incorporate processes which are repeated on each member of an array of
operands, such generalization permits effective subordination of detail in
their description. For example, the accounting process defined on the
data of an individual bank account treats a number of distinct operands
within the account, such as account number, name, and balance. More-
over, the over-all process is defined on a large number of similar accounts,
all represented in a common format. Such structured arrays of variables
will be called structured operands, and extensive use will be made of three
types, called vecror, matrix, and tree. As indicated in Sec. S.1 of the
Summary of Notation, a structured operand is further classified as fogical,
integral, numerical, or arbitrary, according to the type of elements it
contains.

A vector x is the ordered array of elements (x;, &,, &4, . . . 2 X,). The
variable x; is called the ith component of the vector x, and the number of
components, denoted by #(x) (or simply » when the determining vector is
clear from context), is called the dimension of x. Vectors and their com-
ponents will be represented in lower case boldface italics. A numerical
vector ¥ may be multiplied by a numerical quantity k& to produce the
scalar multiple k % x (or k&) defined as the vector zsuch thatz, = 4 X &,

All elementary operations defined on individual variables are extended
consistently to vectors as component-by-component operations. For
example,

ZT=X+ V<rz =X 4y,
T=% X V<%, =X, XY,
T=X -y =8 Y,
z = [¥]<>z, = [x],
W=u,\v<>w, =u, AV,
W= (¥ <y =w =¥ Ty

Thus if %

(1.0, 1, 1) and y = (0, |
x A y=1(00,10),and (x -< y) = (0. ]

,1,0) then x +y = (1, 1,2, 1),

,0,0).
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Matrices

A matrix M is the ordered two-dimensional array of variables

1 1 1
M M}, ..., M.y,

2 2 2
M2 M2 ..., My,

(M) (M)
My, o M

The vector (M, M,/ ..., M) is called the ith row rector of M and is
denoted by M'. lts dimension »(M) is called the row dimension of the
matrix. The vector (M}, M2 ..., M) is called the jth column rector
of M and is denoted by M,. Its dimension u(M) is called the column
dimension of the matrix.

The variable M’ is called the (4, j)th component or element of the matrix.
A matrix and its elements will be represented by upper case boldface
italics. Operations defined on each element of a matrix are generalized
component by component to the entire matrix. Thus, if © is any binary

operator, P=MC N<-P' =M'0ON,.

Index systems

The subscript appended to a vector to designate a single component is
called an index, and the indices arc normally chosen as a set of successive
integers beginning at |, that is, & = (¥, %,,...,%,). It is, however,
convenient to admit more general j-origin indexing in which the set of
successive integers employed as indices in any structured operand begin
with a specified integer /.

The two systems of greatest interest are the common l-origin system,
which will be employed almost exclusively in this chapter, and the O-origin
system. The latter system is particularly convenient whenever the index
itself must be represented in a positional number system and will therefore
be employed exclusively in the treatment of computer organization in
Chapter 2.

1.6 ROTATION

The fleft rotation of a vector x is denoted by & t & and specifies the
vector obtained by a cyclical left shift of the components of & by k places.
Thus if a=1(1,2,3,4,56), and b= (c,a,n,d.y), then 2} a=
(3,4,5,6,1,2),and 3 * b =8 "% b= (d, y,c,a, n). Formally*

T=k*tx<rg =4, where j = »|,(i + k).

* Restating the relation in terms of the O-residue will illustrate the convenience of the
1-residue used here.
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Right rotation is denoted by k | x and is defined analogously. Thus

R where j = v|,(i — k).

2 =k

If £k =1, it may be elided. Thus t+ b = (a.n,d.y.¢).
Left rotation is extended to matrices in two ways as follows:

A<~j*B<>A"=j, 1B

C—Fkf{B<>C, =k * B,
The first operation is an extension of the basic vector rotation to cach row
of the matrix and is therefore called row rotation. The second operation is

the corresponding column operation and is ‘therefore denoted by the
doubled operation symbol #. For example, if

kE=(0,1,2),
and
a b ¢
B=|d ¢ [/
g h i
then
a b ¢ a ¢ i
k'B=1e 7 d and ENMB=\|d h ¢
i g h g b f

Right rotation is extended analogously.

1.7 SPECIAL VECTORS

Certain special vectors warrant special symbols. In each of the following
definitions, the parameter 1 will be used to specify the dimension. The
interval vector v(n) is defined as the vector of integers beginning with ;.
Thus V(4) = (0.1,2,3), @) =(1,2,3.4), and ¢« (5) = (—=7. —6. =35,
—4, —3). Four types of logical vectors are defined as follows. The jth
unit rector €(n) has a one in the jth position, that is, (e'(n)), = (k = /).
The full vector €(n) consists of all ones. The vector consisting of all zeros
is denoted both by 0 and by €(n). The prefix vector of weight jis denoted
by a’/(n) and possesses ones in the first & positions, where & is the lesser of /
and n. The suffix vector w'(n) is defined analogously. Thus €*(3) =
(0, 1.0y ed) = (1, I, 1, D, a®5) = (1,1, 1,0.0),w*5) = (0,0, 1,1, 1), and
a'(5) =a®5) = (I, 1. 1, 1, 1). Moreover, w/(n) = j 1 o/(n). and a'(n) =
J . w’(n).
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A logical vector of the form a”(n) A w'(n) is called an infix vector. An
infix vector can also be specified in the form ;j | a*(n), which displays its
weight and location more directly.

An operation such as x A y is defined only for compatible vectors x and
y. that is, for vectors of like dimension. Since this compatibility
requirement can be assumed to specify implicitly the dimension of one of
the operands. elision of the parameter n may be permitted in the notation
for the special vectors. Thus, if y = (3. 4, 5, 6, 7), the expressions € X y
and € x y imply that the dimensions of € and € are both 5. Moreover,
elision of j will be permitted for the interval vector V() (or t/), and for the
residue operator |; when j is the index origin in use.

It is. of course, necessary to specify the index origin in use at any given
time. For example, the unit vector €*(5) is (0.0, 1,0,0) in a l-origin
system and (0, 0, 0, 1, 0) in a O-origin system, even though the definition
(that is, (€’(n)), = (k =/)) remains unchanged. The prefix and suffix
vectors are, of course, independent of the index origin. Unless otherwise
specified, l-origin indexing will be assumed.

The vector €(0) is a vector of dimension zero and will be called the nul/
vector. It should not be confused with the special null element ».

1.8 REDUCTION

An operation (such as summation) which is applied to all components
of a vector to produce a result of a simpler structure is called a reduction.
The > -reduction of a vector x is denoted by /x and defined as

Tam Cfxarz= (6 X)Xy D) OX,),

where 0> is any binary operator with a suitable domain. Thus +/x is the
sum, X /x is the product. and v/ /x is the logical sum of the components of
a vector x. For example, X/\'(5) =1 x 2 x 3 x4 x5 x\l(n)=n!
and 4/} (n) = n(n + 1)/2.

As a further example, De Morgan’s law may be expressed as A /u =
Wl_l—, where u is a logical vector of dimension two. Moreover, a simple
inductiveargument (Exercise 1.10) shows that the foregoing expression is the
valid generalization of De Morgan’s law for a logical vector u of arbitrary
dimension.

A relation .# incorporated into a relational statement (+-#y) becomes,
in effect, an operator on the variables x and y. Consequently, the reduction
A|x can be defined in a manner analogous to that of ©/x. that is,

Alx = (- - (%, Fx,) Ax)H - - - ) AK).

The parentheses now imply relational statements as well as grouping.
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The relational reductions of practical interest are -/ /u, and =/u, the
exclusive-or and the equivalence reduction, respectively.

The inductive argument of Exercise .10 shows that fu =2, (+/u).
For example, if u = (1,0, 1. 1, 0), then

u=((1 70 /)£ D) 0
= (1 D+ 1)+ 0)
=0 ~1) 20
=1 /20 =1,
and 2 |, (+/u) = 2,3 = 1. Similarly, =/u = 2|,(4+/u), and as a con-
sequence,
a useful companion to De Morgan’s law.

To complete the system it is essential to define the value of :/e(0), the
reduction of the null vector of dimension zero, as the identity element of
the operator or relation <:. Thus +/e(0) = v/e(0) = 0, and X /e(0) =
Ale(0)y = 1.

A reduction operation is extended to matrices in two ways. A row
reduction of a matrix X by an operator ~» is denoted by

y— X
and specifies a vector y of dimension g(X) such that y, = ¢:/X'. A
column reduction of X is denoted by 2« //X and specifies a vector z of

dimension »(X) such that z; = /X,
For example, if

1 010
U=1]10 0 1 1
1 110

then +/U = (2,2,3), +//U=(2,1.3.1). A//U=(0.0,1,0). /U=
(0,0, 1), =//U = (0, 1, 1, 1), and +/(=//U) = 3.

1.9 SELECTION

Compression

The effective use of structured operands depends not only on generalized
operations but also on the ability to specify and select certain elements or
groups of elements. The selection of single elements can be indicated by
indices, as in the expressions v,, M’, M, and M. Since selection is a
binary operation (i.e., to select or not to select), more general selection is
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conveniently specified by a logical vector, each unit component indicating
selection of the corresponding component of the operand.

The selection operation defined on an arbitrary vector @ and a compat-
ible (i.e., equal in dimension) logical vector u is denoted by ¢ < u/a and
1s defined as follows: the vector c is obtained from a by suppressing from
a each component a; for which u, = 0. The vector u is said to compress
the vector a. Clearly »(¢) = +/u. For example, if u = (1,0,0,0,1, 1)
and @ = (M, o.n,d, a, y), then ufa = (M. a, y). Morcover, if n is even
andv = (2e) [,V'(n) = (1,0, 1,0, I,...), thenviil(n) = (1,3,5,....n — 1),
and +/(v/l(n)) = (nf2)%

Row compression of a matrix, denoted by u/A, compresses cach row
vector A’ to form a matrix of dimension w(A) x +/u. Column compres-
sion, denoted by u//A, compresses each column vector A; to form a
matrix of dimension +/u x »(A). Compatibility conditions are »(u) =
#(A) for row compression, and »(u) = u(A) for column compression.
For example, if A is an arbitrary 3 x 4 matrix, u = (0, 1,0, 1) and
v =(1,0,1); then

A A .
o 9 AlA A A
ulA =\ Ay Af7 ), v//A= 3 4 5 .1)’
. ) A Ay Ay Af
AP AP
Al A
and ulvi/A =v/ju/A =

It is clear that row compression suppresses columns corresponding to
zeros of the logical vector and that column compression suppresses rows.
This illustrates the type of confusion in nomenclature which is avoided by
the convention adopted in Sec. 1.3: an operation is called a row operation
if the underlying operation from which it is generalized is applied to the
row vectors of the matrix, and a column operation if it is applied to columns.

Example 1.1. A bank makes a quarterly review of accounts to produce the
following four lists:

1. the name, account number, and balance for each account with a balance
less than two dollars.

[£%4

. the name, account number, and balance for each account with a negative
balance exceeding onc hundred dollars.

3. the name and account number of each account with a balance exceeding
one thousand dollars.

4. all unassigned account numbers.
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The ledger may be described by a matrix
Ll

L = (L, L, Ly =

L

with column vectors L, L,, and L, representing names, account numbcrs, and
balances, respectively, and with row vectors L r’, .. . LM representing
individual accounts. An unassigned account number is identified by the word
“none” in the name position. The four output lists will be denoted by the
matrices P, Q, R, and S, respectively. They can be produced by Program 1.9.

Program 1.9. Sincc L, is the vector of balances, and 2e is a compatible vector
each of whose components equals two, the relational statement (Ly - 2€) defines
a logical vector having unit components corresponding to those accounts to be

I — P —(L; <2¢)//L L Bank ledger.
2 Q@ (Iy = —100 )L L+ | kthaccount.
Lt
3 R < (L, > 1000 €)//o?/L 3 Balance of kth account.
L,* Account number of kth
4 S «— (L, = none ¢)//€*/L — account.
L Name of kth account or
“‘none” if account number
L,* unused.

Legend
Program 1.9 Seclcction on bank ledger L (Example 1.1)

included in the list P. Conscquently, the column compression of step I sclects
the appropriate rows of L to define P. Step 2 is similar, but step 3 incorporates
an additional row compression by the compatible prefix vector a* = (1, I, 0) to
select columns one and two of L. Step 4 represents the comparison of the name
(in column L;) with the literal “‘none,” the sclection of cach row which shows
agrecment, and the suppression of all columns but the seccond. The expression
“nonc € occurring in step 4 illustrates the use of the extended definition of
multiplication.

Mesh, mask, and expansion

A logical vector 1 and the two vectors @ = u/c and b = u/c, obtained
by compressing a vector ¢, collectively determine the vector ¢. The
operation which specifies ¢ as a function of a, b, and u is called a mesh and
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is defined as follows: If a and b arc arbitrary vectors and if u is a logical
vector such that +/u = »(a) and +/u = »(b). then the mesh of a and b on
u is denoted by “a, u, b and is defined as the vector ¢ such that u/c = a
and ufc = b. The mesh operation is equivalent to choosing successive
components of ¢ from a or b according as the successive components of u
are Qor 1. If. forexample,a = (s, e. k). b = (t,a),and u = (0. 1, 0. 1, 0),

then ‘a, u. b’ = (s, t.e.a, k). As a further example, Program 1.10«

I — <0 I — u (Bl #9

2 j+0 2 ¢ «\a,u,b\ —

k<0

i - ®)

4 k : va) + wb) —

5 k<—k+1

6 3k 11 = a, b | Given vectors.

7 j <_j + 1 c ¢ = (alyblabZ’aZyb37b4va3i .. ')-
b i Index of a.

8 G P j Index of b.

9 fitl k Index of c.

10 V4= ¢ «a; u u = (0,1,1,0,1,1,0, . . ).
(@)

Legend

Program 1.10 Interfiling program

(which describes the merging of the vectors a and b. with the first and every
third component thereafter chosen from a) can be described alternatively
as shown in Program 1.10h. Since ' = (1.2,3.4.5.6,...). then
(3e) |y = (1,2,0,1,2,0,...), and consequently the vector u specified by
step I is of the form u = (0,1,1,0,1.1,0,...).

Mesh operations on matrices are defined analogously., row mesh and
column mesh being denoted by single and double reverse virgules, respec-
tively.

The catenation of vectors x, ¥y, ....2 is denoted by ¥ Dy &)+ (02
and is defined by the relation

A N e 00 D j—
T EORES! D2 = (%, X oo X0 V1o Vi o - o B

Catenation is clearly associative and for two vectors x and y it is a special
case of the mesh \x, u, ¥\ in which u is a suffix vector.
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In numerical vectors (for which addition of two vectors is defined), the
effect of the general mesh operation can be produced as the sum of two
meshes, each involving one zero vector. Specifically,

xouy =%, u, 04 4+ \0, u,
=0, u, &\ + 10, u, y\.

The operation 10, u. ¥\ proves very useful in numerical work and will be
called expansion of the vector y, denoted by u\y. Compressionof #'y by
1 and by u clearly yield ¥ and 0, respectively. Moreover, any numerical
vector & can be decomposed by a compatible vector u according to the
relation

¥ = wulx + u\u/x.

The two terms are vectors of the same dimension which have no nonzero
components in common. Thus if u = (1,0, 1,0, 1}, the decomposition of
X appears as

x=(0,%,,0 %,0) + (5,0, x5, 0, x5).

Row expansion and column expansion of matrices are defined and
denoted analogously. The decomposition relations become

X=uwuX + uv\u/X,
and X =u'ul/X + u\\u//X.

Il

The mask operation is defined formally as follows:
¢+ Ja,u b/<>nulc =ula, and ufc = ufb.

The vectors ¢, a, u, and b are clearly of a common dimension and ¢, = a,
or b, according as u, = 0 or u, = |. Moreover, the compress, expand,
mask, and mesh operations on vectors are related as follows:

Ja, u, b} = \ula, u, ulb\,

‘a, u. by = [u\a, u, u\b/.

Analogous relations hold for the row mask and row mesh and for the
column mask and column mesh.

Certain selection operations are controlled by logical matrices rather
than by logical vectors. The row compression UJA sclects clements of A
corresponding to the nonzero elements of U. Since the nonzero elements
of U may occur in an arbitrary pattern, the result must be construed as a
vector rather than a matrix. More precisely, U/A denotes the catenation
of the vectors U’/A’ obtained by row-by-row compression of A by U.
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The column compression U[]A denotes the catenation of the vectors U /A ;.
If. for example,

0 1 0 1 1

U=]|1 10 0 O

0! 100
then UA = (4,1, A1, A1 A2 A2 AB, AP).
and UlJA = (A2 A, A2 AR AP AL A,

Compression by the full matrix E (defined by E = 0) produces either a
row list (E/ Ay or a column list (E//A) of the matrix A. Moreover, a numeri-
cal matrix X can be represented jointly by the logical matrix U and the
row list U/ X (or the column list U//X), where U = (X - 0). If the matrix
X is sparse (i.e., the components are predominantly zero), this provides a
compact representation which may reduce the computer storage required
for X.

The compression operations controlled by matrices also generate a group
of corresponding mesh and mask operations as shown in Sec. S.9.

1.10 SELECTION VECTORS

The logical vector u involved in selection operations may itself arise in
various ways. It may be a prefix vector a’, a suffix w’, or an infix (/ | &/);
the corresponding compressed vectors o’/ w//x, and (/ | o/)/* are called
a prefix, suffix, and infix of x, respectively.

Certain selection vectors arise as functions of other vectors, e.g., the
vector (¥ - 0) can be used to select all nonnegative components of ¥, and
(b 7 =€) serves to select all components of b which are not equal to the
literal “x.” Two further types are important: the selection of the longest
unbroken prefix (or suffix) of a given logical vector. and the selection of the
set of distinct components occurring in a vector. The first is useful in left
(or right) justification or in a corresponding compression intended to
eliminate leading or trailing “filler components” of a vector (such as left
zeros in a number or right spaces in a short name).

For any logical vector u, the maximum prefix of u is denoted by =/u and
defined as follows:

Ve gfu<sv =d,

where j is the maximum value for which A /(e//u) = 1. The maximum
suffix is denoted by «/u and is defined analogously. If, for example,
u={(1,1,1,0,1,1,0,0,1, 1), then ofu=(1,1,1,0,0,0,0,0,0,0),
ofu =(0,0,0,0,0,0,0,0,1, 1), +/o/u = 3, and +/nju = 2.
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The leading zeros of a numerical vector ¥ can clearly be removed cither
by compression:
Y (zf(x = 0))/s,

or by left justification (normalization):
g (+/2f(x =0)) 1 x.

The extension of the maximum prefix operation to the rows of a logical
matrix U is denoted by /U and defined as the compatible logical matrix
V. such that V' = »/U’. The corresponding maximum column prefix
operation is denoted by «//U. Right justification of a numerical matrix X
is achieved by the rotation k , X, where k= +/0/(X = 0), and ‘rop
Justification is achieved by the rotation (4 //2//(X = 0)) 4 X (see Sec. S.6.)

A vector whose components arc all distinct will be called an ordered set.
The forward set selector on b is a logical vector denoted by o/b and defined
as follows: the statement v < /b implies that v; = 1 if and only il b,
differs from all preceding components of b. Hence v/b is a set which
contains all distinct components of b, and +/v/t is a minimum. For
example, if ¢ = (C, a, n, a, d, a), then (g/c)fc = (C, a, n, d) is a list of the
distinct letters in ¢ in order of occurrence. Clearly (o/b)/b = b if and only
if b is a set.

The backward set selector 7/b is defined analogously (c.g.. (7/¢)fe =
(C. n, d, a)). Forward and backward set selection are extended to matrices
by both rows (a/B, and 7/B) and columns (o//B, and 7//B) in the estab-
lished manner.

1.11 THE GENERALIZED MATRIX PRODUCT

The ordinary matrix product of matrices X and Y is commonly denoted
by XY and defined as follows:

7 «— XY<>ZJ.' = Z X, x Yj,”*_

viX) r
k=1 '

1,2, (X)
1,2,...¢(Y).

It can be defined alternatively as follows:
(XY),' = +/(X x Y.

This formulation emphasizes the fact that matrix multiplication incorpor-
ales two clementary operations (4, x ) and suggests that they be displayed
explicitly.  The ordinary muatrix product will therefore be written as
X'V
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More generally, if ©; and ©, are any two operators (whose domains
inciude the relevant operands), then the generalized matrix product
X . 1Y is defined as follows:

(X 1Y) = O (X7 0,Y)), {; _ :; f‘(())f))
For example, if 41
1 3 20
A=1(2 1 0 1 and B = 03
4 0 0 2 02
2 0
4 14 0 I
then A}'B=(10 5}, A-B=|0 0],
20 4 [ 0
1 0 4 6
A B=1{1 1], and (A7 0)"B=16 4
0 1 6 1

The generalized matrix product and the sclection operations together
provide an elegant formulation in several established arcas of mathe-
matics. A few examples will be chosen from two such areas. symbolic
logic and matrix algebra.

In symbolic logic, De Morgan’s laws (A /u = v/u and =/u = /[u)
can be applied directly to show that

U/ v=U"V.

In matrix algebra, the notion of partitioning a matrix into submatrices of
contiguous rows and columns can be generalized to an arbitrary parti-
tioning specified by a logical vector u. The following easily verifiable
identities are typical of the useful relations which result:

X 1Y = (@X) T @]Y) + (u/X) " (u]]¥),
uf(X 7 Y)y= X1 (ulY),
ul[( X% Y)=(u/|X)7 Y.

The first identity depends on the commutativity and associativity of the
operator + and can clearly be generalized to other associative commu-
tative operators, such as A, v, and /.

The generalized matrix product applies directly (as does the ordinary
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matrix product X . Y) to vectors considered as row (thatis, | X n) or as
column matrices. Thus:

2= Xy = /(X 0),
Ty X<z, = Oy ©, X)),

Ze—y ixz;_>z = O/(y O, x).

The question of whether a vector enters a given operation as a row
vector or as a column vector is normally settled by the requirement of
conformability, and no special indication is required. Thus y enters as
a column vector in the first of the preceding group of definitions and as
a row vector in the last two. The question remains, however, in the case
of the two vector operands, which may be considered with the pre-operand
either as a row (as in the scalar product y * x) or as a column. The
latter case produces a matrix Z and will be denoted by

Z«—y ((‘7‘2 X,

where Z/ =y, 0, &, wW(Z) = »(y), and »(Z) = »(x).* For example, if
each of the vectors indicated is of dimension three, then

Yo Yo Vs Yo Y M
exy=|y., ¥ |5 Y oe=|y:m ¥y ¥ s
Yo Yo s Yso Yao Vs
110

a*3) Ta*3)=|1 1 0
0 0 0

1.12  TRANSPOSITIONS

Since the generalized matrix product is defined on columns of the
post-operand and rows of the pre-operand, convenient description of
corresponding operations on the rows of the post-operand and columns
of the pre-operand demands the ability to transpose a matrix B, that is, to
specify a matrix C such that C/ = B,’. In ordinary matrix algebra this
type of transposition suffices, but in more general work transpositions

* Since cach “vector” y; O, %, is of dimension one, no scan operator O, is required,
and the symbol = may be interpreted as a “'null™ scan.
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about either diagonal and about the horizontal and the vertical are also
useful. Each of these transpositions of a matrix B is denoted by a superior
arrow whose inclination indicates the axis of the transposition. Thus:

C B C[j = Bj"
CB G/ =Bl

vil1—d

i=12,...,uB)

C—B C/=Br1""]j=12...,%B)

—

¢C—B C/ =B,

For a vector &, either & or ¥ will denote reversal of the order of the com-

.
ponents. For ordinary matrix transposition (that is, B), the commonly
used notation B will also be employed.

Since transpositions can effect any onc or more of three independent
alternatives (i.e., interchange of row and column indices or reversal of
order of row or of column indices), repeated transposition can produce
cight distinct configurations. There are therefore seven distinct transforma-
tions possible; all can be generated by any pair of transpositions having
nonperpendicular axes.*

1.13 SPECIAL LOGICAL MATRICES

Certain of the special logical vectors introduced in Sec. 1.7 have uscful
analogs in logical matrices. Dimensions will again be indicated in paren-
theses (with the column dimension first) and may be clided whenever the
dimension is determined by context. If not otherwise specified, a matrix is
assumed to be square.

Cases of obvious interest are the fu// matrix E(m X n), defined by
E(m x n) = 0, and the identity matrix I{m x n), defined by I = (i = ).
More generally, superdiagonal matrices “I(m X n) are defined such that
“Iim x n) = (j= i+ k), for k = 0. Clearly % =1. Moreover, for
square matrices "} F = "0,

Four rriangular matrices will be defined, the geometrical symbols
employed for each indicating the (right-angled isosceles) triangular area of

* Thesc transpositions gencrate the rotation group of the square [cf. BirkhofT and
MacLane (1941) Chap. VI]. A pair of transpositions commute if and only if their axes
are perpendicular. Hence the pair <- and t may be written unambiguously as<d .
Morcover, <T~ =% . The remaining two transformations can be denoted by <5 and&s
with the convention that the operator nearest the opcrand (i.e., the horizontal) is
exccuted first.
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the m x n rectangular matrix which is occupied by ones. Thus
— , i 1

C— " (mxn)<=C;
y . } i .
C—"(mxny<=>Clyy_; fori=1,2,...,m
andj=1,2,...,n.

|
|
|
. ,“Hﬂ.(=(!+,/: min (m, n))
C<—..(mxny<sCt i

C (mxn)y<sCiHil7H
The use of the matrices E and I will be illustrated briefly. The relation
u ;v =2|,(u ; v)can be extended to logical matrices as follows:

U'V=QE)|(UxV)

the trace of a square numerical matrix X may be expressed as r = +/I/X.
The triangular matrices are employed in the succeeding section.

1.14 POLYNOMIALS AND POSITIONAL NUMBER
SYSTEMS

Any positional representation of a number 7 in a base 5/ number system
can be considered as a numerical vector x whose base b ralue is the quantity
n=w % where the weighting vector w is defined by w = (b" 1,
b2 b2 bl ). More generally, ¥ may represent a number in a
mixed-radix system in which the successive radices (from high to low order)
are the successive components of a radix vector y.

The base y value of x is a scalar denoted by y - % and dcfined as the
scalar producty | & = w . x, where w = {71 | y is the weighting vector.
For example, if y = (7, 24, 60, 60) is the radix vector for the common
temporal system of units, and if ¥ = (0, 2, 1, 18) represents elapsed time in
days, hours, minutes, and seconds, then

t = w } x = (86400, 3600, 60, 1) T (0, 2, 1, 18) = 7278

is the elapsed time in seconds, and the weighting vector w is obtained as
the product

01 1 I 7 X (24, 60, 60) 86400
oo oot oa] . [24) [ xie0, 60) [ 3600
=10 0 0 1 60 | x/60) B 60
0000 60 x /€(0) 1

If b is any integer, then the value of x in the fixed base b is denoted by
(be) |_x. For example, (2€) | a*(5) = 24. More generally, if yis any real
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number, then (ye€) | « is clearly a polynomial in y with coefficients x,,
Xy, ..., %, that is,

(ye) Ls =2y - x4 x,
Writing the definition of y |« in the form

' +
y. x=(17yix

exhibits the fact that the operation | is of the double operator type. Its
use in the generalized matrix product therefore requires no secondary scan
operator. This will be indicated by a null placed over the symbol _ . Thus
Z X Y2/ =X'1Y,
For example, (y€) 1 X represents a set of polynomials in y with coeffi-
cients X, X,, ..., X,, and Y | ¥ represents a set of cvaluations of the

vector ¥ In a sct of bases Y!, Y2 ... Y~

1.15 SET OPERATIONS

In conventional treatments, such as Jacobson (1951) or Birkhoff and
MacLane (1941), a set is defined as an unordered collection of distinct
elements. A calculus of sets is then based on such elementary relations as
set membership and on such elementary operations as set intersection and
set union, none of which imply or depend on an ordering among members
of a set. In the present context it is more fruitful to develop a calculus of
ordered sets.

A vector whose components are all distinct has been called (Sec. 1.10)
an ordered set and (since no other types are to be considered) will hercafter
be called a set. In order to provide a closed system, all of the *‘set opera-
tions™ will, in fact, be defined on vectors. However, the operations will, in
the special case of sets, be analogous to classical set operations. The
following vectors, the first four of which are sets, will be used for illustra-
tion throughout.

t=(t, e, a)
a=(a te)
s =(s,a,t, e, d)
d = (d, u, s, k)
n=(n,o,n, s ¢, t)
r=1(r,c.d, un,d a nt
A variable z is a member of a vector ¥ if = = &, for some /. Membership

is denoted by zex. A vector x includes a vector ¥ (denoted by either
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x 2 yory < x)if cach element v, is a member of x. If both ¥ © y and
¥ < ¥, then ¥ and y are said to be similar. Similarity of ¥ and ¥ is denoted
byx =y Forexample,t < s, t = r,tCa,a<t t=aandt /L1 If
x € yand x:# y, then xis strictly included in y. Strict inclusion is denoted
by x < y.

The characteristic vector of x on ¥ is a logical vector denoted by €,*, and
defined as follows:

u = ¢ <>p(u) =p(y), and u; = (¥, € %).

For example, €/ = (0, 1,1, 1,0),¢ = (1, 1, 1).¢4 = (1,0,0,0, 1), ¢, =
(1,0,1,0),and e,” = (1,0, 1,0, 1, 1).
The intersection of y with ¥ is denoted by ¥ M «x, and defined as follows:

Yy x=¢€%y.

For example, s "d =(s,d), d ns =(d,s). sNr=(a,te,d) and
rMs =(ed,d, a, t). Clearly,¥ "y =y N x although ¥ N yis not, in
general, equal to y M ¥, since the components may occur in a different
order and may be repeated a differing number of times. The vector
x N yissaid to be ordered on x. Thus a is ordered on s. If x and y contain
no common elements (that is, (x N y) = €(0)), they are said to be disjoint.

The set difference of y and x is denoted by ¥ A ¥ and defined as follows:

yidsx= ny/y-

Hence ¥ A x is obtained from y by suppressing those components which
belong to ¥. For example, €/ = (1,0.0,0, ) and s At = (s, d). More-
over, €’ = (0,0,0) and t A s = €(0).

The wnion of y and x is denoted by y U x and defined as follows:*
yUx=y O (xAy). Forexample.s Ud = (s.a.te.d.u k).d Us =
(d,u;s,k,a,t,e), sUa=sUt=s, and n Ut =(n o, n s ¢t a).
Ingeneral, s Uy =y Ux, andx=(x Ny U(xAy) If xand y are
disjoint, their union is equivalent to their catenation, that is, ¥ Ny = €(0)
implies that x Uy = & {3 y.

In the foregoing development, the concepts ol inclusion and similarity
arc equivalent to the concepts of inclusion and equality in the conventional
trcatment of (unordered) sets. The remaining definitions of intersection,
difference, and union differ from the usual formulation in that the result of
any of these operations on a pair of ordered sets is again an ordered set.
With respect to simifarity. these operations satisfy the same identities as do
the analogous conventional sct operations on unordered sets with respect
to equality.

* The symbols W and M (and the operations they denote) are commonly called cup
and cap, respectively.
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a # 0
a # 1
a x 0
a = 1
xl = (a, b, a) b # 0
x2 = (#, %) A=} Db # 1
x% =(0, 1) b * 0
d =(3,2,2) b x 1
a # 0
a # 1
a x 0
a = 1
Table 1.11  The Cartesian product A = x! - x2 = &3

1.16 RANKING

The rank or index of an clement ¢ e b is called the b index of ¢ and is
defined as the smallest value of 7 such that ¢ = b,. To establish a closed
system, the b index of any element a ¢ b will be defined as the null character
o. The b index of any element ¢ will be denoted by b ¢ ¢; if necessary. the
index origin in use will be indicated by a subscript appended to the
operator r. Thus, if b = (a,p.e). by p=1l.and b p = 2.

The b index of a vector c¢ is defined as follows:

k—bic<>k;,=bic,

-
The extension to matrices may be either row by row or (as indicated by a
doubled operator symbol «) column by column. as follows:
J<«-B.C<>J =B C’,
K«—BuC<>K,=B,;(C,
Use of the ranking operator in a matrix product requires no secondary
scan and is therefore indicated by a superior null symbol. Moreover,

since the result must be limited to a two-dimensional array (matrix), either
the pre- or post-operand is required to be a vector. Hence

J< B/ c<>J =B c,
K«b, C<»K,=b(C,.

The first of these ranks the components of ¢ with respect to cach of a set
of vectors B, B, ..., B", whereas the sccond ranks cach of the vectors
C,. C, ..., C with respect to the fixed vector b.
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The use of the ranking operation can be illustrated as follows. Consider
the vector b = (a, b, ¢, d, ¢) and the set of all 35 three-letter sequences
(vectors) formed from its components. If the set is ordered lexically, and
if « is the ith member of the set (counting from zero), then

j = (b)) 1 (b, x).
For example, if ¥ = (c, a, b), then (b ¢, %) = (2,0, 1), and j = 51.

1.17 MAPPING AND PERMUTATIONS

Reordering operations

The selection operations employed thus far do not permit convenient
reorderings of the components. This is provided by the mapping operation
defined as follows:*

C~—a,<—C, = akL.

For example, if @ = (a, b, ..., z) and k = (6, 5, 4), then ¢ = (f, e, d).
The foregoing definition is meaningful only if the components of k each
lie in the range of the indices of @, and it will be extended by defining a; as
the null element o if j does not belong to the index set of a. Formally,
a,, if m, e J(v(a))
C A <>c = '
° if m, ¢ J(v(a)).
The ability to specify an arbitrary index origin for the vector a being
mapped is provided by the following alternative notation for mapping:

[ami if m; e V(v(a))
\© lf mi ?’ "j(v(a))v

c«mf,a<rc, =

where j-origin indexing is assumed for the vector a. For example, if a
is the alphabet and m = (5, 0,0, 4, 27,0, 3), then ¢ = m {,a = ([, o, o, e,
0,0, d), and (¢ :4 c€)/c = (f, e, d). Moreover, m |,a = (d, s, ¢, ¢, 2,0, b).
Elision of j is permitted.

If a< b, and m = by a, then clearly m{;b =a. 1If a € b, then
m [, b contains (in addition to certain nulls) those components common to
b and a, arranged in the order in which they occur in a. In other words,

(m - £oe))(m|,by=a b

* For the purposes of describing algorithms, this notation is superior to the classical
“disjoint cycles” notation for permutations [cf. Birkhoff and MacLane, (1941)] because
(1) the direction of the transformation (from a to ¢) is unequivocally indicated, and (2)
the notation directly indicates a straightforward and efficient method for actual execu-
tion, namely, indirect addressing.
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Consequently, if p, q, ..., t are vectors, each contained in b, then each
can be represented jointly by the vector b and a mapping vector. If, for
example, b is a glossary and p, ¢, etc., are texts, the total storage required
for b and the mapping vectors might be considerably less than for the
entire set of texts.

Mapping may be shown to be associative, that is, m! |, (m?f;a) =
(m! {, m®|, a. Mapping is not, in general, commutative.

Mapping is extended to matrices as follows:

A« M|, B<>A'= M|, B,
C— M..’fh B Cj = Mf."h B}"

Row and column mappings are associative. A row mapping 'M and a
column mapping *M do not, in general, commute, but do if all rows of
IM agree (that is, !M = € 2 p), and if all columns of 2M agree (that is,
M = q ¢ €). The generalized matrix product is defined for the cases

el
m _|9A, and M | a.
The alternative notation (that is, ¢ = a,,), which does not incorporate
specification of the index origin, is particularly convenient for matrices and
1s extended as follows:

A<« B™ <> A’ = B™,

A<«—B, 6 < A, =B,.
Permutations

A vector k of dimension n is called a j-origin permutation vector if
k = J(n). A permutation vector used to map any set of the same dimen-
sion produces a reordering of the set without either repetition or suppres-
sion of elements, that is, k |, a = a for any set a of dimension »(k). For
example, if a = (f, 4,%,6,2), and k= (4,2,5,1,3), then k[, a = (6, 4,
z, f, %).

If pis an h-origin permutation vector and q is any j-origin permutation
vector of the same dimension, then q |; p is an /-origin permutation vector.

Since

v(v(a)f,a = a,

the interval vector V(n) will also be called the j-origin identity permutation
vector. 1If p and q are two j-origin permutation vectors of the same
dimension » and if q §; p = vV(n), then p |, ¢ = V(n) also and p and q are
said to be inrerse permutations. If p is any j-origin permutation vector,
then ¢ = p¢; UV is inverse o p.

The rotation operation k 1 & is a special case of permutation.
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Function mapping

A function f which defines for each element b, of a set b a unique
correspondent a, in a set a is called a mapping from b 1o a. If f(b,) = a,,
the element b, is said to map into the element a,. If the elements f(b,)
exhaust the set a, the function fis said to map b onto a. 1f b maps onto a
and the elements f(b;) are all distinct, the mapping is said to be one-to-one
or biunigue. In this case, »(a) = »(b), and there exists an inverse mapping
from a to b with the same correspondences.

A program for performing the mapping f from b to a@ must therefore
determine for any given element b e b, the correspondent @ € @, such that
a = f(b). Because of the convenience of operating upon integers (e.g.,
upon register addresses or other numeric symbols) in the automatic
execution of programs, the mapping is frequently performed in three
successive phases, determining in turn the following quantities:

1. theindex i = b ¢ b,
2. the index & such that a, = f(b)),
3. the element a,,

The three phases are shown in detail in Program 1.12q. The ranking is
performed (steps 1-3) by scanning the set b in order and comparing each
element with the argument h. The second phase is a permutation of the
integers 1, 2, ..., »(b), which may be described by a permutation vector
j. such that j, = k. The selection of j; (step 4) then defines k, which, in
turn, determines the selection of a, on step 5.

Example 1.2. If
b = (apple, booty, dust, eye, night},

a = (Apfel, Auge, Beute, Nacht, Staub)

are, respectively, a set of English words and a set of German correspondents (both
in alphabetical order), and if the function required is the mapping of a given
English word b into its German equivalent a according to the dictionary corre-
spondences:

English: apple booty dust eye  night

German: Apfel Beute Staub Auge Nacht
thenj = (1,3,5,2,4). Ifb = “night," theni = 5,j;, = 4,anda = a; = Nacht.

If k is a permutation vector inverse to j, then Program 1.12b describes a
mapping inverse to that of Program 1.12a. If j = (1,3, 5,2, 4), then
k =(1,4,2,5,3). The inverse mapping can also be described in terms of
J, asis done in Program 1.12¢. The selection of the ith component of the
permutation vector is then necessarily replaced by a scan of its components.
Programs 1.12d and 1.12e show alternative formulations of Program 1.12a.
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Program 1.12 Mapping defined by a permutation vector j
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Ordering vector

If ¥ is a numeric vector and k is a j-origin permutation vector such that
the components of y = k |; x are in ascending order, then k is said to order
x. The vector k can be determined by an ordering operation defined as
follows:

k—10/x

implies that k is a j-origin permutation vector, and that if y = k |, ¥, then
either ¥, << ¥,., or ¥, =%, and k, < k,.;. The resulting vector k is
unique and preserves the original relative order among equal components.
For example, if & = (7, 3, 5, 3), then 0,/ = (2,4, 3, 1).

The ordering operation is extended to arbitrary vectors by treating all
nonnumeric quantities as equal and as greater than any numeric quantity.
For example, if @ = (7,9, 3, ,° 5, 3), then 0;/a =(3,6,5,1,2,4), and if
b is any vector with no numerical components, then 0,/b = J(»(b)).

Ordering of a vector a with respect to a vector b is achieved by ordering
the b-index of a. For example, if a = (e, a,s,t, 4,7, t, h), and b is the
alphabet, then m = b ¢, a = (5,1, 19, 20, ¢, ©, 20, 8) and 0,/m = (2, 1, §,
3,4,7,5,6).

The ordering operation is extended to matrices by the usual convention.
If K = 0,//A, then each column of the matrix B = K f{; A isinascending
order.

1.18 MAXIMIZATION

In determining the maximum m over components of a numerical vector
x,it is often necessary to determine the indices of the maximum components
as well. The maximization operator is therefore defined so as to determine
a logical vector v such that v/x = me.

Maximization over the entire vector & is denoted by €[, and is defined as
follows: if v = €[, then there exists a quantity m such that v/x = me and
such that all components of v/ are strictly less than »m. The maximum is
assumed by a single component of x if and only if 4+/v = 1. The actual
value of the maximum is given by the first (or any) component of v/x.
Moreover, the j-origin indices of the maximum components are the
components of the vector v/u.

More generally, the maximization operation v < u[x will be defined so
as to determine the maximum over the subvector u/x only, but to express
the result » with respect to the entire vector x. More precisely,

v ufx<>v = u\(e[(u/x)).

The operation may be visualized as follows—a horizontal plane punched
at points corresponding to the zeros of u is lowered over a plot of the
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components of #, and the positions at which the plane first touches them
are the positions of the unit components of ». For example, maximization
over the negative components of x is denoted by

v (% < 0)x

and if ¥ =(2, =3,7, —5,4, —3,6), then (» <<0)=(0,1,0,1,0,1,0),
v=1(0,1,0,0,0,1,0), v/x = (=3, —=3), (v/%); = —3, and _v/i! =(2,6).
Minimization is defined analogously and is denoted by u|.

The extension of maximization and minimization to arbitrary vectors is
the same as for the ordering operation, i.e., all nonnumeric quantities are
treated as equal and as exceeding all numeric quantities. The extensions
to matrices are denoted and defined as follows:

Ve UlX<>Vi= U[X,
Ve Ul[X<=V,=U,[X,
Ve UlsenViz Uls,

I3}

Veul|XeV, =ulX

As in the case of the ordering operation, maximization in a vector @ with
respect to order in a set b is achieved by maximizing over the b-index of a.
Thus if

it

(dchdhshdchchd)
a6kqd435k82j92

represents a hand of thirteen playing cards, and if
c,d,h,s,0,0,0,0, 0,0, 0,0, 0
B (2, 3,4,5,6,7,8,9,10,], q, k, a>,
1,0, 2, 1,2,3,2, 1,0,2,0,2, 1)
12,4,11,10,2,1,3,11,6,0,9,7,0 ’

then B, H= (

(4’ 13) ,? (B ((J H) = (25’ 45 37, 233 28, 40\ 295 241 6’ 267 97 33’ 13)7

and (€[((4, 13) ° (B, H)))/H = (s, 3)

is the highest ranking card in the hand.

1.19 INVERSE FUNCTIONS

To every biunique* function f there corresponds an inverse function g
such that g(f(z)) = « for cach argument x in the domain of the function f.
* 1f the function f'is many-to-one, the specification of a unique inverse ¢ is achicved

by restricting the range of ¢ to some set of “principal” values, as is done, for example,
for the inverse trigonometric functions.
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It is common practice either to introduce a distinct symbolism for the
inverse function, as for the inverse functions of logarithm (log, ) and
exponentiation (b%), or to use a superscript —1, as in sin~!z or f* '(x).

The first alternative doubles the number of distinct operator symbols
required and obscures the relation between pairs of inverse functions;
the second raises other difficulties. The solution adopted here is that of
implicit specification; 1i.e., a statement is permitted to specify not only a
variable but also any function of that variable. Functions may therefore
appear on both sides of the specification arrow in a statement. For
example,

2e) | x <=z

specifies the variable ¥ as the vector whose base two value is the number z.
Certain ambiguities remain in the foregoing statement. First, the
dimension of x is not specified. For example, if z = 12, ¥ = (1, 1,0, 0) is
an admissible solution, but so are (0, 1,1,0,0) and (0,0,0, 1, 1, 0, 0).
This could be clarified by compatibility with a specified dimension of €.
Thus the statement
(2€(3)) 1w <=z

specifies ¥ unambiguously as (0, 1, 1, 0, 0). More generally, however, any
previously specified auxiliary variables will be listed to the right of the
main statement, with a semicolon serving as a separation symbol. The
current example could therefore be written as

p(x) <5

2e) | & <2z; »(x).

The second ambiguity concerns the permissible range of the individual
components of . For example, the base two value of ¥ = (5, 2) is also
twelve. For certain functions it is therefore nccessary to adopt some
obvious conventions concerning the range of the result. The assumption
implicit in the preceding paragraph is that each component of « is limited
to the range of the residues modulo the corresponding radix. This con-
vention will be adopted. Hence the pair of statements

y (7, 24, 60, 60)
y i x<T7278; y
determines ¥ unambiguously as the vector (0, 2, 1, 18).

It is also convenient, though not essential, to use selcction operations on
the left of a statement. Thus the statement

u/b«a
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is understood to respecify only the selected components of b and to leave
all others unchanged. It is therefore equivalent to the statement

b—\i/b, u,a\.
Similarly,
u/b < uja
is equivalent to
b« /b u,al

1.20 LEVELS OF STRUCTURE

Vectors and matrices are arrays which exhibit one level and two levels of
structure, respectively. Although in certain fields, such as tensor analysis,
it is convenient to define more general arrays whose rank specifies the
number of levels of structure (i.e., zero for a scalar, one for a vector of
scalars, two for a vector of vectors (matrix), three for a vector of matrices,
ctc.), the notation will here be limited to the two levels provided by the
matrix.* The present section will, however, indicate methods for removing
this limitation.

The only essential particularization to two levels occurs in the provision
of single and double symbols (e.g., ““/** and ““//”, ' and || ) for row
and column operations, respectively, and in the usc of superscripts and
subscripts for denoting rows and columns, respectively. In applications
requiring multiple levels, the former can be gencralized by adjoining to the
single symbol an index which specifies the coordinate (e.g., </, and “/,”,
for row and for column compression, and, in general, *“/,”.) The latter can
be generalized by using a vector index subscript possessing one component
index for cach coordinate.

The generalized notation can be made compatible with the present
notation for vectors and matrices by adopting the name tensor and a
symbol class (such as capital italics) for the general array of arbitrary rank.

1.21 SUBROUTINES

Detail can be subordinated in a more general manner by the use of
subroutines. The name of one program appearing as a single statement in
a second program implies execution of the named program at that point;
the named program is called a subroutine of the second program. If, for
example, “Cos” is the name of a program which specifies = as the cosine of

* Further levels can, of course, be handled by considering a family of matrices "M,
M, ..., "M, or familics of families ;M.

PR
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the angle between the vectors ¥ and y, then Program 1.13a uses the pro-
gram “Cos” as a subroutine to determine r as the cosine of the angle
between the vectors p and q.

— ¥ <p — Cos (D, Q) — r<Cos(p,q —
Yy <=9 Pz —
Cos

(@ ® (©)

Program 1.13 Modes of subroutine reference

It is sometimes convenient to include the names of the arguments or
results or both in the name of the subroutine as dummy variables. Thus if
“Cos (%, ¥)” is the name of a subroutine which determines = as the cosine
of the angle between & and y, then Program 1.13b uses Cos (¥, ) as a
subroutine to determine r as the cosine of the angle between p and q.
Similarly, the program “z «<— Cos (¥, ¥)”’ can be used as in Program 1.13¢
to produce the same result.

1.22 FILES

Many devices used for the storage of information impose certain restric-
tions upon its insertion or withdrawal. The items recorded on a magnetic
tape, for example, may be read from the tape much more quickly in the
order in which they appear physically on the tape than in some other
prescribed order.

Certain storage devices are also self-indexing in the sense that the item
selected in the next read from the device will be determined by the current
state or position of the device. The next item read from a magnetic tape,
for example, is determined by the position in which the tape was left by the
last preceding read operation.

To allow the convenient description of algorithms constrained by the
characteristics of storage devices, the following notation will be adopted.
A file is a representation of a vector & arranged as follows:

plﬂ xlﬁ p2’ x2* tees xx'(x)’ Ps'(x) S 15 % pr(x) S2s ey pr(p)'

The null elements denote the “unused” portion of the file not employed in
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representing . Each partition p; determines a position (position j) in the
file. If a file (> is in position j, then a forward read, denoted by

z, p b,

specifies « by the component «;, the auxiliary variable p by the succeeding
partition p;,;, and stops the file in the position j + I.

The position of a file @ will be denoted by =(d). Thus the statement
j < m(®) specifies j as the position of ®, whereas 7(d) < j positions the
file to j. In particular, m(®) <1 denotes the rewinding of the file and
m(P) < v denotes winding, i.e., positioning to the extreme end of the file.
Any file for which the general positioning operation #(®) <« is to be
avoided as impossible or inefficient is called a serial or serial-access file.

Each terminal partition (that is, p; and p,,) assumes a single fixed
value denoted by 2. Each nonterminal partition p; may assume one of
several values denoted by A%, ....A,,,, the partitions with larger
indices normally demarking larger subgroups of components within the
file. Thus if ¥ were the row list of a matrix, the last component might be
followed by the partition A,, the last component of each of the preceding
rows by A,, and the remaining components by A;. The auxiliary variable p
specified by the partition symbol during the read of a file is normally used
to control a subsequent branch.

A file may be produced by a sequence of forward record statements:

oD —x,p for i e U(v(x)),

where p is the partition symbol recorded after the component x,. As in
reading, each forward record operation increments the position of the file
by one. A file which is only recorded during a process is called an output
file of the process; a file which is only rcad is called an input fife.

Different files occurring in a process will be distinguished by righthand
subscripts and superscripts, the latter being usually employed to denote
major classes of files, such as input and output.

Example 1.3. A sct of minput files @4, / € 1!(sn), cach terminated bya partition
2,, is to be copied to a single output file ®;* as follows. Successive items (com-
ponents) are chosen in turn from files ®,', @1 @ 11 D always
omitting from the scquence any exhausted file. A partition A, is to be recorded
with the last item recorded on ®,*, and all files are to be rewound. The process is
described by Program 1.14.

Program 1.14. Stcp 8 cycles k through the values | to m, and step 9 allows the
rcad on step 10 to occur only if u,, = 0. The logical vector w is of dimension m
and designates the set of exhausted files. lts kth component is set to unity by
step 11 when file k& is exhausted, as indicated by the occurrence of the partition &,.
Each read is normally followed by step 13, which records on the output file the



12 The language §1.22

1 — u < e(m)
@1 | Input files for i e ¢1(m).
2 k<0 Each has terminal
3 m(®@2) « 1 partition A,.
4 iem ®,2 | Output file.
. u File @ ! is exhausted if
5 D) 1 j and only if u; = 1.
6 i<—i—1 7~ b Item to be recorded.
7 u e s
L
g K < mlk + 1) egend
9 = u; @1
10 b,p b (Dkl
11 U —(p =2y
12 u e =
13 D2« b,y
14 (D12 e b’ 7‘2

Program 1.14 Program for Example 1.3

item read. However, when the last file becomes exhausted, step 14 is executed
instead to record the last item, together with the final partition A,.

Steps 1-6 initialize the parameters # and & and rewind all files. After the last
item is recorded by step 14, the file rewinds are repeated before the final termina-
tion on step 7.

It is sometimes convenient to suppress explicit reference to the partition
symbol read from a file by using a statement of the form

‘)\_l“”eo(bpz_’,

where the indicated branches depend on the value of the partition p,,,
which terminates the read. Thus the left or the right branch is taken
according to whether p,., = A, or p;,; =A,. Certain files (such as the
1BM 7090 tape files) permit only such “immediate” branching and do not
permit the partition symbol to be stored for use in later operations, as was
done in Program 1.14,

In recording, the lowest level partition A, may be elided. Thus statement
13 of Program 1.14 may be written as

D2« b
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A file may be read or recorded backward as well as forward. A backward
read is denoted by

x, p < 1(])’

and if & is initially in position j + [, then & = x,, p = p,. and the final
position becomes j. Backward rccording is defined analogously. The
zero prescript may be omitted from the symbol (@ for both forward
reading and recording.

The conventions used for matrices can be applied in an obvious way to
an array of files &%, For example, the statement

(D) —e€
denotes the rewinding of the row of files O, je(»(D)); the statement
7(d;) <€

denotes the rewinding of the column of files O/, i e (u()); and the
statement

u/Q’ < ufx, u/p
denotes the recording of the vector component x; on file @, together with
partition p; for all j such that u; = 1.

As for vectors and matrices, j-origin indexing may be used and will
apply to the indexing of the file positions and the partition vector A as well
as to the array indices. However, the prescripts (denoting direction of
read and record) are independent of index origin. O-origin indexing is
used in the following example.

Lxample 1.4. Files % and @,° contain the vectors x and v, respectively, cach
of dimension #. In the first phase, the components arc to be merged in the order
Xg, Yo, X1, Y1, - - - » %1, ¥, 1, and the first n components of the resulting vector
are to be recorded on file @', and the last # on file ®;'. In other words, the
vectors ! = a”/z, and y! = w"/z are to be recorded on @t and &1, respectively,
where 2 =\», 1,y ,andu =(0,1,0,1,...,0,1). In the next phasc, the roles
of input and output files are reversed, and the same process is performed on x!
and y', that is, ¥* = a"/( ¥, u, y' ), and ¥*> = w"/( x', u, ¥ ) are recorded on
files @, and @,°, respectively. The process is to be continued through s phases.

Program 1.15. The program for Example 1.4 begins with the rewind of the
entire 2 x 2 array of files. To obviate further rewinding, the second (and cach
subsequent even-numbered) execution is performed by reading and recording all
files in the backward direction. Step 6 performs the essential read and record
operation under control of the logical vector u, whose components 4, 4, u,
determine, respectively, the subscript of the file to be read, the subscript of the
file to be recorded, and the direction of read and record. The file superscripts
(determining which classes serve as input and output in the current repetition) are
also determined by u,, the input being 1, and the output @2,. The loop 6-8 copies
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0-origin indexing
1 — =(®) —EQ x2) D File array of dimension
2 x 2;original input ®%;
2 u —€(3) _ original output ®.
3 m«—m—1 — u Control vector.
4 u <1 u, | Column index of input
file.
3 k in u, | Column index of output
6 ug([)t‘jj « uz(Dﬁf) file.
7 u, < 1, u, | Row index of current
- input file, and direction
8 | k<~k—1 of read and record.
9 TRRTH n Number of items per
- file.
10 =1 Uy U, - .
m Required number of
merges.

Legend
Program 1.15 Program for Example 1.4

n items, alternating the input files through the negation of w#, on step 7. When
the loop terminates, ¢, is negated to interchange the outputs, and the loop is
repeated unless #; = u,. Equality occurs and causes a branch to step 3 if and
only if all 2n items of the current phase have already been copied.

Step 3 decrements sn and is followed by the negation of ¢ on step 4. The com-
ponent w, must, of course, be negated to reverse direction, but the need to negate
uyand w, is not so evident. It arises because the copying order was prescribed for
the forward direction, beginning always with the operation

Do n
oy — Py

An equivalent backward copy must therefore begin with the operation
1@, - 1(D17~

Not all computer files have the very general capabilities indicated by the
present notation. Some files, for example, can be read and recorded in the
forward direction only and, except for rewind, cannot be positioned
directly. Positioning to an arbitrary position k must then be performed by
a rewind and a succession of (k — 1) subsequent reads. In some files, re-
cording can be performed in the forward direction only, and the positions
are defined only by the recorded data. Consequently, recording in posi-
tion k makes unreliable the data in all subsequent positions, and recording
must always proceed through all successive positions until terminated.
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1.23 ORDERED TREES

Directed graphs

For many processes it is convenient to use a structured operand with the
treelike structure suggested by Fig. 1.16. It is helpful to begin with a more

31
3
32

Figure 1.16 A general triply rooted tree with A(T) = 16, wW(T) = (3, 3, 4, 3, 2),
»(T) =5, w(T) =(3,7,8,5, 3), and 1(T) = 26
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general structure (such as Fig. 1.17) in which a unidirectional association
may be specified between any pair of its components.

A directed graph comprises a vector n and an arbitrary set of unilateral
associations specified between pairs of its components. The vector n is
called a node vector and its components are also called nodes. The associa-
tions are conveniently specified by a (logical) connection matrix U of
dimension »(n) x »(n) with the following convention: there is an associa-
tion, called a branch, from node i to node j if and only if U/ = L.

A directed graph admits of a simple graphical interpretation, as
illustrated by Fig. 1.17. The nodes might, for example, represent places,
and the lines, connecting streets. A two-way street is then represented by
a pair of oppositely directed lines, as shown between nodes 3 and 4.

If k is any mapping vector such that

Uir=1 fori=23,...,uk),

then the vector p = kfn is called a path vector of the graph (n, U). The
dimension of a path vector is also called its /ength. Nodes k; and k, are
called the initial and final nodes, respectively; both are also called
terminal nodes. 1f j is any infix of k, then ¢ = jfn is also a path. It is
called a subpath of p and is said to be contained in p. 1f v(q) < »(p), then
q is a proper subpath of p. If k; = k, and p = kfn is a path of a length
exceeding one, p is called a circuit. For example, if k = (6,1,7,7, 2,6,
1, 5), then p = (ng, ny, n,, n,, n, ng ny, n;)is a path vector of the graph
of Fig. 1.17, which contains the proper subpaths (n,, n,, ng), (ny, n,,
n,, n, ng n,). and (n,, n,), the last two of which are circuits. Node j
is said to be reachable from node i if there exists a path from node i to
node j.

Ordered trees

A graph (such as Fig. 1.16) which contains no circuits and which has
at most one branch entering each node is called a tree. Since each node
is entered by at most one branch, a path existing between any two nodes
in a tree is unique, and the length of path is also unique. Moreover,
if any two paths have the same final node, one is a subpath of the
other.

Since a tree contains no circuits, the length of path in a finite tree is
bounded. There therefore exist maximal paths which are proper subpaths
of no longer paths. The initial and final nodes of a maximal path are
called a roor and leaf of the tree, respectively. A root is said to lie on the
Sfirst level of the tree, and, in general, a node which lies at the end of a path
of length j from a root, lies in the jth level of the tree.
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000 01 01
00 0 0 OT1O
00011 10
U=] 0 0 1L 0 0 0 O
00 0 0 0 1 1
1 0 06060 00
01 0 0 0 01

Figure 1.17 A graphical representation of the directed graph (n, U).

A tree which contains # roots is said to be n-tuply rooted. The sets of
nodes reachable from each of the several roots are disjoint, for if any
node is reachable by paths from each of two disjoint roots, one is a proper
subpath of the other and is therefore not maximal. Similarly, any node
of a tree defines a subtree of which it is the root, consisting of itself and
all nodes reachable from it, with the same associations as the parent
tree.

If for each level j, a simple ordering is assigned to each of the disjoint
sets of nodes reachable from each node of the preceding level, and if the
roots are also simply ordered, the tree is said to be ordered. Attention will
henceforth be restricted to ordered trees, which will be denoted by upper-
case boldface roman characters. The feight of a tree T is defined as the
length of the longest path in T and is denoted by »(T). The number of
nodes on level jis called the moment of level j and is denoted by w(T). The
vector p(T) is called the moment vector. The total number of nodes in T is
called the moment of T and is denoted by u(T). Clearly, »(u(T)) = »(T),
and +/w(T) = w(T) = »(n). The number of roots is equal to u,(T), and
the number of leaves will be denoted by A(T).

The number of branches leaving a node is called its branching ratio or
degree, and the maximum degree occurring in a tree T is denoted by o(T).
The dispersion vector of a tree T is denoted by v(T) and is defined as
follows: vy(T) = p(T), and for j = 2,3, ..., %»T), v(T) is equal to the
maximum over the branching ratios of the nodes on level ; — 1. For the
tree of Fig. 1.16, w(T) = (3, 3, 4, 3, 2). The number of roots possessed by
a tree T (that is, v,(T)) is called its dispersion. A trce possessing unity
dispersion is called rooted or singular.
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Each node n; of a graph (and hence of a tree) may be identified by its
index 7. Since a tree admits of more convenient index vectors, the under-
lying index i will henceforth be referred to as the graph index.

In an ordered tree, any path of length k from a root can be uniquely
specified by an index vector i of dimension k, where i, specifies the partic-
ular root, and the remaining components specify the (unique) path as
follows: the path node on level j is the £;th element of the set of nodes on
level j reachable from the path node on level j-1. The node at the end of
the path can therefore be designated uniquely by the index vector i. The
degree of node # will be denoted by o(7, T). The index vectors are shown
to the left of each node in Fig. 1.16.

The path from a root whose terminal node is i will be denoted by T
In Fig. 1.16, for example, T' = (ny, ng, nyy, ny,) if i =(2,2,2,3). A
vector i is said to be an index of T if it is the index of some node in T.

The subtree of T rooted in node ¢ will be denoted by T;. Thus in Fig.
(1,3,3). A path in T, is denoted by (T;)/. For example, if G is an
ascending gencalogical tree* with the sword and distaff sides denoted by
the indices 1 and 2, respectively, then any individual « and the nearest
(n — 1) paternal male ancestors are represented by the path vector (G;)€",
where i is the index of x in G.

Example 1.5. Determine the index i such that the path T? is equal to a given
argument x and is the ““first”" such path in T; that is, the function

(a"pw(T)) i
is a minimum.

Program 1.18. The index vector i specifies the path currently under test. Its
last component isincremented repeatedly by step 7 until the loop 6-8 is terminated.
If the path T! agrees with the corresponding prefix of the argument ¥, termination
occurs through the branch to step 9, which tests for completion before step 10
augments i by a final zero component. Step 5 then respecifics  as the degree of
the penultimate node of the set of d paths next to be tested by the loop. Termina-
tion by a branch from step 6 to step 2 occurs if all ¢ possible paths are exhausted
without finding agreement on step 8. In this event, retraction by one level occurs
on step 2, and « is again respecified. 1f »(i) = 1, the paths to be searched com-
prise the roots of the tree and  must therefore be specified as the number of
roots. This is achieved by executing step 3 and skipping step 5. Retraction to a
vector i of dimension zero occurs only if all roots have been exhausted, and final
termination from step 4 indicates that the tree possesscs no path cqual to the
argument ¥,

* Although such a genealogical tree is not necessarily a tree in the mathematical
sense, it will be assumed so for present purposes.
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1 — i+¢€?2) l-origin indexing
2 [~ @Yi .
T Given tree.
3 d (M) x Given path vector.
4 <=1 ) o1 — i Path index vector to
5 d < @i, T) be determined.
#,(T) | Number of roots of T.
6 Wi d s .
= 8(i, T) | Degree of node i.
7 i i+ ot
g | L= T a'l)x Legend
9 v(i) 1 (%) =
10 i« whi

Program 1.18 Determination of i such that T! = x

If d is a vector of dimension »(n) such that d, is the degree of node n, of
a tree T, then d is called the degree vector associated ywith n. In Fig. 1.16,

for example,
d=(3,24,0002,...,1,0,0).

Moreover, if n is itself the alphabet (that is, n = (a, b, c, ..., z)), then
the vector n’ of Table 1.194 is a permutation of n, and d' is the associated
degree vector. Table 1.196 shows another such pair, n” and d".

The degree vector provides certain uscful information most directly.
For example, since each leaf is of degree zero, A(T) = +/(d = 0). More-
over, the number of roots is equal to the number of nodes less the total of
the degrees, that is, w(T) = »(d) — +/d, and the maximum degree
occurring in T is given by o(T) = ((e[d)/d),. Finally, the degree vector
and the node vector together can, in certain permutations (those of Table
1.19), provide a complete and compact description of the tree.

Right and left list matrices

If each one of the u(T) index vectors i of a tree T is listed together with
its associated node (T’),, the list determines the tree completely. Since
the index vectors are, in general, of different dimensions, it is convenient
to append null components* to extend each to the common maximum
dimension »(T). They may then be combined in an index matrix of

* In the I-origin indexing system used here it would be possible to use the numeric
zero to represent the null. In 0-origin indexing, however, zeros occur as components of
index vectors and must be distinguishable from the nulls used.
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d’ n’ r
3 a 1 o © <! o
4 c 1 1 ¢ o o
0 f 1 1 1 ¢ ¢
0 d 1 1 2 o o
0 r 1 1 3 o o
0 [ 1 1 4 o o
0 z 1 2 o ¢ o
1 n 1 3 [} c o
2 i 1 3 1 - o
0 P 1 3 1 1 o
0 q T 3 1 2 o
2 b 2 o o 5
0 k 21 ¢ o o
3 h 2 2 o o o
0 o 221 ¢ o
3 m 22 2 5 o
0 u 2 2 21
2 S 2 2 2 2 o
0 t 22 2 21
0 W 2.2 2 2 2
1 X 2 2 2 3 5
0 y 2 2 2 31
0 v 2 2 3 o o
2 g 3 o o o I
0 ] 31 o o o
0 1 3 2 o o o

Full left list matrix [T

(a)
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d” n’ I’
3 a I} o o o 1
2 b o [e] s [« 2
2 g o o o o 3
4 ¢ o o o 1 1
0 z o o o 1 2
1 n c o o 1 3
0 k o o o 2 1
3 h 6 o o 2 2
0 ] o o o 3 1
0 1 o o o 3 2
0 f o o 1 L 1
0 d o o L+ 1 2
0 r o o 1 1 3
0 e c o L 1 4
2 i c o 1 3 1
0 0 o o 2 21
3 m o o 2 2 2
0 v c o 2 2 3
0 p o I 3 1 1
0 q s 1 3 1 2
0 u c 2 2 21
2 S o 2 2 2 2
1 X o 2 2 2 3
0 t 2.2 2 21
0 w 22 2 2 2
0 y 2 2 2 3 1

Full right list matrix JT
(h)

Table 1.19  Full list matrices of the tree of Fig. 1.16

dimension u(T) x »(T), which, together with the associated node vector,
completely describes the tree, If, for example, the node vector n is the
alphabet, the tree of Fig. 1.16 is described by the node vector n” and index
matrix I' of Table 1.19a or, alternatively, by n” and I"” of Table 1.195.
Because of the utility of the degree vector, it will be annexed to the array
of node vector and index matrix, as shown in Table 1.19a. to form a full
list matrix of the tree. The degree vector and node vector together will be
called a list matrix. As remarked, the list matrix can, in certain permuta-
tions, alone describe the tree.
Formally, the full list matrix M of a tree T is defined as follows: a*/M
is an index matrix of the trce, M, is the associated degree vector, and M,
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is the associated node vector. Thus for each k e J(u(T)), M* = o(i, T),
and M,* = (T%),;,, where i is the nonnull portion of &*/M*, that is, i =
((@®/M*) -£ c¢)/a?/M"). The corresponding list matrix is %/ M.

Since a full list matrix provides a complete description of a tree regard-
less of the order in which the nodes occur in the list, any column permu-
tation MP (that is, any reordering among the rows) is also a full list matrix.
Two particular arrangements of the full list matrix are of prime interest
because each possesses the following properties: (1) the nodes are grouped
in useful ways, and (2) the list matrix (i.e., the degree vector and node
vector) alone describes the tree without reference to the associated index
matrix. They are called the full /eft list matrix and full right list matrix and
are denoted by [T and ]T, respectively. Table 1.19 shows the full left and
full right lists of the trec of Fig. 1.16.

The left list index matrix I is left justified,* that is, the null elements are
appended at the right of each index. The rows I’ are arranged in increasing
order on their values as decimal (or rather (3(T) + 1)-ary) fractions with
the radix point at the left and the nulls replaced by zeros. More preciscly,
the rows are arranged in increasing order on the function (y(a)e) !
(@ P), wherea = (-, 1,2,...,0(T)).%

The right list matrix is right justified and is ordered on the same function,
namely (»(a)e)  (a ¢, F). The rows are therefore ordered on their values
as Integers, i.c., with the decimal point at the right. From the example of
Table 1.195 it is clear that the right list groups the nodes by levels, i.e.,
level j is represented by the infix (7 | o)//(]T), where & = w(T). and
i = 4/’ u(T). In Table 1.195, for example, w(T) = (3. 7. 8. 5, 3), and
ifj = 3, then k = 8,/ = 10, and level j is represented by rows i 4+ 1 = 11
to i + k = 18. The right list is therefore useful in executing processes
(such as the pth degree sclection sort) which require a scan of successive
levels of the tree.

The left list groups the nodes by subtrees, i.c.. any node i is followed
immediately by the remaining nodes of its subtree T;. Formally. if I =
a?/[T, and if i = (I* 2 2€)/I", then the tree T, is represented by the infix
((k — 1) | e T)//[T. In Fig. 1.19a, for example, if & = 16, then i =
(2,2,2), u(T;) = 7, and T; is represented by rows 16 to 22 of [T. The left
list is therefore useful in processes (such as the construction of a Huffman
code and the evaluation of a compound statement) which require a
treatment of successive subtrees.

The row index of a node in a right (left) list matrix is a graph index of
the node and will be called the right (left) list index.

* The term left list and the notation [T are both intended to suggest left justification.

+ These statements hold only for I-origin indexing. In O-origin indexing, ¢ =
¢, 0,1,...,5T) —1).
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Well formation

A two-column matrix which forms the right list of some tree is said to
be a well formed right list. Since the ordering of the nodes in a right list of
a given tree is unique, the right list of a given tree is unique. Conversely,
any well formed right list specifies a unique tree according to the algorithm
of Program 1.20.

Identical remarks apply to the left list, except that Program 1.20 is
replaced by Program 1.21. Moreover, the necessary and sufficient
conditions for the well formation of a left list are identical with those for a
right list and are derived by virtually identical arguments. The case will
be stated for the right list only.

If R is a well formed right list representing a tree T, then the dispersion
(i.e., the number of roots) v(T) = »(R;) — (+/R;) must be strictly
positive. Moreover, if § = o’//R is any suffix of R, then S is a right list of
the tree obtained by deleting from T the first / nodes of the original list.
For, such level-by-level deletion always leaves a legitimate tree with the
degrees of the remaining nodes unchanged. Consequently, the number of
roots determined by every suffix of R, must also be strictly positive. In
other words, all components of the suffix dispersion vector s defined by

s; =@ Ry — (+/a"Ry), jer(»(Ry))

must be strictly positive. The condition is also sufficient.

Sufficiency is easily established by induction on the column dimension
of R. The condition is clearly sufficient for »(R) = 1. Assume it sufficient
for dimension #»(R;) — 1. 1f s, the suffix dispersion vector of R, is strictly
positive, then a!/s, the suffix dispersion vector of &@!//R, is also positive,
and by hypothesis a'//R represents a tree G possessing s, roots. Morcover,

0<s;=s8+(—-R"

implies that s, > R;', and the number of roots possessed by G therefore
fulfills the number of branches required by the added node R,:. A
legitimate trec corresponding to R can therefore be formed by joining the
last R,! roots of G to the node R,

Tests for well formation can therefore be incorporated in any algo-
rithm defined on a right or left list matrix M by computing the components
of the suffix dispersion vector s. The recursions,_; = s, + 1 — M| lis
convenient in a backward scan of M, and the equivalent recursion
$; = 8,4 — 1 + M 7" serves for a forward scan. The starting condition
for a forward scan is s, = »(M,) — (4/M;), and for a backward scan is
s, =1 — M,". Since the criteria of well formation are identical for right
and left lists, a matrix may be characterized simply as well or ill formed.
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The purpose served by the degree vector d in the description of a tree is
sometimes served instead [e.g., Burks et al. (1954)] by the vector g =
€ — d. Itis somewhat more convenient in the analysis of well formation,
since the expression for the suffix dispersion vector then simplifies to

s, =(+/a/g), or  s=d+ /e

The index matrix as a function of the degree vector

The complete determination of the tree corresponding (o a given list
matrix M is best described as the determination of the associated index
matrix I. For both left and right lists this can be achieved by a single
forward scan of the rows of M and of L

For a right list R it is first necessary to determine r, the number of roots.
The first » components of R are then the roots of the trec in order, the
next R;' components of R are the sccond-level nodes reachable from the
first root, and so forth. Programs 1.20 and 1.21 describe the processes for a
right list and a left list, respectively.

Program 1.20. In each execution of the main loop 13-16, the ith row of the
right list R is examined to determine the index vector of cach node on the succeed-
ing level which is directly reachable from it. The number of such nodes is con-
trolled by the parameter , initialized to the degree of the ith node by step 12.
The (right list) index of the nodes reachable from node i is determined by j, which
is incremented on step 14 as the index vector of cach node is determined. The
index vectors of the successive nodes reachable from node 7 have the final com-
ponents 1, 2, 3,. .., and cach must be prefixed by the index vector of node .
This assignment is cffected by the vector v, which is initialized by the index vector
of node i rotated left by one (step 11), and which is incremented by step 15 before
cach assignment occurring on step 16. At the outset, v is sct to zero and d is set
to the number of roots as determined by step 4.

Since j is, at step 10, equal to the current number of roots r augmented by the
cumulative degrees of the first / — 1 nodes, then # = j — i + 1| and the exit on
step 10 therefore occurs always and only in the event of ill formation. Alterna-
tively, the test can be viewed as an assurance that cach row of the matrix I is
specified before it is itself used in specification.

When step 5 is first reached, the index matrix I is complete but is expressed in
I-origin indexing with zeros representing the null elements. Steps 5-7 translate
the matrix to the origin ¢ and mask in the nccessary null clements.

Program 1.21. The index vectors I’ are determined in order under control of
the paramcter j. The loop 5- I8 traces a continuous path through the tree, deter-
mining the index of each successive node of the path by rotating the index of the
preceding node (step 17) and adding one to the last component (step 13), and
maintaining in the connection vector ¢ a record ¢, ; of the index j of the successor
of node / in the path traced. The path is interrupted by the occurrence of a leal
(thatis, L, = 0 on step 18), and the degree veetor Ly is then scanned by the loop
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I —> <0 I-origin indexing
2 j <0

J R | Right list of T.
3 v 0 I | Right index matrix of
4 d < wR,) — (+/R)) T.
5 U (I=0) i Index of row of R cur-

- rently examined.

6 I—1I+(¢—-1E j Right list index of node
7 I« I U, -E| — reachable from node J.
8 = ;. «(R) v Current index vector.

o Origin with respect to
N R which I is finally ex-
10| << i: J pressed.
11 Vo tI¢

) Legend

12 d < R/
13 dd—1 =
14 J~j+1
15 Vv 4+ w!
16 I «—v

Program 1.20 Determination of the index matrix I associated
with a right list matrix R

(19-20) to determinc the index / of the last preceding node whose branches remain
incompleted. Steps 2223 then respecily ¢ as the index vector of the node follow-
ing node 7 in the path last traced, and step 21 decrements the component Liof
the degree vector. The branch from step 19 to step 22 occurs at the completion
of cach rooted subtrec. The test for well formation (step 12) is the samc as that
applied to the right list in Program 1.20, except that the notation for the relevant
parameters differs. The concluding operations (6-9) include left justification on
step 7.

Tree, path, and level compression

The tree compression
P—U/T

specifics a trec P obtained from T by suppressing those nodes corre-
sponding to zeros of the logical tree U, and reconnecting so that for every
pair of nodes x, y of P, belongs to the subtrec of P rooted in ¥ if and only
if @ belongs to the subtree of T rooted in y. If, for example, T is the tree of
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1] — <0

2 j0

3 v <0

4 r<=v(Ly) — (+/Ly)
5 j @)

6 U~ =0

7 I (+/2/U) I
8 I«1I+(p—1E
9 I < /I, U, E/
10 Jj<j+1
11 r«r+ Ly

12|« j:r

13 Vv + wl

14 I —v

15 Cip1 <]

16 I«

17 vt

18—+ LJ7:0

19 i<7i—1
< .

20 |V Ly 1

21 L« L?®—1

22 k A c[.:]

23 v Ik

l-origin indexing

c +1

Left list of T.
Left index matrix of T.

Index of row of I being
determined.

Left list index of path
node preceding node j
in current path (Step
16), or index of last
previous node whose
branches remain un-
exhausted (step 22).

Index of node follow-
ing node 7 in last path
traced from /.
Parameter for testing
well formation.
Current index vector.

Origin with respect to
which I is expressed.

Legend

Program 1.21 Detcrmination of the index matrix I associated

with a left list matrix L

Fig. 1.16 with n as the alphabet, and U is the tree of Fig. 1.224, then P
is the tree of Fig. 1.22h. The new indices are shown to the left of each node
of P. The set of nodes 221, 222, ..., 226, are all on the same level of P
although they have been shown with branches of diffcrent lengths to
permit easy identification with the nodes of the original tree T.
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U u/T
(a) (b)
Figure 1.22 Compression of tree T of Fig. 1.16 (with n = alphabet)

The compress operation is best executed on the left list because of the
grouping by subtrees. Program 1.23 gives a suitable algorithm which also
serves as a formal definition of the compress operation.

Program 1.23. The vector u is specified as the node vector of the left list of the
controlling logical tree U and controls the subsequent process. Step 4 determincs
jas the index of the first zero component of @. Steps 6 and 7then delete the corre-
sponding nodes of # and of the left list of T, but only after step 5 has determined o
as the change in degree which this deletion will occasion to the root of the smallest
subtree containing the deleted node. Steps 9-11 perform a backward scan of the
degree vector to determine j as the index of the root of the subtree, and step 12
effects the requisite change in its degree. The exit on step 9 occurs only if the node
delcted is a root of the original tree, in which event no change is produced in the
degree of any other node.

Two further compress operations controlled by logical vectors are
defined as follows. Path compression is denoted by

P« u/T.
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I u<—(U), I-origin indexing
2 L — o*/([T)
= u | Left node vector of U.
3 u ;e — .
L ) Leftlist of T.
4 S xu) + 1 Jj | Index of first zero of u
5 d<-Lj—1 (Steps 4-8). Index of root
of smallest subtree contain-
6 u-<eu ing deleted node (Step 12).
7 L « &//L d | Change of degree caused by
g . deletion of node ;.
_ r r Number of roots indicated
9 J—j—1 by infix (&/ A @F)//L, where
10 Fr =L 41 Jis initial value anfi k+1
> is current value of j.
11 rol
12 L/«LJ+d Legend

Program 1.23 Determination of the left list L = a2/[(U/T)

P is obtained from T by suppressing every node on level jif u; = 0, and
reconnecting as in tree compression. Level compression is denoted by

P« uf[T,

and P is obtained from T by deleting each rooted subtree T, for which
u; = 0.

Path compression by a unit vector € produces a tree of height one.
Such a tree is, in effect, a vector and will be treated as one.

Two related special logical trees are defined: the path tree *E such that
u/“E = 0 and u/"E is the full tree E whose nodes are all unity, and the
level tree ,E such that u//,E = 0, and u//,E = E.

Extension of other operations to trees
Two trees are compatible if they have the same structure. Elementary
binary operations are extecnded node by node to compatible trees. For

example,
Z—-XXY

implies that node i of Z is the product of node i of X and node i of Y for all
i. Similarly,
M<«byT
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specifics M as a tree (of the same structure as T) such that node i of M is
the j-origin b-index of node # of T.

The mapping operation is extended to trecs so as to permute the rooted
subtrecs of a tree. Formally

P—m|,T

J
implics that w,(P) = »(m), that P, is a single null character if m, ¢ U(u,(T)),
and otherwise P, = T, , where j-origin indexing is used for T.
Permutation of the subtrees rooted in node i of T can be cffected as
follows:
o'/T, < m | (@'[T,).

The notation <//T will denote the application of the binary operator or
rclation < to the nodes of T in right list order (i.c., down successive levels)
and /T will denote the same application in left list order (i.c., across
paths). If the operator is symmetric (i.e., its operands commute), then
of/iT = ¢/T.

Maximization (U[T) and minimization (U|T) are extended to trees in
the obvious way.

The operations »/u, mfu, o/a, and 7/a are cach extended in two ways:
across paths and down levels. Examples of each appear in Fig. 1.24.
Opcrations cxtending down levels are denoted by double virgules and
represent an application of the corresponding vector operation to cach
level of the tree considered as a vector. For example, the statement

V «—a//A

implies that cach level of V is the forward sct selection of the corresponding

level of A, that is. €/V = g/€//A. Operations extending across paths are

denoted by single virgules and are defined in terms of subtrees. Thus
Vo« /U

mmplics that V is obtained from the logical tree U by setting to zero all
nodes of any subtree rooted in a zero node, and

V «- (f)/U

implies that V is obtained from U by setting to zero ecvery node whose
subtree contains a zero node. The definitions of /U and 7/U are analo-
gous.

Homogeneous trees

IT, for all /, every node on level jof a tree T is either of degree zero or of
degrce v, (1), then the tree T is said to be wniform. 1If all leaves of a
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uniform tree T lie in the same level (necessarily the top), then the tree is
said to be homogeneous. The structure of a homogeneous tree is completely
characterized by its dispersion vector v(T). All maximal paths in a homo-
geneous tree are clearly of the same length, namely »(T) = »(v(T)). Figure

Ordered trees

1.25 shows a homogeneous tree and its associated dispersion vector.
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Figure 1.24  Set selection and maximum prefix and suflix operations
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A tree T for which v(T) = me is called an m-way tree, and a tree for
which v{(T) = | and o'/W(T) = me is called a singular m-way tree.

v(H)=1(2,32)
uw(H) =1(2,6,12)

Figure 1.25 Homogen-
eous tree H and disper-
sion and moment vectors

The jth component of the moment vector of
a homogeneous tree is clearly equal to the prod-
uct of the first j components of the dispersion
vector, that is, u(T) = (1 + l)) v(T). The dis-
persion vector is, in turn, uniquely determined
by the moment vector. The total number of
nodes is given by u(T) = +/w(T), and it can also
be shown that w(T) =1y 'y, where y is the
dispersion vector in reverse order.

Tree compression of a homogencous tree H
(that is, U/H) does not generally produce a
homogeneous tree, and, in fact, any tree P of
arbitrary structure can be represented by a pair
of homogeneous trees U and H such that P =
U/H. On the other hand, both path and level
compression of homogeneous trees produce
homogeneous trees. Moreover, if P = u/H, then
v(P) = u/v(H), and if P = u//H, then vw(P) =
v(H) — (+/t)al.

Since the structure of a homogeneous tree is
completely specified by its dispersion vector k,
the structure of the special logical trees can be
specified in the forms E(k), “E(k), and ,E(k).

In a homogeneous tree, the right list or left
list index of a node can be determined as an
explicit function of its index vector. Conversely,
the index vector 7 can be determined directly
from the corresponding left list index, to be
denoted by /(i), or from the right list index r(i).
In developing the relations between indices it
will be convenient to use O-origin indexing
throughout.

The right list index is given by

(@) = f(i) + g(i),
where fd) = +/a" " u(T)

is the number of nodes in the first »(i) — 1 levels, and

g()) = (@""MT) L i

is the rank of node 7 in the »(i)th level. For example, if i = (1,0, 1)in the
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tree of Fig. 1.25, then wp(H) = (2.6,12). f(i)="/(2.6) =8, and
gi)=1(2.3,2) : (1,0, 1) =17.

Since /(i) depends only en #(i), the index i may be determined from r by
first determining »(f) as the largest value for which f(i) == r, and then
determining ¢ such that

(@ T)) L i =r—f(i).

In tracing a path through a tree, the kth node of the sct reachable from
node 7 is the node j = i © (k). It is therefore useful to express r(j) asa
function of r(i). Clearly

1) =1 + ((T))wiy -1,
g(i) = g(i) X (v(1))uii) + jo—1.
In the special case of a singular homogeneous m-way tree,
fiy=14+m+m>+- 4+ w7 =(me) L e@(i) —1)

(i) —1

m — 1

m — 1

Hence f(j) = 1 + m x f(i), and g(j) = m x g(i) + j,_,. Recursion can
therefore be performed simply upon the single function r(i) as follows:

rGy=m x r(i) + 1 + j._1.

The left list index /(i) is most conveniently expressed as a function of
»(i) and of the vector 2(i) (zero extension of i), where 2z = a"“((T))\i.
Clearly »(z) = »(T) and z is the index of the “‘earliest” leaf reachable from
node i. In Fig. 1.25, for example, z((1, 2)) = (1, 2, 0).

The zero extension has the obvious property that every node above the
path T*" precedes node i in the left list, and every node below the path
follows it. The number of nodes in the path which precede node i is
(i) — 1.

The number of leaves above the path T** is w(T) __z(i), and more
generally, the number of (j— I)th level nodes above it is given by
(o’/v(T)) .. (&//2(i)). Consequently,

+(T)
I@) = (i) — 14+ 3 («'/v(T)) _ (a'/2(i)).
i=1
For example, if i = (1, 0) in Fig. 1.25, then z(i) = (1, 0, 0) and
i) =) —14+02) L (1)+2,3)L10+(23,2) L (100 =1L
The foregoing result may be written alternatively as

I(@) = (i) — 1 + w7 2(i),
where w, = 1, and w,_; = 1 + (w; X v(T)). In the foregoing example,
w=(10,3,1), and w | z(i) = 10. This form is most convenient for
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determining i as a function of /, for since w [ 2 =/+ 1 — »(i), then
zy(i) = |/ = wyl, z,()) = |(w, | 1) — 1) = w,], etc. for all positive values
of the quotient, and all components thereafter are zero. The dimension
v(i) is then determined from the relation »(i) =/ 4+ 1 — w | 2(i).
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EXERCISES

Organize cach of the programs according to the method of leading decisions.
Except where otherwise indicated, use l-origin indexing. The conventions of
Sec. S.1 of the Summary of Notation will be used in the statement of each
of the exercises.

1.1 Letd =(a,2,3,4,5,6,7,8,9,10,j,q,k),s =(c,d,h,s),u =(1,0,1,0, 1),
v=(0,1,1,1,0), » =(16,8,4,2, ), and ¥y = (2, 3, 4, 5, 6). Determine

(a) the dimensions »(d), ¥(s), and »(x).

(b) the vectors x + v, x —y, & x v, &« =y, and u + v.

(c) the logical vectors u A v, u v v, (u # v), and (u = v).

(d) the reductions +/x, x/y, A/u, and v fv.

(e) the base two values of u and of v, that is, +/(x x u), and +/(x x v).

(f) the rotated vectors 2 | d, 4 1 s, and Ty.

(g) the unit vector €/(5) in a 1-origin system, and €*(5) in a 0-origin system.

(h) the infixes (¢*(7) A w¥7)) and 2 | a3(7).
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1.2 Show that

(@) x/l(n) = n! (Include the casc #n = 0.)

(b) +/U(n) =nn +2j—1) + 2.

(¢) x/(kTx)= x/x.

@ KT%+ K1y =kt (= +).
1.3 Write detailed (i.e., component-by-component) programs for the following
operations. Include tests for compatibility of the operands.

(a) w--u A r. (g) u < a(k).
(byWw < U vy V. (h) u < i) ai(k).
(c) b < uja. (i) c<-a,ub.
(d) B <-u/A. (j) ¢~—ja,u, bl
(e) B <« ujr//A. (k) ¢ <~-u a.

(f) x «=(x = 0)/x.

1.4 Establish the identities

(a) /a,u,b] = uja, u,ujb .

(b) \a,u, b, = jua u ub|.

1.5 The classic “‘rings-o-seven” puzzle can be posed as follows: an ordered
collection of # rings is to be placed on (removed from) a bar under the following
constraints:

(i) ring n may be placed on or removed at will.

(ii) ring £ may be placed on or removed only if ring (¥ + 1) is on and all
succceding rings are off.

The state of the rings can be described by a logical vector u, withu,. = 1 if ring &
is on. Write programs on ¢ which describe the removal of the rings beginning
with

(a) u = e [The successive values of u represent a reflected Gray code; sce
Phister (1958).]

(b) u arbitrary.

1.6 The ordered array of variables used to represent a variable z in some coding
system may be considered as a vector representation of @, denoted by p(). In the
8421 code for decimal digits, for example, p(0) = (0, 0, 0, 0), (1) = (0,0, 0, 1),
and, in general, p(«) is defined by the relation +/[w x p(x)] = x, where w = (8,4,
2, 1). For each of the following coding systems, (sec Richards, pp. 183-184 for
definitions), write a concise expression for p(x):

(a) the excess-three code for decimal digits.

(b) any chosen two-out-of-five code.

(c) any chosen biquinary code.

(d) the semaphore code for the alphabet (sce any good dictionary). Denote
each code by a two-component vector p(x) < %8). Use a ., where
a=(a,b,c ...,z

1.7 Let X be a squarc sparsc matrix represented by the logical matrix U =
(X + 0) and either or both of the vectors r = U/X, and ¢ = U//X. Write pro-
grams to determine the product Y = X { X, using the arguments

(a) r,c, and U,

(b) rand U.

(c) cand U.
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1.8 Prove that

(a) [«] = —l—xr].

(b) Ha + bl + ¢] = la + bc] for all positive integers a, b, and c.
1.9 Letr = E/A, and ¢ = E//A be the row list and column list, respectively, of
the matrix A, and let #;,, A/, and ¢, be corresponding elements of the three
representations of 4. Determine:

(a) & as a function of &, »(A), and ;«(A).

(b) k£ as a function of /i, »(A), and nu(A).

(c) the permutation vector h such that ¢ = h ’ r.
1.10 Show that

(a) - ju = /i (Use De Morgan’s law for two variables and induction.)

(b) /ju = 2|, +/u (Use induction.)

(© =/u=2], +/u.

(d) +ju = =/u.

(e) U o= [o (U ).

(U, v=U,V.

(g) (tyu) " (vow) =(sw A (0] u).
1.11 (a) Show that +/x = +/(u/x) + +/(u/x). (Include the case u = 0.)
(b) What properties are required of an operator O that it satisfy the relation
established for 4+ in part (a)?
1.12 Show that

(@) X . Y =(@/X), (W]Y)+ @uX), (u]y).

(by u/(X y Y)=X M (u)Y).

(©) u/(X ; Y)=(u/|X) Y.

(d) (u . v)ja = (ujv)/(uja).
1.13  Use the result of Exercise 1.11(b) to extend the results of Exercise 1.12(a-c¢)
to logical operators.
1.14 Write programs to determine:

(a) the value of the polynomial ¥ at the point a, that is, to evaluate (ye) | »

for y = a. Use no more than »(x) multiplications.
(b) the derivative of the polynomial x, that is, the vector = such that

{
e | = =}/<<.»/e>, %), and 1(z) = #(x).
de

(c) the integral z of the polynomial x satisfying the boundary condition
(ae) ' =z =0b.
the quotient g and remainder # obtained in dividing the polynomial n by
the polynomial d, for »(d) < »(n;.
(e) the value of the polynomial n at the point @ by using part (d) with d =
(1, —a).

(d

~

!

(f) the value of(T ((ye) | n) at the point a by two applications of part (e).
dy

(g) an approximate real root of the equation (y€) ! x = 0, using parts (e) and

(f) and the Newton-Raphson formula [Kunz (1957)].
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1.15 Let the components of the vector r be the real roots of a polynomial «.
Write a program to

(a) determine the symmetric functions of . [Dickson (1939), Ch. X.]

(b) determine x as a function of r.

1.16 Write a program to determine the polynomial % consisting of the first »#
terms of the exponential series | + i + YRR e

1.17  Write a program to determine the moduli of all roots of the polynomial »,
using the Gracffe method [Kunz (1957)]. Assume that operations for the logar-
ithm and exponential functions are available as subroutines.

1.18 List all the 1-origin permutation vectors of dimension four which are self-
inverse.

1.19 Using l—origin indexing, write programs to derive

(a) the permutation k which is inverse to the permutation j.

(b) a permutation j which transforms a given logical vector t to a prefix vector.
1.20 A square logical matrix U such that +/U = +//U = e is sometimes called
a permutation matrix, since premultiplication of a numerical vector x determines
a permutation of x. Write programs to determine

(a) the permutation matrix U corresponding to the I-origin permutation vector
k, that is, determine U such that U x = k .“1 X,

(b) the permutation k corresponding to a given permutation matrix U.

(¢) the permutation V which is inverse to the permutation U.

121 Let p be the vector representation of a permutation and let ¢ be the
standard representation in terms of disjoint cycles, including all cycles of one
[Jacobson (1951), p. 34.] Each cycle of ¢ is enclosed in square brackets, each
half-bracket being considered as a component of ¢. For example, if ¢ = ([, I, 3,
51,02,4,1,0,6, ], then p =(3,4,5,2,1,6), »(c) = 12, and »(p) = 6, and, in
general, v(¢) = v(p) + 2k where A is the number of disjoint cycles in p. The
usual elision of cycles of one would give ¢ = ([, 1, 3, 5, 1, [, 2, 4, ]). but this decter-
mines a unique correspondent p only if the dimension of p is otherwise specified,
and inclusion of all cycles of one will therefore be assumed. If cach infix of
numerical components in ¢ is preceded by a left bracket and followed by a right
bracket, and if ¢ determines a legitimate permutation vector p, then ¢ is said to be
well formed.

(a) Write a program to determine p as a function of a well formed pecrmutation
c. Include determination of the dimension of p.

(b) Modify the program of part (a) to incorporate checks on the well formation
of ¢. If ¢ is ill formed, the vector p is to be defined as the literal *ill
formed.”

(e) Modify part (b) to process a sequence of vectors ¢!, ¢, . . ., cach pair being
separated by a single null element, and the end of the sequence being
indicated by a pair of successive null clements, i.e., to process z =
cl oo (e)y i ¢ - ¢ 7 (e, 0). Include checks on the well formation
of cach permutation.

(d) Write a program to determine the parity [Jacobson (1951), p. 36] of a
permutation vector p.
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1.22  Write detailed programs for the following processcs:

(a) k «-0/x (iy m«-ba
(b)y<mjfx () M- B {a
(¢c) v ujx (k) u <« ¢

V-u[X () c-bna

() v« x/u (m)c~<-b r a
(f) V<-ojU (n) c<-by a
(g) v+« o/b W C~~-ab
(hy V « 7//B

1.23 (a) Copy onto file ®,% successive groups of items from the row of files d1
in cyclic order, omitting any exhausted files. The end of each group is
demarked by a partition A,, and thc end of each file by a partition ;.

(b) A file which is always recorded in the forward direction and read in the
backward direction functions as a stack. Using file ®,% as a stack,
modify the program of part (a) so as to reverse (in the output file D)
the order of the items within cach group.

1.24 The accompanying node vector 12 and connection matrix C together specify

a directed graph (C;/ = 1 indicates a branch from node i to node j) which is, in

fact, a tree.

n=(abhcdefig
00001 10
0000000
1 001000

c={0 000000
0000000
00000O0O0O
0100000

(a) Draw one of the possible ordered trees represented by 72 and C.
(b) For the tree T of part (a) show the full left list [T.
(c) Show the full right list JT.
1.25 Write programs which include tests on compatibility and which determine
(a) L =[T fromR =]T
(b)y § = Ju/T) from w(T), ]T, and u
(¢) M =[(u//T)from L =[T and u
(d M=[k][,T)fromL =[Tandk
1.26 (a) Give an example of a well formed right list which demonstrates that a
prefix of a right list is not, in gencral, well formed.
(b) Show clearly where the argument used in establishing the well forma-
tion of any suffix of a well formed list breaks down when applied to a
prefix.
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1.27 Give lormal proofs for the lacts that

(a) a left list groups nodes by subtrees.

(b) a right list groups nodes by levels.

(c) w(T) = w(d) — +/d, where d is the degree vector of T.
1.28 Write programs to determine p(T) as a lunction of

(a) the left list degree vector of T.

(b) the right list degree vector of T.
1.29  Tracc Programs 1.20 and 1.21 for the trec of Exercise 1.24.
1.30  Show that for a homogencous tree H, «(H) =y v, whcrcfi = v(H).
1.31 IT H is homogencous, v(H) = (3, 2, 3, 4),and i = (1,0, 2), detcrmine, in a
0-origin systcm

(a) the left list index [(i).

(b) the right list index (7).

(c) the index j of the node whose left list index is 27.

1.32 (a) If K = O(n) | (e(n) ° V(n)), show that K + K = n(E — I).
(b) Il y is any permutation of x and »(x) = n, show that x | K | x =
y / K y.
1.33  Using the Euclidean algorithm, write programs to dctermine:
(a) d as the greatest common divisor of positive integers .+ and .
(b) d as the g.c.d. of » and ¥ where d, x, and ¥ represent polynomials in =
(c.g.. (=€) | ).
1.34  To assure uniqueness, the number of different digits (symbols) used in a
base A number system must not exceed h. The limitation to the particular range
0 - «, - his, however, not essential. For example, a base threc system can be
constructed using digits —1, 0, and [, for which it is convenient to adopt the
symbols —, 0, and +, respectively. The positive numbers beginning at zcro are
then represented by the sequence 0, +, +—, +0, ++, + ——, + -0, + —+,
+0~, +00, ctc. The negative numbers beginning at zero arc 0, —, — +, =0,
-, —++, —+0, —+—, =0+, =00, ctc.

(a) Construct addition and multiplication tables for this number system and
calculate the sum and the product of the numbers 0 — and — —. Use the
decimal system to check all results.

Negative numbers are represented in this system without the attachment
of a special sign position. Spccial rules rcgarding sign are therefore
banished except that it is necessary to formulate a rule for changing the
sign of a number, i.c., to multiply by minus one. Formulate such a

(b

rule.
1.35 For any integer n, let oy, = 2|y n, 05 =3 [gn 05 =S5|gn and v, = 7], n.
As shown by Garner (1959), the ordered array (., g, 5. 47) providcs arepresenta-
tion of the integer n in a so-called residue number system.
(a) Write the residue representations ol the first ten nonnegative intcgcrs.
(b) For integers n in the rangc O - " s - (2 x 3 X 5 x 7) show:
(1) that the representation is unique.
(2) that an addition algorithm may be defined which treats the several
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columns independently, i.e., there are no carries. (The sums must
also lie within the specified range.)
(c) Discuss the choice of moduli for extending the range of the representa-
tion.
(d) Show that the algorithm derived in part (b) is valid for all positive and
negative integers in the range —a/2 <n < af2fora =2 x 3 x5 x 7.
(e) Derive an algorithm for obtaining —# from ».
(f) Derive an algorithm for multiplication.
(g) The sign of the number (i.e., its relation to zero) is not displayed
directly by this representation. Convince yourself that its determi-
nation is nontrivial.

1.36 Let %, ¥, and 2 be the positional representations of the numbers ., y, and =
respectively. Using the floor and residue operations, write programs to deter-
mine 2 as a function of ¥ and y, where = = & + y and the representation in usc is

(a) base b.

(b) mixed base b.

(c) the +, —, 0 base three system (of Exercise 1.34).

(d) the residue number system (of Exercise 1.35).

1.37 Write programs for the multiplication = = & X y for each of the cases of
Exercise 1.36.

1.38 Write programs to convert in each direction between the following pairs of
number systems:

(a) base b; and base b,.

(b) base b! and base b2

(¢) base three and the 4+, —, 0 base three of Exercise 1.34.

(d) residue and base b (Exercise 1.35).

1.39 (a) Show that the superdiagonal matrices satisfy /I 7 “I = U - I,

(b) A matrix of the form J = (xI + 1) is called a Jordan box. Write the
expansion of the nth power of J.

(¢) Showthat X 7Y =X, 5 Y' + X, 2 Y? + -+ + X, ¢ VX,

(d) Determine an explicit solution to the set of linear equations A x x =y,
where u/x = @ and ¢y = b are known and where +/u + +/v =
v(A) = n(A). State the conditions for the existence of a unique solu-
tion.

1.40 Any nonsingular matrix A can be reduced to the identity I by a sequence of
row operations of the form A? < xA? 4+ yA?, or A’ «- A’. The process which
accomplishes this (using row operations only) by reducing successive column
vectors to the successive unit vectors is called Jordan or compiete elimination.
If the same sequence of row operations is executed upon the identity matrix, it
will be transformed to the matrix B such that B X A = 1. The inverse of A can
therefore be obtained by performing Jordan elimination on the matrix M =
A "1 so as to reduce the first »(A) columns to the identity. The last »(A)
columns are then the inverse of A.

(a) Write a program to determine the inverse of A by Jordan elimination.
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(b) The sequence of operations which reduce the ith column of A to €' is called
the ith srep of the process, and theith diagonal clement at the beginning of
the ith step is called the ith pivot element. Modify the program of part (a)
so that each step is preceded by a column permutation which yields the
largest (in absolute value) pivot element possible. This modification tends
to reduce the accumulation of round-off errors.
(c) In the Jordan elimination of part (a), it is unnecessary to store the identity
matrix explicitly, and, since the ith column is first affected at the ith step,
only one new column need be brought in at each step. Moreover, the ith
column of A may be discarded after its reduction to €/ on the ith step, and
it is therefore necessary to store only a square matrix at all times. Show
that by shifting all columns to the left and by moving the rows upward
cyclically, a very uniform process results, with the pivot clement in the
leading position at every step [Iverson (1954) or Rutishauser (1959)].
Write a program for the process.
Modify part (c) to allow the choice of pivot elements as in part (b). The
effects of the permutation on the not cxplicitly recorded identity cannot be
indicated directly, but the performance of the same set of permutations in
reverse order upon the rows of the resulting inverse produces the same
result. Verify this and program the process.

(d

pas

1.41 (a) Show that a group [Jacobson (1951)] can be represented by a square
matrix M such that each row and each column is a permutation vector.
(b) Show that M? = M, = ¢! for some /.
(c) What are the necessary and sufficient conditions that the group repre-
sented by M be Abelian?
(d) Write a program to determine all cyclic subgroups of a group repre-
sented by M.
1.42 If Uis alogical matrix whose rows are each nonzero, mutually disjoint, and
collectively exhaustive (that is, (+/U - €) = € and +//U = e), then U defines
an m-way partition of n, where m = ;(U), and n = »(U). The partition is more
commonly represented by the vector p = +/U [Riordan (1958), p. 107]. Clearly
+/p = n. Write a program to generate
(a) all partitions U of a given integer n.
(b) all distinct partitions of n, where U and V are considered equivalent if
p = +/Uis a permutation of ¢ = +/V.
1.43  Let x be a space vector (i.e., of dimension three), and let R(x) be the square
matrix t ] (e 9 x). Show that
(a) +/R(x X y) = (x LY xe
(bye (x xy)=a_y
(€) (+/R(x x ¥)) (W x z)=(xy) x (W2
(d) (x [ y) x (2 y) =(x xy) (¥ x3)+2(lx xTy) [ ([x xTy).
144 Let x-y =(Tx x |y) — ([x x Ty) be the vecror product of x and y for
vectors of dimension three. Show that
(a) this agrees with the usual definition [Margenau and Murphy (1943)].
(b)y »y = —(y-x
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(c) x-y is perpendicular to «, that is, ¥ 7 (¥ -y) = 0. (Use the fact that
lx = 27x for a vector of dimension threc.)

S Xy
. = + he lene tx9 =— 2" bet i
1.45 Let[x] v (x T x)bethe lengthof x,letx vy 5 % ] be the cosine of

the angle between x and y, andlet x oy = /1 — (x 7 ¥)2 be the sine of the angle.
Use the results of Exercises 1.43 and 1.44 to show that for space vectors
(@) [x-y] =[«] x[¥] x (¥ oy). Note that [« - y] is the area enclosed by the
parallelogram defined by x and y.
by x-»-z=x_ 2 xy—(¥y 2 xx
© (xy) z=x(y 2.
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MICROPROGRAMMING

The algorithms to be executed by an automatic computer must be
described in the restricted set of operations (called instructions or com-
mands) provided in a given computer, and an algorithm so described is
called a computer program. Since computer instructions are relatively
complex, they may be described in turn by microprograms employing
more elementary operations.

Microprograms may be used to define a computer instruction set for the
programmer, to define the detailed algorithms by which the computer
circuits produce the operations of the instruction set, or for a varicty of
other purposes. In the design and development of a computer, for example,
it is important to maintain precise and complete communication between
the computer programmer, the computer (or sysfem) designer, and the
logical circuit (or hardware) designer. The system designer will, in fact,
ordinarily begin with a description at the programmer’s level and proceed
through increasing detail to the hardware designer’s level. Meanwhile, the
programmers concerned with evaluating potential performance and with
developing systems of metaprograms (so-called automatic programming
systems) should be enabled to follow and to influence the evolving de-
sign.

The use of microprogramming will be illustrated by a description of the
IBM 7090 computer (to be called the 7090) at a level approximately suited
to the programmer and the system designer. The final section treats
some problems in the extension to the hardware design level.

The programs together with the lists of operands constitute a self-
contained description of the 7090 which, to readers already familiar with
computer organization and with the relevant sections (1.1 to .11 and 1.14)
of Chapter 1, should prove readable without reference to the text. The
text serves only to elucidate the microprograms and does not treat all of
the instructions described by them. Tables 2.1, 2.13, and 2.14 summarize
the dimensions, format, and significance of the various operands and
should be consuited as each is first encountered. 0-origin indexing will be
used throughout.

71
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2.1 INSTRUCTION PREPARATION

The operation of an automatic digital computer splits naturally into two
phases which normally alternate: the instruction fetch and preparation and
the instruction execution. The former involves the sclection from some
information store (memory) of the next instruction to be executed. its
transfer to one or more control registers, and perhaps some modification
of the instruction introduced into the control registers through so-called
indexing, indirect addressing, or relocation. The exccution phase begins
with the decoding of the operation code segment of the instruction in the
control registers to select the particular execution microprogram to be
employed, and continues through the execution of the selected micro-
program upon variables in certain central registers and in certain memory
registers determined by the address portion or portions of the control
registers.

The main memory of the 7090 will be denoted by a logical matrix M of
dimension 215 x 36. Selection from M is limited to the selection of a row
M’; each such row is called a word, and M’ is called word i or register i.

Dimension

Memory M 21 x 36
Index accumulators I 3 x 15
Sequence vector s (instruction counter) 15
Command vector c 36
Upper accumulator u (s,q,p,1,2,...,35) 38
Lower accumulator (Quotient register) (s, 1,2,...,35) 36
Upper accumulator overflow u
Lower accumulator overflow /
Trapping mode indicator t
[O normal
Instruction fetch mode J {1: skip channel trap
2: skip trap and fetch phase
{O: no indexing
Indexing class k%) {1: normal indexing (15 bit)
2: restricted indexing (9 bit)
Indirect addressing class kXc) {(l) :]nodll:cdcltr(ilcdtddr(ijsrlc:;lng
Console start signal (run) r
Binary representation of = p(=)

Table 2.1 Central computer operands
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Each instruction is a full word selected from M, and the sequence in
which instructions are selected is controlied by a control register called the
instruction counter or sequence register. This register represents a logical
vector s of dimension 15 whose base two value determines the word / to be
selected in the next instruction phase. The quantity* ' s is incremented
after each instruction fetch and therefore selects instruction words in
natural ascending sequence. The value of s may, however, be respecified
by the execution of certain hranch instruetions.

— cM-s

Gs=2150d 4+ )

Program 2.2 Basic instruction fetch

The current instruction will be denoted by ¢. It is stored in a 36-bit
command register.

The basic instruction fetch involves only the variables M, s, and ¢, and
is described by Program 2.2. The second step shows that the inerementa-
tion of s is redueed modulo 2 and that the selection of instructions
from the 2! word memory is therefore cyclic.

Additive indexing

It is convenient to the programmer to be able to add (or subtract) an
idex quantity i to (from) the address portion of an instruction in the
command register ¢ before its execution. This quantity is represented in
base two by a logical vector @ and is stored in a special index register. In
the 7090, the data address portion of c¢ is the fifteen-bit suffix w!?/¢ and the
indexing is subtractive:

e 21

(Lwhc— _ a).

The reduction modulo 2' again indicates cyclic treatment of addresses.

The 7090 contains three index registers or index accumulators which may
be used independently or jointly. They will be denoted by the index
matri I of dimension 3 x 15. One or more (or none) of the index regis-
ters I’ are selected according to the value of the vector i = (18 | a®)/c, the
three-bit index tag portion of the command, as follows:

LwPfe =20 (L whe — (18 | a)/c) : D).
The address in the command register is clearly decremented by the base

* Since number bases other than two will be used but rarely in the present chapter,
the elided form _ & will be used instead of (2€) . .
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two value of the vector obtained by oring together the selected rows of I.
The oring of the index accumulators permits simple circuits for their
selection. It is, however, of questionable value to the programmer, and
the 7090 index registers are normally used individually.

Indirect addressing

It is often convenient (as in the execution of a permutation) for a
programmer to specify a data address indirectly, i.e., to specify the address
of the word containing the desired data address. Such indirect addressing
could proceed through several levels, but in the 7090 it is limited to one.

— Cu A €3 1 0 —

w'bjc «— w!8M- wtdjc R

Program 2.3 Indirect addressing

Only the last half of ¢ is respecified by the corresponding portion of the
selected word, as described by Program 2.3. The occurrence of indirect
addressing is determined by components ¢, and ¢,;; of the operation
code.

Dynamic relocation

The correct execution of any computer program requires that cach
instruction and each operand be stored in the register assigned in the
construction of the program. A program can, however, be relocated by an
integral amount # if each word originally assigned to address j is assigned
to address j 4 », and if each address in the program is also incremented by
n. The incrementation of program addresses can be performed explicitly
by an assembler or other metaprogram, or it can be performed dynamically
by an additive index register containing the number n. An index register
employed exclusively for this purpose is called a base address register.

More generally, the provision of a table of base addresses permits
independent dynamic relocation of different blocks of a program, where
each block is confined to a set of successive registers. This is equivalent to
one-level indirect addressing in which a certain portion of the address
(e.g.. v/(w"/c)) selects from memory one of a table of base addresses to
respecify the same portion v/(w'?/c) thus:

o 15 3 _vi{w!B/c
vj(e2/c) < vf(@'/M -1,

If, for example, v = o7, and the format is otherwise as in the 7090, then
columns 21-27 of registers 0 to (27 — 1) provide the base addresses for



§2.1 Instruction preparation 75

successive blocks of 2% registers each. The 7090 provides no dynamic
relocation.

Branching, interruption, and trapping

The normal sequence of instructions (fetched from successive memory
registers) can be interrupted by respecifying the sequence register s. Such
respecification is performed in the execution phase of certain instructions,
primarily those called transfers, and skips. The simplest branch is the
TRA* (transfer), whose execution effects the following operation

s —wh/c.

The normal sequence can also be broken by the insertion of an instruc-
tion in the command register without disturbing the sequence register.
Unless the inserted instruction is itself a branch, the normal sequence is
resumed immediately.

If just before a branch (or insertion) the present value of s is stored in
some chosen memory register /, then the data in register / can be used in a
subsequent branch to reestablish the original sequence at the point reached
before the first branch. The storage of s and immediate branch are jointly
called an interruption. An interruption which is performed automatically
upon the occurrence of certain special conditions is called a rrap. A trap
provides a convenient device for inserting in the normal program sequence
a subprogram demanded by the occurrence of the special conditions.

In the 7090, the so-called channel trap is controlled by an 8 x 3 logical
matrix T whose elements are determined by three different conditions
existing in cach of the 8 input-output channels of the computer. A corre-
sponding enable matrix E (also 8 x 3) and an enable toggle e determine
which elements of T are effective.

The channel trap is effected in the first phase of the instruction fetch
(Program 2.4) as described by steps 2-8. If the matrix ¢eE A T is zero, the
branch on step 2 skips the trap operation and begins the normal fetch on
step 9. If not, step 3 determines j as the index of the first nonzero row,
step 4 stores s in a memory register determined by j, and step 5 stores the
nonzero row (which indicates the particular condition causing the inter-
ruption) in another portion of the same register. Step 6 resets the indi-
cators which occasioned the trap. Step 7 resets the enable toggle ¢ and
hence (as is clear from step 2) prevents the occurrence of further traps
until e is again set to one by the exccution of a special enable instruction
ENB. (The reset of ¢ to zero prevents the uncontrolled interruption of
interruptions.) Step 8 performs the actual insertion by transferring to the

* 7090 instructions will be referred to by the mnemonic codes used in the /BM Manual
(1960).
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command register the content of a second memory register determined by
/. The sequence register is undisturbed.

The 7090 can also be operated in a special frap mode which effectively
converts all transfer instructions (but not skip instructions) into intcr-
ruptions. Discussion of this type of trapping will be deferred since it is not
relevant to the instruction fetch phase.

Complete instruction fetch

The complete instruction fetch comprises three phases: channel
trapping, the fetch proper, and the instruction preparation by indirect
addressing and indexing. They are described by steps 2-8,9-10, and 11-18,
respectively, of Program 2.4.

Certain of the three phases may be skipped according to the setting of
the fetch mode indicator f. In the normal case (f = 0) none are skipped.
If f =1, the trap phase only is skipped. This case occurs after execution
of an instruction such as the RDS (read select), which must be followed by
a certain auxiliary instruction within a fixed time limit. If f = 2 (a case
which occurs only after execution of the XEC (execute) instruction), the
trap and the fetch proper are both skipped, and the command already in ¢
is merely prepared by indexing and indirect addressing. In every case, f
is reset to its normal zero value by step 11.

Not all instructions are subject to indexing. The indexability of a
command cis determined by a cfass function £%(c), which assumes the values
0, 1, or 2, according to whether c is subject to no indexing, normal indexing
(affecting all fifteen bits of the address), or restricted indexing (affecting
the last nine bits of the address), respectively. This behavior is determined
by the branch on step 13.

A second class function k'(¢) determines whether the instruction ¢ is of
a type subject to indirect addressing. Actual indirect addressing of any
particular instruction of the appropriate type is initiated by the configura-
tion ¢;, = 1 and ¢;3 = 1. The function k'(c) is itself independent of ¢y,
and ¢g;.

The class functions &%c) and k'(¢) will themselves be specified by
prefacing the mnemonic code of each instruction described by a pair of
digits. Thus,

11 CLA

indicates that clear and add is subject to both indexing and indirect
addressing, and
10 CHS

indicates that change sign is subject to indexing but not to indirect ad-
dressing.
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1 fd =
>

2 eEANT 0 -
3 j /2l A NEEAT)

4 M1042) o y15(36)'s
.5 (151 o3/ MW 2i « (¢E A TY

6 T/« 0

7 e 0

8 C < M2

9 ¢« M:*S

10 s <21 (1 + ' 9)

11 f<«0

12 a ko) A ey ney,

13 ke : 1 §

= >

14 Loldfc « 215 | (L wlc — L3 Y D))

15 Jwde < 2Y [ (Jw¥c — (i Y w¥D))

16 a: 0 L=,
17 Wl¥/c <« IBM 1 @

18 @ <0

i=(18]a¥)/c

Program 2.4 Complete instruction fetch

The phases of instruction preparation are performed in the following
order:
indexing (if indicated); indirect addressing (if indicated).
Moreover, if indirect addressing is performed, the new address is itself
re-indexed (if indicated). As shown by steps 12, 16, and 18, the indirect
addressing is limited to a single level.

2.2 INSTRUCTION EXECUTION

The execution phase begins with the “decoding’ of the operation part
of the command ¢ to select the appropriate microprogram to be executed.
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Except for the format of the operation code* (which in the common case
occupies the prefix a'?/c) the details of the decoding are, however, of no
interest to the programmer, and attention will be confined to the execution
microprograms. These may be grouped into a small number of families;
for the 7090 they are load and store, branch, logical, arithmetic, shift,
convert, and input-output.

Certain of the arguments and results of the computer instructions are
represented by three central data registers to be denoted by I, u, and d.
The registers u and I serve as accumulators in the addition and other
arithmetic operations, and, since 1 and [ jointly represent double precision
numbers (i.€., carries are in some operations propagated between the high
order end of  and the low order end of u), they will be called the upper and
lower accumulator, respectively. Since I receives the multiplier in a
multiplication and the quotient in division, it is called (in the 7090 manual)
the Multiplier-Quotient or MQ register, and the letter Q occurs in the
mnemonic code for instructions affecting it.

Signed numeric quantities are represented in base two with the sign in the
first component, i.e., register / represents the quantity y = (1 — 2 M%) X
(1 a!/M’). The lower accumulator I is, like each memory register, of
dimension 36, and the sign of a numeric quantity is represented by I,.
The upper accumulator is of dimension 38 and represents the number
(I — 2uy) x (| &'fu). The two extra components u; and u, are called
overflow positions and are excluded from normal transfers of data from u
to the memory. The component u, (called the p-bit) is, however, included
instead of the sign bit u, in certain /ogical instructions. The component
u, (called the g-bit) is made accessible only by certain shift operations.

The register d (distributor) serves only as intermediary in transfers
between main memory and the central data registers ¢ and I and is not
accessible to the programmer.

Load and store

In each member of the family of basic load and store instructions
(Program 2.5), the memory word involved is selected by w!?/c, the address
portion of the instruction. The instruction STA stores only the address
part of u, and STD stores the decrement part, so called because it is used
in certain instructions to specify the amount of decrement to be applied to
an index register. The STP stores the p-bit and the first two digits of the
magnitude part of u; that is, the three-bit prefix of the logical part of u
which enters into logical operations. The STO instruction stores the

* The operation code representing instruction x is a logical vector to be denoted by
e(x). Thus p(CLA) = (000101000000).
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Load Q 11 LDQ — [« M &Pl L
Store Q 11 STQ — M. %] s
Store left half Q 11 SLQ —f al8/Miw'lc o gl8)l s
Store 11 STO — M- ¥ (| a)/u _
Store zero 11 STZ — M- wPlc .
Store address 11 STA — w!3/M-»"%c — wliju L,

Store decrement 1t STD — (3] als)M % — (5| ad)u —

Store prefix It STP —— o3/M @V (2| od)/u N
Store tag Il STT —f (18} a®)/M - »'%¢ «- (20 | ¥/ |
Store instruction

location counter 11 STL —» M wb¥lc s —
Store logical word 11 SLW ——f M ¥/ - g@u N

Program 2.5 Load and store instructions

normal numeric part of u (that is, all but the overflow bits), whereas SLW
(store logical word) stores the p-bit instead of the sign.

The instructions which load and store the index accumulators (Program
2.6) are of four types, as indicated by the leading letter of cach of the
mnemonic codes, L for load index from memory, S for store index in
memory, A for load index from the address of the command register, and
P for place the index in the upper accumulator or the upper accumulator
in the index. The portion of memory, command register, or upper
accumulator involved in each of the ten instructions which specify the
index is shown in steps 1-10. The last five of these differ from the corre-
sponding members of the first five only by complementation on 2", as
shown in step I11. Since the subtraction occurring in indexing (step 14 of
Program 2.4) is reduced modulo 2'%, the effect of complementation is to
add rather than subtract the quantity used to load the index accumu-
lator.

Step 12 shows that the index accumulators specified are selected by the
three-bit tag vector £ = (18 | a®)/cand that each receives the same specifying
quantity. Since the tag vector is used to select the index registers to be
specified, it cannot also be used to specify indexing of the instruction
itself, and, consequently, none of the load and store index instructions are
indexable. Neither do they permit indirect addressing.
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Load index from address

Load index from
decrement

Address to index true
Place address in index
Place decrement in index

Load complement of
address in index

Load complement of
decrement in index

Address to index
complemented

Place address in index
complemented

Place decrement in
index complemented

Store index in address
Store index in decrement
Place index in address
Place index in decrement

(i = (18 | a¥)/c)

Microprogramming

00

00
00
00
00

00

00

00

00

00

00
00
00
00

LXA

LXD
AXT
PAX
PDX

LAC

LDC

AXC

PAC

PDC

|

SXA
SXD
PXA
PXD

L

|

|

L]

}

X — WM L wl¥e

¥ (3| atf) Mot
x —wldc
x <« wfu

¥ (5] al)u

x <= WIBM - wi¥fe

®

< (3}l p et
x <-whc
x - wbu

¥ (5] a®u

Jx <215 (= "x)

i/l «-€(+[i) ; x

RENYER S

(B als)Mietle i1
u < w'(38)(i ; I)

uo- (5] a3 - D)

§2.2

Program 2.6 Load and store index instructions

1
2
3
4
5
__‘ 6
— 7
F—| 8
| 9
— | 10
F—‘ 11
le— 12
— 13
— 14
—— 15
—— 16

The last four steps show the storing of the index accumulators. The
quantity stored is the or function of the accumulators selected by the tag

(18 | a¥)/c.

Branch instructions

The basic branch instructions are of two main types, the transfer
.aenoted by a leading T in the mnemonic code) and the skip. The behavior
of the skip instructions is shown in steps 1-10 of Program 2.7, and is
typified by the PBT (p-bit test) of steps 1 and 10. Lf the p-bit of the upper
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accumulator js not zero, the sequence vector is incremented so as fo skip
the next instruction in the sequence; if the p-bit is zero, the instruction has
no effect. The various skip instructions differ in the particular tests made,
and the last two (CAS and LAS) differ also in providing three alternatives,

p-bit test 10 PBT — s<-u, l— 1
Low order bit test 10 LBT — <~ u,, — 12
Storage zero test 11 ZET —)| s«—€NM Lwldfe 13
Storage nonzero 11 NZT —f s<-e ¥ M wldjc 14
test ’
Compare accum- 11 CAS — d -« M- w!'ie 5
ulator with storage . s
s<-u D ((layd) 4 2(uha)y AdDey ] 6
s<-2((1 —2u,) Potfu (0 —=2d) tatidy —— 7
Logical compare 11 LAS —» d«- a'fu—"'M wlifc 8
accumulator with
storage s< {d 70+ (d -2 0) 9
] LS 2P|G 4 s — 10
Execute 11 XEC —| ¢« M@Vl 11
/’( -2 > 12
Store location and 00 STR —» w!/M"<«—s 13
trap
§ <=2 > 14
Leave trapping 10 LTM— <-0 —> 15
mode
Enter trapping 10 ETM— r<-1 — 16
mode
Trap transfer Il TTR —{ §s~—w'/c — 17
Console clear or — ( fou, L)y« 0 —> 18
reset

Program 2.7 Skip type and other special branches

skipping 2, 1, or 0 instructions according to whether the quantities com-
pared stand in the relation <<, =, or ==, respectively.

When operating in the nontrapping mode (¢ = 0), the essential operation
of the transfer type of branch (Program 2.8) is the (conditional) respecifi-
cation of the sequence vector s by the address portion of ¢. The HTR
(halt and transfer) also suspends operation of the computer until a run
signal is received from the console (steps 27-29).

In the trapping mode, all transfer operations are converted to inter-
ruptions; the sequence vector is first stored in register zero, and a
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Transfer on index high 00 TXH
Transfer on index low 00 TXL
or equal
Transfer on index 00 TIX
Transfer on no index 00 TNX
Transfer  with index 00 TXI
incremented
Transfer and set index 00 TSX
Transfer 11 TRA
Halt and transfer 11 HTR
Transfer on zero It TZE
Transfer on nonzero 11 TNZ
Transfer on plus 11 TPL
Transfer on minus 11 TMI
Transfer on overflow 11 TOV
Transfer on no over- 11 TNO
flow
Transfer on Q plus 11 TQP
Transfer on Quotient 11 TQO
overflow
Transfer on low Q 11 TLQ
i (18] a*/c)

Ml(’l'O]) rogramming

§2.2

—>

>

—>

—

be- (LG} D LG} ae)
b<-(LGEY D= 13| afe)

b (1GYD - 13}
p G D =16 a)e
il <= 2V g)e(+[i)
b-(1LGEYD <G ae)
g YD+ 13 e
LT < - Q¥ p)e(+ /i)

LA < -@P)(— 1 sne(+[i)

— b1

b<-(a'u)

be @fw Y

mi

mi

b« u,
b<—u,
(b, 1) <= (u, 0)

(b, 1) «-(u, 0)

b «- l_u
(b, 1) <= (1, 0)

b<-((1 —20) La'fl (1 —2u,) Lalfu)
bbby (L aYA (uhe)

t 1

b0

s <-wh/c

WM —s

b0
Is<-1
a'?/c : p(HTR)
r<—20

r: 0

Program 2.8 Basic transfer type branches

~N S AW

9

10

17
18

19
20
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22
23
24
25
26
27
28
29
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(conditional) branch is made to register one. This behavior is uscful in
trace programs. The conditions for thc various transfers are indicated
in the setting of the logical variable 5. Special indicators (such as the
overflow toggle u) are resct by the transfer instructions which they control.

Transfers based on the condition of the index accumulators (steps [-9)
are combined with modification of the index registers. The quantity from
the index accumulators is again the or function of the accumulators
selected by (18 | e®)/c. This quantity is compared with the decrement part
of the command (that is, (3 | a'%)/¢}to control the conditional branches and
is decremented or augmented by the decrement part to modify the sclected
index accumulators.

The TSX (transfer and set index) inserts the complement (on 2'%) of the
sequence vector into the selected index accumulators before effecting an
unconditional transfer. This instruction is convenient for incorporating
closed subroutines or other interruptions, since a subscquent TRA
(transfer) with a zero address and indexed by the same index register
restores the program sequence to the point of interruption.

As shown in Program 2.7, only the TTR (trap transfer) is exempt from
trapping. The trap indicator is set by the ETM (enter trap mode) and is
reset by the LTM (lcave trap mode) as well as by a console clear or resct.
The XEC (execute) instruction performs no operation upon the central
data registers but inserts in the normal instruction sequence (without
breaking it) the instruction in the register specified by the data address
accompanying the XEC. This is effected by simply loading the specified
register into ¢ and (by setting /' = 2) skipping the trap and the fetch proper
of the instruction fetch phase.

Logical instructions

The logical operations (Program 2.9) concern the logical part of wu,
which differs from the numeric part by including the p-bit rather than the
sign, and hence comprises a?/u. The first instruction of the family (ORS)
produces the logical or of the word sclected from storage with the vector
a?/u and returns the result to the same location in storage. The instruction
ANS (and to storage) is similar. In the ORA (or to accumulator) the
result u is of dimension 38, and the second operand (that is, M ©"'/¢) is
expanded to this dimension by inserting two leading zcros beforc oring
it with zz. The instruction ANA is similar. It is easily verified that ORA
leaves the extra bits unchanged and that ANA resets them. The ERA
(exclusive or to accumulator) is anomalous in that it resets the extra bits.

The ACL (add and carry logical) is normally used only in certain parity
check algorithms. 1t adds the selected word to the logical part of u,
treating both as 36-bit positive base two numbers, again adds any resulting
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Or to storage 11 ORS — Miwec. (g2u) y M % [,
Or to accumulator Il ORA — u —u y (@M« .
And to storage 11 ANS —f M .o%c (@u) A M o%c |
And to accumulator 11 ANA — u «u A (@M ' wPic) L

Exclusive or to accumulator 11 ERA —3 u « (u # (@M «'*/¢))

@ju 0 —
Complement magnitude 10 COM — alju «~a'ju >
Clear magnitude 10 CLM — a@lju <0 >
Change sign 10 CHS —f u, <1, >
Set sign plus 10 SSP — u, <0 —
Set sign minus 10 SSM —f u, <1 —
Store logical word 11 SLW — M-ieb/c g2y —
Clear and add logical 11 CAL — u « @M L« .
Add and carry logical Il ACL —f y « | (@/u) + | M Lebe

L& @) + (v 2 2% |—

Program 2.9 Logical operations

overflow to the low order end, and places the result (which will not exceed
2% — 1) in the logical part of u. The behavior of the remaining logical
instructions is evident from Program 2.9. As shown by the class functions
k% and k', five of them do not permit indirect addressing.*

Arithmetic instructions

The description of arithmetic instructions will be illustrated by the family
of fixed pointt add instructions shown in Program 2.10. The CLA (clear
and add) transfers the selected memory register to u, resetting the two

* Since each of these five instructions involves the accumulator only, the normal
address portion w'?/c does not represent an address, and its last three components arc
used in representing the operation code itself. The possibility of indirect addressing
would suggest to the programmer the nonexistent possibility of specifying an arbitrary
indirect address in w'/c.

* The 7090 incorporates three arithmetic functions: addition, multiplication, and
division, cach of which may be performed in cither a fixed (radix) point or ﬂoating point
mode.
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Clear and

add 11 CLA — u « (} &) M- wld/c L

Clear and

subtract 11 CLS —f u « (| a@®)i(al M wPe) A

Add Il ADD —s d « M «'c L3

Subtract 1T SUB — d « (a,l £ M- Wls/‘-‘) 1 4

Add

magnitude 11 ADM-— d <&@ A M wldfc — 5

Subtract

magnitude 1t SBM —/ d «aly M -wlc — 6

Round 1t RND — d «ud v L' — 7
2 (1 —2u)( aju) + (1 — 2dy)(_a&d) —! 8
T Uy 9
Latu 257 (J2)) 10
w—u v (v # ) Ay = dy)) 1"
vy —(z <0) Vv (uy A(z =0) 12

Program 2.10 Add instructions

overflow positions. The CLS (clear and subtract) differs only in that the
sign is reversed in transfer.

The instructions ADD, SUB, ADM, and SBM each transfer the
selected word to d with an appropriate sign, add it to the number repre-
sented by u (including the overflow positions), and place the sum reduced
modulo 237 in u. The sign of a zero result is (as indicated by step 12) the
sign of the number originally contained in u.

The overflow indicator u is set only by a carry (but not a borrow) from
u; to u,. This indicator controls, and is reset by, certain branch in-
structions.

The RND (round) instruction is used to round up the magnitude of the
number represented jointly by the upper and lower accumulator by one
unit in the high order position of the lower accumulator. As shown in
Program 2.10, the content of the upper accumulator only is actually
affected.

Shift instructions

In describing computer instructions, the term /eft shift of a vector x by r
places refers either to the left rotation ¥ «—r § x or to the left rotation
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combined with a reset to zero of the last r ““vacated positions,” that is,
¥—(r1 o) Ao

Both types of shift occur in the 7090 and concern various portions of the
entire accumulator © (5 [, as shown in Program 2.11. The portion affected
is determined by the mask vector m.

u<—uy (& X (mj(u ;1) Lﬁ
— mit Q) < (rt(mj(u S H) AT

Accumulator left

shift 10 ALS —f m < &'(38) ¢ &36) —
Long left shift 10 LLS — m < @'(38) 7: &'(36)
u, 1, —

Logical left shift 10 LGL —s m « @(38) © €(36) -

Accumulator right

shift 10 ARS — m < &(38) > €(36) -
Long right shift 10 LRS —f m < a@(38) & a'(36)
Ly ~~u, I

Logical right shift 10 LGR —+ m —a(38) & €(36) |
— miu DD () (miu D) AT

Rotate MQ 10 RQL — L ~rtl L

Exchange accumu- _
lator and MQ 00 XCA — (y@)ju<—1

(|a)/u <0 ’_,
Exchange logical
accumulator and MQ 00 XCL — @?/u «~— 1

aju 0 L

y = ,Lw“/c
Program 2.11  Shift instructions

The first three instructions are left shifts. Each sets the accumulator
overflow indicator if any nonzero bits are lost, i.e., if any of the first r
positions of the affected portion are nonzero. The next three are analogous
right shifts, which do not, however, set the overflow indicator. In the
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“long” shifts LLS and LRS, one sign position specifies the other, although
the sign positions are otherwise excluded from the shift by the mask m.

The LGR shifts all positions save the sign of u; RQL rotates MQ
without resetting any positions; and XCA, which “exchanges” the
accumulators, is effectively a rotation except that it resets the overflow
bits. The amount of shift r is in each case determined by the base two

value of w/c.

Convert instructions
Each convert instruction (Program2.12) selects a six-bit infix of one of the

accumulators, adds its base two value to a “‘base address™ initially specified
by the address portion of the instruction, and selects the memory register

«=q €3 : 0 1

- I' «—wldd 2

88 g’}:g e (10 ae ]
d ¢ 4

16141 J 5

J=j=1 6

a2 wid + o) | T | 7

d « M« 3

al%/c : p(CAQ) = 9

b/l < abjd 10

Latiu <25 (latju + O d) 11

00 CVR — J < -0 }adje 12
d-«c 13

J=j—1 = 14

a < 2B)(LolSd + obu) 15

d < M¢ 16

alju (6 (@) A & 17

af/a?ju < (affa@?/u) v ofid 18

Program 2.12 Convert instructions
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specified by the resulting address. Part of the selected register is used to
respecify the base address and part to modify one or other of the accumu-
lators. The process is reapplied to successive six-bit infixes in cyclic order
a number of times determined by the base two value of (10 | a®)/c. If
¢,y = |, the last fifteen bits of the last word selected in the operation are
transferred to index accumulator 1°.

Input-output instructions

Because the data transmission rates of input-output equipment serving
a computer are much lower than those of the computer proper, computer
systems are normally designed to permit concurrent operation of the
computer and one or more input-output units. The units are therefore
more or less autonomous.

In the 7090, the autonomy of input-output equipment is carried further
by providing eight data channels which transmit data to, and are controlled
by, the computer proper, and which in turn control and accept data from
the individual input-output units. The entire input-output process there-
fore comprises three levels of microprograms: a semiautonomous input-
output unit controlled by a semiautonomous data channel controlled by
the computer proper.

Attention will be restricted to the magnetic tape input-output units of
the 7090. Each unit is available to one specific data channel 7/ (for i =
0 — 7), and a particular unit can be characterized as the file ®,". The unit
is completely autonomous only in certain simple operations, such as
rewind, write end of file, backspace, and continue to end of record. Except
for these special operations, a given data channel can control only one of
its files at a time. The eight data channels may, however, operate con-
currently under control of the computer proper.

Each channel i behaves as a subcomputer with its own sequence vector
$’, command vector C, data register D, and other miscellaneous operands,
as shown in Table 2.13. The instructions of the subcomputer (listed in the
matrix K) are called channel commands and differ from the instructions of
the computer proper in both format and function.

Tape Units. Each tape unit behaves as a file (Sec. 1.22); each recorded
component is an alphanumeric character represented in a seven-bit odd-
parity error-detecting code, the lowest level partition A is represented by
the intercharacter space on the tape, the second level partition A, (called
an end of record gap) is a longer blank space on tape.

Each record gap is immediately preceded by a parity check character
which is appended to the normal data of the record to permit an even
parity “longitudinal” parity check on each of the seven-bit positions of the



Dimension

Channel data registers D 8 x 36
Channel sequence vectors  § 8 x 15
Channel command vectors C 8 x 36
[ T,7 : End of file A,
Channel trap TJ‘ T, : Parity check 8 x3
'L T,* : Channel command
Channel trap enabled E 8 x3
Channel trap enabled e
Tape position limits L L?: (Beginning, End) 8 x2
Limit position on tape v (Determined by reflective marker)
Busy indicator b 8
Write or read indicator w 8
Tape unit index t 8
[0 : Normal read-write
Functions f i 1 : Backspace record or write end of
i file 8
| 2 : Backspace to file mark
1L3 : Rewind
Load channel waiting r  (reload) 8
Write record gap (A)) next g 8
Current character X X?is the 7-bit representation 8 x7
Current parity check Y 8 x7
Interlock vector x x, = 1 if character X7 is loaded 8
Current character selector V' V¢/D? is current character 8 x 36
End of file indicator Q Q' : (Counter, Potential error) 8 x 2
Input-output indicator h
¢ d} 10CD
~ —~ | TCH
r p |IORP
Channel commands K rtIoRT
cp [IOCP
ct [IOCT
s p/ IOSP
s t/ 1I0OST

Table 2.13 Channel operands
89
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preceding record. The check character is recorded automatically and when
read from the tape is used in the parity check but is not transmitted with
the data of the preceding record.
The third and highest level partition (called end of file) is represented by
a special recorded character A, which has the seven-bit representation
p(A) =(0,0,0,1, 1,1, 1). It is recorded together with the appropriate
check character (which, since the check is of even-parity is also A,) as a
separate record. The character A, alone is not recognized as an end of file
partition; only the sequence A, A,, Ay, A; is so recognized. Tapes are
normally stopped only at a record gap so that, on restarting, the tape is
fully accelerated before the end of the record gap (and hence data) is
reached.
Dimension

Character buffer

Partition buffer

Logical association (connection)

Busy indicator

Write-read status

Function status

End of file counter

» 8 x # of units per channel

Nom T ow N

A, intercharacter gap
File partitions A (A, inter-record gap
2, end-of-file symbol (0001111)

Table 2.14 Input-cutput unit operands

The tape unit parameters are listed in Table 2.14, and the operation of
tape unit ®;" is described by Program 2.15. The unit idles at step 5 until its
busy indicator B,’ is turned on by data channel /. After a starting delay of
about 650 microseconds required to accelerate the tape and reach the
beginning of the record, one of four functions (listed under f in Table 2.13)
is performed as determined by the function indicator F)'.

If F;/ =0, a normal read or write is performed under direct control of
the data channel as detailed in steps 18-37. If F' ./ 0, one of the several
completely autonomous operations is initiated. If F,/ is not zero and
W' (write indicator) is unity, the autonomous function write end of file
is performed by steps -3, after which the busy indicator is turned off and
the unit returns to idle status. The end limit indicator L,' is set by step 3
if the tape position exceeds a limit » set by a reflective marker attached to
the tape a short way before its extreme end.

If W/=0andif F’=1, 2, or 3, the unit backspaces to the next earlier
record gap, to the next earlier end of file position, or to position zero,
respectively. Thelast is called rewind. If, in backspacing, the tape becomes
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rewound before the appropriate partition is found, the process is terminated
and the beginning limit indicator Ly’ is turned on (steps 10-11).

The file is read backward repeatedly by step 12. When a record gap
occurs, step 16 is executed, and if F;# =1, the branch to step 4 returns the
unit to idle status. If F;* = 3, termination can occur only from step 11, at
which point the tape is rewound. The counter R;" is used to detect an end
of file partition. It is reduced by one (step 14) if the character read is A, or
to zero if it is not. Since R, is set to 3 after each record gap, step 17 is
reached with R\ = 1 if and only if the end of file sequence A}, X,, Xy, A, has
occurred.

—

20 WEF — k& <4

20 BSR —— k<1

20 BSF ——f k2

20 REW —» k <3

(09 twlie) —1
b, : 1 E]
t, — Lwdjc
fiek =3 (=4
w; —k =4

O 0 N N L W N

—
o

b, 1 —

Program 2.17 Instructions for special tape unit functions

Before completing the discussion of the remaining functions of the tape
unit, it may be helpful to follow through the entire process initiated by the
BSR (back space record) instruction. The channelidles (Program 2.16) on
step 5 with the busy indicator b, off. The BSR instruction (Program 2.17)
first determines the index 7 of the channel addressed, waits on step 6 until
the sclected channel becomes free, sets the tape index ¢, = j to select the
particular unit ¢/, the function indicator f; to unity, the write indicator w;,
to zero, and the busy indicator b, to unity. This last action initiates oper-
ation of channel /, which, as soon as unit O ‘becomes free (B,” = 0), executes
steps 6-7 and then (since f, > 0) returns the channel immediately to idle
status. Step 6 transfers to the parameters of the selected unit the relevant
channel parameters which were themselves specified by the BSR instruction.
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Step 6 also makes the selected unit busy (B’ = 1), and hence starts it in
operation.

The normal read-write functions of the tape unit are described by steps
18-37. They are initiated by a branch from step 7 in the event that the
function indicator is zero. Over-all control by the channel is exercised
primarily through the association indicator A%, which is equal to unity if
unit j is logically associated with channel /, that is, if data are permitted to
flow between them. If writing is in progress (W,’ = [) and A, becomes
zero, the unit stops; if reading is in progress, the channel is freed immedi-
ately but the tape continues to a record gap.

Step 20 performs the read from tape, and if A;" = 1, the partition read
is transferred to p,, the seven-bit representation of the character read is
transferred to X' (both for use by the channel), and the channel-unit
interlock #, is set to unity to initiate appropriate disposition of the
character by the channel. If P,/ is not a record gap rcading continues, the
intercharacter delay (not shown) permitting time for the channel to
dispose of the character before the next is actually read. If P;" is a record
gap, the corresponding delay elapses before A’ is tested. If A7 =0,
the branch to step 4 stops the unit. The tape stops only at a record
gap although transmission of data may be discontinued earlicr by step
21

The writing process begins at step 37 and may be discontinued before
any writing occurs (although the current record gap will be lengthened by
a few inches of blank tape). The main writing is performed by the loop
28-32, employing the channel interlock x;. Step 31 sets the tape end limit
indicator. The loop terminates (step 32) when the write record gap
indicator g, is set to unity by the channel. Steps 33-36 then write the
longitudinal parity check character Y* supplied by the channel, together
with the inter-record gap partition A;. The write loop is then re-cntered
unless A;" = 0.

Channel operation. Operation of a channel is initiated either by one of the
special functions (WEF, BSR, BSF, REW) already described, or by a
WRS (write select), or an RDS (read select). The loading of the channel
command C’ required to control the two latter functions is, however,
controlled by a subsequent RCH (reset load channel), which transfers to
S the address in memory of the desired channel command.

The WRS (Program 2.18) selects the channel 7 specified by a portion of
its address, waits until the channel is free, sets its tape unit index £, as
specified by another portion of the address, sets the write indicator w; to
unity and the function indicator f; to zero, and, finally, scts b, to start the
channel. The fetch mode indicator f is also set to one so as to skip the
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channel trap on the next instruction fetch. This prevents a trap from
intervening between the WRS and the following instruction (which is
normally an RCH). The RDS differs only in the setting of w, on step 4.

If the channel is not busy (i.e., not selected), the RCH instruction
(Program 2.18) selects the channel specified by a portion of the operation
code, sets the input-output indicator /1, and copies the instruction address
to the channel sequence vector S’. If the channel is busy, the RCH
instruction sets the selected channel to its step 9, whereupon’ the channel
waits on the interlock at step 10. Meanwhile, step 18 of the RCH sets
St and step 19 sets the interlock 7, so that the channel may proceed.

Steps 13 and 14 of the channel operation load the channel command
register C‘ and increment the channel sequence register S*. If the command
isa TCH (Transfer in Channel), step 16 causes a branch to a new sequence
of commands. If not, the word count. represented by (3 | a'?)/C’, is
tested. Ifitiszero and if the current command is either an lOSP or [OCP,
the branch to step 13 immediately fetches the next command in sequence.
Otherwise, indirect addressing of the command occurs (step 19) unless
Ci, is zero.

Step 20 specifies k according to the class of the command being exccuted.
The commands are listed in the matrix K of Table 2.13.

The first component K" assumes the value ¢, r, or s according as the
command having code i is terminated by a word count test, a record gap,
or by either (signal). The second component K, assumes the value d, p.
or t according as the channel discontinues operation, procecds to the next
command in scquence (as determined by §8°), or rransfers to an LCH
(Load Channel) instruction which may be awaiting cxccution by the
computer proper. Execution of the LCH (Program 2.18) is delayed at
step 1] and branches to step 18 (to respecify S’ in the manner of the RCH)
only if the channel reaches step 3.

Channel operation continues on the right-hand segment (steps 35-65) if
the operation is a read (w; = 0), and on the left (steps 22-34) if it is a
write. In the latter case, a zero word count causes immediate termination
of the current command.

The normal termination of a command in either read or write mode
occasions a branch to step I, where the tests for continuation begin. Step
1 sets the Channel Conunand Trap indicator T, if the current command is
of the transfer type and an LCH (Load Channel) is not awaiting execution
in the computer proper. If the command is of the proceed type. step 2
branches to step 13, where the next command in sequence is fetched. I the
command is of the transfer type and an LCH is waiting (r, = 1), step 3
branches to step 9 to reset parameters and permit the channel to be reloaded.
In all other circumstances step 4 is executed to disassociate the unit from the
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channel and to return the channel to idle status. In read status, certain
abnormal events—the occurrence of a parity error, or an end of file
partition—return the channel to idle status immediately, regardless of the
type of command being executed.

The write operation (steps 22-34) is relatively simple. If the word
count in (3 | a®)/C’ is zero, steps 23-24 terminate the current command
but first initiate the writing of an end of record gap* if the command is of
the “‘record” type (e.g., an IORP). If the word count is not zero, step 25
transfers to the channel data register D’ the memory word selected by the
address portion of the command. The loop 28-33 transfers to the tape
unit successive six-bit infixes of D’ and maintains the longitudinal parity
check Y (originally reset on step 12). When all six have been transferred,
the branch to step 34 decrements the word count and, unless it becomes
zero, repeats the entire process from step 25.

The read operation (steps 35-65) begins by resetting D’ to zero and the
infix sclector V¢ to a® Step 37 terminates the current command if it is of
the count or signal type and the word count is zero. Steps 38-39 terminate
the command if it is of the record or signal type and if the last file partition
read is a record gap. The partition indicator p, is reset to A, by step 39.
Thus a record gap present when termination is caused by a zero count is
still present on the first execution of the succeeding command, whereas a
gap which itself causes termination is not present on the succeeding
command.

Steps 40-43 show the data interlock, the determination of the longi-
tudinal parity check, and the setting of the parity error trap T’ in the
event of a parity error in the character. If the corresponding channel trap
1s enabled, step 44 causes immediate termination in the event of a parity
error. Steps 45-48 detect an end of file configuration (using a counter,
Q," in a manner similar to that used in Program 2.15), set the indicator
Q)" if a partition character A, appears at the beginning of a word, and
causc termination (from step 49) with the end of file trap T, set if an end
of file configuration occurs. If the character A, occurring at the beginning
of a word is not part of an end of file configuration, step 50 sets the tape
error trap T', and step 51 causes termination if the corresponding channel
trap is enabled.

Steps 53-56 are executed only if p, is a record gap. They reset the
counters Q' controlling the end of file test, test and reset the longitudinal
parity vector ¥, and may cause termination in the event of an error. Stcp
57 causes the character transfer of step 58 to be skipped if the character is

* Since the partition A, is represented by a gap, the writing of one gap immediately
following another, with no intervening data, has the effect (when subsequently read) of a
single record gap.
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—1 Ls <21 + Ls)

Input-output test 10 IOT —{ h : O
«— h 0
Beginning of tape test 10 BTT — k <0
End of tape test 10 ETT —{ k < |
i (94 wdje — 1

Lt :0
Lk,i ~0

Transfer on channel 11 TEF —] i < _ (1 | alY)/c — (8¢) . (3,0) + ¢,
end of file
b~ T,

Toi <0

Transfer on channel 11 TRC — i < (I Jajc — (Be) _(2,2) + ¢
redundancy
b« T,
T, <0 —
Transfer on channel 11 TCO —f k <0
in operation
Transfer on channel 11 TCN —f k£ « 1
not in operation

i L1} alc — (8€)L(6, 0)

b — (b, #k)
i |
b:0 =

s —wld/c ’_>

MY — w'3(36)\s
b : 0 1=

1s <1 >

Program 2.19 Input-output branch operations
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a potential end of file. Steps 62-65 decrement the word count and transfer
completed words to successive memory locations unless Ci, is zero. Step
61 suspends these operations when the word count reaches zero. Since
step 56 is followed by step 61, the occurrence of a record gap occasions the
(potential) transfer of a word to memory even though it is incomplete.
Because of the reset of D on step 35, the incompleted part of the word is
ZEero.

Auxiliary channel instructions. Program 2.19 shows those branch instruc-
tions which are controlled by indicators associated with the data channels,
Each indicator tested is also reset. The last four instructions shown are
subject to the trap mode.

11 SCH —— <209} + ¢,
¥y « €36)
=1 b,:0

i -

y—c
(3| at?))y « §°
(Y18, Y20) < 0

M Lwt¥c «y R

11 ENB —— y « M:«¥e
E, < wfly

E, < (10} a®)y
E, « wdly

10 RCT — e <1 —

Program 2.20 Trap control and store channel

The channel indicators T may also cause interruptions as detailed in the
instruction fetch phase. They are controlled by the enable matrix E and
the enable trigger e which are set by the ENB (enable) and RCT (reset
traps) instruction of Program 2.20. The instruction SCH (Program 2.20)
permits storage of the channel registers.
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2.3 DETAILED LOGICAL DESIGN

Although a description couched at the programmer’s level specifies
completely the functions of a computer. it requires considerable extension
to provide a basis for the so-called logical design of circuits for realizing
the computer. The extensions include: (1) the specification of sequence in
the microprograms themselves; (2) further detailing of certain complex
functions; (3) reduction of the number of operands (registers) required;
and (4) economization in the underlying functions provided. The nature
of these extensions will be indicated briefly.

In principle, the problem of sequence control in the microprograms does
not differ from the sequence control in computer programs. However, the
function served by the sequence vector s (a base two representation of the
address of the succeeding instruction) is frequently served instead by a ring
or combination of rings. A ring is a logical vector r of weight one (that is,
+/r = 1) capable of rotation (Ir or |r) and of resetting to one of several
initial positions p, (that is, ¥ < €”:)

Certain steps of a microprogram, which at the programmer’s level may
be considered as monolithic, must themselves be realized in circuitry as
more detailed microprograms. The addition of two unsigned (positive)
numbers represented in base two by the vectors ¥ and y might, for example,
be performed as in Program 2.21. The result ¥ produced is correct only if
the sum is less than 2%

Economization in the underlying functions provided is achieved by
restricting the *‘data paths™ provided between the various operands (i.e.,
registers) and by restricting the operands to which certain operations
apply. Restriction of data paths implies that it is not possible for each
operand to specify every other operand directly. For example, memory
may be restricted to communicate only with the buffer register d so that
any transfer from memory such as

c— M:is

y:0 —
<y
Yy txAz)

x — (X% #* 2)

Program 2.21 Base two addition
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Address
decoder

Figure 2.22 Data paths

must in fact be performed in two steps:
d—M-*
c—d.

An operation such as address decoding (i.e., conversion of the normal
base two representation of an address i into a one-out-of-n code of the
form €’ suitable for selecting word i from memory) is relatively costly and
is not normally provided for all relevant operands (such as s and w'?/c in
the 7090). Instead, decoding may be provided on a single auxiliary
operand a; the selection of an instruction in the 7090 would then be
exccuted in two steps:

a<~s

c<«— M-,

All microprograms specified at the programmer’s level must, of course,
be translated into equivalent microprograms which satisfy the path
constraints. Path restrictions are perhaps best displayed as a “block
diagram” showing the data paths provided between the various registers
and operations units. Figure 2.22 illustrates a convenient representation in
which the paths are shown as connecting lines with arrowheads indicating
the possible directions of transfer. If the indicated paths are further re-
stricted to selected components of the operands, this restriction may be
indicated by a pair of selection vectors separated by a colon. Thus the
notation

w'(36) : €(15)

on the path between d and s of Fig. 2.22 indicates that transfers occur
between w!®/d and s. The symbols r and ¢ denote the selection of a matrix
row and a matrix column, respectively, as illustrated by the path between
M and d. Permutations may be represented in the form pf. Thus if the
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vector d were to be transposed (reversed in order) in the transfer to ¢, the
path would be labeled with the expression

Pl e
where p = |v2%(36)] = (35,34, ..., 1,0).
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EXERCISES

2.1 Write 7090 programs for each of the following operations:

(2) M « M5y MY

(b) M3 « M3

[LMS < 2% (| MS 4 | M)

© imr (s oy 2

(d) MS < M7 ab MY]

(e) M6 - /M7, wG, Mﬂ/

(f) M6 - /]\/17’ (8 l (110), M!)/

(g) M6 < /M7, M8 M [Use [x,u,y/ =(x A1) v (¥ A )]

(h) M6 «- uw!
2.2 In the magnetic core technology employed in the 7090, logical disjunction
(or) and negation are much easier to produce than conjunction (and). Limiting
the logical functions employed to disjunction and negation, write microprograms
for the following 7090 instructions:

(a) ANS (Use De Morgan’s law, Sec. 1.8)

(b) ERA
2.3 In the magnetic core technology used in the 7090, each transfer of a quantity
¥ into a register x is actually an or with the present content of the register, i.e.,
x <~y v x. A register may also be reset to zero. Subject to the foregoing
restriction, write microprograms for

(a) the operation I «— M, (Use two steps.)

(b) the operations of Exercise 2.2(a).
2.4 Describe the main portion of the instruction fetch of the 7090 (steps 9--18
of Program 2.4) in an algorithm which satisfies the data path constraints of Fig.
2.22.

2.5 Repeat Exercise 2.4 so as to satisfy the constraints of Exercises 2.2 and 2.3
as well.
2.6 A vcctor p which permits only the following types of operation:
(i) p< p o,
L[y < wlp
(i) [ —
lp < w'p
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is called a pushdown or stack vector. If the successive components of a stack
vector p are represented by successive memory registers, then thc operations
affecting it can be controlled by a single address counter v, which is automatically
incremented at each operation of type (i) (addition of a new final component) and
is automatically decremented at each operation of type (ii) (reference to the final
component accompanied by its deletion).

(a) Using the 7090 registers and formats augmented by an address counter v
of dimension 15, write a microprogram for an operation LDS (load stack)
which transfers M. ©'*/¢ {0 the top of the stack [operation type (i)].

(b) Write a microprogram for STS (store stack) which transfers the top of the
stack to M /¢ [operation type (ii)].

(c) Write a microprogram for an operation AND which produces the and
function of the top two components of the stack, deletes them, and appends
the result as a new final component. [The net reduction in »(p) is onel.

(d) The AND of part (c) has no associated address. Show that all 7090
instructions (other than input-output) can be redefined so that only the
LDS and STS require associated addresses.

2.7 In the 7090, a decimal digit . is represented in direct binary coding in a
six-bit logical vector x, (thatis, | ¥ = ), and each register accommodates six
decimal digits. Use the convert instructions (Program 2.12) in a 7090 program to

(a) convert from binary to decimal.

(b) convert from decimal to binary.

(¢) replace all leading zeros (i.e., all preceding the first significant digit) of a
number represented in decimal.

2.8 Write a 7090 program to convert

(a) froma 36-bit binary code to a 36-bit reflected Gray code [see Phister (1958)].

(b) from a reflected Gray code to binary.

2.9 A memory M is called a rag¢ or associative memory if for any argument x
it yields a direct indication of the row or rows of M which agree with x. If the
resulting indication is in the form of a vector s such that the matrix s//M contains
the indicated rows, then s = M " x. More generally, a logical mask vecror m is
added to the system so that /M is compared with the argument m1/x and some
desired function of m/M* is represented by m/M* for each k. In the following
exercises M is assumed to be a logical matrix.

(a) Use De Morgan’s laws (Secs. 1.8 and 1.11 or Sec. 7.1) to derive from the
relation s = M x an expression for s which would be suited to a circuit
technology in which disjunction and negation are easier to perform than
conjunction.

(b) Write a detailed algorithm using a row-by-row scan of M to determine
s = (m/M) ’ (m/x).

(c) Repeat part (b) using a column-by-column scan of M.

(d) Usc a column-by-column scanof M todetermine s such that s//M contains
the rows of M of maximum base two value [see Falkoft (1962)].



chapter 3

REPRESENTATION OF
VARTABLES

3.1 ALLOCATION AND ENCODING

Although the abstract description of a program may be presented in any
suitable language, its automatic execution must be performed on some
specified representation of the relevant operands. The specification of this
representation presents two distinct aspects—allocation and encoding.

An allocation specifies the correspondences between physical devices and
the variables represented thereby. An encoding specifies the correspond-
ences between the distinct states of the physical devices and the literals
which they represent. If, for example, certain numerical data are to be
represented by a set of 50 two-state devices, the two-out-of-five coding
system of Exercise 1.6 might be chosen, and it would then remain to
specify the allocation. The two-digit quantity “hours worked” might be
allocated as follows: devices 31-35 represent components |-5, respectively,
of the first digit, and devices 29, 16, 17, 24, and 47 represent components
1, 2, 3, 4, 5, respectively, of the second digit.

The encoding of a variable will be specified by an encoding matrix C and
associated format vector f such that the rows of f/C list the representands
and the rows of f/C list the corresponding representations. The encoding
is normally fixed and normally concerns the programmer only in the
translation of input or output data. Even this translation is usually
handled in a routine manner, and attention will thercfore be restricted
primarily to the problem of allocation.

However, the encoding of numeric quantities warrants special comment.
It includes the representation of the sign and of the scale, as well as the
representation of the significant digits. Small numbers, such as indices, ad-
mit not only of the usual positional representation but also of the use of the
unit vector €’ to represent the number j (i.e., a one-out-of-n coding system),
or of the use of a logical vector of weight j (i.c., a basc | number system).

Allocation will be described in terms of the phvsical vector , which
denotes the physical storage elements of the computer. Each component
of 7 corresponds to one of the »(7) similar physical devices available, its
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range of values is the set of physical states achievable by each device, and
its index is the address of the device. Each component of 7 may corre-
spond to a computer register, an individual character position in a register,
or an individual binary digit within a character, depending on the degree of
resolution appropriate to the allocation problem considered. The 0-origin
indexing normally used for computer addresses will be used for the physical
vector, but l-origin indexing will, throughout this chapter, normally be
employed for all other structured operands.

An index of the physical vector will be called an address and will itself
be represented in the (perhaps mixed) radix appropriate to the given com-
puter. The Univac, for example, employs base ten addressing for the
registers, and (because of the use of 12-character words) a radix of twelve
for finer resolution. The address of the fourth character of register 675
might therefore be written as 675.3. In computers which have two or
more independent addressing systems (e.g., the independent addressing
systems for main memory and for auxiliary storage in the IBM 705),
superscripts may be used to identify the several physical vectors 7.

In general, the representation of a quantity  is a vector (to be denoted
by p(x)) whose components are chosen from the physical vector . Thus
p(x) = kfm, where k is a mapping vector associated with x. The dimension
of the representation (that is, »(p(x))) is called the dimension of «x in w. If,
for example, p(r) = (7)), 7y, 7,4, 7y), then k = (10,9, 17, 18), and the
dimension of x in 7w is four. If p(x) 1s an infix of =, then the representation
of . is said to be solid. A solid representation can be characterized by two
parameters, its dimension « and its leading address f, that is, the index in 7t
of its first component. Then p(x) = (/] a’)/m.

3.2 REPRESENTATION OF STRUCTURED
OPERANDS

The grid matrix

If each component of a vector x has a solid representation, then the
representation of the entirc vector is said to be solid and may be charac-
terized by the grid matrix T'(x), of dimension »(x) x 2, defined as follows:
I',/(x) is the leading address of p(%,), and T'y/(x) is the dimension of #, in .
If, for example, the vector & is represented. as shown in Fig. 3.la, then

17 2
19 4
r(x)=|27 s
23 1
32 3
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Any structured operand can first be reduced to an equivalent vector, and
the grid matrix therefore suffices for describing the representation of any
construct, providing only that the representation of each of its elements is
solid. Thus a matrix X may be represented by either the row-by-row list
r = E/X or the column-by-column list ¢ = E//X, and a tree T may be
represented by the left list matrix [T or the right list matrix T, either of
which may be represented, in turn, by a vector.

If a process involves only a small number of variables, it is practical to
make their allocation implicit in the algorithm, i.e., to incorporate in the
algorithm the selection operations on the vector 7 necessary to extract the
appropriate variables. This is the procedure usually employed, for
example. in simple computer programs. In processes involving numerous
variables, implicit allocation may become too cumbersome and confusing,
and more systematic procedures are needed.

Linear representations

The representation of a structured operand is said to be /inear if each
component is represented by an infix of the form (/| a’)/m, where / is a
linear function of the indices of the component. For example, the
representation of the matrix X indicated by Fig. 3.2 is linear, with = 2
and /= —11 + 5/ + 8.

A linear representation is solid and can clearly be characterized by a
small number of parameters—the dimensjon « of each component and the
cocflicients in the lincar expression /. The representation of a vector ¥ is
lincar if and only if Ty(¥) = de and the difference 6 = T'}‘(x) — I (%) is
constant for i = 2, 3, ..., »(x).

If / = p + gi + rjis the function defining a linear representation of a
matrix X and if @ is the leading address of a given element, then the leading
address of the succecding element in the row (or column) is simply a +
(or a + ¢). Frequently, the succession must be cyclic, and the resulting
sum must be reduced modulo »(X) x r (or u(X) X ¢). The inherent
convenience of linear representations is further enhanced by index registers,
which provide efficient incrementation and comparison of addresses.

Linear representation of a structured operand requires that all com-
ponents be of the same dimension in . This common dimension may,
however, be achieved by appending null elements to the shorter com-
ponents. The convenience of the linear representation must then be
weighed against the waste occasioned by the null elements. Moreover, i
several vectors or matrices are to be represented and if cach is of unspecified
total dimension in 7, it may be impossible to allot to each an infix suffi-
ciently large to permit linear representation. Consequently, a linear
representation is not always practicable.
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Nonlinear representations

Since the use of the grid matrix imposes only the condition of solidity
for each component, it permits an allocation which is sufficiently general
for most purposes. The grid matrix serves in two distinct capacities: (1)
as a useful conceptual device for describing an allocation even when the
actual allocation is implicit in the program, and (2) as a parameter
which enters directly into an algorithm and explicitly specifies the allo-
cation.

If the grid matrix is used in a program as an explicit specification of the
allocation, then the grid matrix must itself be represented by the physical
vector. There remains, therefore, the problem of choosing a suitable
allocation for the grid matrix itself; a linear allocation is illustrated by
Fig. 3.15.

If the grid matrix I'(x) itself employs a linear representation, its use
offers advantages over the direct use of a linear representation of x only if
the total dimension of I in 7 is much less than the total dimension of ¥ in
7t when linear representations are employed for both. This is frequently
the case, since each element of a grid matrix belongs to the index set of =
(that is, to ®(»(7))), and the dimension of each element in = is therefore
both uniform and relatively small. Program 3.3 shows the use of the grid
matrix I'(¥) and the encoding matrix C in determining the kth component
of the vector .

Program 3.3. A linear representation is assumed for T(x), with element T'}/(x)
represented by the infix ((p + ¢gi + rj) | a)/m. Moreover, each element of T'(x)
is assumed to be represented in a base & number system. Step 1 determines the
leading address of the representation of T *(x). Step 2 specifies f'as the base b
value of this representation, i.e., as the leading address of p(x,). Steps 3 and 4
specify d as the dimension of x, in m, and step 5 therefore specifies 2 as the
representation of x,.

Steps 7-9 perform the decoding of 2 = p(x,) to obtain z as the actual valuc of
x;.. Since this process is normally performed by human or mechanical means
(e.g.,a printer) outside the purview of the programmer, it is here expressed dircctly
in terms of the encoding matrix C rather than in terms of its representation. The
left-pointing exit on step 7 is followed only if 2 does not occur as an entry in the
encoding matrix.

The form chosen for the grid matrix is one of several possible. The two
columns could, for example, represent the Icading and final addresses of
the corresponding representations or the dimensions and final addresses.
The present choice of leading address f and dimension d is, however, the
most convenient for use in conjunction with the notation adopted for
infixes; the logical vector (/| a?) selects the appropriate infix.
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0-origin indexing for m only
1l — Il <—p+gk+rxl P q, | Constant, coefficient of row
) b (] & index, and coefficient of column
J by o)) index in the linear function for
3 <1 4r the representation of T'(x).
4 d b L((l| a?)m) b | Base used in representing ele-
ments of T'(x).
5 z <« (f af)/m ¢ | Dimension in = of each element
6 h = u(Cy + 1 of T(x).
7 = hen—1 /| Leading address of p(x,).
d | Dimension of p(x}) in =,
8 z @ f/Ch * g
’ z | p(xp).
9 z < f|Ch — C | Encoding matrix for com-
ponents of x.
f | Format vector for C.
= | Character encoded by x,.

Legend

Program 3.3 Determination of 2 = p(x,) and =z = ¥, from a linear representa-
tion of the grid matrix I'(x)

Chained representations*

If a linear representation is used for a vector, then the deletion of a
component (as in a compress operation) necessitates the moving (i.c.,
respecification) of the representations of each of the subsequent com-
ponents.  Similarly, mesh operations (insertion) and permutations
necessitate extensive respecification. The use of a grid matrix I'(x)
obviates such respecification in ¥, since appropriate changes can instead be
made in I'(x), where they may be much simpler to effect. [f, for example,
x is the vector represented as in Fig. 3.1a, and z is a quantity of dimension
six in 7, then the mesh operation

\

X%, € 2\
may be cffected by specifying the physical infix (70 | a®)/x by p(z) and by

* Chained representations have received extensive treatment, frequently under the
name “lists.”  See, for example, Shaw ct al. (1958) and Blaauw (1959).
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respecifying I'(x) as follows:
17
19

~
[
W = v N D

32

However, if the representation of T'(x) is itself linear, then insertions,
deletions, and permutations in x will occasion changes in all components of
I'(x) whose indices are affected. The need for a linear representation of the
grid matrix (and hence for all linear representations) can be obviated by
the use of a chained representation defined as follows.

Consider a vector y, each of whose components y, has a solid represen-
tation p(y,) whose infixes (g | a’)/p(y,) and a?/p(y,) are, respectively,
the dimension of p(y,) in 7w and the leading address of the representation of
the (cyclically) succeeding component of y (both in a base b system), and
whose suffix @*’/p(y,) is the representation of the kth component of some
vector x. Then (the representation of)) y is called a chained representation
of . In other words, the representation of y incorporates its own grid
matrix (with the address column I'\(y) rotated upward by one place) as
well as the representation of the vector «.

For example, if g = 2, b = 10€, and x = (365, 7, 24), then

p(¥)) = (T, Ty Ty, Ty, Thaps oy, Thg) = (6, 8,0, 7, 3, 6, 5),

P(Y,) = (Trgg, Ty, Ty, Ty, Top) = (2, 6,0, 5, 7),
and
P(Y,) = (Tog, Ty, Thpg, Toy, oy, T0yy) = (1,7, 0, 6, 2, 4),

is a suitable chained representation of x.

The parameters required in executing an algorithm on a chained
representation y are g, the common dimension in m of the elements of the
grid matrix I'(y); b, the base of the number system employed in their
representation; and f and A, the leading address and index, respectively,
of the representation of some one component of y. The parameters g and
b are usually common to the entire set of chained representations in use.
Program 3.4 illustrates the type of algorithm required to determine p(x,)
from a given chained representation of .

Program 3.4. The loop (1-3) is executed r(x) ](, (k — /) times, with the result
that at step 4 the parameter f'is the leading address of p(y,). Step 4 therefore
specifics «/ as the dimension of p(y ), that is, as the base b value of T',*(¥). Step §
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0-origin indexing for = only

1 h<=v(x)|[;(h +1) h, f| fis the leading address of the
Ath component of the chained
b l((f|a¥
2 f (f} o)im) . representation of x.
3— h ik b | Base used for representation
4 d<bl((f+g)}a)n of the elements of the grid
: ¢ matrix.
P d
5 z < (f{af)m £ | Dimension in 7 of elements of
6 p(x,) < a27)x s the grid matrix.
d | Dimension in m of kth com-

ponent of the chained represen-
tation of x.

z | kth component of the chained
representation of x.

Legend

Program 3.4 Determination of g(x;) from a chained representation of x

then specifies z as p(¥,). Step 6 delctes those components of z which represent
the elements of the grid matrix, leaving (x,).

The parameters f and / arc themselves respecified in the execution of the
algorithm so that # becomes & and f becomes, appropriately, the leading address
of p(¥,). A subsequent execution then begins from this new initial condition.

The chained representation used thus far is cyclic and contains no
internal identification of the first or the last components. Such an identi-
fication can be incorporated by adding a null component between the last
and first components of x. Alternatively the identification may be achieved
without augmenting the dimension but by sacrificing the end-around
chaining, i.e., by replacing the last component of 1I';(y) by a null element.
Moreover, a chained representation may be entered (i.e., the scan may be
begun) at any one of several points, provided only that the index /i and
corresponding leading address f are known for each of the points.

The number of components of a chained representation scanned (steps
1-3 of Program 3.4) in selecting the kth component of x is given by
v(%) !y (k — h), where h is the index of the component last sclected. The
selection operation is therefore most efficient when the components are
selected in ascending order on the index. The chaining is effective in the
forward direction only, and the component (f# — 1) would be obtained
only by a complete cyclic forward scan of »(x) — | eomponents. The
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representation is therefore called a forward chain. A backward chain can
be formed by incorporating the vector |[T'\(y) instead of 1T (y), and a
double chain results from incorporating both.

A vector & which is respecified only by either deleting the final com-
ponent or by adding a new final component (i.e., by operations of the
form x < ®/x, or ¥ < ¥ & (2)) behaves as a stack (cf. Exercise 2.6). A
backward-chained representation is clearly convenient for such a stack.

A simple example of the use of a chained stack occurs in representing
the available (i.e., unused) segments of the physical vector 7. This will be
illustrated by a program for the vector compression

X< vfx

executed on a forward-chained representation of x. The unused segments
representing the components of v/« are returned to a backward-chained
stack or pool of available components. A linear representation can usually
be used for logical control vectors such as v; in any case the problems
mvolved in their representation are relatively trivial and will be subordi-
nated by expressing each operation directly in terms of the logical vectors
and not in terms of the physical components representing them.

Program 3.5, In the major loop (6--23), k& dctermines the index of the current
component ¢, and / and j determine the lcading addresses of p(x,) and e(x,. ),
respectively. These three parameters arc cycled through successive values by
steps 7, 8, and 12 and are initialized by steps 2, 5, and 12. If ¢, = 0, the infix
p(x,) is returned to the pool by steps 21, 22, 23, and 6 so as to construct a back-
ward chain.

The parameter .« specifies the leading address of p(¥,) unless »(x) = 0, in which
case .« is null. Step | terminates the process if »(x) = 0, and otherwise step 4
respecifies .« as the null element. If v = 0, this null value of . remains; if not, the
first nonzero component of ¢ causes a branch to step 14. Since . = o, step 15 is
executed to respecify « as the leading address of p((v/x);). Step 16 then specifies /1,
the leading address of the last completed component of v/x. Step 15 is never
again executed.

Components of vjx other than the first must cach be chained (in a lorward
chain) to the preceding one. Hence the leading address / of a newly added com-
ponent must be inserted in the last preceding component (whose leading address
is 7). This is normally done by steps 18, 19, and 6; step 20 respecifies /. If, how-
ever, the component x,; were also included, it would appear as the last com-
pleted component of v/x and would already be chained to the new component ;.
This situation is recognized by step 17 and occasions a branch to step 16. Step 16
then respecifies /1 and repeats the loop without executing steps 18, 19, and 6.

The process terminates when the cycle through the chained representation of
is completed, that is, when i returns to the original value of ., preserved as 7 by
step 3. Step 10 is then executed, terminating the process directly if r(v/x) = 0.
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Otherwise, step 11 is executed to close the chain of v/x, that is, to insert ., the
leading address of p((v/x))), in the representation of the last component of v/x.

1 o = 0-origin indexing for = only
2 [~ @ | Leading address of (%)
3 { if »(x) > 0; otherwise
Xt = o
4 A v | Logical vector,
5 k<1 k| Index of v.
6 b ((r] a?)fm) < s { | Leading address of p(x,).
7 Kk + 1 J | Leading address of p(x,,, ).
o f1 | Leading address of last
8 L 2 preceding component of
9 it v/
10 N = p | Leading address of last
T preceding component of
11 bl(th]aNm) «<x [ pool of available seg-
ments.
12 jeb (i ] at)/m) . L .
: _ £ | Dimension in = of cle-
13 v, - 0 — ments of grid matrices.
14 z oo b | Buse of representation of
elements of grid matrices.
15 v
16 h i Legend
17 vy ¢ 0 i
18 r<—h
19 s 1
20 h i
21 Fo
22 §=p
23 p i

Program 3.5 Program for & < v/x on a forward chained representation of x
and a backward chained stack of available segments

A chained representation can be generalized to allow the direct represen-
tation of more complex constructs, such as trees, by incorporating the
address of each of the successor components associated with a given
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component. This notion js formalized in the chain list matrix of Sec. 3.4.
The same scheme can also be employed to produce an efficient combined
representation of two or more vectors which share certain common
components. If, for example, ¥, = 2, and chained representations are
used for both ¥ and z, then ¥ may be represented in standard form except
that component ¥; incorporates a secondary address, which is the leading
address of 2, ;. Moreover 2 has a standard representation except that
%, 1 1s chained to #;, with an indicator to show that the secondary address
of the succeeding component is to be used. Deletion of any vector
component in such a shared system must occasion only the corresponding
change in the address chain of the vector, the actual representation of the
component being deleted only when no associated address remains.

Partitions

If the set a is the range of the components of the physical vector 7, and
if some element, say a,, is rescrved as a partition symbol and is exeluded
from use in the normal representation of quantities, it can be inserted to
demark the end (or beginning) of an infix of 7. If the vector y is repre-
sented by a single infix of = such that the beginning of component y,,,
follows immediately after the terminal partition of y . then the structure of
¥ is completely represented by the partitions, and y is called a partitioned
representation. A partitioned representation can be used for more complex
operands, such as matrices, if a set of two or more distinct partition
symbols are provided, one for each level of structure. The distinct
partition symbols can, of course, be represented by multiple occurrences of
a single symbol @, rather than by distinct members of a.

A partitioned representation is similar to a double-chained representa-
tion without end-around chaining in the following particular: beginning
from component y;, the component ¥, can be reached only by scanning
all intervening components between i and j in increasing or decreasing
order according as [/ < j or i > j. The file notation introduced in Scc.
1.22 clearly provides the operations appropriate to a partitioned repre-
sentation of a vector, with conventions which suppress all inessential
references to the partitions themselves.

The use of a partition to demark the end of an infix is particularly
convenient when the infix must be processed component by component
for other recasons, as in the use of magnetic tape or other serial storage.
The partition also appears to be more economical than the grid matrix,
which it replaces. This apparent economy is, however, somewhat illusory,
since the reservation of a special partition symbol reduces the information
content of each nonpartition component by the factor log, (»(a) — 1) =
log, »(a), where a is the range of the components of .
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Partitions can be employed in chained representations. For example,
the dimension jn 7 of each component of a chained representation y can be
specified implicitly by terminal partitions instead of explicitly by the vector
T')(y) of the grid matrix. Thus if the elements of T';(y) are of dimension g
in m, then w!/p(y;) = a,, and (@’ A ©')/pe(y;) = p(*;), where x is the
vector represented by y. Program 3.6 shows the determination of p(x,)
from a chained representation y with terminal partitions a,.

0-origin indexing for 7 only

1 h—vx%) ] h +1)
) h,f | [ is the leading address of the
-« ! 4 h ¥
2 b ((fy a)m) i hth component of the chained
3 — h ok i representation of «.
. . b Base used for representation of
4 — [+
a F=f+g _ the elements of the grid matrix.
4b 3 T ¢ | Dimension in 7 of the elements
de j—jA4l of the grid matrix.

4d d<j—7f a; | Partition symbol.

’ ’ . z kth component of the chained
I (! .

5 z «— (fy al)/m representation of x exclusive of

6 o(x,) < @[z the terminal partition symbol.

d Dimension of z in .

Legend

Program 3.6 Determination of e(x,) from a chained representation of x with
terminal partitions a,

Program 3.6. The program is similar to Program 3.4 and the step numbering
indicates the correspondences. The dimension d is so determined (steps 4a-d) as
to exclude the terminal partition itself from the quantity = specified by step 5.
Since only the first column of the grid matrix is incorporated in the partitioned
representation, step 6 excises a prefix of dimension ¢ rather than 2¢ as in
Program 3.4.

Pools

Components of the physical vector 7 in use for the representation of one
quantity must not be allocated to the representation of some other quantity.
The construction of a chained representation therefore poses one problem
not encountered in its use, namely, the specification and observation of
restrictions on the availability of components of m. The restrictions can
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conveniently be specified as a pool, consisting of the available components
of m. Each allocation made must then be reflected in a corresponding
change in the pool. Moreover, as each piece of data is deleted, the com-
ponents allocated to it are returned to the pool.

If, as in Program 3.5, a pool is treated as a stack, then the component
next taken from the pool is the component last added to it. The queue of
components in the pool thus obeys a so-called fast in first out, or LIFO
discipline. The dimension in 7 of the last component of a pool will not, in
general, agree with the dimension required for the next quantity it is called
on to represent. If it exceeds the requirements, the extra segment may be
left in the pool, and the pool therefore tends to accrue more and more
components of smaller and smaller dimension. Hence it may be wise, or
even essential, to revise the pool occasionally so as to coalesce the segments
into the smallest possible number of infixes. This process can even be
extended to allow substitutions in other vectors in order to return to the
pool short segments which may unite existing segments of the pool. This,
however, will require a systematic scan of the chained vectors.

If the dimension of the last component (or perhaps of all components)
of the pool falls short of the requirements for representing a new quantity,
segments of the pool can be chained together. This requires the use of a
special partition symbol or other indication to distinguish two types of
links, one which marks the end of a given representation and one which
does not. More generally, it may be convenient to use multilevel partition
symbols to distinguish several levels of links, as was suggested for the
representation of a matrix.

Queue disciplines other than LIFO may be used. Three other types of
primary interest in allocation queues are the FIFO (first in first out), the
dimension-ordered, and the address-ordered disciplines. FIFO uses a
forward chain and may be preferred over LIFO because it uses the entire
original pool before using any returned (and usually shorter) segments.

The components of a dimension-ordered pool are maintained in
ascending (or descending) order on their dimensions in 7. This arrange-
ment is convenient in selecting a pool element according to the dimension
required. The components of an address-ordered pool are arranged in
ascending order on their leading addresses. This arrangement facilitates
the fusion of components which together form an infix of .

If each of the available components of 7t is set to a special value which
is used for no other purpose, then the available components can be
determined by a scan of . Such a pool has no structure imposcd by
chaining and will be called a marked pool.

A marked pool requires little maintenance, since components returned
to it are simply marked, but selection from it requires a scan of 7 and is
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therefore relatively slow. The use of marked and chained pools may also
be combined—all returned components go to a marked pool which is left
undisturbed until the chained pool is exhausted, at which time the entire
marked pool is organized into a chained pool.

Summary

Since any structured operand can first be reduced to an equivalent
vector, the problems of representation can be discussed in terms of vectors
alone. The characteristics of the linear, chained, and partitioned repre-
sentations of a vector may be summarized as follows. A linear representa-
tion permits the address of any component to be computed dircctly as a
linear function of its indices and hence requires no scanning of the vector.
However, the strict limitations which it imposes on allocation may en-
gender: (1) conflicts with allocations for other operands, (2) waste of storage
due to the imposition of a common dimension in 7 for all components, or
(3) uneconomical execution due to the extensive reallocations occasioned
by the insertion or deletion of other than terminal components.

The concept of the grid matrix is helpful even when the corresponding
allocation is implicit in the program. The explicit usc of a grid matrix
which is itself in a linear representation removes the restrictions on the
allocation of the vector itself while retaining the advantage of direct
address computation. The address computation differs from the linear
case only in the addition of a single reference to the grid matrix and hence
requires no scanning. The difficulties enumerated for the direct linear
representation are not climinated but merely shifted to the lincarly
represented grid matrix itself, where they may, however, prove much less
serious.

A chained representation allows virtually arbitrary allocation, relatively
simple operations for the insertion and deletion of components, the direct
representation of more complex structures such as trees, and economical
joint representations of vectors which have one or more components in
common. However, a chained representation requires extra storage for
the grid matrix which it incorporates and occasions additional operations
for scanning when the components are selected in other than serial order.
The required scanning can be reduced by the retention of auxiliary
information which allows the chained representation to be entered at
several points.

A partitioned representation requires the allocation of a single infix of
7, and selection requires a fine scan, i.e., a component-by-component scan
of 1 to detect partition symbols. Partitioning removes the need to
incorporate the grid matrix explicitly and does not impose a common
dimension in 7 for all components.
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Mixed systems employing combinations of linear, chained, and parti-
tioned representations are frequently advantageous. Block chaining, for
example, involves the chaining of blocks, each consisting of an infix of 7
and each serving as a linear representation of some infix of the represented
vector. Alternatively, each chained block may be a partitioned represen-
tation of some infix.

3.3 REPRESENTATION OF MATRICES

Structured operands other than vectors may be represented by first
reducing them to equivalent vectors which can, by employing the tech-
niques of the preceding section, be represented. in turn, in the physical
vector 7t. In the case of a matrix A, two alternative reductions are of
interest, the row list r = E/A = AV (5 A* & - - - (B A" and the column
list ¢ = Ef/A. If r,, A/, and ¢, are corresponding elements of the three

alternative representations, then in a O-origin system:

h =i+
k=14 uj.
Consequently,
i=|h=v|=ulk
and j=vlyh =1k + ul

The dependence of 4 on k can be obtained directly by substituting the
foregoing expressions in the identity

h=v X |h=v+vlh
to yield h=vx (u|yk) + |k + ]
Similarly, k=px (vh) + |h =]

The permutation b which carries the row list r into the column list ¢
(that is, ¢ = hJ,r) can be obtained directly from the [oregoing expression
for /1 as follows:

h =9 x (uel,1®) + [ = el

The expression for the kth component of k is identical with the expression
for i above. Hence, if ¢ = hf,r, then ¢, = rn, = T, as required.

If the row list (or column list) is itself represented linearly, then the
address of any component A, is obtained as a linear function of the indices
iand j. If either a file or a chained representation is to be used for the list
vector, then the components are processed most efficiently in serial order,
and the use of column list or row list is dictated by the particular processes
to be efected.
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If a large proportion of the elements of a matrix are null elements, it is
called a sparse matrix. Sparse matrices occur frequently in numerical
work (where zero serves as the null element), particularly in the treatment
of partial difference equations. A sparse matrix A can be represented
compactly by the row list r = U/A. and the logical matrix U, where
U=(A +0). The matrix A may then be obtained by expansion:
A=U'r.

Alternatively, the column list ¢ = (A # 0)//A may be used. The
transformation between the column list ¢ and row list r must, in general,
be performed as a sequential operation on the elements of U. Since it is
frequently necessary to scan a given matrix in both row and column order
(e.g., as cither pre- or post-multiplier in a matrix multiplication), neither
the row list nor the column list alone is satisfactory. A chaining system
can, however, be devised to provide both row and column scanning.

Let L be a matrix such that L, is a list of the nonzero elements of a
matrix A in arbitrary order, L,’ is the column index in A of element L’
and L, is the row index in L of the next nonzero element following L’ in
its row of A. If L’ is the last nonzero element in its row, L, = o. Let f;
be the row index in L of the first nonzero element of row A/, and let
J; =°if A7 = 0. The following example shows corresponding values of
A, L, and f:

8 2 7

6 009 5 3 ©
0300 6 1 5 4
A=]o o0 o0 o] L=|32 ] sr=|-
7 8 0 4 9 4 © 6
0050 71 1 2

4 4 o

The matrix L will be called a row-chained representation of A and may be
used, together with the vector f, for the efficient scanning of any row A as
illustrated by Program 3.7. The vector Ly can be modified so as to give the
address in 7 directly rather than the row index in L of the next element in
the row, and Program 3.7 can then be easily re-expressed in terms of the
physical vector 7.

Program 3.7. Step 2 yields the index in L of the first element of the ith row of A.
Step 4 determines its column index j, and step 6 determincs the index of the
succeeding component. The process terminates at step 3 when the scan of the
row is completed.

If L, is chosen as a row list, the vector L, reduces to the form L,* = k + |
or Ly = <. 1ts function can then be served instead by incrementation of
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1 —> A'«<0 1-origin indexing
2 k<~f; . .
B I Row index in L of first nonzero
3 ko > element of row A% f; = o if A =0,
4 j Ly k Row index in L of next element.
5 A L¥ L, | List of nonzero elements of A.
j 1 . . ,
. . L,* | Column index in 4 of L,*.
- — L.* )
6 8 L,* | Row index in L of next nonzero
element following L} in its row in
A, Lg¥ =< if no such element
exists.

Legend

Program 3.7 Determination of the row vector A? from a row-chained represen-
tation of A

the index k and by the use of the logical vector u = (L; = ce) for deter-
mining the end of each row.

The construction of a column-chained representation is analogous to
that of a row-chained representation, and the two representations can be
combined in a single matrix L which gives both row and column chaining
employing but a single representation (that is, L;) of the nonzero elements
of A.

3.4 REPRESENTATION OF TREES*

A tree T may be represented by a matrix and hence, in turn, by a vector
in a number of useful ways as follows:

1. by a full right list matrix ]T or by any column permutation thereof
(Sec. 1.23),

by a full left list matrix [T or by any column permutation thereof,
by a right list matrix a?/]T,

by a left list matrix o?/[T,

by various chain list matrices.

ANR I o

The full Ieft and right lists seldom prove more convenient than the more
concise left and right lists. Except for the special case of a homogeneous

* Johnson (1962) provides a comprehensive treatment of the representations of trees
and discusses the suitability of cach representation for a variety of search procedures.
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tree, both the right list and the left list are awkward to use for path tracing.
This function is better served by the chain list matrix, to be defined as a
formalization of the chaining scheme suggested in Sec. 3.2.

Simplified list matrices

In certain important special cases, the various list representations of
trees may be simplified. If the degree of each node is a known function o
of the value of the node, then for any list matrix M, M, = &(M,’), and the
degree vector M, may be eliminated with-
out loss. The node vector alone then repre-
sents the tree and may be referred to as a
right or left list vector as the case may be.

For example, in the tree of Fig. 3.8
(which represents the compound logical
statement * A (y Vv 2)), a fixed degree is
associated with each of thelogical operators
and, or,and not (namely, 2, 2, and 1), and the
degree zero isassociated with cach of the vari-
ables. The statement can therefore be repre_
Figure 3.8 The compound sented unambiguously by the left list vector
logical statement & 5\ (y v 2)

v= (A, ,x, V.,¥, 2).

This is the so-called Lukasiewicz, Polish, or parenthesis-free form of the
compound statement [Lukasiewicz (1951) and Burks et al. (1954)].
Frequently, the only significant nodes of a trec T are its lcaves (e.g.. in
Example 3.2 and in a certain key transformation of Fig. 4.7) and all other
nodes may be considered as nulls. Hence if M is any list matrix, the
significant portions of M, and M, arc (M, - 0)/M, and (M, = 0)/M,,
respectively. These significant portions may then be coalesced to form the

single vector j 0. M,/
v = M], (Ml — )7 2/

which, together with the logical vector (M, = 0), forms a leaf list matrix
that describes the tree. Moreover, if the values of the leaves are distin-
guishable from the components of the degree vector, the logical vector
(M; = 0) may also be dropped.

The use of left lists

The use of the right list matrix is illustrated by the repeated selection
sort treated in Sec. 6.4. The use of left lists will be illustrated here by two
cxamples, each of interest in its own right: the partitioning of the left list
of an n-tuply rooted tree to yield the left lists of the component singular
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1 —f p < «0) 1-origin indexing
2 i<0 Z | Given left list of T.
3 i wZ) = i Row index of Z in ascending
scan.
4 m <0 r Indicated number of roots of
5 r <0 current rooted subtree.
6l =1 i w2z m | Moment of current rooted
subtree.
7 i—i+l p | Partition vector of Z, that is,
8 m<—m+ 1 p; = n(T)).
9 rer+1—=2;¢
Legend
10 rool <
11 D<~p®(m

Program 3.9 Partitioning of the left list of an n-tuply rooted tree

subtrees and the construction of a Huffman minimum-redundancy prefix
code.

Example 3.1. Partitioning of an n-tuply rooted tree. Program 3.9 shows a
scheme for partitioning a left list Z of a trec T into component subtrees, i.e., for
determining the vector p such that p; is the moment of the singular subtree T;.
Thus »(p) = p(T), p; = 1(T)), and the infix (p , &/ 1) | aP)//Z is the left list
of T;.

The loop 6-10 scans successive components of the degree vector Z; (in ascend-
ing order) and computes r, the indicated number of roots. The value of r in-
creases by, at most, one per iteration, and when r becomes unity, the end of a
singly rooted trce has been reached. Its moment s is then appended (step 11) as
a new final component of the partition vector p, the parameters 1 and r are reset,
and the scan of the next rooted tree is begun. Normal termination occurs at
step 3; termination at step 6 indicates ill formation of Z,

Example 3.2. Huffman minimum redundancy prefix code. If b is any sct such
that »(b) > 1, then any other finite sct @ can be encoded in b, that is, represented
by b. (The scts a and b may be called the “alphabet™ and **basic alphabet,™
respectively.) If »(a) <= »(b), the encoding may be described by a mapping vector
k such that p(a;) = bk;' If w(a) - »(b), then each a; must be represented by a
vector x' < b. Forexample, if a = 1°(10) and & = ¢°2), then the decimal digits a
may be cncoded in the so-called 8421 system:

2ed) | % =a,
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(]
(1000
(100D
aon
110

11Dy

Figure 3.10 Construction of a Huffman prefix code

In so-called fixed length coding the vectors x* have a common dimension «, and
the decoding of a message m (consisting of the catenation of vectors x‘) involves
the selection of successive infixes of dimension «. If the probability distribution
of the characters a; occurring in messages is not uniform, more compact encoding
may be achieved by using variable length codes and assigning the shorter codes to
the more frequent characters. Decoding of a message in variable length coding
can be performed only if the boundaries between the successive x, are indicated in
some way.

The boundaries between characters in a message in variable length code may
be demarked by special partition symbols (which is inefficient) or by using a
prefix code in which no legitimate code point % is the prefix of any other legitimate
code point, including itself. The index vectors of the leaves of any tree possess
this property; conversely, any set of prefix codes can be arraycd as the leaves of
some tree. Hence if each character of the set to be encoded is assigned as the leaf
of a common tree, and if each character is encoded by the associated index vector,
a so-called prefix code is attained. Figure 3.10 furnishes an example of a binary
code (i.c., the branching ratios do not exceed two) constructed in this manner.
0-origin indexing is used. The discussion will be limited to binary trees.

If f, is the frequency of the ith character and I; is the length of the assigned code
(i.c., the length of path to the root), then the most efficient code is attained by
minimizing the scalar product f ; . This may be achieved by the following con-
struction, shown to be optimal by Huffman (1952). First, the characters to be
encoded are all considered as roots, and the two roots of lowest frequency are
rooted to an auxiliary node (shown as a null element in Fig. 3.10), which is then
assigned their combined frequency. The process is repeated until only two roots
remain. The tree of Fig. 3.10 is optimal with respect to the frequencies shown to
the left of the leaves. The appropriate combined frequencies are shown to the left
of each of the nonleaves.

Programs 3.11 and 3.12 show the construction of the tree T representing a
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1 — Tc

2 py(T) = 2 —
3 T )T

4 T « u(c) @ o?//T, &, a?//T\,

5 f—1)if

6 f =\ + jef, @, @S

Program 3.11 Construction of the binary Huffman code T for characters ¢
with frequency f

Huffman code for a set of characters ¢, with frequencies f,, the former in terms
of the tree itself and the latter in terms of its left list,

Program 3.11. The frequency vector f is permuted (step 5) to bring it to ascend-
ing order, and the tree is subjected (step 3) to the same permutation. Step 4
replaces the first two rooted subtrees of T by the single subtree obtained by root-
ing them in a null, and step 6 makes the corresponding alterations in the
frequency vector. The tree is initialized (step 1) as a one-level tree whose roots
are the given characters, and the process terminates when the number of roots of
T has been reduced to two.

Program 3.12. The tree T of Program 3.11 is represented by the left list node
vector z, in conjunction with the implicit degree vectord = 2 x (z = o€). The
algorithm differs from Program 3.11 primarily in the reordering of the subtrees
(steps 6-9). Step 7 appends to ¥ the left list of the ith subtree (of the reordered
tree) selected by the partition vector p according to the conventions of Program
3.9. Step 10 prefixes x by the new null root, and steps 11-12 redefine p
appropriately.

Program 1.21 can be applied to the left list produced by Program 3.12 to deter-
mine the associated index matrix (in a 0-origin system), and hence the actual
codes assigned.

It is not essential that the characters be assigned to leaves in precisely the order
specified by Programs 3.11 and 3.12, and it is sufficient that the dimension of the
leaf index increase monotonically with decreasing frequency of the character. It
is therefore unnecessary to carry the characters themselves through the process;
it suffices to determine the structure of the tree, sort the corresponding index
matrix to right list order (which is ordered on dimension of the index vectors),
and assign the characters (in decreasing order by frequency) to successive leaves.
Since the structure of such a tree (whose nodes have a common irrelevant value
and whose nonleaves all have a common branching ratio equal to the number of
roots) is sufficiently determined by the moment vector u(T), the process of Pro-
gram 3.12 can be simplified.
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1 Z «—C l-origin indexing
2 P~ €((2)) ¢ | Given character set.
3 wW(f) : 2 = z | Left list of Huffman
tree.
4 i1
J: | Frequency of ith sub-
5 x «— €(0) tree of z.
6 j < Of); p | Partition vector p; is
| B ) the moment of the ith
7 X —x ) (((p ;< a”il) l apl)/z) Subtree of 2.
8 i—i+1 x | Reordered left list
<| .. with subtrees in
? £ ascending order on
10 2 () Dx frequency.
11 p < 0f)ip
( ( ) . Legend
12 p (1 +(pjo%) Ca?p .
x @) ¢ Program 3.12  Construction of the
13 S Of)if left list z of the binary Huffman
14 F e (+/o2[f) ® &f code for characters ¢ with fre-
quency f

Chain list matrices

The full chain list matrix of a tree T is a matrix P of dimension u(T) X
(3(T) + 2) defined as follows: P, is some node vector of T, P, is the
associated degree vector, P, is null if j exceeds the associated degree P,
and is otherwise the row index in P of the jth node emanating from node
P,". Table 3.13 shows a full chain list matrix for the tree of Fig. [.16. A
full chain list matrix is called a full right (/eft) chain list matrix if the nodes
occur in right (left) list order.

The full chain list matrix is a formalization of the scheme suggested in
the discussion of chained representations (Sec. 3.2). Its convenience in
forward path tracing is obvious. Since it does not identify the roots of the
tree, an auxiliary vector must be provided for this purpose. However, if
the ordering chosen for the nodes is that of a right list, the roots occur
first in the list, their number r = »(P,) — (4/P,) is specified by the degrec
vector Py, and the need for the auxiliary vector vanishes. Moreover, since
a right list groups all nodes emanating from a given node, each row of
a?/P is simply a sequence of integers followed by null elements, and the
information necessary to path tracing is provided by the column P; alone.

The right chain list matrix of a tree T is therefore defined as a®/P, where
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d | n Q d 'n" | p d | n| f| h
1 1 n | I8 c ° ° 3 a 4 1 n ° 18 1
212 g|16126]| ° o 2 b 7 2 g o |16 2
310 u ° ° ° ° 2 g 9 0 u | 14] o 3
410 t o o ° o 4 ¢ | 11 0 t |19 o 4
513 a | 24 9 I o 0 z ° 3 a 6| 24 5
61| 2 b 8120 | ° 1 n |15 2 b 2 8 6
710 v o ° ° °© 0 k ° 0 \Y ° ° 7
810 k o o o ° 3 h | 16 0| k |20 > 8
910 z o ° o o 0 j o 0 z 1| o 9
100 o ° o ° o 0 1 ° 0| o |17] |10
1110 f ° o ° ° 0 f ° 0 f 115 o | 11
121 0 r o ° ° ° 0 d o 0 r |21 o | 12
1310 y ° o ° o 0 r ° 0 y ° o | 13
14| 2 S 4 19| © o 0 e o 2 s |23 4| 14
1510 d o ° o ° 2 i |19 0| d]i2] = |15
16 | 0 j o c o ° 0| o ° 0 jo126] 2|16
17| 3 | m 311423 o 3 m | 21 3 | m 7 31 17
18] 2 i (22]25] » ° 0 v o 2 i o 1122118
1910 | wi{ ° o ° o 0 P ° 0| w > o | 19
20 3 | h {10} 17 71 ¢ 01| q o 3 h o [ 10| 20
21 1 O e ° ° ° o 0 u ° 0 c ° > |21
22101 p ° ° ° o 2 s | 24 0| pl25] 2]22
23 | 1 x [ 13| ° ° ° 1 X | 26 1 X o | 13] 23
24 | 4 | ¢ |11 | 15|12 ] 21 0 t o 4 C 9 (11|24
251 0 q : o ° & 0 w e 0 q 2 = | 25
26 | O 1 o o ° o 0 y ° 0 1 ° o i 26
A full chain list matrix The right chain  Filial-heir chain list
list matrix
(@) (b (o)

Table 3.13 Chain lists of the tree of Fig. 1.16

P is the full right chain list matrix of T. It is illustrated by Table 3.13b
Program 3.14 shows its use in path tracing. Although the degree vector P,
is redundant (that is, P, and P4 can be determined one from the other), it
provides a direct check (step 6) on the legitimacy of the index vector r
which would be difficult to obtain from Py alone.

For a search of the type described by Program 3.14, it is necessary to
scan down a level until agreement is reached and then across to the next
level. For this type of scan, the filial-heir chain list is compact and con-
venient.
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1 — k<1 1-origin indexing
2 j<0 r Given index vector.
3 d < »(Py) — +/P; P | Right chain list matrix of T.
4 J o) L=, P, | Degree vector of T.
5 jej 1 P, | Node vector of T.
~ P, | Chaining vector of T.
6 | r; o d 8 &
p | Path vector TT.
7 ik +r; —1 d | Degree of current node.
8 p; — P, k | Base address of the infix con-
9 d P taining the current node.
. i | Index of succeeding node in the
10 k Py path T,
j Current index of index vector
r.
Legend

Program 3.14 Determination of the path p = T from the right chain list
matrix P

The set of (j+ I)th level nodes of the subtree T; are collectively called
the jth filial vector of node i, and the first member of the first filial vector of
node i is called the heir of node i. (For brevity, the first filial vector of a
node will also be called its filial vector.) If each node is chained only to its
successor in the filial vector containing it and to its heir, the resulting
representation is called a filial-heir chain list. Formally, the filial-heir
representation of a tree T is a matrix F of dimension u(T) X 4 such that
F, is a node vector of T, F, is the associated degree vector, Fy is a filial
chain such that F," = j if node F,’ is the successor of node F,’ in the
smallest filial set containing itand F," = - if node F, has no such successor,
and F, is an heir chain such that F,’ = h if node F," is the heir of node F,’
and F,’ = o if F,’ is a leaf. The filial-heir chain list is illustrated in Table
3.13c.
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EXERCISES

The symbols a and ¢ will be used exclusively to denote lower case and capital
alphabets defined as follows:

a =(o,a,b,C,...,Z .,,. # % +).

c =0, ABC, ...,Z .,,, # % +).
The expression m < x will be used to specify the set x as the range of the com-
ponents of .

3.1 For each of the following cases, specify a suitable encoding matrix and
format vector and show the explicit value of the infix of 7 which (in a solid
representation) represents the given example vector x:
(a) the decimal digits d = 1%10) in a ranked fixed-length code for m < (2).
Example: x = (6,8, 9).
(b) the set a in a ranked fixed-length code for @ < %(2).
Example: x = (c, a, t).
(cy theseta u ¢ °(10)in a fixed-length code for m < 0(10).
Example: ¥ = (M,a,y,0,3,,,1,9,6,0,.).
(d) the set ¢ U ¢ in a two-casc code (with single-character shift) for m < a.
(See Brooks and Iverson, 1962.)
Example: ¥ = (T, r,0.y,,. N, ., Y,.).
(e) the set @ in a Huffman prefix code for m © %(2). Assume the frequency
distribution given in Dewey (1923).
Example: x» = (t, r, e, e).
3.2 For each of the cases of Exercise 3.1 write a program which decodes the
infix (i | &/)/m, that is, which produces the vector 2z represented by the infix. The
auxiliary physical vector ! < s may be employed to represent the first column of
the encoding matrix, where s is the set encoded. Perform a partial trace of cach
program for the example value used in Exercise 3.1.
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3.3 The ordered set of months m = (JANUARY, FEBRUARY....,
DECEMBLER) is to be represented by the physical vector m < ¢ L "(10). For
cach of the following types of representation, specify a particular representation
and show the values of the relevant components of mt:
(a) a lincar representation (employing null clements for ﬁlling to a common
dimension in 7).
(b) a solid representation for cach clement of mm and an appropriutc grid
matrix itself represented lincarly.
(c) a chained representation.
(d) a double chained representation.
3.4 (a) For each of the cases of Exercisc 3.3, write a program which sclects
month ;.
(b) Tracc cach program for the case £ = 2.
(c) For casc (d) of Exercise 3.3, write a program which selects 1, by
forward chaining if £ - »(m) <+ 2, and by backward chaining if
A ow(m) =2,

3.5 For cach of the cases of Exercise 3.3, write a program which “prints out™
the set of months in a minimum number of n#-character lines, inserting a single
null between successive months except where (i) further nulls must be added to
prevent the continuation of a single word from one line to the next, or (ii) no null
1s needed between two successive words, the first of which is coterminous with
the line. In other words, produce a matrix Z of row dimension # and of minimum
column dimension such that (Z - E)/Z = (p(n11)) - p(1m1,) - - -+ - p(imy,),
and such that each row Z‘ may be partitioned into one or more vectors of the
forme(m;) - ce, all but the last of which must be of dimension r[p(r11,)] + 1.

3.6 Assuming a lincar representation for cach of the logical vectors involved,

and a forward-chained representation for cach of the remaining operands, write

programs for the following opcrations. Assume in cach case that the arguments
and ¥ need not be retained, and assume the use of a backward-chained pool
where necessary.

(ay 2« x,uy

(b) z <« /x,u,y/

(c) 2z« kT«

(dy z < k|x

3.7 Repeat Exercise 3.6(a), using separate grid matrices for x, ¥, and z instcad

of chained representations. Specify a suitable lincar representation for cach of

the grid matrices.

3.8 (a) Ifachained representation is used for a vector ¥, then the selection of a
specified component can be made faster by providing a number of
alternative starting points for the required scan. State precisely the
quantities required in such a process and write a program showing its
usc.

(b) If provision is made for starting the scan at any component of x, the
chained representation may itself’ be simplified.  Show precisely what
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the simplified form is and identify the type of representation to which it
is equivalent.
3.9 Frequently a vector x kept in a partitioned representation (for efficient use
of storage) must be “unpacked™ to a linear or other more accessible form for
cfiicient processing. The converse operation of “packing™ is also required. Let
the partitioned representation be a filc @ ecmploying an intercomponent partition
2y, and a terminal partition A,, and write both packing and unpacking programs
for each of the following cases. Assume that the maximum dimension in 7 of any
component is a.
(a) A solid linear representation employing null fill.
(b) An allocation prescribed by a grid matrix G with G, = ne.

3.10 Lctm < *(2), let the set a be encoded in a five-bit code such that (2€)
p(a;) =i, and let each component of the vector x be an (uncapitalized) English
word. Using 0-origin indexing throughout, specify a suitable partitioned repre-
sentation in 7 for the vector x, and repeat Exercises 3.9(a) and 3.9(b), using it in
licu of the files.

3.11  For cach of the following pool organizations, writc a program to convert
a given marked pool into a backward-chained pool:

(a) dimension-ordered.

(b) address-ordered.

3.12  For each of the following qucue disciplines, writc programs which take
from and return to the pool an infix of length #. Usc secondary linking and
relegate to a marked pool any infix which is too short for linking. In cach case
choose the type of chaining best suited to the particular queue discipline.

(a) LIFO (last-in-first-out).

(b) FIFO (first-in-first-out).

(e) Dimension ordered.

(d) Address-ordercd (utilize the possibility of fusing adjacent infixcs).
3.13 Give a complete specification of a scheme for representing a tree T by a
full chain list matrix which is not in right list order. Write a program {(cxpressed
in terms of the physical vector m) which determines the path vector Ti for a given
index vector i.

3.14  Give a complete specification of a schcme allowing joint representation of
those components shared by two or more of a family of vectors x'ox% L xnas
suggested in Sec. 3.2 Write programs to (i) select component x;/, and (ii) delete
component &,

305 Let < a v (10), and let x', #% ..., %" be a family of vectors whose
components belong to the set @!/[@  "(10)]. Let the average and the maximum
dimensions of the vectors x! be a and 1, respectively. Assume that the chaining
index is represented in decimal, with cach digit represented by one component
of . Determine (as a function of »2 and #n) the value of a below which a chained
representation provides more compact storage than a lincar representation with
null fill.
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3.16 Write a program which uses the minimization operation u« < v |~ (o
determine the ordering permutation vector p < 0,/(a ¢, b).
317 Let U =(X ~0)andr = U/X joint[y represent the sparsc matrix X.
(a) Write a program which determines (as a function of U and r) a suitable
row-chained and column-chained representation of X.
(b) Write a program defined on the representation produced in part (a) to
compute the product ¥ = X = X, itself represented in the form V =
(Y ~0)and p = V/Y. B
(c) Write a program to determine the trace (that is, +/I/X) of X from the
representation produced in part (a).
3.18 The unique assignment of Huffman codes produced by Program 3.12 is,
in general, only one of many equally efficient assignments, since the symbols to be
coded need only be assigned, in decreasing order on frequency, to the lcaves of
the code tree in increasing order on their levels. Show that the structure of the
tree produced can be sufficiently described by its moment vector alone, and write
a program for the construction of a Huffman code based on this fact.

3.19 Following the notation and terminology used in Program 3.9 for the
analogous case of a left list write a program which determines from the right
list R of a tree T, the partition vector p which partitions it by levels.
3.20 Write a program which determines the right list R = «*/]T as a function
of the left list L = a*/[T. Incorporate tests of well formation.
3.21 Let [X,j_l,]” denote the pth power of the square matrix X with respect to the
operators ©; and Oy, thatis, [X1]" = X 1 X “1--- 1X to p factors.
(a) Show that ([C : }");' =1 if and only if there is a_path of length p from
node / to node j in the graph (n, C).
(b) Show that [C B 1” = 0forsome p - »(C)if and only it (11, C) contains no
circuits.
(c) If (n, C) contains no circuits, the connection matrix C is said to be **‘con-
sistent.”” The result of part (a) can be used to check consistency. Program
the alternative method of Marimont (1959).
(d) IfH = C /I then([H : ]")} = 1 ifand only if i = jor there exists a path
from node i to node j of length n =" p + 1. Show that for any connection
matrix C, [H : 17 converges to a limit.

3.22 Devise programs to determine
(a) whether a given connection matrix C represents a trec.
(b) the left list of the tree (n, C).
(c) the right list of the tree (n, C).
(d) a node list n and connection matrix C as a function of
(1) a left list I
(ii) a right list R.
3.23 Show that (n, C) and (n,,, C,P) represent the same graph for any permuta-
tion p.
3.24 If(n,C)isatreeandif K = C ; C,then C can be determined as a function
of K (sec Ross and Harary, 1960). Write a program for determining € from K.



chapter 4

SEARCH TECHNIQUES

In classical applied mathematics most functions of interest can be
approximated by some algorithm which becomes. for practical purposcs,
the definition of the function. In other arcas. however, many functions of
practical, if not general, interest (such as the correspondence between
cmployee name and salary) can be specitied only by an exhaustive listing of
each argument value and its corresponding function value. Such a function
will be called fortuitous.

The basic algorithm applicable to the evaluation of a fortuitous function
is a search of the list of arguments, i.c., a comparison of the given argu-
ment with the list of arguments to determine the correspondent to be
selected. In such an algorithm it is convenient (as illustrated by Program
1.12a) to distinguish three phases which successively determine  the
following gquantities:

(1) the index or rank » = k¢ k of the argument & in k.
(2) the index i = p, of the correspondent in s.
(3) the correspondent s = s,.

Step (2) is @ permutation defined by the permutation vector p. Steps (2)
and (3) are simple sclections from structured operands (normally in lincar
representations) and require no further discussion. Step | is called
ranking, and the methods for accomplishing it merit detailed treatment.

The argument & of @ mapping (and hence of a ranking) operation will be
called a kev. The German-English dictionary mapping of Example 1.2 is
typical of mappings from key to correspondent. Ranking is itself a special
mapping from the key set k onto its own index set t'(r(k)).

If the representation used for some or all of the data imposes certain
restrictions (such as serial access). there may be some advantage in
coalescing the three phases of the mapping operation so as not to determine
the rank explicitly. It will, however, be convenient to limit the discussion
almost exclusively to the problem of ranking.

There are two main types of ranking processes: scanning and key
transformations. A scanning process compares the key & successively with

133
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selected elements of the key set k to determine the rank r = ko k. A key
transformation is any function or algorithm 7(k) which maps the set k into
some subset of the integers. The set of derived keys is defined as the set
d containing all derived keys arranged in ascending order. The set of all
keys which map into d, is called the jih equivalence class defined by the
transformation ¢.

If »(d) = »(k). the key transformation is biunique and the ranking
operation may therefore be completed by a permutation p such that
p;, = iforj = «(k;). If »(d) < »(k), then at least two distinct elements of k
map into the same element of d and the ranking process must be completed
by a scan of one of the equivalence classes defined by 1.

If, for example, k = (m, tu, w, th, ) is the ordered set of working days
encoded according to the encoding matrix

1 m 0 0 1
2 tu 0 1 0
3 C=1w 0 11
4 th 1 0 O
5 f 1 1 1

and format vector f = (0., 1. 1. ). then scanning can be accomplished by
comparing p(k), the encoded representation of the key &, with successive
rows of f/C to determine the rank r of the row on which agreement occurs.
Moreover. the key transformation

1) = (2e) ~ plk)

is unique, but requires an associated mapping vector m = (1.2, 3.4, -,
+, 5). Had p(f) (that is, f/C?) been chosen as (. 0, I). the mapping vector
would not have been required. Finally, the key transformation

[/(k) =1 + P;(k)

has the range d = (I, 2), is not unique, and requires a subsequent scan of
one or other of the equivalence classes e! = (tu, th), and e* = (m, w. f),
represented by (010, 100) and (001, 011, 111), respectively.

Although a strict ranking operation maps element k, into the integer i,
any biunique mapping onto the index set u!(»(k)) will frequently serve as
well. For, if pis the permutation required to complete the ranking process,
and if a subsequent permutation j is required (as in step 4 of Program
1.12a), the two permutations can be combined in the single permutation
q = jIp. Similarly, the ranking of a sct k may be considered as equivalent
to the ranking of any set obtained by permuting k.
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4.1 SCANNING METHODS FOR RANKING

The two main methods of scan are called directed and controlled. A
directed scan is begun in onc of two possible directions from a given initial
point i, either ascending (thatis, i, i + 1.7 4 2,...) or descending. The
dircction chosen may be determined by a comparison between the given
argument and the sct element k, at the itial point /. A controlled scan is
executed In a sequence which is determined by successive comparisons
between the argument and each element scanned. In an effective controlled
scan, cach comparison must determine the choice of the next element for
comparison so as to (approximately) minimize the expected number of
elements scanned. The directed scan is clearly well suited to the use of a
file or chained representation. which imposes serial access to the elements.
whereas the controlled scan 1s not.

The scan length (i.e., the number of key elements scanned) will be used as
a measure in analyzing and evaluating scanning methods. The same
measure and the same analysis apply also to the converse situation. where
the rank of an element is given and the clement itself must be obtained
from a chained or other representation which permits only serial access.
An alternative related measure is the normalized scan length or scan
Jfraction, defined as the scan length divided by the number of clements in
the set of keys.

A scan is said to be roored if each execution begins at the same point r.
A rooted scan may be advantageous when the frequency distribution of the
arguments is nonuniform and the most frequent keys can be grouped ncar
the root. A scan is called catenated if each execution is begun at the end
point of the preceding scan. A catenated scan may be employed i using
a file when the intervals between successive scans are so short as to allow
little or no time for return to a fixed root or when the arguments arc
arranged in the same relative order as the items in the file.

Directed scan

A directed scan is called cyefic if element k; follows k, in an ascending
scan and if k, follows k; in a descending scan. It is called noncvelic if the
direction of scan is reversed whenever either of the terminal clements k, or
k, isencountered. A cyclic scan is appropriate to a chained representation
with end-around chaining: a noncyclic scan is appropriate to a file or to a
chained representation without end-around chaining.

The imitial direction of scan may be chosen in several ways. the more
important of which are enumerated and discussed below. For independ-
ently and uniformly distributed arguments, the cxpected scan fractions
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pr{f = b) for Scan Fraction [
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1 Any Fixed, continue or reverse Cyclic b b 1 I ! 1
2 Any To argument Cyclic 2b 1 I 1 e ]

3 1 Fixed Noncyclic | b b 1 1 4 1
4 Catenated Fixed Noncyclic | —h%/4 + b —b 4+ b —b2 4+ b —b 4+ b H 2
s oo+ =21 To argument Noncyclic | 2b 1 1 1 H i
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Table 4.1 Scan fraction of directed scans for uniform distribution of arguments (from Iverson, 1955)
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are summarized in Table 4.1. Certain of the results are also plotted in
Fig. 4.2

Initial direction fixed ( fixed scan). The ascending direction willbeassumed.
If the scan is rooted and cyclic. the root may. without loss of generality, be
assumed to be one. The expected scan length for a sct is then given by

(k)

¢ = Zlﬂk’) xi=fud

where f(k;) is the normalized expected frequency of occurrence of the
argument k; and f is the corresponding frequency vector defined by
fo=Jk).

The most efficient fixed rooted scan is therefore obtained by using the
permuted sct a = (0/(—f)fk such that the components of a are arranged

T
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Scan length & -——

Figure 4.2 Plot of cumulative probabilities of Table 4.1 (Numbers refer to the
entries in Table 4.1)
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in decreasing order on frequency. If the distribution of arguments is
uniform (that is, f, = 1/»(f)), then the expected scan length is (»(k) 4 1) +
2, and the expected scan fraction is approximately one half.

If a fixed scan is cyclic and catenated, the expected scan length depends
on the distribution f, but if the arguments are independently distributed,
then the expected sean length is independent of the ordering of the scanned
set k. This may be shown as follows. The expected length I, of a scan
rooted at r is given by M™ | f, where M is the square matrix such that
M7 = (r — 1) | \l. The probability of beginning a catenated scan at r is
the probability of ending the previous scan at r, that is, f,. Consequently,

e=fal=fLiMIf

Since, in general, ftM f=f"Mf then 2e=(f, N . f)
where N = M + M. If, for example, »(k) = 4, then

1 2 4 2 6 6 6

4 1 2 3 6 2 6 6
M = 5 and N =

34 1 2 6 6 2 6

2 4 1 6 6 6 2

It is easily shown that N is of the form
N = 2E + (k)

and consequently Nb = N for any permutation p. But f N f=
(fy) » (NB) . (f,) in general, and since NP = N, then f [ N . f=
(f,) « N . (f,). Hence the expected scan e = (}) x f . N | f remains
the same for any permutation of f or, equivalently, for any permutation of
the key set k.

If the arguments are not independently distributed, the analysis is, in
the general case, very complex. However, a simple but effective use of
correlation is made in the method of harching. If a is a collection or barch
of uncorrelated arguments, each of which is to be ranked in the set &, then
the total expected scan time for a fixed catenated scan will be »(a) times the
expected scan time for a single item. [f, however, the set @ is ordered on k
(that is, @ = k M a), then the entire set @ may be ranked in a fixed cate-
nated scan whose normalized length does not exceed one.* If a given

* The length of the scan will be determined by the maximum rank (in R) occurring in
the sct a. The expected value of the scan fraction is approximately equal to the expected
value of the maximum occurring in a sample of size n = »(a) chosen from the continuous
interval from zero to one. This valuc is known for various distributions [e.g., Cramér
(1951) p. 370]; for a uniform distribution it is n = (n + 1).
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argument sct z is not ordered on k, it may first be permuted by some sorting
process to yield the set @ = pfz which is ordered on k. The set @ may then
be ranked in k and, if required. the set of ranks may then be subjected to
the inverse permutation ¢ = p ¢, U' to yield the ranks in the original set 2.
The decrease in the total expected scan length may far outweigh the effect
of the additional permutations required.

If a fixed scan is noncyclic and rooted at one, the expected scan length is
the same as for the fixed cyclic rooted scan. The fixed noncyclic scan is
generally unsuited to any initial points /- other than one (e.g.. to a catenated
scan), since the first (+ — 1) elements of k are then reached only after a
reversal of direction and a rescan of the set a’fk.

For the case of a uniform distribution. the behavior of the fixed scan is
summarized 1n entries 1, 3, and 4 of Table 4.1. The derivation will be
llustrated in discussing entry 7.

Initial direction giving shortest scan. For a fixed root r, the minimum
expected scan is achieved if the items are disposed on either side of the root
so that the frequency f; is a monotone decreasing function of |i — r|, the
scan length in a direct scan to the argument. In a cyclic scan, the position
of the root is immaterial; in a noncyclic scan it is best centered at the floor
(or ceiling) of (v(k) + 1) = 2. In a O-origin system this expression
becomes v(k) = 2.

For an arbitrary frequency function, the expected scan length is given by
the scalar product f . I, where I = i' — rel. For a uniform distribution,
the results are given in entries 2 and 5 of Table 4.1. For a catenated scan,
the corresponding results appear in entries 2 and 6.

The possibility of choosing the initial direction so as to give the shortest
scan to the argument depends on the information available. [f the elements
of k are strictly ranked on some function g(k,), then the shortest direction
from root r to argument x can, in the noncyclic case, be determined by a
comparison of g(x) and g(k,). For the cyclic case this does not suffice, and
it is necessary*® to know the index in k of the argument ». This case is
therefore of interest primarily in selecting a specified clement from a
serial-access representation and is of little interest in an actual ranking
operation. However, any double-chained representation or reversible file
can be used in a noncyclic as well as a cyclic manner and hence admits of a
choice of direction which is best in the noncyclic sense.

Initial direction to nearer (farther) terminal. 1f the value of the root r is
known for each individual scan in a catenated scan, the direction to the
nearer terminal can be determined by comparing r with the midpoint

* Approximating functions may, however, be used for estimating the index and the
probable best direction.



140 Search techniques §4.1

(»(k) + 1) = 2. A noncyclic scan starting toward the nearer end is clearly
less efficient than one starting toward the argument, but it may be useful
when the most direct route to the argument cannot be determined. The
expected scan fraction is shown in entry 7 of Table 4.1; its analysis will
illustrate the method used in constructing the entire table.

It is assumed that the number of elements »(k) is sufficiently large that
the scan fraction f/ may be considered as a continuous variable. Let
pr (f < b) be the probability that scan fraction /'does not exceed b, and let
the function be represented in three partssuch that pr( f < b) = pr, (f -2 b)
in the ith half-unit interval in 6. Let x be the normalized initial position of
a given scan. Then 0 << x << 1, and, since the scan always begins toward
the nearer terminal, the fraction of the set covered in a scan of length 4 is
the same for the starting point (I — x) as for x. Using this symmetry,
attentioncanbe restricted to valuesof x in the range 0 to 4. For the function
pri(f < b), the value of 4 is also restricted to the range 0 to 3.

Consider fixed values of hand x with b < L. If 0 << = < b/2, the fraction
of the file covered by a scan of length 5 is given by b — x, for the scan
begins at x, proceeds a distance x to the nearer terminal, and returns to
the point b — x. If /2 < x < b, the fraction covered is clearly z, for the
scan will reach the nearer terminal but will notreturn past xz. If 6 < a <<,
the scan does not reach the nearer terminal, and the fraction scanned is
therefore 4. Since x is uniformly distributed, the function pry (f =< b) is
obtained by integration as follows:

1 1 _/72
( rdr + [ b a’x] = + b.
Jb

Jose 2

U2
pri(f < b)= 2[f (b —x)yde +
0

The factor of two arises from the symmetry in 2 and the restriction of .x
to the interval 0 < x < 4. Similarly,

t2 2
;r,d:r] :L+l,
2 4

5
/2

~

b/2
pro(f < b) = 2U (b — 2)dr +f
0 A

and

b—1 e S
pry(f < b) = 2[f dx +f (b — ) d.v] = —b* 4+ 3h — 2.
0 b=1 4

Entry 8 shows the behavior of the scan starting toward the farther
terminal. Although the distribution differs markedly from that obtained
for starting toward the nearer terminal, it has the same expected value of 3.
As may be expected, the function obtained for a fixed scan (entry 4) is
the average of the functions obtained for cases 7 and 8 and is linear in b.
Case 7 (toward nearer terminal) yields the smallest maximum scan length
of the three.
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Initial direction reversed (continued) from previous scan. In the absence of
any other basis of choice, the nitial direction can be chosen as a reversal
or continuation of the direction which terminated the preceding scan. The
behavior is shown in entries 9 and 10 of Table 4.1. The relations between
the functions for fixed scan (F), continuation (C), and reversal (R) are

F—R=—(F-C)~=0 forb - 1,
and F—R=—(F—-0C)=0 for b == 1.

Controlled scan

The sequence followed in a controlled scan is commonly determined by
a comparison which determines the relative ranking of any pair of elements
x and y in the set k. It will therefore be assumed that comparison of the
argument © = k, with the element k; determines whether # = j, h = j, or

— 1
k «— v(k)
J—1G+ k) +2]
x . k; —
>
— k] —1
i—j+1

Program 4.3 Ranking of .« in k by binary search

fr =- j. The subsequent scan may then be limited to one or other of the
two subsets o’ '/kand o’//k. The maximum dimension of the subset remain-
ing to be scanned is therefore minimized by choosing j = [(»(k) + 1) = 2].
If each subsequent element for comparison is chosen so as to (approxi-
mately) halve the dimension of the set remaining to be scanned. the
process is called binary search. Program 4.3 shows the details of binary
scarch; iand & are the indices of the terminal elements of the remaining
subset, and ; is the index of the element selected for comparison.

If »(k) = 2%, then any one of 2/~ different arguments may be isolated on
the jth comparison, for j e t!(k), and the one remaining argument will be
located on the (k + 1)th comparison. Hence for a uniform distribution of
arguments, the expected number of comparisons required in a binary
search is given by

2y = (1204220 4 322 4 -+ 4 k20 4 (k1)) = 28
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It can be shown (e.g., by induction on &) that
e (2F) = [(k — D2" + k + 2] + 2~

The expected number of comparisons is therefore approximately (k — 1),
and for a general value of »(k), the number is approximately [log, »(k)] — 1.
The expected value thus differs but slightly from the maximum value
[log, (v(k) + D)].

If e(v(k)) Is the expected number of comparisons required in a fixed
scan of k and if r is the ratio of the execution time for one step of binary
search to the execution time for one step of fixed scan, binary search is
(for a uniform distribution) the more or the less efficient according as e,
exceeds or is exceeded by re,. Although the simplicity of Program 4.3
suggests that the ratio » is small, it will be large if the representation of the
elements of k permits serial access only.

The methods may be combined by using k steps of binary search to
select one of 2% subsets, which is then subjected to a fixed scan. If the
remaining subset contains m elements, the (approximate) reduction in the
expected number of comparisons achieved by one further step of binary
search is e (m) — e (m/2), and binary search should therefore be discon-
tinued when e (m) — e (m/2) < r. For a uniform distribution, this result
yields the following approximate expression for the optimum number of
steps of binary search:

_ L’*)ﬂ
s {log2 ( AR

The ranking type of comparison required in determining the sequence
in a controlled scan is always attainable for any arbitrary set k or for
some permutation thereof. For, if p(k,) is the representation of k, in m,
if @O, if ¢, =(be) ' p(k;), and if a = (O/t)fk, then the relative
ranking of any pair of elements of a can be determined by comparing the
base b values of their representations. If, for example, b = 10, and the
four successive elements of k are represented by (1,0, 9), (0, 6, 4), (7, 1, 3)
and (5,0, 6), then a is represented by (0, 6,4), (1,0,9), (5,0,6), and
(7, 1, 3), and relative ranking in @ is determined by comparing elements as
decimal numbers.

In the execution of the binary search, the calculation of the index j (next
element for comparison), and the explicit determination of the terminal
indices i and k can be avoided by associating with each element k; a pair of
indices which indicate the two possible succeeding choices for ;. More
precisely, if M is a matrix of dimension »(k) X 3, whose first column is the
set k, and whose second and third columns are vectors of indices (or nulls)
from the set !!(¥(k)) U (=), then Program 4.4 describes a directed scan of k.
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—1 < [(e(M) + 1) 2]
a s My
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Program 4.4 Generalized binary search

The elements of M, and M, can be so chosen as to execute a binary search
equivalent to that of Program 4.3. This is true, for example. for the
matrix M of Fig. 4.5.

The ordering of the elements of M is clearly immaterial, i.c., if M| were
permuted, then columns M, and M, could be respecified so as to yield the
original scanning order. One consequence of this is the fact that the rows
can be reordered so that the scan conveniently begins with the first row
rather than with row |[(w(M) + 1) = 2]. A more important consequence
is the possibility of applying the method to the problem of multiple keys,
which will be raised in the treatment of key transformations.

As illustrated by Fig. 4.5. the matrix M specifies a tree whose nodes are
the elements of M, whose branching ratios are two, and whose paths are
traced by Program 4.4. The columns M, and M, can clearly be chosen to
specify a scan sequence other than that of binary search. In particular, the
element M}’ selected for comparison may be chosen so as to equalize (as
far as possible) the total probability of the arguments in the two resulting

1 | bee ©° o

2 ‘ cab 1 3
|

3 ‘ cat o 4

4 dog o o

5M=|egg 2 7

6 foe o °
7 had 6 8
8 hoe = 9 ‘
9 nod e o ‘

Figure 4.5 Tree traced by Program 4.4
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subsets rather than to equalize the number of elements. This procedure
yields the most efficient controlled scan. If the probability distribution is
uniform, the method reduces to binary search. If the arguments are
drawn from two or more sets having distinct probability distributions, the
matrix M may be enlarged to include two index columns for each distinct
set. Each such pair of columns may then be designed to provide an
optimum scan for the associated distribution.

4.2 KEY TRANSFORMATIONS

Since a key transformation maps the set of keys k into a set of integers
(the set of derived keys d), any unique key transformation produces a
derived key which can be used to select the component of a mapping vector
directly and thus complete a ranking operation without the use of a
scan. If the transformation is not unique. it may still be used to partition
the original set k into »(d) subsets for scanning and so reduce the expected
scan time. ldeally a key transformation should be both simple and unique
and should produce a derived set d having a narrow spread; in practice,
compromises must be made.

Let k£ be the domain and d the range (in ascending order) of a key
transformation #(k;) and let e/ be the equivalence class in k which maps
into d,, that is, 1(z) = d, for all x € /. The coalescence of t in k is then
defined as the vector ¢ such that ¢; = »(e’), for jed(»(d)). Since the
equivalence classes are disjoint and collectively exhaust k, then +/c =
v(k). The spread of t in k is defined as | + d, — d,. Thus if k is the set
(Sunday, Monday, . .., Saturday), and if 1+ maps each day into the rank
(in the alphabet) of its leading letter, then d = (6, 13, 19, 20, 23), the
spread s =18, ¢ = (1,1, 2,2, 1), and +/c = »(k) = 7.

The key transformation is biunique if and only if ¢ = €. Moreover, if
the transformation 1 is biunique, the ranking operation (i.c., the determina-
tion of the index of the argument in k) can be completed by a mapping
vector whose components are selected by the index j = 1(k;) — d; + 1,
and whose dimension is equal to the spread of 7 in k. The key transforma-
tion of the preceding example is biunique when restricted to the set ¥ =
(Sunday, Monday, Tuesday), the set of derived keys is (13. 19, 20), and
the mapping vector m = (2,0,0,0,¢, 0, 1, 3) of dimension eight serves
to complete the mapping if its components are selected by the index
Jo=1(x) — 12.

A key transformation is called j-origin if d; = j. Since the origin can be
changed by subtraction of a constant, attention will be restricted to
l-origin transformations. The spread of a Il-origin transformation is
clearly d,.
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A biunique key transformation is always
attainable since, as remarked in the treat-
ment of directed scan, the base » value of
the representation of the clements of the
domain k can be used. The spread of such
a transformation may, however, be im-
practicably large. If, for example, ¥ were
some small subset of the set of all ten-
letter sequences, (¢.g.. all meaningful ten-
letter words), then s would be 26'". and
the required dimension of the associated
mapping vector would be impracticably
large.

In general, if each element of k is of
dimension /1 in 7 and if the (used) range
of each element of 7 is the set (), then the
mapping vector required is of dimension
b". The use of the base » value of the rep-
resentation in selecting the component of
the mapping vector is equivalent to select-
ing a path through a uniform h-way tree as
illustrated (using 0-origin indexing) in Fig.
4.6, for b =3 and h = 3. The branch to
the jth level is selected according to the jth
component of the representation.

Sequential level-by-level selection in the
tree 1s less convenient than the direct use
of the base / value, except that the former
frequently allows the full tree to be greatly
contracted. If, for example, the tree of Fig.
4.6 15 used for the set kB = (200, 010, 120.
001, 022, 202) (as indicated by the numeric
leaves whose values are the O-origin ranks
in k), then the full tree can be contracted
to the nonhomogeneous tree of Fig. 4.7.
The contraction is defined formally as
follows: if the subtree rooted in a given
node contains no significant leaves, the
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Figure 4.6 Uniform tree and
mapping vector for the set k =
(200, 010, 120, 001, 022, 202)

subtree is replaced by a single null leaf: if the subtree contains exactly
one significant leaf, the subtree is replaced by that leaf. The contracted
tree can then be represented by a chain list matrix or, since all nodes save
the leaves arc null, by a leaf list matrix M. For the example of Fig. 4.6.
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0 30
1 2 1
2 6 0
3 31
4 11
5 41
6 M=o o
7 s 0
8 5 0
9 0 1
10 o 0
11 501

Figure 4.7 Contracted tree and associated leaf list matrix M
for the set & = (200, 010, 120, 001, 022, 202)

M is given in Fig. 4.7. The sequential biunique key transformation on
the leaf list matrix of the contracted tree is described by Program 4.8.

Program 4.8. The components of the argument x are scanned by the index
and step 5 determines i as the index of the current node in the path. If node i is
not a leaf, then step 6 determines & as the index of the first node reachable from
node i. Ifnode iis a leaf, then k is specified as the value of the leaf, and the right-
pointing exit is followed on step 8 unless the exit at step 7 is taken first. This exit
occurs only if x is an illegitimate argument which leads to one of the null leaves
(such as the last leaf of Fig. 4.7) remaining in the contracted tree. The contraction
was performed in the specified manner so as to allow the incorporation of such a
test. If it is not required, the tree can be further contracted by eliminating the
null leaves. The left-pointing exit on step 4 also indicates an illegitimate argu-
ment #, but one of insufficient dimension for the particular path specified.

The biunique key transformation provided by Program 4.8 is very
effective when applied to a set whose dimension is small compared to the
spread of the transformation produced by taking the base & value of the
representation as, for example, in a glossary of English words.* A dis-
advantage of the process is the need to revise the entire leaf list matrix
when additions to or changes in the argument set occur. The process can

* See, for example, Lamb and Jacobsen (1961).
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1 — 3 k<0 0-origin indexing
2 e =1
. x Argument.
3 J=j+1 i Current node.
4|« j 1 ux) j Current index of argument.
5 Pk + 5, k Index of first node reachable from
_ node 7/ and finally the rank of .
6 k — M . .
M Leaf list matrix.
Tk o M, | M* = 1<=-his a leaf.
8§ L—={Mi:0 N M, | Combined leaf and chaining vector.

Legend

Program 4.8 Biunique transformation on key represented by x, using the leaf
list of the contracted tree of key set k.

be modified to produce a simpler but nonunique transformation by
contracting the tree further so that some or all of the remaining leaves each
represent two or more significant leaves of the original trce.

Nonunique key transformations

Although it is frequently impossible to obtain a sufliciently simple
biunique transformation having a sufficiently small spread, it is always
possible to produce a simple key transformation of arbitrarily small spread
if the requirement of uniqueness is dropped. For example, the spread of
the key transformation

Jluhe)  p(r)) = d]

varies inversely with «, but the transformation is usually nonunique for
d 1.

If a key transformation is not unique, the ranking must be completed by
a scan of one of the equivalence classes which it defines. The scan of each
of the equivalence classes e/ may, in general, be either directed or con-
trolled, and the individual subsets may be ordered by frequency of occur-
rence, by the base / value of their representations, or by sonmc externally
imposed (e.g.. chronological) order. If a chained representation or file is
used for each subset, a directed scan is normally used.

The expected length of a directed scan of each of the equivalence classes
e’ may be computed and weighted by the relative frequency of the class to
yield an expected over-all scan length. If the distribution of arguments is
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uniform, the expected scan length for e’ is given by
)+ +2=(c;+ 1) +2

where c¢ is the coalescence of the transformation. Moreover, the relative
frequency of arguments from e’ is ¢; = (+/c). Consequently, the over-all
expected scan length / is given by
c
<2
€

1=[(c+e)§c]= [l+c
2(+/c) c

For a fixed dimension of the derived set d (and hence of ¢), and for a

necessarily fixed value of 4/c = w(k), the value of / is clearly minimized

if the coalescence vector c is uniform, i.e., if the components of ¢ are all

equal. Hence the expected scan length is minimized by a key transforma-

tion whose equivalence classes are of equal dimension.

A given key transformation is frequently employed to rank a variety of
subsets of its domain k rather than k itself. For example, if k is the set of
English words in a given dictionary, then one of the subsets to be ranked
may be the set of distinct words in a particular sample of English text. If
a particular subset of k is specified, then the coalescence of the key trans-
formation in the specified subset ¥ can be determined, and the transforma-
tion can be chosen accordingly. More generally (as in the case of samples
of English text), the active domain ¥ may be only partially specified. The
transformation should then be chosen so that its coalescence is nearly
uniform for the expected active domains. If, for example, k is the set of
all five-letter sequences, and if each active domain is the set of five-letter
sequences beginning with a specified letter, then the key transformation
used should depend only on the last four letters. If the set of derived keys
produced by a key transformation has a spread s and a random uniform
distribution within that spread, then the expected length of a scan (of the
equivalence classes) can be shown* to be | 4 »(k) + 2s.

X+

X+

Scanning of the equivalence classes. 1f an element x is to be ranked in k by
a scan of k itself, no auxiliary information is required since the rank of
component k; is simply its index j. If some permutation of k is used
instead, then an auxiliary ranking vector r (i.e., a permutation vector)
must provide the rank in the given set k. Specifically, if y = pfk is used
for ranking, then r is the permutation vector inverse to p, and the rank of
element y; is r,. Finally, if the vector y is itself to be scanned in some
prescribed order other than simple cyclic order, the order may be repre-
sented by a chaining vector q.

The vectors y and r or y. r, and g can be combined into a two-column

* See Johnson (1961) and Exercise 4.4.
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matrix S or a three-column matrix € which contains all information
requisite to the ranking operation. More generally, a collection of mat-
rices F, V. etc., can be used, each representing some subset of the given key
set k.

The method of scanning the equivalence classes defined by a given key
transformation is largely determined by the type of matrix or matrices used
to represent the key set k. The five major methods of practical interest are
enumerated below. Each is illustrated in Fig. 4.9. A l-origin key trans-
formation ¢ is assumed.

(a) Overflow. A two-column matrix F of column dimension s = d,
represents the first elements of the equivalence classes (and their ranks), as
follows:

F = e/ j ed'(nd)).

F1i=0,f¢d.

All remaining elements of the sets (i.e.. a'/e’) are represented in arbitrary
order in a two-column “overflow™ matrix V.

The scan procedure is given by the Program of Fig. 49a. If the given
argument x is not equal to F{*”, then the overflow matrix V is scanned in
ascending order. The left-pointing exit indicates that & ¢ k.

For a uniform distribution, the expected scan length is clearly given by

[=1+((uV)y+ 1) x w(V)) = 2u(k),

where u(V) = v(k) — »(d). The expected scan length is therefore large
unless the average dimension of the equivalence classes (thatis. »(k) = »(d))
is close to unity. For a known nonuniform distribution, the expected scan
can be reduced by placing the most frequent element of each equivalence
class in F and ordering the elements in V according to their frequency.
(b) Overflow with chaining. The two-column matrices F and V used in
method (a) can each be augmented by a third column chaining vector
which chains each equivalence class. Thus F{* is the row index in V of
element e," if it exists, and is otherwise null. Similarly, if V," = e, then
V," is the row index in V of e/  if it exists, and is otherwise null. The
program is given in Fig. 4.95. The expected scan length for a uniform
distribution can, as shown earlier, be expressed in terms of the coalescence

vector ¢ as follows:
ctc
[ = (1 + —) = 2.
cie)

(¢c) Single table with chaining. In the overflow methods [(a) and (b)].
certain rows of the matrix F go unused, and a saving in storage can be
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effected by combining the three-column matrices F and V in a single table
T of column dimension

wW(T) = max (s, v(k)), where s = d, = u(F).

Let u be a logical vector such that u/t/(u(F)) = d. Then u//F constitutes
the unused and u//F the used rows of F. Let v be a vector of dimension
#(T) obtained by appending a zero suffix to u. The first two columns of
T are then defined as follows:

v//(e*/ T) = u[(a®/F),
v/)(@/T) = a?/(VP),

where p = (u(V)) and »(p) = +/v. (The vector p permits an arbitrary
reordering of the rows of V). The third column of T is a chaining vector
which chains each of the equivalence classes e’.

The appropriate scan program (Fig. 4.9¢) is similar to that of method
(b), and the expected scan length is identical. The serious disadvantage of
the method lies in the construction of the matrix T—all of the rows
(spectfied by v) required for the leading elements of the equivalence classes
must be known before any of the nonleading elements can be allocated.
The table T is therefore usually constructed in two passes over the given
key set. Morecover, any addition to, or change in, the active key set k
which introduces a new equivalence class may occasion reallocation of
some row of T.

(d) Single table with chaining and mapping vector. The main deficiency
remarked in method (c) is occasioned by the fixed vector » and the fixed
order of the rows of v// T, both imposed by the given key transformation .
The difficulty can be shifted from the matrix T to a mapping vector m
which is used (as indicated in the program of Fig. 4.94) to effect a further
transformation of the index i = ¢#(x). The rows of T may then be arranged
in any desired order, provided only that for each /i e J(v(d)), m, = j,
where e," =k, = T/, and 1(e,)) = i. Moreover, if T, =k, then the
ranking vector T, may be omitted.

Except for the extra step occasioned by the operation j<«— m,, the
expected scan length is again the same as for method (b). However, the
requirement that u(T) > max (s, »(k)) may now be relaxed to the form
#(T) = v(k), whereas »(m) must equal or exceed s. Since the squared
length of the coalescence vector (that is, ¢ 7 ¢) can, in general, be reduced
by increasing the spread s of the transformation 7, the expected scan length
can now be reduced at the cost of increasing the dimension of the mapping
vector m rather than at the (usually much higher) cost of increasing the
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column dimension of T. A similar advantage can be gained by employing
the mapping vector m in methods (a), {(b), and (c).

(e) Open addressing system.* The open addressing system employs a
single table T but requires neither the chaining vector T3 nor the mapping
vector m. As shown by the program of Fig. 4.9¢, each argument w is
obtained by a forwar< scan of Ty, beginning at component T/, Since
the scan is cyclic, it is necessarily successful. It can also be rhade fairly
efficient by constructing T as follows. The matrix is first specified as a
matrix of nulls. The elements of k are then assigned in order, element k;
being assigned to the first unassigned row following row (k) — 1.

The program of Fig. 4.9¢ describes both the construction and the use of
the table T. The branch on step 3 can occur only if the element > has not
yet been entered in the matrix T, and steps 5 and 6 then complete its entry
and the specification of the corresponding component of the ranking
vector T,. The use of T can, in fact, proceed concurrently with its con-
struction, i.e., each argument x presented to the program defines a new
entry in T if it has not previously occurred, the k index of « being deter-
mined by some algorithm independent of T.

If the active argument set k is not fixed. it may be desired either to add
new elements or to respecify the rank of some element already defined in
T. Respecification may be incorporated by allowing the scan used in
defining an entry in T to terminate on encountering either the null element
or the argument itself. Although respecification of an entry may be
allowed, deletion of an entry and its replacement by the null element cannot,
for the occurrence of such an inserted null element between the beginning
point i = t(k;) and the point at which k; is entered in T would later cause
an erroneous indication that k; was not defined in T. Replacement of a
deleted entry by a special ‘“‘deletion character’” distinct from the null
element could, however, be used.

The expected scan length in the open addressing system exceeds that for
method (d), since the expected length of scan of each equivalence class is
increased by the potential interleaving of elements from different equiva-
lence classes. Thus, in the example of Fig. 4.9¢, the expected scan lengths
for each of the equivalence classes (Sunday, Monday, Saturday), (Tuesday,
Thursday), (Wednesday), and (Friday) are (I 4+ 2 + 6)/3, (2 + 3)/2, I,
and 1, respectively, yielding an over-all expected scan length of 16/7. The
corresponding scan lengths for a chained scan (e.g., method (d)) are
(1 + 24 3)/3,(1 4+ 2)/2, I and 1, with an over-all expected scan length of
11/7. However, since it uses a fixed scan, the open addressing system is
better suited to a serial store than is the chained system.

* The open addressing system appears to have been first used by A. L. Samuel, G. M.
Amdahl, and E. Boehm in constructing address tables for an assembly program.



154 Search techniques §4.2

If the derived keys are uniformly distributed in the range 1 to w(T)
then, as shown by Schay and Spruth (1961), the expected scan length is
1+ p = 2(1 — p), where p = v(k) = w(T). For a nonuniform distribu-
tion, the expected scan length can be reduced by allocating the most
frequent elements first, i.e., by defining T from the set &k reordered in
descending order on frequency.

Bucket files. In certain files the locations divide naturally into blocks or
buckets of n successive locations each, such that the entire contents of any
bucket can be scanned in virtually the same time required to scan any one
location in the bucket. Such a file is called a bucket file (Peterson, 1957).
In a magnetic disc file, for example, each track forms a bucket. Each of the
foregoing methods of scanning equivalence classes can be adapted to suit
the characteristics of a bucket file. The equivalence classes can be
grouped in buckets, with chaining provided only from bucket to bucket.

Clustering.* The active argument sets of interest may be relatively small
subsets of the complete set k. Moreover, their elements commonly share
some characteristic so that a key transformation which gives uniform
coalescence and uniform spacing of the derived keys with respect to k
may yield highly nonuniform coalescence or nonuniform spacing, or both,
with respect to a given active domain &. This effect is called clustering. If,
for example, each element of k is represented by a vector of decimal digits
of dimension ten, then the key transformation

1(x) = |((10€) | p(x)) + 107

yields a mapping onto the range 1°(10?) which has both uniform coalescence
and uniform spacing. On the active domain x, whose elements are all
represented by vectors p(x) such that &®/p(x) = (2, 4, 7), however, all
elements ““cluster” in the single derived key 247.

The deleterious effects of such correlations among elements of the
active domain can be reduced by employing key transformations which
depend on all components of the representation and do so in a manner
which shows no systematic relationship to the structure of the representa-
tion. The mid-square method, for example, consists in squaring the given
key and extracting the middle digits of the resulting product. A commonly
used transformation is the taking of residues modulo some number m
such that m = #(x) and is either prime or contains few factors.

* Note added in proof: M. Hanan and F. P. Palermo offer an important solution
to clustering by the application of Bose-Chaudhuri codes. R. T. Chien and C. V.
Freiman have remarked a similar application of Fire codes (private communications).
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4.3 MULTIPLE KEYS*

If in some mapping operation the access to both the key set and the set
of correspondents is serial (or partially serial), considerable advantage can
be gained by replacing the vector T, of ranks by the suitably reordered set
of correspondents, that is, T,* becomes the correspondent of the key T’
For, the ranking operation on the argument k; which gives access to the
element T\’ = k; also gives immediate access to the correspondent T, in
the same row T'. This is equivalent to eliminating the permutation
operation (through reordering of the set of correspondents) and coalescing
the ranking and sclection phases so that together they require a single
access to the (partially) serial memory.

For a single functional correspondence, the coalescing of the ranking
and selection phases can (by a suitable ordering of T) be accomplished by
the single-table process (Fig. 4.9¢) without introducing the mapping
vector m of process (d). Frequently, however, a number of related func-
tional correspondences must be provided between pairs of a family of
vectors Q; so ordered that Q¥ corresponds to Q/F for all . j, and k. In an
accounting system, for example, Q,, Q,, @4, and Q, might be, respectively,
the vector of account numbers, names, addresses, and balances in a given
ledger. Those vectors which may occur as arguments in a mapping process
are called key vectors; those which never occur as arguments are called
satellite rectors.

Q may be reordered (and augmented by a suitable chaining vector) so as
to permit the use of the program of Fig. 4.9¢ for some selected key set Q,.
However, for any other key set Q, the order will, in general, be unsuitable.
The program of Fig. 4.94 may, however, be used together with an appro-
priate mapping vector m’ and chaining vector ¢’. For the sake of uni-
formity and the advantage of allowing an arbitrary ordering for Q, the
distinguished key set Q, may also be provided with a mapping vector m’
and treated like the rest.

The generalized binary search of Program 4.4 can be applied to the case
of multiple keys by providing a pair of chaining vectors (M, and M) for
each key. The open addressing system is clearly unsuited to multiple keys.
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EXERCISES

4.1 Give a formal proof of the fact that the binary search of Program 4.3 will
not work properly if steps 5 and 6 are replaced by the statements & <~ jand / “~/,
respectively.

4.2 (a) The argument &, in the set of keys B = (k, k,, . . ., B,) occurs with the
relative unnormalized frequency i. For the case #(k) = 10, design the
matrix M which will minimize the expected scan length when applying
Program 4.4.

(b) Show how additional keys may be incorporated in the system of part (a)
without revising the entire matrix M. Discuss the effects on the expected
scan length.

4.3 Consider the ledger L defined as

3125|ADAMS, S. Ho2o{435°ASHoco0000
01683|BAKER, J. C.oco [7T60ELMoccocooo
7926 FOX, R. L.cooo |435cLAURELv2ooo
3420|FOX, R. L.ecooo 435 LAURELvce>
1925|HILL, K.cocoo 11 8°LINDEN©®occo
2486 |JONES, J. C.vo |[61l°MAPLEccooo0
9127|JONES, J. C.oco |736>LINDEN©ococo
6135|KING, K. M.coo |T6cELMoooso0c0o

and the argument domains k', 2, and k2, consisting of all 4-digit decimal numbers
(account numbers), all 12-letter names (in capitals, with null fill), and all 14-
character addresses (alphanumeric with null fill), respectively, and let the rows of
al/L, (4 | a!?)/L, and w'4/L represent the corresponding active domains x1, x2,
and 3.

(a) Specify a simple key transformation on the set k1 whose range lies in the
set \(u(L)), which, when applied to the active key set 7, yields a derived
key set of dimension three or greater.

(b) Reorder the ledger L and add a chaining vector to chain the equivalence
classes so that the resulting matrix M may be used with the key trans-
formation of part (a) and a program of the type of Program 4.9¢. Show
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the resulting matrix M and the specific program used for selecting the row
M determined by an argument a € &',

(c) Specify simple key transformations on cach of the scts k2 and k3 which
yield derived sets of dimension not less than three when applicd to the
active domains #? and #*, respectively.

(d) Augment the matrix M of part (b) by a permutation vector and a chaining
vector suited to cach of the key transformations of part (c).

(e) Write a program which selects, as a function of a and j, the row of M
corresponding to the argument @ € &/, for j = 1,2, or 3.

4.4 Lett, = 1(R;), where 1 is a key transformation such that ¢ < J(r(k)). The
vector £ takes on n" distinct values (wherc n = r(k)), which arc assumed to be
equiprobable. For n =2, the cases are (1, 1), (1,2), (2, 1), and (2, 2), with
expected scan lengths |, 3.1, and 2.

(a) Show that the over-all expected scan length is 1.25 for n = 2.

(b) Calculate the expected scan lengths for # = 3 and for n = 4.

(c) Gencralize the result of part (b) to show that the expected scan length
rapidly approaches 1.5. [See Johnson (1961) for an alternative derivation.]

4.5 Design an open addressing system for the ledger L of Exercise 4.3 and the
key transformation of part (a).
4.6 Program and discuss the extension of binary search to m-way search.

4.7 Let I, be the time required to scan over the ith element of a vector ¥ which
is represented in a chained (or other serially-scanned) representation, and let f;
be the frequency of occurrence of the argument x;. Discuss the role of the
“standardized frequency” s = f =+ I in determining the optimum ordering of the
vector &,

4.8 The neighbors problem requires that the near neighbors of an object in
n-dimensional space be found. The technique used depends on the dimensional-
ity and the particular criteria of adjacency.

(a) The position of a vehicle on a turnpike is represented by the distance in
miles of the vehicle from the south end, and p, is the coordinate of the ith
patrol car. Write programs to:

(i) identify the patrol car nearest an accident at position a,
(ii) identify the two cars nearest to each other.

(b) A three-column matrix V specifies the locations and radio call-signs of a
fleet of merchant vessels on a flat lake, where V¢ is the call-sign of the ith
vessel, V,' is its distance in miles from the meridian tangent to the lake on
the west, V,/ is its distance in miles from the perpendicular tangent to the
lake on the south. Write a program to determinc the call-sign of the neigh-
bor nearest to a distressed vessel whose call-sign ¢ is given.

(¢) The matrix of part (b) is used to specify call-signs and locations at time ¢
of a fleet of bombers over a flat territory. When each bomb is released,
neighboring planes must be at a safe distance. Construct a program which
will find the call-signs of all pairs of planes within r miles of cach other at
time 1.

(d) In a certain hydrodynamic calculation, the motion of cach elementary
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volume of fluid is traced. The ith elementary volume is described by row L
of a matrix: (4 | o3)/L represents the three space coordinates (in a recti-
linear system), and a7/L represents the remaining parameters. At each
time step the parameters of volume i are redetermined by those of the four
elements nearest jt. Write a program to determine a!/L‘ as the set of
indices of the four nearest neighbors of element i. Hint. Attach an explicit
index vector before sorting.



chapter 5

METAPROGRAMS

It is frequently necessary to treat a program as an argument of some
process, as in the systematic analysis of a faulty program or in the trans-
lation of a program expressed in one language to an equivalent program
expressed in a second language. Such a process defined on programs may
itself be formalized as a meraprogram.

Formally, a metaprogram is defined as a program whose domain is a sct
of programs, each element of the domain being called an argument
program. If the range of a metaprogram is also a set of programs, the
metaprogram is called a transfator. An element of the range of a translator
is called a function program; i.e., a translator operatcs on argument
programs to produce function programs. A metaprogram whosec range is
not a set of programs is called an analyzer. Thus an analyzer produces, not
a function program, but data useful in the analysis or application of the
argument program. If, for example, the instructions of a computer
program are sorted on the data address and listed, the list brings together
all data references to each register used and therefore facilitates analysis of
the (possibly conflicting) uses of registers in the program. A metaprogram
which schedules and directs the execution of other programs (and meta-
programs) is called a director or supervisor.

Four main types of translator are distinguished: compilers, assemblers,
generators, and interpreters. A compiler accepts programs expressed in a
given language (the argument language) and produces corresponding
programs expressed in a second language (the function language).

An assembler is a special case of a compiler which is limited as follows:
(1) the statements of the argument program are virtually independent and
may therefore be treated one at a time, and (2) the statements of the
argument program are simple (not compound) and need not be analyzed
into component statements. There usually exists a fixed correspondence
between the operations of the argument program and those of the function
program; the translation thus consists essentially of a substitution of
symbols for the operations and/or operands.

A generator produces, by specialization, any one of a family of function

159
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programs. Thus a single generator might, for each specified value of s,
produce a specialized program for evaluating the function 2”. The
argument of a generator is usually viewed as two distinct parts: the
skeleton program, which determines the family of potential function
programs, and the specification, which determines the particular member
of the family produced. Generators are frequently incorporated in
compilers.

A translator is called an interpreter if it (1) executes the segment of
function program corresponding to a statement of the argument program
immediately after it is produced, and (2) selects the statements of the
argument program in a sequence determined by the execution of the
function program. The function program itself is normally treated as an
intermediate result, and only the outputs of the executed argument program
are retained. The execution of an interpreter can therefore be viewed as
follows: each statement of the argument program is first “interpreted”
in the function language and is then executed.

The trace program and the utility program are special cases of the inter-
preter. The former executes the argument program without modification
but produces, in addition to the normal outputs of the argument program,
a trace of the argument program listing each instruction executed and the
intermediate results produced. In a narrow sense, a utility program is an
interpreter whose argument program is supplied directly by a computer
operator via the control console. More broadly, the term is used to denote
any program frequently used by the computer operator.

The present discussion of metaprograms will be limited to one important
aspect of compilers, the analysis of compound statements occurring in the
argument program. The treatment embraces the translation between the
common parenthesis notation and the Lukasiewicz (1951) notation which
proves most convenient in the analysis of compound statements.

5.1 COMPOUND STATEMENTS

Each statement of a program can be considered as an operator which
maps the given operands into the specified result. If the operator corre-
sponding to a given statement belongs to a given set of operators p, the
statement is said to be elementary in p. A finite program whose operators
all belong to a set p is called a program in p. A statement which is not
elementary in p but which can be expressed as a finite program in p is said
to be compound in p. The analysis in p of a compound statement is the
specification of a corresponding finite program in p.

For example, the statement

z—(@+y)Xr+(s—0"
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1s compound in the operator set
p = (addition, subtraction, multiplication, exponentiation),

and Program 5.1a shows one possible analysis in p. Program 5.15 shows a
similar analysis in the set

¢ = (addition, subtraction, multiplication, branch).

A metaprogram that translates all statements which are elementary in a
set of operations p can be extended to translate statements which are

— a+x 4y — a—x+y
b«+—axr b<—axr
cC—s5—t cC«—5—1
d+~c" d«1
z2+~b+d |—> [ —n

Sl iei—1
d<~—c¢xd j
z—b4+d [—»

Analysis in p Analysis in q
(@ (b

Program 5.1 Analysis of the compound statement = «<- (r + ») x r + (s — )"

compound in p by the addition of a metaprogram for analyzing compound
statements. The conventions adopted for the representation of compound
statements must, of course, be complete and precise so that interpretation
1s unequivocal. These conventions should be familiar and convenient to
the programmer and should also permit easy analysis by a metaprogram.
The common parenthesis notation of elementary algebra is congenial to
programmers, whereas statements in Lukasiewicz notation are easier to
translate and evaluate, easier to transform to an optimum form which
minimizes the amount of intermediate data storage and execution time
required in their evaluation or translation, and possess the simple criterion
for well formation developed for the left list matrix of a tree in Sec. 1.23.
The analysis of compound statements will therefore be discussed in terms
of Lukasiewicz notation, and algorithms for translating between the
parenthesis and Lukasiewicz notations will be presented.
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Tree
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Figure 5.2 Representations of a compound statement
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Figure 5.2 shows several alternative representations of a compound
statement. The tree representation (5.2a) is perhaps the most graphic, and
the other forms may be viewed as alternative representations of the tree.
The common parenthesis form of Fig. 5.2e, for example, specifies the
requisite structure primarily by grouping the nodes of each subtree within
parentheses with the root in the middle of the group. As shown in Sec.
3.4, the left Tist matrix of Fig. 5.2¢ can be supplanted by the simpler left
list vector of Fig. 5.2d, providing that the degree of each operator p is a
known function o(p).

The left list vector notation for a compound statement is also called
Lukasiewicz,® Polish, or parenthesis-free notation. The Lukasiewicz and
the parenthesis notations will hereafter be referred to as #’-notation and
#-notation, respectively.

5.2 LUKASIEWICZ NOTATION

Although #-notation can be viewed as the left list vector of a tree
representing a compound statement, it is hclpful to develop an alternative
equivalent formulation as follows. Let I and p be two disjoint sets whosc
elements are literals and operators, respectively. and whose union v =
1G5 pis called a rocabulary. A strictly positive integral degree function
o(p) is defined on each element of p, and each operator p of degree
accepts d elements of I as operands to define a result or value in L. In
symbolic logic, for example. I = (0. 1), p = (/. V. )L oA)=0(V)=
2,and o(" ) = 1. Consistent with these notions. the degree of each literal
is defined to be zero.t

Each operator p of degree »(q) defines a function (i.e.. a mapping) from
each vector ¢ < l'into an element y € I. This function is denoted by the
vector f = (p) @) q. The vector f is called an ¥-phrase of length v(f), and
the element y is called its value. Table 5.3 shows, for example, the ¥’-
phrascs in the system for symbolic logic based on and, or, and not. The
vector fis clearly contained in the vocabulary o, thatis, f < v. Where its
omission raises no ambiguity, the prefix will be dropped from the term
“%-phrase’” and from similar terms to be defined.

A vector z < v is called an ¥-formula of length »(z). In particular,
every phrase is a formula. The degree vector of a formula z will be denoted
by o(z) and defined by the relation (4(2)), = &(z,).

* First proposed by Lukasiewicz (1951) and first analyzed by Burks ct al. (1954).

T The system is extended to include variables as well as literals by considering the
vocabulary v =% . I - p, where x is the set of variables, and ¥ N (I - p) = €(0).
The degree of each variabile is, like that of a literal, defined as zero. The domain of the
operators is still confined to the set I, and in any legitimate algorithm each variable is
specified as a literal by some statement before it enters as an argument.
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Phrase Value

(v,0,0)
(v,0,1)
(v, 1,0)
(v,1,D
(A, 0,0)
(AL0, 1)
(AL, 1,0)
(A, L)
(—,0)

(— D

Table 5.3 Phrases in ¢-system for symbolic
logic based on operators and, or, not

If some infix of z is a phrase, and if the infix is replaced by its value, then
the resulting vector y is called an #-reduction of z. 1f y is any ¥-reduction
of z which cannot be further reduced, it is called a complete reduction of z
or, since it can be shown to be unique, the complete reduction of z. Com-
plete reduction of z will be denoted by #(z). A formula z is said to be
singular*® if its complete reduction is a single literal, i.e., if ¥(¥’(2)) = 1 and
F(z)el. Thus g =(A,1, v,0,1) and r = (1) are singular, but s =
(A,1,1,0)and t = (A) are not.

For example, complete reduction of the singular formula z = (A, 7/, 1,
A,0,1, v, 1, 7, 1) may be performed as follows:

Z=(/\, \/,ly /\>O,1’ \/71»_’1)
Zl= (/\,\/,1,/\,0,1, \/:1’0)

22 = (A, Vv, 1, AL,0,1,1)
23 = (n, v, 1,0, 1)
z4= (/\7151)

D
25 = 1

Program 5.4 shows the complete reduction of a formula z, including tests
of singularity.
Program 5.4. The components of the given formula z are examined in reverse
order and assembled into a stack vector ¥y = (z,, 5,4, ..., %,), where z, is the
* The term well formed used by Burks et al. (1954) and others is avoided here because

singularity implies not only that the formula represents a well formed tree but also that
the tree is singular.
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1l «— s~y =1 I-origin indexing
RN —
- s+ 0 z | Given formula.
3 y < €0) y | Reduced suffix of z.
4 [—v2) +1 i | Index of z in descending scan.
5 Pei—1 = j | Dimension of phrase to be
reduced.
6 y-@) oy s | Singularity indicator.
7 /=4 8y) : 0
8 J—dy) +1 Legend
. >
9 Jov» —
10 x L (d]y)
11 y—(2) Oy

Program 5.4 Evaluation of the formula z

component currently examined. When an operator (i.e., a node of nonzero de-
gree) is first encountered, the prefix of ¥ forms a phrase of dimension j = o(y,) +
1, which is immediately reduced (i.e., evaluated) on step 10 and is then replaced
by its reduced value on step I1. Singularity of the vector z is indicated by a non-
zero value of s, which is set to one only if the exit occurs from step 1 with »(y) = 1.
The case »(y) - 1 can occur if the formula represents a well formed but nonsingu-
lar tree, i.e., if the formula contains two or more singular formulas. The exit
from step 9 occurs if the indicated dimension of any phrase exceeds the current
dimension of y and leaves the indicator s at its initial zero value.

The singular formulas are clearly the meaningful compound statements
in the system. Moreover, if L, is a singular formula and if L, = d(L,),
then L is the left list of a singular tree. The singularity of a given formula
z can therefore be determined from its associated degree vector d = 0(2).
The necessary and sufficient condition for singularity of the associated tree
is simply »(d) — (4/d) = 1. As shown in Sec. 1.23, the necessary and
sufficient condition for well formation is that all components of the suffix
dispersion vector s defined by*

s=0+D0O)%(e—4d)
must be strictly positive. The maximum over the components of s will be
called the maxinmum suffix dispersion of 2.

* The suffix dispersion vector describes the dispersion (number of roots) of all suffixes
of z, as may be more casily seen from the alternative expression

s, = rajd) — (+/a/d).
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5.3 THE MINIMAX FORM OF AN #-FORMULA

Two formulas are said to be equivalent if they have the same value for
each possible specification of their variables. If z is any formula whose
operators are all symmetric (i.e., whose operands commute), then any
reordering of the component singular formulas of z which leaves the span
of each operator unchanged leads to an equivalent formula. For example,
since the operators A and v are symmetric, the formulas

2= (A, V, A, V, W, ALU, t,r,.q,p)
and q=(A,p, Vi@ A F, VW, AL U T)

are equivalent, as may be easily verified. In the tree representation this
reordering appears as a reordering of the group of subtrees rooted in a
common node.

A formula whose maximum suffix dispersion is minimal with respect to
the set of all equivalent formulas is said to be in minimax form.

The dimension of the stack vector y employed in the evaluation of a
formula z (cf. Program 5.4) takes on successive values equal to the number
of roots in the tree represented by the suffix of z currently scanned. It
therefore assumes the values (in reverse order) of the components of the
associated suffix dispersion vector s. The maximum dimension of the
stack vector determines, in turn, the amount of auxiliary storage required
in the evaluation of the formula or in the compilation of a function
program for its evaluation. It also determines, in part, the number of
transfers of intermediate results to and from storage in evaluating the
formula in a computer having a limited number of central registers. A
formula in minimax form minimizes the maximum dimension of the
stack vector and is therefore to be preferred.

The transformation of a singular formula 2 to equivalent minimax form
is based on the following theorem: if each of the d(z;) component singular
formulas of a!/z is in minimax form, then the entire formula can be
brought to minimax form by arranging the component singular formulas
in ascending order on their maximum suffix dispersion.

For example, if 2= (A, v, A,a,b, A,c,d, v, e f), then d(z) = 2,
and a'/z contains two singular formulas, yt = (v, A, a, b, A, ¢, d), and
¥ =(v,e[), each in minimax form and possessing maximum suffix
dispersions of 3 and 2, respectively. Moreover,

=) Oy Oy =(A, V.e. f, vV, Aya. b, ALe,d)

is an equivalent formula in minimax form, with a maximum suffix dis-
persion of 3 as compared with a value of 4 for the same function of 2.
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To establish the theorem, let 2 be any singular formula, let #(z) be its
dispersion (that is, the number of roots), let s(z) be the maximum suffix
dispersion of z, let ¢ = 0(z,), and let

aljz =y oy Oy
be the unique (cf. Program 3.9) artmonmg of a'/z into its component
singular formulas. Then y’ y Ve Yt F L represents a k-tuply
rooted tree and r(y' () y"* 1 - f:f?y/ Yy = k. Moreover,
stelfz) = max [s(¥") + r(3* Dy @ 0y s @y O )]
= max [s(y") + d — 1, s Oy m v]

=max [s(y) +d— 1, s(¥)+d—2, s(a*"C -y

= max [s(¥) +d—j]

i=1

= d + max [s() —Jj1.

J=1

Since the component formulas are in minimax form, the s(y’) are individ-
ually minimal, and the maximum over s(y”) — j 1s clearly minimized by
arranging the s(3’) in ascending order. This concludes the proof.

To ensure that each component formula is itself optimal, it suffices to
apply this reordering procedure in turn to the successive singular formulas
encountered in scanning the given formula from right to left, as shown in
Program 5.5.

Program 5.5. The vector y is the suffix a’/z permuted to optimal form, p is its
partition vector*(that is, (p . & 1) | aPs)/y is the jth singular formula of ¥), and
g is its maximum suffix dispersion vector (that is, g; is the maximum suffix dis-
persion of the jth singular formula of ). The main control paramcter / is decre-
mented on step 11, and, if it is not zero, the degree ¢ = o(z;) of the next
component to be added to y is examined. If z; is not an operator, the branch
to step 8 occurs with # = 1. The component z; is then a formula of length 1
and steps 8-10 add it to ¥ and make the appropriate changes in p and g.

If z; is an operator (of degree ), the loop 15--22 scans the vector g and reorders
the first d component formulas of ¥ so that their maximum suffix dispersions are
brought to ascending order. This is accomplished by the simple, but not necessar-
ily cfficient, sorting process of comparing successive pairs of adjacent components
of g and interchanging the corresponding component formulas of y (by rotation

* The conventions used for p are those established in the subtree partitioning of
Program 3.9.
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l-origin indexing
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The transformed suffix
at/z.
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D; is the dimension of
the jth singular form-
ula of y.

Maximum suffix dis-
persion of the jth
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Singularity indicator.

IA

Legend

Program 5.5 Transformation of the formula z to minimax form

of the infix representing the pair) if an interchange is required. Steps 21 and 22
effect the corresponding interchanges in the vectors p and g. The loop is termi-
nated by the branch from step 17 to step 6, the first  formulas of y (forming the
prefix o’ [y, where n = ( +/a/p)) are then in ascending order on their maximum
suffix dispersions, and the new formula (z,)
Its maximum suffix dispersion is computed by steps 6 and 7 and replaces the
prefix a’/g (step 8) so that g becomes the maximum suffix dispersion vector of

a"/y is therefore in optimal form.
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(z,) © ». The partition vector p is respecified by step 9. The one component of g
remaining at the conclusion is the maximum suffix dispersion of the optimized
statement y.

The minimax form of a formula is, in general, not unique. It can be
made unique, however, by using some assigned orderings of the operators,
literals, and variables (e.g., the ordering specified by the vocabulary
v= 231 p) as a minor category in the reordering of component
formulas. Such a unique form is helpful in detecting the occurrence of
equivalent compound statements within a formula, with the aim of
obviating repeated segments in a corresponding function program.

5.4 TRANSLATION FROM COMPLETE
PARENTHESIS TO LUKASIEWICZ
NOTATION

Ordinary parenthesis notation is complicated by the occasional or
consistent use of certain conventions for eliding parentheses. For example,
the expression

(v + (y x 2))
may also be written as
(@ 4y x2)

by the convention that multiplication takes precedence over addition, or as
x+4+ y Xz,

with the understanding that the entire expression need not be enclosed in
parentheses.

The problem posed by the use of such conventions can be segregated by
considering a complete parenthesis notation in which all implied paren-
theses are included, i.e., in which each operator and its associated operands
are enclosed in parentheses. The analysis of a statement in parenthesis
notation can therefore be performed in two steps, a translation to com-
plete parenthesis notation according to the prescribed conventions, fol-
lowed by the analysis of the resulting statement. The present discussion
will be limited to expressions in complete parenthesis form.

The complete parenthesis notation will be referred to as .#-notation and
the terminology adopted for #-notation will be extended analogously.
Thus, 2= ([ v, +.% 1. x,r.]) is a .Aformula more commonly
denoted by (& + y) x r. To avoid confusion with the normal use of
parentheses (e.g., in enclosing vectors), brackets will be used (as in the
foregoing vector z) to represent the -#-notation.
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The discussion will be limited to a system of unary and binary operations
only (i.e., o(p) =1 or 2) and will again be illustrated by the system of
logical operations. Assuming a vocabulary of the form v =x DI ® p O
([, ), the rules of composition for #-notation may be formulated as
follows:

1. If v ex (1, then v is a singular Z-formula.

2. If zis any singular formula, if v e p, and if &u) = 1, then ([) & (v) &)
z (] is a singular #-formula.

3. If y and z are both singular formulas, if b€ p, and if o(h) = 2,
then ([) 75 y (U (b) @ 2 &3 (]) is a singular :#-formula.

In particular, ([, 4, /A, 2, ]} is singular but (y, A, 2) is not; (y) is singular
but ([, . ) is not, and ([, ~ , y, ]) is singular but (", y) is not.

1 —A (D) —€ 1-origin indexing

) N
2 v ®, | Input in #-notation (terminated by ©, X,).
3— @ ®, | Output in #-notation (reversed in order).
4 v ] = &g | Auxiliary stack file.

Set of operators.

5 Py rep = p p
6 P2 1 Legend

Program 5.6 Translation from complete parenthesis to Lukasiewicz notation

The translation from - to .#-notation can be performed with the aid
of one auxiliary file or stack vector. Program 5.6 shows a suitable process
which will correctly translate any singular formula, but which includes no
tests for singularity. It is noteworthy that all left parentheses are simply
ignored. A similar process can, of course, be designed to use only the left
parentheses and to ignore all right parentheses.* Any translation which
tests for singularity clearly must use all parentheses. If the ¢~ and -
notations employ different sets of operator symbols (e.g., A, Vv, ,and
X, +,~), the appropriate translation can easily be incorporated in the
program.

Program 5.6. The original statement is assumed to be recorded on a file @,
with partitions A, following each symbol and with a null item and partition 2, at

* Octtinger (1960) analyzes three types of parenthesis notation: /feft, right, and com-
plete.
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the end. File @, receives the resulting #’~-formula in reverse order, i.e., from right
to left. The stack file @4 receives each operator symbol as it is read from @ and
transfers them one at a time in reverse order (i.e., by a backward recad) to @, at
each occurrence of a right parenthesis. A tracc of the program shows, for
example, that the Z-formula ([, [, =, v, .1, # [, 7 . 2 1, ] translates correctly
into the #-formula (i, 5, v/, z, — , A) reversed from normal order.

A partial test of singularity can be provided by testing each component
for compatibility with its predecessor, the ordered pair being declared
compatible if and only if it can occur in some singular formula. For
example, an operator may be followed by either a left parenthesis or a
variable, but not by a right parenthesis or another operator. These first-
order compatibility constraints can be expressed in terms of the following
classes: left parenthesis, unary operator, binary operator, variable or
literal, and right parenthesis. These classes will be denoted by [, , b, v, and
], or alternatively by 1, 2, 3, 4, and 5. The constraints are summarized in
the matrix M of Program 5.7.

The test of singularity provided by the first-order constraints is not
complete,® but can be completed by the following expedient.{ The
auxiliary file which receives the operators (file ®; of Program 5.7) also
receives the left parentheses in their turn. The following tests are then
added:

1. Each operator is accepted and replaces the previous entry in the
auxiliary file if and only if the previous entry is a left parenthesis.

2. The transfer of one component from the auxiliary file to the output
file normally occasioned by the appearance of a right parenthesis is
accepted by the right parenthesis if and only if the component trans-
ferred is an operator.

3. The possible exhaustion of the auxiliary file is tested each time it is
read.

The first test prevents the acceptance of two successive operators without
an intervening left parenthesis. At each application of the test, the corre-
sponding left parenthesis is removed from the file. Since the auxiliary file
may now contain left parentheses as well as operators, the second test is
required to prevent their acceptance as operators. The complete testing
and translation process is described by Program 5.7.

Program 5.7. The current component . is read from the input file on step 8 and
its class & is determined before the repetition of the main loop at step 5. Step 5

* The tests provided in compilers have frequently been limited to essentially this type.
See, for example, Carr (1959).
¥ This procedure is due to Octtinger (1960).
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6 o —w M | p3 11001 0| compatibility
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p, (terminated by ©, A)).
13 ©ip J Class of previous component.
14 k —dx) +1 k Class of current component.
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s Singularity indicator.
17 k4
18 xz 1] 7 Legend
19 k<5
20 D ~1P3
20 Lz p <

Program 5.7 Translation from complete parenthesis to Lukasiewicz notation
with full checking of singularity

determines the first-order compatibility of & with its preceding value j. (The
singularity indicator s is set to unity only at the exit on step 10.) Each component
occasions the recording (step 6) of one item on one file—the auxiliary file @, if
k -2 4, orthe output file @, if & * 4. The item recorded is the current component
unless it is a right parenthesis. In the [atter event, the variable . is first respecified
(step 20) by a backward read from the stack file. The test on step 21 assures that
the item read is an operator.

If the current component is an operator, the previous item recorded on the
auxiliary file must first be read, compared with “'[,”" and discarded. This occurs
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on steps 15 and 16. The exits on steps 15 and 20 indicate nonsingularity duc to
the exhaustion of the stack file. Step 9 provides a final test to ensure that the
stack file is exhausted when the input file becomes exhausted. Since the first
component of any singular formula must be either a variable, literal, or lcfi
parenthesis, the initial setting of j to 2 on step 4 provides the appropriate initial
compatibility condition.

Each of the translation programs considered produces the resulting
#-formula in reverse order. This is the order in which it is most casily
evaluated and, consequently, the order in which the synthesis of a corrc-
sponding function program is most easily performed. Synthesis may
therefore proceed concurrently with analysis. The analysis may, on the
other hand, be completed first, and the output file @, rewound before
beginning the synthesis. The latter alternative allows the use of separate
metaprograms for analysis and synthesis, and hence makes lesser demands
for metaprogram storage. It also allows the application of an intervening
transformation of the #-formula to some preferred equivalent form.
However, as shown by Program 5.4, the transformation to minimax form
also treats the &-formula in reverse order. It can therefore be performed
concurrently with the translation from parenthesis notation.

5.5 TRANSLATION FROM LUKASIEWICZ TO
COMPLETE PARENTHESIS NOTATION

The inverse translation from Lukasiewicz to complete parcnthesis
notation 1s, unlike the evaluation of the Lukasiewicz formula, best
performed by a forward scan. The suffix dispersion criterion of singularity
must then be applied in the following way. The dispersion of the entire
statement is assumed to be one. and the dispersions of successively shorter
suffixes are obtained by subtracting (I — &(+)) for each succeeding com-
ponent ». The suffix dispersion thus computed must reach zero when and
only when the remaining suffix is null; if not, the statement is nonsingular.
The translation of Program 5.8 provides complete checking of singularity.

Program 5.8. The resulting #-formula is produced on file d, in reverse order.
Each operator encountered is recorded in the auxiliary file together with a preced-
ing left parenthesis, and it also causes a right parenthesis to be recorded in the
output (steps 9-11). Each variable encountered is recorded (step 12) in the output
file and initiates a transfer from the auxiliary file to the output file which termi-
nates (step 19) only when an operator of degree two is encountered or (step 13)
when the file becomes exhausted. In the latter event, steps 14 and 15 arc cxccuted
as a final check on singularity—exhaustion of the stack file, exhaustion of
the input file, and the first zero value of the suffix dispersion m must occur
together.
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1 — 7(D) <€

> Py 1-origin indexing
3 s <=0
4 e 1 ®, | Input in -notation

A (terminated by °, A,).
5 2 x = @, | Output in #-notation
6 «—4 m: 0 (reversed order).

D ilic k file.

7 mo—m — (1 — () a3 | Auxiliary stack file

¢ D Set of operators.
8 vop m | Suffix dispersion assuming
9 O, « [ total weight is unity.
10 D — 2 s Singularity indicator.

g
I P2 1 Legend
12 Dy -
A

13 p <104 1
1412 m:o
15 (% s
16 s 1 L
17 Oy, < p
18 = p ol
19 L=4dp) : ! i

Program 5.8 Translation from Lukasiewicz to complete parenthesis notation
with complete test of singularity
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EXERCISES

5.1 For each of the following logical functions, exhibit an equivalent (i) tree,
(ii) -#-formula, and (iii) <-formula:

@) flr,y,2) =0 A (y V2.

(b) gw, e, ,2) = (w v (i 7 2) A (e v (w =)

(c) the function of part (b), limiting the operators employed to and, or, and not.
5.2 Let f(x, 4, 2) be a logical function of three variables, let g bc an cquivalent
formula in -#-notation, and let r be an equivalent formula in #-notation. Write
programs to determine the intrinsic vector i( /) (cf. Sec. 7.2) as a function of

(a) the .#-formula q.

(b) the Z-formula r.

53 Leta=(An, ,0, v,1,0)
b=(,0 v,10
c=(A, V,0,v.1,0)
d= (A, V,q,r, 1D
e =(v,q,r, .1
q=~"LLe, V. L AL T L8]
r=(g, v, . LA LL 7.0, 11
Trace the operation of

(a) Program 5.4 for each of the cases z = @, 2 = b, and z = c.

(b) Program 5.5 for z = d.

(c) Program 5.6 for @, containing q.

(d) Program 5.7 for ®; containing q and for ¢ containing .

(e) Program 5.8 for @, containing d and for @, containing e.

5.4 Write a program for translating from #-notation to #-notation which is
analogous to Program 5.6 except that it ignores right rather than left parentheses.
5.5 Write a program to extend the minimax transformation of Program 5.5 to
the case of an operator set of the form p = p' - p*, where p! and p? are a set of
symmetric and asymmetric operators, respectively.

5.6 Write a program which extends the minimax transformation of Program 5.5
to include ordering on the variables and operators so as to bring the formula to
unique canonical form, as suggested in Sec. 5.3.

5.7 Write a program which will recognize all identical singular subformulas
occurring in a singular #-formula z and which will produce a record of the
associations in some convenient form.



chapter

SORTING

The order in which a set of items is arranged in a large-capacity store
often has a marked effect on the simplicity and speed of execution of
algorithms defined on them, and it therefore becomes necessary to sort or
rearrange groups of items.

The problem of sorting may be described as follows: given a vector a,
determine the ordering vector p = 0/(k(a)) and the permuted vector
¢ = pfa, where k(a,) is a numeric function defined on the components of
a, and k(a) is the vector defined by (k(a)); = k(a;). The function & is
called the key of the sorting process, and k(a) is called the key vector
associated with a. The key function is frequently an index in some set b,
that is, k(a) = b ¢ a. The components of a will also be called items; since
the vector a is commonly represented in a file, it will also be called a file.

Most sorting processes determine the ordered vector ¢ = pfa without
explicitly determining the permutation vector p. A sorting process which
explicitly determines and uses the permutation p is called an address table
sort.

Sorting processes fall into two major classes, called serial- or random-
access, according to whether the files used to represent the original and the
intermediate vectors produced are serial-access or not. Random-access
processes are also called internal, for they are normally performed in the
“internal’ storage of a computer. Combinations of serial processes and
internal processes are used, but the two types can and will be described,
analyzed, and evaluated independently.

Input Output Name of Process
Single Single Duplication
Single Multiple Classification
Multiple Single Merging (or Merge)
Multiple Multiple Revision

Table 6.1 Types of file operations
176
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Four types of operations on files are distinguished, according to whether
one file or several files are used in input and in output. They are shown in
Table 6.1. A classification (merge) involving m output (input) files is called
an m-way classification (merge).

6.1 SERIAL SORTING METHODS

Copy operations

A serial sorting process is executed as a sequence of copy operations.
A copy operation is defined as follows: all items from a given set of input
files are transferred to a given set of output files, and each item read from
any input file must be transferred to some output file before a further item
is read from the same input.

Input ltem Qutput
Files Positions Files

:
-

. .H

(#y——{ o]

Figure 6.2 Copy operation

I

Figure 6.2 provides a graphic description of the copy operation. The
m components p,, p,, . . ., p,, denote storage for m items, the kth input
file may be read to the kth item position only, and the occupant of any
item position may be transferred to any one of the output files. Once an
item is so transferred, the evacuated position may be refilled by the next
item from the corresponding input file. Any copy operation can clearly be
performed by serial input files and serial output files, with each item being
read and recorded but once, and with no auxiliary repositioning of the files.

A copy operation is also called rank-preserving, since it satisfies the
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following definition of that term. [The concept of rank preservation and
its use in the analysis of sorting processes were first introduced by
Ashenhurst (1953).] Any item may be specified by a pair of coordinates
(f, r), the file coordinate f designating the file to which it belongs, and the
rank coordinate r designating its rank (i.e., its index) in the file. Two items
with initial coordinates (f, r;) and (f,, r,) and with final coordinates( ;. r,")
and (15, r,’), respectively, are said to be relarable if and only if f; = f, and
fi' = /5. An operation is called rank-preserving if precedence relations
are maintained for all relatable items, i.e.,
ry <C Ry<er) <y

Henceforth the terms merge and classification will, unless otherwise
specified, refer to rank-preserving merge and rank-preserving classification,
respectively. A merge in which each input file forms an infix of the output
file is called a simple merge, and a classification in which each output file is
formed from an infix of the input is called a simple classification.

An m-way classification and a subsequent m-way merge together effect a
rearrangement from a single file to a single file. If the classification and
merge are both rank-preserving, the possible rearrangement effected is
restricted. However, a sequence of such orderings using alternate classi-
fication and merge can effect an arbitrary reordering. In particular, the
following two important subclasses of such orderings will each be shown
to suffice:

1. simple classification and merge,
2. classification and simple merge.

A sequence of copy operations of the first type used to effect complete
ordering on some key is also referred to as a merge sort. A sequence of the
second type is called a column sort.

Simple classification and merge

An infix in a file vector for which the key is a monotone increasing
(decreasing) function of the rank is called an increasing (decreasing) string.
The length of a string is the number of items it contains, and a maximal
string is a string contained in no longer string. A file containing a single
maximal string is ordered on the key.

For example, the sequence of keys

1,3,5,8,4,7,9
contains several increasing strings including 1, 3; 1, 3, 5, 8; and 7, 9, but
it contains only two maximal increasing strings, I, 3, 5, 8 and 4, 7, 9 and

six maximal decreasing strings. Henceforth the term string will normally
refer to a maximal string.
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Two files, each containing one string, may be merged to produce a
single string by selecting at cach step the item with the smaller key of the
two next available from the input files. More generally, if the inputs each
contain # strings, and if the foregoing process is gencralized to produce the
longest possible output strings, each output string will contain preciscly
onc string from each input. If the inputs contain s and n, strings. re-
spectively, then n = max (1), n,) strings are produced in the output. A
subsequent simple two-way classification which assigns [# = 2] strings to
the first file and the remaining strings to the sccond, yields the greatest
possible reduction in the maximum number of strings in any one file.
Repetition of the merge and classification phases eventually produces an
ordered file.

The generalization of the process to an m-way merge and m-way classi-
fication is immediate,* the optimum number of strings assigned to cach
output file by the classification process being limited to [# = m]. Referring
to Fig. 6.2, the m-way merge may be described as follows: those item
positions containing keys which equal or cxceed the key last recorded on
the single output file arc said to be eligible, and the next item chosen for
recording is the eligible item with the minimum key. When no eligible
items remain, all positions are again made eligible and the process
continues, initiating another string in the output file. The number of
output strings produced is clearly the maximum of the number occurring
in an input file. Figure 6.3 illustrates the process for m1 = 3. The vertical
strokes in the figure indicate the division into maximal strings and do not
denote information represented directly within the files.

In any sorting procedure, the smallest subprocess which treats the entire
set of items once is called a phase. The smallest subprocess which by
simple iteration produccs the sorting process is called a stage. A stage
may comprise one or more phases. In the merge sort described above, for
example, the classification phase and the subsequent merge phase together
constitute a stage which is iterated until order is achieved; the process
is therefore called a two-phase merge. The use of a revision operation
(Table 6.1) permits the classification and the merge to be coalesced into a
single phase, and the resulting process is called a single-phase merge. The
single-phase merge requires /m input files and m output files, whereas the
two-phase merge requires only (m + 1) files—-one input and m outputs
in the classification phase, and s inputs and one output in the merge
phase.

The following format will be assumed for the originalfilesin all programs
in this chapter: the terminal item is a dummy (null) which is not to be

* This method, commonly credited to Goldstine and von Neumann (1948), was
presented by J. W. Mauchly in July 1946 in the Moore School lectures (1948).
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sorted and which is accompanied by a terminal partition A;,;, where / is
the index origin in use; all other items are separated by the partition A;.
The final dummy item facilitates the use of the immediate branching
convention introduced in Sec. 1.22.

Two-phase merge. The (m + 1) files used wili be labeled 1, d,', ... D 1
and @2, the last serving as initial input and as input during each classi-
fication phase. Program 6.4 describes the entire merge.

Program 6.4. The merge phase is shown on the left and the classification phase
on the right. The heart of the former is the loop 7-17. Its operation is controlled
by the logical vectors v and z (of dimension »1), which specify the set of exhausted
files and the set of ineligible items, respectively. An eligible item is one which has
been read to one of the m item positions p,, is not a dummy, (i.e., null), and
possesses a key which equals or exceeds r, the key of the item last recorded.

The merge phase terminates on step 7, when all files are exhausted. Step 8
initializes the vector z (ineligible item positions) to the value v (exhausted files),
and step 9 increments the output string count s. Each execution of the subloop
10-14 records on @2 the item p; having the smallest key of all eligible items.
Steps 10-12 select and record the item p; and preserve its key as the variable r.
Step 13 reads the next item from file j. If this exhausts the file, the branch to
step 15 is followed. Step 15 adds j to the set of exhausted files and step 16 adds it
(since the new item p; is a final dummy) to the set of ineligible items. Step 17
then repeats the subloop if any eligible items remain and otherwise re-enters the
major loop at step 7. If the files are all exhausted, step 7 branches to step 18 to
begin the classification. If not, the production of a new maximal string is begun
on step 8.

If step 13 does not exhaust the file, it is followed by the decision on step 14,
which repeats the subloop if r does not exceed the new key, and otherwise adds
to the set of ineligible items on step 16.

The necessary initialization is performed by steps 3-6. Step 3 rewinds all input
and output files. Steps 4 and 5 perform the initial read from each unexhausted
file to the corresponding item position and respecify v to indicate any file which
may be exhausted by the initial read itself. The vector v is itself specified external
to the process, so that the initial set of input files may be restricted at will. On
subsequent repetitions of the merge, all files are made available by step 2.

The classification phase begins by terminating the output file with a dummy
item and final partition 2,, and rewinding it. The / input files are also rewound
to serve as output files in the subsequent m-way classification, and the process is
terminated by step 20 if the output string count is equal to one. Step 21 redefines s
as the maximum number of strings to be allotted to the output files in turn, and
step 22 reads the first item from the input file =,

The output files are selected in ascending order by the index i. The variable j,
which counts the strings, is initialized on step 25 and decremented on step 30 each
time a break is indicated by the preceding comparison on step 29. When s strings
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° Final dummy item.
i Index of output file.
J Index of input filc.

m-way merge sort
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have been recorded, the branch from step 30 to step 24 is followed to repcat the
process for the next output file.

The classification phase is terminated by the occurrence of the partition A, on
step 28. Step I then records a dummy and a final partition on each output file
(including any which may have received no items), and step 2 resets the vector v
to zero.

The merge phase with which Program 6.4 begins is essential, even though
the original data are contained in a single file, since it also serves to
determine the string count s needed in the subsequent classification. The
need for the string count can be avoided by using a classification process
which merely assigns successive strings to successive files in cyclic sequence.
This process does not satisfy the definition of a simple classification, and
it will be given the name siring classification. String classification is
frequently more convenient to use than simple classification, particularly
in processes such as the single-phase merge to be described next. Two
successive strings assigned to a given file in string classification can coa-
lesce to form a single string, but the probability of such an occurrence is
small, especially in later stages.

Single-phase merge. The two phases of the merge sort can be coalesced in
a single revision operation employing m input and m output files. The
two rows of files ®! and P2 serve alternately as input and output on
successive stages.

Program 6.5. The main subprocess (15-22) differs from the corresponding seg-

ment (10-17) of Program 6.4 only in the control of file sclection, the alternation
of input and output being controlled by the alternator «, which alternates between
1 and 2 (step 2) onsuccessive stages. The classification is controlled by the variable
i, which selects the particular output file on step 17 and which is itself cycled
through the integers 1 to /by step 14. When all files are exhausted, the branch
to step 2 is followed, resetting the vector v to zero, terminating the output files,
and rewinding all files. The final output is contained in file .
Elimination of file rewind. Each of the sorting processes described requires
a rewind of all files between successive stages. If the files employed are
capable of backward read, the processes can be modified so as to climinate
the need for rewind. Since each file is alternately read and recorded in
successive stages, each will always be read in a fixed direction and recorded
in the other. Since the space needed for recording is not known in advance,
it is necessary to do all recording in the forward direction and thercfore
to read in the backward direction. The changes required will be illustrated
by modifying the single-phase merge of Program 6.5.

Program 6.6. Since the alternate forward record and backward read effectively
reverse the order of all files on successive stages, alternate stages must assemble
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1 (a,5) < (1,0)
2 a<2,@+1)
3 v <0 1-origin indexing
4 D8« o€, Ay€ ®! | Input to odd stage )
5 m(D) — E @2 | Output of odd stag
6 s 1 L= P It.em pos.it‘ions [
7 §<0 q | File partitions
- - v | Exhausted files
— a
8 vip, v/g +v[® z | Ineligible items J
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10 i«<0 r | Key of last recorded item.
11 v e = a | Alternator (1, 2).
12 v Legend
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16 V o— k(pg)
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18 pj «— @J.ﬂ

<
19 r: k(py)

>
20 v; 1
21 zj -« 1
2L "1z:e€ 7

Program 6.5 m-way single phase merge sort

ascending strings and descending strings, respectively. This is achieved by re-
versing the algebraic sign of the key in statements 20 and 24 (by use of the alter-
nator @) on even-numbered stages.

Except when the entire process is terminated by failure to follow the branch
from step 8 to step 11, the output files are never terminated by a partition, nor
rewound, but are simply read backward as in statements 13 and 23. To ensure
that the backward read of a file terminates properly, each is provided with an
initial dummy item (step 11), and the branch on step 23 occurs on either the
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Program 6.6 Single-phase merge without rewind
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terminal partition A, or the permanent initial partition 2. The entire process is
terminated by equality of s and @ — 1 on step 8, which can occur only if s = 1
and @ = 2. This pair of conditions ensures not only that the number of strings is
unity but also that an odd number of stages has been executed, and hence that the
final output (on @) is in ascending order.

Since the initial input file must normally be read forward, an exception is made
through the agency of the variable ¢. On the first pass only, ¢ =0, and the
reads on steps 13 and 23 are therefore forward. The forward read on the first
pass necessitates a subsequent rewind of the input files, which is provided by
step 6.

A commonly used variant of the m-way merge sort (called string-
doubling from its behavior in the case m = 2) treats the initial input as if
the maximal strings contained were each of length one, and therefore
produces strings of uniform length m in the output. These uniform strings
may not be maximal but are treated on the next stage as if they were, i.e.,
output strings of length m? are produced. In general, the kth stage pro-
duces strings of uniform length m*, and [log,, n] stages are required to
order n items. The number of stages does not depend on the inijtial number
of maximal strings, and no use is made of possible inherent order in the
original array. The comparison operations may, however, be somewhat
simplified, since the need to test eligibility is replaced by counts of the
items read from each file or by recording partitions between successive
strings. If » is not an integral power of m, some of the strings will be
shorter than the normal length. They can be expanded by dummy items,
although the use of partitions renders this unnecessary.

Classification and simple merge

The classification and simple merge sort is also referred to as a column
or digital sort, for the successive classification phases are controlled by
successive columns (digit positions) of a positional representation of the
key. The behavior of the process is not so obvious as the behavior of the
merge of the previous section, and a formal proof of its ability to produce
ordering will be given at the end of this section. Since the process is based
on a positional representation of the key, it will be convenient to use
0-origin indexing for all operands.

Let k be the (nonnegative) sorting key, let d be its digital representation
in a base b number system (that is, (be) ' d = k), and let ¢ = »(d),
where b7 exceeds the largest existing key. The complete column sort
comprises ¢ stages, each stage consisting of a b-way classification
followed by a b-way simple merge. The classification on stage ; is based on
d, ; (the jth digit of the key counting from the low-order end), and each
item is assigned to file @;, where i = d The simple merge is defined

vt
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such that the output file has the form &, ®,, ..., ®,_,, where the @, are
the A output files of the preceding classification.

Two-phase column sort. Like the merge sort, the base b column sort may
either be two-phase (classification followed by simple merge and using
b + 1 files) or single-phase (using 24 files); the two methods are described
by Programs 6.7 and 6.8, respectively.

1 —j<q
2 m(®) <« E 0O-origin indexing
3 jei—1 — . ,._
A, ®,? | Input to classification; output
4 p =0 of merge.
5 (be(g)) Ld < k(p); b ®! | Output of classification; input
ol to merge (»(®!) = b).
D -~
6 P d | Positional representation of
7 O o€, A€ key ((d) = g).
8 (@) < E b | Base of representation.
9 i <0 Jj | Stage =g —j.
i | Current input file.
10 p 0 A P
i1 Q0 «p Legend
12 i<—i+1
136
14 Q0 <o, 2

Program 6.7 Two-phase column sort

Program 6.7. Steps 1-7 constitute the classification and steps 8-14 the merge
phase. File ®%is the single input to the classification and the single output of the
simple merge. The remaining b files are denoted by @1, i € 19b).

The component of d which controls the current classification (step 6) is selected
by j, which scans d from right to left. In the (implicit) specification of d on step 5,
b serves as an auxiliary variable (cf. Sec. 1.19). When the classification phase ends
with the exhaustion of ®,° (step 4), the output files are terminated, all files are
rewound, and the simple merge is performed (steps 10-13) to re-collect on @ the
results of the preceding classification. This file is then terminated by step 14, and
the entire process is repeated from step 2 for the next lower value of j. The
dimension of d is specified (by compatibility with e(g) on step 5) as ¢, and ¢ is,
of course, specified externally.



188  Sorting §6.1

Program 6.8. The alternator g again determines the roles of the two sets of files
(input or output) on successive stages, but because of the use of 0-origin indexing,
it alternates between the values 0 and 1. The classification process (steps 7-11)
differs from that of Program 6.7 only in the control exercised by the alternator a,
and in the specification of a sequence of input files @2, ©,¢,..., ¢ _ instead of
the single file ®4°.

1 —f j«gq
) | 0-origin indexing
a <«
3 m(P) «— E @0 | Input to odd stage _
4 jej—1 < ®! | Output of odd stage B
5 4 _ d | Positional representation of
@ key (1(d) = g).
6 i+<0 b | Base of representation.
7 p+—2g8 M i Stage =q — j.
8 (be(q))id — k(p)’ b i Current input file.
a a | Alternator (0, 1).
9 d)dj ~p
10 i<—i+1 Legend
1niL=ti:»
12 DT« e, A€

Program 6.8 Single-phase column sort (output on b files)

The program is deficient in two respects: it requires that the original input be
on a full set of b files, and it produces a final output on b files rather than one.
The first defect may be remedied by the use of an externally specified logical
vector v to designate the input files which are unused in the original stage. The
second may be remedied by a final simple merge following the gth stage. This
could be added as a separate program, but it can be effected more simply by
replacing g with ¢ + 1 to ensure that the high order digit d,, is identically zero and
so restricts the final output to a single file.

Validity of the column sort.* 1f d is the g-digit, base b representation of the
key k of an item p, then the (¢ — j)th pass of the base b column sort assigns
the item to file ®,%, where i = d,. The subsequent simple merge collects
the files in the order ©%, @2, ..., ®,” ;. Consider any two items p, and p,
with distinct keys k, and k, represented by d! and d2, respectively. 1t may

* This proof is due to Ashenhurst (1953).
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be assumed, without loss of generality, that k; < k,. Since the keys are
distinct, there exists an integer r such that d,! << d,? and that a’/d! =
a’/d?. Thus r is the (0-origin) index of the highest order column in which
the keys differ.

In the (n — r)th pass, the items p; and p, are therefore assigned to files
®,% and @2 such that 4 < i. Hence at the conclusion of the subsequent
merge, item p, precedes item p,. In each subsequent stage the two items
are always assigned to the same file (since d ! = d.2, s < r), and the two
items are therefore always relatable with respect to these operations.
Since each stage is a copy operation, and therefore rank-preserving, the
relative ordering of all relatable items is preserved, and p, thus precedes p,
at the conclusion of the process. Thus for any pair of items p; and p, with
keys k; and k,, such that k; << k,, item p, precedes p, in the final arrange-
ment.

Vector keys and categories. The column sort is actually based on the
components of the vector d and only indirectly on the numerical key it
represents. The process can therefore be generalized to any numerical
vector key y defined on each item a,. It can be further extended to an
arbitrary key vector b belonging to the product set

C = ¢° ®c1®'-~(/)c"(b) L

as follows: on the classification stage based on component b, the item is
assigned to file ¢/« b, An obvious generalization of the foregoing proof
of validity shows that the resulting ordering is that of the product set C.

The component set ¢/ is called the jth category, ¢® is called the major
category, ¢® =1 the minor category, and the ordering is said to be defined
on category ¢® ! within ¢® % . within ¢’. For example, a nine-
column employee number b = (b,, b, b,, b;) may be based on four
categories, the first component b, representing the employee’s one-bit
payroll classification (hourly or salaried), the second his two-decimal-
digit department number, the third his two-alphabetic-character job code,
and the fourth his four-decimal-digit identification number. The column
sort on the base 6 representation of a numerical key is clearly a special case
of a vector key in which each of the categories is the set 1(b).

It is frequently necessary to order a set of items on certain subsets of the
given categories, and on different rankings of the categories. In general, if
b is a vector key and m is any compatible mapping vector, then a related
ordering may be defined on the vector d = b,,,. lf—continuing the previous
example—it is required to produce a list ordered by employee’s department
within job classification, then m = (2, 1) and d = (b,, b)).

Any infix of b defines a related ordering which is actually achieved at
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some stage of the column sort on b, and the ordering defined by it is there-
fore said to be contained in the ordering b. If the orderings d°, d', . .., d"!
are all contained in b, they can all be achieved at some stage in the ordering
b, and the total number of passes required may be less than that required
to achieve the r different orders independently. Forexample, d® = (b,, b)),
d' = (by, b,, b)), and d® = (b,, b, by, by, b,) are all contained in f=
(by, by, by, by, by, by) and can be achieved jointly by sorting on the six
components of f rather than on the ten components of d°, d!, and d>.

The usefulness of this result is further extended [Ashenhurst (1953)] by
the following fact: if a given component recurs in an ordering vector, its
later occurrences may be ignored. For example, the second occurrence of
b, in the vector f (as f;) may be ignored, and f therefore contains the
ordering d® = (b, b,, b, b, b,) as well.

The propriety of suppressing later recurrences of a component of an
ordering vector is easily established. Let b be a given ordering vector and
let d =0b,, and ¢ = b, be two related orderings. Moreover, let d be
obtainable from ¢ by suppressing all later recurrences of components of b.
This implies that the mapping vector m is obtained from the mapping
vector n by the same process, i.e., m = (¢/n)/n. If p; and p, are two
items whose (distinct) keys ¢' and ¢? agree in all components up to but not
including the jth, then their relative order is determined by the component
¢; = b, . In the corresponding keys d' and d? it is clear that the first
component in which the items differ is again b,, and that the same relative
order is therefore determined by d. Since a third ordering v = b, is also
equivalent to the ordering ¢ = b, if p is also reducible to m, the result
concerning equivalent orderings can be extended as follows: two orderings
y = z,, and w = z, are equivalent if (¢/m)/m = (¢/n)/n.

Choice of number base. In the merge process of Program 6.4, the value of
m may be chosen to suit the number » of files available, thatis, m = n — 1.
In the column sort, on the other hand, the number of files required is
determined directly by b, the base of the number system representing the
key. If the choice of b is otherwise arbitrary, it can be chosen as » — 1 for
any n > 2. However, explicit execution of the base conversion indicated
by the statement
(be) | d < k(p)

is usually avoided by using the base in which the key is represented in the
original files. 1f a base conversion is required, it can be performed once on
the first stage and the resulting vector d incorporated with the item for use
on subsequent stages.

Base conversion may sometimes be inconvenient or impossible as, for
example, in the case of special purpose sorting equipment devoid of
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arithmetic units. In this event the stage required for each digit (b-way
classification and subsequent merge) may be executed as a series of copy
operations each utilizing fewer than (6 4 1) files. If, for instance, the
digits are represented in a ranked binary 5-bit code, a series of 1 two-way
classifications and two-way simple merges will effect the desired ordering
on one digit of the key. More generally, a group of p successive binary
digits can be treated at each pass, providing that 2? 4 1 does not exceed
the number of files available.

Repeated block sort. 1f a set of items is classified on the high-order
column of an associated vector key. each of the resulting subvectors can be
separately ordered and then merged in a final simple merge. Thus each of
the subvectors forms an infix or block in the final arrangement. Such
block sorting can be used to distribute the labor among a number of
independent sorters.

Block sorting can also be repeated by further classifying each block on
the next lower-order column of the key. Fora key vector of dimension ¢,
¢ repetitions of the block sort yield a complete classification, and ordering
can then be achieved by a subsequent simple merge. However, since the
number of blocks produced is (except for duplicate keys) equal to the
original number of items, the use of repeated block sorting is unattractive
unless simplified by special schemes for keeping record of and controlling
the numerous blocks. Two such schemes will be discussed. The radix
exchange sort (Sec. 6.4) is appropriate to random-access storage only: the
amphishaenic sort is appropriate to scrial files.

Partial pass methods

Each of the sorting schemes discussed thus far ts constrained to treat the
entire collection of items at each stage. Partial pass methods obtained by
relaxing this requirement normally achieve a reduction in the total number
of items handled, but at the cost of some increase in complexity. The
partial pass methods gain their advantage by largely obviating explicit
merge phases.

The basic column sort gives rise to two partial pass methods of interest,
the amphisbaenic sort and the partial pass column sort. The cascade sort
arises from the use of partial passes in a merge sort.

Partial pass column sort.* This method achieves the effect of one stage of
a column sort on a base » key with fewer than (b + 1) files by using a
sequence of partial passes. The method will be illustrated by an example
[taken from Ashenhurst (1953)] involving four files and a decimal key.

* Presented by John Mauchly in the Moore School lectures (1948) and treated more
fully by Ashenhurst (1953).
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Table 6.9. This table describes the partial pass column sort for reordering on a
single column of the decimal key (the jth). The parenthetical expression follow-
ing each file @, indicates that it contains all items whose jth key digit equals one
of the enclosed integers. A second pair of parentheses indicates a second set of
items in the file following, and grouped separately from, the first set. Thus the
original input file @, is described by ®(0, 1, 2, 3, ..., 9) or by any permutation
of the decimal digits enclosed in a single pair of parentheses.

Output Files
St 1 Fil pass
€ nput File “racti
P P Remaining from previous steps Copied Fraction
1 Dy 0,1,2,3,4,5,6,7,8,9) Dy ©0,2,4.7) 1.0
D, (1,5, 6)
Dy G.8. 9
2 20,2047 Dy (1,5, 6) 2.7 0.4
Dy (3, 8,9 )
Dy ’ (V]
3 by (1,5, 6)2,7) Dy (3.8, M) ) 0.5
@z (0) (1)2)
(N 6X7)
4 Dy (3, 8, NEXS) @y (0XAXN2) (334X 0.5
Dy 6Ty )
P, )
5 By (6XTNS) Dy (0NN ANE) (O ¢ 0.3
My (9)
Dy
6 RN O] (IIJ“: (ODGHBDEHEHTHE) (C) 0.1
O, :
(e
Total 2.8

Table 6.9 The partial pass column sort

The first step copies each item whose jth key digit is (0, 2, 4, 7) to file @y, items
(1, 5, 6) to file @,, and items (3, 8, 9) to file P;. After each step, only the previous
input file and the next input file are rewound, in this case ®, and ®,. In step two,
items (2, 7) are copied to ®,, and therefore fo/low the group (1, 5, 6), as indicated
by the separate parentheses. Similarly, items (4) and (0) arc copied to @, and ®,
respectively.

Step three is preceded by a rewind of ®, and ®,. Since items (1) and (2) occur
in separate groups in the new input file ®,, they can be copied to @, in separate
groups (1) (2) as indicated. Similar remarks apply to items (6) and (7) copied to
®,. The three subsequent steps complcte the required ordering, producing in the
original input file @, the ordered array (0) (1)...(9). The rightmost column
shows that fraction of the original file (assuming a uniform distribution of the key
digits) copied on each pass. The total at the bottom indicates that the expected
execution time is equivalent to 2.8 full passes.

The partial pass process of Table 6.9 is described more concisely by the
0-origin matrix M of Table 6.10. Element M,’ specifies the file to which
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Digit 0| 1]0

Digit 1]2] |0

o
<

Digit 2|1

Digit 3|3 0

Digit 4|1(3| lo

Digit 5|2| |3]|0

Digit 6|2 |1| o

Digit 7|1 |21 0

Digit 8|3 10

Digit 93 2 o

Input (O |1 ]2[3]|1]2

Table 6.10 Matrix M describing the partial pass column sort of Table 6.9

items with key digit s are to be assigned in the rth step of the process, for
F e19(6) and s €1%(10). The eleventh and last row of M specifies the input
files, i.e., M,# is the index of the input file in the rth step. An algorithm
based upon the matrix M is described by Program 6.11.

Program 6.11. The subloop 14-18 performs the classification according to the
element M,*, using file / (specified by M.,Y on step 9) as input. When the file is
exhausted, the branch to step 6 increments r and repeats the process unless
r = v»(M). Equality indicates complection of the jth column and causcs a branch
to step 4 to decrement j and reset r. The comparison on j is deferred to line 13
so as to follow the termination and rewind of the new input file. The branch on
step 10 prevents the recording of a dummy item on the original input file. The
previous input file is rewound by step 8.

Program 6.11 includes the two-phase column sort as a special case, for
if (b + 1) files ®y, Oy, . .., D, arc available, the matrix shown on p. 194
specifies a process essentially identical with that of Program 6.7. Filc P,
corresponds to file ®,°, the first column of M determines the bh-way
classification, and each of the b succeeding columns specifies the copying
of one file in the b-way simple merge onto file @,

The method of partial passes is frequently uscd in the sorting of alpha-
betic data. Variants include the 1% pass-per-character method of sorting
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0
1 b
2 b
M =
b—1 b
b 0 1 b —1
L — <9
5 i <0 0-origin indexing
3 (D) — € ®, | Files (i = 0 for initial data).
4 j—j—1 M | Asin Table 6.10.
5 e — 1 d Positional representation of
key (v(d) = Q.
6 e+l b | Base of representation.
7 =1 r : n(M) ¥ Column stage =g — j.
8 (D) <-0 r Partial pass stage.
9 i - MU i Current input file.
10 /i / —-rq— | Legend
11 (l)[. « 7, 7\]
12 (D) <0
BL_j:0 <,
14 —— P~ (])[. 7\1
15 (be(g)) -d —Kk(p); b
16 s «—d;
17 k « My
18 G, —p

Program 6.11 Method of partial passes for n files
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punched cards* and the procedure described by McCracken et al. (1959),
p. 312.

Amphisbaenic sort. The amphisbaenic sort (Nagler, 1959) is a particular
arrangement of the repeated block sort employing partial passes. For a
base b key it requires b + | files and proceeds as a sequence of classi-
fications, with a simple merge of the last b subblocks produced occurring
immediately after each classification on the low-order column. Each
classification allots digits to the available output files according to the rank
of the file index, e.g., if file Py, is the input, the digits 0, 1,2, ... . h — 1 are
allotted to files 1, 2, 3, . .., b, and if file ®, is the input, they are allotted
to files 0, 1,2,4,5,....b. The files are recorded forward and (except for
the initial input) are read backward without intervening rewind. The
subblocks are designated by the key digits on which they have been
classified, e.g., by 0.1,2,....bh — 1, 00,01, 02, etc. The block chosen
for classification at each step is the one with the smallest designation
among those not yet merged, the designations being ranked according to
their values as decimal (b-ary) fractions. Thus block 213 precedes block
214, which precedes block 22.

Table 6.12 shows the steps of an amphisbaenic sort on a three-digit,
base three key using files @, P, ®,, and d,, with the initial and final data
on file ®y. The input files are designated by asterisks. Thus file ®, is the
input to step I, and blocks 0, 1, 2, are classified to files by, d,, and ®, as
indicated. Step 2 classifies the smallest block (0) from file @, to files M, d,,
and ®y. Step 3 classifies blocks 000, 001, and 002 to files ®;, ®,, and D,
The next step merges these blocks to file @, and the following step begins
classification of the next smallest block (01) on file @,. It is clear that if
the files are read backward, the next block to be classified is always
immediately available. The general process for a g-digit, base b key is
described by Program 6.13.

Program 6.13. 0-origin indexing is used throughout. Each classification is con-
trolled by the “current’ vector ¢ (of dimension b), whose components are the
successive indices of the available output files. Thus ¢, is the index of the file to
which digit & is classified (steps 16-19). The current vector is determined by
step 10 so as to omit the index / of the current input file. The selection of the
block to be classified is determined by the vector h (of dimension g), the next
block to be classified on digit / being determined by the prefix @/ '1/h. Because the
classifications proceed for increasing values of j and the blocks just produced
appear last on the files, the selection can be determined by the last component of
the prefix alone, i.e., by h;. This is done on step 7, where the index / of the input

* Described in IBM Form 22-3177-2 Sorter Manual, p. 12.
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Step 1 2 3 4 (merge) 5 6 (merge) 7 8 (merge) 9 10 [1 (merge)
U
Q

@, * 00 * 000-002 | 000-002, 010 | 000-012 | 00-012, 020 000-022 000-022, 10 | 000-022* 000-102 §
O, 0 * 000 * 011 * 021 * It 11, 100 I1* o
o, 1 1,01 1, 01, 001 1,01* 1* 1 1,022 1* * 101 *
O, 2 2,02 2,02, 002 2,02* 2,02,012 2,02* 2* 2 2,12 2,12, 102 2, 12*

h 0,0,0) (0,0,0) (0,0, 0) 0,1,0) 0,1,0) 0,2,0) 0,2,0) (1,0,0) (1,0,0) (1,0,0) (1,1,0)

i 0 [ 0 I 2 1 3 0 2 0 2

J 0 1 2 1 2 1 2 0 i 2 1

s (0,0,0) 0, 1,0) 0,1,0) 0,1,2) 0,1, 3) 0,2,3) 0,2,0)

¢ 1,2,3) 0,2,3) (1,2, 3) 0,1,3) 0,1,2) 0,1, 3) (1,2,3)

Step 12 13 (merge) 14 15 (merge) 16 17 18 (merge) 19 20 (merge) 21 22 (merge)

D, 1000-102, 110 | 000-112 1000112, 120 000-122 | 000-122, 20 | 000-122* 000-202 | 000-202, 210 000-212 [ 000--212, 220 | 000-222
(O * 121 * 21 21, 200 21* * 221 *
O, 111 * 122 * 22 22, 201 22* 22,211 22* *
O, 2,12, 112 2, 12* 2* 2 * 202 * 212 * 222 *

h (1,1,0) (1,2,0 (1,2,0) (2,0,0) (2,0,Q) (2,0,0) 2,1,0) 2,1,0 2,2,0) (2,2,Q0) (0,0, 0)

i 1 2 3 0 3 0 3 I 3 2

i 2 1 2 0 1 2 1 2 1 2 -0

s 0,2, 1) , 2, 3) ,3,3) 0, 3,0) 0,3, 1) 0,3,2)

c ©,2,3) 0,1,2) 0,1,2) (1,2,3) 0,2,3) 0,1,3)

Table 6.12 Amphisbaenic sort on 3-digit base 3 key

19§



0-origin indexing

Files (i = 0 for initial c Indices of current out-

and final data); put files. »(c) = b.

fer®b +1). h | oYk specifies input ]

Base of representation. block to classification

d; controls current on digit /.

classification. s s; is index of input _

Tndex of current input. file to classificationon | © ~ ¢

Controls forward read digit j.

and rewind of initial d | Positional representa-

input. tion of key. ]

Legend
1 m(®) —€b)
2 f<0
3 h < &Qg) Z4f:0 20
4 s —e(g) f<1 21
5 i<0 m(Dy) <0 22
6 Jj<0 p<1®; 23
_ < | .
7 i < (€Y, jig—1 24
8 J=j+1 k (¢ =0) 25
. A
9 §; i P 1%, 26
10 ¢ —€1%b) Oy —p 27
1 k<(j=qg—1)A(c =0) P <10, 28
12 N k<-k+1 29
13 D, o, A Sl k:b 30
14 k41 [———qj‘*j—l Ik
15 k b —1 h;<bly(h; +1) 32
A

16 14 ‘*fq)i 1 J <« S; + 33
17 (be(g) L d — k(p); b Dy =, Ny 34
18 k<d; m(Dy) < 0 —> | 35
19 D, < p

Program 6.13 Amphisbaenic sort

197



198 Sorting §6.1

to the preceding stage determines the vector €/1%h) of output indices, from which
the new input index is selected as the h;th component. The successive values of h,
i, j, 8, and c listed in the example of Table 6.12 may be helpful in tracing the
operation of the program.

When classification on the last digit is completed, the last subblocks are merged
(steps 25-30) onto the output file d,. The variable ; must then be decremented
and the component h; incremented modutlo A (steps 31-32). When h; completes
a cycle (becomes zero), the corresponding subblocks are exhausted and j must be
decremented repeatedly until the corresponding h; does not become zero. The
main process through increasing values of j is then repeated.

Although h; determines the input subblock for the classification on digit /, it
determines the index of the input file only indirectly (step 7) through the vector
of output files, itself determined by the input file / used in the classification on the
preceding digit. When j is increasing, the value of i is simply the value from the
preceding stage. However, when j is decremented (steps 31-32), it is necessary to
determine the input / used in an earlier classification. A record of the value of i
corresponding to cach classification j is therefore kept (step 9) in the vector s, and
is used to redefine i on step 33.

Each file to be used as output (except possibly file @) is first closed with a
partition (steps 12-15) to demark the beginning of each of the subblocks to be
recorded. Since backward read is to be used, two dummy items are provided so
that the branch on 2, coincides with the read of a dummy item. An extra read
then disposes of the extra dummy. Any partition recorded on the final output
file @, before a fully classified subblock (when j = ¢ — 1) would remain in the
final output. Step 11 prevents this by initializing the index k to 1 if j = ¢ — 1 and
the index of the first output file (that is, ¢,) is zero. In a similar manner, step 25
prevents the attempt to copy file @ to itself during the merge phase (steps 25-30).
Step 28 reads the extra dummy item recorded in the partitioning operation of
steps 12-15.

All files are read backward except the initial input in the first stage. This
behavior is controlled by the logical variable f'(steps 16 and 20-21). The branch
on step 20 fails the first time only, allowing f to be respecified as | and rewinding
file . On subsequent stages, the branch to step 23 causes the read of the extra
dummy partition.

Cascade sort.* The cascade sort is a partial pass merge sort, with each
stage proceeding as follows. The strings are initially distributed (unequally)
among /m of the m + 1 available files: an m-way merge to the empty file is
performed until some input is exhausted: an m — 1 way merge to the
newly emptied file is then performed from the remaining inputs, and so on
to a final two-way merge. The effectiveness of the process depends on a
particular initial distribution of the input strings.

Table 6.14 jllustrates the process for 190 strings distributed among five
of six available files as shown in the first row. Succeeding rows show the

* Duc to Betz and Carter (1959). Sec also Gilstad (1960) and Carter (1962).
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Stage Distribution of strings {
0 15 29 41 50 55
1 5 {2 14 15
2 1 2 3 4 5
3 1 oo [ 1
4 0 0 0 0 |

Table 6.14 Cascade merge sort

distribution of strings at the end of the succeeding stages.* The process
requires but four passes, only the last of which is a complete pass (e.g., the
last five strings need not be copied in stage 1).

The power of a merge process may be defined as the (average) factor by
which the number of strings decreases per pass. i.c., as \ s, where s is the
number of strings whose ordering can be completed in p passes. For the
given example, the power is approximately 3.7. This surpasses the power
of 3.0 attainable in a three-way single phase merge sort using the same
number of files.

Gilstad (1960) has proposed a variant of the cascade sort (called
polvphase) in which every phase is an m-way merge. ie.. each newly
recorded output enters immediately as input in the following phase. Its
power is slightly greater than that of the cascade sort.

6.2 EVALUATION OF SERIAL SORTING METHODS

Three major factors enter the cvaluation of a serial sorting process:
the amount of program storage required, the number of serial-access files
used, and the exccution time. The first two factors require little analysis,
and attention will be limited primarily to the third.

Because the execution time of a serial sorting process is normally
determined almost completely by the time required to transfer information
to and from the serial files, the execution time is assumed to be directly
proportional to the number of passes of the files required. Each phase
corresponds to a pass or (as in partial pass methods) to some fraction of a
pass, and the number of passes per stage is determined by summation over
the component phases.

The constant of proportionality relating actual exccution time and
number of passes depends on such factors as the average length of the
items, the reading and recording rate of the serial files, and (in processes

* The jth column of the table refers not to a specific file but to that file which
ranks jth in number of strings.
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requiring rewinding after each phase) the rewinding speed. Since these
factors are specific to particular equipment and particular tasks, and since
the nature of the dependence is obvious. the present analysis is limited to
consideration of the number of passes.

Consideration is also given to related orderings (cf. vector keys and
categories), which may, in the use of column sorting, be achieved more
efficiently jointly than separately.

Simple classification and merge

The number of stages required in the m-way merge sorting methods
depends on s,, the number of maximal strings in the original file, and on
m. For, if s; is the number of (maximal) strings at the conclusion of the
Jjth stage, then s; | = [s; = m]. Since the eventual string length must be
one, the number of stages required is given by

r= “Ogm s()]’
for which the approximation r == log,, s, will be used. The number of

passes is then 2r for a two-phase merge and r for a single-phase merge. 1f
the *‘cost’ of the process is assumed to be of the form

¢ = (a+ myr = (a+ m)log, s

for some constant a, then the optimum choice of m is obtained as the
solution of the equation
log, m =1+ a -+ m.

The two-phase and single-phase methods may be compared for a fixed
number of files as follows. Let n = 2k be the number of files,* let s be the
number of strings, and let 7, and ¢, be the execution times for the single-
phase and two-phase methods, respectively. Then

Ly 2log,,s 2logue—ys

1 log,,, s log,. s
_ 2log, k. 2logyyk  2log. k
" log, 2k — 1) log,,(2k — 1) log, 2k — 1)’
This ratio increases monotonically from 1.26 at k = 2 to an asymptotic

value of two. Since it exceeds unity, the single-phase process is to be
preferred.

Expected number of strings. Since the original file is frequently specified in
terms of the number of items » rather than the number of maximal strings

* An odd number # would prejudice the result against the single-phase method, since
one file would necessarily be left idle.
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s, itis desirable to determine the relation between n and the expected value
of s for a random distribution of the keys.

Let k be a vector of dimension 17 + 1 whose first n components are the
successive keys of the file and whose last component is infinite, and let
f=(k<|k),d=(k=1k),and b =(k - |k).

If, for example,

k=793558214 =,
then

lk=»793558214

S= 1010001100
d= 0000100000
b= 0101010011

Each unit component of f marks the beginning of each maximal
ascending string in the forward direction (left to right), each unit com-
ponent of b marks the beginning of each maximal string in the backward
direction, and a unit component of d marks each key which duplicates its
predecessor. Consequently, +/f, +/b, and +/d are the number of
forward strings, backward strings, and duplicates, respectively. Since the
relations <2, =, and > are exhaustive and mutually disjoint, the three
logical vectors are exhaustive and mutually disjoint, i.e.. f v d v b = €.
andfAd=fAb=dxnb=0.

Consequently
() + (+/b) + (+/d) = v(k) = n + 1.

Denoting the expected value of x by e(r), it follows that

e(+/f) + e(+/b) + e(+/d)=n+ 1.

Symmetry and the assumed random distribution together imply that
e(+/f) = e(+/b). Consequently, the expected number of strings e(s) is
given by

e(s) =e(+/f)=(n+ 1 —e(+/d)) + 2.

If there are no duplicates, the expected number of strings is approxi-
mately #/2, and the expected string length is therefore approximately two.
Assuming a uniform distribution of keys in a range of g values, the proba-
bility that d, = 1 is clearly 1/g for all i et*(n — 1}). Therefore e(+/d) =
(n—1 =g

Classification and simple merge

The number of stages required in the column sort is equal to ¢, the
number of significant digits in the representation of the key. To facilitate
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comparison between different number bases, it is convenient to use the
vartable g denoting the range of the key. Thus in any base b, the number
of significant digits ¢ required in the key is given by ¢ = [log, g], or
approximately by ¢ = log, g. For any pair of bases b, and b,, the corre-
sponding number of stages ¢, and ¢, are related as follows:

q, log, g log, b, log, b,
4, log,, g log, by log, b,

= log,, b,.

A more practical form for calculation is

ar _ logyy b,

gy logyy by .

The foregoing expressions are identical in form to those obtained for the
number of stages required in the merge sort, but with the range g replacing
the initial number of strings s,, and with b replacing m. Moreover, the
number of files required depends on & in the same way that the corre-
sponding merge processes depend on m. This holds for both the two-
phase column sort (b 4+ 1 files) and the single-phase column sort (25 files).
The analysis concerning the optimal value of m therefore carries over
directly to the choice of the base b, the only additional consideration being
the possible need for base conversions on the key. The comparison
between two-phase and single-phase processes also applies directly to the
column sort, with the conclusion that the single-phase method is superior.

Of the methods discussed, the column sort is the only one which shows
significant advantages in the joint treatment of two or more related
orderings. If ¥ =z, and y = z, are two vector keys, and if w’/p = a'/q,
then the ordering defined by the key z,, for ¥ = @'/p will, when applied
to the set of items ordered on y, suffice to produce ordering on x. The
total number of columns sorted to achieve the two orderings jointly is then
reduced by /.

More generally, if w’/p agrees with a selected subvector of the prefix
a’/q and if the remaining elements of the prefix occur in@’/p (in any order),
then sorting on the columns corresponding to w‘/p may again be elided.
More precisely, if there exist integers / and j, and a logical vector u such
that

w'/p = uf(a’/q),
and (w'/p) = (u/(@/q)),

then the ordering ¥ can be achieved by applying the ordering @'/p to the
ordering y. and the total number of columns sorted is reduced by i. It is
assumed that neither p nor q contains any repeated components, for if
they do, each of the later occurrences may be suppressed.
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Since the ordering on % can be performed before rather than after the
ordering on y, the roles of p and ¢ may also be reversed, and the case
showing the larger reduction may be chosen. If three or more orderings
are prescribed. the foregoing method may be applied to evaluate each of
the possible sequences of ordering.

Partial pass methods

In the absence of a general method for designing a partial pass column
sort, its efficiency will be indicated only by an analysis of the four-file
decimal key example of Table 6.9. If g is the range of the key, the number
of passes is given by p; = 2.8¢ = 2.8 log,, g. This may be compared with
the value p; = 2 log, g obtained for the straightforward base three column
sort, which can also be performed with four files. The ratio

-f)—l = (2.8 loge ) = (2log, g) = 1.4log,, 3 = 0.668,

3

indicates the superior efficiency of the partial pass column sort for this case.
The four files can also be used for a single-phase column sort in a base
two number system, yielding the value p, = log, g for the number of
passes. Hence p,/p, = 0.843, and the method of partial passes is again the
more efficient.

In the amphisbaenic sort on n items with a ¢-digit base & key, b + 1 files
are required, and the total number of items handled in the classification
phases is ng. In the merge phases, however, each item is handled at most*
once, and the total number of passes is therefore less than (¢ + [). This
may be compared with the 2¢g passes required in a two-phase column sort
using the same number of files. Alternatively, conversion of the key to a
base |(h + 1) = 2] representation could permit the use of a more efficient
single-phase merge requiring approximately ¢ log,, .. b passes.

The disadvantages of the amphisbaenic sort reside in the more complex
program required and in the need for frequent reversal of the direction of
the files, i.e., from forward record to backward read. The time lost in such
reversal may be considerable for certain files.

The power of the cascade sortis, asindicated by theexample of Table 6.14,
somewhat greater than that of the corresponding merge sort. Its behavior
Is most conveniently analyzed [in the manner developed by Carter (1962)]
in terms of the difference equation satisfied by the number of strings
occurring in successive states. The formulation of these equations is
indicated in Exercise 6.19. Carter provides asymptotic solutions for cases
of practical interest.

* If the final output file M, is among the set of output files in the classification on the
low-order digit, the subblock assigned to it need not be recopied in the merge phase.
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In addition to its greater complexity, the cascade sort suffers from the
need for a particular initial distribution of the strings, and from the
dispersal of the file rewinds (which can be performed concurrently by most
computers) throughout the process. Moreover, in the event of a computer
error, a rerun from the last correct input files is much more difficult to
program than is a corresponding rerun for a straightforward merge.

6.3 AIDS TO SERIAL SORTING PROCESSES

Internal sorting normally enjoys a much higher basic execution rate than
does serial sorting, but for large volume files the limited size of internal
storage may make serial sorting necessary. The amount of serial sorting
may, however, be reduced by some use of internal sorting. For example, a
preliminary internal sort can produce maximal strings whose lengths are
limited only by the size of the internal store and thus reduce the number of
strings presented for subsequent serial merge sorting.

The present section is devoted to methods of reducing serial sorting by
the auxiliary use of internal sorting. For this discussion, the only knowl-
edge assumed concerning the internal sorting process is its capacity to
order a specified number of items.

Two classes of processes arise, one for aiding merge sorting and one for
aiding column sorting. The aid to merge sorting is the simpler, since it
consists merely in assembling long strings by internal sorting before
beginning the serial merge sort. A serial column sort, on the other hand,
may be aided by a final internal sort performed after the column sort.

If k = k(x) is a key vector associated with », and if m is any positive
integer, then a serial column sort performed on the key vector

k= |k — me|

produces the vector £ (5 &1 & - - - & x7, where the vector %' contains all
items such that k1 = /. If the infix vectors &’ are then copied in turn from
the file, individually reordered on the key

k= (me)]“k

and recorded, the resulting file will be ordered on k. Table 6.15 shows an
example for m = 4.

If internal storage allows the internal ordering of as many as # items,
then the reordering of the infixes ¥’ can be accomplished by an internal
sort provided that m is so chosen that »(x') <" n for all /. If the original
keys are all distinct, /n may be chosen equal to ».

If the sort on k! is performed as a base b serial column sort, the number
of stages required is reduced by approximately log, m from the number
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Original Order Ordered on k! Sets of Dupli- Final Order
x kR R R x k R R cates in k! x kR R R
% 7 1 3 X 2 0 2 | i [ X, 2 0 2
X, 9 2 1 % 3 0 3 J [ % 3 0 3
% 2 0 2 * 7 1 3 x% 4 1 0
x, 11 2 3 X 6 1 2 } x! { x5, 6 1 2
¥ 6 1 2 % 4 1 0 x 7 1 3
% 4 1 0 X 9 2 1 | . [ X 9 2 1
% 30 3 sl 23 ) ¥ | 11 2 3

Table 6.15 Internal aid to column sort (m = 4)

required for a corresponding sort on the original key. The subsequent
internal sort on k* therefore serves as an aid to the serial column sort.
The arithmetic operations indicated in the definition of keys k' and k*
may be simplified if /1 is chosen as an integral power of the base b of the
original key. For, if the vector d is the ¢g-digit base b representation of k,,
and if m = b', thenw/d, and w'/d are the base b representations of k;' and
k2 respectively. The keys are therefore obtained from k by extracting the
specified columns, and the serial sorting is reduced by exactly r stages.

6.4 INTERNAL SORTING METHODS

Since the range of practical sorting methods is clearly broadened by the
use of random-access storage, internal sorting methods include all of the
serial processes treated in Sec. 6.1. However, since the use of random-
access storage introduces certain new problems in the execution of these
processes, they will be reconsidered before proceeding to methods suited to
random-access storage only.

If the available random-access storage is divided into a number of areas
or fields, these fields can be used in lieu of the serial files. The serial
sorting methods then carry over unchanged except that the automatic
self-indexing property of the serial files must be replaced by an explicitly
programmed indexing of the corresponding fields.

The efficacy of an internal sorting process depends not only on the speed
of execution but also on the number # of items which can be ordered, using
a given storage capacity ¢ (measured in number of items). Since #n is nearly
linear in ¢, this property is measured in terms of the storage ratior = ¢ + n.

In using random-access storage, the effect of a simple merge or a simple
classification can be achieved rather easily through address moditication.
Hence there is little advantage in splitting either the merge or the column
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sort into two separate phases, and attention will be limited to the single-
phase processes. The two-phase processes can prove superior if efficient
block transfer of data is available in the execution of the program, but
their behavior should, in any event, be clear from the treatment of the
analogous single-phase processes.

Simple classification and merge

An internal single-phase merge analogous to the serial single-phasc
merge of Program 6.5 can be based on the assignment of two matrices 'X
and 2X to correspond to the sets of input and output files. The rows "X’ of
the matrices “X correspond to the files @ of the serial process, each item
being represented by a single matrix element. Items are read sequentially
from and to fields; for each input field “X’, an index r; indicates the
element "X,j-" to be rcad next; for each output field ® X’ an index s,
indicates the element next to be specified. The items in cach field occupy
the leading positions in the field, and the index of the first unoccupied
element in the input field “X” is indicated by the parameter ¢;. The process
Is described by Program 6.16.

Program 6.16. As in Program 6.5, the vectors ¢ and z specify exhausted ficlds
(files) and incligible fields (positions), respectively. The parameters a and ¢ are
initially specified external to the process. At the beginning of each stage the
vector v (exhausted fields) is specified (step 3) according to the unit components
of t. At each stage except the first, ¢ is respecified (step 2) by the final value of s
from the previous stage. When only one string remains, each component of s,
save the first, will remain at its initial value of unity, and this condition is used to
terminate the process at step 1. The vector k represents the keys of the current
items in the s input fields and is initially specified (step 7) by the keys of the
column vector “X, of initial items of the input fields. The remainder of the
process is closely analogous to Program 6.5.

If the total number of items to be sorted is n, then each of the 2m fields
“X’/ must accommodate # items, and the total storage allocated must be
2nm. The storage ratio is therefore 2m. It can be reduced to two by
putting the output in a single field and keeping a record of the beginning
location of each successive set of s" = [s = m] strings, where s is the
maximum number of strings in any one input ficld.

Let the input be represented by the single field X“, let b be a vector of
dimension m + 1, whose Ath component specifies the beginning location
of the kth set of maximal strings, fork = 1, 2, .. ., /, the jth sct numbering
possibly less than s’, and let b, be the location of the first unused position
of the field. Obviously j < m, and if j << m, the remaining undefined
components of b are immaterial. If the j sets are to serve as inputs to an
m-way merge, then the prefix a™/b serves to initialize the vector r of
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=
1-origin indexing
aX,» | Item k of input field)
h. ll?/[ = .
8—eXx % | Item k of output J y=n.
field 4.
r, | Index of current 1
input from field /.
s;, | Index of next output
to field 4.
t, | Indexoffirstunused | ~_ .
location of field /.
k, | Key of current item
from input field /.
v | Exhausted fields.
z | Ineligible fields.
a | Alternator (1, 2).
i | Current output field.
Jj | Current input field.
_ n | Total number of items.

Legend

Internal single-phase m-way merge using 2/ fields

current input indices, and the suffix w”/b defines the terminating
locations ¢.

The strings produced by the merge from the scts of maximal strings in

X* can be transferred without classification to the single output field
X?#-«_If the vector b is redefined by the beginning locations in the output
field of successive sets of [s" = m] items, it can be used to define the input
fields in a subsequent merge from the field X* “. Program 6.17 shows a
convenient arrangcment of the process.
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Program 6.17. As in Program 6.16, the vector r determines the current set of
items being examined, and ¢ determines the terminal value of r. The first m
components of b initialize r (step 7), and the last #7 components initialize #
(step 8). The index u determines the component of the output vector X3 e which
is next to be specified (step 24).

The remainder of the process differs from Program 6.16 primarily in the deter-
mination of . The counter /1 allows i and b, to be respecified (steps 19-20) at
the end of each group of s strings. The last specified component of b is deter-
mined separately by step 5. Step 6 redetermines v for the next stage.

Since some of the initial values s, t° and b° may be unknown, the
initialization of the process (steps 1-3) merits some attention. If s, alone is
known, ° and b° may be chosen as follows: o = a!; b = 1, b,° = »(X).
The effect is to perform the first merge from a single input area. Con-
sequently, the first stage performs no rearrangement but does determine
the vectors v and b.

If s, is unknown, s may be determined by a preliminary string count.
Alternatively, it may be set to any integer value y > s,. The process
remains valid, but the required number of stages is increased by [log,, y] —
[]Ogm Sl)]'

Since s, cannot exceed the number of items, the initial value s = »(X) is
always valid, and for an assumed random distribution it exceeds the
expected value by a factor of two only. If greater initial order is expected.
it may be desirable to modify Program 6.17 to allow a small initial choice
of s, accompanied by automatic respecification in the event that it proves
too small. The modification may be simply made by inserting a branch on
equality of i and m, following step 18. The branch would succeed only in
the event that the initial specification of s were too small and should lead
to a process for increasing (e.g., doubling) s and repeating the process.

The case m = 2 is of especial interest, partly because it leads to signi-
ficant simplification in the storage allocation, and partly because the
advantages which large values of m enjoy in serial sorting largely disappear
in internal sorting. These advantages arise from the reduction in the
number of stages with increasing m, with a nearly constant time per stage
due to the fixed reading and recording time for the serial files. In internal
sorting, the time required for key comparisons and address calculations in
choosing the minimum key becomes relatively more important and, since
the key comparison time is an increasing function (frequently linear) of m,
the advantage may lie with small values of m.

The simplification of storage allocation arises in the following way. A
two-way string classification on n items may be used in conjunction with a
single output field with a total capacity of n items by assigning the odd-
numbered strings from the beginning of the field in normal order and the
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1 s, 1 9(X) i
2 a<2(a+1) 1-origin indexing
3 |—f r (1, »(X)) 1 0)
@ | (o)
4 s —r
_ X4 | Input field.
5 il X3-a| Output field.
6 P —o0 7, | Index of kth input sub-
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) s, | Index of output subfield,
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10 J2hG+D subfield.
< i Index of current output
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a Alternator (1, 2).
14 ¥ o< k(Xr]-“)
15 X3 X, 0 Legend
16 r—r + Q
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Program 6.18 Two-way internal single-phase merge

even-numbered strings from the end of the field in reverse order. Thus if
7 is the jth string of 2k strings so classified, the output field would contain
the array

51®S3®85®"'@Sgk_l@SWC@"'@5‘6@54@52,

where the arrows indicate the increasing directions of the associated
strings. The restriction to an even number of strings in the foregoing
example is clearly not essential. The corresponding two-way internal
single-phase merge is described by Program 6.18.

Program 6.18. Since the current index vectors r (for input) and s (for output)
may always be initialized as shown in steps 3 and 4, and since termination of a
phase occurs when r exceeds r, (step 7), explicit use of the vectors b and ¢ of
Program 6.17 is obviated. The only added complication lies in the different
treatment of indices r; and s;, which must be incremented whenever used, and of
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indices r, and s, which must be decremented. This treatment is cffected by
addition (steps 16~17) of the rows Q/ and Q¢ of the matrix

1T 0
Q= :
0 -1
It is interesting to note that the use of indexed variables to allow comparisons

with the larger (or smaller) of two keys (steps 9 and 11) reduces the requisite
number of comparisons from four to three.

The method of string-doubling also permits some simplification in
storage allocation and address calculations.

Classification and simple merge

As in the case of the internal merge sort, the internal column sort differs
from the corresponding serial sort primarily in the problem of storage
allocation. Again, the straightforward solution lies in the allocation of 24
fields of n item positions each, and the use of h-dimensional indexing
vectors r, s, and ¢ to control the input and output fields. The sorting
process used is identical with that of Program 6.8 (serial single-phase
column sort), and the indexing problems are analogous to those of Pro-
gram 6.16 (internal single-phase merge using 2m fields).

As in the corresponding merge sort using 2m fields, the foregoing process
has a high storage ratio which can be reduced to two by a two-field process.
Unlike the corresponding case for the internal merge of Program 6.17,
the explicit classification process cannot be avoided. Consequently. it is
necessary to determine in advance the size of field required for each of the
b classes corresponding to digits 0, 1,...,(h —1). This leads to the
so-called pre-count column sort of Program 6.19, in which each stage
incorporates an examination of the next higher order position of the key
and a count of each of the digits occurring.

Program 6.19. 0-origin indexing is used, and the vectors X and X7 (fora = 0
or 1) serve as input and output fields. The classification on the key digit d; is
performed so that all items which agree in the jth column of the key form an infix
in the output X7, and so that the value of d; associated with successive infixes
increases monotonically. The output indexing is determined by the vector s,
which is, in turn, initialized by the vector b. The value of & for the succceding
stage is determined by steps 13 and 14*, according to the value of the next higher
key digit d; ;. The initial value of b is assumed to be defined externally. It must

* Statement 14 is, for most computers, an incflicient procedure for determining b.
Normally it is preferable to make a simple count of each of the digits and to sum the
counts to determine s at the beginning of the next stage.



212 Sorting §6.4

11— j<qg+1 0-origin indexing
2 ] — 1 >
I X Input field. 1
3 axa X"} Output field.
4 s <—b sy, | Index of output
5 b 2(b) subfield 4. v —b
) b, | Beginning of out-
6 i -1 put subfield & for
. i1 next stage,
_ k €19 (b). J
8 LX) d | Positional re-
9 (he(g + 1) d — KX "); b presentation | » = g + 1
of key.
10 h o< dj .
b | Base of representation.
11 X, 0= X0 J | Current column of key.
12 S, <85, + 1 i | Index of currrent input.
13 k—d, , h | Current output subfield.
14 b b4+ g a | Alternator (0, 1).

Legend

Program 6.19 Pre-count column sort

be determined by a preliminary count, perhaps performed when reading the
items into the initial field. The use of ¢ + 1 instead of g in steps 1 and 9 ensures
that the pre-count quantity d; , is properly defined even for the final stage.

Special internal sorting methods

The present section is devoted to internal sorting methods which are
specifically unsuited to serial files. The storage ratio provides a major
categorization of methods; a method either possesses unity storage ratio
or it does not.

Unity storage ratio is achieved by methods which proceed by the inter-
change of item pairs. The type of interchange may be limited to the
transposition of adjacent items, to “insertion” of an item accompanied by
a movement of all intervening items toward the evacuated position, or to
the exchange of an arbitrary pair. The corresponding methods are
characterized as transposition, insertion, and exchange methods, respec-
tively.

Exchange methods include the radix exchange sort. This is an arrange-
ment of the repeated block sort for a base two key, for which the operation
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count (number of elementary operations required to order » items) is of the
order of i log, .

Transposition methods include the bubble sort, odd-even transposition,
and the ranking sort. They are characterized by relatively simple programs.
an operation count of the order of #* for random initial order, and the
capacity to utilize existing order to reduce the operation count.

The only insertion method treated is ranking by insertion. The operation
count (counting comparisons only and not counting the individual item
transfers of the block movements associated with each insertion) is of the
order of n log, n for random order, and is reduced by existing order. It is
most attractive in a computer providing efficient block movement of
items.

Methods having a storage ratio greater than unity include the merge and
column sorts previously discussed. One additional method of this type is
treated—the prh-degree repeated selection sort. The operation count is of
the order pn’, where g = (p + 1) = p.

Any internal sorting method can be broken into two distinct phases, the
first utilizing only the keys to determine the permutation required on
the items, and the second effecting the permutation of the items. Since the
permutation vector is, in effect, a table of addresses of the items, the
process is called an address table sort. Address table sorting is particularly
advantageous if the volume of data in the item is large compared to the
data in its key.

Any sorting method in which each stage isolates the item with the
smallest key (among the items remaining from previous stages) can be
modified to produce longer strings by the use of one auxiliary serial input
file and one auxiliary serial output file. The modification is called sorting
with replacement. 1t consists in recording the selected minimum item in the
output file and reading from the input file a replacement item which enters
in the subsequent stages only if it is eligible for continuation of the string
already recorded.

The internal methods are evaluated and compared in Sec. 6.5, and the
results are summarized in Table 6.37.

Radix exchange. Radix exchange is a form of the repeated block sort for a
base two key. The high-order column of the key is scanned first. The first
zero item (item with key digit zero) is exchanged with the last unit item, the
second zero item is exchanged with the second last unit item, and so on,
until the first stage of the block sort is completed. The zero items now
form a prefix in the vector of items, and the unit items form a suffix. The
process is then repeated on the next column of the key, first on the prefix
obtained from the first stage, and then independently on the suffix. Each
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column of the key is treated in turn, the exchange process being performed
independently on each of the disjoint infix vectors defined by the preceding
stage. O-origin indexing will be used throughout the discussion.

Primary control of the process is exercised by the vector b, whose
successive components specify the beginning index of successive subblocks
(infixes). In particular, by = 0, and b, ; = »(x), and at the beginning of
the kth stage, »(b) = 2""1 4 1. The storage required for b is therefore
significant but may be reduced by either of two expedients. The vector b
may be replaced by a logical vector u such that u/t® = b. Determination
of the next component of b then requires a scan of the components of u.
The use of u is thus normally unattractive except in a computer equipped
for the efficient determination of the location of the leading nonzero
component of a logical vector. The second expedient leads to a more
complex but more practicable process. The straightforward use of b will
be treated first.

Program 6.20. Steps 10-21 perform the exchange on the subblock with indices
k in the interval b, =" k -2 b, ,. The indices r, and r; designate the pair last
exchanged, & is the index of the current item examined, ; is the current column
of the key, and a is an alternator which is zero during the forward scan of the zero
scction and unity during the backward scan of the unit section. The alternator «
determines which of the indices r, and r, will initialize & (step 13), the direction
of the scan (step 14), the type of key digit (0 or 1) sought in the next item to be
exchanged (step 18), and which of the indices r, and r, is to be redefined by &
(step 19) when the search terminates through failure of the branch at step 8.
If a does not become zero from negation on step 20, the process is repeated from
step 13 with @ = I, producing a backward search for a unit digit in the key. If«
becomes zero, both the forward and backward scans have been completed, and
the required item exchange is performed on step 21. The final exit from the entire
loop 13-21 occurs when &k = r;, that is, when k = r, on a backward scan or
k = r; on a forward scan. In either event, the final value of k is the beginning
index of the new subblock defined by the exchange, and it is used immediately to
specify ¢, on step 16. The vector ¢ is eventually meshed with b (step 6) to re-
specify b as (by, ¢, by, ¢;, .. .). The initial specification of & on step | cnsures
that the first subblock treated is the entire vector «x.

The number of subblocks which must be distinguished at any one time
can be reduced to the dimension of the key by a method due to Hilde-
brandt and Isbitz (1959). The process is controlled by a partition vector p
of dimension g + 1, whose successive nonzero components specify the
beginning indices of the subblocks of x¥ remaining to be ordered. At each
stage, the first remaining subblock is exchanged on the appropriate key
digit d;, i.e., for j increased by one over the value used in generating the
particular subblock. When the exchange occurs for j = ¢ — 1, the order-
ing of the two leading subblocks is complete, and they are removed {rom
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1 — b < (0,%(x))
<0 o .
2 / 0-origin indexing
3 jei+1
4 itg = x | Vector to be ordered.
' ) . | Beginning index of sub-
5 V <« (2€) ‘0 10(2/ + 1) block i,
6 b —\b, v, c\ by =1+2.
. 1 ¢; | Beginning index of ith new
7 e subblock,
8 i—i+1 v(c) = 2.
9 = 1 b, ux) v | Mesh vector
0,1,0,1,...,0),
10 ro<~b; —1 wv) = 2+ 4+ 1.
11 ry < b, d | Base 2 representation of
' key
12 a0 () = 9.
13 k <7, ¥ Current column of d.
14 k«k —2a+1 r | Indices of last pair
" exchanged
15 ko1 (v(r) = 2).
16 c, -k a | Alternator for scan of zeros
or ones.
17 2e(g)).Ld < k()
18 =ld;:a Legend
19 r, <k
20 z a-<~a
21 B Xy Fy

Program 6.20 Radix exchange with »(b) -~ 2nid)

further consideration by respecifying p, by p, and resetting p, and p, to
zero, where p, and p, are the first nonzero components of a'/p. The end
of the new leading subblock is now determined by p,. the new leading
nonzero component of a!/p, and the exchange is executed on the appro-
priate column j.

Record of the value of j appropriate to a given subblock is kept by
recording its terminal partition as p, ;. This is achieved, first, by recording
each new partition generated by exchange on column j — | in component
p, ;- and, second, by advancing the component p, (determined in the
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0 — p<eg+1)
1 k (%) 0-origin indexing
2 j<0
3 jej—1 % { Vector to be ordered.
D | Partition vector determin-
4 Do P ing beginning of subblocks
5 jej—1 =< ((p) =q +1).
6 =1 p,,:0 d }sj;e(:z:l(; r:p;;:.sentatlon of
7 k < Pqj J | Current column of d.
8 Py_; <0 r | Indices of last pair ex-
? Jig-d - a jfl?tl:rg:zi;:(r)for 2lcan of
10 J<j+1 Zeros or ones.
11 ro <Py — 1
12 Py <k Legend
13 r, <k
14 a0
15 k «r,
16 k~—k—2a+1
17 =4 ktrg
18 (2e(g)) Ld «— k(%)
19 d; : ua =
20 r, < k
21 a<a i
22 Xy, < Xy

Program 6.21 Radix exchange with »(p) = »(d) - |

prefix removal phase) to p,_; and resetting p,. to zero. Incidentally, this
procedure ensures that p, and p, always occur as p, and p,. In practice,
these two components need not be reset if the scan for p,, is begun with p,.

Program 6.21. The reader may find it helpful to trace the program (i.e., record
successive values of all parameters in tabular form) for a simple case of a few keys
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of small dimension. The exchange phase (15--22) is identical with that of Program
6.20 exccpt that the specification of ¢, is omitted. If j - ¢ — 1 at the conclusion
of the exchange, j is incremented (step 10), ry is reset to p, — 1, and the new
partition & specifies both p, ;andr,. If j = ¢g — 1, the prefix rcmoval is executcd
by steps 4-8. Step 4 respecifies py, and the scan of steps 5-6 (which begins with
D) locates a nonzero component p, ; which is advanced to p,, ;1 (indircctly by
steps 7, 10, and 12) and is reset to zero by step 8. Steps 0-1 provide the initial
specification of p, and (via step 12) of p,.

Bubble sort. The basic operation of the bubble sort is the comparison and
possible transposition of a pair of adjacent items so as to place the smaller
of the two keys earlier in the sequence. The first stage consists of such
operations performed in sequence on the item pairs (¥, ., %), (¥, .. %, )

Original Original Stage Stage Stage Stage Final }
Items Keys 1 2 3 4 Items
X, 8 3 3 3 3 X5
x, 6 8 4 4 4 X6
X, 1 6 8 6 6 X,
X, 9 1 6 8 8 %
X5 3 9 11 9 9 X,
Xg 4 4 9 11 11 X, ‘

Table 6.22 Bubble sort example

..., (%, %,). The result is to bubble each item upward in the sequence
until it encounters an item with a smaller (or equal) key and then to leave
it and continue bubbling the new smaller item. In particular, the smallest
item is bubbled to the top. Successive stages repeat the process, but since
the jth stage brings the jth smaliest item to the jth position, the (j + I)th
stage need not treat the first j positions. [t is clear that »(x) — 1 stages
suffice, but it is advantageous to allow termination at the end of the first
stage during which no transpositions occur.

Table 6.22 shows the arrangements prevailing at the end of each stage
of a bubble sort. The items above the staircase line are not re-examined.
Although the items are in correct order at the end of stage three, there is
no available indication of the fact until stage four is executed without the
occurrence of a transposition.

Program 6.23. The detailed behavior of the bubble sort process described by
this program should be clear from the foregoing discussion. [t may, however, be
remarked that at most » = »(x) — | stages are executed, even though the final
order is achieved only at the rth stage.
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1 —f i<0

2 t:0 — 1-origin indexing

3 t <0

4 PP 41 x | Vector to be ordered.

) i | Stage number.

3 Jv®) t | Termination indicator.
6 — j i

7 jj—1 Legend

8 k(x) ¢ k(35,0 =

9 Xje> X
10 t 1

Program 6.23 Bubble sort

If a given set of items is completely ordered except for a single item
which is displaced upward from its proper position by j places, j stages of
the bubble sort will be required to complete the ordering. On the other
hand, a single stage of the bubble sort performed in the alternate direction
(i.e., scanning from x; to &, and bubbling the large items downward)
would suffice. In general, there is some advantage in performing successive
stages of the bubble sort in alternate directions.

If on a backward scan (from «, to %;) no transposition occurs between
items &, and «%; ;, then &, and «&,., are in correct relative order.
Consequently, if #; and (the possibly new) &, ; are not transposed on the
succeeding forward scan, then #; and ;. ; will suffer no transposition. This
result may be extended to strings of items which suffer no transpositions,
and a record of this existing order can be used to obviate the corresponding
comparisons.

More precisely, if s is a logical vector such that s; = I if and only if no
transposition occurred between items x; and x;_; in a backward scan, then
no transposition between items &, ; and &; on the succeeding forward scan
will also imply no transposition (i.e., no need for comparison) between x,

and x; , if s, = 1. More generally, if a = 41 is an alternator such that
a = 1 on the forward scan, then s; may be defined as unity if and only if
no transposition occurs between x; and x; ,. Program 6.24 shows the

entire process. This variant of the bubble sort is attractive only for
computers in which the indicated scan of the logical vector can be per-
formed efficiently.
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Program 6.24. Multiplication of cach key by the alternator @ provides the
required alternation in the behavior of the branch on step 10. The bchavior is
best appreciated by tracing a simplc case.

<
1 —f klxy) @ k(xp) —
I-origin indexing
2 Xy 4> Xy
3 s < ol(1(x) v () ¥ | Vector to be ordered.
4 (a,j) (=11 s | String indicator
. - (v(s) = v(x)).
D€ )
> J | Scan index.
6 a4 a | Alternator (1).
7 | jei+a
= d
§ L1 ji(a#1) +(a=1ux Legen
9 SN S ] =
10 s; < (ak(x;) < ak(x;, ) =
11 Xj > xj»}-a —

Program 6.24 Forward and backward bubble sort with string indicator

Odd-even transposition sort. Like the bubble sort, the transposition sort
has unity storage ratio and involves the comparison and possible trans-
position of adjacent items. Each stage consists of two phases or half-stages.
In the first half-stage, each item with an odd index (except the last if it is
odd) is compared with its successor; in the second, each item with an odd
index (except the first) is compared with its predecessor. Table 6.25
provides an example.

Original Original Stage Stage Stage Stage Final
[tems Keys 1 2 3 4 Items
Xy 8 6] 6| 6| 6 3 3 3 X
% 6 8 8 8 3 6 4 4 X
x, 11 9 9 3 8 4 6 6 X,
X, 9 11 3 9 4 8 8 8 X,
x; 3 31011 41 91 9] 9] 9 x,
X 4 a0 4| ln S

Table 6.25 Odd-even transposition sort example
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Program 6.26. The subloop 6-10 performs the first or the second half-stage of
the transposition sort according as the alternator @ is 0 or 1. Final termination
occurs on step 3 as soon as one half-stage is completed without a transposition
occurring, except that a minimum of two half-stages must be exccuted. The
minimum of two half-stages is assured by the initialization of r on step 1.

1 — 2

2 a1 1-origin indexing

3 <t —1 i)

_ x | Vector to be ordered.
4 a<—da . . .
. t Termination indicator.

5 J<a a | Alternator (0, 1).

6 Jjt2 j | Scan index.

7= FRRIC))

] k(x;y) ¢ k) < Legend

9 Xj14> Xy
10 t <1

Program 6.26 Odd-even transposition sort

The validity of the termination conditions of Program 6.26 follows from
the following proposition: if any half-stage except the first effects no
transpositions, the items are completely ordered. If the half-stage is odd,
then

k(x) = k(x);  k(xg) << k(x); .. ..

Since no transpositions occur, the conditions of the previous stage (which
exists by hypothesis) also remain valid, i.e.,

k(x,) < k(xg);  k(xy) = k(x5); .. ..

The two sets of inequalities together imply ordering.® A similar argument
applies for the case of an even half-stage.

In Sec. 6.5 the transposition sort is shown to be less efficient than the
bubble sort. However, it enjoys the unique advantage that all comparisons

* This result may be combined with the fact (established in Sec. 6.5) that the number
of transpositions required is finite to establish convergence of the transposition sort.
For, if the set is not ordered, each half-stage must effect at least one transposition.



§6.4 Internal sorting methods 221

and transpositions in a given half-stage are independent and may therefore
be executed in parallel.

Ranking sort. 1f one new item is added to a vector of items already ordered
on a given key, the resulting vector can be ordered by ranking the new
item, i.e., by comparing it with the items of the original vector in succession
until the appropriate rank of the added item is determined. Morcover, n
repetitions of this process, which draw the new items from a given vector
of n items, will order the entire vector. Table 6.27 shows an example in

Original | Original | [nitial | Stage | Stage | Stage | Stage | Stage | Final
2

Items Keys Set | 2 3 4 5 ltems
X 8 8 6 6 6 3 3 X
£ 6 8 8 8 6 X
Xy 11 11 9 8 6 Xy
x, 9 11 9 8 X
x5 3 I 9 X,
X 4 11 Xy

Table 6.27 Ranking sort example

which the individual ranking operations are each performed by comparing
the added item with the ranked items in turn (starting with the largest).
moving forward by one place each item whose key exceeds that of the
added item.

Program 6.28. The index /7 controls the selection of successive items to define
the item z (step 4) which is to be addced to the ranked set by steps 6-9. The index /
controls the selection of successive items of the ranked sct for comparison with =,
and each execution of the subloop terminates if either j becomes zero or if
k(z) - k(x;). In either event, step 9 inserts the new item = into the position «; |,
which was last evacuated. From the initialization of the index /it is clear that the
process is actually completed in »(x) — 1 rather than »(x) stages.

Ranking by insertion. Since each stage of the ranking sort ranks one new
item in an already ranked set, the determination of its position can be
accomplished by a binary search. This sharply reduces the required
number of comparisons. However, once the new position is determined.
each of the succeeding items in the ranked set must be moved down onc
place to make way for the new item to be inserted. This method is par-
ticularly good where (due either to suitable facilities in the computer or to
the use of a chained representation for the vector of items ) such block
transfer is easy to perform.
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1 — <1
’ P ) = l-origin indexing
3 i—i+1 x | Vector to be ordered.
4 2« i | Index of current item to be ranked.
5 ji j | Scan index.
_ Current item to be ranked.
6 Jei—1 =
7 k(z) : k(xy) = Legend
8 Xjiq < %5
9 Xjp1 2
Program 6.28 Ranking sort
1 ——f i+1
2 U af((%) AT () 1-origin indexing
3 ujx | (u/x)
. — x | Vector to be ordered.
4 i ov(x) ——
o u/x | Segment to be rotated
5 J to insert (u/x),.
6 i—i+1 i | Index of item to be
> ranked.
7 k(x) © k(x)) o )
‘ p | Lower partition in
8 u <« at(u(x)) binary search.
9 | L= kx) ¢ k(xp g | Upper partition in
binary search.
10 p <1 . ) ) .
J | Scan index in binary
11 qg~jJ search.
12 J<lp +9 +2]
< Legend
13 k(x;) © k(x))
14 — 1 jp
15 p<J

Program 6.29 Ranking by insertion
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Program 6.29. The binary scarch is performed by the loop 11-15. which so
determines j that the new item x; is to be inserted after x;. Since the floor opera-
tion is used on step 12, j will eventually reach the value p, and step 14 therefore
terminates the loop in a finite number of steps. Step 3 performs the required
insertion by a right rotation of the infix of x bounded by x; and x,. The cascs
where «, lies outside the previously ranked set are treated by the comparisons on
steps 7and 9. Incidentally, step 7 takes full advantage of any initial order in the
items, e.g., if the set is initially ordered, steps 8-15 are ncver cxecuted.

Repeated selection sort. The process of scanning all items of a vector for
the smallest key and transferring the selected item to a separate output
area (in a serial or random access file) will be called selection. Repeated
selection on the successive remaining (unselected) items will serve to
transfer the items in the order determined by the specified key. This
method of ordering is called a ( first-degree) scelection sort.

If the given vector of n items is divided into m subvectors of at most
[n = m] items each, then a selection from each subvector will produce a
vector of m items, the jth of which is the smallest of the jth subvector. A
selection performed on the m items of the resulting vector will then select
the smallest item of the cntire original set. If the selected item came
from the &th subvector, it is then replaced by a further sclection on the
remaining items of the kth subvector. Repetition of the process n times
serves to order the items. Because selection is performed on two levels,
the process is called second-degree selection.

In general, the smallest (first-level) item may be selccted from a set of v,
second-level items, each of which is selected as the smallest of v, third-level
items. The process can clearly be extended to any desired number of levels.
If p levels of selection are used, the process is termed pth-degree selection or
repeated selection. It may be represented as a singular homogeneous tree
T of height p + 1, as illustrated by Fig. 6.30.

Figure 6.30 shows the initial filling of the lower levels in a third-degree
selection sort performed on the sixteen items at the top of the tree T, with
v(T) = (1, 2,2,4). The keys are indicated in parentheses. The positions
of the third level are the nodes (1, I, 1), (I, 1,2), (1,2, 1), and (1, 2, 2).
They are first filled by items %4(6), x4(2), %,(1), and x,,(4), respectively, cach
selected as the smallest among the second-level nodes of the corresponding
subtrees Ty, 11, Ti1 120 T a1y, and Ty 4, respectively. The first position
of level two is then filled by %4(2), selected as the smallest among the second-
level nodes in its subtree, and so forth. Figure 6.31 shows the continuation
of the process through the selection of the first two output items.

If e is some value which excceds the absolute value of all keys, then the
selection process may be made more uniform by assuming cither that the
entire top level of the tree is occupied by the items to be sorted or that
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Level Level Level Level
1 2 3 4

x1(9)
x2(14)

x3(6)
s x3t6)
x4(16)
xg(2)
2543)-
x6(2
x6(2), x5(3) £1(7)
xg(13)
xg€h)
x10(11)
xgtl); x12(5) 0@
x1245)
x9(1)

x13(15)
*114)

x15(12)
x14(10)

x14(4)

M

Figure 6.30 The tree T representing the third-degree selection sort for w(T) =
(,2,2,4

x3(6)
£6(2), x53) <
x5(3), x7(7)
xg(1), x6(2)
x12(5)

x14(4), x16(10)

x1(9)
x2(14)
x3(6)
x4(16)
x5(3)
x6(2)
x7(7)
xg(13)
xg(1)
x(lh
x11(8)
x12(5)
x13(15)
x14(4)
x15(12)
x15(10)

M A A A

Figure 6.31 Continuation of the third-degree selection sort
224
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unoccupied positions are filled with items having the key value e, and by
replacing each item selected from the top level by an item with a similar
key value. Termination of the process may then be determined by the
appearance of such a key value at the output. Moreover, the initial filling
may be simplified by filling all lower levels with dummy items having key
values of (—e). These may be recognized and discarded at the output.
The normal process will remove all the dummy items first, leaving all
levels in the state which would be produced by a special initial fill.

Program 6.32. The top level of the tree T initially contains the items to be
sorted (completed if necessary by dummy items having the key value of ¢), and
the remaining levels contain items with the key value (—e). The index vector s
scans the second-level nodes of the subtree T, (steps 14-18) to determine the
index m of the node having the minimum key z. If z # e, step 10 replaces the
root of the subtree by the selected node value and step 11 respecifies s to begin
the scan of the subtree rooted in . If z = ¢, then all second-level nodes contain
dummy items with “infinite keys,”” and step 9 branches to step | to replace the
root of the subtree by a dummy item as well. The branch from step 12 occurs
when the scan of the top level has been completed; it also results in the insertion
of a dummy item.

Since each complete scan (over all levels) begins with s = (1, 1) (steps 3, 11, 15),
the resulting minimum item is brought to the root of the tree. Step 2 specifies =
as its key, and steps 4 and 7 determine its disposal. If z = ¢, all legitimate items
have been flushed from the tree, and the branch to step 5 terminates the output
file, rewinds it, and ends the process. If 2 = —e, the item is a dummy initial fill
and is discarded by skipping the recording of the output file on step 8.

Since the selection process proceeds by levels in the tree, a corresponding
computer program can best be based on a right list—specifically, on the
right list node vector €%/]T and the dispersion vector w(T). The computa-
tion of the list index r(s) required in the path tracing is described (for
0-origin indexing) by the recursion on the functions f'and g developed in
Sec. 1.23. This recursion yields a relatively simple computer program for
a general homogeneous tree. It will be shown, however, that a b-way
rooted tree (i.e., a rooted tree with a common branching ratio b) is the case
of greatest practical interest, and in this case the simpler recursion

r(s) =56 x r(@!Ys) + 1 + s,

(also developed in Sec. 1.23) can be used. Program 6.33 shows the repeated
selection sort of Program 6.32 executed on the right node list vector r of a
b-way rooted tree.

Program 6.33. The initial conditions are as assumed for Program 6.32, and the
steps of the two programs correspond very closely. The simple index modifica-
tion required from stage to stage is shown in step I1.



226 Sorting §6.4

1 E(Tzy)") < e
—> -~ 1 .
2 2 kT 1-origin indexing
3 m < (1)
4 . # T | Leaves of T contain items
e to be sorted or dummy
5 Dyl <o A, items with key = e; other
o1 levels contain dummy
6 m(Dy1) 1 — items with key = —e.
T —z: —e e | —e <k < e for all legiti-
8 DR < T2 mate keys k.
— s Scan index.
9 z e .. .
m | Index of minimum in
10 (Tal/m)l e (Tm)l EZ/TGI/S.
11 s < m o (0) # | Minimum key.
o1
12 W) : o(T) > 2~ | Output file.
13 z e Legend
14L=1s, V,sy(T)
15 $s -8 4wt
<
16 z 1 k((THY
17 z — k((THH)
18 m «s

Program 6.32 Repeated selection sort

The superiority of a common branching ratio is demonstrated as follows.
The number of items scanned per item selected (ignoring initial fill and
termination) is clearly the sum of the branching ratios, whereas the maxi-
mum number of items accommodated in the top level is equal to their
product. It is therefore easily shown (e.g., by induction or by the use of
Lagrange multipliers*) that for a fixed number of items, optimum execution
is furnished by a common branching ratio.

Sorting with replacement. Certain of the internal sorting processes
discussed (bubble and repeated selection) proceed in a succession of
stages, each of which results in the selection of the smallest remaining

* Sce, for example, Margenau and Murphy (1943), p. 205.
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item. Since this item can be transferred immediately to an output area or
serial output file, the evacuated position can be refilled by an item from a
serial input file. Each output item can therefore be replaced by a new item
from a serial input, and the resulting process is called sorting with replace-
ment.

If the key of the newly introduced item exceeds or equals the key of the
last output item of a group, the new item may be treated as a member of

1 k(r)) <e
2 2 = k(ry) 1-origin indexing
3 m 1
4 . # r | Right list node vector
z e (IT), of tree of Program
5 Dyl o A, 6.32.
6 (D) < 1 N e | —e < k < eforall legit-
. 2 imate keys k.
7 Z e s | Scan index.
8 Dl 1y m | Index of minimum node.
9 2z e = z | Minimum key.
1
10 vy~ ®,! | Output file.
p | Index of previous node
10a p—m (to be replaced).
11 s b x(m—1)+1 b | Branching ratio of the
> uniform rooted tree T.
12 s ()
13 gee Legend
13a j <0
4 = ;b
15 j—jt+1
15a s —s+1
<
16 2L
17 z — k(ry)
18 ms

Program 6.33 Repeated selection sort of Program 6.32 exccuted on the right
list node vector r of a uniform rooted h-way tree
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partition A,
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The program vector (p;
is statement 7/ of this
program).

Legend

Program 6.34 Repeated selection sort with replacement
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the original group. If not, the item must be allowed to retain its position
but must be excluded from consideration in the sorting process. In general,
sorting with replacement allows the production of longer output strings
than would be otherwise possible with the same internal storage capacity.
The expected increase is discussed in Sec. 6.5. Since the process terminates
with the original positions completely occupied by ineligible items, the
production of a further string can be begun simply by declaring all items
eligible.

Repeated selection sort with replacement. In the repeated selection sort it is
advantageous to apply the eligibility criterion at each level, i.e., to limit
selection to keys which equal or exceed the key of the item being replaced.
The item being replaced is, of course, the last one transferred (either to the
output file or to the preceding level). The top level items are replaced from
the input file or, when the file becomes exhausted, by dummy items.
However, the use of the “infinite” dummy key value e as in Program 6.32
raises serious difficulties, which are avoided by the use of the value
—(e + 1). This is done in Program 6.34.

Program 6.34. This program is very similar to Program 6.32, and only the
essential differences will be remarked. The main scan [oop (15-20) differs only in
the added comparison with w to prevent the selection of ineligible items. The
variable w is normally specified (step 13) as the key of the item just transferred
out of the position being filled. However, if all items are ineligible, then =
remains unchanged from its initial value established by step 14, and the branch
from step 21 to 22 occurs. The variable w is then set to —e to make eligible all
items except the dummy fills [with key value (—(e + 1))]. which enter on exhaus-
tion of the input file. If only these dummies remain in the level scanned, the
process returns again to step 22. This time, however, the branch to step 3 occurs.

Step 3 is the file read (which replaces step | of Program 6.32). When the file
becomes exhausted, the branch to step 2 replaces program statement py by p,, so
that step 3 thereafter provides the requisite dummy keys.

Bubble sort with replacement. A straightforward bubble sort with re-
placement produces the same length strings as a first-order selection sort
with replacement, and, indeed, differs from it mainly in the additional
performance of item interchanges. Bubble sorting with replacement is
therefore of interest only if the order induced in the remaining items by the
interchanges can be used to reduce the number of items scanned. This can
be achieved by accumulating the ineligible items in a growing suffix of the
vector of items and restricting successive scans to the prefix of eligible
items. This method is shown in Program 6.35.

Program 6.35. In the loop 11-13, w denotes the current item with the smallest
key, and it is interchanged with x, if k(w) exceeds k(x,). At step 14, w is therefore
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1 k(w) ~—¢
1-origin indexin

2 Ps <Dy g g

3 > jux +1 x Vector to be ordered.

4 e —e j Index of first ineligible item.
5 W B 2 i Scan index.

- w | Current item.

6 y @ kO z Key of last recorded item.

7 J—=i—1 @, | Input file.

8 Joevx) +1 o ®,! | Output file.

9 W %, P Vector of program statements.

L e —e < k << e for all legitimate
10 bl < keys k.
11 ) iei-1 e
<

12 k(w) @ k(x;) — Legend
13 W &,
14 k(w) : e >
15 Ol —w
16 z — k(w)

Program 6.35 Bubble sort with replacement

the item with the smallest key among those scanned and (unless k(w) = ¢) is then
recorded in the output file and used to define z, the key of the last recorded item.
The main loop is then repeated from step 5, where w is respecified by reading
an item from the input file. If the new item is eligible, the branch from step 6 to
step 10 is followed; if not, the parameter j (denoting the index of the first in-
eligible item x;) is decremented and w is interchanged with the last eligible item «;
before continuing to step 10. Since step 10 initializes / to the value j, the sub-
sequent scan is limited to eligible items.

If / becomes zero on step 7, the entire set of items including w is ineligible.
Step 8 then restores j so as to make all items eligible and hence to start a new
string.

The branch from step 5 and the subsequent redefinition of step 5 on step 2
serve to introduce “infinite’’ keys after the input file is exhausted. The immediate
redefinition of j and z (steps 3 and 4) to make all items eligible may appear
redundant. It may be verified that this procedure (1) does not increase the number
of strings produced, and (2) avoids the potential error of omitting the last string.
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Address table sort. A sorting process can, in principle, be accomplished in
two distinct phases, a determination of the permutation required and the
execution of the permutation. In serial sorting, however, the process
cannot be effectively divided in this way. For, because of the limitation
to rank-preserving operations, the items could not be transferred directly
to their final positions even if they were known. In internal sorting this
limitation does not apply. A sorting process embodying these two separate
phases is called an address table sort. The method offers advantages when
the time required to transfer a complete item is large compared to the time
required to transfer its key.

The permutation p must be so determined that the permuted vector
¥y = %, is ordered on the key. Let K be the vector of keys associated with
the given vector , i.e., K;! = k(x,), and let K2 be the identity permutation
t'. For example, if the successive keys of the vector x are 17,9, 6, 11, 4, 8,

and 3, then
K=(1796 11 483)'
1 23 4 5 6 17

If the columns of K are reordered (by any desired sorting process), to
produce the matrix P such that P,! is monotone increasing in /, then
p = P? is the desired permutation vector. [n terms of the foregoing

example,
346 8 9 11 17
- )’
753 6 2 4 1
and p=1(7,523,6,241).

6.5 EVALUATION OF INTERNAL SORTING
METHODS

In evaluating internal sorting methods, both the execution time and the
internal storage requirements must be considered. For the execution
times of the internal merge sort and the internal column sort, the analysis
of the corresponding serial sorting process applies directly. Since their
storage requirements have also been discussed in Sec. 6.4, the present
section will be limited to the special internal sorting methods.

The measures of interest in the evaluation of these methods are four:

the scan length

the number of stages required

the number of transpositions required
the storage ratio.

LD
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The number of comparisons executed is frequently used as a measure of
execution time of a sorting process. However, since the selection of the
keys to be compared (involving instruction modification and possibly
extraction of key digits) usually accounts for the largest share of the time
required in a comparison, the scan length (number of items scanned) is a
more suitable measure. In a process which scans m items serially (as in
each individual stage of a bubble or a ranking sort), the number of com-
parisons is (m — 1) and differs but littte from m. However, for m small
(as in the successive selections in a repeated selection sort), the ratio
m + (m — 1) is significant, and the scan length is the better measure.
Moreover, in a process which does not use a serial scan, the number of
comparisons may differ markedly from the scan length. For example,
each half-stage of the interchange sort requires approximately m/2
comparisons for a scan of m items.

The storage ratio is defined as the ratio of the number of item storage
locations required to the number of items entering the sorting process
(without replacement). The four measures will be determined for each
method in turn and then compared. Table 6.37 summarizes the main
results for an assumed random initial distribution of keys. The entire
analysis is based on the assumption of distinct keys.

Expected number of transpositions

Let y(n) be the total number of transpositions required to order all of
the n! possible arrangements of » items. Since the (n + 1)th item added
in the last position may rank first, second, ..., or last, requiring n,
(n — 1), ..., or O additional transpositions, respectively, for each of the
n!arrangements of the n items, then

yn+ 1y =(n+ Dyn) + nt X k
E=0
=(n+ Dy(n) + (g)(n + Dt
The function
n!(n® — n)
4

satisfies this difference equation as well as the obvious boundary condition
¥(0) = 0, and the expected number of transpositions is therefore given by

y(n) =

y(n) _ (n® = n)

n! 4
The maximum and minimum number of transpositions are (n? — n)/2 and
zero, respectively.
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A pair of items whose relative order differs from the final arrangement
will be called a disordered pair. Thus in the set (2, 4, 3, 1), the disordered
pairs are (2, 1), (4,3), (4, 1), and (3, 1). To establish order it is clearly
necessary that each disordered pair be transposed. The sequential
transposition of disordered pairs of adjacent items is also sufficient to
produce ordering. Any transposition method which transposes only
disordered pairs therefore achieves order with a minimum number of trans-
positions and hence with an expected number of (#* — n)/4. The ranking
sort, bubble sort, and interchange sort all fall into this category. The
sequence in which the transpositions occur will, however, normally vary
for different methods. Thus the sequence of arrangements realized in
reordering the set (2,4,3,1) is (2,4, 1,3), (2,1,4,3), (1,2.4,3). and
(1, 2, 3, 4) for the bubble sort, and (2. 3,4, 1), (2,3, [, 4), (2,1, 3. 4), and
(1, 2, 3, 4) for the ranking sort.

Bubble sort

In the bubble sort, both the number of stages and the scan length depend
on the initial order. The minimum and maximum number of stages
required are one and (n — 1), respectively. The minimum and maximum
scan lengths are n and (n* 4+ n — 2)/2, respectively.

The expected number of stages required for a random initial order is
determined* as follows. If, at any stage, all items are ordered except for
one which occupies a position below (later in the sequence than) its proper
position, then one further stage will complete the ordering. On the other
hand, each item which appears above its terminal position at a given stage
will be moved down by exactly one position in the next stage. Conse-
quently, the number of stages required will be determined by d. the
maximum upward displacement from its final position of any item in
the original array. More precisely, if x is the given vector of items. y the
corresponding vector of ordered items, p is a permutation such that
y =%, and d = — p, then d = ((e[d)/d),.

If the maximum upward displacement is d, then (assuming that all
keys are distinct and that the final order is consequently unique) the last
item in the final order (i.e., y,) can initially occupy any one of the (/ + )
components of the suffix w’=1/x. Similarly, y,., may initially occupy any
one of the remaining (4 + 1) positions of the suffix w’ 2/x, and so on for
each of the (n — d) items of the suffix w” “/y. The number of possible
initial arrangements of the items of w"~“/y is therefore (¢ 4+ 1) ). Since
the d leading items (i.e., @?/y) can occupy any one of the d remaining posi-
tions without restriction, the number of possible initial arrangements with a

* The exact expression for the number of stages is due to Friend (1956).
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n c(n)

1 0.798
5 0.853
10 0.877
15 0.893
20 0.904
30 0.918
40 0.927
50 0.934

Table 6.36 Coefficients for z(n) = c(n)Vwn/2

displacement not exceeding d is clearly d! (d + 1) 9. The probability
that the maximum displacement r does not exceed d is therefore given by

(n—=d) 1}
pr(r : d) — (d_+u A
n!
Similarly, (r=d+1) 1
pr(rgd__ l)zL__M,
n!
and hence

pr(r =d) =pr(r <d) —pr(r <d —1)
_ (d + 1)(n—d) d — d(n—d+1)(d . l)!

n!
The expected value of r is given by
n—1 n—1

e,= 2 dxpr(r=d) = 3 dxpr(r=d

a=0 d=1

1 n—1 n—1

— _(2 d(d + 1)(n—d)d! _ Z d x d(n*d+1)(d _ 1)|)
i \e=1 d=1

A change of dummy variable in the second summand (d = ¢ 4 1) brings
the two summands to similar form and yields the result
e, =n — z(n),
where 2(n) = 1 zl s 70t
nls=a
It is shown in the appendix to this chapter that z(n) approaches the value

V/7nj2 for large n, and Table 6.36 gives coeflicients c¢(n) for the approxi-
mation

2(n) = c(m)\ 7nj2.
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Since one extra stage is needed to determine that the ordering has been
completed, the expected number of stages is given by
e, =n+ 1 — z(n).

Since the scan length in the jth stage of the bubble sort is known to be
n — j 4+ 1, a similar analysis can be used to determine the expected total
scan length e,. The result is

nt—n—2
6= + (n 4+ Dz(n + 1) — nz(n),
or approximately,
e"in —n—2 /377/1.

Ranking sort

The number of stages in the ranking sort is clearly (n — ). The ex-
pected scan length on the kth stage is determined as follows. The item may
rank in any one of (k + 1) positions; first, second, . . ., last, with equal
probability. There are therefore (kK + 1) cases requiring scan lengths of
2,3, ...,k (k4 1), (k +1). The last case requires a scan length of

(k + ]) rather than (kK + 2), since the process terminates on comparison
with the last item regardless of the outcome of the comparison. The total
scan length for the (K 4 1) cases is therefore

(3715

and the expected scan length is consequently 2 + k/2 — /(A + I).
Summing over the (n — 1) stages and denoting the expected total scan
length by e yields the relation

1" 1 n—1
e=2(n—1)+ k — _—
_521 ;\21/\4—1

I L S |
4 =

But

i 1—v+log n+L— !

Sk ‘ 2n 1203
approximately,* where »» = 0.5772 - - - is Euler’s constant. Hence

2

e=n-i’ZE— 1.577—log,,n——1——+ ! =
4 2n 12n=

* See, for example, Cramer (1951) p. 125, or Woods (1926) p. 171.
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correct to two decimal places for all n > 1. The maximum and minimum
scan lengths are (n® + n — 2)/2 and 2(n — 1), respectively.

The ranking sort takes advantage of initial order and the minimum scan
length of 2(n — 1) is achieved for an initially ordered set of items. Ranking
by insertion with binary search, as described by Program 6.29, requires
approximately 2 + [log, j] comparisons on the jth stage. Hence if n = 2,
the number of comparisons required is given by

€=(2+k)2/"—(2+22+23+...+2/.-71)
= (2 4 k)2F — 2F = (k + 1)2*~.

In general, then,
e = n(log, n 4+ 1).

For a random distribution, ranking by insertion with binary search
requires fewer comparisons than any other method, and, in the form
described by Program 6.29, also takes advantage of initial order. The
insertion operation requires, of course, a number of rotations of relatively
lengthy vectors.

Odd-even transposition sort

Estimates of the efficiency of the transposition sort may be obtained as
follows. Each half-stage requires the scanning of (approximately) » items
in n/2 comparisons, and results in reducing the displacement (either up or
down) of each item by at most one. The fact that the reduction in the
displacement may be zero for certain items can be illustrated with the
initial arrangement (5,6, 1, 2,3,4). The number of half-stages must
therefore equal or exceed the maximum displacement, which, in turn,
equals or exceeds the maximum upward displacement & used in the analysis
of the bubble sort. Moreover, one final half-stage is required to determine
that order has been achieved, and the expected number of half-stages will
necessarily exceed the corresponding value obtained for the bubble sort,
namely, n + 1 — 2(n). Since the number of items scanned per stage in the
transposition sort exceeds the corresponding number in the bubble sort, it
follows that the transposition sort is much less efficient. Moreover, the
transposition sort does not allow sorting with replacement. Its sole
advantage resides in the possibility of executing all operations in a given
half-stage in parallel.

Repeated selection sort

The number of items scanned per item selected in a pth-degree selection
sort is equal to the sum of the branching ratios of the associated tree. and,
as already demonstrated, a minimum scan length is provided by a tree
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with a common branching ratio m. Since m” > n, the number of items
scanned per output item is given approximately by

s = mp = mlog,, n.

The resulting expression for the total number of items scanned (nm log,, 1)
is similar in form to the corresponding result for the m-way merge sort.
The indicated optimum choice of m is Napier’s number e.

The optimum integral value of m is three, and its efficiency differs from
the theoretical optimum by less than 1 9,. The value m = 2 simplifies the
required program and increases the expected amount of scan by only about
59%. This case (m = 2)is referred to as a tournament sort. Larger values of
m may prove advantageous where the groups of items to be scanned are
contained in a serial store whose scan time is not significantly reduced by
reducing m.

Since p item transfers are required per item selected, a more realistic cost
function for determining the optimum value of m may be given by the
function

¢c=(m+ ap = (m+ a)log, n,

where a is the ratio of the time required for an item transfer to the time
required for the scan of a single key. Asremarked in Sec. 6.2, the optimum
value of m is obtained as a solution of the equation

logem=1+a—.
m

The amount of item storage required for a pth-degree selection sort is
given by

.
mtl— 1

r=14+m+m+---4+m=

m—1
mn

m—1’
since n = mP. The storage ratio r(m) is therefore given by r(m) =
mf(m — 1), a function which decreases with m, rapidly approaching unity.
This ratio also represents the increase in execution time entailed in the
initialization of the lower level positions. If sorting with replacement is
used, initialization is required for the first string only.
The ratio r(m) changes significantly for the first few values; thus

r(2) = 2.00; r(3) = 1.50; r(4)=1.33.

If the expected scan time s(m) is taken as a second criterion, then (since
5(2) = s(4) > s5(3)), the value m = 2 will be eclipsed by both 3 and 4.
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* With optimum allocation (2 fields).

1 Replacement possible.

X —
2my = — LI S st =  wnf2
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1 Parallel operation possible: estimates are lower bounds.

§ All values exclusive of initial fill,

Table 6.37

Characteristics of internal sorting methods (for random distribution of distinct keys)
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Sorting with replacement

The use of replacement with any internal sorting method offers the
advantage of increasing the expected length of the strings produced.
Gassner (1958) has shown that for » item positions and random keys, the
expected length of the first string is (e — 1) X n = 1.718n, and that for
later strings the expected length rapidly approaches 2n.

Comparison of internal sorting methods

The results of the preceding sections are summarized in Table 6.37. The
ranking, bubble, and transposition processes show the most favorable
storage ratio, exactly one half of the best attainable in the merge and the
column sort processes. In the case of repeated selection, the storage ratio
depends on m and ranges from two to a limit of one.

The execution time is approximately proportional to the function

fln)y =s+ ¢t

where s is the scan length, ¢ the number of item transfers or transpositions.
and ¢ the ratio of the cost (in time) of one item transfer to the cost of a scan
of one key. For any given method with variable parameters (such as the
repeated selection sort), these parameters may be chosen so as to minimize
f(n). The choice between various methods may then be made (subject to
storage considerations) so as to minimize f(n).

Since the ranking, bubble, and odd-even transposition methods share
the same number of transpositions, the choice between them depends on
the scan length and auxiliary factors. The odd-even transposition sort is
inferior to the bubble sort in this regard, and the bubble sort is, in turn,
inferior (by a factor of two for large n) to the ranking sort for n >- 8. The
bubble sort retains the advantage that sorting with replacement may be
used, and the transposition method allows parallel operation.

APPENDIX TO CHAPTER 6

The following derivation of the limit of the function

n
wn)=— > s's
n!s=1

arising in the evaluation of the bubble sort was suggested by Robert
Church. Clearly
L(n) = f g(s)ds < z(n) = U(n) = [ g(s + 1) ds,
0

Y0
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where g(s) = — s"~°. Moreover,
n!

U(n) = f (S + 1)”"Sg(s> ds,

and since g(s) is monotone increasing with a large positive derivative for
large values of s, only the upper end of the integral is significant. It can
therefore be shown that

lim U(n) = lim L(n).

Consequently,
lim L(n) = lim z(n).
Applying Stirling’s formula,
n\/%ss+1/§e—ssn—s ds _

n
: . n ., —(n+14) n+ld —s
lim L(n)—J~ \/2__ ~— T =e"n f s e ds.
n—> w0 0 whn e 0

Setting ¢ = 1 — s/n yields

1
. _ 14 1g 14 _
lim l(n) e™'n (n+18) f nn+,2(1 t)n+,ze nem” di

n— s

0
1 1o
=n (1 _ t)n+,zent dt,
0
! L3y lo
=n ent+(n+/2) g“’(l_”dt.
0

Expanding log, (1 — t) yields

lim L(n) = n fl et 2 sy gy
n—w 0
For n large, only small values of ¢ will be significant, and all terms in the
exponent may be dropped except —(n + 1/2)r3/2. Similarly, the upper
limit of integration may be extended to infinity. Hence,

lim L(n) = nf e~ HRRgr = p(mj(2n + 1))F
0

nr w0

= (mnf2)"*.
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EXERCISES

6.1 A given file contains a set of 15 items %, ..., %;; with associated decimal
keys 68, 9, 60, 14, 60, 73,79, 15, 67, 5,9, 41, 57,9, 41. For each of the serial files
used, show the contents at the conclusion of each stage of the following processes:
(a) a two-phase classification and merge using
(i) four files.
(i) three files.
(i) six files.
(b) a string classification and merge using four files.
(c) a single-phase merge using
(i) four files.
(ii) six files.
(d) asingle-phase merge without rewind.
(¢) a base ten column sort using eleven files.
(f) a base ten column sort using twenty files.
(g) a base ten column sort using four files and the partial pass column sort.
(h) a column sort using four files and a base three representation of the keys.

6.2 Modify Program 6.4 so that it will work properly without dummy terminal
items (i.e., each terminal partition 2, is to be associated with a legitimate item).
6.3 Write a program for the string-doubling merge sort.
6.4 (a) Write a program for a base b column sort which uses backward read to
eliminate rewinding.
(b) Program a variant of the two-phase column sort (b + 1 files) so as to
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eliminate the copying of the “zero items™ in each merge phase. Deter-
mine the relative efficiency of the method.

(c) Program an analogous variant of the m-way two-phase merge sort so as
to eliminate the copying of part of the items in the classification phase.

6.5 Construct the matrix M (cf. Table 6.10) specifying an efficient partial pass
column sort for the following cases:
(a) base ten and three files.
(b) base ten and five files.
(c) base eight and three files.
(d) base ten and four files using no rewind, i.e., files are to be read backward.
(e) base ten and three files using no rewind.
6.6 Using a set of matrices 'M, M, . . ., ?M, of the form of Table 6.10, write a
program to generalize the partial pass sort to the case of a mixed radix key.

6.7 (a) Reprogram the amphisbaenic sort (Program 6.13) so as to reverse the
order of the final output. (This is the form used in Nagler, 1959.)
(b) Program a generalization of the amphisbaenic sort which makes use of
partial passes within columns of the key.

6.8 (a) Program a modification of the bubble sort process which on odd-
numbered stages bubbles the smallest item to the leading end and on
even-numbered stages bubbles the largest item to thc tail end.

(b) By examining all 4! cases show that for four items the expected number
of stages is slightly less for the method of part (a) than for the un-
modified bubble sort.

(c) Program a bubble sort using a string indicator s as in Program 6.24 but
using backward scan only.

69 (a) Program a modification of Program 6.17 to specify sy = 2 and to auto-
matically double s, and restart if necessary.
(b) Compare the efficiency of the program of part (a) with that of the
straightforward program in which the number s of strings is assumed
equal to the number of items.

6.10 (a) Derive the relation log, m = 1 + a/m which must be satisfied by an
optimal value of m in order to minimize the cost function ¢ = (m + a)
log,, n (cf. Sec. 6.2).
(b) Determine the optimal integral value of m for each of the casesa = 0,
1, e
6.11 For the amphisbaenic sort on a set of 4% items with distinct keys belonging
to the set 1°(b?), determine
(a) the number of item transfers required.
(b) the number of file reversals (change of direction of read and record)
required.

6.12 Write a program describing the odd-even transposition sort in terms of
vector operations so as to show clearly the parallel nature of the process. Treat
all items with odd indices (plus a dummy item) as a vector and all even items (plus
a dummy item) as a second vector.
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6.13 (a) For each of the following sorting methods, determine whether initial
order of the items is preserved, i.e., whether the relative initial order of
all item pairs with duplicate keys is preserved.

(i) simple classification and merge.
(ii) classification and simple merge.
(iii) ranking sort.
(iv) bubble sort.
(v) odd-even transposition.
(vi) radix exchange sort.
(b) Prescribe a simple modification of the key which will ensure the preser-
vation of initial order.

6.14 For the sequence of keys given in Exercise 6.1, show the explicit execution
of the following internal sorting processes:

(a) bubble sort with replacement (six item positions).

(b) pth-degree selection sort with replacement, with p = 3 and m = 2.

(¢) ranking by insertion.

6.15 If the key is represented in a base b number system, with each digit repre-
sented in turn in a ranked binary code, then ordering can be achieved by a base
two column sort on successive columns of the underlying binary representation.

(a) Show more generally that ordering can be achieved by a base 2% column
sort on (the base two value of) successive groups of & binary digits.

(b) Program the process suggested in part (a), including the determination of
an optimum value of & for a given number » of available files. Assume an
original key of ¢ digits, each represented by r binary components. Do not
neglect the problem of terminal conditions.

(c) If b = 10, r = 4, and if the successive decimal digits are coded alternately
in a (ranked) bi-quinary and qui-binary system, the binary digits can be
grouped in twos and threes so as to allow column sorting with a maximum
of five output files. Program a suitable process.

6.16 Program a sequence of rotations of infixes of the vector x which will
reverse the order of its components. (See the Ranking by insertion program
(6.29) for the case when the key defines a complete reversal of order.)

6.17 Assuming that an item transfer takes ¢ times as long as a comparison of
two keys, determine a criterion for the choice of / in an m-way internal revision
merge for the following cases

(a) assuming 2m comparisons per item (s comparisons for eligibility and m
for minimization).

(b) assuming that a ranking sort is used on the /» item positions.

6.18 (a) Let z be a vector key of dimension three whose successive components

represent department number, job number, and name, respectively.

Two lists are to be produced, one ordered by name within department

within job and the other by department within job within name. Deter-

mine a mapping vector p such that y = z, is the vector key of least
dimension which contains the two required orderings.

(b) Lety’ = Zpi be a set of vector keys defining a sct of related orderings.
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Determine a vector key of minimum dimension which contains all of
the related orderings for the case p! = (3,4, 1, 5),p*> = (3, 1, 5, 6), and
p? =(1,4,3,9).

(c) Analyze the effect of related orderings on the expected execution time
of a merge sort. (Consider the effects of duplicate keys on expected
string lengths.)

6.19 Let D be a O-origin matrix of the form of Table 6.14 which describes the
cascade sort, i.e., row D/ describes the distribution of strings at the completion of
stage /. Using the special matrices of Sec. 1.13, write concise expressions for the
matrices F and B such that

(a) D =B D/

(b) DJ = F DIt

(¢) Show that F and B are inverse.

(d) Determine the dominant eigenvalue of B when »(B) = 3, and show its

relation to the power of the cascade sort for four files. (cf. Sec. 6.1 and
Carter (1962).)

6.20 Determine the relative efficiencies of serial column sorting and serial merge
sorting for the following conditions. Internal sorting, with a maximum of 100
item positions, is to be used as an aid to each of the processes, and the time for the
internal sorting is assumed fixed. There are 10,000 items with 4-digit decimal
keys, and each key value is associated with at most four items. The initial arrange-
ment contains 3500 maximal (increasing) strings.

6.21 Program an address table sort.

6.22 (a) The determination of the permutation vector required in the address
table sort can be considered as a mapping from each item onto its rank
in the set. Show that for distinct keys this mapping can be performed
by counting for each item the number of items having a smaller key.

(b) Program the method of part (a). (This is known as a counting sort.)

6.23 (a) Program a two-phase internal merge sort.
(b) Program a two-phase internal column sort.

6.24 Program an extension of Program 6.33 (pth-degree selection executed on
the right list node vector €*/]T) to

(a) sorting with replacement.

(b) the case of a singular homogeneous tree with dispersion vector w(T).

(c) cover both cases (a) and (b).

6.25 1f the transfer from a serial file can proceed concurrently with other opera-
tions, it is frequently advantageous to associate two fields of internal storage
(called buffers) with each file and to transfer the next group of items to one of the
fields while executing necessary operations on the items of the other. Buffers may
be used similarly for output files.
(a) Program an m-way single-phase merge using two buffers for each of the 2m
serial files.
(b) Program a base b single-phase column sort using two buffersfor each of the
2b serial files.
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6.26 If the number of input buffers serving m files is reduced to m -+ 1 some
advantage may still be gained by “predicting’ the file whose (currently) associ-
ated buffer will next be exhausted, and initiating a transfer from it to the idle
buffer. Repeat parts (a) and (b) of Exercise 6.25 for (#z + 1) and (b + 1) input
buffers, respectively. (See Friend, 1956.)

6.27 Repeat parts (a) and (b) of Exercise 6.25 with the number of output buffers
also reduced as in Exercise 6.26,

6.28 Since a given initial arrangement may be easier to bring to descending than
to ascending order on the keys, and since a final reversal of order may be easy to
achieve (by backward read in the case of serial files or by address modification in
the case of internal storage), it may be advantageous to choose ascending or
descending order according to some estimate based on the initial arrangement.
Write a program which first counts the number of ascending strings and then
executes a ranking sort by insertion to produce either ascending or descending
order according to which appears to be the easier to achieve.

6.29 For the first few values of », compute and compare the following alterna-

tive evaluations of the cxpected number of stages in a bubble sort
" snf.s‘s!

(@) n + 1 — z(n), where z(n) = E
81

n!

by n+ 1 — Va2,

(c) c/n!, where c is the total count of all stages required for the n! possible
initial arrangements of n distinct keys.



chapter 7

THE LOGICAL CALCULUS

The present chapter develops two fundamental areas of symbolic logic:
canonical forms and the basic procedures of decomposition. 0-origin
indexing is used throughout.

7.1 ELEMENTARY IDENTITIES

Certain elementary identities will first be summarized for reference.
The first of them (equation 7.1) merely defines a matrix of operators
employed in equation 7.4.

® = ( ;; ﬁ) (7.1

;f Alx = E (7.2)

De Morgan’s laws <: ;éh/x ==/* . (7.3)
}L Xg;j Y = XSI;J. ¥ (7.4)

Alx=2| +/x (7.5)
Alx=((* [ F) A y) (7.6)

AX =X #X1y) (1.7)
Z=@;c)r(grr)=(@hqi(chr) (7.8)

VIV Z )y = (%) A (V) (7.9)
ZIA][(* 7 y) = (FE[%) N (Fy) (7.10)

Identities 7.2, 7.3, and 7.5 may be established by induction on the
dimension of x. Equation 7.4 summarizes the sixteen identities obtained
by extending equations 7.2 and 7.3 to arrays. For example, if ®," and
®,’ are the operators 7 and A, respectively, then equation 7.4 becomes

b
h<
Il
|

VY.
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The foregoing relation may be verified as follows:
(X Y)' = £(X' A Y)
= =/(XZ—_YJ) (by equation 7.3)
==/(X""Y) (by equation 7.2)
= (X7 Y)/

Equation 7.7 is a direct extension of equation 7.6, which is itself derived
as follows. Since the operator -4 is associative and commutative, then

Sx = ((A[(Y]) # (F/(v]%).

Moreover,
F[ylx =2 1(+/y[x) =2 |(+](x A J)) = Az A y),

the first and second and the third and fourth limbs being related by
equation 7.5. Consequently,

/2 = ((Fl(x 2 3) # (Allx A y))
= (=13 # (= [y
The following argument establishes equation 7.8. By definition,
Z: =(a; nc) (g AT)
=(a, A q) A (¢; A T))
=(@n q@; A (cA ),
Consequently, Z=(anq)(cAhr).
Equation 7.9 is obtained by noting that if M =x ¢y, then M, =
x A ye. Then
(VIIM), = Vv|[IM;=(v[%) Ay,
and (V/IM) = (v/x)e n y.
Finally, VIVIIM = (V%) A (v]Y).

The derivation of equation 7.10 is similar.

7.2 CANONICAL FORMS
Intrinsic vector

Any function defined on a finite domain can be specified by listing each
possible value of the argument together with the corresponding function
value. For a logical function of n variables, the n arguments may be
considered as the components of a logical vector  of dimension », and the
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domain of the function is then represented by the (rows of the) matrix
T(n) of dimension 2" x # defined as follows:

AT+ =k

For n = 3, for example, T has the form shown in Table 7.1.

~

i(f) | p=Thx

EFWAN XA
Xo A XA
Ko N\ XA
EIWANET AN
X0 A XA
Xo A XA
L AWANG WA
L AWANE S WA

& ®l 8

[ R Oy

] R
o0t

A

S

—_—— = O O OO
—_—_0 o — — OO
— o = O = 0O =0
S OC— O = O —

2
o

fx =i/ p
Fg A BLAT) VEGA %A T V(%A T A X

Table 7.1 The disjunctive canonical form

A logical function f'can therefore be specified by its intrinsic vector i(f)
defined by:
i(f) =f(T%.

Table 7.1 shows i( /') for the function

J&) = (% A EL AT V(A XA XY V(%A XA X)

= (% v ¥) A %

Applying the usual notation for operations on variables to operations
on functions as well (e.g., f denotes the function inverse to f, and f A g
denotes the conjunction of the functions fand g) permits the expression
of certain easily derived identities concerning intrinsic vectors:

i(fy=1i(f)
i(fv g =1i(f) vi(g).

More generally, the intrinsic vector of any function of functions is the
same function of their intrinsic vectors.

The two trivial functions identically one and identically zero will be
called, respectively, the unit function and zero function, and will be denoted
by 1 and 0. Thus i(l) =€, and i(0) = €.
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Characteristic vectors

A vector which represents a function fis called a characteristic vector of
/- The intrinsic vector i(f) is but one of several useful characteristic
vectors.

The expression y ”* & denotes the function obtained by first negating
each x; for which y;, = 0 and then taking the conjunction (that is, and
function) over the resulting vector. Such a function is called a minterm in
%, and the components of the minterm vector

p= T . x

comprise all possible minterms in # with no repetitions.
The component p, is a function of ¥ which assumes the value one if and
only if ¥ = T'. Consequently, for any function f,

S = V]GEf)/p)
V/E(S) N p)
=i(f) ' p.
This relation is illustrated by Table 7.1.
The expression

l

f&)y=i(f)  p=1i(f) (T %

is called the disjunctive canonical form of the function fsince it displays f'as
a (unique) disjunctive (that is, or) function of minterms, each of which
involves all variables and conjunction and negation only. The disjunctive
is one of several canonical forms of interest, each of which assumes the
form

%) = y(f)2 s(%),

where the characteristic vector y(f) is a function of f only, and the specific
vector s(x) is a function of the argument & only. Each of the four forms of
interest is characterized by the particular over-all operator C; occurring
in it and is therefore called the disjunctive, conjunctive, exclusive disjunctive,
or equivalence canonical form* according to whether ©, is the operator
VvV, A, #,0r =,

The characteristic vector and the specific vector appropriate to each form
will be characterized by its over-all operator ©;. Thus

J(®) = ¥(f, O isx, Oy

* The functionsr V y,2 A y,(x ~ y),and (x = y)are, except for the trivial functions,
the only associative commutative functions of two variables.



T i || v T« YL A TYS Y5 T« Y. =) T % iD | yFWV  vE | v FE | ¥
00 1 1 XA ¥ AT 1 1 TAlAT 1 0V oVo 0 0 0 0 [
00 0 0 Xy A XA Xy 0 1 AT A X 0 0V OV X, i 1 1 1 0
0 1 1 1 o A X A Xy 1 0 [ 1 VE VO 0 0 0 0 1
01 0 0 X A % A Xy 0 0 1A X A Xy 1 0V E VX, i 1 1 0 1
1o 1 1 PN TN 1 0 Al A 1 VoV o 0 0 0 0 1
10 0 0 EI TN 0 0 Ko AT A Xy 1 T, V0V E, 1 1 1 0 1
11 0 0 g A XA X, 0 1 Xo A% A 0 VAR VO 1 1 1 1 0
11 0 0 IR 0 1 Xo [ Xy A X 0 Xo V EF VX, 1 1 1 1 0

[ Gy A& AED VDY Gy A xp A X V0V (xg /% A %) v (0) V (0) V (0) (Disjunctive)
_ - MA@V s VEDAM AGV F VEIAMAG YV 3 VE)AG VE YV I AG V5 YV 5 (Conjunctive)
JE® =G VR ARy =

| /D # (%) A4 (0) % () / (0) # (0) # (%9 A %) /- (x5 A xy A x)] (Exclusive disjunctive)

LM =G=M =M= = =GV 3D =(% V5 V 5l (Equivalence)

Table 7.2 Intrinsic, characteristic, and specific vectors

0s¢C

sanao oy L

TLY
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The forms are defined formally by the following expressions.*

[¥(f, V) i (T % x) (Disjunctive) (7.11a)
YU ) LT E) (Conjunctive) (7.11b)
) = ; y(f, #) 2 (T %) (Exclusive disjunctive) (7.11¢)
Ly(f, =) v (T ;%) (Equivalence) (7.11d)

Table 7.2 shows the intrinsic vector of the function f of Table 7.1
together with corresponding pairs of characteristic and specific vectors.
These may be substituted in equations 7.11 (a—d) to verify that they do
represent the function f.

Since ¥ = T* = Tk for some k, equation 7.11a may be written as

i) = (T = x(f, V) 1 (T ) Ty
Consequently,

YU MG (T2 Ty =x(f, A)  S(A)  (7.12b)
YU, #) L (T . T)=x(f, #) " S(#) (7.12¢)
Ly(fs =) o (T 2 T) = x(f, =) 7 8(=) (7.12d)

Each of the matrices S(©) appearing in the right limbs of equations
7.12(a—d) is a fixed function of T and is called the O-specific (e.g., dis-
junctive specific) matrix. Since i(f) is a function of y(f, ©) and $(©), the

relation between the intrinsic vector and each characteristic vector is
determined by the corresponding specific matrix.

Since S(v) = (T T)= (T " T), it is clear that S(v)=1. Conse-
quently, y(f, v) ¥ 8(v) = y(f, v), and therefore,

(YU V) AT 2 Ty = y(f, v) 4 S(v) (7.12a)
|

i) = 1

|

|

Y(fs v) =i(f). (7.13)
Similarly, S(A) =1, and y(f, A)  S(A) = y(f, A), and again
Y(f, A) =i(f). (7.14)

An explicit expression for S(#) may be obtained by induction on the
dimension of the corresponding argument, and, to facilitate this, the
notation T(n) and S(=, n) will be used for the matrices appropriate to an
argument ¥ of dimension n. T(n 4+ 1) may be written in partitioned form
as

T(n + l) — lie T(”“)jl’
e T(n)

* The expression TQ % used here for the specific vector in the disjunctive form is
equivalent to the expression T A x used carlier. [ts use increases the uniformity of the
expressions for the canonical forms.
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where € and € are both column vectors. Hence

e T(n) € €
stamen=[t 0] [E ]
e T(n) T(n) T(n)
_ [E_/\ S(#,n) E A S(#,n)}
E A S(En) EA S )

sincee g€ =€e:e=E, ande g € = E. Finally,

ﬂ#m)ﬂ#mq

S(#,n + 1) = [E ------- e (7.15)

11
Since S(:£, 1) = I:O I:I it is clear that

11111111

01010101

111 1] 00110011

0 10 1 0001000 1
SED=1g 01 1) SI=lo00001 11 1
0 00 1 00000101
00000011

00000001

and so forth.*

The following useful properties of S(£) are easily verified for the fore-
going examples and may be established generally by formal induction.
The matrix is self-inverse with respect to the operations (7), that is,

S(#) 7 S(#) = 1. (7.16)

Moreover, since every row of the transpose §(;ﬁ) save the zeroth has an
even number of ones, ~
2e)|+/8() = e.
Hence by equation 7.5, ~
#18(:4) = €. (7.17)

Since (by equation 7.4) S(=) = E(;z%) and since S(5£) is of even dimension,
the same result holds for §(=).

* This result was first obtained by Muller (1954), who employed the matrix C of
binomial coefficients and showed that S(-+) = (2E)|0C. Also see Calingaert (1960).
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Equation 7.12c gives i( f) as a function of y(f, #) and $(5£). Thisrelation
is more commonly written in transposed form and with i(f) replaced by the
equivalent y(f, V) as follows:

Y(£, V) = S(£) L y(f, ). (7.18)
Since S() is self-inverse (equation 7.16), premultiplication of equation
7.18 by 8(+#) 7 yields an identical expression for y(f, #) as a function of
y(f. V), namely N
YU, #) = S() L y(f, V). (7.19)
The characteristic vectors of the identity function 1 and of the zero
function 0 may now be derived. Clearly i(1) = € and {(0) =€ . Hence by
equations 7.13 and 7.14,
Y, v) =y, A) =€,
and
YO, v) = y(0O, A) = €.
Moreover, _
Y(1, #) = S() T e

= #[S().
Hence, by equation 7.17,
y(1, #) = €. (7.20)
Similarly, ¥(©, #) =€

The relations between the characteristic vectors of a function fand of its
inverse f may now be obtained. Since

i(f) =i(/f), (1.21)
then, by equations 7.13 and 7.14,
Y(f, V) =¥(f. V),
and Y(f, A) =Y(f A).
Morcover, Y(f, #) = S() Li(f) = 8() L i(f),
by equations 7.13, 7.19, and 7.21. Hence
Y(fs #) = (Y, #) # €) (7.22)

by equations 7.7, 7.17, 7.19, and 7.13. Characteristic vectors of a function
and of its inverse are displayed in Table 7.2.

The relation between y(f, #) and y(f, =) may now be obtained by
applying equation 7.22 to equation 7.12¢ to yield

i(f) = i(f) = (Y(f, #) # €) L S(7).



i(f) Y(f, #) Y(f, =) i(f) Y(f, #) Y(f;, =)
i(f) i(f) SH IS A | S= 3= | WD S(=) 3 ¥ #) | $(#) % ¥, =)
YA | S Ei | A ((f, =) =€) S(H TN |G A £ |, =)
Y(fs =) S(=)7i) |(Wf,# =€) | ¥(f, =) S(=) i) | ¥ A G, =) + €
i(f) i(f) S(=)T Y A | SH 2 =) | i) S(#) Ey(h A | S(=) 7Y, =)
Y(f; #) S(H LU |G A = | WS =) S(HFN | v ) ¥, =) =€)
Y(f, =) S(=)5HN | WA (f, =) # € S(=) 5 | =)+ | (=)
M YfHV) =Y(f,A) =i(f) o | 1
@) S(+,m) = (T(n) § T(n) i : | e
S(#n=D{ E V) | €| e
—<§(¢,n—1)§ §(¢,n—1)) YAA) | & e
N 10 Y(f, #) | € Ry
B) S(#,1) = (1 1) v, =) P c

@ S(=) = S(#)

Zero and identity functions

Table 7.3 Relations among characteristic vectors

pse

snnopa aidoy YL

TLS
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Application of De Morgan’s law and of the fact that S(=) = S§(:¢) yields
i(f) = (y(f; #) # €) v S(=).

Comparison with equation 7.12d shows that

Y(fs =) = (y(f, #) # €)
= (Y(f, 7) = €9).
The relations among the various characteristic vectors are summarized
in Table 7.3.

7.3 DECOMPOSITION
A logical function f(¥) is said to be decomposable on u if it can be written
i the form f&) = g(h(@/s), uf»)

where g and / are logical functions. Since f, g, and # are functions of
w(w), (1 + +/u), and + /4 variables, respectively, then if 4+ /@ > 1, both
g and £ are functions of fewer variables than f. Decomposition on u such
that 4/ > 1 thus permits f to be expressed in terms of simpler functions
g and & and provides an important basis for simplification techniques.

Every function is decomposable on u = €. Moreover, if +/t1 = 1, then
u = €' for some /, and

J@ =8 A fx A )] v [x A flxve)l

Since both f(x A €) and f(x \/ €') are expressible as functions of €'/, then
the foregoing expression is of the required form with A(u/x) = x,. Con-
sequently, all functions are trivially decomposable for 4/t =0 or

+/a = 1.
Disjunctive canonical form

Ashenhurst (1957) determines nontrivial decompositions of f(x) by
arraying the intrinsic vector #( f) in a 27/* x 27/ matrix F defined as

follows: Fi = ilf),
where k=Qe | k

i = (e) L (u/k)
and j=(2¢) | (ujk).

If, for example, u = (1,0, 1, 1, 0), then the index k of each component (/)
appearing in F is given by the matrix* C of Table 7.4. The table also shows

* Ashenhurst (1957) calls the matrix C' a decomposition chart and represents F by
circling each element of € which corresponds to a nonzero component of i( f).
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Table 7.4 Decomposition of the function f(x) on u

§7.3



§7.3 Decomposition 257

corresponding values of i( f) and F.

\

~

Let p= : X,
q=T % (a»,
and r= T (u/x)

be the minterm vectors of ¥, u/x, and u/x, respectively.* Then the matrix
P=gq;r

contains the components of p arrayed in the same order as the components
of i(f) in the matrix F. Consequently,t

f&) =i(f) . p=V/[VI[FNP).

Decomposability depends on the structure of the matrix F. If each
column of F is either zero or equal to the vector a, there exists a vector ¢
such that

F=a/ec (7.23)
Hence, J® = v/[v/|M,
where M=(a;c)n(qgrr). (7.24)
But by equation 7.8, M = (a A q) © (¢ A 1), (7.25)
and hence by equation 7.9,
J®) =V/[V[IM=(Vvi@anq)r(Vichr) (7.26)
=(a/q) Al(cin.

Since the first and last terms on the right of equation 7.26 are, respec-
tively, functions of /¥ and of u/x only, the function f(x) is decomposable.
The required functions are simply

h=h@x)y=a.q=a! [T (@] |

o |
Sx) =glh,u/x)=hAr[c ;1] |> (7.27)

r=T7/ (ux) )
Since equation 7.27 does not represent the most general possible function
of i and u/x, it appears that the characteristic matrix F = a 3§ ¢ does not

* Although denoted by the same symbol, the matrices T are of differing dimensions
as required by compatibility.

+ Since #(f) is equal to Y(f, Vv ), it may be substituted for it in the disjunctive canonical
form.
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represent the most general function decomposable on u. Ashenhurst
(1957) has shown that the most general type of function decomposable on
u is represented by a characteristic matrix of the form*

F=(a,byv(@a:c)yv(esd) Vv, e), (7.28)
where b, ¢, d, and e are mutually disjoint and collectively exhaustive, that

is,

b+c+d+e=ce.

The fourth term of equation 7.28 is identically zero and is included only
for formal completeness; hence

F=(a->b)vi(a:  c)Vvi(e:d). (7.23")
Equation 7.24 now becomes
M=(a:b)yv(@ic)vieid)n(qg?ir), (7.247)

and since conjunction is distributive over disjunction, equation 7.8 may
again be applied to yield
M=(@AQ BAMNV@AQ (AR VEeq):(dArn)
(7.25)
Moreover, since v/ Vv /(X v Y)= (v/Vv//X) v (v/Vv]/Y), equation 7.9
may again be applied to yield
J®)=V/VvjM
=@ PABin Ve @A/ N VieipAndin. (720)
Since q is a specific vector of the disjunctive canonical form (i.e., a

minterm vector), it is some column of the specific matrix S(v). Since
S(v) =1, q therefore contains exactly one nonzero component, and

consequently (@ Y q) = (a ; q), and € ¢ = I. Equation 7.26 can thus
be rewritten in decomposed form as

h=h@s)=a q=a; (T (i/x) )
f(0) = gthoufsy = (A (b)) v (A (el vdin (27)
r=T (u/x) J

It is interesting to note that no use has been made of the fact that b, c,
and d are disjoint. Relaxation of this restriction does not, however,
increase the generality of the matrix F, sincea v e =€, a v € = a, and
a v a = e. It does suggest, however, that the matrix F may be expressed
more compactly as

F=(a;:m)Vv (a’n),

* In Ashenhurst’s terminology, the matrix F must be of the following form: each

column is either all zeros, all ones, the vector a, or the vector a.
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where m =b v d and n = ¢ v d. The second line of equation 7.27
then becomes
fxy=(h A (m 1) v (hA(n:r), (7.28)

a reflection of the obvious fact that the third term (d : r) of equation 7.27
can be incorporated in the preceding terms.

Table 7.4 shows a complete example of the decomposition process for
u=(1,0,1,1,0). The characteristic matrix F is obtained by applying
the matrix C to i(f'). Clearly

F=(a’b)yviaic)Vielc)
=(a’m)V(a’n).
Consequently,
J@) =(h A b 0) v (hr(ein)vd:r,

where h=ai.q, q=T"(u/x), andr =T . (ujx).

Since q= (3 A X, % A% % A X, % A X,
and a=(1,0,0,1),

then h= (X AZ%)v(E A% =(x=35).
Similarly, bir= (% A % A K) V(% A X A E)

= x, A (¥, F£ %3).
T =(F,AF) V(% A XA %),
and d: r==x,\ % A %,
Alternatively, the use of the vectors m and n yields the solution
J@ ={h A (G A 5y A x) V(5 A TV A Gy ATy
v (# A (% = *))]}

The entire decomposition process is described by Program 7.5. Steps
1-7 determine the characteristic matrix F appropriate to the decomposition
u. The loop 2-7 is repeated for each value of & from zero to 2" — [.
Step 2 determines k as the vector (of dimension »(u)) whose base two
value is k. Steps 3 and 4 then specify the indices / and j appropriate to 4,
and step 5 specifies element F,’.

Step 11 determines d as the vector which specifies all full column vectors
of F, that is, d; = | if and only if F; = €. Step 12 determines e as the
corresponding vector specifying the zero columns.

If d and e together exhaust the columns (that is, d v e = €), then b and
¢ (and a arbitrarily) must be set to zero. Since this is done by steps 8-10,
the exit branch on equality at step 13 terminates the process correctly. If
(d v e) +# €, then any column of the matrix (d v e)/ F can be used to
specify a; step 14 uses the first column. Step 15 determines b as the vector
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1 — k<0 0-origin indexing
2 R o<
2] et k f | Logical function of »(u) variables.
3 i« (2¢)(ujk) u | Logical vector specifying the de-
4 f < (2€) __(u/k) composition_
/ S f(x) = g(h(i1/x), u/x).
3 Ff i) F | Characteristic matrix for the de-
6 k<~k+1 composition :
— a+ja. — 9+ ju
B S A p(F) = 2505 y(F) = 2718,
o i | Row index for F.
8 @ < e+ j | Column index for F.
9 b «—e(+/u) k | Scan index for i( f).
10 ¢ « e(+/u) k | Base 2 representation of k.
11 d<¢e™F a | Nontrivial column of F.
- b | (bF), =a.
€/ F
12 e € c (C//F)j = a.
13 € (dv e L= d | @F), = e
14 a —((d v e)F), e | (e/F); =€
15 b«alF
Legend
16 ¢c<~alF
17«ie t(bveyvdyel—=s

Program 7.5 Decomposition of fon u

specifying the columns of F which are equal to @, and step 16 determines ¢
correspondingly for the vector a.

The function f'is decomposable on u if and only if b, ¢, d, and e together
exhaust all columns of F. The left-pointing exit on step 17 therefore indi-
cates nondecomposability on .

The algorithm can be extended to test all possible values of u successively
and so determine all possible decompositions. Use can be made of the
obvious fact that the matrix F appropriate to decomposition on u is the
transpose of the matrix F appropriate to u.

Other canonical forms

Ashenhurst (1957) remarks that decomposability is an intrinsic property
of a logical function f'and is independent of the form of its representation.
1t can also be shown that the particular algorithm of Program 7.5 is intrinsic
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in that it applies (in a slightly generalized form) to the characteristic
vectors of all four canonical forms.

Since i(f) = y(f, A) = y(f, V), it is clear that the decomposition
algorithm applies directly to the disjunctive and conjunctive characteristic
vectors. The case for the remaining forms will be developed for the
exclusive disjunctive form only.

Let F be defined as in Program 7.5 but with i( /') replaced by y( f, #).
Moreover, let _

p=T:,x

q= T (a3

r= T (uf),
and P=gq;r.

Then, clearly f(x) = #/3=//(F A P).

As in the case of the intrinsic vector, the structure of F must be expressed
in terms of the characteristic vectors of a given function 4, of its inverse h,
and of the identity and zero functions. In the exclusive disjunctive form,
Y(1, #) = €, ¥(0, ) = €, and if y(h, ) = a, then y(h, £) = (a # €).
The term in € may again be disregarded and the form required of F for
decomposability may (following equation 7.23") be written as

F=[(a+€) 7 b]Vv(aic)V (e’ d), (7.23")

where b, ¢, and d are mutually disjoint.
The matrix M such that f(x) = 34/ //M may now (as in the analogous
case of equation 7.25") be obtained by applying equation 7.8:

M= (((a#eNnq (bnrr)Vv ((@arq)i(cnr)
vV (€A q) i), (725
Equation 7.25” will also be written as
M=UvVy W,

where U, V, and W denote the successive matrices of the right limb.

Since b, ¢, and d are disjoint, so also are the matrices U, V, and W. For
any pair of disjoint matrices X and Y, it is easily shown that

HANX v Y) = ((F]#]]X) + (F[#]]Y)).
Hence
J®) = AA[IM = {[(£[A]]U) # (£ VI] 4 A A W),

The application of equation 7.10 to each of the matrices U, V, and W now
yields

SO ={[(a#e) ) A bIin)+{alq)nr(cin)]

£ (€7 q) A (d ). (7.26)
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Since a, (a # €°), and €° are the characteristic vectors of the functions
h, h, and 1, respectively, equation 7.26” may be written in the decomposed
form

hiTjx) = a | (T { (u/x)) ]I
J@=Wh A @GN A A in)#din) (127
r=T1 (u/x) )

For the example of Table 7.4,
(. 4 =0,1,11000,1101,0,0,0,1,0,0,1,0,1,1,1,0,1,1,0, 1,0, 1,0, 1,0).

Table 7.6 show its decomposition in the exclusive disjunctive form.

a (a+¢€%
1 100 0 0 10 1 0
1 101 1 1 11 1 1
F= 1 101 1 1 1 1 1 1
00 000000 0 0

c=( 10000 [ 0

d= (0 0 0 0 0 0 0 0

Table 7.6 Decomposition in exclusive disjunctive form

The only change required in Program 7.5 is in the specification of the
vectors d and b on steps 11 and 15. These may be replaced by the following
steps:

11 d«—€"F
15 b<—(a+€")"F.
The program may be made completely general (i.e., for y(f, ©)) by simply

replacing €® with y(1, ©) in the foregoing steps, and replacing € with
v(0, ©) in steps 8, 9, 10, and 12.
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EXERCISES

7.1 Use De Morgan’s laws (equatlons 7.2 and 7.3) to establish
(a) the identity U {} V = U;v.

(b) the identity U '/i V =

(¢) equation 7.4.
7.2 Show that the expressions * = (y # z) and y = (¥ # 2) are equivalent.
7.3 For the function f(xg, X}, ¥,) = (¥q A (%, # %3)) V (Fy A %), derive

(a) the intrinsic vector i(f).

(b) the four characteristic vectors of f.

(c) the intrinsic vector of f.

(d) the four characteristic vectors of f.
7.4 Use the matrix ® of equation 7.1 to summarize the canonical form expres-
sions (equations 7.11 (a-d)) in a single equation.
7.5 Show that y(f, A) = Y(f; A).
7.6 Use De Morgan’s laws and the result of Exercise 7.5 to derive equation
7.11b from 7.11a.
7.7 Show that if y A -z =0, thén

X2y va=(X7y +(X ]2

7.8 Let fand g be two disjoint functions (i.e., f (%) A g(x) = 0 for all %), and
leth = f v g. Derive expressions for the four characteristic vectors of 4 in terms
of the four characteristic vectors of fand g

7.9 Each of the sixteen logical functions of two variables may be characterized
by its intrinsic vector i(f) and be denoted by

[l =, i( f), v).

For example, (x # y) = B(x, (0, 1, 1,0), ). (The function f(z, i( f), ) is some-
times called the kth Boolean function and denoted by §, (z, ), where k = Li(f).)
This notation can be extended to vectors x and ¥ so as to permit different func-
tions to be specified for each component. Thus

al
<

Ny
v

z <7/3('”’ F’y)<:>zi zﬂ(xi’ thi)’

where »(F) = »(x) and x(F) = 4. Show that
(a) if x =(0,0,0,0,0,0,1,1),y =(0,1,0,1,0,1,0, 1),
and 1L F = (0,0,0,0, 6, 6, 6, 6), then (%, F, y)
=(0,0,0,0,0,1,1,0).
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(b) f(x, F,¥) = p(x, F, )

©) B, F v G,y = pxFy) v (s G,y

(d) B(x, FA G,¥) = f(x, F,¥) A (%, G, ).
7.10 The functions S(x, F, ) defined in Exercise 7.9 can alternatively be ex-
pressed as f3(x, f, ), where f =JLF. Develop relations on f corresponding to
those of Exercises 7.9 (b-d).



SUMMARY OF NOTATION

S.1 CONVENTIONS

Basic conventions

(a) l-origin indexing assumed in this summary.

(b) Controlling variables appear to the left, e.g., ufs, b | y, k } %, and
ujfx.

(c) Dimension » may be elided (if determined by compatibility) from
€(n), €(n), a*(n), w*(n), and V(n).

(d) The parameter j may be elided from operators |,, 6, {;, and ¢;, and
from the vector U if j is the index origin in use.

(e) The parameter & may be elided from k t x if k = 1.

Branching conventions
#
(a) l.’t Ty ’—»

The statement to which the arrow leads is executed next if (ri4y)
= 1; otherwise the listed successor is executed next. An unlabeled
arrow is always followed.

(b) xiy, r—>S$

The statement numbered s, is executed next if (xr,y) = L. The null
symbol © occurring as a component of r denotes the relation which
complements the disjunction of the remaining relations in r.

(c) — Program a, b
Program a branches to its statement . The symbol @ may be elided

if the statement occurs in Program « itself.

Operand conventions used in summary

Scalar Vector Matrix Tree
Logical u, v, W u, v, w Uuvw UV, W
Integral hij k h,ijk H I J K H, I, J K
Numerical Y, T Xy, % X, Y Z X,Y,Z
Arbitrary a, b, ¢ a b, c A, B C A, B, C

265
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Summary of notation

S.2 STRUCTURAL PARAMETERS, NULL

Dimension
Row dimension

Column dimension

Height
Moment
Dispersion vector

Moment vector

Degree of node i
Degree

Leaf count

Row dimension
of file

Column dimension
of file

Null character

v(a)
w(A)

1(A)
¥(A)
H(A)
v(A)
w(A)

o(i, A)
A(A)
AA)
w( D)

(D)

Number of components in vector @ §1.5
Number of components in each row
vector A¢
Number of components in each
column vector A;
Length of longest path in A §1.23
Number of nodes in A
v;(A) = number of roots of A;
v,(A) = maximum degree of nodes
onlevel j — 1; »(v(A)) = »(A)
@;(A) = number of nodes on level j
of A; »(w(A)) = »(A)
Degree of node i of tree A
O(A) = max (i, A)
i
A(A) is the number of leaves in A
Number of files in each row of a §1.22

file array

Number of files in each column of a
file array

Null character of a set (e.g., space in  §1.3
the alphabet) or null reduction
operator



Summary of notation 267

S.3 RELATIONS

Equality a=5> a and b are identical 81.15
Membership aeb a = b, for some {
Inclusion b>a a;eb forallj

achb
Strict inclusion b>oa boaanda b

acb
Similarity b=a b>aanda>b
Complementary 4;’ The relation which holds if and only
relations if # does not. Examples of comple-

mentary pairs: e, ¢; D, p; -, b,

Combined (ored) A list of relations between two vari-
relations ables is construed as the or of the

relations. Thus ¥ © > y is equivalent
to x = y. When equality occurs as
one of the ored relations, it is indi-
cated by a single inferior line, €.g.,

< and <.

S.4 ELEMENTARY OPERATIONS

Negation Wi w=Il<>u=0 §1.4
And w—uANv w=l<r>u=]andrv =1
Or w<uve w=l<sy=1lorr=1
Relational state- w «-(a#b) w = 1<=- the relation a.# b holds
ment
Sum z<-w +y =zisthealgebraicsumof.wrandy
Difference z<—x —y  zisthealgebraic difference of - and y
Product z<-x Xy =zisthealgebraic product of numbers
z <« ay xand y, and c is the arbitrary character
¢ <-a xu aorzeroaccording to whether the
c<-au logical variable « is one or zero.
Quotient z<«-x ty zisthe quotient of vand y
Absolute value z | z=x X [(x > 0)—(xr <0)]
Floor k x| k<<wx -k +1
Ceiling k ~[x] k ox -k—1

J-Residuemodh k <-h|;i i=hg+k;j <k <j+h; andgis
integral.
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S.5 VECTOR OPERATIONS

Component-by-
component exten-
sion of basic
operation

Scalar multiple

Reduction

Ranking
J-origin b-index
ofa

j-origin b-index
ofa

Left rotation

Right rotation

Base y value of x

Compression

Expansion
Mask
Mesh
Catenation

c+—aob

T —x XY
Z Ty
C«+—a Xu
C —au

<« (O /U

c~ba

c«bya

c—kla
c<—kla

z+—y . Lx

c<—u/b

c<—ub

c «ja,u, b/
c<-‘a,ub
c«~—a’b

¢; =a; O b, Examples: x x y, NI
(a 7 by, k| iun v, [x]

z, =v Xy,and ¢; =a X u;

c=(-- ((al O} az) 0] ag) sy O a), N
where O is a binary operator or rela-
tion with a suitable domain. Examples:
+/x, x[%, #[u. Reduction of the
null vector €(0) is defined as the identity
element of the operator ©. Examples:
+/e(0) = 0; x/e(0) =1, v/e(0) =0,
A Je(0) = 1.

§1.16
¢ = oifa¢b; otherwise cis the j-
origin index of the first occurrence of
ainb.

¢, =bua;

¢; = a;, where j = v(a) |, (i + k) §1.6
¢, = a;, where j =w»(a) | (i — k)

7= +/(p x x),wherep, = l,and $§1.14
D,y =D; XY

¢ is obtained from a by suppressing ~ §1.9
each b, for whichu; =0

ujc =0,ujc =b

ujc =uja,ujc =ulb

u/c =a,ujc=>b
c=(a,a,...a,4,.b ... b)) =
\a, w'® b



S.5 VECTOR OPERATIONS (continued)

Characteristic of
xony

jth unit vector
Full vector
Zero vector

Prefix of weight ;
Suffix of weight ;

Maximum prefix

Maximum suffix

Forward set
selector

Backward set
selector

Maxima selector

Minima selector

Interval or
j-origin
identity permu-
tation vector
j-origin permu-
tation vector

j-origin mapping

Jj-origin ordering

£
w<—€y

w —el(h)
w —e€(h)
w — e(h)
w0

w < al(h)

w «— wi(h)

w <-xfu

w—olu

w —ala
w «-r/a
w < ulx
w —ulx

kv

k

c <« a,
cbfa

k —0;/x

Summary of notation 269
w, =(y,¢x); v(w) =r(y) §1.15
w, = (i =) §1.7
w, = |
w, =0

wWw) =h
First £ of w; are unity
where & = min (j, ).
Last k of w; are unity
where k& = min (}, h).
w is the max length prefix in 1. 81.10
Example:
«/(1,1,0,1,0,1) =(1,1,0,0,0,0).
w is the max length suffix in .
Example:
w/(1,1,0,1,0,1) =(0,0,0,0, 0, 1).
w, = 1ifa; £a;forallj <i
w;, =tifa; fa;forallj =i
w; = u; A (x;, = m) where §1.18
m = max (u/x);
i
w, =u; A (¥; = m)where
m = min (1/x);
J

E=(j+1,....5+h—=1) §1.7
E = JU((k)) §1.17

c; = o if b; ¢ U(r(a)); otherwise

¢; = ay inaj-originsystemfora. In
the first form (that is, ¢ «- a;), the
origin cannot be specified directly.

y = kf;xisin ascending order and
original relative ordering is main-
tained among equal components, that
is, eithery;, <y, jory, =y;,;and
k; <k,
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S.6a ROW GENERALIZATIONS OF VECTOR

OPERATIONS

Z—-XOY
3 — OfX
C - /A

M-«—B, A
C -kt A
C—Ek A
z2<«-Y L X

C - A,
C-<-B j‘h A
K - Oll/X

C<«-A B
C «-u/B
c - U/B

C «-u.B

C «-Ub

C —'A,u, B,
C«—aUWb,
C — /A, u, B/
C «- /A, U B/
C «<-Ja, U b/

W —a/U
W « o/U
W «—a/U
W — /U
W < UX
W« UX

A in O] in

= OfX?
= Al O A2 (G
A

v

' = By, A
.zkiTAi
L=k, | AV

=y _Xxi

= Ab,
= B! jh A

= Oh/Xi

i — A .. B
' = u/B*

- UI/BI ORRE

<o UtBr
=0,u/C =B
=0,U/C =b
=A,u/C =B
=a,UC=5b
= u/A, u/C = u/B

= U/A, U/C = U/B

= |E\a, U, E\b/

= x/U?
i = wfU?
- = g|U?
- = U
i — UiI'Xi
= Ul X?¢

§1.5
§1.8
§1.15

§1.16
§1.6

8114

§t.17

§1.10

§1.18






272

Summary of notration

S.7 SPECIAL MATRICES

Full matrix W Ep,q) Wi= )
Zero matrix g : g(p, g Wi=0 wW)y=p

. »(W) = g, for
Superdiagonal W —*l(p,q) Wi=(i+k=)) pandg
Identity W —I(p,q W =1(p,q) integers.
Upper left W—Fi(p.g Wi r Elision of
(triangle) ) pand g if
Upper right W—Op.q9) Wina-i}:=( +j<m), dxmenS}ons
Lower left W—Op,g) Wi m = min (p, 9) g;termmed
Lower right W —[(p.q) Wﬁill*:‘lJ | compatibility.

S.8 TRANSPOSITION

Diagonal C B Cj = |
N
C —B
C di 1 C g crB+1—-7 _ . Bd
ounter diagona - Bl = ;
-
Horizontal C —B C/Jf‘B)'H—i =
1 .
Vertical C —B C:(BH_L ;=
—
Vector VY —x Vi=%__,
1
Y =X

S.9 SET OPERATIONS

Intersection c+bna c=¢°b

Difference c—bpa c=%€°b

Union c—bua c=bO(apb)

Cartesian C bl CH"-l("fG) =(by', b ... by
product Seabt d; =v(b); 1 <Ry < d;

Clearly, »(¢) = n,and ;(¢) = x/d

§1.13

§1.12

§1.15
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S.10 GENERALIZED MATRIX PRODUCT

C<-A%B

C;7 = O4/(A* O, B)), where O, produces a vector §1.11
(i.e., is not the operator L), and O is a reduction
operator (and hence C;* is a scalar).

C? = (A% O b), where © is any operator which
produces a vector of dimension »(b).

C; = (a O Bj), where O is any operator which
produces a vector of dimension »(a).

A representation of a of the form  §1.22
(pl, a, p2» ag, Ly av(a)s pv(u) :1»17 ©s

p,,(a) L9y e ey p,,(p)), where Duis the
partition at position #, p; = Dup) =4
and (a! A wl)/p < A,

C«-A0Ob

C «—a (Oj B

Calb Ci* =(a; O by).
S.11 FILES

File )

Position file a(DF) <-h

Record (from position /)

Forward

Backward

O(D)'i —a, }‘Ic

1P e a,

Read (from position /)

Forward

Backward

File array
Full

Row
Column

Compression
Row

Column

a, b~ O(DJ2

a, b — 0}

[¢))

g
(DJ.

u/®
ufjd

Set file to position . Called rewind
ith = 1,and wind if h = »(p).

a, <—a, Py ., < Ay; stop at position
h + 1. Zero prescript may be elided
and A; may be elided.

a,_y<—a; Py_y <A, stopat
position i — 1. A; may beelided.

a «-a,; b« p,. ,; stopat position

/1 + 1. Associated branch is controlled
by p,.,1, and h may be elided. Zero
prescript may be elided.

a<-a, ; b<p, ;; stopat position

i — 1. Associated branch is con-
trolled by p,,_; and b may be elided.

Array of files @7, for i e 1}(1(d)),
Je (@),

Row of files @ 7, for j e 1}(»(®)).
Column of files ® 7, for / e L2y()).

Selection as in corresponding opera-

tions on matrices.
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S.12 TREES

Path i c<-Af c,is the ijthroot of A; c;isthe i;th §1.23
node of the nodes on level jreach-
able fromnode ¢; _,.

Node i ¢ «-(A¥),;, The final node of path A%

Subtree i C -A; C is the subtree of A rooted in node i.

Component-by- € <A OB (C),y = (AD,y, © B, .

component

Path reduction C <~ O/A  Reduction by operator or relation ©
on nodes in left list order.
Level reduction C «— Of/A  Reduction by operator or relation O
on nodes in right list order.
j-origin b-index B <— by A (B, = b (A),;)
j-origin mapping C «- b {; A Rooted subtree C; is a single null
character node if b; ¢ 1/(,(A)); other-
wise C; = A, , where A is treated in a
Jj-origin system.
Full right list C—JA WI The rows of the index matrix a2/C are
matrix | the right (left) justified index vectors
| (with null fill to the common
> . . .. .
dimension »(A)) arranged in increasing
Full left list C «[A I order; C,and C, are the correspond-
matrix J ing degree and node vectors of A.

Right list matrix C <—a?/JA| The degree and node vector columns

Left list matrix C a2/[A} of the full right (left) list.

Tree compression C «— U/A C is obtained from A by suppressing
node i if node 7 of U is zero and re-
connecting so that for each remain-
ing pair of nodes, the onelies in the
subtree rooted at the second if and
only if it did so in A.

Path compression C <~ u/A C is obtained from A by suppressing
all nodes onlevel jif u; = 0, and re-
connecting as in the compression U/A.

Level com- C «~u//[A  Cisobtained from A by suppressing

pression rooted subtree A; if u; =0.

Level mesh C«V\A,u,B\ u//C=A;u//C=B

Level mask  C «//A,u,B/| u//C =u//A; u//|C = u//B.

Path catenation C<-A " B Cis obtained by connecting roots of
B to leaves of A, allotting successive
groups of at most [, (B) - A(A)]
roots of B to each successive leaf of A.
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S.12 TREES (continued)

Full tree

Zero tree

Path tree

Level tree

Maximization
Minimization

Maximum path
prefix

Maximum path
suffix

Forward path
set selector
Backward path
set selector

Maximum level
prefix
Maximum level
suffix

Forward level
set selector
Backward level
set selector

W~ E

W «- E(k)
W~ E

W 0

W < E(k)
w 47uE
w < “E(k)
W < ,E
W« E(k)

W —UlA
W< U[A

W /U

W < o/U

W < 6/A
W «-7/A
W« «f/U
W < o//U
W —af/A

W <-7/[A

Each node of W is unity and the §1.23
structure of W is determined by
compatibility.

Each node of W is unity; W is homo-
geneous (i.e., all nodes on any level

have a common degree) and w(W) = k.

Each node of W is zero and the
structure of W is determined by
compatibility.

Each node of W is zero; W is homo-
geneous and v(W) = k.

u/W =0; u/W = E; structure of W
determined by compatibility.

u/W =0; u/W = E; Wishomo-
geneous and W(W) = k.

u//W =0, u//W = E; structure of W
determined by compatibility.

u//W =0; u//W =E; Wishomo-
geneous and v(W) = k.

W =U A (A = mE), where mis the
maximum (minimum) over all nodes
of U/A.

W is obtained from U by zeroing all
nodes of every subtree rooted in a
zero node.

W is obtained from U by zeroing
every node which contains a zero
node in its subtree.

(Wh),;, = LIl (A", differs from all
preceding nodes of path A'.

(Wi),;, = Lif (AD,; differs from all
other nodes of its subtree.

e//W = aje//U

&//W = w/e//U
e//W = o/e/]A

eIW = 1/e//A
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0-origin indexing, 71, 186 Automaltic programming, 71
O-residue, 14 Auxiliary variables, 38
1-origin indexing, 12, 16 Axis of transposition, 25

1-residue, 14
Backward chain, 113

Abelian group, 69 Base address register, 74
Accumulator, 78 conversion, 190
index, 73, 79, 83 value, 27, 38, 146
Active domain, 148, 133 Batching, 138
Add, clear and, 76 Betz, B. K., 198
Additive indexing, 73 Binary operation, 13
Address, 72 search, 141, 155, 221, 236
leading, 100 Birkhoff, G., 26, 28, 32
table sort, 176, 213, 231 Biunique transformation, 144, 146
Address-ordered pool, 117 Blaauw, G. A., 110
Addressing, indirect, 32, 74, 76, 84 Block chaining, 119
system, open, 153 sort, 191, 213
Aids to serial sort, 204 transfer, 206, 213, 221
Algebra, matrix, 24 Boehm, E., 153
Algorithm, Euclidean, 67 Boldface letters, 10
Allocation, implicit, 108 Boolean function, 263
of memory, 105 Branch arrow, 2
Alternator, 184, 188 in files, 42, 181
Amdahl, G. M., 153 in a graph, 46
Amphisbaenic sort, 191, 195, 203 instruction, 73, 80
Analysis in p, 160 modification, 6
Analyzer, 159 Branching, 75
Arbitrary variable, 10, 13 ratio, 47
Argument, 10 Brooks, F. ., 129
program, 159 Bubble sort, 213, 217, 229, 233, 239
Arithmetic instructions, 84 Bucket file, 154
operations, 11 Burks, A. W, 53, 122, 163, 164
Arrow, 2 Busy indicator, 94
Ashenhurst, R. 1.., 188, 190, 191, 235, 258
Assembler, 159 Calingaert, I°., 252
Associative memory, 104 Canonical form, 247, 249, 235, 261
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Cap, 29
Carr, J. W, 171
Carter, W. C., 198, 203, 244
Cartesian product, 30
Cascade sort, 191, 198, 203
Category, 189
Catenated scan, 135, 139
Catenation, 20, 21, 29
Ceiling function, 12
Central register, 72, 78
Chain, 113, 117
filial, 128
list matrix, 121, 126
Chained representation, 110, 116, 135,
147, 221
stack, 113
Chaining block, 119
end-around, 112, 133
veetor, 155
Change sign, 70
Channel-unit interlock, 93
Channel, command, 88
data, 88
input-output, 73, 95
instruction, 100
trap, 75, 97
Character, null, 31, 58
Characteristic matrix, 258

Characteristic vector, 29, 249, 233, 261

Check, parity, 98
Chien, R. T., 154
Church, Robert, 239
Circuit, 46

Class of operand, 8
Classification, 177

and simple merge, 178, 186, 201, 211

simple, 177, 205

string, 183
Clear and add, 76
Clustering of keys, 154
Coalescence, 144, 148, 152
Code, Gray, 63

Huffman, 51

operation, 72

point, 124

variable length, 124
Column-chained matrix, 121
Column, compresston, 22

dimension, 14

expansion, 21

Column, list, 22, 108, 119
mapping, 33
mask, 21
mesh, 20
of fles, 43
operation, 8, 18
reduction, 17
sort, 178, 186, 191, 193, 204, 211
vector, 14
Command, 71
channel, 88
register, 73
Comparison, 2
ol internal sorting, 239
with zero, 5
Compatibility, first-order, 171
n compression, 18
of trees, 57
of vectors, 16
Compiler, 159
Components, 13, 22
Compound operation, 8
statement, 160, 165
Compression, 18, 21, 110, 113
tree, 54, 60
Computer files, 44
instruction, 71
program, 71
Congruence, 12
Conjunctive canonical form, 249
Connection matrix, 46
Contained in an ordering, 190
Control register, 72
Controlled scan, 135, 141, 147
Coutrolling parameter, 8
Conventions, 7
Conversion, base, 190
Convert instructions, 87
Copy operation, 177, 189
Counter, instruction, 73
Cramer, H., 138, 235
Cup, 29
Cycles, disjoint, 32
Cyclic scan, 135

Data channels, 88
path, 101
De Morgan's law, 16, 24, 64, 103, 246
Decisions, leading, 6
Deccomposition, 246, 255



Decomposition, chart, 257
of a vector, 21
Decrement, 78, 83
Degree, 47
veetor, 49, 53, 163
Derived key, 134, 144, 148
Design, hardware, 71
logical, 101
system, 71
Dewey, G., 129
Dickson, L. E., 63
Dilference, set, 29
Digital sort, 186
Dimension, 5, 13, 38
-ordered pool, 117
column, 14
elision of, 16
inaw, 1006, 108
Dirccted graph, 46
scan, 135, 147
Director, 159
Disjoint cycles, 32
vectors, 29
Disjunctive canonical form, 249, 255
Disordered pair, 233
Dispersion, suffix, 173
vector, 47, 59, 165
Distributor, 78
Domain, 10
active, 148, 153
Double chain, 113, 115
Dummy item, 179
variables, 40
Duplicate keys, probability of, 201
Dynamic relocation, 74

Element, null, 6, 10, 16, 32
of a matrix, 14
Elementary operations, 11, 13
statement, 160
Elgible item, 179
Elision, 5, 8, 11, 106, 32
Enable, 75, 100
Encoding matrix, 105, 109, 133
End of file, 90
End-around chaining, 112, 135
Entry arrow, 3
Equivalence canonical form, 2149
class, 134, 147
function, 12
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Equivalence, of statements, 11
reduction, 17

Equivalent formulas, 166

Euclidean algorithm, 67

Euler’s constant, 235

Evaluation, of internal sorting, 231
of sertal sorting, 199

Exchange sort, 212

Exclusive disjunctive canonical form,

249, 261

Exclusive-or, 12
reduction, 17

Execute instruction, 83

Exccution, instruction, 72, 77
sequence, 2, 5
time of a sort, 199

Exit arrow, 3

Expansion, 19, 21

Expected number, of strings, 200
of transpositions, 232

Falkoff, A., 104
Families of operations, 8
Fetch instruction, 72, 76
mode indicator, 76, 95
Fields, 205
Fifo discipline, 117
File, 40, 115, 135, 171, 176
bucket, 154
computer, 44
coordinate, 177
end of, 90
rewind, 183
stack, 172
Filial chain, 128
vector, 128
IFilial-heir chain list, 127
Filler components, 22
First-order compatibility, 171
Fixed scan, 137
Floor function, 12
Flowcharting, 1
Format vector, 105, 134
Formula, 163
equivalent, 160
minimax form, 106
Newton-Raphson, 64
reduction of, 163
singular, 164
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Fortuitous function, 133 Identity, permutation vector, 33
Forward chain, 113, 117 Immediate branching, 181
Fraction, scan, 135, 140 Implicit allocation, 108
Freiman, C. V., 154 specification, 38
Friend, E. H., 233, 245 Inclusion, set, 28
Full list matrix, 50 Index, 31
matrix, 22, 26 accumulator, 73, 79, 83
vector, 15 graph, 48
Function, Boolean, 263 list, 51, 60
ceiling, 12 matrix, 49, 53, 73, 125
equivalence, 12 origin, 16, 30, 32
floor, 12 register, 73, 108
fortuitous, 133 systems, 14
identity, 253 vector, 48, 60
inverse, 37 Indexability, 76
key, 176 Indexing, 0-origin, 71, 186
magnitude, 11 1-origin, 12, 16
mapping, 34 additive, 73
program, 159, 169 j-origin, 14, 43
sign, 11 operation, 31, 36
trivial, 248 Indicator, busy, 94
unit, 248 fetch mode, 95
zero, 248, 253 limit, 90
Indirect addressing, 32, 74, 76, 84
Gap, record, 98 Infix vector, 16
Garner, H. L., 67 Information store, 72
Gassner, B. J., 239 Initial node, 46
Generator, 159 Initialization, 6
Gilstad, R. L., 198 Input file, 41
Goldstine, H. H., 1, 178 Input-output channel, 75, 95
Graeffe method, 65 instructions, 88
Graph, directed, 46 Insertion, of an instruction, 75
index, 48 ranking by, 213
Gray code, 63, 104 sort, 212
Greek letters, 9 Instruction, arithmetic, 84
Grid matrix, 106, 118 branch, 73, 80
Group, abelian, 69 channel, 100
rotation, 26 computer, 71
convert, 87
Hanan, M., 154 counter, 73
Harary, F., 132 enable, 75
Hardware designer, 71 execution, 72, 77
Height of a tree, 47 fetch, 72, 76
Homogeneous tree, 58, 121, 226 input-output, 88
Huffman code, 51 logical, 78, 83
Huffman, D. A, 123, 129, 132 shift, 85
Integral variable, 10, 13
Identities, logical, 246 Interchange, 7
Identity function, 253 Interchange sort, 232

matrix, 26 Interlock, channel-unit, 95



Internal sorting, 176, 204, 205, 212, 231,

239

Interpreter, 160
Interruption, 75, 81
Intersection, set, 28
Interval vector, 15, 33
Intrinsic vector, 248, 261
Inverse characteristic vector, 253

functions, 37

mapping, 34

permutation, 33, 139
Italics, 10
Items, 176

dummy, 179

eligible, 179, 181, 213, 229

relatable, 177, 189
Iteration, 4
Iverson, K. E., 69, 129

J-origin indexing, 14, 43
Jacobsen, W. H., 146
Jacobson, N., 28, 65, 69
Johnson, L. R., 121, 148, 155
Jordan box, 68

elimination, 68
Justification, 23

Key, 133, 176
clustering, 154
derived, 134, 144, 148
multiple, 143, 155
transformation, 134, 144, 147
vector, 176, 189

Kronecker delta, 12

Kunz, K. S., 64

£-formula, 163, 173
minimax form, 166
£-notation, 163, 169
£-phrase, 163
£L-reduction, 164
Lagrange multipliers, 226
Lamb, S. M., 146
Language, programming, 1
structure, 7
Last in first out, 117
Leading address, 106
decisions, 6
Leaf, 46
list, 122, 145
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Left list, 122
rotation, 8
Length, of a path, 46
scan, 135, 148
Level compression, 54, 60
of a tree, 46
tree, 57
of structure, 39
LIFO discipline, 117
Limit indicator, 90

Linear representation, 108, 110, 118

List, chain, 121
column, 22

index, 51, 60
leaf, 122, 145
left, 122

matrix, 49, 108, 121, 161
processing, 110
right, 226
row, 22
vector, 122, 163
well formed, 52
Literals, 9
Load and store, 78
Logic, symbolic, 24
Logical design, 101
identities, 246
instructions, 78, 83
operations, 11
trees, 60
variable, 10, 13
vector, 18
Loop, 2
Lukasiewicz, J., 160, 163

Lukasiewicz notation, 122, 161, 169

Maclane, S., 26, 28, 32
Magnitude function, 11
Mapping, 32, 34, 58, 133
Margenau, H., 69
Marimont, R. B., 132
Marked pool, 117
Mask, 8, 19
Matrices, representalion of, 119
vector of, 39
Matrix, 13, 14
algebra, 24
chain list, 126
characteristic, 258
column-chained, 121
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Matrix, component, 14
connection, 46
dimension, 3
clement, 14, 73
enable, 100, 105
encoding, 109, 134
full, 22, 26
grid, 106, 118
identity, 20
index, 49, 53, 73, 125
list, 49, 108, 121, 161
multiplication, 4
product, 23, 33
row-chained, 120
sparse, 22, 120
special, 20
specific, 251
superdiagonal, 26
trace of, 27
triangular, 26

Mauchly, J. W., 178, 191

Maximal path, 46

Maximization, 36, 58

Maximum prefix, 9, 22, 58
suffix, 22, 58, 165

McCracken, D. D., 195

Member of a vector, 28

Memory, 72
allocation, 105

Merge, 177
simple, 177, 191, 205
single-phase, 179, 183, 206
sort, 178, 199, 204
string-doubling, 186
two-phase, 179

Mesh, 19, 110

Metaprogram, 71, 159

Microprograms, 71

Mid-square method, 154

Minimax form of £-formula, 166

Minimization, 36, 58

Minterm vector, 249, 257, 2358

Miscellaneous symbols, 10

Mixed radix, 27

Moment, of a tree, 47
vector, 47, 60, 125

Moore school, 178, 191

Muller, D. E., 252

Multiple keys, 143, 155
scalar, 13

Multiplication, clision of, 11
generalization of, 11
matrix, 4
Multiplier-quotient register, 78
Murphy, G. M., 69

Nagler, 1., 1953, 242
Newton-Raphson formula, 64
Node, 46

vector, 406, 49, 226
Nonlinear representation, 109
Normalization, 23

Notation, Lukasiewicz, 122, 161, 169

parenthesis, 161, 169
parenthesis-free, 122, 163
Polish, 122, 163
summary, 7
translation of, 169, 173
Null character, 31, 58
element, 6, 10, 16, 32
scan, 25, 28
vector, 16, 17
Number base, choice of, 190
Number system, 12, 14, 27
Numerical variable, 10, 13

Odd-even transposition sort, 213, 232

Qettinger, A. G., 171
Open addressing system, 153
Operand, classes, 8
structured, 8, 13, 45, 100
Operation, arithmetic, 11
binary, 13
code, 72
column, 8, 18
compound, 8
copy, 177, 189
count, 212
elementary, 11, 13
families, 8
indexing, 31, 36
logical, 11
mapping, 58
ordering, 36
rank-preserving, 177, 189, 231
ranking, 31, 34, 133
revision, 183
row, 8, 18
set, 28
shift, 78



Operator, statement as, 160
symmetric, 166
Optimum s in m-way sort, 200
Optimum base for a sort, 202
Ordered set, 23, 28
tree, 45, 47
Ordering, contained in, 190
of statements, §
on x, 29
operation, 36
related, 189, 200, 202
vector, 36, 176
Output file, 41
Outer product, 25
Overflow indicator, 85
positions, 78
scarch, 149
toggle, 83

®-notation, 163, 169
Palermo, F. P., 154
Parameter, controlling, 8
Parenthesis, elision of, 8
notation, 161, 169
Parenthesis-free notation, 122, 163
Parity, 12
check, 98
Partial pass sort, 191, 203
Partition, 115
file, 41, 181
symbol, 115
Partitioned representation, 115, 118
Partitioning of a tree, 123
Path compression, 56, 60
data, 101
maximal, 46
tree, 57
zero extension of, 61
Permutation, 8, 32, 133, 139
of a tree, 58
vector, 33, 148, 176, 213, 231
Peterson, W. W, 154
Phase, 179
Phister, M., 63, 104
Phrase, 163
Physical vector, 105
Polish notation, 122, 163
Polynomial, 27
Polyphase sort, 199
Pool, 113, 116
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Position file, 41
Power of a merge sort, 199
Pre-count column sort, 211
Prefix, code, 123
maximum, 9, 22, 58
vector, 15
Probability of duplicate keys, 201
Product, Cartesian, 30
matrix, 23, 33
outer, 25
Program, 2
argument, 159
computer, 71
function, 159, 169
in p, 160
interaction, 7
meta-, 71
skeleton, 160
statement, 2
trace, 83, 160
utility, 160
vector, 7
Programming, automatic, 71
language, 1
Pseudo-english, 1

Q register, 78
Queue disciplines, 117
Quotes denoting literals, 10

Radix exchange sort, 191, 212, 213
mixed, 27

Random-access sort, 176
storage, 205

Range, 10, 38, 159
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Rank-preserving operation, 177, 189, 231

Rank, coordinate, 177
of an array, 39
Ranking, by insertion, 213, 236
operation, 31, 34, 133
sort, 213, 221, 235, 239
Ratio, branching, 47
storage, 205, 212, 231, 237
Read file, 41
Record, file, 41
gap, 88, 98
Reduction, 8, 16
of a formula, 164
of a tree, 58
Register, central, 72
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Register, command, 73 Rutishauser, H., 69
index, 73, 108
multiplier-quotient, 78 Samuel, A. L., 153
sequence, 73 Satellite vector, 155
Relatable items, 177, 189 Scalar multiple, 13
Related orderings, 189, 200, 202 Scan, 133
Relational statement, 11, 16 catenated, 135, 139
Relocation, dynamic, 74 controlled, 135, 141, 147
Reordering, 32 cyclic, 135
Repeated selection sort, 213, 223, 229, directed, 135, 147
236 fixed, 137
Replacement sort, 213, 226, 239 fraction, 135, 140
Representation, of variables, 105 length, 135, 148, 231
chained, 110, 116, 135, 147, 221 null, 25, 28
linear, 108, 110, 118 of equivalence class, 147
nonlinear, 109 rooted, 135
of matrices, 119 shortest, 139
of trees, 121 to nearest terminal, 139
partitioned, 115, 118 Schay, G., 154
solid, 106 Search, 133
Residue, 12 binary, 141, 221, 236
Revision operation, 183 overflow, 149
Rewind, 90 single table, 149
file, 41, 183 Selection, 8, 17, 32, 38
Richards, R. K., 63 set, 30
Right list, 226 vector, 22
Ring, 101 Selector set, 23, 58
Riordan, J., 69 Self-indexing, 40
Roman letters, 10 Sequence, of execution, 2, 5
Root, 46 register, 73
vector, 52 Serial access, 41, 135
Rooted scan, 135 sort, 176, 199, 204
tree, 47 Set operations, 28
Ross, 1. C., 132 selector, 23, 58
Rotation, 33 Shaw, J. C., 110
group, 26 Shift instructions, 83
left, 8, 14 operation, 78
Row-chained matrix, 120 Sign function, 11
Row, compression, 18, 21 Similar vectors, 29
dimension, 14 Simple classification, 177, 205
expansion, 21 classification and merge, 178, 200, 206
list, 22, 108, 119 merge, 177, 191, 205
mapping, 33 Single table search, 149
mask, 21 Single-phase merge, 179, 183, 206
mesh, 20 vs two-phase, 200
of files, 43 Singular formula, 164
operation, 8, 18 tree, 47, 60, 165
reduction, 17 Skeleton program, 160
vector, 14 Skip, 75, 80

Run signal, 81 Solid representation, 106



Sort, address table, 176, 213, 231
amphisbaenic, 191, 195, 203
block, 191, 213
bubble, 213, 217, 233, 239
cascade, 191, 198, 203
column, 178, 186, 204
digital, 186
exchange, 212
execution time, 199
insertion, 212
internal, 176, 204, 205, 239
merge, 178, 204
odd-even interchange, 232
optimum base, 202
partial pass, 191, 203
polyphase, 199
radix exchange, 191, 213
random-access, 176
ranking, 213, 221, 235, 239

repeated selection, 213, 223, 229, 236

serial-access, 176
string-doubling, 211
tournament, 237
transposition, 212, 219, 236, 239
two-phase column, 187, 193
two-phase vs single-phase, 200
with replacement, 213, 226, 239
Sparse matrix, 22, 120
Special logical trees, 60
matrices, 26
vectors, 15
Specific matrix, 251
vector, 249, 258
Specification, arrow, 2
implicit, 38
program, 160
Spread, 144, 146, 154
Spruth, W. G., 154
Stack, 113, 117
vector, 166, 170
file, 172
Stage, 179, 231
Statement, compound, 160, 165
elementary, 160
equivalence, 11
number, 3
ordering, 5
program, 2
relational, 11, 16
Stirling’s formula, 240
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Storage, allocation in sorting, 209
random-access, 205
ratio, 205, 212, 231, 237
Store, information, 72
String-doubling merge, 186, 211
Strings, 178
classification, 183
distribution of, 198
expected number, 200
Structure, levels of, 39
of the language, 7
Structured operands, 8, 13, 45, 106
Subpath, 46
Subroutines, 39
Subtree, 47, 48, 51, 58
Suffix, dispersion, 165, 173
maximum, 22, 58
vector, 15
Summary of notation, 7
Superdiagonal matrix, 26
Supervisor, 159
Symbolic logic, 24
Symbols, miscellaneous, 10
Symmetric operators, 166
System designer, 71

Tag vector, 79
Tape units, 88
Tensor, 39
Terminal node, 46
partition of a file, 41
Tie, 10
Toggle, enable, 75
Tournament sort, 237
Trace, of a matrix, 27
program, 83, 160
Transfer, 75, 80
block, 213, 221
Transformation, key, 134, 144
spread, 154
Translation of notation, 169, 173
Translator, 159
Transposition, 231
axis, 25
sort, 212, 219, 236, 239
Trap, 75, 81, 97
Tree compatibility, 57
compression, 54, 60
homogeneous, 58, 121, 223
level, 46, 57
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Tree, logical, 60
moment, 47
ordered, 45
partitioning, 123
path, 57
permutation, 58
reduction, 58
representation, 121
rooted, 47
singular, 47, 60, 165
uniform, 58, 145
Triangular matrix, 26
Trivial functions, 248
Two-phase, column sort, 187, 193
merge, 179
vs single-phase sort, 200

Uniform tree, 58, 145

Union, 28

Unit function, 248
vector, 15, 30
storage ratio, 212

Univac, 106

Utility program, 160

Variable, 9
arbitrary, 10, 13
auxiliary, 38
integral, 10, 13
length code, 124
logical, 10, 13
numerical, 10, 13
representation, 105
Vector, 13
catenation, 20, 21, 29
chaining, 155
characteristic, 29, 249, 253, 261
coalescence, 148, 152
degree, 49, 53, 163
disjoint, 29
dispersion, 47, 59
filial, 128
format, 105, 134

Vector, full, 15

identity permutation, 33
index, 48, 60

infix, 16

interval, 15, 33
intrinsic, 248, 261
key, 176, 189

list, 122, 163
logical, 18

mapping, 134
minterm, 249, 237, 258
moment, 47, 60, 125
node, 46, 49, 226
null, 16

of matrices, 39
ordering, 36, 176
path, 46
permutation, 33, 148, 176, 213, 231
physical, 105

prefix, 15

program, 7
represeniation, 78
root, 52

satellite, 153
selection, 22

similar, 29

special, 15

specific, 249, 258
stack, 166, 170
suffix, 13

tag, 79

unit, 15, 30

Vocabulary, 163, 169, 170
Von Neumann, J., 1, 178

Well formation, 161
Well formed, 52, 164
Wind file, 41

Woods, F. S,, 233
Word of memory, 72
Wright, H. N, 12

Zcero, extension of a path, 61

function, 248, 253








