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Preface

This book is an introductory text for classroom use or independent study, not
a reference manual. It consists of two parts comprising Chapters 1 through 4
and Chapters 5 through 9. After reworking the examples of the first part at
the terminal, the reader should be reasonably proficient in applying APL to the

solution of a wide variety of numerical problems. Study of the second part

will extend his knowledge of the language and enable him to handle nonnumerical

problems as well. At this stage, the reader should try to improve some of the
function definitions in the text. This will be possible because these definitions

were written with an eITlphasis on transparency rather than elegance. Finally,
to test his ability to follow complex function definitions, the reader may call

for the display of the definition of functions such as PLOT in Workspace

PLOTFORMAT of Publ ic Library 1. Further examples of this kind may be found
in the literature listed in the References.

There remains the pleasant task of thanking all those who, in various ways,

contributed to the publication of this book: Dr. K. E. Iverson of the Thomas
J. Watson Research Center of IBM for defining APL, and IBM for implementing
the language; Professor Peter Wegner of Brown University for the invitation to
write the book for the series; Professors C. Mylonas and R. A. Vitale of Brown
University and Dipl. Ing. W. Mu'nzner of the IBM Research Laboratory at Zurich
for their numerous helpful comments; Mrs. D. Archambault for the most careful
preparation of the manuscript; and the editorial staff of the publisher for their
splendid cooperation.

William Prager

Providence, Rhode Island
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List of APL Symbols

The order of symbols in this list corresponds to their arrangement on the key­

board, starting with the top row of keys and going from left to right. Overstruck

and composite symbols are listed last. The letters d and D stand for basic dyadic

operators.

minus (as part of the specification of a negative number)

< less than

~ less than or equal to

= equal to

~ greater than or equal to

> greater than

;t not equal to

v or

" and
minus (as arithmetic operator)

+ plus

divided by (dyadic); reciprocal of (monadic)

x times (dyadic); sign of (monadic)

? random choice (dyadic or monadic)

E membership of

() structure from (dyadic); size of (monadic)

not

t take

1- drop



x List of Symbols

1. index of (dyadic); integers up to (monadic)

o trigonometric or hyperbol ic functions (dyadic); pi times (monadic)

* to the power (dyadic); e to the power (monadic)

~ branch to command

-(- specified as

r the greater one of (dyadic); integer just above (monadic)

L the lesser one of (dyadic); integer just below (monadic)

\J del (opening or closing of function definition)

IJ. delta (i n trace and stop control)

o small circle (see comment and outer product)

quote (to enclose character data)

n quad calling for output ( [l-+- ) or input ( +[l )
() parentheses (grouping of terms in expressions)

[ ] brackets (enclosing indices of arrays)

1. decode

T encode

I remainder of (dyadic); absolute value of (monadic)

semicolon (to separate indices of a matrix or an array of higher dimen­

sionality)

catenate with (dyadic); unravel (monadic)

colon (to separate label from command)

decimal point

\ expand

/ compress

~ nor

1t( nand

¢ rotate (dyadic); reverse (monadic)

6t logarithm for any base (dyadic); base e (monadic)

~ transpose (dyadic or monadic)

17 grade down

~ grade up

number of combinations (dyadic); factorial (monadic)

[!] quote-quad (calling for character input --<-{!J )

A comment

I system information

d / reduction with respect to last index

d f reduction with respect to first index

d. D inner product

o.d outer product



1 Getting Acquainted
With the System

APL (A Prograrr,ming Language) is best learned at the terminal. After

studying a section of this book, the reader should repeat the exam­
ples at the terminal before proceeding to the next section. To enable

the reader to follow this advice, the present chapter begins with brief

sections on the APL keyboard, the procedures for signing on and off,
and the correction of typing errors. This is followed by a longer

section on the evaluation of elementary APL expressions involving
the most frequently used AP L operators. Additional operators are

discussed in Ch. 5.

1.1 KEYBOARD

The AP L characters appear on the front rather than the top face of
each key. Each key carries two characters. To type the lower one, it

is sufficient to hit the key, but if the upper character is to be typed,
the shift key must be depressed while the key is hit.

Figure 1 shows the distribution of the APL characters over the keys.
Numerals, letters, corr'ma, and period are in the customary positions;

however, there are only upper-case letters, which are typed without

the use of the shift key. The shift key must be used for almost all
special characters; the only exceptions occur at the end of each row
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of keys and involve the characters + x (top row), +- (second row),
[ ] (third row), and / (bottom row).

< $ = ~ > ~ v " .-
1 2 3 4 5 6 7 8 9 0 + x

? w E P t -J, 1 0 * -+
Q vi E R T Y U I 0 P +

a r l V Ii 0 0 ( )
A /; D F G il J K L [ ]

c ::> n u .1 T I \
z X C V B fl 11 /

FIGURE 1.1
APL Keyboard

Note that there are two forms of the minus sign: the sign - (upper

character on the second key of the top row) is used as part of the
specification of a negative number, e.g., - 4 ; the sign - (upper

character on the second to last key of the top row) is used as an
arithmetic operator as in 5-2. The symbol for division is 7- (upper
character on the last key of the top row). Note that the solidus /
(lower character on the last key of the bottom row) cannot be used

in the place of f . The zero (lower character on the third to last key
of the top row) and the letter 0 cannot be used interchangeably.

1.2 SIGNING ON

Since several types of terminals and several types of connections
between terminal and central computer are available for APL sys­
tems, local instructions must be consulted for precise information

on sign-on and sign-off procedures. For the purpose of the following

qualitative description, it will be assumed that an IBM 2741 Com­
munications Terminal and a DATA SET acoustic coupler are used.
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Every authorized AP L user has an account number. In the discussion

below, this number is assumed to be 9999. Sign-on instructions for

the assumed equipment are as follows:

(a) Make sure that the terminal switch marked LCL/COM at the

left side of the terminal is in position COM, and the switch

ON/OFF of the keyboard is in position ON.

(b) Lift receiver of the phone next to the terminal and dial one

of the numbers listed in the local instructions. If you get the

busy signal or no answer after a few rings, hang up and try

again using another one of these numbers. If you get a high­

pitched continuing tone, cradle the receiver on DATA SET
with the receiver flex at the far end.

(c) Before trying to sign on, check whether the keyboard is un­

locked, i.e., whether depressing the shift key produces a

rotation of the typing element.

(d) If the keyboard is unlocked and you are signing on for the

first time, type a closing parenthesis followed without blanks

by your account number:

)9999

and depress the RETURN key. The response should be a line

giving the number of your port (terminal), the time and date

of your sign-on, and your user code, which is distinct from
your account number. This is followed by a blank line and

by the headline A P L \ 3 6 o. You are now ready to

start using the computer.

(e) If, at the time you are trying to sign on, somebody is in­

advertently or fraudulently signed on under your account

number, you will receive the message

NUMBER IN USE

and will not be able to sign on until the other user has signed

off. To protect yourself against being locked out in this
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fashion, you should use a password consisting of up to eight
letters or digits, without blanks. Your complete identification

for signing on will then be your account number followed

without blanks by a colon, followed without blanks by your
password. Thus, if you had chosen the password LOCK in
signing off last (see Sec. 1.3), you would sign on by typing

)9999:LOCK

It is good practice to change your password at regular inter­
vals. If, however, you forget your password (or your account
number), the response to your attempt to sign on will be

NUMBER NOT IN SYSTEM

Before discussing the evaluation of arithmetic expressions, we will

describe the termination of a work session.

1.3 SIGNING OFF

It is most important that each work session be terminated by an
appropriate sign-off procedure. The instructions for this are as fol­
lows:

(a) If you have completed a computation and no longer need the
material from the current work session, sign off by typing

)OFF

and depress the RETURN key. When you next sign on, you

must then use the same password as for the current work

session. If, however, you wish to change the password, say to
NEvlLOCK I sign off by typing

)OFF:NEWLOCK

and depress the RETURN key.
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(b) In either case, a three-line message will be typed that gives

the ti me and date of the sign-off, you r user code, and ac­
counting information. After this is completed, tu rn off the

terminal by putting the ON/OF F switch of the keyboard in
the OF F position, and return the receiver to the phone.

(c) If you have to interrupt a computation before it is com­
pleted, sign off with )CONTINUE or )CONTINUE:NEfILOCK

depending on whether you wish to retain the old password
or change it to NEfILOCK. In either case, the material from
the current work session will be available when you next sign
on, and this availability will be indicated by a message that
starts with SA VED and gives the time and date of the last
sign-off.

1.4 CORRECTION OF TYPING ERRORS

While you are typing a command or an expression that you want to

have evaluated, you may discover typing errors. If you have not yet

entered the command or expression by depressing the RETU RN key,

these errors can be corrected as follows. Backspace to the first erro­
neous character, and depress the ATTN* key. The response to this

will be the symbol v typed under the first erroneous letter, indi­

cating that this and everything to its right have been eraseda Now
complete the typing of the command or expression and depress the
RETURN key.

1a5 EVALUATION OF ARITHMETIC EXPRESSIONS

The APL symbols for addition, subtraction, multiplication, division,
and exponentiation, respectively, are + - x 7- *. The following

examples illustrate their use as operation symbols appearing between
two numbers (dyadic use). In each example, the first line, which is
indented by six spaces, states the arithmetic problem as typed by

*On some terminals, this key is labelled INT.
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the user, while the second, not indented, line is the response given by
the computer after the RETU RN key has been depressed. In the
second example, note the raised minus sign used as part of the speci­
fication of a negative number. The customary minus sign is reserved

for use as an arithmetic operator.

13.5+2487.2
2500.7

13.5-2487.2
2473.7

13.5x200
2700

2700-;'13.5
200

144
2*0.5

1.414213562

The last example is concerned with the evaluation of 2°·5 or V2.
Note that up to ten digits of the result will be typed out unless you

specify another number, say 7, by typing the command )DIGITS 7,

and depress the RETURN key. The response to this command, indi­
cating the number of significant digits previously used, is shown be­

low together with a new evaluation of V2. Note that the seventh and

following digits of the earlier, more accurate value were 3562. The
seventh (and last) digit of the new value is 4 as required by proper
rounding.

)DIGITS 7
~/AS 10

2*0.5
1.414214

The maximum number of digits that you may call for is sixteen.
Note that the DIGITS command does not limit the number of digits

you may use in input, nor does it affect the number of digits carried

in the computation; it simply specifies the number of significant
digits to which the result of a computation is typed out. It may,
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however, affect the form in which this result is presented. The fol­

lowing example illustrates the evaluation of the same product under
)DIGITS 5 and) DIGITS 4.

)DIGITS 5
flAS 10

100.2x200
20040

)DIGITS 4
WAS 5

100.2x200
2.004E4

The last result, stated in exponent notation, is to be read as 2.004
x 104 . Similarly, 2.004E-3 would be read as 2.004 x 10- 3 . Note

that the exponent notation for a number consists of a positive or
negative number, with magnitude less than 10 but not less than 1,
that is followed without blanks by the letter E ,which is in turn

followed without blanks by a positive or negative integer. A number
may be entered in either ordinary or exponent notation. The exam­
ples below indicate how numbers are returned by the computer. If

o is the number of digits currently displayed (10 unless changed by

a )DIGITS ••• command), a number will be returned in exponent

notation if its magnitude is equal to or greater than 10D or smaller
than 10- 4

, unless the number was entered in ordinary notation as an
integer of magnitude less than -1 +2* 31 , in which case it will be

returned in the form in which it was entered.

)DIGITS 5
flAS 10

1.1E4
11000

1.lE5
1.1E5

0.0008
0.0008

0.00008

100056
100056
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)DIGITS 3
TtvAS 5

1.1E2
110

1.1E3
1.1E3

0.0008
0.0008

0.00008
BE- 5

100056
100056

In APL, the value of a composite expression, such as 4-1-3xS-i-2 ,

in which numbers alternate with dyadically used operators, is ob­
tained as follows: imagine the expression rewritten with an opening
parenthesis inserted after each operator and the corresponding clos­
ing parenthesis added at the end of the expression. Thus, the expres­
sion above becomes 4-( 1-( 3x ( 8t2»)) . To evaluate this, we must

begin with the innermost parenthesis. * This means that the original,

parentheses-free expression is evaluated from right to left. First 8 is
divided by 2; next the result 4 of this operation is multiplied by 3;
the result of 12 of this operation is then subtracted from 1 furnishing

-11, which is finally subtracted from 4 yielding 15 as the value of

the expression. It will be useful to familiarize yourself with this

evaluation of composite expressions by doing some examples and

hand checking your results at the terminal.

To display the manner in which a composite expression is evaluated,
insert the symbol pair 0+ to the left of each number except the last.

Each pair calls for the typing out of the result obtained as the ex­

pression is evaluated from right to left up to the considered pair. The

following lines show this kind of display for the example considered

above.

4
12
-11
15

* For brevity, an expression within parentheses is referred to as the parenthesis.
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Parentheses may be used to indicate modes of evaluation that deviate

from the rule formulated above. For example, the APL equivalent of

2 3 4 5---+---
3 4 5 6

is ( 2 -i- 3 )-( 3.;. 4 )-( 4';' 5 )-( 5.;. 6 ). Note that the alternating signs in

the ordinary notation become minus signs in APL notation.

In a longer computation, the same intermediate results may have to
be used repeatedly. To avoid recomputing them every time they are
needed, one may use identifiers as illustrated by the following exam­

ple. The arrow indicates that the expression on the right should be
given the identification on the left of the arrow. Note that the paren­

theses in line 3 are needed if A 2 + 8 2 is intended, because without

the parentheses, 2+B* 2 would be taken as the exponent of A .

A+4-12-i-6
B+3x4-2
(A*2)+B*2

40

208

In addition to the dyadic use of the operators + - x t * , APL

also allows their monadic use, in which case they are immediately

followed but not preceded by a number or variable. The monadic use

of + and - has the customary algebraic meaning; for example, +1 5
and -1 5 are respectively equivalent to 1 5 and -1 5 . For x .;. *,
the following conventions are adopted. The monadic use of x fur­
nishes the signum function; that is, x C equals 1,0 *C or -1 depend­

ing on whether C is positive, zero, or negative. The monadic use of
f furnishes the reciprocal; that is, .;. C equals 1 fC . Finally, the
monadic use of * furnishes the exponential function; *C equals
eC . Note that as a consequence of the monadic use of operators,
two or more operators may immediately follow each other as in f*C
and * - C , which both equal e- C , or in - * - C , which equals -e- C .

Other frequently used monadic operators are .. ! I and 0 . The

first two of these are formed by overstriking. For example, to obtain
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e , type 0 (or *), backspace once, and type * (or 0 ). The

operator ! is formed in a similar manner by overstriking an apos­

trophe and a period. The meaning of these monadic operators is as
follows: eC is the natura/logarithm of C, where C must be positive;
! C is the factorial of C, where C must be a positive integer* or zero,
the factorial of zero being defined as 1; I C is the absolute value of
C;and oC is C times IT. Further APL operators are discussed in Ch. 5.

The rule for the evaluation of a composite expression that was stated

earlier in this section must now be extended to include monadic as
well as dyadic operators. When an expression is ready for numerical
evaluation, the values of all quantities it contains must be known

regardless of whether these values appear in explicit numerical form

in the expression or are represented by the identi-fiers of variables. To

describe the manner in which a composite expression is evaluated,
consider, for instance, the expression of the symbolic form

(000000)00000

where each 0 indicates the numerical vatue of some quantity and
each 0 indicates some operator. Note that the symbolic form of a
valid expression may contain the sequence 00 but not the sequence
00.

The parenthesis in the symbolic expression above contains an expres­
sion that must be evaluated by the same rule as the considered
expression. For the purposes of the present discussion, the paren­
thesis may therefore be replaced by the symbol Q. The considered
symbolic expression is thereby reduced to

000000

This is scanned from right to left. The first operator encountered in

this scan cannot be interpreted monadically, because 00 would then

be a numerical value that could be represented by Q, so that the
expression would end with the invalid pair QO. It follows that a

*When C is not an integer I : C is the value of the gamma function for C+ 1 .
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single operator between two quantities must always be interpreted
dyadically. The symbols QoQ at the right of the considered expres­

sion thus represent a numerical value, and may therefore be replaced

by the symbol Q. The expression is thereby reduced to the form

0000

Here the right member of the sequence 00 can only be interpreted

monadically, and oQ may be replaced by O. It follows that the left
member of the sequence 00 must be interpreted dyadically.

Note that in a sequence such as 000000 only the leftmost operator

is dyadic; all other operators are monadic. For example, 3 + f ! 8 is

the sum of 3 and the reciprocal of the factorial of 8. The operators

.;. and ! are used monadically, but the operator + is used dyadic­
ally.

Note also that in the expression of the symbolic form

000(000000)

the parentheses are unnecessary.





2 Arrays (part 1)

Much of the remarkable power of APL stems from the provIsions

made for the manipulation of arrays of numbers or characters. The
first section of this chapter illustrates this remark by examples con­
cerning the evaluation of an algebraic expression for several values of

the independent variable. The subsequent sections treat the forming

and indexing of numerical vectors and matrices, and arithmetic and
Boolean operations on arrays of this kind. Additional material on
arrays is found in Ch. 6 (arrays of numbers) and 7 (arrays of char­
acters) .

2.1 MULTIPLE EVALUATIONS OF AN EXPRESSION

As an introduction to the discussion of arrays, we shall consider an
important application of the array concept. It often becomes nec­
essary to evaluate an expression containing a parameter for a set of
values of this parameter. In APL, this is facilitated by the possibility

of regarding these values of the parameter as the elements of a vector.
For example, for a given interest rate, say 5%, we may wish to com­

pute the factor by which the value of a bank deposit increases in one
year if interest is compounded annually, semiannually, quarterly,
monthly, or daily, i.e., N = 1,2,4,12, or 365 times a year. The APL

formulation of the problem and the result of the computation are
shown in Example 1. The first line defines N as the vector with

13



EXAMPLE 1

PI+- 1 2 4 12 365
(1+0.05~N)*N

1.05 1.050625 1.050945337 1.051161898 1.051267496

EXAMPLE 2

X+-O.05
fl+- 0 1 2 3 4
T'" ( X*fl ) .;. ! II
T

1 0.05 0.00125 2.083333333E-S 2.604166667E-7

~

~

J>
:)

~
.-+..,
a
c.
c
n
.-+o·
~

.-+o
»
""'C
r
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the elements 1, 2, 4, 12, 365. Note that in APL notation the num­
bers are separated by blanks rather than commas. The next line de­

fines the desired factor in terms of N, and the last line shows the

resulting values that this factor assumes for the five values of N.

As this example illustrates, an expression containing a single vector
as parameter represents a vector whose elements are the values that
the expression assumes for the successive elements of the parameter

vector.

As another example, consider the infinite series eX = 1 + X + X 2 /

2~ + .... The evaluation of its first five terms for X = 0.05 is shown

in Example 2.

Note that in the third line the expression (X*lv).;.!N has been as­
signed the identifier T for easy reference in the next example. As a

consequence of this assignment, which implies later use of the nu­
merical values of the five terms of the series, these values will not be
automatically displayed but must be called for by the command T .

The following APL features facilitate the evaluation of partial sums
of series. If T is a vector of K elements and J is an integer not
exceeding K , the vector consisting of the first J elements of T is
the value of the expression J t T . Furthermore, the sum of the ele­
ments of T is the value of the expression + / T . While the material
from the preceding example is still available, the third, fourth, and

fifth partial sums of the series for eO.05 can be obtained as shown
below.

+/3tT
1.05125

+/4tT
1.051270833

+/5tT
1.051271094

The fact that the last two partial sums agree in the first six digits
suggests that we have already obtained a good approximation to
eO.05 . Note that eO.05 is the factor by which a bank deposit would
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grow in a year if 5% annual interest were compounded continuously

rather than once a month or quarter.

APL also provides a simple means of alternately adding and subtract­

ing the elements of a vector. If T is a vector, the expression -IT is

evaluated by changing the signs of all even-numbered elements and

then summing the elements of the vector obtained in this manner.

Accordingly, the lines below show the evaluation of the analogous

partial sums of the series for e- 0 .05 .

-/3tT
0.95125

-/4+T
0.9512291667

-/StT
0.9512294271

A final example shows the approximate evaluation of e from the

fifth partial sum of the series

f2 X +/(15)f!1+2 x lS
2.718281843

*1
2.718281828

We have chosen a few operations on vectors to illustrate the power
of the array concept. These and other operations on vectors and

matrices will be discussed more comprehensively in the remaining
sections of this chapter.

2.2 FORMING AND INDEXING OF ARRAYS

The position of an element in an array is specified by an index or

several .indices. For example, in a plane rectangular array, the posi­

tion of an element may be specified by stating that it is located in
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the third row from the top and the fifth column from the left. If the

considered array is denoted by M, the element in question would
be denoted by M[ 3 ; 5 ] . Note that in APL the indices of an element
are separated by semicolons rather than commas and are enclosed in
brackets rather than parentheses.

The number of indices needed to specify the position of an element
in an array is called the dimensionality of this array. * Arrays of the
dimensionalities 1 and 2 are known as vectors and matrices. Although
arrays of higher dimensionality may be used in APL, the following
discussion is restricted to vectors and matrices.

When dealing with arrays, we may occasionally find it convenient to
regard a single number (scalar) as an array of the dimensionality O.
This extension of the dimensionality concept is consistent because
no indices are required to specify the position of the single element
in this kind of array.

Operator p

A vector V of, say, six elements will be said to have the size 6, and
a matrix M of, say, 3 rows and 8 columns will be said to have the
size specified by the vector 3 8.tin AP L, monadic use of the

operator (J (rho), called the structuring operator, provides the size of
an array.

Thus, for the vector V and the matrix M above, p Vand p}'1 respec­

tively have the values 6 and 3 8. Accordingly, p P V and ppM have
the values 1 and 2, which give the dimensionalities of V and M.

* In APL literature, the term rank is frequently used instead of dimensionality,

but this will not be used here to avoid confusion with the customary use of the
term rank in matrix algebra.

tin APL literature, the size of a vector is frequently called its length, but this
term will not be used here to avoid confusion with the customary meaning of
the length of a vector. Similarly, the term dimension, which is often used in­
stead of size, will not be used here to avoid confusion with the concept of
dimensionality introduced above.
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The structuring operator p is also used dyadically. For example, to
specify a matrix M of the size 2 3 , we start with the vector con­
sisting of the elements of the ·first row of ],1, followed by the ele­

ments of the second row and those of the third row-say, the vector

2 3 5 7 11 13. We then structure this vector into the desired
matrix J.1 by the command 0+-/4+2 3 p 2 3 5 7 11 13, where

the symbol pair 0+ preceding /4 calls for the typing of the matrix
identified by l,f . Note that pftJ and ppM furnish size and dimen­

sionality of M . Note also that the matrix M may be reconverted to

the vector V from which it was formed by the command V+. 14. In
APL manuals, the term Hravel" is used for the operation expressed

by the monadically used comma; the term Jlunravel" might be more
appropriate.

0+/'.1+2 3p 2 3 5 7 11 13

2 3 5
7 11 13

pf1
2 3

p pft1
2

D+V+,l1
2 3 5 7 11 13

If this vector V is used to structure a matrix Iv that requires fewer

elements than are in V , only the leading elements are used. Sirni­

larly, if V has fewer elements than are needed for N , the elements
of V are used repeatedly. The following examples illustrate these
structuring operations, and similar structuring of other vectors from
V.

2 2p V

2 3
5 7
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3 5p V

2 3 5 7 11
13 2 3 5 7

11 13 2 3 5

q.p V
2 3 5 7

9p V
2 3 5 7 11 13 2 3 5

Operator 1

Vectors such as 1 1. 2 5 1. 5 0 1. 7 5 2 or 8 6 4 2, in wh ich

the difference between successive elements has a constant value, fre­

quently occur in applications. In APL, vectors of this kind are readily

specified by the use of the index generator t (iota). If N isa non­

negative number, IN denotes the vector consisting of the integers

from 1 through N. Some uses of the index generator are shown be­

low.

1. 5
1 2 3 4 5

.75+.25x1.5
1 1.25 1 • 5 1.75 2

.25x3+1.5
1 1 .25' 1 • 5 1.75 2

-14
1 2 3 1+

10- 2 x 1. it
8 6 4 2

t 0

V+t 1
pV

1

Note that t a is the empty vector, which is represented by a blank.

An important (but by no means the only) use of this seemingly use­

less vector is discussed under Indexing. Note also that 11 , which

consists of the single element 1, is a vector of size 1.
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The index generator 1 is also used dyadically. If V is a row vector,

and E is the value of one of its elements, the expression V\ E gives

the position of this element in V . If the vector V contains several

elements of value E , the position of the first of these will be re­

turned. If, on the other hand, V contains no element of value F:,

the Ilposition" returned will be l+pV. If A is an array, VtA is the

array obtained by performing the operation V \ on each element of

A . The following examples illustrate these rules.

V+6 3 5 5
V1.3

2
VtS

3
V12

5
A+l 5 6 2 3 6
V1A

5 3 1 5 2 1
f.,j"+-2 3pA
V1M

5 3 1
5 2 1

Indexing

When a vector V or a matrix M has been defined, individual ele­
ments or groups of elements may be selected by indexing. V[ 5 ] de­

notes the fifth element of the vector V , provided that this vector

has at least five elements. Similarly V[2 4 5 6J denotes the vector

consisting of the second, fourth, fifth, and sixth elements of V .

Note that the command V[ 12] in the example below produces the
message INDEX ERROR, beneath which the unacceptable command
is repeated with a caret suggesting what is wrong (in this case, that
the vector V has less than twelve elements). M[ 2 ; 4] is the element

at the intersection of row 2 and column 4 of ft1 . Sirrlilarly,

J.1[ 1 4 i 2 5 ] is a matrix consisting of the elements at the inter­
sections of rows 1 and 4 with columns 2 and 5. The examples op­
posite illustrate these and other indexing operations.
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D+-V+1+2 x 19
3 5 7 9 11 13 15 17 19

0+-/4+4 5p V

3 5 7 9 11
13 15 17 19 3

5 7 9 11 13
15 17 19 3 5

V[6]

13
V[2 4 5 6J

5 9 11 13
V[ 12 ]

IflVEX ERROR
V[ 12 ]
1\

14[2;4]
19

~1[ 1 4; 2 5 ]

5 11
17 5

ft1[ ; 2 5 ]

5 11
15 3

7 13
17 5

fit [1 q.;]

357
15 17 19

9 11
3 5

Note that 11[ ; 2 5 ] is the matrix consisting of the second and fifth

columns, and M[ 1 1.+; ] is the matrix consisting of the first and

fourth rows of 1'1 .

Indexing may also be used to change individual elements or groups
of elements. For the vector V defined in the first line of the example
below, the third line redefines the fourth element as O. The fourth
line calls for the typing of the new vector. Note that the substitutions
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called for in the sixth line are not made in the original vector V but

in the vector as changed by the preceding substitution. Similar

changes may be made in a matrix.

V+-1+19
M+-3 4p V
V[ 4 J+O
V

2 3 4 0 6 7 8 9 10
V[ 3 7J+1
V

2 3 1 0 6 7 1 9 10
P1[ 1 ; 2 J+- 5
~1

2 5 4 5
6 7 8 g

10 2 3 4

M[2 3;1 4]+-20
M

2 5 Lf. 5
20 7 8 20

20 2 3 20

It is often desirable to record successive intermediate results of a

computation as they are obtained and before they are transformed
by further computational steps. A convenient way of doing this is to
gather the intermediate results into a vector R . In discussing this

task, we shall assume that each intermediate result is obtained, by the

same computational steps, from the preceding one, and is therefore

assigned the same identifier, say A ,as it is obtained. Having initially

defined I+-O ,we should like to increase I by 1 every time a new

intermediate result A has been found, and then execute the com­

mand R [I] +A . This substitution of an element into the vector R is

only possible, however, if we have defined an initial vector R . If it
is known, for example, that ten intermediate results will be com­
puted, this can be done by the initial command R+l Op 0 , which
forms a vector consisting of ten zeros.
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However, the number of intermediate results A may not be known
beforehand. These results may, for instance, be successive partial
sums of a series, and we may wish to continue the computation until
two successive partial sums agree to within a specified number of

digits. In this case, the catenation operator, which is the comma used

dyadically, proves valuable. If V and Ware vectors, V.!-l denotes

the vector consisting of the components of V followed by those of

rv . Using catenation, we may build up the vector R by the repeated

execution of the command R+R ,A, provided we have initially speci­

fied R as the empty vector by R+- \ a . Note that the comma used as
a monadic operator converts a scalar into a one-element vector as

shown below.

A+5
pA

A+,5
pA

1

2.3 ARITHMETIC OPERATIONS ON ARRAYS

Monadic Operators

If m denotes a monadically used operator and A is an array, rnA is

the array obtained by performing the operation m on each element
of A:

A+ 2 0 3 q.

-A
2 0 3 4

xA
1 0 1 1

IA
2 0 3 4

A+-2 2 p \ l+
fA

1
0.3333333333

O. 5
0.25
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Dyadic Operators

If d denotes a dyadically used operator and A and B are arrays of

the same size, A d B denotes the array obtained by performing the

operation d on each pair of corresponding elements of A and B .
When A is a scalar, Ad B is the array obtained by performing the

operation d on A and each element of 11 . A similar statement

applies when A is an array and B a scalar. The following examples

illustrate these conventions.

A+l 3 5 7
B+4 3 2 1
A-B

3 0 3 6
AxE

4 9 10 7
10xA

10 30 50 70
A+2 2pA
B+2 2pB
AfB

0.25
2 • 5

Bf5

O. 8
0.4

1
7

0.6
0.2

Note that the command S+A -A 1 where S is a scalar and A an

array, does not yield the scalar S but an array of the size p A , each

element of which has the value ..5 .

Special Operators

If d denotes a dyadically used operator and A is a vector, d / A is

the scalar obtained by inserting the operator d between each pair of

successive elements of A and performing the operations specified in

this manner. Thus, d/A +A [ 1] dA [ 2 ] d ••• d A [ pA ] with evaluation
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from right to left. It follows that + I A is the sum of the elements of

A ,and xlA is their product. Note that -fA is the alternating sum

(see the end of Sec. 2.1), and .;. / A is the quotient of the product of

all odd-numbered elements of A by the product of the even­

numbered elements. If A is a matrix, d / A is a vector with elements

obtained by performing the operation d/ on each of the rows of A .

Similarly, d fA ,where t is typed by overstriking I and -, is the

vector consisting of the elements obtained by performing the opera­

tion d/ on each of the columns of A .

A~tl0

+/A
55

-IA
5

x/A
3628800

! 10
3.6288E6

-i-/A
O.2 L+609

(lx3x5x7x9)f(2x4x6x8xl0)
0.24609

A+-3 3P19

+/A
6 15 24

+fA
12 15 18

Note that the polynominal c
1

+ c
2
x + C

3
x 2 + ... +c

n
+

1
x n may be

evaluated as +/CxX* -1+tpC ,where C is the vector with the ele­

mentsc 1 , c2"" ,cn + 1 andn>O.lfthedegeneratecasen=Oisto
be included, the expression t () C in the command above must be

replaced by 1 pte because p C is empty if C is a scalar but has the

va Iue 1 if C is a one-e lement vector.

If A and [3 are vectors of the same size, their scalar product S is
defined as the sum of the products of corresponding elements of 11
and B . Thus, S is obtained by the command A.9~+/AxB. An alter­
native command is S+-A+. xB . If r' and /'/ are matrices, and 11 has
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as many columns as /11 has rows, their product P is defined as the
matrix with the typical element P[I;J]++/M[I; ]xN[ ;JJ . Note

that for given values of I and ".T ,the expressions .~ ~'[ I ; J and
I7 [ ; J ] are vectors of the same size, and P [I ; J] is obtained by
multiplying corresponding elements of the two vectors and adding

these products. In APL, the product P of the matrices /:1 and II is

obtained by the command P-<-l!+. xlI.

Since it is sometimes necessary to take the transpose of a matrix (i.e.,

interchange its rows and columns) before it can be used as a factor

in a matrix product, APL provides the monadic operator ~ (typed

by overstriking 0 and \ ) to transpose a matrix; ~l1 is the trans­

pose of 14 . The following examples illustrate the operations dis­

cussed above.

A+-1 3 5
B+-2 1 3
+/A xB

1n
A+. xB

16

lI+-2 3p 1 6
/'/ +- 3 2 p - 3 + 1 6
p.! + • x Iv

4 10
1+ 19

( ~ /1/ ) + • x ~1'.1

4 4
10 19

2.4 BOOLEAN EXPRESSIONS

If r is a relational symbol such as ~ and A and B are scalars, the

assertion J1 r B is attributed the value 1 or 0 according to whether it is
true or false. Typical relational symbols are < ~ = ~ > ;c and E.
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The last of these asserts membership in an array. For example,

5 E 1 4 8 asserts that 5 is an element of the vector 1 LJ. 8 ; since

this assertion is false, the expression 5 E 1 4 8 has the value O. For

other relational symbols see Sec. 5.3.

If A and R are vectors of the same size, and r is a relational symbol

other than E ,then A r R is a vector of the same size as A and B ;

its Ith element is 1 or 0 according to whether the assertion
A[IJ r B[I] is true or false. A E B , where the vectors A and B need

not have the same size, is a vector of the size of A ; its Ith element

is 1 or a according to whether the assertion A [ .JJ € B is true or false.

Note that the comparison demanded by a relational symbol is rela­

tive in the following sense: if two numbers agree to within a critical
amount called fuzz (approximately 10- 13 ), they will be regarded as
equal for the purpose of this comparison.

The following examples illustrate the usefulness of expressions of
this kind, which are called Boolean expressions. The expression that
is evaluated first has the value 1 for -1 ~ X ~ 1 and the value 0 else­

where; the second expression has the value 1 for -1 ~ X ~ 2 and
vanishes elsewhere; and the last expression equals -1 for X < -1,
X for -1 ~ X ~ 1, and 1 for X > 1.

D+X+O.SX - 4+\9
1 • 5 -1 -a• 5 0 a • 5 1 1 • 5 2 2. 5

l-(fX»l
0 1 1 1 1 1 0 0 0

l-(X< -1)+X>2
0 1 1 1 1 1 1 1 0

X+«-l-X)X(-l>X»+(l-X)x(X>l)
1 1 O. 5 0 0.5 1 1 1 1

The last expression could also be obtained as -1 r1 LX (see Sec. 5.2

far the operators Land r ).
If B is a Boolean vector, i.e., a vector consisting exclusively of ele­

ments with values 0 or 1, and if C is a vector of the same size as B ,

then B / C is the vector consisting of those elements of C that carre·
spond to elements of value 1 in B. If all elements of Bare 0, then
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B I C is an empty vector. If S is a scalar, 1 / S is a vector whose only
element has the value S, and 0/ S is empty.

B+1 0 a 1 1
C+t 5
BIC

1 4 5
B+5pO
BIC

D+V+l/S+4
4

pV
1

O+V+OIS

pV
0

X+2
Y+1
«X<Y),(X=Y),X>Y)/3 7 8

8



3 Defined Functions
(part 1)

In addition to eX and In X, which have already been discussed in
Sec. 1.5, the trigonometric and hyperbolic functions and also

the inverse trigonometric and hyperbolic functions are directly avail­

able in APL. The APL expressions for sin X, cos X, and tan X, respec­

tively, are loX t 2oX, 30X, and cot X is obtained as f30X .

The argument X of the trigonometric functions must be given in
radians. If D denotes an angle measured in degrees, sin D, for exam~
pie, is found as 1 ooD ~ 180 . For the inverse trigonometric functions

arc sin X, arc cos X, and arc tan X, the notations -10X • 2 OX,

- 30X are used in APL. For the hyperbolic functions sinh X, cosh X,
tanh X, and their inverse functions, see Sec. 5.1.

If, in the course of a computation, some other function has to be
evaluated repeatedly for different values of the argument, it would
be inconvenient to write the commands by which it is computed
every time the function is needed. APL provides the possibility of
defining a function once and for alt,so that it can be used as readily
in a work session as the functions discussed above.

As has been seen in preceding sections, rather involved computations
may be specified by a single APL command. The first section of this
chapter deals with function definitions that consist of a single com­

mand. A more involved type of function definition contains several

commands that have to be executed in an order that depends on the

29
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values of data or intermediate results. A few examples of this type
are discussed in Sec. 3.2. The important distinction between local

and global variables is the subject of Sec. 3.3, and some ways of

checking function definitions are presented in Sec. 3.4. Additional
material on defined functions is contained in Ch. 8.

3.1 DEFINING SIMPLE FUNCTIONS

Let us denote the growth factor in the second line of the first exam­
ple of Sec. 2.1 by G . The commands

D+1354.20

N+12

DxG

wiU compute the final value of a deposit of $1354.20 at the end of a
year during which it has been compounded monthly at 5%. If we

then want to compute the final value of some other deposit-for

example, $2485.00 at 5% compounded semiannually for a year, we

may enter the commands

D+2485.00

fl+2

DxG

While D and N must obviously be redefined, it is irksome that the
command for G must be retyped although it has not changed. To
avoid this, we may define1a function called GROflTH of the variable
N once and for all as described below.

Whereas each of the commands above is executed as soon as it is
entered by pressing the RETURN key, the commands in the defini­
tion of a function cannot be so executed because the value of the
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argument is not known at the time the function is defined. To indi­
cate that we wish to change from the execution mode to the defini­
tion mode, we begin the headline of a function by typing the charac­
ter V (called Ildel"). This is followed by the identifier of the value

of the function (here G), a leftward arrow, the name of the function
(here GROWTH ), which must differ from the identifier of its value,

a blank, and the identifier of the independent variable (here N ).
Thus, the headline of our function definition is

\/G+GROWTII N

When this is entered, the response is [1 ] typed at the beginning of

the next line to indicate that this is to be the first line of the function
definition. We now continue this line by typing G+(1+0.0SfN)*N9 ,

where the final del indicates the desire to close the definition mode.

As long as the material from the current work session is available, we

may call for this definition to be displayed by entering the command

V7GROWTH[OJtJ as shown below together with the statements and
solutions of the problems considered earlier. Note that the final V

appears below the last line rather than at its end.

VGROWTH[OJV

V G~GROWTH N
[1J G+(1+0.05fN)*N

v
1354.20xGROWTH 12

1423.48
2485.00xGROWTH 2

2610.8

In the definition of the function GROWTH above, the interest rate
was set at the fixed value of 0.05. If we want to make the interest
rate R another independent variable of the function GROWTH, we

may use R as a left argument and II as a right argument as shown

below, where the function definition is,followed by an example in
which a deposit of $3000 is left for twelve years at 6.5% com~

pounded quarterly. Note that the first attempt to define the new
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function GROWTH was not successful; the old function GROfvTH had
to be erased before a new function with the same name could be
defined. If it is desirable to retain the old function, the new one must
be given a different name, for instance GROWTH1.

VG+R GROWTH PI
DEFN ERROR

"JG+R GROWTH N

") ERASE' GROWTH
'VG+R GROWTH N

[1] G+(l+RTN)*N V
3000 X (O.065 GROWTH 4)*12

6503.51

An alternative way of defining a function that furnishes the growth
factor G as a function of Rand N is to use the vector V+R ,Iv as
right argument:

)ERASE GROWTH
VG+GROWTH V

[lJ G+(1+V[;J~V[2J)*V[2J 9
3000 x (GROWTH 0.065 4)*12

6503.51

Note that if there is only one argument, this must be the right argu­

ment.

Suppose that in command [1] of the last function definition, we
forget to depress the SH IFT key while typing the operator ~ be­
tween V[ 1 ] and V[ 2 ] and hence obtain a x sign instead of the
T sign. If the error is detected before the command is entered, it
may be corrected in the manner described in Sec. 1.4. If, on the

other hand, we have entered the erroneous line, then we have left
the definition mode on account of the terminal IIdel" of this line. To

correct the line, we must re-enter the definition mode, correct the
line, and leave the definition mode. This can be done by typing
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While there are many other ways of correcting typing errors, it is
strongly recommended that, in the beginning, you restrict yourself
to those discussed above to avoid introducing further errors.

3.2 BRANCHING

The function definitions of the preceding section are particularly
simple, because each of them requires only a single command. A

definition consisting of a set of commands that are always executed

in the same order is not much more complex. Frequently, however,
a function definition involves a set of commands that have to be

executed once or repeatedly in an order that depends on the values
of data or intermediate results. We shall now present some examples

to illustrate ways of specifying a more or less complex path through
a set of commands.

Growthtable

This function has as its left argument a vector P consisting of several
annual interest rates (stated in percent), and as its right argument a
vector N consisting of several annual frequencies of interest com­
pounding. The function furnishes a table of growth factors in which
each row starts with the relevant value of the interest rate and then

gives the factors by which a deposit left at this rate will increase in a

year when interest is compounded with the various frequencies that
make up the vector N .

The desired table is typed out as a matrix T of J rows and K

columns, where J is the number of elements in P (command [1] )

and K is the number of elements in N increased by 1 to accommo­

date the leading column of values of the interest rate (command [2] ).
The Ith row of this matrix is defined by command [6] , which states

that this row should consist of the value P [ I] catenated by the
growth factors (1+0. 01*P[I]fN)*N corresponding to P[ I] and
the elements of N . This command, however, will only be acceptable
if the size of the matrix T has been specified in advance. This is



VGROWTHTABLE[ 0] \l

V T~P GROWTHTABLE N
[1J J+pP
[2J K+l+pN
[3J T+(J.K)pO
[4J I+O
[5J ~(J<I+I+1)/0

[6J T[Ii]+P[I].(1+0.01 x P[I]fN)*N
[7J -+5

v

(2.S+0.5 x \7) GROWTHTABLE (1 2 4 12)

3 1.03 1.0302 1.0303 1.0304
3. 5 1.035 1.0353 1.0355 1.0356
4 1.04 1.0404 1.0406 1.0407
4. 5 1.045 1.0455 1.0458 1.0459
5 1 • 05 1.0506 1.0509 1.0512
5 • 5 1.055 1.0558 1.0561 1.0564
6 1.06 1.0609 1.0614 1.0617

w
~

»
:J

:J
,.-+..,
oa.
c
n
~.
a
:J
,.-+
o
»
'1J
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done by command [3] , which provisionally defines T as a matrix of
J rows and K colurTlns, all of whose elements are O. (Any other
number or array of numbers would serve as well, because these ele­
ments are later replaced by those specified by command [6]). The
commands [4], [5], and [7] see to it that the variable I in com­

mand [6] successively assumes the values 1. 2 t ••• ,J . Initially,
I is set to 0 by command [4] . Command [5] is a switch that either
calls for the computation of another row of the matrix T or termi­
nates the computation. Whereas commands normally are executed in
the order indicated by their numbers, the computation will follow
one of two or more branches every time a switch is reached. Particu­
lar care must be taken in writing the switch command to make sure

that it accompl ishes the desired branching.

In an APL function definition, a switch begins with a rightward

arrow. If this arrow is not followed by an expression, the switch calls
for termination of the computation. If the arrow is followed by an

expression, the value V of this expression, or if the expression repre­

sents a vector, the value V of its first element, indicates the manner

in which the computation is to proceed. V must be a positive inte­
ger, zero, or empty. If V is the number of one of the commands of
the function definition, this command is executed next. If V is zero
or greater than the number of the last command of the function

definition, the computation is terminated. Finally, if V is empty,

e.g., if V+O / S , where S is a scalar, the computation proceeds to
the next command or terminates if the switch is the last command of
the function definition.

After the Ith row of the matrix T has been computed according to
command [6], command [7] thus effects an unconditional switch

to command [5]. As the parenthesis in the latter command is evalu­
ated from right to left, the current value of I is increased by 1 and
the new value of I , which is the number of the next row to be
computed, is compared to the fixed value of J . If the Jth, i.e., last,

row of the matrix T has just been computed, this new value of I is

J +1 , and since the assertion J <I in command [6] is true, the
parenthesis has the value 1. Since 1/0 has the value 0, the computa­
tion is terminated. If, on the other hand, the current value of I is



36 An Introduction to APL

less than J , i.e., if at least one more row of T has to be computed,
the increase of I by 1 in command [6] yields a new value satisfying

J?:.I . The assertion J <I is therefore false and has the value O. Now,

0/0 is empty; accordingly the computation proceeds to the next com­
mand (command [6] ).

Quadratic

This function furnishes the roots of the quadratic equation x 2 + C 1X

+ C2 = O. It does not use a left argument; its right argument is the

vector C , the two elements of which are equal to the coefficients

C 1 ,C2 of the quadratic equation. The desired roots are found in terms
of a four-element vector R, with R[ 1], R[ 3] being the rea I and

R[2]. R[4] the imaginary parts of the roots.

'V R+QUADlrATIC C
[1 ] R+4pO
[2J D+(O.25 xC[1]*2)-C[2]
[3] -+(D<O)/7
[4J R[1]+-(O.5xC[1])-D*f2
[5] R[3]+--(O.5 xC[1])+D*f2
[6J -+O,R[2]+R[4]+O
[7J R[1]+R[3]+-O.5 x C[1]
[8] R[4]+-R[2]+(ID)*f2

'iJ

QUADl?ATIC 1 6
2 0 3 0

QUADRATIC 4 13
2 3 2 3

QUADRATIC ( (-10 8 ) f 3 )
2 0 1.333333333 0

Command [1] of QUADRATIC provisionally specifies a vector R

with four elements of value O. COrTlmand [2] defines the discriminant
D of the quadratic equation, which is used in command [3] to effect

appropriate branching. If D~ 0, the expression that follows the
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rightward arrow in command [3] is equivalent to 0/7, which is

empty_ In this case, the next command to be executed is [4] _On the

other hand, if D<O, command [3] causes branching to [7]. Each of

the commands [4] and [7] begins a series of commands that defines

the elements of R for nonnegative discriminant (real roots) or nega­

tive discriminant (conjugate complex roots).

Note that the expression 0 .R[ 2] in command [6] represents a two~

element vector because the comma indicates catenation. Since the

convention has been adopted that a rightward arrow in front of a

vector disregards all elements of this vector but the first, the com­
putation is terminated after the part of command [6] that is to the
right of the comma has been executed.

The first two uses of QUADRATIC shown above concern the equa­

tions

x 2 + X - 6 = 0 and x 2 - 4x + 13 = 0,

the roots of which are found to be

x = 2 x =-3
1 ' 2

and X 1 = 2 + 3i, x 2 = 2 - 3i.

The third example concerns the equation 3x 2 - 10x + 8 = 0, which

must first be brought into the standard form for QUADRATIC by

dividing the coefficients -1 0 and 8 by the coefficient 3 of the

quadratic term. Note that the argument of QUADRATIC in this exam­

ple could also be typed as ( -1 0 8).;. 3 or even - 1 a 8 f 3. Note

also that, in many cases, a quadratic equation of the form a1 x 2 +
a2 x + a3 = 0 has to be solved when the coefficients a 1 ,a 2 ,a3' instead
of being given outright, are intermediate results of the computation

in the course of which the equation must be solved. It is then not

known in advance that 8 1 *- 0, and QUADRATIC must be replaced by

a more involved function that takes account of all special cases.

Zero

This function yields an approximation to a real zero of the separately

defined function FUflCTN when two values of the independent
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variable are given for which this function has values of opposite signs.

(A zero of a function is a value of the independent variable for which
the function has the value 0.)

ry F+TOL ZERO X
[1J ~(O~(FUNCTN X[l])x(FUNCTN X[2])/6
[2J ~(TOL~IG+FUNCTN F+O.5 x +/X)/O
[3] ~(O<GxFUNCTN X[1])/5
[4J -+2,X[2J+F
[5J -+2,X[1J+F
[6J 'EI?ROR'

fiJ

The method used to find the approximate value of the zero is called

binary search. It is an iterative method, in each step of which the

length of the interval known to contain a zero is halved. The itera­

tion is broken off when a value of the independent variable has been

found for which the absolute value of FUflCTN is equal to or less
than the tolerance specified by the left argument TOL of ZERO.
The right argument of ZERO is a vector X of size 2, X[ 1 ] and

X[2] being the given values of the independent variable, for which

FUNCTN is supposed to have values of opposite signs.

Command [1] of ZERO checks whether X[ 1 ] and xC 2 ] satisfy or
violate this condition, and respectively causes branching to either [2]

or [6]. In the latter case, the message El?ROR is typed out and the

computation is terminated. Interpreted from right to left, the paren­

thesis in command [2] calls for the computation of F+O.5x(X[1]

+X[2]) ,and evaluation of G+-FUNCTN F and the Boolean ex­

pression TOL?:.I G , where' G stands for the absolute value of G .

The value 1 of this Boolean expression causes branching to 0, i.e.,

terminates the computation. If, however, the absolute value of G

exceeds TOL, the computation proceeds to command [3], which
effects branching to [5] or [4] depending on whether the values of
FUNCTIVat X[ 1 ] and F have the same or opposite signs. In the
first case, the zero lies between F and xC 2 J . The substitution of
F for X[ 1 J and the return to [2] demanded by [5] thus initiate
the next step of the iteration. If, on the other hand, F(J!ICTN has
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values of opposite signs at X[ 1 ] and F , the computation proceeds

from [3] to [4] and F is substituted for X[ 2] before the branch

to [2] starts the next step of the iteration.

The function FUNCTN defined in the example below is x 2 - 3x - 2;
its right argument and value have deliberately been named X and F
to show that no confusion arises from the fact that both the function

ZERO and the function FUflCTfJ, which appears in 'lERO , use the

same symboJs for right argument and value.

V F..-FUNCTN X
[1J F+-2+XxX-3 V

lE-6 ZERO 0 4
3.561553001

O.5 x (3+17*';-2)
3.561552813

G
7.775970516E 7

X
VALlJE ERROR

X
1\

Since FUNCTN has the values 2 and 2 , respectively, for the argu­
ment values 0 and 4, there is a zero in the interval (0, 4). The com­
mand 1E-6 ZERO 0 4 yields 3.561553001 as the approximate

value F of this zero. A check can be made of this result by solving

the quadratic equation directly via the command O.5 x (3+17*O.5)
which yields the "exact" value 3.561552813. As stipulated, the
variable G, computed in command [2] of ZERO and equal to
FUNCTN F, has an absolute value less than the tolerance lE- 6.

A more concise version of ZERO is shown on the next page together
with the evaluations of the same zero of x 2

- 3x - 2 for two values
of the tolerance.
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'V F+-TOL ZERO X
[1J (O«FUNCTN X[1])xFUNCTN X[2])/4
[2J ~(TOL~IG~FUnCTN F+O.5 x +/X)/O
[3J ~2.X[1+(O~GxFUNCTN X[l])]+F
[4] 'ERROR'

'iJ

3.561553001

3.561552815

3.3 LOCAL AND GLOBAL VARIABLES

For the purpose of defining a function, its arguments and value must

be given identifiers. In the function ZERO, for instance, these are

TOL, X , and F. There is no need, however, to employ the same

identifiers for these variables when the function is used. For example,
after specifying A+1E- 6 and B+O 4 , we may call for the evalua­
tion of, say, Z+-A ZERO B. Thus, the identifiers TOL , X , and F

appearing in the definition of ZERO are mere dummies that may be

replaced by other identifiers when the function is used. After a func­

tion has been evaluated, the identifiers used for the independent
variables are associated with numerical values only if such values
were assigned to them by a command that preceded the start of the

function evaluation. Accordingly, the command X at the bottom of
the example on p. 39 brings the response VALUE ERROR, followed

by a repetition of the unacceptable command below which the vari­
able without value is indicated by a caret. If, on the other hand, we
had called for the evaluation of a zero of FUNCTN by the commands

}(+-0 4
1E-6 ZF:RO X
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the command X after the evaluation of the zero would have yielded
the initial value 0 1+ , even though this value has been changed
during the execution of the function ZERO.

As the example on p. 39 shows, the final numerical value that the
variable G assumed just before the evaluation of ZERO was termi­
nated by the switch in command [2] remains available after this

evaluation. A variable whose value is only available during the evalua­
tion of a particular function is said to be local to this function; a

variable whose value is not restricted in this manner is called global.

All variables in APL functions are global unless they appear as dum­

mies in function headers or are specifically declared as local.

To avoid the inadvertent use of the same identifier for distinct vari­

ables, it is good practice to declare as local to a function all variables
whose numerical values are not likely to be required after the func­

tion has been evaluated or that can be readily recomputed should

they be so required. In ZERO , for instance, G could be declared as

local because its last value, if desired, can be obtained as shown be­

low.

3.561553001

FUNCTN Z
7.775970516E-7

To declare variables as local to a function, they must be listed at the
end of its header, each being preceded by a semicolon. For example,

the header

VT+P GROWTHTABLE N;I;J;K

indicates that the variables I I J, K are local to the function
GROWTHTABLE (see the beginning of Sec. 3.2), in which J and K
determine the size of the table and I is a counter used to terminate

the computation after J rows of the table have been obtained. The
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numerical values of these variables are obviously no longer needed

when the function GROWTHTABLE has been evaluated.

Note that the value of a global variable is not available during the

execution of a function that has a local variable with the same identi­

fier. For instance, command [4] could be omitted from the original

definition of GROWTHTABLE provided that the assignment I+-O was

made before this function was invoked, but this change could not be
made in the definition in which I has been made local to the func­

tion.

Since the numerical values of the local variables of a function are

available throughout the evaluation of this function, they are also

available during the evaluation of a second function that appears in
the definition of the first function, provided that the second function

does not have local variables with the same identifiers. On the other
hand, local variables of the second function, while available during
its evaluation, are not available in the first function once the evalua­
tion of the second function has been completed. These facts are
illustrated by the example below, in which the function CONVERGENCE
uses the function AREA, which in turn uses the function Y .

The function N AREA B approximately evaluates the area bounded

by the X axis, the graph of the function Y X , and the lines with

the equations X=B[ 1] and X=B [ 2] as follows: the strip bounded

by these two lines is divided into N strips of equal width; in each of

these strips, the graph of Y X is replaced by its secant, and the areas
of the trapezoids formed in this way are added.

The function P CONVERGENCE C displays the approximate areas for
N=2*P[1]. 2*P[1]+1 • •••• 2*P[2], the numerical values of the

elements of B being the same as those of C .

Although I is declared local to CONVERGENCE , it is available to

AREA , which is used by CONVERGENCE. On the other hand, if
CONVERGENCE , instead of listing each value of I followed by the

corresponding value of AREA , were to list each value of H (see
command [1] of AREA ) followed by the corresponding value of
AREA, the variable H could not be made local to A.llEA . Note that
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no confusion arises from the fact that C is used as a dummy in

CONVERGENCE and as a local variable in AREA ·

\lCONVERGENCE[OJV

V P CONVERGENCE C;I
[1J I+2*P[1]-1
[2J ~«2*P[2])<I+2xI)/O

[3J ~2.D+I.(I AREA C)
'l

VAREA[O]V

\J A+N AREA BiH;C
[lJ H+-(B[2]-B[1])fN
[2J C+B[1]+H x t(N-1)
[3J A+-Hx(+/y C)+O.5 x (Y B[1])+Y B[2]

V

Vy[O]V

\J F+-Y X
[lJ F+X*2

V

5 8 CONVERGENCE 1 3
32 8.66797
64 8.66699
128 8.66675
256 8.66669

(Note that the exact value of the desired area is 26.;.3.)

3.4 CHECKING FUNCTION DEFINITIONS

To illustrate various means of checking function definitions that are
to be used in a computational task, suppose that the functions
CONVERGENCE and AREA of the last section were erroneously
defined as follows, while the function Y was defined as before.
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VCONVERGENCE[OJV

V P CONVERGENCE C;I
[lJ I+2*P[1]-1
[2J ~(2*P[2J<I+2xI)/O

[3J ~2.D+H.(I AREA C)
'I

VAREA[OJV

V A+ll AREA BjII;C
[1J H+(B[2J-B[lJ)7N
[2J C+B[l]+H x l(N-l)
[3J A+Hx(+/y C)+O.5(Y B[l])+Y B[2J

V

1 2 CONVERGENCE 1 3

The attempt to execute 1 2 CONVERGENCE 1 3 produces a
blank line, as the example shows. This suggests that command [3] of

CONVERGENCE, which would produce the first value of Ii followed
by the corresponding value of AREA, has not been reached, because
command [2] has effected branching to [0] instead of [3] . To check
what has gone wrong, we may request that the output from com­
mands [1] and [2] of CONVERGENCE be traced. This request and
the response to it are shown below.

T6CONVERGENCE+l 2
1 2 CONVERGENCE 1 3

CONVERGENCE[ 1 ] 1
CONVERGENCE[2] 0

TI1CONVERGENCE+O

It is seen that command [1] yields the correct result 1 (initial value

of I ), while command [2] furnishes the incorrect result 0 (instead

of the empty vector, which indicates branching to the next com­
mand). Indeed, evaluating command [2] from right to left, we first
obtain 2 as the new value of I , then 0 as the value of P[ 2 ] < 2 ,

then 1 as the value of 2*0 , and finally 0 as the value of 1/0, thus
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producing branching to [0] instead of [3] . For the latter branching

to take place, the final result from [0] should be the empty vector
0/0. To achieve this, we must type (2*P[2])<I instead of

2*P[2]<I. Before we make this correction, we cancel the re­
quest for a trace of CONVERGENCE as shown in the last line of the

example above.

The necessary correction can be made as described at the end of Sec.
3.1. In making corrections, we must guard against introducing new
errors. Suppose, for instance, that we attempt to correct command
[3] as shown below, inadvertently omitting the rightward arrow. The
attempt to execute the "corrected" function produces the report of
a SYNTAX ERROR in AREA [ 3] .

VCONVERGENCE[2] «2*P[2])<I+2 x I)/O V

1 2 CONVERGENCE 1 3

SYNTAX ERROR
AREA[3] A+Hx(+/y C)+O.5(Y B[l])+Y B[2]

A

)SI
AREA [ 3 ] *
CONVERGENCE[ 3 ]

VAREA[ 301]
[3J A+Hx(+/y C)+O.5(Y B[1])+Y B[2]

1
[3] A+Hx(+/Y C)+O.Sx(y B[1])+Y B[2]
[4J V

This shows the computation has now reached CO~IVERGENCE[3],

which requires the evaluation of I AREA c. The caret located

under the reproduction of the incorrect command indicates the

source of trouble: the multiplication symbol between the factor 0.5
and the opening parenthesis has been omitted. To correct command
[3] of AREA , we would have to enter the definition mode. This,
however, cannot be done directly because the error report interrupted
the execution of CONVERGENCE. To find out exactly where we
stand, we call for a status report by entering the system command
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)SI , which stands for status indicator. The response to this lists all

currently active functions (i.e., functions whose evaluation has not
yet been completed), beginning with the most recent one, and indi­

cates for each the command whose execution is to be completed
next. An asterisk indicates that the function is in suspended execu­
tion. Before the erroneous function definition can be corrected, the
status indicator must be cleared by entering a rightward arrow for
each asterisk-in the example above, this means one rightward arrow.

Since the command AREA [ 3 ] is rather long, it would be bothersome

to retype the entire command just to insert a single multiplication
symbol. A more convenient way is shown above. In the command

'VA REA [301], the 3 is the number of the command that is to be

corrected, and the 1 (or any other digit) indicates that we wish to

correct without complete retyping. In response, the current form of
the erroneous command is reproduced. Beneath the opening paren­
thesis following the factor 0.5, we type a 1 to indicate that the cor~

rection requires one empty space to the left of the parenthesis. *
Depression of the RETURN key yields another copy of the incorrect
command with the demanded blank space, and positions the type

head at this space. We now type the multiplication symbol that had

been omitted and depress the RETURN key. The response to this is
the number (here [4]) of the next command (if there was such a

command). If we do not wish to change th is command or add a com­
mand with this number, we enter a fidei" to close the definition

mode.

The attempt to execute CONVERGENCE produces the report of a
VALUE ERROR, indicating that in CONVERGENCE[ 3 ] the value

of H is not defined. Inspection of AREA shows that II has been
made local to this function; its value thus is not available to
CONVERGENCE once AREA has been evaluated. We first ask for the
status indicator and then clear it. The next few lines show how the
header of AREA (referred to as AREA [ 0 ] ) is corrected by using

*The digits from 1 to 9 may be used in this manner to demand the insertion of
up to nine empty spaces, and the letters A. B • C • • • may be used to
indicate the need for 5, 10, 15, ... empty spaces.
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1 2 CONVERGENCE 1 3

VALVE ERROR
CONVERGENCE[3] +2.D+H.(I AREA C)

A

lSI
CONVERGENCE[3] *

V'AREA[OOl]
[0 ] A~N AREA BiH;C

II
[0 ] A~N AREA B;C
[lJ fJ

1 2 CONVERGENCE 1 3

1 9

0.5 8.75
o
0.25 8.6875
o
0.125 8.67187
a
0.0625 8.66

)SI
AREA[3] *
CONVERGENCE[ 3 ]

fJCONVERGENCE[201]
[2J «2*P[2])<I+2 x I)/O

1
[2] +«2*P[2])<I+2 x I)/O
[3J v

1 2 CONVERGENCE 1 3
1 9
0.5 8.75

slashes to indicate deletion of characters. The next attempt at evalu­
ating CONVERGENCE yields two correct lines of the result; however,
these are separated by a blank line that should not be there and are

followed by an apparently unending sequence of further lines. To
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interrupt this, we depress the ATTN key. The response to this indi­
cates the command whose execution is to be completed next. We
again request a status report and clear the status indicator. The fact
that the computation is not terminated shows that the desired
branching to [0] in CONVERGENCE[2] is not performed. Inspection
of this command reveals that the rightward arrow has been omitted.
After this mistake has been corrected, 1 2 CONVERGENCE 1 3
finally yields the correct result.



4 System Commands
(part 1)

System commands, and only system commands, have a closing paren­
thesis as the first character. Accordingly, we have already encountered
some system commands, namely the commands for signing on or off,
the) DIGITS command, the) ERASE command, and the) SI com­

mand. In this chapter, only a limited number of additional system
commands will be discussed, which are used in the organization and
maintenance of a library of function definitions.

The ease with which a user may build his own function library or

copy functions from a public library or another user's library is a
major asset of the APL system. The two brief sections of this chapter
show how a user may start his function library and make additions
to it. A more complete discussion of system commands is found in
Ch.9.

4.1 STARTING A LIBRARY

A workspace is a block of space in the computer's memory. Each
user is entitled to at least three workspaces: the active workspace in
which he is working, a workspace called C'OtlTIlt/lIE in which the
active workspace wi II be stored if sign-off is with ) CON1'INUH, and
a workspace in which a library of function definitions may be organ­

ized.
49
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To illustrate the establishment of such a library, let us assume that
the system command ) OFF was last used at the end of the work
session preceding the one in which the functions ZE.RO and FUNCTN

were defined, and that since then only the command )CONTINUE
was used to terminate the sessions in which these functions and the

functions ·CONVERGE/ICE, AR};'A, and Y were defined and tested.

The example below shows how a library containing the relevant func­

tion definitions from these work sessions may be established.

Because the systems command )CONTINUE has been used at the end

of the last work session, the content of the CONTINUE workspace is

copied into the active workspace when we sign on. This is indicated

by a line containing the word SAVED and the time and date of the

last sign-off. Note that the active workspace, which is a copy of the

CONTINUE workspace, now takes on the workspace identification

CONTI NUE. This would be displayed in response to the system com­

mand )WSID , but this is not shown in the example. Since we may

not remember the precise contents of the CONTINUE workspace, we

call for a listing of functions in the active workspace by the system

command )FNS. The response to this reminds us that, in addition

to the useful functions AREA. CONVERGENCE, and ZERO , the
workspace also contains the functions FUNCTN and Y , which were

only used to test the other functions. We therefore erase FUNCTN
and Y by the next system command, to which there is no typed
response. A new command) F N~c; shows, however, that the desired
erasure has been performed.

Next, we use the command) VAR,S to call for a listing of global
variables in the active workspace that possess specific numerical
values. These are listed as G ,H , and Z. The command G yields
the last value of this variable (see p. 39). Since this value as well as

the values of Hand Z are of no interest in further uses of library
functions, we call for their erasure.

Because the function COfJVERGENCE uses the function AREA , it

will be convenient to form a group composed of these functions.
This is done by the systems command consisting of the characters
)GROUP followed by the identifier (ARCON) that we wish to give to
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APL\360

SAVED 11.03.50 07/01/70
)FNS

A.REA COlvVERGEIJCE FUNCTN y ZERO
) ERASE FUllCTN Y
) FflS

AREA CONVERGE/ICE ZERO
)VARS

G H Z
G

7. 775970516~-' 7
)ERASE G H Z
)GROUP ARCON AREA CONVERGENCE
)JvkC:ID LIBR

~/AS COflTI NUE
)5'A VE

11.06.19 07/01/70 LIBR
)CLEAR

CLEAR WS
) COpy LIBR ARGOII

SAVED 11.06.19 07/01/70
)FNS

AREA CONVERGENCE
)GRPS

Al?COf./
) VARS

)CLEAR
CLEAR WS

)COpy LIBR
SAVED 11.06.19 07/01/70

)FNS
AREA CONVERGENCE ZERO

) VAR5'

)GRPS
ARCO~l

the group and by the identifiers of the members of the group
(AREA CONVERGEltlCE). There is no typed response to this com­
mand. We now choose an identifier for our function library, say
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LIBR , by the systems command ) WS I D LIBR. The response to
this gives the previous identifier of the active workspace. Finally, the

command ) SA VfJ' is used to store the contents of the active work­

space as a function library named LIBR .

In preparation for an illustration of uses of this library, we clear the
active workspace by the systems command ) CLEAR , the response

to which indicates that we now have·a clear active workspace.

If we need only the functions of the group ARCON, we may use the
system command consisting of the characters ) COpy followed by
the identifier of the workspace (LIBR) containing the object (vari­
able, function, or group) to be copied, followed by the identifier
(ARCOfl) of this object. Note that only one object can be copied at a

time. If we had not formed the group ARCON , we would have had
to use two copy commands to get both AREA and CONVEltCENCE

copied. Note also that the entire named workspace ( LIBR) will be

copied if its identifier is not followed by that of a specific object.

The response to our copy command indicates when LIRR was saved,
and the responses to requests for listings of functions, groups, and

variables in the active workspace show that we have the functions

AREA and CONVERGENCE and the group ARCON, but no global

variables with numerical values. (To exhibit this absence more clearly

in the example, the paper has been manually advanced by one line
after the lack of a typed response was noted.)

As is shown in the rest of the example, a copy command that does
not name a specific object (variable, function, or group) causes the
entire named workspace ( LIB R ) to be copied.

4.2 ADDING TO A LIBRARY

To show how additions may be made to an already established
library, let us assume that at the end of the work session in which
ZERO was defined and tested, this function was stored as the first
member of the library LIBR , that the command ) OFF was used
to terminate this session, that the functions AREA and CONVERGENCE
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were defined and tested in subsequent sessions, which were termi­
nated by the command )CONTIflllE after the last numerical value

of the variable H had been erased.

A P L \ 360

SAVED 16.42.51 07/01/70
) FlvS

AREA CONVERGENCE
) VARS
)GRPS
)GROUP ARCON AREA CONVERGENCE
)COpy LIBR

SAVED 16.40.47 07/01/70
)WSID LIBR

TIA ..9 C0 Iv T I Iv UE
)SAVE

16.44.56 07/01/70 LIBR
) CLEAR

CLEAR J-IS
)COPY LIBI?

SAVED 16.44.56 07/01/70
)l?Nt;

AREA CONVERGENCE ZERO
) VARS
)GRPS

ARCO!l

After signing on again, we examine the contents of the active work­
space and form the group ARCON as before. We then ask the library
LIBR, which at this time contains only ZERO, to be copied into
the active workspace, change the identifier of this space to LIBR,
and save the active workspace. The rest of the example shows that

LIBR now contains the functions AREA , COflVERGENCE, and
ZERO , no global variables with numerical values, and the group

ARCON.

Note that the command ) SA VE is destructive in the sense that the

original function library is now replaced by the new library.





5 Additional Operators

In Sec. 1.5, only the most frequently used operators were treated,

and for some of them only their monadic use was discussed. Section
5.1 is concerned with the dyadic use of the latter operators, while­
Sees. 5.2 and 5.3 introduce new operators in both monadic and

dyadic use. Basic operators are defined in Sec. 5.4.

5.1 DYADIC USE OF ., ! , /, AND 0

The monadic use of these operators was explained at the end of Sec.

1.5, and some of the dyadic uses of 0 were mentioned at the be­

ginning of Ch. 3. In the following discussion of the dyadic use of

these operators, M and N will denote nonnegative integers, while
A and B mayor may not be integers.

If A > 0, B> 0 , and A ~ 1 , the value of AeB is the logarithm of B

for the basis A.

The binomial coefficient (!N)t( !M)x!N-M is given by the expres­

sion M!N. Note that M! N has the values 0 and 1 for M<N and M=O,
respectively. For lSM$N, the value of M! N may be interpreted as

the number of combinations of N items taken /1 at a time.

If A ~ 0, the value of R+A IB, the residue of B modulo A, is the

55
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smallest nonnegative number R such that B can be expressed as
R+NxA. If A=o , then B must be nonnegative, and A IE has the

value B .

The meaning of MoA and ( -M) oA for 0 sMs 7 is given in Table 5.1.

TABLE 5.1

o
1

2

3
4

5

6
7

MoA

(1-A*2)*O.5
sin A

cos A

tan A

(1+A*2)*O.5
sinh A
cosh A
tanh A

( -J1)oA

(1-A*2)*O.5
arcsin A

arccos A

arctan A

C-l+A*2)*O.5
arsinh A

arcosh A
artanh A

The examples opposite illustrate the dyadic use of these operators.

Note the rounding of the positive elements of the vector A that is

achieved by means of the operator I . The function SINES evalu­
ates the series c, sin x + c2 sin 2x + ... + cnsin nx. The left argument
C is the vector of coefficients, and the right argument is the value
of X .

5.2 OPERATORS l, r, AND?

Since these operators have not yet been discussed, both their mon­

adic and dyadic uses will be explained below, where M and N de­

note positive integers.

On the real number axis that is directed toward the right, the points

with the abscissas LA and rA are the points with integer abscissas
that are immediately to the left and right of the point with the
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abscissa A . For example, L- 3 • 2 and r- 3 • 2 have the values - 4

and 3, respectively. If A is an integer, both LA and rA have the

value A .

The value of A LB is the smaller of the values A and B. Similarly,
the value of ArB is the greater of the values A and B . Conse­

quently, L/ V and r / V yield respectively the smallest and greatest

elements of the vector V. The examples below indicate various uses
of the operators Land r .Note the last command, which provides
a convenient rounding of the elements of V to the nearest integers.

V+-3.2 3 4 4.6
LV

4 3 4 4
rv

3 3 4 5
L/V

3.2
r/ V

4.6
LV+ O. 5

3 3 L~ 5

The function SMALL shown next uses the operations just discussed

to locate the indices I and J , and the value .4[I ;JJ , of the
smallest element of a matrix A (or one of several mutually equal
elements that are smaller than any other element).

V S+SMALL A;V;I;J
[1] I+V1L/V+L/A
[2J J+VtL/V+lfA
[3J S+I.J,A[I;JJ

'l

A+3 3p4 2 6 8 7 1 3 5 1

SMALL A
231

The operator ? is used in connection with the selection of "random"
elements from a vector. In particular, the expression ?N represents
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an integer randomly chosen from the elements of the vector 1 N ,
each element having the same chance of being chosen. For a given

value of N ,the expression ?N thus does not have a fixed value, as
is shown below by the response to the command ? ( 1 Op 6 ), which

corresponds to a tenfold repetition of the cOrTlmand ? 6 . Note that

this response simulates the result of ten consecutive throws of a die.

If the command ? ( lOp 6) is given once more, the response differs

from the preceding one-just as the next ten throws of the die do not

duplicate the first ten throws. On the other hand, after a clear active

workspace has been provided by the command ) eLF:AR , two suc­
cessive commands ? ( lOp 6 ) yield the same results as before. This
shows that there is some system to the flrandomness," so that the
term "pseudo-random" would be preferable to the term "random."

For brevity, however, the latter term wi II be used here.

?10p6
1 5 3 4 2

?1 Op 6
4- 5 1 1 4

) CLEAR
CLEAR r-l/:;

? 1 Op 6
1 5 3 4 2

? 1 Op 6
4 5 1 1 4

1 5 563

5 1 313

1 5 563

51313

)WIDTH 55
liAS 120

(?36p6)+?36p6
11 10 7 12 8 5 6 9 8 8 6 8 2 9

5 6 11 10 6 8 7 10 10 9 2
5 11 8 7 10 8 8 8 5 3 5

Note the systems cOrTlmand ) W.T DT H used to control the length of

the typed line. Note also that terminating a work session with )OFF
has the same effect on subsequent random operations as the com­
mand ) eLFAR . The last command in the example above simulates

the sums obtained in thirty-six consecutive throws of a pair of dice.

If MSIJ I the expression M? N represents a vector of M elements
randomly chosen from the elements of the vector lit' ,with the
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provision that any element may be chosen only once. Thus, N?N
is a random arrangement of the elements of tN, and 21 (2 x N) ?2xN
is a random Boolean vector with exactly IV zeros and N ones. The
last command in the example below shows how a random arrange­
ment of the elements of an arbitrary vector may be obtained.

5?9
5 4 2 8 1

10?10
8 6 4 10 5 9 7 2 1 3

2110?10
1 0 1 0 1 a 1 1 0 0

V+l 2 3 5 8 13 21 34 55
V[(pV)?pV]

3 21 34 8 13 55 5 1 2

5.3 OPERATORS -, /\ , V , ?t , AND iii'

The operator ,w ("not") is only used monadically, and the operators
1\ (lIand"), v (liar"), ~ C'nand"), and If; (II nor") are only used

dyadically. In the following discussion of these operators, Band C
will be used as identifiers of Boolean scalars or vectors.

The value of the expression -B is obtained from that of B by re­
placing each a by 1 and each 1 by O. For example, if the vectors B
and V have the same size, B / V is the set of elements in V that

correspond to elements of value 1 in B (see Sec. 2.4), and ("""'B)/V
is the complementary set of elements.

The expression .13/\ C ,where Band C are Boolean scalars, has the
value 0 unless both B=l and C=l , in which case BAC has the value

1. This meaning of the operator A is displayed below as the response
to the command 0 0 1 1 A 0 1 0 1 , and similar displays are

given for the operators v, '1t , and ¥ .

In a function definition, the command ..ax ( (X>5)A(Y:S3)vZ=6

effects a branch to command 8 only if the assertion x> 5 and at least
one of the assertions Y~3 or ~=6 are true; in any other case, the
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computation is terminated because the expression following the

rightward arrow has the value O.

B+O 0 1 1
V+l 2 3 4
EIV

3 4
(~B) I V

1 2
C+O 1 0 1
BAG

0 0 0 1
BvC

0 1 1 1
B*C

1 1 1 0
B¥C

1 a a a

~BRANCH[DJ\7

T,J B+BRANCH V
[lJ B+8 x «V[1]>5)A(V[2]S3)vV[3]=6)

'V
BRANCII 7 2 4

8

BRAllCH 7 2 6
8

BRANCH 5 2 I~

a

5.4 BASIC OPERATORS

In the following, the monadically or dyadically used operators

+ - x f * • ! I L r 0, the monadically used operators ? ~,

and the dyadically used operators < ~ = ~ > ;t will be called basic.
At the beginning of Sec. 2.3, rules were given regarding the use of
operators with vectors and matrices, but no attempt was made to
define the class of operators to which these rules apply, because only
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a few operators had been defined at that time. It is now appropriate

to state that the symbols m and d used there respectively stand for

any basic monadic or dyadic operator. Some illustrations are given
below.

V+t 5
D+W+V[S?sJ

4- 5 3 1 2
D+R+-V>W

0 0 0 1 1
O+S+-V~Yv'

a a 1 1 1
HAS

0 0 0 1 1
RvS

0 0 1 1 1



6 Arrays (part 2)

The discussion of arrays in Ch. 2 was restricted to vectors and
matrices and to the most important special operations on these

arrays. Section 6.1 is concerned with arrays of any dimensionality,
while Sec. 6.2 treats additional special operations on arrays.

6.1 ARRAYS OF HIGHER DIMENSIONALITY

An array of the dimensionality 3 may be visualized as a deck of file

cards, in which each card carries a matrix of the same size. For

example, an array A of the size 3 2 4 corresponds to a deck of
three cards, each of which carries a matrix of 2 rows and 4 COIUrTlns.

The element A[I;J;KJ is found on the Ith card at the intersection

of the Jth row and Kth column. The display of such an array is card

by card, as shown in the example below, which also indicates how

the elements of a vector V are structured into an array of dimen­

sionality 3.

Note that the command .A yields the vector V from which A was

formed. Note also that the commands A[3;2;4] and A[3;1 2;4J,

respectively, yield a single element and a vector of size 2, while the

commands A[2 3;1 2;3J and A[2 3;1 2;2 3 4] yield a matrix

63
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n+-A+-3 ::? 4 P V+- 'l 21.~

1 2 3 4
5 6 7 8

9 10 11 12
13 1 r~ 15 16

17 18 19 20
21 22 23 2'+

,A
1 2 3 4 5 6 7 8 9 10 11 12 13

14 1S 16 17 18 if) 20 21 22 23
24

A[3,2;4]
24-

A[3;1 2 ; 4 ]
20 24-

A[2 3;1 2 ; 3 ]

11 15
19 23

A[2 3 ; ; 3 J

11 15
19 23

A[2 3 ; 1 2 ; 2 3 '+ ]

10 11 12
14 15 16

18 19 20
22 23 24

of size 2 2 and an array of size 2 2 3. Finally, note that the two

central indices in A[ 2 3; 1 2; 3] exhaust the range of the second

index of A and may therefore be omitted.

An array A of the dimensionality 4 may be visualized as a set of
decks of cards, each deck containing the same number of cards, and
each card carrying a matrix of the same size. The element A [I;J;K;L ]
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is found at the intersection of row j{ and column L on card c! of

deck I . The display of such an array is deck by deck and, within

each deck, card by card. The example below shows how a vector of

size 24 or a matrix of size 3 8 are restructured into an array of

size 2 2 2 3, and how various groups of elements may be selected

from such an array.

[]+A +-2 2 2 3pl1+3 8pV+1.24

1 2 3
4 5 6

7 8 9

10 11 12

13 14 15
16 17 18

19 20 21
22 23 24

A[1;2;1;3J
t]

A[1; ; 3 ]

3 6
9 12

A[;;;3]

3 6
9 12

15 18
21 24

Arrays may be indexed by arrays. For example, in the expression
11[ 2 3 i 4 2 J, the matrix /.1 is indexed by the vectors 2 3 and
't 2. If R, C, and D are matrices, A+-B[C;DJ defines an array A
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of size (pC) ,pD with the typical element A[I;J;K;LJ+-B[C[IiJJi
D[K iL] J. For this definition to make sense, the elements of C and
D must be positive integers not exceeding p B [ 1 ] and p B [ 2 J, respec-
tively. If this condition is not fulfilled, an INDEX ERROR is reported.
Similarly, A+BCC;] defines an array of the size (pC),pB[2] with
the typical element A [I ; J i]( ]+B [C[T; J J; K J. The extension to
arrays of higher dimensionality is immediate. In the example below,
this kind of indexing is used to substitute a -1 for each 0 in a
Boolean matrix B. Note the alternative ways of obtaining the same
result.

B+2 3p 1 a 1 1 0 0- 1 1[8+1J

1 1 1
1 1 1

B--B

1 1 1
1 1 1

1+2xB

1 1 1
1 1 1

The rules for using basic operators with vectors and matrices that

were given at the beginning of Sec. 2.3 and further illustrated in Sec.

5.4 apply also to arrays of higher dimensionality, as is shown below.

O+A+2 2 3pt12

1 2 3
l~ 5 6

7 8 g

10 11 12



1
0.25

0.14286
0.1

3xA

O. 5
0.2

0.125
0.090909
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0.33333
0.16667

0.11111
0.083333

3 6 9
12 15 18

21 2 Lt 27
30 33 36

0+B+2 2 3p13-1.12

12 11 10
9 8 7

6 5 4
3 2 1

AxE

12 22 30
36 40 42

42 40 36
30 22 12

6.2 SPECIAL OPERATORS

In Sec. 2.3 only a few of the more important special operations on
arrays were discussed. A more comprehensive treatment is presented

below, where d and 0 denote dyadically used basic operators.

Reduction

When A is a vector or a matrix, the value of the expression d/ A is
the scalar A[1] dA[2]d .... dA[pA] or the matrix A [ ; 1 JdA [ ; 2]d

••• dA [;( pA ) [ 2 ] J. Similarly, when A is an array of dimensionality
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3, the value of d/A is the matrix A[; ;1JdA[; ;2Jd ••• d

A [ ; ; ( p A )[ 3 ] J. Because the operation d/ reduces the dimension­

ality of an array by 1, it is called reduction. In the examples above,

the size of the reduced array is obtained from that of the original

array by deleting the last element. This kind of reduction will be

called reduction with respect to the last index.

AP L also provides reduction with respect to other indices. For an

array A of dimensionality 4, for instance, the expression d/ [ 2 JA
indicates reduction with respect to the second index yielding

A [ ; 1 ; i Jd A [ ; 2; ; ] d • •• d A [ ; ( p A ) [ 2 ] ; ; ]. Note that df and d/

are used as convenient abbreviations of d [ 1 ] / A and d / [ p pA JA.

The following examples illustrate reduction of arrays.

*/10 2 3
lE8

~/l0 10 100
0.30103

"/1 0 1
0

v/1 0 1
1

D+A+2 3 4pl 1 1 1 a

1 1 1 1
0 1 1 1
1 0 1 1

1 1 0 1
1 1 1 a
1 1 1 1

+fA

2 2 1 2
1 2 2 1
2 1 2 2

=/[2]A

a a 1 1
1 1 0 0



a

a

5

A~2 2 4p(14),C-1+13),lS
L/L/L/A

L/ ,A

r / ,A
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Note that repeated reduction by the operator L may be used to
obtain the smallest element of an array, but that there is an equiva-

lent command using only a single reduction by L .

Inner Product

The scalar product and the matrix product discussed in Sec. 2.3 are

special forms of an operation that is called inner product It involves

two arrays A and B that must be conformable in the sense that the

last element of the size of A must be the same as the first element of
the size of B. The result of the operation is an array C , whose size
is obtained by deleting the last element from the size of A and the
first element from the size of B and catenating the results. For
example, if A and B have the sizes 2 3 4 and 4 5 6, respec­
tively, then C will be of the size 2 3 5 6. For conformable arrays
A and B of, say, the dimensionality 3, the inner product Ad.DB is
defined by the statement that C[I;J;K;LJ= d/A[I;J;]DB[;KiLJ,
where d and D are any dyadically used basic operators. Note that for
fixed values of I, J t K I or L, the expressions A [ I ; J ; ] and
B[ ;K; L ] are vectors of the same size because A and B are supposed

to be conformable. The operation 0 is performed for each pair of
corresponding elements of these vectors, and the resulting vector is
reduced by d/.

The following examples show uses of the inner product. The function
POL evaluates the polynomial c

1
+ c

2
x + C

3
x 2 + ... + c

n
+

1
x n ; the

vector C has the elements c 1 ,C2' .. ,Cn + 1 ' and the degenerate case
n = 0 is included. The function ERROR furnishes the error committed
when the function eX is replaced by the (N + 1)th partial sum of its



70 An Introduction to APL

power series. The function DECIMAL yields the decimal form of the
number whose binary digits constitute the vector B . The function
COMB evaluates the number of combinations of N items when up to
i\1~N are taken at a time. The final example gives an approximate

evaluation of the maximum of the function defined by the statement
that, for any value of x, it equals the smaller one of the values 2 - x 2

and 1 + x 3 .

VPOL[O]\7

\J p~C POL X
[lJ P+C+.xX*-1+tp.C

1 2 3 POL 5
86

\/ERROR[OJ\l

\J E+N ERROR X; 14
[1] E+(*X)-l+(X*M)+.f!M~tN

5 ERROR 0.3
1.0576E-6

\/DECIMAL[O]V

'V D+DECIf4AL 13
[1J D+B+.x2*(p,B)-lp,B

DECIl~AL 1
1

DECII4AL 1 0 1 1
11

VCO/4B[OJV

\J C+11 COMB II
[1J C+(tM)+.!MpN

3 COl4B 5

25

1.36



X+O.2xj'+-1+tS
(Yo.+X)*2

0 0.04 0.16 0.36 0.64
1 1.44 1.96 2.56 3.24
4 4.84 5.76 6.76 7.84
9 10.24 11.56 12.96 14.44

16 17.64 19.36 21.16 23.04

P+2.5+0.5 x 17
N+l 2 4 12
(1+0.01 x po.fN)*7 4pN

1.03 1.0302 1.0303 1.0304
1.035 1.0353 1.0355 1.0356
1.04 1.0404 1.0406 1.0407
1.045 1.0455 1.0458 1.0459
1.05 1.0506 1.0509 1.0512
1.055 1.0558 1.0561 1.0564
1.06 1.0609 1.0614 1.0617

»
~

~

Q,)

'<
(fl

"0
Q,)
~,.....

~

-....J
....a
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Outer Product

If d is a dyadically used basic operator and V and Ware vectors, the
outer product P+Vo .d fl is a matrix of the size ( p V) , p W with the
typical element PCl ;J]+V[I]d W[J] _ Accordingly, with V+-l 9 ,

the outer product VO • x vyields a multiplication table in which each
element is the product of its row and column numbers. The first

example on the last page shows how the outer product may be used

to produce the body of a table of squares, in which the line of an
entry corresponds to the integer part (0, 1, 2, 3, 4) and the column
to the fractional part (0.0, 0.2, 0.4, 0.6, 0.8) of the argument. For

example, the element in the second row and third column of the

table is the square of 1.4.

The second exarrlple shows how the body of GROWTHTABLE in Sec.

3.2 may be obtained in a similar way. Note that the parenthesis in

the last command represents a matrix Iv! of the size 7 4. To raise
all elements in a column of 11 to the power corresponding to the II

value for this column, we must form a matrix of the size 7 4 con­

sisting of 7 identical Iines with the elements of N , and use this

matrix as the 'Jexponent" of M . Indeed, * used as dyadic operator

between two matrices requires that these matrices have the same size.

The following examples show how the outer product lends itself to
the construction of useful matrices. For example, the matrix S in
the first example may be used in the command ( ,S) + • X ,/'1, which
furnishes the sum of the elements in the principal diagonal of a matrix
/·1 of size 3 3.

O+S+Vo.=V+-\3

1 0 0
0 1 0
0 0 1

Vo.<V

0 1 1
0 0 1
0 0 0
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Vo. ~V

1 0 0
1 1 0

1 1 1

Vo.+3pO

1 1 1
2 2 2
3 3 3

The function POLYfJ evaluates the polynomial with the coefficient
vector C for each element of the argument vector X. (Note that C[ 1 ]

is the constant term.)

VPOLYN[O]V

tJ P+C POLYN X
[1] (X O o*-1+1P.C)+.xC

\J
1 2 3 POLYN 2 1 1 3 5

9 2 6 34 86

The outer product P+A 0 • d B of a matrix A with an array B of

the dimensionality 3 is an array P of the size (pA ) • pB with the

typical element P[I;J;K;L;f4J~J:[I;J]dB[K;L;l11.The ex­
tension of this definition to arrays of any size is immediate.

The function TARLE furnishes a more elegant version of the table
of squares considered above. The table is presented in the form of

an array T of dimensionality 3 consisting of two cards, each of
which contains a matrix of the size 6 6 . The elements in the first
column of this matrix serve as row labels and give the integer part
of the argument. The elements in the first row are column labels
and give the fractional part of the argument. Outer products are
used in commands [3] (outer product of two vectors) and [6]

(outer product of vector and matrix, which is itself the outer product
of two vectors).



-.....J
~

VTABLE[O]V :t>
:::J

V T+TABLE C;X;Y;Z :J
r-+.....

[1] Z+5 X (-1+\C) 0
Q.

[2J T+(C. 6 6)p 0
c::
n
d'.

[3J T[;lt15,l]+Zo.tY+-l+15 0
:::J

[4J T[il;J+(C.6)pO.X+O.2 x Y .....
0

[5J T[il+15;1tlS]+(Zo.t(Yo.+X))*2 »
""'C

~ r
TABLE 2

0 0 0.2 0.4 0.6 0.8
0 0 0.04 0.16 0.36 0.64
1 1 1.44 1.96 2.56 3.24
2 4 4.84 5.76 6.76 7.84
3 9 10.24 11 .56 12. 96 14.44
4 16 17.64 19.36 21.16 23.04

0 0 0.2 0.4 0.6 0.8
5 25 27.04 29.16 31.36 33.64
6 36 38.44 40.96 43.56 46.24
7 49 51.84 54.76 57.76 60.84
8 64 67.24 70.56 73.96 77 .1~4

9 81 84.64 88.36 92.16 96.04
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Grade Up and Grade Down

The operators .t ("grade up," typed by overstriking 6 and I ) and
, ("grade down") are only used monadically and only on vectors.

If the elements of the vector V are distinct, the value of ! V is the

permutation of the elements of 1 p V that produces an ascending

order of the elements of V when ! V is used as index of V . In

other words, each element of V[ ~ V] is greater than the preceding

one. Similarly, each element of V[ VV] is smaller than the preceding

one. If an element value occurs repeatedly in V , the first occurrence

is listed first in ~ V and 'V, the second occurrence is listed next,

and so on. The following examples illustrate uses of these operators.

The function ROWORDER has as its argument a matrix /1 and yields
the matrix obtained from M by separately putting the elements of

each row in ascending order.

Note that ( 1 +r / •NI ) - L/ ,/.1 is the difference between the greatest
and smallest elements of !oj , augmented by 1. If this value is de­

noted by C , the outer product in command [1] is a matrix II of

the same size as 1~1 . All elements of the Ith row of N have the value
[xC" for lsIs(pJ.1)[1]. This means that no element will change its

row when ,M+N is ordered and then structured into a matrix of the
size pM .

Take and Drop

The operators t Cltake") and ~ (Ildrop") are only used dyadically.

If the right argument is a vector, the left argument must be an

integer I . The expression W+ I t V represents a vector ~/ of the size

, I . If I is positive, W consists of the first I elements of V or, if

I> p V , of the elements of V followed by I - p V zeroes. If I is

negative, W consists of the last I elements of V or, if ( I I) > p V,

of ( I I) - p V zeroes followed by the elements of V. If I =0, W is

empty.

Similarly, if ( I I ) < p V , the vector W+- I ~ V is obtained by dropping

the first or last I elements from V depending on whether I is

positive or negative. The vector ~I is empty if ( I I ) > p V , and

identical with V if I =0 .



-......J
0)

V+3 -341 2 »
!v ::J

3"
2 4 5 1 3 .-+

V[iV] 0
a.
c

3 1 2 3 4 CJ
!:!.

VV 0
::J

3 1 5 4- 2 .-+
0

v[ tV] »
""t:l

4 3 2 1 - 3 r

'Y RO f/OR DER [OJ \J

V R+ROWORDER M
[lJ R+(pM)p(tM)[~,M+«(1+r/,M)-L/,M)Xl(pM)[lJ)o.+(pM)[2JpO]

'V
/.1+34p-112
ROWORDER 14

4 3 2 1
8 -7 -6 -5

12 -11 -10 -9
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If the right argument is an array A of at least the dimensionality 2,

the left argument A must be a vector of size p pA that consists of

integers. The J th element of I operates on the Jth index of A in

accordance with the rules given above for a vector as a right argu­

ment. For example, for a matrix /1 of the size 3 4, the matrix

2 3+14 consists of the elements at the intersections of the first two

rows and the last three columns of l1 . Similarly, for an array A of

the size 3 3 4-, the array that consists of only the first three ele­
ments of the first rows of cards 1 and 2 is obtained by the command

2 1 3tA .

The examples below illustrate these rules. Note that the command
-1 tV, which takes only the last element of the vector V , furnishes

a vector of size 1 rather than a scalar. Similarly, the command

-1 -1 t ftJ, which takes only the element at the lower right corner of

the matrix /.1, yields a matrix of the size 1 1 rather than a scalar.

Note also that the command 3 4 t!4 adds a first row and a first

column of zeros to the matrix ~·1 of size 2 3 . This kind of com­

mand may be used to shorten the definition of the function TABLE

(p. 74) as follows: command [2] is replaced by the command

[2J T+«p,Z),-6 -6)+(Zo.+(Yo.+X)*2

and command [5] is deleted.

V+\ 6
( 2 tV) , - 3+V

1 2 4 5 6
210- - l-tV

3 4 5
D+W+- ltV

6
pW

1
(8tV),4i-V

1 2 3 4 5 6 0 0 5 6
(-StV), - 41-V

0 0 1 2 3 4 5 6 1 2
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Iv} -+- 2 3 P \ 6
p 0+-1 -1 tb1

6
1 1

3 4t14

o 0 0 0
012 3
a 4 5 6

o 1 of Iv!

2 3
5 6

An extension of the catenation concept, announced by IBM but not
yet implemented at the time of this writing, will provide a more
efficient way of adding rows or columns to a matrix. For example, if
A and B have the sizes 3 5 and 3 2 , then C+A t [2]B has the

size 3 7 , the first five and the last two columns of C consisting ot

the matrices A and B , respectively.

Decode and Encode

The operators 1 C'decode") and T (Ilencode") are only used

dyadically. If A and B are vectors of the same size, the value of

A.L B is

(Note that the value of Ar 1 ] does not affect the result and may
therefore be chosen arbitrarily.) For example, 1246060.1

1 0 13 9 3 a is the number of seconds in 10 days, 13 hours, 9
minutes, 30 seconds. Accordingly, 2 2 2.11 0 1 1 is the decimal

representation of the binary number with digits 1 to, 1. 1. Note
that the same result is furnished by the command 21.1 0 1 1.

Similarly, 3. 1.1.2 • 2 -1. 5 2 • 6 7 is the value of the polynomial
2.2x3 - 1.5x2 - 2.6x + "7 for x = 3.1. The fifth partial sum of the

power series for eO.3 may therefore be obtained by the command
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o. 3~ T ! 5 - 1 5. Note, however, that it is not possible to obtain the

fi rst five partial su ms of th is series by the command O. 3.1 f !N- IN+l 5

because 1 is not a basic operator.

1 24 60 60 i 10 13 9 30
911370

21.101 1
11

3.1 ~ 2.2 1.5 2.6 7
50.065

0.3 .l f!S-\S
1.3498

The operator T , which must have a scalar as its right argument, is

inverse to i in the following sense: if the vectors A and B are of

the same size, then (N1--A) TA.LB has the value N~B . It therefore
follows from the first example given for the operator J. that

o 24 60 60T911370 has the value 10 13 9 30, while
60 60T911370 has the value 9 30 ,which indicates that 911,370
seconds amount to an integer number of days plus 9 minutes and 30
seconds. The number of hours may be obtained by the command

o 60 60T911370 , which furnishes the result 253 9 30. A few

examples are given below. Note that for a vector A and a scalar S ,

the expression A T ~C; is a vector of size pA.

o 24 60 60 T 911370
1 13 9 30

60 60 T 911370
9 30

0 60 60 T 911370
253 9 30

(5p2)T28
1 1 1 0 0

(7p2)T28
0 0 1 1 1 a 0

(3p2)T28
1 0 0

(O.(3p2»T28
3 1 0 0
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Reverse and Rotate

The operator <P (typed by overstriking 0 and I ) is used both
monadically (JJreverse") and dyadically (JJrotate").

If V is a vector, W-+-<t>V is the vector that consists of the elements of
V in reverse order, i.e., W-)o-V[1+(pV)-lPV]. If M is a matrix,

M[l JM is the matrix obtained from 11 by putting the rows in
reverse order, and Q+<l>[2]M is the matrix obtained from M by

putting the columns in reverse order. Thus, P+-M[<P\ (pft1) [1] ; ] and
Q+-J4[ ;eD\ (pM)[2] ] . Note that q>[2]M may be abbreviated as <pM .

Similarly, for an array A of dimensionality 3, the expressions <P[l]A
or ¢>[2]A , or cP[3]A , are respectively obtained from A by putting
the cards, or the rows on each card, or the columns on each card, into
reverse order. Thus, ¢>[ 2]A has the value A [ .CPl (pA) [2];] . Note

that ¢[ 3 JA may be abbreviated as cPA . The extension to arrays of
higher dimensionality is immediate.

O.3.Lf!ct>O,\4
1.3498

A+2 2 3p\12
¢[2]A

456
123

10 11 12
789

Note that the first example above gives another command yielding
the fifth partial sum of the power series for eO.3 .

Used dyadically, the operator 4> takes a positive or negative integer

as its left argument and an array as its right argument. If V is a
vector and I is a positive integer, I<t>V is obtained from V by
moving (pV) II elements from the head of V to the tail; if I is

negative, (p V) 'I elements are moved from the tail of V to the
head. If M is a matrix, Iep[l]M is obtained from M by moving
(pM) [1 ] II rows from the top of M to the bottom, or from the

bottom to the top, depending on whether I is positive or negative.
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The expression Iet> [ 2 ]lvJ , which may be abbreviated as IcPM , indi­

cates analogous operations on the columns of M. The extension of

these conventions to arrays of higher dimensionality is immediate.

24>\5
3 4 5 1 2

-24>\5
4 5 1 2 3

A+3 2 2pt12
2<P[1]A

9 10
11 12

1 2
3 4

5 6
7 8

Transpose

The operator ~ ("transpose"), which is typed by overstriking 0

and \ ,is used both monadically and dyadically. We have already

encountered the monadic use of ~ with a matrix Iv! as an argument:

~M is the transpose of M (see Sec. 2.3). Applied to an array of higher
dimensionality, the monadic use of ~ effects the exchange of the
last two indices. For example, if A has the dimensionality 3 and

B+~A , then B [I ; J ; KJ has the value A [I t K ; J J, that is, each card
of B carries the transpose of the matrix on the corresponding card
of A .

In dyadic use, the operator takes as right argument an array, say A ,
of dimensionality D~2 ,and as left argument a vector, say V ,of
size D . The elements of V must be taken from t D ,and if G is

the greatest element of V , all elements of lG must occur in V .

If V consists of a permutation of the elements of 1 D ,the array
B+V~A is obtained from A by letting the first index of A become
the V[1]th index of B I the second index of A become the V[2]th
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index of B ,and so on. Thus, the transpose of a matrix ft'J may be
obtained as 2 1~M . If A has the dimensionality 4, B+-2 1 4 3~A

has the typical element B[I;J;K;LJ+A[J;I;L;KJ. The same rules

apply when V does not contain all elements of tV. Thus,

B+2 1 1~A is an array of dimensionality 2 with the typical element

B[I;J]+-A[J;I;IJ ,and the command 1 liSlM furnishes the princi­

pal diagonal of the matrix M .

The following examples illustrate uses of the operator ~ .

A+2 2 3p\12
~A

1 4
2 5
3 6

7 10
8 11
9 12

3 1 2~A

1 7
2 8
3 9

4 10
5 11
6 12

1 2 l~A

1 4
8 11

Compression and Expansion

We have already encountered the first of these operations in Sec. 2.4.
If B is a Boolean vector, that is, a vector consisting exclusively of
elements of value 0 or 1, and A is an arbitrary vector of the same
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size as B , then B / A , the compression of A by B , is the vector

consisting of those elements of A that correspond to elements of
value 1 in B . Similarly, if A is an array with (pA )[I] equal to

p B , then B / [I ]11 is the array obtained from A by deleting all

elements for which the Ith index corresponds to an element of
value 0 in B. Thus, if A+3 3p 1 9 , then 1 1 O/[1]A consists of
the first two rows of A, while 1 0 1/[2]A , which may be abbre­
viated as 1 0 1/A , consists of the first and last columns of 11 .
Similarly, for an array A with pA+2 3 3 , the expressions
1 O/[1]A and 0 1 1/[3]A , respectively, consist of the first card
of A and the last two columns on each card of A .

Whereas compression deletes certain groups of elements (rows, col­
umns, cards, etc.) from an array, expansion inserts groups that con­
sist exclusively of elements of value O. If B is a Boolean vector of
more than (pA )[I] elements such that + / B equals (pA) [I] , then

C+B\[IJA is an array such that pC is obtained from pA by re­

placing (pA)[IJ with pB . Furthermore, B/[I]C equals A,
while all elements not copied from A have the value O. For example,
if A-+-3 3p 1 9 and B+1 0 1 1 , then B\[l JA is of size 4 3, with

the second row consisting exclusively of zeros while rows 1, 3, and

4 are respectively identical with rows 1, 2, and 3 of A . Similarly,

B \ [ :< JA, which may be abbreviated as B \A , is obtained by insert­

ing a column of zeros between columns 1 and 2 of A .

The following examples illustrate compression and expansion.

A+3 3p t 9
1 1 O/[l]A

1 2 3
4 5 6

1 0 l/A

1 3
4 6
7 9
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1 0 1 l\[l]A

1 2 3
0 0 0
4 5 6
7 8 9

1 0 1 1 \A

1 0 2 3
4 0 5 6
7 0 8 9



7 Character Manipulation

Whereas the preceding chapters were exclusively concerned with
manipulation of numbers, this chapter treats manipulation of char­

acters. Section 7.1 deals with input and output of character data.
Operations on character data are discussed in Sec. 7.2, and are further

illustrated by functions in Sec. 7.3 that concern sorting, coding, de­

coding, and translating.

7.1 CHARACTER DATA

All keyboard characters, valid overstruck combinations of these char­

acters (e.g. A or cf> but not v: or m), the space, and the carriage

return may be used as character data. To distinguish them from

characters used as identifiers of variables, character data must be
enclosed in quotes in input, but the quotes do not appear in output.
A quote that forms part of the character data must be typed as a
double quote (, ,).

A single character between quotes is treated as a scalar, but a string
of characters between quotes is treated as a vector, the elements of
which are the individual characters. The example below shows how

a page of text can be organized as a matrix P. The command P

yields the typed page, while the command PC It ; ] yields the fourth

85
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line. Note the alternative ways of handling short lines, i.e., lines of

less than thirteen characters (lines 3 and 6).

P+6 13p'
P[1;J~'THIS IS A DI-'
P[2;]+'MINUTIVE PAGE'
P[3;J+ t ILLUSTRATING '
P[4;]+'THE ORGANIZA-'
P[5;J+ t TION OF A PA-'
L+'GE.'
P[6;tpLJ+L

p

THIS IS A DI­
IvJIllUTIVE PA(;E
ILIJUSTlrAT IIvG
THE OI?GAI1IZA­
'llIOIV OF A PA-
GE.

P[4;]
THE ORGANIZA-

Another way of organizing a page of text as a matrix is shown in the

next example. The first input line contains the identifier of the page,

the leftward arrow, and the opening quote. The subsequent lines

contain the text followed by a line with only the closing quote.
Short lines, such as the last line of the example, must be extended to
the standard length by the addition of spaces. Since the carriage

return at the end of each line is counted as a character, each line con­

tains fourteen characters. The carriage return after the opening quote

is an additional character, so that the response to the command

p PA GEwould be 99. In organizing the text as a matrix of size 7 14,

we must drop the initial carriage return-hence the command
M+71L~p(1-tPAGE). The commands 11[3;J or 14[3;5J then

yield the third line or the first five characters of this line, the space

being counted as a character.
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PAGE+'
THIA.') IS A DI-
MINUTIVE PAGE
TO ILLUSTRATE
THE ORGANI ZA­
TION OF A PA­
GE IN FORM OF
A MATRIX.

M+7 14p11-PAGE
M[3;]

TO ILLUSTRATE

J.1[ 3 ; l. 5 ]
TO IL

Note that the command J.J now would furnish the text typed double­

spaced because the carriage returns included in the text are added to
the normal carriage returns used in the output of a matrix.

The quote-quad ['] (typed by overstri king 0 and ' ) provides
another way of defining a vector of characters. In response to the
command consisting of an identifier for the vector, the leftward

arrow, and the quote-quad, the carriage moves to the left in readiness

for character input without enclosing quotes. Note that this state of
readiness (quote-quad state) cannot be terminated by entering a com­
mand such as )CLEAR, because this will be interpreted as a vector
of characters rather than a system command. To leave the quote-quad

state without providing character input, enter 0 ,backspace, II ,

backspace, T. Note also that only a single line of characters can

be directly entered in this manner, but catenation of lines may
be used for more extensive input, as shown below, where the final

Z in the second line has onl'y been typed to show that four spaces
have been entered after the word LIIi ES. Since this Z is the thirty­

ninth character of the input, and only thirty-eight characters are

needed for the matrix C ,the Z does not appear in the output.

It is often desirable to combine the results of numerical or non­
numerical operations with segments of explanatory text. This can
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C+[!]
AN EXAMPLE OF CATE­

C-+-C,l'J
NATION OF LINES Z

C+2 19pC
C

AN EXAMPLE OF CATE­
flATION OF LINES

C[2;]
IvATIOII OF LIlIES

be done by enclosing the text segments in quotes and separating

them by semicolons from the commands for output, as shown in the

example below.

ft1 -+- 2 2 p 5 - \ 4
'THE TRANSPOSE OF THE MATRIX' ;Mj'

IS THE MATRIX' ;~M
THE TRANSPOSE OF THE MATRIX

4 3
2 1

IS THE f.fATRI X
4 2
3 1

Note the quote at the end of the first line, which indicates that the
character input is not yet complete. If this quote were omitted, an

error report would be received upon entering the first line on account
of the terminal semicolon. The symbol A (typed by overstriking n
and 0 ) at the head of a line indicates that this line contains a

A EVALUATIOll OF POLYJ10f,1IAL P
A C=VECTOR OF COEFFICIENTS
A BY DESCENDING POWERS OF X

C+2 3 4 5
X+2
O+P+XJ.C

25
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comment rather than a command. Segments of a longer computation

may be labelled in this manner to facilitate review at a later time.

7.2 OPERATIONS ON CHARACTER DATA

The only basic operators that have meaning when used with character
data are = and ~ . For example the expression t PEAR/:; , =
'PEACHES' has the value 1 1 1 a a 0 0 because only the first
three letters of the two words are identical.

Inner products with = or ;t as the second operator, or outer prod­

ucts with one of these operators, are also meaningful. For example,

if WQ.RDl and I-IORD2 are the identifiers of two character vectors of

equal size, the expression f/ORD1". =~lORD2 will have th e value 1

only if the vectors are identical. Sim i larly, the expression

V++ / WORD1 0 • =WORD2 , where the character vectors llORD1 and

WORD 2 need not have the same length, has as its value a numerical

vector V such that V[ I ] indicates how often the Ith character of

WORD1 occurs in WORD2 .

'CAT'I\.='HAT'
o

+/'ORANGE'o.='GRAPEFRUIT'
02101 1

The monadically used operators t P and the dyadically used oper­
ators , p 1 E: as well as all operators such as <P ~ t that rearrange,
choose, or discard elements of an array have the usual meaning when
they are applied to a character array. Some examples are given below.

Note that expansion of a character array inserts spaces rather than
zeros. Note also that the response to 2 -l-ot i.~ 1 where /4 is a two­
row matrix, is the empty vector.

M+2 5p'APPLESAUCE'
14

APPLE
SAUCE
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p , ft1
10

pM
2 5

'ABCDEFGHIJKLMNOPQRSTUVWXYZ'tM

1 16 16 12 5
19 1 21 3 5

Iv! € t A '

1 0 0 0 0
0 1 0 0 0

<PM

ELPPA
ECUAS

lQ>[l]M

SAUCE
APPLE

lrlM

AS
PA
PU
LC
EE

2 1 ~J1

1 1 ~M

SAlfe
1 a 1 o 1 o 1 o 1 \14

A P P L E
S A U C E
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The function flORDS on page 92, which extracts the wOids from
a phrase, uses some of these operations. Its right argument PHRASE

is the character vector corresponding to the phrase. Command [2]

deletes any character (such as a digit or punctuation mark) that is

not a letter or a space, appends two spaces to the shortened phrase,
and gives the identifier PHRASE to the result. Command [4] yields
the position I of the first space. If I has the value 1, then 11<I is
empty, and we proceed to commands [5] and [6], in which the
space in position 1 is dropped, the result is given the identifier
PHRASE , and an unconditional branch to [4] is executed. If the

shortened PHRASE still has a space in position 1, this too is deleted

by another execution of commands [5] and [6], and so on. If the
first character of PHRASE is not a space, there is a branch to com­

mand [7], which causes the first I characters of PHRASE , the last

of which is a space, to be typed. There follows an unconditional

branch to cOrTlmand [3], which drops the processed part of PE/RASE

(i.e., the first I characters) and tests whether the remaining part
consists of a single character (i .e., the second appended space), in

which case the operation is terminated. If there remain at least two

characters in PHRASE , command [4] is executed next.

Note that the last two commands of WORDS could not be combined

into ~3 .000ItPHRASE because this would mean catenation of a

number and characters, and APL does not provide for mixed vectors

of this kind.

The output of the function WO.ltDS is a series of typed lines, each of

which contains a word of the input phrase. Because these lines have

not been assigned identifiers, they cannot be further manipulated­
for instance, alphabetically sorted.

Note that the function WORD/:; will not yield the desired result if
there is a space between the last character of the input phrase and
the final quote. This possibility is taken care of in the function

WORD14ATRIX shown on page 93, which organizes the words of a
phrase as a matrix and thus makes them available for further manipu­
lation.



VWORDS[O]V

V WORDS PHRASE,IiJ
[lJ I+O
[2J PHRASE~«PHRASE€' ABCDEFGHIJKLMNOPQRSTUVWXYl')/PHRASE).'
[3] ~4Xl<pPHRASE+I~PHRASE

[ 4 J -+ 7 x \ 1 <I +-PIIRAS E \ t ,

[5J PHRASE+1~PHRASE

[6J -)-4,I+I-1
[7J D+ItPHRASE
[8J -..3

" PHRASE+'A TEST OF THE FUNCTION WORDS:'
WORDS PHRASE

A
TEST
OF
THE
FUNCTION
fiORDS

co
N

»
~

:::J,........,
a
Ca
c:::
n,.....
o'
~

r-+o
»
""C
I



VWORDMATRIX[OJV

V W~N WORDMATRIX PHRASE;I;J;K;WORD
[1J K~l+I+-O

[2] PHRASE+-«PHRASEe' ABCDEFGHIJKLMNOPQRSTUVWXYZw')/PHRASE),' w '
[ 3 ] W+- ( 1 , N ) p' ,
[4J ~7x\1<I~(PHRASE+-I~PHRASE)\t'

[5] PHRASE~l~PHRASE

[6] ~4,I-+-I-l

[7] ~8xO=+/(WORD+ItPHRASE)€'w'

[8] W[K;lpWORD]+WORD
[9] W+«K-+-K+l).N)+W
[10] -+4

V
PHRASE+-'THIS IS A TEST OF THE FUNCTION WORDMATRIX
M+15 WORDMATRIX PHRASE
M

THIS
IS
A
TEST
OF
THE
FUNCTION
WORDMATRIX

M[?;]
FUNCTION

n
:T
QJ...,
QJ
(')
r-+
CD...,
s:
QJ

~

-0'
c
Q)
r-+

o'
:J

co
w



94 An Introduction to APL

The left argument N of this function indicates the length of the

rows of the output matrix, and rTlust at least be equal to the number
of letters in the longest word of the input phrase. Command [2]

appends to this phrase a space followed by an w followed by another

space. Command [3] sets up an empty matrix of the size 1 tN, into

which the first word is entered by command [8] . Command [9] adds

an empty row to this matrix, into which the second word is entered

when command (8] is executed again.

The other commands of WORDMATRIX have functions similar to
those of the corresponding commands in WORDS.

7.3 SORTING, CODING, DECODING, AND TRANSLATING

Further examples of character manipulation are found in the func­
tion definitions of this section.

The function SORT has as its right argument Iv! , a matrix of words
such as may be furnished by the function WORDMATRIX of the pre­

ceding section. The left argument fl of "C)ORT indicates the number
of initial characters of each word that will be considered in the alpha­
betic sorting process performed by SORT. The first factor of the

inner product in the single command of SORT converts the matrix

consisting of the first IV columns of /,1 into a numerical matrix of
the same size by replacing each character with its position number

in the vector consisting of space, comma, period, and the letters of
the alphabet. The inner product regards the N elements in each row

of this matrix as the digits of a number expressed in the system with

base 30 and computes the equivalent decimal numbers, which are
then ordered by ascending magnitude. Finally, the rows of the char­

acter matrix are arranged in the corresponding order.

Note that sorting on the first three characters does not produce the
desired order, but sorting on the first seven characters does produce
it.

A slightly more compact form of SORT[1] will be possible when the
operator l. applies to matrices, an extension announced by IBM but



tySORT[OJv

V S+N SORT M
[1] S+M[t(' ,.ABCDEFGHIJKLMNOPQRSTUVWXYZ'1«pM)[lJ,N)+M)+.X(30*(-1+~\N»;J

'J
M+4 lOp'DOES,N.C. DOE.J.B. DOE.J.

3 SORT J-1

ABEL,r!.N.
DOE..C),N.C.
DOE,J.B.
DOE,J.

A+7 SORT /.1
A[2 4;J

DOE,J.
DOES,N.C.

A[1~3 4]+'LE'
A[l;]

ABLE,W.N.

to
CJl

ABEL,rY.N. '
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not yet implemented at the time of this writing. The same extension

wi II be provided for the operator T .

There are numerous systems of transforming a Jlclear" message, e.g.,

an English sentence, into a cipher that, hopefully, can only be under­

stood by the person for whom it is meant. A fairly simple system

breaks the clear message into five-character groups and treats each

group as follows: each character is replaced by its position number in

the character vector consisting of the letters of the alphabet, followed

by space, comma, and period. For each group, these five numbers are
interpreted as the digits of a five-digit number expressed in a number
system with a base greater than 30. The decimal equivalent of this
number is the coded form of the five-character group, and these

VCODE[O]9

tJ C+BASE CODE CLEAR;ALPH
[1J C+l. 0
[2J ALPH+'ABCDEFGHIJKLMNOPQRSTUVWXYZ , .
[3J CLEAR+CLEAR,(5-SlpCLEAR)p'
[4J -+5 x «pCLEAR)'?:.5)
[5J C+CtBASE~ALPH\(5tCLEAR)

[6J CLEAR+-5 JrCLEAR
[7J -+4

\J
VDECODE[O]'l

'V C+BASE DECODE CIPHER;ALPH;I;V
[lJ ALPH+'ABCDEFGHIJKLMNOPQRSTUVWXYZ , .
[2J C+-l0
[3J V+5pBASE
[4J I+O
[5J ~6x(pCIPHER)~I+I+l

[6J C+C,ALPH[VTCIPHER[IJJ
[7J -+-5

V
CLEAR+'RETURN IMMEDIATELY'
D+CIPHER+-31 CODE CLEAR

16792222 13742716 47 4- 51~ 6 9 4999986

31 DECODE CIPHER
RETURN IMMEDIATELY
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decimal numbers are catenated (with at least one s,pace between

consecutive numbers).

The functions CODE and DECODE respectively code a clear message
(CLEAR )or decode a coded message (CIPIIER). The left argument
BAA.5Eof each function is the base of the number system used. The
right arguments are CLEAR and CIPHER, respectively. Command
[3] of CODE appends enough spaces to CLEAR to extend this to a
size that is divisible by 5. The reader should experience no difficulties
in understanding the purpose of any other command.

Automatic language translation is a field of computer science that
has attracted much attention, to some extent because it is difficult
for the layman to conceive how it can be accomplished. The func­

tion TRAJIJ-c)LA1'E is a very modest example. It yields the Ger­
man numeral for an integer right argument X specified by at most
three decimal digits. The first thirteen commands built up three char­
acter matrices A, B, and C containing the German numerals for

0, 1, . 0 0,9; 10, 11, 0.0,19; and 20,30, ...,100, respectively. Com­
mand [14] sets up an empty vector that will later receive the various
parts of the desired German numeral. Command [15] breaks the
given number X into its three digits (e.g., 123 is replaced by the

vector 1 2 3 , and 25 is replaced by the vector 0 2 5) I and gives

the identifier X to th is vector.

The remaining commands take care of all special cases that may
occur. For example, commands [16] to [18] furnish the output
/'lrlLL if the sum of the three elements of X is zero, or switch to
command [19] if this condition is not fulfilled. Command [19]
switches to [24] or [20] depending on whether the first element of
X is or is not O. Command [20] switches to [21] or [23] depending

on whether the first element of X is or is not 1. If X [ 1 ] has another
positive value, say 3, command [23] will yield the character vector
DRRI HU1VDERT, because this will be the beginning of the desired
German numeral. (Note that that command [38] will, at the end,
delete all spaces from the numeral.) The reader should not experience
any difficulty in following the remaining commands of TRANSLATE.
However, he should note the comparatively large number of special
cases that must be considered even for this extremely simple trans-

lation problem.
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~TRANSLATE[OJV

~ h~TRANSLATE X.AiBiC
[1J A~INULL EINS ZWEI DREI
[2J A+A,'VIER FUENF SEeRS SIEBEN t

[3J A~A,tACHT NEVil
[4] A+ 10 7 pA
[5J B+'ZEHN ELF ZWOELF
[6J B+B.'DREIZEHN VIERZEHN FUENFZEHN '
[7J B+B, 'SECHZEHN SIEBZEHN
[8J B+B,'ACHTZEHN NEUNZERN
[9J B+ 10 10 pB
[10] C+'ZWANZIG DREISSIG VIERZIG
[11J C+C,'FUENFZIG SECHZIG SIERZIG
[12J C+C.'ACHTZIG NEUNZIG HUNDERT
[13] C+ 9 9 pC
[14J Z+-\O
[15J X+(3pl0)TX
[16J +(O~+/X)/19

[17J Z+Z,A[l;]
[18J +0
[19J ~(O=X[lJ)/24

[20J +(1~X[lJ)/23

[21J ~+Z,C[9;J

[22J -+24
[23J Z+Z.A[X[lJ+liJ,C[9;]
[24J +(O~X[2J+X[3])/26

[25J -+38
[26J -+(O~X[2J)/29

[27] Z+Z.A[X[3]+1;]
[28J -+38
[29] +(1~X[2J)/32

[30J Z+Z,B[X[3]+1;]
[31J -+38
[32J +(O=X[3])/37
[33] +(1~X[3])/35

[34J A[2;J+'EIN
[35] Z+Z.A[X[3]+liJ,'UND'.C[X[2]-1;]
[36J -+38



[37J
[38J

rv

ZEIIN

Z+Z.C[X[2]-1iJ
~+( Z~, ') / z

TRANSLATE 10

Character Manipulation 99

TRANSLATE 200
ZWEIIIUNDERT

TRANSLATE 308
DREIHUNDERTACHT

TRANSLATE 560
FUENFHUNDERTSECHZIG

TRANSLATE 999
NEUNHUNDERTNEUNUNDNEUNZIG





8 Defined Functions
(part 2)

The great variety of features that APL provides for the definition of
functions is an important asset, but it is apt to confuse the beginner.
For this reason, the discussion in Ch. 3 was deliberately restricted to
a few essential features. The present chapter completes this limited
information. It contains sections on headline types, branching, the
use of labels, the checking and editing of function definitions, error
reports, and recursive functions.

8.1 HEADLINE TYPES

All functions discussed in Ch. 3 had right arguments, and some also
had left arguments. Moreover, all these functions had explicit results­
that is, the function headline started with 'l followed by a dummy

identifier for the output, followed by a leftward arrow. There are,

however, other types of function headlines. For example, in the
headline of the function f-lORDS of Sec. 7.2, there is no identifier for

the output, because the output is caused by the symbol pair n+ in

command [7], which furnishes one word every time it is executed.

A function headline may also consist of the function name alone.

For example, to make the pattern of zeros in a Boolean matrix with

the identifier BOOLEAN more readily recognizable, one may wish to

101
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replace each 0 by a circle (0) and each 1 by an asterisk (*). The func­

tion PICTURE below accomplishes this; it has neither arguments nor

explicit result.

VPICTURE[O]V

V PICTlJRE
[lJ D+'O*'[BOOLEAN+1]

'\J

D+BOOLEAN+-S Sp 0 1 1

0 1 1 0 1
1 0 1 1 0
1 1 0 1 1
0 1 1 0 1
1 0 1 1 0

PICTURE

0**0*
*0**0
**0**
0**0*
*0**0

Since a function may have no argument, only a right argument, or

both left and right arguments, and mayor may not have an explicit

result, there obviously are six headline types. It does not seem nec­

essary, however, to give further examples illustrating types that have

not been encountered in the preceding sections.

8.2 BRANCHING

To avoid confusion, only a single type of switch was mentioned in

the discussion of branching in Sec. 3.2. This type is illustrated by

command [5] of GROWTHTABLE.

There are, however, many other types of switch, and three important

groups of these are discussed below, where the symbols a"a
2

, ... and

n 1 ,n2 , ..• respectively denote assertions and command numbers.
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The switches of the first group effect branching to the command n 1

or the command immediately following the switch according to

whether the assertion a, is true or false. The switches used in Ch. 3
belong to this group; it is represented by

-+ a1 In 1 .

Other members of th is group are

-+oa
1
pn

1 and -+-n 1
x p tal'

Note, however, that the last type of switch will only operate properly

with index origin 1 (see Sec. 9.1), because with index origin 0, the

expression 11 has the value 0, while 10 is empty. The switches of

the second group effect branching to commands n 1 or n
2

(neither
one of which needs to immediately follow the switch) according to
whether the assertion a

1
is true or false. The types

belong to this group. Note the order n
2
,n1 in the second switch.

Note also that this switch requires index origin 1. For index origin 0,

it takes the form-+ n
2
,n

1
[a 1 ] .

Finally, the switches of the third group effect branching to one of

several commands. For example,

effe'cts branching to command n j if aj is the first assertion in the se­

quence a1 ,a2' ... ,am that is true. If all assertions are false, the com­

mand immediately following the switch is executed next. Another

member of this group is

where C is a counter that is set at an earlier stage of the computa­
tion. If C has the value 3, for example, the operation 3<1> applied to
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the vector of command numbers brings the fourth element to the

head and a branch to command n4 takes place. This type of switch is
useful in a computation in which corresponding branches must be
taken at various stages. After the first branching has occurred, a

separate value of the counter variable C is specified in each branch

before the branches join again for a common part of the computa­

tion. The value of the counter then assures that, at the next branch

point, the course of the computation corresponds to the branch

taken at the first branch point. Note that it may not be possible to

achieve the same effect by repeating the original switch at the second
branch point, because the values of the variables in the switch may

have been changed in the intervening computation.

A command consisting of only a rightward arrow terminates execu­

tion of the function in which it occurs as well as the execution of

any function that directly or indirectly calls for the evaluation of this

function. For example, if the function F calls for the evaluation of

the function G , which in turn calls for the evaluation of the func­

tion H, the command -+ in H terminates not only the execution of

H but also that of G as well as F .

8.3 LABELS

When developing a function definition, we may wish to insert addi­
tional commands between those of an earlier version of the defini­
tion. (See Sec. 8.5 for the manner in which this is done.) Insertions
of this kind cause an automatic renumbering of commands by suc­

cessive integers upon exit from the definition mode. For example, if

a command is inserted between the commands originally numbered
[3] and [4], the new command takes the number [4] and the old
command with this number becomes command [5] . If command [3]

was a switch to [4] or termination of the computation, it will now

cause branching to the new command [4] or terminate the computa­

tion, and the computation will not proceed as originatly planned.

Insertion of new commands thus would necessitate updating of com­
mand numbers in switches. This trouble can, however, be avoided by
the use of labels for all commands to which branching may occur.
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Any variable name that is not otherwise used in a function definition

may be used as label. To label a command, we insert the label fol­
lowed by a colon between the number of the command and its first
character. No matter how the cOrTlmands of a tentative function
definition are reshuffled to obtain the final form of this definition,

the ultimate value of a label is the final number of the command to

which the label has been attached. Accordingly, if £1 is used as the

label of a command in the tentative version, a switch such as
(10;::I+I+l)/L1 will cause the desired branching to the labelled

command, no matter what its number may be in the final version.

Labels are particularly useful in the development of a function such

as TRANSLATE that involves a complex pattern of switching.

Note that a label is local to the function in which it is used, but its

value is available to another function that is invoked by the first

function.

8.4 CHECKING FUNCTION DEFINITIONS:
STOP CONTROL

As was discussed in Sec. 3.4, the trace of a command in a function

definition furnishes the value of this command every time it is exe­

cuted. Particularly for a lengthy command containing several left­

ward arrows, this value may not indicate an error with sufficient
clarity. Consider, for instance, command [2] of the function ZERO
in Sec. 3.2. To check whether this command effects the appropriate
branching, we may wish to know not only the value of this command,
but also the values of the variables G , F, and )[. There is no way
of obtaining these by a trace.

Stop control, which operates in a similar manner as a trace, is useful

in this respect. It is initiated by a command consisting of the char­

acters S ~ followed by the name of the considered function, a left­
ward arrow, and the vector (stop control vector) consisting of the

numbers of the commands just before whose execution the computa­

tion is to be temporarily halted. For example, to obtain the desired
values of G , F, and X, in command [2] of ZERO, we give the
command SAZERO+3 . There is no typed response to this. After
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VTRANSLATE[OJ~

V Z+TRANSLATE XjAiB:C
[1J A+'NULL EINS ZWEI DREI
[2] A+A.'VIRR FUENF SEeRS SIEBEN'
[3] A+A. •ACHT NEUN
[4] A+ 10 7 pA
[5J B~'ZEHN ELF ZWOELF
[6J B+B.'DREIZEHN VIERZEHN FUENFZEHN t

[7J B+B,'SECHZEHN SIEBZEHN
[A] B+B,'ACHTZEHN NEUNZEHN
[9J B+ 10 10 pB
[10J C+'ZWANZIG DREISSIG VIERZIG
[11J C+C.'FUENFZIG SECHZIG SIEBZIG
[12J C+C. 'ACHTZIG NEUNZIG HUNDERT
[13 ] C+ 9 9 pC
[14J Z+\O
[1sJ X+(3pl0)TX
[16J +(O~+/X)/Ll

[17J Z+Z,A[l;J
[18J ~o

[19J Ll:~(O=X[1])/L3

[20J ~(1~X[lJ)/L2

[21J Z+Z.C[9:]
[22J +£3
[23] L2:Z+Z.A[X[1]+1:J.C[9;]
[24J L3:+(O~X[2J+X[3])/L4

[25] -+L9
[26J L4:+(O~X[2J)/L5

[27J Z+Z.A[X[3]+1;]
[28J +L9
[29J L5:-+(1~X[2J)/L6

[30J Z+Z,B[X[3J+l;]
[31] -+£9
[32] L6:-+(O=X[3])/L8
[33] +(1~X[3])/L7

[34J A[2;J~'EIN

[35] L7:Z+Z.A[X[3]+1.J.'UND',C[X[2]-1;]
[36] ~L 9
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[37J L8:Z~ZtC[X[2J-l;]

[38J L9:Z~(Z;ae' ')/Z
V

TRANSLATE 0
NULL

TRANSLATE 16
SECHZEHN

TRANSLATE 231
ZWEIHUNDERTEINUNDDREISSIG

TRANSLATE 460
VIERHUNDERTSECHZIG

TRANSLATE 700
SIEBENHUNDERT
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binary search for a zero of the function FUNCTN in Sec. 3.2 has been

initiated by a command such as 1E-6 ZERO 0 4 , the computation

is halted after the first execution of command [2] f and ZERO[ 3] is
typed out to indicate the next command to be executed. We are now
free to call for the current values of the considered variables by giving

the command a, F. X. After these values have been furnished, the
command +3 restarts the computation, which comes to another halt
after [2] has been executed once more. The command G, F, X now

gives the second set of values of these variables, and the two sets may

be sufficient to indicate that command [2] operates correctly or that
it has been incorrectly formulated. The command .... will then ter­
minate the execution of ZERO, and the command S6ZERO+O will

remove the stop control.

Note that erasing a function on which a stop control has been set also

erases the stop control vector. Editing of a line for which a stop con­
trol has been set removes the stop control for this line. Similar state­
ments also apply to a trace.

8.5 EDITING FUNCTION DEFINITIONS

Several ways of modifying function definitions were already used in

Secs. 3.1 and 3.4; others are discussed below, where a fun"ction with
the name FNCT is considered.

Insertion of a Command

Suppose that the need for insertion of the command -+2x (p V) <I be­
tween commands [3] and [4] is discovered when the computer has

asked for command [7]. To achieve this insertion, complete the line

as shown below:

[7] [3.5]-+2 x (pV)<I

When the line is entered, the command is inserted with the number
[3.5] and the system asks for command [3.6]. If no further com-
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mand is to be inserted, we may return to command [7] by typing

[7] followed by that command.

Note that any number between 3 and 4 could have been used instead

of 3.5. If, for instance, 3.28 had been used, the system would have
asked next for command [3.29], and this number could have been

overridden by [7] in the same way as above.

When the definition of FflCT is closed, the commands are renum­
bered by integers. Accordingly, the insertion of a command between
[3] and [4] causes the previous commands [4], [5], ... to be re­

numbered [5], [6], .... This may necessitate changes of command

numbers in switches unless labels were used consistently.

If the need for the considered insertion is discovered after the defi­

nition of FNCT has been closed, the insertion is effected by the

command

VFNCT[3.5J~2x(pV)<IV

which also leads to a renumbering of the previous commands [4],
[5] , ....

Note that a command that should precede the original command

[1] can be inserted with a number between 0 and 1. To add, for

example, command [8] when the definition has been closed by a del
at the end of the line containing command [7], enter the command
'J FNCT, which will make the system ask for command [8] .

Deletion of a Command

To delete command [4] (i.e., command [3.5] inserted above) of

FNCT, when the system is asking, say, for command [7] of this

function, complete the line by typing [4] and depress the ATTN and

RETURN keys (in this order). The system will now ask for command
[5] . This number can be overridden by [7] as above.

If the definition of FNCT has already been closed when the need for
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deleting command [4] is discovered, the command

~F!JCT[4DJ

will yield the response

[4J -+2 x (pV)<I

[4J

Depress the ATTN and RETURN keys, in this order, to delete com­

mand [4].

Note that, just as insertion does, deletion changes command num­

bers and may necessitate changes in switches unless labels have been

used consistently.

Displays

The editing of a function definition is greatly facilitated by the vari­
ous ways of displaying the current form of commands of th is func­

tion. In discussing commands for display, we shall assume that the

current form of FNCT consists of seven commands.

As was already indicated in Sec. 3.1, the command VFNCT[O]'V
causes the entire definition of FIleT to be typed out. After this has

been done, the system returns to the execution mode. If, however,
the final del in the display command is omitted, the system stays in
definition mode and asks for command [8] after the definition of

F NeT has been typed. If a command [8] is to be added to the defi­

nition, this may now be entered. On the other hand, if command [4]

is to be changed, type [4] followed by the new form of this com­
mand.

When editing a function definition, we may be satisfied that the first
part of this definition is all right, and be interested in seeing only the

commands starting with, for instance, command [5] . To accomplish
this, enter one of the commands VFNCT[OS]\7 or VFNCT[OSJ . The
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first of these returns the system to the execution mode after the

requested part of the definition of FNCT has been typed; the second

command leaves the system in definition mode and in expectation of

a change in the last command.

Finally, to display a single command, say command [4], enter
VFNCT[40]V or \/FNCT[40J. In particular, to display the headline,

enter VPNCT[ OD]V or VFNCT[ aD] .

8.6 ERROR REPORTS

A command may be faulty because it does not specify the intended

computation or because it cannot be interpreted or executed by the
computer. For y = 3x2 + 4, the commands 1+-3 xX* 2 +4 and
Y+3( X* 2)+L~, in which X is supposed to have been specified by an

earlier command, illustrate these two kinds of error. Only the second

kind can be detected by the computer.

Since a command is executed from right to left, a faulty command

may be partially executed when an error of the second kind is found.
Further execution of the command is then abandoned, and the result

obtained so far is not retained except for such specifications as may

already have been made during the partial execution of a command

with mu Itiple specifications. A diagnosis of the error is typed out,

followed by a copy of the faulty command with a caret approxi­

mately indicating the place at which the error was noted. The exam­
ples below illustrate these remarks.

«1536/5)-/f(-1+2 X tl0)*5)*f5
SYNTAX ERROR

«1536/S)-/f(-1+2 X l10)*5)*fS

"«1536/5)x-/~(-1+2xl10)*5)*f5

nOP-1AIN ERROR

«1536/S)X-/f(-1+2 x l10)*5)*f5
A

«1536 7 5)x-/f(-1+2 x ll0)*5)*f5
3.14159
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«1536/5)xF+-/t(-1+2xll0)*5)*~5

DOMAIN ERROR
«1536/S)xF+-/t(-1+2 X t10)*5)*f5

"F
0.996158

Note that for a command containing several errors, these are reported

one at a time. The syntax error reported first is the omission of an

operator (here x) between two expressions. Other syntax errors are

unmatched parentheses and the use of a function without all the

arguments required by its header.

The domain error reported next consists in the use of an operation

(here compression) with operands outside the domain for which this

operation has been defined. While 0/5 or 1/5 could be interpreted by

the system, 1536/5 cannot be interpreted. A frequent cause of do­

main error reports is the attempted division by zero.

Note that in the last example, the value of the partial result F is

retained even though the complete expression cannot be evaluated

due to the domain error occurring to the left of the specification
of F.

The following examples illustrate other error reports concerning
faulty formation of an expression.

V+t 4
M+3 3P19

+7M
CHARACTER ERROR

+
A

V[6]
INDEX ERROR

V[6]

"
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V+M[l;]
LENGTH ERROR

V+J-1[ 1 ; ]
1\

M[3]
RANK ERROR

M[3]
1\

W[2]
VALUE ERROR

W[2]

"
When two characters are overstruck to form a symbol without de­

fined meaning, a character error is reported. The use of a nonexistent
element of an array results in the report of an index error. In the

third example, V is a vector of size 4 and M[ 1 ;] is a vector of the

size 3. The attempt to add these vectors of different sizes causes a
length error* to be reported. Similarly, the attempt to form the

inner product 11+. xN of matrices f4 and Iv with the respective

sizes 3 4 and 5 2 would result in the report of a length error.

The next example illustrates a rank error.t The variable ft-1 has been

defined as a matrix, but the command ft1[ 3 J implies that it is a

vector. The final command calls for an undefined value and hence

causes the report of a value error. The attempt to use a function that

is not in the active workspace also produces this kind of error report.

The report DEFN E_RROR (definition error) was already encountered

in Sec. 3.1, where it was caused by the attempt to define a function
GROWTH when a function of this name was in the active workspace.

*The term length is here used synonymously with size. See the second footnote

on p. 17.
tThe term rank is here used synonymously with dimensionality. See first the

footnote on p. 17.
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The first example below again illustrates this situation. As the second
example shows, the same type of error report is made when the name
of a function that is to be defined is the same as the identifier of a
variable already in the active workspace. The third and fourth exam­
ples show that a report of definition error results from incorrect
requests for displays of functions. Note, however, that the choice of
a function name as an identifier of a variable leads to a report of
syntax error.

)FNS
FUNCTN SORT

) VA1?S
BEGIN END

WORD11ATRIX

fJF+FUNCTN X
DEFN ERROR

VF+FUNCTN X
1\

'VB+BEGIN
DEFt; ERROR

'VB+BEGIN
A

V'lSO.l?T[ 00] \7
DEFN ERROR

\I
A

VSORT[OO]\I
[0] S+N SORT /:1

\IN SORT M [OJ \I
DEFN ERROR

'IN SORT ft1 [OJ 'V
A

SORT+O
SYNTAX ERROR

SORT+O
A
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While one function may invoke a second function, which may in turn

invoke a third function, and so on, excessive length of a chain of this

kind will lead to the report of a depth error.

The report WS F [J LL indicates that the capacity of the workspace has
been exhausted. After the status indicator has been cleared, the con­
tents of the workspace should be examined and objects no longer
needed should be erased. Similarly, the report SYft1BOL TABLE FULL
indicates that too many names are being used. Some functions or
variables should be erased, and the commands

)SAVE CONTI/v['~'

)CLEAR

)COpy CONTINUE

should be given in this order.

The reportRESEND indicates that an error has occurred in the trans­

mission from terminal to computer. The last command should be
repeated. If resend requests occur frequently this fact should be re­

ported to the operator. The report SYSTEM ERROR indicates a mal­

function of the machine, which results in the loss of the contents of

the active workspace.

8.7 RECURSIVE FUNCTIONS

In the course of its evaluation, a function may invoke itself. Func­

tions of this kind are called recursive.

To give an example of a recursive function definition, consider the

difference table of a function, f == x 3 , that is tabulated for x = 1,

2, . .. . I n the body of Table 8.1, the first row contains these func­

tion values, which will be denoted by f 1 ,f2 , . .. . The second row

contains the first differences, d~, d~, ... , where d~ = fn + 1 - fn . The
second differences d~, d~, ... are obtained from the first differences
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in exactly the same way in which these are obtained from the func­
tion values, and so on.

The function DIFF shown below takes, as left and right arguments
M and N , the order m and the position n of the difference dm , andn
evaluates this difference in a recursive way.

TABLE 8.1

Difference Table for f = x 3

n 2 3 4 5 6 7

fn 1 8 27 64 125 216 343

d 1 7 19 37 61 91 127n

d2 12 18 24 30 36
n

d3 6 6 6 6n

d4 0 0 0
n

VDIFF[DJ~

V D+-M DIFF N
[1] ~(M=O)/4

[2J D+«M-l) DIFF(N+1»-(M-l) DIFF N
[3J -+0
[4] D-+-FUNC N

'V

VFUNC[O]VJ

V P...-FUNC X
[1 ] F+X*3

'J

2 DIFF 5
36



9 System Commands
(part 2)

The discussion of system commands in Ch. 4 was restricted to a few

commands that are essential to the organization of a user's library.

The present chapter surveys a wider array of system commands. It
contains sections on the digits, width, and origin commands, inquiry

commands, library control commands, hold commands, and on

trouble reports.

System commands are readily recognized by their first character, a

closing parenthesis. No other properly formed command can begin
with this character. System commands cannot be used in APL ex­

pressions or function definitions. Similarly, APL expressions cannot
be used in system commands, as is illustrated by the following
example.

I+5
)DIGITS I

INCORRECT COMMAND

9.1 DIGITS, WIDTH, AND ORIGIN

We have already encountered the DIGITS and WIDTH commands

in Sees. 1.5 and 5.2. I n a clear workspace, at most 10 significant

117
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digits of a result will be displayed, and at most 120 characters per
line. This can, however, be changed by cOrTlmands such as

)DIGITS 4

) l-IIDTH 65

which respectively call for a maximum of 4 significant digits of resu Its
and 65 characters per line. From 1 to 16 digits and 30 to 130 char­
acters may be requested by these commands. For the manner in
which the DIGITS command affects the use of the exponent nota­

tion, see Sec. 1.5.

In a clear workspace, the index origin is 1. Thus, the first element of
a vector V or the first column of a matrix M are denoted by V[ 1 ]
and M[ ; 1 J. It may occasionally be convenient to use the index origin
O. For example, in a paper describing an algorithm for determining
the zeros of a polynomial, this polynomial may be written as Co +
c1x + C

2
X 2 + ... + cnxn . In defining a function for this algorithm,

it would then be convenient to use the index origin 0 and denote the
elements of the vector of coefficients by C[ 0] , C[l], ••• , erN]
rather than first transcribe the formulas of the paper for the index
origin 1. This change of index origin is accomplished by entering the
command

) ORIGI!l a

which will yield the response

WAS 1

This change of index origin, however, may cause trouble if the func­

tion that is being defined invokes other functions that were defined
with index origin 1. For example, with index origin 1, the command

+(0 3)[1+I~J]

will terminate the computation if I=J but effect a branch to com­
mand [3] if I~J . When a function containing this switch is copied
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into a workspace with index origin 0, an index error will be reported

if I~J , while a branch to command [3] will occur if I=J .

This kind of trouble can only be avoided if either index origin 0 or
index origin 1 is used consistently. Since a clear workspace has index

origin 1, it seems best to use this origin in all work except, possibly,

special jobs that are independent of all other work. If, for a job of

this kind, the index origin has been changed to 0, it can be restored
to 1 by the command

}ORIGIN 1

which will yield the response

WAS 0

9.2 INQUIRY COMMANDS

These commands enable the user to obtain information concerning
the current content of the active workspace. The commands )FNS,

)GRPS , and) VARS that were discussed in Sec. 4.1 as well as the

command )SI discussed in Sec. 3.4 are members of this class of

system commands; others are described below.

Functions

In response to the system command )FNS I an alphabetically
ordered list of the names of all functions available in the active work­
space is displayed. Note that in this ordering d. ~.... follow Z.

If the function list is lengthy, and if we only need to know whether

a function with, for example, the name TRANSFER is available, we
may give the command

}FNS T

which yields an alphabetically ordered Jist of function names be­
ginning with T or a later letter of the alphabet. As soon as TRANSFER
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has been listed, we may press the ATTN key to discontinue the

listing.

Variables, Groups, and Group

If the commands )VARS or )GRPS are followed by a letter, only
the variables or groups with names beginning with this or a later let­
ter of the alphabet will be listed.

The command )GRP followed by the name of a group yields a list of

the members of this group.

Library

The command )LIB yields a list of saved workspaces (including
CONTINUE) in the user's private library.

If followed by a number (from 1 to 999) that refers to a public
library, the command) LIB yields a list of workspaces in this library.
A public library may have been distributed with the system or
organized locally. Public Library 1, which is distributed with the
system, contains many useful functions. The list of its workspaces is
shown below together with the function list of the workspace
PLOTFORMAT .

)LIB 1
COMPPROB
ADVA1JCEDEX
APLCOURSE
CLASS
NEWS
PLOTFORMAT
TYPEDRILL
WSFNS

)COpy 1 PLOTFORMAT
SAVED 9.26.53 07/01/70

)FNS
AND DESCRIBE DFT EFT PLOT vs
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A description of the funct~on PLOT will be given in response to the

command

HOTt/PLOT

PLOT yields a rough graph of a function of one independent variable.

The left argument of PLOT is a two-element vector that controls the

size of the graph; the right argument is a two-column matrix, each

row of which contains a value of the independent variable followed

by the corresponding value of the function. In the example on the

next page, the function plotted is the cubic polynomial x 3
- 16x2 +

76x - 96. The right argument for this application of PLOT is fur­

nished by the function POLYNOMIAL, which takes as its left argu­
ment the vector 1 -1 6 7 6 - 9 6 of coefficients and as its right

argument the vector of the chosen values of the independent variable.

Note that the function values for x = 3 and x = 4 are 15 and 16, but

the ordinates of the plotted points for these abscissas are equal be­

cause each line of the typed graph corresponds to an ordinate interval
of length 2.

Workspace Identification

The command ) WS I D yields the name of the active wo rkspace.

Status Indicator

The execution of a function may be suspended because the ATTN

key has been pressed, an error has been detected, or the APL oper­

ator has sent a PA (Public Address) message, or because a stop con­

trol was set for a command, say command [5], of the function.

When a suspension occurs, the name of the suspended fu nction is

typed out followed by the number of the "next" command to be

executed. In the first three cases above, this will be the command

during whose execution the suspension occurred. In the stipulated

case, this would be [5]. However, a suspension that is due to a stop

control occurs after a command has been completely executed, and

in this case the number of the next command is typed out.
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V P+C POLYNOMIAL X
[1] P+( 2. p X) p 0
[2] P[l;]+-X
[3] P[2;]~(Xo.*(pC)-1pC)+.XC

V
C+l 16 76 96
C POLYNOMIAL 1 9

1 2 3 4 5 6 7 8 9
35 0 15 16 9 0 5 0 21

40 40 PLOT (~C POLYNOMIAL 19)

301

I
I
J

I
201

J

I 0 0

I
I

101 0

I
I
I
I

0 0

10

20

o

o

o

o

30

I 0

I
I- 401 I I I I I
0 2 4 6 8 10
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The system commands lSI and )SIV yield the name of each active
function, followed by the appropriate command number, followed
by an asterisk if the function is suspended, and, in the case of ) S IV ,
by a list of the identifiers of all local variables of the function. A
function in this list that has no asterisk is called pendant. Note that
the most recently active function is listed first, and so on.

The values of all local variables of the function at the top of the list

furnished by )SI or )SIV may be requested by the appropriate

commands. The value of a local variable of a function farther down
in the list is accessible only if the identifier of this variable is distinct

from the identifiers of all local variables listed in preceding lines of
the list.

Note that a suspended function may be edited, but a pendant func­

tion cannot be edited. The following example will illustrate these
rules. The function PRI}.1ES with positive integer N as right argu­
ment furnishes a list of all prime numbers that do not exceed N.

The function TWINS with positive integer right argument ~l fur­

nishes the smaller member of each pair of primes up to N+2 whose

difference does not exceed 2. (Note the commands PRIMES 30

and TWIloI/3 30 .) After a stop control has been set for command
[5] of PRIJ..1ES, the execution of TWINS 30 is stopped just before

command [5] of PRIMES is e.xecuted for the first time, and this is
signalled by the report PI?Ifl1ES[5] . The response to the system
command )SIV shows that PRIME ..C) is suspended and TWINS is

pendant. The current values of all local variables of PRIMES and the
current value of the local variable T of TWINS could be requested
by the commands PR. N ,p. Q and T, but the values of the local
variables Nand P of TF/INS are not accessible, because the com­
mand N. P would yield the values of the local variables II and P of
PRIf4ES.

~TWINS[OJV

'I T+TWINS N;P
[1] N+N+2
[ 2] P..-PRIMES II
[3J T+«(l~P)-(-1+P»~2)/-1+P

'V
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'V PR Il-1ES [0] V

'V PR+PRIMES NiP;Q
[lJ PR+1~\N

[2J Q+N*tP+2
[3J -+(Q<P)/O
[4J PR+«O~PIPR)vP=PR)/PR

[5] P+PR[1+PR1P]
[6] ..... 3

v

19 23 29
PRIMES 30

2 3 5 7 11 13 17
TWINS 30

2 3 5 11 17 29

SlJ.PRIMES+-5
TWINS 30

PRII4ES[ 5]
)SIV

PRIMES[5] * PH
TWINS[2] T

-+

Ports

N
N

p
p

Q

The command) PORTS yields a list of the numbers and user codes

of all connected ports (term inaIs).

The command )PORT followed by a user code yields only the port

(or ports) for th is user code.

System Information

There are some inquiries concerning the system to which the answers
are obtained not by system commands but by special functions. The
name of each of these functions consists of the symbol I (over­

struck .L and T ) followed by a two-digit number. The more im­
portant of these functions are described below.

The value of Il 9 is the total time (in 60ths of a second) during

which the keyboard has been unlocked (Le., ready to receive entries)
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during the current work session. When the RETURN key is depressed,
the keyboard is locked and cannot receive new entries until the
present command has been executed (and results have been typed
out if the command called for this).

The value of I2 2 is the as yet unused space (in bytes) in the active
workspace. (A byte is equivalent to eight binary digits.) By giving the

command I 2 2 after the active workspace has been cleared, the size

of this space may be obtained.

The values of I 20 and I 24 are the time of the day (since midnight)

and the time of the sign-on for the current work session (in 60ths of

a second).

The value of I2 5 is a six-digit number, the two-digit groups of

which give month, day, and year of the current date. The conven­

tional form of this date may be obtained by the function DATE
below.

VDATE[DJ~

'V DATE;D
[1] D+(3p100)TI25
[2J D[l]j'/';D[2]i'/'iD[3]

V

DATE
10/23/70

9.3 LIBRARY CONTROL COMMANDS

These commands are concerned with reactivating or deleting a stored

workspace, and storing the active workspace or deleting some of its
contents.

Reactivation of Stored Workspace

The system command consisti ng of the characters ) LOA D followed
by a space and the name of a stored workspace or the number of a

public library, another space, and the name of a workspace in this
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1ibrary, rep/aces the content of the active workspace by that of the

named workspace, including digits, width, origin, trace, and stop

controls that were in force when this workspace was stored. In re­
sponse to the command, a message is typed out that starts with the
word SA VED and gives the time and date of the last storing of the

workspace.

Note that the LOAD command is destructive in the sense that the
current content of the active workspace is lost. The system command
consisting of the characters ) COpy followed by a space and the
name of a stored workspace or the number of a public library, a

space, and the name of a workspace in this library, adds all groups,

functions, and global variables of the named workspace to the cur­

rent contents of the active workspace while retaining the digits,

width, origin, trace, and stop controls of the latter. The response to

the COpy command is the same as that to the LOAD command.

If the COpy command just described is extended by a space and the
name of one object (group, function, or global variable) in the stored
workspace, only this object is added to the current content of the
active workspace. Note that only one object of the stored workspace
can be copied at a time in this manner.

I f an object in the active workspace has the same name as an object
in the stored workspace, the latter will rep/ace the former when the
COpy command is executed. If this effect is not desired, a command

beginning with the characters )PCOPY (where the P stands for
"protected") should be used instead of the command beginning with
)COPY . The PCOPY command is particularly useful if a function in
the stored workspace is to be replaced by an improved version with
the same name that has been developed in the active workspace. To

this end, the stored workspace is P-copied into the active workspace,

which is then given the name of the stored workspace and saved.

Note that when a group is P-copied, only those members wiH be

copied whose names do not duplicate names of objects already in the

active workspace. If a group in the active workspace has the same
name as the group that is to be P-copied, the members of the latter

group witt be copied as far as their names are distinct from the names
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of the objects in the active workspace, but they will no longer be

recognized as members of a group.

A group in the active workspace may be dispersed by the system

command consisting of the characters) GROlJP followed by a space

and the name of the group. The members of the dispersed group re­

main in the active workspace but are no longer recognized as forming
a group. On the other hand, if a group formed of functions, variables,
and other groups is erased by the command consisting of the char­
acters )ERASE followed by a space and the name of the first group,
the functions and variables of this group will be deleted, but the
other groups will only be dispersed.

Note that a function that is being edited and a pendant function can­

not be erased. The name of a stored workspace and its contents may

be dropped from the library by the system command consisting of

the characters ) DROP followed by a space and the name of the
stored workspace. The response to the drop command is a line with

the time and date.

Provided the active workspace has a name (identification), the sys­

tem command) SA VE will store it under this name unless the user's

quota of workspaces is exhausted. The response to the command

) SA VE is a line beginning with SA VE D and giving the time and date.

Note that the active workspace initially has either no name or the

name CONT IN lIE, depending on whether the previous work session

was terminated by ) OFF or by ) CONTINUE. In the first case, the

command )SA VE will yield the response NOT SA VED. THIS WS

IS CLEAR. To save this workspace under the name LIBR , the

command) SA VE LIBR should be given. Alternatively, the work­
space may first be given the name LIBR by the command) Iv/lID
LIBR and then be saved by )5'AVE .

9.4 HOLD COMMANDS

A user may have more than one account and may wish to work
successively on several of them. To avoid redialing a telephone
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connection to the central computer after finishing the work on one

account, he may sign off by using the commands )OPF HOLD or
)CONTINUE HOLD followed by a colon and a password if this is de­
sired. The telephone connection will then be maintained for sixty

seconds after the time and cost information for the account has been
typed out, and during this time the user may sign on again by enter­
ing a closing parenthesis and the next account number (and a colon
and password if the account is 'ocked).

9.5 TROUBLE REPORTS

When a system command is not executed, a trouble report is typed

out. Some of these have already been mentioned-for example,

NUMBER IN USE (Sec. 1.2). This particular trouble report indicates

that somebody is already signed on under the given account number.
Other examples of trouble reports are NUMBER NOT IN SYSTEM or

WS NOT FOUND , indicating that an account with the given number

(and lock) does not exist or that there is no workspace with the given

name. As these examples show, trouble reports are sufficiently spe­

cific to make their detailed discussion unnecessary.
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Active workspace, 49
AREA, function, 43
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arithmetic operations on, 23, 66
ATTN (Attention) key, 5

Basic operators, 61
Binary search, 38
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Boolean:

expression, 26
vector, 27
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Catenation:
of lines, 87
operator, 23

Character:
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manipulation, 85

CHARACTER ERROR, 113
Checking function definition, 43, 105
CLEAR command, 52
CODE, function, 96

Code, user's, 3, 5
COMB, function, 70
Comments, 88
Compression, 82
Conformability,69
CONTINUE command, 5
CONTINUE HOLD command, 128
Continue workspace, 49
Convergence, function, 43
COpy command, 52, 126

Counter, 103

DATE, function, 125
DECI MAL, function, 70
Decode, 78
DECODE, function, 96
Defined functions, 30, 101
Definition:

error, 32, 113
mode, 31

Deletion of cornmand, 109
DEPTH ERROR, 115
DI FF function, 116
Difference table, 115
DIGITS command, 6,49,117
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Discriminant, 36
Dispersion of group, 127
Displays, 110
DOMAIN ERROR, 112
Drop, 75
DROP command, 127
Dummies, 40
Dyadic operators, 5, 11, 24, 55

Editing of function definition, 32, 108
Encode, 78
ERASE command, 32, 49
ERROR, function, 70
Error reports, 111
Execution mode, 31
Expansion, 82
Explanatory text, 87
Experimental function, 9, 15
Exponent notation, 7

Expression:
Boolean, 27
composite, 8, 10
multiple evaluation of, 13

Factoria I, 10
FNS command, 50, 119
Function:

pendant, 123
suspended, 46, 121

Function defin ition, editing of, 32, 108
Fuzz, 27

Gamma function, 10
Global variables, 41
Grade down, 75
Grade up, 75
GROUP command, 50
GROWTH, function, 31, 32, 113
GROWTHTABLE, function, 34,41,

72, 102
GRP cornmand, 120
GRPS command, 51, 119, 120

Headline, 31
types, 101

Hyperbol ic functions, 56

Identi"fier, 9, 40
INDEX ERROR, 20,66,113
Index generator, 19, 20

Indexing, 17,63
Inner product, 69
Inquiry commands, 119
Insertion of command, 108
INT (Interrupt) key, 5
Interest, compound, 31
Intermediate results, catenation of, 23
Inverse hyperbolic functions, 56
Inverse trigonometric functions, 29, 56

Keyboard, 2
Key:

ATTN (Attention), 5
INT (Interrupt), 5
RETURN, 3
Shift, 1

Label, 104
Language translation, automatic, 97
Length (see Size)

LENGTH ERROR, 113
LIB command, 120
Library:

adding to a, 52
starting a, 49

Library control commands, 125
LOAD command, 125
Local variables, 41, 123
Logarithm, 10, 55

Matrix, 17
Matrix product, 26, 69
Membership in array, 27
Monadic operators, 9, 11, 23

OFF command, 4
OFF HOLD command, 128
Operations on character data, 89
Operator:

catenation, 23
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structuring, 17
Operators:

basic, 61
dyadic, 5, 11, 24, 55
monadic, 9, 11, 23
special, 24, 67

ORIGIN command, 118
Outer product, 72

Parentheses, use of, 9
Password, 4
PCOpy command, 126
Pendant function, 123
PICTURE, function, 102
PLOT, function, 122
POL, function, 70
POLYN, function, 73
POLYNOMIAL, function, 122
Port, 3, 124
PORT command, 124
PORTS command, 124
Publ ic address, 121
PRIMES, function, 124

QUADRATIC, function, 36
Quotes, use of, 85
Quote~quad, 87

Random etements, 59
Rank (see Dimensionality)
RANK ERROR, 113

Ravel, 18
Reciprocal, 9
Reduction, 68
RESEND,l15
Residue, 55
RETURN key, 5
Reverse, 80
Rotate, 80
ROWORDER, function, 75

SAVE command, 52
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Scalar, 17
product, 25,69

SI command, 46,49,119,121,123
Sign~off instructions, 4
Sign~on instructions, 3
Signum function, 9
SIV command, 123
Size of array, 17, 18,63
SMALL, function, 58
SORT, function, 95
Status indicator, 46, 123
Stop control, 105
Suspended:

execution, 46
function, 46, 121

Switch, 35
SYMBOL TABLE FULL, 115
SYNTAX ERROR,45, 112,114
System:

commands, 49
information, 124

SYSTEM ERROR, 115

TABLE, function, 74, 77

Take, 75
Terminal, 2
Trace, 44, 105
TRANSLATE, function, 98,100,

106, 107
Translation, automatic language, 97
Transpose, 26, 81
Trigonometric functions, 29, 56
Trouble reports, 128
TWINS, function, 124

Value, absolute, 10
VALUE ERROR, 39,40,46,113
Variable:

global, 41
IocaI, 4 1, 123

VARScommand, 50,119
Vector, 17

empty, 19
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WIDTH command, 59, 118
WORDMATRIX, function, 93
WORDS, function, 92
Workspace, 49

WS FULL, 115
WSID cornmand, 50,121

ZERO, function, 38






