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Preface 

As a result of increasing interest in APL, a formal educational pro­
gram was begun in 1967 at the Thomas J. Watson Research Center in Yorktown 
Heights, New York. Within a year an APL Jlcurriculuml' had evolved which 
has been put on videotape. This text fol lows the same instructional se­
quence and uses essentially the same examples given on the videotapes. 

With but a few exceptions not necessary to the understanding of the 
topics following? the level of mathematical sophistication required does 
not exceed that associated with most current high school mathematics pro­
grams. In addition, no previous programming experience on the part of the 
rea de r i s ass ume d . The aut h0 r s bel ieve, the ref0 re, t hat the t ext iss u i t ­
able for use by both secondary school and college-level classes, as well 
as by those in business and industry \~ho are interested in the data proces­
sing capabil ities of APL. Prel iminary versions of the text have been used 
extensively in classroom situations and independent study by many individuals. 

At the end of each chapter except the first are problem sets with 
drill exercises and practice in the writing of APL expressions and pro­
grams (function definition). These have in general been chosen to empha­
size and reinforce the concepts presented in the chapters which they fol­
low. Past experience has indicated that students readily develop their 
own appl ications of APL once having learned the language. 

Finally, nearly all of the example functions that the student will 
encounter in the text have been placed in a block of storage (called a 
wo r kspa ce inA PL) wh ic h has the na me CLAS S . This wo r kspa ce i s fur n ishe d 
by the IBM Corporation as part of the contents of the common 1ibrary. The 
work of the student will be faci1 itated if he has access to this workspace. 

We wish to acknowledge our debt to the many individuals who gave 
us their helpful comments and suggestions with regard to the layout and 
contents of the text. In particular we want to give credit to the 
following persons: Robert Hurley, for invaluable technical assistance in 
the early development of the course; Miss Colleen Conroy, for proofreading 
the text at several stages in its preparation; Eugene McDonnell, for sug­
gesting solutions to a number of problems; Horst Feistel, for his ideas and 
exercises in the section on cryptography (chapter 21); Miss Linda Alvord, 
for her work in graphing (on which the latter part of chapter 30 is based); 



Raymond Pol ivka, for his kind permission to use a number of problems which 
he had developed earl ier in his own APL teaching. And last, but by no means 
least, in gratitude for a task that at times appeared endless, thanks are 
due to Mrs. Frances Verzeni and Mrs. Ann Tiller for preparing the copy for 
publ ication. 

Yorktown Heights, New York Leona rd Gil man 
June, 1970 All en J. Ros e 



Foreword 

APL is a language for describing procedures in the processing of 
information. It can be used to describe mathematical procedures having 
nothing to do with computers, or to describe (to a human being) how a com­
puter works. Most commonly, however, at least at this time, it is used for 
programming in the ordinary sense of directing a computer how to process 
numeric or alphabetic data. 

The language was invented by Kenneth E. Iverson while at Harvard, and 
was described in a 1962 Wiley book appropriately titled A Programming 
Language. In 1966 an experimental time-sharing system-for the IBM 
System!360 became available within IBM, and is now an IBM program product. 
A number of universities and at least one publ ic school system (Atlanta) 
are using APL on a wide scale for student instruction, and several 
universities and computer manufacturers are currently producing implementa­
tions for various computers. APL is clearly gaining acceptance at this 
time as a computer programming language. 

This acceptance is not hard to understand. APL is one of the most 
concise, consistent, and powerful programming languages ever devised. 
Operations on single items (scalars) extend in a simple and natural way 
to arrays of any size and shape. Thus, for instance, a matrix addition that 
in other languages miqht require two loops and a half dozen statements, be­
comes simply A+B in APL. Since computer programming typically involves a 
great deal of work with various kinds of data structures, the simpl ification 
offered by APL's rich and powerful handling of arrays is central to its 
strength. 

Again, since so many computer operations are describable by single 
APL operators, since data declarations are seldom required, and since pro­
cedure definitions are always independent of other definitions, APL is 
ideal for on-l ine interactive use of computers. Programs can readily be 
checked out in easy-to-manage segments. 

From a pedagogical standpoint APL has a number of advantages. The 
material can be taught and used in small pieces. A student can be trying 
his hand on simple operations after five minutes of instruction. What he 
doesn't know won't hurt him (a statement that cannot be made about most 
o the r 1a nguage s) . I f he t r i e s some t h i ngil 1ega 1, s uc has d i vis ion by ze r0 



or adding a number and a letter, he gets an understandable error message 
and is free to try something else. Nothing the user can do will cause the 
system to crash. 

As a new user becomes famil iar with simple APL features, he moves 
on to more advanced concepts. Perhaps he tries operations on vectors, or 
samples the APL operator called reduction, which with two character strokes 
replaces complete loops in other languages. Some users will never have any 
occasion to become intimately familiar with all APL operators; their work 
will just not require them. Those who do need the advanced features will 
find the effort needed to master them rewarded with the availabil ity of 
some extremely powerful operators, the equivalent of which are not to be 
found in other programming languages. 

Itis i ndub ita b1y t rue t hat a "c 1eve r I I Prog r amme rcanus e the se 
advanced operators in such a way as to produce an "opaque" program, that is, 
one so compact and concise as to be nearly impossible for anyone else to 
understand. Whatever else may be said about such programs, which are 
questionable in many contexts anyway, they should not be used in demonstra­
tions of APL. Experienced programmers who have seen 'APL demonstrated in 
terms of the fantastic cleverness angle sometimes criticize the language as 
being hard to understand, when their criticism more properly should have 
been directed at the demonstrator. Such misplaced cleverness is not to be 
found in this book. All operators are thoroughly covered, but there is no 
attempt to show off the ingenuity of the authors in writing ingeniously 
condensed programs. 

is being taught successfully to high school students, in courses 
where the intent is more to teach mathematics than to teach programming. 
It is being used by engineers and statisticians to assist in their work, 
employing APL program packages designed to make such work more easy. And 
it is also used for various kinds of text processing, such as checking out 
compil ing schemes and writing APL interpreters of other languages. Many 
other appl ication areas could be cited. APL may not be all things to 
all men, but, to a greater degree than is true of most programming languages, 
it is many things to many. 

This book concentrates on no special class of users. The features 
of the language are explained thoroughly, in a sequence chosen to faci 1itate 
learning. The authors have very extensive experience teaching APL to a 
wide variety of users. As the subtitle indicates (An Interactive Approach), 
the presentation is bui lt around the assumption tha~the reader has access 
to an APL terminal. This, of course, is unquestionably the best way 
to learn APL, and such a reader wi 11 find the book well suited to his needs. 

Nonetheless, the reader who wants to find out what APL is all about, 
not yet having access to a terminal, will discover that the presentation is 
easily readable. The text displays the terminal printouts just as they would 
appear to a user executing the commands under discussion. Being on a ter­
minal oneself is surely the best way to learn an interactive language, but 
if that is not possible this may be the next best thing. 

Ossining, New York Daniel L. McCracken 
June, 1970 
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CHAPTER 1: 

Getti ng sta rted 

Communication with the computer 

Language is the means whereby we, as users, can tell the computer what to do, 
and it, in turn, can tell us what it has done with the information we have 
furnished it. It would be highly desirable to have a language that is as 
near as possible to what people ordinarily use. At the same time, the 
computer has to be able to interpret the given commands and execute them. 

As a result of the recent development of time-sharing, in which regular 
telephone lines are used to connect remote inexpensive typewriters 
equipped for teleprocessing ("terminals " ) to a single central computer, 
a number of special ized languages have appeared with features adapted to 
this environment. Among them is APL, the name being an acronym for 
A Programming Language, which is the title of a book by Dr. K. E. Iverson* 
TNew York, John Wi ley, 1962) defining the language in detail. 

Since it is similar in many respects to algebraic notation and, in addition, 
contains many useful functions not expressible concisely with conventional 
symbols, it has proved to be very efficient for describing algorithms 
(problem-solving procedures). The text, therefore, will concentrate on the 
use of the APL language for problem-solving on the terminal, following 
a brief introduction to the operation of the terminal and the establ ishing 
of the telephone connection. No consideration will be given to the char­
acteristics and operation of any of the other components of the APL sys­
tem since the user of a time-sharing system is removed from the immediate 
vicinity of the computer, and need not be concerned with anythin~ other 
than his terminal. 

What the APL system does 

The following is a typical session in which a user interacts with the 
central computer via an APL terminal. The student is cautioned that the 
display of terminal copy below was obtained from a terminal with access to 
programs in storage not necessari ly avai lable to him, such as L(JTATIDTICS, 
which will result in a value error if execution is attempted. 

*Presently Scientific Consultant for the IBM Scientific Center Complex, 
Data Processing Division. 
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2+2
 
4
 

3 -:- 4
 
() .7:)
 

15. S 

As the illustration shows we can use the terminal as a desk calculator, 
with commands and data entered by the user via the keyboard (beginning 
six spaces to the right of the margin). Following the entry the return 
key is depressed to signal th"e computer that the user is finished. The 
response of the computer begins at the left margin. 

Or we can assign a string of numbers to a variable called X, and ask the 
computer to execute the command shown, + / X , wi th the response 17.1 : 

X+-3 4 1.1 3 6 
+/X 

17.1 

This is the sum of all the numbers assigned to X. 

The variable X can be further operated on, as, for example, 

2+X 
6 3.1 8 

And we have the abil ity to call upon programs previously stored in the 
system. Here is one that enables us to carry out statistical calculations 
on data: 

8TI1 TIST Ies 
ENTE'H DATA 
'J: 

4 3 4.4 5 1 6.2 
6 ORSRHVATIONS ENTERED 
AVERAGE IS 3.933333333 
RANGE IS 5.2 
STAnDARD DEVIATION IS 1.787363048 
TO TFRMINATE TYPE STOP 
[J: 

The program is expecting yet another set of data, which will now be 
entered: 

(3 ~j 7.8 b.4 
L+ 0 B5 ,I'l' F? VA T10 lJ 5 FI7N l'RJrF: D 
AVF:RAGE IS 7.8 
RANGE IS 2.6 
STANDARD DEVIATION IS 1.070825227 
TO TEi?!11JNA1 I E TYPE STOP 
r-l. 

1. 

STOP 

As the instructions indicated, we terminated execution by typing STOP. 



3 

SET 

Getting Started 

The hardware 

Let's take a brief look at t:,p physical equipment. It will be assumed in 
the remainder of the notes that the communications terminal you will be 
using is an IBM" 2741* with an APL typeba11, connected to a computer via 
a dataset telephone. 

Note that on the left side of the stand on which the 2741 terminal is 
mounted there is a switch marked COM/LCL. When the switch is in the LCL 
position ("l oca l"), the terminal can be used as an ordinary electric 
typewriter. The COM ('Icommunicate") position is the correct one for APII " 

Now look at the keyboard, reproduced below: 

[ATTN] 

ON 

OFF 

Although the alphabetic and numeric characters are in the standard posi­
tions, you wi 11 find most of the remaining symbols are not only probably 
not familiar to you but in addition the conventional symbols are not lo­
cated where you might expect them to be. 

The shift key is used in the usual manner for upper shift characters, and 
the return key on the right tells the system that you, the user, are 
finished with whatever you are entering, and are now ready for the terminal 
to respond. 

To the right of the return key is the on-off switch, which is the main 
power control for the terminal. The space bar (not shown) is at the 
bottom of the keyboard. 

Sign-on 

At this point, turn the terminal on and set the switch on the left side to 
LCL. Practice entering the following wi th the terminal in the local mode: 

wi th 
)1421:JAY 

as an example. 

Several other terminals can be used with APL. Among these are the DATEL 
20-31, DURA 1021 and 1051, TST 707, NOVAR 5-50, and IBM 2740 and 1050. In 
general, the control functions are similar, but the student should consult 
the vendor of the terminal or the APL time sharing service for specific 
information. 
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If you forget to hold down the shift key, you will get] instead of ). 
This will result in an incorrect entry and you will not be able to sign on. 
Repeat the above exercise. 

When you are finished practicing, put the left switch back on COM and 
leave the power switch on. 

Now examine the dataset. You will be concerned only with the two right­
most buttons: TALK and DATA. When the TALK button is depressed, the 
dataset is a conventional telephone. Use it to dial the computer. 

If you have made a proper connection, you will hear a high-pitched tone. 
At this point, press the DATA button, replace the handset, and you are 
ready to sign on as above. 

Here is a summary of the sign-on procedure: 

1.	 turn on-off swi tch on 
2.	 put LCL-COM swi tch to COM 
3.	 depress TALK button 
4.	 dial telephone number 
5.	 on tone, press DATA button 
6.	 rep 1ace handse t 
7.	 en t e r ) you r use r numbe r : pas swo r d [i fan y ]
 

press return key
 

The	 complete sign-on with the terminal response looks 1 ike this: 

)1500:/)(; 

OPH: 196K ~/S APL SYS AVAILABLE EVES, SAT. 
057) 9.44.03 03/13/70 LGILMAN 

A P L \ 360 

OS7) tells on which port (tel. line) you are coming into the computer, and 
is followed by the time in hours, minutes and seconds, the date and the 
user's name. The next 1ine identifies the system. At times there may also 
be a message from the operator wi th APL news for all users. 

Having signed on, we are at the place where we can do simple calculations: 

3+5 
8 

2+2 
4 

Sign-off 

At this point you are ready to work. It is foreordained, in the scheme of 
things, that somebody is bound to come in and interrupt you. If the inter­
ruption is a lengthy one and you are unable to continue at the terminal for 
some time, you wi 11 need to know how to sign off. Do not sign off at this 
point unless you have to leave the terminal. -- ­

Here is the sign-off procedure: 

1.	 enter )OFF 
2.	 press return key 
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3. after terminal response, turn on-off swi tch off 

The terminal's response will show how long you were connected and the 
actual time the central processing unit (CPU) of the computer was working 
for you both since sign-on and cumulatively since the last billing: 

)OFF 
057 13.41.40 03/10/70 LeT 
CONNECTED 0.00.22 TO nATE 4.19.26 
CPU TIME 0.00.00 TO DATE 0.00. U1 



C HAP T E R 2: 

Some elementary operations 

From this point on, the notes will make the assumption that you are seated 
at an active terminal. Many of the chapters will have instructions to get 
you into a special workspace, which is a block of internal storage (called 
"memory"), and in which there are a number of programs and exercises that 
you will use. More about this later. 

In the early chapters, try to get as much finger practice as you can. 
Remember that the slowest link in the APL system is you, the user. You 
are 1imited by the speed with which you can enter information on the key­
board. 

Elementary arithmetic operations 

We'll begin with the simple arithmetic operations, + x - +, the symbols for 
which are in the upper right portion of the keyboard. The decimal point, 
which will be introduced here, is in the lower right part of the keyboard. 
All these symbols are used in the conventional manner. 

Addition: 

3+4 
7 

.5+.6 
1 .1 

1.45+5.99 
7.44 

You've just barely started, but already there is one error that you are 
free to make. Suppose we type 

3+ 

You ask: 3+ what? Clearly this isn't a meaningful statement because you 
haven't indicated a second value for the plus symbol to operate on. The 
response of the computer is to type out the following error message: 

6 
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SYNTAX ERROR 
3+ 

1\ 

The caret marks where the error was detected. 

Multipl ication: 

1+ 0 . 2 'J 

3x6 
1 8 

Subtraction: 

5-2 
3 

2-~ 

3 

Notice the high bar in the last response. This symbol means "negative."
 
In a way it is a description (1 ike the decimal point) attached to the number
 
that follows it. It is not an indication of an operation to be performed.
 
For this, the subtraction sign is used.
 

Let's try some additional examples using the negative sign:
 

1 
2+3 

1 
-2+3 

5 

If you think that there's something pecul iar about the last example, where 
a subtraction sign was used in place of the negative, relax-the explanation 
will come in a later chapter. 

Division: 

3-;-5 
0.6 

5 -;- 3 
1 • 0 6 G6 GGf) f) 7 

By now you have probably noticed in your own practice with the arithmetic 
operations that at most ten significant figures wi 11 be printed in the 
response. APL carries out all calculations to approximately sixteen places 
and rounds off to ten places in the output. Zeros on the right are not 
printed. In chapter 34 a command will be introduced that will allow the 
number of places printed to vary from 2 to 16. 

So far so good. Now how about 

5 -: 0 
DO/.1AIN ENROl? 

5~- 0 
1\ 
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Here we see a second type of error occurring. The explanation is that 
the operation ~ is a val id one, but we tried to divide by 0 , which is 
not in the "domain" of possible divisors in our number system. This seems 
reasonable enough, until you try 

0.;-0 

1 

Can you think of a good reason why this is so? 

Correct ions 

Now suppose we have to enter one or more numbers that are a 1ittle harder 
to type than what we have been using thus far, and (heaven forbid!) we1ve 
made a mistake. Specifically, we typed 2 X 3.14169 and really meant 
2x3.14159, but haven't yet hit the return key. 

There is a simple correcting mechanism on the 2741 terminal. We strike 
the backspace key gently (it may be typamatic on some terminals) to move 
the typeball over to where the error begins. If we then hit the ATTN 
(attention) button, an inverted caret will appear under the character at 
that point. This signifies that everything above and to the right of the 
caret is wiped out from the memory of the system and the corrections may 
be typed. 

Here are some illustrations: 

2x3.14169 
v 
59 

6.28318 
2xl.l058 

v 

2.21 

In the following example we want 23x506 but actually type 3x506.
 
All we need do is to backspace just before the 3 and type 2 as shown,
 
provided, of course, that the return key hasn't yet been pressed: 

23x506 
11638 

3x506 
1518 

3x506 
2 

11638 

The fact that the 2 is on another 1 ine is immaterial, since the system 
doesn't know that we have manually moved the roller and paper. 

You have undoubtedly guessed, by this time, that the way to get rid of a 
whole 1 ine is to backspace all the way to the beginning and make the 
correction: 
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1234567x12345678
 
v
 

The correction mechanism may also be used to enter comments: 

T II I SIS A CO /,1/'1 EN T 
v 

Otherwise the system doesnlt recognize the entry and an error message is 
recorded. 

And whi le wei re on the subject, the combination upper shift C and the small 
circle (upper shift J) overstruck is interpreted as indicating that a 
comment follows. It may contain any APL symbols and calls for no response 
from the system. 

~THIS IS A COMMENT 

This doesn1t mean that all combinations of overstruck characters are 
possible in APL. Here the times and divide signs have been overstruck, 
with a resulting character error. Those combinations which are legal will 
be taken up in succeeding chapters. 

3 L~ • 7 3 
ClIARACTER ERROR 

34 

An introduction to vectors 

Imagine a store which, following a disastrous fire, is left with just three 
items for sale, A, B, C. Here is the sales record of the number of items 
sold over a two-week period: 

ABC 

week 1[978 
week 21 3 4 5 

Before they go out of business, what are the total sales for each item? 

The obvious answer is to add the weekly totals for each item separately as 

9+3 
12 

7+4 
11 

8+5 
13 

But there ought to be a more compact way and, in APL, there is: 

9 7 8+3 4 5 
12 11 13 
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This leads us into a unique and time-saving feature of APL-its ability to 
process arrays of numbers. In the previous example the array was one­
dimensional, with the elements all arranged in a single chain, called a 
vector. We shall see later that APL\360 can handle multi-dimensional 
arrays as well. 

Let's now change the problem: 

ABC 

week 11978
 
week 2 I 5 5 5 

Treating this as a problem involving vectors, we enter 

9 7 8+5 5 5 
14 12 13 

To save stillmore typing time, where all the elements of one of the vectors 
are identical, it suffices to type just one of the numbers in that vector, 
leaving it to the system to extend it automatically to match the other vector 
in length: 

9 7 8+5 
14 12 13 

Now for some do's and don'ts. First, suppose we run all the numbers to­
gether: 

978+55S 
1:.i33 

Apparently the lack of space between the digits causes the system to interpret 
the series as a single number. Does this mean that the numbers (or the 
operation symbol, for that matter) must be separated by any fixed number of 
blanks? The following example makes clear that one blank is sufficient as 
a separator, but extra blanks don't hurt. 

9 7 8+ 5 
14 1 2 1 3 

What if the two vectors don't have the same number of elements? 

9 7 8+5 3 

LF;NGTlI f/HROR 
9 78+ 5 3 

/\ 

Here we get an obvious error message because the computer doesn't know which 
number goes with which. The only exception to this is where all the elements 
are identical (as in the previous example) and only one element needs to be 
typed. 

You might argue that if we had 
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J 7 [3+5 3 0 

14 10 8 

we ought to be able to leave off the 0 since it doesn't contribute any­
th i ng to the sum. But 0 is not the same as a blank. The former means 
that the element in that position where it occurs has the value 0 , while 
the	 latter occurs in place of some unknown element, possibly, but not 
necessarily, 0 , and impossible for the computer to determine. 

This parallel processing of vectors, to give it a name, works equally well 
with other arithmetic operations: 

1·234x2 
2 4 6 8 

If,	 for example, a cookie recipe required 6, 4 and 1 cups respectively of 
three ingredients, and we wished to make only a third of a batch, then the 
required amounts are 

6 4 1~3 

2 1.333333333 0.3333333333 

Again, suppose that the above three ingredients cost respectively 1, 5 and 
7 cents per cup. What is the total cost for each ingredient? 

64 1x.01 .05 .07 
O. 06 0.2 0.07 

As we shall see in subsequent chapters, not only are there a large number of 
standard operations that can be used with vectors, but we will also 
be able to invent functions that behave in many ways just 1 ike our ordinary 
arithmetic operations in that, among other things, they too can be used with 
vectors. 

PROBLEMS 

1.	 Dri 11. (Some of the dri 11 problems may result in error messages.) 

G B 2 4+3 9 1 1	 1 2 8-;-1 2 0 

1 0 9 [5 - Lt 2 2 3 10~10 5 2 1 20.81+15 f) 

56.7 0 .19 3 Lt x1 2 3 2 3 

2.	 Additional finger exercises (use the ATTN key to delete each statement 
in turn): 

NOW IS THE TIME FOR ALL GOOD M£il TO COME TO TilE AID OF 

IF AT FIRST YOU DON'T SUCCEED, TRY AGAIN 

1i 0 ;.; NO Jl 13 ROWIV CO rl 
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PRACTICE MAKES PERFECT 

THE SLOWEST PART OF THE APL SYSTEM IS GENERALLY THE USER 

3.	 At a basketball game a ticket seller sold 155 adult tickets at $1.25 
each, 89 student tickets at $.50 each, and accepted 45 courtesy passes 
at $.25 each. Write an APL expression which gives the income from 
each class of tickets. 

4.	 A taxi fleet owner recorded mileages of 1263, 2016, 1997 and 3028 for 
each of his four cars. Operating expenses for each car during the 
same period were $59.50, $72.50, $79.50 and $83.00, respectively. 
What was his cost per mile for each car? 



C HAP T E R 3: 

Scalar dyadic functions 

In the previous chapter we dealt with individual numbers, which we will 
call scalars, and chains of numbers, for which the term vectors was used. 
Left unanswered, at that time, was the question of what combinations of these 
are allowed in APL, as well as what the shape of the result might be. 
Let's now address ourselves to the question by formulating a few simple 
rules and appropriate names for the concepts to be considered. 

Standard scalar dyadic functions 

There are four mathematical rules that govern the ways in which vectors and 
scalars can be combined. In what follows, the symbol 0 stands for any of 
the arithmetic operations that we have already introduced. Later in this 
section we will further classify and categorize these operations to make 
more evident their connection with other operations yet to be defined. 

01. scalar f- sca 1a r scalar 

02. vector ~ scalar vector 

vector ~ vector scalar3· 0 

04. vector (--- vec tor vector 

The term on the left of the arrow tells us the shape of the result when 
various operations are performed on quantities having the shapes on the 
r i gh t. 

This is as good a place as any to introduce a little additional terminology. 
Why? You ask. Naming something doesn't tell us any more about it and, in 
fact, can mislead us by enabl ing us to talk more gl ibly of things we may not 
know much about. But mathematicians, being the perverse creatures that they 
are, insist on more formal names for the tools and concepts they work with. 
And having a name for something does have the advantage of letting the 
namer identify without ambiguity (we hope~) what is under discussion. 

First, if stands for an operation to be performed, the things it is to 
operate on will be called arguments. Thus, in 5x6, 5 is the left argument 
and 6 is the right argument. The arguments can both be scalars (rule 1) 

13 

0 
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3+5 
8
 

or vectors, either on the right or left (rules 2, 3)
 

2+3 5 7 
5 7 9 

S 6 8x3 
15 18 24 

or both arguments can be vectors (rule 4) 

3 6 8~2 1 4 
1 .5 6 2 

the only stipulation being, as previously mentioned, that both arguments 
have the same length. As an obvious corollary, the lengths of the result ­
ing vectors in the two examples at the top of the page are the same as those 
of the vector arguments. 

The operators that we have been working with are more properly called 
functions, because once the arguments and operation are specified, a single 
result is obtained. In a crude sense, this is what the mathematician also 
thinks of when he uses the term more formally. 

Furthermore, the label dyadic is attached to these functions, since they 
require, at least as we have been using them thus far, two arguments. Also 
they are called in APL standard or primitive because they are immediately 
avai lable on the APL keyboard. And, finally (at long last~), they are 
referred to as scalar because functions of this type are defined first for 
scalars and then extended component by component to vectors. 

Summa r i z i ng, the 0 pera t ion s + - x ~ are calledin AP L s tan dar d s cal a r 
dyadic functions. 

Operation tables for the arithmetic functions 

For each of the functions thus far introduced, we can construct an operation 
table, with the left arguments down the vertical column on the left and the 
right arguments across the top. To save space, only the integers 1-4 are 
used as arguments: 

+ 2 3 4 

2 3 4 5 

2 3 4 5 6 2 

3 4 5 6 7 3 

4 5 6 7 8 4 

2 3 4 x 

0 -1 -2 -3 

o -1 -2 2 

2 1 o -1 3 

3 2 1 0 4 

2 3 4 

2 3 4 

2 4 6 8 

3 6 9 12 

4 8 12 16 
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2 3 4 

· 5 .33· .. . 25 

2 2 .66 ... .5 

3 3 1.5 .75 

4 4 2 1.33 ... 

Here is one in VJh i ch no function is specified. Can you guess what it is? 

2 2 

2 

4 

3 

8 

4 

1 

16 

3 

4 

3 

4 

9 

16 

27 

64 

81 

256 

Power function 

You should be able to see that the above table represents the power function, 
with the left arguments being raised to the powers indicated by the right 
arguments. Clearly, this power function exhibits the characteristics we 
would expect from a standard scalar dyadic function. 

All we need is a symbol for it. This brings up an interesting aspect (or 
fail ing if you prefer) of conventional mathematical notation, and one which 
wi 11 become even more apparent as we go along. 

Notice how we write the four arithmetic functions: 

2+3 
2-3 
2x3 

2 -:- 3 

And then we come along and write for the power function 

The operation to be performed is specified not by a symbol but by position, 
which is not only inconsistent but downright dangerous, since it is very 
easy sometimes to miss the elevated position of the power in writing. 

In APL, the symbol * (uppershift ) is chosen, yielding 

2*3 
8 

, being a standard scalar dyadic function, extends to vectors as well:* 
2 4 3 * 2 

()4 1 b 

In mathematics courses, roots are shown to be equivalent to fractional 
powers, e.g., the square root is the 1/2 po\rver. So, instead of vvriting 
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V2 to mean the square root of 2 , in APL this is 

2 * . 5
 

1.414213562
 

and 

9 64*.5 
3 8 

Negative powers, which are the equivalent of the reciprocal of the number 
raised to the corresponding positive power, are also available to the APL 
user, as in the following example: 

o.25 

Our power function can be used to generate quite large numbers: 

100*8
 
1216
 

Exponential notation 

In the last example you saw a new notation, which some of you may recognize 
as being simi lar to what is used in other higher level programming lang­
uages, and evidently intended to avoid writing a monster 1 ike 

10,000,000,000,000,000 

The E may be interpreted as "times 10 to the ... power." 

This notation is equally convenient for very small numbers: 

1E 18 

and can be employed in many different ways to express the same number, say, 
530: 

53E1 which is 53xl0 1 

5.3E2 5.3xl0 2 

.0053E5 .0053xl0 5 

530FO 530xl0 0 

5300E 1 5300xl0- 1 

APL not only produces results in the E-notation, but it is possible to 
enter data this way: 
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0+33
 
33
 

0+3.3El 
33 

0+.33E2 
33 -O+330E 1
 
33
 

The choice is up to the user. 

Logarithmic function 

There is another function which is closely related to the power function, 
the logarithmic function (the logarithm of a number N to the base B is 
that power to which B must be raised to equal N). In APL, this is written 
R~N, the symbol being that for exponentiation overstruck with the large 
circle (upper shift 0 ). 

Thus, since 

1000 

the base-10 log (to use the usual abbreviation) of 1000 is 

10~1000 

3 

and 

10~100 1000 10 
231 

Similarly, since 

8 

then the log of 8 to the base 2 is 3: 

2~8 

3 

Notice that the base is the left argument and the number whose log is to 
be found the right argument. 

Maximum and minimum functions 

Finally, try the following exercise, exploring the working of the symbol 
(upper sh i ft S ) : 
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3 r 5 
5 

5 r 3 
5 

5rS 
5 

Lest you betemptedin to say i ng II a ha ~ r a 1way s ge nera t e s a 5 I I, 100 kat 

3 r 3
 
3
 

If you play around with this function for a whi le, you wi 11 see that it 
selects the larger of the left and right argument, and is appropriately 
named the maximum function. Its operation table looks like this: 

2 3 4 
--------_.~----

2 3 4
-_. 

2 2 2 3 4 

3 3 3 3 4 

4 4 4 4 4 

Where there's a maximum, there ought analogously to be a minimum function. 
This is found on the upper 
arguments: 

3 L 5 
3 

5 L1 
5 

It has the operation table 

2 

3 

4 

"Lesser" and "greater" are 
defines them according to 

... -4 

shift n, and selects the lesser of the two 

2 3 4
 

1
 

2 2 2
 

2 3 3
 

2 3 4
 

relative terms, and indeed the mathematician 
position on the real number 1 ine: 

-2 -i 5... 

*''= . .. >negative positive 
numbers numbers 

~ARGER 

SMALLER~ 
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Thus, the lesser of two numbers is that one which is farther to the left, 
and the greater one, farther to the right. 

Let's consider a couple of simple problems. There are three students who 
got	 grades of 90, 80 and 55 in a certain exam, and on a retest received 70, 
80 and 75, respectively. The instructor wishes to record for each student 
only the larger of the two grades received. How can he do it in liP]/? 

What we want to do is to select out 90 for the first student, 80 for the 
second, and 75 for the thi rd, i.e., 

90 80 55r7D 80 75 
90 80 75 

A second problem: We have purchased an odd lot consisting of 4 boards of 
lengths 5, 8.1, 10, and 7.9 ft. Unfortunately, our truck can carry boards 
no longer than 8 ft. without running afoul of the law. Can we identify which 
boards have to be trimmed? This is 

8t 5 8.1107.9 
5 8 (3 7 .9 

and, from the position of the 8 1 s in the result, we see which boards have 
to be cut down. These are two trivial examples, but as our store of new 
functions increases, we wi 11 be able to solve much more complex problems 
1ate r. 

It should be noted before concluding this chapter that all the new functions 
introduced, * ® [ l, are standard scalar dyadic functions, but that the 
maximum and minimum functions mathematically are different from all others 
in one significant respect: no knowledge of an operation table is needed 
to use them, only the abi 1 ity to distinguish greater and less. 

PROBLEMS 

1.	 Dr ill 

3 r 3 7 10. H 2 0 10~1 2 3 4 5 U*.333333333333] 

1 9 5 2LO G 4 3 2 3 4 5 6~2 lDeO 

c­
,)	 1 52r6 2LO 5 8 1*0 1 10 100 1000 

1fA11	 2~25 7 • 11 E 4 -~ 9 . Lt 5 F - 3 

2 * • 5 .333 .25 .2	 21.268Hl+4.5GE-2 

2 1 0 ~ 1~553*4 l­

2.	 Key in lEO, lEl, ••. 1Ell. Do 1 ikewise wi th lE 1, .. . 1E 6. Note where 
the break point is in APL for the display on large and small numbers 
in E-notation. 

3.	 Store A sells 5 vegetable items for 15, 20, 18, 32, and 29 cents a pound. 
At store B the prices are 18, 20, 15, 10 and 49 cents a pound, respectively. 
The pol icy of a third store C is to meet the competition's prices. Write 
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an APL expression to determine store CiS selling prices for the 5 
i teffi5 . 

4.	 The pH of a solution is a measure of its acidity or basicity, and is 
defined as the logarithm (base 10) of the reciprocal of the hydrogen 
ion concentration in moles/l iter of solution. Use APL to express the 
pH of a solution whose concentration is C. 
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Two more scalar dyadic functions 

Combinations 

A relatively simple combinatorial problem in mathematics is to find the 
number of ways one can take 2 things out of a population of 4. Let's solve 
the problem by brute force, with 4 objects, A, B, C, D. Listing the possi­
ble combinations, we have 

AB AC AD BC BD CD 

Wei 11 assume the order is not significant, so that CA and AC, for example, 
will be considered to be the same. Thus, there are 6 ways of taking 2 
things out of a population of 4. 

In combinatorial theory it is shown that the formula 

m! 
n! (m- n) ! 

gives the number of ways of taking m objects n at a time. For the case 
above, this would be 

4! 
2! (4-2)! 

or 6. As a remi nder to those of you whose math is rus ty, m! means (m) (m-l) 
(m- 2) ... ( 1), sothat 4! i s the 5 ame as 4x3x2xl. 

As you might suspect, the process is somewhat easier in APL. It is done 
with the same symbol!. On the keyboard it is formed by striking the period, 
backspacing, and hitting the quote symbol (upper shift K ) so that the two 
characters 1ine up. The correct format is n! m and, for our example above, 

2! 4 

This is the place to emphasize that like ~ is not a keyboard character, 
but is formed by overstriking as described above. The symbols ' and. must 
be 1 ined up. Otherwise no answer appears and the typeball doesn't space over. 
If we try to do anything else, 1ike a simple addition, the terminal fai ls to 
respond: 

21 

6 
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2 • ' 4 
(no response from the terminal) 

2+2 

(s till no response) 

When this happens, the cure is to type a single 'only. Then hit the 
return key and 1ive with whatever error results. 

:JYNTAX ERROR 
2+2 

and, as the calculation shows, 

is a standard scalar dyadic 

o 1 2 3 4!4 
14641 

2 ! 2 3 1+ 

136 

Its operation table looks like 

0 

0 

0 

2 0 

3 0 

4 0 

we are back in desk calculator mode once more. 

function and can take vector arguments: 

this: 

2 3 4
 

1 1
 

2 3 4 

0 1._1 ____ ~__~] 
0 0 1 4 

0 0 0 

What we generated above 
of the third row. That 
can be removed to form 

corresponds to the last column and the boxed in part 
portion of the table consisting of nonzero integers 

what in mathematics is called Pascal IS triangle: 

1 1 1 
234 
136 

1 4
 
1
 

which is a device for calculating and displaying the coefficients generated 
in the expansion of an expression of the form (a-b)n by the Binomial Theorem. 

Finally, to complete the picture, our arguments don't have to be integers: 

2 .1 ! 5 .6 
13.48487115 

which, for the benefit of the more mathematically sophisticated, is related 
to the complete ~-function of probabil ity theory. (Don't panic. It wonlt 
be mentioned again~) 
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Residue 

The next standard scalar dyadic function we will consider is one cal led 
residue. We can illustrate it with a simple example. 

Assume that we have 7 peanuts and 3 children who are to share the wealth 
evenly. We aren't able to cut up a single peanut. How many do we have left? 

Clearly the simple-minded way to do this would be to start with 7 and take 
away 3, leaving 4. Then take 3 more away, with 1 remaining. In formal 
language, the 3 residue of 7 is 1. This isn't the only way to do the prob­
lem. We could also divide 7 by 3, see that it goes in twice, and get a 
remainder of 1. 

The symbol for residue is I, which is the upper shift M. In APL, the 3 
residue of 7 is 

3 I 7
 
1
 

Our peanut problem can be enlarged by considering the distribution of vary­
ing amounts of peanuts to the 3 children: 

3 I 0 1 234 5 6 7 
o 1 201 201 

Here is another problem in which 5 peanuts are distributed among 1, 2, and 
3 children: 

1 2 3 I 5 
o 1 2 

The residue function is a handy one for generating all kinds of useful in­
formation. For instance, try 

1 I 2.5 
0.5 

1131.23 
0.23 

Asking for the 1 residue of a number is a convenient way to get the 
nonintegral part of the number. 

Now, what about the residue of negative numbers, say 3 1-4? Previously we 
saw that a recurring pattern was generated by 

3 I 0 1 234 5 () 7 
o 1 20120 1 

so when we try 

2 101 2 345 6 7 
1 201 2 0 12 o 

we expect and get a continuation of the recurring pattern. If you think 
about it a bit, you will see another way to obtain the residue of a nega­
tive number. For our example above, add 3 to -4 to get -1. Then add 3 
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again to get 2. In general, the rule is to keep adding until the result is 
o or positive. 

Suppose the left argument is negative. Then its absolute value (i .e., mag­
nitude without regard to the negative sign) is taken: 

2 

2 

There is one residue class of particular interest in the computing industry: 
the 2 residues of the integers: 

2 101 2 345 
o	 1 o 1 0 1 

Here we have a continuing pattern of 0 and 1 as the only integers. If we so 
choose, we can let 0 represent the state of a circuit with a switch open (no 
current) and 1 with the switch closed. Wei 11 have more to say about this in 
a later chapter. 

PROBLEMS 

1.	 Dr ill 

1 9 8 I 3 4 6 11 3.4 2.2 .019 

-3	 2 1 I 3 a 1 2 3 4! 3 4 5 6 7 

011 2 3	 4! 3 4 5 6 7 

31-3 2 0 1 2 3 2 4 5 I 8 13 3.78 

2.	 Given that A and B are integers modulo 5 (i .e., A and B belong to the 
set S of integers generated by taking 5 IN for any integer N?4), 
show t hat 5 IA +B , 5 IA x B, and 5 IA *Bare inS. 

3.	 How can the residue function be used to tell whether one number A is 
divisible by another number B? 

4.	 Write an APL expression to tell what clock time it is, given the 
number of elapsed hours H since 12:00. 

5.	 Find the number of possible solutions in positive integers of the 
equation 

X+Y+Z+W=50 
(Hint: think of 50 units partitioned into 4 blocks by separators) 

6.	 How many quadrilaterals can be formed by JOining groups of 4 points 
in a collection of 30 points in a plane, no 3 of which 1 ie on a straight 
1 i ne? 

7.	 I f 1 I N producesthe f r act ionalpart 0 f N, how can the res i due fun c t ion 
be used to get the integral part of the number? 

8.	 Write an expression to get the fractional part of a negative number. 
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Relational and logical functions 

In this chapter we wi 11 introduce ten new functions fall ing into two 
classes-the relationals and logicals. If you think that this is far too 
many for a single presentation and will leave you hopelessly confused, you 
may breathe easier. All of these functions have one thing in common-they 
call for an answer of 0 or 1 only, which at this stage shouldn't be too 
taxing. 

Relational functions 

There are, in APL, six relational functions, < S = ~ > ;z':, which are the 
upper shift 3 through 8. They have the usual mathematical meanings, less 
than, less than or equal, equal, greater than or equal, greater than, and 
not equal, respectively. The reason they are called relational is that 
they inquire about the truth or falsity of the relationship between two 
quantities, say A<B. 

This statement is really a question asked of the computer: Is A less than 
B? It calls for a response, yes or no, because either A is less than B or 
it is not. Let's try this on the terminal: 

3<5 

5<3 

o 

Clearly, a 1 response means the statement is true, and 0 false. 

Vectors work well with this function too: 

3<1 2 3 4 5 
o o 011 

and we can now use this function to help us in a selection problem. 

Suppose, as a store owner, we have a number of accounts, with $3, $-2, $0, 
$2, and $-3 as balances, and we want to flag or mark those accounts which 
are overdrawn (represented by negative values). The "l ess than" function 
will solve our problem, although it is by no means the only way to do it: 

25 
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o 1 
3 2 5 0 
000 

2 
1 

3<0 

Does < have all the qual ities of 
is its operation table: 

a standard scalar dyadic function? Here 

< 

o 
2 3 

1 

4 

2 o o 1 

3 

4 

o 
o 

o 

o 
o 
o o 

By this time you ought to be able to convince yourself that "less than" 
meets our criteria for a standard scalar dyadic function, as indeed do the 
rest of the relationals. We wonlt go through them all, but letls explore 
just one more, Typing 

3 2 5 o 2 3=0 
o o o 1 o 0 

generates a listing of those accounts from the previous example whose 
balance is 0, to complement the 1ist of those overdrawn. You should 
be able to see many other possibil ities. For instance, to get vectors of 
all lis or all OIS 

0 1 2 3=0 1 2 3 

1 1 1 1 
0 1 2 3=3 2 1 0 

0 0 0 0 

Logical functions 

Not all the juice has been squeezed out of the subset 1,0 of the real 
numbers that we previously looked at in connection with the relationa1s. 
Here is a function A (upper shift 0) cal led and, whose operation table is 

o 
o o o 

o 

The result is 1 if and only if both arguments are 1. In fact, we can 
generate all the entries in the table by 

o 0 1 lAO 1 0 1 
o 0 0 1 

You have probably noticed that only 0 and 1 were used as arguments in the 
table. Notice what happens when we try 
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2AO 
DOMAIN ERROR 

2AO 
A 

The last time we got a domain error was when we typed 

5-;-0 

DOI/fAI N ERROR 
S-;-O 

A 

It seems clear, then, that the arguments are restricted to 0 and 1. 

For those who have some background in mathematical logic, the analogy 
between 0 and 1 and the true-false entries in the truth tables for and 
will be apparent. In any event, this function provides yet another means 
of generating O's and lis, and will be us~ful in writing programs later on. 

Another logical function is v, cal led or: 

~ 
o I 0 1 

1 I 1 1 

The result is 1 if either or both arguments are 1. As before, we can 
generate all the entries in the table with 

o OlivO 1 0 1 
o 1 1 1 

There are yet two more functions in this class, 7'<, nand, and V', nor. You 
may have guessed al ready that nand stands for " no t and," and !ior for " no t 
or. I I The 0 ve rs t ruek up per s h i f t T) i suse d for nega t ion. ._~1ow arer-..J ( 

their operation tables, 

1'<. 0 l 

o 1 ~o 1 0 

o 100 

Here is an example: 

l¥O 
o 

You can see that everywhere 0 appears in t~e table for A, a 1 appears for 
1'<., and vice versa. The same holds for v and ¥. 

Although it was suggested earl ier that the logical functions had a use in 
programming, for generating OIS or 1 IS at the appropriate point, there is 
another, physical situation which could be represented by them, namely 
piping networks: 
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In Figure 1, fluid flows if either valve A or valve B is open, while in the 
second f i gu re flow occu rs on 1y if both A and Bare open. Read 110 11 for 
closed and 111 11 for open, and the figure correspond to the or and and tables, 
respectively. Keep in mind that it is a short step to go Trom pipes to 
electrical circuits. Hence their value in computer design. 

Actually, there are 16 possible logical connectives, of which we have 
taken up only 4. To illustrate how the others can be generated, 1et ' s 
assume we want a function that gives us an exclusive ~, with operation 
table 

l 

001~1 01 

the result being 0 if and only if, both arguments are 0 or both are 1. Can 
we get this in APL? 

The answer is yes. It is that part of the operation table for ~ where both 
arguments are 0 or 1: 

;r 0 2 3 
0 0 1 

1 0 1 

2 1 o 1 

3 1 o 

A simi lar approach yields the others. 

Summary 

Thus far, we have introduced and illustrated a large number of standard 
scalar dyadic functions. Here is a brief recapitulation up to this point: 

A+B sum of A and B 
A-B B subtracted from A 
AxB product of A and B 
A+B A divided by B 
A*B A raised to the power B 
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A~B base-A logarithm of B 
ArB larger of A and B 
ALB smaller of A and B 
AlB A residue of B 
A!B combinations of B items taken A at a time 

A<B 
A~B 

A=B relations yield 
A2B 1 if true 
A>B 0 if false 
A~B 

AvB logical or of A and B 
AAB logical and of A and B 
A¥B logical nor of A and B 
A~B logical nand of A and B 

Keep in mind that everyone of these functions can be used to replace the 
symbol in the rules (p. 13) for combining scalars and vectors.0 

PROBLEMS 

1.	 Dr ill 

0 0 1 lVO 1 0 1	 2 3 0<5 1 4 

1 0 1 OAl 0 0 1	 3 1 2~1 2 3 

2 4 7 2>6 1 0 4	 "'0 1 

0 1 2 3=0 1 3 2	 0 0 1 loyO 1 0 1 

4	 5 1 6. 8~ 4 1 1 2 1 0 1 07\'1 0 0 1 

8 7 6 5 4 3 2 1~1 2 3 4 5 6 7 8 

2.	 How can the functions and I be used in APTJ to identify the factors 
of an integer N? 

3.	 A is a vector of accounts, with the negative values representing those 
overdrawn. Use one or more of the relational functions to flag those 
accounts not overdrawn. 

4.	 Write an APL expression to return a 1 if either condition A is true or 
condition B is false. 

5.	 Execute 1 0 1 0=0 1 1 O. Compare this with the operation table on page 
28. What name would be appropriate to assign to this logical connective? 

6.	 Explain the results of executing 0 0 1 1A~O 0 1 1 and 0 0 1 1v~O 0 1 1. 
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C HAP T E R 6: 

Assignment and algorithms 

Up to this point, all of our work has been done in desk calculator mode. 
This has the disadvantage that once we type in the arguments and the func­
tion and then press the return key, execution proceeds, we get an answer 
(unless	 we tried to do something il legal), but the work is lost. No longer 
is it avai lable to us for any future calculation. 

In this chapter we shall see how APL handles these situations and, in 
addition, we shall solve a well-known problem in geometry by a stepwise 
procedure. 

Assignment 

Any good desk calculator has the abil ity to store constant factors so that 
they can be used over and over again without having to be reentered each 
time. For instance, suppose we are given a series of problems all involv­
ing the constant 0.75 : 

2 x • 75 
1 .	 5 

4+.75 

As it stands, .75 has to be typed each time. What weld 1 ike is some way to 
save this number and have it available for reuse. It may seem trivial at 
this point because our repeated factor, .75, doesn't take many typestrokes, 
but what if the expression you had to repeat had a large number of characters 
in it? 

In APL the terms specification or assignment are used to describe the 
placing of an expression in storage. It works this way: 

Incidentally, the expression above is frequently read as "A is assigned the 
value.75. 11 The name A is given by means of the arrow + to the quant i ty 
.75 and, from this point on, unless the contents of our workspace are 

30 
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destroyed or A reassigned to another quantity, typing A will be the same as 
typing .75. Since A is a name to which we are free to assign any value we 
want, even though we have chosen a specific one here, it and other names 
used in a simi 1ar manner are often cal led variables. 

Here are a couple of calculations we can do with A: 

2xA 
1 . 5 

4+A 
4. 75 

A*2 
o. 562 5 

A 
0.75 

Flushed with success, you ought to be ready to try your hand at another: 

B+-1 2 3 4 5
 
2xB
 

2 J-t 6 8 10 

Then, since we s till have A (1 ike death and taxes) wi th us, 

A+B 
1 .75 2 .75 3 .75 4.75 5 .75 

B*2 
1 4 9 16 25 

If we keep this up, sooner or later we are going to run out of letters of 
the alphabet. What then? The next logical step is to use multiple letter 
names: 

PI+-3.14159
 
PI*2
 

9.869587728 

A is still in storage. Here it is again: 

A 
0.75 

You should have noticed by now that when an assignment is made, no exp1 icit 
result is returned by the terminal on the paper. This is reasonable 
enough, since all we are asking when we make an assignment is for something 
to be placed in storage. 

What happens if we mistakenly (or otherwise) use the same letter for a 
second assignment? For instance, we let 

A+2+B 

If we call for A now, we get 
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A 
3 4 567 

2+B 
3 4 567 

The new values of A supersede the old, which are lost. Moral of the story: 
If you want to save the values stored under a variable name, donlt override 
the assignment. Use a different name. 

There are several ways to extend the number of possibil ities for variable 
name s . Un de r 1i n i ng (up per s h i f t F) i sone way. 

d,+3.2
 

!l+5
 
8.2 

A 
345 6 7 

A is clearly different from A, which still has its last assigned value. 
Tn effect, this gives us 52 letters to choose from, alone or in multiple 
character names 1 ike 

DATA+5 2 7 8 

APL recognizes up to 77 characters in a variable name, but it doesn't pay 
to make it too long. Remember, you are the one who will have to type it. 
Numbers can also be included in any position except initially, as shown by 

X3Y2+20 
3XY2+20 

SYNTAX ERROR 
3 XY2+20 

1\ 

but spaces, punctuation marks, and special symbols for operations may not.
 
Something new has been added here: a syntax error message. In plain
 
Engl ish, this means that a statement has been improperly formulated in APL,
 
i . e., is " ung ramma t i ca 1. II 

It is possible in APL to make multiple specifications on the same 1 ine. 
In certain cases this turns out to be a handy timesaver. Here is an 
example: 

A+2+B+3 1 5 
B 

3 1 5 
A 

5 3 7 

Now, let's try asking the computer for 

A+W 
VALUE ERROR 

A +~I 

1\ 
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It should be obvious what's wrong. The computer didn't recognize the 
variable name W because there isn't any value currently stored under that 
name. Hence the error message. A is still a val id variable, but not W. 

A 
3 4 5 6 7 

tv 
VALUE ERROR 

W 
/\ 

This raises another question: How can you find out what variable names you 
have already in storage? The command )VARS (abbreviation for " var iables") 
produces an alphabetical 1 isting of the variables already in storage. 

)VIlRS 
B DATJ1 PI XY2 X3Y2 

Note that the underl ined A comes after the nonunderl ined letters of the 
alphabet. 

Expressions which begin with a right parenthesis followed by a word or 
abbreviation are known as system commands. You already know two of them, 
sign-on and sign-off, and more wi 11 be introduced in succeeding chapters 
as the need arises. 

If we give W a value and then call for A+W, we no longer get an error 
message: 

r'/+-O.l 
A+W 

5.1 3.1 7.1 

and not only is execution completed, but W is added to the 1ist of variables 
in storage: 

) VARS 
A B nATA PI XY2 X3Y2 

Now W behaves just 1ike the other variables and can be respecified: 

0.2 

Algorithms 

We can use the notion of assignment as motivation for this next section, 
which is concerned with the concept of an algorithm. An algorithm is 
nothing but a series of steps that together comprise a prescription for 
defining a function or solving a problem. 

Here is an example taken from plane geometry. The problem is to calculate 
the hypotenuse of a right triangle, given the sides: 
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c 
A 

A convenient and time-honored rule for finding C is the Pythagorean Theorem. 
It states that to get C we have to square A and add it to the square of B, 
then find the square root of the sum. 

This sequence of steps can be executed in APL by the following scheme: 

9 
82+-8*2 
S+-A2+B2 
S 

25 
C+-S*.5 
C 

5 

There is one point worth commenting on. We had to specify A and B initially 
in this sequence; otherwise, when we called for the values of A2, B2, and S 
along the way as checks on our work, we would have gotten value errors. 

Wei 11 see later, when we learn how to write and store programs, that the 
specification of values for the variables need not be done beforehand. 

Let's go through the same steps and, this time, solve for a family of 
triangles: 

A+-1 3 
.8+-1 4 
A 

1 3 
A2+-A*2 
A2 

1 9 
B2+-B*2 
B2 

1 16 
S+-A2+B2 
C+-S*.5 

As before the result for C doesn't appear on the paper because our last step, 
which was an assignment of a value to C, merely put it in storage. So, in 
order to get the result, we have to type C: 



Assignment And Algorithms 35 

C 
1.414213562 5 

if we didn't want to save the result by storing it under C, we could e1 imi­
nate the assignment and merely call for 

1.414213562 5 

and	 the results now are printed. 

Finally, we can check on the variables we have in storage in the usual 
manner: 

) VARS
 
A A2 R B2 C nATA PI
 
~! XY2 X3Y2 6­

and the new variables specified in our right triangle algorithm are now 
included. 

PROBLEMS 

1.	 Given A~l 0 1 0 
R~O 1 0 1 
C~O 0 0 0 
D+-1 1 1 1 

Evaluate each of the fo 11 ow i ng : 

Were the results what you expected? Can you explain the discrepancies? 

2.	 Write an algorithm which will produce a loqica1 vector C with 115 corre­
sponding to the even numbers in a vector A+--6 7 2 4 -21 

3.	 Gi ve n a cube e a c h 0 f whoseedge s havel eng thE . \~ r i t e i n Ii PL the s t e ps 
needed to find its surface area. Execute for E+3 7 15 2.7 

4.	 Show how ina s e r ie s 0 f s t e p5 you co u1d 0 b t a i nth e cub e 0 f X~ 5 6 7 
without using *. 

5.	 You happen to have in storage a vector S of four positive elements. 
Use S to generate in at least five different ways A) A vector Z of four 
zeros, and B) A vector W of four ones. 

6.	 Assign the vector 3 4 5 6 7 to the name A and twice it to the name B 
on one 1ine. 
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Reduction 

Previously you saw how the introduction of vectors enabled parallel process­
ing of data to take place, with a resulting saving in time and number of 
typestrokes required. In this lecture this concept will be extended to 
show how meaningful operations can be effectively performed on the elements 
of a single vector. Continuing the analogy with electrical circuits, we 
may call such operations series processing. 

Conventional notation 

Let's begin with a problem in invoice extension. Assume that several differ­
ent items, each with its own cost, have been purchased. We' 11 use Q and C 
to represent the numbers and the costs, respectively. 

(2+-6 2 3 1 0 

C+-2 4 3 5 10 

To get the vector of total costs, we execute 

Qxc 
12 8 g 5 o 

But now, in order to obta in the grand tota 1, we have to add up a 11 the 
elements of this vector. 

In conventional notation, the mathematician indicates the sum of the com­
ponents of a vector by writing 

i=l 

L (sigma) means " sum ,11 while "i" is a running variable from 1 to n, identify­
ing the individual components of the vector. n is the total number of com­
ponents, 5 in the invoice extension problem we are working on. 

If this seems potentially 1ike a lot of work, don't be too concerned. In the 
next section we wi 11 show how to carry out the summation in APi) with minimal 
effort. 

36 
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Reduction 

Our objective is to sum across the components of a vector. To do this, 
let 

X+QxC 

so X contains 

X 
12 8 ~ 5 0 

In APL the sum is achieved by +/X. This is read as " p l us reducing X," or 
the 'Ipl us reduction of X," and the symbol / (lower right corner of the key­
board) is called " re duction," because it reduces the vector to a single 
component. 

+/X 
34 

How this operation works is worth discussing in more detail. If 

X+12 8 9 5 0 

then 

+/12 8 9 5 0 
34 

What the system does is to insert the function symbol which appears to the 
left of the slash between each pair of components of the vector and group 
them (internally) as follows: 

12+(8+(9+(5+0))) 

The reason for the grouping is that in the APL system each symbol operates 
on everything to the right of it. If you think about what this means, you 
will see that this is equivalent to operating on the rightmost pair of 
elements first, taking that answer together with the next element to the 
left, and so on, i.e., using the above illustration, step by step we obtain 

12+(8+(9+5)) 
12+(8+14) 
12+22 
34 

You may be incl ined to argue that we are making a big todo about nothing, 
since with addition it doesnlt really make any difference whether we work 
from right to left or left to right. Wei 11 see later, however, that this 
commutative property is not general. 

"Times" reduction 

Now consider still another problem. A rectangular box has the dimensions 
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21IX3"X4.'1 What is its volume? Clearly, to answer the question we want 

24 

If we assign Z to the vector of dimensions, x/Z should give us our answer. 

Z+-2 3 4 
x/Z 

24 

In this case, x is planted between each neighboring pair of components, and 
the system stepwise does the following: 

2x(3x4) 
2x12 
24 

An algorithm for averaging 

At this point we can profitably talk about an algorithm to get the average 
of the components of a vector X where 

X+-2 4 3 3 2.5 2 

In order to get an average we need two things: the sum T of all the com­
ponents in the vector we are averaging and the number of components. The 
first is easy: 

+/x 
16. 5 

We can get the average by dividing this sum by the number of components 
(obtained by manually counting them), but on the terminal there is a simpler, 
if somewhat sneaky, way to accompl ish this. On your terminal type 

x=x 

The response is 

1 1 1 1 1 1 

As you can see, this generates a vector consisting of as many l's as there 
are components in X. The next step? You guessed it-plus reduction over 
X=X. Summarizing and storing the intermediate results: 

i1+-X=X
 
N+- + / ;~.j
 

N
 
6 

Let's look at the sum T: 
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T 
VALUE El?HO!? 

T 
1\ 

We forgot to set T, so naturally we got a value error. Now 

T++IX 
T~N 

2.75 

2.75 is the average of the components of X: 

X 
2 L+ 3 3 2.5 2 

Maximum, minimum and logical reduction 

If + and x were the only functions that could be used with reduction, the 
operation wouldn't be particularly useful. But it turns out that all 
standard scalar dyadic functions can be employed in this manner. 

Here is an illustration using the maximum function. Remember Z, the vector 
of dimensions of the rectangular box we introduced earl ier? 

Z 
234 

Suppose we wanted to get the longest dimension in Z, i.e., pick out the 
maximum value. Then by analogy, just as we had 

2+(3+4)=2+7=9 
2x(3x4)=2x12=24 

for +/2 and x/Z, 

represents r/z 

On the terminal 

r/z 
4 

In the same fashion 

is LIZ: 

L/L: 
2 
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Note that in every case the symbol before the reduction is placed between 
each pair of neighboring elements, and the groupings are identical. 

Yet another simple appl ication involves the logical functions in an accounts 
identification problem. Let X be a vector of accounts: 

X+-3 4 2 2 1 

Our next job is to see if any have negative balances. The first step is to 
specify a vector of the same length as X, containing a 1 in each place where 
Xis 1es s than 0, i. e. : 

LZ+-X<O
 
LZ
 

00010 

Completing the algorithm: 

v/LZ 
1 

(Remember that the logical or returns a 1 if either or both arguments are 
1.) Our answer can be interpreted as fol lows: 

if 1, then at least one account is negative 
if 0, then no accounts are negative 

Let's reset X and repeat the problem to illustrate the second possibil ity: 

X+-3 6 1 0 3
 
LZ+-X<O
 
v/LZ
 

o 

Can you tell what the significance of the answers might be if we had used 
"/L2 in the algorithm instead of v/LZ? 

Minus reduction 

Wei re not through with reduction yet. How about minus reducing a vector? 

-/3 2 1 4 
2 

If you are puzzled by this result, the following step by step breakdown 
should help: 

3-(2-(1-4)) 
3-(2--3) 
3-5 
-2 

Since - in succession is equivalent to a +, you should be able to see that 
the above is the same as 
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3-2+1-4 (do by hand from left to right) 

In other words, -/ is a way to get an alternating sum, to give such a sequence 
its proper name. 

Here is a somewhat messy example that gives a value for PI using -/ 

PI=4X(l_l+l_1.+1.- + )1 3 5 7 9 ... . .. 

2
(This comes from integrating 1:-(1+X ) termwise after dividing. The result 
is a series for arctan X. If we let X=l, arctan 1 is PI:-4, and substitution 
of 1 for X on the right hand side gives the expression in parentheses above.) 

Letls construct an algorithm to obtain PI. Our first requirement is to get 
the vector 1 357 9 11 13 15 17 19, stopping after 10 terms. Next, we take 
their reciprocals, find the alternating sum, and multiply by 4, in that order. 

Practically speaking, this isnlt a very good way to get PI because the series 
converges so slowly that a very large number of terms are needed to obtain 
an accurate value. 

However, since it is for illustrative purposes, wei 11 begin not by specifying 
a vector 1 357 9.... Instead, it will be more instructive to see how this 
vector, which wei 11 name N, can be generated in other ways. If 

N+-l 2 3 4 5 0 7 8 9 10 

then 

2xN 

2 4 6 8 10 12 14 16 18 20 

and 

N+-2xN
 
N+-N-l
 
N
 

1 3 5 7 9 11 13 15 17 19 

gives us the series we want. The respecification of N as 2xN and N-1 de­
stroys the previously assigned values of N, as discussed on page 32. 

The reciprocals can be obtained by specifying 

R+-1+N 
R 

1 0.3333333333 0.2 0.1428571429 0.1111111111 
0.09090909091 0.07692307692 0.06666666667 
0.05882352941 0.05263157895 

and the alternating sum by 

S+--/R 

Our an swe r for P I (a t 1as t !) i s 
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PI+4xS
 
PI
 

3.041839619 

which is about .1 off for the reason described on the previous page. 

Two final comments. If -/ is the alternating sum, then +/ is the alter­
nating product, which you can verify for yourself on the terminal. Note 
also that the result of reducing a vector is a scalar. Hence, general izing 
the operation, reduction is often thought of as a reduction of rank, where 
a vector is said to be an array of rank 1, a scalar of rank O. As we shall 
see later, a matrix is an array of rank 2. 

PROBLEMS 

1.	 Dr ill 

+/3 7 10 15 22 -/2 4 6 8 10	 x/2 4 6 8 10 

-;-/3 5 2 */3 2 1	 A/l 0 1 1 

A/l 1 1	 v/O 1 0 1 v/O 0 0 

=/3 2 2	 >/1 2 4 L / - 2 4 0 8 

f/1 14.7226 

2.	 State in words what tests are represented by A/,V/ and =/. 

3.	 For A V+3 6 8 2 4, eval uate +/ 3xA V. 

4.	 Write a one-line APL expression to specify Q as the vector 1 7 2 3 
and find the largest element in Q. 

5.	 Set up an algorithm in APL to calculate the area of a triangle by 
Hero's formula, given below in conventional notation: 

Area=/s (S-A) (S-8) (S-C) 

A, B, and C are the sides of the triangle, while S is the semiperimeter. 
In your algorithm use L as the vector of sides of the triangle. 

6.	 Write an APL expression to give the slope of the 1 ine passing through 
the points with coordinates P and Q. By definition, the slope of a 
straight 1ine is the difference in the values of the vertical coordinates 
of two points on the line divided by the difference in the values of the 
corresponding horizontal coordinates. 
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Order of execution 

Further appl ications
 

In the last chapter we stated that in reduction the effective order of
 
execution was from right to left, since each function operated on every­

thing to the right of it. It was as a result of the operation of this
 
rule that -/ gave us the alternating sum.
 

Does this order of execution concept apply to all functions in APL ?
 
You should make up a number of examples to convince yourself, at this point,
 
that it does.
 

One good illustration is our previous problem (pages 41-42) to calcu­

late a value for PI. There we used a large number of steps to get the
 
result, but a much more elegant and neater way to write the algorithm is
 

PI~4x-/l+ 1+2xl 2 3 4 5 G 7 8 ~ 10 
PI 

3 • 0 4 1 (3 J 9 G1 'J 

Here, working from right to left, the first thing the computer does is to 
multiply 2 by the numbers 1 2 3 ... 10. Then -1 is added, which gives us the 
odd numbers 135.... These are divided into 1, yielding the reciprocals, 
and after -I makes an alternating sum out of the reciprocals, the terms 
are multipl ied by 4 to give PI. 

The same approach can be taken with our old friend the invoice extension 
problem (page 36). In this case the total cost of the products Q with 
individual costs C can be written as +IX, where X is the vector QxC. 
Numerically, 

+/5 2 3 1 Ox2 4 3 5 10 

Changing the order of execution 

Don't be tempted by these examples into thinking that all problems can be 
solved this neatly. A case in point is our previous calculation of the 
hypotenuse of a right triangle. Without putting it on the terminal, try 

43 

34 
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to figure out what would happen if we were so fool ish as to write 

Going from right to lett, L IS raised to the .5 power, B is then raised to 
the power representing that result, and-we might as well stop here because 
it is obvious we goofed. 

Really, what is needed is 

This is a good place to make three observations: (1) pairs of parentheses 
are used in APL in exactly the same way as in conventional mathematical 
notation, i.e., the normal order of execution is interrupted and expressions 
within parentheses are evaluated first; (2) aside from the above use of 
parentheses, there is no preferred order of execution in APL; and (3) a 
single right parenthesis is used in APL for system commands as contrasted 
to grouping, where a pair is required. 

Getting back to the hypotenuse example, A and B are squared, added, and 
then the sum is raised to the .5 power. Let's execute this for specific 
values of A and B: 

A-+-3 
B+4 
C+«A*2)+(B*2)).5 

SYNTAX ERROR 
C+( (A*2)+(B*2)) 0.5 

1\ 

The error message is clearly due to the fact that an * was omitted before 
the .5, so that the line isn't a valid APL expression. Contrast this 
with the omission of x between expressions in ( ) in conventional notation, 
where multiplication is impl ied by the absence of the x 

Redoing C, we can now call for its execution: 

C+«A*2)+(B*2))*.5 
C 

5 

The parentheses around B*2 aren't necessary. Why? 

«11*2)+B*2)*.5 
5 

Now, one more rehash of an old problem-the calculation of averages. We saw 
that it was necessary to get the sum of the components of the vector X and 
divide this by the number of components in X. In one 1 ine 

X+1 2 3 
(+/X)~+/X=X 

2 

From right to left, X=X generates a vector of three l·s which are then added 
(+/) and divided into each of the three components of X before summing again. 
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Parentheses aren't needed around the expression +/X on the extreme left, 
but for a reason different from what you might expect. This can be shown 
by looking at +/1 2 3+3, which is arithmetically equivalent to 1/3+2/3+3/3, 
or 2. This is exactly the same as (1+2+3)/3, the slashes in the last two 
expressions being used in the conventional way to indicate division. It 
doesn't make one bit of difference if we divide the elements of the vector 
by 3 before summing or after, as long, of course, as the divisor (here 3) 
is the same for all the elements. 

Every nice simple-looking procedure has its fly-in-the-ointment. The 
following is a case where omission of the parentheses is significant. 

3x2+4 
1 8 

In APL 2 is added to the 4 to give 6, which is multipl ied by 3. But in 
conventional notation, because of the accepted hierachy of order in which 
x precedes +, 3x2 is 6, which, adding 4, gives 10. So we should write 

10 

or be t te r s till 

4+3x2 
10 

which requires fewer keystrokes. 

The conventional rules in arithmetic aren't too bad to work with when only 
a relatively few functions are involved. Things tend to get a bit sticky, 
however, when you deal with the multitude of functions, standard and defined, 
that you have already been introduced to, or will soon encounter. It is here 
that the simplicity of the APL rule, that execution is from right to left 
subject only to the occurrence of parentheses, proves its worth. 

At this stage of the game, as you start to build up expressions with many 
functions, don't hesitate to overparenthesize. When you are more at home 
in your understanding of the APL language, you will find yourself beginning 
to leave out the nonessential parentheses. 

A po 1ynom iali 11us t ra t i on 

An elegant demonstration of the order of execution rule and the power and 
versatil ity of APL can be seen in the following example showing how a 
polynomial can be written and evaluated. 

Consider a typical algebraic polynomial expression 

which we want to evaluate for X, say, 10. How can this be represented in 
APL? 

The most obvious and simplest to understand is a direct transl iteration 
from the conventional notation: 
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X+l0
 
3+(-2 x X)+(9 x X*2)+4xX*3
 

4883 

A 1ittle better version, which el iminates the parentheses, is 

3+Xx-2+Xx9+Xx4 
4883 

Working from right to left, to 4x we add 9, giving 

9+4X (conventional notation) 

This is then multipl ied by X (remember that without parentheses the X 
multipl ies everything to the right of it) 

- 2 is added 

X is again used as a multipl ier 

and, finally, 3 is added 

But you can't appreciate the economy of the APL notation until you have 
taken advantage of its abil ity to handle arrays. Here is the piece ~ 
resistance of our problem: 

+/3 2 9 4xX*O 1 2 3 
4883 

In this version, X is raised to the powers 0 1 2 3 to give 

2 
X31 X x (conventional notation) 

These, in turn, are multiplied by 3 -294, yielding 

and then +/ results in 
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PROBLEMS 

1.	 Dr ill 

4*3r3*4 1f2+X+ - 5 6 0 4 8 6
 

(4*3 )rJ*Lt 7Gf+/2+3 x 1 2 3 4
 

5*3x5 Gf2-4*3
 

2.	 Of the following five expressions which have the same value? 

(([1*2) -4x (A xC» 

(B x fl)-(4 x A)xC
 

Rxfl-(4 x A)xC
 

3.	 Construct APL express ions for each of the following: 

A) Three-fourths plus five-sixths minus seven-eighths 
B) The quotient of two differences nine-sevenths and 

eight-tenths, and one-third and two-fifths. 

4.	 The geometric mean of a set of N positive numbers X is the nth root 
of their product. Write an APL expression to calculate this for 
X+l 7 4 2.5 51 19 

5.	 For A+O 1 0 1, B+1 0 0 1, and C+1 1 0 0, evaluate 

6.	 What is wrong with the expression A+B=B+A to show that the operation of 
addition is commutative, i.e., the order of the arguments is immaterial? 

7.	 The Gregorian calendar provides that all years from 1582 to about 20,000 
that are divisible by 4 are leap years, with the provisos that of the 
centesimal years (1600, 1700, etc.) only those divisible by 400 are 
leap years, and of the mi11enia1 years those divisible by 4000 are not. 
Write a one-1 ine AP~ expression to determine whether a given year Y 
is a leap year. 

2 2
8.	 Why isn ' t the following a val id APL expression for X -2XY+Y (conven­

t ional notat ion)? Correct it. 
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9.	 The intensity level B of a sound wave is measured in bels, and is 
defined as (conventional notation) B=lOxlog I/I o where I is some 
arbitrary reference level of intensity. Write an APL e~pression for 
this formula. 

10.	 Rewrite the following polynomial expression without parentheses. Do 
not use reduction: 

11.	 Write an APL expression to compute the root-mean square of the com­
ponents of a vector. (This is the square root of the average of the 
squares) . 

12.	 What is a possible interpretation of the fol lowing? 

PROPOSE+RINGAWEATHERA(JILL<JACK)AJACK<AGELIMIT 

13.	 Write an APL expression to calculate the interest on P dollars at R 
percent compounded annually for T years. How would you change your 
answer to provide for compounding quarterly? 
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Scalar monadic functions
 

Standard scalar monadic functions 

Just as on page 14 we introduced the term dyadic to describe functions which 
require two arguments, so we will use monadic where only a single argument 
is needed. 

Take a look at how some of the monadic functions are represented in con­
ventional mathematical notation: 

-x arithmetic negation 
X! factorial 

IXI absolute value 

l~~ } reciprocal 
x X 

e exponential 
In X Natural logarithm

IX square root 
X logical negation 

Whatever other merits this mishmash has, consistency certainly isn't one of 
them, for the symbol which is the functional indicator may appear on the 
left, the right, both sides, on top, or be in a special position, or be 
represented by an alphabetical label. 

These same functions are effectively treated in APL as follows: 

-x arithmetic negation 
!X factorial 
Ix absolute value 
-~x reciprocal 
*X exponential
®x natural logari thm 

X*.5 square root (dyadic) 
rvX logical negation 

Notice that, for all the monadics in this 1ist, the symbol precedes the 
argument. Most of them look 1 ike symbols for certain dyadic functions, 
but the interpretations may not always be closely related. 
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Let's run through some of them on the terminal and, as you do, note that 
both scalars and vectors can be used as arguments: 

Arithmetic negation: 

This function simply negates the argument that fo1 lows it: 

-3 4 1 0 8 
J Lt 1 o 8 

Factorial: 

An expression like !X (X is an integer) is to be interpreted as the product 
(X) (X-1) (X-2) ... (1) (see page 21). For example, if X is 4, 

! 4
 
24
 

24 

and 

! 1 2 3 4 
1 2 6 24 

To make sure your terminal is operating properly type 

2+2
 
4
 

If you got the result, ignore the next comment. If not, you didn't line 
up t and. as in the precautions stated in our discussion of the dyadic! 
on page 21. The way to get out of this hangup is to type a single " fol­
lowed by the return key. 

This factorial function works also with nonintegers and zero: 

! 2 .5 
3.J23350S7 

! 0 
1 

(For those with a considerable background in mathematics, the factorial 
can be defined by use of the gamma function, given by the following 
integral: ~ 

,(n+1) = X
n 

e 
-x

dxf
 
o 

which can be shown to be equivalent to !n with n not restricted to integer 
values. If n is 0, incidentally, the definite integral has the value 1, 
which justifies the terminal result for !O. 

For those with minimal math background-forget it.) 
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Absolute value: 

The absolute value function is defined as follows: 

IX =~ X i f X'20-1-XifX<O 

In plain Engl ish this means: take the magnitude of the number and ignore 
any negative sign that may be present. 

13 5 2 7 3 
3 5 2 7 3 

Rec i p roca 1: 

In APL the monadic +X is equivalent to the dyadic 1+X. Thus, 

;. 1 2 3 4 5 
o ~-::1 . ,..) 0.3333333333 o .25 0.2 

1 -~ 1 2 3 4 5 
1 o • :Jr: U.33]3333333 o.25 o .2 

Exponential: 

*X is equivalent to raising e, the base of the system of natural logarithms, 
wh i ch has the val ue 2. 7 1 [3 2 8 • • ., totheX pOVJ e r . This me an s t hat *Xis the 
same a s L. 7 1 F3 :2 8 • • • * X • 

* 2 • ~ 

1 2 • 1 8 2 Lt 9 3 9 6 

and 

*1 
2.718281828 

which gives the value of e itself. 

Natural logari thm: 

®X yields the same result as the dyadic log, 2.7182U •• • qoX, i.e., e®X. 
See page 17 for a discussion of the dyadic log. 

Since the base e is very common, the practice is to use "1 n" to stand for 
"1 0g ." Base 2 would be represented as "1 0g ,II base 10 as "1 0g liar 
simpTy "l og ," etc. Logarithms were originally invented as an a19 in doing 
calculations involving products, quotients, powers, and roots. With the 
advent of modern calculators and computers they are rarely used nowadays 
for this purpose. More important, they do occur frequently in the solutions 
to equations representing a variety of physical problems, especially where 
the changes involved in the phenomenon to be analyzed are exponential in 
nature. Here is an illustration: 

~10 

2.302585093 
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In fact, from the definition of the logarithm, finding the logarithm and 
exponentiating are inverse processes, that is, each undoes the effect of 
the other, as the example below shows: 

~*1 2 3 
123 

Square root: 

This dyadic function was discussed earl ier on page 16 and will not be taken 
up further, except to cite an example: 

25*.5 
5 

Logical negation: 

Like the other logical functions, A v ~ ¥, logical negation can have only 
o or 1 as an argument. As you have undoubtedly guessed 

~1 

o 
~O 

1 

~1 0 1 1 
o 1 0 0 

and 

~~1 0 1 
101 

i.e., logical negation is its own inverse. When we try to obtain 

...... 3 

DOf,1A I iI ERROR 
~3 

1\ 

an error message is received since 3 is not an allowable argument for this 
function. 

There are sti 11 additional monadic functions in APL that, for the most part, 
have no corresponding symbol in conventional notation. These are printed 
below and are taken up in sequence: 

rx ceiling 
LX floor 
?X roll (random number generator) 
+X additive identity 
xX signum 

Ce i 1 i ng: 

This is the monadic f, and is defined as the smallest integer not smaller 
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than the argument. Practically speaking, taking the ceil ing of a number 
" roun ds Up" the number. 

r3 .14
 
4
 

4 

5 

Floor: 

Analogous to the ceil ing function, this results in the smallest integer 
not 1a rge r than the a rgumen t (" round i ng down"). 

L3 .14
 
3
 

L3
 
3
 

L2 • 999
 
2
 

What about the ceil ing and floor of a negative number? Let1s try a few 
examples: 

4 

If this puzzles you, it can be cleared up by reference to the number 1 ine 
(page 18). Rounding up with r-4.1 gives the next largest integer, 4, 
while rounding down gives -5. 

Finally, before going on to an illustrative problem, if we specify X as 

X+-l.l Lt.2 3.9 3 

then 

LX-1 4 4 3 
-r-x 

1 4 4 3 

and 

rx 
2 5 -3 3 

-L-X 
2 5 -3 3 

and our APL system is richer by two identities, no simple equivalent of 
which exists in conventional notation. Additional identities will be 
introduced from time to time in the text. 
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Here is a practical problem which involves the floor and ceil ing functions. 
It considers rounding off bills with fractional pennies (so-called half 
cent adjust). After studying the solution you should be able to come up 
with a number of other related appl ications. 

For purposes of illustration, let's specify a vector X: 

X+3 3.1 3.49 3.5 3.9 4 

To make the half cent adjust work properly, we round up if the fractional 
part is 0.5 or more, and round dow,") if it is less than 0.5. So for the 
above figures we want the fol lowing: 

3 3 3 Lt 4 4 

Looking at the floor of X: 

LX 
3 3 3 3 3 4 

This isn't what we want. What about the ceil ing? 

rx 
344 4 4 4 

which isn't right either. 

Suppose we add 0.5 to each component of X and then try the floor again: 

X+.5 
3.5 3.6 3.99 4 4.4 4.5 

LX+.5 
3 3 3 444 

Success! And the result suggests that a half cent adjust that rounds down 
(i .e., makes 3.5 come out 3 instead of 4) might be obtained by 

rX -.5 
33334 4 

We can summarize these results in the fol lowing table: 

X 3 3.1 3.49 3.5 3.9 4 

rx 3 4 4 4 4 4 

LX 3 3 3 3 3 4 

X+.5 3.5 3.6 3.99 4 4.4 4.5 

LX+.5 3 3 3 4 4 4 

rX-.5 3 3 3 3 4 4 

Desired Results 3 3 3 4 4 4 
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Roll: 

Just to be different, let's call for the execution of the monadic roll 
several times: 

?6 6 
1 5 

?6 6 
3 4 

?6 6 

2 1 

What kind of oddball function can this be that doesn't return the same 
result each time? We seem to be getting numbers at random from it. In 
fact, if you play around wi th it some more, you wi 11 see that ?X returns 
a random integer from 1 to X inclusive. 

This means that ?6 6 simulates the roll of a pair of dice, while ?2 

?2 
2 

could be a simulation of a coin toss, with 1 standing for heads, say, and 2 
for tails. 

When we try to execute the roll function (also called " ran dom" or "query") 
with a noninteger, we get 

? 4.5 
DOl1AIil RRROR 

? 4.5 
1\ 

and in fact, its domain consists of positive integers only. 

In APL each time you sign on the terminal you will get the same sequence 
of random numbers if the same upper 1 imit is specified. There is a 
practical reason for this. In checking out algorithms (debugging), it is 
often necessary for testing purposes to use the same set of numbers so 
that val id comparisons can be made each time through in the checking process. 

Finally, the reason why the starting point is 1 and the way in which it can 
be altered will be covered in chapter 34. 

Additive identity: 

This function is included for completeness. +X is equivalent to OtX: 

+2 4 6 
2 4 G 

and is not to be confused with +IX: 

+/2 4 6 
1 2 
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Signum: 

xX 
or 

results in 
negative: 

0, 1 or 1, depending on whether the argument is 0, positive 

1 1 
xl 

0 
3 0 

As before, it shouldn't be mixed up with x/X: 

x/2 4 6 

Calculation of the cosine 

To show a useful appl ication of some of these monadic functions, let's 
calculate the cosine of some angle X (in radians) in APL. 

The cosine is a trigonometric function which can be defined in a number of 
way s, inc 1udin g the f 0 11ow i ng : 

(cos x, sin x) 

/ 
/

r/ 
() 

(1,0) 

In a circle of unit radius, if we measure counterclockwise from the point 
(1,0) a distance X along the curve, the coordinates of the end point are 
defined to be cosine X (cos X) for the horizontal coordinate and sine x 
(sin x) for the vertical coordinate. 

A radian is a unit of angular measure such that the angle theta (8) shown 
in the figure, measured in radians, is the length of the curve intercepted, 
as indicated by the arrow, divided by the radius. Since the length of the 
whole circumference is 2xPlxr and r is 1 in this circle, there are 2xPI 
radians in a unit circle. Arguments involving geometric similarity lead 
us to the same conclusions for all circles. Thus, PI radians are equiva­
lent to 180°. 

It can be shown in calculus, by application of a Maclaurin's series to 
the cosine function, that (in conventional notation) 
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X6 X8 
cos X 6! + 8! - ... +. · . 

where X is in radians. 

Notice the regularity of the terms, the numerators and denominators being 
all even and increasing regularly. This will help us in developing a com­
pact APL express ion for them. 

Our first step is to set a value for X. Let's choose PI74 (45°): 

X+-3.1415f4 

Working with the numerators, we have 

TOP+X*O 2 4 6 8 10 12
 
TOP
 

1 0.616849233 0.3805029763 0.2347129691 0.1447825149
 
0.0893089833 0.05509017785
 

Similarly, the denominators can be assigned to a vector cal led ROT: 

BOT+-!O 2 4 G 8 10 12 
BOT 

1 2 24 720 40320 3628800 i+ 790 0 16 00 

Our last two steps are to divide TOP by BOT and take the alternating sum: 

-/TOPfBOT 

yielding 

0.7071072503 

as the cosine of P174. 

This can be done all on one 1 ine, and gives us a good excuse to introduce 
another new idea in APL at the same time. Here it is: 

-/(X*V)f!V+-O 2 4 6 8 10 12 
0.7071072503 

We have combined an assignment and several functions in a single 1 ine. 
Reading from right to left, we defined a vector of even numbers and stored 
it under the variable name V (since it is needed for both numerators and 
denominators). Next we got the factorials of V which were then divided 
into the vector X*V. Lastly, -/ gave us the alternating sum. 

As a corollary to this problem, the Maclaurin's series for sin x is 

Xl 
sin X = - - ... + ...

1! 

so that to calculate sin X all we have to do in our algorithm is to change 
V to 1+0 2 4 6 .... 
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A dri 11 exercise in APL 

In the APL system (located in common 1ibrary 1 of the system on which this 
text is based) there is a drill exercise in the various functions that have 
been described so far. This is a stored program, much 1 ike STAT was in 
the first chapter. The details of how such programs are written and stored 
will be covered in later chapters. 

Follow this sequence carefully on your terminal. You should also check 
with your own system 1ibrarian to see what exercises (if any) may have 
been developed locally or dupl icated for storage in the system you have 
access to. The more practice you get at this early stage, the better you 
will understand how they can be used in programming. 

First execute the fo1 lowing command: 

)LOAD 1 APLCOURSE 
SAVED 11.07.53 09/01/69 

A message comes back stating when the workspace (block of storage) we have 
asked for was last saved. This command, about which more will be said 
later, in effect puts an exact image of the workspace APLCOURSE into our 
own active workspace so that we can access it. 

You will now go through an exercise in which you and the APL system will 
exchange roles. It will ask you to do problems and you will be required to 
type the answers in. To start off type EASYDRILL and put yl s under all 
the functions printed, as shown in the copy below. Be sure to type Y for 
the exercises in vectors because vectors are so easi 1y handled in APL. 
Ditto for reduction. None of the problems require answers which are not 
integers, and the problems are relatively easy computationally. 

EASYDRILL 
TYPE Y UNDER EACH FUNCTION FOR WHICH YOU WANT EXERCISE 
SCALAR DYADIC FUNCTIONS 
+-x-i-*IL<::;=~>;;t! /I\V(1)'f'(¥ 

YYYYYYYYYYYYYYYYYYYY 
SCALAR MOilADIC FUNCTIOnS 
+-x-i-IL! 1­
YYYYYYYYY 
TYPE Y IF EXERCISE IN VECTORS IS DESIRED, N OTH2RWISE 
Y 
TYPE Y IF EXI?RCISE III REDUCTIOi! IS DE,SInED, II oTllil'R TiISi\' 
y 

Here are some sample problems generated by the program. These will be 
different each time you ask for the program, as well as different for each 
person who asks: 

1 9 9 5 > 8 10 L+ 8 
[J: 

1 100 
- 8 6 4 3 o 

[J: 
86430 
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If the problem is correctly answered, you get another. Let's do this one 
wrong: 

~I 2 2 
0: 

o 1 
TRY AGAIN 
[J : 

You get three tries altogether, after which you are furnished with the 
answer and, to add insult to injury, you get another problem of the same 
kind. 

vi 0 0 1 1 
U: 

1 

2.333333333 2 1.666666667 2.666666667c:	 3 

3 456 
TRY AGAIN 
[J: 

4 2 10 4 
TRY AGAIN 
il : 

3 1 9 7 
ANSliER IS 3 3 3 

U: 
1 

+ 7 4 

Typing PLEASE gives you the answer and another problem of the same kind. 
The only way out of a particular type of problem is to type the correct 
answer. However, since any valid APL expression equivalent to the answer 
is acceptable, the problem itself can be entered as its own answer-fiot 
particularly instructive from a pedagogical point of view, but it works. 
To get out of the drill, type STOP, after which you receive a record of 
your performance (only part of which is shown here). Typing STOPSHORT 
exits you from the program, but doesn't print your record. 

[J : 
7	 it
 

L 1.333333333 0.6666666667
 
U: 

PLEASE 
Ill/SrIER IS 1 1 

L 0.5 1.75
 
LJ:
 

STOP 
YOUR RECORD IS 
FUNCTION FIRST TRY SECOND TRY TlJIRD TRY FAILi','D 

+ 

* 

x 
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PROBLEMS 

1.	 Dr ill 

8r8.1132.68 I 3 • 1 0 5 .6 

?10	 10 10 10 *3 4.7 1 . 5 ! 3 5 7 4 

~14.1 86 .108 r -1 . 8 0 21 5.6 L ~ • 5 6 .8 9 • 1 .12 

-
?3 4 5 - 1 .2 6.7 .52 19 .5 

-+ 8 • 7 19.1 23 -;- 3 .5 67 .287 14xrS.8x 31.046 

2.	 Using the residue function, write one-line definitions in APL of LX 
and rX. 

3.	 If A+-3 , and B+-3 2 3 1 6, evaluate 

--(2sA)I\V/3=B 

4.	 Write an algorithm to test an integer N for the following if the final 
digit is deleted, the original number is divisible by the new one. 

S.	 Janua ry 1 fa 11 s on Thu rsday (the fifth day of the week) in 1970. 
Determine the day of the week on which January 1 falls in any given 
year Y. For simplicity assume any year divisible by 4 is a leap year. 

6.	 Given a vector V which is made up of one- and two-digit integers. 
A)- Write an expression that will yield a logical vector whose 1 IS 

correspond in position to the one-digit members of V. B) Do the 
same for the two-digit members of V. 

7.	 After executing each of the following, write an expression to round a 
positive number N to D places to the right of the decimal point: 

8.	 Modify the answer to the previous problem to handle negative numbers
 
only. What further changes are needed, if any to make your expression
 
work for either positive or negative numbers.
 

9.	 Let !-1+84. 6129999993 Display M. Compare lE5xM with L lE5xM. (See
 
under "fuzz 'l in chapter 34 for an explanation).
 

10.	 Construct an APL express ion that wi 11 determine whether or not the fi rst 
N significant figures of two whole numbers X and Yare identical. 

11.	 A) You are given D dollars with which to make purchases of books at 
B dollars each. How many books can be purchased? 

B) How many books can be bought if it is required that the D dol lars 
be used up and s upp 1emen ted, if neces sa ry? 
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12.	 Carry out the fol lowing instructions and explain the answers: 

A +15 .8 
B+(A+4)xA 

B 
16
 

A +15 . 8
 
B+(A+4)xrA
 

B 
64 

13.	 Write an APL expression that rounds numbers down if the decimal part 
is less than .5, and up if greater than .5. For numbers ending in .5, 
your expression should round to the nearest even integer. 
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Function definition 

Status report 

Earlier we introduced the idea of an algorithm in calculating the hypotenuse 
of a right triangle. If you recall, at that time we stated the problem and 
went through a sequence of simple operations to solve it. Then we refined 
our treatment and reduced the number of steps needed by taking advantage 
of the simple order of execution rule in APL. 

In a	 very real sense the operation of getting the hypotenuse exhibits the 
characteristics of a standard scalar dyadic function. And it should be 
clear that what we did was by no means unique. Literally an infinite 
number of algorithms exist for solving all kinds of problems and behaving 
like	 our hypotenuse function, if indeed we may call it that. 

This	 suggests that we need a way to label and record these algorithms so 
that they can be used over and over again by using the appropriate name 
and arguments, just 1 ike the standard APL functions studied so far. 

More specifically, let's review what was done in the hypotenuse problem 
with our ultimate objective being to define it for repeated use: 

(1)	 A was specified 
(2)	 B was specified 
(3)	 C was specified as the sum of A squared and B 

squared, all raised to the one-half power (see page 34) 

This	 was our last revision, with the algorithm reduced to one 1 ine. 

The defined function flYP 

What is most desirable is to be able to give to the terminal values for
 
A and B and a simple message to get the hypotenuse, much 1ike asking for
 
2+2 and getting 4 back. Here + is the simple message which tells the com­

puter what to do.
 

By analogy A HYP B, HYP being the message in this case, sounds 1 ike just
 
the thing to do the dirty work of calculating the hypotenuse for us. Such
 
a function has already been provided for you in the APL system. Don't
 
worry at this point how it got there. (The student's attention is called 

62 



Function Definition 63 

to the note in the preface about the common library, which wi 11 be heavi ly 
used from this point on.) 

Now enter on your keyboard 

)LOAD 1 CLASS 

after which you should get a message back about when this workspace was 
saved last. 

SAVED 15.02.39 07/29/69 

The workspace CLASS, incidentally, contains a large number of functions and 
illustrations which will be of considerable value to us in subsequent 
chapters. 

Typing 

3 HYP 4 

el icits the response 

5 

It works with vector arguments too, as the next example shows: 

1 3 HYP 1 4
 
1.4142135G2 5
 

Here we are solving a family of triangles, with sides 1 1 and 3 4 at the 
same time. In short, the function HYP acts just 1 ike + in the problem 

1 3+1 4
 
2 7
 

and apparently behaves and is used 1 ike a standard scalar dyadic function. 

Thus far we1ve looked at the external behavior of the function HYP. In 
order for us to go on and desi~n our own functions in the future we will 
have to be able to understand how HYP is constructed. 

Function definition 

There is a command which wi 11 display any defined function 1 ike HYP stored 
in the active workspace. It is the following, which you should enter on 
your keyboard at this point. DON'T press the return key until your entry 
looks exactly 1ike the one bel~lf you make a mistake, correct it before, 
not after: 

VHYPC fJ J V 

The symbol V (pronounced "del") is the upper shift G and the box D (called 
" qua d") is the upper shift L. No attempt will be made at this point to 
explain the rationale behind the particular combination of symbols, but 
you will see shortly how this command is related to a number of others 
that will be needed to define, display and edit functions. 
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Here is the system's response: 

V C+A HYP B 
[lJ C+((A*2)+!~*2)*O.5 

The fir s t 1i ne, beg inn i ng wit h V, i s called the II heade r II 0 f the fun c t ion. 
HYP is the name of the function, and it has two arguments, A and B, with 
a resultant (i.e., the answer) which is stored under the variable name C. 
Notice that the arguments are separated by spaces from the function name. 
Can you imagine what would happen if the spaces were omitted? 

Line 1 gives the rule for calculating C and is the same as before. If you 
are wondering what purpose the V's serve, it should not be too difficult to 
see that, since they open the function on the header 1ine and close it after 
the one and only line needed (in this particular case) to complete the 
function, they must be a signal to the system that function definition is 
about to begin or is ending. 

As we pointed out before, HYPcan be used just like a standard scalar 
dyadic function: 

1+3 

1 HYP 3 
3.16227766 

Let's get some practice in entering this function ourselves in our own 
workspace. Fi rst type 

)CLEAR 

which is another system command, to be discussed in more detail later, but 
which has the effect of clearing out your active workspace and replacing it 
with a fresh blank workspace, just 1ike the one you received when you signed 
on. The response is 

CLEAR ~7S 

Suppose we try to execute HYP now: 

3 flYP 4 
SYNTAX F;RROR 

3 HYP 4 
A 

Are you surprised that we got an error message? You shouldn't be. After 
all, our new workspace isn't supposed to have anything in it, and this 
leaves the way open for us to insert the function HYP ourselves. Start 
by typing 

VC+A !IYP B 

which tells the system you want to enter a function. To give it its proper 
name, after you type the opening V, you are said to be in "function defi­
nition mode," as opposed to desk calculator mode. 
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Having pressed the return key you should get the response 

[ 1 ] 

i.e., the system in effect tells you it is ready to accept the first 1 ine 
of your function. Enter the 1ine as follows, then press the return key: 

The response this time is 

[ 2 ] 

since the system doesn't know how many 1ines your function will ultimately 
have. There being nothing more to enter, type a second V to signal the 
system that you are finished: 

[ 2 J V 

Now the function, having been duly entered, is executable: 

3 flYP 4
 
5
 

If at this point you don't get 5, type )CLEAR and enter the function 
over again. 

We haven't squeezed all the juice out of HYPyet. Just as we can type 

2 x 3 + L+ 

so we can ask the system for 

2x3 HYP 4 

10 

What makes this possible is the fact that the calculation involved in HYP 
produced a resultant which was stored away temporarily under the name C 
and hence was available for further calculations. Such a function is said 
to return an explicit result. More about this in the next chapter, where 
we will see examples which can't be used as HYP above. 

A defined monadic function 

For an example of a standard scalar monadic function we'll develop a square 
root function and complicate it a bit for purposes of illustration. If we 
had one called, say SQRT, then in HYP we could write 

for 1ine 1 instead of what we actually have. 

Let's go ahead and define such a function with the header 

\J[?+-SQHT X 
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Again as a reminder, don't forget the space between SQR11 and X. Clearly, 
only the one argument X is needed here, namely the number we are calculating 
the square root of, and it is placed on the right of the function name. The 
system responds, as before, with 

[ 1 J 

Incidentally, this suggests that a good way to tell whether you are in 
function definition or desk calculator mode is to see if you get a number 
in brackets when the return key is pressed. Just remember that if you 
do get it, anything you type from that point on until the closing V becomes 
part of the function definition. 

If you were to press the return key again, you would get 

[ 1 J 

and the system returns yet another indication to you that it is still 
waiting for 1ine 1. 

Now for the rule and the closing out of the function: 

[1] R*-X*.5 
[2] \J 

A few examples show that SqRT seems to work acceptably: 

2 
SQRT 1 2 4 

1 1.414213562 2 

Since earl ier we had indicated that SQRT could be used to simpl ify the 
function HYP, and we have now defined SQR'1', let's write another HYP 
function in which SQRT can be imbedded. Starting off as before, type the 
function header and wait for the response: 

VR+A HYP B 
DEFN ERROR 

VR+A HYP B 

But, this time, it appears that something is wrong. Apparently reentering 
the function with the same name and in the same workspace doesn't wipe out 
the old function. In this there exists no analogy between the behavior of 
a function header and an assignment of values to a variable, the old values 
of which are wiped out when a new assignment is made. 

You may argue that this replacement feature could be a very handy thing to 
have around for function headers, but if you think about it you will see 
that it can have some grave consequences too. Suppose, for example, you 
had a big complex function that was really valuable in your work, and you 
inadvertently used the same function name for something else. All your 
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hard work, unless you kept a record of it somewhere else, would then be 
gone. So the APL system deliberately makes it hard for you to destroy 
work accidentally. 

This leaves you with two alternatives for redefining HYP: You can get rid 
of HYP by an appropriate system command (to be taken up later) or, better 
yet, use another name for your new function, say, HY. 

Here is the function HY: 

VR+A HY B 
[lJ R+SQRT (A*2)+B*2 
[ 2 J V 

and it appears to work just as well as HY? does: 

3 flY 4 

1 3 HY 1 4 
1.4142135G2 5 

The cosine function 

For another by no means new example in this lecture, let's define a monadic 
function which incorporates the cosine algorithm. In this problem, just to 
be different, T is used for the resultant in the header and body of the 
function: 

V T+COS X 
[lJ T+-/(X*V)f!V+O 2 4 6 8 10 12 
[ 2 J V 

RESEND 

Unexpectedly we get a RESEND message, which is indicative of a transmission 
error. Pressing the return key gives us a second RESEND. (Seated at your 
own terminal, you probably won't get these messages.) 

RESEND 

After the return key is pressed once more, the system returns a [2J: 

[ 2 J 

Since, at this stage, we can't be sure whether our function exists in stor­
age, we retype line 1 of the function, followed by the return key: 

We get back an error message and [2J: 

CHARACTER ERROR 

[ 2 ] 
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Apparently 1ine 1 of the function was accepted previously, so we close the 
function out with V: 

[ 2] V 

Now we are out of function definition mode and can do 

2+2 

A word of caution, however. If we had tried the calculation before closing 
out the function, we would have been in hot water. Can you explain why? 

As a value for the argument, wei 11 use PI+4 and execute the function: 

PI+-3.1 L+1S9 
COS PI-~ 4 

0.7071072503 

We get a meaningful result, so it seems to be working OK so far. 

Some additional system commands 

Our workspace, which was originally blank, now has four functions. As users, 
we may at times want to find out what is in our workspace at the moment. 
This can be done quite easily by the system command 

)FNS 

which works in exactly the same way as )VARS did earlier, that is, it pro­
vides us with an alphabetical 1 isting of the functions available in the ac­
tive workspace. Here is the response: 

cos HY HYP SQRT 

On2 additional point about the system commands )FNS and )VARS. If the 
1isting is long and we are interested only in whether a particular name, say, 
llYP is included we can ask for 

)FNS H 
HI llYP SQRT 

anJ we get that part of the 1isting from the letter H on. Printing of the 
1ist can be interrupted at any time by pressing the ATTN key. For variable 
names, the same syntax prevails. Since we have only PI in storage at this 
point, let's define a number of additional variables, and then call for a 
partial 1isting: 

A+-B+-C+-D+-F+-G+-J+-T+-10 
) VARS F 

F G J T 

We can observe the behavior of the system as we add and delete functions. 
For example, add the following simple monadic function designed to give the 
square of a number: 
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\JR+SQ U 
[lJ R+UxU\J 

Two observations should be made at this point. In the first place, the rule 
could have been stated in either of two ways:UxU or U*2. Second, waiting 
until the next 1 ine number is returned by the system is really unnecessary. 
Since the function is finished at the end of 1 ine 1, it is perfectly proper 
to close it out there, as was done in this case. 

SQ seems to be all right: 

SQ 4 
16 

and, in fact, SQ and SQRT are inverse functions: 

SQRT SQ 4 
4 

Displaying the 1ist of functions now available, we see SQ has been added to 
the 1 is t: 

cos 
)FNS 

fly HYP SQ SQl?T 

We haven't said yet how 
done by the system comma

to 
nd 

delete a function from the workspace. This is 

)ERASE NYP 

and a new display of the functions shows that HYP is gone: 

cos 
)FNS 

HY SQ SQRT 

As a side note here, the ERASE command can be used to delete more than one 
function at a time, as well as variables, so that the proper syntax for 
its use is )ERASE FNl FN2 ••• VAR1 • •• , depend i ng on what is to be 
deleted. Of course, to get rid of all the functions at once, type 

)CLEAR 
CLEArf WS 

and then the command )FNS el ici ts an " emp t y" response from the system, 
the typeball merely moving over six spaces. 

PROBLEMS 

1.	 Define a function EQ which evaluates the expression (X-2)xX-3 for 
various integer values of X and identifies the solutions to the equation 
O=(X-2)xX-3. 

2.	 Define a function BE which generates the batting averages of players by 
dividing the number of hits obtained by the number of times at bat for 
each player. 
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3.	 Define a function HERO to calculate the area of a triangle by Hero's 
formula. (See problem 5, chapter 7.) 

4.	 The ABC Manufacturing Company reimburses its employees 100% of the first 
$200 spent per semester for college work in an approved program, and 
SO% of the next $300. No reimbursement is made for expenses above $SOO 
per semester. Write a function cal led REFUND that will calculate the 
refund due each employee in the program. 

S.	 A well-known formula in electrical work gives the combined resistance 
RT of several resistances R1, R2, etc., wired in parallel as follows 
(conventional notation): 

Define a function PR that will calculate RT for a vector M of resistances 
in parallel. 

6.	 To find the standard deviation of a set of numbers, the following steps 
are necessary: (1) Compute the mean; (2) Find the difference of each 
number from the mean; (3) Square these differences; (4) Take the square 
root of the average of step 3. Write a function SD to compute the 
standard deviation of some data X. Assume you already have a monadic 
function A VG (which computes averages) in storage. 

7.	 In relativity theory the mass of a body depends on its velocity V 
relative to the observer. Specifically, (in conventional notation) 

m = m 
o 

W~ere mo is the mass of the object at rest and c is the velocity of 1 ight 
(3E8 meters/sec). Write a defined function REL to yield the " mass " of 
a body moving at speed V and with a rest mass MR. 

8.	 Define functions called PLUS, MINUS, TIft1ES., DIVIDEDBY to give 
mathemat i ca 1 mean i ng to these words, e. g., 3 PLUS 4 returns 7, etc. 



CHAPTER 11: 

The syntax of functions 

The last chapter discussed some of the ways in which functions can be de­
signed and used. It should be apparent that they differ from the standard 
functions accessible on the keyboard in a number of ways, but the differences 
are of form and appearance rather than intent. As a matter of fact, if our 
keyboard had a hundred more keys on it, many of the more useful defined 
functions could then appear as symbols. If the function SQRT happened to 
be one of these so favored, all that would be necessary to get a square 
root then is to key in the appropriate symbol and argument. Practical con­
siderations prevent the keyboard from being larger than it is, so only the 
most useful functions are incorporated. 

The richness of the APL language is such that many other function types 
than have been introduced so far are possible. Already you have worked 
with two kinds, the dyad i cs HYP and HY and the monad i cs SQRT and SQ. 

A number of illustrations that will be helpful to us are stored in the 
workspace called 1 CLASS, which has been accessed before in the last 
chapter. Let1s reload this workspace and find out what is in it by exe­
cuting the following sequence of commands. The system responses are 
included after each command: 

)LOAD 1 CLASS 
SA VED 15.02.39 07/29/69 

)FNS 
ADD AGAIN A VG A VGl A VG2 A VG3 A VG4 A VG5 
RASP C CMP ClVfP X CMPY C()LCATl COLCAT2 
COLCAT3 COS COSINE CP CPUTIMR CPl DEC 
DE LA Y DESCRIBE DFT DICE E FACT 
PACTLOOP CR02 CE03 lIEXA HY HYP 
INSERT INV !1EAN PI RECT REP REVERSE 
ROWCA ']' HUN 0

c' SD SETVARIABLES SrCN SORT 
SPELL S(2RT STAT STATISTICS SUB SU,~1SCAN TIMF 
TIMEFACT TRA TRACETIjvfE 

Your 1 isting may not be identical with this one, since changes are made from 
time to time in the common 1 ibrary workspaces. Be that as it may, most of 
the functions will be explained and used as we go through the remaining 
chapters. The ones we will be interested in at this time are HYP. SIGN, 
DICE. RECT. STAT, and TIME 

71 
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Remember that to display the contents of a function we type 

V name [[J J V 

after which the system prints out the function header followed by all the 
steps which comprise the function, and includes even the opening and 
closing dels. Our old friend flYP is an example: 

VHYP[uJv 
V C+A nYP B 

[lJ C+«A*2)+R*2)*O.5 
\l 

Function headers 

In APL there are six ways of writing function headers, and each has its 
own particular uses, as will be seen from the illustrative examples to be 
displayed. These six forms are summarized in the table below. 

DYADIC MONADIC NILADIC 

"­
returns exp 1 icit result VC+A flYP B VR+SIGN X 

VL RECT H VSTAT Xno exp 1 icit result 

'VR+-TJTCE 

\JTIME 

Don1t worry, for the moment, about what all this means; everything in good 
time. 

To start off, display the function SIGN: 

VSIGN[OJv 
\J R+SIGN X 

[lJ R+-(X>O)-X<O 
\J 

Ittake s a sin g1eargume nt wh i ch, i f nega t i ve, ret urn s - 1, i f posit i ve, 1 
and if zero, it returns O. In fact, it dupl icates the monadic signum 
function introduced earlier. Executing this for various arguments; we get 

SIGN 5 .2
 
1
 

SIGN 0 

0 
SIGN 569 

1 
SIGN 3 2 0 

1 1 0 

If you look at the rule for'SIGN, you should be able to see how it works 
by tracing it through. If X is negative, X<O would be 1 and X>O would be O. 
so 0-1 gives -1. Similarly, for X positive, X<O is 0, X>O is 1, with 1-0 
resulting in 1. And for X=O, X<O is 0 and X>O, so that 0-0 gives O. 

Now, type DICE several times and display it: 



The Syntax Of Functions 73 

DICE 

DICE 
7 

DICE 
3 

VDICF[nJv 
V R+-DICE 

[lJ R+-+/? 6 6 
V 

This is simply the sum of random roll of two dice. Notice in the header 
that DICE has no arguments. It is a " n iladic" function, to use a coined 
word. The reason for the lack of arguments is that the function really 
doesn't need any. It is designed to select the numbers for the roll itself. 

So far, we have seen three types of function headers, requiring 0, 1, or 2 
arguments. They all return explicit results, i.e., a result that can be 
used for subsequent computation. Now let's look at one that doesn't give 
expl icit results, but merely prints them on the paper. 

Display the function RECT: 

VRECT[nJV 
V L RFCT !l 

[lJ 2xL+ll 
[2J L HYP H 
[3J LxH 

V 

The first thing that should hit your eye is that there is no +- in the header. 
Line 1 gives the perimeter of a rectangle of length L and height H; 1ine 2 
is the length of the diagonal, using the previously defined HYP; 1ine 3 is 
the area of the rectangle. 

Notice also that there is no specification arrow on any 1ine. This means 
that the results of that 1ine aren't stored anywhere and will, as mentioned 
above, be printed out on the paper. 

For example: 

3 RECT 4 

14 
5 
12 

The purpose of this function, as defined, is to give information, not for 
further work: 

5+3 RECT 4 
14 
5 
12 
VALUE ERROR 

5+3 HF:CT 4 
1\ 
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Here the results of the function's three 1ines again print out because that 
is done in the body of the function, but we can't add 5 to these results 
because the numbers weren't stored anywhere, as in 

5+3 TlYP 4 
10 

The two headers differ in that a specification is made in HYP and not in 
RPCT, and in the body of RECT again there were no assignments of results 
to any variables. We will have more to say about the significance of the 
variables used in the header assignment and in the function itself in 
chapter 13. 

Now cons ide r the monad i c S TA T 

VSTAT[UJV 
v StAT X 

[lJ ll++/X=X 
[2J (+/X)+!V 
[3J r/x 
[4J L/X 

V 

Again there is no expl icit result imp1 ied in the header form, so the result 
will be three 1 ines. The first two give us the average of the components 
of X, and could actually be combined into one 1 ine. N is just a convenient 
handle for transferring the results of 1ine 1 (which is the number of com­
ponents) to line 2. Lines 3 and 4 print out the largest and smallest com­
ponents of X. Executing STAT, we get 

STAT 3 2 1 3 2 1 
2 
3 
1 

Since no expl icit results are returned, it doesn't make any sense to work 
further with them. If we try it, we get an error message as before. 

2xSTAT X 
3.333333333 2.333333333 2.66C6666G7 
634 
021 
VALUE F:RROR 

2xSTAT X 
1\ 

To complete the table, execute (but don't display) the function TIME 

TI/1E 
11:11:07 AM RASTERN 

Obviously it doesn't need any arguments to give the time of day, and is 
designed so that you can't do anything with it. 

Another function of this type that you have already encountered is 
EA8YDRILL in the workspace 1 APLCOURSE. This too required no arguments 
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and	 returned no expl icit results. It typed out the answers and accepted 
inputs, but you couldn't do any computations with them. Functions of this 
type are commonly called main programs. 

PROBLEMS 

For problems 1 to 6 define functions as follows, having the stated charac­
teristics: 

1.	 Dyadic, explicit result: to calculate the FICA (social security tax) 
at the rate of P percent on gross yearly income IN up to a maximum of 
$7800. 

2.	 Dyadic, no expl icit result; to store under the name T the square of 
the difference of two arguments. 

3.	 Monadic, expl icit result: to generate prime numbers, using Fermat1s 
formula,	 2N
 

2 + 1 (conventional notation).
 

4.	 Monadic, no explicit result: to calculate the ceil ing of X, using the 
residue function. 

5.	 Niladic, expl icit result: to produce four random numbers from 1 to 100. 

6.	 Niladic, no expl icit result: to see if either one of two previously 
defined variables divides the other evenly. 

7.	 Enter the function fiY? (see page 72) and use it to evaluate each of 
the f 0 11ow i ng : 

(3 HYP 4) fiYP 3 HYP 1
 
4+3 lIYP 4-3
 
(4+3) fiYP 4-3
 

8.	 After executing the command )LOAD 1 CLASS, derive a dyadic function 
called D which returns an expl icit result and gives the larger of the 
two arguments. Explain the system's response. 

9.	 Assume that you have a monadic function Ave that returns an explicit 
resul t (there is one in 1 CLASS). Wri te a one-l ine APL express ion 
which uses Ave to obtain the average of a vector of numbers X, stores 
the result under the name A, and calculates and stores in F the 10 log 
of A. 



CHAPTER 12: 

Function editing 

Up to now we have been examining the different ways to enter functions on 
the APL system, but have yet to consider how we might change a function 
which has already been put in. Since we can't do much without the capa­
bil ity for such change, this chapter will be concerned with ways of editing 
functions after they have been written and entered. 

To speed things up, wei 11 use a prepared function in the workspace 1 CLASS. 
Type )LOAD 1 CLASS~ 

)LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 

By way of review, let's look at what's in this workspace: 

)FNS 
ADD AGAIN AVG AVGl AVG2 AVG3 A VG4 A VC; 5 
BASE C CMF CMPX CMPY COLCAT1 COLCA T2 
COLCAT3 COS COSINE CP CPUTIME CP1 DEC 
DELAY DESCRIBE DFT DICE E FACT 
FACTLOOP GE02 GE03 HEXA HY IfYP 
INSERT INV MEAN PI RECT REP REVERSF: 
ROWCAT HUN S SD SETVARIABLES SIGN SORT 
SPELL SQRT STAT STATISTICS SUB SUi\18CA N T I !,IE 
TIMEFACT TRA TRACETI!1E 

The function we will be demonstrating on is STAT. Remember how to display 
it? 

9STAT[OJv 
V STAT X 

[ 1 J N++/X=X 
[ 2 ] (+/X)+N 
[ 3 ] r/x 
[ 4 ]	 L/X 

9 

It isn't possible to enter it or redefine it because we already have a copy 
of it in our active workspace. Suppose we didn't know that it was already 
in and tried to reenter it: 

76 
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VSTAT X
 
DEFN ERROR
 

VSTAT X
 

An error message is obtained, showing, as was discussed earl ier on page 66, 
that the system has built-in protection against accidental replacement of 
a function. 

But we can make changes in the function as already defined. This APL 
feature is a necessity, for otherwise finding errors and debugging and modi­
fying programs would be considerably more difficult. 

Adding aline 

The four 1ines of the function, as presently written, give information on 
the average and largest and smallest components of a vector X. Let's sup­
pose we've decided to add a fifth 1 ine which will give the range (difference 
between the largest and sma1 lest components). 

How is this done? The first step is to open up the function by typing a 
single V and the function name, followed by the return key as usual: 

VSTAT 
[ 5 ] 

Notice that the system responds with [5J. In general the next available 
1ine number wi 11 be returned. It's as though we had just entered the 
first four 1ines and are ready to continue our writing on the fifth 1ine. 
This is one way, if somewhat sneaky, to find out, incidentally, how many 
lines are in the function. Now type in 

[5J (r/X)-L/X 
[6J V 

and the system has responded with a [6J, waiting for the next 1ine of 
input. Since we don't want to add anything further, a closing V has been 
typed in as a signal that we want to get out of function definition mode 
and back into desk calculator mode. 

Execution with a vector 291 gives us four 1 ines of output, the fourth 1 ine 
being the range as we had intended: 

STA T 2 9 1 
4 

9 
1 
8 

If we now ask for the function to be displayed, we see that 1 ine 5 has 
indeed been added: 
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\7 S TAT [ [-J Jv 
\7 STAT X 

[lJ /'/+-+IX=X 
[2J (+IX).;-!V 
[3J fiX 
[4J LIX 
[5J <fIX)-L/X 

V 

Replacing aline with another 1ine 

Also in the workspace 1 CLASS is a function called Ave which computes 
the average of the components of an argument X. Letls change 1ine 2 of 
STAT to AVe ·X. First weill check out AVe to see if it works: 

A va 1 2 3
 
2
 

In order to replace 1ine 2, we need to open up the function as before by 
typing 

\JSTAT 

Our response is [6J which can override by typing in a [2J as shown: 

[ 6 J [ 2 J 

After pressing the return key, the system repl ies with a [2J and we can now 
enter A VG X: 

[ 2 J A VG X 

Since we donlt plan at this point to make any further changes on 1ine 3, a 
del is used to close out the function: 

[3J V 

It should be emphasized that in making this change 1 ines 3, 4, and 5 are not 
affected. 

Here is an execution of STAT followed by a display of the revised function: 

STAT 2 9 1
 
4
 
9
 
1 
8 

VSTATCnJv 
V STAT X 

[lJ N+-+IX=X 
[2J Ilve X 
[3J fiX 
[4J LIX 
[5J (f/X)-L/X 

v 
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The change has gone through, leaving the rest of the function unaltered. 

Inserting aline between two other 1 ines 

Suppose we want to insert between 1ines 1 and 2 a statement whose purpose 
is to return, i.e., print out, the original values of X. This can be 
accomp1 ished in the fo1 lowing way. First open up the function and type 
in some number in brackets, say [1.1J, after the response [6J: 

VS'TA T 
[6J [l.lJ 

(Any number will do as long as it is between the numbers of the two 1ines 
where the insertion is to be made.) 

The system returns [1.1J and we can enter the single symbol X, which when 
encountered during execution will cause a printout of X 

[l.lJ X 

Now ali s added by the sys tem to the 1as t place of the numbe r chosen for 
the inserted 1ine to provide for still other entries between 1ines 1 and 2, 
but since we don't want to close out the function just yet, let's ask 
first for a display of what we have so far while vve1re still in function 
definition mode, and then close it out: 

[1.2J [[]JV 
'7 STA T X 

[ 1 ] N+-+IX=X 
[ 1 . 1 ] X 
[ 2 ] A VG X 
[ 3 ] fiX 
[ 4 J LIX 
[ 5 J CfIX)-LIX 

Your typeball should have moved over six spaces after this. If it does, 
you are in desk calculator mode. If, however, a number in ] was returned, 
type V, followed by the return key. 

Of course, aline numbered 1.1 is somewhat awkward, to say the least. 
Fortunately, after the function is closed out, the steps are automatically 
renumbered, as seen in the following display: 

VSTAT[[]J
 
V STAT X
 

[ 1 ] N+-+IX=X 
[ 2 ] X 
[ 3 ] A VG X 
[ 4 J f I X 
[ 5 ] LIX 
[ 6 ] Cf/X)-L/X 

V 
[ 7 J 
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and the renumbering has actually taken place. But since [7J was returned, 
we are s til 1 i n fun c t ion de fin i t ion mod e . St r i kin g the ret urn ke y g i ve s 
[7J again, and since there is to be no added entry at this time, we close 
out the function: 

[7J IJ 

Now we are back in desk calculator mode. 

Doing several things at once 

In APL it is possible to put several of the editing instructions on a 
sing 1eli ne. For ou r examp 1e we I 11 take 1 i ne 3, A VC X, change it back to 
what it was originally, and then return to desk calculator mode. To do 
this, type the following: 

IJSTAT[ 3J( +IX)~NIJ 

Typing [3J gets control to 1ine 3, what fo1 lows it is the new 1ine 3, and 
the second V closes it out after the change. We can check this with a 
display of the function in the usual manner: 

vSTAT [ r-j J \l 
IJ STAT X 

[ 1 J N+-+IX=X 
[ 2 J X 
[ 3 J (+IX)~N 

[ 4 J fiX 
[ 5 J LIX 
[ 6 J CfIX)-LIX 

V 

Getting rid of aline 

How do we remove aline completely? For example, suppose we want to get 
rid of 1ine 4. As usual, we first open up the function and direct control 
to 1 i ne 4: 

\lSTAT[4J 

The computer responds with a [4J and in effect asks us what we intend to 
do with line 4. Pressing the ATTN button, followed by the return key, is 
the only combination that wi 11 delete aline. Again, as you have already 
seen, !J.PL makes it difficult to destroy things once entered. 

[ 4 J 
v 

Next [5J is returned, and now we ask for a display of the function, but 
without closing it out: 
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[5J [[JJ
 
v STAT X
 

[lJ ll++/X=X 
[2J X 
[3J (+/X)~N 

[5J L/x 
[6J (r/x)-L/x 

v 

Notice that 1 ine 4 has been deleted. The response continues with a [7J, 
but since we have nothing more to add, let's close it out: 

[7J V 

The 1 ines are now renumbered, as can be seen if the function is once more 
displayed: 

\7STAT[[lJ\7 
\7 STAT X 

[ 1 J N+-+/X=X 
[ 2 J X 
[ 3 J (+/X)~N 

[4 J L/X 
[ 5 J (r/X)-L/X 

\7 

Just remember that if the number of dels ~ (not the system) have typed 
is even, you are in desk calculator mode; if odd, you are in function 
definition mode. 

Displaying only part of a function 

Thus far, we have asked for the entire function to be displayed. What if 
the function is a long one and we are interested only in a single 1 ine, 
say 4? The display command for this is very similar: 

\7 S 1 A T [ 411 ] \7 

[4J L/X 

If there had been no second del, 1 ine 4 would have been displayed and then 
the system would ask us what, if anything, we wanted to do with it by return­
ing a [4J again: 

\7STAT[4[JJ 
[4J L/X 
[,4 J 

and now we can close out the function: 

[4J V 

By now you should be getting the idea that the quad 0 is used to display 
things. Fancifully speaking, you might think of it as a window to see what1s 
going on inside the function. Just remember 
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[ r-1 J displays everything 
[ 4[]] displays a particular 1ine, here 4 

Here is another useful variation which wi 11 display all 1ines from the 
number specified on: 

VSTATC03J 
[ 3 J r/ X 
[ 4] L / X 
[ 4 J \J 

But what if the function has fifty 1ines and you want 1 ines 5, 6, and 7 
only? The way to display only these 1ines is to ask, as above, for lines 5 
on to be displayed and let the terminal run on until you want it to stop. 
Pressing the ATTN button (on most terminals) activates and interrupt feature 
that will stop the display. If your terminal doesn't have this feature, 
you may either let the display run on until the end or use the following 
procedure: 

(1) Lift up receiver of Dataset 
(2) Depress TALK button for a few seconds 
(3) Depress DATA button and replace receiver 

However, note that unless the original display command was closed with a 
del, you wi 11 sti 11 be in function definition mode after interrupting. 
Plan your next step accordingly. 

Detailed editing of part of aline 

Getting into more specific and limited changes, let's start over again 
from the beg inn i ng . Loa d a f res h cop y 0 f 1 CLAS S : 

)LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 

As has been discussed previously, this wipes out what was in our active 
workspace and replaces it with an exact image of the workspace loaded. 

Now display STAT, but without closing out the function: 

vSTAT[ r-] J 
\] ST;1T X 

[1J l,]++/X=X 
[2J (+/X)-;-N 
[3J [/X 
[4J L/X 

[ 5 ] 

It is again in its original form, and the system is waiting for us to add 
something on line 5. 

Up to now we have made changes involving entire 1ines. But suppose a line 
is very long and comp1 icated, and our change is to involve only a few 
characters without having to type the rest of the 1ine over and quite possi­
bly make a mistake. For example, say weld like to change the letter N to 

v 
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COUNT	 in lines 1 and 2 of STAT. 

In this case, obviously, we could type both 1ines over since they are quite 
s h0 r t . Howe ve r , i t will be mo rei ns t r uc t ivet 0 use the de t ail e d e d i tin g 
capab i 1 it i es of A PL to make the changes. 

We1re still in function definition mode, since when we press the return 
key we get 

[ 5 J 

To di rect the typeball to specific characters that need revising, what we 
type in has the following format: 

[1 ine number 0 estimate of what print position 
the first change occurs] 

In this case wei 11 del iberately make the typeball space over twenty po­
sitions (from the margin) and then backspace manually to the N to show that 
our estimate doesn't have to be accurate: 

[5J	 [1[J20] 

The system wi 11 respond by displaying 1 ine 1 and then position the typeball 
twenty spaces over on the next line: 

[lJ	 N++/X=X 
@ 

(typeball comes to rest in the position indicated by @) 

We wish to strike out the letter N. For this, the slash (same symbol as 
reduction) is used. COUNT has five characters for which space needs to be 
provided. To be sure that we get enough space we type 8 after the slash as 
shown, once we have manually backspaced the typeball under the N. This 
inserts eight spaces just prior to the character (here +) above the number 
typed: 

[lJ	 N++/X=X 
/8 

After striking the return key the system responds as fol lows: 

[ 1 J ++/X=X 

and we	 can type COUNT in the space provided: 

[ 1 ]	 COUNT ++/X=X 

Having made this change we are asked if we want to do anything with 1ine 2. 
Before doing anything else, display 1 ine 1: 

[2J [ll]J 
[lJ COUNT++/X=X 
[ 1 J 

N is gone and COUNT has been inserted. 
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Now directing control to the eighth position on 1 ine 2, we can go through 
the same procedure to insert COUNT at the end of the 1 ine. Eight spaces 
happen to be too few in this case, so wei 11 have to use the spacebar to 
move the typebal1 over some more after it comes to rest in the eighth 
position: 

[ 1 J [ 2 r-l8 ] 
[2J (+/X)~N 

/ 
[2J (+/X)~COUNT 

[ 3 J V 

Displaying the entire revised function, we see that the changes have been 
made: 

\7STAT[OJV 
\7 STAT X 

[ 1 J COUNT++/X=X 
[ 2 ] (+IX)fCOUNT 
[ 3 ] fiX 
[4J	 L/X 

V 

Finally, for the sake of completeness, we include again the system command 
which deletes an entire function from the active workspace: 

)ERASE STAT 

The response to a successful "erasure" is the typebal1 moving over 6 
spaces. If we now try to display it, we get an error message: 

\7STAT[UJv 
DEFN RRROR 

\7STAT 
1\ 

Can you think of a way to get STAT back in without typing it? 

Review 

Here	 is a summary of the editing capabil ities of APL: 

\7FN open fn, control directed to first available 1ine 
VFLV[3] open fn, control directed to 1ine 3 
'lFll[3DJ open fn, display 1 ine 3, control directed to line 3 
'lFN[OJ open fn, display all lines, control directed to first avail. 

1 i ne 
VFN[03] open fn, display 1 ine 3 and all following, control directed 

to first available line 
'lFN[3Dl0J open fn, detailed editing at print position 10 of line 3 
VFN[ 3J ATTN RETURN delete 1ine 3 
VFN[3JX+2+AV open fn, rewrite line 3 as shown, close fn 
'l FLV [OJ V dis play f n on 1y 
)ERASE FN delete fn from active workspace 
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One last point. In our discussion of the function editing capabilities of 
APL we have neglected the header. It is possible to change the header it ­
self in exactly the same way as any 1ine by using [oJ as the 1ine number: 

vSTAT[On] 
[ 0 ] STAT X
 
[ 0 J STA tE X
 
[ 1 ] v 

vSTAT[[]]IJ 

DEFN FRROH 
IJSTAT 

1\ 

and si nce STAT has been renamed STATE, we get an error message when we 
call for STAT, which no longer exists. Just remember that any changes in 
the header must be consistent with what is in the body of the function it ­
self, unless, of course, the corresponding changes are made in the rest of 
the function too. 

PROBLEMS 

Execute ) LOA DieLAS San den t e r the f 0 11ow i ng prog ram to cal c u1ate the
 
standard deviation of a set of numbers (see problem 6, chapter 10):
 

v STFJ !/
 
[lJ H+-AVG N
 
[ 2 J 1[ +-/[ - N
 
[3J i?+-AVG R*2
 
[4J ANS+-R*O.5
 

v 

1.	 Display the function and direct control to line 5. 

2.	 Use detai led edi ting to change ANS on 1ine 4 to R. 

3.	 Edit the header to return an exp1 icit result R. 

4.	 E1 iminate 1ine 2. 

5.	 Display the function and remain in function definition mode. 

6.	 Change line 3 to R+-AVG (R-N)*2, 

7.	 Display 1 ines 3 and 4. 

8.	 Close out the function 

9.	 Use a single expression to open up the function again and reinsert the 
former contents of 1ine 2. 

10.	 Change 1ine 3 back to its original form with detailed editing. 

11.	 Insert just prior to line 1 a command that will print out the number 
of elements in N. 

12.	 Delete the function from the active workspace. 
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Types of variables 

Up to now all the variables that we have encountered have been considered 
by us to be alike in their behavior. In this chapter we will see that this 
isn't quite true, and that APL. has two very useful built-in features. One 
of these provides protection for variables against their being accidentally 
respecified as a result of a function execution, while the other enables 
the same variable names to be used repeatedly in different functions without 
the possibi 1ity of their being confused. 

Inth e wo r kspa ce 1 CLASS, wh i ch you s h0 u 1d nOltJ loa d , 

)LOAIJ 1 CLASS 
SAVED 15.02.39 07/29/59 

there are five functions, AVG1-AVG5 , which are quite simi lar and which are 
all used to calculate averages. It is the small but significant differences 
between them that we are going to explore now. 

Dummy variables 

First displayAVGl 

V'AVG1[[]JV' 
V' R+A VGl X 

[1J N++/X=X 
[2J R+(+/X)fH 

V' 

From the appearance of the header it is a monadic function that returns an 
expl icit result. The first line calculates the number of components in X 
and stores that value in N, while the second divides the sum of the com­
ponents by N and stores it in R for printing out as the average when the 
function is executed. 

Let's give X and N values: 

X+-21.7 
l/+J.1415 

86 
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and now calculate 

AVGl 2 1 2 1 2 1 
1 • 5 

On checking what's in X and N, we get 

x 
21 .7 

lJ 
6 

Somethinq seems to be wrong here. We put in 3.1415 for N and got back 6, 
while X was set at -21.7. The function AVG1 calculated the average 
not of that X (which would have been -21.7 since there is only one com­
ponent) but of another X, 2 1 2 1 2 1, in the argument of the header. 
According to what was presented in an earl ier chapter, the latest value of 
X is supposed to supersede a previous value. So why didn't we get 
2 1 2 1 2 1 when we called for X? 

To make a start on some answers to these questions, look at the function 
header. There is an X in it as the argument. Apparently this isn't the 
same variable as the X we set before (-21.7), even though the symbols are 
the same. When we executed this function for 2 1 2 1 2 1, for the time 
being X inside the function must have had the value 2 1 2 1 2 1. The 
X outside (-21.7) was not affected, since we were able to retrieve it 
afterwards unaltered. 

Still confused? It isn't as bad as it looks, because part of the trouble 
was due to our use of the same letter to represent two distinctly different 
types of variables, as we shall see shortly. In the meantime, let's try to 
come up with a set of rules governing the behavior of variables in this and 
similar situations. 

First, the variables used in the argument and resultant of the header are 
in a very real sense "d ummy" variables. This means that they have values 
assigned to them only inside the function itself, and we can find out what 
these values are only when we ourselves are inside the function, i.e., when 
execution is suspended part way through because we interrupted it or because 
of an error. 

To illustrate the point further, imagine we have a function 

'V Z+-A FN G 
[lJ Z+-A+G 
[2J 'V 

And we call for 3 FN 4 to be executed: 

3 FN 4 
7 

After execution, if we ask for A and G, we still get value errors: 

A 
VALUlJ' FRl?OR 

A 
A 



88 AP L \ 360: An Interactive Approach 

G 
VALUr; ERROR 

G 
1\ 

A and G no longer exist! However, now let's set A as, say, 1 and G as 2, 
and then call for A and G after execution: 

A+-l 
G+-2 
3 Fi/ 4 

7 

A 
1 

G 
2 

We still donlt get the 3 and 4 which were the arguments. 

These values 3 and 4 were set as soon as we typed 3 FN 4 and are available 
until execution is finished, at which time they are relegated to 1 imbo. 
Thus, calling for A and G after execution gives us as always the last set 
values of the variables, namely, 1 and 2, that the system has a record of. 

Of cou rse, if we we re to execu te 1 FN 2 and then ca 11 for A and G, we wou 1d 
indeed get 1 and 2. But this would be purely coincidental because our 
dummy variables in the function header happened to have the same set of 
values as A and G before execution was cal led for. So just as with our 
two XiS inAVG1, the two A's and G's aren't really the same, in spite of 
the fact that the same characters are used for both. 

It should be dawning on you by this time that it ought not to make any 
difference what variables we put in for the arguments of FN. They serve 
only to indicate that two arguments are called for, and in this sense 
they act very much 1 ike the O's in a number of the form .00032. All the OIS 

do is fi 11 up space, but you need them to read the number correctly. This 
is why the arguments associated with the function name are called dummy 
variables. 

One point by way of clarification here. Suppose we set 

X+-l 2 3 

and execute 

AVGl X 
2 

How come? In executing the function, the system encountered the argument X 
(which is sti 11 a dummy variable in the header), searched its memory for a 
value for X, found the most recent assignment, 1 2 3, and then executed 
AVG1. This shows that we have a choice as to whether we wish to give 
values to the arguments at the time of execution or before. In either case, 
it is the most recently set value that is used. 

Call ing for the preset'X after execution shows that it hasn't been affected, 
nor is it changed when we reexecute A VGl for another set of va 1ues: 
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X 
1 2 3
 

A VGl 3 4 5
 
4
 

X 
123 

In a simi lar manner the resultant Z has no value before execution (unless 
we del iberately set it). It acquires a unique value during execution as 
soon as we get to that part of the function which determines what Z will be: 

Z 
VALUE ERROR 

Z 
1\ 

There should, of course, be such a place if we've written the function 
meaningfully. As in the case of the arguments, once execution is finished, 
the value is lost. 

Global variables 

Now (at last!) getting back to our original function AVG1. We have 
answered the question of why call ing for X returned the preset value 21.7 
but what about N? 

Notice that N, contrasted with X, doesn't appear in the header, but only in 
the body of the function. Lacking any instructions from us to the contrary, 
it ought to behave the same way all of our variables had been behaving up 
to the point where we started to get involved in function definition. that 
is to say, whenever the system encounters an instruction respecifying a 
variable whose value has been previously set, it changes that value ac­
cordingly. In our case, N was originally set at 3.1415, but as execution 
proceeded it was reset at 6 as a result of the instructions contained in 
1 i ne 1. 

Such variables as N and the X which was preset at ~21 .7, since they 
retain their original values in APL for all time in the workspace in which 
they appear, unti 1, of course, they are respecified or deleted, are 
appropriately called Ilglobal" variables. 

Local variables 

Let's look at another way in which variables can be used in function defini­
tion. For this display AVG2: 

VA l'G2 r~J JV 
V R+A VG2 X ;iJ 

[lJ N++/X=X 
[21 R+(+/X)-"U 

\} 

This time something new has been added-a variable N in the header preceded 
by a semicolon. When a variable is used in the header in this fashion, it 
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is said to be a "local" variable, whose values are to be set and used only 
within the function itself, and behaving much 1ike the dummy variables we 
discussed before. In order to restore the values of the variables to what 
they were before we first executed AVC1 for comparison purposes, wei 11 have 
to reset X and N: 

X+--21.7 
N+-4.6 

Us i ng the same a rgumen t as before, 1et I s execute A VG 2 and then ca 11 fo r 
X and N: 

A VC 2 2 1 2 1 2 1 
1 .5 

x 
21 • 7 

1/ 
L+ • 6 

As you might have expected, X hasn't changed, but this time N also returns 
the original value set when we made it a global variable. The instructions 
for N on line 1 now refer to a different N, the local variable at the right 
of the header, it being only an accident of choice that we used the same 
symbol for both a local and a global variable. 

It should now be clear that the APL system has the ability to keep straight 
its records of variables used in these different ways. This is fortunate 
for us because we may have used the same variable name previously for some­
thing entirely different and want to preserve it. To prevent accidental 
respecifying of the variable, it would seem wise to make it local by put­
tin 9 i tin the he ade r pre ce de d by a se rT I i co 10 n . I f mo rethan on e va ria b1e i s 
to be so local ized, they can be strung out, separated from each other and 
the rest of the header by semicolons. 

A VC3, dis p1aye d below, has a 10 cal va ria b1ePa ndis ani 1ad i c fun c t ion 
returning an exp1 icit result: 

VAVG3[[JJV 
V R+-A TlC3;P 

[11 P+-+/X=X 
[2J R+(+/X)+P 

V 

Execut i ng A VC3 , v-Je get 

AVC3 
21.7 

x 
21 • 7 

By this time you ought to be able to figure out for yourself why the result 
-21.7 was returned. (HINT: is X a local, global or dummy variable?) 
Resetting X and executing AVG3 again: 
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X~2 1 2 1 2 1 
A VG3 

1 • 5 

Clearly the X being averaged is from the most recent assignment. 

Global variables as counters 

AVC4 adds a new twist: 

\7AVG4[UJ\7 
\7 R~A VC4 X 

[ll R~(+/X)f+/X=X 

[2J COUll~ry~COUi'lT+1 

\j 

This function is intended to illustrate a practical use for a global 
variable, and is designed so that each time it is used a counter (called 
COUNT) goes up by one. Thus, a record can be kept of the total number of 
times the function is executed. 

Here is an execution ofAVG4: 

AVG4 2 1 2 1 2 1 
VALUE ERROR 
AVG4[2] CQUNT+CQUNT+l 

1\ 

Why do we get an error message? If you think about it, you will see that 
we goofed and failed to specify the initial value of COUNT. So naturally 
the system didnlt know where to start counting and was unable to execute 
1ine 2. This is confirmed by asking for the value of COUNT: 

COUi/T 
VALUE L'RROI? 

COUIlT 
1\ 

Setting COUNT to 0 and reexecuting AVG4 twice, we get 

C()UllT~O 

AVG4 2 1 2 1 2 1 
1 .5 

COUNT 
1 

A VG4 5 4 3 2 1 
3 

COUilT 
2 

counT now behaves as we had intended. It is a global variable because it 
doesn't appear in the header. 

We are sti 11 plagued with our two XiS. One is a global variable with the 
last set value (see page 90). 
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X 
2 1 2 1 2 1 

while the other is a dummy variable in the header, which unfortunately 
happened to be se t to the same va 1ue. Mora 1 of the s tory? As an A PL use r 
with an enormous number of possible variable names at your disposal, there 
isn ' t any real necessity to be in a rut and use the same few over and over 
again. 

Now dis p1ay A VGS: 

VAVc;5[[J]V
 
'J R+AVGS X;COUil'T
 

[lJ H+(+/X)~+/X=X 

[2] CQUHT+CQUNT+l 
\] 

COUNT is a local variable in this monadic function. Executing AVeS: 

A VG 5 2 3 2 3 

VALUE ERROR 
AVG5[2] COUNT+COUNT+l 

1\ 

What's wrong? COUNT was set earlier to 0, so why the error message? True, 
COUN71 was set, but as a global variable, and the set value can't be used 
inA Vc; 5 because we sa idin the heade r tha t COUNT was 1oca 1. Th i s func t ion 
just won't work. 

We could consider putting in aline before 1 ine 1, setting COUNT to O. 
But each time we execute it, the local variable COUNT wi 11 be reset to O. 
It wi 11 never get beyond 1, and furthermore, since it's local, all trace 
of it is lost once we exit the function. 

This means that if we have a global variable (name not in the header), we 
can reset it from within the function and obtain its last value, as in 
AVG4. If we make it local by preceding it with a semicolon in the header, 
there is no chance for confusion or destruction of values set previously. 
However, it is not possible to use a subfunction by the same name as a local 
variable. For example, if COUNT were also a function, we couldn't ask for 
it to be executed in AVGS and still retain COUNT as a local variable. 

Here is a good place to remind you how to keep track of all the global 
variables in your active workspace, )VARS, which will give you a listing 
of all the current variables which have been set. 

Suspended functions 

One last point. We had a couple of runs that resulted in functions being 
suspended at some point in their execution. We can find out what functions 
are suspended and where by the system commands 
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)81 
AVG5[2] * 
AVGL+[2] * 

)S1V
 
AVG5[2] * l? x COUll'iC)
 
AVG4[2] * R X
 

51 stands for Ilstate indicator" and the commands tell which functions are 
suspended (*) and on what step. The most recent suspension is 1isted first. 
If the * is missing, it means that the function is held up because of a 
suspension elsewhere, as would be the case if we were to invent a function 
AVG6 VJhich used AVGS in one of its instructions. Call ing then forAVGE) 
wou 1d cau seA VG6 toexecuteon 1y tot he poi n t where 11 VGS , wh i chi sin sus­
pension, is needed. AVC6 would then appear on the list under )51, but 
without the star, indicating that AVG6 is held up in execution pending 
clearing up of the suspension of the function AVGS. The command )8.IV 
gives the same information as )51 but adds the variables appearing in 
the header as local or dummy. 

It isn ' t good practice to leave many functions suspended, since this 
clutters up the avai lable space. They should be removed as soon as possible 
from the suspended state. To show how the 1ist grows, let's execute AVGS 
again: 

A VG 5 7 4 2 4 
VALUE ERROR 
AVG5[21 CDUllT+CQUllT+l 

1\ 

)51 
AVGS[21 * 
AVG5[2] * 
AVC Lt[21 * 

Each time a function is suspended, yOU should find out what's wrong. For 
the time being without further explanation, the instructions ~o or simply ~ 

-+0 

4 .25 

will exit you from the most recently suspended function. The result shown, 
incidentally, is the average from the last computation. Looking at our 
1ist again, 

)51 
AVG5[2] * 
AVG4[2] * 

we exit from the next suspended function and continue this until the 
command )51 yields a 1ist with no functions in it: 

-+0 
2 • S 

)51 
/lVG4[2] * 
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-+ 

(no	 result prints out with this command) 
)SI 
(typeball moves over six spaces) 

Of course any future executions of AVGS will build up our 1ist again: 

A VG 5 4 2 1 
VALUE L1RHOR 
AVG5[2] COUNT+COUNT+1 

1\ 

)SI 
AVG5[2] * 

-+0 
2.333333333 

)SI 
(typeba1l moves over six spaces) 

PROBLEMS 

1.	 Execute the command )LOAD 1 CLASS 

(A)	 Specify a global variable C+S3 78 90
 
Account for the result.
 

(B)	 En t e r the f 0 11ow i ng fun c t i on F: 

vp
 
[lJ Z+(A*2)+B*2
 
[2J Z+Z*.SV
 

After specifying values for A and B, execute T+F+7 and 
T+Z+7. Explain your results. 

2.	 Below are several defined functions. Execute the command following each 
and give the values of the variables. Reset these variables to their 
initial values before each function is executed: 

R B C S 
3 2 5 1 

gPERIMl 'VR+B PERIM2 C 'VR+PERIM3 C 
[ 1 J R+2xB+Cg [ 1 J R+2xB+C'V [lJ R+2xB+Cg 

PERIM1	 S+M PERIM2 R S+PERIM3 R 

3.	 Redefine the second function of problem 2 to include a local variable 
P in the header. Make 1ine 1 the sum of Band C, the result to be 
stored in P. The second 1ine is to finish the algorithm for the 
perimeter. 
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Workspace movement 

In the previous chapters all the work you placed in storage, both variables 
and defined functions, was lost when you signed off. The only recoverable 
work was in 1 CLASS and in 1 APLCOURSE. And the only reason we could 
still access it was that when we loaded one of these workspaces into our 
own active workspace, we were actually taking an exact copy of the original, 
not the original itself. Although we lost the copy in signing off, we 
could always obtain another in the same manner. 

Clearly we need to know how to preserve what we1ve done for posterity. In 
this chapter, therefore, we will go through a series of exercises designed 
to show how workspaces can be manipulated by the Ap·L user. In order to 
insure continuity, repeat the entire sequence of commands exactly as they 
are given. 

Workspace contents 

We wi 11 start off by typing 

)CLEAR 
CLEAR JiS 

As we pointed out earl ier (page 64), this is one of a fami ly of so-cal led 
system commands, 1 ike the sign-on and sign-off. It has the effect of wiping 
out all the work done in the active workspace and replacing it with a 
clean workspace, such as is obtained at the sign-on. Remember that the 
active workspace is the one that you have currently available to you, in 
which all your work is now being done. 

To show that this workspace is now empty as a result of the CLEAR command, 
we can use the commands 

) FilS 
(in both cases the typeball moves over six spaces 

) VARS after return, but prints nothing) 

and we see there isn't anything in the active workspace. 

Since we are going to save some work later, wei 11 need to put something 
tangible into it. For this, let's enter the function lIYP 

95 
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VH+-A llYP B
 
[ 1 -J l?+- ( (A * 2 ) +B * 2 ) * . 5
 
[2] v 

Our 1isting of functions now shows 

) FIlS 
HYP 

Let's add a couple of variables: 

PI~-3 .14159
 
V+-1 2 3 4 5
 

and the command 

) VARS 
PI V 

now shows that PI and V are in storage. 

For a second funct i on, enter TOSS: 

\JTOSS 
[lJ ?2V 

and another 1isting of functions 

)Fl/S 
flYP TOSS 

confi rms that TOSS has been added. 

Saving and recovering a workspace 

We could continue entering material and checking on it for quite a while, 
~ut for purposes of illustration 1et ' s pretend that we are through with our 
work at this point and want to preserve these functions and variables. 

The sys tem command SA VE does th is. Howeve r, since use rs a re norma 11 y 
assigned more than one workspace, even though only one is being used at 
anyone time, we have to assign a name to the workspace we are saving. This 
iss 0 t hat wei l 1 know what to ask for when we cal 1 for itaga in. A P L re cog­
nizes only the first eleven characters of a workspace name. 

For the work previously entered wei 11 use the name FIRST: 

)SAV2 FIRST 
1~.52.19 03/20/70 

We get a message back giving the time and date. This means that the SAVE 
was successful and a copy of the workspace is now in storage under the 
name PIRST. The workspace name, incidentally, may be fo1 lowed by a colon 
and lock for greater protection if desired. 

There is a command which 1ists all the saved workspaces so that we know 
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what we have in our own I1PL 1ibrary ("l ibrary" in APL refers to a 
collection of workspaces associated with a single identification number). 
The command is 

)£IB
 
FIRST
 

Only one workspace is 1isted because that's all we have saved so far. 
)FNS shows t hat HYPand TO SS are s til 1 a r ou nd : 

)FNS 
HYP TOSS 

Remember we saved a copy of the active workspace. Let's now get a fresh 
workspace: 

)CLEAR
 

CLEAR f/8
 

Imagine that it is the fol lowing day and we are ready to do some work with 
HYP and TOSS. They were lost from the active workspace when we cleared, 
but there is an exact copy stored in our 1ibrary under the name FIRST.. To 
recover this copy, execute the command 

)LOAD FIRST 
SAVED 15.52.19 03/20/70 

If a lock was originally associated with the name when it was saved, it 
must be included here, separated from the name by a colon. The response 
indicates that it was saved at a certain time and date, which, you wi 11 
note, is identical with what appears under the original SAVE command 
on page 96. 

Our functions and variables are avai lable to us once again: 

) FIlS 
HYP TOSS 

) VAR$ 
PI V 

Here1s a check on V to see whether it's still what it1s supposed to be: 

V 
1 2 3 4 5 

Often it is the case that we have work to be saved in more than one workspace. 
How do we go about this? To illustrate the procedure, type 

)CLEAR 
CLEAR fiS 

and enter the funct ion SQRT 

'lR+80RT X 
[1] R+X*.5'1 
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This function, which is the only object in our active workspace at the 
moment, wei 11 save under the name SECOND: 

)SAVE SECOND 
15.55.10 03/20/70 

Before going on, let's be sure we understand what we have immediate access 
to at this point, namely a single workspace with only the function SQRT in 
it, a copy of which exists also in storage under the name SECOND: 

)FNS 
SQRT 

If we want to access FIRS? now, we must execute 

) LOAD FIRS .J.1r

SAVED 15.52.19 03/20/70 

and we see that HYP and 7!OS8 are back in the active workspace: 

) F.:!D 
iiYP ';.10SS 

Now wei 11 load SECOND (we doni t need to clear between loadings because 
the act of loading replaces the contents of the active workspace with a 
copy of the material in the workspace being loaded): 

)LOAD SECOND 
SAVRD 15.55.10 03/20/70 

) FIlS 
SORT 

It should be obvious to you that we can access only one workspace at a time. 

Letls save sti 11 another workspace under the name THIRD. This time, 
just to be different, weill clear and load 1 CLASS: 

)CLRAH 
CL~"1AR US 

)LOAD 1 CLASS 
SAV~D 15.02.39 07/29/59 

Here is a 1ist of functions: 

) FilS 
ADD AGAIN A VG A VGl A VG2 A VG3 A VG4 A VG5 
iJASE C C!~1P CMPX CMPY COLCATl COLCAT2 
COLCAT3 COS COSIilE CP CPUTIf.1E CP1 DEC 

and we have cut off the printout by pressing the ATTN button because the 
1ist is too lengthy. The contents of 1 CLASS (or perhaps we should be more 
prec i se and say a copy of the con ten ts) wi 11 now be saved unde r 'I'll IR 1) : 

)DA VE rpiiIRD 
15.58.2703/20/70 



Workspace Movement 99 

Our 1isting of saved workspaces has grown: 

)LIB 
FIR8T 
SECOND 
~'llIi?D 

Let's clear again, define a couple of variables, and save them in FOURTH: 

)CLEAR 
CLEAR IlS 

X+4 6 8 10 
Y+2 5 8 
)SA VE FOURTH 

nOT SAVED, WS QUOTA USED UP 

The system tells us, in effect, that we have only three workspaces a1 lotted 
to us and they are used up, so we're out of luck. Actually, it is possible 
to have more workspaces assigned, but this is a decision which depends on 
the configuration of the particular APL system being used and the amount 
of avai lab1e storage. 

Dropping a saved workspace 

If X and Y were really some big functions or tables of data and we wanted 
desperately to save them, then our question is: Which of the three work­
spaces in our 1ibrary can we afford to sacrifice? Again look at the 1ist: 

)LI13 
FIRST 
SECOND 
'.l.'liIRD 

Assuming we don't need THIRD, let's try to save X and Y, which are still 
in the active workspace, in THIRD: 

)8A VE TllIRD 
dOT SA VRD, TilIS l/8 IS CLij~AJ? fl8 

We are prevented from saving it in THIRD because a stored workspace can't 
be named CLI~~AR US, and again APL keeps you from destroying a workspace 
that was previously saved by replacing it with another workspace under the 
same name. As weill soon see, there is a way to add X and Y to THIRD with­
out destroying what is already there. 

Suppose we really wanted to get rid of THIRD. The command 

)DROP THIRD 
16.01.03 03/20/70 

does this, the response giving the time and day when the workspace was 
dropped. THIRD is now gone, as shown by 
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)LIB 
FIRST 
SECOND 

In the active workspace we have no functions but still the two variables 
X and Y: 

)Fi'lS 
(typeball moves over six spaces) 
) VAR8 

X Y 

which shouldn ' t surprise us, since we haven't done anything to the active 
workspace yet. Now that an avai lab1e slot exists, let's save these variables 
in a workspace simply cal led XY for the sake of variety: 

)8AVE XY 
16.01.34 03/20/70 

)LI13 
FIRST 
SECOND 
Xy 

and XY is added to our 1ibrary. 

Altering a saved workspace 

What if we wanted to save X and Y into FIRST? See what happens when we 
try this: 

)SAVE FIRST 
NOT SAVED, TllIS WS IS XY 

What this means is that the contents of our active workspace have already 
been saved under the name XY and therefore can't be saved also under the 
name FIRST. In order to save the material in the active workspace into 
FIRST we wou 1d have to drop FIR8T, and then save the ac t i ve workspace 
unde r the name FII? ST aga in. La te r we'll see how the cn p Y command can 
be used to merge two workspaces. 

Another way to change the status of a saved workspace is illustrated by 
the fol lowing sequence: 

)LOAD FIRST 
SAVED 15.52.19 03/20/70 

It currently has 

) FilS 
ilYP TOSS 

Let's defi ne the funct ion DIGil 

'JR+-8IGlJ X 
[lJ R+-eX>O)-x<O'J 
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Now our list includes the new function: 

) FilS
 
HYP SIeN TOSS
 

Here is what happens when we try to save this into RECOND: 

)SAVE Si~COl/D
 

~OT SAVED, TilIS WS IS FIRST
 

We are again prevented from doing so because the active workspace contains
 
FIRST, and we already have a workspace named SECOUD in storage, but not
 
in the active workspace.
 

We can, however, save into FIRST, since a copy of FIRSI' exists in the
 
active workspace:
 

)SAVD FIRST 
15.04.07 03/20/70 

PIR~T is now updated. This can be shown by clearing and reloading it: 

)CLEAR 
CLEAR f/S 

)FllS 
(typeball moves over six spaces) 
)LOAD PIRST 

SAVED 16.04.07 03/20/70 
) FilS 

ilYP SIGN TOSS 

Notice that the time and day given after the LOAD command is that associated 
with the most recent save. 

Our library, once more, consists of 

)LIB 
FIRST 
SECOND 
XY 

but the contents of FIRST are not the same as when we last 1isted the 
workspace functions on page 100. 

Summarizing, we can (1) preserve all storable material in the active workspace 
by saving it; (2) recall material from a saved workspace into the active 
workspace just as it was when it was last saved; and (3) delete a workspace 
with the DROP command. 

PROBLEMS 

Carry out the following instructions and APL system commands in the order 
given: 

Define a number of arbitrary functions and variables. 
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)5'A FE IIOHKOiiE 
)CLEAR 

Repeat these instructions several times until your workspace quota is 
used up. Use wo r kspace name s fl0RKT f/O , f/ 0 RKT l/REE , etc., 

)LIl5 

How many workspaces can you save in your APL system? 

)lJROP [IORKONE 
)LIB
 
)LOAD fiORKTilRRE
 
)F118
 
) VAHS
 

Define additional functions and variables. 

) S J1 VF: rl0 RK T TJ 0 

Why wasn1t the material saved? 

)8A VE fiORKTlIRr;E 
)CLEAR
 
)LOAD f/ORKTHREE
 
)FHS
 
) VARS
 

Has WORKTHREE been up d? 

Delete several functions and variables from WORKTHREE. 

)ERASE FH1 FN2 V1 V2 ••• 
) SA Vr:
 
)LIB
 
)FN8
 
) VARS
 



CHAPTER 15: 

Library management 

In the last chapter you learned how to save, drop, and load material in 
the active workspace. The command LIa was introduced as a means of getting 
a 1 isting of the saved workspaces in your personal APL 1ibrary. 

Let's see if the material from before is still there: 

)LIH 
FIRST 
SECO/JiJ 
X.Y 

We won l t be needing the contents of these workspaces any more, but actually 
the command is a very useful one. Someone else may have saved workspaces 
in his library with the same names as yours, but there is no confusion 
whatever, since each person's workspaces are associated with his own user 
identification number. This leads us to an important feature of APL, the 
common or publ ic 1ibraries, to be discussed in the next section. 

Publ ic 1ibraries 

What about this 1 CLAS~ we1ve been loading all along? Library 1 on the 
system on which this text is based is a publ ic library, avai lable to all 
users. To find out what saved workspaces are in this library, type 

)LIB 1 
CATALOr; 
MI II II-fA 
;""SFdS 
TYPiT7/)HI LL 
PLOTFORl1A7.' 
!JE'llS 
CLASS 
APLCOURSI: 
AlJVAUCEDEX 

Your 1ist may differ somewhat from this because the 1 ibrary contents aren't 
static and change from time to time. Notice that C'LASS is in there. 
Ordinari ly, individual APL users cannot save material into a publ ic 1 ibrary 
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or drop someth i ng from it. I f you were to try to save 1 CLA88 you won It 
be permitted to because yours wasn't the user number that saved it the first 
time: 

)8A VE 1 CLASS 
IMPROPER LIBRARY REFERENCE 

The rules for so doing depend on the APL system you are using, and 
changes in the contents would most likely be made through the system 
1i bra r ian, if the re is one. 

Lib ra ry 1 isagen era 1 i n t ere s t 1i bra ry wh i chi sen t ire 1y pub 1i c-a t rue 
system library whi le 1ibrary 10 is a special or 1imited interest library, 
intended for developmental purposes. Later, in this chapter, we'll be 
using some of the material from library 10. 

Let's look at the contents of 1ibrary 10. 

)LIB 10 
POLAR 
FUNCTIOIlS 
f.1ATRIXALC 
A LGFORt,j 
PLOT 
INVEST/,1ENTS 
THIdKGAlJES 
SftlIVEL 
u.iosr : 
GAf,1BLE 
lJOCONTROD 
8ilAPD 
COGO 
PORLORN 
EDIT 
SNOBOL 
TEXT 
TICTACTOR 
LPAPL 

These lists may seem meaningless to you, but there is a practical way to 
find out what is in a strange workspace. As an example, type 

)LOAD 1 NEJ:lS 
SAVED 15.10.12 03/12/70 

You have probably noticed that the load commands are slightly different 
for one's own workspaces as compared to those in the public 1ibraries. As 
a matter of fact, for any other 1ibrary than the user's, it is necessary to 
include the library number. Except for publ ic libraries these would gener­
ally be the same as the number of the user with whom they are associated. 
The complete command has the form 

) LOA D LIB If O. viS IV Al1E : L 0 CK [ i f requi re d] 

The 1ibrary number can be omitted tor one's own 1ibrary. 



Library Management 105 

Having loaded the workspace HEWS, the best thing to do next is to get a 
1ist of functions: 

)FNS
 
APLllOc./ CLEAR CLEARSKED CREATE EDIT FILE FLF:
 
Ff,ITDT INDEX NJ POS POSITION POST,c;KFD
 
PRINT REr/ORK «v« SCHEDULE SETDATE SK!,'DllOTR
 
START TDATE PRYTEXT TXF
 

By convention, if there is a function that contains the word HOW or 
DESCRIBE or something similar, then executing it will give information 
on what is in the workspace. At this time there doesn ' t appear to be any 
such function in NEWS, which means that the only way we can find out about 
the s ynt ax and use 0 f a par tic u1a r fun c t ion inN E ~/8 i s to dis p 1ay itand 
try to figure it out. Of course it may be obvious from the name what it is, 
as inSCHE DUL E, vv h i ch g i ve sAPL s Ys t emin for ma t ion. This hap pen s to be 
ni ladic, so we just type 

S c.!EDULE 

A IV ~~'1 I CI PAT 1:71) ctt» IlGE5 FR ()N T if E il 0 I?!-1A L SCI {E DUL E, 11 S oF ()3 / 1 2 : 
o L+ / 0 5 (J 0 0 - 1 7 0 0
 
04/12 900 - 1700
 
04/19 900 - 1700
 

fl/lE ilOH/1AL SCflEDULE IS 

/.ION-F'RI SAT OPER S YSTEl.f PI/ONES 

9 : oOAn- 8: 1 oPt! 2291 Hl':S. APL 5001,5011,5051,5201,5211 
5221,5231 

t) : J OP1~jf- 5 : 0 Oil /.1 9-5 2291 RES. APL 5121,5128,5118,5119 
G : L~ 5P /,1 - 1 0 : 0 0 P /.1 9-5 1810 BIG f.lS APL 5105,5131 

.rcTiS: DURI1/G T j/ E DAY CAL L 1 4 0 2 FOR H E COl? DII/ G T F L L I LV c S '/7 11 jt7U .(7 () F 

APL. 

Another ni ladic function whose purpose is evident from the name is TDATE: 

'TDATE 
04/10/70 

The syntax can l t often be determined from just looking at the function name, 
but in this case a ni ladic header is the most reasonable one because no argu­
ments are needed. All we want is information. 

Another workspace in library 1 is PLOTFORMAT. Let's take a look at it: 

)LOAD 1 PLOTFORMAT 
SAViSD 9.41.15 12/10/69 

In it are 

)FllS 
AND DESCRIDE DFT EFT PLOT VS 
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There are a number of aids to plotting in this workspace. Since DESCRIBE 
is in here, we' 11 execute it and display part of the contents: 

DL'8CR IB2 

T 11L" I,' 0 RKI II G FUl/ CT I 0 IISIN T jI I S J'/O!? K8 PAC EAR F: : 

AND DFT EFT FLOiI' VS 

~2ilE /lANES AND CO/,-1POSITIOil OF TIlE GROUPS IN TIllS UORK8PACr: ARF: 

DFTGP: AND DFT
 
EFTGP: AND EFT
 
PLOTGP: AND PLOT VS
 
DESGP: DESCRIBE lIOr/FORl-fAT !JOT/PLOT
 

DDS C? CA II nE USED TO CO/V VEll IEur LX R RA 8 E T 11 D DE8 C!? I P (2T Vr: ,~,1 A ~nr!'T'J"!? 

~'1 0 /'/A K E /10 l?E' ROO !1 I N '1."'1 1IE uo R KSPA CE • T jJ E o t : ERG R 0 UTJS C.11 1/ 13 F' [)/; R 1) 

TO SELECTIVELY COpy THE I~DICATED FUNCTInus. 

SYNTAX	 DFt;C R I PT IO!l 

Z+A AUD B	 ESSE II T I ALL X A COL U/1N - C/1TEN A TOR, f/ I (/1 11 S nn ,"7 ",'J' X 7'h'A 
EFFE.CTS f/lIEN .THE ARGUNEllTD ARE »c r /1/j T/nICI~-'S. 

TIlIS FUNCTIOn IS DESI(;ilPD TO nE USED /J"I~'1j{:~'P 

INDEPENDENTLY, OR IN CONJUnCTIOn ~ITJ VS. 
TO(;ETHER t THEY PROVIDE A COl'lVENIFNj') f/AY OF FOR/l-
INC INPUT TO THE PLOT FUNCTION. 

Z+A DFT 15	 FORl1S FIXED-POINT OUTPUT. !-lORE DFTAILRD DIi?F:C-

TID NseA N BE F0 U1"1 D I IV T 11 E VAR I A 13 L E ,'10fl POR [,1A I' .
 

The COpy command 

We already know how to define the cosine and sine functions (see pages 56 
and 57), but suppose we'd like to have the cosine function available in our 
workspace called SF/CONDo There is one in CLASS, but we don't need the 
whole workspace for this. Can we select just what we want and transfer it 
fro«c), A"8 S to SEC0 ND ? The d i a g ram 0 nthe next page show s the sit ua t ion. 

Each saved workspace may have many functions and variables. The active 
workspace may get its contents by your having loaded a saved workspace 
(your own or from another 1ibrary) as well, of course, as from what you 
may be putting into storage yourself at the keyboard. In the diagram 
the arrows show the paths by which material can be transferred to your 
act i ve workspace by the LOAD and COpy commands, the 1atte r to be d i s­
cussed shortly. 
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Workspace and Information Transfer in APL 

Now our problem is to take SECOND, which isn't exactly bursting at the 
seams at the moment: 

)LOAD SECOllD 
SAVED 15.55.10 03/20/70 

) FIlS 
SQRr.2 

and place the funct j on COS and an accurate va 1ue of PI (a 1so in CLASS) 
in it. 

The sequence of steps is not too compl icated. We first need to move 
SECOND into the active workspace by loading it. We1ve done it already, but 
there's no harm in doing it again: 

)LOAD SEC()ND 
SAVED 15.55.10 03/20/70 

To add COS and PI, the COP Y command is used. The p rope r form is 

)COpy LIB NO. WSNAME FNNAME 

The response to a successful copy is the time and date that the workspace 
from which the copy was taken was last saved. Specifically, for our problem: 

)COpy 1 CLASS COS 
SAVED 15.02.39 07/29/69 
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and now 

)FllS 
COS SORT 

cos has been added to the 1i st of funct ions in SEeOllD. Repeat i ng th i s 
for PI: 

)COpy 1 CLASS PI 
SAVED 15.02.39 07/29/69 

) FilS 
COS PI SqRT 

You might be tempted to think of PI as a variable with a specific value, 
but the fact that it appears in the 1ist above shows clearly that it is 
a function. Why make it a function? Suppose we happened to specify a 
less accurate value: 

PI+-3.1415 
SYNTAX ERROR 

PI+-3.1415 
1\ 

and a syntax error is returned. We can't store a value under a function 
name. Thus making it a function ( it is niladic, returning an expl icit 
result, as you can see if you display it) makes it difficult to destroy the 
stored value of PI. 

To save this new material into SECOIlD, type 

)SA VE 
15.45.23 03/20/70 S£COND 

The system response gives the name of the active workspace to the contents 
when none is specified. 

This time, let's try to copy something that doesn't exist: 

)COpy 1 CLASS SIR 
OBJECT NOT FOUND 

No copy is found. 

If we were to try to copy something that already existed in our active 
wor kspa ce, as, for ins tan ce, COS, we get the re s po nse show n : 

)COpy 1 CLASS COS 

SAVED 15.02.39 07/29/69 

and the copy is successful. Having obtained COS from CLASS, the system 
searches the active workspace to see if COS is in it. If it isn't, it is 
entered. If it is, it is replaced by COS again. Clearly no protection is 
needed in such a case, but if the COS function already in the active work­
space happened to be different from the one in CLASS, it would be replaced 
by the latter. 

Let's now bring some more things into the active workspace, as, for instance 
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)COpy 1 PLOTFOHlJAT AllD 
SAVED 9.41.1612/10/69 

Now we have 

) FilS 
AND COS PI SQRT 

This could be saved into SECOND if we so desi red. However, as we saw in 
the last chapter, we are prohibited from saving into FIRST or XY, the other 
two workspaces in our 1ibrary: 

)LII3
 
FIRS'l'
 
SECOilD 
Xy 

All copying takes place in the active workspace. We cannot copy from one 
saved workspace into another saved workspace unless the latter happens 
to be in the active workspace at the time of copying. We must load the 
saved workspace first, copy into it, then resave to update or enlarge it. 
Thus, COpy follows the same paths for transfer of material between 
workspaces as LOA]) (diagram, page 107). One final point. The COpy com­
mand is val id for all global objects. This means that global variables as 
well as functions can be transferred in this manner. 

The workspace COIlTIilf)E 

There is one more workspace in the user's personal 1ibrary that needs 
discuss ion. I t is called CONTINUE. I f you were to lose your telephone 
connection with the APL system as a result of some local failure not 
involving the central computer, everything in your active workspace will 
automatically be avai lable to you when you sign back on. This is because 
the system ~lunks the contents of your active workspace into a workspace 
name d .CONTIN UErava i 1a b 1e to all use r s , and re loadsit a t the next s i gn­
on, as indicated by the response SAVED right after "APL\3GO.1 1 

CONTINUE is really an extra workspace not part of the regular user 
allotment, and can be used for emergencies if the other workspaces aren't 
available. However, you have to be very careful with it. Each time there 
is aline fai lure the contents of CONTINUE are replaced by whatever is 
in the active workspace. So if you must, you can save work into CONTIl/UF, 
since it is always available to you. But it isn't a wise move for long-term 
storage because of the danger posed by the replacement of its contents 
in the event of aline fai lure in the interim. 

Summary of system commands 

We have introduced and explained a number of system commands in the notes 
thus far. For the convenience of the user these will be summarized and 
classified. In addition, a few new commands will be included. These will 
be explained briefly, but not illustrated. Their action should be evident 
to the user from the discussion. 
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The first category consists of 

SIGN-ON AND -OFF COMMANDS 

)U8ER no.	 signs on; lock optional; clear ws activated
 
unless previous connection broken, in which
 
cas e CON T I il UE i s loa de d
 

)OFP	 signs off; deletes active ws; terminates
 
phone connection
 

)OFF JIOLD	 same as )OFF but doesn ' t terminate phone 
connection for 60 seconds so that another user 
can sign on in that time 

) COiITIi/UR	 signs off; active ws saved in COflTINUE 
(same as what happens in case of a disconnect); 
terminates phone connection 

) COl/TIll Ut: llOLD	 s a me as) COlvT I il UE but ph0 ne co nne c t ion he 1d
 
fo r 60 seconds
 

In all sign-offs when the command is followed by a colon and a lock, the 
lock wi 11 have to be included in subsequent sign-ons unless changed again. 

A second category includes 

COMMANDS CHANGING THE STATUS OF THE ACTIVE WORKSPACE 

)CLEAR	 deletes everything in active ws 
)LOALJ LIB NO. flSlvAf,1E	 moves image of ws to active ws; 1ib. no. not
 

needed for user's own ws; lock optional after
 
wsname
 

) COpy LIB NO. ~ISilAI,1E OBJ	 moves image of global object to active ws; 
1 i b. no. not nee de d for use r "s own ws ; i f no 
object name is given, all global objects 
in the ws are copied; lock optional after 
wsname 

) PC 0 P Y L I IJ uO. FIS II A f.lE 0 BJ	 same as ) COP Y but protects the ac t i ve ws 
in case of name duplication 
moves image of active ws into user's 1ibrary; 
lock optional after wsname; omitting wsname 
saves active ws under name of last ws loaded 

) DI?0 P r.;S i1A /·1E deletes ws from user's library 
)ERASE OBJNAME(S) deletes global object(s) from active ws 

The COPY command should not be used in 1ieu of loading, since the CPU time 
used to copy an entire workspace is much greater than that required for 
loading. COpy should ordinari 1y be reserved for individual global objects. 
It can be used for merging two workspaces by loading one of them and 
copying the other into it. 

The last category consists of 

INQUIRY COMMANDS 

)LIB NO. 1ists ws1s in 1ibrary; no. not needed for
 
user's own 1ibrary
 

)FNS LETTER alphabetically 1ists functions in active ws
 
beginning with letter entered (if any)
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) VAR8 LETTER alphabetically lists global variables in ac­
tive ws beginning with letter entered (if any) 

)8I lists functions which are suspended or 
pending, most recent function fi rst 

)SIV same as )SI but includes names of local 
variables 

)PORTS 1ists ports in use at time of inquiry, 
with code names of users signed on 

) FORT CODT: 1ists allport numbers associated with the 
given user code 

)J/SIlJ identifies active ws 
) us I IJ NA!~1 E changes identity of active ws to NAME 

As was pointed out on page 93, it isn't a good idea to hang on to suspended 
functions. Try to find out what is wrong and remove the suspensions. This 
is especially important because when a workspace is saved or loaded, any 
suspensions present are carried along. 

There are some additional commands changing the status of the active 
workspace, as well as one more category consisting of message commands. 
These wi 11 be considered in chapter 34. 

PROBLEMS 

1.	 Fol low the instructions given and carry out the indicated system 
commands: 

) LIB 1
 
)LOAD 1 F8Fl'lS
 
)FNS
 
) VARS
 

If there is a function or variable named DESCRIBE or llOw , execute it. 

)WSID 

Define a function RRCT which gives only the area of a rectangle of 
length L and width W. Display it after executing. 

)COpy 1 CLASS RECT 

Was	 you r own de fin ed fun c t ion R E CTun chan ge d? 

)ERASE RECT 

Redefine RECT as above to give only the area of a rectangle. 

)PCOpy 1 CLASS RECT 

Does th is command behave the same as COpy? 

)SA VE JONES 

If the workspace was not saved, drop one of those in your library and 
then save it. 
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)PORTS 

Change the name of you r act i ve workspace to SMITH 

)WSID SMITH
 
)SA VE
 
)CLEAR
 
)LOAD 1 NEWS
 
)SA VB 1 NEWS
 

Wh Y co u 1dnit NF ~v S be s a ve d? 

) CONTI NUE HOLD 

Sign on again under your user number 

)LIB 
)FllS
 
) VARS
 

What was the effect of signing off with CONTINUE HOLD? 

2.	 You have saved your work in a workspace called Goon and have just 
developed a function OK in your active workspace. Write out a sequence 
of commands which will get OK into GOUD without carrying with it any 
unwanted "trash" which may be in the active workspace. 
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Mixed functions 

Thus far we have worked with standard scalar dyadic and monadic functions. 
One of their characteristics is that the shape of the result is the same 
as that of the argument. For example, if the arguments are vectors, so is 
the result. Ditto for scalars. In this and subsequent chapters, additional 
functions wi 11 be introduced in which the shape of the result is not related 
in such a consistent way to that of the arguments. Appropriately, these 
are called " mixed" functions. 

Index generator 

To start off, let's consider a fami 1iar algorithm: the one associated 
with our earl ier investigation of the cosine function. Here is a review of 
the steps involved, the last being a one-line APL expression which does 
the calculation: 

o 
x 
Of 

X+-3.141Sg-;-Lt 

TOP+-X*O 2 4 6 8 10 12 
BOT+-!O 2 4 6 8 10 12 
- /TOP-:-BOT 
-/(X*V)-:-! V+-O 2 4 6 8 10 12 

Wouldn ' t it be nice to have a way to generate these sequences so as to 
el iminate the monotony of typing? What's more, the only way now that we 
can change the length of the sequence is to type in more or fewer numbers. 

In APL the mixed function 1, which is upper shift I on the keyboard, 
solves all your problems-or at least some of them, if you don't 1 ike 
exaggeration. When used monadically with positive integer arguments, it 
i sea 11edthe i nde x gen era tor. Let ISS e e how i t wor ks . Ent e r 

1 5 
1 2 3 4 5 

and a vector of integers from 1 to 5 is produced. Here is another: 
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1 t) 

1 2 3 4 5 6 

Now we're ready to use this function to produce the sequence needed for 
calculating the cosine. We know that multiplying any number by 2 produces 
an even number. Since our desi red sequence is 0 2 4 6 8... , this suggests 
that we need 

2 x 1 6 

2 4 6 8 10 12 

Almost, but not quite there, 0 being omitted. The correct expression 
should be 

2+2x 16 

o 2 4 G 8 10 

and we have it. We can get something else out of this for free. If adding 
-2 gives an even sequence, then adding -1 should result in a sequence of 
odd numbers: 

1 + 2 x 1 6 

1 3 579 11 

Getting back to our cosine function, we can now incorporate IN for a variable 
number of terms. First 

)CLEAR 
CLEAR WS 

and we are ready to define the function. Since N, the number of terms, is 
now a variable, we ought to make the cos function dyadic. We may want to 
use the result for other calculations, so the header should be set to return 
an expl icit result: 

VR+-N COS X 
[lJ V+--2+2 x l N 
[2J R+--/(X*V)+!VV 

In 1 CLASS there is an accurate value of PI. As we saw previously, we can 
transfer this to our active workspace by typing 

)COpy 1 CLASS PI 
SAVED 15.02.39 07/29/69 

Here is cos PI+3 evaluated for a varying number of terms: 

2 COS PI+3 
0.4516886444 

4 COS PI~3 

0.4999645653 
6 COS PI~3 

o. 4 9 9 9 <] 9 9 ~3 G L+ 

8 COS PI+3 
0.5 



Mixed Functions 115 

Even though the last result is shown as .5, it is still approximate, the 
.5 being the best value to ten places. 

Our 1 function is good for all kinds of sequences. Suppose we want a multi­
ple of the fi rst five integers. Try 

1 5 x 2 

1 2 3 4 5 6 7 8 9 10 

We forgot parentheses. It should be 

(l5)x2 
2 l-t 6 8 10 

Sequences 1ike powers of 2 can be obtained: 

2 4 32 

This can be easily modified to get 2 raised to the 0 power: 

2 * 1 + 1 5 
1 2 4 8 16 

Now look at the following sequences: 

1 5 
1 2 3 4 5 

14 

1 2 3 4 

1 3 
1 2 3 

1 2 
1 2 

So far, they seem straightforward. Obviously, 1N generates a vector of N 
components. Well, if you're so sure, what is 11? 

1 1 
1 

Carrying the analogy along, t1 is a vector of length 1 containing the single 
component 1. Is it the same as this 1? 

1 
1 

They look the same, but looks aren't everything. The 1 we typed is a scalar. 
The result of 11 is a vector. In mathematics there is a term which is asso­
ciated with the difference-rank, about which we'll have more to say later. 

One (?) down, one to go. What about 
i o 
(typeball moves over 6 spaces but prints nothing.) 
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This must be a vector of no components, and the system in its response is 
trying to print a vector of length 0, but there just aren1t any components 
to put on the paper! 

What good is a vector of length O? A good question. You can't really 
appreciate its uses unti 1 you begin to define functions for yourself. But, 
in the meantime, think about this: if you needed to generate vectors of 
varying length and you were looking for a starting place for a counter to 
keep track of what you were doing, what better place to start than with 
a vector of no components, the empty vector 10? 

Dimension vector 

There is another mixed monadic function which gives the length or dimension 
of a vector. It is represented by the symbol p , pronounced " rho" (upper 
shift R). Let's define a couple of vectors X and Y and look at how this 
function works: 

X+-2 3 5 7 
pX 

4 

Y+-16 
pY 

6 

This is just the thing we were looking for some time back when we were 
wr i tin g the awkwar d ex pres s ion + / X =X toge t the numbe r 0 f comp0 nen t sin 
a ve c tor for use inA VG, wh i ch can now be rede fin e d ali ttl e mo rc compac t 1y : 

\jR+-AVG X 
[1J H+-(+/X)~pX\j 

Trying it out, it seems to work OK: 

A VG 1 2 1 2 1 2 
1 .5 

Actually, p isn ' t as limited in its appl icabil ity as would appear from the 
above. It gives information about multidimensional arrays of numbers as 
well. In 1 CLASS are some sample arrays for illustrative purposes called 
TABO, TAB1, TAB2 and TAB3. Enter them in your active workspace with 
the COP.Y command: 

)COpy 1 CLASS TARO 
SAVED 15.02.39 07/29/69 

)COPY 1 CLASS TAB1 
SAVED 15.02.39 07/29/69 

)COpy 1 CLASS TAB2 
SAVED 15.02.39 U7/29/69 

)COpy 1 CLASS TAR3 
SAVED 15.02.39 U7/29/69 

Now apologies are in order for making you do all the typing at this time. 
In chapter 34 a new command wi 11 be introduced which will enable you to 
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group these four variables and copy them with a single instruction. 

Dis play 'PA B 0 

TARO 
4.1 

I tis jus t the s ca 1a r number 4. 1 . Look at. pTA B 0 : 

p TABO 
@ 

From this point on @wi 11 be used to indicate the point where the typeball 
comes to rest when the result is an empty vector. 

TABO, the scalar, has no dimensions. It doesn't " extend out" any distance 
in any direction, unlike a vector or a matrix. In this sense it's like an 
idealized geometric point, which is also considered to be dimensionless. 

Let's investigate TAB1: 

TAR1 
1.414213562 1.732050808 2 2.2360fJ7977 

p'PAB1 
4 

pTAB1 yields a single number, which tells us that it is one-dimensional 
(a vector), with four components along that dimension. 

Now for TAB2: 

TAn 2 

3 1 7
 
7 10 4
 

6 9 1
 
1 6 7
 

p r» B 2 
4 3 

Here we have a two-dimensional array (matrix), with four components along 
one dimension (no. of rows) and three components along the other (no. of 
columns) . 

Finally, display TAR3 
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TAR3 

111 112 113
 
121 122 123
 
131 132 133
 
141 142 143
 

211 212 213
 
221 222 223
 
231 232 233
 
241 242 243
 

p TA8 3
 
2 L+ 3
 

This may look pecul iar, but remember that we are restricted to two-dimensional 
paper to depict a three-dimensional array. If you think of the lower half 
of the table as being a second page lying behind the first, you will see 
where the third dimension comes in. The result of pTAB3 indicates that 
we do indeed have a three-dimensional array, two components deep (no. of 
planes), four components down (no. of rows), and three components across 
(no. of columns). 

Rank 

Earl ier in this chapter, rank was mentioned as a distinguishing description 
of the number of dimensions-Qf an array. Let's see how this is handled in 
APL. First, consider 

ppTARO 
o 

An unexpected re5ponse? Not really, when you think about it. Let's see 
if we can construct a plausible explanation. First we'll line up the 
responses from p TABO- 3: 

p TAB 0
 
@
 

oTAl51 
4 

p TAR 2 
4 3 

p TAB 3 
243 

What do you see? The shape of p appl ied to an array of N dimensions is a 
vector of N components. So pTABO must really be a vector of length 0, i.e., 
1 0 . Now you s h0 u1d be a b 1e to unde r s tan d why p p TA FJ 0 res u1t sin 0: 

P 1 0 
o 

Clearly the number of components in a vector of length 0 is 0, l v e . , there 
are no components. 
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Simi larly, we get 

ppTAR1 
1 

p p TA R 2 
2 

ppTAB3 
3 

Thus, pp of any array gives the number of dimensions of the array, to 
which the name rank is attached. A scalar is of rank 0, a vector rank 1, 
and a matrix ra~, while the array of rank 3 is sometimes called a tensor. 

At	 last we are ready to tell the difference between 

1 1 
1 

and 

1 
1 

They	 have different ranks: 

p p 1 
0 

P P 1 1 
1 

PROBLEMS 

1.	 Drill. Specify A+O 8 3 L+ 6 10 

pA 110 +/115 

ppA	 -;- 1 5 

pppA	 7 Xli 128-;-3+1 

110000 

2.	 What is the difference in meaning of the two expressions pA~6 and 
6 =pA ? 

3.	 Load 1 CLASS and execu te each of the fo 1low i ng: 

x/pTABO x /pTAB2 

x/pTABl x/pTAB3 

What information is gained from these instructions? 

4.	 For the vector A (prob. 1) execute 1 pA and o 1 r A. What mean i ng can be 
assigned to each of these expressions? 
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5. Write one-line monadic functions returning an exp1 icit result to give 

A) the sum of the square roots of the first N positive integers 
B) the square root of the sum of the first N positive integers 
C) the geometric mean of the first N positive integers (the 

nth root of the product of the N numbers) 

6. Construct each of the following sequences using 1 : 

1	 3 5 7 9 11 13 15 

7 2 3 8 13 

0 0.3 0.6 0.9 1 • 2 1 .5 

250 150 50 50 150 250 

5 4 3 2 1 

1 0 1 0 1 0 

7. Ent e r 1 3 x 1 3 . Acco unt for the err0 r me s 5 age. 

8. Wri te an APL express ion to generate a vector of fi fty 1 1 s . 

9. Rewrite each of the following statements without parentheses: 

1+(-/(15»x2 

+/(t5)-1 

+/((t5)+1)=5 

+/0=(15)=6 

10.	 Write functions that would approximate each of the fo1 lowing series to 
N terms: 

_ ~ + 1 11 2 "3 - 7++ .•• - .•. 
1 X X2 
or+rr+2T+··· 

11.	 Wri te an APL express ion that yields 1 if the array A is a scalar, 0 
othe rwi se. 
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More mixed functions 

In our work with vectors, up to this point, we haven't said anything about 
how we might add components to increase the length of the vector, which 
would certainly be desirable if the vector represented, say, the bills run 
up by a single customer in a department store. Our only recourse, thus far, 
has been to respecify the vector by retyping it with the additions, which, 
vou "Ll agree, isn ' t very satisfactory. 

Catenate 

APL does have such a chaining feature for vectors on the keyboard. To 
illustrate how it can be done, letls build a simple adding machine with 
only a few keys on it. Here is the simulation: 

KEY PURPOSE/ACTION 

C clears accumulator 
E allows entry of values and prints no. of 

values accumulated since last entry 
S prints sum accumulated 

Suchas i mu 1a t ion i s prov idedin 1 CLASS , wh i ch s h0 u1d bel 0 ad e d now. 

)LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 

Type 
c 
@ 

Next, type E and enter the data as shown: 

E 5 3 1 

The system responds with a 3, indicating that three values have been entered. 
Again make an entry: 

121 

3 
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E' 5 G 
5 

Typing S gives the sum of the values accumulated: 

20 

We can continue to enter values and get the sum: 

E 2 
6 

s 
22 

Now c 1ea r: 

C 

@ 
S 

o 
R 1 2 3 

3 
s 

6 

What do the functions look like that comprise this simple desk calculator? 
Firs t, 1e tis dis play C: 

'7C [ [JJ '7
 
'7 C
 

[1] VECT+tO 
'7 

It is n: ladic and doesn't return expl icit results, which is reasonable 
enough since its function is only to set the accumulator VEeT to to each 
time i tis e xe cute d . VEe Tis a g lob a 1 va ria b1e and inC isan e mp t y 
vector, a good place to start. 

Here is E: 

'7E[eJ]'7
 

'7 E X
 
[ 1 ] pVECT+VECT,X 

'7 

It ha: one argument, X, and takes the components in X and tacks them on to 
the back of VECT. Th i s resu 1tis stored in VECT and the number of com­
ponents resulting is printed out. In effect we update VECT and print out 
information about its components at the same time. 

A new dyadic function is introduced in E. It is called catenate, the 
symbol for which is the comma, and its job is to catenate or chain together 
its two arguments. 

Next, we'll d i sp 1ay S: 
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V'S[[JJV' 
V' R+S 

fl] R++/VECT 
V' 

All S does is print out the sum of the accumulated values in VECT. 

The catenate function has a number of characteristics worth noting. If, 
for example, 

J+ t 3 
K+9 8 7 6 

and we catenate J and K and put the result in Y, 

Y+cT ,K 

then there are seven components in Y: 

pY 
7 

y 

1 239 8 7 6 

Two vectors can be catenated. What about a scalar? Can it be catenated 
to a vector? Consider 

J,6 
123 6 

For purposes of catenation, the 6 is regarded as a vector of length 1. If 
this is so, we ought to be able to catenate two scalars to make a vector: 

X+3,5
 
X
 

3 5 

X is now a vector of length 2, containing a 3 and a 5. 

Catenating to to a vector gives the same vector, as we would expect: 

J tot 

123 
( to) , ~T 

123 

What about catenating a vector of length 0 to a scalar? 

R+6 
ppR 

0 
T+R, t 0
 
T
 

5 
pT 

1 
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ppT
 

1
 

T is a vector of one component, as shown by the last two results. Clearly 
the result of catenation is always a vector. 

Ravel 

If wei re not careful, this vector-scalar distinction can cause difficulties. 
Sometimes it is advantageous to have a vector of length 1 instead of a 
scalar. As an example, look at AVG in 1 CLASS, which you should still 
have in your active workspace: 

VA VG[ []J \7
 
V R+A VG X
 

[lJ R+(+/X)f+/X=X
 
\7 

It appears to work with both vector and scalar arguments: 

Ave 2 3 4 
3 

A VG 4 
4 

Now let's use detai led editing to change +/X=X to pX: 

\7AVG[1010J 
[lJ R+(+/X)f+/X=X 

////1 
r i : R+(+/X)fpXV· 

Ave is still in working order: 

A VG 2 3 4 
3 

or is it? 

Ave 4 
@ 

Some t h i ng mus t be wro ng . 0ne che ck i s to see what p A VG 4 is: 

pA VG 4 
o 

wh i ch means that A VG 4 must resu 1tin a vector of 1ength o. Why shou 1d 
this be? Again letls display the function: 

VAVG[U]V
 
V R+AVG X
 

[lJ R+(+/X)fpX 
V 
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Working from right to left on line 1, if X is a scalar, then pX is an
 
empty vector. But the algorithm calls for dividing +/X (a scalar) by pX
 
(in this case a vector of length 0). Dividing a scalar by a vector gives
 
a result which has the same shape as the vector argument. Need we say
 
more?
 

Interesting though all this may be, it doesnlt solve our problem. Our
 
function, to be consistent, should return a result of 4 in this case.
 
Somehow we have to make the argument X a vector if it isnlt one already.
 

The A P[, funct ion wh i ch does th is is the monad i crave 1, wh i ch uses the same 
symbol, the comma, as the dyadic catenate. Wei ll-naw-insert this between 
p and X inA VG : 

VA VC[ 1[]1 0 ] 
[lJ R+(+/X)tpX 

1 
[lJ R+(+/X)tp,XV 

Now executing AVC 4, we get the anticipated result: 

A VG 4 
4 

The rave 1 fun c t ion has some i nt e re s tin gus e s . TAB 2 i s a goo d e xa mp 1e . 

TAB2 

3 1 7
 

7 10 4
 
6 9 1
 
1 6 7
 

pTAB2 
4 3 

,TAB2 
3 1 7 7 10 4 6 9 1 1 6 7 

Notice that the last coordinate is raveled first, and there are as many com­
ponents in the ravel as in the original array: 

x/pTAB2 
12 

p , TAB 2 
12 

If we try to catenate two arrays of different rank, we run into difficul­

ties:
 

4 5 6 7 8 , 2 3pt6 
RANK ERROR 

4 5 6 7 8 , 2 3 o t 6 

" 
This can be remedied by ravel ing the right argument firs t: 

4 5 6 7 8,,2 3pt6
 
4 567 8 1 2 3 4 5 6
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Again, with TAB3 

TAn3 

111 
1 21 
131 
141 

112 
122 
132 
142 

113 
123 
133 
143 

211 
221 
231 
241 

111 

212 213 
222 223 
232 233 
242 243 

,TAB3 
112 113 

142 143 
232 233 

121 
211 
241 

122 
212 
242 

123 
213 
243 

131 
221 

132 
222 

133 
223 

141 
231 

Thus, no matter what the rank of the array with which we start, the monadic 
ravel converts the array to a vector. 

Restructure 

If we can reduce matrices to vectors, as we did in the last section, we 
also ought to be able to reshape vectors into matrices or higher rank arrays. 
The dyadic p, called restructure, does this for us. We'll start by speci­
fy i ng 

U+4 3 5 7 8 9 

Suppdse we want to build a two-dimensional table with the first row 4 3 5 
and the second row 7 8 9. The restructure function rearranges the elements 
in the right argument to have the shape of the left argument: 

2 3p U 

4 3 5 
7 8 9 

Here is an example where the left argument contains only a single component: 

3pU 
4 3 5 

Not only does the number of components in the left argument give the rank 
of the resulting array but, in addition, when we run out of numbers in the 
right argument, we go back to the beginning of the argument and start over. 
This will be evident from the following illustrations: 

5p 3 
3 3 3 3 3 

5 pOl 
o 1 010 

and if there are more numbers in the right argument than are needed to build 
the array, 
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309 8 7 6 5 4 3
 
987
 

only as many as are called for in the restructure will be taken (in order). 

So far our right arguments have been vectors. What happens when we have a 
matrix on the right? 

A+2 3p2 3 4 5 6 7 
A 

2 3 4 

5 6 7 
2 3 4pA 

2 3 4 5 
6 7 2 3 
It 5 6 7 

2 3 4 5 
6 7 2 3 
4 5 6 7 

A+2 3 4 5 6 7
 

2 3 4pA
 

2 3 4 5 
6 7 2 3 
4 5 6 7 

2 3 4 5 
6 7 2 3 
4 5 6 7 

from which we can conclude that whatever the shape of the right argument 
A, for restructuring purposes it is in effect ,A. This is perfectly rea­
sonable, since ravel ing an array of rank 2 or more before reshaping is 
just what most people would do if they had to do it by hand. 

Finally, what if the right argument contains no components, i.e., is an 
empty vector? 

3 p 1 0 
DO/fAIN ERROR 

3ptO 
1\ 

There are no components on the right to perform the desired restructure on, 
so the instruction can't be carried out. But now try 

0010 
@ 

(10)p10 

LENGTH ERROR 
(10)p10 
1\ 
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Can you think of an explanation for these results? 

PROBLEMS 

1.	 Dr ill . Spee i f y /1+- 2 4 P 1 8 and V+ 3 3 p 1 9 

5 4p V	 3 3p 1 , 3p 0 

V,/'vi	 5 4p 0 

2 , 1	 2 5p 12 5, 4p 0 

p p V	 1 Op 100 ppOp9 10 11 12 

2.	 What is the difference between pA ,pB and (pA) .o B for two vectors A 
and B? 

3.	 Write an APL instruction to cause three 2 1s to be printed out in a
 
vertical column.
 

4.	 Select 100 random positive integers, none of which is greater than 10. 

5.	 A) Construct a matrix whose dimensions are always random and not
 
greater than 8, made up of elements which are random positive
 
integers not greater than 150.
 

B)	 Modify your result for A) to make the upper bound for the elements 
itself a random number less than 300. 

6.	 Use the ravel, restructure and catenate functions to reshape a 5 4
 
matrix A and a 7 4 matrix B into a 12 4 result R such that the first
 
five rows of R contain A and the last seven, B.
 

7.	 This chapter introduces the function E as part of a simulated adding 
machine. Suppose the function E were dyadic. How could you tell the 
difference between it and, say, 5E8 in exponential notation? 

8.	 Make the scalar S a vector without using the ravel function. 

9.	 You are given the job of designing a loop function in which the final 
result is a vector to be built up by tacking on the back end what 
comes out of each pass through the function. Assume there is nothing 
in the result to start with, and each time the loop is traversed the 
result is some vector Q. Write a two-step algorithm that will do this. 

10•	 De fin e a mon ad i cAPL fun c t ion t hat will take a ve c tor V withan arb i ­
trary number of components ~7 and insert as many OIS in the front to 
make the result a seven-component vector, i.e., 3 2 5 7 becomes 
o a	 0 3 2 5 7. 
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Character data 

Have you noticed that except for variable and function names the input and 
output that we have been working with has been entirely numerical? You 
have undoubtedly observed that when by mistake you enter alphabetical char­
acters without a specification you get a value error. This hasn't been 
a real problem up to now, but what if in our output we wanted to label the 
results or associate some message with them? We need a way to have such 
1iteral (character) output alone or mixed with numerical information. 

Some examples 

In 1 CLASS, which should now be loaded, 

)LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 

the function RECT shows the need for some kind of identification for the 
output: 

VRECT[OJv 
V L RECT H 

[ 1 J 2xL+H 
[ 2 ] L HYP H 
[ 3 J LxH 

V 
3 RECT 4 

14 
5 
12 

The three lines of output are the perimeter, diagonal and area (in that 
order) of the rectangle whose sides are 3 and 4. But we had to look back 
at the function to see what each of the numbers represented. 

Also in 1 CLASS is a simi lar function (;[1;02 , which does contain identify­
ing information. Try 

129 
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3 GEO 2 4
 
PER I i:;f/7' T ER J 8 :
 
14 
AREA IS: 
12 
DIAr;ONAL IS: 
5 

This is more like it, so let1s open up the function and look at it: 

VGF02[UJv 
\J L GF02 !!;X 

[lJ X+-t TS: 
[2J 'PERI1'1ETF:R',X 
[3J 2xL+1l 
[L+J 'AREA',X 
[5J t.«: 
[6J 'DIAGONAL',X 
[ 7 J L II YP !I, 

V 

Line 1 looks like nothing we1ve done so far. It appears to introduce a 
new use for the quote sign, namely, to enclose literal characters. As a 
matter of fact, not only are there obvious alphabetic characters I and S 
but also a colon used as a punctuation mark, and even blank spaces at either 
end. 

APL interprets each of these, including the blanks, as a character of 
1i t era 1 i nfor mat ion . But i t doe s mo ret han t hat. Sin ce, i n 1i ne 2, cat e ­
nation is used between the set of characters on the left and those on the 
right (stored in X), this suggests that such characters are components of 
an array, in this case of rank 1. l t ' s a fancy way of calling what is 
between the quotes a vector. However, since we could conceivably have a 
table of characters, the rank wi 11 depend, as with numerical information, 
on the shape. X here is a vector of length 5. 

Contin u i ng downthe fun c t ion, 1 i ne s 4 and 6 cate nate the wor ds PER J /,11~' TEl? 
and DIAGONAL, respectively, to X, which consists of the word IS and 
the colon. Since even the spaces are counted as components of the 1 itera1 
vector, you should be able to see why at least the one before IS was neces­
sa ry. 

Don1t get the idea that you have to be in function definition mode in order 
to deal with literals. For instance: 

A+-'!!ELLO ' 

Again, notice the space after the o. Counting the space, it1s a vector of 
length 6: 

pA 

6 

We can do some rather cute things with these 1iterals. As an example, if 



Character Data 131 

B *- ' 11 0 ~I A F? E YOU' 
B 

H0 wT 11 R /1,' YOU 

then catenation forms the message 

A,R 
HELLO now ARE YOU 

However, there comes a time when we have to be serious in our use of 1iter­
als. Suppose we had a family of rectangles we wanted information about: 

1 3 GE02 1 4 
PERIf4/',7TER IS: 
4 14 
AREA IS: 
1 12 
DIAGONAL IS: 
1.414213562 5 

Our answers are OK, but the labels don't look right. What would be nice to 
have is identification to match the output. Specifically, the labels should 
be f 0 11owed by ARE 0 r IS de pen din g 0 nthe numbe r 0 f compo nen t sin the a rgu­
ments. 

Try now 

1 3 GE03 1 4 
PERTMT~'1'ERS ARE: 
4 14 
AREAS ARE: 
1 12 
DIAGONALS ARF:: 
1.414213562 5 

If we give only a single rectangle to this function, we obtain 

3 GE03 4 
PERII-1ETER IS: 
14 
Al?EA IS: 
12 
DIAGONAL IS: 
5 

GE03 does exactly what we want it to, and changes the alphabetical infor­
mation to fit the conditions of the problem. Let's display GE03:. 
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vCE03[OJv 
v L CE03 H;X;FLAG
 

[ 1 J FLAC+-( ( p , L ) > 1 ) v ( p , H ) > 1
 
[2J X+-((4x~FLAC)p' IS:' ),(6 xFLAC ) p ' S ARE:'
 
[ 3 J 'PERIl-iEIFER' , X
 
[ it- J 2 «: +H
 
[5J 'AREA',X
 
[6J L~<H
 

[7J 'DIACONAL',X
 
[8J L HYP H
 

The first thing to note is the presence of the two local variables X and 
FLAG. Looking at 1 ine 1, if the number of components in either L or H 
is greater than 1, then the variable PLAG is set to 1. Otherwise, it is o. 
I f the result of 1 ine 1 is 1 (i .e., we ask for information on more than one 
rectangle), 6xPLAG is 6, and the 6 restructure of'S ARE:' is simply the 
characters S ARR. At the same time f'>vFLAG would be 0 and 4xo is 0, so 
that the 0 restructure of ' IS:' resul ts in- no characters being printed. 
When catenated, the effect is just S ARE. You should be able to figure 
out for yourself what happens in this line if F1AG is o. Line 2 thus tells 
the system to pick up IS: or 5 ARE: , depending on the length of the argu­
ments. The rest of the function is 1ike GE02. Finally, here is some food 
for thought before leaving this function: why must the arguments Land H 
in 1ine 1 be raveled before p is appl ied to them? 

Rules for literals 

It is important that when literal information is entered, both quotes appear. 
Otherwise you have an open quote, not unl ike the problem we faced before on 
page 21 when in forming the symbol for the combination function we fai led to 
line up the quote and period. 

We mentioned before that even spaces in quotes are characters. This brings 
up the interesting question of what effect pressing the return key before 
typing the second quote has on the output. Could the return itself be a 
character? Here is an example: 

D+'ENGINEERING' 
pD 

G+-'ENGINE
 
KRING'
 

G types out as 

G 
ENGINE 
ERING 

and has one more character than D: 

pC 
1 2 
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Occasionally a word to be entered has an apostrophe in it. Since this is 
the same character as the quote, how can it be handled? 

W+-'ISN'T' 

@ 

The typeball doesn't move over the usual six spaces after the return key. 
Why? There are three quotes on the paper. Since quotes are used in pairs, 
except where they are a part of an overstruck character, the cure is to 
type another quote: 

SYNTAX ERROR 
Jv+'ISN' T ' 

A 

Now the system is back in desk calculator mode. 

To get the apostrophe in, APL uses a double quote: 

W+'ISN"T' 
W 

ISN'T 

What about all the functions we1ve studied so far? Do they work with 
literals? Let's try some and see: 

A+' X' 
B+-'Y' 
A+R 

DOMAIN ERROR 
A+R 
1\ 

A <B 
DOMAIN ERROR 

A <B 
1\ 

These functions make no sense operating on literals because literals aren't 
orderable. Indeed, most of the standard functions would behave similarly. 
But consider 

A=B 
a 

Here we are asking the system to compare each component of the vector A with 
the corresponding component of B. There is only one component on each side, 
and they don't match, so the response is O. The function ~ works similarly: 

A more sophisticated way in which = can be used is shown in the following 
example, which asks how many occurrences of the letter E there are in the 
vector D: 

1 
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D 
ENGINEERING 

+/'E'=D 
3 

'E' =D 
1 o 000 1 1 o o 0 c 

Another function which works with a 1iteral argument is the dyadic p, which 
isn't surprising since all it does is reshape the argument: 

ALF+'ARCDEFGHIJKLMNOPQRSTUVWXYZ'
 
4 6pALF
 

ABCTJEF 
GHIJKL 
14NOPQR 
STUVWX 

Up to this point we have used only alphabetic characters, punctuation marks, 
spaces and the return as literals. Actually any keyboard character, in­
cluding overstruck ones, can be employed in this manner. This can lead to 
some strange looking situations with numbers: 

T+' 10'
 
T
 

10 

But T doesn't have the value 10: 

5+5 
10 

T=10 
0 0 

Neither component of T matches the 10 on the right! If this is puzzling to 
you, remember that T is a vector of two components, 1 and 0, which obvi­
ously aren't equal to 10. 

One other point about character entry. Take 

p 'ABC' 
3 

p'AB' 
2 

p' A' 
@ 

This means that a single character is considered to be a scalar, and in 
order to make it a vector we would have to ravel it: 

p , 'A ' 
1 

An d, fin all y : 
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p , , 

o 

II is an empty vector (equivalent to 10). 

PROBLEMS 

1.	 Drill. SpecifyX+'l;JISSISSIPPI'and Y+'RIVER' 

'ABCDE'='BBXDO' 1 2<'i\1P' ppAL+3 3p' ABCDEFGHI' 

pV+'3172' pX,Y X='S' 

(pV)pV	 +/X='S' +/'P'=X 

3172=V	 +/X~'S' + / (X, ' , , Y)~' S' 

, ,
X,Y	 X, ,Y v/X='R' 

2.	 Here is a record of executions with an unknown vector D: 

D 
@ 

pD
 
1 5
 

5xD
 
DOMAIN ERROR
 

5xD
 
1\ 

'=D 
1	 1 1 1 1 1 1 1 1 1 

Wha tis D? 

3.	 Define a function F which takes a single argument A and prints out its 
dimension, rank, and number of elements with appropriate descriptive 
me s sages . Ass ume ran k A ~ 1 . 

4.	 Write a program that wi 11 add a row R to a matrix M and print out a 
message reading TllIS IS AN EXA~1PLE OF CATENATION IN APL 

5.	 Copy the function GE03 in CLASS. Open up the function and direct 
control to 1 ine [0. 5J. US'3 the comment symbol ~ on this 1 ine and the 
next to write a message describing wbat the function does. Then close 
out the function, display it and execute it. Do comments introduced 
in this manner affect execution? 



CHAPTER 19: 

Mixed functions for ordering and selecting 

Ranking 

One of the points stressed at the end of the last chapter was that 1iteral 
characters are unorderable, that is, it makes no sense to say, for example, 
that X is less than Y (X, Y literal). Yet there are clearly times when 
ordering is desi rable, primarily for sorting and selection purposes. 

Inorde r to see how t his ca n bed0 ne inA P L, 1e t "s fir s t get a c 1e a n 
workspace: 

) CLEAR 
CLEAR WS 

and set 

X+'ABCDEFGHIJK' 

Remember to close the quote before going on. 

Now try 

Xl' CAFE' 
316 5 

This dyadic use of the mixed function 1 is an interesting and useful one. 
The response has four components, the same as the length of the right argu­
ment, and it isn't too hard to tell what they stand for. C is the third 
character in X, A the first, F the sixth, and E the fifth. 

Suppose there is no match, as, for example, in 

Xl'CAFYE' 
3 1 6 12 5 

All the characters except the Y can be matched. For that the system returns 
12. But since the number of characters in the left argument is only 11, 

pX 
11 

136 
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then apparently the function is set to return a position one higher than 
the last one avai lable in the left argument. If we were to try 

X1'CAXYXE' 
3 1 12 12 12 5 

this time both the XiS and the Y result in 12. This returning of an index 
number one greater than the number of components on the left is character­
istic of the dyadic iota when there is no match. 

Another point of information about this function is that when characters 
are repeated in the right argument, the index numbers aren't used up. For 
examp 1e, if 

W+-'AARDVARK' 
p ~l 

8 

and we ask where in W is W found, 

~/1 W 
1 1 3 4 5 1 3 8 

the first letter in AARDVARK is matched against the left argument and A is 
found first in position 1, so 1 is recorded. Then the second A is matched 
and is found on the left again in position 1, giving us a second 1 in the 
result. R is found in position 3 on the left and 3 is recorded, etc. 
From this you can infer that a sequence like 1 234 5 6 7 8 would be 
returned only if no letters were repeated. 

What if the right argument happens to be a matrix? 

A+-3 2P16 
A 

1 2 
3 4 

5 6 
B+-3 1 4 2 5 
EtA 

2 4 
1 3 
5 6 

The shape of the result is the same as that of the right argument, but the 
left argument can be only a vector. 

Indexing 

Back now to X, which contains 

X 
ARCDEFGllIJK 

If 
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Xl' CAFE' 
3 1 6 5 

converts the characters CAFE into an ordered set 3 1 6 5 (called a "map­
p i nq'"}, it is perfectly reasonable to ask if there is any way we can change 
the ordered set back into characters. In APL this is done by the indexing 
function, which is also referred to as " s ubscripting:" 

X[3 1 6 5J
 
CAFE
 

This expression is usually read as "X sub 3 1 6 5." Note that [ ] are used, 
not ( ). Any val idA P L s tate me n t ca n be use d for sub s c rip tin g . For i n­
stance: 

X[Xl'CAFE'] 
CAFE 

X[2 5p3 1 8 9 4 2 10 6 7 5J 

CA 11 I D 
BJ FGR 

The result has the shape of the expression in the brackets. 

But if we try to execute 

X[Xt'CAFYE'] 
INDEX ERROR 

X[Xt'CAFYE'] 
1\ 

Clearly to avoid an error message the expression in brackets must refer only 
to left argument indices that exist. In the last example, since the charac­
ter Y is not found in X, and X has 11 characters, if we were to ask for 

Xr12]
 
INDEX ERROR
 

X[12]
 
1\ 

the system can't answer the question, there being no twelfth position. This 
isn ' t quite the same situation we had in ranking, where the result returned 
for an unidentifiable right argument character was one more than the 
number of components in the left argument. In that case the response is the 
system's way of ter1ing us that the character in question was not to be 
found on the left. Thus, the dyadic l and indexing are inverse operations, 
provided that each component on the right is also to be found in the left 
a rgumen t . 

Again let's look at 

X 
ABCDEFGilIJK 

X[3 3 3 31 
cccc 
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As with ranking, the index numbers aren't used up by being repeated. Note, 
however, that we cannot index an array which hasn1t been specified: 

SAl/[l 4J+l0 20 
RA ivK F!?ROR 

SA/·/[l 4j+ 1020 
1\ 

In addition to having a different form from the other functions, indexing 
is unique in that it is the only function that can appear on the left side 
of the specification arrow. For example, suppose we want to change D in X 
above to the character ?: 

X[4J+'?' 
X 

ABC?EFClIIJK 

and the substitution has taken place. More generally, components can be 
rearranged by indexing. The following illustration shows such a change: 

X[S 6J+-X[6 sJ 
X 

ABC?FEGHTJK 

If no indices are entered, every element of the array is respecified: 

X[ J+' 'P' 
X 

TTT'PTTTTTTT 

Both ranking and indexing can be used with numerical as well as literal 
arrays. For instance, say we are given the heights (in inches) of five 
students: 

£+516360625<j 

What is the position of the student who is 63 inches tall? 

Lt63 
2 

If the third student's height has been entered incorrectly, and should be 
61 instead of 63 inches, the change can be made easily by 

L[3J+61 
L 

51 63 61 62 59 

The height of the student who is 62 inches tall can be changed to 65 inches: 

L[Lt62J+65 
L 

51 63 h1 59 

We haven't yet shown how arrays of rank 2 and higher can be indexed. This 
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is deferred to chapter 28, following a general discussion of multidimensional 
arrays. 

Compression 

Another function similar in many respects to indexing is compression, used 
for picking out specific components of a vector. If in L again 

L 
51 63 61 65 59 

we wanted to get the second and third students, the expression 

L[2 3J 
63 61
 

will do it. We can also select with the following operation:
 

o 1 1 0 OIL 
63 61 

which can be read as the "0 1 1 0 0 compression of L." The same symbol, 
the slash I, is used for compression as for reduction, but the difference 
is that instead of having an operation symbol before the slash, the left 
argument consists solely of D's and 1 IS. Where there is a 0 in the left 
argument, the corresponding element on the right isnlt picked up. The only 
elements returned are in those positions where there is a 1 to match it on 
the left. This means that the lengths of both arguments must be the same. 

To illustrate a practical use of compression, here is a problem in accounts. 
If A is a vector of accounts in dollars, say we want to select out those 
accounts that are overdrawn (negative): 

A+3 450 6 

The instruction 

A<O 
o 1 001 

flags the culprits by producing a vector with lis in the positions of the 
offenders and Dis elsewhere. This is made to order for the compression 
function: 

(A<O)IA 

4 6 

and we have extracted from A 

A 
3 4 5 a 6 

only the negative components.
 

Keep in mind that the left argument must contain D's and l's only:
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2 3/5 6 
DOMAIN ERROR 

23/56 
A 

Both arguments must have the same length, unless all or none of the com­
ponents are desired. In this case we need only a single 1 or 0: 

A+'ABCDEF' 
l/A 

ABCDEF 
a/A 
@ 

If the lengths don't agree, an error message results: 

1 0 1 a/A 
LENGTH ERROR 

1 a 1 0 /A 
A 

In 1 CLASS the rei s a fun c t i on called C}·1 P wh i ch use s compres s ion to 
compare two scalar arguments for size and prints out a message stating 
whether the left argument is less than, equal to or greater than the right 
a rgumen t , 

Use the COpy command to get it into your active workspace: 

)COPY 1 CLASS CMP 
SAVED 15.02.39 07/29/69 

Let's try it out on a few examples: 

3 C/'>1P 5 
LESS 

5 CJ.1P 3 
GREATFR 

5 Cl4P 5 
EQUAL 

Here i s what en» looks 1ike: 

VC~1P[ DJv 
\j A C~1P B 

[ 1 ] ( ( A> B ) / ' GREATER' ) , ( (A =B ) / ' EQ VA L' ) , (A <B ) / ' LESS ' 
v 

It doesn1t return an explicit result (since we wouldn1t be apt to have any 
further use for the result). Notice the practical use for catenation here 
operating on literals, not unlike line 2 of the function GE03 on page 132. 
Starting from the right on line 1, we pick up either all of the literal 
vector LESS or none of it, depending on whether A is less than B. The 
vectors EQUAL and GREATER are treated simi larly and catenated. Since 
only one of the three conditions can possibly hold at anyone time, we are 
actually catenating two empty vectors to a vector of literals to produce the 
des ired resul t , 
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Expansion 

Just as compression gives us a way to get a subset of a vector, so there 
exists also in APL a function called expansion which allows us to insert 
additional components. To illustrate its use, specify 

A~'ABCDEFG' 

It has 7 components: 

pA 

The symbol for expansion is \, the backward pointing slash, on the same key 
as the co mp res s ion s ymb 0 1 i nthe lowe r rig h t cor ne r 0 f the key boa r d : 

1 0 1 0 0 1 1 1 1 l\A 
A B CDEFG 

1 0 0 1 a 1\323 
323 0 0 323 0 323 

1 0 0 1 0 1\3 2 3 
3 0 0 2 0 3 

The examples show that where 0 appears in the left argument, a blank (for 
literals) or zero (for numeric arrays) is inserted in the result which 
otherwise is identical to the right argument. Scalars are extended to match 
the length of the nonzero part of the left argument. 

Here is a summary of the conditions governing the use of this function: 

If C~A\B , then 
(1) A must consist of all O·s and lis 
(2) (+/A) == pB 
(3) (pC) == pA 

Thus, let B be a vector of five components: 

B+2 5 7 9 1 
pH 

5 

Say we want to insert four values, 41 L+2 43 44 between 5 and 7. 
One way to do this is to enter 

D~B[l 2J,41 42 43 44,B[3 4 5J 
D 

2 5 41 42 43 44 7 9 1 

Another way is to expand B: 

D+1 1 0 0 0 0 1 1 l\B 
D 

2 500 0 0 7 91 

and then respecify D: 
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D[3 4 5 6J+41 42 43 44 
D 

2 5 41 42 43 44 7 9 1 

As mentioned before for indexing, the compression and expansion functions
 
wi 11 be applied to multidimensional arrays in chapter 28.
 

PROBLEMS 

1.	 Drill. Specify A+O 5 86.215 225, B+l 001011 and
 
C+'ARCDEFGHIJKLMNOPQRSTUVWXYZ ?'
 

A[2 L+ 7J	 A [ 1 P A ] 

B / A	 pA[2 L+ 7J A [ 1 J+A [2 3 '+ J x A L '7J 

1 1 0 1 \ T T~/O A[I/A1AJT 

(32 7)[2 1 3J A[8J	 A[Op3J 

A [3 G J+ 2 E 5 L+ E - 4 A 1 r /A	 B\ 2 3 L~ S 

e[l lC 12 27 9 19 27 1 12 7 15 18 9 20 8 13 9 3J 

2.	 Specify D+-2.1 4 1.9 0 1 4 1.4.7 2.5 2. Select from D those com­
ponents which are 

A)	 less than .5 D) negative and greater than -1 
B) positive	 E) eq ua 1 to 2 
C) e qua 1 i n ma gnit ude to 4 F) 1es s than 1 and g rea te r than or 

equa 1 to -2 

3. Define a monadic function to insert the character between each pair0 

of adjacent elements in a vector V. 

4.	 For any arbitrary vector V write a function INCH to compute increments 
between adjacent elements. 

5.	 For mathematicians only: Obtain the area under the curve Y=3X2 between 
Xl and X2 by breaking it up into rectangles of width I in that interval. 
Hint: First define F to compute 3xX*2 .. 

6.	 Write a program WITHIN to select from a vector W those elements
 
which 1ie within an interval R on either side of the average of W.
 

7.	 Write an APL expression to select those elements in a vector which are 
integers. 

8.	 Define a function IN to tell what percent of the elements in a vector
 
A 1ie wi thin the interval B±C .
 

9.	 Construct an expression that selects the largest element in a three­

e 1e me n t ve c tor Van d p r i n t sou tal i fit ex cee ds the sum 0 f the
 
remaining two elements, 0 otherwise.
 

10. Show how to select the elements with even indices in a vector Y. 



144 APL \360: An Interactive Approach 

11.	 You are given a vector X whose components are all different and arranged 
in ascending order. Write a program to insert a given scalar S into the 
appropriate place in the sequence so that the result is still in ascend­
ing order. Be sure that your function is able to handle the case where 
S is identical to some element in X. 

12.	 What is the difference between 

A) lA[2] and (l A ) [ 2] for some i n t e gerA 
B) pM,pN and ( pM) • pN for M+- 1 2 and N+- 3 4 

13.	 Write an APL expression to pick up the last element of a vector V. 

14.	 Why is V[-l+lPV] not executable? 

15.	 Write an APL expression which returns the index of the largest element 
in a vector W. 

16.	 Define a function to remove all duplicate elements from a vector. 

17.	 Write an APL expression to calculate the sum of the first eight 
components of a vector Q (or all of them if the number of components is 
less than eight). 

18.	 Write a program SELECT which takes two arguments and will print 
out that element in the left argument X whose position corresponds to 
the position of largest element in the right argument Y. 

19.	 Construct APL expressions to insert for V+-lN a zero 

A) between each two adjacent components of V 
B) before each even component of V 
C) after each odd component of V 

20.	 Write a function returning an explicit result which finds all the fac­
tors of a given integer N (i .e., the integers which divide evenly into 
N) . 

21.	 Write a program to convert a numeric 1iteral with less than ten digits 
to a number, so that, for example, '1456' becomes 1456, and can be 
used like an ordinary number for further calculations. 

22.	 Define a function COMFACT to print a list of common factors, if any, 
of two integers A and B. 

23.	 Define a monadic function which takes a 1iteral argument and selects 
the longest word in it. Hint: Look for tne longest set of consecutive 
non-blank characters. 
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Identity elements 

Identity elements 

In mathematics for a number of operations there is in the domain of elements 
associated with them a particular element that has a unique property. Spe­
cifica1ly, in addition the number 0 added to any number results in the num­
ber itself: 

0+1 
1 

3+ 0 
3 

Any element that behaves in this fashion is cal led an identity element for 
the operation in question. The mathematician defines the concept even more 
narrowly. In the example above, 0 acts as an identity element when it is on 
the left. Hence it can be thought of as a left identity for addition. Simi­
1a r 1y, i tis a rig htiden titY for add i t ion . Ifan e 1e me ntis bothal eft 
and a rightiden tity, i tis 0 f ten s po ken 0 f aslit he ide ntitY e 1e me ntil for 
a particular operation. As we wi 11 see, many operations have no identity 
element, or have either a right or a left identity, but not both. 

In AP~ there is a simple way to find identity elements where they exist. 
We can lead up to this with an example. Let B be the following vector: 

B+-5 3 2 3 0 

An obvious true statement is that the sum reduction of B is made up of the 
sum of the sum reduction of the elements of B that are negative and the sum 
reduction of those positive or 0, i.e., 

(+/B)=(+/(B<O)/B)++/(B~O)/R 

1 

So far we haven't really said anything earthshaking. But what if B didn't 
have any negative elements? Then the sum reduction of these elements would 
be 0: 

145 
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B+5 3 2 3 0
 
(+/B)=+/(B?0)/8
 

1 
+/(B<O)/B 

o 

Let's examine the last two 1ines more closely. We compress B by selecting 
those elements of B which are negative. Since there are no such elements, 
the compression results in an empty vector: 

(B<O)/R 
@ 

and the sum reduction over this empty vector yields 0: 

+/(B<O)/B 
o 

But an empty vector can be represented in APL by 10. Hence, the sum reduc­
tion over an empty vector should give us 0, and 0 is the identity element 
for addition: 

+ /10 
o 

In exactly the same way, if we looked at the times reduction of B we get 

(x/B )=( x/(B<O)/B )xx/(B?O )/8 
1 

a simi lar argument would then yield 

x / 1 0 
1 

which is the identity element for multipl ication. 

This suggests that the way to find the identity element for any standard 
scalar dyadic functio~ (assuming the identity element exists) is to execute 
fn /10, where fn stands for some function. However, there are two precau­
tions which need to be emphasized here. First, there is no indication as 
to whether the result is a left identity, right identity or both; and 
second, no warning is given of any restrictions, if indeed there are any, 
on the domain of the operation. 

Here are a few additional examples that point up these restrictions: 

~. / 1 0 
1 

We can divide any number by 1 and return the original number, so 1 is a 
right identity for division. No left identity exists for this operation. 
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1 
v /1 0 

o 

The logical functions A and v have both left and right identity elements, as 
examination of their operation tables shows (pages 26-27). But, if we were 
to take a function like <, no identity element exists over the entire domain 
of real numbers. If we restrict the domain to 0 and 1, then 0 is a left 
identity for <: 

< /1 0 
o 

No such restriction helps in the case of the function ~. 

'h/10 
DOMAIN -ERROR 

'f\: / 1 0 
/\ 

A prepared dri 11 exercise in APL 

In chapter 9 the tutorial exercise EASYDHILL was introduced to give you 
p ract ice i nthe A PL fun c t ion s dis c ussed up tothat poi n t . ~/e ha ve nit yet 
exhausted all the functions so far implemented in the language, but, as 
before, it's worth taking a breather at this point to review what has been 
done. In the workspace 1 APLCOURSE there is another dri 11 exercise called 
TEACH, which contains a larger variety of more difficult problems for you 
to work on. 

Now load t his wor kspace and e xe cute TEA CH . Ind i cate wh i ch fun c t ion s you 
want practice in. Be sure at least this first time to include exercises in 
vectors of length 0 and reduction. Especially note the instructions per­
taining to your responses for vectors of length 0 or 1. The format and 
way in which the problems are generated are the same as in EASYDRILL. 
You get three tries, then the answ~r is furnished and you are given another 
s i mil a r p rob 1em 0 f the s ame kin d . TYpin g P LEA S E g i ve s you the an swe rand 
an 0 the r s i mil a r p rob 1em. Bot h S TOP and 5 TOPS H0 R T get you 0 ut 0 f the 
exercise, but STOP gives you in addition a record of your performance. 
Continue practicing at this point and at any subsequeflt time as your needs 
require it and your schedule permits. 

Below i s ash 0 r t samp1erract i ce s e s s ion wit h TEA CH • 

)LOAD 1 APLCOURSE 
SAVED 11.07.53 09/01/69 

TEACH 
ANSWER THE FOLLOWING QUESTION WITH Y FOR YFS OR N FOR NO. 
ARE YOU ALREADY FAMILIAR WITH THE INSTRUCTIONS FOR THIS 
EXERCTSF:? 
IV 
THIS IS AN EXERCISE IN SIMPLE APL RXPRESSIONS. 
YOU WILL FIRST HAVE THE OPPORTUNITY TO SELECT THE FEATURES 
YOU WISH TO BE DRILLED IN. THE EXERCISE THEN BEGINS. FOH 
EACH PROBLEM YOU MUST ENTER THE PROPER RESULT. ANSWERS 
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WILL CONSIST OF SCALAR INTEGERS IF EXERCISES WITH VECTORS 
ARE NOT DESIRED; OTHERWISE ANSWERS WILL CONSIST OF 
SCALARS OR VECTORS. A VECTOR OF LENGTH ZERO REQUIRES THE 
RESPONSE 10, A VECTOR OF LENGTH ONE REQUIRES THE RESPONSE 
,X WHERE X IS THE VALUE OF THE ELEMENT. YOU HAVE THREE 
TRIES FOR EACH PROBLE1\1. TYPE STOP AT ANY TI,~1E TO TERi~1IN­

ATE' TH E EXERCISE AND PRO DVCE A RECOR DI NG OF YO UR PERF0l7t1­
ANCE. TYPING STOPSHORT WILL TERMINATE THE EXFRCISE BUT 
WILL NOT PRODUCE A RECORD OF PERFORMANCE. TYPING PLEASE 
FOR ANY PROBLEM WILL LET YOU PEEK AT THE ANSWERS. 
TYPE Y UNDER EACH FUNCTION FOR WHICH YOU WANT EXERCISE 
SCALAR DYADIC FUNCTIONS 
+-xf*fL<:s;=~>~! II\V~1V¥ 

YY YY 
SCALAR MONADIC FUNCTIONS 
+-xffL! I'" 

Y Y 
TYPE Y IF EXERCISES ARE TO USE VECTORS, N OTHERWISE 
Y 
TYPE Y IF REDUCTION EXERCISES ARE DESIRED, N OTHERWISE 
Y 
TYPE Y IF VECTORS OF LENGTH ZERO OR ONE ARE DESIRED, 
N OTHERWISE. 
Y 
MIXED DYADIC FUNCTIONS 
Pl,E.lT/ti-\¢ 
YYY 
MIXED MONADIC FUNCTIONS 
1 p ,<P 
YY 

f/ 2 5 4 
0: 

4 
~/,-5 

0: - 5t 

THY AGAIN 
0: 

5
 
10>7
 

[J : 
1 

L/,-6 
rJ: 

6
 
6 4 L 3 9
 

0: 
6 9 

TRY AGAIN 
0: 

PLEASE 
ANSWER IS 3 9 

o· 
1 0
 

! 1 4
 
[J: 

1 24 
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D: 
7 1 5 L 7 1 5 

7 1 5 
0 4 

[J: 
1 24 

>/, ­ 1 
0: 

1 
flO 

0: 
10 

.. 0.25 1 
[] : 

4 2 
TRY AGAIN 
[l: 

4 1 
1 9 4 , 3 2 

0: 
1 9 4 3 2 

(,3)p,1 
lJ: 

1 1 1 
9 5 r 9 5 

rJ: 
9 5 

10 
0: 

10 

[J: 
L/ , 2 

S'l'OPSHORT 

PROBLEMS 

1.	 Find the identity elements (if any) for the following dyadic functions: 
- * ~ r L I ! ¥ = ~ ~ >~. Explain the results for rand L. 



CHAPTER 21: 

Still more mixed functions 

This chapter wi 11 be devoted to several more mixed functions that alter the 
order of the components of an array and enable us to make selections from 
among the components. Where the operations are appl icable to arrays of 
higher rank than 1, discussion of the function syntax wi 11 be deferred unti 1 
chapter 28. 

Reve rsa 1 

This mixed monadic function, the symbol for which is ¢ (upper shift 0 over­
struck with upper shift M, reverses the order of the components of a vector: 

¢1 2 3 4
 
4 3 2 1
 

¢'A8CDEFG' 
GFEDCBA 

Reversal of a scalar results in the same scalar: 

4 

and, 1i ke log i cal neg a t ion, reve rsal i sit s own i nve r s e : 

¢¢'ABCDEFG' 
ABCDEPG 

Rotate 

The symbol ¢ also has a dyadic use, and is called rotate or rotation when 
so employed. To get a feel for its syntax and how it operates, try 

2¢' ABCD117FG' 
CDEFGAB 

4<Pl 2 3 4 5 6 7 
567 1 234 

150 
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o¢ 3 Lt 56 7 (3 

34 56 78 

It rotates or shifts all the elements cyclically to the left. By a cyclic 
rotation is meant the following. Imagine our vector of literals arranged in 
closed loop, as below: 

8 

o 

start 

G 

Rotating to the left is equivalent to a counterclockwise shift in position 
of all the elements, producing 

o 

start 

8 G 

Since we wi 11 be using the same vector of 1iterals repeatedly, let1s repre­
sent it by H. It has seven components: 

H+-' ABCDEFG' 
pH 

7 

What happens if we rotate H seven places? 

7¢Jj 

ABC[)F;PG 
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The result is H itself, which shouldn1t surprise you at all. What about 
rotation by a number greater than the number of components in the right 
argument, say eight? 

8¢H 

BCDEFGA 

which is equivalent to 

l¢H 
BCDEFGA 

and, in fact, 718 gives the number of places shifted. In general, if H is 
the right argument and L the left argument, the shift is (pH)IL places. 

Can the left argument be negative? It would seem reasonable that a negative 
left argument ought to produce rotation to the right (clockwise). Let1s 
try it and see: 

-2¢H 
FGABCDE 

The characters are indeed moved to the right two places. Since the 7 resi­
due of 2 is 5, 

5 

the n - 2 ¢ II s h0 u1d bethe s ame as 5 ¢ H 

5¢H 

FGABCDE 

Take and drop 

The take function, which is the upward pointing arrow t (upper shift Y), is 
a dyadic selection operator. See if you can tell from some examples how it 
works: 

V+-8 5 3 9 1 4 

4tV 
8 5 3 9 

OtV 
(0) 

8tV 
8 5 3 q 1 4 0 0 

2tV 
1 4 

8tV 
0 0 8 5 3 9 1 4 

2 3t5 

5 0 U 

0 0 0 
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If A is the left argument and is positive, t selects the first A elements 
from the right argument. If A is negative, the last A elements are taken. 
When A is greater than pV the result is V with sufficient O's on the right 
or left to make a vector of length A. Note that with a vector left argu­
ment, the take function applied to a scalar returns an array whose shape 
is determined by the left argument and whose elements consist of O's, ex­
cept for the [1; 1] element. (See also the restructure function p on page 
126 for a comparison) 

Drop, ~, behaves in much the same way, except that A elements are dropped 
instead of selected: 

Oi-V 
8 5 3 9 1 4 

2i-V 
3 9 1 4 

8i-V 
@ 

3i-V 
8 5 3 

From these examples a general inference can be drawn that AtV is equivalent 
to (A-pV)i-V, provided that A isn't greater than pV. 

Membership 

We have encountered a number of functions (logica1s, re1ationals) that yield 
only OIS and lis as results. Another function that behaves simi larly is 
membership E (upper shift E). Here is a set of numbers, 3 1 6 1. Which of 
these are members of the set 1 2 3 4 5? 

What we are asking is really a series of questions which, in APL, could be 
stated as 

3 =1 5 
0 0 1 0 0 

1 =t 5 
i" 0 0 0 0 

6 =1 5 
0 0 0 0 0 

1 =1 5 
1 0 0 0 0 

the net result being the logical vector 1 1 0 1 as indicated by the diaere­
ses. On the terminal this is 

3 1 6 lEi 2 3 4 5
 
1 1 o 1
 

Clearly the shape of the result must be the same as that of the left argu­
ment. Both arguments may be arrays of any rank with this function. 

Grade up and down 

These two functions, by themselves, give the indices according to which we 
would have to select components of a vector to reorder the vector ascending 
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(grade up) or descending (grade down). The symbols used are the upper 
shift Hand G overstruck with upper shift M, for grade up and grade down, 
respectively. Here are some examples: 

V+8 5 3 9 1 4 
tV 

6 5 3 2 1 4 

'¥V 
4 1 2 3 5 6 

In the grade up of V the first component, 6, tells us that the sixth element 
of V should be taken fi rst; the second component, 5, tells us to take the 
fifth component of V next, etc., to reorder V in ascending fashion. 

If the elements happen to be dupl icates, the indices of the duplicates are 
treated in the same way as the vector is searched from left to right: 

['/+ 3 2 4 b 3 3 

~Jv' 
2 1 5 6 3 4 

Since the result tells us the order of the indices that should be chosen to 
sort out the components ascending or descending, these functions give us 
a handy quick way to produce an actual reordering: 

V[ ~ V] 
4 135 8 9 

V[ 17 V] 
9 (3 5 3 1 4 

Deal 

The last mixed function to be considered in this chapter is the dyadic 
query, ?, cal led deal, a few examples of which follow: 

3?f3 
374 

6?10 
10 G 3 8 1 9 

6?6 
3 5 241 6 

2?6 
DOb1AIN ERROR 

2?6 
1\ 

8?6 
lJOl1AIN ERROR 

8?6 
1\ 

A vector results, which has the same length as the magnitude of the left 
argument. If A is the left argument and B the right, A?B generates a 
random selection of A integers with no dupl ication from the population lB. 
Both arguments must be positive scalars or vectors of length 1, withll-:L3 
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Here is a practical application of some of these functions. Letls suppose 
we are given the 1iteral characters THIS ONE and we want to insert some 
additional characters between the 5 and the O. This can be done by means 
of a prepared function INSERT in 1 CLASS. Load 1 CLJ1SS and display the 
funct i on INS jj'l? ']7: 

)LOAD 1 CLASS 
SA VEl) 15.02.39 07/2g/69 

VIlISRRTCr-j]V 
V R+N INSERT B;P;X 

[ 1 ] P+-B 1 ' 0 , 

[ 2 ] X+-(P-l)tB 
[ 3 ] R+-P{-B 
[ 4 ] R+ ( ( IV p 1 ) , ( ( p X ) pO) , ( ( pH) - IV ) p 1 ) \ R 
[ 5 ] R[l/+lpX]+X 

INSERT is dyadic, with the left argument N being the position after which 
the insertion is to be made. The right argument B is what is to be inserted, 
with a small circle as shown to separate it from its follow-on: 

3 INSERT '?w-oABCDEFGH' 
ABC:w-DEFGH 

Thus, if U is specified by TlITS ONE and we want to insert the literals 
IS between 5 and 0, then we should execute 

U+-'TllIS ONE' 
4 INSERT' I5','0',U 

THIS IS ONE 

or 

4 INSERT' ISo',V 
THIS IS ONE 

Look at the function again. In line 1 P is the position of the little circle 
in the right argument B. Line 2 selects all the components in B up to 
but not including the 1ittle circle and assigns them to X. In line 3 the 
first P components of B are dropped and the rest stored in R. Line 4 resets 
R by expanding it. The left argument of the expansion is bui lt up by 
taking N 1 IS fal lowed by as many O's as there are components in X, which 
in turn is followed by as many lis as the difference between the number of 
components in Rand N. Finally, line 5 inserts the message in place of 
the O's or blanks resulting from the expansion. 

Some applications to cryptography 

Because of the ease with which vectors of all sizes can be operated on, 
APL is quite suitable for the development of schemes for coding informa­
tion (cryptography). We will explore some of these to illustrate a few 
practical uses of the functions introduced in this chapter and chapter 19. 

Since we wi 11 need the alphabet repeatedly throughout this section, letls 
store it under A [iF: 
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ALF~'ABCDRFGHIJKLMNOPQRSTUVWXYZ' 

To start, here's a function which makes a simple random letter substitu­
tion for a message M: 

M+'TOBEOHNOTTOBETHATISTHEQUESTION' 
VC-<-P SUBST [vi 

[lJ ALF 
[2J ALF[PJ 
[ 3 J 
[ 4 ]	 f.1 
[5J	 C+ALF[P[ALF1M]]V 

P+-26?26 
P SUBST M 

ABCD EFGH I J XLlvI NOPQRS TU Vr/ XY Z 
WGMKRUYTBZHCNXFDJLPEVOAQSI 

TOBEORNOTTOBETHATISTHEQUESTION 
EFGR FLXPEEFGR ETr/EB PETRJ VRPEBP X 

The grade up function can be used to improve on the letter substitution by 
transposing the letters according to the following scheme: 

vP TRANSP /.1 
r i • T~.t(pi;j)pP 

[ 2 J /,1 
[3J MCT]\) 

M~'SRNDSUPPLIESTONEWLOCATIONATONCR' 

P T/?ANSP l1 
SENDS UPP L TES TON RWLOCA 'l'IO NA TO N ClI: 
JLSECNEOEAWDCLNNTTOOSENPUASTOPI 

We wi 11 now introduce a further complication by using a "key" to be added 
to the indices resulting from ALF1M, thus generating a new set of indices 
for appl ication to ALF': 

VK VI r; /1; C 
L1 J 11 ~ A L F 1 !~1 

[ 2 ] "'1 
[3J C~26IN+(pN)pK 

[4J ALF[(pN)pK] 
[5J	 (pM)p'­
[GJ	 ALP[C]V 

K+-l 2 3 

/1~' RNEM YI4 I LLATTA CKATDA ~/N WI THrpEN DI VI S IONS' 

We will run into trouble here since the 26 residues of some of the new 
indices may be o. However, provision is made in APL for a shift to 0 in 
the starting point for indexing: 

)ORIGIIJ 0 (remember to reset the origin to 1 when
 
hTAS 1 you are done)
 

This command also affects ranking, the index generator, roll, deal, grade 
up and grade down. See also chapter 34 for a fuller discussion. 
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Now we	 can safely execute the function: 

K VIC !li,1 

ENE:'vfYt/r LLATTA CKA ~PTJA IINtiTTHTENDI VI SIONS 
BCDRCDBCTJBCDnCTJRCDRCDBCDBCDRCDHCDRCDR 

FPHNA2JNDBVWBENPVGBYQXKWIVHOFLWKVJQQT 

Our last illustration catenates an arbitrary string of 1itera1 characters P 
onto the front end of a message M and drops off the excess characters from 
the back end, so that the resulting character string Q is the same length 
as M. The indices produced by ALF1Q are added to those from ATJPl!·1 
and the results reduced with the residue function as before: 

'VP	 AUTO M;Q;R;S 
[1 ] R+ALF1Q+P,((pM)-pP)tU 
[ 2 J S + 2 6 IR +ALP l !;f 
[ 3 J M 
[ 4 ]	 Q 
[ 5 ] (pP)p'*' 
~ 6 ] (pM)p'-' 

l 7 ]	 ALP[SJV 
P+'GYLTZZY' 
P AUTO tV! 

EN E!VJ Y ~/ I LLATTA CKA TDA WN{./I T HTF:NDJ VI SID N.S 
GY LT Z Z YEN E/;fY ~I I L LA T'l'A CKA TnA WNWI T Ii TF:NDI 
******* 

KLP PX VGPY I'J'[l,'jf WK VLT J/T JlPC 1/1 KTA A Z QOP LMB QA 

PROBLEMS 

1.	 Dr ill. Spec i fy A+3 2 0 1 5 8 

3¢A	 <PO , 1 3 A[1'O 1 0 1 0 11 

2¢A[ 14J 2¢¢17 

4tA	 3tA (3tA)E14 

2t-3¢A	 A[~ttAJ 

2.	 Use the membership function to identify and select the one-digit integer 
elements of a vector V. 

3.	 Write an APL expression to determine if two sets of numbers, S1 and 52, 
have identical elements, except possibly for order. 

4.	 You are g i ve navec tor 0 f cha ract e r s S+' ~/ E A H F ALL GOOn /'.;}E'N ' 
Wr i teanAPLexpre s s ion to de t e r mine how ma ny 0 ccur ren ce s 0 f the 1e t ­
ters ABCDEFGHIJKL are in 5. 

5.	 Use A PL to rea r range the above cha rac te r vec to r 5 so tha t the 1e t te rs 
(including duplicates and blanks) are in alphabetical order. 
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6.	 Define a function to remove the extra blanks in S where they occur. 

7.	 For an arbitrary numerical vector Vwhich has been sorted in ascending 
·order,	 show how to insert another vector V1 so as to preserve the 
ordering. 

8.	 For a given numeric vector Vof length N, write an APL expression
 
that tests whether V is some permutation of the vector IN (i .e.,
 
every element of V is in IN and vice versa).
 

9.	 Let C be a vector of characters. Construct an expression which
 
rep 1aces eve ry X inC with a Y.
 

10.	 For a vector of eight components, construct two expressions for 
selecting the last three components. Use the compression function 
in one and the take function in the other. 

11.	 Write a program to find the median of a set of numbers. (The 
median is defined as the scalar in the middle of the 1ist after it 
has been sorted. When the number of elements is even. the arithmetic 
mean of the two middle elements is defined to be the median.) 

12.	 Explain what each of the following expressions does: 

A[~.t(pA)pO 1J (A a vector) 

(A and B scalars) 

13.	 Write a program to decode the message resulting from execution of 
the func t ion S URST on page 156. 

14.	 Modify the function VIC on page 156 to require two keys, KA and Kli , of 
varying length, to be restructured and added on 1 ine 4. Let the 
function now take only the single argument M. 

15.	 Define a function VEHNAM that modifies the indices resulting from 
ALFIM (M is the message to be coded) by adding to them a vector V of 
M random numbers from 0 to 25. Reduce the resul t, as in V[G and 
J1 UTO, and app 1y it to A LF • 
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Number systems 

Base value 

It is a fact of life in our language that it is impossible to conceive of 
a number in the abstract without associating it with some concrete repre­
sentation. Take the number 3, for instance. Can you think of the concept 
of threeness without imagining three objects or visual izing the number 3 
in some system of notation, be it Roman numerals, exponential notation, 
base-2 notation, or whatever? 

No matter how many different ways of depicting 3 we may come up with, they 
all stand for the same thing, this abstract notion of threeness. Yet, most 
of the time, we have no difficulty in recognizing the number if it is 
imbedded in a context which conditions our thinking along the right lines: 

III o 0 
o 

0.03E2 0003 

3.00 00011 

This last entry could be 11 in decimal notation but, because of the other 
more fami liar ways of expressing 3 that preceded it, we would quite likely 
accept it as 3 in the binary system. 

What it all boi ls down to is this: Just as a rose by any other name is 
sti 11 a rose and smells just as sweet, so in mathematics there are many 
ways to express the same number, and their value to us depends on what we 
are most used to and what form is most useful to us. 

Thus far, in all our AP~ work, we have been us ing ordinary decimal nota­
tion. But many other systems are in common use. Mixed systems like clock 
time and numb e r s ys t ems tothe bas e s 2, 8, 16 are e xamp1e s . Inth i s chap t e r 
we will beexami n i ng how A PL makesit po s sib 1e for us to swit ch con ­
veniently from one system to another. 

Suppose, for instance, that we are in a room whose length is 

3 yds o ft 1 inch 

How could we reduce this example of the English system of measurement at 

159 
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its worst, to a single unit, say, inches? If we were to do it by hand, we 
would probably set up something like the following: 

3 yds o ft 1 inch 
x (12x3) x 12 x 1 

--0 +108 + ---1 = 109 inches 

There is a dyadic function in APL that will make this conversion for us. 
It is called the base value or decode function, and its symbol is the upper 
shift B,~. The right argument of ~ is the vector to be converted, while 
the left argument is a vector whose components are the increments needed to 
make the conversion from one unit to the next. Since each of the components 
on the left can be thought of as acting somewhat like the base of a number 
system (cal led a " radix" by mathematicians), the left argument is usually 
referred to as the radix vector. 

In a mixed number system 1ike the one involving our length measurements of 
the room, the syntax of the function requires that the dimensions of both 
arguments be the same. There is one exception to this, namely, that either 
argument may be a scalar or vector of length 1, a case which will be con­
sidered shortly. For our particular problem, we'll use 1760 (the number 
of yds/mile) as the multiplying factor for the next increment, even though 
it won't be used: 

1760 3 12~3 0 1 
109 

As a matter of fact, any number wi 11 do in that position, as long as there 
is something there: 

o 3 12~3 0 1 
109 

3 1J.3 0 1 
LENGTH ERROR 

3 1 ~ 3 0 1 
1\ 

Here is another example, converting 2 minutes and 10 seconds to seconds: 

60 60J.2 10 
130 

o 60J.2 10 
130 

We can formalize the action of the radix vector on the right argument con­
cisely by letting 0/[J] be the weighting factor that tells us what the 
increments should be from one unit to the next in our reduction. In our 
example of the room size, if A is the radix vector and B is the right argu­
me nt, the n W[ 3] i s 1, Jv' [ 2 J i s A [ 3 ] x W[ 3 J 0 r 12, W[ 1] i s A [ 2 ] x vi l 2] 
or 3x12. The result is equivalent to 36 3 1x3 0 1, or +/WxR. 

Ordinary length and time measurements are examples of mixed number systems. 
The base value function, however, works equally well for decimal or other 
fixed base number systems. For instance, suppose the following is a 
picture of the odometer reading (in miles) of a car: 



Number Systems 161 

This can be regarded as a scalar 3521 or a vector 3 521. If it is the 
latter and we want to convert it to the scalar number 3521 , then we can 
execute 

10 10 10 10~3 5 2 1 
3521 

o 10 10 10~3 5 2 1 
3521 

The base value function can be applied to number systems other than decimal. 
Here is a binary counter: 

This can be converted to a decimal number by 

2 2 2 2~0 1 0 1 
5 

But	 if the counter were to be interpreted as readings on an odometer: 

10 10 10 10~0 1 0 1 
101 

Clearly we need to know what the representation is in order to tell what a 
particular number stands for. 

Here in summary form is the syntax for the base value function: 

(1)	 The right argument is the vector to be converted 
(2)	 The left argument is a vector (radix) of the same length 

stating the increment from each component to the next 
(3)	 The result is always a scalar 
(4)	 Exception: if either the left or right argument is a number 

repeated, it is sufficient to use a single component 

The	 fourth point can be illustrated by the fol lowing: 

10~3 5 2 1 
3521 

2.10 1 0 1 
5 

10 10 10 10.15 
5555 

You should be able to see why we can't use a single component on both 
sides in the last example. 

In 1 CLASS there is a prepared dyadic function called BASE. It is used 
in exactly the same way as ~ to demonstrate how the base value function 
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works step by step. Let's try it in a sample problem: 

)LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 

10 BASE 0 1 0 1 
INTERPRET AS 10 10 10 10.1 0 1 0 1 
WEIGHTING VEC~OR CALCULATIONS 
COMPONENT 1 IS x/l0 10 10 OR 1000 
COMPONENT 2 IS x/10 10 OR 100 
COMPONENT 3 IS x/10 OR 10 
COMPONENT 4 IS x/ OR 1 

+/1000 100 10 1 x 0 1 0 1 IS 101 

The printout shows how the result 101 is arrived at through the use of 
the weighting vector. Executing it with our room length problem, we have: 

1760 3 12 BASE 3 0 1 
WEIGHTING VECTOR CALCULATIONS 
COMPONENT 1 IS x/3 12 OR 36 
COMPONENT 2 IS x/12 OR 12 
COMPONENT 3 IS xl OR 1 

+/36 12 1 x 3 0 1 IS 109 

You can experiment with BASE yourself, using other right arguments and 
radices. 

Representation 

Like so many of the other functions we've encountered so far in APL, there 
is a function that "undoes" the work of the base value function, i.e., 
converts from a value to some predetermined representation. Appropriately, 
it is called representation or encode, and its symbol is T (upper shift N). 
Thus, if we execute 

2 2 2 2.10 1 0 1
 
5
 

then the function T brings back our initial argument: 

2 2 2 2T5 
o 1 0 1 

Here are our room length and odometer problems in reverse: 

1760 3 12T109 
301 

10 10 10 10T3521 
3 5 2 1 

This latter example describes how 3521 would appear on a 4-position 
odomete r . How wou1d 13521 appea r on the 5 ame odomete r? 
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10 10 10 10T13521 
3 5 2 1 

We can draw an analogy here. Itls like an odometer which reads only up to 
9999 and then starts over from 0 again. In fact, in this case the right 
a rgumen t has been reduced by 10 * 4 and 

(10*4)113521 
3521 

What happens when wei re not sure how many components are needed in the 
radix vector, yet we donlt want to lose anything, as was unfortunately the 
case in the example above? Typing a zero as the left most component puts 
everything left in the first component of the result, as shown below: 

0101010TLt3521
 

43 5 2 1
 
o 60T130
 

2 10
 

The simulation REP in 1 CLASS does for T what RASP: did for 1- in the 
1as t sect i on. Execute REP for these cases: 

10 10 10 10 RFP 45321 
COMPONENT 4 IS 10145321 OR 1 AND L(45321-1)~10 IS 4532 
COMPONENT 3 IS 1014532 OR 2 AND L(4532-2)~10 IS 453 
COMPONENT 2 IS 101453 OR 3 AND L(453-3)~10 IS 45 
COMPONP:NT 1 IS 10145 OR 5 AND L(45-5)~10 IS 4 

RESULT IS 5 3 2 1 

o 10 10 REP 13521 
COMPONENT 3 IS 10113521 OR 1 AND L(13521-1)~10 IS 1352 
COMPONENT 2 IS 1011352 OR 2 AND L(1352-2)~10 IS 135 
COMPONRNT 1 IS 01135 OR 135 AND REMAINING COMPONENTS ARE 

ZRROS 
RESULT IS 135 2 1 

10 10 RF:P 3 4 
RIGHT ARGUMENT MUST BE A SCALAR OR 1-COMPONENT VECTOR 

10 10T3 4 
RANK ERROR 

1010 T 3 Lt 
1\ 

Both representation and base value yield some rather interesting results 
when used with negative numbers and nonintegers. Here are a few illustra­
tions, but you are advised to explore thei r uses on your own. You wi 11 find 
the BASE and RFP functions helpful here. 

2 3 0.17 5 4
 
4
 

5 2 6T487
 
411
 

2.167.15 4 2 
34.147445 
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PROBLEMS 

1.	 Dr ill 

(3pLtO).1..8 7 2 2.1..5 1 9 6	 10.1..~~ 8 2 1 5 

1 4.1 .8.1..1 2 3 7 8 9.1..7 8 9 3T5217 

3 3T 52 1 7	 3 3 3T5217 (5p3)T5217 

( Ltp 8 ) T - 14	 1 4 6T345 2 4 5T78 

2.	 Wri te APL express ions 

A) to convert 2 gallons, 8 quarts and 1 pint to pints 
B) to find the number of ounces in 3 tons, 568 pounds and 13 ounces 

3.	 Find the 

A) base-8 value of 2 1 7 7
 
B) base-2 value of 1 0 1 1 0 1
 
C) base-3 representation of 8933
 
D) bas e - 5 re p re sen tat i on 0 f L+ 7 9 1
 

4.	 Earlier in the text the residue and floor functions were used to sepa­
rate the integer and fractional parts of a number. Show how this 
separation can be done in a single step by using the encode function. 

5.	 Write expressions that will show that ~ and T are inverses of each other 
(not, however, for all arguments). 

(For additional problems on ~ and T, see end of chapter 23) 
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Applications of base value and representation 

Hexadecimal numbering system 

In this chapter we will explore some of the possible uses for the functions 
.1 and T, introduced before. One obvious app1 ication 1ies in the conversion 
of decimally represented information to another numbering system. The 
bases 2, 8 and 16 have been used for computers and, for our first i 11ustra­
tion, 1et 's build an algorithm to convert from the decimal to the hexadecimal 
(base-16) system. 

Just as in our ordinary base-10 system, we require ten distinct symbols 
(0 1 2... 9), so in the base-16 system 16 symbols are needed. Larger numbers 
are represented by adding positions on the left (provided, of course, we are 
talking about whole numbers and not fractions). For example, 10 is a two­
position number, 9 being the largest number able to be represented by a 
sing 1e symbo1. 

In the hexadecimal system the symbols are 0 1 2... 9 ABC D E F. If you 
were to ask why the letters A... F, the most appropriate response would be 
"why not?" We need some single symbol for each of the numbers 10 through 
15. New symbols could be invented or old ones used differently (like upside 
down or with a bar across them), but it really doesn't matter as long as 
they are used consistently. 

A decimal system number can be represented in so-called expanded notation 
as fa 11 ows: 

Number: 6325 
Decimal 2 1 

Expansion: 6x10 3 + 3xlO + 2xlO + 5xlO O 

We can define a hexadecimal number in exactly the same way, except that 
powers of 16 instead of powers of 10 are in valved: 

Number: lAF2 
Hexadecimal 1 0 

Expansion: lx16 3 + 10x16 2 + 15x16 + 2x16 

which is equivalent to 6898 in decimal form. 

In 1 CLASS there is a dyadic function HEXA which makes the conversion for 
us. The left argument is the number of positions we want to see represented, 
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the right argument is the number to be converted: 

)LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 

3 HEXA 254 
OFE 

2 llEXA 254 
FF: 

1 llEXA 254 
E 

Let's look at HEXA: 

\j HF XA [ ~J ] V 
\j R+N HEXA X 

[1J R+'0123456789ABCDEF'[1+(Np16)TX] 
V 

Np16 generates a vector of N components, ~ach of which is 16. If N is, 
say, 3, and X is 254, (Np16)TX is 

(3p16)T254 
a 15 14 

In expanded notation this is the same as 

2 l 0Ox16 + l5x16 + l4x16

and, on looking through the vector of 1iterals 0 1 2 .•• F, we see that since 
the a is in the first position, 1 in the second position, etc., it is 
necessary to add 1 to (3p16)T254 to pick up the subscripts for the right 
characters: 

1+(3p16)T254 
1 16 15 

257 is a number which needs three positions in hexadecimal notation: 

2 l
lx16 + Ox16 + lX16° 

Let's execute HEXA for this number, specifying first four and then two 
positions: 

4 llF:XA 257 
0101 

2 HEXA 257 
01 

We get a false impression if we don't specify sufficient positions. 
Incidentally, 0101 is a vector of characters: 

p4 1lEXA 257 
4
 

Do you see why?
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Hexadecimal to decimal conversion 

What	 about the reverse operation, converting from hexadecimal to decimal 
representation? Such a function, called DEC, exists already in 1 CLASS. 
Wei 11 use it before displaying it. It is monadic and requires quotes for 
the argument: 

DEC	 'OFE' 
254 

It seems OK in this example, so let's display it: 

\7DEC[OJv
 
\7 R+-DEC H
 

[ 1 ]	 R"*- 1 6.1 - 1 + ' 0 1 2 3 4 5 t) 7 8 9 ABCDE P , 1 H 
\7 

H represents the vector of literals in hexadecimal notation. The dyadic 
iota	 with H on the right picks up the positions of the corresponding charac­
ters	 in the left argument. Trying this out with OFE, we get 

'0123456789ABCDEF'1'OFE' 
1 16 15 

which is one position too high to use as the right argument of~. Hence 
1 is added before the base value function is applied: 

16~O 15 14 
254 

It should be clear why no left argument is needed in DEC. The base value 
function will automatically extend the scalar 16 in length to match the 
length of the right argument. 

If we were to try DEC with undefined characters, say, WER, we get a result: 

DEC	 'WER' 
4336 

but it is meaningless. To find out why, remember what the dyadic iota does 
for an element in the right argument not found on the left. It will produce 
the vector 17 15 17, and after adding -1 to each component we have 

16~16 14 if.) 
4336 

Now try 

DEC 5 HEXA 321 
321 

DEC 2 HRXA 321 
65 

and DEC and HEXA are inverse functions, provided that sufficient positions 
have been a1 lowed. 
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Check protection 

Another practical application is demonstrated by the function CP, which 
fills in the space before a number with stars up to a predetermined position. 
I ts use for check protection should be evident. CP, which is in 1 CLASS, 
is dyadic. The left argument is the total number of places to be fi lled up, 
including the dollar amount, and the right argument is the amount of the 
check. Here are a few examples: 

5 CP 301 
** 301 

5 CP 12345 
12345 

5 CP 00301 

**301 

Letls look at CP: 

vCP [ r] J\l 

\l R+N CP X;P 
[lJ R+'0123456789'[1+(Np10)TX] 
[ 2 ] P+ -1 +( R ~ , 0' ) t 1 
[3J R+(Pp'*' ),Pi-R 

\l 

Line 1 makes a vector of characters out of X, the argument, and adds enough 
OIS in front to make pR equal to N. Line 2 sets P as one less than the 
index of the first nonzero character, whi le 1ine 3 puts into R P copies of 
* followed by all but the first p components of R. 

PROBLEMS 

1.	 Define a function to remove commas from a character vector consisting 
of digits and commas, and convert the result to a numerical vector. 

2.	 Write an APL expression which determines whether or not, for a given 
three-digit number N, N is equal to the sum of the cubes of its digits. 

3.	 Use.l to write a dyadic function EVAL to evaluate at the point X a 
polynomial with coefficients C (descending powers of X). Compare with 
page 46. 

4.	 For M+'1234583' what are the differences between each of the fol­
lowing expressions? 

M+-1+'0123456789'lM 

/,1+ 1 0 1. - 1 + ' 0 1 2 3 4 5 6 7 8 9 ' 1 M 

~1 + 1 0 1. 0 1 2 3 4 5 6 7 8 9 [ t 0 1 2 3 4 5 6 7 8 9 ' 1 tvt ] 

5.	 It is a fact that a number N is divisible by 11 if the a1ternat·ing sum 
of its digits is divisible by 11. Construct an expression that uses 
the encode function with this condition to test for divisibility by 11. 
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Branching 

One of the more prominent features of most programming languages is the 
concept of branching. Some of you who are famil iar with other languages 
may be wondering why this notion, which involves selection of only some 
of the steps of a function or causes repeated execution under specified 
conditions, hasn't yet been presented in this course. The reason is due 
to the nature of APL, which makes it possible to solve many problems in 
a more straightforward way without branching. 

The branch instruction 

Whenever an algorithm requires a decision to be made as to what the next 
step should be, based on the results of some previous step, a branch is 
generally called for. This is nothing more than an instruction to alter 
the regular sequence of steps. 

We can demonstrate how this can be done by using a function cal led SORT in 
1 CLASS. The problem which SORT is designed to handle is a very simple 
one: Rearrange the components of a vector (here 3 143134) in ascending 
order. Actually there isn't any need to write a function to do this, since 
the grade up function can be used with subscripting to accompl ish the same 
thing very concisely (see page 154). But, at least, it will give us a feel 
for how branching can be used. 

Let's talk ourselves through the algorithm needed to solve the problem. The 
first and most obvious step is to start with a clean sheet of paper. Next 
we pick out the smallest value in the vector, see how many times it occurs, 
and write it down that number of times. Then we would cross these off the 
original vector, go back and pick out the smallest value from what's left 
and repeat the process above unti 1 all the numbers are used up. 

It isn't any great challenge to design a machine to go through the repeti­
tive steps, but it would need a safeguard built into it. We know when to 
stop; the machine would have to be instructed, otherwise it would continue 
its sequence of steps indefinitely. 

This means that our algorithm would have to have a step which says in 
effect "l ook each time through to see if any numbers are left in the 
vector; if there are any, go on, if not, stop." 
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Now we are ready to build the function SORT. Since only one argument is 
required, let's make it monadic and return an explicit result. Here is 
the heade r: 

VH+-SORT X 

To start with, R has nothing in it (corresponding to the clean sheet of 
paper). Thus, line 1 should be 

The next step is to look for the smallest number in X, which is L IX . 

But we need as many copies of it as there are in X. So what we require is 
really (X=L/X)/X to select them. Since these are to be added onto R, we 
can set 1ine 2 as follows: 

[2J R+-R,(X=L/X)/X 

We then look at what's left, which is the new X, namely, (X.rL/X)/X 

[3J X+-(X~L/X)/X 

This is as far as we can go, and now we have to repeat the process. In 
APL the instruction which directs the system to a step out of the normal 
sequence is the right pointing arrow ~, found on the same key as the speci­
fication arrow +-. The arrow, which may be read as " go to" or "branch t o ;!' 

has to be followed by some value to complete the instruction. In this case 

[4J -+2 

is the obvious step. 

Unfortunately, we have neglected to tell the system when to stop, so it will 
loop around steps 2, 3 and 4 forever. One logical place for this check­
poi ntis jus t be foreste p 2. Now what s h0 u1d i t be? 0 = p X will y ie 1d a 1 
if X is empty, a 0 if X is not. Our problem is how to write the complete 
statement so that this extra 1ine will cause execution to fall through to 
the next line (i .e., continue cycl ing) or cease, depending on the state of 
X. An instruction which does this is 

Here is how this works. If pX is ° (X is empty), then the instruction 
reads "branch to Oil (Ux II is 0). But there is no 1ine 0 in the function, 
and we are in effect asking the system to leave the function and return to 
desk calculator mode. Branching to ~ 1ine number which isn't in the 
function will do the same thing, namely, exit us from the function. Branch­
ing to 1ine 0 is guaranteed to work, however, because no function, no matter 
how big, has a line O. The header doesn't count as a line here, even though 
we refer to it as [0] in function editing. 

What if X isn't empty? Then OX10 is a vector of length 0, and the instruc­
tion reads "branch to an empty vector." A reasonable interpretation might 
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consider this to be no branch at all, and indeed this is the way it is 
used in APE. It simply causes execution to continue with the next state­
ment. 

x j is an interesting combination of APE functions. Its action is such 
t hat '/1/ hen itoc cursit can be rea d as! I if, II sothat 0 u r 1 i ne abo ve can be 
read "branch to 0 if X is empty." Incidentally, if the system is directed 
to branch to a nonempty vector, only the first component is significant. 

All these steps have been incorporated into the function SORT, and the 
1 ines renumbered. Load 1 CLASS and display SORT: 

)LOAD 1 CLASS 
SA VEV 15.02.39 07/29/69 

V5 0 R T L[] ] 'l 
\] R+-SORT X 

[ 1 ] R+-10 
[ 2 ] -+-OX10=pX 
[ 3 ] R+-R, ( X =L/ X ) / X 
[ 4 J X+-(X;tL/X)/X 
[ 5 J -+-2 

Can you think of a simple way to use the compression function with branching 
in 1 ine 2 to accomplish the same result? 

Let's try SORT on a couple of vectors: 

SORT 5 3 2 
2 3 5 

SORT 5 3 1 5 4 2 
1 2 345 5 

It seems to work satisfactori 1y, so wei 11 go on to a second example, the 
function CM?, introduced earl ier on page 141. Here is the original 
version, which doesn't contain any branches and prints outGRPATER,EQUAL 
or LESS after comparing its two arguments: 

VCMP[[]]V 
V A C/I,!P B 

[lJ «A>B)/'GREATFR' ),«A=B)/'F'QUAL' ),(A<B)/'LESS' 
V 

Comparing 3 and 5: 

3 C,Mp 5 

LESE 

Labels 

An equivalent function which does involve branching is CMPX: 
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\j Cj\;! P X [ nJ\j 

V A CMPX B 
[1J ~PIGGFRxlA>B 

[2J ~SMALLERxlA<B
 

[3J 'EQUAL'
 
[4J ~O
 

[5J BIGGER: 'CREATER'
 
[6J ~O
 

[7J SMALLER: 'LESS'
 
\j 

A new feature is used in CMPX, the colon on lines 5 and 7 as a separator. 
The name imme d iate 1y to the 1eft 0 f the co 10 n i s called a 1abe 1. InCMPX 
the label BIGGER appears on 1ine 5. Branching to BIGGER-r5equ i v a 1e n t to 
branching to line 5, the value of the label being set as soon as function 
definition is completed. 

Why use a label? It is convenient way to branch if there is any possibi1 ity 
that the function is to be later edited and lines added or deleted. For 
example, if line 1 tells us to branch to line 5 and we add aline between 
1 and 2, line 5 would then be what 1ine 4 is now, namely, a command to 
exit the function. So labels direct us to specific points in the function, 
rather than specific 1ine numbers. 

Labels are local constants and hence not known outside the function, as 
can be seen by inspection of the following 1ist of variables, which is from 
1 CLASS: 

) VARS 
B CIRCUIT D HELP l1 MILEAGE PREVIOUSTIME 
SPL STOP TABO TAB1 TAB2 TAB3 X Y 

Having labels local instead of global avoids confusion among labels in 
different functions, and prevents the user from accidentally resetting the 
label outside the function. However, unl ike local v~riab1es, they must 
not be listed in the header of the function. Also, they are automatically 
respecified each time function execution is initiated. 

CMPX, which has the two labels BIGGER and SMALLER, wi 11 be used to show 
these features. Notice what happens when we put the label in the header: 

\j c»PX [ 0 [11 5 J 
[ 0 J A CMPX B 

[oJ A CMPX B;BIGGER 
[ 1 J \j 

3 C.!VJPX 2 
VALUE' ERROR 
CMPX[1J ~BICGERX1A>B 

A 

~O (to remove the suspension) 

In order to illustrate the behavior of the label when the function is sus­
pended, let's edit CMPX to include a variable R which has no value 
assigned: 



5 

Branching 173 

\/CMPX[ Orl15 ] 
[OJ A C,~/PX B ;BIGGER 

1111111 
[ 0 J A CI,!P X B 
r i • [5.5JRV 

Now we'll execute the function for given values of A and B: 

3 CMPX 2 
CREATEI' 
VA LUE ERROR 
ClvJP X[ (; ] R 

BIGGER has a value assigned to it within this suspended function: 

BIGGER 

Suppose we try to ass ign a value to BIGGER: 

BIGGE'R+3 
SYNTAX ERROR 

BIGGFR+3 
1\ 

The system prevents us from so doing whi le in suspension. 

In addition, labels are found in the 1ist of suspensions: 

)SIV 

enP X r 6 J * A B BICGF? St·;1A LLER 

Editing of a suspended function contains a few pitfalls, as can be seen 
from the following display: 

vCMPX[1[l6J 
[lJ ~BIGGERxlA>B 

1111116 
[lJ ~LARGERxlA>R 

[2J [5[;6J 
[5J BIGGER: 'GREATFR' 

1111116 
[5J LARGFR:'GREATER' 
[6J \j 

SI DA/v1AGE 
)SIV 

* A B BIGGER S/,lA LLET? 
~1 

@ 

~O 

@ 

)SIV 
@ 
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3 C}v!PX 2 
GREATER
 
VALUE' ERROR
 
CMPX[6] H
 

1\ 

)SIV
 
Clv1P X [ 6] * A B LA R GEf,) EtviA [, L F:r?
 

-10-()
 

The message SI DA!'4AGE' indicates that the state indicator command is not 
operating properly, as can be seen from the fact that C!l1PX[G] is missing 
from the printout below it. 

Finally, here is another version of the same function. This one is called 
CL~1P Y: 

vC!·1 P Y [ •• ] V 
V A C/"-!PY B 

L1 ] -1o-4+2xSTGN A-B 
[ 2] 'LESS' 
[ 3 ] -10-0 

[ 4] 'FQUAL' 
[ 5 ] -10-0 

[ 6 ] 'GRFATER' 
V 

Line 1 is the key here. It subtracts B from A and uses the function SJ,__/N 
(page 72) to return 1, 1 or 0 depending on what comes out of the subtrac­
tion. The monadic signum function could be used in place of SIGN if we so 
desired. The result of SIGN is multiplied by 2 and 4 is added. Thus, if 
A is greater than B, A-B is positive and 1 ine 1 causes a branch to line 6. 
If A is less than B, we branch to line 2, whi le if A=R, we go to 1 ine 4, 
which is pretty sneaky, albeit effective way to go about it. 

One last comment about branching. I t is a powerful tool in defining func­
tions. Branch if you must, but with a 1ittle extra care and ingenuity on 
your part, you wi 11 often find a way to eliminate the need for it. 

Rules for branching 

We may summarize the rules for branching in function definition as follows: 

+ (any APL expression) 

is 

(1)	 INVALID if the expression results in other than a nonnegative integer 
or a vector whose first component (the only one which can cause a 
branch) is a nonnegative integer or a valid label. 

(2)	 VALID if the expression results in 

(a)	 an empty vector, which causes a branch to the next statement 
(b)	 a nonnegative integer outside the range of statement numbers of 

the function, which causes an exit from the function 
(c)	 a nonnegative integer inside the range of statement numbers of 

the function, which causes a branch to that line number 
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(d)	 a label, which causes a branch to that 1ine of the function 
on which the label is to be found 

Examples of branch instructions 

For the benefit of the reader, here is a 1ist of different ways of writing 
branch instructions in API,. Labels may be used in place of line numbers. 
Also, the membership function and any appropriate logical or relational 
function may be used in place of those listed. 

(1)	 Branch unconditionally to a fixed point in the program: 

-+5 
-+LA BF,' L 
-+3 x B +1 +-1+ 1 

(2)	 Branch unconditional out of the program: 

-+0 (or any nonexistent 1ine number) 

(3)	 Branch to one of two possible 1ines: 

-+(L1,L2)[1+X~YJ
 

-+( (X~Y) ,"'X~Y)/L1 ,L2
 

(4)	 Branch to one of several 1ines: 

-+( (X>Y), (X<Y) ,X=Y)/L1 ,L2,L3 
-+I¢Ll,L2,L3,... (1 IS A COUNTF:R) 

(5)	 Branch to a given 1ine or drop through to the next 1 ine: 

-r ( x : y ) / L 1 
-+(X?Y)pLl
 
-rLl xlX?,Y
 

-rLlrlX?,Y
 
-+(I¢Ll,L2,L3)xlX?Y
 
-+Ll xlX?I+-I+l
 

-+(X?Y)pL/Ll,L2,L3
 
or ( ( A < 0 ) , A > () ) / L:1 , L 2
 
-rIll IF C'
 

where IF is defined as follows for those users who prefer Engl ish in 
their instructions: 

v'A -<.-L 1 IF C \JA-<-Ll IF C 

[ 1 J A+C/Ll\J [ 1 J A+CpL:1 

It has the advantage of being able to handle vector arguments which Xl 

can't, and will work with 0 or without it. 

(6)	 Branch out of the program or drop through to the next 1ine: 
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-+(X~Y)/O
 

-+(v/,X~Y)/O
 

-+OXlX~Y
 

(7)	 Branch out of the program or to a specific 1 ine: 

-+((X~Y),X<Y)/Ll,O
 

-+L1xX~Y
 

(8)	 Branch to a given 1ine and specify and/or display: 

~ L 1 , pO+- ' [·1 E55 AGE'
 
-+L 1 , p X+- 3 LJ- P 1 12
 

Finally, as a reminder, to remove a suspension, execute 

-+0 

and	 to branch to a particular point in a suspended program, 

PROGRAM [9J
 
-+12
 

PROBLEMS 

1.	 Tell what each of the following commands does: 

A) -+( (5<JA/), 5>W)/3 2 

B) -+3 X1A=8 

C) -+ENDxY>,P+l lp 1 

D) -+(V/,BEC)/7 

E) -+ ( 5 O)[l+A>C] 

-F) -+ It<P3 4 7 9 

G) -+8 X107J+J-l 

H)	 -+4 x ( I X ) ~I +-I + 1 

I) -+AGAIN x l N = 2 xlpR+-2 4p 5 7 1 8 

2.	 Let T be a vector of "trash" characters, some of which may occur in the 
1 i teral vector V. Define an APL function that wi 11 el iminate the trash 
f rom V. 

3.	 Write a program to determine all three-digit numbers between P and Q
 
such that if the final digit is el iminated, the result divides the
 
or i gina 1 number.
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4.	 Use branchi ng to fin d the me d ian 0 f a set 0 f numbe r s . (See prob1em 11, 
chapter 21 for more information about the median.) 

5.	 Define a dyadic function DUPL that will locate all occurrences of some 
scalar N in a vector V and print out an appropriate message if the 
desired scalar is not present. 

6.	 Design an APL function so that it ignores all nonsca1ar input and takes 
the square root of any scalar argument. 

7.	 Take the opening two sentences of this chapter and define a function
 
to sort them out alphabetically, eliminating all punctuation marks and
 
blanks. Your output should list all the Als followed by the Bls, etc.
 

8.	 The mode of a set of data is defined as the most frequently occurring
 
number in the set. Write a program to find the mode.
 

9.	 The Fibonacci series is of the form 1 123 5 8 13 ... , where each term 
after the first two is the sum of the preceding two terms. Define a 
function which prints out N terms of the series. 

10.	 Define a function which will produce a histogram of a vector A of 
nonnegative integers, i.e., the height of the histogram forA[l] is 
A [ 1 ]. the he i ght for A [ 5] i s A [ 5 J, etc. Show how the his tog ram can 
be "cleaned Up" by replacing the OIS with blanks and the 1 l s with *. 

11.	 Use branching to construct a function which prints out an annual 
compound interest table. Design your function to produce three 
columns, the first to be the year, the second the value of the principal 
at the beginning of the year, and the third the interest accumulated 
during the year. Include appropriate column headings and round off each 
figure to the nearest cent. 
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Diagnostic aids 

Unti 1 the last chapter, execution of defined functions was relatively 
straightforward, proceeding from one line to the next in order. But since 
we introduced branching, it is possible for the sequence of steps to 
become quite involved. At such times it is often desirable to be able to 
follow what is happening on certain lines during execution. And, if 
problems arise, knowledge of what occurs at each step may be a definite help 
to us in debugging the program. 

APL provides two controls for tracing and stopping execution of defined 
functions. These will be examined and illustrated in the fo1 lowing sections. 

Trace and stop controls 

Our guinea-pig function wi 11 be SORT, which is in 1 CLASS: 

)LOAD 1 CLASS 
SAVED 15.02 .. 3907/29/69 

vSORT[OJv 
v R~80RT X 

[ 1 J s, 0 
[ 2 J -+OX10=pX 

[ 3 J R~R,(X=L/X)/x 

[ 4 ] X~(X;rL/X)/X 

[ 5 ] -+2 

The interesting 1ines here are 3 and 4. We can trace execution on them to 
see what has been put into R (line 3) and X (line 4) by the command 

T~8()RT+3 4
 
@
 

T 6 SOH Tis called the t race ve c tor for the fun c t ion .:0 R , and iss e t to 
trace 1i nes 3 and 4. !tWill rema inset to these 1i nes in SORT unt i 1 we 
remove it or change it. The trace lets us execute SORT and follow the 
progress of the trace. Here is an example: 
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SOR:t 3 2 4 3 2 c
:) 

SORT[3] 2 2 
SORT[4] 3 4 3 5 
SORT[3] 2 2 3 3 
SORT[4] 4 5 
SORT[3] 2 2 3 3 4 
SORT[4] 5 
SORT[3] 2 2 3 3 4 5 
SORT[4] 
2 2 3 3 4 5 

The fi rst time through R receives 10 and the vector 2 2, the smallest 
elements, whi le X is 3 4 3 5, which is what's left. The second time through 
3 3 is added to R, and X has just 4 5 in it, etc. 

1fthenext time we exe cute SORT we wan t to chan gethe t race ve c tor, all 
that is necessary is to respecify T680RT. Without actually doing it at 
this point, what do you think should be specified if we want to drop the 
trace altogether? 

Now let's look at the action of the stop control on SORT. I t operates in 
much the same way as the trace, but has the effect ot suspending the 
function just prior to the 1ines specified. For example, specify 

S/)SORT+-l5 
@ 

and execute 

SORT 3 2 3 2 

SORT[l] 

The response tells us where in the function we are suspended, the line 
number being the one to be executed next. This is confirmed by the state 
indicator: 

)S1 
SORT[ 1 ] * 

Since we are inside the function we might want to take a look at the values 
of the local and dummy variables, which are otherwise inaccessible to us. 
For instance: 

R 
VALUE l~'RROR 

R 
A. 

We get a value error since SORT is hung up just prior to line 1 and R 
hasn't been set yet. But X has already received a value: 

X 
323 2 

If we wanted to do so, X could be changed at this point by respecifying it. 
However, weIll continue with the execution of this function by using the 
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branch command: 

-+1 

80RT[21 

There is a stop on 1ine 2 also, and in fact on every 1ine in this function. 
Now we can get R: 

R 
@ 

No value error is returned here since on line 1 R was specified to be an 
empty vector, as shown by taking pR (remember wei re sti 11 inside the 
function) : 

pR 
o 

Continuing, we get: 

-+2 

SORT[3] 
-+3 

SORT[3] 2 2 

SORT[4] 

The new value of R, 2 2, is printed out here because the trace is sti 11 
set on lines 3 and 4. We could go on, but this should be enough to demon­
strate how the stop works. 

To turn it off, we respecify the stop vector as follows: 

S680RT+O 
@ 

Since there is no line 0 (the header doesn l t count in the numbering even 
though we can edit it by calling for [oJ), the stop vector is no longer 
set. This is just like branching to 1ine 0 to exit a function. 

Howeve r, we are s till suspended on 1i ne 4 of SORT: 

)8I 
80RT[4] * 

Branching to line 4 continues the execution without any further suspensions 
but with the trace sti 11 on (we havenlt taken it off yet): 

-+4 

SORT[41 3 3 
SORT[3] 2 2 3 3 
SORT[4] 
223 3 
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This time wei 11 turn the trace off in the same manner as the stop: 

T~SORT+O 

@ 

Now we try the state indicator 

)SI 
@ 

and we see that by having resumed execution in a function (SORT) which is 
completely executable and doesnlt have any stops on it, we have removed the 
suspension. 

SORT can now beexe cut edin the norma 1 fa s h ion: 

SORT 2 3 4 1 2
 
1 223 4
 

It pays to be selective in setting the trace vector. For instance, suppose 

T~SORT+l5 

and we execute SORT: 

SORT 2 3 2 1 4 5 

SORT[l] 
80RT[21 
SORT[3] 1 
SORT[41 2 3 2 4 5 
SORT[S] 2 
SORT[2] 
SORT[3] 1 2 2 
SORT[4] 3 4 5 
SORT[S] 2 

SORT[21 
SORT[31 1 2 2 3 
DORT[4] 4 5 
SORT[S] 2 
SORT[21 
SORT[3] 1 2 2 3 Lt 

SORT[4] S 
SORT[S] 2 
SORT[2] 
SORT[3] 1 2 2 3 4 5 
DORT[ Lt J 
SORT[S] 2 
SORT[2] 0 
1 2 2 1 4 S 

No useful information is obtained from the trace on 1 ines 1, 2 and 5. 

A fin a 1 note-b 0 t h the t race and s top co n t r 0 1 ve c tors can be. use d a 5 ali ne 
or part of a line in a defined function, since they are valid APL instruc­
tions. See the function TRACETT/,1F: on page 189 for an illustration. 
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Also, the trace and step vectors are not variables and are deleted when the 
function for which they are set is deletedl 

Recursion 

Sometimes it is necessary for a function to appear on one of the lines of 
its own definition. When this happens, it is said to be recursively 
defined. Here is an example, a defined function to calculate factorials, 
and found in 1 CLASS. The function is called FACT, but before displaying 
it, let's look at the definition of N! in conventional notation: 

undefined for N not a nonnegative integer 
N! 1 if N=O 

N x (N-l) ! if N~O 

By this de fin it i on 5! would be figured as 

5! 5 x 4! 
5 x (4 x 3! ) 
5 x (4 x (3 x 2!) ) 
5 x (4 x (3 x (2 x l!)) ) 
5 x (4 x (3 x (2 x (1 x O!)))) 
5 x (4 x (3 x (2 x ( 1 x 1))) ) 

This is the recursive approach. 

Now for the function FACT, which carries out a recursive calculation of a 
factorial: 

VPACT[: 1\7
 
\l H +- F ACT IV; Iin1
 

[ 1 ] -+ox iii ~ I LIv 
[ 2 1 -+b x l i/ =0 

r31 NM1«-N-l 
r 41 R+!,/xPACT 1//11 
[S] -+0 

r6] R+-l 
\l 

The local variable NMl stands for f]-1 and is useful for tracing the 
function. Line 1 causes a branch to ° if N is not a positive integer or O. 
Line 2 branches to 6 if N is 0, at which point R is set to 1 (since 10 is 
1) . I f N is nit 0 1i ne 3 set s lIl! 1 whi 1eli ne 4 set s R to N x PAC 'T N - 1 ~ 

which will itself result in execution of PACT. Each time the function 
comes to line 4, it gets deeper and deeper into successive levels of 
execution until N works its way down to 0. Then the system begins to work 
its way out to the surface again and finally exits on 1ine 5. 

Let ISS ee ifFACT 4 can beexe cute d : 

24 

This gives the same answer as !4 (since we set it up that way), but takes 
longer to execute: 
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! 4 

24 

I f we set a trace on FACT, vte can see how it develops. Lines 3, 4 and 6 
are our best bets here for tracing: 

T!1FACT+3 4 6 
FACT 4 

FACT[3] 3 
FACT[3] 2 
FACT[3] 1 
FACT[3] 0 
PACTr6] 1 
PACT[4l 1 
FACTr4] 2 
FACT[4l b 

FACTL4l 24 
24 

The fi rst time through 1ine 3 sets Nii : to be 3. But when execution drops 
through to the next 1ine, in order to execute FAC']' 4, FACT j has to be 
calculated first. So the system cycles through the first three steps 
aga in, an d t his time the t r ace on 1 i ne 3 show s t hat N/~11 i s 2. This will 
continue until N/.11 is 0 . At this point, when the system tries to calculate 
FACT 0 it loops through steps 1 and 2 and branches to 6, yielding a 1. 

Meanwhi le, back on line 4 there finally is a value to put in R, namely, 1, 
which is followed by 2, 6 and 24 in succession as the function works its 
way out. 

Now let's turn the trace off and set the stop control at 6 to explore 
what's happening near the end of the function: 

TI1FA CT+O
 
S!1FACT+6
 

FACT 4
 

FACT[61 

We are suspended just prior to 1ine 6. The state indicator shows some 
interesting results: 

)SI 
FACT[6] * 
FACT[4] 
FACT[4] 
FACT[4] 

FA CT[ 4 1 

Line 4 is 1isted four times as pending, which isn't surprising since we 
are held up on that 1ine that many times, each time getting deeper into 
the fun c t ion wh i 1e wa i tin g for N/.11 t 0 reach o. 
We can get out by branching to 1 ine 6, which our previous trace shows we 
won't encounter again: 
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-+6 

24 

If this is what we get into with an argument 4, what do you suppose would 
happen if we ask for FACT 50? This wi 11 take qui te a whi le, and we may 
want to interrupt execution with the ATTN button before line 6 is reached: 

FACT 50 

PACTf2l 

We get a suspension on line 2. Let's see what the state indicator shows: 

)81 
PACTr21 * 
PACTr 41 
PACTr4] 
FA CTr 4 1 
PACTf 41 
PACTr41 

Execution of this 1ist has been interrupted by the use of the ATTN button, 
since otherwise it would be apt to run on for some time. 

What happens if we try to get out of this mess? If we branch to line 6, it 
might go on a lot longer while the system worked its way out. Branching 
to 0 wi 11 get us out, as indeed wi 11 typing ~ alone: 

-+0 

VA LUE ERROR 
PACT[ 4l P+NxFACT ur: 

1\ 

We get a value error because FACT hasn't been set yet. As a matter of 
fact (no pun intended!), any solution we come up with to get out, since 
branching to 0 didn ' t work (check this by executing )51 again), wi 11 be 
expensive if it doesn ' t involve destroying the function. 

At this point the function is in a pretty sad state. We are suspended at 
great depth. The sequence of commands that wi 11 get us out is to first 
save the active workspace, then clear, and copy the saved workspace. 
CONTIIIUR is always available to us (CAUTIONI don i t use for long term 
storage), so wei 11 save into CDNT1NUR: 

) SA r;E COIIT I II UE 
8.5B.14 04/03/70 

)CLFAH 
CLRAH ;/8 

)c () pvC ()1/T J uif f,' 

SAVED 8.58.14 04/03/70 

The coPY command copies all the global objects in C'ONTINUF, but won't 
cop y sus pen s ion s . Howe ve r, 1oa din g CON T I lJUF will b r i ngal on gal 1 the 
sus pen s ion s ass 0 cia ted wit h the fun c t ionsin CON TI IV U h,' '. l f we don' twa nt 
to keep the function, the easiest way out would be to delete it with the 
!,,'/-?Il.,r:r command, or drop the enti re workspace without saving it. These 
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alternatives may be unacceptable if the workspace and function are im­
portant to the user. Just remember that copying an entire workspace uses 
up a considerable amount of CPU time. 

PROBLEMS 

1.	 Trace the execution of each of the functions developed in the problem 
section at the end of chapter 24, problems 2, 7 and 8. 

2.	 The function below uses the Eucl idean algorithm to get the greatest 
common divisor of the two arguments: 

V Z+A CCD B 
[ 1 J Z+A 
[ 2 J A+A I B 
[ 3 J B+Z 
[ 4 J ~A ~O 

'\/ 

Ent e r the fun c t i on GCDin you r own wor kspa ce and t race its exe cut ion 
for A+75 and B+-105. 

3	 ACK is a function constructed for the purpose of proving that nonprimi­
tive recursive functions do exist, and is named after its creator (see 
Communications of the ACM, page 114, Vol. 8, No.2, February, 1965). 
F0 11ow the ex e cut ion 0 f J1 CK wit h the t race and s top co nt ro 1s : 

V R+I ACK J 
[lJ ~(O=I,J)/ 4 3 
[2J ~O,R+-(I-l) ACK I ACK J-l 
[3J ~O,R+(I-l) ACK I 
[4J R+-J-1 

V 

Use	 small values for I and J. 
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Miscellaneous APL functions 

This chapter wi 11 be concerned with two groups of functions, one of which 
is helpful in a wide variety of mathematical algorithms, while the other 
gives information about the state of the APL system. 

Circular functions 

The operator symbol for this group is the large ci rcle 0 (upper shift 0). 
With one exception the functions are all dyadic, the left argument being 
one of the integers -7 to 7 and the right argument a scalar or vector 
(expressed in radians for the trigonometric functions): 

ooX (1-X*2)*.5 

loX sine X 
20X cosine X 

30X tangent X 
LtOX (1+X*2)*.5 

SoX hyperbol ic sine of X (sinh X) 
60X hyperbol ic cosine of X (cosh X) 
70X hyperbol ic tangent of X (tanh X) 
loX arcsin X 
20X arccos X 
30X arctan X 
40X (-1+X*2)*.S 

SoX arcsinh X 
60X arccosh X 
70X arctanh X 

There is a monadic function which, strictly speaking, doesn't belong in this 
group, but is included for completeness: 

oX XxPI 

To get PI itself, execute 

01 
3.141592554 

186 
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The inverse (arc) functions return only the principal value of the angle: 

302
 
2.1B5039863
 

30-2.185039863
 
1.141592654
 

301
 
1.557407725
 

301.557407725
 
1 

so that the resultant of an expression 1ike 

30300 
o 

will be the same as the right argument only if the angle 1 ies in the 
proper quadrant. These are from -PIf 2 to +PIf 2 for the s in and tan, and 
from -PI to +PI for the cos function. Further detai 1s can be obtained 
from any standard text on trigonometry. 

The functions can be shown to satisfy the usual trigonometric identities, 
a few of which are illustrated here: 

(30l5)=(10l5)f20l5) 
1 1 1 1 1 

which corresponds to the identity 

tan X (sin X)/cos X 

in conventional notation, and 

1 

analogous to 

The hyperbolic functions are defined in conventional notation as follows: 

x -X X -X 
sin h X = _e - e _ cosh X e + e tanh X = sinh X 

2 2 cosh X 

This can easi ly be demonstrated on the terminal: 

503.8 
22.33940686 

«*3.8)-*-3.8)f2 
22.339l.+0686 

602 
3.762195691 

«*2)+*-2)+2 
3.762195691 
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706 
0.9993877117 

(506)f606 
0.9999877117 

(((604.4)*2)-(504.4)*2)=1 
1 

This last example is one of the fundamental hyperbol ic identities: 

2X 2X
cosh - sinh = 1 

In addition to their uses in problems involving the trig functions, to those 
who are fami liar with the calculus the value of having a complete set of 
circular functions readily available will be obvious. For instance, to 
name just a few possibi lities: 

d • XdX sin cos X 

d -1
dX arccos X 

Il=X2 

~ - arcsinh X + CfA+x 2 ­

~seCh2XdX tanh X + C 

I-beam functions 

The functions in this group are called I-beam because the symbol used, 
formed by overstriking ~ and T, looks like the cross-section of an I-beam. 
They are monadic and defined only for certain integer arguments, each of 
which gives information about some current aspect of the APL system. 
Wherever clock times are involved, they are given in sixtieths of a 
second. 

The fir s t 0 f the se fun c t ion sis I 1 9, wh i ch g i ve s the tot a 1 time the use r I s 
keyboard has been unlocked in the current session: 

I19 
38230 

Anothe r is I 2 0 : 

r20 
3126710 

Your result for this function, as indeed for all the I-beam functions, 
probably wi 11 be different from what is shown in the sample executions in 
this section. I20 gives the time of day. To represent it in a more 
meaningful fashion wei 11 use the representation function: 

60 60 60 60TI20 
14 28 46 45 
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In our discussion of ni ladic headers in chapter 11, the example function 
TIME was given. We have now reached the point where we can open it up 
and see how it is constructed: 

)LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 

TIt,1E 
02:29:00	 PM EASTERN
 

'VTIME[OJ'V
 
'V TIME;T 

[lJ T+ 2 12 60 GO 60 TI20 
[2J T+4pT 
[3J T[2J+T[2J+12xT[2J=Q 
[4J T+l00.lT 
[5J T+10,(2,6p10)TT 
[6J ('0123456789:'[1+T[3 4 15617 8JJ),' 't('AP'[1+T[2lJ)~ 

'M EASTERN' 

Of course, this result could be off, since the time is set by the system 
operator. However, the elapsed time between two events is fairly accurate. 
Line 1 of TIlv}E takes the current time, represents it in a mixed number 
system, and assigns it to the local variable T. The 2 on the left stands 
for the two time segments AM or PM. Line 2 throws away the last component 
of T (sixtieths of a second), whi le the next 1ine takes T[ 2], which is 
hours, and modifies it so that 0: 05 is printed as 12: 05. Lines 4 and 5 
give the value of T in the base 100 and then extend it out. The last 
line picks up the different components to give the display shown in the 
resul t , 

There is a function called TRACETIME that traces what is happening on 
each line. It is niladic and can be executed simply by typing the name: 

iin» 
02:31:09 PM EASTERN 

TRACETIf.1E 
TIME[l] 1 2 31 15 15 
TIME[2J 1 2 31 15 
TIft1E[ 3 J 2 
TIt1E[4J 1023115 
TIME[5] 10 1 0 2 3 1 1 5 
TIME[6J 02:31:15 PM EASTERN 

Here is the function displayed: 

'V T RA CETI/·} E [[J J 'V 
'V TRACETIft1E 

[lJ T6TIME+16 
[2J '1'"1I MEl 
[3J T~TIME+10 

'V 

The trace control is fi rst set on 1ine 1, then TIME is called for, and 
finally the trace is removed after execution. 
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I21 gives the CPU time since sign-on: 

I21
 
3
 

To find out how much CPU time has been used up to execute a particular 
function, all that is necessary is to take the di fference in I21 before 
and after execution. This will be util ized later in a function called 
CPUTI/1E . 

I22 gives the number of bytes sti 11 unassigned in the active workspace. 
Since each workspace has only a limited amount of storage, it is quite 
possible that we may not have enough space to store everything we want. 
For example: 

Y+-l10000 
YS FULL 

Y+-l10000 
A 

How much room i s the re ? Each A P L 1i t era 1 cha racte r usesup 1 by t e, wh i 1e 
each integer (up to 2*31) takes 4 bytes, except for 0 and 1, which require 
1/8 byte. 8 bytes are needed for all other numbers. 

At present, in the active workspace, we have 

I22 
14932 

bytes left. Now get a clean workspace and execute the function again: 

)CLRAR 
CLEAR JiS 

I22 
31868 

which is the number of available bytes per workspace in this APL system. 
Some additional space is taken up in the management of the workspace. 
Before going on, this is a good time to remind you that a considerable 
amount of storage may be eaten up by suspended functions, so that it pays 
to find out what is wrong and remove the suspension. 

Letis now re load 1 CLASSan d 100kat I 2 3 : 

)LOAD 1 CLASS 
SAVED 15.02.3907/29/69 

I23 
19 

I23 gives the number of users currently on the system, including the APL 
operator, so that you can judge when a good time would be to get on the 
system if you have some heavy computing to do. 

I24 gives the sign-on time: 

I 2 L~ 

3083695 



Miscellaneous AP L Functions 191 

so the total elapsed time since sign-on (in sixtieths of a second) is 
(120)-124 . 

125 gives the current calendar date, with the day, month and year run 
toge the r: 

125 
42870 

We can make it look more 1 ike a proper entry by executing 

100 100 100T125 
4 28 70 

126 furnishes the current value of the 1 ine counter. I f no functions are 
suspended, then 126 is 0, as in the present case: 

126 
o 

If a function is suspended, it gives the number of the 1ine on which the 
most recent suspension occurred, and corresponds to the top entry of )SI . 
It is also useful in branch instructions where it is desired to move ahead 
N statements. This can be done by entering 

-+11+126 

127 is another 1isting of suspensions, giving just the 1 ine numbers to be 
found currently under )SI: 

127 
@ 

Here is an example combining a number of these functions. Display the func­
t i on 7'I ME Fit CT : 

'l T I J1 EFACT [ [J ] 'J
 
\J TIMEFACT N;S
 

[ 1 ] CrU'TI!vlE 
t t[ 2 ] 

[ 3 J S+!ll 
[ 4 J CPU .r2I fc1E 
[ 5 ] S+x/lN 
[ 6 ] CPUTII4E 
[ 7 1 S+FACT IV 
[ 8 ] CPUT If,1E' 
[ 9 ] 8+FACTLOOP N 
[10J	 CPUTIf.1E 

V 

This function obtains the factorial of N four different ways (1 ines 3, 5, 7 
and 9) and use s the fun c t ion CPU T I/.1 E top r i n t 0 ute 1a psed CPU time for 
each execution. 

Let's now look at CPUTI1,1E: 
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vCPU T I/.1E [ LJ ] V 

V CPUTI1·1E 
[lJ 0 60 60 60 TOf(I21)-PREVIOUSTIME 
[2J PREVIOUSTIME+I21 

V 

All it does is subtract from the current CPU time, I21 , PREVIOUSTIlv1E 
(a global variable) and represent it in a mixed number system. Then 
PREVIOUSTIl4E is updated by being set to the current value of the CPU 
time. If we attempt to use CPUTIME without setting PREVIOUSTIME we 
wou 1d get an err0 r mes sage , but PR ~-, VIOU S T I l1E has a 1rea dy bee n set: 

PREVIOUSTIME 
o 

CPUTIME 
o 0 0 19 

Here is FACTLOOP 

VFACTLOOP[lJJv 
V R+FACTLOOP N 

[lJ R+1 
[2J -;.oxlN=O 
[3J R+RxN 
[4J N+N-1 
[5J ->-2 

V 

It is monadic, sets R to 1 on line 1, and allows us to exit the function if 
N is 0 (1 ine 2). Line 3 resets R to RxN, 1 ine 4 reduces N by 1, then loops 
back to 1 ine 2, etc. By setting R to 1 at the beginning, this also works 
fo r !l = 0 . 

Now try FACTLOOP 5: 

FACTLOOP 5 
120 

which is the same as 

! 5 
120 

In examining the amount of time required for each of the algorithms in 
TIMEFACT, the fi rst appearance of CPUTI!·1E is used to clear out 
PRE VIOU S T 1/1 F: sothat, i n e f f e c t, we s tar t from s c rat c h afte r the i nit i a 1 
1 ine of the printout. 

Let1s try TIMEFACT 20 

TIMEFACT 20
 
0 0 0 11
 

0 0 0 1
 
0 0 0 1
 
0 0 0 51
 
0 0 0 31
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!N and x / l N both requ ire 1/60 seconds, whi 1e the recu rs i ve FA CT and the 
iterative FACTLOOP need 51/60 and 31/60 seconds of CPU time, respec­
tively. The amount of time required wi 11, of course, differ from one sys­
tem to another, so that your results wi 11 not necessari ly be simi lar to 
those above. 

TIM EF ACT 50s hows the d iffere nce s eve n mo red r ama ticall y : 

TIf.1EFACT 50 
a 003 

a a a 1
 
000 3
 
002 5
 
o 0 1 17 

I26 and I 2 7 have some add it i ona 1 uses in connect ion with suspended func­
tions. To illustrate these, do FACT 50 and suspend it wi th the ATTN 
button right after the return: 

FACT 50 

FACT[3] 

To see where we are: 

)SI 
FACT[3] * 
FACT[4] 
FACT[4] 
FACT[4] 
FACT[4] 
FACT[4] 
FACT[4] 
FACT[4] 

and again ATTN is used to interrupt the list. We are oDviously pending on 
1i ne 4. But at what depth? 

One way to get a picture of this which doesnlt take quite so much time and 
room is to call for I27 : 

I27 
3 4 4 4 4 4 4 4 4 L+ 4 4 4 4 4 4 4 

L+ 4 4 4 4 it 4 4 4 4 

But it IS a lot neater to ask for 

pI27 
28 

to see how many 1i nes there are in the 1is t i ng. 

Wh i 1e wei re at it, we are s till suspended on 1 i ne 3 : 

I26 
3 
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so	 we I 11 remove the s uspens i on by ca 11 i ng for 

-+I26 
3.04140332E64 

which is the same as 

! 50 
3.04140932E64 

PROBLEMS 

1.	 Dr ill 

1001 2 01-;-180 2001 

180-;-01 4013 30 3015 

201001-;-2 10101 1 201 10.5 

2.	 Construct a table of sines of angles from 0 to PI-~2 radians in steps 
of PI-;-20 radians. 

3.	 Use the function CPUTIME to compute the difference in computing time 
for calculating 2!10 and(!10)-;-(!2)x!8. See chapter 4 for a discus­
sion of the algorithm. 

4.	 Show that the following identity holds: 

5.	 Use I25 to construct a function that wi 11 express a date as MM/DD/YY. 

6.	 Define a dyadic function TIfiv1E whose arguments are scalars. The left 
argument X may be either 12 or 24, and the right argument Y may assume 
values 1, 2, or 3. The function is to furnish the time in either a 
24-hour or 12-hour system, printing hours, minutes, and seconds if 
Y is 3, hours and minutes only if Y is 2, and hours only if Y is 1. 
Times are to be truncated with no rounding off if the value of the 
dropped seconds or minutes is 3O-or more. Midnight is to be expressed 
as 00. 

7.	 Use reduction to express the identity 

Compare your version of the identity with that on page 187. 
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Multidimensional arrays 

Except for some earl ier app1 ications of the dimension, restructure, and 
ravel functions, just about all of our work has been with scalars and 
vectors. Many of the other functions studied so far can take as arguments 
arrays of rank higher than 1. In addition, there are a number of useful 
functions specifically designed to make possible the manipulation of such 
multidimensional arrays. These wi 11 be taken up in this and the next 
few chapters. 

Review 

Our start will be a two-dimensional table which lists the number of 
purchases made of three items, A, B, and C, during four successive weeks: 

A B C 

week 2 0 

2 3 2 

3 3 4 2 

4 3 3 0 

This data is truly two-dimensional, since each entry in the table needs 
two coordinates to specify it properly: the week and the item. 

We can bui 1d this table with the restructure function but, before doing 
so, execute CLEAR so that wei 11 be able to operate in a fresh workspace: 

) CL~'AH 

CLEAR WS 

The twelve entries in the table wi 11 be stored in V. Note the row by row 
o rde r: 

V+1 2 0 1 3 2 3 4 2 3 3 0 
pV 

195 

12 
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Since the table itself has four rows and three columns, we need 

4 3p V 

120 
1 3 2 
342 
3 3 0 

This table wi 11 be used frequently in the chapter and, to save time, letls 
putit in M: 

'vI+-4 3p V 

pM gives the structure of the table: 

pM 
1+ 3 

and, of course, M is the table itself: 

Iv! 

1 2 0 
1 3 2 
3 4 2 
3 3 0 

Dyadic operations on matrices 

There are a number of things we can do to manipulate the components of M. 
For instance, we can increase each component by 2: 

2 -» 

342 
354 
564 
552 

or divide it by 3: 

0.3333333333 0.6666666667 o 
0.3333333333 1 0.6666666667 
1 1.333333333 0.6666666667 
1 1 o 

If we had another matrix of the same size, the two could be added or multi­
plied or what have you, component by component. Rather than define another 
matrix, wei 11 use M itself: 
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/v}+J1 

2 4 0 
2 6 4 

6 8 4 
6 6 0 

/v}xM 

1 4 0 
1 9 4 

9 16 4 

9 9 0 

Note that this latter example is not ordinary matrix multipl ication (to be 
covered in a later chapter). It ~an extension of our earl ier rules for 
multiplying two vectors, component by component. In fact, the rules de­
veloped on page 13 with scalar and vector arguments for all standard 
scalar dyadic functions hold equally well for matrices. 

But why stop there? If they hold for matrices, why not for arrays of rank 
3 and higher? This is indeed the case, the only stipulation being that the 
arrays have to have the same dimensions and rank. If you were to violate 
this rule and try to perform dyadic operations on some matrices by hand, you 
will quickly see the necessity for it. 

There is one exception to this. Just as a scalar can be used as one of 
the arguments along with a vector, the scalar being automatically extended 
to match the length of the vector, so scalars can be used with higher dimen­
sional arrays in exactly the same way. Our first two examples on the last 
page, 2 +lvf and /vI ~ 3, show t his c 1ear 1y . All 0 f wh i c h 1e ads us to an 
interesting conclusion. Scalars are l-component arrays of rank 0; hence, 
the entire set of rules can be boiled down to: 

any- d i mens i ona 1 (an y- d i mens i ona 1\ a nY- d i me ns i ona l) 
array ~(----- array ) ( array 

with the array restrictions on dimension and rank previously stated and 
allowing the combination scalar-higher rank array on the right. here0 

stands for any standard scalar dyadic function. 

Monadic operations on matrices 

Matrices (and other arrays of higher rank) can also be used as arguments 
for standard scalar monadic functions. Here are the subtract and factorial 
of M: 

-M 

120 
132 
342 
330 
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!M 

1 2 1 
1 6 2 
6 24 2 

6 6 1 

Just as with the standard scalar dyadic functions, so a single rule suffices 
for the standard scalar monadics, keeping in mind that the shape of the 
result is the same as that of the argument: 

any-dimensional f (anY-dimensional) 
array ~. array 

f being any standard scalar monadic function. 

Operations along a single dimension 

In a two-dimensional table such as M, we might conceivably be interested 
in several sets of sums (in a vector there is only one possible sum) 
obtained along either of two directions. For example, the total amount 
of each item bought over the four week period and the total number of all 
items	 sold weekly can be gotten by summing over the rows and columns: 

week	 1 

2 

3 

4 
sum over 

4 weeks 

A B	 C 

1 2 0 

1 3 2 

3 4 2 

3 3 0 

8 12	 4 

sum over items
 
purchased
 

3
 

6
 

9 

6 
grand 

sum 24 

the grand total being 

8+12+4 
24 

which	 should be the same as 

3+6+9+6 

Now 100kat + / /.J 

+ / AI 
3 6 9 (; 

Itls the same as the sums over the items purchased. What about the sums 
over the four-week period? This brings up the question of how we specify 
which coordinate of a multidimensional array we want to sum over, a problem 
which, for obvious reasons didn't arise when we were dealing only with 
vectors. 
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Let's go back to M. Its structure is 4 3, four rows and three columns, so 
+/M is really the sum over the last coordinate, which is the dimension 
along which we have three components. In APL this can be also done with 

+ / [ 2 ] Iv!
 

3 6 9 6
 

and, by analogy, the other set of sums is 

+/[lJ/11
 

8 12 4
 

It isn't necessary to specify [1J for reduction over the first coordinate. 
An alternate instruction which does this is f, which is formed by overstrik­
ing the reduction and subtract symbols: 

+fM 
8 12 4 

However, for a three-dimensional array, neither f or / alone will produce 
reduction over the second coordinate, and it still is necessary to tvpe vl z l 

Now we made M by restructuring V: 

V 
1 201 3 2 3 4 2 3 3 o 

Summing, we get 

+/v 
24 

and 

+/[lJV 
24 

there being only one coordinate associated with a vector. The conclusion 
we can draw is that when no coordinate is specified, the last one is 
assumed. 

What if we try to sum over a nonexistent coordinate? 

+/[3JM 

120 
1 3 2 
342 
330 

This results in M itself. Similarly, 

+/[2JV 
1 201 3 2 J 4 2 3 J o 
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gives V. Now we can explain why we get the same sort of response for a 
scalar: 

+/5 

The sum is over the last coordinate, none being specified. But there is 
no last coordinate (in fact, none at all, this being a scalar). Hence, the 
argument itself is returned. 

For our final exercise, suppose we want to find out what the row and 
column averages are, or in general averages across any coordinate. The 
techniques to be developed here will be recognized by those with a 
background in statistics as having appl icabi 1ity, with just a bit more 
sophistication, to such procedures as analysis of variance. 

In M the averages are 

week 1 

2 

3 

4 
item 

averages 

A B C 

1 2 0 

1 3 2 

3 4 2 

3 3 0 

2 3 1 

week 
ave raqe s 

1 

2 

3 

2 

Each of the sums over the first coordinate was divided by the number of 
components in that direction, four, and each of the sums over the second 
coordinate was divided by three. Note that this is the same as the order 
and magnitude of the dimension vector, 4 3. 

There is a function called MEAN in 1 CLASS that wi 11 compute these 
averages for us. Let's first copy it and then display it: 

)COpy 1 CLASS MEAN 
SAVED 15.02.39 07/29/69 

V/';EA IV [ UJ V 
V R+-K 1:.16'AN X 

[1J R+-(+/[KJ X)+(pX)[KJ 
'V 

It is dyadic, the left argument K being the coordinate of the array X over 
which we are averaging. The function takes a given coordinate of X and 
divides the sum over that coordinate by the number of components comprising 
that sum, as explained above. 

Let's 
nates: 

try it on M. Here are the averages over the first and second coordi­

2 

1 

3 

2 

1 
1 
2 
3 

PEAN 

f,fEAN 
2 

"'1 

l>I 
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The	 overall average is 

1 MEAN 2 MEAN "1 

If you try 2 Iv1EAN 1 MEAN M, voul ] find it wont work. Do you see why 
this is so? 

PROBLEMS 

1.	 Drill. Specify 5+4 5P¢120, T+4 5P120, U+2 34p124 

S+T SsT f/r/flu 

2xS+Tf2 +/[2]T f/,U 

5LT +IT xlU 

31T	 +/+/[l]T 

2.	 Write an APE expression to select N different random elements from 
a matrix M. 

3:	 Show how to add a scalar N to each element in the odd rows of a matrix 
M. 

4.	 The matrix GR3 contains the grade records (A, B, C, D and F) of 25 stu­
dents in a class, with the fi rst row listing the number of A1s received 
by each student, the second row the number of Bls, etc. Each course 
represented in the matrix is three credits. A similar matrix GR2 
records grades for two-credit courses, and CH1 for one-credit courses. 
Write a program to calculate the grade point average for each student 
and for the class. (The grade point average is computed by multiplying 
4 times the number of A credits, 3 times the number of B credits, etc., 
adding them up, and dividing by the total number of credits earned.) 

5.	 Write an APL expression to construct a 4 4 matrix made up of random 
integers in the range 1 to 100 . 

6.	 You are given five vectors Vl-V5 of invoices from fifteen customers. 
The first represents bills under 30 days old, the second 30-59 days 
old, the third 60-89 days, etc. All entries with a given index are 
associated with the same customer. Write a program that will 
(1) construct a matrix of these invoices with each vector Vl-V5 occupy­
ing a single row; (2) print the total amount of receivables in each 
category and separately for each customer, with an appropriate message; 
(3) print the grand total of all receivables with an identifying message; 
and (4) identify which customers 1-15, if any, have invoices outstanding 
more than 59 days (at which time they become overdue). 
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Extensions of mixed functions to 

multidimensional arrays 

This chapter will be devoted to a study of the effects of various standard 
and mixed functions on multidimensional arrays. Although there are some 
functions operating on arrays that haven't yet been introduced, a discus­
sion of them will be deferred to chapters 29-31. 

Reversa 1 

Since it is easier sometimes to see what is happening with characters, weill 
first specify a matrix X of literals as follows: 

X+3 4p'ABCDEFGHIJKLM' 

Here is X: 

X 

ABCD 
EFGH 
IJKL 

The reversal of this matrix is 

¢x 

DCBA 
flGFE 
LKJ I 

It reverses along the last coordinate and, in this respect, acts just like 
+/M in the last chapter, where the reduction took place over the last 
coordinate if none was specified. Hence, ¢X is equivalent to ¢[2]X: 

¢[2]X 

DCBA 
HGFE 
LKJI 

202 
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and, to get reversal over the first coordinate, we should execute 

¢[l]X
 

IJKL
 
}; F Cn 
ABCD 

As in reduction, the functions reversal and rotation (see next section), 
operate over the first coordinate by overstriking the large circle with 
the subtract sign 6: 

ex 

IJKL 
EFGH 
ABCD 

What do you suppose would happen if we tried ¢[3]X or any nonexistent 
coordinate? Try it and see. 

Rotation 

This operation too takes place over the last coordinate unless one is speci­
fied. Thus: 

l¢X 

PCDA 
FGlJE 
JKLI 

This is equivalent to 

1<p[2]X 

BCDA 
FCHE 
JKLl 

whi le rotation over the first coordinate can be obtained by 

l¢[l]X 

EFCH 
IJKL 
ABCD 

or 
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leX 

EFGH 
IJKL 
ABCD 

Here is X again for comparison: 

ABCD 
EFCH 
IJKL 

There is another more general way to use rotation, in which we can 
specify in vector form in the left argument how we wish to rotate each 
component of a given coordinate. For example, suppose we want to move 
the first row leftward one position, the second row leftward three posi­
tions and the third row two positions to the left. This can be done with 

1 3 2<P[2]X 

ECDA 
HEFC 
KLIJ 

The [2J isn't needed here for the reason stated previously. To do something 
~ ~~ng the first coordinate, we need four components in the left argument: 

o 1 2 3¢[1]X 

AFKD 
EJCH 
IBGL 

and 

o 1 2 3eX 

AFKD 
EJCH 
IBGL 

Thus, the left argument is either a scalar or a vector whose dimension is 
the same as the number of components in the coordinate over which the 
rotation is to take place. Here are some examples operating on an array 
of rank 3, TAB3 : 
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)LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 

TAB3 

111 112 113
 
121 122 123
 
131 132 133
 
141 142 143
 

211 212 213
 
221 222 223
 
231 232 233
 
241 242 243
 

1¢1'AB 3 

112 113 111
 
122 123 121
 
132 133 131
 
142 143 141
 

212 213 211 
222 223 221 
232 233 231 
242 243 241 

( 2 3p13)¢[2]TAB3 

121 132 143
 
131 142 113
 
141 112 123
 
111 122 133
 

221 232 243 
231 242 213 
241 212 223 
211 222 233 

(24p13)¢[3]TAB3 

112 113 111
 
123 121 122
 
131 132 133
 
142 143 141
 

213 211 212
 
221 222 223
 
232 233 231
 
243 241 242
 

2 4p 1 3 

1 2 3 1
 
231 2
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These latter two illustrations need careful examination in order to see 
what is happening. For instance, look at the last example, in which the 
rotation is over the third coordinate. The left argument is, itself, a 
matrix. Picking out a couple of these entries at random, the element 3 
in the second row, second co 1umn of 2 4p 1 3 te 11 s us to rotate the second 
row, s e co nd p 1an e 0 f TAB 3 by t h re e posit ion s (whieh 1eavesit unchan ge d) . 
The element 1 in the first row, fourth column causes the fourth row, first 
plane to rotate one position to the left. By trying out a few additional 
examples yourself, you should be able to see how the left argument 
determines the rotation of the array. 

Compression and expansion 

As you might expect, the left argument must have as many lis and OIS as 
the number of components in the coordinate over which compression occurs. 
Here is an example in which the third component of the second coordinate 
is e1 ided. We will use the 1itera1 matrix X defined below: 

X+3 4p'ABCDEFGHIJKLM'
 
1 1 0 1/[2]X
 

ABD 
EFli 
IJL 

To remove the second row, we can compress over the first coordinate: 

1 0 l/[l]X 

ABeD 
IJKL 

Once more, compression and expansion over the first coordinate can be 
obtained by overstriking with the subtract sign: 

1 0 lfX 

ABCD 
IJKL 

If in X we want to insert something between, say, the thi rd and fourth 
components on each row, we can use expansion over the second coordinate: 

1 1 1 0 1\[2]X 

ABC D 
EFG H 
IJK L 

while to get a row of blanks between the second and third rows, we execute 
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1 1 0 l\[l]X 

ABCD 
EFGH 

IJKL 

or 

1 1 0 l~X 

ABCD 
EFGH 

IJKL 

Wh a tabaut campres s ian and expan s ion ave r a r ray s 0 f ran k 3? TAB 3 a9a i n 
will be our specimen array: 

1 O/[1]TAB3 

111 112 113
 
121 122 123
 
131 132 133
 
141 142 143
 

1 0 1/[3JTAB3
 

111 113
 
121 123
 
131 133
 
141 143
 

211 213
 
221 223
 
231 233
 
241 243
 

1 1 1 0 1\[2]TAH3
 

111 112 113
 
121 122 123
 
131 132 133
 

0 0 0
 
141 142 143
 

211 212 213
 
221 222 223
 
231 232 233
 

0 0 0
 
241 242 243
 

In 1 CLASS there are several prepared functions that provide the capabi 1ity 
for catenating rows and columns to multidimensional arrays. Before 
looking at them, let's see if we can first define the problem clearly. 
We are given the matrix X: 



208 APL \360: An Interactive Approach 

X+2 4p2 5 3 1 4 2 3 3 
X 

2 5 3 1 
423 3 

and we want to add a third row 9 8 7 7 or a fifth column 12 15. The first 
fun c t ion to be usedis ROw'CAT, wh ichi s dis p 1aye d below: 

VROWCAT[nJ\7 
\7 R+X RO~/CAT V 

[lJ R+(l 0 +pX)p(,X),V 
V 

V is the row to be added. It is catenated to the ravel of X, and the new 
vector thus formed is restructured to give the desired result. It doesn't 
pay to use the trace on this function since there is only one line. We 
can, however, execute the function by hand, step by step, as follows 
after putting a stop on line 1: 

V+9 8 7 7 
St-.RO~/CAT+1 

X ROWCAT V 

RO l-/CAT[ 1 ] 
X,V 

RANK ERROR 
X,V 
A 

We aren1t permitted to catenate vectors to matrices. Continuing, with X 
rave 1ed: 

( , X) , V 
2 5 3 1 4 2 3 3 9 8 7 7 

1 O+pX 
3 Lj­

-+1 

2 5 3 1 
4 2 3 3 
9 8 7 7 

Adding 1 0 to pX has the effect of changing the structure to accommodate 
and add it iona 1 row. Now we can remove the s top on HO riCA 1': 

Sl'JROWCAT+-O 

Adding a column is some what more difficult. Here is COLCAT1: 

vCO L CA T 1 [ [J J v 
\J R-<i~X COLCATl V 

[ 1 J R..;- ( ( ( p X ) [ 2 J ~ 1 ) , 0 ) \ X 
[2J V-<i-((pX)[l],l)pV 
[ 3 J V+- ( ( ( 0 X ) [ 2 ] pO) , 1 ) \ V 
[ L+ ] R-<i-R+ V 

V 
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On line 1 X is expanded with a column of O's on the back end. The assump­
tion here is that X and V consist of numbers only. If you go through the 
algorithm you will see why it won't work with characters. Line 2 restruc­
tures V, the vector to be catenated, as a matrix with as many rows as X and 
one column. The effect of 1ine 3 is to expand V with as many columns of O's 
tacked on the front end as correspond to the original structure of X, and 
line 4 completes the picture by adding componentwise the results of lines 
and 3. 
We'll use the same X as before, with W as shown for extra components: 

x 

2 5 3 1 
423 3 

v/+12 15
 
X COLCATl f11
 

2 5 3 1 12 
4 2 3 3 15 

To understand better how this works, let's put a trace on each line: 

T I':. COL CAT 1 -(- l L+
 

X COLCATl W
 
COLCAT1[ 1 J 

2 5 3 1 0 
4 2 3 3 0 

COLCAT1[2] 
12
 
15
 

COLCAT1[3] 
0 0 0 0 12
 
0 0 0 0 1 5
 

COLCATl[4] 
2 5 3 1 12
 
4 2 3 3 1 5
 

2 5 3 1 12
 
4 2 3 3 15
 

TI':.COLCAT1+-0 

Line 1 added an extra column of 0 1 5 on the right, while 1ine 2 made a 
matrix with two rows and one column out of W. Line 3 expanded the 
restructured W by adding sufficient 0 1 5 on the front end to make the 
resulting matrix the same dimensions as the expanded X of line 1. The last 
line added the results of 1ines 1 and 3. 

Indexing 

To illustrate indexing on multidimensional arrays, weill first define a 
vector of four components: 
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V+'ABCD' 
pV 

4 

Earl ier we saw that we could pick out components by appropriate indices, as, 
for instance 

V[2 4 3J 
BDC 

The problem is a bit more complicated for an array of higher rank. Take X, 
which is still in storage: 

x 

2 5 3 1
 
4 2 3 3
 

To specify an element of the array requires two numbers, one to tell the 
column and the other the row on which the element is located. Say, for 
example, we want the element in the second row and fourth column, which is 
3. The way to get it in API. is to type 

X[2;4J 
3 

The semicolon is used here as a separator between coordinates. 

More than one element can be specified at a time, like the second and fourth 
components of the second row: 

X[2;2 4J 
2 3 

or the elements of the second column: 

X[i 2;2J 
5 2 

There is a shorthand way of specifying all the elements along a particular 
coordinate, namely by not typing any components of the coordinate in ques­
tion. For example, our last problem could be written as 

X[ ; 2 J 
5 2 

while to get all the elements of the first row type 

X[ 1 ; J 
2 5 3 1 

This implies that to get all of X, we need 
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XC;] 

2 5 3 1 
4 2 3 3 

which is a bit wasteful, perhaps, but consistent. 

The same rules hold for a three-dimensional array. 'l'AB3 should still be 
in the active workspace, so let's use it: 

TAB3 

111 112 113 
121 122 123 
131 132 133 
141 142 143 

211 212 213 
221 222 223 
231 232 233 
241 242 243 

You have probably already noticed that the elements are arranged so that 
if we 
examp 1e, 

took the 10 
1 4 3 i s 

10 lOT of any component, we would get its position. For 

first 
1 

plane fourth 
4 

row t h i r d co 
3 

1um n 

Thus, 

TAB3[2;;2] 
212 222 232 242 

will get us all the elements in the second column of the second plane. 
From what we1ve done so far it follows that the number of semicolons needed 
is one fewer than the rank of the array. 

We had mentioned in an earl ier chapter that subscripting could be used 
on the left of the specification arrow (see page 139). This works with 
higher rank arrays as well as vectors, as shown by the following examples: 

x 

2 5 3 1 
4 2 3 3 

X[2;3]+90 
X 

2 5 3 1 
4 2 90 3 

X[ 1; r-rt i , ]x2 
X 

4 10 6 2 
4 2 90 3 
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Now we are ready to consider a much shorter algorithm for adding a column 
to a matrix: 

VCOLCAT2[nJv 
V R+X COLCAT2 V 

[lJ R+«(pX)[2Jp1),0)\X 
[2J R[ ;(pR)[2JJ+V 

'J 

Lin e 1 ex pan ds X ex act 1y as inC0 L CAT 1 by add i n9 a co 1um n 0 f 0' sat the 
back end, while line 2 respecifies the last column of R as the components 
of V. 

Let's put a trace on this function and execute it. We still have X avail~ 

able, and to it we'll catenate a column consisting of the elements 8 7: 

T~COLCAT2+1 2 
X 

4 10 6 2 
4 2 90 3 

X COLCAT2 8 7 
COLCAT2[ 1 J 

4 10 6 2 0 
4 2 90 3 0 

COLCAT2[ 2J 8 7 

4 10 6 2 8 
4 2 90 3 7 

The trace shows the OIS added on line 1 to build up the matrix, while on 
line 2 the OIS are respecified as 8 and 7, respectively. 

COLCAT2 works equally well with characters, but weill remove the trace 
first, since the blanks added on 1ine 1 wonlt show anyway: 

T6COLCAT2+0 
Y+2 4p'ABCDEFGHIJKL' 
Y 

ABCD 
EFGH 

Y COLCAT2 '?*' 

ABCD? 
EFGH* 

Now, look back at COLCATl on page 208. Do you see why characters can t t 
be used in this function? 

Take and drop 

The take and drop functions appl ied to multidimensional arrays work in the 
same fashion as with vectors, except that the elements of the left argument 
refer to what is to be taken or dropped along each coordinate. For example: 
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TAB3 

111 112 113
 
121 122 123
 
131 132 133
 
141 142 143
 

211 212 213
 
221 222 223
 
2 31 232 233
 
241 242 243
 

1 3 2 t TAB 3 

1:12 :113
 
122 123
 
132 133
 

Here the fi rst element of the fi r s t coordinate (i .e., the fi r s t plane) l s 
taken, and within the first plane the first three rows and last two columns. 
An0 the r ill us t rat i on i s 

1 1 2-}TAB3 

213
 
223
 
233
 

which drops the fi rst plane (leaving only the second), the last row and 
the first two columns. 

Membership 

As pointed out on page 153, the membership function works with arrays of any 
rank, but the result always has the shape of the left argument: 

R+-2 4p ,TAB3 
R 

111 112 113 121 
122 123 131 132 

TAB 3 

111 112 113
 
121 122 123
 
131 132 133
 
141 142 143
 

211 2 1~) 213
 
221 222 223
 
231 232 233
 
241 242 243
 

2 4p TAB 3 

111 112 113 121
 
122 123 131 132
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TAB3ER 

1 1 1
 
1 1 1
 
1 1 0
 
0 0 0
 

0 0 0
 
0 0 0
 
0 0 0
 

0 0 0
 
RETAB3 

1 1 1 1
 
1 1 1 1
 

PROBLEMS 

1.	 Drill. SpecifyA+3 5P110, B+3 3p'ABCDEFGHI', C+2 34p,A 

A[;2 5J +fC[l 2;2;3J B[1;23J 

C[1;23;J A[13;14J	 2 2 2t¢C 

1 1 2+eC 1 01 1\[2JC 1 0 liB 

1 1 1 1 0 l\A o l/[lJC	 ¢A 

eA	 3 1 2¢A 1 

1 2 2 1 leA	 1 3 3¢3 1 1 2 4¢[lJA 

2.	 Make the first row of B (p rob , 1) equal to the third column. 

3.	 Define a function that wi 11 delete a given name from a matrix of names 
A, or print out an appropriate message if the name is not in the matrix. 

4.	 What is the di fference between AI[ 1; 2J and lif[ ,1;, 2J? 

5.	 Star tin g withamat r i x ~1+-3 L~ P 1 4 , P ro duce an 0 the r ma t r i x R whos e s hap e 
is	 3 3 4 and made up of the columns of M. Use only indexing. 

n2.6.	 A magic square of order n is one made up of the integers 1 through 
The sums over each row, column, and diagonal are the same. One way to 
construct the squares of odd order is to start with a matrix of the 
right size, made up of the successive integers ordered rowwise. Then 
set up a vector of n successive integers with 0 in the middle to rotate 
the matrix successively over the last and first coordinates. Define a 
monadic function MS to do this. 

7.	 Write an APL function to make a matrix out of two vectors V1 and V2, 
using V1 as the first column and V2 as the second. 
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Transposition 

By transposition is meant the interchanging of elements along two coordi­
nates. This wasn't introduced in the last chapter along with the other 
functions mainly because it operates meaningfully on multidimensional arrays 
only. The transpose function may have one or two arguments. These wi 11 be 
considered separately below. 

Monadic transpose 

If X is the matrix specified below, 

X~3 4p' /iIJCDL'FG!lIdKLtJN'
 
X
 

ABeD 
E'FCIi 
IJKL 

then by the transposition of X is meant an interchange of rows and columns 
s uch t hat the e 1eme nt whose i nd ice s are [cl; K 1 endsup i nthe r K ; cT J pos i ­
tion for all J and K values possible. The APL function which will do this 
for us is the monadic transpose, formed by overstriking the large circle 
with the backward pointing slash: 

~X 

AEI 
flFJ 
CCK 
DHL 

The first row of X has become the fi rst column of the transpose of X, etc. 

What happens when we apply the transpose function to a vector? 

V~2 5 1 

~V 

251 

215 
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Nothing has changed. The same is true for a scalar, incidentally. But we 
see something a little more interesting when we work with a three-dimensional 
array. Our old standby, TAB3, is always handy, so let's work with it: 

)LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 

TAB3 

111 112 113 
121 122 123 
131 132 133 
141 142 143 

211 212 213 
221 222 223 
231 232 233 
241 242 243 

pTAB3 
2 4 3 

Note the dimensions of TAB3, two planes, four rows, three columns. Here 
is what the transpose does to TAB3; and, whi le we're at it, TAB2: 

~TAB3 

11 1 121 131 141 
112 122 132 142 
113 12 3 133 143 

211 221 2 31 241 
212 222 232 242 
213 223 233 2 L~ 3 

pQTAB3 
2 3 4 

QTAB2 

3 7 6 1 
1 10 9 6 
7 4 1 7 

pQTAB2 
3 4 

pTAB2 
4 3 

Only the last two coordinates are interchanged and, as a matter of fact, 
this is always the case for all multidimensional arrays. 

Dyadic transpose 

The monadic transpose doesn't help us to interchange other than the last 
two coordinates. For this the dyadic transpose is useful. Its left argu­
ment is a vector specifying the new positions of the original coordinates. 
Here is an example: 
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1 3 2~TAR3 

111 121 131 141 
112 122 132 142 
113 123 133 1 L+ 3 

211 221 231 241 
212 222 232 2 Lt 2 

213 223 233 243 

This is identical with the monadic transpose of TAB3. What it says is to 
leave the fi rst coordinate alone and interchange the other two. Not so 
trivial is 

2 1 3~TAn3 

111 112 113 
211 212 213 

121 122 123 
221 222 223 

131 132 133 
231 232 233 

141 142 143 
241 242 243 

The dimensions of the result are 4 2 3. Notice that the third coordinate, 
representing the number of columns, is unchanged, the elements in each of 
the original columns remaining in the same column but not necessari 1y in the 
same order rowwise and p1anewise after transpos i tion. More formally, if 
an arbitrary element in TAB3 has indices fI;~I;KJ , then its new position 
in the result is rrJ;I;Kl for the example above. For instance, the indices 
of 232 in TAB3 are f2;3;2l, and after transposition in the result they 
are [3;2;2J. Let's apply dyadic transposition to a two-dimensional object, 
the mat r i x T: 

T+3 50115 
TT1 
J 

1 2 3 4 5 
6 7 E3 9 10 

11 12 13 14 15 
1 2?s{T 

1 2 3 It S 
6 7 8 9 10 

11 12 13 1 Lt 1 5 

The 1 2 transpose of a matrix doesn't change it at all, and the 2 1 trans­
pose 
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2 l~T 

1 6 11 
2 7 12 
3 8 13 
L+ 9 1 Lt 
S 10 1 5 

is the same as the monadic transpose. 

What about 

1 l~T 

1 7 13 

This gives the components along the major diagonal of T: 

T 

3 4 
6 8 9 10 

11~12 14 1 5 

The result is made up of those elements of T whose row and column indices 
are the same. If this puzzles you, there is a simulation of the dyadic 
transpose called TRA, in 1 ci.ssc , 

)LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 

'1'+-3 5Pl15 
1 1 TRA '1' 

elVEN R+-1 1 ~ X; THEN POR IS f/l 1 OR 1 
AND R[I] IS X[I;I] 

eIVEN pX IS 3 5 THEN 
I RUNS FROf!.1 1 TO 3 BECAU5E L/ 3 5 [5' 3 

pH IS 3 

Here are a few more examples with TAB3: 

2 1 1TRA TAB 3 
CTVFN P+-2 1 1 ~ X; THEN p p R Ie';..) r /2 1 1 Of)

11 2 
AND PLI;JJ IS X[J;I;[] 

CIVFN pX I C'I..) 2 4 3 17 HF: LV 

I RUNS FRO/·f 1 TO 3 BfJ-'CA USE L/ 4 3 IS 3 
J RUNS FROl1 1 TO 2 

pR IS 3 2 
2 1 l~TAB 3 

111 211 
122 222 
133 233 
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1 2 1 TRA TAB 3 
GIVEN R+-l 2 1 G( X; TH EN ppR IS r /1 2 1 OR ~ 

AND RCI;J] 18 XCI;J;I] 
GIVEN pX IS 2 4 3 THEN 

I RUNS FROl1 1 TO 2 B ECA USE L/2 3 IS 2 
J RUNS FR011 1 TO L+ 

1(---'pR 0 2 Lt 

1 2 lQTAB3 

111 121 1 31 1 Lt 1 
212 222 232 242 

1 1 1 TRA TAB 3 
GIVEN R+-l 1 1 G( X·, THEN ppR IS r / 1 1 1 OR 1 

AND R[I] IS XCI;];I] 
GIVEN pX IS 2 4 3 THEN 

I RUNS PR011 1 TO 2 BECAUSE L /2 L+ 3 IS 2 

pR IS 2 
1 1 lQTAB3 

1 1 1 222 

But 

1 1 3G(TAB3 
DO!f!AIN 'FRROR 

1 1 3 ~ 'I'A B 3 
A 

1 1 3 T PA 11A B 3 
LEFT APCUMEN'l' PUST BF: A DENSF S'FT OF INTEGERS STA!?TTNG AT 1 

By a dense set of integers is meant one with no gaps. 

The syntax of the dyadic transpose with arrays of rank 3 and higher can get 
a little messy, but with the aid of the prepared function TRA you ought to 
be able to get a feel for the set of rules under which it operates. 

A transformation mnemonic 

You have probably noticed by this time that the appearance of the symbols 
¢, e and Q is related to the kind of transformation which results when 
they are applied to certain arrays. Specifically, let's apply them to a 
ma t r i x M+- 3 4 P 1 1 2 : 

M 

1 2 3 4 
5 6 7 8 
9 10 11 12 

¢/v1 

4 3 2 1 
8 7 5 J

c:

12 11 10 9 
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8/,1 

g 10 11 12
 
5 G 7 8
 
1 2 3 i+
 

Q!vJ 

1 5 9
 
2 G 10
 
3 7 11
 
Lt 8 12
 

In each case the overstruck 1ine, I, - or \, represents the axis about which 
the transformation occurs. 

PROBLEMS 

1.	 Dr ill . Spe c i f Y L~.f + 3 4 P 1 1 0, N+-2 3 4 P 1 2 4 

2 1 3ts<N ¢ 2 1 t<M 

1 1 2ti¥.N 

p 2	 1 3~N 1 2 It<N 

2.	 For the matrix B (Problem 1, chapter 28), wri te an APL express ion to 
obtain the diagonal that runs from the upper right to the lower left. 

3.	 Define a function VIAG that takes as its right argument a matrix M 
whose elements are positive integers, and forms a number out of the 
d i agona 1 e 1emen ts, i , e., 3 2 2 9 becomes 322 9 . 

4.	 Define a column-catenating function which transposes the rows and columns 
and uses HOWCAT (-i n 1 CLA 5 S) to pe rfo rm the ca tenat ion. 

5.	 Write a one-line function to produce a table of three columns 1isting 
N, the factorial of N, and the reciprocal of N for the integers 1 through 
N. 

6.	 Sis an 0 pe rat ion tab 1e for some AP L fun c t ion Wr i tea n ex pre s s ion0 

that returns a 1 if the function is commutative, 0 otherwise. 

7.	 Execute the fol lowing instructions and explain in your own words what 
they do: 

B+¢A +1 25 

t< 3 2 5 p A , B ,A x B 

What tentative conclusion can be drawn from the data in the table? 
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Generalized outer product 

Up to now we have been somewhat 1imited in the ways in which we could 
generate arrays of rank >1, although we have studied a number of operations 
which act to change the array once it is structured. In this chapter and 
the next we shall look at two additional functions that will not only 
expand our capabi 1ity of producing arrays of all shapes, but also enable 
us to define more compactly many of the functions we have already worked 
wi the 

We will begin by introducing a problem that involves a large number of 
multiplications. It asks that we compute the taxes to be paid for items 
costing varying amounts and taxed at three different rates: 

tax rates 

.01 .02 .05 

2 

$ costs 3 

4 

5 

The result desired is the matrix which is obtained by getting all possible 
products of costs and rates. You can see that if the cost and tax rate 
vectors had large numbers of components or noninteger components, this 
procedure could involve a lot of work. 

Outer product 

APL has a function which operates on arrays in precisely the way needed 
to fi 11 in the table above. I t is called the outer product. To illustrate 
it, let the left argument be the vector of costs A and the right argument 
the tax rates B: 

221 
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A +-1 5 
B+-.Olxl 2 5 
B 

0.01 0.02 0.05 

The outer product is 

O. 01 0.02 o.05 
0.02 0.04 0.1 
0.03 0.06 0.15 
0.04 0.08 0.2 
0.05 o .1 O. 25 

which is read "A null dot times B." The little circle, called~, is the 
upper shift J. Clearly it gives all possible products of the left and 
right arguments and signifies that we want the outer product with respect 
to A and B. 

Any standard scalar dyadic function can be used after the period in place 
of x , For instance: 

A o. +B 

1 .01 1 .02 1.05 
2 .01 2.02 2 . 05 
3 .01 3.02 3.05 
4.01 4.02 1+ • 05 
5 .01 5 . 02 5 . 05 

Notice that the shape or dimension of the result is the catenation of the 
shapes of the two arguments. In this case it is 5,3 or 5 3. 

The outer product enables us to do a variety of things. For example, an 
addition table can be generated by 

A o. +A 

2 3 4 5 6 
3 4 r:

;) 6 7 

4 5 6 7 8 
5 6 7 8 9 
6 7 8 9 10 

and the subtraction table by 

A 0 -A• 

0 1 2 3 4 

1 0 1 2 3 
2 1 0 1 2 
3 2 1 0 1 
4 3 2 1 U 
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Some of the patterns obtainable are interesting. Here is the identity 
matrix of order 4 (so-called because when matrix multip1 ication is used 
with any other 4 4 matrix M and the identity matrix, the result is M): 

(14)0.=14 

1 0 0 0
 
0 1 0 0
 
0 0 1 0
 
0 0 0 1
 

If with the outer product gives the identity matrix, can you guess what 
'7- wi 11 res u1tin? 

Finally, here are two others that yield matrices of all O's and lis: 

0 1 1 1 1
 
0 0 1 1 1
 
0 0 0 1 1
 
0 0 0 0 1
 
0 0 0 0 0
 

(15)0.~15 

1 1 111 
o 1 111
 
00111
 
o 001 1
 
00001
 

It isn't necessary that both arguments be vectors. One could be a matrix 
and the other a vector to give a three-dimensional array. In fact, this 
is whe re TA P 3 came from: 

)LOilD 1 CLASS 
SAVED 15.02.39 07/29/69 

TAB3 

111 112 113
 
121 122 123
 
131 132 133
 
141 142 143
 

211 212 213
 
221 222 223
 
231 232 233
 
241 242 243
 

Construction of multidimensional arrays 

F0 11ow the bu i 1d up 0 f TA R 3 from s c rat c h : 
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W+-10 20 30 LtOo .. +t3 
W 

11 12 1 3 
2 1 22 23 
3 1 32 33 
L} 1 L} 2 L} 3 

p [v 
L+ 3 

2+-100 200° .. +[1 
2 

111 112 11 3 
121 122 123 
131 132 133 
1Lt1 1 L~ 2 143 

211 2 12 213 
221 222 223 
231 232 233 
2 L+ 1 2 Lj. 2 243 

Z is identical to TAB3. It doesn't matter what the ranks of the left and 
right arguments are. The dimension of the result is still the catenation 
of the dimensions of the arguments. 

Let's try bui lding TAB3 another way: 

U+100 200o.+10X14 
U 

110 120 130 140 
210 220 230 240 

pU 
2 4 

Y+[jo.+13 
y 

111 112 113 
121 122 123 
131 132 133 
1 Lt 1 142 143 

211 212 213 
221 222 223 
231 232 233 
241 242 243 

Aga i n Y i s the s ame as 'TAB 3 . 

Scanning 

The next concept to be considered in this chapter is scanning. If we were 
to start with a vector, say, 1 2 3 4, there may be times when we might want 
to get a record of the cumulative sums (or products) from left to right 
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along the components of the vector. In this case it would be 1 3 6 10. 

The re isin 1 CLASSap repared mo nad i c fun c t i on S U/v! S CAN wh i ch doe s t his 
fo r us: 

)LOAD 1 CLA SS 
SAVED 15.02.39 07/29/69 

SUMSCAN 1 2 3 ,4 
1 3 6 10 

Let's see how SUMSCAN is constructed: 

VSUMSCAN[C1Jv 
V R+-SUMSCAN V 

[lJ -+4 X l 1 = p p V 

[ 2 J 'ARGU!v}ENT nus» BE A VECTOR' 
[3J -+0 
[ 4 J R+-+ / ( ( 1 P V) 0 ~ 1 P V ) x ( 2 p p V ) p V• 

v 

Line 1 tells us to branch to 4 if the argument is a vector, otherwise drop 
through to line 2 where an appropriate message is printed out, followed by 
an exit from the function on line 3. Line 4 causes a 2ppV restructure of 
V (for this example 2ppV is 2p4 or 4 4) which is 

V+-14 
(2ppV)pV 

1 2 3 4 
1 2 3 4 

1 2 3 4 

1 2 3 4 

This is then mu 1tip 1ied component by component by 

(lpV)O.~lPV 

1 0 0 0 
1 1 0 0 

1 1 1 0 
1 1 1 1 

to give 

« i o V)o. ~lP V)x( 2pp V)p V 

100 0 
1 200 
1 2 3 0 
1 2 3 4 

which is then summed over the second coordinate. 
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Graphing 

Our last topic has to do with the use of the outer product to build up a 
simple-minded but instructive graphing function. To begin, define 

Y+¢X+-S+19 
X 

4 3 210 1 2 3 4 

Y 
4 3 2 1 0 1 234 

Because there is a 0 as the middle element in X and Y, their outer product 
wi 11 produce O's only along the I'axes'l of the matrix: 

M+Yo • xX 
Iv! 

16 12 8 4 0 4 8 12 16 
12 9 6 3 0 3 6 9 12 

8 6 4 2 0 2 4 6 8 
4 3 2 1 0 1 2 3 4 

0 0 0 0 0 0 0 0 0 
4 3 2 1 0 1 2 3 4 

8 6 4 2 0 2 4 6 8 
12 9 6 3 0 3 6 9 12 
16 12 8 4 0 4 8 12 16 

The next step is to replace the O's with some character, say, +, and every­
thing else with blanks. One way to do this is to use the array to index a 
suitable character vector: 

, +'[1+0=M] 

+ 
+ 
+­
+ 

+++++++++ 
+ 
+ 
+ 
+ 

Since the horizontal axis is somewhat out of scale (one character space 
i s n ' t as· wid e asal i ne spa ce ) , we will ad jus t 0 ur II grap hII as f 0 11ows : 
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(18pl 0)\' +'[1+0=M] 

+ 
+ 
+ 
+ 

+ + + + + + + + + 
+ 
+ 
+ 
+ 

Suppose now we wish to plot on this set of axes a number of points (X, Y), 
where Y+-X+l. Our axes are made up of 1 i tera1 characters, so that the points 
themselves would have to be represented as 1iterals in order to include them. 
It is more interesting, however, to go back to our original outer product, 
which is numeric, and superimpose the desired set of points F on it before 
converting to characters: 

F+-Yo.=X+l 
F 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 1 0 0 
0 0 0 0 0 1 0 0 0 

0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

F produces a matrix of lis where the points are. We next add the matrices 
F and 1+2xO=/lJ. You should be able to see why multiplication by 2 is nec­
essa ry if you execu te the next step without doing so. 

F+l+2x O=lvJ 

1 1 1 1 3 1 1 2 1 
1 1 1 1 3 1 2 1 1 
1 1 1 1 3 2 1 1 1 
1 1 1 1 4 1 1 1 1 
3 3 3 4 3 3 3 3 3 
1 1 2 1 3 1 1 1 1 
1 2 1 1 3 1 1 1 1 
2 1 1 1 3 1 1 1 1 
1 1 1 1 3 1 1 1 1 

Fi na 11y, our expanded plot is 
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PLOT+(18pl 0)\' o+o'[P+l+2 xO=UJ 
PLOT 

+ 
+ 

+ ° 

+ + + °	 + + + + +
 
+
 
+ 
+ 
+ 

Now that we have bui lt up the algorithm for the plot routine, we can incor­
porate it into a defined function, GRAPH: 

'V Z+GRAPH 
[lJ Z+«2 xpX)p 1 0)\' o+o'[F+l+2xO=(~X)o.xXJ 

\J 

F and X must be set before the function is executed: 

X+-S+19 
F+(¢X)o.=X+l 
GRAPH 

+
 
+
 
+ ° 

+ + + °	 + + + + + 
+ 
+ 
+ 
+ 

Plotting functions can get quite complex when it is desired to include such 
amenities as labeling of the axes, provision for changing the scale of the 
plot, and rounding off the computed values for the coordinates, since the 
printer can't type characters between lines and spaces. 

A P L Pro v ide s a use f u1 set 0 f p lot tin g rou tinesin 1 P LOTFOR ft1 AT. Sin ce 
instructions for the use of this workspace are quite complete (type 
DESCRIBE after loading), practice in the functions is left as an exercise 
(see problem 9). 
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PROBLEMS 

1. Drill. Spe c l fv vle t u , B+2 3p'ABCDEP', C+'ABD', D+-3 lpl3 

A 0 • r 2¢A 1 0 0 1 lo.¥O 1 0 1 1 

0Co.=B 13 go.>D 123 . 1 \ 5 

Do.xA 1 00."1 0 

2.	 Use the outer product to generate the fol lowing tables: 

A) Sines and cosines of angles from 0 to PI at intervals of 
PIf6 

B) Logarithms of the integers 1 through 10 for a vector B Qf 
different bases 

C) Occurrences of the vowels AEIOU in the character string S 
D) Squares and square roots of the integers 1 through 10 

3.	 What is the shape of the result when the outer product is used to 
add the elements of a vector of length 4 to the components of a 
2 2 matrix? 

4.	 Define a function DIST that computes the rounded off (nearest integer) 
distances between any two cities whose X and Y coordinates are given 
in a matrix L. Assume pL is N,2 and the cities are all located north 
and east of the origin of the coordinate system. 

5.	 Write an APL expression to find the number of occurrences of each of 
the letters ABCDEFG in the word CABBAGE. Compare your answer wi th 
that given for problem 4, chapter 21. 

6.	 Construct expressions which will give the sum and carry digits for 
addition of two numbers in any system with base B<10. Using these 
results, write a function to generate an addition table of a set of 
integers INT in base B. 

7.	 Write a program to multiply two polynomials together. Assume their 
coefficient vectors C1 and C2 are arranged in descending order of 
powers of X. 

8.	 Use the function GRAPH (page 228) for each of the following: 

A)	 Y+-IX+-5+l9 

C)	 Y~X+l 

D)	 (Y~X+l )"Y~3-' X 

E)	 Y~3IX 

9.	 Execute the following instructions in order: 
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y+-ep-13+125
 
R+-( 0=( -3xY)o .. +( 2 xX)-2 )vO=( 2xY) 0 +X-8
n 

R 

Explain the resulting display. 

10 .	 Aft e r loa din g 1 PLOTFOR Iv!ATexe cut e e a c h 0 f the f 0 11ow i ng : 

A)	 X+120
 
Y+X*2
 
Z+2xX*2
 
40 60 PLOT Y VS X 
40 60 PLOT Y AND Z VS X 

B)	 X+1 , SOx 1 7 
Y+~X 

20 30 PLOT Y VS X
 
20 30 PLOT Y[1+17J VS X[1+17]
 

c)	 X+0 ( 0 , 1 3 6 ) ~. 1 8 
Y+10X
 
Z+20X
 
70	 PLOT Y AND Z VS X 

D) (For Y and Z defi ned as in part C) 

Y AND Z
 
Y VS X
 

11.	 In 1.CLASS is a function DFT which can be used to format the 
output of a calculation in APL. Its left argument is a vector 
of two elements, the first of which determines the maximum width 
of the field to be printed and the second, the number of places 
to the right of the decimal point. The right argument is the 
data to be formatted. Execute 10 5 DFT X AND Y after copyi ng 
AND from 1 PLOTFORMAT and specifying X+f110 and Y+X:*.5 . 



CHAPTER 31: 

Generalized inner product 

In the last chapter we examined a function called outer product which formed 
all possible combinations of the two arguments, using some standard scalar 
dyadic function. This operation, however, doesn't result in what in mathe­
matics is called ordinary matrix multiplication. 

For those not fami liar with it, here is an example which illustrates the 
use of such matrix multipl ication. We have three men who are engaged in 
buying four items, A, B, C and D. The cost and tax on each item are given. 
If we know how much each man bought, what is the total cost and total tax 
per man? In tabular form: 

cost/unit tax/unit 

A 

B 

Item 

C 

0item 

A B C 0 

02 3 

0 2 1 

1 1 2 

1 

4man 

13 

4 .05 

2 .06 

1 .01 

1 .02 

------~-----

8 ® 
~---- ~-----

B ® 
t------­ f------­

®® 

231 
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What we want are the entries to go into the dotted table, whose boxes are 
numbered as shown above. Let's see how we can figure them out. To get 
the total cost for each man, we would multiply the numbers of the various 
items purchased by their respective costs, add them up, and put the results 
in the appropriate boxes. For man 1 this is 

(2x4)+(3x2)+(Ox1)+(lx1) or 15 

This wi 11 go in box 1-1. The total tax for man 1 can be obtained similarly 
and placed in box 1-2: 

(2x.05)+(3x.o6)+(Ox.Ol)+(lx.02) or .3 

What goes in box 3-1, to take one more example, can be gotten by 

( 1x4)+ ( 1x2)+ (2xl) -:- ( 1xl) 0 r 9 

The completed table loovs 1ike this: 

~ 

~ 

15 .3 

~ 
.219 

~ 
.159 

Note that the first dimension of the result is the same as the first dimen­
sion of the left matrix, and the second dimension of the result is the same 
as the second dimension of the right matrix. In addition, the inner two 
dimensions (second dimension of the left argument and first dimension of 
the right argument) must be the same in order to make possible this new 
kind of " multiplication," if we may be permitted to use the term in a 
somewhat different sense from its customary arithmetic meaning. 

Inner product 

To show how this operation can be performed on the terminal, let's bui ld 
these matrices from their elements. First, we'll define the left matrix: 
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A+3 4p2 3 0 1 0 2 1 4 1 1 2 1
 
A
 

2 3 0 1 
o 2 1 4
 
1 1 2 1
 

The right argument B is 

B+4 2p4 .05 2 .OG 1 .011 .02
 
B
 

4 0.05 
2 0.06 

1 0.01 
1 0.02 

and the desired result, which is known as matrix multiplication, is formed 
by executing 

A+. xB 

1 5 o . 3 
9 0.21
 
<) 0.15
 

Why use three symbols for this common operation? Very simple: for the + 
and x any standard scalar dyadic functions can be substituted. The reason 
+ and x are used here is that these are the two operations needed to get the 
result matrix, the products first and then the sums. There is also a 
pattern to the way the elements are combined. For example, the element of 
the result which goes into box 3-2 (the third row second column of the 
result) is obtained by operating in the fashio~escribed with the third 
row of the left matrix and the second column of the right matrix. Such a 
sequence of three symbols, f.g, f and g being any standard scalar dyadic 
fun c t ion s, i s calledan inn e r prod uct. I tis not the s ame asAo • +B 0 r 
Ao.xB and in this case can't even be compared with AxB since the latter 
operation is possible only when the two matrices are the same size, and 
the multiplication is carried out between corresponding elements only. The 
inner product, Af.gB, operates on array arguments of many shapes with the 
dimension of the result in each case (except for scalars) being 
(-li-pA) ,1i-pH. Here are some additional examples involving scalars and 
vectors: 

10+.x3 2 8 

130 
1 2 3 4+.*0 1 2 3 

76 
2 1 6+.x3 2 p 1 6 

35 44 
( 3 4pl12)+.=14 

4 0 0 
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(2 3 4pl24)+.-4 2Pl8 

6 10
 
10 6
 
26 22
 

42 38
 
S8 54
 
74 70
 

Applications of the inner product 

Here is another problem, this time involving distances between cities on a 
map. The diagram shows not only the intercity distances but also the 
directions in which they are measured: 

10 

A 

Notice that the distances are not necessarily the same in both directions 
between any two cities. This is to al low for the most general case where 
the roads may be one-way and not laid out parallel to each other. We can 
summarize the diagram in the form of a mi 1eage table: 

to 

A B c D 

A 

B 
from 

c 

D 

0 10 5 20 

10 0 8 7 

10 8 0 3 

20 7 3 0 

suchatab1e i s prov idedin 1 CLA/)Sunde r the name [vI I LEA GE 

)LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 
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MILEAGE 

o 10 5 20 

10 0 [3 7 
10 8 o 3 
20 7 3 0 

Believe it or not, the longest two leg trips from any city to any other 
city passing through some intermediate city is given by 

MILEAGEf .+MILEACE 

40 27 23 20 
27 20 15 30 
23 20 16 30 
20 30 25 Lt 0 

The longest trip from A to B is 27 miles (A-D-B), from B to C 15 mi les 
(B-A-C), etc. 

Why does this work? Let's arrange the matrices for the inner product in 
the same form that our earl ier problem was: 

0 10 5 20 

10 0 8 7 

10 8 0 3 

0 

10 

10 

0 

f.+ 

5 20 

8 7 

20 

1 1 

21 

7 
1 2 

22 

3 
1 3 

23 

0 

14 

24 

10 

20 

8 

7 

0 

3 

3 

0 

3 1 

41 

32 

42 

3 3 

43 

34 

44 

The longest trip from B to C is represented by the contents of box 23. This 
is formed by operating with the second row of the left matrix and the third 
column of the right matrix. It requires adding 10 and 5, and taking the 
greater of that sum and the sum of 0 and 8, which is 15, then taking the 
greater of 15 and the sum of 8 and 0, which is still 15, and finally taking 
the greater of 15 and the sum of 7 and 3, which is 15 again. 

There are many other interesting combinations and possible uses, only a few 
of which will be considered. For instance, the shortest two-leg trip is 

lfILE'AGEL. +ll1ILE'AGE 

o 10 5 {3 

10 0 8 7 
10 8 o 3 
13 7 3 o 
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Notice that the shortest trip from, say, A to C, is 5 miles, which is A to 
A to C or A to C to C. We are allowed this possibility because there are 
entries (they happen to be all OIS) in the mi leage table from A to A and C 
to C on the major diagonal of MILEAGE: 

!1I LEAGE 

0 10 5 20
 
10 0 8 7
 
10 8 0 3
 
20 7 3 0
 

One way to be protected from such a sneaky result is to put arbitrarily 
large numbers along the major diagonal. This can be done without destroy­
i ng 0 r rewr i tin g ,~1 I LEA GR as f 0 11ows : 

F+-MILEAGF7
 
T+-l000 X ( 1 4 ) o . = 1 4
 
T
 

1000 0 o o 
o 1000 o a
 
o 0 1000 o
 
o 0 o 1000 

F+-F+T
 
F
 

1000 10 5 20 
10 1000 8 7 
10 8 1000 3 
20 7 3 1000 

Now we get for the shortest two-leg trips 

PL.+F 

15 13 18 8 
18 14 10 11 
18 10 G 15 
13 11 15 6 

and, this time, the shortest such trip from A to C is 18 miles (A-B-C). 
Application of this operation a second time would give the shortest three­
leg trip: 

FL.+FL.+F 

23 15 11 20 
20 18 14 13 
16 14 18 9 
21 13 9 18 

We can continue this process ad nauseam, but there is a prepared function in 
1 CLASS called AGAIN that will do it for us. Let's display it: 



General ized Inner Product 237 

VAGAIll[UJv 
V AGAIN 

[lJ T+TL.+P 
V 

It is niladic and simply respecifies T as TL.+F. If we set T equal to F, 
the fi rst time we execute AGAIl/ we wi 11 get the shortest two-leg trip, 
the next time the shortest three-leg trip, etc.: 

T+F 
T 

1000 10 5 20 
10 1000 8 7 
10 8 1000 3 
20 7 3 1000 

AGAIN 
T 

15 13 18 8 
18 14 10 11 
18 10 G 1 5 
13 11 15 6 

AGAIN 
T 

23 15 11 20 
20 18 14 13 
16 14 18 9 
21 13 9 18 

The next example is one in circuit design. Imagine a circuit with six 
components connected as follows: 

A, B, C, D, E and F are some kind of functional units which can be either 
energized or not. The circuit works this way: if C is energized, after 
a certain increment of time D is energized, and after another increment of 
time E is energized; if A is energized, after an increment of time C and B 
are energized, etc. F is the oddball unit here. Once it is energized it 
stays on permanently, but unless we start with F on there is no way to turn 
it on. E is a terminus. It doesn't turn anything on. 
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All this information can be summarized in a matrix, with 1 standing for 
the existence of a connection from the unit named on the left to the one 
whose name is on the top: 

A 

B 

C 
from 

D 

E 

F 

This ma t r ixis a va i 1ab 1e 

CIRCUIT 

01100 0
 
10000 0
 
o 0 0 1 0 0
 
1 0 0 0 1 0
 
o 000 0 0
 
00100 1
 

to 

A B c D E F 

0 1 1 0 0 0 

1 0 0 0 0 0 

0 0 0 1 0 0 

1 0 0 0 1 0 

0 0 0 0 0 0 

0 0 1 0 0 1 

as a va ria b 1e calle d CIRe UI 'I' i n 1 CL 11,';S 

We can set up a vector X with six components (one for each unit in the 
circuit) and let 1 signify that the unit is turned on initially. For 
example, if only A is on, we specify X as 

X+-l 0 0 0 0 0 

What units are on after one increment of time? From the matrix it appears 
that Band C wi 11 be turned on and all the others, including A, wi 11 be 
off. The result should therefore be 0 1 1 0 0 O. 

This can be achieved by 

XV.I\CIRCUIT 
o 1 1 000 

After another increment of time: 

o 1 1 0 0 OV.ACIRCUIT 
100 1 0 0 

and A is back on (due to the loop between A and B) with D also on. 

To s t e p t his t h r 0 ugh seve rali ncre me nt s 0 f time the rei s a fun c t ion H U!/ i n 
1 CLASS. Let's display it: 
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VRUN[U]V 
V NETWORK RUN STATUS;COUNT 

[1 J COUNT+-O 
[2J COUNT 
[3 J STATUS 
[4J STATUS+-STATUSv.ANETWORK 
[5J COUNT+-CQUNT+l 
[6J -)-2
 

V
 

The 1eft a rgume ntis il ETWO R}(, the mat r i x wh i ch des c ribesthe c ire u i t 
connections, while the right argument STATUS represents the initial con­
ditions. COUNT is a local variable which is set to 0 on line 1 and dis­
played on line 2. Line 3 prints out the current status of the circuit 
components. This is updated on the next 1 ine and the counter upped on 
1i ne 5. The f ina 1 1i ne causes a b ranch to 2. 

Does this program look a bit peculiar to you? It should. There is no 
safeguard in it to turn it off once it starts, and it will run forever! 
The proper thing to do would be to put a line in it that will cause execu­
tion to cease once COUNT reached a certain value. Since there is no such 
check, wei 11 let it go and manually interrupt execution with the ATTN 
button. 

Wei 11 s ta rt by turning on only A: 

X+-l 0 0 0 0 0
 
CIRCUIT RUN X
 

0 
1 0 0 0 0 0 

1 
0 1 1 0 0 0 

2 
1 0 0 1 0 0 

3 
1 1 1 0 1 0 
4 
1 1 1 1 0 0 

5 
1 1 1 1 1 0 

6 

1 1 1 1 1 0 
7 
1 1 1 1 1 0 

RUN[3l 

Execution has been manually interrupted, as discussed above, and we are 
suspended on line 3: 

)SI 
HUN[3l * 

F will never turn on, no matter how many runs we make. A glance at the 
original circuit shows why. 



240 AP L \ 360: An Interactive Approach 

COUNT is up to 10, the printout having lagged behind execution: 

COUNT 
10 

Ordinari ly we can ' t get a value for COUNT, it being a local variable, but 
re me mbe r t hat we are s til 1 i nth e fun c t ion a s ares u1t 0 f the sus pen s ion. 

Let's now remove the suspension: 

-+0 
)SI 

@ 

The few examples shown barely begin to cover the wide range of possible 
applications of the inner product. After you have gained a reasonable 
proficiency in APL you should be able to think up many more. 

PROBLEMS 

1.	 Drill. Specify A+3 4 5, B+4 3Pl10, C+-3 4P¢17 

A+. =A	 Bx.=A 

Bx. -C A v • ~B	 C I.-B 

sv . <C 3+.xB	 (~c)r .+A 

2.	 A) For two vectors A and B of the same length, and the conformab le 
ma t ricesMand U (U +- ( 1 N ) 0 • ~ 1 N) g i ve a me ani ng toeach 0 f the 
f 0 11owi ng: A /\ • =B t /'>1/\. =B, A. + • ;t B, (M = 0 ) r; • ~ UtA x • * B 

B) For a logical square matrix N, what is the significance of R-(-!VV.AN? 
C) For the conformable matrices C and D, what is the meaning of C+.=D 

andCr.LD? 

3:	 Redo each of the following problems using the inner product: 

A) problem 7, chapter 8
 
B) problem 4, chapter 10
 
C) problem 21, chapter 19
 
D) problem 5, chapter 24
 

4.	 Write a program to evaluate at various points X a polynomial with 
coefficients C. Assume the terms of the polynomial are arranged in 
ascending order of powers of X. Use the inner product in your 
algorithm. (See also problem 3, chapter 23, and problem 7, chapter 30) 

5.	 For a character matrix M, each of whose rows contains a name, write a 
function to ulphabetize the names and place them in a new matrix A. 
Assume each name is entered in the form JONES ANNABELLE and 
( pM) r 2 J =1 G.. 0neb 1an k will s epa rat e the fir s tan d 1a s t name s , and 
any spaces left over will be blanks on the right. The sort is to be on 
the last names, with first names sorted within them. 
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6.	 The Jones Computing Systems Corporation reimburses its employees for 
travel on company business at the rate of 14 cents per mile for the 
fi rst 75 mi les, 10 cents per mi 1e for the next 50 mi les and 6 cents per 
mile for all mileage in excess of 125. Define a monadic function which 
uses the inner product to compute mileage allowances for employees. 

7.	 Use the inner product to write an expression which will simulate 10.lM 
a 10 ng the r 0\"1 s 0 f M, where Mx 3. 3 0 1 9 /" Yourexpres s ion s h0 u1d p ro due e 
the vector 123 456 789. 

8.	 Redo the cosine function (page 67) using the inner product. 
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Two applications of APL 

There are a number of uses for APL in the branch of mathematics known as 
matrix algebra. Since this text is a teaching introduction to the 
language, only one of these wi 11 be considered, the solution of a set 
of exactly determined simultaneous 1inear equations. 

For those who have forgotten their high school algebra, simultaneous 
1inear equations are of the form (in conventional notation) 

aX + bY + cZ + 

dX + eY + fZ + 

the problem being to find values of the variables X, Y, Z.... that satisfy 
all the equations. a, b, c, ... k k2 ... are numerical constants.1, 
We wi 11 approach it with a numerical example. Suppose that in three 
successive wpeks, we bought a number of different items A, Band C, 
spending the amounts 1isted: 

total 
cost A B C 

week $1.10 0 

2 .59 3 2 2 

.78 1 3 43 

What are the per unit costs of the various items? 

The answer happens to be $.05 for A, $.15 for Band $.07 for C. Let's work 
back from the answer to see how we can solve similar problems. From our 
previous work with the inner product, we ought to be able to get the vector 
of total costs from the number of items matrix and the unit cost vector 
(try this for yourself). we'll call the total costs vector D, the matrix 
of the number of each item purchased X, and the unit cost vector B. Our 
trouble is that in a real problem we would know X and D but not B. 

242 
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Before proceeding, here is a quick review of some elementary facts about ma­
trices. M, N, P, Q and R are matrices of the appropriate size, and = is used 
in the conventional sense here. +.x means the usual inner product (here ma­
trix multipl ication). All of these facts you may verify on the terminal: 

( 1)	 I f 1-1 =!l , the n (R + • x!-1 ) =R + • x II 

(2 )	 (/.1 + • x ( !l + • x P) ) = ( li!+ • x 1/ ) + • x p 

(3)	 If Q has an inverse, INV Q, then (·(INV Q)+. xQ)=I 
wher~ I is the identity matrix 

(4)	 ( /.1 + • x I ) = ( I + • x n ) =1v1 

The third point introduces a new concept, that of a matrix inverse. This 
is really not much different from the other kinds of inverses we have 
encountered thus far. For example, adding the additive inverse to a num­
ber resulted in the identity element for addition: 

R+-ll0 
O=R+-R 

1	 1 1 1 1 1 1 1 1 1 

and for multipl ication: 

l=Rx~R 

1	 1 1 1 1 1 1 1 1 1 

-R here is the additive inverse and ~R the multipl icative inverse. So the 
inverse of a matrix is one which, when it multiplies M (matrix multiplica­
tion, not component by component), yields the identity matrix; shown here 
for 4 4 matrices: 

(14)0.=14 

1 0 0 0
 
0 1 0 0
 
0 0 1 0
 
0 0 0 1
 

I f 14 + • x I LV V fi1 res u1t sin I, the n I N V Mis sa i d to be a rig htin ve rs e . 
Ditto for «IiVV i;J)+.xj11)=I, as a left inverse. If the same matrix 
is both a left and a right inverse of M, then M must be square (why?), and 
INV /,1 is referred to as the inverse of M. From this point on, INV M wi 11 
be used in this latter sense. 

Now getting back to our problem, with the dimensions underneath as shown, 
we had 

D +- X+.xB
 
3 3x3 3
 

We want to find B. Using a dotted 1 ine to indicate that both sides are 
equivalent statements, the sequence of steps we wi 11 take is the following: 
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(INV X)+.xD INV X+.x(X+.xB) rule 

(INV X)+.xD ( (INV X)+.xX)+.xB rule 2 

( INV X)+.xD I+. »» rule 3 

(Ill V X)+.xD B rule 4 

The last 1 i ne is our conclusion, that B+(INV X)+.xD 

The re is a prepared function in 1 CLASS called INV which acts as above, 
as well as the data for this problem. It requires a knowledge of matrix 
algebra beyond the scope of this text to explain how one can calculate 
matrix inverses, so INV will not be displayed: 

)LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 

X 

460
 
322
 
134
 

D 
1.1 0.59 0.78 

INV X 

0.03846153846 0.4615384615 O.2307C92308
 
0.1923076923 0.3076923077 0.1538461538
 
o.13461538 LtG 0.1153846154 0.1923076923
 

( I nV X) + • x D 
0.05 0.15 0.07 

The set of equations in our problem has as many equations as unknowns. 
There may be times when we have too many equations or not enough. You will 
find techniques for handl ing these and other variations in standard texts 
in matrix algebra and numerical analysis. 

Some elementary examples from the calculus 

The definition of the slope of a straight 1 ine (see problem 6, chapter 7) 
is of little value if the function we are considering is nonl inear. We 
can, for example, sti 11 use this definition to get an "averagell slope over 
a modest-sized interval, but it is only an approximation. 

In calculus courses it is shown that the slope of a function at a particu­
lar point P is the limiting value of the average slope over an interval 
encompassing the given point as the size of the interval becomes vanishingly 
small: 

http:15.02.39


Two Applications of APL 245 

y 1 

In the figure above, the average slope for the interval shown is 
(Y2-Y1)7(X2-X1). By reducing the size of the interval about P, this 
average approaches the instantaneous value of the slope at the point P, and 
in the limit is the value of the derivative of the function at P. 

APL can be used to obtain numerical values for the slopes (derivatives) of 
functions, provided, of course, that the derivatives exist. As an example, 
let's define a quadratic function F as follows: 

'lR+F X 
[1]	 R+2xX*2'l 

Using our previous definition of the slope, we'll set up a dyadic function 
SLOPE which will allow us to choose intervals of varying size in the 
computation: 

'lH+I SLOPE X 
fl] R+((F X+I)-F X)~I'l 

Here are some executions of SLOPE with different intervals: 

X+l10
 
1 SLOPE X
 

6 10 14 18 22 26 30 34 38 42 
.1 SLOPE X 

4.2 8.2 12.2 16.2 20.2 24.2 28.2 32.2 36.2 
40.2 
.01 SLOPE X 

4.02	 8.02 12.02 16.02 20.02 24.02 28.02 32.02 
3G.02 40.02 
.0001	 SLOPE X 

4.0002 8.0002 12.0002 16.0002 20.0002 24.0002 
28.0002 32.0002 36.0002 40.0002 
117-6 SLOPE X 

4.000001999 8.000001999 12.000002 16.00000199 
20.000002 24.00000199 28.000002 32.00000199 
36.00000199 40.000002 

Those readers fami 1iar with the calculus wi 11 understand why these last 
results are nearly identical with 
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2x2xX 
4 (3 12 1f) 20 24 28 32 36 40 

for the function F defined previously. 

Since the result of applying the function SLOPE to F is itself a function 
na me 1y, 2 x 2 x X we 0 ugh t to be ab 1e to a pply S L ()PEa 9a ina f t e r chan gin 9 . 

\7F[ 1 lJ?«-2x 2xX\J 
1 ;,7 - G S LOP i~1 X 

L+ 4 L+ 3 • ~ 9 9 ~j 9 9 9 9 7 3 • 9 9 9 ~3 9 9 9 9 I 3 • 9 9 9 9 S3 9 9 9 ',7 3. 9q999q~3q7 

3.999999997 3.999999997 3.999999997 

This execution corresponds to the second derivative of F. 

Our final example is one in which we compute the area bounded by the curve, 
the X-axis and the ordinates at Xl and X2 (see problem 5, chapter 19): 

An obvious solution is to break up the cross-hatched area into rectangles 
of uni form width I, 

find an expression for the area of the "typical " rectangle, add up the areas 
and then decrease I to get a better approximation. The function f1Hl'J'l1 does 
this for us. X is a two-component vector whose elements are Xl and X2 as 
shown in the diagram. 
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VH-\-I ARHA X 
r 1 ] R +-I + .. x r X [ 1 ] +I x 1 I (X [ 2 ] - X [ 1 ] ): 1 V 

Again, those with a calculus background wi 11 recognize this as the numeri­
cal equivalent of 

( x2
L f(x)dx 

xl 

Before applying the function, l e t ' s change P back: 

VF [ 1 ] H~- 2 x X* 2 V 
.1 AN.HA X 

• 0 1 ARjj'A X 
4.69f)7 

.001 AREA X 

4.669667 
.0001 AREA X 

~/S FULL 
AREA[l] R+I+.xF X[1]+IxIL(X[2]-X[11)~I 

Note that as the number of points which we use to evaluate the area 
increases, sooner or later we l Ll run out of storage space for the inter­
mediate results in the algorithm, as indicated by the ws full message. Can 
you think of a way to " stretch" your available storage for greater preci­
sion? 

PROBLEMS 

1.	 Use the function SLOPE to investigate the slope of the curve repre­
sented by Y+-*X for different points X. Compare your slopes with *X. 

2.	 Find the inverse of the identity matrix. 

3.	 Use I NV to sol vet he f 0 11owi ng s ys t em 0 f e qua t ion s : 

2X+Y+3Z=lO 
4X+3Y-Z=13 
2x+Y-4Z=3 

4. In algebra it is shown that for the system of equations 

aX+bY=c 
dX+eY=f 

(conventional notation) 

the appl ication of Cramer's rule gives as solutions 

j X= (ce-bf):- (ae-bd)
1Y=(af-cd):-(ae-bd) 

Write an ~rL program to solve by Cramerls rule a given set of two 
equations and print the message NO UNI{2UH SOLU?110N if ae-bd=O. 
define a function DOLVE wh i ch uses lNV to solve the equation. 

linear 
Then 
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5.	 Nearly every calculus book ever printed has a problem simi lar to 
the following: A farmer has 300 feet of fencing material which he 
wants to use to enclose as large a rectangular area as possible. One 
side of the property to be enclosed is a relatively straight stretch 
of river, and needs no fencing. How should the fence be put in? 
(To solve this problem, set up an expression for the area, apply the 
slope function to it, and see where the slope is o. This corresponds 
to a maximum point on the graph of area vs the variable representing 
the length of one side). 

6.	 Use the function AREA to find the area bounded by the curve represented 
by Y+ -;- X·, the X- axis, and the 0 r din atesat X =1 and X =2. Comp are you r 
answer wi th ~2. 
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Input a nd output 

We have been doing a considerable amount of computing without having to pay 
too much attention to the problems of input and output. And for a good 
reason-our work has been of a highly interactive nature. We fed informa­
tion to the system and the system either responded or put things into storage 
for us, to be recal led at some later time. 

Nevertheless, there comes a time when we need to take a look at some of 
the more specialized forms of input and output, especially as they appeared 
in the dri 11 exercises and some of the prepared functions. These features 
are the basis for this chapter. 

The guad 

In 1 CLASS there is a function called SD which calculates the standard 
deviation. Here i tis: 

)LO/lD 1 CLASS 
SA VE1) 15.02.39 07/29/G9 

VSD[LJJV 
'l SD;X;N 

[ 1 ] '~NTER OBSERVATIONS' 
[ 2 ] X+LJ 
[ 3 ] -+OX1U=pX 
[4 ] 'dUMB~'R OF OBS:';U+-N+pX 
[ 5 ] X+X-(+/X)~i! 

[ 6 ] 'STANDARD DEVIATION' 
[ 7 ] ((+/X*2)~d-1)*O.5 

[ 8 ] -+1 
'l 

It is ni ladic and does not return an expl icit result. Going through the 
function, we find that 1ine 1 prints out the message ENTER OBDERVA1l'IONS 
This is fol lowed on line 2 by the local variable X, which is specified 
by the quad (upper shift L) or box. The effect of this line is that when 
control is on 1 ine 2, the output that appears on the paper is 0: and causes 
the system to wait unti 1 you have given it some input and pressed RETURN. 
The input is then stored in X. Line 3 branches to 0 if O=pX, i.e., if 
an empty vector is entered. It is a signal in this function that we are 

249 
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finished. Line 4 introduces another new feature, mixed output. It prints 
out NUMB E'R 0 FOB S : f 0 1lowe d by the numbe r 0 fob s e r vat ionsen t ere d (pX 
is stored in N, put into the box and printed out). The semicolon is used 
here in APL for such mixed output because characters can l t be catenated to 
numbers. Line 5 subtracts from each component of X the average, and stores 
it in X. After a message STANDARD DEVIATION is printed (line 6), the 
calculation is carried out on the 1ine 7 and printed, following which control 
is returned to line 1, and the program loops through the steps once more. 

Let's try this a few times to see how it works: 

SD 
ENTER OBSERVATIONS 
D: 

1 2 1 2 1 2 1 2 
8 
NUMB ER OF OB8: 8 
STANDARD DEVIATION 
0.5345224838 
ENTER OBSERVATIONS 
0: 

Note the 8 just prior to the 1ine giving the number of observations. The 
reason for this is that on line 4 of the function, in executing from 
right to left, pX was put into Nand N in turn into D. Whenever the quad 
appears to the left of the specification arrow, the system interprets this 
as a command to-print out the value of whatever is to the right of the 
arrow. So the right hand side of line 4 really does two thinqs: It stores 
the length of the vector X in the local variable N for subsequent use on 
lines 5 and 7 and causes a printout of the length at the same time. Since 
in going from right to left the box is encountered first, the contents are 
printed out first, before the 1iteral message, and then reprinted following 
the message. We wi 11 edit the function a little later to remove this un­
desi rable feature. 

Any val id APL express ion can be entered: 

[]: 

8r1 2 
8 
!'JUlv/BER OF ODS: 8 
STANDARD DEVIATION 
0.5345224838 
ENTER OBSERVATIONS 
[]: 

(N ow we I 11 t ry) 

lJ: 
[.l+-8 p 1 2 

1212121 2 
8 
NUI,JBER OF ODS: 8 
STANDARD DRVIATIOV 
O.5345224B38 
ENTER OBSERVATIONS 
:J: 
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Since the quad appears just to the left of the arrow in this input, it 
causes an immediate printout of 8p1 2 and then proceeds with execution of 
the function. 

Escaping by simply pressing RETURN and not entering anything is not enough. 
The system has to have some input, and only if an empty vector is entered 
is it possible to excape: 

[1:
 
1 0
 

Letls now open up the function to remove the extra quad. Wei 11 use detai led 
editing on 1ine 4: 

vS D [ 4[]1 0 ] 
[Jot] 'i/Vl-1EER OF OB8:' ; []+N+pX 

II 
[ 4 1 ' N VIviB ER 0 FOBS: ' ; ll+ p X\] 

Now executing 3D once more, it appears to be OK: 

SD 
ENT&R OBSERVATIONS 
U: 

lOp 1 2 
10 
IvU14BE H UFO BS : 1 0 
STANDARD DE'VIATION 
O.52704627G7 
ENT~R OBSERVATIONS 
u: , , 

@ 

Incidentally, as the last input shows, another way to enter an empty vector 
is to type I Do you remember why this works?I. 

This function has introduced three new features: (1) the use of the semi­
colon for mixed output; (2) the quad to the left of the specification arrow; 
and (3) a quad to the right of the specification arrow which returns 0: on 
the paper, skips a line and waits for any valid APL expression to be typed 
in as input. The contents of the quad in the last case can be put into 
storage by an expression 1ike X+O which makes input avai 1ab1e for future 
use in the function (or outside if X is a global variable). 

SUB is another function that utilizes the quad. Before displaying it wei 11 
try it out a few times: 

SUB 
3-3 
LJ: 

o 
THATS RIGHT 
10-5 
I]: 

G 
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5+l-]=10 
TRY AGAIN 
10-5 
lJ: 
(RETURN) 
[J: 
(RETURN) 
[-1 : 
(RETURN) 
lJ: 

5 
TllA,T8 RIGHT 
5- 0 
J: 

5 
THATS RIGHT 
14-10 
[1: 

HELP 
00000000000000 TAKE ArJAY 
0000000000 

14-10 
[J: 

4 

THAT8 RIGHT 
19-7 
[]: 

19-7 
THATS RIGHT 
11-9 
[]: 

11-9 
TIiATS RIGHT 
1-0 
[J: 

11-10 
~L'HA i: RIGIIT 
11­

Note that giving no input to the program and just pressing RETURN (top of 
this page) wonlt get you out. Also observe the responses of the program 
under different conditions, and the fact that any APL expression can be 
used as input. 

Let I snow i n t err up t the fun c t ion toge t 0 ut . Sin ce the i nput box will 
acce pta nyAPLexpres s i on, ) CLEA R,o r ) Ii0 A D will get us 0 ut, but 0 n 1y 
at the expense of destroying the active workspace. Wei 11 use the stop 
vector and then remove the suspension: 
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[]: 

S[).SUJ]+1100 

SUL3[S] 
)31 

SUR[S] * 
-+0 

Sf1SUI1+0 

Here is SUB: 

VSUB[OJ\7
 
\7 SUB
 

[ 1 J P~-? 2 0 
[ 2 J P~--P, 1 + ? P+ 1 
[3J P[lJ;'-' ;P[2J 
[ 1+ J A+-O 
[5J -+OOKXlA=-/P 
[6J -+NPXlA=HELP 
[7J -+OxlA=STOP 
[8J P[2J;'+0=';P[lJ 
[9J 'TRY AGAIN' 
[10J -+3 
[11J OOK: 'THATS RIGHl" 
[12J -1-1 
[ 1 3 J NP: (P [ 1 J 0 ' 0 , ) , , T AK E A 01A Y , 
[14J P[2]o'o' 
[ 1 5 J -~ 3 

\7 

On line 1 a random number from 1 to 20 is generated and stored in P. This 
is then respecified by catenating to P a second random number from 0 to P. 
Line 3 prints out mixed output, the first random number followed by the sub­
tract sign and the second random number. Line 4 prints a box to accept 
input, whi le 1i ne 5 causes a branch to 11 if the an swe r is correct and 
p r i n t s the me s sage T HATSRIGHT, 0 the rw i sewed r 0 p t h r 0 ugh to 6. I f 
flELF is typed, line 6 branches to 13, and if STOP is typed, we exit the 
function. 

Assuming an incorrect answer and neither HELP nor STOP are entered, 1 ines 
8, 9 and 10 restate the problem and tell us to TRY AGAIN, and we start 
over on line 3 with the same problem. If the problem is answered correctly 
this time and we get to line 11, we branch to 1 and get a new problem to do. 

Typing fJELP brings us to 1ine 13 where P[l] copies of the small ci rcle 
followed by some spaces and the words TAXF: ATvAY, followed in turn by 
P[2J copies of the small circle on the next 1 ine and a restatement of the 
problem are printed out, and we cycle through the same problem once again. 

HE L P' and S TOP i nth i s exe r ciseare g lob a 1 va ria b 1e s wit h rat her un 1i ke 1y 
values attached to them to make them as student-proof as possible: 

1IELP 
2.718281828 

*1 
2.718281828 
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STOP 
15.15426224 

**1 
1 5 • 1 5 L~ 2 6 2 2 L+ 

Being global they appear on the 1ist of variables for 1 CLASS: 

) VARS 
13 CIRCUIT D Ill!) LP If !~1 I LEA r; E PRE VI ()U,') T T/.1.',' 
8PL STOP TABO TAB1 TAB2 TAB3 X Y 

To see if STOP works, weill call for SUB again: 

SUB 
11-1 
U: 

10 
TlIATS RIGllT 
14-6 
[1: 

STOP 
@ 

and we get out of the program as anticipated. 

Additional uses of the quad 

Don't get the impression from the previous illustrations that the quad 
can be used only within defined functions. Here, for example, are some 
more ways in which the quad can be uti lized for the display and input of 
information. Keep in mind that at all times, though it may be used to the 
left of the specification arrow, the quad is not a variable, and no values 
go into storage as a result of its use in this manner. 

n 
U: 

15.27xR-4::.2 
519.18
 

A+-5 15 2 6 0
 
A [ D+- ( + / ( 11 • ~ A ) - [J+- ( X 0 > X ) 1\ D+-A 0 • =A ) 1 X+-1 P A ]
0 • 

1 0 0 0 0
 
0 1 0 0 0
 

0 0 1 0 0
 
0 0 0 1 0
 

a 0 0 0 1
 

a 0 0 0 0
 
0 0 0 0 0
 

0 0 0 0 0
 

0 0 0 0 0
 
0 0 0 0 0
 

L~ 3 S 1 2 
G 2 0 5 1 5 
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The last example uses the quad to display intermediate results, and helps 
us to understand how a messy expression such as the one just given works. 

Here are some additional examples of the quad used as an input indicator on 
the right of the specification arrow: 

H~-[J 

[]: 
64 
H 

R+l]~lO 

U: 
15 

65. G 
T+[] 

fJ: 
'TJIE CAT IN TllE flAT'
 
T
 

T1 H E TIlE CAT III '.i. HAT 

The quad can also be used in a branch command (see page 176 at the end of 
chapter 24): 

~8,pD+'THIS MESSAGE WILL BE PRINTED' 

Finally, when a system command is entered as input with the quad, the quad 
will disappear if the command replaces the active workspace or signs off, 
and will reappear after saving or when execution is resumed after loading 
or signing on again (if )COilTINUE had been executed). It also appears in 
the state indicator if )SI is entered as input. 

The quote-quad 

Inth e 1as t prog ram we we rera the r 9en e r ousin allow i n9 any A P Lexpres s ion 
as input. What if we want an exact predetermined answer? An example of 
such a program is given by ADD: 

VADD[LJJv 
v ADD 

[lJ D~P~? 10 10 
[2J ~OxlO=pA~,~ 

[3J ~WRONGxl~A/Ac'0123456789' 

[ L+ J A~- 1 0 1 - 1 + ' 0 1 2 3 4 5 6 7 8 9 , 1 A 
[5J rl x l A = + / P 
[,6J 'TRY AGAIN' 
[ 7 J r2 

[8J WRONG:'?????????????' 
[ 9 J -+ 2 

This contains a quad with a quote overstruck. The effect of this is to 
make whatever is typed in accepted 1iterally. This includes even system 
commands like OFF, CLEAR, etc., so it's vital that an appropriate means 
of escape from the function be planned. 

v 
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After two random numbers are generated and printed out by being assigned 
to the box, 1ine 2 exits us if an empty vector is entered. There is a 
branch to 8 if any character other than 0-9 is inputted. Line 4 takes the 
1iteral representation of the input, converts it to decimal representation, 
and puts it in A. This is then matched against the correct answer on 1ine 
5. If correct, we get another problem; if not, the message TRY AGAIN. 
Here is a sample execution: 

ADD 
8 10 
18 
8 3 
8+3 
????????????? 
R E f/ 
????????????? 
11 
1 8 
)CLEAR 
?????????????
 
(escape is effected by entry of a return)
 

Note that no quad is printed out. The typeball simply moves over to the
 
left margin when 1iteral input is cal led for, and the keyboard is unlocked.
 

Another funct i on that accepts 1 i tera 1 input is SPELL: 

SPELL 
3 
THREE 
TIJATS RIGHT 
5 
FIV 
TRY AGAIN 
5 
PIVE 
TllATS RIGHT 
8 
STOP 

\JSPELL[OJ\7 
\J SPELL 

[ 1 ] N+--l+?10 
[ 2 ] N 
[ 3 ] ANS+-[!J 
[ 4 ] ~OXlA/(4pANS)='STOP' 

[ 5 ] ~CORRECTxIA/(5pANS,' ')=SPL[N+l; ] 
[ 6 ] 'TRY AGAIN' 
[ 7 ] ~2 

[ 8 ] CORRECT: 'THATS RIGHT' 
[ 9 ] ~1 

A random number from 0 to 9 is selected, assigned to N, and printed on 1 ines 
1 and 2. Line 3 accepts the input and puts it in ANS. The next line 
compares the first four characters of the input with STOP. If they match, 
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we're out. If not, we drop through to 1 ine 5 where the first five char­
acters of ANS are compared with the (N+1)th row of SPL: 

8PL 

ZERO 
ONE 
T~/O 

THREE 
FOUR 
FIVE 
SIX 
SEVEN 
EIGHT 
NINE 

If they match, we branch to line 8, where THATS HIGHT is printed out and 
followed by another problem. Otherwise we get the message TRY AGAI!,' and 
recycle through the problem. 

S PLis act uall y a 10- row 5- col umn mat r i x wit h b 1an kson the end where 
needed to fill up the five columns. We can show how such a matrix can 
be built by executing 

W+10 5p'ONE TWO THREEFOUR'
 
W
 

ONE 
TWO 
THREE 
FOUR 
ONE 
TWO 
THREE 
POUR 
ONE 
TWO 

Two problems occur in connection with the function SPELL. One difficulty 
in designing such a function is that as it is now set up, any characters 
beyond the first five aren't checked on 1 ine 5. This leads to anomal ies 
1ike 

SPELL 
9 
NINE RT 
THATS RIGHT 
3 
STUP 

Another real problem is that we have built in no means of escape, except by 
typing STOP. An additional avenue of escape from such a program will be 
discussed further on in this chapter. 
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Extensions of the quote-quad 

As with the quad, the quote quad can also be used by itself: 

ij ..:-['J 

;3It10N SAYS 
'I
1-1 

~j1 1110 N .3A YS 

[lIT..: l'J 
liE' l/O tv 'IF C; 0 

t.t r 
liE WON'T GO 

p l.L'l'
 
1 1
 

Escape from an input loop 

It sometimes happens that in spite of our best efforts, we may be caught in 
an endless loop and not know how to get out, or, what is worse, the function 
is poorly designed and has no way out. Shutting the terminal off won't help 
us, since when we sign on again we wi 11 be right back where we were before, 
because the CONTINUE workspace is automatically removed. 

APL provides two escape mechanisms for such situations. Those functions 
call ing for numeric input (D) can be gotten out of by typing +, while 
escape from those which require 1iteral input (~) can be achieved by enter­
ing	 0 backspace U backspace T, forming the overstruck character m. 

PROBLEMS 

1.	 Define a function that wi 11 give mu l tipl ication dri 11 of integers ?i. 
for some argument N in the header. Have your function print out a 
message TRY AGAIN for wrong answers. Use STOP as a global variable 
for escape from the function. 

2.	 Modify your answer to the above problem so that three tries are a1 lowed, 
after which the correct answer is printed out and another problem is 
posed. 

3.	 Add a further refinement to the multiplication drill so that when llELP 
is typed, the answer to the problem is given as X[1] rows of X[2] 
stars each, with an appropriate message and a repetition of the 
problem. X is the vector of random integers generated in the problem. 

4.	 For a final feature, modify your function for problem 3 to print out
 
the amount of time required to get the correct solution.
 

5.	 Replace the message TRY AGAIN on 1 ine 6 of SPELL wi th a statement
 
Telling what the answer is.
 

6.	 Define a function ENTER that wi 11 take the 1 i teral spell ing of numbers, 
1 ike those in SPL , and put them in successive rows of a 20-column 
matrix. Exit from the function will be effected by entering ~n empty 
vector. 
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Miscellaneous APL commands and features 

This chapter wi 11 be a catch-all for the remaining 11PL commands and 
features. 

The commands OHIGIN, JIIDJ.'Il, DIGITS 

These system commands affect the active workspace and travel with it when 
it is saved. ORIGIN, sets the origin for indexing on arrays and all oper­
ations which depend on the index. Two origins are avai 1able, 0 and 1. Here 
is the command and its effect on the iota and indexing functions: 

)OHI(;Ii/ 0 

rJA8 1 
t 5 

o 1 234 
A L F+- ' 11 neeE FGIII J J( , 

ALFl'CAFE' 
2 0 5 L+ 

ALF[2 0 5 4J 

CAFE 
4?4 

J o 2 1 

Other array operations not shown here will be simi larly changed. For 
instance, in a workspace set to origin 0 the normal transpose ~) 10}1 (M i 
some a r ray) wou1d havet0 bel 0~ 14 . Bra nch i ng wou 1d be a f f e c ted a 1so, as 
for example, in the case of -+3 x l A =B , but this could be compensated for b 
calling for -+3rlA=B, which works for either origin (why?), or by i nc re as. 

use of labels. 

To tell what the origin is in a workspace all we need do is execute 

l 1 
o 

Clearly the origin is 0, for an origin of 1 would call for a response of 1 
Finally, to reset the origin, execute 

259 
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)ORIGIll 1 
riAS 0 

and we are back to normal: 

t 5 
12345 

The ~/IDTH command works in much the same fashion, and sets the width of 
the printed line as specified by the integer (between 30 and 130) follow­
ing the command: 

)WIDTH 30 
WAS 12C 

lOOp '0123456789' 
012345678901234567890123456789 

o1 2 3 4 5 6'7 8 <J 0 1 2 3 4 5 6 7 8 9 0 1 2 3
 
456789012345678901234567
 
8<J01234567890123456789
 

This command won't change the margin settings on the terminal, nor the 
length of the input 1 ines, but every 1 ine of output will be no longer than 
the width specified. 

We'll now reset the width to its normal value: 

)JlIVTJI 120 
[iAS 30 

The DIGITS command sets the number of significant places in the numerical 
output to some number between 1 and 16: 

)DIGITS 5 
WAS 10 

1~7 

0.14286 
)DIGITS 10 

fvAS 5 
1~7 

0.1428571429 
)DIGITS 16 

[vAS 10 
1~7 

0.1428571428571428 
)DIGITS 20 

INCORRECT COMMAND 
)DIGITS 10 

~vAS 16 

The actual calculations aren't affected, only the output as printed. 

The workspace rls FilS 

In 1i bra ry 1 i s a wor kspa ce called rlS F IV S , wh i ch you s h0 u1d now loa d : 
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)LOAD 1 WSFIlS 
SAVED 23.45.54 07/07/69 

)FdS 
D~LAY DIGITS OHIGIN SETLINK WIDTH 

) VARS 
DESCHIiJL' 

Exe cut e DE:) CR I B L' to 5 e e how the fun c t ionsin t his wo r k 5 paceare use d : 

DESCRIBb' 

TilE' FUNCTIOIVS ORIGIN, ;iIDTu', AdD DIGITS ARE E'ACiJ 
SIiijILAR TO ru« CO!·1L~AljD OF rue SA/vlE NAt/fE, EXCi:.J'PT THAT L'ACll IS 
A FUNCTION RATH~H THAN A COMMAND AND MAY TH~R£FORE H~ USED 
~lITHIiv OTHER FUNCTIONS. ~'ACH HAS Ad EXPLICI'l1 RESUL'11 

~/jJICjJ 

IS THE PREVIOUS VALU& OF TdE REL~VANT SYST2M PARAM£TER. 

FOR E XA p,jP LE, THE F0 L L 0 ~I I LV G F ULV CT I 0 tv : 

'VF X 
[lJ X+ORIGIN X 
[2J G 
[3J X+ORIGIN xv 

WILL ~XECUT~ THE FUNCTION G WITH WHATEVER INDEX ORIGIN IS 
SPECIFIELJ vY TJl~' ARGUlJEi:JT OF F, AND J-IILL RL'STORE r.i: INDL/X 
ORIGIN TO TlfE VALUE THAT I'J.'1 HAD dEPORE TdL' EXb'CUTIOiV OJ/ F. 

THE FOLLOWING	 FUNCTIONS ARE ALSO AVAILABLE: 

Z+SETLINK X	 SETS THE VALUE OP TiJ8 LIt/K IN THE CHAIi/ OP 
NUMBERS GE'N£'RATED IN TliE USE OF TilE HOLL ANlJ 
DEAL PULVCTIO/v S • (TH J.~' EXP LICI11 RES ULT PRODUCE'f) 
HY SETLINK IS THE' PR~VIOUS VALUE OF TH~ LINK. 

TIlE' RESULTS PRODUCED BY THE ROLL AND DL'AL 
FUN CT I 0 LV S ARE ii 0 'I' THE L I LV j{ S 'I' IiE !18l!/ L VES, J.jUT 
RAT jj ER SOME F UiV CT ION 0 F Til Elv1 • Til E LEN cr.i 0 F 
THH CJ1AIN (BEFORE REPETITION) IS 2*31. 

DELAY X	 DELAYS EX~CUTION FOR X SECOUDS. 

Here are some examples: 

X+WIDTli 30 

40p'0123456789' 
012345678901234567890123456789 

0123456789 
X 

120 
WIDTH X 

30 
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X-<-Ol?IGIiJ 1
 
X
 

1 
1 3 

123 
X+-ORIGIlJ 0 
1 3 

012 
ORIGIN X 

o 
1 3 

123 

When the function is called for, the most recently set value is given, and 
it is then reset to the original value, as stated in LJESCHII5L' above. The 
funct i on DIGITS works in the same way: 

X+-DIGIT8 5
 
1.;-3
 

0.33333
 
X 

10 
DIGITS X 

5
 
1.;-3
 

0.3333333333
 

Groups 

The command GROUP collects all but the fi rst of the names that follow it 
and stores them unde r the firs t name. Any obj ect, inc 1ud i ng names of othe r 
groups and even nonexistent global objects can be a member of a group, but 
the group name can1t be the same as that of a global object in the workspace. 
The COpy and ERASE commands can be used wi th groups to make it eas ier to 
move or delete a collection of related global objects. For some examples 
we ! l l use functions and variables from 1 CLASS: 

)LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 

) vi I DTIl 5 0 
h'AS 120 

)FNS 
ADD AGAIll A VC AVG1 AVG2 AVG3 A VG4 A VG5 
BASE C CMP Cl1PX C!1PY COLCATl COLCAT2 
COLCAT3 COS COSINE CP CPUTIME CP1 DEC 
DELAY DESCRIBE DFT DICE E FACT 
FACTLOOP GE02 CE03 HEXA HY HYP 
i us RRT I/l V ~1 EA!l PI RECT REP RRVF1?SF 
ROWCAT RUll S SD SETVARIABLES SIGN SORT 
SP~LL SQRT STAT STATISTICS sun S rIffS CA [,I TI/.,'P 
TIlJEFACT TRA TRACETIl1Z 
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) VANS 
f3 CIRCUIT D HELP /-1 iII DEA(;E PRDVIOU8T IME 
SPL STOP TABO TABl TAB2 TAB3 X Y 

)GROUP STAT ADD AGAIN AVG 
NOT GROUPRD, NAl1E IN USE 

)Gl?OUP BAKER ADD AGAIN A VG 
@ 

The movement of the typeball six spaces over constitutes the system's 
response to a successful grouping. 

To list the members of the group, type 

)GRP BAKER 
AlJD AGAIi/ AVG 

The group may be respecified in the same way as for a variable: 

)GROUP BAKER AVGl AVG2 BOO WRONG HELP SOWllAT 
@ 

)GRP BilKER 
/1 VGl AVG2 BOO WRONG HELP SOWHAT 

It may be enlarged by typing 

)GROUP BAKER BAKER SORT 
)GRP BAlCER 

AVG1 AVG2 BOO WRONG HELP SOI/llAi' SORT 

and removed by entering an empty vector after the group name (or erasing): 

)GROUP flAKER 
@ 

)GRP BAKER 
@ 

Having removed the group BAKER (it could also be removed with the ERASE 
command, but this removes the members as well as the group itself, in con­
trast with the above command, whicr. just disperses the group), let's define 
two additional groups ABLE"' and COVER, one of which will include the 
othe r: 

)GROUP ABLE PI RECT REP OOK SAY 
(a! 

)GROUP COVER ABLE TAB3 Y 
@ 

The names of all the groups in the active workspace can be 1isted by the 
command 

)GRPS 
ABLE BAKER COVER 

The restrictions on group names are the same as those applying to functions 
and variables, and a partial listing can be obtained by following the 
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command by a letter of the alphabet. 

Message commands 

The last set of system commands is that concerned with communication 
between terminals (including the operator). Messages of importance to all 
connected users begin with PA! which, contrary to public opinion, does 
not stand for " political announcement." 

Although messages can be received ordinarily only when the receiving key­
board is locked and not in the middle of function execution, such public 
address messages can interrupt at any time. They come from the system 
recording terminal, and are distinguished from routine me~sages from the 
operator, which begin with OPR: 

There are four message commands available to the user. Each is fol lowed 
by one 1ine of text of length not exceeding 120 spaces: 

) 0 PR [/.1E88AGE] 

This prints out the message at the operator's terminal, prefixed by your 
port number and B, indicating that a reply is expected, and then locks your 
terminal unti 1 a reply is received. The ATTN button wi 11 unlock the keyboard 
before the reply, if des ired. 

)MSG [PORT NUMBER AND MESSAGE] 

This command must be followed by a port number and text, and wi 11 send a 
message to the designated port. (To get the port numbers associated with 
connected users, ask for )PORTS followed by the user code.) The message 
wi 11 print out at the receiving terminal, along with the port number of the 
sending terminal and the p~efix B to indicate that a reply is expected. 

As before the keyboard remains locked until a reply is received. 

) liS" GN )OPRN 

Thesea ret he s ame as) J.1S G and ) 0 PRexce pt t hat nore ply i sexpe c ted and 
the keyboard unlocks after transmission is completed. In all cases the 
word SENT is printed at your terminal when transmission is complete. 

Security features for user protection 

APL makes available to each user a number of safety features that restrict 
access to parts of the system. One of these has already been introduced, 
the password associated with a user number. It can be changed at sign-off 
by 

)SIGil-OFF COMMAND:HEWPASSWORD 

or simply discontinued by following the sign-off command with a colon. 

Another is a workspace lock, which follows the workspace name and is 
separated from it by a colon. This lock must be included with the work­
space when loaded. The lock remains in effect unless it is changed 
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when the workspace is saved again. As with the sign-off command, 
a save followed only by a colon removes the lock. Also, workspaces 

which are locked are 1isted when )LIB is cal led for, but the locks aren't 
included for obvious reasons, and the locked workspaces aren't identified 
as such in the 1isting. Should you be so unfortunate as to forget what 
the	 lock name is, there isn't any way for you to retrieve the workspace 
in question. About all you can do with it is to drop it. 

Individual functions can also be locked by overstriking the opening and/or 
closing dels with the tilde:~. This is useful for seal ing up functions 
which contain proprietary information or things 1ike classroom exercises 
which a teacher doesn't want students to be able to see. Functions locked 
in this manner are forever buried and inaccessible (see below) even to the 
one who inserted it. 

Locking a function isn't quite as bad as we may have made it sound in the 
previous paragraph, however, since the function is still avai lable for 
every kind of use save two: it can't be displayed or edited. In fact, even 
copying is possible, but the copy is likewise subject to the same restric­
tions as the original. 

Earlier we touched on how names of functions and variables can be made up. 
There is considerable freedom in choosing such names in that any sequence 
of characters alphabetic (including underl ined letters) and numeric except 
blanks can be used, as long as the first character is alphabetic. APL 
recognizes only the first 11 for workspace names, the first 8 for passwords 
or locks, and the first 77 for all others, which is hardly likely to cramp 
any user's style! Only the first 4 characters, incidentally, are signifi ­
cant for system commands, any additional ones being included only to make 
it easier to remember. 

Fuzz 

Whenever a command is executed in APL call ing for a comparison of two 
numbers, since the number of significant figures in APL calculations isn't 
infinite, there is a question as to how close two numbers must be in order 
to be considered equal. The allowable discrepancy is about lE-13, and is 
cal led fuzz. Try some of the relationals or other functions dependent on 
comparisons of two numbers, using as arguments numbers differing by less 
than the fuzz, to illustrate these 1 imitations. (Also see problem 9, 
chapter 9.) 

PROBLEMS 

1.	 Execute each of the following in turn and observe the behavior of the 
arrays generated: 

)LOAD 1 CLASS 
Y+ll0 
)ORIGIN 0
 
TAB3ro;2;lJ
 
Y14 5 6 
)DIGITS 5 
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fTAB3 
)WIDTH 60
 
)FNS J
 
) LOAD 1 ~/SFNS
 

X+DIGITS 6
 
';'110
 
X 
.;. 1 10 

2.	 Why is the expression A[lN] independent of the index origin? 

3.	 Execute lO and II with )ORIGIN O. Are they vectors? Of what size? 

4.	 Send a message to your own port number. (This is useful when you want 
to be assured of getting an intell igent response!) 

5.	 Specify A+9. 222222222222222~ B+9. 222222222222227 ~ C+\10 
and execute A=B, AEB, A-B, C[3.000000000000008J. Account for the 
responses. 

6.	 Rewrite the function SUB (page 253) using ORIGIN in 1 WSFNS before 
generating the second random number on line 2. 

7.	 Practice forming groups out of the functions and variables in 1 CLASS 
List the groups and their members. 



Appendix 

Summary of APL notation 

This sec t ion will be a summa ry 0 f all A PIJ fun c t i on s ymb0 1s wit h the i r 
names and the appropriate references in the preceding pages. System 
commands will not be included here since they were covered in chapters 15 
and 34. 

Omission of references to the use of some standard scalar dyadic functions 
with arrays of rank greater than 1 does not necessarily mean that the syntax 
of the function doesn1t a1 low it, but simply that no specific examples or 
discussions were included. Where they occur, f and g stand for any standard 
scalar dyadic functions. 

Monadic (M) References to arrays of 
Function symbol Dyadic (D) Name rank 0,1 rank >1 

< D less than 25
 
:::; D less than or equal 25
 

D equal 26
 
~ D greater than or equal 25
 
> D greater than 25
 
~ D not equal 25
 
v D logical OR 27
 
A D logical AND 26
 
IV' D logical NOR 27
 
1'< D logical NAND 27
 

M arith. negation 50 19 
D subtraction 7 

+ M additive identity 55 
+ D addition 6,9 196 
.. M reciprocal 51 .. D division 7,11 
x M signum 56 

D mu 1tip 1i ca t ion 7,11 197 
? M roll (query) 55 
? D deal (query) 154 
E: D membership 153 213 

P M size (dimension vect) 116 117 
p D Restructure 126 127 

M logical NOT (NEGATION) 52 
t D take 152 213 

267 

x 
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Monadic (M) References to arrays of 
Function symbol Dyadic (D) Name rank 0,1 rank >1 

i- 0 drop 153 213 
M index generator 113 

l 0 index of (ranking) 136 
0 M pi times 186 
0 0 c i rcu 1a r functions 180 
cP M reversal 150 202,203 
cP,8 0 rotate 150 203,204 
~ M transpose 215 215 
~ 0 transpose 217 

M exponential 51* 
0 power 15* 

, 

~ M natural logarithm 51
 
~ 0 logarithm to a base 17
 
r M ce i 1i ng 52
 
r 0 maximum 18
 
L M floor 53
 
L 0 minimum 18
 
4 M grade up 154
 

M grade down 154
 
M factor ia 1 50 198 
0 combinations 21 

[J M indexing 138 210 
.l 0 decode (base value) 160 
T 0 encode (representation) 162 
I M I-beam functions 188-191 
I M absolute value 51
 
I 0 residue 23
 

M ravel 124 125 
, 0 catenate 122 208 
fl 0 reduction 37,200 198,199 
1,1 0 compression 140 206 
\,\ 0 expansion 142 206 
o. f 0 outer product 222 224 
f.g 0 inner product 233 233 

Miscellaneous AP~ symbols 

Symbol Name Refe rences 

negative 7 
specification 30 
branch 169 
underl i ne 32 
del 63 
locked function 265 
delta 178( trace) ,179 (stop) 
quote 130 

o quad 63 (d i s p) ,249 ( i np) ,254 (ou t p) 
~ quote-quad 255,258 

( ) parentheses 44(grouping) ,33(sys com) 



V 

Symbol 

A 

E 

1\ 

/ 

Name 

semicolon 

colon 
lamp (comment) 
exponential notation 
decimal point 
correction indicator 
error i nd icator 
char deletion (in edit) 

Summary of APL Notation 269 

References 

210(indexing),89(fn header) 
250(mixed output) 
4(password),172(labels) 
9
 
16
 
6
 
8
 
7
 
83
 



Answers to problems 

Some of the problems will have more than one solution given. This wi 11 
generally occur when there exist different, but sound, alternate approaches 
to the solution. The proposed solutions, because they are keyed to the func­
tions presented up to that point in the text, wi 11 not always be the most 
concise or elegant possible, with the dri 11 problems occasionally returning 
error messages. For this reason, certain solutions will have references to 
functions to be introduced at a later point in the text, and which wi 11 
simpl ify the task of defining the function or expression needed to solve 
the problem. 

Chapte r 2
 
£> 8 2 4+3 9 1 1
1.
 

9 17 3 5
 
1 0 9 8-4 2 2 3
 

3	 2 7 5
 
3- - 1 56.7 0 .19
 

4 59. 7 3 3.19 
3 4xl 2 3
 

LENGTH E,l HROR
 
3 4 x 1 2 3 

1\ 

5 4 3x6
 
30 24 18
 

2 3
 
SYNTAX ERROR 

2 3 
1\ 

Reminder: the negative sign is a mark of punctuation, not a function. 

1 2 8~··1 2 0 

DOMAIN ERROH 
1 2 8 ~ 120 

/\ 

10-:10 S 21
 
1 2 5 lU
 

270 
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2 0 .81+15 6 5
 
13 6 4.19
 

3. 15589 45xl.25 .50 .25 
4 L+.5193.75 11.25 

4.	 59.50 72.50 79.50 83.00~1263 2016 1997 3028 
0.04711005542 0.03596230159 0.03980971457 0.02741083223 

Chapter 3 
1. 3f3 7 10.8 2 0
 

3 7 3 3 3
 
1 9 5 2LO 6 4 3
 

0 6 5 2
 
5 1 52rS
 

6 6 52
 
lfA11 

1
 
2*.5.333.25.2
 

1.414213562 1.25962998 1.189207115 1.148698355
 
3*4 2 1 0 -5
 

81 9 3 1 0.004115226337
 
10f1)1 2 3 4 5 

o	 0 . 3 0 1 0 2 9 9 9 5 7 0 . 4 7 7 1 2 1 2 5 4 7 0 . 6 0 2 0 5 9 9 9 1 3 0 . E) ~3 8 9 7 0 0 0 4 3 
2 3 4 5 6~2 

1	 0.6309297536 0.5 0.4306765581 0.3868528072
 
2 LOS 8
 

o	 2 8 
2fA125 

DOl>1AIN ERROR 
2(8)25 

1\ 

Both arguments must be greater than 0, and if the left argument is 
1, the right argument must be 1 also. 

2*.5 
DOP·fAIN ERROR 

2*0.5 
1\ 

lflJ55
 
DO/'vJAIN ERROR
 

1~ 55 
1\ 

8*.3333333333333 
DOMAIN ERROR 

8*0.3333333333333 
1\ 

Try	 adding a few more 3 1 s on the right and reexecuting. 
10~O 

DOI~fA I N ERROR
 
1 Of}) 0
 

1\ 

1*0 1	 10 100 1000 
1	 1 111 

7.11E4~9.45E 3
 
7 5 2 3 8 0 ~j • 5 2 L+
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21.268El+4.56E-2 
212.7256 

8.2EOx7.9E 3+56 
459.26478 

2. lEO 
1	 0.1 

lEl 
10	 0.01 

lE6	 lE-4 
1000000 0.0001
 

lEg lE-5
 
1000000000
 

lEl0
 
lEl0 lE-6
 

3.	 15 20 18 32 29L18 20 15 10 49
 
15 20 15 10 29
 

4.	 10~1';-C 

This is a bit ahead of the game in that we haven't said anything yet 
about order of execution, where multiple operations occur in a single 
expression. See chapter 8 for more details. 

Chapter 4 
1.	 1 9 8 I 3 4 6
 

046
 
3 2 -113
 

010
 
o 11 2 3
 

1	 2 3
 
31-3 -2 0 1 2 3
 

o 1	 0 1 2 0 
113.4	 -2.2.019 

0.4 0.8 0.019 
o 1 2	 3 4!3 4 5 6 7 

1	 4 10 20 35
 
4!3 4 5 6 7
 

o	 1 5 15 35
 
-24-518 13 3.78
 

o 1	 3.78 
2.	 The 51 any integer is in the set 0 1 2 3 4, which is in S. Note 

also that the condition N~4 given in the problem is unnecessary. 
3.	 If the result of BIA is zero, then A is divisible by B. 
4.	 Hours: H-lIH; Minutes: 60lH x60 

The last solution should be tried for typical values of H. You wi 11 
see that H is multip1 ied by 60 first, and then 60lH is obtained. 
More about order of execution in chapter 8. 

5.	 3! 49 
Fo1 lowing the hint, there are three separators, each of which can be 
in anyone of forty nine positions. 

6.	 4!30 
7.	 N-lIN
 

This works only for nonnegative values of N.
 
8.	 l!-l xN or l-llN 
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Chapter 5 
1. 0 0 1 lvO 1 0 1 

0 1 1 1 
1 0 1 01\1 0 0 1 

1 0 0 0 
2 4 7 2>6 1 0 4 

0 1 1 0 

0 1 2 3=0 1 3 2 
1 1 0 0 

4 5 1 o.8~4 1 1 2 
1 0 1 0 

8 7 6 5 4 3 2 lsl 2 3 4 5 6 7 8 
0 0 0 0 1 1 1 1 

2 3 0<5 1 4 

1 0 1 
3 1 2~1 2 3 

1 1 1 
..... 1 0 

0 1 
o 0 1 1¥0 1 0 1 

1	 000 
1 0 1 01'<1 0 0 1 

011 1 
2.	 The factors of an integer N are those integers which divide N. Hence 

set 0=1 2 3 .. . NIN. 
3.	 A~O or OsA yields a logical vector with 1 IS in those positions cor­

responding to the accounts not overdrawn. 
4.	 AVO=B works if either or both conditions hold while A~O=B works 

when only one of the conditions holds, but not both. Later, when 
the function (logical negation) is introduced, Av ..... B will also berv 

a possible solution. 
5.	 EXCLUS I VE NOR or. NEXCLUS I VE OR. 
6.	 Although logical negation won't be introduced unti 1 chapter 9, yourv 

should explore its action in the vector 0 1. If we give the name A 
to 0 0 1 1, then AI\ .....A is always 0 and Av .....A is always 1. 

Chapter 6 
1.	 .....A v ..... B 

o	 1 o 1 
.....AAB 

1	 1 1 1 
.....BVC 

The	 results can be explained by assuming that1	 o 1 0 
..... BA ..... C logical negation acts on everything to therv 

right of it. More about this in chapter 9.1	 010 
..... C~D 

o	 0 0 0 
.....D=B 

0101 

2.	 B+21 A 
C+O=B 

Also B+A+l followed by 21B. If you understand the use of ~ try 

rv21A. 
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3.	 E+3 7 15 2.7
 
F+E*2
 
AREA+6xF
 
AREA
 

54 294 1350 43.74
 
This can be done in one step as 6xE*2.
 
X2+XxX
 
X3+X2xX
 

5.	 A) Z+SxO B) W+5*0
 
Z+5-S W+5=5
 
Z+S~S	 W+-S~S 

z+-SIS W+-SfS 
Z+S>S W+SiJ95 
2+0*5 Jv+O! S 
2+0LS	 0/+-5! S 
etc. 

6.	 B+-2xA+-3 4 5 6 7 

Chapte r 7 
1.	 +/3 7 10 15 22
 

37
 
f 3 5 2
 

0.3333333333 0.2 0.5
 
All 1 1
 

1
 
=/3 2 2
 

0
 
r 11 14.7 22 6
 

22
 
-/2 4 6 8 10
 

6
 

*/3 2 1
 
9
 

v/O 1 0 1
 
1
 

>/1 2 4
 
0
 

x/2 4 6 8 10
 
3840
 

All 0 1 1
 
0
 

v/O 0 0
 
a
 

L I 2 4 0 8
 
8
 

2.	 AI returns a 1 if and only if all the components are 1, ° othe rwi se. 
vi returns a if and only if all the components are 0, 1 othe rwi se. 
=1 (appl ied to° a logical vector) returns a 1 if there are an odd 
number of l's, a othe rwi s e . It is the same as '21 + I. 

+I 3 xA V 3· 
69
 
which is the same as 3x+IAV.
 -4.	 flQ+l 7 2 3 
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5.	 S+-.5x+/L After the rules governing order of execu­
A2+-S-L tion are introduced in chapter 8, this
 
Q+-SxA 2 can be done more compac t 1y as
 
R+-x/Q S+-.5x+/L •
 
AREA+-Q*.5 AREA+-(Sxx/S-L)*.5
 

6.	 Since the X-coordinate of a point is customarily written first, it is 
nQt enough to take +/Q-P since this results in the difference in the 
X-coordinates divided by the difference in the V-coordinates, 
which is the reciprocal of the slope, according to the definition 
g i ve n . Hen ce, A+-+ / Q - Pan d S LOP E+- 1 +A, 0 r mor e compac t 1Y, 
SLOPE+-1++/Q-P. 

Chapter 8 
1.	 4*3r3*4
 

5 .846006549E48
 
(4*3)r3*4
 

81
 
5*3x5
 

3.051757813El0 
1+2+X+--5 6 0 4 8 6 

0.3333333333 0.125 0.5 0.1666666667 0.1 0.25 
76++/2+3 x1 2 3 4 

2 
6~2-4*3 

0.09677419355 
2.	 The first, second and fourth expressions are equivalent. 
3.	 A) (3+4)+(5+6)-7+8 or better, +/35 7+468
 

B) (-/9 8+7 10)+-/1 2+3 5
 
4.	 (x/X)*l++/X=X 

6.386118449 
5.	 ( -A ) V-B
 

1 110
 
A vCAB
 

1 0 1
 
(A A-B) AA -c
 

100
 
(-B)vAv-C 

111 
6.	 B will be compared with B+A for equal ity, with A added to that result. 

The expression works only when A is O. More generally, parentheses 
are needed around A+B. 

7.	 Brute force solution:(0~4000IY)A(0=4IY)A(0=400IY)=O=100IY
 

Better solution: A/l 1 0=0=( 4 400 4000) I Y
 
Still better solution:2J+/0=4 100 400 40001y
 

8.	 The minus sign in front,of the middle term acts on everything to the
 
right of it.
 
Correct version: (X*2)+(-2xXxY)+Y*2 or (X*2)+(Y*2)-2 xXxY.
 

9.	 BETA+-l0x10f19I+IO 
10.	 -8+XxXx2+-3xX*2 
11.	 «+/X*2)++/X=X)*.5 
12.	 Ja~k is to propose if 1) he has the ring, 2) the weather is favorable, 

3) Jill is younger than Jack and 4) Jack i s n ' t over the age 1 imi t 
for Jill's beaux. 

13.	 Annua 1: }Jx ( 1 + • 01 xR ) * T 
Quarterly: px( 1+. 01xR+4)*Tx4 
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Chapter 9 
1. 

?10 10 10 10
 
285 6
 
Your random numbers may be different from those shown
 

~14.1 86.108
 
2.646174797 4.454347296 2.225624052
 

x-5.6 0 42
 
101
 

+8.7 19.1 23
 
8.7	 19.1 23
 

f8.1132.68
 
1 

*34.7 1.5
 
20.08553692 109.9471725 0.2231301601
 

f-1.8 0 -21 5.6
 
1 0 -21 6
 

?3 4 5
 
114
 

f3.5 67 .287
 
0.2857142857 0.01492537313 3.484320557
 

13.10 5.6-8 
3.1	 0 5.6 8
 

! 3 5 7 4
 
6 120 5040 24
 

L5.56.8 9.1 .12
 
5	 6 -10 -1
 

--1.2 6.7.5219.5
 
1.2 6.7 -0.52 -19.5 

14xf 5. 8x-31. 046
 
2520
 

2.	 F100 r : X - 1 I X 
These expressions work for all real X.Ceiling: x+ll-X 

3.	 *2+A1+(-1+A*3)+2
 
3269017.372
 

"'(2:S;A)I\V/3=B
 
o
 

o 
4.	 0=(LN+10)!N 

x(LN+l0)IN 
5.	 A+-Y-1970
 

LY+-L(2+A)+4
 
B+-71 LY+A+S or, on one 1 i ne B+-715+A+LY+-L. 25x2+A+-Y-1970
 

6.	 A) 10> I V 0 r 0 =L1 o~ V
 
B) 10~ I V or "'O=L 1 06iV
 

7. (10* -1 »i . 5+6.18x10*1 

4.75 
(10*-D)xL.S+Nxl0*D 

8.	 -(10*-D)xL.S+IN xl0*D 
The solution for problem 7 works for both positive and negative numbers. 

9. M+84.6129999993 
M 

84.613 

6.2 

http:6.7.5219.5
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1E5xM 
8461300 

L1E5x/vJ 
8461299 

10.	 (LXx10*-(Ll+l0eX)-N)=LYxl0*-(Ll+l0~Y)-N 

11.	 A) LDfB 
8) rDfB 

12.	 The results of these instructions are dependent on your implementation 
of APL. You cannot tell when the system evaluates an expression in 
parentheses. Hence, you should avoid writing commands 1ike those 
shown in the problem. 

13.	 (LX+.5)-0=2IX-.5 
(rX-.5)+~x2IX+.5 

Chapter 10 
1 ~ VZ+EQ X VZ+EQ1 X 

[ 1 J Z+O=x/X-2 3V or [ 1 J Z+xx/X-2 3V 
2.	 VR+H BB AB
 

[ 1 J R+HfABV
 
3.	 VT+HERO L
 

[ 1 J S+.5x+/L
 
[ 2 J T+(Sxx/S-L)*.5V
 

4.	 VREFUND E
 
[ 1 J +/.5xEL500 200V
 

5.	 VRT+PR M
 
[ 1 J RT+f+/fMV
 

6. VR+SD X	 VR+SD1 X 
[ 1 J R+A VG X or [ 1 J R+(AVG(X-AVG X)*2)*.5V 
[ 2 J H+R-X 
[ 3 J R+R*2 
[ 4 J R+(AVG R)*.5V 

7.	 VM+MR REL V
 
[ 1 J M+MRf(1-(V*2)f9E16)*.5V
 

8.	 VZ+X PLUS Y VZ+X MINUS Y
 
[ 1 J Z+X+YV [ 1 J Z+X-YV
 

VZ+X TIMES Y VZ+X DIVIDEDBY Y
 
[ 1 J Z+XxYV [ 1 J Z+XfYV
 

Chapter 11 
1.	 VFICA+P TAX IN
 

[lJ FICA+.Olxpx7800LINV
 
2.	 VA SQDIF B
 

[lJ T+(A-B)*2V
 
3.	 VR+FERMAT N
 

[lJ R+l+2*2*NV
 
4.	 VCEILING X
 

[lJ x+11-XV
 
5. VR+RANDOM 

[1] R+?100 100 100 100'1 
6.	 VCOMP VCOlvJP1
 

[lJ (O=XIY)vo=YIXV or [ 1 J o=(XIY)xYIXV
 
7.	 (3 HYP 4) HYP 3 HYP 1
 

5.916079783
 
4+3	 HYP 4-3 

7.16227766 
(4+3) HYP 4-3 

7.071067812 
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8. )LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 

V ARCl D ARG2 
DEFN ERROR 

\j ARGl D ARC 2 
1\ 

D is a variable in 1 CLASS. (Execute )VARS D to check). The 
system will not let you have two objects in the same block of storage 
under the same name at the same time. 

9. F+l0~A+AVG X 

Chapter 12 
1. VSTD[OJ 

\j STD N 
[ 1 J R+AVG N 
[2J R+R-N 
[ 3 J R+AVG R*2 
[4J ANS+R* 0.5 

\j 

2.	 [ 5 J [ 4[] 7 J 
[ 4 J ANS+R*0.5 

///1 
[4J R+R*0.5 

3.	 [ 5 J [ O[J 5 ] 
[ 0 ] STD N 

5 
[ 0 J R+ S'PD IV 

4.	 [ 1 J [ 2 J 
[ 2 ] 

v 

[ 3 J [OJ5· 
\j R+STD N 

[ 1 J R+AVG N 
[ 3 J R+AVG R*2 
[ 4 ] R+R*0.5 

\j 

6.	 [ 5 ] [ 3 J 
[ 3 J R+A VG (R-N)*2 

7.	 [ 4 ] [[l3J 
[ 3 ] R+AVG(R-N)*2 
[ 4 ] R+R*0.5 

8.	 [4J V 

9. VSTD[1.5JR+R-N 
10.	 [ 1 • 6 J [3[110J 

[ 3 J R+R*0.5 
/5 

[ 3 J ANS +R* 0.5 
[ 4 ] [ • 6 J 

11.	 [ 0.6 J +/N=N 
[ O. 7 ] V 

12. )ERASE STD 
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Chapter 13 
1.	 A) )LOAD 1 CLASS
 

SAVED 15.02.39 07/29/69
 
C+52 78 90
 

SYNTAX	 ERROR
 
C+ 52 78 90
 
r; 

There is already a defined fonction by the name C in this workspace 
(Execute )FN8 C ). 
B) T+F+ 7 
VALUE ERROR 
F[lJ Z+(A*2)+B*2 

" T+Z+7
 
VALUE ERROR
 

T+Z+7
 

" F is a function name and has no value. When executed, Z receives a 
value, but only wi th i n the function. 

2.	 PERIMl S+M PERIM2 R S+PERIM3 R
 

R R R
 

14 3	 3 
B B	 B 

22	 2 

C C	 C 
5 5	 5 

tv! M	 M 
77	 7 

S S	 S 
1 20 10 
This exercise is designed to give you practice in distinguishing 
between local, dummy and global variables. To reset the values after 
each execution, define a function 1ike the following: 

VSETUP
 
[lJ M+2+C+2+R+l+B+l+S+1V
 

3.	 VR+B PERIM2 C;P
 
[lJ P+B+C
 
[2J R+2xPV
 

Chapter 14 
\lFN1 S
 

[1J S*10V
 
VFN2 V
 

[lJ	 2$ V::;; X V 
VAR1+fl 2 3 4 5 6
 
VAR2+r /VARl
 
)SA VE WORKONE
 

10.00.31	 05/11/70 
)CLEAR
 

CL"EAR WS
 
VFN3 T
 

[ 1 J	 x TV
 
VAR3+*1 2 3 4 5
 

)SA VE WORKTWO
 
10.01.26	 05/11/70 

)CLEAR
 
CLRAR WS
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VA FN4 B 
[lJ	 A-B*2V
 

VAR4+4 6 8 9
 
)SA VE WORKTHREE
 

10.02.22	 05/11/70
 
VAR5+-3 7 10 78
 
)8A VE WORKFOUR
 

NOT	 SAVED, WS QUOTA USED UP 
)LIB
 

WORKONE
 
WOR KTWO
 
WORKTHREE
 

)DROP	 "VIORKONE 
10.07.04 05/11/70 

)LIB
 
WOR KTWO
 
WORKTHREE
 

)LOAD WORKTHREE 
SAVED 10.02.22 05/11/70 

)FNS 
FN4 

) VARS 
VAR4 

VC FN5 D 
[lJ (fC~?D)x4V 

VAR6+1 0 7 6 8 
)SA VE WORKTWO 

NOT SAVED, THIS WS IS WORKTHREE 
)SA VE WORKTHREE 

10.11.07 05/11/70 
)CLEAR 

CLEAR WS 
)LOAD WORKTHREE 

SAVED 10.11.07 05/11/70 
)FNS 

FN4 FN5 
) VARS 

VAR4 VAR6 
)ERASE PN4 VAR4 
)SA VE 

10.12.14 05/11/70 WORKTHREE 
)LIB 

WORKTWO 
~/ORKTHREE 

)FNS 
FN5 

) VARS 
VAR6 
Note that when you load one of your own workspaces and then try to 
save it under a different name, the system prevents you from so doing. 
Also, when )SAVE is executed, the material will be saved under whatever 
name the active workspace had prior to saving. The save doesn1t take 
place, however, if the active workspace was not given a name previously. 
( CLEA R i s not a n allowab 1e name for a wor kspace. ) 
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Charter 15 
1.	 ) LIB 1
 

CATA LOG
 
MINIMA
 
WSFNS
 
TYPEDRILL
 
PLOTFORMAT
 
NEWS
 
CLASS
 
APLCOURSE
 
ADVANCEDEX
 

)LOAD 1 WSFNS
 
SAVED 23.45.5407/07/69
 

)FNS
 
DELAY DIGITS ORIGIN SETLINK WIDTH
 

) VARS
 
DESCRIBE
 

DESCRIBE
 

THE FUNCTIONS ORIGIN, WIDTH, AND DIGITS ARE EACH 
SIMILAR TO THE COMMAND OF THE SAME NAME, EXCEPT THAT EACH IS 
A FUNCTION RATHER THAN A COMMAN 
(execution interrupted by pressing ATTN) 

) ~/SI D
 
1 WSFNS
 

VL RECT W
 
[ 1 J L» WV
 

)COPY 1 CLASS RECT
 
SAVED 15.02.39 07/29/69
 

'VRECT[OJV
 
V L RECT H
 

[lJ 2xL+lJ
 
[2J L HYP H
 
[3J LxH
 

'V 
The original RECT is replaced by the version in 1 CLASS~
 

)ERASE RECT
 
VL RECT vi
 

[lJ LxWV 
)PCOPY 1 CLASS RECT 

SAVED 15.02.39 07/29/69 
This command will copy a global object in the same way as COpy only 
if one doesn't exist with the same name in the active workspace. 

VR E CT [ [J JV
 
'V L RECT W
 

[lJ LxW
 

)SA VE JONES 
11.35.53 05/11/70 

)PORTS
 
001 NFO
 
OPR OPE
 
012 RHO 
013 JHO
 
019 NJD
 
021 GKM
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)!t/SID SMITH 
WAS JONES 

)SA VE 
11.36.56	 05/11/70 SMITH 

)CLEAR 
CLEAR ~!S 

)LOAD 1 NEWS 
SAVED 15.26.37 04/02/70 

)SA VE 1 NE~/S 

IMPROPER LIBRARY REFERENCE 
The ordinary user can't save into a common 1ibrary because he wasn't 
the one who put it in there originally. 

)CONTINUE HOLD 
11.38.19 05/11/70 CONTINUE 

058 11.38.20 05/11/70 KGR 
CONNECTED 0.08.25 TO DATE 51.27.40 
CPU TIME 0.00.00 TO DATE 0.03.03 
)5000:SJ 
058) 11.38.45 05/11/70 KGRICE 

A P	 L \ 360 

SAVED 11.38.19 05/11/70 
)LIB 

JONES 
SMITH 
CONTINUE 

)FNS 
APLNOW CLEAR CLEARSKED CREATE EDIT FILE FLE 
FMTDT INDEX NJ POS POSITION POSTSKED 
PRINT REWORK RWK SCHEDULE SETDATE SKEDNOTE 
START TDATE TRYTEXT TXF 

) VARS 
DESCRIBE I LIBRARY MDX MSGS NEWSMAKING 
PTX RLIBRARY SKD SKNT ~~ ~ll 

The command CONTINUE HOLD saves the active workspace in CONTINUE and 
holds open the phone 1ine for 60 seconds. The workspace is available to 
the user when he signs on again. 

2.	 )SA VE CONTINUE 
)LOAD GOOD 
)COpy CONTINUE OK 
)SA VE 

Chap te r 16 
1. pA 

6 
ppA 

1 
pppA 

1 
AfO.8 x 1 6 

0.8 8 2.4 4 6 10 
1 10 

1 2 3 4 5 6 7 8 9 10 
(15)+3 

4 5 6 7 8 
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2. 

3. 

4. 

5. 

6. 

7x1.1 
7
 

1. r /A
 
1 2 3 4 5 6 7 8 9 10
 

+/1.15
 
120
 

-i- 1. 5
 
1 0.5 0.3333333333 0.25 0.2 

128~3+1 

1 2 3 4 5 6 7
 
110000
 

WS FULL 
110000
 
A
 

The active workspace can hold just so much information at one time 
See chapter 26 for a more complete discussion. 

A+l. 6
 

pA=6
 
6
 

6=pA 
1
 
The first expression tells us how many elements of A have the value 6, 
and the second tells us whether A has 6 components. 

)LOAD 1 CLASS 
SAVED 15.02.39 07/29/69 

x/pTABO 
1
 

x/pTAB1 
4
 

x/pTAB2 
12
 

x/pTAB3 
24
 
The instructions tell us how many elements are in each of the arrays.
 

A+O 8 3 4 6 10
 
1.pA
 

1 234 5 6
 
p1pA
 

6
 

The first expression gives us a vector of indices for the elements in A,
 
whi 1e the second is equ i va lent to pA. Compare p 1 pA "vi th r /1 pA . How
 
do they differ? (Don't be too hasty in your answer.)
 
A) VR+Al N B) VR+B2 N
 
[lJ R++/(l.N)*.5V [lJ R+(+/lN)*.5V
 
C) VR+C3 N
 
[lJ R+(x/1.N)*~NV
 

-1+2 x18
 

1 3 5 7 9 11 13 15
 
12+5x1.5 

7 2	 3 8 13
 
.3+.3 x 1 6
 

o	 0.3 0.6 0.9 1.2 1.5
 
350+100X16
 

250 150 -50 50 150 250
 
6 - 1. 5
 

54321
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2 I 1 6 
1 0 1 0 1 0 

7. 1 3 * 1 3 
RANK ERROR 

1 3 * 1 3 
1\ 

The order of execution is such that 13 will be generated first and 
used as powers for 3, resulting in a vector for the right argumentof 
1 on the left. Since the index generator can be used only with nonnega­
tive integers, the error message appears. 

8.	 SOp1, Sl~lS0, (150)=\50, (lSO)*O,etc. 
9.	 -1+2 x-/1S 

+/15-1 
+/5=15+1 
+/0=6=\5 +/~6=15 

10.	 A) VR+SERIESl N B) VR+X SERIES2 N;T 
[lJ R+-/f1NV [lJ R++/(X*T)f!T+-l+1NV 

11.	 O=ppA 

(harte r 17 
1. pM 

2 4 
(-2) 1 2 

SYNTAX ERROR 
(-2) 1 2 

1\ 

2 , 1 2 
2 1 2 

p p V 
2 

5 4p V 

1 234 
567 8 
9 1 2 3 
4 5 6 7 
891 2 

V,M 
RANK ERROR 

V,M 
1\ 

6p 12 
12 12 12 12 12 12 

lOp 100 
100 100 100 100 100 100 100 100 100 100 

3 3p 1 , 3p 0 

1 0 a 
0 1 0 
0 0 1 

5 4p 0 

a 0 0 a 
0 a 0 0 
0 0 0 0 
a 0 0 0 
0 0 0 0 
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5 ~ 4p 0
 
50000
 

p o Op 9 10 11 1 2
 
1
 

2.	 A+3 4 5
 
B+18
 
pA ~ p B 

4 
(pA),pB 

3 8 
The first expression is equivalent to l+pA, while the second is the 
vector consisting of the lengths of A and B. 

3.	 3 1p2 1 1 lp2 

2 or 2
 

2
 

2 2
 

2 

4.	 ?100pl0 
5.	 A) ?(?8 8)p150
 

B) ?(?88)p?299
 
6.	 R+ 1 2 4 P ( , A ) , , B
 

In the mo re gene ra 1 case, th is is R+ ( ( p A ) +lOx p B ) p ( ~ A ) t ~ B
 
7.	 I f E werea dya d i c fun c t ion, we wou1d havet 0 wr i t e 6 E 8 to
 

execute it. Spaces or other del imiters (e.g., parentheses) are
 
required around a function name.
 

8.	 S,10 or (10)~S 

9.	 R+ 1 a 
R+R~Q 

10.	 VW+INSERT V In chapte r 21 the funct ion t (take) 
[ 1 ] W+ ( ( 7 - p V) o O ) , VV will simplify this to -7tV 

Chapter 18 
1. 'ABCDE'='BBDXO' 

o	 1 000 
1 2<'MP' 

DOMAIN ERROR 
1 2 <'MP' 

A 

ppAL+3 3p'ABCDEFGHI' 
2 

pV+'3172' 
4 

(pV)pV 

3172 
3172=V 

o 0 0	 0 
X,Y
 

MISSISSIPPIRIVER
 
pX,Y
 

16 
+/X='S' 

4 

+/X~'S' 

7 
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x .: '" y 
MISSISSIPPI RIVER 

X=' S' 
001 1 011 0 0 0 0 

+/'P'=X 
2 

+/(X,' ',Y);t'S' 
13 

v/X='R' 
a 

2.	 D is a character vector consisting of fifteen blanks. 
3.	 VF A
 

[lJ 'THE Dlf,lENSION OF A IS:'
 
[ 2 J pA 

[3J 'THE RANK IS:'
 
[ 4 J p pA
 
[SJ 'THE NUMBER OF ELEMENTS IS:'
 
[6J x/pAV 

In chapter 34 you wi 11 learn how to mix the numeric and 1 i t e r a l 
output on a single 1ine for greater compactness. 

4. VM CAT R 
[ 1 J (1 0 +pM) p ( , t4 ) , R 
[ 2 J 
THIS IS AN EXAMPLE OF
 
CATENATION IN APL'V
 

5.	 )COPY 1 CLASS GE03
 
SAVED lS.02.39 07/29/69
 

VGE03[0.5]
 
[O.SJ ~THE LITERAL MESSAGE IN THIS FUNCTION
 
[0&6J AIS KEYED TO THE ARGUMENTS USED
 
[0.7J'V
 

'I] GEO 3 [ [! J'V 
V L GE03 H;X;FLAG
 

[lJ ATHE LITERAL MESSAGE IN THIS FUNCTION
 
[2J ~IS KEYED TO THE ARGUMENTS USRD
 
[ 3 J P LAG+ ( ( p , L ) > 1 ) v ( p , H ) > 1
 
[4J X+«4x~FLAG)p' IS:'),(6 xFLAG)p'S ARE:'
 
[SJ 'PERIMETER',X
 
[6J 2xL+lJ
 
[7J 'AREA'"X
 
[8J LxH
 
[9J 'DIAGONAL',X
 
[10J L HYP H
 

V
 
3 4 GE03 5 6
 

PERIM-ETERS ARE:
 
16 20 

AREAS ARE: 
15 24 
DIA (;()NALS ARE:
 
SYNTAX ERROR
 
GE03[10J L HYP'H
 

1\ 

Comments introduced in this manner doni t affect execution of the 
function unless branches (chapter 24) are used. Note also that in 
entering the comment the closing del was placed on the next 1 ine 
rather than at the end of the comment. Do you see why? 
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Chapter 19 
1.	 (2<15)/15
 

345
 
B /A 

o	 0.2 -2 25
 
A[pA] ,B[ -2+pB]
 

25	 0
 
A[3 6]+2E5 4E 4
 
A
 

0 5 200000 6.2 15 0.0004 25 
( 3	 2 7 ) [ 2 1 3J 

2	 3 7
 
A[2 4 7J
 

5	 6 .2 25 
pA[2 4 7J
 

3
 
1 1 0 l\'TWO'
 

TW 0
 
A[8] 

INDEX	 ERROR 
A [ 8 ] 
A 

A 1 r / A
 

3
 
A [ 1 P A J
 

o 5 200000 6.2 15 0.0004 25 
A[1]+A[2 3 4JxA[7J
 

125 5000000 155
 
A[f /A1A] 

25
 
A [ Op 3 J
 

B\2 3 4 5
 
2 0 0 3 045
 

C[l 16 12 27 9 19 27 1 12 7 15 18 9 20 8 13 9 3J 
APL IS ALGORITHMIC 
Note that A is respecified after thi rd dri 11 problem. This wi 11 affect 
the remaining problems. 

2.	 A) ( D < • 5 ) / D D) ( ( D < 0 ) AD> -1 ) / D 
B) (D>O)/D E) (D=2)/D 
C) (4=ID)/D F) «D<1)AD~-2)/D 

3. VZ+INSERTl V 
r i : Z+«2 xpV)pl0)\V
 

[2J Z[2X1-l+pV]+'o'V or
 
VZ+INSERT2 V 

[ 1 ] Z+ ( , 0 ' .v: [ 1 + ( ( -1 + P V , V) p 1 0) \ 1 P VV
 
These functions as written work only for character vectors.
 

4. VZ+INCR V;T 
[1 J Z+V[ l+T]- V[ T+1 -l+p V]V 
When the drop function ~ is introduced in chapter 21, 1 ine 1 can also 
be written as Z+V[1-t1pV]-V[-1-t1PVJ 

5.	 VZ+P X 
[lJ Z+3xX*2V 

VZ+I AREA X
 
[lJ Z+-+/IxF X[lJ+I x1L I (-/X)1-IV
 

6. VZ+W WITHIN R 
[lJ	 Z+(R>IW-+/W1-pW)/WV 
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7. (R=LR)/R 
8.	 vR+A IN INT
 

[lJ R+(+/INT[2J>IA-INT[lJ)x100+pAv
 
INT is defined here as the vector B,C
 

9.	 (r / V ) > ( + / V) - r / V r (r / V) > + / ( V;t r / V) / V0 

10.	 Y[2 X1L(pY)+2J or (211+1pY)/Y or (-211pY)/Y 
11. 'JR+SINSX 

[lJ R+«S~X)/X),X,(S<X)/XV or 
'JR+S INS1 X
 

[lJ R+X<S
 
[2J R+«R,O)VO,-R)\X
 
[3J R[Rl0J+5V
 

12.	 A) A+3 
1 A [ 2 J 

RANK ERROR
 
lA [ 2 J
 

2 
The first expression is nonsense if A is a scalar or vector of length 1, 
while the second one is inval id if A isn't a positive integer ~2. 

B) /1+1 2 
N+3 4
 
ct«, p N
 

3
 
( p /v! ) , p N
 

2 2
 
The first expression finds p of 122 (M with 2 catenated
 
to the right end).
 

13.	 V[ p VJ 
14.	 The indices as given start with 0, which will result in an index error. 
15.	 (w=r /W)/lpW or Wlr /W 
16.	 VZ+DELE V 

r i : Z+«lpV)=V1V)/V'J 
17.	 +/Q[ 18LpQJ or +/QX8~lpQ 

18.	 'JR+X SELECT Y 
[ 1 J R+X[Ylr/YJV 
A) «-1+pV,V)p10)\V 
B) «(2IpV)+3 xL.5 xpV)p1 a l)\V 
C) same as B provided we don't want a zero on the right end 

when	 pV is odd. 
20. VR+FACTORS N	 VR+FACTORSl N 

[ 1 ] R+( 0=( IN) I N)/lNV or [ 1 ] R+(-xlIN~lN)/lNV 

21.	 VZ+LIT N 
[lJ Z++/(10*(pN)-lpN)x-l+' 0123456789' lNV 
This conversion of literal numbers to numerics can be done somewhat 
more compactly with the base function ~ to be introduced in chapter 
22, as well as by the inner product (chapter 31). 

22.	 'V R+A CO!~ FACT B 
[ 1 J R+(O=RIB)/R+(O=(lA)IA)/lAV 

23. VR+LONCEST X;J;M;N
 
[ 1 J J+(X=' ')/lpX
 
[ 2 J M+r/N+-l+(J,l+pX)-O,J
 
[ 3 J R+ X [ J [ ,] 1 /'.1 J+ 1 MJV
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Chapter 20 
- I 1 a 

a 

1 
e/lO 

DOI~1AIN ERROR 
~/10 

1\ 

f I 1 0 
7.237005577E75 

L I 1 a 
7.237005577E75 

I 110 
o 

! 110 
1 

¥/10 
DOl~1AIN ERROR 

¥/10 
A 

=/10
1 

o 

1 

> I 1 0 
o 

1 
It should be clear that if we are to find an identity element IMAX 
for f, then it must be true that NfIMAX must result in N for all N. 
Hence, IMAX must be the smallest number that can be represented in 
A similar argument holds for L, where IMIN is the largest number 
representable in APL 10 

Chapter 21 
1. 3<PA 

1 5 8 3 2 0 
2Q>A[14] 

0 1 3 2 
4tA 

3 2 0 1 
2t-3<PA 

1 5 
4>0,13 

3 2 1 0 

2<P<P17 
5 4 3 2 1 7 6 

3-rA 
3 2 0 

A[!tiA] 
5 1 0 2 8 3 

ACto 1 a 1 0 1 ] 
2 1 8 3 0 5 

(14)EA 
0 1 1 a 
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(3tA)E14 
110 

( 1 6 ) =!A [ 4A ]
 
11111 1
 

2.	 «IV)EO,19)/V 
3.	 A/(SlES2),S2ES1 or -OE(SlES2),S2ES1 
4.	 +/SE'ABCDEFCHIJKL' 
5.	 ALF+'ABCDEFCHIJKLMNOPQRSTUVWXYZ '
 

S[!ALF1SJ
 
6.	 'V Z+BL S
 

r i i Z+(CV1cPC+S~" )/S'1
 
7.	 (V,V1)[!V,V1J 
8.	 A/V[!VJ=lN or A/(VE1N),(lN)EV 
9.	 C[('X'=C)/lpC]+-'Y' 

10.	 (5<18)/X and -3tX 
11.	 '1R+MED X 

[lJ R+.5x+/X[(~X)[Ir-.5 .5 x1+pX]]'V 

12.	 A) This is a difficult problem. The expression corresponds to a per­
fect shuffle, in which a deck of cards is cut exactly in half and 
cards fed alternately first from the top half then from the bottom 
half, to form a new deck. 

B) This	 expression is the algorithm used in APL for the deal function 
A?B 

13. 'VR+DECODE C 
[lJ R+ALF[P1ALF1CJ'1 

14. 'VCOVIC M;C;D 
[ 1 J N+ A L F 1 14 
[2J M 
[3J C+26IN+D+«pN)pKB)+(pN)pKA 
[4J ALF[DJ 
[5J (pM)p'-' 
[6J ALF[C]'V 
VIC, incidentally, is an example of a 
the Vigenere code, with COVIG 
Both this program and VERNAM 
with origin O. 

15. '1VERNAJ.1 M; ViNiC 
[ 1 J }oj
 

[2J V+?(pM)p26
 
[3J C+26/V+ALF1M 
[4J ALF[VJ 
[5J (pM)p' 
[6J ALF[C]'1 

Chapter	 22 
1.	 (3p40)1.8 7 2
 

13082
 
21. 5 1 9 6
 

68
 
101.9 8 2 1 6
 

98216
 
1	 4.1 • 81. 1 2 3 

1.32
 
7 8 91. 7 8 9
 

585
 
3T5217
 

0
 

being a 
(below) 

well-known cryptographic scheme, 
more complicated variation. 
should be done in a workspace 
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3T5217 
2 0 

3 3 3T5217 
0 2 0 

(5p3)T5217 
1 1 0 2 0 

(4p8)1. - 14 
8190 

3 

1 4 6T345 
0 1 3 

2 4 5T78 
1 3 3 

2. A) 0 4 21.2 8 1 
B) 0 2000 161. 3 568 13 

3· A) 81.2 1 7 7 
B) 21.1 0 1 1 0 1 
C) (10p3)T8933 
D) (lOp 5 )T4791 

4. 0 1TN 
5. XTX1.Y 

X1.XTY 

Chapter 23 
1.	 'lP+-CONV D 

[ 1 J P+- 1 OJ. - 1 + ' 0 1 2 345 6 7 8 9 ' 1 D+-( D~, , , ) / o» 
2.	 N=+/(10 10 10TN)*3 
3.	 VZ+-C EVAL X 

[lJ Z+-X1.C\l 
4.	 A) converts M into a vector of digits. 

B) converts M into the corresponding scalar 
C) same as B. 

5.	 0= 11 I - / ( ( L 1 + 1 Oi)N ) p 1 0 ) TN 

Chaprer 24 
1.	 A) If 5<W go to step 3, if 5>W go to 2, if 5=W go to the next 

step. W is assumed to be a scalar or vector of length 1. 
B)	 Go to step 3 if A=8, otherwise drop through to the next step. 
C)	 Go to END if Y>1, otherwise branch out of the program. At the same 

time R is reshaped as a 1 1 matrix containing a 1. 
D}	 Go to step 7 if any element of B is a member of C, otherwise drop 

through to the next step. 
E)	 I f A<G got 0 5, 0 the rwi sego to s t e pO. 
F)	 Go to step 9. 
G)	 Go to step 8 if O~J, otherwise go to the next step. At the same time 

J is decreased by 1. 
H) If the absolute value of X is greater than or equal to I, go to step 4, 

otherwise leave the program. I is also incremented by 1. 
I) Go to A GAI N i f N=1 0, 0 the rwi s e 1eave the pro9 ram. R i sal so 

reshaped as a 2 4 matrix. 
2.	 \lR E~l T 

[lJ I+-1 
[2J V+-(T[IJ~V)/V 

[3J ~OxlI?pT 

[4J -+2,I+-I+l'l 
This function, which involves branching, solves the problem by brute 
force. You l 11 appreciate the power of APL from the fol lowing: 

VREMl T 
[lJ V+-(~VET)/V\l 
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3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

VZ+P DIGIT Q ;t.} 
[ 1 J 2+10 
[ 2 J M+LP~10 

[3J -+(0;;tMIP)/5 
[4J Z+Z,P 
[ 5 J -+(Q~P+P+l)/2V 

VR+MED N 
[ 1 J -+(R=LR+.5 xpN+N[!N])/ST 
[ 2] -+O,R+N[rRJ 
[ 3 J ST:R+.5 xN[R]+N[R+1JV 

or 
VR+MEDl N 

[ 1 J N+N[LiNJ 
[ 2 J R+N[r .5 xp NJ 
[3J -+4x~2IpN 

[4J R+.5 xR+N[1+.5xpN]V 
VR+N DUPL V 

[ 1 J -+Ox1pR+(N=V)/lpV 
[ 2 J 'SCALAR NOT PRESENT'V 

VZ+ROOT S 
[ 1 J -+(O;;tppS)/O 
[2J Z+S*.5'iJ 

VR+SORT TEXT 
[ 1 J ALF+'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 
[ 2 J R+' , 
[ 3 J -+ 0x 1 0 =pALF 
[4J R+R,(TEXT=ltALF)/TEXT 
[ 5] TEXT+(TEXT;;tltALF)/TEXT 
[6] ALF+l-tALF 
[ 7 J -+3V 

or, without branching 
VR+SORT1 TEXT 

[lJ TEXT+«ALF1TEXT)~pALF)/TEXT 

[2J R+ALF[R[!R+ALF1TEXTJ'iJ 
Incidentally, a long vector of arbitrary characters can be entered in 
the following way: define one 1 ine of TEXT as TEXT+' ... ' and each 
succeeding 1ine TEXT+TEXT,' ... '. 
large amounts of information into the 
attached to an appropriate terminal. 

VR+MODE N;V 
[1] V+R+10 
[2J AT:V+V,+/N[lJ=N 
[3J R+R,N[lJ 
[4J -+(O;;tpN+(N[lJ;;tN)/N)/AT 
[5] R+R[(V=r/V)/lPV]V 

VR+FIB N 
[lJ R+l 1 
[2J END:-+(N)pR+R,+/-2tR)/ENDV 

VHISTOG A;I 
[lJ I+r/A 
[ 2 J I5,A 
[3J -+2xxI+I-1V 

It is also possible to enter 
system through a card reader 

To " cl e a n Up" the histogram, change 1 ine 2 to ' *' [l+I~AJ. This 
function produces a vertical histogram. For a horizontal histogram try 
the f 0 11owi ng : 
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VHI STOGl A
 
r i : A[lJp'*'
 
[2J -+xpA+li-pAV
 
The composite function outer product ( to be introduced in chapter 
30) further simplifies the construction of histograms, Try 
AO.~lr/A 

11.	 VR INT P 
[lJ 'YR PRIN INT 

[2] I+1 
[3J IN+.Ol xL.5+100xpxR[lJ
 
[4J I,P,IN
 
[.5 J P+-P+I N
 
[6J -+«I+I+l)~R[2J)/O
 

[7J -+3'1 

Here R[1] is the yearly interest rate in decimal form and R[2] the 
number of years to be evaluated. As in problem 10~ the outer 
product function wi 11 simpl ify considerably the job of generating 
the table. Your table probably will not be formatted properly. More 
about how to correct this in problem 11 at the end of chapter 
30. 

Chapter 25 
-1-.------ V+' HELLO EwTHERE?' 

T+' ?~p E w' 
T/::'RE!1+2 3 4 
REM 'I' 

REM[2] HELLO EwTHERE 
REM[3] 
REM[4] 2 2
 
REM[2] HELLO EwTHERE
 
REf.1[ 3 J
 
REM[4] 2 3
 
REM[2] HELLO EwTHERE
 
REM[3] 

RE.M[4J 2 4
 
REM[2] HELLO wTHERE
 
REM[3]
 
REM[4] 2 5
 
REM[2] HELLO THERE
 
REM[3] 0
 

TEXT+'DAB'
 
Tf:,;SOR:]1+3 4 5 6
 
SOR'll TEXT
 

SORT[3]
 
SORT[4] A
 
SORT[5] DB
 
SORT[6] BCDEFGHIJKLMNOPQRSTUVWXYZ
 
SORT[3]
 
SORT[4] AB
 
SORT[ 5] D
 
SORT[6] CDEFGHIJKLMNOPQRSTUVWXYZ
 
SORT[3]
 
SORT[4] AB
 
SORT[5] D
 
SORT[6] DEFGHIJKLMNOPQRSTUVWXYZ
 
SORT[3]
 
50RT[4] ABD 



294 APL\360: An Interactive Approach 

SORT[5]
 
SORT[6] EFCHIJKLMNOPQRSTUVWXYZ
 
SORT[3]
 
SORT[4] ABD
 
SORT[5]
 
SORT
 
SORT[7]
 
Printing of the trace has been interrupted because of its length. This 
is not a very efficient program (see SORT1), but in the case of a 
short 1 iteral vector 1 ike 'DAB' the time would be reduced considerably 
by replacing ALF with TEXT on line 3. 

N+2 5 7 3 2 8 2 5 2
 

T!':.MODE+2 3 4 5
 
MODE N
 

uooe; 2] 4
 
MODE[3] 2
 
fl10DE[ 4 J 2
 
MODE[2J 4 2
 
J40 DE[ 3 J 2 5
 
MODE[4] 2
 
noDE [ 2 J 4 2 1
 
f10DE[ 3J 2 5 7
 
l10DE[ 4 J 2
 
MODE[2J 4 2 1 1
 
MODE[3J 2 5 7 3
 
MODR[4J 2
 
MODE[2] 4 2 1 1 1
 
MODE[3] 2 5 7 3 8
 

lv10DR[ 4]
 
1"10 DE[ 5 J 2
 
2
 

2. TI:iGCD+l4 
75 CCD 105
 

CCD[ lJ 75
 
CCD [ 2 J 30
 

GeD[ 3J 75
 
GCD[4J 1
 
GCD[lJ 30
 
GCD[2] 15
 
GCD [ 3] 3 a
 
GCD[4] 1
 
GCD[lJ 15
 
GCD[2J 0
 
CCD[ 3J 15
 
GCD[4J 0
 
15
 

3. T!':.ACK+l4 
2 ACK 1
 

ACK [ 1 J
 
ACK[ 1 ] 3
 
ACK [ 1 J
 
ACK [ 1 ] 3
 
ACK[ 1 ] 4
 
ACK[4] 2
 
ACK [ 3 ] 0 2
 
ACK[ 1 J 4
 

ACK[4] 3
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A CK[ 2] 0 3
 
A CK[ 3 ] 0 3
 
A CK [ 1 ]
 
ACK[l]
 
A ex [ 1 ]
 
A CK[ 1 ] 3
 
A eK[ 1] 4
 
ACK[4] 2
 
A CK[ 3] 0 2
 
A CK [ 1 ] 4
 
ACK[4] 3
 
A CK[ 2] 0 3
 
A CK[ 1 ] 4
 
A CK[ 4 ] 4
 
A CK[ 2 ] 0 4
 
A CK [ 1 ] 4
 
ACK[4] 5
 
A CK [ 2 ] 0 5
 
A CK [ 2] 0 5
 
5
 

Chapter 26
--r":---- 100 1 2 

1.743934249E 16 3.487868498E-16 
180~01 

57.29577951 
-201001~2 

o 
01~180 

0.01745329252
 
40 1 3
 

1.414213562 2.236067977 3.16227766
 
-10101
 

1 
2001 

1 
30 30 1 5
 

1 234 5
 
1 201 10. 5
 

0.5 1.070796327 
2. 11 1 p 1000 , . 05 x r I 0 

o
 
0.156434465
 
0.3090169944
 
0.4539904997
 
0.5877852523
 
0.7071067812
 
0.8090169944
 
0.891006~242 

0.9510565163
 
0.9876883406
 
1 
This expression will generate the values called for by the problem, 
but without identification as to the magnitude (in radians) of the 
associated angles. With the transpose (chapter 29), such information 
can be l nc l ude d r o Z 1 lp(oA),looA+(-1+l11)f20 It can also be 
done with the outer product (problem 2A, chapter 30). 
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3 ..	 Construct a function 1 ike CHECK below to obtain comparative com­
puting times, The reason for the repetition of the calculations is 
that an accurate comparison isn't possible with just a single trial 
because of the shortness of the times involved. 

VCHECK 
[1 J CPUTIME 
[2J I+l 
[3J S+2!10 
[4J ~3Xll0l~I+I+l 

[5 J CPUTI/t-1E 
[6J I+l 
[7J S+( !10)t(!2)x!8 
[8J ~7Xl101~I+I+l 

[ 9 J CPU TI !v! E V 
CHECK 

000 1 
o	 0 0 9 
o 0 0 17
 
Don I t forget to copy CPUTIME and PREVIOUSTTME from 1 CLASS.
 

4. (202 x15)=((2o15)*2)-(1015)*2 

11111 
For X a scalar, try the following: 0=-/(221021 l xX)*l 2 2 
Can you explain why it doesn't work consistently for all X? 

5. VR+DATE 
[lJ R+'/0123456789'[1+(8pl 1 O)\1+(6p10)TI25JV 

6.	 VR+X TIME Y 
[lJ R+Yt(X,3p60)TI20V 

7.	 1=+/( 1 20X)*2 
This version works only for scalar X. For X a vector we can use 
the outer product (chapter 30) as follows: 
A/l=+f(l 2 o.0X)*2 

Chapter 27 
-l-.~-- S+T 

21 21 21 21 21 
21 21 21 21 21 
21 21 21 21 21 
21 21 21 21 21 

2xS 

40 38 36 34 32 
30 28 26 24 22 
20 18 16 14 12 
10 8 6 Lt 2 

SLT 

1 2 3 4 5 
6 7 8 9 10 

10 9 8 7 6 
5 4 3 2 1 

31T 

1 2 0 1 2 
0 1 2 0 1 
2 0 1 2 0 
1 2 0 1 2 
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S5,T 

0 0 0 0 0 
0 0 0 0 0 
1 1 1 1 1 
1 1 1 1 1 

+/[2JT 
15 40 65 90 

+tT 
34 38 42 46 50 

4+T 

5 6 7 8 9 
10 11 12 13 14 
15 16 17 18 19 
20 21 22 23 24 

f/f./flU 
24 

r/.u 
24 

XtU 

13 28 45 64 
85 108 133 160 

189 220 253 288 
+1+/[lJT 

210 
2 .	 ( N ?p , /tv! ) I , M 0 r (, /,;1 ) [ N ?p , ~1 ] 
3 .	 M+-!4 + ( pM) p ( 1 -t pM) e o , N 
4~	 VGPA;GR;CR;M 

[ 1 J M+- 5 2 5p ( 25 p 4 ) • ( 2 5 p 3 ) , ( 25 p 2 ) , ( 2 5 p 1 ) , ( 2 5pO) 
[2J GR+-MxCR+-(3xGR3)+(2 xGR2)+GRl 
[3J 'THE GRADE POINT AVERAGES FOR EACH STUDENT ARE:' 
[4J (+tGR)f+fCR 
[5J 'THE CLASS AVERAGE IS:' 
[6J (+I+fGR)f+l+tCRV 

5.	 ?4 4pl00 or 4 4p?16pl00 
6. VAR 

[1] M+-5 15pVl,V2,V3.V4,V5 
[2] 'TOTALS BY CATEGORY ARE:'
 
[3J +IM
 
[4J 'TOTALS BY CUSTO/vfER ARE:'
 
[ 5 J + t Ivl
 
[6J 'THE TOTAL OF ALL ACCOUNTS RECEIVABLE IS:'
 
[7J +I+IM
 
[8J 'CUSTOMERS WITH OVERDUE INVOICES ARE:'
 
[9J (Vf073 15p30+,M)/115v
 

Chapter 28
-T-:--'---A [ ; 2 5J 

2 5 
7 10 
2 5 

C[ 1 ; 2 3 ; ] 

5 6 7 8 

9 10 1 2 
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1 1 2teC 

4 
8 

5 
9 

1 1 1 1 0 l\A 

1 
6 
1 

2 
7 
2 

eA 

3 
8 
3 

4 
9 
4 

0 
0 
0 

5 
10 

5 

1 
6 
1 

2 
7 
2 
1 

3 
8 
3 

2 2 

4 5 
9 10 
4 5 

1 leA 

11 

1 
1 
6 

7 3 9 10 
2 3 4 5 
2 8 4 5 

+fC[l 2 ; 2 ; 3 J 

A[l 3 ; 1 4 J 

1 
1 

2 
2 

1 

3 
3 
0 

4 
4 

1 1\[2]C 

1 
0 
5 
9 

2 
0 
6 

10 

3 
0 
7 
1 

4 
0 
8 
2 

3 
0 
2 
6 

4 5 
0 0 
3 4 
7 8 

0 l/[lJC 

1 
0 
5 
9 

3 
2 
6 

4 
3 
7 

3 

5 
4 
8 
1 

1 
5 
9 

2<pA 

4 5 1 2 
7 8 9 10 
3 4 5 1 

,<PB 
CBAFEDIHG 

B[1;2 3J 
BC 

2 2 2tq>C 

3 
6 
2 

4 
8 

3 
7 

1 
5 

5 
4 
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2. 
3. 

4. 

5. 

6. 

7. 

1 o liB 

ABC 
CHI 

<pA 

10 
5 

5 

4 3 2 

9 8 7 
4 3 2 
1 - 2 2<PB 

1 
6 
1 

CAB 
EFD 
IGH 

1 3 3<P 3 1 1 2 4<p[lJA 

7 8 4 10 1 
45623 
9 5 1 2 3 

B[1;]+B[;3J 
Assume each row is a name with no blanks on the left and filled out 
on the .right with blanks. 

VDELE NAME;J 
[1] J+O 
[2J ~6Xl(pA)[lJ$J 

[3J ~2X1N/NAME=A[(J+J+l);J 

[4J A+«(J-l)pl),0,«pA)[lJ-J)p1)/[lJA 
[5J ~o 

[6J 'NAME NOT FOUND'V 
When the inner product is introduced in chapter 31, this function 
can be rewritten as 

\JDE'LEl NAME;T 
[lJ ~4X1V/T+A~.=(1~pA)tNAME 

[2 J 'NAME NOT FOUND' 
[3J ~O 

[4J A+T/[lJAV 
The second is all matrix, while the first is a scalar. Try 
p of each to check. 
R+l!f[; MJ 
i~ 0 t e t hat the i ndieest hems e 1ve sma y havera nk >1 . 

'YZ+MS N;Q 
[lJ Z+(N,N)plN*2 
[2J Q+(-r .5xN)+lN 
[3J Z+QsQQ>ZV 

\JZ+Vi MAT V2 
[lJ Z+«pVi),2)pO 
[2J Z[;lJ+Vi 
[3] Z[;2J+V2\J 

or 
VZ+Vi IvtATi V2 

[1 J Z+( Vi, V2) [ ( (p Vi ), 2) p ( r . 5 x 1 2x p Vi ) + ( 2x p Vi ) pO, p Vi JV 

When the transpose function is introduced in the next chapter, this 
function can be reduced to a single line: ~(2,pVi)pVl,V2 
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~~~2~~-32-
1. 

1 6 
1 
1 
1 

l~M 

1 2ts(N 

3 

1 
17 

2 

2 
18 
p2 
4 
2 1 

1 

3 
19 
3~N 

3ts(N 

4 
20 

1 
13 

2 
14 

3 
15 

4 
16 

5 6 7 8 
17 18 19 20 

9 10 11 12 
21 22 23 24 

~¢eM 

2 8 4 
1 7 3 

10 6 2 
9 5 1 

1 2 l~N 

1 5 9 
14 18 22 

¢2 l~M 

9 5 1 
10 6 2 

1 7 3 
2 8 4 

~M 

1 5 9 
2 6 10 
3 7 1 
4 8 2 

~~M 

1 234 
5 6 7 8 
9 10 1 2 

2_ 1 l~<PB or 1 1~2 0 l¢B 
3- VR+DIAG /'4 

[1] R+10i1 l~MV 

4. VR+X COLCAT3 V 
[1] R+~(~X) ROWCAT VV 

5. VZ+LIST N 
[1] Z+~(3,N)pZ,(!Z),fZ+1NV 

6.	 /\ / , S=~S 

7.	 The result shows that 
well known to calculus 
orial on problems 1ike 
rectangle of greatest 

AxB is a maximum when A=B, a conclusion 
students, who have worked since time immem­
the following: Show that a square is that 

area for a given perimeter. 
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Chapter 30 
--1-. -- -- A 0 -i-G>A• 

0.25 0.3333333333 o. 5 1 
O. S 0.6666666667 1 
0.75 1 1 .5 3 
1 1.333333333 2 4 

Co.=B 

100 
000 

010 
000 

000 
100 

Do. xA 

1 2 3 4 

2 4 6 8 

3 6 9 12 
Ao.r2<PA 

3 4 1 2 
3 4 2 2 
3 4 3 3 
4 4 4 4 

1 3 go.>D 

0 
0 
0 

1 
1 
0 

1 
1 
1 

1 00 • Ai 0 

1 0 
0 0 

1 0 0 1 l o . YO 1 0 1 1 

0 0 0 0 0 

1 0 1 0 0 
1 0 1 0 0 

0 0 0 0 0 

0 0 0 0 0 

1 2 30. I 1 5 

0 0 0 0 0 

1 0 1 0 1 
1 2 0 1 2 
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1 1 1 1 
1 2 4 8 
1 3 9 27 
1 4 16 64 
1 5 25 12S 

2. A) ~ 1 2 0 .00 ( 0 t 1 5 ) .; 6 
B) ~«1+p,B),10)p(110)"Bo.Ei110 
C) 'AEIOU'o.=S 
D) (13:0)0.*12.5 

3. 224 or 422

4.	 VR+DIST L 
[lJ	 R+L.5+«(L[;lJo.-L[;lJ)*2)+(L[;2Jo.-Lr;2])*2)*.5V 

or 
VR+DIS'Pl	 L 

[lJ R+L.S+(+/l 3 2 3~(Lo.-L)*2)*.5\j 

5.	 +/'ABCDEFG'o.='CABBAGE' 
6.	 SU/l1+B I C+D 

CARRY+B~C+D 

VADDTAB B;T
 
[lJ T+INTo.+INT+-1+1B
 
[2J (BIT)+10xB~TV
 

7.	 VZ+C1 Iv! ULT C2 
[lJ Z++/[lJ(1-1PC1)¢C1o.xC2tOx1~C1V 

a, A) X+-S+19 
F+(¢X)o.=IX
 
GRA PH
 

+
+
+ 

0+0 
+ + + + 0 + + + + 

+
+
+ 
+ 

B) F+(¢X)0.=-S+X*2 
GRAPH 

+
+
+
+ 

+ + + + + + + + + 
+ 
+ 
+
+o 0 
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10. A) X+120 
Y+X*2 
Z+2xX*2 
40 60 PLOT Y AND Z VS X 

800 * 

* 
700 

* 

600 

* 

* 
500 

* 

400 * 0 

0 

* 
0 

300 

* 0 

0 

* 
0 

200 * 0 

I * 0 

I 0 

I * 0 

100 I * 0 

I * 0 

I * 0 

I * o 0 

I * o 0 

01 * *10 I I I I 
0 5 10 15 20 

B) X+l,50 X 1 7 
Y+fX 
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10. B) 20 30 PLOT Y VS X 

1.000 
I 
I 
I 
I 

0.75 I 
I 
I 

0.50 

0.25 

0.00 0 0 0 0 

200 
a a 0 I 

400 

Notice that the first point botches up the 
plot by el iminating this point as shown: 

20 30 PLOT Y[1+17J VS X[1+17] 

graph. We can fix the 

0.020 I 
I 
I 
I 
I 

0.0151 
I 
I 
I 
I 

0.0101 
I 
I 
I 
I 

0.005 I 
I 
I 
I 
I 

0.0001 
0 

0 

a 

I 
100 

a 

0 

I 
200 

a 
a 

I 
300 

a 

I 
400 
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10. D) Y AND Z 

O.OOOOOOOOOEO
 
1.736481777E-1
 
3.420201433E-1
 
5.000000000E-1
 
6.427876097E-1
 
7.660444431E-1
 
8.660254038E-1
 
9.396926208E-1
 
9.848077530E-1
 
1.000000000EO
 
9.848077530E-1
 
9.396926208E-1
 
8.660254038E-1
 
7.660444431E-1
 
6.427876097E-1
 
5.000000000E-1
 
3.420201433E-1
 
1.736481777E-1
 
1.743934249E-16
 
1.736481777E-1
 
3.420201433E-1
 
5.000000000E-1
 
6.427876097E-1
 
7.660444431E-1
 
8.660254038E-1
 
9.396926208E-1
 
9.848077530E-1
 
1.000000000EO
 
9.8480~7530E-1
 

9.396926208E-1
 
8.660254038E-1
 
7.660444431E-1
 
6.427876097E-1
 
5.000000000E-1
 
3.420201433E-1
 
1.736481777E-1
 

y VS x 

O.OOOOOOOOOEO
 
1.745329252E-1
 
3.490658504E-1
 
5.235987756E-1
 
6.981317008E-1
 
8.726646260E-1
 
1.047197551EO
 
1.221730476EO
 
1.396263402EO
 
1.570796327EO
 
1.745329252EO
 
1.919862177EO
 

(not all of display 

1.000000000EO
 
9.848077530E-1
 
9.396926208E-1
 
8.660254038E-1
 
7.660444431E-1
 
6.427876097E-1
 
5.000000000E-1
 
3.420201433E-1
 
1.736481777E-1
 
1.743934249E-16
 
1.736481777E-1
 
3.420201433E-1
 
5.000000000E-1
 
6.427876097£-1
 
7.660444431E-1
 
8.660254038E-1
 
9.396926208E-1
 
9 • 8 4 8 0 7 7 5 3 0E - 1,
 
1.000000000EO
 
9.848077530E-1
 
9.396926208E-1
 
8.660254038E-1
 
7.660444431E-1
 
6.427876097E-1
 
5.000000000E-1
 
3.420201433E-1
 
1.736481777E-1
 
1.743934249E-16
 
1.736481777E-1
 
3.420201433E-1
 
5.000000000E-1
 
6.427876097E-1
 
7.660444431E-1
 
8 • 6'6 0 2 5 4 0 3 8 E - 1
 
9.396926208E-1
 
9.848077530E-1
 

O.OOOOOOOOOEO
 
1.736481777E-1
 
3.420201433E-1
 
5.000000000E-1
 
6.427876097E-1
 
7.660444431E-1
 
8.660254038E-1
 
9.396926208E-1
 
9.848077530E-1
 
1.000000000EO
 
9.848077530E-1
 
9.396926208E-1
 

shown) 
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11. 105 DFT (+\10) AND (+\10)*.5 

1.00000 1.00000 
0.50000 0.70711 
0.33333 0.57735 
0.25000 0.50000 
0.20000 0.44721 
0.16667 0.40825 
0.14286 0.37796 
0.12500 0.35355 
0.11111 0.33333 
0.10000 0.31623 

Chapter 31
-T-.---- A+.=A 

3 
B x , -c 

18 0 4 0 
068 0 
o 24 70 18 

24 12 0 36 
nv . <C 

111 1 
1 1 1 1 
o 000 
1 1 1 1 

A 1\ • > C 
000 0 

A v • ~B 

LENGTH ERROR 
A v , ~B 

1\ 

3+.xB 
66 48 60 

Bx.=A 
o 0 0 0 

C I.-B 

002 
101 
020 

(~C)r .+A 
11 10 9 11 
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2. 

3. 

4. 

A)	 AA. =B results in a 1 if A and B are identical, 0 otherwise. 
MA. =B produces a logical vector with a 1 for each row of M 
which is identical to B 
A+.~B gives the number of pai rs of corresponding dissimilar 
elements in A and B. 
( /V! = 0 ) A • ? U pro duce sal 0 g i ca 1 mat r i x whie h rep rod ucest he 
initial lis in each row of M=O and fills the rest of the row 
with OIS, i.e. 

M 

0 0 0 3 2 0 0 0 
0 0 1 7 9 2 8 0 
6 4 a 0 0 1 6 0 

M=O 

1 1 1 001 1 1 
1 1 0 0 000 1 
0011100 1 

(M=0)A.~(18)0.$18 

111 d 0 a 0 0 
1 1 000 0 0 0 
o	 0 0 0 0 000 

It may be considered a simulation of the "a nd-scan" A\M=O 
(not yet implemented). 
A+.*B is equivalent to the times reduction of A raised to 
the B power. One possible use could be in getting a number 
from its prime decomposition. Here is an example of this 
latter use: 
2 3 5 7x.*2 1 0 1 

84 

B)	 R [ I ; J J i s 1 i fan don 1y i f the I t h co 1umnan d the J t h row 
of N have at least one 1 in the same location. It is used to 
represent two-stage connections, as in pecking orders or ci r ­
cui try. (See the defined function RUN in this chapter.) 

C)	 For R+C+.=D .. R[I;JJis the number of matching pairs of 
e 1e me nt s 0 f C[ I ; Jan d D[ ; J J 
For R+Cr • LD. R[I ;Jl is the largest of the smaller of C[I; J 
and D[;JJ taken pairwise. 

A) R+O~. =4 100 400 40000. I Y 
B) VREFUND1 E 
[lJ .5x200 500+.Ll l o.xEV 
C) V Z+LIT1 N 
[lJ Z+(-1+'0123456789'·lN)+.x10*~-1+1pNV 
D) VR+N DUPLl V 
[lJ R+'SCALAR NOT PRESENT' 
[2J 40xlO=Nv.=V 
[3J R+(N=V)/lpVV 

VR+X	 POLY C 
[lJ R+C+.xXo.*-1+1P.CV 





r; ! 
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3.	 VnuLT3 N; X
 
[ 1 J X+?N,NxI+l
 
[ 2] ltX;' x ! ;l-tX
 
[ 3 J ~(D=HELP,STOP,x/X)/AID,O,CORRECT
 

[4J ~ANSX14=I+I+l
 

[ 5 J 'TRY AGAIN'
 
[ 6 J ~3
 

[ 7 J ANS:'ANSWER IS ';x/X
 
[8J ~1
 

[ 9 J CORRECT: 'CORRECT'
 
[10J ~1
 

[ 11 J AID:'COUNT THE STARS FOR THE ANSWER:'
 
[12J	 Xp '*' 
[13J	 ~5V 

4.	 VMULT4 N;X
 
[ 1 J X+?N,NxI+l+0 xAKT+I19
 
[ 2 J 1tX;'x';1-tX
 
[ 3 J ~(D=HELP,STOP,x/X)/AID,O,CORRECT
 

[4J ~ANSX14=I+I+1
 

[ 5 ]	 'TRY AGAIN' 
[ 6]	 ~3 

[ 7]	 ANS:'ANSWER IS ';x/X 
[ 8 ]	 ~1 

[ 9] CORRECT:L((I19)-AKT)~60;' SECONDS'
 
[10J ~1
 

[ 11 J AID:'COUNT THE STARS FOR THE ANSWER:'
 
[ 12 J Xp '*'
 
[13J ~5V
 

5. VSPELL[6]'THE CORRECT SPELLING IS ',SPL[N+l;]V 
6. VENTER;A 

[ 1 ] R+' ,
 
[ 2 J ~DONEx1 O=pA+,[!]
 
[ 3 J R+R,20tA
 
[4]	 ~2 

[ 5 ]	 DONE:R+(l+,O 20T-l+pR)pRV 

Chapter 34 
1. )LOAD 1 CLASS 

SA VED 15.02.3907/29/69
 
Y+110
 
)ORIGIN 0
 

WAS	 1
 
TAB3[0;2;lJ
 

132
 
Y14 5 6
 

345
 
)DIGITS 5
 

WAS 10
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2. 

3. 

5. 

~TAB 3 

0.009009 0.0089286 0.0088496
 
0.0082645 0.0081967 0.0081301
 
0.0076336 0.0075758 0.0075188
 
0.0070922 0.0070423 0.006993
 

0.0047393 0.004717 0.0046948
 
0.0045249 0.0045045 0.0044843
 
0.004329 0.0043103 0.0042918
 
0.0041494 0.0041322 0.0041152
 

)WIDTH 60
 
WAS 120
 

)FNS J 
MEAN PI RECT REP REVERSE ROWCAT RUN S 
SD SETVARIABLES SIGN SORT SPELL SQRT STAT 
STATISTICS SUB SUMSCAN TIME TIMEFACT TRA 
TRACETIME 

)LOAD 1 WSFNS
 
SA VED 2 3 . 4 5 • 5 4 07/ 07/ 6 9
 

X+DIGITS 6
 
~ 1 7 

1 0.5 0.333333 0.25 0.2 0.166667 0.142857 
X 

10 
DIGITS X 

6
 
~ 1 7
 

1 0.5 0.3333333333 0.25 0.2 0.1666666667 0.1428571429 
Because both indexing and the index generator are affected in the 
same way by the change of origin. 

)ORIGIN 0 
WAS 1 

1 0 

1 1 
0 

P 1 0 
0 

P 1 1 
1 

A+9.222222222222222
 
B+9.222222222222227
 
C+ll0 
A =B 

1 
AEB 

1 
A-B -4.884981308E 15
 
C[3.000000000000008]
 

3 
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Supplement 

Extensions to the APL language 

This supplement contains a number of additions and extensions to the APL 
language which were not generally available at publ ication time, but whH:h 
are included in the APL program product announced by IBM in June, 1970. 
In addition, some examples will be shown of tabs, formatting and large file 
capability, features of APL PLUS, an APL time sharing service available 
through Scientific Time Sharing Corporation (U.S.) and I. P. Sharp 
Associates Ltd. (Canada). The service is based on APL\360 and includes 
certain proprietary extensions to be discussed. 

Matrix division 

This is a primitive function which can be used to solve sets of 1 inear 
equations (dyadic), invert matrices (monadic), and find least squares solu­
tions. For example, suppose we are given (conventional notation) 

2X + 4Y - 3Z = -4 
6x + l7Y - 8z = -15

{ 
4x - 2Y + 3Z = 20 

Then, letting A be the matrix of coefficients and B the vector of constants, 

A (note that the extra 1 ine has been 
2 4 3 el iminated from the display of arrays 
6 17 8 of rank >1) 
4 2 3 

B 
4 15 20 

the solution can be obtained by taking B matrix divide A. The domino Wfor 
matrix division is formed by overstriking the quad with the divide symbol. 

X+BtBA
 
X
 

3 1 2 
A+. «x 

LI- 15 20 

316 



Extensions to the APL Language 317 

Used monadically, [W results in the inverse of A. A must be square and 
invertible or a domain error results. Compare this with the defined func­
tion INV in chapter 32. 

Y+~A 
A+ _XY 

1.000000000EO 8.326672685E-17 5.551115123E-17
 

1.998401444E-15 1.000000000EO O.OOOOOOOOOEO
 
4.440892099E-16 8.326672685E-17 1.000000000EO
 

Catenation 

Two variables whose shapes are conformable can now be joined along an exist­
ing coordinate. If no coordinate is specified, the catenation is over the 
last coordinate. Notice that scalar arguments are extended for purposes of 
catenation. 

Q 

0000000 
ClDDDDDD 
ODODDOD 
ODDODDD 

R 
0000000 

0000000 

S 
******* 

T 

Q,[l]R 
DDDDODD 
DDODOOO 
DOODOOD 
0000000 
0000000 

0000000 

Q,[l]S 
DDDDDOD 
DDCDOOO 
ODD DODD 
DDDDDOD 
******* 

Q,T 
DDDDDDCJ6 
D,DDDDDD6 
DDDDDDD6 
DDDODDD6 

W+'*' 
Q,W 

IJDDODDC]*
DDDOODO* 
0000000* 
DDDDnOD* 
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is 0 f the fo r m _', I whe re fo r­
• • ! ... 
, ., I fr)r 'i; j-<- and !;,'; I, for 

and / f i ; ; , elc., rank permitting. /\5 In catenation. Cd] 

extended. 

Decode and encode 

[he s e funct ions extend to arrays as f o l l ows : 

'I 

u 

l .. 

U G
 

U U (j
 

U u u
 
L J JJ
 

{\
V 

Ji' 

Fr-om these examples it should be clear hOVJ the shape of LtlC !! 

related to the shape of the arquments. 

Adjustable fuzz 

r~ 0 r mall y Vv hen a c ompa r j s () r i s don e inthe fin a 1 ten b II
 

arguments are d i s r eqa r de d . To c huriq e this fuzz (see Pc~qf' C I ii,
 

fun c t ion , fromand exe cut C VJn (:' I
 

The n UIII be r 0 fbi t s dis reg a r d edis the n c han 9edt 0 ~ VJ i t h f) , I ~
 

returned as a result.
 

i' 
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(The following are proprietary extensions of APL PLUS. For further 
information, refer to the publ ications 1 isted in the Bibl iography at the 
end of	 this supplement.) 

Tabs 

Since the TAB and CLR/SET keys on the Selectric keyboard are not part of 
the APL\360 system, APL PLUS has a tab feature which incorporates tab 
stops to speed up terminal input-output, especially in printing displays 
with lots of "white space". 

To use	 tabs, first set the tab stops at regular intervals (for instance, 
every fifth position), using the CLR/SET key on the left side of the key­
board. The tabs may be set by typing 

)TABS 5 

WAS 0 

When printing, APL PLUS will then use tabs instead of multiple spaces 
wherever possible. 

On input, APL PLUS treats a tab exactly 1ike the equivalent number of 
spaces. An interesting appl ication of input tabs is in using ~ to bui ld 
the rows of a matrix. If the tabs are set to the column dimension of the 
resultant matrix, then tabbing to the next typed word wi 11 assure that the 
resultant character matrix wi 11 have text on each 1 ine, left justified. 

Here is an example, with the tabs set at 10, 20, 30 etc. The symbol 0 

denotes where the tab key was struck. 

)TABS 10 
WAS 5 

vR+INPUT 
[ 1 ]	 R--:-r1 
[ 2 ]	 R+ ( ( . 1 x p R ) ,10 ) p Rv 

T+INPUT 
JONESo	 KELLEYo A DAI,iS ° 

pT 
3 10 

T 
~TON ES 
KELLEY 
ADAi~,IS 

Corresponding to the )TABS command, a TABS function is available in the 
w. s. 1 WSF NS • The s y nt axis R+ TA BS N. N i s the new tab set ting , 
and If i s the old set tin g . The nor ma 1 mode 0 f the s ys t em i s TAR :3 o. 
Caution: tab settings, if used, must be equally spaced. Non-uniform tab 
stops can cause erratic terminal behavior. 

Working with data files 

The APL PLUS Fi le Subsystem lets you work with much more data than can be 
held in a workspace, and do it far more conveniently than by using the COpy 
commands. All the fi le operations are in the workspace 1 FILES. 
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)LOAD 1 FILES 
SAVED 20.32.24 07/27/70 

DESCRIBE 

WORKSPACE 1 FILES 

THIS WORKSPACE CONTAINS FUNCTIONS FOR USING APL PLUS DATA 
FILES, AS DESCRIBED IN d£~_£~~~_EI~~_~~~Qr~r~M, 

SCIENTIFIC TIME SHARING CORPORATION, 1970, AND AVAILABLE 
FROM SCIENTIFIC TIME SHARING CORPORATION AND I. P. SHARP 
ASSOCIATES LTD. THE FOLLOWING FUNCTIONS ARE PROVIDED: 

FAPPEND PLACES A NEW COMPONENT ON A FILE 
FCREATE CREATES AND OPENS A NEW FILE 
FDROP DELETES COMPONENTS FROM A FILE 
FERASE ERASES A FILE 
FHOLD REQUESTS TEMPORARY EXCLUSIVE USE OF FILE(S) 
FLIB NAMES OF FILES IN LIBRARY 
FLIM GIVES FILE COMPONENT NUMBERING 
FNAMES NA/vlES OF FILES CURRENTLY TIED 
FNUMS NUMBERS OF FILES CURRENTLY TIED 
FRDAC GIVES FILE ACCESS AND LOCK INFORMATION 
FRDCI GIVES COMPONENT INFORMATION 
FREAD READS A COMPONENT FROM A FILE 
FRENAME CHANGES LIBRARY NUMBER AND NAME OF A FILE 
FREPLACE REPLACES A COMPONENT IN A FILE 
FSTAC DEFINES ACCESSES AND LOCKS FOR USERS 
FSTIE OPENS FI~E FOR SHARED USE 
PTIE OPENS FILE FOR EXCLUSIVE USE 
FUNTIE UNTIES FILE(S) 
FE PRIMITIVE FILE FUNCTION UPON WHICH ALL OF 

THE ABOVE ARE BASED. REQUIRED FOR USE OF 
ANY OF THE ABOVE. 

A file consists of a number of components, each of which is an APL value 
of any type - character or numeric; scalar, vector, matrix, or of any 
number of dimensions. 

Users may have more than one file, each with its own name. For example, 
suppose that you have two files as shown below (it will be demonstrated 
later how they might have been bui It). The fi le named PERSONS has four 
components, each a vector of characters, and the file SALES also has four 
components, each a vector of numbers. 

fi le-name 

1 'SMITH' 5 6 3 1 4 
component 2 'JONES' 2 6 1 0 

number 3 'KELLEY' 46291 5 
4 'BECKER' 20 6 4 

File names belonging to an account number (or common 1ibrary) may be ob­
tained by the function FLIB, the syntax of which is 

result +FLIB account number 
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V PROG3 
[1J 'PERSONS' FTIE 2 
[2J 'SALES' FTIE 1 
[3J 'RECORDS' FCREATE 3 
[4J I+-1 
[5J LOOP:(FREAD(1+2II),rI~2) FAPPEND 3 
[6J ~LOOPX182I+-I+1 

[7J FUNTIE 3 
[8 J 'PERSONS' FERASE 2 
[g J 'SALES' FERASE 1 

v 

Inth i s examp 1e, the f i 1e - numbe r s 1 and 2 did not a ppea r wit h PUN TIE' be ­

cause the erasure of PERSONS and SALES also untied them.
 

Shared fi les
 

A shared file is stored information to which a group of users may have
 
s lrnu l t arieous access. Through the use of shared fi les, APL PLUS can be
 
used for reservation systems, management control systems, many-person games,
 
simulation studies, and message switching.
 

The airl ine reservation system presented here is typical of many inventory
 
appl ications in which several people must access and modify a data base,
 
in real time. The reservation system consists of a 'control center ',
 
which makes available an inventory of airplane seats, and any number of
 
'agents', whose task it is to sell the avai lable seats.
 

To initial ize the system, the control center creates two fi les using the
 
program SETUP. The fi rst of these fi les, named SUPPLY, holds the cur­

rently available number of seats for each of a number of fl ights. The
 
second fi le, named TRANSACT wi 11 hol d a record of each transact ion made
 
by the agents.
 

The control center operator makes more seats avai lable (by simulating
 
departures and arrival s ) through the use of the REPLENISH program. The
 
operator enters the fl ight numbers and the number of additional seats to
 
be made available on those flights.
 

Agents place orders against the inventory through the use of the program
 
SALES,., An entry here should be a two-element vector consisting of which
 
fl ight number and how many seats are requested. For the purposes of the
 
example, a reward structure is built into the sales program: orders
 
which can be fil led yield the agent one dollar each; orders which cannot
 
be filled cost the agent 50 cents per seat; and inval id entries reduce
 
his earnings by one-half.
 

Entries of the first two types above are recorded on the transactions
 
file. The program OBSERVE, which is run by the control center, prints 
the transactions of the agents in real time, identified by time, city, 
and nature of transaction. When there are more than ten transactions 
waiting to be printed, the observe program blocks further transactions by 
the agents until printing has caught up again. 

Here is a diagram of the file organization fol lowed by the above-referenced 
programs and associated variables: 



Extensions to the AP L Language 325 

SUPPLY Fl LE 

AGENT
 

AGENT
 

AGENT
 TRANSACTION FI LE 

o 

o 

o 

Agent program: 

V SALES;STOP;B;P;A;INV 
[ 1 J 
[ 2 J 
[ 3 J 
[4 J 
[ 5 J 
[ 6 J 
[ 7 J 
[ 8 J 
[9J 
[ 1 0 J 
[ 11 J 
[ 1 2 J 
[ 13 J 
[14J 
[ 15 J 
r16J 
[ 1 7 J 
[ 1 8 J 
[19J 
[ 20 J 
r21J 
[ 22 J 
[ 2 3 J 
[24J 
[25J 
[26J 
[ 27 J 
[ 28 J 
[ 29 J 

\j 

STOP+-* 1
 
~ORDxlA/ 1 2 EFNUMS
 
(OWNER,' SUPPLY') FSTIE 1
 
(OWNER,' TRANSACT') FSTIE 2
 

ORD:, '~EARNINGS: ~_F9.2,X3,~ENTER ORDER~' 6FMT EARN 
~DONExlSTOP=ltP+-,D 

~ORDxlO=pP 

~ERx127PP 

~ERxl~(A+-ltP)E110
 

~ERxlB7:-1 rB+-l+p
 
FHOLD 1
 
INV+-FREAD 1 1
 
~NOTxlINV[AJ<B 

INV[A J+-INV[A J-B
 
INV FREPLACE 1 1
 
FHOLD10
 
'ORDER FILLED'
 
(1,P,EARN+-EARN+B) FAPPEND 2
 
~ORD 

NOT:FHOLD10 
'ORDER CANNOT BE FILLED' 
'ONLY ';INV[AJ;' ON HAND' 
(O,P,EARN+-OrEARN-O.5 xB) FAPPEND 2 
~ORD 

ER: 'INPUT ERROR--ORDER NOT VALID' 
EARN+-EARN-;-2 
~ORD 

DONE: 'YOUR EARNINGS ARE'" 'F10.2' 6FMT EARN 
FUNTIE FNUMS 



· ( 
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I n t h e wo r k s pac e 0 11 th e 5 ,:/ ',: ' :1; 1 I ~ d <pc c i a l 
Iun c t l o n , c('11 1ed t,Jt) i ch i s use fu l f o r l) r - e p ~) i ' in q n o. i t o u tp l ( ";1u 

da t .. . i s (I d v a d i c fu nct i on wh i cn r e t . u r u s '::Hl exp li c i t r o s u l t . 

T hc f e r .i rq umc r. t i s ;J c ho r a c t c r 'lect or or t o rma t co d{~ ,:> , d l lli t h,-' r i q h : 
a r qumc-n t j ,; ,J l i s t o f t he va l u e s t o be p r i n t e d , For e x.u np l e , USiIH] t h e 
ma t r ix i n "/:: s up po s e l'i e wa n t e d to p r o d uc e I he Io l l ow i n o 

d i ', p 1d Y: 

: ' 
l,l, 

! " 1 

. J .1 
(. ' 'I ;1 

II: / :f " " :," I 

!t : . 1' !: I " J 

Th e f o rm a t cod (> i ~ u::>cc! t.u pr- i n t cn o rn c tc- i i 'l(t'~ ! -rnzlt I t in . .ls ks ! ( ,I ' 

fi ve r epet iti o n s ur a ch o r a c t c r fi ei d o n e D' ,s i t; (l f! I" i ;k, liwn t h e 
co d e mcan s s p ac.e ove r t \-IO p () ~i t i o n s , The p l " ,l S t' :' L i llJ " e S pr i n t i n g 
o f t he c ha r .i c t c r s ," i n the n ext posi ti on s , ICl ke s t h :" " " p:JCes 10 

p r i n t the v o l ue s 0 , 1 , 2 ,3 , " " S a s i n t cc e r f i e i d -" lI n d i , I '; 1 til L' 

s qu a r « root s , c u be r oo t s , a nd fo u rt h r o o t s , , 1' (' p r i nted Od t (' :1c ll ill t e ll 
sp a c c s w i t l : f o u r po si ti o n s a l I o we d f o r the de c i ma l pa r! ( '; " ' . ' , ) , 

''', w i l I han d l e s c a l a r s , vec to r s , a n d rnarr i c e s II I t ne r i qri t a rqur ue n t 
I t a lI-ILly '> tr c. r t s ve c t o r s of l e nq r h 11 a s t ho uq h t he y wc r • n x l IIld l r i c es 
(i . e . , ve c t o rs w i l l be p r i n te d v er t ica l l y) , To p r i n t t hL' c ieIlK; llt ·; o f a 
v e c to r a c ro s . o n a s i nq l e l i ne , mov br. u s e d i ll c-i tlur o f t h c fo i ­
10 1'1 i n g I'la ys : 
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X~2.4 4.982 304 1000.23123 
'Fl0.2' !J.FMT X 
2.40 
4.98 

304.00
 
1000.23
 

'F10.2' !J.FMT (l,pX)pX 
2.40 4.98 304.00 1000.23 

In the above statement X is made into a matrix with one row, and in the 
following example the resulting matrix of characters is raveled: 

, 'FlO. 2 6FMT X 
2.40 4.98 304.00 1000.23 

Compared to formatting routines such as DFT .. !J.FMT uses typically only 
5-10% of the CPU time required for the former. 

Input and output of large amounts of data 

Large amounts of data can be inputted rapidly by the APL PLUS Computer 
Center card reader and magnetic tape units. Typically, the data is pre­
pared on standard BO-co1umn punched cards, which are submitted to the 
Computer Center with instructions for what fi 1e to place the data in. 
Although there are many ways to have the data organized in the file, a 
good starter is to have each component of the fi 1e be an BO-e1ement 
character vector, corresponding exactly to a punched card. Then, using 
the File Subsystem, the information can be converted to any desired form. 

The high speed printer at the Computer Center can be used to print results 
which would f take a lot of time on a typewriter terminal. To use the 
printer, the results to be printed are placed in a file, and the program 
PRTNT in workspace 1 RSIO is executed. PRINT is a conversational pro­
gram, and i t will req uest you rname and rna i 1 i ngaddres s . 

The file to be printed must consist of characters only, and ~FMT can be 
used to advantage here. The PRINT program includes faci1 ities for 
tit 1 i ng, page nurn be r i ng, ma rgin5, I ski ppin g I, etc. 

Miscellaneous APL PLUS features 

If you form an incorrect character, or if a transmission error occurs 
whi 1e you are entering information from your terminal, APL PLUS wi 11 
pr i nt CHAR ERROR and then return to you the readab 1e port i on of the 
1 ine, for you to retype the rest of it. Standard APL, under either of 
these circumstances, would return either CHARACTER ERROR or RESENlJ 
and would require that you type the entire 1 ine over again. 

The COpy command in APL PLUS now accepts the names of more than one 
variable, function, or group. For example, the command 

)COPY 1 CLASS SPL SUB TAB3 SPELL 
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will copy all four objects from the workspace 1 CLASS considerably 
more rapidly than by s ep a rat e COpy commands. This extension applies to 
the PCOPY command as well. 

Bib 1 iog rap hy 

Breed, L. M., INPUT AND OUTPUT FACILITIES FOR APL PLUS, Washington: 
Scientific Time Sharing Corporation, 1970 

Breed, L. M., REPORT FORMATTING IN APL PLUS, Washington: Scientific 
Time Sharing Corporation, 1970 

Rose, A. J., APL PLUS FILE SYBSYSTEM, Washington: Scientific Time 
Sharing Corporation, 1970 



Index 

Ab so lu t ~ v a l ue . ! , 5 1 
I\d d in 9 i.J I i I1C t o a t un c ti o n, 77 
Add i lion, t , 6 , 9 , 1(3 (j 

Ad d i t ive i den t it y , 
A l go r i t hms , 33 
A I t e r no t i n q p rodu c t , ", 142 
Al te r nQt in y s um. " , 40 
An d , <. :!C, 
Anno un c cmen t -, p ub l i c u de! r cs '; , 2 61; 

/Ip o s l r op! «- a -. ,1 ] i I. e r a l r:h ",, ' ac te, r, 
13 3 

A r c c o s , ]86 
Ar c cos h , I)U, 186 
A r c s l n , -10 , 186 
fI r e s i nh, " ", 186 
Ar c tan , ':() , 186 
Arc t an h , '/ 0 , 186 
Ar qumc n t s , 13 

e x p l i c it an d i rup l i c i r, / 2 
/\1' i t hme t i c 11i:9ill i o r:, " SO, 
!~ r r ay s 

d i m.:n s i on 0 t, j I C 
r ~H1 k 0 I, 1 1:3 
r e s rru c t u r i nu ()t , ] ?G 

As s i gnme nt , ", 30 
Atl n ke y , 3 , (J() 

! lVe r o q i nCJ , 38 , 114 

Bas c Va l ue (decod e : , .L , .so 
Be t el f unc tion , 22 
R i n oill icl ~ r hc- o r em, :'7­
13 r anc h i neJ, " ] G() 

r u I c s fo r , 174 
s ummarv of in struct ion s for , 

Byte , 190 

ch " ,-i ii] r o c t i-r, J 3;" 
r r !n rJli l , ? 

Ctj tf " ~ ) ~ i.e ) i ;~? , : ) O ~~· 

(. .~ : ; l i : -l~ J . I.~~ ? 

C(~ n t !.;-] 1 p r- o (:.~ , -;s i n q urI; i (Cp U) ) I ~ 

C:l a r ac tc r er ro r , 9 
Ch a r d e t (' r 

2 r q uui e n l ,; \1 i t iJ flPL l un c I i on e; . 
133 

orrav s , 1 3 ~
 

i n j~l ; Y. (: cJ o u t p u t , ?SO
 
C i r'cu l <JI- f UrlL L i o n s , 18()
 
C] c.:J!" C ., iIl111 .:Jn J i CLE /\r' . '!~; , I i O
 
Cude s. Se e C r 'tDt ( I~J r l phy .
 
Cu I on , - - "I; in 
C(lmb i n . i : 1' _l n ~) , ~ I >~ : 

C U r '1 11 1 ,~ r> j') . ') ..rc- ·v '-) I \ ~ : I C ( ) ~ III ~ ·· dl )l1 <' ;. 

CO!n ll l l ~ n t ~ _;) i"'\ , ~) 

C{)! :li':l( ~' n ; i :) r a cv, J C>3 
' f I ~ U. ;J O(, 

c.- \ n n .,~' C t l ; 1, 1(; , ~; 

C ~\ n~ i n u t · ( '-" fur k~ p ac C' n ,~ l llj \_>d ) ~ IP~1 

l~ )i - ; ~- ; n u-; C ()! ll r n ~ l n d " 

j ( (IIH I NUE, i i o 
)(ONT I NUE HOI_D, l i n 

Coc r d in a t .: -. ~ [ " d 11 a r r ; l Y) I ~ (.; I 

Cu p,>, C0 1 ; '1i !l ~ lfll~ ' :
 

) C O P~' ,
 

t;u c, i": , 1 ,(; , 186
 
Co s i n.: , .)0 , l(~ (.
 

1 7 ~i	 Cos i n e , C d I c u l a t i on or ,;() 
Co un t e r s , 9 I 

CPU t ime , 1:' 1 , J 90 
Cn l c u l us , app l i c a t i on s o f !\ PL t o , 2 44 Cr y p t o g r a ph y , ap p l i c a t i on. o f /\ PL 

t 0 ~ "i "~j ~) 



Index 3:51 

D;) t i.1< (~l, ;I I ', 
Dl ~~ ! l , :". ~ .. 
Dpci m.-j I ;)(1; ;"1 1. , 

f)r- CC)( iC ( ~-- l :l : ,t ",/ :1 ! I I ! j ." :' 

Ocr- in -,~d f IJll o';.!.' ; , , ··, ·, . ~ ~ (~ ~ r: !I~:' : '. '-. ... 

Iit'·[" ! n; 1 i ' _jl ~ c- r r o r, l·. f.., 
Dr"' I , V ) ()3 i-" ., !! ~ : : : .: r ·. i .1Y ~ " ll. (. j 
Oc l ! i l d r - , - , ) 1;:; 

;Dr- l e t i nc iJ 1:;"~(~ i n ,") ::Ji~ (, _ i IJ r1" : { ; > i ht.:> .-. ~ -, ; , ~ ro:" ()~ , -::: 
Dc; 1 1. ,1 . 1\ . 1 7 8 ~ i l") Fini ( 1 i (' :-'''' , ; j ' ;" COPllllrl!od ; F ~·J SI 

ucs c.r i hf; rU !1C~ i nn . i '~: · ." ' .' -. 
Oe<;K c a ! cu : ':~ :- ! ' ~ n ! :)i) :; ( ' = 2 r 1 j ' ''' ( \ : , ·.r--, ·.; . 0 : ' . ~ f),- . " \ ' . 

Do t a i J r~ d f.' d i i i ng cd· t.1 l i nc, ·S 2 
D ig i t ··, c o n-;!lirl n d ) D I G I T~; . /. (/~ '\ ;,"" :~ r.~ '} 

Di men s i on , (J , 116 , 117 ~. ;; ,1\, ! p'J :~ ~ -, 

Di sp1.1 Y ,-,r ' N !) , ?jC\ 
f un c t i o ns , Gj /":'[ /-\ . 2/1,7 
par l. 0 f <l rI) n c. t: i ()n , ;,: I :.!TC . ~ [j 7 
va l uo of ,I n c xp r e s s i o« . .~ : .; ll "'-' , 72, 11 6 

D i v i s i on , :, 7 , I I , ; Sf, Ii .; " g () 

DO Il I!"""! i n f':' r r o r , "/ 
Dr o p , ~ , 153, 2 13
 
D rr) rpi n~l a 'fo rks p l lce COIllIl1,:';-ld JJH~)D." :"J -. ~~.
 

] 1() :\i GS . :) ~~ 

Dummv './;·l r i,-J:J l c s , 87 'i j' Sf , : G1 
OYddi c func t ions , I') 
OY ~1d ic 1", )n d t )ll i (dCrJ l ) . ·' !S :.l 
Dyad i C I r l-l n ~ l/( ;( ;t' , ,~ .' , 2! l C'·1PX, I / ? 

:' ~l P V , i 7JI 

E-r.o! a einn , 16 COiCtITi .7. ClP 
~ d i ti n q n f f u n c t i on; , 7:) - ::~,lj CO;J :JH2 , ~'l 2 
Emp t y vc l- ! o r , lI S C'J";, (7 ~ 1~ 4 

En code ( r cpre ·~c n t; 'IL i '~ ln). r . j()2. r~ J ( F) 

E'l u" I , .c , ;'6 C:P !i T 1f1E, 1')7 
Era se c o mman d ) ERIISE , 69, I J l ['1E e , l(,7 
Er r o r s fJ ~- T , ~I 3o 

c ho r a c tc r , 9 nrcr , 73
 
clef i n il. i o n, GF. t , 1;':,
 
cloll1;,in , 7 f I~ S '{ :I R I L L , ~)R
 

i nd n x , i 3f3 I , --Jj ~ ~ ; 11)
 
l en [) '_fl, I () ' fI e:, i '1.: 
rn n k , 17. :; f -:~ CT L O I) i-' , i q7 
syn tax , 37. GCD , 185 
v a l u c , 37. (;E02 , 13 0 
\' /o r k" p" cc~ Fu I. 1, ~ ,-,rj GE03 , 132 

Es c ao. f r om in p u t I ()() O , 2r,'~ GR/\P" , nB 
Eva l uated i no u t. , 2h 'J HE XA , J r;G 
Ex c l u si v~ o r , f , 2H HY , 6 7 
Ex e r c i se s HYP . 64 

U ISYDRI :-L, ;;2 I NSERT . 1'; 5 
TEM:H, I h7 1NV, 2 4 1, 

Ex p a n s i on , " " ,- \ , ] '12 , 20 f t-lEAN , 200 
Ex pl i ci l r o s u l t s , ';5. 73 PER I tJ, ] , 91j 

Ex no ne n t i a I , < , 5 i PERI (-I , 94 
Ex po nent i a l nrra t i on , r. do °F-R! M 9 4 

:co i , J 8 



332 Index 

PLOT, 230 Grade up, !, 154 
RECT, 73 Greater than, >, 25 
REP, 163 Greater than or equal to, 
ROWCAT, 208 2, 25 
RUN, 239 I-beam, I, 188-191 
S, 123 I ndex generator, t, 113 
SD, 249 Indexing, [ J, 138, 210 
SIGN, 72 Index of (ranking), 1, 136 
SLOPE, 245 Inner product, f.g, 233 
SORT, 171 Less than, <. 25 
SPELL, 256 Less than or equal to, <, 
sQ, 69 25 
SQRT, 66 Logarithm to a base, ~, 17 
STAT, 74 Max i mum, I, 18 
STATISTICS, 2 Membership, E, 153,213 
STD, 85 Min i mum, L, 18 
SUB, 253 Monadic random (roll), ?, 55 
SUBST, 156 Monadic transpose, ~, 215 
SUMSCAN, 225 Mu1tip 1 i cat ion, x , 7, 11, 
TEACH, 147 197 
TIME, 189 Nand, 1"<, 27 
TIMEFACT, 191 Natural logarithm, e , 51 
TOSS, 96 Negation, -, 50, 197 
TRA, 218 Nor, v, 27 
TRACETIME, 189 Not, "', 52 
TRANSP, 156 Not eq ua 1, ;c, 25 
VI G, 156 Or, v, 27 
VS, 230 Outer product, o.f, 222, 224 

Functions, standard (primitive), 14 Pit i mes, 0, 186
 
Absol ute val ue , I, 51 Power, *, 15
 
Add it i on, +, 6, 9, 196 Random, ?, 55, 154
 
Additive identity, +, 55 Ranking (index of), 1, 136
 
And, A, 26 Ravel, " 124, 125
 
Bas e val ue , .L, 160 Reciprocal, ~, 51
 
Catenate, " 122, 208 Reduction, f/ or ff, 37,
 
Ce i 1i ng, I, 52 198-200
 
Circular, 0, 186 Representation, T, 162
 
Combinations, !, 21 Residue, I, 23
 
Compres s ion, / 0 r t, 140, 206 Restructure (reshape), p ,
 
Deal, ?, 154 126, 127
 
Decode, .L, 160 Reversal, ¢ or 8, 150, 202
 
Dime ns ion, p , 116, 117 203
 
Division, ~, 7, 11, 196 Ro11, ?, 55
 
Drop, -t, 153, 21 3 Rotate, ¢ 0 r e, 150, 203
 
Dyadic random (deal), ?, 154 204
 
Dyadic transpose, ~, 217 Signum, x , 56
 
Encode, T, 162 Subtraction, -, 7
 
Equal, =, 26 Take, 1',152, 213
 
Exclusive or, ~, 28 Transpose, ~, 215, 217
 
Expansion, \ or " 142, 206 Functions, suspended, 92
 
Exponential, *, 51 Fuzz, 265
 
Exponen t i at i on, r , 15 
Facto ria 1, !, 50 198 Gamma function, 50 
Floor, L, 53 Global variables, 89 
Grade down, W, 154 Grade down, t, 154 



Grade up, 4, 154
 
Graphs, construction of, 226
 
Greater than, >, 25
 
Greater than or equal to, ~, 25
 
Group command )GROUP, 262
 
Group, 1ist members command )GRP, 263
 
Groups, list command )GRPS, 263
 

Half-cent adjust, 54
 
Headers, 64, 72
 

editing of, 85
 
Hexadecimal system, 165
 
Hexadecimal to decimal conversion, 166
 
Hyperbol ic functions, 186, 187
 
I-beam functions, I, 188-191
 
Identities
 

additive, +, 55
 
hyperbolic, 188
 
t rig 0 nomet ric, 187
 

Identity elements, 145
 
Index e r ro r , 138
 
Index generator, 1, 113
 
Index of (ranking), 1, 136
 
Indexing, [ J, 138-210
 
Inner product, f.g, 233
 
Input
 

evaluated, 249
 
1i te ra 1, 255
 

Input loop, escape from, 258
 
Inserting a line in a function, 79
 
Interrupt procedure, 82
 
Inverse, 52
 
Inverse matrix, 243
 
Iteration, 169
 

Keyboard, 3
 
Keyboard, time unlocked, I19, 188
 
Keys and locks, 264
 

Labels, 171
 
Lamp, A, 9
 
Length error, 10
 
Less than, <, 25
 
Less than or equal to, ~, 25
 
Lib ra ry, 1is t command ) LIB, 97, 110
 
Library, publ ic, 103
 
Lin e co un t e r , I 2 6 , 191
 
Line editing. See Functions, editing
 

of. - ­
Line width, changing command )WIDTH, 260
 
Literal input, 255
 
Literal output, 129, 249
 
Literals, 129
 
Load workspace command )LOAD, 97, 110
 
Local variables, 89
 

Index 333 

Locking functions, ~, 265
 
Locks, restrictions on, 265
 
Logarithm, natural, e , 51
 
Logarithm to a base, ~, 17
 
Logical functions, 26
 
Logical negation (not), ~ 52
 
Loop i ng, 169
 

Maclaurin's series, 56
 
Main programs, 75
 
Mat r ix, 117
 
Matrix algebra, 242
 
Matrix inverse, 243
 
Matrix operations. See Appendix.
 
Matrix product. See Inner product.
 
Maximum, f, 18 -- ­
Membership, E, 153,213
 
Message commands )OPR, )OPRN, )MSG,
 

) MSGN, 264
 
Minimum, L, 18
 
Mixed functions, 113
 
Mixed output, 250
 
Monadic functions, 49
 
Monadic random (roll), ?, 55
 
Monadic transpose, Q, 215, 216
 
Multidimensional arrays, 195
 

construction of, 223
 
Multiple specification, 32
 
Mu 1tip 1i ca t ion, x 7, 11, 197
 

Na me s, res t ric t ion son, 265
 
Nand, 1;:, 27
 
Natural logari thm, e , 51
 
Negative, -, 7
 
Negation, arithmetic, 50, 197
 
Niladic functions, 73
 
Nor, v , 27
 
Not, "', 52
 
Not equal, 7, 25
 
Number 1ine, real, 18
 
Number of users, I23, 190
 

Operation tables, 14, 222
 
Operations along a single dimension,
 

198
 
Or, v, 27
 
Order of execution, 37
 
orig i n co mma nd ) 0 RIG IN, 156, 259
 
Outer product, a.f, 222, 224
 
Output, 0, 254, 258
 
Output, mixed, 250
 
Overstruck characters, 9
 

Parall e 1 pro ce s sin g, 11
 
Parentheses, 44
 
Parenthesis, right (sys com), 33
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