7

—
-

APPROACH

Sl
3
%

£
i

CTIVE

N INTERA

X
£)
-

&

By Leonard Gilman- a;nd Allen J. Rose

R

PPy - 3

v 1 ¥ e f v o b e B g e 3o
BT S R S

._|. . ¢ . T ‘ F W e " ..:’..... .—..

e o 4
oo R R .
L %)

-
¥

GILMAN 7
ROSE WL\ L /V U An Interactive Approach

APL1360 an interactive approach

APL\ 360

an interactive approach

LEONARD GILMAN
ALLEN J. ROSE

JOHN WILEY & SONS, INC.

New York * London - Sydney - Toronto

Copyright © 1970, by John Wiley & Sons, Inc.

All rights reserved. No part of this book may be reproduced
by any means, nor transmitted, nor translated into a machine
language without the written permission of the publisher.

Library of Congress Catalogue Card Number: 71--147788
ISBN 0 471 30020 9
Printed in the United States of America

109 8 7 6 5 4 3 2 1

Preface

As a result of increasing interest in APL, a formal educational pro-
gram was begun in 1967 at the Thomas J. Watson Research Center in Yorktown
Heights, New York. Within a year an APL ''curriculum'' had evolved which
has been put on videotape. This text follows the same instructional se-
quence and uses essentially the same examples given on the videotapes.

With but a few exceptions not necessary to the understanding of the
topics following, the level of mathematical sophistication required does
not exceed that associated with most current high school mathematics pro-
grams. In addition, no previous programming experience on the part of the
reader is assumed. The authors believe, therefore, that the text is suit-
able for use by both secondary school and college-level classes, as well
as by those in business and industry who are interested in the data proces-
sing capabilities of APL. Preliminary versions of the text have been used
extensively in classroom situations and independent study by many individuals.

At the end of each chapter except the first are problem sets with
drill exercises and practice in the writing of APL expressions and pro-
grams (function definition). These have in general been chosen to empha-
size and reinforce the concepts presented in the chapters which they fol-
low. Past experience has indicated that students readily develop their
own applications of APL once having learned the language.

Finally, nearly all of the example functions that the student will
encounter in the text have been placed in a block of storage (called a
workspace in APL) which has the name CL4SS. This workspace is furnished
by the I1BM Corporation as part of the contents of the common library. The
work of the student will be facilitated if he has access to this workspace.

We wish to acknowledge our debt to the many individuals who gave
us their helpful comments and suggestions with regard to the layout and
contents of the text. |In particular we want to give credit to the
following persons: Robert Hurley, for invaluable technical assistance in
the early development of the course; Miss Colleen Conroy, for proofreading
the text at several stages in its preparation; Eugene McDonnell, for sug-
gesting solutions to a number of problems; Horst Feistel, for his ideas and
exercises in the section on cryptography (chapter 2]); Miss Linda Alvord,
for her work in graphing {on which the latter part of chapter 30 is based):

Raymond Polivka, for his kind permission to use a number of problems which

he had developed earlier in his own APL teaching. And last, but by no means
least, in gratitude for a task that at times appeared endless, thanks are

due to Mrs. Frances Verzeni and Mrs. Ann Tiller for preparing the copy for
publication.

Yorktown Heights, New York Leonard Gilman
June, 1970 Allen J. Rose

Foreword

APL is a language for describing procedures in the processing of

information. |t can be used to describe mathematical procedures having
nothing to do with computers, or to describe (to a human being) how a com-
puter works. Most commonly, however, at least at this time, it is used for

programming in the ordinary sense of directing a computer how to process
numeric or alphabetic data.

The language was invented by Kenneth E. lverson while at Harvard, and
was described in a 1962 Wiley book appropriately titled A Programming
Language. In 1966 an experimental time-sharing system for the |BM
System/360 became available within IBM, and is now an IBM program product.
A number of universities and at least one public school system (Atlanta)
are using APL on a wide scale for student instruction, and several
universities and computer manufacturers are currently producing implementa-
tions for various computers. APL is clearly gaining acceptance at this
time as a computer programming language.

This acceptance is not hard to understand, /AF. is one of the most
concise, consistent, and powerful programming languages ever devised.
Operations on single items (scalars) extend in a simple and natural way
to arrays of any size and shape. Thus, for instance, a matrix addition that
in other languages might require two loops and a half dozen statements, be-
comes simply A+# in AFL, Since computer programming tyoically involves a
great deal of work with various kinds of data structures, the simplification
offered by APL's rich and powerful handling of arrays is central to its
strength.

Again, since so many computer operations are describable by single
AFL operators, since data declarations are seldom required, and since pro-
cedure definitions are always independent of other definitions, A4PL is
ideal for on-line interactive use of computers. Programs can readily be
checked out in easy-to-manage segments.

From a pedagogical standpoint 4APL has a number of advantages. The
material can be taught and used in small pieces. A student can be trying
his hand on simple operations after five minutes of instruction. What he
doesn't know won't hurt him (a statement that cannot be made about most
other languages). |If he tries something illegal, such as division by zero

or adding a number and a letter, he gets an understandable error message
and is free to try something else. Nothing the user can do will cause the
system to crash.

As a new user becomes familiar with simple APL features, he moves
on to more advanced concepts. Perhaps he tries operations on vectors, or
samples the APL operator called reduction, which with two character strokes

replaces complete loops in other languages. Some users will never have any
occasion to become intimately familiar with all APL operators; their work
will just not require them. Those who do need the advanced features will

find the effort needed to master them rewarded with the availability of
some extremely powerful operators, the equivalent of which are not to be
found in other programming languages.

It is indubitably true that a ''clever'' programmer can use these
advanced operators in such a way as to produce an ''opaque' program, that is,
one so compact and concise as to be nearly impossible for anyone else to
understand. Whatever else may be said about such programs, which are
questionable in many contexts anyway, they should not be used in demonstra-
tions of APL. Experienced programmers who have seen APL demonstrated in
terms of the fantastic cleverness angle sometimes criticize the language as
being hard to understand, when their criticism more properly should have
been directed at the demonstrator. Such misplaced cleverness is not to be
found in this book. All operators are thoroughly covered, but there is no
attempt to show off the ingenuity of the authors in writing ingeniously
condensed programs.

is being taught successfully to high school students, in courses
where the intent is more to teach mathematics than to teach programming.
It is being used by engineers and statisticians to assist in their work,
employing APL program packages designed to make such work more easy. And
it is also used for various kinds of text processing, such as checking out
compiling schemes and writing APL interpreters of other languages. Many
other application areas could be cited. APL may not be all things to
all men, but, to a greater degree than is true of most programming languages,
it is many things to many.

This book concentrates on no special class of users. The features
of the language are explained thoroughly, in a sequence chosen to facilitate
learning. The authors have very extensive experience teaching AFL to a
wide variety of users. As the subtitle indicates (An Interactive Approach),
the presentation is built around the assumption that the reader has access
to an £#7L terminal. This, of course, is unquestionably the best way
to learn APL, and such a reader will find the book well suited to his needs.

Nonetheless, the reader who wants to find out what APL is all about,
not yet having access to a terminal, will discover that the presentation is
easily readable. The text displays the terminal printouts just as they would
appear to a user executing the commands under discussion. Being on a ter-
minal oneself is surely the best way to learn an interactive language, but
if that is not possible this may be the next best thing.

Ossining, New York Daniel L. McCracken
June, 1970

Contents

1. GETTING STARTED. 1
The hardware. Sign-on. Sign-off.

2. SOME ELEMENTARY OPERATIONS. 6

Arithmetic functions. Corrections. Vectors.

3. SCALAR DYADIC FUNCTIONS. 13
Operation tables for the arithmetic functions. Expo-
nentiation. Exponential notation. Logarithm to a

base. Maximum. Minimum.

4, TWO MORE SCALAR DYADIC FUNCTIONS. 21

Combinations. Residue.

5. RELATIONAL AND LOGICAL FUNCTIONS. 25
Less than. Less than or equal to. Equal to. Greater
than or equal to. Greater than. Not equal to. And.

Or. Nand. Nor.

6. ASSIGNMENT AND ALGORITHMS. 30
The concept of assignment and specification. The system

command VARS. An introduction to algorithms.

7. REDUCTION. 36
Conventional summation notation. Sum reduction.
Times reduction. An algorithm for averaging. Maximum,

minimum and logical reduction. Minus reduction.

8. ORDER OF EXECUTION. 43
Combining operations on a single line. Changing the order

of execution. A polynomial illustration.

10.

11.

12.

13.

14.

15.

16.

SCALAR MONADIC FUNCTIONS. 49
Arithmetic negation. Factorial. Absolute value.
Reciprocal. Exponential. Natural logarithm. Square
root. Logical negation. Ceiling. Floor. Roll. Addi-
tive identity. Signum. Calculation of the cosine. A

drill exercise in APL.

FUNCTION DEFINITION. 62

A defined dyadic function. Mechanics of function definition.

A defined monadic function. The cosine function. The

system commands, FNS, ERASE, CLEAR.

THE SYNTAX OF FUNCTIONS. 1

Function headers.

FUNCTION EDITING. 76
Adding a line. Replacing a line. Inserting a line. Making
several changes at once. Deleting a line. Displaying part

part of a function. Detailed editing of a line.

TYPES OF VARIABLES. 86
Dummy variables. Global variables. Local variables.

Counters. Suspended functions.

WORKSPACE MOVEMENT. 95
Workspace contents. Saving and recovering a workspace.

Dropping a saved workspace. Changing a saved workspace.

LIBRARY MANAGEMENT. 103
Public libraries. The COPY command. The workspace
CONTINUE. Summary of system commands.

MIXED FUNCTIONS. 113

Index generator. Dimension vector. Rank.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

MORE MIXED FUNCTIONS. 121

Catenate. Ravel. Restructure.

CHARACTER DATA. 129

Literal input-output. Rules for literals.

MIXED FUNCTIONS FOR ORDERING AND SELECTING. 136

Ranking. Indexing. Compression. Expansion.

IDENTITY ELEMENTS. 145
Identity elements for scalar dyadic functions. Another drill

exercise in APL.

STILL MORE MIXED FUNCTIONS. 150
Reversal. Rotate. Take. Drop. Membership. Grade up.

Grade down. Deal. Applications to cryptography.

NUMBER SYSTEMS. 159

Base value. Representation.

APPLICATIONS OF BASE VALUE AND REPRESENTATION. 165

Hexadecimal-decimal conversions. Check protection.

BRANCHING. 169
The branch instruction. Labels. Rules for branching. Examples

of branch instructions.

DIAGNOSTIC AIDS. 178

Trace control. Stop control. Recursion.

MISCELLANEOUS APL FUNCTIONS. 186

Circular functions. |-beam functions.

MULTIDIMENSIONAL ARRAYS. 195
Review. Scalar dyadic operations. Scalar monadic

operations. Operations along a single dimension.

28. EXTENSIONS OF MIXED FUNCTIONS TO MULTI-
DIMENSIONAL ARRAYS. 202
Reversal. Rotate. Compression. Expansion. Indexing.

Take Drop. Membership.

29. TRANSPOSITION. 215
Monadic transpose. Dyadic transpose. A transformation
mnemonic.

30. GENERALIZED OUTER PRODUCT. 221
Ordinary outer product. Construction of multidimensional
arrays. Scanning. Graphing.

31. GENERALIZED INNER PRODUCT. 231
Matrix multiplication. Inner product. Applications of the
inner product.

32. TWO APPLICATIONS OF APL. 242
Matrix algebra. Calculus.

33. INPUT AND OUTPUT. 249
The quad in defined functions. Mixed output. Additional uses
of the quad. The quote-quad in defined functions. Extensions
of the quote-quad. Escape from an input loop.

34. MISCELLANEOUS APL COMMANDS AND FEATURES 259
The commands ORIGIN, WIDTH, DIGITS. The workspace
WSFNS. Groups. Message commands. Security features.
Fuzz.

APPENDIX Summary of APL notation 267

ANSWERS TO PROBLEMS 270

BIBLIOGRAPHY 315

SUPPLEMENT Extensions to the APL language 316

INDEX 330

CHAPTER 1:

Getting started

Communication with the computer

Language is the means whereby we, as users, can tell the computer what to do,
and it, in turn, can tell us what it has done with the information we have
furnished it. It would be highly desirable to have a language that is as
near as possible to what people ordinarily use. At the same time, the
computer has to be able to interpret the given commands and execute them.

As a result of the recent development of time-sharing, in which regular
telephone lines are used to connect remote inexpensive typewriters
equipped for teleprocessing (''terminals'') to a single central computer,

a number of specialized languages have appeared with features adapted to
this environment. Among them is APL, the name being an acronym for

A Programming Language, which is the title of a book by Dr. K. E. lverson#
(New York, John Wiley, 1962) defining the language in detail.

Since it is similar in many respects to algebraic notation and, in addition,
contains many useful functions not expressible concisely with conventional
symbols, it has proved to be very efficient for describing algorithms
(problem-solving procedures). The text, therefore, will concentrate on the
use of the APL language for problem-solving on the terminal, following

a brief introduction to the operation of the terminal and the establishing
of the telephone connection. No consideration will be given to the char-
acteristics and operation of any of the other components of the APL sys-
tem since the user of a time-sharing system is removed from the immediate
vicinity of the computer, and need not be concerned with anything other
than his terminal.

What the APL system does

The following is a typical session in which a user interacts with the
central computer via an APL terminal. The student is cautioned that the
display of terminal copy below was obtained from a terminal with access to
programs in storage not necessarily available to him, such as STATTSTTCS
which will result in a value error if execution is attempted.

“Presently Scientific Consultant for the IBM Scientific Center Complex,
Data Processing Division.

2 APL\360: An Interactive Approach

2+2

3.1x%x5

As the illustration shows we can use the terminal as a desk calculator,
with commands and data entered by the user via the keyboard (beginning

six spaces to the right of the margin). Following the entry the return
key is depressed to signal the computer that the user is finished. The
response of the computer begins at the left margin.

Or we can assign a string of numbers to a variable called X, and ask the
computer to execute the command shown, +/X , with the response 17.1

X«3 4 1,1 3 6
+/X
17.1

This is the sum of all the numbers assigned to X.

The variable X can be further operated on, as, for example,

5 6 3.1 5 8

And we have the ability to call upon programs previously stored in the
system. Here is one that enables us to carry out statistical calculations
on data:

STATISTICS
ENTER DATA
M
4 3 4.4 5 1 6,2
6 OBSKRVATIONS FENTERED
AVERAGE IS 3.933333333
RANGE IS5 5.2
STANDARD DEVIATION IS5 1.787363048
70 THRMIJATRE TYPE 570P
s

The program is expecting yet another set of data, which will now be
entered:

8 9 7.8 b.4
Y OBSHERVATIONS ENITEIED
AVERAGH IS5 7.8
RANGE I5 2.6
STANDARD DEVIATION IS 1,070825227
70 TERMINATE TYPE STOP
M.

STopP

As the instructions indicated, we terminated execution by typing STOP

Getting Started 3

The hardware

Let's take a brief look at tiue physical equipment. 1t will be assumed in
the remainder of the notes that the communications terminal you will be
using is an IBM 2741% with an APL typeball, connected to a computer via
a dataset telephone.

Note that on the left side of the stand on which the 2741 terminal is
mounted there is a switch marked COM/LCL. When the switch is in the LCL
position ('"'local''), the terminal can be used as an ordinary electric
typewriter. The COM ("communicate'') position is the correct one for A7/

Now look at the keyboard, reproduced below

N < =
YR . 4 5 #8 . gf:\ccg ‘”TN
. IIIm . '
E' R
RETURN

o

_ V A
=i, HOaRH.

Although the alphabetic and numeric characters are in the standard posi-
tions, you will find most of the remaining symbols are not only probably
not familiar to you but in addition the conventional symbols are not lo-
cated where you might expect them to be.

The shift key is used in the usual manner for upper shift characters, and
the return key on the right tells the system that you, the user, are
finished with whatever you are entering, and are now ready for the terminal
to respond.

To the right of the return key is the on-off switch, which is the main
power control for the terminal. The space bar (not shown) is at the
bottom of the keyboard.

Sign-on

At this point, turn the terminal on and set the switch on the left side to
LCL. Practice entering the following with the terminal in the local mode:

YUSRE NIMBERPASS/ORD | if any]
with

Jluzi:JAy
as an example.

Several other terminals can be used with APL. Among these are the DATEL

20-31, DURA 1021 and 1051, TST 707, NOVAR 5-50, and IBM 2740 and 1050.

in

general, the control functions are similar, but the student should consult

the vendor of the terminal or the APL time sharing service for specific
information.

4 APL\360: An Interactive Approach

If you forget to hold down the shift key, you will get] instead of).
This will result in an incorrect entry and you will not be able to sign on.
Repeat the above exercise.

When you are finished practicing, put the left switch back on COM and
leave the power switch on.

Now examine the dataset. You will be concerned only with the two right-
most buttons: TALK and DATA. When the TALK button is depressed, the
dataset is a conventional telephone. Use it to dial the computer.

If you have made a proper connection, you will hear a high-pitched tone.
At this point, press the DATA button, replace the handset, and you are
ready to sign on as above.

Here is a summary of the sign-on procedure:

turn on-off switch on

put LCL-COM switch to COM

depress TALK button

dial telephone number

on tone, press DATA button

replace handset

enter)your user number:password [if any]
press return key

~N O Fw N —

The complete sign-on with the terminal response looks like this:

)1500:D¢G

OPR 196K w5 APL SYS AVAILABLE LVES, SAT.
057) 3,44,03 03/13/70 LGILMAN

A P LN 36 0

057) tells on which port (tel. line) you are coming into the computer, and
is followed by the time in hours, minutes and seconds, the date and the
user's name. The next line identifies the system. At times there may also
be a message from the operator with APL news for all users.

Having signed on, we are at the place where we can do simple calculations:

3+5
8

2+2
uy
Sign-off
At this point you are ready to work. It is foreordained, in the scheme of
things, that somebody is bound to come in and interrupt you. [f the inter-
ruption is a lengthy one and you are unable to continue at the terminal for
some time, you will need to know how to sign off. Do not sign off at this

point unless you have to leave the terminal.
Here is the sign-off procedure:

1. enter JOFF
2. press return key

Getting Started

3. after terminal response, turn on-off switch off

The terminal's response will show how long you were connected and the
actual time the central processing unit (CPU) of the computer was working
for you both since sign-on and cumulatively since the last billing:

YOFF
057 13.41.40 03/10/70 LGT
CONNECTED 0.00,22 TO DATE 4.19,26

CPU TTME 0,00.00 70 DATE 0.00,01

5

CHAPTER 2:

Some elementary operations

From this point on, the notes will make the assumption that you are seated
at an active terminal. Many of the chapters will have instructions to get
you into a special workspace, which is a block of internal storage (called
“memory''), and in which there are a number of programs and exercises that
you will use. More about this later.

In the early chapters, try to get as much finger practice as you can.
Remember that the slowest link in the APL system is you, the user. You
are limited by the speed with which you can enter information on the key-
board.

Elementary arithmetic operations

We'll begin with the simple arithmetic operations, + x - +, the symbols for
which are in the upper right portion of the keyboard. The decimal point,
which will be introduced here, is in the lower right part of the keyboard.

A1l these symbols are used in the conventional manner.

Addition:
3+4
7
.5+.6
1.1
1.45+45,989
7.44

You've just barely started, but already there is one error that you are
free to make. Suppose we type

3+
You ask: 3+ what? Clearly this isn't a meaningful statement because you

haven't indicated a second value for the plus symbol to operate on. The
response of the computer is to type out the following error message:

6

Some Elementary Operations 7

SYNTAX ERROR
3+
A

The caret marks where the error was detected.

Multiplication:

5.1x7.9
40,272
3x6
15
Subtraction:
5-2
3
B 2-5
3

Notice the high bar in the last response. This symbol means ''negative.''

In a way it is a description (like the decimal point) attached to the number
that follows it. It is not an indication of an operation to be performed.
For this, the subtraction sign is used.

Let's try some additional examples using the negative sign:

3+ 2
1

T2+3
1

-2+3
T

If you think that there's something peculiar about the last example, where
a subtraction sign was used in place of the negative, relax—the explanation
will come in a later chapter.

Division:
3+5

0.6
5:3

1.6606060L0067

By now you have probably noticed in your own practice with the arithmetic
operations that at most ten significant figures will be printed in the

response. APL carries out all calculations to approximately sixteen places
and rounds off to ten places in the output. Zeros on the right are not
printed. In chapter 34 a command will be introduced that will allow the

number of places printed to vary from 2 to 16.

So far so good. Now how about

510
DOMATN ERROP
50

A

8 APL\360: An Interactive Approach

Here we see a second type of error occurring. The explanation is that

the operation : is a valid one, but we tried to divide by 0 , which is
not in the '""domain'' of possible divisors in our number system. This seems
reasonable enough, until you try

0:0

Can you think of a good reason why this is so?

Corrections

Now suppose we have to enter one or more numbers that are a little harder
to type than what we have been using thus far, and (heaven forbid!) we've
made a mistake. Specifically, we typed 2x3.14169 and really meant
2x3.,14159, but haven't yet hit the return key.

There is a simple correcting mechanism on the 2741 terminal. We strike
the backspace key gently (it may be typamatic on some terminals) to move
the typeball over to where the error begins. |f we then hit the ATTN
(attention) button, an inverted caret will appear under the character at
that point. This signifies that everything above and to the right of the
caret is wiped out from the memory of the system and the corrections may
be typed.

Here are some illustrations:

2x3,14169
v
59
6.28318
2x1.1058
v

2,21
In the following example we want 23x506 but actually type 3x506 .

All we need do is to backspace just before the 3 and type 2 as shown,
provided, of course, that the return key hasn't yet been pressed:

23x506
11638
3x506
1518
3x506
2
11638

The fact that the 2 is on another line is immaterial, since the system
doesn't know that we have manually moved the roller and paper.

You have undoubtedly guessed, by this time, that the way to get rid of a
whole line is to backspace all the way to the beginning and make the
correction:

Some Elementary Operations 9

1234567%x12345678

The correction mechanism may also be used to enter comments:

THIS TS A COMMENT

Otherwise the system doesn't recognize the entry and an error message is
recorded.

And while we're on the subject, the combination upper shift C and the small
circle (upper shift J) overstruck is interpreted as indicating that a
comment follows. It may contain any APL symbols and calls for no response
from the system.

ATHIS IS A COMMENT

This doesn't mean that all combinations of overstruck characters are
possible in APL . Here the times and divide signs have been overstruck,
with a resulting character error. Those combinations which are legal will
be taken up in succeeding chapters.

3u%73
CHARACTER ERROR
34
A

An introduction to vectors

Imagine a store which, following a disastrous fire, is left with just three
items for sale, A, B, C. Here is the sales record of the number of items
sold over a two-week period:

Before they go out of business, what are the total sales for each item?

The obvious answer is to add the weekly totals for each item separately as

9+ 3
12

T+4
11

845
13

But there ought to be a more compact way and, in APL, there is:

3 7 B+3 4 5
12 11 13

10 APL\360: An Interactive Approach

This leads us into a unique and time-saving feature of APL —its ability to
process arrays of numbers. In the previous example the array was one-
dimensional, with the elements all arranged in a single chain, called a
vector. We shall see later that APL\360 can handle multi-dimensional
arrays as well.

Let's now change the problem:

A B
week 119 7 8
week 2|5 5 §

Treating this as a problem involving vectors, we enter

9 7 8+5 5 5
14 12 13

To save still more typing time, where all the elements of one of the vectors
are identical, it suffices to type just one of the numbers in that vector,
leaving it to the system to extend it automatically to match the other vector
in length:

3 7 8+5
14 12 13

Now for some do's and don'ts. First, suppose we run all the numbers to-
gether:

G758+555

Apparently the lack of space between the digits causes the system to interpret
the series as a single number. Does this mean that the numbers (or the
operation symbol, for that matter) must be separated by any fixed number of
blanks? The following example makes clear that one blank is sufficient as

a separator, but extra blanks don't hurt.

9 7 8+ 5
14 12 13

What if the two vectors don't have the same number of elements?

9 7 8+5 3
LENGTH FRROR
3 7 8 + 5 3
A

Here we get an obvious error message because the computer doesn't know which
number goes with which. The only exception to this is where all the elements
are identical (as in the previous example) and only one element needs to be
typed.

You might argue that if we had

Some Elementary Operations 11

) 7 8+5 3 0O
14 10 8

we ought to be able to leave off the 0 since it doesn't contribute any-
thing to the sum. But (0 is not the same as a blank. The former means
that the element in that position where it occurs has the value 0 , while
the latter occurs in place of some unknown element, possibly, but not
necessarily, 0 , and impossible for the computer to determine.

This paraliel processing of vectors, to give it a name, works equally well
with other arithmetic operations:

1.2 3 4x2
2 4 b6 8

If, for example, a cookie recipe required 6, 4 and | cups respectively of
three ingredients, and we wished to make only a third of a batch, then the
required amounts are

6 4 123
2 1.333333333 0.3333333333

Again, suppose that the above three ingredients cost respectively 1, 5 and
7 cents per cup. What is the total cost for each ingredient?

1x,01 .05 ,07

6 4
0.2 0.07

0.06
As we shall see in subsequent chapters, not only are there a large number of
standard operations that can be used with vectors, but we will also

be able to invent functions that behave in many ways just like our ordinary
arithmetic operations in that, among other things, they too can be used with
vectors.

PROBLEMS

1. Drill. (Some of the drill problems may result in error messages.)
6 8 2 u4+3 9 1 1 5 4 3x6 1 2 851 2 0
1 0 9 8-4 2 2 3 10:10 5 2 1 T2 0 .81+15 6 5
3-71 756.7 0 .19 3 ux1 2 3 2773

2. Additional finger exercises (use the ATTN key to delete each statement
in turn):

Now IS ©E TIME FOR ALL GOOD MEWd TO COME TO THE AID OF
IF AT FIRST YOU DON'T SUCCKED, TRY AGAIN

HOw Hov BROWN COW

12 APL\360: An Interactive Approach
PRACTICE MAKES PERFECT
THE SLOWEST PART OF THE APL SYSTEM IS GENERALLY THE USER

3. At a basketball game a ticket seller sold 155 adult tickets at $1.25
each, 89 student tickets at $.50 each, and accepted 45 courtesy passes

at $.25 each. Write an APL expression which gives the income from
each class of tickets.

L., A taxi fleet owner recorded mileages of 1263, 2016, 1997 and 3028 for
each of his four cars. Operating expenses for each car during the
same period were $59.50, $72.50, $79.50 and $83.00, respectively.
What was his cost per mile for each car?

CHAPTER 3:

Scalar dyadic functions

In the previous chapter we dealt with individual numbers, which we will

call scalars, and chains of numbers, for which the term vectors was used.
Left unanswered, at that time, was the question of what combinations of these
are allowed in APL, as well as what the shape of the result might be.

Let's now address ourselves to the question by formulating a few simple

rules and appropriate names for the concepts to be considered.

Standard scalar dyadic functions

There are four mathematical rules that govern the ways in which vectors and

scalars can be combined. In what follows, the symbol o stands for any of
the arithmetic operations that we have already introduced. Later in this
section we will further classify and categorize these operations to make

more evident their connection with other operations yet to be defined.

1. scalar ¢— scalar © scalar
2 vector ¢é— scalar ° vector
3. vector €& vector o scalar
L

vector ¢€— vector © vector

The term on the left of the arrow tells us the shape of the result when
various operations are performed on quantities having the shapes on the
right.

This is as good a place as any to introduce a little additional terminology.
Why? You ask. Naming something doesn't tell us any more about it and, in
fact, can mislead us by enabling us to talk more glibly of things we may not
know much about. But mathematicians, being the perverse creatures that they
are, insist on more formal names for the tools and concepts they work with.
And having a name for something does have the advantage of letting the

namer identify without ambiguity (we hope!) what is under discussion.

First, if ° stands for an operation to be performed, the things it is to
operate on will be called arguments. Thus, in 5x6, 5 is the left argument
and 6 is the right argument. The arguments can both be scalars (rule 1)

13

14 APL\360: An Interactive Approach

3+5

or vectors, either on the right or left (rules 2, 3)

2+3 5 7
5 7 9
5 b 8x3

or both arguments can be vectors (rule 4)

3 6 832 1 4
1.5 6 2

the only stipulation being, as previously mentioned, that both arguments
have the same length. As an obvious corollary, the lengths of the result-
ing vectors in the two examples at the top of the page are the same as those
of the vector arguments.

The operators that we have been working with are more properly called
functions, because once the arguments and operation are specified, a single
result is obtained. In a crude sense, this is what the mathematician also
thinks of when he uses the term more formally.

Furthermore, the label dyadic is attached to these functions, since they
require, at least as we have been using them thus far, two arguments. Also
they are called in APL standard or primitive because they are immediately
available on the 4P, keyboard. And, Tinally (at long last!), they are
referred to as scalar because functions of this type are defined first for
scalars and then extended component by component to vectors.

Summarizing, the operations + - x % are called in AFL standard scalar
dyadic functions.

Operation tables for the arithmetic functions

For each of the functions thus far introduced, we can construct an operation
table, with the left arguments down the vertical column on the left and the
right arguments across the top. To save space, only the integers 1-4 are
used as arguments:

+ 1 2 3 4 =11 2 3 4 x |1 2 3 4
112 3 4 5 1{0 -1 =2 3 11 2 3 4
213 4 5 6 211 071 ™2 212 4 6 8
3|4 5 6 7 302 1 07 303 6 9 12
L5 6 7 8 L13 2 1 0 L |4 8 1216

Scalar Dyadic Functions 15

B] 2 3 4
1 1 .5 .33... .25
2 2] .66... .5
3 3 1.5 1 .75
L |4 2 1.33... 1
Here is one in which no function is specified. Can you guess what it is?
] 2 3 4

1] 1 1]

2 |2 4 8 16

313 9 27 8

Loy 4 16 64 256

Power function

You should be able to see that the above table represents the power function,
with the left arguments being raised to the powers indicated by the right
arguments. Clearly, this power function exhibits the characteristics we
would expect from a standard scalar dyadic function.

All we need is a symbol for it. This brings up an interesting aspect (or
failing if you prefer) of conventional mathematical notation, and one which
will become even more apparent as we go along.

Notice how we write the four arithmetic functions:

NN N
; [
W W w w

N

And then we come along and write for the power function
o3

The operation to be performed is specified not by a symbol but by position,
which is not only inconsistent but downright dangerous, since it is very
easy sometimes to miss the elevated position of the power in writing.

In APL, the symbol * (uppershift 7) is chosen, yielding

2% 3
8
* , being a standard scalar dyadic function, extends to vectors as well:

2 4 3%2
4 16 3

In mathematics courses, roots are shown to be equivalent to fractional
powers, e.q., the square root is the 1/2 power. So, instead of writing

16 APL\360: An Interactive Approach

V2 to mean the square root of 2 , in APL this is
2%.5
1.414213562

and

Negative powers, which are the equivalent of the reciprocal of the number
raised to the corresponding positive power, are also available to the APL
user, as in the following example:

2% 2
0.25

Our power function can be used to generate quite large numbers:

1008
1716

Exponential notation

In the last example you saw a new notation, which some of you may recognize
as being similar to what is used in other higher level programming lang-
uages, and evidently intended to avoid writing a monster 1ike

10,000,000,000,000,000

The E may be interpreted as ''times 10 to the ...power."

This notation is equally convenient for very small numbers:

LO01xG
1r718

and can be employed in many different ways to express the same number, say,

530:

53E1 which is 53x101
5.3EF2 5,3x102
.0053%5 ,0053x10°
530F0 530x100
5300E"1 5300x10 1

APL not only produces results in the F -notation, but it is possible to
enter data this way:

Scalar Dyadic Functions 17

0+33
33

0+3.3F1
33

0+.33E2
33

0+330F "1
33

The choice is up to the user.

Logarithmic function

There is another function which is closely related to the power function,
the logarithmic function (the logarithm of a number N to the base B is

that power to which B must be raised to equal N). In APL, this is written
B®N , the symbol being that for exponentiation overstruck with the large
circle (upper shift 0).

Thus, since

10%3
1000

the base~10 log (to use the usual abbreviation) of 1000 is

101000
3
and

10100 1000 10
2 3 1

Similarly, since

2*3
3

then the log of 8 to the base 2 is 3:

288
3

Notice that the base is the left argument and the number whose log is to
be found the right argument.

Maximum and minimum functions

Finally, try the following exercise, exploring the working of the symbol [

(upper shift S):

18 APL\360: An Interactive Approach
375
5
ST 3
5
505
5
Lest you be tempted into saying '‘aha: [always generates a &', look at
3[3
3
If you play around with this function for a while, you will see that it

selects the larger of the left and right argument, and
| ts operation table

named the maximum function.

f 1 2 3

] 1 2 3

2 2 2 3
3 (3 3 3
O

Where there's a maximum, there ought
This is found on the upper shift »,
arguments:

It has the operation table

L] 2 3

[R .
2 2
3 /1 2
L1 2

wow N

is appropriately
like this:

looks

L
L
L
L

analogously to be a minimum function.
and selects the lesser of the two

2
3
L

"Lesser'' and ''greater" are relative terms, and indeed the mathematician

defines them

according to position on the real number line:

-

U B B R

pau—

O R R e v

negative
numbers

x

positive”
numbers

—LARGER

SMALLERE——

Scalar Dyadic Functions 19

Thus, the lesser of two numbers is that one which is farther to the left,

and

Let!
got

the greater one, farther to the right.

s consider a couple of simple problems. There are three students who
grades of 90, 80 and 55 in a certain exam, and on a retest reccived 70,

80 and 75, respectively. The instructor wishes to record for each student
only the larger of the two grades received. How can he do it in APL7

What we want to do is to select out 90 for the first student, 80 for the
second, and 75 for the third, i.e.,

30

90 80 55[70 80 75
80 75

A second problem: We have purchased an odd lot consisting of 4 boards of
lengths 5, 8.1, 10, and 7.9 ft. Unfortunately, our truck can carry boards

no 1

onger than 8 ft. without running afoul of the law. Can we identify which

boards have to be trimmed? This is

ol

and,

8ls 8.1 10 7.9

8 e 709

from the position of the 8's in the result, we see which boards have

to be cut down. These are two trivial examples, but as our store of new
functions increases, we will be able to solve much more complex problems
later.

It should be noted before concluding this chapter that all the new functions
introduced, » & | |, are standard scalar dyadic functions, but that the

max i

mum and minimum functions mathematically are different from all others

in one significant respect: no knowledge of an operation table is needed
to use them, only the ability to distinguish greater and less.

PROBLEMS

1. Drill
373 7 “10.8 2 0 10®1 2 3 4 5 T8%,3333333333333
1 9 5 200 6 4 3 2 3 4 5 682 1080
5 71 5276 2L0 5 78 1«0 1 10 100 1000
1®1 T2@25 T7 L 11E4:9, 45173
2%.5 ,333 .25 ,2 T2x.5 21.26821+4,5068 2
3x4 2 1 0 6§ 1855 8.2E0x7 .95 3+560

2. Key in1E0,1F1,...1E11. Do likewise with 1E 1,...1F 6. Note where
the break point is in APL for the display on large and small numbers
in L-notation.

3. Store A sells 5 vegetable items for 15, 20, 18, 32, and 29 cents a pound.

At store B the prices are 18, 20, 15, 10 and 49 cents a pound, respectively.
The policy of a third store C is to meet the competition's prices. Write

20

APL\360: An Interactive Approach

an APL expression to determine store C's selling prices for the 5
items.

The pH of a solution is a measure of its acidity or basicity, and is
defined as the logarithm (base 10) of the reciprocal of the hydrogen
ion concentration in moles/liter of solution. Use APL to express the
pH of a solution whose concentration is C.

CHAPTER 4:

Two more scalar dyadic functions

Combinations

A relatively simple combinatorial problem in mathematics is to find the
number of ways one can take 2 things out of a population of 4. Let's solve
the problem by brute force, with 4 objects, A, B, C, D. Listing the possi-
ble combinations, we have

AB AC AD BC BD CD

We'll assume the order is not significant, so that CA and AC, for example,
will be considered to be the same. Thus, there are 6 ways of taking 2
things out of a population of 4.

In combinatorial theory it is shown that the formula

gives the number of ways of taking m objects n at a time. For the case
above, this would be

4
2.(4-2)!

or 6. As a reminder to those of you whose math is rusty, m! means (m)(m-1)
(m=2)...(1), so that 4! is the same as 4x3x2x1.

As you might suspect, the process is somewhat easier in APL. |t is done

with the same symbol !. On the keyboard it is formed by striking the period,

backspacing, and hitting the quote symbol (upper shift ¥) so that the two

characters line up. The correct format is n! m and, for our example above,
20y

)

This is the place to emphasize that ! like @ is not a keyboard character,
but is formed by overstriking as described above. The symbols ' and . must
be lined up. Otherwise no answer appears and the typeball doesn't space over.
If we try to do anything else, like a simple addition, the terminal fails to
respond:

21

22 APL\360: An Interactive Approach

2.y
(no response from the terminal)
242
(still no response)

!

When this happens, the cure is to type a single only. Then hit the

return key and live with whatever error results.

]
SYNTAX FRROR
2+2
iy
and, as the calculation shows, we are back in desk calculator mode once more.
! is a standard scalar dyadic function and can take vector arguments:
01 2 3 4ty
1 4 § i 1

212 3 4
1 3 6

lts operation table looks like this:

! 0 1 2 3 4
0 1 1 1] 1
1

0
2 0 0
3 0 0
4 o 0

0 0 1

What we generated above corresponds to the last column and the boxed in part
of the third row. That portion of the table consisting of nonzero integers
can be removed to form what in mathematics is called Pascal's triangle:

— oI —

which is a device for calculating and displaying the coefficients generated
in the expansion of an expression of the form (a-b) by the Binomial Theorem.

Finally, to complete the picture, our arguments don't have to be integers:
Y 9

2,115,506
13.48u487115

which, for the benefit of the more mathematically sophisticated, is related
to the complete B-function of probability theory. (Don't panic. It won't
be mentioned again!)

Two More Scalar Dyadic Functions 23

Residue
The next standard scalar dyadic function we will consider is one called
residue. We can illustrate it with a simple example.

Assume that we have 7 peanuts and 3 children who are to share the wealth

evenly. We aren't able to cut up a single peanut. How many do we have left?
Clearly the simple-minded way to do this would be to start with 7 and take
away 3, leaving 4. Then take 3 more away, with 1 remaining. In formal
language, the 3 residue of 7 is 1. This isn't the only way to do the prob-

lem. We could also divide 7 by 3, see that it goes in twice, and get a
remainder of 1.

The symbol for residue is |, which is the upper shift M. In APL, the 3
residue of 7 is

317

Our peanut problem can be enlarged by considering the distribution of vary-
ing amounts of peanuts to the 3 children:

3101 2 3 4 5 6 7
o 1 2 0 1 2 0 1

Here is another problem in which 5 peanuts are distributed among 1, 2, and
3 children:

1 2 3/5
0 1 2

The residue function is a handy one for generating all kinds of useful in-
formation. For instance, try

1]12.5

1131,23
0.23
Asking for the 1 residue of a number is a convenient way to get the
nonintegral part of the number.
Now, what about the residue of negative numbers, say 3| 4 7 Previously we

saw that a recurring pattern was generated by

3101 2 3 4 5 6 7
o 1 2 0o 1 2 0 1

so when we try

we expect and get a continuation of the recurring pattern. !f you think
about it a bit, you will see another way to obtain the residue of a nega-
tive number. For our example above, add 3 to "4 to get 1. Then add 3

24 APL\360: An Interactive Approach

again to get 2. In general, the rule is to keep adding until the result is
0 or positive.

Suppose the left argument is negative. Then its absolute value (i.e., mag-
nitude without regard to the negative sign) is taken:

3]y

There is one residue class of particular interest in the computing industry:
the 2 residues of the integers:

210 1 2 3 4 5
0 1 0o 1 0 1

Here we have a continuing pattern of 0 and 1 as the only integers. |f we so
choose, we can let 0 represent the state of a circuit with a switch open (no
current) and 1 with the switch closed. We'll have more to say about this in
a later chapter.

PROBLEMS
1. Drill
1 9 8|3 4 6 1]13.4 2.2 .019
T3 T2 T113 01 2 3 4!3 456 7
0]1 2 3 4!'3 4 5 6 7
3173 "2 01 2 3 "2 4 "s|s8 13 3.78

2. Given that A and B are integers modulo 5 (i.e., A and B belong to the
set S of integers generated by taking s5|[n¥ for any integer Nzu),
show that 5]4+8, 5|AxB, and 5]A*B are in S.

3. How can the residue function be used to tell whether one number A is
divisible by another number B?

4. Write an APL expression to tell what clock time it is, given the
number of elapsed hours H since 12:00.

5. Find the number of possible solutions in positive integers of the
equation
X+Y+Z+W=50
(Hint: think of 50 units partitioned into 4 blocks by separators)

6. How many quadrilaterals can be formed by joining groups of 4 points
in a collection of 30 points in a plane, no 3 of which lie on a straight
line?

7. If 1|¥ produces the fractional part of /#, how can the residue function
be used to get the integral part of the number?

8. Write an expression to get the fractional part of a negative number.

CHAPTER b5:

Relational and logical functions

In this chapter we will introduce ten new functions falling into two
classes—the relationals and logicals. |f you think that this is far too
many for a single presentation and will leave you hopelessly confused, you
may breathe easier. All of these functions have one thing in common—they
call for an answer of 0 or 1 only, which at this stage shouldn't be too
taxing.

Relational functions

There are, in APL, six relational functions, < < = 2 > #, which are the
upper shift 3 through 8. They have the usual mathematical meanings, less
than, less than or equal, equal, greater than or equal, greater than, and
not equal, respectively. The reason they are called relational is that
they inguire about the truth or falsity of the relationship between two
quantities, say A<B.

This statement is really a question asked of the computer: |s A less than
B? It calls for a response, yes or no, because either A is less than B or
it is not. Let's try this on the terminal:

3<5
1
5<3
0
Clearly, a 1 response means the statement is true, and 0 false.

Vectors work well with this function too:

3<1 2 3 4 5
0 0 0 1 1

and we can now use this function to help us in a selection problem.

Suppose, as a store owner, we have a number of accounts, with $3, $ 2, $0,
$2, and $° 3 as balances, and we want to flag or mark those accounts which
are overdrawn (represented by negative values). The '"'less than'' function
will solve our problem, although it is by no means the only way to do it:

25

26 APL\360: An Interactive Approach

Does < have all the qualities of a standard scalar dyadic function? Here
is its operation table:

< 1 2 3 4
1 0 1]]
2 0 0 1]
3 0 0 0 1
4 0 0 0 0

By this time you ought to be able to convince yourself that '"less than"
meets our criteria for a standard scalar dyadic function, as indeed do the
rest of the relationals. We won't go through them all, but let's explore
just one more, =. Typing

3 72 5 0 2 T3=0
1 0

0 © 0 0

generates a listing of those accounts from the previous example whose
balance is 0, to complement the list of those overdrawn. You should

be able to see many other possibilities. For instance, to get vectors of
all 1's or all 0's

1 2 3=01 2 3
1

1 2 3=3 210
0

[eNeN N el

Logical functions

Not all the juice has been squeezed out of the subset 1,0 of the real
numbers that we previously looked at in connection with the relationals.
Here is a function A (upper shift 0) called and, whose operation table is

The result is 1 if and only if both arguments are 1. In fact, we can
generate all the entries in the table by

0 01 1A0 1 0 1
o o0 0 1

You have protably noticed that only 0 and 1 were used as arguments in the
table. Notice what happens when we try

Relational and Logical Functions 27

2A0
DOMAIN ERROR
2A0
A

The last time we got a domain error was when we typed

530
DOMALN FERROR
530
A

It seems clear, then, that the arguments are restricted to 0 and 1.

For those who have some background in mathematical logic, the analogy
between 0 and 1 and the true-false entries in the truth tables for and

will be apparent. In any event, this function provides yet another means
of generating 0's and 1's, and will be useful in writing programs later on.

Another logical function is v, called or:

v |o0]
0] O]
1]]
The result is | if either or both arguments are 1. As before, we can

generate all the entries in the table with

0 01 1vo 1 0 1
0 1 1 1

There are yet two more functions in this class, %, nand, and #, nor. You
may have guessed already that nand stands for ''not and,' and ror for 'not
or.'"" The overstruck ~ (upper shift T) is used for negation. Below are

their operation tables,

»
0
11 0

Here is an example:

1~0

You can see that everywhere 0 appears in the table for A, a 1 appears for
~, and vice versa. The same holds for v and .

Although it was suggested earlier that the logical functions had a use in
programming, for generating 0's or 1's at the appropriate point, there is
another, physical situation which could be represented by them, namely
piping networks:

28 APL\360: An Interactive Approach

EA =]
—*—1 r — 5 1
E A = s
S
In Figure 1, fluid flows if either valve A or valve B is open, while in the
second figure flow occurs only if both A and B are open. Read ''0' for
closed and ''1'" for open, and the figure correspond to the or and and tables,

respectively. Keep in mind that it is a short step to go from pipes to
electrical circuits. Hence their value in computer design.

Actually, there are 16 possible logical connectives, of which we have
taken up only 4. To illustrate how the others can be generated, let's
assume we want a function that gives us an exclusive or, with operation
table

the result being 0 if and only if, both arguments are 0 or both are 1. Can
we get this in APL?

The answer is yes. It is that part of the operation table for # where both
arguments are 0 or 1:

z |0 1 2 3
010 1 { 1]
| A 1
2 1 1 0 1
311] 10

A similar approach yields the others.

Summary

Thus far, we have introduced and illustrated a large number of standard
scalar dyadic functions. Here is a brief recapitulation up to this point:

A+B sum of A and B

A-B B subtracted from A

AxB product of A and B

A:B A divided by B

A*B A raised to the power B

Relational And Logical Functions 29

A®B base-A logarithm of B
Al'B larger of A and B

ALB smaller of A and B
AlB A residue of B

A!'B combinations of B items taken A at a time
A<B

A<B

A=B relations yield

A=B 1 if true

A>B 0 if false

AzB

AvB logical or of A and B
AnB logical and of A and B
AvB logical nor of A and B
A~B logical nand of A and B

Keep in mind that every one of these functions can be used to replace the
symbol o in the rules (p. 13) for combining scalars and vectors.

PROBLEMS
loDrill
0 01 1v0o 1 0 1 2 3 0<5 "1 4
1 01 0A1 00 1 31 221 2 3
2 4 7 "2»6 "1 0 4 ~0 1
01 2 3=01 3 2 0 01 10 1 0 1
L 75 71 T6.824 1 "1 2 101 0x1 0 0 1

8 76 5 4 3 2 1<1 2 3 4 5 6 7 8
2. How can the functions = and | be used in AP] to identify the factors
of an integer N?

3. A is a vector of accounts, with the negative values representing those
overdrawn. Use one or more of the relational functions to flag those
accounts not overdrawn.

L, Write an APL expression to return a 1 if either condition A is true or
condition B is false.

5. Execute 1 01 0=0 1 1 0. Compare this with the operation table on page
28. What name would be appropriate to assign to this logical connective?

6. Explain the results of executing 0 0 1 1A~0 0 1 1 and 0 0 1 1v~0 0 1 1.

CHAPTER 6:

Assignment and algorithms

Up to this point, all of our work has been done in desk calculator mode.
This has the disadvantage that once we type in the arguments and the func-
tion and then press the return key, execution proceeds, we get an answer
(unless we tried to do something illegal), but the work is lost. No longer
is it available to us for any future calculation.

In this chapter we stiall see how APL handles these situations and, in
addition, we shall solve a well-known problem in geometry by a stepwise
procedure.

Assignment

Any good desk calculator has the ability to store constant factors so that
they can be used over and over again without having to be reentered each
time. For instance, suppose we are given a series of problems all involv-
ing the constant 0.75 :

2%x.,75
1.5

b+.,75
4,75

. 75%x2
0.5625

As it stands, .75 has to be typed each time. What we'd like is some way to
save this number and have it available for reuse. |t may seem trivial at
this point because our repeated tactor, .75, doesn't take many typestrokes,
but what if the expression you had to repeat had a large number of characters
in it?

In APL the terms specification or assignment are used to describe the
placing of an expression in storage. |t works this way:

A+.75
Incidentally, the expression above is frequently read as "4 is assigned the

value .75." The name 4 is given by means of the arrow « to the quantity
.75 and, from this point on, unless the contents of our workspace are

30

Assignment And Algorithms 31

destroyed or A reassigned to another quantity, typing 4 will be the same as
typing .75. Since A is a name to which we are free to assign any value we
want, even though we have chosen a specific one here, it and other names
used in a similar manner are often called variables.

Here are a couple of calculations we can do with 4:

2xA
1.5

4+4
4,75

A*x2
0.5625

A
0.75

Flushed with success, you ought to be ready to try your hand at another:

B«1 2 3 4 5
2xB
2 4 6 8 10

Then, since we still have 4 (like death and taxes) with us,
A+B

1.75 2.75 3.75 4,75 5.75
B2

1 4 9 16 25

If we keep this up, sooner or later we are going to run out of letters of
the alphabet. What then? The next logical step is to use multiple letter
names:

PI«3.,14159
PIx2
9,869587728

A is still in storage. Here it is again:

A
0,75

You should have noticed by now that when an assignment is made, no explicit
result is returned by the terminal on the paper. This is reasonable
enough, since all we are asking when we make an assignment is for something
to be placed in storage.

What happens if we mistakenly (or otherwise) use the same letter for a
second assignment? For instance, we let

A<2+B

If we call for A now, we get

32 APL\360: An Interactive Approach

The new values of 4 supersede the old, which are lost. Moral of the story:
If you want to save the values stored under a variable name, don't override
the assignment. Use a different name.

There are several ways to extend the number of possibilities for variable
names. Underlining (upper shift F) is one way.

A«€3.2
A+5

Y

3 4 5 6 7

A is clearly different from 4, which still has its last assigned value.
In effect, this gives us 52 letters to choose from, alone or in multiple
character names like

DATA«5 2 7 8

APL recognizes up to 77 characters in a variable name, but it doesn't pay
to make it too long. Remember, you are the one who will have to type it.
Numbers can also be included in any position except initially, as shown by

X3Y2+20
3XY2+20
SYNTAX ERROR
3 XY2<«20
A

but spaces, punctuation marks, and special symbols for operations may not.
Something new has been added here: a syntax error message. In plain
English, this means that a statement has been improperly formulated in APL,
i.e., is "ungrammatical."

It is possible in APL to make multiple specifications on the same line.
In certain cases this turns out to be a handy timesaver. Here is an
example:

A«2+B+3 1 5

B
31 5
A
5 3 7

Now, let's try asking the computer for

A+ W

VALUE ERROR
A+W
A

Assignment And Algorithms 33
't should be obvious what's wrong. The computer didn't recognize the

variable name W because there isn't any value currently stored under that
name. Hence the error message. A is still a valid variable, but not W.

VALUE FRRROR

This raises another question: How can you find out what variable names you
have already in storage? The command)VARS (abbreviation for ''variables'')

produces an alphabetical listing of the variables already in storage.
YVARS
A B DATA PI XYz X3Y2 A

Note that the underlined 4 comes after the nonunderlined letters of the
alphabet.

Expressions which begin with a right parenthesis followed by a word or
abbreviation are known as system commands. You already know two of them,
sign-on and sign-off, and more will be introduced in succeeding chapters
as the need arises.

If we give W a value and then call for A+W, we no longer get an error
message:

W<0.,1
AtW
5.1 3.1 7.1

and not only is execution completed, but W is added to the list of variables
in storage:

YVARS
A B DATA PT i XY2 X3Y2 A

Now W behaves just like the other variables and can be respecified:

We2x W
W
0.2
Algorithms

We can use the notion of assignment as motivation for this next section,
which is concerned with the concept of an algorithm. An algorithm is
nothing but a series of steps that together comprise a prescription for
defining a function or solving a problem.

Here is an example taken from plane geometry. The problem is to calculate
the hypotenuse of a right triangle, given the sides:

34 APL\360: An Interactive Approach

A convenient and time-honored rule for finding C is the Pythagorean Theorem.
It states that to get C we have to square A and add it to the square of B,
then find the square root of the sum.

This sequence of steps can be executed in AP. by the following scheme:

A<3
B<l
A2<«A*2
A2

B2+«Bx%x?2
S«A2+B?2

25

There is one point worth commenting on. We had to specify A4 and B initially
in this sequence; otherwise, when we called for the values of A2, B2, and S
along the way as checks on our work, we would have gotten value errors.

We'll see later, when we learn how to write and store programs, that the
specification of values for the variables need not be done beforehand.

Let's go through the same steps and, this time, solve for a family of
triangles:

A<«1 3
B<«l 4
A

1 3
A2«A %2
A2

1 9
B2«Bx?2
B?2

1 16
G«A2+B2
C«5%,5

As before the result for ¢ doesn't appear on the paper because our last step,
which was an assignment of a value to C, merely put it in storage. So, in
order to get the result, we have to type C:

Assignment And Algorithms 35

C
1.414213562 5

if we didn't want to save the result by storing it under C, we could elimi-
nate the assignment and merely call for
S*.,5
1.414213562 5
and the results now are printed.

Finally, we can check on the variables we have in storage (n the usual
manner:

JVARS
A A2 B B? C DATA PT N3
W XY2 £3Y2 A

and the new variables specified in our right triangle algorithm are now
included.

PROBLEMS

1. Given A<1 0 1 O
B«0 1 0 1
C«0 0 0 0
D«1 1 1 1

Evaluate each of the following:

~AvV~B ~BA~C
~AAB ~C=zD
~Bv(C ~D=B

Were the results what you expected? Can you explain the discrepancies?

2. MWrite an algorithm which will produce a logical vector C with 1's corre-
sponding to the even numbers in a vector A4« 6 7 2 4 21

3. Given a cube each of whose edges have length #. MWrite in APL the steps
needed to find its surface area. Execute for E+3 7 15 2.7

L. Show how in a series of steps you could obtain the cube of X<5 6 7
without using .

5. You happen to have in storage a vector § of four positive elements.
Use S to generate in at least five different ways A) A vector Z of four
zeros, and B) A vector W of four ones.

6. Assign the vector 3 4 5 6 7 to the name 4 and twice it to the name B
on one line.

CHAPTER 7:

Reduction

Previously you saw how the introduction of vectors enabled parallel process-
ing of data to take place, with a resulting saving in time and number of
typestrokes required. |In this lecture this concept will be extended to

show how meaningful operations can be effectively performed on the elements
of a single vector. Continuing the analogy with electrical circuits, we

may call such operations series processing.

Conventional notation

Let's begin with a problem in invoice extension. Assume that several differ-
ent items, each with its own cost, have been purchased. We'll use @ and ¢
to represent the numbers and the costs, respectively.

To get the vector of total costs, we execute

axc
12 8 9 5 0

But now, in order to obtain the grand total, we have to add up all the
elements of this vector.

In conventional notation, the mathematician indicates the sum of the com-
ponents of a vector by writing

n

>

i=1

I (sigma) means ''sum,' while '"i'" is a running variable from | to n, identify-
ing the individual components of the vector. n is the total number of com-
ponents, 5 in the invoice extension problem we are working on.

If this seems potentially like a lot of work, don't be too concerned. In the
next section we will show how to carry out the summation in AP/ with minimal
effort.

36

Reduction 37

Reduction

Our objective is to sum across the components of a vector. To do this,
let

X<@Qx(C
so X contains

X
12 8 9 5 0

In API. the sum is achieved by +/X. This is read as ''‘plus reducing X,'" or
the ''plus reduction of X," and the symbol / (lower right corner of the key-
board) is called '"reduction,' because it reduces the vector to a single
component.

+/X

34

How this operation works is worth discussing in more detail. |If
X«12 8 8 5 0

then
+/12 8 9 5 0

34

What the system does is to insert the function symbol which appears to the
left of the slash between each pair of components of the vector and group
them (internally) as follows:

12+ (8+(9+(5+0)))
The reason for the grouping is that in the APL system each symbol operates
on everything to the right of it. |If you think about what this means, you
will see that this is equivalent to operating on the rightmost pair of
elements first, taking that answer together with the next element to the
left, and so on, i.e., using the above illustration, step by step we obtain

12+(8+(9+5))

12+ (8+14)

12+22

34

You may be inclined to argue that we are making a big todo about nothing,
since with addition it doesn't really make any difference whether we work
from right to left or left to right. We'll see later, however, that this
commutative property is not general.

"Times'' reduction

Now consider still another problem. A rectangular box has the dimensions

38 APL\360: An Interactive Approach

2"'x3"xb4." What is its volume? Clearly, to answer the question we want

2x3xy
24

If we assign Z to the vector of dimensions, x/Z should give us our answer.

7«2 3 4
x/7
24

In this case, x is planted between each neighboring pair of components, and
the system stepwise does the following:

2x (3x4)

2x12
24

An algorithm for averaging

At this point we can profitably talk about an algorithm to get the average
of the components of a vector X where

X+<2 4 3 3 2.5 2

In order to get an average we need two things: the sum T of all the com-
ponents in the vector we are averaging and the number of components. The
first is easy:

+/X
16,5

We can get the average by dividing this sum by the number of components
(obtained by manually counting them), but on the terminal there is a simpler,
if somewhat sneaky, way to accomplish this. On your terminal type

X=X
The response is
1 1 1 1 1 1
As you can see, this generates a vector consisting of as many 1's as there

are components in X. The next step? You guessed it—plus reduction over
X=X. Summarizing and storing the intermediate results:

MeX=X
N+ /M
N

Let's look at the sum T:

Reduction 39

T
VALUE ERZOI

7

A

We forgot to set T, so naturally we got a value error. Now

T<+/X
TN
2.75

2.75 is the average of the components of X:

Maximum, minimum and logical reduction

If + and x were the only functions that could be used with reduction, the
operation wouldn't be particularly useful. But it turns out that all
standard scalar dyadic functions can be employed in this manner.

Here is an illustration using the maximum function. Remember Z, the vector
of dimensions of the rectangular box we introduced earlier?

4
2 3 4

Suppose we wanted to get the longest dimension in Z, i.e., pick out the
maximum value. Then by analogy, just as we had

24 (3+4)=247=9
2x (3xh)=2x12=224

for +/Z and x/Z,
27 (3Th)=2rh=4
represents [/Z

On the terminal

r/z

In the same fashion
2L (3L4)=213=2

is L/Z:

40 APL\360: An Interactive Approach

Note that in every case the symbol before the reduction is placed between
each pair of neighboring elements, and the groupings are identical.

Yet another simple application involves the logical functions in an accounts
identification problem. Let X be a vector of accounts:

X+3 4 2 "2 1

Our next job is to see if any have negative balances. The first step is to
specify a vector of the same length as X, containing a 1 in each place where
X is less than 0, i.e.:

LZ+«X<0
Lz
0 0 0o 1 0

Completing the algorithm:

v/L7
1
(Remember that the logical or returns a 1 if either or both arguments are
1.) Our answer can be interpreted as follows:
if 1, then at least one account is negative
if 0, then no accounts are negative
Let's reset X and repeat the problem to illustrate the second possibility:
X«3 6 1 0 3
LZ+«X<0
v/LZ
0

Can you tell what the significance of the answers might be if we had used
A/LZ in the algorithm instead of v/LZ?

Minus reduction

We're not through with reduction yet. How about minus reducing a vector?

-/3 2 1 4

2

If you are puzzled by this result, the following step by step breakdown
should help:

Since - in succession is equivalent to a +, you should be able to see that
the above is the same as

Reduction 41
3-2+1-4 (do by hand from left to right)

In other words, -/ is a way to get an alternating sum, to give such a sequence
its proper name.

Here is a somewhat messy example that gives a value for Pl using -/

- LI SR IR B
Pl=hx T3 + z 2 + 3 R

(This comes from integrating l%(]+X2) termwise after dividing. The result
is a series for arctan X. If we let X=1, arctan 1 is PI%4, and substitution
of 1 for X on the right hand side gives the expression in parentheses above.)

Let's construct an algorithm to obtain PI. Our first requirement is to get
the vector 1 357 9 11 13 15 17 19, stopping after 10 terms. Next, we take
their reciprocals, find the alternating sum, and multiply by 4, in that order.

Practically speaking, this isn't a very good way to get Pl because the series
converges so slowly that a very large number of terms are needed to obtain
an accurate value.

However, since it is for illustrative purposes, we'll begin not by specifying
a vector 1 357 9.... Instead, it will be more instructive to see how this
vector, which we'll name ¥, can be generated in other ways. |If

N+«1 2 3 & 5 6 7 8 9 10
then

2%
2 4 6 8 10 12 14 16 18 20

and

1 3 5 7 9 11 13 15 17 19

gives us the series we want. The respecification of N as 2xN and N-1 de-
stroys the previously assigned values of ¥, as discussed on page 32.

The reciprocals can be obtained by specifying

Relzll

.
R

1 0,3333333333 0.2 0.1428571429 0.1111111111
0.090909090091 0.076382307692 0,.06660666667
0.05882352941 0.,05263157895

and the alternating sum by

S<-/R

Our answer for PI (at last!) is

42 APL\360: An Interactive Approach

Pr<u4xS
PT
3.041839619

which is about .1 off for the reason described on the previous page.

Two final comments. If -/ is the alternating sum, then %/ is the alter-
nating product, which you can verify for yourself on the terminal. Note
also that the result of reducing a vector is a scalar. Hence, generalizing
the operation, reduction is often thought of as a reduction of rank, where
a vector is said to be an array of rank 1, a scalar of rank 0. As we shall
see later, a matrix is an array of rank 2.

PROBLEMS

1. Drill
+/3 7 T10 15 22 -/2 4 6 8 10 x/2 4 6 8 10
1/3 5 2 *x/3 2 1 A/l 0011
A1 11 v/0 1 0 1 v/0 0 0
=/3 2 2 >/1 T2 Tu L/72 4 0 8

/71 "14.7 22 6

2. State in words what tests are represented by A/,v/ and =/.
For AV+3 6 8 2 4, evaluate +/3xAV.

Write a one~line APL expression to specify @ as the vector 1 7 ~2 "3
and find the largest element in @.

5. Set up an algorithm in APL to calculate the area of a triangle by
Hero's formula, given below in conventional notation:

Area=v/S(S-A) (S-8) (S-C)

A, B, and C are the sides of the triangle, while S is the semiperimeter.
In your algorithm use L as the vector of sides of the triangle.

6. Write an APL expression to give the slope of the line passing through
the points with coordinates P and Q. By definition, the slope of a
straight line is the difference in the values of the vertical coordinates
of two points on the line divided by the difference in the values of the
corresponding horizontal coordinates.

CHAPTER 8:

Order of execution

Further applications

In the last chapter we stated that in reduction the effective order of
execution was from right to left, since each function operated on every-
thing to the right of it. It was as a result of the operation of this
rule that -/ gave us the alternating sum.

Does this order of execution concept apply to all functions in APL ?
You should make up a number of examples to convince yourself, at this point,
that it does.

One good illustration is our previous problem (pages 41-42) to calcu-
late a value for Pl. There we used a large number of steps to get the
result, but a much more elegant and neater way to write the algorithm is

PIlelx=-/13 14+2x1 2 3 4 5 6 7 5 9 10
Pr
3.041839619

Here, working from right to left, the first thing the computer does is to
multiply 2 by the numbers 1 2 3...10. Then 1 is added, which gives us the
odd numbers 1 3 5.... These are divided into 1, yielding the reciprocals,
and after -/ makes an alternating sum out of the reciprocals, the terms

are multiplied by 4 to give PI.

The same approach can be taken with our old friend the invoice extension
problem (page 36). In this case the total cost of the products @ with
individual costs C can be written as +/X, where X is the vector @xC.
Numerically,

+/6 2 3 1 0x2 4 3 5 10
34

Changing the order of execution

Don't be tempted by these examples into thinking that all problems can be
solved this neatly. A case in point is our previous calculation of the
hypotenuse of a right triangle. Without putting it on the terminal, try

43

44 APL\360: An Interactive Approach

to figure out what would happen iIf we were so foolish as to write
CeA*2+03%x2%x,5

Going from right to lert, 2 is raised to the .5 power, B is then raised to
the power representing that result, and—we might as well stop here because
it is obvious we goofed.

Really, what is needed is
C+((A*2)+(B*2))*.5

This is a good place to make three observations: (1) pairs of parentheses
are used in APL in exactly the same way as in conventional mathematical
notation, i.e., the normal order of execution is interrupted and expressions
within parentheses are evaluated first; (2) aside from the above use of
parentheses, there is no preferred order of execution in APL; and (3) a
single right parenthesis is used in APL for system commands as contrasted
to grouping, where a pair is required.

Getting back to the hypotenuse example, A4 and B are squared, added, and
then the sum is raised to the .5 power. Let's execute this for specific
values of 4 and B:

A<3
B<u
C«((Ax2)+(B*2)).5
SYNTAX ERROR
C«((A*2)+(B*x2)) 0.5
A

The error message is clearly due to the fact that an * was omitted before
the .5, so that the line isn't a valid APL expression. Contrast this
with the omission of X between expressions in () in conventional notation,
where multiplication is implied by the absence of the x.

Redoing €, we can now call for its execution:

Ce((A*x2)4+(B%x2))%.5
C

The parentheses around Bx2 aren't necessary. Why?

((A*2)4B*2)*,5

5

Now, one more rehash of an old problem—the calculation of averages. We saw
that it was necessary to get the sum of the components of the vector X and
divide this by the number of components in X. In one line

X«<1 2 3
(+/X)++/X=X

From right to left, X=X generates a vector of three 1's which are then added
(+/) and divided into each of the three components of X before summing again.

Order of Execution 45

Parentheses aren't needed around the expression +/X on the extreme left,
but for a reason different from what you might expect. This can be shown
by looking at +/1 2 3:3, which is arithmetically equivalent to 1/3+2/3+3/3,
or 2. This is exactly the same as (1+2+3)/3, the slashes in the last two
expressions being used in the conventional way to indicate division. It
doesn't make one bit of difference if we divide the elements of the vector
by 3 before summing or after, as long, of course, as the divisor (here 3)
is the same for all the elements.

Every nice simple-looking procedure has its fly-in-the-ocintment. The
following is a case where omission of the parentheses is significant.

3x2+4
18

In 4P, 2 is added to the 4 to give 6, which is multiplied by 3. But in
conventional notation, because of the accepted hierachy of order in which
x precedes +, 3x2 is 6, which, adding 4, gives 10. So we should write

(3x2)+4
10

or better still

4+3x2
10

which requires fewer keystrokes.

The conventional rules in arithmetic aren't too bad to work with when only

a relatively few functions are involved. Things tend to get a bit sticky,
however, when you deal with the multitude of functions, standard and defined,
that you have already been introduced to, or will soon encounter. It is here
that the simplicity of the APL rule, that execution is from right to left
subject only to the occurrence of parentheses, proves its worth.

At this stage of the game, as you start to build up expressions with many
functions, don't hesitate to overparenthesize. When you are more at home

in your understanding of the APL language, you will find yourself beginning
to leave out the nonessential parentheses.

A polynomial illustration

An elegant demonstration of the order of execution rule and the power and
versatility of APL can be seen in the following example showing how a
polynomial can be written and evaluated.

Consider a typical algebraic polynomial expression

3—2X+9X2+l+X3

which we want to evaluate for X, say, 10. How can this be represented in
APL?

The most obvious and simplest to understand is a direct transliteration
from the conventional notation:

46 APL\360: An Interactive Approach
X<«10
3+ (T2%X)+ (9xX*2)+UxX*3
4843

A little better version, which eliminates the parentheses, is

3+XxT24Xx 9+ %y
4883

Working from right to left, to 4X we add 9, giving
9+4X (conventional notation)

This is then multiplied by X (remember that without parentheses the X
multiplies everything to the right of it)

9X+1+X2

—~2 is added

—2+9X+1+X2

X is again used as a multiplier

-2X+9X2+1+X3
and, finally, 3 is added

3—2X+9X2+1+X3

But you can't appreciate the economy of the APL notation until you have

taken advantage of its ability to handle arrays. Here is the piece de
résistance of our problem:

+/3 2 9 4xxx0 1 2 3
4883

In this version, X is raised to the powers 0 1 2 3 to give

3

1 X X2 X~ (conventional notation)

These, in turn, are multiplied by 3 -2 9 4, yielding

3 -2X 9X2 AX3
and then +/ results in

3-2X+9X 244X

Order of Execution 47

PROBLEMS

1. Drinl
Ux3[3+u4 1+2+X«°5 6 0 4 8 "¢
(ux3)[3x4 763+/2+3x1 2 3 4
5*%3x5 6+2-4#*3

0f the following five expressions which have the same value?
(Bx2)-u4xAx(C

((Bx2)-u4x(AxC))

Dx2-4xAx(

(BxI)-(u4xA)x(

BxB-(uxA)x(

Construct APL expressions for each of the following:

A) Three-fourths plus five-sixths minus seven-eighths
B) The quotient of two differences nine-sevenths and
eight-tenths, and one-third and two-fifths.

The geometric mean of a set of N positive numbers X is the nth root
of their product. Write an API expression to calculate this for
X<1 7 4 2.5 51 1¢

For 4«0 1 0 1, B«1 0 0 1, and C«1 1 0 0, evaluate
(~A)v~p

AVCAR

(AA~PYANAVC

(~BYvAv~C

What is wrong with the expression A+B=B+4 to show that the operation of
addition is commutative, i.e., the order of the arguments is immaterial?

The Gregorian calendar provides that all years from 1582 to about 20,000
that are divisible by 4 are leap years, with the provisos that of the
centesimal years (1600, 1700, etc.) only those divisible by 400 are

leap years, and of the millenial years those divisible by 4000 are not.
Write a one-line APL expression to determine whether a given year Y

is a leap vear.

. 2 2
Why isn't the following a valid APL expression for X -2XY+Y (conven-
tional notation)? Correct it.

(X*x2)~(2xXxY)+Y*2

48

APL\360: An Interactive Approach

The intensity level B of a sound wave is measured in bels, and is
defined as {(conventional notation) R=10xlog I/I, where I is some
arbitrary reference level of intensity. Write an APL eipression for
this formula.

Rewrite the following polynomial expression without parentheses. Do
not use reduction:

(T3xX*L)+(2xX*x2)-8

Write an APL expression to compute the root-mean square of the com-
ponents of a vector. (This is the square root of the average of the
squares) .

What is a possible interpretation of the following?
PROPOSE«RINGAWEATHERA(JILL<JACK)ANJACK<AGELIMIT
Write an APL expression to calculate the interest on P dollars at R

percent compounded annually for T years. How would you change your
answer to provide for compounding quarterly?

CHAPTER 9:

Scalar monadic functions

Standard scalar monadic functions

Just as on page 14 we introduced the term dyadic to describe functions which
require two arguments, so we will use monadic where only a single argument
is needed.

Take a look at how some of the monadic functions are represented in con-
ventional mathematical notation:

-X arithmetic negation
X! factorial
IXl absolute value
1/X
x= 1
e exponential
In X Natural logarithm
square root
X logical negation

}reciprocal

Whatever other merits this mishmash has, consistency certainly isn't one of
them, for the symbol which is the functional indicator may appear on the
left, the right, both sides, on top, or be in a special position, or be
represented by an alphabetical label.

These same functions are effectively treated in APL as follows:

-X arithmetic negation

'X factorial

|X absolute value

X reciprocal

*X exponential

®X natural logarithm
Xx.5 square root (dyadic)

~X logical negation

Notice that, for all the monadics in this list, the symbol precedes the

argument. Most of them look like symbols for certain dyadic functions,
but the interpretations may not always be closely related.

49

50 APL\360: An Interactive Approach

Let's run through some of them on the terminal and, as you do, note that
both scalars and vectors can be used as arguments:

Arithmetic negation:
This function simply negates the argument that follows it:

-3 4 "1 0 "8
3 "4 1 0 8

Factorial:

An expression like !X (X is an integer) is to be interpreted as the product
(X)) (x=1) (x-2)...(1) (see page 21). For example, if X is u,

Ty
24

1x2x3x4
24
and

12 3 4

1 2 6 24

To make sure your terminal is operating properly type

2+2
n
If you got the result, ignore the next comment. |If not, you didn't line
up ' and . as in the precautions stated in our discussion of the dyadic !
on page 21. The way to get out of this hangup is to type a single ', fol-

lowed by the return key.

This factorial function works also with nonintegers and zero:

12,5
3.32335007
!0
1

(For those with a considerable background in mathematics, the factorial
can be defined by use of the gamma function, given by the following
integral: oo

M (n+1) =/Xne_xdx

o]

which can be shown to be equivalent to !n with n not restricted to integer
values. If n is 0, incidentally, the definite integral has the value 1,
which justifies the terminal result for !0.

For those with minimal math background—forget it.)

Scalar Monadic Functions 51
Absolute value:
The absolute value function is defined as follows:

-y X if Xx=0
X = -X if X<0

(n plain English this means: take the magnitude of the number and ignore
any negative sign that may be present.

27 3

3 5
7 3

|
3 5 2
Reciprocal:

In APL the monadic +X is equivalent to the dyadic 1:X. Thus,

$1 2 3 4 5

1 0.5 ©.3333333333 0.25 0.2
1+1 2 3 4 5

1 0.5 0.3333333333 0.25 0.2

Exponential:

*X is equivalent to raising e, the base of the system of natural logarithms,
which has the value 2,71828..., to the X power. This means that =X is the
same as 2,71828...*%X,

*2.5
12.182493490

and

* 1
2,718281828

which gives the value of e itself.
Natural logarithm:

®X yields the same result as the dyadic log, 2.71828...8X, i.e., e®X.
See page 17 for a discussion of the dyadic log.

Since the base e is very common, the practice is to use '"'In'" to stand for
'""log .'"" Base 2 would be represented as ''log,,' base 10 as ''log,,.'" or

simp?y "log,'" etc. Logarithms were origina]%y invented as an aid in doing
calculations involving products, quotients, powers, and roots. With the
advent of modern calculators and computers they are rarely used nowadays

for this purpose. More important, they do occur frequently in the solutions
to equations representing a variety of physical problems, especially where
the changes involved in the phenomenon to be analyzed are exponential in
nature. Here is an illustration:

®10
2,302585093

52 APL\360: An Interactive Approach

In fact, from the definition of the logarithm, finding the logarithm and
exponentiating are inverse processes, that is, each undoes the effect of
the other, as the example below shows:

®x1 2 3
1 2 3

Square root:

This dyadic function was discussed earlier on page 16 and will not be taken
up further, except to cite an example:

25%.5

Logical negation:

Like the other logical functions, A v « ¥, logical negation can have only
0 or 1 as an argument. As you have undoubtedly gquessed

~1
0
~Q
1
~1 0 1 1

and
~~1 0 1
1 0 1
i.e., logical negation is its own inverse. When we try to obtain
~3
DOMATN FEREROR
~3
A

an error message is received since 3 is not an allowable argument for this
function.

There are still additional monadic functions in APL that, for the most part,
have no corresponding symbol in conventional notation. These are printed
below and are taken up in sequence:

(X ceiling

lx floor

?X roll (random number generator)
+X additive identity

xX signum

Ceiling:

This is the monadic [, and is defined as the smallest integer not smaller

Scalar Monadic Functions 53

than the argument. Practically speaking, taking the ceiling of a number
"rounds up'' the number.

[3.14
n

[4
n

fu.1
5

Floor:

Analogous to the ceiling function, this results in the smallest integer
not larger than the argument (''rounding down'').

[3.14
3

L3
3

12.999
2

What about the ceiling and floor of a negative number? Let's try a few
examples:

If this puzzles you, it can be cleared up by reference to the number line
(page 18). Rounding up with ["4.1 gives the next largest integer, U4,
while rounding down gives 5.

Finally, before going on to an illustrative problem, if we specify X as

X«1.1 4,2 3.9 3

then
LXx
1 4 4 3
-T-x
1 4 4 3
and

and our APL system is richer by two identities, no simple equivalent of
which exists in conventional notation. Additional identities will be
introduced from time to time in the text.

54 APL\360: An Interactive Approach

Here is a practical problem which involves the floor and ceiling functions.
It considers rounding off bills with fractional pennies (so-called half
cent adjust). After studying the solution you should be able to come up
with a number of other related applications.

For purposes of illustration, let's specify a vector X:

X«3 3.1 3.49 3.5 3.9 4
To make the half cent adjust work properly, we round up if the fractional
part is 0.5 or more, and round down if it is less than 0.5. So for the
above figures we want the following:

3 3 3 4 4 4

Looking at the floor of X:

3 3 3 3 3 4

This isn't what we want. What about the ceiling?

304 4 4 4y oy

which isn't right either.

Suppose we add 0.5 to each component of X and then try the floor again:

X+.5
3.5 3.6 3.99 4 4.4 4,5
5

3 3 3 4 4 4

Success! And the result suggests that a half cent adjust that rounds down
(i.e., makes 3.5 come out 3 instead of 4) might be obtained by

fx-.5
3 3 3 3 4 u

We can summarize these results in the following table:

X 3 3.1 3.49 3.53.9 4
[X 1 3 b L 4 4 b
Lx | 3 3 3 3 3 4
Xt.5 | 3.5 3.6 3.99 4 4.4 4.5
LXt.5 3 3 3 4 4 4
rx-.s 3 3 3 3 4 4
Desired Results 3 3 3 4 L 4

Scalar Monadic Functions 55
Roll:

Just to be different, let's call for the execution of the monadic roll
several times:

76 6
1 5

?6 6
3 4

76 6
2 1

What kind of oddball function can this be that doesn't return the same
result each time? We seem to be getting numbers at random from it. In
fact, if you play around with it some more, you will see that ?X¥ returns
a random integer from 1 to X inclusive.

This means that ?6 6 simulates the roll of a pair of dice, while ?2

72

could be a simulation of a coin toss, with 1 standing for heads, say, and 2
for tails.

When we try to execute the roll function (also called "random'' or ''query")
with a noninteger, we get

24,5
DOMATI KERROR

4.5

A

and in fact, its domain consists of positive integers only.

In APL each time you sign on the terminal you will get the same sequence

of random numbers if the same upper limit is specified. There is a

practical reason for this. In checking out algorithms (debugging), it is
often necessary for testing purposes to use the same set of numbers so

that valid comparisons can be made each time through in the checking process.

Finally, the reason why the starting point is 1 and the way in which it can
be altered will be covered in chapter 34,

Additive identity:
This function is included for completeness. +X is equivalent to 0+X:

+2 4 6
2 4 O

and is not to be confused with t/X:

12

56 APL\360: An Interactive Approach
Signum:

*X results in g, 1 or "1, depending on whether the argument is 0, positive
or negative:

As before, it shouldn't be mixed up with x/X:

x/2 4 6
Lg

Calculation of the cosine

To show a useful application of some of these monadic functions, let's
calculate the cosine of some angle X (in radians) in A4PL.

The cosine is a trigonometric function which can be defined in a number of
ways, including the following:

{cos x, sin x)

(1,0)

In a circle of unit radius, if we measure counterclockwise from the point
(1,0) a distance X aléng the curve, the coordinates of the end point are
defined to be cosine X (cos X) for the horizontal coordinate and sine x
(sin x) for the vertical coordinate.

A radian is a unit of angular measure such that the angle theta (Q) shown
in the figure, measured in radians, is the length of the curve intercepted,
as indicated by the arrow, divided by the radius. Since the length of the
whole circumference is 2xPIxr and r is 1 in this circle, there are 2xPI
radians in a unit circle. Arguments involving geometric similarity lead

us to the same conclusions for all circles. Thus, Pl radians are equiva-
lent to 180°.

It can be shown in calculus, by application of a Maclaurin's series to
the cosine function, that (in conventional notation)

Scalar Monadic Functions 57

0,2 Xh X6 X8

cos X = l_"2‘1+'5'|‘g£+8-! IR, SR

o>

where X is in radians.

Notice the regularity of the terms, the numerators and denominators being
all even and increasing regularly. This will help us in developing a com-
pact APL expression for them.

Our first step is to set a value for X. Let's choose PI+h4 (45°):
X+3.1415+4
Working with the numerators, we have

TOP+«X*0 2 4 6 8 10 12
TOP

1 0.616849233 0.3805029763 0.23471239691 0.1447825149
0.0893089833 0.055068017785

Similarly, the denominators can be assigned to a vector called BOT:

BOT«!0 2 4 6 8 10 12
Bor
1 2 24720 40320 3628800 4739001600

Our last two steps are to divide 7’0OP by BOT and take the alternating sum:
-/TOP+BOT

yielding

0.7071072503

as the cosine of PIli4,

This can be done all on one line, and gives us a good excuse to introduce
another new idea in APL at the same time. Here it is:

-/ (XxV)+!V«0 2 4 6 8 10 12
0.7071072503

We have combined an assignment and several functions in a single line.
Reading from right to left, we defined a vector of even numbers and stored
it under the variable name V (since it is needed for both numerators and
denominators). Next we got the factorials of V which were then divided
into the vector X*V. Lastly, -/ gave us the alternating sum.

As a corollary to this problem, the Maclaurin's series for sin x is

5

1 3
sin X = é, X

Y

so that to calculate sin X all we have to do in our algorithm is to change
V to 140 2 4 6....

58 APL\360: An Interactive Approach

A drill exercise in APL

In the APL system (located in common library 1 of the system on which this
text is based) there is a drill exercise in the various functions that have
been described so far. This is a stored program, much like STAT was in
the first chapter. The details of how such programs are written and stored
will be covered in later chapters.

Follow this sequence carefully on your terminal. You should also check
with your own system librarian to see what exercises (if any) may have
been developed locally or duplicated for storage in the system you have
access to. The more practice you get at this early stage, the better you
will understand how they can be used in programming.

First execute the following command:

JLOAD 1 APLCOURSE
SAVED 11,07.53 09/01/69

A message comes back stating when the workspace (block of storage) we have
asked for was last saved. This command, about which more will be said
later, in effect puts an exact image of the workspace APLCOURSE into our
own active workspace so that we can access it.

You will now go through an exercise in which you and the APL system will
exchange roles. |t will ask you to do problems and you will be required to
type the answers in. To start off type FASYDRILL and put Y's under all
the functions printed, as shown in the copy below. Be sure to type Y for
the exercises in vectors because vectors are so easily handled in APL
Ditto for reduction. None of the problems require answers which are not
integers, and the problems are relatively easy computationally.

HASYURILL
TYPE Y UNDER FACH FUNCTION FOR WHICH YOU WAL EXERCISE
SCALAR DYADIC FUNCTIONS
+-xix[[<<=2>z! | Avenw
YYYYYYyYyYyYyYyYyyyYyryryy
SCALAR MOIADIC FUNCTIONS
boxs[L[~
Yyyyyyyyy
TYPE Y IF EXERCISE IN VECTORS IS5 DESIRED, N OTHHRVISH
y

TYPE Y IF BXFRCISE INl REDUCTION IS DESINED, H OTH. RWISH
Y

Here are some sample problems generated by the program. These will be
different each time you ask for the program, as well as different for each
person who asks:

1100

"8 6 4 3 0

Scalar Monadic Functions 59

If the problem is correctly answered, you get another. Let's do this one
wrong:

®/ 2 2
0
0 1
TRY AGAIN
0:
1

You get three tries altogether, after which you are furnished with the
answer and, to add insult to injury, you get another problem of the same
kind.

v/ 0 0 1 1

L
1
. L 72.333333333 72 1.6606666667 2.6660666667
L
3 4 5 6
TRY AGAIW
[J:
4 2 10 4
TRY AGAIW
i1:
319 7
ANSWER IS ~3 ~2 1 T3 T3
L71
Sh
1
+ 7 Ty

Typing PLEASE gives you the answer and another problem of the same kind.
The only way out of a particular type of problem is to type the correct
answer., However, since any valid APL expression equivalent to the answer
is acceptable, the problem itself can be entered as its own answer-mnot
particularly instructive from a pedagogical point of view, but it works.
To get out of the drill, type STOP, after which you receive a record of
your performance (only part of which is shown here). Typing STOPSHORT
exits you from the program, but doesn't print your record.

.
cis

L 1.333333333 ~0.6666666667
lJ:
PLEASE
AllSKWER IS 10 ~1

L:
sSTor
YOUR RECORD IS
FURCTION FIRST TRY SECOND TRY THIRD TRY FATLXND

+

X

60 APL\360: An Interactive Approach

PROBLEMS

1. Drill
L72.7]715 rg.1132.68 [3.12 ¢ 75.6 8
710 10 10 10 *x3 4.7 1.5 '35 7 4
®14,1 86 .108 rr1.8 0 "21 5.6 L5.5 6.8 9.1 ~.12
x“5.6 0 42 ?3 4 5 -71.2 76.7 .52 19.5
+8.7 ~19.1 23 33,5 "867 ~.287 1ux[5,8x 31,0u6

2. Using the residue function, write one-line definitions in APL of X
and [X.

3. If 4«3, and B<«<3 2 3 1 6, evaluate

x2+4A41«(T 1+4%x3):2
~(R2<A)AV /3R
C2Ce((A*x2)+(A+1)*x2)x.5

L, Write an algorithm to test an integer N for the following if the final
digit is deleted, the original number is divisible by the new one.

5. January 1 falls on Thursday (the fifth day of the week) in 1970.
Determine the day of the week on which January 1 falls in any given
year Y. For simplicity assume any year divisible by 4 is a leap vear.

6. Given a vector V which is made up of one- and two-digit integers.

A) Write an expression that will yield a logical vector whose 1's
correspond in position to the one-digit members of V. B) Do the
same for the two-digit members of V.

7. After executing each of the following, write an expression to round a
positive number N to D places to the right of the decimal point:

(10% 1)x[.5+46.,18x10%1
(10% 2)x[.5+4,75x10%2

8. Modify the answer to the previous problem to handle negative numbers
only. What further changes are needed, if any to make your expression
work for either positive or negative numbers.

9. Llet M<+8.4,6129999993 Display M. Compare 1E5xM with L1£5xM. (See
under "fuzz'' in chapter 34 for an explanation).

10. Construct an APL expression that will determine whether or not the first

N significant figures of two whole numbers X and Y are identical.

A) You are given D dollars with which to make purchases of books at
B dollars each. How many books can be purchased?

B) How many books can be bought if it is required that the D dollars
be used up and supplemented, if necessary?

Scalar Monadic Functions 61

Carry out the following instructions and explain the answers:

A+<15.8
B+ (A«U4) x4
B

16
A+15.,8
B+ (A<«u4)x[A
B

U

Write an APL expression that rounds numbers down if the decimal part
is less than .5, and up if greater than .5. For numbers ending in .5,
your expression should round to the nearest even integer.

CHAPTER 10:

Function definition

Status report

Earlier we introduced the idea of an algorithm in calculating the hypotenuse
of a right triangle. |If you recall, at that time we stated the problem and
went through a sequence of simple operations to solve it. Then we refined
our treatment and reduced the number of steps needed by taking advantage

of the simple order of execution rule in APL.

In a very real sense the operation of getting the hypotenuse exhibits the
characteristics of a standard scalar dyadic function. And it should be
clear that what we did was by no means unique. Literally an infinite
number of algorithms exist for solving all kinds of problems and behaving
like our hypotenuse function, if indeed we may call it that.

This suggests that we need a way to label and record these algorithms so
that they can be used over and over again by using the appropriate name
and arguments, just like the standard APL functions studied so far.

More specifically, let's review what was done in the hypotenuse problem
with our ultimate objective being to define it for repeated use:

(1) 4 was specified
(2) B was specified
(3) C was specified as the sum of 4 squared and B
squared, all raised to the one-half power (see page 34)

This was our last revision, with the algorithm reduced to one line.

The defined function I/1YP

What is most desirable is to be able to give to the terminal values for

A and B and a simple message to get the hypotenuse, much like asking for
2+2 and getting 4 back. Here + is the simple message which tells the com-
puter what to do.

By analogy A HYP B, HYP being the message in this case, sounds like just
the thing to do the dirty work of calculating the hypotenuse for us. Such
a function has already been provided for you in the APL system. Don't

worry at this point how it got there. (The student's attention is called

62

Function Definition 63

to the note in the preface about the common library, which will be heavily
used from this point on.)
Now enter on your keyboard

YLOAD 1 CLASS
after which you should get a message back about when this workspace was
saved last.

SAVED 15,02,39 07/29/69

The workspace CLASS, incidentally, contains a large number of functions and

illustrations which will be of considerable value to us in subsequent
chapters.
Typing

3 HYP 4

elicits the response

5
It works with vector arguments too, as the next example shows:

1 3 HYP 1 &
1.414213562 S

Here we are solving a family of triangles, with sides 1 1 and 3 4 at the
same time. In short, the function ZYP acts just like + in the problem

1 3+1 4

and apparently behaves and is used like a standard scalar dyadic function.

Thus far we've looked at the external behavior of the function HYP. In
order for us to go on and design our own functions in the future we will
have to be able to understand how HYP is constructed.

Function definition

There is a command which will display any defined function like HYP stored
in the active workspace. It is the following, which you should enter on
your keyboard at this point. DON'T press the return key until your entry
looks exactly like the one below. If you make a mistake, correct it before,
not after:

VHYP[[]]vV

The symbol V (pronounced ''del") is the upper shift G and the box [J (called

“"quad'') is the upper shift L. No attempt will be made at this point to
explain the rationale behind the particular combination of symbols, but
you will see shortly how this command is related to a number of others

that will be needed to define, display and edit functions.

64 APL\360: An Interactive Approach

Here is the system's response:

V C«4 HYP B
(1] C+«((A%*2)+R*x2)*0.,5
v

The first line, beginning with v, is called the ''‘header' of the function.
HYP is the name of the function, and it has two arguments, A and B, with
a resultant (i.e., the answer) which is stored under the variable name (.
Notice that the arguments are separated by spaces from the function name.
Can you imagine what would happen if the spaces were omitted?

Line 1 gives the rule for calculating C and is the same as before. |f you
are wondering what purpose the V's serve, it should not be too difficult to
see that, since they open the function on the header line and close it after
the one and only line needed (in this particular case) to complete the
function, they must be a signal to the system that function definition is
about to begin or is ending.

As we pointed out before, HYPcan be used just like a standard scalar
dyadic function:

1+3

1 HYP 3
3.16227766

Let's get some practice in entering this function ourselves in our own
workspace. First type

JCLEAR

which is another system command, to be discussed in more detail later, but
which has the effect of clearing out your active workspace and replacing it
with a fresh blank workspace, just like the one you received when you signed
on. The response is

CLEAR WS
Suppose we try to execute HYP now:

3 HYP 4
SYNTAX ERROR
3 HYP &
A

Are you surprised that we got an error message? You shouldn't be. After
all, our new workspace isn't supposed to have anything in it, and this
leaves the way open for us to insert the function HYP ourselves. Start

by typing

VC+A HYP B

which tells the system you want to enter a function. To give it its proper
name, after you type the opening V, you are said to be in '""function defi-

nition mode,'" as opposed to desk calculator mode.

Function Definition 65

Having pressed the return key you should get the response

(1]

i.e., the system in effect tells you it is ready to accept the first line
of your function. Enter the line as follows, then press the return key:

(1] C«((Ax2)+Bx2)x .5

The response this time is

(2]

since the system doesn't know how many lines your function will ultimately
have. There being nothing more to enter, type a second V to signal the
system that you are finished:

[2] v
Now the function, having been duly entered, is executable:

3 yp 4
5

If at this point you don't get 5, type)CLEAR and enter the function
over again.

We haven't squeezed all the juice out of HYPyet. Just as we can type

2x3+4
14

so we can ask the system for

2x3 HYP &
10

What makes this possible is the fact that the calculation involved in HYP
produced a resultant which was stored away temporarily under the name C

and hence was available for further calculations. Such a function is said
to return an explicit result. More about this in the next chapter, where
we will see examples which can't be used as HYP above.

A defined monadic function

For an example of a standard scalar monadic function we'll develop a square
root function and complicate it a bit for purposes of illustration. |If we
had one called, say SQRT, then in HYP we could write

(1] CeSQRT(A*2)+B%2

for line 1 instead of what we actually have.

Let's go ahead and define such a function with the header

VR+«SQRT X

66 APL\360: An Interactive Approach

Again as a reminder, don't forget the space between SQRT and X. Clearly,
only the one argument X is needed here, namely the number we are calculating
the square root of, and it is placed on the right of the function name. The
system responds, as before, with

[1]

Incidentally, this suggests that a good way to tell whether you are in
function definition or desk calculator mode is to see if you get a number
in brackets when the return key is pressed. Just remember that if you

do get it, anything you type from that point on until the closing V becomes
part of the function definition.

If you were to press the return key again, you would get
1]

and the system returns yet another indication to you that it is still
waiting for line 1.

Now for the rule and the closing out of the function:

1] HeXx,5
2] %

A few examples show that SOFT seems to work acceptably:
SERT 4

SQRT 1 2 4
1 1.414213562 2

Since earlier we had indicated that JQRT could be used to simplify the
function HYP, and we have now defined S@QRZ, let's write another HYP
function in which S@RT can be imbedded. Starting off as before, type the
function header and wait for the response:

VR+«A HYP B
DEFN FRROR
VR+A HYP B
A

But, this time, it appears that something is wrong. Apparently reentering
the function with the same name and in the same workspace doesn't wipe out
the old function. |In this there exists no analogy between the behavior of
a function header and an assignment of values to a variable, the old values
of which are wiped out when a new assignment is made.

You may argue that this replacement feature could be a very handy thing to
have around for function headers, but if you think about it you will see
that it can have some grave consequences too. Suppose, for example, you
had a big complex function that was really valuable in your work, and you
inadvertently used the same function name for something else. All your

Function Definition 67

hard work, unless you kept a record of it somewhere else, would then be
gone. So the APL system deliberately makes it hard for you to destroy
work accidentally.

This leaves you with two alternatives for redefining HYP: You can get rid
of /YP by an appropriate system command (to be taken up later) or, better
yet, use another name for your new function, say, AY.

Here is the function HY:

YR<«4 HY B
(1] ReSQRT (A*2)+B*2
[2] v

and it appears to work just as well as HYP does:
3 Y 4

1 3 HY 1 &
1.414213562 S5

The cosine function

For another by no means new example in this lecture, let's define a monadic
function which incorporates the cosine algorithm. In this problem, just to
be different, T is used for the resultant in the header and body of the
function:

VI+COS X
[1] T+«-/(X*V)3!1V«0 2 4 6 8 10 12
[2] v

RESEND

Unexpectedly we get a RESEND message, which is indicative of a transmission
error. Pressing the return key gives us a second RESEND. (Seated at your
own terminal, you probably won't get these messages.)

RESEND

After the return key is pressed once more, the system returns a [2]:

[2]

Since, at this stage, we can't be sure whether our function exists in stor-
age, we retype line 1 of the function, followed by the return key:

[2] T+«-/(X*xV):!'V+«0 2 4 6 8 10 12
We get back an error message and [2]:

CHARACTER ERROR

[2]

68 APL\360: An Interactive Approach

Apparently line 1 of the function was accepted previously, so we close the
function out with V:
[2] v

Now we are out of function definition mode and can do

2+2

A word of caution, however. |[|f we had tried the calculation before closing
out the function, we would have been in hot water. Can you explain why?

As a value for the argument, we'll use PI+4 and execute the function:
Pr«<3,14159
coS PI+u

0.7071072503

We get a meaningful result, so it seems to be working 0K so far.

Some additional system commands

Our workspace, which was originally blank, now has four functions. As users,
we may at times want to find out what is in our workspace at the moment.
This can be done quite easily by the system command

YFNS

which works in exactly the same way as YVARS did earlier, that is, it pro-

vides us with an alphabetical listing of the functions available in the ac-
tive workspace. Here is the response:

cos ny HYP SQRT

On= additional point about the system commands JFNS and)VARS. |f the

listing is long and we are interested only in whether a particular name, say,
HYP is included we can ask for

YENS 1
HY nyYp SQRT

and we get that part of the listing from the letter H on. Printing of the
list can be interrupted at any time by pressing the ATTN key. For variable
names, the same syntax prevails. Since we have only PI in storage at this
point, let's define a number of additional variables, and then call for a
partial listing:

A«B«CeDFeG«J«T+10
YVARS F
F G J T

We can observe the behavior of the system as we add and delete functions.
For example, add the following simple monadic function designed to give the
square of a number:

Function Definition 69

VR«SQ U
(112 R«UxUV
Two observations should be made at this point. In the first place, the rule
could have been stated in either of two ways: UxU or Ux2. Second, waiting
until the next line number is returned by the system is really unnecessary.
Since the function is finished at the end of line 1, it is perfectly proper

to close it out there, as was done in this case.
5@ seems to be all right:

5¢ 4
16

and, in fact, S and S¢RT are inverse functions:

SYRT 5S4 4
u

Displaying the list of functions now available, we see S@ has been added to
the list:

YFNS
cos 7y HYP SQ SQRT

We haven't said yet how to delete a function from the workspace. This is
done by the system command

YERASE HYP

and a new display of the functions shows that HYP is gone:

YFNS
cos ny 56 SQRT

As a side note here, the ERASE command can be used to delete more than one
function at a time, as well as variables, so that the proper syntax for

its use is YURASE FN1 Fi2...VAR1.,.. , depending on what is to be
deleted. Of course, to get rid of all the functions at once, type

JCLEAR
CLEAR WS

and then the command)FNS elicits an "empty' response from the system,
the typeball merely moving over six spaces.

PROBLEMS

1. Define a function EQ which evaluates the expression (X-2)xXx-3 for
various integer values of X and identifies the solutions to the equation
0=(X-2)xX-3,

2. Define a function BB which generates the batting averages of players by
dividing the number of hits obtained by the number of times at bat for
each player.

70

APL\360: An Interactive Approach

Define a function HERO to calculate the area of a triangle by Hero's
formula. (See problem 5, chapter 7.)

The ABC Manufacturing Company reimburses its employees 100% of the first
$200 spent per semester for college work in an approved program, and

50% of the next $300. No reimbursement is made for expenses above $500
per semester. Write a function called REFUND that will calculate the
refund due each employee in the program.

A well-known formula in electrical work gives the combined resistance
RT of several resistances R1, R2, etc., wired in parallel as follows
(conventional notation):

+ + ...

L
RT R] R2
Define a function PR that will calculate RT for a vector M of resistances

in parallel.

To find the standard deviation of a set of numbers, the following steps
are necessary: (1) Compute the mean; (2) Find the difference of each
number from the mean; (3) Square these differences; (4) Take the square
root of the average of step 3. Write a function SD to compute the
standard deviation of some data X. Assume you already have a monadic
function AVG (which computes averages) in storage.

In relativity theory the mass of a body depends on its velocity V
relative to the observer. Specifically, (in conventional notation)

m=my - 1-v2/c2

Where mg is the mass of the object at rest and c is the velocity of light
(38 meters/sec). Write a defined function REL to yield the "mass'' of
a body moving at speed V and with a rest mass ME.

Define functions called PLUS, MINUS, TIMES, DIVIDEDBY to give
mathematical meaning to these words, e.g., 3 PLUS &4 returns 7, etc.

CHAPTER 11:

The syntax of functions

The last chapter discussed some of the ways in which functions can be de-
signed and used. It should be apparent that they differ from the standard
functions accessible on the keyboard in a number of ways, but the differences
are of form and appearance rather than intent. As a matter of fact, if our
keyboard had a hundred more keys on it, many of the more useful defined
functions could then appear as symbols. |f the function S@”7 happened to

be one of these so favored, all that would be necessary to get a square

root then is to key in the appropriate symbol and argument. Practical con-
siderations prevent the keyboard from being larger than it is, so only the
most useful functions are incorporated.

The richness of the APL language is such that many other function types
than have been introduced so far are possible. Already you have worked

with two kinds, the dyadics HYP and HY and the monadics S@RT and S&.

A number of illustrations that will be helpful to us are stored in the
workspace called 1 CLASS, which has been accessed before in the last
chapter. Let's reload this workspace and find out what is in it by exe-
cuting the following sequence of commands. The system responses are
included after each command:

YLOAD 1 CLASS
SAVED 15.02,39 07/29/69

YFNS
ADD AGATN AVG AVG1L AVG2 AVG3 AVGY AVGS
BASF C CMP CMPX CMPY COLCAT1 COLCAT?
COLCAT3 COS COSTNE CP CPUTIME CP1 DEC
DELAY DESCRIBE DFT DICE E FACT
FACTLOOP GEO2 GEO3 HEXA HY HYP
ITNSERT INV MEAN PI RECT REP REVERSE
ROWCAT RUN N SD SETVARTABLES STGN SORT
SPELL SQRT STAT STATISTICS SUB SUMGCAN TTME
TIMEFACT TRA TRACETIME

Your listing may not be identical with this one, since changes are made from
time to time in the common library workspaces. Be that as it may, most of
the functions will be explained and used as we go through the remaining
chapters. The ones we will be interested in at this time are HYP, SIGN,
DICE, RECT, STAT, and TIME

71

72 APL\360: An Interactive Approach

Remember that to display the contents of a function we type
Vname [I1]V

after which the system prints out the function header foliowed by all the
steps which comprise the function, and includes even the opening and
closing dels. Our old friend HYP is an example:

VHYP([[]]V
vV C<«A HYP B
[11] C«{((A*x2)+B*2)%x0.5
v

Function headers

In APL there are six ways of writing function headers, and each has its
own particular uses, as will be seen from the illustrative examples to be
displayed. These six forms are summarized in the table below.

DYADIC MONADIC NILADIC
returns explicit result| vC«4 HYP B VR<SIGN X YR«DICE
no explicit result VL RECT H VSTAT X VTTME

Don't worry, for the moment, about what all this means; everything in good
time.

To start off, display the function SIGN:
vSIGRNLO1v

V R«<SIGN X
[1] R«(X>0)-X<0

v
|t takes a single argument which, if negative, returns “1, if positive, |
and if zero, it returns 0. In fact, it duplicates the monadic signum

function introduced earlier. Executing this for various arguments; we get

SIGN 5.2
1

SIGN ©
0

SIGN 569
1

SIGN 3 ~2 0
1 "1 ©

If you look at the rule for 'SIGN, you should be able to see how it works
by tracing it _through. |If X is negative, X<0 would be 1 and X>0 would be 0.

so 0-1 gives 1. Similarly, for X positive, X<0 is 0, X>0 is 1, with 1-0
resulting in 1. And for X=0, X<0 is O and X>0, so that 0-0 gives O.

Now, type DICE several times and display it:

The Syntax Of Functions 73

DICE
6
DICE
7
DICE
3
VpICrLnlv
V A<DICE
(1] R<+/? 6 ©

v

This is simply the sum of random roll of two dice. Notice in the header

that DICE has no arguments. It is a '"'"miladic' function, to use a coined
word. The reason for the lack of arguments is that the function really
doesn't need any. It is designed to select the numbers for the roll itself.

So far, we have seen three types of function headers, requiring 0, 1, or 2
arguments. They all return explicit results, i.e., a result that can be
used for subsequent computation. Now let's look at one that doesn't give
explicit results, but merely prints them on the paper.

Display the function RECT:

VRECT[]V
Y L RECT H
[11] 2x L+
[2] L HYP H
[3] LxH
v

The first thing that should hit your eye is that there is no « in the header.
Line 1 gives the perimeter of a rectangle of length L and height H; line 2

is the length of the diagonal, using the previously defined HYP; line 3 is
the area of the rectangle.

Notice also that there is no specification arrow on any line. This means
that the results of that line aren't stored anywhere and will, as mentioned
above, be printed out on the paper.

For example:

3 RECT 4

The purpose of this function, as defined, is to give information, not for
further work:

5+3 RECT 4
14
S
12
VALUE ERROR
5+3 HCT H
A

74 APL)360: An Interactive Approach

Here the results of the function's three lines again print out because that
is done in the body of the function, but we can't add 5 to these results
because the numbers weren't stored anywhere, as in

5+3 HYP &
10

The two headers differ in that a specification is made in 77YP and not in
RKECT, and in the body of RECT again there were no assignments of results
to any variables. We will have more to say about the significance of the
variables used in the header assignment and in the function itself in
chapter 13.

Now consider the monadic STAT :

VSTAT[N]v

v STAT X
[1] e+ /X=X
[2] (+/X)W
[3] r/x
[u]) L/7X

v

Again there is no explicit result implied in the header form, so the result
will be three lines. The first two give us the average of the components
of X, and could actually be combined into one line. N is just a convenient
handle for transferring the results of line 1 (which is the number of com-
ponents) to line 2. Lines 3 and 4 print out the largest and smallest com-
ponents of X. Executing STAT, we get

STAT 3 2 1 3 2 1
2
3
1

Since no explicit results are returned, it doesn't make any sense to work
further with them. |If we try it, we get an error message as before.

2xS5TAT X
3.333333333 2,.333333333 2.660666667

6 3 4

o 2 1

VALUL FERROR
2xS5TAT X

A

To complete the table, execute (but don't display) the function I'TME :

TIME
11:11:07 AM FASTERN

Obviously it doesn't need any arguments to give the time of day, and is
designed so that you can't do anything with it.

Another function of this type that you have already encountered is
FEASYDRILL in the workspace 1 APLCOURSE. This too required no arguments

The Syntax Of Functions 75

and returned no explicit results. It typed out the answers and accepted
inputs, but you couldn't do any computations with them. Functions of this
type are commonly called main programs.

PROBLEMS

For problems 1 to 6 define functions as follows, having the stated charac-
teristics:

1.

Dyadic, explicit result: to calculate the FICA (social security tax)
at the rate of P percent on gross yearly income IN up to a maximum of

$7800.

Dyadic, no explicit result; to store under the name T the square of
the difference of two arguments.

Monadic, explicit result: to generate prime numbers, using Fermat's
formula, N
227 4+ (conventional notation).

Monadic, no explicit result: to calculate the ceiling of X, using the
residue function.

Niladic, explicit result: to produce four random numbers from 1 to 100.

Niladic, no explicit result: to see if either one of two previously
defined variables divides the other evenly.

Enter the function HYP (see page 72) and use it to evaluate each of
the following:

(3 HYP u4) HYP 3 HYP 1
4U+3 HYP u4-3
(443) HYP u4-3

After executing the command)LOAD 1 CLASS , derive a dyadic function
called D which returns an explicit result and gives the larger of the
two arguments. Explain the system's response.

Assume that you have a monadic function AVG that returns an explicit

result (there is one in1 CLASS). Write a one-line APL expression

which uses AVG to obtain the average of a vector of numbers X, stores
the result under the name A, and calculates and stores in F the 10 log
of A.

CHAPTER 12:

Function editing

Up to now we have been examining the different ways to enter functions on
the APL system, but have yet to consider how we might change a function
which has already been put in. Since we can't do much without the capa-
bility for such change, this chapter will be concerned with ways of editing
functions after they have been written and entered.

To speed things up, we'll use a prepared function in the workspace 1 CLASS.
Type YLOAD 1 CLASS:

YLOAD 1 CLASS
SAVED 15.02.,39 07/29/69

By way of review, let's look at what's in this workspace:

YFNS
ADD AGAIN AVG AVG1l AVG?2 AVG3 AVGY AVES
BASE C CMP CMPX CMPY COLCAT1 COLCAT?2
COLCAT3 (COS COSINE CP CPUTIME (CP1 DEC
DELAY DESCRIBE DET DICE E FACT
FACTLOOP GEO?2 GEO3 HEXA HY HYP
ITNSERT INV MEAN PI RECT REP REVERSE
ROWCAT RUN S SD SETVARIABLES STGN SORT
SPFELL SQERT STAT STATISTICS SUB SUMSCAN TIME
TIMEFACT TRA TRACETIME
The function we will be demonstrating on is STAT. Remember how to display
it?

VSTATC0]V

v STAT X

(11 Ne+/X=X
(21 (+/X)+N
(3] r/7x
[u] L/X

It isn't possible to enter it or redefine it because we already have a copy
of it in our active workspace. Suppose we didn't know that it was already
in and tried to reenter it:

76

Function Editing 77

VSTAT X
DEFN ERROR
VSTAT X
A

An error message is obtained, showing, as was discussed earlier on page 66,
that the system has built-in protection against accidental replacement of
a function.

But we can make changes in the function as already defined. This APL
feature is a necessity, for otherwise finding errors and debugging and modi-
fying programs would be considerably more difficult.

Adding a line

The four lines of the function, as presently written, give information on
the average and largest and smallest components of a vector X. Let's sup-
pose we've decided to add a fifth line which will give the range (difference
between the largest and smallest components).

How is this done? The first step is to open up the function by typing a
single V and the function name, followed by the return key as usual:

VSTAT
(5]
Notice that the system responds with [5]. In general the next available
line number will be returned. It's as though we had just entered the

first four lines and are ready to continue our writing on the fifth line.
This is one way, if somewhat sneaky, to find out, incidentally, how many
lines are in the function. Now type in

(5] (rrsxj)-L/s4
[6] v

and the system has responded with a [6], waiting for the next line of
input. Since we don't want to add anything further, a closing V has been
typed in as a signal that we want to get out of function definition mode
and back into desk calculator mode.

Execution with a vector 2 9 1 gives us four lines of output, the fourth line
being the range as we had intended:

STAT 2 9 1

S o R~

If we now ask for the function to be displayed, we see that line 5 has
indeed been added:

78 APL\360: An Interactive Approach

VSTATI1IV

v STAT X
[1] g+ /X=X
£2] (+/X)=l
[3] M/x
fu] L/ X
[s] ([/7x)-L/x

Replacing a line with another line

[afiad

Also in the workspace 1 CLASS is a function called AVG which computes
the average of the components of an argument X. Let's change line 2 of
STAT to AVG X. First we'll check out AVG to see if it works:

AVG 1 2 3
2

In order to replace line 2, we need to open up the function as before by
typing

VSTAT
Our response is [6] which can override by typing in a [2] as shown:
(6] [2]

After pressing the return key, the system replies with a [2] and we can now
enter AVG X:

[2] AVG X

Since we don't plan at this point to make any further changes on line 3, a
del is used to close out the function:

[3] v

It should be emphasized that in making this change lines 3, 4, and 5 are not
affected.

Here is an execution of STAI followed by a display of the revised function:

STAT 2 9 1

[l VO R =

o

VSTAT[TI]V
v STAT X
[1] N+ /X=X
[2] AVG X
(3] (/X
[u] L/X
(51 (rz7x)-L/x

Function Editing 79

The change has gone through, leaving the rest of the function unaltered.

Inserting a line between two other lines

Suppose we want to insert between lines 1 and 2 a statement whose purpose
is to return, i.e., print out, the original values of X. This can be
accomplished in the following way. First open up the function and type
in some number in brackets, say [1.1]1, after the response [6]:

VSTAT
[6] [1.1]

(Any number will do as long as it is between the numbers of the two lines
where the insertion is to be made.)

The system returns [1.1] and we can enter the single symbol X, which when

encountered during execution will cause a printout of X
[1.1] X
Now a 1 is added by the system to the last place of the number chosen for

the inserted line to provide for still other entries between lines] and 2,
but since we don't want to close out the function just yet, let's ask

first for a display of what we have so far while we're still in function
definition mode, and then close it out:

(1.2]) [(Z1v
7 STAT X
[11] Net /X=X
[1.11 %
[2] AVG X
(3] [/74
[u] L/X
[5] (r/7x)-1/x
v
Your typeball should have moved over six spaces after this. |f it does,
you are in desk calculator mode. |f, however, a number in [] was returned,

type V, followed by the return key.

0f course, a line numbered 1.1 is somewhat awkward, to say the least.
Fortunately, after the function is closed out, the steps are automatically
renumbered, as seen in the following display:

VSTAT(II]
v STAT X

(1] Net+ /X=X
(2] X
3] AVG X
(4] i /X
(5] L/X
tel (r7x)-1/74

80 APL\360: An Interactive Approach

and the renumbering has actually taken place. But since [7] was returned,
we are still in function definition mode. Striking the return key gives
[7] again, and since there is to be no added entry at this time, we close
out the function:

[7] v

Now we are back in desk calculator mode.

Doing several things at once

In APL it is possible to put several of the editing instructions on a
single line. For our example we'll take line 3, AVG X, change it back to
what it was originally, and then return to desk calculator mode. To do
this, type the following:

VSTATL3](+/X)sNV

Typing [3] gets control to line 3, what follows it is the new line 3, and
the second V closes it out after the change. We can check this with a
display of the function in the usual manner:

vSTAT{IIv
v STAT X
] et/ X=X
] X
] (+/X)+N
] I /X
] L/x
] (rzxH)-L/x

Getting rid of a line

How do we remove a line completely? For example, suppose we want to get
rid of line 4. As usual, we first open up the function and direct control
to line k:

VSTAT(4]

The computer responds with a (4] and in effect asks us what we intend to
do with line 4. Pressing the ATTN button, followed by the return key, is
the only combination that will delete a line. Again, as you have already
seen, APL makes it difficult to destroy things once entered.

(4]

\

Next [5] is returned, and now we ask for a display of the function, but
without closing it out:

Function Editing 81

[5] [l

Vv STAT X
1] e+ /X=X
[2] X
[3] (+/X)+N
[5] L/X
(61l (rz7x)-L/x

Notice that line 4 has been deleted. The response continues with a [7],
but since we have nothing more to add, let's close it out:
(7] v

The lines are now renumbered, as can be seen if the function is once more
displayed:

9STATII]]v

vV STAT X
(1] Net /X=X
[2] X
[3] (+/7X)z0
L4] L/X
(5] (r7x)-L/x
v

Just remember that if the number of dels you (not the system) have typed
is even, you are in desk calculator mode; if odd, you are in function
definition mode.

Displaying only part of a function

Thus far, we have asked for the entire function to be displayed. What if
the function is a long one and we are interested only in a single line,
say 4?7 The display command for this is very similar:

VSTATI 8]V
[u] L/ X

| f there had been no second del, line 4 would have been displayed and then
the system would ask us what, if anything, we wanted to do with it by return-
ing a [u4] again:

VETATI 417]
[u4] L/X
(4]
and now we can close out the function:
[u4] Y
By now you should be getting the idea that the quad [] is used to display

things. Fancifully speaking, you might think of it as a window to see what's
going on inside the function. Just remember

82 APL\360: An Interactive Approach

[r displays everything
[uf1] displays a particular line, here 4

Here is another useful variation which will display all lines from the
number specified on:

VSTATC()3]
(3] r/7x
(4] L/x
(sl v

But what if the function has fifty lines and you want lines 5, 6, and 7
only? The way to display only these lines is to ask, as above, for lines 5
on to be displayed and let the terminal run on until you want it to stop.
Pressing the ATTN button (on most terminals) activates and interrupt feature
that will stop the display. |If your terminal doesn't have this feature,

you may either let the display run on until the end or use the following
procedure:

(1) Lift up receiver of Dataset
(2) Depress TALK button for a few seconds
(3) Depress DATA button and replace receiver

However, note that unless the original display command was closed with a
del, you will still be in function definition mode after interrupting.
Plan your next step accordingly.

Detailed editing of part of a line

Getting into more specific and limited changes, let's start over again
from the beginning. Load a fresh copy of 1 CLASGS:

YLOAD 1 CLASS
SAVED 15,02,39 07/29/69

As has been discussed previously, this wipes out what was in our active
workspace and replaces it with an exact image of the workspace loaded.

Now display STAT, but without closing out the function:

VSTATII]
7 STAT X
[1] Je+/ X=X
(+/X)+N
(3] r/x
[u] L/X

It is again in its original form, and the system is waiting for us to add
something on line 5.

Up to now we have made changes involving entire lines. But suppose a line
is very long and complicated, and our change is to involve only a few
characters without having to type the rest of the line over and quite possi-
bly make a mistake. For example, say we'd like to change the letter N to

Function Editing 83

COUNT in lines | and 2 of STAT.

In this case, obviously, we could type both lines over since they are quite
short. However, it will be more instructive to use the detailed editing
capabilities of APL to make the changes.

We're still in function definition mode, since when we press the return
key we get
[5]

To direct the typeball to specific characters that need revising, what we
type in has the following format:

Lline number [0 estimate of what print position
the first change occurs]

In this case we'll deliberately make the typeball space over twenty po-
sitions (from the margin) and then backspace manually to the N to show that
our estimate doesn't have to be accurate:

[s] [17320]

The system will respond by displaying line 1 and then position the typeball
twenty spaces over on the next line:

(1] Ne+ /X=X
@
(typeball comes to rest in the position indicated by @)

We wish to strike out the letter N. For this, the slash (same symbol as
reduction) is used. COUNT has five characters for which space needs to be
provided. To be sure that we get enough space we type 8 after the slash as
shown, once we have manually backspaced the typeball under the N. This
inserts eight spaces just prior to the character (here «) above the number
typed:

(1] Ne+r/ X=X
/8

After striking the return key the system responds as follows:
(11 “t+/X=X

and we can type COUNT in the space provided:

(11 cCounNy “+/X=X

Having made this change we are asked if we want to do anything with line 2.
Before doing anything else, display line 1:

(2] [1t]]
[11] COUNT«+/X=X
(1]

N is gone and COUNT has been inserted.

84 APL\360: An Interactive Approach

Now directing control to the eighth position on line 2, we can go through
the same procedure to insert COUNT at the end of the line. Eight spaces
happen to be too few in this case, so we'll have to use the spacebar to
move the typeball over some more after it comes to rest in the eighth
position:

(1] [2718]
[2] (+/X)+H
/
{21] (+/X)+COUNT
[3] v

Displaying the entire revised function, we see that the changes have been
made:

VSTATID]V
Vv STAT X
(1] COUNT«+/X=X
(2] (+/X)sCOUNT
(3] [/7x
[u] L/X
v

Finally, for the sake of completeness, we include again the system command
which deletes an entire function from the active workspace:

YECRASE STAT

The response to a successful "erasure'' is the typeball moving over 6
spaces. |If we now try to display it, we get an error message:

VSTATI!IIV
DEFN FRROR

VSTAT
A

Can you think of a way to get STAT back in without typing it?

Review

Here is a summary of the editing capabilities of APL:

VEFN open fn, control directed to first available line

YFN[3] open fn, control directed to line 3

vFI[30] open fn, display line 3, control directed to line 3

vFNCO] open fn, display all lines, control directed to first avail.
line

vFEYLO3] open fn, display line 3 and all following, control directed
to first available line

vFNL3010] open fn, detailed editing at print position 10 of line 3

VFN[3] ATTN RETURDN delete line 3

VFNL3]X+2+AV open fn, rewrite line 3 as shown, close fn

vFNLOlV display fn only

YERASE FN delete fn from active workspace

Function Editing 85

One last point. In our discussion of the function editing capabilities of
APL we have neglected the header. It is possible to change the header it-
self in exactly the same way as any line by using [0] as the line number:

VSTATL 0]

[0] STAT X
(0] STATE X
[11] v

vSTATLIIv
DERN FRHEOT
VOTAT
A

and since STAT has been renamed STATE, we get an error message when we
call for STAT , which no longer exists. Just remember that any changes in
the header must be consistent with what is in the body of the function it-
self, unless, of course, the corresponding changes are made in the rest of
the function too.

PROBLEMS

Execute)LOAD 1 CLASS and enter the following program to calculate the
standard deviation of a set of numbers (see problem 6, chapter 10):

v 57D N
] RAVEG W
] =l
3] ReAVE R%x2
] ANS«R%0.,5

1. Display the function and direct control to line 5.

2. Use detailed editing to change A#S on line 4 to R.

3. Edit the header to return an explicit result H.

4, Eliminate line 2.

5. Display the function and remain in function definition mode.

6. Change line 3 to R<«AVG (P-N)*2.

7. Display lines 3 and 4.

8. Close out the function

9. Use a single expression to open up the function again and reinsert the
former contents of line 2.

10. Change line 3 back to its original form with detailed editing.
Insert just prior to line 1 a command that will print out the number
of elements in N.

12. Delete the function from the active workspace.

CHAPTER 13:

Types of variables

Up to now all the variables that we have encountered have been considered

by us to be alike in their behavior. In this chapter we will see that this
isn't quite true, and that APL. has two very useful built-in features. One
of these provides protection for variables against their being accidentally
respecified as a result of a function execution, while the other enables

the same variable names to be used repeatedly in different functions without
the possibility of their being confused.

In the workspace 1 CLASS, which you should now load,

YLOAD 1 CLASS
SAVED 15.,02,39 07/23/69

there are five functions, AVG1-AVGS , which are quite similar and which are

all used to calculate averages. It is the small but significant differences
between them that we are going to explore now.

Dummy variables

First display AVG1

VAVG1[[1]v
V R<AVG1 X
(1] e+ /X=X
(21 Re(+/X)+d
v

From the appearance of the header it is a monadic function that returns an
explicit result. The first line calculates the number of components in X
and stores that value in N, while the second divides the sum of the com-
ponents by ¥ and stores it in F for printing out as the average when the
function is executed.

Let's give X and N values:

X< 21,7
J<3,1415

86

Types Of Variables 87

and now calculate

Avelr 2 1 2 1 2 1
1.5

On checking what's in X and ¥, we get

Something seems to be wrong here. We put in3.1415 for N and got back 6,
while X was set at 21.7. The function AVG1 calculated the average

not of that X (which would have been "21.7 since there is only one com-
ponent) but of another X, 2 1 2 1 2 1, in the argument of the header.
According to what was presented in an earlier chapter, the latest value of
X is supposed to supersede a previous value. So why didn't we get
212121 when we called for X?

To make a start on some answers to these questions, look at the function
header. There is an X in it as the argument. Apparently this isn't the
same variable as the X we set before (721.7), even though the symbols are
the same. When we executed this function for 2 1 2 1 2 1, for the time
being X inside the function must have had the value 2 1 2 1 2 1. The

X outside (T21.7) was not affected, since we were able to retrieve it
afterwards unaltered.

Still confused? It isn't as bad as it looks, because part of the trouble
was due to our use of the same letter to represent two distinctly different
types of variables, as we shall see shortly. In the meantime, let's try to

come up with a set of rules governing the behavior of variables in this and
similar situations.

First, the variables used in the argument and resultant of the header are

in a very real sense "dummy'' variables. This means that they have values
assigned to them only inside the function itself, and we can find out what
these values are only when we ourselves are inside the function, i.e., when
execution is suspended part way through because we interrupted it or because
of an error.

To illustrate the point further, imagine we have a function
VZ<A Fi G

[1] LA+ G

(2] v

And we call for 3 FN 4 to be executed:

3 FVN 4

7

After execution, if we ask for 4 and G, we still get value errors:
A

VALUL FRROR
A

A

88 APL\360: An Interactive Approach

G
VALUL FREOR

G

A

A and G no longer exist! However, now let's set 4 as, say, 1 and G as 2,
and then call for 4 and ¢ after execution:

A+1
G2
3 Filoy
7
A
G
2
We still don't get the 3 and 4 which were the arguments.

These values 3 and 4 were set as soon as we typed 3 FN 4 and are available
until execution is finished, at which time they are relegated to limbo.
Thus, calling for 4 and ¢ after execution gives us as always the last set
values of the variables, namely, 1 and 2, that the system has a record of.

Of course, if we were to execute 1 FN 2 and then call for 4 and ¢, we would
indeed get 1 and 2. But this would be purely coincidental because our
dummy variables in the function header happened to have the same set of
values as 4 and G before execution was called for. So just as with our

two X's in AVG1, the two A's and G's aren't really the same, in spite of
the fact that the same characters are used for both.

It should be dawning on you by this time that it ought not to make any
difference what variables we put in for the arguments of FN. They serve
only to indicate that two arguments are called for, and in this sense

they act very much like the 0's in a number of the form .00032. All the 0's
do is fill up space, but you need them to read the number correctly. This
is why the arguments associated with the function name are called dummy
variables.

One point by way of clarification here. Suppose we set
X+<1 2 3
and execute

AVGL X

2
<

How come? In executing the function, the system encountered the argument X
(which is still a dummy variable in the header), searched its memory for a
value for X, found the most recent assignment, 1 2 3, and then executed
AVG1. This shows that we have a choice as to whether we wish to give
values to the arguments at the time of execution or before. In either case,
it is the most recently set value that is used.

Calling for the preset’X after execution shows that it hasn't been affected,
nor is it changed when we reexecute AV(1 for another set of values:

Types Of Variables 89

X
i 2 3

AVG1 3 4 5
n

Ve
1 2 3

In a similar manner the resultant Z has no value before execution (unless
we deliberately set it). |t acquires a unique value during execution as
soon as we get to that part of the function which determines what 2 will be:

Z
VALUL ERROR

7
&

A
There should, of course, be such a place if we've written the function

meaningfuliy. As in the case of the arguments, once execution is finished,
the value is lost.

Global variables

Now {at last!) getting back to our original function AV51 . We have
answered the question of why calling for X returned the preset value 21.7,
but what about N?

Notice that N, contrasted with X, doesn't appear in the header, but only in
the body of the function. Lacking any instructions from us to the contrary,
it ought to behave the same way all of our variables had been behaving up

to the point where we started to get involved in function definition. That
is to say, whenever the system encounters an instruction respecifying a
variable whose value has been previously set, it changes that value ac-
cordingly. In our case, N was originally set at 3.1415, but as execution
proceeded it was reset at 6 as a result of the instructions contained in
line 1.

Such variables as N and the X which was preset at ~21.7, since they

retain their original values in APL for all time in the workspace in which
they appear, until, of course, they are respecified or deleted, are
appropriately called '"global' variables.

Local variables

Let's look at another way in which variables can be used in function defini-
tion. For this display AVG2:

VAVG2[1]V
V R<AVG2 X;il
[1] He+ /X=X
(2] Re(+/X)+0
v

This time something new has been added—a variable ¥ in the header preceded
by a semicolon. When a variable is used in the header in this fashion, it

90 APL\360: An Interactive Approach

is said to be a '""local'’ variable, whose values are to be set and used only
within the function itself, and behaving much like the dummy variables we
discussed before. In order to restore the values of the variables to what
they were before we first executed A4YG1 for comparison purposes, we'll have
to reset X and N:

X< 21.7
H+4.6

Using the same argument as before, let's execute AVG2 and then call for
X and N:

AVG2 21 2 1 2 1

1.5

X
T21.7

»
4,6

As you might have expected, X hasn't changed, but this time N also returns
the original value set when we made it a global variable. The instructions
for ¥ on line 1 now refer to a different N, the local variable at the right
of the header, it being only an accident of choice that we used the same
symbol for both a local and a global variable.

It should now be clear that the APL system has the ability to keep straight
its records of variables used in these different ways. This is fortunate
for us because we may have used the same variable name previously for some-
thing entirely different and want to preserve it. To prevent accidental
respecifying of the variable, it would seem wise to make it local by put-
ting it in the header preceded by a semicolon. |f more than one variable is
to be so localized, they can be strung out, separated from each other and
the rest of the header by semicolons.

AVG3, displayed below, has a local variable P and is a niladic function
returning an explicit result:

VAVG3[[!]v
Y R<AVG3;P
[1] Pe+ /X=X
(2] Re(+/X):P
7

Executing AVG3 , we get

_ AVG3
21.7
_ X

21,7

By this time you ought to be able to figure out for yourself why the result
T21.7 was returned. (HINT: is X a local, global or dummy variable?)
Resetting X and executing AVG3 again:

Types of Variables 91
X«<2 1 2 1 2 1
AVG3
1.5

Clearly the X being averaged is from the most recent assignment.

Global variables as counters

AVGY4 adds a new twist:

VAVGH{{]]V
YV R«AVGH X
(11 B(+/X)++/X=X
[2] COUNT+COUHNT+1
v

This function is intended to illustrate a practical use for a global
variable, and is designed so that each time it is used a counter (called
COUNT) goes up by one. Thus, a record can be kept of the total number of
times the function is executed.

Here is an execution of AVGu:

AVGu 21 21 2 1
VALUE ERROR
AVGUL2] COUAT«COUNT+1
A

Why do we get an error message? |f you think about it, you will see that
we goofed and failed to specify the initial value of COUNT. So naturally
the system didn't know where to start counting and was unable to execute
line 2. This is confirmed by asking for the value of COUNT:

covuT

VALUE ERROR
COUNT
A

Setting COUNT to 0 and reexecuting AVG4 twice, we get

COUNT<«0
AVGe 2 1 2 1 2 1
1.5
cCounT
1
AVG4 5 4 3 2 1
3
cCounr
2
COUIT now behaves as we had intended. |t is a global variable because it

doesn't appear in the header.

We are still plagued with our two X's. One is a global variable with the
last set value (see page 90).

92 APL:360: An Interactive Approach

X
2 1 2 1 2 1

while the other is a dummy variable in the header, which unfortunately
happened to be set to the same value. Moral of the story? As an APL user
with an enormous number of possible variable names at your disposal, there
isn't any real necessity to be in a rut and use the same few over and over
again.

Now display AVGS:

VAVGS[1I]Y
Y R<AVGS X300U07
(1] Ee(+/X)++/X=X
[2] COUNT«COUNT+1

COUNT is a local variable in this monadic function. Executing AVGS:

AVGs 2 3 2 3
VALUE LEROR
AVGSL 2] COUNT«COUNT+1
A

What's wrong? COUNT was set earlier to 0, so why the error message? True,
COUNT was set, but as a global variable, and the set value can't be used

in AVG5 because we said in the header that COUNT was local. This function
just won't work.

We could consider putting in a line before line 1, setting COUNT to 0.
But each time we execute it, the local variable COUNT will be reset to O.
It will never get beyond 1, and furthermore, since it's local, all trace
of it is lost once we exit the function.

This means that if we have a global variable (name not in the header), we
can reset it from within the function and obtain its last value, as in
AVGu., |If we make it local by preceding it with a semicolon in the header,
there is no chance for confusion or destruction of values set previously.
However, it is not possible to use a subfunction by the same name as a local
variable. For example, if COUNT were also a function, we couldn't ask for
it to be executed in AVGS and still retain COUNT as a local variable.

Here is a good place to remind you how to keep track of all the global
variables in your active workspace,)VARS , which will give you a listing
of all the current variables which have been set.

Suspended functions

One last point. We had a couple of runs that resulted in functions being
suspended at some point in their execution. We can find out what functions
are suspended and where by the system commands

Types Of Variables 93

Y57
AvGes[2] =
AVGul 2] *
YSIV
AVGS[2] = n X coylr
AvVGal 2] = R b4

SI stands for ''state indicator' and the commands tell which functions are
suspended (*) and on what step. The most recent suspension is listed first.
If the * is missing, it means that the function is held up because of a
suspension elsewhere, as would be the case if we were to invent a function
AVGH which used AVGS in one of its instructions. Calling then for AVGH
would cause AVG6 to execute only to the point where AVGS, which is in sus-
pension, is needed. AVG6 would then appear on the list under)SI, but
without the star, indicating that AVG6 is held up in execution pending
clearing up of the suspension of the function 47GS5. The command)57V
gives the same information as)SI but adds the variables appearing in

the header as local or dummy.

It isn't good practice to leave many functions suspended, since this
clutters up the available space. They should be removed as soon as possible
from the suspended state. To show how the list grows, let's execute AVGS
again:

AVGS 7 4 204
VALUE LRROR
AVGS[27 COUNT«COUIT+1

A
YS1
AVGSL2] =
AVGS[2]) =

AVGLL2] =

Each time a function is suspended, you should find out what's wrong. For
the time being without further explanation, the instructions >0 or simply -

-0

4,25

will exit you from the most recently suspended function. The result shown,
incidentally, is the average from the last computation. Looking at our
list again,

Y51
AVGSL2] =
AVGU[2] =

we exit from the next suspended function and continue this until the
command)SI vyields a list with no functions in it:

-0
2.5

VST
AVGu[2] =

94 APL\360: An Interactive Approach

5
(no result prints out with this command)
y5TI

(typeball moves over six spaces)

0f course any future executions of AVGS will build up our list again:

AVGS 4 2 1
VALUE LRKOR
AVGS[2] COUNT«COUNT+1
A
)5
AVGS[2] =
+0
2.333333333
)ST
(typeball moves over six spaces)

PROBLEMS

1. Execute the command)LOAD 1 CLASS

(A) Specify a global variable C+53 78 90
Account for the result.

(B) Enter the following function F:

vVE
(1] Z«(A%2)+Bx%2
(2] Z«0% .5V

After specifying values for 4 and B, execute T«F+7 and
T«Z+7. Explain your results.

2, Below are several defined functions. Execute the command following each
and give the values of the variables. Reset these variables to their
initial values before each function is executed:

R B C M S
3 2 5 7 1

VPERIM1 VR«<B PERIM2 C VR«PERIM3 C
(1] R+2xB+CV (1] R+2xB+(CV {113 R+2xB+CV
PERIM1 S«M PERIM2 R S«PERIM3 R

3. Redefine the second function of problem 2 to include a local variable
P in the header. Make line 1 the sum of B and ¢, the result to be
stored in P. The second line is to finish the algorithm for the
perimeter.

CHAPTER 14:

Workspace movement

In the previous chapters all the work you placed in storage, both variables
and defined functions, was lost when you signed off. The only recoverable
work was in1 CLASS and in 1 APLCOURSE. And the only reason we cculd
still access it was that when we loaded one of these workspaces into our

own active workspace, we were actually taking an exact copy of the original,
not the original itself. Although we lost the copy in signing off, we

could always obtain another in the same manner.

Clearly we need to know how to preserve what we've done for posterity. In
this chapter, therefore, we will go through a series of exercises designed
to show how workspaces can be manipulated by the APL user. In order to

insure continuity, repeat the entire sequence of commands exactly as they
are given.

Workspace contents

We will start off by typing

YCLEAR
CLEAR WS

As we pointed out earlier (page 64), this is one of a family of so-called
system commands, like the sign-on and sign-off. |t has the effect of wiping
out all the work done in the active workspace and replacing it with a

clean workspace, such as is obtained at the sign-on. Remember that the
active workspace is the one that you have currently available to you, in
which all your work is now being done.

To show that this workspace is now empty as a result of the CLI/A? command,

we can use the commands

YFIS
(in both cases the typeball moves over six spaces
YVARS after return, but prints nothing)
and we see there isn't anything in the active workspace.

Since we are going to save some work later, we'll need to put something
tangible into it. For this, let's enter the function /YP :

95

96 APL\360: An Interactive Approach
k<A 1UYP B

(1] Re((A*x2)+B%x2)% .5

Our listing of functions now shows

JFIS
Hyp

Let's add a couple of variables:

PI+3.,141589
V<1 2 3 & 5

and the command

YVARS
PI 4

now shows that PI and V are in storage.

For a second function, enter T0S55:

viross

[1] 72V
and another listing of functions

YFIS

Hyp 7058

confirms that 7055 has been added.

Saving and recovering a workspace

We could continue entering material and checking on it for quite a while,
but for purposes of illustration let's pretend that we are through with our
work at this point and want to preserve these functions and variables.

The system command SAVE does this. However, since users are normally
assigned more than one workspace, even though only one is being used at

any one time, we have to assign a name to the workspace we are saving. This
is so that we'll know what to ask for when we call for it again. APL recog-
nizes only the first eleven characters of a workspace name.

For the work previously entered we'll use the name FIRST:

YSAVE FIRST
15.52.10 03/20/70

We get a message back giving the time and date. This means that the SAVE
was successful and a copy of the workspace is now in storage under the
name FI7ST. The workspace name, incidentally, may be followed by a colon
and lock for greater protection if desired.

There is a command which lists all the saved workspaces so that we know

Workspace Movement 97

what we have in our own APL library ("library' in APL refers to a
collection of workspaces associated with a single identification number).
The command is

JLIB
FIRST

Only one workspace is listed because that's all we have saved so far.
JFNS shows that HYP and TOSS are still around:

JFNS
HYP TOSS

Remember we saved a copy of the active workspace. Let's now get a fresh
workspace:

YCLEAR
CLEAR 7S

imagine that it is the following day and we are ready to do some work with
HYP and TOSS. They were lost from the active workspace when we cleared,
but there is an exact copy stored in our library under the name FIRST. To
recover this copy, execute the command

JLOAD FIRST
SAVED 15.52,19 03/20/70

If a lock was originally associated with the name when it was saved, it
must be included here, separated from the name by a colon. The response
indicates that it was saved at a certain time and date, which, you will
note, is identical with what appears under the original SAVZ command

on page 96.

Our functions and variables are available to us once again:

YFIS

Hyp rT0SS
YVARS

rr v

Here's a check on ¥V to see whether it's still what it's supposed to be:
v

1 2 3 4 5

Often it is the case that we have work to be saved in more than one workspace.
How do we go about this? To illustrate the procedure, type

YCLEAR
CLEAR S

and enter the function SQRT :

VR<SORT X
[11] R«X%x .59

98 APL\360: An interactive Approach

This function, which is the only object in our active workspace at the
moment, we'll save under the name SECOND:

YSAVE SECOND
15,55.10 03/20/70

Before going on, let's be sure we understand what we have immediate access
to at this point, namely a single workspace with only the function S@QR7T in
it, a copy of which exists also in storage under the name SKCOND:

YENS
SQRT

Il
)4

| f we want to access FIRS now, we must execute

YLOAD FIRSEY
SAVED 15.52,19 03/20/70

and we see that H#YP and 70SS are back in the active workspace:

JaRT RN

arTae)

HYp 70585

Now we'll load SECOND (we don't need to clear between loadings because
the act of loading replaces the contents of the active workspace with a
copy of the material in the workspace being loaded):

YLOAD SECOND
SAVED 15.55.10 03/20/70
YFIS

It should be obvious to you that we can access only one workspace at a time.

Let's save still another workspace under the name THIRD. This time,
just to be different, we'll clear and load 1 CLASS:

YCLIAR

1064
YLOAD 1 CLASS
15.02.39 07/29/69

Here is a list of functions:

YFIS
ADD AGAIN AVG AVG1 AVG2 AVGS AVGH AVGS
BASE c cCMP CHMPX CMPY COLCATL COLCAT?
COLCATS 008 cosIiaL Cp CRPUTIME CP1 nec

and we have cut off the printout by pressing the ATTN button because the
list is too lengthy. The contents of 1 CLASS (or perhaps we should be more
precise and say a copy of the contents) will now be saved under THIRD:

YSAVE THIRD
15,58.27 03/20/70

Workspace Movement 99

Our listing of saved workspaces has grown:

YLID
FIRST
SLCOND
JHIRD

Let's clear again, define a couple of variables, and save them in FOURTH:

YCLEAR
CLEAR WS
X«<4 6 8 10
¥«2 5 8
YSAVE FOURTH
10T SAVED, WS QUOTA USED UP

The system tells us, in effect, that we have only three workspaces allotted
to us and they are used up, so we're out of luck. Actually, it is possible
to have more workspaces assigned, but this is a decision which depends on
the configuration of the particular APL system being used and the amount
of available storage.

Dropping a saved workspace

If X and Y were really some big functions or tables of data and we wanted
desperately to save them, then our question is: Which of the three work-
spaces in our library can we afford to sacrifice? Again look at the list:

YLIB
FIRST
SECoND
THIRD

Assuming we don't need THIRD, let's try to save X and Y, which are still
in the active workspace, inTHIRD:

YSAVE THIRD
J0T SAVED, TdIS VS IS CLEAR WS

We are prevented from saving it in THIRD because a stored workspace can't
be named CLIAR WS, and again APL keeps you from destroying a workspace
that was previously saved by replacing it with another workspace under the
same name. As we'll soon see, there is a way to add X and Y to THIRD with-
out destroying what is already there.

Suppose we really wanted to get rid of T#IRD. The command

YDROP THIRD
16,01.03 03/20/70

does this, the response giving the time and day when the workspace was
dropped. THIRD is now gone, as shown by

100 APL\360: An Interactive Approach

JLIB
FIRST
SECOND
in the active workspace we have no functions but still the two variables
X and Y:
YRS
(typeball moves over six spaces)
YVARS
X Y

which shouldn't surprise us, since we haven't done anything to the active
workspace yet. Now that an available slot exists, let's save these variables
in a workspace simply called XY for the sake of variety:

YSAVE XY
16,01,34 03/20/70
YLIE
FIRST
SECOND

LY

and XY is added to our library.

Altering a saved workspace

What if we wanted to save X and Y into FIRST? See what happens when we
try this:

YSAVE FIRST
#O0T SAVED, THIS VWS IS XY

What this means is that the contents of our active workspace have already
been saved under the name XY and therefore can't be saved also under the

name FIRST. |In order to save the material in the active workspace into
FIRST we would have to drop FIRST, and then save the active workspace
under the name FIRXST again. Later we'll see how the COPY command can

be used to merge two workspaces.

Another way to change the status of a saved workspace is illustrated by
the following sequence:

YLOAD FIRST
SAVED 15.52.,19 03/20/70

It currently has

YPIS
HYP 7055

Let's define the function SIGH :

IR<SIGH X
(11 R«(X>0)-X<0QV

Workspace Movement 101

Now our list includes the new function:

YFPiIG
Hyp SIGH T0SS

Here is what happens when we try to save this into SECOND:

YSAVE SECOND
NOT SAVDD, TiHIS WS 17§ PIRST

We are again prevented from doing so because the active workspace contains
FIRST, and we already have a workspace named SiC0HD in storage, but not
in the active workspace.

We can, however, save into FIRST, since a copy of FIRSS exists in the
active workspace:

YSAVL FIRST
16.04,07 03/20/70

FIRST is now updated. This can be shown by clearing and reloading it:

YCLEAR
CLEAR WS
YRS
(typeball moves over six spaces)
YLOAD FIRST
SAVED 16.04,.07 03/20/70
YFNS
iHyp SIGHN T0SS

Notice that the time and day given after the LOAD command is that associated
with the most recent save.

Our library, once more, consists of

YLIB
FIRST
SECOND
XY

but the contents of FITRST are not the same as when we last listed the
workspace functions on page 100.

Summarizing, weé can (1) preserve all storable material in the active workspace
by saving it; (2) recall material from a saved workspace into the active
workspace just as it was when it was last saved; and (3) delete a workspace
with the DROP command.

PROBLEMS

Carry out the following instructions and APL system commands in the order
given:

Define a number of arbitrary functions and variables.

102 APL\360: An Interactive Approach

YCAVE WORKOUE
YCLEAR

Repeat these instructions several times until your workspace quota is
used up. Use workspace names WVORKTI(O, FWORETHREE, etc.,

VLI
How many workspaces can you save in your APL system?

YDROP VORKGIE
YLIB

YLOAD WORKTHUREE
YFIIS

YVARS

Define additional functions and variables.
YSAVE WORKTWO
Why wasn't the material saved?

YSAVE WORKTHRIE
JCLEAR

YLOAD WORKITHREED
YFIS

YVARS

Has WORKTHREE been up d?

Delete several functions and variables from WORKIHREE .

YERASE FH1 Fi2 Vi V2 ...
YSAVE

YLIB

YFNS

YVARS

CHAPTER 15:

Library management

In the last chapter you learned how to save, drop, and load material in
the active workspace. The command LI# was introduced as a means of getting
a listing of the saved workspaces in your personal APL library.

Let's see if the material from before is still there:
YLIEB

FIRST

SECOND

XY

We won't be needing the contents of these workspaces any more, but actually
the command is a very useful one. Someone else may have saved workspaces
in his library with the same names as yours, but there is no confusion
whatever, since each person's workspaces are associated with his own user
identification number. This leads us to an important feature of APL , the
common or public libraries, to be discussed in the next section.

Public libraries

What about this 1 CLAS5S we've been loading all along? Library 1 on the
system on which this text is based is a public library, available to all
users. To find out what saved workspaces are in this library, type

YLIB 1
CATALOG
MININMA
WSFIS
TYPEDKEILL
PLOYFORNAT
NEWS
CLASS
APLCOURS Y
ADVARCED X

Your list may differ somewhat from this because the library contents aren't

static and change from time to time. Notice that CLASS is in there.
Ordinarily, individual APL users cannot save material into a public library

103

104 APL\360: An Interactive Approach

or drop something from it. |If you were to try to save 1 CLASS vyou won't
be permitted to because yours wasn't the user number that saved it the first
time:

YSAVE 1 CLASS
IMPROPER LIBRARY REFERENCE

The rules for so doing depend on the APL system you are using, and
changes in the contents would most likely be made through the system
librarian, if there is one.

Library 1 is a general interest library which is entirely public—a true
system library while library 10 is a special or limited interest library,
intended for developmental purposes. Later, in this chapter, we'll be
using some of the material from library 10.

Let's look at the contents of library 10.

YLIB 10
POLAE
FUNCTIOQUS
MATRIXALG
ALGFORM
PLOT
INVESTHENTS
THIHKGAMES
SWIVEL
[7d0SI7
GAMBLLY
DOCONTROL
SHAPE
coGO
FORLORN
IpIT
SNOBOL
TEXT
TICTACTOR
LPAPT

These lists may seem meaningless to you, but there is a practical way to
find out what is in a strange workspace. As an example, type

YLOAD 1 {WEWS
SAVED 15,10,12 03/12/70

You have probably noticed that the load commands are slightly different

for one's own workspaces as compared to those in the public libraries. As
a matter of fact, for any other library than the user's, it is necessary to
include the library number. Except for public libraries these would gener-
ally be the same as the number of the user with whom they are associated.
The complete command has the form

YLOAD LIB 0. WSNAME:LOCK [if required]

The library number can be omitted tor one's own library.

Library Management 105

Having loaded the workspace JEWS , the best thing to do next is to get a
list of functions:

YEFNS
APLIOKW CLEAR CLEARSKED CREATE EDIT FILE FLE
FMTDT INDEX NJ POS POSITION POSTSKED
PRINT REWORK RWX SCHAEDULE SETDATE SKiDIOTE

START TDATE TRYTEXT TXF

By convention, if there is a function that contains the word HOW or
DESCRIBE or something similar, then executing it will give information
on what is in the workspace. At this time there doesn't appear to be any
such function in NZKS5, which means that the only way we can find out about
the syntax and use of a particular function in WEWS is to display it and
try to figure it out. Of course it may be obvious from the name what it is,
as in SCHEDULE , which gives APL system information. This happens to be
niladic, so we just type

SCUEOULE

ANTICIPATED CHAIGES FPROM TdE [JORMAL SCAEDULE, AS OF 03/12:
04/05 4900 - 1700
o4/12 900 - 1700
o4/19 900 - 1700

TAR JdORMAL SCHUEDULEL IS

HON~FRT SAT OPLR SYSTEM PHONES

9:004M- 8:10PH 2291 RIS, APL 5001,5011,5051,5201,5211
5221,5231

5:30PN~- 5:004M 9-5 2291 RIS. APL 5121,5128,5118,5119

G4 5PM-10:00PM 9-5 1810 BICG IS APL 5105,5131

JOTEy DURING TdE DAY CALL 1402 FOR RECOPDIENG TELLTHGC STATIS GF
APL.

Another niladic function whose purpose is evident from the name is TDATE :

TDATE
ou/10/70

The syntax can't often be determined from just looking at the function name,
but in this case a niladic header is the most reasonable one because no argu-
ments are needed. All we want is information.

Another workspace in library 1 is PLOTFORMAT. Let's take a look at it:

YLOAD 1 PLOTFORMALT
SAVED 9.41.16 12/10/6¢

In it are

YRS
AND DESCRIBE DFT EFT PLOY Vs

106 APL\360: An Interactive Approach

There are a number of aids to plotting in this workspace. Since DESCRIBE
is in here, we'll execute it and display part of the contents:

PHE WORKING FUNCTIONS Id THIS WORKSPACE ARE:
AllD DFT LFT PLOT)

Sy HAMES AND COMPOSITION OF Ty GROUPS IHN THIS VORKSPACT ARE:

DFITGP: AND DFT

LEPTGP: AND EFT

PLOTGP: AND PLOY VS

DESGP: DESCRIBE HOVFORMAT HOWPLOT

DESGP CAN BE USED TO CONVENIE(ITLY FRASE THD DIZSCRIPIIVE MAUTTER
D0 MAKE MORE ROOM IN THE VORKSPACE. THE OTIER GROUPS CAN B USED
I'C SELECTIVELY COPY THE IJIDICATED FUINCTIONS.

SYITAX DESCRIPYTION

d«A AND B ESSElTIALLY A COLUMI-CALZNATOR, VIV SO HXTRA
EFPFECTS VHEN THE ARGUMENTS ARE 0T MADPPICNS,
THIS FUypcrion 15 DESIGARND TO 28 USED JITHED
TNDEPENDENTLY, OR IN CONJUNCTION VITd VS,
TOGETHER, THEY PROVIDE A CONVENILDND WAY OF FOR!M-
ING INPYUT TO THE PLOT FUNCTION.

L«A DFT D FORMS FIXED-POINT OUTPUT. MHORE DETAILED DIRFC-
TIONS CAN Br FOUND 1IN THE VARIABLE JHOVFORMAL,

The (¢OPY command

We already know how to define the cosine and sine functions (see pages 56
and 57), but suppose we'd like to have the cosine function available in our
workspace called SKFCOND. There is one in CLASS, but we don't need the
whole workspace for this. Can we select just what we want and transfer it
from CLASS to SECOND? The diagram on the next page shows the situation.

Each saved workspace may have many functions and variables. The active
workspace may get its contents by your having loaded a saved workspace
(your own or from another library) as well, of course, as from what you
may be putting into storage yourself at the keyboard. In the diagram
the arrows show the paths by which material can be transferred to your
active workspace by the LOAD and COPY commands, the latter to be dis-
cussed shortly.

Library Management 107

Other User Libraries

Your OAD
Active L

Workspace COPY

SAVE LOAD & COPY

Public Libraries

Your FIRST
Library
of

Saved SECOND
ws

LOAD
l COPY

I
I

IR

Workspace and Information Transfer in APL

Now our problem is to take SECOND, which isn't exactly bursting at the
seams at the moment:

YLOAD SECORD

SAVED 15.55.10 03/20/70
YFHS

SQRT

and place the function C0OS and an accurate value of PI (also in CLASS)
in it.

The sequence of steps is not too complicated. We first need to move
SECOND into the active workspace by loading it. We've done it already, but
there's no harm in doing it again:

YLOAD SECOND
SAVED 15.,55,10 03/20/70

To add COS and PI, the COPY command is used. The proper form is
YCory LIB HO. WSHAMNE FUNAME

The response to a successful copy is the time and date that the workspace
from which the copy was taken was last saved. Specifically, for our problem:

YCOPY 1 CLASS COS
SAVED 15,02.39 07/29/689

108 APL\360: An interactive Approach

and now

YFNS
cos SORT

COS has been added to the list of functions in S&C0ID. Repeating this
for PI:

YCOPY 1 CLASS PI
SAVED 15.02.,39 07/29/69
YRS
cos PI SORT

You might be tempted to think of PI as a variable with a specific value,
but the fact that it appears in the list above shows clearly that it is
a function. Why make it a function? Suppose we happened to specify a
less accurate value:

PI«3.1415

SYNTAX IRROR
PI«3.,1u415
A

and a syntax error is returned. We can't store a value under a function
name. Thus making it a function (it is niladic, returning an explicit
result, as you can see if you display it) makes it difficult to destroy the
stored value of PI.

To save this new material into SECOND, type

YOAVE
16.,45,23 03/20/70 SECOND

The system response gives the name of the active workspace to the contents
when none is specified.
This time, let's try to copy something that doesn't exist:
Yyoory 1 CLASS SId
OBJECT NOT FOUND
No copy is found.
If we were to try to copy something that already existed in our active

workspace, as, for instance, C0S, we get the response shown:

YJCOPY 1 CLASS COS
SAVED 15.,02,39 07/29/69

and the copy is successful. Having obtained C0S5 from CLASS, the system
searches the active workspace to see if COS is in it. If it isn't, it is
entered. If it is, it is replaced by COS again. Clearly no protection is

needed in such a case, but if the COS function already in the active work-
space happened to be different from the one in CLASS, it would be replaced
by the latter.

Let's now bring some more things into the active workspace, as, for instance

Library Management 109

YCOPY 1 PLOTFORMAL AND
SAVED 9.41.16 12/10/689

Now we have

YFIS
AND cos PI SOQRT

This could be saved into SZCOND if we so desired. However, as we saw in
fadsil

the last chapter, we are prohibited from saving into FTRST or XY, the other
two workspaces in our library:

YLIE
FIRSY
SCCOND
XY

All copying takes place in the active workspace. We cannot copy from one
saved workspace into another saved workspace unless the latter happens

to be in the active workspace at the time of copying. We must load the
saved workspace first, copy into it, then resave to update or enlarge it.
Thus, COPY follows the same paths for transfer of material between
workspaces as LOAL (diagram, page 107). One final point. The COPY com-
mand is valid for all global objects. This means that global variables as
well as functions can be transferred in this manner.

The workspace CONTINUE

There is one more workspace in the user's personal library that needs
discussion. It is called CONTINUE . |If you were to lose your telephone
connection with the APL system as a result of some local failure not
involving the central computer, everything in your active workspace will
automatically be available to you when you sign back on. This is because
the system plunks the contents of your active workspace into a workspace
named -CONTINUE, available to all users, and reloads it at the next sign-
on, as indicated by the response SAVED right after '""APL\3G0."

CONTINJUE is really an extra workspace not part of the regular user
allotment, and can be used for emergencies if the other workspaces aren't
available. However, you have to be very careful with it. Each time there
is a line failure the contents of CONTINUE are replaced by whatever is

in the active workspace. So if you must, you can save work into CONTINUF,
since it is always available to you. But it isn't a wise move for long-term
storage because of the danger posed by the replacement of its contents

in the event of a line failure in the interim.

Summary of system commands

We have introduced and explained a number of system commands in the notes
thus far. For the convenience of the user these will be summarized and
classified. In addition, a few new commands will be included. These will
be explained briefly, but not illustrated. Their action should be evident
to the user from the discussion.

110 APL\360: An Interactive Approach

The first category consists of
SIGN-ON AND -OFF COMMANDS
YUSER NO. signs on; lock optional; clear ws activated

unless previous connection broken, in which
case CONTIHUE is loaded

YOFF signs off; deletes active ws; terminates
phone connection
YOFF HOLD same as)OFF but doesn't terminate phone

connection for 60 seconds so that another user
can sign on in that time

YCOUTTIUE signs off; active ws saved in COVTTNUE
(same as what happens in case of a disconnect);
terminates phone connection

YCONTTIHUE HOLD same as)CONTINUE but phone connection held
for 60 seconds

In all sign-offs when the command is followed by a colon and a lock, the
lock will have to be included in subsequent sign-ons unless changed again.

A second category includes

COMMANDS CHANGING THE STATUS OF THE ACTIVE WORKSPACE

YCLEAR deletes everything in active ws

YLOAD LIE NO. WSWAME moves image of ws to active ws; lib. no. not
needed for user's own ws; lock optional after
wsname

YCOPY LIB NO. WSHAME OBJ moves image of global object to active ws;
lib. no. not needed for user's own ws; if no

object name is given, all global objects
in the ws are copied; lock optional after
wsname
YPCOPY LIB NO. WSNAME 0OBJ same as)COPY but protects the active ws
in case of name duplication
VSAVE WSHAME moves image of active ws into user's library;
lock optional after wsname; omitting wsname
saves active ws under name of last ws loaded
YOROP HSWAME deletes ws from user's library
YORASE OBJHAME(S) deletes global object(s) from active ws

The COPY command should not be used in lieu of loading, since the CPU time
used to copy an entire workspace is much greater than that required for
loading. COPY should ordinarily be reserved for individual global objects.
It can be used for merging two workspaces by loading one of them and
copying the other into it.

The last category consists cf

INQUIRY COMMANDS

JLIB NO. lists ws's in library; no. not needed for
user's own library
YFNS LETTER alphabetically lists functions in active ws

beginning with letter entered (if any)

Library Management 11

YVARS LETTRP alphabetically lists global variables in ac-
tive ws beginning with letter entered (i f any)

YS T lTists functions which are suspended or
pending, most recent function first

VSTV same as J)SI but includes names of local
variables

YPORTS lists ports in use at time of inquiry,
with code names of users signed on

YPORT CODEF lists all port numbers associated with the
given user code

YWSTD identifies active ws

YWSID NAME changes identity of active ws to NAME

As was pointed out on page 93, it isn't a good idea to hang on to suspended
functions. Try to find out what is wrong and remove the suspensions. This
is especially important because when a workspace is saved or loaded, any
suspensions present are carried along.

There are some additional commands changing the status of the active
workspace, as well as one more category consisting of message commands.

These will be considered in chapter 34.
PROBLEMS
1. Follow the instructions given and carry out the indicated system
commands :
YLIB 1
YLOAD 1 WSFIS
YFUS
YVARS
| f there is a function or variable named DESCRIBE or HOW, execute it.
YWSID

Define a function RECT which gives only the area of a rectangle of
length L and width W. Display it after executing.

YJCOPY 1 CLASS RECT
Was your own defined function RECT unchanged?
JERASE RECT
Redefine #ECT as above to give only the area of a rectangle.
YJPCOPY 1 CLASS RECT
Does this command behave the same as COPY?
YSAVE JONES

I f the workspace was not saved, drop one of those in your library and
then save it.

112

APL\360: An Interactive Approach
YPORTS
Change the name of your active workspace to SMITH

JWSID SMITH
)SAVE

JCLEAR

JLOAD 1 NEWS
JSAVE 1 NEWS

Why couldn't NFWS be saved?

JCONTINUE HOLD

Sign on again under your user number

JLIE
YRS
YVARS

What was the effect of signing off with CONTINUE HOLD ?

You have saved your work in a workspace called GO0OD and have just
developed a function OK in your active workspace. Write out a sequence
of commands which will get OK into GOOD without carrying with it any
unwanted ''trash'' which may be in the active workspace.

CHAPTER 16:

Mixed functions

Thus far we have worked with standard scalar dyadic and monadic functions.
One of their characteristics is that the shape of the result is the same

as that of the argument. For example, if the arguments are vectors, so is
the result. Ditto for scalars. In this and subsequent chapters, additional
functions will be introduced in which the shape of the result is not related
in such a consistent way to that of the arguments. Appropriately, these

are called ""mixed'" functions.

Index generator

To start off, let's consider a familiar algorithm: the one associated

with our earlier investigation of the cosine function. Here is a review of
the steps involved, the last being a one-line APL expression which does
the calculation:

X+«3.14159:4

TOP+«£*0 2 4 6 8 10 12
BOT«!0 2 4 6 8 10 12
~/TOP:BOT

~/(X*xV):'V«0 2 4 6 8 10 12

Wouldn't it be nice to have a way to generate these sequences so as to
eliminate the monotony of typing? What's more, the only way now that we
can change the length of the sequence is to type in more or fewer numbers.

In APL the mixed function 1, which is upper shift I on the keyboard,
solves all your problems—or at least some of them, if you don't like
exaggeration. When used monadically with positive integer arguments, it
is called the index generator. Let's see how it works. Enter

15
1 2 3 2] 5
and a vector of integers from 1 to 5 is produced. Here is another:

113

114 APL\360: An Interactive Approach

16
1 2 3 4 5 6

Now we're ready to use this function to produce the sequence needed for
calculating the cosine. We know that multiplying any number by 2 produces
an even number. Since our desired sequence is 0 2 4 6 8..., this suggests
that we need

2x16
2 4 b 8 10 12

Almost, but not quite there, 0 being omitted. The correct expression
should be

T242x16
0 2 4 6 8 10

and we have it. We can get something else out of this for free. |If adding
2 gives an even sequence, then adding 1 should result in a sequence of
odd numbers:

T1+2x16
1 3 5 7 9 11

Getting back to our cosine function, we can now incorporate 1V for a variable
number of terms. First

YCLEAR
CLEAR W&

and we are ready to define the function. Since N, the number of terms, is
now a variable, we ought to make the cos function dyadic. We may want to
use the result for other calculations, so the header should be set to return
an explicit result:

VRl COS X
(1] Ve 2+2x10
2] Re-/(XxV)1 VV

In 1 CLASS there is an accurate value of PI. As we saw previously, we can
transfer this to our active workspace by typing

YCOPY 1 CLASS PI
SAVED 15,02,39 07/29/69

Here is cos PI+3 evaluated for a varying number of terms:

2 C0S PI+3
0.4516886444

4 C0S5 PI+3
0.4999645653

6 COS PI+3
0.4999934996Uu

8 CNS PI+3
0.5

Mixed Functions 115

Even though the tast result is shown as .5, it is still approximate, the
.5 being the best value to ten places.

Our 1 function is good for all kinds of sequences. Suppose we want a multi-
ple of the first five integers. Try

15%2
1 2 3 4 5 &) 7 8 9 10

We forgot parentheses. |t should be

(15)x2
2 4 6 8 10

Sequences like powers of 2 can be obtained:

2%x15
2 4 8 16 32

This can be easily modified to get 2 raised to the O power:

2%« 1415
1 2 4 8 16

Now look at the following seguences:

15
1 2 3 4 5
14
1 2 3 [
13
1 2
12
1 2

So far, they seem straightforward. Obviously, 1§ generates a vector of ¥
components. Well, if you're so sure, what is 117

11

Carrying the analogy along, t1 is a vector of length 1 containing the single
component 1. Is it the same as this 17

1

They look the same, but looks aren't everything. The 1 we typed is a scalar.
The result of 11 is a vector. |In mathematics there is a term which is asso-
ciated with the difference—rank, about which we'll have more to say later.

One (?) down, one to go. What about
10

(typeball moves over 6 spaces but prints nothing.)

116 APL\360: An Interactive Approach

This must be a vector of no components, and the system in its response is
trying to print a vector of length O, but there just aren't any components
to put on the paper!

What good is a vector of length N? A good question. You can't really
appreciate its uses until you begin to define functions for yourself. But,
in the meantime, think about this: if you needed to generate vectors of
varying length and you were looking for a starting place for a counter to
keep track of what you were doing, what better place to start than with

a vector of no components, the empty vector 107

Dimension vector

There is another mixed monadic function which gives the length or dimension
of a vector. It is represented by the symbol p, pronounced ''rho'' (upper
shift R). Let's define a couple of vectors X and Y and look at how this
function works:

X+2 3 5 7
pX
uy
Y16
oY
6

This is just the thing we were looking for some time back when we were
writing the awkward expression +/X=x to get the number of components in
a vector for use in AVG, which can now be redefined a little more compactly:

VR«<AVG X
(1] Re(+/X)2p XV

Trying it out, it seems to work OK:

AVG 1 2 1 2 1 2
1.5

Actually, p isn't as limited in its applicability as would appear from the
above. It gives information about multidimensional arrays of numbers as
well., In1 CLASS are some sample arrays for illustrative purposes called
TABO, TAB1 , TAB2 and TAB3. Enter them in your active workspace with
the COPY command:

YJCOPY 1 CLASS TABO
SAVED 15.02.39 07/29/69
YCOPY 1 CLASS TAR1
SAVED 15,02.39 U7/29/69
YCOPY 1 CLASS TAB?2
SAVED 15.02.39 07/29/69
JCOPY 1 CLASS TARS3
SAVED 15,02.39 07/29/69

Now apologies are in order for making you do all the typing at this time.
In chapter 34 a new command will be introduced which will enable you to

Mixed Functions 117

group these four variables and copy them with a single instruction.

Display 7AB0 :

TABO
4.1

I't's just the scalar number 4.1. Look at,pTABO:

pTABO

@
From this point on @ will be used to indicate the point where the typeball
comes to rest when the result is an empty vector.
T4B0, the scalar, has no dimensions. |t doesn't '"'extend out' any distance
in any direction, unlike a vector or a matrix. |In this sense it's like an

idealized geometric point, which is also considered to be dimensionless.
Let's investigate TAB1:
TAB1

1,414213562 1,732050808 2 2,236067977
pTAB1

pTAB1 yields a single number, which tells us that it is one-dimensional
(a vector), with four components along that dimension.

Now for TAB2:

TAB?2

O g W
-
o

~N R

pTAB?2

Here we have a two-dimensional array (matrix), with four components along
one dimension (no. of rows) and three components along the other (no. of
columns) .

Finally, display TAB3 :

118 APL\360: An Interactive Approach
TAR3

111 112 113
121 1272 123
131 132 133
141 142 143

211 212 213
201 222 223
231 232 233
201 242 243
p TAR3
2 4 3

This may look peculiar, but remember that we are restricted to two-dimensional
paper to depict a three-dimensional array. |f you think of the lower half

of the table as being a second page lying behind the first, you will see
where the third dimension comes in. The result of p74AB3 indicates that

we do indeed have a three-dimensional array, two components deep (no. of
planes), four components down (no. of rows), and three components across

(ho. of columns).

Rank
Earlier in this chapter, rank was mentioned as a distinguishing description

of the number of dimensions of an array. Let's see how this is handled in
APL . First, consider

ppLARO
0
An unexpected response? Not really, when you think about it. Let's see
if we can construct a plausible explanation. First we'll line up the

responses from pTABO- 3:

oTABQ

@

pIARB1
N

pTAB?2
4 3

nTAB3
2 L 3

What do you see? The shape of p applied to an array of N dimensions is a
vector of N components. So pTABO must really be a vector of length 0, i.e.,
10. Now you should be able to understand why ppTAB0 results in O:

p10

Clearly the number of components in a vector of length 0 is 0, i.e., there
are no components.

Mixed Functions 119

Similarly, we get

ppTAE1
1

ppTAB?2
2

ppTAB3
3

Thus, pp of any array gives the number of dimensions of the array, to
which the name rank is attached. A scalar is of rank 0, a vector rank 1,
and a matrix rank 2, while the array of rank 3 is sometimes called a tensor.

At last we are ready to tell the difference between

11
1
and

1
1

They have different ranks:

ppl
0
ppal
1
PROBLEMS
1. Drill. Specify 4«0 8 "3 4 6 10
pA 110 +/115
ppA4 (15)+3 15
pppA TT7x11 128+3+1
Al 0.8x16 1[/74 110000

2. What is the difference in meaning of the two expressions p4=6 and
b=pAd?

3. Load 1 CLASS and execute each of the following:
x/pTABO x/pTAB2
x/nTAB1 x/plAB3

What information is gained from these instructions?

L4, For the vector A (prob. 1) execute 1pA and pip 4. What meaning can be
assigned to each of these expressions?

120 APL\360: An Interactive Approach
5. Write one-line monadic functions returning an explicit result to give
A) the sum of the square roots of the first N positive integers
B) the square root of the sum of the first N positive integers
C) the geometric mean of the first N positive integers (the
nth root of the product of the N numbers)
6. Construct each of the following sequences using 1:
13 5 7 9 11 13 15
"7 T2 3 8 13
60 0.3 0.6 0.9 1.2 1.5
7250 150 TS50 50 150 250
54 3 2 1

101010

7. Enter 13x13. Account for the error message.
8. Write an APL expression to generate a vector of fifty 1's.

9. Rewrite each of the following statements without parentheses:
T14(-/(15))x2
+/(15)-1
+/((15)+1)=5
+/0=(15)=6

10. Write functions that would approximate each of the following series to
N terms:

11. Write an APL expression that yields 1 if the array 4 is a scalar, 0
otherwise.

CHAPTER 17:

More mixed functions

In our work with vectors, up to this point, we haven't said anything about
how we might add components to increase the length of the vector, which
would certainly be desirable if the vector represented, say, the bills run
up by a single customer in a department store. Our only recourse, thus far,
has been to respecify the vector by retyping it with the additions, which,
you'll agree, isn't very satisfactory.

Catenate

APL does have such a chaining feature for vectors on the keyboard. To
illustrate how it can be done, let's build a simple adding machine with
only a few keys on it. Here is the simulation:

KEY PURPOSE/ACTION

C clears accumulator

E allows entry of values and prints no. of
values accumulated since last entry

S prints sum accumulated

Such a simulation is provided in 1 CLASS, which should be loaded now.

YLOAD 1 CLASS
SAVED 15.02.39 07/29/69

Type
C
@
Next, type £ and enter the data as shown:

E 5 3 1
3

The system responds with a 3, indicating that three values have been entered.
Again make an entry:

121

122 APL\360: An Interactive Approach

Typing S gives the sum of the values accumulated:

Iad
e

20
We can continue to enter values and get the sum:

E 2

6
S

22

Now clear:

c

@

5
0

£F 123
3

S
6

What do the functions look like that comprise this simple desk calculator?
First, let's display C:

verLnly
v C
f1] VECT<10

v

It is niladic and doesn't return explicit results, which is reasonable
enough since its function is only to set the accumulator VECT to 10 each
time it is executed. VECT is a global variable and in C is an empty

vector, a good place to start.

Here is E:
vELOIV
v E X
[1] pVECT<«VECT , X
v

It has one argument, X, and takes the components in X and tacks them on to
the back of VxCT. This result is stored in VECT and the number of com-
ponents resulting is printed out. In effect we update VECT and print out
information about its components at the same time.

A new dyadic function is introduced in E. |t is called catenate, the
symbol for which is the comma, and its job is to catenate or chain together
its two arguments.

Next, we'll display S

More Mixed Functions 123

vsLOlv
V R+S
M R++/VECT
v

All S does is print out the sum of the accumulated values in VECT .

The catenate function has a number of characteristics worth noting. |If,
for example,

Je13
K+«9 8 7 6

and we catenate J and X and put the result in Y,
Yed K
then there are seven components in Y:

pY

Two vectors can be catenated. What about a scalar? Can {t be catenated
to a vector? Consider

For purposes of catenation, the 6 is regarded as a vector of length 1. |If
this is so, we ought to be able to catenate two scalars to make a vector:

X<3,5
X

X is now a vector of length 2, containing a 3 and a 5.

Catenating 10 to a vector gives the same vector, as we would expect:

J,10
1 2 3
(\O)’57
1 2 3

What about catenating a vector of length 0 to a scalar?

R+6
ppR

0
T«R, 10
T

8
ol

124 APL\360: An Interactive Approach

opT
1

T is a vector of one component, as shown by the last two results. Clearly
the result of catenation is always a vector.

Ravel

If we're not careful, this vector-scalar distinction can cause difficulties.
Sometimes it is advantageous to have a vector of length 1 instead of a
scalar. As an example, look at AVG in 1 CLASS, which you should still
have in your active workspace:

VAVGL(I]Y
V R<AVG X
(1] Re(+/X)s+/X=X
v

It appears to work with both vector and scalar arguments:
AVG 2 3 4

AVG 4
Y

Now let's use detailed editing to change +/X=X to pX:

VAVG[1(J10]
1] Re(+/X)3+/X=X
/1771
ril Re(+/X):pXV

AVG is still in working order:
AVG 2 3 &

3

or is it?
AVG U4
@

Something must be wrong. One check is to see what pAVG 4 is:

pAVG 4
0

which means that AVG 4 must result in a vector of length 0. Why should
this be? Again let's display the function:

VAVGL[I]V
V R«AVG X
[1] Re(+/X)spX
v

More Mixed Functions 125

Working from right to left on line 1, if X is a scalar, then pX is an
empty vector. But the algorithm calls for dividing +/X (a scalar) by pX
(in this case a vector of length 0). Dividing a scalar by a vector gives
a result which has the same shape as the vector argument. Need we say
more?

Interesting though all this may be, it doesn't solve our problem. Our
function, to be consistent, should return a result of 4 in this case.
Somehow we have to make the argument X a vector if it isn't one already.

The APL function which does this is the monadic ravel, which uses the same
symbol, the comma, as the dyadic catenate. We'll now insert this between
p and X in AVG :

VAVGL1(]10]
(1] Re(+/X)ipX
1

[1] Re(+/X)3p0,XV
Now executing AVG 4, we get the anticipated result:

AVG 4

The ravel function has some interesting uses. TAB2 is a good example.
TAB2

1 7
10 i

9 i

6 7
pTAB2

[l o2 T B OV]

y 3
,TAB?2
3 1 7 7 10 4 6 9 1 1 6 7

Notice that the last coordinate is raveled first, and there are as many com-
ponents in the ravel as in the original array:

x/pTAB?2
12

p,TAB2
12

If we try to catenate two arrays of different rank, we run into difficul-
ties:

4 56 7 8,2 3p16
RANK ERROR
4 5678, 23 pt6
A

This can be remedied by raveling the right argument first:

4 5 6 7 8,,2 3prb
4 5 6 7 8 1 2 3 4 5 6

126 APL\360: An Interactive Approach
Again, with TAB3
TADB3

111 112 113
121 122 123
131 132 133
141 142 143

211 212 213
221 222 223
231 232 233
241 242 243
LTAB3
111 112 113 121 122 123 131 132 133 141
142 143 211 212 213 221 222 223 231
232 233 241 242 243

Thus, no matter what the rank of the array with which we start, the monadic
ravel converts the array to a vector.

Restructure

|f we can reduce matrices to vectors, as we did in the last section, we

also ought to be able to reshape vectors into matrices or higher rank arrays.
The dyadic p, called restructure, does this for us. We'll start by speci-
fying

U«4 3 5 7 8 9

Suppose we want to build a two-dimensional table with the first row 4 3 5
and the second row 7 8 9. The restructure function rearranges the elements
in the right argument to have the shape of the left argument:

2 3plU
L 3 5
7 8 9

Here is an example where the left argument contains only a single component:

3plU
4 3 5

Not only does the number of components in the left argument give the rank
of the resulting array but, in addition, when we run out of numbers in the
right argument, we go back to the beginning of the argument and start over.

This will be evident from the following illustrations:
503

3 3 3 3 3
5p0 1

0 1 o 1 0

and if there are more numbers in the right argument than are needed to build
the array,

More Mixed Functions 127

3p9 8 7 6 5 4 3
9 8 7

only as many as are called for in the restructure will be taken (in order).

So far our right arguments have been vectors. What happens when we have a
matrix on the right?

A<2 3p2 3 4 5 6 7

A
2 3 4
5 [} 7
2 3 LpA

[o3]
~J
N
w

L 5 6 7
A«<2 3 4 5 6 7
2 3 LpA

£ o
[SalN
[o20 8}
~ W

2 3 4 5
6 7 2 3
b 5 6 7

from which we can conclude that whatever the shape of the right argument
A, for restructuring purposes it is in effect ,A. This is perfectly rea-
sonable, since raveling an array of rank 2 or more before reshaping is
just what most people would do if they had to do it by hand.

Finally, what if the right argument contains no components, i.e
empty vector?

., is an

3p10
DOMAIN ERROR

3p10

A

There are no components on the right to perform the desired restructure on,
so the instruction can't be carried out. But now try

0p10

@

(10)pr0
LENGTH ERROR

(10)p10

A

128

APL\360: An Interactive Approach

Can you think of an explanation for these results?

PROBLEMS

1.

Drill. Specify M«2 u4p18 and V<+3 3p19

oM 5 4pV 3 3p1,3p0

(T2) 1 2 V,M 5 4po

2,1 2 6p12 5,4p0

poV 100100 pp0p9 10 11 12

What is the difference between p4,p0B and (p4),pB for two vectors 4
and B?

Write an APL instruction to cause three 2's to be printed out in a
vertical column.

Select 100 random positive integers, none of which is greater than 10.

A) Construct a matrix whose dimensions are always random and not
greater than 8, made up of elements which are random positive
integers not greater than 150.

B) Modify your result for A) to make the upper bound for the elements
itself a random number less than 300.

Use the ravel, restructure and catenate functions to reshape a 5 u4
matrix 4 and a 7 4 matrix B into a 12 4 result R such that the first
five rows of R contain 4 and the last seven, B.

This chapter introduces the function £ as part of a simulated adding
machine. Suppose the function E were dyadic. How could you tell the
difference between it and, say, 6F8 in exponential notation?

Make the scalar S a vector without using the ravel function.

You are given the job of designing a loop function in which the final
result is a vector to be built up by tacking on the back end what

comes out of each pass through the function. Assume there is nothing
in the result to start with, and each time the loop is traversed the
result is some vector @. Write a two-step algorithm that will do this.

Define a monadic APL function that will take a vector V with an arbi-
trary number of components <7 and insert as many O's in the front to
make the result a seven-component vector, i.e., 3 2 5 7 becomes
0003257,

CHAPTER 18:

Character data

Have you noticed that except for variable and function names the input and
output that we have been working with has been entirely numerical? You
have undoubtedly observed that when by mistake you enter alphabetical char-
acters without a specification you get a value error. This hasn't been

a real problem up to now, but what if in our output we wanted to label the
results or associate some message with them? We need a way to have such
literal (character) output alone or mixed with numerical information.

Some examples

In1 CLASS, which should now be loaded,

JLOAD 1 CLASS
SAVED 15,02.39 07/29/69

the function RECT shows the need for some kind of identification for the
output:

VRECT[J]V
vV L RECT H
(1] 2xL+H
[2] L HYP H

[3] LxH
v
3 RECT 4
14
5
12

The three lines of output are the perimeter, diagonal and area (in that
order) of the rectangle whose sides are 3 and 4. But we had to look back
at the function to see what each of the numbers represented.

Also in1 CLASS is a similar function GFEQ2 , which does contain identify-
ing information. Try

129

130 APL\360: An Interactive Approach

3 GHO2 4
PERIMITER TS
14
AREA IS:

12
DIAGONAL I5:
5

This is more like it, so let's open up the function and look at it:

VGEO2[11]V
Vv L GEO2 H; X

[11] X«' 75
2] "PERIMETER' , X
(3l 2x L+
[u] VARFEA' , X
(5] Lxil
[6] '"DIAGONAL' , X
[7] L nyr n-
v
Line 1 looks like nothing we've done so far. It appears to introduce a

new use for the quote sign, namely, to enclose literal characters. As a
matter of fact, not only are there obvious alphabetic characters I and S

but also a colon used as a punctuation mark, and even blank spaces at either
end.

APL interprets each of these, including the blanks, as a character of
literal information. But it does more than that. Since, in line 2, cate-
nation is used between the set of characters on the left and those on the
right {stored in X), this suggests that such characters are components of
an array, in this case of rank 1. It's a fancy way of calling what is
between the quotes a vector. However, since we could conceivably have a
table of characters, the rank will depend, as with numerical information,
on the shape. X here is a vector of length 5.

Continuing down the function, lines 4 and 6 catenate the words PERTMETER
and OITAGONAL , respectively, to X, which consists of the word IS and
the colon. Since even the spaces are counted as components of the literal

vector, you should be able to see why at least the one before IS was neces-
sary.

Don't get the idea that you have to be in function definition mode in order
to deal with literals. For instance:

A« IIELLO !

Again, notice the space after the 0. Counting the space, it's a vector of
length 6:

o A
6

We can do some rather cute things with these literals. As an example, if

Character Data 131

RBe'IOW ARE YOU'
B
HOW ARY YOU

then catenation forms the message

A,B
HELLO [10W ARE YOU

However, there comes a time when we have to be serious in our use of liter-
als. Suppose we had a family of rectangles we wanted information abcut:

1 3 GEFO2 1 4
PERIMITER IS:

4o 1y
AREA IS:
1 12

DIAGONAL IS:
1.414213562 5

Our answers are OK, but the labels don't look right. What would be nice to
have is identification to match the output. Specifically, the labels should
be followed by ARFE or IS depending on the number of components in the argu-
ments.

Try now

1 3 GFO3 1 4
PERIMETERS ARE:

414
AREAS ARE:
1 12

DIAGONALS ARE:
1.414213562 5

If we give only a single rectangle to this function, we obtain

3 GFO3 4
PERIMRETER IS:
14
AREA T5:

12
DIAGONAL IS:
5

GEO3 does exactly what we want it to, and changes the alphabetical infor-
mation to fit the conditions of the problem. Let's display GE0O3:.

132 APL\360: An Interactive Approach

VGEOS[[]v
V L GEO3 H;X;FLAG
(1] FLAG<((p,L)>»1)v(p,H)>1
[2] Xe((4x~FLAG)Yp " I5:'),(6xFLAG)p'S ARE:'

[3] VPERITMEVER X
L] 2x[,+H
(5] VAREAY , X
L6l LxH
(7] "DIAGONAL' X
(8] L HYP H

v

The first thing to note is the presence of the two local variables X and
FLAG. Looking at line 1, if the number of components in either L or H

is greater than 1, then the variable FLAG is set to 1. Otherwise, it is 0.
If the result of line 1 is 1 (i.e., we ask for information on more than one
rectangle), 6xFLAG is 6, and the 6 restructure of 'S ARE:' is simply the
characters S ARE . At the same time ~FLAG would be 0 and 4x0 is 0, so
that the O restructure of ' IS:' results in no characters being printed.
When catenated, the effect is just 5 ARZ. You should be able to figure
out for yourself what happens in this line if FLAG is 0. Line 2 thus tells
the system to pick up IS: or S ARE: , depending on the length of the argu-
ments. The rest of the function is like GEO2. Finally, here is some food
for thought before leaving this function: why must the arguments L and H

in lTine 1 be raveled before p is applied to them?

Rules for literals

It is important that when literal information is entered, both quotes appear.
Otherwise you have an open quote, not unlike the problem we faced before on
page 21 when in forming the symbol for the combination function we failed to
line up the quote and period.

We mentioned before that even spaces in quotes are characters. This brings
up the interesting question of what effect pressing the return key before
typing the second quote has on the output. Could the return itself be a
character? Here is an example:

D«'ENGINFERING'
oD
11
G«'ENGINE
ERING'

G types out as
G

ENGINE

ERING

and has one more character than D:

oG
12

Character Data 133

Occasionally a word to be entered has an apostrophe in it. Since this is
the same character as the quote, how can it be handled?

We' TSN' T

e

The typeball doesn't move over the usual six spaces after the return key.
Why? There are three quotes on the paper. Since quotes are used in pairs,
except where they are a part of an overstruck character, the cure is to
type another quote:

A\l

SYNTAX ERROR
We'ISNY T !
A

Now the system is back in desk calculator mode.

To get the apostrophe in, APL uses a double quote:

We'ISN' ' 7!
W
ISN'r

What about all the functions we've studied so far? Do they work with
literals? Let's try some and see:

A«!X'

B«t'Y?

A+R
DOMAIN FERROR

A+B

A

A<B
DOMAIN FERROR

A<B

A

These functions make no sense operating on literals because literals aren't
orderable. Indeed, most of the standard functions would behave similarly.
But consider

A=D
0

Here we are asking the system to compare each component of the vector 4 with
the corresponding component of B. There is only one component on each side,
and they don't match, so the response is 0. The function # works similarly:

A=xR
A more sophisticated way in which = can be used is shown in the following

example, which asks how many occurrences of the letter E there are in the
vector D:

134 APL\360: An Interactive Approach

D
ENGINEERING
+/VE" =D
3
vptep

1 0 0 0 0 1 1 0 0 0 0

Another function which works with a literal argument is the dyadic p, which
isn't surprising since all it does is reshape the argument:

ALF<'ARCDEFGHIJKLMNOPQRSTUVWXYZ'
4 6pALF

ABCDEF
GHIJKL
MNOPQR
STUVWX

Up to this point we have used only alphabetic characters, punctuation marks,
spaces and the return as literals. Actually any keyboard character, in-
cluding overstruck ones, can be employed in this manner. This can lead to
some strange looking situations with numbers:

T<'10"

T
10

But T doesn't have the value 10:

5+5
10
=10
0 0
Neither component of T matches the 10 on the right! |f this is puzzling to

you, remember that T is a vector of two components, 1 and 0, which obvi-
ously aren't equal to 10.

One other point about character entry. Take

p'ABC!
3
D'AB'
2
O’A'
@
This means that a single character is considered to be a scalar, and in
order to make it a vector we would have to ravel it:
D!'A'
1

And, finally:

Character Data

K
0
"' s an empty vector {equivalent to 10).
PROBLEMS
1. Drill. Specify X«"MISSISSIPPI' and Y«'RIVER!
YABCDE'="BBXDO" 1 2<'MP! ppAL«3 3p'ABCDEFGHI'
pV«'3172" pX,Y X=15"
(pV)pV +/X='5" +/'P'=X
3172=V +/X='5! +/(X," T, Y)=r s
X,Y X,'" ',Y v/X="R"'

2. Here is a record of executions with an unknown vector D:

D

@

pD
15

5xD
DOMAIN ERIROR

5xD

A

tot=p
1 1 1 1 1 1 1 1 1 i 1 1 1 1
What is D?

135

3. Define a function F which takes a single argument 4 and prints out its

dimension, rank, and number of elements with appropriate descriptive
messages. Assume rank A=21.

L. Write a program that will add a row R to a matrix M and print out a
message reading I/HIS IS AN LEXAMPLE OF CATENATION IN APL

5. Copy the function GEO3 in CLASS. Open up the function and direct
control to 1ine [0.51. Us= the comment symbol & on this line and the
next to write a message describing what the function does. Then close

out the function, display it and execute it. Do comments introduced
in this manner affect execution?

CHAPTER 19:

Mixed functions for ordering and selecting

Ranking

One of the points stressed at the end of the last chapter was that literal
characters are unorderable, that is, it makes no sense to say, for example,
that X is less than Y (X, Y literal). Yet there are clearly times when
ordering is desirable, primarily for sorting and selection purposes.

In order to see how this can be done in APL, let's first get a clean
workspace:

JCLEAR
CLEAR WS

and set
X«'"ABCDEFGHIJK'

Remember to close the quote before going on.
Now try

X1'CAFE?
3 1 6 5

This dyadic use of the mixed function 1 is an interesting and useful one.
The response has four components, the same as the length of the right argu-
ment, and it isn't too hard to tell what they stand for. (is the third
character in X, A the first, F the sixth, and £ the fifth.

Suppose there is no match, as, for example, in

XV'CAFYE!
3 1 6 12 5

All the characters except the Y can be matched. For that the system returns
12. But since the number of characters in the left argument is only 11,

pX
11

136

Mixed Functions For Ordering And Selecting 137

then apparently the function is set to return a position one higher than
the last one available in the left argument. If we were to try

X\'"CAXYXT!
3 1 12 12 12 5

this time both the X's and the Y result in 12. This returning of an index
number one greater than the number of components on the left is character-
istic of the dyadic iota when there is no match.

Another point of information about this function is that when characters
are repeated in the right argument, the index numbers aren't used up. For
example, if

We'AARDVARK'
oW
8

and we ask where in ¥ is ¥ found,

Wil
11 3 4 5 1 3 8

the first letter in AARDVARK is matched against the left argument and 4 is
found first in position 1, so 1 is recorded. Then the second 4 is matched
and is found on the left again in position 1, giving us a second 1 in the
result. KR is found in position 3 on the left and 3 is recorded, etc.

From this you can infer that a sequence like 1 2 3 4 5 6 7 8 would be
returned only if no letters were repeated.

What if the right argument happens to be a matrix?

A<3 2p16
A
1 2
3 4
5 6
B«3 1 4 2 5
B4
2 4
1 3
5 6

The shape of the result is the same as that of the right argument, but the
left argument can be only a vector.

Indexing

Back now to X, which contains

X
ABCDEFGINIJK

1 f

138 APL\360: An Interactive Approach

X1'"CAFE!
3 1 6 5

converts the characters CAFE into an ordered set 3 1 6 5 (called a "'map-
ping'), it is perfectly reasonable to ask if there is any way we can change
the ordered set back into characters. |In APL this is done by the indexing
function, which is also referred to as ''subscripting:"

X[3 1 6 5]
CAFE

This expression is usually read as "X sub 3 1 6 5."" Note that [1 are used,
not (). Any valid APL statement can be used for subscripting. For in-
stance:

X[XA\'CAFEY]
CAFE
X{2 5p3 18 9 4 2 10 6 7 5]

CAIIID
BJFGE

The result has the shape of the expression in the brackets.

But if we try to execute

X[X 'CAFYE']

INpEX ERROR
XLX\'CAFYE"]
A

Clearly to avoid an error message the expression in brackets must refer only
to left argument indices that exist. In the last example, since the charac-
ter Y is not found in X, and X has 1l characters, if we were to ask for

xr12]

INDEX ERROR
X[121]
A

the system can't answer the question, there being no twelfth position. This
isn't quite the same situation we had in ranking, where the result returned
for an unidentifiable right argument character was one more than the

number of components in the left argument. |In that case the response is the
system's way of tetling us that the character in question was not to be
found on the left. Thus, the dyadic 1 and indexing are inverse operations,
provided that each component on the right is also to be found in the left
argument.

Again let's look at

X
ABCDEFGHIJK

X3 3 3 3]
ceee

Mixed Functions For Ordering And Selecting 139

As with ranking, the index numbers aren't used up by being repeated. Note,
however, that we cannot index an array which hasn't been specified:

SAMI1 w])<«10 20
RANK IRREOR

SAM[1 w]« 10 20

A

In addition to having a different form from the other functions, indexing
is unique in that it is the only function that can appear on the left side
of the specification arrow. For example, suppose we want to change D in X
above to the character 7:

Xfulerz?
X
ABC?EFGHIJK

and the substitution has taken place. More generally, components can be
rearranged by indexing. The following illustration shows such a change:

X[el«x[6 5]
X
ABC?FEGHTJK

If no indices are entered, every element of the array is respecified:

x{ J«'17
X
TTTTTTTTTTT

Both ranking and indexing can be used with numerical as well as literal
arrays. For instance, say we are given the heights (in inches) of five
students:

L«51 63 60 62 59
What is the position of the student who is 63 inches tall?

163
2

If the third student's height has been entered incorrectly, and should be
61 instead of 63 inches, the change can be made easily by

L[3]«61
L
51 63 61 62 59
The height of the student who is 62 inches tall can be changed to 65 inches:

LLL162]1«B5
L
51 63 61 &5 59

We haven't yet shown how arrays of rank 2 and higher can be indexed. This

140 APL\360: An Interactive Approach

is deferred to chapter 28, following a general discussion of multidimensional
arrays.

Compression

Another function similar in many respects to indexing is compression, used
for picking out specific components of a vector. |If in L again

L
51 63 61 65 59

we wanted to get the second and third students, the expression

L2 3]
63 61

will do it. We can also select with the following operation:

011 0 0/L
63 61

which can be read as the '"'0 1 1 0 0 compression of L.'"'" The same symbol,
the slash /, is used for compression as for reduction, but the difference
is that instead of having an operation symbol before the slash, the left
argument consists solely of 0's and 1's. Where there is a 0 in the left
argument, the corresponding element on the right isn't picked up. The only
elements returned are in those positions where there is a 1 to match it on
the left. This means that the lengths of both arguments must be the same.

To illustrate a practical use of compression, here is a problem in accounts.
If 4 is a vector of accounts in dollars, say we want to select out those
accounts that are overdrawn (negative):

A<3 "4 5 0 s
The instruction

A<O
0 1 0 0o 1

flags the culprits by producing a vector with 1's in the positions of the
offenders and 0's elsewhere. This is made to order for the compression
function:

(A<0)/4
4 76

and we have extracted from 4

3 4 S 0 6

only the negative components.

Keep in mind that the left argument must contain 0's and 1's only:

Mixed Functions For Ordering And Selecting 141

2 3/5 6
DOMAIN FRROR
2 3/ 56
A

Both arguments must have the same length, unless all or none of the com=-
ponents are desired. In this case we need only a single 1 or O:

A«YABCDEF'

1/4
ABCDEF

0/A

@

If the lengths don't agree, an error message results:

10 1 0/4
LENGTH ERROR

10 1 0 /4
A

In 1 CLASS there is a function called CMP which uses compression to
compare two scalar arguments for size and prints out a message stating
whether the left argument is less than, equal to or greater than the right
argument.

Use the COPY command to get it into your active workspace:

YCOPY 1 CLASS CMP
SAVED 15,02.39 07/29/69

Llet's try it out on a few examples:
Y

3 CMP 5
LESS

5 CMP 3
GREATFER

S CMP 5
EQUAL

Here is what CMP looks like:

vemMpLOlv
v A CMP B
(1] ((A>B)/'"GREATER"'), ((A=B)/YEQUAL"'),(A<B)/'LESS"'
7

It doesn't return an explicit result (since we wouldn't be apt to have any
further use for the result). Notice the practical use for catenation here
operating on literals, not unlike line 2 of the function GEO3 on page 132.
Starting from the right on line 1, we pick up either all of the literal
vector LESS or none of it, depending on whether 4 is less than B. The
vectors FQUAL and GREATEFR are treated similarly and catenated. Since

only one of the three conditions can possibly hold at any one time, we are
actually catenating two empty vectors to a vector of literals to produce the
desired result.

142 APL\360: An Interactive Approach

Expansion

Just as compression gives us a way to get a subset of a vector, so there
exists also in APL a function called expansion which allows us to insert
additional components. To illustrate its use, specify

A«"ABCDEFG'
It has 7 components:

oA

The symbol for expansion is \, the backward pointing slash, on the same key
as the compression symbol in the lower right corner of the keyboard:

101 0 0611 1 1 1\A4
A B CDEFG

1 0 0 1 0 1\323
323 0 0O 323 0 323

10 01 0 1\3 2 3
3 0 0o 2 o0 3

The examples show that where 0 appears in the left argument, a blank (for
literals) or zero (for numeric arrays) is inserted in the result which
otherwise is identical to the right argument. Scalars are extended to match
the length of the nonzero part of the left argument.

Here is a summary of the conditions governing the use of this function:

|f C<«A\B , then
) A must consist of all 0's and 1's
(2) (+/4)= opB
) (pC) = pA4

Thus, let B be a vector of five components:
B«2 "5 7 "9 1

0B
5

Say we want to insert four values, 41 42 43 44 between 5 and 7.
One way to do this is to enter

D<pB{1 2],41 42 u3 uwu,B{3 4 5]
2 5 Dul 42 43 44 7 "9 1
Another way is to expand B:

D«1 1 0 0 0 0 1 1 1\B

2 5 0 0 0 o 7 9 1

and then respecify D:

Mixed Functions For Ordering And Selecting 143

D[3 4 5 6J«41 42 43 uy
D

2 5 41 42 43 uy 7 g 1
As mentioned before for indexing, the compression and expansion functions
will be applied to multidimensional arrays in chapter 28.
PROBLEMS
Drill. Specify 4«0 "5 78 6.2 15 2 25, B«1 001 0 1 1 and
C+«"ABCDEFGHIJKLMNOPYRSTUVWXYZ 7!
(2<15)/15% AL2 4 7] Al1pd]
B/A cAl? uw v AL1)+A02 3 uwlx4al 7]
AleAdl,BlL 2+cB] 1 2 0 IN'"TWO! ATT 7404]
(3 2 7))Lz 1 3] Al Al 0p3]
AL3 0]«2E5 UE & Al /A B\2 3 4 5

cl1 16 12 27 9 19 27 1 12 7 15 18 9 20 8 13 9 3]

Specify D+ 2.1 4 1.9 0 1 4 1.4 .7 2.5 2. Select from D those com-
ponents which are

A) less than .5 D) negative and greater than ~1
B) positive E) equal to 2
C) equal in magnitude to 4 F) less than 1 and greater than or

equal to "2

Define a monadic function to insert the character o between each pair
of adjacent elements in a vector V.

For any arbitrary vector V write a function INCR to compute increments
between adjacent elements.

For mathematicians only: Obtain the area under the curve Y=3XZ between
X and X, by breaking it up into rectangles of width I in that interval.
Hint: First define F to compute 3xXx2,

Write a program WITHIIN to select from a vector ¥ those elements
which lie within an interval R on either side of the average of W.

Write an APL expression to select those elements in a vector which are
integers.

Define a function IN to tell what percent of the elements in a vector
A lie within the interval B:(C .

Construct an expression that selects the largest element in a three-
element vector V and prints out a 1 if it exceeds the sum of the
remaining two elements, 0 otherwise.

Show how to select the elements with even indices in a vector Y.

144

13.
14.

15.

16.
17.

20.

21.

22.

23.

APL\360: An Interactive Approach

You are given a vector X whose components are all different and arranged
in ascending order. Write a program to insert a given scalar S into the
appropriate place in the sequence so that the result is still in ascend-
ing order. Be sure that your function is able to handle the case where
S is identical to some element in X.

What is the difference between

A) 14021 and (14)[2] for some integer 4
B) oM,oN and (pM),oN for 4«1 2 and N<3 4

Write an APL expression to pick up the last element of a vector V.
Why is V["1+1pV] not executable?

Write an APL expression which returns the index of the largest element
in a vector W.

Define a function to remove all duplicate elements from a vector.

Write an APL expression to calculate the sum of the first eight
components of a vector @ (or all of them if the number of components is
less than eight).

Write a program SELECYT which takes two arguments and will print
out that element in the left argument X whose position corresponds to
the position of largest element in the right argument Y.

Construct APL expressions to insert for V«<1N a zero

A) between each two adjacent components of V
B) before each even component of V
C) after each odd component of V

Write a function returning an explicit result which finds all the fac-
tors of a given integer ¥ (i.e., the integers which divide evenly into
n.

Write a program to convert a numeric literal with less than ten digits

to a number, so that, for example, '1456' becomes 1456, and can be
used like an ordinary number for further calculations.

Define a function COMFACT to print a list of common factors, if any,
of two integers A and B.

Define a monadic function which takes a literal argument and selects
the longest word in it. Hint: Look for the longest set of consecutive
non-blank characters.

CHAPTER 20:

Identity elements

Identity elements

In mathematics for a number of operations there is in the domain of elements
associated with them a particular element that has a unique property. Spe-
cifically, in addition the number 0 added to any number results in the num-
ber itself:

0+1

3+0

Any element that behaves in this fashion is called an identity element for
the operation in gquestion. The mathematician defines the concept even more
narrowly. In the example above, 0 acts as an identity element when it is on
the left. Hence it can be thought of as a left identity for addition. Simi-
larly, it is a right identity for addition. |[|f an element is both a left

and a right identity, it is often spoken of as ''the identity element'" for

a particular operation. As we will see, many operations have no identity
element, or have either a right or a left identity, but not both.

In API, there is a simple way to find identity elements where they exist.
We can lead up to this with an example. Let B be the following vector:

B+5 3 2 3 0

An obvious true statement is that the sum reduction of B is made up of the
sum of the sum reduction of the elements of B that are negative and the sum
reduction of those positive or 0, i.e.,

(+/B)=(+/(B<0)/B)++/(B20)/B
1

So far we haven't really said anything earthshaking. But what if B didn't
have any negative elements? Then the sum reduction of these elements would

be 0:

145

146 APL\360: An Interactive Approach

B+S5 3 2 3 0
(+/B)=+/(Bz0)/RB

+/(B<0)/B
0

Let's examine the last two lines more closely. We compress B by selecting
those elements of B which are negative. Since there are no such elements,
the compression results in an empty vector:

(B<0)/R
@

and the sum reduction over this empty vector yields 0:
+/(B<0)/R
But an empty vector can be represented in APL by 10. Hence, the sum reduc-

tion over an empty vector should give us 0, and 0 is the identity element
for addition:

+/10

0

In exactly the same way, if we looked at the times reduction of B we get
(x/B)=(x/(B<0)/B)xx/(B20)/B

1

a similar argument would then yield

x/10

which is the identity element for multiplication.

This suggests that the way to find the identity element for any standard
scalar dyadic function (assuming the identity element exists) is to execute
fn /10, where fn stands for some function. However, there are two precau-
tions which need to be emphasized here. First, there is no indication as
to whether the result is a left identity, right identity or both; and
second, no warning is given of any restrictions, if indeed there are any,
on the domain of the operation.

Here are a few additional examples that point up these restrictions:

/10
1

We can divide any number by 1 and return the original number, so | is a
right identity for division. No left identity exists for this operation.

ldentity Elements 147

A/10
1

v/10
0
The logical functions A and Vv have both left and right identity elements, as
examination of their operation tables shows (pages 26-27). But, if we were
to take a function like <, no identity element exists over the entire domain
of real numbers. |If we restrict the domain to 0 and 1, then 0 is a left

identity for <:

</10

No such restriction helps in the case of the function ~:

*/10
DOMAIN ERBOR

~/10

A

A prepared drill exercise in APL

In chapter 9 the tutorial exercise FASYDKILL was introduced to give you
practice in the APL functions discussed up to that point. We haven't yet
exhausted all the functions so far implemented in the language, but, as
before, it's worth taking a breather at this point to review what has been
done. In the workspace 1 APLCOURSE there is another drill exercise called
TEACH, which contains a larger variety of more difficult problems for you
to work on.

Now load this workspace and execute TFACH. Indicate which functions you
want practice in. Be sure at least this first time to include exercises in
vectors of length 0 and reduction. Especially note the instructions per-
taining to your responses for vectors of length 0 or 1. The format and

way in which the problems are generated are the same as in EASYDRILL.

You get three tries, then the answer is furnished and you are given another
similar problem of the same kind. Typing FPLEASE gives you the answer and
another similar problem. Both STOP and STOPSHORT get you out of the
exercise, but STOP gives you in addition a record of your performance.
Continue practicing at this point and at any subsequent time as your needs
require it and your schedule permits.

Below is a short sample practice session with 7EFACH

YLOAD 1 APLCOURSE
SAVED 11,07.53 09/01/69

TEACH
ANSWER THE FOLLOWING QUESTION WITH Y FOR YKES OR N FOR NO.
ARFE YOU ALREADY FAMILIAR WITH THE I[NSTRUCTIONS FOR THIS
FXERCISE?
V
THIS IS AN FEXERCISE IN SIMPLE APL FXPRESSIONS.
YOU WILL FIRST HAVE THE OPPORTUNITY TO SELECT I'HE FRATURES
You WISH TO BE DRILLED IN. THE EXERCISE THEN BEGINS. FOR
RACH PROBLEM YOU MUST ENTER THE PROPER RESULT. ANSWERS

148 APL\360: An Interactive Approach

WILL CONSIST OF SCALAR INTEGERS IF EXERCISES WITH VECTORS
ARE NOT DESIRED; OTHERWISE ANSWERS WILL CONSIST OF
SCALARS OR VECTORS. A VECTOR OF LENGTH ZERO REQUIRES THE
RESPONSE 10, A VECTOR OF LENGTH ONE REQUIRES THE RESPONSE
JX WHERE X IS5 THE VALUE OF THFE ELEMENT. YOU HAVE THREE
TRIES FOR EACH PROBLEM, TYPR STOP AT ANY TIME TO TERMIN-
ATE THE EXERCISE AND PRODUCE A RECORDING OF YOUR PERFOR!-
ANCE . TYPING STOPSHORT WILL TERMINATE THFE FXERCISE BUT
WILL NOT PRODUCE A RFCORD OF PEFRFORMANCE. TYPING PLEASFE
FOR ANY PROBLEM WILL LET YOU PEEK AT THE ANSWERS.

TYPE Y UNDER FACH FUNCTION FOR WHICH YOU WANT FXERCISE
SCALAR DYADIC FUNCTIONS

t-x3x[[<<=2>z! | Avenw

Yy Yy
SCALAR MONADIC FUNCTIONS
tox:[L]~
Yy Y

TYPR Y IF EXFRCISES ARE TO USE VECTORS, N OTHERWISE

Y

TYPE Y IF REDUCTION EXERCISES ARF DESIRED, N OTHERRWTSKE
Y

TYPE Y IF VECTORS OF LENGTH ZFRO OR ONE ARV DESITRED,

N OTHFERWISFE.

Y

MIXED DYADIC FUNCTIONS

PL,eLT/+¥\O

Yry
MIXED MONADIC FUNCTIONS
10,9
YY
r/ "2 75 u
J:
i
2/, 5
(J: _
y O
TRY AGAIN
O _
5
10>7
(J:
1
L/, 6
s _
6
6 4 L 3 79
0.
6 9
TRY AGAIN
[1:
PLEASE
ANSWER TS 3 9
(10)Lr0
[]:
10
1o

dentity Elements 149

7 1 5
o I
BE
1 24
>/, 1
(1:
1
0
0
10
+ 0,25 1
[]
4 2
TRY AGAIN
M
4 1
19 T4, 3 T2
[1: _
19 "4 3 T2
, (,3)p,1
[J:
1 11
9 5[9 Ts
[1:
9 75
10
O
10
L/7,2
[1:
STOPSHORT
PROBLEMS

1. Find the identity elements (if any) for the following dyadic functions:
-%*x@®[| | !#%==2<>2> Explain the results for [and |.

CHAPTER 21:

Still more mixed functions

This chapter will be devoted to several more mixed functions that alter the
order of the components of an array and enable us to make selections from
among the components. Where the operations are applicable to arrays of
higher rank than 1, discussion of the function syntax will be deferred until
chapter 28.

Reversal

This mixed monadic function, the symbol for which is ¢ (upper shift O over-
struck with upper shift M, reverses the order of the components of a vector:

d1 2 3 4
L 3 2 1
G'ABCDEFG!
CFEDCBA

Reversal of a scalar results in the same scalar:

du

n

and, like logical negation, reversal is its own inverse:
OO 'ABCDEFG!

ABCDEFG

Rotate

The symbol ¢ also has a dyadic use, and is called rotate or rotation when
so employed. To get a feel for its syntax and how it operates, try

20'ABCDEFG!
CDEFGAB

4bl 2 3 4 5 6 7
5 6 7 1 2 3 4

150

Still More Mixed Functions 151
0b34 56 78
34 56 78

It rotates or shifts all the elements cyclically to the left. By a cyclic
rotation is meant the following. |Imagine our vector of literals arranged in
closed loop, as below:

start

Rotating to the left is equivalent to a counterclockwise shift in position
of all the elements, producing

start

Since we will be using the same vector of literals repeatedly, let's repre-
sent it by H. It has seven components:

H«'ABCDEFG!
o H
What happens if we rotate H seven places?

701
ABCDERG

152 APL\360: An Interactive Approach

The result is H itself, which shouldn't surprise you at all. What about
rotation by a number greater than the number of components in the right
argument, say eight?

8oH
BCDEFGA

which is equivalent to

10H
BCDEFGA

and, in fact, 7|8 gives the number of places shifted. In general, if H is
the right argument and L the left argument, the shift is (pH)|L places.

Can the left argument be negative? It would seem reasonable that a negative
left argument ought to produce rotation to the right (clockwise). Let's
try it and see:

T 204
FGABCDE

The characters are indeed moved to the right two places. Since the 7 resi-
due of "2 is 5,

7172
5

then ~ 20/ should be the same as 5o :

5én
FGABCDE

Take and drop

The take function, which is the upward pointing arrow t+ {upper shift Y), is
a dyadic selection operator. See if you can tell from some examples how it
works:

V<8 5 3 9 "1 "4
bty

8 5 3 9
04V
@
84V

8 5 3 9 1 4 0 0
T2tV

Tg4v
O 0 8 S 3 9 1 y
2 345

Still More Mixed Functions 153

If A4 is the left argument and is positive, 4+ selects the first 4 elements
from the right argument. |f 4 is negative, the last 4 elements are taken.
When A is greater than pV the result is V with sufficient 0's on the right
or left to make a vector of length A. Note that with a vector left argu-
ment, the take function applied to a scalar returns an array whose shape
is determined by the left argument and whose elements consist of 0's, ex-
cept for the [1;1] element. (See also the restructure function p on page
126 for a comparison)

Drop, ¥, behaves in much the same way, except that A elements are dropped
instead of selected:

oYV
8 5 3 9 "1 T4
24V
3 9 1 Ty
8y YV
@
T34V
8 5 3

From these examples a general inference can be drawn that A4V is equivalent
to (A-pV)+V , provided that 4 isn't greater than pV.

Membership

We have encountered a number of functions (logicals, relationals) that yield
only 0's and 1's as results. Another function that behaves similarly is
membership e (upper shift E). Here is a set of numbers, 3 1 6 1. Which of
these are members of the set 1 2 3 4 57

What we are asking is really a series of questions which, in AP, could be
stated as

3=15

1=15

1 0 0o 0 o0
6=15

o o G 0 0
1=15

1 0 0o 0 0

the net result being the logical vector 1 1 0 1 as indicated by the diaere-
ses. On the terminal this is

3 1 6 1el 2 3 4 05
1 1 0 1

Clearly the shape of the result must be the same as that of the left argu-
ment. Both arguments may be arrays of any rank with this function.

Grade up and down

These two functions, by themselves, give the indices according to which we
would have to select components of a vector to reorder the vector ascending

154 APL\360: An Interactive Approach

{grade up) or descending (grade down). The symbols used are the upper
shift H and G overstruck with upper shift ¥, for grade up and grade down,
respectively. Here are some examples:

V8 5 3 9 "1 "y
AV

32 1 4

vV

4y 1 2 3 5 ©

o

6

In the grade up of V the first component, 6, tells us that the sixth element
of V should be taken first; the second component, 5, tells us to take the
fifth component of V next, etc., to reorder V in ascending fashion.

If the elements happen to be duplicates, the indices of the duplicates are
treated in the same way as the vector is searched from left to right:

We<3 2 4 6 3 3
Aw
2 1 5 6 3 4

Since the result tells us the order of the indices that should be chosen to
sort out the components ascending or descending, these functions give us
a handy quick way to produce an actual reordering:

VEAV]
"4 71 3 5 8 9
VLYV

Deal

The last mixed function to be considered in this chapter is the dyadic
query, 7, called deal, a few examples of which follow:

378
37 4
6710
10 6 3 8 1 9
626
305 2 4 1 8
T276
DOMAIN ERROR
276
A
8726
DOMAIN ERROR
826
A

A vector results, which has the same length as the magnitude of the left
argument. If A is the left argument and B the right, A?B generates a
random selection of A integers with no duplication from the population 1B.
Both arguments must be positive scalars or vectors of length 1, with 42

Still More Mixed Functions 155

Here is a practical application of some of these functions. Let's suppose
we are given the literal characters THIS ONE and we want to insert some
additional characters between the & and the O. This can be done by means
of a prepared function INSERT inl CLASS. Load 1 CLASS and display the

function T NS KR .

YLOAD 1 CLASS
SAVED 15.02.39 07/29/69

VINSERTI[T]Y

Y R<N INSERT B;P;X

(1] P«B1'o!
[2] X«(P-1)+RB
[3] R<PYB
ful A<((Np1),((pX)p0),({pr)-W)pl)\R
[s] RIV+1pX]<X

INSERT is dyadic, with the left argument ¥ being the position after which
the insertion is to be made. The right argument B is what is to be inserted,
with a small circle as shown to separate it from its follow-on:

3 ITNSERT '"?w oABCDEFGH!
ABC?w DEFCH

Thus, if U is specified by I'F/15 ONE and we want to insert the literals
I8 between S and O, then we should execute

U«'THIS ONE!
Y TNSERT ' IS','e' U
THIS IS ONE

W INSERT ' ISe',U
THIS IS ONE

Look at the function again. In line 1 P is the position of the little circle
in the right argument B. Line 2 selects all the components in B up to
but not including the little circle and assigns them to X. |In line 3 the

first P components of B are dropped and the rest stored in K. Line 4 resets
R by expanding it. The left argument of the expansion is built up by

taking ¥ 1's followed by as many 0's as there are components in X, which

in turn is followed by as many 1's as the difference between the number of
components in B and N. Finally, line 5 inserts the message in place of

the 0's or blanks resulting from the expansion.

Some applications to cryptography

Because of the ease with which vectors of all sizes can be operated on,
API, is quite suitable for the development of schemes for coding informa-
tion (cryptography). We will explore some of these to illustrate a few
practical uses of the functions introduced in this chapter and chapter 19.

Since we will need the alphabet repeatedly throughout this section, let's
store it under ALF:

156 APL\360: An Interactive Approach
ALF<'"ARCDEFGHIJKLMNOPQRSTUVWXY 2!

To start, here's a function which makes a simple random letter substitu-
tion for a message M:

M<' POBREORNOTTOBETHATIS THEQUESTION'
VCO<pP SUBST M
(1] ALF
L2] ALFLP]
[3] to
. M
[5] C<ALF{PLALF \M])]V
P<26726
P SUBST M
ABCDKFGHTJKLMNOPYRSTUVIIKY Z
WGMKRUYIBLHCNXFDJLPEVOAGS T

TOBEORNOTITOBETHAITISTHEQUESTION
EFGRFLXFEFFGRETWEBPETRJ VRPEBF X

The grade up function can be used to improve on the letter substitution by
transposing the letters according to the following scheme:

VP THANSP M
T<«h(pM)pP

2
i

—/ =
W N =
Sy Wy —

MLT IV

NV SENDSUPPLIESTONENLOCATTONATONCE?
P IRANSP M
SENDSUPPLTESTONENLOCALTTONATONCE
TLSRCNEOFAWDCLNNTTOOSENPUASTOPT

We will now introduce a further complication by using a 'key'" to be added
to the indices resulting from ALF1M, thus generating a new set of indices
for application to AL :

VK VIG M5C
N<ALF1 1

v
C«26|N+(pl)pK

ALF[(pN)pK]

(pat)p' !

ALFLC]V

K+<1 2 3

MV EHEMYWTILLATTACKATDAVNWI THIENDTI VISIONS!

N

= W
—

o

We will run into trouble here since the 26 residues of some of the new
indices may be 0. However, provision is made in APL for a shift to 0 in
the starting point for indexing:

YORIGIH © (remember to reset the origin to 1 when
WAS 1 you are done)

This command also affects ranking, the index generator, roll, deal, grade
up and grade down. See also chapter 34 for a fuller discussion.

Still More Mixed Functions 157

Now we can safely execute the function:

K VIG M
ENEMYGTLLATTACKALDAWIWITHTENDIVISIONS
RCDBCDBCDBCDBCDBCDRERCDRCDBCNDBCIOBCDRCDR

FPHNALZSNORVNBENBVORYQXKWIVHOFLWVKYVI QQT

Our last illustration catenates an arbitrary string of literal characters P
onto the front end of a message M and drops off the excess characters from
the back end, so that the resulting character string @ is the same length
as M. The indices produced by ALF1g are added to those from ALF 14

and the results reduced with the residue function as before:

VP AUTO MyG3R:8

[1] RALFAVG<P, ((pM)-pP)tM
[2] 5€26 | R+ALF M
[3] M
{u] Q
L5] (pPlp'*!
(6] (pM)p' !
L7] ALF[5]V
P«'GYLTZ7Y"
P AUTO M

ENEMYWILLATTACKATDAWNGITHTENDTIVISIONS
GYLTZLZYUNEMYWILLATTACKATDAWNYITHTEND T

KLPFXVGPYRFRWKVLIWIWPGIMKTAAZ GOPLMBGA

PROBLEMS
1. Drill. Specify 4«3 2 0 "1 5 8
304 $0,13 ALYo 1 0 1 0 1]
20A[14] 20017 (14)ed
L+4 T3¢4 (344)er
247344 ALbbAT (16)=4AT47

2. Use the membership function to identify and select the one-digit integer
elements of a vector V.

3. Write an APL expression to determine if two sets of numbers, 51 and 52,
have identical elements, except possibly for order.

4., You are given a vector of characters S<«'WE ARFE ALL GOOD WEH !
Write an APL expression to determine how many occurrences of the let-
ters ABCDEFGHIJKL are in 5.

5. Use APL to rearrange the above character vector S so that the letters
(including duplicates and blanks) are in alphabetical order.

158 APL360: An Interactive Approach

6. Define a function to remove the extra blanks in S where they occur.

7. For an arbitrary numerical vector V which has been sorted in ascending
‘order, show how to insert another vector V1 so as to preserve the
ordering.

8. For a given numeric vector V of length N, write an APL expression
that tests whether V is some permutation of the vector ¥ (i.e.,
every element of V is in 1V and vice versa).

9. Let C be a vector of characters. Construct an expression which
replaces every X in Cwith a 7.

10. For a vector of eight components, construct two expressions for
selecting the last three components. Use the compression function
in one and the take function in the other.

11. Write a program to find the median of a set of numbers. (The
median is defined as the scalar in the middlie of the list after it
has been sorted. When the number of elements is even, the arithmetic
mean of the two middle elements is defined to be the median.)

12. Explain what each of the following expressions does:
ALAMM(pA)pO 1] (A a vector)
A+A?Bpl /10 (A and B scalars)

13. Write a program to decode the message resulting from execution of
the function SUBST on page 156.

14, Modify the function VIG on page 156 to require two keys, KA and Kb, of
varying length, to be restructured and added on line 4. Let the
function now take only the single argument M.

15. Define a function VEANAY that modifies the indices resulting from
ALF M (M is the message to be coded) by adding to them a vector V of
M random numbers from 0 to 25. Reduce the result, as in VI and
AUTO , and apply it to ALF.

CHAPTER 22:

Number systems

Base value

It is a fact of life in our language that it is impossible to conceive of
a number in the abstract without associating it with some concrete repre-
sentation. Take the number 3, for instance. Can you think of the concept
of threeness without imagining three objects or visualizing the number 3
in some system of notation, be it Roman numerals, exponential notation,
base-2 notation, or whatever?

No matter how many different ways of depicting 3 we may come up with, they
all stand for the same thing, this abstract notion of threeness. Yet, most
of the time, we have no difficulty in recognizing the number if it is
imbedded in a context which conditions our thinking along the right lines:

[o0
o
0.03E2 0003
3.00 00011
This last entry could be 11 in decimal notation but, because of the other

more familiar ways of expressing 3 that preceded it, we would quite likely
accept it as 3 in the binary system.

What it all boils down to is this: Just as a rose by any other name is
still a rose and smells just as sweet, so in mathematics there are many
ways to express the same number, and their value to us depends on what we
are most used to and what form is most useful to us.

Thus far, in all our APL work, we have been using ordinary decimal nota-
tion. But many other systems are in common use. Mixed systems like clock
time and number systems to the bases 2, 8, 16 are examples. In this chapter
we will be examining how APL makes it possible for us to switch con-
veniently from one system to another.

Suppose, for instance, that we are in a room whose length is
3 yds 0 ft 1 inch
How could we reduce this example of the English system of measurement at

159

160 APL\360: An Interactive Approach

its worst, to a single unit, say, inches? |If we were to do it by hand, we
would probably set up something like the following:

3 yds 0 ft 1 inch
x (12x3) x 12 x 1
108 + 0 + 1 = 109 inches
There is a dyadic function in 4APL that will make this conversion for us.

It is called the base value or decode function, and its symbol is the upper
shift B, L. The right argument of L is the vector to be converted, while
the left argument is a vector whose components are the increments needed to
make the conversion from one unit to the next. Since each of the components
on the left can be thought of as acting somewhat like the base of a number
system (called a "radix'" by mathematicians), the left argument is usually
referred to as the radix vector.

In a mixed number system like the one involving our length measurements of
the room, the syntax of the function requires that the dimensions of both
arguments be the same. There is one exception to this, namely, that either
argument may be a scalar or vector of length 1, a case which will be con-
sidered shortly. For our particular problem, we'll use 1760 (the number
of yds/mile) as the multiplying factor for the next increment, even though
it won't be used:

1760 3 1213 0 1
109

As a matter of fact, any number will do in that position, as long as there
is something there:

0 3 1213 0 1
109
3 113 0 1
LENGTH FRROR
3113 01
A

Here is another example, converting 2 minutes and 10 seconds to seconds:

60 60L2 10
130

0 6012 10
130

We can formalize the action of the radix vector on the right argument con-
cisely by letting ¥[J] be the weighting factor that tells us what the
increments should be from one unit to the next in our reduction. In our
example of the room size, if A is the radix vector and B is the right argu-
ment, then W[3] is 1, W[2] is A[3IxW[3] or 12, WL 1] is 4l 21xW[2]

or 3x12. The result is equivalent to 36 3 1x3 0 1, or +/WxB,

Ordinary length and time measurements are examples of mixed number systems.
The base value function, however, works equally well for decimal or other
fixed base number systems. For instance, suppose the following is a
picture of the odometer reading (in miles) of a car:

Number Systems 161

This can be regarded as a scalar 3521 or a vector 3 52 1. If it is the
latter and we want to convert it to the scalar number 3521, then we can
execute

10 10 10 1013 5 2 1
3521

0 10 10 1013 5 2 1
3521

The base value function can be applied to number systems other than decimal.
Here is a binary counter:

This can be converted to a decimal number by

2 2 2 2101 01
5

But if the counter were to be interpreted as readings on an odometer:

10 10 10 10:0 1 0O 1
101

Clearly we need to know what the representation is in order to tell what a
particular number stands for.

Here in summary form is the syntax for the base value function:

(1) The right argument is the vector to be converted

(2) The left argument is a vector (radix) of the same length
stating the increment from each component to the next

(3) The result is always a scalar

(4) Exception: |{f either the left or right argument is a number
repeated, it is sufficient to use a single component

The fourth point can be illustrated by the following:

103 5 2 1

3521

2,0 1 0 1
5

10 10 10 1015
5555

You should be able to see why we can't use a single component on both
sides in the last example.

In 1 CLASS there is a prepared dyadic function called BASE. |t is used
in exactly the same way as 1 to demonstrate how the base value function

162 APL\360: An Interactive Approach

works step by step. Let's try it in a sample problem:

YLOAD 1 CLASS
SAVED 15,02.39 07/29/69

10 BASE 0 1 0 1
INTERPRET AS 10 10 10 10 1 O 1 0 1
WEIGHTING VECTOR CALCULATIONS
COMPONENT 1 IS x/10 10 10 OR 1000
COMPONENT 2 IS x/10 10 OF 100
COMPONENT 3 IS5 x/10 OR 10
COMPONENT 4 IS x/ OR 1

+/1000 100 10 1 x 90 1 0 1 IS 101

The printout shows how the result 101 1is arrived at through the use of
the weighting vector. Executing it with our room length problem, we have:

1760 3 12 BASE 3 0 1
WEIGHTING VECTOR CALCULATIONS
COMPONENT 1 IS %x/3 12 OR 36
COMPONENT 2 IS x/12 OR 12
COMPONENT 3 IS x/ OR 1

+/36 12 1 x 3 0 1 IS 109

You can experiment with BASE vyourself, using other right arguments and
radices.

Representation

Like so many of the other functions we've encountered so far in APL, there
is a function that "undoes' the work of the base value function, i.e.,
converts from a value to some predetermined representation. Appropriately,
it is called representation or encode, and its symbol is T (upper shift V).
Thus, if we execute

2 22 2101 01

5
then the function T brings back our initial argument:

2 2 2 275
o1 0o 1

Here are our room length and odometer problems in reverse:

1760 3 127109
3 0 1

10 10 10 10713521
3 5 2 1

This latter example describes how 3521 would appear on a L-position
odometer. How would 13521 appear on the same odometer?

Number Systems 163

10 10 10 10713521
3 5 2 1

We can draw an analogy here. It's like an odometer which reads only up to
9999 and then starts over from 0 again. |In fact, in this case the right
argument has been reduced by 10%4 and

(10%4)113521
3521

What happens when we're not sure how many components are needed in the
radix vector, yet we don't want to lose anything, as was unfortunately the
case in the example above? Typing a zero as the left most component puts
everything left in the first component of the result, as shown below:

0 10 10 10743521
43 5 2 1

0 607130
2 10

The simulation REP in 1 CLASS does for T what BASFKE did for L in the
last section. Execute KHEP for these cases:

10 10 10 10 AFP 45321
COMPONENT 4% IS 10145321 OR 1 AND [(45321-1)310 IS 4532
COMPONENT 3 IS 104532 OF 2 AND L (4532-2)%10 IS 453
COMPONENT 2 IS 10453 OR 3 AND L(453-3)%10 IS 45
COMPONENT 1 IS 10|45 OR 5 AND L(45-5)%10 IS 4

RESULT IS5 5 3 2 1

0 10 10 REP 13521
COMPONENT 3 IS 10]13521 OR 1 AND [(13521-1)210 IS 1352
COMPONENT 2 IS 1011352 ORFR 2 AND [(1352-2)%10 IS 135
COMPONENT 1 IS 0135 OR 135 AND REMAINING COMPONENTS ARFE
ZEROS
RESULT IS 135 2 1

10 10 REFP 3 4
RIGHT ARGUMENT MUST BE A SCALAR OR 1-COMPONENT VECTOR
10 1073 &
RANK ERROR
10 10 T 3 4
A

Both representation and base value yield some rather interesting results
when used with negative numbers and nonintegers. Here are a few illustra-
tions, but you are advised to explore their uses on your own. You will find
the BASE and REP functions helpful here.

T2 3 017 5 Ty

5 2 "6T487
4 1 1

2.16715 4 2
34,147445

164 APL\360: An Interactive Approach

PROBLEMS

1. Drill
(3pu0)L8 7 2 215 1 9 6 1019 8 2 1 6
1 4.1 ,811 2 3 7 8 9L7 8 9 375217
3 375217 3 3 375217 (5p3)T5217
(4p8)T 11U 1 4 6T3U5 2 4 5T78

2. MWrite APL expressions

A) to convert 2 gallons, 8 quarts and 1 pint to pints
B) to find the number of ounces in 3 tons, 568 pounds and 13 ounces

3. Find the

A) base-8 value of 2 1 7 7

B) base-2 value of 1 01101
C) base-3 representation of 8933
D) base-5 representation of 4791

4, Earlier in the text the residue and floor functions were used to sepa-
rate the integer and fractional parts of a number. Show how this
separation can be done in a single step by using the encode function.

5. Write expressions that will show that L and T are inverses of each other
(not, however, for all arguments).

(For additional problems on L and T, see end of chapter 23)

CHAPTER 23:

Applications of base value and representation

Hexadecimal numbering system

In this chapter we will explore some of the possible uses for the functions

1 and T, introduced before. One obvious application lies in the conversion
of decimally represented information to another numbering system. The

bases 2, 8 and 16 have been used for computers and, for our first illustra-
tion, let's build an algorithm to convert from the decimal to the hexadecimal
(base-16) system.

Just as in our ordinary base-10 system, we require ten distinct symbols

(01 2...9), so in the base-16 system 16 symbols are needed. Larger numbers
are represented by adding positions on the left (provided, of course, we are
talking about whole numbers and not fractions). For example, 10 is a two-
position number, 9 being the largest number able to be represented by a
single symbol.

In the hexadecimal system the symbols are 0 1 2...9 ABCDEF. [f you
were to ask why the letters A...F, the most appropriate response would be
"why not?" We need some single symbol for each of the numbers 10 through
15. New symbols could be invented or old ones used differently (like upside
down or with a bar across them), but it really doesn't matter as long as
they are used consistently.

A decimal system number can be represented in so-called expanded notation
as follows:

Number: 6325
Decimal

Expansion: 6x]03

+ 3xlO2 + 2xlO] + 5xlOO

We can define a hexadecimal number in exactly the same way, except that
powers of 16 instead of powers of 10 are in volved:

Number: 1AF2
Hexadecimal 3 » . 0
Expansion: 1x16° + 10x16” + 15x16 + 2x16

which is equivalent to 6898 in decimal form.

in 1 CLASS there is a dyadic function HEXA which makes the conversion for
us. The left argument is the number of positions we want to see represented,

165

166 APL\360: An Interactive Approach

the right argument is the number to be converted:

YLOAD 1 CLASS
SAVED 15,.02.39 07/29/69
3 HEXA 254
OFrFE
2 HEXA 254
FFE
1 HEXA 254
A

Let's look at HEXA:

VHEXALT]]V
V R«lN HEXA X
f1] R+'0123U56789ARCDEF'[1+(Np16)TX]
Y

llp 16 generates a vector of N components, each of which is 16. If N is,
say, 3, and X is 254, (Npl6)TX is

(3p16)T254
0 15 14

In expanded notation this is the same as
ox16% + 15x16' + 1hx16"

and, on looking through the vector of literals 0 1 2...F, we see that since
the 0 is in the first position, 1 in the second position, etc., it is
necessary to add 1 to (3p16)T254 to pick up the subscripts for the right
characters:

1+(3p16)T254
1 16 15

257 is a number which needs three positions in hexadecimal notation:
1162 + ox16' + 1x16°

Let's execute /EX4 for this number, specifying first four and then two
positions:

b HEXA 257
0101

2 HEXA 257
01

We get a false impression if we don't specify sufficient positions.
Incidentally, 0101 is a vector of characters:

ol HEXA 257
n

Do you see why?

Applications Of Base Value And Representation 167

Hexadecimal to decimal conversion

What about the reverse operation, converting from hexadecimal to decimal
representation? Such a function, called DEC, exists already in 1 (CLASS.
We'll use it before displaying it. It is monadic and requires guotes for
the argument:

DEC 'OFE}
254

It seems OK in this example, so let's display it:

VDEC[U1V
Vv R<DEC H
[1] F<161 1+'012345678YABCDEF " \H

v

H represents the vector of literals in hexadecimal notation. The dyadic
iota with H on the right picks up the positions of the corresponding charac-
ters in the left argument. Trying this out with OFE , we get

'0123456783ABCDEF "1 ' OFE!
1 16 15

which is one position too high to use as the right argument of L. Hence
1 is added before the base value function is applied:

1610 15 14
254

It should be clear why no left argument is needed in DEC. The base value
function will automatically extend the scalar 16 in length to match the
length of the right argument.

If we were to try DEC with undefined characters, say, WER, we get a result:

DEC "WER!
4336
but it is meaningless. To find out why, remember what the dyadic iota does
for an element in the right argument not found on the left. It will produce

the vector 17 15 17, and after adding ~1 to each component we have

16116 14 16

4336
Now try

DEC 5 HEXA 321
321

DEC 2 HHKXA 321
65

and DEC and HEXA are inverse functions, provided that sufficient positions
have been allowed.

168

APLA\360: An Interactive Approach

Check protection

Another practical application is demonstrated by the function CP, which

fills in the space before a number with stars up to a predetermined position.

I'ts

is dyadic.

use for check protection should be evident. CP, which is in1 CLASS,
The left argument is the total number of places to be filled up,

including the dollar amount, and the right argument is the amount of the
check. Here are a few examples:

5 CP 301
*% 301

5 CP 12345
12345

5 CP 00301
*%x 301
Let's look at CP:

VCP[1]v

V R«N CP X;P
R«'0123456789'[1+(Np10)TX]
P« 14(R=2'0')11
R«(Pp'x'), PP

Line 1 makes a vector of characters out of X, the argument, and adds enough

0's

in front to make pR equal to N. Line 2 sets P as one less than the

index of the first nonzero character, while line 3 puts into R P copies of
* followed by all but the first p components of R.

PROBLEMS

1.

Define a function to remove commas from a character vector consisting
of digits and commas, and convert the result to a numerical vector.

Write an APL expression which determines whether or not, for a given
three-digit number N, N is equal to the sum of the cubes of its digits.

Use L to write a dyadic function EVAL to evaluate at the point X a

polynomial with coefficients C (descending powers of X). Compare with
page L46.
For M+«'1234583"' , what are the differences between each of the fol-

lowing expressions?
Me<"1+'0123L56789" 1M
M+101 1+'01234567898" 1M
M«1010 1 2 3 4 5 6 7 8 9['0123456789"1M]
It is a fact that a number N is divisible by 11 if the alternating sum

of its digits is divisible by 11. Construct an expression that uses
the encode function with this condition to test for divisibility by I1.

CHAPTER 24:

Branching

One of the more prominent features of most programming languages is the

concept of branching. Some of you who are familiar with other languages
may be wondering why this notion, which involves selection of only some

of the steps of a function or causes repeated execution under specified

conditions, hasn't yet been presented in this course. The reason is due
to the nature of APL, which makes it possible to solve many problems in
a more straightforward way without branching.

The branch instruction

Whenever an algorithm requires a decision to be made as to what the next
step should be, based on the results of some previous step, a branch is
generally called for. This is nothing more than an instruction to alter
the regular sequence of steps.

We can demonstrate how this can be done by using a function called SORT in
1 CLASS. The problem which SORT is designed to handle is a very simple
one: Rearrange the components of a vector (here 3 1 4 3 1 3 4) in ascending
order. Actually there isn't any need to write a function to do this, since
the grade up function can be used with subscripting to accomplish the same
thing very concisely (see page 154). But, at least, it will give us a feel
for how branching can be used.

Let's talk ourselves through the algorithm needed to solve the problem. The
first and most obvious step is to start with a clean sheet of paper. Next
we pick out the smallest value in the vector, see how many times it occurs,
and write it down that number of times. Then we would cross these off the
original vector, go back and pick out the smallest value from what's left
and repeat the process above until all the numbers are used up.

It isn't any great challenge to design a machine to go through the repeti-
tive steps, but it would need a safeguard built into it. We know when to
stop; the machine would have to be instructed, otherwise it would continue
its sequence of steps indefinitely.

This means that our algorithm would have to have a step which says in
effect '""look each time through to see if any numbers are left in the
vector; if there are any, go on, if not, stop."

169

170 APL\360: An Interactive Approach

Now we are ready to build the function SORT. Since only one argument is
required, let's make it monadic and return an explicit result. Here is
the header:

VR<SORT X

To start with, B has nothing in it {(corresponding to the clean sheet of
paper). Thus, line 1 should be

L1 RP«10

The next step is to look for the smallest number in X, which is | /X .

But we need as many copies of it as there are in X. So what we require is
really (X=L/X)/X to select them. Since these are to be added onto R, we
can set line Z as follows:

[2] RelR,(X=L/X)/X

We then look at what's left, which is the new X, namely, (XzL/X)/X

(31 X«(Xx=L/X)/X

This is as far as we can go, and now we have to repeat the process. In
APL the instruction which directs the system to a step out of the normal
sequence is the right pointing arrow -, found on the same key as the speci-

fication arrow +. The arrow, which may be read as ''go to'" or 'branch to,"
has to be followed by some value to complete the instruction. In this case

(4] +2

is the obvious step.

Unfortunately, we have neglected to tell the system when to stop, so it will
loop around steps 2, 3 and 4 forever. One logical place for this check-

point is just before step 2. Now what should it be? 0=pX will yield a 1
if X is empty, a 0 if X is not. Our problem is how to write the complete
statement so that this extra line will cause execution to fall through to

the next line (i.e., continue cycling) or cease, depending on the state of
X. An instruction which does this is

[1.5] ~0x10=pX

Here is how this works. f pX is O (X is empty), then the instruction

reads ''branch to 0" (0Ox11 is 0). But there is no line 0 in the function,
and we are in effect asking the system to leave the function and return to
desk calculator mode. Branching to any line number which isn't in the
function will do the same thing, namely, exit us from the function. Branch-
ing to line 0 is guaranteed to work, however, because no function, no matter
how big, has a line 0. The header doesn't count as a line here, even though
we refer to it as [0] in function editing.

What if X isn't empty? Then 0x10 is a vector of length 0, and the instruc-
tion reads ''branch to an empty vector.'' A reasonable interpretation might

Branching 171

consider this to be no branch at all, and indeed this is the way it is
used in APL. It simply causes execution to continue with the next state-
ment.

x1 is an interesting combination of APL functions. |Its action is such
that when it occurs it can be read as "'if," so that our line above can be
read ''branch to 0 if X is empty.'" Incidentally, if the system is directed
to branch to a nonempty vector, only the first component is significant.

All these steps have been incorporated into the function SORT, and the
lines renumbered. Load 1 CLASS and display SORY:

JLOAD 1 CLASS
SAVED 15,02,39 07/29/689

VSORTI[]V
V BE<«SORT X
[1] R+<10
[2] +>0x10=pX
(3l B«R,(X=L/X)/X
[4] X« (X=zL/X)/X
[5] *>2

v

Can you think of a simple way to use the compression function with branching
in line 2 to accomplish the same result?

Let's try SORT on a couple of vectors:

SORT 5 3 2
2 3 5

SORT 5 3 1 5 4 2
1 2 3 4 5 5

It seems to work satisfactorily, so we'll go on to a second example, the
function CMP, introduced earlier on page 141. Here is the original
version, which doesn't contain any branches and prints out GREATER, FQUAL
or [ESS after comparing its two arguments:

vempeLnv

v A CMP R

[1] (CA>R)/"GREATFR'), {(A=D)/"FQUAL"),(A<B)/'LESS"'
Comparing 3 and 5:

3 CMP 5
LESE

Labels

An equivalent function which does involve branching is CMPX:

172 APL\360: An Interactive Approach

VCMPX[[TV
v A4 CMPX B
{1] >RIGGFR*x1A>B
2] >SMALLEEx1A<B

{3l "FQUAL!
Cu] -0
(5] PRICCER:'GREATER'
[6] -0
(7] SMALLER:'LESS!
v

A new feature is used in CMPX, the colon on lines 5 and 7 as a separator.
The name immediately to the left of the colon is called a label. In CMPX
the label BIGGER appears on line 5. Branching to BICGFFR is equivalent to
branching to line 5, the value of the label being set as soon as function
definition is completed.

Why use a label? It is convenient way to branch if there is any possibility
that the function is to be later edited and lines added or deleted. For
example, if line 1 tells us to branch to line 5 and we add a line between

I and 2, line 5 would then be what line 4 is now, namely, a command to

exit the function. So labels direct us to specific points in the function,
rather than specific line numbers.

Labels are local constants and hence not known outside the function, as
can be seen by inspection of the following list of variables, which is from
1 CLASS:

JVARS
B CIRCUIT D HELP M MILEAGE PREVIOUSTIME
SPL STOoP TABO TAB1 TAB?2 TAB3 X Yy

Having labels local instead of global avoids confusion among labels in
different functions, and prevents the user from accidentally resetting the
label outside the function. However, unlike local variables, they must
not be listed in the header of the function. Also, they are automatically
Tespecified each time function execution is initiated.

CMPX , which has the two labels BIGCER and SMALLER, will be used to show
these features. Notice what happens when we put the label in the header:

VCMPXT 0(115]
[0] A CMPX B

[0] A CMPX R;BICGER
1] v
3 CMPX 2
VALUE FRROR
CMPX[1] »BICGERx1A>B
A
>0 (to remove the suspension)

In order to illustrate the behavior of the label when the function is sus-
pended, let's edit CMPX to include a variable R which has no value
assigned:

Branching 173

voMPXLor1s]
(o] A CMNPX B3;EIGGER
1777177
[0] A CMPX B
[11] [S.5]RV

Now we'll execute the function for given values of A4 and B:

3 CMPX 2
GREATEF
VALUE FERROF
CHMPXLE] R

A
BIGGER has a value assigned to it within this suspended function:

BIGUER
5

Suppose we try to assign a value to BIGGER:

BIGGER+3

SYNTAX ERREOR
EIGGER<3
A

The system prevents us from so doing while in suspension.

In addition, labels are found in the list of suspensions:

VSTV
CMPX[6] =* A E RBICGrrP CSMALLER

Editing of a suspended function contains a few pitfalls, as can be seen
from the following display:

verpPx[10]e]
[1] +RIGGFREx1A>B
/71171776
(1] +LARGERx1A>PR
' [s06]
[5] RIGGER:'GRFATFR'
/177776
{5)] LARGFE:'GREATER'
[6] v
SI DAMAGE
YSTV
* A E BIGCER SMALLFR
+1
@
+0
@
YSIV
@

174 APL\360: An Interactive Approach

3 CMPX 2
CREATER
VALUE ERROR
CMPX[6] R

A
STV
CMPX[6] A b2t LARGER SMALLFER

>0

The message I DAMAGE indicates that the state indicator command is not
operating properly, as can be seen from the fact that CMPX[G] is missing
from the printout below it.

Finally, here is another version of the same function. This one is called
CHPY:

verpyLiilv
v A CMPY E
[1] >4+2xSICN A-B
[2] VLESS!

[3] +0
[u] YEQUAL!
[5] +>0
6] VGRIPAITFR!
‘/Y
Line 1 is the key here. It subtracts B from 4 and uses the function J./ ./

(page 72) to return 1, 1 or 0 depending on what comes out of the subtrac-
tion. The monadic signum function could be used in place of J7GN if we so
desired. The result of SIGN is multiplied by 2 and 4 is added. Thus, if
A is greater than B, A-B is positive and line 1 causes a branch to line 6.
If 4 is less than B, we branch to line 2, while if A=8, we go to line 4,
which is pretty sneaky, albeit effective way to go about it.

One last comment about branching. |t is a powerful tool in defining func-
tions. Branch if you must, but with a little extra care and ingenuity on
your part, you will often find a way to eliminate the need for it.

Rules for branching

We may summarize the rules for branching in function definition as follows:

> (any APL expression)

is

(1) INVALID if the expression results in other than a nonnegative integer
or a vector whose first component (the only one which can cause a
branch) is a nonnegative integer or a valid label.

(2) VALID if the expression results in

(a) an empty vector, which causes a branch to the next statement

(b) a nonnegative integer outside the range of statement numbers of
the function, which causes an exit from the function

(c) a nonnegative integer inside the range of statement numbers of
the function, which causes a branch to that line number

Branching 175

(d) a label, which causes a branch to that line of the function
on which the label is to be found

Examples of branch instructions

For the benefit of the reader, here is a list of different ways of writing
branch instructions in AFPL. Labels may be used in place of line numbers.
Also, the membership function and any appropriate logical or relational
function may be used in place of those listed.

(1)} Branch unconditionally to a fixed point in the program:

>5
>LABFL
>3xB+[«]+1

(2) Branch unconditional out of the program:

+0 (or any nonexistent line number)

(3) Branch to one of two possible lines:

~(L1,L2)[1+XzY]
>((XzY),~Xz2Y)/L1,L2

(4) Branch to one of several lines:

>((X>Y),(X<Y),X=Y)/L1,L2,L3
>I6L1,L2,L3,... (I IS A COUNTER)

(5) Branch to a given line or drop through to the next line:

>(X=Y)/L1
>(X=2Y)ol1

rLAxaXz2Y

LA XY
S(IOL1,L2,L3)x XY
>LIx v X2l<T+1
>(X=Y)el/L1,02,L2
»((A<0),4>0)/L1,L2

oL IE 0

where IF is defined as follows for those users who prefer English in
their instructions:

VA<L1 IF ¢ Vh<L1 TF
L11 L0/ L1V [A<«Cp i1y

It has the advantage of being able to handle vector arguments which x1
can't, and will work with 0 or without it.

(6) Branch out of the program or drop through to the next line:

176 APL\360: An Interactive Approach

>(X=Y)/0
>(v/,X=2Y)/0
>0x1X2Y

(7) Branch out of the program or to a specific line:

S((X2Y),X<Y)/L1,0
>LAxXzY

(8) Branch to a given line and specify and/or display:

yL1l,pld«"MESSAGE!
>L1,0X«3 hprl2

Finally, as a reminder, to remove a suspension, execute

>

>0

and to branch to a particular point in a suspended program,

PROBLEMS

PROGRAM [9]
+12

1. Tell what each of the following commands does:

1)

>((S<W),5>W)/3 2
>3x14A=8

>FENDxY> ,P<1 1p1
>(Vv/,BeC)/7

>(5 0)[144>C]

> 1443 4 7 9
>8x102J«J~1

>Ux (| X)yz2T<«I+1

SAGATNx VKW =2x1pli+«2 4pS5 7 1 8

2. Let T be a vector of "trash'" characters, some of which may occur in the

literal vector V. Define an APL function that will eliminate the trash
from V.

3. Write a program to determine all three-digit numbers between P and ¢
such that if the final digit is eliminated, the result divides the
original number.

Branching 177

Use branching to find the median of a set of numbers. (See problem 11,
chapter 21 for more information about the median.)

Define a dyadic function DUPL that will locate all occurrences of some
scalar N in a vector V and print out an appropriate message if the
desired scalar is not present.

Design an APL function so that it ignores all nonscalar input and takes
the square root of any scalar argument.

Take the opening two sentences of this chapter and define a function
to sort them out alphabetically, eliminating all punctuation marks and
blanks. Your output should list all the A's followed by the B's, etc.

The mode of a set of data is defined as the most frequently occurring
number in the set. Write a program to find the mode.

The Fibonacci series is of the form1 1 2 3 5 8 13..., where each term
after the first two is the sum of the preceding two terms. Define a
function which prints out N terms of the series.

Define a function which will produce a histogram of a vector 4 of
nonnegative integers, i.e., the height of the histogram for A[11]is
A[1], the height for A[5] is A[5], etc. Show how the histogram can
be '"cleaned up'' by replacing the 0's with blanks and the 1's with =*.

Use branching to construct a function which prints out an annual
compound interest table. Design your function to produce three

columns, the first to be the year, the second the value of the principal
at the beginning of the year, and the third the interest accumulated
during the year. Include appropriate column headings and round off each
figure to the nearest cent.

CHAPTER 25:

Diagnostic aids

Until the Tast chapter, execution of defined functions was relatively
straightforward, proceeding from one line to the next in order. But since
we introduced branching, it is possible for the sequence of steps to

become quite involved. At such times it is often desirable to be able to
follow what is happening on certain lines during execution. And, if
problems arise, knowledge of what occurs at each step may be a definite help
to us in debugging the program.

APL provides two controls for tracing and stopping execution of defined
functions. These will be examined and illustrated in the following sections.

Trace and stop controls

Our guinea-pig function will be SORT , which is in 1 CLASS:

YLOAD 1 CLASS
SAVED 15.02.39 07/29/69
VSORT[1)]V
V R<SORT X

1 R<+10
2 +>O0x10=p X
3 ReR,(X=L/X)/X

=

Xe(Xk=L/X)/X
,)2

[Mo B W |

o

v

The interesting lines here are 3 and 4. We can trace execution on them to
see what has been put into R (line 3) and X (line 4) by the command

TASORT«3 4
@

T8o50RT is called the trace vector for the function JORY, and is set to
trace lines 3 and 4. 1t will remain set to these lines in SORT until we
remove it or change it. The trace lets us execute SCR7T and follow the
progress of the trace. Here is an example:

178

Diagnostic Aids, 179

SORT 3 2 4 3 2
SORTL31 2 2

[G21

SORTI4%] 3 4 3 5
SORTI3]) 2 2 3 3
SORT[u4] 4 5

SORTI3) 2 2 3 3 &4
SORT[4] 5

SORTIL3] 2 2 3 3 4 5
SORTL 4]

2 2 3 3 4 5

The first time through R receives 10 and the vector 2 2, the smallest
elements, while X is 3 4 3 5, which is what's left. The second time through
3 3 is added to R, and X has just 4 5 in it, etc.

I f the next time we execute SORT we want to change the trace vector, all
that is necessary is to respecify T050RT. Without actually doing it at
this point, what do you think should be specified if we want to drop the
trace altogether?

Now let's look at the action of the stop control on SOFT. It operates in
much the same way as the trace, but has the effect of suspending the
function just nrior to the lines specified. For example, specify

SOS0RT« 5
e

and execute
SORT 3 2 3 2
SORT[1]

The response tells us where in the function we are suspended, the line
number being the one to be executed next. This is confirmed by the state
indicator:

Since we are inside the function we might want to take a look at the values
of the local and dummy variables, which are otherwise inaccessible to us.
For instance:

K
VALUE KREOR

R

A

We get a value error since SORT is hung up just prior to line | and R
hasn't been set yet. But X has already received a value:
3 2 3 2

I f we wanted to do so, X could be changed at this point by respecifying it.
However, we'll continue with the execution of this function by using the

180 APL\360: An Interactive Approach

branch command:
+1
SORT(2]

There is a stop on line 2 also, and in fact on every line in this function.
Now we can get R:

R
@

No value error is returned here since on line 1 R was specified to be an
empty vector, as shown by taking pR (remember we're still inside the
function):

nk
0

Continuing, we get:
-2

SORTL3]
+3
SORTL3] 2 2

SORT[4]

The new value of R, 2 2, is printed out here because the trace is still
set on lines 3 and 4. We could go on, but this should be enough to demon-
strate how the stop works.

To turn it off, we respecify the stop vector as follows:

SOEORT+0
@

Since there is no line 0 (the header doesn't count in the numbering even
though we can edit it by calling for [0]), the stop vector i{s no longer
set. This is just like branching to line 0 to exit a function.

However, we are still suspended on line 4 of SORT:
)ST
SORTL4] *
Branching to line 4 continues the execution without any further suspensions
but with the trace still on (we haven't taken it off yet):
>4

SORT[&1 3 3
SORT(31 2 2 3 3
SORT[W]

2 2 3 3

Diagnostic Aids 181

This time we'll turn the trace off in the same manner as the stop:

ToSORT+0
e

Now we try the state indicator

)ST
@

and we see that by having resumed execution in a function (S0iT) which is
completely executable and doesn't have any stops on it, we have removed the

suspension.

SORT can now be executed in the normal fashion:

SORT 2 3 4 1 2
1 2 2 3 4

It pays to be selective in setting the trace vector.

TASORT+15
and we execute SORT:

SORT 2 3 2 1 4 5§
SORTI1]
SORT[2]
SORT[3] 1
SO0RT[4] 2 3 2 4 5
SorT(s] 2
SORTL 2]
SORT[3] 1 2 2
SORT[4] 3 4 5
SORT[5]) 2
SORT[2]
SORT[3]1 1 2 2 3
SORT[4] 4 5

SORT[5] 2

SORT[2]

SORTI3] 1 2 2 3 4
SORT(4] 5

SORT[5]) 2

SORIT 2]

SORT(3] 1 2 2 3 u 5§
SORT[4]

SORT[5] 2

SORT(27 0

1 2 2 3 4 5

No useful information is obtained from the trace on

For instance, suppose

lines 1, 2 and 5.

A final note—both the trace adAd stop control vectors can be .used as a line
or part of a line in a defined function, since they are valid APL instruc-
tions. See the function TRPACETTME on page 189 for an illustration.

182 APL"360: An Interactive Approach

Also, the trace and step vectors are not variables and are deleted when the
function for which they are set is deleted!

Recursion

Sometimes it is necessary for a function to appear on one of the lines of
its own definition. When this happens, it is said to be recursively
defined. Here is an example, a defined function to calculate factorials,
and found in 1 CLASS. The function is called FACY, but before displaying
it, let's look at the definition of N! in conventional notation:

undefined for N not a nonnegative integer
NI = 1 if N=0
N x (N-1)! if N#0
By this definition 5! would be figured as

51 =

[RG RV RV RV, RV,
X X X X X X
o~
s
X X X X X
o~ o~ W
W W W W -

X X X X

This is the recursive approach.

Now for the function FACT, which carries out a recursive calculation of a
factorial:

VFACTL W
V H<«FACT NN
[_1] "Oxllsz_[‘f
f27 »HEx16=0
[3] NM1<ii-1
[u] RelNxFACT N1

fsl +0
rel R+l

v
The local variable WNM1 stands for /-1 and is useful for tracing the
function. Line 1 causes a branch to 0 if ¥ is not a positive integer or 0.
Line 2 branches to 6 if V is 0, at which point R is set to 1 (since !0 is
1). If ¥ isn't 0 line 3 sets N!M1 while line 4 sets I to #xFACT li-1,
which will itself result in execution of FACT. Each time the function
comes to line 4, it gets deeper and deeper into successive levels of
execution until ¥ works its way down to 0. Then the system begins to work
its way out to the surface again and finally exits on line 5.

Let's see if FACT 4 can be executed:

24

This gives the same answer as !4 (since we set it up that way), but takes
longer to execute:

Diagnostic Aids 183

Yy

24

If we set a trace on FACT , we can see how it develops. Lines 3, 4 and 6
are our best bets here for tracing:

TAFACT«3 4 b

FACT u
FACT[3] 3
FACT[3] 2
FACT(3] 1
FACT[3] ©
FACTI6] 1
FACTIu] 1
rACITuH] 2
FACTI 4] ©
FACTL 4] 24

24

The first time through line 3 sets /N1 to be 3. But when execution drops
through to the next line, in order to execute FACT 4, FACT 3 has to be
calculated first. So the system cycles through the first three steps
again, and this time the trace on line 3 shows that #M1 is 2. This will
continue until WY1 is 0. At this point, when the system tries to calculate
FACT 0 it loops through steps 1 and 2 and branches to 6, yielding a 1.

Meanwhile, back on line 4 there finally is a value to put in K, namely, 1,
which is followed by 2, 6 and 24 in succession as the function works its
way out.

Now let's turn the trace off and set the stop control at 6 to explore
what's happening near the end of the function:

TAFACT<U
SAFACT«6
FACT 4

FACT 6]

We are suspended just prior to line 6. The state indicator shows some
interesting results:

ST
FACT[6] =x
FACTI 4]
FACT[4]
FACTI u]
FACTL 4]

Line &4 is listed four times as pending, which isn't surprising since we
are held up on that line that many times, each time getting deeper into
the function while waiting for /1 to reach 0.

We can get out by branching to line 6, which our previous trace shows we
won't encounter again:

184 APL\360: An Interactive Approach

>6
24

If this is what we get into with an argument 4, what do you suppose would
happen if we ask for FACT 507 This will take quite a while, and we may
want to interrupt execution with the ATTN button before line 6 is reached:

FACT 50
FACTT 27

We get a suspension on line 2. Let's see what the state indicator shows:

Y5 T
FACTI2] =«
FACTI 4]
FACTT 4]
FACTI 4]
FACT[4]
FACT[4]

Execcution of this list has been interrupted by the use of the ATTN button,
since otherwise it would be apt to run on for some time.

What happens if we try to get out of this mess? |If we branch to line 6, it
might go on a lot longer while the system worked its way out. Branching
to 0 will get us out, as indeed will typing - alone:

>0
VALUE FRREOR
FACTI U] R«<NxFACT M1
A

We get a value error because FACT hasn't been set yet. As a matter of

fact (no pun intended!), any solution we come up with to get out, since

branching to 0 didn't work (check this by executing)}SI again), will be
expensive if it doesn't involve destroying the function.

At this point the function is in a pretty sad state. We are suspended at
great depth. The sequence of commands that will get us out is to first
save the active workspace, then clear, and copy the saved workspace.
CONTINUE is always available to us (CAUTION! don't use for long term
storage), so we'll save into CONTINUE:

YSAVE CONTIAUL
8.58.14 04/03/70
YULIAR
CLIEAR WS
YCOPY COLTTNIR
SAVED 8.58.14 04/03/70

The COPY command copies all the global objects in CONTINUE , but won't

copy suspensions. However, loading CONTTIUI will bring along all the
suspensions associated with the functions in CONTINUE. 1f we don't want

to keep the function, the easiest way out would be to delete it with the
FRASE command, or drop the entire workspace without saving it. These

Diagnostic Aids 185

alternatives may be unacceptable if the workspace and function are im-
portant to the user. Just remember that copying an entire workspace uses
up a considerable amount of CPU time.

PROBLEMS

1. Trace the execution of each of the functions developed in the problem
section at the end of chapter 24, problems 2, 7 and 8.

2. The function below uses the Euclidean algorithm to get the greatest
common divisor of the two arguments:

vV Z+4 GCD B

[11] 2«4

[2] A+A R

£3] B<Z

[u] +>4=20
v

Enter the function GCD in your own workspace and trace its execution
for A«75 and B«105.

3 ACK is a function constructed for the purpose of proving that nonprimi-
tive recursive functions do exist, and is named after its creator (see
Communications of the ACM, page 114, Vol. 8, No. 2, February, 1965).
Follow the execution of ACK with the trace and stop controls:

V R«I ACK J

[1] ~(0=1,J)/ 4 3

[2] +0,0«(I-1) ACK I ACK J-1
[3] >0 ,R<(I-1) ACK T

[u4] R+d -1

Use small values for I and J.

CHAPTER 26

Miscellaneous APL functions

This chapter will be concerned with two groups of functions, one of which
is helpful in a wide variety of mathematical algorithms, while the other
gives information about the state of the APL system.

Circular functions

The operator symbol for this group is the large circle o (upper shift 0).
With one exception the functions are all dyadic, the left argument being
one of the integers 7 to 7 and the right argument a scalar or vector
(expressed in radians for the trigonometric functions):

0ox (1-X%2)%.5
10X sine X
20X cosine X
30X tangent X
Lox (1+4X%x2)*.5
50X hyperbolic sine of X (sinh X)
60X hyperbolic cosine of X (cosh X)
70X hyperbolic tangent of X (tanh X)
“10X arcsin X
“20X arccos X
“30x arctan X
“Lhox (T1+4X%2)%.,5
“sox arcsinh X
“60X arccosh X
“70X arctanh X

There is a monadic function which, strictly speaking, doesn't belong in this
group, but is included for completeness:

oX XxPI
To get PI itself, execute

o1
3.141592654

186

Miscellaneous APL Functions 187

The inverse (arc) functions return only the principal value of the angle:

302
T2,185039863
T3072.185039863
T1.141592654
301
1.557407725
T301,557407725
1

so that the resultant of an expression like

T30300
0

will be the same as the right argument only if the angle lies in the
proper quadrant. These are from -PI*2 to +PI%+2 for the sin and tan, and

from -PI to +PI for the cos function. Further details can be obtained
from any standard text on trigonometry.

The functions can be shown to satisfy the usual trigonometric identities,
a few of which are illustrated here:

(3015)=((1015)22015)
1 1 1 1 1

which corresponds to the identity
tan X = (sin X)/cos X
in conventional notation, and

(((104)*x2)+(204)*2)=1
1

analogous to
sinZX + cosZX = 1]

The hyperbolic functions are defined in conventional notation as follows:

RO &+ X inh X
sinh X = ————r h X = S = 3nh 2
in 7 cos 5 tanh X cosh X

This can easily be demonstrated on the terminal:

503.8
22,3394068¢6
((*3.8)-%-3,8)+2
22.33940686
602
3.762195691
((*2)+*x-2)22
3.70©2195691

188 APL\360: An Interactive Approach

7006
0.9999877117
(506)+606
0.9999877117
(((6o4.u)*x2)-(504,4)*x2)=1
1

This last example is one of the fundamental hyperbolic identities:

coshZX - sinhZX =1
In addition to their uses in problems involving the trig functions, to those
who are familiar with the calculus the value of having a complete set of

circular functions readily available will be obvious. For instance, to
name just a few possibilities:

d . _
“ax sin X = cos X

—9— arccos X = ol

dx /1-x2

f dx = arcsinh X + C
A+x2

/sechZde = tanh X + C

The functions in this group are called |-beam because the symbol used,
formed by overstriking L and T, looks like the cross-section of an I-beam.
They are monadic and defined only for certain integer arguments, each of
which gives information about some current aspect of the APL system.
Wherever clock times are involved, they are given in sixtieths of a
second.

|-beam functions

The first of these functions is 119, which gives the total time the user's
keyboard has been unlocked in the current session:

I19
38230

Another is T20:

120
3126710
Your result for this function, as indeed for all the l~beam functions,
probably will be different from what is shown in the sample executions in
this section. 1I20 gives the time of day. To represent it in a more
meaningful fashion we'll use the representation function:

€0 60 60 60TI20
4 28 46 45

Miscellaneous APL Functions 189

In our discussion of niladic headers in chapter 11, the example function
TIME was given. We have now reached the point where we can open it up
and see how it is constructed:

YLOAD 1 CLASS
SAVED 15.02.39 07/29/69
TIME
02:29:00 PM EASTERH
vrImerQalv
v TIME,T
[1] T+« 2 12 60 60 60 TI20
[2] T+upT
[3] T{2]«T[2])+12xTl2]=0
[u] r«100L7T
[s5] T«10,(2,6p10)TT
el ('0123456789:'[1+7[3 4 1 5 6 1 7 811)," ", ('"AP'[1+7[21]),
‘M EASTERN?
v

O0f course, this result could be off, since the time is set by the system
operator. However, the elapsed time between two events is fairly accurate.
Line 1 of TIME takes the current time, represents it in a mixed number
system, and assigns it to the local variable I. The 2 on the left stands
for the two time segments AM or PM. Line 2 throws away the last component
of 7 (sixtieths of a second), while the next line takes 7[27, which is
hours, and modifies it so that 0:05 is printed as 12:05. Lines 4 and 5
give the value of T in the base 100 and then extend it out. The last

line picks up the different components to give the display shown in the
result.

There is a function called TRACETIME that traces what is happening on

each line. It is niladic and can be executed simply by typing the name:
TIME

02:31:09 PM EASTERN
TRACETIME

rIMEL1] 1 2 31 15 15
TIME[2) 1 2 31 15

TIME[L3] 2

TIME[4] 1023115

TIMEL5] 10 1 0 2 3 1 1 s
TIME[6] 02:31:15 PM EASTERN

Here is the function displayed:
VITRACETIMEL[IIV

V TRACETIME
[1] TATIME«16

[2] TIME
[3] TATIME+1 0
v
The trace control is first set on line 1, then TIME is called for, and

finally the trace is removed after execution.

190 APL\360: An Interactive Approach
121 gives the CPU time since sign-on:

121
3

To find out how much CPU time has been used up to execute a particular
function, all that is necessary is to take the difference in 121 before

and after execution. This will be utilized later in a function called
CPUTIME .

I22 gives the number of bytes still unassigned in the active workspace.
Since each workspace has only a limited amount of storage, it is quite

possible that we may not have enough space to store everything we want.
For example:

Y<110000
WS FULL
¥Y«110000
A

How much room is there? Each APL literal character uses up 1 byte, while
each integer (up to 2%31) takes 4 bytes, except for 0 and 1, which require
1/8 byte. 8 bytes are reeded for all other numbers.

At present, in the active workspace, we have

I22
14932

bytes left. Now get a clean workspace and execute the function again:

YCLEAR
CLEAR WS

122
31868

which is the number of available bytes per workspace in this APL system.
Some additional space is taken up in the management of the workspace.
Before going on, this is a good time to remind you that a considerable
amount of storage may be eaten up by suspended functions, so that it pays
to find out what is wrong and remove the suspension.

Let's now reload 1 CLASS and look at 123 :

JLOAD 1 CLASS
SAVED 15,02,39 07/29/69
I23
19

123 gives the number of users currently on the system, including the 4P/
operator, so that you can judge when a good time would be to get on the
system if you have some heavy computing to do.

I24 gives the sign-on time:

24
3083695

Miscellaneous APL Functions 191

so the total elapsed time since sign-on (in sixtieths of a second) is
(120)-124 .

I25 gives the current calendar date, with the day, month and year run
together:

I25
L2870

We can make it look more like a proper entry by executing

100 100 1007125
4 28 70

126 furnishes the current value of the line counter. |f no functions are
suspended, then I26 is 0, as in the present case:

I26
0

If a function is suspended, it gives the number of the line on which the
most recent suspension occurred, and corresponds to the top entry of)SI .
It is also useful in branch instructions where it is desired to move ahead
N statements. This can be done by entering

+N+1I26

127 is another listing of suspensions, giving just the line numbers to be
found currently under)SI:

127
@

Here is an example combining a number of these functions. Display the func-
tion JIMEFACT:

VTIMEFACTIIIIV
Vv TIMEFACT NS
(1] CPUTIME
1'2] vt
[3] Sety
[4] CPUTINME
(5] Sex /il
6] CPUTIME
(7] S«FACT W
(8] CPUTIME
(3] S«FACTLOOP N
(10] (CPUTIME
v

This function obtains the factorial of N four different ways (lines 3, 5, 7
and 9) and uses the function CPUTI/I to print out elapsed CPU time for
each execution.

Let's now look at CPUTIME:

192 APL\360: An Interactive Approach

VCPUTTMEL}]V
Vv CPUTIME
(11 0 60 60 60 TO[(I21)-PREVIOUSTIME
[2] PREVIOUSTIME«TI21
v

All it does is subtract from the current CPU time, 121 , PREVIOUSTIME
(a global variable) and represent it in a mixed number system. Then
PREVIOUSTIME is updated by being set to the current value of the CPU
time. |If we attempt to use CPUTIME without setting PREVIOUSTIME we
would get an error message, but PRyEVIOUSTIME has already been set:

PREVIOUSTIME

CPUTIME
o 0 0 19

Here is FACTLOOP :

VFACTLOOP[1]V
Y R«FACTLOOP N
(1] R+«1
[2] +0x1/1=0
(3] R<«Rx N
[u] Nel-1
[5) >2
Y

It is monadic, sets R to 1 on line 1, and allows us to exit the function if
N is 0 (line 2). Line 3 resets R to ExY, line 4 reduces N by 1, then loops
back to line 2, etc. By setting R to 1 at the beginning, this also works
for ¥=0.

Now try FACTLOOP 5:

FACTLOOP 5
120

which is the same as

'S
120

In examining the amount of time required for each of the algorithms in
TIMEFACT, the first appearance of CPUTIME is used to clear out
PREVIOUSTIME so that, in effect, we start from scratch after the initial
line of the printout.

Let's try TIMEFACT 20 :

TIMEFACT 20

0 0 0 11
0 0 0 1
0 0 0 1
0 0 0 51
0 0 0 31

Miscellaneous APL Functions 193

!N and x// both require 1/60 seconds, while the recursive FACT and the
iterative FACTLOOP need 51/60 and 31/60 seconds of CPU time, respec-
tively. The amount of time required will, of course, differ from one sys-
tem to another, so that your results will not necessarily be similar to
those above.

TTMEFACT 50 shows the differences even more dramatically:

TIMEFACT 50
0o o0 o0 3

o o0 0 1
o o 0 3
0 0 2 5
6 0o 1 17

126 and I27 have some additional uses in connection with suspended func-
tions. To illustrate these, do FACT 50 and suspend it with the ATTN
button right after the return:

FACT 50
FACT(3]
To see where we are:

)ST
FACT[3] =
FACT[4]
FACT[4]
FACT[4]
FACT[4]
FACT[4]
FACT[4]
FACTI 4]

and again ATTN is used to interrupt the list. We are ohviously pending on
line 4. But at what depth?

One way to get a picture of this which doesn't take quite so much time and
room is to call for 127 :

127

But it's a lot neater to ask for

pI27
28

to see how many lines there are in the listing.

While we're at it, we are still suspended on line 3:

126

194 APL\360: An Interactive Approach

so we'll remove the suspension by calling for

+126
3.041400332K64

which is the same as

150
3.04140932864

PROBLEMS

1. Drill
1001 2 0©01:180 2001
180:01 4o13 303015
T201001+2 “1o0101 1 T201 10,5

2. Construct a table of sines of angles from 0 to PT:2 radians in steps
of PI+20 radians.

3. Use the function CPUTIME to compute the difference in computing time
for calculating 2'10 and (!110):('2)x!8. See chapter 4 for a discus-
sion of the algorithm.

4, Show that the following identity holds:

C0s 2X = COSZX - SINZX

Use I25 to construct a function that will express a date as MM/DD/YY.

Define a dyadic function TIMFE whose arguments are scalars. The left
argument X may be either 12 or 24, and the right argument Y may assume
values 1, 2, or 3. The function is to furnish the time in either a
24-hour or 12-hour system, printing hours, minutes, and seconds if

Y is 3, hours and minutes only if Y is 2, and hours only if ¥ is 1.
Times are to be truncated with no rounding off if the value of the
dropped seconds or minutes is 30 or more. Midnight is to be expressed
as 00.

7. Use reduction to express the identity

SINZX + COSZX =1

Compare your version of the identity with that on page 187.

CHAPTER 27:

Multidimensional arrays

Except for some earlier applications of the dimension, restructure, and
ravel functions, just about all of our work has been with scalars and
vectors. Many of the other functions studied so far can take as arguments

arrays of rank higher than 1. In addition, there are a number of useful
functions specifically designed to make possible the manipulation of such
multidimensional arrays. These will be taken up in this and the next

few chapters.

Review

Our start will be a two-dimensional table which lists the number of
purchases made of three items, A, B, and C, during four successive weeks:

A B C

week |] 2 0
2] 3 2

3 3 L2
413 3 0

This data is truly two-dimensional, since each entry in the table needs
two coordinates to specify it properly: the week and the item.

We can build this table with the restructure function but, before doing

so, execute CLEAR so that we'll be able to operate in a fresh workspace:
YJCLUAR
CLEAR WS

The twelve entries in the table will be stored in V. Note the row by row
order:

V«1 2 0 1 3 2 3 &% 2 3 3 0

oV
12

195

196 APLA\360: An Interactive Approach

Since the table itself has four rows and three columns, we need

4 3pV
1 2 0 '
1 3 2
3 4 2
3 3 0
This table will be used frequently in the chapter and, to save time, let's
put it in M:
M+u4 3plV

pM gives the structure of the table:

oM
i 3

and, of course, M is the table itself:

M

W Wk P
wFE WA
o N o

Dyadic operations on matrices

There are a number of things we can do to manipulate the components of M.
For instance, we can increase each component by 2:

2+M

COUww
oo o F
N FFEN

or divide it by 3:

M+ 3
0.3333333333 0,.6666666667 0
0,3333333333 1 0.6666660667
1 1,333333333 0.6666666667
1 1 0

I f we had another matrix of the same size, the two could be added or multi-
plied or what have you, component by component. Rather than define another
matrix, we'll use M itself:

Multidimensional Arrays 197

M+M
2 4 0
2 &) 4
& 8 L
§ § 0
MxM
1 4 6]
1 9 L
9 16 L
9 9 0

Note that this latter example is not ordinary matrix multiplication (to be
covered in a later chapter). It is an extension of our earlier rules for
multiplying two vectors, component by component. In fact, the rules de-
veloped on page 13 with scalar and vector arguments for all standard
scalar dyadic functions hold equally well for matrices.

But why stop there? |If they hold for matrices, why not for arrays of rank

3 and higher? This is indeed the case, the only stipulation being that the
arrays have to have the same dimensions and rank. |f you were to violate
this rule and try to perform dyadic operations on some matrices by hand, you
will quickly see the necessity for it.

There is one exception to this. Just as a scalar can be used as one of

the arguments along with a vector, the scalar being automatically extended
to match the length of the vector, so scalars can be used with higher dimen-
sional arrays in exactly the same way. Our first two examples on the last
page, 2+M and M:3, show this clearly. All of which leads us to an
interesting conclusion. Scalars are l-component arrays of rank 0; hence,
the entire set of rules can be boiled down to:

any-dimensional any-dimensional . any-dimensional
array — array array

with the array restrictions on dimension and rank previously stated and

allowing the combination scalar-higher rank array on the right. o here
stands for any standard scalar dyadic function,

Monadic operations on matrices

Matrices (and other arrays of higher rank) can also be used as arguments
for standard scalar monadic functions. Here are the subtract and factorial
of M:

198 APL\360: An Interactive Approach

Y

1 2 1
1 6 2
6 24 2
6 6 1

Just as with the standard scalar dyadic functions, so a single rule suffices
for the standard scalar monadics, keeping in mind that the shape of the
result is the same as that of the argument:

any-dimensional £ any-dimensional
array &« array

f being any standard scalar monadic function.

Operations along a single dimension

In a two-dimensional table such as M, we might conceivably be interested
in several sets of sums (in a vector there is only one possible sum)
obtained along either of two directions. For example, the total amount
of each item bought over the four week period and the total number of all
items sold weekly can be gotten by summing over the rows and columns:

A B C sum over items
purchased

week 1 1 2 0 3

2 1 3 2 6

3 304 2 9

4 3 3 0 6

sum over grand

4 weeks 812 4 sum 24

the grand total being

8+12+4
24

which should be the same as

3+6+9+6
24

Now look at +// :

+/M
3 6 9 ¢

It's the same as the sums over the items purchased. What about the sums
over the four-week period? This brings up the question of how we specify
which coordinate of a multidimensional array we want to sum over, a problem
which, for obvious reasons didn't arise when we were dealing only with
vectors.

Multidimensional Arrays 199

Let's go back to M. Its structure is 4 3, four rows and three columns, so

+/M is really the sum over the last coordinate, which is the dimension

along which we have three components. In APL this can be also done with
+/[21M

3 9] 9 6
and, by analogy, the other set of sums is

+/01]1M
8 12 &4

It isn't necessary to specify [1] for reduction over the first coordinate.
An alternate instruction which does this is #, which is formed by overstrik-

ing the reduction and subtract symbols:

+#M
8 12 4

However, for a three-dimensional array, neither 7 or / alone will produce
reduction over the second coordinate, and it still is necessary to type /[2]

Now we made M by restructuring V:

Summing, we get

+/V
24
and

+/011v
24

there being only one coordinate associated with a vector. The conclusion
we can draw is that when no coordinate is specified, the last one is
assumed.

What if we try to sum over a nonexistent coordinate?

+/031m
1 2 0
1 3 2
3 4 2
3 3 ¢

This results in M itself. Similarly,

+/0217
1 2 0 i 3 2 3 42 3 3 0

200 APL\360: An Interactive Approach

gives V. Now we can explain why we get the same sort of response for a
scalar:

+/5

The sum is over the last coordinate, none being specified. But there is
no last coordinate (in fact, none at all, this being a scalar). Hence, the
argument itself is returned.

For our final exercise, suppose we want to find out what the row and
column averages are, or in dgeneral averages across any coordinate. The
techniques to be developed here will be recognized by those with a
background in statistics as having applicability, with just a bit more
sophistication, to such procedures as analysis of variance.

In M the averages are

A B C week
averages

week 1 1 2 0 1

2 1 3 2 2

3 3 04 2 3

4L |3 3 0 2

item
averages 2 3 1

Each of the sums over the first coordinate was divided by the number of
components in that direction, four, and each of the sums over the second
coordinate was divided by three. Note that this is the same as the order
and magnitude of the dimension vector, 4 3.

There is a function called MEFAN in 1 (CLASS that will compute these
averages for us. Let's first copy it and then display it:

YCOPY 1 CLASS HEAN
SAVED 15.02.39 07/29/69
VAEANLUIV
V R<«K MeAN X
(1] R«(+/[K] X)+(px)[K]
v

It is dyadic, the left argument X being the coordinate of the array X over
which we are averaging. The function takes a given coordinate of X and
divides the sum over that coordinate by the number of components comprising
that sum, as explained above.

Let's try it on M. Here are the averages over the first and second coordi-
nates:

1 MEAN M

2 VEAN M
3 2

Multidimensional Arrays 201

The overall average is

1 MEAN 2 MEAN M
2

If you try 2 MEAN 1 MEAN M, you'll find it won't work. Do you see why
this is so?
PROBLEMS

1. Drill. Specify S«u4 5p$120, T«d4 5p120, U+2 3 Hup124

S+T S<T [/1/1/7U
2xS+T+2 +/021T M/,U
SLT +4T x£U
3T 4T +/+/0117T

2. Write an APL expression to select N different random elements from
a matrix M.

3. Show how to add a scalar ¥ to each element in the odd rows of a matrix
M.

L4, The matrix GR3 contains the grade records (A, B, C, D and F) of 25 stu-
dents in a class, with the first row listing the number of A's received
by each student, the second row the number of B's, etc. Each course
represented in the matrix is three credits. A similar matrix GR2
records grades for two-credit courses, and GR1 for one-credit courses.
Write a program to calculate the grade point average for each student
and for the class. (The grade point average is computed by multiplying
4 times the number of A credits, 3 times the number of B credits, etc.,
adding them up, and dividing by the total number of credits earned.)

5. Write an APL expression to construct a 4 4 matrix made up of random
integers in the range 1 to 100

6. You are given five vectors V1-V5 of invoices from fifteen customers.
The first represents bills under 30 days old, the second 30-59 days
old, the third 60-89 days, etc. All entries with a given index are
associated with the same customer. Write a program that will
(1) construct a matrix of these invoices with each vector V1-V5 occupy-
ing a single row; (2) print the total amount of receivables in each
category and separately for each customer, with an appropriate message;
(3) print the grand total of all receivables with an identifying message;
and (4) identify which customers 1-15, if any, have invoices outstanding
more than 59 days (at which time they become overdue).

CHAPTER 28:

Extensions of mixed functions to
multidimensional arrays

This chapter will be devoted to a study of the effects of various standard
and mixed functions on multidimensional arrays. Although there are some
functions operating on arrays that haven't yet been introduced, a discus-
sion of them will be deferred to chapters 29-31.

Reversal

Since it is easier sometimes to see what is happening with characters, we'll
first specify a matrix X of literals as follows:

X«3 4p'ABRCDEFGHIJKLM'

Here is X:
X
ABCD
EFGH
TJKL

The reversal of this matrix is
oX

DCBA
HCFE
LKJ I

It reverses along the last coordinate and, in this respect, acts just like
+/M in the last chapter, where the reduction took place over the last
coordinate if none was specified. Hence, ¢X is equivalent to ¢[2]X

dl21x
DCRA
HGFE
LKJ I

202

Extensions Of Mixed Functions To Multidimensional Arrays 203

and, to get reversal over the first coordinate, we should execute

or1]x
TJKL
FFGH
ABCD

As in reduction, the functions reversal and rotation (see next section),
operate over the first coordinate by overstriking the large circle with
the subtract sign e:

eX
IJKL
EFGH
ABCD
What do you suppose would happen if we tried ¢[31X or any nonexistent
coordinate? Try it and see,

Rotation

This operation too takes place over the last coordinate unless one is speci-
fied. Thus:

16X

RCDA

FCHE

JKLT

This is equivalent to
1002]1x

BCDA

FCGHE

JKLI

while rotation over the flrst coordinate can be obtained by
1601]X

FFGH

IJKL

ABCD

or

204 APL\360: An Interactive Approach

leX

EFCH
IJKL
ABCD

Here is X again for comparison:
X

ABCD
FFCGH
IJKL

There is another more general way to use rotation, in which we can
specify in vector form in the left argument how we wish to rotate each
component of a given coordinate. For example, suppose we want to move
the first row leftward one position, the second row leftward three posi-
tions and the third row two positions to the left. This can be done with

1 3 2¢[21X

ECDA
HEFG
KLIJ

The [2] isn't needed here for the reason stated previously. To do something
.inng the first coordinate, we need four components in the left argument:

01 2 3¢6011%

AFKD
EJCH
IBGL

and
0 1 2 38k

AFKD
EJCH
IBCGL

Thus, the left argument is either a scalar or a vector whose dimension is
the same as the number of components in the coordinate over which the
rotation is to take place. Here are some examples operating on an array
of rank 3, TAR3 :

Extensions Of Mixed Functions To Multidimensional Arrays 205

JLOAD 1 CLASS
SAVED 15,02.39 07/29/69
TAB3

111 112 113
121 122 123
131 132 133
141 142 143

211 212 213
221 222 223
231 232 233
241 242 243
10TAR3

112 113 111
122 123 121
132 133 131
142 143 141

212 213 211
222 223 221
232 233 231
242 243 241
(2 3p13)¢[2]T4B3

121 132 143
131 142 113
141 112 123
111 122 133

221 232 243
231 242 213
241 212 223
211 222 233
(2 4p13)0[3]TAES

112 113 111
123 121 122
131 132 133
142 143 141

213 211 212

221 222 223

232 233 231

243 241 242
2 4p13

206 APL\360: An Interactive Approach

These latter two illustrations need careful examination in order to see
what is happening. For instance, look at the last example, in which the
rotation is over the third coordinate. The left argument is, itself, a
matrix. Picking out a couple of these entries at random, the element 3

in the second row, second column of 2 4p13 tells us to rotate the second
row, second plane of TAB3 by three positions (which leaves it unchanged).
The element 1 in the first row, fourth column causes the fourth row, first
plane to rotate one position to the left. By trying out a few additional
examples yourself, you should be able to see how the left argument
determines the rotation of the array.

Compression and expansion

As you might expect, the left argument must have as many 1's and 0O's as
the number of components in the coordinate over which compression occurs.
Here is an example in which the third component of the second coordinate
is elided. We will use the literal matrix X defined below:

X«3 Up'"ABCDEFGHIJKLM!
11 0 1/[21X

ABD
ERH
IJL
To remove the second row, we can compress over the first coordinate:

10 1/01]x

ABCD
IJKL

Once more, compression and expansion over the first coordinate can be
obtained by overstriking with the subtract sign:

1 0 14X

ABCD
IJKL

If in X we want to insert something between, say, the third and fourth
components on each row, we can use expansion over the second coordinate:

11 1 0 1N\[2]Xx
ABC D
EFG H
IJK L

while to get a row of blanks between the second and third rows, we execute

Extensions Of Mixed Functions To Multidimensional Arrays 207

11 0 1N\[1]X

ABCD
EFGCH

IJKIL

1 1 0 1xX

ABCD
ErGH

ITJKL

What about compression and expansion over arrays of rank 3?7 TAB3 again
will be our specimen array:

1 0/[1]7TAB3

111 112 113
121 122 123
131 132 133
141 142 143
1 0 1/03]JTARB3

111 113
121 123
131 133
141 143
211 213
221 223
231 233
241 243

11 1 0 1N\[2]7483

111 112 113
121 122 123
131 132 133

0 0 0
141 142 143

211 212 213
221 222 223
231 232 233

0 0 0
241 242 243

In1 CLASS there are several prepared functions that provide the capability
for catenating rows and columns to multidimensional arrays. Before

looking at them, let's see if we can first define the problem clearly.

We are given the matrix X:

208 APL\360: An Interactive Approach

X«2 4p2 5 3 1 4 2 3 3

and we want to add a third row 9 8 7 7 or a fifth column 12 15. The first
function to be used is ROWCAT, which is displayed below:

VROWCATI]1vV
V R<+<X ROWCAT V
[1] R«(1 0 +pX)p(,X),V

\%
V is the row to be added. |t is catenated to the ravel of X, and the new
vector thus formed is restructured to give the desired result. It doesn't

pay to use the trace on this function since there is only one line. We
can, however, execute the function by hand, step by step, as follows
after putting a stop on line 1:

V<9 8 7 7
SOAROWCAT<+1
X ROWCAT V

ROWCATI1]
X, v

RANK FRROR
X,V
A

We aren't permitted to catenate vectors to matrices. Continuing, with X
raveled:

(,X),V

2 5 3 1 4 2 3 3 9 8 7 7
1 0+pX

3 4
>1

Adding 1 0 tc pX has the effect of changing the structure to accommodate
and additional row. Now we can remove the stop on ROWVCAT:

SOAROWCAT<0

Adding a column is some what more difficult. Here is COLCAT1:

VOOLCATILL v
VoR< X COLCATT V
[1] R<{((pxX)[2])c1),0)\X
[2] Ve{ (XDl 1],1)pV
L3 V< (((pX)[2]00),1)\V
[n] R<R+V

Extensions of Mixed Functions To Multidimensional Arrays 209

On line 1 X is expanded with a column of 0's on the back end. The assump-
tion here is that X and V consist of numbers only. |If you go through the
algorithm you will see why it won't work with characters. Line 2 restruc-
tures V, the vector to be catenated, as a matrix with as many rows as X and
one column. The effect of line 3 is to expand V with as many columns of 0's
tacked on the front end as correspond to the original structure of X, and
line 4 completes the picture by adding componentwise the results of lines |1
and 3.

We'll use the same X as before, with ¥ as shown for extra components:
X
2 5 3 1
i 2 3 3
We12 15

X COLCAT1 W

2 S 3 1 12
b 2 3 3 15

To understand better how this works, let's put a trace on each line:

PACOLCAT 1<k
X COLCATL W
COLCATAL 1]
2 5 3 1 0
4 2 3 3 0
cCoOLCAT1[2]
12
15
COLCATIL3]
0 0 0 0 12
0 0 0 0 15
COLCATI[4]
2 5 3 112
4 2 3 3 15

2 5 3 1 12
4 2 3 3 15
TaCOLCAT1+0

Line 1 added an extra column of 0's on the right, while line 2 made a
matrix with two rows and one column out of W. Line 3 expanded the
restructured W by adding sufficient 0's on the front end to make the
resulting matrix the same dimensions as the expanded X of line 1. The last
line added the results of lines 1 and 3.

Indexing

To illustrate indexing on multidimensional arrays, we'll first define a
vector of four components:

210 APL\360: An Interactive Approach

V<'ABCD'
oV
y

Earlier we saw that we could pick out components by appropriate indices, as,
for instance

viz 4 3]
enc

The problem is a bit more complicated for an array of higher rank. Take X,
which is still in storage:

To specify an element of the array requires two numbers, one to tell the
column and the other the row on which the element is located. Say, for
example, we want the element in the second row and fourth column, which is
3. The way to get it in APL is to type

X[2;5u]
3

The semicolon is used here as a separator between coordinates.

More than one element can be specified at a time, like the second and fourth
components of the second row:

X[(2;2 4]
2 3

or the elements of the second column:

X[1 2;2]
5 2

There is a shorthand way of specifying all the elements along a particular
coordinate, namely by not typing any components of the coordinate in ques-
tion. For example, our last problem could be written as

X[;2]
5 2

while to get all the elements of the first row type

X151
2 5 3 1

This implies that to get all of X, we need

Extensions Of Mixed Functions To Multidimensional Arrays 211

which is a bit wasteful, perhaps, but consistent.

The same rules hold for a three-dimensional array. “4B3 should still be
in the active workspace, so let's use it:

TLB3

111 112 113
121 122 123
131 132 133
141 1u2 143

211 212 213
221 222 223
231 232 233
241 242 243

You have probably already noticed that the elements are arranged so that
if we took the 10 10 10T of any component, we would get its position. For
example, 143 is

first plane fourth row third column
1 4 3

Thus,

TAB3[2;;2]
212 222 232 242

will get us all the elements in the second column of the second plane.
From what we've done so far it follows that the number of semicolons needed
is one fewer than the rank of the array.

We had mentioned in an earlier chapter that subscripting could be used
on the left of the specification arrow (see page 139). This works with
higher rank arrays as well as vectors, as shown by the following examples:

X

2 5 3 1

4 2 3 3
X[2;3]+90
X

2 5 3 1

4 2 90 3
X015 J«x(15]x2
X

4 10 6 2
Y 2 90 3

212 APL\360: An Interactive Approach

Now we are ready to consider a much shorter algorithm for adding a column
to a matrix:

VCOLCAT?2[[1]V
YV R+«X COLCAT2 V
[1] R<(((pX)[21p1),0)\X
(2] RL;(pR)2]1]«V
v

Line 1 expands X exactly as in COLCAT1 by adding a column of 0's at the
back end, while line 2 respecifies the last column of R as the components
of V.

Let's put a trace on this function and execute it. We still have X avail-~
able, and to it we'll catenate a column consisting of the elements 8 7:

TACOLCAT2+1 2
X

L 10 6 2
4 2 90 3
X COLCAT2 8 7
COLCAT2(1]
L 10 6 2 0
L 2 90 3 0
COLCAT202]1 8 7

The trace shows the 0's added on line 1 to build up the matrix, while on
line 2 the 0's are respecified as 8 and 7, respectively.

COLCAT2 works equally well with characters, but we'll remove the trace
first, since the blanks added on line 1 won't show anyway:

TACOLCAT?2+0
Y€2 Up'ABCDEFGHIJKL'
Y

ABCD
EFCH
Y COLCAT2 '"7x!

ABCD?
EFGH=*

Now, look back at COLCAT1 on page 208. Do you see why characters can't
be used in this function?

Take and drop

The take and drop functions applied to multidimensional arrays work in the
same fashion as with vectors, except that the elements of the left argument
refer to what is to be taken or dropped along each coordinate. For example:

Extensions Of Mixed Functions To Multidimensional Arrays 213

TAB3

111 112 113
121 122 123
131 132 133
41 142 143

211 212 213
221 222 223
231 232 233
241 242 243

1 3 "24TAB3

112 113
122 123
132 133

Here the first element of the first coordinate (i.e., the first plane) Is
taken, and within the first plane the flrst three rows and last two columns,

Another jllustration is
1 1 2+TAB3

213
223
233

which drops the first plane (leaving only the second), the last row and
the first two columns.

Membership

As pointed out on page 153, the membership function works with arrays of any
rank, but the result always has the shape of the left argument:

k<2 L4p ,TAB3
R

111 112 113 121
122 123 131 132
TAB3

111 112 113
121 122 123
131 132 133
141 42 143

211 212 213
221 222 223
231 232 233
241 242 243

2 4pTAB3

111 112 113 121
122 123 131 132

214 APL\360: An Interactive Approach

TAB3eR

111

111

110

0 0 0

0 0 0

6 0 0

0 0 0

6 0 O
ReTAB3

1111

1111

PROBLEMS

1. Drill. Specify A«3 5p110, B<«3 3p'ABCDEFGHI', C<«2 3 up,A
Al;2 5] +#C01 2;2;3] B[1;2 3]
cl1;2 3;] ALl 3314 2 2 2+¢C
T1 1 2vecC 1 0 1 1\[2]C 1 0 1#B
11110 1\A o 1/01]1cC d4A
o4 3 1 204 “1 T2 2¢B
1 T2 2 1 1e4 , 08 13 303 1 1 2 udpl1l4

2. Make the first row of B (prob. 1) equal to the third column.

3. Define a function that will delete a given name from a matrix of names
A, or print out an appropriate message if the name is not in the matrix.

4. What is the difference between #[1;2] and #[,1;,2]17?

5. Starting with a matrix M«3 u4p14 , produce another matrix R whose shape
is 3 3 4 and made up of the columns of M. Use only indexing.

6. A magic square of order n is one made up of the integers 1 through nZ.
The sums over each row, column, and diagonal are the same. One way to
construct the squares of odd order is to start with a matrix of the
right size, made up of the successive integers ordered rowwise. Then
set up a vector of n successive integers with O in the middle to rotate
the matrix successively over the last and first coordinates. Define a
monadic function MS to do this.

7. Write an APL function to make a matrix out of two vectors V1 and V2,

using V1 as the first column and V2 as the second.

CHAPTER 29:

Transposition

By transposition is meant the interchanging of elements along two coordi-
nates. This wasn't introduced in the last chapter along with the other
functions mainly because it operates meaningfully on multidimensional arrays
only. The transpose function may have one or two arguments. These will be
considered separately below.

Monadic transpose

If X is the matrix specified below,

X<3 Yp'ABCDDFCHTJKLMI!
X

ABCD
EFGH
IJKL

then by the transposition of X is meant an interchange of rows and columns
such that the element whose indices are [J ;X1 ends up in the [K;J] posi-
tion for all J and K values possible. The APL function which will do this
for us is the monadic transpose, formed by overstriking the large circle
with the backward pointing slash:

QX

AET
BFJ
CCGK
DHL
The first row of X has become the first column of the transpose of X, etc.
What happens when we apply the transpose function to a vector?
Ve2 5 1
%

2 5 1

215

216 APLA\360: An Interactive Approach

Nothing has changed. The same is true for a scalar, incidentally. But we
see something a little more interesting when we work with a three-dimensional
array. Our old standby, TAB3, is always handy, so let's work with it:

YLOAD 1 CLASS
SAVED 15.02.39 07/29/69
TAB3

111 112 113
121 122 123
131 132 133
141 142 143

211 212 213
221 222 223
231 232 233
241 242 243
pTAB3
2 k4 3

Note the dimensions of TAB3, two planes, four rows, three columns. Here
is what the transpose does to TAB3; and, while we're at it, TAB?:

&TAB3

111 121 131 141
112 122 132 142
113 123 133 143

211 221 231 241
212 222 232 242
213 223 233 243

pQTAB3
2 3 Y
RTAB?
3 7 6 1
1 10 9 6
7 4 1 7
pQTAB?
304
pTAB?2
4 3

Only the last two coordinates are interchanged and, as a matter of fact,
this is always the case for all multidimensional arrays.

Dyadic transpose

The monadic transpose doesn't help us to interchange other than the last
two coordinates. For this the dyadic transpose is useful. |Its left argu-
ment is a vector specifying the new positions of the original coordinates.
Here is an example:

Transposition 217

1 3 28TAE3

111 121 131 141
112 122 132 142
113 123 133 143

211 221 231 241
212 222 232 242
213 223 233 243

This is identical with the monadic transpose of TAB3. What it says is to
leave the first coordinate alone and interchange the other two. Not so
trivial is

2 1 3QTADB3

111 112 113
211 212 213

121 122 123
221 222 223

131 132 133
231 232 233

141 142 143
241 242 243

The dimensions of the result are 4 2 3. Notice that the third coordinate,
representing the number of columns, is unchanged, the elements in each of

the original columns remaining in the same column but not necessarily in the
same order rowwise and planewise after transposition. More formally, if

an arbitrary element in TAB3 has indices [T;J3;K], then its new position

in the result is [J;7;%1 for the example above. For instance, the indices
of 232 in TAB3 are [2;3;21, and after transposition in the result they
are [3;2;2]. Let's apply dyadic transposition to a two-dimensional object,
the matrix T

7«3 5p1l5

1 2 3 4 5

6 7 & 9 10

11 12 13 is 15
1 287

1 2 3 4 5

7 g 9 10
11 12 13 14 15

The 1 2 transpose of a matrix doesn't change it at all, and the 2 1 trans-
pose

218 APL\360: An Interactive Approach

2 1QT
1 6 11
2 7 12
3 8 13
i 9 14
5 10 15

is the same as the monadic transpose.

What about
1 187
1 7 13

This gives the components along the major diagonal of T:

2 3 4 5
6 8 9 10
11 12 & 14 15

The result is made up of those elements of T whose row and column indices
are the same. If this puzzles you, there is a simulation of the dyadic
transpose called 774, in 1 CLASD

YLOAD 1 CLASS
SAVFED 15,02.39 07/29/¢9
7+3 5p115
1 1 TRA T
CIVEN R+«1 18 43 THEN ppl IS T/1 1 0oRrR 1
AND RLTY IS X[I;I1
Crvrry oX IS 3 5 THEN
I RUNS FROM 1 TO 3 BECAUSE L/3

U
—
&
w

ol TS 3
Here are a few more examples with 7483 :

2 1 17FRA TAB3
Crvey r«<z 1 18 X THFRE cepR TS /2 1 1 ok 2
AVp PLT3J1 T8 X[J5T7371]
Crvern opx IS 2 % 3 THEN
I RUNS FROM 1 TO 3 BFECAUSE L/4 3 TI& 3
J RUKNS FROM 1 T0 2

pkh IS5 3 2
2 1 1Q8TAPR3

111 211
122 222
133 233

Transposition 219

1 2 1 TRA T4AB3
GIVEN R<1 2 18 X; THEN opR 15 [/1 2 1T 0Ok 2
AND RUI3J]) 15 XLI3d371]
GIVEN oX IS5 2 4 3 THEN
I RUNG FROM 1 T0 2 BECAUSE /2 3 I5 2
J RUNS FROM 1 T0 4

ol L5 2 4
1 2 1874B3

111 121 131 1y1
212 222 232 242
1 1 1 TRA TAB3
GIVEN R<1 1 1 8 X THEN ppR IS T/1 1 1 OR
AND RUT] Is XLIsI511]
GIVEN oX IS5 2 4 3 THEN
I RUNS FPROM 1 70 2 BECAUSE L/2 4% 3 IS 2

[UEN

oR e 2

1 1 1874B3
111 2272
But

1 1 3QTABS3
DOMAIN FRROR
1 1 3 RIABS
A
1 1 3 TFA TAE3
LEFT APCUMENT MUST BE A DENSF CFET OF INTEGERS STARITENGC AT 1

By a dense set of integers is meant one with no gaps.

The syntax of the dyadic transpose with arrays of rank 3 and higher can get
a little messy, but with the aid of the prepared function 7%4 you ought to
be able to get a feel for the set of rules under which it operates.

A transformation mnemonic

You have probably noticed by this time that the appearance of the symbols
d, ® and ® is related to the kind of transformation which results when
they are applied to certain arrays. Specifically, let's apply them to a
matrix M«3 Up112:

M

w
[e)]
~J
[eo]

IS
w
(S}
[EEN

N
[N
[EN
=
[
<
w0 v

220 APL\360: An Interactive Approach
e
3 10 11 12
5 6 7 8
1 2 3 4
M
1 5 3
2 6 10
3 7 11
4 3 12
In each case the overstruck line, |, - or \, represents the axis about which

the transformation occurs.

PROBLEMS

1. Drill. Specify M«3 4pi110, N<«2 3 H4p124
1 1M 2 1 3&NW $2 18M
1 1 2qF ydeM QM
p2 1 3Q/ 1 2 1QW QM

2. For the matrix B (Problem 1, chapter 28), write an APL expression to
obtain the diagonal that runs from the upper right to the lower left.

3. Define a function DITAG that takes as its right argument a matrix M
whose elements are positive integers, and forms a number out of the
diagonal elements, i.e., 3 2 2 9 becomes 3229 .

4. Define a column-catenating function which transposes the rows and columns
and uses ROWCAT (in1 CLASS) to perform the catenation.

5. Write a one-line function to produce a table of three columns listing
N, the factorial of N, and the reciprocal of ¥ for the integers 1 through
N.

6. S is an operation table for some APL function o. Write an expression
that returns a 1 if the function is commutative, 0 otherwise.

7. Execute the following instructions and explain in your own words what

they do:

B+«bA«125
®3 25pA,B,AxB

What tentative conclusion can be drawn from the data in the table?

CHAPTER 30:

Generalized outer product

Up to now we have been somewhat limited in the ways in which we could
generate arrays of rank >1, although we have studied a number of operations
which act to change the array once it is structured. In this chapter and
the next we shall look at two additional functions that will not only
expand our capability of producing arrays of all shapes, but also enable

us to define more compactly many of the functions we have already worked
with.

We will begin by introducing a problem that involves a large number of
multiplications. |t asks that we compute the taxes to be paid for items
costing varying amounts and taxed at three different rates:

tax rates
.01 .02 .05

1 - - -

$ costs

A% B o VN B M
i
1
]

The result desired is the matrix which is obtained by getting all possible
products of costs and rates. You can see that if the cost and tax rate
vectors had large numbers of components or noninteger components, this
procedure could involve a lot of work.

Outer product

APL has a function which operates on arrays in precisely the way needed

to fill in the table above. It is called the outer product. To illustrate
it, let the left argument be the vector of costs A4 and the right argument
the tax rates B:

221

222 APL\360: An Interactive Approach

A<1 5
R«,01x1 2 5
B

0.01 0.02 0.05%

The outer product is

Ao xP
0,01 0,02 0.05
0,02 0.04 0.1
0.03 0.06 0.15
0.04 0.08 0.2
0,0% 0.1 0.25
which is read "4 null dot times B.'' The little circle, called null, is the

upper shift . Clearly it gives all possible products of the left and
right arguments and signifies that we want the outer product with respect
to A and B.

Any standard scalar dyadic function can be used after the period in place
of x. For instance:

Ao +HE

1.01 1.02 1.05
2.01 2.02 2,05
3,01 3.02 3.05
4,01 4,02 4,05
5,01 5,02 5.05%

Notice that the shape or dimension of the result is the catenation of the
shapes of the two arguments. In this case it is 5,3 or 5 3.

The outer product enables us to do a variety of things. For example, an
addition table can be generated by

Ao, t4A
e 3 Y 5 6
3 L Q) 3] 7
4 5 § 7 8
5 [§ 7 8 9
o 7 8 9 10

and the subtraction table by

Ao -4
0 71 T2 T3 Tu
1 0 "1 "2 73
2 1 0 1 72
3 2 1 0 "1
403 2 1w

Generalized Outer Product 223

Some of the patterns obtainable are interesting. Here is the identity
matrix of order 4 (so-called because when matrix multiplication is used
with any other 4 4 matrix M and the identity matrix, the result is M):

(t4)o.=14

O O O
OO O
= C
= C OO

If = with the outer product gives the identity matrix, can you guess what
will result in?

Finally, here are two others that yield matrices of all 0's and 1's:

(15)e.<15

01 1 11
0 0 1 11
0 0 0 11
0 0 0 01
0 0 0 0 0
(15)e.<15
11111
011 11
00111
0 0 0 1 1
0 0 0 01

It isn't necessary that both arguments be vectors. One could be a matrix
and the other a vector to give a three-dimensional array. In fact, this
is where 74r3 came from:

YLOAD 1 CLASS
SAVED 15.02.39 07/29/69
TAB3

111 112 113
121 122 123
131 132 133
141 142 143

211 212 213
221 222 223
231 232 233
241 242 243

Construction of multidimensional arrays

Follow the buildup of 7AB3 from scratch:

224 APL\360: An Interactive Approach

W<10 20 30 400.+13
W

11 12 13

21 272 23

31 32 33

41 42 3
oW

Z<100
Z

N

000 . +¥

111 112 113
121 122 123
131 132 133
141 142 143

211 212 213
221 222 223
231 232 233
241 242 243

Z is identical to TAR3 . |t doesn't matter what the ranks of the left and
right arguments are. The dimension of the result is still the catenation
of the dimensions of the arguments.

Let's try building TAR3 another way:

U«100 2000 ,+10x1 4
U

110 120 130 140
210 220 230 240
el

Y«Uo . +13
Y

111 112 113
121 122 123
131 132 133
141 142 143

211 212 213
221 222 223
231 232 33
241 262 243

Again Y is the same as 7AB3.

Scanning

The next concept to be considered in this chapter is scanning. |f we were
to start with a vector, say, 1 2 3 4, there may be times when we might want
to get a record of the cumulative sums (or products) from left to right

Generalized Outer Product 225

along the components of the vector. In this case it would be 1 3 6 10.

There is in1 CLASS a prepared monadic function SUMSCAN which does this
for us:

JLOAD 1 CLASS
SAVED 15,02,39 07/29/69
SUMSCAN 1 2 3 4
1 3 6 10

Let's see how SUMSCAN is constructed:

VSUMSCAN[LT]]V

V R«SUMSCAN V
>4ux11=ppV
YARGUMENT MUST BE A VECTOR'
+0
Re+/((vpV)e.,21pV)x(20pV)pV

Line 1 tells us to branch to 4 if the argument is a vector, otherwise drop
through to line 2 where an appropriate message is printed out, followed by
an exit from the function on line 3. Line 4 causes a 2ppV restructure of
V (for this example 2ppV is 2p4 or 4 4) which is

Ve b
(200V)pV

[Y
NN NN
wwww
F F F F

This is then multiplied component by component by

(wpV)e.zapV

bR e e
il ae)
R oo
O OO

to give

(CrpV)e.zapV)x(2ppV)pV

A S
NN O
ww oo
F O oo

which is then summed over the second coordinate.

226 APL\360: An interactive Approach

Graphing

Our last topic has to do with the use of the outer product to build up a
simple-minded but instructive graphing function. To begin, define

Y«dX« 5419
X

"4 T3 T2 "1 0 1 2 3 u
Y

Because there is a 0 as the middle element in X and Y, their outer product

will produce 0's only along the ''axes' of the matrix:
MeYo xX
M
“16 T12 T8 Ty 0 Yy 8 12 16
12 "9 "6 "3 0 3 6 9 12
"8 "6 w2 0 2 4 & g
"4 T3 T2 "1 0 1 2 3 L
0 0 0 0 0 0 0 0 0
Y 3 2 1 0 "1 T2 T3 Ty
8 6 4 2 0 "2 T4 Te& "8
12 9 6 3 0 "3 "6 "9 T12
16 12 8 y 0 "4 T8 T12 T18

The next step is to replace the 0's with some character, say, +, and every-
thing else with blanks. One way to do this is to use the array to index a
suitable character vector:

v+ [1+40=M]
+
+
+.
+
tttttttte
+
+
+
+

Since the horizontal axis is somewhat out of scale (one character space
isn't as wide as a line space), we will adjust our ''graph' as follows:

Generalized Outer Product 227

(18p1 0)\' +'[1+0=M]

+ + + + + + + +

+ 4+ 4 4+ + 4+ 4+ +

Suppose now we wish to plot on this set of axes a number of points (X, Y),
where Y«<X+1. Our axes are made up of literal characters, so that the points
themselves would have to be represented as literals in order to include them.
It is more interesting, however, to go back to our original outer product,
which is numeric, and superimpose the desired set of points F on it before
converting to characters:

FeYo ,=X+1

F
0 00 0O0O0O0T1O0
0 00CO0O0OO0O1O0O0
0 000O0O1CO0O0O0
00 0010O0O0O0
00010000 O0
001000000
01 000O0CO0O0O0
100000 O0O0O
000 00CO0O0O0O0

F produces a matrix of 1's where the points are. We next add the matrices
F and 1+2x0=M, You should be able to see why multiplication by 2 is nec-
essary if you execute the next step without doing so.

F+1+2x0=M
1 1 1 1 3 1 1 2 1
1 1 1 1 3 1 2 1 1
1 1 1 1 32 1 1 1
1 1 1 1 L 1 1 1 1
3 3 3 % 3 3 3 3 3
1 1 2 1 3 1 1 1 1
1 2 1 1 3 1 1 1 1
2 1 1 1 3 1 1 1 1
1 1 1 1 3 1 1 1 1

Finally, our expanded plot is

228 APL\360: An Interactive Approach

PLOT«(18p1 0)\'" o+o0'[F+1+2x0=i1]

PLOT
+ o
+ [
+ o
[+]
+ + + ° + + + + +
° +
° +
° +
+

Now that we have built up the algorithm for the plot routine, we can incor-
porate it into a defined function, GRAPH :

V Z+«GRAPH

(1] Z+{(2xpX)p 1 O)\' oto'[F+1+2x0=(dX)o, xX]
v

F and X must be set before the function is executed:

X« 5419
F<(®X)o,=X+1
GRAPH
+ °
+ o
+ o
=]
+ + + ° 4+ + + + +
o +
° +
° +
+

Plotting functions can get quite complex when it is desired to include such
amenities as labeling of the axes, provision for changing the scale of the
plot, and rounding off the computed values for the coordinates, since the
printer can't type characters between lines and spaces.

APL provides a useful set of plotting routines in 1 PLOTFORMAT. Since
instructions for the use of this workspace are quite complete (type
DESCRIBE after loading), practice in the functions is left as an exercise
(see problem 9).

Generalized Outer Product 229

PROBLEMS

1. Drill. Specify A<14, B«2 3p'ABCDEF', C«'ABD', D<3 1p13
Ao, 34 Ao [204 100 1 10,40 1 0 1 1
Co.=B 1 3 Qe ,>D 1 2 3e.]15
Do . xA 1 0o.A1 O (15)e.,x0 1 2 3

2. Use the outer product to generate the following tables:

A) Sines and cosines of angles from 0 to PI at intervals of
PI:6

B) Logarithms of the integers 1 through 10 for a vector B of
different bases

C) Occurrences of the vowels AEIOU in the character string S

D) Squares and square roots of the integers 1 through 10

3. What is the shape of the result when the outer product is used to
add the elements of a vector of length 4 to the components of a
2 2 matrix?

4. Define a function DIST that computes the rounded off (nearest integer)
distances between any two cities whose X and Y coordinates are given
in a matrix L. Assume pL is N,2 and the cities are all located north
and east of the origin of the coordinate system.

5. Write an APL expression to find the number of occurrences of each of
the letters ABCDEFG in the word CABBAGE . Compare your answer with
that given for problem 4, chapter 21.

6. Construct expressions which will give the sum and carry digits for
addition of two numbers in any system with base B<10. Using these
results, write a function to generate an addition table of a set of
integers INT in base B.

7. Write a program to multiply two polynomials together. Assume their
coefficient vectors (1 and (2 are arranged in descending order of
powers of X.

8. Use the function GRAPH (page 228) for each of the following:
A) Y<lX+ 5419
B) Y+ S+X%2
C) YsXxX+1
D) (YsX+1)aY23-|X
E) Ys<3lx

9. Execute the following instructions in order:

230 APL\360: An Interactive Approach

Y<d 13+125
Re(0=(3xY)o.+(2xX)=-2)v0=(2xY)o . +X-8
R

Explain the resulting display.
10. After loading 1 PLOTFORMAT execute each of the following:

A) X<120
YeX*2
Z42xX*2
40 60 PLOT Y VS X
40 60 PLOT Y AND 2 VS X

B) X«1,50x17
Y« X
20 30 PLOT Y VS X
20 30 PLOT Y[1+17] VS X[1+17]

€) X«0(0,136):18
Y«l10X
Z<20X%
70 PLOT Y AND Z VS X

D) (For Y and Z defined as in part C)

Y AND Z
Yy vs X

11, In 1 CLASS is a function DFT which can be used to format the
output of a calculation in APL. Its left argument is a vector
of two elements, the first of which determines the maximum width
of the field to be printed and the second, the number of places
to the right of the decimal point. The right argument is the
data to be formatted. Execute 10 5 DFT X AND Y after copying
AND from 1 PLOTFORMAT and specifying X<«+110 and Y«Xx.5

CHAPTER 31:

Generalized inner product

In the last chapter we examined a function called outer product which formed
all possible combinations of the two arguments, using some standard scalar
dyadic function. This operation, however, doesn't result in what in mathe-
matics is called ordinary matrix multiplication.

For those not familiar with it, here is an example which illustrates the
use of such matrix multiplication. We have three men who are engaged in
buying four items, A, B, C and D. The cost and tax on each item are given.
| f we know how much each man bought, what is the total cost and total tax
per man? In tabular form:

cost/unit tax/unit
A 4 .05
8 2 06
item
C 1 01
item D 1 02
A 8 C D
1 2 3 0 1 @ :

231

232 APL\360: An Interacting Approach

What we want are the entries to go into the dotted table, whose boxes are
numbered as shown above. Let's see how we can figure them out. To get

the total cost for each man, we would multiply the numbers of the various
items purchased by their respective costs, add them up, and put the results
in the appropriate boxes. For man 1 this is

(2x4)+(3x2)+(0x1)+(1x1) or 15

This will go in box I-1. The total tax for man 1 can be obtained similarly
and placed in box 1-2:

(2%x.05)+(3x.06)+(0x.01)+(1x.02) or .3
What goes in box 3-1, to take one more example, can be gotten by
(Ix)+(I1x2)+(2x1)=(1x1) or 9

The completed table looks like this:

/\/
/_/
15 3
/\/ _____ —
9 21
/_/ __________
9 15

Note that the first dimension of the result is the same as the first dimen-
sion of the left matrix, and the second dimension of the result is the same
as the second dimension of the right matrix. |In addition, the inner two
dimensions (second dimension of the left argument and first dimension of
the right argument) must be the same in order to make possible this new
kind of "multiplication," if we may be permitted to use the term in a
somewhat different sense from its customary arithmetic meaning.

Inner product

To show how this operation can be performed on the terminal, let's build
these matrices from their elements. First, we'll define the left matrix:

Generalized Inner Product 233

A«3 4p2 3 0 1 0 2 1 4% 1 1 2 1

A
2 3 1
0 2 1 4
1 1 1

The right argument B is

B<u 204 ,05 2 ,06 1 .01 1 .02
B

0.05
0.06
0.01
0.02

[

and the desired result, which is known as matrix multiplication, is formed
by executing

A+ . xDB

N W

1
5

W L v,
(el el o]
Y

Why use three symbols for this common operation? Very simple: for the +
and x any standard scalar dyadic functions can be substituted. The reason
+ and x are used here is that these are the two operations needed to get the
result matrix, the products first and then the sums. There is also a
pattern to the way the elements are combined. For example, the element of
the result which goes into box 3-2 (the third row second column of the
result) is obtained by operating in the fashion described with the third
row of the left matrix and the second column of the right matrix. Such a
sequence of three symbols, f.g, f and g being any standard scalar dyadic
functions, is called an inner product. It is not the same as 4e°.,+B or

Ao .xB and in this case can't even be compared with AxB since the latter
operation is possible only when the two matrices are the same size, and

the multiplication is carried out between corresponding elements only. The
inner product, Af.gB, operates on array arguments of many shapes with the
dimension of the result in each case (except for scalars) being
(T1+pA),1+pB. Here are some additional examples involving scalars and
vectors:

10+.x3 2 8
130

1 2 3 44.%x0 1 2 3
76

2 1 6+.%x3 2016
35 44

(3 4pr12)+.=14
4 0 0

234 APL\360: An Interactive Approach

(2 3 Lpir24)+.-4 2pa8

& 10
10 6
26 22
42 38
58 5S4
74 70

Applications of the inner product

Here is another problem, this time involving distances between cities on a
map. The diagram shows not only the intercity distances but also the
directions in which they are measured:

Notice that the distances are not necessarily the same in both directions
between any two cities. This is to allow for the most general case where
the roads may be one-way and not laid out parallel to each other. We can
summarize the diagram in the form of a mileage table:

to
A B C D
A 0 10 5 20
B 10 0 8 7
from
c 10 8 0 3
D 20 7 3 0

Such a table is provided in 1 CLASS under the name MILEAGE :

JLOAD 1 CLASS
SAVED 15,02,39 07/29/69

Generalized Inner Product 235

MILEAGE
6 10 5 20
10 0 8 7
10 8 0 3
20 7 3 0

Believe it or not, the longest two leg trips from any city to any other
city passing through some intermediate city is given by

MILEAGET J+MILEAGE

4o 27 23 20
27 20 15 30
23 20 16 30
20 30 25 40

The longest trip from A to B is 27 miles (A-D-B), from B to C 15 miles
(B-A-C), etc.

Why does this work? Let's arrange the matrices for the inner product in
the same form that our earlier problem was:

[.+ |20 71 31 0
Tif T2 13 1%

21 22 2#* 2k

31 320 33 34

oy W2l u3 (R
20 713110

The longest trip from B to C is represented by the contents of box 23. This
is formed by operating with the second row of the left matrix and the third
column of the right matrix. |t requires adding 10 and 5, and taking the
greater of that sum and the sum of 0 and 8, which is 15, then taking the
greater of 15 and the sum of 8 and 0, which is still 15, and finally taking
the greater of 15 and the sum of 7 and 3, which is 15 again.

There are many other interesting combinations and possible uses, only a few
of which will be considered. For instance, the shortest two-leg trip is

MILEAGEL .+MILEAGE

0 10 5 8
10 0 8 7
10 8 0 3
13 7 3 0

236 APL\360: An Interactive Approach

Notice that the shortest trip from, say, A to C, is 5 miles, which is A to
A toC or AtoC toC. We are allowed this possibility because there are

entries (they happen to be all 0's) in the mileage table from A to A and C
to C on the major diagonal of MILEAGE:

MILEAGE
0 10 5 20
10 0 8 7
10 8 0 3
20 7 3 0

One way to be protected from such a sneaky result is to put arbitrarily
large numbers along the major diagonal. This can be done without destroy-
ing or rewriting MILEFAGE as follows:

F<MILEAGE
T€1000x(1b4)e, =1k
T
1000 0 0 0
0 1000 0 0
0 0 1000 0
0 0 0 1000
Fel+T
F
1000 10 5 20
10 1000 8 7
10 8§ 1000 3
20 7 3 1000

Now we get for the shortest two-leg trips
FL.+F

15 13 18 8
18 i+ 10 11
18 10 6 15
13 11 15 6

and, this time, the shortest such trip from A to C is 18 miles (A-B-C).
Application of this operation a second time would give the shortest three-
leg trip:

FL.+FL.+F

23 15 11 20
200 18 14 13
16 14 18 9
21 13 9 18

We can continue this process ad nauseam, but there is a prepared function in
1 CLASS called AGAIN that will do it for us. Let's display it:

Generalized Inner Product 237

VAGAIN[LIlV
V AGAIN
1] T«TL.+F
v
It is niladic and simply respecifies T as TL.+F. |If we set T equal to F,

the first time we execute AGAIN we will get the shortest two-leg trip,
the next time the shortest three-leg trip, etc.:

I«F
T
1000 10 5 20

10 1000 8 7
10 g8 1000 3
20 7 3 1000

AGAIN

T

15 13 18 8
18 14 10 11
18 10 6 15
13 11 15 6
AGATH
T

23 15 11 20
20 18 14 13
16 14 18 9
21 13 9 18

The next example is one in circuit design. Imagine a circuit with six
components connected as follows:

A, B, C, D, E and F are some kind of functional units which can be either
energized or not. The circuit works this way: if C is energized, after

a certain increment of time D is energized, and after another increment of
time E is energized; if A is energized, after an increment of time C and B
are energized, etc. F is the oddball unit here. Once it is energized it
stays on permanently, but unless we start with F on there is no way to turn
it on. E is a terminus. It doesn't turn anything on.

238 APL\360: An Interactive Approach

All this information can be summarized in a matrix, with 1 standing for
the existence of a connection from the unit named on the left to the one
whose name is on the top:

to

A B C D E F

A 0 T 0 0 0

B 1 0 0 0o 0 0

c o o o0 1 0 o0

from D 10 0 0 1 0
E o 0 0 o 0 0

F o o 1 0o o 1

This matrix is available as a variable called CIRCUTY in 1 CLACS

CIRCUIT
011000
100 000
00 01 00
100010
0 0 0 000
001 001

We can set up a vector X with six components (one for each unit in the
circuit) and let 1 signify that the unit is turned on initially. For
example, if only A is on, we specify X as

X«1 0 0 0 0 0

What units are on after one increment of time? From the matrix it appears
that B and C will be turned on and all the others, including A, will be
off. The result should therefore be 01 1 0 0 0.

This can be achieved by

AV ACIRCUIT
0 1 1 0 0 0

After another increment of time:

01 1 0 0 OVv,ACITRCUIT
1 0 0 1 0 0
and A is back on (due to the loop between A and B) with D also on.

To step this through several increments of time there is a function RUu in
1 CLASS . Let's display it:

Generalized Inner Product 239

VRUNTLIIV

V NETIZORK RUN STATUS;COURNT
[11] COURT<«0
[2] COUNT
[3] STATUS
(4] STATUS«STATUSY . AJJETHORK
[s] COUNT«COUNT+1
[6] +>2

v

The left argument is WETWORK , the matrix which describes the circuit
connections, while the right argument STATUS represents the initial con-
ditions. COUNYT is a local variable which is set to 0 on line | and dis-
played on line 2. Line 3 prints out the current status of the circuit
components. This is updated on the next line and the counter upped on

line 5. The final line causes a branch to 2.

Does this program look a bit peculiar to you? It should. There is no
safeguard in it to turn it off once it starts, and it will run forever!
The proper thing to do would be to put a line in it that will cause execu-
tion to cease once COUNT reached a certain value. Since there is no such
check, we'll let it go and manually interrupt execution with the ATTN
button.

We'll start by turning on only A:

X«1 0 0 0 0 O
CIRCUIY RUI X

0

1 0 0 0o 0 0
1

o 1 1 0o 0 ©
2

1 o 0 1 0 0
3

1 1 1 0o 1 0
i

1 1 1 1 0 0
5

1 1 1 1 1 0
6

1 1 1 1 1 0
7

1 1 1 1 1 0
RUN[3]

Execution has been manually interrupted, as discussed above, and we are
suspended on line 3:

VST
RUNL3] =

F will never turn on, no matter how many runs we make. A glance at the
original circuit shows why.

240 APLA\360: An Interactive Approach

COUNT is up to 10, the printout having lagged behind execution:

COUNT
10

Ordinarily we can't get a value for COUNT, it being a local variable, but
remember that we are still in the function as a result of the suspension.

Let's now remove the suspension:
>0
Y51
@

The few examples shown barely begin to cover the wide range of possible
applications of the inner product. After you have gained a reasonable
proficiency in APL you should be able to think up many more.

PROBLEMS
1. Drill. Specify A«3 4 5, B«li 3p110, (<3 Updr7
A+.=4 An.>C Bx,=4
Bx,-(C Av.zB Cl!.-B
Bv,<(C 3+.xB (RCHT . +4
2. A) For two vectors A and B of the same length, and the conformable

matrices M and U (U<(1N)o.<1N) give a meaning to each of the
following: AA,=B, MA,=B, A+.2B, (M=0)a.2U, Ax.xB
B) For a logical square matrix N, what is the significance of F<iv.Al?
C) For the conformable matrices C and D, what is the meaning of C+.,=D
andCl.LD 7

3. Redo each of the following problems using the inner product:

problem 7, chapter 8

problem 4, chapter 10
problem 21, chapter 19
problem 5, chapter 24

o O W
-

4. Write a program to evaluate at various points X a polynomial with
coefficients C. Assume the terms of the polynomial are arranged in
ascending order of powers of X. Use the inner product in your
algorithm. (See also problem 3, chapter 23, and problem 7, chapter 30)

5. For a character matrix M, each of whose rows contains a name, write a
function to alphabetize the names and place them in a new matrix A.
Assume each name is entered in the form JONES ANNABELLE and
(pM)(2])=16. One blank will separate the first and last names, and
any spaces left over will be blanks on the right. The sort is to be on
the last names, with first names sorted within them.

Generalized Inner Product 241

The Jones Computing Systems Corporation reimburses its employees for
travel on company business at the rate of 14 cents per mile for the
first 75 miles, 10 cents per mile for the next 50 miles and 6 cents per
mile for all mileage in excess of 125. Define a monadic function which
uses the inner product to compute mileage allowances for employees.

Use the inner product to write an expression which will simulate 101M
along the rows of M, where Mx3 3p19,. Your expression should produce
the vector 123 456 789.

Redo the cosine function (page 67) using the inner product.

CHAPTER 32:

Two applications of APL

There are a number of uses for APL in the branch of mathematics known as
matrix algebra. Since this text is a teaching introduction to the
language, only one of these will be considered, the solution of a set

of exactly determined simultaneous linear equations.

For those who have forgotten their high school algebra, simultaneous
linear equations are of the form (in conventional notation)

aX + bY + cZ + ... =k]

dX + eY + fZ + ... =k2
the problem being to find values of the variables X, Y, Z.... that satisfy
all the equations. a, b, c, ...k], k2"' are numerical constants.
We will approach it with a numerical example. Suppose that in three

successive weeks, we bought a number of different items A, B and C,
spending the amounts listed:

total
cost A B C
week 1 $1.10 L 6 0
2 .59 3 2 2
3 .78 1 3 4

What are the per unit costs of the various items?

The answer happens to be $.05 for A, $.15 for B and $.07 for C. Let's work
back from the answer to see how we can solve similar problems. From our
previous work with the inner product, we ought to be able to get the vector
of total costs from the number of items matrix and the unit cost vector
(try this for yourself). we'11 call the total costs vector D, the matrix
of the number of each item purchased X, and the unit cost vector B. Our
trouble is that in a real problem we would know X and D but not B.

242

Two Applications Of APL 243

Before proceeding, here is a quick review of some elementary facts about ma-
trices. M, N, P, ¢ and R are matrices of the appropriate size, and = is used
in the conventional sense here. +.x means the usual inner product (here ma-
trix multiplication). All of these facts you may verify on the terminal:

(1) If M=0, then (K+.xM)=R+.xl
(2) (M+.x(N+.%xP))=(M+.xL)+.xP

(3) If @ has an inverse, INV @ ,then ((INV @)+.xQ)=T
where I is the identity matrix

(L) (M+.xI)=(I+.xM)=H

The third point introduces a new concept, that of a matrix inverse. This
is really not much different from the other kinds of inverses we have
encountered thus far. For example, adding the additive inverse to a num-
ber resulted in the identity element for addition:

R<110
O=K+-R
1 1 1 1 1 1 1 1 1 1

and for multiplication:

1=Rx+R
1 1 1 1 1 1 1 1 1 1

-F here is the additive inverse and K the multiplicative inverse. So the
inverse of a matrix is one which, when it multiplies M (matrix multiplica-
tion, not component by component), yields the identity matrix; shown here
for 4 4 matrices:

(14)e.=14
1 0 0 O
01 0 0
00 1 0
0O 0 0 1

If MU+.xTN¥V M results in I, then TNV M is said to be a right inverse.
Ditto for ((LwV 4)+.xM)=1I, as a left inverse. |f the same matrix

is both a left and a right inverse of M, then M must be square (why?), and
INV M is referred to as the inverse of M. From this point on, TNV i will
be used in this latter sense.

Now getting back to our problem, with the dimensions underneath as shown,
we had

D <« X+.xB
3 3x%x3 3

We want to find B. Using a dotted line to indicate that both sides are
equivalent statements, the sequence of steps we will take is the following:

244 APL\360: An Interactive Approach

(INV X)+.xD INV X+.x(X+.%xB) rule 1

(INV X)+.xD (CINV X)+.xX)+.xB rule 2

B rule 4

]
I
|
I
(INV X)+.xD ! I+.%xB rule 3
!
(IZV X)+.%xD l

The last line is our conclusion, that B<«(INV X)+.xD

There is a prepared function in 1 CLASS called INV which acts as above,

as well as the data for this problem. It requires a knowledge of matrix
algebra beyond the scope of this text to explain how one can calculate
matrix inverses, so INV will not be displayed:

YLOAD 1 CLASS
SAVED 15.02.39 07/29/69

X
4 6 0
3 2 2
1 3 04
D
1.1 0.59 0.78
vV X
T0.03846153846 0.4615384615 T0.2307692308
0.1923076923 T0.3076923077 0.1538461538
T0.1346153846 0.1153846154 0.1923076923

(INV X)+.xD
0.05 0,15 0,07

The set of equations in our problem has as many equations as unknowns.
There may be times when we have too many equations or not enough. You will
find techniques for handling these and other variations in standard texts
in matrix algebra and numerical analysis.

Some elementary examples from the calculus

The definition of the slope of a straight line (see problem 6, chapter 7;
is of little value if the function we are considering is nonlinear. We
can, for example, still use this definition to get an '"'average'' slope over
a modest-sized interval, but it is only an approximation.

In calculus courses it is shown that the slope of a function at a particu-
lar point P is the limiting value of the average slope over an interval
encompassing the given point as the size of the interval becomes vanishingly
small:

http:15.02.39

Two Applications of APL 245

Yoo —— — ———— — — —

|
l
|
N =
l
I
x

In the figure above, the average slope for the interval shown is
(Yo-Y1)+(X2-X1). By reducing the size of the interval about P, this
average approaches the instantaneous value of the slope at the point P, and
in the 1imit is the value of the derivative of the function at P.

APL can be used to obtain numerical values for the slopes (derivatives) of
functions, provided, of course, that the derivatives exist. As an example,
let's define a quadratic function F as follows:

VR«F X
[1] R+2%xX%x2V

Using our previous definition of the slope, we'll set up a dyadic function
SLOPE which will allow us to choose intervals of varying size in the
computation:

Vi<l SLOPH X
[11 R«((F X+I)-F X):IV

Here are some executions of SLOPE with different intervals:

X+110
1 SLOPL X

6 10 14 18 22 26 30 34 38 42
.1 SLOPIK X

4,2 8.2 12.2 16.2 20.2 24,2 28,2 32.2 36.2
40,2
.01 SLOPE X

4,02 8,02 12.02 16.02 20.02 24,02 28.02 32.02
36.02 40.02
.0001 SLOPE X

4,0002 8.,0002 12.0002 16.0002 20.0002 24,0002
28,0002 32.0002 36,0002 40,0002
ET6 SLOPE X

4.,000001999 8,000001999 12.000002 16.00000199
20.000002 24,000001989 28.,000002 32.00000199
36.00000199 40,000002

Those readers familiar with the calculus will understand why these last
results are nearly identical with

246 APL\360: An Interactive Approach

2x2xX
[} 3 12 16 20 24 28 32 36 L0

for the function F defined previously.
Since the result of applying the function SLOPE to F is itself a function
namely, 2x2xX we ought to be able to apply SLOPL again after changing’

YPI1)R«2x2x XY
15276 SLOPE X

44 4 3,999999997 3,99999999,7 3,9903999997 3,99999G997
3.999999997 3,999999997 2,9999399997

This execution corresponds to the second derivative of F.

Our final example is one in which we compute the area bounded by the curve,
the X-axis and the ordinates at Xj and X, {(see problem 5, chapter 19):

An obvious solution is to break up the cross-hatched area into rectangles
of uniform width I,

B

|

S
1

find an expression for the area of the ''typical'' rectangle, add up the areas
and then decrease | to get a better approximation. The function A#L/A does
this for us. X is a two-component vector whose elements are X| and X; as
shown in the diagram.

Two Applications of APL 247

VE<T AREA X
1] Rel+oxF XL1J+Ix<l (XL20-X011):1v

Again, those with a calculus background will recognize this as the numeri-
cal equivalent of

fx)dx
X

Before applying the function, let's change F back:

VI[1JR+2xX%x2¥
L1 AREA X

4,97

.01 ARA X
4L,6967

L0001 AREA X
4,669667

L0001 AREA X
WS FULL
AREALL] Rel+.xF X[1J+IxL(X[2]-X[11)=:T

Note that as the number of points which we use to evaluate the area
increases, sooner or later we'll run out of storage space for the inter-
mediate results in the algorithm, as indicated by the ws full message. Can
you think of a way to '"'stretch' your available storage for greater preci-
sion?

PROBLEMS

1. Use the function SLOPE to investigate the slope of the curve repre-
sented by Y«xX for different points X. Compare your slopes with *X.

2. Find the inverse of the identity matrix.

3. Use INV to solve the following system of equations:

2X+Y+37=10
Lhx+3Y-2=13
2X+Y-47=3

4, In algebra it is shown that for the system of equations
aX+bY=c (conventional notation)
dX+eY=f

the application of Cramer's rule gives as solutions

X={ce-bf):(ae-bd)

Y=(af-cd) * (ae-bd)
Write an A7/ program to solve by Cramer's rule a given set of two lincar
equations and print the message NO UNIQUK SOLUTION if ae-bd=0. Then
define a function ZSOLVE which uses J#V to solve the equation.

248 Two Applications of APL

5. Nearly every calculus book ever printed has a problem similar to
the following: A farmer has 300 feet of fencing material which he
wants to use to enclose as large a rectangular area as possible. One
side of the property to be enclosed is a relatively straight stretch
of river, and needs no fencing. How should the fence be put in?
(To solve this problem, set up an expression for the area, apply the
slope function to it, and see where the slope is 0. This corresponds
to a maximum point on the graph of area vs the variable representing
the length of one side).

6. Use the function AREA to find the area bounded by the curve represented
by Y+:X, the X-axis, and the ordinates at X=1 and X=2. Compare your
answer with ®2.

CHAPTER 33:

Input and output

We have been doing a considerable amount of computing without having to pay
too much attention to the problems of input and output. And for a good
reason—our work has been of a highly interactive nature. We fed informa-
tion to the system and the system either responded or put things into storage
for us, to be recalled at some later time.

Nevertheless, there comes a time when we need to take a look at some of

the more specialized forms of input and output, especially as they appeared
in the drill exercises and some of the prepared functions. These features
are the basis for this chapter.

The quad

In 1 CLASS5 there is a function called SD which calculates the standard
deviation. Here it is:

YLOAD 1 CLASS
SAVED 15.02.39 07/29/68

vsoLiilv
V SDy A0
(1] "YNTER OBSERVATIONS!
(2] X<l
[3] >0x10=pX
[u4] YWUMBER OF 055 :";l«N<pX

[5] X<X-(+/X)3id

[6] 'STANDARD DEVIATION!
£71 ((+/X*%2)24-1)%0.5
8] -1

It is niladic and does not return an explicit result. Going through the
function, we find that line 1 prints out the message LNYER OBSERVATIONS
This is followed on line 2 by the local variable X, which is specified

by the quad (upper shift L) or box. The effect of this line is that when
control is on line 2, the output that appears on the paper is []: and causes
the system to wait until you have given it some input and pressed RETURN.
The input is then stored in X. Line 3 branches to 0 if 0=pX, i.e., if

an empty vector is entered. |t is a signal in this function that we are

249

250 APL\360: An Interactive Approach

finished. Line 4 introduces another new feature, mixed output. It prints
out NUMBER OF 0OBS: followed by the number of observations entered (pX

is stored in N, put into the box and printed out). The semicolon is used
here in APL for such mixed output because characters can't be catenated to
numbers. Line 5§ subtracts from each component of X the average, and stores
it in X. After a message STANDARD DEVIATION is printed (line 6), the
calculation is carried out on the line 7 and printed, following which control
is returned to line 1, and the program loops through the steps once more.

Let's try this a few times to see how it works:

SD
KNTER OBSERVATIONS
C:

T 212 12 12
8

NUMBER OF OBS:8
STANDARD DEVIATION
0.5345224838

ENTER OBSERVATIONS
U:

Note the 8 just prior to the line giving the number of observations. The
reason for this is that on line 4 of the function, in executing from

right to left, pX was put into N and ¥ in turn into {l. Whenever the quad
appears to the left of the specification arrow, the system interprets this
as a command to print out the value of whatever is to the right of the
arrow. So the right hand side of line 4 really does two things: [t stores
the length of the vector X in the local variable ¥ for subsequent use on
lines 5 and 7 and causes a printout of the length at the same time. Since
in going from right to left the box is encountered first, the contents are
printed out first, before the literal message, and then reprinted following
the message. We will edit the function a little later to remove this un-
desirable feature.

Any valid APL expression can be entered:

il:

8p1l 2
8
NUMBER OF 0BS:8
STANDARD DEVIATION
0.,5345224838
LNTER OBSERVATIONS

B

(Now we'll try)
[J:
LJ“801 2
1 2 1 2 1 2 1 2
8

NUMBER OF 0BS:8
STANDARD DEVIATION
0.5345224838

ENTER OBSERVATIONS
BE

Input and Output 251

Since the quad appears just to the left of the arrow in this input, it
causes an immediate printout of 8pl 2 and then proceeds with execution of
the function.

Escaping by simply pressing RETURN and not entering anything is not enough.
The system has to have some input, and only if an empty vector is entered
is it possible to excape:

SE
10

Let's now open up the function to remove the extra quad. We'll use detailed
editing on line 4:

vSOL U101
(4] VWUMBER OF 0BS:';[J«N<pX
//
(4] "NUMBER OF 0BS:!';i<pXV

Now executing SD once more, it appears to be OK:

SD
HHNTER OBSERVATIONS
BE

10p1 2
10

NUMBER OF 0OBS:10
STANDARD DEVIATION
0.5270462767
LSNTER OBSERVATIONS
it

Ty

@

Incidentally, as the last input shows, another way to enter an empty vector
is to type ''. Do you remember why this works?

This function has introduced three new features: (1) the use of the semi-
colon for mixed output; (2) the quad to the left of the specification arrow;
and (3) a quad to the right of the specification arrow which returns {(J: on
the paper, skips a line and waits for any valid APL expression to be typed
in as input. The contents of the quad in the last case can be put into
storage by an expression like X<«[] which makes input available for future
use in the function (or outside if X is a global variable).

SUB is another function that utilizes the quad. Before displaying it we'll
try it out a few times:

SUB
3-3
IRE
0
THATS RIGHT
10-5
I]:
6

252 APL\360: An Interactive Approach

5+(1=10
TRY AGAIN
10-5
{1:
(RETURN)
i1z
(RETURN)
[1:
(RETURN)
i1
5
THATS RIGHT
5-0
Je
5
THATS RIGHT
14-10
(s
HELP
00000000 DO0OOO0OOO TARE AWVAY
0000O0O0COO0O0ODO
14-10
{J:
n
THATS RIGHT
19-7
{J:
19-7
THATS RIGIT
11-9
(J:
11-9
THATS RIGHT
1-0
[z
11-10
THALDS RIGHAT
11-0
Note that giving no input to the program and just pressing RETURN (top of
this page) won't get you out. Also observe the responses of the program
under different conditions, and the fact that any APL expression can be
used as input.

Let's now interrupt the function to get out. Since the input box will
accept any APL expression, JCLEAR or)LOAD will get us out, but only
at the expense of destroying the active workspace. We'll use the stop
vector and then remove the suspension:

Input And Output 253

SA5U5«<1100

SUBLS]
YST
SUB[5] =«
>0
SLSUB<0
Here is SUB:

vsuBLulv

v SUB
[1] P<?20

[2] P<P, 1+?P+1

L31] PL11s'-"3PL2]

[4] A<{]

[5] >00Kx1A=-/P

[6] >NPxVA=HELP

[71] >0x14=5T0P

[8] PL2]1;'+0="3P[1]

[9] VIRY AGAIN!

(103 »3

[11]) OOK:'THATS RIGHI'
(121 -1

[13] NP:(P[1lptet),! TAKE AWAY!
[14]) PL2lpte!

L15] >3

v

On line 1 a random number from 1 to 20 is generated and stored in P. This
is then respecified by catenating to P a second random number from 0 to P.
Line 3 prints out mixed output, the first random number followed by the sub-
tract sign and the second random number. Line 4 prints a box to accept
input, while line 5 causes a branch to 11 if the answer is correct and
prints the message THATS RIGiHT , otherwise we drop through to 6. |If

HEL? is typed, line 6 branches to 13, and if STOP is typed, we exit the
function.

Assuming an incorrect answer and neither #ELP nor STOP are entered, lines
8, 9 and 10 restate the problem and tell us to 7HY AGAIN , and we start
over on line 3 with the same problem. |If the problem is answered correctly

this time and we get to line 11, we branch to 1 and get a new problem to do.

Typing /IELP brings us to line 13 where PL1] copies of the small circle
followed by some spaces and the words TAKE AWAY, followed in turn by
PL2] copies of the small circle on the next line and a restatement of the
problem are printed out, and we cycle through the same problem once again.

HELF and STOP in this exercise are global variables with rather unlikely
values attached to them to make them as student-proof as possible:

HELP
2.718281828

* 1
2.718281828

254 APL\360: An Interactive Approach

STOP
15.15426224
* k]

15.15426224

Being global they appear on the list of variables for 1 CLASS :

YVARS
B CIRCUIT D U LP M MILEACE PREVIOUST M
SPL STOP TABO TAB1 TADB?2 TAD3 X Y

To see if STOP works, we'll call for 5UB again:

SUB
11-1
B

10
THATS RIGHT
14-6
Y):

STOP

@

and we get out of the program as anticipated.

Additional uses of the quad

Don't get the impression from the previous {llustrations that the quad
can be used only within defined functions. Here, for example, are some
more ways in which the quad can be utilized for the display and input of
information. Keep in mind that at all times, though it may be used to the
left of the specification arrow, the quad is not a variable, and no values
go into storage as a result of its use in this manner.

(1

15.27%x8-42
519.18

A<5 15 72 "6 0

AL« (+/ (A0 o 24) =[]« (Xe . >X)all«hde . sA) 1 X+1pA]

100 00
01 000
001 00
00010
0 0 0 01
00 0 00 .
00 0 0 0
00 0 00
00 0 00
0 06 0 0 0
3) 1

Input And Output 255

The last example uses the quad to display intermediate results, and helps
us to understand how a messy expression such as the one just given works.

Here are some additional examples of the quad used as an input indicator on
the right of the specification arrow:

R<{]
SE

64

Véd
[

R+{]:10
[]:

16
65.6

T<(]

‘THE CAT IN THE HAT!
7
THE CAT IN THE HAT

The quad can also be used in a branch command (see page 176 at the end of
chapter 24):

+8,pU«"THIS MESSAGE WILL BE PRINTED'

Finally, when a system command is entered as input with the quad, the gquad
will disappear if the command replaces the active workspace or signs off,
and will reappear after saving or when execution is resumed after loading
or signing on again (if)COJNTINUE had been executed). It also appears in
the state indicator if)SI is entered as input.

The quote-quad

tn the last program we were rather generous in allowing any APL expression
as input. What if we want an exact predetermined answer? An example of
such a program is given by ADD

VADD[11V

v ADD
[1] (J«<P<? 10 10
[21] >0x10=pA4<,["
[3] SWRONG*x1~A/Ac' 0123456789
(4] A<10L 1+'0123456789"'14
(5] »IxX 1A=+ /P
L6] YPRY AGAIN'
[7] »2
[8])
9]

,)2

This contains a quad with a quote overstruck. The effect of this is to
make whatever is typed in accepted literally. This includes even system
commands like OFF, CLEAR, etc., so it's vital that an appropriate means
of escape from the function be planned.

256 APL\360: An Interactive Approach

After two random numbers are generated and printed out by being assigned
to the box, line 2 exits us if an empty vector is entered. There is a
branch to 8 if any character other than 0-9 is inputted. Line 4 takes the
literal representation of the input, converts it to decimal representation,
and puts it in A. This is then matched against the correct answer on line
5. If correct, we get another problem; if not, the message 7itY AGAIN.
Here is a sample execution:

ADD
8 10
18
g8 3

8+3
P299929?29029292929299

R E W
2002002922229 929

1 8

YCLEAR
292002292929 9229229

(escape is effected by entry of a return)

Note that no quad is printed out. The typeball simply moves over to the
left margin when literal input is called for, and the keyboard is unlocked.

Another function that accepts literal input is SPELL :

SPELL
3
THRLEE
THATS RIGHT
5
FIV
TRY AGAIN

5

FIVE
THATS RIGHT
8
570P
SPELLIUIV

Vv SPELL
[1] N« 1+7210
[2] N
[3] ANS<M
ful 20X 1A/ (BpANS)="STOP"
[5] >CORRECT*x 1A/ (5pANS ! ")=SPLLI+1;]
(6] VIRY AGAIN'
[7] >2
(8] CORRECT:'"THATS RIGHT'
[9] -1

v

A random number from O to 9 is selected, assigned to N, and printed on lines
1 and 2. Line 3 accepts the input and puts it in ANS. The next line
compares the first four characters of the input with ST0P. [If they match,

Input And Output 257

we're out. If not, we drop through to line 5 where the first five char-
acters of ANS are compared with the (N+1)th row of SPL:

SPL

ZLRO
ONE
THO
THRER
FOUR
FIVE
SIX
SEVEN
EIGHT
NINE

If they match, we branch to line 8, where THATS RIGHT is printed out and
followed by another problem. Otherwise we get the message TRY AGAT/ and
recycle through the problem,

SPL is actually a 10-row 5-column matrix with blanks on the end where
needed to fill up the five columns. We can show how such a matrix can
be built by executing

W<10 Sp'ONE TWO THREEFOUR '
W

ONE
TWO
THREE
FOUR
oNL
TWO
THREE
FOUR
ONE
e

Two problems occur in connection with the function SPELL . One difficulty
in designing such a function is that as it is now set up, any characters
beyond the first five aren't checked on line 5. This leads to anomalies
like

SPrLL
9
WINE RT
THATS RIGHT
3
STOP

Another real problem is that we have built in no means of escape, except by
typing STOP. An additional avenue of escape from such a program will be
discussed further on in this chapter.

258 APL\360: An Interactive Approach

Extensions of the quote-quad

As with the quad, the quote quad can also be used by itself:

",

SIHON SAYD

ry
/.

GIHOH SAYS
L

HE WONTT GO
LI

0k WON'P GO

L
ol 11

i &
Ly

11

Escape from an input loop

It sometimes happens that in spite of our best efforts, we may be caught in

an endless loop and not know how to get out, or, what is worse, the function
is poorly designed and has no way out. Shutting the terminal off won't help
us, since when we sign on again we will be right back where we were before,

because the CONTINUE workspace is automatically removed.

APL provides two escape mechanisms for such situations. Those functions
calling for numeric input () can be gotten out of by typing -, while
escape from those which require literal input ([1) can be achieved by enter-
ing O backspace U backspace T, forming the overstruck character .

PROBLEMS

1. Define a function that will give multiplication drill of integers
for some argument N in the header. Have your function print out a
message TRY AGAIN for wrong answers. Use STOP as a global variable
for escape from the function.

2. Modify your answer to the above problem so that three tries are allowed,
after which the correct answer is printed out and another problem is
posed.

3. Add a further refinement to the multiplication drill so that when HELP
is typed, the answer to the problem is given as X[1] rows of X[2]
stars each, with an appropriate message and a repetition of the
problem. X is the vector of random integers generated in the problem.

4. For a final feature, modify your function for problem 3 to print out
the amount of time required to get the correct solution.

5. Replace the message TRY AGAIN on line 6 of SPELL with a statement
Telling what the answer is.

6. Define a function ENTER that will take the literal spelling of numbers,
like those in SPL , and put them in successive rows of a 20-column

matrix. Exit from the function will be effected by entering an empty
vector.

CHAPTER 34:

Miscellaneous APL commands and features

This chapter will be a catch-all for the remaining APL commands and
features.

The commands OXRIGIN, WIDi#H, DIGITS

These system commands affect the active workspace and travel with it when

it is saved. ORIGIN, sets the origin for indexing on arrays and all oper-
ations which depend on the index. Two origins are available, 0 and 1. Here
is the command and its effect on the iota and indexing functions:

YORIGIHI O
15

0O 1 2 3 4
ALF«'"ARCDEFGHIJK!
ALFA'CAFE!

2 0 5 4
ALFT2 0 5 4]

Loy
5 0 2 1

Other array operations not shown here will be similarly changed. For
instance, in a workspace set to origin 0 the normal transpose . 1&Y (M |
some array) would have to be 1 08&M. Branching would be affected also, as
for example, in the case of »3x14=B, but this could be compensated for b
calling for >3 1A=8B, which works for either origin (why?), or by increas.
use of labels.

To tell what the origin is in a workspace all we need do is execute

11
0

Clearly the origin is 0, for an origin of 1 would call for a response of 1
Finally, to reset the origin, execute

259

260 APL\360: An Interactive Approach

YORIGIN 1
WAS 0O

and we are back to normal:

(2]

The WIDTH command works in much the same fashion, and sets the width of
the printed line as specified by the integer (between 30 and 130) follow-
ing the command:

JWIDTH 30
WAS 12¢C
100p'0123456789"
012345678901234567830123456789
01234567890123u4567830123
456789012345678390123u4567
8930123u4567890123456789

This command won't change the margin settings on the terminal, nor the
length of the input lines, but every line of output will be no longer than
the width specified.

We'll now reset the width to its normal value:

YWILTH 120
7AS 30

The DIGITS command sets the number of significant places in the numerical
output to some number between 1 and 16:

YDIGITS 5
¥AS 10

1:7
0.14286

YDIGITS 10
WAS S

1:7
0.1428571429

YDIGITS 16
VAS 10

127
0.,1428571428571428

YDIGITS 20
INCORRECT COMMAND

YDIGITS 10
WAS 16

The actual calculations aren't affected, only the output as printed.

The workspace WSFiS

In library 1 is a workspace called WSFH#S5 , which you should now load:

Miscellaneous APL Commands And Features 261

YLOAD 1 WSFiIS
SAVED 23.45.54 07/07/69

YFidS

DELAY DIGITS URIGIW SETLINE WIDTH
YVARS

DESCRIBLE

Execute DFEOCRIBE to see how the functions in this workspace are used:

DESCRIBE

TiHE FUNCTIONS ORIGIN, JIDTd, AwD DIGITS ARE EACH
SIHILAR T0O THr COMMAGD OF Tir SAME wAME, EXCSPT THAT EACH 1S
A FUNCITION RATHER TidAN A COMMAND AND MAY THEREFORE 3L USED
WITHIN OTHER FUNCTIORS. EACH HAS Aw WXPLICIT RESULT wdICH
IS Tuk PREVIOUS VALUE OF Tdi RyLEVANT SYSTLM PARAMETHER.

FOR BEXAMPLE, THE FOLLOWING FUNCTION:

VF X
(1] X«ORIGIN X
(2] G

[31] X<«ORIGIN XV

WILL vXECUTE THE FUNCTION G FHITd WHATCDVER IHDEX ORIGIN IS
SPECIFIED BY Tdk ARGUHeHT OF F, AND WILL RESTORE Tul IWDEX
ORIGIN TO THE VALUE THAT IT HAD pEFORE TdE EXKCUTION OF F.

Ty FOLLOWING FUNCTIOWNS ARE ALS0 AVAILABLL:

SYvlax DusCRIPTION

Z«SETLINK X SETS TiUE VALUE OF Tie LIWK IN Tdk CHAIHW OF
WUMBERS GENERATED IN THE USH OF THE ROLL AND
DEAL FUNCTIOWS. THE EXPLICIT RESULT PRODUCED
BY SETLINK IS Tidk PREVIOUS VALUE OF Tui LINK.

TiHE RESULTS PRODUCED BY THE ROLL AND DEAL
FUNCTIONS ARE #OT TWk LIWNKS THEMSELVES, BUT
RATHEER SOME FUNCTION OF TdEM. Tl LENGTH OF
Ty CHAIN (BEFORE REPETITION) IS 2%x31.

DELAY X DELAYS X CUTION FOR X SECOHIDS.
Here are some examples:

X«WIDTH 30

40p'0123456789"
0123456783901234567890123456789

0123456789

X

WIDId X
30

262 APL\360: An Interactive Approach

X<ORIGTI 1

X
1
13
1 2 3
X<ORIGIN O
13
0 1 2
ORICGIN X
0
13
1 2

When the function is called for, the most recently set value is given, and
it is then reset to the original value, as stated in DESCRIRBL above. The
function DIGITS works in the same way:

X«DIGITS S
1:3
0.33333
X
10
DIGITS X

13
0.3333333333

Groups

The command GROUP collects all but the first of the names that follow it
and stores them under the first name. Any object, including names of other
groups and even nonexistent global objects can be a member of a group, but
the group name can't be the same as that of a global object in the workspace.
The COPY and ERASE commands can be used with groups to make it easier to
move or delete a collection of related global objects. For some examples
we'll use functions and variables from 1 CLASS:

YLOAD 1 CLASS
SAVED 15,02.39 07/29/69
YWIDTH 60

WAS 120

YFNS
ADD AGAIN AVG AVG1 AVG2 AVG3 AVGEL AVGS
BASE cC cMP CHPX CHUFPY COLCAT1 COLCAT?
COLCAT3 COS COSINE CP CPUTIME CP1 DEC
DELAY DESCRIBE DFT DICE & FACT
FACTLOOP GEO?2 GEO3 HEXA Hy HYP
INSHERT IV MEAT PI RECT REP REVERSE
ROWCAT RUI N 5D SETVARIABLES SIGH SORT
SPELL SOrT STAT STATTISYICS SUB SUNscAn TINE

TINEFACT TRA TRACETIMS

Miscellaneous APL Commands And Features 263

YVARS
i CIRCIIT D HELP it NILEAGE PREVIOUSTTME
SPL Srop TABO TAB1 TAE?2 TAB3 X Y

YGROUDP STAT ADD AGAIN AVG
40T GROUPED, NAME IN USE

YGROUP BAKER ADD AGAIN AVG

@

The movement of the typeball six spaces over constitutes the system's
response to a successful grouping.

To list the members of the group, type

YGRP BAKER
ADD AGAIN AVG

The group may be respecified in the same way as for a variable:

YGROUP BAKER AVGl AVG2 BGO WRONG HELP SOHAT

@
YGRP BAKLR
AVGL AVG2 500 WRONG {ELP SOWHAT

I't may be enlarged by typing

YGROUP BAKFER BAKER SORT
YGRP BAKER
AVG1 AVG2 BOO WRONG HELP SOWIAT SORT

and removed by entering an empty vector after the group name (or erasing):

YGROUP BAKER
@

YCRP BAKER

@

Having removed the group BAKER (it could also be removed with the ERASE
command, but this removes the members as well as the group itself, in con-
trast with the above command, which just disperses the group), let's define
two additional groups ABLY and COVER , one of which will include the
other:

YGROUP ABLE PI RECT RFEP QOK SAY
@

YGROUP COVER ABLE TADB3 Y

@

The names of all the groups in the active workspace can be listed by the
command

YGRPS
ABLE DAKER COVER

The restrictions on group names are the same as those applying to functions
and variables, and a partial listing can be obtained by following the

264 APL\360: An Interactive Approach

command by a letter of the alphabet.

Message commands

The last set of system commands is that concerned with communication
between terminals (including the operator). Messages of importance to all
connected users begin with PA! which, contrary to public opinion, does
not stand for '"political announcement.'

Although messages can be received ordinarily only when the receiving key-
board is locked and not in the middle of function execution, such public
address messages can interrupt at any time. They come from the system
recording terminal, and are distinguished from routine messages from the
operator, which begin with OFPR:

There are four message commands available to the user. Each is followed
by one line of text of length not exceeding 120 spaces:

YOPR [HESSAGE]

This prints out the message at the operator's terminal, prefixed by your

port number and R, indicating that a reply is expected, and then locks your
terminal until a reply is received. The ATTN button will unlock the keyboard
before the reply, if desired.

YMSG [PORT NUMBER AND MESSAGE]

This command must be followed by a port number and text, and will send a
message to the designated port. (To get the port numbers associated with
connected users, ask for YPORTS followed by the user code.) The message
will print out at the receiving terminal, along with the port number of the
sending terminal and the prefix R to indicate that a reply is expected.

As before the keyboard remains locked until a reply is received.
YMSGH YOPRI]
These are the same as JMSG and)OPR except that no reply is expected and

the keyboard unlocks after transmission is completed. In all cases the
word SENT is printed at your terminal when transmission is complete.

Security features for user protection

APIL makes available to each user a number of safety features that restrict
access to parts of the system. One of these has already been introduced,
the password associated with a user number. |t can be changed at sign-off

by
YSIGU-0FF COMAKD : IEWPASSWURD

or simply discontinued by following the sign-off command with a colon.

Another is a workspace lock, which follows the workspace name and is
separated from it by a colon. This lock must be included with the work-
space when loaded. The lock remains in effect unless it is changed

Miscellaneous APL Commands And Features 265

when the workspace is saved again. As with the sign-off command,

a save followed only by a colon removes the lock. Also, workspaces

which are locked are listed when YLIB is called for, but the locks aren't
included for obvious reasons, and the locked workspaces aren't identified
as such in the listing. Should you be so unfortunate as to forget what
the lock name is, there isn't any way for you to retrieve the workspace

in question. About all you can do with it is to drop it.

Individual functions can also be locked by overstriking the opening and/or
closing dels with the tilde: #. This is useful for sealing up functions
which contain proprietary information or things like classroom exercises
which a teacher doesn't want students to be able to see. Functions locked
in this manner are forever buried and inaccessible (see below) even to the
one who inserted it.

Locking a function isn't quite as bad as we may have made it sound in the
previous paragraph, however, since the function is still available for

every kind of use save two: it can't be displayed or edited. In fact, even
copying is possible, but the copy is likewise subject to the same restric-
tions as the original.

Earlier we touched on how names of functions and variables can be made up.
There is considerablie freedom in choosing such names in that any sequence
of characters alphabetic (including underlined letters) and numeric except
blanks can be used, as long as the first character is alphabetic. APL
recognizes only the first 11 for workspace names, the first 8 for passwords
or locks, and the first 77 for all others, which is hardly likely to cramp
any user's style! Only the first 4 characters, incidentally, are signifi-
cant for system commands, any additional ones being included only to make
it easier to remember.

Fuzz

Whenever a command is executed in APL calling for a comparison of two
numbers, since the number of significant figures in APL calculations isn't
infinite, there is a question as to how close two numbers must be in order
to be considered equal. The allowable discrepancy is about 1E 13, and is
called fuzz. Try some of the relationals or other functions dependent on
comparisons of two numbers, using as arguments numbers differing by less

than the fuzz, to illustrate these limitations. (Also see problem 9,
chapter 9.)
PFOBLEMS

1. Execute each of the following in turn and observe the behavior of the
arrays generated:

JLOAD 1 CLASS

Y«110
YORIGIN ©
TAB3[0;2;1]
Yi4 S 6

)DIGITS 5

266 APL\360: An Interactive Approach

+TAB3

YWIDTH 60
YFNS J

YLOAD 1 WSFNS
X«DIGITS 6
+110

X

110

2. Why is the expression AL1NV] independent of the index origin?

3. Execute 10 and 11 with YORIGIN 0. Are they vectors? Of what size?

Send a message to your own port number. (This is useful when you want
to be assured of getting an intelligent response!)

5. Specify A4+9,222222222222222, B+9.222222222222227, C+110
and execute A=B, AeB, A-B, C[3.000000000000008]. Account for the

responses.
6. Rewrite the function SUB (page 253) using ORIGIN in 1 WSFNS before
generating the second random number on line 2.

7. Practice forming groups out of the functions and variables in 1 CLASS
List the groups and their members.

Appendix
Summary of APL notation

This section will be a summary of all AP/, function symbols with their
names and the appropriate references in the preceding pages. System
commands will not be included here since they were covered in chapters 15
and 34,

Omission of references to the use of some standard scalar dyadic functions
with arrays of rank greater than 1 does not necessarily mean that the syntax
of the function doesn't allow it, but simply that no specific examples or
discussions were included. Where they occur, f and g stand for any standard
scalar dyadic functions.

Monadic (M) References to arrays of
Function symbol Dyadic (D) Name rank 0,1 rank >
< D less than 25
< D less than or equal 25
= D equal 26
> D greater than or equal 25
> D greater than 25
2 D not equal 25
v D logical OR 27
A D logical AND 26
£ D logical NOR 27
~ D logical NAND 27
- M arith. negation 50 19
- D subtraction 7
+ M additive identity 55
+ D addition 6,9 196
3 M reciprocal 51
: D division 7,11
x M signum 56
x D multiplication 7,11 197
? M roll (query) 55
? D deal (query) 154
€ D membership 153 213
0 M size (dimension vect) 116 117
0 D Restructure 126 127
~ M logical NOT (NEGATION) 52
+ D take 152 213

267

268 APL\360: An Interactive Approach

Monadic (M) References to arrays of
Function symbol Dyadic (D) Name rank 0,1 rank >l
¥ D drop 153 213
1 M index generator 113
1 D index of (ranking) 136
o M pi times 186
o D circular functions 180
0] M reversal 150 202,203
b, D rotate 150 203,204
® M transpose 215 215
® D transpose 217
* M exponential 51
* D power 15
® M natural logarithm 51
@ D logarithm to a base 17
[M ceiling 52
[D max i mum 18
L M floor 53
L D minimum 18
A M grade up 154
¥ M grade down 154
! M factorial 50 198
! D combinations 21
| M indexing 138 210
L D decode (base value) 160
T D encode (representation) 162
I M I-beam functions 188-191
| M absolute value 51
| D residue 23
, M ravel 124 125
s D catenate 122 208
f/ D reduction 37,200 198,199
/7 D compression 140 206
\s X D expansion 142 206
o, f D outer product 222 224
f.g D inner product 233 233
Miscellaneous APIL symbols
Symbol Name References

- negative 7

<+ specification 30

> branch 169

_ underline 32

v del 63

V locked function 265

A delta 178(trace),179(stop)

! quote 130

0 quad 63(disp),249(inp),254(outp)

M quote-quad 255,258

(parentheses L4 (grouping),33(sys com)

Symbol

Name
semicolon

colon

tamp (comment)
exponential notation
decimal point
correction indicator
error indicator

char deletion (in edit)

Summary of APL Notation 269

References

210(indexing),89(fn header)
250(mixed output)

L (password),172(1abels)

9

16

6

8

7

83

Answers to problems

Some of the problems will have more than one solution given. This will
generally occur when there exist different, but sound, alternate approaches
to the solution. The proposed solutions, because they are keyed to the func-
tions presented up to that point in the text, will not always be the most
concise or elegant possible, with the drill problems occasionally returning
error messages. For this reason, certain solutions will have references to
functions to be introduced at a later point in the text, and which will
simplify the task of defining the function or expression needed to solve

the problem.

Chapter 2
T 6 8 2 4+3 9 1 1
9 17 3 5

1 0
3 T2 7 5
3-71 756.7 0 ~.19
4 59.7 3 3.19
3 4x1 2 3
LENGTH ERROR
3 4 x 1 2 3
A
5 4 3x¢g
30 24 18
2773
SYNTAX FRHOR
2773
A
Reminder: the negative sign is a mark of punctuation, not a function.

1 2 831 2 0
DOMAIN ERROR
1 2 & 21 20
A
10:10 5 2 1
1 2 5 10

270

1

Answers To Problems 271

T2 0 .81+415 & 5
13 & 4.19

3. 155 89 45x1,25 ,50 .25
193.75% by, 5 11.25
4, 59,50 72,50 79,50 83,00:1263 2016 1997 3028
0.04711005542 0,03596230159 0,03980971457 0,02741083223
Chapter 3

6 & 52
lel

2%.5 ,333 ,25 .2
1.414213562 1.25962998 1,189207115 1,14869&355
3x4 2 1 0 5
81 9 3 1 0,004115226337
101 2 3 4 5
0 0.3010299957 0.4771212547 0.6020599913 0.6989700043
2 3 4 5 g@2
1 0,6309297%36 0.5 0,4306765581 0,.3868528072

2lo0 5 78
0 2 78

“2®25
DOMAIN ERROR

To®2%

A
Both arguments must be greater than 0, and if the left argument is
1, the right argument must be 1 also.
T2%.5
DOMAIN [RROR
T2%0.,5
A
155
DOMAIN ERKOER
155
A
T8%,3333333333333
DOMATN ERROR
T8%0.3333333333333
A
Try adding a few more 3's on the right and reexecuting.
10@0
DOMAITN ERROR
1080
A
1«0 1 10 100 1000
1 1 1 1 1
T7.11E4:9, 45K 3
T7523809,524

272 APL\360: An Interactive Approach
21.268F1+4.56EF 2
212.7256
8.2E0%x7,9E 3456
459,26u478
2. 1E0 1E71
1 0.1
1E1 1E72
10 0.01
1F6 1E 4
1000000 0.0001
1ES9 1E75
1000000000 1E7S
1£10 1E76
1F10 1E76
3. 15 20 18 32 290118 20 15 10 49
15 20 15 10 29
L. 10e1:(C
This is a bit ahead of the game in that we haven't said anything yet
about order of execution, where multiple operations occur in a single
expression. See chapter 8 for more details.
Chapter 4
1. 1 9 8|3 4 6
0 4 6
T3 T2 T113
0 1 0
0]1 2 3
1 2 3
3173 "2 01 2 3
0o 1 o 1 2 0
113.4 "2.2 .019
0.4 0.8 0.019
012 3 4!3 45 6 7
1 4 10 20 35
L!'3 4 5 6 7
0 1 5 15 35
T2 4 Ts5i8 13 3.78
0 1 3.78
2. The 5| any integer is in the set 0 1 2 3 4, which is in S§. Note
also that the condition Nz4 given in the problem is unnecessary.
3. If the result of B4 is zero, then A is divisible by B.
L. Hours: HKH-1]|H; Minutes: 60|Hx60
The last solution should be tried for typical values of H. You will
see that # is multiplied by 60 first, and then 60|H is obtained.
More about order of execution in chapter 8.
5. 3!'ug9
Following the hint, there are three separators, each of which can be
in any one of forty nine positions.
6. 4!30
7. N-1|WN

This works only for nonnegative values of N.
1] 1xN or 1-11|WN

Answers To Problems 273

Chapter 5
1. 0 01 1v0 1 0 1
o 1 1 1
101 0A1 0 0 1
1 0 0 ©
2 4 7 26 1 0 4
0o 1 1 0
01 2 3=01 3 2
1 1 0 0
4 75 71 "6.824 1 1 2
1 0 1 o0
8 76 54 3 2 1<s1 2 3 4 56 7 8
o 0 o 0 1 1 1 1
2 3 0<5 "1 4
1 0 1
31 221 2 3
1 1 1
~1 0
0 1

0 01 10 1 0 1
1 0 0 0

1 01 0~1 0 0 1
0 1 1 1

2. The factors of an integer N are those integers which divide N. Hence
set 0=1 2 3...N|N.

3. A=20 or 0<4 yields a logical vector with 1's in those positions cor-
responding to the accounts not overdrawn.

4, Av0=B works if either or both conditions hold while A=z0=RB works
when only one of the conditions holds, but not both. Later, when
the function ~ (logical negation) is introduced, Av~B will also be
a possible solution.

5. EXCLUSIVE NOR or NEXCLUSIVE OR.
6. Although logical negation ~ won't be introduced until chapter 9, you
should explore its action in the vector 0 1. If we give the name 4
to 0 0 1 1, then AA~A is always 0 and Av~4 is always 1.
Chapter 6
1. ~AV~B
0 1 0 1
~AANB
1 1 1 1
~BVv(C
1 0 1 0 The results can be explained by assuming that
~BA~C logical negation ~ acts on everything to the
1 0 1 0 right of it. More about this in chapter 9.
~C=D
0 0 0 0
~D=B
1 0 1 0
2. B+2|A
C+0=B
Also B«A+1 followed by 2]B. |f you understand the use of ~, try

~2 4.

274 APL\364: An Interactive Approach

3. F«+<3 7 15 2,7
Fell*x2
AREA«6XF
AREA
54 294 1350 43,74
This can be done in one step as b6xEx2

b xoexxx
X3+X2xX
5. A) 7«5%0 B) WeS*0
2+«5=-5 W<S$S=5
ANENY WeS5<8
Z«S1|S WeS5:S
2«5>8 WeSeS
Z+0xS W<0'S
Z<0LS W«S'S
etc.

6. B«2xA«3 4 5 6 7

Chapter 7
. +/3 7 710 15 22

37
i3 5 2
0,3333333333 0,2 0.5
A/1 1 1
1
=/3 2 2
0
/1 “1u4.7 22 &
22
-/2 4 6 8 10
)
*x/3 2 1
g
v/0 1 0 1
1
>/1 "2 Tu
0
x/2 4 6 8 10
3840
A/1 0 1 1
0
v/0 0 O
0
L/"2 4 0 8
"8

2. A/ returns a 1 if and only if all the components are 1, 0 otherwise.
v/ returns a 0 if and only if all the components are 0, 1 otherwise.
=/ (applied to a logical vector) returns a 1 if there are an odd
number of 1's, 0 otherwise. It is the same as 2|+/.

3. +/3%4V
69
which is the same as 3x+/4V .

4, [/Q«1 7 "2 73

Answers To Problems 275

S«.5x+/L After the rules governing order of execu-
A2+S-1 tion are introduced in chapter 8, this
QeSxA2 can be done more compactly as
Rex/Q S+«.5x+/L
AREA+(* .5 AREA«(Sxx/S5-L)*,5
6. Since the X-coordinate of a point is customarily written first, it is
net enough to take #+/Q-P since this results in the difference in the
X-coordinates divided by the difference in the Y-coordinates,
which is the reciprocal of the slope, according to the definition
given. Hence, A«+/Q-P and SLOPE<«1+A, or more compactly,
SLOPE«1::/Q-P,
Chapter 8
1. Lx3[3x4
5.8L46006549LL48
(4x3)7 3xu
81
5x3x5
3.051757813F10
1:2+4X« 5 6 0 4 8 76
T0.3333333333 0.125 0.5 0.1666666667 0.1 T0.25
76++/2+3x1 2 3 &
2
612-4x%3
T0.09677419355
2. The first, second and fourth expressions are eqguivalent.
3. A) (3:4)+(5:+6)-7%8 or better, +/3 5 “7:4 6 8
B) (~/9 837 10)+-/1 233 5
L, (x/X)x1++/X=X
6.386118448
5. (~4)v~B
1 1 1 0
AVCAB
1 0 1
(AA~B)YAAVC
1 0 0
(~B)VAV~C
1 1 1
6. B will be compared with B+4 for equality, with A added to that result.
The expression works only when 4 is 0. More generally, parentheses
are needed around A+B.
7. Brute force solution: (024000 Y)A(0=4|Y)A(0=400|Y)=0=100]Y
Better solution:A/1 1 0=0=(4 400 4000)|Y
Still better solution:2|+/0=4 100 400 4000|Y
8. The minus sign in front of the middle term acts on everything to the
right of it.
Correct version: (X*2)+(2xXxY)+Y%x2 or (X*2)+(Y*x2)-2xXxY,
9, BETA<10x10eTI:10
10, T8+XxXx2+ 3IxX*2
1. ((+/X*2)3+/X=X)*.5
12. Jack is to propose if 1) he has the ring, 2) the weather is favorable,
3) Jill is younger than Jack and 4) Jack isn't over the age limit
for Jill's beaux.
13. Annual: Px(1+,01xR)*T

Quarterly: Px(1+.,01xR+4)xTxy

276 APL\360: An Interactive Approach

Chapter 9 _ _
T. L 2.7] 15
1
710 10 10 10
2 8 5 6
Your random numbers may be different from those shown
@l4.,1 86 ,108
2,640174797 4,454347296 T2.225624052
x 5.6 0 42
10 1
+8.7 ~19.1 23
8.7 ~19.1 23
[8.1]32.68

*x3 4,7 ~1.,5
20.08553692 109.9471725 0.2231301601

T1.8 0 ~21 5.6
1 0 21 6

?3 4 5
1 1 u

$3.5 "67 T.287
0.2857142857 ~0,01492537313 3.484320557

/3.1 0 5.6 8

3.1 0 5.6 8
'35 7 4
6 120 5040 24
£s.5 6.8 9.1 ~.12
5 6 10 "1
-71.2 6.7 .52 19.5

1.2 6.7 0.52 ~19.5
1u4x[5,8x 31,046
72520
2. Floor: X-11X
Ceiling: X+1|"¥_
3. *2+A1+(1+44%3)=:2
3269017,372
~(2<A)Av/3=BR

These expressions work for all real X.

0
CzLC+((A*x2)+(A+1)%x2)x.5
0
b, o=(LN:10)|W
x(LN:10) N

5. A<«Y-1970
LY« (2+4A)=zu4
B<7|LY+A+5 or,on one line B<«7|5+A+LY<«| .25x2+A«Y-1970
6. A) 10>V or 0=L10eV
B) 10<|V or ~0=[L10eV
7. (10* 1)x|,5+6.18x10*1
6.2
(10%72)xL .5+4,75x10%2
4,75
(10x-D)x| ,5+Nx10#*D
8., -(10%x-D)xL.5+|Nx10%D
The solution for problem 7 works for both positive and negative numbers.
9. M+84.,6129999993
M
B4 ,613

http:6.7.5219.5

Answers To Problems 277

1E5xM
8461300
L 1E5xM
8461299
10, (LXx10*x-(L1+10®X)-N)=LYx10%x-(L1+10®Y)-N
1. A) LD:B
B) [D+B
12, The results of these instructions are dependent on your implementation
of APL., You cannot tell when the system evaluates an expression in
parentheses, Hence, you should avoid writing commands like those
shown in the problem,
13, (LX+.,5)-0=2]X-.5
(TX-.5)+~x2]X+.5

Chapter 10
1. VZI+«EQ X VZ+EQ1l X
(1] Z+«0=x/X-2 3V or [1] Z+xx/X-2 3V
2. VR<H BB AB
(1] R+«H+ABV
3, VI<HERO L

[1] S«.5x+/L
[2] T+« (8Sxx/8-L)* .5V

4, VREFUND E
(11 +/.5xEL 500 200V
5. VRT«PR M
[1] RT+s+/+MV
6. VR+«SD X VR+«SD1 X
[1] R+AVG X or (1] R«(AVG(X-AVG X)*2)x .5V

[2] R+R-X
[3] E+R*2
[u] R+«(AVG R)x,5V

7. VM«MR REL V
[1] M«MR:(1-(Vx2):9E16)%,5V
8. VZ+«X PLUS Y VZ+X MINUS Y
[1] Z+X+YV (1] Z«X-YV
VZ<«X TIMES Y VZ+«X DIVIDEDBY Y
(1] Z+XxYV [1] Z+«X+YV
Chapter 11

1. VFICA<«P TAX IN
[1] FICA+.01xPx7800LINV

2. VA SQDIF B
(1] T+«(A-B)*2V
3. VR+«FERMAT N
[1] R+14+2%2xNV
b, VCEILING X
[11 X+1]-XvV
5. VR+«RANDOM
[1] R+?100 100 100 100V
6. VCOMP VCOMP1
(1] (0=X1Y)vOo=Y]| XV or 1] 0=(X|Y)xY| XV
7. (3 HYP 4) HYP 3 HYP 1

5.916079783

4+3 HYP 4-3
7.16227766

(443) HYP 4-3
7.071067812

278

APL\360: An Interactive Approach
8. YLOAD 1 CLASS
SAVED 15.02.39 07/29/689
V ARG1 D ARG2
DEFN ERFROR
V ARGl D ARG?2
A
D is a variable in 1 CLASS . [(Execute
system will not let you have two objects
under the same name at the same time.
9. F<10@4«AVG X
Chapter 12
1. vsrpli]
v STD N
(11 R+«AVG N
[2] R«R-N
[3] R+AVG R*?2
ey ANS«R*0,5
v
2. [5] [ul71
[4] ANS«R*x0.5
///1
(4] R«R*x0,5
3. [5] rogs]
fol STD N
5
[0] R+ STD N
L, [1] rz]
(2]
v
5. [3] (gl
vV R<STD N
(1] R+AVG N
[3] R«AVG Rx*2
[u] R+R*x0.5
v
6. [5] (3]
[3] R+AVG (R-N)x2
7. [4] (1131
[3] R+AVG(R-N)=*?2
(4] R«R*0,5
8. [u] v
9. VSTD[1.5]R+«R-N
10. [1.6] [3[]10]
[3] R+R*0.5
/5
[3] ANS <«Rx*0.5
fu] [.6]
11 [0.6] +/N=N
[0.7] ¥
12. JERASE STD

YVARS D to check). The
in the same block of storage

Answers To Problems 279

Chapter 13
YY) YLOAD 1 CLASS

SAVED 15.02.39 07/29/69
<52 78 90
SYNTAX ERROR
C+ 52 78 90
A
There is already a defined function by the name C in this workspace
(Execute)FNS C).
B) T<F+7
VALUE ERROR
FL11 Z+«(A*x2)+B*?2
A
T<«7Z4+7
VALUE ERROR
T«Z+7
A
F is a function name and has no value. When executed, Z receives a
value, but only within the function.

2. PERIMI1 S«M PERIM2 R S«PERIM3 R

R R R
14 3 3

B B B
2 2 2

c c c
5 5 5

M M M
7 7 7

S S S
1 20 10

This exercise is designed to give you practice in distinguishing
between local, dummy and global variables. To reset the values after
each execution, define a function like the following:
VSETUP
[1] M«24C«2+R«1+B+1+5«1V
3. VR«B PERIM2 C;P
[11] P+B+(C
[2] R<«2xPV

Chapter 14
VFN1 S

[11] Sx10V
VFN2 V
(11 2@V<XV
VAR1«31 2 3 4 5 6
VAR2<«[/VAR1
YSAVE WORKONE
10.00,31 05/11/70

JCLEAR
CLEAR WS

VFN3 T
[11 x TV

VAR3+x1 2 3 4 5
YSAVE WORKTWO
10.01.26 05/11/70
YJCLEAR
CLEAR WS

280 APL\360: An Interactive Approach
VA FN& B
[1] A-Bx2V

VAR4<«4 & 8 9
YJSAVE WORKTHREE
10.02,22 05/11/70
VARS«-3 7 10 78
YSAVE WORKFOUR
NOT SAVED, WS QUOTA USED UP
JLIB
WORKONE
WORKTWO
WORKTHREF
YDROP WORKONE
10,07.04% 05/11/70
JLIB
WORKTWO
WORKTHREFE
JLOAD WORKTHREE

SAVED 10,02,22 05/11/70
YFNS

FNy
YVARS

VAR 4
vC FNS5 D

[1] (2C<?D)xuv

VAR6<1 0 7 ~6 8
YSAVE WORKTWO
NOT SAVED,
YSAVE WORKTHREE
10.11.,07 05/11/70

YJCLEAR

CLEAR WS
YJLOAD WORKTHREE

SAVED 10.11,07 05/11/70
YFNS

FNu FN5
YVARS

VARY VARG
YJERASE FNu4 VARu4
YSAVE

10,12.14 05/11/70 WORKTHRFE

JLIB

WORKTWO

WORKTHREE
YFNS

FN5
YVARS

VARG

Note that when you load one of your
save it under a different name, the
Also, when)SAVE is executed, the
name the active workspace had prior
place, however,

THIS WS IS WORKTHREFE

own workspaces and then try to

system prevents you from so doing.
material will be saved under whatever
to saving. The save doesn't take

if the active workspace was not given a name previously.

(CLEAR is not an allowable name for a workspace.)

Answers To Problems 281

Chapter 15

1.

JLIB 1

CATALOG

MINIMA

WSFNS

TYPEDRILL

PLOTFORMAT

NEWS

CLASS

APLCOURSE

ADVANCEDEX
JLOAD 1 WSFNS

SAVED 23,45.,54 07/07/869
JFNS

DELAY DIGITS ORIGIN SETLINK WIDTH
JVARS

DESCRIBE
DESCRIBE

THE FUNCTIONS ORIGIN, WIDTH, AND DIGITS ARE FEACH
SIMILAR 70 THE COMMAND OF THE SAME NAME, EXCEPT THAT EACH IS
A FUNCTION RATHER THAN A COMMAN
(execution interrupted by pressing ATTN)

YKSID
1 WSFNS

VL RECT W
(1] LxWv

JCOPY 1 CLASS RECT
SAVED 15.02.39 07/29/8689
VRECT[U]V
vV L RECT H
1] 2xL+H
[2] L HYP H
[3] LxH
v
The original RECT is replaced by the version in 1 CLASS.
JERASE RECT
vL RECT W
(1] LxWv
JPCOPY 1 CLASS RECT
SAVED 15,02.39 07/29/69

This command will copy a global object in the same way as COPY only
if one doesn't exist with the same name in the active workspace.
VRECT([[1]V
vV L RECT W
[1] LxW
v

YSAVE JONES
11,35,53 05/11/70

YPORTS

001 NFO

OPR OPE

012 RHO

013 JHO

019 NJD

021 GKM

282

APL\360: An Interactive Approach

YWSID SMITH
WAS JONES
)SAVE
11.36.56 05/11/70 SMITH
JCLEAR
CLEAR WS
JLOAD 1 NEWS
SAVED 15,26,37 04/02/70
YJSAVE 1 NEWS
ITMPROPER LIBEARY REFERENCE
The ordinary user can't save into a common library because he wasn't
the one who put it in there originally.
JCONTINUE HOLD
11.38.,19 05/11/70 CONTINUE
058 11.38,.20 05/11/70 KGR
CONNECTED 0.08.25 T0 DATE 51,27.40
CPU TIME 0.00,00 T0 DATFE 0.03.03
)5000:5J
058) 11,.,38,.,45 05/11/70 KGRICE

APLN\N 360

SAVED 11.38,19 05/11/70

JLIB
JONES
SMITH
CONTINUE

YFNS
APLNOW CLEAR CLEARSKED CREATE EDIT FILE FLE
FMTDT INDEX NJ POS POSITION POSTSKED
PRINT REWORK RWK SCHEDULE SETDATE SKEDNOTE
START TDATE TRYTEXT TXF

YVARS
DESCRIBE T LIBRARY MDX MSGS NEWSMAKING
PTX RLIBRARY SKD SKNT s SD
The command CONTINUE HOLD saves the active workspace in CONTINUE and
holds open the phone line for 60 seconds. The workspace is available to
the user when he signs on again.
JSAVE CONTINUE
YLOAD GOOD
JCOPY CONTINUE OK
)SAVE

Chapter 16

[

pA
6

ppA
1

pppA

Al 0,.8x16
0.8 8 2.4 4 6 10
110
3 L 5 ¢] 7 8 9 10
(15)+3
4 5 6 7 8

N
N

Answers To Problems 283

T7x11
~7
[/4
1 2 3 4 5 6 7 8 9 10
+/115
120
15
1 0.5 0.3333333333 0.25 0.2
128:3+1
1 2 3 4 5 6 7
110000
WS FULL
110000
A

The active workspace can hold just so much information at one time
See chapter 26 for a more complete discussion.

A+16

pA=6
6

6zpd
1

The first expression tells us how many elements of 4 have the value 6,
and the second tells us whether 4 has 6 components.

JLOAD 1 CLASS
SAVED 15.02.39 07/29/69

x/pTABO
1

x/pTAB1
I

x/pTAB?2
12

x/oTAB3
24

The instructions tell us how many elements are in each of the arrays.
A«0 8 "3 4 6 10
1p4
1 2 3 4 5 6
p1pA
6
The first expression gives us a vector of indices for the elements in 4,
while the second is equivalent to pA. Compare pipd with [/1p4. How
do they differ? (Don't be too hasty in your answer.)

A) VR«A1 N B) VR+B2 N
[1] Ret+/(1N)* 57V (1] R<(+/1N)*x,57V
c) VR«(C3 N
[1] Re(x/1N)*x:NV
T1+2x18
1 3 5 7 9 11 13 15
T1245%x15
7 T2 3 8 13
T.34.3x16

0 0.3 0.6 0.9 1.2 1.5
T3504100x16

T250 T150 TS50 50 150 250
6=-15

5 4 3 2 1

284 APL\360: An Interactive Approach

2|16
1 0 1 0 1 0
7. 13%x13
RANK FERROR
13%13
A
The order of execution is such that 13 will be generated first and
used as powers for 3, resulting in a vector for the right argumentof
1 on the left. Since the index generator can be used only with nonnega-

tive integers, the error message appears.
8. 50p1, 51#150, (150)=150, (150)%0,etc.
9, “1+2x-/15
+/15-1
+/5=15+1
+/0=6=15 +/~6=15
10. A) VR«SERITES1 N B) VR«X SERIES2 N;T
(11 Re=/31NV (1] Re+/(X*xT)2 1T« 1414V

11. O:DDA

Chapter 17
1. oM

2 oy
(72) 1 2
SYNTAX ERROR
(T2) 1 2
A
2,1 2
2 1 2
ppV

5 4pV

W F OO
0o O
PO W
N Nw o &

V,M
RANK ERROR
V.M
A
6pl2
12 12 12 12 12 12
10p100
100 100 100 100 100 100 100 100 100 100
3 3p1,3p0

(el e)
el o]
= O O

5 4p0

C O C oo
el eNolNoNe]
O OO0 oo
COC oo

Answers To Problems

5,u4p0
5 0o 0 0 O
op0Op9 10 11 12

1
A«3 4 5
B«18
pA ,pB
n
(pAd),pB
3 8

285

The first expression is equivalent to 1+pA, while the second is the

vector consisting of the lengths of 4 and B.

3 1p2 1 1 1p2

2 or 2

2

2 2

2

7100p10
A) 7(?8 8)p150
B) ?7(?8 8)p7299

R<12 u4p(,4),,.B
In the more general case, this is R<({(pAd)+1 OxpB)lp(,4),,B
If E were a dyadic function, we would have to write 6 £ 8 to
execute it. Spaces or other delimiters (e.g., parentheses) are
required around a function name.
S$,10 or (10),8
R<€10
Rk ,qQ

VW<«INSERT V In chapter 21 the function 4 (take)
[13] We((7-pV)p0),VV will simplify this to 74V

Chapter 18
l.

'ABCDE'='BBDXO"
o 1 0 0 o0

1 2<'Mp!
DOMAIN ERROR

1 2 <'Mp!

A

ppAL+3 3p'ABCDEFGHI'
2

pV«13172"
I

(pV)pV
3172

3172=V
0 0 0 ©

X,Y
MISSISSIPPIRIVER

pX,Y
16

+/X='5"
I

+/Xz1 5"

7

286

APL\360: An Interactive Approach

X," ',y
MISSISSIPPI RIVER
X='5"
0 0 1 1 0 1 1 0 0 0 0
+/'P'=X
2
+/(X," ', Y)='5"
13
V/X='R!
0
D is a character vector consisting of fifteen blanks.
VF A
(1] ‘THE DIMENSION OF A IS:'!
[21] pA
[31] 'THE RANK IS:'
[u4] ppA
[51] '‘THE NUMBER OF ELEMENTS IS:!
[6] x/pAV
In chapter 34 you will learn how to mix the numeric and literal
output on a single line for greater compactness.
yM CAT R
[1] (1 0+pM)p(,M),FR
[2] !

THIS IS AN EXAMPLE OF
CATENATION IN APL'V

YCOPY 1 CLASS GEO3
SAVED 15.02.39 07/29/69

VGE03[0.5]
{0.5) aTHE LITERAL MESSAGE IN THIS FUNCTION
(0.6] alS KEYED TO THE ARGUMENTS USED
[0.7] vV

VGEO3[[]]vV

Vv L GEO3 H; X FLAG

(1] ATHE LITERAL MESSAGE IN THIS FUNCTION
[2] nIS KEYED TO THE ARGUMENTS USED
(3] FLAG+((p,L)>1)v(p,H)>1
[4] X<((4x~FLAG)p"' IS:'"),(6xFLAG)p'S ARE:!
[5] "PERIMETER , X
(6] 2x L+l

(7] VAREA' X
(8] LxH
(9] "DIAGONAL' , X
[10] L HYP H
v

3 4 GF0O3 5 6
PERIMETERS ARE:

16 20
AREAS ARE:
15 24

DIAGONALS ARE:
SYNTAX ERROR
GEO3[10] L HYP H

A
Comments introduced in this manner don't affect execution of the
function unless branches (chapter 24) are used. Note also that in
entering the comment the closing del was placed on the next line
rather than at the end of the comment. Do you see why?

Answers To Problems 287

(2<15)/15
3 4 5
B/A
0 6.2 2 25
AlpAl,Bl " 2+pB]

AL3 61«2ES LE 4
A

0 5 200000 6,2 15 0.0004 25
(3 2 732 1 3]

2 3 7

A2 4 7]
5 6.2 25

pAL2 4 7]
3

11 0 1I\N'"TWO!
W O

AL 8]
INDFEX ERROR

Al 8]

A

Al /A
3

Al1pAl]

0 5 200000 6.2 15 0.0004 25
Al 11+4A02 3 4lxA[7]

125 5000000 155
ALT /A1 4]

Al 0p 3]

B\2 3 4 5

2 0 0 3 0 & 5
¢cf1 16 12 27 9 19 27 1 12 7 15 18 9 20 8 13 9 3]

APL IS ALGORITHMIC

Note that 4 is respecified after third drill problem. This will affect
the remaining problems.

A) (D<.5)/D D) ((D<0)AD>"1)/D

B) (D>0)/D E) (D=2)/D

) ((D<1)AD2"2)/D

-

c) (4=1D)/D
VZ«INSERT1 V

(1] Z«((2xpV)p1l 0)\V

[2] Z{2x1 14pV]<«'o'V or
VZ«INSERT2 V

(1] 2«('o",VI[14(("14pV,V)p1 O)\1pVV

These functions as written work only for character vectors.
VZ«INCR V3T

(1] Z+V[1+471-VIT«1 14pV]V¥

When the drop function ¥ is introduced in chapter 21, line 1 can also
be written as Z«V[1+1pVI1-V[1+1pV]
VZ+F X

[11] Z+3xX%x2V
VZ+«I AREA X

1] Z<+/IxF X[1]+Ix1L|1(-/X)+IV
VZ<«lW WITHIN R

(1] Z<(R>{W-+/WipW)/WV

288

10.
1.

20.

21.

22.

23.

APLA\360: An Interactive Approach

[1]

(R=LR)/R
VE<«A IN INT
R<(+/INT[2]>|A-INT[1])x100:pAvV

INT is defined here as the vector B,C
(T/V)>(+/V)-T/V or ([/V)>+/(Vz[/V)/V
Yl2x1l(pY):2] or (2|1+1pY)/Y or (~2|vpY)/Y

(1]

(1]
(2]
[3]
A)

VR«S INS X
R«((852X)/X),X,(5<X)/XV or
VE«<S INS1 X

R«X<S

R<((R,0)vO0,~R)\X

RIR1 01«8V

A<«3

1AL 2]

RANK ERROR

2

The first expression is nonsense if 4 is a scalar or vector of length |

1A[2]
A

(vA)l2]

while the second one is invalid if 4 isn't a positive integer 22.

B)

3

2 2

M<1 2
N<3 u
pM,plN

(pM),pN

The first expression finds p of 1 2 2 (M with 2 catenated
to the right end).

VipV]

The indices as given start with 0, which will result in an index error.

(W=T/W)/1oW or Wil[/W

(113

VZ<«DELE V
Z«((\pV)=VaV)/VV

+/Q[18LpQ] or +/gx8<1pQ

VR«X SELECT Y

[1] R«X[Y[/Y]V

A) ((T1+pV,V)p1 O)\V

B) (((2lpV)+3xL.5xpV)pl 0 1)\V

C) same as B provided we don't want a zero on the right end
when pV is odd.
VR«FACTORS N VRK«FACTORS1 N

[1] R«(0=(1N)IN)/ NV or [1] R+(~x1|Nz1N)/ 1NV
VZ«LIT N

[1] Z«+/(10%x(pN)-1pN)x 1+'0123456789"' 1NV

This conversion of literal numbers to numerics can be done somewhat

more compactly with the base function 1 to be introduced in chapter
22, as well as by the inner product (chapter 31).

[1]

(1]
(2]
[3]

VR«A COMFACT B
R«(0=R|B)/R«(0=(1A)IA)/ 1AV
VR«LONCEST X;J My N

J(X=' ") /1pX

Mel /N« 1+(J,1+pX)-0,d
R«X[JLJaMI+1 4]V

Chapter 20

0

1

-/10
*/10

®/10

DOMAILN ERROR

®/10
A

/10

T7.237005577E75

L/10

7.237005577E75

0

1

| /10
1/ 0

¥/10

DOMAIN ERROR

0

1

It should be clear that if we are to find an identity element IMAX

¥/10
A

=/10
z/10
</ 0
>/10

/10

Answers To Problems

289

for [, then it must be true that N[IMAX must result in N for all N.

Hence, ITMAX must be the smallest number that can be represented in
A similar argument holds for L, where IMIN

representable in AFL .

Chapter 21
1. _
1

o -

3 2
T1

3 2

5 y

3 2

5 -

, -

1

304

8 3 2 0
2041 4]

3 2
Hth

0 1
247304

0,13
1 0
207
3 2 1 7 6
T3+4
0
ALAAA]D _
0 2 8 3
ALY0O 1 0 1 0 1]
"8 3 0 5
(14)ed
1 0

is the largest number

290 APL\360: An Interactive Approach
(3t4)er 4
1 1 0
(16)=44A0441]
1 1 1 1 1 1
2. ((IV)e0,19)/V
3. A/(51e€852),52¢81 or ~0e(S1eS2),52¢51
b, +/Se'"ABCDEFGHIJKL'
5. ALF<«'"ABCDEFGHIJKLMNOPQRSTUVWXYZ !
SLAALF1 8]
6. VZ«BL S
[11] Z+«(Cv1dpC«S=' ') /SV
7. (V,V1)TAV,V1]
8. A/VIAVI=aN or A/(VerN),(\N)eV
g, CL'X'=C)/1pCl<'Y!
10. (5<18)/X and 34X
11. VRE«MED X
(1] Re.S5x+/X[(AXIIIT 7.5 .Sx1+pX]1V
12. A) This is a difficult problem. The expression corresponds to a per-
fect shuffle, in which a deck of cards is cut exactly in half and
cards fed alternately first from the top half then from the bottom
half, to form a new deck.
B) This expression is the algorithm used in APL for the deal function
A?B
13. VR«DECODE C
[1] RE<ALF{Pr1ALF1AC]V
14. VCOVIG M;C;3D
[1] N«ALF\ M
[2] M
[3] C«26|N+D<((pN)pKB)+(pN)pKA
[u] ALF[D]
(5] (pM)p' ™"
[6] ALF[CIV
VIG, incidentally, is an example of a well-known cryptographic scheme,
the Vigenére code, with COVIG being a more complicated variation.
Both this program and VERNAM (below) should be done in a workspace
with origin O.
15. VVERNAM M;VilN;C
[1] M
[2] Ve?(pM)p 26
[31] C+26|V+ALF\M
[4] ALFLV]
(5] (pM)p' !
[6] ALF[C]V
Chapter 22
1. (3pu40)18 7 2
13082
215 1 9 6
68

1019 8 2 1 6
1 "u.1 .811 2 3
7 8 917 8 9

375217

Answer To Problems 291

3 315217

3 3 315217
0o 2 0

(5p3)75217
1 1 o 2 0

(4p8)1L 14
“8190
1 4 6T345
0 1 3
2 4 57178
1 3 3
2. A) 0O 4 212 8 1
B) 0 2000 1613 568 13
3. A) 812 1 7 7
B) 211 0 11 0 1
c) (10p3)T8933
D) (10p5)T4791
L. o 1TN
5. XTXiLY
XLXTY
Chapter 23
T VP<CONV D
(1] P<101 1+'0123456789'1D«(D=","')/DV
2. N=+/(10 10 10TN)*3
3. VZ«C EVAL X
[1] L+X1CV
L., A) converts M into a vector of digits.
B) converts M into the corresponding scalar,
C) same as B.
5. 0=11]-/((L1+410@N)p10)TN
Chapter 24

1. A) If 5<W go to step 3, if 55F go to 2, if 5= go to the next

step. W is assumed to be a scalar or vector of length 1.

B) Go to step 3 if A=8, otherwise drop through to the next step.

C) Go to END if Y>1, otherwise branch out of the program. At the same
time F is reshaped as a 1 1 matrix containing a 1.

D} Go to step 7 if any element of B is a member of C, otherwise drop
through to the next step.

E) If 4<G go to 5, otherwise go to step 0.

F) Go to step 9.

G) Go to step 8 if 0%/, otherwise go to the next step. At the same time
J is decreased by 1.

H) If the absolute value of X is greater than or equal to I, go to step 4,
otherwise leave the program. I is also incremented by 1.

) Go to AGAIN if N=10, otherwise leave the program. R is also
reshaped as a 2 4 matrix.

VREM T

(11 I+1

(2] V(T[I1=V)/V

(3] +0x1I2p7

[4] >2,I«I+1V

This function, which involves branching, solves the problem by brute

force. You'll appreciate the power of APL from the following:

VREM1 T
(1] Ve(~VeTl)/VV

292 APL\360: An Interactive Approach

3. VZ«P DIGIT QM
[1] Z+10
[2] M+ P+10
(3] +>(0=M|P)/5
(4] 2+«Z,P
[s] >(Q2P«P+1)/2V
b, VR«MED N
(1] >(R=LR+,5xpN+N[AN])/ST
[21] >0,R+N[TR]
[31] ST:R+,5xN[RJ+N[R+11vV
or
VR«MED1 N
[1] N«N[AN]
[2] R+N[T .5xpN]
(3] >Ux~2|pN
(4] R+«.5xR+N[1+.,5%xpN]V

5. YR«N DUPL V
(1] >0x1pR«(N=V)/1pV
[2] "SCALAR NOT PRESENT'V
6. VZ«ROOT S

(1] +(0#ppS5)/0
[2] Z+«S%,5Y

7. VRE+SORT TEXT
(1] ALF<'ABCDEFGHIJKLMNOPQRSTUVWXYZ?
[2] R""

(3] +0x10=pALF
(4] R«R ,(TEXT=1+ALF)/TEXT
[s] TEXT«(TEXT=14ALF)/TEXT
6] ALF<1YALF
(7] +3Vv

or, without branching

VR+<SORT1 TEXT
(1] TEXT«((ALF\TEXT)<pALF)/TEXT
(2] R«ALFLRLAR«ALFA\TEXTIV
Incidentally, a long vector of arbitrary characters can be entered in
the following way: define one line of TEXT as TEXT<«'...' and each
succeeding line TEXT<«TEXT,'...'. |t is also possible to enter
large amounts of information into the system through a card reader
attached to an appropriate terminal.
8. YR+MODE N;V
(11 V+R+10
(2] AT:V<«V,+/N[1]=N
(3] R«R,N[1]
(4] +(0=pN+(N[1]=2N)/N)/AT
(5] R«R[(V=[/V)/1p V]V
g, VR«FIB N

(1] R<1 1
(2] END:>(N>pR<R,+/ 2+R)/ENDV

10. VHISTOG AT
(1] I«l/A
(2] I<A
(3] +2xxJ«]-17
To '"clean up'' the histogram, change line 2 to ' *='[1+I<4]. This

function produces a vertical histogram. For a horizontal histogram try
the following:

Answers To Problems 293

VHISTOG1 A
[1] Af11p ' !
[2] »>xpA+«1+pAV
The composite function outer product (to be introduced in chapter

30) further simplifies the construction of histograms. Try
Ao, 21 /A
VR INT P
[1] 'YR PRIN INT
1
[2] I«1

[3] IN«,01x| ,5+100xPxR[1]

[4] I,P,IN

[5] P«P+IN

[6] »>((I«I+1)2R[2])/0

[7] +>3V

Here R[1] is the yearly interest rate in decimal form and RL2] the
number of vears to be evaluated. As in problem 10, the outer

product function will simplify considerably the job of generating
the table. Your table probably will not be formatted properly. More
about how to correct this in problem 11 at the end of chapter
30.
Chapter 25

1.

V«'HELLO e€wTHERE?'
T«'?~pew!
TAREM«2 3 4
REM T
REM[2] HELLO e€wTHERE
REM[3]
REM[u4] 2 2
FEM[2] HELLO ewTHERE
REM[3]
REM[u4] 2 3
REM[2] HELLO ewTHERE
REM[3]
REM[4] 2 4
REM[2] HELLO wTHERE
REM[3]
REM{ 4] 2 5
REM(2] HELLO THERE
REM{3] ©
TEXT«'DAB'
TASORT+3 4 5 6
SORT TEXT
SORT[3]
SORT[4] A
SORT{5] DB
SORT[6] BCDEFGHIJKLMNOPQRSTUVWXYZ
SORT([3]
SORT[4] AB
SORT[5]1 D
SORT({b6] CDEFGHIJKLMNOPQRSTUVWXYZ
SORT[3]
SORT[4] AB
SORT[5]1 D
SORT[6] DEFGHIJKLMNOPQRSTUVWXYZ
SORT(3]
,SORT[H] ABD

294 APL\360: An Interactive Approach

SORT[S]
SORTL 6] EFGHIJKLMNOPQRSTUVWXYZ
SORT(3]
SORTL 4] ARD
SORTL5]
SORT
SORT[7]
Printing of the trace has been interrupted because of its length. This
s not a very efficient program (see SORT1), but in the case of a
short literal vector like '"DAB' the time would be reduced considerably
by replacing ALF with TEXT on line 3.
N+<2 5 7 3 2 8 2 5 2
TAMODE«2 3 4 5§
MODE N
MODE[2] 4
MODEL 3] 2
MODE[4] 2
MODEL2] &
MODE[3] 2
MODE[4] 2
MODE[2] &
MODE[3] 2 5 7
MODE[4] 2
MODE[2] u
MODE[3] 2
MODE[4] 2
MODE[2] &
MODE[3] 2
MODRE[&]
MODELS]
2
2. TAGCD+1 4
75 GCD 105
GenlL1l 75
Gecpl2] 30
GCDpL3] 75
Genlul 1
Gepl1] 30
Gepl2] 15
Gecpl3] 3¢
Geplul 1
Gepl1l 15
Gepl2l o
GepL3] 15
Geplul 0
15
3. TAACK<1 &
2 ACK 1

N

ACK[1]
ACK[1] 3
ACK[1]
ACK[1]
ACK[1]
ACK[4]
ACK[3]
ACK[1]
ACKI&]

wHF O F W
o]

Answers To Problems 295

ACK[2] 0 3
ACK[3] 0 3

ACK[1]
ACK[1]
ACK[1]
ACK[1] 3
ACK[1]
ACK[W] 2
ACK[3] 0o 2
ACK[1] &
ACK[4] 3
ACK[2] 0o 3
ACK[1] 4
ACK[u4] u
ACK[2] 0 &4
ACK[1] 4
ACK[u4] 5
ACK[2] 0 5
ACK[2] 0 5
5
Cm@tq;gé
I loo01 2
1.743934249F 16 3.487868498EF 16
180:01
57.29577951
20100142
0
01:180
0.01745329252
Lot 3
1.414213562 2,236067977 3.16227766
“10101
1
2001
"1
3073015

1 2 3 4 5
"1 T201 10.5
0.5 1,070796327
11 1p1000,.05%x110

.156434465

.3090169944
. 4539904997
. 5877852523
.7071067812
.8090169944
. 8910065242
.9510565163
.987688340606

OO OC O OO OOoC o

1
This expression will generate the values called for by the problem,

but without identification as to the magnitude (in radians) of the
associated angles. With the transpose (chapter 29), such information
can be included:®2 1 1p(0A),1004«(1+111):20 It can also be
done with the outer product (problem 2A, chapter 30).

296 APL\360: An Interactive Approach
3. Construct a function like CHECK below to obtain comparative com-
puting times. The reason for the repetition of the calculations is
that an accurate comparison isn't possible with just a single trial
because of the shortness of the times involved.
VCHECK
(1] CPUTIME
(2] I«1
[3] §«2110
Lu] +3x1101=2T«T+1
[s] CPUTIME
(6] I+«1
(73 S«(t10):(t2)x!8
(8] +7x1101=27+T+1
faj CPUTIMEV
CHECK
0 0 0 1
0 0 0 9
0 0 0 17
Don't forget to copy CPUTIME and PREVIOUSTIME from 1 CLASS .
4, (202x15)=((2015)%2)-(1015)%2
1 1 1 1 1
For X a scalar, try the following: 0=-/(2 2 102 1 1xX)x1 2 2
Can you explain why it doesn't work consistently for all X7
5. VR«DATE
[1] R<+'/0123u456789'[1+(8p1 1 0)\1+(6p10)TI25]V
6. VR«X TIME Y
[11] R+Y+(X,3p60)TI20V
7- 1=+/(1 20X)*2
This version works only for scalar X. For X a vector we can use
the outer product (chapter 30) as follows:
A/1=44(1 20,0X)%2
Chapter 27

1.

S+T

21 21 21 21 21

21 21 21 21 21

21 21 21 21 21

21 21 21 21 21
2xS

40 38 36 34 32
30 28 26 24 22
20 18 16 14 12
10 8 6 L 2

SLT
1 2 3 L 5
& 7 8 g 10
10 9 8 7 6
5 4 3 2 1
3T
1 2 o 1 2
0 1 2 0 1
2 0 1 2 0
1 2 0 1 2

[l i I)
B b oo

34 38 42 46

5 6 7
10 11 12 1
15 16 17 1

50

8 9
3 1y
8 19

20 21 22 23 24

Answers To Problems

r/0/1/7v
24
(/7,0
24
x AU
13 28 45 o
85 108 133 160
189 220 253 288
+/+/01]1T
210
2. (N?p,M)Y/,M or (,M)[N7p,M]
3. M«M+(pM)p(1+pM)pO,N
b4, VGPA;;GR;CR ;M
(1] M+5 25p(25p4),(25p3),(25p2),(25p1),{(25p0)
2] GR+«MxCR+(3xGR3)+(2xGR2)+GR1
[3] 'THE GRADE POINT AVERAGES FOR FACH STUDENT ARE:'
(4] (+#GR)++#CR
(5] 'PHE CLASS AVERAGE IS:!
(6] (+/+#GR)++/+#CRV
5. 7?4 4p100 or 4 u4p?16p100
6. VAR
[11] M<5 15pV1,V2,V3,Vu4,V5
(2] YTOTALS BY CATEGORY ARE:'
(3] +/M
[u] 'TOTALS BY CUSTOMER ARE:!
[(s] +#M
[6] YTHE TOTAL OF ALL ACCOUNTS RECEFIVABLE IS:!
[7] +/+/M
(s8] 'CUSTOMERS WITH OVERDUE INVOICES ARE:!
[9] (V4023 15p30%,M)/115V
Chapter 28
R Al;2 5]
2 5
7 10
2 5
cl1;2 331

297

298 APL\360: An Interactive Approach

T1 1 2veC

4 5
8 9
11 1 1 0 1\A

1 2 3 4 0 5
[§) 7 8 9 0 10
1 2 3 4 0 5
=]
1 2 3 4 5
6 7 8 9 10
1 2 3 4 5
T1 T2 2 1 14
1 7 3 9 10
1 2 3 4 5
[§) 2 8 4 5
+#C[1 2;2;3]
11
A[1 3;14]
1 2 3 4
1 2 3 4
1 0 1 1\[2]C
1 2 3 4
0 0 0 0
5 6 7 8
9 10 1 2
3 4 5 1
0 0 0 0
2 3 4 5
[§) 7 8 9
0 1/011¢C
3 4 5 1
2 3 4 5
[3) 7 8 9
3 1 244

7 8 g 10 6
3 Yy 5 1 2
l¢)B
CBAFEDIHG
B[1;2 3]
BC
2 2 2¢44C
4 3
8 7
15

Answers To Problems 299

1 0 1#B
ABC
GHI
dA
5 4 3 2 1
10 9 8 7 6
5 4 3 2 1
1 T2 2B
CAB
EFD
IGH

1 3 363 1 1 2 49[1]A

7 8 4 10 1

b 5 6 2 3

9 5 1 2 3
B[1;1«B[;3]
Assume each row is a name with no blanks on the left and filled out
on the right with blanks.

VDELE NAME;J
[1] J«0
(2] +6x1(pAd)[1]sd
[3] >2x AN/ NAME=A[(J+J+1);]
(u] A«(((J-1)p1),0,((pA)[1]-J)p1)/[1]4
(5] +0
(6] 'NAME NOT FOUND'V
When the inner product is introduced in chapter 31, this function
can be rewritten as
VDKLE1 NAME,;T

(1] >Ux1V/T+«An,=(1+pA)+NAME
(2] 'NAME NOT FOUND!
(3] +0
(4] A«T/[1]AV
The second is a 1 1 matrix, while the first is a scalar. Try
o of each to check.

R<M[;M)
Note that the indices themselves may have rank >1.
VZ+MS N;@

[1] Z«(N,N)p1lN=2
[2] @e(-T.5xV)+ 1N
[3] 2+QeQoZv

VZ<«V1 MAT V2
{11 Z«((pV1),2)p0
[2] Z[;1]«V1
[3] Z[i;2]«V2v

or

Vi«V1 MAT1 V2
(1] Ze(V1,V2)[((pV1),2)p(l.5x12xpV1)+(2xpV1)p0,pV11V
When the transpose function is introduced in the next chapter, this
function can be reduced to a single line: &(2,pV1)pV1,V2

300

Chapter 25

1.

APL\360: An Interactive Approach

1 18M
1 6 1
1 1 28W
1 2 3 y
17 18 19 20
p2 1 38N
3 2 4
2 1 38N
1 2 3 Yy
13 14 15 16
5 6 7 8
17 18 19 20
9 10 11 12
21 22 23 24
yoeM
2 8 Yy
1 7 3
10 6 2
g 5 1
1 2 18N
1 5 g
14 18 22
o2 18M
9 5 1
10 6 2
1 7 3
2] y
oM
1 5 9
2 & 10
3 7 1
y 8 2
Q&M
1 2 3 y
5 6 7 8
3 10 1 2
1 1868 or 1 182 0 1¢B
VR«DIAG M
[11] R+1011 1MV
VR+«X COLCAT3 V
[1] R+«&(&®X) ROWCAT VWV
VZ<«LIST N
f11] Z«Q(3,N)pZ,(12),+Z« NV
A/,5=88

The result shows that AxB is a maximum when A=B, a conclusion

well

known to calculus students, who have worked since time immem-

orial on problems like the following: Show that a square is that
rectangle of greatest area for a given perimeter.

301

Answers To Problems

Ao, A

1.

Chapter 30

N T

N

0.

0.3333333333
0.6ECBEE6667
1,333333333

w w
N O~

Co.=B

« s . o O SO o O
OO O
o O — O o O

— O o O (@3]

9o ,>D
0o.Al1 O

1 00 1 1o,#0 1 0 1 1
2 3e.]15

Do, xA

1
00 0 0 0
10100
10100
00 00O
00 0O0O0
1

302 APL\360: An Interactive Approach

(15)e.,%x0 1 2 3

1 1 1 1
1 2 4 8
1 3 g 27
1 y 16 bU
1 5 25 125
2. A) §1 20,00(0,15):6
B) ®((1+p,B),10)p(110),,B0.8110
c) VAETOU'e , =8
D) (110)0.,%1 2 .5
3. 422 or 2 24
4, VE<DIST L
[13 Rel o5+ (((L0130, -L0313)%2)+ (Ll 320, -L1;2])%x2)% .5V

or
VR<DIST1 L
1] R«l .5+(+/1 3 2 38(Lo.-L)x2)%,5YV
5. +/'ABCDEFG'o,='CABBAGE"
6. SUM<B|C+D
CARRY<«B<C+D
VADDTAR B; 7T
(1] T«INTo . +INT« 1+1B
[21 (BiT)+10xB<TvV
7. VZ<C1 MULT C?2
[1] Z<«+/011(1-1pC1)PCL1o.xC2,0x14C1V
3. A) X« 5419 .
Fe(bX)o,=|X
GRAPH

o
+ + 4+ 0o + 4+ + +
+
+
“+
+

-+

B) Fe(dX)o,= S5+X%2
GRAPH

+ + + 4+

+ 4+ 4+ + + + 4+
“+
<+
-+

C)

+ 4
[

o o

o o

b)

+ +

E)

o

o

o [

o L]

o o

o o

Fe(0X)o,
GRAPH
+

+ o
4+ o o
o o o o
o o o o
o o o o
o o o o
o o o o
Fe((bX)o
GRAPH
+

+]
4+ o o
+)
+ + + +
+

+

+

+

F<—(¢X)°.
GRAPH
+

+

o 4+]
o 4+ © o
6 o o o
© o o o
o o o o
o o o o
o o o o

Answers To Problems 303

sX+1

o o

=] =]

=] o

=] =]

=] =]

=] =]
<SX+1)A(dX)o . 23-1X

=] =]
o o
=] o
o (<]
=] =]
o
<31X
o
=] Q
o =]
o o
=] =]
=] =]

APL\360: An Interactive Approach

304

(2xY)e . +X-8

LA(2xX)-2)v0

YebX+ 134125
R«(0=(3xY)o

(o)

000O0O0O0O0COOOOOOOOOOOODOOOODODO

6000O0O0COOOOODOOOOOOOCOO0OO0OO0OO0OO OO

1 0000O0C0O0COO0COOOOOOOOOOOOOOOO
0010000O0CO0O0OO0O0ODODOCODODOOOOOOOOO
000011000O0OCO0OOOOGOOOOOOODOGCOCO0OO

0O0000O0OBO1O0O0O0OOOOOOOOOGCO0OO0OO0OO0OO0OO0
06000O0OOOC1TO0OOO0OOOODOCODOOOCOOT11O00O0

0 00060O0O0O0OCO0CO0O10O0OO0OLOOCOOOODODOOOCO

00 0O0O0OOCOOOOODO11O0O0O0CO0O0OODI1TOOO0OO0OO
0000O0O0CO0O0OO0OO0OOOOOCZ1TO0O0O0O0OO0CO0OCO0OO0OO0OOQO
000O0O0O0O0COOODOCOOOCOOIL OOOODOOOO

6000O0O0GCOO0OOOGCOOOOOOOO1L O0OO0OO0ODOOOO

0000O0O0OO0OOO0OOOOO1O0O0O0OO0OOOL1TO0O0O0O0

000000 O0OO0ODO0ODO0OCODO0OOOOOCO0OO0ODOO0ODDODOTZ1ITO0OQO0
00 00O0OOO0OO0OOO1IO0O0O0O0OO0COQOOOOOOODOOI1

000O0O0OCOOOOOOOOOOOOOODOOOOO
00000OO0OO010O0O0GCOOO0OQOOGCOOOGCGOOCOO0O
000O0O0O0OOOOOOCOOOOODOOOCTOOODODO

00001000O0O0OCO0OO0OOO0OOOOOOOOOOOOCO

00 00O0O0OO0OO0ODOOGCODOOOOOOOOOOOOO0OO

01000O0O0OOO0OOOOOODOOOOOODOODOOO
00 00O0OO0OCOOO0OOO0OOOOO0OOOO0OODODOOOCOO
0000O0O0O0OO0CODOOOCOOO0OOODODOOOOO OO

00 000O0OO0ODO0ODO0O0OO0CO0OO0OOOCOOCOODODOODOO0OO

6 00 000O0O0O0OO0OOODOOOOCOOOODOOOO OO

The 1's correspond to integer number pairs satisfying the two

8-X (conventional

The point of intersection (4,2) is the common solu-

tion of both equations.

2X-2 and 2Y=

simultaneous)linear equations 3Y

notation).

Since this problem is intended to be only illustrative, not all

the examples will

10.

be shown.

305

Answers To Problems

Y+«X*x2

Z+2xX%x?2

L0 60 PLOT Y AND 2 VS X

15

10

X«1,50%x17

B)

Y+ X

306 APL\360: An Interactive Approach

10. B) 20 30 PLOT Y VS X

oo o0 00 o |
0 200 400

Notice that the first point botches up the graph. We can fix the
plot by eliminating this point as shown:

20 30 PLOT Y[1+17]1 VS X[1+17]

0.020] (e}
|
|
|
|
0.015]|
l
f
|
!
0.010] e}
|
|
| o
|
0.005] (e}
f o
f o o
|
|
0,000 | [| | | | l [
0 100 200 300 400

o

o
~

P WO 00w OPRrOONDD WP, RPRPWLWOLODONOOOR OO0 NNOUWwRkOo

0
1
3
5
6
8
1
1
1
1
1
1
n

Y AND 2

.000000000E 0
.736481777FE 1
L420201433E"1
.000000000F "1

.

427876097E 1

. 66044LL31F 1
.660254038E 1
.396926208F 1
.8L48077530F 1
.000000000E0
.848077530F 1
.396926208EF 1
.660254038L 1
L660LULL31E 1
L427876097F 1
.000000000F™1
.420201433F 1
.736481777E 1
.743934249F 16
.736481777E "1
.420201433F 1
.000000000E" 1
.427876097F 1
LBB60LLUY3IE 1
.660254038E 1
.396926208F" 1

.

848077530F 1

.000000000F0

.

848077530E 1

.396926208E 1
.660254038F 1
.6604LUYU31E 1
L427876097E 1
.000000000F 1
L420201433F" 1
.736481777F 1

.
.
.
.
.
.
.
.
.
.

Yy Vs X

000000000F0
745329252F 1
49065850u4F 1
235987756E 1
981317008E 1
726646260F 1
047197551E0
221730476E0
396263402E0
570796327E0
745329252E0
919862177E0

1,000000000FE0
9,848077530F 1
9.396926208E 1
8.660254038EF 1
7.660444431F 1
6.427876C97E 1
5.000000000F 1
3,420201433F 1
1.736u481777E" 1

1.743934249F 16

T1.736481777E" 1
T3.420201433F 1
T5.000000000F 1
T6.427876097F 1
T7.660444431F 1
T8.660254038EF 1
T9.396926208E 1

79,848077530EF 1.

T1.000000000K0
T9,848077530F 1
T9,396926208F 1
T8.660254038F 1
T7.6604L44431F 1
T6.427876097FE 1
T5.000000000E 1
T3.420201433EF 1
T1.736481777E 1

T1,743934249F 16

1.736481777E 1
3.420201433F° 1
5.000000000E 1
6.427876097F 1
7.660444431F 1
8.660254038E 1
9.396926208K 1
9.848077530F 1

0.000000000F0

1.736u481777E" 1
3.420201433F 1
5.000000000E 1
6.427876097F 1
7.660444431EF 1
8.660254038EF 1
9,396926208E 1
9,848077530~F 1
1,000000000F0

9,8480775308 1
9.396926208E 1

(not all of display shown)

Answers To Problems

307

308

APL\360: An Interactive Approach

10 5 DFT (+110) AND ($110)%x.5

. 00000
.50000
.33333
.25000
.20000
.16667
.14286
.12500
11111
.10000

O OO OO0 O OO

B Ok
(SR N
[==
> RO R

A
0 0 0 0
Av.=zEB

.>C

1.00000
0.70711
0.57735
0.50000
0.44721
0.40825
0,.37796
0,.35355
0.33333
0.31623

18

0 36

LENGTH ERROR

AV, 2B
A
34.xB
60
Bx. =4
0 0 0 0
cl.-B

b6 48

[

[

84

[l

(SRS

Answers To Problems 309

An. =B results in a1 if 4 and B are identical, 0 otherwise.
MA. =B produces a logical vector with a 1 for each row of ¥
which is identical to B

A+.#B gives the number of pairs of corresponding dissimilar
elements in 4 and B.

(M=0)Ar.2U produces a logical matrix which reproduces the
initial 1's in each row of M=0 and fills the rest of the row

with 0's, i.e.

M

0 0 3 2 0 0 o0
O 1 7 9 2 8 o0
4 0 0 0 1 B 0
M=0

100111
000001
111001
(M=z0)A,2(18)0,.518
10000 0
00000 D0
00000 O

It may be considered a simulation of the "and-scan'' A\M=0

(not yet implemented).
A+.*B is equivalent to the times reduction of A raised to

the B power. One possible use could be in getting a number
from its prime decomposition. Here is an example of this
latter use:

2 35 7x,%x2 1 0 1

B) R[I3;J] is 1 if and only if the Ith column and the Jth row
of N have at least one 1 in the same location. |t is used to
represent two-stage connections, as in pecking orders or cir-
cuitry. (See the defined function RUN in this chapter.)

C) For R«C+.=D.R[I;J]is the number of matching pairs of
elements of C[I;] and D[;J]

For R«Cl .LD, R[I;J]1is the largest of the smaller of C[I;]
and D[;J] taken pairwise.

MO O O W D>
W R R —
S — [}

™
[
[

R<«0=z=,=4 100 400 40000,]Y
VREFUND1 E

.5x200 500+.L1 10,xEV
VZ«LIT1 N

Z+«(1470123456789 1N)+.x10%¢ " 14+1pNV
VR<N DUPL1 V

R<'SCALAR NOT PRESENT'
+0x10=Nv,=V

R«(N=V)/1pVV

VR«X POLY C
R«C+.xXo x 1+1p,CV

Probiems

312 APL\360: An Interactive Approach

3. VMULT3 N; X
[1] X+«?N , NxIT+1
[2] 14X 'x';14X
[3] +((J=HELP,STOP,x/X)/AID,0,CORRECT
[u] +ANSx 1 b=T+T+1

[5] "TRY AGAIN'

[6] +3

(7] ANS:"ANSWER IS ';x/X
[8] +1

[9] CORRECT: ' CORRECT'
[10] -1

[11]1 AID:'COUNT THE STARS FOR THE ANSWER:'
[12] Xp 't x!
[13] -5V
4, VMULT4 N; X
(11 X+?N , NxI+1+0xAKT+«119
[2] 14X;'x'";1+X
[3] +~((0=HELP,STOP,x/X)/AID,0,CORRECT
[4] +>ANSx\4=T«T+1

[5] '"TRY AGAITN!
[6] +3
[7] ANS:YANSWER IS ';x/X
[8] +1
[9] CORRECT: L ((119)-AKT)+60;"' SECONDS'
[10] +1
[11] AID:'"COUNT THE STARS FOR THE ANSWER:'
[12] Xp'=*'
[13] =5V
5. VSPELL(6]'THE CORRECT SPELLING IS ',SPL[N+1;]V
6. VENTER ; A
[1] R""

[2] +DONEx10=pA+,[

(3] R<R,2044

f4] +2

[5] DONE:R«(1+4,0 20T 14pR)pRV

Chapter 34
1. YLOAD 1 CLASS
SAVED 15.02.39 07/29/69

Y+110

JORIGIN O
WAS 1

TAB3[0;2;1]
132

Y14 5 6
3 4 5

JDIGITS 5

WAS 10

Answers To Problems 313

+TAB3
0.009009 0.0089286 0.00884936
0,0082645 0.0081967 0,0081301
0,0076336 0,0075758 0,0075188
0,0070922 0.,0070u423 0.006993
0,0047393 0.004717 0.0046948
0,0045249 0,0045045 0,0044843
0.004329 0,0043103 0,0042918
0,004149Y 0.0041322 0,0041152
JWIDTH 60
WAS 120
YJENS J
MEAN PI RECT REP REVERSE ROWCAT RUN S
SD SETVARIABLES SIGN SORT SPELL SQRT STAT
STATISTICS SUB SUMSCAN TIME TIMEFACT TRA
TRACETIME
YLOAD 1 WSFNS
SAVED 23.,45,54 07/07/69
X«DIGITS 6
7
1 0.5 0.,333333 0,25 0.2 0.166667 0.142857
X
10
DIGITS X
6
17
1 0.5 0.3333333333 0.25 0.2 0.1666666667 0.1428571429

Because both indexing and the index generator are affected in the
same way by the change of origin.

JORIGIN ©
WAS 1
10
11
0
p10
0
prl
1
A«9,222222222222222
B+9,222222222222227
C+110
A=B
1
AeB
1
A-B

TL,884981308F 15
C[3.000000000000008]
3

APL:360 An Interactive Approach

o 1
i
[M
[J
. sy
| }
T !
i

Bibliography

P.C., APLN360 PRIMER, BM Corporation,

It

PonL, APLNTII0 P

. and e,
ON EXPERKIMENTAL SYLTEM APPLIED
London: Academic Press, 1968, pp. 290-39%

Iversom, APLA3IGO USER'S MANUAL,
No. H20-0683

i

Falkotf, Do, and K.
ON EXPERIMENTAL S
i |

feadoriic Press

E. twvarson, "The APLA3GD Termiaal -
YSTEMS FOR APPLIED MATHEMATICS) pol
GhE

s

~J

3

Vo tume

360," 1BM SYSTEMS JOURL Z
fverson, KUE., A PROGRAMMING LANGUAGE, New York: Johin
CE.

lverson, K

, ELEMENTARY FUNCTIONS: AN ALGO??THMiC‘
Scicnce Research Associates, 1966

lverson, K.E., THE USE OF APL IN TEACHING, !8M Corp
tion No. 320-0996, flalso avaiiable as Volume
in Pure and Applied Math

n., Kingston, CTanada,

Palin, $., APLA360 REF
1570

WENCE MANUAL, Chicagu: Scicnce Booenos

Rose, A.d., Videoraped APL Course, 1BM Corporation, 17

GTPACKZ: AN APL

Compating Sc

Smillic, Ko,

Departnen

Canuda,

KoE. dverson and LoH. Sussengath, 0 Forinet e

Supplement
Extensions to the APL language

This supplement contains a number of additions and extensions to the A77,
language which were not generally available at publication time, but which
are included in the APL program product announced by IBM in June, 1970.

In addition, some examples will be shown of tabs, formatting and large file
capability, features of APL PLUS, an APL time sharing service available
through Scientific Time Sharing Corporation (U.S.) and I. P. Sharp
Associates Ltd. (Canada). The service is based on APL\360 and includes
certain proprietary extensions to be discussed.

Matrix division

This is a primitive function which can be used to solve sets of linear
equations (dyadic), invert matrices (monadic), and find least squares solu-
tions. For example, suppose we are given (conventional notation)

6X + 17Y - 82 = -15

{2x+hv-3z=—h
Lx - 2y + 32 = 20

Then, letting 4 be the matrix of coefficients and B the vector of constants,

A B (note that the extra line has been
2 3 eliminated from the display of arrays
& 17 8 of rank >1)
4 2 3

B

the solution can be obtained by taking B matrix divide 4. The domino 1 for
matrix division is formed by overstriking the quad with the divide symbol.

X<BEA

316

Extensions to the APL Language 317

Used monadically, E4 results in the inverse of A. A must be square and
invertible or a domain error results. Compare this with the defined func-
tion INV in chapter 32.

Y«

A+.xY
1.000000000K0 T8.326672685F 17 5.551115123K 17
1.998401444F 15 1.000000000K0 0.000C00000F0

T4.440892099F 16 8.326672685F 17 1.000000000F0

Catenation

Two variables whose shapes are conformable can now be joined along an exist-
ing coordinate. |f no coordinate is specified, the catenation is over the
last coordinate. Notice that scalar arguments are extended for purposes of
catenation.

q
oononopo
aroInee
ooronon
nonroon

R
0000000
O000000

3
* Kk Kk k% %k Kk

T
ANDND

Q,[1]FR
oononrn
onooren
Conoron
(noonem
000000
Q000000

Q,[1]1s
nooonon
cocnonn
annonen
nnooonG
Kk Kk Kk Kk Kk

Q,T
Oooonoca
opoonara
anononoa
oonnoota

W“' * 1

Q9 W
a0rooot =
O0nnoan «
oo0onno -
aoorm oy«

Saciptaerdenve Approach

teie: variables alosa a nev corpdinale Heves s o
wyntlax and wse aof his Tunctbioe:

The syntax is of the form —7-. .1 [+, where for = -, 0 o o0 i
SRR for - L. Cirisdedand by i Tor
and “hy s elc., rank permitting. As in catenation, scalars ar

Decode and

encode

fhiese functions extend

[CI g
5 ¥
U l u
J7RN
!
I 1
.
i
Ll
From these

related to

Adjustable

examples it
the shape of the

i
: J U 1 1
9] i y
Y
L:

should
ar

fuze

Normalty when
argunents are
function

The number of
returned as a
1

)’,,’ F
. . /

a comparison is
disregarded. To
from

bits disregarded

result.

[FRVEVES R R VR VRS R PR
ol

',,,‘ o) / / "

VAVES] PRUEY

to arrays as

Extensions to the APL L anguage

fol lows :

clear how
guments.

be

done in the tinal ten Lits o
change this fuzz (see page 2057
and execute . whie: o

is then changed to . with e prey

1y

320 APL\360: An Interactive Approach

(The following are proprietary extensions of APL PLUS. For further
information, refer to the publications listed in the Bibliography at the
end of this supplement.)

Tabs

Since the TAB and CLR/SET keys on the Selectric keyboard are not part of

the APLN360 system, APL PLUS has a tab feature which incorporates tab
stops to speed up terminal input-output, especially in printing displays

with lots of ''white space''.

To use tabs, first set the tab stops at regular intervals (for instance,

every fifth position), using the CLR/SET key on the left side of the key-
board. The tabs may be set by typing

YTABS 5
WAS O

When printing, APL PLUS will then use tabs instead of multiple spaces
wherever possible.

On input, APL PLUS treats a tab exactly like the equivalent number of
spaces. An interesting application of input tabs is in using [to build

the rows of a matrix. |f the tabs are set to the column dimension of the
resultant matrix, then tabbing to the next typed word will assure that the
resultant character matrix will have text on each line, left justified.

Here is an example, with the tabs set at 10, 20, 30 etc. The symbol o
denotes where the tab key was struck,

YTABS 10
WAS 5
VE<INPUT
(1] R«
[2] Re((.1xpF),10)pRV
P HPUT
JONES o KELLEY e — ADAMSo
p

i
e

JONES
KRLLLEY
ALY

Corresponding to the)7ABS command, a 7ABS function is available in the
w.s. 1 WSHNS, The syntax is H<TAES . N is the new tab setting,
and # is the old setting. The normal mode of the system is 7TARS 0.
Caution: tab settings, if used, must be equally spaced. Non-uniform tab
stops can cause erratic terminal behavior.

Working with data files

The APL PLUS File Subsystem lets you work with much more data than can be
held in a workspace, and do it far more conveniently than by using the (C0OPlY
commands. All the file operations are in the workspace 1 FILIO.

Extensions to the APL Language

YJLOAD 1 FILES

SAVED

20.32.24 Q7/27/7¢

DESCRIBE

WORKSPACE 1 FILES

THIS WORKSPACE CONTAINS FUNCTIONS FOR USING APL PLUS DATA

FILES,

SCIENTIFIC TIME SHARING CORPORATION, 1970,
SCIENTIFIC TIME SHARING CORPORATION AND TI. P.

FROM

ASSOCIATES LTD.

DESCRIBED Iy APL_PLUS_FILE_SUBSYSTEM
AND AVAILABLE
SHARP

THE FOLLOWING FUNCTIONS ARE PROVIDED :

FAPPEND PLACES A NEW COMPONENT ON A FILE

FCRFEATE CREATES AND OPENS A NEW FILE

FDEOP DELETES COMPONENTS FROM A FILE

FERASE EFRASES A FILE

FHOLD REQUESTS TEMPORARY EXCLUSIVE USE OF FILE(S)
FLIB NAMES OF FILES 1IN LIERARY

FLIM GIVES FILE COMPONENT NUMBERING

FNAMES NAMES OF FILES CURRENTLY TIED

FNUMS NUMEBERS OF FILES CURRENTLY TIED

FRDAC GIVES FILE ACCESS AND LOCK INFORMATION
FRDCI GIVES COMPONENT INFORMATION

FREAD READS A COMPONENT FROM A FILE

FRENAME CHANGES LIBRARY NUMBER AND NAME OF A FILE
FREPLACE REPLACES A COMPONENT IN A FILE

FSTAC DEFINES ACCESSES AND LOCKS FOR USERS

FSTIE OPENS FILE FOR SHARED USE

FTIFE OPENS FILE FOR EXCLUSIVE USE

FUNTIE UNTIES FILE(S)

FE PRIMITIVE FILE FUNCTION UPON WHICH ALL OF

THE ABOVE ARE BASED.
ANY OF THE ABOVE.

REQUIRED FOR USF OF

A file consists of a number of components, each of which is an APL
of any type - character or numeric; scalar, vector, matrix, or of any
number of dimensions.

Users may have more than one file, each with its own name.

later how they might have been built).

For example,
suppose that you have two files as shown below (it will be demonstrated
The file named PERSONS has four

321

value

components, each a vector of characters, and the file SALES also has four

components, each a vector of numbers.

file-name PERSONS SALES
1 "SMITH? 5 6 31 4
component 2 'JONES! 2 6 10
number 3 ‘KELLEY! 4 6 2 9 1 5
4 "BECKER' 20 6 4

File names belonging to an account number (or common library) may be ob-

tained by the function FLIB, the syntax of which is

result <FLIB account number

307 ARLIGL A interac Livie Anroecn

Wi e apa L [. R Foq b s s i
Uibgese b o fims 1 ol el : 2= ’ ' o Pae b gue
Phaneg by P TN P T ' i it Ly ST T v

' ¥

V .

)
The> ot e eaibabbishes o o eat sor bofwoen the | el B atst i
PR i it i ot gt Pe 5w Bl s nuiimies bis
Vo Gaadslis b T by =piuetseey 1 e i g A% o T T SR 2% AT Tine
bz Lpey tie opelsrannze Eill oy ot resentrl oo Cabespdng ' Bl woyeer el
vhes ook L fr s g vivy el Ve T3 Yoo ot Tian st A8 0 a3 bt gy
Pligs spaityo i
7 ERRTE Y ik

Moo g Bl G 1 1 7 Gt LNCR (R D G T SN e
fied e Thne n bgint o gattie sl LR e i y eI ST 5T e LY TR T

i [VL S B AT e kMl st e 0 Aiptes adan Gkt et dlie) =gy
FRG o pemi e ol e 2 g O R L T £ fERe L ey <o
LTSI (T - (NEEY ¢ £) (50 I I [i LY [T IO AR (1= Ll
Voo e i le bs sdnglar wr ot ey [E T § LALILYSE AN St " « o Mabd e
Pl sentax o the [T} U St

LA { T P eM Y

Weagie ey ot Tepte, g i = IR

ORI B & Lah®

i P e

i e canod to Dreak 1 he o asiecal o7t I S5 S 2L [T T
e st d 5y Yors, T v iy vt fod i b - i | o Lgrae’ ta
el N Tty ?l.:.l g Y i T UM N TR S U TE TN
sk B potiioed T neme o e T Ve sk ST SR P ML

Twer apetabians are peoav: sdard 2z bedp goos Fimd e i Fen s ave w

WU syntaen

rest)]

Thigs = ¥ 1 . Ll
v Ty EELLTIS Pt ¢
LY bt .
LrE i :
Mo 1 b e v t . g0 v
O e Yy e 2 :«_] T gy thy PRI 1l
VG P A igher BLeeE T ; - Fagy
:
i :
0
’
Ty % s
7 foe v riFd
i R B i)
tir it ' '
nut % B sipel ok A
wloan yo e by N !
Examp s ol appendim o P
(404]iﬂ' 6 7 e L 2:-_
There e na AT SR SR XIS TR
Conponant o e meed i avi}
when 3 ' i Oy e e s e
VT E L i
Thise rempves: the File i frocn holn o h
for pew Files Lo he oreanad.
i oan example o i anaqing b
1% l:f amg

The compon:

*
and the fo°
criginal

fach odd-numbered comparen:
Wing even-momber e Sotase o

&% Qs Wegisee it e ha

']

et

LR Cod 2L ot o IO L ARt o M U | 4 ST

' L .
»h g
. 0y B
L}
L ora
f . . [} L
' ‘ (
s .I
ol lnsizs
arorenlt s VR moes

e 0 bed Skl o

ot s O S0 YT I W
vl ey e
Vit = g 4.0y
(]

324 APL\360: An Interactive Approach

vV PROGS3

[1] 'PERSONS' FIIE 2
[2] "OALES' FTTE 1

[3] "RECORDS' FOREATE 3
[4] I<1

(5] LOOP:(FREAD(1+2(I),[I:2) FAPPEND 3
[6] +LO0Px182T+T+1

[7] FUNTIE 3

(8] YPERSONS ' FERASE 2

(9] "SALES' FERASE 1

In this example, the file-numbers 1 and 2 did not appear with FUNTI/ be-
cause the erasure of PERSONS and SALKS also untied them.

Shared files

A shared file is stored information to which a group of users may have
simultaneous access. Through the use of shared files, APL PLUS can be
used for reservation systems, management control systems, many~person games,
simulation studies, and message switching.

The airline reservation system presented here is typical of many inventory
applications in which several people must access and modify a data base,
in real time. The reservation system consists of a 'control center',
which makes available an inventory of airplane seats, and any number of
'agents', whose task it is to sell the available seats.

To initialize the system, the control center creates two files using the
program SETUP . The first of these files, named SUPPLY, holds the cur-
rently available number of seats for each of a number of flights. The
second file, named TRANSACT will hold a record of each transaction made
by the agents.

The control center operator makes more seats available {(by simulating
departures and arrivals) through the use of the AEPLENISH program. The
operator enters the flight numbers and the number of additional seats to
be made available on those flights.

Agents place orders against the inventory through the use of the program
SALES.., An entry here should be a two-element vector consisting of which
flight number and how many seats are requested. For the purposes of the
example, a reward structure is built into the sales program: orders
which can be filled yield the agent one dollar each; orders which cannot
be filled cost the agent 50 cents per seat; and invalid entries reduce
his earnings by one-half.

Entries of the first two types above are recorded on the transactions
file. The program OBSERVE, which is run by the control center, prints
the transactions of the agents in real time, identified by time, city,
and nature of transaction. When there are more than ten transactions
waiting to be printed, the observe program blocks further transactions by
the agents until printing has caught up again.

Here is a diagram of the file organization followed by the above-referenced
programs and associated variables:

[1]
[2]
[3]
[u]
[5]
[6]
£773
[81]
(sl
[10]
[11]
[12]
[131]
[14]
[151]
161
[17]
[18]
[19]
[20]
roal
f221]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

Extensions to the APL Language

SUPPLY FILE

CONTROL
CENTER

AGENT e

AGENT

AGENT TRANSACTION FILE

Agent program:

SALES ; STOP ;B3P 3A 3 INV

STOP+*1

+~ORDx1An/ 1 2 eFNUMS

(OWNER,' SUPPLY') FSTIE 1
(OWNER,' TRANSACT') FSTIE 2
ORD: ,'"NEARNINGS: M.F9.2,X3,NENTFR ORDER[' AFMT EARN
>DONEx1STOP=1+P<«,[]

>ORDx10=pP

>ERx122p P

>ERx1~(A<1+P)e110

>FERx1B=|[B«1+P

FHOLD 1

INV<FREAD 1 1

>NOTx1INV[A]<B

INVIAI«INV[A]1-B

INV FREPLACE 1 1

FHOLD10

'"ORDER FILLED'!

(1,P,EARN<FEARN+B) FAPPEND 2

+0RD
NOT:FHOLD10

'"ORDER CANNOT BE FILLED'

YONLY '"3;INV[A];' ON HAND'
(0,P,EARN<O[FEARN-0.5xB) FAPPEND ?2
+0ORD
ER:'"INPUT ERROR--ORDER NOT VALID'
EARN<FEARN <2

+~0RD
DONE :'"YOUR EARNINGS ARE ',,'F10.2' AFMT EARN
FUNTIE FNUMS

325

’
v v
“ >

Extensions to the AP Language

Purt inent global variables:

[} " -
Report formattling
In the workspace “AMan the il system is a special
function, called » which is useful for preparing neat autput of
data, s a dyadic function which returns an explicit result.

The left argument is a character vector of format codes and the right
argument 145 a4 list of the values to be printed. For example, using the

matrix . in il o, suppose we wanted Lo produce the Tollowing
display:

The statement which will do this is

The formatl code i

five repetilions of a character field one prsition wide, Then the
code means space over lwo pousitions, The phrase ' ' causes printing
of the characters ' in the nexl positions. takes throo spaces Lo
print the values 0, 1, 2, 3, ..., 9 as integer fields. And lfast, the
square roots, cube roots, and fourth rools ure printed out each in ten
spaces, wilh fTour positions allowed for the decimal part | L)

will handle scalars, vectors, and matrices in the right argument.
bLoalways Lreals vecltors ol length n as though they were nx| matrices
(i.e., vectors will be printed vertically). To print the ciements of a
vector across on a single line, S o may be ouwsed in cither of the fol-
lowing ways:

S used tu print character icfurmat o, 'oasks lor

327

328 APL\360: An Interactive Approach

X<2.4 4,982 304 1000.,23123
YF10.,2" AFMT X
2.40
4,98
304,00
1000.23

YF10.2Y AFMT (1,pX)pX
2.40 4.98 304,00 1000.23

In the above statement X is made into a matrix with one row, and in the
following example the resulting matrix of characters is raveled:

,'F10.2 ATHMT X
2.40 4.98 304.00 1000.23

Compared to formatting routines such as DFT, AFMT uses typically only
5-10% of the CPU time required for the former.

Input and output of large amounts of data

Large amounts of data can be inputted rapidly by the AP. PLUS Computer
Center card reader and magnetic tape units. Typically, the data is pre-
pared on standard 80-column punched cards, which are submitted to the
Computer Center with instructions for what file to place the data in.
Although there are many ways to have the data organized in the file, a
good starter is to have each component of the file be an 80-element
character vector, corresponding exactly to a punched card. Then, using
the File Subsystem, the information can be converted to any desired form.

The high speed printer at the Computer Center can be used to print results
which would’ take a lot of time on a typewriter terminal. To use the
printer, the results to be printed are placed in a file, and the program
PRTNT in workspace 1 HSIO is executed. PRINT is a conversational pro-
gram, and it will request your name and mailing address.

The file to be printed must consist of characters only, and AFMT can be
used to advantage here. The PRINT program includes facilities for
titling, page numbering, margins, ‘'skipping', etc.

Miscellaneous APL PLUS features

If you form an incorrect character, or if a transmission error occurs
while you are entering information from your terminal, APL PLUS will
print CHAR ERROR and then return to you the readable portion of the
line, for you to retype the rest of it. Standard APL, under either of
these circumstances, would return either CHARACTER ERROR or RESEND
and would require that you type the entire line over again.

The COPY command in APL PLUS now accepts the names of more than one
variable, function, or group. For example, the command

YCOPY 1 CLASS SPL SUB TAB3 SPELL

Extensions to the APL Language 329

will copy all four objects from the workspace 1 (CLASS considerably
more rapidly than by separate COPY commands. This extension applies to
the PCOPY command as well.

Bibliography

Breed, L. M., INPUT AND OQUTPUT FACILITIES FOR APL PLUS, Washington:
Scientific Time Sharing Corporation, 1970

Breed, L. M., REPORT FORMATTING IN APL PLUS, Washington: Scientific
Time Sharing Corporation, 1970

Rose, A. J., APL PLUS FILE SYBSYSTEM, Washington: Scientific Time
Sharing Corporation, 1970

Index

Absolute value, |, 51 Corriabge return
Adding a tine to a function, 77 as 4 character, 132
Addition, t, 6, 9, 194 it fnput, ?
Additive identity, +, 0. Catenate, ., 122, 208
Algorithms, 33 Lesi L ing. 52
Alternating product, /), 42 Lantral Processing unii (1:}’“'!, 5
Alternating sum, -, , 40 Character errur, 9
And, A, 26 Characte;
Announcements, public address, 264 arguments with APL lunciions,
Apostrophe as a literal character, . 131
133 arrays, 134
Arccos, 7:, 186 in mixed output, 250
Arccosh, nwo, 186 Circular functions, ., 186
Arcsin, 10, 186 Clear command JCLEAR, 95, 110
Arcsinh, 5., 186 Codes. See Cryptography.
Arctan, o, 186 Colan, :, &, {72
Arctanh, o, 186 Combina:ians, Y, 2]
Arguments, |3 Commarnda, Soee Sys Lbem commands,
explicit and implicit, /2 Comments, A, 9
Arithmetic negatior, -, 50, 1497 Commen tibracy, 103
Arrays Cinnpreswiun, or o=, Mgy 706
dimension of, 1146 Campsct time, ©
rank of, 113 Continue (workspaco nawed), 109
restructuring o, 126 Coitinue commands
Assignment, <, 30 JCONTINUE, 10
Attn key, &, 80 JCONTINUE HOLD, 110
Averaging, 38, W4 Coardinates of an array, 198
Copy cominand:
Base Value (decode), 1, 140 tCORY, 136, 110
Beta function, 22 FREOPY, 110
Binomial thecrem, 22 Corractioung,
Branching, », 109 Cosi, ke, 186
rules for, 174 Cosine, 2o, 186
summary of instructions for, 175 Cosine, calculation of 56
Byte, 190 Counters, 9|
CPU time, 121, 190
Calculus, applications of APL to, 244 Cryptography, applications of APL

to, 155

120

Datasei, 4

Peal, 2, e
Decimal peint, .,
":'F:’I b

Decode winlue .

DeFinad functions. ST e S R
pefinitian error, 06
Del, Vv, 63
Del tilde, ¥, 265
Nelating & line in a Tuncoiom,
Dalta; A, V78; 179
Deserihe function, 190
Nesk calculation mode, 2
NDetailed oditing of a line, 92
Digits command IDIGITS, 244
Dimension, o, 116, 117
Display nf
functions, £3
part of a function., K!
value af an expression. ~H4
Diwvision, :, 7, ll; 196
Domain error, [
Drop, 4, 153, 213

Dropping a workspace comman:d JODRGE G5,

iin
Dummy variables, %7
Dyadic functions, 13
Dyadic eandom (deal). 2, 164
Dyadic transpose, @, 217

E-notation, 16
Editing of functinns,
Empty vector, 115
Encade (representationd. 7. i6A2
Equal, =, 26
Erase command JERASE, 69, 1i7
Errors

character, 9

definition, 6f

domain, 7

index, (3¢

length, 10

rank, 125

syntax, 32

value, 32

workspace full, 149G
Escaoe from input lous, 262
Evaluated input, 249
Exclusive or, #, 28
Exercises

EASYDRILL, @

TEACH, 1h7
Expansion, . or ~, 142, 20¢
Explicit results, 65, 73
Exponential, %, 5i
Exponential ncration, #, i6

7h=55

Index

Exponer i . | ¥
it aR
EYree]
b ol y
i ¥ ™ e f:

Fu] vlay ol ,
ne L il |F'(J - f

Futction hendors, ,h. b

Funct S, | tochpmargd

LETTER, S8, 1.0

Tt b disns . prepazan

ARATN 23

ND, 239
IRLA, 247

ST, 157
wa, 78, 116
Uaa 6
ez, B8
AVGE, 90

WGk, 9l

WG5S, 92
IASE, 161
s

e, ik
CAPY,. 17
EMPY, 17h
TOLCATH,
COLCAT2,
¢ns, 67, 114
ro, 163
CPUTIME, 192
nEC, 147

nET, 230
GrEL, 73

£, 122

t ASYDRILL, 58
F, 9k, 2hg
FACT . 182
FACTLOOR, 192
nch, 185

GEOZ, 130
GEO3, 132
GRAPH, 228
HEXA, 166
HY, 67

HYP, 64
INSERT, 155
INV, 2Lk
MEAN, 200
PERIMI, 94
PERIM2, 94
PERIM3, 9k
71, 108

33

332

Index

PLOT, 230
RECT, 73

REP, 163
ROWCAT, 208
RUN, 239

s, 123

sp, 249

SIGN, 72
SLOPE, 245
SORT, 171
SPELL, 256
SQ, 69

SQRT, 66
STAT, 74
STATISTICS, 2
STD, 85

SUB, 253
SUBST, 156
SUMSCAN, 225
TEACH, 147
TIME, 189
TIMEFACT, 191
TOSS, 96

TRA, 218
TRACETIME, 189
TRANSP, 156
VIG, 156

Vs, 230

Functions, standard (primitive), 14

Absolute value, |, 51
Addition, +, 6, 9, 196
Additive identity, +, 55
And, A, 26

Base value, 1, 160
Catenate, ,, 122, 208
Ceiling, I, 52

Circular, o, 186
Combinations, !, 21
Compression, / or £, 140, 206
Deal, 7, 154

Decode, L, 160

Dimension, p, 116, 117
Division, +, 7, 11, 196
Drop, +, 153, 213

Dyadic random (deal), ?, 154
Dyadic transpose, ¥, 217
Encode, T, 162

Equal, =, 26

Exclusive or, =, 28
Expansion, \ or %, 142, 206
Exponential, %, 5]
Exponentiation, *, 15
Factorial, !, 50 198
Floor, L, 53

Grade down, V¥, 154

Grade up, A, 154

Greater than, >, 25

Greater than or equal to,
>, 25

I-beam, T, 188-19]

Index generator, 1, 113

Indexing, [1, 138, 210

index of (ranking), 1, 136

Inner product, f.g, 233

Less than, <, 25

Less than or equal to, <,
25

Logarithm to a base, ®, 17

Maximum, [, 18

Membership, e, 153, 213

Minimum, |, 18

Monadic random (roll), 2, 55

Monadic transpose, §, 215

Multiplication, x, 7, 11,
197

Nand, ~, 27

Natural logarithm, @, 51

Negation, -, 50, 197

Nor, », 27

Not, ~, 52

Not equal, =, 25

or, v, 27

OQuter product, o.f, 222, 224

Pl times, o, 186

Power, =, 15

Random, ?, G55, 154

Ranking (index of), 1, 136

Ravel, ,, 124, 125

Reciprocal, +, 51

Reduction, f/ or f#, 37,
198-200

Representation, 1, 162

Residue, |, 23

Restructure (reshape), p,

126, 127
Reversal, ¢ or e, 150, 202
203
Roll, 2, 55
Rotate, ¢ or ©, 150, 203
204

Signum, x, 56

Subtraction, -, 7

Take, +, 152, 213

Transpose, ¥, 215, 217
Functions, suspended, 92
Fuzz, 265

Gamma function, 50
Global variables, 89
Grade down, ¥, 154

Grade up, 4, 154

Graphs, construction of, 226

Greater than, >, 25

Greater than or equal to, =, 25

Group command)GROUP, 262

Group, list members command)GRP, 263
Groups, list command)GRPS, 263

Half-cent adjust, 5h
Headers, 64, 72
editing of, 85
Hexadecimal system, 165
Hexadecimal to decimal conversion, 166
Hyperbolic functions, 186, 187
|-beam functions, 1, 188-191
Identities
additive, t, 55
hyperbolic, 188
trigonometric, 187
ldentity elements, 145
Index error, 138

Index generator, 1, 113
Index of (ranking), 1, 136
Indexing, [1, 138-210
Inner product, f.g, 233

Input
evaluated, 249
literal, 255
Input loop, escape from, 258
Inserting a line in a function, 79
Interrupt procedure, 82
Inverse, 52
Inverse matrix, 243
lteration, 169

Keyboard, 3
Keyboard, time unlocked, 113, 188
Keys and locks, 264

Labels, 171

Lamp, &, 9

Length error, 10

Less than, <, 25

Less than or equal to, <, 25

Library, list command)LIB, 97, 110

Library, public, 103

Line counter, 126, 191

Line editing. See Functions, editing
of.

Line width, changing command)WIDTH, 260

Literal input, 255

Literal output, 129, 249

Literals, 129

Load workspace command)LOAD, 97, 110
Local variables, 89

[ndex 333

Locking functions, ®, 265
Locks, restrictions on, 265
Logarithm, natural, &, 51
Logarithm to a base, ®, 17
Logical functions, 26

Logical negation (not), ~, 52
Looping, 169

Maclaurin's series, 56

Main programs, 75

Matrix, 117

Matrix algebra, 242

Matrix inverse, 243

Matrix operations. See Appendix.

Matrix product. See Inner product.

Maximum, [, 18 —

Membership, €, 153, 213

Message commands)OPR,)OPRN,)MSG,
YMSGN, 264

Minimum, |, 18

Mixed functions, 113

Mixed output, 250

Monadic functions, 49

Monadic random (roll), ?, 55

Monadic transpose, &, 215, 216

Multidimensional arrays, 195

construction of, 223
Multiple specification, 32
Multiplication, x, 7, 11, 197

Names, restrictions on, 265
Nand, ~, 27

Natural logarithm, ®, 51
Negative, —, 7

Negation, arithmetic, -, 50, 197
Niladic functions, 73

Nor, », 27

Not, ~, 52

Not equal, =z, 25

Number line, real, 18
Number of users, 123, 190

Operation tables, 14, 222

Operations along a single dimension,
198

Or, v, 27

Order of execution, 37

Origin command)ORIGIN, 156, 259

Outer product, o.f, 222, 224

Output, [, 254, 258

Output, mixed, 250

Overstruck characters, 9

Parallel processing, 11
Parentheses, 4k
Parenthesis, right (sys com), 33

334 Index

Pascalts briamngle, 22

Passworsts, 4, i

L QLT LU X ot
Fii=a calenlatior =i,
Palynomial . 4
Feery anambs :?,
Puss /s 400

TR

vepa pove funcs oo

Protecting Capy o

]

Puitlic Fibravive, 17
Pythagcrean [hearoe

Goud, I
Ji‘:-:-i.l'r v
Vanved vor
tpul i
Dulpal S

Toakd ok
1 it ial
L. 2665,

My
Suote i
ol Gl

Badyan, bho

Radix vector, 'O

Randar (ol
Ban'., 42, 115
(2 I
Nt

CErey, 4
g, L. o3
e | e ah
uimler v ey

et)

"L.;l._i.':ut..'al R
Pecursion; 182
Reduclbane 0 ur 17,

Gedat fonal runct b ons
Reardering of o
Beplocing o fine 0o
Brpr st a1 i,
Hesesnd message, G/
Wz s fobia . ¥ '_"_5

Res, VEaca von,. 3t
Res pragt wg
Resulbonty H4

a2
i%G, 20¢,

Reversal,
Roli, 7,
Roots, 10

b
55

yi: ¥

Lt b

Rukapls 5 b wyr rag 5%

SavVing 1 «uThypat:
ik
St

S ineg, 2

W R L Taeey LN

Lt

B

ve Lo,

&

LA LR

iTL . =t O i
St
1 =51
i LITHAT i
i] L | LI
T i
v &
SRR Ry SR YL URTS
. A
o3 aey LV et
S e e 8
'_L‘ ‘l_.. -
It
. SRS Y L'
| i
l‘l
(L1
[} L .
i
\
|
X » " P ! LR S I)
B, TR Tehd teerwm
st b tia 4
N al P A TR S
Lo s uly
"“'I}.'il.r
i FoTe. el
. H t
y ' Vi
Eatstiey m=gs Wi
L) { T SO A o S |
GRour, 262
ThP, 203
GiteL, 2173
]
i tatt
3 .II .
r =skL L

(

(VS TTRLA

Bikra

YOPRH, 264
VORIGIM, 156, 252
JECORY, 1178
YPORT CODRF, 11!
YEORTS, G

JSANE, 9h, !
)SE, n3, i
1Sign-on, 1. ‘i
sy, 93,

FUYARS LETTEE 33, 1711

YWIDTE, 260
JHS I,

bR I 7 ACLUS 8 |

Sustem foformar ang T, TRBE=j71

Taka, t, e, 203

Tapgent , o, Tdn
fanbh. T 1HS
Tei- T

T(.'r":lh};_ :?-II]‘ ';
Bifte =of ollivs 120 'RB
Tada; ' ares g6, 101

Tigce control, ‘PA, 178

Trapnmicsion errar. See Reosend,

Trasapsse, o
mongttic, 215, 26
duadic, 217

Teigonomerric Functions.,

R4

Undertining,

Yalue ~rmin

Variat:lis, 2
AL AL 1T
Gl razd
'
i

Pt ian gommant VVARS LEYTOR

2
19
bneal.,

vectors, 1

tndex a3n

32

o 5o

Hi
89

nf lengrh O, 115

Widih comenngd

Worssnace

CLEAS ,

YWNTH, 260
-7}

a5

CONTINDE. 109
Cian g command FLIB, 47, 1in
name- hange command JWS 1D NAME .

wEﬁ:” s
Warksoacs fu
Worksnace -,

2060
I i L e) |']l‘1
tocking ol 204

1]

AP L\:}GO
An Interactive Approach

By LEONARD GILMAN, IBM Research and Advanced
Systems Development Divisions; and ALLEN J. ROSE,
Scientific Time Sharing Corporation.

You don’t have tobe a mathematician to use APL. Because
Gilman and Rose’s interactive approach teaches even high
school students how to use it.

The book takes you step-by-step from the simple to the
complex—elementary arithmetic, APL operations; scalars,
vectors, matrices and multidimensional arrays; branching
and iteration; and design of application programs. And
once you understand a concept, you use it right away to
solve practical problems.

Which, of course, gives you immediate feedback.

And the interactive approach has been tested already. It
works with high school students, financial executives,
computer scientists, and engineers of all types—over 3,000
of them.

Gilman and Rose make it easy to use APL whether you’re
a mathematician or not.

JOHN WILEY & SONS, Inc.

605 Third Avenue

New York, N.Y. 10016

New York London Sydney Toronto

ISBN 0-471-30020-9

