

A PL \ 360 ani nt era ct iv e a ppro a ch

APL\360

an interactive approach

LEONARD GILMAN

ALLEN J. ROSE

JOHN WILEY & SONS, INC.

New York · london . Sydney· Toronto

Copyright © 1970, by John Wiley & Sons, Inc.

All rights reserved. No part of this book may be reproduced

by any lneans, nor transmitted, nor translated into a machine

language without the written pennission of the publisher.

Library of Congress Catalogue Card Number: 71--147788

ISBN 0 471 30020 9

Printed in the United States of An1erica

10 9 8 7 6 5 4 3 2

Preface

As a result of increasing interest in APL, a formal educational pro­
gram was begun in 1967 at the Thomas J. Watson Research Center in Yorktown
Heights, New York. Within a year an APL Jlcurriculuml' had evolved which
has been put on videotape. This text fol lows the same instructional se­
quence and uses essentially the same examples given on the videotapes.

With but a few exceptions not necessary to the understanding of the
topics following? the level of mathematical sophistication required does
not exceed that associated with most current high school mathematics pro­
grams. In addition, no previous programming experience on the part of the
rea de r i s ass ume d . The aut h0 r s bel ieve, the ref0 re, t hat the t ext iss u i t ­
able for use by both secondary school and college-level classes, as well
as by those in business and industry \~ho are interested in the data proces­
sing capabil ities of APL. Prel iminary versions of the text have been used
extensively in classroom situations and independent study by many individuals.

At the end of each chapter except the first are problem sets with
drill exercises and practice in the writing of APL expressions and pro­
grams (function definition). These have in general been chosen to empha­
size and reinforce the concepts presented in the chapters which they fol­
low. Past experience has indicated that students readily develop their
own appl ications of APL once having learned the language.

Finally, nearly all of the example functions that the student will
encounter in the text have been placed in a block of storage (called a
wo r kspa ce inA PL) wh ic h has the na me CLAS S . This wo r kspa ce i s fur n ishe d
by the IBM Corporation as part of the contents of the common 1ibrary. The
work of the student will be faci1 itated if he has access to this workspace.

We wish to acknowledge our debt to the many individuals who gave
us their helpful comments and suggestions with regard to the layout and
contents of the text. In particular we want to give credit to the
following persons: Robert Hurley, for invaluable technical assistance in
the early development of the course; Miss Colleen Conroy, for proofreading
the text at several stages in its preparation; Eugene McDonnell, for sug­
gesting solutions to a number of problems; Horst Feistel, for his ideas and
exercises in the section on cryptography (chapter 21); Miss Linda Alvord,
for her work in graphing (on which the latter part of chapter 30 is based);

Raymond Pol ivka, for his kind permission to use a number of problems which
he had developed earl ier in his own APL teaching. And last, but by no means
least, in gratitude for a task that at times appeared endless, thanks are
due to Mrs. Frances Verzeni and Mrs. Ann Tiller for preparing the copy for
publ ication.

Yorktown Heights, New York Leona rd Gil man
June, 1970 All en J. Ros e

Foreword

APL is a language for describing procedures in the processing of
information. It can be used to describe mathematical procedures having
nothing to do with computers, or to describe (to a human being) how a com­
puter works. Most commonly, however, at least at this time, it is used for
programming in the ordinary sense of directing a computer how to process
numeric or alphabetic data.

The language was invented by Kenneth E. Iverson while at Harvard, and
was described in a 1962 Wiley book appropriately titled A Programming
Language. In 1966 an experimental time-sharing system-for the IBM
System!360 became available within IBM, and is now an IBM program product.
A number of universities and at least one publ ic school system (Atlanta)
are using APL on a wide scale for student instruction, and several
universities and computer manufacturers are currently producing implementa­
tions for various computers. APL is clearly gaining acceptance at this
time as a computer programming language.

This acceptance is not hard to understand. APL is one of the most
concise, consistent, and powerful programming languages ever devised.
Operations on single items (scalars) extend in a simple and natural way
to arrays of any size and shape. Thus, for instance, a matrix addition that
in other languages miqht require two loops and a half dozen statements, be­
comes simply A+B in APL. Since computer programming typically involves a
great deal of work with various kinds of data structures, the simpl ification
offered by APL's rich and powerful handling of arrays is central to its
strength.

Again, since so many computer operations are describable by single
APL operators, since data declarations are seldom required, and since pro­
cedure definitions are always independent of other definitions, APL is
ideal for on-l ine interactive use of computers. Programs can readily be
checked out in easy-to-manage segments.

From a pedagogical standpoint APL has a number of advantages. The
material can be taught and used in small pieces. A student can be trying
his hand on simple operations after five minutes of instruction. What he
doesn't know won't hurt him (a statement that cannot be made about most
o the r 1a nguage s) . I f he t r i e s some t h i ngil 1ega 1, s uc has d i vis ion by ze r0

or adding a number and a letter, he gets an understandable error message
and is free to try something else. Nothing the user can do will cause the
system to crash.

As a new user becomes famil iar with simple APL features, he moves
on to more advanced concepts. Perhaps he tries operations on vectors, or
samples the APL operator called reduction, which with two character strokes
replaces complete loops in other languages. Some users will never have any
occasion to become intimately familiar with all APL operators; their work
will just not require them. Those who do need the advanced features will
find the effort needed to master them rewarded with the availabil ity of
some extremely powerful operators, the equivalent of which are not to be
found in other programming languages.

Itis i ndub ita b1y t rue t hat a "c 1eve r I I Prog r amme rcanus e the se
advanced operators in such a way as to produce an "opaque" program, that is,
one so compact and concise as to be nearly impossible for anyone else to
understand. Whatever else may be said about such programs, which are
questionable in many contexts anyway, they should not be used in demonstra­
tions of APL. Experienced programmers who have seen 'APL demonstrated in
terms of the fantastic cleverness angle sometimes criticize the language as
being hard to understand, when their criticism more properly should have
been directed at the demonstrator. Such misplaced cleverness is not to be
found in this book. All operators are thoroughly covered, but there is no
attempt to show off the ingenuity of the authors in writing ingeniously
condensed programs.

is being taught successfully to high school students, in courses
where the intent is more to teach mathematics than to teach programming.
It is being used by engineers and statisticians to assist in their work,
employing APL program packages designed to make such work more easy. And
it is also used for various kinds of text processing, such as checking out
compil ing schemes and writing APL interpreters of other languages. Many
other appl ication areas could be cited. APL may not be all things to
all men, but, to a greater degree than is true of most programming languages,
it is many things to many.

This book concentrates on no special class of users. The features
of the language are explained thoroughly, in a sequence chosen to faci 1itate
learning. The authors have very extensive experience teaching APL to a
wide variety of users. As the subtitle indicates (An Interactive Approach),
the presentation is bui lt around the assumption tha~the reader has access
to an APL terminal. This, of course, is unquestionably the best way
to learn APL, and such a reader wi 11 find the book well suited to his needs.

Nonetheless, the reader who wants to find out what APL is all about,
not yet having access to a terminal, will discover that the presentation is
easily readable. The text displays the terminal printouts just as they would
appear to a user executing the commands under discussion. Being on a ter­
minal oneself is surely the best way to learn an interactive language, but
if that is not possible this may be the next best thing.

Ossining, New York Daniel L. McCracken
June, 1970

Contents

1.	 GETTING STARTED.

The hardware. Sign-on. Sign-off.

2.	 SOME ELEMENTARY OPERATIONS. 6

Arithmetic functions. Corrections. Vectors.

3.	 SCALAR DYADIC FUNCTIONS. 13

Operation tables for the arithmetic functions. Expo­

nentiation. Exponential notation. Logarithm to a

base. Maximum. Minimum.

4.	 TWO MORE SCALAR DYADIC FUNCTIONS. 21

Combinations. Residue.

5.	 RELATIONAL AND LOGICAL FUNCTIONS. 25

Less than. Less than or equal to. Equal to. Greater

than or equal to. Greater than. Not equal to. And.

Or. Nand. Nor.

6.	 ASSIGNMENT AND ALGORITHMS. 30

The concept of assignment and specification. The system

command VARS. An introduction to algorithms.

7.	 REDUCTION. 36

Conventional summation notation. Surn reduction.

Times reduction. An algorithm for averaging. Maximum,

minimum and logical reduction. Minus reduction.

8.	 ORDER OF EXECUTION. 43

Combining operations on a single line. Changing the order

of execution. A polynomial illustration.

9.	 SCALAR MONADIC FUNCTIONS. 49

Arithmetic negation. Factorial. Absolute value.

Reciprocal. Exponential. Natural logarithm. Square

root. Logical negation. Ceiling. Floor. Roll. Addi­

tive identity. Signum. Calculation of the cosine. A

drill exercise in APL.

10.	 FUNCTION DEF IN ITION. 62

A defined dyadic function. I\~echanics of function definition.

A defined monadic function. The cosine function. The

system commands, FNS, ERASE, CLEAR.

11.	 THE SYNTAX OF FUNCTIONS. 71

Function headers.

12.	 FUNCTION EDITING. 76

Adding a line. Replacing a line. Inserting a line. Making

several changes at once. Deleting a line. Displaying part

part of a function. Detailed editing of a line.

13.	 TYPES OF VARIABLES. 86

Dummy variables. Global variables. Local variables.

Counters. Suspended functions.

14.	 WORKSPACE MOVEMENT. 95

Workspace contents. Saving and recovering a workspace.

Dropping a saved workspace. Changing a saved workspace.

15.	 LIBRARY MANAGEMENT. 103

Public libraries. The COpy command. The workspace

CONTI N UE. Summary of system commands.

16.	 MIXED FUNCTIONS. 113

Index generator. 0 imension vector. Rank.

136

17.	 MOR E MIXED FUNCTIONS. 121

Catenate. Ravel. Restructure.

18.	 CHARACTER DATA. 129

Literal input-output. Rules for literals.

19.	 MIXED FUNCTIONS FOR ORDE RING AND SE LECTI NG.

Ranking. Indexing. Compression. Expansion.

20.	 IDF:NTITY ELEMENTS. 145

Identity elements for scalar dyadic functions. Another drill

exercise in APL.

21.	 STILL MORE MIXED FUNCTIONS. 150

Reversal. Rotate. Take. Drop. Membership. Grade up.

Grade down. Deal. Applications to cryptography.

22.	 NUMBER SYSTEMS. 159

Base value. Representation.

23.	 APPLICATIONS OF BASE VALUE AND REPRESENTATION.

Hexadecimal-decimal conversions. Check protection.

24.	 BRANCHING. 169

The branch instruction. Labels. Rules for branching. Examples

of branch instructions.

25.	 DIAGNOSTIC AIDS. 178

Trace control. Stop control. Recursion.

26.	 MISCELLANEOUS APL FUNCTIOl\IS. 186

Circular functions. I-beam functions.

27.	 MULTIDIMENSIONAL ARRAYS. 195

Review. Scalar dyadic operations. Scalar monadic

operations. Operations along a single dimension.

165

28.	 EXTENSIONS OF MIXED FUNCTIONS TO MULTI­

DIMENSIONAL ARRAYS. 202

Reversal. Rotate. Compression. Expansion. Indexing.

Take Drop. Membership.

29.	 TRANSPOSITION. 215

Monadic transpose. Dyadic transpose. A transformation

mnemonic.

30.	 GENERALIZED OUTER PRODUCT. 221

Ordinary outer product. Construction of multidimensional

arrays. Scanning. Graphing.

31.	 GENERALIZED INNER PRODUCT. 231

Matrix multiplication. Inner product. Applications of the

inner product.

32.	 TWO APPLICATIONS OF APL. 242

Matrix algebra. Calculus.

33.	 INPUT AND OUTPUT. 249

The quad in defined functions. Mixed output. Additional uses

of the quad. The quote-quad in defined functions. Extensions

of the quote-quad. Escape from an input loop.

34.	 MISCELLANEOUS APL COMMANDS AND FEATURES

The commands ORIGIN, WIDTH, DIGITS. The workspace

WSFNS. Groups. Message commands. Security features.

Fuzz.

APPENDIX Summary of APL notation 267

ANSWERS TO PROBLEMS 270

81 BLIOG RAPHY 315

SUPPLEMENT Extensions to the APL language 316

INDEX 330

259

CHAPTER 1:

Getti ng sta rted

Communication with the computer

Language is the means whereby we, as users, can tell the computer what to do,
and it, in turn, can tell us what it has done with the information we have
furnished it. It would be highly desirable to have a language that is as
near as possible to what people ordinarily use. At the same time, the
computer has to be able to interpret the given commands and execute them.

As a result of the recent development of time-sharing, in which regular
telephone lines are used to connect remote inexpensive typewriters
equipped for teleprocessing ("terminals ") to a single central computer,
a number of special ized languages have appeared with features adapted to
this environment. Among them is APL, the name being an acronym for
A Programming Language, which is the title of a book by Dr. K. E. Iverson*
TNew York, John Wi ley, 1962) defining the language in detail.

Since it is similar in many respects to algebraic notation and, in addition,
contains many useful functions not expressible concisely with conventional
symbols, it has proved to be very efficient for describing algorithms
(problem-solving procedures). The text, therefore, will concentrate on the
use of the APL language for problem-solving on the terminal, following
a brief introduction to the operation of the terminal and the establ ishing
of the telephone connection. No consideration will be given to the char­
acteristics and operation of any of the other components of the APL sys­
tem since the user of a time-sharing system is removed from the immediate
vicinity of the computer, and need not be concerned with anythin~ other
than his terminal.

What the APL system does

The following is a typical session in which a user interacts with the
central computer via an APL terminal. The student is cautioned that the
display of terminal copy below was obtained from a terminal with access to
programs in storage not necessari ly avai lable to him, such as L(JTATIDTICS,
which will result in a value error if execution is attempted.

*Presently Scientific Consultant for the IBM Scientific Center Complex,
Data Processing Division.

2 APL \360: An Interactive Approach

2+2

4

3 -:- 4

() .7:)

15. S

As the illustration shows we can use the terminal as a desk calculator,
with commands and data entered by the user via the keyboard (beginning
six spaces to the right of the margin). Following the entry the return
key is depressed to signal th"e computer that the user is finished. The
response of the computer begins at the left margin.

Or we can assign a string of numbers to a variable called X, and ask the
computer to execute the command shown, + / X , wi th the response 17.1 :

X+-3 4 1.1 3 6
+/X

17.1

This is the sum of all the numbers assigned to X.

The variable X can be further operated on, as, for example,

2+X
6 3.1 8

And we have the abil ity to call upon programs previously stored in the
system. Here is one that enables us to carry out statistical calculations
on data:

8TI1 TIST Ies
ENTE'H DATA
'J:

4 3 4.4 5 1 6.2
6 ORSRHVATIONS ENTERED
AVERAGE IS 3.933333333
RANGE IS 5.2
STAnDARD DEVIATION IS 1.787363048
TO TFRMINATE TYPE STOP
[J:

The program is expecting yet another set of data, which will now be
entered:

(3 ~j 7.8 b.4
L+ 0 B5 ,I'l' F? VA T10 lJ 5 FI7N l'RJrF: D
AVF:RAGE IS 7.8
RANGE IS 2.6
STANDARD DEVIATION IS 1.070825227
TO TEi?!11JNA1 I E TYPE STOP
r-l.

1.

STOP

As the instructions indicated, we terminated execution by typing STOP.

3

SET

Getting Started

The hardware

Let's take a brief look at t:,p physical equipment. It will be assumed in
the remainder of the notes that the communications terminal you will be
using is an IBM" 2741* with an APL typeba11, connected to a computer via
a dataset telephone.

Note that on the left side of the stand on which the 2741 terminal is
mounted there is a switch marked COM/LCL. When the switch is in the LCL
position ("l oca l"), the terminal can be used as an ordinary electric
typewriter. The COM ('Icommunicate") position is the correct one for APII "

Now look at the keyboard, reproduced below:

[ATTN]

ON

OFF

Although the alphabetic and numeric characters are in the standard posi­
tions, you wi 11 find most of the remaining symbols are not only probably
not familiar to you but in addition the conventional symbols are not lo­
cated where you might expect them to be.

The shift key is used in the usual manner for upper shift characters, and
the return key on the right tells the system that you, the user, are
finished with whatever you are entering, and are now ready for the terminal
to respond.

To the right of the return key is the on-off switch, which is the main
power control for the terminal. The space bar (not shown) is at the
bottom of the keyboard.

Sign-on

At this point, turn the terminal on and set the switch on the left side to
LCL. Practice entering the following wi th the terminal in the local mode:

wi th
)1421:JAY

as an example.

Several other terminals can be used with APL. Among these are the DATEL
20-31, DURA 1021 and 1051, TST 707, NOVAR 5-50, and IBM 2740 and 1050. In
general, the control functions are similar, but the student should consult
the vendor of the terminal or the APL time sharing service for specific
information.

4	 AP L \360: An Interactive Approach

If you forget to hold down the shift key, you will get] instead of).
This will result in an incorrect entry and you will not be able to sign on.
Repeat the above exercise.

When you are finished practicing, put the left switch back on COM and
leave the power switch on.

Now examine the dataset. You will be concerned only with the two right­
most buttons: TALK and DATA. When the TALK button is depressed, the
dataset is a conventional telephone. Use it to dial the computer.

If you have made a proper connection, you will hear a high-pitched tone.
At this point, press the DATA button, replace the handset, and you are
ready to sign on as above.

Here is a summary of the sign-on procedure:

1.	 turn on-off swi tch on
2.	 put LCL-COM swi tch to COM
3.	 depress TALK button
4.	 dial telephone number
5.	 on tone, press DATA button
6.	 rep 1ace handse t
7.	 en t e r) you r use r numbe r : pas swo r d [i fan y]

press return key

The	 complete sign-on with the terminal response looks 1 ike this:

)1500:/)(;

OPH: 196K ~/S APL SYS AVAILABLE EVES, SAT.
057) 9.44.03 03/13/70 LGILMAN

A P L \ 360

OS7) tells on which port (tel. line) you are coming into the computer, and
is followed by the time in hours, minutes and seconds, the date and the
user's name. The next 1ine identifies the system. At times there may also
be a message from the operator wi th APL news for all users.

Having signed on, we are at the place where we can do simple calculations:

3+5
8

2+2
4

Sign-off

At this point you are ready to work. It is foreordained, in the scheme of
things, that somebody is bound to come in and interrupt you. If the inter­
ruption is a lengthy one and you are unable to continue at the terminal for
some time, you wi 11 need to know how to sign off. Do not sign off at this
point unless you have to leave the terminal. -- ­

Here is the sign-off procedure:

1.	 enter)OFF
2.	 press return key

5 Getting Started

3. after terminal response, turn on-off swi tch off

The terminal's response will show how long you were connected and the
actual time the central processing unit (CPU) of the computer was working
for you both since sign-on and cumulatively since the last billing:

)OFF
057 13.41.40 03/10/70 LeT
CONNECTED 0.00.22 TO nATE 4.19.26
CPU TIME 0.00.00 TO DATE 0.00. U1

C HAP T E R 2:

Some elementary operations

From this point on, the notes will make the assumption that you are seated
at an active terminal. Many of the chapters will have instructions to get
you into a special workspace, which is a block of internal storage (called
"memory"), and in which there are a number of programs and exercises that
you will use. More about this later.

In the early chapters, try to get as much finger practice as you can.
Remember that the slowest link in the APL system is you, the user. You
are 1imited by the speed with which you can enter information on the key­
board.

Elementary arithmetic operations

We'll begin with the simple arithmetic operations, + x - +, the symbols for
which are in the upper right portion of the keyboard. The decimal point,
which will be introduced here, is in the lower right part of the keyboard.
All these symbols are used in the conventional manner.

Addition:

3+4
7

.5+.6
1 .1

1.45+5.99
7.44

You've just barely started, but already there is one error that you are
free to make. Suppose we type

3+

You ask: 3+ what? Clearly this isn't a meaningful statement because you
haven't indicated a second value for the plus symbol to operate on. The
response of the computer is to type out the following error message:

6

7 Some Elementary Operations

SYNTAX ERROR
3+

1\

The caret marks where the error was detected.

Multipl ication:

1+ 0 . 2 'J

3x6
1 8

Subtraction:

5-2
3

2-~

3

Notice the high bar in the last response. This symbol means "negative."

In a way it is a description (1 ike the decimal point) attached to the number

that follows it. It is not an indication of an operation to be performed.

For this, the subtraction sign is used.

Let's try some additional examples using the negative sign:

1
2+3

1
-2+3

5

If you think that there's something pecul iar about the last example, where
a subtraction sign was used in place of the negative, relax-the explanation
will come in a later chapter.

Division:

3-;-5
0.6

5 -;- 3
1 • 0 6 G6 GGf) f) 7

By now you have probably noticed in your own practice with the arithmetic
operations that at most ten significant figures wi 11 be printed in the
response. APL carries out all calculations to approximately sixteen places
and rounds off to ten places in the output. Zeros on the right are not
printed. In chapter 34 a command will be introduced that will allow the
number of places printed to vary from 2 to 16.

So far so good. Now how about

5 -: 0
DO/.1AIN ENROl?

5~- 0
1\

8 APL \360: An Interactive Approach

Here we see a second type of error occurring. The explanation is that
the operation ~ is a val id one, but we tried to divide by 0 , which is
not in the "domain" of possible divisors in our number system. This seems
reasonable enough, until you try

0.;-0

1

Can you think of a good reason why this is so?

Correct ions

Now suppose we have to enter one or more numbers that are a 1ittle harder
to type than what we have been using thus far, and (heaven forbid!) we1ve
made a mistake. Specifically, we typed 2 X 3.14169 and really meant
2x3.14159, but haven't yet hit the return key.

There is a simple correcting mechanism on the 2741 terminal. We strike
the backspace key gently (it may be typamatic on some terminals) to move
the typeball over to where the error begins. If we then hit the ATTN
(attention) button, an inverted caret will appear under the character at
that point. This signifies that everything above and to the right of the
caret is wiped out from the memory of the system and the corrections may
be typed.

Here are some illustrations:

2x3.14169
v
59

6.28318
2xl.l058

v

2.21

In the following example we want 23x506 but actually type 3x506.

All we need do is to backspace just before the 3 and type 2 as shown,

provided, of course, that the return key hasn't yet been pressed:

23x506
11638

3x506
1518

3x506
2

11638

The fact that the 2 is on another 1 ine is immaterial, since the system
doesn't know that we have manually moved the roller and paper.

You have undoubtedly guessed, by this time, that the way to get rid of a
whole 1 ine is to backspace all the way to the beginning and make the
correction:

9 Some Elementary Operations

1234567x12345678

v

The correction mechanism may also be used to enter comments:

T II I SIS A CO /,1/'1 EN T
v

Otherwise the system doesnlt recognize the entry and an error message is
recorded.

And whi le wei re on the subject, the combination upper shift C and the small
circle (upper shift J) overstruck is interpreted as indicating that a
comment follows. It may contain any APL symbols and calls for no response
from the system.

~THIS IS A COMMENT

This doesn1t mean that all combinations of overstruck characters are
possible in APL. Here the times and divide signs have been overstruck,
with a resulting character error. Those combinations which are legal will
be taken up in succeeding chapters.

3 L~ • 7 3
ClIARACTER ERROR

34

An introduction to vectors

Imagine a store which, following a disastrous fire, is left with just three
items for sale, A, B, C. Here is the sales record of the number of items
sold over a two-week period:

ABC

week 1[978
week 21 3 4 5

Before they go out of business, what are the total sales for each item?

The obvious answer is to add the weekly totals for each item separately as

9+3
12

7+4
11

8+5
13

But there ought to be a more compact way and, in APL, there is:

9 7 8+3 4 5
12 11 13

10 APL \360: An Interactive Approach

This leads us into a unique and time-saving feature of APL-its ability to
process arrays of numbers. In the previous example the array was one­
dimensional, with the elements all arranged in a single chain, called a
vector. We shall see later that APL\360 can handle multi-dimensional
arrays as well.

Let's now change the problem:

ABC

week 11978

week 2 I 5 5 5

Treating this as a problem involving vectors, we enter

9 7 8+5 5 5
14 12 13

To save stillmore typing time, where all the elements of one of the vectors
are identical, it suffices to type just one of the numbers in that vector,
leaving it to the system to extend it automatically to match the other vector
in length:

9 7 8+5
14 12 13

Now for some do's and don'ts. First, suppose we run all the numbers to­
gether:

978+55S
1:.i33

Apparently the lack of space between the digits causes the system to interpret
the series as a single number. Does this mean that the numbers (or the
operation symbol, for that matter) must be separated by any fixed number of
blanks? The following example makes clear that one blank is sufficient as
a separator, but extra blanks don't hurt.

9 7 8+ 5
14 1 2 1 3

What if the two vectors don't have the same number of elements?

9 7 8+5 3

LF;NGTlI f/HROR
9 78+ 5 3

/\

Here we get an obvious error message because the computer doesn't know which
number goes with which. The only exception to this is where all the elements
are identical (as in the previous example) and only one element needs to be
typed.

You might argue that if we had

11 Some Elementary Operations

J 7 [3+5 3 0

14 10 8

we ought to be able to leave off the 0 since it doesn't contribute any­
th i ng to the sum. But 0 is not the same as a blank. The former means
that the element in that position where it occurs has the value 0 , while
the	 latter occurs in place of some unknown element, possibly, but not
necessarily, 0 , and impossible for the computer to determine.

This parallel processing of vectors, to give it a name, works equally well
with other arithmetic operations:

1·234x2
2 4 6 8

If,	 for example, a cookie recipe required 6, 4 and 1 cups respectively of
three ingredients, and we wished to make only a third of a batch, then the
required amounts are

6 4 1~3

2 1.333333333 0.3333333333

Again, suppose that the above three ingredients cost respectively 1, 5 and
7 cents per cup. What is the total cost for each ingredient?

64 1x.01 .05 .07
O. 06 0.2 0.07

As we shall see in subsequent chapters, not only are there a large number of
standard operations that can be used with vectors, but we will also
be able to invent functions that behave in many ways just 1 ike our ordinary
arithmetic operations in that, among other things, they too can be used with
vectors.

PROBLEMS

1.	 Dri 11. (Some of the dri 11 problems may result in error messages.)

G B 2 4+3 9 1 1	 1 2 8-;-1 2 0

1 0 9 [5 - Lt 2 2 3 10~10 5 2 1 20.81+15 f)

56.7 0 .19 3 Lt x1 2 3 2 3

2.	 Additional finger exercises (use the ATTN key to delete each statement
in turn):

NOW IS THE TIME FOR ALL GOOD M£il TO COME TO TilE AID OF

IF AT FIRST YOU DON'T SUCCEED, TRY AGAIN

1i 0 ;.; NO Jl 13 ROWIV CO rl

12 AP L \ 360: An Interactive Approach

PRACTICE MAKES PERFECT

THE SLOWEST PART OF THE APL SYSTEM IS GENERALLY THE USER

3.	 At a basketball game a ticket seller sold 155 adult tickets at $1.25
each, 89 student tickets at $.50 each, and accepted 45 courtesy passes
at $.25 each. Write an APL expression which gives the income from
each class of tickets.

4.	 A taxi fleet owner recorded mileages of 1263, 2016, 1997 and 3028 for
each of his four cars. Operating expenses for each car during the
same period were $59.50, $72.50, $79.50 and $83.00, respectively.
What was his cost per mile for each car?

C HAP T E R 3:

Scalar dyadic functions

In the previous chapter we dealt with individual numbers, which we will
call scalars, and chains of numbers, for which the term vectors was used.
Left unanswered, at that time, was the question of what combinations of these
are allowed in APL, as well as what the shape of the result might be.
Let's now address ourselves to the question by formulating a few simple
rules and appropriate names for the concepts to be considered.

Standard scalar dyadic functions

There are four mathematical rules that govern the ways in which vectors and
scalars can be combined. In what follows, the symbol 0 stands for any of
the arithmetic operations that we have already introduced. Later in this
section we will further classify and categorize these operations to make
more evident their connection with other operations yet to be defined.

01. scalar f- sca 1a r scalar

02. vector ~ scalar vector

vector ~ vector scalar3· 0

04. vector (--- vec tor vector

The term on the left of the arrow tells us the shape of the result when
various operations are performed on quantities having the shapes on the
r i gh t.

This is as good a place as any to introduce a little additional terminology.
Why? You ask. Naming something doesn't tell us any more about it and, in
fact, can mislead us by enabl ing us to talk more gl ibly of things we may not
know much about. But mathematicians, being the perverse creatures that they
are, insist on more formal names for the tools and concepts they work with.
And having a name for something does have the advantage of letting the
namer identify without ambiguity (we hope~) what is under discussion.

First, if stands for an operation to be performed, the things it is to
operate on will be called arguments. Thus, in 5x6, 5 is the left argument
and 6 is the right argument. The arguments can both be scalars (rule 1)

13

0

14 APL \360: An Interactive Approach

3+5
8

or vectors, either on the right or left (rules 2, 3)

2+3 5 7
5 7 9

S 6 8x3
15 18 24

or both arguments can be vectors (rule 4)

3 6 8~2 1 4
1 .5 6 2

the only stipulation being, as previously mentioned, that both arguments
have the same length. As an obvious corollary, the lengths of the result ­
ing vectors in the two examples at the top of the page are the same as those
of the vector arguments.

The operators that we have been working with are more properly called
functions, because once the arguments and operation are specified, a single
result is obtained. In a crude sense, this is what the mathematician also
thinks of when he uses the term more formally.

Furthermore, the label dyadic is attached to these functions, since they
require, at least as we have been using them thus far, two arguments. Also
they are called in APL standard or primitive because they are immediately
avai lable on the APL keyboard. And, finally (at long last~), they are
referred to as scalar because functions of this type are defined first for
scalars and then extended component by component to vectors.

Summa r i z i ng, the 0 pera t ion s + - x ~ are calledin AP L s tan dar d s cal a r
dyadic functions.

Operation tables for the arithmetic functions

For each of the functions thus far introduced, we can construct an operation
table, with the left arguments down the vertical column on the left and the
right arguments across the top. To save space, only the integers 1-4 are
used as arguments:

+ 2 3 4

2 3 4 5

2 3 4 5 6 2

3 4 5 6 7 3

4 5 6 7 8 4

2 3 4 x

0 -1 -2 -3

o -1 -2 2

2 1 o -1 3

3 2 1 0 4

2 3 4

2 3 4

2 4 6 8

3 6 9 12

4 8 12 16

Scalar Dyadic Functions 15

2 3 4

· 5 .33· .. . 25

2 2 .665

3 3 1.5 .75

4 4 2 1.33 ...

Here is one in VJh i ch no function is specified. Can you guess what it is?

2 2

2

4

3

8

4

1

16

3

4

3

4

9

16

27

64

81

256

Power function

You should be able to see that the above table represents the power function,
with the left arguments being raised to the powers indicated by the right
arguments. Clearly, this power function exhibits the characteristics we
would expect from a standard scalar dyadic function.

All we need is a symbol for it. This brings up an interesting aspect (or
fail ing if you prefer) of conventional mathematical notation, and one which
wi 11 become even more apparent as we go along.

Notice how we write the four arithmetic functions:

2+3
2-3
2x3

2 -:- 3

And then we come along and write for the power function

The operation to be performed is specified not by a symbol but by position,
which is not only inconsistent but downright dangerous, since it is very
easy sometimes to miss the elevated position of the power in writing.

In APL, the symbol * (uppershift) is chosen, yielding

2*3
8

, being a standard scalar dyadic function, extends to vectors as well:*
2 4 3 * 2

()4 1 b

In mathematics courses, roots are shown to be equivalent to fractional
powers, e.g., the square root is the 1/2 po\rver. So, instead of vvriting

16 APL \360: An Interactive Approach

V2 to mean the square root of 2 , in APL this is

2 * . 5

1.414213562

and

9 64*.5
3 8

Negative powers, which are the equivalent of the reciprocal of the number
raised to the corresponding positive power, are also available to the APL
user, as in the following example:

o.25

Our power function can be used to generate quite large numbers:

100*8

1216

Exponential notation

In the last example you saw a new notation, which some of you may recognize
as being simi lar to what is used in other higher level programming lang­
uages, and evidently intended to avoid writing a monster 1 ike

10,000,000,000,000,000

The E may be interpreted as "times 10 to the ... power."

This notation is equally convenient for very small numbers:

1E 18

and can be employed in many different ways to express the same number, say,
530:

53E1 which is 53xl0 1

5.3E2 5.3xl0 2

.0053E5 .0053xl0 5

530FO 530xl0 0

5300E 1 5300xl0- 1

APL not only produces results in the E-notation, but it is possible to
enter data this way:

Scalar Dyadic Functions 17

0+33

33

0+3.3El
33

0+.33E2
33 -O+330E 1

33

The choice is up to the user.

Logarithmic function

There is another function which is closely related to the power function,
the logarithmic function (the logarithm of a number N to the base B is
that power to which B must be raised to equal N). In APL, this is written
R~N, the symbol being that for exponentiation overstruck with the large
circle (upper shift 0).

Thus, since

1000

the base-10 log (to use the usual abbreviation) of 1000 is

10~1000

3

and

10~100 1000 10
231

Similarly, since

8

then the log of 8 to the base 2 is 3:

2~8

3

Notice that the base is the left argument and the number whose log is to
be found the right argument.

Maximum and minimum functions

Finally, try the following exercise, exploring the working of the symbol
(upper sh i ft S) :

18 AP L \ 360: An Interactive Approach

3 r 5
5

5 r 3
5

5rS
5

Lest you betemptedin to say i ng II a ha ~ r a 1way s ge nera t e s a 5 I I, 100 kat

3 r 3

3

If you play around with this function for a whi le, you wi 11 see that it
selects the larger of the left and right argument, and is appropriately
named the maximum function. Its operation table looks like this:

2 3 4
--------_.~----

2 3 4
-_.

2 2 2 3 4

3 3 3 3 4

4 4 4 4 4

Where there's a maximum, there ought analogously to be a minimum function.
This is found on the upper
arguments:

3 L 5
3

5 L1
5

It has the operation table

2

3

4

"Lesser" and "greater" are
defines them according to

... -4

shift n, and selects the lesser of the two

2 3 4

1

2 2 2

2 3 3

2 3 4

relative terms, and indeed the mathematician
position on the real number 1 ine:

-2 -i 5...

*''= . .. >negative positive
numbers numbers

~ARGER

SMALLER~

Scalar Dyadic Functions 19

Thus, the lesser of two numbers is that one which is farther to the left,
and the greater one, farther to the right.

Let's consider a couple of simple problems. There are three students who
got	 grades of 90, 80 and 55 in a certain exam, and on a retest received 70,
80 and 75, respectively. The instructor wishes to record for each student
only the larger of the two grades received. How can he do it in liP]/?

What we want to do is to select out 90 for the first student, 80 for the
second, and 75 for the thi rd, i.e.,

90 80 55r7D 80 75
90 80 75

A second problem: We have purchased an odd lot consisting of 4 boards of
lengths 5, 8.1, 10, and 7.9 ft. Unfortunately, our truck can carry boards
no longer than 8 ft. without running afoul of the law. Can we identify which
boards have to be trimmed? This is

8t 5 8.1107.9
5 8 (3 7 .9

and, from the position of the 8 1 s in the result, we see which boards have
to be cut down. These are two trivial examples, but as our store of new
functions increases, we wi 11 be able to solve much more complex problems
1ate r.

It should be noted before concluding this chapter that all the new functions
introduced, * ® [l, are standard scalar dyadic functions, but that the
maximum and minimum functions mathematically are different from all others
in one significant respect: no knowledge of an operation table is needed
to use them, only the abi 1 ity to distinguish greater and less.

PROBLEMS

1.	 Dr ill

3 r 3 7 10. H 2 0 10~1 2 3 4 5 U*.333333333333]

1 9 5 2LO G 4 3 2 3 4 5 6~2 lDeO

c­
,)	 1 52r6 2LO 5 8 1*0 1 10 100 1000

1fA11	 2~25 7 • 11 E 4 -~ 9 . Lt 5 F - 3

2 * • 5 .333 .25 .2	 21.268Hl+4.5GE-2

2 1 0 ~ 1~553*4 l­

2.	 Key in lEO, lEl, ••. 1Ell. Do 1 ikewise wi th lE 1, .. . 1E 6. Note where
the break point is in APL for the display on large and small numbers
in E-notation.

3.	 Store A sells 5 vegetable items for 15, 20, 18, 32, and 29 cents a pound.
At store B the prices are 18, 20, 15, 10 and 49 cents a pound, respectively.
The pol icy of a third store C is to meet the competition's prices. Write

20 AP L \ 360: An Interactive Approach

an APL expression to determine store CiS selling prices for the 5
i teffi5 .

4.	 The pH of a solution is a measure of its acidity or basicity, and is
defined as the logarithm (base 10) of the reciprocal of the hydrogen
ion concentration in moles/l iter of solution. Use APL to express the
pH of a solution whose concentration is C.

C HAP T E R 4:

Two more scalar dyadic functions

Combinations

A relatively simple combinatorial problem in mathematics is to find the
number of ways one can take 2 things out of a population of 4. Let's solve
the problem by brute force, with 4 objects, A, B, C, D. Listing the possi­
ble combinations, we have

AB AC AD BC BD CD

Wei 11 assume the order is not significant, so that CA and AC, for example,
will be considered to be the same. Thus, there are 6 ways of taking 2
things out of a population of 4.

In combinatorial theory it is shown that the formula

m!
n! (m- n) !

gives the number of ways of taking m objects n at a time. For the case
above, this would be

4!
2! (4-2)!

or 6. As a remi nder to those of you whose math is rus ty, m! means (m) (m-l)
(m- 2) ... (1), sothat 4! i s the 5 ame as 4x3x2xl.

As you might suspect, the process is somewhat easier in APL. It is done
with the same symbol!. On the keyboard it is formed by striking the period,
backspacing, and hitting the quote symbol (upper shift K) so that the two
characters 1ine up. The correct format is n! m and, for our example above,

2! 4

This is the place to emphasize that like ~ is not a keyboard character,
but is formed by overstriking as described above. The symbols ' and. must
be 1 ined up. Otherwise no answer appears and the typeball doesn't space over.
If we try to do anything else, 1ike a simple addition, the terminal fai ls to
respond:

21

6

4

22 APL \360: An Interactive Approach

2 • ' 4
(no response from the terminal)

2+2

(s till no response)

When this happens, the cure is to type a single 'only. Then hit the
return key and 1ive with whatever error results.

:JYNTAX ERROR
2+2

and, as the calculation shows,

is a standard scalar dyadic

o 1 2 3 4!4
14641

2 ! 2 3 1+

136

Its operation table looks like

0

0

0

2 0

3 0

4 0

we are back in desk calculator mode once more.

function and can take vector arguments:

this:

2 3 4

1 1

2 3 4

0 1._1 ____ ~__~]
0 0 1 4

0 0 0

What we generated above
of the third row. That
can be removed to form

corresponds to the last column and the boxed in part
portion of the table consisting of nonzero integers

what in mathematics is called Pascal IS triangle:

1 1 1
234
136

1 4

1

which is a device for calculating and displaying the coefficients generated
in the expansion of an expression of the form (a-b)n by the Binomial Theorem.

Finally, to complete the picture, our arguments don't have to be integers:

2 .1 ! 5 .6
13.48487115

which, for the benefit of the more mathematically sophisticated, is related
to the complete ~-function of probabil ity theory. (Don't panic. It wonlt
be mentioned again~)

Two More Scalar Dyadic Functions 23

Residue

The next standard scalar dyadic function we will consider is one cal led
residue. We can illustrate it with a simple example.

Assume that we have 7 peanuts and 3 children who are to share the wealth
evenly. We aren't able to cut up a single peanut. How many do we have left?

Clearly the simple-minded way to do this would be to start with 7 and take
away 3, leaving 4. Then take 3 more away, with 1 remaining. In formal
language, the 3 residue of 7 is 1. This isn't the only way to do the prob­
lem. We could also divide 7 by 3, see that it goes in twice, and get a
remainder of 1.

The symbol for residue is I, which is the upper shift M. In APL, the 3
residue of 7 is

3 I 7

1

Our peanut problem can be enlarged by considering the distribution of vary­
ing amounts of peanuts to the 3 children:

3 I 0 1 234 5 6 7
o 1 201 201

Here is another problem in which 5 peanuts are distributed among 1, 2, and
3 children:

1 2 3 I 5
o 1 2

The residue function is a handy one for generating all kinds of useful in­
formation. For instance, try

1 I 2.5
0.5

1131.23
0.23

Asking for the 1 residue of a number is a convenient way to get the
nonintegral part of the number.

Now, what about the residue of negative numbers, say 3 1-4? Previously we
saw that a recurring pattern was generated by

3 I 0 1 234 5 () 7
o 1 20120 1

so when we try

2 101 2 345 6 7
1 201 2 0 12 o

we expect and get a continuation of the recurring pattern. If you think
about it a bit, you will see another way to obtain the residue of a nega­
tive number. For our example above, add 3 to -4 to get -1. Then add 3

- -

24 APL \360: An Interactive Approach

again to get 2. In general, the rule is to keep adding until the result is
o or positive.

Suppose the left argument is negative. Then its absolute value (i .e., mag­
nitude without regard to the negative sign) is taken:

2

2

There is one residue class of particular interest in the computing industry:
the 2 residues of the integers:

2 101 2 345
o	 1 o 1 0 1

Here we have a continuing pattern of 0 and 1 as the only integers. If we so
choose, we can let 0 represent the state of a circuit with a switch open (no
current) and 1 with the switch closed. Wei 11 have more to say about this in
a later chapter.

PROBLEMS

1.	 Dr ill

1 9 8 I 3 4 6 11 3.4 2.2 .019

-3	 2 1 I 3 a 1 2 3 4! 3 4 5 6 7

011 2 3	 4! 3 4 5 6 7

31-3 2 0 1 2 3 2 4 5 I 8 13 3.78

2.	 Given that A and B are integers modulo 5 (i .e., A and B belong to the
set S of integers generated by taking 5 IN for any integer N?4),
show t hat 5 IA +B , 5 IA x B, and 5 IA *Bare inS.

3.	 How can the residue function be used to tell whether one number A is
divisible by another number B?

4.	 Write an APL expression to tell what clock time it is, given the
number of elapsed hours H since 12:00.

5.	 Find the number of possible solutions in positive integers of the
equation

X+Y+Z+W=50
(Hint: think of 50 units partitioned into 4 blocks by separators)

6.	 How many quadrilaterals can be formed by JOining groups of 4 points
in a collection of 30 points in a plane, no 3 of which 1 ie on a straight
1 i ne?

7.	 I f 1 I N producesthe f r act ionalpart 0 f N, how can the res i due fun c t ion
be used to get the integral part of the number?

8.	 Write an expression to get the fractional part of a negative number.

1

C HAP T E R 5:

Relational and logical functions

In this chapter we wi 11 introduce ten new functions fall ing into two
classes-the relationals and logicals. If you think that this is far too
many for a single presentation and will leave you hopelessly confused, you
may breathe easier. All of these functions have one thing in common-they
call for an answer of 0 or 1 only, which at this stage shouldn't be too
taxing.

Relational functions

There are, in APL, six relational functions, < S = ~ > ;z':, which are the
upper shift 3 through 8. They have the usual mathematical meanings, less
than, less than or equal, equal, greater than or equal, greater than, and
not equal, respectively. The reason they are called relational is that
they inquire about the truth or falsity of the relationship between two
quantities, say A<B.

This statement is really a question asked of the computer: Is A less than
B? It calls for a response, yes or no, because either A is less than B or
it is not. Let's try this on the terminal:

3<5

5<3

o

Clearly, a 1 response means the statement is true, and 0 false.

Vectors work well with this function too:

3<1 2 3 4 5
o o 011

and we can now use this function to help us in a selection problem.

Suppose, as a store owner, we have a number of accounts, with $3, $-2, $0,
$2, and $-3 as balances, and we want to flag or mark those accounts which
are overdrawn (represented by negative values). The "l ess than" function
will solve our problem, although it is by no means the only way to do it:

25

26 AP L \ 360: An Interactive ft\pproach

o 1
3 2 5 0
000

2
1

3<0

Does < have all the qual ities of
is its operation table:

a standard scalar dyadic function? Here

<

o
2 3

1

4

2 o o 1

3

4

o
o

o

o
o
o o

By this time you ought to be able to convince yourself that "less than"
meets our criteria for a standard scalar dyadic function, as indeed do the
rest of the relationals. We wonlt go through them all, but letls explore
just one more, Typing

3 2 5 o 2 3=0
o o o 1 o 0

generates a listing of those accounts from the previous example whose
balance is 0, to complement the 1ist of those overdrawn. You should
be able to see many other possibil ities. For instance, to get vectors of
all lis or all OIS

0 1 2 3=0 1 2 3

1 1 1 1
0 1 2 3=3 2 1 0

0 0 0 0

Logical functions

Not all the juice has been squeezed out of the subset 1,0 of the real
numbers that we previously looked at in connection with the relationa1s.
Here is a function A (upper shift 0) cal led and, whose operation table is

o
o o o

o

The result is 1 if and only if both arguments are 1. In fact, we can
generate all the entries in the table by

o 0 1 lAO 1 0 1
o 0 0 1

You have probably noticed that only 0 and 1 were used as arguments in the
table. Notice what happens when we try

Relational and Logical Functions 27

2AO
DOMAIN ERROR

2AO
A

The last time we got a domain error was when we typed

5-;-0

DOI/fAI N ERROR
S-;-O

A

It seems clear, then, that the arguments are restricted to 0 and 1.

For those who have some background in mathematical logic, the analogy
between 0 and 1 and the true-false entries in the truth tables for and
will be apparent. In any event, this function provides yet another means
of generating O's and lis, and will be us~ful in writing programs later on.

Another logical function is v, cal led or:

~
o I 0 1

1 I 1 1

The result is 1 if either or both arguments are 1. As before, we can
generate all the entries in the table with

o OlivO 1 0 1
o 1 1 1

There are yet two more functions in this class, 7'<, nand, and V', nor. You
may have guessed al ready that nand stands for " no t and," and !ior for " no t
or. I I The 0 ve rs t ruek up per s h i f t T) i suse d for nega t ion. ._~1ow arer-..J (

their operation tables,

1'<. 0 l

o 1 ~o 1 0

o 100

Here is an example:

l¥O
o

You can see that everywhere 0 appears in t~e table for A, a 1 appears for
1'<., and vice versa. The same holds for v and ¥.

Although it was suggested earl ier that the logical functions had a use in
programming, for generating OIS or 1 IS at the appropriate point, there is
another, physical situation which could be represented by them, namely
piping networks:

- - - --

28 APL \360: An Interactive Approach

In Figure 1, fluid flows if either valve A or valve B is open, while in the
second f i gu re flow occu rs on 1y if both A and Bare open. Read 110 11 for
closed and 111 11 for open, and the figure correspond to the or and and tables,
respectively. Keep in mind that it is a short step to go Trom pipes to
electrical circuits. Hence their value in computer design.

Actually, there are 16 possible logical connectives, of which we have
taken up only 4. To illustrate how the others can be generated, 1et ' s
assume we want a function that gives us an exclusive ~, with operation
table

l

001~1 01

the result being 0 if and only if, both arguments are 0 or both are 1. Can
we get this in APL?

The answer is yes. It is that part of the operation table for ~ where both
arguments are 0 or 1:

;r 0 2 3
0 0 1

1 0 1

2 1 o 1

3 1 o

A simi lar approach yields the others.

Summary

Thus far, we have introduced and illustrated a large number of standard
scalar dyadic functions. Here is a brief recapitulation up to this point:

A+B sum of A and B
A-B B subtracted from A
AxB product of A and B
A+B A divided by B
A*B A raised to the power B

Relational And Logical Functions 29

A~B base-A logarithm of B
ArB larger of A and B
ALB smaller of A and B
AlB A residue of B
A!B combinations of B items taken A at a time

A<B
A~B

A=B relations yield
A2B 1 if true
A>B 0 if false
A~B

AvB logical or of A and B
AAB logical and of A and B
A¥B logical nor of A and B
A~B logical nand of A and B

Keep in mind that everyone of these functions can be used to replace the
symbol in the rules (p. 13) for combining scalars and vectors.0

PROBLEMS

1.	 Dr ill

0 0 1 lVO 1 0 1	 2 3 0<5 1 4

1 0 1 OAl 0 0 1	 3 1 2~1 2 3

2 4 7 2>6 1 0 4	 "'0 1

0 1 2 3=0 1 3 2	 0 0 1 loyO 1 0 1

4	 5 1 6. 8~ 4 1 1 2 1 0 1 07\'1 0 0 1

8 7 6 5 4 3 2 1~1 2 3 4 5 6 7 8

2.	 How can the functions and I be used in APTJ to identify the factors
of an integer N?

3.	 A is a vector of accounts, with the negative values representing those
overdrawn. Use one or more of the relational functions to flag those
accounts not overdrawn.

4.	 Write an APL expression to return a 1 if either condition A is true or
condition B is false.

5.	 Execute 1 0 1 0=0 1 1 O. Compare this with the operation table on page
28. What name would be appropriate to assign to this logical connective?

6.	 Explain the results of executing 0 0 1 1A~O 0 1 1 and 0 0 1 1v~O 0 1 1.

4.75

C HAP T E R 6:

Assignment and algorithms

Up to this point, all of our work has been done in desk calculator mode.
This has the disadvantage that once we type in the arguments and the func­
tion and then press the return key, execution proceeds, we get an answer
(unless	 we tried to do something il legal), but the work is lost. No longer
is it avai lable to us for any future calculation.

In this chapter we shall see how APL handles these situations and, in
addition, we shall solve a well-known problem in geometry by a stepwise
procedure.

Assignment

Any good desk calculator has the abil ity to store constant factors so that
they can be used over and over again without having to be reentered each
time. For instance, suppose we are given a series of problems all involv­
ing the constant 0.75 :

2 x • 75
1 .	 5

4+.75

As it stands, .75 has to be typed each time. What weld 1 ike is some way to
save this number and have it available for reuse. It may seem trivial at
this point because our repeated factor, .75, doesn't take many typestrokes,
but what if the expression you had to repeat had a large number of characters
in it?

In APL the terms specification or assignment are used to describe the
placing of an expression in storage. It works this way:

Incidentally, the expression above is frequently read as "A is assigned the
value.75. 11 The name A is given by means of the arrow + to the quant i ty
.75 and, from this point on, unless the contents of our workspace are

30

Assignment And Algorithms 31

destroyed or A reassigned to another quantity, typing A will be the same as
typing .75. Since A is a name to which we are free to assign any value we
want, even though we have chosen a specific one here, it and other names
used in a simi 1ar manner are often cal led variables.

Here are a couple of calculations we can do with A:

2xA
1 . 5

4+A
4. 75

A*2
o. 562 5

A
0.75

Flushed with success, you ought to be ready to try your hand at another:

B+-1 2 3 4 5

2xB

2 J-t 6 8 10

Then, since we s till have A (1 ike death and taxes) wi th us,

A+B
1 .75 2 .75 3 .75 4.75 5 .75

B*2
1 4 9 16 25

If we keep this up, sooner or later we are going to run out of letters of
the alphabet. What then? The next logical step is to use multiple letter
names:

PI+-3.14159

PI*2

9.869587728

A is still in storage. Here it is again:

A
0.75

You should have noticed by now that when an assignment is made, no exp1 icit
result is returned by the terminal on the paper. This is reasonable
enough, since all we are asking when we make an assignment is for something
to be placed in storage.

What happens if we mistakenly (or otherwise) use the same letter for a
second assignment? For instance, we let

A+2+B

If we call for A now, we get

32 APL \360: An Interactive Approach

A
3 4 567

2+B
3 4 567

The new values of A supersede the old, which are lost. Moral of the story:
If you want to save the values stored under a variable name, donlt override
the assignment. Use a different name.

There are several ways to extend the number of possibil ities for variable
name s . Un de r 1i n i ng (up per s h i f t F) i sone way.

d,+3.2

!l+5

8.2

A
345 6 7

A is clearly different from A, which still has its last assigned value.
Tn effect, this gives us 52 letters to choose from, alone or in multiple
character names 1 ike

DATA+5 2 7 8

APL recognizes up to 77 characters in a variable name, but it doesn't pay
to make it too long. Remember, you are the one who will have to type it.
Numbers can also be included in any position except initially, as shown by

X3Y2+20
3XY2+20

SYNTAX ERROR
3 XY2+20

1\

but spaces, punctuation marks, and special symbols for operations may not.

Something new has been added here: a syntax error message. In plain

Engl ish, this means that a statement has been improperly formulated in APL,

i . e., is " ung ramma t i ca 1. II

It is possible in APL to make multiple specifications on the same 1 ine.
In certain cases this turns out to be a handy timesaver. Here is an
example:

A+2+B+3 1 5
B

3 1 5
A

5 3 7

Now, let's try asking the computer for

A+W
VALUE ERROR

A +~I

1\

Assignment And Algorithms 33

It should be obvious what's wrong. The computer didn't recognize the
variable name W because there isn't any value currently stored under that
name. Hence the error message. A is still a val id variable, but not W.

A
3 4 5 6 7

tv
VALUE ERROR

W
/\

This raises another question: How can you find out what variable names you
have already in storage? The command)VARS (abbreviation for " var iables")
produces an alphabetical 1 isting of the variables already in storage.

)VIlRS
B DATJ1 PI XY2 X3Y2

Note that the underl ined A comes after the nonunderl ined letters of the
alphabet.

Expressions which begin with a right parenthesis followed by a word or
abbreviation are known as system commands. You already know two of them,
sign-on and sign-off, and more wi 11 be introduced in succeeding chapters
as the need arises.

If we give W a value and then call for A+W, we no longer get an error
message:

r'/+-O.l
A+W

5.1 3.1 7.1

and not only is execution completed, but W is added to the 1ist of variables
in storage:

) VARS
A B nATA PI XY2 X3Y2

Now W behaves just 1ike the other variables and can be respecified:

0.2

Algorithms

We can use the notion of assignment as motivation for this next section,
which is concerned with the concept of an algorithm. An algorithm is
nothing but a series of steps that together comprise a prescription for
defining a function or solving a problem.

Here is an example taken from plane geometry. The problem is to calculate
the hypotenuse of a right triangle, given the sides:

34 APL \360: An Interactive Approach

c
A

A convenient and time-honored rule for finding C is the Pythagorean Theorem.
It states that to get C we have to square A and add it to the square of B,
then find the square root of the sum.

This sequence of steps can be executed in APL by the following scheme:

9
82+-8*2
S+-A2+B2
S

25
C+-S*.5
C

5

There is one point worth commenting on. We had to specify A and B initially
in this sequence; otherwise, when we called for the values of A2, B2, and S
along the way as checks on our work, we would have gotten value errors.

Wei 11 see later, when we learn how to write and store programs, that the
specification of values for the variables need not be done beforehand.

Let's go through the same steps and, this time, solve for a family of
triangles:

A+-1 3
.8+-1 4
A

1 3
A2+-A*2
A2

1 9
B2+-B*2
B2

1 16
S+-A2+B2
C+-S*.5

As before the result for C doesn't appear on the paper because our last step,
which was an assignment of a value to C, merely put it in storage. So, in
order to get the result, we have to type C:

Assignment And Algorithms 35

C
1.414213562 5

if we didn't want to save the result by storing it under C, we could e1 imi­
nate the assignment and merely call for

1.414213562 5

and	 the results now are printed.

Finally, we can check on the variables we have in storage in the usual
manner:

) VARS

A A2 R B2 C nATA PI

~! XY2 X3Y2 6­

and the new variables specified in our right triangle algorithm are now
included.

PROBLEMS

1.	 Given A~l 0 1 0
R~O 1 0 1
C~O 0 0 0
D+-1 1 1 1

Evaluate each of the fo 11 ow i ng :

Were the results what you expected? Can you explain the discrepancies?

2.	 Write an algorithm which will produce a loqica1 vector C with 115 corre­
sponding to the even numbers in a vector A+--6 7 2 4 -21

3.	 Gi ve n a cube e a c h 0 f whoseedge s havel eng thE . \~ r i t e i n Ii PL the s t e ps
needed to find its surface area. Execute for E+3 7 15 2.7

4.	 Show how ina s e r ie s 0 f s t e p5 you co u1d 0 b t a i nth e cub e 0 f X~ 5 6 7
without using *.

5.	 You happen to have in storage a vector S of four positive elements.
Use S to generate in at least five different ways A) A vector Z of four
zeros, and B) A vector W of four ones.

6.	 Assign the vector 3 4 5 6 7 to the name A and twice it to the name B
on one 1ine.

C HAP T E R 7:

Reduction

Previously you saw how the introduction of vectors enabled parallel process­
ing of data to take place, with a resulting saving in time and number of
typestrokes required. In this lecture this concept will be extended to
show how meaningful operations can be effectively performed on the elements
of a single vector. Continuing the analogy with electrical circuits, we
may call such operations series processing.

Conventional notation

Let's begin with a problem in invoice extension. Assume that several differ­
ent items, each with its own cost, have been purchased. We' 11 use Q and C
to represent the numbers and the costs, respectively.

(2+-6 2 3 1 0

C+-2 4 3 5 10

To get the vector of total costs, we execute

Qxc
12 8 g 5 o

But now, in order to obta in the grand tota 1, we have to add up a 11 the
elements of this vector.

In conventional notation, the mathematician indicates the sum of the com­
ponents of a vector by writing

i=l

L (sigma) means " sum ,11 while "i" is a running variable from 1 to n, identify­
ing the individual components of the vector. n is the total number of com­
ponents, 5 in the invoice extension problem we are working on.

If this seems potentially 1ike a lot of work, don't be too concerned. In the
next section we wi 11 show how to carry out the summation in APi) with minimal
effort.

36

Reduction 37

Reduction

Our objective is to sum across the components of a vector. To do this,
let

X+QxC

so X contains

X
12 8 ~ 5 0

In APL the sum is achieved by +/X. This is read as " p l us reducing X," or
the 'Ipl us reduction of X," and the symbol / (lower right corner of the key­
board) is called " re duction," because it reduces the vector to a single
component.

+/X
34

How this operation works is worth discussing in more detail. If

X+12 8 9 5 0

then

+/12 8 9 5 0
34

What the system does is to insert the function symbol which appears to the
left of the slash between each pair of components of the vector and group
them (internally) as follows:

12+(8+(9+(5+0)))

The reason for the grouping is that in the APL system each symbol operates
on everything to the right of it. If you think about what this means, you
will see that this is equivalent to operating on the rightmost pair of
elements first, taking that answer together with the next element to the
left, and so on, i.e., using the above illustration, step by step we obtain

12+(8+(9+5))
12+(8+14)
12+22
34

You may be incl ined to argue that we are making a big todo about nothing,
since with addition it doesnlt really make any difference whether we work
from right to left or left to right. Wei 11 see later, however, that this
commutative property is not general.

"Times" reduction

Now consider still another problem. A rectangular box has the dimensions

38 APL \360: An Interactive Approach

21IX3"X4.'1 What is its volume? Clearly, to answer the question we want

24

If we assign Z to the vector of dimensions, x/Z should give us our answer.

Z+-2 3 4
x/Z

24

In this case, x is planted between each neighboring pair of components, and
the system stepwise does the following:

2x(3x4)
2x12
24

An algorithm for averaging

At this point we can profitably talk about an algorithm to get the average
of the components of a vector X where

X+-2 4 3 3 2.5 2

In order to get an average we need two things: the sum T of all the com­
ponents in the vector we are averaging and the number of components. The
first is easy:

+/x
16. 5

We can get the average by dividing this sum by the number of components
(obtained by manually counting them), but on the terminal there is a simpler,
if somewhat sneaky, way to accompl ish this. On your terminal type

x=x

The response is

1 1 1 1 1 1

As you can see, this generates a vector consisting of as many l's as there
are components in X. The next step? You guessed it-plus reduction over
X=X. Summarizing and storing the intermediate results:

i1+-X=X

N+- + / ;~.j

N

6

Let's look at the sum T:

Reduction 39

T
VALUE El?HO!?

T
1\

We forgot to set T, so naturally we got a value error. Now

T++IX
T~N

2.75

2.75 is the average of the components of X:

X
2 L+ 3 3 2.5 2

Maximum, minimum and logical reduction

If + and x were the only functions that could be used with reduction, the
operation wouldn't be particularly useful. But it turns out that all
standard scalar dyadic functions can be employed in this manner.

Here is an illustration using the maximum function. Remember Z, the vector
of dimensions of the rectangular box we introduced earl ier?

Z
234

Suppose we wanted to get the longest dimension in Z, i.e., pick out the
maximum value. Then by analogy, just as we had

2+(3+4)=2+7=9
2x(3x4)=2x12=24

for +/2 and x/Z,

represents r/z

On the terminal

r/z
4

In the same fashion

is LIZ:

L/L:
2

40 APL \360: An Interactive Approach

Note that in every case the symbol before the reduction is placed between
each pair of neighboring elements, and the groupings are identical.

Yet another simple appl ication involves the logical functions in an accounts
identification problem. Let X be a vector of accounts:

X+-3 4 2 2 1

Our next job is to see if any have negative balances. The first step is to
specify a vector of the same length as X, containing a 1 in each place where
Xis 1es s than 0, i. e. :

LZ+-X<O

LZ

00010

Completing the algorithm:

v/LZ
1

(Remember that the logical or returns a 1 if either or both arguments are
1.) Our answer can be interpreted as fol lows:

if 1, then at least one account is negative
if 0, then no accounts are negative

Let's reset X and repeat the problem to illustrate the second possibil ity:

X+-3 6 1 0 3

LZ+-X<O

v/LZ

o

Can you tell what the significance of the answers might be if we had used
"/L2 in the algorithm instead of v/LZ?

Minus reduction

Wei re not through with reduction yet. How about minus reducing a vector?

-/3 2 1 4
2

If you are puzzled by this result, the following step by step breakdown
should help:

3-(2-(1-4))
3-(2--3)
3-5
-2

Since - in succession is equivalent to a +, you should be able to see that
the above is the same as

41 Reduction

3-2+1-4 (do by hand from left to right)

In other words, -/ is a way to get an alternating sum, to give such a sequence
its proper name.

Here is a somewhat messy example that gives a value for PI using -/

PI=4X(l_l+l_1.+1.- +)1 3 5 7 9

2
(This comes from integrating 1:-(1+X) termwise after dividing. The result
is a series for arctan X. If we let X=l, arctan 1 is PI:-4, and substitution
of 1 for X on the right hand side gives the expression in parentheses above.)

Letls construct an algorithm to obtain PI. Our first requirement is to get
the vector 1 357 9 11 13 15 17 19, stopping after 10 terms. Next, we take
their reciprocals, find the alternating sum, and multiply by 4, in that order.

Practically speaking, this isnlt a very good way to get PI because the series
converges so slowly that a very large number of terms are needed to obtain
an accurate value.

However, since it is for illustrative purposes, wei 11 begin not by specifying
a vector 1 357 9.... Instead, it will be more instructive to see how this
vector, which wei 11 name N, can be generated in other ways. If

N+-l 2 3 4 5 0 7 8 9 10

then

2xN

2 4 6 8 10 12 14 16 18 20

and

N+-2xN

N+-N-l

N

1 3 5 7 9 11 13 15 17 19

gives us the series we want. The respecification of N as 2xN and N-1 de­
stroys the previously assigned values of N, as discussed on page 32.

The reciprocals can be obtained by specifying

R+-1+N
R

1 0.3333333333 0.2 0.1428571429 0.1111111111
0.09090909091 0.07692307692 0.06666666667
0.05882352941 0.05263157895

and the alternating sum by

S+--/R

Our an swe r for P I (a t 1as t !) i s

42 APL \360: An Interactive Approach

PI+4xS

PI

3.041839619

which is about .1 off for the reason described on the previous page.

Two final comments. If -/ is the alternating sum, then +/ is the alter­
nating product, which you can verify for yourself on the terminal. Note
also that the result of reducing a vector is a scalar. Hence, general izing
the operation, reduction is often thought of as a reduction of rank, where
a vector is said to be an array of rank 1, a scalar of rank O. As we shall
see later, a matrix is an array of rank 2.

PROBLEMS

1.	 Dr ill

+/3 7 10 15 22 -/2 4 6 8 10	 x/2 4 6 8 10

-;-/3 5 2 */3 2 1	 A/l 0 1 1

A/l 1 1	 v/O 1 0 1 v/O 0 0

=/3 2 2	 >/1 2 4 L / - 2 4 0 8

f/1 14.7226

2.	 State in words what tests are represented by A/,V/ and =/.

3.	 For A V+3 6 8 2 4, eval uate +/ 3xA V.

4.	 Write a one-line APL expression to specify Q as the vector 1 7 2 3
and find the largest element in Q.

5.	 Set up an algorithm in APL to calculate the area of a triangle by
Hero's formula, given below in conventional notation:

Area=/s (S-A) (S-8) (S-C)

A, B, and C are the sides of the triangle, while S is the semiperimeter.
In your algorithm use L as the vector of sides of the triangle.

6.	 Write an APL expression to give the slope of the 1 ine passing through
the points with coordinates P and Q. By definition, the slope of a
straight 1ine is the difference in the values of the vertical coordinates
of two points on the line divided by the difference in the values of the
corresponding horizontal coordinates.

C HAP T E R 8:

Order of execution

Further appl ications

In the last chapter we stated that in reduction the effective order of

execution was from right to left, since each function operated on every­

thing to the right of it. It was as a result of the operation of this

rule that -/ gave us the alternating sum.

Does this order of execution concept apply to all functions in APL ?

You should make up a number of examples to convince yourself, at this point,

that it does.

One good illustration is our previous problem (pages 41-42) to calcu­

late a value for PI. There we used a large number of steps to get the

result, but a much more elegant and neater way to write the algorithm is

PI~4x-/l+ 1+2xl 2 3 4 5 G 7 8 ~ 10
PI

3 • 0 4 1 (3 J 9 G1 'J

Here, working from right to left, the first thing the computer does is to
multiply 2 by the numbers 1 2 3 ... 10. Then -1 is added, which gives us the
odd numbers 135.... These are divided into 1, yielding the reciprocals,
and after -I makes an alternating sum out of the reciprocals, the terms
are multipl ied by 4 to give PI.

The same approach can be taken with our old friend the invoice extension
problem (page 36). In this case the total cost of the products Q with
individual costs C can be written as +IX, where X is the vector QxC.
Numerically,

+/5 2 3 1 Ox2 4 3 5 10

Changing the order of execution

Don't be tempted by these examples into thinking that all problems can be
solved this neatly. A case in point is our previous calculation of the
hypotenuse of a right triangle. Without putting it on the terminal, try

43

34

44 AP L \ 360: An Interactive Approach

to figure out what would happen if we were so fool ish as to write

Going from right to lett, L IS raised to the .5 power, B is then raised to
the power representing that result, and-we might as well stop here because
it is obvious we goofed.

Really, what is needed is

This is a good place to make three observations: (1) pairs of parentheses
are used in APL in exactly the same way as in conventional mathematical
notation, i.e., the normal order of execution is interrupted and expressions
within parentheses are evaluated first; (2) aside from the above use of
parentheses, there is no preferred order of execution in APL; and (3) a
single right parenthesis is used in APL for system commands as contrasted
to grouping, where a pair is required.

Getting back to the hypotenuse example, A and B are squared, added, and
then the sum is raised to the .5 power. Let's execute this for specific
values of A and B:

A-+-3
B+4
C+«A*2)+(B*2)).5

SYNTAX ERROR
C+((A*2)+(B*2)) 0.5

1\

The error message is clearly due to the fact that an * was omitted before
the .5, so that the line isn't a valid APL expression. Contrast this
with the omission of x between expressions in () in conventional notation,
where multiplication is impl ied by the absence of the x

Redoing C, we can now call for its execution:

C+«A*2)+(B*2))*.5
C

5

The parentheses around B*2 aren't necessary. Why?

«11*2)+B*2)*.5
5

Now, one more rehash of an old problem-the calculation of averages. We saw
that it was necessary to get the sum of the components of the vector X and
divide this by the number of components in X. In one 1 ine

X+1 2 3
(+/X)~+/X=X

2

From right to left, X=X generates a vector of three l·s which are then added
(+/) and divided into each of the three components of X before summing again.

Order of Execution 45

Parentheses aren't needed around the expression +/X on the extreme left,
but for a reason different from what you might expect. This can be shown
by looking at +/1 2 3+3, which is arithmetically equivalent to 1/3+2/3+3/3,
or 2. This is exactly the same as (1+2+3)/3, the slashes in the last two
expressions being used in the conventional way to indicate division. It
doesn't make one bit of difference if we divide the elements of the vector
by 3 before summing or after, as long, of course, as the divisor (here 3)
is the same for all the elements.

Every nice simple-looking procedure has its fly-in-the-ointment. The
following is a case where omission of the parentheses is significant.

3x2+4
1 8

In APL 2 is added to the 4 to give 6, which is multipl ied by 3. But in
conventional notation, because of the accepted hierachy of order in which
x precedes +, 3x2 is 6, which, adding 4, gives 10. So we should write

10

or be t te r s till

4+3x2
10

which requires fewer keystrokes.

The conventional rules in arithmetic aren't too bad to work with when only
a relatively few functions are involved. Things tend to get a bit sticky,
however, when you deal with the multitude of functions, standard and defined,
that you have already been introduced to, or will soon encounter. It is here
that the simplicity of the APL rule, that execution is from right to left
subject only to the occurrence of parentheses, proves its worth.

At this stage of the game, as you start to build up expressions with many
functions, don't hesitate to overparenthesize. When you are more at home
in your understanding of the APL language, you will find yourself beginning
to leave out the nonessential parentheses.

A po 1ynom iali 11us t ra t i on

An elegant demonstration of the order of execution rule and the power and
versatil ity of APL can be seen in the following example showing how a
polynomial can be written and evaluated.

Consider a typical algebraic polynomial expression

which we want to evaluate for X, say, 10. How can this be represented in
APL?

The most obvious and simplest to understand is a direct transl iteration
from the conventional notation:

46 AP L \ 360: An Interactive Approach

X+l0

3+(-2 x X)+(9 x X*2)+4xX*3

4883

A 1ittle better version, which el iminates the parentheses, is

3+Xx-2+Xx9+Xx4
4883

Working from right to left, to 4x we add 9, giving

9+4X (conventional notation)

This is then multipl ied by X (remember that without parentheses the X
multipl ies everything to the right of it)

- 2 is added

X is again used as a multipl ier

and, finally, 3 is added

But you can't appreciate the economy of the APL notation until you have
taken advantage of its abil ity to handle arrays. Here is the piece ~
resistance of our problem:

+/3 2 9 4xX*O 1 2 3
4883

In this version, X is raised to the powers 0 1 2 3 to give

2
X31 X x (conventional notation)

These, in turn, are multiplied by 3 -294, yielding

and then +/ results in

Order of Execution 47

PROBLEMS

1.	 Dr ill

4*3r3*4 1f2+X+ - 5 6 0 4 8 6

(4*3)rJ*Lt 7Gf+/2+3 x 1 2 3 4

5*3x5 Gf2-4*3

2.	 Of the following five expressions which have the same value?

(([1*2) -4x (A xC»

(B x fl)-(4 x A)xC

Rxfl-(4 x A)xC

3.	 Construct APL express ions for each of the following:

A) Three-fourths plus five-sixths minus seven-eighths
B) The quotient of two differences nine-sevenths and

eight-tenths, and one-third and two-fifths.

4.	 The geometric mean of a set of N positive numbers X is the nth root
of their product. Write an APL expression to calculate this for
X+l 7 4 2.5 51 19

5.	 For A+O 1 0 1, B+1 0 0 1, and C+1 1 0 0, evaluate

6.	 What is wrong with the expression A+B=B+A to show that the operation of
addition is commutative, i.e., the order of the arguments is immaterial?

7.	 The Gregorian calendar provides that all years from 1582 to about 20,000
that are divisible by 4 are leap years, with the provisos that of the
centesimal years (1600, 1700, etc.) only those divisible by 400 are
leap years, and of the mi11enia1 years those divisible by 4000 are not.
Write a one-1 ine AP~ expression to determine whether a given year Y
is a leap year.

2 2
8.	 Why isn ' t the following a val id APL expression for X -2XY+Y (conven­

t ional notat ion)? Correct it.

48	 AP L \ 360: An Interactive Approach

9.	 The intensity level B of a sound wave is measured in bels, and is
defined as (conventional notation) B=lOxlog I/I o where I is some
arbitrary reference level of intensity. Write an APL e~pression for
this formula.

10.	 Rewrite the following polynomial expression without parentheses. Do
not use reduction:

11.	 Write an APL expression to compute the root-mean square of the com­
ponents of a vector. (This is the square root of the average of the
squares) .

12.	 What is a possible interpretation of the fol lowing?

PROPOSE+RINGAWEATHERA(JILL<JACK)AJACK<AGELIMIT

13.	 Write an APL expression to calculate the interest on P dollars at R
percent compounded annually for T years. How would you change your
answer to provide for compounding quarterly?

C HAP T E R 9:

Scalar monadic functions

Standard scalar monadic functions

Just as on page 14 we introduced the term dyadic to describe functions which
require two arguments, so we will use monadic where only a single argument
is needed.

Take a look at how some of the monadic functions are represented in con­
ventional mathematical notation:

-x arithmetic negation
X! factorial

IXI absolute value

l~~ } reciprocal
x X

e exponential
In X Natural logarithm

IX square root
X logical negation

Whatever other merits this mishmash has, consistency certainly isn't one of
them, for the symbol which is the functional indicator may appear on the
left, the right, both sides, on top, or be in a special position, or be
represented by an alphabetical label.

These same functions are effectively treated in APL as follows:

-x arithmetic negation
!X factorial
Ix absolute value
-~x reciprocal
*X exponential
®x natural logari thm

X*.5 square root (dyadic)
rvX logical negation

Notice that, for all the monadics in this 1ist, the symbol precedes the
argument. Most of them look 1 ike symbols for certain dyadic functions,
but the interpretations may not always be closely related.

49

50 APL \360: An Interactive Approach

Let's run through some of them on the terminal and, as you do, note that
both scalars and vectors can be used as arguments:

Arithmetic negation:

This function simply negates the argument that fo1 lows it:

-3 4 1 0 8
J Lt 1 o 8

Factorial:

An expression like !X (X is an integer) is to be interpreted as the product
(X) (X-1) (X-2) ... (1) (see page 21). For example, if X is 4,

! 4

24

24

and

! 1 2 3 4
1 2 6 24

To make sure your terminal is operating properly type

2+2

4

If you got the result, ignore the next comment. If not, you didn't line
up t and. as in the precautions stated in our discussion of the dyadic!
on page 21. The way to get out of this hangup is to type a single " fol­
lowed by the return key.

This factorial function works also with nonintegers and zero:

! 2 .5
3.J23350S7

! 0
1

(For those with a considerable background in mathematics, the factorial
can be defined by use of the gamma function, given by the following
integral: ~

,(n+1) = X
n

e
-x

dxf

o

which can be shown to be equivalent to !n with n not restricted to integer
values. If n is 0, incidentally, the definite integral has the value 1,
which justifies the terminal result for !O.

For those with minimal math background-forget it.)

51 Scalar Monadic Functions

Absolute value:

The absolute value function is defined as follows:

IX =~ X i f X'20-1-XifX<O

In plain Engl ish this means: take the magnitude of the number and ignore
any negative sign that may be present.

13 5 2 7 3
3 5 2 7 3

Rec i p roca 1:

In APL the monadic +X is equivalent to the dyadic 1+X. Thus,

;. 1 2 3 4 5
o ~-::1 . ,..) 0.3333333333 o .25 0.2

1 -~ 1 2 3 4 5
1 o • :Jr: U.33]3333333 o.25 o .2

Exponential:

*X is equivalent to raising e, the base of the system of natural logarithms,
wh i ch has the val ue 2. 7 1 [3 2 8 • • ., totheX pOVJ e r . This me an s t hat *Xis the
same a s L. 7 1 F3 :2 8 • • • * X •

* 2 • ~

1 2 • 1 8 2 Lt 9 3 9 6

and

*1
2.718281828

which gives the value of e itself.

Natural logari thm:

®X yields the same result as the dyadic log, 2.7182U •• • qoX, i.e., e®X.
See page 17 for a discussion of the dyadic log.

Since the base e is very common, the practice is to use "1 n" to stand for
"1 0g ." Base 2 would be represented as "1 0g ,II base 10 as "1 0g liar
simpTy "l og ," etc. Logarithms were originally invented as an a19 in doing
calculations involving products, quotients, powers, and roots. With the
advent of modern calculators and computers they are rarely used nowadays
for this purpose. More important, they do occur frequently in the solutions
to equations representing a variety of physical problems, especially where
the changes involved in the phenomenon to be analyzed are exponential in
nature. Here is an illustration:

~10

2.302585093

52 AP L \ 360: An Interactive Approach

In fact, from the definition of the logarithm, finding the logarithm and
exponentiating are inverse processes, that is, each undoes the effect of
the other, as the example below shows:

~*1 2 3
123

Square root:

This dyadic function was discussed earl ier on page 16 and will not be taken
up further, except to cite an example:

25*.5
5

Logical negation:

Like the other logical functions, A v ~ ¥, logical negation can have only
o or 1 as an argument. As you have undoubtedly guessed

~1

o
~O

1

~1 0 1 1
o 1 0 0

and

~~1 0 1
101

i.e., logical negation is its own inverse. When we try to obtain

...... 3

DOf,1A I iI ERROR
~3

1\

an error message is received since 3 is not an allowable argument for this
function.

There are sti 11 additional monadic functions in APL that, for the most part,
have no corresponding symbol in conventional notation. These are printed
below and are taken up in sequence:

rx ceiling
LX floor
?X roll (random number generator)
+X additive identity
xX signum

Ce i 1 i ng:

This is the monadic f, and is defined as the smallest integer not smaller

Scalar Monadic Functions 53

than the argument. Practically speaking, taking the ceil ing of a number
" roun ds Up" the number.

r3 .14

4

4

5

Floor:

Analogous to the ceil ing function, this results in the smallest integer
not 1a rge r than the a rgumen t (" round i ng down").

L3 .14

3

L3

3

L2 • 999

2

What about the ceil ing and floor of a negative number? Let1s try a few
examples:

4

If this puzzles you, it can be cleared up by reference to the number 1 ine
(page 18). Rounding up with r-4.1 gives the next largest integer, 4,
while rounding down gives -5.

Finally, before going on to an illustrative problem, if we specify X as

X+-l.l Lt.2 3.9 3

then

LX-1 4 4 3
-r-x

1 4 4 3

and

rx
2 5 -3 3

-L-X
2 5 -3 3

and our APL system is richer by two identities, no simple equivalent of
which exists in conventional notation. Additional identities will be
introduced from time to time in the text.

54 APL \360: An Interactive Approach

Here is a practical problem which involves the floor and ceil ing functions.
It considers rounding off bills with fractional pennies (so-called half
cent adjust). After studying the solution you should be able to come up
with a number of other related appl ications.

For purposes of illustration, let's specify a vector X:

X+3 3.1 3.49 3.5 3.9 4

To make the half cent adjust work properly, we round up if the fractional
part is 0.5 or more, and round dow,") if it is less than 0.5. So for the
above figures we want the fol lowing:

3 3 3 Lt 4 4

Looking at the floor of X:

LX
3 3 3 3 3 4

This isn't what we want. What about the ceil ing?

rx
344 4 4 4

which isn't right either.

Suppose we add 0.5 to each component of X and then try the floor again:

X+.5
3.5 3.6 3.99 4 4.4 4.5

LX+.5
3 3 3 444

Success! And the result suggests that a half cent adjust that rounds down
(i .e., makes 3.5 come out 3 instead of 4) might be obtained by

rX -.5
33334 4

We can summarize these results in the fol lowing table:

X 3 3.1 3.49 3.5 3.9 4

rx 3 4 4 4 4 4

LX 3 3 3 3 3 4

X+.5 3.5 3.6 3.99 4 4.4 4.5

LX+.5 3 3 3 4 4 4

rX-.5 3 3 3 3 4 4

Desired Results 3 3 3 4 4 4

Scalar Monadic Functions 55

Roll:

Just to be different, let's call for the execution of the monadic roll
several times:

?6 6
1 5

?6 6
3 4

?6 6

2 1

What kind of oddball function can this be that doesn't return the same
result each time? We seem to be getting numbers at random from it. In
fact, if you play around wi th it some more, you wi 11 see that ?X returns
a random integer from 1 to X inclusive.

This means that ?6 6 simulates the roll of a pair of dice, while ?2

?2
2

could be a simulation of a coin toss, with 1 standing for heads, say, and 2
for tails.

When we try to execute the roll function (also called " ran dom" or "query")
with a noninteger, we get

? 4.5
DOl1AIil RRROR

? 4.5
1\

and in fact, its domain consists of positive integers only.

In APL each time you sign on the terminal you will get the same sequence
of random numbers if the same upper 1 imit is specified. There is a
practical reason for this. In checking out algorithms (debugging), it is
often necessary for testing purposes to use the same set of numbers so
that val id comparisons can be made each time through in the checking process.

Finally, the reason why the starting point is 1 and the way in which it can
be altered will be covered in chapter 34.

Additive identity:

This function is included for completeness. +X is equivalent to OtX:

+2 4 6
2 4 G

and is not to be confused with +IX:

+/2 4 6
1 2

48

56 APL \360: An Interactive Approach

Signum:

xX
or

results in
negative:

0, 1 or 1, depending on whether the argument is 0, positive

1 1
xl

0
3 0

As before, it shouldn't be mixed up with x/X:

x/2 4 6

Calculation of the cosine

To show a useful appl ication of some of these monadic functions, let's
calculate the cosine of some angle X (in radians) in APL.

The cosine is a trigonometric function which can be defined in a number of
way s, inc 1udin g the f 0 11ow i ng :

(cos x, sin x)

/
/

r/
()

(1,0)

In a circle of unit radius, if we measure counterclockwise from the point
(1,0) a distance X along the curve, the coordinates of the end point are
defined to be cosine X (cos X) for the horizontal coordinate and sine x
(sin x) for the vertical coordinate.

A radian is a unit of angular measure such that the angle theta (8) shown
in the figure, measured in radians, is the length of the curve intercepted,
as indicated by the arrow, divided by the radius. Since the length of the
whole circumference is 2xPlxr and r is 1 in this circle, there are 2xPI
radians in a unit circle. Arguments involving geometric similarity lead
us to the same conclusions for all circles. Thus, PI radians are equiva­
lent to 180°.

It can be shown in calculus, by application of a Maclaurin's series to
the cosine function, that (in conventional notation)

Scalar Monadic Functions 57

X6 X8
cos X 6! + 8! - ... +. · .

where X is in radians.

Notice the regularity of the terms, the numerators and denominators being
all even and increasing regularly. This will help us in developing a com­
pact APL express ion for them.

Our first step is to set a value for X. Let's choose PI74 (45°):

X+-3.1415f4

Working with the numerators, we have

TOP+X*O 2 4 6 8 10 12

TOP

1 0.616849233 0.3805029763 0.2347129691 0.1447825149

0.0893089833 0.05509017785

Similarly, the denominators can be assigned to a vector cal led ROT:

BOT+-!O 2 4 G 8 10 12
BOT

1 2 24 720 40320 3628800 i+ 790 0 16 00

Our last two steps are to divide TOP by BOT and take the alternating sum:

-/TOPfBOT

yielding

0.7071072503

as the cosine of P174.

This can be done all on one 1 ine, and gives us a good excuse to introduce
another new idea in APL at the same time. Here it is:

-/(X*V)f!V+-O 2 4 6 8 10 12
0.7071072503

We have combined an assignment and several functions in a single 1 ine.
Reading from right to left, we defined a vector of even numbers and stored
it under the variable name V (since it is needed for both numerators and
denominators). Next we got the factorials of V which were then divided
into the vector X*V. Lastly, -/ gave us the alternating sum.

As a corollary to this problem, the Maclaurin's series for sin x is

Xl
sin X = - - ... + ...

1!

so that to calculate sin X all we have to do in our algorithm is to change
V to 1+0 2 4 6

58 APL \360: An Interactive Approach

A dri 11 exercise in APL

In the APL system (located in common 1ibrary 1 of the system on which this
text is based) there is a drill exercise in the various functions that have
been described so far. This is a stored program, much 1 ike STAT was in
the first chapter. The details of how such programs are written and stored
will be covered in later chapters.

Follow this sequence carefully on your terminal. You should also check
with your own system 1ibrarian to see what exercises (if any) may have
been developed locally or dupl icated for storage in the system you have
access to. The more practice you get at this early stage, the better you
will understand how they can be used in programming.

First execute the fo1 lowing command:

)LOAD 1 APLCOURSE
SAVED 11.07.53 09/01/69

A message comes back stating when the workspace (block of storage) we have
asked for was last saved. This command, about which more will be said
later, in effect puts an exact image of the workspace APLCOURSE into our
own active workspace so that we can access it.

You will now go through an exercise in which you and the APL system will
exchange roles. It will ask you to do problems and you will be required to
type the answers in. To start off type EASYDRILL and put yl s under all
the functions printed, as shown in the copy below. Be sure to type Y for
the exercises in vectors because vectors are so easi 1y handled in APL.
Ditto for reduction. None of the problems require answers which are not
integers, and the problems are relatively easy computationally.

EASYDRILL
TYPE Y UNDER EACH FUNCTION FOR WHICH YOU WANT EXERCISE
SCALAR DYADIC FUNCTIONS
+-x-i-*IL<::;=~>;;t! /I\V(1)'f'(¥

YYYYYYYYYYYYYYYYYYYY
SCALAR MOilADIC FUNCTIOnS
+-x-i-IL! 1­
YYYYYYYYY
TYPE Y IF EXERCISE IN VECTORS IS DESIRED, N OTH2RWISE
Y
TYPE Y IF EXI?RCISE III REDUCTIOi! IS DE,SInED, II oTllil'R TiISi\'
y

Here are some sample problems generated by the program. These will be
different each time you ask for the program, as well as different for each
person who asks:

1 9 9 5 > 8 10 L+ 8
[J:

1 100
- 8 6 4 3 o

[J:
86430

1

Scalar Monadic Functions 59

If the problem is correctly answered, you get another. Let's do this one
wrong:

~I 2 2
0:

o 1
TRY AGAIN
[J :

You get three tries altogether, after which you are furnished with the
answer and, to add insult to injury, you get another problem of the same
kind.

vi 0 0 1 1
U:

1

2.333333333 2 1.666666667 2.666666667c:	 3

3 456
TRY AGAIN
[J:

4 2 10 4
TRY AGAIN
il :

3 1 9 7
ANSliER IS 3 3 3

U:
1

+ 7 4

Typing PLEASE gives you the answer and another problem of the same kind.
The only way out of a particular type of problem is to type the correct
answer. However, since any valid APL expression equivalent to the answer
is acceptable, the problem itself can be entered as its own answer-fiot
particularly instructive from a pedagogical point of view, but it works.
To get out of the drill, type STOP, after which you receive a record of
your performance (only part of which is shown here). Typing STOPSHORT
exits you from the program, but doesn't print your record.

[J :
7	 it

L 1.333333333 0.6666666667

U:

PLEASE
Ill/SrIER IS 1 1

L 0.5 1.75

LJ:

STOP
YOUR RECORD IS
FUNCTION FIRST TRY SECOND TRY TlJIRD TRY FAILi','D

+

*

x

60	 APL \360: An Interactive Approach

PROBLEMS

1.	 Dr ill

8r8.1132.68 I 3 • 1 0 5 .6

?10	 10 10 10 *3 4.7 1 . 5 ! 3 5 7 4

~14.1 86 .108 r -1 . 8 0 21 5.6 L ~ • 5 6 .8 9 • 1 .12

-
?3 4 5 - 1 .2 6.7 .52 19 .5

-+ 8 • 7 19.1 23 -;- 3 .5 67 .287 14xrS.8x 31.046

2.	 Using the residue function, write one-line definitions in APL of LX
and rX.

3.	 If A+-3 , and B+-3 2 3 1 6, evaluate

--(2sA)I\V/3=B

4.	 Write an algorithm to test an integer N for the following if the final
digit is deleted, the original number is divisible by the new one.

S.	 Janua ry 1 fa 11 s on Thu rsday (the fifth day of the week) in 1970.
Determine the day of the week on which January 1 falls in any given
year Y. For simplicity assume any year divisible by 4 is a leap year.

6.	 Given a vector V which is made up of one- and two-digit integers.
A)- Write an expression that will yield a logical vector whose 1 IS

correspond in position to the one-digit members of V. B) Do the
same for the two-digit members of V.

7.	 After executing each of the following, write an expression to round a
positive number N to D places to the right of the decimal point:

8.	 Modify the answer to the previous problem to handle negative numbers

only. What further changes are needed, if any to make your expression

work for either positive or negative numbers.

9.	 Let !-1+84. 6129999993 Display M. Compare lE5xM with L lE5xM. (See

under "fuzz 'l in chapter 34 for an explanation).

10.	 Construct an APL express ion that wi 11 determine whether or not the fi rst
N significant figures of two whole numbers X and Yare identical.

11.	 A) You are given D dollars with which to make purchases of books at
B dollars each. How many books can be purchased?

B) How many books can be bought if it is required that the D dol lars
be used up and s upp 1emen ted, if neces sa ry?

Scalar Monadic Functions 61

12.	 Carry out the fol lowing instructions and explain the answers:

A +15 .8
B+(A+4)xA

B
16

A +15 . 8

B+(A+4)xrA

B
64

13.	 Write an APL expression that rounds numbers down if the decimal part
is less than .5, and up if greater than .5. For numbers ending in .5,
your expression should round to the nearest even integer.

C HAP T E R 10:

Function definition

Status report

Earlier we introduced the idea of an algorithm in calculating the hypotenuse
of a right triangle. If you recall, at that time we stated the problem and
went through a sequence of simple operations to solve it. Then we refined
our treatment and reduced the number of steps needed by taking advantage
of the simple order of execution rule in APL.

In a	 very real sense the operation of getting the hypotenuse exhibits the
characteristics of a standard scalar dyadic function. And it should be
clear that what we did was by no means unique. Literally an infinite
number of algorithms exist for solving all kinds of problems and behaving
like	 our hypotenuse function, if indeed we may call it that.

This	 suggests that we need a way to label and record these algorithms so
that they can be used over and over again by using the appropriate name
and arguments, just 1 ike the standard APL functions studied so far.

More specifically, let's review what was done in the hypotenuse problem
with our ultimate objective being to define it for repeated use:

(1)	 A was specified
(2)	 B was specified
(3)	 C was specified as the sum of A squared and B

squared, all raised to the one-half power (see page 34)

This	 was our last revision, with the algorithm reduced to one 1 ine.

The defined function flYP

What is most desirable is to be able to give to the terminal values for

A and B and a simple message to get the hypotenuse, much 1ike asking for

2+2 and getting 4 back. Here + is the simple message which tells the com­

puter what to do.

By analogy A HYP B, HYP being the message in this case, sounds 1 ike just

the thing to do the dirty work of calculating the hypotenuse for us. Such

a function has already been provided for you in the APL system. Don't

worry at this point how it got there. (The student's attention is called

62

Function Definition 63

to the note in the preface about the common library, which wi 11 be heavi ly
used from this point on.)

Now enter on your keyboard

)LOAD 1 CLASS

after which you should get a message back about when this workspace was
saved last.

SAVED 15.02.39 07/29/69

The workspace CLASS, incidentally, contains a large number of functions and
illustrations which will be of considerable value to us in subsequent
chapters.

Typing

3 HYP 4

el icits the response

5

It works with vector arguments too, as the next example shows:

1 3 HYP 1 4

1.4142135G2 5

Here we are solving a family of triangles, with sides 1 1 and 3 4 at the
same time. In short, the function HYP acts just 1 ike + in the problem

1 3+1 4

2 7

and apparently behaves and is used 1 ike a standard scalar dyadic function.

Thus far we1ve looked at the external behavior of the function HYP. In
order for us to go on and desi~n our own functions in the future we will
have to be able to understand how HYP is constructed.

Function definition

There is a command which wi 11 display any defined function 1 ike HYP stored
in the active workspace. It is the following, which you should enter on
your keyboard at this point. DON'T press the return key until your entry
looks exactly 1ike the one bel~lf you make a mistake, correct it before,
not after:

VHYPC fJ J V

The symbol V (pronounced "del") is the upper shift G and the box D (called
" qua d") is the upper shift L. No attempt will be made at this point to
explain the rationale behind the particular combination of symbols, but
you will see shortly how this command is related to a number of others
that will be needed to define, display and edit functions.

V

64 APL \360: An Interactive Approach

Here is the system's response:

V C+A HYP B
[lJ C+((A*2)+!~*2)*O.5

The fir s t 1i ne, beg inn i ng wit h V, i s called the II heade r II 0 f the fun c t ion.
HYP is the name of the function, and it has two arguments, A and B, with
a resultant (i.e., the answer) which is stored under the variable name C.
Notice that the arguments are separated by spaces from the function name.
Can you imagine what would happen if the spaces were omitted?

Line 1 gives the rule for calculating C and is the same as before. If you
are wondering what purpose the V's serve, it should not be too difficult to
see that, since they open the function on the header 1ine and close it after
the one and only line needed (in this particular case) to complete the
function, they must be a signal to the system that function definition is
about to begin or is ending.

As we pointed out before, HYPcan be used just like a standard scalar
dyadic function:

1+3

1 HYP 3
3.16227766

Let's get some practice in entering this function ourselves in our own
workspace. Fi rst type

)CLEAR

which is another system command, to be discussed in more detail later, but
which has the effect of clearing out your active workspace and replacing it
with a fresh blank workspace, just 1ike the one you received when you signed
on. The response is

CLEAR ~7S

Suppose we try to execute HYP now:

3 flYP 4
SYNTAX F;RROR

3 HYP 4
A

Are you surprised that we got an error message? You shouldn't be. After
all, our new workspace isn't supposed to have anything in it, and this
leaves the way open for us to insert the function HYP ourselves. Start
by typing

VC+A !IYP B

which tells the system you want to enter a function. To give it its proper
name, after you type the opening V, you are said to be in "function defi­
nition mode," as opposed to desk calculator mode.

Function Definition 65

Having pressed the return key you should get the response

[1]

i.e., the system in effect tells you it is ready to accept the first 1 ine
of your function. Enter the 1ine as follows, then press the return key:

The response this time is

[2]

since the system doesn't know how many 1ines your function will ultimately
have. There being nothing more to enter, type a second V to signal the
system that you are finished:

[2 J V

Now the function, having been duly entered, is executable:

3 flYP 4

5

If at this point you don't get 5, type)CLEAR and enter the function
over again.

We haven't squeezed all the juice out of HYPyet. Just as we can type

2 x 3 + L+

so we can ask the system for

2x3 HYP 4

10

What makes this possible is the fact that the calculation involved in HYP
produced a resultant which was stored away temporarily under the name C
and hence was available for further calculations. Such a function is said
to return an explicit result. More about this in the next chapter, where
we will see examples which can't be used as HYP above.

A defined monadic function

For an example of a standard scalar monadic function we'll develop a square
root function and complicate it a bit for purposes of illustration. If we
had one called, say SQRT, then in HYP we could write

for 1ine 1 instead of what we actually have.

Let's go ahead and define such a function with the header

\J[?+-SQHT X

66 APL \360: An Interactive Approach

Again as a reminder, don't forget the space between SQR11 and X. Clearly,
only the one argument X is needed here, namely the number we are calculating
the square root of, and it is placed on the right of the function name. The
system responds, as before, with

[1 J

Incidentally, this suggests that a good way to tell whether you are in
function definition or desk calculator mode is to see if you get a number
in brackets when the return key is pressed. Just remember that if you
do get it, anything you type from that point on until the closing V becomes
part of the function definition.

If you were to press the return key again, you would get

[1 J

and the system returns yet another indication to you that it is still
waiting for 1ine 1.

Now for the rule and the closing out of the function:

[1] R*-X*.5
[2] \J

A few examples show that SqRT seems to work acceptably:

2
SQRT 1 2 4

1 1.414213562 2

Since earl ier we had indicated that SQRT could be used to simpl ify the
function HYP, and we have now defined SQR'1', let's write another HYP
function in which SQRT can be imbedded. Starting off as before, type the
function header and wait for the response:

VR+A HYP B
DEFN ERROR

VR+A HYP B

But, this time, it appears that something is wrong. Apparently reentering
the function with the same name and in the same workspace doesn't wipe out
the old function. In this there exists no analogy between the behavior of
a function header and an assignment of values to a variable, the old values
of which are wiped out when a new assignment is made.

You may argue that this replacement feature could be a very handy thing to
have around for function headers, but if you think about it you will see
that it can have some grave consequences too. Suppose, for example, you
had a big complex function that was really valuable in your work, and you
inadvertently used the same function name for something else. All your

5

Function Definition 67

hard work, unless you kept a record of it somewhere else, would then be
gone. So the APL system deliberately makes it hard for you to destroy
work accidentally.

This leaves you with two alternatives for redefining HYP: You can get rid
of HYP by an appropriate system command (to be taken up later) or, better
yet, use another name for your new function, say, HY.

Here is the function HY:

VR+A HY B
[lJ R+SQRT (A*2)+B*2
[2 J V

and it appears to work just as well as HY? does:

3 flY 4

1 3 HY 1 4
1.4142135G2 5

The cosine function

For another by no means new example in this lecture, let's define a monadic
function which incorporates the cosine algorithm. In this problem, just to
be different, T is used for the resultant in the header and body of the
function:

V T+COS X
[lJ T+-/(X*V)f!V+O 2 4 6 8 10 12
[2 J V

RESEND

Unexpectedly we get a RESEND message, which is indicative of a transmission
error. Pressing the return key gives us a second RESEND. (Seated at your
own terminal, you probably won't get these messages.)

RESEND

After the return key is pressed once more, the system returns a [2J:

[2 J

Since, at this stage, we can't be sure whether our function exists in stor­
age, we retype line 1 of the function, followed by the return key:

We get back an error message and [2J:

CHARACTER ERROR

[2]

68 APL \360: An Interactive Approach

Apparently 1ine 1 of the function was accepted previously, so we close the
function out with V:

[2] V

Now we are out of function definition mode and can do

2+2

A word of caution, however. If we had tried the calculation before closing
out the function, we would have been in hot water. Can you explain why?

As a value for the argument, wei 11 use PI+4 and execute the function:

PI+-3.1 L+1S9
COS PI-~ 4

0.7071072503

We get a meaningful result, so it seems to be working OK so far.

Some additional system commands

Our workspace, which was originally blank, now has four functions. As users,
we may at times want to find out what is in our workspace at the moment.
This can be done quite easily by the system command

)FNS

which works in exactly the same way as)VARS did earlier, that is, it pro­
vides us with an alphabetical 1 isting of the functions available in the ac­
tive workspace. Here is the response:

cos HY HYP SQRT

On2 additional point about the system commands)FNS and)VARS. If the
1isting is long and we are interested only in whether a particular name, say,
llYP is included we can ask for

)FNS H
HI llYP SQRT

anJ we get that part of the 1isting from the letter H on. Printing of the
1ist can be interrupted at any time by pressing the ATTN key. For variable
names, the same syntax prevails. Since we have only PI in storage at this
point, let's define a number of additional variables, and then call for a
partial 1isting:

A+-B+-C+-D+-F+-G+-J+-T+-10
) VARS F

F G J T

We can observe the behavior of the system as we add and delete functions.
For example, add the following simple monadic function designed to give the
square of a number:

Function Definition 69

\JR+SQ U
[lJ R+UxU\J

Two observations should be made at this point. In the first place, the rule
could have been stated in either of two ways:UxU or U*2. Second, waiting
until the next 1 ine number is returned by the system is really unnecessary.
Since the function is finished at the end of 1 ine 1, it is perfectly proper
to close it out there, as was done in this case.

SQ seems to be all right:

SQ 4
16

and, in fact, SQ and SQRT are inverse functions:

SQRT SQ 4
4

Displaying the 1ist of functions now available, we see SQ has been added to
the 1 is t:

cos
)FNS

fly HYP SQ SQl?T

We haven't said yet how
done by the system comma

to
nd

delete a function from the workspace. This is

)ERASE NYP

and a new display of the functions shows that HYP is gone:

cos
)FNS

HY SQ SQRT

As a side note here, the ERASE command can be used to delete more than one
function at a time, as well as variables, so that the proper syntax for
its use is)ERASE FNl FN2 ••• VAR1 • •• , depend i ng on what is to be
deleted. Of course, to get rid of all the functions at once, type

)CLEAR
CLEArf WS

and then the command)FNS el ici ts an " emp t y" response from the system,
the typeball merely moving over six spaces.

PROBLEMS

1.	 Define a function EQ which evaluates the expression (X-2)xX-3 for
various integer values of X and identifies the solutions to the equation
O=(X-2)xX-3.

2.	 Define a function BE which generates the batting averages of players by
dividing the number of hits obtained by the number of times at bat for
each player.

70 APL \360: An Interactive Approach

3.	 Define a function HERO to calculate the area of a triangle by Hero's
formula. (See problem 5, chapter 7.)

4.	 The ABC Manufacturing Company reimburses its employees 100% of the first
$200 spent per semester for college work in an approved program, and
SO% of the next $300. No reimbursement is made for expenses above $SOO
per semester. Write a function cal led REFUND that will calculate the
refund due each employee in the program.

S.	 A well-known formula in electrical work gives the combined resistance
RT of several resistances R1, R2, etc., wired in parallel as follows
(conventional notation):

Define a function PR that will calculate RT for a vector M of resistances
in parallel.

6.	 To find the standard deviation of a set of numbers, the following steps
are necessary: (1) Compute the mean; (2) Find the difference of each
number from the mean; (3) Square these differences; (4) Take the square
root of the average of step 3. Write a function SD to compute the
standard deviation of some data X. Assume you already have a monadic
function A VG (which computes averages) in storage.

7.	 In relativity theory the mass of a body depends on its velocity V
relative to the observer. Specifically, (in conventional notation)

m = m
o

W~ere mo is the mass of the object at rest and c is the velocity of 1 ight
(3E8 meters/sec). Write a defined function REL to yield the " mass " of
a body moving at speed V and with a rest mass MR.

8.	 Define functions called PLUS, MINUS, TIft1ES., DIVIDEDBY to give
mathemat i ca 1 mean i ng to these words, e. g., 3 PLUS 4 returns 7, etc.

CHAPTER 11:

The syntax of functions

The last chapter discussed some of the ways in which functions can be de­
signed and used. It should be apparent that they differ from the standard
functions accessible on the keyboard in a number of ways, but the differences
are of form and appearance rather than intent. As a matter of fact, if our
keyboard had a hundred more keys on it, many of the more useful defined
functions could then appear as symbols. If the function SQRT happened to
be one of these so favored, all that would be necessary to get a square
root then is to key in the appropriate symbol and argument. Practical con­
siderations prevent the keyboard from being larger than it is, so only the
most useful functions are incorporated.

The richness of the APL language is such that many other function types
than have been introduced so far are possible. Already you have worked
with two kinds, the dyad i cs HYP and HY and the monad i cs SQRT and SQ.

A number of illustrations that will be helpful to us are stored in the
workspace called 1 CLASS, which has been accessed before in the last
chapter. Let1s reload this workspace and find out what is in it by exe­
cuting the following sequence of commands. The system responses are
included after each command:

)LOAD 1 CLASS
SA VED 15.02.39 07/29/69

)FNS
ADD AGAIN A VG A VGl A VG2 A VG3 A VG4 A VG5
RASP C CMP ClVfP X CMPY C()LCATl COLCAT2
COLCAT3 COS COSINE CP CPUTIMR CPl DEC
DE LA Y DESCRIBE DFT DICE E FACT
PACTLOOP CR02 CE03 lIEXA HY HYP
INSERT INV !1EAN PI RECT REP REVERSE
ROWCA ']' HUN 0

c' SD SETVARIABLES SrCN SORT
SPELL S(2RT STAT STATISTICS SUB SU,~1SCAN TIMF
TIMEFACT TRA TRACETIjvfE

Your 1 isting may not be identical with this one, since changes are made from
time to time in the common 1 ibrary workspaces. Be that as it may, most of
the functions will be explained and used as we go through the remaining
chapters. The ones we will be interested in at this time are HYP. SIGN,
DICE. RECT. STAT, and TIME

71

72 AP L \ 360: An Interactive Approach

Remember that to display the contents of a function we type

V name [[J J V

after which the system prints out the function header followed by all the
steps which comprise the function, and includes even the opening and
closing dels. Our old friend flYP is an example:

VHYP[uJv
V C+A nYP B

[lJ C+«A*2)+R*2)*O.5
\l

Function headers

In APL there are six ways of writing function headers, and each has its
own particular uses, as will be seen from the illustrative examples to be
displayed. These six forms are summarized in the table below.

DYADIC MONADIC NILADIC

"­
returns exp 1 icit result VC+A flYP B VR+SIGN X

VL RECT H VSTAT Xno exp 1 icit result

'VR+-TJTCE

\JTIME

Don1t worry, for the moment, about what all this means; everything in good
time.

To start off, display the function SIGN:

VSIGN[OJv
\J R+SIGN X

[lJ R+-(X>O)-X<O
\J

Ittake s a sin g1eargume nt wh i ch, i f nega t i ve, ret urn s - 1, i f posit i ve, 1
and if zero, it returns O. In fact, it dupl icates the monadic signum
function introduced earlier. Executing this for various arguments; we get

SIGN 5 .2

1

SIGN 0

0
SIGN 569

1
SIGN 3 2 0

1 1 0

If you look at the rule for'SIGN, you should be able to see how it works
by tracing it through. If X is negative, X<O would be 1 and X>O would be O.
so 0-1 gives -1. Similarly, for X positive, X<O is 0, X>O is 1, with 1-0
resulting in 1. And for X=O, X<O is 0 and X>O, so that 0-0 gives O.

Now, type DICE several times and display it:

The Syntax Of Functions 73

DICE

DICE
7

DICE
3

VDICF[nJv
V R+-DICE

[lJ R+-+/? 6 6
V

This is simply the sum of random roll of two dice. Notice in the header
that DICE has no arguments. It is a " n iladic" function, to use a coined
word. The reason for the lack of arguments is that the function really
doesn't need any. It is designed to select the numbers for the roll itself.

So far, we have seen three types of function headers, requiring 0, 1, or 2
arguments. They all return explicit results, i.e., a result that can be
used for subsequent computation. Now let's look at one that doesn't give
expl icit results, but merely prints them on the paper.

Display the function RECT:

VRECT[nJV
V L RFCT !l

[lJ 2xL+ll
[2J L HYP H
[3J LxH

V

The first thing that should hit your eye is that there is no +- in the header.
Line 1 gives the perimeter of a rectangle of length L and height H; 1ine 2
is the length of the diagonal, using the previously defined HYP; 1ine 3 is
the area of the rectangle.

Notice also that there is no specification arrow on any 1ine. This means
that the results of that 1ine aren't stored anywhere and will, as mentioned
above, be printed out on the paper.

For example:

3 RECT 4

14
5
12

The purpose of this function, as defined, is to give information, not for
further work:

5+3 RECT 4
14
5
12
VALUE ERROR

5+3 HF:CT 4
1\

74 APL \360: An Interactive Approach

Here the results of the function's three 1ines again print out because that
is done in the body of the function, but we can't add 5 to these results
because the numbers weren't stored anywhere, as in

5+3 TlYP 4
10

The two headers differ in that a specification is made in HYP and not in
RPCT, and in the body of RECT again there were no assignments of results
to any variables. We will have more to say about the significance of the
variables used in the header assignment and in the function itself in
chapter 13.

Now cons ide r the monad i c S TA T

VSTAT[UJV
v StAT X

[lJ ll++/X=X
[2J (+/X)+!V
[3J r/x
[4J L/X

V

Again there is no expl icit result imp1 ied in the header form, so the result
will be three 1 ines. The first two give us the average of the components
of X, and could actually be combined into one 1 ine. N is just a convenient
handle for transferring the results of 1ine 1 (which is the number of com­
ponents) to line 2. Lines 3 and 4 print out the largest and smallest com­
ponents of X. Executing STAT, we get

STAT 3 2 1 3 2 1
2
3
1

Since no expl icit results are returned, it doesn't make any sense to work
further with them. If we try it, we get an error message as before.

2xSTAT X
3.333333333 2.333333333 2.66C6666G7
634
021
VALUE F:RROR

2xSTAT X
1\

To complete the table, execute (but don't display) the function TIME

TI/1E
11:11:07 AM RASTERN

Obviously it doesn't need any arguments to give the time of day, and is
designed so that you can't do anything with it.

Another function of this type that you have already encountered is
EA8YDRILL in the workspace 1 APLCOURSE. This too required no arguments

The Syntax Of Functions 75

and	 returned no expl icit results. It typed out the answers and accepted
inputs, but you couldn't do any computations with them. Functions of this
type are commonly called main programs.

PROBLEMS

For problems 1 to 6 define functions as follows, having the stated charac­
teristics:

1.	 Dyadic, explicit result: to calculate the FICA (social security tax)
at the rate of P percent on gross yearly income IN up to a maximum of
$7800.

2.	 Dyadic, no expl icit result; to store under the name T the square of
the difference of two arguments.

3.	 Monadic, expl icit result: to generate prime numbers, using Fermat1s
formula,	 2N

2 + 1 (conventional notation).

4.	 Monadic, no explicit result: to calculate the ceil ing of X, using the
residue function.

5.	 Niladic, expl icit result: to produce four random numbers from 1 to 100.

6.	 Niladic, no expl icit result: to see if either one of two previously
defined variables divides the other evenly.

7.	 Enter the function fiY? (see page 72) and use it to evaluate each of
the f 0 11ow i ng :

(3 HYP 4) fiYP 3 HYP 1

4+3 lIYP 4-3

(4+3) fiYP 4-3

8.	 After executing the command)LOAD 1 CLASS, derive a dyadic function
called D which returns an expl icit result and gives the larger of the
two arguments. Explain the system's response.

9.	 Assume that you have a monadic function Ave that returns an explicit
resul t (there is one in 1 CLASS). Wri te a one-l ine APL express ion
which uses Ave to obtain the average of a vector of numbers X, stores
the result under the name A, and calculates and stores in F the 10 log
of A.

CHAPTER 12:

Function editing

Up to now we have been examining the different ways to enter functions on
the APL system, but have yet to consider how we might change a function
which has already been put in. Since we can't do much without the capa­
bil ity for such change, this chapter will be concerned with ways of editing
functions after they have been written and entered.

To speed things up, wei 11 use a prepared function in the workspace 1 CLASS.
Type)LOAD 1 CLASS~

)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

By way of review, let's look at what's in this workspace:

)FNS
ADD AGAIN AVG AVGl AVG2 AVG3 A VG4 A VC; 5
BASE C CMF CMPX CMPY COLCAT1 COLCA T2
COLCAT3 COS COSINE CP CPUTIME CP1 DEC
DELAY DESCRIBE DFT DICE E FACT
FACTLOOP GE02 GE03 HEXA HY IfYP
INSERT INV MEAN PI RECT REP REVERSF:
ROWCAT HUN S SD SETVARIABLES SIGN SORT
SPELL SQRT STAT STATISTICS SUB SUi\18CA N T I !,IE
TIMEFACT TRA TRACETI!1E

The function we will be demonstrating on is STAT. Remember how to display
it?

9STAT[OJv
V STAT X

[1 J N++/X=X
[2] (+/X)+N
[3] r/x
[4]	 L/X

9

It isn't possible to enter it or redefine it because we already have a copy
of it in our active workspace. Suppose we didn't know that it was already
in and tried to reenter it:

76

Function Editing 77

VSTAT X

DEFN ERROR

VSTAT X

An error message is obtained, showing, as was discussed earl ier on page 66,
that the system has built-in protection against accidental replacement of
a function.

But we can make changes in the function as already defined. This APL
feature is a necessity, for otherwise finding errors and debugging and modi­
fying programs would be considerably more difficult.

Adding aline

The four 1ines of the function, as presently written, give information on
the average and largest and smallest components of a vector X. Let's sup­
pose we've decided to add a fifth 1 ine which will give the range (difference
between the largest and sma1 lest components).

How is this done? The first step is to open up the function by typing a
single V and the function name, followed by the return key as usual:

VSTAT
[5]

Notice that the system responds with [5J. In general the next available
1ine number wi 11 be returned. It's as though we had just entered the
first four 1ines and are ready to continue our writing on the fifth 1ine.
This is one way, if somewhat sneaky, to find out, incidentally, how many
lines are in the function. Now type in

[5J (r/X)-L/X
[6J V

and the system has responded with a [6J, waiting for the next 1ine of
input. Since we don't want to add anything further, a closing V has been
typed in as a signal that we want to get out of function definition mode
and back into desk calculator mode.

Execution with a vector 291 gives us four 1 ines of output, the fourth 1 ine
being the range as we had intended:

STA T 2 9 1
4

9
1
8

If we now ask for the function to be displayed, we see that 1 ine 5 has
indeed been added:

78 APL \360: An Interactive Approach

\7 S TAT [[-J Jv
\7 STAT X

[lJ /'/+-+IX=X
[2J (+IX).;-!V
[3J fiX
[4J LIX
[5J <fIX)-L/X

V

Replacing aline with another 1ine

Also in the workspace 1 CLASS is a function called Ave which computes
the average of the components of an argument X. Letls change 1ine 2 of
STAT to AVe ·X. First weill check out AVe to see if it works:

A va 1 2 3

2

In order to replace 1ine 2, we need to open up the function as before by
typing

\JSTAT

Our response is [6J which can override by typing in a [2J as shown:

[6 J [2 J

After pressing the return key, the system repl ies with a [2J and we can now
enter A VG X:

[2 J A VG X

Since we donlt plan at this point to make any further changes on 1ine 3, a
del is used to close out the function:

[3J V

It should be emphasized that in making this change 1 ines 3, 4, and 5 are not
affected.

Here is an execution of STAT followed by a display of the revised function:

STAT 2 9 1

4

9

1
8

VSTATCnJv
V STAT X

[lJ N+-+IX=X
[2J Ilve X
[3J fiX
[4J LIX
[5J (f/X)-L/X

v

Function Editing 79

The change has gone through, leaving the rest of the function unaltered.

Inserting aline between two other 1 ines

Suppose we want to insert between 1ines 1 and 2 a statement whose purpose
is to return, i.e., print out, the original values of X. This can be
accomp1 ished in the fo1 lowing way. First open up the function and type
in some number in brackets, say [1.1J, after the response [6J:

VS'TA T
[6J [l.lJ

(Any number will do as long as it is between the numbers of the two 1ines
where the insertion is to be made.)

The system returns [1.1J and we can enter the single symbol X, which when
encountered during execution will cause a printout of X

[l.lJ X

Now ali s added by the sys tem to the 1as t place of the numbe r chosen for
the inserted 1ine to provide for still other entries between 1ines 1 and 2,
but since we don't want to close out the function just yet, let's ask
first for a display of what we have so far while vve1re still in function
definition mode, and then close it out:

[1.2J [[]JV
'7 STA T X

[1] N+-+IX=X
[1 . 1] X
[2] A VG X
[3] fiX
[4 J LIX
[5 J CfIX)-LIX

Your typeball should have moved over six spaces after this. If it does,
you are in desk calculator mode. If, however, a number in] was returned,
type V, followed by the return key.

Of course, aline numbered 1.1 is somewhat awkward, to say the least.
Fortunately, after the function is closed out, the steps are automatically
renumbered, as seen in the following display:

VSTAT[[]J

V STAT X

[1] N+-+IX=X
[2] X
[3] A VG X
[4 J f I X
[5] LIX
[6] Cf/X)-L/X

V
[7 J

80 APL \360: An Interactive Approach

and the renumbering has actually taken place. But since [7J was returned,
we are s til 1 i n fun c t ion de fin i t ion mod e . St r i kin g the ret urn ke y g i ve s
[7J again, and since there is to be no added entry at this time, we close
out the function:

[7J IJ

Now we are back in desk calculator mode.

Doing several things at once

In APL it is possible to put several of the editing instructions on a
sing 1eli ne. For ou r examp 1e we I 11 take 1 i ne 3, A VC X, change it back to
what it was originally, and then return to desk calculator mode. To do
this, type the following:

IJSTAT[3J(+IX)~NIJ

Typing [3J gets control to 1ine 3, what fo1 lows it is the new 1ine 3, and
the second V closes it out after the change. We can check this with a
display of the function in the usual manner:

vSTAT [r-j J \l
IJ STAT X

[1 J N+-+IX=X
[2 J X
[3 J (+IX)~N

[4 J fiX
[5 J LIX
[6 J CfIX)-LIX

V

Getting rid of aline

How do we remove aline completely? For example, suppose we want to get
rid of 1ine 4. As usual, we first open up the function and direct control
to 1 i ne 4:

\lSTAT[4J

The computer responds with a [4J and in effect asks us what we intend to
do with line 4. Pressing the ATTN button, followed by the return key, is
the only combination that wi 11 delete aline. Again, as you have already
seen, !J.PL makes it difficult to destroy things once entered.

[4 J
v

Next [5J is returned, and now we ask for a display of the function, but
without closing it out:

Function Editing 81

[5J [[JJ

v STAT X

[lJ ll++/X=X
[2J X
[3J (+/X)~N

[5J L/x
[6J (r/x)-L/x

v

Notice that 1 ine 4 has been deleted. The response continues with a [7J,
but since we have nothing more to add, let's close it out:

[7J V

The 1 ines are now renumbered, as can be seen if the function is once more
displayed:

\7STAT[[lJ\7
\7 STAT X

[1 J N+-+/X=X
[2 J X
[3 J (+/X)~N

[4 J L/X
[5 J (r/X)-L/X

\7

Just remember that if the number of dels ~ (not the system) have typed
is even, you are in desk calculator mode; if odd, you are in function
definition mode.

Displaying only part of a function

Thus far, we have asked for the entire function to be displayed. What if
the function is a long one and we are interested only in a single 1 ine,
say 4? The display command for this is very similar:

\7 S 1 A T [411] \7

[4J L/X

If there had been no second del, 1 ine 4 would have been displayed and then
the system would ask us what, if anything, we wanted to do with it by return­
ing a [4J again:

\7STAT[4[JJ
[4J L/X
[,4 J

and now we can close out the function:

[4J V

By now you should be getting the idea that the quad 0 is used to display
things. Fancifully speaking, you might think of it as a window to see what1s
going on inside the function. Just remember

82 AP L \360: An Interactive Approach

[r-1 J displays everything
[4[]] displays a particular 1ine, here 4

Here is another useful variation which wi 11 display all 1ines from the
number specified on:

VSTATC03J
[3 J r/ X
[4] L / X
[4 J \J

But what if the function has fifty 1ines and you want 1 ines 5, 6, and 7
only? The way to display only these 1ines is to ask, as above, for lines 5
on to be displayed and let the terminal run on until you want it to stop.
Pressing the ATTN button (on most terminals) activates and interrupt feature
that will stop the display. If your terminal doesn't have this feature,
you may either let the display run on until the end or use the following
procedure:

(1) Lift up receiver of Dataset
(2) Depress TALK button for a few seconds
(3) Depress DATA button and replace receiver

However, note that unless the original display command was closed with a
del, you wi 11 sti 11 be in function definition mode after interrupting.
Plan your next step accordingly.

Detailed editing of part of aline

Getting into more specific and limited changes, let's start over again
from the beg inn i ng . Loa d a f res h cop y 0 f 1 CLAS S :

)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

As has been discussed previously, this wipes out what was in our active
workspace and replaces it with an exact image of the workspace loaded.

Now display STAT, but without closing out the function:

vSTAT[r-] J
\] ST;1T X

[1J l,]++/X=X
[2J (+/X)-;-N
[3J [/X
[4J L/X

[5]

It is again in its original form, and the system is waiting for us to add
something on line 5.

Up to now we have made changes involving entire 1ines. But suppose a line
is very long and comp1 icated, and our change is to involve only a few
characters without having to type the rest of the 1ine over and quite possi­
bly make a mistake. For example, say weld like to change the letter N to

v

Function Editing 83

COUNT	 in lines 1 and 2 of STAT.

In this case, obviously, we could type both 1ines over since they are quite
s h0 r t . Howe ve r , i t will be mo rei ns t r uc t ivet 0 use the de t ail e d e d i tin g
capab i 1 it i es of A PL to make the changes.

We1re still in function definition mode, since when we press the return
key we get

[5 J

To di rect the typeball to specific characters that need revising, what we
type in has the following format:

[1 ine number 0 estimate of what print position
the first change occurs]

In this case wei 11 del iberately make the typeball space over twenty po­
sitions (from the margin) and then backspace manually to the N to show that
our estimate doesn't have to be accurate:

[5J	 [1[J20]

The system wi 11 respond by displaying 1 ine 1 and then position the typeball
twenty spaces over on the next line:

[lJ	 N++/X=X
@

(typeball comes to rest in the position indicated by @)

We wish to strike out the letter N. For this, the slash (same symbol as
reduction) is used. COUNT has five characters for which space needs to be
provided. To be sure that we get enough space we type 8 after the slash as
shown, once we have manually backspaced the typeball under the N. This
inserts eight spaces just prior to the character (here +) above the number
typed:

[lJ	 N++/X=X
/8

After striking the return key the system responds as fol lows:

[1 J ++/X=X

and we	 can type COUNT in the space provided:

[1]	 COUNT ++/X=X

Having made this change we are asked if we want to do anything with 1ine 2.
Before doing anything else, display 1 ine 1:

[2J [ll]J
[lJ COUNT++/X=X
[1 J

N is gone and COUNT has been inserted.

84	 APL \360: An Interactive Approach

Now directing control to the eighth position on 1 ine 2, we can go through
the same procedure to insert COUNT at the end of the 1 ine. Eight spaces
happen to be too few in this case, so wei 11 have to use the spacebar to
move the typebal1 over some more after it comes to rest in the eighth
position:

[1 J [2 r-l8]
[2J (+/X)~N

/
[2J (+/X)~COUNT

[3 J V

Displaying the entire revised function, we see that the changes have been
made:

\7STAT[OJV
\7 STAT X

[1 J COUNT++/X=X
[2] (+IX)fCOUNT
[3] fiX
[4J	 L/X

V

Finally, for the sake of completeness, we include again the system command
which deletes an entire function from the active workspace:

)ERASE STAT

The response to a successful "erasure" is the typebal1 moving over 6
spaces. If we now try to display it, we get an error message:

\7STAT[UJv
DEFN RRROR

\7STAT
1\

Can you think of a way to get STAT back in without typing it?

Review

Here	 is a summary of the editing capabil ities of APL:

\7FN open fn, control directed to first available 1ine
VFLV[3] open fn, control directed to 1ine 3
'lFll[3DJ open fn, display 1 ine 3, control directed to line 3
'lFN[OJ open fn, display all lines, control directed to first avail.

1 i ne
VFN[03] open fn, display 1 ine 3 and all following, control directed

to first available line
'lFN[3Dl0J open fn, detailed editing at print position 10 of line 3
VFN[3J ATTN RETURN delete 1ine 3
VFN[3JX+2+AV open fn, rewrite line 3 as shown, close fn
'l FLV [OJ V dis play f n on 1y
)ERASE FN delete fn from active workspace

Function Editing 85

One last point. In our discussion of the function editing capabilities of
APL we have neglected the header. It is possible to change the header it ­
self in exactly the same way as any 1ine by using [oJ as the 1ine number:

vSTAT[On]
[0] STAT X

[0 J STA tE X

[1] v

vSTAT[[]]IJ

DEFN FRROH
IJSTAT

1\

and si nce STAT has been renamed STATE, we get an error message when we
call for STAT, which no longer exists. Just remember that any changes in
the header must be consistent with what is in the body of the function it ­
self, unless, of course, the corresponding changes are made in the rest of
the function too.

PROBLEMS

Execute) LOA DieLAS San den t e r the f 0 11ow i ng prog ram to cal c u1ate the

standard deviation of a set of numbers (see problem 6, chapter 10):

v STFJ !/

[lJ H+-AVG N

[2 J 1[+-/[- N

[3J i?+-AVG R*2

[4J ANS+-R*O.5

v

1.	 Display the function and direct control to line 5.

2.	 Use detai led edi ting to change ANS on 1ine 4 to R.

3.	 Edit the header to return an exp1 icit result R.

4.	 E1 iminate 1ine 2.

5.	 Display the function and remain in function definition mode.

6.	 Change line 3 to R+-AVG (R-N)*2,

7.	 Display 1 ines 3 and 4.

8.	 Close out the function

9.	 Use a single expression to open up the function again and reinsert the
former contents of 1ine 2.

10.	 Change 1ine 3 back to its original form with detailed editing.

11.	 Insert just prior to line 1 a command that will print out the number
of elements in N.

12.	 Delete the function from the active workspace.

C HAP T E R 13:

Types of variables

Up to now all the variables that we have encountered have been considered
by us to be alike in their behavior. In this chapter we will see that this
isn't quite true, and that APL. has two very useful built-in features. One
of these provides protection for variables against their being accidentally
respecified as a result of a function execution, while the other enables
the same variable names to be used repeatedly in different functions without
the possibi 1ity of their being confused.

Inth e wo r kspa ce 1 CLASS, wh i ch you s h0 u 1d nOltJ loa d ,

)LOAIJ 1 CLASS
SAVED 15.02.39 07/29/59

there are five functions, AVG1-AVG5 , which are quite simi lar and which are
all used to calculate averages. It is the small but significant differences
between them that we are going to explore now.

Dummy variables

First displayAVGl

V'AVG1[[]JV'
V' R+A VGl X

[1J N++/X=X
[2J R+(+/X)fH

V'

From the appearance of the header it is a monadic function that returns an
expl icit result. The first line calculates the number of components in X
and stores that value in N, while the second divides the sum of the com­
ponents by N and stores it in R for printing out as the average when the
function is executed.

Let's give X and N values:

X+-21.7
l/+J.1415

86

Types Of Variables 87

and now calculate

AVGl 2 1 2 1 2 1
1 • 5

On checking what's in X and N, we get

x
21 .7

lJ
6

Somethinq seems to be wrong here. We put in 3.1415 for N and got back 6,
while X was set at -21.7. The function AVG1 calculated the average
not of that X (which would have been -21.7 since there is only one com­
ponent) but of another X, 2 1 2 1 2 1, in the argument of the header.
According to what was presented in an earl ier chapter, the latest value of
X is supposed to supersede a previous value. So why didn't we get
2 1 2 1 2 1 when we called for X?

To make a start on some answers to these questions, look at the function
header. There is an X in it as the argument. Apparently this isn't the
same variable as the X we set before (-21.7), even though the symbols are
the same. When we executed this function for 2 1 2 1 2 1, for the time
being X inside the function must have had the value 2 1 2 1 2 1. The
X outside (-21.7) was not affected, since we were able to retrieve it
afterwards unaltered.

Still confused? It isn't as bad as it looks, because part of the trouble
was due to our use of the same letter to represent two distinctly different
types of variables, as we shall see shortly. In the meantime, let's try to
come up with a set of rules governing the behavior of variables in this and
similar situations.

First, the variables used in the argument and resultant of the header are
in a very real sense "d ummy" variables. This means that they have values
assigned to them only inside the function itself, and we can find out what
these values are only when we ourselves are inside the function, i.e., when
execution is suspended part way through because we interrupted it or because
of an error.

To illustrate the point further, imagine we have a function

'V Z+-A FN G
[lJ Z+-A+G
[2J 'V

And we call for 3 FN 4 to be executed:

3 FN 4
7

After execution, if we ask for A and G, we still get value errors:

A
VALUlJ' FRl?OR

A
A

88 AP L \ 360: An Interactive Approach

G
VALUr; ERROR

G
1\

A and G no longer exist! However, now let's set A as, say, 1 and G as 2,
and then call for A and G after execution:

A+-l
G+-2
3 Fi/ 4

7

A
1

G
2

We still donlt get the 3 and 4 which were the arguments.

These values 3 and 4 were set as soon as we typed 3 FN 4 and are available
until execution is finished, at which time they are relegated to 1 imbo.
Thus, calling for A and G after execution gives us as always the last set
values of the variables, namely, 1 and 2, that the system has a record of.

Of cou rse, if we we re to execu te 1 FN 2 and then ca 11 for A and G, we wou 1d
indeed get 1 and 2. But this would be purely coincidental because our
dummy variables in the function header happened to have the same set of
values as A and G before execution was cal led for. So just as with our
two XiS inAVG1, the two A's and G's aren't really the same, in spite of
the fact that the same characters are used for both.

It should be dawning on you by this time that it ought not to make any
difference what variables we put in for the arguments of FN. They serve
only to indicate that two arguments are called for, and in this sense
they act very much 1 ike the O's in a number of the form .00032. All the OIS

do is fi 11 up space, but you need them to read the number correctly. This
is why the arguments associated with the function name are called dummy
variables.

One point by way of clarification here. Suppose we set

X+-l 2 3

and execute

AVGl X
2

How come? In executing the function, the system encountered the argument X
(which is sti 11 a dummy variable in the header), searched its memory for a
value for X, found the most recent assignment, 1 2 3, and then executed
AVG1. This shows that we have a choice as to whether we wish to give
values to the arguments at the time of execution or before. In either case,
it is the most recently set value that is used.

Call ing for the preset'X after execution shows that it hasn't been affected,
nor is it changed when we reexecute A VGl for another set of va 1ues:

Types Of Variables 89

X
1 2 3

A VGl 3 4 5

4

X
123

In a simi lar manner the resultant Z has no value before execution (unless
we del iberately set it). It acquires a unique value during execution as
soon as we get to that part of the function which determines what Z will be:

Z
VALUE ERROR

Z
1\

There should, of course, be such a place if we've written the function
meaningfully. As in the case of the arguments, once execution is finished,
the value is lost.

Global variables

Now (at last!) getting back to our original function AVG1. We have
answered the question of why call ing for X returned the preset value 21.7
but what about N?

Notice that N, contrasted with X, doesn't appear in the header, but only in
the body of the function. Lacking any instructions from us to the contrary,
it ought to behave the same way all of our variables had been behaving up
to the point where we started to get involved in function definition. that
is to say, whenever the system encounters an instruction respecifying a
variable whose value has been previously set, it changes that value ac­
cordingly. In our case, N was originally set at 3.1415, but as execution
proceeded it was reset at 6 as a result of the instructions contained in
1 i ne 1.

Such variables as N and the X which was preset at ~21 .7, since they
retain their original values in APL for all time in the workspace in which
they appear, unti 1, of course, they are respecified or deleted, are
appropriately called Ilglobal" variables.

Local variables

Let's look at another way in which variables can be used in function defini­
tion. For this display AVG2:

VA l'G2 r~J JV
V R+A VG2 X ;iJ

[lJ N++/X=X
[21 R+(+/X)-"U

\}

This time something new has been added-a variable N in the header preceded
by a semicolon. When a variable is used in the header in this fashion, it

90 APL \360: An Interactive Approach

is said to be a "local" variable, whose values are to be set and used only
within the function itself, and behaving much 1ike the dummy variables we
discussed before. In order to restore the values of the variables to what
they were before we first executed AVC1 for comparison purposes, wei 11 have
to reset X and N:

X+--21.7
N+-4.6

Us i ng the same a rgumen t as before, 1et I s execute A VG 2 and then ca 11 fo r
X and N:

A VC 2 2 1 2 1 2 1
1 .5

x
21 • 7

1/
L+ • 6

As you might have expected, X hasn't changed, but this time N also returns
the original value set when we made it a global variable. The instructions
for N on line 1 now refer to a different N, the local variable at the right
of the header, it being only an accident of choice that we used the same
symbol for both a local and a global variable.

It should now be clear that the APL system has the ability to keep straight
its records of variables used in these different ways. This is fortunate
for us because we may have used the same variable name previously for some­
thing entirely different and want to preserve it. To prevent accidental
respecifying of the variable, it would seem wise to make it local by put­
tin 9 i tin the he ade r pre ce de d by a se rT I i co 10 n . I f mo rethan on e va ria b1e i s
to be so local ized, they can be strung out, separated from each other and
the rest of the header by semicolons.

A VC3, dis p1aye d below, has a 10 cal va ria b1ePa ndis ani 1ad i c fun c t ion
returning an exp1 icit result:

VAVG3[[JJV
V R+-A TlC3;P

[11 P+-+/X=X
[2J R+(+/X)+P

V

Execut i ng A VC3 , v-Je get

AVC3
21.7

x
21 • 7

By this time you ought to be able to figure out for yourself why the result
-21.7 was returned. (HINT: is X a local, global or dummy variable?)
Resetting X and executing AVG3 again:

Types of Variables 91

X~2 1 2 1 2 1
A VG3

1 • 5

Clearly the X being averaged is from the most recent assignment.

Global variables as counters

AVC4 adds a new twist:

\7AVG4[UJ\7
\7 R~A VC4 X

[ll R~(+/X)f+/X=X

[2J COUll~ry~COUi'lT+1

\j

This function is intended to illustrate a practical use for a global
variable, and is designed so that each time it is used a counter (called
COUNT) goes up by one. Thus, a record can be kept of the total number of
times the function is executed.

Here is an execution ofAVG4:

AVG4 2 1 2 1 2 1
VALUE ERROR
AVG4[2] CQUNT+CQUNT+l

1\

Why do we get an error message? If you think about it, you will see that
we goofed and failed to specify the initial value of COUNT. So naturally
the system didnlt know where to start counting and was unable to execute
1ine 2. This is confirmed by asking for the value of COUNT:

COUi/T
VALUE L'RROI?

COUIlT
1\

Setting COUNT to 0 and reexecuting AVG4 twice, we get

C()UllT~O

AVG4 2 1 2 1 2 1
1 .5

COUNT
1

A VG4 5 4 3 2 1
3

COUilT
2

counT now behaves as we had intended. It is a global variable because it
doesn't appear in the header.

We are sti 11 plagued with our two XiS. One is a global variable with the
last set value (see page 90).

92 AP L \ 360: An Interactive Approach

X
2 1 2 1 2 1

while the other is a dummy variable in the header, which unfortunately
happened to be se t to the same va 1ue. Mora 1 of the s tory? As an A PL use r
with an enormous number of possible variable names at your disposal, there
isn ' t any real necessity to be in a rut and use the same few over and over
again.

Now dis p1ay A VGS:

VAVc;5[[J]V

'J R+AVGS X;COUil'T

[lJ H+(+/X)~+/X=X

[2] CQUHT+CQUNT+l
\]

COUNT is a local variable in this monadic function. Executing AVeS:

A VG 5 2 3 2 3

VALUE ERROR
AVG5[2] COUNT+COUNT+l

1\

What's wrong? COUNT was set earlier to 0, so why the error message? True,
COUN71 was set, but as a global variable, and the set value can't be used
inA Vc; 5 because we sa idin the heade r tha t COUNT was 1oca 1. Th i s func t ion
just won't work.

We could consider putting in aline before 1 ine 1, setting COUNT to O.
But each time we execute it, the local variable COUNT wi 11 be reset to O.
It wi 11 never get beyond 1, and furthermore, since it's local, all trace
of it is lost once we exit the function.

This means that if we have a global variable (name not in the header), we
can reset it from within the function and obtain its last value, as in
AVG4. If we make it local by preceding it with a semicolon in the header,
there is no chance for confusion or destruction of values set previously.
However, it is not possible to use a subfunction by the same name as a local
variable. For example, if COUNT were also a function, we couldn't ask for
it to be executed in AVGS and still retain COUNT as a local variable.

Here is a good place to remind you how to keep track of all the global
variables in your active workspace,)VARS, which will give you a listing
of all the current variables which have been set.

Suspended functions

One last point. We had a couple of runs that resulted in functions being
suspended at some point in their execution. We can find out what functions
are suspended and where by the system commands

Types Of Variables 93

)81
AVG5[2] *
AVGL+[2] *

)S1V

AVG5[2] * l? x COUll'iC)

AVG4[2] * R X

51 stands for Ilstate indicator" and the commands tell which functions are
suspended (*) and on what step. The most recent suspension is 1isted first.
If the * is missing, it means that the function is held up because of a
suspension elsewhere, as would be the case if we were to invent a function
AVG6 VJhich used AVGS in one of its instructions. Call ing then forAVGE)
wou 1d cau seA VG6 toexecuteon 1y tot he poi n t where 11 VGS , wh i chi sin sus­
pension, is needed. AVC6 would then appear on the list under)51, but
without the star, indicating that AVG6 is held up in execution pending
clearing up of the suspension of the function AVGS. The command)8.IV
gives the same information as)51 but adds the variables appearing in
the header as local or dummy.

It isn ' t good practice to leave many functions suspended, since this
clutters up the avai lable space. They should be removed as soon as possible
from the suspended state. To show how the 1ist grows, let's execute AVGS
again:

A VG 5 7 4 2 4
VALUE ERROR
AVG5[21 CDUllT+CQUllT+l

1\

)51
AVGS[21 *
AVG5[2] *
AVC Lt[21 *

Each time a function is suspended, yOU should find out what's wrong. For
the time being without further explanation, the instructions ~o or simply ~

-+0

4 .25

will exit you from the most recently suspended function. The result shown,
incidentally, is the average from the last computation. Looking at our
1ist again,

)51
AVG5[2] *
AVG4[2] *

we exit from the next suspended function and continue this until the
command)51 yields a 1ist with no functions in it:

-+0
2 • S

)51
/lVG4[2] *

94	 APL \360: An Interactive Approach

-+

(no	 result prints out with this command)
)SI
(typeball moves over six spaces)

Of course any future executions of AVGS will build up our 1ist again:

A VG 5 4 2 1
VALUE L1RHOR
AVG5[2] COUNT+COUNT+1

1\

)SI
AVG5[2] *

-+0
2.333333333

)SI
(typeba1l moves over six spaces)

PROBLEMS

1.	 Execute the command)LOAD 1 CLASS

(A)	 Specify a global variable C+S3 78 90

Account for the result.

(B)	 En t e r the f 0 11ow i ng fun c t i on F:

vp

[lJ Z+(A*2)+B*2

[2J Z+Z*.SV

After specifying values for A and B, execute T+F+7 and
T+Z+7. Explain your results.

2.	 Below are several defined functions. Execute the command following each
and give the values of the variables. Reset these variables to their
initial values before each function is executed:

R B C S
3 2 5 1

gPERIMl 'VR+B PERIM2 C 'VR+PERIM3 C
[1 J R+2xB+Cg [1 J R+2xB+C'V [lJ R+2xB+Cg

PERIM1	 S+M PERIM2 R S+PERIM3 R

3.	 Redefine the second function of problem 2 to include a local variable
P in the header. Make 1ine 1 the sum of Band C, the result to be
stored in P. The second 1ine is to finish the algorithm for the
perimeter.

C HAP T E R 14:

Workspace movement

In the previous chapters all the work you placed in storage, both variables
and defined functions, was lost when you signed off. The only recoverable
work was in 1 CLASS and in 1 APLCOURSE. And the only reason we could
still access it was that when we loaded one of these workspaces into our
own active workspace, we were actually taking an exact copy of the original,
not the original itself. Although we lost the copy in signing off, we
could always obtain another in the same manner.

Clearly we need to know how to preserve what we1ve done for posterity. In
this chapter, therefore, we will go through a series of exercises designed
to show how workspaces can be manipulated by the Ap·L user. In order to
insure continuity, repeat the entire sequence of commands exactly as they
are given.

Workspace contents

We wi 11 start off by typing

)CLEAR
CLEAR JiS

As we pointed out earl ier (page 64), this is one of a fami ly of so-cal led
system commands, 1 ike the sign-on and sign-off. It has the effect of wiping
out all the work done in the active workspace and replacing it with a
clean workspace, such as is obtained at the sign-on. Remember that the
active workspace is the one that you have currently available to you, in
which all your work is now being done.

To show that this workspace is now empty as a result of the CLEAR command,
we can use the commands

) FilS
(in both cases the typeball moves over six spaces

) VARS after return, but prints nothing)

and we see there isn't anything in the active workspace.

Since we are going to save some work later, wei 11 need to put something
tangible into it. For this, let's enter the function lIYP

95

96 APL \360: An Interactive Approach

VH+-A llYP B

[1 -J l?+- ((A * 2) +B * 2) * . 5

[2] v

Our 1isting of functions now shows

) FIlS
HYP

Let's add a couple of variables:

PI~-3 .14159

V+-1 2 3 4 5

and the command

) VARS
PI V

now shows that PI and V are in storage.

For a second funct i on, enter TOSS:

\JTOSS
[lJ ?2V

and another 1isting of functions

)Fl/S
flYP TOSS

confi rms that TOSS has been added.

Saving and recovering a workspace

We could continue entering material and checking on it for quite a while,
~ut for purposes of illustration 1et ' s pretend that we are through with our
work at this point and want to preserve these functions and variables.

The sys tem command SA VE does th is. Howeve r, since use rs a re norma 11 y
assigned more than one workspace, even though only one is being used at
anyone time, we have to assign a name to the workspace we are saving. This
iss 0 t hat wei l 1 know what to ask for when we cal 1 for itaga in. A P L re cog­
nizes only the first eleven characters of a workspace name.

For the work previously entered wei 11 use the name FIRST:

)SAV2 FIRST
1~.52.19 03/20/70

We get a message back giving the time and date. This means that the SAVE
was successful and a copy of the workspace is now in storage under the
name PIRST. The workspace name, incidentally, may be fo1 lowed by a colon
and lock for greater protection if desired.

There is a command which 1ists all the saved workspaces so that we know

Workspace Movement 97

what we have in our own I1PL 1ibrary ("l ibrary" in APL refers to a
collection of workspaces associated with a single identification number).
The command is

)£IB

FIRST

Only one workspace is 1isted because that's all we have saved so far.
)FNS shows t hat HYPand TO SS are s til 1 a r ou nd :

)FNS
HYP TOSS

Remember we saved a copy of the active workspace. Let's now get a fresh
workspace:

)CLEAR

CLEAR f/8

Imagine that it is the fol lowing day and we are ready to do some work with
HYP and TOSS. They were lost from the active workspace when we cleared,
but there is an exact copy stored in our 1ibrary under the name FIRST.. To
recover this copy, execute the command

)LOAD FIRST
SAVED 15.52.19 03/20/70

If a lock was originally associated with the name when it was saved, it
must be included here, separated from the name by a colon. The response
indicates that it was saved at a certain time and date, which, you wi 11
note, is identical with what appears under the original SAVE command
on page 96.

Our functions and variables are avai lable to us once again:

) FIlS
HYP TOSS

) VAR$
PI V

Here1s a check on V to see whether it's still what it1s supposed to be:

V
1 2 3 4 5

Often it is the case that we have work to be saved in more than one workspace.
How do we go about this? To illustrate the procedure, type

)CLEAR
CLEAR fiS

and enter the funct ion SQRT

'lR+80RT X
[1] R+X*.5'1

98 APL \360: An Interactive Approach

This function, which is the only object in our active workspace at the
moment, wei 11 save under the name SECOND:

)SAVE SECOND
15.55.10 03/20/70

Before going on, let's be sure we understand what we have immediate access
to at this point, namely a single workspace with only the function SQRT in
it, a copy of which exists also in storage under the name SECOND:

)FNS
SQRT

If we want to access FIRS? now, we must execute

) LOAD FIRS .J.1r

SAVED 15.52.19 03/20/70

and we see that HYP and 7!OS8 are back in the active workspace:

) F.:!D
iiYP ';.10SS

Now wei 11 load SECOND (we doni t need to clear between loadings because
the act of loading replaces the contents of the active workspace with a
copy of the material in the workspace being loaded):

)LOAD SECOND
SAVRD 15.55.10 03/20/70

) FIlS
SORT

It should be obvious to you that we can access only one workspace at a time.

Letls save sti 11 another workspace under the name THIRD. This time,
just to be different, weill clear and load 1 CLASS:

)CLRAH
CL~"1AR US

)LOAD 1 CLASS
SAV~D 15.02.39 07/29/59

Here is a 1ist of functions:

) FilS
ADD AGAIN A VG A VGl A VG2 A VG3 A VG4 A VG5
iJASE C C!~1P CMPX CMPY COLCATl COLCAT2
COLCAT3 COS COSIilE CP CPUTIf.1E CP1 DEC

and we have cut off the printout by pressing the ATTN button because the
1ist is too lengthy. The contents of 1 CLASS (or perhaps we should be more
prec i se and say a copy of the con ten ts) wi 11 now be saved unde r 'I'll IR 1) :

)DA VE rpiiIRD
15.58.2703/20/70

Workspace Movement 99

Our 1isting of saved workspaces has grown:

)LIB
FIR8T
SECOND
~'llIi?D

Let's clear again, define a couple of variables, and save them in FOURTH:

)CLEAR
CLEAR IlS

X+4 6 8 10
Y+2 5 8
)SA VE FOURTH

nOT SAVED, WS QUOTA USED UP

The system tells us, in effect, that we have only three workspaces a1 lotted
to us and they are used up, so we're out of luck. Actually, it is possible
to have more workspaces assigned, but this is a decision which depends on
the configuration of the particular APL system being used and the amount
of avai lab1e storage.

Dropping a saved workspace

If X and Y were really some big functions or tables of data and we wanted
desperately to save them, then our question is: Which of the three work­
spaces in our 1ibrary can we afford to sacrifice? Again look at the 1ist:

)LI13
FIRST
SECOND
'.l.'liIRD

Assuming we don't need THIRD, let's try to save X and Y, which are still
in the active workspace, in THIRD:

)8A VE TllIRD
dOT SA VRD, TilIS l/8 IS CLij~AJ? fl8

We are prevented from saving it in THIRD because a stored workspace can't
be named CLI~~AR US, and again APL keeps you from destroying a workspace
that was previously saved by replacing it with another workspace under the
same name. As weill soon see, there is a way to add X and Y to THIRD with­
out destroying what is already there.

Suppose we really wanted to get rid of THIRD. The command

)DROP THIRD
16.01.03 03/20/70

does this, the response giving the time and day when the workspace was
dropped. THIRD is now gone, as shown by

100 APL \360: An Interactive Approach

)LIB
FIRST
SECOND

In the active workspace we have no functions but still the two variables
X and Y:

)Fi'lS
(typeball moves over six spaces)
) VAR8

X Y

which shouldn ' t surprise us, since we haven't done anything to the active
workspace yet. Now that an avai lab1e slot exists, let's save these variables
in a workspace simply cal led XY for the sake of variety:

)8AVE XY
16.01.34 03/20/70

)LI13
FIRST
SECOND
Xy

and XY is added to our 1ibrary.

Altering a saved workspace

What if we wanted to save X and Y into FIRST? See what happens when we
try this:

)SAVE FIRST
NOT SAVED, TllIS WS IS XY

What this means is that the contents of our active workspace have already
been saved under the name XY and therefore can't be saved also under the
name FIRST. In order to save the material in the active workspace into
FIRST we wou 1d have to drop FIR8T, and then save the ac t i ve workspace
unde r the name FII? ST aga in. La te r we'll see how the cn p Y command can
be used to merge two workspaces.

Another way to change the status of a saved workspace is illustrated by
the fol lowing sequence:

)LOAD FIRST
SAVED 15.52.19 03/20/70

It currently has

) FilS
ilYP TOSS

Let's defi ne the funct ion DIGil

'JR+-8IGlJ X
[lJ R+-eX>O)-x<O'J

Workspace Movement 101

Now our list includes the new function:

) FilS

HYP SIeN TOSS

Here is what happens when we try to save this into RECOND:

)SAVE Si~COl/D

~OT SAVED, TilIS WS IS FIRST

We are again prevented from doing so because the active workspace contains

FIRST, and we already have a workspace named SECOUD in storage, but not

in the active workspace.

We can, however, save into FIRST, since a copy of FIRSI' exists in the

active workspace:

)SAVD FIRST
15.04.07 03/20/70

PIR~T is now updated. This can be shown by clearing and reloading it:

)CLEAR
CLEAR f/S

)FllS
(typeball moves over six spaces)
)LOAD PIRST

SAVED 16.04.07 03/20/70
) FilS

ilYP SIGN TOSS

Notice that the time and day given after the LOAD command is that associated
with the most recent save.

Our library, once more, consists of

)LIB
FIRST
SECOND
XY

but the contents of FIRST are not the same as when we last 1isted the
workspace functions on page 100.

Summarizing, we can (1) preserve all storable material in the active workspace
by saving it; (2) recall material from a saved workspace into the active
workspace just as it was when it was last saved; and (3) delete a workspace
with the DROP command.

PROBLEMS

Carry out the following instructions and APL system commands in the order
given:

Define a number of arbitrary functions and variables.

102 AP L \ 360: An Interactive Approach

)5'A FE IIOHKOiiE
)CLEAR

Repeat these instructions several times until your workspace quota is
used up. Use wo r kspace name s fl0RKT f/O , f/ 0 RKT l/REE , etc.,

)LIl5

How many workspaces can you save in your APL system?

)lJROP [IORKONE
)LIB

)LOAD fiORKTilRRE

)F118

) VAHS

Define additional functions and variables.

) S J1 VF: rl0 RK T TJ 0

Why wasn1t the material saved?

)8A VE fiORKTlIRr;E
)CLEAR

)LOAD f/ORKTHREE

)FHS

) VARS

Has WORKTHREE been up d?

Delete several functions and variables from WORKTHREE.

)ERASE FH1 FN2 V1 V2 •••
) SA Vr:

)LIB

)FN8

) VARS

CHAPTER 15:

Library management

In the last chapter you learned how to save, drop, and load material in
the active workspace. The command LIa was introduced as a means of getting
a 1 isting of the saved workspaces in your personal APL 1ibrary.

Let's see if the material from before is still there:

)LIH
FIRST
SECO/JiJ
X.Y

We won l t be needing the contents of these workspaces any more, but actually
the command is a very useful one. Someone else may have saved workspaces
in his library with the same names as yours, but there is no confusion
whatever, since each person's workspaces are associated with his own user
identification number. This leads us to an important feature of APL, the
common or publ ic 1ibraries, to be discussed in the next section.

Publ ic 1ibraries

What about this 1 CLAS~ we1ve been loading all along? Library 1 on the
system on which this text is based is a publ ic library, avai lable to all
users. To find out what saved workspaces are in this library, type

)LIB 1
CATALOr;
MI II II-fA
;""SFdS
TYPiT7/)HI LL
PLOTFORl1A7.'
!JE'llS
CLASS
APLCOURSI:
AlJVAUCEDEX

Your 1ist may differ somewhat from this because the 1 ibrary contents aren't
static and change from time to time. Notice that C'LASS is in there.
Ordinari ly, individual APL users cannot save material into a publ ic 1 ibrary

103

104 APL \360: An Interactive Approach

or drop someth i ng from it. I f you were to try to save 1 CLA88 you won It
be permitted to because yours wasn't the user number that saved it the first
time:

)8A VE 1 CLASS
IMPROPER LIBRARY REFERENCE

The rules for so doing depend on the APL system you are using, and
changes in the contents would most likely be made through the system
1i bra r ian, if the re is one.

Lib ra ry 1 isagen era 1 i n t ere s t 1i bra ry wh i chi sen t ire 1y pub 1i c-a t rue
system library whi le 1ibrary 10 is a special or 1imited interest library,
intended for developmental purposes. Later, in this chapter, we'll be
using some of the material from library 10.

Let's look at the contents of 1ibrary 10.

)LIB 10
POLAR
FUNCTIOIlS
f.1ATRIXALC
A LGFORt,j
PLOT
INVEST/,1ENTS
THIdKGAlJES
SftlIVEL
u.iosr :
GAf,1BLE
lJOCONTROD
8ilAPD
COGO
PORLORN
EDIT
SNOBOL
TEXT
TICTACTOR
LPAPL

These lists may seem meaningless to you, but there is a practical way to
find out what is in a strange workspace. As an example, type

)LOAD 1 NEJ:lS
SAVED 15.10.12 03/12/70

You have probably noticed that the load commands are slightly different
for one's own workspaces as compared to those in the public 1ibraries. As
a matter of fact, for any other 1ibrary than the user's, it is necessary to
include the library number. Except for publ ic libraries these would gener­
ally be the same as the number of the user with whom they are associated.
The complete command has the form

) LOA D LIB If O. viS IV Al1E : L 0 CK [i f requi re d]

The 1ibrary number can be omitted tor one's own 1ibrary.

Library Management 105

Having loaded the workspace HEWS, the best thing to do next is to get a
1ist of functions:

)FNS

APLllOc./ CLEAR CLEARSKED CREATE EDIT FILE FLF:

Ff,ITDT INDEX NJ POS POSITION POST,c;KFD

PRINT REr/ORK «v« SCHEDULE SETDATE SK!,'DllOTR

START TDATE PRYTEXT TXF

By convention, if there is a function that contains the word HOW or
DESCRIBE or something similar, then executing it will give information
on what is in the workspace. At this time there doesn ' t appear to be any
such function in NEWS, which means that the only way we can find out about
the s ynt ax and use 0 f a par tic u1a r fun c t ion inN E ~/8 i s to dis p 1ay itand
try to figure it out. Of course it may be obvious from the name what it is,
as inSCHE DUL E, vv h i ch g i ve sAPL s Ys t emin for ma t ion. This hap pen s to be
ni ladic, so we just type

S c.!EDULE

A IV ~~'1 I CI PAT 1:71) ctt» IlGE5 FR ()N T if E il 0 I?!-1A L SCI {E DUL E, 11 S oF ()3 / 1 2 :
o L+ / 0 5 (J 0 0 - 1 7 0 0

04/12 900 - 1700

04/19 900 - 1700

fl/lE ilOH/1AL SCflEDULE IS

/.ION-F'RI SAT OPER S YSTEl.f PI/ONES

9 : oOAn- 8: 1 oPt! 2291 Hl':S. APL 5001,5011,5051,5201,5211
5221,5231

t) : J OP1~jf- 5 : 0 Oil /.1 9-5 2291 RES. APL 5121,5128,5118,5119
G : L~ 5P /,1 - 1 0 : 0 0 P /.1 9-5 1810 BIG f.lS APL 5105,5131

.rcTiS: DURI1/G T j/ E DAY CAL L 1 4 0 2 FOR H E COl? DII/ G T F L L I LV c S '/7 11 jt7U .(7 () F

APL.

Another ni ladic function whose purpose is evident from the name is TDATE:

'TDATE
04/10/70

The syntax can l t often be determined from just looking at the function name,
but in this case a ni ladic header is the most reasonable one because no argu­
ments are needed. All we want is information.

Another workspace in library 1 is PLOTFORMAT. Let's take a look at it:

)LOAD 1 PLOTFORMAT
SAViSD 9.41.15 12/10/69

In it are

)FllS
AND DESCRIDE DFT EFT PLOT VS

106 APL \360: An Interactive Approach

There are a number of aids to plotting in this workspace. Since DESCRIBE
is in here, we' 11 execute it and display part of the contents:

DL'8CR IB2

T 11L" I,' 0 RKI II G FUl/ CT I 0 IISIN T jI I S J'/O!? K8 PAC EAR F: :

AND DFT EFT FLOiI' VS

~2ilE /lANES AND CO/,-1POSITIOil OF TIlE GROUPS IN TIllS UORK8PACr: ARF:

DFTGP: AND DFT

EFTGP: AND EFT

PLOTGP: AND PLOT VS

DESGP: DESCRIBE lIOr/FORl-fAT !JOT/PLOT

DDS C? CA II nE USED TO CO/V VEll IEur LX R RA 8 E T 11 D DE8 C!? I P (2T Vr: ,~,1 A ~nr!'T'J"!?

~'1 0 /'/A K E /10 l?E' ROO !1 I N '1."'1 1IE uo R KSPA CE • T jJ E o t : ERG R 0 UTJS C.11 1/ 13 F' [)/; R 1)

TO SELECTIVELY COpy THE I~DICATED FUNCTInus.

SYNTAX	 DFt;C R I PT IO!l

Z+A AUD B	 ESSE II T I ALL X A COL U/1N - C/1TEN A TOR, f/ I (/1 11 S nn ,"7 ",'J' X 7'h'A
EFFE.CTS f/lIEN .THE ARGUNEllTD ARE »c r /1/j T/nICI~-'S.

TIlIS FUNCTIOn IS DESI(;ilPD TO nE USED /J"I~'1j{:~'P

INDEPENDENTLY, OR IN CONJUnCTIOn ~ITJ VS.
TO(;ETHER t THEY PROVIDE A COl'lVENIFNj') f/AY OF FOR/l-
INC INPUT TO THE PLOT FUNCTION.

Z+A DFT 15	 FORl1S FIXED-POINT OUTPUT. !-lORE DFTAILRD DIi?F:C-

TID NseA N BE F0 U1"1 D I IV T 11 E VAR I A 13 L E ,'10fl POR [,1A I' .

The COpy command

We already know how to define the cosine and sine functions (see pages 56
and 57), but suppose we'd like to have the cosine function available in our
workspace called SF/CONDo There is one in CLASS, but we don't need the
whole workspace for this. Can we select just what we want and transfer it
fro«c), A"8 S to SEC0 ND ? The d i a g ram 0 nthe next page show s the sit ua t ion.

Each saved workspace may have many functions and variables. The active
workspace may get its contents by your having loaded a saved workspace
(your own or from another 1ibrary) as well, of course, as from what you
may be putting into storage yourself at the keyboard. In the diagram
the arrows show the paths by which material can be transferred to your
act i ve workspace by the LOAD and COpy commands, the 1atte r to be d i s­
cussed shortly.

Library Management 107

Other User Libraries

Your
LOAD

Active

Workspace
 COpy

SAVE! fLOAD & COPY
Public Libraries

Your
Library
of
Saved
WS

"" LOAD
COP~

FIRST

SECOND

I
I
I

P
L
o
T

F
o
R
M
A

T

N

E

W

S

Workspace and Information Transfer in APL

Now our problem is to take SECOND, which isn't exactly bursting at the
seams at the moment:

)LOAD SECOllD
SAVED 15.55.10 03/20/70

) FIlS
SQRr.2

and place the funct j on COS and an accurate va 1ue of PI (a 1so in CLASS)
in it.

The sequence of steps is not too compl icated. We first need to move
SECOND into the active workspace by loading it. We1ve done it already, but
there's no harm in doing it again:

)LOAD SEC()ND
SAVED 15.55.10 03/20/70

To add COS and PI, the COP Y command is used. The p rope r form is

)COpy LIB NO. WSNAME FNNAME

The response to a successful copy is the time and date that the workspace
from which the copy was taken was last saved. Specifically, for our problem:

)COpy 1 CLASS COS
SAVED 15.02.39 07/29/69

108 AP L \ 360: An Interactive Approach

and now

)FllS
COS SORT

cos has been added to the 1i st of funct ions in SEeOllD. Repeat i ng th i s
for PI:

)COpy 1 CLASS PI
SAVED 15.02.39 07/29/69

) FilS
COS PI SqRT

You might be tempted to think of PI as a variable with a specific value,
but the fact that it appears in the 1ist above shows clearly that it is
a function. Why make it a function? Suppose we happened to specify a
less accurate value:

PI+-3.1415
SYNTAX ERROR

PI+-3.1415
1\

and a syntax error is returned. We can't store a value under a function
name. Thus making it a function (it is niladic, returning an expl icit
result, as you can see if you display it) makes it difficult to destroy the
stored value of PI.

To save this new material into SECOIlD, type

)SA VE
15.45.23 03/20/70 S£COND

The system response gives the name of the active workspace to the contents
when none is specified.

This time, let's try to copy something that doesn't exist:

)COpy 1 CLASS SIR
OBJECT NOT FOUND

No copy is found.

If we were to try to copy something that already existed in our active
wor kspa ce, as, for ins tan ce, COS, we get the re s po nse show n :

)COpy 1 CLASS COS

SAVED 15.02.39 07/29/69

and the copy is successful. Having obtained COS from CLASS, the system
searches the active workspace to see if COS is in it. If it isn't, it is
entered. If it is, it is replaced by COS again. Clearly no protection is
needed in such a case, but if the COS function already in the active work­
space happened to be different from the one in CLASS, it would be replaced
by the latter.

Let's now bring some more things into the active workspace, as, for instance

Library Management 109

)COpy 1 PLOTFOHlJAT AllD
SAVED 9.41.1612/10/69

Now we have

) FilS
AND COS PI SQRT

This could be saved into SECOND if we so desi red. However, as we saw in
the last chapter, we are prohibited from saving into FIRST or XY, the other
two workspaces in our 1ibrary:

)LII3

FIRS'l'

SECOilD
Xy

All copying takes place in the active workspace. We cannot copy from one
saved workspace into another saved workspace unless the latter happens
to be in the active workspace at the time of copying. We must load the
saved workspace first, copy into it, then resave to update or enlarge it.
Thus, COpy follows the same paths for transfer of material between
workspaces as LOA]) (diagram, page 107). One final point. The COpy com­
mand is val id for all global objects. This means that global variables as
well as functions can be transferred in this manner.

The workspace COIlTIilf)E

There is one more workspace in the user's personal 1ibrary that needs
discuss ion. I t is called CONTINUE. I f you were to lose your telephone
connection with the APL system as a result of some local failure not
involving the central computer, everything in your active workspace will
automatically be avai lable to you when you sign back on. This is because
the system ~lunks the contents of your active workspace into a workspace
name d .CONTIN UErava i 1a b 1e to all use r s , and re loadsit a t the next s i gn­
on, as indicated by the response SAVED right after "APL\3GO.1 1

CONTINUE is really an extra workspace not part of the regular user
allotment, and can be used for emergencies if the other workspaces aren't
available. However, you have to be very careful with it. Each time there
is aline fai lure the contents of CONTINUE are replaced by whatever is
in the active workspace. So if you must, you can save work into CONTIl/UF,
since it is always available to you. But it isn't a wise move for long-term
storage because of the danger posed by the replacement of its contents
in the event of aline fai lure in the interim.

Summary of system commands

We have introduced and explained a number of system commands in the notes
thus far. For the convenience of the user these will be summarized and
classified. In addition, a few new commands will be included. These will
be explained briefly, but not illustrated. Their action should be evident
to the user from the discussion.

110 AP L \360: An Interactive Approach

The first category consists of

SIGN-ON AND -OFF COMMANDS

)U8ER no.	 signs on; lock optional; clear ws activated

unless previous connection broken, in which

cas e CON T I il UE i s loa de d

)OFP	 signs off; deletes active ws; terminates

phone connection

)OFF JIOLD	 same as)OFF but doesn ' t terminate phone
connection for 60 seconds so that another user
can sign on in that time

) COiITIi/UR	 signs off; active ws saved in COflTINUE
(same as what happens in case of a disconnect);
terminates phone connection

) COl/TIll Ut: llOLD	 s a me as) COlvT I il UE but ph0 ne co nne c t ion he 1d

fo r 60 seconds

In all sign-offs when the command is followed by a colon and a lock, the
lock wi 11 have to be included in subsequent sign-ons unless changed again.

A second category includes

COMMANDS CHANGING THE STATUS OF THE ACTIVE WORKSPACE

)CLEAR	 deletes everything in active ws
)LOALJ LIB NO. flSlvAf,1E	 moves image of ws to active ws; 1ib. no. not

needed for user's own ws; lock optional after

wsname

) COpy LIB NO. ~ISilAI,1E OBJ	 moves image of global object to active ws;
1 i b. no. not nee de d for use r "s own ws ; i f no
object name is given, all global objects
in the ws are copied; lock optional after
wsname

) PC 0 P Y L I IJ uO. FIS II A f.lE 0 BJ	 same as) COP Y but protects the ac t i ve ws
in case of name duplication
moves image of active ws into user's 1ibrary;
lock optional after wsname; omitting wsname
saves active ws under name of last ws loaded

) DI?0 P r.;S i1A /·1E deletes ws from user's library
)ERASE OBJNAME(S) deletes global object(s) from active ws

The COPY command should not be used in 1ieu of loading, since the CPU time
used to copy an entire workspace is much greater than that required for
loading. COpy should ordinari 1y be reserved for individual global objects.
It can be used for merging two workspaces by loading one of them and
copying the other into it.

The last category consists of

INQUIRY COMMANDS

)LIB NO. 1ists ws1s in 1ibrary; no. not needed for

user's own 1ibrary

)FNS LETTER alphabetically 1ists functions in active ws

beginning with letter entered (if any)

Library Management 111

) VAR8 LETTER alphabetically lists global variables in ac­
tive ws beginning with letter entered (if any)

)8I lists functions which are suspended or
pending, most recent function fi rst

)SIV same as)SI but includes names of local
variables

)PORTS 1ists ports in use at time of inquiry,
with code names of users signed on

) FORT CODT: 1ists allport numbers associated with the
given user code

)J/SIlJ identifies active ws
) us I IJ NA!~1 E changes identity of active ws to NAME

As was pointed out on page 93, it isn't a good idea to hang on to suspended
functions. Try to find out what is wrong and remove the suspensions. This
is especially important because when a workspace is saved or loaded, any
suspensions present are carried along.

There are some additional commands changing the status of the active
workspace, as well as one more category consisting of message commands.
These wi 11 be considered in chapter 34.

PROBLEMS

1.	 Fol low the instructions given and carry out the indicated system
commands:

) LIB 1

)LOAD 1 F8Fl'lS

)FNS

) VARS

If there is a function or variable named DESCRIBE or llOw , execute it.

)WSID

Define a function RRCT which gives only the area of a rectangle of
length L and width W. Display it after executing.

)COpy 1 CLASS RECT

Was	 you r own de fin ed fun c t ion R E CTun chan ge d?

)ERASE RECT

Redefine RECT as above to give only the area of a rectangle.

)PCOpy 1 CLASS RECT

Does th is command behave the same as COpy?

)SA VE JONES

If the workspace was not saved, drop one of those in your library and
then save it.

112 APL \360: An Interactive Approach

)PORTS

Change the name of you r act i ve workspace to SMITH

)WSID SMITH

)SA VE

)CLEAR

)LOAD 1 NEWS

)SA VB 1 NEWS

Wh Y co u 1dnit NF ~v S be s a ve d?

) CONTI NUE HOLD

Sign on again under your user number

)LIB
)FllS

) VARS

What was the effect of signing off with CONTINUE HOLD?

2.	 You have saved your work in a workspace called Goon and have just
developed a function OK in your active workspace. Write out a sequence
of commands which will get OK into GOUD without carrying with it any
unwanted "trash" which may be in the active workspace.

C HAP T E R 16:

Mixed functions

Thus far we have worked with standard scalar dyadic and monadic functions.
One of their characteristics is that the shape of the result is the same
as that of the argument. For example, if the arguments are vectors, so is
the result. Ditto for scalars. In this and subsequent chapters, additional
functions wi 11 be introduced in which the shape of the result is not related
in such a consistent way to that of the arguments. Appropriately, these
are called " mixed" functions.

Index generator

To start off, let's consider a fami 1iar algorithm: the one associated
with our earl ier investigation of the cosine function. Here is a review of
the steps involved, the last being a one-line APL expression which does
the calculation:

o
x
Of

X+-3.141Sg-;-Lt

TOP+-X*O 2 4 6 8 10 12
BOT+-!O 2 4 6 8 10 12
- /TOP-:-BOT
-/(X*V)-:-! V+-O 2 4 6 8 10 12

Wouldn ' t it be nice to have a way to generate these sequences so as to
el iminate the monotony of typing? What's more, the only way now that we
can change the length of the sequence is to type in more or fewer numbers.

In APL the mixed function 1, which is upper shift I on the keyboard,
solves all your problems-or at least some of them, if you don't 1 ike
exaggeration. When used monadically with positive integer arguments, it
i sea 11edthe i nde x gen era tor. Let ISS e e how i t wor ks . Ent e r

1 5
1 2 3 4 5

and a vector of integers from 1 to 5 is produced. Here is another:

113

114 AP L \ 360: An Interactive Approach

1 t)

1 2 3 4 5 6

Now we're ready to use this function to produce the sequence needed for
calculating the cosine. We know that multiplying any number by 2 produces
an even number. Since our desi red sequence is 0 2 4 6 8... , this suggests
that we need

2 x 1 6

2 4 6 8 10 12

Almost, but not quite there, 0 being omitted. The correct expression
should be

2+2x 16

o 2 4 G 8 10

and we have it. We can get something else out of this for free. If adding
-2 gives an even sequence, then adding -1 should result in a sequence of
odd numbers:

1 + 2 x 1 6

1 3 579 11

Getting back to our cosine function, we can now incorporate IN for a variable
number of terms. First

)CLEAR
CLEAR WS

and we are ready to define the function. Since N, the number of terms, is
now a variable, we ought to make the cos function dyadic. We may want to
use the result for other calculations, so the header should be set to return
an expl icit result:

VR+-N COS X
[lJ V+--2+2 x l N
[2J R+--/(X*V)+!VV

In 1 CLASS there is an accurate value of PI. As we saw previously, we can
transfer this to our active workspace by typing

)COpy 1 CLASS PI
SAVED 15.02.39 07/29/69

Here is cos PI+3 evaluated for a varying number of terms:

2 COS PI+3
0.4516886444

4 COS PI~3

0.4999645653
6 COS PI~3

o. 4 9 9 9 <] 9 9 ~3 G L+

8 COS PI+3
0.5

Mixed Functions 115

Even though the last result is shown as .5, it is still approximate, the
.5 being the best value to ten places.

Our 1 function is good for all kinds of sequences. Suppose we want a multi­
ple of the fi rst five integers. Try

1 5 x 2

1 2 3 4 5 6 7 8 9 10

We forgot parentheses. It should be

(l5)x2
2 l-t 6 8 10

Sequences 1ike powers of 2 can be obtained:

2 4 32

This can be easily modified to get 2 raised to the 0 power:

2 * 1 + 1 5
1 2 4 8 16

Now look at the following sequences:

1 5
1 2 3 4 5

14

1 2 3 4

1 3
1 2 3

1 2
1 2

So far, they seem straightforward. Obviously, 1N generates a vector of N
components. Well, if you're so sure, what is 11?

1 1
1

Carrying the analogy along, t1 is a vector of length 1 containing the single
component 1. Is it the same as this 1?

1
1

They look the same, but looks aren't everything. The 1 we typed is a scalar.
The result of 11 is a vector. In mathematics there is a term which is asso­
ciated with the difference-rank, about which we'll have more to say later.

One (?) down, one to go. What about
i o
(typeball moves over 6 spaces but prints nothing.)

116 APL \360: An Interactive Approach

This must be a vector of no components, and the system in its response is
trying to print a vector of length 0, but there just aren1t any components
to put on the paper!

What good is a vector of length O? A good question. You can't really
appreciate its uses unti 1 you begin to define functions for yourself. But,
in the meantime, think about this: if you needed to generate vectors of
varying length and you were looking for a starting place for a counter to
keep track of what you were doing, what better place to start than with
a vector of no components, the empty vector 10?

Dimension vector

There is another mixed monadic function which gives the length or dimension
of a vector. It is represented by the symbol p , pronounced " rho" (upper
shift R). Let's define a couple of vectors X and Y and look at how this
function works:

X+-2 3 5 7
pX

4

Y+-16
pY

6

This is just the thing we were looking for some time back when we were
wr i tin g the awkwar d ex pres s ion + / X =X toge t the numbe r 0 f comp0 nen t sin
a ve c tor for use inA VG, wh i ch can now be rede fin e d ali ttl e mo rc compac t 1y :

\jR+-AVG X
[1J H+-(+/X)~pX\j

Trying it out, it seems to work OK:

A VG 1 2 1 2 1 2
1 .5

Actually, p isn ' t as limited in its appl icabil ity as would appear from the
above. It gives information about multidimensional arrays of numbers as
well. In 1 CLASS are some sample arrays for illustrative purposes called
TABO, TAB1, TAB2 and TAB3. Enter them in your active workspace with
the COP.Y command:

)COpy 1 CLASS TARO
SAVED 15.02.39 07/29/69

)COPY 1 CLASS TAB1
SAVED 15.02.39 07/29/69

)COpy 1 CLASS TAB2
SAVED 15.02.39 U7/29/69

)COpy 1 CLASS TAR3
SAVED 15.02.39 U7/29/69

Now apologies are in order for making you do all the typing at this time.
In chapter 34 a new command wi 11 be introduced which will enable you to

Mixed Functions 117

group these four variables and copy them with a single instruction.

Dis play 'PA B 0

TARO
4.1

I tis jus t the s ca 1a r number 4. 1 . Look at. pTA B 0 :

p TABO
@

From this point on @wi 11 be used to indicate the point where the typeball
comes to rest when the result is an empty vector.

TABO, the scalar, has no dimensions. It doesn't " extend out" any distance
in any direction, unlike a vector or a matrix. In this sense it's like an
idealized geometric point, which is also considered to be dimensionless.

Let's investigate TAB1:

TAR1
1.414213562 1.732050808 2 2.2360fJ7977

p'PAB1
4

pTAB1 yields a single number, which tells us that it is one-dimensional
(a vector), with four components along that dimension.

Now for TAB2:

TAn 2

3 1 7

7 10 4

6 9 1

1 6 7

p r» B 2
4 3

Here we have a two-dimensional array (matrix), with four components along
one dimension (no. of rows) and three components along the other (no. of
columns) .

Finally, display TAR3

118 AP L \ 360: An Interactive Approach

TAR3

111 112 113

121 122 123

131 132 133

141 142 143

211 212 213

221 222 223

231 232 233

241 242 243

p TA8 3

2 L+ 3

This may look pecul iar, but remember that we are restricted to two-dimensional
paper to depict a three-dimensional array. If you think of the lower half
of the table as being a second page lying behind the first, you will see
where the third dimension comes in. The result of pTAB3 indicates that
we do indeed have a three-dimensional array, two components deep (no. of
planes), four components down (no. of rows), and three components across
(no. of columns).

Rank

Earl ier in this chapter, rank was mentioned as a distinguishing description
of the number of dimensions-Qf an array. Let's see how this is handled in
APL. First, consider

ppTARO
o

An unexpected re5ponse? Not really, when you think about it. Let's see
if we can construct a plausible explanation. First we'll line up the
responses from p TABO- 3:

p TAB 0

@

oTAl51
4

p TAR 2
4 3

p TAB 3
243

What do you see? The shape of p appl ied to an array of N dimensions is a
vector of N components. So pTABO must really be a vector of length 0, i.e.,
1 0 . Now you s h0 u1d be a b 1e to unde r s tan d why p p TA FJ 0 res u1t sin 0:

P 1 0
o

Clearly the number of components in a vector of length 0 is 0, l v e . , there
are no components.

Mixed Functions 119

Simi larly, we get

ppTAR1
1

p p TA R 2
2

ppTAB3
3

Thus, pp of any array gives the number of dimensions of the array, to
which the name rank is attached. A scalar is of rank 0, a vector rank 1,
and a matrix ra~, while the array of rank 3 is sometimes called a tensor.

At	 last we are ready to tell the difference between

1 1
1

and

1
1

They	 have different ranks:

p p 1
0

P P 1 1
1

PROBLEMS

1.	 Drill. Specify A+O 8 3 L+ 6 10

pA 110 +/115

ppA	 -;- 1 5

pppA	 7 Xli 128-;-3+1

110000

2.	 What is the difference in meaning of the two expressions pA~6 and
6 =pA ?

3.	 Load 1 CLASS and execu te each of the fo 1low i ng:

x/pTABO x /pTAB2

x/pTABl x/pTAB3

What information is gained from these instructions?

4.	 For the vector A (prob. 1) execute 1 pA and o 1 r A. What mean i ng can be
assigned to each of these expressions?

120 AP L \ 360: An Interactive Approach

5. Write one-line monadic functions returning an exp1 icit result to give

A) the sum of the square roots of the first N positive integers
B) the square root of the sum of the first N positive integers
C) the geometric mean of the first N positive integers (the

nth root of the product of the N numbers)

6. Construct each of the following sequences using 1 :

1	 3 5 7 9 11 13 15

7 2 3 8 13

0 0.3 0.6 0.9 1 • 2 1 .5

250 150 50 50 150 250

5 4 3 2 1

1 0 1 0 1 0

7. Ent e r 1 3 x 1 3 . Acco unt for the err0 r me s 5 age.

8. Wri te an APL express ion to generate a vector of fi fty 1 1 s .

9. Rewrite each of the following statements without parentheses:

1+(-/(15»x2

+/(t5)-1

+/((t5)+1)=5

+/0=(15)=6

10.	 Write functions that would approximate each of the fo1 lowing series to
N terms:

_ ~ + 1 11 2 "3 - 7++ .•• - .•.
1 X X2
or+rr+2T+···

11.	 Wri te an APL express ion that yields 1 if the array A is a scalar, 0
othe rwi se.

CHAPTER 17:

More mixed functions

In our work with vectors, up to this point, we haven't said anything about
how we might add components to increase the length of the vector, which
would certainly be desirable if the vector represented, say, the bills run
up by a single customer in a department store. Our only recourse, thus far,
has been to respecify the vector by retyping it with the additions, which,
vou "Ll agree, isn ' t very satisfactory.

Catenate

APL does have such a chaining feature for vectors on the keyboard. To
illustrate how it can be done, letls build a simple adding machine with
only a few keys on it. Here is the simulation:

KEY PURPOSE/ACTION

C clears accumulator
E allows entry of values and prints no. of

values accumulated since last entry
S prints sum accumulated

Suchas i mu 1a t ion i s prov idedin 1 CLASS , wh i ch s h0 u1d bel 0 ad e d now.

)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

Type
c
@

Next, type E and enter the data as shown:

E 5 3 1

The system responds with a 3, indicating that three values have been entered.
Again make an entry:

121

3

122 AP L \ 360: An Interactive Approach

E' 5 G
5

Typing S gives the sum of the values accumulated:

20

We can continue to enter values and get the sum:

E 2
6

s
22

Now c 1ea r:

C

@
S

o
R 1 2 3

3
s

6

What do the functions look like that comprise this simple desk calculator?
Firs t, 1e tis dis play C:

'7C [[JJ '7

'7 C

[1] VECT+tO
'7

It is n: ladic and doesn't return expl icit results, which is reasonable
enough since its function is only to set the accumulator VEeT to to each
time i tis e xe cute d . VEe Tis a g lob a 1 va ria b1e and inC isan e mp t y
vector, a good place to start.

Here is E:

'7E[eJ]'7

'7 E X

[1] pVECT+VECT,X

'7

It ha: one argument, X, and takes the components in X and tacks them on to
the back of VECT. Th i s resu 1tis stored in VECT and the number of com­
ponents resulting is printed out. In effect we update VECT and print out
information about its components at the same time.

A new dyadic function is introduced in E. It is called catenate, the
symbol for which is the comma, and its job is to catenate or chain together
its two arguments.

Next, we'll d i sp 1ay S:

More Mixed Functions 123

V'S[[JJV'
V' R+S

fl] R++/VECT
V'

All S does is print out the sum of the accumulated values in VECT.

The catenate function has a number of characteristics worth noting. If,
for example,

J+ t 3
K+9 8 7 6

and we catenate J and K and put the result in Y,

Y+cT ,K

then there are seven components in Y:

pY
7

y

1 239 8 7 6

Two vectors can be catenated. What about a scalar? Can it be catenated
to a vector? Consider

J,6
123 6

For purposes of catenation, the 6 is regarded as a vector of length 1. If
this is so, we ought to be able to catenate two scalars to make a vector:

X+3,5

X

3 5

X is now a vector of length 2, containing a 3 and a 5.

Catenating to to a vector gives the same vector, as we would expect:

J tot

123
(to) , ~T

123

What about catenating a vector of length 0 to a scalar?

R+6
ppR

0
T+R, t 0

T

5
pT

1

124 APL \360: An Interactive Approach

ppT

1

T is a vector of one component, as shown by the last two results. Clearly
the result of catenation is always a vector.

Ravel

If wei re not careful, this vector-scalar distinction can cause difficulties.
Sometimes it is advantageous to have a vector of length 1 instead of a
scalar. As an example, look at AVG in 1 CLASS, which you should still
have in your active workspace:

VA VG[[]J \7

V R+A VG X

[lJ R+(+/X)f+/X=X

\7

It appears to work with both vector and scalar arguments:

Ave 2 3 4
3

A VG 4
4

Now let's use detai led editing to change +/X=X to pX:

\7AVG[1010J
[lJ R+(+/X)f+/X=X

////1
r i : R+(+/X)fpXV·

Ave is still in working order:

A VG 2 3 4
3

or is it?

Ave 4
@

Some t h i ng mus t be wro ng . 0ne che ck i s to see what p A VG 4 is:

pA VG 4
o

wh i ch means that A VG 4 must resu 1tin a vector of 1ength o. Why shou 1d
this be? Again letls display the function:

VAVG[U]V

V R+AVG X

[lJ R+(+/X)fpX
V

More Mixed Functions 125

Working from right to left on line 1, if X is a scalar, then pX is an

empty vector. But the algorithm calls for dividing +/X (a scalar) by pX

(in this case a vector of length 0). Dividing a scalar by a vector gives

a result which has the same shape as the vector argument. Need we say

more?

Interesting though all this may be, it doesnlt solve our problem. Our

function, to be consistent, should return a result of 4 in this case.

Somehow we have to make the argument X a vector if it isnlt one already.

The A P[, funct ion wh i ch does th is is the monad i crave 1, wh i ch uses the same
symbol, the comma, as the dyadic catenate. Wei ll-naw-insert this between
p and X inA VG :

VA VC[1[]1 0]
[lJ R+(+/X)tpX

1
[lJ R+(+/X)tp,XV

Now executing AVC 4, we get the anticipated result:

A VG 4
4

The rave 1 fun c t ion has some i nt e re s tin gus e s . TAB 2 i s a goo d e xa mp 1e .

TAB2

3 1 7

7 10 4

6 9 1

1 6 7

pTAB2
4 3

,TAB2
3 1 7 7 10 4 6 9 1 1 6 7

Notice that the last coordinate is raveled first, and there are as many com­
ponents in the ravel as in the original array:

x/pTAB2
12

p , TAB 2
12

If we try to catenate two arrays of different rank, we run into difficul­

ties:

4 5 6 7 8 , 2 3pt6
RANK ERROR

4 5 6 7 8 , 2 3 o t 6

"
This can be remedied by ravel ing the right argument firs t:

4 5 6 7 8,,2 3pt6

4 567 8 1 2 3 4 5 6

126 APL \360: An Interactive Approach

Again, with TAB3

TAn3

111
1 21
131
141

112
122
132
142

113
123
133
143

211
221
231
241

111

212 213
222 223
232 233
242 243

,TAB3
112 113

142 143
232 233

121
211
241

122
212
242

123
213
243

131
221

132
222

133
223

141
231

Thus, no matter what the rank of the array with which we start, the monadic
ravel converts the array to a vector.

Restructure

If we can reduce matrices to vectors, as we did in the last section, we
also ought to be able to reshape vectors into matrices or higher rank arrays.
The dyadic p, called restructure, does this for us. We'll start by speci­
fy i ng

U+4 3 5 7 8 9

Suppdse we want to build a two-dimensional table with the first row 4 3 5
and the second row 7 8 9. The restructure function rearranges the elements
in the right argument to have the shape of the left argument:

2 3p U

4 3 5
7 8 9

Here is an example where the left argument contains only a single component:

3pU
4 3 5

Not only does the number of components in the left argument give the rank
of the resulting array but, in addition, when we run out of numbers in the
right argument, we go back to the beginning of the argument and start over.
This will be evident from the following illustrations:

5p 3
3 3 3 3 3

5 pOl
o 1 010

and if there are more numbers in the right argument than are needed to build
the array,

More Mixed Functions 127

309 8 7 6 5 4 3

987

only as many as are called for in the restructure will be taken (in order).

So far our right arguments have been vectors. What happens when we have a
matrix on the right?

A+2 3p2 3 4 5 6 7
A

2 3 4

5 6 7
2 3 4pA

2 3 4 5
6 7 2 3
It 5 6 7

2 3 4 5
6 7 2 3
4 5 6 7

A+2 3 4 5 6 7

2 3 4pA

2 3 4 5
6 7 2 3
4 5 6 7

2 3 4 5
6 7 2 3
4 5 6 7

from which we can conclude that whatever the shape of the right argument
A, for restructuring purposes it is in effect ,A. This is perfectly rea­
sonable, since ravel ing an array of rank 2 or more before reshaping is
just what most people would do if they had to do it by hand.

Finally, what if the right argument contains no components, i.e., is an
empty vector?

3 p 1 0
DO/fAIN ERROR

3ptO
1\

There are no components on the right to perform the desired restructure on,
so the instruction can't be carried out. But now try

0010
@

(10)p10

LENGTH ERROR
(10)p10
1\

128 APL \360: An Interactive Approach

Can you think of an explanation for these results?

PROBLEMS

1.	 Dr ill . Spee i f y /1+- 2 4 P 1 8 and V+ 3 3 p 1 9

5 4p V	 3 3p 1 , 3p 0

V,/'vi	 5 4p 0

2 , 1	 2 5p 12 5, 4p 0

p p V	 1 Op 100 ppOp9 10 11 12

2.	 What is the difference between pA ,pB and (pA) .o B for two vectors A
and B?

3.	 Write an APL instruction to cause three 2 1s to be printed out in a

vertical column.

4.	 Select 100 random positive integers, none of which is greater than 10.

5.	 A) Construct a matrix whose dimensions are always random and not

greater than 8, made up of elements which are random positive

integers not greater than 150.

B)	 Modify your result for A) to make the upper bound for the elements
itself a random number less than 300.

6.	 Use the ravel, restructure and catenate functions to reshape a 5 4

matrix A and a 7 4 matrix B into a 12 4 result R such that the first

five rows of R contain A and the last seven, B.

7.	 This chapter introduces the function E as part of a simulated adding
machine. Suppose the function E were dyadic. How could you tell the
difference between it and, say, 5E8 in exponential notation?

8.	 Make the scalar S a vector without using the ravel function.

9.	 You are given the job of designing a loop function in which the final
result is a vector to be built up by tacking on the back end what
comes out of each pass through the function. Assume there is nothing
in the result to start with, and each time the loop is traversed the
result is some vector Q. Write a two-step algorithm that will do this.

10•	 De fin e a mon ad i cAPL fun c t ion t hat will take a ve c tor V withan arb i ­
trary number of components ~7 and insert as many OIS in the front to
make the result a seven-component vector, i.e., 3 2 5 7 becomes
o a	 0 3 2 5 7.

C HAP T E R 18:

Character data

Have you noticed that except for variable and function names the input and
output that we have been working with has been entirely numerical? You
have undoubtedly observed that when by mistake you enter alphabetical char­
acters without a specification you get a value error. This hasn't been
a real problem up to now, but what if in our output we wanted to label the
results or associate some message with them? We need a way to have such
1iteral (character) output alone or mixed with numerical information.

Some examples

In 1 CLASS, which should now be loaded,

)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

the function RECT shows the need for some kind of identification for the
output:

VRECT[OJv
V L RECT H

[1 J 2xL+H
[2] L HYP H
[3 J LxH

V
3 RECT 4

14
5
12

The three lines of output are the perimeter, diagonal and area (in that
order) of the rectangle whose sides are 3 and 4. But we had to look back
at the function to see what each of the numbers represented.

Also in 1 CLASS is a simi lar function (;[1;02 , which does contain identify­
ing information. Try

129

130 APL \360: An Interactive Approach

3 GEO 2 4

PER I i:;f/7' T ER J 8 :

14
AREA IS:
12
DIAr;ONAL IS:
5

This is more like it, so let1s open up the function and look at it:

VGF02[UJv
\J L GF02 !!;X

[lJ X+-t TS:
[2J 'PERI1'1ETF:R',X
[3J 2xL+1l
[L+J 'AREA',X
[5J t.«:
[6J 'DIAGONAL',X
[7 J L II YP !I,

V

Line 1 looks like nothing we1ve done so far. It appears to introduce a
new use for the quote sign, namely, to enclose literal characters. As a
matter of fact, not only are there obvious alphabetic characters I and S
but also a colon used as a punctuation mark, and even blank spaces at either
end.

APL interprets each of these, including the blanks, as a character of
1i t era 1 i nfor mat ion . But i t doe s mo ret han t hat. Sin ce, i n 1i ne 2, cat e ­
nation is used between the set of characters on the left and those on the
right (stored in X), this suggests that such characters are components of
an array, in this case of rank 1. l t ' s a fancy way of calling what is
between the quotes a vector. However, since we could conceivably have a
table of characters, the rank wi 11 depend, as with numerical information,
on the shape. X here is a vector of length 5.

Contin u i ng downthe fun c t ion, 1 i ne s 4 and 6 cate nate the wor ds PER J /,11~' TEl?
and DIAGONAL, respectively, to X, which consists of the word IS and
the colon. Since even the spaces are counted as components of the 1 itera1
vector, you should be able to see why at least the one before IS was neces­
sa ry.

Don1t get the idea that you have to be in function definition mode in order
to deal with literals. For instance:

A+-'!!ELLO '

Again, notice the space after the o. Counting the space, it1s a vector of
length 6:

pA

6

We can do some rather cute things with these 1iterals. As an example, if

Character Data 131

B *- ' 11 0 ~I A F? E YOU'
B

H0 wT 11 R /1,' YOU

then catenation forms the message

A,R
HELLO now ARE YOU

However, there comes a time when we have to be serious in our use of 1iter­
als. Suppose we had a family of rectangles we wanted information about:

1 3 GE02 1 4
PERIf4/',7TER IS:
4 14
AREA IS:
1 12
DIAGONAL IS:
1.414213562 5

Our answers are OK, but the labels don't look right. What would be nice to
have is identification to match the output. Specifically, the labels should
be f 0 11owed by ARE 0 r IS de pen din g 0 nthe numbe r 0 f compo nen t sin the a rgu­
ments.

Try now

1 3 GE03 1 4
PERTMT~'1'ERS ARE:
4 14
AREAS ARE:
1 12
DIAGONALS ARF::
1.414213562 5

If we give only a single rectangle to this function, we obtain

3 GE03 4
PERII-1ETER IS:
14
Al?EA IS:
12
DIAGONAL IS:
5

GE03 does exactly what we want it to, and changes the alphabetical infor­
mation to fit the conditions of the problem. Let's display GE03:.

v

11

132 APL \360: An Interactive Approach

vCE03[OJv
v L CE03 H;X;FLAG

[1 J FLAC+-((p , L) > 1) v (p , H) > 1

[2J X+-((4x~FLAC)p' IS:'),(6 xFLAC) p ' S ARE:'

[3 J 'PERIl-iEIFER' , X

[it- J 2 «: +H

[5J 'AREA',X

[6J L~<H

[7J 'DIACONAL',X

[8J L HYP H

The first thing to note is the presence of the two local variables X and
FLAG. Looking at 1 ine 1, if the number of components in either L or H
is greater than 1, then the variable PLAG is set to 1. Otherwise, it is o.
I f the result of 1 ine 1 is 1 (i .e., we ask for information on more than one
rectangle), 6xPLAG is 6, and the 6 restructure of'S ARE:' is simply the
characters S ARR. At the same time f'>vFLAG would be 0 and 4xo is 0, so
that the 0 restructure of ' IS:' resul ts in- no characters being printed.
When catenated, the effect is just S ARE. You should be able to figure
out for yourself what happens in this line if F1AG is o. Line 2 thus tells
the system to pick up IS: or 5 ARE: , depending on the length of the argu­
ments. The rest of the function is 1ike GE02. Finally, here is some food
for thought before leaving this function: why must the arguments Land H
in 1ine 1 be raveled before p is appl ied to them?

Rules for literals

It is important that when literal information is entered, both quotes appear.
Otherwise you have an open quote, not unl ike the problem we faced before on
page 21 when in forming the symbol for the combination function we fai led to
line up the quote and period.

We mentioned before that even spaces in quotes are characters. This brings
up the interesting question of what effect pressing the return key before
typing the second quote has on the output. Could the return itself be a
character? Here is an example:

D+'ENGINEERING'
pD

G+-'ENGINE

KRING'

G types out as

G
ENGINE
ERING

and has one more character than D:

pC
1 2

Character Data 133

Occasionally a word to be entered has an apostrophe in it. Since this is
the same character as the quote, how can it be handled?

W+-'ISN'T'

@

The typeball doesn't move over the usual six spaces after the return key.
Why? There are three quotes on the paper. Since quotes are used in pairs,
except where they are a part of an overstruck character, the cure is to
type another quote:

SYNTAX ERROR
Jv+'ISN' T '

A

Now the system is back in desk calculator mode.

To get the apostrophe in, APL uses a double quote:

W+'ISN"T'
W

ISN'T

What about all the functions we1ve studied so far? Do they work with
literals? Let's try some and see:

A+' X'
B+-'Y'
A+R

DOMAIN ERROR
A+R
1\

A <B
DOMAIN ERROR

A <B
1\

These functions make no sense operating on literals because literals aren't
orderable. Indeed, most of the standard functions would behave similarly.
But consider

A=B
a

Here we are asking the system to compare each component of the vector A with
the corresponding component of B. There is only one component on each side,
and they don't match, so the response is O. The function ~ works similarly:

A more sophisticated way in which = can be used is shown in the following
example, which asks how many occurrences of the letter E there are in the
vector D:

1

134 APL \360: An Interactive Approach

D
ENGINEERING

+/'E'=D
3

'E' =D
1 o 000 1 1 o o 0 c

Another function which works with a 1iteral argument is the dyadic p, which
isn't surprising since all it does is reshape the argument:

ALF+'ARCDEFGHIJKLMNOPQRSTUVWXYZ'

4 6pALF

ABCTJEF
GHIJKL
14NOPQR
STUVWX

Up to this point we have used only alphabetic characters, punctuation marks,
spaces and the return as literals. Actually any keyboard character, in­
cluding overstruck ones, can be employed in this manner. This can lead to
some strange looking situations with numbers:

T+' 10'

T

10

But T doesn't have the value 10:

5+5
10

T=10
0 0

Neither component of T matches the 10 on the right! If this is puzzling to
you, remember that T is a vector of two components, 1 and 0, which obvi­
ously aren't equal to 10.

One other point about character entry. Take

p 'ABC'
3

p'AB'
2

p' A'
@

This means that a single character is considered to be a scalar, and in
order to make it a vector we would have to ravel it:

p , 'A '
1

An d, fin all y :

Character Data 135

p , ,

o

II is an empty vector (equivalent to 10).

PROBLEMS

1.	 Drill. SpecifyX+'l;JISSISSIPPI'and Y+'RIVER'

'ABCDE'='BBXDO' 1 2<'i\1P' ppAL+3 3p' ABCDEFGHI'

pV+'3172' pX,Y X='S'

(pV)pV	 +/X='S' +/'P'=X

3172=V	 +/X~'S' + / (X, ' , , Y)~' S'

, ,
X,Y	 X, ,Y v/X='R'

2.	 Here is a record of executions with an unknown vector D:

D
@

pD

1 5

5xD

DOMAIN ERROR

5xD

1\

'=D
1	 1 1 1 1 1 1 1 1 1

Wha tis D?

3.	 Define a function F which takes a single argument A and prints out its
dimension, rank, and number of elements with appropriate descriptive
me s sages . Ass ume ran k A ~ 1 .

4.	 Write a program that wi 11 add a row R to a matrix M and print out a
message reading TllIS IS AN EXA~1PLE OF CATENATION IN APL

5.	 Copy the function GE03 in CLASS. Open up the function and direct
control to 1 ine [0. 5J. US'3 the comment symbol ~ on this 1 ine and the
next to write a message describing wbat the function does. Then close
out the function, display it and execute it. Do comments introduced
in this manner affect execution?

CHAPTER 19:

Mixed functions for ordering and selecting

Ranking

One of the points stressed at the end of the last chapter was that 1iteral
characters are unorderable, that is, it makes no sense to say, for example,
that X is less than Y (X, Y literal). Yet there are clearly times when
ordering is desi rable, primarily for sorting and selection purposes.

Inorde r to see how t his ca n bed0 ne inA P L, 1e t "s fir s t get a c 1e a n
workspace:

) CLEAR
CLEAR WS

and set

X+'ABCDEFGHIJK'

Remember to close the quote before going on.

Now try

Xl' CAFE'
316 5

This dyadic use of the mixed function 1 is an interesting and useful one.
The response has four components, the same as the length of the right argu­
ment, and it isn't too hard to tell what they stand for. C is the third
character in X, A the first, F the sixth, and E the fifth.

Suppose there is no match, as, for example, in

Xl'CAFYE'
3 1 6 12 5

All the characters except the Y can be matched. For that the system returns
12. But since the number of characters in the left argument is only 11,

pX
11

136

Mixed Functions For Ordering And Selecting 137

then apparently the function is set to return a position one higher than
the last one avai lable in the left argument. If we were to try

X1'CAXYXE'
3 1 12 12 12 5

this time both the XiS and the Y result in 12. This returning of an index
number one greater than the number of components on the left is character­
istic of the dyadic iota when there is no match.

Another point of information about this function is that when characters
are repeated in the right argument, the index numbers aren't used up. For
examp 1e, if

W+-'AARDVARK'
p ~l

8

and we ask where in W is W found,

~/1 W
1 1 3 4 5 1 3 8

the first letter in AARDVARK is matched against the left argument and A is
found first in position 1, so 1 is recorded. Then the second A is matched
and is found on the left again in position 1, giving us a second 1 in the
result. R is found in position 3 on the left and 3 is recorded, etc.
From this you can infer that a sequence like 1 234 5 6 7 8 would be
returned only if no letters were repeated.

What if the right argument happens to be a matrix?

A+-3 2P16
A

1 2
3 4

5 6
B+-3 1 4 2 5
EtA

2 4
1 3
5 6

The shape of the result is the same as that of the right argument, but the
left argument can be only a vector.

Indexing

Back now to X, which contains

X
ARCDEFGllIJK

If

138 APL \360: An Interactive Approach

Xl' CAFE'
3 1 6 5

converts the characters CAFE into an ordered set 3 1 6 5 (called a "map­
p i nq'"}, it is perfectly reasonable to ask if there is any way we can change
the ordered set back into characters. In APL this is done by the indexing
function, which is also referred to as " s ubscripting:"

X[3 1 6 5J

CAFE

This expression is usually read as "X sub 3 1 6 5." Note that [] are used,
not (). Any val idA P L s tate me n t ca n be use d for sub s c rip tin g . For i n­
stance:

X[Xl'CAFE']
CAFE

X[2 5p3 1 8 9 4 2 10 6 7 5J

CA 11 I D
BJ FGR

The result has the shape of the expression in the brackets.

But if we try to execute

X[Xt'CAFYE']
INDEX ERROR

X[Xt'CAFYE']
1\

Clearly to avoid an error message the expression in brackets must refer only
to left argument indices that exist. In the last example, since the charac­
ter Y is not found in X, and X has 11 characters, if we were to ask for

Xr12]

INDEX ERROR

X[12]

1\

the system can't answer the question, there being no twelfth position. This
isn ' t quite the same situation we had in ranking, where the result returned
for an unidentifiable right argument character was one more than the
number of components in the left argument. In that case the response is the
system's way of ter1ing us that the character in question was not to be
found on the left. Thus, the dyadic l and indexing are inverse operations,
provided that each component on the right is also to be found in the left
a rgumen t .

Again let's look at

X
ABCDEFGilIJK

X[3 3 3 31
cccc

Mixed Functions For Ordering And Selecting 139

As with ranking, the index numbers aren't used up by being repeated. Note,
however, that we cannot index an array which hasn1t been specified:

SAl/[l 4J+l0 20
RA ivK F!?ROR

SA/·/[l 4j+ 1020
1\

In addition to having a different form from the other functions, indexing
is unique in that it is the only function that can appear on the left side
of the specification arrow. For example, suppose we want to change D in X
above to the character ?:

X[4J+'?'
X

ABC?EFClIIJK

and the substitution has taken place. More generally, components can be
rearranged by indexing. The following illustration shows such a change:

X[S 6J+-X[6 sJ
X

ABC?FEGHTJK

If no indices are entered, every element of the array is respecified:

X[J+' 'P'
X

TTT'PTTTTTTT

Both ranking and indexing can be used with numerical as well as literal
arrays. For instance, say we are given the heights (in inches) of five
students:

£+516360625<j

What is the position of the student who is 63 inches tall?

Lt63
2

If the third student's height has been entered incorrectly, and should be
61 instead of 63 inches, the change can be made easily by

L[3J+61
L

51 63 61 62 59

The height of the student who is 62 inches tall can be changed to 65 inches:

L[Lt62J+65
L

51 63 h1 59

We haven't yet shown how arrays of rank 2 and higher can be indexed. This

140 APL \360: An Interactive Approach

is deferred to chapter 28, following a general discussion of multidimensional
arrays.

Compression

Another function similar in many respects to indexing is compression, used
for picking out specific components of a vector. If in L again

L
51 63 61 65 59

we wanted to get the second and third students, the expression

L[2 3J
63 61

will do it. We can also select with the following operation:

o 1 1 0 OIL
63 61

which can be read as the "0 1 1 0 0 compression of L." The same symbol,
the slash I, is used for compression as for reduction, but the difference
is that instead of having an operation symbol before the slash, the left
argument consists solely of D's and 1 IS. Where there is a 0 in the left
argument, the corresponding element on the right isnlt picked up. The only
elements returned are in those positions where there is a 1 to match it on
the left. This means that the lengths of both arguments must be the same.

To illustrate a practical use of compression, here is a problem in accounts.
If A is a vector of accounts in dollars, say we want to select out those
accounts that are overdrawn (negative):

A+3 450 6

The instruction

A<O
o 1 001

flags the culprits by producing a vector with lis in the positions of the
offenders and Dis elsewhere. This is made to order for the compression
function:

(A<O)IA

4 6

and we have extracted from A

A
3 4 5 a 6

only the negative components.

Keep in mind that the left argument must contain D's and l's only:

Mixed Functions For Ordering And Selecting 141

2 3/5 6
DOMAIN ERROR

23/56
A

Both arguments must have the same length, unless all or none of the com­
ponents are desired. In this case we need only a single 1 or 0:

A+'ABCDEF'
l/A

ABCDEF
a/A
@

If the lengths don't agree, an error message results:

1 0 1 a/A
LENGTH ERROR

1 a 1 0 /A
A

In 1 CLASS the rei s a fun c t i on called C}·1 P wh i ch use s compres s ion to
compare two scalar arguments for size and prints out a message stating
whether the left argument is less than, equal to or greater than the right
a rgumen t ,

Use the COpy command to get it into your active workspace:

)COPY 1 CLASS CMP
SAVED 15.02.39 07/29/69

Let's try it out on a few examples:

3 C/'>1P 5
LESS

5 CJ.1P 3
GREATFR

5 Cl4P 5
EQUAL

Here i s what en» looks 1ike:

VC~1P[DJv
\j A C~1P B

[1] ((A> B) / ' GREATER') , ((A =B) / ' EQ VA L') , (A <B) / ' LESS '
v

It doesn1t return an explicit result (since we wouldn1t be apt to have any
further use for the result). Notice the practical use for catenation here
operating on literals, not unlike line 2 of the function GE03 on page 132.
Starting from the right on line 1, we pick up either all of the literal
vector LESS or none of it, depending on whether A is less than B. The
vectors EQUAL and GREATER are treated simi larly and catenated. Since
only one of the three conditions can possibly hold at anyone time, we are
actually catenating two empty vectors to a vector of literals to produce the
des ired resul t ,

7

142 AP L \ 360: An Interactive Approach

Expansion

Just as compression gives us a way to get a subset of a vector, so there
exists also in APL a function called expansion which allows us to insert
additional components. To illustrate its use, specify

A~'ABCDEFG'

It has 7 components:

pA

The symbol for expansion is \, the backward pointing slash, on the same key
as the co mp res s ion s ymb 0 1 i nthe lowe r rig h t cor ne r 0 f the key boa r d :

1 0 1 0 0 1 1 1 1 l\A
A B CDEFG

1 0 0 1 a 1\323
323 0 0 323 0 323

1 0 0 1 0 1\3 2 3
3 0 0 2 0 3

The examples show that where 0 appears in the left argument, a blank (for
literals) or zero (for numeric arrays) is inserted in the result which
otherwise is identical to the right argument. Scalars are extended to match
the length of the nonzero part of the left argument.

Here is a summary of the conditions governing the use of this function:

If C~A\B , then
(1) A must consist of all O·s and lis
(2) (+/A) == pB
(3) (pC) == pA

Thus, let B be a vector of five components:

B+2 5 7 9 1
pH

5

Say we want to insert four values, 41 L+2 43 44 between 5 and 7.
One way to do this is to enter

D~B[l 2J,41 42 43 44,B[3 4 5J
D

2 5 41 42 43 44 7 9 1

Another way is to expand B:

D+1 1 0 0 0 0 1 1 l\B
D

2 500 0 0 7 91

and then respecify D:

Mixed Functions For Ordering And Selecting 143

D[3 4 5 6J+41 42 43 44
D

2 5 41 42 43 44 7 9 1

As mentioned before for indexing, the compression and expansion functions

wi 11 be applied to multidimensional arrays in chapter 28.

PROBLEMS

1.	 Drill. Specify A+O 5 86.215 225, B+l 001011 and

C+'ARCDEFGHIJKLMNOPQRSTUVWXYZ ?'

A[2 L+ 7J	 A [1 P A]

B / A	 pA[2 L+ 7J A [1 J+A [2 3 '+ J x A L '7J

1 1 0 1 \ T T~/O A[I/A1AJT

(32 7)[2 1 3J A[8J	 A[Op3J

A [3 G J+ 2 E 5 L+ E - 4 A 1 r /A	 B\ 2 3 L~ S

e[l lC 12 27 9 19 27 1 12 7 15 18 9 20 8 13 9 3J

2.	 Specify D+-2.1 4 1.9 0 1 4 1.4.7 2.5 2. Select from D those com­
ponents which are

A)	 less than .5 D) negative and greater than -1
B) positive	 E) eq ua 1 to 2
C) e qua 1 i n ma gnit ude to 4 F) 1es s than 1 and g rea te r than or

equa 1 to -2

3. Define a monadic function to insert the character between each pair0

of adjacent elements in a vector V.

4.	 For any arbitrary vector V write a function INCH to compute increments
between adjacent elements.

5.	 For mathematicians only: Obtain the area under the curve Y=3X2 between
Xl and X2 by breaking it up into rectangles of width I in that interval.
Hint: First define F to compute 3xX*2 ..

6.	 Write a program WITHIN to select from a vector W those elements

which 1ie within an interval R on either side of the average of W.

7.	 Write an APL expression to select those elements in a vector which are
integers.

8.	 Define a function IN to tell what percent of the elements in a vector

A 1ie wi thin the interval B±C .

9.	 Construct an expression that selects the largest element in a three­

e 1e me n t ve c tor Van d p r i n t sou tal i fit ex cee ds the sum 0 f the

remaining two elements, 0 otherwise.

10. Show how to select the elements with even indices in a vector Y.

144 APL \360: An Interactive Approach

11.	 You are given a vector X whose components are all different and arranged
in ascending order. Write a program to insert a given scalar S into the
appropriate place in the sequence so that the result is still in ascend­
ing order. Be sure that your function is able to handle the case where
S is identical to some element in X.

12.	 What is the difference between

A) lA[2] and (l A) [2] for some i n t e gerA
B) pM,pN and (pM) • pN for M+- 1 2 and N+- 3 4

13.	 Write an APL expression to pick up the last element of a vector V.

14.	 Why is V[-l+lPV] not executable?

15.	 Write an APL expression which returns the index of the largest element
in a vector W.

16.	 Define a function to remove all duplicate elements from a vector.

17.	 Write an APL expression to calculate the sum of the first eight
components of a vector Q (or all of them if the number of components is
less than eight).

18.	 Write a program SELECT which takes two arguments and will print
out that element in the left argument X whose position corresponds to
the position of largest element in the right argument Y.

19.	 Construct APL expressions to insert for V+-lN a zero

A) between each two adjacent components of V
B) before each even component of V
C) after each odd component of V

20.	 Write a function returning an explicit result which finds all the fac­
tors of a given integer N (i .e., the integers which divide evenly into
N) .

21.	 Write a program to convert a numeric 1iteral with less than ten digits
to a number, so that, for example, '1456' becomes 1456, and can be
used like an ordinary number for further calculations.

22.	 Define a function COMFACT to print a list of common factors, if any,
of two integers A and B.

23.	 Define a monadic function which takes a 1iteral argument and selects
the longest word in it. Hint: Look for tne longest set of consecutive
non-blank characters.

C HAP T E R 20:

Identity elements

Identity elements

In mathematics for a number of operations there is in the domain of elements
associated with them a particular element that has a unique property. Spe­
cifica1ly, in addition the number 0 added to any number results in the num­
ber itself:

0+1
1

3+ 0
3

Any element that behaves in this fashion is cal led an identity element for
the operation in question. The mathematician defines the concept even more
narrowly. In the example above, 0 acts as an identity element when it is on
the left. Hence it can be thought of as a left identity for addition. Simi­
1a r 1y, i tis a rig htiden titY for add i t ion . Ifan e 1e me ntis bothal eft
and a rightiden tity, i tis 0 f ten s po ken 0 f aslit he ide ntitY e 1e me ntil for
a particular operation. As we wi 11 see, many operations have no identity
element, or have either a right or a left identity, but not both.

In AP~ there is a simple way to find identity elements where they exist.
We can lead up to this with an example. Let B be the following vector:

B+-5 3 2 3 0

An obvious true statement is that the sum reduction of B is made up of the
sum of the sum reduction of the elements of B that are negative and the sum
reduction of those positive or 0, i.e.,

(+/B)=(+/(B<O)/B)++/(B~O)/R

1

So far we haven't really said anything earthshaking. But what if B didn't
have any negative elements? Then the sum reduction of these elements would
be 0:

145

146 APL \360: An Interactive Approach

B+5 3 2 3 0

(+/B)=+/(B?0)/8

1
+/(B<O)/B

o

Let's examine the last two 1ines more closely. We compress B by selecting
those elements of B which are negative. Since there are no such elements,
the compression results in an empty vector:

(B<O)/R
@

and the sum reduction over this empty vector yields 0:

+/(B<O)/B
o

But an empty vector can be represented in APL by 10. Hence, the sum reduc­
tion over an empty vector should give us 0, and 0 is the identity element
for addition:

+ /10
o

In exactly the same way, if we looked at the times reduction of B we get

(x/B)=(x/(B<O)/B)xx/(B?O)/8
1

a simi lar argument would then yield

x / 1 0
1

which is the identity element for multipl ication.

This suggests that the way to find the identity element for any standard
scalar dyadic functio~ (assuming the identity element exists) is to execute
fn /10, where fn stands for some function. However, there are two precau­
tions which need to be emphasized here. First, there is no indication as
to whether the result is a left identity, right identity or both; and
second, no warning is given of any restrictions, if indeed there are any,
on the domain of the operation.

Here are a few additional examples that point up these restrictions:

~. / 1 0
1

We can divide any number by 1 and return the original number, so 1 is a
right identity for division. No left identity exists for this operation.

Identity Elements 147

1
v /1 0

o

The logical functions A and v have both left and right identity elements, as
examination of their operation tables shows (pages 26-27). But, if we were
to take a function like <, no identity element exists over the entire domain
of real numbers. If we restrict the domain to 0 and 1, then 0 is a left
identity for <:

< /1 0
o

No such restriction helps in the case of the function ~.

'h/10
DOMAIN -ERROR

'f\: / 1 0
/\

A prepared dri 11 exercise in APL

In chapter 9 the tutorial exercise EASYDHILL was introduced to give you
p ract ice i nthe A PL fun c t ion s dis c ussed up tothat poi n t . ~/e ha ve nit yet
exhausted all the functions so far implemented in the language, but, as
before, it's worth taking a breather at this point to review what has been
done. In the workspace 1 APLCOURSE there is another dri 11 exercise called
TEACH, which contains a larger variety of more difficult problems for you
to work on.

Now load t his wor kspace and e xe cute TEA CH . Ind i cate wh i ch fun c t ion s you
want practice in. Be sure at least this first time to include exercises in
vectors of length 0 and reduction. Especially note the instructions per­
taining to your responses for vectors of length 0 or 1. The format and
way in which the problems are generated are the same as in EASYDRILL.
You get three tries, then the answ~r is furnished and you are given another
s i mil a r p rob 1em 0 f the s ame kin d . TYpin g P LEA S E g i ve s you the an swe rand
an 0 the r s i mil a r p rob 1em. Bot h S TOP and 5 TOPS H0 R T get you 0 ut 0 f the
exercise, but STOP gives you in addition a record of your performance.
Continue practicing at this point and at any subsequeflt time as your needs
require it and your schedule permits.

Below i s ash 0 r t samp1erract i ce s e s s ion wit h TEA CH •

)LOAD 1 APLCOURSE
SAVED 11.07.53 09/01/69

TEACH
ANSWER THE FOLLOWING QUESTION WITH Y FOR YFS OR N FOR NO.
ARE YOU ALREADY FAMILIAR WITH THE INSTRUCTIONS FOR THIS
EXERCTSF:?
IV
THIS IS AN EXERCISE IN SIMPLE APL RXPRESSIONS.
YOU WILL FIRST HAVE THE OPPORTUNITY TO SELECT THE FEATURES
YOU WISH TO BE DRILLED IN. THE EXERCISE THEN BEGINS. FOH
EACH PROBLEM YOU MUST ENTER THE PROPER RESULT. ANSWERS

148 APL \360: An Interactive Approach

WILL CONSIST OF SCALAR INTEGERS IF EXERCISES WITH VECTORS
ARE NOT DESIRED; OTHERWISE ANSWERS WILL CONSIST OF
SCALARS OR VECTORS. A VECTOR OF LENGTH ZERO REQUIRES THE
RESPONSE 10, A VECTOR OF LENGTH ONE REQUIRES THE RESPONSE
,X WHERE X IS THE VALUE OF THE ELEMENT. YOU HAVE THREE
TRIES FOR EACH PROBLE1\1. TYPE STOP AT ANY TI,~1E TO TERi~1IN­

ATE' TH E EXERCISE AND PRO DVCE A RECOR DI NG OF YO UR PERF0l7t1­
ANCE. TYPING STOPSHORT WILL TERMINATE THE EXFRCISE BUT
WILL NOT PRODUCE A RECORD OF PERFORMANCE. TYPING PLEASE
FOR ANY PROBLEM WILL LET YOU PEEK AT THE ANSWERS.
TYPE Y UNDER EACH FUNCTION FOR WHICH YOU WANT EXERCISE
SCALAR DYADIC FUNCTIONS
+-xf*fL<:s;=~>~! II\V~1V¥

YY YY
SCALAR MONADIC FUNCTIONS
+-xffL! I'"

Y Y
TYPE Y IF EXERCISES ARE TO USE VECTORS, N OTHERWISE
Y
TYPE Y IF REDUCTION EXERCISES ARE DESIRED, N OTHERWISE
Y
TYPE Y IF VECTORS OF LENGTH ZERO OR ONE ARE DESIRED,
N OTHERWISE.
Y
MIXED DYADIC FUNCTIONS
Pl,E.lT/ti-\¢
YYY
MIXED MONADIC FUNCTIONS
1 p ,<P
YY

f/ 2 5 4
0:

4
~/,-5

0: - 5t

THY AGAIN
0:

5

10>7

[J :
1

L/,-6
rJ:

6

6 4 L 3 9

0:
6 9

TRY AGAIN
0:

PLEASE
ANSWER IS 3 9

o·
1 0

! 1 4

[J:

1 24

Identity Elements 149

D:
7 1 5 L 7 1 5

7 1 5
0 4

[J:
1 24

>/, ­ 1
0:

1
flO

0:
10

.. 0.25 1
[] :

4 2
TRY AGAIN
[l:

4 1
1 9 4 , 3 2

0:
1 9 4 3 2

(,3)p,1
lJ:

1 1 1
9 5 r 9 5

rJ:
9 5

10
0:

10

[J:
L/ , 2

S'l'OPSHORT

PROBLEMS

1.	 Find the identity elements (if any) for the following dyadic functions:
- * ~ r L I ! ¥ = ~ ~ >~. Explain the results for rand L.

CHAPTER 21:

Still more mixed functions

This chapter wi 11 be devoted to several more mixed functions that alter the
order of the components of an array and enable us to make selections from
among the components. Where the operations are appl icable to arrays of
higher rank than 1, discussion of the function syntax wi 11 be deferred unti 1
chapter 28.

Reve rsa 1

This mixed monadic function, the symbol for which is ¢ (upper shift 0 over­
struck with upper shift M, reverses the order of the components of a vector:

¢1 2 3 4

4 3 2 1

¢'A8CDEFG'
GFEDCBA

Reversal of a scalar results in the same scalar:

4

and, 1i ke log i cal neg a t ion, reve rsal i sit s own i nve r s e :

¢¢'ABCDEFG'
ABCDEPG

Rotate

The symbol ¢ also has a dyadic use, and is called rotate or rotation when
so employed. To get a feel for its syntax and how it operates, try

2¢' ABCD117FG'
CDEFGAB

4<Pl 2 3 4 5 6 7
567 1 234

150

Still More Mixed Functions 151
o¢ 3 Lt 56 7 (3

34 56 78

It rotates or shifts all the elements cyclically to the left. By a cyclic
rotation is meant the following. Imagine our vector of literals arranged in
closed loop, as below:

8

o

start

G

Rotating to the left is equivalent to a counterclockwise shift in position
of all the elements, producing

o

start

8 G

Since we wi 11 be using the same vector of 1iterals repeatedly, let1s repre­
sent it by H. It has seven components:

H+-' ABCDEFG'
pH

7

What happens if we rotate H seven places?

7¢Jj

ABC[)F;PG

152 APL \360: An Interactive Approach

The result is H itself, which shouldn1t surprise you at all. What about
rotation by a number greater than the number of components in the right
argument, say eight?

8¢H

BCDEFGA

which is equivalent to

l¢H
BCDEFGA

and, in fact, 718 gives the number of places shifted. In general, if H is
the right argument and L the left argument, the shift is (pH)IL places.

Can the left argument be negative? It would seem reasonable that a negative
left argument ought to produce rotation to the right (clockwise). Let1s
try it and see:

-2¢H
FGABCDE

The characters are indeed moved to the right two places. Since the 7 resi­
due of 2 is 5,

5

the n - 2 ¢ II s h0 u1d bethe s ame as 5 ¢ H

5¢H

FGABCDE

Take and drop

The take function, which is the upward pointing arrow t (upper shift Y), is
a dyadic selection operator. See if you can tell from some examples how it
works:

V+-8 5 3 9 1 4

4tV
8 5 3 9

OtV
(0)

8tV
8 5 3 q 1 4 0 0

2tV
1 4

8tV
0 0 8 5 3 9 1 4

2 3t5

5 0 U

0 0 0

Still More Mixed Functions 153

If A is the left argument and is positive, t selects the first A elements
from the right argument. If A is negative, the last A elements are taken.
When A is greater than pV the result is V with sufficient O's on the right
or left to make a vector of length A. Note that with a vector left argu­
ment, the take function applied to a scalar returns an array whose shape
is determined by the left argument and whose elements consist of O's, ex­
cept for the [1; 1] element. (See also the restructure function p on page
126 for a comparison)

Drop, ~, behaves in much the same way, except that A elements are dropped
instead of selected:

Oi-V
8 5 3 9 1 4

2i-V
3 9 1 4

8i-V
@

3i-V
8 5 3

From these examples a general inference can be drawn that AtV is equivalent
to (A-pV)i-V, provided that A isn't greater than pV.

Membership

We have encountered a number of functions (logica1s, re1ationals) that yield
only OIS and lis as results. Another function that behaves simi larly is
membership E (upper shift E). Here is a set of numbers, 3 1 6 1. Which of
these are members of the set 1 2 3 4 5?

What we are asking is really a series of questions which, in APL, could be
stated as

3 =1 5
0 0 1 0 0

1 =t 5
i" 0 0 0 0

6 =1 5
0 0 0 0 0

1 =1 5
1 0 0 0 0

the net result being the logical vector 1 1 0 1 as indicated by the diaere­
ses. On the terminal this is

3 1 6 lEi 2 3 4 5

1 1 o 1

Clearly the shape of the result must be the same as that of the left argu­
ment. Both arguments may be arrays of any rank with this function.

Grade up and down

These two functions, by themselves, give the indices according to which we
would have to select components of a vector to reorder the vector ascending

154 AP L \360: An Interactive Approach

(grade up) or descending (grade down). The symbols used are the upper
shift Hand G overstruck with upper shift M, for grade up and grade down,
respectively. Here are some examples:

V+8 5 3 9 1 4
tV

6 5 3 2 1 4

'¥V
4 1 2 3 5 6

In the grade up of V the first component, 6, tells us that the sixth element
of V should be taken fi rst; the second component, 5, tells us to take the
fifth component of V next, etc., to reorder V in ascending fashion.

If the elements happen to be dupl icates, the indices of the duplicates are
treated in the same way as the vector is searched from left to right:

['/+ 3 2 4 b 3 3

~Jv'
2 1 5 6 3 4

Since the result tells us the order of the indices that should be chosen to
sort out the components ascending or descending, these functions give us
a handy quick way to produce an actual reordering:

V[~ V]
4 135 8 9

V[17 V]
9 (3 5 3 1 4

Deal

The last mixed function to be considered in this chapter is the dyadic
query, ?, cal led deal, a few examples of which follow:

3?f3
374

6?10
10 G 3 8 1 9

6?6
3 5 241 6

2?6
DOb1AIN ERROR

2?6
1\

8?6
lJOl1AIN ERROR

8?6
1\

A vector results, which has the same length as the magnitude of the left
argument. If A is the left argument and B the right, A?B generates a
random selection of A integers with no dupl ication from the population lB.
Both arguments must be positive scalars or vectors of length 1, withll-:L3

Still More Mixed Functions 155

Here is a practical application of some of these functions. Letls suppose
we are given the 1iteral characters THIS ONE and we want to insert some
additional characters between the 5 and the O. This can be done by means
of a prepared function INSERT in 1 CLASS. Load 1 CLJ1SS and display the
funct i on INS jj'l? ']7:

)LOAD 1 CLASS
SA VEl) 15.02.39 07/2g/69

VIlISRRTCr-j]V
V R+N INSERT B;P;X

[1] P+-B 1 ' 0 ,

[2] X+-(P-l)tB
[3] R+-P{-B
[4] R+ ((IV p 1) , ((p X) pO) , ((pH) - IV) p 1) \ R
[5] R[l/+lpX]+X

INSERT is dyadic, with the left argument N being the position after which
the insertion is to be made. The right argument B is what is to be inserted,
with a small circle as shown to separate it from its follow-on:

3 INSERT '?w-oABCDEFGH'
ABC:w-DEFGH

Thus, if U is specified by TlITS ONE and we want to insert the literals
IS between 5 and 0, then we should execute

U+-'TllIS ONE'
4 INSERT' I5','0',U

THIS IS ONE

or

4 INSERT' ISo',V
THIS IS ONE

Look at the function again. In line 1 P is the position of the little circle
in the right argument B. Line 2 selects all the components in B up to
but not including the 1ittle circle and assigns them to X. In line 3 the
first P components of B are dropped and the rest stored in R. Line 4 resets
R by expanding it. The left argument of the expansion is bui lt up by
taking N 1 IS fal lowed by as many O's as there are components in X, which
in turn is followed by as many lis as the difference between the number of
components in Rand N. Finally, line 5 inserts the message in place of
the O's or blanks resulting from the expansion.

Some applications to cryptography

Because of the ease with which vectors of all sizes can be operated on,
APL is quite suitable for the development of schemes for coding informa­
tion (cryptography). We will explore some of these to illustrate a few
practical uses of the functions introduced in this chapter and chapter 19.

Since we wi 11 need the alphabet repeatedly throughout this section, letls
store it under A [iF:

156 AP L \360: An Interactive Approach

ALF~'ABCDRFGHIJKLMNOPQRSTUVWXYZ'

To start, here's a function which makes a simple random letter substitu­
tion for a message M:

M+'TOBEOHNOTTOBETHATISTHEQUESTION'
VC-<-P SUBST [vi

[lJ ALF
[2J ALF[PJ
[3 J
[4]	 f.1
[5J	 C+ALF[P[ALF1M]]V

P+-26?26
P SUBST M

ABCD EFGH I J XLlvI NOPQRS TU Vr/ XY Z
WGMKRUYTBZHCNXFDJLPEVOAQSI

TOBEORNOTTOBETHATISTHEQUESTION
EFGR FLXPEEFGR ETr/EB PETRJ VRPEBP X

The grade up function can be used to improve on the letter substitution by
transposing the letters according to the following scheme:

vP TRANSP /.1
r i • T~.t(pi;j)pP

[2 J /,1
[3J MCT]\)

M~'SRNDSUPPLIESTONEWLOCATIONATONCR'

P T/?ANSP l1
SENDS UPP L TES TON RWLOCA 'l'IO NA TO N ClI:
JLSECNEOEAWDCLNNTTOOSENPUASTOPI

We wi 11 now introduce a further complication by using a "key" to be added
to the indices resulting from ALF1M, thus generating a new set of indices
for appl ication to ALF':

VK VI r; /1; C
L1 J 11 ~ A L F 1 !~1

[2] "'1
[3J C~26IN+(pN)pK

[4J ALF[(pN)pK]
[5J	 (pM)p'­
[GJ	 ALP[C]V

K+-l 2 3

/1~' RNEM YI4 I LLATTA CKATDA ~/N WI THrpEN DI VI S IONS'

We will run into trouble here since the 26 residues of some of the new
indices may be o. However, provision is made in APL for a shift to 0 in
the starting point for indexing:

)ORIGIIJ 0 (remember to reset the origin to 1 when

hTAS 1 you are done)

This command also affects ranking, the index generator, roll, deal, grade
up and grade down. See also chapter 34 for a fuller discussion.

Still More Mixed Functions 157

Now we	 can safely execute the function:

K VIC !li,1

ENE:'vfYt/r LLATTA CKA ~PTJA IINtiTTHTENDI VI SIONS
BCDRCDBCTJBCDnCTJRCDRCDBCDBCDRCDHCDRCDR

FPHNA2JNDBVWBENPVGBYQXKWIVHOFLWKVJQQT

Our last illustration catenates an arbitrary string of 1itera1 characters P
onto the front end of a message M and drops off the excess characters from
the back end, so that the resulting character string Q is the same length
as M. The indices produced by ALF1Q are added to those from ATJPl!·1
and the results reduced with the residue function as before:

'VP	 AUTO M;Q;R;S
[1] R+ALF1Q+P,((pM)-pP)tU
[2 J S + 2 6 IR +ALP l !;f
[3 J M
[4]	 Q
[5] (pP)p'*'
~ 6] (pM)p'-'

l 7]	 ALP[SJV
P+'GYLTZZY'
P AUTO tV!

EN E!VJ Y ~/ I LLATTA CKA TDA WN{./I T HTF:NDJ VI SID N.S
GY LT Z Z YEN E/;fY ~I I L LA T'l'A CKA TnA WNWI T Ii TF:NDI

KLP PX VGPY I'J'[l,'jf WK VLT J/T JlPC 1/1 KTA A Z QOP LMB QA

PROBLEMS

1.	 Dr ill. Spec i fy A+3 2 0 1 5 8

3¢A	 <PO , 1 3 A[1'O 1 0 1 0 11

2¢A[14J 2¢¢17

4tA	 3tA (3tA)E14

2t-3¢A	 A[~ttAJ

2.	 Use the membership function to identify and select the one-digit integer
elements of a vector V.

3.	 Write an APL expression to determine if two sets of numbers, S1 and 52,
have identical elements, except possibly for order.

4.	 You are g i ve navec tor 0 f cha ract e r s S+' ~/ E A H F ALL GOOn /'.;}E'N '
Wr i teanAPLexpre s s ion to de t e r mine how ma ny 0 ccur ren ce s 0 f the 1e t ­
ters ABCDEFGHIJKL are in 5.

5.	 Use A PL to rea r range the above cha rac te r vec to r 5 so tha t the 1e t te rs
(including duplicates and blanks) are in alphabetical order.

158 AP L \360: An Interactive Approach

6.	 Define a function to remove the extra blanks in S where they occur.

7.	 For an arbitrary numerical vector Vwhich has been sorted in ascending
·order,	 show how to insert another vector V1 so as to preserve the
ordering.

8.	 For a given numeric vector Vof length N, write an APL expression

that tests whether V is some permutation of the vector IN (i .e.,

every element of V is in IN and vice versa).

9.	 Let C be a vector of characters. Construct an expression which

rep 1aces eve ry X inC with a Y.

10.	 For a vector of eight components, construct two expressions for
selecting the last three components. Use the compression function
in one and the take function in the other.

11.	 Write a program to find the median of a set of numbers. (The
median is defined as the scalar in the middle of the 1ist after it
has been sorted. When the number of elements is even. the arithmetic
mean of the two middle elements is defined to be the median.)

12.	 Explain what each of the following expressions does:

A[~.t(pA)pO 1J (A a vector)

(A and B scalars)

13.	 Write a program to decode the message resulting from execution of
the func t ion S URST on page 156.

14.	 Modify the function VIC on page 156 to require two keys, KA and Kli , of
varying length, to be restructured and added on 1 ine 4. Let the
function now take only the single argument M.

15.	 Define a function VEHNAM that modifies the indices resulting from
ALFIM (M is the message to be coded) by adding to them a vector V of
M random numbers from 0 to 25. Reduce the resul t, as in V[G and
J1 UTO, and app 1y it to A LF •

C HAP T E R 22:

Number systems

Base value

It is a fact of life in our language that it is impossible to conceive of
a number in the abstract without associating it with some concrete repre­
sentation. Take the number 3, for instance. Can you think of the concept
of threeness without imagining three objects or visual izing the number 3
in some system of notation, be it Roman numerals, exponential notation,
base-2 notation, or whatever?

No matter how many different ways of depicting 3 we may come up with, they
all stand for the same thing, this abstract notion of threeness. Yet, most
of the time, we have no difficulty in recognizing the number if it is
imbedded in a context which conditions our thinking along the right lines:

III o 0
o

0.03E2 0003

3.00 00011

This last entry could be 11 in decimal notation but, because of the other
more fami liar ways of expressing 3 that preceded it, we would quite likely
accept it as 3 in the binary system.

What it all boi ls down to is this: Just as a rose by any other name is
sti 11 a rose and smells just as sweet, so in mathematics there are many
ways to express the same number, and their value to us depends on what we
are most used to and what form is most useful to us.

Thus far, in all our AP~ work, we have been us ing ordinary decimal nota­
tion. But many other systems are in common use. Mixed systems like clock
time and numb e r s ys t ems tothe bas e s 2, 8, 16 are e xamp1e s . Inth i s chap t e r
we will beexami n i ng how A PL makesit po s sib 1e for us to swit ch con ­
veniently from one system to another.

Suppose, for instance, that we are in a room whose length is

3 yds o ft 1 inch

How could we reduce this example of the English system of measurement at

159

160 APL \360: An Interactive Approach

its worst, to a single unit, say, inches? If we were to do it by hand, we
would probably set up something like the following:

3 yds o ft 1 inch
x (12x3) x 12 x 1

--0 +108 + ---1 = 109 inches

There is a dyadic function in APL that will make this conversion for us.
It is called the base value or decode function, and its symbol is the upper
shift B,~. The right argument of ~ is the vector to be converted, while
the left argument is a vector whose components are the increments needed to
make the conversion from one unit to the next. Since each of the components
on the left can be thought of as acting somewhat like the base of a number
system (cal led a " radix" by mathematicians), the left argument is usually
referred to as the radix vector.

In a mixed number system 1ike the one involving our length measurements of
the room, the syntax of the function requires that the dimensions of both
arguments be the same. There is one exception to this, namely, that either
argument may be a scalar or vector of length 1, a case which will be con­
sidered shortly. For our particular problem, we'll use 1760 (the number
of yds/mile) as the multiplying factor for the next increment, even though
it won't be used:

1760 3 12~3 0 1
109

As a matter of fact, any number wi 11 do in that position, as long as there
is something there:

o 3 12~3 0 1
109

3 1J.3 0 1
LENGTH ERROR

3 1 ~ 3 0 1
1\

Here is another example, converting 2 minutes and 10 seconds to seconds:

60 60J.2 10
130

o 60J.2 10
130

We can formalize the action of the radix vector on the right argument con­
cisely by letting 0/[J] be the weighting factor that tells us what the
increments should be from one unit to the next in our reduction. In our
example of the room size, if A is the radix vector and B is the right argu­
me nt, the n W[3] i s 1, Jv' [2 J i s A [3] x W[3 J 0 r 12, W[1] i s A [2] x vi l 2]
or 3x12. The result is equivalent to 36 3 1x3 0 1, or +/WxR.

Ordinary length and time measurements are examples of mixed number systems.
The base value function, however, works equally well for decimal or other
fixed base number systems. For instance, suppose the following is a
picture of the odometer reading (in miles) of a car:

Number Systems 161

This can be regarded as a scalar 3521 or a vector 3 521. If it is the
latter and we want to convert it to the scalar number 3521 , then we can
execute

10 10 10 10~3 5 2 1
3521

o 10 10 10~3 5 2 1
3521

The base value function can be applied to number systems other than decimal.
Here is a binary counter:

This can be converted to a decimal number by

2 2 2 2~0 1 0 1
5

But	 if the counter were to be interpreted as readings on an odometer:

10 10 10 10~0 1 0 1
101

Clearly we need to know what the representation is in order to tell what a
particular number stands for.

Here in summary form is the syntax for the base value function:

(1)	 The right argument is the vector to be converted
(2)	 The left argument is a vector (radix) of the same length

stating the increment from each component to the next
(3)	 The result is always a scalar
(4)	 Exception: if either the left or right argument is a number

repeated, it is sufficient to use a single component

The	 fourth point can be illustrated by the fol lowing:

10~3 5 2 1
3521

2.10 1 0 1
5

10 10 10 10.15
5555

You should be able to see why we can't use a single component on both
sides in the last example.

In 1 CLASS there is a prepared dyadic function called BASE. It is used
in exactly the same way as ~ to demonstrate how the base value function

162 AP L \ 360: An Interactive Approach

works step by step. Let's try it in a sample problem:

)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

10 BASE 0 1 0 1
INTERPRET AS 10 10 10 10.1 0 1 0 1
WEIGHTING VEC~OR CALCULATIONS
COMPONENT 1 IS x/l0 10 10 OR 1000
COMPONENT 2 IS x/10 10 OR 100
COMPONENT 3 IS x/10 OR 10
COMPONENT 4 IS x/ OR 1

+/1000 100 10 1 x 0 1 0 1 IS 101

The printout shows how the result 101 is arrived at through the use of
the weighting vector. Executing it with our room length problem, we have:

1760 3 12 BASE 3 0 1
WEIGHTING VECTOR CALCULATIONS
COMPONENT 1 IS x/3 12 OR 36
COMPONENT 2 IS x/12 OR 12
COMPONENT 3 IS xl OR 1

+/36 12 1 x 3 0 1 IS 109

You can experiment with BASE yourself, using other right arguments and
radices.

Representation

Like so many of the other functions we've encountered so far in APL, there
is a function that "undoes" the work of the base value function, i.e.,
converts from a value to some predetermined representation. Appropriately,
it is called representation or encode, and its symbol is T (upper shift N).
Thus, if we execute

2 2 2 2.10 1 0 1

5

then the function T brings back our initial argument:

2 2 2 2T5
o 1 0 1

Here are our room length and odometer problems in reverse:

1760 3 12T109
301

10 10 10 10T3521
3 5 2 1

This latter example describes how 3521 would appear on a 4-position
odomete r . How wou1d 13521 appea r on the 5 ame odomete r?

Number Systems 163

10 10 10 10T13521
3 5 2 1

We can draw an analogy here. Itls like an odometer which reads only up to
9999 and then starts over from 0 again. In fact, in this case the right
a rgumen t has been reduced by 10 * 4 and

(10*4)113521
3521

What happens when wei re not sure how many components are needed in the
radix vector, yet we donlt want to lose anything, as was unfortunately the
case in the example above? Typing a zero as the left most component puts
everything left in the first component of the result, as shown below:

0101010TLt3521

43 5 2 1

o 60T130

2 10

The simulation REP in 1 CLASS does for T what RASP: did for 1- in the
1as t sect i on. Execute REP for these cases:

10 10 10 10 RFP 45321
COMPONENT 4 IS 10145321 OR 1 AND L(45321-1)~10 IS 4532
COMPONENT 3 IS 1014532 OR 2 AND L(4532-2)~10 IS 453
COMPONENT 2 IS 101453 OR 3 AND L(453-3)~10 IS 45
COMPONP:NT 1 IS 10145 OR 5 AND L(45-5)~10 IS 4

RESULT IS 5 3 2 1

o 10 10 REP 13521
COMPONENT 3 IS 10113521 OR 1 AND L(13521-1)~10 IS 1352
COMPONENT 2 IS 1011352 OR 2 AND L(1352-2)~10 IS 135
COMPONRNT 1 IS 01135 OR 135 AND REMAINING COMPONENTS ARE

ZRROS
RESULT IS 135 2 1

10 10 RF:P 3 4
RIGHT ARGUMENT MUST BE A SCALAR OR 1-COMPONENT VECTOR

10 10T3 4
RANK ERROR

1010 T 3 Lt
1\

Both representation and base value yield some rather interesting results
when used with negative numbers and nonintegers. Here are a few illustra­
tions, but you are advised to explore thei r uses on your own. You wi 11 find
the BASE and RFP functions helpful here.

2 3 0.17 5 4

4

5 2 6T487

411

2.167.15 4 2
34.147445

164 APL \360: An Interactive Approach

PROBLEMS

1.	 Dr ill

(3pLtO).1..8 7 2 2.1..5 1 9 6	 10.1..~~ 8 2 1 5

1 4.1 .8.1..1 2 3 7 8 9.1..7 8 9 3T5217

3 3T 52 1 7	 3 3 3T5217 (5p3)T5217

(Ltp 8) T - 14	 1 4 6T345 2 4 5T78

2.	 Wri te APL express ions

A) to convert 2 gallons, 8 quarts and 1 pint to pints
B) to find the number of ounces in 3 tons, 568 pounds and 13 ounces

3.	 Find the

A) base-8 value of 2 1 7 7

B) base-2 value of 1 0 1 1 0 1

C) base-3 representation of 8933

D) bas e - 5 re p re sen tat i on 0 f L+ 7 9 1

4.	 Earlier in the text the residue and floor functions were used to sepa­
rate the integer and fractional parts of a number. Show how this
separation can be done in a single step by using the encode function.

5.	 Write expressions that will show that ~ and T are inverses of each other
(not, however, for all arguments).

(For additional problems on ~ and T, see end of chapter 23)

C HAP T E R 23:

Applications of base value and representation

Hexadecimal numbering system

In this chapter we will explore some of the possible uses for the functions
.1 and T, introduced before. One obvious app1 ication 1ies in the conversion
of decimally represented information to another numbering system. The
bases 2, 8 and 16 have been used for computers and, for our first i 11ustra­
tion, 1et 's build an algorithm to convert from the decimal to the hexadecimal
(base-16) system.

Just as in our ordinary base-10 system, we require ten distinct symbols
(0 1 2... 9), so in the base-16 system 16 symbols are needed. Larger numbers
are represented by adding positions on the left (provided, of course, we are
talking about whole numbers and not fractions). For example, 10 is a two­
position number, 9 being the largest number able to be represented by a
sing 1e symbo1.

In the hexadecimal system the symbols are 0 1 2... 9 ABC D E F. If you
were to ask why the letters A... F, the most appropriate response would be
"why not?" We need some single symbol for each of the numbers 10 through
15. New symbols could be invented or old ones used differently (like upside
down or with a bar across them), but it really doesn't matter as long as
they are used consistently.

A decimal system number can be represented in so-called expanded notation
as fa 11 ows:

Number: 6325
Decimal 2 1

Expansion: 6x10 3 + 3xlO + 2xlO + 5xlO O

We can define a hexadecimal number in exactly the same way, except that
powers of 16 instead of powers of 10 are in valved:

Number: lAF2
Hexadecimal 1 0

Expansion: lx16 3 + 10x16 2 + 15x16 + 2x16

which is equivalent to 6898 in decimal form.

In 1 CLASS there is a dyadic function HEXA which makes the conversion for
us. The left argument is the number of positions we want to see represented,

165

166 AP L \ 360: An Interactive Approach

the right argument is the number to be converted:

)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

3 HEXA 254
OFE

2 llEXA 254
FF:

1 llEXA 254
E

Let's look at HEXA:

\j HF XA [~J] V
\j R+N HEXA X

[1J R+'0123456789ABCDEF'[1+(Np16)TX]
V

Np16 generates a vector of N components, ~ach of which is 16. If N is,
say, 3, and X is 254, (Np16)TX is

(3p16)T254
a 15 14

In expanded notation this is the same as

2 l 0Ox16 + l5x16 + l4x16

and, on looking through the vector of 1iterals 0 1 2 .•• F, we see that since
the a is in the first position, 1 in the second position, etc., it is
necessary to add 1 to (3p16)T254 to pick up the subscripts for the right
characters:

1+(3p16)T254
1 16 15

257 is a number which needs three positions in hexadecimal notation:

2 l
lx16 + Ox16 + lX16°

Let's execute HEXA for this number, specifying first four and then two
positions:

4 llF:XA 257
0101

2 HEXA 257
01

We get a false impression if we don't specify sufficient positions.
Incidentally, 0101 is a vector of characters:

p4 1lEXA 257
4

Do you see why?

Applications Of Base Value And Representation 167

Hexadecimal to decimal conversion

What	 about the reverse operation, converting from hexadecimal to decimal
representation? Such a function, called DEC, exists already in 1 CLASS.
Wei 11 use it before displaying it. It is monadic and requires quotes for
the argument:

DEC	 'OFE'
254

It seems OK in this example, so let's display it:

\7DEC[OJv

\7 R+-DEC H

[1]	 R"*- 1 6.1 - 1 + ' 0 1 2 3 4 5 t) 7 8 9 ABCDE P , 1 H
\7

H represents the vector of literals in hexadecimal notation. The dyadic
iota	 with H on the right picks up the positions of the corresponding charac­
ters	 in the left argument. Trying this out with OFE, we get

'0123456789ABCDEF'1'OFE'
1 16 15

which is one position too high to use as the right argument of~. Hence
1 is added before the base value function is applied:

16~O 15 14
254

It should be clear why no left argument is needed in DEC. The base value
function will automatically extend the scalar 16 in length to match the
length of the right argument.

If we were to try DEC with undefined characters, say, WER, we get a result:

DEC	 'WER'
4336

but it is meaningless. To find out why, remember what the dyadic iota does
for an element in the right argument not found on the left. It will produce
the vector 17 15 17, and after adding -1 to each component we have

16~16 14 if.)
4336

Now try

DEC 5 HEXA 321
321

DEC 2 HRXA 321
65

and DEC and HEXA are inverse functions, provided that sufficient positions
have been a1 lowed.

168 APL \360: An Interactive Approach

Check protection

Another practical application is demonstrated by the function CP, which
fills in the space before a number with stars up to a predetermined position.
I ts use for check protection should be evident. CP, which is in 1 CLASS,
is dyadic. The left argument is the total number of places to be fi lled up,
including the dollar amount, and the right argument is the amount of the
check. Here are a few examples:

5 CP 301
** 301

5 CP 12345
12345

5 CP 00301

**301

Letls look at CP:

vCP [r] J\l

\l R+N CP X;P
[lJ R+'0123456789'[1+(Np10)TX]
[2] P+ -1 +(R ~ , 0') t 1
[3J R+(Pp'*'),Pi-R

\l

Line 1 makes a vector of characters out of X, the argument, and adds enough
OIS in front to make pR equal to N. Line 2 sets P as one less than the
index of the first nonzero character, whi le 1ine 3 puts into R P copies of
* followed by all but the first p components of R.

PROBLEMS

1.	 Define a function to remove commas from a character vector consisting
of digits and commas, and convert the result to a numerical vector.

2.	 Write an APL expression which determines whether or not, for a given
three-digit number N, N is equal to the sum of the cubes of its digits.

3.	 Use.l to write a dyadic function EVAL to evaluate at the point X a
polynomial with coefficients C (descending powers of X). Compare with
page 46.

4.	 For M+'1234583' what are the differences between each of the fol­
lowing expressions?

M+-1+'0123456789'lM

/,1+ 1 0 1. - 1 + ' 0 1 2 3 4 5 6 7 8 9 ' 1 M

~1 + 1 0 1. 0 1 2 3 4 5 6 7 8 9 [t 0 1 2 3 4 5 6 7 8 9 ' 1 tvt]

5.	 It is a fact that a number N is divisible by 11 if the a1ternat·ing sum
of its digits is divisible by 11. Construct an expression that uses
the encode function with this condition to test for divisibility by 11.

C HAP T E R 24:

Branching

One of the more prominent features of most programming languages is the
concept of branching. Some of you who are famil iar with other languages
may be wondering why this notion, which involves selection of only some
of the steps of a function or causes repeated execution under specified
conditions, hasn't yet been presented in this course. The reason is due
to the nature of APL, which makes it possible to solve many problems in
a more straightforward way without branching.

The branch instruction

Whenever an algorithm requires a decision to be made as to what the next
step should be, based on the results of some previous step, a branch is
generally called for. This is nothing more than an instruction to alter
the regular sequence of steps.

We can demonstrate how this can be done by using a function cal led SORT in
1 CLASS. The problem which SORT is designed to handle is a very simple
one: Rearrange the components of a vector (here 3 143134) in ascending
order. Actually there isn't any need to write a function to do this, since
the grade up function can be used with subscripting to accompl ish the same
thing very concisely (see page 154). But, at least, it will give us a feel
for how branching can be used.

Let's talk ourselves through the algorithm needed to solve the problem. The
first and most obvious step is to start with a clean sheet of paper. Next
we pick out the smallest value in the vector, see how many times it occurs,
and write it down that number of times. Then we would cross these off the
original vector, go back and pick out the smallest value from what's left
and repeat the process above unti 1 all the numbers are used up.

It isn't any great challenge to design a machine to go through the repeti­
tive steps, but it would need a safeguard built into it. We know when to
stop; the machine would have to be instructed, otherwise it would continue
its sequence of steps indefinitely.

This means that our algorithm would have to have a step which says in
effect "l ook each time through to see if any numbers are left in the
vector; if there are any, go on, if not, stop."

169

170 APL \360: An Interactive Approach

Now we are ready to build the function SORT. Since only one argument is
required, let's make it monadic and return an explicit result. Here is
the heade r:

VH+-SORT X

To start with, R has nothing in it (corresponding to the clean sheet of
paper). Thus, line 1 should be

The next step is to look for the smallest number in X, which is L IX .

But we need as many copies of it as there are in X. So what we require is
really (X=L/X)/X to select them. Since these are to be added onto R, we
can set 1ine 2 as follows:

[2J R+-R,(X=L/X)/X

We then look at what's left, which is the new X, namely, (X.rL/X)/X

[3J X+-(X~L/X)/X

This is as far as we can go, and now we have to repeat the process. In
APL the instruction which directs the system to a step out of the normal
sequence is the right pointing arrow ~, found on the same key as the speci­
fication arrow +-. The arrow, which may be read as " go to" or "branch t o ;!'

has to be followed by some value to complete the instruction. In this case

[4J -+2

is the obvious step.

Unfortunately, we have neglected to tell the system when to stop, so it will
loop around steps 2, 3 and 4 forever. One logical place for this check­
poi ntis jus t be foreste p 2. Now what s h0 u1d i t be? 0 = p X will y ie 1d a 1
if X is empty, a 0 if X is not. Our problem is how to write the complete
statement so that this extra 1ine will cause execution to fall through to
the next line (i .e., continue cycl ing) or cease, depending on the state of
X. An instruction which does this is

Here is how this works. If pX is ° (X is empty), then the instruction
reads "branch to Oil (Ux II is 0). But there is no 1ine 0 in the function,
and we are in effect asking the system to leave the function and return to
desk calculator mode. Branching to ~ 1ine number which isn't in the
function will do the same thing, namely, exit us from the function. Branch­
ing to 1ine 0 is guaranteed to work, however, because no function, no matter
how big, has a line O. The header doesn't count as a line here, even though
we refer to it as [0] in function editing.

What if X isn't empty? Then OX10 is a vector of length 0, and the instruc­
tion reads "branch to an empty vector." A reasonable interpretation might

Branching 171

consider this to be no branch at all, and indeed this is the way it is
used in APE. It simply causes execution to continue with the next state­
ment.

x j is an interesting combination of APE functions. Its action is such
t hat '/1/ hen itoc cursit can be rea d as! I if, II sothat 0 u r 1 i ne abo ve can be
read "branch to 0 if X is empty." Incidentally, if the system is directed
to branch to a nonempty vector, only the first component is significant.

All these steps have been incorporated into the function SORT, and the
1 ines renumbered. Load 1 CLASS and display SORT:

)LOAD 1 CLASS
SA VEV 15.02.39 07/29/69

V5 0 R T L[]] 'l
\] R+-SORT X

[1] R+-10
[2] -+-OX10=pX
[3] R+-R, (X =L/ X) / X
[4 J X+-(X;tL/X)/X
[5 J -+-2

Can you think of a simple way to use the compression function with branching
in 1 ine 2 to accomplish the same result?

Let's try SORT on a couple of vectors:

SORT 5 3 2
2 3 5

SORT 5 3 1 5 4 2
1 2 345 5

It seems to work satisfactori 1y, so wei 11 go on to a second example, the
function CM?, introduced earl ier on page 141. Here is the original
version, which doesn't contain any branches and prints outGRPATER,EQUAL
or LESS after comparing its two arguments:

VCMP[[]]V
V A C/I,!P B

[lJ «A>B)/'GREATFR'),«A=B)/'F'QUAL'),(A<B)/'LESS'
V

Comparing 3 and 5:

3 C,Mp 5

LESE

Labels

An equivalent function which does involve branching is CMPX:

172 APL \360: An Interactive Approach

\j Cj\;! P X [nJ\j

V A CMPX B
[1J ~PIGGFRxlA>B

[2J ~SMALLERxlA<B

[3J 'EQUAL'

[4J ~O

[5J BIGGER: 'CREATER'

[6J ~O

[7J SMALLER: 'LESS'

\j

A new feature is used in CMPX, the colon on lines 5 and 7 as a separator.
The name imme d iate 1y to the 1eft 0 f the co 10 n i s called a 1abe 1. InCMPX
the label BIGGER appears on 1ine 5. Branching to BIGGER-r5equ i v a 1e n t to
branching to line 5, the value of the label being set as soon as function
definition is completed.

Why use a label? It is convenient way to branch if there is any possibi1 ity
that the function is to be later edited and lines added or deleted. For
example, if line 1 tells us to branch to line 5 and we add aline between
1 and 2, line 5 would then be what 1ine 4 is now, namely, a command to
exit the function. So labels direct us to specific points in the function,
rather than specific 1ine numbers.

Labels are local constants and hence not known outside the function, as
can be seen by inspection of the following 1ist of variables, which is from
1 CLASS:

) VARS
B CIRCUIT D HELP l1 MILEAGE PREVIOUSTIME
SPL STOP TABO TAB1 TAB2 TAB3 X Y

Having labels local instead of global avoids confusion among labels in
different functions, and prevents the user from accidentally resetting the
label outside the function. However, unl ike local v~riab1es, they must
not be listed in the header of the function. Also, they are automatically
respecified each time function execution is initiated.

CMPX, which has the two labels BIGGER and SMALLER, wi 11 be used to show
these features. Notice what happens when we put the label in the header:

\j c»PX [0 [11 5 J
[0 J A CMPX B

[oJ A CMPX B;BIGGER
[1 J \j

3 C.!VJPX 2
VALUE' ERROR
CMPX[1J ~BICGERX1A>B

A

~O (to remove the suspension)

In order to illustrate the behavior of the label when the function is sus­
pended, let's edit CMPX to include a variable R which has no value
assigned:

5

Branching 173

\/CMPX[Orl15]
[OJ A C,~/PX B ;BIGGER

1111111
[0 J A CI,!P X B
r i • [5.5JRV

Now we'll execute the function for given values of A and B:

3 CMPX 2
CREATEI'
VA LUE ERROR
ClvJP X[(;] R

BIGGER has a value assigned to it within this suspended function:

BIGGER

Suppose we try to ass ign a value to BIGGER:

BIGGE'R+3
SYNTAX ERROR

BIGGFR+3
1\

The system prevents us from so doing whi le in suspension.

In addition, labels are found in the 1ist of suspensions:

)SIV

enP X r 6 J * A B BICGF? St·;1A LLER

Editing of a suspended function contains a few pitfalls, as can be seen
from the following display:

vCMPX[1[l6J
[lJ ~BIGGERxlA>B

1111116
[lJ ~LARGERxlA>R

[2J [5[;6J
[5J BIGGER: 'GREATFR'

1111116
[5J LARGFR:'GREATER'
[6J \j

SI DA/v1AGE
)SIV

* A B BIGGER S/,lA LLET?
~1

@

~O

@

)SIV
@

174 APL \360: An Interactive Approach

3 C}v!PX 2
GREATER

VALUE' ERROR

CMPX[6] H

1\

)SIV

Clv1P X [6] * A B LA R GEf,) EtviA [, L F:r?

-10-()

The message SI DA!'4AGE' indicates that the state indicator command is not
operating properly, as can be seen from the fact that C!l1PX[G] is missing
from the printout below it.

Finally, here is another version of the same function. This one is called
CL~1P Y:

vC!·1 P Y [••] V
V A C/"-!PY B

L1] -1o-4+2xSTGN A-B
[2] 'LESS'
[3] -10-0

[4] 'FQUAL'
[5] -10-0

[6] 'GRFATER'
V

Line 1 is the key here. It subtracts B from A and uses the function SJ,__/N
(page 72) to return 1, 1 or 0 depending on what comes out of the subtrac­
tion. The monadic signum function could be used in place of SIGN if we so
desired. The result of SIGN is multiplied by 2 and 4 is added. Thus, if
A is greater than B, A-B is positive and 1 ine 1 causes a branch to line 6.
If A is less than B, we branch to line 2, whi le if A=R, we go to 1 ine 4,
which is pretty sneaky, albeit effective way to go about it.

One last comment about branching. I t is a powerful tool in defining func­
tions. Branch if you must, but with a 1ittle extra care and ingenuity on
your part, you wi 11 often find a way to eliminate the need for it.

Rules for branching

We may summarize the rules for branching in function definition as follows:

+ (any APL expression)

is

(1)	 INVALID if the expression results in other than a nonnegative integer
or a vector whose first component (the only one which can cause a
branch) is a nonnegative integer or a valid label.

(2)	 VALID if the expression results in

(a)	 an empty vector, which causes a branch to the next statement
(b)	 a nonnegative integer outside the range of statement numbers of

the function, which causes an exit from the function
(c)	 a nonnegative integer inside the range of statement numbers of

the function, which causes a branch to that line number

Branching 175

(d)	 a label, which causes a branch to that 1ine of the function
on which the label is to be found

Examples of branch instructions

For the benefit of the reader, here is a 1ist of different ways of writing
branch instructions in API,. Labels may be used in place of line numbers.
Also, the membership function and any appropriate logical or relational
function may be used in place of those listed.

(1)	 Branch unconditionally to a fixed point in the program:

-+5
-+LA BF,' L
-+3 x B +1 +-1+ 1

(2)	 Branch unconditional out of the program:

-+0 (or any nonexistent 1ine number)

(3)	 Branch to one of two possible 1ines:

-+(L1,L2)[1+X~YJ

-+((X~Y) ,"'X~Y)/L1 ,L2

(4)	 Branch to one of several 1ines:

-+((X>Y), (X<Y) ,X=Y)/L1 ,L2,L3
-+I¢Ll,L2,L3,... (1 IS A COUNTF:R)

(5)	 Branch to a given 1ine or drop through to the next 1 ine:

-r (x : y) / L 1
-+(X?Y)pLl

-rLl xlX?,Y

-rLlrlX?,Y

-+(I¢Ll,L2,L3)xlX?Y

-+Ll xlX?I+-I+l

-+(X?Y)pL/Ll,L2,L3

or ((A < 0) , A > ()) / L:1 , L 2

-rIll IF C'

where IF is defined as follows for those users who prefer Engl ish in
their instructions:

v'A -<.-L 1 IF C \JA-<-Ll IF C

[1 J A+C/Ll\J [1 J A+CpL:1

It has the advantage of being able to handle vector arguments which Xl

can't, and will work with 0 or without it.

(6)	 Branch out of the program or drop through to the next 1ine:

176 APL \360: An Interactive Approach

-+(X~Y)/O

-+(v/,X~Y)/O

-+OXlX~Y

(7)	 Branch out of the program or to a specific 1 ine:

-+((X~Y),X<Y)/Ll,O

-+L1xX~Y

(8)	 Branch to a given 1ine and specify and/or display:

~ L 1 , pO+- ' [·1 E55 AGE'

-+L 1 , p X+- 3 LJ- P 1 12

Finally, as a reminder, to remove a suspension, execute

-+0

and	 to branch to a particular point in a suspended program,

PROGRAM [9J

-+12

PROBLEMS

1.	 Tell what each of the following commands does:

A) -+((5<JA/), 5>W)/3 2

B) -+3 X1A=8

C) -+ENDxY>,P+l lp 1

D) -+(V/,BEC)/7

E) -+ (5 O)[l+A>C]

-F) -+ It<P3 4 7 9

G) -+8 X107J+J-l

H)	 -+4 x (I X) ~I +-I + 1

I) -+AGAIN x l N = 2 xlpR+-2 4p 5 7 1 8

2.	 Let T be a vector of "trash" characters, some of which may occur in the
1 i teral vector V. Define an APL function that wi 11 el iminate the trash
f rom V.

3.	 Write a program to determine all three-digit numbers between P and Q

such that if the final digit is el iminated, the result divides the

or i gina 1 number.

Branching 177

4.	 Use branchi ng to fin d the me d ian 0 f a set 0 f numbe r s . (See prob1em 11,
chapter 21 for more information about the median.)

5.	 Define a dyadic function DUPL that will locate all occurrences of some
scalar N in a vector V and print out an appropriate message if the
desired scalar is not present.

6.	 Design an APL function so that it ignores all nonsca1ar input and takes
the square root of any scalar argument.

7.	 Take the opening two sentences of this chapter and define a function

to sort them out alphabetically, eliminating all punctuation marks and

blanks. Your output should list all the Als followed by the Bls, etc.

8.	 The mode of a set of data is defined as the most frequently occurring

number in the set. Write a program to find the mode.

9.	 The Fibonacci series is of the form 1 123 5 8 13 ... , where each term
after the first two is the sum of the preceding two terms. Define a
function which prints out N terms of the series.

10.	 Define a function which will produce a histogram of a vector A of
nonnegative integers, i.e., the height of the histogram forA[l] is
A [1]. the he i ght for A [5] i s A [5 J, etc. Show how the his tog ram can
be "cleaned Up" by replacing the OIS with blanks and the 1 l s with *.

11.	 Use branching to construct a function which prints out an annual
compound interest table. Design your function to produce three
columns, the first to be the year, the second the value of the principal
at the beginning of the year, and the third the interest accumulated
during the year. Include appropriate column headings and round off each
figure to the nearest cent.

C HAP T E R 25:

Diagnostic aids

Unti 1 the last chapter, execution of defined functions was relatively
straightforward, proceeding from one line to the next in order. But since
we introduced branching, it is possible for the sequence of steps to
become quite involved. At such times it is often desirable to be able to
follow what is happening on certain lines during execution. And, if
problems arise, knowledge of what occurs at each step may be a definite help
to us in debugging the program.

APL provides two controls for tracing and stopping execution of defined
functions. These will be examined and illustrated in the fo1 lowing sections.

Trace and stop controls

Our guinea-pig function wi 11 be SORT, which is in 1 CLASS:

)LOAD 1 CLASS
SAVED 15.02 .. 3907/29/69

vSORT[OJv
v R~80RT X

[1 J s, 0
[2 J -+OX10=pX

[3 J R~R,(X=L/X)/x

[4] X~(X;rL/X)/X

[5] -+2

The interesting 1ines here are 3 and 4. We can trace execution on them to
see what has been put into R (line 3) and X (line 4) by the command

T~8()RT+3 4

@

T 6 SOH Tis called the t race ve c tor for the fun c t ion .:0 R , and iss e t to
trace 1i nes 3 and 4. !tWill rema inset to these 1i nes in SORT unt i 1 we
remove it or change it. The trace lets us execute SORT and follow the
progress of the trace. Here is an example:

178

Diagnostic Aids, 179

SOR:t 3 2 4 3 2 c
:)

SORT[3] 2 2
SORT[4] 3 4 3 5
SORT[3] 2 2 3 3
SORT[4] 4 5
SORT[3] 2 2 3 3 4
SORT[4] 5
SORT[3] 2 2 3 3 4 5
SORT[4]
2 2 3 3 4 5

The fi rst time through R receives 10 and the vector 2 2, the smallest
elements, whi le X is 3 4 3 5, which is what's left. The second time through
3 3 is added to R, and X has just 4 5 in it, etc.

1fthenext time we exe cute SORT we wan t to chan gethe t race ve c tor, all
that is necessary is to respecify T680RT. Without actually doing it at
this point, what do you think should be specified if we want to drop the
trace altogether?

Now let's look at the action of the stop control on SORT. I t operates in
much the same way as the trace, but has the effect ot suspending the
function just prior to the 1ines specified. For example, specify

S/)SORT+-l5
@

and execute

SORT 3 2 3 2

SORT[l]

The response tells us where in the function we are suspended, the line
number being the one to be executed next. This is confirmed by the state
indicator:

)S1
SORT[1] *

Since we are inside the function we might want to take a look at the values
of the local and dummy variables, which are otherwise inaccessible to us.
For instance:

R
VALUE l~'RROR

R
A.

We get a value error since SORT is hung up just prior to line 1 and R
hasn't been set yet. But X has already received a value:

X
323 2

If we wanted to do so, X could be changed at this point by respecifying it.
However, weIll continue with the execution of this function by using the

180 APL \360: An Interactive Approach

branch command:

-+1

80RT[21

There is a stop on 1ine 2 also, and in fact on every 1ine in this function.
Now we can get R:

R
@

No value error is returned here since on line 1 R was specified to be an
empty vector, as shown by taking pR (remember wei re sti 11 inside the
function) :

pR
o

Continuing, we get:

-+2

SORT[3]
-+3

SORT[3] 2 2

SORT[4]

The new value of R, 2 2, is printed out here because the trace is sti 11
set on lines 3 and 4. We could go on, but this should be enough to demon­
strate how the stop works.

To turn it off, we respecify the stop vector as follows:

S680RT+O
@

Since there is no line 0 (the header doesn l t count in the numbering even
though we can edit it by calling for [oJ), the stop vector is no longer
set. This is just like branching to 1ine 0 to exit a function.

Howeve r, we are s till suspended on 1i ne 4 of SORT:

)8I
80RT[4] *

Branching to line 4 continues the execution without any further suspensions
but with the trace sti 11 on (we havenlt taken it off yet):

-+4

SORT[41 3 3
SORT[3] 2 2 3 3
SORT[4]
223 3

Diagnostic Aids 181

This time wei 11 turn the trace off in the same manner as the stop:

T~SORT+O

@

Now we try the state indicator

)SI
@

and we see that by having resumed execution in a function (SORT) which is
completely executable and doesnlt have any stops on it, we have removed the
suspension.

SORT can now beexe cut edin the norma 1 fa s h ion:

SORT 2 3 4 1 2

1 223 4

It pays to be selective in setting the trace vector. For instance, suppose

T~SORT+l5

and we execute SORT:

SORT 2 3 2 1 4 5

SORT[l]
80RT[21
SORT[3] 1
SORT[41 2 3 2 4 5
SORT[S] 2
SORT[2]
SORT[3] 1 2 2
SORT[4] 3 4 5
SORT[S] 2

SORT[21
SORT[31 1 2 2 3
DORT[4] 4 5
SORT[S] 2
SORT[21
SORT[3] 1 2 2 3 Lt

SORT[4] S
SORT[S] 2
SORT[2]
SORT[3] 1 2 2 3 4 5
DORT[Lt J
SORT[S] 2
SORT[2] 0
1 2 2 1 4 S

No useful information is obtained from the trace on 1 ines 1, 2 and 5.

A fin a 1 note-b 0 t h the t race and s top co n t r 0 1 ve c tors can be. use d a 5 ali ne
or part of a line in a defined function, since they are valid APL instruc­
tions. See the function TRACETT/,1F: on page 189 for an illustration.

182 AP L \ 360: An Interactive Approach

Also, the trace and step vectors are not variables and are deleted when the
function for which they are set is deletedl

Recursion

Sometimes it is necessary for a function to appear on one of the lines of
its own definition. When this happens, it is said to be recursively
defined. Here is an example, a defined function to calculate factorials,
and found in 1 CLASS. The function is called FACT, but before displaying
it, let's look at the definition of N! in conventional notation:

undefined for N not a nonnegative integer
N! 1 if N=O

N x (N-l) ! if N~O

By this de fin it i on 5! would be figured as

5! 5 x 4!
5 x (4 x 3!)
5 x (4 x (3 x 2!))
5 x (4 x (3 x (2 x l!)))
5 x (4 x (3 x (2 x (1 x O!))))
5 x (4 x (3 x (2 x (1 x 1))))

This is the recursive approach.

Now for the function FACT, which carries out a recursive calculation of a
factorial:

VPACT[: 1\7

\l H +- F ACT IV; Iin1

[1] -+ox iii ~ I LIv
[2 1 -+b x l i/ =0

r31 NM1«-N-l
r 41 R+!,/xPACT 1//11
[S] -+0

r6] R+-l
\l

The local variable NMl stands for f]-1 and is useful for tracing the
function. Line 1 causes a branch to ° if N is not a positive integer or O.
Line 2 branches to 6 if N is 0, at which point R is set to 1 (since 10 is
1) . I f N is nit 0 1i ne 3 set s lIl! 1 whi 1eli ne 4 set s R to N x PAC 'T N - 1 ~

which will itself result in execution of PACT. Each time the function
comes to line 4, it gets deeper and deeper into successive levels of
execution until N works its way down to 0. Then the system begins to work
its way out to the surface again and finally exits on 1ine 5.

Let ISS ee ifFACT 4 can beexe cute d :

24

This gives the same answer as !4 (since we set it up that way), but takes
longer to execute:

Diagnostic Aids 183

! 4

24

I f we set a trace on FACT, vte can see how it develops. Lines 3, 4 and 6
are our best bets here for tracing:

T!1FACT+3 4 6
FACT 4

FACT[3] 3
FACT[3] 2
FACT[3] 1
FACT[3] 0
PACTr6] 1
PACT[4l 1
FACTr4] 2
FACT[4l b

FACTL4l 24
24

The fi rst time through 1ine 3 sets Nii : to be 3. But when execution drops
through to the next 1ine, in order to execute FAC']' 4, FACT j has to be
calculated first. So the system cycles through the first three steps
aga in, an d t his time the t r ace on 1 i ne 3 show s t hat N/~11 i s 2. This will
continue until N/.11 is 0 . At this point, when the system tries to calculate
FACT 0 it loops through steps 1 and 2 and branches to 6, yielding a 1.

Meanwhi le, back on line 4 there finally is a value to put in R, namely, 1,
which is followed by 2, 6 and 24 in succession as the function works its
way out.

Now let's turn the trace off and set the stop control at 6 to explore
what's happening near the end of the function:

TI1FA CT+O

S!1FACT+6

FACT 4

FACT[61

We are suspended just prior to 1ine 6. The state indicator shows some
interesting results:

)SI
FACT[6] *
FACT[4]
FACT[4]
FACT[4]

FA CT[4 1

Line 4 is 1isted four times as pending, which isn't surprising since we
are held up on that 1ine that many times, each time getting deeper into
the fun c t ion wh i 1e wa i tin g for N/.11 t 0 reach o.
We can get out by branching to 1 ine 6, which our previous trace shows we
won't encounter again:

184 AP L \360: An Interactive Approach

-+6

24

If this is what we get into with an argument 4, what do you suppose would
happen if we ask for FACT 50? This wi 11 take qui te a whi le, and we may
want to interrupt execution with the ATTN button before line 6 is reached:

FACT 50

PACTf2l

We get a suspension on line 2. Let's see what the state indicator shows:

)81
PACTr21 *
PACTr 41
PACTr4]
FA CTr 4 1
PACTf 41
PACTr41

Execution of this 1ist has been interrupted by the use of the ATTN button,
since otherwise it would be apt to run on for some time.

What happens if we try to get out of this mess? If we branch to line 6, it
might go on a lot longer while the system worked its way out. Branching
to 0 wi 11 get us out, as indeed wi 11 typing ~ alone:

-+0

VA LUE ERROR
PACT[4l P+NxFACT ur:

1\

We get a value error because FACT hasn't been set yet. As a matter of
fact (no pun intended!), any solution we come up with to get out, since
branching to 0 didn ' t work (check this by executing)51 again), wi 11 be
expensive if it doesn ' t involve destroying the function.

At this point the function is in a pretty sad state. We are suspended at
great depth. The sequence of commands that wi 11 get us out is to first
save the active workspace, then clear, and copy the saved workspace.
CONTIIIUR is always available to us (CAUTIONI don i t use for long term
storage), so wei 11 save into CDNT1NUR:

) SA r;E COIIT I II UE
8.5B.14 04/03/70

)CLFAH
CLRAH ;/8

)c () pvC ()1/T J uif f,'

SAVED 8.58.14 04/03/70

The coPY command copies all the global objects in C'ONTINUF, but won't
cop y sus pen s ion s . Howe ve r, 1oa din g CON T I lJUF will b r i ngal on gal 1 the
sus pen s ion s ass 0 cia ted wit h the fun c t ionsin CON TI IV U h,' '. l f we don' twa nt
to keep the function, the easiest way out would be to delete it with the
!,,'/-?Il.,r:r command, or drop the enti re workspace without saving it. These

Diagnostic Aids 185

alternatives may be unacceptable if the workspace and function are im­
portant to the user. Just remember that copying an entire workspace uses
up a considerable amount of CPU time.

PROBLEMS

1.	 Trace the execution of each of the functions developed in the problem
section at the end of chapter 24, problems 2, 7 and 8.

2.	 The function below uses the Eucl idean algorithm to get the greatest
common divisor of the two arguments:

V Z+A CCD B
[1 J Z+A
[2 J A+A I B
[3 J B+Z
[4 J ~A ~O

'\/

Ent e r the fun c t i on GCDin you r own wor kspa ce and t race its exe cut ion
for A+75 and B+-105.

3	 ACK is a function constructed for the purpose of proving that nonprimi­
tive recursive functions do exist, and is named after its creator (see
Communications of the ACM, page 114, Vol. 8, No.2, February, 1965).
F0 11ow the ex e cut ion 0 f J1 CK wit h the t race and s top co nt ro 1s :

V R+I ACK J
[lJ ~(O=I,J)/ 4 3
[2J ~O,R+-(I-l) ACK I ACK J-l
[3J ~O,R+(I-l) ACK I
[4J R+-J-1

V

Use	 small values for I and J.

C HAP T E R 26:

Miscellaneous APL functions

This chapter wi 11 be concerned with two groups of functions, one of which
is helpful in a wide variety of mathematical algorithms, while the other
gives information about the state of the APL system.

Circular functions

The operator symbol for this group is the large ci rcle 0 (upper shift 0).
With one exception the functions are all dyadic, the left argument being
one of the integers -7 to 7 and the right argument a scalar or vector
(expressed in radians for the trigonometric functions):

ooX (1-X*2)*.5

loX sine X
20X cosine X

30X tangent X
LtOX (1+X*2)*.5

SoX hyperbol ic sine of X (sinh X)
60X hyperbol ic cosine of X (cosh X)
70X hyperbol ic tangent of X (tanh X)
loX arcsin X
20X arccos X
30X arctan X
40X (-1+X*2)*.S

SoX arcsinh X
60X arccosh X
70X arctanh X

There is a monadic function which, strictly speaking, doesn't belong in this
group, but is included for completeness:

oX XxPI

To get PI itself, execute

01
3.141592554

186

Miscellaneous APL Functions 187

The inverse (arc) functions return only the principal value of the angle:

302

2.1B5039863

30-2.185039863

1.141592654

301

1.557407725

301.557407725

1

so that the resultant of an expression 1ike

30300
o

will be the same as the right argument only if the angle 1 ies in the
proper quadrant. These are from -PIf 2 to +PIf 2 for the s in and tan, and
from -PI to +PI for the cos function. Further detai 1s can be obtained
from any standard text on trigonometry.

The functions can be shown to satisfy the usual trigonometric identities,
a few of which are illustrated here:

(30l5)=(10l5)f20l5)
1 1 1 1 1

which corresponds to the identity

tan X (sin X)/cos X

in conventional notation, and

1

analogous to

The hyperbolic functions are defined in conventional notation as follows:

x -X X -X
sin h X = _e - e _ cosh X e + e tanh X = sinh X

2 2 cosh X

This can easi ly be demonstrated on the terminal:

503.8
22.33940686

«*3.8)-*-3.8)f2
22.339l.+0686

602
3.762195691

«*2)+*-2)+2
3.762195691

188 AP L \ 360: An Interactive Approach

706
0.9993877117

(506)f606
0.9999877117

(((604.4)*2)-(504.4)*2)=1
1

This last example is one of the fundamental hyperbol ic identities:

2X 2X
cosh - sinh = 1

In addition to their uses in problems involving the trig functions, to those
who are fami liar with the calculus the value of having a complete set of
circular functions readily available will be obvious. For instance, to
name just a few possibi lities:

d • XdX sin cos X

d -1
dX arccos X

Il=X2

~ - arcsinh X + CfA+x 2 ­

~seCh2XdX tanh X + C

I-beam functions

The functions in this group are called I-beam because the symbol used,
formed by overstriking ~ and T, looks like the cross-section of an I-beam.
They are monadic and defined only for certain integer arguments, each of
which gives information about some current aspect of the APL system.
Wherever clock times are involved, they are given in sixtieths of a
second.

The fir s t 0 f the se fun c t ion sis I 1 9, wh i ch g i ve s the tot a 1 time the use r I s
keyboard has been unlocked in the current session:

I19
38230

Anothe r is I 2 0 :

r20
3126710

Your result for this function, as indeed for all the I-beam functions,
probably wi 11 be different from what is shown in the sample executions in
this section. I20 gives the time of day. To represent it in a more
meaningful fashion wei 11 use the representation function:

60 60 60 60TI20
14 28 46 45

Miscellaneous APL Functions 189

In our discussion of ni ladic headers in chapter 11, the example function
TIME was given. We have now reached the point where we can open it up
and see how it is constructed:

)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

TIt,1E
02:29:00	 PM EASTERN

'VTIME[OJ'V

'V TIME;T

[lJ T+ 2 12 60 GO 60 TI20
[2J T+4pT
[3J T[2J+T[2J+12xT[2J=Q
[4J T+l00.lT
[5J T+10,(2,6p10)TT
[6J ('0123456789:'[1+T[3 4 15617 8JJ),' 't('AP'[1+T[2lJ)~

'M EASTERN'

Of course, this result could be off, since the time is set by the system
operator. However, the elapsed time between two events is fairly accurate.
Line 1 of TIlv}E takes the current time, represents it in a mixed number
system, and assigns it to the local variable T. The 2 on the left stands
for the two time segments AM or PM. Line 2 throws away the last component
of T (sixtieths of a second), whi le the next 1ine takes T[2], which is
hours, and modifies it so that 0: 05 is printed as 12: 05. Lines 4 and 5
give the value of T in the base 100 and then extend it out. The last
line picks up the different components to give the display shown in the
resul t ,

There is a function called TRACETIME that traces what is happening on
each line. It is niladic and can be executed simply by typing the name:

iin»
02:31:09 PM EASTERN

TRACETIf.1E
TIME[l] 1 2 31 15 15
TIME[2J 1 2 31 15
TIft1E[3 J 2
TIt1E[4J 1023115
TIME[5] 10 1 0 2 3 1 1 5
TIME[6J 02:31:15 PM EASTERN

Here is the function displayed:

'V T RA CETI/·} E [[J J 'V
'V TRACETIft1E

[lJ T6TIME+16
[2J '1'"1I MEl
[3J T~TIME+10

'V

The trace control is fi rst set on 1ine 1, then TIME is called for, and
finally the trace is removed after execution.

190 APL \360: An Interactive Approach

I21 gives the CPU time since sign-on:

I21

3

To find out how much CPU time has been used up to execute a particular
function, all that is necessary is to take the di fference in I21 before
and after execution. This will be util ized later in a function called
CPUTI/1E .

I22 gives the number of bytes sti 11 unassigned in the active workspace.
Since each workspace has only a limited amount of storage, it is quite
possible that we may not have enough space to store everything we want.
For example:

Y+-l10000
YS FULL

Y+-l10000
A

How much room i s the re ? Each A P L 1i t era 1 cha racte r usesup 1 by t e, wh i 1e
each integer (up to 2*31) takes 4 bytes, except for 0 and 1, which require
1/8 byte. 8 bytes are needed for all other numbers.

At present, in the active workspace, we have

I22
14932

bytes left. Now get a clean workspace and execute the function again:

)CLRAR
CLEAR JiS

I22
31868

which is the number of available bytes per workspace in this APL system.
Some additional space is taken up in the management of the workspace.
Before going on, this is a good time to remind you that a considerable
amount of storage may be eaten up by suspended functions, so that it pays
to find out what is wrong and remove the suspension.

Letis now re load 1 CLASSan d 100kat I 2 3 :

)LOAD 1 CLASS
SAVED 15.02.3907/29/69

I23
19

I23 gives the number of users currently on the system, including the APL
operator, so that you can judge when a good time would be to get on the
system if you have some heavy computing to do.

I24 gives the sign-on time:

I 2 L~

3083695

Miscellaneous AP L Functions 191

so the total elapsed time since sign-on (in sixtieths of a second) is
(120)-124 .

125 gives the current calendar date, with the day, month and year run
toge the r:

125
42870

We can make it look more 1 ike a proper entry by executing

100 100 100T125
4 28 70

126 furnishes the current value of the 1 ine counter. I f no functions are
suspended, then 126 is 0, as in the present case:

126
o

If a function is suspended, it gives the number of the 1ine on which the
most recent suspension occurred, and corresponds to the top entry of)SI .
It is also useful in branch instructions where it is desired to move ahead
N statements. This can be done by entering

-+11+126

127 is another 1isting of suspensions, giving just the 1 ine numbers to be
found currently under)SI:

127
@

Here is an example combining a number of these functions. Display the func­
t i on 7'I ME Fit CT :

'l T I J1 EFACT [[J] 'J

\J TIMEFACT N;S

[1] CrU'TI!vlE
t t[2]

[3 J S+!ll
[4 J CPU .r2I fc1E
[5] S+x/lN
[6] CPUTII4E
[7 1 S+FACT IV
[8] CPUT If,1E'
[9] 8+FACTLOOP N
[10J	 CPUTIf.1E

V

This function obtains the factorial of N four different ways (1 ines 3, 5, 7
and 9) and use s the fun c t ion CPU T I/.1 E top r i n t 0 ute 1a psed CPU time for
each execution.

Let's now look at CPUTI1,1E:

192 AP L \360: An Interactive Approach

vCPU T I/.1E [LJ] V

V CPUTI1·1E
[lJ 0 60 60 60 TOf(I21)-PREVIOUSTIME
[2J PREVIOUSTIME+I21

V

All it does is subtract from the current CPU time, I21 , PREVIOUSTIlv1E
(a global variable) and represent it in a mixed number system. Then
PREVIOUSTIl4E is updated by being set to the current value of the CPU
time. If we attempt to use CPUTIME without setting PREVIOUSTIME we
wou 1d get an err0 r mes sage , but PR ~-, VIOU S T I l1E has a 1rea dy bee n set:

PREVIOUSTIME
o

CPUTIME
o 0 0 19

Here is FACTLOOP

VFACTLOOP[lJJv
V R+FACTLOOP N

[lJ R+1
[2J -;.oxlN=O
[3J R+RxN
[4J N+N-1
[5J ->-2

V

It is monadic, sets R to 1 on line 1, and allows us to exit the function if
N is 0 (1 ine 2). Line 3 resets R to RxN, 1 ine 4 reduces N by 1, then loops
back to 1 ine 2, etc. By setting R to 1 at the beginning, this also works
fo r !l = 0 .

Now try FACTLOOP 5:

FACTLOOP 5
120

which is the same as

! 5
120

In examining the amount of time required for each of the algorithms in
TIMEFACT, the fi rst appearance of CPUTI!·1E is used to clear out
PRE VIOU S T 1/1 F: sothat, i n e f f e c t, we s tar t from s c rat c h afte r the i nit i a 1
1 ine of the printout.

Let1s try TIMEFACT 20

TIMEFACT 20

0 0 0 11

0 0 0 1

0 0 0 1

0 0 0 51

0 0 0 31

Miscellaneous APL Functions 193

!N and x / l N both requ ire 1/60 seconds, whi 1e the recu rs i ve FA CT and the
iterative FACTLOOP need 51/60 and 31/60 seconds of CPU time, respec­
tively. The amount of time required wi 11, of course, differ from one sys­
tem to another, so that your results wi 11 not necessari ly be simi lar to
those above.

TIM EF ACT 50s hows the d iffere nce s eve n mo red r ama ticall y :

TIf.1EFACT 50
a 003

a a a 1

000 3

002 5

o 0 1 17

I26 and I 2 7 have some add it i ona 1 uses in connect ion with suspended func­
tions. To illustrate these, do FACT 50 and suspend it wi th the ATTN
button right after the return:

FACT 50

FACT[3]

To see where we are:

)SI
FACT[3] *
FACT[4]
FACT[4]
FACT[4]
FACT[4]
FACT[4]
FACT[4]
FACT[4]

and again ATTN is used to interrupt the list. We are oDviously pending on
1i ne 4. But at what depth?

One way to get a picture of this which doesnlt take quite so much time and
room is to call for I27 :

I27
3 4 4 4 4 4 4 4 4 L+ 4 4 4 4 4 4 4

L+ 4 4 4 4 it 4 4 4 4

But it IS a lot neater to ask for

pI27
28

to see how many 1i nes there are in the 1is t i ng.

Wh i 1e wei re at it, we are s till suspended on 1 i ne 3 :

I26
3

194 APL \360: An Interactive Approach

so	 we I 11 remove the s uspens i on by ca 11 i ng for

-+I26
3.04140332E64

which is the same as

! 50
3.04140932E64

PROBLEMS

1.	 Dr ill

1001 2 01-;-180 2001

180-;-01 4013 30 3015

201001-;-2 10101 1 201 10.5

2.	 Construct a table of sines of angles from 0 to PI-~2 radians in steps
of PI-;-20 radians.

3.	 Use the function CPUTIME to compute the difference in computing time
for calculating 2!10 and(!10)-;-(!2)x!8. See chapter 4 for a discus­
sion of the algorithm.

4.	 Show that the following identity holds:

5.	 Use I25 to construct a function that wi 11 express a date as MM/DD/YY.

6.	 Define a dyadic function TIfiv1E whose arguments are scalars. The left
argument X may be either 12 or 24, and the right argument Y may assume
values 1, 2, or 3. The function is to furnish the time in either a
24-hour or 12-hour system, printing hours, minutes, and seconds if
Y is 3, hours and minutes only if Y is 2, and hours only if Y is 1.
Times are to be truncated with no rounding off if the value of the
dropped seconds or minutes is 3O-or more. Midnight is to be expressed
as 00.

7.	 Use reduction to express the identity

Compare your version of the identity with that on page 187.

C HAP T E R 27:

Multidimensional arrays

Except for some earl ier app1 ications of the dimension, restructure, and
ravel functions, just about all of our work has been with scalars and
vectors. Many of the other functions studied so far can take as arguments
arrays of rank higher than 1. In addition, there are a number of useful
functions specifically designed to make possible the manipulation of such
multidimensional arrays. These wi 11 be taken up in this and the next
few chapters.

Review

Our start will be a two-dimensional table which lists the number of
purchases made of three items, A, B, and C, during four successive weeks:

A B C

week 2 0

2 3 2

3 3 4 2

4 3 3 0

This data is truly two-dimensional, since each entry in the table needs
two coordinates to specify it properly: the week and the item.

We can bui 1d this table with the restructure function but, before doing
so, execute CLEAR so that wei 11 be able to operate in a fresh workspace:

) CL~'AH

CLEAR WS

The twelve entries in the table wi 11 be stored in V. Note the row by row
o rde r:

V+1 2 0 1 3 2 3 4 2 3 3 0
pV

195

12

196 APL\360: An Interactive Approach

Since the table itself has four rows and three columns, we need

4 3p V

120
1 3 2
342
3 3 0

This table wi 11 be used frequently in the chapter and, to save time, letls
putit in M:

'vI+-4 3p V

pM gives the structure of the table:

pM
1+ 3

and, of course, M is the table itself:

Iv!

1 2 0
1 3 2
3 4 2
3 3 0

Dyadic operations on matrices

There are a number of things we can do to manipulate the components of M.
For instance, we can increase each component by 2:

2 -»

342
354
564
552

or divide it by 3:

0.3333333333 0.6666666667 o
0.3333333333 1 0.6666666667
1 1.333333333 0.6666666667
1 1 o

If we had another matrix of the same size, the two could be added or multi­
plied or what have you, component by component. Rather than define another
matrix, wei 11 use M itself:

Multidimensional Arrays 197

/v}+J1

2 4 0
2 6 4

6 8 4
6 6 0

/v}xM

1 4 0
1 9 4

9 16 4

9 9 0

Note that this latter example is not ordinary matrix multipl ication (to be
covered in a later chapter). It ~an extension of our earl ier rules for
multiplying two vectors, component by component. In fact, the rules de­
veloped on page 13 with scalar and vector arguments for all standard
scalar dyadic functions hold equally well for matrices.

But why stop there? If they hold for matrices, why not for arrays of rank
3 and higher? This is indeed the case, the only stipulation being that the
arrays have to have the same dimensions and rank. If you were to violate
this rule and try to perform dyadic operations on some matrices by hand, you
will quickly see the necessity for it.

There is one exception to this. Just as a scalar can be used as one of
the arguments along with a vector, the scalar being automatically extended
to match the length of the vector, so scalars can be used with higher dimen­
sional arrays in exactly the same way. Our first two examples on the last
page, 2 +lvf and /vI ~ 3, show t his c 1ear 1y . All 0 f wh i c h 1e ads us to an
interesting conclusion. Scalars are l-component arrays of rank 0; hence,
the entire set of rules can be boiled down to:

any- d i mens i ona 1 (an y- d i mens i ona 1\ a nY- d i me ns i ona l)
array ~(----- array) (array

with the array restrictions on dimension and rank previously stated and
allowing the combination scalar-higher rank array on the right. here0

stands for any standard scalar dyadic function.

Monadic operations on matrices

Matrices (and other arrays of higher rank) can also be used as arguments
for standard scalar monadic functions. Here are the subtract and factorial
of M:

-M

120
132
342
330

198 APL \360: An Interactive Approach

!M

1 2 1
1 6 2
6 24 2

6 6 1

Just as with the standard scalar dyadic functions, so a single rule suffices
for the standard scalar monadics, keeping in mind that the shape of the
result is the same as that of the argument:

any-dimensional f (anY-dimensional)
array ~. array

f being any standard scalar monadic function.

Operations along a single dimension

In a two-dimensional table such as M, we might conceivably be interested
in several sets of sums (in a vector there is only one possible sum)
obtained along either of two directions. For example, the total amount
of each item bought over the four week period and the total number of all
items	 sold weekly can be gotten by summing over the rows and columns:

week	 1

2

3

4
sum over

4 weeks

A B	 C

1 2 0

1 3 2

3 4 2

3 3 0

8 12	 4

sum over items

purchased

3

6

9

6
grand

sum 24

the grand total being

8+12+4
24

which	 should be the same as

3+6+9+6

Now 100kat + / /.J

+ / AI
3 6 9 (;

Itls the same as the sums over the items purchased. What about the sums
over the four-week period? This brings up the question of how we specify
which coordinate of a multidimensional array we want to sum over, a problem
which, for obvious reasons didn't arise when we were dealing only with
vectors.

Multidimensional Arrays 199

Let's go back to M. Its structure is 4 3, four rows and three columns, so
+/M is really the sum over the last coordinate, which is the dimension
along which we have three components. In APL this can be also done with

+ / [2] Iv!

3 6 9 6

and, by analogy, the other set of sums is

+/[lJ/11

8 12 4

It isn't necessary to specify [1J for reduction over the first coordinate.
An alternate instruction which does this is f, which is formed by overstrik­
ing the reduction and subtract symbols:

+fM
8 12 4

However, for a three-dimensional array, neither f or / alone will produce
reduction over the second coordinate, and it still is necessary to tvpe vl z l

Now we made M by restructuring V:

V
1 201 3 2 3 4 2 3 3 o

Summing, we get

+/v
24

and

+/[lJV
24

there being only one coordinate associated with a vector. The conclusion
we can draw is that when no coordinate is specified, the last one is
assumed.

What if we try to sum over a nonexistent coordinate?

+/[3JM

120
1 3 2
342
330

This results in M itself. Similarly,

+/[2JV
1 201 3 2 J 4 2 3 J o

5

200 APL \360: An Interactive Approach

gives V. Now we can explain why we get the same sort of response for a
scalar:

+/5

The sum is over the last coordinate, none being specified. But there is
no last coordinate (in fact, none at all, this being a scalar). Hence, the
argument itself is returned.

For our final exercise, suppose we want to find out what the row and
column averages are, or in general averages across any coordinate. The
techniques to be developed here will be recognized by those with a
background in statistics as having appl icabi 1ity, with just a bit more
sophistication, to such procedures as analysis of variance.

In M the averages are

week 1

2

3

4
item

averages

A B C

1 2 0

1 3 2

3 4 2

3 3 0

2 3 1

week
ave raqe s

1

2

3

2

Each of the sums over the first coordinate was divided by the number of
components in that direction, four, and each of the sums over the second
coordinate was divided by three. Note that this is the same as the order
and magnitude of the dimension vector, 4 3.

There is a function called MEAN in 1 CLASS that wi 11 compute these
averages for us. Let's first copy it and then display it:

)COpy 1 CLASS MEAN
SAVED 15.02.39 07/29/69

V/';EA IV [UJ V
V R+-K 1:.16'AN X

[1J R+-(+/[KJ X)+(pX)[KJ
'V

It is dyadic, the left argument K being the coordinate of the array X over
which we are averaging. The function takes a given coordinate of X and
divides the sum over that coordinate by the number of components comprising
that sum, as explained above.

Let's
nates:

try it on M. Here are the averages over the first and second coordi­

2

1

3

2

1
1
2
3

PEAN

f,fEAN
2

"'1

l>I

2

Multidimensional Arrays 201

The	 overall average is

1 MEAN 2 MEAN "1

If you try 2 Iv1EAN 1 MEAN M, voul] find it wont work. Do you see why
this is so?

PROBLEMS

1.	 Drill. Specify 5+4 5P¢120, T+4 5P120, U+2 34p124

S+T SsT f/r/flu

2xS+Tf2 +/[2]T f/,U

5LT +IT xlU

31T	 +/+/[l]T

2.	 Write an APE expression to select N different random elements from
a matrix M.

3:	 Show how to add a scalar N to each element in the odd rows of a matrix
M.

4.	 The matrix GR3 contains the grade records (A, B, C, D and F) of 25 stu­
dents in a class, with the fi rst row listing the number of A1s received
by each student, the second row the number of Bls, etc. Each course
represented in the matrix is three credits. A similar matrix GR2
records grades for two-credit courses, and CH1 for one-credit courses.
Write a program to calculate the grade point average for each student
and for the class. (The grade point average is computed by multiplying
4 times the number of A credits, 3 times the number of B credits, etc.,
adding them up, and dividing by the total number of credits earned.)

5.	 Write an APL expression to construct a 4 4 matrix made up of random
integers in the range 1 to 100 .

6.	 You are given five vectors Vl-V5 of invoices from fifteen customers.
The first represents bills under 30 days old, the second 30-59 days
old, the third 60-89 days, etc. All entries with a given index are
associated with the same customer. Write a program that will
(1) construct a matrix of these invoices with each vector Vl-V5 occupy­
ing a single row; (2) print the total amount of receivables in each
category and separately for each customer, with an appropriate message;
(3) print the grand total of all receivables with an identifying message;
and (4) identify which customers 1-15, if any, have invoices outstanding
more than 59 days (at which time they become overdue).

C HAP T E R 28:

Extensions of mixed functions to

multidimensional arrays

This chapter will be devoted to a study of the effects of various standard
and mixed functions on multidimensional arrays. Although there are some
functions operating on arrays that haven't yet been introduced, a discus­
sion of them will be deferred to chapters 29-31.

Reversa 1

Since it is easier sometimes to see what is happening with characters, weill
first specify a matrix X of literals as follows:

X+3 4p'ABCDEFGHIJKLM'

Here is X:

X

ABCD
EFGH
IJKL

The reversal of this matrix is

¢x

DCBA
flGFE
LKJ I

It reverses along the last coordinate and, in this respect, acts just like
+/M in the last chapter, where the reduction took place over the last
coordinate if none was specified. Hence, ¢X is equivalent to ¢[2]X:

¢[2]X

DCBA
HGFE
LKJI

202

Extensions Of Mixed Functions To Multidimensional Arrays 203

and, to get reversal over the first coordinate, we should execute

¢[l]X

IJKL

}; F Cn
ABCD

As in reduction, the functions reversal and rotation (see next section),
operate over the first coordinate by overstriking the large circle with
the subtract sign 6:

ex

IJKL
EFGH
ABCD

What do you suppose would happen if we tried ¢[3]X or any nonexistent
coordinate? Try it and see.

Rotation

This operation too takes place over the last coordinate unless one is speci­
fied. Thus:

l¢X

PCDA
FGlJE
JKLI

This is equivalent to

1<p[2]X

BCDA
FCHE
JKLl

whi le rotation over the first coordinate can be obtained by

l¢[l]X

EFCH
IJKL
ABCD

or

X

204 APL \360: An Interactive Approach

leX

EFGH
IJKL
ABCD

Here is X again for comparison:

ABCD
EFCH
IJKL

There is another more general way to use rotation, in which we can
specify in vector form in the left argument how we wish to rotate each
component of a given coordinate. For example, suppose we want to move
the first row leftward one position, the second row leftward three posi­
tions and the third row two positions to the left. This can be done with

1 3 2<P[2]X

ECDA
HEFC
KLIJ

The [2J isn't needed here for the reason stated previously. To do something
~ ~~ng the first coordinate, we need four components in the left argument:

o 1 2 3¢[1]X

AFKD
EJCH
IBGL

and

o 1 2 3eX

AFKD
EJCH
IBGL

Thus, the left argument is either a scalar or a vector whose dimension is
the same as the number of components in the coordinate over which the
rotation is to take place. Here are some examples operating on an array
of rank 3, TAB3 :

Extensions Of Mixed Functions To Multidimensional Arrays 205

)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

TAB3

111 112 113

121 122 123

131 132 133

141 142 143

211 212 213

221 222 223

231 232 233

241 242 243

1¢1'AB 3

112 113 111

122 123 121

132 133 131

142 143 141

212 213 211
222 223 221
232 233 231
242 243 241

(2 3p13)¢[2]TAB3

121 132 143

131 142 113

141 112 123

111 122 133

221 232 243
231 242 213
241 212 223
211 222 233

(24p13)¢[3]TAB3

112 113 111

123 121 122

131 132 133

142 143 141

213 211 212

221 222 223

232 233 231

243 241 242

2 4p 1 3

1 2 3 1

231 2

206 AP L\360: An Interactive Approach

These latter two illustrations need careful examination in order to see
what is happening. For instance, look at the last example, in which the
rotation is over the third coordinate. The left argument is, itself, a
matrix. Picking out a couple of these entries at random, the element 3
in the second row, second co 1umn of 2 4p 1 3 te 11 s us to rotate the second
row, s e co nd p 1an e 0 f TAB 3 by t h re e posit ion s (whieh 1eavesit unchan ge d) .
The element 1 in the first row, fourth column causes the fourth row, first
plane to rotate one position to the left. By trying out a few additional
examples yourself, you should be able to see how the left argument
determines the rotation of the array.

Compression and expansion

As you might expect, the left argument must have as many lis and OIS as
the number of components in the coordinate over which compression occurs.
Here is an example in which the third component of the second coordinate
is e1 ided. We will use the 1itera1 matrix X defined below:

X+3 4p'ABCDEFGHIJKLM'

1 1 0 1/[2]X

ABD
EFli
IJL

To remove the second row, we can compress over the first coordinate:

1 0 l/[l]X

ABeD
IJKL

Once more, compression and expansion over the first coordinate can be
obtained by overstriking with the subtract sign:

1 0 lfX

ABCD
IJKL

If in X we want to insert something between, say, the thi rd and fourth
components on each row, we can use expansion over the second coordinate:

1 1 1 0 1\[2]X

ABC D
EFG H
IJK L

while to get a row of blanks between the second and third rows, we execute

Extensions Of Mixed Functions To Multidimensional Arrays 207

1 1 0 l\[l]X

ABCD
EFGH

IJKL

or

1 1 0 l~X

ABCD
EFGH

IJKL

Wh a tabaut campres s ian and expan s ion ave r a r ray s 0 f ran k 3? TAB 3 a9a i n
will be our specimen array:

1 O/[1]TAB3

111 112 113

121 122 123

131 132 133

141 142 143

1 0 1/[3JTAB3

111 113

121 123

131 133

141 143

211 213

221 223

231 233

241 243

1 1 1 0 1\[2]TAH3

111 112 113

121 122 123

131 132 133

0 0 0

141 142 143

211 212 213

221 222 223

231 232 233

0 0 0

241 242 243

In 1 CLASS there are several prepared functions that provide the capabi 1ity
for catenating rows and columns to multidimensional arrays. Before
looking at them, let's see if we can first define the problem clearly.
We are given the matrix X:

208 APL \360: An Interactive Approach

X+2 4p2 5 3 1 4 2 3 3
X

2 5 3 1
423 3

and we want to add a third row 9 8 7 7 or a fifth column 12 15. The first
fun c t ion to be usedis ROw'CAT, wh ichi s dis p 1aye d below:

VROWCAT[nJ\7
\7 R+X RO~/CAT V

[lJ R+(l 0 +pX)p(,X),V
V

V is the row to be added. It is catenated to the ravel of X, and the new
vector thus formed is restructured to give the desired result. It doesn't
pay to use the trace on this function since there is only one line. We
can, however, execute the function by hand, step by step, as follows
after putting a stop on line 1:

V+9 8 7 7
St-.RO~/CAT+1

X ROWCAT V

RO l-/CAT[1]
X,V

RANK ERROR
X,V
A

We aren1t permitted to catenate vectors to matrices. Continuing, with X
rave 1ed:

(, X) , V
2 5 3 1 4 2 3 3 9 8 7 7

1 O+pX
3 Lj­

-+1

2 5 3 1
4 2 3 3
9 8 7 7

Adding 1 0 to pX has the effect of changing the structure to accommodate
and add it iona 1 row. Now we can remove the s top on HO riCA 1':

Sl'JROWCAT+-O

Adding a column is some what more difficult. Here is COLCAT1:

vCO L CA T 1 [[J J v
\J R-<i~X COLCATl V

[1 J R..;- (((p X) [2 J ~ 1) , 0) \ X
[2J V-<i-((pX)[l],l)pV
[3 J V+- (((0 X) [2] pO) , 1) \ V
[L+] R-<i-R+ V

V

Extensions of Mixed Functions To Multidimensional Arrays 209

On line 1 X is expanded with a column of O's on the back end. The assump­
tion here is that X and V consist of numbers only. If you go through the
algorithm you will see why it won't work with characters. Line 2 restruc­
tures V, the vector to be catenated, as a matrix with as many rows as X and
one column. The effect of 1ine 3 is to expand V with as many columns of O's
tacked on the front end as correspond to the original structure of X, and
line 4 completes the picture by adding componentwise the results of lines
and 3.
We'll use the same X as before, with W as shown for extra components:

x

2 5 3 1
423 3

v/+12 15

X COLCATl f11

2 5 3 1 12
4 2 3 3 15

To understand better how this works, let's put a trace on each line:

T I':. COL CAT 1 -(- l L+

X COLCATl W

COLCAT1[1 J

2 5 3 1 0
4 2 3 3 0

COLCAT1[2]
12

15

COLCAT1[3]
0 0 0 0 12

0 0 0 0 1 5

COLCATl[4]
2 5 3 1 12

4 2 3 3 1 5

2 5 3 1 12

4 2 3 3 15

TI':.COLCAT1+-0

Line 1 added an extra column of 0 1 5 on the right, while 1ine 2 made a
matrix with two rows and one column out of W. Line 3 expanded the
restructured W by adding sufficient 0 1 5 on the front end to make the
resulting matrix the same dimensions as the expanded X of line 1. The last
line added the results of 1ines 1 and 3.

Indexing

To illustrate indexing on multidimensional arrays, weill first define a
vector of four components:

210 APL \360: An Interactive Approach

V+'ABCD'
pV

4

Earl ier we saw that we could pick out components by appropriate indices, as,
for instance

V[2 4 3J
BDC

The problem is a bit more complicated for an array of higher rank. Take X,
which is still in storage:

x

2 5 3 1

4 2 3 3

To specify an element of the array requires two numbers, one to tell the
column and the other the row on which the element is located. Say, for
example, we want the element in the second row and fourth column, which is
3. The way to get it in API. is to type

X[2;4J
3

The semicolon is used here as a separator between coordinates.

More than one element can be specified at a time, like the second and fourth
components of the second row:

X[2;2 4J
2 3

or the elements of the second column:

X[i 2;2J
5 2

There is a shorthand way of specifying all the elements along a particular
coordinate, namely by not typing any components of the coordinate in ques­
tion. For example, our last problem could be written as

X[; 2 J
5 2

while to get all the elements of the first row type

X[1 ; J
2 5 3 1

This implies that to get all of X, we need

Extensions Of Mixed Functions To Multidimensional Arrays 211

XC;]

2 5 3 1
4 2 3 3

which is a bit wasteful, perhaps, but consistent.

The same rules hold for a three-dimensional array. 'l'AB3 should still be
in the active workspace, so let's use it:

TAB3

111 112 113
121 122 123
131 132 133
141 142 143

211 212 213
221 222 223
231 232 233
241 242 243

You have probably already noticed that the elements are arranged so that
if we
examp 1e,

took the 10
1 4 3 i s

10 lOT of any component, we would get its position. For

first
1

plane fourth
4

row t h i r d co
3

1um n

Thus,

TAB3[2;;2]
212 222 232 242

will get us all the elements in the second column of the second plane.
From what we1ve done so far it follows that the number of semicolons needed
is one fewer than the rank of the array.

We had mentioned in an earl ier chapter that subscripting could be used
on the left of the specification arrow (see page 139). This works with
higher rank arrays as well as vectors, as shown by the following examples:

x

2 5 3 1
4 2 3 3

X[2;3]+90
X

2 5 3 1
4 2 90 3

X[1; r-rt i ,]x2
X

4 10 6 2
4 2 90 3

212 APL \360: An Interactive Approach

Now we are ready to consider a much shorter algorithm for adding a column
to a matrix:

VCOLCAT2[nJv
V R+X COLCAT2 V

[lJ R+«(pX)[2Jp1),0)\X
[2J R[;(pR)[2JJ+V

'J

Lin e 1 ex pan ds X ex act 1y as inC0 L CAT 1 by add i n9 a co 1um n 0 f 0' sat the
back end, while line 2 respecifies the last column of R as the components
of V.

Let's put a trace on this function and execute it. We still have X avail~

able, and to it we'll catenate a column consisting of the elements 8 7:

T~COLCAT2+1 2
X

4 10 6 2
4 2 90 3

X COLCAT2 8 7
COLCAT2[1 J

4 10 6 2 0
4 2 90 3 0

COLCAT2[2J 8 7

4 10 6 2 8
4 2 90 3 7

The trace shows the OIS added on line 1 to build up the matrix, while on
line 2 the OIS are respecified as 8 and 7, respectively.

COLCAT2 works equally well with characters, but weill remove the trace
first, since the blanks added on 1ine 1 wonlt show anyway:

T6COLCAT2+0
Y+2 4p'ABCDEFGHIJKL'
Y

ABCD
EFGH

Y COLCAT2 '?*'

ABCD?
EFGH*

Now, look back at COLCATl on page 208. Do you see why characters can t t
be used in this function?

Take and drop

The take and drop functions appl ied to multidimensional arrays work in the
same fashion as with vectors, except that the elements of the left argument
refer to what is to be taken or dropped along each coordinate. For example:

Extensions Of Mixed Functions To Multidimensional Arrays 213

TAB3

111 112 113

121 122 123

131 132 133

141 142 143

211 212 213

221 222 223

2 31 232 233

241 242 243

1 3 2 t TAB 3

1:12 :113

122 123

132 133

Here the fi rst element of the fi r s t coordinate (i .e., the fi r s t plane) l s
taken, and within the first plane the first three rows and last two columns.
An0 the r ill us t rat i on i s

1 1 2-}TAB3

213

223

233

which drops the fi rst plane (leaving only the second), the last row and
the first two columns.

Membership

As pointed out on page 153, the membership function works with arrays of any
rank, but the result always has the shape of the left argument:

R+-2 4p ,TAB3
R

111 112 113 121
122 123 131 132

TAB 3

111 112 113

121 122 123

131 132 133

141 142 143

211 2 1~) 213

221 222 223

231 232 233

241 242 243

2 4p TAB 3

111 112 113 121

122 123 131 132

214 APL \360: An Interactive Approach

TAB3ER

1 1 1

1 1 1

1 1 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

RETAB3

1 1 1 1

1 1 1 1

PROBLEMS

1.	 Drill. SpecifyA+3 5P110, B+3 3p'ABCDEFGHI', C+2 34p,A

A[;2 5J +fC[l 2;2;3J B[1;23J

C[1;23;J A[13;14J	 2 2 2t¢C

1 1 2+eC 1 01 1\[2JC 1 0 liB

1 1 1 1 0 l\A o l/[lJC	 ¢A

eA	 3 1 2¢A 1

1 2 2 1 leA	 1 3 3¢3 1 1 2 4¢[lJA

2.	 Make the first row of B (p rob , 1) equal to the third column.

3.	 Define a function that wi 11 delete a given name from a matrix of names
A, or print out an appropriate message if the name is not in the matrix.

4.	 What is the di fference between AI[1; 2J and lif[,1;, 2J?

5.	 Star tin g withamat r i x ~1+-3 L~ P 1 4 , P ro duce an 0 the r ma t r i x R whos e s hap e
is	 3 3 4 and made up of the columns of M. Use only indexing.

n2.6.	 A magic square of order n is one made up of the integers 1 through
The sums over each row, column, and diagonal are the same. One way to
construct the squares of odd order is to start with a matrix of the
right size, made up of the successive integers ordered rowwise. Then
set up a vector of n successive integers with 0 in the middle to rotate
the matrix successively over the last and first coordinates. Define a
monadic function MS to do this.

7.	 Write an APL function to make a matrix out of two vectors V1 and V2,
using V1 as the first column and V2 as the second.

C HAP T E R 29:

Transposition

By transposition is meant the interchanging of elements along two coordi­
nates. This wasn't introduced in the last chapter along with the other
functions mainly because it operates meaningfully on multidimensional arrays
only. The transpose function may have one or two arguments. These wi 11 be
considered separately below.

Monadic transpose

If X is the matrix specified below,

X~3 4p' /iIJCDL'FG!lIdKLtJN'

X

ABeD
E'FCIi
IJKL

then by the transposition of X is meant an interchange of rows and columns
s uch t hat the e 1eme nt whose i nd ice s are [cl; K 1 endsup i nthe r K ; cT J pos i ­
tion for all J and K values possible. The APL function which will do this
for us is the monadic transpose, formed by overstriking the large circle
with the backward pointing slash:

~X

AEI
flFJ
CCK
DHL

The first row of X has become the fi rst column of the transpose of X, etc.

What happens when we apply the transpose function to a vector?

V~2 5 1

~V

251

215

216 APL \360: An Interactive Approach

Nothing has changed. The same is true for a scalar, incidentally. But we
see something a little more interesting when we work with a three-dimensional
array. Our old standby, TAB3, is always handy, so let's work with it:

)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

TAB3

111 112 113
121 122 123
131 132 133
141 142 143

211 212 213
221 222 223
231 232 233
241 242 243

pTAB3
2 4 3

Note the dimensions of TAB3, two planes, four rows, three columns. Here
is what the transpose does to TAB3; and, whi le we're at it, TAB2:

~TAB3

11 1 121 131 141
112 122 132 142
113 12 3 133 143

211 221 2 31 241
212 222 232 242
213 223 233 2 L~ 3

pQTAB3
2 3 4

QTAB2

3 7 6 1
1 10 9 6
7 4 1 7

pQTAB2
3 4

pTAB2
4 3

Only the last two coordinates are interchanged and, as a matter of fact,
this is always the case for all multidimensional arrays.

Dyadic transpose

The monadic transpose doesn't help us to interchange other than the last
two coordinates. For this the dyadic transpose is useful. Its left argu­
ment is a vector specifying the new positions of the original coordinates.
Here is an example:

Transposition 217

1 3 2~TAR3

111 121 131 141
112 122 132 142
113 123 133 1 L+ 3

211 221 231 241
212 222 232 2 Lt 2

213 223 233 243

This is identical with the monadic transpose of TAB3. What it says is to
leave the fi rst coordinate alone and interchange the other two. Not so
trivial is

2 1 3~TAn3

111 112 113
211 212 213

121 122 123
221 222 223

131 132 133
231 232 233

141 142 143
241 242 243

The dimensions of the result are 4 2 3. Notice that the third coordinate,
representing the number of columns, is unchanged, the elements in each of
the original columns remaining in the same column but not necessari 1y in the
same order rowwise and p1anewise after transpos i tion. More formally, if
an arbitrary element in TAB3 has indices fI;~I;KJ , then its new position
in the result is rrJ;I;Kl for the example above. For instance, the indices
of 232 in TAB3 are f2;3;2l, and after transposition in the result they
are [3;2;2J. Let's apply dyadic transposition to a two-dimensional object,
the mat r i x T:

T+3 50115
TT1
J

1 2 3 4 5
6 7 E3 9 10

11 12 13 14 15
1 2?s{T

1 2 3 It S
6 7 8 9 10

11 12 13 1 Lt 1 5

The 1 2 transpose of a matrix doesn't change it at all, and the 2 1 trans­
pose

218 AP L \ 360: An Interactive Approach

2 l~T

1 6 11
2 7 12
3 8 13
L+ 9 1 Lt
S 10 1 5

is the same as the monadic transpose.

What about

1 l~T

1 7 13

This gives the components along the major diagonal of T:

T

3 4
6 8 9 10

11~12 14 1 5

The result is made up of those elements of T whose row and column indices
are the same. If this puzzles you, there is a simulation of the dyadic
transpose called TRA, in 1 ci.ssc ,

)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

'1'+-3 5Pl15
1 1 TRA '1'

elVEN R+-1 1 ~ X; THEN POR IS f/l 1 OR 1
AND R[I] IS X[I;I]

eIVEN pX IS 3 5 THEN
I RUNS FROf!.1 1 TO 3 BECAU5E L/ 3 5 [5' 3

pH IS 3

Here are a few more examples with TAB3:

2 1 1TRA TAB 3
CTVFN P+-2 1 1 ~ X; THEN p p R Ie';..) r /2 1 1 Of)

11 2
AND PLI;JJ IS X[J;I;[]

CIVFN pX I C'I..) 2 4 3 17 HF: LV

I RUNS FRO/·f 1 TO 3 BfJ-'CA USE L/ 4 3 IS 3
J RUNS FROl1 1 TO 2

pR IS 3 2
2 1 l~TAB 3

111 211
122 222
133 233

Transposition 219

1 2 1 TRA TAB 3
GIVEN R+-l 2 1 G(X; TH EN ppR IS r /1 2 1 OR ~

AND RCI;J] 18 XCI;J;I]
GIVEN pX IS 2 4 3 THEN

I RUNS FROl1 1 TO 2 B ECA USE L/2 3 IS 2
J RUNS FR011 1 TO L+

1(---'pR 0 2 Lt

1 2 lQTAB3

111 121 1 31 1 Lt 1
212 222 232 242

1 1 1 TRA TAB 3
GIVEN R+-l 1 1 G(X·, THEN ppR IS r / 1 1 1 OR 1

AND R[I] IS XCI;];I]
GIVEN pX IS 2 4 3 THEN

I RUNS PR011 1 TO 2 BECAUSE L /2 L+ 3 IS 2

pR IS 2
1 1 lQTAB3

1 1 1 222

But

1 1 3G(TAB3
DO!f!AIN 'FRROR

1 1 3 ~ 'I'A B 3
A

1 1 3 T PA 11A B 3
LEFT APCUMEN'l' PUST BF: A DENSF S'FT OF INTEGERS STA!?TTNG AT 1

By a dense set of integers is meant one with no gaps.

The syntax of the dyadic transpose with arrays of rank 3 and higher can get
a little messy, but with the aid of the prepared function TRA you ought to
be able to get a feel for the set of rules under which it operates.

A transformation mnemonic

You have probably noticed by this time that the appearance of the symbols
¢, e and Q is related to the kind of transformation which results when
they are applied to certain arrays. Specifically, let's apply them to a
ma t r i x M+- 3 4 P 1 1 2 :

M

1 2 3 4
5 6 7 8
9 10 11 12

¢/v1

4 3 2 1
8 7 5 J

c:

12 11 10 9

220 APL \360: An Interactive Approach

8/,1

g 10 11 12

5 G 7 8

1 2 3 i+

Q!vJ

1 5 9

2 G 10

3 7 11

Lt 8 12

In each case the overstruck 1ine, I, - or \, represents the axis about which
the transformation occurs.

PROBLEMS

1.	 Dr ill . Spe c i f Y L~.f + 3 4 P 1 1 0, N+-2 3 4 P 1 2 4

2 1 3ts<N ¢ 2 1 t<M

1 1 2ti¥.N

p 2	 1 3~N 1 2 It<N

2.	 For the matrix B (Problem 1, chapter 28), wri te an APL express ion to
obtain the diagonal that runs from the upper right to the lower left.

3.	 Define a function VIAG that takes as its right argument a matrix M
whose elements are positive integers, and forms a number out of the
d i agona 1 e 1emen ts, i , e., 3 2 2 9 becomes 322 9 .

4.	 Define a column-catenating function which transposes the rows and columns
and uses HOWCAT (-i n 1 CLA 5 S) to pe rfo rm the ca tenat ion.

5.	 Write a one-line function to produce a table of three columns 1isting
N, the factorial of N, and the reciprocal of N for the integers 1 through
N.

6.	 Sis an 0 pe rat ion tab 1e for some AP L fun c t ion Wr i tea n ex pre s s ion0

that returns a 1 if the function is commutative, 0 otherwise.

7.	 Execute the fol lowing instructions and explain in your own words what
they do:

B+¢A +1 25

t< 3 2 5 p A , B ,A x B

What tentative conclusion can be drawn from the data in the table?

C HAP T E R 30:

Generalized outer product

Up to now we have been somewhat 1imited in the ways in which we could
generate arrays of rank >1, although we have studied a number of operations
which act to change the array once it is structured. In this chapter and
the next we shall look at two additional functions that will not only
expand our capabi 1ity of producing arrays of all shapes, but also enable
us to define more compactly many of the functions we have already worked
wi the

We will begin by introducing a problem that involves a large number of
multiplications. It asks that we compute the taxes to be paid for items
costing varying amounts and taxed at three different rates:

tax rates

.01 .02 .05

2

$ costs 3

4

5

The result desired is the matrix which is obtained by getting all possible
products of costs and rates. You can see that if the cost and tax rate
vectors had large numbers of components or noninteger components, this
procedure could involve a lot of work.

Outer product

APL has a function which operates on arrays in precisely the way needed
to fi 11 in the table above. I t is called the outer product. To illustrate
it, let the left argument be the vector of costs A and the right argument
the tax rates B:

221

222 APL \360: An Interactive Approach

A +-1 5
B+-.Olxl 2 5
B

0.01 0.02 0.05

The outer product is

O. 01 0.02 o.05
0.02 0.04 0.1
0.03 0.06 0.15
0.04 0.08 0.2
0.05 o .1 O. 25

which is read "A null dot times B." The little circle, called~, is the
upper shift J. Clearly it gives all possible products of the left and
right arguments and signifies that we want the outer product with respect
to A and B.

Any standard scalar dyadic function can be used after the period in place
of x , For instance:

A o. +B

1 .01 1 .02 1.05
2 .01 2.02 2 . 05
3 .01 3.02 3.05
4.01 4.02 1+ • 05
5 .01 5 . 02 5 . 05

Notice that the shape or dimension of the result is the catenation of the
shapes of the two arguments. In this case it is 5,3 or 5 3.

The outer product enables us to do a variety of things. For example, an
addition table can be generated by

A o. +A

2 3 4 5 6
3 4 r:

;) 6 7

4 5 6 7 8
5 6 7 8 9
6 7 8 9 10

and the subtraction table by

A 0 -A•

0 1 2 3 4

1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 U

Generalized Outer Product 223

Some of the patterns obtainable are interesting. Here is the identity
matrix of order 4 (so-called because when matrix multip1 ication is used
with any other 4 4 matrix M and the identity matrix, the result is M):

(14)0.=14

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

If with the outer product gives the identity matrix, can you guess what
'7- wi 11 res u1tin?

Finally, here are two others that yield matrices of all O's and lis:

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

0 0 0 0 0

(15)0.~15

1 1 111
o 1 111

00111

o 001 1

00001

It isn't necessary that both arguments be vectors. One could be a matrix
and the other a vector to give a three-dimensional array. In fact, this
is whe re TA P 3 came from:

)LOilD 1 CLASS
SAVED 15.02.39 07/29/69

TAB3

111 112 113

121 122 123

131 132 133

141 142 143

211 212 213

221 222 223

231 232 233

241 242 243

Construction of multidimensional arrays

F0 11ow the bu i 1d up 0 f TA R 3 from s c rat c h :

224 APL \360: An Interactive Approach

W+-10 20 30 LtOo .. +t3
W

11 12 1 3
2 1 22 23
3 1 32 33
L} 1 L} 2 L} 3

p [v
L+ 3

2+-100 200° .. +[1
2

111 112 11 3
121 122 123
131 132 133
1Lt1 1 L~ 2 143

211 2 12 213
221 222 223
231 232 233
2 L+ 1 2 Lj. 2 243

Z is identical to TAB3. It doesn't matter what the ranks of the left and
right arguments are. The dimension of the result is still the catenation
of the dimensions of the arguments.

Let's try bui lding TAB3 another way:

U+100 200o.+10X14
U

110 120 130 140
210 220 230 240

pU
2 4

Y+[jo.+13
y

111 112 113
121 122 123
131 132 133
1 Lt 1 142 143

211 212 213
221 222 223
231 232 233
241 242 243

Aga i n Y i s the s ame as 'TAB 3 .

Scanning

The next concept to be considered in this chapter is scanning. If we were
to start with a vector, say, 1 2 3 4, there may be times when we might want
to get a record of the cumulative sums (or products) from left to right

General ized Outer Product 225

along the components of the vector. In this case it would be 1 3 6 10.

The re isin 1 CLASSap repared mo nad i c fun c t i on S U/v! S CAN wh i ch doe s t his
fo r us:

)LOAD 1 CLA SS
SAVED 15.02.39 07/29/69

SUMSCAN 1 2 3 ,4
1 3 6 10

Let's see how SUMSCAN is constructed:

VSUMSCAN[C1Jv
V R+-SUMSCAN V

[lJ -+4 X l 1 = p p V

[2 J 'ARGU!v}ENT nus» BE A VECTOR'
[3J -+0
[4 J R+-+ / ((1 P V) 0 ~ 1 P V) x (2 p p V) p V•

v

Line 1 tells us to branch to 4 if the argument is a vector, otherwise drop
through to line 2 where an appropriate message is printed out, followed by
an exit from the function on line 3. Line 4 causes a 2ppV restructure of
V (for this example 2ppV is 2p4 or 4 4) which is

V+-14
(2ppV)pV

1 2 3 4
1 2 3 4

1 2 3 4

1 2 3 4

This is then mu 1tip 1ied component by component by

(lpV)O.~lPV

1 0 0 0
1 1 0 0

1 1 1 0
1 1 1 1

to give

« i o V)o. ~lP V)x(2pp V)p V

100 0
1 200
1 2 3 0
1 2 3 4

which is then summed over the second coordinate.

226 APL \360: An Interactive Approach

Graphing

Our last topic has to do with the use of the outer product to build up a
simple-minded but instructive graphing function. To begin, define

Y+¢X+-S+19
X

4 3 210 1 2 3 4

Y
4 3 2 1 0 1 234

Because there is a 0 as the middle element in X and Y, their outer product
wi 11 produce O's only along the I'axes'l of the matrix:

M+Yo • xX
Iv!

16 12 8 4 0 4 8 12 16
12 9 6 3 0 3 6 9 12

8 6 4 2 0 2 4 6 8
4 3 2 1 0 1 2 3 4

0 0 0 0 0 0 0 0 0
4 3 2 1 0 1 2 3 4

8 6 4 2 0 2 4 6 8
12 9 6 3 0 3 6 9 12
16 12 8 4 0 4 8 12 16

The next step is to replace the O's with some character, say, +, and every­
thing else with blanks. One way to do this is to use the array to index a
suitable character vector:

, +'[1+0=M]

+
+
+­
+

+++++++++
+
+
+
+

Since the horizontal axis is somewhat out of scale (one character space
i s n ' t as· wid e asal i ne spa ce) , we will ad jus t 0 ur II grap hII as f 0 11ows :

General ized Outer Product 227

(18pl 0)\' +'[1+0=M]

+
+
+
+

+ + + + + + + + +
+
+
+
+

Suppose now we wish to plot on this set of axes a number of points (X, Y),
where Y+-X+l. Our axes are made up of 1 i tera1 characters, so that the points
themselves would have to be represented as 1iterals in order to include them.
It is more interesting, however, to go back to our original outer product,
which is numeric, and superimpose the desired set of points F on it before
converting to characters:

F+-Yo.=X+l
F

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

F produces a matrix of lis where the points are. We next add the matrices
F and 1+2xO=/lJ. You should be able to see why multiplication by 2 is nec­
essa ry if you execu te the next step without doing so.

F+l+2x O=lvJ

1 1 1 1 3 1 1 2 1
1 1 1 1 3 1 2 1 1
1 1 1 1 3 2 1 1 1
1 1 1 1 4 1 1 1 1
3 3 3 4 3 3 3 3 3
1 1 2 1 3 1 1 1 1
1 2 1 1 3 1 1 1 1
2 1 1 1 3 1 1 1 1
1 1 1 1 3 1 1 1 1

Fi na 11y, our expanded plot is

228 APL \360: An Interactive Approach

PLOT+(18pl 0)\' o+o'[P+l+2 xO=UJ
PLOT

+
+

+ °

+ + + °	 + + + + +

+

+
+
+

Now that we have bui lt up the algorithm for the plot routine, we can incor­
porate it into a defined function, GRAPH:

'V Z+GRAPH
[lJ Z+«2 xpX)p 1 0)\' o+o'[F+l+2xO=(~X)o.xXJ

\J

F and X must be set before the function is executed:

X+-S+19
F+(¢X)o.=X+l
GRAPH

+

+

+ °

+ + + °	 + + + + +
+
+
+
+

Plotting functions can get quite complex when it is desired to include such
amenities as labeling of the axes, provision for changing the scale of the
plot, and rounding off the computed values for the coordinates, since the
printer can't type characters between lines and spaces.

A P L Pro v ide s a use f u1 set 0 f p lot tin g rou tinesin 1 P LOTFOR ft1 AT. Sin ce
instructions for the use of this workspace are quite complete (type
DESCRIBE after loading), practice in the functions is left as an exercise
(see problem 9).

General ized Outer Product 229

PROBLEMS

1. Drill. Spe c l fv vle t u , B+2 3p'ABCDEP', C+'ABD', D+-3 lpl3

A 0 • r 2¢A 1 0 0 1 lo.¥O 1 0 1 1

0Co.=B 13 go.>D 123 . 1 \ 5

Do.xA 1 00."1 0

2.	 Use the outer product to generate the fol lowing tables:

A) Sines and cosines of angles from 0 to PI at intervals of
PIf6

B) Logarithms of the integers 1 through 10 for a vector B Qf
different bases

C) Occurrences of the vowels AEIOU in the character string S
D) Squares and square roots of the integers 1 through 10

3.	 What is the shape of the result when the outer product is used to
add the elements of a vector of length 4 to the components of a
2 2 matrix?

4.	 Define a function DIST that computes the rounded off (nearest integer)
distances between any two cities whose X and Y coordinates are given
in a matrix L. Assume pL is N,2 and the cities are all located north
and east of the origin of the coordinate system.

5.	 Write an APL expression to find the number of occurrences of each of
the letters ABCDEFG in the word CABBAGE. Compare your answer wi th
that given for problem 4, chapter 21.

6.	 Construct expressions which will give the sum and carry digits for
addition of two numbers in any system with base B<10. Using these
results, write a function to generate an addition table of a set of
integers INT in base B.

7.	 Write a program to multiply two polynomials together. Assume their
coefficient vectors C1 and C2 are arranged in descending order of
powers of X.

8.	 Use the function GRAPH (page 228) for each of the following:

A)	 Y+-IX+-5+l9

C)	 Y~X+l

D)	 (Y~X+l)"Y~3-' X

E)	 Y~3IX

9.	 Execute the following instructions in order:

230 APL \360: An Interactive Approach

y+-ep-13+125

R+-(0=(-3xY)o .. +(2 xX)-2)vO=(2xY) 0 +X-8
n

R

Explain the resulting display.

10 .	 Aft e r loa din g 1 PLOTFOR Iv!ATexe cut e e a c h 0 f the f 0 11ow i ng :

A)	 X+120

Y+X*2

Z+2xX*2

40 60 PLOT Y VS X
40 60 PLOT Y AND Z VS X

B)	 X+1 , SOx 1 7
Y+~X

20 30 PLOT Y VS X

20 30 PLOT Y[1+17J VS X[1+17]

c)	 X+0 (0 , 1 3 6) ~. 1 8
Y+10X

Z+20X

70	 PLOT Y AND Z VS X

D) (For Y and Z defi ned as in part C)

Y AND Z

Y VS X

11.	 In 1.CLASS is a function DFT which can be used to format the
output of a calculation in APL. Its left argument is a vector
of two elements, the first of which determines the maximum width
of the field to be printed and the second, the number of places
to the right of the decimal point. The right argument is the
data to be formatted. Execute 10 5 DFT X AND Y after copyi ng
AND from 1 PLOTFORMAT and specifying X+f110 and Y+X:*.5 .

CHAPTER 31:

Generalized inner product

In the last chapter we examined a function called outer product which formed
all possible combinations of the two arguments, using some standard scalar
dyadic function. This operation, however, doesn't result in what in mathe­
matics is called ordinary matrix multiplication.

For those not fami liar with it, here is an example which illustrates the
use of such matrix multipl ication. We have three men who are engaged in
buying four items, A, B, C and D. The cost and tax on each item are given.
If we know how much each man bought, what is the total cost and total tax
per man? In tabular form:

cost/unit tax/unit

A

B

Item

C

0item

A B C 0

02 3

0 2 1

1 1 2

1

4man

13

4 .05

2 .06

1 .01

1 .02

------~-----

8 ®
~---- ~-----

B ®
t------­ f------­

®®

231

232 APL \360: An Interacting Approach

What we want are the entries to go into the dotted table, whose boxes are
numbered as shown above. Let's see how we can figure them out. To get
the total cost for each man, we would multiply the numbers of the various
items purchased by their respective costs, add them up, and put the results
in the appropriate boxes. For man 1 this is

(2x4)+(3x2)+(Ox1)+(lx1) or 15

This wi 11 go in box 1-1. The total tax for man 1 can be obtained similarly
and placed in box 1-2:

(2x.05)+(3x.o6)+(Ox.Ol)+(lx.02) or .3

What goes in box 3-1, to take one more example, can be gotten by

(1x4)+ (1x2)+ (2xl) -:- (1xl) 0 r 9

The completed table loovs 1ike this:

~

~

15 .3

~
.219

~
.159

Note that the first dimension of the result is the same as the first dimen­
sion of the left matrix, and the second dimension of the result is the same
as the second dimension of the right matrix. In addition, the inner two
dimensions (second dimension of the left argument and first dimension of
the right argument) must be the same in order to make possible this new
kind of " multiplication," if we may be permitted to use the term in a
somewhat different sense from its customary arithmetic meaning.

Inner product

To show how this operation can be performed on the terminal, let's bui ld
these matrices from their elements. First, we'll define the left matrix:

General ized Inner Product 233

A+3 4p2 3 0 1 0 2 1 4 1 1 2 1

A

2 3 0 1
o 2 1 4

1 1 2 1

The right argument B is

B+4 2p4 .05 2 .OG 1 .011 .02

B

4 0.05
2 0.06

1 0.01
1 0.02

and the desired result, which is known as matrix multiplication, is formed
by executing

A+. xB

1 5 o . 3
9 0.21

<) 0.15

Why use three symbols for this common operation? Very simple: for the +
and x any standard scalar dyadic functions can be substituted. The reason
+ and x are used here is that these are the two operations needed to get the
result matrix, the products first and then the sums. There is also a
pattern to the way the elements are combined. For example, the element of
the result which goes into box 3-2 (the third row second column of the
result) is obtained by operating in the fashio~escribed with the third
row of the left matrix and the second column of the right matrix. Such a
sequence of three symbols, f.g, f and g being any standard scalar dyadic
fun c t ion s, i s calledan inn e r prod uct. I tis not the s ame asAo • +B 0 r
Ao.xB and in this case can't even be compared with AxB since the latter
operation is possible only when the two matrices are the same size, and
the multiplication is carried out between corresponding elements only. The
inner product, Af.gB, operates on array arguments of many shapes with the
dimension of the result in each case (except for scalars) being
(-li-pA) ,1i-pH. Here are some additional examples involving scalars and
vectors:

10+.x3 2 8

130
1 2 3 4+.*0 1 2 3

76
2 1 6+.x3 2 p 1 6

35 44
(3 4pl12)+.=14

4 0 0

234 APL \360: An Interactive Approach

(2 3 4pl24)+.-4 2Pl8

6 10

10 6

26 22

42 38

S8 54

74 70

Applications of the inner product

Here is another problem, this time involving distances between cities on a
map. The diagram shows not only the intercity distances but also the
directions in which they are measured:

10

A

Notice that the distances are not necessarily the same in both directions
between any two cities. This is to al low for the most general case where
the roads may be one-way and not laid out parallel to each other. We can
summarize the diagram in the form of a mi 1eage table:

to

A B c D

A

B
from

c

D

0 10 5 20

10 0 8 7

10 8 0 3

20 7 3 0

suchatab1e i s prov idedin 1 CLA/)Sunde r the name [vI I LEA GE

)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

General ized Inner Product 235

MILEAGE

o 10 5 20

10 0 [3 7
10 8 o 3
20 7 3 0

Believe it or not, the longest two leg trips from any city to any other
city passing through some intermediate city is given by

MILEAGEf .+MILEACE

40 27 23 20
27 20 15 30
23 20 16 30
20 30 25 Lt 0

The longest trip from A to B is 27 miles (A-D-B), from B to C 15 mi les
(B-A-C), etc.

Why does this work? Let's arrange the matrices for the inner product in
the same form that our earl ier problem was:

0 10 5 20

10 0 8 7

10 8 0 3

0

10

10

0

f.+

5 20

8 7

20

1 1

21

7
1 2

22

3
1 3

23

0

14

24

10

20

8

7

0

3

3

0

3 1

41

32

42

3 3

43

34

44

The longest trip from B to C is represented by the contents of box 23. This
is formed by operating with the second row of the left matrix and the third
column of the right matrix. It requires adding 10 and 5, and taking the
greater of that sum and the sum of 0 and 8, which is 15, then taking the
greater of 15 and the sum of 8 and 0, which is still 15, and finally taking
the greater of 15 and the sum of 7 and 3, which is 15 again.

There are many other interesting combinations and possible uses, only a few
of which will be considered. For instance, the shortest two-leg trip is

lfILE'AGEL. +ll1ILE'AGE

o 10 5 {3

10 0 8 7
10 8 o 3
13 7 3 o

236 APL \360: An Interactive Approach

Notice that the shortest trip from, say, A to C, is 5 miles, which is A to
A to C or A to C to C. We are allowed this possibility because there are
entries (they happen to be all OIS) in the mi leage table from A to A and C
to C on the major diagonal of MILEAGE:

!1I LEAGE

0 10 5 20

10 0 8 7

10 8 0 3

20 7 3 0

One way to be protected from such a sneaky result is to put arbitrarily
large numbers along the major diagonal. This can be done without destroy­
i ng 0 r rewr i tin g ,~1 I LEA GR as f 0 11ows :

F+-MILEAGF7

T+-l000 X (1 4) o . = 1 4

T

1000 0 o o
o 1000 o a

o 0 1000 o

o 0 o 1000

F+-F+T

F

1000 10 5 20
10 1000 8 7
10 8 1000 3
20 7 3 1000

Now we get for the shortest two-leg trips

PL.+F

15 13 18 8
18 14 10 11
18 10 G 15
13 11 15 6

and, this time, the shortest such trip from A to C is 18 miles (A-B-C).
Application of this operation a second time would give the shortest three­
leg trip:

FL.+FL.+F

23 15 11 20
20 18 14 13
16 14 18 9
21 13 9 18

We can continue this process ad nauseam, but there is a prepared function in
1 CLASS called AGAIN that will do it for us. Let's display it:

General ized Inner Product 237

VAGAIll[UJv
V AGAIN

[lJ T+TL.+P
V

It is niladic and simply respecifies T as TL.+F. If we set T equal to F,
the fi rst time we execute AGAIl/ we wi 11 get the shortest two-leg trip,
the next time the shortest three-leg trip, etc.:

T+F
T

1000 10 5 20
10 1000 8 7
10 8 1000 3
20 7 3 1000

AGAIN
T

15 13 18 8
18 14 10 11
18 10 G 1 5
13 11 15 6

AGAIN
T

23 15 11 20
20 18 14 13
16 14 18 9
21 13 9 18

The next example is one in circuit design. Imagine a circuit with six
components connected as follows:

A, B, C, D, E and F are some kind of functional units which can be either
energized or not. The circuit works this way: if C is energized, after
a certain increment of time D is energized, and after another increment of
time E is energized; if A is energized, after an increment of time C and B
are energized, etc. F is the oddball unit here. Once it is energized it
stays on permanently, but unless we start with F on there is no way to turn
it on. E is a terminus. It doesn't turn anything on.

238 APL \360: An Interactive Approach

All this information can be summarized in a matrix, with 1 standing for
the existence of a connection from the unit named on the left to the one
whose name is on the top:

A

B

C
from

D

E

F

This ma t r ixis a va i 1ab 1e

CIRCUIT

01100 0

10000 0

o 0 0 1 0 0

1 0 0 0 1 0

o 000 0 0

00100 1

to

A B c D E F

0 1 1 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

1 0 0 0 1 0

0 0 0 0 0 0

0 0 1 0 0 1

as a va ria b 1e calle d CIRe UI 'I' i n 1 CL 11,';S

We can set up a vector X with six components (one for each unit in the
circuit) and let 1 signify that the unit is turned on initially. For
example, if only A is on, we specify X as

X+-l 0 0 0 0 0

What units are on after one increment of time? From the matrix it appears
that Band C wi 11 be turned on and all the others, including A, wi 11 be
off. The result should therefore be 0 1 1 0 0 O.

This can be achieved by

XV.I\CIRCUIT
o 1 1 000

After another increment of time:

o 1 1 0 0 OV.ACIRCUIT
100 1 0 0

and A is back on (due to the loop between A and B) with D also on.

To s t e p t his t h r 0 ugh seve rali ncre me nt s 0 f time the rei s a fun c t ion H U!/ i n
1 CLASS. Let's display it:

General ized Inner Product 239

VRUN[U]V
V NETWORK RUN STATUS;COUNT

[1 J COUNT+-O
[2J COUNT
[3 J STATUS
[4J STATUS+-STATUSv.ANETWORK
[5J COUNT+-CQUNT+l
[6J -)-2

V

The 1eft a rgume ntis il ETWO R}(, the mat r i x wh i ch des c ribesthe c ire u i t
connections, while the right argument STATUS represents the initial con­
ditions. COUNT is a local variable which is set to 0 on line 1 and dis­
played on line 2. Line 3 prints out the current status of the circuit
components. This is updated on the next 1 ine and the counter upped on
1i ne 5. The f ina 1 1i ne causes a b ranch to 2.

Does this program look a bit peculiar to you? It should. There is no
safeguard in it to turn it off once it starts, and it will run forever!
The proper thing to do would be to put a line in it that will cause execu­
tion to cease once COUNT reached a certain value. Since there is no such
check, wei 11 let it go and manually interrupt execution with the ATTN
button.

Wei 11 s ta rt by turning on only A:

X+-l 0 0 0 0 0

CIRCUIT RUN X

0
1 0 0 0 0 0

1
0 1 1 0 0 0

2
1 0 0 1 0 0

3
1 1 1 0 1 0
4
1 1 1 1 0 0

5
1 1 1 1 1 0

6

1 1 1 1 1 0
7
1 1 1 1 1 0

RUN[3l

Execution has been manually interrupted, as discussed above, and we are
suspended on line 3:

)SI
HUN[3l *

F will never turn on, no matter how many runs we make. A glance at the
original circuit shows why.

240 AP L \ 360: An Interactive Approach

COUNT is up to 10, the printout having lagged behind execution:

COUNT
10

Ordinari ly we can ' t get a value for COUNT, it being a local variable, but
re me mbe r t hat we are s til 1 i nth e fun c t ion a s ares u1t 0 f the sus pen s ion.

Let's now remove the suspension:

-+0
)SI

@

The few examples shown barely begin to cover the wide range of possible
applications of the inner product. After you have gained a reasonable
proficiency in APL you should be able to think up many more.

PROBLEMS

1.	 Drill. Specify A+3 4 5, B+4 3Pl10, C+-3 4P¢17

A+. =A	 Bx.=A

Bx. -C A v • ~B	 C I.-B

sv . <C 3+.xB	 (~c)r .+A

2.	 A) For two vectors A and B of the same length, and the conformab le
ma t ricesMand U (U +- (1 N) 0 • ~ 1 N) g i ve a me ani ng toeach 0 f the
f 0 11owi ng: A /\ • =B t /'>1/\. =B, A. + • ;t B, (M = 0) r; • ~ UtA x • * B

B) For a logical square matrix N, what is the significance of R-(-!VV.AN?
C) For the conformable matrices C and D, what is the meaning of C+.=D

andCr.LD?

3:	 Redo each of the following problems using the inner product:

A) problem 7, chapter 8

B) problem 4, chapter 10

C) problem 21, chapter 19

D) problem 5, chapter 24

4.	 Write a program to evaluate at various points X a polynomial with
coefficients C. Assume the terms of the polynomial are arranged in
ascending order of powers of X. Use the inner product in your
algorithm. (See also problem 3, chapter 23, and problem 7, chapter 30)

5.	 For a character matrix M, each of whose rows contains a name, write a
function to ulphabetize the names and place them in a new matrix A.
Assume each name is entered in the form JONES ANNABELLE and
(pM) r 2 J =1 G.. 0neb 1an k will s epa rat e the fir s tan d 1a s t name s , and
any spaces left over will be blanks on the right. The sort is to be on
the last names, with first names sorted within them.

General ized Inner Product 241

6.	 The Jones Computing Systems Corporation reimburses its employees for
travel on company business at the rate of 14 cents per mile for the
fi rst 75 mi les, 10 cents per mi 1e for the next 50 mi les and 6 cents per
mile for all mileage in excess of 125. Define a monadic function which
uses the inner product to compute mileage allowances for employees.

7.	 Use the inner product to write an expression which will simulate 10.lM
a 10 ng the r 0\"1 s 0 f M, where Mx 3. 3 0 1 9 /" Yourexpres s ion s h0 u1d p ro due e
the vector 123 456 789.

8.	 Redo the cosine function (page 67) using the inner product.

C HAP T E R 32:

Two applications of APL

There are a number of uses for APL in the branch of mathematics known as
matrix algebra. Since this text is a teaching introduction to the
language, only one of these wi 11 be considered, the solution of a set
of exactly determined simultaneous 1inear equations.

For those who have forgotten their high school algebra, simultaneous
1inear equations are of the form (in conventional notation)

aX + bY + cZ +

dX + eY + fZ +

the problem being to find values of the variables X, Y, Z.... that satisfy
all the equations. a, b, c, ... k k2 ... are numerical constants.1,
We wi 11 approach it with a numerical example. Suppose that in three
successive wpeks, we bought a number of different items A, Band C,
spending the amounts 1isted:

total
cost A B C

week $1.10 0

2 .59 3 2 2

.78 1 3 43

What are the per unit costs of the various items?

The answer happens to be $.05 for A, $.15 for Band $.07 for C. Let's work
back from the answer to see how we can solve similar problems. From our
previous work with the inner product, we ought to be able to get the vector
of total costs from the number of items matrix and the unit cost vector
(try this for yourself). we'll call the total costs vector D, the matrix
of the number of each item purchased X, and the unit cost vector B. Our
trouble is that in a real problem we would know X and D but not B.

242

Two Applications Of APL 243

Before proceeding, here is a quick review of some elementary facts about ma­
trices. M, N, P, Q and R are matrices of the appropriate size, and = is used
in the conventional sense here. +.x means the usual inner product (here ma­
trix multipl ication). All of these facts you may verify on the terminal:

(1)	 I f 1-1 =!l , the n (R + • x!-1) =R + • x II

(2)	 (/.1 + • x (!l + • x P)) = (li!+ • x 1/) + • x p

(3)	 If Q has an inverse, INV Q, then (·(INV Q)+. xQ)=I
wher~ I is the identity matrix

(4)	 (/.1 + • x I) = (I + • x n) =1v1

The third point introduces a new concept, that of a matrix inverse. This
is really not much different from the other kinds of inverses we have
encountered thus far. For example, adding the additive inverse to a num­
ber resulted in the identity element for addition:

R+-ll0
O=R+-R

1	 1 1 1 1 1 1 1 1 1

and for multipl ication:

l=Rx~R

1	 1 1 1 1 1 1 1 1 1

-R here is the additive inverse and ~R the multipl icative inverse. So the
inverse of a matrix is one which, when it multiplies M (matrix multiplica­
tion, not component by component), yields the identity matrix; shown here
for 4 4 matrices:

(14)0.=14

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

I f 14 + • x I LV V fi1 res u1t sin I, the n I N V Mis sa i d to be a rig htin ve rs e .
Ditto for «IiVV i;J)+.xj11)=I, as a left inverse. If the same matrix
is both a left and a right inverse of M, then M must be square (why?), and
INV /,1 is referred to as the inverse of M. From this point on, INV M wi 11
be used in this latter sense.

Now getting back to our problem, with the dimensions underneath as shown,
we had

D +- X+.xB

3 3x3 3

We want to find B. Using a dotted 1 ine to indicate that both sides are
equivalent statements, the sequence of steps we wi 11 take is the following:

244 APL \360: An Interactive Approach

(INV X)+.xD INV X+.x(X+.xB) rule

(INV X)+.xD ((INV X)+.xX)+.xB rule 2

(INV X)+.xD I+. »» rule 3

(Ill V X)+.xD B rule 4

The last 1 i ne is our conclusion, that B+(INV X)+.xD

The re is a prepared function in 1 CLASS called INV which acts as above,
as well as the data for this problem. It requires a knowledge of matrix
algebra beyond the scope of this text to explain how one can calculate
matrix inverses, so INV will not be displayed:

)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

X

460

322

134

D
1.1 0.59 0.78

INV X

0.03846153846 0.4615384615 O.2307C92308

0.1923076923 0.3076923077 0.1538461538

o.13461538 LtG 0.1153846154 0.1923076923

(I nV X) + • x D
0.05 0.15 0.07

The set of equations in our problem has as many equations as unknowns.
There may be times when we have too many equations or not enough. You will
find techniques for handl ing these and other variations in standard texts
in matrix algebra and numerical analysis.

Some elementary examples from the calculus

The definition of the slope of a straight 1 ine (see problem 6, chapter 7)
is of little value if the function we are considering is nonl inear. We
can, for example, sti 11 use this definition to get an "averagell slope over
a modest-sized interval, but it is only an approximation.

In calculus courses it is shown that the slope of a function at a particu­
lar point P is the limiting value of the average slope over an interval
encompassing the given point as the size of the interval becomes vanishingly
small:

http:15.02.39

Two Applications of APL 245

y 1

In the figure above, the average slope for the interval shown is
(Y2-Y1)7(X2-X1). By reducing the size of the interval about P, this
average approaches the instantaneous value of the slope at the point P, and
in the limit is the value of the derivative of the function at P.

APL can be used to obtain numerical values for the slopes (derivatives) of
functions, provided, of course, that the derivatives exist. As an example,
let's define a quadratic function F as follows:

'lR+F X
[1]	 R+2xX*2'l

Using our previous definition of the slope, we'll set up a dyadic function
SLOPE which will allow us to choose intervals of varying size in the
computation:

'lH+I SLOPE X
fl] R+((F X+I)-F X)~I'l

Here are some executions of SLOPE with different intervals:

X+l10

1 SLOPE X

6 10 14 18 22 26 30 34 38 42
.1 SLOPE X

4.2 8.2 12.2 16.2 20.2 24.2 28.2 32.2 36.2
40.2
.01 SLOPE X

4.02	 8.02 12.02 16.02 20.02 24.02 28.02 32.02
3G.02 40.02
.0001	 SLOPE X

4.0002 8.0002 12.0002 16.0002 20.0002 24.0002
28.0002 32.0002 36.0002 40.0002
117-6 SLOPE X

4.000001999 8.000001999 12.000002 16.00000199
20.000002 24.00000199 28.000002 32.00000199
36.00000199 40.000002

Those readers fami 1iar with the calculus wi 11 understand why these last
results are nearly identical with

246 APL \360: An Interactive Approach

2x2xX
4 (3 12 1f) 20 24 28 32 36 40

for the function F defined previously.

Since the result of applying the function SLOPE to F is itself a function
na me 1y, 2 x 2 x X we 0 ugh t to be ab 1e to a pply S L ()PEa 9a ina f t e r chan gin 9 .

\7F[1 lJ?«-2x 2xX\J
1 ;,7 - G S LOP i~1 X

L+ 4 L+ 3 • ~ 9 9 ~j 9 9 9 9 7 3 • 9 9 9 ~3 9 9 9 9 I 3 • 9 9 9 9 S3 9 9 9 ',7 3. 9q999q~3q7

3.999999997 3.999999997 3.999999997

This execution corresponds to the second derivative of F.

Our final example is one in which we compute the area bounded by the curve,
the X-axis and the ordinates at Xl and X2 (see problem 5, chapter 19):

An obvious solution is to break up the cross-hatched area into rectangles
of uni form width I,

find an expression for the area of the "typical " rectangle, add up the areas
and then decrease I to get a better approximation. The function f1Hl'J'l1 does
this for us. X is a two-component vector whose elements are Xl and X2 as
shown in the diagram.

4.97

Two Applications of APL 247

VH-\-I ARHA X
r 1] R +-I + .. x r X [1] +I x 1 I (X [2] - X [1]): 1 V

Again, those with a calculus background wi 11 recognize this as the numeri­
cal equivalent of

(x2
L f(x)dx

xl

Before applying the function, l e t ' s change P back:

VF [1] H~- 2 x X* 2 V
.1 AN.HA X

• 0 1 ARjj'A X
4.69f)7

.001 AREA X

4.669667
.0001 AREA X

~/S FULL
AREA[l] R+I+.xF X[1]+IxIL(X[2]-X[11)~I

Note that as the number of points which we use to evaluate the area
increases, sooner or later we l Ll run out of storage space for the inter­
mediate results in the algorithm, as indicated by the ws full message. Can
you think of a way to " stretch" your available storage for greater preci­
sion?

PROBLEMS

1.	 Use the function SLOPE to investigate the slope of the curve repre­
sented by Y+-*X for different points X. Compare your slopes with *X.

2.	 Find the inverse of the identity matrix.

3.	 Use I NV to sol vet he f 0 11owi ng s ys t em 0 f e qua t ion s :

2X+Y+3Z=lO
4X+3Y-Z=13
2x+Y-4Z=3

4. In algebra it is shown that for the system of equations

aX+bY=c
dX+eY=f

(conventional notation)

the appl ication of Cramer's rule gives as solutions

j X= (ce-bf):- (ae-bd)
1Y=(af-cd):-(ae-bd)

Write an ~rL program to solve by Cramerls rule a given set of two
equations and print the message NO UNI{2UH SOLU?110N if ae-bd=O.
define a function DOLVE wh i ch uses lNV to solve the equation.

linear
Then

248 Two Applications of APL

5.	 Nearly every calculus book ever printed has a problem simi lar to
the following: A farmer has 300 feet of fencing material which he
wants to use to enclose as large a rectangular area as possible. One
side of the property to be enclosed is a relatively straight stretch
of river, and needs no fencing. How should the fence be put in?
(To solve this problem, set up an expression for the area, apply the
slope function to it, and see where the slope is o. This corresponds
to a maximum point on the graph of area vs the variable representing
the length of one side).

6.	 Use the function AREA to find the area bounded by the curve represented
by Y+ -;- X·, the X- axis, and the 0 r din atesat X =1 and X =2. Comp are you r
answer wi th ~2.

C HAP T E R 33:

Input a nd output

We have been doing a considerable amount of computing without having to pay
too much attention to the problems of input and output. And for a good
reason-our work has been of a highly interactive nature. We fed informa­
tion to the system and the system either responded or put things into storage
for us, to be recal led at some later time.

Nevertheless, there comes a time when we need to take a look at some of
the more specialized forms of input and output, especially as they appeared
in the dri 11 exercises and some of the prepared functions. These features
are the basis for this chapter.

The guad

In 1 CLASS there is a function called SD which calculates the standard
deviation. Here i tis:

)LO/lD 1 CLASS
SA VE1) 15.02.39 07/29/G9

VSD[LJJV
'l SD;X;N

[1] '~NTER OBSERVATIONS'
[2] X+LJ
[3] -+OX1U=pX
[4] 'dUMB~'R OF OBS:';U+-N+pX
[5] X+X-(+/X)~i!

[6] 'STANDARD DEVIATION'
[7] ((+/X*2)~d-1)*O.5

[8] -+1
'l

It is ni ladic and does not return an expl icit result. Going through the
function, we find that 1ine 1 prints out the message ENTER OBDERVA1l'IONS
This is fol lowed on line 2 by the local variable X, which is specified
by the quad (upper shift L) or box. The effect of this line is that when
control is on 1 ine 2, the output that appears on the paper is 0: and causes
the system to wait unti 1 you have given it some input and pressed RETURN.
The input is then stored in X. Line 3 branches to 0 if O=pX, i.e., if
an empty vector is entered. It is a signal in this function that we are

249

250 APL \360: An Interactive Approach

finished. Line 4 introduces another new feature, mixed output. It prints
out NUMB E'R 0 FOB S : f 0 1lowe d by the numbe r 0 fob s e r vat ionsen t ere d (pX
is stored in N, put into the box and printed out). The semicolon is used
here in APL for such mixed output because characters can l t be catenated to
numbers. Line 5 subtracts from each component of X the average, and stores
it in X. After a message STANDARD DEVIATION is printed (line 6), the
calculation is carried out on the 1ine 7 and printed, following which control
is returned to line 1, and the program loops through the steps once more.

Let's try this a few times to see how it works:

SD
ENTER OBSERVATIONS
D:

1 2 1 2 1 2 1 2
8
NUMB ER OF OB8: 8
STANDARD DEVIATION
0.5345224838
ENTER OBSERVATIONS
0:

Note the 8 just prior to the 1ine giving the number of observations. The
reason for this is that on line 4 of the function, in executing from
right to left, pX was put into Nand N in turn into D. Whenever the quad
appears to the left of the specification arrow, the system interprets this
as a command to-print out the value of whatever is to the right of the
arrow. So the right hand side of line 4 really does two thinqs: It stores
the length of the vector X in the local variable N for subsequent use on
lines 5 and 7 and causes a printout of the length at the same time. Since
in going from right to left the box is encountered first, the contents are
printed out first, before the 1iteral message, and then reprinted following
the message. We wi 11 edit the function a little later to remove this un­
desi rable feature.

Any val id APL express ion can be entered:

[]:

8r1 2
8
!'JUlv/BER OF ODS: 8
STANDARD DEVIATION
0.5345224838
ENTER OBSERVATIONS
[]:

(N ow we I 11 t ry)

lJ:
[.l+-8 p 1 2

1212121 2
8
NUI,JBER OF ODS: 8
STANDARD DRVIATIOV
O.5345224B38
ENTER OBSERVATIONS
:J:

Input and Output 251

Since the quad appears just to the left of the arrow in this input, it
causes an immediate printout of 8p1 2 and then proceeds with execution of
the function.

Escaping by simply pressing RETURN and not entering anything is not enough.
The system has to have some input, and only if an empty vector is entered
is it possible to excape:

[1:

1 0

Letls now open up the function to remove the extra quad. Wei 11 use detai led
editing on 1ine 4:

vS D [4[]1 0]
[Jot] 'i/Vl-1EER OF OB8:' ; []+N+pX

II
[4 1 ' N VIviB ER 0 FOBS: ' ; ll+ p X\]

Now executing 3D once more, it appears to be OK:

SD
ENT&R OBSERVATIONS
U:

lOp 1 2
10
IvU14BE H UFO BS : 1 0
STANDARD DE'VIATION
O.52704627G7
ENT~R OBSERVATIONS
u: , ,

@

Incidentally, as the last input shows, another way to enter an empty vector
is to type I Do you remember why this works?I.

This function has introduced three new features: (1) the use of the semi­
colon for mixed output; (2) the quad to the left of the specification arrow;
and (3) a quad to the right of the specification arrow which returns 0: on
the paper, skips a line and waits for any valid APL expression to be typed
in as input. The contents of the quad in the last case can be put into
storage by an expression 1ike X+O which makes input avai 1ab1e for future
use in the function (or outside if X is a global variable).

SUB is another function that utilizes the quad. Before displaying it wei 11
try it out a few times:

SUB
3-3
LJ:

o
THATS RIGHT
10-5
I]:

G

252 APL \360: An Interactive Approach

5+l-]=10
TRY AGAIN
10-5
lJ:
(RETURN)
[J:
(RETURN)
[-1 :
(RETURN)
lJ:

5
TllA,T8 RIGHT
5- 0
J:

5
THATS RIGHT
14-10
[1:

HELP
00000000000000 TAKE ArJAY
0000000000

14-10
[J:

4

THAT8 RIGHT
19-7
[]:

19-7
THATS RIGHT
11-9
[]:

11-9
TIiATS RIGHT
1-0
[J:

11-10
~L'HA i: RIGIIT
11­

Note that giving no input to the program and just pressing RETURN (top of
this page) wonlt get you out. Also observe the responses of the program
under different conditions, and the fact that any APL expression can be
used as input.

Let I snow i n t err up t the fun c t ion toge t 0 ut . Sin ce the i nput box will
acce pta nyAPLexpres s i on,) CLEA R,o r) Ii0 A D will get us 0 ut, but 0 n 1y
at the expense of destroying the active workspace. Wei 11 use the stop
vector and then remove the suspension:

Input And Output 253

[]:

S[).SUJ]+1100

SUL3[S]
)31

SUR[S] *
-+0

Sf1SUI1+0

Here is SUB:

VSUB[OJ\7

\7 SUB

[1 J P~-? 2 0
[2 J P~--P, 1 + ? P+ 1
[3J P[lJ;'-' ;P[2J
[1+ J A+-O
[5J -+OOKXlA=-/P
[6J -+NPXlA=HELP
[7J -+OxlA=STOP
[8J P[2J;'+0=';P[lJ
[9J 'TRY AGAIN'
[10J -+3
[11J OOK: 'THATS RIGHl"
[12J -1-1
[1 3 J NP: (P [1 J 0 ' 0 ,) , , T AK E A 01A Y ,
[14J P[2]o'o'
[1 5 J -~ 3

\7

On line 1 a random number from 1 to 20 is generated and stored in P. This
is then respecified by catenating to P a second random number from 0 to P.
Line 3 prints out mixed output, the first random number followed by the sub­
tract sign and the second random number. Line 4 prints a box to accept
input, whi le 1i ne 5 causes a branch to 11 if the an swe r is correct and
p r i n t s the me s sage T HATSRIGHT, 0 the rw i sewed r 0 p t h r 0 ugh to 6. I f
flELF is typed, line 6 branches to 13, and if STOP is typed, we exit the
function.

Assuming an incorrect answer and neither HELP nor STOP are entered, 1 ines
8, 9 and 10 restate the problem and tell us to TRY AGAIN, and we start
over on line 3 with the same problem. If the problem is answered correctly
this time and we get to line 11, we branch to 1 and get a new problem to do.

Typing fJELP brings us to 1ine 13 where P[l] copies of the small ci rcle
followed by some spaces and the words TAXF: ATvAY, followed in turn by
P[2J copies of the small circle on the next 1 ine and a restatement of the
problem are printed out, and we cycle through the same problem once again.

HE L P' and S TOP i nth i s exe r ciseare g lob a 1 va ria b 1e s wit h rat her un 1i ke 1y
values attached to them to make them as student-proof as possible:

1IELP
2.718281828

*1
2.718281828

254 APL \360: An Interactive Approach

STOP
15.15426224

**1
1 5 • 1 5 L~ 2 6 2 2 L+

Being global they appear on the 1ist of variables for 1 CLASS:

) VARS
13 CIRCUIT D Ill!) LP If !~1 I LEA r; E PRE VI ()U,') T T/.1.','
8PL STOP TABO TAB1 TAB2 TAB3 X Y

To see if STOP works, weill call for SUB again:

SUB
11-1
U:

10
TlIATS RIGllT
14-6
[1:

STOP
@

and we get out of the program as anticipated.

Additional uses of the quad

Don't get the impression from the previous illustrations that the quad
can be used only within defined functions. Here, for example, are some
more ways in which the quad can be uti lized for the display and input of
information. Keep in mind that at all times, though it may be used to the
left of the specification arrow, the quad is not a variable, and no values
go into storage as a result of its use in this manner.

n
U:

15.27xR-4::.2
519.18

A+-5 15 2 6 0

A [D+- (+ / (11 • ~ A) - [J+- (X 0 > X) 1\ D+-A 0 • =A) 1 X+-1 P A]
0 •

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

a 0 0 0 1

a 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

L~ 3 S 1 2
G 2 0 5 1 5

64

Input And Output 255

The last example uses the quad to display intermediate results, and helps
us to understand how a messy expression such as the one just given works.

Here are some additional examples of the quad used as an input indicator on
the right of the specification arrow:

H~-[J

[]:
64
H

R+l]~lO

U:
15

65. G
T+[]

fJ:
'TJIE CAT IN TllE flAT'

T

T1 H E TIlE CAT III '.i. HAT

The quad can also be used in a branch command (see page 176 at the end of
chapter 24):

~8,pD+'THIS MESSAGE WILL BE PRINTED'

Finally, when a system command is entered as input with the quad, the quad
will disappear if the command replaces the active workspace or signs off,
and will reappear after saving or when execution is resumed after loading
or signing on again (if)COilTINUE had been executed). It also appears in
the state indicator if)SI is entered as input.

The quote-quad

Inth e 1as t prog ram we we rera the r 9en e r ousin allow i n9 any A P Lexpres s ion
as input. What if we want an exact predetermined answer? An example of
such a program is given by ADD:

VADD[LJJv
v ADD

[lJ D~P~? 10 10
[2J ~OxlO=pA~,~

[3J ~WRONGxl~A/Ac'0123456789'

[L+ J A~- 1 0 1 - 1 + ' 0 1 2 3 4 5 6 7 8 9 , 1 A
[5J rl x l A = + / P
[,6J 'TRY AGAIN'
[7 J r2

[8J WRONG:'?????????????'
[9 J -+ 2

This contains a quad with a quote overstruck. The effect of this is to
make whatever is typed in accepted 1iterally. This includes even system
commands like OFF, CLEAR, etc., so it's vital that an appropriate means
of escape from the function be planned.

v

256 APL \360: An Interactive Approach

After two random numbers are generated and printed out by being assigned
to the box, 1ine 2 exits us if an empty vector is entered. There is a
branch to 8 if any character other than 0-9 is inputted. Line 4 takes the
1iteral representation of the input, converts it to decimal representation,
and puts it in A. This is then matched against the correct answer on 1ine
5. If correct, we get another problem; if not, the message TRY AGAIN.
Here is a sample execution:

ADD
8 10
18
8 3
8+3
?????????????
R E f/
?????????????
11
1 8
)CLEAR
?????????????

(escape is effected by entry of a return)

Note that no quad is printed out. The typeball simply moves over to the

left margin when 1iteral input is cal led for, and the keyboard is unlocked.

Another funct i on that accepts 1 i tera 1 input is SPELL:

SPELL
3
THREE
TIJATS RIGHT
5
FIV
TRY AGAIN
5
PIVE
TllATS RIGHT
8
STOP

\JSPELL[OJ\7
\J SPELL

[1] N+--l+?10
[2] N
[3] ANS+-[!J
[4] ~OXlA/(4pANS)='STOP'

[5] ~CORRECTxIA/(5pANS,' ')=SPL[N+l;]
[6] 'TRY AGAIN'
[7] ~2

[8] CORRECT: 'THATS RIGHT'
[9] ~1

A random number from 0 to 9 is selected, assigned to N, and printed on 1 ines
1 and 2. Line 3 accepts the input and puts it in ANS. The next line
compares the first four characters of the input with STOP. If they match,

Input And Output 257

we're out. If not, we drop through to 1 ine 5 where the first five char­
acters of ANS are compared with the (N+1)th row of SPL:

8PL

ZERO
ONE
T~/O

THREE
FOUR
FIVE
SIX
SEVEN
EIGHT
NINE

If they match, we branch to line 8, where THATS HIGHT is printed out and
followed by another problem. Otherwise we get the message TRY AGAI!,' and
recycle through the problem.

S PLis act uall y a 10- row 5- col umn mat r i x wit h b 1an kson the end where
needed to fill up the five columns. We can show how such a matrix can
be built by executing

W+10 5p'ONE TWO THREEFOUR'

W

ONE
TWO
THREE
FOUR
ONE
TWO
THREE
POUR
ONE
TWO

Two problems occur in connection with the function SPELL. One difficulty
in designing such a function is that as it is now set up, any characters
beyond the first five aren't checked on 1 ine 5. This leads to anomal ies
1ike

SPELL
9
NINE RT
THATS RIGHT
3
STUP

Another real problem is that we have built in no means of escape, except by
typing STOP. An additional avenue of escape from such a program will be
discussed further on in this chapter.

258 AP L \ 360: An Interactive Approach

Extensions of the quote-quad

As with the quad, the quote quad can also be used by itself:

ij ..:-['J

;3It10N SAYS
'I
1-1

~j1 1110 N .3A YS

[lIT..: l'J
liE' l/O tv 'IF C; 0

t.t r
liE WON'T GO

p l.L'l'

1 1

Escape from an input loop

It sometimes happens that in spite of our best efforts, we may be caught in
an endless loop and not know how to get out, or, what is worse, the function
is poorly designed and has no way out. Shutting the terminal off won't help
us, since when we sign on again we wi 11 be right back where we were before,
because the CONTINUE workspace is automatically removed.

APL provides two escape mechanisms for such situations. Those functions
call ing for numeric input (D) can be gotten out of by typing +, while
escape from those which require 1iteral input (~) can be achieved by enter­
ing	 0 backspace U backspace T, forming the overstruck character m.

PROBLEMS

1.	 Define a function that wi 11 give mu l tipl ication dri 11 of integers ?i.
for some argument N in the header. Have your function print out a
message TRY AGAIN for wrong answers. Use STOP as a global variable
for escape from the function.

2.	 Modify your answer to the above problem so that three tries are a1 lowed,
after which the correct answer is printed out and another problem is
posed.

3.	 Add a further refinement to the multiplication drill so that when llELP
is typed, the answer to the problem is given as X[1] rows of X[2]
stars each, with an appropriate message and a repetition of the
problem. X is the vector of random integers generated in the problem.

4.	 For a final feature, modify your function for problem 3 to print out

the amount of time required to get the correct solution.

5.	 Replace the message TRY AGAIN on 1 ine 6 of SPELL wi th a statement

Telling what the answer is.

6.	 Define a function ENTER that wi 11 take the 1 i teral spell ing of numbers,
1 ike those in SPL , and put them in successive rows of a 20-column
matrix. Exit from the function will be effected by entering ~n empty
vector.

C HAP T E R 34:

Miscellaneous APL commands and features

This chapter wi 11 be a catch-all for the remaining 11PL commands and
features.

The commands OHIGIN, JIIDJ.'Il, DIGITS

These system commands affect the active workspace and travel with it when
it is saved. ORIGIN, sets the origin for indexing on arrays and all oper­
ations which depend on the index. Two origins are avai 1able, 0 and 1. Here
is the command and its effect on the iota and indexing functions:

)OHI(;Ii/ 0

rJA8 1
t 5

o 1 234
A L F+- ' 11 neeE FGIII J J(,

ALFl'CAFE'
2 0 5 L+

ALF[2 0 5 4J

CAFE
4?4

J o 2 1

Other array operations not shown here will be simi larly changed. For
instance, in a workspace set to origin 0 the normal transpose ~) 10}1 (M i
some a r ray) wou1d havet0 bel 0~ 14 . Bra nch i ng wou 1d be a f f e c ted a 1so, as
for example, in the case of -+3 x l A =B , but this could be compensated for b
calling for -+3rlA=B, which works for either origin (why?), or by i nc re as.

use of labels.

To tell what the origin is in a workspace all we need do is execute

l 1
o

Clearly the origin is 0, for an origin of 1 would call for a response of 1
Finally, to reset the origin, execute

259

260 APL \360: An Interactive Approach

)ORIGIll 1
riAS 0

and we are back to normal:

t 5
12345

The ~/IDTH command works in much the same fashion, and sets the width of
the printed line as specified by the integer (between 30 and 130) follow­
ing the command:

)WIDTH 30
WAS 12C

lOOp '0123456789'
012345678901234567890123456789

o1 2 3 4 5 6'7 8 <J 0 1 2 3 4 5 6 7 8 9 0 1 2 3

456789012345678901234567

8<J01234567890123456789

This command won't change the margin settings on the terminal, nor the
length of the input 1 ines, but every 1 ine of output will be no longer than
the width specified.

We'll now reset the width to its normal value:

)JlIVTJI 120
[iAS 30

The DIGITS command sets the number of significant places in the numerical
output to some number between 1 and 16:

)DIGITS 5
WAS 10

1~7

0.14286
)DIGITS 10

fvAS 5
1~7

0.1428571429
)DIGITS 16

[vAS 10
1~7

0.1428571428571428
)DIGITS 20

INCORRECT COMMAND
)DIGITS 10

~vAS 16

The actual calculations aren't affected, only the output as printed.

The workspace rls FilS

In 1i bra ry 1 i s a wor kspa ce called rlS F IV S , wh i ch you s h0 u1d now loa d :

Miscellaneous APL Commands And Features 261

)LOAD 1 WSFIlS
SAVED 23.45.54 07/07/69

)FdS
D~LAY DIGITS OHIGIN SETLINK WIDTH

) VARS
DESCHIiJL'

Exe cut e DE:) CR I B L' to 5 e e how the fun c t ionsin t his wo r k 5 paceare use d :

DESCRIBb'

TilE' FUNCTIOIVS ORIGIN, ;iIDTu', AdD DIGITS ARE E'ACiJ
SIiijILAR TO ru« CO!·1L~AljD OF rue SA/vlE NAt/fE, EXCi:.J'PT THAT L'ACll IS
A FUNCTION RATH~H THAN A COMMAND AND MAY TH~R£FORE H~ USED
~lITHIiv OTHER FUNCTIONS. ~'ACH HAS Ad EXPLICI'l1 RESUL'11

~/jJICjJ

IS THE PREVIOUS VALU& OF TdE REL~VANT SYST2M PARAM£TER.

FOR E XA p,jP LE, THE F0 L L 0 ~I I LV G F ULV CT I 0 tv :

'VF X
[lJ X+ORIGIN X
[2J G
[3J X+ORIGIN xv

WILL ~XECUT~ THE FUNCTION G WITH WHATEVER INDEX ORIGIN IS
SPECIFIELJ vY TJl~' ARGUlJEi:JT OF F, AND J-IILL RL'STORE r.i: INDL/X
ORIGIN TO TlfE VALUE THAT I'J.'1 HAD dEPORE TdL' EXb'CUTIOiV OJ/ F.

THE FOLLOWING	 FUNCTIONS ARE ALSO AVAILABLE:

Z+SETLINK X	 SETS THE VALUE OP TiJ8 LIt/K IN THE CHAIi/ OP
NUMBERS GE'N£'RATED IN TliE USE OF TilE HOLL ANlJ
DEAL PULVCTIO/v S • (TH J.~' EXP LICI11 RES ULT PRODUCE'f)
HY SETLINK IS THE' PR~VIOUS VALUE OF TH~ LINK.

TIlE' RESULTS PRODUCED BY THE ROLL AND DL'AL
FUN CT I 0 LV S ARE ii 0 'I' THE L I LV j{ S 'I' IiE !18l!/ L VES, J.jUT
RAT jj ER SOME F UiV CT ION 0 F Til Elv1 • Til E LEN cr.i 0 F
THH CJ1AIN (BEFORE REPETITION) IS 2*31.

DELAY X	 DELAYS EX~CUTION FOR X SECOUDS.

Here are some examples:

X+WIDTli 30

40p'0123456789'
012345678901234567890123456789

0123456789
X

120
WIDTH X

30

262 APL \360: An Interactive Approach

X-<-Ol?IGIiJ 1

X

1
1 3

123
X+-ORIGIlJ 0
1 3

012
ORIGIN X

o
1 3

123

When the function is called for, the most recently set value is given, and
it is then reset to the original value, as stated in LJESCHII5L' above. The
funct i on DIGITS works in the same way:

X+-DIGIT8 5

1.;-3

0.33333

X

10
DIGITS X

5

1.;-3

0.3333333333

Groups

The command GROUP collects all but the fi rst of the names that follow it
and stores them unde r the firs t name. Any obj ect, inc 1ud i ng names of othe r
groups and even nonexistent global objects can be a member of a group, but
the group name can1t be the same as that of a global object in the workspace.
The COpy and ERASE commands can be used wi th groups to make it eas ier to
move or delete a collection of related global objects. For some examples
we ! l l use functions and variables from 1 CLASS:

)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

) vi I DTIl 5 0
h'AS 120

)FNS
ADD AGAIll A VC AVG1 AVG2 AVG3 A VG4 A VG5
BASE C CMP Cl1PX C!1PY COLCATl COLCAT2
COLCAT3 COS COSINE CP CPUTIME CP1 DEC
DELAY DESCRIBE DFT DICE E FACT
FACTLOOP GE02 CE03 HEXA HY HYP
i us RRT I/l V ~1 EA!l PI RECT REP RRVF1?SF
ROWCAT RUll S SD SETVARIABLES SIGN SORT
SP~LL SQRT STAT STATISTICS sun S rIffS CA [,I TI/.,'P
TIlJEFACT TRA TRACETIl1Z

Miscellaneous APL Commands And Features 263

) VANS
f3 CIRCUIT D HELP /-1 iII DEA(;E PRDVIOU8T IME
SPL STOP TABO TABl TAB2 TAB3 X Y

)GROUP STAT ADD AGAIN AVG
NOT GROUPRD, NAl1E IN USE

)Gl?OUP BAKER ADD AGAIN A VG
@

The movement of the typeball six spaces over constitutes the system's
response to a successful grouping.

To list the members of the group, type

)GRP BAKER
AlJD AGAIi/ AVG

The group may be respecified in the same way as for a variable:

)GROUP BAKER AVGl AVG2 BOO WRONG HELP SOWllAT
@

)GRP BilKER
/1 VGl AVG2 BOO WRONG HELP SOWHAT

It may be enlarged by typing

)GROUP BAKER BAKER SORT
)GRP BAlCER

AVG1 AVG2 BOO WRONG HELP SOI/llAi' SORT

and removed by entering an empty vector after the group name (or erasing):

)GROUP flAKER
@

)GRP BAKER
@

Having removed the group BAKER (it could also be removed with the ERASE
command, but this removes the members as well as the group itself, in con­
trast with the above command, whicr. just disperses the group), let's define
two additional groups ABLE"' and COVER, one of which will include the
othe r:

)GROUP ABLE PI RECT REP OOK SAY
(a!

)GROUP COVER ABLE TAB3 Y
@

The names of all the groups in the active workspace can be 1isted by the
command

)GRPS
ABLE BAKER COVER

The restrictions on group names are the same as those applying to functions
and variables, and a partial listing can be obtained by following the

264 APL \360: An Interactive Approach

command by a letter of the alphabet.

Message commands

The last set of system commands is that concerned with communication
between terminals (including the operator). Messages of importance to all
connected users begin with PA! which, contrary to public opinion, does
not stand for " political announcement."

Although messages can be received ordinarily only when the receiving key­
board is locked and not in the middle of function execution, such public
address messages can interrupt at any time. They come from the system
recording terminal, and are distinguished from routine me~sages from the
operator, which begin with OPR:

There are four message commands available to the user. Each is fol lowed
by one 1ine of text of length not exceeding 120 spaces:

) 0 PR [/.1E88AGE]

This prints out the message at the operator's terminal, prefixed by your
port number and B, indicating that a reply is expected, and then locks your
terminal unti 1 a reply is received. The ATTN button wi 11 unlock the keyboard
before the reply, if des ired.

)MSG [PORT NUMBER AND MESSAGE]

This command must be followed by a port number and text, and wi 11 send a
message to the designated port. (To get the port numbers associated with
connected users, ask for)PORTS followed by the user code.) The message
wi 11 print out at the receiving terminal, along with the port number of the
sending terminal and the p~efix B to indicate that a reply is expected.

As before the keyboard remains locked until a reply is received.

) liS" GN)OPRN

Thesea ret he s ame as) J.1S G and) 0 PRexce pt t hat nore ply i sexpe c ted and
the keyboard unlocks after transmission is completed. In all cases the
word SENT is printed at your terminal when transmission is complete.

Security features for user protection

APL makes available to each user a number of safety features that restrict
access to parts of the system. One of these has already been introduced,
the password associated with a user number. It can be changed at sign-off
by

)SIGil-OFF COMMAND:HEWPASSWORD

or simply discontinued by following the sign-off command with a colon.

Another is a workspace lock, which follows the workspace name and is
separated from it by a colon. This lock must be included with the work­
space when loaded. The lock remains in effect unless it is changed

Miscellaneous APL Commands And Features 265

when the workspace is saved again. As with the sign-off command,
a save followed only by a colon removes the lock. Also, workspaces

which are locked are 1isted when)LIB is cal led for, but the locks aren't
included for obvious reasons, and the locked workspaces aren't identified
as such in the 1isting. Should you be so unfortunate as to forget what
the	 lock name is, there isn't any way for you to retrieve the workspace
in question. About all you can do with it is to drop it.

Individual functions can also be locked by overstriking the opening and/or
closing dels with the tilde:~. This is useful for seal ing up functions
which contain proprietary information or things 1ike classroom exercises
which a teacher doesn't want students to be able to see. Functions locked
in this manner are forever buried and inaccessible (see below) even to the
one who inserted it.

Locking a function isn't quite as bad as we may have made it sound in the
previous paragraph, however, since the function is still avai lable for
every kind of use save two: it can't be displayed or edited. In fact, even
copying is possible, but the copy is likewise subject to the same restric­
tions as the original.

Earlier we touched on how names of functions and variables can be made up.
There is considerable freedom in choosing such names in that any sequence
of characters alphabetic (including underl ined letters) and numeric except
blanks can be used, as long as the first character is alphabetic. APL
recognizes only the first 11 for workspace names, the first 8 for passwords
or locks, and the first 77 for all others, which is hardly likely to cramp
any user's style! Only the first 4 characters, incidentally, are signifi ­
cant for system commands, any additional ones being included only to make
it easier to remember.

Fuzz

Whenever a command is executed in APL call ing for a comparison of two
numbers, since the number of significant figures in APL calculations isn't
infinite, there is a question as to how close two numbers must be in order
to be considered equal. The allowable discrepancy is about lE-13, and is
cal led fuzz. Try some of the relationals or other functions dependent on
comparisons of two numbers, using as arguments numbers differing by less
than the fuzz, to illustrate these 1 imitations. (Also see problem 9,
chapter 9.)

PROBLEMS

1.	 Execute each of the following in turn and observe the behavior of the
arrays generated:

)LOAD 1 CLASS
Y+ll0
)ORIGIN 0

TAB3ro;2;lJ

Y14 5 6
)DIGITS 5

266 APL \360: An Interactive Approach

fTAB3
)WIDTH 60

)FNS J

) LOAD 1 ~/SFNS

X+DIGITS 6

';'110

X
.;. 1 10

2.	 Why is the expression A[lN] independent of the index origin?

3.	 Execute lO and II with)ORIGIN O. Are they vectors? Of what size?

4.	 Send a message to your own port number. (This is useful when you want
to be assured of getting an intell igent response!)

5.	 Specify A+9. 222222222222222~ B+9. 222222222222227 ~ C+\10
and execute A=B, AEB, A-B, C[3.000000000000008J. Account for the
responses.

6.	 Rewrite the function SUB (page 253) using ORIGIN in 1 WSFNS before
generating the second random number on line 2.

7.	 Practice forming groups out of the functions and variables in 1 CLASS
List the groups and their members.

Appendix

Summary of APL notation

This sec t ion will be a summa ry 0 f all A PIJ fun c t i on s ymb0 1s wit h the i r
names and the appropriate references in the preceding pages. System
commands will not be included here since they were covered in chapters 15
and 34.

Omission of references to the use of some standard scalar dyadic functions
with arrays of rank greater than 1 does not necessarily mean that the syntax
of the function doesn1t a1 low it, but simply that no specific examples or
discussions were included. Where they occur, f and g stand for any standard
scalar dyadic functions.

Monadic (M) References to arrays of
Function symbol Dyadic (D) Name rank 0,1 rank >1

< D less than 25

:::; D less than or equal 25

D equal 26

~ D greater than or equal 25

> D greater than 25

~ D not equal 25

v D logical OR 27

A D logical AND 26

IV' D logical NOR 27

1'< D logical NAND 27

M arith. negation 50 19
D subtraction 7

+ M additive identity 55
+ D addition 6,9 196
.. M reciprocal 51 .. D division 7,11
x M signum 56

D mu 1tip 1i ca t ion 7,11 197
? M roll (query) 55
? D deal (query) 154
E: D membership 153 213

P M size (dimension vect) 116 117
p D Restructure 126 127

M logical NOT (NEGATION) 52
t D take 152 213

267

x

268 APL \360: An Interactive Approach

Monadic (M) References to arrays of
Function symbol Dyadic (D) Name rank 0,1 rank >1

i- 0 drop 153 213
M index generator 113

l 0 index of (ranking) 136
0 M pi times 186
0 0 c i rcu 1a r functions 180
cP M reversal 150 202,203
cP,8 0 rotate 150 203,204
~ M transpose 215 215
~ 0 transpose 217

M exponential 51*
0 power 15*

,

~ M natural logarithm 51

~ 0 logarithm to a base 17

r M ce i 1i ng 52

r 0 maximum 18

L M floor 53

L 0 minimum 18

4 M grade up 154

M grade down 154

M factor ia 1 50 198
0 combinations 21

[J M indexing 138 210
.l 0 decode (base value) 160
T 0 encode (representation) 162
I M I-beam functions 188-191
I M absolute value 51

I 0 residue 23

M ravel 124 125
, 0 catenate 122 208
fl 0 reduction 37,200 198,199
1,1 0 compression 140 206
\,\ 0 expansion 142 206
o. f 0 outer product 222 224
f.g 0 inner product 233 233

Miscellaneous AP~ symbols

Symbol Name Refe rences

negative 7
specification 30
branch 169
underl i ne 32
del 63
locked function 265
delta 178(trace) ,179 (stop)
quote 130

o quad 63 (d i s p) ,249 (i np) ,254 (ou t p)
~ quote-quad 255,258

() parentheses 44(grouping) ,33(sys com)

V

Symbol

A

E

1\

/

Name

semicolon

colon
lamp (comment)
exponential notation
decimal point
correction indicator
error i nd icator
char deletion (in edit)

Summary of APL Notation 269

References

210(indexing),89(fn header)
250(mixed output)
4(password),172(labels)
9

16

6

8

7

83

Answers to problems

Some of the problems will have more than one solution given. This wi 11
generally occur when there exist different, but sound, alternate approaches
to the solution. The proposed solutions, because they are keyed to the func­
tions presented up to that point in the text, wi 11 not always be the most
concise or elegant possible, with the dri 11 problems occasionally returning
error messages. For this reason, certain solutions will have references to
functions to be introduced at a later point in the text, and which wi 11
simpl ify the task of defining the function or expression needed to solve
the problem.

Chapte r 2

£> 8 2 4+3 9 1 1
1.

9 17 3 5

1 0 9 8-4 2 2 3

3	 2 7 5

3- - 1 56.7 0 .19

4 59. 7 3 3.19
3 4xl 2 3

LENGTH E,l HROR

3 4 x 1 2 3

1\

5 4 3x6

30 24 18

2 3

SYNTAX ERROR

2 3
1\

Reminder: the negative sign is a mark of punctuation, not a function.

1 2 8~··1 2 0

DOMAIN ERROH
1 2 8 ~ 120

/\

10-:10 S 21

1 2 5 lU

270

Answers To Problems 271

2 0 .81+15 6 5

13 6 4.19

3. 15589 45xl.25 .50 .25
4 L+.5193.75 11.25

4.	 59.50 72.50 79.50 83.00~1263 2016 1997 3028
0.04711005542 0.03596230159 0.03980971457 0.02741083223

Chapter 3
1. 3f3 7 10.8 2 0

3 7 3 3 3

1 9 5 2LO 6 4 3

0 6 5 2

5 1 52rS

6 6 52

lfA11

1

2*.5.333.25.2

1.414213562 1.25962998 1.189207115 1.148698355

3*4 2 1 0 -5

81 9 3 1 0.004115226337

10f1)1 2 3 4 5

o	 0 . 3 0 1 0 2 9 9 9 5 7 0 . 4 7 7 1 2 1 2 5 4 7 0 . 6 0 2 0 5 9 9 9 1 3 0 . E) ~3 8 9 7 0 0 0 4 3
2 3 4 5 6~2

1	 0.6309297536 0.5 0.4306765581 0.3868528072

2 LOS 8

o	 2 8
2fA125

DOl>1AIN ERROR
2(8)25

1\

Both arguments must be greater than 0, and if the left argument is
1, the right argument must be 1 also.

2*.5
DOP·fAIN ERROR

2*0.5
1\

lflJ55

DO/'vJAIN ERROR

1~ 55
1\

8*.3333333333333
DOMAIN ERROR

8*0.3333333333333
1\

Try	 adding a few more 3 1 s on the right and reexecuting.
10~O

DOI~fA I N ERROR

1 Of}) 0

1\

1*0 1	 10 100 1000
1	 1 111

7.11E4~9.45E 3

7 5 2 3 8 0 ~j • 5 2 L+

272 APL \360: An Interactive Approach

21.268El+4.56E-2
212.7256

8.2EOx7.9E 3+56
459.26478

2. lEO
1	 0.1

lEl
10	 0.01

lE6	 lE-4
1000000 0.0001

lEg lE-5

1000000000

lEl0

lEl0 lE-6

3.	 15 20 18 32 29L18 20 15 10 49

15 20 15 10 29

4.	 10~1';-C

This is a bit ahead of the game in that we haven't said anything yet
about order of execution, where multiple operations occur in a single
expression. See chapter 8 for more details.

Chapter 4
1.	 1 9 8 I 3 4 6

046

3 2 -113

010

o 11 2 3

1	 2 3

31-3 -2 0 1 2 3

o 1	 0 1 2 0
113.4	 -2.2.019

0.4 0.8 0.019
o 1 2	 3 4!3 4 5 6 7

1	 4 10 20 35

4!3 4 5 6 7

o	 1 5 15 35

-24-518 13 3.78

o 1	 3.78
2.	 The 51 any integer is in the set 0 1 2 3 4, which is in S. Note

also that the condition N~4 given in the problem is unnecessary.
3.	 If the result of BIA is zero, then A is divisible by B.
4.	 Hours: H-lIH; Minutes: 60lH x60

The last solution should be tried for typical values of H. You wi 11
see that H is multip1 ied by 60 first, and then 60lH is obtained.
More about order of execution in chapter 8.

5.	 3! 49
Fo1 lowing the hint, there are three separators, each of which can be
in anyone of forty nine positions.

6.	 4!30
7.	 N-lIN

This works only for nonnegative values of N.

8.	 l!-l xN or l-llN

Answers To Problems 273

Chapter 5
1. 0 0 1 lvO 1 0 1

0 1 1 1
1 0 1 01\1 0 0 1

1 0 0 0
2 4 7 2>6 1 0 4

0 1 1 0

0 1 2 3=0 1 3 2
1 1 0 0

4 5 1 o.8~4 1 1 2
1 0 1 0

8 7 6 5 4 3 2 lsl 2 3 4 5 6 7 8
0 0 0 0 1 1 1 1

2 3 0<5 1 4

1 0 1
3 1 2~1 2 3

1 1 1
..... 1 0

0 1
o 0 1 1¥0 1 0 1

1	 000
1 0 1 01'<1 0 0 1

011 1
2.	 The factors of an integer N are those integers which divide N. Hence

set 0=1 2 3 .. . NIN.
3.	 A~O or OsA yields a logical vector with 1 IS in those positions cor­

responding to the accounts not overdrawn.
4.	 AVO=B works if either or both conditions hold while A~O=B works

when only one of the conditions holds, but not both. Later, when
the function (logical negation) is introduced, Av B will also berv

a possible solution.
5.	 EXCLUS I VE NOR or. NEXCLUS I VE OR.
6.	 Although logical negation won't be introduced unti 1 chapter 9, yourv

should explore its action in the vector 0 1. If we give the name A
to 0 0 1 1, then AI\A is always 0 and AvA is always 1.

Chapter 6
1.	A v B

o	 1 o 1
.....AAB

1	 1 1 1
.....BVC

The	 results can be explained by assuming that1	 o 1 0
..... BA C logical negation acts on everything to therv

right of it. More about this in chapter 9.1	 010
..... C~D

o	 0 0 0
.....D=B

0101

2.	 B+21 A
C+O=B

Also B+A+l followed by 21B. If you understand the use of ~ try

rv21A.

274 APL \364: An Interactive Approach

3.	 E+3 7 15 2.7

F+E*2

AREA+6xF

AREA

54 294 1350 43.74

This can be done in one step as 6xE*2.

X2+XxX

X3+X2xX

5.	 A) Z+SxO B) W+5*0

Z+5-S W+5=5

Z+S~S	 W+-S~S

z+-SIS W+-SfS
Z+S>S W+SiJ95
2+0*5 Jv+O! S
2+0LS	 0/+-5! S
etc.

6.	 B+-2xA+-3 4 5 6 7

Chapte r 7
1.	 +/3 7 10 15 22

37

f 3 5 2

0.3333333333 0.2 0.5

All 1 1

1

=/3 2 2

0

r 11 14.7 22 6

22

-/2 4 6 8 10

6

*/3 2 1

9

v/O 1 0 1

1

>/1 2 4

0

x/2 4 6 8 10

3840

All 0 1 1

0

v/O 0 0

a

L I 2 4 0 8

8

2.	 AI returns a 1 if and only if all the components are 1, ° othe rwi se.
vi returns a if and only if all the components are 0, 1 othe rwi se.
=1 (appl ied to° a logical vector) returns a 1 if there are an odd
number of l's, a othe rwi s e . It is the same as '21 + I.

+I 3 xA V 3·
69

which is the same as 3x+IAV.
 -4.	 flQ+l 7 2 3

Answers To Problems 275

5.	 S+-.5x+/L After the rules governing order of execu­
A2+-S-L tion are introduced in chapter 8, this

Q+-SxA 2 can be done more compac t 1y as

R+-x/Q S+-.5x+/L •

AREA+-Q*.5 AREA+-(Sxx/S-L)*.5

6.	 Since the X-coordinate of a point is customarily written first, it is
nQt enough to take +/Q-P since this results in the difference in the
X-coordinates divided by the difference in the V-coordinates,
which is the reciprocal of the slope, according to the definition
g i ve n . Hen ce, A+-+ / Q - Pan d S LOP E+- 1 +A, 0 r mor e compac t 1Y,
SLOPE+-1++/Q-P.

Chapter 8
1.	 4*3r3*4

5 .846006549E48

(4*3)r3*4

81

5*3x5

3.051757813El0
1+2+X+--5 6 0 4 8 6

0.3333333333 0.125 0.5 0.1666666667 0.1 0.25
76++/2+3 x1 2 3 4

2
6~2-4*3

0.09677419355
2.	 The first, second and fourth expressions are equivalent.
3.	 A) (3+4)+(5+6)-7+8 or better, +/35 7+468

B) (-/9 8+7 10)+-/1 2+3 5

4.	 (x/X)*l++/X=X

6.386118449
5.	 (-A) V-B

1 110

A vCAB

1 0 1

(A A-B) AA -c

100

(-B)vAv-C

111
6.	 B will be compared with B+A for equal ity, with A added to that result.

The expression works only when A is O. More generally, parentheses
are needed around A+B.

7.	 Brute force solution:(0~4000IY)A(0=4IY)A(0=400IY)=O=100IY

Better solution: A/l 1 0=0=(4 400 4000) I Y

Still better solution:2J+/0=4 100 400 40001y

8.	 The minus sign in front,of the middle term acts on everything to the

right of it.

Correct version: (X*2)+(-2xXxY)+Y*2 or (X*2)+(Y*2)-2 xXxY.

9.	 BETA+-l0x10f19I+IO
10.	 -8+XxXx2+-3xX*2
11.	 «+/X*2)++/X=X)*.5
12.	 Ja~k is to propose if 1) he has the ring, 2) the weather is favorable,

3) Jill is younger than Jack and 4) Jack i s n ' t over the age 1 imi t
for Jill's beaux.

13.	 Annua 1: }Jx (1 + • 01 xR) * T
Quarterly: px(1+. 01xR+4)*Tx4

1

276 APL \360: An Interactive Approach

Chapter 9
1.

?10 10 10 10

285 6

Your random numbers may be different from those shown

~14.1 86.108

2.646174797 4.454347296 2.225624052

x-5.6 0 42

101

+8.7 19.1 23

8.7	 19.1 23

f8.1132.68

1

*34.7 1.5

20.08553692 109.9471725 0.2231301601

f-1.8 0 -21 5.6

1 0 -21 6

?3 4 5

114

f3.5 67 .287

0.2857142857 0.01492537313 3.484320557

13.10 5.6-8
3.1	 0 5.6 8

! 3 5 7 4

6 120 5040 24

L5.56.8 9.1 .12

5	 6 -10 -1

--1.2 6.7.5219.5

1.2 6.7 -0.52 -19.5

14xf 5. 8x-31. 046

2520

2.	 F100 r : X - 1 I X
These expressions work for all real X.Ceiling: x+ll-X

3.	 *2+A1+(-1+A*3)+2

3269017.372

"'(2:S;A)I\V/3=B

o

o
4.	 0=(LN+10)!N

x(LN+l0)IN
5.	 A+-Y-1970

LY+-L(2+A)+4

B+-71 LY+A+S or, on one 1 i ne B+-715+A+LY+-L. 25x2+A+-Y-1970

6.	 A) 10> I V 0 r 0 =L1 o~ V

B) 10~ I V or "'O=L 1 06iV

7. (10* -1 »i . 5+6.18x10*1

4.75
(10*-D)xL.S+Nxl0*D

8.	 -(10*-D)xL.S+IN xl0*D
The solution for problem 7 works for both positive and negative numbers.

9. M+84.6129999993
M

84.613

6.2

http:6.7.5219.5

Answers To Problems 277

1E5xM
8461300

L1E5x/vJ
8461299

10.	 (LXx10*-(Ll+l0eX)-N)=LYxl0*-(Ll+l0~Y)-N

11.	 A) LDfB
8) rDfB

12.	 The results of these instructions are dependent on your implementation
of APL. You cannot tell when the system evaluates an expression in
parentheses. Hence, you should avoid writing commands 1ike those
shown in the problem.

13.	 (LX+.5)-0=2IX-.5
(rX-.5)+~x2IX+.5

Chapter 10
1 ~ VZ+EQ X VZ+EQ1 X

[1 J Z+O=x/X-2 3V or [1 J Z+xx/X-2 3V
2.	 VR+H BB AB

[1 J R+HfABV

3.	 VT+HERO L

[1 J S+.5x+/L

[2 J T+(Sxx/S-L)*.5V

4.	 VREFUND E

[1 J +/.5xEL500 200V

5.	 VRT+PR M

[1 J RT+f+/fMV

6. VR+SD X	 VR+SD1 X
[1 J R+A VG X or [1 J R+(AVG(X-AVG X)*2)*.5V
[2 J H+R-X
[3 J R+R*2
[4 J R+(AVG R)*.5V

7.	 VM+MR REL V

[1 J M+MRf(1-(V*2)f9E16)*.5V

8.	 VZ+X PLUS Y VZ+X MINUS Y

[1 J Z+X+YV [1 J Z+X-YV

VZ+X TIMES Y VZ+X DIVIDEDBY Y

[1 J Z+XxYV [1 J Z+XfYV

Chapter 11
1.	 VFICA+P TAX IN

[lJ FICA+.Olxpx7800LINV

2.	 VA SQDIF B

[lJ T+(A-B)*2V

3.	 VR+FERMAT N

[lJ R+l+2*2*NV

4.	 VCEILING X

[lJ x+11-XV

5. VR+RANDOM

[1] R+?100 100 100 100'1
6.	 VCOMP VCOlvJP1

[lJ (O=XIY)vo=YIXV or [1 J o=(XIY)xYIXV

7.	 (3 HYP 4) HYP 3 HYP 1

5.916079783

4+3	 HYP 4-3

7.16227766
(4+3) HYP 4-3

7.071067812

278 APL \360: An Interactive Approach

8.)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

V ARCl D ARG2
DEFN ERROR

\j ARGl D ARC 2
1\

D is a variable in 1 CLASS. (Execute)VARS D to check). The
system will not let you have two objects in the same block of storage
under the same name at the same time.

9. F+l0~A+AVG X

Chapter 12
1. VSTD[OJ

\j STD N
[1 J R+AVG N
[2J R+R-N
[3 J R+AVG R*2
[4J ANS+R* 0.5

\j

2.	 [5 J [4[] 7 J
[4 J ANS+R*0.5

///1
[4J R+R*0.5

3.	 [5 J [O[J 5]
[0] STD N

5
[0 J R+ S'PD IV

4.	 [1 J [2 J
[2]

v

[3 J [OJ5·
\j R+STD N

[1 J R+AVG N
[3 J R+AVG R*2
[4] R+R*0.5

\j

6.	 [5] [3 J
[3 J R+A VG (R-N)*2

7.	 [4] [[l3J
[3] R+AVG(R-N)*2
[4] R+R*0.5

8.	 [4J V

9. VSTD[1.5JR+R-N
10.	 [1 • 6 J [3[110J

[3 J R+R*0.5
/5

[3 J ANS +R* 0.5
[4] [• 6 J

11.	 [0.6 J +/N=N
[O. 7] V

12.)ERASE STD

Answers To Problems 279

Chapter 13
1.	 A))LOAD 1 CLASS

SAVED 15.02.39 07/29/69

C+52 78 90

SYNTAX	 ERROR

C+ 52 78 90

r;

There is already a defined fonction by the name C in this workspace
(Execute)FN8 C).
B) T+F+ 7
VALUE ERROR
F[lJ Z+(A*2)+B*2

" T+Z+7

VALUE ERROR

T+Z+7

" F is a function name and has no value. When executed, Z receives a
value, but only wi th i n the function.

2.	 PERIMl S+M PERIM2 R S+PERIM3 R

R R R

14 3	 3
B B	 B

22	 2

C C	 C
5 5	 5

tv! M	 M
77	 7

S S	 S
1 20 10
This exercise is designed to give you practice in distinguishing
between local, dummy and global variables. To reset the values after
each execution, define a function 1ike the following:

VSETUP

[lJ M+2+C+2+R+l+B+l+S+1V

3.	 VR+B PERIM2 C;P

[lJ P+B+C

[2J R+2xPV

Chapter 14
\lFN1 S

[1J S*10V

VFN2 V

[lJ	 2$ V::;; X V
VAR1+fl 2 3 4 5 6

VAR2+r /VARl

)SA VE WORKONE

10.00.31	 05/11/70
)CLEAR

CL"EAR WS

VFN3 T

[1 J	 x TV

VAR3+*1 2 3 4 5

)SA VE WORKTWO

10.01.26	 05/11/70

)CLEAR

CLRAR WS

280 APL \360: An Interactive Approach

VA FN4 B
[lJ	 A-B*2V

VAR4+4 6 8 9

)SA VE WORKTHREE

10.02.22	 05/11/70

VAR5+-3 7 10 78

)8A VE WORKFOUR

NOT	 SAVED, WS QUOTA USED UP
)LIB

WORKONE

WOR KTWO

WORKTHREE

)DROP	 "VIORKONE
10.07.04 05/11/70

)LIB

WOR KTWO

WORKTHREE

)LOAD WORKTHREE
SAVED 10.02.22 05/11/70

)FNS
FN4

) VARS
VAR4

VC FN5 D
[lJ (fC~?D)x4V

VAR6+1 0 7 6 8
)SA VE WORKTWO

NOT SAVED, THIS WS IS WORKTHREE
)SA VE WORKTHREE

10.11.07 05/11/70
)CLEAR

CLEAR WS
)LOAD WORKTHREE

SAVED 10.11.07 05/11/70
)FNS

FN4 FN5
) VARS

VAR4 VAR6
)ERASE PN4 VAR4
)SA VE

10.12.14 05/11/70 WORKTHREE
)LIB

WORKTWO
~/ORKTHREE

)FNS
FN5

) VARS
VAR6
Note that when you load one of your own workspaces and then try to
save it under a different name, the system prevents you from so doing.
Also, when)SAVE is executed, the material will be saved under whatever
name the active workspace had prior to saving. The save doesn1t take
place, however, if the active workspace was not given a name previously.
(CLEA R i s not a n allowab 1e name for a wor kspace.)

Answers To Problems 281

Charter 15
1.) LIB 1

CATA LOG

MINIMA

WSFNS

TYPEDRILL

PLOTFORMAT

NEWS

CLASS

APLCOURSE

ADVANCEDEX

)LOAD 1 WSFNS

SAVED 23.45.5407/07/69

)FNS

DELAY DIGITS ORIGIN SETLINK WIDTH

) VARS

DESCRIBE

DESCRIBE

THE FUNCTIONS ORIGIN, WIDTH, AND DIGITS ARE EACH
SIMILAR TO THE COMMAND OF THE SAME NAME, EXCEPT THAT EACH IS
A FUNCTION RATHER THAN A COMMAN
(execution interrupted by pressing ATTN)

) ~/SI D

1 WSFNS

VL RECT W

[1 J L» WV

)COPY 1 CLASS RECT

SAVED 15.02.39 07/29/69

'VRECT[OJV

V L RECT H

[lJ 2xL+lJ

[2J L HYP H

[3J LxH

'V
The original RECT is replaced by the version in 1 CLASS~

)ERASE RECT

VL RECT vi

[lJ LxWV
)PCOPY 1 CLASS RECT

SAVED 15.02.39 07/29/69
This command will copy a global object in the same way as COpy only
if one doesn't exist with the same name in the active workspace.

VR E CT [[J JV

'V L RECT W

[lJ LxW

)SA VE JONES
11.35.53 05/11/70

)PORTS

001 NFO

OPR OPE

012 RHO
013 JHO

019 NJD

021 GKM

282 APL \360: An Interactive Approach

)!t/SID SMITH
WAS JONES

)SA VE
11.36.56	 05/11/70 SMITH

)CLEAR
CLEAR ~!S

)LOAD 1 NEWS
SAVED 15.26.37 04/02/70

)SA VE 1 NE~/S

IMPROPER LIBRARY REFERENCE
The ordinary user can't save into a common 1ibrary because he wasn't
the one who put it in there originally.

)CONTINUE HOLD
11.38.19 05/11/70 CONTINUE

058 11.38.20 05/11/70 KGR
CONNECTED 0.08.25 TO DATE 51.27.40
CPU TIME 0.00.00 TO DATE 0.03.03
)5000:SJ
058) 11.38.45 05/11/70 KGRICE

A P	 L \ 360

SAVED 11.38.19 05/11/70
)LIB

JONES
SMITH
CONTINUE

)FNS
APLNOW CLEAR CLEARSKED CREATE EDIT FILE FLE
FMTDT INDEX NJ POS POSITION POSTSKED
PRINT REWORK RWK SCHEDULE SETDATE SKEDNOTE
START TDATE TRYTEXT TXF

) VARS
DESCRIBE I LIBRARY MDX MSGS NEWSMAKING
PTX RLIBRARY SKD SKNT ~~ ~ll

The command CONTINUE HOLD saves the active workspace in CONTINUE and
holds open the phone 1ine for 60 seconds. The workspace is available to
the user when he signs on again.

2.)SA VE CONTINUE
)LOAD GOOD
)COpy CONTINUE OK
)SA VE

Chap te r 16
1. pA

6
ppA

1
pppA

1
AfO.8 x 1 6

0.8 8 2.4 4 6 10
1 10

1 2 3 4 5 6 7 8 9 10
(15)+3

4 5 6 7 8

Answers To Problems 283

2.

3.

4.

5.

6.

7x1.1
7

1. r /A

1 2 3 4 5 6 7 8 9 10

+/1.15

120

-i- 1. 5

1 0.5 0.3333333333 0.25 0.2

128~3+1

1 2 3 4 5 6 7

110000

WS FULL
110000

A

The active workspace can hold just so much information at one time
See chapter 26 for a more complete discussion.

A+l. 6

pA=6

6

6=pA
1

The first expression tells us how many elements of A have the value 6,
and the second tells us whether A has 6 components.

)LOAD 1 CLASS
SAVED 15.02.39 07/29/69

x/pTABO
1

x/pTAB1
4

x/pTAB2
12

x/pTAB3
24

The instructions tell us how many elements are in each of the arrays.

A+O 8 3 4 6 10

1.pA

1 234 5 6

p1pA

6

The first expression gives us a vector of indices for the elements in A,

whi 1e the second is equ i va lent to pA. Compare p 1 pA "vi th r /1 pA . How

do they differ? (Don't be too hasty in your answer.)

A) VR+Al N B) VR+B2 N

[lJ R++/(l.N)*.5V [lJ R+(+/lN)*.5V

C) VR+C3 N

[lJ R+(x/1.N)*~NV

-1+2 x18

1 3 5 7 9 11 13 15

12+5x1.5

7 2	 3 8 13

.3+.3 x 1 6

o	 0.3 0.6 0.9 1.2 1.5

350+100X16

250 150 -50 50 150 250

6 - 1. 5

54321

284 APL \360: An Interactive Approach

2 I 1 6
1 0 1 0 1 0

7. 1 3 * 1 3
RANK ERROR

1 3 * 1 3
1\

The order of execution is such that 13 will be generated first and
used as powers for 3, resulting in a vector for the right argumentof
1 on the left. Since the index generator can be used only with nonnega­
tive integers, the error message appears.

8.	 SOp1, Sl~lS0, (150)=\50, (lSO)*O,etc.
9.	 -1+2 x-/1S

+/15-1
+/5=15+1
+/0=6=\5 +/~6=15

10.	 A) VR+SERIESl N B) VR+X SERIES2 N;T
[lJ R+-/f1NV [lJ R++/(X*T)f!T+-l+1NV

11.	 O=ppA

(harte r 17
1. pM

2 4
(-2) 1 2

SYNTAX ERROR
(-2) 1 2

1\

2 , 1 2
2 1 2

p p V
2

5 4p V

1 234
567 8
9 1 2 3
4 5 6 7
891 2

V,M
RANK ERROR

V,M
1\

6p 12
12 12 12 12 12 12

lOp 100
100 100 100 100 100 100 100 100 100 100

3 3p 1 , 3p 0

1 0 a
0 1 0
0 0 1

5 4p 0

a 0 0 a
0 a 0 0
0 0 0 0
a 0 0 0
0 0 0 0

Answers To Problems 285

5 ~ 4p 0

50000

p o Op 9 10 11 1 2

1

2.	 A+3 4 5

B+18

pA ~ p B

4
(pA),pB

3 8
The first expression is equivalent to l+pA, while the second is the
vector consisting of the lengths of A and B.

3.	 3 1p2 1 1 lp2

2 or 2

2

2 2

2

4.	 ?100pl0
5.	 A) ?(?8 8)p150

B) ?(?88)p?299

6.	 R+ 1 2 4 P (, A) , , B

In the mo re gene ra 1 case, th is is R+ ((p A) +lOx p B) p (~ A) t ~ B

7.	 I f E werea dya d i c fun c t ion, we wou1d havet 0 wr i t e 6 E 8 to

execute it. Spaces or other del imiters (e.g., parentheses) are

required around a function name.

8.	 S,10 or (10)~S

9.	 R+ 1 a
R+R~Q

10.	 VW+INSERT V In chapte r 21 the funct ion t (take)
[1] W+ ((7 - p V) o O) , VV will simplify this to -7tV

Chapter 18
1. 'ABCDE'='BBDXO'

o	 1 000
1 2<'MP'

DOMAIN ERROR
1 2 <'MP'

A

ppAL+3 3p'ABCDEFGHI'
2

pV+'3172'
4

(pV)pV

3172
3172=V

o 0 0	 0
X,Y

MISSISSIPPIRIVER

pX,Y

16
+/X='S'

4

+/X~'S'

7

286 APL \360: An Interactive Approach

x .: '" y
MISSISSIPPI RIVER

X=' S'
001 1 011 0 0 0 0

+/'P'=X
2

+/(X,' ',Y);t'S'
13

v/X='R'
a

2.	 D is a character vector consisting of fifteen blanks.
3.	 VF A

[lJ 'THE Dlf,lENSION OF A IS:'

[2 J pA

[3J 'THE RANK IS:'

[4 J p pA

[SJ 'THE NUMBER OF ELEMENTS IS:'

[6J x/pAV

In chapter 34 you wi 11 learn how to mix the numeric and 1 i t e r a l
output on a single 1ine for greater compactness.

4. VM CAT R
[1 J (1 0 +pM) p (, t4) , R
[2 J
THIS IS AN EXAMPLE OF

CATENATION IN APL'V

5.)COPY 1 CLASS GE03

SAVED lS.02.39 07/29/69

VGE03[0.5]

[O.SJ ~THE LITERAL MESSAGE IN THIS FUNCTION

[0&6J AIS KEYED TO THE ARGUMENTS USED

[0.7J'V

'I] GEO 3 [[! J'V
V L GE03 H;X;FLAG

[lJ ATHE LITERAL MESSAGE IN THIS FUNCTION

[2J ~IS KEYED TO THE ARGUMENTS USRD

[3 J P LAG+ ((p , L) > 1) v (p , H) > 1

[4J X+«4x~FLAG)p' IS:'),(6 xFLAG)p'S ARE:'

[SJ 'PERIMETER',X

[6J 2xL+lJ

[7J 'AREA'"X

[8J LxH

[9J 'DIAGONAL',X

[10J L HYP H

V

3 4 GE03 5 6

PERIM-ETERS ARE:

16 20

AREAS ARE:
15 24
DIA (;()NALS ARE:

SYNTAX ERROR

GE03[10J L HYP'H

1\

Comments introduced in this manner doni t affect execution of the
function unless branches (chapter 24) are used. Note also that in
entering the comment the closing del was placed on the next 1 ine
rather than at the end of the comment. Do you see why?

Answers To Problems 287

Chapter 19
1.	 (2<15)/15

345

B /A

o	 0.2 -2 25

A[pA] ,B[-2+pB]

25	 0

A[3 6]+2E5 4E 4

A

0 5 200000 6.2 15 0.0004 25
(3	 2 7) [2 1 3J

2	 3 7

A[2 4 7J

5	 6 .2 25
pA[2 4 7J

3

1 1 0 l\'TWO'

TW 0

A[8]

INDEX	 ERROR
A [8]
A

A 1 r / A

3

A [1 P A J

o 5 200000 6.2 15 0.0004 25
A[1]+A[2 3 4JxA[7J

125 5000000 155

A[f /A1A]

25

A [Op 3 J

B\2 3 4 5

2 0 0 3 045

C[l 16 12 27 9 19 27 1 12 7 15 18 9 20 8 13 9 3J
APL IS ALGORITHMIC
Note that A is respecified after thi rd dri 11 problem. This wi 11 affect
the remaining problems.

2.	 A) (D < • 5) / D D) ((D < 0) AD> -1) / D
B) (D>O)/D E) (D=2)/D
C) (4=ID)/D F) «D<1)AD~-2)/D

3. VZ+INSERTl V
r i : Z+«2 xpV)pl0)\V

[2J Z[2X1-l+pV]+'o'V or

VZ+INSERT2 V

[1] Z+ (, 0 ' .v: [1 + ((-1 + P V , V) p 1 0) \ 1 P VV

These functions as written work only for character vectors.

4. VZ+INCR V;T
[1 J Z+V[l+T]- V[T+1 -l+p V]V
When the drop function ~ is introduced in chapter 21, 1 ine 1 can also
be written as Z+V[1-t1pV]-V[-1-t1PVJ

5.	 VZ+P X
[lJ Z+3xX*2V

VZ+I AREA X

[lJ Z+-+/IxF X[lJ+I x1L I (-/X)1-IV

6. VZ+W WITHIN R
[lJ	 Z+(R>IW-+/W1-pW)/WV

288 AP L \ 360: An Interactive Approach

7. (R=LR)/R
8.	 vR+A IN INT

[lJ R+(+/INT[2J>IA-INT[lJ)x100+pAv

INT is defined here as the vector B,C

9.	 (r / V) > (+ / V) - r / V r (r / V) > + / (V;t r / V) / V0

10.	 Y[2 X1L(pY)+2J or (211+1pY)/Y or (-211pY)/Y
11. 'JR+SINSX

[lJ R+«S~X)/X),X,(S<X)/XV or
'JR+S INS1 X

[lJ R+X<S

[2J R+«R,O)VO,-R)\X

[3J R[Rl0J+5V

12.	 A) A+3
1 A [2 J

RANK ERROR

lA [2 J

2
The first expression is nonsense if A is a scalar or vector of length 1,
while the second one is inval id if A isn't a positive integer ~2.

B) /1+1 2
N+3 4

ct«, p N

3

(p /v!) , p N

2 2

The first expression finds p of 122 (M with 2 catenated

to the right end).

13.	 V[p VJ
14.	 The indices as given start with 0, which will result in an index error.
15.	 (w=r /W)/lpW or Wlr /W
16.	 VZ+DELE V

r i : Z+«lpV)=V1V)/V'J
17.	 +/Q[18LpQJ or +/QX8~lpQ

18.	 'JR+X SELECT Y
[1 J R+X[Ylr/YJV
A) «-1+pV,V)p10)\V
B) «(2IpV)+3 xL.5 xpV)p1 a l)\V
C) same as B provided we don't want a zero on the right end

when	 pV is odd.
20. VR+FACTORS N	 VR+FACTORSl N

[1] R+(0=(IN) I N)/lNV or [1] R+(-xlIN~lN)/lNV

21.	 VZ+LIT N
[lJ Z++/(10*(pN)-lpN)x-l+' 0123456789' lNV
This conversion of literal numbers to numerics can be done somewhat
more compactly with the base function ~ to be introduced in chapter
22, as well as by the inner product (chapter 31).

22.	 'V R+A CO!~ FACT B
[1 J R+(O=RIB)/R+(O=(lA)IA)/lAV

23. VR+LONCEST X;J;M;N

[1 J J+(X=' ')/lpX

[2 J M+r/N+-l+(J,l+pX)-O,J

[3 J R+ X [J [,] 1 /'.1 J+ 1 MJV

Answers To Problems 289

Chapter 20
- I 1 a

a

1
e/lO

DOI~1AIN ERROR
~/10

1\

f I 1 0
7.237005577E75

L I 1 a
7.237005577E75

I 110
o

! 110
1

¥/10
DOl~1AIN ERROR

¥/10
A

=/10
1

o

1

> I 1 0
o

1
It should be clear that if we are to find an identity element IMAX
for f, then it must be true that NfIMAX must result in N for all N.
Hence, IMAX must be the smallest number that can be represented in
A similar argument holds for L, where IMIN is the largest number
representable in APL 10

Chapter 21
1. 3<PA

1 5 8 3 2 0
2Q>A[14]

0 1 3 2
4tA

3 2 0 1
2t-3<PA

1 5
4>0,13

3 2 1 0

2<P<P17
5 4 3 2 1 7 6

3-rA
3 2 0

A[!tiA]
5 1 0 2 8 3

ACto 1 a 1 0 1]
2 1 8 3 0 5

(14)EA
0 1 1 a

290 APL\360: An Interactive Approach

(3tA)E14
110

(1 6) =!A [4A]

11111 1

2.	 «IV)EO,19)/V
3.	 A/(SlES2),S2ES1 or -OE(SlES2),S2ES1
4.	 +/SE'ABCDEFCHIJKL'
5.	 ALF+'ABCDEFCHIJKLMNOPQRSTUVWXYZ '

S[!ALF1SJ

6.	 'V Z+BL S

r i i Z+(CV1cPC+S~")/S'1

7.	 (V,V1)[!V,V1J
8.	 A/V[!VJ=lN or A/(VE1N),(lN)EV
9.	 C[('X'=C)/lpC]+-'Y'

10.	 (5<18)/X and -3tX
11.	 '1R+MED X

[lJ R+.5x+/X[(~X)[Ir-.5 .5 x1+pX]]'V

12.	 A) This is a difficult problem. The expression corresponds to a per­
fect shuffle, in which a deck of cards is cut exactly in half and
cards fed alternately first from the top half then from the bottom
half, to form a new deck.

B) This	 expression is the algorithm used in APL for the deal function
A?B

13. 'VR+DECODE C
[lJ R+ALF[P1ALF1CJ'1

14. 'VCOVIC M;C;D
[1 J N+ A L F 1 14
[2J M
[3J C+26IN+D+«pN)pKB)+(pN)pKA
[4J ALF[DJ
[5J (pM)p'-'
[6J ALF[C]'V
VIC, incidentally, is an example of a
the Vigenere code, with COVIG
Both this program and VERNAM
with origin O.

15. '1VERNAJ.1 M; ViNiC
[1 J }oj

[2J V+?(pM)p26

[3J C+26/V+ALF1M
[4J ALF[VJ
[5J (pM)p'
[6J ALF[C]'1

Chapter	 22
1.	 (3p40)1.8 7 2

13082

21. 5 1 9 6

68

101.9 8 2 1 6

98216

1	 4.1 • 81. 1 2 3

1.32

7 8 91. 7 8 9

585

3T5217

0

being a
(below)

well-known cryptographic scheme,
more complicated variation.
should be done in a workspace

Answer To Problems 291

3T5217
2 0

3 3 3T5217
0 2 0

(5p3)T5217
1 1 0 2 0

(4p8)1. - 14
8190

3

1 4 6T345
0 1 3

2 4 5T78
1 3 3

2. A) 0 4 21.2 8 1
B) 0 2000 161. 3 568 13

3· A) 81.2 1 7 7
B) 21.1 0 1 1 0 1
C) (10p3)T8933
D) (lOp 5)T4791

4. 0 1TN
5. XTX1.Y

X1.XTY

Chapter 23
1.	 'lP+-CONV D

[1 J P+- 1 OJ. - 1 + ' 0 1 2 345 6 7 8 9 ' 1 D+-(D~, , ,) / o»
2.	 N=+/(10 10 10TN)*3
3.	 VZ+-C EVAL X

[lJ Z+-X1.C\l
4.	 A) converts M into a vector of digits.

B) converts M into the corresponding scalar
C) same as B.

5.	 0= 11 I - / ((L 1 + 1 Oi)N) p 1 0) TN

Chaprer 24
1.	 A) If 5<W go to step 3, if 5>W go to 2, if 5=W go to the next

step. W is assumed to be a scalar or vector of length 1.
B)	 Go to step 3 if A=8, otherwise drop through to the next step.
C)	 Go to END if Y>1, otherwise branch out of the program. At the same

time R is reshaped as a 1 1 matrix containing a 1.
D}	 Go to step 7 if any element of B is a member of C, otherwise drop

through to the next step.
E)	 I f A<G got 0 5, 0 the rwi sego to s t e pO.
F)	 Go to step 9.
G)	 Go to step 8 if O~J, otherwise go to the next step. At the same time

J is decreased by 1.
H) If the absolute value of X is greater than or equal to I, go to step 4,

otherwise leave the program. I is also incremented by 1.
I) Go to A GAI N i f N=1 0, 0 the rwi s e 1eave the pro9 ram. R i sal so

reshaped as a 2 4 matrix.
2.	 \lR E~l T

[lJ I+-1
[2J V+-(T[IJ~V)/V

[3J ~OxlI?pT

[4J -+2,I+-I+l'l
This function, which involves branching, solves the problem by brute
force. You l 11 appreciate the power of APL from the fol lowing:

VREMl T
[lJ V+-(~VET)/V\l

292 APL \360: An Interactive Approach

3.

4.

5.

6.

7.

8.

9.

10.

VZ+P DIGIT Q ;t.}
[1 J 2+10
[2 J M+LP~10

[3J -+(0;;tMIP)/5
[4J Z+Z,P
[5 J -+(Q~P+P+l)/2V

VR+MED N
[1 J -+(R=LR+.5 xpN+N[!N])/ST
[2] -+O,R+N[rRJ
[3 J ST:R+.5 xN[R]+N[R+1JV

or
VR+MEDl N

[1 J N+N[LiNJ
[2 J R+N[r .5 xp NJ
[3J -+4x~2IpN

[4J R+.5 xR+N[1+.5xpN]V
VR+N DUPL V

[1 J -+Ox1pR+(N=V)/lpV
[2 J 'SCALAR NOT PRESENT'V

VZ+ROOT S
[1 J -+(O;;tppS)/O
[2J Z+S*.5'iJ

VR+SORT TEXT
[1 J ALF+'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
[2 J R+' ,
[3 J -+ 0x 1 0 =pALF
[4J R+R,(TEXT=ltALF)/TEXT
[5] TEXT+(TEXT;;tltALF)/TEXT
[6] ALF+l-tALF
[7 J -+3V

or, without branching
VR+SORT1 TEXT

[lJ TEXT+«ALF1TEXT)~pALF)/TEXT

[2J R+ALF[R[!R+ALF1TEXTJ'iJ
Incidentally, a long vector of arbitrary characters can be entered in
the following way: define one 1 ine of TEXT as TEXT+' ... ' and each
succeeding 1ine TEXT+TEXT,' ... '.
large amounts of information into the
attached to an appropriate terminal.

VR+MODE N;V
[1] V+R+10
[2J AT:V+V,+/N[lJ=N
[3J R+R,N[lJ
[4J -+(O;;tpN+(N[lJ;;tN)/N)/AT
[5] R+R[(V=r/V)/lPV]V

VR+FIB N
[lJ R+l 1
[2J END:-+(N)pR+R,+/-2tR)/ENDV

VHISTOG A;I
[lJ I+r/A
[2 J I5,A
[3J -+2xxI+I-1V

It is also possible to enter
system through a card reader

To " cl e a n Up" the histogram, change 1 ine 2 to ' *' [l+I~AJ. This
function produces a vertical histogram. For a horizontal histogram try
the f 0 11owi ng :

Answers To Problems 293

VHI STOGl A

r i : A[lJp'*'

[2J -+xpA+li-pAV

The composite function outer product (to be introduced in chapter
30) further simplifies the construction of histograms, Try
AO.~lr/A

11.	 VR INT P
[lJ 'YR PRIN INT

[2] I+1
[3J IN+.Ol xL.5+100xpxR[lJ

[4J I,P,IN

[.5 J P+-P+I N

[6J -+«I+I+l)~R[2J)/O

[7J -+3'1

Here R[1] is the yearly interest rate in decimal form and R[2] the
number of years to be evaluated. As in problem 10~ the outer
product function wi 11 simpl ify considerably the job of generating
the table. Your table probably will not be formatted properly. More
about how to correct this in problem 11 at the end of chapter
30.

Chapter 25
-1-.------ V+' HELLO EwTHERE?'

T+' ?~p E w'
T/::'RE!1+2 3 4
REM 'I'

REM[2] HELLO EwTHERE
REM[3]
REM[4] 2 2

REM[2] HELLO EwTHERE

REf.1[3 J

REM[4] 2 3

REM[2] HELLO EwTHERE

REM[3]

RE.M[4J 2 4

REM[2] HELLO wTHERE

REM[3]

REM[4] 2 5

REM[2] HELLO THERE

REM[3] 0

TEXT+'DAB'

Tf:,;SOR:]1+3 4 5 6

SOR'll TEXT

SORT[3]

SORT[4] A

SORT[5] DB

SORT[6] BCDEFGHIJKLMNOPQRSTUVWXYZ

SORT[3]

SORT[4] AB

SORT[5] D

SORT[6] CDEFGHIJKLMNOPQRSTUVWXYZ

SORT[3]

SORT[4] AB

SORT[5] D

SORT[6] DEFGHIJKLMNOPQRSTUVWXYZ

SORT[3]

50RT[4] ABD

294 APL\360: An Interactive Approach

SORT[5]

SORT[6] EFCHIJKLMNOPQRSTUVWXYZ

SORT[3]

SORT[4] ABD

SORT[5]

SORT

SORT[7]

Printing of the trace has been interrupted because of its length. This
is not a very efficient program (see SORT1), but in the case of a
short 1 iteral vector 1 ike 'DAB' the time would be reduced considerably
by replacing ALF with TEXT on line 3.

N+2 5 7 3 2 8 2 5 2

T!':.MODE+2 3 4 5

MODE N

uooe; 2] 4

MODE[3] 2

fl10DE[4 J 2

MODE[2J 4 2

J40 DE[3 J 2 5

MODE[4] 2

noDE [2 J 4 2 1

f10DE[3J 2 5 7

l10DE[4 J 2

MODE[2J 4 2 1 1

MODE[3J 2 5 7 3

MODR[4J 2

MODE[2] 4 2 1 1 1

MODE[3] 2 5 7 3 8

lv10DR[4]

1"10 DE[5 J 2

2

2. TI:iGCD+l4
75 CCD 105

CCD[lJ 75

CCD [2 J 30

GeD[3J 75

GCD[4J 1

GCD[lJ 30

GCD[2] 15

GCD [3] 3 a

GCD[4] 1

GCD[lJ 15

GCD[2J 0

CCD[3J 15

GCD[4J 0

15

3. T!':.ACK+l4
2 ACK 1

ACK [1 J

ACK[1] 3

ACK [1 J

ACK [1] 3

ACK[1] 4

ACK[4] 2

ACK [3] 0 2

ACK[1 J 4

ACK[4] 3

Answers To Problems 295

A CK[2] 0 3

A CK[3] 0 3

A CK [1]

ACK[l]

A ex [1]

A CK[1] 3

A eK[1] 4

ACK[4] 2

A CK[3] 0 2

A CK [1] 4

ACK[4] 3

A CK[2] 0 3

A CK[1] 4

A CK[4] 4

A CK[2] 0 4

A CK [1] 4

ACK[4] 5

A CK [2] 0 5

A CK [2] 0 5

5

Chapter 26
--r":---- 100 1 2

1.743934249E 16 3.487868498E-16
180~01

57.29577951
-201001~2

o
01~180

0.01745329252

40 1 3

1.414213562 2.236067977 3.16227766

-10101

1
2001

1
30 30 1 5

1 234 5

1 201 10. 5

0.5 1.070796327
2. 11 1 p 1000 , . 05 x r I 0

o

0.156434465

0.3090169944

0.4539904997

0.5877852523

0.7071067812

0.8090169944

0.891006~242

0.9510565163

0.9876883406

1
This expression will generate the values called for by the problem,
but without identification as to the magnitude (in radians) of the
associated angles. With the transpose (chapter 29), such information
can be l nc l ude d r o Z 1 lp(oA),looA+(-1+l11)f20 It can also be
done with the outer product (problem 2A, chapter 30).

296 APL\360: An Interactive Approach

3 ..	 Construct a function 1 ike CHECK below to obtain comparative com­
puting times, The reason for the repetition of the calculations is
that an accurate comparison isn't possible with just a single trial
because of the shortness of the times involved.

VCHECK
[1 J CPUTIME
[2J I+l
[3J S+2!10
[4J ~3Xll0l~I+I+l

[5 J CPUTI/t-1E
[6J I+l
[7J S+(!10)t(!2)x!8
[8J ~7Xl101~I+I+l

[9 J CPU TI !v! E V
CHECK

000 1
o	 0 0 9
o 0 0 17

Don I t forget to copy CPUTIME and PREVIOUSTTME from 1 CLASS.

4. (202 x15)=((2o15)*2)-(1015)*2

11111
For X a scalar, try the following: 0=-/(221021 l xX)*l 2 2
Can you explain why it doesn't work consistently for all X?

5. VR+DATE
[lJ R+'/0123456789'[1+(8pl 1 O)\1+(6p10)TI25JV

6.	 VR+X TIME Y
[lJ R+Yt(X,3p60)TI20V

7.	 1=+/(1 20X)*2
This version works only for scalar X. For X a vector we can use
the outer product (chapter 30) as follows:
A/l=+f(l 2 o.0X)*2

Chapter 27
-l-.~-- S+T

21 21 21 21 21
21 21 21 21 21
21 21 21 21 21
21 21 21 21 21

2xS

40 38 36 34 32
30 28 26 24 22
20 18 16 14 12
10 8 6 Lt 2

SLT

1 2 3 4 5
6 7 8 9 10

10 9 8 7 6
5 4 3 2 1

31T

1 2 0 1 2
0 1 2 0 1
2 0 1 2 0
1 2 0 1 2

Answers To Problems 297

S5,T

0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
1 1 1 1 1

+/[2JT
15 40 65 90

+tT
34 38 42 46 50

4+T

5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24

f/f./flU
24

r/.u
24

XtU

13 28 45 64
85 108 133 160

189 220 253 288
+1+/[lJT

210
2 .	 (N ?p , /tv!) I , M 0 r (, /,;1) [N ?p , ~1]
3 .	 M+-!4 + (pM) p (1 -t pM) e o , N
4~	 VGPA;GR;CR;M

[1 J M+- 5 2 5p (25 p 4) • (2 5 p 3) , (25 p 2) , (2 5 p 1) , (2 5pO)
[2J GR+-MxCR+-(3xGR3)+(2 xGR2)+GRl
[3J 'THE GRADE POINT AVERAGES FOR EACH STUDENT ARE:'
[4J (+tGR)f+fCR
[5J 'THE CLASS AVERAGE IS:'
[6J (+I+fGR)f+l+tCRV

5.	 ?4 4pl00 or 4 4p?16pl00
6. VAR

[1] M+-5 15pVl,V2,V3.V4,V5
[2] 'TOTALS BY CATEGORY ARE:'

[3J +IM

[4J 'TOTALS BY CUSTO/vfER ARE:'

[5 J + t Ivl

[6J 'THE TOTAL OF ALL ACCOUNTS RECEIVABLE IS:'

[7J +I+IM

[8J 'CUSTOMERS WITH OVERDUE INVOICES ARE:'

[9J (Vf073 15p30+,M)/115v

Chapter 28
-T-:--'---A [; 2 5J

2 5
7 10
2 5

C[1 ; 2 3 ;]

5 6 7 8

9 10 1 2

298 AP L\360: An Interactive Approach

1 1 2teC

4
8

5
9

1 1 1 1 0 l\A

1
6
1

2
7
2

eA

3
8
3

4
9
4

0
0
0

5
10

5

1
6
1

2
7
2
1

3
8
3

2 2

4 5
9 10
4 5

1 leA

11

1
1
6

7 3 9 10
2 3 4 5
2 8 4 5

+fC[l 2 ; 2 ; 3 J

A[l 3 ; 1 4 J

1
1

2
2

1

3
3
0

4
4

1 1\[2]C

1
0
5
9

2
0
6

10

3
0
7
1

4
0
8
2

3
0
2
6

4 5
0 0
3 4
7 8

0 l/[lJC

1
0
5
9

3
2
6

4
3
7

3

5
4
8
1

1
5
9

2<pA

4 5 1 2
7 8 9 10
3 4 5 1

,<PB
CBAFEDIHG

B[1;2 3J
BC

2 2 2tq>C

3
6
2

4
8

3
7

1
5

5
4

Answers To Problems 299

2.
3.

4.

5.

6.

7.

1 o liB

ABC
CHI

<pA

10
5

5

4 3 2

9 8 7
4 3 2
1 - 2 2<PB

1
6
1

CAB
EFD
IGH

1 3 3<P 3 1 1 2 4<p[lJA

7 8 4 10 1
45623
9 5 1 2 3

B[1;]+B[;3J
Assume each row is a name with no blanks on the left and filled out
on the .right with blanks.

VDELE NAME;J
[1] J+O
[2J ~6Xl(pA)[lJ$J

[3J ~2X1N/NAME=A[(J+J+l);J

[4J A+«(J-l)pl),0,«pA)[lJ-J)p1)/[lJA
[5J ~o

[6J 'NAME NOT FOUND'V
When the inner product is introduced in chapter 31, this function
can be rewritten as

\JDE'LEl NAME;T
[lJ ~4X1V/T+A~.=(1~pA)tNAME

[2 J 'NAME NOT FOUND'
[3J ~O

[4J A+T/[lJAV
The second is all matrix, while the first is a scalar. Try
p of each to check.
R+l!f[; MJ
i~ 0 t e t hat the i ndieest hems e 1ve sma y havera nk >1 .

'YZ+MS N;Q
[lJ Z+(N,N)plN*2
[2J Q+(-r .5xN)+lN
[3J Z+QsQQ>ZV

\JZ+Vi MAT V2
[lJ Z+«pVi),2)pO
[2J Z[;lJ+Vi
[3] Z[;2J+V2\J

or
VZ+Vi IvtATi V2

[1 J Z+(Vi, V2) [((p Vi), 2) p (r . 5 x 1 2x p Vi) + (2x p Vi) pO, p Vi JV

When the transpose function is introduced in the next chapter, this
function can be reduced to a single line: ~(2,pVi)pVl,V2

300 APL \360: An Interactive Approach

~~~2~~-32-
1. 

1 6 
1 
1 
1 

l~M 

1 2ts(N 

3 

1 
17 

2 

2 
18 
p2 
4 
2 1 

1 

3 
19 
3~N 

3ts(N 

4 
20 

1 
13 

2 
14 

3 
15 

4 
16 

5 6 7 8 
17 18 19 20 

9 10 11 12 
21 22 23 24 

~¢eM 

2 8 4 
1 7 3 

10 6 2 
9 5 1 

1 2 l~N 

1 5 9 
14 18 22 

¢2 l~M 

9 5 1 
10 6 2 

1 7 3 
2 8 4 

~M 

1 5 9 
2 6 10 
3 7 1 
4 8 2 

~~M 

1 234 
5 6 7 8 
9 10 1 2 

2_ 1 l~<PB or 1 1~2 0 l¢B 
3- VR+DIAG /'4 

[1] R+10i1 l~MV 

4. VR+X COLCAT3 V 
[1] R+~(~X) ROWCAT VV 

5. VZ+LIST N 
[1] Z+~(3,N)pZ,(!Z),fZ+1NV 

6.	 /\ / , S=~S 

7.	 The result shows that 
well known to calculus 
orial on problems 1ike 
rectangle of greatest 

AxB is a maximum when A=B, a conclusion 
students, who have worked since time immem­
the following: Show that a square is that 

area for a given perimeter. 



2 

Answers To Problems 301 

Chapter 30 
--1-. -- -- A 0 -i-G>A• 

0.25 0.3333333333 o. 5 1 
O. S 0.6666666667 1 
0.75 1 1 .5 3 
1 1.333333333 2 4 

Co.=B 

100 
000 

010 
000 

000 
100 

Do. xA 

1 2 3 4 

2 4 6 8 

3 6 9 12 
Ao.r2<PA 

3 4 1 2 
3 4 2 2 
3 4 3 3 
4 4 4 4 

1 3 go.>D 

0 
0 
0 

1 
1 
0 

1 
1 
1 

1 00 • Ai 0 

1 0 
0 0 

1 0 0 1 l o . YO 1 0 1 1 

0 0 0 0 0 

1 0 1 0 0 
1 0 1 0 0 

0 0 0 0 0 

0 0 0 0 0 

1 2 30. I 1 5 

0 0 0 0 0 

1 0 1 0 1 
1 2 0 1 2 



302 AP L\360: An Interactive Approach 

1 1 1 1 
1 2 4 8 
1 3 9 27 
1 4 16 64 
1 5 25 12S 

2. A) ~ 1 2 0 .00 ( 0 t 1 5 ) .; 6 
B) ~«1+p,B),10)p(110)"Bo.Ei110 
C) 'AEIOU'o.=S 
D) (13:0)0.*12.5 

3. 224 or 422

4.	 VR+DIST L 
[lJ	 R+L.5+«(L[;lJo.-L[;lJ)*2)+(L[;2Jo.-Lr;2])*2)*.5V 

or 
VR+DIS'Pl	 L 

[lJ R+L.S+(+/l 3 2 3~(Lo.-L)*2)*.5\j 

5.	 +/'ABCDEFG'o.='CABBAGE' 
6.	 SU/l1+B I C+D 

CARRY+B~C+D 

VADDTAB B;T
 
[lJ T+INTo.+INT+-1+1B
 
[2J (BIT)+10xB~TV
 

7.	 VZ+C1 Iv! ULT C2 
[lJ Z++/[lJ(1-1PC1)¢C1o.xC2tOx1~C1V 

a, A) X+-S+19 
F+(¢X)o.=IX
 
GRA PH
 

+
+
+ 

0+0 
+ + + + 0 + + + + 

+
+
+ 
+ 

B) F+(¢X)0.=-S+X*2 
GRAPH 

+
+
+
+ 

+ + + + + + + + + 
+ 
+ 
+
+o 0 







Answers To Problems 305 

10. A) X+120 
Y+X*2 
Z+2xX*2 
40 60 PLOT Y AND Z VS X 

800 * 

* 
700 

* 

600 

* 

* 
500 

* 

400 * 0 

0 

* 
0 

300 

* 0 

0 

* 
0 

200 * 0 

I * 0 

I 0 

I * 0 

100 I * 0 

I * 0 

I * 0 

I * o 0 

I * o 0 

01 * *10 I I I I 
0 5 10 15 20 

B) X+l,50 X 1 7 
Y+fX 



306 APL \360: An Interactive Approach 

10. B) 20 30 PLOT Y VS X 

1.000 
I 
I 
I 
I 

0.75 I 
I 
I 

0.50 

0.25 

0.00 0 0 0 0 

200 
a a 0 I 

400 

Notice that the first point botches up the 
plot by el iminating this point as shown: 

20 30 PLOT Y[1+17J VS X[1+17] 

graph. We can fix the 

0.020 I 
I 
I 
I 
I 

0.0151 
I 
I 
I 
I 

0.0101 
I 
I 
I 
I 

0.005 I 
I 
I 
I 
I 

0.0001 
0 

0 

a 

I 
100 

a 

0 

I 
200 

a 
a 

I 
300 

a 

I 
400 



Answers To Problems 307 

10. D) Y AND Z 

O.OOOOOOOOOEO
 
1.736481777E-1
 
3.420201433E-1
 
5.000000000E-1
 
6.427876097E-1
 
7.660444431E-1
 
8.660254038E-1
 
9.396926208E-1
 
9.848077530E-1
 
1.000000000EO
 
9.848077530E-1
 
9.396926208E-1
 
8.660254038E-1
 
7.660444431E-1
 
6.427876097E-1
 
5.000000000E-1
 
3.420201433E-1
 
1.736481777E-1
 
1.743934249E-16
 
1.736481777E-1
 
3.420201433E-1
 
5.000000000E-1
 
6.427876097E-1
 
7.660444431E-1
 
8.660254038E-1
 
9.396926208E-1
 
9.848077530E-1
 
1.000000000EO
 
9.8480~7530E-1
 

9.396926208E-1
 
8.660254038E-1
 
7.660444431E-1
 
6.427876097E-1
 
5.000000000E-1
 
3.420201433E-1
 
1.736481777E-1
 

y VS x 

O.OOOOOOOOOEO
 
1.745329252E-1
 
3.490658504E-1
 
5.235987756E-1
 
6.981317008E-1
 
8.726646260E-1
 
1.047197551EO
 
1.221730476EO
 
1.396263402EO
 
1.570796327EO
 
1.745329252EO
 
1.919862177EO
 

(not all of display 

1.000000000EO
 
9.848077530E-1
 
9.396926208E-1
 
8.660254038E-1
 
7.660444431E-1
 
6.427876097E-1
 
5.000000000E-1
 
3.420201433E-1
 
1.736481777E-1
 
1.743934249E-16
 
1.736481777E-1
 
3.420201433E-1
 
5.000000000E-1
 
6.427876097£-1
 
7.660444431E-1
 
8.660254038E-1
 
9.396926208E-1
 
9 • 8 4 8 0 7 7 5 3 0E - 1,
 
1.000000000EO
 
9.848077530E-1
 
9.396926208E-1
 
8.660254038E-1
 
7.660444431E-1
 
6.427876097E-1
 
5.000000000E-1
 
3.420201433E-1
 
1.736481777E-1
 
1.743934249E-16
 
1.736481777E-1
 
3.420201433E-1
 
5.000000000E-1
 
6.427876097E-1
 
7.660444431E-1
 
8 • 6'6 0 2 5 4 0 3 8 E - 1
 
9.396926208E-1
 
9.848077530E-1
 

O.OOOOOOOOOEO
 
1.736481777E-1
 
3.420201433E-1
 
5.000000000E-1
 
6.427876097E-1
 
7.660444431E-1
 
8.660254038E-1
 
9.396926208E-1
 
9.848077530E-1
 
1.000000000EO
 
9.848077530E-1
 
9.396926208E-1
 

shown) 



308 AP L\360: An Interactive Approach 

11. 105 DFT (+\10) AND (+\10)*.5 

1.00000 1.00000 
0.50000 0.70711 
0.33333 0.57735 
0.25000 0.50000 
0.20000 0.44721 
0.16667 0.40825 
0.14286 0.37796 
0.12500 0.35355 
0.11111 0.33333 
0.10000 0.31623 

Chapter 31
-T-.---- A+.=A 

3 
B x , -c 

18 0 4 0 
068 0 
o 24 70 18 

24 12 0 36 
nv . <C 

111 1 
1 1 1 1 
o 000 
1 1 1 1 

A 1\ • > C 
000 0 

A v • ~B 

LENGTH ERROR 
A v , ~B 

1\ 

3+.xB 
66 48 60 

Bx.=A 
o 0 0 0 

C I.-B 

002 
101 
020 

(~C)r .+A 
11 10 9 11 



Answers To Problems 309 

2. 

3. 

4. 

A)	 AA. =B results in a 1 if A and B are identical, 0 otherwise. 
MA. =B produces a logical vector with a 1 for each row of M 
which is identical to B 
A+.~B gives the number of pai rs of corresponding dissimilar 
elements in A and B. 
( /V! = 0 ) A • ? U pro duce sal 0 g i ca 1 mat r i x whie h rep rod ucest he 
initial lis in each row of M=O and fills the rest of the row 
with OIS, i.e. 

M 

0 0 0 3 2 0 0 0 
0 0 1 7 9 2 8 0 
6 4 a 0 0 1 6 0 

M=O 

1 1 1 001 1 1 
1 1 0 0 000 1 
0011100 1 

(M=0)A.~(18)0.$18 

111 d 0 a 0 0 
1 1 000 0 0 0 
o	 0 0 0 0 000 

It may be considered a simulation of the "a nd-scan" A\M=O 
(not yet implemented). 
A+.*B is equivalent to the times reduction of A raised to 
the B power. One possible use could be in getting a number 
from its prime decomposition. Here is an example of this 
latter use: 
2 3 5 7x.*2 1 0 1 

84 

B)	 R [ I ; J J i s 1 i fan don 1y i f the I t h co 1umnan d the J t h row 
of N have at least one 1 in the same location. It is used to 
represent two-stage connections, as in pecking orders or ci r ­
cui try. (See the defined function RUN in this chapter.) 

C)	 For R+C+.=D .. R[I;JJis the number of matching pairs of 
e 1e me nt s 0 f C[ I ; Jan d D[ ; J J 
For R+Cr • LD. R[I ;Jl is the largest of the smaller of C[I; J 
and D[;JJ taken pairwise. 

A) R+O~. =4 100 400 40000. I Y 
B) VREFUND1 E 
[lJ .5x200 500+.Ll l o.xEV 
C) V Z+LIT1 N 
[lJ Z+(-1+'0123456789'·lN)+.x10*~-1+1pNV 
D) VR+N DUPLl V 
[lJ R+'SCALAR NOT PRESENT' 
[2J 40xlO=Nv.=V 
[3J R+(N=V)/lpVV 

VR+X	 POLY C 
[lJ R+C+.xXo.*-1+1P.CV 





r; ! 



312 APL \360: An Interactive Approach 

3.	 VnuLT3 N; X
 
[ 1 J X+?N,NxI+l
 
[ 2] ltX;' x ! ;l-tX
 
[ 3 J ~(D=HELP,STOP,x/X)/AID,O,CORRECT
 

[4J ~ANSX14=I+I+l
 

[ 5 J 'TRY AGAIN'
 
[ 6 J ~3
 

[ 7 J ANS:'ANSWER IS ';x/X
 
[8J ~1
 

[ 9 J CORRECT: 'CORRECT'
 
[10J ~1
 

[ 11 J AID:'COUNT THE STARS FOR THE ANSWER:'
 
[12J	 Xp '*' 
[13J	 ~5V 

4.	 VMULT4 N;X
 
[ 1 J X+?N,NxI+l+0 xAKT+I19
 
[ 2 J 1tX;'x';1-tX
 
[ 3 J ~(D=HELP,STOP,x/X)/AID,O,CORRECT
 

[4J ~ANSX14=I+I+1
 

[ 5 ]	 'TRY AGAIN' 
[ 6]	 ~3 

[ 7]	 ANS:'ANSWER IS ';x/X 
[ 8 ]	 ~1 

[ 9] CORRECT:L((I19)-AKT)~60;' SECONDS'
 
[10J ~1
 

[ 11 J AID:'COUNT THE STARS FOR THE ANSWER:'
 
[ 12 J Xp '*'
 
[13J ~5V
 

5. VSPELL[6]'THE CORRECT SPELLING IS ',SPL[N+l;]V 
6. VENTER;A 

[ 1 ] R+' ,
 
[ 2 J ~DONEx1 O=pA+,[!]
 
[ 3 J R+R,20tA
 
[4]	 ~2 

[ 5 ]	 DONE:R+(l+,O 20T-l+pR)pRV 

Chapter 34 
1. )LOAD 1 CLASS 

SA VED 15.02.3907/29/69
 
Y+110
 
)ORIGIN 0
 

WAS	 1
 
TAB3[0;2;lJ
 

132
 
Y14 5 6
 

345
 
)DIGITS 5
 

WAS 10
 



Answers To Problems 313 

2. 

3. 

5. 

~TAB 3 

0.009009 0.0089286 0.0088496
 
0.0082645 0.0081967 0.0081301
 
0.0076336 0.0075758 0.0075188
 
0.0070922 0.0070423 0.006993
 

0.0047393 0.004717 0.0046948
 
0.0045249 0.0045045 0.0044843
 
0.004329 0.0043103 0.0042918
 
0.0041494 0.0041322 0.0041152
 

)WIDTH 60
 
WAS 120
 

)FNS J 
MEAN PI RECT REP REVERSE ROWCAT RUN S 
SD SETVARIABLES SIGN SORT SPELL SQRT STAT 
STATISTICS SUB SUMSCAN TIME TIMEFACT TRA 
TRACETIME 

)LOAD 1 WSFNS
 
SA VED 2 3 . 4 5 • 5 4 07/ 07/ 6 9
 

X+DIGITS 6
 
~ 1 7 

1 0.5 0.333333 0.25 0.2 0.166667 0.142857 
X 

10 
DIGITS X 

6
 
~ 1 7
 

1 0.5 0.3333333333 0.25 0.2 0.1666666667 0.1428571429 
Because both indexing and the index generator are affected in the 
same way by the change of origin. 

)ORIGIN 0 
WAS 1 

1 0 

1 1 
0 

P 1 0 
0 

P 1 1 
1 

A+9.222222222222222
 
B+9.222222222222227
 
C+ll0 
A =B 

1 
AEB 

1 
A-B -4.884981308E 15
 
C[3.000000000000008]
 

3 



? I t\P L.\3hO f--\n Interactive Approach 

1 
• I 



Bibliography 

B<:rry, P. C., ! 81'1 Co r po rei i or: 

t- ry , F (" a; ~ I 

f-; d , L_ i ~ I 'Tb e I .np 1er'lt::,! () 

TE['1 S FOP, APPL ! ED ~1/\ T t1E. iv
\ 1\ i 

, 1~1 G8, p p . 390 - 39--:j----·---··-----·---·-····L o n don" /\ cad e r11 j cPre s 

lo l t.o lf, . _, an d I(.E. l ve r s on , t\PL\360 USE I ~1!\r~U/~~.> 
J368, fJ b l i c a t i on No , H20-0683 -_.,_.__.__.__._.u 

Fa', k 0 f f, /\ . ., :Jn J i<. E. I \j C ( ':: Uri, i i Tf1e f\ PL \ 36 'J Te r i n 
ON EXP P,l r'1E~frJ\L SYSTE:)V:(~ FOF t1JATHE!'1AT I 

Fa l k () t I , . [)., 1<. E. I ve r ~ on and t. H. Sus 5 en 9 L h ~ 

SY~J t 3GO ,I! I Bt1 SYSTEj·1S JOUP~~.!!~~; Vo 1urne 

! vC~ r ')0 n , 1< • E., [" PRO GRAt1 MIN G LANGUj\ GE, Ni2Vi r k ~ ,.I 

I ve r sun, 1<. E_, ELEM ENTARY FUN CT ION S: AN AL GOP, I TH1"·1 i C 
Sci C II C eRe sea r C hAs soc i ate s , 1966 ------.-----_..---.-------. 

Iverson) I<.E., THE USE OF APL I~~ TEACHING, IBM Cor !) 

t ion i\Jc. 320~rJ9-96:-Ta 1so ava i 1ab 1e as' Vu urne i 
i n Pur C Cit l J /\ PP 1 i e cJ Hat. ., 1<;n (j S ton) C(".1 n d d Cl,I 

Pakin, S., f\PL\360 I\EFEr'~ENCF MJV~U.r~L, Chicago: Seier) 
1970 

K0 s c , ;"\. J .; IJide 0 Lap e d !"PLeou r- e.~ ! BM Cur p () rat: Ion, ! 

; I 1 i , 1<. 
DC!Jd r t;l!t'tll (j 

CeJflcJJ, ] CC) 

1f) 



Supplement 

Extensions to the APL language 

This supplement contains a number of additions and extensions to the APL 
language which were not generally available at publ ication time, but whH:h 
are included in the APL program product announced by IBM in June, 1970. 
In addition, some examples will be shown of tabs, formatting and large file 
capability, features of APL PLUS, an APL time sharing service available 
through Scientific Time Sharing Corporation (U.S.) and I. P. Sharp 
Associates Ltd. (Canada). The service is based on APL\360 and includes 
certain proprietary extensions to be discussed. 

Matrix division 

This is a primitive function which can be used to solve sets of 1 inear 
equations (dyadic), invert matrices (monadic), and find least squares solu­
tions. For example, suppose we are given (conventional notation) 

2X + 4Y - 3Z = -4 
6x + l7Y - 8z = -15

{ 
4x - 2Y + 3Z = 20 

Then, letting A be the matrix of coefficients and B the vector of constants, 

A (note that the extra 1 ine has been 
2 4 3 el iminated from the display of arrays 
6 17 8 of rank >1) 
4 2 3 

B 
4 15 20 

the solution can be obtained by taking B matrix divide A. The domino Wfor 
matrix division is formed by overstriking the quad with the divide symbol. 

X+BtBA
 
X
 

3 1 2 
A+. «x 

LI- 15 20 

316 



Extensions to the APL Language 317 

Used monadically, [W results in the inverse of A. A must be square and 
invertible or a domain error results. Compare this with the defined func­
tion INV in chapter 32. 

Y+~A 
A+ _XY 

1.000000000EO 8.326672685E-17 5.551115123E-17
 

1.998401444E-15 1.000000000EO O.OOOOOOOOOEO
 
4.440892099E-16 8.326672685E-17 1.000000000EO
 

Catenation 

Two variables whose shapes are conformable can now be joined along an exist­
ing coordinate. If no coordinate is specified, the catenation is over the 
last coordinate. Notice that scalar arguments are extended for purposes of 
catenation. 

Q 

0000000 
ClDDDDDD 
ODODDOD 
ODDODDD 

R 
0000000 

0000000 

S 
******* 

T 

Q,[l]R 
DDDDODD 
DDODOOO 
DOODOOD 
0000000 
0000000 

0000000 

Q,[l]S 
DDDDDOD 
DDCDOOO 
ODD DODD 
DDDDDOD 
******* 

Q,T 
DDDDDDCJ6 
D,DDDDDD6 
DDDDDDD6 
DDDODDD6 

W+'*' 
Q,W 

IJDDODDC]*
DDDOODO* 
0000000* 
DDDDnOD* 



1 '.'iC: v.i ri a b l c -. cl I0· ·,q;1 n(\ \ ' C n r . l i n .i i r 
-, 'i l: 1. -J.Y d n d U S C 0 r ' f) ; c; f u n« t ;, r : . 



Extensions to the APL l.anquaq« _~1 ~l 

is 0 f the fo r m _', I whe re fo r­
• • ! ... 
, ., I fr)r 'i; j-<- and !;,'; I, for 

and / f i ; ; , elc., rank permitting. /\5 In catenation. Cd] 

extended. 

Decode and encode 

[he s e funct ions extend to arrays as f o l l ows : 

'I 

u 

l .. 

U G
 

U U (j
 

U u u
 
L J JJ
 

{\
V 

Ji' 

Fr-om these examples it should be clear hOVJ the shape of LtlC !! 

related to the shape of the arquments. 

Adjustable fuzz 

r~ 0 r mall y Vv hen a c ompa r j s () r i s don e inthe fin a 1 ten b II
 

arguments are d i s r eqa r de d . To c huriq e this fuzz (see Pc~qf' C I ii,
 

fun c t ion , fromand exe cut C VJn (:' I
 

The n UIII be r 0 fbi t s dis reg a r d edis the n c han 9edt 0 ~ VJ i t h f) , I ~
 

returned as a result.
 

i' 



320 AP L\360: An Interactive Approach 

(The following are proprietary extensions of APL PLUS. For further 
information, refer to the publ ications 1 isted in the Bibl iography at the 
end of	 this supplement.) 

Tabs 

Since the TAB and CLR/SET keys on the Selectric keyboard are not part of 
the APL\360 system, APL PLUS has a tab feature which incorporates tab 
stops to speed up terminal input-output, especially in printing displays 
with lots of "white space". 

To use	 tabs, first set the tab stops at regular intervals (for instance, 
every fifth position), using the CLR/SET key on the left side of the key­
board. The tabs may be set by typing 

)TABS 5 

WAS 0 

When printing, APL PLUS will then use tabs instead of multiple spaces 
wherever possible. 

On input, APL PLUS treats a tab exactly 1ike the equivalent number of 
spaces. An interesting appl ication of input tabs is in using ~ to bui ld 
the rows of a matrix. If the tabs are set to the column dimension of the 
resultant matrix, then tabbing to the next typed word wi 11 assure that the 
resultant character matrix wi 11 have text on each 1 ine, left justified. 

Here is an example, with the tabs set at 10, 20, 30 etc. The symbol 0 

denotes where the tab key was struck. 

)TABS 10 
WAS 5 

vR+INPUT 
[ 1 ]	 R--:-r1 
[ 2 ]	 R+ ( ( . 1 x p R ) ,10 ) p Rv 

T+INPUT 
JONESo	 KELLEYo A DAI,iS ° 

pT 
3 10 

T 
~TON ES 
KELLEY 
ADAi~,IS 

Corresponding to the )TABS command, a TABS function is available in the 
w. s. 1 WSF NS • The s y nt axis R+ TA BS N. N i s the new tab set ting , 
and If i s the old set tin g . The nor ma 1 mode 0 f the s ys t em i s TAR :3 o. 
Caution: tab settings, if used, must be equally spaced. Non-uniform tab 
stops can cause erratic terminal behavior. 

Working with data files 

The APL PLUS Fi le Subsystem lets you work with much more data than can be 
held in a workspace, and do it far more conveniently than by using the COpy 
commands. All the fi le operations are in the workspace 1 FILES. 



Extensions to the AP L Language 321 

)LOAD 1 FILES 
SAVED 20.32.24 07/27/70 

DESCRIBE 

WORKSPACE 1 FILES 

THIS WORKSPACE CONTAINS FUNCTIONS FOR USING APL PLUS DATA 
FILES, AS DESCRIBED IN d£~_£~~~_EI~~_~~~Qr~r~M, 

SCIENTIFIC TIME SHARING CORPORATION, 1970, AND AVAILABLE 
FROM SCIENTIFIC TIME SHARING CORPORATION AND I. P. SHARP 
ASSOCIATES LTD. THE FOLLOWING FUNCTIONS ARE PROVIDED: 

FAPPEND PLACES A NEW COMPONENT ON A FILE 
FCREATE CREATES AND OPENS A NEW FILE 
FDROP DELETES COMPONENTS FROM A FILE 
FERASE ERASES A FILE 
FHOLD REQUESTS TEMPORARY EXCLUSIVE USE OF FILE(S) 
FLIB NAMES OF FILES IN LIBRARY 
FLIM GIVES FILE COMPONENT NUMBERING 
FNAMES NA/vlES OF FILES CURRENTLY TIED 
FNUMS NUMBERS OF FILES CURRENTLY TIED 
FRDAC GIVES FILE ACCESS AND LOCK INFORMATION 
FRDCI GIVES COMPONENT INFORMATION 
FREAD READS A COMPONENT FROM A FILE 
FRENAME CHANGES LIBRARY NUMBER AND NAME OF A FILE 
FREPLACE REPLACES A COMPONENT IN A FILE 
FSTAC DEFINES ACCESSES AND LOCKS FOR USERS 
FSTIE OPENS FI~E FOR SHARED USE 
PTIE OPENS FILE FOR EXCLUSIVE USE 
FUNTIE UNTIES FILE(S) 
FE PRIMITIVE FILE FUNCTION UPON WHICH ALL OF 

THE ABOVE ARE BASED. REQUIRED FOR USE OF 
ANY OF THE ABOVE. 

A file consists of a number of components, each of which is an APL value 
of any type - character or numeric; scalar, vector, matrix, or of any 
number of dimensions. 

Users may have more than one file, each with its own name. For example, 
suppose that you have two files as shown below (it will be demonstrated 
later how they might have been bui It). The fi le named PERSONS has four 
components, each a vector of characters, and the file SALES also has four 
components, each a vector of numbers. 

fi le-name 

1 'SMITH' 5 6 3 1 4 
component 2 'JONES' 2 6 1 0 

number 3 'KELLEY' 46291 5 
4 'BECKER' 20 6 4 

File names belonging to an account number (or common 1ibrary) may be ob­
tained by the function FLIB, the syntax of which is 

result +FLIB account number 



~ ,. !" - , 

, : : ', ' f ! t . ~ 

;1 , .1' 

; l -. : 

J ,~ i ! • ~ , 

; ; ; ,' 

! ',' ! ' 

,:.0(, 

~. l 

.... ! ., ' 

~ t :!. f I 

r • 
; 1 " 

,;l { 

. \ I ~ " ~, ,' , 'I l"! I 

1,\ • ',. ' . 

I ': . 

. ~ 

I· . 

.: 

: i, 

'.' i , ! 

",; ' " 

I )j' 

!' 
! 

; l! ' 

I I 
" : I 

I 

'" 
, q ' , 

" .Il il ' 

l " t ' ; ; ; j ( • . '. 

. : " ' . , ' ; ! ' 

: i"I! j l 

"I I I ' <.3)< ,'j !' t 1, (. " i) ' 

, : 

I , 

. ' \ l i :': ~. 

' .", ·"t 

" 

, ! I I 

I . ; 

t , '. 

1 1, 1 ! ~, , f. 

I , .: 

(, i 

"t,:';' : . , : , 

' j'- i.' ::. ; ~ • ... - j • ! 

, : " . , I i,;f ' I i . 

i '; 1 I :_~ I , i ~ ~ 1 . ~ J ',1 ' 

! 

~J " r. ' ·,) 'I 

,i; ,~ ", '.., y I',t ",r~ 

" ! I I • 

' I ; . 

• '-'. ~ 

. :, ' 

. Il l.' 

\ ' • ; ~ , 

,. 

i 1 ! t 

I, • ! \ 

- I' 

\ 1 

: (:" -, U 1 ; 



. ." .' " ~' , : ! : ~ '­. l ( i "! ~ i . . ! . I _ , I I 11 : ', 

, ~ , 

i " 

I " ­ ; ', . ; 
" 

~ ! . " 
, .v: 

, ,Ii\ , ' ,! . 
" 

I 1 ' .. ; 

; 1"iC) I ;"-'i , 
" 

qi I ! .­ . .; ~ . 

! .,. "" j '"' " 

' .,r', 0 " .r: 

v > I lll 

, '. ~ .' 

( ; I ' I : '.',t • '" t: 

' . I t ~ ~'" 

l; -. 

" ! ; ( I ( 

; 

i 

. 

' . 

I ", 

W ht ~ n d 

r ,-;" t 

I ! ~ i r cmo v c s ; '-1 e~ f : i ," j: ' r" • . ,. 
f ,If ' r ~ (." ,' ! " 

; ! C ' , ; I I ..
" ,',' 

I .'"It · 

i > , )f) (· x d m IJ 1 ~ 

Til.... CfJ! ' ip ll n ' ": c U ( 

:: ,l c h () d;~ -i 'j u: '; b (; rf:, ( i ,. ':'· ) ~·',-, l : ~ . -

.m .] t.he [ o' )\.Ji n ~-l i ;' vl " : ·· n ....:r!l l i ~ ·r· 

' " i q i n i"l l \. ~ ~ ) ,-) !4 1 , ,. 

I ' ' (' 

"n I 

i I. • d 

...~ . , : ' 

I ! : , .", I. I: 

, P' 

~ I . ~, . 

I< J 



324 APL \360: An Interactive Approach 

V PROG3 
[1J 'PERSONS' FTIE 2 
[2J 'SALES' FTIE 1 
[3J 'RECORDS' FCREATE 3 
[4J I+-1 
[5J LOOP:(FREAD(1+2II),rI~2) FAPPEND 3 
[6J ~LOOPX182I+-I+1 

[7J FUNTIE 3 
[8 J 'PERSONS' FERASE 2 
[g J 'SALES' FERASE 1 

v 

Inth i s examp 1e, the f i 1e - numbe r s 1 and 2 did not a ppea r wit h PUN TIE' be ­

cause the erasure of PERSONS and SALES also untied them.
 

Shared fi les
 

A shared file is stored information to which a group of users may have
 
s lrnu l t arieous access. Through the use of shared fi les, APL PLUS can be
 
used for reservation systems, management control systems, many-person games,
 
simulation studies, and message switching.
 

The airl ine reservation system presented here is typical of many inventory
 
appl ications in which several people must access and modify a data base,
 
in real time. The reservation system consists of a 'control center ',
 
which makes available an inventory of airplane seats, and any number of
 
'agents', whose task it is to sell the avai lable seats.
 

To initial ize the system, the control center creates two fi les using the
 
program SETUP. The fi rst of these fi les, named SUPPLY, holds the cur­

rently available number of seats for each of a number of fl ights. The
 
second fi le, named TRANSACT wi 11 hol d a record of each transact ion made
 
by the agents.
 

The control center operator makes more seats avai lable (by simulating
 
departures and arrival s ) through the use of the REPLENISH program. The
 
operator enters the fl ight numbers and the number of additional seats to
 
be made available on those flights.
 

Agents place orders against the inventory through the use of the program
 
SALES,., An entry here should be a two-element vector consisting of which
 
fl ight number and how many seats are requested. For the purposes of the
 
example, a reward structure is built into the sales program: orders
 
which can be fil led yield the agent one dollar each; orders which cannot
 
be filled cost the agent 50 cents per seat; and inval id entries reduce
 
his earnings by one-half.
 

Entries of the first two types above are recorded on the transactions
 
file. The program OBSERVE, which is run by the control center, prints 
the transactions of the agents in real time, identified by time, city, 
and nature of transaction. When there are more than ten transactions 
waiting to be printed, the observe program blocks further transactions by 
the agents until printing has caught up again. 

Here is a diagram of the file organization fol lowed by the above-referenced 
programs and associated variables: 



Extensions to the AP L Language 325 

SUPPLY Fl LE 

AGENT
 

AGENT
 

AGENT
 TRANSACTION FI LE 

o 

o 

o 

Agent program: 

V SALES;STOP;B;P;A;INV 
[ 1 J 
[ 2 J 
[ 3 J 
[4 J 
[ 5 J 
[ 6 J 
[ 7 J 
[ 8 J 
[9J 
[ 1 0 J 
[ 11 J 
[ 1 2 J 
[ 13 J 
[14J 
[ 15 J 
r16J 
[ 1 7 J 
[ 1 8 J 
[19J 
[ 20 J 
r21J 
[ 22 J 
[ 2 3 J 
[24J 
[25J 
[26J 
[ 27 J 
[ 28 J 
[ 29 J 

\j 

STOP+-* 1
 
~ORDxlA/ 1 2 EFNUMS
 
(OWNER,' SUPPLY') FSTIE 1
 
(OWNER,' TRANSACT') FSTIE 2
 

ORD:, '~EARNINGS: ~_F9.2,X3,~ENTER ORDER~' 6FMT EARN 
~DONExlSTOP=ltP+-,D 

~ORDxlO=pP 

~ERx127PP 

~ERxl~(A+-ltP)E110
 

~ERxlB7:-1 rB+-l+p
 
FHOLD 1
 
INV+-FREAD 1 1
 
~NOTxlINV[AJ<B 

INV[A J+-INV[A J-B
 
INV FREPLACE 1 1
 
FHOLD10
 
'ORDER FILLED'
 
(1,P,EARN+-EARN+B) FAPPEND 2
 
~ORD 

NOT:FHOLD10 
'ORDER CANNOT BE FILLED' 
'ONLY ';INV[AJ;' ON HAND' 
(O,P,EARN+-OrEARN-O.5 xB) FAPPEND 2 
~ORD 

ER: 'INPUT ERROR--ORDER NOT VALID' 
EARN+-EARN-;-2 
~ORD 

DONE: 'YOUR EARNINGS ARE'" 'F10.2' 6FMT EARN 
FUNTIE FNUMS 



· ( 



Ex te nsio n s 10 l il t' ,.:;, F l La nq u aq e 327 

I n t h e wo r k s pac e 0 11 th e 5 ,:/ ',: ' :1; 1 I ~ d <pc c i a l 
Iun c t l o n , c('11 1ed t,Jt) i ch i s use fu l f o r l) r - e p ~) i ' in q n o. i t o u tp l ( ";1u 

da t .. . i s (I d v a d i c fu nct i on wh i cn r e t . u r u s '::Hl exp li c i t r o s u l t . 

T hc f e r .i rq umc r. t i s ;J c ho r a c t c r 'lect or or t o rma t co d{~ ,:> , d l lli t h,-' r i q h : 
a r qumc-n t j ,; ,J l i s t o f t he va l u e s t o be p r i n t e d , For e x.u np l e , USiIH] t h e 
ma t r ix i n "/:: s up po s e l'i e wa n t e d to p r o d uc e I he Io l l ow i n o 

d i ', p 1d Y: 

: ' 
l,l, 

! " 1 

. J .1 
(. ' 'I ;1 

II: / :f " " :," I 

!t : . 1' !: I " J 

Th e f o rm a t cod (> i ~ u::>cc! t.u pr- i n t cn o rn c tc- i i 'l(t'~ ! -rnzlt I t in . .ls ks ! ( ,I ' 

fi ve r epet iti o n s ur a ch o r a c t c r fi ei d o n e D' ,s i t; (l f! I" i ;k, liwn t h e 
co d e mcan s s p ac.e ove r t \-IO p () ~i t i o n s , The p l " ,l S t' :' L i llJ " e S pr i n t i n g 
o f t he c ha r .i c t c r s ," i n the n ext posi ti on s , ICl ke s t h :" " " p:JCes 10 

p r i n t the v o l ue s 0 , 1 , 2 ,3 , " " S a s i n t cc e r f i e i d -" lI n d i , I '; 1 til L' 

s qu a r « root s , c u be r oo t s , a nd fo u rt h r o o t s , , 1' (' p r i nted Od t (' :1c ll ill t e ll 
sp a c c s w i t l : f o u r po si ti o n s a l I o we d f o r the de c i ma l pa r! ( '; " ' . ' , ) , 

''', w i l I han d l e s c a l a r s , vec to r s , a n d rnarr i c e s II I t ne r i qri t a rqur ue n t 
I t a lI-ILly '> tr c. r t s ve c t o r s of l e nq r h 11 a s t ho uq h t he y wc r • n x l IIld l r i c es 
(i . e . , ve c t o rs w i l l be p r i n te d v er t ica l l y) , To p r i n t t hL' c ieIlK; llt ·; o f a 
v e c to r a c ro s . o n a s i nq l e l i ne , mov br. u s e d i ll c-i tlur o f t h c fo i ­
10 1'1 i n g I'la ys : 



328 AP L\360: An Interactive Approach 

X~2.4 4.982 304 1000.23123 
'Fl0.2' !J.FMT X 
2.40 
4.98 

304.00
 
1000.23
 

'F10.2' !J.FMT (l,pX)pX 
2.40 4.98 304.00 1000.23 

In the above statement X is made into a matrix with one row, and in the 
following example the resulting matrix of characters is raveled: 

, 'FlO. 2 6FMT X 
2.40 4.98 304.00 1000.23 

Compared to formatting routines such as DFT .. !J.FMT uses typically only 
5-10% of the CPU time required for the former. 

Input and output of large amounts of data 

Large amounts of data can be inputted rapidly by the APL PLUS Computer 
Center card reader and magnetic tape units. Typically, the data is pre­
pared on standard BO-co1umn punched cards, which are submitted to the 
Computer Center with instructions for what fi 1e to place the data in. 
Although there are many ways to have the data organized in the file, a 
good starter is to have each component of the fi 1e be an BO-e1ement 
character vector, corresponding exactly to a punched card. Then, using 
the File Subsystem, the information can be converted to any desired form. 

The high speed printer at the Computer Center can be used to print results 
which would f take a lot of time on a typewriter terminal. To use the 
printer, the results to be printed are placed in a file, and the program 
PRTNT in workspace 1 RSIO is executed. PRINT is a conversational pro­
gram, and i t will req uest you rname and rna i 1 i ngaddres s . 

The file to be printed must consist of characters only, and ~FMT can be 
used to advantage here. The PRINT program includes faci1 ities for 
tit 1 i ng, page nurn be r i ng, ma rgin5, I ski ppin g I, etc. 

Miscellaneous APL PLUS features 

If you form an incorrect character, or if a transmission error occurs 
whi 1e you are entering information from your terminal, APL PLUS wi 11 
pr i nt CHAR ERROR and then return to you the readab 1e port i on of the 
1 ine, for you to retype the rest of it. Standard APL, under either of 
these circumstances, would return either CHARACTER ERROR or RESENlJ 
and would require that you type the entire 1 ine over again. 

The COpy command in APL PLUS now accepts the names of more than one 
variable, function, or group. For example, the command 

)COPY 1 CLASS SPL SUB TAB3 SPELL 



Extensions to the APL Language 329 

will copy all four objects from the workspace 1 CLASS considerably 
more rapidly than by s ep a rat e COpy commands. This extension applies to 
the PCOPY command as well. 

Bib 1 iog rap hy 

Breed, L. M., INPUT AND OUTPUT FACILITIES FOR APL PLUS, Washington: 
Scientific Time Sharing Corporation, 1970 

Breed, L. M., REPORT FORMATTING IN APL PLUS, Washington: Scientific 
Time Sharing Corporation, 1970 

Rose, A. J., APL PLUS FILE SYBSYSTEM, Washington: Scientific Time 
Sharing Corporation, 1970 



Index 

Ab so lu t ~ v a l ue . ! , 5 1 
I\d d in 9 i.J I i I1C t o a t un c ti o n, 77 
Add i lion, t , 6 , 9 , 1(3 (j 

Ad d i t ive i den t it y , 
A l go r i t hms , 33 
A I t e r no t i n q p rodu c t , ", 142 
Al te r nQt in y s um. " , 40 
An d , <. :!C, 
Anno un c cmen t -, p ub l i c u de! r cs '; , 2 61; 

/Ip o s l r op! «- a -. ,1 ] i I. e r a l r:h ",, ' ac te, r, 
13 3 

A r c c o s , ]86 
Ar c cos h , I)U, 186 
A r c s l n , -10 , 186 
fI r e s i nh, " ", 186 
Ar c tan , ':() , 186 
Arc t an h , '/ 0 , 186 
Ar qumc n t s , 13 

e x p l i c it an d i rup l i c i r, / 2 
/\1' i t hme t i c 11i:9ill i o r:, " SO, 
!~ r r ay s 

d i m.:n s i on 0 t, j I C 
r ~H1 k 0 I, 1 1:3 
r e s rru c t u r i nu ()t , ] ?G 

As s i gnme nt , ", 30 
Atl n ke y , 3 , (J() 

! lVe r o q i nCJ , 38 , 114 

Bas c Va l ue (decod e : , .L , .so 
Be t el f unc tion , 22 
R i n oill icl ~ r hc- o r em, :'7­
13 r anc h i neJ, " ] G() 

r u I c s fo r , 174 
s ummarv of in struct ion s for , 

Byte , 190 

ch " ,-i ii] r o c t i-r, J 3;" 
r r !n rJli l , ? 

Ctj tf " ~ ) ~ i.e ) i ;~? , : ) O ~~· 

(. .~ : ; l i : -l~ J . I.~~ ? 

C(~ n t !.;-] 1 p r- o (:.~ , -;s i n q urI; i (Cp U) ) I ~ 

C:l a r ac tc r er ro r , 9 
Ch a r d e t (' r 

2 r q uui e n l ,; \1 i t iJ flPL l un c I i on e; . 
133 

orrav s , 1 3 ~
 

i n j~l ; Y. (: cJ o u t p u t , ?SO
 
C i r'cu l <JI- f UrlL L i o n s , 18()
 
C] c.:J!" C ., iIl111 .:Jn J i CLE /\r' . '!~; , I i O
 
Cude s. Se e C r 'tDt ( I~J r l phy .
 
Cu I on , - - "I; in 
C(lmb i n . i : 1' _l n ~) , ~ I >~ : 

C U r '1 11 1 ,~ r> j') . ') ..rc- ·v '-) I \ ~ : I C ( ) ~ III ~ ·· dl )l1 <' ;. 

CO!n ll l l ~ n t ~ _;) i"'\ , ~) 

C{)! :li':l( ~' n ; i :) r a cv, J C>3 
' f I ~ U. ;J O(, 

c.- \ n n .,~' C t l ; 1, 1(; , ~; 

C ~\ n~ i n u t · ( '-" fur k~ p ac C' n ,~ l llj \_>d ) ~ IP~1 

l~ )i - ; ~- ; n u-; C ()! ll r n ~ l n d " 

j ( (IIH I NUE, i i o 
)(ONT I NUE HOI_D, l i n 

Coc r d in a t .: -. ~ [ " d 11 a r r ; l Y) I ~ (.; I 

Cu p,>, C0 1 ; '1i !l ~ lfll~ ' :
 

) C O P~' ,
 

t;u c, i": , 1 ,(; , 186
 
Co s i n.: , .)0 , l(~ (.
 

1 7 ~i	 Cos i n e , C d I c u l a t i on or ,;() 
Co un t e r s , 9 I 

CPU t ime , 1:' 1 , J 90 
Cn l c u l us , app l i c a t i on s o f !\ PL t o , 2 44 Cr y p t o g r a ph y , ap p l i c a t i on. o f /\ PL 

t 0 ~ "i "~j ~) 



Index 3:51 

D;) t i.1< (~l, ;I I ', 
Dl ~~ ! l , :". ~ .. 
Dpci m.-j I ;)(1; ;"1 1. , 

f)r- CC)( iC ( ~-- l :l : ,t ",/ :1 ! I I ! j ." :' 

Ocr- in -,~d f IJll o';.!.' ; , , ··, ·, . ~ ~ (~ ~ r: !I~:' : '. '-. ... 

Iit'·[" ! n; 1 i ' _jl ~ c- r r o r, l·. f.., 
Dr"' I , V ) ()3 i-" ., !! ~ : : : .: r ·. i .1Y ~ " ll. (. j 
Oc l ! i l d r - , - , ) 1;:; 

;Dr- l e t i nc iJ 1:;"~(~ i n ,") ::Ji~ (, _ i IJ r1" : { ; > i ht.:> .-. ~ -, ; , ~ ro:" ()~ , -::: 
Dc; 1 1. ,1 . 1\ . 1 7 8 ~ i l") Fini ( 1 i (' :-'''' , ; j ' ;" COPllllrl!od ; F ~·J SI 

ucs c.r i hf; rU !1C~ i nn . i '~: · ." ' .' -. 
Oe<;K c a ! cu : ':~ :- ! ' ~ n ! :)i) :; ( ' = 2 r 1 j ' ''' ( \ : , ·.r--, ·.; . 0 : ' . ~ f),- . " \ ' . 

Do t a i J r~ d f.' d i i i ng cd· t.1 l i nc, ·S 2 
D ig i t ··, c o n-;!lirl n d ) D I G I T~; . /. (/~ '\ ;,"" :~ r.~ '} 

Di men s i on , (J , 116 , 117 ~. ;; ,1\, ! p'J :~ ~ -, 

Di sp1.1 Y ,-,r ' N !) , ?jC\ 
f un c t i o ns , Gj /":'[ /-\ . 2/1,7 
par l. 0 f <l rI) n c. t: i ()n , ;,: I :.!TC . ~ [j 7 
va l uo of ,I n c xp r e s s i o« . .~ : .; ll "'-' , 72, 11 6 

D i v i s i on , :, 7 , I I , ; Sf, Ii .; " g () 

DO Il I!"""! i n f':' r r o r , "/ 
Dr o p , ~ , 153, 2 13
 
D rr) rpi n~l a 'fo rks p l lce COIllIl1,:';-ld JJH~)D." :"J -. ~~.
 

] 1() :\i GS . :) ~~ 

Dummv './;·l r i,-J:J l c s , 87 'i j' Sf , : G1 
OYddi c func t ions , I') 
OY ~1d ic 1", )n d t )ll i (dCrJ l ) . ·' !S :.l 
Dyad i C I r l-l n ~ l/( ;( ;t' , ,~ .' , 2! l C'·1PX, I / ? 

:' ~l P V , i 7JI 

E-r.o! a einn , 16 COiCtITi .7. ClP 
~ d i ti n q n f f u n c t i on; , 7:) - ::~,lj CO;J :JH2 , ~'l 2 
Emp t y vc l- ! o r , lI S C'J";, (7 ~ 1~ 4 

En code ( r cpre ·~c n t; 'IL i '~ ln). r . j()2. r~ J ( F) 

E'l u" I , .c , ;'6 C:P !i T 1f1E, 1')7 
Era se c o mman d ) ERIISE , 69, I J l ['1E e , l(,7 
Er r o r s fJ ~- T , ~I 3o 

c ho r a c tc r , 9 nrcr , 73
 
clef i n il. i o n, GF. t , 1;':,
 
cloll1;,in , 7 f I~ S '{ :I R I L L , ~)R
 

i nd n x , i 3f3 I , --Jj ~ ~ ; 11)
 
l en [) '_fl, I () ' fI e:, i '1.: 
rn n k , 17. :; f -:~ CT L O I) i-' , i q7 
syn tax , 37. GCD , 185 
v a l u c , 37. (;E02 , 13 0 
\' /o r k" p" cc~ Fu I. 1, ~ ,-,rj GE03 , 132 

Es c ao. f r om in p u t I ()() O , 2r,'~ GR/\P" , nB 
Eva l uated i no u t. , 2h 'J HE XA , J r;G 
Ex c l u si v~ o r , f , 2H HY , 6 7 
Ex e r c i se s HYP . 64 

U ISYDRI :-L, ;;2 I NSERT . 1'; 5 
TEM:H, I h7 1NV, 2 4 1, 

Ex p a n s i on , " " ,- \ , ] '12 , 20 f t-lEAN , 200 
Ex pl i ci l r o s u l t s , ';5. 73 PER I tJ, ] , 91j 

Ex no ne n t i a I , < , 5 i PERI (-I , 94 
Ex po nent i a l nrra t i on , r. do °F-R! M 9 4 

:co i , J 8 



332 Index 

PLOT, 230 Grade up, !, 154 
RECT, 73 Greater than, >, 25 
REP, 163 Greater than or equal to, 
ROWCAT, 208 2, 25 
RUN, 239 I-beam, I, 188-191 
S, 123 I ndex generator, t, 113 
SD, 249 Indexing, [ J, 138, 210 
SIGN, 72 Index of (ranking), 1, 136 
SLOPE, 245 Inner product, f.g, 233 
SORT, 171 Less than, <. 25 
SPELL, 256 Less than or equal to, <, 
sQ, 69 25 
SQRT, 66 Logarithm to a base, ~, 17 
STAT, 74 Max i mum, I, 18 
STATISTICS, 2 Membership, E, 153,213 
STD, 85 Min i mum, L, 18 
SUB, 253 Monadic random (roll), ?, 55 
SUBST, 156 Monadic transpose, ~, 215 
SUMSCAN, 225 Mu1tip 1 i cat ion, x , 7, 11, 
TEACH, 147 197 
TIME, 189 Nand, 1"<, 27 
TIMEFACT, 191 Natural logarithm, e , 51 
TOSS, 96 Negation, -, 50, 197 
TRA, 218 Nor, v, 27 
TRACETIME, 189 Not, "', 52 
TRANSP, 156 Not eq ua 1, ;c, 25 
VI G, 156 Or, v, 27 
VS, 230 Outer product, o.f, 222, 224 

Functions, standard (primitive), 14 Pit i mes, 0, 186
 
Absol ute val ue , I, 51 Power, *, 15
 
Add it i on, +, 6, 9, 196 Random, ?, 55, 154
 
Additive identity, +, 55 Ranking (index of), 1, 136
 
And, A, 26 Ravel, " 124, 125
 
Bas e val ue , .L, 160 Reciprocal, ~, 51
 
Catenate, " 122, 208 Reduction, f/ or ff, 37,
 
Ce i 1i ng, I, 52 198-200
 
Circular, 0, 186 Representation, T, 162
 
Combinations, !, 21 Residue, I, 23
 
Compres s ion, / 0 r t, 140, 206 Restructure (reshape), p ,
 
Deal, ?, 154 126, 127
 
Decode, .L, 160 Reversal, ¢ or 8, 150, 202
 
Dime ns ion, p , 116, 117 203
 
Division, ~, 7, 11, 196 Ro11, ?, 55
 
Drop, -t, 153, 21 3 Rotate, ¢ 0 r e, 150, 203
 
Dyadic random (deal), ?, 154 204
 
Dyadic transpose, ~, 217 Signum, x , 56
 
Encode, T, 162 Subtraction, -, 7
 
Equal, =, 26 Take, 1',152, 213
 
Exclusive or, ~, 28 Transpose, ~, 215, 217
 
Expansion, \ or " 142, 206 Functions, suspended, 92
 
Exponential, *, 51 Fuzz, 265
 
Exponen t i at i on, r , 15 
Facto ria 1, !, 50 198 Gamma function, 50 
Floor, L, 53 Global variables, 89 
Grade down, W, 154 Grade down, t, 154 



Grade up, 4, 154
 
Graphs, construction of, 226
 
Greater than, >, 25
 
Greater than or equal to, ~, 25
 
Group command )GROUP, 262
 
Group, 1ist members command )GRP, 263
 
Groups, list command )GRPS, 263
 

Half-cent adjust, 54
 
Headers, 64, 72
 

editing of, 85
 
Hexadecimal system, 165
 
Hexadecimal to decimal conversion, 166
 
Hyperbol ic functions, 186, 187
 
I-beam functions, I, 188-191
 
Identities
 

additive, +, 55
 
hyperbolic, 188
 
t rig 0 nomet ric, 187
 

Identity elements, 145
 
Index e r ro r , 138
 
Index generator, 1, 113
 
Index of (ranking), 1, 136
 
Indexing, [ J, 138-210
 
Inner product, f.g, 233
 
Input
 

evaluated, 249
 
1i te ra 1, 255
 

Input loop, escape from, 258
 
Inserting a line in a function, 79
 
Interrupt procedure, 82
 
Inverse, 52
 
Inverse matrix, 243
 
Iteration, 169
 

Keyboard, 3
 
Keyboard, time unlocked, I19, 188
 
Keys and locks, 264
 

Labels, 171
 
Lamp, A, 9
 
Length error, 10
 
Less than, <, 25
 
Less than or equal to, ~, 25
 
Lib ra ry, 1is t command ) LIB, 97, 110
 
Library, publ ic, 103
 
Lin e co un t e r , I 2 6 , 191
 
Line editing. See Functions, editing
 

of. - ­
Line width, changing command )WIDTH, 260
 
Literal input, 255
 
Literal output, 129, 249
 
Literals, 129
 
Load workspace command )LOAD, 97, 110
 
Local variables, 89
 

Index 333 

Locking functions, ~, 265
 
Locks, restrictions on, 265
 
Logarithm, natural, e , 51
 
Logarithm to a base, ~, 17
 
Logical functions, 26
 
Logical negation (not), ~ 52
 
Loop i ng, 169
 

Maclaurin's series, 56
 
Main programs, 75
 
Mat r ix, 117
 
Matrix algebra, 242
 
Matrix inverse, 243
 
Matrix operations. See Appendix.
 
Matrix product. See Inner product.
 
Maximum, f, 18 -- ­
Membership, E, 153,213
 
Message commands )OPR, )OPRN, )MSG,
 

) MSGN, 264
 
Minimum, L, 18
 
Mixed functions, 113
 
Mixed output, 250
 
Monadic functions, 49
 
Monadic random (roll), ?, 55
 
Monadic transpose, Q, 215, 216
 
Multidimensional arrays, 195
 

construction of, 223
 
Multiple specification, 32
 
Mu 1tip 1i ca t ion, x 7, 11, 197
 

Na me s, res t ric t ion son, 265
 
Nand, 1;:, 27
 
Natural logari thm, e , 51
 
Negative, -, 7
 
Negation, arithmetic, 50, 197
 
Niladic functions, 73
 
Nor, v , 27
 
Not, "', 52
 
Not equal, 7, 25
 
Number 1ine, real, 18
 
Number of users, I23, 190
 

Operation tables, 14, 222
 
Operations along a single dimension,
 

198
 
Or, v, 27
 
Order of execution, 37
 
orig i n co mma nd ) 0 RIG IN, 156, 259
 
Outer product, a.f, 222, 224
 
Output, 0, 254, 258
 
Output, mixed, 250
 
Overstruck characters, 9
 

Parall e 1 pro ce s sin g, 11
 
Parentheses, 44
 
Parenthesis, right (sys com), 33
 



P ;1'-., ;~ _ . I ! :~) t :· i ~ i r - j i v : 

r"'d' , y , , \ I ii.-,; !; It 

1', : . ,." " ' , " , ..) . . ..... " ~ , '. ; ,:. ' 

( ~ I I; i' ' .... ' ; ,;',: !\" 

"'.'\1 ' 1') 
I ) 1- i lIi l I v (· fu rl.. . \ ) p ' :1.; 

i.... ;(' lt.:\. .~ :n:; L:..Jp/ " ~'~;· : I: , . ~;,I ; 

: ~ U [: l i e I! :.):' 1.1' 'I ' 

f..y I h a~J( , '(, "d i ' t: 1:'):' 1 

', I ', 

~ : u~ , i' 'I 

:...uo ~. ", 

; U l1C l i (;:' ;\ 1; 

1 l"i p ut ~ :; ' ,j 

I, I t..i t f):-" ..•. ; 

: -(' ! 1 

, 'I l " ;"~ • j , 

... ' .. ~ 

' :'! ' 

I.!; 

' .. j 

, I ; ..i 'v , ~ 

: l l [: ' 1 :1 , 

l~ dd ' ;', , ) , r){) 

:<\ i f i i X -t c:«: I.: J I 

f; d: I d ~ ; r " ~ i ' l ; I 

!"d n 1 
• L f:~ • 

. . 
~ l ' " ,! : ; 

: ' , 

. " 

~.; j \/ ',: 1 :) / 

r­. ,~: C j i ' : , J ~, .. ; I ,j 

'l' , ,)' , 

I~ C \ J: , j ( . ; : r; ~J (~ I I (: C L;) , 

!' ~ l_ : p I ; l-C i n q , . It. 
t:\ -' ~; ! ". ) l' : 1 ~ • j 1 ;I i • 

1-',\.•••:' ,; l 1'i\ " .:. '")<!(j \" , 

I ·~·, . ~ ; ; ; J : ; ' . :! .) 
!{C '" I )=. ' ( ~ : I t.,... , i f '. 11 ·:. ,~ : 

H (~ ...:. : \ 'i (.I ('1 - ' I ~. \.'. !I. l ;'i( 

f{ I • ~.:' I j i " ! 1 1 , t) ~j 

:c 

ht· \) l : r ':" ,J : J 

Ro I I , '/ :,5 
RC/fJ l '':'; . 11 

~ <u t ·J I· ' ." r 

' J ' 

; ~ .', ~ ) , 

: ,: 

-, ! 

I . ; :: 

i L:' : i.. . " 
, .. ( ; 
I ' 

', \ I ' .:" 

,I 't ,..: ~ 10 ~.. 

" ~ r: ~1' ;. 

, ; 1 , .... ~j , :/!~ :.; 

I,' 

i .: ::. 

S,: v i n q 

: 
Sc, , ! ,( 

~i . tc r K ' · DdC- ~ ", I ;P:I;·= -.; r l ~ ; .­
, , 

~ r... . L., .~, 

. ! 



) CflRi'J . 2 61, 
) 0 RI r; i ~ J . 

i PCCloy > 

! S(' . 
i I :' 

z~ ;~, 

~' d j u t..... 

) PORT COP- F. \In i : .) !. I 

)P(WT :' . ; ; I " ( 

) ':.-'WI" . v. . : ; .~ ' . : . ')0} 
) S i _ rj 3 J i' : , ,-. 1. I ....." r:.(")fll n ) c lr ~ 

},)i qn -o('l , ~ ~ ::, .~ ~~ , 1 i J 

) ') I V. g1, " i :-'<:,1; ~ B ~l 

) \,'/\ RS LC-:" : rr )"l . 'Jc t:. t. ( i ;-" , i ~ ~ 

j l,j i DTI-:, ) ,::-' n f 1i.'nq:'h 0 , ! 1:, 
J'.·J S I : , l 
) ~ ·;s : ;1 f!" " . 

' . !') . 

CLL.£":" 9 S 
(~ O ~·j ! I ~j U [ . ! n {j 

T? n ( !,r ,_ ~ -! ~ • l ; •. j j -',q CLH:ii J"i ' l!id .: L ! n ~ OJ/ ) l j :; 
:- .-In "',. r. :~ : rl t. ' i t1d n <i1.) C ' l" :n ,,.H' c! ) \} ~) i D r, j/\~· \f ~. ! 1 

i ; ' WS;-= r,! '_~" ~: l-J( ) 

T c: r- ,,-,; i ' ~ , : ) 7I l l , 1 \Jo " k ~, ::, i! (" ,',] ; I .' t ,",} i , ! ' lC 
J ) 1, . ' R8 W() r k S f) d CI ' ] OCr.. ;' iq l l f . I ().;, 

. '" ,! ' .... I ~:\ L, • 1::1 ! 

T' , ." : "1 :. ro ! , '/'11 , i7 K 
S ICC 

r ~ - . 1: '';' r',;.­; ( ~ 1'-' 
:i ). ' rl 'J(~;C . / 1~) , :;~ !:... 
.: -.· "d; c , ;,' 17 

T ; -! ~ ] , ;r : i.l r h ·· : '- i c rune; I \J .-; '-, . 
n ' 

I ·'\~; 














