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A progranming language

6.1 Introduetion

Tey systematic analysis snd design of complex algorithms
must be besed upon a sultable mesps for thelr description. S3inece
a mrecise descripticn of an algorithm 12 called a program, &
notational scheme for the description of information processes is
called a programming languagn. A4 programming langiage should be
concl.se, vrecise, ccnsistent over a wide arsa cf applicatlon;
mnemonic, and economical of symbols; it should exhibit cleayly
the constrainte on the sequence in which operstlons are performed;
apd 14 shonld permit the desaription of a process to by independent
of the partieular representsation chossn for the data.

Existing lavguages prove unsultable for a varlety of reasons.
Computer coding specifies sequence constralnts adequately and is also
ecomprehensive, sinee the logical funetions provided by the bransh
iastructions can, in princlple, be employed ¢ synthesize any finite
algoritha. However, the set of basic operatiors provided ars net,
in gonersl,; direstly suited to the execution of commonliy-rseded
processes, and the rumeric symbols used for variablaes have lltile
mpemonie valus. Moreover, the dessription provided by computer
coding depends directly upon the particular represeantatlor chosen
for the data, and it therefore cananot serve as & description of the

algorithm per se.
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Orédinary English lacike both orecisgion sod conclsenzss.

The widely used Goldsilns-von l\!emmamit : floweher $ing provides the
sonclsenass essentiszl to an over-ald view of tbe process, culy ab
tha cost of suppressing essential detzil. The so-called pseudo-
English used as a basis for oertain autometic programming systems
saffers from the szme defect. Moreover, the potential mnemomie
sdvantege in substituting fanmiliar BEnglish words aal phrases for
less farilleyr but more compect methemstical symbols falls te
materialize becsuse of the obwlous bul uawonied precisioan required
in their use.

Yirtually all of the concepts and operetions nceded in &
programnirg languags have alwready bean deflned and developzd in
e or ancther branch of mathematics. Therefore, much use can and
?1ll be mede of existing notations. However, cines most notasions
are apeclslized to & narvow field of discourse, a conslstent
unifieation must be provided. For exsmple, sererat: and confligiing
notasions have been developed for the treatment of sete, logical
variables, vectors, matrices. and trees, sll of whish ray, in the
broad uciverse of discourse of data prosessing, oceur in e single

algorithm.

5.2 Progrems

A shtatemant is the specifiication of sore quantity ox
guaniitiss in terms of some Tinite opsration upon specified

operands. Specification is symbolized by an axrow directed



roward the speeified gusntity. Thusg 'y i spscified by sin x¥ is
8 statersnt denoted by
Famee 80 Xo
A set of stetements together with a specifiod crder of
axecution constitutes a progrem. The program is findte if the
nupber of sxecutions is finlte. The results of the progrsa are

goma subegedt of the quantities specified by the program. The

8suenge or ovder of execution will be defined by the order of

Yisting =rd otherwise by arrows comnecting any statemeny to iis
sugceasor. A cyelie sequence of statements is called a lcop.

Thus Program 6-1 is a program of two statemenis definlng the result
v aa the {approximate) erea of a circle of radius x, whereas
Program 6~2 is an infinite program in which the quantity z is
specified as (23)“ on the nth execaticn of the iwo-statement loop.
Statements will be numbered at the left for reference.

4 number of similar progrems zay be subsumed under a 3ingls
moze genzral program as follows. At certain bhranch peints in tbs
progran & finlie number of alternative statements sre specified as
possible successors. Ope of these successors is chosen according
to oriteria determined in the statement or siaiements vreceding ths
bransh peint. These criteria are usvelly stated es s comparison
or test of a speclfied relation between a spesified pair of
guantities. A branch is denoted by = set of arrows leading to each
of the alternative successors, with each arrow labeled by the
compariscn condition under which the correspoading suecessor 1is

chossme 7The quentities compared ars separated by a colon in the
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A process which is ropested a number of +lmas fs #aid o be

Aterated. and & process (sucz ac Frogrem 6~4) which lrncludes one

or more iterated subprocesses ls sald to be lierative. A paraneter
waloh determines the rwmber of consecutive sxecutions of sn lterated
process 1o called a counter. A paramster whiok designates a
particulay element of a structursd operand suct as a vector op
ovatrix is called an index. A siaple vse of an index cecurs in tae

summaticon

Program £<6 shows a particulsr reelizstion of the process. In
this cass ths index serves also as counter. The practice of
beglaoning with the index equal to n and decrenenting to zero allows
this comparison to be made with zero and also obviates the need o
gpyelfy zv auxiliery index 1f, as assumed in Srogram 6-6, the iniilal
valas of © need not bs preserved.

4 nore complex use of indices 1s shown in Progrem 6~7, which
deseribes the matrix muliiplication | e 249 defined as

wit)

A , ‘q .
; :s;;; ‘;s;i X ; ie {1,403  Je {vE)}

o
>
e~

Each of the indicue i, }, and k serves also as & counter.

Frogram 6-7. Step 1 specifies ! as a matrix of zeros,
steps 2~4 initlelize the indlees, and the loo» 5-7 continves to

add suecassive products to the partial suvm uns’l k resches zerc.
P P
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<E%)§ When this oscurs, the process continves through step 8 o Cecrement J

. !

K_;‘ ; and to repeat the eniire summasion for the new value of J, providing

é that 1t is not zero. If J is zero, +he branch o step 10 decrements

j i and the entire process over J and k is repeated from j = 4/3),

providing +hat i ig not zero. If 1 i zero the process is compliete,

&8 indicated by the exlt arrow.

The programming language will he designed to admlt both
Ceorigin and l-origin indexing (Sec. 1.9). Exanples used in this
chepter will, however, be stated in the more fapilier 1l-origin
indaxing.

In all examples used in this chspter, smphesis will be
placed upon clarity of description of ihe procsss, and consldera=
tions of efficlent execuilon by s computer or class of computers

will be subordinasted. These consglidersntions can often be introducsd

()

later by relatively routine modifications of the program. For
example, since the execution of a computer operation involving an
indexsd varlable is often more costly than the corresponding
cperation upon a nonindexed variable, the substitution of & varisble

g for the warisble 5§ in the first statement ol the loop 5-7 would
accelarate the executlon of the loop. The varlable s would, of
courss; bs initialized before each entry tc the loop {incidentaily

% &t each terminstion.

Since zero often occurs in comparisons, it is convenlent to

cbviating step 1) and would be used to specify {

omit it Thus, if a variable stands alone at a branch point,
somparisop with zero is implisd. Moreover, slove & comparison on

an index or counter frequently ccocurs immediately wfter it 1s modifled,



a branch at the pmint of‘mgdification uill denﬁte branching upon

| camparison of the indicated index wi%h zero, the comparison '
H foccurring _nmgg modific&tion. Designlng proérams to execute
‘deciaions immediately afﬁer modification of the controlling var;able
'.reaults in efficient exeeution as well as noﬁational elegan@e, sinca
the ‘varisble must ‘De present in a @eutral regiﬁter fbr both
oparationa, | | _'
‘ Since the sequence of execution of sta%emants ia indicaned
‘by connmcting arrows as. well as by the 0rder of listing, the l&tter
 can be chosen arbitrarily. Thia 1s lllustrateé by Programa~6f3
and 6~4 which describe functionally identical programs. Cefﬁéin';
principles of ordering may yield advantages auch as clarity or f
'simplicity of the pattern of connectiona, EVQ though the advantages
offered by a particular organizing principle are not particularly
.marked, tha uniformity resulting from its consisteut applicatian |
‘ will itself ba a boon. The schame here adopted (for reasons set
forth in See. 7 l) is called the gg&ﬁ_d of 1eading decisions»} Iz
consﬁats in placing the decision ou each parameter as early in tho
‘program as practicable, normally juat bafore the operationa indexed
by the paramater. Program 6-8 shows such a reorganization of
Program 6“70 v
Although the labeled arrow representabion of program =
branchea provides a complete and mnemonie deseription, 1t is
deficient in the following respects: (1) a rmmtine translation

to another language (such as & computer code) would require the
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teealog of arrows, snd (2) 1¢ doos not permit programmed modification

of sho branches.
7he following alternative form of a brench stetement will

theeofore be used ss wall:

D8 }51’5 s 5 4

This denctes a branch to stztement number N cf the progrea LT the
relatlon x ¥ holdeg, 1 Q{K13%i:)3}« The peremeters » and & way
themselves be defined and redefined in cther parts of the program.
The null element will De used 4o denots the vrelation which complemenia
the remaining relatlons °y; irn particuler, {0)-——3(s), or simply
-==ah.3 WAill denote zn unconditionsl branch ﬁo gtatement. 8. Frogean
o=9 shows the use of thess conventions iz a reformulation of
Program 6-8.

One statement in a program can be modified by enother
statomens: which changss certain of iis parsmeters such as indicas
and selectlon vectorz. More general changes ir statements can bs
affanted by consldering the orogram iteelf as & vector ¢ whose
somponents are the Individusl sexrially numbered siatemente. Al
of the operatlions defined upon genersl vectors can then be brougat
to bear upon the siatcments themselves. For example, the jth
statemen’, can be respscified by the ith through the occurrence of

the otatemend By g

o3 Clssses of operands

Tha power of zny mathemaiical notetion rests lergely on the
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uge of gyrhols to represent zeperal guerndities whlel in given
lnstances are further specified by other quantities. Thus

' 2y P » 2«4’/3
Progrem -4 represents a gensral procces which determines z =

for any scitable valus of ne In a specific case, say n = 27, the

quentity » is specifled as the number ©.

specified uvltimetely in termas of comucnly accepted concepis. The
symbols vepreosenting such scceptsd concepts will be called llterals-
Bxamples of litersls are the intagers, +the charscters cf he vavriousg
elphabets, punctustion marks, and miscellaneous gymbols sich ag ﬂ
and % o The literels cceurming in program 54 are 0, 1, and 2.

1% is important to distinguiek clearly betwsen gereral
synbals ard Literals. In ordinary algebra ihis presente :ittle
diffizulty, since the only litersls cceureing sre the integers and
the decimei point, and eack general symbol emnloyed incluces an
alphabetlc chrrecter. In descrlbing wmore gensral processes, howaven,
elrhabetlc literals (such z& proper nomes and mnemonie syrbols) alsc
eppsar. lorecver; in a compaier code, numerin symbols (reglster
addrasses, are used to represent the varisbles, as illusirated by
the right-hand version of Program 6-5.

Iu general then, slphabetie literals, alphabeiic variasbles,
numeric literals, and numeri~ veriables mey ail appesar in a complex
proczss, znd it ig imperativs to distinguish anong them. The
syrbols ured for literals will be Romen letters (enclosed in quotes
when appesring in text) and s+sendard numerals. The syabels used

for variables will be itelic letiers, italiec numerels,; sarf boldfacs
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letnre g8 detalled 1a Table £~1. lMiczcellaneous slins and symbols
when voed as iiterals wlll be enclosed In quotes ia both programs
ant axte

The uee of dletinct classes of symbols for distines viasses
of operands nct only alds in the visusl interpretation eof a program,
but also permits sigpificant redvctlon in the number of distinet
operation symboels required, slnss analogous operations upcn differsent
types of quantities msy be represented by the seme symbol (e.g.,

&1 B for s product of sets and » AL for a product of logical
vectors). Potential ambiguity is resolved by the distinct operand
gywbola. Speciel operands (such as the unit W&@tOfaaﬁi defined in
Chapeer 1) or functions will be denotcd by Greek letters in the
aprropriate type rface.

In any determinete process, esch operand must be epeailfiad
ultinately in terms of literais. In Program 6-4, for example, the
guentlty k is specified in terms of kuown arithmetic operctions
(multiplication and divisiorn) involving the literals 1 ani 2. The
quantity n, on the other hand, is not determined within the process,
anc must presumebiy be specified within some larger process which
includes Program 6~/L. Such a quantity s refarred to as sn argument

of the progess.

6.4 Succeseor operations

The major advantages accrulng from the use of the set

operations successor and predecessor defined in Sec. 1.7 and
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gsunyirizad in Sec. V of Appencix &) ave ¢wo: +they allow ihe
deso iption of the process and tae spscificasiun of the rspre=
sentution of the data to be completely divoreed, asod they eliminate
the scucrrence of the literal 1 in +he incorementatlon and decre-
meniitics of counters and indices. Thelr use will be illistrated
by o single example.

Fxample 6-1. Uonsider e process o determine the length
of {12 longest run in any one sult in a hand of thirteen jlaying
eaiiz. A run is defined as a set of cards whose ranks form an

Intsrvel in the set

D s {21,,3”,,;,1@9(;5),@,,@,@1},

wier: tha lilterals denote deuce,trey,four,e--,king, and ace. The

leng:h ¥ a run is the number of elemenis 1t contains.

The hend may be repressented bty the ma+iix U of dirszansion
2 )Y i3 vhose column vectors %ﬁ each represent one card, | and H%

reyriasenting respectively the suit and vank of the jth eard. Hense,

2
55 2 D
;€0

o= OO

wher: the literals denote clubs, dlamonds, hsarts, and spides,

recpetivelyas I

. JOCVEEEGEEEEBE
@e®@4s35®8 209 2 s



it

ther the longest runs in clubs, diamonds, hearts, and spai:s are
1,3,2, and 1, respectively, and the longest rum in eny onc suit
is Z.

The process described by Program 6-10 examines each card
4, co the base (first element) of a run and determines th: corre-
spoiding run length p. The final result g is d@terﬁined ng the

mexiaum over the values of p.

Program 6-10. The maximization over p is perform:d by
sters 4 and 5. The indgx ki deﬁsrmines the card currently sxaminesd
as ¢ possible successor in any partial run. The variable d is the
denc aination of the largest element obtained in the partisl zun.,
It is initielized by %i on step 7, and redefined in step % by its
successor in D if this successdr is equal{to Hgﬁ"Each tie 1% is
red:fined, the count p of the length of the partial rum i- inere-
men:sd on step 14. Whenever d is redefined, j is also reiefined to
the value ft(H) = 1, so that the entirg band is scanned f:r the new

sucossor. A card B, for which the suit é%" does not agre; with

J
Hi :3 rejected by the decision on step 11. The comparisc: with

the terminal element D_, (step 12) is needed to prevent firther

coniinvation of the run when d is an aee.

The incrementation and decrementation of quantitins sueh
as the index ] which range over a subset of the integers s

ind: cated in Program 6~10 by the successor and predecessc: opera-=

tic::8 ’?j and &j o This procedure virtuaily eliminates the explieit

occ :rrence of literals. The use of the aymbol‘?u(k) (in steps 1
and 9) in lieu of the equivalent but less meaningful literal
"1, facilitates interpretation of the progran.
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1tion of symbols

Program 6-30 provides a presise and organized deseription
of the required process. It is also important to organize the
presentation of suxiliary data such as +the ordering of ths sete
irwolved, nné the signiflicance of the chwsen symbols. Table 62

presents the dsta velevant to Progran 6-10.

The firet eolumn shows the assigned mynbrkw antl the sesond
dezeribes thelr renge and dimension. I a warisble possesses
further sirusiure;ilis components may themselves be deseribed im

Further vows. The nesning of the warisble is describved la coluan

Alvhough wdditional variables appeer in the program, ecach
ig egpecified within the process and nesd not be defined in the
table. In deseribing complex prosssses it is, however, often
belpful to include thzse derived varlables in an extendsd or
auxlliavy teble. The distlnctlon between predefingd and

oeaggrdelined varlaples should, hovever, be mainitained.

In deviging s computer program corrvespending o Program

& 3 ¥ 4 3
6-10, it will be found neecessary to chocse a Specifis represenge-
tion for the varisbles involved before describing operations sush
a8 #alecting a successor dn & given zet. This choice may be
displayed in an evtension of Table 6-2. For exsuple, the
denominations 2,7, 2-e "(E}”g and “(é}" might be denoted by
lpRg®e,12, and 1%, The successor cneretion then reduces 0

sdiple addition of unity. 4 particulsr cheoisce of represeatation



)

(

could alse be user 4o obviate the genersl sucecessor operations in
the progrenming nctation, but this would bind the entire deseription

to the chosen representation.

65  Reference table of notation

Appendix A summarizes the notation developed in this
chapter. Although ‘ntended primarily fer reference, it supplements
tha text in severel ways. It frequently provides a more conecise
alternative definition of an operation discussed in the text, and
alsc contelns numerous important but easily grasped extensions not
troated axplicitly in the text. By grouping the operations into
related classes 14 digplays their family relationships. Finally,
by using the symbul é)(l superimposed upon () to denote the index
origin in use, each operation in Appendix A is expressed in termas
of boih Oworigin snd l-origin index systems. The exposition in the
text 1s lindted a'most entirely to l-origin indexing.

Meany of the operations defined spply only to certain
restrieted classes of operands {(e.g., arithmetie vector opsrations
do not appiy to nomnumerical vectors), znd these restricticns will
be indlcated by acdopting the conventions shown in Sec. I of the
appendix. The classes of operands szppesering in Sec. I are defined
as follows. A vector whose component sets Xk are all equal 40 a
given set Y is called homogensoupg, and some homogeneous vectors

mey be further clussified as numerical, integral, or logiesl,

segording as ¥ is a finite subset of the real numbers, is a
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finlte subpet of <he integsers, or s the sed {CJJ,JL}X, respestively.
Each of these classes 1s a subslass of the clasees preceding it,
and sach operation defined upon a class also applies to each sub-

class. For excmple, arithmetic operations defined upon numerlcal

vectora alao apply o the subelasses of logical and integral vectors.

A

A speecial "mapping® operand, which may zssume the value o as well as
integral. values, will be dencted by m, =, or i, or M.

The symbols used in each definition of Appendix 4 are
those of {ihe most general elass of sulisble operands. Thus the
logical operations of Sec. VI are mainly restrieted to the logical
operands W, V,Wyti,: ,,%.g,%"f",;i;‘,;iz’.,g;iz& 2}_" but the logicel reducticn
(Defe. 107-110) wppily to arbitrary scalers, vectors, and matrices.
The operants must satlisfy certain further compafibility conditions
{primarily concerning their relative dimensions) which are listed
in the finegl column of Appendix £.

A concise programming language must incorporate families
of operaticns such that the members of & given family ave related
in & systersatic menner. Each family will be denoted by a specific
opsration symbol, and the perticular member of the family will be
designated by an associated controlling perameter (scalar, vector,
matrix, or tree) which immediately precedes the main operation
gymbol. The operand is placed immediately after the main operation
symbols Por example, the operaglon kf“x {(the kth successor of x)
mey be vieved as +he kth member of the set of successor operations

denoted by the syrbol ‘?o
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anokndereratisg a cogpousd doersilon su

tion syabol and iis

reprzesnt an indivisible

£ e separated. L1 would, fov exasple, be

PP

3 A ¥, ) 2 g b PR 3
ssth e bhat § i‘ék%}:} were z2o0uivalent oo };?:\gxf}:“}, alihougn

4

3 3. x X " & £y o £ " r
it car be shown a4 the eomplete operations 1Y and k¥ 4o commute,

2y

;B ] £
that 18, }e?fjfd) = Gb{klbx).

Iv exdur o reduce the need for perenthesse 14 wiil be

pemyned thet compound statements are. asveeph for intervening

g

purentheses, crecuied from right 4o left. Thus, k%@;ﬁ{ is eguivalont
g0 ¥l dx), ney 1o fizﬁ:@j Wz

controlling

povareter {swh ss 'z, or Lx)) will be denoted by a pair of
oparation gymbolg which enclose the operand. Opsretiang lzvolving

tus cperand s ond o eontrolling peramster {suchk h operatics

=3
&
0
el
B

3 kY -y . N L& 3 -
Y, B) 1AL be csnoted by e palr of owersiticn gymbols eacloging

the sntire set of warisbles, and the controrliug perazeter will

o1 besueen 4ly: wo operands. In these ceses the operaiion

symbols thamgeiven serve as grouping symbols.

3

snslogovs $o that served

&

Coriain operstovs serve a pury

by certaln specle’ legleal vweefors wien used gz controiling

pREARGTAPa. > nemonie ressons, such opervetore will be denoted
by the sane Gresk caaracter used for the snalogous vestorsy «°, for

ensmple, S 8 orerd: vecior, and 6(v) denctes she prefiz weight of

the logleal vostor .
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5.7 Selsciion operatlions

Algoritchms, particularly those sulted fo avtomatie exscution,
tend teo reculre the sxecution of the sare opsrations upon each of &
group of opersnds. It is therefore useful 4o generalize operations
defined upon sing’e operanis 4o corrsspending operations defined upon
each elempent of a siructured array of opersnds. The siructured
arrays emp.oyed ave primerily the seis, vectors, matrices, and trees
introduced in Secs. 1.7 and 1.8. The type of generalization employsd
is illustrated by the extension of tae logiecsl operations and, or,
and not, %0 logieal vectors in Sec. le8. The execution of s process
upon A structuved oersnd can {and in the use of a computer
fraquently must), however, be wxecuted as an explielt repstition of
a given opearatlon upon successive elements of the array.

The effeciirve use of siructured operands deperds not caly
upon gereralized cperations hut alse upon the abllity to speeify
end selec’ certain alements or groups of elements. The sgslection
of single olements can, for exsmple, be made by specifying indices
ag in the oxpressions &ig Uy ﬁig ijg ﬁé, and {];) o oince selectlon
is a binary operation (i.e., to select or mot to sslect), more
general solection 1s conveniently spacified by a loglcal vector,
each unlt component indiceting selecticn of the corresponding
component of the opsrand. The logical vectors themselves nay be
specified in terms of the logleal opsrations defined in Sec. 1.8 and

sumparized in See. TI of Appendix 4.
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The swiection cperation (Def. 135) definsd upon an crderct.

e -

a5 4 15 deneded by the atatement
G === /4,

and ie defined as follows: +he set C contains only those elements
Ly for which ¢ i = L, and the set C is ovdeved on A. In other words,
G is cotaiped by suppressing those elemesnts ﬁj for which . 3 = 0.
T logleel vectoy o is sald to gompress the set A. The vecior w
and the et A nust be compatible, 1.2., v{v} = v{4). TFor example,
12 w(a) = & and o« = {1,0,1,0,1), thea /4 E{A:lgiz},ﬁﬁ}ﬂ

The We . of a vestor ;v 1s dencted by 6(x) and defined

{naf. 64 3 ew the cum of the componepts. In the case of a logieal
veator o, the welght ig also the number of unls components snd

elosely &0 )+ 60 ) = v{n). Yorveover, »{u/h) = (s).

The ccnpress operation ls exiended 4o vestors end mairices

pe fellowe.  The veetor eompression /. selects gompopents off .

aractly as the se’ compressicn A sslects elements of 4. & maheix

Y DO GURPre S

Row comupyession, denoted

rs)

by /7, cobpresses coch vow vector 1 of the matrix & e form a new

matriz of ¢imensien o0 ) x &) Colunr compresgion, denoted by

compresses each column veehor . 4 e forn e matrix of dimension

Vs Compatibility comditions cre wln) = vl ) for row cou
erassiony mnd v} = 4. ) for column compression. For example, if

ig ee arbitvary 3 x 4 matrix, © = {0,1,0,1), and v = (1,0,1),
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I 1ls elesr thet row compression guppresses columng
ccrresponding o meros of the Jogleal vector and that golumn
cenpression suppresses rows. Thie illustrates the type of
confusion uwbhinh cen arise ln numing operations upon matrices
whick are obtained by generalizing opersations upon vectors. The
following romenclature will be used conslstently — an cperetion
i1s ealled & row opexation if the underlying operation {rom
which 1t iz generslized is applied to the row vectors of the

matrix, and a goiumn operation if 1t is applied to columns.



Bumple €-2-. A bank which asslgas sccount numbers from a
goild sed of integers wishes to malke a susrterly review of sccounis
w0 produce the following four lisiss

£

VL) the name, account nunler, snd balance for esch

account with a balance less than two dollars;

o

i
o

the neme, account awsier, and balance for each
aceount with a negative balance exceeding ons
hundred dellars;

{3) the name and account number of each account with
a balance exceeding ome thousand dollars; and

{#) ail unassigned accoun’ numbers.

Tho ledger nmay be described by & matrix

g«-d

’“’ ( }ag.izguzmw
m

e e
5o g e :

2
a
|

with coluwn waotors e ;2, snd - representing names, account
notbers, and baloness, respectively, and with row vectors
zgﬁLgyaac».@ reprosenting individual secoucnts. An unassigned
secound number is ildentifisd by the word Ypome" in the rame
position. The four output lists will be dencted by the matrices
Yy s Hy and [, respectively. They cen be produeed by

Program 6-.1.

Erogrem 621k Since iy is the veetor of balances and

!

24 is a compatible vector esch of whose components equals twe,

the relational statoment (¢ g < 23! dafines (Def. 108) a logical



£
s
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b-2d,

veotor having unis components corresponding to thoge accounts to
be iacivded in the list . Conasquently, the column compression
of gtep L selects the appropriate rows of i to define ¥, Step 2
is similar; but step 3 incorporates an sdditionsl row compression
by the compatible prefix vector 2 = {1,1,0) (Def. 127) to select
colizmps ope and two of i. Step 4 represents the comparison of the
nane (in column | ~1} with the literal “none", the selection of esck
row which shows agreement, and the suppression of sll columns but

ths second.

The expressicn " (fone)c" occurring in step 4 of Program

6-11 illusirates the use of sesler replecement {8 useful

generallzetion of the multiplicetion of a vector by a numerie
scalar), which ig defined (Def. L12) as follows. For sny logleal
vester v and arbitrary quantity a, the statement ¢ g 8u Epecifies
the vector - obtained from « by replacing each unit component by o
and leaving the zero compounents unchanged.

If B Ls any subset of 4 which iz ordered on 4, then there
existe & logleal veator v such that /A = B. Hors generally, if C
ig sny subset of A, there exists & veotor v such that vw/A = G, lea.,
such that /& is a permutation of . Consequently, any subset C
ceng; exeeph {or ordering, be representec with respect o 4 by &

logical vector « which is called the subsef vector of C on 4. For

@, 2, @}, and Gﬁ{, @}» then

Can
. " & - g
exemple, 17 A = i e

c . s c, . R _
&y = (1,0,0,1), ande/a = {(5), (B} #C, althoughsy/a = Co If 2

is the se% of integers ﬁl,v(Aﬁﬂ and 1f the value of »{(4) is cleax
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Lrom condext, thern [ may be elided. 'The notation for the unig
vectors (Def. 125, L& consistent with this conventlon, ths super-
seript 1 deneting a set B of one element, that is B = :i“o

A prefix vector of weight ] and a suffix veetor of weight

d ang \j

i e dencted by » respectively (Sec. 1.9 and Defs.
127-328). 4 suffiz and a prefix of the same weight are clearly
releted by 2 rotation (See. 1.9 and Defs. 176-177) as follows:

i

;f?:"j & and o= *% * s Horeover, every Infix vector is of the
oo b1
I£ . is an infix veetor and 1£f B = /A, then B 1s called

ar apflx or interval of the set A. Moreover, if " ie a prefix or

auffix veotor, B is called a prefix or suffix of A,

o= :f;"ﬁn, and v = & g, then elearly v A v = 4;(]3 AC) and
L LB o
= "4 ‘o Consequently, sete and set operations can

fracuentiy be replaced by the analogous vectors and vector operaticng

:
with reepect L0 some gpeelfied universe of discourse A.

4 logleed vactor i and the two vectors o = oy apd b= i/
obtalned by compressing & vector o, collectively determins the
TEEter . The operation walch specifies - as a funection of , o,
apd + is called « mogh and is defined &s follows. If ~ and

avbitiery vectors aad if o is a logleal vector such that (1) = »(:.)

ard 80} = ¥}, then the megh of . and © on i is denoted by \z;:z.,a"»,,';‘\a\

srd is defined (Daf. 145) as the vector » such that +/: = & and »/u
= o The mesh operation 1s equivalent to choosing succeessive

gomponents of - froa o or - according as the successive components
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of  are 0 op Le Iy for example, : = ( @ s ((€)
Lo ( @;} @ )5& anéd = (071&09190)3 ’ﬁ"hen\f‘gig\ =
( i&)@ (:9,) (3;% éﬁ;é;j)g @ ). 48 a further example, Program ¢-12(a)

{which describes “ho mevging of the vectors ¢ ard i, with the first

and every +hird component thereafter chosen from ) can be described
alternatively ag shown in Progesm 6-12(b). Since ¢ = {1,2,3,4,55650°+)
{Date 166] . thon| 6,37 = (1,2,0,1,2,0, 002} (Defs 25}, and
ceicoquently the vestor - specified by the legical reductlen
{Def. 308) on sten i is of the form = (0,1,1,0,1,1,0,%°).

dech operations on metrices are defined anelogously
{(Defs. 146,148}, »u7 mesh and column mesh being demoted by singls
ard double revers: wirgules, respectively.

In mummerics. or other vectors for which addition of two
wootors 1s defined [Def. 28), the affect of the general mesh
operation nan he produced as the sum of two meshes each involving

o3 HeTe Yoetdr. Specifically,

N 9‘%‘ = N PERANES \Qws\
NI A
ihs operation %\9” X2 \\ proves very useful in numerical work and
mﬁi:& b&’ G&.&l&ﬁ .?ﬁﬂ}ﬁggﬂ of th@ veg-t@r e V@@‘tﬂz’ @xpwsion ia
denctod by N\ and 1s defined (Def. 154) as \ ' = \93}%\.

Compresslon of +\. oy © and by . clearly yleld . and O,

respactively, l.e.,

f‘\ = 7, o = 0,



o ddy
Hoooosvar, ey noreriesl veetor - ean be decomposad by a compatible

yaotor - sccordipg o the relation
om o\ 4 \,/ )
The tRo teans ave vectors of the same dimension which have no

noazere conperents in cemmon. Thus if .« = (1,0,1,0 »1); the

decsoanpogition of  uppears as

: i lgg‘yﬁ;.gﬂgg'ﬁ,ﬁ) {93&[230”34‘,0) @ ',

oo,

Rov expansion and column expansion of metrices are defined
analegously {Defs. 155,157). Row expansion of U by » 1z denoted

by v and colump axpensiom by :Ry. The decompositlon relations

e

Nyad # Q\f«

24

£ = {0,0,0.1) and 4 = (1,0,1), and if 4() = »{¥) = 2, then

¢ 0

fd Gud

Lt
&
b8

o

A o
NN RN
@

R e
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Tn expansion opevations, the compatlbliity requirsments
{zhown explicitly in Appendix &) concern the weight of the logleal
ventor rather then its dimension. The latter quantlty ssrves to
dgternine he dimension of the resulting vector or matrix,

dask operations (Defs. 160,162,163) ere generalizations
of the conputer mesiz operatlions defined in See. 4.14. The vector

nask, denoted hy « €= S5,/ defiass ¢ as follows:
B b AN 9

Q i Li if 0y = Lo

The vestors -, +, and - pust all bs of the sems dimensicn. The
mask operation ig also extended to matrices, single and double
virgules denotling rov mask and column mask, respectively.

The compr:s3, expend, mask, and mesh operatlons on vectors

alsarly ave reletod zs followa:

Jgi gt/ = N gingnd N\

R Y AV P T

Apalogous relations hold for the row nssk and row mesh and for the
column masic and column meshe
Certain sclection operations are controlled by logieal matriess

rather than by loglcel wectors. The row compression Iff iy Tor example,

(N



(M

A T
gl

sriocts elemenis of | corresponding to the nonzers elements of .
Since the ronzerc elements of | may occur in an erbltrary pattern,
tha resul{ must be construed as a vestor rasher than a matrix.
More preclsely, /.. denotes the concatspation (Def. 151) of the

1,4
S

vestors obtsined by rowe-by-row compression of & by i.

The column compression ¢ (Def. 139) denotes +the con-

_} &

B

catenstion of the vectors fi/s, if, for exemple,

Correspvoniing mesh, masgk, and expsnsion cperations are

dafined as shown ‘n Becs VIIT of Appendix 4.

6.2 Sean operations

Oporations, such as the summation of all components of a

vector, whinh require a scan of all sompongnte of a structured

operand will be ecalled scan opsrations. The weight of s vector .,

denoted by () and defined previcuely as the sum of the components
¢f oy 15 a speelal case of the application of any associative
binary operetor U 4o all comporente of the weeier . The

8-waight 0f « will then be dencted by %/, and defined (Def. 59)




as followes

R T

j @', :)P ) oen @ mlﬂ

Po example, 0 s o(n), % is the product of the compouents of

m N vew
¥ (L\f 5 W N |

is the logicel sun of all compcnents of .

The O-walght Operatofvis extonded to matrices by the
astanlished conventlon of using & slngle virgule o denote an
oparation extending cver rows and a double virgule to denote an

oparation extending over columns. Thus

A e g 8 1L, @ 000 @ 3519

N

and

" :R‘ A 0 A
. K TR P f see & .. 19

Porr example, if

,.
0
§
<
<
ot
<

then %' = {1,1,1) and ¥

T
k1

¢ . RN
(lggyﬁ,gt.,/’ ©

-
o

Using the ledgzsr - defined in Exampls 6-2,

producs a lisvipg © of name, account nurber, and balance for each
aecound heving & cusrterly belence less than twe dellers for four

guscassive quarters. The required seliection can be based upon the
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status in each of the previous three quarters obtained by enlarging
the matrix L to the form I, = [LI,LZ,LB,LL,Ls,Lg] s Where L, , 11.5,

and L, are logical vectors defined by L, = w3, Ly = w2,

4
L& = ui 1, and uj is the logical vector (1.,3 < 2¢) computed in
period J. The production of the matrices T and i is then described
by Program 6-13.

Program 6-13. Step 1 shows the addition of a seventh |
column to L. determined by the current balance (See Def.{5d).
Step 2 shows the application of tha logical and operation to each
of the rows of the matrix formed by the last four columns of L.
Step 3 shows the selection performed by the logical vector fonnd
in step 2. Step 4 shows the deletion of the oldest status vector L4
t0 leave the matrix I in the form appropriate to the succeeding
period.

The use of a scan operation on a vector of sets is also

instructive. Let a be a vector of sets, that is, a, = Ai. Then

i
since the Cartesian product operator (¥) (Def. 87) is binary and

assoclative, the stabeﬁenb
Ce—®/a

specifies the set C = A1® &2 sve A'(a) o In particular, the
homogeneous product set [A]k may be denoted alternatively by
% (d/re).

-For a vector of sets a 1t 18 convenient to define (Def. 3)
the dimension vector ¥(z) as follows: .t;a(a) = v(ai), and
w((8)) = wa). Then v&/a) = ¥/4(s), and for the homogenecus



iff ' is eny member of the product s@%q@ﬂkg then clearly
wi) = v{e). Hoveover, the product sets containing conmpressed,
expanded, neshed; nnsked, or permuted vectors can also be expressed
easily in cerms ¢f the origleal produst sets. For example, 1f
Lo QQ/&, hen m/ExﬁqQ/Qm/a}. Similacly, 1f » is sny mapping or

permetation vector, then L & Ds .

dad

s

Sinee she operation of determining the maximuw of several
sinerlesal cvanililes XV, e-e,;2 18 asegoclative, maximization over
tha componente of a veetoyr could be treated In the manner described
ghova. Hovever, since 1t is often neczssary to determine the
Andises of the eonponents for which ths meximum cccurs lastead of
{or in addition 4u) the value of the maximum iiself, an alternative
traatmant L pﬁ@fﬁxred. The maximlzaticn operator determines a
legieal vector whese uvnilt elemente iandicate the locatlion of the
maxing.

Mezrimination over the entire vector v ls denoted by &fx, ard
g defined as Tolleovs: I¥ v = g2, then there erists a gquantity m
gush thet ©/x T I and such that all components of ©/y are sirietly
le2s than 1. “he maximum is assumed by a single component of @ 1
apd enly 1000} = L. The actval valuz of the maximum is given by
the firet ‘or any, component of v/z. Horeover, the indiess of the
mexinum coupornents are the components of the veeter v/ . {See

e 166,

)

Ve



More gonerally, the maximization operation ve——ufx will
be defined so as to ignore the componenis of v/« Speeiﬁcai]y,
9 &0l % implies that v/x =me¢ and that ((‘*} A U)/z € me) = €.
The operation ngy bs visvalised aé followe ~ a horizontal plane
p&mem a% polnte corresponding to the zeros of u is lowered over
a plot of the components of x, and the positions at which the
plane touches them ave the positions of the unit components of Vo
 Fex @xampie, maxinization over the negative components of x is

dencted by
v (< )%,

and if x = (2, =3, 7, =5, 4, =3, 6), then v = (0,1,0,0,0,1,0),
oz = (=3,23), ('@/’2@31 = =3, and w4 = (2,6)., |

Orclinéz*y payimization 1s defined with respeet to order in
the real mumbers and eé.zz be generalized direetly to any ordered set.
Thus if z ‘s miy element of the homogsneous ‘préd,uc-i set [A]V(K) ’

ths statenent
T ém-- L9 K}{

implies thet +/x = me and that ((3 A u)/x 5 me) = Go For example, if

QOBCEE®GEGEA®
D@4+ 3508209 2 |

represents a hand of cards asccording to the conventiong of

Example &1, then
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£ g?t = (03}0,0‘3{}999190gusggggagggc) o

Meximization spnd mindmization are extended 4o metrices as indlcated
by Defs. €6 and 71l. Maximization over the entire matrix & is
indicated by [‘ » Where ' is the full matrix of all mes

{Daf, 130). iinimizatlon i3 denoted by u &y, end is defired analeogouely.

6.9 Mappirgs enf permutations

A fupetion £ which defines for each element B:‘L of & sat B
a unlque correspondent 4, in & set 4 is eslled & mepping frem B
40 Ae I f‘{iii} = A, the element By e sald to yap Ante the
elomsnt A, - If the elements f{jif:ii) exhaust the set 4, { is said to
mzp 3 onto A. I B maps onto 4 eod the elements f(Bi) ave all
distinet, ¢he mapping is sald 4o bs one~to-ope or hiunique. In
this case, w(4) = v(B) and thers exisis an loverse mapping from B
0 4 with the same covrespondences.

A ywopren for performing the mapping £ from B to A nust
thareifore detesrming For sny given elemsnt b & B, the correspondsnt
2 s & such that o = £(b). Baumuse of the coovenience of spereting
upon & solld subset {infix) of the integers (e.g., upon ragister
addresces or other numerie gywbele) in the automatie execution of
programs, “he mapping is Drequently performed in three suscesslve

phases, deterrdning in turn the follewing quantities:
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e,

(7

h
/

hs ’; £
0= 2d.

(1) ths index i of the clement b im B,
(2) the index k sueh thet 4, = f(Bi)g

(3) the element Ao

The three phases are shown in Program 6-14(a). The first
{steps 1=3) iz equivalent to mapping B onto the dense set of
integers {;(J.yv{B) ;}» and is normally performed by seanning the
s2t B in order erd comparing each element with the argwment b. Tha
socond is s permuteilon of %be integers {(1,11(8))} which may be
deseribed by a vector j, such that ig = k. The selection of xi
{5tep 4) then defires k which in turn determines the selection of

Ak on step S5¢

Example é=4. If B = {applag booty, dust, ey, uight} is
a ot of English words in alphsbetical order, A = {Apfelg Auge,
Beute, Necht, St&.ub} is a set of Germsc words alsc ia alphabsticsl
ordar, aré 1f the funetlon required is the mapping of a glvea
English word b into its German equivelent a according to the

following dicticnary correspondences:

Bnglish: apple booty dust eye night

German: Apfel Beuss Staub Auge Nacht

&
5
Foe

H

{133555254)e If b = "night," then i = 5, dyg = 4y end

f‘f&@ht °

)
0
o=
0

& vector (such as the veetor | oceurring in the definitien

of a meapping operailon) whoss componeats are eash distinst elements

of the set {_&fl,v(fé})}is called a permutation vecter. If A ie any



gen and | i3 any compatible permutation vector, and if B ie the

st defiaec by the relation

then B is celled the permutation of A Ty 1 and is denoted by

Bz 4, Beceuse permutation by the vector & is used in the mapplug
Zram B $0 4, the permutation ! is sald to map B onto A, although

ths pewmatation is actually performed vpon A. The identity

pepnutation veetor will be dencted by : and definsd as by = Ke
Gleerly, b, = b

The opersiion of psrmuting a zed will be axtended
analogousliy” to veotors, that is, b = o defines the vector b sush

4

that By ® iy e If two permutation vecturs 1 and | satlefy the

relatiom . = i, “hen & is celled the inverse of {. Since
* e e g
i, = w§=fi, = . the relation is mutusl, and @ is also the

inverse of . Permatation 1s associstive {but not comavtative)

gnd therefors

(7)) = (), -

= i

In particuwisr, If 1 and 3§ are mutually inverse, then

I7 v is a permutation wector inverse to i, then
Frogrem 6-14(%h) doseribes a mappling inverse to that of
Frogram &~ i{a). The inverse mapping can also be described in

terme of . &8 is done in Program 6-1%{¢;. The selectlon of ths
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634,

k=
.
&

gapnrent of the permutation veedor 1g then aseessariiy repleced
by & soen of Lus componenis.

The vester . reguired for the mapping inverse +o0 Irample 6=f
ig nleavly | = {1,4,2,5,3}. The vector . inverse to a given veotor

1 can ln general be defined by the lumplielt statement

+ ¥
LAk e @m f_‘ WQ j\,»
%

0.

wileh mey be read as " speeifies ,;, with respect to .”, and
interpreted as speolfylng the p@mﬁ:m";icm J-with respect to an
elrecady spesiiied vector » The gymbol "wo® will be used freely in
similer Inpdielt statements {0 separate the mair specifying vardsble
from the following auwriliary variables.

The uvse off contrecurrent indleses will be indicated by a

negative slga as usual. Thus, the set B = 4_, is the set & igken

.
in reverse ovder, thet is, Bz {Aol,&azg‘ QAWM: Az}. Hore generaily,
if i is any permuiatlon vestor, then A_. 1s the set A, taken in

i

Teverse older.
Permuntation is extended 4o matrices ss follows. Row

permptation 1s defined by

Do L Gy By om0

A

end effecis a resrrangenent among the columng of the matrix.
Colurn peymutation ls donoted by &

15 is convenlent to define a more general mapping cperation
whinh allous both suppression snd repetition of components as well

a8 the remrrangencn’ provided by the permutation operatioa. If,



o

s exmamole. & le the set of alphebetie chavacters, and o = {4,5,5.4) .
then the vestor - = &, may reasonably L@ interpreted as the word
{@ 9@ gy(@,@), glthough | is not & permutation vector. HMoreover,
£62{@: @ @ @@ 2= {® @ @ @f» et
nom (1,044,400, then o = B may be interpreted as the vector
{ @, , ) whose components are clearly the elements (in
proper order) of the set A AB.

Fermally,; o mapping vector » is defined as a vector eash of
whoss ocmpenents is either an integer or a null elemente A gob

mepping is denoted by

$5 . Bﬁ

and definec as follows: Gy = By for i e{(l,v( ’5;))}, where
iy
et j(g«@. # 0./t )ouy wiB)e|e

Nermally, the nonaull elements of = all belong to the
index se% of B, ir vhieh case ! simply comprises the nonnull
elements of z, thet is, & = (wfez)/u. The reduction med v(B)
simply ensures thet the mapping operation is defined for any
mapping vector r regardiess of the dimension of the sst B to
which it mey be epplied. If : is & permuteiion vector anmd
»{1) = v(B), then & = m and the mapping is a permutation.

Since a mapplng vector : may contaln two or more
identical nomnull components, the entity Bm may contaln two o
more identical components and must therefore be considered as:
a -rector rather than as a set. Like permutation, mapping may be

exiended directly to vectors and matrices, as shown in Defs. 168-171.
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I 4 and B arve two equal sets, then the assoclation of
idoentical elements esteblishes a ope-i2-one corrsspondence between

the sets. The synbol 4(A<— B) will dencte the mapping vector &

whigh maps B opto &, il.e., B = & o 1Z, Dor exemple,

£

Am {g? @, (}99 @}, and B = {(@, @,, ,, @}y then
slA @B} = {3,2.,4,1), and /(B &2} = (4,2,1,3). If 4 =B,
then of{l ®=-—F} is clearly a permutation vector, apd (B & 4)
is the loverse perantation.

Foy srbiteaiy sets, the mapping vecter v = {4 ¢—B) is
defiped more genevally as a veetor of the same dimension ag B such

thak zg = k 40 B, = Ay, and vy = 0 A€ 8, ¢a. If o= 4 , and

C=Baa, then clearly - g = {‘i » For syemple, if
83 {@ @s (E‘i‘ﬂ)s s @};‘ and B = {@» @s :e }s than

ol qmeB) = (2,1,004), & = A}”ﬁ = { @, ; @}’ and
2B aAaA= {.ﬁ @, @}e

in tbe ennlogous mapring {from = vector b to 8 vecter

]
B

{Gonoted by /{4 g ), the possibility of iwo or mors identicel
coaponents in & leads to potentlel ambiguity whick will be resolwved
by chooging the Index of the first of sry group of idsntieal
corpepentae  Formeliy, i€ o= a{n g}, then ng = o if &y #C,
and ty in otherwise the smallesy integer such thst by = & %,

whare C s the ses of distiact somponsnie ¢f 2. This ﬁ»efi;aiti@n
elzarly covers ell of the simpler cazes previcusly eonslidered, and

the mupping veetor w = « (e 3} may be defined for any set or

vestor @ wid any st or vector 3, as shown in Def. 172,
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Nb T

imarzple 6»%5. Let it be reguized to detzradne the kih
elenent of the set B A A. This may be performed efficiently by
Frogram 613 whilch epplics the mapping vector v = {4 &—B) to0
the oot & rother then produce the set B A A4 explicitlys 3L ths
o3 A apd 3 gre flxed, the fivst two sieps of the program nesd
be peeformed bub onee and nesd not be repeated for sach velus of k

troatafs

It is somstimes ugeful o congider & set &4 8&& & veclor,
that is, tc speelfy a vestor - such that o g = &40 This s denoted

by the siztemgnt
i e o

Yaator opervations noy then be applied to the vector ©. Fop
exnnple, Frograms 634 (a=c) may be reformulated more concisely in

-
)
28

terme of ventor operetions as ghown in Programs &=16{a-e).
%Bscuufw it ney contain dvplicate components, & vechor cannch
speclfy a sat se clveetly as o set specifles a veeotor. 1% is,

horevewry useful to denote by the statement
{5 Grmamnen 11

the set G of dlstinet components of », specificelly the ordersd set
chiained by suppresaing each recurrence of any repeatad componend

the vechor. X7, for exanple, & = { Q“ s @g. ﬁf) v @, (E); (?} Is
when G 5 {( o { '> {n), Q} and moveover, {0 €= )} = (1,2:5,25004)
gnd €m0 = 13,2,3.8).
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It is sometimes necessary to reorder or sort (l.e., teo
permute) the components of a numerical vector X so as to arrange
them in increasing order. The inermutation vector j required to
effect this will be called the ordering vector of x and will be
denoted by § =®x. Theny = }{‘3 has the property that Y38V
for & < ko Since the components of X need not be distinct, this
definition of the ordering vector must be refined so as to remove
potential ambiguity. This is done s0 &8 to preserve the initiai
relative order of each set of equal components. Formally, j is
defined as follows: j is a permutation vector such that either
F3€T341 OFFq ® Ti01 and ‘ji< ji&l’ If, for example,

x = (3,17,72,3,5), then j =@x = (3,154,5,2), and y = x, =
(=2,33355,17) . '

More generslly, any vector a which is an element of the
homogeneous product set [B] v{e) may be ordered on the set B. Thua
j =%& is defined (Def. 173) as follows. If ¢ =a,, thenj is a

¢

pernutation vector such that either By < @yoq OF 3y = 8,4 and
B

§3<dy4e If, for example, & = (3, @, 6, , 6,‘«-® ), and
B2{(210), @, @ @] then t =g = (1,3,5:4,2,6), end
a5 = 3466, D @ © )

Rotationg. The rotation operation kfA defined in Sec. 1.8
is a special but very important case of permutation. Its '
definition and its extenslon to row and column rotations of
matrices are shown in Defs. 174-181. Briefly, the row rotation
i i

¢ e—uf4 rotates each row of & so that ¢* = kfal. For




coduvin rotation, | €= e &= g ° o ii‘ A i°

Any veetor rotation 45 mey be expressed ag a
permutation by § = I:e:?'@;, the corresponding rotation of the
identity permutation vector, that is, ife = G The general

roa {or column) rotation is more complex then a single

o

smutation, but for the special case : = ki, kéﬁ‘\ = by
pe 3 pe

Rankirg. The first step in performing e mapping is, as
illustrated by Progrem é=1,, the determination of the indsex in a
set B of sume argument b. Because of its importsnce, this

oparation L8 given che special neme of ranking, and the speclal

notation £{b wo B} defined (Def. 89) as follows:

¢ G~ (b wo B) &=z Jo = 91:€‘b§3

Hove genemally, 4if 1 is a wector beloaging to the product set @/z,

then the operation L{b wo n) is defined as followss

Similarly,

N 3
where sach component & j is a set.

I, for example,

[00000000000EA
(1\@5435(@1‘3292}}
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5 and D ave, tovspeaiively, the set of suits snd the set of
dencmiantions of Example 6~1, and o = (§,D), then L(}i‘}l WO £) =

Sy ey

2,33), L(SE wo 1) = (1,5)5°°% L(:i]s‘13 WO &)

H]

(2,1). ldoreover,

alnce the outsr product

S S,8 S
) DﬁDS‘ D £

{(D2f. 50), then

23 3 2 3 & 321 3 1 9 2
Ciwe ) =
13 5321) 3 2 L12 ©¢ 1 © 3 1/,

The actuald relue of the rank of arn element b 1a & sat B
{taet 18, (b wo B)' depends upon the origin used for the index
g of Be The rerk may tasrefore be referred to as the O~origin
or the leorigin rant according o the system in use. The quantity

g~ ﬁ
¢{b we B) = Q(B)
ig elearly independent of origin.

In operatione such as left justification and right
Justification 1t is convenlent to be sble to specify the welight k
of" the longest prafiz (solld inizial sequence of l's) in a given
legical vector vs  “he quantity k 1s cslled the prefix welght of i
1% de denoted by

K e @ {11.)

aot defined (Deof. 115) as followss

&
s max (K094 ) x (% 3
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18 for m:}%;&zﬂpl@, C o= {3,1,1,0,1,0,1), then o) = 3, 3,/?,{ = {2,1.1),
ausl ,(:’f‘}" o= (1,1,2,0)s If . is a numerical vector whiech is to be
compreased so as 4o eliminate ail leading zeros (1l.2., all zeros
reasading the firet sigaifiecant diglt), she compressed vector . msy
be defired as followe:

ke gl = G)

k
r»;(.nm—. A /« ®

Aliteraatively, o vay bs rotated left by k sc as to produce the
12t justified vectors = X1 with the dimension unchanged.

The suffis weight is deilned anslogously and Lz denoted by
afii)» Cleerly, of ‘f} ::u,e(';,,;’j) = J. Morecover, if n = 0, then

al:) = wls) = 0, snd if+ = o, then aly) = wl,) = v}

The row preiilx weight of & logical matrix © is a vector x

whose ccaprnents cre the prefix welghte of the successive rows
of ' I Lg dencied by & = ofi}. The column prefix weight is
defised analogously end is denoted by « ((7)}e Row and columa
gulfix welghts are also definad as showr in Defs. 119, 120.
4 nimericel moatrix @ wmay be left justified by the rotation

A = D)?;ifi s O top Justified by the rotetion #({ = 0})@} o



.
Ly
i Pgiie

.10 Algebraie veclor and matrix operations

The szlgebrais operstions defined upon vectors ard matriges
appoar in Sec. IIT of Appendix A. Deflnitions 1i2-45 represent
straightforward entensions of common slgebrale operations defined
upon scalars. Definitions 46-51 cover the remaining elementary
operations of malrix algebra. 7The imcorporation of the eompress
ard eupspd operations leads to a powerful extension of ordinary
a .gobra whose basie identlitiss are summarlzed in Appendix B. Froois
of these 1ldentitiss are left ss an exercise.

dny positional ropresentation of a mumber in a base b systen

cots be considaved as a mmericsl vector » whoss base b value is the

puwber reprosanted. MNors gensrally, © may represent a number in
a nixed raiix system in which the successive radices (from left to
vight) ers the successive components of a vestor .

The bzse : valuse of the vsclor ;i is a scalar denoted by i 3

avd dofinsd (Del. 52) an
K «L = oun B WnXE),

I

whers i 4 = 1, and

Bag g X ¥y iceg {(2,%?3) )} . .
If s e s P T e V(“J:):“i k! 5t J . o g .
P = b, then £, T b acd (b)) = is therefore the value

of the base b number formed by the componenis of » taken in natural
order. For example, if = {(1,2,2) end v = 3%, then

vl = (122) 3= Ty



Wors generally, if v 18 oot of the form y&, the valus of
l © is the walwe in the mixed hase sysiten Vqreeesiy of the mmbsey

forned by the soxponents of s The welght sssigned to the componeut

Yy, 18 ¥ times the weight assigned to the component u . For
[ e La

axaeple, 1f the succesalve components of :; represent elapsed weels,

dey2, hcurs, minutes, and seconds respsctively, and if

o= {52,7,24,60,57), then vl ia tho elapsed tims in seconds.
The bssa 1 vyalue of a wvoebter allows a further useful

interpreteticn, for if v is any mmber (no% necessarily integrul)

then (yzﬁi)jm w18 the walus of the polyzomial

¥{)e V)
Gy ()=1 Y (02, w0y ERE

it 1s frsquently necessary %o specify s wecltor ; as the
ase b representation of sp infeger k. This specificgtion is

ilompliedt, and the suxilisry warisbies wmust bo indicated as follows:
wil s e—— % wo b.
The statement
(100)] 2 = (23] ¢ wo ¥(§)
dauotes e converslicn from dyzdle to decimal. The dimension of the
rasulting declazl represontation must, of course, be separately

specified as indicated by the suxiliary variable »(}).

Te ensure uniquencss ir the statement

b .
bl — & wo &

which specifios  as the vepresentation of 1 ip the mized base 1,

L% is neeessapry to restelcst the Integsrs in any position of the



N

TN

crasentaticn to lsss thap the velatiwve woight of the newt higher

S

component, 1.8., 0 J i < ui Then

“2.&_ j Za;l _B_k wo 1{2

denotss a conversion from the mixed base ‘2%:1’ te the mixed base Ef:;‘?@
The dimsasion of ¢ 1s determimed by compatebllity with the specifisd
nwHator e

Tha bese '+ operation on veclors is sxisnied to rows and o

columas of a matrix in Defe. 53 and 34, respectively. Thus
5} e ;_L =5y = ?;L Z’Zi,

and

: . L
g y.h-'j? E=PUy T e

If - is a aumerical vector belonging “o the product set Q/:;_.,
whare each component o 5 1s a sclid set of integers of the form
{{O =) i%” then +/c) = %, and the O-origin rank of x in 8/ is
ecual to the base » value of ». If, for example, x = (0,2,1,13)

is the elapsed time in days, hours, mimites, ané seconds, then
s = 0,71}, 0,1} , {(0,60-2}}, {0, 60-1)}),

= (7,24,60,60),
and zk = 2 Lz = 7273 is indeed the O-origin rank of = in 8/, that
is, % is %he 7274%th element of Q/r&z.
More generalily, for am erbitrary vecior ! belonging to a
product se @z, 18 O~origin venk in @/e; mey be detormined as

the base «{x) vaive of ¢(> in ¢)-~¢¢, that is, of the O~origin index
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]
of . in w. By anslogy, this will be denoted by »(z).l 1 =nd defilned
&

ag follows for all 1€ ®/ EH

¢ ﬂ,)_L ao= ) _L (b in o)~g%).
The definition can bs extended imwedialaly to any compatible base
7 gs follows:

o e= w LG 1n 0)-89).

1t, for example, i = ((@),(q)), & and D are the sets of
Exanple 6-1, and » = (S,D), them “(u) = (4,13), end

wﬂ{t:te)m]“"z?: = {4,13) l {1,10) = 25. Moreover, if

IRICOOCI00000000
@ e®@4 3 s®e 2@ 09 2

and 3 = @({c) 1l 1), then (assuming C-origin indexing for /i also)

o= (1,8,10,12,3,7,0,9,4,6,11,2,5)
B

{clcclolceclelcoloeor
s @2@0@2 45 9®
iz the kand reordered on the produst seb S@ D, that is, ordered

on denomlnsticn within sult.

6.11 Ievals of siructure

Just as the matrix is defined a3 a veetor each of whose
criponents is a vector, so may further levels of structure be

ostablivhed bty defining a vecitor each of whose componente is &
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natrix, end eo forth. Although in certain fields, such as tensor
aralyeis, it is corvenlent to define more geperal arrays whose
rapk specifies tbe number of lewals of structurs (l.e., zero for
a ssalar, one for a vesior of scalars, two for a vector of vectors
{matrix), three for a vestor of matrices, ste.), the rotation will

hure be limited to the two levels provided by the metrix,” and

7 The only essential particularizatiosn to two levels ocours in
the provizion of 3ingle and double asymbols (8.g., /" and "/
"hv and vfia; v | % and ¥ || *) for row and column operatioas,
respectively, srd iz the use of superseripts and subscripts for
depoting rows axvd columms, respectivaly. In applications
requiring multiple lewels, the foymer can be generslizad by
adjolning to the single symbol an lndex which specifies the
eoordinate {e.g., "{“ and ”é’“ , for row and eolumn compression,
end, in general, ’%f"o} The letter can be generalized by using
a mmtc:f' index aubgempt pogsessing one componsnt index for ssen

coordinats.

passage to grosser or finer levels of structure will be indicated
exolicibly.

For example, if a sequenss of vsctors l ,,;;;?2,.,“9:5;& are to
define the column vestors of the matriz 2, this will be demoted by

the atatemsnt

iy -— A e {a,m} .



(i the other sand, the statement

1:?;:& Bmeme "@i

v, i € {(l,m)} ,

e : X W
calines the metrix ¢ whose row veclors are gfi, Moreover, 1 i is

& momber of &z ssguenece of k matrices, the wector v whose components

s the matrices j‘f . may be defiped by the statoment
4 3
e B L0}

Certain of the seleection cperstions ers particularly con-
yverasat fer deseriving tramsitions betwsen different levols of
siructure. For ensuple, the row compression & <— /4, (Def. 138)
soueeifies the somponents of the vector » ag the successive componeais
{in row order)) of the mstrix i selectsd by the logical malrix U.

I - (47 0), then ¢ is the veector of nouzerc elements of
woloh is often uveed together with the logicel matrix ¥ vo provide

a coaclse repragentation of e so-called sparse malrix contalning

norparons zere olsments. Clearly, the row mesh (Def. 147) serves
Yo rogonstivuiae the matrix 4, that is, \o-,‘a_?»;,::»,\ = he Alternatively,
§

C = i\ae  Hoveover, the row conpressicn ¢ <= b /4 and the eolumn

compresglon T $-- | fi can be used to defins the row list and

godumn Jist wectors (Defs. 143,144) obhtained by taking the slements
g 4 im row and ia coluwmn crder, respectively. Finally, the disgsnal
elenents of & matvixz 4 dofine the vector o as follows: o <= T /4,
Othew uses of these and related operstiona gre developed in ths

exerslses.
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Yany dovices used for the storsge of infurmastion impose
certaln restrictions ypon its 1lnsertion or withdrawal. The items
Tecorded on a nmagnetic tape, for exempls, may be read from the tape
muoh more quickly in the oeder in which they appear physically on
the Laps them in some other prescribed order.

Cerialn storage devices are aloo solf-indexing in the sense
that the item selected im the pmext resd from the device will be
dotermined by the surrent state or position of the device. The
next ltem read from a magretie tape, for example, is determined by
tre positicn Zn whlch the tape was left by the last preceding resd
opsration.

To allow the convendent deseription of algorithms constraisod
by the characteristiss of storage devisss, the following special

notatlon wlll be zdeopled. A file of loaghth n 1s a representation

of a veetow i of dimension n arranged us follows:

?A(l% ,‘L‘,)g (2) ,3"2; LY a,,k( ﬂ) ,7'1}(/“) ;%(’V(A)‘Gl) 30 oe;k( “"3.) °

The operation of trasnsferring a comporent from s file to spesify

a guantity y is 2slled resding the file and is denoted by y «—@.
The wransfor is itsrminated by the occurrence of a partition symbol.
ard 17 this symboi is \(}) the file is then saild to be in position ;.
& file may either bz read forward (denoted by O@@) or hackward
(¢emoted by 1‘@ » If a file originally in position j is read

forward 1t tronsfors the component ¥ i and stops in position



‘\
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(+1), 3§ ¢ {(L@‘{ ) »} 4 fale read hackward from position j+ 1
transfers the sozponent 3 end stope in position j, j € {(l,v(zz:))} R
The pesiticr of a £ile @ will be denoted by w{@). Thus the
ghatement | o-— 7%} speelfiss j as ths position of @, vhereas
l".’r{@%{} @ § positicns the file to j. In perticuler, 7(@) «— 1
!’dsemaut&s the rewirding of the file, and 7(@) =— -1 demotes wirding,
i-8s, positioning to tho end of the fils. Any file for which the
geraral peeitioning operation 7(@®) «— j is to be aveided as
impossible or ineffiloient is called s goriel or serlsi-acecass file.

& £1le may be produced by a sequsnse of wseording statements,

gl thar forward:

o® = = 1,2,000,%(), |

1 ;

o> backward:

l@ﬁﬂwm Hyo 1 =2Y(), Yz )=d 00cyd
k2 i reeding, esch forwerd {backward) record operaticn lnerememts
{¢ecrements) the pesition of the file by one. A file which is only
reourded duricg ¢ process 18 ealled an outputb file of the process;
a file which 18 only read is called am lnput file.

Piffexsat fles occurring in a process will be disvingulshed
by rigal~haud subscripts and superscripts, the latter beipng generally
rosarwed to donots major classes of £1198 (e.ge, input apd output). f
In a Forwerd reed or record, the zero prescript may be eliided.

Beeb terminel pariition (that is, A1) and N=1)) sssumes
a single fixed vaslve denoted by A\. Easch of the remaining partitions
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—~ »j1 may assume woe of several values drooted by T}‘:L) ’}‘3‘.’ aea "’}‘k’ the
parcitions with lsrger indices normally demarking larger subgromps
witaln the file. Tbus if » were the roy list of a mairix, the last
componsnt wight te followed by the pertition }*\27, the lmet componsent
of sash of the preseding rows by Al’ apd the renaining components

by Ao Ip recording an item, the assosisted partition is indicated

0°
oy ldsting it aftar the ltem (soge., & = — y,)gz), exxcept that the
purbition }\0 18 wsvally elided. 7The indlsated partition then
follows or pracedszs the acsociated ltem in the file sccording as
the rocovding is forwaerd or backesrd.

The indicstion provided by the !t distiuet partiiiom symbois
io ased %2 oendrel an immedlate {k+i)e-say brensh in the program

folloving sech razd oporstion. The bisach is determirned by tha
g X

. . . R J
Frauple H6+3. 4 set of » input files @j s 4 € fi{ }.ﬁm)j‘f » each

e S .

terminated by a partition }"“Ii are to be sopied to a singie output

ot }
£31m é@};' a3 Toilexs. An identifiecsbtion -mantity s i8 o e recordad
Firet and successive itens (components) are then chosen ip turnm

N kg Sl G 2l gl =1 .
Pron files @1 By 9@231@%% s@yy 27, alveys omltting from the seguenve
. o

| any exhousted 1ls. The entire precsss is deseribed by FProgram 6-~17,

Progesn G-L7. Step 12 indisstes a vreed Lrom the kth Inpus

AN 4 AU R VU 0 SONGIEL W

Pile bo speeify the varishla b. Step 10 eysles k through the
values 1 o m, and svep il allows the roed on step 12 o otour

why

snly §€ 5 % 0. The legleal weskor » is of dinemsion w aud desige

Yootng the cet of mgheusted Tilss,. It i respecified by sbep 13

)
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whmover & fiio io ozhensted (as indleeted by ths oecurrence of =
partition }kal in the reed on step 12).

Zarh read on step 12 is followsd (either irmediately or
after exscuiion of step 13) by etep 8, which records om the cubput
£ile the quantity b just read. Step 9 terminates the process when
all Tiles sre sxbrusted. Steps l-4 perform an initial rewind of
ail files, and steps 5«7 initlelize the varisbles k, 'i;, snd b.

The selectlion opsratlion defined upon matrices zan be applied
in en obwious way %o sk array of files @;a For sxemple, the

atatement

W@i) B |

donctes the rewinding of the row of files @3 , J€ {( 1, v@})}»;tﬁe

statenent

(& 4 ) e &

denotes fthe revinding of the goluma of files @3, i€ {( 1,4(%) )};
and the ststemsatb
denctes the recorcing of the vector component py on file @%’ for
all ] such that -z;si = 1

A8 Tor wecbors and mabtrices, sither l-origin or O-origin
indexing mey be veed, and will apply to the indexing of the file

pesitlons &8 well a2 to the array ivdices. The preseripts, howsver
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{denoting direction) remein the ssme in either system. Thus if
O-origin irdexing 1 used, the rewind =2rd wind operations become
ﬁ'(@z) @ 0, and v{@gﬁ @ =0, respsotively. O~origin indexing

is used in the following example.

Example &-7. Files @g and @2 contaln the vestors :: and
7y PeBpestively, sash of dimension m. In the first phase, the
scuponents exe to bo merged im the order Lgaigriiqedyr eres TagaYage
and the first n components of the resulting wvector ;rea to be
vesorded on File @%z,}. and the 18t n on file §7. In other words,
the vesiors :::1‘ = zﬂ,»’:;-", and ;;;f'l =0 /5 are to L@ recorded on @g'
snd @i‘, respocsively, where o =\}e:,,';z,;_;»'\, and u = {0,1,0,1,000,0,1) ¢
In the paxt phase, the roles of input end cutput files ars reversed

L ard o*, that is,

and the same provess is psrformed upon -
‘\ 9

2 gsﬁ/(\; jﬁ iy ;gf‘\), apd [~ = u?/(\fs} il *"1 \} are recorded on

£iles @‘g and %? » respectively. The process is {o be contimued

through m phases .

Progren 6-18. The program for Example 6-7 begins with the

rewind of the entire 2 A2 array of files. To obviate further
revinding, the second (end each subsequent even mumbsred) execution
is performed hw reading snd recording a1l files in the backward
direction. Step 6 performs the essentlel reed and record operation
under confrol of the logleal wector  whose components ystigaiig
determine respectively the subscript of the file to ba read, the
eudseript of the file to bz recorded; arnd the direction of read



C ; g b and reserd. The iile suparseripte (determining which elasses serw
’ as inpab axd oubput in the ecurrent repstition) sre also determined
by 4, the imput being oy and the cutpat '553;. The loop 6-8 scopies
n liems, slbternating the imput files through the negation of "y
on step Y. When the loop terminates, N i= negsted to imltarchange
the ountpute, and the loop is repeated unless Wy T uige Eqmlity
cecurs and causes & branch to step 3 1f ard only if all 2p items
of the esurrent nepetition have already been copled.

«fﬁmp 3 decrements m and is followed by the negation of ¢
su step 5. The compopent lig mast of course be megated %o reverse
ﬁ:&m@tﬂ.@m, but the need o negate “q and e is oot so evident. It
srisss bacause the copylag order was prescribed for the forward
dirsction; beginming almays with the oneration
" i

% < o -

An squivalemt backward copy must therefcre beglim with the operation

J.q-’i"""”ﬁg"

Not 2ll computer files hawe the very general capabilities
indicated by the preseni notation., Some flles, for exsmple, csn be
resd snd reccrded in the forward direciion only and, exeept for
rowind, csunot be positioned direstly. Posltloning to an arbitrary

sosition k must then be performed by a rewind and s succession of (k-1)

)
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subsacuent recds. In some files, recordlag can be performad in

the forwerd direstion only, and the positlon? eive definad only hy
the recorded dete ltsell. Consequently, recording in position k
nnkes wprelisble the daiz in all subsequent pesitions, and
racording must alweys proveed through zll successive positlons
antil terminated. If the trenslation from the program to the
compubter codisgz is fo bs kept simple, the fils operations employed
ahould be limited to those within the capabllities of the awvallable

Files.

G.13 ‘Trees

4 struotvred operand is more tham the collecltion of its
ounponents, since certaln assocclations bebtween these components
av¢ also implied. The ssscclations in s vestor, for example, canp
be deseribed by o single sequence as deplcted graphically ip Fig. 5-1.
The most general typs of structured opsrand is called a directed

limsar greph, 1te components eve called nodes, and an association

from node 1 to ncde § is called a bransh from node i to node J.
A tranch from podo 1 to node § is sald to lgswe node 1 and to epier
nods je

& direeted lipser graph admits of =z simple graphiceal repre-
septabion as 1ldustrated by Fig. 6-2. The nodes are depicted as
eirnles. end ithe branches es directed limes. The nodes mighi, for
exemple, repregert places, and the linss, comnesting siveets. A

tuo-way stigst iz then represénted by o palr of oppositely direscted
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lipes as shown helwesn nodes 8 and y. Ths structure of the greph
iz represented ertirely by the directed lines.
I » is & vector vhose componenis are nodes of 2 glven

graph, and if for eash i € {Ezg (;‘;A)f%}’ thers is an asscciation from

mode ©, o to zode ;,, then | is called a path of length {.) from
node 1y %o nods g Hodes 1 and ©_y are callsd the imitlel and

£ival nndes of tm i:»a‘éhf, respectively, and elther mey also be called
a tsrminal nede. fay infix of a path ; is also a path {possessing,
in gemeval, terminel nodes different from those of y), and is called
a suppath of (. 4 subpath of 1 wnot ldeatical with » is called a
woper subpatk of v. Any subpath of | is sald %o be contained in
it, and sny proper subpath 1s sald to be properly contained. I
there exists » peth from node 1 to nods j, then node ] is zald to

b raacl;ﬁ};&g from pode i.

A path of length ove is called a triyis] path, and & none
triviel peth whose tarminal nodes sre identical 1s ealled a gireult.
4 path whose propsr subpaths do not include a circuif is called a

minimal patin. To the grsph of Fig. €32, for example,

c={ms,%t,w,u2,%,x, ¥ ,w ;13 apath of length oight
frem nods (2] o (%) which eontain® {awong others) the propsr
subpaths ¢ v { ¢ , wm,u,, and s ={ % , 9 , a, ¢}, the latter
of waleh 18 & clvouit. Remowal from - of the iafix 71/ 1eaves the
pegh 2= (8 , ¢ , ¥ , v, % ) which is a ninimal path betwsen the
initial and floal nedes of the path 1, mt which is pot a subpath

of pe The minimal path - from node = Lo node w is not the
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shorteat path frem 2 o /{& , sinoe the path "= (s , 5,8, v 3,
A

thoogh not mindwel, ls shorter.

A graph {(sueh as Fige. 6=3) which contalns no eircuits ané
which has at most one branch entering sach node 13 eallwd s tree.
Since oach node 18 entered by at most cne branch, a peth existing
betweon apy two nodes in o tree is urnlaue, and the lemgth of path
is likewise urique. Moreover, if any two paths have the same final
node, ona is g svbpath of the otlher.

Sinne & tree conbeins no elrcults, the lsmgth of psth in a

Pindite ires is bourded. There therefors exist naximal paths which

gre properly contalinsd in no longer patbs. The initiel and final
odes of e maximel path sre ealled a ygot and loaf of the tree,

respestively. 4 roet is said to lle on the first level of the treo
and, im generzl, a vods whlch liss at the emd of a pasth of length

] from & root, lize in the jib lavel of the irea.

A tree which contains » roots is sald to be n-iuply rooted,

and 1€ n = 1 it is called & pootpd trew. If n > 1, the seis of
nodes reacheble frem oach of the several rcots are dlejoint, for
if amy vode is roachable by paths from sach of “wo disjoiat roots,
ore ls a proper subpath of the other asd is therefore not maximel.
Likewine, any nods of s tree defines s subiree of which It 1s the
rooy, consiasting of 1tself and all nodes reachable from it, with
the seme assceiaticns as the parent tres. Ewery subires of a tres
is 1tsell = rooted tree.

If for each level j, s simple ordering is essigned to essh

af the disjoint sete of nodes reschable from each mode of the
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wesading Iavel, snd 1 the ropts are also simply ordered, then
the tree 18 s2ld to be gdergd. Hovwover, in such en ordered tre,
ary pabh of lsngth k fvem a root can be unigeely speeified by en
index weotow & of dimemsion k, where iy specifiss the particulsy
root, and the rezaining conpoments spewify the (unlque) path as
folleas: the pailh node on level J is the jth glement of the set
of nodes on lwvel § reschable from the path ncde on iswvel j- 1.
Bither O=gpigin cr leordgin indexing oan be uged in the desasription
of wrees, bat vhe labtber will be vsod erclusively ip this chapler.
Atzsriieon vill heneelorth be restrieted to ordered trees,
whish will be devcied by wpperecess boldf'see Ronse cheracters.
The asicht of a twee T ls delined as ths loogth of the longest
path in T and is denobed by v(T). The mmaber of nodes on lavel

i 18 salled the worent of level J and iz denoled by,l (T); the
total maber of podes in I is salied the moment of T end is denoted
vy (D). Sleerly, v{(T)}) = (E), and «~((T)) = #(T}. ¥he mmber
of roots i egual to l(ii;} ; aud the rusber of leaves will be denviad
by AT

The psth in o tree T epecified by sm irdex woetor ! will
b densted by T . The veetor o 18 called the index of path I  and
i also axlled tho index of (T7)_,, tho node at the end of the pati.
The e (‘.‘3?\“’},&3‘ wlll slso be veferred to ae mede ;. If, for
exemple, T iz the ivee of Fig. €-3, then | = (2,2,2,3) is the index
of the path (b,h,m,y) and of the mede y. J4n Integrel vector I is
seld to e an fpdex of T If it 1s the inmdex of zome path in T.
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I¢ the modes of T all haw diziinet values, them the index
of & pode x iz T is unique and will be denoted uy «(x woT). More
generally,

2 . f gm0
i a0 {2 WO I

inpliee toat if | 1s any other index sush that (T°)_; = x, them
sither v{i) < v(:) or v(i) = v(}) and . precedes | in the product
set to whish they both balemg. For exumple, in the tree of Fig. 6-3,
‘(hwo T) = (2,2), although the finsl nodes af T(117s1) gpq p(%sl)
are also squal to b.

The subtrees whose roois are dlrectly reachable from the
final nods of the path T together form a tree which will be demoted
by L,» Tms if i = (2,2,2) in Pig. 6-3, I, consists of the subtrece
rooted ab nodes (2,2,2,1), (2,2,2,2), esd (2,2,2,3). If 3 is apy
irdex of the tres T , then {%}:E is the tres T, , where = (iglde
A pata in T, is dsnoted by (Ti)?é. For axample, if G 13 sn ascending
gemoalogical tres with the sword snd distaff sides denoted by tbs
irdices 1 and 2, respectively, then the paisrnal male ancestors
of any individusl x are represented by the path vestor (G ‘;)w, where
1= e we §) and where the dimension of € determinss the lemgth
of the lins considered.

The samber of btranches leavirg a node (T7)_, i called its

branching ratic or degres. The degree of node ejz.'i‘)_,l in denoted

by %{ (’:1::‘"{‘)%1}, Moreowver, 6(x) will demoie the value 8( {T‘”ﬁ’”)ml)g where
Le o tlaweX). Thus in Fige 6-3, 8(h) = 3{(‘1‘(292) }»1) = 3, although
(121) ) = b e #(2C:V) ) = o,



& wagior of diumg mose aorponents give the

1]
Vet

foprasd of aech of the nodes of & tree T is eslled a degres wochor

T

of T Sizee cach leef is of degres mero, NMT) = o{v = 0},
Heoopsnr, the nurber of rools 18 squal %o the nmuber of nodes
doss the total of the degrees, that is, "'1@/) = v(!) « o) The

moximgn degrez cccvrring in T will be donoted by §(I), that ia,

fxemple ¢-6. Determine the iniex ' such thmt the path T
| i aguad to & glver argumendt ;. and such thet  Is of lowesi possibie
reak in its product set. The procegs wsed (Progrem 6-39) wlil be

Db trece s path zuch thal successive podes azrae with successive

a\
-y
o
e
N\,
U

corpaents of the crounentes

frogrem €715, The vecter | yeorvesents the path currently

IR 0 AT . S TSR

i

Kot o g
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ST |

w»i -
{that is, = o ¢ 3/‘?-:} and § sclects the roote of the

o

sigcesaive aoupenont subtrees of T for compariscon {Step I1) withk
the aext compovent of the evgument. I sgreement oecurs, ] is

eppended Yo . (Step 12}, J i veeey to wmore (Step 13), and & is

vespecified (Ster 7) as the degres of the pew final uode of T »

e varisble 4 therefore ropresents th: wember of roots of the
twae T, ead is used (Step 9) o limit the rango of the sean
pexlareed by the Jcop 9-1i.

I the Joor fails to find & voob of I nsgreeing wilth the
eygement, the branch o sisp 2 effectz a rotresilon to the previeus
devel {Stsp 4}, »ith the new semw of the current level beglmning

with the pext pods following the one drandoned {see Step 7). Steps
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3 znd & are reeded to spselfy d as the wumber of roots of the tvee
In the event that v{1) = 0, ecg., at the outset. The exit en
shep 2 oueurs oply if the tree posseesss 2o path egnal to the
argument.

1T sach of the u(T) index vecters | of a tree T is listed
together with its eAsociated node (') ,, the list determines the
%weo eomplately. Since the index veotors are, in general, of

{ffgrant dimemsiors, it is converden’ to apperd mull eczponente?’

7 Ia the l-crigin indexing system wsed harse it would be possibie
%o wse the mameric serc Lo represent the mull. Im O-origin
indexlerg, howevey, seros oscur o8 cumponents of index vectorm

and mast be distinguisheble from the mlls used.

%o extend snch to the common meximum dimension v{I). Tasy may
then be sonbined ix an inmdex wabelx of mension p[T) »-u(%)

whdlah, together with the assoclsted nods vector, complstely
deseribes the tree. For exemple, the tree of Fig. 6-3 ig dsscribe
by tha nede veelor r end Metrlx 7 of Fig. G=4{a).

Certein information whieh 1s direstly provided by the
degres vestor is provided only indirestly by the index matrix.
Horaowsr, the degree woolor and node venbtor togother can, in
eorbaln arvangemeats, provide a eomplots descripition of the wree
wiieh 1s mere eompset, and for meny purpozes mora convenisnt, then
that provided by the node veebor ond iniex matrix. For these

regsons, the degree weolor will b anmswed to the arrey of node
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vestor and index matzix es shown in Fig. 6=4(a) to form a Lyll 1ish
mgirix of the tree. The degree vector snd node wector together
will be called & Jist mabtrirx.

Forpally, the full list metrix | of o tvee I is defined as
Tollows: ”‘1’3!’ is an index matrix of the tree, il, 18 the assosiatad

dsgres vestor, and 2 is the assoclated mode wvector. Thus for each

e {1 = S(E), @a §= (17 g, where 10 the

aoall portion of 773/?;?{3‘? that is, 2 ((?ﬁz,'%k) # oc )/(52/ %;k)o.

]

T gorresponding iist mabrix is s;a?‘%i;:a

Sivee a full Iish mabrix provides a complete deseription
gf & twoo vegoydless of the order im which the vodes scows in the
1int, any eolum pormutation © =&’ (thet is, any reordering among
the rews) is also a st matriz. Two particular arrangements of
tae full Jist matrin are of prime interest beesuse oach possesases
he folloning preperties: (1) the nodes ars grouped in usefvl
ways, and (2) the 1ist matrix (l.¢., the degree wector and node
vostor) alene desoribes the troe mithout referense to the assosiated
indes mabrixz. They are called the full Joft list mabtwix aud the
Tall right 1ot mafrdz, snd are dencted by |Z avd |T, respestively.
Figues o= showe the full left ard fall right lists of the tres of
Bl 63,

The iefd list index matriz U is left justified, that is,
the wall slewente ave appended at the right of each index. The rews
i3 are arvengsd in lncressing crder op the fumetiom (v(A):) }, .’.sié,



whara & F {0,1,2, S,M,S(g;)}. Eqidvelently, the rows are in ineressing
order on their vajues ae decimal (or rether, (§(I)+ 1)- avy)
muabers, af'ter replacing eesh mill by = asema”

7 These #tatenents hold only for l-origiz indexing. In O-origin
lpdexring, & = {0 30,1,2,000,08 (g)}, exd in gensral
sefo, (4545(2)) .

The rigkt list index matwiz I ie right justified ard is
ardered on the seme funmction, nsmely (v(4)¢) AJ’:; J, From the
exauple of Fig. 6<4(b) 1t 1s clear that the right iist groups the
aodes by iewels, i.@., level § is vepresentad by the infix
(1d »A;?“:;/(‘ |2), where k = ,aj;(g), and 1 = 0'('?}73-1/}5{2))0 In
Fig. 6=4(b}, for exempla, ~{I) = (3,7,8,5,3), and if j = 3, themn
k=8, 1= 10, and level ] is represented by rows 1 + 1 = 11 to
1+ k=18 The right list 13 therefore useful in execubing
processes (such o the pth degree selsclion sort of Ses. 8-5C)
which zequire 2 scen of mwcem;ﬂ;ve levels ¢f the tree.

The Iaft ilst groups the nodes Ty subirees, l.e., eny node
(£)., 1s follomwed imediatoly by the modes of the subires .
Formelly, if = "2/(T, a0d 32 1= (i = 0 5)/F, then the tree
T, i represenied by the infix (k| @’“(33:1‘.)}?}[@. In Fig. 6-4(a),
for exenplip, if k = 16, them ! = (2,2,23,/»«{1\%) =6, and T, is
representei by Tows 17 to 22 of |T. The left list is therefore
wsaful in processes (such as the construction of a Huffman code amd
the evaination of & compound statemsnt (See. 7.2)) which requires
a Wreatmeni: of ammaiv;a subirens .

i
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A mateix which forms the right list of some tree is said
to be awmffﬂmaﬁx‘i@t list. Since the ordering of the nodes
in & right list of o given tree is unique, the right list of a given
troe is umique. Conversely, any well-formed right list apmii'im
a wnigue tres ascording %o the algerithm of Pregram 6-20.
Kentloal remarks apply to the left list /[T, except that

Progrem 6+20 13 replassd by Program 6-21. Moreover, the necessary
and suffieient conditions for the well-formation of a lef% list
aré¢ identieal with those for a right list and are derived by
m&uany identical erguments. The case will be stated for the
right st only.

k3 B is a well-formed right liat representing a tree gi.'
the muber of reots #y(F) = V() = ~2;) mst be strictly peitive.
Horeovar, 12 & = T/ 18 any ouffix of 2, then S is a right list
of the tres cbtained by deleting from T the first j nodes of the
original 1list. For, such level-hy-level deletion always leaves s
legltinate tree with the degress of the rematnming modes unchsnged.
Gonsequently, the mmber of roots determined by every suffix of Ry
mst also be strietly positive. In other words, the oot
z defined by

T g1 = wﬁjﬁii)“ c(’c’ijjﬁl), Je€ {(QJ V(ﬁl)},

mist be strictly positive, that is, (r > 0) =€. The condition is
also sufficient.

Sufficiensy 18 easily established by induction om the eolumn
dimension of ', The condition is olearly muffisient for (7)) = L.
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Jasume 1t eulficient Tor dimension w{}‘iil} = 1. Ifz, the root veator
of 7, is strietly pusiitive, them "1?1‘9’/;;=, tha oot vevtor of ‘fi:’fl/iia, ie
alss positdve, and by hypothesis ""}'f represents a tree G poesessing

iy reoti. Horsover,

- - ""1
0 < 2' mg + (3 ;@3@)

implise theat g 2 :%, and the mumber of roots possessed by  therefore
1

fulfills the mumber of branchss regquived by the added node 3512.

legitimate tree correspending to I ean therafore be formed by
T reots of G to the mede L.

Tests for well-formation ean thevefors be Incorporated in

A
jolning the last ©

sny algorithe defined upon a vight or left Iist matrix i by eompubing
the components of the reot weslar ©o The recursion
g T vl *%"’E is convenlent in 2 batkward sean of !/, and the
equivelent recursion ¥y = ¥, , = 1 ¢ ‘§EI§:‘"1 seywss for a forward scan.
The starting c¢ondition for & forward sewn is fy = v(}é%l} - a’(‘}gﬁl),
and for a beskvard sean e  ©_ = 1 'J'. Sines tho criteria of
vell-formstion ars identival foir right :nd left llsts, a uatrix may
be charsgterized sinply a8 well- or 1ll-formed.

The purpess served by the degree westor | im the deseription

of = tvee 18 sometines served Instped by the reduced degree veotor "

7 The negetive of the reduced degres veetor (that 18, € =) is
also used. See, for exauple, Burks, et al (6-2).

(,"‘\

w3 = e This vector 18 scaewhat mors convendemt in the amalysis
of well fermation, sinse the sxpressioa for the root veetor them

simplifies to ¢ 343 = Wﬁjﬁa)o
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The ecwpleto determination of the tree corresvonding to a
giver 1ist matrix i1 1s bast deseribed se the determimation of the
associated index mabtrix U. For both lef't and right Iists this is
achlevad by a single forward scan of the rows of i and of 1.

Par a »ight list 2 it la first necessary to determine ¥y
tha runber of roois. The first £y compopente of 5 are ther the
reols of the twee in order, the next zi compononts of i are the
sesond~lawal noder reacheble from the first rooi, sad so ferth.
Prograps 0-230 emd £-21 desaribe the precess for a right Iist and

a left liss, respastively.

Frogran 6-20. In this exegenis, esch node will bs referred

te by 1te indewm in the right list matrix Z. In esch exseution of
the main Jogp (8-16}), the ith row of R I8 exwmined to deternine
the ivdex vwesior of easch nods op the zuceeeding level whieh is
direetly reashsble frem 1%. The mumbor of such nodes iz controlied
by the psiumelor ¢, lvitlslized te the degree of the 1th node by

[ etsp 12. The iodex of the ncdes reschable Trom pode 1 is determined

by J, whieh is dncresentsd on step 14 s the index vestor of sash
node is deternined. The index wactors of the suecesslve nodes
reochable fren nods 1 have the fleal components 1,2,3;.00, and sach
must be prefized Ly the index wegtor of pods 1. This sssigmment

iz sffectold by tho westor v whish is irdtialized by the index vesior
of node 1 related left by one [step 11). apd which is inecremsnted
by step 15 bafore sach sesigoment cosurring on ztep 16, At the

oatset, v is s0b Lo serc and & is sst iu the nuwber of roots as

- deternivad by step 4.



Siree § le, st otep 10, equal to the muwber of voois
aapmented by the aumwlative dagrees of the first 1~ 1 ncdes, then
I i+ 1 and the exit on etep 10 therefore occurs always
and only in tho event of ill-formation. Albsrnaiively, the test
oo be viewed o8 un sssuranse thab each row of the matrixz 1 is
ppaseifisd before it is 1taelf wsed in speeification.

When step 5 is £irst rearhed, tls index matrix 7 is eomplsta,
bt 1e exyressed i l-origin indexing with gerce repressniing the
mall elusents. Steps 5-7 translate the matrix to the origin ¢,
and mask iz the peossssry aull olemsnta.

Frogran 6-2L. In this exegesiz, esch ncde is refarred to
Ly i%e Imex in the 1ef% Ilst natrix L. The index vectors 13 swe
detzrmizgd in ordse under eonirol of the paremeter J. The loop (5-18)
raeed o conblnuons path through the tree, dstermining the index of
agsh suscensive pode of the path by rotsting the index of the
praseding pode (stop 17) and adding ome to the last eomponent

{step 13), =nd msimsaining ir the commection wveetor o s resord 6541
ul the index ] of the succsssor of node 1 in the path trased. The
paiki is Lutesrupted by the cocurrenea of a leaf (that is, 1§ = 0

oa tep 18, and the degree vestor Ly is then scenned by the loop
{319-20) te determine the index i of the last preceding node whose
hesnebes remain ipeowmpleied. Sieps 21-22 then respecify v as the
index veator of the pode following neds 1 1a the path last traced,
and atep 20 Jeeroments the component ‘“"i of the cdegree vestor. The
tieanah frem stop 192 to step 21 ocewrs at the sompletion of aach



rosted sublres. The test for well-ferestion 1s the same as applicd
e the riget 1lst in Program 020, except thet the nohatlon for %he
ralevant perameters ¢iffers. The coneluding operations (6-9)

incinde lef't justifiecation om step 6.

Any unary opevablon defined wper eash of the nodes of a
trae oon be generslized immediately to the antire tree in o manmer
anzlogows to the consrelimation to veoters and matrices. If, for
examls, U is a logisel tree, then U is detsrmired by node-by-node-
pezation. Binary oporstions sare likewlss gomsrelised te any palr
o compedille trecm, esge, X % ¥, XV Y, and (& # B).

Seen eper:tioms dafined wpon vestors may alse be extended
“o trseS. For example, UfX defines a logleal %res whose unit nodes
dsaignate the csowrrscee of mavime in X, shere the maximization
Lle reptrleted to wodes gorresponding to the nonzers nodes of the
oonpasible logieed iwee Jo The notation 9F T will dencte the
applicaticr of the nseosiativa binary operzicr © te the nodes of
D i vight list crder {1.2., dogn suecessive lovels), =nd ©/T will
Geiobe the same spplisation in left list ocdsyr (i.e., goross paths).

it ths overstor is symmetrie (i.¢., 1ts opersnis commute), then

@fT = ©/F. The votetion o(T) will be zdopted for the sum weight
tﬁagfi?ﬂ

The sele¢iion eperabions dofined upon vestors (compressiarn,
spoosion, mesh, ant mask) can alse be sxtended by adopiing the
following defindilon of the compress operation U/T. The statement.
P e~ /T lmplies that the nodes of P are thoss nodes of T for
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whioch the sorvesponding wodes of U e wnally, and that the struswors
of P is determined ne follows: Af x and y are eny two nodes of T,
shen y belongs to the suburee of T roofed ab z if and only iff y
belongs to the sublree of T rooted ab x. I, for example, § is ths
trae of Fige 6-5(x) and T is tha tres of Fig. &<3, then U/T iz the
wwos of Plg. 605(0) .

The ewapress operatlon is bess exesunted upon ths left liat
becouse of the gyvuning by subtress. Pregras 6-22 giwves 2 sultabic
alzoriths vhich also serves as a forpal definiidon of the compress

apyrabion.

Progren 6022. The weator o is specifised a2 the node weobor

of the left I1lst of the eentwslling leogicel tree U, and controls
the subssguont pivieods. Step 4 deltermires J ap the Index of the
Tirst gero smypenons of v. Stons & and 7 then delete the eorre~
apsuglog neder of o snd of the Jeft list of T, but only after sisp 5
has deteridined & »8 the change in degrec which this delation wilil
sezesion to the voeod of the smaliest subires eontaining the delsted
node. Stops &A1l povferm a bonkwerd ssan of the degree westor to
determine J a5 the lndex af the root of the subiree, aud step 12

ef foete the eeopiniie change in 1ie degres. The exit on astep 9
wesare orly If tho node delelod I8 o zoevt of the original tree, in

which event av chqoge 1a preduced in the degrec of any other neds.

&g In the cass of wsolors, the remaining seleetion eperaticnz
are definad dirvectly im terws of compression. The uses of the

salestlon opavalbiont are anslogous to thely uses in vestors; for
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exmple, (P = 3)/% denotes a compresaed tree formed from those nofes
of T whish sgres vith P.

The symbol 'E will denvte a special logioal tree (salled o
Jdprel tree; eeeh of vhose nodes on level ] is ecqual to u j* where
le o Jogleal weetor. The tree E has e height equal to v{v) axd
133 stroeture is otherwlse dstermined by compatibilily with esseai-
At operends. Tha trees [, ‘-“'J‘;g, and “{g are eqlled full, prefiz,
@vi seffix trous, rospectively.

Comproasion by a lovel tree £ is called ‘rencation and
will be denoted by /T s well as by [/T. Truncation effests the

t

@

deletlon of speeified lavels of a tree.

Peymutation eperations will rot be extended directly to trscas,
wd ray e spolicd indiresctly as follows. A tres T comprises the
suttress rooted at ﬁ‘jﬁ for j¢ 5 i;,};%,uil{{g} }} , aud cen therafore be
ronsidered a5 a vegicr v, sacsh of whose compononts 18 a rooted troee.
The statenenh v «—- T will therefors te understood to imply thab
iy ig the subbree »ooted ab gj » Analogeusly, the statement T «——
2g1 be used Yo speeify a wee by & veoktor. These transitions
bewesa trees and vockors provide a convenient means of designating

sustress. Thus the sequencs

) LI S
lad

k!
apaalfies P az the jth (rooted) subtree of the tree I.. Yoreover,

“vhase transitlions allow permubations end other veebor operations



()

)

to be applied indirectly to trees. Frogram 6-23 1llustrates the
pecmmtation of the tree T of Fig. 6=3 to produce the tres & of
F 5.%' @ 6“’6@

Homogeneous trees. If, for each level of a tree, all nodes

on that lsvel are of the ssme degres, the tree is sald to be
homogeneous. The siructure of a homogeneous tree T is completely
characterized by the number of its roots and by the degree of each
level j. These guantities will be combined into a single deseriptor,
the dispersion vector 4+(T) defined as follows: -;?’1(;r/) is the number

of roots of T and & (I) is the (common) degree of level (j- 1), for
je {(2;&’1(;‘)}} » The component ﬂ’j (2) is called tae dispersion of
lgvel §, snd specifies the number of nodes of level j reachabls from
each node of lewel (J-1). 41l maximal paths of a homogensous tree
are of length v(I)and clearly, Y(I) = w(#(T)). Figure 6=7 shows a

solleetion of homogensous trees and thelr assoclated dispersion vectors.

A tres T for which w(T) = m¢ is called & uniform m-way tree,
and a trae for which v;(T) = 1 and 2?;'1/-4,»(3) = m¢ is called a uyniform

n-way reoted tree.

The jth component of the moment vector of a homogeneous tree
is clearly equal to the product of the flrst j components of the
dispersion vector, that is, 4 (E) ﬂ'if/x,.zj/-@’(x), for je& {(1,1}(’1‘))} .
The dispersion vestor is in turn uniquely determined by the moment

vector according to the relation
w(1) = (1) £ /5, T D/

e total pumber of nodes is given by /L(}j) = a{x(T)), and it is

easily shown tnat./%(g )= 31 gy where -, = v(T).



bl

o=73

.él‘bh,ough all of the cperatlons on genersl trees clearlj
apply ‘to homogensous itrees, not all of them produce homogenaéus
trees. Because of the lmportance of hcmogemous trees, a closed
system of operations will bs defirved upon them. It should aiso v,ba
r;marked that the logical compression operation U/T allows any tree

P to be represented by a homogenedus tres T and a compatible (and

therefore homogeneous) logical tree U, |

| - Truncation ag defined produces a homogensous tree vhen
appiied to a homogeneous trse, and will therefore be incofporated
in the system. If T is homogencous and if P =u/T, then clearly

B} = updT), and v (E) mayrbe obtained from u(F). The converse

cperation is called inmsertion, is denoted by

Ee—\1,u,0\

and implies that /R = I, and u/P= Q. Clearly w(P) ='\u(T),u,AQN,
and empatibﬁity requires that /«(f) define an integral dismion
vector. For example, the supposed moment vector m = (2,5,15) |
defines the amppcmad dispersion vector m= \2,2.5 3) which is not
irzmgral, and mizs therefore not a legitimate moment vector.

An operetion which in level j deletes a specified group of
nodes from emh of the groups sharing a commor root in level j~ 1,
and alao removes the entim subtrees rcoted in the deleted nodes,
w1l be called pruning of the jth level. Thums the pmuaed tree

‘agrees with the originel in the first j-1 levels, and the diaperésion

vectors sgree in all but the jth component. More pi‘eéisely, the

statenent

Pa¥d

Pag— u /T
J




. 18 definad for a compstible wacter . such that v{u) =-u 3(933 and
tmplies that 375 = 37l and tnav 7 = IYm),, for
£ {(3’1,30‘('«3;'})}, whave J = (V,E/L)E:u Clesrly, j{’f) = (), and
~dz(py = TAAT) . In Fige 67, for example, T = ';_:gg, where

o= (1,0,1). Hornover, § = 7?2/ {Lr;{ 2Je

3

The converse operation is called grafting at the jth lewel

snd 18 denoted by the statement

,?, e \\329 ?:ag \\\ 5

which dmpiies that /P = T, and thet 75 /(4/ F) = Q. The cou-
3

patiblility reguircments ave

aBa
1(9) = ) x 5, @)

Cieerly, 'i':’_,,g (P} =v(v}, and %t";'."j/ AP) =& 3/«‘;@(3)0 The operation is

illustrated by Fig. 6-7.
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A general directed graph
Fig. 6-2



4 general teiply-rooted tree With'f;(’ﬂ = 5,
AT) = 32, (1) = (3,7,8,5,3), and p(T) = 26

Figo '6“‘3
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The tiee of Fig. 6-3 permuted by Program 6-23
Fige ‘5”6
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Hearndng Representation
Printed Typed Dittoed Handwritten
Literal Ronan, Bec. and l.ge | Glreled 1 .¢. Romanf) A8 Typed Printeds a,b,e.
Alphabetle (8, (@)
Numeric Standard numeral Standard Humeresls Typed Standard
~ Veriable
.. &lphabesin lecs italic Unmarked A8 \Typed Seript; &ybse.
/ Funerie Ltalie numeral Undersaare ed Undersccre
& Set 26, italic Uamazked As T ﬁed Inmsried
¢ Veetor Js¢. boldfees italic | Red Red \ Underacore
t Undersaore
. Hegrix doer. boldfigs itelie | Red Re/d \ Unde rscore
g ders«zm\ﬁ
: \
. ! v
i Tree uetz» boldfrce Homan Havy undsirscors \ Havy underseors
i

Typogrsphls coaventions for clasres of opsrands

B A




Varisble

Range and dimenaion

Meaning

R 3 VI 5 O

AlH) =2, »(H) =13

S

Suit of card i

Denomination of card 1

Card suits
Glubs
Diemonde

Hearts

Spades

Card denominations

Deuce
Trey

»

King

Ace

Table 6-2

The definition of symbols




Appendix A
Cless Scalar | Vector | Matrix | Tree Set

erbitrary a,b,c 8,b,0 AB,C ﬁ\}g,g A,B,C
numerical Xy¥,% X oY o5 X,¥,2 X£,Y,2
integral i,),k 1,k 1,0 X I.J4.K
logical U, VW U6 v e | O,V,E
mapping m ] ¥ ¥

(integral

values

and null)

Operard conventions

Seotion I




Operation | Notation Definition Compatibility

j«—v(4) | Number of elements in

set A
Dimension

j«—v(a) | Number of components

in vector :

j"""?’(&) ji = ‘y(aki) & 1s a vector of
sets, i.e., each
component is a set

Row je—v(4) | Number of components
dimension in each row wvector
of 4
Column ja—-——/L(A) Number of components
dimension in each column vector
of 4
Height J+«—v(T) | length of longest
maximal path in T
Moment j«—p(1) | Number of nodes of T
Null o
elsment
Mull o(4)
element
of set A
[0} ¢ = 0 for O-origin
indexing
Index = 1 for l-origin
origin indexing
‘ ®(a) Index origin of a,
where a is a set,
vector, matrix,
or tree

Dimensions, index origins, and null elements

Seotion II




(:' §0par;tion Notation Definition Compatibility
12‘ zwlxl z = (1=2(x<0))x x
13 s‘,___,';x| ai = lxil Y(3) = v(x)
Magnitude
p7A z=—|x| z? = |x§| v(@) = V) p(2) = 4(x)
15 ze—Ix| |z = @) (12) = (%)
16 kx| kgx<k+1l
17| o k«_[*xj ky = inJ vik) = 7(x)
Floar - - e
18 o {Re—|3] K§ = l:-‘i:jJ ) ='vm);/~(ﬁ).=~f/(§
N - LAY (18), = (1) |
(u 20 k.«m--[ﬂ k>x>k -1
21 | ke——-—[ﬁi’-l kg = [xi] vk) = Ax)
Ceiling -
22 re—z] | &= [4] k) = Ux); mlk) =s4x)
23 x—T2l () = Jx)7] (8, = (19,
24 ke—[1,3]| k=1 (med §);
D<kc]
25 ke || kg = [gady] v() = v(1) = (3]
Residue
26 Re—fu]| kj= |5} vf&) = A1) = A7 );
{) = (1) = 43)
27 pe—nl 62 = Jpd @] fam), = (o, = @,
C

Algebraic operations

Sectlon III




M

Operation| Notation Definition Compatibllity
28 Be—x *y| B X Yy »z) = Ax) = Ay)
29| Sum Ze—L + Y z} = x; + Y} »(z) = »(x) = v(Y);
Mz) = Hx) = Lx)
% z-—x+ 7/ = @)+ @) (@), = (Ux), = ([,
31 Be—3x - 7| 8 XK "Wy w(z) = #(x) = Ay)
32| pifference| Z2<— X = Y 44 +(z) = «(x) = »(¥);
k| b I
A7) = 4(3) = ()
33 Z—X-1 (,@i)‘, = (‘x,i)J - (gi)j (Lg% = (B)‘p = ([¥)¢
34 2 € Xy 5"*1 =X % I3 v(z) = Ay)
- i. i = v =
35| e tile | P zg = X %Iy »(2) = “(¥); M2) = 4(3)
% z=xx | = xx(g)’ (|2), = (1),
37 | Be—yix| B =Y Fx v(z) = Uy)
Scalar — e 1_ A, Y = (¥ -
38 :uotient 2 e zﬁ Y v(2) = #(1); ulz) = 4)
2-—Y¥+xl(z;)% = (1) x (12), = (),

Algebraic operations

Section III
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Operation| Notation Definiti&gh“'" Qpééa@f?};ity | .
40 Ba— ¥ %l By =X x Yy v(z2) = “(x) = v(y)
; 41;D;§§§ﬁct Ze—X x ¥ z§ = x-’j‘ x Yi;' w(#) = v(X) = AT);
C | A4Z) = «(X) =4HX)
b
! E J = J J = =
421 Ze—X > Y (gi) (xi) x (1) (Lg)¢ (\_}5)4> (Lz)¢
1.3 pe—XEy| 8 T® by »(g) = »(») = Ay)
,, Direct i, .4
4, quotient|Z — X + ¥ TR IR & »(z) = “X) = »(¥);
| ~3) = HME) = _#(X)
45 z—x+1 ) = @)+ @)z, = (1), = (1
l = 0% o M R R 2 Lo
1{.6 % - Ky z = o(x x y) 7(x) = 7/(&")
47 se— Xy s =Xy v(z) = mx); »(x) = v(z)
'Inner
product
48 5 a— XY 85y = x¥; e) = Y(¥); Ar) = (%)
49 % - XY 23 = 11 v(z) = +(1); M(Z) =+4X);
L Y(X) = 4(X)
‘Oute A — '?,i = 1 = Ty =
50: proguot Ga—zly S I el i v7) = Ay); (3) = vix)
51 %Vector B a— Koy % :!rz,“‘y- -i;;,‘Ty , 'z/(s) = -u(;g) = v(y) = 3
' Gross i
. product i

Algebraic operations
Seetion III
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Operation Notation - Definition Compatibility
52 (Veotor |ze— ylx 3 = 8x%;
gey = (VE))+ (12 v() -3) [or) = v(x)
Bce .
53| y 4Row |ae—ylX B; = ylx* wY) = +(X)3
value As) = 4 () = X)
54 {GQ}MB 5(’--—»«-«3’ | x. 31 = y j,}:i "Q(Y) = /I’(x);
; “{s) = ¥(1) = )
i
55!Base ¥ velne |sa-——i{ve)lx wo= oy 3&LX
(Polynemial | ;
in y) |
56 [iector ze—y | b z= ¥ |{t{bwoa)-¢¢) V§) = AB) = A3
: be%
Base ! | g
57/ 3 (Rev  |@e—y | B |3, = y|B v(a) =48);
wvalue i & & 1,(y) - ‘V(ﬁ) = 7/(&)’
gl EQ/&
55 i g ey .:;i.B z. * y[B. vig) = »(B);
’ (y) = B) = »(a);
Bi ¢ B

3 2 o~ %) 4 *
Agebraie operations

Seetlon TIX
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Operation Notation Definition Compatibility
040 8, O ***0a__ if Aa) # 0/(Dis any binary
59 be—Ya | b= ¢ 0 ¢ associative
0 if »(a) = 0| operator (such as
X,A,V,®) defined
upon the com-
ponents of a.
60 be— Y1 |b, = Ut ©(b) = (a)
61{0-weight [be—a by = %j »(b) = (a)
62 b4 | 0= V(B
63 be—UL | b= V(Ja)y,y
64 xe—o(y)l x ="y = ¢y
65 (Weight |xe—o{T) | x = */(*47) = €¥¢
66 xe—o(D| x=*1= Y
67 ve—u{ x| o/x = me, and ((TAu)/k " me) =€ | ¥(v) = u) = 2(x)
A
63 riaximxm Ye—U[ 2| ¥/x = me, and ((TA)/X < me) =¢ | v(¥) =v{y) = »(%);
4 ) = MU) = alx)
- - €r - -
69 gu—wg{g V2 =nE, and(TAD)/X SREEEN (W) = ([0 = ([2)y
70 *eu--uk:z Wz = né, and ((Fan)/z > me) =€ | #v) = »(u) = wx)
71 #Minimum V*—"ﬂ‘l{K ¥/X = mé, and ((FAT)/X A m¢) =¢ (V) = AU) = AX);
M) = 1) = 1)
72 V<—ULX|9/x = n, and (TAD)/X >nE) =0 (1), = (Ltj)% = (%),

Scaen operations

Section IV




Opsration| Notation Definition Compatibility
73 |Kember- x €A x 18 an element of the
ship set A
74 |Precedence|x < ¥ element x precedes element | € A y¢ 4
4 yin &
75|Inclusion |Bg A x € B implies that x € A
76 | Inter- C«—A4AB |Cis formed from A by
section suppressing each Ai for
which 4, § B.
77 |Comple- |C«—3 C is formed from the
memtation universe of discourse
U by suppressing each Ui
for which U, ¢ A.
78 |Concate- |C<e—(4,B) IC= {%,%ﬂ, censd g AAB =0
nation B. R B
¢, ¢4'1’ ceey ‘(p}
79 Union Ce—AVB C= {&,B A Xj
80 Iﬁg;zl Cam {(a,b)} C= {Ai,Ai_r_l:,aw,Aj}, a,bcA) \
of A where a = 4 b= Aj i<
g1 ce—k b b= A.z=2c = A
kth . : ¥ ®¢4 |4 may be
-y = - may
successor i-¢ ‘iﬁ'k ¢’Z(A)l elided if
in & it is an
A 5 = infix of
82 G*“kéa % kIBi Bg&ﬁtheset k may be
of elided
g3 ce—k I b |b=A=bc= &3 integers f;f“ .
bes -
kth prede- : -
eessor 3 i=¢ = ‘j"' k- CP’V(A)I
in 4
8 G*—-—kéB Gi=ki35_ Bod )

Ordered sets
Segtion V




Operation Notation Definition Coupatibility
85 |Left Ce—1Xkta Ci»:kiA
rotation ¢t may be elided if
k=1
86 [Right C=—k {4 Cskvy A
rotation &
87 |Cartesian Ca— A% 4% +<+04?|The eloments of G are . |v(C) =w{Alwr(a® hx... jol®
product vectors ¢ with N :
v(e) = n, and € A7,
so ordered that if
a # b, then
a é b= ey bk’
for k= ¢+ a(@:—'%)
88 [Homogeneous | C=— [A]" € = 8/(ak/ne) #(c) = (v(a))*

product aet

y
element

89 e (b wo B) m=14if b =B
m=o0if bf B
90 'véct_or Ha— t{b wo o) =i if a = (g ) &% 18 a vector of sets
i GEX (n) = v(b) = &)
Ranking omy=oifd o
k
91 matrix |Hae— (3 wo 4) ¥ =140 ¥ = (éb. ) & 18 a matrix of sets
3 J 1? Ag) = #(B) = As)
zﬁ? = o if .33‘ ¢ ,axj M) = AB) ={8)
92 htree Y (B wo 4) (M‘{P)j =3 if (B )’] (A )"i 4 is a tree of sets
(Mk) = o if (Bk)‘j § (4 )-'I = (I_E%)(p = (Lﬁ--)q,
93 [Set to veclor |a«—A & = 4 v(a) = v(4)
94, [Yector to set |A=—n A, = by, where b= =u/a, and | 4{A) = number of

i
7 is the logical vector of

groatest base 2 value for
which all components of b
are distinct

distinet components
in 5

Ordered sets

Section V
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Operatiod Notation Definition Compatibility
95% We— U W= leu=0
96 iNegation |we—7u W= '“5«5_ “Aw) = v(a)
+ (not)
é iy - wi -!i = - Y - ¥
97 7 a—T Ay =T AH) = v(H)5 p (W) =,43)
i
j
} -
\ | SV J =
% P8  (5) = (U, (®), = (),
e e ig ok v et ot s et e o % e e e e
99{ We— UAT w=l<<Ppu=land v=1
|
100 Ehgi@&l [T — Wy T oy A vl = Au) = v(v)
! product

101% @‘Q) % "] AT wg’ = 'i“'jj'/\vj.' Cr() = Aw) = Av);
L dw) = (p) = Av)

| vk = e o = (7] =
102 e 1) = ()3 () (), = (1), = (1)
103 WU vV w=louslorys 1l
104 Togical e ) % BT VY v(w) = v(a) = v(v)

© sum !
105 | (0)  lwe—yvy w}% = U; v w{H) = »(U) = »(V);

A7) = m(8) = (V)

: 1 j o~ j j 1) = -
106 We—UvY @}) = (g,j) v (X.f) (Li)(p = (L’U')tb (Ly,)d,

z - e e e e S

Iogical operations

Seetion VI




Operation Notation Definition Compatibility
107 W« (a € b) w=l<safb R is a binary relation
on a and b
108 wa— (o ®# D) wy = (zai ' 131) »(w) = v{a) = v()
Logical i A 3 ‘Li = i i Y = p) = n)»
Aw) = pHa) = M(38)
A 2— r j - { j K J ? ~— -
110 Fe— (a® B)I(F, )= ()7 R (B (1), = ([4), = ([B),
111 C «— au e =g if u=1;
c=0ifu=0
112iScalar vzau_*au 6, = au, v(u) = (1)
replacement -
113 0 < all ¢} = avy W) = AC);
4U) = )
14 ceal |(g)T = ay)] (9), = (u)
115 |Vector) k—a(n) k= mex (G fa)x (* fedfn) )
d
Prefix{, = 1« e = o (5 ’ .
116 |Row weight Ke— w(B) ky a(97) v(k) = u(U)
117{Col; e a( (1)) iy = a(ﬁi) v(z) = v()

logical operations

Sestion VI




Operation Notation Definition Compatibility
118 {Vector) k e— w(u) k= mgx (("/m‘j/zz)X("‘”/wa/u))
Suffix| . o ged o
119 |Row weight xe—a(U) |k = (i) v(k) = a{i7)
120 {Column; i a—a{ (U)) Iy = w(u j} (k) = (1)
121{Subset wvector|w <~~~—a§(£ uy = 1 <>A € C Ce A, v(w) = v(4),
i o(w) = »(C)
¢
122 Wf—-——ﬂi(ﬂ) w = Lj where 0gix 2:/(;3)
i= (28] a)+¢,
»(g) = 2‘“(”‘), end
it Boolean (26) [ =1
function .
. 5 o
123 i @-—iﬁl(‘{i) 5y :ﬂi(ﬁj) 0<ic2 (W
124 e ) o = AH(T,) 0<i<2 (9
Y¥e—f i & i B <

Iogicaf;. operations

Section VI
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; Oparatlon Notation < DeTiniticr Compatinility
145 Weetor mesh o e \o,u,b\ ?"/ = a3 /o b et = o(F)y #(0) = ol s
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i
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e
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Oreration

- ot e

Notation

Definition

Compatibiliiy

17 Left
Set rotation

Teft
Veotor
roetablion

Bew y«rstationj

< LA Colwmn

' N

Ce—1iTa
Ce—loba
gkt
n€—lb,

3 18,0
s G ! &
58 REA .

Ci=a J=#= |[4+1- $,v(a)]
Ci=as3 J~¢= [i-k=dy(a))
2yFeys Jof }iu-c; 6 u(a )§

:—aiz::;);j:; jm‘:‘a ii-’kw {’p'b’(\;;)i

e

G *’».?r"i ?"i

Sil' I:i\l' &i

L f«“j?” j

Sea also

Defs. 5657

S>uC)=ua)

j e s)=w(n)
A EST Ty

jv( )=l a) )
Aln)zels)

}v( w=u(e)

T eobaiion

Pk Down | Ge—idki | o _327-’2;&,:{\!(&‘3

; d &4

|

] SR

e~ \ . 3 e i e
| L Tranupose ) o £ Lai:»ﬁ WWidma{a) apdi)=185)

Happing and permutation

Sectior IX



188
189

190

Position file
(called rewind if r=¢)
(called wind if r= =§)

17(}1)4—-—1‘51 Set each file of row}i to position rl

17'(%)1—- re
m(§) &e~1E

Set each file of columan to position ®

Set each file of § to position r

Operation Notation Definition Compatibility
183 MFa2 F3 161, §ed )
Set of Iz2{d,A3)+)
184 | File array{ Row ;1 file: ﬁ jed \ {(’ #E ‘t}
i
g 3 = {4, 4B}
185 L?olm IJ L,i €1 ]
186{File }; 4 partitioned representation of a
vector x of the form
Alg) =g sA(9+1) yx¢+lv Tt wx)+§
_ Avia)+®),°**,A(-4), where
Alr) is the partition at positiom r
Ap) = Al=¢) = A
ALl other A(r) €{Aosiysdyse°}
187 v(g)e——r Set filel} to position r

“"Files
Seotion X




Operation Notation Definition Compatibility
191 rForwa.rd ];;'e——y,t\k Specify X, by ¥, 7] r# -$. Zero)
partition A(r+l) prescript may| A, may
by A, and stop at be elided  ( be elided
Q position (r+l) ris if k=0
Record . initial '
192 fackward P j <-—-y,/lk Specify ¥ by ¥, ? position|r #¢ )
partition A(r-1)
by Ay and stop at position
(r1)
. 1
193] Forward y-x—-—-Ij Specify y by ., stop at ) r #9. Zero
(_ ° position (r+l), branch prescript may
Read < according to Alr+l) | r s be elided
194 Backward y«(———l};‘ Specify y by ¥..1s Stop at initial r=g
- position (r-1), branch position
according to Alr-l) »
195 Row w9 The compress operations defined upon |U#) = A§)
Compress trices and vectors may be extended
196 Column |u/@ irectly to file arrays, e.g.,
i F =u/ §: or W(L‘v@“"‘ [ X3 :(i\‘i; :IZ((gg ‘

Files
Sectlion X
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Operation Notation Definition Compatibility
197 | Height v(4) Dimension of longest path im &
198 | Moment vector 4(4) jfj (4) is tlhe number of nodes on | ¥{A)) = ¥(A)
level 4. =~
199 | Number of roots ﬁﬁ"l(y
200 | Number of nodes #(4) (8) = ol(s(8))
201 | Number of leaves A(4)
202 | Degres of node (Ag‘") -¢| 6( (g ‘)4) Number of nodes on level w(i)+l
reachable from node (}f )_ #’
203 | Degree of node x $(x) §ix) = .s‘(A‘i)_¢) for i =({x in i\)
( %0 | Maximum degree s(a) §(8) = max §((a7)_g)
A
205 { Path 3 L }f" n¢ = roog i¢ of 43 ¢ 3 = node % j /A 1s an index vector
of the group on level j reachableg of A , that 1s,
from node =, 1, for Je{ipels | 7g6{@,/{(3)-9)}, and
Wi )-$} i 46{(@1600 51 )-F)p-
2061 Noda 3 ae—-(g’ )R # ¢ is the terminal node of %is an index vector of
1
path § L

General ordered trees

Section XI




lcompatibility

Operation Notation - Definition
207| Subtree 1 B¢—A, |B comprises all subtrees i is an index vector
of A whose roots are directly |of 4
reachable fram (4%).4
208| Index of b in 4 L(b wo &) Ifuz((.lg)¢+-'- be) = 0, then
7(1) = 03 ﬂu;‘ 0, then
1= (m#oc)/m, where
m= W(EZ/JA)) ¢
209| Tree to vector b — B |}
8 is the subtree rooted at the| (=) =’//1(B)
210| Vector to tree Bée—a Jth root of B ' :
211| Right (justifted) [Te—2-/Ia| I%s of the | 1 is an index

212

index matrix

Left (justified) indexjle—72A4
matrix

form vector of As and
\°Esw«i)’1\ Jck @
3]
(v(B)e)g% <
5@(3)«)11“.
Bé

1k is of the] where B =
form {O,’,’-&l,'",
\Q e,ﬂxﬂi),i\ €(A)';}

AD) = AN
I) = AN

General ordered trees

Section XI
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QOperation Notation Definition - Conmpatibillty
213 | Right degree vector e al/ﬂ ;‘ﬁ’ g0 0
- kj=5((A )os 3 3 {E)=4(a)
214 | Left degree vectar  |ke——d /LA Tl e G /1%,
X rand T is the right
. L 3

215 | Right node vector 028 14 . (Lot} index
LA, ¢ 7{®)=a(4)

216 | Left node vector p— g*l/% _j matrix of 4

217 | Full right list matrix|Ce— 44 G¢ is the right (left)
degree vector of 4, AC)=v{a)+2

| Spon, 18 the right (left) PEQEZLEY)
node vector of 4,
218 | Full lefy list matrix |[De-—— L4 TE/6 18 the right (left)
(V 7 index matrix of A

219 | Right list matrix 0 e zﬁa

220 | Left list matrix Gé&—u 2/;_&

221 | Path list matrix Ge— 14 at/e =38, and AC)=A8)+2,
5= ol 18 the path list MC)=M4)
vector such that kj is the row
index in £ of the first node
emanating {rom node ﬂ%¢1

Gensral ordered trecs

Sectlon XI




%ww\bm. of roots OE‘ 1‘

o
Operation Notation I Definition Competibility
222 | Dispersion vector T) yfb (1)= 1 ;za(';,) = common -y(-w(g) )==v(:1;)
degree of nodes on level
3=1, for je{6+1,%(1)-p)}
223 | Moment vector #T) ;ﬁfj(g)z v4 (aj/'af(g)) = number of | (1) )=%(T)
(See also Def. 198) nodes on level §j, for
JG{(¢;V(T)”$)}
224, | Truncation Pe—u/t | B= g1 (See Defs. 131 sndigd)] var) = v (T)
225 | Insertion PeN\Tsuo8\ | WE=T50/B= 8 s (2)=7(1) -6(u)=7(8),
and the moment vector
C A(B)A 4(1) 52, S\
must determine an
integral dispersion
vector v(;?)
226 | Pruning at level P— z:;jf;‘/ P is obtained by deleting all v(11)=?,3(:1\‘)
subtrees (3‘3_ )k for which
?Ak=0 and »(i)=j=1
N\ N oI/t -3 1
227 | Grafting at level § | Pe— p Tous N ¥ /P=a /T3 a®/T)=0"/2(8)
W g ¥ (D)=a(a); 4 (8)=4(x);
&Y (ufp)=s Y(S)=elu) x A1 (2)
J

2(P)=/w (1), 658 v(v)/

Homogensous ordereé trees

Section XI1
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