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CHALPTER 6

A progranming language

6.1 Introduction

The systematic analysis and design of complex algorithms
must be hesed upon a suitable mesns for their description. 3Since
a precise description of an algorithm is called a program, &
notational scheme for the description of information processes is
called a programming langusge. A programming langiage should be
concise, precise, ccnsistent cver a wide area cof application,
mnemonic, and economical of symbols; it should exhibit clearly
the comstraints on the sequence in which operations are performed;
and 1% should permit the deseription of a process to be independent
of the partioular representation chosen for the data.

Existing languages prove unsuitable for a varilety of reasons.
Computer coding specifies sequence constraints adequately and is also
comprehensive, sinece the logical functions provided by the braneh
instructions can, in prineclple, be employed to synthesize any finite
algorithm. However, the set of basic operations provided are not,
in general, directly suited to the executionm of commonly-nseded
processes, and the numeriec symbols used for variables have little
mpemonic valus. Moreover, the desecription provided by computer
coding depends directly upon the particular representation chosen

for the data, and it therefore cannot serve as a description of the

algorithm per ss.
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Ordinary English lacks both precision and conclsenzss.

The widely used Goldstine-von Keumannl flowcherting provides the
conecl.senass essentlal to an over-all view of the process, only at
the cost of suppressing essential detail. The so-called pseudo-
English used as a basis for certain automatic programming systems
suffers from the same defect. Moreover, the potentlal mnemonie
advantage in substituting familiar English words aad phrases for
less famillar but more compzct mathematical symbols fails to
materialize becesuse of the obvlous bui unwonted precisioa required
in their use.

Virtually all of the concepts and operstions needed in e
programming languags have already been defined and developad in
one or enother branch of mathematics. Therefore, much use can and
wlll be mede of existing notations. However, sinece most notations
are speclelized to & narrow field of discourse, a consistent
unification must be provided. For example, separat2 and conflicting
notations have been developed for tha treatment of sete, logieal
variables, vectors, matrices. and trecs, all of which may, in the
broad universe of discourse of data processing, occur in e single

algorithm.

5.2 Programs

A statement is the specification of some quantity or
quantitles in terms of some finite operation upon specified
operands. Specification 1s symbolized by an arrow directed
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toward the specified gquantity. Thus "y is specified by sin x" is

a statement denoted by
ye—— sin x.

A set of statements together with a specified order of
execution constitutes a program. The program is finite if the
nupber of executions is finits. The results of the progrsa are
some subset of the quantities specified by the program. The
BSequence or order of execution will be defined by the order of
listing and otherwise by arrows comnecting any statement to its
successor. A cyclie sequence of statements is called a loop.

Thus Program 6-1 is a program of two statements defining the result
v aa the {approximate) srea of a circle of radius x, whereas
Program 6~2 is an infinite program in which the quentity z is
gspecified as (Zy)n on the nth exscution of the two-statement loop.
Statements will be numbered at the left for reference.

4 number of similar programs may be subsumed under a single
more gensral program as follows. At certain brench points in ths
program & fialte number of alternative statements sre specified ae
possible successors. One of these successors is chosen according
to criteria determined in the statement or statements preceding the
branch point. These criteria are usually stated es a comparigon
or teet of a specified relation between a specified pair of
guantities. A branch is denoted by 2 set of arrows leading to each
of the alternative successors, with each arrow labeled by the
compariscn condition under which the corresponding successor is

chossn. The quantities compared are separated by a colon in the
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gtatenment 2t the branch point, and a labeled branch is followed if
and cnly if the relation indicated by the label holds when substi-
suted for the colon. The conditions on the branches of a properiy
defired progrsm must be disjoint and éxhaustim.

Program 6-3 illustrates the use of a braach poing. State-
neny @5 is a comparison which determines the braach o statemsnte
pLl, 1, or yl, according as & >n, 2 =10, OF z <€ N, respsctivplye
The program represents a crude but effsctive proecess for determining
= 2/3 for any positlve perfect cube n. |

Progrem 6~/ shows the preceding progrem reorganized inte
a eompact linear array. Two furthsi‘ conventions on the labeling
of branch points are used. The listed successor of e branch state-
mant is selected if none of the labeled conditions is met. Thus,
statement, & follows statement 5 if neither of the arrows (to exi:
or to statemsat 8) are followed, i.e., if 2 « n. Horecver, any
unlabeled arrow is silways followed; e.g»., statement 7 is invariably
followed by statement 3, never by statement 6. 4 program begins at
2 point indicated by an entry arrow {e.g., step 1), anf onds at
poin% indicated by an exit srrow (e.g., step 5).

Program 6~5 shows an equivalént compuier code, the numbers
on the left referving to the corresponding steps of Progrem 6-4.
Comparison showe theat the former staris at statement 3, skipping
statements 1 and 2. This difference ceccurs because the verisbles
¥ and k are specified in the computer program by the initial contents
of the corresponding registers, and need not be specified by further

explicit cperations within the program.
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A process which is repeated a pumber of tlmes 1s said to be
iterated, and & process (such as Frogram 6-4) which includes one
or more iterated subprocesses ls sald to be lierative. A parameter
waich determines the number of consecutive sxecutions of an lterated
process is called a countsr. A parameter which designates a
particular element of a structured operand such as a vector o
patrix is called an index. A slmple use of an index occurs in the

summation

Program ¢-6 shows a particular reelization of the process. In
this case the index serves also as counter. The practice of
begioning with the index equal to n and decrementing to zero allows
the comparison to be mace with zero and also obviates the need to
gpsclfy zv auxiliary index if, as assumed in Program 6-6, the initial
valuz of n need not be preservad.

4 more complex use of indices is shown in Progrem 6-7, which
descrlbes the matrix multipliocatlion  «——AB deflned aa

(i)

i‘j =Z &i X ;;af,;‘, ie {(1,40a))}, je {(1’,,(5))}\
k=1

Each of the indicas i, j, and k serves also &3 a counter.

@ FProgram 6-7. Step 1 specifies C as a matrix of zeros,

steps 2~4 initialize the indices, and the loop 5=7 continues to

add successive products to the partial sum until k reaches zero.
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When this occurs, the process continues through step 8 to decrement j
and to repeat the entire summation for the new value of ], providing
that it is not zero. If J is zero, +he branch o step 10 decrements
i and the entire process over j and k is repeated from j = 43),

providing that i is not zero. If i i3 zero tha process is complete,

g8 indicated by the exit arrow.

The programming language will be designed to admit both
C=origin and l-origin indexing (Sec. 1.9). Examples used in this
chapter will, however, be stated in the more famillar l-origin
indexing.

In all examples used in this chepter, emphesis will be
placed upon clarity of description of the process, and considera=
tions of efficient executlon by a computer or class of computers
will be subordinated. These considerations can often be introduced
later by relatively routine modifications of the program. For
example, since the execution of a computer operation involving an
indexsd variaeble is often more costly than the corresponding
cperation upon a nonindexed variable, the substitution of & variable
g for the varlable (}

J
accelarate the execution of the loop. The varlable s would, of

in the first statement of the loop 5-7 would

courss, bs initialized before each entry tc the loop (incidentally

obviating step 1) and would be used to specify (;’

Since zero often occurs in comparisons, it is convenient to

at each terminstion.

omit it. Thus, if a variable stands alone at a branch point,
comparison with zero is implied. Moreover, since a comparison on

an index or counter frequently occurs immediately after it 18 modified,




8 branch et the point of medification will dencte branchipg apon
comparison of the indlested index with sero; “he compariscn
occuwrring after modificslion. Designing progrens o execute

decisions immediaiely after aodification of the cénbrollingvvariable

reeuits in efficient exécutisn as well 28 notallional elegsnce, since
the varieble mﬁst be prrecent in a :en%ral.regiater for both
operaticng. |

| Since the sequsnce of exeeuticn of statements is indiested
by conmecting errows zg well eg by the ordér of lieting, fhe letter
gan he ehosen erbitrarily. Thig is illustratéd4by Prograns 6-3
and 6~4 which describe fungticnally identical:programs» Certain
principles of ordering may yield advautages guch ag clarity or
aimplicitf of the péttern of connecticns. Ever though the advanfages
offered by e particulsr organizing. principle sre not paiticul&nky
marked, the uniformity resulting from its conslsteat application

will itsell be a boom. The scheme here adopted (for reasons set

forth in See. 7.1} is czlled thé method ofv;eadiggndecisions,‘ It
consigte in placing the aecision ou‘eaca parameter as early in the
progiram es practicatle, normally just before tke cperations indexed
by the parsmeter. FProgram 6-8 shows such s reorganization of
Program G=T.

I&lthough the labeled srrow représentetion of program
braasches provides a cémpleﬁe and mnemonic description, it is

deficient in +he following respescts: (1) a rovtine translation

to another language (such as & computer ccde) wouid requive the
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tracing of errows, and (2) it does not permit programmed modification
of the branches.
The following alternative form of a branch statement will

therefore he used s well:
X8 ¥ I sy 5 8

This denotes a branch to statement number 2y of the program if the
relation x r, ¥ bolds, i q{kl,v(;))}, The paremeters z and & Eay
themselves be defined and redefined in other parts of the program.
The null element will be used to denote the relation which complements
the remaining relations °;; in particuler, (0)-——3(8), or simply
-5 will denote an unconditional branch to statement 3. Progran
6~9 shows the use of these conventions in a reformulation of
Program 6-8.

One statement in a program can be modified by enother
statement which changes certain of its parsmeters such as indiees
and selection vectors. More general changes in statements can be
effected by conslidering the program itself as & vector p whose
components ere the individusl seriglly numbered statemente. All
of the operations defined upon general vectors can then be brought
to bear upon the statecments themselves. For example, the jth
statement can be respecified by the ith through the occurrence of

603 Classes of operands

The power of any mathematical notation rests largely on the
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use of gymbols to represent genersl quantities which in given
instances are further specified by other quantities. Thus
Program 6~/ represents a general process which determines x = n2/3
for any suitable valus of n. In a specific case, say n = 27, the
quentity x is specified as the number 9.

Zach operand occurring in a meaningful process must be
specified ultimately in terms of commonly accepted concepts. The
symbols representing such accepted concepts will be called literalg.
Examples of literals are the integers, the charascters of the various
elphabets, punctuation marks, and miscellaneous symbols such as §
and % o The literels oceurring in program 6~/ are 0, 1, and 2.

I+ is important to distinguish clearly betwsen gereral
gymbols and literals. In ordinary algebra this presents little
difficulty, since the only literals occurring are the integers and
the decimzsl point, and each general symbol employed incluces an
alphabetic character. In describing more general processes, howaver,
alphabetic literals (such as proper nemes and mnemonie syrbols) also
eppear. Moreover, in a computer code, numeric symbols (reglster
addresses) are used to represent the varisbles, as illustrated by
the right-hand version of Program 6=5.

In general then, alphabetic literals, alphabetic variables,
nuneric literals, and numeric variables may all appear in a complex
procaas, snd it is imperative to distinguish among them. The
symbols used for literals will be Romen letters (enclosed in quotes
when appeering in text) and standard numerals. The symbols used

for variables will be itelic létters, italic numerels, and boldface
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lettors a8 detalled in Table 6-1. Misecellaneous signs and symbols
when used as literals will be enclosed in quotesz in both programs
and “text.

The use of distinet classes of symbols for distinst clasases
of operands not only aids in the visusl interpretation of a prograa,
but also permite significant reduction in the rumber of distinect
operation symbels required, sines analogous operations upon different
types of quantities may be represented by the seme symbol (e.g.,

A N B for a product of sets and « Ab for a preduct of logical
vectors). Potential ambiguity is resolved by the distinct operand
gyubols. Special operands (such as the unit vectorséi defined in
Chapter 1) or functions will be denoted by Greek letters in the
appropriate type face.

In any determinate process, each operand must be specifisd
ultinately in terms of literals. In Program 6-4, for example, the
quantity k is specified in terms of known arithmetisc operations
(multiplication and division) involving the literels 1 anc 2. The
quantity n, on the other hand, is not determined within the process,
and must presumsbly be specified within some larger process whieh
includes Program 6=4. Such a quantity is referred to as an argument

of the process.

6.4 Successor operations

The major advantages accrulng from the use of the set

operations suggessor and predecessor (defined in Sec. 1.7 and
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sunnsrized in Sec. V of Appendix 4) are two: they allow the
description of the process and the specification of the repre-
sentation of the data tc be completely divorced, and they eliminate
the racurrence of the literal 1 in the incrementatlon and decre-

mentation of counters and indices. Their use will be illustrated
by a single example.

Example 6-1. Consider a process to determine the length
of the longest run in any one sult in a hand of thirteen playing
cards. A run is defined as a set of cards whose ranks form an

intervel in the set

D §Q~12?3’e-0’10’@’@ 9@}’

wherz the literals denote deuce,trey,four,e--,king, and ace. The
length of a run is the number of elements it contains.

The hand may be represented by the matrix § of dimension
2 X 13 whose column vectors E—ii each represent one card, Ij and g?
reprosenting respectively the suit and rank of the jth card. Hence,

a’? €D,

5 €22 {©0:0.0-0F

where the literals denote clubs, diamonds, hearts, and spndes,
respactively. If

Nccloelcloltloloelelble
@6@@& 35®8 209 2 s
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6.5 The definition of symbols

Program 6-10 providee a precise and organized descriptioa
of the required process. It is also important to organize the
presentation of auxiliary data such as the ordering of the sets
involved, and the significance of the chosen symbols. Table 6~2
presents the data relevant to Program 6~10.

The first column shows the assigned aymbolé and the second
describes thelr range and dimension. If a variable possesses
further siructureyits components may themselves be described in
further rows. The meaning of the variable is described in column
thres.

Although additional variables appear in the program, each
is specified within the process and need not be defined in the
table. In deseribing complex processes it is, however, often
helpful to include these derived variables in an extended or
suxiliary teble. The distinction between predefingd and
process~defined variables should, however, be maintained.

In devising a computer program correspending to Program
6=10, it will be found necessary to choose a specific representa-
tion for the variables involved before describing operations sush
as selecting a successor in a given set. This choice may be
displayed in an extension of Table 6-2. For example, the
denominations 2,3,°°°, "@", end "" might be denoted by
1,24°°°,12, and 13. The successor coperation then reduces to
simple addition of unity. 4 particular choice of representation
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cculd also be used 4o obviate the general successor operations in
the progremming notation, but this would bind the entire deseription

to the chosen representation.

6.6 Reference table of notation

Appendix A summarizes the notation developed in this
chapter. Although intended primarily for reference, it supplements
the text in severel ways. It frequently provides a more conecise
alternative definition of an operation discussed in the text, and
also contains numerous important but easily grasped extensions not
treated explicitly in the text. By grouping the operations into
related classes 1% displays their family relationships. Finally,
by using the symbol (1 superimposed upon 0) to denote the index
origin in use, each operation in Appendix A is expressed in terms
of both Qeorigin snd l-origin index systems. The exposition in the
text 1s limited almost entirely to l-origin indexing.

Many of the operations defined apply only to certain
restricted classes of operands (e.g., arithmetie vector operations
do not apply to nomnumerieal vectors), and these restrictions will
be indicated by adopting the conventions shown in Sec. I of the
appendix. The classes of operande appearing in Sec. I are defined

as follows. A vector whose component sets Xk are all equal ¢0 a

given set Y is ealled h , and some homogeneous vectors
mey be further clessified as numerical, integral, or logical,

secording as ¥ is a finite subset of the real numbers, is a




6=15

‘ finite subset of the integers, or is the set{O,l}, respectively.
Each of these classes is a subslass of the classes preceding it,
and esach operation defined upon a class also applies to each sub~
clase. For example, arithmetic operations defined upon numerical
vectorg alsc apply #o the subeclasses of logical and integral vectors.
A special "mapping" operand, which may assume the value o as well as
integral values, wlll be denoted by m, =, or i, or M.
The symbols used in each definition of Appendix A are
T those of the most general class of sulteble operands. Thus the
logical operations of Sec. VI are mainly restrieted to the logical
operands W,V,W,u," ,w,l!,%’,?{,g,‘z’ W, but the logical reduction
(Defe. 107-110) apply to arbitrary scalars, vectors, and matrices.
The operantds must satisfy certain further compatibility conditions
‘ (primarily concerning their relative dimensions) which ars listed
in the final column of Appendix 4.
A concise programming language must incorporate families
of operations such that the members of a given famlly are related
in a gystematic mesnner. Each family will be denoted by & specifie
operation symbol, and the perticular member of the family will be
~ designated by an associated controlling peramefer (scalar, veetor, —  — — —
matrix, or tree) which immediately precedes the main operation
gymbol. The operand is placed immediately after the main operation
symbol. For example, the operation ifx (the kth successor of x)
mey be viewed as the kth member of the set of successor operations
denoted by the aymbol }.
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In interprefing a compound opersztion sueh as k?(jlm) it
is importent to recognize that the operation symbol and its
assoclated controlling parameter together represent an indivisible
cperation end must not e separated. It would, for example, be
incorrect +to assume that JT(klx) were zquivalent o kf(J&x), although
it can be shown that the complete operations j? and kL do comute,
that is, k?(J&x) = jL(kﬁx).

In order to reduce the need for parentheses it will be
sssumed thet compound statements are, except for intervening
parentheses, executed from right to left. Thus, kfj}x is eguivalent
zo Kl(jx), not to (kPy)x.

Operstions lnvolving a single opsrend and no controlling
parameter (such as Ei], or ij) will be denoted by a pair of
operation symbols which enclose the operand. Operstions ilovolving
two oPerahﬂs and & controlling parameter (such as the mesh operation
\a,u,t\) will be denoted by a pair of operaticn symbols enclosing
the sntire setl of varisbles, and the controlling perameter will
appear between the two operands. In these czses the operation
symbols themselves serve as grouping symbols.

Certain operators serve a purposs enalogouse to that served
by certain special logical vectors when used ag controlling
paramsters. For muemonic reasons, such operators will be denoted
by the same Greek character used for the analogous vectors; aj, for
exemple, is a prefix vector, and u(u) denctes the prefixz weight of
the logical vector 1.
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6.7 Selection operations

Al.gorithms, particularly those suited to automatic exscution,
tend to require the execution of the same operations upon each of &
group of operands. It ies therefore useful 4o generalize operations
defined upon single operands to corresponding operstions defined upon
each element of a siructured array of operands. The structured
arrays employed are primarily the sets, vectors, matrices, and trees
introduced in Secs. 1.7 and 1.8. The type of generalization employed
is illustrated by the exteneion of the logicel operations and, or,
and not, %o logical vectors in Sec. l.8. The execution of a process
upon a structured opersnd can (and in the use of a computer
frequently must), however, be executad as an explicii repetition of
a given operatlon upon successive elesments of the array.

The effective use of structured operands depends not oaly
upon generalized opsrations but alsoc upon the abllity to specify
and selec’ certain elements or groups of elemenits. The selection
of single elements cen, for example, be made by specifying indices
as in the expressions 4,, vy, 1‘51, ,éij,, iéé;', and (l'i) « Since selection
is a binary operation (i.e., to select or mot to select), more
general selection is conveniently specified by a logleal vector,
each unlt component indicating selection of the corresponding
component of the opsrand. The logical vectors themselves may be
specified in terms of the logical operations defined in Sec. 1.8 and
sumesrized in Sec. VI of Appendix 4.
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The selection operation (Def. 135) defined upon an ordered

set 4 1s denoted by the statement
C@" ‘Z/A,

and is defined as follows: +the set C conteins only ithose elements
Ay for which uy = 1, and the set C is ordered on A. In other words,
G is obtained by suppressing those elements Aj for which uJ = 0.
The legicel vector u is sald to compresg the set A. The vector u
and the set A must be compatible, i.e., v(u) = v(A). For example,
if v(4) = 5 end v = (1,0,1,0,1), then uw/A E{Al,AB,As}.

The weight of a vector x 1s denoted by o(x) and defined
{Daf. 64) es the sum of the components. In the case of a logical
veetor v, the weight is also the number of unii components and
cloarly @(v) ¢ 6(v) = v{u). Moreover, »(uw/h) = 6(u).

The compress operation is extended to vectors and matrices
as follows. The vector compression u/a selects components of 5
exactly as the set compressiocn u/A selects elements of A. & matrix
L may be compressed in two distinet ways. Row compression, denoted
by u/1, compresses each row vector Ea.i of the matrix & to form a new
matrix of dimension 4#{A) X &(u). Column compression, denoted by
uf\ compresses each column vector A4y to form a matrix of dimension
6(1) X »{ ). Compatibility conditions ere w(n) = (i) for row com=
pression, and v{v) = #(i) for column compression. For example, if

A is an arbitrary 3 X 4 matrix, v = (0,1,0,1), and v = (1,0,1),

then
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1 1 1
Az h3 ) A
82 A’; Alz. .
a3 a3 3
& AB AL
1 1
.&2 Aﬁ
1 .2 2
53 /::. = Az A‘. ?
3 3
.Az AL
1 1 1 1
‘ A A &
t,?/& : £ 3 4 9
3 3 3 3
Al ﬁz AB él,
and
1 .1
2
vyl = v/ = 3,3 .
2 4

I 1s clear that row compression guppresses columng
cerresponding o zeros of the logical vector and that golumn

compression suppresses rows. This illustrates the type of
confusion which cen arise in naming operations upon matrices
which are obtained by generalizing operations upon vectors. The
following nomenclature will be used consistently — an coperation
is called & row operatiocn if the underlying operation from
which 1t is generalized is applied to the row vectors of the
matrix, and a golumn operatiocn if i1t is applied to columns.
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P Exemple €-2. A bank which assigas account numbers from a
solld set of integers wishes to make a gquarterly review of accounts
to produce the following four lisis:

(1) +the name, account number, and balance for esch
account with a balance less than two dollars;

(2) +the name, account number, and balance for each
account with a negative balance exceeding ons
hundred dollars;

(3) the neme and account number of each account witi
a balance exceeding ome thousand dollars; and

(4) 211 unassigned account numbers.

The ledger may be described by a matrix

- =

. 1

O L (Byshyia) = |

A
with column vectors }',1, 12, end 1.3 representing names, sccount
numbers, and balances, respectively, and with row vectors
Ll ’ .‘.1.2,..., E representing individusl zecounts. An unassigned
account number is identifled by the word "none" in the name
pesitione The four ocutput lists will be dencted by the matrices
Py Ly Hy and 5, respectively. They can be produeed by

Program 6-11,

Program 6-1l. Since LB is the vector of balances and

2¢& is a compatible vector each of whose components equals two,

the relational statement (1;3 < 24) defines (Def. 108) a logical
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vector having unit components corrssponding to those accounts to

be included in the list P. Consequently, the column compression
of step 1 selects the appropriate rows of L to define P. Step 2
is similar, but step 3 incorporates an edditionsl row compression
by the compatible prefix vector a2 = (1,1,0) (Def. 127) to selact
columps ome and two of L. Step 4 represents the comparison of the
nane (in column 2.1) with the literal "none", the selection of each
row which shows agreement, and the suppression of ell columns but
ths second.

The expression " (@one)s" occurring in step 4 of Program
6-11 illustrates the use of scalsr replacement (a8 useful
generalizetion of the multiplication of a vector by a numerie
scalar), which is defined (Def. 112) as follows. For any loglesal
vector v and arbitrary quantity a, the statement cg— 8u epecifies
the vector - obtained from u by replacing each unit component by a
and leaving the zero components unchanged.

If B 1z any subset of A which iz ordered on A, then there
exists a logical ventor u such that w/A = B. Hore generally, if C
is sny subset of A, there exists a vector u such that w/A = C, i.0.,
such that /4 is a permutation of C. Consequently, any subset C
cany, exceph for ordering, be represented with respect to 4 by a

logical vector u which is called the subse} vector of C on A. For

example, i A = {@, @, ®, @}, end ¢ = I'(®), ©}, then

_é_,g = (1,0,0,1), meﬁ/ﬁ = {@: } £ C, althoughlgsg/a =C., Ifa

is the set of integers ﬁl,v(A)}, and if the value of v(A) is clear
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from congext, then A may be elided. The notation for the unit
vectors (Def. 125) is consistent with this convention, the super-
soript i denoting a set B of one element, that is B = {i}o

4 prefix vector of weight § and s suffix vector of weight
j ars denoted by «9 and w), respectively (Sec. 1.9 and Defs.
127-128). A suffix and a prefix of the same weight are clearly
related by a rotation (Sec. 1.9 and Defs. 176=177) as followss
.:.?j = jf:s.'j,, and :::j = j&mj. Moreover, every infix vector 1s of the
form i’&':;r.'j °

If v is an infix vector and if B = uw/A, then B is called
an infix or interval of the set A. Moreover, if © is a prefix or
suffix vector, B is called a prefix or suffix of A.

If :ég, and v :éﬁ, then elearly v A v = féBAc), and
LWy = éﬁﬁv(:).

frequently be replaced by the analogous vectors and vector operaticng

Consequently, sete and set operations ean

with respeect +o some specified universe of discourse A.

A loglcal vector u and the two vectors @ = u/¢ amd b = w/a
cbtained by compressing & vector =, collectively determine the
vector c. The operation which specifies ¢ as a function of 2, b,
and y is called a megh and 1s defined as follows. If = and © are
arbitrery vectors and if © is a logical vector such that 6(%) = w(:)
and 6(u) = ¥{1); then the mesh of ¢ and L on u is denoted by \a,m,i\
end is defined (Def. 145) as the vector o such that /s = & and w/c

e The mesh operation is equivalent to choosing successive

components of » from o or I according as the successive components
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of . are 0 or Le If; for example, a = ( , , @ Ys
ba (@ @ )s and v = (0,1,0,1,0), then\a,u,\ =
( Cs), @, , @, @ ). 4&s8 a furiher example, Program 6~12(a)
(which describes the merging of the vectors = and ©, with the first
end every third component thereafter chosen from a) can be described
alternatively as shown in Program 6-12(b). Since ¢ = (1,2,3,455565°¢¢)
(Deffe 166}, then| t,3¢ | = (1,2,0,1,2,050) (Def. 25), and
ccasequently the vector v specified by the logical reducticn
(Def. 108) on step 1 is of the form v = (0,1,1,0,1,1,0,%°¢).

Hesh operations on metrices are defined analogously
(Defse 146,148), row mesh and column mesh being denoted by single
and double revers: virgules, respectivelye.

In numerical or other vectors for which addition of two
vectors is defined (Def. 28), the effect of the general mesh
operation san be produced as the sum of two meshes each involving

ocne zere vector. Specifically,
\1:,72,}; = \:::.,31,0\ % \O,u,y\
= \0s 5,3\ ¢ \OsusN\e
The operation \0, ;,;,r\ proves very useful in numerical work and

will be called gxnansion of the veector /. Vector expansion is

dencted by v\y and 1s defined (Def. 15,) as u\y = \Q,u,;\.
Compression of \ oy u and by - clearly yleld 7 and O,

reBF‘ectively’ i.e.,

u/'iz\y =y, -L:;/U\";' = 0.
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Moreover, any numerical vector u can be decomposed by a compatible

vsotor . according to the relation
z = u\w/fx * o\o/ze

The two terms are vectors of the same dimension which have no
nonzsre components in common. Thus if u = (1,0,1,0,1), the

decomposition of - appears as

(‘:rl,O,xa,O,xs) & (O,xz,O,xL,O).
Row expanslon and column expansion of matrices are defined

analogously (Defs. 155,157). Row expansion of ¥ by u 1s denoted

by v\Y and colump expansion by w\¥. The decomposition relations

become

= ;\;/}: + u\ﬂ/x)

=

-

and
= Nods + Nofse

= (1,0,1), and if 4(x) = w(X) = 2, then

<

«
)

Ifu= (03:’;’0,1) and -

e X 0 X

0 Xz

N
NN N
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T 2|
o X 0 13
V= AAL =70 0 0 0 {.
o1 -5
0 iy 0 ia
- -

In expansion operations, the compatibllity requirements
(shown explicitly in Appendix 4) concern the weight of the logical
vector rather than its dimension. The latter quantity serves to
determine the dimension of the resulting vector or matrix.

Magk operations (Defs. 160,162,163) are generalizations
of the computer mesk operations defined in Sec. 4.14. The vector

nmagk, denoted by v €= /2,u,b/, defines ¢ as follows:

iy if g = v}

'.‘.'i = B
bi if fZi = l‘

The vectors ¢, u, and > must all be of the same dimension. The
mask operation is also extended to matrices, single and double
virgules denoting row magk and column mask, respectively.

The compress, expand, magk, and mesh operations on vectors

clearly are releted as follows:

I,& st sb/ = \E/& 9t ,‘J/‘)\ ?
\a,u,0\ = /0\e,u s \2/ e

Analogous relations hold for the row mask and row mesh and for the
column mask and column meshe

Certain selection operations are controlled by loglcal matrices
rather than by logical vectors. The row compression iUf4, for example,
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selocts elemenis of i corresponding to the nonzero elemants of .
Since the nonzerc elements of U may occur in an arbitrary pattern,
the result must be construed as a vestor rather than a matrix.
More precisely, 1/4 denotes the concatenation (Def. 151) of the
vectors G%/éi obtained by row-by-row compression of & by U.

The column compression Ufi (Def. 139) denotes the con-

catenstion of the vectors Ui lye if, for exempls,

;/01011
t={ 1100 0]
01100

then (R/Jx = ( 'AL;&:-;féiaﬁzsé\g)‘\ )

and s = (Algé yi ;,, g,agg E,%'

Corresponding mesh, mask, and expansion operations are

defined as shown in Sec. VIII of Appendix A.

€.8 Secan operations

Operations, such as the summation of all components of a
vector, which require a scan of all componente of a structured
operand will be called sean operations. The weight of a vecter x,
denoted by g(x) and defined previcusly as the sum of the components
cf x, 15 a speclal case of the application of any associative

binary operator 6 to all componentg of the vectcr z. The
8-weight of x will then be denoted by /%, and defined (Def. 59)
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ag follows:

T A @x,0 >0 x_

2 1°
For example, ¥/ = o(x), %x is the product of the components of

iy and

Vix = TV Ty Vot Xy

is the logicel sum of all compcnents of .

The O-weight Operatox;“is exteunded to matrices by the
established conventlon of using & single virgule to denote an
operation extending over rows and a double virgule to denote an

operation extending over columns. Thus

8 X

e m— VR X i 5 @ e 8 X

19

e R eee 8 L,

]

N
For example, if
1 0 10
X= 10 0 1 0
1000
then ¥¥ = (1,1,1) and %X = (1,0,1,0).

Exemple 6-3. Using the ledger | defined in Example 6=2,
produce a listing 7 of name, account nurber, and balance for each
account, having & qusrterly balance less than twoe dollars for four

successive quarters. The required selection can be based upon the
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status in each of the previous three quarters obtained by enlarging

io

and V"‘6 are logical vectors defined by - 4 =1 7,

- A=l
L6 - U

t-hro mﬂ‘b‘ = to ﬂle fm I = Ezl,Lz’.JB’lL,l‘s’Lﬂ, 'here lw 9 Ivs,
—
|5 -, J. y
» and L‘..J is the logieal vector (LB < 2¢) computed in
periocd j. The production of the matrices 7 and i is then described

by Progran 6-13.

Program 6-13. Step 1 shows the addition of a seveath
column 40 I. determined by the current balance (See Def.|51).
Step 2 shows the application of the logical and operation to each
of the rows of the metrix formed by the last four columns of L.
Step 3 shows the selection performed by the logical vector found
in step 2. Step /. shows the deletion of the oldest status vector Ll»
t0 leave the matyrix I, in the form appropriate to the succeeding
period.

The use of a scan operation on a vector of sets is also
instructive. Let 2 be a vector of sets, that is, ay = Ai. Then
since the Cartesian product operator () (Def. 87) is binary and

esgoclative, the statement
C —®/a

specifies the set C= 4°® A2 @ «-+ 4™, In particulsr, the
homogeneous product set [A]k may be denoted slternatively by
@ (a"/Ae’é) . |

-For a vector of sets a it is convenient to define (Def. 3)
ths dimension vec-;zory(a) as follows: :-i(a') = v(-ai), and
w((s)) = w{a). Then v@a) = %/,(s), and for the homogenecous
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produst set ¢ = ®/(cd/ae), (o) =YoluIAa)e) = wa))i.

If b is eny member of the product set ®/z, then cleerly
v(u) = v(z). MHoreover, the product sets containing compressed,
expanded, meshed; masked, or permuted vectors can also be expressed
easily in terms of the original preodust sets. For example, if ;
beE ®/a, then 1/t & ®/(u/a). Similarly, if m is any mapping or
permutation vector, then b € Q/am .

Since the operation of determining the maximum of several
nunerical quantities X,¥y+-+,2 18 assoclative, maximization cver
the components of a vector could be treated in the manner described
above. However, since it 1s often necessary ‘o determine the
indigeg of the conponents for which the maximum occurs instead of
{(or in addition 4t0) the value of the maximum itself, an alternative
treatment is p:.;eferred. The maximization operator determines a
logicael vector whose unit elements indicate the location of the
maxima.

Meximization over the entire vector x is denoted by &fx, and
1s defined as follows: if v = <[x, then there exists a quantity m
such that v/x = m: and sush that all components of v/x are sirictly
less than m. The maximum is assumed by a single component of x if
and only if v(v) = L. The actual value of the maximum is given by
the first (or any) component of v/x. Moreover, the indices of the
maximum couponents are the components of the vector v/t . (See
Def. 166.)
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More gonerally, the maximization operation v<—-—-urx will
be definec so ag to ignore the components of Wr. Specifiecally,
¥ émmvfc implies thet v/x =ne and that ((+ A u)/z < me) = &
Th2 operation nay be visualized as followe — a horizontal plane
punched a% points corresponding to the zeros of u is lowered over
a plet of she components of x, and the positions at which the
plzne touches them ave the positions of the unié components of v.
Fer axample, maxinization over the negetive components of x is

dencted by

T e e 0)rx,

;gh

L if x = (29 "3:! '7;' 05, A, °3’ 6), th@n v = (0,1,0,0'0’1,0),
/L= (-37“3)2 ("‘/3}‘1 = “39 end 'i’/ = (2’6)-

Ordinary marimization is defined with respect to order in

»
\
s

the veal mmbers and can be generalized directly to any ordered set.
Thug if ' is any element of the homogsnmeous product set [A]v(z),

tke statemont
T omemnem L XJ{

implies that +/x = me and that ((3 A 2)/x 5 me¢) = o For example, if

ccklocleclcecloeclol
| @6@@435082@92}
reprecents a hend of cards according to the conventioms of

Example &L, then




lg' % 5 (050,0505050,0,1,050,1,0,0),

€ g;l = (0,0,0,0,0,1,0,0,0,050,0,0) «

Maximization snd minimizetion are extended to metrices as indicated

by Defs. 66 and 71. Maximization over the entire matrix X is

indicated by = l—z » Where I is the full matrix of all oues

(Dof. 130). Minimizetion is denoted by u fx, and is defined anslogouely.

6.9 Mappirgs and permutations

& funetion £ which defines for each element By of a set B
a unique correspondent 4y in a set A 1s called & mapping from B
to A If f(Bi) = &, the element B, is said to map inio the
elament Ay If the elements f(,Bi) exhaust the set 4, £ is said to
map B onte 4. If B mapa onto & end the elements f£(B;) are all
distinect, the mapping is said to be one-to-one or biunigue. In
this case, »(4) = ¥(B) and thers exists an inverse mapping from B
to 4 with the same correspondences.

A program for performing the mapping £ from B to A must
tharef'ore determine for any given elemsnt b ¢ B, the correspondent
a s A sush that a = £(b). Because of the comvenience of operating
upon & solid subget (infix) of the integers (e.g., upon register
addresses or other numeric symbols) in the automatie executiom of
programs, the mapping is frequently performed in three suscessive
pbases, determining in turn the following quantities:




(1) the index i of the element b in B,
(2) the index k sueh that A = f(Bi),
(3) the element 4.

The three phases are shown in Progrem 6-14(a). The first
(steps 1=3) is equivalent to mapping B onto the dense set of
integers {(l,v(B))}, and ie normslly performed by seanning the
sat B in crder end comparing each element with the argument b. The
second ie a permutation of the integers {(1,1&(8))} which may be
described by a vector j, such that 3y = ke The selection of ji
(Step 4) then defines k whieh in turn determines the selection of

Ak on step 5.

Example €-4. If B = Japple, booty, dust, eye, night} is
a sot of English words in alphabetical order, 4 = {Apfol, Auge,
Beute, Necht, Staub} is a set of German words alsc ian alphabetical
order, and if the function required is the mapping of a glven
English word b into its German equivalent & according to the

following dictionary correspondences:

Bnglish: apple booty dust eye night
German: Apfel Beute Staub Auge Nacht

then ] = (1,3,55254)s If b = "night," then i = 5, 11 = 4, and
a= Al; = HNacht.
& vector (such as the veetor | occurring in the definitien

of a mepping operation) whose components are each distinet elemente
of the set {(l,v(ﬁ))}ia called a permutation vecter. If A is any
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sot and | is any compatible permutation veetor, aand if B is the
' set defined by the relatiom

B1 = Aji

then B is called the permutation of A by | and is denoted by
B = ‘3‘ Beceuse permutation by the vector /| is used in the mapping
from B to 4, the permutation ] is said to map B omto A, although
ths permutation is actually performed upon A. The identity
permutaiion veetor will be denoted by : and defined as ¢ = ko
Cleerly, & B Ao

The operation of permuting a zet will be axtended
analogously to vectors, that is, b = a, defines the vector b sush

that by = “j o If two permutation vectors | and k satisfy the
i
' relation i} ¥ Ly then k 1s called the inverse of j. Since

= ¢ %-%\kj = ., the relation is mutual, and ; is also the
inverse of i« Permutation 1s assoclative (but not commutative)
and therefore

(vj) = (v)Jio

i

In particular, if i and § are mutually inverse, then

(vj) =(v), =v =ve

1 ' S
I? k is a permutation vector inverse to j, then
Progrem 6-14(b) describes a mspping inverse to that of

Program 6-14i(a). The inverse mapping can also be described in

terms of | as is done in Program 6-1%{v:). The selection of the
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ith cemporent of the permutation vector ls then neeessarily ?eplacad
by a gean of its components.

The vestor L required for the mapping inverse to Example 6=4
is clearly = (1,4,2,5,3). The vector « inverse to a given vestor

§ cen in general be defined by the impliclt statement

ﬁé_t-—-c wo -

which mey be read as "¢ specifies »‘? L with respect to?"' , and
interpreted as specifying the permuLtion,{% with respect to an
already specified vector 3:' » The gymbol "wo" will be used freely in
similar implicit statements to separate the main specifying variable
from the following auxiliary variablea.

The vee of contracurrent indices will be indicated by a
negative sign as ususl. Thus, the set B = A ie the set A taken
in reverse order, that is, B 3 {A»l,ac2, oA A&' Hore generally,
if j is any permuiation vesctor, then A_j is the set Aj taken in
reverse orders

Permntation is extended to matrices &s follows. Rom
permutation is defined by

B A Gup By =4,

L
and effects a rearrangement emong the columng of the matrix.
Column permutation iz denoted by aP.

I+ is convenient to define a more general mapping operation
which allows both suppression and repstition of components as well

a8 the rearrangement provided by the permutation operatiom. If,
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for example, &4 is the set of alphabetic characters, and j = (4,5,554),
then the veetor & = Aj may reasonably be interpreted as the word
(@, ,,@), glthough i is not a permutation veetor. Mereover,
420, ® @ @ G 2= {® @@ @» o
n = (2,1;9450), then ¢ = B msy be interpreted as the vector
( , @, @ ) whose components are clearly the elements (in
proper order) of the set 4 A B.

Fermally; a mapping vector m is defined as a vector eash of
whose oomponents is either an integer or a null element. A gei

mepping is denoted by

ce— B

and defined as follows: o, = B » for t & {l1,11))}, where
kez = l((n. # 0g)/u)=¢, v(B)c—‘.

Normally, the nomnnull elements of = all belong to the
index set of B, in which case k simply comprises the nonnull
elements of m, that is, k = (wfes )/m. The reduction med v(B)
simply ensures that the mapping operation is defined for any
mapping vector n regardless of the dimension of the set B to
vwhich it may be applied. If = is a permutation vector and
»(u) = v(B), then k = = and the mapping is a permutations

Since a mappling vector = may contain two or morve
identical nonnull components, the entity Bm may contaln two cr
more identical components and muet therefore be considered as:

a vector rather than as a set. Like permutation, mapping may be
extended directly to vectors and matrices, as shown in Defs. 168-171.
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If A and B are two equal sets, then the association of
identical elements establishes a one-to-one corrsspondence between
the sets. The symbol 4(A<— B) will denote the mapping vecter &
which maps B cnto 4, i.¢., B = Am' 1Z, for example,

12 [0 @ @ @) waz= {® @ @ @ wen
#(A €—B) = (3,2,4,1), and 4(B€—— 1) = (4,2,1,3). If A =B,
then (L €=—B) is clearly a permutatiocn vectar, and 4(B <& 4)
ia the inverse peramutation.

For arbitrary sets, the mapping vector m = 4(A¢—B) is
defined more generally as a vector of the same dimension as B sush
that my = k i B, = A4}, and my = o HBifa. If e =4, and
C=Ba A, then clearly ey =C4- For example, if
= {00 0 @ Q) =iz (0@ @ @) we
a = slde—B) = (2,1,0,4), < = & = ( () (&) (@), ond
CzBaA= {@, , @}.

In the analogous mapping from s vector b to a vecter o
{dencted by s{a «— L), the possibility of two or mors identical
components in a leads to potentisl ambiguity which will be resolved
by choosing the Index of the first of any group of idsntical
components. Formally, if n = 4(a <——1), then my = © if b, £c,
~and 3, is otherwise the smallest integer such that by = ami ’
where C is the set of distinct esomponente of s This definition
elsarly covers ell of the simpler ceases previously consldered, and
ths mapping vector m = 4 (2 €—— B) may be defined for any set or

vector ¢ and any set or vector B, as shown in Def. 172.
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Exanple 6=3. Let it be required to determine the kth
element of the set B A A. This may be performed efficiently by
Program 6-15 which applies the mapping vector n = 4(A€e—B) to
the set & rather then produce the set B A A explicitlys If the
set3 A and B are fixed, the first two steps of the program need
be performed but once and need not be repeated for each velus of k

treatad.

It is sometimes useful 4o consider a set & as a vector,
that is, tc specify a veetor = such that ¢y = 440 This is denoted
by the stetement

G e ],

Yector operations mey then be applied to the vector ¢. Fop
example, Frograms 6-1,(a=e¢) may be reformulated more coneisely in
terme of vector operations as shown in Programs 6-16{a-e¢).

Becaus‘e it mey contain dupliecate components, a vector cannoct
speclfy a set so directly as a set specifies a vector. I% is,

however, useful to denote by the statement
Gé——&.

the set C of distinet components of 2, specificelly the ordered set
obtained by suppressing each recurrence of any repeated component

of the vector. If, for example, a = { , , @ » , @, )s
then C 5 {@, @ @ @}, and moreover, 4(C €— a) = (1,2,352,452) s
and v(aé=——0C) = (1,2,3,5).
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It is sometimes necessary to reorder or gort (i.e., to
permute) the components of a numerical vector x 8o as +o arrange
them in ineresasing order. The permutation vector j required to
effect this will be called the ordering vector of x and will be
denoted by ] =®x. Then y = % has the property that v, s v,
for § < k. Since the components of z need not be distinet, this
definition of the ordering vector must be refined so as to remove
potential ambiguity. This is done so 28 to preserve the initial
relative order of each set of equal components. Formally, i is
defined ag follows: J is a permutation vector such that either
Ty < 5"1«»1 OF 53 = ¥y and 31 < "’141»1' If, for example,

% = (3,17,2,3,5), then i =@x = (3,1,4,5,2), and y = % =
(=2,3,355,17) .

More generally, any vector a which is an element of the
homogeneous product set [l;_‘ vla) may be ordered on the set B. Thus
j s%& is defined (Def. 173) as follows. If ¢ = a,, then j is a
perunutation veetor such that either ai; Ci61 O 23 = 9441 and
iy < dgeqe Ify for example, a = (3, @, 6, @, 6, @ ); and

52 {(2,30, @ @ @}, then § =Qa = (1,3,5,4,2,6), end
ay = (3,656, @, @, @ [

Rotationg- The rotation operation KA defined in See. 1.8
is a2 special but very important case of permutation. Its
definition and its extension to rew and column rotations of
matrices are shown in Defa. 174-18l. BEriefly, the row ro on

G -T2 rotates each row of 4 so that (‘i = kit&i. For
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,ggmmzngggm,cf-kfh¢=aci=13¢&1.

Any vector rotation kT mey be expressed as a
permutation by j = kTL, the corresponding rotation of the
identity permutation vector, that is, ke = & 5 The general
row (or column) rotation is more complex lthnn a single

permutation, but for the special case t = kg, (k«ﬁa = AJ.

Ranking. The first step in performing e mapping is, as
illustrated by Progrem 6-14, the determination of the index in a
set B of some argument b. Because of its importence, this
operation ig given the special name of ranking, and the special
notation ¢(b wo B) defined (Def. 89) as follows:

c=iifb=Bi

ce— (bwoB)&=>|o=01fb¢B

More generally, if b is a vector belonging to the product set @/a,
then the operation ¢(b we a) is defined as followss

=1ifb, = (a,)

@ e (b Wo a)é:}{sj J 31
]

J

= o if bj {aj.
Similarly,
k k k
¢f=11rBf= (&
% (B wo A) d J 3)1
§=ouﬁfﬁ,

where each component A? is a set-

If, for example,

cJolelelcyolelelelclotele
@@+ 502 209 2

a
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S and D arve, respectively, the set of suits and the set of
denominations of Example 6-1, and 2 = (S5,D), then L(Hl Wwo 2) =
(2,13), c,(!,2 wo &) = (1,5),°°, :_(Bl3 wo &) = (2,1). Moreover,

gince the outer produsct

(Def. 50), then

2 1 3 2 3 £ 3 21 3 1 9 2
L(ﬂwo«l«.&)=
13 51211 3 2 412 ¢ 1 © 8 1/.

The actual value of the rank of arn element b in a set B
(thnt isy (b wo B)) depends upon the origin used for the index
set of B The rank may therefore be referred t¢ as the O-origin

or the l=origim rank according to the system in use. The guantity

¢(b %o B) = Q(B)

ig clearly independent of origin.

In operations such as left Justification and right
Justificationgit 1s convenient to be able to specify the weight k
of the longest prefix (solid inisial sequence of 1's) in a given
logical vector u. The quantity k is called the prefix weight of .

I+ is denoted by
K g 1)
and defined (Def. 115) as followa:

= mx (54 I6)x (0.
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12, for example, = = (1,1,1,0,1,0,1), then a{u) = 3, ao/u = (1,151),
and :;;4'/u = (1,1,1,0), If x is a numerical vector which is to be
compressed 80 as to eliminate all leading zeros (i.e., all zeros
proceding the first significant diglt), the compressed vector ;7 msy
be defined as followe:

ké— afz = 0)

Je—0 k/,'z; &
Alternatively, x=may bs rotated left by k sc as to produce the
left justifled vectors = kT with the dimension unchanged.

The suffix weight is defined analogously and iz denoted by
wfit)» Cleerly, a(;;j) =w(u'1) = j. Moreover, if u = 0, then
a(n) = w(z) = 0, end if u = 2, then aln) = w(y) = v(u).

The row prefix weight of & logical matrix U is a vector &
whosa ccmponents ere the prefix weighte of the successive rows
of Us It ig denoted by = ofU). The column prefix weight is
defined analogously snd is denoted by ¢ ((U)). Row and columa
suffix weights are elso defined as shown in Defs. 119, 120.

A numericel matrix ¥ may be left justified by the rotation
ali = O)Tx, or top justified by the rotetion a((r = 0))ﬁ§;.
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6.10 Algsbraic vector and matrix operations

The algebreaic operations defined upon vectors and matrices
appear in Sec. IIT of Appendix A. Definitions 12-45 represent
straightforward extensions of common algebraie operations defined
upon scalars. Definitions 46-51 cover the remalining elementary
operatiocns of matrix algebra. The incorporation of the compress
ard expsmnd operations leads to a powerful extension of ordinary
algsbra whose basic identities are summarized in Appendix B. Froofa
of these ijentities are left as an exercise.

Any positional ropresentation of a number in a base b systen

can be considared as a mmericsl vector z whoss base b value is the

pumber represaenied. HNors gensrally, ¥ may represent a number in
a mixed radix system in which the successive radices (from left to
right) ars the successive components of a vector y.

The base y value of the wector :x is a scalar demoted by y.Lz

ard defined (Def. 52) as

L.

b #x = 6(aXx),

]

whers # 5 = 1, and

T P N R EXTEN :

If ¥ = b€, then 5, = b &1 o4 (b€)Lx is therefors the value
of the base b mumber formed by the components of z taken in natural

order. For example, if = = (1,2,2) end y = 3¢, then
vl = (122); = (17)y,.
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Mors generally, if y is nol of the form y#, the walue of
v 1 = 1s the value in the mixed base system ryseeesy.y of the mmber
formed by the coxponents of . The weight sssigned to the component
%y i8 y; times the weight assigued to the component . For
example, if the successive componeuts of :: represent elapsed weeks,
days, hcurs, minutes, and seconds respsctively, and if
v = (52,7,24,60,60), then ‘.L.z iz the elapsed time in seconds.

The bsss 3 value of a vector allows a further useful
interpretation, for if v is any mmber (not mecessarily integral)
tren {y¢)l = 1is the value of the polynmomial

R AT T PR R

It is frequently necessary to specify a wector j as the
base b representation of an integer k. This specification is
implieit, and the suxiliary variables must be indicated as follows:

b6 li e——Xkwo b.
The statement
(109 § =— (29| & wo w3)

denotes & conversion from dyasdie to decimal. The dimension of the
resulting decimal representation must, of course, be separatsly
specified as indicated by the auxiliary variable (j).

Te ensure urndquensss ip the statement
klj «—1wok

which specifies | as the representation of i ip the mixed bese k,

i% is necessary to restrict the integers in any position of the
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representation te less than the relative weight of the next higher

component, i.e., 0 < ;31 < 3:1. Then

g2lyje— 1111w

denotes a conversion from the mixed base I:l to the mixed base kz.

The dimension of { is determimed by compatsbility with the specified

wactor 23:2.

The bese 7 operation on vectors ls extended to rows and to

 eolumms of s matrix inDefes 53 and 54, Tespeotively. ThuE —

5 S— y_Lx i :;I.;t'.i,

g+ yﬂ.z ‘=’zai = ;r.l_:?f.i.

' If & 18 a mumerical vector belonging to the product set %/,
where each component 8y is a solid set of integers of the form
{(o,(k- g.)i)}., then v(e) =k, and the O-origin rank of x in 8/a is
equal to the base & value of =. If, for example, x = (0,2,1,13)
is the elapsed time in days, hours, mimites, and seconde, then

e ={ (0,7-1)}, flo, 242} , {0,60-1)}, {f0,60-1)}),
. y=(rug0e),———— —— — —
and z =& | x = 7273 is indeed the O-origin rank of x in %/, that
is, x 1is the 7274th element of 0/zi.
More generally, for an erbitrary vector I: belonging to a

product set @/z, its O-origin rank in G‘/ez may be determined as
the base v{s) value of ¢(b ir &)-¢¢, that is, of the O~origin index




of » in m. By analogy, this will be denoted by v(a.).]_b and defined
)
as follows for all b€ ®/u

'v(a)_!ib = 1{a) .L (e(bin g)-g€).

The defimnition can bs extended imwediately to any compatible base

7 as follows:

vl b= y1((b 1n o)-69.
&

If, for example, b = ((3),(q)), S and D are the sets of
Exanple 6-1, and = = (S,D), them “(a) = (4,13), and
»(a)] ® = (4,13) | (1,10) = 23. Moreover, if
g.‘

N [@@)@@@@@@@@@]
T l@e®@4 3 s®s 2Q) 09 2

and § = ©(¥(e) 1L 7), then (assuming O-origin indexing for Ji also)
a

§ = (1,8,10,12,3,7,0,9,4,6,11,2,5)

, -[00000E000000)
T les@2@®@®2 4 5 9@® 3

is the hand reordered on the product set S® D, that is, ordered
on denomination within suit.

6.11 lLevels of strusture

Just as the matrix is defined as a vector each of whose
components is a vector, so may further levels of structure be
established by defining a vector each of whose components is a
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matrix, and eo forth. Although in certain fields, such as tensor
analysis, it is convenient to define more general arrays whose
rapk specifies the nmumber of levels of structure (i.e., zero for
a sgcalar, one for a vector of scalars, two for a vector of vectors
(matrix), three for a vector of matrices, etc.), the notation will

here bs limited to the two levels provided by the matrix,"' and

7 The only essential particularizationm to two levels occurs in
the provision of single and double symbols (e.ge., "/" and "/7;
"t and #fln; v | % and " ]| ") for row and column operations,
respectively, ard in the use of superscripts and subscripts for
denoting rows and columns, respectivaly. In applications
requiring multiple levels, the formsr can be generzlized by
adjoining to the single symbel an index mhich specifies the
coordinate {e.g., "{" and "é", for row and column compression,
and, in generel, "/".) The latter can be generalized by using
a fector index subgcript poesessing one component index for each

coordinats.

passage to grosser or finer levels of structure will be indicated
explicitly.

For example, if a sequence of vectors yl,yz,.a.,ym are to
define the column vestors of the matrix X, this will be denoted by
the statement

Z{i P — ;71, i€ {(l,m)} .




On the other hamnd, the statement

2te— gt 16 {(,m},

defines the matrix 7 whose row vectors are yi. Moreover, if 155 is

a member of & sequence of k matrices, the vector v whese components

are the metrices 1, may be defined by the statoment
v e— T, 1 €Lk},

Certain of the selection cperations are particularly con-
venisnt for deseribing tramsitions betwsen different levels of
structure. For example, the row compression ¢ <— H/4, (Def. 138)
specifies the components of the vector ¢ as the successive componentis
{in row order)) of the matrix 4 selected by the logicel matrix U.

If 7 <%= (A# 0), then ¢ is the veetor of nonzeroc elements of A
which is often used together with the logical matrix U to provide
a concise reprasentation of e so-called sparse matrix containing

numerous zerc olements. Clearly, the row mesh (Def. 147) serves

to reconstitute the matrix &, that is, \e,i,s\| = 4. Alternatively,

4 = 7\s. Horeover, the row compression a<— [ /4 and the eolumn
compression b @—— [ /4 can be used to define the row list and

golumn Jist vectors (Defs. 143,144) obtained by teking the elements
of A in row arnd in column order, respectively. Finally, the diagonal
elements of a matrix A define the vector a as follows: a <— ] /4.
Other uses of these and related operationa asre developed in the
exercises. |
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6.12 Files

Yany devices used for the storage of information impose
certain restrictions vpon its insertion or withdrawal. The items
recorded on a magnetic tape, for exemple, may be read from the tape
much more quickly in the order im which they appear physically on
the tape than in some other prescribed order.

Certain storage devices are also self-indexing in the semsa
that the item seleeted in the mext read from the device will be
determined by the ourrent state or position of the device. The
next item read from a magretic tape, for example, is determined by
the position in which the taps was left by the last preceding read
operation.

To allow the convenlent deseription of algorithms constrained
by the characteristiss of storage devicss, the following special
notatlon will be adopted. A file of length n is a representation

of a vector x of dimension n arranged as follows:

k(l) ,Xl,). (2,) ,3112, en o,k( n) ,X_V{x) ,‘)\(‘V(x)"’l) 2° ot’)\("l) °

The operation of transferring a comporent from = file to specify

a quantity y is called reading the file and is denoted by y «+—@.
The transfer is terminated by the occurrence of a partition symbol,
ard if this symbol is )\(j) the file is then said to be in pesition j.

A file may either be read forward (demoted by @) or backward
(denoted by 1@) « If a file originally in position j is read

forward 1t transfers the component x j and stops in position
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(3+41), § ¢ {(l,v(;:»-:) )}. A file read backward from positiom j+ 1
trensfers the cosponent , end stops i position j, j € {(1,V(x))}.
The pesition of a file @ will be denoted by w(@). Thus the
statement | o-— w(®) specifies j as the position of &, whereas
(@) =—— § positicns the file to j. In particuler, m(@) =— 1
\'denotes the rewirding of the file, and 7(®) =— -1 denotes winding,
i.8., positioning to the end of the fils. Any file for which the
genoral poeitioning operation m(®) «—— j§ is to be avoided as
impossible or insefficient is called a seriel or serisl-aceasss file.
4 file may be produced by a sequence of rscording statements,

gither forwards:

D “‘_}21, i= 1’2’.°"U(:{)’

or backward:

1@“——-1{1, 1=v(x),V(x)=1,e00,1"
As im reading, each forward (backward) record operaticn inerements
(decrements) the pesition of the file by one. A file which is only
recorded during e process 1s called an output file of the process;
a file which is only read is ealled an input file.

Differznt files occurring in a process will be distingulished
by right~haud subscripts and superscripts, the latter being gemerally
reserved to denote major classes of £ilss (e.g., input and outpat).
In a forwerd read or record, the zero prescript may be elided.

Eech terminel partition (that is, A\(1) and )\(=1)) assumes
a single fixed walue denoted by \. Each of the remaining partitions




2 j) may assume one of several values demoted by xo,xl,,..,xk, the
partitions with larger indices normally demarking larger subgroups
within the fils. Thus if z were the row list of a mairix, the last
componsnt might be followed by the peartition 'Az, the last component
of sach of the preceding rows by )\1, apd the remaining somponents
by Aye In recording an item, the assoclated partition is indicated
by listing it after the item (e.g., ® <——y,x2), except that the
partition )\0 is usually elided. The indisated partition then
follows or prescedas ithe associated item in the file eccording as
the recording is ferward or backward.

The indication provided by the k distinet partition symbols
is used to control an immediate {k+l)-way branch in the program
following sach rezsd operstion. The branch is determined by the
partition symbol which terminates the read.

Example 6~5. A set of m imput files Qi, i€ {(1,&)} , each

terminated by a partition >‘1 are to be copied to a single output
file @7 as follows. An identification quantity s is to be recardad
first and successive items (componente) are then chesen in turm

from files 9&,@;,--!&;’,#&3,"«., always omitting from the sequence
any exhausted file. The entire process is dessribed by Program 6-17.

Program 6-17. Step 12 indicates a read from the kth input

f£ile to specify the varisbla b. Step 10 cycles k through the
values 1 to m, and step 11 allows the reed on step 12 %o ocour
only if o = 0. The logical vestor u is of dimension m and desig-

patas the set of exheusted filss. It is respecified by step 13
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whonever a file is exhsusted (as indicated by the cecurrence of a
partition ,\1 in the reed on step 12).

Each read on step 12 is followed (either immediately or
after execution of step 13) by step 8, which records on the output
file the quantity b just read. Stsep 9 terminates the process when
all Tiles are exhausted. Steps l-4 perform an initial rewind of
all files, and steps 5-7 initialize the varlsbles k, m, and b.

The selectlion operation defined upon matrices can be appliad
in en obwious way %o an srray of files @‘}. For example, the
atatement

@) +— ¢

dsnotes the rewinding of the row of files Q}', j€ {(l,‘v(Q))};the
statement

v(@j) G &

denotes the rewinding of the golumn of files Q}, ie {(1,/4(§) )};
and the statement

u/ﬁi a— 2/b

demotes the recording of the veotor component p, on file &j for

all j such that u, = 1.

J
As for vectors and matrices, either l-origin or O-origin
indexing msy be veed, and will apply to the indexing of the file

positions es well as to the array imdices. The prescripts, however
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(denoting direction) remain the ssme in either system. Thus if
O-origin indexing is used, the rewind and wind operations become
7(8}) <— 0, and 7(#})e— -0, respeotively. O-origin indexing
is used in the following example.

Exemple 6-7. Files2) and®) contein the vestors = and
¥, respectively, each of dimension m. In the first phase, the
soaponents are to be merged im the order :b,sb,zzl,yl,...,x.o,y_o,
and the first n components of the resulting vector are to be
vesorded cn file &, and the st n on file §]. In other words,
the vestors = = /s, and ;rl = JY/s are to Le recorded on Qé'
andQ%, respectively, where 3 =\x,u,;f\, and u = (0,1,0,1,000,0,1)¢
In the next phase, the roles of input and cutput flles are reversed

1 ard %, that is,

and the same process is performed upon ::
w2 = un/(\:;l, U, yl\), and 52 = c@/(\x]‘,n,yl\) are recorded on
files Qg andﬁg, respectively. The process 1s to be contimued

through m phases.

Progran 6-18. The program for Example 6=7 begins with the

rewind of the emtire 2 X2 array of filee. To obviate further
rewinding, the second (and each subsequent even numbered) execution
is performed by reading and recording =1l files in the backward
direction. Step 6 performs the essentizl read and record operation
under control of the logleal vector u whose components Ugstgstig
determins respectively the subscript of the file to be read, the

subseript of the file to bs recorded, and the direction of read




and resord. The file superseripte (determining which classes serve
as inmput and output in the current repetition) are also determimed
by vy, the input being u, and the output "u'.j. The loop 6=8 ecopies
n items, slternating the input files through the negation of uy

on step 7. Whem the loop terminates, ", i= negated to interchange
the outpats, and the loop is Tepested unless u, = uj. Equality
occurs and causes a branch to step 3 if ard only if all 2n items
of the current repetition have already been copled.

Step 3 decrements m and is followed by the megatiom of u
on step 5. The component g mast of course be negated to reverse
direction, but the msed to negate vy and Uy is not so evident. It
arisss because the copying order was preseribed for the forward
direction, beginming always with the operation

& o
An squivalemt backward copy must therefore begim with the operation
& — P -

Not all computer files have the very general capabilities
indicated by the presenit motation. Some files, for example, can be

read snd recorded in the forward direction only and, except for

rewind, esunot be positioned direstly. Posltioning to an arbitrary
position k must then be performed by a rewind and a succession of (k=1)




subsequent reads. In some files, recording can be performed in
the forward direction only, and the positionz are defined only by
the recorded date itself'. Consequently, recording in position k
makes unreliable the data in all subsequent pesitions, and
rocording must alweys proceed through zll successive positions
until terminated. If the tramslation from the program to the
computer codi®g is to be kept simple, the file operations employed
should be limited to those within the capabilities of the awvailable
files.

6013 Trees

A structured operand is more than the collsction of its
gomponents, since certain assoclations between these components
are also implied. The assceciations in a veestor, for exampls, can
be deseribed by a single sequence as despicted graphicelly in Fig. 6-1.
The most general type of structured operand is called a directed

linsar greph, 1te components ere called nodes, and an association
from node i to nede ] is called a branch from node i to node J.

A tranch from node 1 to node j is said to lgaye node 1 and to enter
nods j.

A directed lipsar graph admits of g simple graphieal repre-
sentation as illustrated by Fig. 6=2. The nodes are depicted as
eiroles, end the branches as directed lines. The nodes might, for
exempls, represent places, and the lines, comnecting streets. A
two-way street is then represénted by a pailr of oppositely directed
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lipes as shown betwesn node2 8 and y. The structure of the graph
is represented entirely by the directed lines.

If » is e vector whoee componenits are nodes of a given
graph, and if for each i € {2, (p))} there iz an asscciation from
node Pyl to node Tys then ; is called a path of length {(n) from
node py %o mods v 3. Nodes py and p_j are called the initlal end

final nodes of the path, respectively, and elther may also be called
a terminal node. Any infix of a path ; is also a path (posseseing,
in general, terminel modes different from those of p), and is called
a subpath of pe A4 subpath of p not identical with p is called a
proper subpath of p. Any subpath of - is sald to be contained in
1, and any proper subpath is sald to be properly contained. If
there exists a path from node i to mede j, them node ] is aald to
be reechable from pode i.

A path of length one is called a trivial path, and a non-
triviel peth whose torminal nodes are identical is called a gircuit.
A path whose proper subpaths do not include a eircuit is called a
minimal path. In the graph of Fig. €-2, for example,

p=(8s,t,w,2,t,x, v, w ) is a path of length eight
from node (=) to (w) which contains (among others) the proper
subpaths e = (¢t , w,n ), and da=( ¢t ,w ,u, t ), the latter
of which is = circuit. Remowval from p of the infix El/d leaves the
path e= (8 , t , X , ¥ ; % ) which is a minimal path between the
initded snd £inal modes of the path p, but vhich 1s ggk a subpath

of po The minimal path ¢ from node = t©o node w 1is not the
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S w
shorteat path from 2 to/f' , 8ince the path v = (8 , y, 8 , v ),
A

though not minimel, is shorter.

A graph (such as Fig. 6=3) which contains no circuits and
which has at most cne branch entering each node 1s called a tree.
Since each node 1is entered by at most one branch, a peth existing
between any two nodes in a tree is unique, and the length of path
is likewlse unlque. Moreover, if any two paths have the same final
nods, cne is s subpath of the other.

Since a tree contains no circuits, the lsngth of path in a
finite trse is bounded. There therefore exist maximal paths which
ere properly contained in no longer paths. The initial and final
nodes of s maximal path are called a root and leaf of the trse,
respectively. 4 root is said to lie on the first level of the tree
and, in general, a node which liss at the emd of a path of lemgth
J from a root, lies im the jth level of the tree.

4 tree which containe m roots is sald to be n-tuply rooted,

end if n = 1 it is called & rooted tree. If n > 1, the seis of
nodes reachable from each of the several roots are disjoint, for
if any node is reachable by paths from each of two disjoint roots,
one is a proper subpath of the other apd is therefore not maximal.
Likewise, any node of a tree defines a subiree of which it is the
root, consisting of ltself and all nodes reachable from it, with
the same associations as the paremt tree. Every subiree of a tres
is itself a rooted tree.

If for each level j, a simple onrdering is assigned to each
of the disjoint sets of nodes reachable from each mode of the
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preveding lsvel, and if the roots are also simply ordered, them
the tree is sald to be grdered. Moreover, in such an erdered tree,
any path of length k from a root cam be uniguely specified by an
index veoter ! of dimemsiom k, where :; specifies the particulsr
roct, and the remaining compoments specify the (unique) path as
follows: thepathnodeonlevaljismijtholmtofthom
of nodes on leval j reachabls from the path ncds on lisvel j- l.
Either O-origin or l-origin indexing can be used in the deseription
of trees, but the latter will be used exclusively in this chapter.
Attention will heneelcrth be restrieted to ordered trees,
which will be dencted by uwpper-cese boldfsce Roman cheracters.
The height of a tree T is defined as ths length of the longest
path in T and is denoted by v(T). The mmmber of nodes on level

i 1s called ibe moment of level j and is demoted by (T); the
total mmber of nodes in T is called the mement of T and is dencted
by p(g). Clesrly, v(u(E)) = w(I), and ~(M(T)) = 4T). The mmber
of roots is equal to % (T), and the musber of leaves will be denoted
by A(D).

The path in a tree T specified by an index veetor i will
bo denoted by T . The veetor : is called the index of path T end
iz also aelled the index of (T°)_,, the node at the end of the path.
The node (27)_, will also be referred to as mode i. If, for
exemple, T is the tree of Fig. 6-3, them 1 = (2,2,2,3) is the index

of the path (b,h,m,y) and of the mode y. An integral vector i is
sald to be an jipdex of T if it 1s the index of some path in T.
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It the modes of T all have diztinet values, them the index
of a node x in T is unique and will be denoted by a.(xwo}‘). More

generally,
ie— t(x wo I)

inplies that if | is any other index such that (I')_, = x, then
either v(1) < v(j) or v(i) = ¥(j) and i precedes j in the produst
set to whieh they both belomg. For example, in the tree of Fige. 6-3,
‘(hwo B) = (2,2), although the finsl modes of T'1+791) gpq p(%1)
are also squal to h.

The subtrees whose reocie are directly reachable from the
£inal node of the path T together form a tree which will be demoted
by I,. Tms if 1= (2,2,2) in Pig. 6-3, 2, consists of the subtrees
rooted st nodes (2,2,2,1), (2,2,2,2), and (2,2,2,3). If § is any
ivdex of the tres T., then (?4)3 is the tres T, , where k = (i,).

A path in T, is dencted by (ri)j. For example, if G is en ascending
gemoalogical tres with the sword and distaff sides denoted by ths
indices 1 and 2, respectively, them the paternal male ancestors

of any individual x are represented by the path vector (gi)e, where
1= t{x we G) and where the dimension of € determimes the length

of the lins considered.

The mumber of tranches leavirg a mode (T')_; is called its
branshing ratic or degres. The degres of node (T')_; is denoted

by ( ('rj"),l). Moreover, €(x) will demote the value §( (1‘5‘)_1), where
1= t(xwoT). Tms in Fig. 63, 6(k) = 8(2(%?)) 1) = 3, although
(3(391)).-1 — g((r(Bpl) )-1) = 0.
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A vector | of dimemsion 4(T) whose components give the
dograes of esch of the nodes of a tree T is called a degres wector
of T. Since each leaf is of degree zero, NMT) = ¢(d = 0).
Horeowsy, the mumber of roots is equal to the mummber of nodes
less the total of the degrees, that 18,/1.«‘1(}:) =v(d) = o{d). The
maximm degree cocvrring in T will be denoted by §(I), that is,
5(2) = (T a/a)yo

Example 6-8. Determine the index | such thet the path T~
is equal to & glven argument : and such that | is of lowest possible
renk im 1ts product set. The process used (Program 6-19) will be
to trace a path such that successive nodes agree with succesaive
components of the srgument.

frogram 6-19. The vector 1 represemts the path cwrrently

tracad (that 1s, T = o”")/x) and j selects the roote of the
suscessive compenent subtrees of T, for comparison (Step 11) with
the next component of the argumemt. If agreemeni oceurs, j is
appended to 1 (Step 12), j is reset to sero (Step 13), and d is
respecified (Step 7) as the degree of the new final mode of T .
The varizble 4 therefore represents the mumber of roots of the
tree T,, and is used (Step 9) to limit the range of the seen
performed by the lcop 9-1i.

If the loop falls to find & root of T, agreeing with the
argument, the branch to step 2 effects a retrestion to the previouws
ievel (Step 4), with the new seam of the current level begimning
with the next node following the one abandoned (see Step 3). Steps
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in the event that v(i) = 0, ecge, at the cutset. The exit on
step 2 oseurs omnly if the tree possessss no path egual to the
argument .

If sach of the w(T) index vecters | of a tree T is listed
together with its sssoclated node (T°)_;, the list detarmines the
Wwree complstely. Since the index vesitors sre, in gemeral, of
different dimemsions, it is converdent to append mull ecomponents’’

7 In the l-origin indexing system used hers it would be pessible
%o use the memeric zerc to represent the msll. In O=origin
indexzing, however, zercs cocur as components of index vestors
and mast be distinguishsble from the mulls used.

to extond eseh to the conmon msximm dimemsion v(T). They may
then be gombined in an irdex matrix of dimension u(T) »(T)

whish, tegether with the associstsd node vector, complstely
deseribes the tres. For exsmple, the tree of Fig. 6=3 is deseribed
by the nede veetor n and Matvix T of Fig. 6=4(a).

Certain information whieh 1s directly provided by the
degree vestor is provided omly indirestly by the index matrix.
Horgower, the degree weotor and mode vector together ecan, im
sortain arrangemeats, provide a complets description of the tree
which is mere eoupset, and for meny purposes more convenisnt, than
that provided by the node vestor and index matrix. For these
reasons, the degree wsclor will ba ammaxed to the array of node
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vestor and index matriz es shown in Fig. 6=4(a) to form a full iish
matrix of the iree. The degree vector and node vector iogether
will bs salled a ligt mateix.

Formally, the full list metrix ! of a free T is defined as
follews: T2/ is an index matrix of the tree,li,is the associated
degree vestor, and il, is the assoclated mode vector. Thus for sash
X € {(1,,41(1’))}, X = 8((gY)_5), end i = (1)_;, where i 1s the
nonmll pertion of /L, that is, 1 = ((FPAK) # 0 e )/(5YE).

Tha serresponding 1ist meteix is o2/,

Sipes a full list matrix provides a complete description
of a tren regerdless of the order im whish the nodes oceuwr in the
1ist, any columm permutatiom P = ¥” (that is, eny reordering among
the rows) is also a list mstriz. Two particulsr arrangements of
the full list matrix are of prime interest beesuse oach possessse
the following properties: (1) the nodes are grouped in usefuvl
ways, and (2) the liat matrix (l.¢., the degree veector and node
vactor) alene deseribes the troe without referense to the assosiated
index matrize They are called the full Jeft 1ist matrix snd the
full right list: matrixz, and are dencted by |T and [T, respestively.
Figure 6=4 shows the full left apd full right lists of the tres of
Fig. 6=3.

The left list index mateix I is left justified, that is,
the mull slements are appended at the right of each index. The rews
13 are arvengsd in incressing order em the fumstion (v(4)2) 4h T,
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where 4 = {o,l,z,.,...S(;)}. Equivalently, the rows are in inereasing
erder on their values a# decimal (or rather, (8§(1)+ 1)=- ary)
munbers, after replacing eash mull by 2 sm."'

# These statements hold only for l-origin indexing. In O-origin
indexing, 4 = {0,0,1,2,.,.,1,3(3)}, erd in general
Am {e, (@,645(z) )} :

The right list index matrixz I is right justified and is
ordered on the same function, namely (v(4)€) f= 1. From the
example of Fig. 6-4(b) it 1s clear that the right list groups the
modes by ievels, i.e., level j is represemtad by the infix
(14 E)7(13), wheve k = (1), and 1 = (eI /D). In
Pig. 6=4(b), for example, ~(T) = (3,7,8,5,3), and if j = 3, then
X =8, 1= 10, and level j is represented by rows i + 1 = 11 to
1+ k=18, The right list is therefore useful in exsouting
processes (such as the pth degree selsction sort of Ses. 8-5()
whm:'quinaamorsm;iw levels of the tree.

The 1sft list groups the modes ly subtrees, i.e., sny node
(;.gi)_l is followed immediately by the nodes of the subires T,.
Formally, if T=T2/(T, and if 1= (I = 0 6)/15, then the tres
1, is represented by the infix (kcy *%2))/|2. I Fig. 6-4(a),
for exemple, if k = 16, them i = (2,2,2), 4{T,) = 6, and T, is
represented by ‘rows 17 to 22 of [T. The left list is therefore
useful in processes (such as the construction of a Huffman code and
the evaluation of a compound statement (Sec. 7.2)) whieh requires
a treatment of succossive subirecs.

4




4 matrix which forms the right 1lst of some tres 18 said
to be a well-formed vight list. Since the crdering of ithe nodes
in o pight list of o given tree is unicque, the right list of a given
wrae 1o unlque. Conversely, any well-formed right list specifies
a unioue tres agcording to the algeriths of Frogram 6-20.
Tenticel ronarks apply to the Isft list /|7, except that

Peggrem 6-20 18 replsced hy Progrem 6-21. Horeower, the necessary
and guffleient conditions for the well-formatior of a lsft list
are identicel with these for a »ght list apd are derived by
virtuelly identical srgumenis. The sase will be stated for the
viziht 1zt only.

Ir ¥ is a well-formed right 1ist representing a tres I,
the pombsy of Toois _.'1(;;;} = 1'(311) - "(‘:il) mgt be strietly positive.
Horeover, if ¢ = U9/ 7 is any suffix of 1, them & is a right st
of the tree cbiained by deleting from T the first j nodes of the
origipal lis%. For, suech level-by-lewval deletion slways leaves a
isgitinsle tree with the degrees of the remainipg nodes unchanged.
Consequently, the mmber of roois deboramined by every suffix of Ry
mist also be strietly positive. In other words, the root wseter
» definsd by

oy = VER - cWRY,  ge {(o,& v(nl)},

mist be strictly positive, that is, (v > 0) =€. The conmdition ie
also sufficisent.

Sufficleney 18 easily estfablished by ivduetion om the ecolvamn
dimension ef I'. The condition is elearly sufficiemt for v(3;) = l.
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Assume it sufficient for dimension v(Rl)- 1. Ifz, the root vestor
of R, is strietly pesitive, themn ‘al/f, the reot wveetor of Til/n, is
also positive, and by hypothesis '51/R represente a tree G poesessing

Ty roois. Morsover,
O<ry=rx, + (1-3%)

tuplies thet 1, > &y, and the mmber of roots possessed by G therefore
fulfills the mmber of tranches required by the aided node Ry. A
logi tinate tree corresponding to R ean therefore be formed by
Joining the last FI roots of G to the mode 1.

Tests for well-formation ean therefore be inecorporated in
any algorithm defined upon a right or left list matrix ¥ by eomputing
the componenits of the reot vectar r. The recursion

=ri+1-&§.'lincmnieutinahmhm-daoanathl,andth.

T1-1
equivalent recursion ¥, =¥, , = 1+ Eji'l serves for a forward scen.
The starting condition for a forward sean is r; = v(Hl) - a'(l(l),
and for a beokward seen is ©_ =1 470. Since the criteria of
well-formstion are identieal for right md left lists, a natrix may
be charseterised simply a8 well- or ill-formed.

The purpese served by the degree vestor 4 im the deseription

ef s tree is sometines served instead by the reduced degree vestar ™

7 The nsgetive of the reduced degree veotor (that is, e-dy) is
also used. See, for example, Burks, et al (6-2).

m=g =&, This vector is somewhat more conveniemt in the amalysis
ef well formation, since the axpressioa for the root veetor them
simplifies to . = (2 /).



The complste determination of the tree corresponding to a
giver list matrix i is best deserdibed ss the determination of the
associated index matrix I. For both left and right lists this is
achieved by a single forward sean of the rows of ¥ and of J.

For a might list R 1t is first necessary to delermine s
tha rumber of roois. Thefiratrlcaapomntuofﬁmthentho
roots of the tres in order, the next iy components of I are the
second~lsvel nodes reachable from the first rool, and so ferth.
Progrems 6-20 end 6-21 desaribe the precess for a right list and

a left list, respactively.

Program 6-20, In this exegesis, esch node will bs referred
to by 1ts index im the right list matrix R. In esch exesution of
the main Joop (8-16), the ith row of R is exeminsd to determine

the index veator of each node en the succesding lewsl whieh is
directly reachable frem it. The mmmbsr of such nodes is eomtrolled
by the psrameter d, imitialized to the degree of the ith mode by
etsp 12. The index of the nodea reachable from pode i is determined
by J, whiech is incremented on atep 14 es the index vestor of eash
node is determined. The index wectors of the successive nodes
reachable from nods i have the final ecumponsnts 1,2,3,..0, and each
mist be prefixed by the index wector of node i, This essigment
iz effscted by the westor v which is inltialized by the index vestor
of node i rotated left by one (step 11). apnd which is incremented
by step 15 bafore sach sssigoment cceurring om step 16, At the
cutset, v i set to zerc and d is sst to the mumber of roots as
deterninsd by step 4.
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Sines j is, at step 10, equal to the mumber of roots
angmented by the cumnlative degrees of the first i- 1 ncdes, then
:*i=j-i+1andthcmtonaupmthor¢mmahm
and coly in the event of ill-formation. Alternatively, the test
son be viewed a8 an sssuranse that each row of the matrix I is
opeeified before it is itaelf used in speeification.

When step 5 is first reached, the index matrix I iz eomplste,
but is expressed im l-origin indexing with sercs representing the
mill elaments. Steps 5-7 translate the matrix to the origin ¢,
ard mask in the nessssary mall elements.

Program 6-21l. In this exegesis, each node is referred to

by ite index im the left 1lst matrix L. The index veectors I3 ave
determinsd in order under conitrol of the parameter ]. The loep(5-18)
4races a contimuous path through the tree, determining the index of
aach successive node of the path by rotating the index of the
preseding node (step 17) and adding one to the last eomponent
(step 13), and maintaining in the comnsction veotor ¢ a vesord o, .
of the index | of the succsssor of nods i in the path trased. The
paih is interrupted by the occurrence of a leef (that is, 1j = 0
onateplﬁ},andtbad.gmemtarﬁliathmaowmdbyththop
(19-20) to determine the index i of the last preceding node whose
hranehes remain incompleisd. Siteps 21-22 then respeeify v as the
index veator of the node following node i ia the path last traged,
and step 23 decrements the component Ly of the degrse vestor. The
braneh frem step 19 to step 21 ocowrs at the completion of sach
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rooted subires. The test for well-formation is the same as applied
o the right list in Program 6-20, exeept that the notation for the
relevant peremeters differs. The concluding operations (6-9)
ineclude lef't justification om step 6.

Any uwnary operation defined wpom eash of the nodes of a
tree oan be generalized immediately to the entirs tree in a manner
anzlogeus to the generslization to veecters and matrieces. If, for
exampls, U is a logisal tree, then U is detarmined by nods-by-node~
n3zation. Binary operations are likewise gemerslised to amy pair
of compatible trees, esgey X % ¥, XV Y, and (& # B).

Sean operations defined upon vectors may alse be extended
%o trees. For example, U[X defines a logical tree whose unit nodes
designate the oscurrence of mavime in X, where the maximization
ie rentrieted to nodes sorresponding to the nonzerc nodes of the
compatible logleel ires Jo The notation ®f T will denote the
application of the ageoeciativa binary operateor © te the nodes of
T in wight list order (1.e., dopn suocessive levels), and ©/T will
denote the seme spplication in left 1list order (i.e., geross paths).
If the operstor is symmetrie (i.e., its operends commute), then
®/7 = S/T. The votation o(T) will be adopted for the sum weight
+€.

The seleetion operations defined upom vestors (compressian,
expansion, mesh, and mask) can alse be extended by adopting the
following definition of the eompress operation J/T. The statement
P +—— /T lmplies that the nodes of P are those nodes of T far




whish the corresponding nodes of U are unity, and that the strusture
of P is determined as follows: Iif x and y are any two nodes of T,
shen y belongs Yo the subiree of P rooted at x if and only if' y
belongs to the subtree of T rooted at x. If, for example, U is the
%raeof?igoé"S(a)andziatbnmdl?ig.&%th.n%um
tree of Fig, 6-5(b).

The compress operatlon is bes? sxecuied upon the left list
becanse of the grouping by subtress. Program 6-22 gives a suiteble
algoritbhn whisch also serves as a formal definition of the compress
oparaticn.

Progran 6-22. The vector u 1s specifisd as the node veotor
of the left list of the contwolling logisal iree U, and controls
the subsaquent proecss. Step 4 determines j as the index of the
first sero somponents of ve. Steps 6 and 7 then delete the eorre-

spenglng nedes of u snd of the left List of T, but only after sitsp 5
has defernined d s the change in degree which this deletion will
oecagion to the root of the smaliest subtree eontsining the delested
node. Stops 8-l perform a baskward sean of the degree westor to
determine j a2 the index of the root of the subtrse, and step 12

ef fgets the reavisite change in 1is degree. The exit on step 9
ogsureg emly if the node deleted is a reot of the original tree, in
which event mo ehange is preduced in the degree of any cother nede.

&8 in the case of weslors, the remaining seleetion eoperations
are defined directly im terme of compression. The uses of the
selegtion opexrations are anslogous to thely uses in vectors; for
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example, (P = 7)/I denotes a compressed tree formed from those nodes
of T which agree with P.

The symbol 'E will denote a special logieal tree (ealled a
devel tree) sech of whose modes on level ] iz equal to u,, where u
is a logleal veetor. The tree 'E has 2 height equal to v(u) and
its strosture is otherwise determined by compatibility with essoei-
ated operends. The trees ', “‘LE, and”{E,m oglled full, prefiz,
and suffix tress, respectively.

Comprassicn by a level tree 'F is called fruncation and
will be denoted by /T as well as by [/T. Truncation effeets the
deletion of speeified levels of a tree.

Pesmutation operations will mot be extended direetly to trees,
tut may be applied indirectly as follows. A tres T comprises the
subtress rooted at T° for j¢ {(1,;51(;))}, and cen therefore be
considered as a veslior v, eash of whose components 13 a rooted tree.
The statement v =— T will therefors be understood to imply that
74 18 the subiree rooted st 1. Analogeusly, the statement T<—v

2an be usedt to speecify a tree by & veotor. These transitions
betveen trees and wectors provide a convenient means of designating
subtress. Thus the sequence

spaeifies P as the jth (rooted) subtree of the tree T . Moreover,

these transitions allow permmuiations anmd other veebor operations
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to be applied indirectly to trees. Program 6-23 1llustrates the
permutation of the tree T of Fig. 6=3 to produce the tree S of
Fig. 6<6.

Homogeneous trees. If, for each level of a tree, all nodes

on that lsvel are of the same degree, the tree is said to be
homogeneous. The structure of a homogeneous tree T is completely
characterized by the number of its roots and by the degree of eash

level j. These guantities will be combined into a single deseriptor,

“the dispersion vector +(I) defined as follows: - 1@) is the mumber
of roots of T and 2 (“I") is the (common) degree of level (j- 1), for
je {(2,‘(1(}’))} - The component yj (T) is called the dispersion of
level j, and specifies the number of nodes of level j reachabls from
each node of lewel (j~-1). All maximal paths of a homogeneous tree
@ are of lemgth v(T)and clearly, V(I) = +(¥(T)). Figure 6<7 shows a
eollection of homogeneous trees and their associated dispersion vectors.
A tree T for which v(T) = me is called a uniform m-way tree,

and a tree for which ,(T) = 1 and E/4(T) = n¢ is called a uniforp
n-way rooted tree.

The jth component of the moment vector of a homogeneous tree
_ . is clearly equal to the preduet of the first—j compoments of the  — — — |
dispersion vector, that is, 24 (3) z"‘/cri/d(";“), for je {(l,'l/(T))} .
The dispersion vestor is in turn uniquely determined by the moment

vector according to the relation
U(T) == “(T) : /€, € ‘}}“(T)/
A v o L ~ 2

The total mmber of nodes is given by 4(I) = #(x(T)), and it is

@ easily shown that/t(g) = gL g, where y_, = v(I).




#lthough all of the operations on gsnersl trees clearly
spply Yo homogensous itrees, not all of them produce homogensous
t{rees. Beocsuse of the lmportance of homogeneous trees, a closed
gystem of operations will be defived uvpon them. It should also be
remerked that the logical compression operation U/T allows any trae
P tc be represented by & homcgenecus tree T and a compatible (end
therefore homogenseus) logieal tree U.

Truncation as defined produces a homogeneous tree when
applied to a homogeneous tree, and will therefore be insorporated
in the system. If T is homogeneous aad if P = u/I, then clearly

AE) = uf(T), and)(P) may be obteined from y(F). The converse
cperation is ecalled ipsertion, is denoted byI

pe—\1,0,0\
end inplies that /2 = T, and 1./P= Q. Clearly «(P) =\x(T),u,A(QN\,
and compatibility requires that (P) define an integral dispersion
venter. FPor exemple, the suppeosed moment veetor m = (2,5,15)
defines the suppesed dispersion veetor m= {2,2.5,3) which is not
integral, and nis therefore not a legitimate moment wector.

in operatbion which in lewel j deletss a specified group of
aodes from esch of the groups sharing s common root in level j~- 1,
and also rvemoves the entire sublrees rcoted in the deleted modes,

will be called pruming of the jth level. Thms the pruned tree

agress with the originel in the first j- 1 levels, and the dispersion
vectora agree in all but the jth compounent. Hore presisely, the

statement

Pat— 1
AL

~

J




is defined for a compatible wector u such that 2{u) =7V _1(3) and
implies that o3"%/p = J™l/r, and that (W7Yp), = ('ai'l/;g)j, for
k € {(1,"'(&))}, where j = (u/l.)k. Clesrly, -pj(g) = o(u), and
/(@) = v 4(T). In Fige 6-7, for example, T = /P, where
n = (1,0,1). Horsover, Q = '51'2/(11{’13). ’

The converse operation is called grafting at the jth level

and is denoted by the statement

E "—‘\}2’ “’E \r

which implies that i/ P =T, and thet & 1/(i/ F) = Q. The com-
J J
patibility requirements are

Q) = T (),
%) = (3},

and
7}1(3) = #‘G) X ﬁ_l(}:) °

Cleerly, v;(B) =v(x), and 23/4p) = 29/4(1). The operation is
illustrated by ?ig. 6=7.
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Computer program for x =
Program 6-5

n

¥ +00] 0000] 0000 00C1 [+00 10000} 0000

k +00| 0000/ 0001 0002 |+00 {0000{0001
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