

York APl

by J. Morg an Smyth

Published by

Ryerson POly technical Institute

Toronto

COpyright © 1972 by J.M. Smyth

CONTENTS

Chapter 1 - SIGNING ON AND OFF 1.1
Signing On. Signing Off.

Chapter 2 - ONCE SIGNED ON 2.1
Some Typical Calculations. Error Correction.
Order of Execution. Comment Statements.
Variables. Arrays. Arrays With Rank Greater Than 1.

Chapter 3 - PRIMITIVE FUNCTIONS 3.1
Types of Functions. Scalar Functions. Some
Monadic Uses.

Chapter 4 - MORE SCALAR FUNCTIONS 4.1
Exponential Exponentiation.
Natural Logarithm - Logarithm. PI Times Trigono­
metric Functions. Cell ing Maximum and Floor
MinImum. Factorial CombInation. Absolute Value
Residue. RelatIonal Functions. Logical Functions.

Chapter 5 - REDUCTIONS 5.1

Chapter 6 - INNER AND OUTER PRODUCTS 6.1
Generalized Inner Product. Generalized Outer
Product.

Chapter 7 - COMPRESSION AND EXPANSION 7.1
Compression. Expansion.

Chapter 8 - MIXED FUNCTIONS 8.1
Index Generating Index Of. DImension Restructure.
Ravel - Catenate. LamInate. Semi-colon.

Chapter 9 - MORE MIXED FUNCTIONS 9.1
Indexing. Grade Up. Grade Down. Take. Drop.
TransposItion. Reversal Rotation. Membership.
Roll Deal.

Chapter 10 - USER DEFINED FUNCTIONS 10.1
Function Editing. LIne Insertion. Line Renumbering.
Line ModIfIcation. LIne deletion.

Chapter 11 - TYPES OF FUNCTIONS 11.1
Explicit vs No ExplIcit Result Functions. AddItIonal
Local Variables. Sub-Functions.

Chapter 12 - BRANCHING AND INPUT - OUTPUT 12.1
Branching. Labels. Input Output. NumerIcal Input.
LIteral Input. Output.

Chapter 13 - LIBRARIES 13.1
Saved Workspaces. Publ Ie LIbraries. PrIvate
Libraries. Library LImits.

Chapter 14 - DIAGNOSTIC AIDS 14.1
Trace Feature. Stop Control. Error Trap.

Chapter 15 - MORE SYSTEM COMMANDS AND
THE I-BEAM FUNCTIONS 15.1
Communication WIth Other Users. I-beam Functions.

Chapter 16 - ADDITIONAL PRIMITIVE FUNCTIONS AND
THE IDENTITY ELEMENTS 16.1
Base Value (Decode). Representation (Encode).
Dollar Sign. Unquote. Null. Identity Elements.

INTRODUCTION

York APL is a terminal oriented computer language. It derives
Its name from two sources. The word If York" refers to the fact
that this particular version of the APL language was designed
and developed at York University, primarily by Gord Ramer.
The letters APL are an acronym from a book entitled, IIA
.frogrammlng .L.anguage", written by Ken Iverson and published
by John Wiley and Sons In 1962. The APL language Is based on
the mathematIcal notation expressed by Mr. Iverson in this book.

Unlike most computer lanuages, York APl Is Ideal for the person
who knows very little about the computer and lts Inner worklnis.
There are no punched cards or complex coding whIch are usual
requirements associated with other languages. The person enters
statements to the computer vIa a termInal, which Is often at
a remote location, and the computer uses the same terminal to
type Its responses to these statements. Here Is an example
of two such statements and the computer's respective replIes:

67+43
110

18

The statements typed In by the person at the terminal, called
the APL user, are slightly Indented from the left margin to
make It easier to distinguIsh who typed what.

As soon as each of the two statements above was entered by the
user, the computer performed an evaluatIon and returned Its
result, just as any desk calculator would do. But besides being
able to use the computer like a desk calculator, It can also
be used to write and store several statements that may be
executed at any time. These statements make up a program or

function as It's called In APL. Each functIon has an associated
name whIch 15 typed tn by the user tn order to execute the
statements. Below, Is a functIon called STAT that, when executed,
finds the mean, highest and lowest values, and the range between
the highest and lowest values contained In a set of numbers.
Here Is how It works:

STAT
ZliTZR DATA.
o 2 6 5 1 9 7

THE NZAJI IS 5
THE MAXIMUM VALUE IS 9
~E MINIMUM VALUE IS 1
THE RANGE IS 8

The user typed In the word STAT and the requested set of numbers,
and the computer typed the rest.

The characters found on the APL termInal keyboard are quIte
different from the usual characters on most typewrIters. Here
Is the format of a typIcal APl terminal keyboard:

(Although there are several types of termInals that can be used
to access the York APL system, all references to terminals In
this book are to the IBM 2741 Communications Terminal because
It Is presently the most common.)

Notice that all the letters found on the lowershlft part of
most of the keys are letters of the alphabet In capitalIzed
ItalIc form, while the uppershlft characters consIst of some
familiar and many unfamfl Jar symbols. It Is these symbols that
are used to make up the York APl system, as wIll be Illustrated
In the remaInder of this text.

Chapter One

SIGNING ON AND OFF

To use the York APL system, the first step Is to "Sign On" at
any of the avaIlable termInals. This Is done by typing In an
APL user account number.

Every user of APL has hIs own 4 digit APL number, usually
obtaIned from the ComputIng Centre secretary or the APL
CoordInator. Once thIs number has been added to the system,
generally withIn a day followIng the request, the user Is able
to IISlgn On ll to the APL system.

SignIng On

The followIng steps must be taken to Sign On:

1. The swItch on the left hand sIde of the APL termInal
must be In the "COM" position.

2. The ON/OFF switch on the rIght hand sIde of the terminal
keyboard Is then switched to ON.

If the termInal Is not connected to the computer vIa
a telephone, proceed to step 5.

3. Telephone the computer.

4. When an uninterrupted high-pitched tone Is heard, If
using a data set, press the Ittalkll button and hang up
the receiver. WIth an acoustIc coupler, place the
receiver firmly Into the coupler. If the phone keeps
rInging, the computer and/or APL are not functionIng.

1.1

(A busy sIgnal sIgnIfies all the telephone lines are
presently in use.)

5. Press the IfRETURN" key once.

6. Enter a right parenthesIs ImmedIately followed by your
APL user number.

Here's an example of a user sIgnIng on:

)1234

The termInal should respond wIth a message sImIlar to the one
below, stating when that user number was last used and the
user's name.

YORK APL LAST USED 12.44/ 72.220/JONES

If thIs message Is not receIved, but Instead a response of
LOCKED or NUMBER NOT IN SYSTEM or NUMBER IN USE]s typed, see the
APL Coordinator.

SIgning Off

To terminate an APL sessIon, the following Is typed:

)OFF (followed by pressing "RETURN IJ
)

The IIRETURN II key must be pressed after each InstructIon Is entered.
It signals to the computer to start evaluating what was typed.

A message, lIke the one below, wIll be typed by the computer
In reply to the)OFF command.

025 12.52.04 09/08/72
CONNECTED 0.23.15 TO DATE
CPU TIME 0.00.21 TO DATE

25.42.41
0.09 .. 33

The first line prInted contaIns the terminal number, the tIme
of day, and the date In the form MMDDYY. The next lIne Is a
report of how long the user was connected to the APL system
during this sessIon and how much tfme he's logged so far this
month. The last 1 ine indicates how much of the computer's tIme
was used durIng the sessIon. All four sets of fIgures In the
last two lInes are In hours, minutes and seconds. They are
reset at the beginning of each month.

1.2

Along wIth the)OFF command Is an optIon that will protect a
user's number from unauthorized use. He can Include a "lock
cadell In the SIgn Off command that wIll be requIred each tIme
he sIgns on from then on. Here Is an example of a user sIgnIng
off with a lock code of BERT:

)OFF:BERT

To add a lock code to a user's number, a colon plus any combInation
of up to 8 symbols and characters follows the)OFF command.

Now, if the user tries to sign on without It, thIs will happen:

)1234
LOCKED

Here It Is agaIn with the lock code included:

)1234:BERT
YORK APL LAST USED 15.32/ 72.221/JONES

As mentioned earlier, thIs lock code Is requIred each tIme the
user wIshes to use APL. He Is able to change It to somethIng
else anytime he wIshes, or he may even drop the lock code from
hIs number.

The procedure for changing the lock code Is the same as the
Initial addition. The existing code Is Ignored while the new
one Is added as prevIously descrIbed.

InitIal addition
change

)OFF:BERT
)OFF:JONES

To erase the lock code from the user number, the Sign Off command
Is typed In as usual, followed by a colon, then the IIRETURN II

key Is ImmedIately pressed.

)OFF: (press IIRETURN tI
)

1.3

Chapter Two

ONCE SIGNED ON

As soon as the Sign On procedure Is completed, a section of
the computer's internal storage (or IImemoryll) is made ava i 1abl e
to the user. This section of storage is called the "Active
Workspace ll since this is where the user performs all his APL
actIvities. Programs may be created in this area along with
any calculations the user may want to do. All his activIties
take place in either of two modes: one is called Immediate
ExecutIon or Calculator Mode and the other is called Definition
Mode.

When a user first signs onto APL, he is issued a clear Active
Workspace and is placed into Calculator Mode. This means that
every statement typed at the terminal is immediately evaluated
by the computer as soon as the "RETURN" key is pressed and the
result is then printed out at the terminal. Here are some examples.

3+8 (press "RETURN")
11

173
107+66 (press "RETURN")

Notice that the typing element indents 6 spaces before the user
Is allowed to enter any input.

Unlike some other computer languages, there are no restrictions
on calculations involving both integers and real numbers.

4 7 +1 3 • 5 (pre 5 s II RET URN II)

60.5

APL makes a distInction between a minus operation and a negative
number by emplbying two different symbols. The minus sign,
(uppershIft plus sign (+) on the APL keyboard), is situated at
the mid-point of the number, whereas the symbol to indicate
a negative value, (uppershift 2), is placed level with the top
of the number.

2.1

11-7 (press IIRETURN II)
4

11-15 (press "RETURN If
)

1+

11--7 (press "RETURN II)

18

The last expression above reads "eleven minus negative seven".

The multipl ication and division key is to the right of the
plus/minus key.

54

54

In mathematics, it is quite common to omit the multiplication
sign by substituting parentheses, but this practice does not
apply in APL. The user must be specific in his operations.

9 (5)
9 (5)

? SYNTAX ERROR

However, an error of this sort causes no harm. The user can
either re-enter the same statement, employing the proper syntax,
or type in some other expression, ignoring the computer's answer
to the mistake.

9x5

45

12t4
3

One thing that is not allowed in APL is having zero as a divisor.

6fO
6tO

? DIVISION BY ZERO

All calculations are carried out to approximately sixteen positions,
then rounded to the first ten significant digits for printout.
All leading zeros are suppressed.

8+3
2.666666667

2.2

Later, it will be seen how the number of digits printed may
be varied by the user from 1 to 16.

Error Correction

42

Suppose, in the above example, the user meant to add six to
seven but pressed the wrong key by accident. If the mistake
is not iced before the IIRETURN II key is pressed, it can be
corrected by pressing the "BACKSPACE II key (above the "RETURN"
key) as many times as is required until the typing element or
typeball is directly over the error. Then the IIATTN " key is
pressed. This signals to the system to ignore whatever was
typed at that point and everything to its right. The correction
would read as fol lows:

~Ball here before error detected
7x6
A' Backspaced to here, then IIATTN II hit
+6' Caret printed by computer

~correct character and rest of 1 ine typed in
by user

When the IIATTN II key is pressed, the computer causes the terminal
to line-feed and type out the symbol A, called the Caret symbol.
The computer then evokes another line-feed and waits for the
corrected input. In this case, it's +6.

If the IIREtURN" key was pressed before the error was noticed,
the operation would be carried out as entered, forcing the user
to re-enter the statement with the necessary corrections to
get the answer he initially wanted.

If the statement 7x6 were typed and the user noticed his error
in time and backspaced to the appropriate position, but for­
got to press the "ATTN II key and just typed in the correction,
this is what would happen:

7.-6
7 .. 6

? CHARACTER ERROR

2.3

• is not a valid APL character and the computer acknowledges this.
The question mark preceding the error message is printed under
the error.

The "ATTN" key is also convenient when a user wishes to terminate
a lengthy printout. He need only press this key to stop the
printout and return the system back to Calculator Mode.

Order Of Execution

When solving mathematical equations, certain operations are
performed before others. For instance, statements involving
exponential operations are done before any multipl ication and
division, which are always carried out before addition and
subtraction. This hierarchy of execution does not exist in
APL. Here, the order of execution is sImply from right to left.

2x7+3
20

18';'9-5
4.5

APL subtracts 5 from 9 to obtain a result of 4. It then divIdes
18 by 4 to arrive at the answer 4.5. The only exception to this
rule of right to left sequence of execution is in the use of
parentheses.

(2 x 7)+3
17

(18';'9)-5
3

The operatIons enclosed in parentheses are evaluated first to
produce a result which is then used as input to the operations
outsIde the parentheses. Execution time is slowed by the use
of parentheses because the system must interrupt its regular
order of execution to evaluate the contents of the parentheses
before it can continue. However, they can be el iminated in
most cases if the user is aware of the order of execution and
types his statements accordingly.

3+2X7
17

2.4

One stipulation with using parentheses is that there must always
be an equal number of pairs in each expression. Here is an
example where there's not:

2+(7-3)t10
2+(7-3»+10

? UNBALANCED PARENS

Comment Statements

The only statement that is not immediately executed by the
computer while it is In Calculator Mode is one that Is preceded
by the Lamp symbol A.

A THIS STATEMENT ISN'T EXECUTED

The Lamp symbol (uppershJft C overstruck with uppershift J)
Indicates to the computer that the followIng characters are
not to be executed. The computer produces no response to the
statement. The Lamp symbol is typed in as either n backspace
o or 0 backspace n. APL accepts typed in statements exactly as
they appear to the user. This is called "visual fidel tty".

Variables

Operations in APL can also be performed with variables.

A+20

The left pointing arrow (+) performs the function of assigning
or specifying values to variables. In the above operation, A
was assigned the value 20. Below, A is displayed and used in
an operation.

A
20

A +12 • 5
32.5

2.5

Here are some more examples of variables:

B+12.5

A+B
32.5

SUM+A-tB

SUM
32.5

SUM-1S
17.5

A
20

To list the names of the variables in the Active Workspace,
the system command)VARS is typed.

A
)VARS

B SU1-J

There are 3 variables in the Active Workspace.

A
20

A contains the value 20. To give A a new value, the user re-asslgns
A the new desired value.

A+6.7

A
6.7

A+B
19 .2

To increase the number of characters that represent variables,
the underscore symbol, _ (uppershlft F) can be employed.

d Is typed A backspace _ This new variable, called A underscored,
is completely separate from the variable A already in the Active
~vo r ks pace.

2.6

A
6.7

4

Here is a 1 ist of the valid characters that can be used in variable
names:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
d~Qll~~QRI~KLM~QEQR~XQf~Xr~
1l~0123456789

VarIable names may consist of any number of characters, but
the first 8 characters of each name must be unique. Variable
names may also contain numbers, but the first character of the
variable name must be either a letter, a II (uppershift H) or ~.

111UM+26.75
lNUI4+26. 75
? SYNTAX ERROR

NUM1+26.75

NUMl-6
20.75

Variables need not represent only numerical values. They may
con t a I n 1 i te r a 1 da ta as we 11 •

LETTER1+'A'

LETTERl
A

Literal data are identified by being enclosed between a pair
of single quotation marks (uppershift K).

LETTER2+ t Bt

LETTER1+LETTER2
LETTER1+LETTER2

? DOMAIN ERROR

Obviously, 1 iterals cannot be arguments to some numerIcal operation.
Although the domain of the + operation is 1 imited to numerical
values only, some APL functions, such as comparisons and other
logical operations, can be performed on 1 iteral data. How these
are done will be discussed later.

2.7

Ar rays

So far, all the examples have shown one value performing some
operation on another. This could become quite time consumIng
and very confusing if there were several values to be computed.
If the value 5 were to be added to the numbers 6 and 9, two
lines of operations would be required to carry out this task.

5+6
11

5+9
14

Another way of doing this is as follows:

5+6 9
11 14

The numbers 6 and 9 are called elements. Together, they are
called a vector. A vector in APL is defined as a string or
chain of elements. 5 is called a I-element vector. To create
a vector, a space is placed between each element, if there is
more than one. Here are some examples of functions employing
vectors as arguments:

27 22-2
25 20

A+6 7.5 3

The vector 27 22 has a length of 2 and A has a length of 3.
"Dimension ll is another word that could be used to express the
length. One could say that 27 22 and A have dimension values
of 2 and 3 respectively, meaning there are 2 elements in 27 22
and 3 elements in A.

Literal vectors are also allowed.

'BOB'
BOB

NAME+'BILL'

NAME
BILL

2.8

BOB and BILL are 3 and 4 element vectors respectively. Notice
that the quotation marks are always the first and last characters
typed when defining literal data. This can be very important,
especially if one of them is accidently omitted. Here is an
example of what happens if one of the quotes is not entered
before the "RETURN" key is pressed.

WORD+'HELLO
STOP
HELP
)OFF

After the word HELLO was typed and the "RETURN II key pressed,
the typing element returned to position zero of the carriage
and just "twitched". No matter what else was typed, APL
responded the same way until a second quote was entered. So
now WORD contains the following:

WORD
HELLO
STOP
HELP
)OFF

The problem of entering an odd number of quotes is usually expe­
rienced when trying to enter a quote as part of the data. The
way a literal quote is made part of the text is as follows:

X+'HAVEN"T'

X
HAVEN'T

Arrays with Rank Greater than 1

Apart from just having vectors, it is also possible to have
such things as matrices and multidimensional arrays. A vector
has only one value to represent its dimension. The vectors
27 22 and A used in the previous examples had dimension values of
2 and 3 respectively. Because only one value is used to express
its dimension, a vector is said to be an array of rank 1.
Arrays can be created to any rank as long as they are small
enough to fit into the Active Workspace. Here are some examples
of arrays with more than one dimension.

10
8
1

D
5
9
3

7
12

6

4
2

11

D Is a 2-dimensional array, usually called a matrix. It has 3
rows and 4 columns.

110
108
101

100+D
105
109
103

107
112
106

104
102
111

When a single value is added to an array, it is in fact added
to each element of the array.

F
3 0 6 7
2 9 10 8

20 7 1 12

18 11 3 24
17 14 5 86

5 23 22 64

F Is an array of rank 3 consisting of 2 planes, each plane con­
taining 3 rows and 4 columns. Because the terminal Is unable
to print F in its 3-dImensional form, it distinguishes the two
planes by leaving a blank line between them. But, when
performing calculations involving F, it should be thought of
In the format expressed on the next page.

2.10

2 planes

r . ., 0 1 1 ') r4

}- 33 0 6 7 6
2 9 10 8 1.+

rows
20 7 1 12 p....-

v- I

4 columns

Operations involving arrays are very simple to perform, no matter
what their dimension.

F-2
5 - 2 4- 5
0 7 8 6

18 9 1 10

16 9 1 22
15 12 3 84-

3 21 20 62

Like vectors, there may also be literal arrays.

NAMES
DICK
BILL
GORD

This 1 iteral matrix has a rank of 2 consisting of 3 rows and
4 columns. The creation of arrays with varying ranks or
dimensions, such as D, F and NAMES, and the determination of
theIr ranks, will be discussed later.

2.11

Chapter Three

PRIMITIVE FUNCTIO·NS

The term Itprimitive Functions" refers to the operators of the
APL system such as + - x t. They are called "primitive" because
they are predefined by the APL system and therefore do not have
to be created by the user each time he wishes to use them.
The word "functions" best describes these operators because,
when using them, they must be accompanied by at least one
argument. Therefore, the whole expression is thought of as
a function that produces a result. Every primitive APL function
is either Monadic or Dyadic.

Monadic functions consist of one operator and only one argument.

operator
l
+ 6

t
argument

The argument of every monadic function must always be situated
to the right of the operator.

Dyadic functions involve an operator and two arguments.

operator
~

8 + 9
t t

left right
argument argument

An argument must be on each side of the operator to produce
a Dyadic Function.

3.1

Types Of Functions

The primitive APL functions are divided Into 2 dIfferent groups;
scalar and mixed.

Scalar Functions

The term IIscalar" refers to an individual number or value,
whereas a vector means a strIng or chain of numbers or values.
In York APL, an element of a vector is a scalar and a scalar
is a I-element vector. The term "Scalar Functions" best
describes the following functions because they operate on a
one-for-one basis.

2+8
10

rt
6 9-8 2

2 7 L-J

Here, the definition becomes a 1 ittle clearer. The operation
is on an element-for-element basis or parallel processIng.

1.5 3x6
9 18

In the above example, the right argument consists of only one
number so it is repeated as many times as there are elements
in the left argument before the operation takes place. The
operation is the same as this:

1.5 3 x 6 6
9 18

The number of elements contained in the result is equal to the
number of elements in the longer of the two arguments. If the
arguments both contain more than one element, they must be of
equal length.

3 • 2

16 10t4 8 5
16 10f4 8 5

? LENGTH ERROR

This operation failed because the system didn't know which numbers
of the right argument were to be divided into which numbers
of the left argument.

8 16 10f4 8 5
222

Some Monadic Uses

So far, all the examples have shown the addition, subtraction,
multiplication and division functions used dyadically. They
can also be used monadical1y.

+2
2

+6 7 0
670

The above expressions perform the same way as the dyadic Plus
function when a zero is the left argument.

The monadic minus operator changes positive numbers to negatives
and negative numbers to positives. Because zeros are defined
as being neIther positive nor negative, there is no sign to
change.

-2
2

--2
2

-6 7 0
6 7 0

When the multip1 ication operator is used monadically, the sign(s)
of its argument are determined and a 1 is printed to Indicate
a positive value, a for a zero value, and -1 for a negative value.
This is called the Signum function.

3.3

x6 7 0
1 1 0

The division operator produces the reciprocal of its argument
just as the dyadic divide functIon does when its left argument
is a one.

t5
0.2

70705
5

701 2 4
1 0.5 0.25

3.4

Chapter Four

MORE SCALAR FUNCTIONS

Exponential

When used monadically, the exponential symbol, * (uppershift
P), raises e, the base of the natural logarithm, 2.71828 ••• to
the power of the right argument.

*1
2.718281828

* -3 • 5
0.04978706837 1.648721271

Exponentiation

In mathematics, a number raised to a power is wrItten as
numberpower. For example, the square of three is written as
3 2

• In APL it is written as 3*2.

9

2 3*4 3
16 27

4.1

Taking the square root of a number is the same as raising It
to the power of 0.5.

8

25 16*.5
5 4

A number raised to a negative power is equivalent to the recip­
rocal of the number raised to its positive power. For example,
5*-2 Is the same as t5*2.

0.04

0.04

What happens when a value is raised to a fairly high power?

lE12

The E is interpreted as meaning IItimes 10 to the power of".
The number above when written in long form, would look 1 ike
this:

1,000,000,000,000

which is very hard to read and could easily result in errors
if it had to be typed in thIs fashion.

Numbers may also be taken to very small powers.

lE 12

Of course there's a 1 imtt to the size of number that can be
created.

100*100
100*100

? NUMBER TOO BIG

The largest and the smallest numbers possible are listed in
the last chapter.

4.2

Values containing E's may also be used in calculations.

2El+4
24

4+2E2
204

4.02

Natural Logarithm - Logarithm

The base of the natural logarithm is e or 2.718281828 ••• The
natural logarithm of the value 10 would be written as loge10
and read as 1I1og 10, base ell.

~10

2.302585093

&100 20
4.605170186 2.995732274

*(1100 20
100 20

The natural log function is the inverse of the exponential func­
tion, thus they negate each other.

The symbol $ does not appear on the APL keyboard. It is a comb­
ination of 0 Cuppershift 0) overstruck with * (uppershift P).
This is typed as 0 backspace *.

3

The above expression is read as IIl og 8, base 211 or "l og 8".

4.3

Pi Times - Trigonometric Functions

The uppershift 0 symbol, 0, has interesting characteristics.
When used monadically, in the form oA, it means PI times A,
(PI representing 3.14519 •••).

01
3.141592654

If 1 radian

degrees?

180 degr~es , how many radians are there in 30
PI

(30 x Ol)f180
0.5235987756

In its dyadic use, the large circular symbol p~rforms various
trl:onometrtc functions, depQnding on the value of its left
argument. Here is a t~ble of all the dyadic operations possible
wIth this symbol:

SYNTAX

70A
60A
soA
40A
30A
20A
loA
DoA
loA

-2oA
-30A
-4oA
-soA

60A
-7oA

FUNCTIGtJ

hyperbol Ie tangent of A (tanh A)
hyperbol Ie cosine of A (cosh A)
hyperbolic sine of A (sinh A)
(1+A*2)*0.5
tangent A
cosine A
sine A
(1-A*2)*O.5
arcsin A
arccos A
arctan A
(-1+A*2)*O.5
arcsinh A
arccosh A
arc tanh A

For all the trigonometric functions, A is in radIans and the
left argument is an integer from 7 to 7.

What is the sine of 3 radians?

103
0.1411200081

4.4

Show that sln 2 e+cos 2 e = 1. (Give e the value 2 radIans.>

1

CeilIng - Maximum And Floor - Minimum

The two functions rand L (uppershlft Sand D respectively)
are very similar, so they will be discussed here together.

CeilIng - Floor

r2 2.6
2 3

f.Ol -6.7
1 6

L2 2.6
2 2

L.01 - 6.7
0 7

Monadical1y, the Ceiling function, r, rounds the value(s) of
Its argument to its next highest integer and the Floor function,
L, rounds its argument down. If the argument Is already an in­
teger, no roundIng takes place. An application for these
functions would be In the rounding of numbers to theIr nearest
whole numbers. In the case of numbers containing .5, It would
depend on the user whether to round them UP or down. If numbers
ending in .5 were rounded up, 0.5 would be added to the numbers
before the floor operation.

X+4.2 7.6 5.5 3 6.69

LO.5+X
4 8 637

4.5

To round the .s's down, 0.5 is subtracted from the numbers,
before the ceil ing operation.

rX-O.5
1+ 8 5 3 7

Maximum - Minimum

4f6
6

6r4 7 5
6 7 6

4L6
1+

6L4 7 5
1+ 6 5

Dyadically, the Maximum function, r, determines which argument
is greater. The opposite of this, the MInimum function, L,
determines which argument Is of lesser value.

Factorial - Combination

How many different ways can 4 items be arranged? In mathematics,
the expression to represent the equation is 41 meaning 4x3x2x!
which is equal to 24. In APL, it is \t'~ritten as !4. The Factorial
function, !, is created by overstriking the' (uppershlft K)
with the period or decimal point.

!4
24

! 5
120

! 6 3
720 6

Calculating the number of permutations of Ifn" different things,
taking "rlf at a time, 'Nithout repetitions using the formula

n!
(n-r) !

would be expressed in APL by the following algorithm:

(!N)+!N-R

How many words can be formed from the letters of the word
IIcomputer", taking 6 letters at a time? (Obviously, most of
the resulting IIwords lf will not be part of the Engl ish language).

N+8
R+6

(:N)f!N-R
20160

The difference between a permutation and a combination is that
In a permutation, order is taken into account, while in a
combination, it is not. The equation for calculating the number
of combinations of ways in which objects can be selected from
a group without regard to their order is as fol lows:

n!
r!(n-r)!

How many ways can 2 marbles be selected from a population of
6? The APL algorithm for solving this problem is as follows:

2!6
15

Where n=6 and r=2.

Absolute Value - Residue

To find the absolute value of the variable X, the mathematical
notation is Ixl. In APL, it is sImply IX.

18 7 0 2.5
8 7 a 2.5

4.7

lax-7
42

8+1-4
12

A
6 2
5 • 1 0.1

IA
6 2
5.1 0.1

But when used

318
2

dyadically, the function performs quite dIfferently.

516 10 12 124
1 0 2 4

In the above two operations, the right argument is divided by
the left to find the residue or remainder.

2

When the right argument Is negatIve, the left argument is added
to the right untIl their sum Is a positive value. It is this
positive value which is then printed.

Relational Functions

The APL language has sIx relational functions, < S = ~ > ~,

which are uppershift 3 through 8 respectively. They represent
comparisons such as less than, less than or equal to, equal
to, etc. All these functions are dyadic. The result from each
of these is always either 1 or o. The 1 represents "yes" or
fltrue ll while the 0 means II no " or "false".

Here is a list of the six different functions and their meaning:

Function Meaning

< Les' than
S Less than or equal to

Equal to
~ Greater than or equal to
> Greater than
;t Not equal to

Here is how they are used:

47<70
1

47>70 50 30
0 0 1

3S6 2
1 0

3 ~3
1

2 4=4 2
0 0

2 4=2 4
1 1

2 6 5~4

0 1 1

4 10 0>2 7 4
1 1 1

6~6

0
6;t6 T 2

1

'A' ='A'
1

'A' = 'E'
0

Literal arguments are allowed for all relational functions.

The relationship between characters other than alphabetics may
be found by treating them as literals also.

1

Logical Functions

Logical functions are similar to the relatIonal functions in
that all, with the exception of one, are dyadic and that they
too produce only 1 or 0 results, indicating a " yes " or II no "
reply. The part where they differ from the relational functions
is that they accept only l's and a's as arguments.

Or

iVa
1

o lv1 1
1 1

o ovO 1
o 1

Either corresponding argument of the Or function, v, (uppershlft
g), must contain a 1 before the result is one.

4.10

The And function, A, (uppershlft 0), expects both corresponding
arguments to be equal to 1 before a 1 is returned.

lAO 1 0
010

o 1 A1 1
o 1

2AO
21\0

? DOMAIN ERROR

As stated earl ier, the values of the arguments are 1 imlted to
either l's or o's. The left argument is outside the "domain"
of the And function in the above example.

The Nor function produces the opposite result to that of Or.
It is created by overstrikJng the v with the tilde, -,
(uppershift T).

1¥O
a

0 0
1

0¥1 0 1
010

4.11

The Nand function is the inverse of And.
overstriking the A and the -

11\'1
o

1*1 0 1
010

1

It is produced by

The one scalar function that may only be used monadically is
the Not function, -

a

-0
1

-0 1 0 0 1
10110

The Not function performs a logical negation on its argument.
If its argument is a 1, its result is a 0, and vice versa.

4.12

Chapter Five

REDUCTIONS

Previously, it was shown how to perform operations on vectors
and arrays by parallel processing or on a one-far-one basis.
Such things as adding the elements of one vector to the
corresponding elements of another vector is a simple operation.
But what about summing the elements of a vector, or the columns
and rows of an array? This could prove to be quite tedious
using methods discussed earl ier. To eliminate this laborious
task, APL has Incorporated the sol tdu5 symbol (j) to aid in
performing operations on the individual members of vectors and
arrays.

+/2 6 7 9
24

2+6+7+9
24

The flpl us-Reduct ion l
' funct ion above operates the same VJay as

if plus signs had been inserted between each pair of elements
of the vector. Here is how it works:

order of execution

+/2 6 7 -t 9

1~
2 + 22
'--v----'

24

The order of execution is not important for the IIPlus-Reduction"
function but it is for the "Minus-Reduction" function.

5.1

-/6 3 2 4-
1

~ order of execution

-/6\ f ~
3 2
~

6 5
'---yo---'

1

Routines involving "Minus-Reductions" and flDlvide-Reductions"
should be fully tested before they are used.

Here are examples of some of the other Scalar functions used
with the Solidus symbol:

X/2 4 3 5
120

r/2 6 4- 0
4

V/i 0 0
1

A/l 0 0
o

'2/8 6
1

The Relational functions along with the Reduction symbol can
also be used with 1 iterals as arguments.

=/ tAB'
o

~/ tAB'
1

When performing Reduction operations on arrays of rank greater
than one, the user must specify along which coordinate the
operation is to apply. If none is indicated, the system assumes
the last coordInate.

5.2

2
8

6 24

M
3
9

+/M

1
7

M is a matrix with 2 rows and 3 columns. The above "Plus-Reduction"
of M summed along the last coordinate, the columns.

+/[2]M
6 24

The last operation summed along the second coordinate of M,
which, in this case, represents the columns because M has only
two coordinates. Therefore, it performed the same as the
previous example.

+/[l]M
10 12 8

Summing along the first coordinate of the 2-dimensional matrix
M adds the corresponding values found in each row together. These
distinctions are not required with vectors because they have
only one dimension so that +/ or +/[lJ means the same thing
to vectors.

Another way to sum the rows of M is as follows:

+fM
10 12 8

f is the sol idus overstruck with the minus sign. When this Is
used, the system always carries out the operation along the
first coordinate of its argument. If it is a matrix, the
operation is along the rows; if it's a 3-dtmensional array,
each plane is evaluated.

5.3

N
010
100

111
000

101
111

N is a 3-dtmensional array with 3 planes, each consisting of 2
rows and 3 columns.

v/N
1 1
1 0
1 1

Above, the "Or-Reduction ll of N shows that all the columns in
row 2 of plane 2 are equal to zero. All the rest have at least
one 1 in them.

vfN
1 1 1
111

Each plane of N has at least one 1 in it.

A/[2]N
000
000
101

Just the rows of columns 1 and 3 of plane 3 contain all l'S.

5.4

Chapter Six

INNER AND OUTER PRODUCTS

Generalized Inner Product

How many elements are in the vector X? This could easily be
determined by two means. First, by asking "does X equal XII
the result has to be a vector of liS as each element of X is
obviously equal to itself. And by summing up all these 115,
the user could easily find out how many elements there are in
x.

X
1 2 3 4 5 6

X=X
1 1 1 1 1 1

+/X=X
6

Or, it could be written in the following forma t:

x+. =x
6

+.= is read as IIpl us dot equal".

The last two illustrations work in exactly the same manner.
As in Reduction operations, all Scalar functions, except the
Not function, can be used in the Generalized Inner Product
format.

6.1

N+4 2 3

b1+3 5 1

O+NxM
0

12 10 3

+/0
25

N+. xl\!
25

Nx • +1>1
196

Nr • r,\.f
5

N+.+M
18

If both arguments are vectors, the result Is a sIngle value.
But, if one argument is a vector containing more than one number
and the other argument is an array, certaIn restrictions and
procedures are imposed. For example, if the left argument Is
a 3-element vector and the right argument Is a matrix, the
matrix must have three rows. The general rule states that the
dImension of the last coordInate of the left argument must be
equal to the first coordinate of the right argument.

K
10 11
12 13
14 15

L
123

L+. xX
76 82

The solution to this last example was accompl ished In the followIng
manne r:

(+/1 2 3 x l0 12 14) (+/1 2 3xll 13 15)

If a 2-dimensional array is the left argument, and a vector
containing more than one element is the right, the length of
the vee tor rn u s t beequa 1 tot II e dime n s ion 0 f t;l e 1:3 S teo() r din ate

6.2

of the right argument.

K+.xl 2 3
X+.xl 2 3

? LENGTH ERROR

K+.x2 3
53 63 73

The dimensions of the result are a combination of all but the
last coordinate of the left argument and all but the first
coordinate of the right argument. In the above example, K Is
a three by two matrix operating on a 2-element vector.
Therefore, the result is a 3-element vector. If the left
argument was a 4 2 matrix and the right was a 2 3 matrix, the
coordinates of the result would by 4 by 3.

A
1 2
3 4
5 6
7 8

B
2 3 2
1 0 -1

A+.xB
4 3 0

10 9 2
16 15 4
22 21 6

This result was obtained by the following calculations:

/

column 1 column 2 column 3

row 1 +/1 2x2 1 +/1 2x3 a +/1 2x2 -1

row 2 +/3 4x2 1 +/3 4x3 0 +/3 4x2 - 1

row 3 +/5 6x2 1 +/5 6x3 0 +/5 6x2 - 1

row 4 +/7 8x2 1 7 8x3 0 +/7 8x2 - 1+

If A were a 4 by 3 by 2 array and B was 2 by 6 by 7, the result
of A+.xB would be a 4-dimensional array with coordinates 4 by
3 by 6 by 7.

6.3

Generalized Outer Product

The purpose of the General ized Outer Product is to allow every
element of the right argument to perform a specified operation
on every element of the left argument.

2 4 o • x 3 5
6 10

12 20

Here, every element of the left argument was multiplied by every
element of the right. The o.f, where "f" is any Scalar function
other than the Not function, represents the General lzed Outer
Product function. The above operation reads as "two, four,
null dot times three, five", and is represented in the following
table:

x 3 5
2 6 10
4 12 20

Unlike the Inner Product function, only one Scalar operation
can take place at one time and there are no dimension
restrictions placed on the arguments.

'CAT'o.='CAT'
100
o 1 0
00:1

The coordinates of the result are a combination of the coordinates
of both arguments. The result's dimension is the sum of the
dimensions of the arguments. If both arguments are 3-element
vectors, which have only one dimension each, the result Is a
3 by 3 two dimensional array.

1 2 3 4o.~1 2 3 4
100 0
1 1 0 0
111 0
111 1

6.4

C
3 0 2 1
6 4 3 7

Co.+S 1
2 - 4
5 1
7 1
6 0

11 5
9 3
8 2

12 6

The Null symbol, 0, when used In thIs context, does not perform
any real function other than to indIcate to the system that
an Outer Product operation is being carried out. When used
by itself, the Null symbol does perform an operation which will
be discussed later.

6.5

Chapter Seven

COMPRESSION AND EXPANSION

Compression

To eliminate some, none, or all the elements of an array, the
expression stated in the following format is used:

V/[I]A

V represents a logical vector of l's and o's; A is an array;
and I indicates along which coordinate the compression is to
be applied. The length of the left argument must be equal to
the length of the Ith coordinate of the right argument, unless
either of the two arguments contains only one element. In that
case, the argument containing the one element would be extended
until it was the same length as the other argument.

1 0 1/6 2 4
6 4

In the above example, only the first and the third elements
of the right argument were selected. When deal ing with arrays
of rank greater than 1, entIre planes, rows, and columns may
be omitted from the result.

1
5
9

1
5
9

M
2 3 4
6 7 8

10 11 12

1 0 0 11M
4
8

12

7.1

1 0 0 1/[2]M
1 4
5 8
9 12

The [2J Indicates that the compressIon Js to occur along the
second dimension of M. In this case it's the columns or last
dimension. If this pointer is omitted, the system defaults
to the last dimension, as in the previous example. To elimInate
the rows of a matrix, either of the followIng two methods could
be used:

1 a 1/[1]M
1 2 3 4
9 10 11 12

1 0 lfM
1 2 3 4
9 10 11 12

f refers to the first dimension of the array.

To illustrate the use of the Logical Reduction operatIon, suppose
that, at the end of a semester, a teacher wanted to fInd out
who, among his students, attained honours standing. He had
given three tests during the term and the marks went as follows:

NAME

Bateson
Atkin
Chap] n
Kirby

TEST 1 TEST 2 TEST3

25 36 20
17 24 18
24 33 21
20 25 17

He created two matrices, one called MARKS, contaIning the grades
achieved by each student for each test, and one called NAMES
containing the corresponding student's name.

MARKS
25 36 20
17 24 18
24 33 21
20 25 17

NAMES
BATESON
ATKIN
CHAPIN
KIRBY

7.2

The fIrst step would be to sum the marks.

SUM++/MARKS

SUM
81 59 78 62

The next step would be to find out which values of SUM were
equal to or greater than 75. In this case, it could easily
be accomplished by simply looking at the totals. But in the
case of a hundred or so students, there Is a chance that an
honours student could be overlooked In the scanning process.

HIGH+SUM~75

HIGH
1 0 1 0

The fInal step is to find out who got honours.

HIGHfNAMES
BA:rESON
CHAPIN

This whole process could easily be done all on one line:

(75~+/MARKS)fNAMES

BATESON
CHAPIN

Expansion

The Expansion expressIon Is very simIlar to the CompressIon
function. It has the same propertIes as the Compression function
except that the number of 1's contained In the logical vector
left argument must be equal to the length of the right argument,
except if either argument contains only one element.

1 0 0 1 1\66 67 68
66 0 0 67 68

1 1 0 0 0 0 1 l\'ABCD'
AB CD

7.3

The size of the result is determined by the length of the left
argument. If the right argument Is numeric, zeros are used
to expand the result. If a 1 iteral Is situated to the right
of the Expansion functIon, then blanks or spaces are used.

X
1 2 3 4-
5 6 7 8
9 10 11 12

1 0 1 1 1\X
1 0 2 3 4-
5 0 6 7 8
9 0 10 11 12

Y
BIG
BAD
JOE

1 1 0 1\Y
BI G
BA D
JO E

To Increase the number of rows in X, the expansion Is along
the first coordinate.

1 1 0 0 l\[l]X
1 2 3 4
5 6 7 8
0 a 0 0
a 0 0 0
9 10 11 12

Or, as with the Reduction function, there Is an Expansion symbol
that applies to only the first coordinate of the right argument.

a 1 1 l"X
0 0 0 0
1 2 3 4
5 6 7 8
9 10 11 12

1 1 o 1~Y

BIG
BAD

JOE

7.4

Primitive Function DrIll

There's a drill available on most York APL systems to practice
using the primitive scalar functions. The workspace containing
this drill Is called APLCOURSE.

To select the functions desired, a Y Is typed under the ap­
proprIate ones. When the user has had enough practice, he can
type in the word STOP or STOPNOW to terminate the exercise.

Here's a typical session:

)LOAD APLCOURSE,7
SAVED 12.42/ 71.203/ 8768

EASYDRILL
TYPE Y UNDER EACH FUNCTION FOR WHICH YOU WANT EXERCISE
SCALAR DYADIC FUNCTIONS
+-x7*rL<~=~>~! IAV_*¥
YYYYYYYYYYYYYYYYYYYY
SCALAR MONADIC FUNCTIONS
+-xf*rL! 1-
YYYYYYYYYY
TYPE Y IF EXERCISE IN VECTORS IS DESIRED, N OTHERWISE
y

TYPE Y IF EXERCISE IN REDUCTION IS DESIRED, N OTHERWISE
Y

0 9

0 6

0 3
TRY AGAIN
0 2

0 PLEASE
ANSWER IS 16

0 1

0 2 3

0 STOPNOW

e/l0 100

+/12 6 -4 3 6

r1 .. 75 2.45

""'1 0 1 0 0

7.5

Chapter Eight

MIXED FUNCTIONS

The previous chapters dealt with the Scalar functions that are
avialable on the APL system. They showed that the main
characteristic of all Scalar functions is that the length of
the result is In direct relationship with the length of the
arguments. But there are many more functions in APL which
produce results with lengths that are only remotely similar
to the lengths of the arguments. These are called "mixed
functions".

Index Generating - Index Of

\ 5
1 2 3 4 5

\3
123

The Iota operator, \, (uppershift I), generates all the indices
from 1 to N (N beIng the right argument).

2 X 14
2 4 6 8

To alter the starting potnt 1, a user may perform some calculation
on the generated integers.

5+110
4 3 -2 1 0 1 2 3 4 5

.5-13
0.5 -1.5 2.5

8.1

Because of the limited amount of space in an Active ws, a limited
amount of numbers can be generated.

15000
15000
? WORKSPACE FULL

The maximum number of integers that can be generated is 3,598.

If the right argument of the monadic Iota function Is zero,
the result is an empty vector. Because there are no elements
In an empty vector, there is nothing to print, so the typing
element simply returns and Indents 6 spaces. Empty vector
results are denoted by the symbol ~.

1 0

When used dyadical1y, the lot~ope.ator indicates where, In
the vector left argument, the element(s) In the right argument
are located.

12 27 13127
2

12 27 131 13
3

12 27 1316
4

If an element in the right argument is not present In the left,
the computer returns a result equal to the length of the left
argument plus 1 as seen in the last example. Because 6 Is not
a member of the left argument, the resultant value is 4.

This operator may also have 1 iterals as arguments, when used
dyadical1y.

'ABeD' \ 'e'
3

'A'1'ABC'
1 2 2

'ABC' \ 'AC'
1 3

8.2

Dimension - Restructure

D+2 6 4 0

pD
4

p'HELLO'
S

\6
1 2 3 4 S 6

p16
6

The Rho operator, p, (uppershift R), when used monadically,
Indicates how many elements are In the above vector right argu­
ments.

p6
1

The number 1, In this last example, represents a vector containing
only one element.

Pl0
o

Because the argument of the above Rho operator Is an empty vector,
It has a length of zero, to Indicate It contains no elements.

MAT1
820
634

pMATl
2 3

The variable MATi represents a 2-dimensional array consisting
of two rows and three columns. The above example of the Rho
function produced the vector 2 3 Indicating the coordinates
of the array. If the argument is a vector, the response to
the Rho function is a single value Indicating how many elements
are In the vector. By only printing one number, It also states
that its argument has only one rank, which means It's a vector.
The result of the Rho operation when MATi was the right argument
was a 2-element vector which said that MAT1 was a 2-dimenstonal
array, or a matrix.

pMAT2
2 3 4

MAT2
8 - 2 0
3 4 2

20 15 9

6
7

11

24
18
23

5
19
14

17
10
18

22
13
12

MAT2 is a 3-dimensional array with 2 planes, each consisting
of 3 rows and 4 columns. A way to determine the rank of variables
such as MAT1 and MAT2 is to do a IIRho" of the vector produced
from the first Rho operation.

A+pMATl

A
2 3

pA
2

or just

ppMATl
2

p pMAT2
3

ppD
1

D has a rank of 1, MAT2 has a rank of 3, and MATi has a rank
of 2. Using three p's together will always produce a 1.

pppD
1

pppMATl
1

pppMAT2
1

8.4

When the Rho operator Is used dyadically, In the form ApB, A
determines the size and dimensions of the result and B contains
the values for the result.

4pl
1 1 1 1

Sp3 4
34343

2p4 5 6
4 5

The first example above produced a 4-element vector of all ones.
The second illustration produced the resultant vector of five
elements, all of which are contained in the right argument.
Because the left argument asked for more numbers than were
contained in the right argument, the right argument was repeated
until its length equalled the value of the integer left argument.
In the third example, only 2 of the 3 numbers were asked for.

\4
123 4

2 2P14
1 2
3 4

Previously, the left argument of the dyadic Rho function contained
only one integer which always produced a vector result. By
placing more than one element in the left argument, results
of greater dimensions can be achieved. In the last example/
two values represented the left argument and the result was
a 2-dimenslonal array. Therefore, the number of elements
contained in the left argument determine the rank of the result.
Here is how a 2 3 4 array containing the values 1 to 24 is
created:

2 3 4pt24
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

8.5

Here are some more examples:

MAT1+2 3pa 2 0 6 3 4

MAT1
820
634

pMAT1
2 3

2 2pMAT1
8 2
o 6

OpMAT1

A+OpMATl

pA
o

(to)=A
1

A Is a vector wIth zero dimensions.

The left argument must always be either a zero or a positive
integer.

2pMAT1
2pMATl

? DOMAIN ERROR

Literals may also be restructured.

2 5p'HELLOTHERE'
HELLO
THERE

A 1 iteral empty vector Is created by typing two adjacent quotes.

L+' ,

L

pL
a

8.6

Ravel - Catenate

To ravel an array or turn It Into a vector, the monadIc syntax
of the comma Is used.

MATi
8 2 0
6 3 4

,MAT1
8 2 0 6 3 4

pMATl
2 3

P ,MATi
6

NAMES
BILL
AL
FRED

, NA1'dES
BILLAL FRED

pNAMES
3 4

oya d i ca 11 y, the

3,4
3 4-

8 9,10
8 9 10

4- 6 , 3 7 1
4- 6 3 7 1

comma appends the right argument to the left.

This Is nice to know when an application arises requiring several
values to be assigned to a variable, so many as to make It
impossible to type them all on one line. An easy way around
this problem is to assign a small group of numbers at a time,
and catenate the remaining In the following manner:

8.7

NUM+6 8.5 0 1 6 12 20 18 2
NUM+NUM.4 10 1 5 11 5.2 3

pNUM
16

Arrays of greater rank may also be catenated.

A+2 3p6

B+2 2p3

6
6

A.B
6 6
6 6

3
3

3
3

When two matrices are catenated along their second or last coordInate,
(columns), the number of rows contaIned in each matrix must
be equal. And, when the catenation occurs along the first
coordinate, the number of columns In both arguments must be
equal.

C+3 3p9
A.[1]C

666
6 6 6
999
999
9 9 9

The syntax for catenation is A.[I]B or A,B. A,B performs the
catenation along the last coordinate of each argument. I Is
any integer from 1 to r/(ppA),ppB and all corresponding
dImensions of A and B, except the Ith must be equal. If A and
B are not of the same rank, then they can dIffer by only one rank.
For Instance, if A is a matrix, then B can be either a vector
or a 3-dimenstonal array; If A Is a 5-dtmenstonal array, then B
must be a 4- or 6-dtmenstonal array. The only exception to
this rule is if either A or B is a one element vector.

B+7 7

6
6

A,B
6 6
6 6

7
7

In this last example, the pB (I.e., 2) must equal the number
of rows contained In A. The general rule is (pB) = (I~lppA)/pA.

8• 8

Here is a one element vector catenated along the first coordInate
of A.

A,[1]4
666
666
44-4

Lamination

Lamination means joinIng two variables along a new coordinate.
The syntax for laminatIon is A,[I]B or A,B. It's almost the
same as the catenation syntax except that I must be a real
number from 0 to l+r/(ppA),ppB and the expression A/(pA)=pB
must be equal to 1, except where either A or B contains only
one value. Here are some examples:

A+2 3P16
B+2 3pl00+16

A,C.5JB
1 2 3
4 5 6

101 102 103
104 105 106

A,[1.1JB
1 2 3

101 102 103

4- S 6
104 105 106

A,[2.7JB
1 101
2 102
3 103

4 104
5 105
6 106

pA,[2.7]B
2 3 2

8.9

The results are three dimensional arrays with the size and
content of the last two coordinates determined by the value
of I and the contents of the arguments. The rank of the result
is always one greater than the rank of the arguments. Where A
and B are matrices, the result is a 3-dimensional array. When I
Is less than 1, the right argument, A, makes up the first plane
of the result and B makes up the second plane. When I is greater
than 1 but less than 2, A is placed tn the first row of each
plane of the result and B is placed in the second. If I is
greater than 2 but less than 3, the two arguments are placed
in the corresponding columns of the result.

Semicolon

The semicolon performs very similar to the comma, except for
two distinct diff~rences. It always ravels its arguments and
converts any numeric data Into a 1 iteral string.

A+;6

A+l0
A+10

? DOMAIN ERROR

A contains the character 6, not the value 6.

'6'=A
1

B+;6 10+2

B
8 12

pB
5

B contains five characters because the spaces that separated
the once numeric 8 12 are now elements of the 1 iteral vector
B.

, '=B
01100

8.10

When the semicolon is used dyadically, it not only turns numerIcal
data Into 1 iterals, but also performs a catenation operation
wIth the other argument.

'HE IS ';6;' YEARS OLD.'
HE IS 6 YEARS OLD.

'THE SUM OF SIXTY-NINE AND FOUR IS ';69+4
THE SUM OF SIXTY-NINE AND FOUR IS 73

The semIcolon Is also used in indexing arrays as seen In the
next chapter.

8.11

Chapter Nine

MORE MIXED FUNCTIONS

Indexing

Selecting specific elements from arrays was illustrated earl fer
with the use of the Logical Reduction function. The desired
elements were indicated by irs and a's. Another method of
extracting array data is by Indexing the array with the actual
locations of the elements. Here are some examples of various
values being indexed:

X+2 7 0 9 3 8

X[3]
a

Above, the third element of X is indexed. Below, the fourth
element Is asked for.

X[4]
9

The Indexing brackets are called a dyadic function which encloses
Its right argument whose value(s) are dependent on the left
argument. This means that the numbers contained In the right
argument must be integers whose values are within the dimensions
and coordinates of the left argument.

X[10J
X[10J

? DOMAIN ERROR

Because X does not contain ten elements, the index request cannot
be executed.

9.1

Indexed variables can also be used as arguments to other
operations.

6+X[2]
1

X[2]+X[S]
4

They may also be used as arguments to other indexing operations.

X[X[l J]
7

The order of the Indices dictates the order in which the result
is printed.

Z+'PORK LAY'

Z[8 2 3 4 5 7 1 6J
YORK APL

Not only can specific elements be extracted from arrays, but
they can also be replaced by other values.

X[1]+20

X
20 7 0 9 3 8

And, as the extraction sequence depends on the arrangement of
the indices, the same is true for replacement.

X[1 6 3J+10 -8 1

10
X

7 1 9 3 8

So far, indexing has been with only vector arguments which have
only one dimension. But when indexing arrays of greater rank,
how are the rows distinguished from the planes and columns?
Easily, with the use of the semicolon. Here is an example
of indexing the matrix MATi.

MATi
820
634

pMAT1
2 3

9.2

What Is the value contained In the first row, second column
of MATi?

MAT1[1;2]
2

The semicolon separates the coordinate values indicating to
the system which value is desired.

What element is in row 2, column 1?

MATi [2 ; 1]
6

The same restrictions and freedoms that apply to vector arguments
are also valid for arrays of other dimensions.

MAT1[6;2]
MAT1[6;2]

? DOMAIN ERROR

MAT1[2 1;3J
4 0

The number of semicolons required to index a variable is always
one less than the number of dimensions of the variable.

pMAT2
2 3 4

!-1AT2
8 - 2 0 6
3 4 2 7

20 15 9 11

24 5 17 22
19 18 10 13
23 14 18 12

MAT2[1;2;3]
2

ft1A T 2 [1 ; 2 ; 2]
4

MAT2[1;2il]
3

9.3

If no value Is placed before, between, or after the semicolons,
the system will produce the entire plane, row or column that
was not specifIed.

MAT2[1;2;]
3 4 2 7

The above example asked for all the columns of row 2 of plane
1. The result Is a vector.

8
3

20

MAT2 [1 ; ;]
-2 0

4 2
15 9

6
7

11

ThIs last IllustratIon called for all the rows and columns of
the first plane.

pMAT2 [1 ; ;]
3 4-

Because only one plane and all the rows and columns of that
plane were wanted, the result is a 2-dtmenslonal array wIth
coordinates equalling that of the rows and coluITlns of MAT2.
The result takes on the dimensions of the portion of the argument
Indexed. If only one column or one row Is Indexed, the result
Is a vector. But If more than one row or column is requested,
the dimensions and coordInates are establIshed accordingly.

If an array is to be Indexed and one of the coordinates has
to be calculated, the calculatIon must be enclosed in parentheses
If It precedes a semIcolon.

MAT1[(1+1);J
634

MAP1[;1+1]
2 3

Only the last coordInate is exempt from this rule.

Something that can be tried, though not highy recommended wIthout
fIrst learning the indexIng operation thoroughly, is omittIng
the semicolons when indexing an array. To determIne the value
contained in the first row, second column of MAT1, the following
would be typed:

MAT1[1 2]
2

9.4

The values at coordInates 1 1 and 2 3 of MAT1 could be obtaIned
by typing the following:

MAT1[1 1 2 3]
8 4

When not employing the semicolon, there must be a value stated
for each coordinate of the array being Indexed. Here Is an
example where there's not:

MAT1[2]
MAT1[2]

? RANK ERROR

Because only one value was contained in the brackets, and no
semicolon was included, the above operation failed. It would
have worked if the left argument were a vector whIch has a rank
of one but MATi has a rank of two.

This form of indexIng becomes even more complex as the number
of dImensions of the argument Increases.

Grade Up

~8 2 6 0
243 1

The Grade Up function. (uppershift H overstruck with uppershtft
M), In the above example, determined that Its argument could
be rearranged in ascendIng sequence If the second element came
first, followed by element number 4, then 3, then 1. The result
Is a list of indices which, if used to index the argument, would
print out the argument in ascending order.

8 2 6 0[2 4 3 1]
2 0 6 8

Here are some more examples:

!-16 -17
2 1

!'CDBA'
4 3 1 2

'CDBAt[4 3 1 2]
ABeD

9.5

UsIng this function, the problem of sorting both numbers and
characters Is greatly sImplified.

X+'CDBA'

XC!X]
ABCD

Grade Down

,a -2 6 0
1 3 4 2

A+8 2 6 a

AC1'A]
8 6 0 2

The Grade Down functIon' (uppershift G overstruck with uppershift
M) is the inverse of the Grade Up functIon.

"ABACK'
54213

If the left argument contaIns elements of equal value, the
operator ranks them according to their positIon in the argument.

V3 3 3
123

9.6

Takti

3t1 234- 5
1 2 3

8+1 2 3 4 5
1 2 3 4- 5 0 0 0

3t1 2 3 ~ 5
3 4 5

-8 tl 2 3 4 5
0 0 0 1 2 3 4- 5

In the expression XtY, If the left argument X Is a positive
Integer, the result Is the first X elements of Y. If Y does
not contain X elements, then zeros or blanks, depending on whether
Y is numerIc or literal, are appended to the result to gIve It
a dimension of X.

If X is a negative Integer, t"he result Is the last X elements
of Y. If Y's dimension is less than the absolute value of
X, the same rule applies as for the positive X.

MATi
8 2 0
6 3 4-

2 2 tNATl
8 -2
6 3

The result above Is the first two rows and the first two columns
of NAT1.

8
6
o
o

~ 4+MATl
2 0
3 4-
o 0
o 0

-6+'TON'
TOM

o
o
o
o

In this last example, three blanks were placed before the
word TOM.

9.7

The Drop function +, (uppershlft U), Is the Inverse of the Take
function.

2t'ABCDZ'
CD~

-2t'ABCDE'
ABC

5t'ABCDZ'

In the expression XtI, If X Is a positive Integer, the result
Is the remainder of I after the first X elements have been r~moved.

If X Is a negative integer, the result is Y minus its last
X elements.

MATi
B 2 0
634

1 2+NATl

TransposItion

Often durIng computatIon, It is desirable to restructure arrays
in such a way that the rows are Interchanged wIth the columns.
This Is accomplished in APL by employing the monadic operator
~ # (uppershIft 0 overstruck wIth the reverse sol Jdus).

MATi
8 2 0
6 3 4

pNATl
2 3

~MATl

8 6
2 3
0 4-

9.8

M1+~MATl

pM1
3 2

A-+-3 4-p 'ACRESLA VHUGE'

A
ACRE
SLAV
HUGE

~A

ASH
CLU
RAG
EVE

X-+-2 3 4-pt24-

X
1 2
5 6
9 10

13 14-
17 18
21 22

T-+-lr:IX

T
1 5
2 6
3 7
4- 8

13 17
14- 18
15 19
16 20

pT
2 4- 3

3 4
7 8

11 12

15 16
19 20
23 24

9
10
11
12

21
22
23
24

The result of the monadic Transpose function contains all the
elements that are in the argument with the only difference being
that the rows of the argument are now the columns of the result
and the columns of the argument are now the rows of the result.
Only the last two coordinates of the array argument are reversed
In the result. If the argument Is a vector, the result Is
Identical to the argument as there are not two coordInates

9.9

to transpose. Here Is an example of the Transpose operation
being attempted on a vector:

~7 3 2
732

The monadic Transpose only allows for the reversal of the last
two coordinates. But, when dealing with multi-dimensional
arrays, the Interchange of more than Just the last two
coordinates may be desired. The dyadic use of the Transpose
operator is used in this case.

A+3 2 4p\24

A
1 2 3 4
5 6 7 8

9 10 11 12
13 14 15 16

17 18 19 20
21 22 23 24

R+3 1 2~A

R
1 9 17
2 10 18
3 11 19
4 12 20

5 13 21
6 14 22
7 15 23
8 16 24

pR
2 4 3

The left argument of the dyadic Transpose function Is a vector
of positive integers Indicating the dimensions of the result
R. In the above example, the argument 3 1 2 states that the
first coordinate of A shall be the third coordinate of R, the
second coordInate of A Is to be the first coordinate of R, and
the last coordInate of A will become the second of R. The number
of Integers contained In the left argument Is equal to the
number of dimensions of the right argument. The contents of
the left argument are positive Integers from 1 to N, where
N Is the number of dimensions of the result. None of these Integers

9.10

can be greater than the number of dimensions of the right
argument. For Instance, when transposing a 3-dimensional array,
the right argument could be 1 2 3 or 3 2 1 or 1 1 2 or 2 2 1
or 1 2 2 but could not be 1 3 3 or 2 2 3.

Along with redimensioning is the relocation of the elements
of the argument. For example, the value 7 In array A is located
at posItion [1;2;3]; that is, fIrst plane, second row, third
column. In the resultant array R, it is located at positIon
[2;3;1]; or plane two, row three, column 1. The general algorithm
for this transpose Is A[X;Y;Z] with the coordinates of A being
relocated in R[Y;Z;X] where the function is (Y,Z,X)QA.

8+3 2 l~A

8
1 9 17
5 13 21

2 10 18
6 14 22

3 11 19
7 15 23

4 12 20
8 16 24

pS
4 2 3

The result of a dyadic Transpose need not always be of the same
dimensions as the rIght argument. For example, to create a
2-dtmensIonal array from A, the following would be used:

T+2 2 l~A

T
1 13
2 14
3 15
4 16

pT
4 2

The dimensions of the result are determined by finding the maximum
value contaIned In the left argument as shown by the following
calculatIon:

r/2 2 1

9.11

Therefore, T is a 2-dlmenslonal array. The values that T represents
are located accordIng to the following:

T[Xi.Y]+A[.Yi.YiX]

T has the dimensions X, Y. Just which .Y coordinate of A to
pick is determIned by findIng the smaller of the two coordinates
referenced by .Y In the following algorithm:

L/2 3
2

Another example is:

T2+1 1 2~A

1
13

2 1+

T2
2

14

pT2

3
15

1+
16

T2 Js a <r/1 1 2) or 2-dlmensional array. Its elements are
organized In the following format:

T2[X;.YJ+A[X;X;.YJ

X ranges from 1 to 2 because (L/3 2) is 2 and ranges from 1 to
4. For a 2-dimensional array, a dyadIc Transpose is the same
as a monadic Transpose.

M+3 4p'L12

M
1 2 3 1+
5 6 7 8
9 10 11 12

2 ltQM
1 5 9
2 6 10
3 7 11
4 8 12

~M

1 5 9
2 6 10
3 7 11
1+ 8 12

9.12

To fInd the major dIagonal of a 2-dimenslonal array, the following
algorithm Is used:

1 1~M

1 6 11

Reversal - Rotation

The Reversal function ~, (uppershift 0 overstruck wIth uppershlft
M) reverses the order of its rIght argument if the argument is
a vector.

4>4 3 2 1
123 4

¢>'RAT'
TAR

If the argument is of a greater dimension, the columns are
reversed.

M+3 4p'L12

M
1 2 3 4-
5 6 7 8
9 10 11 12

¢>M
4 3 2 1
B 7 6 5

12 11 10 9

To reverse the rows of a matrix, there are two methods.

9
5
1

4>[l]M
10 11

6 7
2 3

12
8
4

This reads as "reverse the order of array M along its fIrst
coordlnate ll

•

9.13

Here's another way to do the same thing:

9
5
1

eM
10

6
2

11
7
3

12
8
4

The function e (uppershlft 0 overstruck with the mInus sign
-) also reverses along the first coordinate of its argument.

If the argument were a 3-dimensional array and the user wished
to reverse the order of the rows, he would type the following:

where X is the 3-dlmensJonal array with Its rows being the second
coordinate.

The dyadic format of the ~ operator is X~Y. If X Is a single
integer value and Y Is a vector, then X~y is a eyel Ie rotation
of Y. For example:

34>2 6 0 -3 8
3 8 260

In the above function, the vector rIght argument was rotated,
~n element at a time, placing the first element of the vector
at the back and repeating the process over again as many times
as prescribed by the left argument.

24>1 2 3 4
3 4 1 2

The left argument may be a negative integer. If It is, the
rotation of the right argument is in a back-to-front dIrection.

-34>2 6 0 3 8
o 382 6

-14>1 2 3 4
4 1 2 3

-5~' NOONAFTER'
AFTERNOON

4~'NOONAFTERt

AFTERNOON

9.14

If the right argument Is an array with dimensions greater than
one, and the left argument Is a single value, the entire columns
of the array are rotated by the amount specified by the left
argument.

A+3 4p'l12

A
1 2 3 4
5 6 7 8
9 10 11 12

2<PA
3 1+ 1 2
7 8 5 6

11 12 9 10

Which Is the same as :

3
7

11

2q,[2]A
4- 1
8 5

12 9

2
6

10

The rows of the matrIx may be eyelIcly rotated by the following
method:

9
1
5

2<p[1]A
10 11

2 3
6 7

12
4­
8

Or, another symbol to rotate an array along its first coordinate
is Q.

9
1
5

2eA
10

2
6

11
3
7

12
4­
8

EATBL
ACKQU
UNTGR

M+3 Sp'EATBLACKQUUNTGR'

M

9.15

34>M
BLEAT
QUACK
GRUNT

293<PM
GRUNT
BLEAT
QUACK

It may not be desirable to have all the rows of each column
rotated by the same amount, as were the last examples. So,
by expanding the left argument to a vector whose length equals
the number of rows contained in the rIght argument, thIs
limitation is overcome.

o 1 24>A
1 2 3 4
6 7 8 5

11 12 9 10

The same Is true for columns.

o 1 2 3 sA
1 6 11 4
5 10 3 8
9 2 7 12

Membership

To find out if a certain element is contained In a particular
variable, the Membership functIon, E, (uppershift E), may be
used. Here is an example of Its use. The value 2 Is being
looked for in the vector 6 3 4.

2€6 3 4
o

The response, 1 ike that of the Relational functions, is either
l's or o's representing lI yes " or II no" respectively. Because
the 2 was not found In the vector the computer returned the
value o.

9.16

Here are some more examples:

6 2 4E2
0 1 0

2 4 5e'ABCDE'
0 0 0

'ABCDEF'€'BAD DAY'
1 1 0 1 0 0

A+-3 3P19

A€6 10 4­
000
101
000

The sIze and shape of the result Is always equal to the size
and shape of the left argument.

Roll-Deal

The symbol 7, (uppershlft Q), produces some rather InterestIng
results when used both monadlcally and dyadically. Here are
some examples:

710
5

?10
1

?10
7

Notice that each result above is dIfferent. The reason is that
the Roll function selects a number at random from 1 to N where
N Is the value of the argument. ThIs argument may be any positive
Integer.

One can easily see the possibll ities for simulations that require
numbers to be selected at random. For instance, simulating
the rolling of two dice would be done in the following manner:

9.17

76 6
1 4

?6 6
3 4

76 6
1 1

The number of elements contained In the result is equal to the
number of elements contained in the argument.

The same is not true when the? Is used dyadlcally.

3710
739

3710
183

Here, the? function, (called Deal when used dyadically), uses
the format

R?N

which means to select R integers from 1 to N without replacement.
Each value contained In the result wIll be unIque. Both Rand N
must be single Integers and N must be greater than or equal
to R.

9.18

Chapter Ten

USER DEFINED FUNCTIONS

York APL has over forty "prlmltive ll functions that do a wIde
variety of operations on differing arguments. It was designed
to give the user almost instant response to his Input by
immediately executing his typed statements as soon as the
IIRETURN It key is pressed. In other words, It performs 1 Ike a
desk calculator. But, as the user becomes more famIlIar with
the APl symbols and the way the system handles their execution,
he will want to execute more complex and elaborate equations.
He could do this quite easily by executing his problem aline
at a time and storing the required intermediate results in
variables to be used later on in the algorithm. But this process
becomes quite cumbersome and time consuming. And, what If he
wishes to execute the same equation several times, varying the
parameters each time? He would have to retype the entire
procedure every time he made a change to one of his Initial
variables. Here is a simple illustration.

A student wishes to take the attendance readings for his class
over the last two weeks and calculate the average, the lowest
and highest readings, and the range between the lowest and
highest. After obtaIning the attendance numbers, he assIgns
them to a variable called x.

X+23 25 24 26 28 23 27 28 27 26

To calculate the average, he first of all must find out how
many elements are In X and then divIde thIs number into the
sum of X. To do this, he types the following:

pX
10

This determines how many elements are contaIned in X.

10.1

Now he must sum up X

TOT++/X

TOT
257

and then to find the average, he types the following:

TOT+pX
25.7

The highest, lowest and range are found in the fol lowing manner:

r/x
28

L/X
23

<f/X)-L/X
5

But, suppose he made a typing error and the last value of X
should have been a 27 instead of a 26. He would have to correct X
and then type the above steps over again. Or, suppose he wanted
to save his procedure so that it could be re-executed when new
data was made available. To avoid these problems, the APL user
can write a program, or function as It's called In APL, that
will execute the required calculations.

So far, the terminal has been 1 ike a desk calculator because
it has been in "Calculator Mode". Every time something was
entered by the user, it was Immediately executed. But now the
user wants to defIne a function, not execute an algorithm.
So he must sIgnal his intentIons to the computer to prevent
it from trying to execute his input. To do this, the "Mode"
of operation must be changed. The system must be taken out
of Calculator Mode and placed into Function Definition Mode.
It sounds complex, but it's really quite simple.

But before this is done, the user should first determine what
he wants his function to do. In this case, the student wishes
to perform the following calculatIons on a set of attendance
da ta:

(1) calculate the average attendance
(2) find the highest attendance reading

10.2

(3) find the lowest attendance reading
(4) determine the range between the highest and

lowest readings

Finding the average of X involves two steps. First, the number
of elements of X must be found. Second, this number is then
dIvided into the sum of X to calculate the average attendance
reading. Now the function to carry out all the above
computations can be defined.

Above the letter G on the keyboard, there's a symbol called
"Delli (V). To switch from Calculator Mode to Function Definition
Mode, this Del must be typed, followed by the name of the
function.

VATTEND
[1]

ATTEND is the name of the function that will hold the algorithms
to calculate the mean, high, low, and range for the class
attendance. The system responds to this lIne by typing out
[1] signIfying that It is in Function Definition Mode and
is ready to accept the first line. The user then types in the
first 1 ine and presses the "RETURN" key.

VATTEND
[1 IN+pX
[2]

In this case, it's N+pX which determines the number of elements
In X and places the result in N. The system again responds
with [2 J, asking for the next 1 ine. So the user keeps entering
hIs algorithms until he gets to line 6.

VATTEND
[1]N+pX
[2](+/X)fN
[3 Jr/x
[4 JL/X
[5]<r/X)-L/X
[6]

At this point, all the calculations to be performed by ATTEND
have been entered. Now he would 1 Ike to end his functIon definition
so that he may get back into Calculator Mode to use ATTEND.
To do this, he simply types another Del.

[6]V

10.3

This places him back into Calculator Mode. To check, he types
In a simple problem to see if the computer will execute It.

2+2
4

Once the function ATTEND has been defIned, It may be displayed.
To do thIs, he would type the following:

)FNS ATTEND

To which the system would respond:

VATTEND
[lJ N+pX
[2] (+/X)+N
[3] f/X
[4] L/X
[5] <r/X)-L/X

v

To execute ATTEND, the user need only type in Its name.

ATTEND
25.7
28
23
5

The above 4 values should look famil tar; being the mean, highest,
lowest and range values of x.

Once all the procedures to calculate the results are contained
In a function, the user is able to alter his input all he wants
and then execute ATTEND to obtain new statistics.

X+24 25 26 28 28 27 27 26 28 24

ATTEND
26.3
28
24
4

X+25

ATTEND
25
25
25
o

10.4

FunctIon EdItIng

FunctIons usually undergo several changes to theIr content from
the InitIal definItion to the final function. ThIs could be
due to many reasons; anythIng from addItional features being
inserted once the original functIon has been tested and found
to be Inadequate, all the way to Just correctIng typIng errors.
But whatever the reason, It [s best to know the three bastc
techniques that are avaIlable to change the structure and content
of a function. They are Line Insertion, LIne ModIfIcatIon,
and LIne Deletion.

Line InsertIon

It would be nice to have ATTEND display X before any computations
took place, just to make sure It contains the proper values.
This means Inserting aline before line 1 of ATTEND that would
allow X to be prInted out. The user would type the following:

'VATTEND
[6][.1]X
[1]V

The user typed In the Del, followed by ATTEND, sIgnalling to
the system to open up ATTEND for the purposes of makIng editions.
The system responded by typing [6], IndIcating that It is
In Function DefinItion Mode and that It Is ready to add more
lines onto ATTEND. LIne 6 is the first available free 1 'ne.
But the user wants to place his statement before any of the
others so that it will be printed first whenever ATTEND Is exe­
cuted. Therefore he must redirect the computer away from line
6 and point It to some point before lIne 1. The user pointed
to .1. He could have typed In any value between 0 and 1 to
obtaIn the same objective.

On the same line that he typed [.lJ, he entered his new statement.
After pressIng the IIRETURN" key, the system asked if there were
any modifications to be made to the line immedIately followIng
the Inserted 1 Ine; In thIs case, It's line 1. There weren't,
so the user closed the function by typing In another Del. ThIs
does not affect the contents of 1 tne 1 In any way. Just to
make sure, ATTEND Is again displayed.

10.5

)FNS ATTEND
VATTEND
[.lJ X
[1] If+pX
[2] (+/X)+N
[3] r/x
[4] L/X
[5] (r/x)-L/X

v

Upon dIsplayIng ATTEND, the 1 tne insertIon seems to have been
successful. On execution of ATTEND, it proves it was.

X+24 26 26 20 25

ATTEND
24 26 26 20 25
24.2
26
20
6

Line Renumbering

The line numbers remain as they were orIginally entered In case
there are more modifications to be made. The function does
not have to be displayed constantly to make sure the right lIne
gets altered.

But once all insertions and changes to the function have been
completed, the 1 ines of the function can be renumbered to make
It easIer to read and neater in appearance. To do this, a comma
and the letter R are placed after the command to display the
functIon.

)FNS ATTEND,R
OK

The system responds with OK to indicate the 1 ine numbers have
been renumbered. This Is what ATTZND now looks 1 ike:

)FNS ATTEND
VATTEND
[lJ X
[2] N+pX
[3J (+/X)+N
[4J r/X
[5] L/X
[6J Cr/X)-L/x

V 10.6

LIne Modification

Line 3 of ATTEND, which reads (+/X)+N , could be modifIed to
read (+/X)fpX which would achieve the same result as lInes 2
and 3 do now since N is really pX anyway. So, to modify 1 ine
3, the same procedure Is followed as with Line Insertions.

VATTEND
[7][3J(+/X)fpX~

Something to note here. After the system was redIrected back
to line 3 and the modification typed in, a Del was typed at
the end of the 1 ine, just before the "RETURN JI key was pressed.
This is just another way of signall ing to the system that all
the modifications are complete and the function can be closed.
It's just quicker than having the system come back with [4]
and then closing the function.

)FNS ATTEND
VATTEND
[lJ X
[2J N+pX
[3J (+/X)tpX
[4J r / X
[5J L/X
[6J <r/X)-L/X

'iJ

It can be seen that line 3 has indeed been changed.

10.7

LIne Deletion

There is no longer any need to have N defined in lIne 2 since
it is not used in the function anymore. So, to get rid of it,
the following would be typed:

VATTEND
[7 J[2]
[3]V

(press "RETURN" key .QllJ.y)

After pointing the system back to line 2, only the "RETURN II

key Is pressed. This erases line 2 from the function.

)FNS ATTEND
VATTEND

[1J X
[3] (+/X)tpX
[4] r / X
[5] L/X
[6J (r/X)-L/X

V

And, just to renumber the lines to el imlnate the gap left by
the deletion of line 2, the Renumber command is again typed.

)FNS ATTEND,R
OK

And to make sure it still works:

ATTEND
24 26 26 20 25
24.2
26
20
6

x still has the values 24 26 26 20 25 that were assigned to
t t ea r 1 i e r •

The only function that can't be displayed or modified In any
way Is a IIlocked" function. To lock a function, either the
beginning or ending Del is overstruck with a Tilde to form the
symbol, ¥. Locked functions cannot be unlocked, so if the user
wIshes to lock his functions he should make sure they work
perfectly or else have unlocked versions saved privately in
his 1 ibrary just in case.

10.8

One other feature about displaying a function is that the display
may begin at any line. For instance, lines 4 and 5 only of
ATTEND could be displayed by typing the following:

)FNS ATTEND,4

The ,4 tells the computer to list the statements contained in
ATTEND beginning at 1 ine 4. To which the computer responds:

[4J L/X
[5J <r/X)-L/X

v

10.9

Chapter Eleven

TYPES OF FUNCTIONS

A function is basically made up of two parts, the body and the
Header Line. The body runs from line 1 to the last line of
the function. The Header line is that line which contains the
name of the function. It is always the first line printed
whenever a function is displayed. Another feature of the Header
Line is that it contains the syntax of the function. For
instance, just as there are Monadic and Dyadic primitive
functions such as ~2 and 6 f 2, so too are there Monadic and Dyadic
user defined functions. Here is what the Header Line of a
Monadic user defined function looks like:

'VSORT X

SORT is the name of the function and X is Its argument. The
name of a Monadic function always precedes its argument just
as the primitive functions do The argument is separated from
the function name by a space.

The Header Line of a Dyadic function would look like this:

'VA HYP B

The name of the function in this case is HYP and the two arguments
are A and B. When relating this type of function to the primItive
functions, HYP could be thought of as the operator, such as
~, and A and B could be the 6 and 2 mentioned above.

In addition to having both Monadic and Dyadic user defined
functions, there is also one called "NiladIc", or a function
that has no arguments. A1TEND was defined as being a Niladic
function.

11.1

Here Is a table of all the different types of user defined
functions that can be wrItten:

Niladic Monadic Dyadic

No Explicit Result

Explicit Result

VATTEND

VR+ROLL

VSORT X VA HYP B

VR+SQRT N VC+A RND B

The difference between IINo Explicit Result ll and "Expl Icft Result ll

functions will be discussed In a moment, but first the three
different functions in the top row will be illustrated.

Suppose for the time being that all of the functions 1 fsted
have already been defIned In the Active Workspace. The function
ATTEND is the same one that was created earl ier. Just to make
sure, it's displayed.

)FNS ATTEND
VATTEND
[lJ X
[2J (+/X)+pX
[3J r/x
[4J L/X
[5J <r/X)-L/x

V

And to see if it stIll works, X is assigned the values 1 to
10 and the function is executed.

X+1.10

ATTEND
1 2 3 4 5 6 7 8 9 10
5.5
10
1
9

Everything seems to work okay.

The functIon SORT is a Monadic function and, when displayed,
100ks 1 i ke t his :

)FNS SORT
VSORT X
[lJ xctX]

'V

11.2

Notice that only the name of the function has to be typed in
order to display its contents. The argument(s) is not included
when the system is asked to display a function.

Obviously, the function SORT sorts a vector of values in ascending
sequence. So, it's tried out:

SORT
SORT
? SYNTAX ERROR

What happened here? ATTEND worked okay and it used the varIable
x. So why doesn't SORT? The reason is that both functions have
different types of Header Lines. ATTEND is defined as being
a Niladic function requiring no accompanying argument while SORT
Is a monadic function expecting a right argument each time it's
executed. Here It's tried again; this time with a right
argument.

SORT 2 10 6 2.5 0 4
4 0 2 2.5 6 10

Something rather odd just happened here. X had previously been
assigned the values 1 through 10, but upon executing SORT which
uses a variable called X, different values were returned than
were originally assigned to x. When X is displayed, it still
has the values that were assigned to it before ATTEND was
executed.

X
1 2 3 4 5 6 7 8 9 10

This means that two different XiS were used. And this is in
fact what happened. Because X is used in the Header Line of
the function SORT to define the syntax of that function, it
Is classIfied as being a "local variable". This means that
It becomes a val id variable only while SORT Is executing. Once
SORT has successfully completed its computatIons, the local
variable X Is automatically erased from the system. The X as­
sIgned the values 1 to 10 is called a Itglobal variable l1

; meaning
it was defIned while the system was in Calculator Mode and can
be used outsIde any of the functions. The)VARS command will
list all the global variables.

)VARS
x

x Is the only global variable presently in the Active Workspace.
The function HYP should further Illustrate the local-global
variable aspect.

11.3

HYP calculates the hypotenuse of a right angled trIangle.

3 HYP 4
5

Displaying HYP should reveal how the hypotenuse is calculated.

)FNS HYP
VA HYP B

[1J «A*2)+B*2)*O.5
~

Two more local variables, A and B are used here. And to prove
that they too are erased from the Active WS as soon as HIP Is
successfully completed, a listing of the current global varlablai
Is again requested.

)VARS
x

The followIng example re-executes RYP using predefined varIables
for Its arguments.

SIDZ1+2
SIDE2+5

SIDEl HYP SID~2

5.385164807

When HYP was executed this last time, the local variables A
and B took on the values contained In SIDZ1 and SIDZ2 respectively
until the hypotenuse was printed.

)VARS
SIDEl SIDE2 X

Therefore, the variable names that appear In Header LInes of
functions become unique variables only whIle theIr respectIve
functIons are executing, even If they have the same naMes as
prevIously defined global variables.

11.4

Explicit vs No Expl lett Result Functions

The difference between an Expl lett Result function and a No
Explicit Result function is that the Expl lett Result function,
at the end of its computations, produces a result that may be
used immedIatelY as an argument of another user defined or
primitive function.

The way a function is denoted as one that produces an Expllelt
Result is by the presence of a specifIcation arror (+) in the
Header Line. The second row of the function Header LInes In
the table listed before are all Explicit Result functions.

The function ROLL Is an Expl lelt Result, Niladic function that
selects, at random, two numbers from two different sixes.

)FNS ROLL
VR+ROLL

[1] R+?6 6
V

Here Is how it works:

ROLL
3 4

ROLL
1 1

+/ROLL
8

+/ROLL
3

By defining ROLL as an Expl lelt Result function, it can be used
as the right argument to the "Plus-Reductlon ll operations In
the last two examples. If the same type of thing were tried
with a No Explicit Result function, such as SORT, the followIng
would occur:

+/SORT 2 6 1
126

+/SORT 2 6 1
? VALUE ERROR

The function SORT rearranged Its right argument Into ascending
sequence and printed It out just as it did before, but, because

11.5

It was not defined as being an ExplicIt Result function, It
caused the VALUE ERROR to occur.

The next function, SQRT, Is a Monadic, Expltclt Result
function used to fInd the square root(s) of Its argument.

SQRT 4 25 64
2 5 B

SQS+SQRT 16 36

SQS
4 6

SQS*2
16 36

)FNS SQRT
VZ+SQRT N

[1J Z+N*O.5
V

And lastly, the function END, used to round off the value(s)
contaIned In the right argument according to the number of
digits specified in the left.

2 RND 76. 826
76.83

10+0 END 2.3 6 4.7
8 16 15

)FNS RND
VeTA RND B

[1J C+(10*-A)xLo.S+B x l0*A
V

There are just a few more points to mention concerning function
Header LInes. The names of the functions must adhere to the
same rules as variables do. They are mentioned In Chapter 2.
The varIables contained tn the Header LIne serve only to Indicate
the syntax required for that function each time it is executed.
They become valid variables only while the function whose Header
Line in which they reside Is executing. Once it is fInIshed,
they are automatically erased from the Active WS and any existing
global variables with the same name are then "reactlvated".
The variable name to the left of the specification arrow found
In the Header Line of an Expllelt Result function Is also a
local variable. Within the body of the function, this varIable
must be assigned a value before normal completion of the function

11.6

is reached. If this is not done, the function will terminate
with an error message.

Additional Local Variables

Most user defined functions require more than one line to
complete their prescribed calculations. This means that
intermediate results obtained as each line is executed have
to be stored in variables so that they can be used in future
calculations. But, once the function has completed execution,
these intermediate results serve no further purpose. After
a while, if several functions are executed, these intermediate
values start to clutter up the Active WS and cut down on
available space that may be needed for other calculations.
They also make it very hard to remember which variables are
useful and which are not. Therefore, to aid the user in the
general "housekeeping" of his Active WS, APL allows several
variables to be defined as being local to certain functions.
This means that instead of just having the arguments of a
function automatically erased by the system after the function
has completed its computations, the user may state any number
of variables to be eliminated this way.

Here is the Header Line of a Dyadic, Explicit Result function
with five local variables, R, A, B, PROD, and TOT.

VR+A TIMES B;PROD;TOT

Each local variable not required to define the general syntax
of the function must be preceded by a semicolon.

)FNS TIMES
VR+A TIMES B;PROD;TOT
[lJ PROD+AxB
[2] TOT++/PROD
[3] R+TOT+TOTxO.05

v

11.7

An invoice contains the following:

Quantit

6
23
16

9

Unit Price

5.95
.98

1.59
2.25

The function TIMES is used to calculate the total amount of
the bill, including a 5% sales tax on 1 ine three.

6 23 16 9 TIMES 5.95 .98 1.59 2.25
109.1265

)VARS
SIDE1 SIDE2 X

There are still only three variables 1 isted in the Active WS.
To make the variables PROD and TOT global, they must be taken
out of the Header Line and TIMES must agaIn be executed.

Changing the Header Line of a function is the same as changing
any other 1 ine of the function.

VTIMES[O]R+A TIMES BV

Upon openIng the above function, the system is immediately pointed
to lIne zero, the Header Line, the change Is made and the
function closed. This Is just another way to further reduce
the number of 1 tnes needed to modify part of a functIon.

Below, TIMES is displayed to see what the new Header Line looks
like, then it's executed.

)FNS TIMES
VR+A TI1'-1ES B

[1 J PROD+AxB
[2J TOT++/PROD
[3] R+TOT+TOT x O.05

rv

6 23 16 9 TIMES 5.95 .98 1.59 2.25
109.1265

Now there are two more variables added to the global variable
1 i st.

)VARS
PROD SIDEl SIDE2 TOT

11.8

x

PROD
35.7 22.54 25.44 20.25

TOT
103.93

If the name of the functIon is changed In any way, there wIll
not be an additional function added to the Active WS, but rather
the II new ll funct ions will repl ace the "01 d".

VTIMES[O]R+A INVOICE BV

It must be remembered that whenever a line of a function Is
changed In any way, the entIre new lIne must be entered. PartIal
changes are not allowed. ThIs means that even If one character
is In error, the entire line must be typed in to make the proper
correction.

)FNS TIMES
)FNS TIMES

? VALUE ERROR

The system command to lIst all the functIons in the Active WS
is just)FNS •

)FNS
ATTEND
SORT X
A HYP B
R+ROLL
Z+SQRT N
C+A RND B
R+A INVOICE B

It not only lists the names of all the functions but also the
syntax of each.

11.9

Sub-functions

When writing fairly complex functions, It is easy to acciden­
tally use duplicate names for different variables, or make the
flow of logic very difficult to follow and maintain. The best
approach to writing functions that contain a lot of calculations
is to modularize specific routInes and use a maIn function to
"callfl them when they are needed. Another reason for breakIng
up one big function into several small ones is that certain
routines may be executed many times. This not only adds an
unnecessary number of lines to the function, but It also
increases the chance of errors while designing and typing the
functIon.

The function INVOICE Is used below to Illustrate how a sub-function
is used to perform a specific calculation for the main function.
First, INVOICE is displayed, just to refresh the user on how
It works.

)FNS INVOICE
VR+A INVOICE B

[1J PROD+AxB
[2J TOT++/PROD
[3J R+TOT+TOTxO.05

'iJ

Then It is tried again with a new set of data.

UNITS+6 22 10 5
COST+.95 1.5 2 1.75

UNITS INVOICE COST
70.8225

This bill would normally be rounded off to the nearest penny.
ThIs is where the function RND comes into play. It can do the
rounding of the bill for the function INVOICE.

Here is what the function RND looks lIke:

)FNS RND
VR+A RND B

[1] R+(10*-A)xLO.S+B x10*A
v

11.10

Here It is In use:

1 RND 56.46
56.5

Line 3 of INVOICE must be changed to include RND.

VINVOICE[3]R+2 RND TOT+TOTxO.05V

The function INVOICE now looks 1 Ike this:

)FNS INVOICE
VR+A INVOICE B

[1J PROD+AxB
[2J TOT++/PROD
[3J R+2 RND TOT+TOTxO.OS

'"J

And works 1 ike this:

UNITS INVOICE COST
70.82

11.11

Chapter Twelve

BRANCHING AND INPUT-OUTPUT

BranchIng

So far, the statements contained in the previous functions have
executed in an orderly fashion. The contents of line 1 were
computed before those of 1 ine 2, which was done before line
3, and so on to the end of the function. But, in many computer
applications, there Is often the need to branch to a statement
that is not immediately below the one presently being executed.
Or a user may want to execute a certaIn set of statements several
times depending on the prevailing conditions. ThIs latter
situatIon Is called 111ooping ll

• A typical function that requires
looping of a certain routine Is one that sorts a group of names.

Assume the user has defined a matrix called M to contain the
following names:

M
FRED
BILL
BERT

pM
3 4

M is a matrix consistIng of 3 rows and 4 columns. The names
contained In M were entered In a random order with the intention
of sorting them in ascending sequence. So now the user must
set about to defIne a function to do this task.

The first step is to decide what type of function to use. The
user has chosen to make this function a Monadic, Explicit Result
function with the following Header Line:

VR+SORT A

12.1

The next step is to pick a method of sorting the contents of
the matrix argument. Most computer and manual sorters start
at the right column of the matrIx and work to the left, sorting
the matrix according to the relative positIons of the letters
In each column as It's sorted.

Therefore, a counter must be set to equal the number of columns
contained In the argument to assure that the right column Is
sorted first. ThIs counter is then decremented by one before
each new column sort Is attempted so that the same column isnlt
sorted twice.

Here Is how thIs counter would be initialized In 1 fne one of
the function:

[1]I+(pA)[2]

Line 1 contains a statement that calculates the dimensions of
the argument A and places the second of the two dimensions Into
the counter I.

Line 2 states that R Is assigned the values contained in A.
DoIng this function 'now just avoids the need to do It later.
Either method is equally acceptable.

[2 JR+A

The next step is to perform a sorting operation on the extreme
rlghthand column. This Is done by the following algorithm:

[3]R+R[{!R[;I]);]

R Is replaced by the values contained In R after they have been
rearranged according to the sorted sequence of the IndIces In
the column number specified by I. The fIrst tIme through, the
contents of R remaIn unchanged because the letters D, Land T
are already tn ascendIng sequence.

Line 4 will decrement the counter by 1 so that the next column
can by sorted.

[4 JI+I-1

Now, the system must be redIrected back up to line 3 to perform
the next sort. The symbol used to change the normal sequence
of execution Is the right pointIng arrow, +, (uppershlft +).

[5]+3

12.2

This last statement is an Unconditional Branch, tell ing the
system to always go back to 1 Ina 3, no matter what happens.
It is read as "go to line 311

• This "loop" between 1 ines 3 and
5 will be repeated over and over until I reaches o. The reason
It stops when I equals zero Is that R cannot be Indexed by the
value o. If this does happen, the function will abnormally
terminate. So I must be checked for this condition and the
appropriate action taken to avoid this happening. That means
a line must be inserted between 1 ines 4 and 5 to make the
function terminate its execution when I equals o. This can
be accomplished by the following line:

[4.1 J+(I=O)/O

The Logical Reduction function is used here to terminate the
function SORT when I equals o. The statement reads, lIif I equals
0, branch to 1 ine 0, otherwise continue to the next statement ll

•

Line 0 was chosen as the target of the branch because It does
not appear as aline number of the function. Actually, any
lnvalld lIne number would do the same thing; namely terminate
SORT. But lIne 0 Is used because, no matter how many 1 tnes are
added to the functIon, it will never have a line O.

If I is not equal to 0, no branch occurs. The reason for this
is that the comparison I=O returns a result of 0, and % yields
an empty vector. A branch to an empty vector means no branch
at all.

Here Is the way SORT should look:

VR+SORT A
[1J I+(pA)[2J
[2] R+A
[3J R+R[(.R[;I])i]
[4] I+I-l
[5J -+(I=O)/O
[6] ~3

V

Now for the sortIng of M.

SORT M
BERT
BILL
FRED

The branch operation may occur anywhere wIthin a statement.
For Instance, the following branch Is performed In the middle
of the statement of line 7 of a function.

12.3

·[7] R+(\O)=X+~(O=A)/11

If the above branch Is successful, execution of the statement
on the above line 7 wIll be halted at the branch arrow, (~),

and resume again at line 11. If not, the branch function will
return an empty vector result whIch will then be assigned to
the variable x. Therefore, If A Is not equal to 0 in the above
statement, X will receive the value \0 and R will be assigned
the value 1. KnowIng this capabil tty, lInes 5 and 6 of SORT
could have been combIned on the following manner:

[5] ~3,+(I=O)/O

Labels

Here Is an example of another kInd of branchIng operation.
The first line of the function RANK Is a branching operatIon
that has, as its targets, the names VECTOR and MATRIX. These
two names are called 1 fne label s.

)FNS RANK
'VRANK A
[lJ +(1 2=ppA)/VECTOR,MATRIX
[2J 'MULTI-DIMENSIONAL ARRAY'
[3J -+0
[~J VECTOR: 'RANK l'
[5J -+0
[6J MATRIX: 'RANK 2'

V

The lIne labels are positioned In front of the function statements
on lines 4 and 6 and are separated from these statements by
colons. They are not part of the executable statements but
serve as "local constants" to the function. This means that
during the execution of the function in which they are contained,
they are assigned the values of the numbers on which they reside.
For instance, while RANK is executing, the labels VECTOR and
MATRIX become local constants with the values 4 and 6 respec­
tIvely. Therefore, a branch to VECTOR Is really a branch to
1 i ne 4.

12.lt.

They have the same properties as local variables in that their
domain is limited to their function. But unlike local variables
whose values may change many times during the execution of a
function, the values associated to local constants remain the
same throughout the function's execution.

Local constants are quite useful, especially in the initial
stages of writing a function. Usually, the final copy of a
function looks only remotely like the original version. Lines
are often inserted while others are deleted. And during all
these modifications the line numbers change many times, making
it a nightmare for branching operations because, no matter what
the new numbering sequence of the function, branching operations
are always to the same line number; even though the intended
statement to receive the branch now resides on a new line.
All this chaos can be avoided with the use of line labels because
they are assigned values only while their respective function
is executing. Therefore, it does not matter how many times
a function is renumbered, a branch to a specific label will
always do just that.

Here are some examples of how the labels in RANK work:

RANK 6 7 8
RANK 1

RANK 2 3P16
RANK 2

RANK 3 3 3 3 3Pll00
MULTI-DIMENSIONAL ARRAY

12.5

Examples of Branch InstructIons

There are many more ways to evoke a branch to another 1 ine.
Here are just a few of the different branchIng techniques that
are possible:

+2
~2+XxY~O

+LABEL
+0

Branch To Either Of Two Lines

+«X<O).X~O)/6 2

+(LABEL1.LABEL2)[1+X>0]

Conditional Branch

+(1 OR 0)/LABEL

+(1 OR 0)pLABEL

+(1 OR a)tLABEL

+LABELXt(1 OR 0)

If a function becomes suspended whIle trying to execute, the
cause of the suspension can be corrected and the execution
resumed. For example, assume a functIon called EVAL became
suspended on line 12. If, after correcting the error, the user
wished to continue executIon of EVAL at line 12, he would type
the following:

+12

Or he could restart the executIon at any other line by typIng
In the branch to It, just as the branch to lIne 12 was
accomp1 [shed.

When a function becomes suspended, Its name and the number of
the 1 ine on whIch the suspension occured are added to the State
Indicator. To find out what [s lIsted in the State IndIcator,
the)SI command is Issued.

12.6

)SI
*EVAL [12J

The State Indicator lists the function EVAL as being suspended
on line 12. EVAL is preceded by an asterisk because it is a
Ifsuspendedll function. The State Indicator may also list
IIpendant ll functions - functions that have called other functions
that have become suspended, like EVAL. The resumption of pendant
functions is dependent on the resumption of suspended functions.
Pendant functions are also listed in the State Indicator, but
are not preceded by an asterisk. Here's an example of a pendant
function and a suspended function:

)SI
*SS [2J
ANALYSIS [17J

The 1 ine number 1 isted with the pendant function is the 1 ine
in which the suspended function was called.

To find out which variables are IIl oca llf at the time of
suspension, the following command is used:

)SIV
[12J A SU~1 x

Itls good practice to keep the State Indicator clear of all
listings because they take up valuable space within the Active
Workspace which could be used for other activities. The State
Indicator should be cleared as soon as its contents are no
longer needed. This can be done in either of two ways, other
than clearing the entire workspace:

-+-0

Or just

+

)SI

The +0 operation erases the latest suspended function from the
State Indicator 1 isting and reactivates any related pendant
functions at the 1 ine numbers 1 isted by the)SI command.

The + operation erases one suspended function and all related
dependent functions from the State Indicator 1 ist. A branch
arrow is required for every suspended function that appears
in the State Indicator 1 isting. If there are two such items
listed, the following would be required to clear the State
Indtcator:

12.7

Input - Output

To be completely Interactive with the user, a defined function
must have the abil tty to print out Items on the terminal as
well as accept termInal Input at various stages of Its execution.

Numeric Input

To accept numeric Input from the terminal, the symbol used is
called the Quad Symbol, 0, (uppershift L).

V80RT;X
[1J 'ENTER DATA'
[2J X+O
[3J 'THE DATA SORTED IN ASCENDING SEQUENCE IS AS FOLLOWS:'
[4J X[!X]

V

SORT
ENTER DATA
o 20 16 21 15 17 22 18
THE DATA SORTED IN ASCENDING SEQUENCE IS AS FOLLOWS:
15 16 17 18 20 21 22

After the first line of SORT is displayed, the Quad Symbol is
typed and the typing element spaces into position 6 where the
keyboard then unlocks. The user is expected to type in the
required data at this point to carry out the rest of the
execution of SORT.

Here are some examples of the use of the Quad Symbol while the
system is not executIng a function:

6+0
o 7
13

0-3
o 10
7

12.8

A good use for the Quad Symbol outsIde of functIons occurs when
several values have to be assigned to a variable; so many In
fact that they cannot all be assIgned on the same lIne. Here
is a small sample showIng how this sItuatIon could be handled
using the Quad Symbol:

A+1 2 3 4 5.0
o 6 7 8 9 10

A
1 2 3 4 5 6 7 8 9 10

If a user is executing a functIon requiring hIm to type in numeric
input, but he would rather exit from the function, he could
do so by typing the followIng:

He is ImmedIately exited from the function.

Literal Input

To accept literal input, the Quote-Quad Symbol, ~, (uppershlft L
overstruck with uppershlft K) Is used. Here it is employed
on line 2 of the function QUES1 to receive the answers typed
by the user:

VQUES1
[1] 'WHAT IS THE CAPITAL OF CANADA?'
[2] +Q2X1A/'OTTAWA'=6p~

[3J 'WRONG. TRY AGAIN.'
[4J +2
[5] Q2: 'RIGHT'

V

QUESl
WHAT IS THE CAPITAL OF CANADA?
TORONTO
WRONG. TRY AGAIN.
OTTAWA
RIGHT

12.9

After line 1 of QUES1 Is typed, the typing element returns to
its starting posItion and "twltches ll to Indicate It expects
literal input.

A+[!]
I CAN'T FIND IT.

A
I CAN'T FIND IT.

B+'IT' '8 OVER THERE.'

B
IT'S OVER THERE.

When a quotation mark is desired within a 1 iteral, two quotes
must be typed together to represent one. When input is required
for the Quote-Quad Symbol, the literal string is stored exactly
asit i s t yp e d •

If the user Is expected to reply to a Quote-Quad operation of
a function, but would rather not answer and leave the function
enti rely, a special symbol Is available.

VLOOP;A
[lJ A+l!J
[2] +1

V

LOOP
STOP
HELP
fJ

The last input released the user from LOOP and took him out
of the function. This symbol is typed as 0, backspace V,
backspace T.

12.10

Output

The Quad Symbol, 0, is used to print out both numeric and literal
data. To do this, the specification arrow is placed to the
right of the Quad Symbol instead of Its left as it was In the
cases where the Quad was used as an input operation.

D+A+6+7
13

A
13

It may be used in calculatIons also.

A+7+D+6+7
13

A
20

VMEAN;X
[1] 'THE MEAN IS ';(+/X)+pX+-1.0.pO+'ENTER DATA'

'iJ

MEAN
ENTER DATA
o \10
THE MEAN IS 5.5

The expression -1+0,pD+ above allows the 1 iteral ENTER DATA
to be displayed from lIne 1 while not interfering with the rest
of the 1ine. This Is accomplished In the following manner:

1. The 1 iteral is displayed

2. p then determines how many characters were dIsplayed.
(In this case it is 10)

3. This is then catenated to the requested Input to produce
the vector 1 2 3 4 5 6 7 8 9 10 10.

4. The last element is then dropped from this vector (t.e.,
the 10 that represents the length of the 1 iteral output)
and the result is assIgned to the variable x.

12.11

Here Is another example of the same thing:

VQUIZ
[lJ ~1X\(x/X)=ltD,pD+'WHATIS 'j(X[1]);'X';1+X+?10 10
[2] ~l.pD+'NO. THE ANSWER IS ',xiX

v

The expression ltD,pO Tn 1ine 1 above, the rho function, p,
takes the sIze of the output 1 iteral statement. If this were
not done, a DOMAIN ERROR message would occur because 1lteral
data cannot be catenated to numerIc data. The 1+ operation
allows only the fIrst element typed in to be compared to the
product of X. In 1 Ina 2, the Rho function Is used again to
perform the same task. Because the branch function only
recognizes the first element of a vector, the system will always
return to line 1.

Here is an example of the function QUIZ being used:

WHAT
o
NO.
WHAT
o
WHAT
o
WHAT
o

QUIZ
IS 7x4

12
THE ANSWER
IS 6x9

54
IS 2x2

4
IS lx8

IS 28

The + terminated the exercIse.

12.12

Chapter Thirteen

LIBRARIES

So far, all computer actIvIties have taken place In an area
known as the Active Workspace. CalculatIons and writing of
functIons are done In this area. But It is only a temporary
area set up for the user whIle he is signed on. As soon as
he termInates his APL session with the sign off command, the
entIre contents of his Active WS are erased from the system.
Any functions or variables he may have created since sIgning
on immediately vanIsh and cannot be recalled at a later sessIon.
This Is not a desirable feature, especially If the user has
created something which he would 1 Ike to use agaIn at a later
date. But It is necessary because the computer would not be
able to store every Active WS after every terminal sessIon that
takes place. This would requIre a computer of enormous size
to have this capabll ity. APL does make provlston for the user
who does want to sign on later and re-use certain routInes he
has created, by allowing him to store these routines in an area
called his LIbrary.

The LIbrary space assIgned to each user when he receives his
APL account number is a permanent storage area that resides
In the system as long as the user's account number is val id.
Here, Items from the Active WS can be saved lndeflnltly and
loaded back into the Active WS area only when requested.

13.1

User's
Library

To place an item Into the library, the)SAVE command Is used.
As an example, suppose there is a function called ASORTl currently
In the Active WS which the user wishes to save In his library
for future use. Here is how he would perform the task:

)SAVE ABORT1
SAVED 9.06/ 72.264/ 608

After the)SAVE command was Issued, the system printed out a
message statIng the time and date, and how much library space
was required to save the item. ASORTl was saved at 9:06
AM on the 264th day of 1972 (September 20), and It took up 608
bytes of 1 fbrary space.

When ABORTl was saved In the 1 ibrary area, only a copy of the
original function ABORT1 in the Active WS was saved. A quick
check to make sure that ABORT1 still resides in the Active WS
should verify this.

)FNS
R+ASORTl

Therefore, ASORTl is still in the Active WS and can still be
used.

ASORTl
ENTER DATA.
TOM
DICK
HARRY
~

DICK
HARRY
TOM

13.2

(ASORTl sorts 1 iteral data, a column at a tIme)

)FNS ABORT1
VR+ASORT1;I;J;LiV

[1J I+2+L+pV+OpD+'ENTER DATA.'
[2J +(O~-1tL+L,(pV+V,~)-+/L)/2

[3J R+«(pL)-1)tr/L+-l~L)p1 ,
[4J J+l(+/IpL)-+/(I-l)pL
[5J R[(I-1);JJ+(+/(I-l)pL)~(+/IpL)+V

[6J +«pL)~I+I+l)/4

[7J L+1~pR

[8J R+R[(!R[;LJ);]
[9J +8 X 10<L+L-l

v

And to make sure a copy of ASORT1 did in fact get stored in
this particular user's library area, the following command is
used:

)LIB
ASORTl

Notice the)LIB command lists only the names of the functions
while the)FNS command includes their syntax.

If the user wished to load the copy of ABORT1 back from his
1ibrary into his Active WS, he would Issue the following command:

)LOAD ABORT1
DATA IN WS

After the user typed the)LOAD command, the computer repl led
wIth the message DATA IN WS whtch means, "you already have a
thing called ABORT1 in your Active WS, therefore this command
is being ignored". Obviously, two items with the same name
cannot be in the Active WS area at the same time. So instead
of replacing the present one with the stored copy, the system
leaves the decision up to the user as to whether he really wants
the stored copy in the Active WS in place of the present one.
The only way to get the stored copy back into the Active WS
Is by erasing the present copy.

)ERASE ASORT1
OK

)FNS

13.3

Since ASORT1 no longer resides in the Active WS, it cannot be
used.

ASORTl
ASORT1
? VALUE ERROR

Now a copy of ASORT1 may be loaded from the 1 ibrary.

)LOAD ASORT1
SAVED 9.06/ 72.264/ 608

To Indicate that a copy of ASORT1 has been loaded successfully,
the system replies with the same message it produced for the
)SAVE command. Now again there are copies of ASORTl in both
the Active WS and the 1 ibrary.

)FNS
R+ASORT1

)LIB
ASORTl

Although a member of the Active WS cannot be replaced by the
1 ibrary member, the same is not true for 1 tbrary members.

Suppose the user tried to resave ASORT1, even though it already
wa 5 i n his 1 Jbra r y •

)SAVE ASORT1
REPLACED 9.30/ 72.264/ 608

The copy of ASORT1 that was in hIs 1 ibrary was replaced by the
Active WS copy. Because both copies were identical, no harm
was done. But suppose there was a 200 1 ine function in the
library and a variable containing only three values in the
Active ws, both with the same name. That 200 1 ine function
would be lost and the user would be left with a 3-element vector
In his library. Therefore, it pays to check the names of the
library's contents before any saving is attempted, just to be
sure that valuable data isn't lost.

13.4

Saved Workspaces

Functions and variables contained In the Active WS may be saved
Independently or collectIvely. If they are saved Independ­
ently, only one Item can be saved at one time (I.e., a)SAVE
command is required for each member to be saved), and the user
must be expl ieit in which item he wishes to save. As in the
examples of saving ASORT1, the name of the Item was stated after
each)SAVE command. But quite often a user will wish to save
several items together so that a separate)SAVE and)LOAD command
won1t be required to store and retrieve each one. To do this,
he must save the entire workspace. This Is done in the following
manner:

)SAVE
SAVED 9.45/ 72.264/ 4820

No name is stated after the)SAVE command to Indicate to the
system that the whole workspace is to be saved. Notice that
even though an Active WS is approximately 32,000 bytes In size,
only 4,820 bytes were saved. This is due to the fact that the
Items in this particular workspace only occupied 4,820 bytes.
Only that amount of space required to store the items is used
In order to free up as much avaIlable library space as possible
so that other items can be saved.

Now take a look at what's In the library.

)LIB
ASORTl *CONTINUE

There are two things of interest here. One Is that the saved
workspace is called CONTINUE and the other is that it is preceded
by an asterisk. The asterisk is placed there for a very good
reason. Because there can be only one Active WS at one time,
anytime a saved workspace is loaded Into the area occupied by
the Active WS, the present contents of the Active WS are replaced
by the contents of the saved workspace. The asterisk is placed
before the saved workspace name to warn the user of this event.
The loading of saved functions and variables is quite different.
They are merely appended to the present contents of the Active
WS, causing no loss of data at all.

The name of the saved workspace is CONTINUE because the system
assigns this name to any Active WS when the user signs on.
The user is the only one who can change this name to somethIng
else. This is Illustrated in Chapter 15. Saving workspaces
under the name CONTINUE Is risky because, if there Is a break

13.5

in the connection between the terminal and the computer, the
Active WS is automatically saved In the user's lIbrary under
the name CONTINUE. This means that any Item called CONTINUE
In the 1 ibrary is replaced by the present contents of the Active
WS when the break occurs. This rule applies even if the)WSID
is some other name.

Loading a saved workspace is done the same way as the loading
of functIons and variables.

)LOAD CONTINUE
SAVED 9.~5/ 72.264/ 4820

)FNS
R+ASORTl
PROG

A
)VARS

fl SUM P1

This particular workspace contains two functions and four
variables.

PublIc LIbraries

Apart from a user being able to load items from his own library,
he Is also allowed to load things from other libraries. Every
APL system has a set of "Publ Ie Libraries" that contain a great
variety of functions already written and documented so the user
doesn't have to create his own. He need only load them Into
his Active WS and use them. Here's an example of a user loading
a function called DSTAT from publ Ie library number 4:

)LOAD DSTAT,~

SAVED 13.58/ 71.155/ 616

To Indicate to the system that it is to look In a library other
than the user's, a comma and the number of the library which
contains the item must follow the Item's name.

13.6

Use r' 5

Library

,..----- Pub 1 i c Lib ra r i es ----...

Lib
1

Lib
2

LIb
999

A user can only load items from publ Ie libraries; he cannot
save items from his Active WS into these 1 ibraries. He is
restricted to using his own 1 ibrary for storing things.

To find out what is contained in each library, there Is usually
a member called DESCRIBE in each publ ie library. It contains
a brief description of the library. There Is also a member
called INDEX which 1 tsts the Items contained in its respective
library along with a brIef description of their uses. Another
way of listing the contents of another 1 ibrary is by issuing
the)LIB command in the followIng manner:

)LIB 70
*CASHVAL *DEPRECN DESCRIBE INDEX *LOANSCH *RATERTN

Publ Ie 1 ibrary number 70 contains the above Items.

Of course these library numbers and their contents will vary
depending on the installation.

13.7

Private Libraries

Besides being able to list and load the contents of public
libraries, it is also possible to do the same thing with other
user's libraries. To issue a)LIB command on another person's
library, his account number must follow the)LIB command.

A
)LIB 3031

LINE *GAMES

To load a member from someone else's library, the command is
the same as that used to load items from public libraries; only
the library number is different.

)LOAD A,3031
SAVED 11.36/ 72.220/ 40

A
1 234 5

This could be very annoying to someone who wants to save some­
thing and not let others have access to it. So there is a
feature that will accommodate this particular situation. The
user has only to type a ,P after his)SAVE command to attain
this result.

)SAVE PROG,P
SAVED 12.01/ 72.2651 2987

Or, in the case of a privately saved workspace:

)SAVE,P
SAVED 12.02/ 72.2651 4089

Items saved in this manner will not appear in the computer's
response to)LIB commands issued by some other user and they
cannot be loaded by any other user.

Library Limits

Because the amount of library space allocated to each user is
determined when his APL account number is added to the system,
only a certain amount of data can be stored before all available
space is gone. When this happens, the user is unable to save
any more items.

13.8

)SAVE REPORT
)SAVE REPORT
? LIBRARY FULL

A copy of REPORT could not be saved because there just wasn't
enough room In the lIbrary to accommodate It. The user will
have to either abandon his attempts at saving the item or get
rid of some other members In his library to free up enough
space. First, he must find out what Is In there.

A
)LIB

*FORCAST *GAMES TEXT

Then he must decide which Item to drop to make room for
REPORT. This user Is going to see If A will give him the needed
space.

)DROP A
SAVED 15.33/ 72.215/ 1056

The computer responded with the same message that was printed
when A was saved. This freed up 1,056 bytes, but Is It enough?

)SAVE REPORT
)SAVE REPORT
? LIBRARY FULL

Apparently REPORT requires more space than that. So he continues:

)DROP GAMES
SAVED 16.23/ 72.195/ 940

)SAVE REPORT
SAVED 10.09/ 72.264/ 1357

This time It was successful and, as seen below, REPORT was saved
and both A and GAMES were dropped from the 1 ibrary.

)LIB
*FORCAST REPORT TEXT

There is one more system command that may be used to save the
contents of an Active WS. Whenever this command is executed,
the Active WS members are saved in the 1 ibrary under the name
CONTINUE and the APL session is automatically termInated.

13.9

Here Is an example of this command:

)CONTINUE
SAVED 11.26/ 72.264/ 2056
010 11.26.37 09/20/72
CONNECTED 00.16.23 TO DATE
CPU TIME 00.00.15 TO DATE

13.10

01.06.23
00.12.04

Chapter Fourteen

DIAGNOSTIC AIDS

When a functIon contaInIng a faulty expression is executed,
it will either suspend execution at the point of error, produce
incorrect results, or it may just continue executing forever
in an "endless loop", unless the IIATTN II key Is pressed. Some­
times it Is difficult to isolate the "bug" that's caused the
problem because the interruption of the function's execution
may not be at the 1 ine that's at fault, but rather at a line
that tries to use the erroneous calculation in some routIne.
Tracking down problems 1 Ike this can be very frustrating and
time consuming. So, two features have been incorporated Into
York APL to help the user with such problems.

Trace Feature

To follow the flow of logic through a function, the abil tty
to trace this flow is necessary. The function IN, below, deter­
mines if X is contained in the matrix Y, and if so, In what
row.

)FNS IN
VX IN Y
[lJ ROWS+(pY)[l]
[2J I+O
[3J £3: I+I+1
[4J ~L8xlA/X=Y[I;J

[5J -+(ROWS~I)/L3

[6] 'NO SUCH WORD.'
[7J e+-O
[8J L8: 'THE WORD ',X,' IS IN ROW 'iI

V

14.1

Here Is how it works:

X+'MICE'
Y+4 4p'BIRDKNATMICEFISH'

X IN Y
THE WORD MICE IS IN ROW 3

To trace the order in which the lines were executed, and the
values produced by each line, the following would be typed:

The expression T~ (the ~ is uppershlft H) Indicates to the system
that the function IN will have some of its lines traced. All
the lines in this case will be traced. 18 Is the same as writing
out all the numbers from 1 to 8.

Here is what the execution of IN looks 1 Ike with the Trace
feature:

X IN Y
IN[1] 4
IN[2] 0
IN[3] 1
IN[4]
IN[5] 3
IN[3] 2
IN[4]
IN[S] 3
IN[a] 3
IN[4] 8
IN[a] THE WORD MICE IS IN ROW 3
THE WORD MICE IS IN ROW 3

The results obtained for each 1 ine are printed after the function
name and the 1 ine number. For example, the value of ROWS in
line 1 Is set to 4, the number of rows contained In Y. Nothing
Is printed the first two times 1 ine 4 is executed because its
result is an empty vector both times.

Notice the looping that occurs between lines 3 and S. Line
5 branches to line 3 twice and then 1 ine 4 branches to 1 ine
8. Each time line 3 is encountered, the variable I is incre­
mented by 1.

Tracing every 1 ine of IN is not really necessary because the
only really relevant lines are 3, 4 and 5 as this Is where all

14.2

the searching for X In y takes place. The other lines either
set up variables or format the output, so they can be Ignored
by the Trace feature.

Here Is how the Trace Is changed to only display 1 tnes 3, 4
and 5:

TAIN+3 4 5

Now the function IN is executed again, but this time It is being
asked to find a word that doesn't exist in Y.

'FROG' IN Y
IN[3] 1
IN[4]
IN[S] 3
IN[3] 2
IN[4]
IN[5] 3
IN[3] 3
IN[4]
IN[S] 3
IN[3] 4
IN[4]
IN[S] 3
IN[3] 5
~L8xlA/X=Y[Ii] :[4]IN

? DOMAIN ERROR

Why? The last 1 ine 3 of the Trace Indicates the I has been
Incremented by 1 until It now equals 5. But there are only
4 rows in Y. Therefore, there is a flaw In the logic of this
function. Line 5 states IIlf ROWS Is greater or equal to I,
branch back to 1 ine 3". But what should have happened when
I equalled 4 is that no branch occur and the system fall through
to line 6. The way 1 ine 5 Is supposed to read is lias long as
ROWS Is greater than I, branch back to 1 ine 3".

Here Is the fix requIred:

~IN[5]+(ROWS>I)/L3~

14.3

Now for a second try:

'FROG' IN Y
IN[3] 1
IN[4]
IN[S] 3
IN[3] 2
IN[4]
IN[5] 3
IN[3] 3
IN[4]
I N[5] 3
IN[3] 4
IN[4]
IN[5]

NO SUCH WORD

To find out which lines of a function are being traced, the
following Is typed:

T!J.IN
345

In this case, it's lines 3, 4 and 5.

To take a trace off a function, there are two methods:

TllIN+O

or

T!J.IN+l0

14.4

Stop Control

SImilar to the Trace feature, the Stop Control halts execution
of a function at predetermined 1 ines.

To stop the execution of the function IN just before it gets
to line 3, the following would be typed:

S!J.IN+3

Now IN is executed:

X IN Y
IN[3]

The function terminated just before executing 1 tne 3 and the
system displayed the function name and the next line number
to be executed. The user is free to do any calculations or
function displays he wants because the system just acts as if
the function had become suspended, which In fact it has.

To reactivate IN at 1 ine 3, the same instruction is used as
with suspended functions.

-+3

The user could also have branched to any other 1 ine the same
way as the IIbranch to 311 was accomplished.

To find out at which lines the Stop Control has been employed,
the following is used:

SD.IN
357

This function will stop Its execution every time it goes to execute
lines 3, 5 and 7.

Removing the Stop Control from a function is the same as with
the Trace feature.

SD.IN+O

or

SD.IN+10

14.5

Error Trap

The Error Trap feature of York APL is not really one of the
Diagnostic Aids that are available, but rather is used as a
"preventive" tool. It is evoked and suppressed in the same
manner as the Trace and Stop features, therefore it's included
in this chapter.

While executing a function, it is often advantageous to have
certain checks and comparisons included to make sure that
improper data don't become arguments of certain functions.
For instance, a literal should never be allowed to become an
argument for a "Plus-Reduction ll operation; zeros should never
be permitted to act as divisors. These things are hard to
control, especially in programs requiring input from the user
at certain stages of their execution.

To make sure that he has entered the right data, elaborate
routines could be written to do nothing but edit his input.
Or, York APL's feature for IItrapping" such problems before they
cause any damage could be employed. This feature is called
the Error Trap.

Here's a sample program being executed without the Error Trap
being applied:

INDEX
THIS VECTOR CONTAINS 5 ELEMENTS,
WHICH ONE WOULD YOU LIKE?
o 10
A [OJ : [4 JINDEX

? DOMAIN ERROR

Here it 1s again; this time with the Error Trap:

INDEX
THIS VECTOR CONTAINS 8 ELEMENTS,
WHICH ONE WOULD YOU uIKE?
o 10
THAT NUMBER IS OUTSIDE THE DIMENSIONS
OF THIS VECTOR. TRY AGAIN.
o 7
45

By using the Error Trap, the problems experienced in the first
example were avoided in the second.

14.6

Here is how the Error Trap was evoked':

E~INDEX+5

This means that any errors encountered in line 5)f INDEX will
be handled by the Error Trap feature if they are of a certain
type (see list below). This avoids the function from becoming
suspended.

Not all errors can be trapped. But here is a list of the ones
that do fall within its domain:

1 DOMAIN ERROR
2 SYNTAX ERROR
3 VALUE ERROR
4 LENGTH ERROR
5 RANK ERROR
6 NUMBER TOO BIG
7 DIVISION BY ZERO

Along with E~ and the line number(s) to be checked, the first
1 i ne of the funct ion is reserved for a spec tal I-beam funct ion.
I-beam functions are described in chapter 15. If an error is
encountered while the function is executing, this I-beam function
(I28) is set to the value corresponding to the error com­
mitted. If a VALUE ERROR should occur, I28 would contain the
value 3. For a RANK ERROR, I28 would be equalled to 5. Each
value that I28 may be set to corresponds to the numbering sequence
of the error listing above. If no error occurs, I28 remains
as an empty vector (\0).

Here is what the function INDEX looks like:

VINDEX;A
[1J -t-(1=I28)/ERR
[2J A+(?10)?100
[3J 'THIS VECTOR CONTAINS ';(pA);' ELEMENTS,'
[4] 'WHICH ONE WOULD YOU LIKE?'
[5] A[OJ
[6J -+-0
[7J ERR: 'THAT NUMBER IS OUTSIDE THE DIMENSIONS'
[8J 'OF THIS VECTOR. TRY AGAIN.'
[9] -t-5

V

The statement in line 1 compares I28 to the value 1 (checking
for a DOMAIN ERROR). If one is encountered on line 5, as it
was in both the previous examples, the system is to branch to
line 7, if the Error Trap feature has been evoked. It was only
in the second example.

14.7

Here Is another example.

As most primitive functions can be either Monadic or Dyadic,
so too can the user defIned functIons. In other words, functIons
that are defined as being Dyadic can be used monadlcallyJ The
following function will Illustrate this.

The function END rounds the values contained tn the right argument
to the prescribed number of digits specified In the left
argument.

2 RND 56.785
56.79

But, If the left argument Is omitted, It will round the right
argument's values to their nearest Integers.

END 56.785
57

By displaying the function, how thIs was done should be evident.

)FNS RND
VE+N RND X

[1J -+(3=X28)/4
[2J R+(10*-N)xLo.s+XX10*N
[3J -+0
[4J N+O
[5J -+2

V

The only line that can't be trapped Is line 1, the line containing
728.

To take the Error Trap off the function, the following is typed:

EliRND+O

or

E~RND+l.0

To find out which lines are being trapped, the followIng Is
typed:

E6RND
2

VALUE ERROR's on 1 ine 2 of RND were being trapped.

14.8

Chapter Fifteen

MORE SYSTEM COMMANDS
AND THE I-BEAM FUNCTIONS

When a user signs on to the APL system he Is always issued a
clear Active Workspace. But thIs Active WS has many more
attributes besides being void of user defined functions and
variables.

One such attribute is the origin of the Active WS. If a string
of numbers is generated by using the Index operator, 1, the
result is always a vector of Integers beginning at 1. This means
that the origin of the Index Generator has to be set at 1.
A quick way to check it is with the)ORIGIN command.

)ORIGIN
IS 1

The origin of the Active WS can either be 1 or o. The way to
change It from 1 to 0 is as follows:

)ORIGIN 0
WAS 1

In origin 0, the index generator begins at 0 instead of 1.

14
o 1 2 3

Another feature of an ActIve WS is that the maxImum amount of
output possible on one line Is 130 characters. The)WIDTH com­
mand is used to check this.

)WIDTH
IS 130

15.1

To alter the number of characters allowed per line, the system
command)WIDTH Is again used; this time followed by the prescribed
number of characters.

)WIDTB 30
WAS 130

The width may vary anywhere from 30 to 130 characters. This
comes In quIte useful when a document of unknown width has to
be written on 8.5 by 11 tnch paper.

If a value, such as "pI" Is displayed, the system prints out
only the fIrst 10 digits, rounding the last digit to the ap­
propriate value.

01
3.141592654

The system rounds at ten because of a default built In. To
make sure it Is set to ten, the user could find out by typing
the following command:

) DIGITS
IS 10

The number of digIts printed can vary from 1 to 16. The number
specified Is also done by use of the)DIGITS command.

)DIGITS 16
WAS 10

01
3.141592653589791

Changing the digits displayed has no effect on the variables
or calculatIons taking place InsIde the computer. Here, every
computation Is carrIed out to sIxteen decImal places, Independent
of the)DIGITS settIng.

Every ActIve WS has Its own "name". A clear ActIve WS Is called
CONTINUE. To display the workspace name or ID, the following
command t s used:

)WSID
CONTINUE

To change the name of the current workspace to something else,
the user would type the following:

15.2

)WSID WSl
WAS CONTINUE

where WSl is the new name of the Active WS.

The way to erase all the contents of the present Active WS and
reinstate the name CONTINUE as its 10 Is with the following
command:

)CLEAR
ox

There are features of three other system commands mentioned
earl Jer that may prove useful. One Is that the)ERASE command
Is able to erase several members at once from the Active WS.
Here's an example:

)ERASE A SIMULATE SUN
OK

The names of the members must be separated from each other by
at least one space. If one of the names Is misspelled, It Is
not erased, but the others are.

)VARS
CASHFLO DEBIT NETVAL

)ERASE CASHFLOW DEBIT NETVAL
CASHFLOW/ VALUE ERROR

)VARS
CASHFLO

An option to both the)OFF and)CONTINUE commands is the HOLD
feature. By typing a space and the word HOLD after either of
these two commands, the connectIon between the computer and
the terminal is not broken. This is most useful for those
terminals that use a telephone to obtain connection to the
computer. The computer doesn't have to be redialed each tIme
someone wants to use APL.

An Active WS may have the same name as any of its contents.

15.3

Communications WIth Other Users

Typing messages on one terminal and having them printed out
on another is possIble. The)MSG command is used to do thIs.

Here Is an example of a message being sent to a user with the
APL account number 5006:

)NSG 5006.'HEY BILL. WHERE"S THE NEXT LAB? ..•TED'
OK

The statement enclosed in Quotes is the message. The OK IndIcates
that the message was sent. I f the person who v't'as to rece Ive
the message was not signed on at that tIme, a message of
? USER NOT ON would be typed to the sender. To see who Is sIgned
on, the)PORTS command Is used.

)PORTS
OPR 5006 5173 5261

The OPR represents the operator terminal. Messages sent to
It are done so in the following manner:

)OPR 'MESSAGE'
OK

Messages are typed at the receivIng termInal only when Its keyboard
unlocks after the IIRETURN" key is pressed and any prIntout that
is to be done has terminated. ThIs means that if a person Is
just sitting at his terminal and not pressIng the IIRETURN II key
perIodically, the message wIll be unable to print. Only when
that IIRETURN" key is pressed does a message have a chance of
beIng displayed. If a person is expecting a message from another
user, there Is a command that will free him of pressIng the
"RETURN" key every few seconds to see If the message has been
sent.

By sImply typing the command)WAIT, the keyboard will lock up
and only prInt Incoming messages. When the user wIshes to
unlock the keyboard, he must press the IIATTN" key.

15.4

I-beam Functions

In every Active WS there are certain pieces of information
concerning several aspects of the APL system. The user has
access to this information by means of the I-beam functions
which are formed by overstriking the T and the i.

The first I-beam tells the user how much space is still available
in his library.

I1?
2364

This user has 2,364 bytes of unused library space left.

Here is a break-down of how much space is required for the
various elements of the APl system:

1 literal character (i.e., 'AI) takes up 1 byte.
Numeric values 0 and 1 take up only one eighth
of a byte each.
All other integers up to 2*24 can be stored in
4 bytes each.
Everything else is stored in 8 bytes.

These figures apply to both the user's library and his Active
ws.

I20
3259810

I-beam 20 contains the time of day in sixtieths of a second.
It is more meaningful when converted to hours, minutes, seconds
and sixtieths of seconds.

24 60 60 60TI20
15 5 30 10

When this I-beam was executed, it was fifteen hours, five minutes
thirty seconds and ten sixtieths of a second into the day, or
approximately 3:05 PM. The function T used above is discussed
in the next chapter.

I21
4

The I21 function returns the total amount of time, also in sixtieths
of a second, that the computer has been utilized since Sign-
on time. So far, during this session, 4 sixtieths of a

15.5

second of the computer's time have been used. This I-beam can
be quite useful in tIming a function's performance by storing
the current I21 , executing the function, then subtracting the
old value from the new one.

An Active WS contains approximately 32,000 bytes. As various
functions and variables are loaded or created, the number of
available bytes decreases. To determine how many remaIn unused,
the following I-beam Is used:

I22
17065

There are over seventeen thousand bytes of space stIll left
In this ActIve WS.

) CLEAR
OK

I22
31672

A clear workspace has exactly 31,672 bytes of available space.

I23
6

This last I-beam tells how many other users are currently signed
on. There are six.

1I23
3065

The account number of the person using thIs terminal is 3065.

3065=1I23
1

2I23
3001 3031 3065 3243 3313 3400

2I23 returns the APL numbers of the users presently using the
system. It is the same as the)PORTS command, except these
numbers can be used In calculatIons.

15.6

124
105535

To determine how long a user has been signed on during the current
session, the I-beam 24 function is used. It too is calculated
in sixtieths of a second.

24 60 60 60TI24
o 29 18 55

This user has been on for almost half an hour.

125 returns a value representing the date in the form month,
day, year.

126
2

126 contains a value if there is a suspended function within
the Active WS. It indicates on what line the most recent
suspension took place. A quick check of the State Indicator
should confirm it.

)SI
*GET [2]
PART2 [5]
MAIN [9J

The astersik preceding GET indicates that it is a suspended
function. The other function names listed are called pendant
functions. Apparently, the function MAIN called the function
PART2, which in turn called GET which abnormally terminated.
The resumption of these pendant functions is dependent on the
resumption and successful completion of GET.

127
259

This last I-beam contains the values of the line numbers listed
in the State Indicator above. Notice that the I26 value is
the first element of the I27. If the State Indicator is empty,
I-beams 26 and 27 return empty numeric vector results.

X28 is used in the Error Trap feature discussed earlier. It
is always located on the first line of a function and contains
the values 1 to 7 or \0 only. For a more detailed descriptIon
of its use, the Error Trap feature should be consulted.

129 takes, as its left argument, the name of a function enclosed
in quotes, and returns a literal vector of that function.

15.7

)FNS SQRT
VR+SQRT X

[1] R+X*O.5
v

A+'SQRT'I29

A
[O]R+SQRT X
[1]R+X*O.5

pA
23

Converting functions to vectors Is used In user defined functions
to alter portions of lines of other functions. There are usually
several of these functions on the system.

Another use of this I-beam Is In storing functIon on as files.
They have to be converted to literals before they can be written
on this type of file. as files refer to the typIcal kinds of
files used by other computer languages that operate In an
Operating System environment. The Computer Services Department
of York UnIversity should be consulted for more information
In this area.

I-beam 30 packs or converts Its 1 tteral vector left argument
Into a hexadecimal value. The left argument consists of an
even number of characters all of which must be of the numbers
0-9 and A-F to be In agreement wIth the base 16 hexadecImal
numbering system~ This I-beam is most useful in creating
variables that, when displayed, influence the behavior of the
terminal. There are six such variables currently available.

CR+'CO'Z30

10p'*',CR

*
*
*
*
*
After typing out each asterisk, the variable CR' causes the typing
element to return to typing position zero and evokes aline
feed before the next asterIsk Is displayed.

15.8

LF+'DO'I30

10p'*',LF

*
*
*
*
*

LF causes aline feed only; no carriage return occurs.

BS+'EO'X30

'TITLE',(5pBS),5p'_'

The variable BS causes the typing element to backspace one
position.

TAB+'90'X30

*
10p'*',TAB
* * * *

The TAB variable allows the typing element to skip across the
carriage, according to the tab settings on the termInal, before
printIng the next character. To insure that the system walts
until the typing element has skIpped to Its new positIon before
it prints the next character, the tab settings should be less
than an inch apart. Or, If the spacing between each tab setting
Is greater than one inch, the following variable could be used.

WAIT+'aO'X30

9p'*'.TAB,WAIT

* * *
One WAIT Is equivalent to the time It takes the terminal to
print out one character. On the IBM 2741, this Is approximately
one tenth of a second.

The last packed hexadecimal 1 tteral, 'AO', prevents the typing
element from both line feedIng and carrIage returning. The
following function illustrates its uses.

15.9

)FNS ADD
VADD

[1] A+?20 20
[2J (A[1]);'+';(A[2]);'='.NCR
[3] ~lx\D=+/A

[4] 'WRONG. THE ANSWER IS 'j+/A
[5] +1

V

NCR+'AO'I30

ADD
16+12=30
10+19=39
WRONG. THE ANSWER IS 29

NotIce the input is requested on the same lIne as the questIon
is printed and the Quad that usually accompanies the numerical
Input request Is not prInted.

I-beam 31 is the Inverse of I-beam 30. It unpacks Its left
argument to produce a 1 iteral of hexadecimal notation.

NCRI31
AD

I32 tells how many terminals are currently In use. This figure
should be identical to I23.

I32
6

If the left argument of this last I-beam is a 1, the computer
will return the decimal port number at which the user Is signed
on.

lI32
29

ThIs user is signed on at terminal number 29. It's the same
number that appears on the first line of the Sign Off message.

A left argument of 2 wIll list all the termInal numbers that
are currently signed on.

2I32
29 31 34 35 37 38

The terminal numbers 1 isted here are In the same sequence as
the Dart number produced for either 2X23 or the)PORTS
co~nd.

15.10

When comparing two numbers, APL Is accurate to the first fifteen
51gnlflcant digits.

2=2.00000000000001
o

2=2.000000000000001
1

To determine the current fuzz setting, the following is typed:

:r38
3.330669074E 15

To reduce or increase this accuracy, the "fuzz factor" must
be altered. Here it is changed to a significance of 2 decimal
places.

3E-2:r38
3.330669074E-15

When this last function Is executed, the previous fuzz settIng
Is printed.

Now two simple comparisons produce rather Interesting results.

2=2.1
o

2=2.01
1

To find out the names of the global variables presently In the
ActIve WS, the)VARS commands could be used. Or, I-beam 39
may be executed to return a literal result containIng all the
global variable names.

A
:r39

B SUM TOTAL

This I-beam, when used in conjunction with the Unquote function,
which Is discussed later, can usually save some typing when
erasing all variables.

~')ERASE ',:r39

)VARS

15.11

The last I-beam I40, lIsts the names of all the functions currently
resIding in the Active WS.

ABORT
1:40

REPORT

It too can be used with the Unquote function.

l!J 1)ERASE '.1:40

)FNS

15.12

Chapter Sixteen

ADDITIONAL PRIMITIVE FUNCT IONS
AND THE IDENTITY ELEMENTS

The following primItive functions are more advanced than those
previously described, mainly because their algorIthms to solve
the problems are more complex, and because they expect the user
to be quite famil tar with the basic APL language in order to
use them properly.

Base Value (Decode)

The Base Value or Decode functi'on .L (uppershift B), Is used
to convert a vector of values from one numbering system to
another. This could mean changing the numbering base of a set
of values from base 2 to base 10 or vice versa. Or, where there
are mixed measurements for related values, the dIfferent
IIwelghted ll measurements would be stated. An example of this
IIwe ighted ll problem is i'n finding the answer to the question,
"How many inches are there in 14 yards, 2 feet and 7 Inches?lI.
Here is the solution using the Base Value function:

1 3 12.1.14 2 7
535

The left argument, called a radix vector, states the relation­
ship between inches, feet and yards (there are 12 inches in
a foot and 3 feet to a yard).

16.1

How many seconds are there in 8 hours, 45 minutes and 16 seconds?

1 60 60.1.8 45 16
31516

Elements two and three of the left argument Indicate there are
sixty seconds in one minute and sixty minutes in one hour.
The number one is the first element because the question only
goes as high as hours. If days were Involved, the 1 would be
changed to 24 to represent 24 hours in a day.

What Is the binary value 0 1 0 a 1 in base 10?

2 2 2 2 2~O 1 0 0 1
9

Or, because the left argument is all 2'5:

2~O 1 a 0 1
9

How many pints are there in 2 gallons, 3 quarts, and 1 pInt?

1 4 2.12 3 1
23

The algorithm for the Base Value function used to solve thIs
last example is as follows:

To find out how many pints in one gallon: x/4 2 or 8
To find out how many pints in one quart: X/2 or 2
To find out how rnany pints in one pint: xl or 1

+/8 2 lx2 3 1
23

16.2

Representation (Encode)

The Representation or Encode function, T (uppershift N), is
the Inverse of the Decode funct ion. It Itbreaks uplt the right
argument accordIng to the values contaIned In the left argument.

How many days, hours, minutes and seconds are there in 320756
seconds?

1 24 60 60T320756
o 17 5 56

What Is the binary notation for the decimal value 71

(5p2)T7
o 0 1 1 1

How many yards, feet and inches are there in 436 inches?

1760 3 12T436
12 0 4

The answer to the above problem was arrived at by the following
process:

1. The last element of the left argument (12) was divided
into 436 to produce a quotient of 36 and a remainder
of 4. This 4 then became the last element in the answer.

2. The quotient 36 was then divided by the next element
in the left argument (3) to produce a quotient of 12
and a remainder of 0, the second element in the answer.

3. 1760 was then divided into the quotient of 12 to produce
a quotient of 0 and 12 remainder, the fIrst element
of the ans\<'v'e r.

16.3

Dollar SIgn

The Dollar SIgn function $ (S overstruck with uppershift M),
Is used to format numerical data. The left argument Is the
"mask" which determines how the resul t v~tll look. The right
argument Is an array of any dImension. Here's an example:

A+14

'9999.9'$A
1.0 2.0 3.0 4.0

Here's another:

'999.99'$2.21
2.20

What happened here? The result should have been 2.21. The reason
for this descrepancy Is a combination of both computer
limitations and characterIstics associated with the Dollar Sign
function.

FIrst of all, the computer has only 8 bytes In which to store
real numbers. Therefore, a repeating decimal number such as
.33333 ••.• must be truncated to fit into the storage space
available, thus making the stored value not exactly equal to
the repeating decImal value. But how does all thIs relate to
the non-repeating decimal number 2.21? Well, every number used
In APL, with few exceptions, Is converted from decimal to
hexadecimal (base 10 to base 16), for storage reasons. This
conversion process causes most real decimal numbers to become
repeating hexadecimals. Therefore, the number 2.21, when con­
verted to hexadecimal in the computer, is really only equal
to about 2.2099 .. Because the left argument of the Dollar Sign
function asked for only two digits to the right of the decimal
point of the right argument, and because the Dollar Sign
truncates its right argument's values Instead of rounding them
to the desired degree of accuracy, the value 2.20 was printed.

The way to prevent these incorrect values from appearing Is
to add a "fuzz factor" to each value. So, instead of applying
the Dollar Sign to a number like 2.21, it will really be applied
to the number 2.215 (the number 2.21 with a "fuzz factor" of
0.005 added to it) to return the result of 2.21.

16.4

Here It Is wIth the "fuzz factor U added:

'999.99'$2.21+0.005
2.21

When the right argument contains negatIve values, the "fuzz
factor" must be subtracted, as shown In the followIng examples:

'9999.99'$-2.21
2.20

'9999.99'$-2.21-0.005
2.21

But, in most cases, both posltive and negative values may appear
In the rIght argument. So, the signs of these values must be
determined in order to know whether the fuzz factor Is to be
added or subtracted. This is a good use of the SIgnum functIon.

A+ 6.67 2.21 1

xA
111

'999.99'$A+O.005 x xA
6.67 2.21 1.00

The vector I1mas ku can contain a vast assortment of characters,
mainly to indicate certain characteristics that the result Is
to take. Here are some examples of different masks appl led
to vector Q.

Q+l -97 0 6 4726

'999'$Q
1-97 6726

This last example produced two significant points In Its result.
Point one is the zero contained in Q appeared as a space in
the result. Point two, the first digIt of the number 4726 Is
missing in the result. To obtain the correct response, the
mask must have a zero as Its last character (or as any char­
acter) to force all values to be printed, startIng at the
position of the zero character. To correct the second problem,
the length of the mask must be extended by at least the number
of digits in the largest value contained in the right argu­
ment.

'99990'$Q
1 -97 0 6 4726

16.5

Another useful feature of the mask is that other characters
besides decimal points, zeros and nines can be used to give
the results more meaning.

'999,990.99'$Q
1.00 -97.00 0.00 6.00 4.726.00

In the above example, the comma is printed only for values which
are greater than or equal to 1,000. Actually, the comma can
be placed anywhere within the mask, but It is usually used to
separate numbers into thousands.

Here's an easy way to format the date:

'909/99/99'$I25
09/20/72

Normally, for negative values, the $' operator will IIfloat"
the - (the negative characteristic>. The user may alter this
by specifying any of the following "condition codes" as the
first character of the mask, followed by the character to be
"floated lf

•

Condition
Code

+
±
o

- or

Meaning

Float only if data is positive
Float under all conditions
Float under no conditions
Float only if data is negative

The desired Itfloat character" must Immediately follow the specified
condition code.

'±$999,990.99'$Q
$1.00 $97.00 $0.00 $6.00 $4.726.00

But now the negative sign is missing from the value -97. So,
to indicate negative numbers, the following mask could be used:

'±$999,990.99CR'$Q
$1.00 $97.00CR $0.00 $6.00

Another feature used to represent negative numbers is parentheses.
Next page, the mask indicates to the computer that parentheses are

16.6

to be placed around any negative numbers that appear in the
right argument.

'-(999,990.99)'$Q
1.00 (97.00) 0.00 6.00 4,726.00

Or, for an application such as fill ing in dollar amounts on
cheques, the following mask could be used:

'-(*999,990.99)'$Q
******1.00*****(97.00)******0.00*******6.00***4,726.00*

The right argument is not 1 imited to just vectors. It may be
of any dimension.

'9990.99'$2 3P16
1.00 2.00 3.00
4.00 5.00 6.00

The dimensions of the result are arrived at by the following
equation:

(pRESULT) = (-l+pDATA),(pMASK)X-ltpDATA

where the function format is:

RESULT + MASK $ DATA

pMASK does not include any leading special control characters,
MASK is a 1 iteral vector, and RESULT is character output.

Unquote

One of the most significant features of York APL is the Unquote
function, ~, (uppershift V overstruck with ~ppershift K). This
operator effectively adds a new dimension to APl's capabll Jtles.

Primarily useful in user defined functions, the Unquote operates
exactly as its name impl tes. It first removes the quotes from
Its argument and then executes that argument. A few examples
should demonstrate this aptly.

16.7

Example 1 -

[4]
[5J ~')LOAD LEMSIM'
[6]

In the above, when line 5 is reached, the system would load
the function LEMSIM into the user's Active Workspace and then
go on to 1 ine 6. The terminal user would not be aware that
a new functIon had been loaded (no SAVED .:7: message occurs in
this situation). If an item called LEMSIM already resides within
the Active WS, the statement is Ignored.

It should not take too much imaginatIon to visualize the use­
fulness of this capabIlity. A matn function could cause the
loading of subfunctions condrtionall¥, depending solely upon
data or program condItIons at that moment, or, optionally, dIf­
ferent blocks of data could be requested by the program, again,
without the terminal user having to issue any commands!

It should be readily seen that this capabtl tty helps overcome
the Active WS size 1 ImitatIon of 32,000 bytes. A function can
be defined so that It contains only the code deemed resident
at all times. The rest of the function may be defined as sub­
functions whtch can be loaded and erased when requIred. For
those who are more famil Jar with programmIng concepts, this
enables one to effectIvely "overlay".

Example 2 -

[6J
[7 J ~[!]

[8]

In the above, when 1 ine 7 is reached, the system will request
the terminal user to type in something. That "something", what­
ever it may be, would then be executed Immediately and the
system would carryon to 1 ine 8. This enables the user to write
functIons which permit him, or anyone using his functIons, to
perform calculations during the execution of functIons. The
user does not have to stop the function's execution in order
to do his calculations. This means that the design of functIons
that wIll be fully interactive with the user at execution time
Is possible.

16.8

Example 3 -

VALTER
[1J ~'VPLOT[3JH~+lV'

v

The above demonstrates how one functIon can be altered via the
execution of a second function. This gives the user the abilIty
of altering certain segments of functions dependIng on the
prevail ing conditions at that moment.

Example 4 -

One sl ight problem that new APL users experIence 1 ies In the
necessity for the user to issue two commands to obtaIn function
execution. The first is the)LOAD to brIng the function Into
the Active WS, and the second is the issuance of the function
name to instigate function executIon. ExperIence has shown
that this does, in fact, cause a lot of diffIculty.

With the use of the Unquote, this situation can be overcome
to some extent. A function can be made to begin execution Im­
mediately after it has been loaded, as follows:

)WSID HYP
WAS CONTINUE

VR+HYP1;A
[1] l!J ') SAVE'
[2 J'THE FUNCTION JUST LOADED CALCULATES THE'
[3] 'HYPOTENUSE OF A RIGHT ANGLED TRIANGLE.'
[4 JtPLEASE ENTER THE LENGTHS OF THE OPPOSITE'
[5] 'SIDES. 1

[6 JA+D
[7]R+«A[1]*2)+A[2]*2)*O.5
[8]V

When HYPl is executed for the first time, a copy of the then
Active WS is saved in the user's 1 ibrary. Note that this saved
workspace was executing a function at the time it was saved.
This means that, whenever it is loaded back into the Active
WS by the user, it will immediately resume execution at line
2 of HYP1. The user does then not have to initiate the execution
by typing In the function name.---

Note: One prerequisite to using the)SAVE command along with
the Unquote operator is that a copy of the Item to be saved
has to have been previously saved in the user's library and
its size must be at least slightly larger than the workspace
to be saved.

16.9

ThIs can be accomplished by the followIng steps:

1. Once all the desired functIons and variables have been
created In the ActIve WS, insert the ~')SAVE' line in
its proper place.

2. Load in or create an extra item that will take up at
least 400 bytes of available workspace (I.e.,
X+1150 - this takes UP approximately 600 bytes)

3. Save the workspace in the usual manner.

)SAVE

Make sure the)WSID has the correct name.

4.)ERASE X (the variable created In step 2)

5. Execute the function that contains the Unquote.

Not all system commands can be used with the Unquote. The
following can:

)LOAD)ERASE)SAVE)WSID)DIGITS) ORIGIN)OFF

The Unquote function differs from all other APL functions in
that it does not produce an Explicit Result. Therefore, if
a user wishes to use the result of an "unquoted" expression
as input to another operation, he must do so by the use of a
sub-function, 1 ike the one below:

)FNS UNQUOTE
'1R+UNQUOTE X

[1 J l!J' R+' ,X
V

6+UNQUOTE '3x4'
18

Because of this feature the ~ must be the first Item in any
APL statement, otherwise everything that appears to its left
wi 11 be ignored.

There are plans to make the Unquote produce an Explicit Result
whenever It does not appear In the first position of a state­
ment. When these plans are implemented, any Unquote that begIns
a statement will not produce an Explicit Result, only Unquotes
within statements will.

16.10

The Null symbol 0 (uppershlft J) Is most commonly used to perform
GeneralIzed Outer and Inner Product functions. This Is Its
Dyadic use. Monadlcally, it acts Quite differently.

In the expression

B+2oA+1

the variable A will be assigned the value 1 and B will be assigned
the value 2 2UlX. The Null symbol tells the system to treat
everything to its right as though It were on a separate line.
For Instance, the same operation could be carried out without
the Null symbol in the followIng manner:

A+l
B+2

But by usIng the Null symbol, both computer time and connect
tIme are reduced.

The 0 could be employed In user defined functions to cut down
on the number of 1 ines required to state the problem solving
algorithms which In turn would shorten the amount of time
required to run It. Here are a few 1 ines of a typIcal user
defined function that could easily be reduced to one by the
use of the Null operator:

[4] V+pJ+N
[5] I+SIGlvlA[J]
[6J V+V,G[I;JJ

Here are the same three expressions stated on one line:

[4J V+V.G[I;J]oI+SIGMA[J]oV+pJ+N

16.11

The reason why it's advantageous to try to get as many cal­
culatIons on one line as possible is that it helps speed up
the overall performance of the function. This should not be
carried too far because the longer the line Is, usually the
harder It is to understand what the line does.

After each line of a function is executed, the APL system must
carry out certain 1Ihousekeeping" routines. Such things as
updating I26 and x27 and checking to see whether the Trace and/or
Stop features have been employed on the function must all be
done before the next lIne can begin to be evaluated. All these
things take tIme. Therefore, by reducing the number of lInes
In the functIon, the tIme required to execute it is also reduced.

IdentIty Elements

In Chapter 3, some Monadic uses for a few of the Scalar functions
were discussed. The statement +2 produced a result of 2 because
the APL system treated It as 0+2. The zero, in this case Is
called an identity element. SImilar results occured for
subtraction and division because they too have associated
Identity elements that are assumed each time these functIons
are used Monadlcally. To fInd the identity element for the
Scalar functions that have them, the Reduction operator and
an empty vector right argument are used.

Here Is how to find the Identity element for the Plus function:

+/\0
o

The division's Identity element is found In a similar manner.

f/10
1

16.12

Below Is a list of the Scalar functions that have Identity ele­
ments and what these identity elements are:

Function

+

x

+

r
L

V

A

<
S

=

Identity Element

o
o
1
1

o
1

-7.237005577E75
7.237005577E75

o
1

o
1
1
1
o
o

Note: -7.237005577E75 and 7.237005577E75 are the smallest and
the largest numbers possIble in the APL system.

16.13

Blbl iography

Berry, P.C., APL\360 Primer, White Plains, N.Y.,
IBM Corp., Form No. GH20-06S9, 1969

Falkoff, A.D., and K.E. Iverson, APL\360 User's Manual,
Yorktown Heights, N.Y., IBM Corp., Form No. GH20-0683, 1968

Gilman, L., and A.J. Rose, APL\360 An Interactive Approach,
New York, John Wiley & Sons, Inc., 1970

Hanson, J.C., and W.F. Manry, APL: an intra, Atlanta, Georgia,
Atlanta Publ Ie Schools, 1971

Katzan, H., APt User's Guide, New York, Van Nostrand
Reinhold Co., 1971

Pakin, S., APL\360 Reference Manual, Chicago, Science
Research Assoc., Inc., 1972

INDEX

Absolute value I, 4.7
Account number, 1.1
Active workspace, 2.1
Addition +, 2.1
And ", 4.11
Arccos -20, 4.4
Arccosh -60, 4.4
Arcsin -10, 4.4
Arcsinh -50, 4.4
Arctan -30, 4.4
Arctanh -70, 4.4
Arguments, 3.1
Arrays

Dimension of, 8.3
Rank of, 8.3
Structuring of, 8.5

Assignment +, 2.5
Asterisk *, 4.1
Attn key, 2.3

kS, 8.2
Backspace character, 15.9
Backspace key, 2.3
Base value (decode) ~, 16.1
Brackets [], 9.1
Branching +, 12.1
Byte, 15.5

Caret 1\, 2.3
Carriage return as a

character, 15.8
Catenate " 8.7
Ce i 1 i ng r, 4.5
Character

Da t a, 2. 7
Intermixed with numbers, 8.11
Conversion to, 8.10

Character error, 2.3
Circular functions 0, 4.~

Clear command)CLEAR, 15.3
Colon :, 1.3, 12.4
Combinations !, 4.7
Commands. See System commands.
Comments A, 2.5
Compression / and f, 7.1
Connect time I24, 15.7
Constant, 12.4
Continue

Command)CONTINUE, 13.9
Workspace named, 15.2

Coordinates of an array, 5.2
Corrections, 2.3
Cosh 60, 4.4
Cosine 20, 4.4

Data in WS, 13.3
Dataset, 1.1
Da te I2 5, 15. 7
Deal ?, 9.18
Decimal point ., 2.1
Decode (base value) i, 16.1
Defined functions

Adding a statement, 10.5
Body, 11. 1
Definition mode, 10.2
Display of, 10.4
Dummy variables, 11.3
Exit from, 12.10, 12.12
Explicit result, 11.5
Header line, 11.1
Line labels, 12.4
Line deletion, 10.8
Line insertion, 10.5
Line modification, 10.7

line renumbering, 10.6
Syntax, 11.1

De 1 'V, 10. 3
Del ti lde 1f', 10.8
Deleting a function

statement, 10.8
Delta li, 2.7
Desk calculator, 2.1
Digits command)DIGITS, 15.2
Dimension p, 8.3
Display

Variables, 2.5
Defined functions, 10.4

Di vis i on +, 2. 2
Division by zero, 2.2
Dollar sign $, 16.4
Domain error, 2.7
Drop ... , 9.8
Drop command)DROP, 13.9
Dummy variables, 11.3
Dyadic functions

Primitive, 3.1
User defined, 11.2

Dyadic random ?, 9.18
Dyadic transpose ~, 9.10

E-notation E, 4.2
Editing of functions, 10.1
Element of an array, 2.8
Empty vector

Numeric, 8.2
Literal, 8.6

Encode (representation) T, 16.3
Equal =, 4.9
Erase command)ERASE, 13.3
Error messages

Character, 2.3
Data in WS, 13.3
Division by zero, 2.2
Domain, 2.7
Length, 3.3
Library full, 13.9
Locked, 1.3
Number too big, 4.2
Number in use, 1.2
Number not in system, 1.2
Rank, 9.5
Syntax, 2.2
Unbalanced parens, 2.5
User not on, 15.4

Value, 11.5
Workspace full, 8.2

Error trap E~, 14.6
Escape from input loop, 12.10
Exercise

APLCOURSE, 7.5
Expansion \ and ~, 7.3
Explicit result, 11.5
Exponential *, 4.1
Exponential notation E, 4.2
Exponentiation *, 4.1
Expression, evaluation of, 2.4

Factorial :, 4.6
Floor L, 4.5
Functions command)FNS, 10.4, 11.9
Functions, defined. See Defined

Functions.
Functions, primitive

Absolute value I, 4.7
Addition +, 2.1
And A, 4.11
Base value L, 16.1
Catenation ., 8.7
Cei ling r, 4.5
Circular 0, 4.4
Combination !, 4.7
Compression / and t, 7.1
Deal 7, 9.18
Decode J., 16.1
Dimension p, 8.3
Division +, 2 .. 2
Dollar sign $, 16.4
Drop +, 9.8
Dyadic random ?, 9.18
Dyadic transpose ~, 9.10
Encode T, 16.3
Equal =, 4.9
Expansion \ and " 7.3
Exponential *, 4.1
Exponentiation *, 4.1
Factorial !, 4.6
Floor L, 4. 5
Grade down t, 9.6
Grade up i, 9.5
Greater than >, 4.9
Greater than or equal to ~, 4.9
I-beam functions I, 15.5
Identity +, 3.3
Index generator t, 8.1

Index of t, 8.2
Indexing [J, 9.1
Inner product f.g, 6.1
Lamination " 8.9
Less than <, 4.9
Less than or equal to ~, 4.9
Logarithm ., 4.3
Maximum r, 4.6
Membership E, 9.16
Minimum L, 4.6
Monadic random ?, 9.17
Monadic transpose ~, 9.8
Multiplication x, 2.2
Nand 'h, 4.12
Na tu ra 1 1oga r i thm ., 4. 3
Negation -, 3.3
Nor ¥, 4.11
Not , 4.12
Not equal ~, 4.9
Or v, 4.10
Nullo, 6.4, 16.11
Outer product o.f, 6.4
Pit i mes 0, 4. 4
Rave 1 " 8. 7
Reciprocal t, 3.4
Reduction / and f, 5.1
Representation T, 16.3
Residue I, 4..8
Restructure (reshape) p, 8.5
Reversal ~ and e, 9.13
Roll ?, 9. 17
Rotation ~ and e, 9.14
Semicolon ;, 8.10
Sign urn x, 3. 4
Subtraction -, 2.1
Take +, 9.7
Transpose ~, 9.8
Unquote l!J, 16.7

Fuzz, 15.11, 16.5

Global variable, 11.3
Grade down ~, 9.6
Grade up ~, 9.5
Greater than >, 4.9
Greater than or equal to ~, 4.9

Half-cent adjust, 4.5
Header line, 11.1
Hexadecimal system, 15.8
Hyperbol ic functions, 4.4

I-beam functions I, 15.5
Identity +, 3.3
Identity elements, 16.12
Idle character, 15.9
Index generator t, 8.1
Index of t, 8.2
Indexing [J, 9.1
Inner product f.g, 6.1
Input

Numeric 0, 12.8
Literal l!l, 12.9

Input loop, escape from, 12.10
Inserting a line in

a function, 10.5
Interrupt, 2.3

Labels, 12.4
Lamination " 8.9
Lamp A, 2.5
Leaving definition mode, 10.3
Length error, 3.3
Less than <, 4.9
Less than or equal to s, 4.9
Library

Command)LIB , 13.3
Publ ie, 13.6
Private, 13.8

L brary full, 13.9
l mit values, 16.13
L ne counter I26, 15.7
L ne width)WIDTH, 15.1
L nefeed character, 15.9
L teral input l!l, 12.9
L terals, 2.7
Load command)LOAD, 13.3
Local variable, 11.3
Locked, 1.3
lock i ng funct ions, 10.8
Locking account numbers, 1.3
Logarithm, natural., 4.3
Logarithm, to a base -, 4.3
Logical negation (not) -, 4.12

Matrix described, 2.10
Maximum r, 4.6
Membership €, 9.16
Messages

)MSG, 15.4
)OPR, 15.4

Minimum L, 4.6
Mixed functions,
Mixed output, 8.11
Monadic functions, 3.1
Monadic transpose ~, 9.8
Multiplication x, 2.2

Names, restrictions on, 2.7
Nand '1t., 4.12
Natural logarithm ., 4.3
Negation -, 3.3
Niladic functions, 11.1
No carriage return

character, 15.10
Nor ¥, 4.11
Not -, 4.12
Not equal ~, 4.9
Nullo, 6.4, 16.11
Number

Account, 1.1
Accuracy, 15.11

Number in use, 1.2
Number not in system, 1.2
Number too big, 4.2

Off command)OFF, 1.2
One-element vector, 2.8
Operator, 3.1
Operator, message to, 15.4
Or v, 4.10
Order of execution, 2.4
Origin command)ORIGIN, 15.1
Outer product o.f, 6.4
Output D, 12.11
Overstruck characters, 2.5

Parentheses (), 2.4
Pendant functions, 15.7
Pi times 0, 4.4
Plus +, 2.1
Port number, 15.4, 15.6
Port command)PORTS, 15.4
Power *, 4.1
Primitive functions. See

Functions, primitive.
Public libraries, 13.6

Quad 0, 12.8 12.11
Quote-quad 0, 12.9

Radian, 4.4
Radix, 16.1
Random numbers, 9.17
Rank, 8.3
Rank error, 9.5
Ravel s, 8.7
Reciprocal t, 3.4
Reduction / and r, 5.1
Relational functions, 4.8
Replace library contents, 13.4
Representation, 16.3
Restructure (reshape) p, 8.5
Residue I, 4.8
Reversal ~ and a, 9.13
Ro 11 ?, 9. 17
Rotate ~ and e, 9.14
Rounding, 4.5

Save command
For a function

or a variable, 13.2
For a workspace, 13.5

Scalar, 3.2
Sem i co 1on ;, 8. 10, 9.2, 11. 7
Shape p, 8.5
Sign-off commands

)CONTINUE, 13.9
)CONTINUE HOLD, 15.3
)OFF, 1.2
)OFF HOLD, 15.3

Sign-on procedure, 1.1
Signum x, 3.4
Sine 10, 4.4
Sinh 50, 4.4
Size. See Shape.
Sorting, 9.5
Space available

In Active workspace I22, 15.6
In library I17, 15.5

Specification +, 2.5
State indicator, 12.6
Stop control 56, 14.5
Sub-functions, 11.10
Subtraction -, 2.1
Suspended functions, 12.6
Syntax error, 2.2
System commands

)CLEAR, 15.3
)CONTINUE, 13.9
)CONTINUE HOLD, 15.3

)DIGITS, 15.2
)DROP, 13.9
)ERASE, 13. 3, 15.3
)FNS, 11.9
)FNS name, 10.4
)L1B, 13.3
)LOAD, 13.3
)MSG, 15.4
)OFF, 1.2
)OFF HOLD, 15.3
)OPR, 15.4
)ORIGIN, 15.1
)PORTS, 15.4
)SA VE, 13.5
)SAVE name, 13.2
)SI, 12.6
Sign-on, 1.1
)SIV, 12.7
)VARS, 2.6
)WAIT, 15.4
)WIDTH, 15.1
)WSID, 15.2
)WSID name, 15.3

System information I, 15.5

Tab as a character, 15.9
Take t, 9.7
Tangent 3 0 , 4.4
Tanh 70, 4.4
Terminal, 1.1
Time of day I20, 15.5
Trace T6, 14.1
Transpose

Monadic, 9.8
Dyadic, 9.10

Trigonometric functions, 4.4

Unbalanced parens, 2.5
Underscores _, 2.6
Unquote l!J, 16.7
User not on, 15.4

Value error, 11.5
Variable

Command)VARS, 2.6
Dummy, 11.3
Global, 11.3
Local, 11.3
Name, 2.5

Vector, 2.8

Wait command)WAIT, 15.4
Width command)WIDTH, 15.1
Workspace

Attributes of, 15.1
)WSID, 15.2
)CONTINUE, 13.9
Name)WSID, 15.2
Name change)WSID name, 15.3

Workspace full error, 8.2

