
APL2 and SQL: A Tutorial

August. 1989

Nancy Wheeler

IBM

APL Development

Santa Teresa laboratory

San Jose, California

Reprinted with permission from the proceedings of APL89, August 1989, New York, New York. Copyright
1989, Association for Computing Machinery, Inc.

ii APL2 and SQL: A Tutorial

Contents

Part I: SQL I

Relational Data 1

SQL Statements 2

Data Defmition 2

Data Manipulation 3

Data Retrieval 4

Authorization Statements 5

Control Statements 5

Analysis 6

Using SQL 7

Using SQL from Programs 7

Static SQL vs. Dynamic SQL 7

Part 2: APL2 8

Relational Data in APL2 8

SQL Statements in APL2 9

Data Definition, Authorization 10

Data Manipulation 10

Data Retrieval 11

Control Statements 17

EXPLAIN 19

Error Handling 19

Part 3: APL2 and SQL 23

Locking 23

Lock Size 23

Isolation Level 23

Explicit Lock Control 24

Authority 25

The Index 25

Storage 26

Performance 27

Appendix A. SQL Statement Summary 28

Appendix B. AP 127 Operations and SQL Workspace Functions 29

Appendix C. Return Code Summary 31

Appendix D. Installation Instructions 32

SQL/DS (CMS) Environment 32

DB2 (TSO) Environment 33

Appendix E. References 35

DB2 Publications 35

SQL/DS Publications 35

APL2 Publications 35

Contents iii

Other 35

iv APL2 and SQL: A Tutorial

Figures

I. Relational Table 1

2. CREATE TABLE statement 2

3. Data Manipulation Statements 4

4. Data Retrieval Statements 4

5. Authorization Statements 5

6. Control Statements 6

7. Relational data in an APL2 matrix 8

8. Relational data in an ApL2 vector 9

9. Data Definition Statements from APL2 10

10. Data Manipulation Statements in APL2 11

11. Simple Data Retrieval 12

12. DESCRIBE 13

13. Data Retrieval with variable substitution 14

14. SETOPT command 15

15. Vector Format with Length Matrix 15

16. Fetching a Table in Pieces 16

17. Null Result Tables 17

18. ROLLBACK, COMMIT 18

19. CONNECT command 18

20. EXPLAIN command 19

21. An AP 127 error 19

22. An SQL error 20

23. Query Cost Estimate 22

24. Forms of the ISOL command 24

25. PURGE command 27

Figures V

vi APL2 and SQL: A Tutorial

Part 1: SQL

Before beginning the discussion of SQL, it is necessary to define some terms.

•	 SQL (Structured Query Language) is a language defmed to access relational databases. The SQL lan­
guage has been implemented by various vendors in support of their relational databases, and there is an
ANSI standard for the SQL language.

•	 SQL/DS (SQL/Data System) is IBM's relational database system in the VM environment.

•	 DB2 (IBM Database 2) is IBM's relational database system in the MVS environment.

Throughout this tutorial, the tenn.SQL will be used to refer to the SQL language. Except where explicitly
stated, the uses and examples ofSQL seen here are supported both by SQL/DS and DB2.

Relational Data

Simply stated, relational data is data that is arranged in a two-dimensional tabular format. The columns of
the matrix have attributes that defme the type of the data, and the rows contain the data. Theintersection of
a row and column is called a field or value. Figure I shows an example of a relational table.

NAME YOS LEVEL SALARY DEPT PROJ
-- -- --- ------ - - -- - ~-=====
ADAMS 12 3 36000 ADMIN PA1

BANKS 15 3 35000 SALES PS2

CROW 6 2 24000 PROD PPl

DEAN 12 3 38000 PROD PP2

EATON 18 4 40000 RES PH1

FARR 25 5 50000 ADMIN PAl

GALVIN 5 3 27000 SALES PSl

HARVEY 23 5 45000 SALES PS1

INGRAM 2 1 18000 ADMIN PA2

JACKSON 1 1 16000 PROD

KAHAN 6 3 32000 RES PR2

LAMAR 21 5 45000 PROD PPl

MULVEY 3 2 21000 SALES PS2

Figure 1. Relational Table

One of the main advantages of using relational databases is that SQL users need not know how relational
data is stored in the computer in order to use it. Using SQL statements, the user tells the database system
what is to be done in a conceptual manner, and the database system then accesses the data necessary for the
specified task. Thus, even though the underlying operating systems may be completely different in different
relational databases (as with SQL/DS and OB2), the user can state the problem in a well-defined, familiar
manner.

Part I: SQL 1

SQL Statements

For the purposes of this tutorial, we will group the major SQL statements into categories. Complete syntax
for all of these, and for additional SQL statements, can be found in the database reference manuals.

Data Definition
Data definition statements are those that allow you to defme your database configuration. The CREATE
statement has several forms for the creation of tables, indices, views (logical tables), and synonyms (alias
names). The ALTER statement allows, with some restrictions, the changing of table definitions, and the
DROP statement is for deletion of entire tables, indices, views and synonyms. Figure 2 shows the CREATE
TABLE statement used to create the table shown in Figure I on page 1.

CREATE TABLE ABC

(NAME VARCHAR(20) NOT NULL.

YOS SMALLINT,
LEVEL SMALLINT.
SALARY INTEGER,
DEPT VARCHAR(8),
PROJ CHAR(3»
IN MYSPACE

Figure 2. CREATE TABLE statement

Each column must be given a name and datatype attribute. Table I is a summary of the datatypes currently
supported by SQL/DS and DB2. The NOT NULL attribute is optional, and indicates to SQL that an error
should be given if an attempt is made to add a row to the table with data missing for the indicated column.

SQL Datatype Description

INTEGER Fullword (31-bit) signed integer

SMALLINT Halfword (IS-bit) signed integer

FLOAT Double Precision (8-byte) floating point. May also be indicated as
DOUBLE PRECISION or FLOAT(n) where 22 :s; n s 53.

REAL Single Precision (4-byte) floating point. May also be indicated as
FLOAT(n) where I s n s 21.

DECIMAL(p,s) Decimal number, where p indicates precision (1 to 15) and s indicates
scale (0 to p)

CHAR(n) Fixed-length character string of length n t where 1 S; n S; 254. Data is
padded with blanks if smaller than the defined size.

VARCHAR(n) Varying-length character string, with maximum length 0, where 1 ~ n
~ 32767.

Table 1 (Part 1 of 2). SQL Datatypes

2 APL2 and SQL: A Tutorial

SQL Datatype DESCription

LONG VARCHAR Varying-length character string, with maximum length 32767.

GRAPHIC(n) Fixed-length graphic (double-byte) string of length n, where 1 ~ n s
127. Data is padded with blanks if smaller than the defined size.

VARGRAPHIC(n) Varying-length graphic string, with maximum length n, where I ~ n
s 16383.

LONG
VARGRAPHIC

Varying-length graphic string, with maximum length 16383.

DATE A date in one of four standard forms (ISO, USA, JIS, EUR).

TIME A time in one of four standard forms (ISO, USA, JIS, BUR).

TIMESTAMP A date and time combination in ISO form,

Table 1 (Part 2 of 2). SQL Datatypes

If you want to attach additional information to tables, views or columns, the LABEL ON and COMMENT
ON statements may be used after the table or view has been created. Column labels are useful if you fmd
the 18-character length limit on column names too restrictive, and they can be retrieved alongwith or instead
of the names when you retrieve the data. Comments are simply placed in the system catalog tables for infor­
mational purposes.

The fmal clause on the CREATE TABLE statement indicates where in the database to place the table. An
assumption is made that the entity MYSPACE exists and that the creator of the table is authorized to use it.
This is one area where the individual database implementations are not the same. The allocation of space in
the database for the table is handled differently in DB2 and SQL/DS and requires some system-dependent
information. The process of acquiring the space is usually done once, when a new application is designed,
with the help of a database administrator, and will not be discussed further here.

Note that this example shows only the simplest fonn of CREATE TABIJE. Later releases of SQL/DS and
DB2 have added support for referential integrity, which allows association between tables and requires a
more detailed fonn.

Data Manipulation

The three data manipulation SQL statements are INSERT, UPDATE and DEIJETE. They operate on indi­
vidual rows of a table, and their functions are indicated by their names.

The UPDATE and DELETE statements choose the row operated on in one of two ways. The rust is to use
a search condition (WHERE clause). The number of rows changed or deleted depends on the number of
rows that meet the search criteria. The second method is to position a data retrieval cursor at the row of the
table to be operated on and use the CURRENT OF cursomame clause. In this case, the number of rows
changed or deleted is always one. Cursors will be discussed in more detail later in this tutorial.

Figure 3 on page 4 shows some examples of data manipulation statements. Note the use of the keyword
NULL to represent the absence of data.

Part 1: SQL 3

INSERT INTO ABC VALUES('KAHAN'.6,7.32000,'RES','PR2')

INSERT INTO ABC VALUES{'JACKSON',1,1,16000,'PROD',NULL}

UPDATE ABC SET SALARY=35000 WHERE NAME='KAHAN'

UPDATE ABC SET SALARY=35000 WHERE CURRENT OF MYCURSOR

DELETE FROM ABC WHERE DEPT='RES'

Figure 3. Data Manipulation Statements

Data Retrieval

The data retrieval SQL statement is SELECT. The search conditions are specified in the WHERE clause of
the statement. The WHERE clause can range in complexity from being non-existent to containing an entire
other SELECT statement. You can select all or any subset of columns from one or multiple tables.

Another feature of the WHERE clause is that some values may be left as variables, to be ftIled in at exe­
cution time. This is handled differently in different languages, but most use the colon <:) to identify the vari­
able.

The search capabilities built into the SQL language are very powerful. It would be impossible to cover them
in depth in this short tutorial. Some basic examples are given in Figure 4, and the reader is referred to the
database documentation for the more advanced forms.

SELECT * FROM ABC

SELECT * FROM ABC ORDER BY DEPT

SELECT NAME,DEPT,PROJ FROM ABC

SELECT NAME,SALARY FROM ABC WHERE DEPT = 'SALES'

SELECT NAME,SALARY FROM ABC WHERE DEPT = :myvariable

Figure 4. Data Retrieval Statements

When a SELECT statement is issued, the result is a new relational table. (This explains the ability to select
within a select).

Associated with the SELECT statement is the concept of a cursor. A cursor is an imaginary pointer that
indicates which TOW of the result table is the current row. The cursor is set to point to the top of the table,
and as each row is retrieved it is moved to point to that row. Once the cursor is pointing to a row, the
CURRENT OF clause may be used on an UPDATE or DELETE to modify or delete that row. When the
cursor moves beyond the end of the table, the program will be signalled that there is no more data in the
table. More details on how the cursor is created and used will be given in Part 2.

APL2 and SQL: A Tutorial 4

Authorization Statements

Once a user or application has created some relational tables, it is usual that some other users or applications
will want to use that data. The authorization statements GRANT and REVOKE allow specification of which
users can perform which operations on data created by another user. See Figure 5 on page 5 for some
examples of authorization statements.

GRANT ALL ON ABC TO USER1

GRANT INSERT, UPDATE (PROJ,DEPT) ON ABC TO USER2

CRANT SELECT ON ABC TO PUBLIC

REVOKE INSERT ON ABC FROM USER2

Figure 5. Authorization Statements

Control Statements

Control statements do not operate on specific data, but rather specify the boundaries of a unit ofwork or a
lock held on data.

Units ofwork in SQL are sequences of operations which are performed together. Only when all the oper­
ations in the sequence are successfully completed is the database to be permanently changed. A unit of work
is begun when the first SQL statement is issued to the database, and is terminated by either a COMMIT
statement, which makes the changes permanent, or a ROLLBACK statement, which cancels them. After the
COMMIT or ROLLBACK, a new unit of work is begun. In SQL/DS, the additional RELEASE option
causes the database connection to be completely severed.

When a user begins a new unit of work, a user id is assigned by the database. The default id is normally the
operating system user id, but each database system provides a means of overriding that default. In SQL/DS,
the CONNECT statement allows specification of an alternative id. If the correct password is given, the user
may become another user or connect to a special id created just for a particular application. In DB2, the
SET CURRENT SQLID statement allows the user to change the value of the authorization ID established
by the DB2 authorization exits. More information on these exits is available in the DB2 documentation.

Locks on data can be controlled in various ways, one of which is to use the LOCK statement. This state­
ment causes the database to override the implicit locking parameters, which may be useful when updates are
to be made which depend on the status of the entire table remaining consistent. The lock override stays in
effect until the end of the unit of work.

Figure 6 on page 6 shows examples of control statements.

Part I: SQL 5

SQL/DS and DB2:

ROLLBACK WORK

COMMIT WORK

LOCK TABLE ABC IN SHARE MODE

LOCK TABLE ABC IN EXCLUSIVE MODE

SQL/DS:

COMMIT WORK RELEASE

ROLLBACK WORK RELEASE

CONNECT MYUSER IDENTIFIED BY MYPASSWORD

DB2:

SET CURRENT SQLID MYUSER

Figure 6. Control Statements

Analysis

The EXPLAIN statement is a special SQL statement that does not do any operations on data, but rather
analyzes those operations. It takes an SQL statement as an argument, and places information about path
selection into a special SQL table. This can be very useful in tuning an application to take the best possible
advantage of indices. For more information on EXPLAIN, see the database documentation.

6 APL2 and SQL: A Tutorial

Using SQL

Using SQL from Programs

SQL is not a stand-alone language, in that it does not compile directly into executable machine language
modules. It is either embedded in programs written in other compiled languages (such as assembler,
FORTRAN, PL/I, COBOL and e), called interactively by interpretive languages (such as APL2, REXX,
and BASIC) or supported internally by end-user tools such as QMF. When using it in conjunction with
compiled languages, the source code is passed through a pre-processor before the compile which translates
the SQL statements into statements in the compiled language. With interpreted languages and end-user tools,
there is an special step when the language or tool is installed to initialize the database support, but no pre­
process is required when issuing SQL statements.

Static SQL vs. Dynamic SQL

Static SQL is a form of SQL where the SQL statements are known in advance and coded directly into a
compiled program. Any variable data is passed in program variables whose names are also coded into the
program. This type of SQL is supported only from compiled languages.

With Dynamic SQL, the SQL statements are not known until execution time. They are built into a buffer,
and the buffer and any variable data is passed at execution time. This type of SQL is supported both from
compiled and interpreted languages, and is the type of SQL we will be discussing in Parts 2 and 3 of this
tutorial.

Each of the two types of SQL has advantages and disadvantages. Static SQL is usually faster at execution
time, as the path to the data can be determined at compile time. However, if the database status changes
(new indices are added, etc.) and the program is not recompiled, this advantage can turn into a disadvan­
tage. Dynamic SQL, when issued from an interpreted language, requires less coding time and is easily modi­
fied if the problem changes, with no pre-process or compile required.

Whether to use Static or Dynamic SQI~ is a choice akin to that of whether to use a compiled or interpreted
language. Each has its strengths, and many times a combination of the two provides the optimum solution.

Part 1: SQL 7

'''--': .". " '.~':;",

Part 2: APL2

An auxiliary processor, AP 127, allows APL2 programmers to imbed Structured Query Language (SQL)
statements in their APL2 functions.

Along with AP 127, a workspace called SQL is distributed with the APL2 product. The SQL workspace
contains APL2 functions for using AP 127. It contains a simple function for each AP 127 command, and
some additional higher-level functions. In these examples we will use the simple command functions.

Relational Data in APL2

Figure 1 on page 1 showed an example relational table. We could represent that table in an APL2 matrix
with a row for each row of the table and a column for each column. If we did, it would look like Figure 7.

ABCM
ADAMS 12 3 36000 ADMIN PAl
BANKS 15 3 35000 SALES PS2
CROW 6 2 24000 PROD PPl
DEAN 12 3 38000 PROD PP2
EATON 18 4 40000 RES PRl
FARR 25 5 50000 ADMIN PAt
CALVIN 5 3 27000 SALES PSi
HARVEY 23 5 45000 SALES PSl
INCRAM 2 1 18000 ADMIN PA2
JACKSON 1 1 16000 PROD
KAHAN 6 3 32000 RES PR2
LAMAR 21 5 45000 PROD PP1
MULVEY 3 2 21000 SALES PS2

DISPLAY 4t[1]ABCM
.+--------------------------------- .
..- .-+----- . .-+-----. • +- - •

IADAMSI 12 3 36000 'ADMINI IPAil , - - - - - , ,-----, , - - - ,
•+---- • .+----. • -+- - •
IBANKSJ 15 3 35000 I SALES I IPS21
,-----, , - - - - - , , - - - ,
.+---. •+---. • -+ - - •
ICROwl 6 2 24000 (PRODI IpP11

, _ _ _ t, - - - - , , - - - - I

•-+- - - - • .-+----. • -+- - •
I DEAN I 12 3 38000 'PROD' IPP21 , - - - - , , - - - - , , - - - ,

€---------------------------------,

Figure 7. Relational data in an APL2 matrix

APL2 and SQL: A Tutorial 8

The DISPLAY workspace, included with APL2, allows a pictorial representation of data, making it easier to
see the type and structure of an object. Here, we display the first four rows of the ADeM variable for dem­
onstration. Note that the numbers are scalars, so they have no boxes around them. The character items are
vectors, and the entire object is a matrix.

Another possible way to represent a relational table is as a vector of matrices, one for each column. Figure 8
shows that form.

ABCV

ADAMS 12 3 36000 ADMIN PA1

BANKS 15 3 35000 SALES PS2

CROW 6 2 24000 PROD PPl

DEAN 12 3 38000 PROD PP2

qEATON 18 40000 RES PB1

FARR 25 5 50000 ADMIN PAl

GALVIN 5 3 27000 SALES PS1

HARVEY 23 5 qSOOO SALES PS1

INGRAM 2 1 18000 ADMIN PA2

JACKSON 1 1 16000 PROD

KAHAN 6 3 32000 RES PR2

LAMAR 21 5 45000 PROD PPl

MULVEY 3 2 21000 SALES PS2

DISPLAY 4t[lJ··ABCV
.+--- .
 .~------. •+- • •+. .~----. ---- . .~- - .

.ADAMS .121 • 31 +360001 .ADMINI .PAll

IBANKS 1151 131 1350001 ISALESI IpS21

I CROW I 61 121 12QOOOI I PROD 1 IpPll

I DEAN 1121 131 1380001 1PROD 1 IPP21

,-------, ,"" - , ''''' , ,""----, ,-----, , - - - ,

'E---,

Figure 8. Relational data in an APL2 vector

In this alternative form, note that the variable-length character fields must be padded with blanks to the
width of the widest value to create a uniform matrix. Null items must also be replaced with their prototype
values, which are 0 for numeric items and blank for character items.

APL2 allows retrieval of SQL data in both of these forms.

SQL Statements in APL2

In Part It we showed examples of SQL statements. We will now see how to execute those statements from
within APL2.

Part 2: APL2 9

Data Definition, Authorization

Data definition and authorization statements are executed directly, as is, by the database system. No variable
substitutions are allowed. For this type of statement, we use the AP 127 command EXEC, which expects
only one argument, the SQL statement. In Figure 9 on page 10 we will use the EXEC function to execute
the CREATE statement from our example, and to grant authority to all users to retrieve data from it. We
have placed the CREATE in an APL2 character matrix called ABCC, since it is a longer statement.

ABCC
CREATE TABLE ABC
(NAME VARCHAR(20),
YOS SMALLINT,
LEVEL SMALLINT,
SALARY INTEGER.
DEPT VARCHAR(8) •
PROJ CHAR(3})

IN MYSPACE

EXEC ABCC
00000

EXEC 'LABEL ON COLUMN ABC.NAME IS "THIS IS A LABEL'"
o 0 000

EXEC 'GRANT SELECT ON ABC TO PUBLIC'
o 0 0 0 0

Figure 9. Data Definition Statements from APL2

For those familiar with Dynamic SQL, the EXEC command issues an EXECUfE IMMEDIATE to SQL.

AP 127 always returns a 5-item numeric return code, followed by any result data. For these statements, there
is no result data, so the second item of the result is null. We will explain the meaning of non-zero return
codes in a later section. Five zero codes, of course, means that operation completed successfully,

Data Manipulation

Data manipulation statements can be processed in two different ways. If there are no variable substitutions,
they can be processed like data defmition statements, with the EXEC command. If you wish to execute an
SQL statement more than once, however, it can be much more efficient to use variable substitution,

With variable substitution in APL2, the places for the values are indicated in the SQL statement by a colon
(:) followed by a number which represents an index into an APL2 variable. The statement in that form is
passed to AP 127 with a PREP command, and a name is attached to the statement to identify it for later
execution. AP 127 will remember the indices and replace them with the Dynamic SQL placeholder '1" before
issuing an SQL PREPARE.

To execute the statement, an AP 127 CALL command is issued against the statement name, and the data, or
value-list, is passed as an argument to that command. The value-list can contain more items than are actu...

10 APL2 and SQL: A Tutorial

ally indexed, and the indices can select items in any order. The CALL command issues a Dynamic SQL
EXECUTE. It may be repeated as many times as necessary, with different data passed each time.

Figure 10 shows examples of data manipulation statements in APL2.

Without variable substitution:

EXEC 'UPDATE ABC SET SALARY=35000 WHERE NAME="KAHAN'"
00000

EXEC 'DELETE FROM ABC WHERE DEPT=' 'RES'"
o 000 0

With variable substitution:

PREP 'NAME' JINSERT INTO ABC VALUES(:1,:2,:3,:4,:5,:6)'
00000

CALL 'NAME' ('KAHAN' 6 7 32000 'RES' 'PR2')
o 0 0 0 0

CALL 'NAME' ('JACKSON' 1116000 'PROD' ")
o 000 0

Figure 10. Data Manipulation Statements in APL2

Data Retrieval

There are five required steps to perform a SELECT in Dynamic SQL. They are PREPARE, DESCRIBE,
OPEN, FETCH and CLOSE. The AP 127 commands corresponding to these steps are PREP, OPEN,
DESCRIBE, FETCH and CLOSE.

The PREP command is the same for data retrieval as for data manipulation, except that it is required,
whether or not there are variables in the statement. It sends the statement to SQL and assigns a name to it.

The DESCRIBE command returns information about the result table names, datatypes, null status and
labels. This AP 127 command may be issued at any time after the PREP, or may be omitted if not needed
by the application. If it is omitted, AP 127 will issue the SQL DESCRmE automatically before the OPEN
and save the infonnation for use later on. There are four different fonns of describe which return the
column names and labels in different combinations.

The OPEN command receives the value-list, if any, and sets the cursor to the beginning of the table (it does
not yet point to any rows). The FETCH command causes the data to be passed from SQL. The CLOSE
command tells SQ L that we are done with the cursor.

As with data manipulation statements, the PREP command may be issued once, with variable indices, and
the OPEN, FETCH, CLOSE sequence may be repeated, with different data passed on each OPEN.

Figure lIon page 12, Figure 12 on page 13 and Figure 13 on page 14 show some simple examples of this
sequence.

Part 2: APL2 11

PREP 'NAME' 'SELECT * FROM ABC'

o 0 000

OPEN 'NAME'
o 0 000

FETCH 'NAME'
o	 0 000 ADAMS 12 3 36000 ADMIN PAt

BANKS 15 3 35000 SALES PS2
CROW 6 2 24000 PROD PP1
DEAN 12 3 38000 PROD PP2
EATON 18 4 40000 RES PRl
FARR 25 5 50000 ADMIN PAl
GALVIN 5 3 27000 SALES PSt
HARVEY' 23 5 45000 SALES PSi
INGRAM 2 1 18000 ADMIN PA2
JACKSON 1 1 16000 PROD
KAHAN 6 3 32000 RES PR2
LAMAR 21 5 45000 PROD PPl
MULVEY 3 2 21000 SALES PS2

CLOSE 'NAME'
o 0 000

Figure 11~ Simple Data Retrieval

12 APL2 and SQL: A Tutorial

PREP 'NAME' 'SELECT * FROM ABC'
o 0 000

DEse 'NAME'
o	 0 000 NAME YOS LEVEL SALARY DEPT PROJ

V 20 S S I V 8 C 3

NOT NULL NULL NULL NULL NULL NULL

DEse 'NAME' 'LABELS'
o	 0 000 PUIS IS A LABEL

V 29 s s I V 8 e 3
NOT NULL NULL NULL NULL NULL NULL

DESC 'NAME'. 'ANY'
o	 0 000 THIS IS A LABEL YOS LEVEL SALARY DEPT PROJ

V 20 S S I V B C 3
NOT NULL NULL NULL NULL NULL NULL

DEse 'NAME' 'BOTH'
a 0 a 0 0	 NAME YOS LEVEL SALARY DEPT PROJ

V 20 S S I V 8 C 3
NOT NULL NULL NULL NULL NULL NULL
THIS IS A LABEL

Figure 12. DESCRIBE

Part 2: APL2 13

.:~ .. '. r:>~

PREP 'NAME' 'SELECT NAME FROM ABC WHERE DEPT = : 1 '
0 0 0 0 0

OPEN 'NAME' (c t ADMIN')
0 0 0 0 0

FETCH 'NAME'
0 0 0 0 0 ADAMS

FARR
INGRAM

CLOSE 'NAME'
0 0 0 0 0

OPEN 'NAME' (c ! SALES')
0 0 0 0 0

FETCH 'NAME'
0 0 0 0 0 BANKS

GALVIN
HARVEY
MULVEY

CLOSE 'NAME'
0 0 0 0 0

Figure 13. Data Retrieval with variable substitution

You will notice that each FETCH request made to AP 127 returns multiple rows of the SQL table, even
though the SQL FETCH only can receive one row at a time. The number of rows returned is controlled by
an AP 127 option. AP 127 will return the number of rows you request, or the whole table, whichever is
smaller. If the entire table is not retrieved on the rust call, the third item of the return code is set to one. You
can repeat the FETCH step as many times as necessary to retrieve the entire table.

A second AP 127 option allows you to choose the data format. As shown previously, there are two different
formats. The default is the first, or matrix format. The alternate format, which actually consumes less space
and so can be more efficient, is called vectorformat.

If you choose to use the vector format, you may also request from AP 127 an additional data item called the
length matrix which will tell you the lengths of the data before padding and null replacement. You can use
this information to recreate the matrix fonn of the data, or perhaps to substitute alternate values for the SQL
null.

All of these options can be set permanently with the AP 127 SETOPT command, or temporarily during
execution of the query by passing them as arguments to the FETCH command. Figure 14 on page 15
shows the use of the SETOPT command, which sets options permanently. Any or all of the options may
be set on each call. Note that the SETOPT command does not cause any communication with SQL, it
simply tells AP 127 how you would like to receive your data.

14 APL2 and SQL: A Tutorial

SETOPT 'VECTOR'
a a a a a

SETOPT 500
0 0 a 0 0

SETOPT 'LENGTH'
0 0 0 a 0

SETOPT 'MATRIX' 'NOLENGTH' 20
0 0 0 0 0

Figure 14. SETOPT command

Figure 15 shows th~ result when the vector format and length matrix options are in effect.

PREP 'NAME' 'SELECT NAME,PROJ FROM ABC'
o 000 0

OPEN 'NAME'
o 0 a 0 0

DISPLAY FETCH 'NAME' 'VECTOR' 'LENGTH'
+------------------------------------- ­

.+--------. +--------------------- ­
10 0 0 0 01 .+------. - - . • +- ­ •
,--------_. ~ADAMS I ","PAt I -t5 3

I BANKS I pS21 15 3
I CROW I PP11 14 3
IDEAN I PP21 14 3
I EATON I PRtl 15 3
IFARR I PAt I 14 3
I GALVIN I PStl 16 3
I HARVEY I pS11 16 3
I INGRAM I PA21 16 3
IJACKSONI I 17 0
I KAHAN I PR21 15 3
I LAMAR I PP11 15 3
I MULVEY I
,-------,

pS21
- ­ - ,

16 3 , _­
~----------------------

~--------------------------------------

Figure 15. Vector Format with Length Matrix

Figure 16 on page 16 shows the retrieval of a table in multiple steps, controlling the number of rows with
the FETCH. In the case of such a small table, of course, one would not normally fetch the result in so
many steps. The technique shown, however, may be used when space considerations prohibit fetching the
entire table in one pass, or when the number of rows in the result cannot be predicted. The goal should be
to minimize the number of calls to AP 127, given the current space constraints.

Part 2: APL2 15

PREP 'NAME' 'SELECT * FROM ABC'
o 0 000

OPEN 'NAME'
o 0 000

o 0
FETCH

100
'NAME'
ADAMS
BANKS
CROW
DEAN
EATON

5
12
15

6
12
18

3
3
2
3
4

36000
35000
24000
38000
40000

ADMIN
SALES
PROD
PROD
RES

PAl
PS2
PPl
PP2
PRl

o 0
FETCH

100
'NAME' 5
FARR
GALVIN
HARVEY
INGRAM
JACKSON

25
5

23
2
1

5
3
5
1
1

50000
27000
45000
18000
16000

ADMIN
SALES
SALES
ADMIN
PROD

PA1
PSi
PSi
PA2

o 0
FETCH

000
'NAME' 5
KAHAN
LAMAR
MULVEY

6
21

3

3
5
2

32000
45000
21000

RES
PROD
SALES

PR2
PP1
PS2

o 0
CLOSE

000
'NAME'

Figure 16. Fetching a Table in Pieces

Note: Mer each FETCH, the cursor is left pointing at the last row fetched. AP 127 cannot tell that the end
of the table is reached until it tries to fetch beyond the end. Therefore, if you fetch exactly the number of
rows in the table, it is possible to get the (0 0 1 0 0) return code when the table is actually completely
fetched. In that case, the next FETCH call will produce the return code (0 1 0 2 100), indicating
there are no rows in the result.

If a result table has no rows, the data returned is an APL null prototype of the result. This lessens the need
for special code to handle the null case, as the data will be the correct shape regardless of the number of
rows fetched. Figure 17 on page 17 show what the null results look like.

16 APL2 and SQL: A Tutorial

PREP 'NULL' 'SELECT * FROM ABC WHERE NAME="WHEELER'"
o 0 000

OPEN 'NULL'
o 000 0

DISPLAY FETCH	 'NULL' 'MATRIX'
.+-- .

•+---------- ..+------------------------.
10 1 0 2 1001	 ~ .9 •• 9 •• 9 •• 9 •• 9 •• 9.
' ---- 1	 I

I I-I I_I 1_' I-I ,_, 1-'

' €------------------------,
'e--,

DISPLAY FETCH 'NULL' 'VECTOR'
.+-- .

•+----------.	 •+-------------------------- .
10 1 0 2 1001	 I .9 •• + •• + •• + •• 8 ••+--.'''' -----, I ~ t ~ol ~ol ~of ~ I ~

I ,-, ,"', t,."" '",I I-I ,---,

'£--------------------------,
'e--,

Figure 17. Null Result Tables

Control Statements

LOCK, SET CURRENT SQLID

LOCK and SET CURRENT SQLID are both processed with the EXEC command, like data definition and
authorization statements. No variables are allowed in these statements.

COMMIT, ROLLBACK

The COMMIT and ROLLBACK statements are processed by AP 127 commands of the same name. They
cannot be processed with the EXEC command. The AP 127 commands allow an optional parameter,
RELEASE, which disconnects the user from the database. In SQL/DS, this corresponds to the RELEASE
option. In DB2, it causes a disconnect from the Call Attach Facility, which AP 127 uses to communicate
with DB2.

It is very important to be a responsible SQL citizen and issue COMMITs and ROLLBACKs as often as
possible in your program. Not issuing them can cause data locks to be held, thus causing other users to wait
for access to data. It is especially important to remember this in APL2, because implicit COMMITs are
never issued, and implicit ROLLBACKs are issued only at shared variable retraction and)OFF. In com­
piled programming languages, the database connection is terminated when the program ends. In APL2, AP
127 is the program, so the connection stays active unless something explicit is done to terminate it.

Figure 18 on page 18 shows examples of COMMIT and ROI.,LBACK from APL2.

Part 2: APL2 17

o 0
ROLLBACK
000

o 0
COMMIT
000

o 0

DAT+'ROLLBACK'
DAT

000

'RELEASE'

Figure 18. ROLLBACK. COMMlT

CONNECT

The CONNECT command is available in SQL,fDS only. This command allows you to specify the User ID
that will be used in making the database connection, and optionally, the name of the database as well. The
facility is useful, for example, when you want only one User ID to have certain authority or access to certain
tables. An application can connect to that ID to do work in SQL, and individual users of the application
need not have authority to use the data directly.

Use of CONNECT can also save keystrokes. When connected as another user, that user's ID is automat­
ically prefixed to all table names instead of your own ID. They then do not have to be explicitly typed.

Figure 19 shows an example of the use of the AP 127 CONNECT command.

CONNECT " " 'MYDATABASE'
o a a a 0

PREP 'NAME' 'SELECT * FROM INVENTORY'
1 0 0 2 204

PREP 'NAME' 'SELECT * FROM SQLDBA.INVENTORY'
00000

ROLLBACK
00000

CONNECT 'SQLDBA' 'SQLDBAPW' 'MYDATABASE'
00000

PREP 'NAME' 'SELECT * FROM INVENTORY'
00000

Note: The ROLLBACK is necessary before the CONNECT to disconnect
the User ID already active.

Figure 19. CONNECT command

18 APL2 and SQl: A Tutorial

EXPLAIN

The EXPLAIN command, when: issued from Dynamic SQL, is also processed with the EXEC command.
Note that the statement is not placed in quotes. After the EXPLAIN is processed, you must look in the
special SQL tables created for EXPLAIN to fmd the information. The structure and naming conventions for
those tables are different in SQL/DS and DB2.

EXEC 'EXPLAIN ALL FOR SELECT * FROM ABC'
00000

Figure 20. EXPLAIN command

Error Handling

We have seen that the third item in the return code vector is used to flag the condition that there may be
more rows in the result table.

The first and second items flag error or warning conditions. If the first is set to 1, there has been an error. If
the second is set, there has been a warning. If both are set, an error has occurred which has caused a trans­
action backout. This means that the current unit of work has been rolled back by the system.'

The fourth and fifth items of the return code vector tell you the source of error or warning, and the error
code.

The MESSAGE function may be used to retrieve more information about an error. It accepts as a param­
eter the return code vector from the AP 127 operation. The result from execution of the MESSAGE function
depends on the type of error and the environment.

AP 127 Errors

Sometimes an error or warning is detected in AP 127 before the request is passed to SQL. When that
happens, the fourth item in the return code vector is 1, and the fifth is the AP 127 message number. In
Figure 21, we have typed an incorrect option setting. MESSAGE returns the actual text of the AP 127
message that corresponds to the return code.

1 0
SETOPT

0 1 127
'VECTOE'

MESSAGE 1 0 0 1
ERROR MESSAGE.
VECTOE IS AN UNKNOWN

127

OPTION VALUE

Figure 21. An AP 127 error

Part 2: APL2 19

~~..= ." " '.~

SQL Errors

Sometimes, although AP 127 detects no error, SQL cannot process the command. When an error or
warning is discovered by SQL, the fourth return code is 2, and the fifth return code is the SQLCODE.

The MESSAGE function can also be used for SQL errors. It will return the contents of the SQLCA control
block, which contains information about the status of the error in SQL. This information can be used in
conjunction with the database message manual to debug the problem.

Note: When executing in DB2, the MESSA.CE function will also return the text of the error message as
formatted by DB2. In SQLjDS, message and help text is available in SQL tables installed with the system.
You can code another SQL query to retrieve the message text if you wish to.

Figure 22 shows what happens when we execute an SQL statement against a non-existent table.

EXEC 'DELETE FROM BADTAB'
1 0 0 2 204

DISPLAY MESSAGE 1 0 0 2 -204 . .~-----------------------

~ .+------------------- .
I IERROR MESSAGE. , ~_-------------fI
r .~------------------
I ~ .+---.
I

f",, ' I
I .+--------------.
I IWHEELS "BADTABI
I ,---------------,
I .+------- .
I IARIXOCA I
I ,--------,

I .+--------------.

I '-lOa 0 0 -1 0 01

I ,~--------------,

I .+------- .

I Iw w

I ,--------,
f .+-------.
I
I ,-- 1

I € ----------------- ­
I . e.
I , - ,I
' €---------------------- ­

Figure 22. An SQL error

20 APL2 and SQL: A Tutorial

Warnings

Warnings do not always indicate a problem, but rather conditions which may warrant further inspection.

AP 127, for example, issues a warning if your value-list is longer than necessary. A common error made in

using value-lists is that a character vector is passed without enclosing it, and AP 127 cannot tell whether it is

meant to be one value or several.

With SQL warnings, it is possible to receive a return code of the form (0 1 0 2 n) or (0 1 0 2
o). In the first case, the error number tells you about the warning. In the second case, the warning flags
are set in the SQLCA control block to indicate the type of warning.

In Figure 22 on page 20, you can see that in the second row from the bottom of the SQLCA, warning flags
oand 4 are set to 'W'. The SQL documentation tells us that SQLWARN4 indicates that a DELETE state­
ment has been issued without a WHERE clause. If the table BADTAB had existed, all rows would have
been deleted.

Again, warnings mayor may not indicate a real problem, but application code should be written to handle
the possibility of them occurring.

Using the SQLCA

Even when no error has occurred, the contents of the SQLCA can sometimes be useful. For instance, after
the PREPARE, a query cost estimate is placed in the SQLCA. You can examine the SQLCA anytime by
passing the MESSAGE function a five-item numeric vector with a 2 in the fourth position. Figure 23 on
page 22 shows what the SQLCA looks like after a successful PREPARE.

Part 2: APL2 21

PREP 'TEST' 'SELECT * FROM ABC'
00000

DISPLAY MESSAGE 0 0 0 2 0
.+--------------------------- .

..".. .9.

I f , - ,
.+---------------------- ­

101
, """I ,

• e.

, - ,

.+-------.

1 ,

.+-------------------.
10 0 0 1141902165 0 01
I~ -------- I

.+-------.

,--------,
.+-------.

,--------,

€---------------------- ­

.9.

, - ,
' €---------------------------,

Figure 23. Query Cost Estimate

For a complete description of the SQLCA and information on the query cost estimate, see the database
documentation.

22 APL2 and SQL: A Tutorial

Part 3: APL2 and SQL

Using APL2 and SQL together effectively is more than just knowing the mechanics of how to issue SQL
statements from APL2. To write a successful application, one needs to consider such issues as database
design, performance, storage usage, locking, and authority schemes as well as just "'getting the right answers".
We will try to address some of these issues here in light of the APL2/SQL interface, and we encourage those
who are serious about using it to learn as much as possible about SQL and the particular implementation of
it they will be using. Ignorance is not bliss, it is costly.

Locking
The types of locks obtained when accessing SQL tables, and the duration of those locks, can affect the per­
ceived performance of an application. Concurrency is the term used to refer to the ability to have multiple
users accessing data simultaneously. In general, with greater concurrency, there is less average waiting time
for data access, and thus performance is perceived to be better.

The application can control some aspects of locking during execution, and others are determined at design
time.

Lock Size

The size of the locks obtained is determined at the time the space for the tables is allocated. In DB2, a
TABLESPACE can be locked in its entirety, or a page at a time. In SQL/DS, a public DPSPACE can be
locked by DBSPACE, page, or row. A private DBSPACE is always locked in its entirety.

With TABLESPACE or DBSPACE locking, fewer locks are necessary but their scope is wider. Anyone else
wishing to access the affected table or tables must wait until the current transaction is terminated before
being granted that access.

With page locking, locks are obtained for the pages on which the rows accessed by the transaction reside.
With row locking, locks are obtained only for the rows accessed by the transaction. If the transaction only
accesses a few rows of the table, other users accessing different parts of the table may have a shorter wait. If
the transaction accesses most of the rows of the table, however, the performance impact of obtaining many
locks may be greater than that of the waits by other users. When deciding on a lock size, the types of
transactions to be executed should be considered.

Isolation Level

The duration of locks is controlled by the Isolation Level attribute. There are two different isolation levels.
With the Repeatable Read (RR) isolation level, locks are not released until the unit of work terminates with
a COMMIT or ROLLBACK. With the Cursor Stability (CS) isolation level, locks are released when the
cursor moves off the area (DBSPACE, TABLESPACE, page, or row) locked, if the data on the area has not
been changed. If it has been changed, the locks are held until the unit of work terminates.

Repeatable read locking guarantees that if the same data is read twice during the same unit of work, the data
will not have changed. Cursor stability locking allows more concurrency. Once an application is finished
reading data and it moves on, other users can then access the data. However, CS also means that if the first

Part 3: APL2 and SQL 23

application reads the data again, it could be different than it was before. Table 2 on page 24 shows an
example where data integrity could be lost.

Program Action Database Action

PI reads RI Rllocked

PI reads R2 Rl unlocked

P2 reads Rl Rl locked

P2 updates R 1

P2 commits Rl unlocked

PI updates RI, Rllocked,
but R I is different but its integrity is

uncertain

Table 2. Cursor Stability Locking

In general, applications that will do updates and depend on reading other data to determine which updates to
make should not use CS locking. Applications that only read data can benefit from the added concurrency
provided by CS locking.

In APL2, an AP 127 command, ISOL, is provided that allows an application to change isolation levels
during program execution. This allows the programmers to provide any desired mix of isolation levels in
their applications.

In TSO, the new isolation level will take effect at the beginning of the next unit of work (after COMMIT or
ROLLBACK). In eMS, the new isolation level is in effect for any cursors prepared after the change is
made.

See Figure 24 for an example of the use of the ISOL command.

o 0
ISOL

0 0 0
"
RR

A Query the ISOlation Level

ISOL
00000

'CS' R Set the Isolation Level

Figure 24. Forms of the ISOL command

Explicit Lock Control
In addition to controlling locking with installation parameters, locking may be explicitly controlled with the
SQL LOCK command. The LOCK command will lock the entire TABLESPACE or DBSPACE in which
the table being accessed resides.

Since the LOCK command causes the default locking to be overridden, another method for maximizing con­
currency is to choose the CS isolation level with page or row locking, and use LOCK when doing updates to
insure data integrity.

24 APL2 and SQL: A Tutorial

Authority

When using Dynamic SQL, authority must be granted to users to access the tables after they have been
created. Different levels of authority can be granted (SELECT, UPDATE, INSERT, etc.); care should be
taken that you do not grant more authority than is necessary to any user. There are many schemes for man­
aging authority. We list a few here:

•	 Grant all authorities to all users. All users will then be able to access and update all data. This scheme is
not advised unless the integrity of the data is unimportant.

•	 Grant SELECT authority to all users and UPDATE/INSERT authority to a limited number of users.
This scheme offers more integrity but limits usability. All database update requests must be routed to
one of the few users who can do them.

.
•	 Grant SELECT authority

~

to all users for interactive data access and write batch programs using Static
SQL to do updates. Programs written in VS FORTRAN and IBM 370 Assembler Language can be
called from APL2 using the Name Association Facility. Authority to update in Static SQL is based on
the authority to run the program rather than the authority to update the tables. This method restricts the
updates as desired, but is less flexible since a new batch program must be written each time different type
of update is desired.

Note: In DB2, programs called from APL2 must be run with the DB2 Call Attach Facility, not the
DSN command processor, since APL2 uses the Call Attach Facility.

•	 Defme views for groups of users and allow the groups to update only their views. Views are logical tables
whose defmitions are based on real tables; users can access them much as they would a real table. If you
want to use the views to update the data, however, you should read carefully about the ramifications of
doing so. Because views do not physically exist, the update rules for them are somewhat more restrictive
than the rules for tables.

•	 Use a central server user ID, and route all requests through the server. The server is, then, the only ID
that has authority to access the data. The server's programs can be written to check each user's requests
for correctness, and can further refine the authority scheme by allowing users to update only certain
columns of the tables. See "Multi.. User SQL Applications in APL2", Dr. James A. Brown (IBM TR
03.247) for a complete discussion of this scheme.

•	 (SQLjDS only) Create a special SQL user ID for your application, and use the CONNECT command in
the application to connect the user as the application user ID. In this scheme, only the application user
ID has authority to access the tables. All users will be able to make updates while running the applica­
tion, but will not be able to access the tables outside the application from their own user ID. The
updates, therefore, are restricted to the type and format allowed by the application.

The Index

Choosing appropriate indices for your tables is one of the most important design decisions you will make,
because it can have a very great effect on the performance of your application. You can define indices on
columns or combinations of columns, and indices can be unique (no duplicates are allowed in column(s)
used to defme the index) or nonunique.

If no indices are defmed on a table, each row of the table must be searched every time you issue a query to
fmd the rows that meet the conditions of the query. If there is an index on the column you specify in your
search condition, the rows that meet the condition may be accessed directly, thereby speeding up the query.

Part 3: APL2 and SQL 25

Another effect of an index is that it can force uniqueness of data. If a UNIQUE INDEX is defmed on a _
column or group of columns, the database will not allow duplicate data to be inserted into those columns.

The design question to be answered with indices is when to stop. How many indices is too many? If you
define an index on every column in your table, you will have direct access to data whenever possible (there
are some circumstances where an index cannot be used). The time required to update the table, however,
will be increased. Every time a row is updated, each index must also be updated. The correct answer to the
question is, of course, dependent on your application. Ideally, you will define indices on columns that will
frequently be used in search conditions, and not defme so many that updating the table is prohibitively slow.

Storage

Now that XA is universally available, and SQL tables are getting bigger and bigger, it may help to under­
stand something of how AP 127 uses storage.

Shared Variable Storage

Because AP 127 is an auxiliary processor, it does not build its results directly into the workspace. It must
allocate space out of free space for the shared variable contents. The buffer allocated can grow if large value-
lists are passed to AP 127, or if large result tables are requested. ­

AP 127 does notset a restriction on the size of the buffer. Once the result is built, however, it is restricted
by the SHRSIZE parameter and the workspace size, so it is possible to receive errors from AP127 or
WSFULL conditions after AP 127 has successfully built the table.

The application can manage the shared variable buffer size in three ways. First, it can keep the number of
rows fetched to a smaller size. Setting the AP 127 rows option to a very high number means that storage
must be available for that number of rows, because AP 127 does not know in advance how many rows will
actually be fetched. Second, it can use the vector format for the result table, which takes less space. Third,
it can retract the shared variable after a particularly large fetch. On shared variable retract, API27 will release
the buffer if it has grown larger than the default size of 8K.

Statement Storage

Each statement that is prepared by AP127 has some storage allocated to it for status information, SQL
control blocks and value-lists. For performance reasons, this storage is not freed every time the statement is
called. Up to 40 statements may be active at one time, so this amount of storage may be significant in some
cases.

The statement storage is freed at COMMIT and ROLLBACK time. If the application wants to clean up for
itself, however, there is also an AP 127 command which will release storage for one or all statements.
Figure 25 on page 27 shows the use of the PURGE command.

26 APL2 and SQL: A Tutorial

PURGE 'NAME' A Purges NAME only
o 000 0

PURGE ,t R Purges all statements
o 0 000

Figure 25. PURGE command

Performance

There are numerous ways to tune APL2 and SQL applications. We have already discussed some of the
issues involved in performance. They will be summarized here.

•	 Use the APL2 timing facility, available in APL2 Version 1 Release 3, to tune the APL portion of your
application as much as possible.

•	 (SQL/DS Only) Try the BLOCK parameter on SQLPREP, if not already in use.

•	 Experiment with ISOL(CS) vs. ISOL(RR) in various scenarios. Caution: in a single-user environment,
ISOL(RR) is faster, because less CPU time is used for it. To see the benefit of ISOL(CS), which is
reduced elapsed time due to shorter waits, you must have multiple concurrent users.

•	 Vary the number of rows selected on each FETCH to minimize the number of AP 127 calls necessary to
get the data.

•	 Make sure you have appropriate indices on your SQL tables.

•	 Optimize your queries. You can use the SQL EXPLAIN command to analyze query performance.

•	 Try the AP 127 vector form rather than the matrix form, In addition to saving space, it may also save

you time.

•	 Do not repeat PREPARE requests unnecessarily. If you need to issue the same query with different

parameters, PREPARE once with a placeholder and pass the fill-in value as you execute, rather than

coding a literal string for the value in the SQL statement.

•	 Learn the AP 127 commands and use them directly rather than using the SQL function. You can often
write more efficient code than the general purpose function allows for.

•	 If certain queries are repeated frequently and take a long time, consider coding these queries in a com­

piled language. The compiled program can be called separately or from APL2.

•	 (D82 Only) In MVS, the asynchronous nature of the operating system allows the task calling DB2 to be
separate from the main AP 127 task, and AP 127 is a separate task from APL2. If you use the shared
variable system functions directly, you can do other work while waiting for the DB2 request to complete.
You can also set a timer to limit the amount of time spent on a query. Retraction of the shared variable
will cancel the request if it has not completed.

•	 Read more about SQL in the documentation for the database you are using. SQL is easy to use, and

thus easy to use poorly. The more you know, the better your programs will be.

Part 3: APL2 and SQL 27

Appendix A. SQL Statement Summary

Statement Type SQL Statement AP 127 Processing Method

Data Defmition CREATE
ALTER
DROP
LAB'E,.LON
COMMENT ON

EXEC

No Variables:
EXEC

With Variables:
PREP,CALL

PREP,OPEN,FETCH,CLOSE

EXEC

EXEC -

CONNECT
COMMIT
ROLLBACK

EXEC

Data Manipulation DELETE
INSERT
UPDATE

Query SELECT

Authorization GRANT
REVOKE

Control LOCK
SET CURRENT SQLID

CONNECT
COMMIT
ROLLBACK

Analysis EXPLAIN

28 APL2 and SQL: A Tutorial

Appendix B. AP 127 Operations and SQL Workspace
Functions

Function Name and Syntax

CALL name [values]

CHART data

AP 127 Operation Code and Syntax

'CALL' name [values]

CLOSE name . 'CLOSE' name

COMMIT 'COMMIT'

CONNECT id password

DESC name [type]

'CONNECT' id password

'DESCRIBE' name [type]

EVAL data

EVALSIM data

EXEC stmt 'EXEC' stmt -

FETCH name

GETOPT

[options] 'FETCH' name

'CETOPT'

[options]

ISOL level

MESSAGE rcode

'ISOL' [level]

'MSC' rcode

NAMES 'NAMES'

OFFER

OPEN

PREP

name

name

[values]

stmt

'OPEN'

'PREP'

name

name

[values]

stmt

PURGE name 'PURGE' name

QUE stack

QUERY name [values]

RESUME stack

ROLLBACK 'ROLLBACK'

SETOPT options

SHOW result

'SETOPT' options

SQL stmt [values]

STATE name 'STATE' name

Appendix B. AP 127 Operations and SQL Workspace Functions 29

Function Name and Syntax AP 127 Operation Code and Syntax

STMT name 'STMT' name

'TRACE' [nl n2]TRACE nl n2

(F UNTIL) stack

30 APL2 and SQL: A Tutorial

Appendix C. Return Code Summary

Return Code Vector Meaning

00000 Normal return. All operations completed.

o0 100 Normal return, but the result table may not
have been completely retrieved.

100lmsgn Error from AP 127. msgn is the number of
the AP 127 error message.

1 0 0 2 msgn Error irom DB2 or SQL/DS. msgn is the
I)B2 or SQL/DS SQLCODE.

100 3 msgn Error from the SQL workspace. msgn is the
workspace message number.

o IOn msgn Warning message. n is 1 or 2 as defined here
for error returns. msgn is the warning
message number.

110nmsgn Transaction backout. All changes made to the
database since the last COMMIT or
ROLLBACK have been discarded. n is 1 or 2
as defined here for error returns. msgn is the
error message number.

Appendix C. Return Code Summary 31

Appendix D. Installation Instructions

Instructions are provided in the APL2 Installation Manuals for preparing SQL for access by APL2.
However, since this preparation requires a deviation from the default install process, the necessary steps will
be repeated here, with extra detail.

Note that these instructions are for APL2 Version 1 Release 3 only.

SQUDS (eMS) Environment

To install the APL2 SQL interface:

1. LINK and ACCESS the minidisk in the SQL/DS machine. This is normally the 195 disk.

LINK SQLDBA 195 195 RR

ACC 195 Q

2. Initialize your user machine to the database by issuing the SQLINIT EXEC.

SQLINIT	 DBNAME(SQLDBA)

The SQLINIT process places onto your A-disk some files which are the SQL/DS "bootstrap" modules.
These modules determine which SQL/DS database will be accessed. Once the files are created, there is
no need to repeat this step unless they are erased or you wish to change to a different database.

3. (Optional) Modify the AP2VI271 ASMSQL source module to add support for the SQL/DS Version 2
CONNECT extensions. Instructions for the modification are contained in the source module commen­
tary.

This step is necessary ONLY if you have SQL/DS Version 2 and VM/SP 5, and you wish to use mul­
tiple databases.

4. Preprocess the APL2 interface module. This step "registers" the APL2 program in SQL/DS.

SQLPREP	 ASM PP(NOPUNCH,NOPRINT,PREP=AP2VSQL3),

ISOL(USER),BlOCK,USER=SQLDBA/sqldbapw)

IN(AP2V1271 ASMSQL fm)

or, if you have modified AP2V127I ASMSQL,

SQLPREP	 ASM PP(NOPRINT,PREP=AP2VSQl3),

ISOL(USER),BLOCK,USER=SQLDBA/sqldbapw)

IN(AP2V127I ASMSQL fm)

PU(AP2V1271 ASSEMBLE fm)

The SQLPREP command must be issued as shown, with the appropriate password and ftlemodes filled
in. The one exception is the BLOCK parameter, which is optional. Since the use of BLOCK provides

32 APL2 and SQL: A Tutorial

significant performance improvements, it is highly recommended. Some SQL queries, however, do not
work when BLOCK is in effect. For more information on BL,OCK, see the SQL/DS Application Pro ..
grammer's Guide.

5.	 Grant authority for users to use the APL2 interface.

CONNECT SQlDBA IDENTIFIED BY sqldbapw

GRANT RUN ON AP2VSQL3 TO PUBLIC

The CONNECT and GRANT commands can be issued using the ISQl~ processor, or with the
SQLDBSU EXEC.

6. (Optional) If you have modified AP2V127I ASMSQL, and created AP2Vl271 ASSEMBLE, assemble
the module. Assembler H is required. The AP2MAC MACLIB must be available, and a GLOBAL
MACLIB AP2MAC statement issued before running the assembly.

Place the resulting AP2Vl271 TEXT file on a disk that precedes the APL2 installation disk in the eMS
search order, and generate the APL2load module according to the instructions provided in the eMS
installation guide. The installation process will replace the default AP2V1271 TEXT with your modified
one.

If the installation has multiple SQL/DS databases, and APL2 will be used from each of them-steps 1
through 5 must be repeated for each database.

To use the APL2 SQL interface:

1.	 See your database administrator to be granted appropriate authority to access the database and obtain
space for creating tables. There are different levels of authority. For more information, see the SQL/DS
Planning and Administration Guide.

2.	 LINK and ACCESS the SQL/DS minidisk, as in step one above.

If you will be using SQL and APL2 together frequently, you may want to add the LINK and ACCESS
to your AP2EXIT EXEC so it is done automatically each time you invoke APL2.

3.	 Issue SQLINIT as in step 2 above, if the bootstrap modules do not already exist on your A-disk.

4. Invoke APL2

DB2 (TSO) Environment

To install the APL2 SQL interface:

After the SMP APPLY step for the APL2 product, run the AP2JBIND job. This will bind and authorize
users to run the APL2 application plans.

If the installation has multiple DB2 subsystems, and APL2 will be used from each of them, the above steps
must be repeated for each subsystem.

To use the APL2 SQL interface:

1. See your database administrator to be granted appropriate authority to access the database and obtain

space for creating tables. There are different levels of authority. For more information, see the DB2

Reference Manual.

Appendix D. Instal1ation Instructions 33

2. ALLOCATE the DB210ad libraries in your TSO LOGON PROC or your APL2 CLIST.

3. Invoke APL2

34 APL2 and SQL: A Tutorial

Appendix E. References

DB2 Publications

1. IBM Database 2 SQL User's Guide (SC26-4376)

2. IBM Database 2 Application Programming Guide (SC26-4377)

3. IBM Database 2 SQL Reference (SC26-4380)

4. IBM Database 2 Reference Summary (SX26-3771)

5. IBM Database 2 Messages and Codes (SC26-4379)

SQUDS Publications

1. SQL/DS SQL Reference (SH09-8069)

2. SQL/DS Database Planning and Administration (8H09-8017)

3. SQL/DS System Planning and Administration (SH09-8018)

4. SQL/DS Application Programming Guide (SH09-8019)

5. SQL/DS Messages and Codes (8H09-8052)

APL2 Publications

1. APL2 Programming: Using Structured Query Language (81-120-9217)

2. APL2 Programming: Guide (8H20-9216)

3. APL2 Programming: System Services Reference (SII20-9218)

4. APL2 Reference Summary (SX26-3737)

Other

1. Development Guide For Relational Applications (SC26-4130)

2. Techniques in SQL Application Design (TR 03.290)

3. Interactive SQL and APL2 (TR 03.289)

4. SQL News You Can Use (SEAS SM88)

Appendix E. References 35

