APL2 Version 2 Release 1
A Summary

October, 1991

Nancy Wheeler

IBM
APL Products
Santa Teresa Laboratory
San Jose, California, USA

-

fi APL2 V2R| Summary

Contents

Cooperative Processing |

Cross-System Shared Vanables]

APL2 Shared Vanable Interpreter Interfuce 2

The Remote-Session Manager 2

AP 119 - 1TCP/IP Processor 3

Managing the TCP/IP Interactions 4
Identifying Share Partners 5
The APL1.2 Port Server S

Files As Variables 7
ONA Syntax for Processor 12 7
Supported Primitive Opcrations 8

Space Management 10

Internal Memory Management 10

Page Release Performance 10

Use of Extended Address Space in VM 10

Workstation Compatibility 11
AP 211: APL2 Object File Auxiliary Processor 11
AP 124 - 1'ull Screen Management Auxiliary Processor
System Vanables and Commands 13

Domain of QUAD ET 13

Reference of Format Control 14

YCOPY of System Vanables 14
New Character Support 14

Other Enhancements 15
Processor 10 under MVS 15
Restructured Processor 11 16
Calls to Other Languages 17
Processor 11 Editor 18
Guidclines for Wrting a Processor 11 Editor 18
QMI* (SAA Query) Callable Interface 19
I:SA Data Window Scervices 19
SQL. Interface Enhancements 20
APL2 Phrases 22
LTELP Iixternal Function 23
New APL2 T'onts 24
Misccellancous Usability FEnhancements 24
GRAPIIPAK Functions for new file types 24
External Function Dircctory 24
DISPLAY as External Function 25
ATTN External Function 25
PBS External Function 25
[lost System Query 25
APL NOMSG (1SO Onlyy 26
Lower Case Commands and Mcssages 26

Contents

DECODE Improvement 26
AP 121 Restriction Removed 26

Appendix A, APPL2 Version 2 Manuals 27

iV APL2 V2RI Summary

Abstract

APL2 Version 2 Release 1 was announced on September 11, 1991, It contains significant enhancements
over APL.2 Version 1, including cooperative processing, access to files as APL.2 arrays, improved space man-
agement, workstation compatibility items, and many other new features.

This document contains a summary description of the new function found in this version of APL2. Duc to
its short length, it is not possible to give all the details and complete syntax for cach new feature presented.
The manuals for APL2 Version 2 Release 1 should be consulted for more complete information. The
appendix to this report contains a list of the manuals, with order numbers.

In addition to the author, the following individuals provided scctions of this document:

Doug Aiton
Jim Brown
I:nk Kane
David Liebtag
Ray Trimble

Abstract V¥

Vi APL2 V2RI Summary

Cooperative Processing

APL2 Version 2 provides new facilitics through which separate AI’L2 sesstons can communicate cither with
cach other or with other non-APL programs across a Transmission Control Protocol/Internet Protocol
(TCP/IP) network. The facilities include interfaces at scveral different levels of both TCP/IP functional
access and AP).2 syntax.

There arc four major facilitics within AP1.2/370’s support for coopcrative processing:
» Cross-System Shared Varables

This facility allows a user to share variables with other users on a TCP/IP network using normal APL.2
shared vanable techniques. It provides APL2’s most convenicent program-to-program cross network
communication path.

* Shared Vanable Interpreter Interface
This interfuce provides a set of protocols whereby an APL2 interpreter can be controlled through a
shared variable rather than through a terminal or file input. It provides a way for a program to control a
remote session.

* Rcemote-Session Manager
This function manages the protocols of the Shared Vanable Interpreter Interface and allows a user to
carry on an interactive dialogue with a remote interpreter just as il it was a normal local interpreter.

« TCP/IP Auxiliary Processor
This processor allows users and applications to make direct requests to TCP/IP. It provides APPL2’s
most flexible program-to-program cross network communication path. The mterface can also be used
for communication between APL2 and non-APL programs across a network.

Cross-System Shared Variables

APL2 Version 2 permits AI’[.2 users to share vanables with each other across systems connected by a
TCP/IP network. The users use the 0SVO system function just as they would to share varables with auxil-
lary processors or users on the same system.

The cross-system shared varable interface requires that both partners have aceess to TCP/IP to be fully
functional.

It is possible to share vanables with users on the same system through ‘I'CP/1P, although the performance

will gencrally be poorer than using normal shared variables. As with normal shared vanables, a session can
not sharc variables with itsclf across a TCP/IP network.

Coopcralive I’roccssing 1

APL2 Shared Variable Interpreter Interface

APL2’s Shared Variable Interpreter Interface provides a set of protocols whereby an APL2 interpreter can be
controlled through a shared variable rather than through a terminal or file input. The normal session input
and output are replaced with a single shared variable over which communication occurs. This shared vari-
able, and hence the interpreter, can then be managed by a user or program running undcer another user id.

The shared variable interpreter interface 1s started by use of the APL2 invocation keyword SMAPL. If the
SMAPL, parameter is numeric, the interpreter uses it as the processor 11D with which it should share a vari-
able. "This varablc is then used for all input and output to the interpreter. The variable is shared within the
interpreter and is not available to, nor will it conflict with, varables and programs being run by the remote
interpreter on behalf of the partner.

Input to the interpreter when using this interface 1s character vectors for terminal input and pairs of scalar
integers for control signals. Qutput from the interpreter is nested arrays whose structure is the same as that
produced by the system function OFC. Array output is sent as unformatted arrays. Lirror messages are sent
back line-by-line rather than as a OFM array (as OEC would do.) All other output is also sent as character
vectors.

Using the shared vanable interface to an interpreter has some impact on the use of system resources. For
example, WS FULL can happen on any output as the resulting array is prepared for a shared vanable
assignment. In a directly controlled session, no space would be required.

Once an interpreter is running using the shared vanable interface, it operates normally except that its input
and output is through the shared varable. It is the responsibility of the interpreter’s shared vanable partner
to manage the vanable. The interpreter processes requests until instructed to shutdown cither via a shut-
down control signal or an YOFF or)CONTINUE command. When instructed to shutdown, the inter-
preter sends appropnate shutdown messages and retracts the shared vartable.

The Remote-Session Manager
The Remote-Session Manager is an APL2 external function that allows a user to carry on an interactive

session with a remote APL.2 interpreter running under another user id, perhaps on another system.

RAPL 2 cstablishes and manages a shared vanable communication link with a remote APL.2 interpreter,
using the Shared Variable Interpreter Interface to control the remote interpreter. Once the link is established,
the user can enter APL2 expressions and system commands and signal attention just as usual except that all
input is passed to the remote interpreter.

0 and M inputs encountered during execution of the user’s expressions, or any programs cxceuted by the
expressions, will be passed back and prompted for locally by RAPL2. 1°ull screen interactions encountered
during exccution of the user’s expressions, that 1s uses of AP100, AP124, or AP126, will occur at the remote
interpreter’s location.
When the user signals an interrupt, KAPL 2 will prompt the user for whether:

1. The interrupt should be sent on to the remote interpreter.

2. A local O prompt loop should be entered. (To exit this loop, signal interrupt again.

3. A shutdown signal should be sent to the remote interpreter (causing a CONT INUE workspace to be
saved.)

2 APL2 V2RI Summary

RAPL?2 relinquishes control of the terminal when the remote interpreter retracts its shared vanable. This
typically occurs when the remotce interpreter receives an YOFF or YCONTINUE system commmand.

rc+«time RAPL? proc_id

proc_id is the processor ID of the remote interpreter. This value is used as the left argument to OSV0
in RAPL2’s offer to sharc a vanable with the remote interpreter.

t ime is the number of scconds RAPL 2 should wait for the remote interpreter to match RAPL2's
share offer. If the remote interpreter does not match the offer within t ime scconds RAPL 2
1ssucs an appropriate message and tenninates. £ Ime is optional; the default amount 1s 30
scconds.

rc 1s an explicit result indicating whether connection was established, 1, or not, 0.

AP 119 - TCP/IP Processor

The TCP/IP processor, AP 119, is used to pass direct requests to the TCP/IP product. APLI9 also provides
commands to control how APL2’s cross-system shared vanable interface uses TCP/IP.

To use APL19, the user shares a vanable with the AP and passes vectors of vectors that request various
actions. The first element of the value assigned to the vanable determines which of two types of commaunds
1s being issued:

+ Commands to TCP/IP - *TCPIP!
« Commandsto AP 119- "4AP?
‘T'he general Torm of the result is a three clement vector:
« An AP 119 retum code
e ATCP/IP retum code
* Data retumed by the command

IFor example, to issue the TCP/IP command GEETHOSTID, you would assign to the shared vanable:

SV119«'TCPIP' 'GETHOSTID!
(AP119_RC TCPIP_RC DATA)+«SV119

[Figurc | on page 4 summanzes all of the AP 119 commands.

Cooperative Processing 3

Command Syntax
TCP/IP Commands
ACCLEPT “TCPIP’ "ACCEPT’ socket
BIND “TCPIP "BIND’ socket local_port local_addr
CLOSE “TCPIP’ "CLOSIY socket
CONNLCT “TCPIP’ "CONNLECT socket remote_port remote_addr
IFCNTL, “TCPIP’ 'IFCNTL socket command data
GETCLIENTID “rePIy 'GETCLIENTID?
GETLIOSTID “I'CPIP” "GETIHOSTLID?
GETHOSTNAMLE TCPIP” "GETIHOSTNAMI
GETPEERNAMIE “TCPI” "GETPEERNAMIY socket
GETSOCKNAMLE TCPI "GLETSOCK NAMI socket
GLETSOCKOPT “TCPIPY 'GE'TSOCKOPT socket level option
GIVEESSOCKIEET “TCPIP "GIVESOCKIET socket domain name subtask
LISTEN “TCPIP "LISTEN' socket backlog
READ “ICPIP” 'READ’ socket type
RECV “TCP 'RECV socket flags type
RECVI'ROM “ICPIP "RECVIEEROM’ socket {lags type
SELECT “TCPIY SELECT num_sockets read_mask wnite_mask exception_mask
SEND “TCPIP’ 'SEND’ socket flags type data
| SENDTO “TCPIP 'SENDTO socket flags type data family remote_port remote_addr
SETSOCKOPT “TCPIP 'SETSOCKOPT” socket level option option_value
SHUTDOWN TCPIP” 'SHUTDOWN socket how
SOCKIT “ICPIr 'SOCKIT
TAKESOCKIET “TCPH” "TAKESOCKET” domain name subtask socket
WRITE “TCPIP” "WRITE socket type data
AP Commands
GETLPORT AP GETLPORT
SETLPORT ‘AP SETLPORT” processor_id listening_port

Figure 1. Auxiliary Processor 119 Commands

Managing the TCP/IP Interactions

In addition to AP 119 and the changes to the APL2 interpreter, two additional picces make up the APL.2
cooperative processing support: a user directory and a port server.

4 APL2 V2R1 Summary

Identifying Share Partners

The numbers by which cross system shared partners are identified are specified using an APL2 TCP/IP
profile file. Each user who wishes to share variables across systems must have this profile file, which defines
numbers which will be used to refer to users on other systems with which vanables will be shared. A
sample profile 1s provided with APL2 and contains explanations of the file format.

In MVS/T80, the 'TCP/IP profile file is a member in a partitioned data set allocated to ddname
APL2PROI:. Concatenated allocation is supported and can be used to support overriding profile files.

In VM/CMS, the TCP/IP profile file 1s a CMS file with filetype APL2PROF. The first file found in the
normal CMS scarch order is used.

The APL2 Port Server

APL2 Version 2 includes a program called the port server which participates in the establishment of commu-
nication links across TCP; 1P networks. Each system in the network should have a port server running.

Functions of the Port Server
The port server has three functions:

1. Accept requests to register users on the same system. This function tells the server which port numbcer a
given user will be using to aceept connections from other users. This port number 1s arbitranly assigned
to the user by TCP/IP.

2. Accept requests to unregister users. This notifies the server that a given user is no longer accepting
communication. T'his is automatically issued when the user’s APL2 session ends.

3. Accept requests from remote users who want to know the port number which has been registered by a
user.

When a user first attempts to use TCP/IP (cither through cross system sharing or AP 119), 'TCP/IP assigns
the user a TCP/IP port number. When a cross system share offer is made, APL2 contacts the port server at
the partner’s system to find out the partner’s TCP/IP port number.

It is also possible to share vanables across systems even if one or both of the systems do not have a port
server running. ‘The AP 119 command GETLPORT is used to find out what your own port number is. The
command SETLPORT is used to inform the cross-system shared variable facility what your potential partner’s
port number 1s.

Running the Port Server
The port server is an external APL2 function which should be run in a started task on TSO or in a discon-

nected machine on CMS. The normal APL2 or APL2AIL: product can be used to run the server.

The port server is called SERVER. It 1s accessed as used as shown below.

Cooperative Processing 9
P 13

3 11 ONA 'SERVER!

1
SERVER
Enter server port number (default 31415):

Enter server password: SECRET

The server prompts for the port number it should use. If no responsc is given, it defaults to using 31415, [f
a port other than 31415 is given, then users on the same system need to start AP119 specifying the same port
number, and uscrs on remote systems will need to specify that port number in their TCP/HP profile files or
use the AP 119 SETLPORT command.

The server also prompts for a password which will be required of users attempting to use restricted server
commands. If no response is given, no restricted server commands can be used.

Note: Currently, no uscr server commands are implemented.

The APL2 invocation option RUN can also be used to start the port server. In this case, the INPUT option or
APLIN would typically be used to supply the prompt responscs.

6 APL2 V2R! Summary

Files As Variables

Processor 12 1s a new Associated Processor which provides access to a variety of types of files by maintaining
an image of the file as an array that appears to reside in the active workspace. This is analogous to the
behavior of Processor 11 for functions. That processor can create an image of a program (wntten in anv of
a vanety of languages) as a function which appears to reside in the active workspace. Neither the program
{for Processor 11) nor the file (for Processor 12) 1s actually within the workspace. "This has the following
unplications for Processor 12 files:

* Very large files can be accessed, files which may be many times larger than the active workspace. And
yet the access can be done using nonnal APL constructs such as Compression (¢.g. bool/file),
liach (c.g. process™ [ile), selective assignment (e.g. (recno>file)«value), and catenation
{cg. file«file,record). These arc only a few of many possible operations.

» Associations can be retained across)SAVE and)LOAD but the data is preserved in the file, and may
be updated by other programs between uses.

Note: In particular this should be contrasted with the Processor 11 definition for association with varni-
ables in namespaces. The general rule used by Processor 11 is that any time a vanable 1s modified the
new version 1s a private one known only to the workspace which was active at the tune of modilication.
It should also be noted that files, even files newly created by Processor 12, have an existence independent
of the workspace. Assigning a value to a Processor 12 variable causes (at Ieast conceptually) an umme-
diate and permanent change to the file. 'This 1s not aflected by later expunging the varable, and ts inde-
pendent of whether the workspace containing it 1s later saved.

Processor 12 variables are also quite different from variables shared with file auxiliary processors:

* Processor 12 vanables contain only the data, and (at least conceptually) all of the data at once. Shared
variables contain both data and control information, and only relatively small pieces of the file data at a
tune.

¢ Processor 12 variables are really a path between the workspace and the actual file. Shared vanables arc a
path between two programs, one of which in turn is capuble of accessing files.

* Processor 12 associations can be retained across)SAVE and)LOAD. Shared vanable associations
must be reestablished explicitly.

ova Syntax for Processor 12

The general syntax for name association through Processor 12 is:

[
('type' '"locator' 'format') 12 0ONA 'name'!

name A name to be used within the APL workspace to refer to the file. The particular name used
has no significance to Processor 12, and bears no required relationship to the name of the
file with which it will be associated. Surrogate names are permitted, but have no functional
significance.

Files As Variables 7

type Two or more characters, the first specifying what class of file support is desired, and the
others indicating how the file is to be accessed. The file classes supported in APPL2 Version
2 Release 1 arc APL files (as used by AP 121) and operating system scquential files. Read
or writc access is supported, along with automatic creation and/or deletion.

locator A character vector indicating where the file s located. 1For APL files, the locator consists of
the hibrary number and filename (as with AP 121 files). For sequential files, the locator is an
operating system file name following the conventions of the operating system.

format A character vector which defines the format in which the data is to be viewed by the appli-
cation. At present this vector must be empty for APL files and non-cmpty for sequential
files.

‘The syntax of the format descriptor for an external vanable 1s similar to that used by
Processor 11. It describes the view of the data as it will be scen by the application, rather
than the format of the data as 1t exists externally.

APL files arc always viewed by the APL, application as a vector of arbitrary arrays, with
cach item of the vector representing one object 1n the file. Lach of the items may them-
sclves be of any depth or shape. Sequential files are viewed by the APL application as a
vector of arrays in which the sub-arrays are either character vectors or character matrices.
IZach character vector, or cach row of a character matrix, represents one record in the file.

‘The expliait result of ONA is 1 if the association was suceessful or 0 if it failed. When 0 is returned, explan-
atory messages arc usually queued. These may be seen by entenng YMORE at the first terminal input
opportunity or by running with DEBUG(1).

Supported Primitive Operations

Regardless of the file system m use, the following paimitive operations are defined for external variables sup-
ported by Processor 12:
Default display rile
Isach fun"file
file fun'var
filel fun file?

Outer product vare.fun file
filee.fun var
filele.fun file?

Pick i>file
Indexing filel[i]
illfile
Pick assignment (i>file)+«array

Indexed assignment filel i]earray
illif ile«array

Catenate filel«filel,carray

Shape pfile

8 APL2 V2RI Summary

Compress i/file

Take itfile

Drop ivfile

Note: The functions referred to in Fach and Outer product can be arbitrary pnimitive, defined, or derived
functions. Since they arc invoked repeatedly with one item of the array at a time, there is no immediate
requirciment that the entire array truly reside in the workspace. But if the invoked function produces a

result, the full accumulated result returned by the denved function will be a normal vanuble stored in the
workspace.

When using the above operations, only the portion of the file needed to perform the function is brought into

the workspace. Operations other than those defined here will either attempt to bring the entire (ile into the
workspace or give DOMAIN ERROR.

Files As Yariables 9

Space Management

The usage of memory by AIPL2 has been effected in several areas:
» Workspace storage management
¢ Page release management

» Location of the APL2 product in the VM virtual machine

Internal Memory Management

In APL2 Version 2, a new algonithm is used for management of memory within the workspace.

The primary purposc is to increase performance by reducing the amount of paging and garbage collection
that is done. In particular, the larger the workspace, the better the performance improvement. Preliminary
tests have shown as much as a 50% reduction in CPU time for an application. The improvement is
expected to be greatest for applications manipulating a [ew large arrays as opposed to many small arrays.

One of the side cffects that you will see 1s a small increase in the size of saved workspaces. In addition, the
amount of storage in use while running APL2 will increase slightlv. Some increase in workspace size may be
neeessary to avoild WS FULL. "The performance benelit should offset this increase in the size of the work-
space.

Page Release Performance

Some users of large workspaces on lightly loaded systems have in the past observed a performance problem
whose symiptom is a large total CPU time (and corresponding clapsed time) with a much smaller virtual
CPU time. 'The problem has been traced to operating system overhead when APL.2 releases real pages that
are not currently needed. Towever this saine operation has been very helpful on heavily loaded systems.

The new workspace storage management should in most cases address the root cause of this problem. But if
you should cxperience it, you can run with SYSDEBUG(8) to completely disable page releases.

Use of Extended Address Space in VM

The APL.2 product has been re-organized in Version 2 such that most of the product can run above the 16M
linc when under VM/XA or VM/ESA. The parts of the product that must run below the 16M line arc
packaged separately and total less than .25M in size.

10 APL2 V2RI Summary

Workstation Compatibility

Several new features have been added to APL2 Version 2 to provide increased compatibility with the work-
station APP1.2 products. These include:

« The APL.2 Object File Auxiliary Processor, AP 211
* ‘The IFullsereen Auxihiary Processor, AP 124
= Changes in behavior of centain system commands and vanables

« Support for new characters

AP 211: APL2 Object File Auxiliary Processor

AP 211 provides a facility for storing APIL.2 arrays in an object file. The objects may reside in a CMS file or
TSO Scequential DASD file with unkeyed records. Fixed-length records are used in both operating systeims.

AP 211 uses a single shared varable of any name to control acceess to a file. Up to 32767 vanables may be
shared with AP211, giving concurrent access to up to 32767 files. Implementations of AP211 on PC and

RS 6000 platforms, however. have more restrictive limits. Portable apphications should not use more than
255 concurrent vanables.

Syntactically, the mainframe version of AP 211 1s compatible with all the current workstation APL2 pro-
ducts. Tlowever, it uses a new internal form for its files. Files wntten in this new form can be identified by
the ASCH characters “211B7 1n the first {our bytes of the file, and are not compatible with the files wntten
by the current APL.2 for the PC.

The APPL.2/6000 product uses the new file format. Thus, in addition to source code portability, with
APL.2/6000 data portability 1s also possible. Tiles wntten by the APL2/6000 version of AP 211 may be
uploaded to the mamframe and read directly by the mainframe version of AP 211, Datatype conversions
[rom ASCIH! to EBCDIC and from 1B to 370 foating point are done automatically.

Note: At present, APL2/6000 is unable to read the data in a file written by the mainframe AP 211 and
downloaded to the RS;/6000. 1t can issuc all AP 211 commands against the downloaded fite exeept CET.

ligure 2 on page 12 contains a summary of the AP 211 commands. The examples assume that a variable
called SHR?2 11 has been shared with AP 211,

Workstation Compatibitity 11

Description Syntax

Create a file SHR211<«'CREATE' 'Filename' [Rec_size]
Return_code<«SHR211

Delete a file SHR211«'DROP' ‘'Filename’
Return code+SHR211

Open a file SHR211«'USE' 'Filename' [User id] (['READ'|'WRITE"']
(Return _code Rec_size)«SHR211

Close a file SHR211«'RELEASE"
Return code<«SHR?211

Save an object SHR211«'SET' 'Name' APL2_Object

Return_code<«SHR211

Get an object SHR211<«'GET' 'Name'
(Return code APL? Object)«SHR211

Delete an object SHR211«'ERASE' 'Name'
Return_code<«SHR211

List the objects SHR211«'LIST'" '"NAMES'|'ATTS'
Object_info«SHR211

Iigure 2. AP 211 Operation Codes

AP 124 - Full Screen Management Auxiliary Processor

The 'ull Screen Management Auxiliary Processor allows you, through an APL application program, to
control the screen format of an F3M 3270 Information Display Systemn. In addition, it allows your applica-
tion to:

« DPefine a logical sereen

* l‘ormat the logical screen into screen ficlds

* Write to the formatted screen

e Recad from the formatted screen

* Read program function and program attention keys
The AP 124 provided with APL2 Version 2 1s upward-compatible with the VS APL, version of AP 124,
Some e¢nhancements have been made, such as the addition of support for color. This AI” 124 is also com-

patible with the workstation version of AP 124 wherever possible. Tlowever in certain circumstances it is
not possible to provide the same abilitics on a 3270-type screen that are available on a workstation.

Your API. application requests screen management services by assigning to the control vanable a numeric
scalar or vector that specifies the requested action. In response, the auxiliary processor issucs a return code
in the control vanable indicating whether or not the requested action was successful.

Figure 3 on page 13 lists and describes the valid operation codes that may be specified to the control vari-

able to request service from the Full Screen Management Auxiliary Processor. ‘The table shows the values
that should be specified in both the control and data vanables.

12 APL2 V2RI Summary

CTL VAR DAT VAR Description j
0 Delayed clear of screen }
On

] format I'ormat the screen

I ficldnum format Reformat selected ficlds

2 ficldnum data Immediate write 1o screen

3 Read and wait

30

4 ficldnum data Bullered write to screen

5. ficldnum Get Data

6.ficldnum type Change ficld type

7, ficldnum 0-255 Change ficld color or intensity

82 Retumn sereen information

9 Read screen format

10 Print screen (not avail)

11 Delayed alarm

Lo

111 Immediate alarm

12 Cancel delayed alarm

12 position Set the cursor

16 ficldnum attribute Change mput ficld attr

20 Erase the screen]

Figure 3. Screen Management Operation Codes

éystem Variables and Commands

Domain of QUAD ET

The API.2 VIR3J system restricts values in OET to positive integers between 0 and 32767, Fhat himit is
now changed to allow integers between ~ 32767 and 32767.

This change also cffects external routines in that the values they store in the ficld ECVXCET will now be
treated as signed 15-bit integers.

Workstation Compatibility 13

Reference of Format Control

In APL2 Version [, the result from a reference of OFC 1s extended or truncated to 6 characters, regardless of
the length of the vector specified by the user. This behavior is inconsistent with that of other system vari-
ables in the system, and with APL2/PC.

OFC has been modified to always return the user-specified value on reference, if a value has been specified.
As before, if the user has not specified a value, the default 6-character value will be returned.

JCOPY of System Variables

1n previous releases of APL2, the YCOPY and)PCOPY system commands did not copy any system van-
ables from the source workspace.

L'or compatibility with the PC versions of APL2, and to enhance usability of the mainframe APL.2, these
commands have been enhanced to copy the following system vanables: OCT, OF¢, 010, 0LX, OPP,
OPR, and OFL.

As with other copied objects, only the global value will be copied from the saved workspace, and it will
become the global value in the active workspace.

New Character Support

The following new characters can be entered with)PBS ON .

Character Entered As Name gav

0 < > diamond x'70"
+ L_- left tack x'76"
- -_1 right tack x'77!

The diamond, left tack and right tack characters have also been added to the symbol sets shipped with
APL2.

Note: The additional support for these characters is for entry and display only. They still do not have
syntactical meaning in the mainframe version of APL2, and SYNTAX ERROR will be reported if they are
actually exccuted.

14 APL2 V2RI Summary

Other Enhancements

A number of additional enhancements have been made in APL2 Version 2. These include:
« T'he availability of Processor 10 (the APL2 REXX processor) under MVS.
* A restructured Processor 11, which includes a number of enhancements.
s New tools and utilities for calling programs in languages other than APL2, including C/370 and PL/1.
* A YEDITOR extension that allows editors to be AI’L.2 external functions.
« Annterface to the QMIEF (SAA Query) Callable Interface
* L:xternal functions to access ESA Data Window Scrvices
« SQI. Interface Enhancements
o A directory of commonly used APL2 phrases
= A function to access help information
« New APL2 fonts

* Vuarous sialler usability enhancements

Processor 10 under MVS

A Processor 10 generally compatible with CMS is available under 7SO in APL.2 Version 2. This processor
can be used to call REXX functions and access REXX vanables and constants.

To call a REXX function you must first establish an association with dyadic ONA. "The function thus ¢stab-
lished is monadic, and its argument is either omitted (1.¢. takes no arguinents, indicated by 1 0), a character
veetor, or a vector of character vectors. REXX vanables and constants can also be accessed when APL2 s

itself tnvoked via a REXX EXILC.

Some examples, assuming APL2 is invoked from a REXX EXEC:

3 10 ONA 'DELWORD'
1

DELWORD 'NOW IS5 THE TIME' '2' '2!
NOW TIME

2 10 ONA 'RC?
1

RC
0

1 10 0ONA 'VERSION!
1

VERSION
REXX370 3.46 31 May 1988

Other Cohancements 15

Also provided through Processor 10 for TSO is the same set of built-in functions alrcady supplied for CMS:

AEXEC to crecate and call a REXX EXEC
AFM to read and wrte files as matrices

AFV to rcad and write files as vectors of vectors
AF to return information about a datasct.

Restructured Processor 11

Processor 11 has been rewntten and restructured to provide new function, better reliability, and extensibility.
Included with this new Processor 1 are the following cxtensions:

Self-Desenbing Modules

In past, any external routines {(other than functions that cxist in packaged workspaces) had to be
described in a NAMES file. With the new Processor 11, external routines can be made self-desenbing,
by prefixing the routine with the necessary NAMUES file information.

Sclf-desenbing modules can be accessed directly by specifying member or load library and member in the
left argument of ONA:

‘MEMBER' 11 ONA 'ROUTINE'
or
‘LIBRARY .MEMBER' 11 [0ONA 'ROUTINE!

in which case the :LINK. and argument tags must appear in the sclf-desenbing module.

Extensions to the :[INIT. Tag

The (INTT. tag in a NAMES file or a self-deseribing module may now also be specificd with a member
name or library.member.

Lixternal Niladie unctions Supported

Iixternal functions my now be niladic as well as monadic and dyadic. A new :VALLENCL. tag has been
added to allow specitication of the valence.

Lixternal Operators Supported.

I:xternal operators written in languages other than APL.2 arc now supported. The :VALENCE. tag is
used to specify the number of operands.

Lixternal operators associated with Processor 11 must have :LINK. FUNCTION and be prepared to
accept function linkage conventions as descnbed in APL2 Programming: System Service Reference On
entry, the operands are provided as tokens in ECVXTLIY and ECVXTRIF. No CDRs are created for
the operands. “The external operator routine, however, may use the XB service call to build CDR’s if
the operands are arrays.

Linhancements for Routines with :LINK. FUNCTION

LINK. FUNCTION routines may have environment routines or be environment routines.

:PARM. Tag

A new tag, :PARM., may be specified in the NAMLS file or in sclf-descabing modules. 1t is cffective
only for environment routines which are automatically started. The operand of the :PARM. tag is a
quoted character stong (double quotes supported 1n the stnng). If the environment routine is automat-

16 APL2 V2RI Summary

ically started the character string, prefixed with a 2 byte length field, is provided to the external environ-
ment routine using OS linkage conventions.

This enhancements allows initiadization paramecters to be passed to automatically started environment
routinges.

« Additional Information in Parameter List

The parameter lists to non-APIL routines called by Processor 11 have been augmented with prefixes or
suffixes with additional information. These enhancements provide a mechanism by which (LINK.
OBIECT or :LINK. FUNCTION routines can issuc APL, service requests, including callback requests.
l‘urther, they allow specially designed external functions with access to the formats of APL control
blocks to access Processor 11 control blocks or the APL PTTI.

+ CMS Relocatable Modules Supported.

In the VM, CMS environment, rclocatable load modules are now supported. Such modulces can be
created with the following CMS commands:

LOAD routine (RLDSAVE
GENMOD module

When Joading external routines in the VM/CMS cnvironment, Processor 11 first scarches for an existing
CMS nucleus extension, then a module, then a TEXT file.

« New IIZ7 Service Request

A new APL serviee 1s provided for external routines which are designed to stay active across replacement
of the workspuace. The 'EZ7 service allows such routines to nominate a entry point which will be entered
when APLL 1s shut down. Since Processor 1 deletes all active external routines when the workspace 1s
replaced (YCLEAR, YLOAD, YOFF), such routines must take special action to ensure that the specified
entry point s still available at APL termination. This can be done by loading the necessary code as a
CMS nucleus extension, or by issuing a LOAD (SVC 8) request [or it. 1t is also the user’s responsibility to
delete such routines.

o Groups of Packaged Nunespaces

Packaged namespaces may be placed in a load module with an entry point header and thereby packaged
together with other packaged namespaces or external routines. The names of objects which are to be
accessed via N A must appear in the routine hst describing the collection.

Calls to Other Languages
Two new functions, a utility program, and two new EXLECs are provided to help use Processor 11 to call
non-API, programs.
* Processor 11 now supports sclf-descnibing routines. Routines are made sclf-deseribing by Link-cditing
them with a routine deseription which contains names file information.
The function BUTLDRD can be used to build routine descriptions. BUILDFED itself can be accessed
using Processor 11.

» Processor 11 supports packages of non-APL routines which are listed in a routine list. Such a routine
list is required to call programs written in languages such as C/370 which require that the main routine
that starts the run-time environment be link-cdited with the subroutines. A routine list 1s also uscful for
grouping sets of related routines together.

Other Enhancements 17

The function BUILDRL can be uscd to construct an object file containing a routine list. BUILDRL
can also be accessed using Processor 11.

» Processor 11 follows the FORTRAN convention of expecting routines to retum scalar results in register
(0. /370 follows a different convention; it rcturns scalar results in register 1.

Through judicious usc of a routine list, which can be built with BUTLDRL, it is possible to indicate to
Processor 11 that a intermediate routine should be called which will in tum call the €/370 routine which
is going to return a scalar result. The intermediate routine can make the call to the C/370 routine, and
when it completes, it can copy the scalar result from register 1 to register 0.

A object file is included in APL2 Version 2 which contains just such an intermediate routine. 1t is called
AP2XCMAP.

o Two new exces, AP2MPILIL and AP2MP1IM, are provided to aid developers of non-APL. routines.
AP2MP L hink-edits a routine list, compiled non-APL routines, and routine descriptions into a
member of a load library. It can be used on cither CMS or TSO. AP2ZMP 1M generates a module file
from a routine list, compiled non-APL routines, and routine descriptions. It can be used on CMS.

Processor 11 Editor

User requests to edit A’ objects can be passed to a Processor 11 [unction. In response to a V, APL2 will
create an association to and call the Processor 11 function to handle the edit request.

The Processor 11 function is identified with)EDITOR 2 name and persists for the entire session unless
changed. The Processor 11 function may cither reside in an APL2 namespace or be a non-APL. program.

The function is executed as if it had been called directly from the user’s current namescope. [lowever, it will
not be associated in the current namescope so it’s association will not cause name contlicts.

Guidelines for Writing a Processor 11 Editor

When the user enters an expression with a leading V, APL2 will attemnpt to establish an association with the
function numed in the JEDITOR 2 name command. APL2 will use 3 11 as the lelt argument to
ONA. APL2 will then call the lunction.

T'he Processor 11 function will be passed a character vector containing the user’s V expression. It is the
function’s responsibility to parse the vector, interpret the user’s request, and respond appropriately. APL2
docs not ensure that the V expression’s syntax is valid. It is entirely the responsibility of the Processor 11
function to interpret the expression.

Note: There is one exception to that rule. I the expression indicates a valid request for display of all or
part of a function’s or operator’s definition using)EDITOR 1 rules, the request will be fulfilled by API2;
the Processor 11 function will not be called.

If the editor function resides in a namespace, it can use the EXP function to reach back into the user’s

current namescope to reference or specify object definition(s). 1f the function is a non-AP’l. program, it may
usc the external services normally supported for Processor 11 functions to access the user’s namescope.

18 APL2 V2R1 Summary

QMF (SAA Query) Callable Interface

The SAA Query CPLis implemented in QMY Version 2 Release 4 as the QMI Callable Interface. This
new interface to QMI allows a program to start QM7 and issue QMFE commands without requiring the
QMTF environment and ISPI° to be present. In addition to regular QME comimands, three additional com-
mands arc avalable in this interface which start QMI° (START) and allow the program to set and retrieve
global QMI* vanables (GET GLOBAL and SET GLOBAL.)

The SAA Query CPlis supported in APL2 by a new external function interfacing to the QMFE Callable
Interface. The function is called DSQCIA and has the following syntax:

(rc handle data))<«DSQCIA handle cmdstr [names values]

handle Aninteger identifving the instance of QMI¢ to which the call refers.
cmdstr A character vector containing the QMY command to be executed.
names A vector of character vectors or scalurs which are QM1 keywords or vanable names.

This parameter 1s required only for the SET GLOBAL and GET GLOBAL commands. It is optional for
the START commuand.

values A vector of variable values. This can be a vector of character vectors or scalars, or it can be a
vector of numbers. It cannot contain a mixture of numenc and character data.

This parameter 1s required only if the name s puaramecter has also been specified.
rc A numeric return code.
data A value whose meaning is dependant on the value of ro and cmdstr.

e If rcis 0 and cmdstr contained the strning ‘GET GLOBAL’, dat a will contamn the values of
the QMIF variables requested. For any other QM1 command dat a will be null.

» If rc is non-zero, dat a will be a four-item nested vector containing error diagnosis ficlds
from the QMI° Communications Arca 0SQCOMM.

ESA Data Window Services

APL2 Version 2 provides a low level direct mapping to the Data Window callable services as supported by
other high level languages. The interface provides access to temporary hiperspaces as well as page formatted
permanent files which can be viewed through a “window.” Scrvices provide for creating, opening, and closing
data objects; opening and closing view windows; and committing or undoing changes.

The support is via a sct of Processor 11 function routines with interfaces which are very similar to those
defined in GC28-1843 MVS/1:SA Callable Services for 11igh Level l.anguages. The function routines usc
names that match thosce of the MVS/LSA callable services:

CSRIDAC Request or terminate access to a data object
CSRREFR Refresh an object

Other Enhancements 19

CSRSAVE Save changes made to a permancent object
CSRSCOT Save object changes in a scroll arca
CSRVIEW View an object, or terminate an object view

Because of special MVS requirements, the actual buffer used for the interface is provided outside the work-
space by the function routines, and a “mirror” 1s maintained in the workspace. The application interface is
modified slightly to reflect this change.

SQL Interface Enhancements

+ Isolation level Specification
AP 127 will now accept an additional APNAMLES parameter, ISOL(RR) or ISOL(CS). Use of this param-
cter sets the default isolation level for the entire APL2 session. (The AP 127 I.S0L command may still
be used to change the isolation level dunng program exccution.)

« Subsystem Switching (MVS Only)
A new AP 127 command, SSID is added to permit the setting of the DB2 subsystem 1D under
program control.

* PUT under VM

The PUT SQI, statement allows SQL/DS to block INSER'I statements, giving a considerable perform-
ance improvement to them when mserting multiple rows at one time. 1t is used n a manner analogous
to the FETCH command for SELLECT statements.

PREP 'NAME' 'INSERT INTO TABLFE VALUES(:1,:2,:3,:4)!

0 00 0O

OPEN 'NAME'
0 00 0O

PUT '"NAME' DATA
0 0 00O

PUT 'NAME' DATA
0 0 00O

CLOSE '"NAME®
0 00 0O

* Mautnx Input to AP 127

Previously, value lists supplied as input data 1o AP 127 were required to be vectors. To process an
INSERT, UPDATE, or DELETE statement multiple times, AP 127 had to be called once for cach sct
of valuc substitutions. The S@L function in the S@L workspace accepted a matnx of data, but it then
created onc call to AP 127 for cach row of the matnx.

Now, a matnx of data may bc passed directly to AP 127 on the CALL command (and in VM, the
PUT command.) AP 127 will process each row of the matrix as one sct of value substitutions. This
reduces the number of calls to AP 127 required to process a matnix of data.

20 APL2 V2RI Summary

* lixtended Connect for VM

The extended form of the SQI. CONNECT command, supported by SQL/DS Version 2 and later, will
become the default form in APL2. To support the extended form of CONNECT, a third parameter to the
AP 127 CONNECT verb is accepted, which specifies the database name. This new parameter climinates
the need to use the SQLINIT exee to switch databases, and provides the capability to connect to remote
databases i SQL/DS Version 3 Release 3 or later.

In addition, the CONNECT command now rctums in the sccond item of the result a three-item vector
containing the server identifier (from the SQLERRP field in the SQLCA control block), 1D, and database
name for the current connection.

+ CONNECT on MVS

The CONNECT command will now also be supported under MVS, when running DB2 Version 2
Release 3 or later.

The CONNECT command in 'I'SO has the following syntax:

DAT<«'CONNECT' dbname n Connect to remote server
(rc (server sqlid user))<«DAT

DAT«'CONNECT' 'RESET! n Reset to local server
(rc (server sglid user))+«DAT

DAT«YCONNECT' A Obtain connection information
(rc (server sqlid user))+«DAT

The server identifier is from SQLERRP as for VM, CMS. The sglid and user will be obtained
from the CURRENT SQLID and CURRENT USER special registers in DB2.

= DECLARLE CURSOR with HOLD option

The ability to declare a cursor such that is position is maintained across COMMI'T is now a part ol the
SQL. standard. DB2 Version 2 Release 3 supports this extension.

To enable AP 127 for support of this ability, a new AI? 127 command, DECLARE, has been defined.

DECLARE 'NAME' 'HOLD' a Declare with HOLD option
0 0 0 0O

DECLARE 'NAME' a Declare without HOLD
0 0 06 0O
The DECLARE command precedes the PREP coinmand in the sequence of AP 127 commuands. it s

omitted, the cursor will not be marked for hold.

When the COMMIT command is issued to AP 127 without the RELEASE option, cursors will no
longer be implicitly be closed or purged by AP 127, If the database system you are connected 10 sup-
ports the 1HOLD option, cursors marked for HOLD will be muintained in position by the database
across COMMITs. If 1t does not, all cursors will be implicitly closed by the database system, and SQI.
crrors will result if commands are 1ssucd using cursor names marked for HOLD.

« SQIL.CA Control Block Format

The SAA SQL. standard specifics that a character status indicator called SQLSTATE be provided in addi-
tion to the numenc SQLCODE ficld. This new ficld will be provided by SQL/DS and DB2 in the SQL.CA
as a S-clement character ficld following the SQLWARN ficld, which 1s now 11 characters long.

Other Enhancements 21

AP 127 returns the SQI.CA control block as part of the result of the MSC command. The format of
the object returned to the AP 127 user has been changed to reflect the new structure of the SQLCA.
Instcad of two 8-byte character ficlds, the last 16 bytes of the SQLCA arc returnced as an 1 1-byte ficld
and a 5-bytc ficld.

In addition, two new AP 127 commands have been added to make it easier for application programs to
obtain the contents of the SQI.CA. The SQLCA command rcturns the current contents of the entire
SQLCA. The SQLSTATE command rcturns just the SQLSTATE field. Unlike the MSG command,
ncither of these commands requires any arguments. New functions corresponding to these commands
have also been added to the S@L workspace.

» Retrieving Lelp Text from SQL/DS

In the SQI./DS product, help text is shipped as tables stored in the database system. A new function,
SQLHELP, is included in the S@L workspace in APL2. This function takes a right argument of a
character string keyword. ‘The appropnate SQI, tables are scarched for the help text associated with the
keyword, if any, and the text is returned as a result,

* Symptom Strngs under VM

With SQIL./DS Version 2 Release 2, a new formatting program, ARISSHA, was shipped to format SQL.CA
control blocks mto symptom strings suitable for use when calling SQL/DS Service.

If the SQL./DS connection is successfully established, AP 127 will load this program and retumn its
output as the third item of the result of the AP 127 M5 G command.

APL2 Phrases

AT'L.2 Phrases enhances the alrcady proven productivity of APPL.2. With over 675 distinct APL. phrascs,
sorted into 24 general categories, AI'L2 Phrases presents a fairly thorough list of one-line solutions 1o
common application problemns. By having a single repository for AP’1.2 phrases, many of us can take advan-
tage of algorithms that others have developed.

This list is in soft copy and can be accessed directly from your workspace. In addition, code can be dynam-
ically inserted into your own code.

To usc this utility simply type 3 11 ONA 'IDIOMS',or)COPY 1 SUPPLIED IDIOMS, and
invoke the 7D TOMS function.

Once in the function a [ull screen gives you control over all the idioms. A flag for index ongin is supplied
and the display routines allow the user to select the ongin of prelerence. A detailed deseription of cach
screen is available through a HELP function key.

To cnable a quicker sclection of idioms, 24 categories were created. These categories are as follows:

Assignment Algorithms

Boolean Sclection Algonthms
Boolcan Tests General Algonthms
Boolean Tests Numenc Algorithms
Computational Algorithms
Conversion Algorithms

Datc and Time Algonthms
Ixternal Name Routine Algonithms

22 APL2 V2RI Summary

Financial Algorithms

l'ormatting Algorithms

FFunction Algorithms

Munipulating Characters Algorithims
Munipulating Numbers Algorithms
Numence Range Algonthms
Numerical Geometry Algorithms
Sclecting Positions Algorithms
Sorting Algorithms

Statistics Descriptive Algonthms
Statistics Distribution Algonthms
Structural Algonthms

Text Arrangement Algorithms
Text Change/Sclect Algorithms
Trigonometry Algonthms
Vectorizing Algorithms

HELP External Function

Frequently, applications need to present text to their users. ‘This text may be more extensive than it is con-
venient to store an the application workspace. I the application resides in a namespace, mantenance of the
text may be cumbersome if 1t is in the namespace. In addition, this text may need to be provided in several
national languages. The HELP function allows applications to retricve keyed text from an application
dependent Tlelp File. Help Files may be national language specific.

An APL2 Velp File 1s a normal CMS file or TSO partitioned dataset member containing GMI -like tags
defining keys which delimit sections of free form text. A Help File may in turn refer to other files containing
morc text. The HELP function can be used to retrieve the hist of keys available moa Telp File or the text
associated with a particular key.

Syntax for retrieving keys

keys«applid HELFP '!

applid Character vector of length 1to 8. HELP uscs this as a DDname on '1'SO or filetype on CMS.
If not supplied, a detault value of APL2ITELP is used. The current value of ONLT is used a the
member name on TSO or the filename on CMS. If a file, or member, in the current national
language is not available, the ENT file s used.

keys Character matrix containing available keys in the Telp File.

Syntax for retrieving text

text<«applid HELP key

key A character string of length 1 to 65. A key may contain imbedded blanks. Trailing blanks arce
ignored. The application’s help file is scarched for a record containing a help tag, ([[1ELP., fol-
lowed by the contents of key. All records following the tag up to the next help tag are
rcturned.

Other Enbancements 23

text A character matrix containing the text found after the key.

Syntax for retricving APL2 help

HELP key
key A character string containing the name of an APL.2 public workspace or external function.
HELP uscs the IBM-supplicd help file to retneve the tutorial text for the specified workspace or
function.

New APL2 Fonts

A sct of All Points Addressable (APA) printer fonts for APL2 are included with APL2 Version 2. These
fonts may be used with 3800-3, 3812, 3820, and similar prnters. The fonts have a name of 'APL2 DOCUMENT
FONT® and are designated as medium weight and medium width. The characters are available in point sizes 6
through 12, 14, 16, 18, 20, and 24. The code page and character set match that defined in Appendix A of
APL2 Progranuming: Language Reference, and oflicially known as code page 11200293,

The following is an example of a DCI® control statement to allow use of the new fonts in a SCRIPT docu-
ment:

.df @APL type('APL2 DOCUMENT FONT') codepage 11200293

Miscellaneous Usability Enhancements

A number of smaller additions to the product have been made to make life a little casier for the APL2 pro-
grammer.

GRAPHPAK Functions for new file types

Although the GRAPHPAK workspace provides extensive capabilities for creating screen umages, it's support
for producing file output suitable for printing or transporting to other environments has been deficient. 'Fo
case this problem, three new functions are available in GRAPHPAK.

The first two functions, GSSAVE and CSLOAD, allow applications to build GIDIDM ADHMGDF files. T'he third
function, PRINT3 8PP, allows applications to produce GIDIDM LIST38PP liles suitable for printing by
imbedding them in Bookmaster documents.

External Function Directory

Included in the APL2 product are a wide varicety of routines which can be accessed using ONA. "The product
also includes NAMIES files for cach of these routines so they can be casily accessed; this allows users to not
concern themsclves with the location of the routines.

Howecver, the user is still faced with the burden of specifying the name of the desired routine as an argument
to ONA. Since there arc quite a few external routines in the product, it can be difficult to recall all that are
available. [‘urther, unlike defined functions whose purpose can gencrally be inferred by ¢xamining their
code, cxternal routines are provided without source code and so their purposc and usage can be unclear.

24 APL2 V2RI Summary

The SUPPLIED workspace contains associations 1o all the external routines in the APL2 product. ‘They
have all been aceessed with JNA and are ready to be used. Users can) LOAD the workspace or)COPY
functions from it.

In addition, the SUPPLIED workspace contains a defined function, LI ST, which can assist you in lcarning
how to use the external routines.

The LIST function lists APL2’s external routines and prompts the user to enter a routine name. In
response, LITST displays tutonal information which descnibes the purpose, syntax, arguments, and results for
the function. A null response to LT ST's prompt terminates the function.

DISPLAY as External Function

The DISPLAY and DISPLAYG functions are now available both as APL2 functions in the DISPLAY
workspace and as Processor 11 external lunctions, accessible with ONA.

Benefits of using the external versions include elimination of the need to keep a copy of the function in your
workspace, and ability to use i surrogate name.

ATTN External Function

The ATTN routine allows applications to detect whether the user has signalled an attention.

Frequently applications need to protect themselves from interruption during critical sections of code. This
ability 1s provided by the OFC function and using the ignore attention execution attribute dunng function
fixing. However, users also frequently need to signal these applications. "The ATTN function allows an
application to run without being interrupted by attentions and yet detect that the user has signalled.

The ATTN function can query whether an attention has been signalled, signal an attention, or remove an
attention that has been signalled. 1t 1s provided as an extemal function available through Processor 11 and

ava.

PBS External Function
The PBS routine allows applications to query and modify the user’s current) PBS sctting.

APL.2 needs to be informed whether users” terminals support the seven new APL2 characters or whether
printable backspaces are required for their entry. Users can indicate whether they can enter the new charac-
ters by use of the) PBS system command. Applications frequently also need to determine whether users
can enter the APL2 characters. Using the PBS function, applications can query, and modify, the user’s
setting. It s provided as an external function available through Processor 11 and ONA.

Host System Query

AP 100 in CMS and TSO has been extended to return a character string containing the name of the host
system when 1t is passed a null character string.

Other Enhancements 25

APL NOMSG (TSO Only)
AP 100 under TSO will accept a new built-in command, APL NOMSG command text. The indi-
cated command will be exccuted much as if APL NOMSG had not been specified, except that:

» Messages normally controlled by the CONTROL NOMSG command within a T'SO CLIST are suppressed for
the duration of the command. When the command completes message display is restored to its prior

state.
e 'The command cannot be another built-in command.
e The command cannot be an ISPEF EXEC, (But the ISPEXEC command can be used to invoke such an

EXEC indirectly.)

‘This feature will aid is suppressing unwanted messages saying “FILE NO'T FRELED™ and the like.

Lower Case Commands and Messages

It is now possible for users 10 enter system command keywords in any mixture of upper and lower case.
Workspace names are also permitted m mixed case, as are operating system commands via YHOST.
Note: Names of objects within workspaces must still be entered in the proper case, since those names are

case sensttive.

AP 100 for CMS has also been enhanced to translate commands as if they had been entered rom the READY
prompt at the keyboard. On 'T'SO, the operating system itself will convert lower case Ietters in commands to
upper casc, so there is no need to enhance AP 100 for TSO in a similar way, except for the built-in com-
mands, which are now also supported in mixed case.

A new message table is shipped with APPL.2 Version 2 which contains the product messages in mixed case.
The default ON LT setting will point to this new message table.

DECODE Improvement

The performance of decode has been optimized for the following case:
Left argument all 27°s
Right argument Boolean

Right argument vector of length 32 or greater

This change removes one of the performance penalties of migration from VS APL.

AP 121 Restriction Removed

Under CMS, a restriction cxisted that at most 15 AP 121 files could be open at onc time. This restriction
has been lifted.

26 APL2 V2RI Summary

Appendix A. APL2 Version 2 Manuals

Order Number

Title

GIH21-1070

APL2 Licensed Program Specifications

GILI21-1063

APL2 Application Environment licensed Program Specifications

GI121-1051

APL2 General Information

STI21-1073

An Introduction to APIL.2

SH21-1072

APL2 Programming: Guide

ST21-1061

APL2 Programming: | anguage Reference

SHI21-1054

APL.2 Systems Service Reference

STI21-1056

APL2 Programming: Using the Supplicd Routines

SH21-1057

APL2 Programming: Using Structured Query Tanguage

SH21-1074

GRAPIIPAK: User’'s Guide and Reference

SH2I1-1058

APL2 Processor Interfuce Reference

SH21-1059

APL2 Programming: Messages and Codes

STI21-1069

APL2 Migration Guide

| SI121-1062

APL2 Installation and Customization under CMS

SH2L-1055

APIL.2 Installation and Customization under TSO

SX26-3599

APL2 Relerence Summury

SH21-1071

APIL.2 Reference Card

‘ 1.Y27-9601

APL2 Diagnosis

Appendix A, APL2 Version 2 Manuals

27

