
CJ
.

0-I Ga• ~a.. f!-a
.c
<.f)

CL
-

~ ;;;
2:
"

.9
c
0--
t5
:::J
U

~ . Q
1:- a.
0) :::J

2
<.!)

C ccn
O~--

~
~o

'"c 0·- oS00 ~0 a...
~~ :::JO
Q

~
u~ '"~ ~We:(

Q.
.

CD a.
~

w
r:. .c.~

ID ~o
~E65 .-c « ~•• C 20.:~ L1.:

Preface ~IIII

I have long been struck by the contrast between the success with which the adventurous learn APL
by simply using it, and the frequent failure of lecture courses to communicate the simplicity and
applicability of the language. I have also felt that it should be possible to incorporate into a formal
course the advantages of learning by exploration with an APL terminal, and I therefore welcomed
the opportunity to begin the design and testing of such a course in early 1980.

Because of the nature of our business as a vendor of APL service for commercial users, we have aimed
this course at people already active in some professional capacity, particularly those who have recog­
nized the potential of computers in their work as well as the frustrations commonly associated with
conventional computer languages and systems. For such people we proposed to provide in a three-day
course "the ability to translate into APL, and therefore into computer use, procedures of interest in
your own profession", and to provide the familiarity with reference material and with techniques of
experimentation which are essential to indepen·1'nt work and to further growth in the mastery of the
language.

The course has undergone many changes in its development, evolving to give a student full freedom
in choosing his own pace, to accommodate a wider range of student backgrounds and interests, and
to apply to APL systems other than our own. Nevertheless, this final version has been used by hundreds
of students, and the concomitant course for instructors has been used repeatedly.

I am indebted to a great number of my colleagues at J.P. Sharp Associates. On the technical side,
I am pleased to acknowledge the work of Roland Pesch in designing the necessary file functions, and
in participating in the design and testing of the first version of the course. On the teaching side, I
have benefited from suggestions from a number of instructors who used the course, particularly Nancy
Petersons, Paul Berry, and R.C. Metzger.

On the administrative side, I have enjoyed the essential support of Lael Kirk and Rosanne Wild in
designing and producing the final form of the work. On the clerical side, I have benefited from the
competent and cheerful services of Ginger Kahn and Deborah Rodbourne.

Finally, I must acknowledge the essential contribution of those strong-willed colleagues steeped in
conventional lecture methods who forced me to thoroughly think through the preparation needed for
instructors of a course of this nature.

Kenneth E. Iverson
Toronto, Ontario
July, 1981

© 19811.P. ShaIP Associates

Instructor's Handbook ~1111b

A Working Introduction to APL is a course designed to develop independence and self-reliance by
fostering a faith in the ability to learn by experimentation and by the use of reference material. The
tutoring provided is therefore crucial: an instructor must not destroy this faith by plunging the student
too quickly into complexities, by putting him off with the remark that a matter is too difficult to discuss
at the moment, or by providing lengthy lectures that relieve the student of the burden of exploration.

The instructor is not required to have previous experience in lecturing, but is expected to be already
competent in APL. The present course for instructors is therefore aimed at providing: 1) familiarity
with the student material, 2) experience in handling student's questions, 3) experience in presenting
brief summary lectures, and 4) a deeper knowledge of the structure and rationale of APL than that
normally gained in practical application of it.

The major emphasis in this course for instructors is placed upon the handling of student questions.
It proceeds in the following stages:

1. The introductory lecture is presented (on slides) as it will be to students.

2. Instructors work through the first four sessions of the student material. In this they should
simulate students as much as possible, except that (already knowing APL) they should require
only about one hour, and that they should be considering how they would handle relevant
questions from their students.

3. Instructors will be exercised orally m the handling of a serIes of student questions relevant to
the sessions covered.

4. Instructors will be given twenty minutes to prepare a suitable brief summary of the material
covered, and one or more will be asked to present his summary for discussion.

5. The slides provided for the first summary lecture will be presented and discussed.

6. The Instructor's Guide will be reviewed and discussed.

7. Steps 2-5 will be repeated for each group of four student sessions.

8. The student's supplementary exercises will be reviewed and annotated.

9. The source material will be reviewed and annotated.

10. The facilities for remote tutoring will be used and discussed.

In the section devoted to lectures, the background material for the instructor is presented in a narrow
format together with comments on the use of the slides; the slides themselves appear in the margin.

'" 1981 I.~ Sharp As3ocl.ot.,

Introductory Lecture ~IIII

., .they know enough who know how to learn.

Henry James
SLIDE 1 ~lllt&

)LOAD 39 MAGIC
SAVED 18.119.02 10/10/79

lSTQTR 2ND QTR JRD QTR 10TH QTR YEAREND
1975 59.897 57,299 50,607 63,373 231,176
1976 70,2910 76.119 73,453 88.249]08,115

1977 89,034 88.936 78.912 89,481 346,363
1978 93.959 94,067 82.019 98.5109 368,594

,',u',cA
nl'l;1'T.. :IIC~ ":~:TAn A:::).... , _a.on
:NPC1fT-" C," 1~.UO H.'"

~~ftonro,.

,,,, t:s,:..or :r: 'C4\' .t.<~.~ J FlIAI'O."·

~lllt&

lO'.Hl 11_.nl 111.111 \oJ.no
'OJ.)U Ilt.~U 1\'.\60 In,lJ'

10.111 16,01. ll.lll 1",)61'_,_n II.Sit l'.i•• _0. li~

;1'.700 "1,/.' 1".;>" n-.\.s
nl.n. :Ill',ln lob,}" "'.~ ..

QUARTERLY, DATED 1 75 TO lj 78
SCALE 0
DISPLAY Irs 'PRA/?!'

'''AJ/'Cr
fXFtIl'T_. ;IIlLI/:I.:TAI'1 A:~

:It"'''''' t:,

I.II:U[Xf/ICOOH
tJl'<'r..-, :/lCL I/:L!T4!lr A:~

:NI'C":C:'

SLIDE 2

Slide 1 shows an example of the use of computers, ob­
tained by simply following the instruction in the user's
manual for a certain computer application designed for the
handling of data bases The series shown represent
France's imports by quarter, in billions of French francs.
When MAGIC is loaded, several default settings are al­
ready set, including an option called TOTALS that sums
each period in a year (quarters in this example) to form
yearend totals.

Slide 2 illustrates how several series may be accessed and
displayed at the same time.

The purpose of this course is to teach how to program in
APL; the purpose of this introduction is to clarify this
purpose and to outline the teaching methods to be used.

The programs or functions (such as SCALE, DISPLAY,
and IFS) used in the expressions entered to invoke the
printing of the tables in Slides 1 and 2 are themselves
constructed from simpler and more general primitives in
the programming language used, in this case APL.

Suppose, for example, we wish to construct a function
ALPHABETIZE which when applied to a table of names
would produce the same table in alphabetical order, as
illustrated in Slide 3. We could begin by specifying the
ordering of the alphabet to be used, and continue by using
the primitive function 4 (called grade) to determine the
order in which the rows of the argument NAMES are to be
selected, and by using that result to select the rows in
desired order.

SLIDE 3 ~~It&
NAMES

SMITH, R.J.
JONES, C.
ABEL, H.L.
SMITH, R.A.

ALPHABETIZE NAMES
ABEL, H.L.
JONES, C.
SMITH, R.A.
SMITH, R.J.

SLIDE 4 ~lllt&

A+-'ABCDEFGHIJKLMNOPQRSTUVWXYZ ,.'

These steps are shown in Slide 4. The instructor should
avoid detailed discussions (such as the precise definition of
4); at this point such detail will not help in communicating
the overall definition of programming.

It remains to state that the name ALPHABETIZE is to be
assigned to the sequence of operations specified by the last
expression. This is done as shown in Slide 5, using the
Greek letter omega to stand for the argument of the func­
tion. Slide 5 is an example of programming, that is, the
construction of a desired function from a set of available
primitive functions.

At.NAMES
3 2 " 1

NAMES [At.NAMES;]
ABEL, H.L.
JONES, C.
SMITH, R.A.
SMITH, R.J.

1I11981 I.P. ShorpAssoclotes 3

DEFINE 'ALPHABE7'IZEO w[AJ,w; J'

Objectives of the course
To impart ability to:

• Translate known procedures into APL

To extend mastery by:

• Experimentation

• Effective use of references

~IIII

SLIDE 5

ALPHABETIZE NAMES
ABEL. H.L.
JONES. C.
SMITH, R.A.
SMITH, R.J.

SLIDE 6

4

~llii.

~Ilii.

Objectives of the course. Slide 6 may be used to clarify
the objectives and should be presented in the light of the
following discussion.

The overall purpose is to teach how to program in APL.
The student should, however, be aware of the limitations
of a brief, general course in programming:

Because it is a course in programming, it concen­
trates on presenting the primitives of the language
used, and on the methods of constructing desired func­
tions from them, not on how to choose or analyze the
functions important to a particular area of applica­
tion. Therefore, in order to apply his programming
ability effectively, a student must know or acquire
knowledge of the functions and procedures of interest
in some area of application. Fortunately, general non­
specialized knowledge (such as filing, bookkeeping,
and high school algebra), combined with imagination
and a penchant for exploration, provides a sufficient
basis for a good deal of programming.

Because it is aimed at a general audience having a
variety of backgrounds and interests, the examples
used are not chosen to suit anyone specialty such as
accounting, engineering, or actuarial work. The ex­
amples are therefore rather general in nature, and it
may require some imagination (and perhaps some
help from the instructor) to see how various tech­
niques might apply to the student's own field of inter­
est. The development of such imagination is essential
to good programming.

Because it is brief, the course cannot effectively ex­
plore, or even introduce, all of the primitives available
in the language. Emphasis is therefore placed on
learning how to learn, that is, on learning how to
resolve questions by experimentation and by effective
use of reference material rather than by reliance on
an instructor. In other words, the course ·is intended
to provide a solid basis for further growth rather than
a more superficial acquaintance with all parts of the
language used.

Introductory programming courses differ radically in their
objectives, and students should be aware of this. Courses
often aim at exposing the student to as many primitives
of the language as possible. The objectives of the present
course are more practical:

To impart the ability to translate into APL, and
therefore into computer use, procedures of interest in
a student's own profession and known or available to
him in terms understood in that profession.

«:11961 I.P ShorpAssociotes

Jobs to which course is relevant
Progrommer

User ot APL oppllcatlons

Manager of programmers

To provide sufficient familiarity with APL reference
material and with techniques of experimentation to
allow students to continue to expand their mastery of
APL through further use and independent study.

Student's Aims. Students may choose to attend an intro­
ductory programming course not only with the ultimate
aim of programming, but with related objectives such as
the use of prepared programs, or the management of pro­
grammers or computer resources. The following disucssion
may be used to guide the use of Slides 7-10 in treating
these matters:

SLIDE 7

SLIDE 8

~IIII

~IIII

~Ilil

Programmer
Supplement Introduction by

Acllve programming followed by further
courses such as:

• Special topics (shared variables,
enclosed arrays. etc.)

• Intermediate APL

• Advanced APL

• System design

Manager of programmers
Introductory course provides:

• Direct experience of tool to be managed,
which is important because APl differs
radically from conventional tools

Programmer. Although this course is aimed at teach­
ing programming, the serious programmer should
eventually supplement it by courses such as 1) Special
Topics in APL (e.g., shared variables, formatting,
files), 2) System Design in APL, or 3) Advanced
APL, covering all aspects of the language. In particu­
lar, anyone planning to become an APL System Pro­
grammer (designing and producing application pack­
ages for use by others) should obtain further instruc­
tion and experience in system design and documenta­
tion.

However, a graduate of an introductory course should
probably attempt to work in APL for a month or
more before continuing with further courses.

User. Although a user of APL-based applications
need not know how to program in APL, such knowl­
edge can be helpful in making intelligent use of appli­
cations. In particular, the functions provided in appli­
cations can often be supplemented in significant ways
by APL expressions. Moreover, even a programmer
with limited experience can often define new functions
employing the functions, provided in an application
as he would primitives.

Manager. A manager can usually benefit from some
first-hand knowledge of the tools used by his subordi­
nates, and direct hands-on work with these tools is an
effective way of gaining such knowledge. Even man­
agers already familiar with a variety of conventional
programming languages will probably find the present
course helpful, since APL differs rather radically from
conventional languages.

SLIDE 9

User of APL applications
Introductory course prepares tor:

• Intelligent and Imaginative use of
applications

• Trouble-shooting

• Modification

SLIDE 10

~IIII

~111~

W1981 1.p. SharpAssodotes 5

~1I11

SLIDE 11

Conduct of the course
Constant work at an APl terminal

Experiment under written guidance

Independent pacing

Individual tutoring

6

Teaching Method. The teaching method used is pragmat­
ic, and differs radically from conventional lecture methods:

The method used allows you to begin work immedi­
ately on an APL terminal, experimenting under the
guidance of simple written instructions, and proceed­
ing as independently of the instructor as your ability
permits. Two students work together at each terminal,
to their mutual benefit, and proceed at their own pace
independently of other student pairs.

The instructor therefore spends little time in formal
lectures, and most of the time in individual tutoring
-- answering specific questions (perhaps by directing
attention to points covered in earlier sessions), and
suggesting general techniques for resolving questions
through further experimentation and further use of
the reference material.

The foregoing may be discussed with the aid of Slide 11.

~ 1981 I.P. Sharp Associates

SESSIONS

1-4

Handling Questions

~III~

The main points to be made in the handling of questions are indicated in the following list:

DO:

a) Answer a simple question of fact simply and directly.

b) Where possible, answer by suggesting experiments which will allow the student to resolve the
question (and possibly related questions) for himself. These experiments may involve the terminal,
or may, as in questions concerning catenation of arrays, involve manual work such as the drawing
of rectangles to represent the shapes of tables.

c) Use every occasion to refer the student to sources in manuals, particularly if his curiousity is
outrunning the pace of others.

d) If the source of difficulty is not clear, show the student how to pinpoint it by breaking a composite
expression into its constituents to find the simplest form in which trouble appears.

e) In general, treat questions so as to develop the student's ability to analyze difficulties for himself
and to use reference material effectively.

f) Encourage students to display and examine results (such as LISTOFTABLES in Session 2)
produced.

DO NOT:

a) Do not use a simple question as an excuse to launch into a general discussion of some notion
which the student may have just encountered and whose ramifications he is as yet incapable of
grasping. For example, if he is able to use expressions such as +1 and xl correctly, do not
immediately burden him with a general discussion of operators just because I happens to be one.

b) Do not use a simple question as an excuse to cross-examine the student on your own pet obsessions
with language difficulties; wait until he encounters the difficulty himself. If he has absorbed the
methods of experimentation he should be able to analyze such problems for himself.

c) Do not annoy the student by carrying the insistence on consulting manuals to excess. For example,
if a student asks the name of a particular symbol, tell him, unless you suspect that he has not
yet learned about the relevant table in the manual.

d) Do not continue discussion if the difficulty has been identified as something already treated in
an earlier session. Instead, give the student the opportunity to review the earlier session and then
reopen the discussion if he still requires help.

Sample dialogue. The answers provided should be a sufficient guide to the teacher in conducting
dialogues based on the exercises. However, we will first give a sample dialogue for Session 1, denoting
the student by S, and the instructor by 1.

S: I just entered 3*X+2 and got 9, which I find confusing.

1: What value was assigned to X?

01>1961 l.p. Sharp Assoclofes 7

~"II
S: Here is the whole thing:

Y+-2
X+-Y+2
X

4
Y+-3
Y+2

5
3*X+2

9

8

1:

S:

1:

S:

1:

S:

1:

S:

1:

S:

1:

S:

1:

1:

S:

1:

Yes, you have misunderstood the order of execution. You see, in APL there is no hierarchy,
and the * is not necessarily done before the +.

(Sotto voce) What in the world is hierarchy? [This term has not occurred in sessions.]

Furthermore, APL has the odd rule that you execute expressions from right-to-left, so that
you must perform the X+2 first.

I know that the X+2 is done first, because a friend told me that about APL yesterday. But
it still doesn't come out right. Oh, I guess what I didn't understand was that "right-to-left"
implies that X+2 means 2 divided by X.

No, no, forget that. Now I see the problem. You have misunderstood the meanmg of
specification, and the value of X is not what you thought.

(Sotto voce) What in the world is specification?

You see, when you entered X+-Y+2, the Y was evaluated at that time, giving X the value
4. Consequently, your later respecification of Y had no effect on X even though the expression
Y+2 used to specify X now means 5. Therefore, the X in your expression 3*X+2 has the value
4.

I know that. In fact, I printed out its value just above.

So you did. But what is the problem then?

Well, X+2 gives 2, but 3*2 should give 6, not 9. Are the results in APL expressed in some
weird number system?

No, no, they are in decimal. But why should 3*2 be 6?

Because 3 times 2 is 6.

Hmmm!

BUT DIDN'T YOU SEE x USED FOR MULTIPLICATION AT THE VERY BEGIN­
NING OF SESSION I?!

Yes, but I know that * also means multiplication on computers.

Not in APL. You will find its use in the middle of the page.

~ 1961 LP ShoopAssocLates

JIIII
S: I hadn't gotten there yet. Oh yes, power! Of course, 3 to the power 2 is 9.

S: My friend was right about the absurd difficulty of APL. This is going to be a long three
days!

The foregoing dialogue may seem extreme, but worse can happen. Such exchanges not only waste
precious time, but they destroy that belief in the simplicity and orderliness of the topic under investiga­
tion which must underlie any serious attempt to learn by experimentation.

An attempt to help the student pinpoint the difficulty normally proves more effective. For example:

S: I just entered 3*X+2 and got 9, which I find confusing.

I: Even such a simple expression conprises successive steps. At what step does it seem to go
wrong?

S: Well, I just displayed X to see that its value is 4, and X+2 gives 2 correctly, but 3*2 should
be 6, not 9.

To develop an instructor's ability to handle questions from students, the exercises below should be used
as follows:

a) The teacher (simulating a student) poses a question from the list to one of the instructors,
and then continues a dialogue as a student might, often leading the instructor into a quagmire
as in the foregoing sample dialogue.

b) Other instructors are invited to comment on the handling of the question.

c) The corresponding answer is read out, and discussion by the instructors is invited.

To make this dialogue as effective as possible, it is essential that neither the exercises nor the answers
be given to the instructors in advance. Moreover, instructors should be forced to simulate real
dialogue; do not allow an instructor to say "in answer to such a question I would say so-and-so"-force
him to simply say so-and-so.

1.1 Why doesn't 9-3-2 give 4?

Because the result depends upon the order in which the parts are executed, this could be either
(9 - 3) - 2 or 9 - (2 - 3). If you want to be explicit you should use parentheses.

The order in which the parts of an unparenthesized expression are executed will be treated ill

Session 6. You now have several options:

1. Until you reach Session 6, use complete parenthesization to specify the order you want.

2. Experiment with expressions like 2x(3+6) and (2x3)+6, and 2x3+6 to determine
what the rule for unparenthesized expressions is.

3. Consult the IBM manual either to determine the rule or to confirm the conclusions
you reached in option 2.

I would recommend Option 1, because your time might best be spent ill continuing with the
work outlined in the sessions.

'" 1961 !.p. Sharp AssocIates 9

~"I~
1.2 I entered X+-3 and Y+-4. Why won't XY (or X Y) give me the product 12?

In any notation one may be able to omit the name of one of the functions used without
introducing ambiguity. In mathematics one is allowed to omit the symbol for times, as in
XY+Z instead of XxY+Z. However, the possibility of such omission has certain unpleasant conse­
quences. For example, AREA then means AxRxExA and cannot be used as a (mnemonically
attractive) name instead of a single-letter name such as A or X.

1.3 What is the meaning of DOMAIN ERROR? I entered 4.;-0.

1.4

It means that the expression 4.;-0 cannot be meaningfully executed, that is, it cannot yield a result
which if multiplied by 0 would yield 4. In other words, the pair of arguments 4 and 0 is not
in the domain (i.e., "territory or range of rule or control" [American Heritage Dictionary] of
the division function.

Be sure to confirm this by reading the Table of Error Messages when you receive your APL
manuals at the end of Session 2.

Why did I get LENGTH ERROR when I entered 3 4 5 + 6 7 8 9?

/orP'.
- J"'~h' €j \ \' Because the two lists 3 4 5 and 6 7 8 9 are to be added element-by-element, and they do not

. j { tJ/"- I
0' Ii~ }1l\i1d have the same number of elements, that is, the same length.
~ - ,,\+'-\ ~ \
~~.(\ II\l ... t Be sure to consult the Table of Error Messages in the APL manual when available.

o ~ v ~~ \
,J. ~) \ r/ If you think that 3 4 5 + 6 7 8 9 should yield the same as 3 4 5 0 + 6 7 8 9, then

\
{) e consider whether it might rather be 0 3 4 5 + 6 7 8 9) and also whether this extension

would be useful in conjunction with other functions such as x and r.

1.5 Why does three-quarters times one-half give three eights (or DOMAIN ERROR on systems which
do not have replicate) rather than three-eighths? I entered 3/4 x 1/2.

Division is denoted by .;-, not by the slash (I). Consequently, you might write (3.;-4) x (1.;-2),
or more simply, .7 5x. 5.

The slash denotes an entirely different function which you could try to explore by experimenta­
tion or by consulting the manual, but such a digression is probably unwise at this point.

1.6 What do you call the symbols rand L?

The symbol L is called "down-stile"; the function it represents m an expressIOn such as
L3.14 is called "integer part", or "floor".

r{
~ \~.., u¥"" The symbol r is called "up-stile",; the function it represents in the expression r 3.14 is called

CQ 1-\tI- "ceiling".

APL manuals give tables of these symbols together with their names. Consult them when
available.

10 ., 1Q61 I.P SI1orpAssodates

~IIIL

1.7 I forgot to put a 3 in front of *2 and got a weird result. What does it mean?

Just as the minus sign in the expression - Y represents a different function (negation) than it
does in X-Y (subtraction), so * in the expression *2 represents a different function (exponentia­
tion) than it does in 3*2 (power).

If you know about exponentiation and the number e (approximately 2.71828) then you might
try a few experiments such as E~*1, and *X and E*X for various values of X. If you are not
familiar with such matters, forget it.

1.8 A friend told me that L means the minimum function, but here you say it means to round down!

Yes, when used with two arguments, as in 2.718 L 3.14, the "down-stile" symbol does denote
the minimum function, and yields the lesser of its arguments; in this example, 2.718. When
used with one argument, the down-stile means "floor" or "integer-part", and L3.14 yields 3.
This double use of the symbol L parallels the double use of the minus sign (-) in mathematics
to mean both subtraction (A - B) and negation (-B).

I •

2.1 A friend told me that 13 means 0 1 2, but here it seems to mean 1 2 3?

The integer with which the sequence produced by 13 begins is determined by the value of the
special variable DIO. It may properly be set to either 1 (by DIO~1) as it now is, or to 0 (by
DIO~O) as you may wish to set it to experiment with it. You may also want to read about "Index
origin" in the manuals.

However, if you change DIO be sure to reset it to 1, smce succeeding seSSiOns depend on this
setting.

2.2 Would it be possible to do TABLE*TABLE as well as TABLE x TABLE?

Try it, but first sketch out m pencil what you think the result might be.

2.3 Why does p3 fail to print a result?

The result of p3 is an empty vector whose length (i.e., number of elements) is zero. The
ramifications of this point may be more than you should attempt to explore completely at this
point. However, the following experiments can be performed fairly quickly and should give a
good deal of insight into the matter:

a)

b)

., 1981 I.R ShorpAssockJles

The expression IN gives a vector of N elements. Experiment with the expressions
IN and p IN for various values of N including o.

Repeat the experiments pLIST and pTABLE and pLISTOFTABLES, and note that the
number of elements in each result is the number of indices required to select a single
element from the original argument. Thus, the selection of an element from TABLE
requires the specification of two indices (the row number and the column number),
and pTABLE has two elements which specify the ranges of each of these indices.

11

~"II
A single quantity such as 3 (called a scalar) requires no index to select its only element,
and p 3 therefore has no elements.

c) The expression p pX yields the number of elements in pX and is called the rank of
X. Experiment with the expression ppX for various arguments including the scalar 3
and those used in part b.

d) Make a note to consult your manuals on this matter when you receive them. Use the
index for references to "rank" or "rank of an array".

2.4 The term "vector" you used in discussing the last question is new, but seems to be synonymous
with "list". Is this so?

Yes, I used the term "vector" because that is what you will probably find used in the manual
and in other APL literature.

2.5 Since TABLE is 2 3pLIST, I should be able to get LIST back from it. How can this be done?

Yes, 6pTABLE yields the same as LIST. You might also examine the effect of (x/pX)pX applied
to any argument X. Make a note to compare the foregoing expressions with the use of the
ravel function, either by consulting a manual or by observing its use in Session 4.

2.6 Why would anyone use something like LISTOFTABLES?

In Session 6 you will see the tables OIL72 and OIL73 which give oil imports (by Country by
Quarter) for the years 1972 and 1973, and a "list of tables'.' called OIL which is arranged by
Years by Country by Quarter. Uses of these are explored in later sessions, showing summation
over years, summation over countries, maxima over years, etc.

2.7 Is it possible to make a table of tables?

Try 2 3 4 5p 1120 and 2 3 4 5p9 and (after trying ?9 several times) ? 2 3 4 5p9.

3.1 What is the meaning of the first symbol m r/LIST?

This is your first opportunity to use the tables (in this case Figure 6) which you marked m
your manual at the end of Session 2.

3.2 Why would one want to do things such as +/ [1]TABLE and +/ [2] TABLE?

If TABLE were a table of oil imports for some year arranged by Country by Quarter (such as
the tables OIL72 and OIL73 which you will encounter in Session 6), then +/[1]TABLE would
yield four (quarterly) sums over all supplying countries, and +/ [2] TABLE would yield a number
of (country) sums for the year.

12 ~ 1961 1.P. Sharp Assoclotes

~IIII

3.3 Why do +/TABLE and +/LISTOFTABLES work without using numbers m brackets?

Compare the results of +/TABLE with +/[K]TABLE for different values of K (including
+/[1]TABLE and +/[2]TABLE) and determine which is the "default" case of K provided by
the simple case +/TABLE. Repeat for the variable LISTOFTABLES.

2.. ...

r: \- ~.J--I'c.-
•) b t I'CI r.

-\- \ 3.4 Aren't the results of +/ [1] TABLE and +/ [2] TABLE reversed?

;~ {"l'(,~~ ~ S~ ~ '). e'-to \.0

:~1 A--CP'-~---------
t I ~""1- ~No, the index in brackets refers to the axis along which summation is applied; the shape of
.£-P~ the result is the shape determined by the remaining axes. Thus, a sum along the second axis
, .. ¢>\ (columns) yields a sum for each row.
~s

~~J.-t>=>oY'\ Paradoxically, this matter probably becomes clearer in the case of higher-rank arrays; try some
J.,) - ~ ~ - dJexperiments on the rank-3 array LISTOFTABLES.
~ (. (Jc~

~ ~o '\..rc-
8-P "'\ {~~ 3.5 Is it possible to twist a table so that its rows become col~mns, or to reverse it so that its columns
x-I Cl..} S run backward? J

o~ riO
\ -:. ~ ~ ~ S ;J" --------------------

c>- ,,»)~./
t\'t"". ~ Yes, each of the functions ¢ and ~ and e "flips" its table argument about an axis indicated by

"-- ,). If<""~ the line in its symbol. The symbols are all composites formed by overstriking two simple

~
"!> r:;P~ symbols. You may learn how to enter them by experimentation, by consulting the manuals, or

~ "l.\1i> by reading instructions in the next session.
rr ~(T

~;~ .,...3.6 How should one read aloud expressions such as + / [1]TABLE and +/ [2]TABLE, and
.,<'"" ~vI"! r 1/[2]TABLE?
~ J ~o -~ _
\ ..~
:Y(...~>S .. Various verbalizations are useful. For example, "Column sums" (+/[1]TABLE), "Row sums"
~~ (+/[2]TABLE), and "Row maxima" (I /[2]TABLE) or "Sums along the first axis", "Sums along

. the second axis", etc. Expressions using the term "axis" are preferable for higher rank arrays
such as tables of tables (rank 4) where suitable terms analogous to "rows" and "columns" may
not exist.

4.1 The variable MONTHS works because all the abbreviations are the same length, but how could
I make a table of the full names of the months?

Enter enough spaces after the shorter words to pad them all out to a common length, as m:

X+3 6p'JUNE JULY AUGUST'

<1:11961 loP. Sharp Associates 13

~"II
4.2 If MARY+-8 and X+-, MARY', I can see that I cannot expect to write 2xX to get 2x8, but it seems

to me it should be possible to get the 8 from X somehow.

Yes, you can execute X (using the expression .tX) as discussed in Session 9. You may also want
to consult the manuals.

4.3 Is it possible to make a new table of names by selecting certain of the rows from a table such
as MONTHS?

Yes, try expressions such as MONTHS [1 4 7 10;] (called indexing) and
1 0 0 1 0 0 1 0 0 1 0 O/MONTHS (called compression). These selection functions are
treated in Session 10.

oI I v

..

I made a list called DAYS, which gives the number of days for each of the twelve months, but
I was unable to print them beside the months using either MONTHS ,DAYS or
MONTHS,' ',DAYS.

t

Apply the format function T (whose symbol is called thorn) to the one-column table
12 1pDAYS to produce a 12 by 2 table of literal digits which may be catenated with
MONTHS, as in MONTHS, T12 1pDAYS or (if you want a space between the names and the digits)
as in MONTHS, , " T12 1pDAYS. These matters are treated further is Session 9 and in the
manuals.

4.4

4.5 In Session 2, I found that I could get LIST from TABLE by writing 6pTABLE, but realized that
I could write this only if I knew the total number of elements in TABLE. I now see that ravel
does the same thing, but I still wonder if it is possible to write the corresponding expression
using p for an unknown argument TABLE?

Since x/pX gives the total number of elements in an array X, you may write (x/pX)pX instead
of ,X for any array X.

4.6 What are all of the composite symbols in APL?

Figure 4 of your manual (which you marked in Session 2) shows all of the current composite
characters in the right-hand column. However, new ones are occasionally added to the language
to denote new primitives.

4.7 I am a manager and came here to learn how to manage APL programmers, not to learn to
program.

As I said in the introductory lecture, this course is intended primarily as an introduction to APL
for people wishing to learn to program in APL. As I also pointed out, a manager can often
benefit from some first-hand knowledge of the tools used by his subordinates.

I believe that a good try will convince you that the present course is an efficient vehicle for
gaining such first-hand knowledge of APL. However, if you become convinced that this is not
the case, you might wish to withdraw.

14 <1>1961 I.P Sharp Associates

~IIIL

4.8 I have to advise my management how APL can be used and whether to install it. I do not see
how learning to type on an APL keyboard will help me.

This course will not provide you with everything you need to make such decisions. However,
it should give you enough knowledge of APL to prepare you to communicate effectively with
people who do use and manage APL, and so to draw on their experience. Although any typing
skill acquired in the course may be of no direct use to you later, the direct epxerience of APL
which it makes possible is probably the most effective and lasting way of obtaining the knowledge
of APL that you require.

4.9 When are you going to start lecturing. I didn't pay all this money for a few sheets of pa,rer
and the use of a fancy typewriter. T , 1- "

I

If you review the statement of the objectives of this course distributed at the outset (objectives
clearly indicated in publicizing the course) you will see that the course is based heavily on work
and experimentation at the terminal, and on associated tutoring. Little use is made of formal
lecturing.

The course will be conducted in this spmt, and you will therefore gain little benefit from it
if you do not embrace the opportunity to use the powerful computing facilities available at this
fancy typewriter.

4.10 Without ever touching the terminal, a student quickly reads through the first session, asks for
and gets the second, and then, when the instructor is away from her desk, picks up the remaining
sessions and settles down to read them.

The instructor should be careful to store the sessions in such a way that students cannot easily
obtain any session before completing preceding sessions. However, if this, or any other breach
of procedures should occur, the instructor should maintain discipline, and insist that the copies
be returned. A student who refuses to obey should, of course, be asked to withdraw.

4.11 I already know six major programming languages and I see no advantage to the one you are
now teaching.

Because APL differs rather radically from other programming languages, an experienced pro­
grammer may take more, rather than less, exposure to APL to be able to appreciate its power
and convenience. I can only recommend that you continue through more complex examples of
its use before concentrating on comparisons with other languages.

(f) 1981 I.P Sharp Assoclotes 15

~IIII

4.12 A student complains that he is grossly mismatched (too fast, too slow, too bright, too stupid)
with his partner, and requests a change.

Serious incompatibility between partners at a terminal rarely occurs, but when it does it must
be handled with tact. The following options might be considered:

a) Discuss the mismatch with both partners and see what can be done to ameliorate it.

b) If you have noted a similar mismatch (normally in rate of progress) in another pair,
you might raise with them the question of a possible switch and, if it is favourably
received, discuss the matter with all four.

c) If a spare terminal is available (as it should be), the pair might be assigned to separate
terminals. This solution should be adopted only as a last resort because students
normally benefit greatly from joint work.

Allowing such a split might move another mismatched but uncomplaining student to
now request a change. This can be handled by allowing him to make his own match
with one of the two singles now available.

Any techniques for imposing good matching of students at the outset (based perhaps on informa­
tion required from registrants) are unlikely to prove better than the student's own pairing based
on common employment or other acquaintance. However, it might be wise to defer the selection
of partners until students have made some contact, during coffee served before the specified
starting hour, during the introductory lecture, or both.

4.13 My company uses the ABCD application package written in APL, and my job on returning
from this course will be to modify and maintain that package. If I finish the sessions quickly,
may I then get started on studying the programs in the ABCD application?

I would strongly advise you not to rush through the course. The long-term benefits of the general
understanding of APL which you can gain from a thorough use of the sessions and supplemen­
tary exercises of the course will far outweigh any short-term advantage of concentrating on the
specifics of your first work assignment in APL. Remember also that I will be available to you
by telephone for some time after the course to provide help on any APL work you undertake.

16 <111981 LP Sharp Associates

Summary Lecture ~IIIL

At this point, each instructor should take about 20 minutes to prepare a suitable summary lecture
covering the material of Sessions 1-4. One should then be asked to present a lecture, and the others
should be encouraged to badger him with reasonable questions as students might, so that he learns
the dangers of attempting a philosophical review instead of a practical summary.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Slides 12-22 provide a summary of Sessions 1-4. By draw­
ing heavily on the manuals, they strenthen the students
familiarity with, and faith in, the manuals, and provide
a more lasting summary than would screen images not
later available.

Students should be urged to consult and mark the actual
pages from which the slides are drawn; browsing in the
adjacent material is always helpful.

In using Slides 13-15, point out briefly that the elements
used to form names and numbers are drawn from the
alphabets at the top, that the symbols already encountered
can be easily found (together with their names), and that
the table includes the quote symbol used to form literals.

SLIDE 12

SLIDE 13

Summary 1-4
Moln Ideos

• Names

• Numbers

-literals

• Functions

• Arrays

~IIIL

~IIIL

0123456789Ask students to identify those symbols already encountered
in the course and any others they recognize from other
experience, and encourage further browsing in the Charac­
ter Set table in the manual.

Students should be asked to locate and mark in their man­
uals the tables referred to in Slide 16.

The notions of functions and arguments are important,
and should be discussed (using Slides 17-19) in the light
of the following passage taken from page 25 of the IBM
manual:

The word "function" derives from a word which
means to execute or to perform. A function executes
some action on an array (or arrays), called its
argument (s), to produce an array as a result. The
result may serve as an argument to another function.
For example:

3x4
12

2+(3x4)
14

(-6)+3
2

1111981 I,P' ShorpAssociotes

SLIDE 14

SLIDE 15

dltrtSIS

O\C'rhar
11"55

.. nOI grtaltr
('qual

2 nOI kss
grtaltr
nO! ('qual

0'
" and

b"
t divide

plus

query
.., Offitga

(tpsllan
~ rho
- tildt'
t up arrow
~ down arrow

iOla
o circle'

star
... right arrow
... ltfl arrow

IBM. page 24

~IIII
alpha
upSlI]C'

down$ulr
underbar
d,'
ddla
null
quou'

o quad
(]tft partn
) right pactn
(left brackt[
] right brarke'[

IBM. poge 24

~IIIL
c ltfl ShM

right shot'
n rap
u cup

baSt
,op

I slilt'
~mjrolon

colon
comma
do'
slopt
slash
space'

IBM. page 24

17

~IIII

Tree picture of function execution

(A-B) x (A+B)

Although the application of scalar functions such as + and
x to arrays is readily grasped, the application of other
functions such as +/ [1] and • [2] may give students diffi­
culty. Graphic views of the application of such functions
can be very helpful, and students should be encouraged to
sketch their own views and to look for such views in the
manuals. Slides 20-22 illustrate the use of such aids and
provide explicit references to material in the manuals.

SLIDE 19

A B A B
\/ \/
-~ /+

x
j

~IIIL

Berry, page 19

SLIDE 16 ~IIIL SLIDE 20 ~[IIL

Executes some action on its argument(s)
to produce a result which may be an
argument to a further function.

IBM, page 50

~[IIL

Examples of graphic aids

TABLE,[lJ TABLE

2)

Examples of graphic aids

TABLE, [2J TABLE

00

SLIDE 21~IIIL

IBM, page 25

A function

Useful tables
APl character set

• IBM figure 4, page 24

SCalar functions

• Berry, page 295

• IBM tigure 6, page 32

SLIDE 17

SLIDE 18 ~IIIL SLIDE 22 ~IIIL

Example of function execution
(7-3) x (7+3)

j
(7-3) x 10

T
T

40

Examples of graphic aids

+/[1] TABLE

Instructor's Guide

At this point the instructors should read the Instructor's Guide, and raise any questions concerning its
application, with particular reference to their experience in dealing with Sessions 1-4.

18 11>1981 loP, Sharp Assoclotes

SESSIONS

5-8
Handling Questions

5.1 Why doesn't)ERASE LESSON remove the workspace LESSON from my library?

~llli

7

The command)ERASE ABC erases the name ABC from an active workspace; the command
)DROP ABC drops workspace ABC from a library. See the table of System Commands in the
manuals.

5.2 Now that I know how to drop a workspace, I suppose I could destroy the workspace for the
course by entering)DROP 12 COURSE.

Try entering)DROP 12 COURSE and note the response. Although you can load a workspace
rom some library other than your own, you cannot change another's library. Your own library

number, which you do not have to supply explicitly in a command like)LOAD LESSON, is the
first element of the account information DAI which can therefore be obtained by entering
1 tOO.

5.3 Why do all of these things like)VARS, and)SAVE, etc., begin with a right parenthesis?

Phrases like)SAVE ABC are system commands, which concern the environment within which
you use APL, but which are not themselves expressions in APL. The initial right parenthesis
is used to distinguish them from APL expressions, which cannot properly begin with a right
parenthesis.

6.1 Can I use underscored names, as in ABQ+6?

-------------------- t ~~I ~1

Yes, ABC is a valid name. See the manuals for the rules of name formation.

6.2 Is it all right to enter X+SHOW ' TIMES', and if so, what is the meaning of X?

X+SHOW ' TIMES' is a list of characters, a fact that you may test by observing the result of
expressions such as </:>X.

X is not a function (as you may see by trying 3 X 4), but can be used to define a function.
You can verify this as follows: Erase the function TIMES (by entering)ERASE TIMES), verify
that it no longer exists (by trying 3 TIMES 4), then enter DEFINE X and again try
3 TIMES 4.

6.3 The rule for executing an unparenthesized expreSSIOn seems senseless.

In the IBM manual, the rule is stated in another, but equivalent, way as follows: "the (right­
hand) argument of any function is the value of the entire expression to the right". An unparethe­
sized expression can therefore be read either analyticall from left to right, (the first function

(I) 1981 I.P. Sharp Associates 19

~IIII

encountered at any stage being the overall function to be applied to the result of those to its
right), or constructively from right to left.

These simple rules (which do not admit the complication of hierarchy rules - plus before times,
etc.) are much easier to use than the more complex rules used in mathematics and in many
programming languages. However, their power and convenience will become apparent only after
some experience, and it might therefore be better to defer the question for a while.

If, however, you wish to pursue the matter now, you might consult the cited passage in the IBM
manual, and read the comparison with mathematical notation beginning on page 461 of "Nota­
tion as a Tool of Thought" in the Source Book in APL.

7.1 I tried to make a multiplication function called T by doing T+-SHOW ' TIMES', but it didn't work.

This is a variant of question 6.2, and the same answer applies.

7.2 I entered X+-SHOW 'TIMES' and then DEFINE 2-1-X, but I can't see that it did anything.

If you enter 2-1-X you will see that the result is a list of characters which define a function called
MES. Now' try 3 MES 4 to see that such a function has been established.

Alternatively, display the list of functions (by entering)FNS) , and look for any new function
(in this case MES).

7.3 I entered)ERASE DEFINE and now I can't seem to define functions.

You can restore the function DEFINE in either of two ways:

1. Enter)LOAD MINE. This will return your active workspace to the state at which you
last saved it under the name MINE. If you have defined any new names (functions or
variables) since then, you will lose them by this action.

WI "c

2. Enter)COPY 12 COURSE DEFINE. This will copy into your active workspace the
original function DEFINE and will not otherwise affect it.

7.4 Could I define the function BEELINE without using SQUAREROOT?

Yes, by using an appropriate expression involving primitive functions only. Try it.

7.5 I was not able to define the function SUM.
.j

20

a)

b)

c)

Enter DEFINE 'SUM<>+([aJw'.

Enter 1 SUM OIL72 to test the function SUM.

Try to gain an understanding of the function definition process by taking the character

«>1<;161 I.P: Sharpksoclotes

~llli

string which defines SUM (that is, +/[aJw) and substituting for a the left argument used
in part b, (that is, 1) and for w the right argument used (that is, OIL72). Enter the resulting
expression (that is, +1[1 JOIL72) and compare the result with the result of
1 SUM OIL72.

8.1 I was going to produce a table of abbreviated 4-character country names by entering
EDIT NAMES followed by slashes under the last five columns, but I got a DOMAIN ERROR.

You could get the result you expected by various $election functions (to be discussed in Session
10): by indexing (NAMES [;1 2 3 4J), by dropping the last five columns (0 -5iNAMES), or
by taking the first four (8 4tNAMES).

1)(.,

The function EDIT is designed to apply only to a list, not to a table. You could apply it to the
list obtained by ravelling the table (,NAMES) and then reshape the result, as in
ABBNAMES~8 4 pEDIT,NAMES.

8.2 I tried to get rid of the function RAP by revising it and removing the name entirely, but it simply
says NOT DONE and RAP remains in the list of functions.

The function REVISE simply defines the function represented by the character string given by
EDIT SHOW [!]. In your example, you had removed the entire function name preceding the
diamond; DEFINE was therefore unable to define a function, and so advised you.

A name ABC (of either a function or a variable) can be removed by entering)ERASE ABC (as
shown in Session 5), or by OEX 'ABC'.

8.3 Why does the expression 2 MAX 5 7 4 give
I I t'

dorpai error?
'oA

Since the definition of MAX is MAXor 1[aJw, the expression 2 MAX 5 7 4 is equivalent to
r1[2 J5 7 4. But this expression cannot be executed because 5 7 4, being only a list and not
a table, does not possess a second axis (as required by r1[2J) along which to apply the
maximum function.

8.4 The function definition used here is not real APL, which I have had some experience of before
this class. Why are we using it?

The form of function definition you have seen is called the del or canonical form of definition.
It presents a number of complications which obscure the essential simplicity of the important
notion of function definition when it is first introduced.

We will also introduce and use the del form of definition, but somewhat later, in Session 16.
Interesting examples of its use can be found in the Introductory section of the IBM manual.

8.5 I have used APL a bit before this course and had no difficulty in grasping the canonical form
of definition. What are the complications which you say obscure the notion of function definition?

Consider the definition T: Io xI~lwand the matters that would have to be faced in canonical
definition. For example, the header and the purposes of its various parts, the need to localize

<lI1981 J.P. Sharp Associates 21

~"II
I (and therefore the definition of local and global variables), the meaning of the single line
number at the left of the display, the meaning of the message DEFN ERROR, and finally, the
matter of the SI stack and "hidden" variables. Direct definition avoids stack problems by
producing functions that (like primitives) terminate on any error.

8.6 I have fallen far behind the rest of the class and obviously cannot finish all sessions at this rate.
What should I do?

Continue at your own pace. As you have seen, you have been able to work fairly independently
so far, and if you continue at the pace at which you are able to absorb the ideas, there is no
reason why you should not be able to complete any remaining work when you get home.
Furthermore, I will still be available to you by phone when you are completing this work, or
even if you embark on other use of APL.

Nothing will be gained by trying to force your pace. At a faster pace you may, in fact, gloss
over so many important points that you will find it impossible to proceed at all.

22 <l>1Q61 I.P. ShcxpAssociotes

Summary Lecture ~1111k

Allow instructors time to prepare and present a lecture as in Sessions 1-4, and then present and discuss
the summary on the following slides, guided by the accompanying notes.

By this time, instructors should have picked up and exploited the idea of going to the manuals for
material. If not, their efforts should be compared (unfavourably, one would expect) with the slide
material which is drawn from the manuals.

Emphasize the fact that an instructor should not be led into prolonged discussion of any of these topics.
For details on workspaces, refer the curious student to the manuals. To avoid lengthy arguments on
the order of execution, promise to return to the matter at the end of the course when the students
will have experienced some of the advantages of the simple APL rule. One may also refer students
to treatment of the matter in various articles in the APL Source Book provided for instructors.

Slides 24 and 25 may be used to discuss workspaces and
libraries in the light of the following excerpts from the
manuals:

The common organizational umt m an APL system is
the workspace. When in use, a workspace is said to be
active, and it occupies a block of main storage. Part of
each workspace is set aside to serve the internal work­
ings of the system, and the remainder is used, as re­
quired, for storing items of information and for contain­
ing transient information generated in the course of a
computation. (From IBM Manual, page 29)

SLIDE 23 ~IIIL
summary5€)

Main Ideas

• Workspaces and libraries

• Omission 01 parenlheses

• Defined funcllons

SLIDE 24 ~IIIL

Workspaces and libraries
• A WORKSPACE

conlalns a sel 01 named objects, such as
.gmso. and--..nd 6,ikJSs.

• A LIBRARY
confalns a set of named workspaces

• A WORKSPACE FROM A LIBRARY
may be acllvated by)WAD

• AN ACTIVE WORKSPACE
may be put In a library by)5AVE

An active workspace is always associated with a termi­
nal during a work session, and all transactions with the
system are mediated by it. In particular, the names of
variables (data items) and defined functions (programs)
used in calculations always refer to objects known by
those names in the active workspace; information on the
progress of program execution is maintained in the state
indicator of the active workspace; and control informa­
tion affecting the form of output is held within the
active workspace. (From IBM Manual, page 29)

Inactive workspaces are stored in libraries, where they
are identified by arbitrary names. They occupy space
in auxiliary storage and cannot be worked with directly.
When required, copies of stored workspaces can be
made active, or selected information may be copied
from them into an active workspace. (From IBM Man­
ual, page 29)

Slide 26 may be used to discuss the omission of parenthe­
ses, in the light of the following excerpts from the manu­
als:

Parentheses are used in the familiar way to control the
order of execution in a statement. Any expression with­
in matching parentheses is evaluated before applying to
the result any function outside the matching pair.
(From IBM Manual, page 26)

(f) 1961 I.P. SharpAssodates

SLIDE 25 ~IIIL

YOUR OWN ANOTHER USER'S

~-~--
Berry, page 9

23

Omission of parentheses
Three equivalent statements of order
of execution:

• Insert Implied parentheses as shown
In $esslon 6

• The right argument of a funcllon Is the
entire expression to lis right

• Execute from right to left

~"II

SLIDE 26

SLIDE 27

~III~

IBM, page 26

~III~

In conventional notation, the order of execution of an
unparenthesized sequence of monadic functions may be
stated as follows: the (right-hand) argument of any
function is the value of the entire expression to the
right. For example, Log Sin Arctan x means the Log
of Sin Arctan x, which means Log of Sin of Arctan x.
In APL, the same rule applies to dyadic functions as
well. Moreover, all functions both primitive and de­
fined, are treated alike; there is no hierarchy among
functions (such as multiplication being done before ad­
dition or subtraction). (From IBM Manual, page 26)

Defined functions
A name may be assigned to:

• The result of an expression. and Is fhen
called a variable

• An expression, and is then called a
defined function or program, and can
be applied to arguments

IBM. page 13
Berry, page 12

24

An equivalent statement of this rule is that an unpar­
enthesized expression is evaluated in order from right
to left. For example, the expression 3x8r3* 15-7 is
equivalent to 3x (8 r (3* (I (5 -7)))). Their result is
27. A consequence of the rule is that the only substan­
tive use of parentheses is to form the left argument of
a function. For example, (12-;-3)x2 is 8 and
12-;-3x2 is 2. However, redundant pairs of parentheses
can be used at will. Thus, 12-;- (3x2) is also 2. (From
IBM Manual, page 26)

Slide 27 may be used to discuss the notion of defined
functions, in the light of the following excerpts from the
manuals:

Names are used for two major categories of objects.
There are names for collections of data, made up of
numbers or characters. Such a named collection is cal­
led a variable. Names may also be used for programs
made up of sequences of APL statements. Such pro­
grams are called defined functions. Once they have been
established, names of variables and defined functions
can be used in statements by themselves or in combina­
tion with the primitive functions and objects. (From
IBM Manual, page 13)

Programming is the art of defining new functions that
take as their arguments some data you have, and
produce as their results some data you want. A pro­
gram is usually a definition for a function. Presumably,
if there already exists a function that does just what
you want, you won't need a new definition; so, in prac­
tice, programming is writing a definition for a new
function that would not otherwise be available to you.
(From Berry Manual, page 12)

A definition must be stated in terms that can be under­
stood. The primitive functions of a programming lan­
guage are those functions that need no explanation.
(From Berry Manual, page 12)

S 1961 I.P. ShorpAssoclates

SESSIONS

9-12
Handling Questions

~IIII

9.1 Sometimes A, [1] B works, sometimes A, [2]B does, and sometimes neither; I don't understand
why. I <. - I

u

The shapes of the two arguments to a function must conform in certain ways. For example,
in the expression A+B, the shapes pA and pB must agree unless one of A or B contains a single
element.

The conformability rules for catenation (denoted by the comma) are more complex, but are
presented clearly in the manuals. If you wish to experiment, define a tall table TT+-6 4p' D' ,
a long table LT+-4 6 p 'iii' , a long vector LV+-6 p' 0' , and a short vector SV+-4 p '*' . Then display
them and try expressions such as TT, [1] TT and TT, [2]TT and TT, [2]SV, etc.

9.2 The experiments with "If and i. suggested in this session involve vectors (such as N+-123 456
and C+-' 123 456' only. When I try M+-"lfOIL72 or T+-"lfOIL, they work as I expect, but why
do i.M and i.T give domain errors?

Although the execute function (i.) happens to be the inverse of format ("If) when applied to
vectors, its primary purpose is more general, namely, to execute its vector argument as an APL
expression. For example, i. 'OIL72+0IL73 ' and i. 'X+-3'. This definition could be extended to
a higher-rank argument in several ways (such as to execute the rows in sequence or, as suggested
by your question, to form an array from the execution of all of the rows). The definition is
therefore (as yet) restricted to vector arguments.

9.3 How, then, could we obtain the numeric matrix OIL72 from the character matrix M+-"lfOIL72?

Obtaining the numeric OIL72 from the character matrix M+-"lfOIL72 could be done as a sequence
of operations, (that is, i.M[I;] for each row I of M). The definition of functions to perform such
sequences will be discussed in Sessions 16 and 18.

Alternatively, you might apply i. to the ravel of M, or better (taking a hint from the example
i.C,' ',C in Session 9) to the expression ,M,' '. It remains to reshape the result
R+-i.,M,' , by an expression DpR. Note that D is neither pM nor pR, but can be produced by
some expression involving both.

10.1 I see how the expressions U/[1]M and U/[2]M select rows and columns, respectively, but how
could I select both rows and columns.

Apply U/ [1] to the result of U/ [2]M, that is, enter U/ [1]V/ [2]M. Conversely, you could use
U/[2]U/[1]M.

~ 1961 I.P. SharpAssodotes 25

~1I11

10.2 I have X+-3 5 12 4 7 and understand UIX, but I inadvertently entered XIX and got a result
I do not understand. (On systems which do not have replicate, the question might be that
XIX gave a domain error rather than the "obvious" result actually produced by replicate.)

Try other experiments such as 0 1 2 3 41X or (16) I 16, and try to deduce the general
definition of this function, remembering that your definition must cover the boolean cases
(zeros and ones only) that occur in the expressions in the session.

You may not find this definition in the manuals, since it is a recent extension of the more limited
definition for boolean left arguments. It is not yet incorporated in some APL systems, and may
even be incorporated in a system, but not yet in its manual.

10.3 With X+-3 5 12 4 7, I tried 8tX, and similar experiments and I now understand how to extend
a vector to the right with zeros. How can I extend it to the left?

Try 8tX, and similar experiments. You might also try similar experiments on higher-rank
numeric arrays (tables, lists of tables, etc.), and also on character vectors and matrices. Alterna­
tively, read about the functions take and drop in the manuals.

10.4 Is there a simple rule I could use to predict the shape of any array obtained by indexing?

Yes, there is a simple rule for the shape of the result of indexing. Try pM[I; JJ for various
shapes and ranks of I and J, and compare with pI and pJ. Note that I and J can themselves
be scalars, vectors, matrices, or anything, provided only that their elements are all proper indices
to M. Confirm your conjecture by consulting the manuals.

10.5 I understand how (HV)-CHV) produces differences, and how these differences can be useful.
However, I cannot fathom how the function DIFF works.

Yes, DIFF is difficult, but only because it comprises a sequence of things which are individually
simple and probably well-understood. One general technique for understanding such a function
is to try it for some case (such as 2 DIFF OIL), then substitute 2 for a and OIL for w in the
definition, and then execute each small part of the expression in the proper sequence.

However, this reading technique is the topic of the following session, and you may want to defer
further work on DIFF to the end of that session.

11.1 I found the o. + very interesting and consulted all three of the tables in the manual that we
were told to mark at the outset, but found no clues.

Look for "function tables" In the index In one or both of the manuals.

26 \tl1981 I.P.Shorp~iates

~IIII

11.2 What is the point of doubling each quote mark m entering the definition of the function
BARCHART?

Any character used (as the quote is used) to delimit a sequence, cannot itself be included in
a sequence without invoking some special convention. A convention often adopted is the one used
here for the quote, namely, two quote marks in succession denote an actual quote symbol, not
the termination of the sequence.

Consult either or both manuals on this matter. The use of literal input (to be discussed in
Session 13) avoids the need to double quotes. If you wish to try it in the present context, enter
Z+{!] followed (in the next entry) by the appropriate character string without doubled quotes,
that is, the one shown in Session 11 as the result of Z. Thus:

Z+{!]
BARCHARTO '.*'[1+Wo.~((la)~a)Xr/wJ

11.3 Why is 1 added to S in the expression for the barchart?

Tr the expression with the 1+ deleted. Also reVIew the experiment concernmg limitations on
indices m Session 10.

11.4 Can you suggest further examples of function definitions to tryout the reading techniques of
this session?

You might try detailed reading of expressions from earlier sessions, although most of them,
except possibly the function DIFF of Session 10, are probably already too well-understood to
be interesting.

Later sessions and the supplementary exercises will provide more challenging examples, and
these reading techniques should be applied to them as much as possible.

A wealth of examples can be found in references such as Notation as a Tool of Thought, APL
in Exposition, and Programming Style in APL. However, many of these are (like the functions
EDIT, DEFINE, etc., in the workspace 12 COURSE) based upon notions introduced in Sessions
16 and 18, and should perhaps not be attempted until these sessions are completed.

12.1 Your definition of "parameter" as "named quantities used in the calculation" conflicts with the
normally accepted meaning of the term.

As may be seen from the Usage note in the American Heritage dictionary, "the newer nonmath­
ematical senses of parameter are widely disputed". The main definition given by American
Heritage is "A variable or an arbitrary constant appearing in a mathematical expression, each
value of which restricts or determines the specific form of the expression", a definition which
accords with the one given in Session 12.

In programming jargon, the term "global variable" is often used in the sense used here for
"parameter".

({> 1981 I.P: ShorpAssociafes 27

~IIII

12.2 Your answer concerning the use of the word parameter, seems to denigrate programmers as users
of jargon.

Every trade uses jargon, that is, terms having specialized meanings in the trade. In the present
instance, "parameter" may be found in any good dictionary, with a definition that accords with
that used here, but an entry for "global variable" cannot be found, nor can the intended meaning
be properly derived from the individual words "global" and "variable".

12.3 What is the meaning of +\BPI and where is it discussed in the manuals?

The expression +\ BPI gives the cumulative sums of the elements of BPI. For further informa­
tion in the manuals, look for the word "scan".

12.4 I don't understand the definition of the function TAX.

Review the reading techniques of Session 11 and try to apply them systematically to gain an
understanding of the function TAX.

28 ~ 1981 LP. Shorp Associotes

Summary Lecture ~1I11

Indexing
l'l.] ••

.") 1J--

£(1 ,IJ --

V[Al

SLIDE 29
--....~-----------

A better grasp of the selection functions can be attained
with the aid of graphic examples of them. Many are pro­
vided in the manuals; Slide 29 shows one of them for the
specific case of indexing, and Slide 30 gives points of refer­
ence for the other cases.

Slide 31 may be used as a further exercise in reading, first
without the use of a terminal, and then with the use of
the terminal as an aid or as a check. Ask a student to
perform the reading.

A[.4;
;AJ

E[1.] -- I. "
F[;1] -- I ~

A8Cl
'Af<r~'£F;H•• ·J\':"[£] - FF;H

.,'A:.

18M, figure 10

Function tables are a special case of the use of operators.
The instructor should be familiar with the discussion of
operators on pages 39-43 of the IBM manual, and should
be particularly careful to avoid confusing students by the
common practice of using "operator" as a synonym for
"function".

Although the notion of operator should be introduced at
this point, extended discussion of it should be avoided. An
appropriate level of discussion is suggested by Slide 32.

SLIDE 30

Graphic examples of selection
functions

• General: IBM tlgure 10, page 44

• Compression: 18M, page S3 e0..«1
• Indexing: Berry, page 1SS

• Take and drop: Berry, page 1S3

SLIDE 28 ~IIII SLIDE 31 ~IIIL

Summary 9-12
Main Ideas

• selection functions

• Reading

• Function tables
Operators

READING EXAMPLE

CEO w[l+(pw)!Xo.+X+(la)-l]

SUGGESTED ARGUMENTS:

8 CB '[ffi'

SLIDE 32 ~IIII

-\- 'f>h-C~
olA. 0/ f>

o ~
~

~eAd

Operator
Applies to a tunctlon to produce
a related function

Examples:

+I Summation over

• . + Addition table

xl Product over

• . x Multiplication table
IBM, page 39

«> 1981 I.P: ShorpAssodotes 29

30 Cl1Q81 I.P: Sharp AssocIates

SESSIONS

13-16

Handling Questions

13.1 I don't understand the function KE.

~IIIL

The function KE provides another way of accepting keyboard input. Since its definition is dead
simple (assuming that you have learned the use of [!] and .1), your difficulty probably arises from
a failure to see the point of the function, that is, its potential use.

It might therefore be best to proceed with the work of this and later sessions in order to see
the use of the function, and perhaps to further appreciate its point by trying to substitute other
equivalent expressions for it wherever it occurs.

13.2 I don't understand the function KETAX.

Carefully review the techniques suggested in Session 11, and try to apply them to gain an
understanding of the function KETAX. If you still feel uncertain about the function, it might be
best to make a note to review it again after proceeding through the next three or four sessions.

14.1 Does the use of [}- that we have here explain the rather mysterious behaviour of the function
EDIT that we have been using?

Yes, you may want to enter SHOW 'EDIT' to examine the use of [}- within it. However, you
will still not be able to understand the whole definition of EDIT until you understand the
conditional and recursive definition of functions discussed in Session 18.

14.2 What is the purpose of Ot 10 the definition of the function PR?

\»
a) Revise the definition of PR so as to remove the execute symbol (.1), and then experiment with
the expression PR MSG.

b) Now revise PR so as to remove Ot as well, and repeat the experiments.

c) Revise PR further so as to replace the original ot by 3t and repeat the experiment.

14.3 Could the expression .![!] used in the definition of the function PR be replaced by KE, using the
keyboard entry function defined in Session 13?

A good idea. Try it.

C> 1981 I.P ShorpAssodates 31

~IIII

15.1 Are there other files available that I could use?

Yes, for example, one of the supplementary exercises (which you can begin after finishing Session
20) concerns the use of a file of geographical data called NMIONS. You may experiment with
it now if you wish. Since it belongs to account number 13, the name NMIONS must be prefaced
by 13, as in RANGE '13 NMIONS'.

15.2 I was told that the use of files was more complicated, involving "tieing", "creating", and so on.

Yes, the primitive functions provided for handling files are more difficult for beginners to use
and we have here provided you with more convenient functions defined using those primitives.

If you ever begin to use files in ways in which more precise control is required (to provide more
efficient execution, for example) you will want to learn about the primitive file functions. Study
of the use of these primitive functions in the functions provided here will make a good introduc­
tion to the topic.

16.1 I got the function INQUIRY working all right, but why does it give a value error when I enter
Z+INQUIRY.

Primitive functions always produce explicit results which can be used as arguments to further
functions (as in 2x (3+4) or can be assigned a name. A function defined in direct definition
form also invariably produces a result, but a function in del form can be defined to produce
an explicit result or not, as desired.

Del form definitions which produce explicit results will be found in Session 17. They can also
be found in the introductory section of the IBM manual.

The different functional forms possible in del form are determined by the header. You may
wish to consult the manuals for that term.

16.2 Is there something like the function EDIT for making modifications in a function defined in del
form?

Yes, consult the manuals for "function definition mode". In particular, see the large chart near
the beginning of Chapter 10 of the Berry manual, and try to follow it by experimenting on your
INQUIRY function.

16.3 What kinds of expressions can follow a branch arrow?

Consult the manuals for discussions of "branch", and test your understanding by experiment.

It is often convenient to use labels in branch expressions. Consult the manuals for their definition
and use. The functions in the introduction to the IBM manual contain examples of their use.

32 <1>1961 I.P SharpA..aclotes

Summary Lecture

For each of the functions listed on Slide 33 and detailed
on Slides 34-37, ask one student to do a detailed reading
of it on the blackboard, and allow others to follow by use
of their terminals.

~IIIL

SLIDE 33 ~IIL SLIDE 37 ~IIIL

Perform a detailed reading of each of
the following functions:

KETAX
PRTAX
INQUIRY (As modified)
GOGET Cl t I t ,.-w

GOGET a. t It ••W

SLIDE 34 ~IIIL

KETAXO KE[KJ+.01xKE[KJxw-KE[K++/w>KEJ

SLIDE 35 ~IIIL

PRTAXO (PH 'BV')[X)+.01x(PR 'BR')[X])(w-X[X_I",>X"'PR 'BP']

SLIDE 36 ~IIIL
'HNQUIRY[OJV

V INQUIRY
[lJ ENTER FILE NAME'
[2J A+l!J
[3J ENTER FILE INDEX'
[4 J B+l!J
[5J "(O=pB)/O
[6 J GET A.' '. B
[7J "3

V

1Il1961 I.P. ShorpAssociotes 33

34 11>1961 I.~ ShorpAssoclotes

SESSIONS

17-20
Handling Questions

17.1 What is the M produced by M+{]CR 'G'? Is it itself a function?

~IIIL

Devise experiments to show that the M produced by M+{]CR 'G' IS not a function, and that it
is simply a table of characters, having the shape 2 7.

You might also enter DFX M, 2 2p' *2' to produce a modified definition of the function
G.

17.2 What is meant by a comment, and how IS it used?

Look up the word "comment" In the manuals.

17.3 What is OTRAP, and why does it occur In direct definitions?

OTRAP is used to "trap" an error, that is, to control what happens in the event that an expression
cannot be completely executed. As used here it ensures that a badly-defined function simply
terminates with a DOMAIN ERROR, and shields the user from many complications associated with
"suspension", with the "stack" produced by suspension, etc.

Traps are discussed further in supplementary exercises. You may also wish to consult either
manual for the terms "suspension" and "stack". Traps are treated only in the Berry manual.

17.4 Why have two forms of function definition? Can I concentrate on just one of them?

Each form of definition has its advantages; everyone should at least learn to read both, and
the serious programmer should learn to write both.

Of their relative advantages, the most important are:

a) Because of its simplicity, direct definition is best for introducing the meaning and use of
function definition.

b) Direct definition requires the use of prepared functions (DEFINE, EDIT, etc., as found in
workspace 12 COURSE), whereas primitive facilities (DFX and the "del function editor"
discussed in the manuals) are provided for the del form. Primitive facilities for direct
definition can be expected to be provided eventually.

c) Because del definition has been in use much longer than direct definition, most current
applications are defined in del form, and any modification, or extension, of present applica­
tions will need competence in the del form.

d) Because of the clarity and compactness of direct definition, it is commonly used in APL
publications, and a reading knowledge of it is needed to make these publications accessible.

e) Modular design (i.e., the construction of a complex function as a simple expression which
itself employs simpler component functions, rather than as a single monolithic whole)
usually leads to systems which are easier to understand, to document, and to modify and
extend.

1111981 I.P. Sharp Associates 35

~"II
Direct definition encourages modular design: on the one hand, it makes the definiton of
simple functions convenient, and, on the other hand, it makes it awkward to string together
long sequences of (often tenuously-related) expressions.

Finally, it should be remembered that the uses of the two forms of definition can be intermixed,
as they are in workspace 12 COURSE. In particular, systems defined in del form can be modified
or extended using direct definition.

18.1 I find recursive definition difficult.

Yes, many find recursive definition difficult, but it is a powerful design tool well worth learning.

As for anything else, it is probably best to begin by reading a lot of recursive definitions prepared
by others before attempting to write difficult recursive definitions yourself. In fact, your first
writing should perhaps be modifications of existing recursive definitions.

Be sure to begin by using the stepwise reading techniques of Session 11, abbreviating or
abandoning them only when you are able to grasp larger units directly without more detailed
reading.

18.2 But where can I find recursive definitions to read?

If you have already read FAC, FIB, and EDIT, you might best let the matter of recursive
definitions rest until you get the Supplementary Exercises, which you will receive when you
finish Session 20. These exercises provide further examples of recursive definitions, and refer­
ences to other sources.

You may also wish to read all of the recursive definitions in the workspace 12 COURSE.

18.3 I still find it easier to define functions like FAC in del form than to use recursion.

Yes, facility in anything as powerful as recursive definition will not be achieved in a day.
However, recursive definition may also be used in del form, and you may use your facility in
del form to help you to grasp recursive definition.

In particular, take the recursive definitions that you have in direct definition and display their
del form definitions, in the manner shown in Session 17. These should show you how to make
recursive definitions in del form.

19.1 Is the inner product +. x the same as what is called matrix product m mathematics?

Yes +. x in APL is the same as matrix product in mathematics, except that it applies to arrays
of rank 3 or more as well. Try some examples of A+. xB with arrays of rank 3 or more. You
will perhaps learn everything needed by observing the shape of A+ . xB (that is, pA+. xB) relative
to the shapes of A and B.

36 ., 1961 IP. ShorpAssodotes

~IIIL

19.2 What is the best way to learn about other APL primitives that we have not used in this course?

You will find a few new primitives in the supplementary exercises, and you might wish to scan
the tables of functions provided in the manuals.

However, it is probably best to learn new primitives by reading functions defined by others,
using manuals and experimentation when necessary to clarify the definitions of the new primi­
tives encountered. In this way you will see some motivation for each primitive in at least one
application of it, and will often learn imaginative programming techniques as well.

20.1 I don't understand the function SET.

Review the behaviour of the execute function (.t) in Session 9, and then apply the reading
techniques of Session 11 to the expression which defines the function SET.

~ 1981 LP. Sharp Associates 37

Summary Lecture

SLIDE 38

~III~

Instructors should if possible:

Main objective of course
Independence

• Ability to experiment

• Familiarity with manuals

• Reading ability

Main Ideas

• Programming = function definition

• Using primitives

SLIDE 39 ~II~

1.

2.

Ensure that students are allowed continued access
(perhaps with CPU limits applied) to their student
account numbers for a week or two following the
course, and be sure that they are aware of this privi­
lege.

Encourage graduates to call them for help for as long
as they wish after completion of the course.

Suggestions for further study
• Complete the sessions and

supplementary exercises.

• Read the APl language Manual to gain
an overall view offhe language.

• Begin work on a simple appllcallon0' Apt In a topic In your own discipline.

38

Supplementary Exercises ~IIII

The purposes of the supplementary exerCIses are stated in the instructor's guide as follows:

Supplementary exercises are provided in a final section. They may be used in various
ways: as a source of exercises for review or tests, as material to supplement each session
for weaker students or students working independently, or as material for further study
following a course. Completion of all of the supplementary exercises would probably
require a further three days.

In a brief intensive course the supplementary exercises should be used sparingly, if
at all, since the time they take may prevent students from progressing far enough to
gain a comprehensive view of the essential topics.

Although an instructor may make little direct use of the supplementary exercises, he should be familiar
with them. During the course, they can be used for weaker students to reiterate, in different examples,
ideas already presented in the sessions. They can also be used to suggest answers to more probing
questions.

Their main use will probably be by students continuing work after the end of the course. Since any
help offered by the instructor may then be restricted to telephone or mailbox communication, it is
particularly helpful to be acquainted with the exercises.

Doing all the exercises would be too trivial and time-consuming for instructors, and we will instead
develop the necessary familiarity by briefly annotating the exercises. A list of suggested annotations
is appended, but the instructors should first be asked, in turn, to suggest annotations for the successive
exercises.

In the annotations below, the abbreviation R indicates that the exercise simply reiterates ideas presented
in the session or earlier exercises, and NF indicates the simple introduction of a new function.

Annotations

1.1

1.2

1.3

1.4

2.1-2

2.3

2.4

2.5

3.1-3

R

The same function (x) may have widely different interpretations in different areas of applica­
tion.

R

R of 1.2

Combined use of functions (1 with +, -, and x) to produce obviously useful "grids".

Input editing. Use if students complain about having to abandon faulty entries. On a system
that uses) to recall a previous line, that might also be introduced.

R of 2.1 (using functions together)

NF and ambivalent use of symbols

NF and ideas on the utility of higher-rank arrays

<fl1961 I.P. SharpA.wx:lotes 39

~"II
4.1-3

4.4

5.1

6.1-2

6.3

7.1-3

8.1

9.1-2

10.1-2

11.1-3

12.1-2

13.1

13.2

14.1-3

15.1-3

15.4

15.5-7

16.1

17.1

17.2

17.3

17.4

18.1

18.2

19.1-2

20.1-6

40

R

NF and answer to question "how can I produce real reports".

R and new material on libraries

R (Substitution in function definition)

R (Omission of parentheses)

R (Examples of function definition)

Rand NF (Definition and revision; 0 w)

Rand NF (scan)

R

R

R

R of Session 11 (Further reading)

Use of tabs (with forward reference to Session 19)

Further exercise in function definition using keyboard input--introduction of "drill" type
functions.

R and the use of established files

NF (Grade)

Enhanced control of files and introduction to primitive file facilities.

Further material on 'V form of definition, including use of labels.

R

Introduction of localization of names.

R

Further work on 'V function definition, usmg a small system so defined.

Use of reading (Session 11) to fix the notion of recursive definition.

Sources of further examples of recursive definition.

R

R

<1>1981 I.P: Sharp Assoclotes

~1I1~

20.7 Notion of consulting standard references and translating their statements into APL.

20.8 Further use of reading techniques.

20.9 Introduction to traps via their use to prevent suspension of functions produced by direct
definition.

20.10-11 Further work on file primitives.

20.12 Introduction of shared variables by way of their use m the functions for remote tutoring.

~ 1981 I.P ShorpAssoclofes 41

Source Book in APL

They are not his weapons,
but his armor.

W.M. Davis

~III~

In his Geographical Essays*, from which the above quotation is taken, Davis argues that in teaching
even the most elementary geography classes, the teacher with a thorough background knowledge of
geologic processes can use that knowledge as "a foundation on which to build explanatory stories in
his many times of need", and that " ... his class will find entertainment and bright instruction, if he
addresses them as one who is well-informed beyond the page of his text-book and who knows more
than he tells".

But Davis also cautions that "It must be borne in mind that it is not supposed for a moment that
every teacher who has learned such facts as these would forthwith teach them to his classes. They
are not his weapons, but his armor".

The several papers included in the APL Source Book (APL Press, 1981) should be considered as
background information to be used as Davis recommends. An instructor thoroughly familiar with them
will find them useful in providing immediate answers, and in providing students with further reading;
an instructor not familiar with them will run the risk of further contributing to the wealth of
misinformation about APL.

The Source Book should be distributed to persons registered for the instructors course so that it may
be studied before the course begins. Failing this, it should be distributed on the first day of the course,
and its study should be assigned as work outside of class hours.

To ensure familiarity with the material in the Source Book, each instructor should be assigned the
task of preparing and presenting a brief report on at least one of the references, in such a manner
that all are treated.

Brief model reports appear below.

The Design of APL

Falkoff and Iverson, IBM Journal of Research and Development, July, 1973. Re­
printed in ACM STAPL APL Quote-Quad, Vol. 6, Issue 1, Spring, 1975.

This paper treats the general principles that guided the design of APL, illustrates their application
to a number of aspects of the language, and provides (in an Appendix) a brief chronology of the
development of APL up to 1973. The authors state the general principles as follows:

The actual operative principles guiding the design of any complex system must be few
and broad. In the present instance we believe these principles to be simplicity and
practicality. Simplicity enters in four guises: uniformity (rules are few and simple),
generality (a small number of general functions provide as special cases a host of more

* Davis, W.M., Geographical Essays, page 90 m Dover Publications 1954 republication of the
1909 edition.

42 (f) 1981 I.P: Sharp ksoclotes

~IIIL

specialized functions), familiarity (familiar symbols and usages are adopted whenever
possible), and brevity (economy of expression is sought). Practicality is manifested in
two respects: concern with actual application of the language, and concern with the
practical limitations imposed by existing equipment.

The specific aspects of the language discussed include:

*

*

*

*

*

The character set and the keyboard arrangement.

Valence (monadic or dyadic), and the order of execution and its consequences.

Scalar functions, with emphasis on the matter of generality (for example, important Boolean
functions such as exclusive-or fall out as special cases of more generally useful relational
functions.

Operators, with discussion of the belated recognition of their importance.

Formal manipulation of APL expressions, and the use of identities.

*

*

*

Execute, as a function which " ... makes the language 'self-conscious'

System Commands and other environmental facilities.

Shared variables as a generalized communication facility.

"

The Evolution of APL

Falkoff and Iverson, Session XIV in History of Programming Languages, R.L.
Wexelblat, Ed., Academic Press, 1981.

This paper discusses the evolution of APL in a manner which complements the earlier "The Design
of APL" (IBM Journal of Rand D, July, 1975). Although this treatment also includes questions of
design choices, it is organized chronologically to give a clearer picture of the lines of development. The
periods identified are:

*

*

*

*

Academic Use [to 1960], covering the initial motivation as a tool for communication among people,
and the double influence of mathematical and programming background.

Machine Description [1961-1963], covering developments stimulated largely by the work of
formally describing IBM's System/360 family of machines.

Implementation [1964-1968], covering developments stimulated by the production of a software
implementation of the language, including the influence of typewriter restrictions.

Systems [after 1968], covering the environment of an APL program, with emphasis on shared
variables as a general communication facility.

The paper concludes with a detailed example (the vector constant) of the evolution of a small facet
of the language, and with a discussion of the relation to mathematical notation.

~ 1981 r.P ShorpAssoclotes 43

~III~

The Inductive Method of Introducing APL

Iverson, APL Users Meeting Proceedings, J.P. Sharp Associates, 1980.

This paper treats the philosophy behind the present course, and develops analogies with the teaching
of natural languages by the so-called direct method used by M.D. Berlitz.

The book by Diller referred to in the paper is excellent, and should be read by any senous teacher
of languages.

Programming Style in APL

Iverson, APL Users Meeting Proceedings, J.P. Sharp Associates, 1978.

This paper discusses general approaches to improving one's use of APL, and illustrates them by specific
examples. It uses direct definition exclusively, and provides some further examples of recursive defini­
tion. An appendix provides an explicit translator from direct to del form, itself expressed in del form.

The approaches to improving programming style include:

1. Techniques for assimilating difficult primitives and commonly used phrases. The inner product
and the dyadic transpose (which often pose difficulties) are both treated at length in a manner
motivated by applications.

2. The advantages of striving for generality in the design of functions, and techniques for achieving
generality are discussed at length. The examples used include the application of functions over
specified subsets.

3. The uses of identities and proofs are introduced in concrete and fairly simple examples.

4. The importance of reading (in the sense introduced in Session 11) is emphasized, and a number
of sources of algorithms for further reading are provided.

Notation as a Tool of Thought

Iverson, Communications of the ACM, August 1980.

This paper applies APL to a number of topics to show how it combines the advantages of executability
and generality offered by programming languages, with the "thinking" advantages (identities, proofs,
etc.) of mathematical notation. It employs direct definition exclusively, provides a number of recursive
definitions, and shows their role in inductive proofs.

Many of the examples used will be outside the experience of the non-mathematical student. However,
because every example is presented in brief, explicit, direct definitions, any student enjoying the use
of an APL terminal should be able to gain a good deal from most of them.

Moreover, many of the topics, such as permutations, directed graphs, and functions on subsets, are
of very general utility (even in rather mundane applications in which their utility often goes unrecog­
nized). Consequently, many of the functions presented may be found to be of immediate use, even by
people who may not completely understand their internal structure.

44 1111981 I.P Sharp Associofes

~III~

Conventions Governing Order of Evaluation

Appendix A of Iverson, Elementary Functions, Science Research Associates, 1966

This paper discusses the conventions used in mathematics and compares them with those of APL. The
conventions in mathematics are shown to be more chaotic and less well-understood than is commonly
realized. It is interesting to note that comprehensive treatments of the established conventions are
difficult or impossible to find. For example, Cajori's two-volume A history of Mathematical
Notations does not address the matter.

Algebra as a language

Appendix A of Iverson, Algebra: An Algorithmic Treatment, APL Press, 1977

Adopting the point of view that " ... the algebraic notation taught in high school is a language (and
indeed the primary language of mathematics) ...", this paper discusses the inconsistencies and deficien­
cies of algebraic notation, and shows how they are remedied in APL. Analogies between the teaching
of algebra and the teaching of natural languages are also discussed.

(1)1981 l.P. ShorpAssociates 45

46 iIl1981 I.p. Sharp Associafes

Instructor's Guide ~III~

The following statements of objectives and methods of the course are reproduced from the introductory
lecture:

The objectives of this course are:

1) to give you the ability to translate into APL, and therefore into computer use,
procedures of interest in your own profession and known or available to you in
terms understood in your profession,

2) to provide sufficient familiarity with APL reference material and with techniques
of experimentation to allow you to continue to expand your mastery of APL
through further use and independent study.

The method used allows you to begin work immediately on an APL terminal, experi­
menting under the guidance of simple written instructions, and proceeding as indepen­
dently of the instructor as your ability permits. Two students work together at each
terminal, to their mutual benefit, and proceed at their own pace independently of other
student pairs.

The instructor therefore spends little time in formal lectures, and most of the time in
individual tutoring -- answering specific questions (perhaps by directing attention to
points covered in earlier sessions), and suggesting general techniques for resolving
questions through further experimentation and further use of the reference material.

The approach used differs markedly from most conventional lecture courses; its mam characteristics
may be summarized as follows:

o It is practical in that the student spends most of the time, from the very outset, in practical
work at a terminal, guided by simple written instructions. The necessary facility at the key­
board and familiarity with the character set, error messages, etc., are absorbed naturally in
the course of addressing more interesting questions.

o It is inductive in that the grammar and structure of APL and the characteristics of its
primitives are presented largely by examples, rather than by formal definitions.

o It is heuristic, not only in the sense that the inductive method leads the student to discover
the general rules of the language, but also in presenting and exercising general techniques of
investigation, including experimentation at the terminal, critical reading of APL expressions,
and experience in the use of manuals and other sources of information.

All of these attributes tend to foster in the student an independence which is more valuable than the
more superficial exposure to a wider range of APL primitives that might be achieved in a lecture
course. Moreover, they are particularly relevant to APL -- not only does its simple and uniform
structure make induction from specific examples easier and the techniques of experimentation more

If> 1981 I.P. SharpAssodotes 47

~"Ii
effective, but it makes more practicable subsequent extension of the student's APL vocabulary (i.e.,
knowledge of APL primitives) through independent use of reference material.

The demands placed on the instructor differ greatly from those imposed by a conventional lecture
course. On the one hand, because the few brief lectures are not central to the course, little or no
experience or ability in lecturing is required. On the other hand, the instructor needs a greater ability
to "lead out" (that is, "educate" in the sense implied by the etymology of that word) students to
examine and experiment with the ideas inherent in the material presented, and requires a greater
working knowledge of APL.

The greater knowledge of APL is required because the emphasis on exploration may lead students
into areas not normally covered in an introductory course, and not necessarily understood by instructors
whose knowledge of APL is largely confined to the content of lecture notes.

Because the demands differ from those imposed by a traditional lecture course, instructors are advised
to study thoroughly the remainder of this guide, and to adhere closely to the procedures suggested,
particularly for the first few trials. Moreover, an instructor should, regardless of the amount of previous
experience in using or teaching APL, go through the sessions on a terminal as a student would.
Finally, it would be wise to review the material in the guide before each of the first few trials of the
course.

Conduct of the Course

In order to conduct the course in the spirit outlined in the introduction, the instructor should observe
the following specifics:

1) Allow the students to begin work on the terminal with as little delay as possible. In particular:

a) Have the terminals already signed on to a clear account number (having an empty workspace
library and no associated files) and defer any mechanics of dial-up and sign-on until the second
day.

b) Open the session with a brief lecture based on the slides provided; then distribute the first
session only and allow the students to get to work.

2) Assign two students to each terminal even if extra terminals are available; joint work by students
is invariably helpful.

To allow students to choose suitable partners, it is best to begin with an informal, unseated, period
(perhaps with refreshments) in which the need for choosing a partner is announced first, and each
student is then asked to introduce himself.

If a student complains of a mismatch (usually in rate of progress), discuss it with both partners
and perhaps suggest a switch with any other mismatched pair you may have noted. If a spare
terminal is available (as it should be), a pair can be split. Although pairing is normally advanta­
geous, it is not essential. In particular, the course may reasonably be offered to a single student,
especially if the instructor has other work to occupy his free time.

3)

48

Some students will read anything in sight rather than start work at the terminal; begin by
confining attention strictly to the first session. In particular, do not distribute the reference manuals
until they are needed, at the end of the second session.

11)1961 I.P Sharp Asscx:iotes

~IIII

4) Leave students alone as much as possible to make and correct their own mistakes, and to gain
confidence in their ability to find their own way out of difficulties. Answer questions as directly
and simply as possible, suppressing the urge to tell more about an issue than the student is
prepared to absorb at the time.

5) Allow each student pair to proceed at their own pace. There is no advantage in pushing or
constraining them to keep the group synchronized, and no increase in the burden on the tutor
due to the lack of synchrony. However, sessions should be handed out one at a time on demand,
since this provides added opportunity for contact between student and tutor.

6) Do not rush the sessions, particularly the earlier ones when the students are faced with the most
fundamental ideas as well as with an unfamiliar keyboard.

7) Three six-hour days should suffice for the twenty sessions, but it is important not to rush sessions
in order to finish them all. Some effort should be made to cover everything up to and including
files (Session 15), and perhaps the 11 form of definition (Session 16), but the remaining sessions
should not be considered essential.

There is, in fact, some advantage in leaving some of the final sessions untouched so that the student
has an easy and familiar continuation available to him. Try to assure that the student has
immediate access to a terminal when he returns to work; in particular, his access to the student
account number should be continued for some period, to encourage him to copy into his own
library the workspace he has developed (including the original 12 COURSE workspace provided),
and to continue his use of APL without interruption.

8) Supplementary exercises are provided in a final section. They may be used in various ways: as
a source of exercises for review or tests, as material to supplement each session for weaker students
or students working independently, or as material for further study following a course. Completion
of all of the supplementary exercises would probably require a further three days.

In a brief intensive course the supplementary exercises should be used sparingly, if at all, since
the time they take may prevent students from progressing far enough to gain a comprehensive
view of the essential topics. Nevertheless, the instructor should be thoroughly familiar with the
supplementary exercises in order to provide guidance for further study, particularly since some
of them (such as 15.5, 15.6, 20.10, and 20.11) lead to more general and more efficient use of
some of the functions introduced in the main sessions.

Reference Material

Two reference manuals should be given to each student, one for the core language common to all
serious APL systems (of which the best is Reference 1 below), and one for the particular system used
(of which the best for SHARP APL is reference 2):

1. APL Language, Form # GC26-3847, IBM Corporation.

2. Berry, P.C., Sharp APL Reference Manual, J.P. Sharp Associates.

The first reference is also available from IBM in both French (Form # GCF2-0135) and German
(Form # GCI2-1328).

Each instructor is expected to study the papers in A Source Book in APL provided with the course.
He should also try to familiarize himself with existing literature on APL, including that cited in the
supplementary exercises.

<D 1981 I.P. SharpA.ssociates 49

~"Ilb
Physical Facilities and Class Size

Because of the tutoring role played by the instructor, the maximum manageable class size depends
on the background, interests, and abilities of the students as well as on the experience of the instructor.
However, an experienced instructor should be able to handle up to two dozen students. A new
instructor should begin as an assistant, or with a class of modest size.

A slide projector and screen should be provided for the prepared slides for the lectures, and a
blackboard or overhead projector should be available for handling questions treated during lectures.

A terminal must be provided for each pair of students, and an extra terminal for the instructor is a
convenience as well as a desirable back-up in the event of terminal failure.

Any terminal which provides a complete APL character set may be used, but printing terminals are
probably to be preferred over video screens for the following reasons:

o They provide printed copy which students may detach for study and revision, or may take away
for study after course hours.

o Their usually lower speed is perfectly adequate for the purposes of the course, and discourages
playful waste of resources which may occur on entering expressions such as 110000.

o They commonly provide better resolution so that students are not faced with blurred representa­
tions of unfamiliar characters.

However, some printing terminals are noisy and video terminals may therefore be preferred, particular­
ly in crowded classrooms.

Installation of Workspaces

Material for the workspace referred to in the sessions and supplementary exercises as 12 COURSE
is provided on a tape in the instructor's kit. The instructor must select from this material the workspace
suited to the particular APL system in use, and install it under the name 12 COURSE. There are
three main cases to be considered: use of the SHARP APL time-sharing service, use of an in-house
SHARP APL system, and use of a non-SHARP APL system:

1. SHARP APL Time-Sharing system.

The workspace 12 COURSE is available, and no further action IS required.

2. SHARP APL In-house system.

Install the workspace 12 COURSE provided on the tape.

3. Non-SHARP systems.

Install the workspace 12 NONSHARP under the name 12 COURSE.

50 ([l1961 I.p. Sharp Assodotes

~IIII

Limitations of Particular Terminals and APL systems

Limitations imposed by facilities may force minor changes m the conduct of the student seSSlOns as
follows:

1. If the use of library 12 is restricted so that it cannot be used for the course, the instructor
must advise students of the library number and name to be substituted for 12 COURSE.

2. If either the terminals or the APL system fail to provide the diamond symbol (0), a substitute
symbol must be chosen, and students must be advised of the substitution:

a) Because some non-SHARP systems do not provide the 0, the substitution of the colon (
:) for the diamond has already been made in the workspace NONSHARP.

b) In the workspace COURSE, replacement of the diamond by the colon can be made by a
systematic substitution in all of the functions except for the file functions GET, RAlVGE,
REMOVE, and TO.

3. Because some APL systems do not provide the necessary facilities for "locking" a function
"compiled" from direct definition form in order to make it behave like a primitive, any instructor
using the workspace NONSHARP should advise students as follows:

a) Recognize any error message which includes a number within brackets as an indication of
a domain error in the function whose name precedes the brackets, and ignore all further
detail.

b) After any such error enter -+ alone on a line to escape from "suspension of execution".
Because the variable OLC contains an index for every line in execution, the comparison
O=pOLC will yield the value 1 if no functions are suspended. It can therefore be used to
indicate when further entry of -+ is needed. Excessive entry of -+ will do no harm.

4. The file facilities provided by different APL systems differ widely, and often differ from one
host operating system to another even for the same APL interpreter. It is therefore impractical
to provide the file access functions GET, TO, etc. in a form that utilizes the file facilities on
non-SHARP APL systems.

The file access functions provided in the workspace NONSHARP therefore mimic the behaviour of
the corresponding functions in COURSE by using variables within the workspace. For the purposes
of the sessions (specifically Session 15) the equivalence is complete, and the instructor need make
no comment.

However, the file functions provided in COURSE are satisfactory for much general use in file
problems (on a SHARP APL system), whereas those provided in NONSHARP are not. The student
should either be warned of this limitation, or the instructor should modify the functions to utilize
the particular file facility available. Although the provision of functions which apply to all such
facilities is impractical, adaptation to a particular system should not be too difficult.

5. The default setting of certain parameters such as OFP (which controls printing precision) differs
on certain APL systems. If the effects of these settings become apparent to students (as they will,
for example, in Session 1 when using the IBM 5100 which has a default setting of 5 for OFP),
the instructor must be prepared to explain the control parameter and either show how to set it
to the standard value (10 for OFP) or explain how to interpret results which differ from those
given in the sessions.

(f) 1981 l.p. Sharp Associates 51

~"II
6. The function DEFINE, and the functions it employs, have been written with emphasis on clarity
rather than efficiency. On micro- or mini-computers, efficiency may become important, and the
instructor may wish to replace these functions by equivalent functions designed to execute efficient­
lyon the particular computer in use.

7. Because facilities for correcting errors differs on different systems, the instructor must be
prepared to give appropriate advice in Session 4.

8. Slow or otherwise limited workspace file facilities provided by some APL systems may make
it inappropriate to use the SAVE and COpy commands as suggested in Session 5, and the instructor
must provide appropriate information. For example,)SAVE on an IBM 5120 will be much slower
than the somewhat different, but usable,)CONTINUE.

Lectures

Lectures should be brief and infrequent, perhaps 15 minutes at the end of each half-day. Moreover,
they should be aimed as much at evoking questions as at presenting prepared material. Answers can
often be kept brief by suggesting expressions which the students may enter later to further illustrate
the behaviour of the functions in question.

The lectures represented by the prepared slides and associated notes are designed to avoid problems
posed by the individual pacing allowed the students: for the faster students they serve as reviews and
overviews, and for the slower students they serve as general introductions to new material which may
help to accelerate their pace. The last lecture discusses avenues of further development.

Remote Tutoring Facilities

An instructor may use the function MONITOR to converse with a student (at a remote location) using
the function TUTOR in the manner described by the function HELP.

Remote tutoring in the main course should be avoided if possible, but its use in any follow-up period
should be encouraged. Instructors should therefore become familiar with the tutoring functions, and
should practice their use as well as study their construction.

An instructor using a non-SHARP system may have to adapt the functions, although they employ only
the most elementary shared variable facilities. On systems which do not provide shared variables,
communication could be provided by way of files.

The coordination provided by the message facilities can, of course, be provided by alternate means,
including even ordinary telephone calls.

52 ~ 1981 I.P. SharpAssodofes

1961 tP Sharp AssoCiotes

(

Session Title Page
1 Names and Expressions 1

2 Experimentation .. 3

3 Further Experimentation 5

4 Literals. .. 7

5 A Library of Workspaces 9

6 Exploring Workspaces 11

7 Defining Functions . 13

8 Revising Functions 16

9 Literal Digits 18

10 Selection Functions 20

11 Reading Expressions 24

12 Using Parameters 28

13 Literal Input 32

14 Prompting Functions 34

15 Public Data (Files) 35

16 Sequential Functions 37

17 Modes of Definition 40

18 Choice and Recursion 41

19 Some Useful Primitives 43

20 Presetting Parameters 46

Supplementary Exercises 47

(

Table
of Contents

10

(

The left side of each page provides examples to be entered on the keyboard, and the right side
provides comments on them. Each expression entered must be followed by striking the RE­
TURN key to signal the APL system to execute the expression.

(

NOTES

1961 i P Sharp AssocKJtes

AREA+-8x2
HEIGHT+-3
VOLUME+-HEIGHTxAREA
HEIGHTxAREA

48
VOLUME

48
3x8x2

48
LENGTH+-8 7 6 5
WIDTH+-2 3 4 5
LENGTHxWIDTH

16 21 24 25
PERIMETER+-2 x (LENGTH+WIDTH)
PERIMETER

20 20 20 20

1.12x1.12x1.12
1.404928

1.12*3
1.404928

C+-2000x(1.12*3)
C

2809.856
LC

2809
L.5+C

2810
(LCx100)"'100

2809.85

The name AREA is assigned to the result
of the multiplication, that is, 16

If no name is assigned to the result, it
is printed

Names may be assigned to lists

Parentheses specify the order in which
parts of an expression are to be
executed

Decimal numbers may be used

Yield of 12 percent for 3 years

Capital from investment of 2000

Rounded down to nearest dollar

Rounded to nearest dollar

Rounded down to nearest cent

1a
Names and
Expressions

1b

((

The purpose of a specific example is to provide a basis for grasping the idea of the general
case. Thus the example 1.12*3 should suggest that any pair of numbers may be used with
the power function denoted by the asterisk. What, then, are the meanings of 9*2 and
9*.5 and 6*.5? What is the meaning of r, a symbol not yet used, but showing a graphic
similarity to the symbol L?

Review the foregoing examples with a view to grasping the general cases they exemplify, trying
your own examples to test your conclusions.

Terminology. Symbols such as + and x denote functions which apply to arguments to produce
results. Thus the expression 8.;.2 means that the divide function, denoted by the symbol.;.,
is to be applied to the left argument 8 and the right argument 2 to produce the result 4, which
is the quotient of 8 divided by 2. The essence of using a computer lies in learning the meaning
of a relatively small number of given primitive functions such as + and x, and learning how
to use them in combination to construct and define new functions suited to perform the tasks
required in a particular profession.

(

NOTES

el"/NY) (/ .5~;, ~

j-j \M bols

1b

1981 I.P Sharp Associates

Names and
Expressions

2

20

1981 IP Sharp AssocKltes

It is often easiest to gain an understanding of a function or expression by using it in a few
examples, and then attempting to state briefly in English what it does. Beside each expression
below, describe the point that it illustrates. For example:

A) The function denoted by 1 (Iota) produces a list of integers up to its argument.

B) Sx IN produces a list of N elements spaced S apart.

110

.2Xl10

3+.2xl10

LIST+-16
TABLE+-2 3 p LIST
LISTXLIST

TABLExTABLE

2xTABLE

LISTOFTABLES+-2 3 4P124

5p1 0
5 5p1 0
4 4p1 0 0 0 0

pLIST
pTABLE
pLISTOFTABLES

6-111
5 4 3 2 1 0 123 4 5

2x(6-111)
10 8 -6 -4 -2 0 2 4 6 8 10

(

NOTES

2a
Experimentation

3

(

2b

(

Terminology. The symbols + and x, which are called St. George's Cross, and St. Andrew's
Cross, respectively, denote the functions plus and times. In reading expressions using them
it is best to use the name of the function denoted, rather than the name of the symbol, as in
"three plus four", not "three St.George's Cross four".

Similarly, the expression 2 3 p LIST should normally be read as "2 3 reshape (of) LIST"
rather than "2 3 rho LIST" (p is the Greek letter rho), and LIST, 7 8 should be read as
"LIST catenated with 7 8", or simply as "LIST with 7 8". Learning the function names as
well as (or instead of) the symbol names facilitates both reference and understanding.

* Put markers in your APL Langua~~~rence manual at the following important tables,
and mark corresponding information in your second manual:

(

NOTES

1961 IP Sharp AssoCIates

*

f.2,Q Figure 4: The APL Character set
p.9.1..Figure 6: Primitive Scalar Functions
f. ~y Figure 10: Primitive Mixed Functions

Use the manuals to give the names of each of the new symbols encountered in this session,
and the names of the functions they represent.

2b
Experimentation

4

(

NOTES

t

.P~ J

I/LIST

+/LIST

Beside each expression below) write a brief statement of what it does. If necessary) consult
the hints which follow certain groups of expressions:30

1/3 142

L/LIST

+/[1]TABLE

+/[2]TABLE

A+-LISTOFTABLES

+/[1]A

+/[2]A

+/[3]A

A, [1]A

TABLE, [1]TABLE

Hint: Examine the shapes of the arguments and results) that is) pA and p+ / [1]A, etc.

LIST ,LIST 4J [7-,) l,st {.~ f!Jr"rtrr

4; LJ1 J.~/t ~ ,2. 1 '" q~lttl Q.!

r, "l '" 2. (l,4t-~co/u ...
., 10 nit...)

ek..

A, [2]A 3a
A, [3]A

~ ~ Hint: Examine the shapes of the arguments and results

Further
Experimentation

1981 IP Sharp AssoclOtes 5

3b *

*

(

Give the names of the new symbols encountered III this seSSiOn, and the names of the
functions they represent.

Enter ?6 several times and try to determine the use of the question mark. Then enter
expressions of the form 2 3p9 and M+?2 3p9 to examine its application to a table.

NOTES

(

Hint: ? is a random-number generator. It is handy for producing arbitrary lists and tables
for use in further experiments. For example, display M and repeat some of the earlier
experiments on it.

3b
Further

~ ~ Experimentation

1981 IP ShorpAssoclOtes 6

4a

(

8

5

1

a

JANET+5
MARY+8
MARY i JANET

MARYLJANET

MARY >JANET

MARY=JANET

Janet received 5 letters today

The maximum received by one of them

The minimum

Mary received more than Janet

They did not receive an equal number

NOTES

(

1961 I.P Sharp AssoclOtes

What sense can you make of the following sentences:

JANET has 5 letters and MARY has 8

JANET has 5 letters and MARY has 4

,JANET' has 5 letters and 'MARY' has 4

The last sentence above uses quotation marks in the usual way to make a literal reference
to the (letters in the) name itself as opposed to what it denotes. The second sentence points
up the potential ambiguity which is resolved by quote marks.

LIST+24.6 3 17
pLIST

3
WOR~'LIST'

pWORD
4

SENTENCE+'LIST THE NET GAINS'
pSENTENCE

18
GIBBERISH+'JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC'
MONTHS+12 3pGIBBERISH
MONTHS

4a
Literals

7

((

NOTES¢SENTENCE The composite symbol ¢ is formed by 0 BACKSPACE
See the manuals

¢[lJMONTHS
~ a lr /I"> !"/

¢[2JMONTHS lrl fa -r a

~ ~ it :.i ~'f
(' ~ a Ttl ro .. J-

/ -'

'*',[2J MONTHS, ',[2J MONTHS ~u' ex ~ eIf ~ j y

x } y) a cI X 0..- 0 r dry 7-
,MONTHS I YX

J
t:l /

, ',[2J MONTHS,

4b

* The comma is used here to denote both a monadic function (which applies to one
argument), and a dyadic function (which applies to two arguments). Give the names of
the functions denoted by comma for the two cases.

* Ravel TABLE and LISTOFTABLES.

Facilities for the correction of errors differ slightly on different APL systems. If yours does
not behave as described below, you may wish to ask the instructor for help.

Because omission of the dosing quote is a common error, you are given an opportunity to add
it (after an intervening carriage return) as illustrated below:

8

4b
Literals

Enter carriage return alone here
Enter dosing quote and carriage return

Review Sessions 1-4 and summarize for your own use the material covered.

SUWlW\""1 Lec1.re..) Sl;.lv /2-2.2.-
*

S+-'NOW IS THE TIME'

Striking the linefeed key erases anything at and to the right of the position of the carriage
(or cursor). Corrections can therefore be made by backspacing to any point, striking linefeed,
and continuing typing. Experiment with this facility.

S+-'NOW IS THE TIME
EDIT OPEN QUOTE

S+-'NOW IS THE TIME

1\161 I.P Shorp Ass& 'IOtes

50

((

The workspace in which your work is carried out by th.{·tot~y,teI contains a record of the
names used and of the quantities assigned to them. It also keeps a catalog of these names (or
variables, as they are often called) which can be obtained by entering:

(

NOTES

1Q61 I P Sharp Assocl(Jtes

)VARS

)SAVE LESSON

)LIB
LESSON

PERIMETER
20 20 20 20

)VARS

)CLEAR
)VARS

)LOAD LESSON
)VARS

)ERASE VOLUME

VOLUME
VALUE ERROR

VOLUME
!I.

)COPY LESSON VOLUME
SAVED 18.10.21 01/31/80

VOLUME
48

This command is useful to remind you of names used or to
help you explore a workspace prepared by someone else

A copy of this active workspace will be saved in your
library under the name LESSON

Listing the names of workspaces in your
library verifies that it contains the
workspace LESSON.

Verify that the active workspace is not
destroyed by saving a copy of it

Clear the active workspace, and verify
that it has been cleared

Load the library copy and verify that
the active workspace has been restored

Erase the name VOLUME

Sa
A Library of
Workspaces

9

5b)ERASE VOLUME

)LOAD LESSON
SAVED 18.10.21 01/31/80

VOLUME
4-8

)LIB 12 List the workspaces in public library 12
COURSE

)LOAD 12 COURSE Load COURSE from library 12
SAVED 18.22.24- 03/24-/80

)SAVE MINE Add the workspace 12 COURSE to your library under the
name MINE

)LIB List your library of workspaces
LESSON MINE

NOTES

Sb

(

A Library of
~ I Workspaces

1981 IP Sharp AssocKltes 10

(((

List your library of workspaces, load
MINE, and explore its variables6a)LIB

LESSON MINE
)LOAD MINE
)VARS

CAPITAL DEFTEST GROSS
RATE SALES80 YEARS

ITEMS
ALPH

NAMES
fORMS

OIL72 OIL73

NOTES

This workspace also contains user-defined functions which supplement the primitive functions
such as +,x,*, and L:

AT
HELP
SHOW
LQCK

)FNS
DEFINE DELETE DESCRIBE EDIT
MONITOR PRALL PRINT RANGE RC
TIMES ~ TUTOR CFD E..Q
SPLIT ~ NoT ~ ££s ~YI

FLIB GET
REMOVE ROUND
fORM LG..L

1981 LP Sharp AssoCiotes

GROSS
24.783 31.146 42 29.56

ROUND GROSS
25 31 42 30

RC GROSS
24.78 31.15 42 29.56

YEARS AT RATE
1. 404928

CAPITAL TIMES YEARS AT RATE
2809.856

SHOW 'ROUND'
ROUNDO L. 5+w

SHOW 'RC'
RCO (ROUND wx100)~100

The function ROUND does what
its name suggests

RC Rounds to nearest cent

The function AT determines yield

Show the definition of
the function ROUND

60
Exploring
Workspoces

11

(

NOTES
l)l

(

~(a.c

Read this definition of AT as "Divide the
right argument by 100, add 1, and raise the
result to the power given by the left argument"

SHOW 'AT'
ATO (1+w"'l00)*a

SHOW 'TIMES'
TIMESO axw

(

6b

* Review the comments on terminology in Session 2, and state how the symbols a and w
(the first and last letters of the Greek alphabet) should be read when they occur in function
definitions.

*(Enter HELP to obtain instructions for communicating with a remote tutor, and use the
'< manuals to clarify any new terms encountered. If you have not been assigned a remoteL. tutor you may wish to skip this.

Omission of parentheses. If an expression is not completely parenthesized, then it is to be
executed in an order as if parentheses are inserted beginning at the right, as shown below.
Until this rule becomes familiar, one should mentally, or actually, insert the full set of
parentheses.

* Enter A+-l0 and B+-13. Then enter some of the following expressions to verify that they
are equivalent:

A+3xlB-6

-t -t ~

A+3xl(B-6)

-t -t
A+3x(l(B-6))

-t -t
A+(3x(1(B-6)))

6b
Exploring
Workspaces

1981 I P Sharp AssoCiotes 12

70 SHOW 'ROUND'
ROUNDO L. 5+w

DEFINE 'RO L.5+w'

R 12 13 14.;.-3
445

DEFINE 'SQUAREROOTO w*.5'

(

Define an equivalent function
having a shorter name

(

NOTES

DEFINE 'BEELINEO SQUAREROOT (a*2)+(w*2)'

3 BEELINE 4
5

DEFINE 'HYPOTENUSEO aBEELINEw'

Except in the simplest cases, function definition should be approached in the following steps:

1) Choose some sample values for which the desired result of applying the function is
known.

2) Enter an expression expected to give this result, and revise it until it does.

1961 IP Sharp AssoclOtes

3) Define the desired function, using the final correct expression, but with a substituted
for the left..ar ument, and w substituted for the ri ht.- - -
For example, define a function called ROWSUMS which applied to a table yields the sums
of the rows. As an example, use the table OIL72 which gives oil imports from each of
eight countries for each month of the year 1972. We first try:

+/[1]OIL72

and see that it gives a twelve-element result. Since OIL72 has 8 rows and 12 columns
(as given by pOIL72), this result cannot be correct, and we revise it to:

+/[2]OIL72

70
Defining
Functions

13

7b

(

*

*

*

(

We now define ROWSUMS by this expression, with w substituted for the argument name
01L72. Thus:

DEFINE 'ROWSUMSO +/[2Jw'

Try the function ROWSUMS on various tables.

Define and use a corresponding function COLSUMS.

Define a function SUM such that 1 SUM T gives column sums of a table T, and
2 SUM T gives row sums of T.

NOTES

Hint: Try the following sequence:

A+-1
+/[AJ 01L72
A+-2
+/[AJ 01L72

*

*

Try the function SUM on the argument OIL with vanous left arguments 1, and 2, and
3. State the general behavior of the function.

The cost of a list of order quantities Q whose prices are P is obtained by multiplying each
quantity by the corresponding price and summing the results. Define a function CM (Cost
At) to give this result. For example, if

P+-20 15 10 24
Q+-5 4 0 2

1981 IP Sharp AssoclOtes

then Q CM P should give 208.

7b
Defining
Functions

14

7c

(

* Enter

) SAVE

((

NOTES

1\181 IP Sharp AssocKltes

at the end of each session to save the current state of your workspace, and hence to save any
new functions you may have defined. The command)SAVE saves a copy of the active workspace
in the library under its current name. At this point this name would normally be MINE, but
this name could have been changed to CONTINUE by a line drop, that is, a break in communica­
tion with the central computer. For further information, locate the reference to "line drop"in
the index to the manual used.

7c
Defining
Functions

15

80

((

It is often necessary to revise the definition of a function several times before getting it right.
To facilitate this we will now introduce a function EDIT which allows convenient insertions
and deletions in the argument of characters to which it is applied: slashes delete the characters
under which they appear, and anything following the first comma is inserted ahead of the
position occupied by the comma. For example:

(

NOTES

1961 IP Sharp Associates

TEXT+'DDELLLETN AND INSRTION'
Z+EDIT TEXT

DDELLLETN AND INSRTION
I II ,IO
DELETION AND INSRTION

,E
DELETION AND INSERTION

Z
DELETION AND INSERTION

Revision of a function.

SHOW 'RC'
RCO (ROUND wxl00)~100

Q+EDIT SHOW 'RC'
RCO (ROUND wxl00)~100

II,RAP
RAPO (ROUND wxl00)~100

I,*CI.
RAPO (ROUND wxl0*CI.)~100

I,*CI.
RAPO (ROUND wxl0*CI.)~10*CI.

Q

RAPO (ROUND wxl0*CI.)~10*CI.

DEFINE Q
3 RAP 3.45678

3.457

Apply EDIT to erroneous text
Line printed by the function

Line entered on keyboard
Line printed by the function

Line entered on keyboard
Line printed by the function

Empty line entered on keyboard (carriage re­
turn alone) ends execution of EDIT

The result of the function is the final
corrected line printed

Q is simply a character string; the
function RAP becomes defined only when
the DEFINE function is applied to it

80
Revising
Functions

16

8b DEFINE 'REVISEO DEFINE EDIT SHOW w'

REVISE 'SUM'
SUMO +/[a]w
I I I ,MAX
MAXO +/[a]w

I,r
MAXO r/[a]w

2 MAX OIL72
6880 10359 30193 6509 5674 5310 5219 21079

Define a function for revision

(

NOTES

*

*

Apply the function MAX to various arguments

Define an analogous function MIN.

The definition of the function EDIT may be displayed in the usual way by SHOW 'EDIT'.
However, because it uses some primitives not yet introduced, its discussion will be deferred
to a later session. Save your workspace at the end of this session.

* Extend your summary of notation to cover material to the end of this session.

r;trJe 5uVVt~ ~1 ~et~r

5-
(

1981 LP Sharp AssoCIates

8b
Revising
Functions

17

C+-'123 456'
pC

90

((

The following pairs of experiments illustrate the fact that literal digits behave differently from
the numbers that they represent ~"'.k-- -f1.te ~fvtn,~ tI.i~ldt ~ ~-f1,<.(S~ h",((L.!'

-\ w 0 ,s~&fll..k ~-t-rC,,~) H. a.~ -tk e o~.....,...

N+-123 456
pN

NOTES

(

2xN

N,N

N,C

2xC

C,C

C,N

1961 IP Sharp AssoclOtes

The following experiments illustrate the use of a function which applies to numbers and
produces the character strings which represent them, and an inverse function which "executes"
character strings to produce the numbers represented:

CA+-7fN NA+-~C

pCA pNA

lY&f'''Y f 1702xCA 2xNA . W-fJ{"lA.k

CA,CA ~ ~C,C
.-4

c\.L/ ~C, , , ,C

9a
literal
Digits

18

(((

9b Reports may be produced by catenating literal textual information with the literal table repre­
senting the numeric data:

NOTES

SALES80 Display table of monthly sales for 1980

,Y .:. a r

r to

x

MONTHS was specified in Session 4 and saved
in Session 5

)COPY LESSON MONTHS

B~MONTHS,[2J 'I ',[2J ~SALES80

B

MONTHS,[2J ~SALES80

ITEMS

ITEMS,[1J ' ',[1J B

NAMES Names of oil exporting nations

NAMES,[2J ~ 01L72 A report of oil imports

* Define a function called REPORT such that the expression

NAMES REPORT 01L72

yields a report for 1972.

9b
Literal
Digits

1961 I.P ShorpAssoClotes 19

(((

100 X+3 5 12 4 7 NOTES
U+1 0 101
U/X ,.513 12 7 ,
~U ~() ~l

010 1 0 ~

(~U)/X

5 4
(X>4)/X

5 12 7
M+5 5P125
U/[2]M

U/[1]M

2+-01L73

C+(+/[2] 2»150000

C/[1] 2

C/[1] NAMES

2tX \~->3 5
2{-X ~QJ{ I)

12 4 7
2 3tM

1 2 3
6 7 8

* Determine the names of the selection functions introduced above. 100
Selection

~I Functions

1981 I.P Sharp AssocKltes 20

(
(_I sf

(

10b X[3J .I~ NOTES
12

X[2 4J
5 4

M[2 4;1 3 5J
6 8 10

16 18 20
M[2;J

6 7 8 9 10
M[; 1 3J

1 3
6 8

11 13
16 18
21 23

M[;3J
3 8 13 18 23

Do experiments such as X[0 J and X[8 J to determine the limits on meaningful indices.

Try expressions such as 'ABCDEF' [3 1 6 5 J and '. *' [2 1 2 2 1 2]
1961 I P Sharp AssuclOtes

pALT+-OIL[1 234;;J
4 8 12

ALT[;2 3;9+13J
10359 8613 8249
27380 25899 30193

15976 13187 16371
29789 28693 25908

21819 30373 20211
22652 21536 25192

23368 23639 24077
20881 18904 19733

Years 72 to 75 (Compare ALT with
OIL and with OIL72)

10b
Selection
Functions

<-- 21

10c

(

ALPH+'ABCDEFGHIJKLMNOPQRSTUVWXYZ '

ALPH[X]

ALPH[M]

V+2 3 5 7 11 13 17

1+V

1+V

(

NOTES

1981 IJ> Sharp Assocotes

(1+V)-(1+V)

B+OIL72

o 1+B

o 1+B

(0 1+B)-CO 1+B)

D+1 0 0

(D+OIL)-((-D)+OIL)

D+O 0 1

(D+OIL)-((-D)+OIL)

Differences between successive elements

Drop first column of B

Drop last column

Difference gives month-to-month change

Year-to-year changes

Month-to-month changes

10c
Selection
Functions

22

10d

(

A+-1

pOIL
7 8 12

ppOIL
3

lppOIL
123

IfrA=lppOIL
D

100

DEFINE'DIFFO (D+w)-(-Ifra=lppw)+w'

2 DIFF OIL

(

NOTES

1961 I. P Sharp Associates

*

*

Use the function DIFF with the right argument OIL and with various left arguments, and
interpret the results.

Apply the function DIFF to various vector (list) right arguments, and interpret the results.

)SAVE

10d
Selection
Functions

23

110

((

To read a simple but unfamiliar expression such as Ao . +B (that is, to grasp its meaning), apply
it to various arguments, and try to abstract the meaning from the results:

(

NOTES

A+-2 3 5
B+-4 3 2 1

Ao .+B
6 543
7 6 5 4
987 6

Also try related expressions such as A 0 • xB and A 0 • <B

1961 P harp AssocKJles

* The tables produced by the foregoing outer products are function tables in the sense of
addition tables and multiplication tables used in elementary school. Border the tables
by their arguments so as to make clear the calculation that produces them. Make the table
by entering a suitable expression, and then border it by hand, as illustrated below for
the expression Co. +C+-l4f

+- I z... ~

I 234 5
2. 3 4 5 6
? 4 5 6 7

'15678

11a
Reading
Expressions

24

11b

(

To read a more extensive expression, begin in the same way by applying it to suitable
arguments to get a notion of its overall behavior, and continue by applying parts of the
expressiOn in the order in which they are executed in the overall expression:

N+25
A+NAMES
B++/[1J+/[3JOIL
B

2009404 1886577 1512669 935940 898471 817481 808492 2500696

A.' .*'[1+Bo.~(IIB)x(lN)~NJ
ARABIA ******************** .
NIGERIA ****************** .
CANADA *************** .
INDONESIA********* .
IRAN ******** .
LIBYA ******** .
ALGERIA ******** .
OTHER *************************

Do not spend too much time studying the foregoing example before continuing.

Since B was obtained from OIL by summing over both months and years, it represents the total
imports from each of the eight countries in the period covered. The result of the long expression
above is clearly a barchart of these totals, labelled with the country names. We now examine
the expression

piece-by-piece, assigning names to intermediate results when convenient:

NOTES

1981 I.P Sharp Associates

25
N

Q+(IN) ~N

liB
C+(IIB)xQ

The width of the barchart

Numbers from 0 to 1 in 25 equal steps
(display if desired)

The largest value to be charted
Numbers from 0 to the largest value to be charted

11b
Reading
Expressions

25

(((

11c 5+-Bo .?C Comparison of each value of B with NOTES
each value in the range to be charted

5
1 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1

3 21t1+5 Examine a piece of 1+5
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 221
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 111
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 111

, . *' [1+5J

********************
******************
***************
*********
********
********
********

Z+-' BARCHARTO ".*' '[1+W o.?((la)7a)xflwJ' The quote character must be
doubled

Z
BARCHARTO ' .*'[1+Wo.?((la)7a)xflwJ

DEFINE Z 11c

BARCHART B
Reading

~ i
NAME5, , ,

,40 Expressions
)5AVE

1981 IP Sharp AssoclOtes 26

11d

(

10

10

+/2 3 5

X++/2 3 5

[}+-A++/2 3 5

If no name is assigned to a result, it
is displayed
If a name is assigned, it is not displayed

The notation [)+- causes the result to be
printed regardless of name assignments. 0 does
not denote a normal variable but serves
to produce explicit display

NOTES

1961 IP Sharp AssoclQles

Revise the function BARCHART to insert [}+- just before (lex) and observe the behavior of
2+-30 BARCHART Bt..

Revise BARCHART again to display a different intermediate result.

Revise BARCHART again to display all intermediate results.

11d
Reading
Expressions

27

((

120 Computations are often based on published rate tables. For example, a tax calculation function
used in the form TAX TI, where TI is the taxable income, must use tax table data, such as
the values that determine the tax brackets, and the rates applicable in each bracket. To avoid
explicit concern with them when using the function TAX, they may be treated as
parameters, that is, as named quantities used in the calculation.

NOTES

The parameters used in tax calculations might be called BP (for Bracket Points), BR (for
Bracket Rates in percent), and BV (for the value of the tax owing at the beginning of a bracket).
They may be entered from a tax table such as shown in Table 2 at the end of this session.
Thus:

.001xBPI~1 DIFF BP Examine intervals in BP
1 1 4 4 4 4 4 4 4 4 4 4 8 12 12 12 12 20 20 20 20 20

Recompute BP from intervalsO,+\BPI

BP~1000xO 1 2 3 4 8 12 16 20 24 28 32 36 40 44 52
BP~BP,1000x64 76 88 100 120 140 160 180 200
BP Compare BP with Table 2

BR~14 15 16 17 19 22 25 28 32 36
BR~BR,39 42 45 48 50 53 55 58 60 62
1 DIFF BR

1 1 1 2 3 3 344 3 3 332 3 2 322 2 2

Enter bracket rates
64 66 68 69 70
Examine intervals between rates
211

BV~o,+\.01x(-1~BR)x1DIFF BP Compute bracket values and compare
with table

TI~42500

K~/TI>BP

K

Taxable income

14
BP[K],BR[K],BV[K]

40000 48 12140
BV[K]+.01xBR[K]xTI-BP[K]

13340

Index of relevant bracket point
Relevant bracket quantities

Tax calculation

12a
Using
Parameters

1981 LP Sharp AssoCIates 28

12b

(

DEFINE 'TAXO BV[KJ+.01xBR[KJxw-BP[K++/w>BPJ'

(

NOTES
TAX TI

13340
TAX 82345

34700.1

DEFINE 'AVTRO 100x(TAX w)+w'
AVTR TI

31.38823529
ROUND AVTR 82345

42

Only the taxable income appears in
these expressions; the parameters
BP, BR, and BV do not, although
they are used within the function

Average tax rate

Corporate taxes use different values of the parameters BP, BR, and BV as given in Table 1.
Since the personal tax values might be needed again, retain them under the names OBP (old
BP), etc.:

OBP+-BP
OBR+-BR
OBV+-BV
BP+-O 25000
BR+-22 48
BV+-O 5500
TAX TI

13900
ROUND (AVTR TI), AVTR 82345

33 40

The personal tax table parameters can be collected into a single "personal tax table" as follows:

PTT+-(3,pOBP)pOBP,OBR,OBV

1961 I.P Sharp AssocKltes

3 5tPTT
o 1000 2000

14 15 16
o 140 290

3000 4000
17 19

450 620

12b
Using
Parameters

29

(

12c Compare the following calculations with those of a previous page:

TI+42500
K++/TI>PTT[1;]

COL+PTT[;K]
COL

40000 48 12140

COL[3]+.01xCOL[2]xTI-COL[1]

COL[3]+.01xCOL[2]xTI-CCOL+PTT[;+/TI>PTT[1;]])[1]

NOTES

*

*

*

Define a general tax function GTAX such that PTT GTAX TI yields the correct tax on
taxable income TI for the tax table PTT. Since the tax table information is now provided
by an explicit argument, the function GTAX does not use any parameters.

Specify a corporate tax table CTT and use it with the function GTAX to compute corporate
taxes.

Revise your summary of notation to bring it up to date.

)SAVE

Taxable But of
Income not Tax excess
over: over: equals over:

0 25,000 0+22% 0 12c25,000 5,500+48% 25,000

~I
CORPORATE TAX TABLE

Using
ParametersTable 1

It!(~~ .I sf /diJ 2t- S2...1\161 IP Sharp Assocoates S~~ ""'"~ tlf. -It 30

((

12d Taxable But of NOTES
Income not Tax excess

over: over: equals over:

0 1,000 0+14% 0
1,000 2,000 140+15% 1,000
2,000 3,000 290+16% 2,000
3,000 4,000 450+17% 3,000
4,000 8,000 620+19% 4,000
8,000 12,000 1,380+22% 8,000

12,000 16,000 2,260+25% 12,000
16,000 20,000 3,260+28% 16,000
20,000 24,000 4,380+32% 20,000
24,000 28,000 5,660+36% 24,000
28,000 32,000 7,100+39% 28,000
32,000 36,000 8,660+42% 32,000
36,000 40,000 10,340+45% 36,000
40,000 44,000 12,140+48% 40,000
44,000 52,000 14,060+50% 44,000
52,000 64,000 18,060+53% 52,000
64,000 76,000 24,420+55% 64,000
76,000 88,000 31,020+58% 76,000
88,000 100,000 37,980+60% 88,000

100,000 120,000 45,180+62% 100,000
120,000 140,000 57,580+64% 120,000
140,000 160,000 70,380+66% 140,000
160,000 180,000 83,580+68% 160,000
180,000 200,000 97,180+69% 180,000
200,000 110,980+70% 200,000

PERSONAL TAX TABLE
Table 2 12d

~I
Using

s"!.~~ Lec~~ q-I"?.) slt""cle.J' 2../r-J'L Parameters

1981 I.P Sharp Associates 31

((

130 A+{!]
R.V. JONES

pA
10

DEFINE 'REVERSE(>¢[!] '
B+-REVERSE

SLAP
B

PALS
SHOW [!]

AT
ATO (1+w.;.100)*a

DEFINE 'SHO SHOW [!]'
SH

BEELINE
BEELINEO SQUAREROOT (a*2)+(w*2)

DEFINE 'DEFO DEFINE [!]'
DEF

PLUSO a+w
3 PLUS 4

7

The boxed-quote denotes the literal
list next entered on the keyboard

It can be used as an argument to SHOW
to avoid using explicit quotes

Defining SH to take literal input
makes it more convenient to
use than SHOW

Similarly for DEFINE

NOTES

* Use the function DEF to define a function REV which is related to the function
REVISE as DEF is to DEFINE. Use the resulting function REV to revise the function
SQUAREROOT so as to shorten its name.

130
literal

~ f& Input

32

(((

13b Numeric Input

X+-.t[!J
31 2 15

X
31 2 15

2xX
62 4 30

DEF
KEO .t[!J

Execution of literal input
yields numeric results

Define and use a Keyboard Entry function which
produces numeric results from keyboard entries

NOTES

*

*

Use the function REV to revise the function TAX to the following form

KETAXO KE[KJ+.01xKE[KJxw-KE[K+-+/w>KEJ

Use the function KETAX to perform the following pair of experiments:

1961 IP Sharp AssoclOtes

Q+-KETAX 42500
o 25000
o 25000
22 48
o 5500

Q
13900

OBP
OBP
OBR
OBV

13340

Q+-KETAX 42500

Q

13b
Literal
Input

33

140 Review the use of 0+- at the end of Session 11 before continuing with the rest of this session.

(

NOTES

MSG+'DAYS IN CURRENT MONTH:'

DEF
PRO i.[!]. 0 to+-' ENTER '. w A Prompting function

Z+PR MSG
ENTER DAYS IN CURRENT MONTH:
29

Z
29

* Use the function REV to revise the function TAX to the following form:

PRTAXO (PR 'BV')[K]+.01x(PR 'BR')[K]xw-X[K++/w>X+PR 'BP']

* Perform the following pair of experiments with the function PRTAX:

PRTAX 42500
ENTER BP
o 25000
ENTER BR
22 48
ENTER BV
o 5500
13900

PRTAX 42500
ENTER BP
OBP
ENTER BR
OBR
ENTER BV
OBV
13340

1981 IP Sharp As5oclOtes

* Review the techniques for reading expressions and definitions presented in Session 11) and
use them to analyze the details of the function PRTAX.

140
Prompting
Functions

34

15a Data in your active workspace is available to you only, but can be made available to others Notes
by transferring it to a file. A file in SHARP APL is a collection of numbered
components, each of which can contain a single variable. This may not seem like much
information per component, but when combined with the ability to assemble several
variables and functions into a package, files can be very useful indeed. Packages will be
explored in the next Session.

Before you can use a file, you must first create it. You do this with the first of several
system functions which SHARP APL uses to manipulate files. Each of these functions has a
name beginning with the quad character, to distinguish these functions from the ones you
create.

A
14 15 16 17 19 22 25 28 32 36 39 42 45 48 50 eoc.

1

2

3

'TAXES' [}CREATE 1

OBP DAPPENDR 1

OBR DAPPENDR 1

OBV DAPPENDR 1

A+OREAD 1 2

Create a file named TAXES and
tie it to the number 1. You will be
using this number to refer to the file
with other system file functions

Add OBP as a component of the
file by appending it to the file (the 1
is the tie number). The result is the
number of the component you added

Individual items are retrieved by
reading a component

15a
Public Data
(Files)

15b DSIZE 1
1 4 2000 10000

, STRING1' DAPPENDR 1
4

DREAD 1 4
STRING1

'STRING TWO' DREPLACE 1 4
DREAD 1 4

STRING TWO

How big is the file so far? See the
SHARP APL Reference Manual
for the meaning of the result

You can change the data in any
existing component

Notes

Files may contain hundreds of millions of characters of data, and are sometimes used to
complement the storage available in the active workspace, which, in the present system, is
limited to about 650 thousand.

1

1tDAI

DLIB 1tOAI

DNAMES
1234567 TAXES

ONUMS

ITINTIE 1

Current active account number

File library of active account

Names of files you have tied, with
the account numbers which own them
Tie numbers for those file

Release the file

Note: Files which have already been created may be tied either with OTIE, which gives
you exclusive access to the file until you DUNTIE, or with DSTIE, which allows others to
DSTIE the file at the same time. Unless you have pressing need for exclusive access to a
file, you should use DSTIE.

15b
Public Data
(Files)

16a Several different APL objects - both functions and variables - may be bundled together Notes
into a special type of variable called a package. One common use of packages is to group
related functions and data for storage together in a single component of an APL file. Then
all these objects may be retrieved in a single operation.

The SHARP APL language includes several system functions for manipulating packages.

TAXPACK+01'ACK 'PRTAX PR BP BV BR OBP OBV OBR -trap'
TAXPACK

PACKAGE

You have packaged up the tax functions and both sets of tax tables plus -trap (or TRAP on
some terminals), whose secret use you'll see in the next Session. You can't see what is in a
package 'from the outside'. You must use special functions to open it up.

DPNAMES TAXPACK
PRTAX
PR
BP
EV
BR
OBP
OBV
OBR
-trap

'BP' OPVAL TAXPACK
o 25000

) SAVE

What objects are in TAXPACK

16a
What is the value of the object BP Packages
Save the workspace before going on!

·16b ,TAXES' OSTIE 1
TAXPACK DREPLACE 1 4

)CLEAR
CLEAR WS

TP+[]READ 1 4
DPDEF TP
)FNS

PR PRTAX
)VARS

BP BR BV OBP OBR OBV TP trap

Place the entire package in one
component

Read the package back in
Now unpack it into the workspace

Notes

Try using PRTAX (see Session 14). Note that you could have skipped the step of creating
the variable TP by unpacking the component when you read it.

DPDEF DREAD 1 4

You can also add objects to an existing package.

DESCRIBE.-'THIS PACKAGE CONTAINS TAX FUNCTIONS AND TABLES'
BIGGERPACK.-TP DPINS DPACK 'DESCRIBE'

NOTE: OPINS will replace objects in the 'target' package with the same names as objects
in the 'source' package.

* See the SHARP APL Reference Manual for more information on packages and the
system functions which manipulate them.

16b
Packages

17a To define functions which perfonn sequences of actions, we will use an alternative fonn of Notes
definition called the canonical, or del fonn.

[1J
[2J
[3J
[4J
[5J
[6J
[7J
[8J

VINQUIRY
ENTER FILE NAME'

A+{!]

ENTER COMPONENT NUMBER'
B+{!]

A OSTIE 1
DREAD 1,B
LJJNTIE 1
V

The bracketed line numbers are
printed automatically

Close the defmition

INQUIRY
ENTER FILE NAME

TAXES
ENTER COMPONENT NUMBER

2
14 15 16 17 19 22 25 28 32 eoc.

Use the function

[8J
[9J

VINQUIRY
-+1
V

Reopen the definition and add a
branch on line 8 which will cause
line 1 to be executed next.

INQUIRY
ENTER FILE NAME

TAXES
ENTER COMPONENT NUMBER

17a
Sequential
Functions

17b 1
o 1000 2000 3000 4000 SOOO eoc.

ENTER FILE NAME
TAXES

ENTER COMPONENT NUMBER
2
14 15 16 17 19 22 eoc.

ENTER FILE NAME
T
INPUT INTERRUPT
INQUIRY[2] A~[!]

A

VINQUIRY[S]-+3V

INQUIRY
ENTER FILE NAME

TAXES
ENTER COMPONENT NUMBER

1
o 1000 2000 3000 4000 SOOO eoc.

ENTER COMPONENT NUMBER
2
14 15 16 17 19 22 etc.

ENTER COMPONENT NUMBER
T
INPUT INTERRUPT

Repetition of line 1 begins here

Execution of INQUIRY continues.
Enter 0 backspace U backspace T to
escape from endless loop.

Branch out of halted function.

Make branch go to line 3 instead of 1

Enter 0 backspace U backspace T

Notes

17b
Sequential
Functions

17c
4 ~

INQUIRY[~] ~l!l

1\

VINQUIRY[4.5] 4(O=PB)/O

Branch out of halted function.

Add a conditional branch between
lines 4 and 5 to branch to 0 (Le.,
tenninate) if the component number
entered was empty (Le., a return
only)

Notes

* Use the function INQUIRY and verify that an empty entry will terminate the loop.

You have now learned two modes of function definition.

VINQUIRY[O] V
VINQUIRY

[1] ENTER FILE NAME'
[2] A+l!l
[3] ENTER COMPONENT NUMBER'
[4] B+l!l
[5] 4(O=PB)/O
[6] A OSTIE 1
[7] DREAD 1,B
[8] DUNTIE 1
[9] 43

V

DEFINE 'F¢ U+U-f-W'

Display the modified defmition

This mode is called direct definition

17c
Sequential
Functions

17d 2 + 3 F 4 Notes5.75
VZ~X G Y This mode is called canonical

[1] z~x+x+y function definition.
[2] V

2+3 G 4
5.75 The functions F and Gare equivalent.

M+-OCR '0 ' OCR produces the canonical
M representation of its argument

z~x G Y
z.-x+x+y

DEX ' 0' Expunge 0
1

3 G 4
SYNTAX ERROR

3 G 4
1\

DFX M DFX fixes the definition of the
G function represented by its argument

3 G 4
3.75

OCR 'F' Though produced by direct definition
17dr+-a F w; OTRAP F is actually represented in canonical

OTRAP~t;rap fonn, with a final comment line Sequentialr.-a+a+W (which is never actually executed) for
RF<> a+a+W use by the function SHOW, and with Functions

17e an initial trap line which prevents
suspension of the function in
execution (now you know where
trap is used).

* Use OCR to display the canonical definitions of other functions (such as TAX, PRTAX,
etc.) which you have previously defined.

*The function EDIT used in the function REVISE defined in Session 8 provides for
convenient editing of functions defined in the direct definition form. Corresponding
facilities for editing the del form may be found in the manuals and (for full screen
terminals) in workspace 7 DEL.

Notes

17e
Sequential
Functions

150

((

Data in your active workspace is available to you only, but can be made available to others
by transferring it to a file. The following sequence uses the function TO to transfer tax table
data to a file called TAXES:

(

NOTES

OBP TO 'TAXES l'

OBR TO 'TAXES 2'

OBV TO 'TAXES 3'

The indices 1, 2, and 3 identify
the individual items in the file

A+-GET 'TAXES 2' Individual items are retrieved by index
A

14 15 16 17 19 22 25 28 32 3.6 39 42 45 48 50 53 55 58 etc.

3 25

TABLE+-GET 'TAXES 1 2 3'
pTABLE

GET 'TAXES 3 2'

A set of items may be retrieved together
This is the same combined table used
at the end of Session 10

Items may be selected in any order

If the first dimension of an array (list, table, or list of tables) has the value N, (for example,
1tpOIL is 7), then it may be distributed to N items of a file by a single operation. For example:

OIL TO 'IMPORTS 72 73 74 75 76 77 78'

* Get individual items from the IMPORTS file to verify the effect of the preceding expression.

1961 I.P Sharp Assockltes

OIL TO 'IMPORTS 100'

NAMES TO 'IMPORTS l'

The whole array may be entered
as a single item

Non-numeric data may be entered

150
Public Data
(Files)

35

((

15b The functions RANGE and REMOVE are useful in managing files:

(

NOTES
RANGE 'IMPORTS'

72 73 74 75 76 77 78 100 1

REMOVE 'IMPORTS 100'

RANGE 'IMPORTS'
72 73 74 75 76 77 78 1

DEFINE 'SORT 0 w[~wJ'

SORT RANGE 'IMPORTS'
1 72 73 74 75 76 77 78

Gives range of indices

Removes item 100

Files may contain hundreds of millions of characters of data, and are sometimes used to
complement the storage available in the active workspace, which, in the present system, is
limited to about one-quarter million.

1tDAI

FLIB 1tDAI

Current active account number

File library of active account

*

1981 I.P Sharp Associates

Data bases employ files. To get an idea of how data bases are used, obtain a listing of
those available on the system you are working on, and perhaps try one of interest. On
the Sharp APL system you may try the following:

a) First save your current workspace, then load 1 DATABASES, then enter DATABASES,
and then enter answers to the prompts provided. In particular, answer the first with
2 and the second with ALL to get a complete listing.

b) Load 11 BIBLIOGRAPHY, then enter START and answer the successive prompts with
LR (for List Records) and AUTHOR=FALKOFF and TITLE ,SOURCE and DATE and final­
ly with a single space. When printing is completed, enter QUIT.

15b
Public Data
(Files)

36

((

160 To define functions which perform sequences of. actions, we will use an alternative form of
definition called the canonical, or del form.

NOTES

[1J
[2J
[3J
[4J
[5J
[6J

'VINQUIRY
ENTER FILE NAME'

A+{!]

ENTER FILE INDEX'
B+{!]

GET A,' ',B
'V

The bracketed line numbers are
printed automatically

Close the definition

H..a t"Y7 jJ. 6J

~~f.c~ dtl7 YO •

d/ 4 .! /~ 1

INQUIRY
ENTER FILE NAME

TAXES
ENTER FILE INDEX

Use the function

2

14 15 16 1 7 19 22 2 5 2 8 32 36 39 42 45 48 50 53 5 5 5 8 etc.

[6J
[7J

'VINQUIRY
-+1

'V

Reopen definition and add a branch on
line 6 which will cause line 1
to be executed next

INQUIRY
ENTER FILE NAME

TAXES
ENTER FILE INDEX

1981 I P Sharp Assocoates

1
o 1000 2000 3000 4000 8000 etc.

ENTER FILE NAME
TAXES

ENTER FILE INDEX
2
14 15 16 17 19 22 etc.

Repetition of line 1 begins here

16a
Sequential
Functions

37

16b

(

ENTER FILE NAME
UJ
INPUT INTERRUPT
INQUIRY[2] A+{!]

/\

-+

'VINQUIRY[6]-+3'V

INQUIRY
ENTER FILE NAME

TAXES
ENTER FILE INDEX

1
o 1000 2000 3000 4000 8000 etc.

ENTER FILE INDEX
2
14 15 16 1 7 19 22 etc.

ENTER FILE INDEX
UJ
INPUT INTERRUPT
INQUIRY[4] B+{!]

/\

'VINQUIRY[4.5] -+(O=pB)/o 'V

(

Execution of INQUIRY continues
Enter 0 backspace U backspace T to
escape from endless loop

Branch out of halted function

Make the branch go to line 3 instead of 1 to
avoid reentry of the file name

Enter 0 backspace U backspace T

Add a conditional branch between lines 4
and 5 to branch to 0 (i.e., terminate)
if the index entered was empty
(i.e., a return only)

NOTES

1Q61 I P Sharp AssoclOtes

* Use the function INQUIRY and verify that an empty entry will terminate the loop.

16b
Sequential
Functions

38

16c

(

VINQUIRY[OJV
V INQUIRY

[1J ENTER FILE NAME'
[2J A+{!]

[3J ENTER FILE INDEX'
[4J B+{!]
[5J ~(O=pB)/O

[6 J GET A,' " B
[7J ~3

V

Display the modified definition NOTES

*

*

The function EDIT used in the function REVISE defined in Session 8 provides for conve­
nient editing of functions defined in the direct definition form. Corresponding facilities
for editing the del form may be found in the manuals.

Revise your summary of notation.

1961 I.P Sharp Assoctates

16c
Sequential
Functions

39

170

(

DEFINE 'FO a+a~w'

2 + 3 F 4
5.75

(

This mode of function definiton is called direct defini­
tion

(

NOTES

[1J
[2J

5.75

'VZ+-X G Y
Z+-X+X~Y

'V

2+3 G 4

This mode is called canonical function definition

The functions F and G are equivalent

M+-QCR 'G'
M

Z+-X G Y
Z+-X+X~Y

OEX 'G'
1

3 G 4
SYNTAX ERROR

3 G 4
/\

DFXM
G

3 G 4
3.75

OCR produces the canonical
representation of its argument

Expunge G

DFX fixes the definition of the function
represented by its argument

OCR 'F'
B.+-a F w;DTRAP
DTRAP+-TRAP
B.+-a+a~w

RFO a+a~w

1961 P Sho'l' AssoCIates

*

Although produced by direct definition,
F is actually represented in canonical
form, with a final comment line
(which is never actually executed) for
use by the function SHOW, and with an
initial trap line which prevents
suspension of the function in execution
(This result may differ on different
APL systems.)

Use OCR to display the canonical definitions of other functions (such as TAX, PRTAX, etc.)
which you have previously defined.

170
Modes of
Definition

40

180

((

In a conditional definition, the function is defined by three expressions separated by diamonds.
The first expression is a proposition (having only results 0 or 1, which may be thought of
as false or true) which is executed first; if it is false, the next expression is executed, otherwise
the last is executed. For example:

DEF
ABCO W>O 0 w*2 o w*.5 Square root if argument is

positive, square otherwise
ABC 4

2
ABC 4

16

(

NOTES

* The function SHOW is conditional. Display it and analyze its definition, using the tech­
niques of stepwise examination presented in Session 11.

In a recursive definition, the function being defined recurs in its own definition. For example:

DEF
FACO w=O 0 wxFAC w-1 0 1

1981 ,P Sharp AssoclOtes

FAC 4
24

18a
Choice and
Recursion

41

(((

18b Reading from the definition we see that FAC 4 is equivalent to 4xFAC 3, that FAC 3 IS

equivalent to 3xFAC 2, etc. Thus, the following expressions are all equivalent:
NOTES

FAC 4

4xFAC 3

4x3xFAC 2

4x3x2xFAC 1

4x3x2x1xFAC 0

Finally, since the proposition w=O is true for the case FAC 0, the result of FAC 0 IS the
rightmost expression in the definition, namely 1. Thus:

FAC 4 ++ 4x3x2x1x1

* Analyze the recursive definition of the function EDIT.

v

The function FIB applied to a positive whole number N produces the first N fibonacci
numbers, each of which is the sum of the preceding two. It is defined by
FIBO w=10Z.+/-2tZ+FIBw-101. Use and analyze it.

y ~ of

*

18b
Choice and
Recursion

1981 -,rp Assc:>oc 'e 42

190

((

A brief introductory APL course cannot usefully treat all primitives in the language, and even
many of those used cannot be treated in full generality. The student should therefore become
familiar with one or more APL reference manuals, and should be on the alert for further
primitives which may simplify the work of programming. The following examples suggest a
few of the primitives which should be explored:

Format

(

NOTES

3.082 6.474 6.88
5.806 4.335 6.069

25.426 26.923 25.33

A+-3
A

6.456
6.384

26.915

4+0IL72.;.1000

2"lfA
6.46 3.08
6.38 5.81

26.92 25.43

6.47 6.88
4.34 6.07

26.92 25.33

A one-element left argument
determines the number of
digits following the decimal point

8
6.46
6.38

26.92

2 "lf A
3.08
5.81

25.43

6.47
4.34

26.92

6.88
6.07

25.33

Two elements specify column width
and decimal point

1961 P Sharp Assoc>ates

5 0 8 2 5 0 8 2 "lf A Two elements per column specify widths and
decimal points for each column

190
Some Useful
Primitives

43

(

19b Inner Products

V+-1 2 3 4 5
W+-2 0 1 3 2
+/VxW

27
V+.xW

27
M+-4 5P120
M

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

M+.xW
27 67 107 147

301 2+.xM
4-6 52 58 64 70

V+.xV~3

12
Mi.xW

12 27 42 57
M/I..=11 12 13 14 15

001 0

1961 lTP I\ssociates

(

The manuals provide illuminating examples
and diagrams of inner products

(

NOTES

19b
Some Useful
Primitives

44

19c

((

Transpose

The transpose function changes the order of the axes of its right argument. Thus:

OIL Years by suppliers by months

2 1 3 ~ OIL Suppliers by years by months \ 1)
".

1 3 2 ~ OIL Years by months by suppliers

~ OIL Months by suppliers by years

NOTES

* Examine the shapes of each of the foregoing results.

Selector Generators

Read the brief section on this topic in the IBM Manual, and experiment with some of the
examples given there. Also use the atomic vector DAV as a left argument of the index of
function in expressions such as DAV 1 'ABeD' and DAV 1 'ABQ12' and DAV 1 '+ - x' .

Latent Expression

1Q61 I.P Sharp AssoclOtes

.~_man@ls and per orm appropria eriments.

19c
Some Useful
Primitives

45

200

((

DEFINE [!]

SETO i.w. '+-i.[!] , .0 to+-' ENTER '. w
DEFINE [!]

SETUPO O=1tpwOSETUP (1 O.OpSET w[1;J)~wO"

NAMES+-3 2 p , BPBRBV' Make a table of relevant names
NAMES

BP
BR
BV

c
NOTES

DEX NAMES
111

BP
VALUE ERROR

BP
1\

SETUP NAMES
ENTER BP
o 25000
ENTER BR
22 48
ENTER BV
o 5500

BP
o 25000

TAX TI
13900

Expunge these names to show that the
setting produced by SETUP is effective

196' P Sho.. Asso< oles

*

*

Repeat the setup of names, using OBP, OBR, and OBV as responses. Then enter TAX
TI. (The result should be 13340.)

Use the techniques of Session 11 to determine the behaviour of the following functions,
and then state clearly what they do:

STOO =o.Oi.w. '+-i.[!] , .0 pO+-' ENTER '. wOi.w. '+-i.[!] ,

SPOO=1tpwOaSP(1 O.Opo.ST w[1;J)~wO"

S cJ ~W\.4 "" 1 k-t("J-~t 'f - 201 sJ,tIt oS: la'-,., 3'1

20a
Presetting
Parameters

46

((

The first part of each exercise number indicates the session with which it is associated.

1.1 Annotate each of the following expressions in the manner shown in Session 1:

~MILESx1.6

MILES+-KM+1.6

GRAMS+-POUNDS+.0022

F+-32+(1.8xC)

C+-(F-32)+1.8

1.2 For each of the following expressions, first enter expressions which assign values to
the arguments (i.e. the names) used, and then enter the given expression:

PRICExQUANTITY

FORCExDISTANCE

LENGTHxWIDTH

COST+-PRICExQUANTITY

WORK+-FORCExDISTANCE

NOTES

1961 P Sharp As>oootes

1.3 Annotate the sequence produced in Exercise 1.2. For example, the final expression
might be annotated by "The work done is computed as the force applied times the
distance through which it acts".

Supplementary
Exercises

47

(

1.4

(

The names used for the arguments and results in Exercise 1.2 are mnemonic in that
they suggest the interpretation to be given to the expressions in which they appear.
However, all of the expressions concern the same function (multiplication) and their
similarity could be emphasized by using brief neutral names (as in Z+XxY) and
providing annotations for each area of application, accounting, physics, etc. For each
of the following expressions suggest two or more areas of application and provide
annotations for them:

Z+X"'Y

Z+(LAxB) ... B

(

NOTES

2.1 Use the function 1 in expresslOns to:

a) assign to MILES the integer values from 0 to 10, inclusive.

b) assign to F the integer values from 0 to -40.

c) assign to POUNDS the integer and half-integer values from 5 to 1S.

1981 I.P Sharp AssoCiotes

2.2

2.3

Use the expressions from Exercise 1.1 to obtain metric and Celsius equivalents of
the quantities entered in Exercise 2.1 above.

Experiment with revising an entry (before striking the carriage return or entry key)
by backspacing to some point, striking the attention, linefeed, or index key (accord­
ing to the particular terminal) and then continuing with the revised entry.

Supplementary
Exercises

48

(

2.4

(

Annotate the following expressions:

MILES, (MILESx1.6)

2, pMILES

(2,pMILES)p(MILES,(MILESx1.6»

f

NOTES

1981 I.P Sharp AssoCIates

2.5 Consult the definition of the function .;. in the Table of Primitive Scalar Functions
in an APL reference manual, and check your understanding of it by performing
experiments with both one argument (as in ';'4) and two (as in 3';'4). Repeat for a
few other functions in the table.

3.1 Determine the behaviour of the function denoted by ? by applying it in expressions
such as ?6 and?6 6 and ?20 20 20. Confirm your understanding of it by consult­
ing the manual, and then annotate the following expressions:

NINES+-3 5 12 p 9

RAIN+-?NINES

3.2 Enter each of the following expressions, examine the results, and annotate them in
the manner shown for the first, assuming that RAIN represents the monthly rainfall
in three succeeding years in five counties:

+/ [1 J RAIN Three-year rainfall totals from each county by months

+/[2J RAIN

(+/[1J RAIN)';'3

(+/[2JRAIN)';'5
Supplementary
Exercises

49

(

3.3

(

Write expressions to determine:

a) the average yearly rainfall for each county for each year.

b) the average yearly rainfall for the entire area over the three years recorded.

(

NOTES

4.1 a) Carefully observing the number of spaces within the quotes, enter the expression:

Z+-3 8 p 'JANUARY FEBRUARYMARCH

b) Examine the value of Z and use the result as a guide for an expression which
assigns to TM the names of all the months spelled out in full.

c) Repeat part b using an expression of the form TM+-MONTHS, (12 6 pX), where
MONTHS is the table of abbreviated spellings produced in Session 4, and where
you have previously assigned to X the characters necessary to complete the spell­
ing of the months.

4.2 Experiment with the function ~ by applying it to each of the tables MONTHS and
TM, and confirm your understanding of its behaviour by consulting the manual.

4.3 Apply the function ~ to various numerical tables produced in earlier sessions.

4.4 If at this point you wish to experiment with producing "reports" from both numerical
data and tables of literal characters, perform the experiments shown at the beginning
of Session 9, and consult the manual for the definitions of the functions "f and ~.

1981 IP Sharp Associates

5.1 Read the introductory material on workspaces and libraries in the APL language
manual, and confirm your understanding of it by experiments. Supplementary

Exercises

50

(

6.1

(

"The effect of executing the expression ROUND X for any argument X is the same
as would be obtained by substituting X for each occurrence of the symbol w in the
expression which defines the function ROUND, that is, in the expression L. 5+w".
Confirm this statement by entering expressions using different values of the argument
X.

(

NOTES

1981 I P Shorp AssoclOtes

6.2 Make a statement similar to that in Exercise 6.1 concerning the function AT which
applies to two arguments. Confirm your statement as in Exercise 6.1.

6.3 Examine the expressions used in earlier sessions and identify (and verify by experi­
ment) those in which some or all of the parentheses could be omitted without chang­
ing their meanings.

7.1 For each of the following functions, describe its purpose and illustrate its use by
entering its definition and applying it to appropriate arguments:

a) ROWMAXO f/[2]w

b) PLANEMINO L/[1]w

c) MAXO f /[a]w

7.2 The following functions concern areas and other properties of triangles, rectangles,
and other polygons. In each case define the function and choose appropriate argu­
ments to illustrate its use.

a) PERIMETERO +/w

b) SEMIPO. 5xPERIMETER w

c) TRIAREAO (x/(SEMIP w)-O,w)*.5
Supplementary
Exercises

51

(

d) DIAGONALO (+/w*2)*.5

e) TESTO A/w5,SEMIP w

Hint: TEST 2 5 4 yields 1, showing that the lengths 2 5 4 can form the sides of
a triangle. Lengths 2 7 4 cannot.

7.3 The following functions concern boxes, i.e. rectangular solids. Define each function
and apply it to appropriate arguments.

a) VOLO x/w

(

NOTES

b) PERINO 2x+/w

c) SURFACEO 2x+/wx1¢w

d) DIAGONALO (+/w*2)*.5

8.1 a) Using the formula "four-thirds pi times R cubed" as the formula for the volume
of a sphere of radius R, and the value 3.1416 as an approximate value of pi,
define a function SVOL for the volume of a sphere.

b) Revise the function SVOL to replace 3.1416 by the more exact value 01.

9.1 Define the function CUMSUMSO CL, 'f+ \ [2] w, execute the expression
NAMES CUMSUMS OIL73, and discuss the meaning of the result. Note that the backs­
lash symbol \ has not been used before -- experiment with it or consult the manual.

1961 IJ: AssoCiotes

9.2 Repeat Exercise 9.1 with the function CUMMAXO CL, 'fi\w.

Supplementary
Exercises

52

(

10.1

(

Discuss the uses of the following functions:

a) FORYEARSO a[w-1971;;J

b) FORCOUNTR1ESO a[;w;J

c) FORMONTHSO a[; ;wJ

(

NOTES

1Q61 P Sharp AssoclOtes

10.2 State the meaning of each of the following results:

a) 7 8 6+01L

b) +/[3J 7 8 6+01L

c) 0 0 6i-01L

d) 7 8 6+01L

e) 3 8 6+01L

f) ((6p1),6pO)/[3J01L

g) (21112)/[3J01L

h) (1=31112)/[3J01L

11.1 Use the techniques of Session 11 to read the following definitions:

a) D1V1S1B1L1TYTABLEO O=(lW)o. 11w

b) DTO 0 =(1 W) 0 • I 1 W

c) PR1MESO (2=+/[1JDTw)/lW

d) SQRTO w*. 5

Supplementary
Exercises

53

(

14.1

(

Enter and experiment with the functions DRILL and COACH as follows:

DRILLO ~~,Op~'MULTIPLY ',(~w[1]),' AND ',~w[2]

Z+-DRILL 3 7

MULTIPLY 3 AND 7
21

Z
21

COACHO (2 5p'RIGHTWRONG')[1+(x/w)7DRILLw;]

COACH 3 7
MULTIPLY 3 AND 7
20
WRONG

NOTES

1981 I.P Sharp Associates

14.2 Experiment with the function

TESTO (2 5p'RIGHTWRONG')[1+(x/X)7~~,Op~X+-?apw;]

14.3 Revise the function TEST to deal with functions such as + and I instead of x.

15.1 Because of differences in the file facilities provided by APL systems, Exercises 15.1-6
may be expected to apply only to a SHARP APL system.

Every file name is associated with the account number of a user that produced it,
and the full reference to the file includes the account number. For example, on the
SHARP APL system you may enter:

Supplementary
Exercises

55

(

1961 ohOrp ksoclOtes

(

CAPITALS+GET '13 NATIONS l'

COUNTRIES+GET '13 NATIONS 2'

to get items 1 and 2 of the file called NATIONS in account number 13.

(If the account number is not specified, as in GET 'TAXES 2 l' in Session 15, it
is assumed to be the account number in use, that is, 1 tOAI.)

15.2 a) Examine the shapes of the tables CAPITALS, and COUNTRIES, produced In

Exercise 15.1.

b) Print the first 15 countries and then print the first 15 capitals.

c) Make a single table of the countries and capitals side by side, and print the last
ten rows of it.

15.3 Define a function as follows:

DEFINE [!]

NATIONSO GET '13 NATIONS ',"lfw

Use expressions such as AREAS+-NATIONS 3 to assign the names AREAS,
POPULATION, LATITUDES, and LONGITUDES to file elements 3, 4, 5, and 6, respec­
tively. (Use shorter mnemonic names if you prefer).

15.4 a) Enter the expression COUNTRIES [4AREAS;] and state its meaning.

b) Define a function called BY such that the expression
COUNTRIES BY POPULATION produces a table of the countries in order of in­
creasing population.

(

NOTES

Supplementary
Exercises

56

((

c) Produce a table of capitals In decreasing order on the populations of their
countries.

d) Produce a table of countries In increasing order on population density.

15.5 Access to a file can be restricted to any desired list of account numbers (your own
account number can be determined by entering 1 tDAI), and the type of access
permitted (such as read only) can be specified for each account number. The general
facilities provided for controlling file access are rather complex (as may be seen, for
example, from the discussion of file access control in the SHARP APL manual),
but the function ACCESS provides simple controls adequate for a wide range of use.

In order to observe the effects of such restrictions it will be necessary to attempt to
access a file from one or more different account numbers. We will therefore assume
that you have the use of two terminals other than your own which have the account
numbers (as determined by entering 1 tDAI on each) AN1 and AN2. We will further
assume that your own account number is AN.

a) Verify that the files that you have produced using the function TO permit
reading by anyone, but writing only by your account.

b) The expression A TO 'TAXES l' not only enters A as a component of the
file TAXES having the special index -1, but the value of A (called the access
control matrix) will then control access to the file until such time as the
component 1 may be changed by a further use of the function TO.

Enter A+-3 2 pAN ,1, AN1, 0, AN2 , 1 and A TO 'TAXES 1'. Then display A
and try to determine the significance of the access matrix by trying to read and
write the file TAXES from the different account numbers.

(

NOTES

1981 I.P Sharp AssoCIates

c) The access codes in the second column of A specify the access permitted to
the corresponding account numbers in the first column, the code 1 permitting
complete access, and the code 0 permitting read access only.

Verify that (1 2 p (1 tDAI) ,1) TO 'TAXES l' provides a private file.

Supplementary
Exercises

57

(

d)

(

The number 0 in the first (i.e., account number) column of the access control
matrix denotes all accounts. Verify that (1 2p 0 1) TO ' TAXES -1' gives
complete access to all accounts.

(

NOTES

15.6 The function INDEXO(aA . = (-1 t pa) tw) 11, can be used to determine the row index
of an entry in a table. For example:

~T+3 5p'ABEL BAKERDOG
ABEL
BAKER
DOG

T INDEX 'DOG'
3

a) Use the information in Exercises 15.1-3 to construct a table T of names appro­
priate to the components 1 through 6 of the file 13 NATIONS.

b) Define the function GOGET '13 NATIONS " 1'fT INDEX wand experiment
with expressions of the form G 'AREAS'.

15.7 If you are using a non-SHARP APL system, study the file facilities available on your
system and modify the functions TO, GET, RANGE, REMOVE, and FLIB so as to use
the available file facilities, but to preserve as far as possible the appearance of the
functions to the user. If possible, include access control as described in Exercise 15.5.

15.8 Read and experiment with the functions PRINT and PRALL.

1981 I.P Sharp AssocKltes

16.1 Read the sections on function definition in both manuals. In particular, read about
labels and experiment with their use.

Supplementary
Exercises

58

(

17.1

(

Display the definition of the function INQUIRY by entering OCR 'INQUIRY', and
compare the display with that produced at the end of Session 16.

(

NOTES

1981 I.P Shorp Associotes

17.2 The function PRTAX defined in Session 14 assigns a value to the argument X for use
within the definition. This name is made "local" to the function definition so that
it does not affect the value of a similarily named variable. Use OCR 'PRTAX' to
display the definition of the function, note the inclusion of the name X in the header,
and re-read the discussion of local variables in the manuals.

17.3 Use OCR to display the definitions of other existing functions, and carefully compare
the details of the del form of definition with the direct form given by the function
SHOW, or by the comment line at the end of the del form.

17.4 As an exercise in the use of the canonical form of function definition, read the section
A Prepared Workspace in the introduction to the IBM Manual, and enter and use
some or all of the functions and variables shown.

Because of small but significant differences in the treatment of bare output (denoted
by the phrase [!}+-) on different systems, the function NEWSTOCK will not work on all
APL systems. A study of bare output in the manuals will suggest ways to rectify
the matter; the easiest (which works on all systems) is to simply omit all occurrences
of the phrase.

18.1 Use the techniques of Session 11 to read the following function definitions:

a) SORTO O=pw 0 (U/w),SORT (~u+w=L/w)/w 0 10

b) TSORTO a[((pw)[2]) S a1w]
SO a=O 0 (a-i) S w[4w[;a];] 0 w

Hint: Try 'ABCDEFGHIJKLMNOPQRSTUVWXYZ ' TSORT NAMES

c) Sort into alphabetical order the table CAPITALS produced in Exercise 15.1.

Supplementary
Exercises

59

(

1961 IP Sh'1rp AssoclOtes

18.2

19.1

19.2

20.1

20.2

20.3

(

In most published use of direct definition (as in all of the references given in this
exercise) the separation of the segments is indicated by the colon (:) rather than the
diamond. The order of the expressions also differs, with the proposition occurring
between the other two expressions rather than before them.

Read the discussion of recursive definition on pages 141-146 of Iverson Elementary
Analysis (APL Press, Palo Alto, CA, 1976), and do Exercises 10.16 to 10.23. Study
the functions defined in the two papers by D.B. McIntyre, and the one paper by
K.E. Iverson in the proceedings of An APL Users Meeting, I.P. Sharp Associates,
1978. Many recursive definitions may also be found in Notation as a Tool of
Thought, CACM, Aug., 1980.

Consult the manuals for the defintions of format, inner product, and transpose, and
try further experiments to confirm your understanding of them.

Display the matrix Q+-(I (112) .;- 3) 0 • =14 and show that the expression OIL+ . xQ
produces quarterly summaries of the oil data.

Use the techniques of Session 11 to examine the definition of the function SETUP.

Define a function TOTAL which prints the prompting message
ENTER YEAR DESIRED, and then gives the overall total oil imports for the year
entered.

Modify the function TOTAL, if necessary, to allow the entry of several years (e.g.,
73 75 77), and compute the single overall total for those years. Ensure that the
function still works for a single year.

(

NOTES

Supplementary
Exercises

60

(

2004

(

Define a function MAXCHANGE which gives, for each supplier, the maximum change
(either positive or negative) occurring from year to year in total yearly imports. The
argument to which this function must apply is a two-element list specifying the first
and last years in the desired range. For example, MAXCHANGE 73 77 should treat
years 73 to 77, inclusive.

(

NOTES

1981 I.f'SharpAssocKJles

20.5 Define a function IMSS which yields the index of the most stable supplier for the
range of years specified by its argument, that is, the index of the supplier whose
yearly totals showed the least maximum change as given by MAXCHANGE.

20.6 Define a function NMSS which yields the name of the most stable supplier.

20.7 Choose computational procedures of interest in your particular discipline (consulting
handbooks or textbooks if necessary), and define and test corresponding functions. For
example, the text Essentials of Managerial Finance (by J.F. Weston and E.F.
Brigham, published by The Dryden Press, Hinsdale, Ill.) gives, on pages 180-182
of the third edition, a procedure for computing economic order quantity, and an
example of its use. The statement of the procedure may be paraphrased as follows:

The economic order quantity is the square root of twice the product of the
annual sales in units with the quotient obtained by dividing the fixed cost
of placing and receiving an order by the carrying cost per unit of inventory.

Weston and Brigham quote an example in which the annual sales are 100 units, the
carrying cost is $.20 per unit, and the fixed cost of ordering is $10.00; they give the
correct result of the economic order quantity computation as 100 units.

a) Choose names for the relevant variables, and assign to them the values
specified in the example.

b) Write the expression for the economic order quantity, and verify that the
result agrees with that given by the authors.

Supplementary
Exercises

61

((

c) Define a function EOQK which accepts the variable quantities from the
keyboard.

d) Define a function EOQP which prompts for entries from the keyboard.

e) The three parameters of the eoq computation can be combined into a single
vector, as, for example, .20, 10, 100. Define a function EOQ which
applies to such a vector, and test it for the case EOQ .20,10,100.

20.8 Apply the function DEFINE to the argument DEFTEST, and use the techniques out­
lined in Session 11 to analyze it and the functions that it employs.

20.9 In the following exercise, consult the manuals for elucidation of any unfamiliar terms.

a) Define the function F07W, and the corresponding function G as follows:

'V Z+G X
[1J Z+-7X'V

(

NOTES

1981 I.P Sharp Associates

b)

c)

d)

e)

Compare the results of G and F for various arguments, and then compare
their behaviour for the argument o.

Enter)SI to verify that the function G is suspended in execution and that
F is not.

Suspension of F is prevented by the statement OTRAP+-TRAP, which may
be seen in the canonical representation of F by entering OCR' F ' .

Display the value of the parameter TRAP, then respecify it as an empty
vector (by entering TRAP+-' ,) and again compare the behaviour of F a
and G o.

Supplementary
Exercises

62

(

20.10

(

Review exercise 15.5 and then (using the index to locate the relevant pages) read
about the general file access control facilities provided by the system function
OSTAC. In particular, examine the table of permission codes associated with
OSTAC.

a) Enter 'lTO [0] 'V to display the definition of the function TO used to enter data
in files, and identify the line that sets the access state.

b) In the line that sets the access state, replace the expression in parentheses by
1 3p (1 tDAI) •-1 0 and verify that any new file established by the modified
function is private.

c) Change the function name in the header of the modified function to PTO (for
"Private to"). Since this change destroys the function named TO, you may wish
to enter)COPY 12 COURSE TO so that both TO and PTO are available, and
then save the resulting workspace.

d) Modify the function TO to make the left argument of OSTAC the parameter
ACC. Then experiment with the modified function with various settings of the
parameter ACC.

(

NOTES

20.11 A file (such as 13 NATIONS used in exercise 15.1) which was not produced by the
function TO can nevertheless be read by the function GET. The ability to handle such
"foreign" files complicates the definition of the function GET and adds to the cost of
using it.

a) Display the definition of the function GET.

1981 1.1'> ShOrpAssoclotes

b)

c)

Enter 'VGET [L'l1 0 11 12 13] 'V to remove lines 10 through 13 of the definition
of the function GET. Verify that the more efficient modified function can still
be used to read files established by the function TO, but fails to read a foreign
file such as 13 NATIONS.

Display the definition of the modified function GET and compare the line
numbering with the display of the original function.

Supplementary
Exercises

63

(

20.12 The function TUTOR permits a student to communicate with a remote tutor who uses
the complementary function MONITOR; the actual communication is provided by a
simple and important facility called shared variables. The two functions may be used
as an introduction to the topic of shared variables as follows:

NOTES

1961 I.P ShorpAssoc:iotes

a)

b)

c)

d)

Read the first four pages of the section on shared variables in the IBM manual,
and look at Figure 17.

Enter HELP to obtain a discussion of the use of the function TUTOR.

Display the definitions of the functions TUTOR and MONITOR, and spend some
time trying to read them without attempting to execute them.

To experiment with the functions, sign on two terminals on account numbers
ANi and AN2 (as discussed in Exercise 15.5) and use TUTOR on account
ANi and MONITOR on account AN2.

Supplementary
Exercises

64

