Xerox béfQVSysteh1s)([E[{())(®

701 South Aviation Boulevard
El Segundo, California 90245
213679-4511

Introduction To APL (A Programming Language)

by Dennis Taylor : ;
Xerox Data Systems

WHAT 1S APL? | ,

There are two ways to- succinctly describe APL:

(1) APL is an interpretive, time-sharing, problem-solving
language; and

(2) APL is an interactive implementation of Iverson notation.

v

(1) What does "interpretive'" mean?

In an interpretive environment, the system
doesn't wait until a program 1is completed to compile
it into object code and execute it. Instead the
system interprets each linc of input as it is written
to produce code which 1s immediately executed.

Speaking in generalities -- compilers are more
efficient than interpretive systems; but:the competitive
advantage becomes less for interactive requirements.

APL produces extremely tight code - and is, in fact,
more 'efficient' than many of the compilers offecred
today. ‘

(2) What is a "problem-solving" language?

A problem-solving language is onc which does not
require the user to know anything about the computer
or. 1ts programming languages. The computer is treated
as a "black box" -- into which is put a problem (in
the user's own job-oriented language) and from . which
1s receilved an answer (again, in the user's language.)

The attributes of a good problem-solving language

are:
QUICKLY TAUGHT EASY TO LEARN
EASY TO USE MACHINE INDEPENDENT
MINIMUM TYPING TIME IMMEDIATE RESPONSE
AUTOMATIC ERROR CHECKING EASY CORRECTION PROCEDURE
LIBRARY CAPABILITY VISUAL FIDELITY

Xerox ts 8 reqistercd radematn ol Xertox Cotporation

(3) What is Iver.on notation?

In 1957, Dr. Ken Iverson was an Assistant Professor
at Harvard, teaching mathematics and computer science.
He began a book on computing applications, but found he
needed to develop a new notation to be able to write on
topics such as sorting and machine organization. le
had a need for a clear and concise way to describe the
algorithms he was attempting to define. The resulting
notation is today called Iverson notation -- and it is
a strongly algorithmic language.

SAMPLE TERMINAL USAGEL

APL opcrates in three mndes. In "desk calculator' mode, expressions
may be centered for immediate execution. In "function definition"
mode, expressions may be combined into programs and stored for future
use. "Function editing" modec allows us to edit functions previously
stored. '

Let's sit down at a terminal and examine the properties and capa-
bilities of APL. The student's problems are indented about one-half
inch from the left margin; the APL response is left-justificd on the
page. .
DESK CALCULATOR

_ 2472 ' ' As mentioned earlier, APL is
4 ' a problem-solving language. This
' means that a user can enter a
7-6] .problem as simplte (or complicated,
1 : depending on how you look at it)
as 2+2 and get a simple 4 in return.
1.73 x 6 What other system exists where this
10.38 type of interaction 1is possible?

Notice that there dre no "format"
statements, no I/0 statements, and
there is no need to "type'" data as
real or integer.

2+3+5 ' We can even present a number
10 of scalar values to be operatcd upon
.by separating them with native APL
16 x 3 + 4.3 operators.
116.8 :
Unlike ordinary algebra, APL
4 +8+2 has no hierarchy among functions.

8 The order of execution of a state-
ment is from right to left; there-
fore every function takes as its
argument the entire expression to
the right of 1it.

1+3 Notice that accuracy is provided
0.3333333333 to 10 decimal digits (and is carried
, internally to 16 digits.) By the way,
5:0 you had better start getting acquainted
DOMAIN FERROR ' with APL error messages; the. processor
530 ' is quite unforgiving.
A
8+5 - : Onc of the most significant
13 . . _ features of APL is its ability to
’ - work with arrays (and matrices) as
6+5 : easily as it does with scalar values.
11 ' Suppose the ages of your three

children were 8, 6 and 3 and you
wanted to see how old they would be

3+5 five ycars from now. You could
8 create .an APL expression for each
child; or you could save a little

time by entering the ages of the

8 6 3 + 5 children as an array (or vector)
13 11 8 of numbers (represented simply by
leaving spaces between the scalar

values) -- and produce all thrce

results simultaneously. lHere we

‘are mixing a scalar value and a
vector in an APL expression.

8 6 3 + 4 9 1 Now suppose that in the grocery

12 15 g store you buy 8 units of commodity
A, 6 units of B and 3 units of C;
and next week you buy 4 more units
of A, 9 units of B and 1 unit of C.
You can determine how much of each
commodity you have by placing the
"plus' sign between the two arrays
of quantities. This is how APL
reacts when operating upon two
vector quantities in parallel.

8 6 3 + 4 9 By the way, the dimensions of
LENGTH ERROR the two vectors must be the same

8 6 3 + 4 9 for APL to process their elements

A _ in parallel.

2%3 Two commonly-used mathematical
8 ' operators are those for raising
. numbers to powers and taking roots.
2 x 1 2 3 4 5 There exists no standard symbol
2 4 8 16 32 for exponentiation (other than
superscript notation,) so APL uses
the star (x). Notice again how
25 16 8 4 1 * 0.5 we can mix scalar and vector
54 3 2 1 ' quantities; actually this is done
by APL assuming that the scalar is
a vector of equal components tlie
same length as the opposing vector.

513 The MAX () and MIN (L) operators
5 . . arc as uscful as the others previously
' covered. The [symbol placed between
71106 two arguments will generate as a
106 result the larger of the two. The |
symbol generates the smaller of the
two arguments. Necedless to say, thesc

38 [15 30 50
38 38 50

10 12 14 L 6 8 20

6 8 14
6=6
1
6<h
0

1101
2 + (u=n)
3
t
2!3
3

2! 2 3 456 7
1 3 6 10 15 21

'y
24

?5
1

?5
y

e?2

0.6931471806

o1’
3.141582654

10 @ 20
1.301028986

-operators also app.y to the various

combinations of scalars and vectors:

SCALAR

+« SCALAR (. SCALAR
VECTOR ~ SCALAR [VECTOR
VECTOR < VECIOR [SCALAR
VECTOR < VEC?OR [0 VECTOR

Comparison operations assume
their normal functions and use the
following symbols: less than (<);
less than or equal to (£); equal
to (=); greater than or cecqual to (Z);
greater than (>); and not equal to
(#). "How close is equal?" is of
importance, and a tolerance of
approximately 1.0E-13 is used (and
is termed fuzz.) Fuzz is used with
all the comparison operations,
which produce 1 for true and 0 for
false. Thus the result of a comp-
arison operation can be used in an’
arithmetic or logical expression,

~ Other basic mathematical functions
include:

COMBINATION: A!B gives the number of
combinations of B things
taken A at a time.

FACTORIAL: 'A gives the number of
distinct arrangements of A
things.

ROLL: ?A selects an integer

pseudo-randomly from the
first A positive integers.

NATURAL LOGARITHM: @A computes log.A.

“PI TIMES": OA computes mathematical
value of Pi times the operand A.

LOGARITHMS : A®B computes the log
of B to the base A

101
0.8418709848

201 2
0.5403023059

T0.4161468365

CIRCULAR FUNCTIONS: are expressed as

AoX where: (X in radians)
Sin X is 10X Arcsin X is ~10X
Cos X is 20X Arccos X is “20X

Tan X is 30X Arctan X is 30X

100+6
0.5 :
A«3+1
A
CLASS <« A
CLASS
10
A
I
CLASS + A
14
A<1u40
CLASS + A
150
A
140
NUMBERS<1
NUMBERS
1 2 3 4 5
NUMBERS x

2 4 6 8 10

+ 6

Thus far, we have made no mention
of retaining the results of our
evaluations. Assignment of values to
variable names avoids re-entry of
results. The specification (<) symbol
is used instead of the equality symbol
{=) to avoid nonsense statements such
as A=4 + 1.

When specification is made (4<«3+1),
no response is generated. The value
of A may be seen by simply typing

"its name. Notice that the value of

the variable is retained until a
re-specification is made.

Notice also that we can specify
a variable that contains a vector
quantity (or for that matter - a
matrix.)

+/1 2 3 4
15
A<1 2 3 4
+/4A
15
t/A+1
20

(Why?)

It is sometimes useful to place
an operator betwecen the elements of
a vector and, once evaluated, "reduce"
the vector to a scalar value. E: is
the standard symbol for the summation
of the elements of a vector; and IT is
the symbol for the product of these
elements. This is as far as "standard"
notation goes!

The APL operator for reduction is
the symbol /. The operator is written

x/A
120

/74
5

L/7A
1

101/ 10 20 30
10 30

00100/ 123145

A« 1 2 3 6 2

(A23)/4

000/ 157

?(the null vector)

CHAR« 10 12 1 7

pCHAR

to the left, and the clements (r
vector name) are written to the
right of the operator.

Another useful concept is that
of COMPRESSION, which also uses the
symbol /, but differently than does
reduction. In compression a logical
(0's and 1's) vector is placed on
the left side of the operator and a
vector on the right. The logical
vector must be of a length equal to
that of the problem vector (or can
be a scalar 0 or 1.)

Notice what happens! L ave
returned to us only those el: nts
which correspond to a "1'" in the
logical vector. Compression will

be referred to again when we
discuss function definition.

e e e em e e e e e e e e e e em e e e e Re e e e e ek e e e e e e e = e e

Two new operators introduced at
this point would be helpful. The
Greek character rho (p) is the APL
symbol for dimension. Asking the
dimension of a vector is asking how
many elements are in the vector.

The Greek symbol iota (1) 1is
the APL index generator. Stated simply,
1A generates a vector of positive
integers from 1 to A.

APL

X<110

(+/X):pX
5.5 -

VC<AVR X
(1] C<«(+/X):pX
(2] v

AVR 1 2 3
2

N< 110

AVR N
5.5

VC<A HYP B

[1] C<«((A*x2)+B*x2)*0.5V

3 HYP 4

3 HYP 5
5.830951895

We have now progressed far
enough to compare a simple FORTRAN
program (to average an array of
numbers) with its APL counterpart.

FORTRAN

DIMENSION X (N)
READ 2, N, (X(I),I=1,N)
2 FORMAT ()
SUMX = 0.0
DO 3 I=1,N
3 SUMX = SUMX + X(I)
"7 AVE = SUMX / FLOAT N
PRINT 4, AVE
4 FORMAT ()
STOP
END

FUNCTION DEFINITION

Let us now examine the procedure
by which we can augment the set of

.standard APL operators with some of

our own ''functions." The del (V)
character signals function definition
and is followed by a function name.

The system responds with [1], and waits
for your first "program'" line. Each
successive line is also numbered until
the routine is closed by another V.

Let us assumec that we wanted to
define a function AVR to average a
vector of numbers.

The next program we may wish to
write is one for calculating the length
of the hypotenuse of a right triangle,
given the lengths of the two sides.

If the hypotenuse is C, then:

VAVE But APL is an interactive system!

{11 'GOOD MORNING' Let's.allow our student to sit down
(2] VENTER STRING OF NUMBERS'at the terminal and "interact' with
(3] 4A<0 A some pre-defined functions. First, a
(4]l AVR AV slight revision of the AVR program to

average numbers. Notice in [1] that
literal character strings can be stored
and displayed by simply enclosing them
in single quotes. .

In step [3] the quad symbol ([)
is used to denote input from the

AVE terminal, and that input in this case
GOOD MORNING “is being assigned to the variable A.
ENTER STRING OF NUMBERS In step [4} we call our previously-
0: defined program to average numbers;
27 58 3 5 107 the result will be typed out.
40 '
The closing del (V) at the end
of step 4 ends the function definition
mode and returns us to desk calculator,
or immediate execution, mode. Once the
AVE program is executed, we must call
it out again to re-use it as no return
within the program was provided.
VA GEO B Let's take another simple function -
(1] 'GIVEN A RECTANGLE OF ' one to calculate the perimeter, area,
[2) 'SIZE ';A;' BY ';B and diagonal of a rectangle. Note here
{3] 'Y PERIMETER: ' ;2xA+B that we are using the previously-defined
(4] ' AREA: ' ;AXB HYP function. The (;) allows us to
[5] ' DIAGONAL: ';A HYP B catenate dissimilar outputs (character
(6] Vv versus numeric values.)
3 GEO 5

GIVEN A RECTANGLE OF
SIZE 3 BY 5

PERIMETER: 16

AREA : 15
DIAGONAL: 5.830951895

VAV If we wish to make AVE a repeating
[1] 'GOOD AFTERNOON' function, we must include in the program
{2] 'ENTER STRING OF NUMBERS'return and test-for-exit statements.
[3] 4«0 The Branch symbol (=) is used for the
[u] =(A=0)/0 return and precedes either a statcment
[5] AVER 4 number or a line label. The exit test
[6] =3 . in this case consists of comparing the
(7] v input variable with zero and branching
to line 0 (exit) if that comparison 1is
true.

AV
GOOD AFTERNOON
ENTER STRING OF NUMBERS
g:

15
3
0:
110
5.5
g:
0
VR<«SORT X
[1] R+10

2} ReR,(X=L/X)/X
(3] X« (X=L/X)/X
(4] ~»2x 0=pXV

STRING«8 2 6 2 4 107

SORT STRING
2 246 8 107

STRING+« 3 8 52

SORT STRING

— —

8 3 52

ARRAY+8 10 75 16 12

ARRAY[3]
75

ARRAY [1 3 5]
8 75 12

ARRAY [5 4 °3 2 1]
12 16 75 10 8

ARRAY[{ AARRAY)
8 10 12 16 75

ARRAY[VYARRAY]
75 16 12 10 8

A branch to statement 0 (which
is non-existent) exits us from the
program. Notice the use of comparison
and compression:

If A=0, we evaluate 1/0 or 0
and branch to 0 which
exits us from routine.

If A#0, we evaluate 0/0 or NULL
and drop through the
test.

Let's become a little more
sophisticated! A sort program is an
easy one to write if you have mastered
the material up to this point. The
basic ascending sort algorithm we will
use is this:

(1) Determine the lowest value of
the vector, and create a new
vector containing only those
elements of the original that
equal those lowest elements.

(2) Remove the transferred value(s)
“from the original vector.

(3) Repeat steps (1) and (2), only
this time catenate the next-
lowest values to the new vector.
When no values remain in the
original vector, the sort is
complete.

The bracket symbols []1 are used
to enclose indices (think of array
subscripts) and when appended to an
array name, gencratc the values of
those indexed elements.

Now that we have gone to the
trouble of writing a sort program,
we ctan see that sorting (ascending
or descending) is really a native
operation of APL. The gradc-up (4)
symbol and grade-down symbol (¥}, when
used in index notation generate the
values of the vector is either sorted
sequence.

10

Sorting non-numeric data isn't
quite as easy -- due to the fact
that the order of special characters

‘ is not well defined.
ORDER+~ABCDEFGHIJKLMNOPQRSTUVWXYZ ()'

Let us assume the order of
all characters to be used and state
that order in the variable ORDER.

TEXT<'XDS (FORMERLY SDS)?

We define the characters to be
sorted in the variable TEXT. The
operation ORDERVTEXT can now be
used to determine for each element

J«ORLER\TEXT of TEXT its position in ORDER.

J
24 4 19 27 28 6 15 18 13 5 18 12 25 27 19 4 19 29

We now apply our sort program
K<«SORT J (or the native function) to the
numeric vector J, which is a vector
K . of the subscripts of TEXT.
4 4 5 6 12 13 15 18 18 19 19 19 24 25 27 27 28 29
K now represents the ordered

ORDER[J] subscripts from the array TEXT.

XDS (FORMERLY SDS) .
The final sorted output can

GRDER[X] now be obtained.
DDEFLMORRSSSXY () ‘ .
The entire process could have
been more clearly stated with the
statement: ORDER[SORT ORDER\TEXT].

%+3 4 p 112 We have discussed scalar and
1 vector quantities so far. APL can
5 6 7 8 also handle matrix manipulations.

The expression DpX yields a
M+1 matrix of dimension D whosc elements

(in row-by-row order) are the elements

of the vector X.

As in the case of vectors, we
can operate upon matrices with any

%+3 el 203 quantity of a lessecr dimension.
1 2 3 1
2 3 1 2 Notice that when the righthand
3 1 2 3 argument of the reshape operator (p)

does not contain cnough values to
M<«3 S5p'THREESHORTWORDS' satisfy the left hand, or dimension,

M argument, the array values are used
THREE cyclically.
SHORT
WORDS

11

2
10
18

S W N R

30
70
110

N<3 4 p 112

M+N
Yy 6 8
12 14 16

20 22 24

M[2;3]

M[{1 3;1 3 u]

M+, xN

70 © 110
174 278
278 Lue

The expression M[3;u4] sclccts

.the e¢lement in the third row and

fourth column of the matrix M.

More generally, M[I;J] sclects the
row(s) determined by the elements of
the vector I and the column(s)
selected by the vector J.

If the index J is omitted, then
the entirc row (or Tows) 1is (are)
taken; if the index I is omitted, the
entire columns arc taken.

The expressions &,¢ AND o
each transposc the argument about
the axis indicated by the straight
line in the symbol.

The cxpression M+.xN denotes
the ordinary matrix product of M
and N. Matrix multiplication is
a combination of addition and
multiplication.

12

MU LN

More generally, any pair of
operators can replace the operators
+ and x in the foregoing expression.
If R«Ma.wlN (where o and « represent

any pair of operators), then R[I;J] is

equal to a/M{I;lwN[;J].

L sy e T T T T

FUNCTION EDITING

(A listing of AVE:)

[1]
(2]
(3]
(4]
(5]

VAVELO]V

'GOOD MORNING?

'ENTER STRING OF NUMBERS!
A<Q]

AVR A

v

(Corrécting AVE:)

(2]

[2]

(3]
[3.
[3.
[u.
fu.

VAVE({2010]
VENTER STRING OF NUMBERS'

/111775
YENTER pppay OF NUMBERS'

{3.51]

5)>(A=0)/0
61[u.5]
5]+3

61V

(New listing of AVE:)

[1]
(2]
(3]
(u]
(s]
(6]
(71

VAVE[DIV

'*GOOD MORNING'

YENTER ARRAY OF NUMBERS!
A<«

+(A=0)/0

AVR A

+3

v

One of the most important
considecrations of any programming
language is the ability to make
corrections/modifications to the
original source programs. In some
languages it is necessary to re-key
the entire program (or at least the
line to be changed.) With APL we -
can add or delete lines or change
just one character in any line.

Let's return to our first
attempt at a program (AVE). You
remember that we wrote another
program (AV) to include the return
and cxit statements. Let's see
how easy it is to add these, and
also change the word 'string' to
‘array'.

Notice in the new listing that
all changes have been made, and that
re-numbering has taken place!
Luckily, we are not in trouble this
time due to our branching to line
numbers. It is a better practice to
use line labels, such as:

(3] RETURN: A<Q
[6] ->RETURN

We have now examined cach of
the three modes of APL operation:

(1) Desk Calculator
(2) Function Definition
(3) Function Editing

13

In addition to the primitive operations discussed in the previous
pages, Xerox UTS/APL includes a uscful file input/output system.

FILE 1/0

UTS/APL provides a sct of locked, library functions which per-
mit the user to operatec on more data than may be contained in the cur-
rent workspace. These functions allow any APL value, with its type and
dimensional attributes, to be written to a file and subsequently re-
trieved. The following examples illustrate the use of this facility.

This causes an empty file, with the
specified name, to be created in users
account and associated with the number
'1' for use in subsequent file opera-
tions.

CTESTFILE®' FCREATE 1

A function is available which will in-
terrogate the status of current file
ties. This function returns a vector
containing the numbers of all current
"open files,

FNUMS

A« 3 3 p v 9 The function FAPPEND adds a new com-
A FAPEPEND 1 ponent (record) to a specified file. In
: the exampie the matrix 'A' is written to
file '1¢',

Now that we have written something in
FLIM 1 our file, let's exercise a function

1 2 which will recturn the current range of
component numbers. This function re-
turns a two element vector. The first
element is the first existing component
number in the file and the second cle-
ment is one greater than the last com-
ponent number.

B+«FREAD 1 1 Information may be retrieved from a file
B with the FREAD function. FREAD reads a
copy of the specified componcent from the
specified file into the current work-
spacc. Another FREAD operation without
2 component number specified would cause
“e next sequential component to be read.

YRECORD TWO' FAPPERD 3

FLIM 1
1 3

FREAD 1 2
RECORD TWO

14

* FUNTIE 1

FUNTIE FRUMS

VTESTFILE' FTIE 9

‘RECORD THREE' FAPPEND 9

FLIM 9
1 4y

((FREAD 9 3),' UPDATEDY) FREPLACE 9 3

FREAD 9 3
RECORD THREE UPDATED

FDROP 9 2

FLIM 9

'TESTFILE' FERASE 9

When a file is no longer needed by a
program, it may be closed and saved
with the "FUNTIE" function.

All currently tied files may be untied
by making the argument for FUNTIE the
vector returned by FNUMS.

!

An existing file is opened and associ-
ated with a reference number by the
FTIE function.

Another record is appended to the file.

This expression reads component 3 of
file 9 (TEST FILE), catenates the string
'UPDATED' and replaces component 3 with
the result. FREPLACE then allows us

to rewrite specific components of a file.

Existing components in a file may be
deleted with a function which operates
in a manner analogous to the drop primi-
tive. This example causes the first two
components of the file to be delcted.

If the argument had been 9 2, then two
components would have been decleted from
the end of the file.

Component number 3 is now the only com-
ponent in the file.

An unwanted file may be deleted with the
function, FERASE.

15

[(war || <’1 =]'2] >J " OVE N —I-}][BACK) (ATTN]
| REL ‘ l I |45 6J78 9] 0 +]| x| SPACEJ:ﬂ

| b T rlylulr o,p’<-

) a1 : RETURN

- V1A ° !
e JLAsl» Flolals BN
, L
clolnfulLl Tl 7701 : 1\

[ser i T][le{c {V]B] NIMI 1 I/J(-]OFF,

A PL/Z’M/ Keyézoam’

SAMPLE APL PROGRAM

Matrix Inversion by Gauss-Jordan Elimination
With Pivoting

V B«REC AiP;K;I3J ;S
(1] +3x1(2=ppA)a=/pA
(23] +0=p(0«'N0 INVERSE FOQUND') ‘
(31 P+1K+S+1ppA o
[ul- A<((€p1),0)\4
{s) A(;S+1])«Sa1 ,
[&] IT«J [/J«lAl K1) !
{7 P(1,1]«P(I,1] ' f
{8} AT 1, 73183+A0I,1;18]
(9] +2x11F730> 40131040 /1,4
1201 Al1;3+«A01;23:401;1]
(11) A«A-((~Sal)xA[;1]))o.xA(1;1
{12] A<1¢[1l1d4
(13) P<«igpP
(18] 5% 0<XK+k-1
[15]) B«A(;P11S]

