
Program Product

GH20-0906-1

APL\360-05 and
APL\360-005
User's Manual

ProS3ram_Numbers: 5734-XM6(OS)
5736-XM6(DOS)

This publication provides information necessary to use
the APL\360 System. It discusses procedures and equip­
ment required for interacting with the system, how to
establish connection between terminal and central com­
puter, how to start and end work sessions, and how to
apply system control features. Application of the APL
language to user problems is thoroughly discussed and
appendices give both elementary and advanced examples
of actual terminal sessions.

ACKNOWLEDGMENTS

The APL language was fust defined by K.E. Iverson in
A Programming Language (Wiley, 1962) and has since been
developed in collaboration with A.D. Falkoff.

Second Edition (January 1973)

This edition, GH20-0906-1, is a major revision obsoleting GH20-0906-0. It applies
to Version 1, Modification Levell, of the program products APL\360-0S (5734­
XM6) and APL\360-DOS (5736-XM6) and to all subsequent versions and modifica­
tions until otherwise indicated in new editions or Technical Newsletters.

Changes are continually made to the information herein. Therefore, before using
this publication, consult the latest System/360 and System/370 SRL Newsletter
(GN20-0360) for the editions that are applicable and current.

Copie~ of this and other IBM publications can be obtained through IBM branch
offices.

A form has been provided at the back of this publication for readers' comments.
If this form has been removed, address comments to: IBM Corporation, Technical
Publications Department, 1133 Westchester Avenue, White Plains, New York 10604.
Comments become the property of IBM.

©Copyright International Business Machines Corporation 1970, 1973

ii

CONTENTS

PART 1: GAINING ACCESS

PHYSICAL EQUIPMENT
Preferred features

THE APL CHARACTER SET
Use of other character sets

THE RECORDING TERMINAL
ESTABLISHING A CONNECTION

Set up terminal, Dial computer
ENTRIES FROM THE KEYBOARD

Transmission signals, Mistakes, Transmission
errors, Special features of IBM 1050 terminals

STARTING AND ENDING A WORK SESSION
Sign on, Limited use of the system, Disconnect
dial-up connection, Break any connection

PART 2: SYSTEM COMMANDS

WORKSPACES AND LIBRARIES
Workspaces, Libraries

NAMES
Local and global significance

PASSWORDS
ATTENTION
USE OF SYSTEM COMMANDS

Classification of commands, Normal responses and
trouble reports, Clear workspace, Summary

TERMINAL CONTROL COMMANDS
Forced endings, The CONTINUE workspace, Inter­
rupted activities, Detailed description

WORKSPACE CONTROL COMMANDS
Application packages, Groups, Information
transfer between workspaces, Detailed
description

LIBRARY CONTROL COMMANDS
Continuity of work, Workspace identification,
Library and account numbers, Storage allotment,
Use of the CONTINUE workspace, purging a
workspace, Detailed description

INQUIRY COMMANDS
User codes, Detailed description

COMMUNICATION COMMANDS
Detailed description

1.1

1.2

1.3
1.3

1.5

1.7

2.1

2.2

2.3
2.3
2.4

2.6

2.11

2.19

2.25

2.29

PART 3: THE LANGUAGE

FUNDAMENTALS
Statements, Scalar and vector constants, Names and
spaces, Overstriking and erasure, End of statement,
Maximum number of input characters, Order of
execution, Error reports, Names of primitive
functions

SCALAR FUNCTIONS
Monadic and dyadic functions, Vectors, Index
generator

DEFINED FUNCTIONS
Introduction, Branching, Local and global variables,
Explicit argument, Explicit result, The forms of
defined functions, Use of defined functions,
Recursive function definition, Trace control

MECHANICS OF FUNCTION DEFINITION
Labels, Revision, Display, Line editing, Reopening
function defin1tion, Locked functions, Deletion of
functions and variables, System command entered
during function definition

SUSPENDED FUNCTION EXECUTION
Suspension, State indicator, Stop control

HOMONYMS
Variable names, Function names

INPUT AND OUTPUT
Evaluated input, Character input, Escape from
input loop, Normal output, Heterogeneous output

RECTANGULAR ARRAYS
Introduction, Vectors, dimension, catenation,
lamination, Matrices, dimension, ravel,
Reshape, Uses of empty arrays, Indexing,
Indexing on the left, Index origin,
Array output

FUNCTIONS ON ARRAYS
Scalar functions, Reduction, Inner product, Outer
product

MIXED FUNCTIONS
Introduction, Transpose, Monadic transpose, Rotate,
Reverse, Compress, Expand, Decode, Encode, Encode
and decode with array arguments, Index of, Member­
ship, Take and drop, Grade up and down, Deal,
Matrix division and inversion, Comments

MULTIPLE SPECIFICATION
SYSTEM DEPENDENT FUNCTIONS

PART 4: LIBRARY FUNCTIONS

3.1

3.5

3.9

3.16

3.19

3.22

3.23

3.26

3.34

3.38

3.47
3.48

4.1

APPENDIX A:
APPENDIX B:
BIBLIOGRAPHY

INDEX

SAMPLE TERMINAL SESSION
ADVANCED EXAMPLES

A.I
B.l

LIST OF ILLUSTRATIONS

Page

Table 1.1 RECOMMENDED FEATURES AND 1.2
OPTIONS FOR TERMINALS

Figure 1.2 KEYBOARD 1.3

Table 1.3 TELEPHONE NUMBERS 1.4

Table 2.1 SYSTEM COMMANDS 2.7

Table 3.1 ERROR REPORTS 3.4

Table 3.2 PRIMITIVE SCALAR FUNCTIONS 3.6

Table 3.3 FORMS OF DEFINED FUNCTIONS 3.14

Table 3.4 DIMENSION AND RANK VECTORS 3.29

Table 3.5 IDENTITY ELEMENTS OF PRIMITIVE 3.35
SCALAR DYADIC FUNCTIONS

Table 3.6 INNER PRODUCTS FOR PRIMITIVE 3.37
SCALAR DYADIC FUNCTIONS f AND 9

Table 3.7 OUTER PRODUCTS FOR PRIMITIVE 3.37
SCALAR DYADIC FUNCTION g

Table 3.8 PRIMITIVE MIXED FUNCTIONS 3.39

Table 3.9 TRANSPOSITION 3.41

Table 3.10 SYSTEM DEPENDENT FUNCTIONS 3.49

PART 1

GAINING ACCESS

An APL\360 System comprises a ~~~~;~! ~~~E~~~£ and an in­
definite number of typewriter-like ~~f~i~~l~. A certain number of
these terminals may be simultaneously linked to the computer,
according to the number and type of access E~~~~ on the computer.

This part of the manual describes the terminal equipment
required for interacting with the system, tells how to establish a
connection between a terminal and the central computer, and gives,
in simplest form, the procedures for starting and ending a work
session.

PHYSICAL EQUIPMENT

A remote terminal for use with the system must be either an
IBM 2741 Communications Terminal, an IBM 2740-1 Communications
Terminal equipped with the Transmit Control feature, or an IBM
1050 Teleprocessing Terminal. It may connect to the central com­
puter through the dial-up telephone network, by a leased telephone
line, or by private wire.

Dial-up connections are effected by means of a Western Elec­
tric Dataset #103A-2 or the equivalent, or a compatible acoustic
coupler. A leased telephone line connection requires the use of a
Western Electric Dataset #103F-2 or the equivalent. A direct­
wired connection is effected by means of an appropriate IBM line
adapter (modem). In the last case, two-wire connections should be
avoided, if possible, since their use rules out an interrupt
facility.

~~~K~~~~~ f~~t~~~~. The APL\360 system will work with many varia­
tions of the terminal types given above, but certain features and
options are desirable. Dial-up connections provide the greatest
flexibility, both in overall system configuration, and in certain
details of operation. Similarly, although the APL printing element
is based on a 12-pitch font, and is available in both Selectric®
and PTTC/BCD keyboard encoding (i.e., the correspondence between
keyboard layout and character positions on the printing element),
specification of 10-pitch character spacing and Selectric® encoding
will allow a greater variety of printing elements to be used with
the terminal. While it is not essential, the convenience of
having the interrupt feature cannot be overestimated.

Paper tape equipment (1054-1 Reader and 1055-1 Punch) and
punched-card equipment (1056-1 Reader and 1057-1 Punch) can be
used with IBM 1050 terminals. The punched-card facilities should
have Extended Character features 3861 and 3860, for reader and
punch, respectively.

1.1



IBM identifications for recommended terminal features and
options are given in Table 1.1. Complete specifications for ter­
minals, and information on other options, should be obtained from
local IBM representatives.

1167988 1167988
1167987 1167987
RPQ M40174 RPQ M40174
9104 9104
9435 9435
NA NA

FEATURE OR OPTION

Control Unit
Voltage (115 AC), Non-lock plug
Dataset Attachment
Dial Up
Transmit Control
Automatic EOB
Typamatic Keys
Interrupt
Text Time-out Suppression
First Printer Attachment
Automatic Ribbon Shift Select
Typing Table

Printer-Keyboard
APL Printing Element, PTTC/BCD

or Standard Selectric®
Keys, APL Keyboard
Character Spacing, 10 per inch
Line Feeding, 6 per inch
Accelerated Carrier Return

1050

1051-2
9881
9114
NR
NR
RPQ E27283
NA
RPQ E27428
9698
4408
1295
9705

1052-2
1167988
NA
RPQ M40174
9104
9435
1006

2740-1

9881
9114
3255
8028
Do not use
NA
RPQ F17913
NR
NR
NA
NR

2741

9881
9114
3255
NR
NR
8341
4708
NR
NR
NA
NR

Notes. NR: feature is standard equipment, or is not required.
NA: not available.
The numbers are IBM-domestic identifications.

Table 1.1: RECOMMENDED FEATURES AND OPTIONS FOR TERMINALS

THE APL CHARACTER SET

The APL\360 keyboard is shown in Figure 1.2. The numerals,
alphabetic characters, and punctuation marks appear in their
usual places, although the alphabet is used in only a single case:
letters print as upper-case italics, but are produced only when
the keyboard is in lower-case position (i.e., not shifted).

The special characters, most of which are produced with the
keyboard shifted, generally have some mnemonic connection with
their alphabetic or numeric correspondents. This may be appearance
(w over W), Greek-Roman equivalence (p over R), sequence
(< ~ = ~ > ~ over 3 4 567 8), or some -- possibly far fetched
-- relationship between the APL function represented by the symbol
and the letter (* over P for power, ' over K for "kwote", and
rover S for £eiling). - -

1.2



Figure 1.2: KEYBOARD

Q~~ Qf Q~h§~ ~h~~~~t~~ ~~t~· The part numbers of APL printing
elements are given in Table 1.1. However, any printing element
may be used with the APL system, since the encoded characters
generated by the keyboard and transmitted to the computer are
independent of the particular element mounted on the terminal.
Subject to programmed intervention, the transmitted information
will always be interpreted according to the APL keyboard charac­
ters.

Non-APL printing elements are frequently useful in conjunc­
tion with special-purpose APL programs designed to exploit their
character sets. Also, any element that matches the keyboard en­
coding (Selectric® or PTTC/BCD) of the terminal can be used for
straightforward numerical work, since letters and digits print
properly with such elements. The visual interpretation of complex
APL expressions is, of course, awkward with any but an APL print­
ing element.

THE RECORDING TERMINAL

As connections with remote terminals are established and
broken, and users start and end work sessions, a printed record of
this traffic is generated at the system's recording terminal. This
terminal, which is usually, but not necessarIly;-Iocated-at-the
central computer site, is ordinarily attended by an ~~~ Qp~E~~~~

who monitors the operation of the system, and provides a common
point of contact for users.

There are certain supervisory functions, essential to the
operation of APL\360, which can be effected only from the record­
ing terminal. Thus, this terminal holds a privileged position
relative to others. The enrollment of new users, and the alloca­
tion of library space, are examples of this kind of function.

ESTABLISHING A CONNECTION

The directions that follow assume the use of a dial-up con­
nection with a dataset. Instruction~ for the use of acoustic
couplers should be obtained from their suppliers. Where terminals

1.3



are connected to the computer by leased lines or private wires,
instructions on dialing procedure (EC2) are irrelevant, but local
sources of information should be consulted for equivalent pro­
cedures.

~~~IQN

~~!. §~~ ~E ~~~~!~~~:
Insert paper, mount an APL
printing element, connect
terminal to power source,
and set switches as follows:

IBM 2741 or 2740 Te~minal

NOTES

LCL/COM
Power

IBM 1050 Terminal

COM
ON

The power switch is at the right of
the keyboard. On 2741's, the LCL/
COM switch is on the left side of
the terminal stand, toward the rear;
on 2740's, it is to the right of the
power switch.

On 2741 and 2740 terminals,
test to see if the keyboard
is locked by trying the
shift key. If the key is
operable, press the carrier
return and test again.

EC2. Dial computer:
Set the-telephone-pushbutton
switch to TALK and follow
ordinary dialing procedure.
After two rings, at most,
the telephone will respond
with a steady, high-pitched
tone.

ATTEND/UNATTEND
Keyboard
Printer
Reader 1
Punch 1
EOB
Line test
Single step
Line control
Power

ATTEND
SEND

SEND-RECEIVE
OFF
OFF

MANUAL
OFF
OFF

ON
ON

Not all 1050's have all switches;
those present must be set as indica­
ted. The states of switches not
listed here are immaterial.

If it is known that RPQ E27283 (see
Table 1.1) is installed, set the EOE
switch to AUTO.

The line control switch is inside the
rear door of the 1051 Control Unit.
The power switch is on the left side
of the control unit, toward the
front.

If the keyboard does not lock after
a carrier return, check the
switches and try once more. If the
switches are set properly and the
keyboard remains unlocked, the ter­
minal is faulty.

Telephone numbers are given in Table
1.3. If the line is busy, try a
different number or call the APL
Operator to inquire about an open
line.

123 456-7890 123 456-7890
Insert a table of access
telephone numbers here.

An assistance number
should be included.

APL Operator: 123-456-7890

Table 1.3: TELEPHONE NUMBERS

1.4

Promptly set the pushbutton
switch to DATA by holding
the DATA button down firmly
for a moment and then
releasing.

Cradle the handset.

Response: The keyboard
wrll-unlock, indicating that
the computer is ready to
accept an entry from the
terminal.

The DATA button should light, and
will remain lit as long as the ter­
minal is connected to the computer.
If it does not light, check the
power connection to the dataset. If
it lights, but quickly goes out,
check the power connection to the
terminal, the cable connection to
the dataset, and the switch settings
on the terminal. Then retry from
Eel.

The connection established by the foregoing procedure is only
tentative, and will be broken by the central computer if further
communication does not take place within 60 seconds. Therefore,
the next step -- the sign-on procedure (EC3) given below -- should
be executed promptly.

ENTRIES FROM THE KEYBOARD

After a connection is established, normal communication be­
tween a terminal and the central computer is carried on by means
of entries from the typewriter keyboard, which alternately locks
and unlocks as each entry is made and the computer completes its
work. The general procedure is to type an instruction or command,
strike the carrier return to indicate the end of the message, and
follow this-by-a-transmIssion signal.

!~~~~~!~~!~~ ~~~~~!~. The transmission signal is generated dif­
ferently, according to the terminal type and its equipment:

~Z1~. A transmission signal is automatically generated in the
proper sequence (i.e., after the carrier return signal) when
the RETURN key is struck.

~I1~. The transmission signal is produced by striking the EOT
key after the RETURN key. (Do not use the EOB key, or the
automatic EOB feature available on these terminals.)

1.5

1~~~. On terminals equipped with an automatic EOB RPQ (see
Table 1.1), the transmission signal is produced automatically
when the RETURN key is struck. Otherwise, an EOB must be pro­
duced manually, by striking the numeral-5 key, while the key
marked ALTN CODING is held down. (Note that the automatic EOB
f§~t~~~ available for 1050 terminals cannot be used with APL\
360.)

A transmission signal does not cause a character to be printed,
and its omission will therefore be evidenced only by the state of
the terminal: the keyboard will remain unlocked, and no response
will be forthcoming from the system.

In the remainder of this manual the need for carrier return
and transmission signal will not be explicitly mentioned, since
they are required for ~~~~~ entry.

Mi§~~~~~. Before the carrier return (and transmission signal)
that completes an entry, errors in typing can be corrected as
follows: backspace to the point of error and then depress the
ATTN button (marked LINE FEED on 2740 and 1050 terminals). This
will have the effect of erasing everything to the right of, and
including, the position of the carrier. The corrected text can
be continued from that point, on the new line.

This procedure can be used at any time once the sign-on
(EC3) has been accomplished. In case of error in the sign-on
itself, the entry should be made as is. The system will provide
an appropriat.e trouble report, following which, a correct entry
may be made. ------- ------

Transmission errors. There are occasional transient failures in
the-communIcatIon-between a terminal and the central computer. If
the failure occurs during the transmission from the terminal, the
system will respond with a ~~se~~ signal: on 1050 terminals, the
RESEND warning light will go on, and on other terminals the message
RESEND will be printed. In any case, the last entry from the
keyboard must be repeated. The warning light on the 1050 should
first be extinguished by pressing the adjacent button.

Failures in the other direction are usually evidenced by
the appearance of a spurious character, whose presence in the
printed output is obvious in most contexts. However, there is no
absolutely certain way of detecting such a failure.

1.6

§E~~~~~ f~~E~~~~ ~f !~~ !Q~Q ~~~~!g~!~. The keyboard of a ter­
minal equipped with a REQUEST button will not unlock, when it
otherwise should, until the button is depressed. On terminals
equipped with a timer, the keyboard will lock before an entry is
completed if approximately 18 seconds have elapsed since the last
keyboard action. Locking can be forestalled by occasionally
striking the shift key, but if it does happen, the keyboard can be
forced to unlock by flipping the line-control switch inside the
1051 Control Unit to OFF, and back to ON.

If a terminal is to be used exclusively with APL\360, the
Keyboard Request feature should be removed, and the Text Time-out
Suppression feature should be added.

STARTING AND ENDING A WORK SESSION

Each user of the system is assigned an account number. This
number is used to effect the sign-on that inItiates a-work session;
serves to partially identify any work that the user may store in
the system between sessions; and is used for accounting or billing
purposes.

If the account number is not known, or if one of the trouble
reports given below is encountered and not understood, a message
of inquiry can be sent to the APL Operator. This is accomplished
by entering)OPR followed by a space and one line (not exceeding
120 characters) of an appropriate text.

Such a message can be sent at any time after a connection has
been established. It causes the keyboard to lock, awaiting a
reply. If no reply is forthcoming, (and the sign-on has not been
completed), the connection will have to be broken and
re-established before further communication with the system is
possible. (After the sign-on, the keyboard may be unlocked by
an ~~~~~~~~~ ~!9~~~' described in Part 2.)

ACTION

EC3. ~!~~ on:
Enter)
followed by an account
number, with a colon and
password if required.

Effect:
I~--A-workspace will be
activated for the terminal.

2. Accumulation of time
charges will begin.

NOTES-----

The use of passwords is described
in Part 2. A new user will have
been advised if a password is
required for his first sign-on.

A workspace can be thought of as
both a notebook and a scratch pad.
The details are explained in Part 2.

1.7


~~~PQ~~~:
1. A broadcast message from
the APL Operator may be
printed.

2. The port number, time of
day, date, and user name
associated with the account
number will be printed on
one line. The system
identification will be
printed on another line.

3. SAVED, followed by the
time of day and date that
the activated workspace was
last stored.

Trouble reports:
No-message-Is-printed and the key-
board unlocks. This means that the
first character entered was not a
right parenthesis. APL cannot print
a message because it needs the right
parenthesis character to determine
what kind of terminal is being
used. Reenter the sign-on, pre­
ceding it with a right parenthesis.

NUMBER NOT IN SYSTEM
means either exactly what it says,
or that the number has a password
associated with it and the wrong
password was used. The APL Operator
should be consulted if help is
required.

INCORRECT SIGN-ON
means the form of the transmitted
command was faulty. Retry with a
properly formulated sign-on.

ALREADY SIGNED ON
means that a work session is already
in progress at the terminal. To
start a session with a different
account number, use command TC5
(see Part 2), which ends the current
session but holds the connection,
and retry from the beginning of
EC3.

NUMBER IN USE
means just that, or a temporary
condition due to delays in the cen­
tral computer. Retry from EC2
after two minutes. If the condition
persists, notify the APL Operator.

NUMBER LOCKED OUT
means that authorization for use
of that number has been withdrawn.

This response will be omitted if
the activated workspace is £~~~~

(i.e., not holding information). If
the response is given, the workspace
is named CONTINUE. The use of
workspace names is explained in
Part 2.

1.8



4. The keyboard will be
unlocked.

If this is the only response, a
transmission error has occurred, or
the entry did not start with an APL
right parenthesis. In either case,
the entry should be repeated in
correct form. If the condition
persists, retry from EC2, possibly
dialing a different number.

A work session is started, and the full APL system becomes
available, once the sign-on is accomplished. Any system command
of Part 2 or APL operation of Part 3 may now be entered for
execution.

Limited Use of the System. No system command other than the
slgn=on gIven-here Is-required in order to make use of Part 3,
and the reading of Part 2 may therefore be deferred if only
casual or restricted use is to be made of the system. For the
purposes of such use, a work session may conveniently be termi­
nated by one of the following procedures:

NOTES

~~!. Q!~~~~~~~~ ~!~~:~E con- Use this procedure for dial-up
nection: connections ~~!¥.
Set-the power switch to OFF.

Effect:------
1. The active workspace
will be stored under the
name CONTINUE.

2. The duration of the work
session and the amount of
computer time used will be
noted internally for later
accounting.

3. The connection to the
central computer will be
broken.

~~~. ~~~~~ ~~l ~~~~~~~~~~:
Enter)CONTINUE

gf~~~~:
1. 2. and 3. The same as
for EC4.

If the workspace is clear, it will
not be stored at this time. If it
is stored, it will be automatically
re-activated when the same account
number is next used to sign on.
See note for EC3, Response 3.

The DATA light will go out.

This is command TC4, detailed in
Part 2.

1.9


~~~E~~~~:
1. Time of day and date,
followed by CONTINUE

2. The port number, time of
day, date, and user code
will be printed.

3. Accounting information
will be printed.

~~~~~!~ ~~E~~~~:
NOT WITH OPEN DEFINITION
INCORRECT COMMAND
The meanings of these reports, and
corrective actions for them, are
given in Part 2.

User codes comprise three charac­
ters which partially identify
users. Their use is explained in
Part 2.

If a dial-up connection is being
used, the DATA light will go out.

1.10

PART 2

SYSTEM COMMANDS

APL operations deal with transformations of abstract objects,
such as numbers and symbols, whose practical significance, as is
usual in mathematics, depends upon the (arbitrary) interpretation
placed upon them. System commands in the APL\360 System, on the
other hand, have as-theIr subJect-the structures which comprise
the system, and control functions and information relating to the
state of the system, and therefore have an immediate practical
significance independent of any interpretation by the user.

In this Part the structure of the APL\360 system is described,
and various notions essential to the understanding of system
commands are introduced. Finally, the complete set of system com­
mands is described in detail.

WORKSPACES AND LIBRARIES

~Q~~~E~~~~. The common organizational unit in the APL\360 system
is the workspace. When in use, a workspace is said to be active,
and it occupIes-a block of working storage in the central com~-­

puter. The size of the block, which is preset at a fixed value
for a given system, determines the combined working and storage
capacity of each workspace in that system. Part of each work­
space is set aside to serve the internal workings of the system,
and the remainder is used, as required, for storing items of in­
formation and for containing transient information generated in
the course of a computation.

An active workspace is always associated with a terminal
during a work session, and all transactions with the system are
mediated by it. In particular, the names of Y~~~~Ql~~ (data
items) and Q~~!D~g ~~~£t!Qn§ (programs) used in calculations
always refer to objects known by those names in the active work­
space; information on the progress of program execution is main­
tained in the ~~~t~ !~~!~~to~ of the active workspace; and con­
trol information affecting the form of output is held within the
active workspace.

~!~f~~!~~. Inactive workspaces are stored in !iQ~~~i~~, where
they are identified by arbitrary names. They occupy space in
secondary storage facilities of the central computer and cannot
be worked with directly. When required, copies of stored work­
spaces can be made active, or selected information may be copied
from them into an active workspace.

2.1

Libraries in APL\360 are either E~!~~~~ or E~e!!~. Private
libraries are associated with individual users of the system, and
are identified by the user's account number. Access to them by
other users is restricted in that one user may not store work­
spaces in another person's library, nor can he obtain a listing of
the workspaces already stored there. However, one user may acti­
vate a copy of another user's (unlocked) workspace that is not
password-protected if he knows the library number and workspace
name.

Public libraries are identified by numbers below 1000. They
are not associated with individual users, although certain ones
may be reserved by general agreement for groups of people working
cooperatively. Anyone may store workspaces in a public library,
and a listing of workspace names is available upon request if the
library number is known. However, a workspace stored in a public
library remains under the control of the user who put it there,
and cannot be altered by others.

NAMES

Names of workspaces, functions, variables, and groups may
be formed of any sequence of alphabetic (A to Z, and 4 to ~) and
numeric (0 to 9) characters that starts with an alphabetic and
contains no blank. Only the first 11 characters of workspace
names, and the first 77 characters of other names are significant.
Longer names may be used, but additional characters beyond these
limits are ignored.

The environment in which APL operations take place is bounded
by the active workspace. Hence, the same name may be used to
designate different objects (i.e., groups, functions or variables)
in different workspaces, without interference. Also, since work­
spaces themselves are never the subject of APL operations, but
only of system commands, it is possible for a workspace to have
the same name as an object it holds. However, the objects within
a workspace must have distinct names, except as explained below.

Local and global significance. In the execution of defined
functions IE-Is-often-necessary to work with intermediate results
which have no significance either before or after the function is
used. To avoid cluttering the workspace with a multitude of
variables introduced for such transient purposes, and to allow
greater freedom in the choice of names, the function definition
process (see Part 3) provides a facility for designating certain
variables as local to the function being defined. Variables not
so designated~-and all functions and groups, are said to be ~!~~~~.

A local variable may have the same name as a global object,
and any number of variables local to different functions may have
the same name.

2.2

During the execution of a defined function, a local variable
will supersede a function or global variable of the same name,
temporarily excluding it from use. If the execution of a function
is interrupted (leaving it either suspended, or pendent, see Part
3), the local variables retain theIr-domInant posrtron~ during
the execution of subsequent APL operations, until such time as
the halted function is completed. System commands, under these
circumstances, continue to reference the global homonyms of local
variables.

PASSWORDS

Stored workspaces and the information they hold can be pro­
tected against unauthorized use by associating a password of the
user's choice, with the name of the workspace, when-the-workspace
is stored. To activate a password-protected workspace or copy
any information it contains, a colon and the password must again
be used in conjunction with the workspace name. Listings of
workspace names, including those in public libraries, never give
the passwords, and do not overtly indicate that the workspace is
password-protected.

Account numbers can be similarly protected by passwords,
thus maintaining the security of a user's private library and
avoiding unauthorized charges against his account.

Passwords may be formed of any sequence of alphabetic and
numeric characters up to eight characters long, without blanks.
Characters beyond the eighth are ignored. In use, a password
follows the number or name it is protecting, from which it is set
off by a colon.

ATTENTION

Printed output at a terminal can be cut off, or the execution
of an APL operation can be interrupted, and control returned to
the user, by means of an ~~~~~~~Q~ ~!~~~~. Since the keyboard is
locked during printing or computing, the signal must be generated
by means other than one of the standard keys.

On terminals equipped with an interrupt feature, the atten­
tion signal is generated by depressing the appropriate key once,
firmly. On IBM 2741 terminals this key is usually of a distinctive
color, and is marked ATTN. (The same key is used for linefeed
when the keyboard is not locked.)

For terminals not so equipped, the attention signal is gen­
erated by momentarily interrupting the connection to the central
computer. The method depends upon the type of connection:

with dial-up telephones, uncradle the handset, set
the pushbutton switch to TALK for two to three seconds,
and then reset it to DATA;

2.3

with leased telephone lines, set the terminal power
switch to OFF and then back to ON, with deliberate
speed.

If the connection is broken, in either case, for more than five
seconds, the central computer will interpret this as a signal to
end the work session and will execute action EC4 of Part 1.

Following an attention signal the keyboard will unlock,
and the type carrier will return to the normal position for input
(six spaces from the left margin). If the carrier does not do
this, enter blank lines repeatedly until it does. In some cases a
line will be printed before the keyboard unlocks, telling where a
function in progress was interrupted. Occasionally, line noise
generates a spurious attention signal, which unlocks the keyboard
and interrupts an executing function. If this happens, normal
operation is resumed by branching to the point of function
interruption (see "Suspended Function Execution lf

) •

Except for communication commands (and then only if the
delivery of a message is delayed), the execution of system com­
mands, once entered, cannot be interrupted. However, the printed
responses or trouble reports following a system command can be
suppressed by a properly timed attention signal.

Execution can be suspended within an APL statement by signaling
attention twice in quick succession. An INTERRUPT error report
is printed at the terminal. The error report will be followed by
the statement with a caret typed under the point in the statement
where execution was halted. Execution of the function may be
resumed by branching to the statement within which execution was
suspended.

USE OF SYSTEM COMMANDS

System commands and APL operations are distinguished
!~~q~~~~~!!y by the fact that system commands can be called for
only by individual entries from the keyboard, and cannot be
executed dynamically as part of a defined function. They are
distinguished in !Q~~ by the requirement that system commands be
prefixed by a right parenthesis, which is a syntactically invalid
construction in APL.

There is some system control which it may be desirable to
exert dynamically, and there are some items of system information
which can be profitably used during the execution of a program.
For these purposes APL\360 provides appropriate ~Y~~~~-~~E~~~~~~
functions and library functions, which can be used like other APL
operatIons. These-functions-are described in Part 3 and Part 4,
respectively. Where a system command duplicates the action of
one of them, this fact will be noted in the description of the
system command in this Part.

2.4

All system commands can be executed when the terminal is in
the ~~~~~t!Qg ~~~~, in which APL operations are executed forthwith
upon entry. However, in ~~fi~it~Q~ ~Q~~, in which sequences of
operations are being composed into functions for later execution,
commands which call for storing a copy of the workspace, or which
might otherwise interfere with the definition process itself, are
forbidden. (The two terminal modes are treated more fully in
Part 3.)

Classification Qf ~Q~~~q~. System commands are conveniently
grouped-Into-five classes with regard to their effect upon the
state of the system:

1. Terminal control commands affect the relation of a ter-
minal-to-the system:
2. ~9~~~P~~~ ~~~~~~~ commands affect the state of the active
workspace.

3. Library control commands affect the state of the
libr~ir~~~- -------

4. Inquiry commands provide information without affecting
the state-of the system.

5. ~Q~~ni~~t~Q~ commands effect the transmission of
messages among terminals.

The text that follows is based upon this classification,
although it will be seen that certain of the terminal control com­
mands also affect the libraries, and one of the library control
commands may sometimes affect the state of the active workspaces.

~~~~~! E~~PQ~~~~ ~g~ ~£Q~~!~ ~~£~£~~. Any entry starting with a
right parenthesis will be interpreted by the system as an attempt
to execute a system command. When the command is successfully
executed, the normal response, if any, will be printed. The
expected response-Is given-with the description of each command.

If, for any reason, a command cannot be executed, an
appropriate ~~~~~~~ E~e~~~ will be printed. The most common
report is INCORRECT COMMAND. This means that the command was
incomplete, misspelled, used a wrong modifier, or was other­
wise malformed. The corrective action in every case is to
enter a properly composed command. The meanings and corrective
actions for other trouble reports are given in the notes accom­
panying the description of each command.

Clear workspace. There are certain transient failures of the
system-whlch-cause the active workspace to be destroyed. If
this should occur, the message CLEAR WS will be printed, indicating
that the active workspace has been replaced by a £l§~f workspace.
(The attributes of a clear workspace are given in the section on
workspace control commands, see WeI.) Thi.s situation rarely

2.5



arises, but the probability of its occurrence is slightly higher
during the e}{ecution of system commands.

~~~~~y. The purposes, forms, responses, and trouble reports for
all system commands are summarized in Table 2.1. Where the first
word of a command form is more than four characters long, only
the first four are significant. The others are included only for
mnemonic reasons, and may be dropped or replaced, as desired. For
example,)CLEAR,)CLEA,)CLEAVER, etc., are all equivalent.

In general, the elements of a command form must be separated
by one (or more) spaces. Spaces are not required immediately
following the right parenthesis, or on either side of the colon
used with passwords, but can be used without harm.

TERMINAL CONTROL COMMANDS

There is one command for starting a work session, and there
are four commands for ending one. The variations in ending allow
for automatically storing a copy of the active workspace, and
for holding a dial-up telephone connection to the central computer
for an immediate start of another work session. The starting com­
mand has been described in Part 1 (EC3).

Forced endings. Any action that interrupts a telephone connection
for-more-than-five seconds will cause the work session to end, and
usually cause a copy of the active workspace to be stored. This
provides a safeguard against loss of work in case of failure in
the telephone circuits, or accidental loss of power at the ter­
minal. It is also the basis of the disconnect action described-----------in EC4 of Part 1.

A work session can also be stopped remotely, from the system's
recording terminal, in an action known as a bounce. As in a dis­
connect, a copy of the active workspace is usually stored auto­
matically. The bounce may be used when a port is required for a
special purpose, or to clear the system of all users before stop­
ping the APL\360 operat~on completely.

If a work session is ended because of failure of the central
computer, the active workspace is not stored.

~~~ ~Q~~!~Y~ ~Q~~~p~~~. When the active workspace is stored
automatically, as a result of a disconnect, bounce, or one of the
continue commands described below, it goes into the user's private
Iibrary-and is given the name CONTINUE. If the active workspace
had a password associated with it, CONTINUE will be protected
with the same password.

If CONTINUE is automatically stored, and is not password­
protected, it will be automatically activated at the next sign­
oni otherwise, a clear workspace is activated.

2.6



Reference and Purpose
COMMAND FORM 1,2,3 NORMAL RESPONSE TROUBLE REPORTS4

Tel Sign on designated user and start a work session.
)NUMBER [PASSWORD] [TEXT]; PORT,TIME,DATE,USER;SYSTEM; [SAVED,TIME,DATE]

TC2 End work session.
)OFF lPASSWORO] PORT,TIME,DATE,USER CODE;TII1E USED

TC3 End work session and hold dial-up connection.
)OFF HOLD [PASSWORD] PORT,TIME,DATE,USER CODE;TI!1C USED

TC4 End work session and store active workspace.
)CONTINUE [PASSWORD] [TIME,DATE,CONTINUE]; PORT,TIME,DATE,USER CODE; TIME USED

TC5 End work session, store active workspace, and hold dial-up connection.
)CONTINUE HOLD [PASSWORD] [TIME,DATE,CONTINUE]; PORT,TIME DATELUSER CODE; TIME USED

WCI Activate a clear workspace.
)CLEAR CLEAR WS

WC2 Activate a copy of a stored workspace.
)LOAD WS1D [PASSWORD] SAVED,TIME,DATE

WC3 Copy a global object from a stored workspace.
)COPY WSID [PASSWORD) NAME SAVED,T1ME,DATE

WC3a Copy all global objects from a stored workspace.
)COPY WSID [PASSWORD] SAVED,TIME,DATE

WC4 Copy a global object from a stored workspace, protecting active workspace.
)PCOpy WSID [PASSWORD] NAME SAVED ,TIME, DATE

WC4a Copy all global objects from a stored workspace, protecting active workspace.
)PCOpy WSID [PASSWORD] SAVED,TIME,DATE

WC5 Gather objects into a group.
)GROUP NAME[S] NONE

WC6 Erase global objects.
)ERASE NAME[S]

WC7 Set index origin for array operations.
)ORIGIN INTEGER,O-l WAS,FORMER ORIGIN

WC8 Set maximum for significant digits in output.
)DIGITS INTEGER,1-6 WAS,FORMER MAXIMUM

WC9 Set maximum width for an output line. TROUBLE REPORT FORMS
)WIDTH INTEGER,30-130 WAS,FORMER WIDTH 1 NUMBER NO~ IN SYSTEM

WCIO Change workspace identification. 2 INCORRECT SIGN-ON
)WSID WSID WAS,FORMER WSID 3 ALREADY SIGNED ON

WCIl Change quantity of permitted symbols. 4 NUMBER IN USE
)SYMBOLS INTEGER,26-424l WAS,FORMER SYMBOL TABLE SIZE 5 NUMBER LOCKED OUT

LCI Re-store a copy of the active workspace. 6 NOT WITH OPEN DEFINITION
)SAVE TIME,DATE,WSID 7 WS NOT FOUND

LCla Store a copy of the active workspace. 8 WS LOCKED
)SAVE WSID [LOCK] TIME,DATE 9 OBJECT NOT FOUND

LC2 Erase a stored workspace. 10 WS FULL
)DROP WSID TIME, DATE

t---cI=-Q~l--=-L-;-i-s--:-t-n-a-m-e-s-o-f:::--d-:;-e----;:-f"'i-n-e---:;d---;:f:--u-n-c---:t-l..--'o~n-s-. ----------~ 11 NOT GR 0 UPED. NAM E 1 NUS E
)FNS [LETTER] FUNCTION NAMES 12 NOT SAVED, WS QUOTA USED UP

13 NOT SAVED, THIS WS IS WSID
1Q2 List names of global variables. 14 IMPROPER LIBRARY REFERENCE

)VARS [LETTER] VARIABLE NAMES 15 MESSAGE LOST
IQ3 List names of groups.

)GRPS [LETTERJ GROUP NAMES 16 INCORRECT COMMAND
IQ4 List membership of designated group.

)CRP NAME FUNCTION NAMES,VARIABLE NAMES
IQ5 List halted functions (state indicator).

)51 SEQUENCE OF HALTED FUNCTIONS
IQ6 List halted functions and associated local variables (augmented state indicator).

)SIV SEQUENCE OF HALTED FUl~CTIONS WITH NAMES OF LOCAL VARIABLES
IQ7 Give identification of active workspace.

)WSID WSID
IQ8 List names of workspaces in designated library.

)LIB [NUMBER] NAMES OF STORED WORKSPACES
IQ9 List ports in use and codes of connected users.

)PORTS PORT NUMBERS AND ASSOCIATED USER CODES
IQIO List port numbers associated with designated user code.

)PORTS CODE PORT NUMBERS
eMl Address texE- to designated--·port.

)MSGN PORT [TEXT] SENT
CM2 Address text to designated port, and lock keyboard.

)MSG PORT [TEXTJ SENT
eM3 Address text to recording terminal (APL Operator).

) 0 PRN [TEXT] SEN T
CM4 Address text to recording terminal (APL Operator), and lock keyboard.

)OPR [TEXT] SENT
Notes: 1.' Items in brackets are optl.o-nal. .------ -- ---- --

2. PASSWORD: a password set off from preceding text by a colon.
3. WSID: library number and workspace name, or workspace name alone, as required.
4. See insert table of trouble report forms.

L..-- •. ~ ._., ~ _

Table 2.1: SYSTEM COMMANDS

2.7

123 4 5

16

16

6 16

6 16

16

7 8 16

6 7 8 9 10 16

6 7 8 10 16

6 7 8 9 10 16

6 7 8 10 16

11 16

16

16

16

16

16

16

6 12 13 14 16

6 12 13 14 16

7 14 16

16

16

16

16

16

16

16

14 16

16

16
-----

15 16

15 16

15 16

15 16
---- -



Since CONTINUE will replace any workspace that may have been
previously stored under that name, there is a danger that repeated
line failures, while working with a password-protected workspace,
could lead to a complete loss of information. To protect against
this possibility, a clear workspace is never stored automatically.

!~~~£~~E~~~ ~~~!~~~~~~. An APL operation in progress at the
moment of occurrence of a bounce or disconnect mayor may not be
carried to its normal conclusion. A defined function in progress
at such a moment will be suspended, but its progress can be
resumed at a later work session in accordance with the procedures
given in Part 3. A system command, once begun, will continue to
completion regardless of the state of the terminal.

If a bounce or disconnect occurs when the terminal is in
definition mode, the definition process is arbitrarily terminated
by the system. To proceed with the definition when CONTINUE is
next activated, the definition mode can be re-established according
to the procedures given in Part 3. The workspace is not saved in
CONTINUE, however, if the bounce or disconnect occurred at the
same time that the workspace is full, since there is no room to
even close the definition. The continue commands will be rejected
in definition mode.

~~~~~~~~ ~~~~£!E~~~~. The trouble reports NO SPACE and LIBRARY
TABLE FULL have been omitted from Table 2.1, and are also omitted
from the notes below, because their occurrence is infrequent, and
no corrective action can be taken from a remote terminal. They
can arise in response to a continue command or a ~~~~ command
(see section on library control), and signify that certain of
the physical resources of the system have been exhausted.

Elapsed time or time of day, given as a system response, is
always in hours, minutes, and seconds; two digits for each, sepa­
rated by periods. A date response is given as month, day and year;
two digits for each, separated by slashes. Clock hours are counted
continuously from midnight of the indicated day, and if the system
runs past midnight it is possible to have time readings well above
24 hours. For example, 34.22.00 07/11/68 would be 22 minutes
past 10 AM on July 12, 1968.

ACTION------

TC1. Start a work session:
This is-the ~!g~~~~~-de:--
scribed in EC3 of Part 1.

TC2. End work §~~~i~~:
Enter)OFF----
followed by a colon and a
password, if desired.

NOTES

See Part 1, EC3.

Passwords longer than eight
characters are accepted, but only
the first eight are meaningful.
Spaces around the colon are neutral.

2.8

Effect:
I~--The currently active
workspace will vanish.

2. The duration of the work
session and the amount of
computer time used will be
noted internally for later
accounting.

3. The password, if used,
becomes the password for
the account number. If
there was a previous pass­
word, this one replaces
it.

4. A dial-up connection to
the central computer will be
broken.

~~~E2~~~:
1. The port number, time of
day, date, and user code
will be printed on one line.

2. Accounting information
will be printed on two
lines, giving terminal con­
nection time and central
computer time.

!~~. End work session and
g2!~ ~!~~-~E-~~~~~~~~~~:--
Enter )OFF HOLD
followed by a colon and a
password, if desired.

Effect:
1:--2: and 3. Same as for
TC2.

4. The dial-up telephone
connection will be main­
tained for 60 seconds,
pending a new sign-on.

There is no effect on any stored
workspace.

Once applied, a password stays in
effect until explicitly changed by
an ending command that contains
a colon.

An existing password is removed if
no password follows the colon.

If a colon is not used, the existing
password, if any, remains in force.

Trouble report:
INCORRECT-COMMAND

The time used in this session and
cumulative time since the last
accounting are given in the stand­
ard format, for both terminal
time and computer time.

The DATA light on telephone data­
sets will go out.

See note at TC2.

An attention signal at this time
may cause the connection to be
broken.

2.9



~~§EQ~~~:
1. and 2. Same as for TC2.

TC4. End work session and
store active-workspace:--­Enter )CONTINuE-------
followed by a colon and a
password, if desired.

Effect:------
1. A copy of the currently
active workspace will be
stored in the user's private
library with the name
CONTINUE. If the workspace
has been activated from a
stored workspace with a
password, the same password
will be applied to CONTINUE.

2. 3. and 4. Same as for
TC2.

~~~E~~~~:
1. Time of day and date,
followed by CONTINUE.

2. and 3. Same as for TC2,
response 1 and 2.

TC5. ~~~ ~~~~ ~~~~~~~,
store active workspace,
~~~-E~!~-£!~!:~E-connection:
Enter )CONTINUE HOLD-------
followed by a colon and a
password, if desired.

Effect:
1~--Same as for TC4.

2. and 3. Same as for TC2.

4. Same as for TC3.

Trouble report:
INCORRECT-COMMAND

See note at TC2.

A bounce has the same effect and
response as this command. A dis­
connect has the same effect, but no
response.

This effect will not take place if
the active workspace is not holding
information.

When the workspace is saved it
replaces any workspace previously
stored with the name CONTINUE.

This response will be omitted if the
workspace was not saved. See note
at Effect 1.

Trouble reports:
NOT-WITH-OPEN-VEFINITION
means that the terminal is in
definition mode. Close the defini­
tion by entering the character ~

(See mechanics of function defini­
tion in Part 3.)

INCORRECT COMMAND

See note at TC2.

2.10



g~~EQ~~~:
1. 2. and 3. Same as for
TC4.

WORKSPACE CONTROL COMMANDS

Trouble reports:
NOT-wiTH-OPEN-DEFINITION
See TC4.

INCORRECT COMMAND

The commands in this class can replace the active workspace
with a clear one, or with a copy of a stored workspace; bring
together in the active workspace information from many stored
workspaces; form groups within the active workspace; remove un­
wanted objects from-the active workspace; and set controls
governing certain operations. No command in this class affects
any but the active workspace.

~~2~!~~~~~~ packages. The usefulness of a terminal system is
enhanced by the-avaIlability of many different collections of
functions and variables, each of which is organized to satisfy
the computational needs of some area of work; for example,
standard statistical calculations, exercised for teaching a
scholastic subject, complex arithmetic, business accounting,
text editing, etc. The workspace-centered organization of
APL\360 lends itself to such packaging, because each collection
moves as a coherent unit when the workspace containing it is
stored or activated.

The copy commands provide a convenient way to assemble
packages from components in different workspaces. The ~~~~p com­
mand makes it convenient to have a multiplicity of more specia~ized

packages in a single workspace, sharing common elements, but
available individually by copying the appropriate group.

Groups. The group command assigns a single name to a collection
of-names, in order to provide more convenient reference to
selected functions and global variables. The group name can
subsequently be used for three purposes: to move a copy of the
entire set of referenced objects between workspaces, to incorporate
the group members within another group, and to erase, in a single
operation, all objects referenced by the group. Each of these
is further explained below, in connection with the relevant
operation.

!~!Q~~~~~2~ ~~~~~~~~ Q~~~~~~ ~2~~~P~~~~· Information entered
or developed within one workspace can be made available within
another by means of the ~~EY and P~~~~~~~~~-~9PY commands, which
reproduce within the active workspace objects from a stored
workspace. These are two sets of parallel commands which differ
only in their treatment of an object in the active workspace
which has the same name as an object being reproduced: the copy
commands will replace the existing object, whereas the protecting­
copy commands will not make the replacement.

2.11



A copy command of either type can be applied to an entire
workspace or to a single object (i.e., a function, variable, or
group). When an entire workspace is copied, all the functions
and global variables within it are subject to the operation, but
its index origin and output control settings, state indicator,
and local variables are left behind.

When a group is copied without protection, both its definition
(that is, the group name and the collection of names composing the
group) and the objects referenced by the names within it, are
reproduced in the active workspace.

If one of the names in this group's definition is the name
of another group, that group's definition is copied but not its
referenced objects.

The table below shows the contents of a stored workspace
(SAVEDWS) •

A FNl VARl B

'V FNl VAR1+2 Flv2
[ 1 ] VAR2
[2J,
,

[N] 'V

B FN2 VAR2

'V FN2 VAR2+4
[lJ
[ 2 ],
,
,

[N] \J

A and B are group names. A consists of a function, FN1, whose
definition is indicated below it; a variable, VAR1, whose defini­
tion is value 2, and a group, B, defined by the names FN2 and
VAR2. Within the group B itself, FN2 is defined by its function
definition, and VAR2 is defined by 4. Now, if SAVEDWS A is
copied by

)COpy SAVEDWS A

the resulting active workspace will contain

FNl VARl B

\J FN1
[ 1 ] VAR1+2 FN2
[ 2] VAR2,
,
,

[N] V

2.12



It will nQ~ contain

\] FN2
[ 1 ]
[2J

[NJ \]

4 (definition of VAR2)

In other words, the definition of FN2 and the value 4 will not be
copied.

When copied with protection, the group itself, or any of the
objects referenced by its members, will be omitted in order to
protect an object in the active workspace. If the group definition
is successfully copied under these circumstances, the names com­
posing it will refer to the global objects by those names in the
active workspace, regardless of whether they were copied with the
group or were present before.

Q~~~!!~9 Q~~~~!E~!~~· The term ~~~~~p~~~ ~~~~~!~~£~E!~~ is used
here to mean either a library number followed by a workspace name,
or a workspace name alone. When a name is used alone, the refer­
ence is to the user's private library.

ACTION

weI. Activate a clear work--------- - -----
space:
Enter )CLEAR.

Effect:
I~--A-clear workspace will
be activated, replacing the
presently active workspace.

Response:
I-:--CLEAR WE

WC2. Activate a copy oD a
stored-workspace:---- -­
Enter-) IOA15-- - --
followed by a space and a
workspace identification
(with the password, if
required) .

NOTES

This command is used to make a fresh
start, discarding whatever is in
the active workspace.

A clear workspace has no variables,
groups, or defined functions.

Its control settings are:
index origin, 1; significant digits,
10; line width, 120.

Its workspace identification does
not match that of any stored work­
space. (See section on library
control. )

~~Q~!2!~ Il!E2.~~~g~:
INCORRECT COMMAND

This command may be used to obtain
the use of any workspace in the
system whose iden~ification (and
password) is known.

2.13



Effect:
l~--A-copy of the designated
workspace will be activated,
replacing the presently
active workspace.

~~~E~~~~:
1. SAVED, followed by the
time of day and the date
that the source workspace
was last stored.

WC3. Copy a global object
from a-stored-workspace:-­
Enter-)COPY-- ---------
followed by a space and a
workspace identification
(with the password, if
required), followed by a
space and the name of the
object to be copied.

Effect:
I~--A-copy of the desig-
nated object will appear
in the active workspace
with global significance,
replacing existing global
homonyms.

Trouble messages:
WS-NOT-FOUNV----
means there is no stored workspace
with the given identification.

WS LOCKED

means that no password, or the
wrong password, was used when one
was required.

INCORRECT COMMAND

A global object may be a group,
function, or global variable.

When applied to a group, all copy
commands operate both on the group
definition and on objects referenced
by the group members.

Members of a group do not neces­
sarily have referents~ but a group
member without a referent in the
source workspace may find one in
the active workspace.

~~~E~~~~: Trouble messages:
1. SAVED, followed by the NOT-WITH-OPEN-VEFINITION
time of day and the date means that the terminal is in
that the source workspace was definition mode. Either close the
last stored. definition by entering ~, or defer

the copy operation.

WS NOT FOUND
See WC2.

WS LOCKED
See WC2.

OBJECT NOT FOUND
means that the designated workspace
does not contain a global object
with the given name.

2.14



WC3a. Copy all global
obJects-from-a-storea­workspace:-- - ------
Enter-TCOPy
followed by a space and a
workspace identification
(with the key, if required).

Effect:
I~--A-coPY of all functions,
groups, and global variables
in the source workspace will
appear in the active work­
space with global signif­
icance, replacing existing
global homonyms.

~~~E~~~~:
1. SAVED, followed by the
time of day and the date
that the source workspace
was last stored.

WC4. Copy a global object
!~~~ ~~~~~~~-~~~g~E~~~;-­
~~~~~~~~~~ ~~~ ~~~~~~ ~~~~-
space:
Enter )PCOpy
followed by a space and a
workspace identification
(with the password, if
required), followed by a
space and the name of the
object to be copied.

Effect:
I~--A-copy of the desig-
nated object will appear in
the active workspace unless
there is an existing global
homonym.

WS FULL ERROR
means that the active workspace
could not contain all the material
requested:
if copied at all, variables and
functions will be copied completely;
some objects may be completely over­
looked. Status may be determined by
using appropriate inquiry commands.

INCORRECT COMMAND

See notes at We3.

Local variables, the state indi­
cator, and settings for origin,
significant digits, and width are
not copied.

Trouble messages:
NoP-wITH-OPEN-VEFINITION
WS NOT FOUND
WS LOCKED
WS FULL ERROR
INCORRECT COMMAND
See We3 for all meanings.

See notes at WC3.

2.15



B~~E<?~~~:
1. SAVED, followed by the
time of day and the date
that the source workspace
was last stored.

~~1~· ~~EY ~!~ ~!~e~~ ~~i~~!~
from a stored workspace,
p~~~~~~!~~-~~~-~~~~~~-~~~~-
space:
Enter )PCOpy
followed by a space and a
workspace identification
(with the password, if
required) .

Effect:
I~--A-coPY of all global
objects in the source work­
space which do not have
global homonyms in the
active workspace will appear
in the active workspace.

~~~E~~~~:
1. SAVED, followed by the
time of day and the date
that the source workspace
was last stored.

WC5. Gather names into a------ -----
group:
Enter)GROUP
followed by a space and
one or more names sepa­
rated by spaces.

Effect:
I~--The first name will be
the name of a group having
the other names as mem­
bers, subject to the rules
given in the adjacent
notes. An existing group
with the same name will be
superseded.

~~~~~!~ ~~~~~~~~:
NOT WITH OPEN DEFINITION
WS NOT FOUND
WS LOCKED
OBJECT NOT FOUND
WS FULL ERROR
INCORRECT COMMAND
See We3 for all meanings.

See notes at We3.

See note at We3a, Effect 1.

See note at WC4, Effect 1.

~~~~~!~ ~~~~~q~~:
NOT WITH OPEN DEFINITION
WS NOT FOUND
WS LOCKED
WS FULL ERROR
INCORRECT COMMAND
See We3 for all meanings.

The first name used in the command
must not be the name of a function
or global variable.

Any name may be a member of a
group; names of groups, functions,
and global variables, and names
without current global referents
are all acceptable.

Members may be added to an existing
group by using the group name twice
in the command: as the first name
and as another.

2.16

2. If only one name is used When a group is dispersed the group
in the command, no group is definition is destroyed, but the
formed, and an existing group referents of the group members are
by that name is dispersed. unaffected.

Trouble reports:
NOT-GROUPED~-NAME IN USE
means that the first name used in
the command is the name of a function
or global variable. Erase the
offending object, or use a different
name.

INCORRECT COMMAND

WC6. Erase global objects:
Enter)ERASE------ -------
followed by a space and the
names of objects to be
deleted, separated by
spaces.

Effect:
I~--Named objects having
global significance, other
than pendent functions, will
be expunged.

we7. ~~t ~~~~~ Q~!9!~ for
array operations: Enter-the
characters-) ORIGIN
followed by a space and a 0
or 1.

Effect:
I:--First elements of arrays
in the workspace will be
numbered zero or one, as
indicated, and subsequent
use of index-dependent APL
operations will be appro­
priately affected.

~~~EQ!!~~:
1. WAS, followed by the
former origin.

This is the only way to remove a
global variable, and the most con­
venient way to remove a collection
of objects.

Names which do not refer to global
objects are ignored.

When a group is erased, both the
group and the referents of its mem­
bers are expunged.

Trouble report:
INCORRECT-COMMAND

A dynamically executable equivalent
function is available (see Part 4).

These matters are explained in
Part 3.

~~9~~!~ ~~EQ!:~~:
INCORRECT COMMAND

2.17



~~~. §§t ~~~~~~~ ~Q£ ~~g­
~!~!~~~~ ~!g!~~ !~ ~~~e~~:
Enter)DIGITS
followed by a space and
an integer between 1 and
16 inclusive.

Effect:
I~--Subsequent output of
numbers will show no greater
number of significant digits
than indicated.

Response:
I~--WAS~ followed by the
former maximum.

WC9. Set maximum width for
~~-Q~~E~~ I~~~:-- -----
Enter)WIDTH
followed by a space and an
integer between 30 and 130
inclusive.

Effect:
I:--Subsequent output of all
kinds, except messages be­
tween terminals, will be
limited to a line width no
greater than the number of
spaces indicated.

gesE9~~~:
1. WAS, followed by the
former maximum width.

~g±Q. ~~~~9~ ~~~~~~~~~
identification:
Enter-YWSID---
followed by a space and a
workspace identification.

A dynamically executable equivalent
function is available (see Part 4).

This command has no effect on the
precision of internal calculations,
which is approximately 16 decimal
digits.

When displaying an APL statement
that contains a numeric constant,
the constant will be displayed with
up to 16 significant digits
regardless of the)DIGITS command
setting.

Trouble report:
INCORRECT-COMMAND

A dynamically executable equivalent
function is available (see Part 4).

This affects neither the mechanical
margin stops nor the allowable
length of input lines.

~£~~~!~ ~~~~t:
INCORRECT COMMAND

This command can be used to guard
against inadvertently changing a
stored workspace that has just been
loaded; and conversely, to enable
the replacement of a stored work­
space without first using the drop
command, when the active workspace
came from a different source. (See
section on library control commands.)

2.18

Effect:
I~--The active workspace will See command LeI for the implications
assume the specified identi- of this.
fication. A password
associated with the workspace
will be retained.

Response:
r~--WAS; followed by the
former workspace identifi­
cation.

well. Change quantity of
permitted-symbols:----
Enter-fSYMBOLS-n-

Effect:
I~--The size of the internal
symbol table is changed from
the normal 256 to a value not
less than n. n is an integer
ranging between 26 and
4241.

~~~p~~~~:
1. WAS, followed by the
former symbol table size.

LIBRARY CONTROL COMMANDS

Trouble report:
INCORRECT-COMMAND

n is an integer between 26 and
4241. This command can be used only
in a CLEAR workspace. The command
changes the size of an internal
symbol table to a value not less
than n. Normally, 256 names may be
used in a standard workspace. With
this command, up to 4241 names may
be used.

Trouble report:
INCORRECT-COMMAND
This report is also printed if the
)SYMBOLS command is issued and the
active workspace is not a clear
workspace.

There are two basic operations performed by the commands in
this class. The §~y~ commands cause a copy of an active workspace
to be stored in a library, and the drop command causes such a
stored copy to be destroyed. ----

The save commands and the load command are symmetric, in the
sense that a load command destroys an active workspace by
replacing it with a copy of a stored workspace, while a save com­
mand may destroy a stored workspace by replacing it with a copy
of the active workspace.

g~~~~~~!~y ~f ~~~~. When a workspace is stored, an exact copy of
the active workspace is made, including the state indicator and
intermediate results from the partial execution of halted func­
tions. These functions can be restarted without loss of continuity
(see Part 3), which permits considerable flexibility in planning

2.19



use of the system. For example, lengthy calculations do not have
to be completed at one terminal session; student work can be con­
ducted over a series of short work periods, to suit class
schedules; and mathematical experimentation or the exploration of
system models can be done over long periods of time, at the
investigator's convenience.

~~~~~~~~~ !~~~~~~~~~~~~~. A library number and a name, together,
uniquely identify each stored workspace in the system. An active
workspace is also identified by a library number and a name, and
as copies of stored workspaces are activated, or copies of the
active workspace are stored, the identification of the active
workspace may change according to the following rules:

1. A workspace activated from a library assumes the
identification of its source.

2. When a copy of the active workspace is stored, the
active workspace assumes the identification assigned to
the stored copy.

3. The library number and name may be arbitrarily changed
by the use of command WCIO.

4. A clear workspace activated by a clear command, a
sign-on, or a system failure is called CLEAR WS, which
cannot be the name of a stored workspace.

The identification of active workspaces is used in two ways.
First, as a safeguard against the inadvertent replacement of a
stored workspace by an unrelated one: an attempt to replace,
by a copy of the active workspace, any stored workspace other
than the one with the same identification (or the one named CON­
TINUE), will be stopped. Second, as a convenience when the
active workspace is to be re-stored with changes: the use of the
command)SAVE, without modification, implicitly uses the identi­
fication of the active workspace.

~!~~~EY ~~~ ~~~~~~~ ~~~~~£~. A user's account number is also
the number of his private library. The numbers of public libraries
range from 1 to 999, and do not correspond to any account number.

Each stored workspace has implicitly associated with it the
account number signed on at the terminal from which the save com­
mand was entered, ano may not be either replaced or erased, ex­
cept from a terminal signed on with the same account number.
Thus, a user is prevented from affecting the state of another

2.20

user's private library, or tampering with public library work­
spaces which he did not store. He may, of course, activate a
copy of any workspace stored in the system, if he knows the library
number and name (and password, if required).

§~Q~~g~ ~l~Q~~~~~. A user of APL\360 is assigned library space
in terms of the maximum number of stored workspaces he may have
at one time. This quota applies to the combined total of workspaces
stored either in his private library or in public libraries. The
allotment for each user is determined by those responsible for the
general management of a particular system, and can be changed from
the recording terminal, as required, within the bounds of the
physical resources of the system.

Up to the number in his quota, a user may assign arbitrary
names to the workspaces he stores. Beyond that point he always
has available one workspace named CONTINUE in his private library.

~~~ ~~ ~g~ fQ~!fE~~ ~~~~§E~~~· This workspace has the property
that it may be freely replaced by an active workspace having any
identification whatsoever. It is thus always available as tempo­
rary storage, but carries with it the danger of being easily
replaced, as described in the section on terminal control com­
mands.

The attributes of the CONTINUE workspace are the same whether
stored as a result of a continue command, disconnect, or bounce,
or stored by virtue of a save command using that name. In the
last case, the active workspace assumes the name CONTINUE, as it
would any other name under like circumstances.

~~~9!~9 ~ ~9E~~E~~~· The sequence of commands, )SAVE ABC123,
)CLEAR,)COpy ABC123, will purge the active workspace, clearing it
of all but its functions, groups, and global variables, and
reset its controls (see WeI). This often results in more usable
space than can otherwise be realized. Subsequently, the commands
)WSID ABC123 and)SAVE may be used to store a copy of the purged
workspace under its former name.

Detailed Description. The term workspace identification will be
used-wIEh-the-same-significance as for the workspace control com­
mands.

2.21


~~~. ~~-~~~~~ ~ ~~EY of the
~~~~~~ ~~~~~E~~~:
Enter)SAVE

Effect:
I:--A-copy of the active
workspace will replace the
stored workspace with the
same identification.

2. A password assQciated
with the active workspace
will continue in effect,
and the stored workspace
will be protected with
this password.

~~~E~~~~:
1. The time of day, date,
and workspace identification
will be printed.

New workspaces can be stored
by this command only if the
identification of the active
workspace has been changed by
WelD.

This forestalls inadvertent
omission of a password while
actively engaged with a con­
fidential workspace.

Trouble reports:
NOT-WITH-OPEN-DEFINITION
means that the terminal is
in function definition mode.
Either close the definition
by entering 7, or defer the
save operation.

NOT SAVED, WS QUOTA USED UP
means that the alotted num­
ber of stored workspaces
has previously been reached.
Unless this is increased, the
workspace can be stored only
by replacing a workspace
already stored. CONTINUE
may be replaced directly;
any other must be erased first,
or the identification of the
active workspace must be
made to match by WelD.

2.22



LCla. §~~~~ ~ ~~P¥ of the
acffve workspace:
Enter-)SAVE-----
followed by a space and a
workspace identification,
with a colon and password,
if desired.

Effect:
I:--A-copy of the active
workspace will be stored
with the designated iden­
tification, and with the
assigned password, if a
password was used.

2. The active workspace
will assume the workspace
identification used in
the command.

NOT SAVED, THIS WS IS
CLEAR WS

results from the fact that
CLEAR WS.cannot be the name
of a stored workspace. Either
change the name by WClD, or
use LCla.

IMPROPER LIBRARY REFERENCE
means that an attempt was
made either to, replace a
stored workspace that is not
under control of the account
number signed on at the ter­
minal, or to store into a
non-existent library.

INCORRECT COMMAND

This form of the save command
allows new workspaces to be
added to a library more con­
veniently, and permits passwords
to be added or removed from
workspaces already present.

A stored workspace with the
same identification will be
replaced.

A password associated with a
stored workspace will not be
retained if the command does
not include a lock explicitly.

To this extent only, this com­
mand may affect the state of
the active workspace.

2.23



Res.panae:
1. The time of day and date
will be printed.

LC2~ E~ase a stQ~ed ~Q~k=

space:
Enter )DROP
followed by a space and a
workspace identification.

Tr.ouble reports.:
NOT WITH OPEN DEFINITION
means the same as for LeI.

NOT SAVED, WS QUOTA USED UP
means the same as for LeI.

NOT SAVED, THIS WS IS
followed by identification
of the active workspace,
means a stored workspace
with the identification used
in the command exists, but
this identification does not
match that of the active
wo~kspace.

IMPROPER LIBRARY REFERENCE
means the same as for LeI.

INCORRECT COMMAND

Since a key is not used, a
locked workspace whose key
has been lost ca~! always be
removed from the system.

Effect:
1. The designated stored
workspace will be expunged.

This command has
on the active
regardless
identification.

no effect
workspace,

of its

Response:
1. The time of day and date
will be printed.

2.24

Trouble reports.:
IMPROPER LIBRARY REFERENCE
means that an attempt was
made to drop a workspace
stored by another user.

WS NOT FOUND
means that there is no
stored workspace with the
identification used in the
command.

INCORRECT COMMAND



INQUIRY COMMANDS

Most of the commands in this class concern the state of
the a9tive workspace. Of the others, one command lists the
names of workspaces in libraries, and two commands are
useful for locating another user at a connected terminal, in
order to communicate with hi.m.

y§§~ ~Qg§§. The communication commands described in the
next section require that the port number of the person to
be addressed be known. The inquiry commands that provide
this information operate through the device of y§~~ gQg~§,

which serve within the system as partial identification of
users. (The user account numbers, which completely identify
users within the system, are not used for this purpose, and
are treated as private information.) A user code comprises
the first three characters of his &name, as it appears in the
sign-on response (Part 1, EC3, Response 2).

A user code is considered to be only partial
identification because it may not be unique. Therefore,
these commands should be used advisedly: before addressing
substantive messages to a terminal which has been identified
by a user code, further confirmation of the receiver's
identity should be sought.

lQ1~ ~1§~ g~ID~§ of g~!~~~9
!y!}g~!Q!!§:
Enter )FNS
followed by an alphabetic
character, if desired.

S~§QQ!}§g:

1. The names of defined
functions in the active
workspace will be printed
alphabetically, starting
with the specified letter.
If a letter was not used,
all function names will be
listed.

2.25

~!"Q~Q1g !ll~§§~g~:
INCORRECT COMMAND



!Q~~ ~~§t ngID~~ Qf glQQgl
ygl;igQl§§:
Enter ) VARS
followed by an alphabetic
character, if desired.

B~§eQn§~:

1. The names of global
variables in the active
workspace will be printed
alphabetically, starting
with the specified letter.
If a letter was not used,
all names of global
variables will be listed.

!QJ~ ~i§~ DgID~§ Qk grQY2§:
Enter )GRPS
followed by an alphabetic
character, if desired.

B§§I2Qn.§§:
1. The names of groups in
the active workspace will be
printed alphabetically,
starting with the letter
used. If a letter was not
used, all group names will
be listed.

~~QYQlg ID~§~g9~:
INCORRECT COMMAND

1'~QygJ.~ ID~§§g9~:
INCORRECT COMMAND

2.26



IQ1~ ~i§~ m~mQ§~§hbV g!
9~§!gn~t~9 gfQgp:
Enter )GRP
followed by the name of the
group.

B~§2QD§''§:
1. The names in trle group
will be printed.

JQ~~ ~i§~ bg21~g i~D~tiQD§:
Enter )51

B~§.PQD§~:

1. The names of halted
functions will be listed,
most recent ones first.
With each name will be given
the line number on which
execution stopped. Suspend­
ed functions will be
distinguished from pendent
functions by an asterisk.

There will be no response if
there is no group with the
designated name in the
active workspace.

1'±Q:g!21~ m~§§f!g~:
INCORRECT COMMAND

The line numbers on which
halted functions have
stopped are available for
dyn2mic use through the
system-dependent functions
126 and 127. (See Part 3.)

This display is the ~t9~~

iD9i~§tQ~; its significance
and use is explained in Part
3.

T±Q.!J1?l~ ID~~.§g9~:
TNCO!?RECT COlvJMI1NfJ

2.27



lQ~~ ~i~t b~lt~~ 1YngtiQn~

~i~b ngIDg§ QI 1999l
yg!'.1gQl.§§:
Enter )SIV

B~'§PQn§~:

1. The response will be the
same as for IQ5, except that
with each function listed
there will appear a listing
of its local variables.

!Ql~ ~iy§ i~~DtifiggtiQD QI
gQ~iyg WQ~~§Qg~~:

Enter )WSID

r:;ffg~.t: None.

B§§gQn.§~:

1. The identification of the
active workspace will be
printed. The library number
will be included only if it
differs from the account
number associated with the
terminal.

!Q~~ ~i§t ngm~§ Qf §tQ!,gg
~Q.t"~~Qg~§§:

Enter )LI8
followed, if necessary, by a
library number.

E;!f~.Qt: None.

B~§QQn§~:

1. The names of workspa.ces
in the designated library
will be printed. If no
number was used, the account
number associated with the
terminal will be taken as
the library number.

.1~QYQ1~ ID§~.§g9~:
INCORRECT COMMAND

~~QYQlg IDst§.egg~:

INCORRECT COMMAND

A library number is not
required for listings of the
user's private library.

~~QYQ1~ ID~~§g9§~:

IMPROPER LIBRARY REf'ERENCE
means that an attempt was
made to obtain a listing of
another user's private
library, or of a
non-existent library.

INCORRECT COMMAND

2.28



nYmQ§~§

g~~ig=

1Q2£ ~i§t eQrt~ in y§§ gng
~Qg§§ Qf gQnn~Qtgg y~§~§:

Enter )PORTS

B~§~Qn§§:

1. Port numbers in use will
be printed with the
associated user code.

IQ!Q~ ~~§t gQ~~

g~§Qgigt§g ~~th

ngtgg y~g~ ~Qg~:

Enter )PORTS
followed by the user code.

Bg§~Qn§§:

1. The port numbers of
connected users identified
by the code will be pIinted.

COMMUNICATION COMMANDS

~~QYQ1~ mg§§ggg:
INCORRECT COMMAND

User codes are not
necessarily unique, and the
information derived from
this command and lQ9 should
be used advisedly.

TrQyblg ID~Q~ggg:

INCORRECT COMMAND

There are two pairs of commands in this class.
pair addresses any connected terminal, and one
addresses only the system recording terminal.

One
pair

A message can be received by a terminal only when its
keyboard is locked, and except for public address
announcements from the system recording terminal, only if it
is also not in the process of function execution. Hence, to
facilitate two-way communication, one of each pair of
communication commands results in locking the keyboard of
the sending terminal, pending the receipt of a reply. A
keyboard so locked can be unlocked by an attention signal.

Incoming messages from the system recording terminal
are prefixed by OPR~, and public address messages are
prefixed by FA!:.

2.29



If the interaction at a terminal must be interrupted
for a prolonged period while the terminal is still
connected, it is good practice to lock the keyboard so that
a message may be received. This can be done by addressing a
message of the proper type to the terminal's own port
number.

~~~~il~g gg§gri~~iQn. The length of a message is restricted
to a single line, not exceeding 120 characters in length.
However, messages are not subject to the width settings of
either the sending or receiving terminal.

~Ml~ bgg~~§§ ~§~~ ~Q gg§~g=

Dg!-gg l:?Q.J;~:

Enter)MSGN
followed by a port number
and anyone-line text.

A message addressed to an
unused or non-existent port
will be reflected back to
the sending terminal, which
then plays the role of both
sender and receiver.

~.f.!~gt:
1. The keyboard will
while the text is
transmitted.

lock
being

2. The text will be printed
at the receiving terminal,
prefixed by the port number
of the sending terminal.

3. The keyboard will unlock
when the transmission is
completed.

.Bg'§f?Qn.§~:

1. SENT

2.30

l'~QY!?.1~ !!l§'§'§S!9.§:
MESSAGE LOST
means just that. It happens
when attention is signalled
before a message is
delivered, or an equivalent
transmission disturbance
occurs.

INCORRECT COMMAND

~M~~ bgg~§E§ 1§~t tQ g~§~g=

ng~~g 2Q±~ §D9 lQ9~ ~gy=

QQg~9:

Enter)MSG
followed by a port number
and anyone-line text.

~.ff§gt:

1. Same as eMl effect 1.

2. Same as eMI, Effect 2,
except for a prefix H, to
indicate that a reply is
awaited.

3. The keyboard will remain
locked after the response is
printed.

Bg§QQ!1§g:
1. SENT

~MJ~ b99Kg§§ t~~t tQ §Y§1~ID

~gQQ~gbng tg~ID!ns1:
Enter)OPRN
followed by anyone-line
text.

~ff~Q.t:

1. 2. and 3. Same as eMl.

Bg'§2Qn.§~:

1. SENT

See note at eMl.

The keyboard can be
unlocked, before receiving a
reply, by means of an
attention signal.

1'£Q!JQ1§ m~§§ggg:

MESSAGE LOST
See eMl.

INCORRECT COMMAND

See note at eMl.

I~Q1JQ1§ ID§§.§g9§:
MESSAGE LOST
See eMl.

INCORRECT COMMAND

2.31

~MiL 8ggx~§§ ~~~~ ~Q §Y§t~ID

r~gQ~ging t~~m!Qgl gng lQg~

~~Y:QQg~g:

Enter)OPR
followed by anyone-line
text.

~bf~~t:
1. 2. and 3. Same as CM2.

Be§QQ!l§e:
1. S EN1'

See note at eMl.

1'I:QyQ.1~ mg~~ggg:
MESSAGE LOST
See eMl.

INCORRE;CT COMMAND

2.32

PART 3

THE LANGUAGE

The APL\360 Terminal System executes system commands or
mathematical statements entered on a terminal typewriter.
The system commands were treated in Part 2; the mathematical
statements will be treated here.

Acceptable statements may employ either ~r~£
J~~~~~9~~ (e.g. + - x ~) whjch are provided by the system,
or 9~~~B§9 ~~D~~j~n~, which the user provides by entering
their definitions on the terminal.

If system commands are not used, the worst that can
possibly result from erroneous use of the keyboard is the
printing of an ~II~X ~~~~I~. It is therefore advantageous
to experiment freely and to use the system itself for
settling any doubts about its behavior. For example, to
find what happens in an attemped division by zero, simply
enter the expression 4~O. If ever the system seems
unusually slow to respond, execute an attention signal to
interrupt execution and unlock the keyboard.

The Sample Terminal Session of Appendix A shows actual
intercourse with the system whjch may be used as a model in
gaining facility with the terminal. The examples follow the
text and may well be studied concurrently. More advanced
programming examples appear in Appendix B.

The primitive functions and the defined functions
available in libraries can be used without knowledge of the
means of defining functions. These means are treated in the
four contiguous sections beginning with Defined Functions
and ending with Homonyms. These sections may be skipped
without loss of continuity.

FUNDAMENTALS

Stg~gIDgD~~. Statements are of two main types, the br~b
(denoted by ~ and treated in the section on Defined
Functions), and the ~p~~i£i~~iQn. A typical specification
statement is of the form

This statement assigns to the Y~ri~b~~ X the value resulting
from the expression to the right of the ~p~~i£i~~iQn _arID~.

3.1

If the variable name and arrow are omitted,
value is p1inted. For example:

12

the resulting

Results typed by the system begin at the left margin
whereas entries from the keyboard are automatically
indented. The keyboard arrangement is shown in Figure 1.2.

S9~lg~ §ng y~g~Qr ~Qn~~aD~~. All numbers entered via the
keyboard or typed out by the system are in decimal, either
in conventional form (including a decimal point if
appropriate) or in exponential form. The exponential form
consists of an integer or decimal fraction followed
immediately by the symbol E followed immediately by an
integer. The integer following the E specifies the power of
ten by which the part preceding the E is to be multiplied.
Thus ln44E2 is equivalent to 144.

Negative numbers are represented by a negative sign
immediately preceding the number, e.g., l a 44 and -144E-2
are equivalent negative numbers. The negative sign can be
used only as part of a constant and is to be distinguished
from the D~g~t!Q~ function which is denoted, as usual, by
the minus sign -.

A constant vector is entered by typing the constant
components in order, separated by one or more spaces. A
character constant is entered by typing the character
between quotation marks, and a sequence of characters
entered in quotes represents a vector whose successive
components are the characters themselves. Such a vector is
printed by the system as the sequence of characters, with no
enclosing quotes and with no separation of the successive
elements. The quote character itself must be typed in as a
pair of quotes. Thus, the abbreviation of CANNOT is
entered as 'CAN"T' and prints as CAN'T.

Ngm§~ gng Spaces. As noted in Part 2, the name of a
variable or defined function may be any sequence of letters
or digits beginning with a letter and not containing a
space. A letter may be any of the characters A to Z, or any
one of these characters underscored, e.g., d or ~.

Spaces are not required between primitive functions and
constants or variables, or between a succession of primitive
functions, but they may be used if desired. Spaces are
needed to separate names of adjacent defined functions,
constants, and variables. For example, the expression 3+4
may be entered with no spaces, but if F is a defined

3.2

function, then the expression 3 F 4 must be entered with the in­
dicated spaces. The exact number of spaces used in succession is
of no importance and extra spaces may be used freely.

Overstriking and erasure. Backspacing serves only to position the
carriage-and does-nat-cause erasure or deletion of characters. It
can be used:

1. to insert missing characters (such as parentheses) if
space has previously been left for them,

2. to form compound characters by overstriking (e.g. ~ and
!), and

3. to position the carriage for erasure, which is effected
by striking ATTN (marked LINE FEED on 2740 and 1050 ter­
minals). The line feed has the effect of erasing the charac­
ter at the position of the carriage, and all characters to
the right.

End 9f ~~~~~~§~~. The end of a statement is indicated by striking
the carriage return (followed, on some terminals, by an explicit
transmission signal as described in Part 1). The typed entry is
then interpreted ~~~~~~y as it appears on the page, regardless of
the time sequence in which the characters were typed.

~~~~~~~ ~~~~~~ ~f ~~p~~ ~g~~~~~~~~. The maximum number of charac­
ters which may be entered as one line is 266. This count includes
the six initial blanks of the indention for keyboard entries, and
the carriage return itself. (On a 2741 terminal, characters may
be entered beyond the right margin by the expedient of manually
advancing the paper, then shoving the carriage back toward the
left margin.)

If an attempt to enter more than 266 characters is made, the
system rejects the entry, responds RESEND, then repeats the
characters up to the 266th. The system awaits a new try to enter
characters.

Order of execution. In a compound expression such as 3 x 4+6f2, the
functions-are-executed (evaluated) from rightmost to leftmost,
regardless of the particular functions appearing in the expression.
(The foregoing expression evaluates to 21.) When parentheses are
used, as in the expression W+(3fQ)fXXY-Z, the same rule applies,
but as usual, an enclosed expression must be completely evaluated
before its results can be used. Thus, the foregoing expression is
equivalent to W+(3fQ)t(Xx(Y-Z)).

In general, the rule can be expressed as follows: every
function takes as its righthand argument the entire expression to
its right, up to the right parenthesis of the pair that encloses
it.

Error ~~E~~~~. The attempt to execute an invalid statement will
cause one of the error reports of Table 3.1 to be typed out. The
error report will be followed by the offending statement with a
caret typed under the point in the statement where the error was
detected. If the caret lies to the right of a specification arrow,
the specification has not yet been performed.

3.3



TYPE

CHARACTER

DEPTH

DOMAIN

DEFN

INDEX

INTERRUPT

LENGTH

NONCE

RANK

RESEND

SI DAMAGE

SYNTAX

SYMBOL
TABLE

FULL

SYSTEM

VALUE

WS FULL

Cause; CORRECTIVE ACTION

Illegitimate overstrike.

Excessive depth of function execution. CLEAR STATE
INDICATOR.

Arguments not in the domain of the function.

Misuse of V or 0 symbols:
1. V is in some position other than the first.
2. The function is pendent. DISPLAY STATE
INDICATOR AND CLEAR AS REQUIRED.
3. Use of other than the function name alone in
reopening a definition.
4. Improper request for a line edit or display.

Index value out of range.

Execution was suspended within an APL statement.
To resume execution, enter a branch to the state­
ment interrupted.

Shapes not conformable.

A syntactically correct statement has been entered
but cannot be executed because of APL\360 implemen­
tation restrictions.

Ranks not conformable.

Transmission failure or more than 266 characters
entered in one line. RE-ENTER. IF CHRONIC,
REDIAL OR HAVE TERMINAL OR PHONE REPAIRED.

The state indicator (an internal list of suspended
and pendent functions) has been damaged in editing
a function or in performing a COPY.

Invalid syntax; e.g., two variables juxtaposed;
function used without appropriate arguments as dic­
tated by its header; unmatched parentheses.

Too many names used. SAVE, CLEAR, COpy
or SAVE, CLEAR, SYMBOLS, COpy
or ERASE, SAVE, CLEAR, COpy

Fault in internal operation of APL\360. RELOAD.
SEND TYPED RECORD, INCLUDING ALL WORK LEADING TO
THE ERROR, TO THE SYSTEM MANAGER.

Use of name which has not been assigned a value.
ASSIGN A VALUE TO THE VARIABLE, OR DEFINE THE
FUNCTION.

Workspace is filled (perhaps by temporary values
produced in evaluating a compound expression).
CLEAR STATE INDICATOR, ERASE NEEDLESS OBJECTS, OR
REVISE CALCULATIONS TO USE LESS SPACE.

Table 3.1 ERROR REPORTS

3.4



If an invalid statement is encountered during execution
of a defined function, the error report includes the
function name and the line number of the invalid statement.
The recommended procedure at this point is to enter a right
arrow (+) alone, and then retry with an amended statement.
The matter is treated more fully in the section on Suspended
Function Execution.

H9m~§ g~ gKiIDitiY~ JYDgtjQD~. The primitive functions of
the language are summarized in Tables 3.2 and 3.8, and will
be discussed individually in subsequent sections. The tables
show one suggested name for each function. This is not
intended to discourage the common mathematical pr·actice of
vocalizing a function in a variety of ways (for example,
X~y may be expressed as fiX divided by Y", or fiX over Y").
Thus, the expression pM yields the Qim~n~iQD of the array M,
bu.t the terms .§i.~.§ or §.Dg1?§ may be preferred both for their
brevity and for the fact that they avoid potential confusion
with the glmgn§iQD§lity or rgnk of the array.

The importance of such names and synonyms diminishes
with familiarity. The usual tendency is toward the use of
the name of the symbol itself (e.g., "rho" (p) for "size",
and "iota" (1) for "index generator li

}, probably to avoid
unwanted connotations of any of the chosen names.

SCALAR FUNCTIONS

Each of the primitive functions is classified as either
§g~!~f or mi~gg. Scalar functions are defined on scalar
(i.e., individual) arguments and are extended to arrays in
four ways: element-by-element, reduction, inner product, and
outer product, as described in the section on Functions on
Arrays. Mixed functions are discussed in a later section.

The scalar functions are summarized in Table 3.2. Each
is defined on real numbers or, as in the case of the logical
functions gng and Q~, on some subset of them. No functional
distinction is made between "fixed point" and "floating
point" numbers, this being primarily a matter of the
representation in a particular medium, and the user of the
terminal system need have no concern with such questions
unless his work strains the capacity of the machine with
respect to either space or accuracy.

Three different representations for numbers are used
internally, and transformations among them are carried out
automatically. Integers less than 2 to the power 52 are
carried with full precisio:J; larger numbers and non-integers
are carried to a precision of about 16 decimal digits.

3.5



Monadic form fB f Dyadic form AfE

Definition
or example

+B -(--+ O+B

-B +-+ O-B

Name

Plus

Negative

Name

+ Plus

Minus

Definition
or example

2+3,,2 +-+ 5.2

2-3.2 +-+ 1.2

xB -(--+ (8)0)-(8<0) Signum

Reciprocal

x Times

Divide

2x3.2 +--+ 6.4

2~3.2 +--+ 0.625

B
3.14

- 3. 14

fB
4

-
3

LB
3

-
4

Ceiling

Floor

r

L

Maximum

Minimum

3f7 +-+ 7

3L 7 +-+ 3

*B +-+ (2.71828. o)*B Exponential * Power

1-3,,14 -(--+ 3,,14

Natural
logarithm

Magnitude

~ Logari thIn

Residue

A~B -(--+ Log B base A
A~B +-+ (f1JB)-;-(iA

Case AlB
A~O B-( !A)xLB-1-IA
A=O,B?:.O B
A=O,B<O Domain error

!O +-+ 1 Factorial
! B +-+ B x ! B-1
or !B +-+ Gamma(B+1)

! Binomial A!B +--+ (!B)-;-( !A)x!B-A
coefficient 2!5 +-+ 10 3!5 +-+ 10

?B +-+ Random choice Roll
from 1 B

oB ++ BX3.14159. ~. pi times

? Deal

o Circular

A Mixed Function (See
Table 3.8)

See Table at left

"'0 +--+1 Not

Table of Dyadic 0 Functions

( -A ) 08
(1-B*2)*,,5

Arcsin B
Arccos B
Arctan B

( 1+B*2)*,,5
Arcsinh B
Arccosh B
Arctanh B

A
a
1
2
3
4
5
6
7

AoB
(1-B*2)*1'5
Sine B
Cosine B
Tangent B
(1+B*2)*,,5
Sinh B
Cosh B
Tanh B

=

And
Or
Nand
Nor

Less
Not greater
Equal
Not less
Greater
Not Equal

A B AAB AvB A~B A¥B
o 0 a 0 1 1
a 1 0 1 1 0
1 0 a 1 1 0
1 1 1 1 0 0

Relations
Result 15 1 if the
relation holds, 0
if it does not:

3~7 +--+ 1
7~3 +--+ 0

Table 3.2: PRIMITIVE SCALAR FUNCTIONS

3.6



For operations such as floor and ceiling, and in comparisons,
a "fuzz" of about 1E-13 is applied in order to avoid anomalous
results that might otherwise be engendered by doing decimal
arithmetic on a binary machine.

In a CLEAR workspace the final ten bits in the binary repre­
sentations of the arguments are ignored during a comparison. This
fuzz of ten bits can be changed by )COPY 1 WSFNS SETFUZZ and
SETFUZZ n, where n is an integer between 0 and 31, inclusive.
SETFUZZ changes the number of bits ignored to n and returns the
previous value as a result.

Floor and ceiling are compatible with comparisons. If I
is an integer and the IE is less than .5, then I equals I + E
within fuzz implies the floor and ceiling of I + E will be I.
(This assertion is only roughly true because of the hexadecimal
arithmetic of the IBM Systemj360.)

Two of the functions of Table 3.2, the relations ~ and -,
are defined on characters as well as on numbers.

~~~~~~~ ~~~ ~~~~~~ !~~~~~~~~. Each of the functions defined in
Table 3.2 may be used in the same manner as the familiar arithmetic
functions + - x and f. Most of the symbols employed may denote
either a monadic function (which takes one argument) or a dyadic
function (whIch-takes two arguments). For example, ry denotes-the
monadic function ceiling applied to the single argument Y, and
Xry denotes the dyadIc-function maximum applied to the two argu­
ments X and Y. Any such symbol always-denotes a dyadic function
if possible, i.e., it will take a left argument if one is present.

I

At this point it may be helpful to scrutinize each of the
functions of Table 3.2 and to work out some examples of each,
either by hand or on a terminal. However, it is not essential
to grasp all of the more advanced mathematical functions (such
as the hyperbolic functions sinh, cosh, and tanh, or the extension
of the factorial to non-integer arguments) in order to proceed.
Treatments of these functions are readily available in standard
texts.

Certain of the scalar functions deserve brief comment. The
f~§!g~~ function AlB has the usual definition of residue used in
number theory. For positive integer arguments this is equivalent
to the remainder obtained on dividing B by A, and may be stated
more generally as the smallest non-negative member of the set
B-NxA, where N is any integer.

This formulation covers the case of a zero left argument as
shown in Table 3.2. The conventional definition is extended in
two further respects:

1. The left argument A need not be positive; however, the
value of the result depends only on the magnitude of A.

3.7

then C becomes:
-(IA)*B

(IA) *B
not defined,
domain error

2. The arguments need not be integral. For example,
112.6 is 0.6 and 1.sls is 0.5.

The expression -S*.5 (square root of -8) yields a domain
error, but -S*1t3 has the value -2. More generally, for the ex­
pression C+A*B where A<O, APL assumes B to be composed of PtQ and
analyzes for the following cases:

If P is: and Q is:
Odd Odd

Even Odd
Even/Odd Even

If Q is too large to be determined given the precision limitations
of the host machine (approx. Q>85), B is assumed to be irrational;
in this case C becomes -(IA)*B.

The factorial function !N is defined in the usual way as the
product of the first N positive integers. It is also extended to
non-integer values of the argument N and is equivalent to the
Gamma function of N+1.

The function A!B (pronounced A out of B) is defined as
(IB)+(!A)x!B-A. For integer values of A and B, this is the number
of combinations of B things taken A at a time. (It is related to
the Complete Beta function as follows:
Beta(P,Q) ++ tQx(P-l)!P+Q-l.)

The symbols < ~ = ~ > and ~ denote the relations less than,
!~~~ ~~~~ Q~ ~q~~!, etc., in the usual manner. However~-an ex:­
pression of the form A<B is treated not as an assertion, but as a
function which yields a 1 if the proposition is true, and 0 if it
is false. For example:

3 ~7
1

7 ~3
o

When applied to !Qg~~~~ arguments (i.e., arguments whose
values are limited to 0 and 1), the six relations are equivalent
to six of the logical functions of two arguments. For example,
~ is equivalent to material implication, and ~ is equivalent to
exclusive-or. These-s[i-functions-fogether with the and, or,
nand~-and nor shown in Table 3.2 exhaust the nontrivial-logical
functions of-two logical arguments.

Vectors. Each of the monadic functions of Table 3.2 applies to a
vector~ element by element. Each of the dyadic functions applies
element by element to a pair of vectors of equal dimension or to
one scalar and a vector of any dimension, the scalar being used
with each component of the vector. For example:

1 2 3 4x4 3 2 1
4 6 6 4

2+1 2 3 4
3 4 5 6

1 2 3 4r2
2 2 3 4

3.8

Index generator. If N is a non-negative integer, then IN denotes
a-vector-of-Ehe first N integers. The dimension of the vector IN
is therefore N; in particular, 11 is a vector of length one which
has the value 1, and to is a vector of dimension zero, also called
an empty vector. The empty vector prints as a blank. For example:

14
1 2 3 4

1 5
1 2 3 4 5

1 0

Empty vector prints as a blank
6 - 1 6

5 4 3 2 1 0
2 X 10 Scalar applies to all (i.e. , 0) elemen.ts

of 10, resulting in an empty vector
2 X t6

2 4 6 8 10 12

The index generator is one of the class of mixed functions to
be treated in detail later; it is included here because it is
useful in examples.

DEFINED FUNCT~ONS

Introduction. It would be impracticable and confusing to attempt
to-Include-as primitives in a language all of the functions which
might prove useful in diverse areas of application. On the other
hand, in any particular application there are many functions of
general utility whose use should be made as convenient as possible.
This need is met by the ability to define and name new functions,
which can then be used with the convenience of primitives.

This section introduces the basic notions of function defi­
nition and illustrates the use of defined functions. Most of the
detailed mechanics of function definition, revision, and display,
are deferred to the succeeding section.

The sequence

\J SPHERE
[1J SURF+4x3.14159xRxR
[2] VOL+5URFxRf3
[3 J \j

is called a function definition; the first V (pronounced del) marks
the beginning-at-the defInItIon and the second V marks the-con­
clusion: the name following the first V (in this case SPHERE) is
the name of the function defined, the numbers in brackets are
statement numbers, and the accompanying statements form the body
of-the-functlon-definition. ----

3.9

The act of defining a function neither executes nor
checks for validity the statements in the body; what it does
is make the function name thereafter equivalent to the body.
For example:

[1]
[2]
[3]

VSPHERE
SURF+-4x 3" l Lt159xRxR
VOL +-S UR}7 X R + 3
V
R+-2
R

Definition of the
function SPH ER E

Specification and display
of the argument R

2

SURF
VALUE ERROR

SURF
1\

SPHERE
SURF

50,,26544

VOL
33,51029333

R+-l
SPHERE
SURF

12,56636
VOL

4 0 188786667

SURF has not been
assigned a value

Execution of SPHERE
SURF and VOL now have
values assigned by the
execution of-SPHERE

Use of SPHERE for
a new value of the
argument R

~£9~fbi~g. Statements in a function are normally executed
in the order indicated by the statement numbers, and
execution terminates at the end of the last statement in the
sequence. This normal order can be modified by p±gD~b~~.

Branches make possible the construction of iterative
procedures.

The expression ~4 denotes a QK9D~b to statement 4 ana
causes statement 4 of the function to be executed next. In
general, the arrow may be followed by any expression which,
to be effective, must evaluate to an integer. This value is
the number of the statement to be executed next. If the
integer lies outside the range of statement numbers of the
body of the function, the branch ends the execution of the
function.

If the value of the expression to the right of a branch
arrow is a non-empty vector, the branch is determined by its
first component. If the vector is empty (i.e., of zero
dimension) the branch is vacuous and the normal sequence is
followed.

3.10

The following examples illustrate various methods of
branching used in three equivalent functions (SUM, SUM1, and
5UM2) for dete~ining S as the sum of the first N integers:

[1]
[2]
[3]
[4]
[5]
[6]
[7]

1

3

1 5

[1]
[2]

[3 J
[4]

[5 J
[6]
[7]

15

[1]
[2]
[3]
[4]

[5]
[6]

VSUM
S+O
I+-l
-+4xI~N

S+S+I
I+I+l
-+3
V
N+-l
SUM
S

N+-2
SUM
S

N+-5
SUM
S

\JSUM1
5+-0
1+-1
+OxlI>N
5+-StI
I~I+l

-+3
V
N+-5
SU!11
S

VSUM2
5+-0
1+-0
S-+-StI
I+-I+l
-+3 X 1Is;N
\j

Branch to 4xl (i.e., 4) or to 4xO (out)

Unconditional branch to 3

Equivalent to SUM

Branch to O(out) or continue to next
line since OX10 is an empty vector

Unconditional branch to 3

Equivalent to SUM

Branch to 3 or fall through(and out)

From the last two functions in the foregoing example,
it should be clear that the expression Xl occurring in a
branch may often be read as "if". For example, -+3 x lIsN may
be read as "Branch to 3 if I is less than or equal to N."

3.11

19991 ~Dg glQR91 y~£j~~l~§. A variable is normally glQ~El
in the sense that its name has the same significance no
matter what function or functions it may be used in.
However, the iteration counter I occurring in the foregoing
function SUM is of interest only during execution of the
function; it is frequently convenient to make such a
variable 199~1 t9 9 fYD~~igD in the sense that it has
meaning only during the execution of the function and bears
no relation to any object referred to by the same name at
other times. Any number of variables can be made local to a
function by appending each (preceded by a semicolon) to the
function header. Compare the following behavior of the
function 5UM3, which has a local variable I, with the
behavior of the function 5UM2 in which I is global:

V5UM3 ;I VSUM2

[1] 5+0 [1] 5+-0
[2] I+-O [2] I+-O
[3] 5+-5+1 [3] 5+-S+I
[4] I+-I+l [4] I+-I+l
[5] -+3X1I~N [5] -+3 X 1I5cN
[6] 'V [6] V

I+-20 I+-20
N+-5 N+-5
3UM3 3UM2
5 5

15 15
I I

20 6

Since I is local to the function 5UM3, execution of 5UM3 has
no effect on the variable I referred to before and after the
use of 5UM3.

However, if the variable K is local to a function F
then any function G used within F may refer to the same
variable K, unless the name K is further localized by being
made local to G. For further treatment of this matter, see
the section on Homonyms.

3.12

~~21!g!~ ~fg~~gt. A function definition of the form

\JSPH X
[1J SUR~4x3014159xXxX

[2] \l

defines SPH as a function with an explicit argument;
whenever such a function is used it must be provided with an
argument. For example:

SI~H 2
SUR

50(126544

SPH 1
SUR

12,,56636

Any explicit argument of a function is automatically
made local to the function; if E is any expression, then the
effect of SPH E is to assign to the local variable X the
value of the expression E and then execute the body of the
function SPHo Except for having a value assigned initially,
the argument variable is treated as any other local variable
and, in particular, may be respecified within the function.

~~e!!~it ~~§~1t. Each of the primitive functions produces a
result and may therefore appear within compound expressions.
For example, the expression ~Z produces an explicit result
and may therefore appear in a compound expression such as
X+~Zo A function definition of the form

VZ+-SP X
[lJ Z+4x3 0 14159xXxX
[2 J \J

defines SP as a function with an expljcit result; the
variable Z is local, and the value it assumes at the
completion of execution of the body of the function is the
explicit result of the function. For example:

Q+-3 x SP 1
Q

37.,69908
R+-2
(SP R)xR~3

33.51029333

3.13

Th§ !Q~m§ Qf ggbiD~g fYD9ti9D§. Functions may be defined
with 2,1, or 0 explicit arguments and either with or without
an explicit result. The form of header used to define each
of these six types is shown in Table 3.3. Each of the six
forms permits the appending of semicolons and names to
introduce local variables. The names appearing in anyone
header must all be distinct; e.g., the header Z+F Z is
invalid.

Number of Number of Results
Arguments 0 1

0 \IF 'VZ+F
1 VF Y 'VZ+F Y
2 \IX F Y \lZ+X F Y

Table 3.3: FORMS OF DEFINED
FUNCTIONS

It is not obligatory either for the arguments of a
defined function to be used within the body, or for the
result variable to be specified. A function definition
which does not assign a value to the result variable will
engender a Yslg§ ~~~Q~ report when it is used within a
compound expression. This behavior permits a function to be
defined with a restricted domain, by testing the argument(s)
and branching out in certain cases wjthout specifying a
result. For example:

\I Z+-S QR '1' X
[1] -)0- 0 x 1 X < 0
[2J Z+-X*~5V

Q~-SQRT 16

Q
4

Q+SQRT 16
VALUE ERROR

Q+SQRT 16
A.

3.14

Q§~ Qf g~f!ngg t~ng~iQn~. A defined function may be used in
the same ways that a primitive function may. In particular,
it may be used within the definition of another function.
For example·, the function HYP determines the h~{potenuse of a
right triangle of 'sides A and B by using the square root
function SQRT:

VZ+-SQR T X
[1J Z+-X*~5V

\JH+-A HYP B
[lJ H+-SQRT (A*2)+B*2V

5 HYP 12
13

A defined function must be used with the same number of
arguments as appear in its header.

B~g~~§!y§ tgngtiQD Q~finitiQn~ A function F may be used in
the body of its own definition, in which case the function
is said to be ~~£~~§iygly defined. The following program
FAC shows a recursive definition of the factorial function.
The heart of the definition is statement 2, which determines
factorial N as the product of Nand FAC N-1, except for the
case N=O when it is determined (by statement 4) as 1:

VZ+-FAC N
[1J -+4 X 1N=O
[2J Z+-NxFAC N-l
[3J -+0
[4J 2+-1\1

T~~g~ gQ~t~Ql. A t~~~~ is an automatic type-out of
information generated by the execution of a function as it
progresses. In a complete trace of a fUllction P, the number
of each statement executed is typed out in brackets,
preceded by the function name P and followed by the final
value produced by the statement. The trace is useful in
analyzing the behavior of a defined function, particularly
during its design.

The tracing of P is controlled by the t~~Q~ Y~QtQ~ for
P, denoted by T6P. If one types T6P~2 3 5 then statements
2,3,and 5 will be traced in any subsequent execution of p.
More generally, the value assigned to the trace vector may
be any vector of integers. Typing T6P+-Q will discontinue
tracing of P. A complete trace of P is set up by entering
T~P+-1N, where N is the number of statements in P.

3.15

MECHANICS OF FUNCTION DEFINITION

When a function definition is opened (by typing a 9 followed
by a header), the system automatically types successive statement
numbers enclosed in brackets and accepts successive entries as the
statements forming the body of the definition. The system is
therefore said to be in definition mode, as opposed to the execu­
t!~~ mode which prevails-outsIde-of function definition. -----

If a WS FULL error occurs while in function definition mode,
the system prints the next statement number and waits for the
statement to be entered. The function, however, cannot be closed
because there is not enough room in the workspace to accept the
closing del. To close the function, existing lines must be
deleted, items in the workspace (including the function in ques­
tion) must be)ERASEd, or the active workspace must be)CLEARed
or)LOADed.

There are several devices which may be used during function
definition to revise and display the function being defined. After
function definition has been closed, there are convenient ways to
re-open the definition so that these same devices may be used for
further revision or display.

Labels. If a statement occurring in the body of a function defi­
nItion is prefaced by a name and a colon, then at the beginning of
execution the name is assigned a value equal to the statement num­
ber. A variable specified in this way is called a label. Labels
are used to advantage in branches when it is expected-that a func­
tion definition may be changed for one reason or another, since
a label automatically assumes the new value of the statement num­
ber of its associated statement as statements are inserted or
deleted.

Labels are like local variables, except that (1) they must
not appear in the function header (2) values can not be specified
for them explicitly, and (3) if a suspended function (see "Sus­
pended Function Execution ll

) is edited, values are assigned to its
labels at the conclusion of editing.

g~Y!§iQD. Any statement number (including one typed by the system)
can be overridden by typing [N], where N is any positive number
less than 10000, with or without a decimal point and with at most
four digits to the right of the decimal point. If N is zero, it
refers to the header line of the function.

If any statement number is repeated, the statement following
it supersedes the earlier specification of the statement. If any
statement is empty -- that is, the bracketed statement number was
immediately followed by both a linefeed and a carriage return (a
carriage return alone is vacuous) -- it is deleted.

When the function definition mode is ended, the statements
are reordered according to their statement numbers and the state­
ment numbers are replaced by the integers 1,2,3, and so on.

The particular statement on which the closing V appears is
not significant, since it marks only the end of the definition

3.16

mode, not necessarily the last line of the function. Moreover,
the closing \J may be entered ei ther alone or at the end of a
statement.

Display. During function definition, statement N can be displayed
by-overriding the line number with [NOJ. After the display, the
system awaits replacement of statement N. Typing [OJ displays the
entire function, including the header and the opening and closing
v, and awaits entry of the next statement; typing [ON] displays
all statements from N onward and awaits replacement of the last
statement. Executing an attention signal will stop any display.

Line editing. During function definition, statement N can be
modlfIed-by-the following mechanism:

1. Type [NOMJ where M is an integer.

2. Statement N is automatically displayed and the carriage
stops under position M.

3. A letter or decimal digit or the symbol/may be typed
under any of the positions in the displayed statement. Any
other characters typed in this mode are ignored. The
ordinary rules for backspace and linefeed apply.

4. When the carriage is returned, statement N is re­
displayed. Each character understruck by a / is deleted,
each character understruck by a digit K is preceded by K
added spaces, and each character understruck by a letter is
preceded by 5xR spaces, where R is the rank of the letter in
the alphabet. However, if the number of added spaces plus
the current number of characters in the line would exceed
130, the spaces are not inserted and a DEFN ERROR occurs.
Finally, the carriage moves to the first injected space
and awaits the typing of modifications to the statement i~

the usual manner. The final effect is to define the state­
ment-exactly-as-if the entry had been made entirely from the
keyboard; in particular, a completely blank sequence leaves
the statement unchanged.

If the statement number itself is changed during the editing
procedure, the statement affected is determined by the new state­
ment number; hence statement N remains unchanged. This permits
statements to be moved, with or without modification.

Reopening function definition. If a function R is already
defIned~-the-deflnitron-mode-forthat function can be re­
established by entering \j R alone; the ·rest of the function header
must not be entered. The system responds by typing [N+1J, where
N is the number of statements in R. Function definition then pro­
ceeds in the normal manner.

3.17

Function definition may also be established with editing or
display requested on the same line. For example, VR[3]X+X+1
initiates editing by entering a new line 3 immediately. The sys­
tem responds by typing [4J and awaiting continuation. The entire
process may be accomplished on a single line. Thus, VR[3]X+X+1V
opens the definition of R, enters a new line 3, and terminates the
definition mode. Also, 9RCOJv causes the entire definition of R
to be displayed, after which the system returns to execution mode.

Similar expressions involving display are also permissible,
for example, VR[03]\J or ?R[D] or ?R[2010].

Locked functions. If the symbol f;f (formed by a \J overstruck wi th
a-~-and-calfed-del-tilde) is used instead of V to open or close
a function definition, the function becomes locked. A locked
function cannot be revised or displayed. Moreover, the associated
stop control (see next section) and trace control vectors cannot
be changed after the function is locked.

Locked functions are used to keep a function definition
proprietary. For example, in an exercise in which a student is
required to determine the behavior of a function by using it for a
variety of arguments, locking a function prevents him from dis­
playing its definition.

When an error is encountered in a locked function FL, execu­
tion of FL is abandoned. If FL was invoked by a locked function,
it abandons execution of that function also, and so on, until
there is reached either (1) a statement in an unlocked function
PU or (2) an input statement. Then 'FL ERROR' is printed on the
terminal. In case (1) the execution of FU is suspended at the
statement. In case (2) the system awaits input.

Q~!~~~~~ ~~ i~~~~~Q~~ ~~~ ~~~!~~!~~. A function F or a variable
F is deleted by the command)ERASE F. A function may be deleted,
whether locked or not, by the erase command.

System command entered during function definition. A system
command-entered-durlng function-deflnltIon-wilf-not be accepted
as a statement in the definition. Some commands, such as)COPY,
will be rejected with the message NOT WITH OPEN DEFINITION (see
Table 2.1); most will be executed immediately.

3.18

SUSPENDED FUNCTION EXECUTION

Sy§p~n§iQn. The execution of a function F may be stopped
before completion in a variety of ways: by an error report,
by an attention signal, or by the stop control vector S6F
treated below. In any case, the function is still active
and its execution can later be resumed. In this state the
function is said to be ~Y~Q~D9~9. Typing ~K will cause
execution of the suspended function to be resumed, beginning
with statement K.

Whatever the reason for suspension, the statement or
statement number displayed is the next one to have been
executed. A branch to that statement number will cause
normal continuation of the function execution, and a branch
out (+0) will terminate execution of the function.

The function r26 (described in the section on System
Dependent Functions) yields the number of the statement next
to be executed. Hence the expression'+I26 provides a safe
and convenient way to cause normal resumption of execution.

In the suspended state all normal activities are
possible. In particular, the system is in a condition to:

1. execute statements or system commands.

2. resume execution of the function at an arbitrary
point N (by entering ~N).

3. reopen the definition of any function which is not
Q~n~~nt. The term ~engent is idefined in the
discussion of the state indicator below.

If function execution is interrupted by a disconnect,
the function is suspended and the resulting active workspace
is automatically saved under the name CONTJNUE, as noted in
Part 2.

Stgt~ ingig~tQr. Typing)51 causes a display of the state
in~!QgtQ~; a typical display has the following form:

)SI
H[7] *
C[2]
F[3]

The foregoing display indicates that execution was
halted just before executing statement 7 of the function H,

3.19

that the current use of function H was invoked in statement 2 of
function G, and that the use of function G was in turn invoked in
statement 3 of F. The * appearing to the right of H[7] indicates
that the function H is suspended; the functions G and F are said
to be ~~~~~~~.

Further functions can be invoked when in the suspended state.
Thus if G were now invoked and a further suspension occurred in
statement 5 of Q, itself invoked in statement 8 of G, a subsequent
display of the state indicator would appear as follows:

)SI
Q[5] *
C[B]
H[?] *
G[2]
F[3]

The entire sequence from the last to the preceding suspen­
sion can be cleared by typing a branch with no argument (that is,
+)., This behavior is illustrated by continuing the foregoing
example as follows:

)SI
H[7] *
C[2]
F[3]

Repeated use of + will clear the state indicator completely. The
cleared state indicator displays as a blank line.

State Indicator Damage. An SI DAMAGE report is printed at the
terminal when one of the following occurs:

• The function FN is edited and FN occurs in the state
indicator list but not at the top.

• FN occurs (anywhere) in the state indicator list and an
)ERASE FN or)COPY FN command is executed.

• FN occurs (anywhere) in the state indicator list and its
header is edited or the order of its labels is changed by
editing.

New executions of FN can be initiated safely after the report is
received; only suspended executions of FN may be affected. The
simplest remedy is to enter + at least enough times to eliminate
all FN suspensions.

§!~E ~~~~£~~. The ~~~E ~~~~~E for a function P is denoted by
S~P. It is set in the same manner as the trace vector (i.e., by
S~P~I, where the vector I specifies the numbers of the statements
controlled), and stops execution just before each of the specified
statements. At each stop, the function-name and the line number
of the statement next to be executed are printed. After the stop

3.20

the system is in the normal suspended state; resumption of execu­
tion may therefore be initiated by a branch.

Trace control and stop control can be used in conjunction.
Moreover, either of the control vectors may be set within functions.
In particular, they may be set by expressions which initiate
tracing or halts only for certain values of certain variables.

3.21

HOMONYMS

Variable names. The use of local variables introduces the
posslbility~of having more than one object in a workspace
with the same name. Confusion is avoided by the following
rule: when a function is executed, its local variables
supersede, for the duration of the execution, other objects
of the Sclme name. A name may, therefore 1 be said to have
one ~gt!yg referent and (possibly) several 19t§D~ referents.

The complete set of referents of a name can be
determined with the aid of the SIV list (state indicator
with local variables), whose display is initiated by the
command)SIV. The SIV list contains the information
provided by the command)SI, augmented~by the names of the
variables local to each function. A sample display follows:

)SIV
GL7J * z X I
F[4] P J
Q[3] * c X T
R[2] p

G[3] z X I

If the SIV list is scanned downward, from the top, the
first occurrence of a variable is the point at which its
active referent was introduced; lower occurrences are the
points at which currently latent referents were introduced;
and if the name is not found at all, its referent is global,
and should be sought for with the commands)FNS,)VARS, or
)GRPS.

As the state indicator is cleared (by ~,or by the
continuation to completion of halted functions), latent
referents become active in the sequence summarized, for the
preceding SIV list, by the following diagram:

z)(I P J C T A B
G ~ 4- t I I I I I I
F I I I -} t I 1 I I
Q I t I I I 4- t 1 I
R I I 1 4- I I I I I
G -} 4- + I I I I I I

Global + + + t + t -} + +

The currently active referent of a name holds down to
and including the execution of the function listed at the
point of the fir~~t arrow, because of localization of the

3.22

name within that function. The first latent referent
becomes active when that function is completed, and holds
down to the next arrow; and so forth until the state
indicator is completely cleared, at which point there are no
longer any latent referents, and all active referents are
global objects.

Function ~~m~~. All function names are global. In the
foregoIng example; therefore, a function named P cannot be
used within the function R or within any of the functions
employed by R , since the local variable name P makes the
function p inaccessible. However, even in such
circumstances, the openinq of function definition for such a
function P is possible. (Moreover, as stated in Part 2,
system commands concern global objects only, regardless of
the current environment.)

This scheme of homonyms is easy to use and relatively
free from pitfalls. It can, however, lead to seeming
anomalies as indicated bv the followinq example (shown to
the autho.!'s by J. C. Shaw) of two pai rs of functions which
differ only in the name used for the arqument:

VZ+-F X VZ+-F X
[1] Z+X+Y\7 [:1.] Z+-X+Y\7

'VZ+-G Y 'JZ+-G R
[1J Z+-F YV [1] Z+-F R'V

Y+- 3 Y+-3
G 4 G 4

8 7

INPUT AND OUTPUT

The following
amoun~ A invested
years:

function determines the value
at interest B[lJ for a period

of an
of B [2]

VZ+-A CPI B
[lJ Z~Ax(1+o01xB[lJ)*B[2Jv

For example:

1000 CPI 5 4

1215050625

3.23

The casual user of such a function might, however, find
it onerous to remember the positions of the various
arguments and whether the interest rate is to be entered as
the actual rate (e.g., .05) or in percent (e.g., 5). An
exchange of the following form might be more palatable:

CI
ENTER CAPITAL AMOUNT IN DOLLARS
0:

1000
ENTER INTEREST IN P&RCENT
0:

5
ENTER PERIOD IN YEARS
0:

4

RESULT IS 1215 0 5062S

It is necessary that each of the keyboard entries
(1000, 5, and 4) occurring in such an exchange be accepted
not as an ordinary entry (which would only evoke the
response 1000, etc.), but as data to be used within the
function CI. Facilities for this are provided in two ways,
termed ~Y~1~9t~g inQ~t, and gh~~g~t~~ iD~ut.

The definition of the function Cl is shown at the end
of this section.

~Y~l~~t~g 1nggt. The quad symbol 0 appearing anywhere other
than immediately to the left of a specification arrow
accepts keyboard input as follows: the two symbols 0: are
printed, the paper is spaced up one line, and the keyboard
unlocks. Any valid expression entered at this point is
evaluated and the result is substituted for the quad. For
example:

VZ+F
[1] Z+4xD*2
[2] V

F
0:

3
36

F
0:

3~2

9

3.24

An invalid entry in response to request for a quad input
induces an appropriate error report, after which input is again
awaited at the same point. A system command entered will be
executed, after which (except in the case of one which replaces
the active workspace) a valid expression will again be awaited.
An empty input (i.e., a carriage return alone or spaces and a
carriage return) is rejected and the system again prints the symbols
0: and awaits input.

The symbols 0: are printed to alert the user to the type of
input expected.

Character input. The quote-quad symbol ~ (i.e., a quad overstruck
wIEfi-a-quote)-accepts character input: the keyboard unlocks at
the left margin and data entered are accepted as characters. For
example:

X+~

CAN'T
X

CAN'T

(Quote-quad input, not indented)

Escape from input loop. If evaluated or character input occurs
wIthin an-endless loop in a function, it may be impossible to
escape by the usual device of striking the attention button.
Escape from 0 input can be achieved by entering~. Escape from
~ input can be achieved by typing the three letters OUT, in that
order, but with a backspace between each pair so that they all
overstrike. The effect is exactly as if the symbol ~ were entered
while suspended.

Normal output. The quad symbol appearing immediately to the left
of-a-speclilcation arrow indicates that the value of the expression
to the right of the arrow is to be printed. Hence, O+X is equiv­
alent to the statement X. The longer form D+X is useful when
employing multiple specification. For example, D+Q+X*2 assigns
to Q the value X*2 and then prints the value of X*2.

The page width (measured in characters) may be set to any
value N in the range 30-130 by entering the command)WIDTH N.
It may also be set by the library function WIDTH which may be
used within a defined function. (See Part 4.)

~~~~~~9~~~~~~ ~~~E~~· A sequence of expressions separated by
semi-colons will cause the values of the expressions to be
printed, with no intervening carriage returns or spaces except
those implicit in the display of the values.

The primary use of this form is for output in which some
of the expressions yield numbers and some yield characters. For
example, if X+2 14, then:

'THE VALUE OF X IS ' ;X
THE VALUE OF X IS 2 14

3.25



A further example of mixed output is furnished by the defi­
nition of the function CI which introduced the present section:

\JCI;A;I;Y
[1J 'ENTER CAPITAL AMOUNT IN DOLLARS'
[ 2] A+O
[3J 'ENTER INTEREST IN PERCENT'
[4] I+O
[5J 'ENTER PERIOD IN YEARS'
[6J Y+-D
[7J 'RESULT IS ';Ax(1+.01 xI)*YV

RECTANGULAR ARRAYS

!~~~Q~~~E!Q~. A single element of a rectangular array can be
selected by specifying its !~~!~~~; the number of indices required
is called the dimensionality or ~~~~ of the array. Thus a vector
is of rank 1, a matrix (in which the first index selects a row
and the second a-column) is of rank 2, and a scalar (since it
permits no selection by indices) is an array of rank O. Rectan­
gular arrays of higher rank may be used, and are called 3­
dimensional, 4-dimensional, etc.

This section treats the reshaping and indexing of arrays,
and the form of array output. The following section treats the
four ways in which the basic scalar functions are extended to
arrays, and the next section thereafter treats the definition of
certain mixed functions on arrays.

Vectors, dimension, catenation, lamination. If X is a vector,then-pX denotes-its drmension~ For-example, if X+2 3 5 7 11,
then pX is 5, and if Y+'ABC' , then pY is 3. A single character
entered in quotes or in response to a ~ input is a scalar, not
a vector of dimension 1; this parallels the case of a single num­
ber, which is also a scalar.

Catenation. Catenation joins two variables along an existing
coordInate. For example, two vectors may be catenated: If
X+2 3 5 and Y+10 4, then X,Y equals 2 3 5 10 4. A vector and a
scalar may be catenated; if X+-2 3 5 and 5+4, then X,S is 2 3 5 4.
Strictly speaking, two scalars may be laminated but not cate­
nated.

In general, two arrays may be catenated along an existing coordi­
nate. The syntax for catenation is A,[IJB or A,B. A,B is short
for A,[r/(lppA),lppB]B except when A and B are both scalars. For
example, in I-origin, if A+2 3P16 and B+2 3p 2 3 5 10 4 7~ then

A,B
1 2 3 2 3 5
4 5 6 10 4 7

and
A,[1JB

1 2 3
4 5 6

2 3 5
10 4 7

3.26



If ppA equals ppB, then catenation requires that I be an element
of lppA and that the corresponding dimensions of A and B be the
same except the Ith. The dimension vector of the result is the
same as the dimension vectors of the arguments except that the Ith
coordinate is obtained by adding their corresponding coordinates.
In the example above (A,B)[;l 3J equals A and (A,B)[;3+t3J
equals B.

If A and B do not have the same rank, then their ranks must differ
by one, or either A or B must be a scalar.

If H, for example, has one fewer coordinates than A, then pH must
equal (I~tppA)/pA. In this case a unit Ith coordinate is inserted
into pB. Hence, rows and columns can be added to matrices., For
example, if B+24 39 and A is the same as above, then

A,B
1 2 3 24
4 5 6 39

If B, for example, is a scalar, then it is extended to have the
same dimensions as A except along the Ith coordinate on which it
is given unit length. If A is the same as above and B+29, then

A,[lJB
1 2 3
456

29 29 29

An attempt to catenate an array of more than 24 dimensions results
in a NONCE ERROR. For example:

M+(25p1)p'A'
M

A
ppM

25
M, 'A'

NONCE ERROR
M, 'A'
/\

Lamination. Lamination joins two variables along a new coordinate.The-syntax for lamination is A,B or A,[IJB. If A and-B are both
scalars, then A,E yields a two-element vector. For all other cases
the form A,[IJE must be used.

Lamination requires that either the dimension vectors of A and B
be the same or that A or B be a scalar. In the first case (pA
equals pB) lamination requires that the expression (I~LI)/\

(I>-1+11)/\(I<1+r/tppA) evaluate to unity. The operation inserts,
before the (fI)th coordinate (or after the (LI) th coordinate), a
new coordinate which always has the range t2 and is used to
distinguish between elements from A and elements from B. For
example, in I-origin, if A+2 3p 16 and B+2 3p 2 3 5 10 4 7, then

3.27



A,[.5JB
1 2 3
4 5 6

2 3 5
10 4 7

A,[1.5]B
1 2 3
2 3 5

4
10

5
4

6
7

A,[2.5]B
1 2
2 3
3 5

4 10
5 4
6 7

If B, for example, is a scalar, then the operation A,[1.6JB would
be tantamount to A,[l 6](pA)pB.

An attempt to laminate an array of more than 24 dimensions results
in a NONCE ERROR. For example:

M+(24pl)p'A'
M+M, [ . 5 ] ' A '
ppM

25
M+M , [ • 5 ] ' A '

NONCE ERROR
M+M, [ 0 • 5 ] ' A '

A

~~t~~~~~, 9!~~D§!Q~, ~~~~l. The monadic function p applied to an
array A yields the size of A, that is, a vector whose components
are the dimensions of-X. For example, if A is the matrix

1
5
9

2
6

10

3
7

11

4
8

12

of three rows and four columns, then pA is the vector 3 4.

Since pA contains one component for each coordinate of A,
the expression ppA is the rank of A. Table 3.4 illustrates the
values of pA and ppA for arrays of rank 0 (scalars) up to rank 3.
In particular, the function p applied to a scalar yields an empty
vector.

3.28



Type of Array pA ppA pppA

Scalar 0 1
Vector N 1 1
Matrix M N 2 1
3-Dimensional L M N 3 1

Table 3.4: DIMENSION AND RANK VECTORS

The monadic function ~~~~l is denoted by a comma; when
applied to any array A it produces a vector whose elements are the
elements of A in row order. For example, if A is the matrix

2
10
18

4
12
20

6
14
22

8
16
24

and if V+,A then V is a vector of dimension 12 whose elements are
the integers 2 4 6 8 10 12 ... 24. If A is a vector,
then ,A is equivalent to Ai if A is a scalar, then ,A is a vector
of dimension 1.

Reshape. The dyadic function p reshapes its right argument to the
dImensfon specified by its left argument. If M+DpV, then M is an
array of dimension D whose elements are the elements of V. For
example, 2 3pl 2 3 4 5 6 is the matrix

123
456

If N, the total number of elements required in the array
DpV, is equal to the dimension of the vector V, then the ravel of
DpV is equal to V. If N is less than pV, then only the first N
elements of V are used; if N is greater than pV, then the elements
of V are repeated cyclically. For example, 2 3p1 2 is the matrix

1 2 1
2 1 2

and 3 3pl 0 0 0 is the identity matrix

1 0 0
0 1 0
0 0 1

3.29



More generally, if A is any
equivalent to Dp,A. For example, if A

123
456

then 3 SpA is the matrix

1 2 345
61234
5 612 3

array I then DoA
is the matrix

is

The expressions OpX and a 3pX and 3 OpX and 0 Op){ are
all valid; anyone or more of the dimensions of an array may
be zero.

YE~E 9~ ~~p~y ESS~Y~. A vector of dimension zero contains
no comp()nents and is called an -.eIDl?_t-y y..,e-.e-.1:.o..r. Three
expressions which yield empty vectors are 10 and" and p

applied to any scalar. An empty vector prints as a blank
line.

One important use of the empty vector has already been
illustrated: when one occurs as the argument of a branch,
the effect is to continue the normal sequence.

The following function for determining the
repl:.esentation of an.Y' positive integer N in a base B number
system shows a typical use of the empty vector in
initializing a vector Z which is to be built up by
successive catenations:

V Z+-B BASE N
[ 1 ] Z+-10
[ 2 ] Z+-(BIN),Z
[ 3 ] N+-LN-:-B
[ 4 ] -+2xN>Ov

10 BASE 1776
1 7 7 6

8 BASE 1776
3 3 6 a

Empty arrays of higher rank can be useful in analogous
ways in conjunction with the ~~PEnEi9D function described in
the section on Mixed Functions.

3.30



JDg~~i~g. If X is a vector and I is a scalar, then XCI]
denotes the Ith element of X. For example, if X+2 3 5 7 11
then X[ 2] is 3.

If the index I is a vector, then X[I] is the vector
obtained by selecting from X the elements indicated by
successive components of I. For example, X[1 3 5J is
2 5 1 1 and X[5 4 3 2 1 ] i s 11 7 5 3 2 and X [ 1 3 ] i s 2 3 5.
If the elements of I do not belong to the set of indices of
X, then the expression XLI] induces an iDg~Z ~rrQr report.

In general, pX[I] is equal to pI. In particular, if I
is a scalar, then XCI] is a scalar, and if I is a matrix,
then XCI] is a matrix. For example:

A+-' ABCDEFG'
M+4 3p3 1 4 2 1 4 4 1 2 4 1 4
M

314
214
412
414

A [MJ

CAD
BAD
DAB
DAD

If M is a matrix, then M is indexed by a two-part list
of the form I;J where I selects the row (or rows) and J
selec"r s the column (or columns). For example, if M is the
matrix

1 2 3 4
5 6 7 8
9 10 11 12

then M[2;3] is the element 7 and M[l 3; 2 3 4J is the matrix

234
10 11 12

3.31



In general, pMCI;JJ is equal to (pI),pJ. Hence if 1
and J are both vectors, then MCI;JJ is a matrix; if both I
and J are scalars, MCI;JJ is a scalar; if I is a vector and
J is a scalar (or vice versa), M[I;JJ is a vector. The
indices are not limited to vectors, but may be of higher
rank. For example, if I is a 3 by 4 matrix, and J is a
vector of dimension 6, then MCl;JJ is of dimension 3 4 6,
and MeJ;IJ is of dimension 6 3 4. In particular, if T and P
and Q are matrices, and if R~TCP;QJ, then R is an array of
rank 4 and RCI;J;K;LJ is equal to TCPCI;JJ;Q[K;LJJ.

The form M[l;] iLdicates that all columns are selected,
and the form M[;J] indicates that all rows are selected.
For example, M[2;J is 5 6 7 8 and M[;2 1J is

2 1
6 5

10 9

The following example illustrates the use of a matrix
indexing a matrix to obtain a three-dimensional array:

M+4 3p3 1 4 2 1 4 4 1 2 4 1 4
M

3 1 4
2 1 4
4 1 2
4 1 4

M[M;J

4 1 2
3 1 4
4 1 4

214
314
414

414
314
214

414
314
414

3.32



Permutations are an interesting use of indexing. A
vector Pwhose elements are some permutation of its own
indices is called a R~~~~~~~~QQ Q~ Q~~~~ pP. For example,
3 1 4 2 is a permutation of order 4. If X is any vector of
the same dimension as P, then X[ P] produces a permuta tion of
X. Moreover, if p P is equal to (pM) [1], then M[ P;] permutes
the column vectors of M (i.e., interchanges the rows of ~

and is called a G..o_:Ll!PlIl. 12-~~rn..'J.j;·~_~"t.-LQ.n... Similarly, if pP equals
( pM) [ 2], then M[; P] is a ~Q.VL REl.~rn.1J..t-C!.t..:Lo_Q of M.

~Q~~~~~ ~Q ~Q~ ~~~~. An array appearing to the left of a
specification arrow may be indexed, in which case only the
selected positions are affected by the specification. For
example:

X+-2 3 5 7 11
X[1 3]+-6 8
X

6 3 8 7 11

The normal restrictions on indexing apply; in
particular, a variable which has not already been assigned a
value cannot be indexed, and an out-af-range index value
cannot be used.

JDg~~ Q~jgiD. In 1=Q~jgiD indexing, X[i] is the leading
element of the vector X and X[pX] is the last element. In
.Q':-9!"igiD ir·dexing, X[ 0] is the leading element and X[ -1 +P X ]
is the last. O-origin indexing is instituted by the command
)ORIGIN o. The command )ORIGIN 1 restores I-origin
indexing. The index origin in effect applies to all
coordinates of all rectangular arrays.

The function ORIG1N in Library 1 WSFNS may also be used
to control the inde~ origin. It may be executed within a
function. (,See Part 4.)

In certain expressions such as +/[J]M and K¢[J]M (to be
treated more fully in the two following sections), the value
of J determines the coordinate of the array M along which
the function is to be applied. Since the numbering of
coordinates follows the index origin, a change of index
origin also affects the behavior of such expressions.

The index origin also affects four other functions, the
monadic and the dyadic forms of ? and 1. The expression 1N
yields a vector of the first N integers beginning with the
index origin. Hence X[lNJ selects the first N components of
X in either origin. Moreover, 11 is a one-element vector
having the value 0 in O-origin and 1 in I-origin; 10 is an
empty vector in either origin.

3.33



The index origin remains associated with a workspace;
in p~rticular, the index origin of an active workspace is
not affected by a copy command. A clean workspace provided
on sign-on or by the command )CLEAR is in I-origin. All
definitions and examples in this text are expressed in
I-origin.

b~±~Y QYt2~t. Character arrays print with no spaces between
components in each row; other arrays print with at least one
space. If a vector or a row of a matrix requires more than
one line, succeeding lines are indented.

A matrix prints with all columns aligned. A matrix of
dimension N,1 prints as a single column. Arrays are printed
as planes l with blank spaces separating the planes.

FUNCTIONS ON ARRAYS

There are four ways in which the scalar functions of
Table 3.2 extend to arrays; element-by-element, reduction,
inner product, and outer product. Reduction and outer
product are defined on any arrays, but the other two
extensions are defined only on arrays whose sizes satisfy a
certain relationship called ~QnfQrmabilit~. For the
element-by-element extension, conformability requires that
the shapes of the arrays agree, unless one is a scalar. The
requirements for inner product are shown in Table 3.6.

~gg1g~ fyngtiQn§. All of the scalar functions of Table 3.2
are extended to arrays element by element. Thus if M and N
are matrices of the same size, f is a scalar function, and
P+MfN, then P[I;JJ equals M[I;J]fN[l;J], and if Q+fN, then
Q[I;JJ is equal to fN[I;JJ~

If M and N are not of the same size, then MfN is
undefined (and induces a l~ngth or ~gn~ e~rQr report) unless
one or other of M and N is a scalar or one-element array, in
which case the single element is applied to each element of
the other argument. In particular, a scalar versus an empty
array produces an empty array.

An expression or function definition which employs only
scalar functions and scalar constants extends to arrays like
a scalar function.

B§gy~tiQn. The §Ym-~~gy~tiQn of a vector X is denoted by
+/X and defined as the sum of all components of X. More
generally, for any scalar dyadic function f, the expression
fiX is equivalent to X[1]fX[2Jf~ o?fX[pX], where evaluation
is from rightmost to leftmost as usual. A user-defined
function cannot be used in reduction.

3.34



If X is a vector of dimension zero, then fiX yields the
identity element of the function f (listed in Table 3.5) if
it exists; if X is a scalar or a vector of dimension 1, then
fiX yields the value of the single element of X.

The result of reducing any vector or scalar is a
scalar.

Dyadic Identity Left-
Function Element Right

Times x 1 L R
Plus + a L R
Divide ...- 1 R
Minus - 0 R
Power * 1 R
Logarithm $ None-Maximum r 7r- 237 0 G cE75 L R
Minimum L 7.237 0 ~ cE75 L R
Residue I 0 L
Circle 0 None
Out of ! 1 L
Or v 0 L R
And A 1 L R
Nor ¥ None
Nand ~ None

""I

Equal = 1 Apply L R
Not equal ~ 0 for L R
Greater > 0 logical R

>-
Not less ~ 1 arguments R
Less < a only L
Not greater $ 1 L...

Table 3.5: IDENTITY ELEMENTS OF
PRIMITIVE SCALAR
DYADIC FUNCTIONS

For a matrix M, reduction can proceed along the first
coordinate (denoted by f/[1]M) or along the second
coordinate (f/[2JM)~ The result in either case is a vector;
in general, reduction applied to any non-scalar array A
produces a result of rank one less than the rank of A (hence
the term ~~gggtiQn). The numbering of coordinates follows
the index origin, and an attempt to reduce along a
non-existent coordinate will result in an index error.

3.35



Since +/[l]M scans over the row index of M it sums each
9Q!~~~ vector of M, and +/[2]M sums the ~Q~ vectors of M. For
example, if M is the matrix

123
456

then +/[1]M is 5 7 9 and +/[2]M is 6 15.

In reducing along the last coordinate of an array, the
coordinate indicator may be elided -- thus +/M denotes summing
over each of the rows of M and +/V denotes summing over the last
(and only) coordinate of the vector V.

Reduction over the first coordinate of M by a function f may
be obtained by using the expression ffM. The symbol t is formed
by overstriking the solidus with the minus sign.

Inner product. The familiar matrix product is denoted by C+A+.xB.
If-A-and-B-are matrices, then C is a matrix such that C[I;J] is
equal to +/A[I;]xB[;JJ. A similar definition applies to Af.gB
where f and 9 are any of the standard scalar dyadic functions.

If A is a vector and B is a matrix, then C is a vector such
that C[J] is equal to +/AxB[;JJ. If B is a vector and A is a
matrix, then C is a vector such that C[IJ is equal to +/A[I;]xB.
If both A and B are vectors, then A+.xB is the scalar +/AxB.

The last dimension of the pre-multiplier A must equal the
first dimension of the post-multiplier B, except that if either
argument is a scalar, it is extended in the usual way. For non­
scalar arguments, the dimension of the result is equal to (-1 +pA),
1~pB. (See the function ~~2E in the section on Mixed Functions.)
In other words, the dimension of the result is equal to (pA),pB
except for the two inner dimensions (-1tpA and 1tpB), which must
agree and which are eliminated by the reduction over them.

A and B are conformable with respect to the inner product
Af.gB if (1) A or B is a scalar, or (2) -1tpA and 1tpB are equal,
or (3) either -1tpA or 1tpB equals one. In the last case the
corresponding argument is extended by replication to make the
arguments of equal length along this coordinate.

~~~~pl~ 1 ~~~~E!~ 2 ~~~~~~~ 3
- -

A A A
BIG BIG 1 2
BAD BAD 3 4
TOP TOP B
JOB pA JOG 5 6 7 8

pA A+.xB
4 3 4 3 15 18 21 24

B 35 42 49 56
AV.='O' BAD

0 0 1 1 pB
3

AA.=B
0 1 0 0

3.36

Definitions for various cases are shown in Table 3.6.

Q~~~~ p~~~~~~. The outer product of two arrays X and Y with re­
spect to a standard scalar dyadic function 9 is denoted by Xo.gY
and yields an array of dimension (pX),pY, formed by applying 9
to every pair of components of X and Y.

Conformability Definition
pA pB pA f. gB requirements Z+Af.gB

Z+f/AgB
V Z+f/AgB

U Z+f/AgB
U V u=v Z+f/AgB

V W W Z[I]+f/AgB[;I)
T V T Z[I]+f/A[I; JgB

U V W W u=v Z[I]+f/AgB[;.IJ
T u V T u=v Z[I]+-f/A[I; JgB
T U V W T W u=v Z[I;JJ+f/A[I;JgB[;JJ

Table 3.6: INNER PRODUCTS FOR PRIMITIVE SCALAR
DYADIC FUNCTIONS f AND 9

If X and Yare vectors and Z+Xo.gY, then Z[I;J] is equal to
X[IJgY[JJ. For example:

X+-13
Y+t4
Xo. xY

123 4
246 8
3 6 9 12

Xo. ~y

1 000
1 1 0 0
111 0

If X is a vector and Y is a matrix, and Z+-Xo.gY, then
Z[I;J;KJ is equal to X[I]gY[J;KJ. Definitions for various cases
are shown in Table 3.7.

Definition
pA pB pA 0 • gB Z+-A 0 • gB

Z+AgB
V V ZeIJ+AgBCIJ

u U Z[IJ+ACIJgB
U V U V Z[I;J]+A[IJgB[J]

V W V w Z[I;JJ+AgB[I;JJ
T u T U Z[I;J]+A[I;J]gB

V V W U V W Z[I;J;KJ+A[IJgBeJ;KJ
T U V T U V ZeI;J;K]+A[I;JJgB[KJ
T U V W T U V W Z[I;J;K;L]+-A[I[JJgB[K;LJ

Table 3.7: OUTER PRODUCTS FOR PRIMITIVE
SCALAR DYADIC FUNCTION g

3.37

MIXED FUNCTIONS

!~ifQ9~~~iQ~. The §~~!~~ functions listed in Table 3.2 each
take a scalar argument (or arguments) and yield a scalar
result; each is also extended element by element to arrays.
The mi~~9 functions of Table 3.8, on the other hand, may be
defined on vector arguments to yield a scalar result or a
vector result, or may be defined on scalar arguments to
yield a vector result. In extending these definitions to
arrays of higher rank, it may therefore be necessary to
specify which coordinate of an array the mixed function is
applied to. The expression [JJ following a function symbol
indicates that the function is applied to the Jth
coordinate. If the expression is elided, the function
applies to the last coordinate of the argument array. These
conventions agree with those used earlier in reduction.

The numbering of coordinates follows the index origin.

T£~D§PQ§~. The expression 2 1~M yields the t£~~§P2§§ of the
matrix M; that is, if R+2 1~M, then each element R[I;J] is
equal to M[J;I]. For example:

M
1 2 3 4
5 6 7 8
9 10 11 12

2 1~M

159
2 6 10
3 7 11
4 8 12

If P is any permutation of order ppA, then P~A is an
array similar to A except that the coordinates are permuted:
the Ith coordinate becomes the PCIJth coordinate of the
result. Hence, if R+P~A, then (pR)[P] is equal to pA. For
example:

A+2 3 5 7P1210
pA

2 3 5 7
P+2 3 4 1
pP~A

7 2 3 5

3.38

Name Sign l Definition or example 2

Size pA pP +--+ 4 p 5 +--+ 1 a

Reshape

Ravel

VpA

~A

Reshape A to dimension V
12pE +-+ 112 OpE +--+ 10
~ A +--+ (x I p A) p A , E +--+ 1 12

3 4P112 +---* E

p,5 +--+ 1

Index 18
generator3

Catenate

Index 3 4

V,V
V[A]

M[A;A]

A [A ; ~ •
• " ; A]

P, 1 2 +--+ 2 3 5 7 1 2 'T'~'HIS' +-+ ' THIS'
"'I P[2] +-+3 P[4 3 2 1J +--+7 5 3 2

E[l 3 ; 3 2 1] +--+ 3 2 1
)0- 11 10 9

E[1 ;] +-+ 1 2 3 4 ABeD
E[; 1] -+--+ 1 5 9 'ABCDEFGHIJKL'[E] +--+ EFGH

~ IJKL
First S integers 1 4 +--+ 1 2 3 4

1 a +-+ an empty vector

Index of 3 V1A

Take VtA

Drop V4-A
Grade up5 ~ V

Grade down5 , V

Compress 5 VIA

Least index of A P13 +--+2 5 1 2 5
in V, or l+p V P1E +--+ 3 5 4 5

4 414 +--+ 1 5 5 5 5
}Take (drop) IVCI] first 2 3tX +--+ ABC

elements on coordinate EFG
I. (Last if V[I]<O) -

2tP +--+ 5 7
}The permutation which &3 5 3 2 +-+ 4 1 3 2

would order V (ascend-
ing or descending) ~3 5 3 2 +--+ 2 1 3 4

1 3
1 0 1 OIP +-+ 2 5 1 a 1 OlE" +--+ 5 7

9 11
1 a l/[l]E +--+ 1 2 3 4 +--+ 1 0 liE

9 10 11 12

Expand5

Reverse 5

Rotate5

V\A

¢>A

A¢A

1 0 1 \ 1 2' +--+ 1 a 2

DCBA
¢X +--+ HGFE

LKJl ¢p

3¢P +~ 7 2 3 5 +-~

A BCD
1 0 1 1 l\X +--+ E FCR

I JKL
lJKL

¢[l]X +-+ ex +--+ EFGH
+--+ 7 5 3 2 ABeD

BCDA
-l~P 1 a -l¢X +--+ EFGR

LIJK

Transpose

V~A Coordinate I of A
becomes coordinate
V[l] of result

AEI
2 l<\>X +-~ BPJ

CCK
1 l~E +-+ 1 6 11 DRL

Membership

Decode

Encode
Deal 3

~A

VTS
S?S

Transpose last two coordinates ~E +-~ 2 l~E

o 1 1 0
pWEY +--+ pW EEF +7 1 a 1 a
PE14 -+--+ 1 1 a a 0 a a a
10~1 7 7 6 +7 1776 24 60 60~1 2 3 +-~ 3723

Table 3.8: PRIMITIVE MIXED FUNCTIONS (see adjacent notes)

3.39

Name

Matrix
inverse

Sign'

fflM

Definition or example 2

Q+22p63 88 27 44
Q

63 88
27 44

Matrix B[JA
division

ffiQ
0.1111111111 - 0.2222222222

- 0.06818181818 0.1590909091

B+5 7
A+2 2p 34

-
4 8 - 1

BillA
- 11 . 5 - 99

Table 3.8: PRIMITIVE MIXED FUNCTIONS (see adjacent notes) (Cant)

1. Restrictions on argument ranks are indicated by: S for scalar,
V for vector, M for matrix, A for Any. Except as the first
argument of SlA or SeA], a scalar may be used instead of a
vector. A one-element array may replace any scalar.

2. Arrays used 1 2 3 4 ABeD
in examples: P ++ 2 3 5 7 E ++ 5 6 7 8 X ++ EPGE

9 10 11 12 IJKL

3. Function depends on index origin.

4. Elision of any index selects all along that coordinate.

S. The function is applied along the last coordinate; the symbols
f, " and e are equivalent to I, \, and ¢ , respectively, ex­
cept that the function is applied along the first coordinate.
If [S] appears after any of the symbols, the relevant
coordinate is determined by the scalar S.

Notes to Table 3.8

More generally, Q~A is a valid expression if Q is any vector
of dimension ppA whose elem~nts are chosen from (and exhaust) the
elements of If/Q. For example, if ppA is equal to 3, then 1 1 2
and 2 1 1 and 1 1 1 are suitable values for Q but 1 3 1 is not.
Just as for the case P~A where P is a permutation vector, the
Ith coordinate becomes the Q[IJth coordinate of Q~A. However, in
this case two or more of the coordinates of A may map into a
single coordinate of the result, thus producing a diagonal section
of A as illustrated below:

A+3 3P19
A

1 2 3
4 5 6
7 8 9

1 l~A

1 5 9

3.40

Table 3.9 shows the detailed
transposition for a variety of cases.

definitions of

MQn3Qig ~~~D§2Q§g. The expression ~A yjelds the array A
with the last two coordinates interchanged. For a vector V,
matrix 01, and three dimensional array T, the following
relations hold:

~v is equivalent to 1~V (and hence to V)
~M is equivalent to 2 l~M (ordinary matrix transpose)
QT is equivalent to 1 3 2~T

BQt~t~. If K is a scalar O~ one-element vector and X is a
vector, then K¢X is a cyclic rotation of X defined as
follows: K¢X is equal to X[l+(pX) '-l+K+lpX]r For example,
if X~2 3 5 7 11, then 2¢X is equal to 5 7 11 2 3, and -2¢X
is equal to 7 11 2 3 5. In a-origin indexing, the
definition for K¢X becomes X[(pX)/K+lpX].

If the rank of X exceeds 1, then the coordinate J along
which rotation is to be performed may be specified in the
form Z~K¢[JJX. Moreover, the dimension of K must equal the
remaining dimensions of X, and each vector along the Jth
coordinate of X is rotated as specified by the corresponding
element of K. A scalar K is extended in the usual manner.

Case pR Definition

[1~1Q V pV R+-V
R+-l 2 tsJ)1 pM R+-M
R+-2 1~!1 (pM)[2 1] R[I;JJ~M[J;IJ

R+-l 11s(lvJ L / p Iv! R[IJ+-M[l;IJ
R+-l 2 3~T pT R+-T
R+-l 3 2ls<T (pT)[l 3 2] R[l;J;KJ+-T[I;K;JJ
R+-2 3 l~T (p ,]1) [3 1 2 J R[I;J;KJ+-T[J;K;IJ
R+-3 1 2ts)T (pT)[2 3 1] R[l;J;KJ+-T[K;I;JJ
R+-l 1 2~T CL/(pT)[l 2]),(pT)[3] R[I;JJ+-T[I;I;JJ
R+-l 2 l~T CL/(pT)[l 3]) , (p 2') [2] R[I;JJ+-T[I;J;IJ
R-+-2 1 lQT (L/(pT)[2 3]),(pT)[1] R[I;JJ+-T[J;I;IJ
R-.<-l 1 l~T L /p T R[IJ+-T[I;I;IJ

Table 3.9: TRANSPOSITION

3.41

For example, if pX is 3 4 and J is 2, then K must be of
dimension 3 and Z[I;] is equal to K[IJ~X[I;Jo If J is 1,
then pK must be 4, and Z[;IJ is equal to K[I]~X[;I]. If X is
a three-dimensional array, then K must be a matrix or a
scalar. For example:

M 0 1 2 3¢[1]M 1 2 3¢[2]M

1 2 3 4 1 6 11 4 2 3 4 1
5 6 7 8 5 10 3 8 7 8 5 6
9 10 11 12 9 2 7 12 12 9 10 11

The expression Kex denotes rotation along the first
coordinate of x. The symbol e is formed by overstriking a 0

with a minus sign.

B§y~~~g. If X is a vector and R~~X, then R is equal to X
except that the elements appear in reverse order. Formally,
R is equal to X[l+(pX)-lpX]. In o-origin indexing, the
appropriate expression is X[-l+(pX)-lPX].

If A is any array, J is a scalar or one-element vector,
and R~~[J]A, then R is an array like A except that the order
of the elements is reversed along the Jth coordinate. For
example:

A
123
456

¢[l]A
456
123

¢[2]A
321
654

The expression ¢A denotes reversal along the last
coordinate of A, and sA denotes reversal along the first
coordinate. For example, if A is of rank 3, then ¢A is
equivalent to ¢[3JA, and eA is equivalent to ¢[l]A.

f~~PE~~§. The expression U/X denotes ~QIDP~§E§j9n of X by u.
If U is a logical vector (comprising elements having only
the values 0 or 1) and X is a vector of the same dimension,
then U/X produces a vector result of +/U elements chosen
from those elements of X corresponding to non-zero elements
of U. For example, if X~2 3 5 7 11 and U~l a 1 1 a then
U/X is 2 5 7 and (~U)/X is 3 110

To be conformable, the dimensions of the arguments must
agree, except that a scalar (or one-element vector) left
argument is extended to apply to all elements of the righ~

argument. Hence 1/X is equal to X and a/x is an empty
vector. A scalar right argument is not extended. The
result in every case is a vector.

3.42

If M is a matrix, then U/[l]M denotes compression
~1Qng the first coordinate, that is, the compression
operates on each column vector and therefore deletes certain
rows. It is called ~Q1g~D compression. Similarly, U/[2]M
(or simply VIM) denotes ~9~ compression. The result in
every case is a matrix. As in reduction, V/M denotes
compression along the last coordinate, and VfM denotes
compression along the first.

§~E~~9. Expansion is the converse of compression and is
denoted by V\Xo If Y+U\X, then V/Y is equal to X and (if X
is an array of numbers) (~U)/Y is an array of zeros. In
other words, U\X expands X to the format indicated by the
Q~§§ in U and fills in zeros elsewhere. To be conformable,
+/u must equal pX.

If X is an array of characters, then spaces are
supplied rather than zeros, i.e., if Y+U\X then (~V)/Y is an
array of the space character' Again, U\~JJM denotes
expansion along the Jth coordinate, V\M denotes expansion
along the last, and U~M denotes expansion along the first.
See Table 3.8 for examples of expansion.

A scalar left argument is not extended.

Q~£Q9~. The expression RiX denotes the value of the vector
X evaluated in a number system with radices
R[1],R[2],oo:>,R[pR]" For example, if R+-24 6060 and
X+-l 2 3 is a vector of elapsed time in hours. minutes, and
seconds, then RiX has the value 3723, and is the
corresponding elapsed time in seconds. Similarly,
10 10 10 10 ~ 1 7 7 6 is equal to 1776, and 2 2 2 i 1 0 1 is
equal to 5. Formally, RIX is equal to +/WxX, where W is the
weighting vector determined as follows: W[pW] is equal to
1, and W[I-1] is equal to RLI]xW[I]. For example, if R is
24 60 60, then W is 3600 60 1.

The result is a scalar.

The arguments R and X must be of the same dimension,
except that either may be a scalar (or one-element vector).
For example, 10 i 1 7 7 6 is equal to 1776ry The arguments
are not restricted to integer values. If X is a scalar,
then XiC is the value of a polynomial in X with coefficients
C, arranged in order of descending powers of X.

The decode function is commonly applied in work with
fixed-base number systems and is often called the bg~~

y~!.y~ function.

3.43


~~~Q9~. The encode function RTN denotes the representation of the
scalar N in the-base-R number system. Thus, if Z+RTN, then
(x/R)I N-R~Z is equal to zero. For example, 2 2 2 2 T 5 is 0 1 0 1
and 2 2 2 T 5 is 1 Oland 2 2 T 5 is 0 1. The dimension of
RTN is the dimension of R. The encode function is also called

E~PE~~~~~~~~~~·

~~~~~~ ~~~ Q~~~~~ ~!~~ ~~~~Y ~~g~~~~~. Encode and decode have
been extended to operate on arrays. If Z+RTN, then pZ equals
(pR),pN. If X+A~B, then pX equals (-1 ~A),1~pB.

A and B are conformable with respect to the decode function A~B

if (1) A or B is a scalar, or (2)-1tpA and ltpB are equal, or
(3) either -1tpA or ltpB equals one. In the last case the corres­
ponding argument is extended by replication to make the arguments
of equal length along this coordinate.

~~~~p!~

A
10 10 10

B
132 755
459 533

ATB
1 7
4 5

3 5
5 3

2 5
9 3

!~9~~ Q~. If V is a vector and S is a scalar, then J+V1S yields
the position of the earliest occurrence of S in V. If S does not
equal any element of V, then J has the value (ll)+pV. Clearly,
this value depends, as does any result of this function, on the
index origin, and is one greater than the largest permissible
index of V.

If S is a vector, then J is a vector such that J[I] is the
index in V of SCIJ. For example:

'ABCDEFGH'l'GAFFE'
7 1 665

If X is a numerical vector, then the expression Xlr/X
yields the index of the (first) maximum element in X. For
example, if X is the vector 83 513 2 7 9, then r/x is 13 and
Xlf/x is 4.

The result in every case has the same dimensions as the
righthand argument of 1. For example, if Z+V1S, and S is a
matrix, then Z[I;JJ is equal to V1S[I;JJ.

3.44



~~~Q~~§h!E. The function KEY yields a logical array of the same
dimension as X. Any particular element of KEY has the value 1 if
the corresponding element of X belongs to Y, that is, if it occurs
as some element of Y. For example, (t7)E3 5 is equal to
o 0 1 0 1 0 0 and 'ABCDEFGH'E'COFFEE' equals 0 0 1 0 1 1 0 o.

If the vector U represents the universal set in some finite
universe of discourse, then UEA is the characteristic of the set
A, and the membership function is therefore also called the
gh~~~~t~~~~ti~ function.

The size of the result of the function E is determined by
the size of the left argument, whereas the size of the result of
the dyadic function t is determined by the size of the right
argument. However, the left arguments of both frequently play the
role of specifying the universe of discourse.

Take ~~~ ~~2E. If V is a vector and S is a scalar between 0 and
pV, then StV takes the first S components of V. For example, if
V+17, then 3+V-rS-l 2 3 and OtV is 10.

If S is chosen from the set -lOV, then StV takes the last
I S elements of V. For example, -3tV is 5 67.

If A is an array, then WtA is valid only if W has one element
for each dimension of A, and WeI] determines what is to be taken
along the Ith coordinate of A. For example, if A + 3 4Pl12, then
2 -3tA is the matrix

2 3 4
6 7 8

The function drop (~) is defined analogously, except that
the indicated number-of elements are dropped rather than taken.
For example, -11M is the same matrix as the one displayed in
the preceding paragraph.

The rank of the result of the take and drop functions is
the same as the rank of the right argument. The take and drop
functions are similar to the transpose in that the left argument
concerns the dimension vector of the right argument.

The right argument for t and i is expanded if necessary. For
example, 4+t2 is equal to 1 2 0 0 and -4t'ABC' is 'ABC'.

Grade up and down. The function !V produces the permutation
whIch would-order v, that is V[4V] is in ascending order. For
example, if V is the vector 7 1 16 5 3 9, then 4V is the vector
2 5 4 1 6 3, since 2 is the index of the first in rank, 5 is the
index of the second in rank, and so on. The symbol 4 is formed
by overstriking I and ~.

If P is a permutation vector, then 4P is the permutation
inverse to P. If a vector D contains duplicate elements, then
the ranking among any set of equal elements is determined by their
positions in D. For example, ~5 3 7 3 9 2 is the vector 6 2 4 1 3 5.

3.45

The grade down function 17 is the same as the function 4 ex­
cept that the-gradIng is determined in descending order. Because
of the treatment of duplicate items, the expression "/(!V)=~,V
has the value 1 if and only if the elements of the vector V are
all distinct.

Q~~!. The function M?N produces a vector of dimension M obtained
by making M random selections, without replacement, from the
population tN. In particular, N?N yields a random permutation of
order N. Both arguments are limited to scalars or one-element
arrays.

Matrix Division and Inversion. Matrix division can be used forInverting-matrIces; solvIng-sets of linear equations, and finding
least squares solutions. The syntax for the dyadic function is
X+BffiA where ~ is formed by typing Of backspace, t. A must have
rank 2. The rank of B must be 1 or 2. Also, 1tpA must be greater
than or equal to l+pA and ltpA must equal 1tpB. If X+B~A, then
X minimizes +/+/((A+.xX)-B)*2.

The monadic function X+~A is tantamount to X+I~A where I is an
identity matrix of order 1tpA. Thus, monadic ~ yields the inverse
of a square matrix (or a DOMAIN ERROR if the matrix is not in­
vertible) .

Matrix Inversion

A
63 88
27 44

ffiA
0.1111111111
0.06818181818

0.2222222222
0.1590909091

~~~~E!~ 2: ~~~~~!!~ Sets of Linear ~'l~~~!~~~- ---- -- ------

If x + 2y = 8

3x - y = 3

Then in APL:

A+2 2pl 2 3 1
B+8 3
BfEA

2 3

3.46



A
3.683
0.11
7.206
2.589
3.164

B
27.9 43 23

BfEA
3.020193561

2.448
6.14
0.18
2.257
8.393

23.9 68.4

6.988397527

~Q~~~t~. The lamp symbol A, formed by overstriking nand 0,
signifies that what follows it is a comment, for illumination
only and not to be executed; it may occur only as the first
character in a statement, but may be used in defined functions.

MULTIPLE SPECIFICATION

Specification (+) may (like any other function) occur
repeatedly in a single statement. For example, the execution of
the statement Z+XxA+3 will assign to A the value 3, then multiply
this assigned value of A by X and assign the resulting value to Z.

Multiple specification is useful for initializing variables.
For example:

X+Y+l+Z+O

sets X and y to land Z to o.

A branch may occur in a statement together with one or more
specifications, provided that the branch is the last operation to
be executed (i.e., the leftmost). For example, the statement
+SxlN>I+I+1 first augments I, and then branches to statement S
if N exceeds the new value of I.

In the expression Z+(A+B)x(C+D) it is immaterial whether the
left or the right argument of the x is evaluated first, and hence
no order is specified. The principle of no specified order in
such cases is also applied when the expressions include specifica­
tion. Since the order here is sometimes material, there is no
guarantee which of two or more possible results will be produced.

Suppose, for example, that A is assigned the value 5 and the
expression Z+(A+3)xA is then executed. If the left argument of
x is executed first, then A is assigned the value 3, the right
argument then has the new value 3 and Z is finally assigned the
value 9. If, on the other hand, the right argument is evaluated
first it has the value 5 initially assigned to A, the value 3 is
then assigned to A and multiplied by the 5 to yield a value of
15 to be assigned to Z.

3.47



SYSTEM DEPENDENT FUNCTIONS

There are three main types of information about the
state of the system which are of value to the user:

1. general information common to all users, such as
date, time of day, and the current number of terminals
connected to the system.

2. information specific to the particular work
session, such as the time of sign-on, the central
computer time used, and the total keying time.

3. information specific to the active workspace, such
as the amount of storage available, and the condition
of the state indicator.

This information is provided by a single family of
functions denoted by I (formed by overstriking T, and 1),
and called the ~=B~~m functions. The individual member
function is selected by the argument as shown in Table 3.10.
Times are all in units of one-sixtieth of a second, the date
is given as a six-digit integer in which the successive
digit pairs specify the month, day, and year, and the
available storage is given in b¥±~~.

The byte is a unit of storage equal to 8 binary digits.
A variable requires for storage a small number of bytes of
overhead, plus a certain number of bytes per element
depending upon the form of its representation: 1 if the
elements are characters, 0.125 if the elements are logical,
4 if the elements are integers less than 2*31 in magnitude,
and 8 for other numbers.

In designing an algorithm for a particular purpose, it
frequently happens that one may trade time for space; that
is, an algorithm which requires little computer time may
require more storage space for intermediate results, and an
algorithm which requires little storage may be less
efficient in terms of time. Hence, the information provided
by the functions I21 (computer time used) and I22 (available
storage space) may be helpful in designing algorithms. For
example, the function T_T ME of Appendix B can be used to
determine the computer time used in the execution of a
function.

Moreover, since the functions I21 and I22 can, like all
of the I-beam functions, be used within a defined function,
they can be used to make the execution dependent upon the
space available or the computer time used.

3.48



X Definition of IX
19 Accumulated keying time (time during which the keyboard

has been unlocked awaiting entries) during this session.
20 The time of day.
21 The central computer time used in this session.
22 The amount of available space (in bytes).
23 The number of terminals currently connected.
24 The time at the beginning of this session.
25 The date.
26 The first element of the vector I27.
27 The vector of statement numbers in the state indicator.
28 A code indicating the terminal device being used.
29 User sign-on number.
NOTES

1. All times in 1~60 seconds
2. Date is represented by a 6-digit integer; successive
digit pairs represent month, day, and year.
3. I27 yields a vector; all other results are scalars.

Table 3.10: SYSTEM DEPENDENT FUNCTIONS

~~yjD9 ~iID~ is defined as the total accumulated time
since sign-on during which' the keyboard has been unlocked
awaiting entry. The associated function (I19) may be used
in conjunction with 0 or ~ input to determine the amount of
time taken by a student in responding to a question. The
following example shows the definition and use of a
multiplication drill which tells the student how long he has
taken (in whole minutes and seconds) to answer each
question:

vMULTDRILL N;X;Y;TIME
[lJ O+-Y+-?N
[2J TIME+-r19
[ 3 ] X+-O
[ Lt ] TIM E+- ( I 1 9 ) - T TME
[5J -+8X1X~X/Y

[ 6 ] ' T I ME: '; 2 t 6 0 60 6 0 T T I ME
[7J -+1

[8J 'WRONG, TRY AGAIN'
[9J -+3\1

MULTDRILL 12 12
6 3
0:

1 8
TIME: 0 3
4 5

30

WRONG, TRY AGAIN
0:

3.49



Such a drill could be expanded to accumulate statistics of
the student's response times or to use some function of the
response times to control the difficulty of the questions
posed.

since times are expressed in units of 1~60 seconds, the
time in hours, minutes, and seconds can be determined by an
expression of the form 3t24 60 60 60TI21. Similarly, a
3-element vector representing the date can be obtained £rom
the expression (3p100)TI25.

The expression I27 provides the vector of statement
numbers in the state indicator, with the first position
occupied by the number of the statement on which the
innermost function is suspended. If no functions are
suspended, the vector 127 is empty.

The expression 126 yields a scalar which is the first
element of 127. It is therefore equal to the number of the
statement being, or about to be, executed and is
particularly useful in branches. For example, ~N+I25 causes
a forward jump of N statements. Moreover, entering +I26 is
a safe way to resume execution without having to read and
enter the statement number printed at the point of the last
suspension. It is even more convenient to resume by
entering +C, after first defining the function C as follows:

vz~c

[1J Z~(I27)[2Jv

3.50



PART 4

LIBRARY FUNCTIONS

A user may load or copy functions from any workspace
for which he knows the library number and workspace name
(and password, if any). Moreover a listing of the
workspaces in Library N can be obtained by the command
)LIB N for any QgQlig library, i.e., for any library whose
number is below 1000.

A public library may be used for the casual sharing of
functions among a group of co-workers. When intended for
more general use, a library function should be thoroughly
tested and well-documented, and should incorporate messages
for the guidance of the user. It is therefore good practice
to restrict certain of the public libraries to such
functions as are of general interest and have passed
appropriate acceptance tests.

In the APL\360 system as distributed, Library 1 is
restricted in this manner. This section treats each of the
workspaces in this library by loading each and displaying
the descriptions contained in the workspaces themselves.
Further intormation on the functions in each workspace can
(except in the case of the locked functions in WSFNS) be
obtained by displaying the function definitions.

)LOAD 1 ADVANCEDEX
SAVED 07/14/68 16.53.19

)FNS
AH ASSOC BIN COMB DTH ENTER F FCI
GC GCD GCV RILB HTD II'I INV INVP
IN1 LFC LOOKUP PALL PER PE'RM PO POL
POLY POLYE RESET TIM6' TRU1'H .• ZERO

DESCRIBE

EACH OF THE VARIABLES OF THIS WORKSPACE WHICH BEGINS WITH THE
LE1'TER DIS TH E DESCR IPT ION OF TH E F UNC,]/ION WHOS E NAME IS
OBTAINE/D B~l REMOVING THE Do FOR FURTHER DE11AI LS' SEE APPENDI"X
B OF THE APL\360 MANUALo

4.1



)LOAD 1 PLOTFORMAT
SAVED 07/20/68 31.07.27

)FNS
AND DESCRIBE DFT

DESCRIBE

EFT PLOT VB

THE WORKING FUNCTIONS IN THIS WORKSPACE ARE:

AND DFT EFT PLOT VB

THE NAMES AND COMPOSITION OF THE GROUPS IN THIS WORKSPACE ARE:

DFTGP:
EFTGP:
PLOTGP:
DESGP:

AND DFT
AND EFT
AND PLOT VS
DESCRIBE HOWFORMAT HOWPLOT

DESGP CAN BE USED TO CONVENIENTLY ERASE THE DESCRIPTIVE MATTER
TO MAKE MORE ROOM IN THE WORKSPACE. THE OTHER GROUPS CAN BE USED
TO SELECTIVELY COPY THE INDICATED FUNCTIONS.

SYNTAX
------

Z+A AND B

Z+A DFT B

Z+A EFT B

A PLOT B

Z+A VS B

DESCRIPTION-----------

ESSENTIALLY A COLUMN-CATENATOR, WITH SOME EXTRA
EFFECTS WHEN THE ARGUMENTS ARE NOT MATRICES.
THIS FUNCTION IS DESIGNED TO BE USED EITHER
INDEPENDENTLY, OR IN CONJUNCTION WITH VB.
TOGETHER, THEY PROVIDE A CONVENIENT WAY OF FORM­
ING INPUT TO THE PLOT FUNCTION.

FORMS FIXED-POINT OUTPUT. MORE DETAILED DIREC­
TIONS CAN BE FOUND IN THE VARIABLE HOWFORMAT.

FORMS EXPONENTIAL OUTPUT. MORE DETAILED DIREC­
TIONS CAN BE FOUND IN THE VARIABLE HOWFORMAT.

GRAPHS ONE OR MORE FUNCTIONS SIMULTANEOUSLY.
DIRECTIONS FOR USING PLOT CAN BE FOUND IN THE
VARIABLE HOWPLOT.

ESSENTIALLY A COLUMN-CATENATOR, SIMILAR TO AND,
EXCEPT THAT THE RIGHT-HAND ARGUMENT MUST BE OF
RANK ~ 1. IT IS DESIGNED PRIMARILY TO PROVIDE
CONVENIENT FORMATION OF INPUT TO PLOT FUNC­
TION. WHETHER USED BY ITSELF OR WITH AND, VS
WILL CAUSE ITS RIGHT ARGUMENT TO APPEAR AS THE
LEFTMOST COLUMN OF THE RESULTANT ARRAY. (THE
RESULTANT WILL BE AN ARRAY OF RANK THREE, CON­
SISTING OF A SINGLE PLANE).

BOTH AND AND VB WILL WORK WITH EITHER 1 OR O-ORIGIN INDEXING.

4.2



HOWFORMAT

THE FUNCTIONS DFT AND EFT WILL FORMAT NUMBERS IN DECIMAL AND EX­
PONENTIAL FORM, RESPECTIVELY, FOR TABULAR OUTPUT. THEY MAY BE
USED TO GENERATE IMMEDIATE OUTPUT, OR TO STORE AN IMAGE FOR LATER
PRINTING. THE TWO FORMS ARE:

PATTERN DFT TABLE
PATTERN EFT TABLE

AND

IMAGE~PATTERN DFT TABLE
IMAGE~PATTERN EFT TABLE

THESE FUNCTIONS WORK PROPERLY ONLY WITH i-ORIGIN INDEXING.

RIGHT ARGUMENT: AN ARRAY TO BE FORMATTED.

IT MUST BE NUMERICAL, AND OF RANK ~ 3. THE FIRST PLANE
OF A 3-DIMENSIONAL ARRAY WILL BE TREATED AS A MATRIX, AND
ALL OTHER PLANES WILL BE DISREGARDED. ARRAYS OF HIGHER
RANK WILL BE SIGNALLED AS A 'RANK PROBLEM.'

LEFT ARGUMENT: ONE OR MORE INTEGERS TO CONTROL THE FORMAT.
FRACTIONAL NUMBERS WILL BE SIGNALLED AS A 'DOMAIN PROBLEM.'

A SINGLE INTEGER:
VFT: SPECIFIES THE NUMBER OF DIGITS TO THE RIGHT OF

THE DECIMAL POINT IN DECIMAL FORMAT.
EFT: SPECIFIES THE NUMBER OF SIGNIFICANT DIGITS IN

EXPONENTIAL FORMAT. ONE DIGIT ALWAYS APPEARS
TO THE LEFT OF THE DECIMAL POINT.

COLUMNS WILL BE SPACED UNIFORMLY~ WITH SPACING SUCH
THAT THERE WILL BE TWO SPACES BETWEEN THE CLOSEST
NUMBERS.

A PAIR OF INTEGERS: THE FIRST SPECIFIES THE TOTAL NUMBER OF
SPACES TO BE ALLOCATED TO EACH COLUMN, AND THE SECOND
IS USED AS ABOVE.
DFT: THE FIRST NUMBER MUST BE AT LEAST TWO LARGER

THAN THE SECOND.
EFT: THE FIRST NUMBER MUST BE AT LEAST SIX LARGER

THAN THE SECOND.
IF THE LEFT NUMBER IS TOO SMALL, THIS WILL BE SIGNALLED
AS A 'DOMAIN PROBLEM.'

MORE THAN ONE PAIR OF INTEGERS: THERE MUST BE ONE PAIR
FOR EACH COLUMN OF OUTPUT (OR EACH ELEMENT OF A VECTOR).
EACH PAIR WILL BE INTERPRETED AS ABOVE, AND WILL APPLY
TO THE LAYOUT OF THE CORRESPONDING COLUMN. IF THE
NUMBER OF PAIRS DOES NOT MATCH THE NUMBER OF COLUMNS,
THIS' WILL BE SIGNALLED AS A 'LENGTH PROBLEM.'

4.3



HOWPLOT

THE FUNCTION PLOT WILL GRAPH ONE OR MORE FUNCTIONS SIMULTANEOUSLY,
AUTOMATICALLY SCALING THE VALUES TO FIT APPROXIMATELY WITHIN SCALE
DIMENSIONS SPECIFIED BY THE USER. IT WILL WORK ONLY IN 1-0RIGIN
INDEXING.

THE FORM IN WHICH PLOT IS USED IS:

SCALESIZE PLOT FUNCTION

LEFT ARGUMENT: ONE OR TWO NUMBERS.

FIRST NUMBER SPECIFIES THE APPROXIMATE SIZE OF THE VERTICAL
AXIS AND THE SECOND NUMBER DOES THE SAME FOR THE HORIZONTAL
AXIS.

IF ONLY ONE NUMBER IS SUPPLIED, IT IS APPLIED TO BOTH AXES.

THERE IS NO BUILT-IN LIMIT TO THE DIMENSIONS, AND A HORI­
ZONTAL AXIS LARGER THAN THE WORKSPACE WIDTH WILL CAUSE
SOME POINTS TO BE PRINTED ON THE NEXT LOWER LINE.

RIGHT ARGUMENT: A RECTANGULAR ARRAY WITH RANK ~ 3.

SCALAR: WILL BE TREATED AS A VECTOR OF LENGTH ONE.

VECTOR: WILL BE PLOTTED AS ORDINATE AGAINST ITS OWN
INDICES AS ABSCISSA.

MATRIX: THE LEFTMOST COLUMN WILL BE TAKEN AS THE ABSCISSA
AND ALL OTHER COLUMNS WILL BE PLOTTED AS ORDINATES. A
DIFFERENT PLOTTING SYMBOL UP TO THE NUMBER OF SYMBOLS
AVAILABLE WILL BE USED FOR EACH COLUMN. IN CASE TWO
ORDINATES HAVE A COMMON POINT, THE SYMBOL FOR THE
COLUMN FURTHEST TO THE RIGHT WILL BE USED.

3-DIMENSIONAL ARRAY: THE FIRST PLANE WILL BE PLOTTED AS A
MATRIX, AND ALL OTHER PLANES WILL BE DISREGARDED.

AUXILIARY FUNCT±~S-: THE FUNCTIONS AND AND VB CAN BE USED
TO GENERATE THE RIGHT ARGUMENT IN THE PROPER FORM FOR
PLOT. FOR EXAMPLE:

20 PLOT Z AND Y VS X

PLOT CHARACTERS: THE SYMBOLS USED ARE ASSIGNED TO THE VARIABLE
E£ IN LINE 1 OF PLOT. THE ALPHABET SUPPLIED IS 'O*~ ~D' .
THIS ALPHABET MAY BE EXTENDED AND MODIFIED AS DESIRED,
USING THE NORMAL FUNCTION-EDITING PROCEDURES: EITHER CHANGE
LINE 1 OF THE FUNCTION, OR DELETE IT AND INDEPENDENTLY
SPECIFY A VALUE FOR PC.

HISTOGRAMS: PLOT CAN BE USED TO GENERATE HISTOGRAMS BY SETTING
THE VARIABLE HS TO 1 IN LINE 2 OF THE FUNCTION. ALTERNA­
TIVELY, LINE 2-CAN BE DELETED, AND HE CAN BE SET EXTERNALLY.

4.4



FORM
RANDOM
TRACE

)LOAD 1 APLCOURSE
SAVED 07/19/68 25.58.06

)FNS
B1X CHECK DESCRIBE
EASY EASYDRILL
INTER LOG QUES
SETPARAMETERS TEACH

DESCRIBE

DIM DRILL
FUNDRILL
REDSCAPATCH

DYADl
GET
REPP

DYAD2
INPUT

DESCRIPTION

THE MAIN FUNCTIONS IN THIS LIBRARY WORKSPACE ARE:

TEACH
EASYDRILL

ALL OTHER FUNCTIONS ARE SUBFUNCTIONS AND ARE NOT
SELF-CONTAINED.
§Jijr4K

TEACH

EASYDRILL

AN EXERCISE IN APL FUNCTIONS USING SCALARS
AND VECTORS. THE FUNCTION PRINTS OUT THE
CHOICES AND OPTIONS AVAILABLE. EXAMPLES
ARE SELECTED AT RANDOM WITH A RANDOM
STARTING POINT.

THIS IS THE SAME AS TEACH EXCEPT THAT THE
PROBLEMS SELECTED ARE GENERALLY SIMPLER IN
STRUCTURE. PROBLEMS INVOLVING VECTORS OF
LENGTH ZERO OR ONE ARE EXCLUDED.

NOTE: FOR EITHER FUNCTION, A RESPONSE OF - PLEASE - WILL DIS­
CLOSE THE PROPER ANSWER. A RESPONSE OF - STOP - WILL TERMINATE THE
DRILL.

TEACH
ARE YOU ALREADY FAMILIAR WITH THE INSTRUCTIONS? (TYPE Y FOR YES
AND N FOR NO.)
N

THIS IS AN EXERCISE IN SIMPLE APL EXPRESSIONS. YOU WILL FIRST
HAVE THE OPPORTUNITY TO SELECT THE FEATURES YOU WISH TO BE DRILLED
IN. THE EXERCISE THEN BEGINS. FOR EACH PROBLEM YOU MUST ENTER
THE PROPER RESULT. ANSWERS WILL CONSIST OF SCALAR INTEGERS IF
EXERCISES WITH VECTORS ARE NOT DESIRED; OTHERWISE ANSWERS WILL
CONSIST OF SCALARS OR VECTORS. A VECTOR OF LENGTH ZERO REQUIRES
THE RESPONSE la, A VECTOR OF LENGTH ONE REQUIRES THE RESPONSE X~

WHERE X IS THE VALUE OF THE ELEMENT. YOU HAVE THREE TRIES FOR
EACH PROBLEM. TYPE STOP AT ANY TIME TO TERMINATE THE EXERCISE
AND PRODUCE A RECORDING OF YOUR PERFORMANCE. TYPING STOPSHORT
WILL TERMINATE THE EXERCISE BUT WILL NOT PRODUCE A RECORD OF
PERFORMANCE. TYPING PLEASE FOR ANY PROBLEM WILL LET YOU PEEK AT
THE ANSWERS. TYPE Y UNDER EACH FUNCTION FOR WHICH YOU WANT
EXERCISE:

4.5



SCALAR DYADIC FUNCTIONS
+ - x .;. * r L <~ =~ > ~!I "V qjtN¥

IYYYY Y
SCALAR MONADIC FUNCTIONS
+-x-i-f L!I '"

yy

TYPE Y IF EXERCISES ARE TO USE VECTORS, N OTHERWISE
N

6x 3

0:
18

0:
2

TRY AGAIN
0:

3

0:
STOPSHORT

0+7

)LOAD 1 WSFNS
SAVED 16.01.28 11/09/70

)FNS
DELAY DIGITS ORIGIN SETFUZZ SETLINK WIDTH

DESCRIBE

THE FUNCTIONS ORIGIN, WIDTH, AND DIGITS ARE EACH SIMILAR
TO THE COMMAND OF THE SAME NAME, EXCEPT THAT EACH IS A FUNCTION
RATHER THAN A COMMAND AND MAY THEREFORE BE USED WITHIN OTHER
FUNCTIONS. EACH HAS AN EXPLICIT RESULT WHICH IS THE PREVIOUS
VALUE OF THE RELEVANT SYSTEM PARAMETER.

FOR EXAMPLE, THE FOLLOWING FUNCTION:

\IF X
[lJ X+ORIGIN X
[2J G
[3J X+ORIGIN XV

WILL EXECUTE THE FUNCTION G WITH WHATEVER INDEX ORIGIN IS
SPECIFIED BY THE ARGUMENT OF P, AND WILL RESTORE THE INDEX ORIGIN
TO THE VALUE THAT IT HAD BEFORE THE EXECUTION OF F.

4.6



THE FOLLOWING FUNCTIONS ARE ALSO AVAILABLE:

SYNTAX

Z+SETLINK X

DELAY X

Z+SETFUZZ X

DESCRIPTION
--..----- ----

SETS THE VALUE OF THE LINK IN THE CHAIN OF NUMBERS
GENERATED IN THE USE OF THE ROLL AND DEAL FUNCTIONS.
THE EXPLICIT RESULT PRODUCED BY SETLINK IS THE
PREVIOUS VALUE OF THE LINK.

THE RESULTS PRODUCED BY THE ROLL AND DEAL FUNCTIONS
ARE NOT THE LINKS THEMSELVES, BUT RATHER SOME
FUNCTION OF THEM. THE LENGTH OF THE CHAIN (BEFORE
REPETITION) IS 2*31.

DELAYS EXECUTION FOR X SECONDS.

WHERE O$X$31, SETS THE VALUE OF FUZZ. THE EXPLICIT
RESULT PRODUCED BY SETFUZZ IS THE PREVIOUS VALUE
OF FUZZ. THE FUZZ VALUE DETERMINES THE NUMBER OF
LOW ORDER BITS IGNORED IN COMPARISONS.

)LOAD 1 TYPEDRILL
SAVED 10.00.03 08/19/70

)WIDTH 65
WAS 120

)FNS
DESCRIBE IN INSTRUCTIONS
STATISTICS TIME TYPEDRILL

)WIDTH 120
riA S 65

DESCRIBE

MATCH
WS

PRT QUERY

THE MAIN FUNCTION IN THIS WORKSPACE IS: TYPEDRILL. ALL OTHER
FUNCTIONS IN THIS WORKSPACE ARE USED AS SUBFUNCTIONS.

SYNTAX
- -----

TYPEDRILL

DESCRIPTION-----------

A TIMED TYPING EXERCISE. WHEN EXECUTING TYPEDRILL
THE SYSTEM RESPONDS WITH A STATEMENT - YOU ARE IN
THE CONTROL STATE. FOUR COMMANDS ARE AT YOUR DIS­
POSAL: ENTER, DRILL t STAT OR STOP.

THE COMMAND ENTER WILL BRING YOU INTO THE ENTRY STATE.
IN THIS STATE YOU TYPE ONE-LINE SENTENCES t CHARAC­
TERS OR APL EXPRESSIONS YOU WISH TO BE DRILLED ON.
TYPING ONLY A CARRIAGE RETURN CAUSES A RETURN TO
THE CONTROL STATE.

THE COMMAND DRILL PRODUCES RANDOMLY THE LINES
ENTERED VIA THE ENTER STATE. THE LINES ARE PRODUCED
ONE LINE AT A TIME AND YOU ARE EXPECTED TO RETYPE
THE LINE. IF IT IS ERROR-FREE, THE TIME REQUIRED
TO TYPE THE LINE IS SHOWN. IF NOT t YOU ARE ASKED
TO RETYPE IT. AGAIN, TYPING ONLY A CARRIAGE RETURN
CAUSES A RETURN TO THE CONTROL STATE.

4.7



SYNTAX DESCRIPTION

THE COMMAND STAT DISPLAYS ACCUMULATED STATISTICS.
THE VERTICAL AXIS IS THE TIME/SEC(*) AND THE
HORIZONTAL AXIS SHOWS THE TRIAL NUMBERS(o). A
VERTICAL ARROW(t) INDICATES THAT THE TIME EXCEEDS
THE LIMIT OF THE GRAPH. YOU ARE AUTOMATICALLY
RETURNED TO THE CONTROL STATE.

THE COMMAND STOP DISPLAYS THE ACCUMULATED STATISTICS
AND TERMINATES THE DRILL.

TYPEDRILL
CONTROL WORDS ARE: ENTER, DRILL, STAT, AND STOP.

YOU ARE IN CONTROL STATE
ENTER
DESOLATE IS THE ROOF WHERE THE CAT SAT,
DESOLATE IS THE IRON RAIL THAT HE WALKED
AND THE CORNER POST WHENCE HE GREETED THE SUNRISE.
IN HILL PATH: 'THKK, THGK'

OF THE LOOM
'TRGK, THKK' AND THE SHARP SOUND OF A SONG

UNDER OLIVES
WHEN I LAY IN THE INGLE OF CIRCE
I HEARD A SONG OF THAT KIND.

YOU ARE IN CONTROL STATE
DRILL
DESOLATE IS THE ROOF WHERE THE CAT SAT,
DESOLATE IS THE ROOF WHERE THE CAT SAT,
18
IN HILL PATH: 'THKK, TECK'
IN HILL PATH: 'THKK, TRCK'
20.9
I HEARD A SONG OF THAT KIND.
I HEARD A SONG OF THAT KIND.
13 .5
OF THE LOOM
OF THE LOOM
6.2
AND THE CORNER POST WHENCE HE GREETED THE SUNRISE.
AND THE CORNER POST WHENCE HE GREETED THE SUNRISE.
18.7
UNDER OLIVES

YOU ARE IN CONTROL STATE
STOP
NO OBSERVATIONS; HENCE NO STATISTICS

4.8



APPENDIX A

SAMPLE TERMINAL SESSION

)1776
010) 19 0 32 c 36 07/03/68 JANET

APL\360

FUNDAMEN'TALS

3x4
12

X+3x4

x
12

Y+-5

X+Y
7

P+l 2 3 4
pxp

1 4 9 16
pxy

5 10 15 20
Q+'CATS'
Q

CATS
YZ+-5
Y~1+-5

YZ+Y~l

10
3+4x5+6

v
+5+6

18
X+3
Y+-4
(XxY)+4

16
XxY+4

24

A.I

Entry automatically indented
Response not indented
X is assigned value of

the expression

Value of X typed out
Negative sign for negative

constants

Exponential form of constant

Four-element vector
Functions apply element by element

Scalar applies to all elements

Character constant (4-element
vector)

Multi-character names

Correction by backspace
and linefeed

Executed from right to left



x y
SYNTAX ERROR

X y
A

XY
VALUE ERROR

XY
A

12
4 x r 5 a 1

24
X+-l5
X

1 2 345
1 0

Y+-5-X
Y

43210
Xry

4 3 345
X~Y

1 1 000
01

3 Q 141592654
0-;.1 2

30141592654 1 0 570796327
X+-45 90
oXf180

0 0 7853981634 1.570796327
101

0 0 8418'709848
201 2

0 0 5403023059 0 0 4161468365
301

10557407725
-301

0 0 7853981634
30-3017

1 2 3 4 567
Y+-l 2
40Y

10414213562 2 0 236067977
OOfY

o 0 0 8660254038
701 2

0 0 761594156 0 0 9640275801
-70701 2

1 2

A.2

Entry of invalid expression
Shows type of error committed
Retypes invalid statement with

caret where execution stopped
Multi-character name (not Xxy)

Xy' had not been assigned a value

SCALAR FUNCTIONS

Dyadic maximum

Monadic ceiling

Index generator function

Empty vector
prints as a blank line

All scalar functions extend
to vectors

Relations produce
logical (0 1) results

Pixl

Pi}! 2

Conversi.on of X to radians

Sin 1

Cos 1 2

Tan 1

Arctan 1

Tan Arctan 1 2 3 4 5 6 7

( 1 +Y* 2 ) * 0 5·

Tanh 1 2

Arctanh Tanh 1 2



[ 1 ]
[ 2 ]

5

10

20

[ 1 ]
[ 2 ]

1

1

1

[ 1 ]
[ 2 ]

\lZ+-X F Y
Z+- ( (X * 2 ) +Y* 2 ) * ? 5
V
3 F 4

P"'7
Q+-(P+l)F P-1
Q

4x3 F 4

\lB+-G A
B+-(A>O)-A<.O
\I
G 4

G 6

\lH A
p~- ( A > 0 ) - A <. 0
\I
H 6
P

DEFINED FUNCTIONS

Header (2 args and result)
Function body
Close of definition
Execution of dyadic function F

Use of F with expressions
as arguments

G is the signum function
A and B are local variables

Like G but has no explicit result
P is a global variable

1
Y+-H-6

VALUE ERROR
Y+-H 6

A

VZ+-FAC N;I
[lJ Z+-l
[2J I+-O
[3J Ll:I+I+l
[4J -rOxlI>N
[5J Z+-ZxI
[6J -rLl
[ 7 J \I

FAC 3
6

FAC 5
120

TIJ.FAC+-3 5
X+FACT 3

FAC[3] 1
FAC[S] 1
FAC[3] 2
FAC[S] 2
FAC[3] 3
FAC[SJ 6
FAC[3] 4

T~FAC+-O

H has no explicit result
and hence produces a value
error when used to right
of assignment

FAC is the factorial function

Ll becomes 3 at close of def
Branch to 0 (out) or to next

Branch to Ll (that is, 3)

Set trace on lines 3 and 5 of FAC

Trace of FAC

Reset trace control

A.3



VG+M GCD N
[ 1 ] G+N
[ 2 ] M+-MIN
[3J -+4xM~O

[ 4 ] [1JG+-M
[ 2 ] [4JN+-G
[ 5 ] [10J
[ 1 ] G+-M
[ 1 ] [OJ

\} G+-M GCD N
[lJ G+M
[ 2 J M+-M1N
[ 3 ] -:"4xM~ 0

[ 4 ] N+-G
\}

[5J -:,.1
[ 6 J \j

36 GCD 44
4

'lGCD
[ 6 ] [4 0 1]M,N
[4 0 2J [ OJ

\} G+M GCD N
[ 1 ] G+M
[ 2 ] M+-MtN
[3J -:"4xM~O

[4J N+-G
[4 Q 1J M,N
[ 5 J -+1

\J
[ 6 ] 'J

36 GCD 44
8 36
4 8
4

VCCD[OJV
\J G+-M GCD N

[ 1 ] G+M
[ 2] M+MIN
[ 3 ] -+4xM~O

[4J N+G
[ 5 ] M,N
[6J -rl

\l
VGC'D

[ 7 ] [ 5]
1\

V

MECHANICS OF
FUNCTION DEFINITION

Greatest common divisor
function based on the
Euclidean algorithm

Correction of line 1
Resume with line 4
Display line 1

Display entire GCD Function

Close of display, not close of def
Enter line 5
Close of definition
Use of GCD
4 is GCD of 36 and 44
Reopen def (Use \) and name only)
Insert between 4 and 5
Display entire function

Fraction stays until close of def

End of display
Close of definition

Iterations printed by
line 5 (was line 4.1)

Final result
Reopen, display, and close GCD

Line numbers have been
reassigned as integers

Close (Even number of V's in all)
Reopen definition of GCD
Delete line 5 by linefeed

Close definition

A.4



[1 ]
[ 2 ]
[ 1 J

[ 1 ]
[ 2 ]

120

'1 Z~ABC X
Z~(33xQ+(Rx5)-6

[109J
2~(33xQ+(Rx5)-6

/ 1 /1
Z+-(3 x Q)+(T x 5)-6
V
FAC 5

A function to show line editing
A line to be corrected
Initiate edit of line 1
Types line, stops ball under 9
Slash deletes, digit inserts spaces
Ball stops at first new

space. Then enter) T
FAC still defined

)ERASE FAC
FAC 5

SYNTAX ERROR
FAC 5
I\.

\JZ+BIN N
[lJ LA~Z+(Z,o)+O,Z

[2J -+LAxN?pZ'V
B1N 3

VALUE ERROR
BIN[l] LA:Z+-(Z,O)+o,Z

A

2+-1
-+1

1 3 3 1
BIN 4

VALUE ERROR
BIN[l] L1:2+-(2,0)+0,2

A

'V B 1-N [ " 1 ] Z+ 1 'V
)SI

Bl-N[l] *
--+1

14641
'VEIN[O]V

'V Z+BIN N
[1J 2+-1
[2J LA:Z+(Z,O)+O,Z
[3J -+LAxN?pZ

S!1BIN+2
Q+BIN 3

BIN[2]
Z

1
-+2

BIN[2]
-+2

BIN[2]
-+0

Erase function FAC
Function FAC no longer exists

An (erroneous) function for
binomial coefficients

Suspended execution

Assign value to Z
Resume execution
Binomial coefficients of order 3

Same error (local variable z
does not retain its value)

Insert line to initialize z
Display state indicator
Suspended on line 1 of BIN
Resume execution (BIN now correct)

Display revised function
and close definition

Set stop on line 2
Execute BIN

Stop due to stop control
Display current value of Z

Resume execution

Stop again on next iteration
Resume

Stop again
Branch to 0 (terminate)

A.5



37

WRONG~ TRY AGAIN
0:

[ 1 ]
[ 2 ]
[ 3 ]
[4J
[ 5 ]
[ 6 ]
[ 7 ]

2 10
0:

VMULTDR1LL N;Y;X
Y...-?N
y

x+-D
-+OX1X='S'
-+lX=X/Y
'WRONG~ TRY AGAIN'
-+3 'V
MULTDRILL 12 12

INPUT AND OUTPUT

A multiplication drill
pN random integers
Print the random factors
Keyboard input
Stop if entry is the letter S
Repeat if entry is correct product
Prints if preceding branch fails
Branch to 3 for retry
Drill for pairs in range 1 to 12

Indicates that keyboard entry
is awaited

20
6 7

0:
's'
VZ+ENTERTEXT

[ 1 ] Z +-' ,

[2J D+-pZ
[3J Z+-Z,[!]
[4J -+2xD~pZ

[5J IJ
Q...-ENTE'RTEX-T

THIS IS ALL
CHARACTER INPUT

Q
THIS IS ALL CHARACTER INPUT

N...-S
'NOTE: l';N;' IS ';IN

NOTE:15IS'12 345

P+-2 3 5 7
pP

4
T+'OH MY'
pT

5
P,P

2 3 572 3 5 7

T,T
0& l~YOH f.1Y

T,P
DOMAIN ERROR

T,P
A

Entry of letter S stops drill
Example of character (~) input
Make Z an empty vector
D is the length of Z
Append character keyboard entry
Branch to 2 if length increased

(i.e., entry was not empty)

Keyboard
entries

Empty input to terminate
Display Q

Mixed output statement

RECTANGULAR ARRAYS

Dimension of P

Character vector

Catenation

Characters cannot be catenated
with numbers

A.6



M+-2 3p 2 3 5 7 11 13
M

2 3 5
7 11 13

2 4pT

OH M
YOH

6pM
2 3 5 7 11 13

,M
2 3 5 7 11 13

P+--,M
P[3]

5
P[l 3 5 ]

2 5 11
P[13]

2 3 5
P[ pP J

13
M[1;2]

3
M[ 1 ; ]

2 3 5
Mll 1 ; 3 2 ]

5 3
5 3

A+--'ABGDEFGHIJKLMNOPQ'
A [/I1'J

BeE
GKM

A [ M[ 1 1; 3 2 ] ]

EC
EC

M[1;J+--15 3 12
M

15 3 12
7 11 13

A.7

Reshape to produce a 2x3 matrix
Display of an array of rank >1

is preceded by a blank line

A 2x4 matrix of characters

A matrix reshaped to a vector

Elements in row-major order

Indexing (third element of P)

A vector index

The first three elements of p

Last element of P

Element in row 1, column 2 of M

Row 1 of M

Rows 1 and 1, columns 3 2

The alphabet to Q
A matrix index produces

a matrix result

Respecifying the first row of M



Q+-3 1 5 2 4 6 A permutation vector
P[QJ Permutation of P

5 2 11 3 7 13
Q[Q] A new permutation

5 3 4 1 2 6
P[ 3 ] Present index origin is 1

5
)ORIGIN 0 Set index origin to 0

WASl 1
P[3]

7
p[a 1 2 ] First three elements of P

2 3 5
1 5 Result of index generator

a 1 2 3 4 begins at origin
)ORIGIN 1

WAS 0
1 5

1 2 3 4 5

FUNCTIONS ON ARRAYS

V+-? 3 p 9
M+-?3 3p9
N+-?3 3p9
V

217
M

Vector of 3 random integers (l-9~

Random 3 by 3 matrix
Random 3 by 3 matrix

7 9 4
5 8 1
1 5 7

N
1 4 1
4 7 6
9 8 5

M+N Sum (element-by-element)

8 13 5
9 15 7

10 13 12

A.8



MrN

7 9 4
5 8 6
9 8 7

M5N

0 a 0

0 0 1
1 1 0

+/V
10

x/V
14

+/[l]M
13 22 12

+/[2]M

20 14 13
+/M

20 14 13
riM

987
X~l ') 5
+/(1 20X)*2

1
0/1 2,X

0,,07067822453
Y+-o/O 2,X
Y

009974949866
Y=10X

1

M+:l xN

79 123 81
46 84 58
84 9 5 66

M+)~N

1 1 1
1 1 1
2 3 2

M+0 X V
51 25 56

A.9

Maximum

Comparison

Sum-reduction of V

Product-reduction

Sum over first coordinate of M
(down columns)

Sum over second coordinate of M
(over rows)

Sum over last coordinate

Maximum over last coordinate

Sin squared plus Cos squared

Sin Cos X

( 1 - ( CO s X) * 2 ) * ') 5

An identity

Ordinary matrix (+0 X inner)
product

An inner product

+~x inner product with vector
right. argument



V
2 1 7

VI " X 1. 5 Outer product (times)

2 4 6 8 10
1 2 3 4 5
7 14 21 28 35

Vo " :s; 1. 9 Outer product

0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
0 0 a a 0 0 1 1 1

Vo • xM An outer product of rank 3

14 18 8
10 16 2

2 10 14
A blank line between planes

7 9 4
5 8 1
1 5 7

49 63 28
35 56 7

7 35 49

MIXED FUNCTIONS

Q+-? 1 Op 5 A random 10 element vector
Q (range 1 to 5)

1 4 3 4 5 4 2 fl 1 4 2
+/[1]Q°c,=1.5 Ith element of result is number

2 2 1 4 1 of occurences of the
value I in Q

2 l~M Ordinary transpose of M

7 5 1
9 8 5
4 1 7

QM Ordinary transpose of M (monadic)

7 5 1
9 8 5
4 1 7

A.IO



T+-2 3 4pt24
T

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

3 1 2?slT

1 13
2 14
3 15
4 16

5 17
6 18
7 19
8 20

9 21
10 22
11 23
12 24

1 l~M

787
1 1 2l:!¥T

1 2 3 4
17 18 19 20

X+-O(O,15)~6

)DIGITS 4
WAS 10

~1 2 3o"oX

An array of rank 3

Transpose of T (dimension
of result is 3 4 2)

Diagonal of M

Diagonal section in first
two coordinates of T

Set number of output digits to 4

O.GOOEO
5"OOOE-l
8,,660E-l
i.OOOEO
80660E-l
5.000E-l

l o 000EO
8 Q 660E-l
SoOOOE-l
1 .. 744E-16
50000E-l
8,,660E-l

OoOOOEO
50774E-l
l o 732EO
5 0 734E15
1.732EO
5.774E-l

A.II

Table of sines, cosines,and
tangents in intervals
of 30 degrees



Q
1 4 3 4 5 4 2 1 4 2

3¢>Q Rotate to left by 3 places
4 5 4 2 1 4 2 1 4 3

-3<PQ Rotate to right by 3 places
1 4 2 1 4 3 4 5 4 2

0 1 2¢[1]M Rotate columns by
different amounts

7 8 7
5 5 4

1 9 1
-2¢>[2]M Rotation of rows all

by 2 to right
9 4 7
8 1 5
5 7 1

1 2 3¢M Rotation of rows

9 4 7

1 5 8
1 5 7

<PQ Reversal of Q
2 4 1 2 4 5 4 3 4 1

¢[l]M Reversal of M along
first coordinate

1 5 7
5 8 1
7 9 4

<PM Reversal along last coordinate

4 9 7
1 8 5
7 5 1

A.12



U+Q>4
U

o a 0 a 1 000 0 0
U/Q

5
( "'U ) / Q

1 4 344 2 142
+/U/Q

5
1 0 l/[l]M

794
157

1 0 l/M

7 4
5 1
1 7

(,M>5)/,M
798 7

V+-l 0 1 0 1
V\ t 3

10203
V\M

70904
5 0 801
10507

V\' ABC'
ABC

10.11 7 7 6
1776

81.1 7 7 6
1022

(4pl0)T1776
1 776

(3pl0)T1776
776

10 10T1776
7 6

10T1776
6

24 60 60.11 3 25
3805

24 60 60T3805
1 3 25

2.11 0 1 1 0
22

A.13

Compression of Q by logical
vector U

Compression by not U

Compression along first
coordinate of M

Compression along last
coordinate

1M is 7 9 4 5 8 1 1 5 7
All elements of M which exceed 5

Expansion of iota 3

Expansion of rows of M

Expansion of literal vector
inserts spaces

Base 10 value of vector 1 7 7 6

Base 8 value of I 7 7 6

4 digit base 10 representation
of number 1776

3 digit base 10 representation
of 1776

Mixed base value of 1 3 25
(time radix)

Representation of number 3805
in time radix

Base 2 value



M

7 9 4
5 8 1
1 5 7

)ORIGIN 0

WAS 1
M[2;O]

1
( ,M)[(pM)-l2,OJ

1
)ORIGIN 1

WAS a
p

2 3 5 7 11 13
P17

4
P16

7
P14 5 6 7

7 3 7 4
Q+-5 1 3 2 4
R+-Q 1 1 P Q
R

24351
Q[R]

1 2 345
A+'ABCDEFGHIJKLMNOPQ'
A+-A, , RS'TU VWXY Z '
A

AB CD EFGH l-JKLMNOPQR STU VWXY Z
A 1 'C'

3

Indexing of matrix in a-origin.
Note relation to indexing of
ravel of M

Restore I-origin

Index of 7 in vector P
7 is 4th element of P
6 does not occur in P, hence

result is l+oP

A permutation vector
R is the permutation inverse to Q

A is the alphabet

Rank of letter C in alphabet is 3

3 1
A[J]
CAT

J+-Al'CAT'
J
20

A.14



M~3 5p'THREESHORTWORDS'
M

A matrix of characters

3?5
512

6?5
DOMAIN ~'RROR

6?5
/\

X+-8?8
X

4 6 725 183
~X

6 4 8 1 5 2 3 7
X[thX]

1 2 3 4 5 6 7 8
X[VX]

876 543 2 1
U+- A E ' NOW IS' THE TIME'
'Ol'[l+U]

00001001100011100011001000
VIA

EH.TMNOSTW
(18)E375

o 0 1 0 1 a 1 a

THREE
SHOH'l'
WORDS

~T+-A 1 M
J

20 8 18
19 8 15
23 15 18

A[J]

THREE
SHORT
WORDS

5 5
18 20

4 19

Ranking of M pI·oduces a matrix

Indexin9 by a matrix produces
a matrix

Random choice of 3 out of 5
without replacement

A random permutation vector

Grading of X

Arrange in ascending order

Arrange in qescending order

Membership

A.IS





APPENDIX B

ADVANCED EXAMPLES

This section presents a set of examples less elementary
than those of Appendix A. These examples are all contained
in Workspace ADVANCEDEX of Library 1. A user may therefore
load, use, and trace any of the functions as an aid to
understanding their behavior. Displays of intermediate
results may also be inserted. For example, the statement

P+-(P,O)+O,P

occurring in a function could be changed (perhaps by the use
of line editing) to the following form:

Each execution of the statement will now perform as before,
except that each of the results o,P and P,o and P will be
typed out as well (in that sequence).

Programming techniques can be learned from a similar
study of any well-written set of functions. All of the
workspaces of library 1 may be used as a source of functions
for such study.

The index origin in the workspace An VA NCF:rJF: X is set
to 1.

)LOAD 1 ADVANCEDEX
SAVED 16.41.30 09/06/72

)WIDTH 65
WAS 120

)FNS
AH ASSOC BIN COMB DTH ENTER F FC
ec eCD GCV HILE HTD IN INV INVP
IN1 LFC LOOKUP PACK PALL PER PERM PO
POL POLY POLYB RESET TIME TRUTH UNPACK ZERO

)VARS
DAH DASSOC DATA VEIN DeOMB DDTH DENTER DESCRIBE
DF DFC DGC DGCD DeeV DHILB DHTD DIN
DINV DINVP DIN1 DLFC DLOOKUP DPACK DPALL DPER
DPERM DPO DPOL DPOLY DPOLYB DTIME DTRUTH DUNPACK
DZERO J NAMES P P1 P2 TIMER Z

DESCRIBE

EACH OF THE VARIABLES OF THIS WORKSPACE WHICH BEGINS WITH THE
LETTER D IS THE DESCRIPTION OF THE FUNCTION WHOSE NAME IS OBTAINED
BY REMOVING THE D. FOR FURTHER DETAILS SEE APPENDIX B OF THE
APL\360 USER'S MANUAL.

B.l



DPACK
THE FUNCTIONS PACK AND UNPACK ILLUSTRATE THE USE OF THE

ENCODE AND DECODE FUNCTIONS IN TRANSFORMING BETWEEN A FOUR-
NUMBER ENCODING OF SERIAL NUMBER (1 TO 9999), MONTH, DAY,
AND YEAR, AND A SINGLE-NUMBER ENCODING OF THE SAME DATA~

VPACKCO]V
V Z+-PACK X

[lJ Z~ 10000 12 31 100 iX-l
V

VUNPACK[OJv
V Z+-UNPACK X

[1J 2+-1+ 10000 12 31 100 TX
\}

P+-PACK 2314 7 17 68
P

86063867
UNPACK P

2314 7 17 68
UNPACK PACK 2311 9 21 72

2311 9 21 72
PACK UNPACK 92137142

92137142
PACK 1 1 31 1

3000
UNPACK 3000

1 1 31. 1

B.2



DENTER

THE FUNCTIONS ENTER, LOOKUP, AND RESET ILLUSTRATE A METHOD
OF CONSTRUCTING AND USING LISTS OF VARIABLE LENGTH DATA,
REPRESENTING EACH LIST BY A VECTOR OF CHARACTERS AND A
VECTOR OF INDICES~ ENTER AND LOOKUP EACH REQUEST INPUT (BY ~)

UNTIL AN EMPTY VECTOR (CARRIAGE RETURN ALONE) IS ENTERED,

RESET
ENTER
LOOKUP

FrESETS L_ISTS (USE BE'FORl:./ ENTER AND LOOKUP)~

ACCEPTS SUCCESSIVE ITEMS OF NAlvJES' AND DA7'A.
PRINTS DATA AS'SOCIATED WITH EACH NAfi.1E ENTERETJ j

X+-, ~
-1-0X10=pX
J+-«(1~Pl)--1~Pl)=pX)/1-1+pP1

J+-(NAMESlPl[JJO~+lPXJA0=X)/J

-1-(01 =pJ)/ 108
-1-1,pu+-'MORE THAN ONE SUCH NAME'
DATA[P2[JJ+l-/P2[1 0 +JJJ
-1-1
'NO SUCH NAME'
-1-1

\7LOOKUPCOJIJ
V LOOKUP;X;J

, ? '[ 1 ]
[ 2 J
[ 3 ]
[4J
[ 5 ]
[ 6 ]

[ 7 ]
[ 8 ]
[ 9 ]

[ 10]
[ 11 ]

V

-1-1

VENTER[OJv
'V ENTER;X

'ENTER NAME'
X+-,eJ
-1-0X10=pX
NAMES+-NAMES,X
P 1 +-P 1 , p NAM~~S
, ENT E'R DA TA '
DATA+-DATA ,~

P2+-P2,pDATA, ,

[ 1 ]
[ 2 ]
[ 3 ]
[ 4 ]
[ 5 ]
[ 6 ]
[ 7 ]
[ 8 ]
[ 9 ]

[10J
\}

'VRESET[O]'V
'iJ RESET

[lJ NAMES+-DATA+-pPl+-P2+-0

RESET
ENTER

ENTER NAME
J" ARMSTRONG
ENTER DATA
PRESIDENT

ENTER NAME
Ho LEVINE
ENTER DATA
VICE-PRESIDENT

ENTER NAME

LOOKUP
?
H'l LEVINE
VI CE -PR ES I DE NT
?
L 0 YA VNER
NO S UCH NAM~~

?

B.3



DIN

THE FUNCTIONS IN AND IN1 TAKE TWO ARGUMENTS; THE FIRST IS A
WORD (IoEo, A VECTOR) WHOSE OCCURRENCES IN THE SECOND
ARGUMENT ARE TO BE DETERMINED 0 THE RESULT IS A VECTOR OF
I NDICE5Y 0 F THE FIR 5' T LET TER 0 F' EACHOCCUR RENe E () THE
FUNCTION IN DETERMINES dL~ OCCURRENCES, WHEREAS INl
DETERMINES ONLY ALL NON-OVERLAPPING OCCURRENCES BY FIRST
APPLYING THE FUNCTION IN AND THEN SUPPR~SSING ALL OVERLAPSo

VIN[O]\7
\J Z+A IN B;J

[lJ J+(A[lJ=B)/lp~

[2J J+(J~l+(pB)-pA)/J

[3J Z+(B[Joc+-l+lpA]A Q =A)/J

~IN1[OJ\J

\7 T+A I Nl B
[lJ T+-A IN B
[ 2 ] -+ 2 x J <p T +- ( ~ ( 1 P 17) E J +-1 +( ( p A ) > I - / [ 1 ] ( 2 , 1 +P T ) P ']1) 1 1 ) / T

\7

W+' THE'
T+'THE MEN THEN WENT ROMEo
W IN T

1 9
W INl T

1 9
'ABA' IN 'NOWABABABABABABABA'

4 6 8 10 12 14 16
'ABA' INl 'NOWABABABABABABABA'

4 8 12 16

DTRUTH

THE FUNCTION TRUTH PRODUCES' THE MA'lIRIX OF ARGUMENTS OF THE
TRUTH TABLE FOR N LOGICAL VARIABLES Q

VTRUTH[ OJ 'J
9 Z+-TRUTH N

[1J z+2IL(-1+12*N)oo~2*N-lN

TRUTH 3

0 a 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

( TRUTH 3)+0 XQ>2* - 1+13
0 1 2 3 4 5 6 7

B.4



DeeD

THE FUNCTIONS GCD AND GC EACH EMPLOY THE EUCLIDEAN ALGORITHM
TO PRODUCE THE GREATEST COMMON DIVISOR. GCD EMPLOYS TWO
SCALAR ARGUMENTS, WHEREAS GC EMPLOYS A SINGLE ARGUMENT WHICH
IS EXPECTED TO BE A TWO-ELEMENT VECTOR 0

THE FUNCTION GCV YIELDS THE GREATEST COMMON DIVISOR OF ALL
ELEMENTS OF A VECTOR OF TWO OR MORE ELEMENTS.

VGCD[OJ\7
\7 Z+-M GCD N

[lJ Z+M
[ 2 ] M+-M IN
[3J N+-Z
[4J -+O;eM

VGC[O]\7
\7 Z+-GC M

[lJ ~O~1+M+-¢M[1J,Z+-I/M

\7CCV[OJ\7
'V Z+-GCV W;A

[lJ +l;z:pW+-Z,(A~O)/A+(Z+-L/W)IW
\7

84 CCD 90
6

90 GC'D 84
6

GC 90 84
6

ecv 90 84
6

GCV 90 84 105
3

DBIN

THE FUNCTION B1N PRODUCES ALL BINOfi,iIAL COEI/FICIENTS UP TO ORDER N

VEIN[D]\]
v Z+-BIN N

[lJ Z+-L~(O,lN)oo~O,lN

\J

BIN 4

1 000 0
11000
1 2 1 0 0
1 3 310
14641

B.5



DPOLY

THE FUNCTIONS POLY, POL, PO, AND POLYE EACH EVALUATE A
POLYNOMIAL (OR POLYNOMIALS), WHOSE COEFFICTENTS ARE
DETERMINE'D BY THE FIRST ARGUMEN17

, AND W1JOSE POTNT (OR
POI NTS) 0 F E VA L UA T ION I S DE' T ER MIN ED B Y THE SEC 0 NDAR G[}Mr,1 NT.
THE COEFFICIENTS ARE IN ASCElifDING ORDER OF AS~SOCIATED

POWERS~

POLY SCALAR RIGHT ARGUMENT ONLY?
POL SCALAR RIGHT ARGUME NT ONLY (USES INNER PRODUCT) 1

POLYE SCALAR RIGHT ARGUMENT ONLY (USES BASE VA LUE1

) ~

PO APPL1·ES TO ARGUMENTS OF ANY RANK'J THE VECTORS ALONG
THE FIR5 Teo 0 RDINATE 0 FI T Hb1 F L RSTAR GUME7 NT AHE THE
COEF Filer ENTS OF THE PO LYNOMIALS WH 1 eH A!? E F: VAL VA TED
FOR EACH ELEMENT OF THE SECOND ARGUMENT,

\/POLY[OJ'iJ VPOLYB[O]\J
V Z+C POLY X V Z+-C POLYE X

[ 1 ] Z+-+/CxX* -
1+ 1 P , C [ 1 ] Z+-X-t¢C

v 'V

VPOL[OJv VPO[OJv
v Z+-C POL X \J Z+-C PO X

[ 1 ] z+-(x* -
1+1P,C)+"xC [ 1 ] -Z+-(Xo,,* 1+11ppC)+,xC

'l 'V

C+-l 2 3 4
C POLYS ')

oJ

142
(C POLY 3)A,,=(C POLYS 3 ) , ( C POL 3) ,C PO 3

1
C PO 1 2 3 4 5 6

10 49 142 313 586 985
O+-M+-'s(BIN 5

1 1 1 1 1 1
0 1 2 3 It 5
0 0 1 3 6 1 0
0 0 0 1 4 10
0 0 a 0 1 L.-

:..J

0 0 0 0 0 1

LM PO 1 6

1 2 4 8 16 32
1 3 9 27 81 243
1 4 16 64 256 1024
1 5 25 125 625 3125
1 6 36 216 1296 7776
1 7 49 343 2 Lt 0 1 16807

B.6



DTIME

THE FUNCTION TIME YIELDS THE AMOUNT (IN MINUTES, SECONDS,
AND 60THS OF A SECOND) OF CPU TIME USED SINCE ITS LAST
PREVIOUS EXECUTIONo IT IS USEFUL IN MEASURING THE EXECUT10N
TIMES OF OTHER FUNCTIONS o THE VARIABLE 'TIMER' IS ASSIGN~D

THE VALUE OF THE CUMULATIVE CPU TIME AT EACH EXECUTION OF
THE FUNCT10N TIMEo

VTIME[O]\J
V Z+-TIME;T

[lJ Z+- 60 60 60 T(T+-r21)-TIMER
[2] TIMER+-T

DCOMB

THE F UNCT ION COMB EM? LOYS R~'CURS I VE DEF I NI TI ON TO PROD VCE' A
2 ~ N B Y 2 MA TR I X 0 F ALL PO S SIB L EPA IRS 0 F EL EM ENT S FRO M 1 N ,.

THE FUNCTION FC SHOWS AN ALTERNAl"E METHOD WHICH YIELDS THE
SAME PAIRS BUT IN A DIFFEHENT ORDERo

TH E FUNCT ION LFC EMF LOYS FC TO GEN ERA '1 1 E LETT EH PAl RS .
\JCOMB[OJ9

\} C+-COMB N;A;B
[1J -+OxlN<2
[2J ~OxlN=2xlpC+- 1 2 p 1 2
[3J A+-COMB N-l
C4 ] C+- ( ( p A ) + ( N - 1 ) , 0 ) p ( , A ) , , ( 1 N - 1 ) 0 ~ r0 , PI

VFCCOJv
\j C+-FC N;A;B

[ 1 ] B+-( 1 N) 0 0 +Np 0
[2J A+-( 1/1/) 0" +IN
[3J C+-(2,NxN)p( ,B)"A
[4J C+-~(C[2;J~N)/C

\j

\j LF C-Y [0 J\j

\j Z+-LFC N
[ 1 ] Z+-' AB CD EJ/CH I JKLM NO PQR STU VW XY Z ' [FC NJ

V
TiME

0 0 35
TIME

0 0 2
COMB 4 FC 4 LFC 4

1 2 1 2 AB
1 3 1 3 AC
2 3 1 4 AD
1 4 2 3 Be
2 4 2 4 ED
3 4 3 4 CD

TIME TIME TIME
0 0 12 0 0 8 0 0 7

B.7



Z«-COMB 1 5 Z+-FC 1 5
p~ 02

105 2 lOS 2
T IlvJ E T 1f.l E

0 1 J+ 0 0 ? ::3

DDTH

THlj' FUNCti Ofl~(; l)j'll, liTD, ANn All CONCRRN HEXADECTlvJAL NUMBERS
LI/'vJII'~'D TO (3 /)rGIT,'/ Afl[) l'_/.'~1P~OYING :rH£' CflI1FrACT1(RS
012JL+SG78(JARCDEP NECATiVE NU/vlB[;J1 Rt; AI~E REPRE:~)l!,'N7'F:D lf12'5
CO/.1PLEi,,1EN 11 FORM, WTTlI ANY OF ~r1JE:' CJiAI-iACT~'RS~ 8 THROUGH [7 IN
THE L£'FTl·10/j~T jJQSYTTION (OF f~TGHT) ( LEADING ZEROS MAY BE
o/-1 ITT £'J) c

Dl'H
HTD
Ali

\7
v

L1 ]
v

C() Pl VE R T .')' n F; ( r j\1A L TO l! Ii) X, A r) II}} C I /;J;1 L
C() Iv VER TD !l E' XAn FC1 L~1A L T 0 DF; CJ /1A L ,
ADDSHE XADEC T L\~A L lv' U/V!R l;;R :J

vDTl-J[OJv
R+-D 7'/1 .Y
R+- , ( , 0 1 2 3 I} 5 6 7 8 9 ARCnF'F7' ) [ 1 + ( 8 p 1 6 ) T X ]

VHTD[[JJv
1,/ F(-4.--11 TD .¥

[lJ /1+-( (8-p ,X)p'O' ),X
[ 2 ] R~- L ,~ '1 : .L - '1 + ' 0 1 ) 3 q 5 b 7 8 gAR C[; 1'7 !.' , 1 [1' ) - ( 2 * 3 2 ) x R [ 1 ] ( , 8 9 ABCDE F '
[- 3 J -+ 4 x '"'-J 1\ / x( · () 1 '_) '3 ! ~ S b 7 8 (j ABCneF '
[ 4 J R~' ,
[S ] '~JUl0BER IS' NC~11 fl£'X'

vA/feD]\?
\] lr+-A Ali B

[ 1 J tJ,/ +-- DT H ( f-j T D A) +HT [I B
v

Z~-DTH 1776

0000061"0

I-iTD Z
177C

Z Ali Z
OOOOODEO

HTD~AI-JZ

3552
11 T D '0 0 0 0 0 5 F 0 '

1776
HTD '90000000'

1 F3 7 cJ OL+81 (:32
HTD 'OOOL+S)HF1 G'

NUMBER I~ NOT HEX

B.8



DZERO

THE FUNCTIUN ZERO EMPLOYS THE METHOD OF FALSE POSITION TO
DETERMINE TO WITHIN A TOLERANCE TOL A ROOT OF THE FUNCT10N F
LYINJ BETWEEN THE BOUNDS B[lJ AND B[2]" IT IS ASSUMED THAT
F B[lJ AND F B[2J ARE OF OPPOSITE SIGN~ THE FUNCTION F IS A
SPECIFIC POLYNOMIAL, BUT CAN BE CHANGED TO ANY DESIRED
FUNCTION"

VZERO[OJv
'V Z+TOL ZERO B;T

[lJ ~OxlTOL~IT+F Z~Oo5x+/B

[2J ~1,B[2~(O<T)~O<F BJ+Z
\l

VF[OJv
\j Z+F X

[lJ Z+ -20 18 3 5 1 PO X
\J

D+X+ 4+19
3 2 -1 a 1 2 3 4 5

F X
169 12 29 20 3 4 7 36 145

TIME
o 1 19

D+R~lE 6 ZERO 2 1
1~845121413

TIME
o 2 36

F R
7~14140814E 7

TIME
002

O+FD+R+1E-l0 ZERO 1 2
1,,26397094
-1.,813305062E 11

TIME
o 3 46

O+FD+R+1E-6 ZERO 1 2
1,,263970852

8 Q 51888359E 7
TIME

o 2 13

B.9



DHILB

THE FUNCTION RILB PRODUCES A HILBERT MATRIX OF ORDER No

~HILB[DJ~

~ Z+-HILB N
[1J Z+-+-1+( IN)oo+lN

RILE 3

1
o c 5
0 0 3333333333

DINV

0 0 5
0 0 3333333333
o (l 25

003333333333
o 0 25
o 0 2

THE FUNCTIONS INV AND INVP EACH PRODUCE THE INVERSE OF THE
MATRIX ARGUMENT SUPPLIED, EMPLOYING GAUSS-JORDAN (IDEo,
COMPLETE) ELIMINATION o INVP EMPLOYS PIVOTING AND INV DOES
NOTo

THE FIRST LINE APPENDS THE UNIT VECTOR l~lN AS THE LAST
COLUMN DE' THE ARGUMENT AND THE SECOND LINE (LIN E 4 IN IN VP)
PERFORMS AT EACH ITERATION ONE OF THE N COMPLETE INVERSIONS
REQUIRED G SEE EXERCISE 1 0 40 OF IVERSON, A EHQ~HAMMI~Q

~d~QQdQ~, WILEY, 1962 0

VINV[OJ~

'J Z+-INV M;I;J
[1J M+-~(1 0 +pM)p(,~M),~J+-l<iI+-ltpM

[ 2 J M+-l <p (J , 1 ) ep [ 1 ] M- (J x M[ ; 1 J ) a 0 xM [ 1 ; ] +-M [1 ; ] -i- M[1 ; 1 ]
[3J ~2Xl0~I+-I-l

[4J Z+-M[;lltpMJ

VINVP[OJv
V Z+-INVP M;I;J;K;P

[1J M+-~(1 a +pM)p(,~M),~J+-1<P+-1I+-ltpM

[ 2 ] M[ K , 1 ; 1 P P ] +-M [ 1 , K+- ( 1M L1 I ; 1 ] ) 1 r / 1M [ 1 I ; 1 ] ; 1 P P ]
[3J P+-l¢P,OpP[R,lJ+-P[l,KJ
[ 4 ] M+-1 ep (J , 1 ) ¢ [ 1 J M- (J x M[ ; 1 ] ) 0 0 xM [ 1 ; J +-M [ 1 ; J ~ M[ 1 ; 1 ]
[5J ~2Xl0~I+-I-l

[6J Z+-M[;t!PJ

D+-N+-INV M+-HILB 3

9

36
30

M+ ~ xN

l.,OOOOOOOOOEO
1~421085472E-14

4,,662936703E-15

36
192
180

20842170943E-14
l o 000000000EO
30197442311E-14

B.10

30
180
180

6 0 039613254E-14
1,,065814104E-14
l"OOOOOOOOOEO



DPALL

THE FUNCTION PALL PRODUCES THE MATRIX OF ALL PERMUTATIONS OF
ORDER N() THE' FUNCTION PERM WHICH IT USES PRODUCES THE B-'1~H

PERMUTATION OF ORDER N BY A METHOD DUE TO LoJoWOODRUM()

THE FUNCTION PER EMPLOYS RECURSIVE DEFINITION , AND PRODUCES
ALL PERMUTATIONS BY A METHOD MUCH FASTER THAN THAT USED IN
THE FUNCTION PALLo THE PERMUTATIONS ARE PRODUCED IN THE
OPPOSITE ORDER 0

VPALL[O]V
'V Z+-PALL N;I

[1J Z+«!N),N)pO
[ 2 ] I +1
[3J ZeI;J+N PERM I
[4J ~3x(1N)2I+I+1

VPERM[O]V
\l Z+A PER M B; I ; Y

[lJ I+pZ+1+(¢lA)TB-1
[2J ~OxlO=I+-I-1

[3J Z[YJ~Z[YJ+Z[IJ~Z[Y+I+1A-IJ

[4J -+2

VPER[OJv
'V P+PER M;X;Y;Z

[1] ~OXtM=P+ 1 1 p1
[2J Z+PER M-l
[3J P+-tX+-Q
[4J ~OxlM<X+-X+l

[5J Y+-(~(lM)EX)\Z

[6J Y[;XJ+-M
[ 7 J P+ ( (X x ! M -1 ) , M) p ( , p ) , , y
[8J -+4

PALL 3

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

TIME
a 3 7

Z+PALL 3
TIME

0 a 49
Z+PALL 5
TIME

0 25 10
Z+-PER 5
TIME

0 1 12
B.ll



DABBOC

THE FUNCTION ASSaC TESTS ANY PUTATIVE GROUP MULTIPLICATION
TABLE M (ASSUMING GROUP ELEMENTS 11ppM) FOR ASSOCIATIVITY
AND YIELDS A VALUE 1 IF IT IS ASSOCIATIVE, 0 OTHERWISE ~

VASSaCCO]V
'V Z+-A SSOC M

[lJ Z+A/,M[M;J=Ml;M]
\j

2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4
1 2 3 4 5

TIME
0 a 13

ASSOC M
1

TIME
009

M+-O 0 1 0 O<pM
M

2 3 4 5 1
3 4 5 1 2

5 1 2 3 4
5 1 2 3 4
1 2 3 4 5

ASSaC M
a

TIME
0 0 10

M+-?10 lOpiD
pM

10 10
TIME

0 a 3
ASSOC M

a
TIME

a 0 45

B.12



)LOAD 1 NEWS
SAVED 10~44~08 07/12/68

DESCRIBE

THIS WORKSPACE PROVIDES INFORMATION ABOUT THE OPERATION AND
USE 0 F A PLoTHE FUN CT IONS 0 F _I NT ERES T TOTHE USER ARE
APLNOW, INDEX, PRINT, AND SCHEDULE o

A PL NOW T AK ES A51 ITS SINGLEA RGUMEN'11 A THRE' E - EL EM EN T VEe TOR
REPRESENTING A DATE, AS MONTH, DAY, YEAR o APLNOW PRINTS
NOT~'S ON THE STA1 1US OF THE APL SYSTEM; FOR INSTANCE,
RECENTLY ADDED FEATURES, TEJMPORARY RESTRICTIONS, OR ADVICE
ON PROGRAMMING OR TERMINAL OPERAT10No ONLY THOSE NOTES
ENTERED INTO APLNOW ON OR AFTER THE DATE GIVEN AS AN
ARGUMENT ARE PRINTED o

INDEX TAKES NO ARGUMENT o IT PRINTS INDICES, DATES, AND THE
FIR S T F E'W W0 R DS 0 F EA CII NOT E I NAPL NOW 0

PRINT TAKES AS ITS SINGLE ARGUMENT THE INDEX (AS INDICATED
BY THE I NDEX FUN CT ION) 0 Ei A NOT E FRO !vi AP L NOW, AND PR1 NTS THE
NOTE o

SCHEDULE TAKES NO ARGUMENT v IT INDICATES THE REGULAR DA!LY
APL SCHEDULE, AND ALL ANTICIPAT£'D DE1VIATIONS FROM THE NORMAL
SCHEDULE r,

B.l3





BIBLIOGRAPHY

Berry, p.e., APL\360 Primer, IBM Corporation, 1968.

Berry, p.e., APL\1130 Primer, IBM Corporation, 1968.

Breed, L.M., and R.H. Lathwell, "The ImpJernentation
of APL\360", ACM ~ SyITtposium on Experimental
Systems for Applied Mathematics, Academic Press,
1968.

Falkoff, A.D., and K.E. Iverson, liThe APL\360 Terminal
Systen1 c

;, ACM Symposium on Experimental Systems
for Applied Mathematics, Academic Press, 1968.

Falko£f, A.D., K.E. Iverson, and E.H. Sussenguth, "A
Formal Description of System/360", IBM Systems
JournaJ, Volume 3, Number 3, 1964.

Iverson, K.E., A Programming Language, Wiley, 1962.

Iverson, K.E., Elementary Functions: an algorithmic
treatment, Science Research Associates, 1966.

Iverson, K.E., "The Role of Computers in Teaching",
Queen's Papers in Pure and Applied Mathematics,
Volume 13, Queen's University, Kingston, Canada,
l<}r:U.

Lathwell, R.H., APL\360:
Corporation, 1968.

Operator's Manual, IBM

Lath~ell, R.H., APL\360: System Generation and
Library Maintenance, IBM Corporation, 1968.

Pakin, S., APL\360 Reference Manual, Science Research
Associates, 1967.

Rose, A.J., Videotaped APL Course,
1968.

Smillie, K.W., Statpack 1: An
Package, Publicatic)n No. 9 I

Computing Science, University
Edmonton, Canada, 1968.

IBM Corporation,

APL Statistical
Department of

of Alberta,



Caret 3.3
Catenation 3.26-27 3.30 3.39 4.2
Ceiling 3.6-7 A.2
Character
error 3.4
input 3.24-25
output 3.26 3.34

Characteristic 3.45
Circle function 3.34
Circular functions 3.6
CLEAR 2.7 2.13 3.7 3.34
CLEAR WS 2.5 2.13 2.20
Column 3.31-33 3.36 3.43 A.7
Column catenator 4.2
Colon 2.2-3 2.9 3.17
Coniliinations B.7
Conuna 3.26-27
Commands 2.4-7 2.11
table 2.7

Comment 3.47
Communication commands 2.5 2.29-30

action and notes 2.30-32
table 2.7

Comparison 3.7 A.9
Complete beta function 3.8
Compound character 3.3
Compound expression 3.3 3.14
Compress 3.39 3.42 Al3

Absolute value
see Hagnitude

Account numner 1.7 2.2-3 2.20 2.25
Accounting information 1.10 2.9
ALREADY SIGNED ON 1.8 2.7
And 3.5 3.6 3.8 3.35
Announcements, public address 1.8 2.29
APL

character set 1.2
exercise 4.5
information B.13
operations 2.1-5

Application packages 2.11
Arccos 3.6
Arccosh 3.6
Arcsin 3.6
Arcsinh 3.6
Arctan 3.6 A.2
Arctann 3.6 A.2
Arguments 3.5 3.7-8 3.10 3.13-15 3.29

3.38 3.40 3.43-44
left 3.7
right 3.3

Array 3.26-34 A.6-8
extend scalar functions to 3.5 3.34
functions on 2.17 3.34-37 4.3 A.8-10

Arrow 3.1-5 3.20 3.22-24
Associativity test B.12
Asterisk 2.27 3.20
Attention 1.6 2.3 3.1 3.17

Backspace 1.6 3.3
Base value 3.43 A.13
Beta function 3.8
binomial coefficient 3.6
Body of defined function
Bounce 2.6 2.8-10
Brackets 3.9 3.15
Branch 3.1 3.10 3.21

example 3.11
Business accounting 2.11
Byte 3.48

A.5 B.5
3.9-10 A.3

3.47 A.3 A.5-6

INDEX

Computer
access 1.1
failure 2.6
time used 1.10 3.49

Conformability 3.34 3.37
Connection

broken 1.5 2.4 2.6 2.9
computer 1.1
establish 1.3,,5
hold 2.9-10

Constants 3.2
CONTINUE 1.10 2.6-8 2.10 2.21
Continuity of work 2.19
Coordinates of array 3.32 3.35 3.38
COpy 2.7 2.11-12 3.34
action and notes 2.14-16

Correction 1.6 A.l A.4
Cosh 3.6
Cosine 3.6 A.2

Data button 1.5
Date 3.49
Date response 2.8-9
Deal 3.6 3.39 3.46
Decimal form 3.2 4.3
Decode 3.39 3.43 B.2
Defined function 2.1 2.3 3.1-18 A.3

example 3.10 A.3
explicit argument and result 3.13-14
list names of 2.25
start and end 3.9
table of forms 3.14
use 3.15
variable made local to 3.12

Definition mode 2.5 3.16
end 3.16 A.3
reestablish 3.17

DEFN ERROR 3.4
Del 3.9 3.16-18
Del tilde 3.18
Delete 3.16-18
DEPTH ERROR 3.4
Diagonal 3.40 A.l1
DIGITS, output maximum 2.7 2.18 4.6
Dimension 3.5 3.26-30 3.35
Dimension and rank table 3.29
Disconnect 1.9 2.6 2.9
Display 3.17-18 A.4
Divide 3.6 3.35
DOMAIN ERROR 3.4 3.46 4.3
Drop 3.39 3.45
DROP 2.7 2.19 2.24 3.36
Dyadic functions 3.6-7 3.29 3.35-36
Dyadic circle function table 3.6

e
see Exponential

Edit
in function definition 3.17-18 A.5
text 2 • 11

Element-by-element 3.5 3.8 3.34 A.1
Empty array 3.30 3.34
Empty vector 3.9 3.30 A.2
Encode 3.39 3.44 B.2
Entries 1 .5- 6 3.2 3.24
Epsilon

see Characteristic
Equal 3.6-8 3.35
Equipment 1 . 1 - 2
Erase 1 . 6 2.24 3.3
ERASE 2.7 2 . 11 2.17 3. 16 3.18 A.5



Error 1.6
Error report 3.1 3.3 3.5

during defined function 3.5
table 3.4

Evaluated input 3.24
~valuation, order of

see Order of execution
Exclusive or 3.8
Execution mode 2.5 3.16
Execution, order of

see Order of execution
Expand 3.30 3.39 3.43 A.13
Exponential 3.6
Exponential form 3.2 4.2-3 A.1
Expression, compound 3.3 3.13

Factorial 3.6 3.8 3.15 A.3
Floor 3.6-7
PHS 2.7 2.25 3.22
Function name 2.17 3.2 3.10 3.23
Function definition 3.9-10 3.16-18

A.4-6
Functions

see Circular, Defined, Dyadic, Halted,
Library, Locked, Mixed, Monadic,
Pendent, Primitive, Recursive
definition, Scalar, Suspended,
System dependent

Fuzz 3.7

Gamma function 3.8
Gauss-Jordan elimination B.10
Global object 2.2 2.14-17 3.23
Global variable 2.11-12 2.26 3.12 A.3
Grade up and down 3.39 3.45
Graph 4.2 4.4
Greater 3.6 3.8
Greatest common divisor A.4 B.5
GROUP 2.7 2.11 2.16 2.26
GRP, GRPS 2.7 2.26-27 3.22

Halted function 2.3 2.19 2.27-28
Header 3.12 3.14-17 A.3
Hexadecimal number B.8
Homonyms 2.3 2.15 3.22-23
Hyperbolic functions

see Circular functions

I-beam functions 3.20 3.48-50
Identity element table 3.35
IMPROPER LIBRARY REFERENCE 2.7 2.23-24

2.28
INCORRECT COMMAND 2.5 2.7 2.9-10 2.13

2.17-19 2.24-32
INCORRECT SIGN-ON 1.8 2.7
Index 3.26 3.39
INDEX ERROH 3.4 3.31 3.35
Index generator 3.9 3.39 A.2
Indexing 3.26 3.31-34 A.14-15
Index of 3.39 3.44
Index origin 2.17 3.33-34 A.8
Inner product 3.5 3.34 3.36 A.9
table 3.37

Input
character 3.25
escape from loop 3.25
evaluated 3.24
position 1.7 2.3

Input and output 3.23-26 A.6
Inquiry command 1.7 2.5 2.25
action and notes 2.25-29
table 2.7

Insert by backspacing 3.3
INTERRUPT 1.1 3.4

Interrupt 2.3 2.8 3.19
Iota
see Index generator, Index of

Iteration counter 3.12

Key 1.7 2.3
Keyboard 1.3

locked 1.5-7 2.31-32
unlocked 1.9 2.4 2.31 3.24

Keying time 3.49

Label 3.16
Lamination 3.26-27
LENGTH ERROR 3.4 3.34 4.3
Less 3.6 3.8
LIB 2.7 2.28
Library 2.1

see Private, Public
LIBRARY 1 4.1

ADVANCEDEX B.1-12
APLCOURSE 4.5
JiiE~/S B. 13
TYPEDRILL 4.7-8
WSFNS 3.33 4.6

Library control command 2.5 2.19-21
action and notes 2.22-24
table 2.7

Library function 2.4 4.1-8
Library number 2.13 2.20
LIBRARY TABLE FULL 2.8
Line width 2.19
List, construct and use B.3
LOAD 2.7 2.19 4.2
Local variable 2.2 3.12 3.22
Lock 2.3
Locked function 3.5 3.9 3.18
Locked keyboard 1.4-7 2.3 2.30-32
Logarithm 3.6
Logical function 3.5 3.8
Logical result A.2

Magnitude 3.6-7
Material implication 3.8
Mathematical statements 3.1
Matrix 3.26-28 3.34-36 A.7 A.15
Hilbert B.10

Matrix divide 3.46
Matrix inverse 3.46
Maximum 3.3 3.7 3.35 A.9
Membership 2.27 3.39 3.45 A.15
Message 1.7 2.18 2.29-30
MESSAGE LOST 2.7 2.30-32
Minimum 3.6 3.35
Minus 3.2 3.6 3.35
Mixed functions 3.36-47

names 3.5
sample A.10-15
table 3.39-40

Monadic functions 3.6-8 3.29 3.46
Monadic transpose 3.41
MSC, MSGN 2.7 2.30-31

Names 2.2-3 2.12 2.16-17 2.20-21
3.2 3.9 3.12

active and latent referents 3.22-23
to obtain lists of 2.25-28

Nand 3.6 3.8 3.35
Natural logarithm 3.6
Negation function 3.2
Negative number 3.2 3.6 A.1
NONCE 3.4 3.27-28
NO SPACE 2.8
Nor 3.6 3.8 3.35
Not 3.6



Not equal 3.6- 8 3.34 Residue 3.6-7 3.35
Not greater 3.6 3.8 3.35 Response 1.8-10 2.5-6 2.9 A.1
NOT GROUPED, NAME IN USE 2.7 2. 17 table 2.7
Not less 3.6 3.8 3.35 Resul ts 3.2 3.13-14
NOT SAVED, THIS WS IS wsid 2.7 2.24 Return 1.5-6 3.3
NOT SA VED, WS QUOTA USED UP 2.7 2.22 2.24 Reverse 3.39 3.42 A.12
NOT WITH OPEN DEFINITION 2.7 2. 14 2.22 Revise 3. 16

2.24 3.18 Rho
NUMBER IN USE 1 . 8 2.7 see Reshape, Size
NUMJER LOCKED OUT 1 . 8 2.7 Roll, 3.6
NUMBER NOT IN SYSTEM 1 . 8 2.7 Rotate 3.39 3.41 A.12
Number of terminals connected 3.49 Row 3.31-33 3.36 3.43 A.7
Numbers 3.2 3.5 3.9 3.25

OBJECT NOT FOUND 2.7 2.14
Occurrences B.4
OFF 2.7 2.8-9
Operator 1.3-4 1.7
OPR, OPRN 1.7 2.7 2.29 2.31-32 2.34-35
Or 3.5-6 3.8 3.35
Order of execution 3.3 3.46

compound expression 3.3 A.1
defined function 3.10

ORIGIN 1.6 2.7 2.17 3.33 4.6
Out of 3.35
Outer product 3.5 3.34 3.37
Output 2.1 2.18 3.23 3.25
array 3 .. 34
fixed point 4.2
heterogeneous 3.25
maximum digits 2.18

Overstrike 3.3-4 3.18 3.25 3.36
3.42 3.45

Parentheses in expression 3.3
Parenthesis, right 1.8 2.6
Password 1.7 2.3 2.7-8 2.19
PCOPY 2.11 2.15-16
Pendent function 2.3 2.27 3.20
Permutation 3.33 3.38 A.8 A.14 B.11
Pi times 3.6
Plus 3.6 3.35
Polynomial B.6
Ports 1.1
PORTS 2.7 2.29
Power 3.6 3.35
Precision of numbers 2.18 3.5
Primitive functions 3.1 3.6 3 .. 13 3.39

names 3.5
see Mixed, Scalar

Printing element 1.1-3
Private library 2.2 2.20
Programming examples B.1-12
Protecting copy command 2.11 2.16
Public library 2.2 2.20 4.1

Quad 3.24-25 3.49
Quotation mark 3.2
Quote quad 3.25 3.49

Radices 3.43
Random 3.6 3 .. 46 A.15
RANK ERROR 3.4 3.34 4.3
Rank of array 3.26-28 A.14
Ravel 3.28-29 3.39
Reciprocal 3.6
Recording terminal 1.3 2.6 2.21 2.29

2.31-32
Recursive definition 3.15 B.7 B .. 11
Reduction 3.5 3.34-35 A.9
Representation 3.44 A .. 13
Request button on 1050 terminal 1.8
RESEND 1.7 3.4
Reshape 3.29 3.39 A.7

SAVE 2.7 2.19-23
Scalar 3.2 3 .. 27 3.37-38 3.41-43
Scalar functions 3.5-9

extend to arrays 3.34-36
sample A.2
table 3.6

Security 2.3
Semicolon 3.12 3.25
SETFUZZ 3.7 4.7
SI, SIV 2-.7 2.27-28 3 .. 19-22
SI DAMAGE 3.20
Sign on 1.7-9 2.7
Signum 3 .. 6 A.3
Sine 3.6 A.2
Sine, cosine, tangent table A .. 11
Sinh 3.6
Size 3.5 3.28 3.39
Spaces 2.5-6 3.2
Specification 3.1
multiple 3.47

State indicator 2.1 2.19 3.19-22
3.50 A.5

with local variables 3.22
Statement 3.1

end of 3.3
invalid 3.3 3.5 A.2
number 3.9-10 3 .. 16-17

Statistical calculations 2.11
Stop control 3.18 3-20
Storage 2 .. 1 2.21 3.46
Store workspace 2 .. 22-23
Suspended function 2.3 2 .. 27 3 .. 19-20 3.50
SYMBOLS 2.19
Symbols 3.5-6 3.24-25 3.39 3.45
SYMBOL TABLE FULL 3.4
SYNTAX ERROR 3.4
System command 2.1 2.4-6 3.18
during function definition 3.18
table 2.7

System dependent function 2.4 2.27 3.48-50
table 3.49

SYSTEM ERROR 3.4
System information 1.8 3 .. 48-50

Tabular output 4.3
Take 3.39 3.45
Tangent 3.6 A.2
Tanh 3.6
Teaching 2.11
Telephone number 1.4
Terminal
table of features and options 1.2
1050 1.1 1.4 1.6-7
2740 1.4-5
2740-1 1.1
2741 1.1 1.4-5 2.3

Terminal control command 2.5-8
action and notes 2.8-11
table 2.7

Terminal, sample session at A.1-15
Terminal modes 2.5



Time 1.8 1.10 2.8 3.48-50 B.7
Timer on 1050 terminal 1.7
Times 3.6 3.34-35
Time, student response 3.49
Trace 3.15 3.18 3.20-21 A.3
Transmission signal 1.5-6
Transpose 3.38-42 A.10-11
Transposition table 3.41
Trigonometric functions

see Circular functions
Trouble report 1.8 2.5
table 2.7

Typewriter entry 1.5-6 3.2 3.24 A.1

User code 1.10 2.25

Value 3.10 3.13-14 3.16 3.25
3.43 3.47

VALUE ERROR 3.4 3.14
Variables

local and global 2.2 3.12 3.22
names 2.1-2 2.16-17 3.22-23
value 3.1 3.13 3.33

VARS 2.7 2.26 3.22
Vectors 3.8-9 3.26-27 3.35-37 A.1

mixed functions apply 3.38
numerical and character constant 3.2 A.1
scalar functions apply 3.8

WIDTH 2.7 2.18 3.25 4.6-7
Work session

forced end 2.6
to end 1.9-10 2.8-11
to start 1.7 2.8

Workspace 1.7 2.1-2
activate 2.13-14
active 2.1 2.6 2.12-13 2.20 2.25
capacity 2.1
clear 1.9 2.5 2.13
continue 1.9 2.6 2.21
identification 2.13 2.20 2.23 2.28
identification change 2.18-20
index origin 3.33
information transfer between 2.11
in libraries 4.1
name 2.2-3 2.13
purge an active 2.21
replace stored with active 2.22
stored 2.3 2.12-16 2.20

Workspace control command 2.5 2.11
action and notes 2.13-19

WS FULL 2.7 2.15 3.4
WSID 2.7 2.18 2.28
WS LOCKED 2.7 2.14
WS NOT FOUND 2.7 2.14 2.24

Zero of a function B.9



GH 20-0906-1

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)



READER'S COMMENT FORM

APL\360·0S and APL\360-DOS

User's Manual

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges­
tions become the property of IBM. If you wish a reply, be sure to include your name and address.

COMMENTS

fold

fold

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND ~1AIL.

fold

fold



GH20-0906~1

YOUR COMMENTS PLEASE ...

Your comments on the other side of this form will help us improve future editions of this pub­
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub­
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your IBM

system should be directed to your IBM representative or the IBM branch office serving your
locality.

fold fold

I •• .. •••••••• .. •••• .. • ••• •• • .. •••• .. ••• .. •• .. ••• .. ••• • .. •••• • .. • •

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation

1133 Westchester Avenue

White Plains, N.Y. 10604

Attention: Technical Publications

..............................................................................................................................................

J>
""D

Yw
0')
o
6
(J)

Q)

~

a.
J>
""0

;:;
W
0')
o
6
o
(J)

~
~
V)~

fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM~ Warld Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

fold

c
en
l>
C>
I
N
o
6
to
o
q"J




