
-

~dr~on~~!fln~ystems --

APLJDS FILE SYST8~

APL/DS FILE SYSTEM

COPYWRITE TRA, INC. 1980

710 West Main, Arlington, TX 76013 Phone (817) 265-2132

TABLE OF CONTENTS

I. Introduction

A. What is a file?

B. Why use files?

C. Similarities between files and workspaces.

D. Differences between files and workspaces.

II. Creating and Managing Files

A. Concept of a tie

B. Creating files

C. Erasing files

D. Renaming files

III. File Input and Output

A. Appending data to the end of a file

B. Writing data to a selected file component

C. Reading data from a file

D. Deleting data from a file

IV. Obtaining Information About Files

A. Files previously created

B. Numbers of files tied

C. Names of files tied

D. Component numbering information

V. Global Variables and Reserved Names

VI. Appendix A - Error Messages

Appendix B - Workspace Environment for Using Files

Appendix C - Rebuilding File Directories

INTRODUCTION

An APL/ZaO file is a set of APt data objects. Each file is composed

of from 1 to 252 components with each component holding one data object.

The component can contain any value tha~ can be assigned to a variable,

such as a scalar, a vector, or a matrix. Also, different components may

contain different kinds of objects. For example, the first component

of a file may contain a literal vector while the second component contains

a numeric scalar.

Files offer many advantages over workspaces for storing of data.

- A file can hold up to 256,000 bytes of data depending upon the type

of disk on which the file is stored.

- While only one workspace is available to the user at anyone time,

up to 4 files may be used simultaneously.

- Files are used via a set of file functions which can be invoked by

the user or in a defined function (program).

Files are also comparable to workspaces in many respects.

- A file can be created, used to store data, and erased.

- Just as a workspace must be loaded before it can be used, a

file must be "tied" before it is available for use.

- Both files and workspaces reside on disks that can be removed

from disk drives.

There is a major difference between files and workspaces. A data object

found in a workspace is referenced by using its name. A file component is

referred to by its component number. A component number is a positive integer

between 1 an 252 inclusive.

2

Copying File Functions into the Active Workspace

File functions are stored on a disk as copyobjects. Before they can be

used to manipulate files they must be copied into the active workspace. To

do this the copyobject LOADFILES is executed.

)COpy LOADFILES
LOADFILES
FILE FUNCTIONS COPIED

(system reaps functions
into active ws)

After the function LOADFILES has loaded all the file functions and global

variables, it will erase itself. LOADFILES also sets up the function F to be

autostarted. The function F must always be autostarted when a workspace is

loaded since it initializes global variables used by other functions. This is

done automatically by this file package.

Before a disk can be used to store files, it must contain a file directory.

A file directory is a N by 13 literal matrix stored as a copy object. This

file directory contains the names and space allocations of files stored on a

single disk. Thus each disk will have its own file directory of all files on

that disk. A file directory can be placed on a disk by use of the function

NEWDISK.

NEWDISK
WHICH DRIVE CONTAINS THE DISK TO BE INITIALIZED? (0,1,2 OR 3)
0:

o
A CHECK WILL NOW BE MADE TO ASCERTAIN WHETHER A FILE DIRECTORY APPEARS ON THAT

DISK.

THE SEARCH REVEALS THAT A DIRECTORY IS
NOT FOUND

ON THE DISK. A DIRECTORY WILL NOW BE CREATED. PLEASE STAND BY.

NEW FILE DIRECTORY CREATED; FILES MAY NOW BE USED.

At this point the disk in unit zero has an empty file directory.

Note if there are files on a disk and NEWDISK is executed, then a new

3

file directory will not be created. Rather, one must use FERASE to erase

the files. (Wiping out the directory, but not the files leaves space used

on the disk which is garbage to the user.) A sample execution of NEWDISK is:

NEWDISK
WHICH DRIVE CONTAINS THE DISK TO BE INITIALIZED? (0, 1 ,2, OR 3)
0:

1
A CHECK WILL NOW BE MADE TO ASCERTAIN WHETHER -A FILE DIRECTORY APPEARS ON

THAT DISK.

THE SEARCH REVEALS THAT A DIRECTORY IS

ON THE DISK CONTAINING THE FOLLOWING:
VENDOR 20000
INVOIC 30000
AB2 12800
IT MAY BE ERASED BY USING 'FERASE'. A NEW FILE DIRECTORY HAS NOT BEEN CREATED.

4

USING FILES

Files are manipulated via the file functions loaded by LOADFILES. These

functions can be used to create, to read, to write, to obtain file status in

formation, and to destroy files. Each functiqn name starts with 'F' and in

dicates the type of operation that it performs. For example, FREAn reads a

component of the file and returns its value. Every file has a file name. A

file name can consist of from one to six alphanumeric characters, of which

the first must be alphabetic. Before a file can be used, it must be "tied."

Establishing a tie temporarily associates a positive integer (tie number) with

a particular file. Until the file is untied, the file functions use this

tie number, instead of the file name, to refer to the file.

After a file number has been associated with a particular file, the

file is said to be "tied." Up to four files may be tied at a time. Each

tied file in a workspace must have a unique tie number. One need not use

the same tie number each time a file is tied.

The following examples may be performed if the disk contains a file

directory (copyobject called "FILEDI"). If not then one must be created

using the function NEWDISK.

To create a file the function FCREATE is used. The syntax of FCREATE is:

'filename size' FCREATE tn, dn

where "filename" is a one to six character alphanumeric name for the file,

"size1f is the size of the file in bytes, "tn" is the integer tienumber

between 1 and 99, and "dn" is either zero, one, two or three specifying

the disk unit on which the file is to be created.

'DATA 9000' FCREATE 23,0

This creates a 9000 byte file called 'DATA' on unit zero with tienumber 23.

5

The file is also tied when it is created and is ready to be used. Note that

the "size" argument is optional when using FCREATE. If the size is omitted

and only a filename given, then a default size of 12,800 bytes is allocated for

the file.

,XYZ' FCREATE 1, a

This creates a 12,800 byte file on unit 0 with tienumber 1. Another important

point to know about the sizes of files are the minimum and maximum file sizes.

The minimum file size the system will allow one to create is 5120 bytes.

The maximum size of a file is dependent on the. type of disk media being used

to store the file. Usually the user should anticipate the amount of storage

needed and create files accordingly.

The function FERASE causes files to be erased. A file must be tied

before it can be erased or a FILE TIE ERROR will result. The syntax for this

function is:

r name' PERASE tn, dn

where "name" is the name of the file, "tu" the tienumber, and "dn" the disk

unit containing the disk upon which the file resides. For example to erase

the file DATA we created above:

'DATA' FERASE 23, 0

This causes the file DATA with the tie number 23 to be erased.

The function FRENAME can be used to change the name of a file, its size,

or the disk on which it resides. The syntax of FRENAME is:

'name size' FRENAME tn,dn

where name is the new name associated with the file with tienumber tn. The

argument "size" is the size in bytes that the new file is to assume. This

argument is optional, but can be used to change the size of a file that already

exists. If the size is not specified then the size of the new file is the same

6

as that of the old one. The last argument, dn, indicates which disk unit the

new file is to reside. For example to change the name of file XYZ with tie

number 1 on the disk in drive 0 to ABC:

'ABC' FRENAME 1,0

To change the name, size, and disk of the file ABC (make sure there is a disk

in uni t II 1) :

'MNO 19000' FRENAME 1,1

This would change the name of the file called ABC to MNO, change its space a1

loc~tion to 19,000 bytes, and copy the file from the disk in unit #0 to the

disk in unit #1. FRENAME can also be used sometimes to collect garbage in files

that appear to be full and thereby free up additional space (see Appendix B).

Files that were created in a previous session must be tied before they

can be used in subsequent sessions. The function used to tie files is called

FTlE and its syntax is the same as FERASE above. Assuming the file 'DATA74,

already exists) then

'DATA74, FTIE 99,0

ties the file name DATA74 with a tie number of 99 on disk unit O. Also note

that if one attempts to tie a file which has already been tied, then the

function FTIE will simply drop through without flagging an error. Thus if we

attempted to tie the file DATA74 again:

'DATA74 , FTIE 74,0

no error would result.

To untie the same file we would use the function

FUNTIE 99

Note that only the tie number was used to untie the file. FUNTIE can also be

used to untie several files at the same time. If four files were tied with

7

the tie numbers one through four then,

FUNTIE 1,2,3,4

would untie all four files. Files are untied if the workspace is either cleared

or if the)OFF command is executed. The only file functions that require the

file name as a left argument are FCREATE, FERASE, and FTIE. FLIB, FCREATE,

FERASE, and FTIE are also the only functions Fequiring that the disk unit be

specified. All other file functions use only the tie number-to refer to a file.

There are three functions which are used to place values in a file and

to retrieve values. To append values to the end of a file, the function

FAPPEND is used. FAPPEND takes as a right argument the tie number of a file,

and as a left argument a value to be placed at the end of the file. This

value may be a variable or an expression. To place a person's name in the

first component, age in the second component and telephone number in the

third component would require:

'JOE' FAPPEND 1
23 FAPPEND 1
273 2381 FAPPEND 1

Thus, we have stored a literal vector, a scalar, and a numeric vector in

components 1,2, & 3 respectively. A schematic representation of the file

MNO is:

Components

Contents
1

JOE
2

23
3

273 2381

The function FAPPEND discussed earlier always places values at the end

of the file. To randomly write values into a file the function FWRITE is

used. The syntax is:

value FWRITE tienumber, componentnumber

For example, suppose after writing into the first three components of

MNO above, one wished to place a 2 by 3 literal array in component number

37. The function FWRITE is lisen.

8

(2 3p 'ABC') FWRITE 1~37

Note that only components 1 through 3 and 37 now have values. The file

represented schematically is:

37Component 1 2 3.-,-----t.t------+--------.......,. _
Contents JOE 23 273 2381 ABC

ABC
FWRITE can also be used to write new values into already existing. components.

If for example the phone number in component number three s~9~ld be 817 265 2132

instead of 273 2381, we could correct the error by:

817 265 2132 FWRITE 1,3

Now there would be a new value in the third component. Remember also that

FAPPEND places values at the end of a file, so that if one wishes to add

information in components after no. 38, FAPPEND can be used. Thus,

12 9 7 FAPPEND 1

would place the vector 12 9 7 in component 39.

38 392 3
23 • 817 265 2132JOE

1,Component

Contents -- -t ABC I 12 9 7
ABC

Sometimes when a FILE FULL error is received after using FWRITE or FAPPEND,

FRENAME can be used to collect garbage in the file (thus obtaining more space)

as indicated below.

'ABCDEFG' FAPPEND 1
FILE FULL ERROR

'MNO' FRENAME 1, 1
'ABCDEFG' FAPPEND 1

Or the file space could be increased using

'MNO 25000' FRENAME 1,1

Note that earlier the file MNO was increased to a size of 19000 bytes.

The function FWRITE can also be used to insert a new component between

two consecutive components. For example to place a new data object in a

component between components two and three we would enter:

9

(2 ip8.?) FWRITE 1,2.5

This would cause the matrix to be inserted in the file. Note that the new

component number would not be 2.5, but rather it would be 3. Also higher

numbered components would be incremented by one. So the file would now be

depicted as:

Component 1F 1 2 3 4
• JOE' l817Contents 23 8.7 265

8.7
If we wanted to read the age from the

2132 ----iABC t 12 9 7
ABC'--

second component of the file

then the function FREAD is used. Its syntax is FREAD tienumber, component

number.

FREAD 1,2
23

Note that FREAD produces an explicit result. Thus, the values in a component

can be assigned to a variable

A+FREAD 1,4
A

817 265 2132

or used directly in an arithmetic expression.

4+FREAD 1!)2
27

If we try to read a component that has not yet been specified, then an error

will result

FREAD 1,.14
FILE INDEX ERROR

File functions can also be used within user defined functions. The

following program places literal vectors in user specified components of a file.

\JFUNCTION
[10J 'FILE' FCREATE 3!) 0
[20J LOOP: 'ENTER STREET ADDRESS. '
[30] DATA+CJ
[40J +EXITxtO=pDATA
[50J DATA FWRITE 3,0
[60J +LOOP
[70J EXIT:FUNTIE 3

V

10

The function FTIE may be used as the first statement of every function

which accesses files. If the file is already tied, FTIE will pass control to

the next line of the function.

The function FDELETE is used to delete indicated components from a file.

Its syntax is:

PDELETE tienumber, component number(s)

FDELETE 3,4

will eliminate components three and four from our file.

Component 1 2 - -39 40
...., ----t........--~~_I-----+O--------I

Contents JOE 23 ABC 12 9 7
ABC

FDELETE does not renumber other file components.

Several other functions also present allow a user to obtain file

status information. To obtain a list of existing files and their creation

sizes (in bytes) the FLIB function may be used. The FLIB function requires a

right argument specifying a disk unit and returns an N by 15 literal matrix:

FLIB 0
DATA 74 12800
FILE 12800

FLIB 1
MNO 25000

One may also determine which files have been tied and the corresponding

tie and unit numbers. The function FNAMES returns an N by 6 literal matrix

containing the names of all files which are currently tied. To obtain the tie

numbers of all currently tied files the FNUMS function is used. FNUMS returns

a N by 2 numeric array whose values correspond to the file names given by FNAMES.

FNAMES and FNUMS require no arguments, and both return an explicit result.

FNAMES
MNO

FNUMS
1 1

11

So the file named NMO has a tienumber of 1 and the disk upon which it resides

is in disk unit #1.

To determine the upper and lower component limits of a file the FLIM

function is used. The syntax for FLIM is

FLIM tienumber

The FLIM function returns a numeric vector of-length two. The first component

of this vector is the number of the first file component in--use and the second

is one more than the number of the last. If a file has just been created and

does not contain any components then. FLIM retu~ns alI.

For example, FLIM applied to the file MNO:

FLIM 1
1 41

Note that not all the components between 1 and 41 contain data.

The function FCUSED (file components used) may be invoked to ascertain

file components which are in use. The FCUSED function requires the file tie

number as a right argument. For example, to determine the components used

in our file called MNO which is tied by the number 1:

FCUSED 1
1 2 39 40

The user should be aware that the file system uses no additional space

when empty components are placed within the limits of a file. That is, if

the information in our MNO file was in components 1, 2, 3 and 4 rather than in

components 1, 3, 39 & 40, there would be no saving in space. The maximum

number of components in a file cannot exceed 252; moreover, the largest

value for a component number is 252.

12

APPENDIX A

ERROR Messages

FILE TIE ERROR

FILE INDEX ERROR

FILE NAME ERROR

FILE TIE QUOTA USED UP

FILE RESERVATION ERROR

LENGTH ERROR

DISK SPEC ERROR

I/O ERROR or
FILESUBSYSTEM ERROR:
JUNCTION [3J

BDOS ERR ON x

-Tie number has already been used to

tie another file or file has not yet been

tied.

-Component(s)-specified does not exist

or is not between 1 and 252~-

-File name specified is already in use

or f:rle.' does not exist.

-An attempt has been made to have more

than 4 files tied at once.

-There is no more room on the disk for

new files.

-Disk unit not specified in right argu-

ment to FCREATE, FTlE, or FERASE.

-File is not on the disk specified

-An I/O error has occurred. Try the

operation again. If the error persists

then there is a hardware I/O problem.

-A nonexistent disk drive has been selected.

The contents of the workspace will be lost.

Press the reset button in order to reload

the APL system.

Whenever a file function returns an error it sets the global variable

called FERR to a non-zero value and returns to the calling program or calcu-

lator mode. When the file system functions are used as subroutines the value

of FERR can be tested to determine if the operation was completed successfully.

13

Note that if FERR is set to a nonzero value the user must reset the value

of FERR before using another file function.

System Errors

The APL/nS file system is a set of programs which interface with the

processor 108 file processor. The functions check to see that operations are

performed correctly and that information exchanges are completed ~uccessfully.

When a function detects an error it will print a message in-the form:

FILE SUBSYSTEM ERROR: function name [x]

where function name is the name of the function where the error occurred. X

will be a number indicating one of the errors below:

X

1

2

3

4

5

6

7

8

9

ERROR

Invalid SIGN-ON INFO in data or control variable

No more disk space or allocated disk space used up

I/O error

Workspace full

Wrong length record

Attempt to specify control variable to be other than

integer between 0 and 252

File not found

Attempt to write past record 252

End of file or attempting to read unwritten record

in random access

If a file system error should occur please report it along with relevant

information to APL/nS.

14

APPENDIX B

Workspace Environment for Using Files

There are a few rules that must be followed by the user of the file

system. First, before the user copies any file functions into a clear

workspace, it is suggested that s/he increas~the size of the symbol table

using the)SYMBOLS system command. This will allow adequate-symbols for the

file functions and any application programs. Also several file functions may

be erased if they are not used. Th~ function .F must also be autostarted

every time the workspace containing file functions is loaded since it sets up

the global variables TIENUMBERS and TIENAMES.

When a file is created or tied, two shared variables are created for

use by the file system. The variables are called CONTROLn and FILEn where n

is the tie number of the file. These variables must not be altered or erased

or a file subsystem error could result.

FILE FULL Errors and Empty Files

It is possible for an APL/nS file to be empty and yet not be able to

hold any data. The system attempts to work around this but it is suggested

that the fallowing rules be followed.

1) Do not erase files by deleting all the file components. Rather,

erase the file.

2) If a FILE FULL error does occur try using FRENAME to increase the

size of the file. In some instances, executing FRENAME specifying

the same name, same size, and same unit will solve the problem. If the disk

is full you may need to specify the same name, same size, and a different

unit.

15

File Function Dependencies

In most applications only a few of the file functions will be used

routinely. As a consequence, many users will want to maintain in a workspace

only those file functions which are regularly used. The APL/nS file package

uses 11,800 bytes immediately after LOADFILES is executed. However, when

only FREAD and FWRITE and the requisite functions and variables are in the

workspace, only about 2,700 bytes are utilized. FRENAME alone requires

almost 2,000 bytes, and should be copied into the workspace only when required.

The file functions which requir~ other functions are listed below along

with the functions that must also reside in the workspace for them to execute.

FILE FUNCTIONS
FCREATE
FERASE
FTIE
FWRITE
FAPPEND
FREAD
FDELETE
FLIlltj
FCUSED
FRENAME

FUNCTIONS SUPPORTING THOSE ON THE LEFT
FLIB
FLIB
FLIB
FCOMPONENTMAP
FCOMPONENTMAP" FWRITE
FCOMPONENTMAP
FCOMPONENTMAP
FCOMPONENTMAP
FCOMPONENTMAP
FCREATE" FTIE" FLIB, PCUSED, FWRITE, FUNTIE"

FCOMPONENTMAP" FNAMES, FERASE" PREAD

Remember also that the function F must be autostarted (latent ex-

pression) every time a workspace is loaded in which files are to be used.

The function LOADFILES sets up this expression. A copy of LOADFILES appears on

page 17. It may be modified to copy the functions required into workspaces.

If applications packages are developed which maintain selected file functions

in the package workspace, the function F must be maintained in that workspace

in addition to the selected file functions and their support functions.

That is, if FREAD and FWRITE are needed in a workspace, then FREAD, FWRITE,

FCOMPONENTMAP, and F should reside in the workspace.

16

APPENDIX C

Rebuilding the File Directory

If a disk which is being used to store files loses its filedirectory,

then those files cannot be accessed. This can-be corrected by performing

several steps.

1) Place disk in the system drive

2) Return to the host operating system.)OFF

3) Execute the DIR command at the host as level and make a list of

file names

4) Reload the APL system (you may have to switch disks in the system

drive for this)

5) Replace disk needing filedirectory in system drive (if removed

in 4)

6) Insert the APL/nS file disk in drive 1 and address drive 1

7) Copy and execute the copyobject 'FFIXFD.'

These steps should allow one to rebuild the filedirectory so that the FLIB

functions return the same file names at the APL level that the DIR command

does at the host as level.

APuns FILE SYSTEM

'filename size' FCREATE fn dn

SYNTAX

LOADFILES

NEWDISK

FILE FUNCTI~S

USE

copy FILE FUNCTIONS - -

INITIALIZE A DISK FOR FIlES

CREATE & TIE A NEW FIlE

, filename' FERASE fn dn

'filename' FTIE fn dn

FUNTIE fn fn fn

expression FWRITE fn en

expression FAPPEND fn

FREAD fn en

FDELETE fn en en en

result + FLIB dn

result + FNAMES

result + FNUMS

result + FLIM fn

result + FCUSED fn

'filename size' FRENAME fn dn

fn: FIlE NUMBER
en: cx:MPrnENT NUMBER
dn: DRIVE NUMBER (0,1,2 or 3)

ERASE A FILE

TIE A FIlE

UNITE A FILE (S)

PIACE THE EXPRESSION IN A
SPECIFIC FILE CCMPONENT

PLACE THE EXPRESSION IN THE
NEXl' HIGHEST FIlE CXMPONENT

READ cn1PONENT en FRa1 FIlE fn

DEI.EIE CXMPONENTS en FRCl1 FILE
fn

GIVES FILE NAME & RESERVATIOO'
SIZE

GIVES THE NAMES OF TIED FILES

GIVES THE FIlE NUMBER & DRIVE
NUMBER OF TIED FIlES

GIVE FIRST & NEXl' HIGHEST FIlE
CCMPONENT

GIVES NUMBERS OF FIlE CXl1PONENTS
USED

RENAME OR RESIZE A FILE

APL DATA SYSTEMS
(A division of TRA, Ine.)

710 West Main St.
Arlington, TX 76013

