
User's Guide

....·· ..·
· .· . . .··

.... ...·· . .·

User's Guide

•••• ••••• • ••••• •••• •••• •••• • • • • •• • •••••• ••••• • • •••• •••• •••• •• • • •• • • •• • •••• ••• • ••••• • •••

ACKNOWLEDGEMENTS
LOGOS is a trademark of Reuter:file Ltd.

© 1990 Reuter:file Limited.

All rights are reserved. Reproduction in whole or in part is prohibited without
the written consent of the copyright owner.

Printed in Canada
Publication Code: 1310 9008 EI
Version: 2.0

CONTENTS

BEFORE YOU START vii
How to Use 'tltis Manual vii
Requirements for Using LOGOS viii
A Strategy for Learning LOGOS 60 viii

CHAYI'ER 1: WHAT IS LOGOS? 1-1
Introduction to LOGOS 1-3
Managing the Software Lifecycle 1-3
Structural Overview of LOGOS 1-5

CHAPfER 2: GElTING STARlED 2-1
Loading LOGOS 2-3
Inquiring about Your Alias 2-4
Entering Simple Commands 2-5
How to Recall a Line 2-6
Using Modifiers with Commands 2-6
Getting Help 2-7
Getting Out of LOGOS 2-8
Using LOGOS Commands from APL Functions 2-10

CHAPTER 3: USING THE FILE SySTEM 3-1
LOGOS Objects 3-5
The File System .., 3-8
Setting a Working Directory 3-10
Creating and Saying Objects 3-11
Creating Directories 3-15
Creating Links 3-15
Listing Directory Contents 3-17
Accessing Objects in the File System 3-19
Setting Up a Simple System 3-21
Copying Paths 3-25
Deleting Paths 3-29
Warnings Issued by the delete Command 3-31
Controlling Access 3-33
GraIlting Access 3-35
Revoking Access 3-37

Contents III

IV Contents

CHAYrER 4: LOGOS COMMANJ) LANGUAGE 4-1
Entering Commands 4-3
Using Commands with Arguments 4-4
Using Commands with Modifiers 4-7
Controlling Command Output 4-7
Using Keywords 4-9
Applying a Sequence of Commands to a List of Arguments 4-11

CHAYrER 5: USING SCRIVfS 5-1
What is a Script? 5-3
Using Command Directories 5-4
Crea.ting a Script 5-6
Looking at a Simple Script 5-7
Specifying Arguments and Modifiers in a Script Definition 5-9
Using Arguments and Modifiers inside Scripts 5-11
Script Argument SCOIJe ...•..••.•.......••••............••....... 5-14
Displaying Script Output 5-16
Using ComJX)site Scripts 5-18
Controlling Local Environments 5-21
Using Script Debugging Mode 5-24
Sample Scripts 5-27
Making Sure Your Scripts have Room to Run 5-31

CHAYrER 6: USING TI-IE EDITOR 6-1
TenninaJ Support 6-3
Editing Objects 6-3
Looking at Objects in the Editor 6-5
Using Editor Commands 6-8
Getting Help 6..9
Exiting the Editor 6.. 12
Using Editor Tools 6-14

CHAPTER 7: USING AUXILIARY TASKS 7-1
StaI"ting all Auxiliary Task 7-3
Communicating with all Auxiliary Task 7-5
Monitoring Auxiliary Tasks 7-II
Transferring Objects between Workspaces u •••••••••••••••••••••••••••••••• 7-12
Using Auxiliary Tasks with other Commands 7-14
Using Auxiliary Tasks in Scripts 7-15

CHAPTER 8: BUILDING APPLICATIONS WITH LOGOS 8-1
End Environments 8-5
The get Command 8-7
A Simple Approach to Building Workspaces 8-8
Building a Simple File 8-9
Improving Upon the Simple Approach 8-11
Clusters and the build Command 8-12
Audit Files 8-16
Tools for Building Workspaces 8-18
Building Files 8-22
Shells 8-25
Paging Files - A New End Environment 8-29
Using Shells with Pagefile Nodes 8-47
A Method for Mainmining and Generating Applications with LOGOS 8-50

CHAPTER 9: GENERATING END ENVIRONMENTS 9-1
Designing a Hierarchy 9-3
Putting Your System Into LOGOS 9-6
Snapping a Workspace 9-8
How the snap Command Works 9-12

CHAPTER 10: USING THE COMPILER 10-1
About the Compiler 10-3
Using Compilation Directives 10-4
Using Code Tags 10-12
Writing User-defined Compilation Directives 10-14
Using the Compiler Utility Function 10-17
Applications of User-defined Directives 10-18

CHAPTER 11: MAINTAINING SYS1EMS 11-1
About Registration 11-3
Registering Out Objects 11-3
Registering In Objects 11-5
Setting Registration Potential 11-5
Registration with Other Commands 11-6
Tracking References to Objects 11-7
Distributing Changes 11-10
Using the Application Debugging Assistant 11-13
Updating Paging Areas 11-15

Contents v

VI Contents

CHAPTER 12: SOFIWARE DEVELOPMENT TOOLS 12-1
Displaying and Summarizing Objects 12-3
Locating and Replacing Strings or Patterns 12-6
Cross-Referencing Functions 12-10
Looking at Calling Trees 12-11
Documenting Objects willi WSDOC 12-13
Using the syntax Command 12-14
Using the compare Command 12-16

CHAPTER 13: MOVING DATA BETWEEN SYSlEMS 13-1
About EXllOrt Files 13-3
Exporting Data 13-3
Importing Data. 13-5
Exporting for Archival 13-7

CHAPTER 14: PROFILES AND ENVIRONMENTS 14-1
Environment Parameters 14-3
Stacking Environments 14-5

CHAPTER 15: USING THE UTILITY LIBRARY 15-1
About the Utility Library 15-3
Structure of the Utility Library 15-3
Using Objects from the Utility Library 15-4
Contents of the Utility Library 15-7
Documentation for Library Objects 15-8

APPENDIX A: USING REGULAR EXPRESSIONS A-I
About Regular Expressions A-3
Using Limited Regular Expressions A-3
Using Full Regular Expressions A-4

APPENDIX B: FILE UTILITIES B-l

APPENDIX C: PAGING UTILITIES C-l

APPENDIX D: STOP AND TRACE CONTROL D-l

GLOSSARy G-l

INDEX 1-1

How to Use this Manual

Conventions Used in this
Manual

alias

save pathname +value=text

save objects

password: oranges

modifiers

Ctrl-S

Fl

•
Related Documents

BEFORE YOU START

This manual is your guide to learning and using LOGOS. It assumes that you
know APL and want to learn LOGOS, whether you are a novice learning the
basics, or an experienced user learning the more advanced features of LOGOS.

Each chapter in this manual covers a certain aspect of LOGOS. The Table of
Contents lists only chapter and main headings. The beginning of each chapter
lists everything in that chapter, including subheadings.

The following conventions are used in this manual.

Commands you type as shown are in lowercase italic font.

Values you must supply in order to execute a command are shown in lowercase
bold font.

Values for which you CM supply a single item or a list of items are indicated
by the plural form of the noun.

Values entered by the user in sample sessions appear in bold face, italic font.

New terms in the text are shown in bold face.

Keys on your keyboard that you must press simultaneously are separated by a
hyphen (-).

Function keys are shown as a capital F suffixed with the number of the
function key you must press.

Instructions that are buried within a section of text are flagged with a black
box.

For more information on LOGOS, see the following manuals:

LOGOS Reference Manual (pub code 1311 9008 El)

LOGOS Pocket Reference (pub code 1313 9008 El)

Before You Start Vll

Requirements for Using LOGOS

To use LOGOS you must:

• have an APL terminal connected to a SHARP APL system

• have an account on your SHARP APL system

• have a keyboard equipped with the APL character set

• be enrolled in LOGOS. Your LOGOS steward can enroll you in LOGOS
and give you an alias.

A Strategy for Learning LOGOS

LOGOS provides features that support many aspects of the software
development process. You do not have to use all of these features to take
advantage of LOGOS. Try a gradual approach. You will find that as you use
more features, you gain more benefits. For example:

1 Acquaint yourself with LOGOS by reading the first few chapters of this
manual.

2 Move one of your own applications into LOGOS, choosing a suitable
hierarchical structure for it in the file system.

3 If the application already makes use of some paging mechanism or program
file, have LOGOS build that file from the objects now in its own database.

4 Some time later, consider converting your application to use LOGOS paging.

VUl Before You Start

CHAPTER 1: WHAT IS LOGOS?

Introduction to LOGOS 1-3

Managing the Software Lifecycle 1-3

Structural Overview of LOGOS 1-5
Supporting End Applications 1-6

Figures

Figure 1.1 The Software Lifecycle 1-3
Figure 1.2 Breakdown of Software Lifecycle Activities 1-4
Figure 1.3 Structural Overview of LOGOS 1-5

Tables

Table 1.1 Phases of the Software Lifecyclc 1-4

What is LOGOS? 1-1

1-2 What is LOGOS?

Introduction to LOGOS

LOGOS is an environment for developing software using the APL language. It
introduces structure to APL software development while preserving the
flexibility and productivity that APL provides.

LOGOS can be used for projects of all sizes, from small, one-person projects
to large projects handled by programming teams, and includes features that are
especially useful to teams. For example, when a system is too large for one
person to design and build, LOGOS encourages planning, centralization,
sharing, and exploring. This results in:

• consistency among applications

• minimal redundancy

• more easily maintained systems

• improved communications within development teams

Managing the Software Lifecycle

The software lifecycle comprises several phases involving tremendous
feedback and regression. LOGOS allows you to control each phase of the
Iifecycle, and the overall process.

Figure 1.1 The Software Lifecycle

~

CE I

ISPECIFICATION I~

H DESIGN I!
I CODING AND I
I TESTING ~

I INTEGRATION I
I AND TESTING ~

i DISTRIBUTION I

I MAINTENAN

What is LOGOS? 1-3

The phases are defined in the following table:

Table 1.1 Phases of the Software Ufecycle

Phase

Specification

Design

Coding and testing

Integration and testing

Distribution

Maintenance

Description

The description of what the system is supposed to do.

The description of how the system will operate.

The creation of programs and testing of local areas of the system.

The combination of the parts of the system (possibly developed by
different individuals) into a whole.

The release and installation of the finished product.

The activities related to the continued operation of the system, including
the correction of problems and the implementation of new capabilities.

LOGOS also provides the most tools where they are most needed. The coding
phase is only about a sixth of the total effort required during the entire
lifecycIe; maintenance and support represent two thirds of the activities
performed on a project. Therefore, LOGOS provides the greatest assistance
during these phases.

Figure 1.2 Breakdown of Sohware Lifecycle Activities

DESIGN

CODING & TESTING
15

INTEGRATION &
TESTING 7

~~=======~ DISTRIBUTION
1

1-4 What is LOGOS?

Structural Overview of LOGOS

From the end application's perspective, LOGOS looks like any conventional
APL system: one or more workspaces cooperating (often invisibly) with files
and page files.

Figure 1.3 Structural Overview of LOGOS

LOGOS APPUCAnONS

GENERATION Gv

u

E~
S

EDITING E

Rv

S
"

TRANSPORTAllON
COMMANDS

During development or maintenance, objects can move between the LOGOS
file system and applications by:

• generating or regenerating a file or workspace

• editing objects

• moving objects explicitly using commands designed for this purpose

Since LOGOS knows where each object is being used, changes made to an
object can be made to take immediate or deferred effect upon the applications
that reference it.

What is LOGOS? 1-5

Supporting End
Appllca'Uons

1-6 What is LOGOS?

LOGOS supports the end environments that make up an application by
providing simple but powerful mechanisms for generating and maintaining
them.

However, LOGOS is not directly involved with running an application once it
has been generated. From that point on, it looks just like a non-LOGOS
application. Even if your application is using LOGOS paging to materialize
and remove objects from a workspace, LOGOS and its database of objects are
not involved in the process. The work is being done through streamlined
paging utilities, which access the page files built by LOGOS. LOGOS itself is
out of the picture in the running application.

Since LOGOS doesn't control your application while it is running, developing
a system in LOGOS won't increase its overhead during production usage. In
fact, the run-time efficiency of your application may increase due to space
optimizations made by the LOGOS compiler or the relative efficiency of the
LOGOS paging mechanism compared to more naive paging systems.

CHAPTER 2: GETTING STARTED

Loading LOGOS 2-3
Using LOGOS in Workspace 1 logos 2-3
Using LOGOS in Your Application Workspace 2-3
Loading LOGOS without Access 06. 2-4

Inquiring about Your Alias 2-4
Other Types of Aliases 2-4

Entering Simple Commands 06 •••••••••••••••••••• 2-5

How to Recall a Line 2-6

Using Modifiers with Commands 2-6

Getting Help 2-7

Getting Out of LOGOS 2-8
Leaving LOGOS Temporarily 2-8
Exiting LOGOS 2-9

Loading Another Workspace 2-9
Resetting the State of YaUf W..orkspace 2-9

Using LOGOS Commands from APL Functions 06 •••••••••••••••••••••••••• 2-10

Getting Started 2-1

2-2 Getting St3rted

Loading LOGOS

LOGOS is an entirely self-contained system accessed through one of two
functions. The logos function is an interactive interface that prompts you for
commands and executes them. The 6logos function is a non-interactive
interface to which you pass commands. (For more information, see the section,
Using LOGOS Commandsfrorn APL Functions, in this chapter.)

You can use LOGOS in your application workspace or in workspace 1 logos.

Using LOGOS in Workspace Because of the multi-tasking nature of LOGOS, you can perform most of your
1 logos work from a central workspace. For your convenience, workspace 1 logos has

been provided with a latent expression that autostarts LOGOS.

To use LOGOS in workspace 1 logos, type:

) load 1 logos

LOGOS starts automatically. You sec the message:

logos r2.0
U

This message indicates that you are using Release 2.0 of LOGOS. The union
symbol (U) means that LOGOS is ready to accept commands from the
terminal.

Using LOGOS in Your
Application Workspace

1

You can also use LOGOS in your application workspace. Complete the
following procedures.

Load your workspace. For exanlple:

) load sourcews

You see a message such as:

saved 1986-01-05 13:38:52

2 Copy LOGOS to your workspace by typing:

)copy 1 logos

You see a message similar to this:

saved 1986-01-16 04:45:27

Getting Started 2-3

Loading LOGOS without
Access

3 Start LOGOS by typing:

logos

You see the message:

logos r2.0
u

This tells you that you are using Release 2.0 of LOGOS. The union symbol
(u) means that LOGOS is ready to accept commands from the tenninaJ.

If you are not enrolled in LOGOS and you attempt to load it, you receive the
message:

*** you are not enrolled in logos ***
please send a message to </stew> for access

Contact your LOGOS steward, who will give you access to LOGOS. Read the
section, Before You Start, at the beginning of this manual to make sure you
have all the other requirements to use LOGOS.

Inquiring about Your Alias

Your alias is a short form of your name, no longer than twelve characters, that
LOGOS uses to identify you.

To inquire about your alias, type:

alias

LOGOS displays the alias you are currently using. For example, if your alias is
john, you see the message:

john

This alias is your primary alias and is associated with your account number.
The account number is called the primary user number and is the account
number that owns the data for your alias, and pays for its storage.

Other Types of Aliases

2-4 Getting Started

An alias doesn't always refer to a person. An alias can also refer to a group. A
group is one alias that includes several LOGOS users, rather than just one. For
example, a group called projdev might include all individuals working on a
common project. Groups make it convenient to grant access to data to
everyone on a project simultaneously, rather than to individuals.

As a LOGOS user, you can belong to any number of groups. LOGOS still
identifies you with your alias, but also recognizes you as part of any groups of
which you are a member.

Entering Simple Commands

The alias command is an example of a simple command. You enter other
LOGOS commands in exactly the same way you entered the alias command.
When you see the prompt, you simply type the command and press Enter.
Another simple command is version. It gives you more information about the
version of LOGOS you are running. To use the version command, type:

version

You see the message:

logos version 2.0 (07sep90 18:38)
copyright (c) 1990 reuter:file ltd.

The whois command lets you inquire about other LOGOS users. You supply
an alias, and LOGOS tells you the full name of that user. For example:

whois john

In this case, the alias you supply is the argument to the whois command. The
command returns the full name of the LOGOS user with that alias. For
example:

simon, john m. john

Another useful command is .t. With it, you supply an APL expression as the
argument. This command works just like the APL primitive, and evaluates an
APL expression. For example:

-*-Ots

This returns a result such a~:

1990 1 9 16 44 27 731

Getting Started 2-5

You can even use the ..t command to conduct a short diaJogue y by not
providing an initial expression to be evaluated. For example:

U .t.

.t~ 24x60x60x60
5184000
...~ Dsize 1
1 5 5864 93824
.t.rJ 10000 Dresize 1
.t~

To end the dialogue y enter one or more spaces and press Enter.

How to Recall a Line

If you make a typing error you want to correct or if you want to modify the
last line you entered, you can recaIl it for editing by typing:

You can edit a line as you would in immediate execution in APL.

You can recall a line and position the cursor under a specific character within
the line by supplying a number with). For example:

)7

This recalls the line and positions the cursor under the seventh character in the
line.

Using Modifiers with Commands

You can modify the action of LOGOS commands by using them with
parameters called modifiers. Modifiers always begin with a +. Several LOGOS
commands can be used with several different modifiers.

For example, the whois command has a modifier called +summary which
causes it to include group membership in its display. To use the modifier, you
could type, for example:

whois john +summary

You see a message such as:

2-6 Getting Started

simon, john m.
inventdev probs

john

The whois command also has a modifier called +name, which searches for
matching names rather than aliases.

For example:

whois sim +name

You see a message such as:

simon, john m.
simpson, margaret a.

jsinwn
msimpson

Getting Help

Modifiers can take values. For example, you can associate a password with
your LOGOS alias using the alias command with the +newpass modifier. You
must supply a value for +newpass. For example:

alias john +newpass=yellow

The value for +newpass is yellow. It becomes the password associated with the
alias john.

If you need information, you can get help with the help command. Type:

help

You see the message:

For the names of all commands, type: ?
for a brief summary of all commands, type: ??
for a brief summary of a particular command, type: ?command
for a detailed description of a particular command, type: ??command

For example, to get a one-line summary of the alias command, type:

? alias

You see the message:

a[lias] [Alias [Password]] +newpass[=[PASSWORD]]

Getting Started 2-7

This tells you that the command:

• can be abbreviated to a

• takes two optional arguments representing the alias and password

• takes one modifier specifying the new password

The value for the modifier is optional too. If you don't specify it, LOGOS will
ask for it with a protected prompt so that what you type is not shown on the
screen.

Getting Out of LOGOS

You can leave LOGOS temporarily and enter APL immediate execution mode,
or you can exit LOGOS altogether.

Leaving LOGOS
Temporarily

1

You can temporarily suspend your LOGOS session and enter APL immediate
execution mode by signalling an input interrupt in response to the main
LOGOS prompt. You can then resume your session by branching.

To signal an input interrupt, type:

o <Backspace> u <Backspace> t

LOGOS suspends execution and displays the message:

input interrupt
type -+-Ole to restart

You can execute APL expressions and system commands. For example:

)opr please increase my file reservation by 1e6
sent
opr: done. your total reservation is now 2e6
)oprn thanks
sent

2-8 Getting Stnrted

2 To resume your session, restart LOGOS by typing:

~lc

LOGOS displays the command separator character to indicate that LOGOS is
ready to accept commands.

EXi'ling lOGOS

Loading Another
Workspace

NOTE:

Resetting the State of Your
Workspace

You can leave LOGOS at the end of your session using the exit command.
Type:

exit

The exit command takes you out of LOGOS.

If you want to load another workspace when you exit LOGOS, you can
include an expression for LOGOS to evaluate as the argument to the
command. For example:

exit Oload ' , '666 box' , ,

You see a message such as:

saved 1989-10-12 18:40:56

You must supply extra quotes around the workspace name, because LOGOS
removes one set itself before passing the expression to APL.

When you invoke LOGOS, it reserves some internal storage in your workspace
for maintaining information about your LOGOS environmental settings.
Ordinarily this infonnation is retained when you exit LOGOS, allowing you to
restart the system with the same environment available when you left. This
means, however, that there is less space available to other applications you
might run in the workspace.

You can reclaim this space using the exit command with the +reset modifier.
Type:

exit +reset

This also has the effect of untying any files LOGOS tied during your session.
You would want to do this, for example, if you were planning to exit LOGOS,
expunge the LOGOS function, and save the workspace.

Getting Started 2-9

Using LOGOS Commands from APL Functions

Alogos is a non-interactive interface to LOGOS, found in the path
.public.logos.A/ogos. With this interface you can invoke LOGOS commands
from APL functions.

To use 6/ogos, invoke it with a charncter vector argument containing a
command line. Type:

Alogos 'command line r

For example:

/1logos 'list .public r

Alogos is a monadic function which returns an explicit result. The result is a
character vector containing the result of the last command executed.

2-10 Getting Started

CHAPTER 3: USING THE FILE SYSTEM

LOGOS Objects 3-5
Object Types 3-5
Object Attributes 3-6

Sample Attributes 3-7

The File System 3-8
About Pathnames 3-9

Setting a Working Directory 3-10
Displaying Your Current Working Directory 3-10
Changing Your Working Directory 3-11
Resetting Your Default Working Directory 3-11
Setting Multiple Working Directories 3-11

Creating and Saving Objects 3-11
Saving Object Attributes 3-12
Specifying Values 3-12
Setting Retention 3-13
Saving a Version 3-14

Saving a Version of an Attribute 3-14
Complementary Indexing : 3-15

Creating Directories 3-15

Creating Links 3-15
When to Use a Link 3-16
Creating a Link 3-16
Disabling Link Resolution 3-16

Listing Directory Contents 3-17
Listing Additional Infonnation 3-17
Looking at Structure 3-18

Accessing Objects in the File System 3-19
Accessing Extended Pathnames 3-19
Using Pattern Matching 3-20

Separating Several Patterns 3-21
Patterns and Multiple Working Directories 3-21

Setting Up a Simple System 3-21
Creating Directories and Saving Objects 3-22
Storing Several Objects in One Directory 3-24

Using the File System 3-1

3-2 Using the File System

Copying Paths 3-25
Copying a Single Path 3-25
Copying a Group of Paths 3-26
Copying Selected Versions 3-27
Copying One Directory to Another 3-28
Limiting a Directory Copy 3-28

Deleting Paths 3-29
Deleting All Versions : 3-29
Deleting Specific Versions 3-29

Deleting the Latest Version 3-30
Deleting in Multiple Directories 3-30
Deleting Obsolete Versions 3-30
Deleting Unreferenced Objects 3-31
Displaying Results 3 31

Warnings Issued by the delete Command 3-31
Responding to Prompts 3-32
Controlling the Warning Prompt 3-32
Enabling Confirmation Mode 3-32

Controlling Access 3-33
Types of Permission 3-33
How Access Extends Automatically __ 3-34
Inquiring about Access 3-34

Inquiring on a Particular Alias 3-34
Inquiring on All Aliases 3-35

Granting Access 3-35
Multiple Aliases and Multiple Paths 3-35
Granting Access to All of a Directory 3-36
Granting Access to Part of a Directory 3-36
Creating a Public Path 3-37

Revoking Access 3-37
Revoking Certain Access from an Alias 3-38
Revoking All Access from an Alias 3-38
Revoking Access from All Aliases 3-38
Making Access Changes Take Effect 3-39

Figures

Figure 3.1 Composition of an Object 3-6
Figure 3.2 A LOGOS Hierarchy 3-8
Figure 3.3 A Simple Directory 3-22
Figure 3.4 A Simple Hierarchy with Directories 3-23
Figure 3.5 A Simple Hierarchy with Directories and Objects 3-24

Tables

Table 3.1 LOGOS Object Types 3-5
Table 3.2 LOGOS Object Attributes 3-6
Table 3.3 Types of Pathnames 3-9
Table 3.4 Types of Information Stored with each Path in LOGOS 3-10
Table 3.5 Commands You Can Type at the Warning Prompt 3-32
Table 3.6 Keywords You Can Enter in Confirmation Mode 3-33
Table 3.7 Types of Permission 3-33

Using the File System 3-3

3-4 Using the File System

LOGOS Objects

LOGOS is fundamentally about objects: any of the items you store in
LOGOSw For example, an object can be a program, a numeric matrix, a
package, or a nested array. There are no restrictions placed on the composition
of objects within LOGOS.

Object Types LOGOS classifies each object you store as a type. The following table lists the
object types.

Table 3.1 LOGOS Object Types

Type

Cluster

Directory

Function

Link

Script

Variable

Short
Form

c

d

s

v

Description

An object built from other objects stored in LOGOS. A cluster is built using
the build command.

A node in the LOGOS file system that irnposes structure on a hierarchy
of paths. A directory has a superior directory (up to the root of the file
system), and may have descendant directories or objects. While objects
of all other types provide content to the hierarchy, a directory's prime
purpose is to provide structure.

An APL user-defined function. A function may be of any valence, and may
or may not return a result.

A surrogate path in the file system that points to another path elsewhere.
A link allows the same object to appear to reside in several different places.

A program in which both APL expressions and LOGOS commands may be
used together. A script can be called and executed like a LOGOS
command. Scripts are described in Chapter 5: Using Scripts.

An APL variable. A variable may be of arbitrary type, rank, and shape,
including a nested array or a package.

Using the File System 3-5

Object Attributes Along with the object itself, LOGOS stores several kinds of information about
each object. These kinds of information are called attributes of the object.
They are really character vectors into which you put the appropriate
information.

Figure 3.1 Composition of an Object

Source

Compilation
Directives

The following table lists the object attributes.

Table 3.2 LOGOS Object Attributes

Name Attribute

Compilation :c
Directives

Documentation :d

Journal :j

Note :n

Source :s

Tag : t

Description

Transformations that apply to the source form of an object, to produce a
compiled form for production use. For more information, see
Chaptef 10: Using the Compilef.

A character vector that describes the purpose or intent of the path.

A character vector that records the journal of changes made to the path.

A character vector that is displayed whenever a LOGOS command refers
to an attribute of a path.

The essential object, such as the definition of a function or script, or the
value of a variable.

A character vector that is a short text on which categorization and
searching can be performed.

3-6 Using the File System

Sample Attributes

LOGOS displays note attributes whenever a command references an attribute
of a path. Typically~ a note might include:

• general words of caution

• notice of recent changes

• semantic dependencies upon other objects

• a disclaimer

You are responsible for putting the documentation, journal, and tag attributes
to use. There is no practical difference among these three attributes, but each is
intended for a different purpose, as described in the table above. By
convention they can help you organize and keep track of your application in
LOGOS.

Your documentation attribute might look like this:

inserts an arbitrary indent of <n> characters before each carriage return in the argument array
<x>. if <x> is not a vector. it is converted to one by appending a carriage return to the front of
each row.

the program is origin independent.

examples:

pD~2 indent 'note' , CR , I tag'
note
tag

12

5 indent 1 CYd 'in.den.t'
V z~n indent x; i;

[1 J A inserts an indent of •
[2J A globals: v - CR.
[3J x~1~,CR,xo •••
[4J i~(l+(px)+nxpi) p1 <> •

V

Your journal attribute might look like this:

date by ver description

12ju/84 /hg
18jul85 dba 2
02dec85 lhg 3

program written
remove origin.] dependency
correct edge condition where {ext ends in CR

One convention for tags is to use single words separated by commas or blanks
to delineate properties of an object. For example, your tag might look like this:

restartable, globals

Using the File System 3-7

The word restartable might mean that any line of the program is restartable by
using -+{]le, and the word globals might mean that the program uses at least
one global function or variable.

The File System

The LOGOS file system is the central database where objects are stored, and
infonnation about them is maintained. Just about any interaction with LOGOS
makes some use of the file system, and processes such as the generation of
workspaces and files use it extensively.

Immediately below the root of the LOGOS file system are the alias level
directories. Each LOGOS user has a directory at the alias level, which is
composed of a dot followed by your alias (for example, john). The immediate
descendants of your alias directory must be other directories, called file level
directories. These can contain other directories and objects and so on.

Because there is only one root to the hierarchy, it is possible to reach any node
from any other, resulting in an environment that leads to a natural sharing of
objects among users.

Figure 3.2 A LOGOS Hierarchy

ROOT

AH BH CH SH VTOM

MABRA MOE

/1\
MUSIC NAMES TOOLS

~
PEAR UTIL

A~

JOHNDICK

SUMMER FALL WINTER SUMMER

HEN DUCK RCAT saz VTOM

3-8 Using the File System

About Pathnames

A level in the hierarchy with other levels beneath it is called a non-terminal
node and is a directory. A level in the hierarchy with no other levels below it
is called a terminal node, and can be an object or a directory with nothing
stored in it.

If you trace the hierarchy from the root directory to the alias level directory to
the file level directory, you get a sequence of directory names. Together these
names, separated by dots, are called a pathname. You use the pathname to
access any object. The pathname tells LOGOS exactly where to find the object.

There are three types of pathnames, described in the following table.

Table 3.3 Types of Pathnames

Type

rooted

relative

extended

Example

.mde. util. tst

uti/.tst

uti/. tst[:dJ
util.tst[fJ
uti/.tst[8J

Description

The pathname begins at the root af the hierarchy and
starts with a dot.

The pathname begins at a directory somewhere below
the directory and does not start with a dot.

The pathname is succeeded by square brackets
containing the extra information you want to access about
that object. For example, the documentation attribute of an
object, or a particular object type or version.

There is no overall limit to the length of a pathname, nor to the number of
segments it may contain. Certain segments of the name do have special
properties:

• The first segment always corresponds to an alias, and is therefore always a
directory. It can be at most 12 characters long, and may not cantlin the
character Id..

• The second segment is also always a directory; it corresponds to a SHARP
APL file on the owner alias' account. The file has the same name as this
segment of the path, prefixed by the character ~. This segment can be at
most 10 characters long.

• Intermediate segments must begin with a letter.

• The final segment must also begin with a letter. If it's an object, the name
can begin with 0 and must represent a valid APL object name. For
example, Dio and strings are valid terminal object names, whereas @xxx is
not.

Using the File System 3-9

LOGOS stores the following kinds of information for each path in the system:

Table 3.4 Types of Information Stored with each Path in LOGOS

Type

Object type

Object attributes

Retention

Permission

References

Compiled forms

Setting a Working Directory

Description

One of: cluster, directory, function, link, script, or variable.

Any of: compilation directives, documentation, journal, note, source, or tag.

The number of versions of the object retained.

The access privileges a given user has to an object.

The workspace and file cross-references that LOGOS maintains
automatically, so that you can determine who is using an object of yours.
For more information, see Chapter 11: Maintaining Systems.

For more information, see Chapter 10: Using the Compiler.

When you are working in LOGOS, you must set a working directory. This is
a directory somewhere in the hierarchy in which you want to work.

For example, suppose you want to work in the directory uti!, in the directory
vtom. in the directory .john. You can set your working directory to
.john.vtom.util. From then on, LOGOS assurnes you are working in uti!.

You can specify objects and directories within the working directory without
preceding them with a dot. A pathnamc not preceded by a dot is called a
relative pathname (as opposed to a rooted pathname, which does begin with
a dot). When you supply a relative pathname, LOGOS assumes you arc
working within your working directory.

Displaying Your Current
Working Directory

3-10 Using the File System

When you first usc LOGOS, your default working directory is your aJia..~ level
directory. To display your working directory, type:

workdir

The command responds by displaying the current working directory. For
example:

.john

Changing Your Working
Directory

Resetting Your Default
Working Directory

Setting Multiple Working
Directories

You can change your working directory by supplying the pathname of the new
working directory. For example:

workdir uti!

This changes the working directory from whatever it was (for example,john)
to util. The system returns the new working directory:

john.util

If you have modified your working directory, you can restore it to its default
value at any time during your LOGOS session. Type:

workdir +reset

The command returns the default working directory. For example:

john

You might want to set a list of directories as your working directory. When
you refer to a relative pathname, LOGOS searches the directories in your
working directory list, in the order in which you specified them, until it finds a
match. This layel;ng effect can be very useful in setting up multiple test and
production environments. (See Chapter 8: Building Applications with LOGOS.)

To set multiple working directories, specify each directory you want added to
the list. For example:

workdir .john.modules .john.utils .john.cfnds

The first directory in your list is called your primary working directory.

Creating and Saving Objects

The save command allows you to save objects from your workspace into the
LOGOS hierarchy, and to create new objects in LOGOS. You can also create
new objects using the edit command. For more information on creating objects
using edit, see Chapter 6: Using the Editor.

To use the save command, you supply the name of the object you want to
create, or the name of the object you want to copy from your workspace.

• To save a workspace object into your primary working directory, supply the
name of the object. For example:

save chart

Using the File System 3-1 I

Saving Object Attributes

Specifying Values

3-12 Using the File System

• To save more than one object at a time, separate the object names with spaces.
For example:

save chart print report

• To save the object into a directory other than your plimary working directory,
you must specify the directory name as well. For example:

save john.modules.chart

The save command displays each pathname saved, the object type, and its
version number. For example, if you save the objects chart. print, and report.
the system displays the message:

john.modules.chart[[l]
john.modules.printC[lJ
john.modules.reporf[fl J

The version number is automaticalIy updated when you save the source of an
object.

To save an attribute, you must supply an extended pathname indicating the
attribute you want to save. You must also use the +value modifier and provide
a value for it. For example:

save chart [: nJ +value=still not quite right

This creates a note for an object called chart in your primary working
directory.

LOGOS displays the pathname of the attribute created. For example:

john.modules.chart[/] : nJ

To use an object in your workspace as the value of an attribute, type:

save objectname +value= .texpression

For example, suppose you have a variable in your workspace called charthow,
which describes how chart works. You can use the following variant of the
+value modifier to save it as the path's documentation:

save chart [: dJ +value=~chartho"l

John.moduLes.chart[/] : dJ

The construct +value=i.expression means that expression is to be evaluated in
the active workspace, and the result of the evaluation is to fonn the specified
attribute. Note that attributes other than source must be character vectors.

Setting Retention

• You can specify character data by typing:

save pathname +value=text

In this case, text is used as the object's value without evaluation.

Be careful to observe that this is quite different from using the .t. command, as
in +value= (.t.expression), which instead causes the result of the evaluation to
be interpolated directly into the command line as a character vector. In this
example, +value=(.t.l) would have saved Dio as the one-element character
quantity 1, instead of the numeric scalar quantity 1.

If you specify source using +value, the resultant path is presumed to be a
variable by default.

• To save a different object type, (for example, a function or a scdpt) include the
object type in brackets following the pathname.

For example:

save chart [fJ +value=.t.newchart

Here, newchart is a character representation of the function display, such as
that returned from Ocr or 1 [ifd. Using the save command in this manner, you
can write your own editor and let save store the altered representation back in
LOGOS.

When you change an object in the LOGOS file system and save it again, you
can still rctain previous versions of the objects. The value of a path's retention
specifies how many versions are kept.

Retention is inherited from the parent node. If a directory has a particular
retention, then any directories or objects created below it will automatically
inherit that retention. Similarly, any directories created below these will inherit
their parent's retention. In this fashion, you need only establish the desired
retention setting at a suitably high point in the hierarchy, and LOGOS will
ensure that the value propagates to all objects subsequently created.

When you are enrolled in LOGOS, a retention of 10 is associated with your
alias. Any directories or objects you create have this retention by default.

• To set or alter the retention of a path, use the retain command and provide the
number of the new retention value and the pathname to which it applies. For
example:

retain 15 john.util.?*

Using the File System 3-13

NOTE:

Saving a Version

Saving a Version
of an Attribute

3-14 Using the File System

LOGOS displays a message informing you of the retention changed. For
example:

retention changedtor 3 paths

This changes the retention of the objects in the directory john.util to 15. A
retention value of all causes LOGOS to keep all versions of the objects.

To change the retention value for every path below the named directory,
specify the +recursive modifier.

To save a version of an object, supply an extended pathname indicating the
version you want to save. For example:

save chartC] J

LOGOS displays a message indicating the version of the object saved. For
example:

.john.modules.chart[t]]

Version 1 has now been updated to reflect its new definition. Version 2 is,
however, still considered the latest version. It will be referenced if you don't
specify a version number in commands such as edit and get.

Version numbers are not automatically incremented when you save non-source
attributes. You can lose a version of the documentation that you might want to
keep available. However, you can always force a new version to be saved by
including the desired version number with the pathname.

To save a version of an object's attribute, supply an extended pathname
indicating both the version number and the attribute. For example:

save chart [3: dJ +value=.i.charthow,newstujf

LOGOS displays a message indicating the version of the object attribute saved.
For example:

John.modules.charl[f3 : dJ

Conversely, you can avoid creating a new version of a path when saving the
source form, simply by supplying the current version number in the save
command. For example:

save J·ohn. modules.chart [4J

Complementary Indexing

Creating Directories

NOTE:

Creating Links

One way to refer to the current version of an object is through
complementary indexing. For example, to refer to the current version, you
can specify:

chart CO]

To refer to the version one before the latest version, you can specify:

char/Cn

To refer to the version two before the latest version, you can specify:

chartC2]

Because a directory is a special type of object, you must provide an extended
pathname indicating object type when you save one. For example, to save a
directory into your working directory, type:

save util [d]

To save a directory into a directory other than your working directory, you
must also supply a rooted, extended pathname. For example:

john.modules.UlilCd]

There is one exception. If the directory you are creating is a file level
directory (one level below the alias), it is not necessary to provide an
extended pathname. File level directories can contain only directories, so
anything you create at this level is assumed to be a directory.

A link is an object whose attributes are, in every respect, defined by another
object or directory. A link allows the same object or directory to appear in
several directories under different pathnames, without creating more than one
copy of the entity.

In instances where the original pathname is quite long, or where you use your
working directory to help shorten the lengths of your paths, links can save
typing. But, more important, links help reduce the number of working
directories you regularly use, without complicating the maintenance of the
objects.

Using the File System 3-15

When to Use a Link

Creating a Link

Disabling Link Resolution

3-16 Using the File System

Use a link when you want to reference a name from a particular directory, but
the name is actually along a different path in the hierarchy. Rather than
maintaining several up-to-date copies of the same object, maintain a single
copy and define links to it wherever it's needed.

For example, suppose you want the object .mde.tools.util.sqz to be resident in
the directory john.util. You have two choices. You can:

• copy the object, creating a new object that is not related to the object in
mde; or

• create a link to the object in mde

By creating a new object, the version in .john is separate from the original and
must be maintained independently. By establishing a link, you automatically
pick up the latest version along the path .n1de.tools.util.sqz, any time you
reference the object .john.util.sqz.

You can link to both objects or directories using the link command.

To link to an object, specify the objects you want to link. For example:

link .john.util.sqz .nu1e.tools.Ulil.sqz

To link to a directory, specify both the object and the directory you want to
link. For example:

link john.util.nuleutil .nule.lools.util

Now, you can use any path in .nu1e.tools.util by referring to it as if it were
along the pat.h .john.util.mdeutil. For example, .john.util.lndeutil.rcat is the
same object as .mde.tools.util.rcat.

Link resolution is a property of a command, and most commands resolve links.
When a link appears as a pathname or a portion of a pathname, LOGOS
replaces the link with its value and then perfonns the action of the command
on the newly-formed name.

To disable link resolution, specify your command, and supply an extended
pathname of 1. For example:

save john.util.sqz [IJ

The pathname wiJI not be resolved even if it is a link.

There are a few commands that normally do not resolve links; they are copy,
delete, and list. Even with these commands, however, a link specified as the
non-ultimate segment of a path will be resolved. For example, list link won't
resolve the link, but list link.vtom will.

Listing Directory Contents

You can list the names of everything you store in LOGOS using the list
command. Simply supply the pathname of the directory you want to examine.
For example:

list uti!

You see a message such as:

ah
dth
hid
sh
vtom

Listing Additional
Information

NOTE: LOGOS lists only the directories and objects to which you have some
permission. If you are not authorized to use an object or a directory, it will not
appear when you use the list command. For more information on pennission,
see the section, Controlling Access, in this chapter.

You can display much more information about every pathname by using
modifiers with the list command. For example, you can display:

• the type of each path

• the full pathnames of each path

• a summary of each path

• headings with the list

• current retention of paths

• information on all versions of each path

• who created the path, when, and the number of versions in LOGOS

For more information on using modifiers with the list command, see the
description of the list command in the LOGOS Reference Manual.

Using the File System 3-17

Looking at Structure You can list all the directories and objects below a particular point in the
hierarchy using the +recursive modifier with the list command. The +recursive
modifier causes list to enumerate the contents of any directories it finds below
the path you specify. If these directories contain others, they too are
enumerated.

_ To list all the directories and objects below a particular point in a directory,
supply the object you want to list and the +recursive modifier. For example:

list .mde +recursive +type

Yau see a message such as:

d .mde
d .mde.music
d .mde.names
d .mde.tools
d .mde.tools.pear
v .mde.tools.pear.hen
v.mde.tools.pear.partridge
d .mde.tools.uti!
f .mde.tools.util.rcat
f .mde.tools.uti/.sqz
f .mde.tools.uti/.vtom

Notice that .mde.music and .nule.names are directories, but contain no
descendan15.

_ To restrict the list +recursive command to a particular object type, provide an
extended pathname indicating the type.

For example, to list just the directories below a certain node in the hierarchy:

list .nuJe Cd] +recursive

You see a message such as:

.mde

.mde.music

.mde.names

.nule.tools

.nule.tools.pear

.mde.tools.util

NOTE:

3-18 Using the File System

A general LOGOS utility, called tree, can turn this display into a graphic tree
structure. For an example of tree. see Chapter 15: Using the Utility Library.

Accessing Objects in the File System

Once you have created objects and directories, you can access them (for
example, list them, display them, edit them) by providing the pathname with
the command. For example:

display .cmds.edit

If your list of working directories includes .ClndS, you can type:

display edit

If you begin a pathname with t, LOGOS interprets this as referring to the
parent of the current primary working directory. For example, with a primary
working directory of .john.util, the path t .Iang.english is equivalent to
john.lang.english. Starting a path with t t climbs two levels in the hierarchy,
and so on.

Accessing Extended
Pathnames

To access an object's type, version, or attributes, you must supply an extended
pathname indicating the type, version, or attribute you want to access.

• To access an object type, supply an extended pathname indicating the type.
For example:

display util.htdCfJ

This selects the function htd within the directory uti!.

• To access a particular version of an object, supply an extended pathname
indicating the version. For exalnple:

display util.htd[3]

You can specify version numbers using a complementary form as well, where
util.htdCD] is the most recent version (whatever its number), uti/.htdC-J] is
the second-to-last, and so on.

• To select an attribute of an object, supply an extended pathname indicating the
attribute. For example:

display util.htd[: dJ

This selects the documentation of hfd.

.. To access a pathname with several qualifications (for example, the
documentation attribute of the fifth version of a function), supply an extended
pathname indicating those qualifications.

Using the File System 3-19

NOTE:

Using Pattern Matching

NOTE:

HINT:

3-20 Using the File System

For example, to select the eighth version of the function uti/.htd, type:

util.htdC~J

To select the documentation of version 8 of the function util.htd, type:

util.htdCf8: dJ

You can specify multiple type qualifications (for example, util.htdCfv]), but
you can specify only one version number and one attribute.

A simple way to select and manipulate pathnames is using regular expressions.
These are metacharacters cOlTlbined with partial pathnames. (For more
infonnation on regular expressions, see Chapter 12: Software Development
Tools, and Appendix A: Using Regular Expressions.)

For example, you can combine the partial pathname with the metacharacters?
(match any character) and * (as many times as possible) to fonn the regular
expression temp?*. You can use it to list those names that begin with temp, by
typing:

list temp? *

To find all descendants of the pathname john.util ending in s, type:

list john.uti/.? *s

To find all those descendants of the pnthname .john.util with two-letter names,
type:

list john.utiJ.??

To find all those descendants of the palhname .john.util containing the
character fj anywhere within them, type:

list .john.util.?*fj?*

The * metacharacter works on whatever character precedes it. For example, to
find vtom in any directory beginning with uti I and ending with zero or more
repetitions of s, you can use:

list .john.utils*.vtom

In particular, this pattern might match the names .john.util.vtom and
john.utils.vtom, as well as .john.utilss.vtom.

If you name your directories and objects in a systematic way, you can use
patterns to select families of names as easily as a single one. For example, if

all subfunctions in a particular directory begin with the character 6, you can
select all of them at once using the pattern lJ.? *.

Separating Several Patterns You can use the I metacharacter to separate several patterns that you are
looking for. For example, to find all two-letter names or all names beginning
with temp, type:

?? I temp? *

To find ah and vtom in John.util, type:

john.util.ah Ivtom

This fonn provides a convenient W3Y to apply a common prefix, which is not
your working directory, to a series of pathnames.

To look for the four paths pear.hen, pear.sqz, uti/.hen, and util.sqz within .nu1e.
tools, use:

.mde.tools.pear Iuti/.henl sqz

If you know that only the first and last of these exist, you can use alternation
as a very concise way to express the paths.

Patterns and Multiple
Working Directories

Patterns and multiple working directories have an interesting common
application. With multiple working directories, LOGOS matches only the first
occurrence of the pattern in each of the working directories. For example, if
you have two working directories set, you might type:

list?*

LOGOS lists the first occurrence of every object in both directories.

Setting Up a Simple System

When you begin saving several object') into LOGOS, the organization of your
hierarchy becomes an important issue. Should you spread out the objects
among a large number of directories, or group many objects into a small
number of directories? The ultimate choice depends on the structure of the
system and the way you intend to deal with the objects afterward. Data
organization is described at length in Chapter 9.

Using the File System 3-21

Creating Directories and
Saving Objects

One way to organize your data is to group all subroutines and global variables
subordinate to a main routine in a directory below the routine.

For example, suppose you have a directory that looks like this:

Figure 3.3 A Simple Directory

I
JOHN

I
MODULES

/1\

root

alias level

file level

CHART PRINT REPORT objects

3-22 Using the File System

The names chart, print, and report are all objects. You can create directories in
which to save subroutines and global variables.

1 Create the directories.

For example, if your working directory is .john.nwdules, you could specify:

save chartsub Cd] printsub Cd] reportsub Cd]

You must specify the object type Cd] to tell LOGOS that you are saving
directories. Otherwise, LOGOS will attempt to find objects by these names in
your workspace.

You see the message:

john.nwdules.chartsub [dJ]
john.modules.printsub Cd]]
john.modules.rep0 rtsub [dl]

The hierarchy looks like this:

Figure 3.4 A Simple Hierarchy with Directories

JOHN

MODULES

root

alias level

file level

CHART PRfNT

objects

REPORT CHARTSUB PRINTSUB REPORTSUB

directories

2 Save the subroutines into the new directories.

For example, to save chart's subroutines in chartsub, type:

save chartsub.build chartsub.verify

You see the message:

.john.nwduies.chartsub.buiid[flJ
John.nwdules.chartsub. verIfy[fl]

Using the File System 3-23

With the addition of charfs subroutines, the hierarchy now looks like this:

Figure 3.5 A Simple Hierarchy with Directories and Objects

JOHN

I
MODULES

//~
CHART PRINT REPORT CHARTSUB PRINTSUB REPORTSUB

/\
BUILD

objects

VERIFY

HINT:

Storing Several Objects in
One Directory

3-24 Using the File System

You can often save typing by using the +workdir modifier. For example:

save build verify +workdir=chartsub

The +workdir modifier sets a temporary working directory relative to your
primary working directory for the duration of the command. When the
command finishes, your working directory reverts to the value it had before.

Where there are functions, there are usually subroutines; and where there arc
subroutines, there are usually common utilities that are shared by more than
one caller. To avoid duplication and to facilitate maintenance, you can store all
utilities in the same directory.

To create the directory and store the objects, type:

save objects +workdir=pathname +nUlkedir

Copying Paths

Copying a Single Path

NOTE:

For example:

save mtov reat vtom +workdir=util +makedir

You see a message such as:

john.modules.uti/[dl]
john.modules.util.mtov[fl]
john.modules.util.rcat[fl]
john.modules.uti!.vtom[fl]

The +makedir modifier tells the save command to create any intermediate
directories implied by the pathnames specified. In this case, john.modules.util
did not exist before the command was executed, so it was automatically
created by LOGOS. Without the +makedir modifier, the command would have
failed because john.modules.util was not a valid directory.

Once you have some objects in LOGOS, you'll need to move them about. The
commands that allow you to do this are copy and delete. The copy and delete
commands opemte on an entire hierarchy; they affect all nodes at and below
the paths you specify. The first part of this section discusses the copy
command, the remaining part discusses the delete command.

The copy command duplicates paths or hierarchies in the LOGOS file system,
giving you two distinct occurrences of the objects.

To copy one path to another, specify the source object's pathname first and the
target directory's pathname second. Type:

copy source target

For example, to copy the path john.modules.Dio to the directory john.defaults,
type:

copy john.modules.Dio john.defaults

LOGOS displays a message indicating the path copied. For example:

john.defaults.Dio [v1]

Do not include the object's name in the destination pathname.

Using the File System 3-25

Copying a Group of Paths

HINT:

3-26 Using the File System

You can also copy a group of paths by specifying the pathnames of all of the
objects to copy9 and the pathname of the destination directory. For example:

copy chart print report John.system

The last pathname is the target9 and all others are the source. This displays the
message:

.john.system.chartCIl]
john.system.printCI1J
john.system.report [11]

If the source paths contain any directories9 all descendants of each directory
are copied as well. This allows you to duplicate hierarchies as easily as single
paths. For example:

copy John.modules.?* John.newsys +makedir

You see the message:

john.newsys[dlJ
john.newsys.chart[ll]
john.newsys.chartsubCdl]
john.newsys.chartsub.buildCjlJ
john.newsys.chartsub.verify[fl]
john.newsys.printCf1]
john.newsys.printsub [dJ]
john.newsys.report[/lJ
john.newsys.reportsubCdl]
john.newsys.uti/Cdl]
john.newsys.util.mtovC/l]
john.newsys.util.rcatCfl]
.john.newsys.util.vtom[/l]

Paths are always copied below the target directory, which is the last pathname
you specify in the command's argument.

If the target directory doesn't exist, you can use the +nulkedir modifier to
create intermediate directories implied by the target path, as was done for
John.newsys above. This is necessary only if the target directory itself does not
already exist; if the list of paths to be copied contains directories, the
directories will be created (if necessary) whether or not +makedir is used.

Copying Selected Versions Normally, the copy command copies only the latest version of the desired
objects. You can control this behaviour with the +versions modifier.

• To copy all versions of the source pathnames, use the +versions modifier with
no value, or with a value of all. For example:

copy chart +versions

or

copy chart +versions=all

• To specify the number of versions you want copied, provide a number as the
value to +version. For example:

copy chart +versions=7

The value behaves like the APL t primitive function: +versions=-3 specifies
the three most recent versions, and +versions=5 refers to the first (earliest)
five versions.

• To copy specific versions, specify an extended pathname indicating the version
you want to copy. For example:

copy chart[?]

HINT: You can also use the +versions modifier in this case. For example, to copy the
three most recent versions of chart ending at version 4, you could type:

copy chartC4] .john.temp +makedir +versions=-3

LOGOS displays a message such as:

.john.temp Cd]]

.john.temp.chartCI]]

.john. temp.chart [[2]

.john.temp.chart [[3J

Versions 2, 3, and 4 of chart arc copied as versions 1, 2, and 3 of
.john.temp.chart, respectively.

Using the File System 3-27

Copying One Directory
to Another

The eopy command duplicates all source paths with all their descendants.
When you want to copy only the contents of one directory to another (as
opposed to the directory itself), you must specify the directory's descendants
explicitly.

• To copy the contents of one directory to another, provide the pathnames of
objects you want to copy, and the pathname of the destination directory. For
example:

copy john.modules.util.?* .john.util

You see a message such as:

.john.util.mtov[flJ
john.uti/.reatCflJ
john.uti1.vtom [f1]

HINT:

Limiting a Directory Copy

3-28 Using the File System

One common mistake with the copy command arises out of trying to copy the
contents of one directory to another. Suppose you wish to copy the contents of
.john.modules.util to the directory John.util, which already exists. You might
attempt to do the following:

copy john.modules.util .john.uti!

You see the message:

john.util.utiICdlJ
johll.util.util.mtovCflJ
.john.util.uti/.rcatCflJ
john.uti/.uti/. vtomCfl J

This has the unintended effect of creating a uti! directory beneath john.util.
The additional directory was created because the copy command duplicates all
source paths with all their descendants. To avoid duplication of the source
directory itself, you need to specify the directory's descendants explicitly as
shown in the preceding example.

You may not always want to copy all descendants of a directory, particularly if
the directory you are copying contains further directories. The most
straightforward way to limit the copy is to enumerate the source pathnames by
using the result of a list command. Type:

copy (list pathname +fu/l) directory +nulkedir

For example:

copy (list .john.modulesCfvJ +full) .joh/l.con1mands +makedir

Deleting Paths

Deleting All Versions

Deleting Specific Versions

LOGOS displays a message such as:

john.convnandsCdlJ
john.commands.chartCfl]
john.commands.printCfl]
john. commands. reportCfl]

The full pathnames of the functions and variables in john.nwdules are
computed by the list command and passed to the copy command, which then
copies them to the new directory john.commands (created by the +makedir
modifier).

Objects are removed from the LOGOS file system with the delete command.
You can use this command to remove particular versions of objects, entire
paths, groups of paths, or complete hierarchies.

Unless you specify a particular version, the delete command deletes all
versions of the specified paths.

To delete all versions of a path, specify the path to delete. For example, to
delete the path john.defauits.Dio, type:

delete john .defauits.Dio

LOGOS displays a message indicating how many paths were deleted (and how
many versions, if different). For example:

1 path deleted

In this case, the number of versions deleted (one) matched the number of
paths, so the message showed only the number of paths deleted.

Rather than deleting all versions of a path, you can delete only one version by
supplying an extended pathname indicating the version you want to delete. For
example:

delete .john.temp.chart C1]

This command deletes only one version of the path. If there was more than the
one version, then the other versions of the path remain in the file system. You
see the message:

1 version deleted

Using the File System 3-29

Deleting the Latest Version You can delete the latest version of a path by providing an extended pathname,
specifying either the version or O.

For example, if the latest version of john.temp.chart is version 35, you can
type:

delete john.temp.chart [35J

Or you can type:

delete john. temp.chart [OJ

Deleting In Multiple
Directories

NOTE:

You can delete paths in more than one directory by setting multiple working
directories, or by specifying more than one directory in your delete command.

To set multiple directories, see the section, Setting Multiple Working
Directories, in this chapter.

The delete command operates on one file at a time. If you set multiple
working directories, you might specify a command such as:

delete a?*.

If one path is matched and deleted in each of two directories in two separate
files, you do not get a warning message. You simply receive the message:

2 paths deleted

If you try to delete paths in more than one file-level directory at a time, a
different set of prompts is issued for each file. Responding no to a warning
prompt avoids deletions only within that particular file.

Deleting Obsolete Versions As you develop a system in LOGOS, you may accumulate several versions of
your objects. You can set a retention count on your directories in order to limit
the total number of versions stored, but you may want to store many versions
while you are changing your system. The +noncurrent modifier enables you to
remove versions that are no longer needed.

• To delete all but the latest version of a path (and its descendants), specify the
+noncurrent modifier. For example:

delete john.rrwdules +noncurrent

• To delete all paths prior to a certain version, specify an extended pathname
indicating the version with the +l1oncurrent modifier. For example:

delete .john.rrwdules[-3] +noncurrent

3-30 Using the File System

Deleting Unreferenced
Objects

IMPORTANT:

Displaying Results

This command deletes all but the latest three versions of all objects at and
below .john.modules. This is particularly convenient when used in conjunction
with complementary indexing.

After using LOGOS for a while, your object database may become cluttered
with objects no longer in use. You can use the +unused modifier to remove
these objects. For example:

delete john.nwdules +unused

This command selects for deletion only those objects that do not have a
current reference (that is, are not used by anyone, anywhere in LOGOS).

The references command, described in Chapter 11: Maintaining and Updating
Systems, determines what objects are in use and where they are used. When
the delete command finds objects that are still active, you can use the
references command to find out where and by whom they are being used.

Use this modifier with discretion; this form of deletion requires all references
to be searched, and can be expensive.

The result of the delete command is normally not displayed. It consists of the
pathnames and versions deleted. You may obtain this infonnation by prefixing
the command with an assignment. Display the deleted paths on your terminal
with O+-delete, or assign the result to a variable.

Warnings Issued by the delete Command

To prevent mishaps with such a destructive command, the delete command
warns you if the number of paths it is about to delete exceeds the nurrlber of
paths you specified.

For example~ suppose you type:

delete john.temp

A warning might appear such as:

delete 2 paths?

In this case, .john.temp contained one descendant, making a total of two paths
to delete~ while only one was specified. This caused the warning prompt.

The number of paths reported for deletion in a warning prompt is the count of
pathnames~ not versions, to be removed. Thcrcfore~ particular versions being
deleted do not affect this prompt~ and if only some versions of a path are being
deleted~ that path has no effect on the warning prompt.

Using the File System 3-31

Responding to Prompts At a warning prompt, you can respond with the commands in the following
table:

Table 3.5 Commands You Can Type at the Warning Prompt

Command

yes (or y)
no (or n)
stop
confirm

Effect

Allows the deletion to proceed.
Cancels the delete request for the specific object
Aborts the delete command instantly
Offers you a way to protect your data from inadvertent deletion, by
entering an interactive confirmation mode dialogue. In this mode, a
separate prompt is issued for each object pending deletion.

Controlling the Warning
Prompt

Enabling Confirma'lion
Mode

3-32 Using the File System

If you respond with confirm, you enter confirmation mode, where prompts
are then issued for the requested directory and each of its descendants. For
example:

U delete .john.commands
delete 4 paths? confirm
delete <.john.commands>? yes
delete <john.commands.chart>? no
delete <john.commands.print>? y
delete <.john.commands.report>? y
unable to delete: .john.commands (not empty)
2 paths deleted

In this case chart will not be deleted. Because chart's parent directory is
therefore not empty, it will not be deleted either.

You can control the warning prompt issued by the delete command with the
+warn modifier. Provide the number of paths after which you want to be
warned. For example if you enter:

delete pathname +warn=5

LOGOS issues a prompt if the number of paths to be deleted equals or exceeds
5.

To stop the warning prompt from being issued at all, specify +warn=O. To
prompt every time the delete command finds something to delete, specify
+warn=l.

You can automatically enable confirmation mode by using the +confirm
modifier with the delete command. For example:

delete john. commands +confirtn

When you are in confirmation mode, you can enter the following keywords in
response to deletion prompts:

Table 3.6 Keywords You Can Enter In Confirmation Mode

Keyword

yes (or y)
no (or n)
back
continue
stop

Controlling Access

Types of Permission

Effect

Allows the deletion to proceed.
Cancels the delete request for the specific object
Returns to the previous prompt.
Performs the deletion without further prompting.
Aborts the deleta command (also applies to warning prompt).

You have full control over the users who are allowed to see and change
objects which you put into LOGOS. Users cannot see any directory or object
they can't use. Your data is also carefully protected against unauthorized
access (also called permission) or contamination by the LOGOS system itself.

The share command controls access. It extends or revokes access, depending
on the modifiers you use with it. The access controls take the form of an
access matrix, which specifies the users who may access the node and the
types of permission to which each is entitled.

Types of permission include execute, read, write, and control access. They can
be assigned independently or in any combination. The meaning of each of
these levels of permission differs slightly when applied to a directory as
compared with an object. The table below summarizes the pennission levels
and what they mean, for both directories and objects.

Table 3.7 Types of Permission

Permission

Execute (X)

Read (R)

Write (W)

Control (C)

Applied to an Object

Allows you to execute a script, fetch
an object, and list an object's name.

Allows you to read the source and
other attributes of an object.

Allows you to write the source and
other attributes of an object.

Allows you to alter access to an object.

Applied to a Directory

Allows you to list the name of a directory.

Allows you to read the attributes of a
directory.

Allows you to write the attributes of a
directory, add objects to it, and delete
objects from it (if you also have write
permission to the objects).

Allows you to alter access to a directory.

Using the File System 3-33

How Access Extends
Automatically

Inquiring about Access

Inquiring on a Particular
Alias

When you grant an alias (or a group) access to a directory, the same access
automatically extends to new directories and objects that you subsequently
create below that directory, in much the same way as retention extends to new
objects. Access to a directory defines access to its descendants, unless you
specifically change the permission.

When you grant a group access to a directory, the access extends to every
member in the group. If you add members to a group, they automatically get
the access extended to the group. If you remove members from the group, they
automatically lose the access extended to the group.

For example, suppose that the group invendev identifies the members of a
project working on Inventory System development. If you give invendev
access to all LOGOS paths pertaining to the project, then the task of keeping
access information up to date as people join and depart the project involves
only the maintenance of the membership of the group. When the group is
changed, the access to all relevant paths changes instantly.

The share command without modifiers acts in an inquiry capacity only, and
returns the permission of the named aliases to the named paths. You can
inquire on access in two ways. You can:

• inquire on a specific alias' access to paths

• inquire on all aliases' access to paths

To inquire on a particular alias' access to paths, specify both the alias and the
paths in the command. For example, assume your working directory is set to
John. To inquire on invefldev's access to the node John.modules.chart, type:

share invendev nwdules.chart

You see the message:

john.modules.chart invendev x

NOTE:

3..34 Using the File System

The alias invendev has execute access.

Execute access alone wilJ not allow you to read the source of an object. If you
try to read the source, an error message occurs. For example:

improper access:
.john.modules.chart

If you have no pennission whatever to the object, you instead receive the
message:

not found: john.modules.chart

Inquiring on All Aliases To inquire on all aliases' access to paths, do not specify an alias in the
command. For example:

share ' , modules.chart

You see a message such as:

john.modules.chart aja wrx

Granting Access

With no aliases specified, LOGOS displays infonnation on all alilli)es with
access to a particular path. For example:

john.modules.chart invendev rx
rohan cwrx
wMm wn

You can grant access with the +permission modifier to the share command.
For example, to give invendev read access to the path .john.modules.chart,
type:

share invendev modules.chart +permission=r

Read permission is now combined with the execute permission that invendev
already had, to produce both levels of access:

john.modules.chart invendev rx

Multiple Aliases and
Multiple Paths

IMPORTANT:

You can grant access to more than one alias, and to more than one path,
simultaneously. For example, you can enter:

share 'aja wham' nu.idules.util.rcat modules.chartsub
+permission=wrx

LOGOS displays a message such a'i:

john.nwdules.chartsub aja wrx
wham wrx

.john.nwdules.utiI.reat aja wrx
wham wrx

You must put quotes around the aliases to distinguish them from the
pathnames. All names subsequent to the aliases are assumed to be pathnames;
quotes are not required around them.

Using the File System 3-35

Granting Access to All
of a Directory

Granting Access to Pan
of a Directory

3-36 Using the File System

The share command can be used on alias-level paths. Because the alias level is
a directory, and because permission set on a directory is inherited by any
subordinate directories you create under it, you can establish a global
pennission for an alias by setting its access.

To establish global permission, type:

share alias .pathname +permission=permission

For example:

share invendev John +permission=wrx

You see a message such as:

john invendev wrx

Now, invendev will automatically have write, read, and execute permission to
any directories created below .john. Any directories created below these will
inherit the identical permission from their parents. Permission is
self-perpetuating as the hierarchy grows through the addition of directories and
objects.

You can grant access from a particular point in the hierarchy through all nodes
below with the +recursive modifier. It indicates that LOGOS is to change
access not only to the directory given, but to all directories below it

This way you can widow a portion of the hierarchy for a user. The user has
access to a node but not to its parent. For example, if wham has some
permission to the object .john.modules.util.rcat but none to its parent
(john.modules.util), wham will be unable to name the directory
.john.moduies.util, even though "'ham has access to one of its descendants.
This behaviour makes unauthorized probing for paths more difficult.

II To grant access to part of a directory, type:

share alias pathname +permissioll=permission +recursive pathname

For example:

share rohan nlodules +perntission=cwrx +recursive

This command produces access information encountered anywhere along the
specified portion of the hierarchy, with aliases appearing in alphabetical order.
For example:

.john.modules aja wrx
invendev rx
rohan cwrx
wham wrx

Creating a Public Path One special alias, Dall, is a surrogate for all users enroled in LOGOS. If you
grant Dall access to a path, then it becomes public to all users.

To create a public path, type:

share Dall pathname +permission=permission

For example:

share Dall modules.uti/.reat +permission=x

Yau see a message such as:

john.modules.utiI.rca t Dall x
aja wrx
rohan cwrx
wham ~,vrx

Revoking Access

WARNING!

Granting Dall access to a path does not remove any specific access permission
for specific aliases.

The share command with the +delete modifier revokes access. You can revoke:

• all access to a path from an alias

• certain access to a path from an alias

• all access to a path from all aliases

The owner of a path has full pennission to the path, by default. If you own a
path, you can lock yourself out of it using the share command with the +delete
modifier.

As the owner, you have control access and hence can extend to others the
ability to regulate pennission. Therefore~ other users to whom you have
granted control access can also restrict your permission.

Using the File System 3-37

Revoking Certain Access
from an Alias

If you or someone else inadvertently removes your access to a path you own,
contact your system administrator for assistance. Your system administrator
can help you gain temporary access to the path, so that you can restore your
own pennission.

You can revoke certain access from an alias by specifying the access with the
+permission modifier. Type:

share alias path +delete +permission=permission

For example:

share aja modules.chartsub +delete +permission=w

You see a message such as:

john.nwdules.chartsub aja rx
rohan Cl-vrx

wham wrx

Revoking All Access
'from an Alias

Only write permission is renloved from aja, leaving the alias with read and
execute access.

You can revoke all access from an alias by omitting the +permission modifier.
Type:

share alias pathname +delete

For example, to remove all of aja' s access:

share aja nwdules.chartsub +delete

You see a message such as:

.john.moduies.chartsub rohan cwrx
~vha,n lovrx

Revoking Access from
All Aliases

3-38 Using the File System

You can remove all access to a path from every alias using the +delete
modifier. Type:

share ' , pathname +delete

For example:

share ' , modules.chartsub +delete

Making Access Changes
Take Effect

LOGOS maintains a certain amount of access infonnation in the workspace
during a session. As a result, to cause a permission change to take effect
immediately in a session, you may need to issue the exit +reset command and
then re-enter LOGOS by executing the logos function.

You can also achieve the same effect by typing:

alias (alias)

Using the File System 3-39

3-40 Using the File System

CHAPTER 4: LOGOS COMMAND LANGUAGE

Entering Commands 4-3
Abbreviating Commands 4-3
Entering Multiple Commands 4-3

Using Commands with Arguments 4-4
Using Quotes in Arguments 4-4
Argument SCOIJe•...•.••.•..••.....................•.•...............•....................... 4-5

Short Sco~ 4-5
Long SCOIJe•............•.............••.........•.................•.••••.•.•... 4-5
Unprocessed ScoJJe 4-6

Entering Complex Arguments 4-6

Using Commands with Modifiers 4-7
Abbreviating Modifiers 4-7

Controlling Command Output 4-7
CaptuI;,ng Output 4-8

Displaying Captured Output 4-8
Discarding Output 4-9

Using Keywords 4-9
Abbreviating Keywords 4-9
Defining Keywords 4-10
Saving Keywords 4-10
Displaying Keywords 4-10
Deleting Keywords 4-11

Applying a Sequence of Commands to a List of Arguments 4-11
Specifying a Substitution Character 4-12

LOGOS Command Language 4-1

http:�............�.............��.........�.................�.����.�.�
http:�...�.��.�..��.....................�.�...............�

4-2 LOGOS Command Language

Entering Commands

Abbreviating Commands

Entering Multiple
Commands

You enter LOGOS commands in response to the separator character prompt (u
by default) or by passing them in a character vector argument to !:J./ogos.

A LOGOS command is made up of several parts. As well as the command
itself, it can include arguments and modifiers. An argument is a value you
pass to a command. A modifier is a parameter that modifies the actions of the
command. All modifiers begin with a +. Arguments and modifiers can also
take values.

This is an example of a typical LOGOS command:

list uti/formatting +full +recursive=l

The command being invoked is list. One argument, the string uti/formatting, is
being passed to it. Two modifiers, +full and +recursive, have been specified;
the +recursive modifier is assigned a value of 1.

Although commands are spelled out in full in this manual, you can abbreviate
them. For example, you can use bu for build and I for list.

For each command, there is a predefined minimum number of characters that
you must enter for the name to be recognized. These minimum lengths were
chosen so that frequently used commands require fewer keystrokes, and
potentially destructive commands require more. So, while d is as good as
display, you must spell delete out in full.

For the minimum length required for each command name, use the? command
to list commands and their minimum abbreviations, or see the command
descriptions in the LOGOS Reference Manual.

You can enter more than one LOGOS command on a single line by delimiting
commands with the LOGOS command separator character.

For example:

display parse.scan u xrefparse. scan

LOGOS Command Language 4-3

NOTE: You cannot use the following characters to delimit commands:

• alphabetic (including Ii, IJ., 0., w)

• numeric

• any of the reserved characters () + { } , \ V • [] - t ? T =

• blank spaces

• To include the separator character in an argument, enclose it in quotes. For
example:

replace ' U 'name 'u , names

• If the separator character appears in several places, you can specify a different
separator character for a pmticular line by entering a new separator as the first
character of the line. For example:

o replace Uname Unames parse.scan 0 display parse.scan

Here, U is the separntor character displayed by LOGOS, and the jot (0) is the
new separator character specified by the user and then used as a delimiter. This
command line first replaces the string unalne by unalnes within the object
parse .scan, and then displays the changed object.

Using Comma.nds with Arguments

Most commands accept one or more argulnents, separated by blanks. The
locate command, for example, accepts two arguments. For example:

locate lr. naffles utiljornwtting

The first argument is the search string Ir.names, and the second is the
pathname uti/formatting.

Using Quotes In Arguments LOGOS generally treats quotes in much the same way that APL does. The
exception occurs when they are part of a regular expression (a pattern used for
searching). For more information on regular expressions, see Chapter 12:
Software Developtnent Tools, or Appendix A: Using Regular Expressions.

• To provide an argument that contains blanks (for example, a phrase or a list of
names), enclose it in quotes. For example:

locate '1 0 • names' uti! formatting

4-4 LOGOS Command Language

Here, the first argument to the locate command is the string 1 0 .. names, and
the second is the pathname uti/formatting. The APL quotes around the first
argument are removed by LOGOS; they are not included in the string passed
to the locate commande Therefore, in this example, the first character that
locate tries to find is the character 1, not the character f •

• To include the quote character itself in an argument, enclose the whole
argument in quotes and double the embedded quotese For example:

locate f don f 't split' .uti! formatting

Argument Scope

Short Scope

Long Scope

NOTE: You must enclose the following reserved characters in quotes when you
provide them in an argument:

()+{}'\

You must also enclose blanks in quotes.

Argument scope is a characteristic of every LOGOS command or script It
influences how a command identifies its arguments. A command can have
short scope, long scope, or unprocessed scope.

A command with short scope takes a fixed number of arguments and
recognizes all unescapcd blanks as argument delimiters. It displays an error
message if you provide too many arguments.

For example, the link command requires exactly two arguments. For example:

link ul .public.uti!

If the link command is issued with more than two arguments, you get an error.
For example:

link abc

The system returns the message:

too many arguments
link abc

A

A command with long scope allows its last argument to be extended up to the
first modifier, and recognizes blanks as argument delimiters only until it has
scanned the expected number of arguments. If additional blank-delimited fields
appear at the end of the argument list, they are considered part of the last
argument. Most LOGOS commands that work on a list of pathnames position
this list as their last or only argument, and have long argument scope.

LOGOS Command Language 4-5

NOTE:

Unprocessed Scope

Entering Complex
Arguments

4-6 LOGOS Command Language

The locate command, for example, takes two arguments and allows the last
one to be extended. Because of this, the command:

locate names utilformatting parse.scan

is equivalent to:

locate names 'utilformatting parse.scan '

When a command has long scope, you do not have to enclose blanks in quotes
if they appear as part of the last argument.

A command with unprocessed scope takes only one argument and does not
recognize any special characters other than the command separator (quotes,
parentheses, the \ that precedes keywords, or + that precedes modifier names).
Therefore, you do not have to enclose reserved characters in quotes.

Two commands have unprocessed argument scope: ~ and T.

So, the following APL expressions using the .t. command work as you would
expect:

u ~p 'hello'
5
u .t. 1 0 1 0 J \' abc'
abc

All quotes and other special characters arc passed directly to APL, without
interference from LOGOS. The T command has this same property, but for a
different rea4)on. See the description of the T command in the next section.

The T command makes it e~l~icr to enter complex arguments containing quotes
and other metacharacters. The command actually does nothing but return its
argument as its result; it is useful because of its unprocessed scope.

Suppose you want to locate occurrences of an APL expression like the one
below, which contains several special characters such as parentheses and
quotes:

, totals: ',(Tm\v+ (n x 2) -]) , ' ytd'

The following approach would serve adequately:

locate" 'totals: ", (crnl\v+Cn x 2)-J)," ytd'" 7*

But, using the"," command, you can simplify the command as follows:

locate (","' totals: ',(Tm\v+ (nx2) -}) , ' ytd') ? *

By writing the line using the T command, you avoid having to double the
quotes within the expression.

Using Commands with Modifiers

LOGOS commands also accept modifiers, which are parameters that modify a
command's action. Modifiers are denoted by + followed by the modifier's
name, as in +recursive. For example:

locate uti/ +recursive

A modifier can also specify a value, as in +flags=s. For example:

locate util +recursive +flags=s

Abbreviating Modifiers

NOTE:

In this book, all modifier names are spelled out in full. The modifier names for
any particular LOGOS command all have unique first letters, so that you can
always abbreviate to one letter. For example:

locate uti! +r +f=s

Scripts, which are user-defined commands, can have modifiers with
non-unique initial letters. In such cases, the modifier names for the script can
be abbreviated to the minimum required to distinguish the name. For more
information on scripts, see Chapter 5: Usi!lR Scripts.

Controlling Command Output

LOGOS commands produce two kinds of output:

• result output, which is essential information generated by a command

• message output which is ancillary information such as an error message

To pass the result of one LOGOS command as an argument to another
command, enclose the command producing the result in parentheses. For
example:

edit (locate nan1es uti! jl)rnulttillg)

LOGOS Command Language 4-7

Capturing Output

The locate command searches for the string nalnes in the uti/formatting
directory. The result output of the command, a list of pathnames of the objects
in which names is found, is passed to edit as its argument.

The result output of a command can be used anywhere in a command line; for
example, as the value of a modifier:

build budgetpage +exclude=(fist budgets.excp)

Here, the pathname result of the list command is passed as a value to the
+exc/ude modifier of build.

An expression in parentheses can be made up of several LOGOS commands,
delimited by the command separator character. If the first character inside the
parentheses is a valid command separator, it is used as the separator just for
the expression in parentheses. Otherwise, the normal command separator is
used. The result of the expression in parentheses is the result of the last
command in the expression.

All or part of a command (including the cOlnmand name) can be generated by
an expression:

U i.cmds+-' workdir u list? * +column +recursive'
U (i.cmds)

To capture the result output of a comlnand~ assign it to a variable. For example:

p+-locate names uti! fornultting

In this example, the list of pathnames produced by the locate command is
placed in the APL variable jJ. p is an ordinary variable and remains in the
workspace when LOGOS ends.

To capture message output~ assign it to an empty modifier 1 +=. The variable
to which you want the output assigned is specified by the value of the
modifier. For example:

locate nafnes util!or,natting +=rrlsg

Any messages produced by the locale COlnmand are assigned to the variable
msg.

Displaying Captured Output As in normal APL assignlnellt, the result of a command is not displayed if it is
assigned to a variable or used within an expression.

To display result output~ use 0+-. For example:

edit (D+-locate nan1es util!ornullting)

4-8 LOGOS Command Language

Discarding Output

Using Keywords

NOTE:

IMPORTANT:

Abbreviating Keywords

Here, the output of the locate command is displayed and passed as the
argument to edit.

Some commands, like delete and retain) return results but don't display them
by default. You can also use 0.... to see the results of these commands.

To display message output, specify 0 as the value to the += modifier.

This causes messages to be displayed at the terminal. (This is the default.)

To discard result output, assign it to an empty variable name. For example:

....environment +profile

To discard message output, use an enlpty modifier with an empty value. For
example:

list q.cell +=

Keywords allow you to store phrases, so that you can call long commands by
typing only a few keystrokes. For example, you might find yourself frequently
typing:

list .nuie.sys.util.tools

You can create a keyword that you type instead of .rnde.sys.util.tools. For
example, if you create the keyword tools to represent .mde.sys.util. tools , you
could then type:

list \tools

To use a keyword, you must precede the kcyword with a \.

You create and display keywords with the keyword command, or with the
environment keyword construct. See Chapter 12: Software Developnlent Tools
for more information on environment keywords.

Keywords may not be used inside a script. The construct \name has a different
meaning inside of a script. For more information, see Chapter 5: Using Scripts.

Like modifier names, keywords can be shortencd to any abbreviation which is
unique. Depending upon what othcr keywords you have defined, you may re
able to use \tool, \too, \to, or even \1 to reference the keyword \tools.

LOGOS Command Language 4-9

Defining Keywords

Saving Keywords

Displaying Keywords

Define keywords with the keyword command. Provide the keyword you want
to define, and the phrase to be the definition of the keyword. The maximum
length of the phrase that defines a keyword is 500 characters.

For example:

keyword tools .nuJe.sys.uti/.tools

To make your keywords permanent, you must save them in your profile. To do
so, type:

environment keyword +profile

If you use the keyword command without arguments, it simply returns the
names of all your keywords. To display all your keywords, type:

keyword

The system returns a list of your keywords. For example:

box cmds tools utiI

To display the definition of one or more keywords~ specify the keywords. For
example:

keyword util

The definitions of these keywords arc returned. For example:

keyword uti! '.mabra.tools.util'

To see the defini tion of all of your keywords, type:

keyword (keyword)

You see a result such as:

keyword
keyword
keyword
keyword

box
cmds
tools
uti!

, exit Dload ' '666 box' , ,
, .proj.tools.cmds'
, .rnde.sys.Ulil. tools I

I .nUlbra.tools.Ulil'

To emph~ize that any quotes within the keyword are actually escaped, the
result always shows the keyword definition in quotes.

If a second argument is supplied, it is interpreted as the phrase to be associated
with the keyword. For example:

keyword seed I edit +comnulnd=settype s +N(unes= ,

4-10 LOGOS Command Language

Dele'Ung Keywords

Now when you type keyword. you get the message:

box cnuts seed tools uti!

Notice that the keyword seed uses the argument to edit. which is +Names. as if
it were a modifier. This allows the argument to the keyword (parse.sean
below) to become the argument to edit:

\seed parse. scan

Use environment keyword +profile to store in your profile any keywords you
have defined.

To delete a keyword, specify an empty value as the definition for the keyword
(the second argument). For example:

keyword cmds ' ,

You see a message such as:

1 keyword deleted

Applying a Sequence of Commands to a List of Arguments

The with command applies a sequence of commands to a list of arguments in
an itemwise manner.

The with command takes two arguments: an expression to evaluate, and an
argument list upon which to apply the expression. The expression is a LOGOS
command line, which can contain multiple commands. It can also contain one
or more occurrences of the argument substitution character, Cl. The argument
list is an arbitrary series of values, often a collection of names separated by
blanks.

To usc the \1,ith command, type:

with 'command u command' argument argunlent

The expression is executed once for each argument in the list. Each time the
expression is executed, all occurrences of a are replaced by the next argument
in the list.

For example, suppose you want to list, summarize, and display two objects.
You could enter six separate commands, or you could enter one l/vith statement:

with 'list ex +long U sumnUlrize Cl U display Cl ' faccess mfsort

LOGOS Command Language 4-11

Specifying a Substitution
Character

NOTE:

This is equivalent to the command sequence:

U list [access +long
u summarize [access
U display [access

U list mfsort +long
u summarize mfsort
U display mfsort

If the expression itself contains (1, you can specify an alternate substitution
character using the +surrogate modifier to the command. For example, if Dsp
is a series of names, you can locate (1 in each name, and you can edit those
names in which a match was detected using the statement:

with' edit (locate (1 *)' (i.Dsp) +surrogate=*

You cannot use the following characters as surrogates:

• numeric

• alphabetic (including 6. ~)

• any of the reserved characters () + { } , \ ry • [] t ? +- =0

• blank spaces

4-12 LOGOS Command Language

CHAPTER 5: USING SCRIPTS

What is a Script? 5-3
Calling Scripts 5-3

Scripts and Commands with the Same Name 5-3
Predefined Scripts 5-4
Online Help for Scripts 5-4

Using Command Directories 5-4
Inquiring about Your Command Directories 5-5
Adding Command Directories 5-5
Saving Command Directories 5-6

Creating a Script 5-6
Creating Scripts with the edit Command 5-6
Creating Scripts with the save Command 5-7
Creating Script Documentation 5-7

Looking at a Simple Script 5-7
Defining Arguments and Results 5-8

Specifying Arguments and Modifiers in a Script Definition 5-9

Using Arguments and Modifiers inside Scripts 5-11
Arguments and Modifiers in APL Expressions 5-11
Arguments and Modifiers in LOGOS Commands 5-12

Script Argument Sco~ 5-14
Advantages of Long Scope 5-14
Pros and Cons of Unprocessed Scope 5-15

Displaying SClipt Output 5-16
Displaying Error Message Output. 5-16
Displaying Message Output 5-16
Displaying a Quadprime Prompt. 5-17
Displaying Status Line Output 5-17
Displaying Result Output 5-17

Using Composite Scripts 5-18
Sample Composite Script 5-18
Shortening Pathnamcs in a Script Header 5-19
Using Clusters in Scripts 5-20

Using Scripts 5-1

5-2 Using Scripts

Controlling Local Environments 5-21
Capturing an Environment 5-21
Example 5-23

Using Script Debugging Mode 5-24
Enabling Script Debugging Mode 5-25

Working in Debugging Mode 5-25
Recalling and Editing Input. 5-26
Executing LOGOS Commands 5-26
Inquiring on Scripts on the Stack 5-26
Points to Note about Debugging Mode 5-27

Sample Scripts 5-27
Substitute for the list Command 5-27
The profile and fork Scripts 5-28
Logging LOGOS Session Output. 5-30

Making Sure Your Scripts have Room to Run 5-31
~lreelaim versus lree/aim 5-31

Figures

Figure 5.1 Stacking an Environment 5-22
Figure 5.2 Stacking Two Environments 5-24

Tables

Table 5.1 Rules for Specifying Arguments and Modifiers in a Script
Definition 5-9
Table 5.2 Forms of Script Parameters 5-10
Table 5.3 Rules for Assigning Values to Local Variables in a Script 5-11
Table 5.4 liSle Script Behaviour 5-13
Table 5.5 Replacement for\+- in a Script 5-13
Table 5.6 Replacement for \ in a Script 5-13
Table 5.7 Scope Flags 5-14
Table 5.8 Deficiencies with the liste Script 5-28

What is a Script?

Calling Scripts

Scripts and Commands
with the Same Name

A script is a user-written LOGOS command that can take arguments and
produce output, just like a native command. Internally, a script is a sequence
of APL expressions and LOGOS commands in the same program.

You can use a script anywhere that you can use a LOGOS command.
Ancillary functions or variables required by the script can be merged into it to
create a self-contained module.

As with other LOGOS objects, scripts can be shared. You can save commonly
used scripts in public directories, and the members of a programming team can
create project tool libraries for their use or for general application.

A script is a LOGOS object, and is therefore referenced by its pathname. To
call a script, type the pathname of the script.

For example, to call the script .public./ogos.cmds.search with the argument
uti!, type:

.public.logos.cmds.search util

Because a script has the same properties as a native LOGOS command, it can
also be used as part of a larger expression:

locate' Qfmt' (.public.logos.cnuls.search mergers)

Native LOGOS commands take precedence over sClipts, to ensure that
LOGOS commands behave identically for every user. If you have a script
called list, you cannot call it by entering list because it will invoke the LOGOS
list command. You can call the script by supplying its pathname. For example:

.mde.scripts.1ist

If a script is in one of your command directories (described in the section,
Using Command Directories), you can distinguish the script from a LOGOS
command by typing a dot after the name. For example, if one of your
command directories is .mde.scripts. you can type:

list.

Another alternative is to store the full pathnamc of the script in a keyword
called \list, and then reference it via \list or even \1. For more information
about keywords, see Chapter 4: LOGOS ConlnUlnd Language.

Using Scripts 5-3

Predefined Scripts

Online Help for Scripts

A number of scripts are already available in the LOGOS utility library. This is
a central location for objects that can be useful to many different programmers
working on many different applications. All users have access to the utility
library. It contains a directory called .public./ogos.cmds, which contains scripts
that extend or supplement the facilities of native LOGOS commands.
Subroutines and auxiliary objects for use by the scripts are in the directory
.public./ogos.cmds.uti/.

To list the directory .public.Jogos.cmds, type:

list .public./ogos.cmds

For more information on the utility library, see Chapter 15: Using the Utility
Library.

Online help is available for scripts, whether they are predefined or
user-defined. To display a summary of a script's syntax, type:

?script

For example:

?clear

• To display more detailed help for a script, type:

? ?script

NOTE: This command is actually a shorthand for the command:

display script [: dJ

The help message displays whatever is stored in the documentation attribute of
the script. For more infonnation on creating script documentation, see the
section, Creating Script Docunlentation, later in this chapter.

Using Command Directories

To make scripts easier to caIl, LOGOS maintains a command directory which
the command processor uses when searching for scripts. If your command
directory is set to .public./ogos.cmds, you can call the script
.public./ogos.cmds.search with an argument of uti! using the command:

search uti!

5-4 Using Scripts

Inquiring about Your
Command Directories

Adding Command
Directories

This also simplifies commands when you are using a command as part of a
larger expression. For example, rather than typing:

locate ' [lfmt' (.public.logos.cmds.search mergers)

You can type:

locate ' [lfmt' (search mergers)

Command directories are set and displayed with the cmddir command, which
works just like the workdir command. When you first use LOGOS, your
command directory is set to .public.fogos.cmds.

To inquire about your command directory, type:

cmddir

The system returns the message:

.public.f0 gos.cnuls

This is the public LOGOS directory that contains many useful scripts. You
will probably want to keep this directory in your list of command directories.

You can add directories to your list of default command directories. LOGOS
searches command directories in the order in which you specify them.
Therefore, you can add command directories before or after the current
command directories.

To add a directory before the current command directory, type:

cmddir pathname (cmddir)

For example:

cmddir .mde.scripts (c,nddir)

The cmeldir command returns the new setting. For example:

.mde.scripts .public./ogos.cnuls

To add a directory after the current command directory, type:

cmddir (cmddir) pathname

For example:

cmddir (cmeldir) .rnde.scripts

Using Scripts 5-5

NOTE:

Saving Command
Directories

Creating a Script

Creating Scripts with the
edit Command

5-6 Using Scripts

If the current command directory already contains the path that you are adding,
the duplicate pathname is removed. Thus, by placing an existing command
directory path in front of the (cmddir) command, you can change the order of
existing pathnames.

If only one or two scripts in another user's directory are of interest, you may
not want to add the entire directory to your cmddir list. If you have read access
to a script, you can simply copy it into your private command directory.

Alternatively, you can establish a link in your command directory, which
points at the desired script. This method takes less space and ensures that you
immediately realize the benefits of any updates made by the owner of the
script. For details of this method, see the description of the link command in
the section, Creating Links, in Chapter 3: Using the File System.

If you add directories to your list of command directories, you can save them
into your profile. Type:

environment cmddir +profile

You can create a script with either the edit command or the save command.

Usually, the edit command is a more convenient way to create a script.
However, one advantage of the save command is that it lets you build and save
a script under program control. For example, you can write a script that calls a
different editor to prepare the source, and then saves this text as a script in the
file system.

You can create a script with the edit command by providing an extended
pathname indicating that the object type is script. For example:

edit .rnabra.tools.dispn [sJ

If you do not specify [sJ, the editor assumes you want to open a new
function.

You can also create a script by entering the editor, allowing the editor to
assume that you are opening a new function, and then, while in the editor..
changing the object type to script by typing:

settype s

See Chapter 6: Using the Editor for a complete discussion of the editor.

Creating Scripts with the
save Command

Creating Script
Documentation

The save command expects the source of the script to be a character vector,
with lines delimited by carriage returns. The script image can contain line
numbers, but should not include opening or closing V's.

The example below shows how the save command can be used to create a
script. The s type specifier is included in the pathname argument, and the
character vector value is passed via the +value modifier:

u ~source

dispn +Path=
)O+-display \Path +nopathname
u save .rnabra.tools.dispn [s] +v=.i.source
.mabra.tools.dispnCslJ

To make more detailed help available for a script, you must write a help
message. Open the documentation attribute of the script using the editor, write
the help message, and exit the editor, saving the attribute.

For example, to provide a help message for the script.rnabra.tools.dispn, write
the documentation and save it as .tnabra.tools.dispn[: dJ •

Looking at a Simple Script

A script resembles an APL user-defined function. It has a header line and a
body consisting of all remaining lines. Unlike a function, however, a script's
header is line 1. The body comprises lines 2 onward, and each line is either an
APL expression or a LOGOS command. A LOGOS command line in a script
begins with a). For example:

[J J listfetch; Opw
[2J [Jpw~79

[3 J) [J....list .john.emulator fetches +colUlnn

The header of this script, line 1, names the script as listfetch and declares Dpw
as local. Line 2 is an APL expression, and line 3 is a LOGOS command.

You can include several LOGOS commands on a single line of a script, if the
commands are delimited by a separator. Place the separator character for the
line immediately after the). Here is an example showing the use of 0 to
separate two commands on a line:

) 0 z+-Ust .nwbra.tools 0 edit (~z)

The blanks around 0 are not required; they are included here for clatity.

Using Scripts 5-7

NOTE:

Defining Arguments and
Results

5-8 Using Scripts

If you intend to use several LOGOS commands on a single script line, it is a
good idea to specify a separator character at the beginning of the line
(assuming the default separator character, u, will cause problems if the user
has changed to some other character).

Executing list/etch produces a listing on the terminal of the contents of
directory john.emulatorfetches, in columnar format with an effective print
width of 79.

The 0 on line 3 is necessary because, by default, commands do not display
their results when invoked from within a script.

The utility of the script list/etch is severely limited by the fact that it executes
list on a constant pathname. Furthermore, the output generated by list within
the script is always displayed on the terminal; it cannot be captured and
processed by another command.

This simple script can be made much more useful by defining an argument and
a result. The first letter of an argument name must be in the second alphabet.
(Script arguments and results are described in detail in the sections Using
Arguments and Modifiers inside Scripts and Displaying Script Output later in
this chapter.)

For example:

[1 J z+-listc +Pathname= ; Dpw
[2J Dpw+-79
[3J) z....Ust \Pathname +colun'zil

The header now specifies that the script is named liSle, and that it takes a
single argument, Pathllalne. Line 3 interpolates the value of this argument
using the expression ,\Pathn(une. At first sight this might appear to be a
keyword. However, a '\ followed by a name within a script refers to an
argument to a script. Therefore that argulnent replaces the backslash
expression on the line.

Now, you can use liste to produce a listing of the contents of any directory:

listc reports.yearly

Furthermore, since the header designates a formal result, the result of the script
can now be captured and processed:

d...Ustc reports.yearly
~d Dappelld 1

or:

edit (lisle emulator.stores)

Because listc was defined to take an argument, attempting to call it without
one will produce an error. For example:

listc

The system returns the message:

<Pathname> argument must be specified
liste
A

The Pathname argument in the lisle script can be made optional by enclosing
it in parentheses; that is, (+Pathname=). A default value for the argument, to
be used when the script is called without one can also be specified. For
example:

[1 J z..-/istc (+Pathname=reports.yearly) ; Dpw
[2J [Jpw"-79
[3J) z"-list '\Pathname +column

Now, lisle can be called with or without an argument. When called without
one, the script behaves as if you had typed liste reports.yearly.

Specifying Arguments and Modifiers in a Script Definition

A script can have any number of arguments or modifiers. They may be
required or optional. You can specify default values to be supplied when no
value is provided by the user. LOGOS validates the use of the script according
to the syntax stated in the script's header. Accordingly, you must adhere to
certain rules when constructing a script that includes arguments or modifiers.

Table 5.1 Rules for Specifying Arguments and Modifiers in a Script Definition

Arguments

The first letter of an argument name must
be in the second alphabet, as in Pathname.

Arguments must be specified in a particular
sequence and before modifiers.

Modifiers

The first letter of a modifier name must
be in the first alphabet, as in pathname.

Modifiers do not have to be specified in any
particular order, but must be after the last
argument.

For consistency in the header, both arguments and modifiers are preceded with
a + before their name, as shown in the previous example for the lisle script.

Using Scripts 5-9

There are several different forms that you can use in the header to specify
arguments or modifiers when you are writing a script. These fanns are
summarized in the table below, where the generic term, parameter, is used to
signify either an argument or a modifier. The form you select determines such
things ~ whether the parameter is optional or required, whether the user can
supply a value for the parameter, and what the default value is, if any.

Table 5.2 Forms of Script Parameters

Declaration

+parameter=

+parameter(=)

+parameter(=dv)t

(+parameter)

(+parameter=)

(+parameter)=

(+parameter=dv)

Description

The parameter and its value must be specified.

The parameter must be specified. Its value is optional.

The parameter must be specified. Its value is optiona.l and if no value
is specified, its default value is dv.

The parameter is optional. No value is allowed.

The parameter is optional. A value is optional.

The parameter is optional. A value must be provided if the parameter is
specified.

The parameter and its value are optional, and its default
value is dv.

5-10 Using Scripts

t This form of parameter is not fully implemented. While you may specify an
argument or modifier with this form, the resultant behaviour is identical to the
form +parameter(=).

The = in the previous table indicates that the pammeter can accept a value.
Arguments always take values, but there is one form of specification for
modifiers that does not take a value (+parameter).

All of these forms are useful for specifying modifiers. Arguments, however,
are most often specified with one of the following forms:

+parameter=:;

(+parameter=)

(+parameter=dv)

Using Arguments and Modifiers inside Scripts

As noted earlier, a script can contain lines that are executed as LOGOS
commands, as well as lines that are executed as APL expressions. Inside a
script, there are a variety of ways in which arguments and modifiers can be
referenced depending on the information you need to extract in each type of
script line.

Arguments and Modifiers
in APL Expressions

When a user calls a script, LOGOS defines a local variable of the same name
as each argument or modifier that is in the script header. Because these are
nonnal APL local variables, they can be referenced in APL expressions inside
the script.

The value that each of these variables will have depends on several factors:

• the form used to specify the parameter in the script header

• the presence or absence of that parameter in the command which called the
script

• the value supplied, if appropriate, for a parameter

The following table summarizes the rules by which LOGOS assigns values to
these local variables inside the script.

Table 5.3 Rules for Assigning Values to Local Variables in a Script

If:

an argument or modifier is optional, and the
user does not specify it,

a modifier does not take a value, or takes an
optional value, and the user specifies the
modifier but does not supply a value,

the user supplies an argument, or provides
a value for a modifier,

the parameter specification in the script
header provides a default value, and the
user does not specify that parameter,

Then:

the corresponding APL variable is set to a
Boolean o.

the corresponding APL variable is set to a
Boolean 1.

the corresponding APL variable is a character
vector of the value specified by the user.

the APL variable is set to the default value
specified in the header.

Note how the first two cases provide for a natural logic control inside the
script through the use of the Boolean values to control branching, typically
accomplished by specifying valueless modifiers in the script header.

Using Scripts 5-11

Arguments and Modifiers
in LOGOS Commands

5-12 Using Scripts

For example, the following script displays an object and then optionally
displays a cross-reference of the same object, based on the presence of the
+xref modifier.

[]] dx +Pathname= (+xref)
[2J)D+-display \Pathname R display object
[3J -+xref+O R exit if <+xref> not specified
[4 J)[]+-xref '\Pathname R cross reference object

Note the simplicity of the branching logic on line 3. In this case, you are
interested only in whether or not the user has requested a cross-reference, so
there is no need for the user to specify a value for that parameter. Indeed, the
fonn of the specification in the script header does not allow the user to provide
a value for the xrefmodifier.

Two different situations arise when you refer to arguments or modifiers in a
script line that is a LOGOS command.

• You may want to use the actual value of the parameter provided by the
user, for example if they have provided a pathname.

• You may want to pass on the modifier and the value supplied as a modifier
and value specification to the LOGOS command being executed in that line.

To support these two requirements, LOGOS supports two special reference
constructs inside scripts: \parameter and \+parameter.

The following modification of the liste script illustrates the use of these two
constructs. The list command accepts an optional +jull modifier that causes list
to return the full pathnames of each object listed. Let's add the +full modifier
to the script:

[]] z+-Ustc (+Pathname=) (+full) ; [Jpw
[2J [Jpw+-79
[3 J) z+-list \Pathllame +colUlnn \ +f

Note that:

• there are parentheses around +jull in the header so ..hat the modifier is
optional

• there is no =after so that it can '1 accept a value

• the reference to full in the \ + construct is abbreviated to j if is enough
infonnation to uniquely identify the parameter in this script)

Now the following behaviour applies to the lisle script:

Table 5.4 liste Script Behaviours

If:

listc is invoked without +full~

listc is invoked with +full,

Then:

the \+f construct on line 3 will be replaced by
an empty string (that is, it will disappear) when
the line is evaluated.

\ +f will be replaced by +full when the
line is evaluated.

When the command processor encounters the construct \+name in a LOGOS
command within a script, it chooses one of the replacement rules in the
following table.

Table 5.5 Replacement Rules for \+ in a Script

If:

the parameter +name is not specified
in the line that called the script,

the parameter +name is specified
without a value,

the parameter +name is specified
with a value,

Then:

\+name is replaced by an empty string
(it is removed).

the string +name is interpolated.

the string +name=value is interpolated.

The LOGOS command processor follows a similar set of rules when it
encounters the \parameter construct in a script command line. The rules
appear in the following table. .

Table 5.6 Replacement Rules for \ in a Script

If:

the parameter +name is not specified on
the line that called the script,

the parameter +name is specified without
a value,

the parameter +name is specified with a
value,

Then:

\name is replaced with an empty string
(it is removed).

\name is replaced with an empty string
(it is removed).

\name is replaced with a character
vector of the value.

Using Scripts 5-13

NOTE:

Script Argument Scope

This construct enables you to pass the argument or modifier values to a
LOGOS command automatically, without having to verify that a value was
entered. (You may wish to examine the APL variable to determine if the user's
value is a valid one for your application.)

The \ construct can be used only on names defined as parameters in the script
header. To interpolate the value of an ordinary APL variable into a command
line, use the .t. command. For example, to interpolate the value of the variable
dir, which is not a script parameter, into a list command, you could type:

[2]) z+-Ust (~djr) +column

Like commands, scripts also have argument scope. The scope is specified by
including a bracketed flag immediately after the script~s name in the header.
Recall that there are three kinds of command argument scope: short (the
default), long~ and unprocessed. The corresponding scope flags are as follows:

Table 5.7 Scope Flags

Flag Meaning

s Short scope (default)
I Long scope
u Unprocessed scope

For more information on the types of scope. seethe section, Argument Scope,
in Chapter 4: LOGOS Comnw/ld Language.

Advantages of Long Scope Most scripts you write will have short or long scope. Long scope has the
advantage of allowing you to pass a list which contains blanks as the last
argument of your script. This might be useful, for example, in a script that
takes a list of pathnames as one of its arguments. By assigning the script long
scope and making the pathname argument the last one, you can avoid the need
to put quotes around the list.

To allow lisle script to take an arbitrary number of paths as its argument,
change the header to specify long scope:

[J] z...Ustc [I] +Pathnames= (+sunln'zory)

Now you can invoke liSlC with a list of pathnames without resorting to quotes.
If you gave liSle short scope and attempted this, you would get the error too
many arguments.

5-14 Using Scripts

Pros and Cons of
Unprocessed Scope

If you assign a script unprocessed scope, it will not recognize any special
characters in its argument. The script:

• can have only one argument (the blanks that delimit arguments won't be
recognized)

• cannot have modifiers (the + won't be recognized)

• cannot be called using keywords or evaluated arguments (the symbols \,
and (or) will be ignored). Unprocessed scope has the advantage of
making it convenient to enter arguments for commands or scripts which
routinely contain LOGOS metacharacters that you might not want
interpreted.

For example, the script rx aids in the preparation of regular expressions on
terminals that require several keystrokes to enter a left or right brace. It is a
simple filter which removes any leading blank from its argument, encloses the
remainder of the argument in braces, and returns the string as the result.
Because a regular expression might contain characters to which LOGOS is
sensitive (+ or blank, for example), rx has unprocessed scope.

[1 J z+-rxCuJ +Arg=
[2 J z+-' { , I ((, '€1 tArg) +Arg) I ' } ,

Using rx, you can enter:

replace (rx • +-1) • -1 ? *

rather than:

replace { . +--i} • -t 7*

Note that the first expression is slightly longer, but that it will be easier to
enter on certain tenn innIs.

Using Scripts 5-15

Displaying Script Output

Scripts can produce output. They generate:

• error message output

• message output

• a quadprime prompt

• status line output

• result output

You can display the various classes of output using the output command. This
command takes a text as its argument, and uses modifiers to determine what
type of output to produce.

Displaying Error Message
Output

The +error modifier provides you with the ability to signal an error from
within a script. To produce error message output, specify in your script:

)output text +error

For example:

[2]) output cannot define: (.tOer [Dio+ J ; J) +error

The operation of this modifier is similar to the APL system function Dsignal.
output +error causes LOGOS to abandon execution, exit the script, and
display the specified message along with the line invoking the abandoned
script.

Displaying Message Output The +message modifier causes the text to be displayed as standard message
class output. To produce message output, specify in your script:

)output text +message

For example:

[2J)output processing con1plete +nlessage

This is the default class if you do not specify a modifier.

5-16 Using Scripts

Displaying a Quadprime
Prompt

Displaying Status Line
Output

Displaying Result Output

NOTE:

The +quadprime modifier causes output to be generated as if it were a
quadprime ([~) prompt To produce a quadprime prompt, specify in your script:

)output text +quadprime

The next piece of output displayed will appear on the same line. For example:

[2 J) output 'the answer is: ' +quadprime
[3]) output thirty six

generates the out9ut:

the answer is: thirty six

The +status modifier causes the text to be displayed on the status line of the
terminal device if environment status is set to full. To produce status line
output, specify in your script:

)output text +status

For example:

[2J) output (.t. 'now processing , , nalne) +status

The message in the status line will be displayed until another status line
message overwrites it or until script execution is finished.

If the current device does not support a status line, no output is generated.

The +result modifier allows you to generate buffered result output To produce
result output, specify in your script:

)output text +result

For example:

[2 J) output (i.rs) +result

If a script uses several output +result calls, the actual result of the script is the
catenation of all calls.

You can also generate result output by declaring a formal result in the script's
header, as described in the preceding section.

These techniques are mutually exclusive. You cannot use output +result in a
script whose header includes a formal result variable.

Using Scripts 5.. 17

Using Composite Scripts

There are advantages to each of the techniques for generating script result
output. The output +result technique is useful with scripts that produce a
stream of output in a loop. This is because output can be displayed in
segments, each time the output command is invoked. When a result variable is
used~ no output is displayed until the script exits and returns a result.

The formal result method is more efficient and is particularly appropriate with
scripts that produce a single piece of result output. Also, the value returned by
a script using this technique does not have to be a character vector. Higher
dimension arrays, numeric data, packages, and enclosed arrays are all allowed.
LOGOS converi.S these values to character vectors for you automatically. The
converted values are the display image of the original values. In particular, a
package is converted to:

package

You may often need to call a user-defined function from a line of APL code
within a script. If the function is not already in your active workspace, you can
use the get command from within the script to fetch the required functions or
variables. (The get command is described in detail in Chapter 8.) You can
even localize the names of the fetched functions and variables to protect the
outer environment.

Sample Composite Script

5-18 Using Scripts

A simpler way to make a user-defined function available for use in a line of
APL code within a script is to localize its palhname in the header of a script,
just as you localize simple names in the header of an ordinary APL function.

Scripts that have pathnames localized in their headers are called composite
scripts. When the script is called, each object specified by a pathname in its
header is fetched and defi.ned as a local object within the script. This happens
automatically and invisibly to the caller.

The following composite script illustrates how to call the functions sqz and
vtom, and use the variable CR. All of these objects are in the .public.uti!
directory.

[J J z~tseg +Pathnames=; .public.util.sqz Ivtofn ICR
[2J R return terminal segment ofpathllan-les

[3J z+-(' ',CR) vtom Pathnafnes

[4J z~sqz (,1 ,<P/\\<Pzt' • ') / " ',z

Shortening Pathnames In a
Script Header

The alternation character (I) is used in the pathname to avoid typing the
directory name three times. The pathname pattern matches the pathnames:

• .public.util.sqz

• .public.util.vtom

• .public.util.CR

For more details on regular expressions, see Chapter 12: Software
Development Tools, or Appendix A: Using Regular Expressions.

The pathnames in the header can refer to functions, variables, or clusters. The
use of regular expressions makes it possible to include an entire directory of
objects within a script. These objects are truly local to the script. They become
undefined or assume their global definitions (if any) when the script completes
execution.

Pathnames in a script's header are fetched only the first time a new or
modified script is used. The composite object formed by the script and its local
objects is saved for future usc. It is then no longer necessary for LOGOS to
fetch the local objects when the script is executed; they are an integral part of
the sClipt. If the script is edited and then invoked, the objects are fetched again
and the composite sClipt is rebuilt.

Note that the definitions of local objects are frozen when the script is
compiled. If you later edit one of the pathnames referenced in the header, the
new definition of this object is not reflected in the composite script until the
script itself is changed.

You can shorten the pathnames you include in the script's header by
associating a workdir (w) compilation directive with the script.

The argument to w is a set of working directories to be used when fetching the
objects referenced in the header. The compilation directive is set using the
save command. (For more information on compilation directives, see Chapter
10: Using the Compiler.)

Using Scripts 5-19

Using Clusters in Scripts

5~20 Using Scripts

For example, if the pathname of the script is .nUlbra.tools.tseg, the directive is
saved as follows:

save .mabra.too/s.tseg [: cJ +va!ue=w=.public.uti/

The header of this script can then be shortened to:

[]] z+-tseg +Pathnames= i sqz. ; vtom. i CR.

or:

[]] z+-tseg +Pathnames=; sqz Ivtom ICR.

The trailing dots in the locals list are required to distinguish the pathnames
from ordinary locals.

By including the pathname of a cluster in the locals list of a script, you can
take advantage of the calling tree analysis features of LOGOS.

The build command accepts a script as the root of a potential cluster. It
performs an analysis of the script, and generates a calling tree as it would with
an ordinary function. The script itself is excluded from the cluster that is
constructed.

To see how this works, suppose you want to write a script that is a cover for a
function called avam. This function references several other functions and
variables, all of which reside in the directory .rhl.sys.avam. The SClipt itself is
called .rh/.scripts.avam and might look something like this:

[1] avam +Argument=; .rhl.sys.avamcluster
[2] avam Argument

The cluster avamcluster can be constructed using the build command:

build .rhl.sys.avamcluster .rhl.scripts.avam +depth=all
+workdir=.rhl.sys.avam

The resulting cluster contains all of the objects required by the avanl script.
The script automatically localizes these objects and defines them when it is
invoked. For more infonnation on clusters and the build command, see
Chapter 8: Building Applications with LOGOS.

Controlling Local Environments

Scripts often need to change some aspect of the LOGOS environment
temporarily. The environment includes your:

• working directories

• command directories

• separator char~cter

• status area control

• other dynamic properties of the session

For example, a script that focuses on a certain set of working directories may
want to pre-empt the caller's working directories for the duration of its
execution. If it runs a lot of private commands from the same directory, it
might want to establish its own local command directories. If it issues a lot of
LOGOS commands, particularly in a loop, having the status line refreshed for
each command might be tedious; disabling the status area on a screen display
can avoid unnecessary and time-consuming output.

A script can achieve its own local environment by storing any values it plans
to change. For example:

[1] buildfile (+Dir=.john.nu)dules.chartsuh) ; \,vkdir
[2]) wkdir+-l-vorkdir ~ retain present value
[3J) workdir \J)jr ~ set new value
[.]

[.]

[.]

[n])workdir (.i.tvkdir) ~ restore previous value

Although this works in principle, it is cumbersome if several aspects of the
environment are being changed. Moreover, if the script terminates abnonnally
and never executes its last line, it can be difficult to predict the status of the
caller's environment.

Capturing an Environment To remove the burden of saving environment values before altering them,
LOGOS maintains an environment stack. This stack provides a simple and
effective means of saving and restoring environments. For more information
on stacking environments, see Chapter 14: Profiles and Environments.

• To capture the caJler's environment, issue the command environment +stack
from within your script.

Using Scripts 5..21

The following figure illustrates the operation of the environment stack at four
different times. These are just after a script:

• is called

• issues environment +stack

• modifies environment parameters

• issues environment +destack

Figure 5.1 Stacking an Environment

IIIWORKDIR: MOE

II STATUS: FULL
l.!:::

STATUS: FULL

STATUS: NONE

WORKDIR: MOE

WORKDIR: DICK

_t
'--- -1

WORKDIR: MOE

STATUS: FULL

STATUS: FULL

WORKDIR: MOE

STATUS: FULL

I

WORKDIR: MOE

AFTER SCRIPT IS
CALLED

AFTER
ENVIRONMENT +STACK

AFTER MODIFICATION
OF ENVIRONMENT

BY SCRIPT

AFTER
ENVIRONMENT +DESTACK

Because virtually any script which saves the environment will want to restore
it, LOGOS handles the restoration for you automatically: If you have written
an environment +stack into a script and not destacked it, LOGOS will destack
it for you (thereby restoring the previous values) at the point when the script
finishes. The implicit destack happens even if the script aborts or fails with an
error, so you can be sure you won't be leaving your caller in an unpredictable
state.

5-22 Using Scripts

Example The script cmddoc fctches the long fonn description of cach LOGOS
command and appends it to a file which it creates. To avoid unnecessary
writing of the status area, the script disables it by setting environment status
none. Here's what cmddoc looks like:

[1] z+-cmddoc; tn; txt; .public.util.sys.hsp
[2]) environment status none +stack ~ save environment, adjust status
[3 J (' t' , T256 .1- 4 t Dts) Dcrea/e tn+- ((1 P tn) Lt /l +-0 , Onurns) € 0 ~

create file
[4J) with 'u txt+-?? a U i-txt Dappend In' (?) A append help messages
to file
[5J z+-tn hsp 'eraseoplease hold for mary lee' A submit hsp request

The environment command on the second line performs two functions: it snaps
a copy of the caIler's environment, and then causes subsequent status area
activity to be ignored. Establishing a status setting of none ha~ no effect unless
the status line Wllii enabled. The with command on line 4 calls?? for each
command, and then appends this result to the file created on the preceding line.

If the status area were not disabled. LOGOS would show that the script called
?? and .i. repeatedly (once per LOGOS command). No destack is necessary in
the script (although you can include one), because LOGOS restores the saved
environment implicitly.

The environment stack is actually a little more general than this. You can stack
multiple snapshots of the environment settings, and restore them at will.
Stacking more than one entry is important if you are writing a script that needs
its own environment, and your script calls another which needs it'i own
environment. The following figure shows how the stack might appear after two
snapshots of it have been taken via environ/nent +stack, with intervening
changes to the working directory.

Using Scripts 5-23

Figure 5.2 Stacking Two Environments

WORKDIR: DICK WOAKDtR: MOE WORKDIR: DICK
STATUS: NONE STATUB: HALF STATUS: NONE

WORKDlR: MOE WORKDIR: DiCK WORKDIR: MOE
STATUS: FULL STATUS: NONE STATUS: FULL

WORKDIR: MOE
STATUS: FULL

BEFORE AFTER AFTER AFTER AFTER

SCRIPT' ENVIRONMENT +STACK ENVIRONMENT ,STACK ENVIRONMENT ,DESTACK ENVIRONMENT ,DESTACK
IS CALLED AND MODIFICATION OF AND MODIFICATION OF AT COMPLETION OF AT COMPLETION OF

ENVIRONMENT BY ENVIRONMENT BY SCRIPT 2 SCRIPT 1
SCRIPT 1 SCRIPT 2

Using Script Debugging Mode

Normally, if a line of a script engenders an error, an error message is printed,
the line of the script is displayed, and execution of the script is terminated. For
example:

test

This could produce a message such as:

syntax error
.mabra.tools.test[3]) txt+-list 'a b

A

u

In the above example, the error is obvious; to correct it, edit the script and
then re-execute it. The problem may not always be as obvious, however. You
might want to examine the values of local variables, perhaps modify one or
more of them, and then resume execution of the script, possibly on a different
line. You can do all of these things by enabling script debugging mode.

5-24 Using Scripts

Enabling Script Debugging
Mode

Working in Debugging
Mode

The environment debug parameter controls script debugging mode. This
parameter can assume the values on or off; the default is off.

To enable debugging mode, type:

environment debug on

To save this in your profile, type:

environment debug +profile

The environment command is described more fully in Chapter 14: Profiles and
Environments.

With debug enabled, errors in scripts do not cause the execution of the script
to be abandoned. Instead of returning to the LOGOS system prompt after the
error message is displayed, you are placed in debugging mode. To remind you
of this, the system prints the message:

debug

It also prompts you for input with six b]anks~ and awaits input. For example, if
you ran the script test which resulted in an error, you would see a message
such as:

value error
.mnbra.tools.testC5J txt-+-txt,cr

1\

debug

Debugging mode is an immediate execution mode. You can enter an APL
expression and it will be executed. You can branch to any line of the script.
You can enter a naked branch arrow to tenninate the script and return to the u

prompt. In the current example, you might continue your session as follows:

debug
cr-+-DavC157J

debug
-..Dlc

The script resumes execution and completes normally.

Using Scripts 5-25

Recalling and Editing Input You can also recall the last line you entered, go into editing mode, edit and
re-execute your last line of input. This is analogous to the manner in which the
APL interpreter lets you edit the last line you entered in immediate execution
mode.

To recall the last line you entered and go into editing mode, type:

You can recall a line and position the cursor under a specific character within
the line by supplying a number with the). For example:

)7

This recalls the last line and places the cursor under the seventh character in
the line.

Executing LOGOS
Commands

Inquiring on Scripts on the
Stack

5-26 Using Scripts

To execute LOGOS commands while in debugging mode, precede them with
) . For example:

debug
)list +column

mise tools utilities
debug

)edit tools.scan

The LOGOS si command is very similar to the APL)si system command.
While the APL command displays information only about each function on
your execution stack, the LOGOS command also provides information about
each script on the stack. For example:

debug
)si

fcreate [1 J *
.mde./0gas.mycmds.putfi/e[2 J
.mde.logos.mycnuis.update[3J
logos [17J
maint[5J

This shows that you are suspended on line 1 of the function fcreate, which was
called from line 2 of the script .mde./ogos.nlycmds.putfile, which in turn was
called from line 3 of the script .m.de./ogos.1llycnuls.update, which was invoked
from the LOGOS function which was called from line 5 of a function named
maint.

Points to Note about
Debugging Mode

Sample Scripts

Substitute for the list
Command

Although debugging mode offers many of the facilities of APL immediate
execution mode, there are some points to keep in mind when using it:

• If you use Dtrap, avoid trapping events in the 400-500 range. You can
adversely affect the LOGOS event traps and partially disable debugging
mode. Avoid Dsignal entirely. When you resume your script with -+Ole or
another line number, traps you have set previously may no longer be in
effect.

• Ordinary APL system commands such as) load and) eopy are not available
in this mode. Input lines preceded by) are interpreted as LOGOS
commands. This means that) copy is interpreted as the LOGOS copy
command, not the APL system command of the same name. Script names
as well as ordinary command names are recognized.

• You can edit a suspended or pendent script. If you are running Release 19
of SHARP APL, any changes you make to the script are saved both in
LOGOS and in the workspace. The modified script can be restarted with a
branch to the appropriate line. With earlier releases of SHARP APL, your
changes will be saved in LOGOS, but will have no effect on the suspended
script.

• If you invoke a script from debugging mode via) script, and this script also
suspends and leaves you in debugging mode, entering a naked branch (-+)
will cut you back to the level of the first script suspension. To return to the
system prompt, issue -+ once for each suspended script (one more time in
this example).

As you become more familiar with the LOGOS environment, you will
discover useful applications for scripts on your own. The following examples
illustrate some of the principles presented in this chapter.

The personal preferences you develop after using LOGOS for a while will
likely incline you toward certain command/modifier combinations. A script is
a good way to construct a user-defined command that behaves almost
identically to a particular LOGOS command, but with different defaults. The
lisle script used throughout this chapter is an example of this.

Using Scripts 5-27

The liste script, as developed so far, has a few glaring deficiencies.

Table 5.8 Deficiencies with the listc Script

Problem

Its name is longer than the name of the
command it mimics.

It does not accept the full range of modifiers
that the list command does. To obtain a
columnar lis'ting of full directory names
recursively, you would be forced to
abandon Ie and go back to the
native list command. For example:
list +column +full +recurs;ve

Solution

Change the name of this script to Ic.

Add all of the list modifiers to the header of Ic,
and use the \+ construct to conditionally
interpolate them into the script.

The following script is an exact substitute for the list command, except that the
+eolumn modifier is enabled by default, and output is constrained to width 79.
Note that +eolumn is included in the header of ,the script, even though it is not
referenced within the body of the script If the user accidentally invokes Ie
with +column, it is ignored.

[] J z~lc[IJ (+Pathnames=) (+column) (+data=) (+full)
(+headings) (+/ong) (+overhead) (+recursive=)
(+summary) (+type) (+ultimate) (+versions=) ; Dpw

[2J Dpw~79

[3J)z~list \Pathnames +c \+d \+f\+h \+1 \+0 \+r
\+s \+t \+u \+v

The profile and fork Scripts Chapter 14: Profiles and Environments includes a description of how to define
an expression to be executed each time you enter LOGOS. Briefly, this is done
by setting the environment entry parameter to the desired expression and
saving the environment in your LOGOS profile.

One handy entry expression is one which invokes a profile script You will
probably not want to perform an extensive amount of processing here, as this
script is executed every time you enter LOGOS. But you might want to take
two different courses of action in LOGOS depending upon the type of task you
are on. This would give you a background processing capability.

5-28 Using Scripts

The following script illustrates:

[1] z"profile; .public.util.ts.date IDAYS IMTflS
[2] R logos entry profile
[3J R

[4J ~(-]=I28)plO A branch if we are not a (-task
[5J R

[6J R t-task profile
[7J R

[8J z..date 0 ~O R get t;nle alld date, and exit
[9J A

[10J R non I-task profile
[11] A

[12] 10:) (.tDsp) R non t-task, execute Dsp
[13J) .public.logos.cmds.off R sign off

If the task entering LOGOS is aT-task, your profile function prints the time
and date. Note that this is a composite script; it uses a function called date and
two objects called DAYS and M111S [roln the .public.util.ts directory of the
LOGOS utility library.

If the task is an N-task or a B-task, the contents of Osp are executed as a
LOGOS command, then the task is signed off via the .public.logos.cmds.off
script. Now any sequence of LOGOS commands can be executed by assigning
a character vector expression to Dsp and starting an N-task which enters
LOGOS.

You can make this facility easier to use by writing another script, which sets
up Dsp and starts the N-ta>-'ik:

[]] z"fvrk[u] +ColnnUlnds=; Osp
[2 J Dsp"Cvnunallds
[3J z"Orun ' : 1 logos Clogos 0 0'

The fork script takes a single argument containing a list of expressions to be
executed. Note that this script has been assigned unprocessed scope. This
means that the argument to the script can contain quotes, + symbols,
parentheses, and other reserved characters, which will not be interpreted by
LOGOS before the argument is passed to the script.

As an example of how to use the fork script, consider a situation in which you
want to run a script that performs a lengthy update on a number of workspaces
and files. You could tic up your terminal waiting for this process to complete,
or you could execute the following line:

fork bigupdate +file=sysfiles +ws=testfns

Using Scripts 5-29

Logging LOGOS Session
Output

5-30 Using Scripts

This initiates an N-task to perform the update and frees your tenninaI
immediately. Note that because fork has unprocessed scope, the bigupdate
+file and +ws modifiers can be entered without confusion.

A possible shortcoming of the facility just developed is that there is no record
of what happens in the N-task. The following script uses Dout to log LOGOS
session output:

[1] z+-Iog [/J (+Fname=logoslog) (+clear) (+echo)
(+off) ; .public.util.files.t:.fopen; tn

[2 J R log logos session output to narned file
[3J R

[4J R default file name is 'logoslog'
[5J R

[6J A modifiers:
[7J R

[8J R +clear: drops all con1ponents frolrl end offile
[9] A +echo: causes output to be echoed locally
[10J R +off: turns off logging
[llJ A

[12J -+off+IO A request to disable logging?
[13J tn+-Dout lOA if so, restore default
[14J z+-' session logging deactivated' 0 -..0
[15] /0: tn+-Fname lJ"fopen 0 A tie or creale file
[16J -+clear+l1 A clear file?
[17J Ddrop tn, -/2pOsize tn A drop all con1fJonents
[18J 11: -tDout echo,tn A output to file, optional echo
[19J z+-' session logging to ' , , ,Fn(lIne, ' , , activated'

All of the modifiers in this script are Boolean switches, because they do not
accept any arguments. Notice how the associated variables are used in
branching statements, such as line 12, and in implicitly conditional logic, such
as line 18. The ~fopen function used on line 15 is a LOGOS utility, provided
to assist in the generation and manipulation of files. It is described in
Appendix B.

Making Sure Your Scripts have Room to Run

LOGOS is a paged application. It moves modules in and out of your
workspace on demand. Without direct user control over the page-out of
LOGOS objects, it is possible for a script executing a line of APL code to
encounter a wsfull, even when there are a number of LOGOS modules in the
workspace which could be paged out. The function
.public.logos.cnuis.uti/.6/rec/aim and the script .public./ogos.cmds./rec/aim
provide a means of reclaiming this space.

Invoke 6/rec/aim or free/aim at the beginning of a script which requires
significant amounts of free workspace. In addition, the 6/reclaim function can
be called from a Dtrap expression in response to a ws full.

6/reclalm versus Ireclalm The advantage of the function over the script is that it can be embedded in an
event trap recovery expression. However, you must materialize the function in
your workspace, either by localizing it in the header of your (composite)
script, or by using a get command. This is unnecessary if you use the script,
which is always directly accessible.

A good rule of thumb is to use the function form if you want to invoke it from
a trap expression, or if the script is already a composite one; otherwise, use the
script form.

Using Scripts 5-31

CHAPTER 6: USING THE EDITOR

Terminal Support 6-3

Editing Objects 6-3
Editing Objects in Your Active Workspace 6-3
Editing AttJibutes 6-4
Editing Versions 6-4
Executing Commands as You Open an Object 6-4
Registering Objects Out 6-5
Overriding Registration 6-5

Looking at Objects in the Editor 6-5
Objects in Line Mode 6-6
Objects in Full Screen Mode 6-7
Changing the Editor Command Separator 6-7

Using Editor Commands 6-8
Command Output 6-8
Using Commands with the Reference Line 6-8
Entering LOGOS Commands 6-8
Using Function Keys 6-9

Getting Help 6-9
Full Screen Help 6-10

Exiting the Editor 6-12
Changing Object Name 6-12
Changing Object Destination 6-13
Changing Object Ty~ 6-13
Discarding Changes 6-13
Registering Objects In 6-13
Overriding Registration 6-14

Using Editor Tools 6-14
Importing and Exporting Blocks of Text 6-14
Locating Strings in Objects 6-15
Highlighting What Yau Locate 6-16
Cross-referencing an Object 6-16
Locating Suspicious Names in Headers 6-17
Formatting Objects 6-17
Resequencing Line Labels 6-17
Sorting the Header's Locals List. 6-17
Searching and Replacing 6-17
Dispi,lying Objects 6-18

Using the Editor 6-1

6-2 Using the Editor

Tables

Table 6.1 Function Key Definitions 6-8

Terminal Support

Editing Objects

Editing Objects in Your
Active Workspace

LOGOS supports two classes of terminals: standard asynchronous terminals,
and members of the IBM 3270 family of full screen display devices. Although
a 3270 device may be more convenient to use certain features, the editor has
the same functionality regardless of terminal type. LOGOS detennines your
terminal type automatically when you enter the editor.

If you are using an asynchronous device such as a PC running Reuter:file's
CONNECT, the editor runs in line mode, mimicking the SHARP APL DEL
editor. In particular, V and the [nOm] family of commands can be used as
they would be in the system DEL editor. (The DEL editor is, in turn, based on
the VS APL Extended Editor and Full Screen Manager. For more information,
see the document, VS APL Extended Editor and Full Screen Manager. IBM
publication SH20-2341-1.)

If you are using a device that supports AP124 (for example, an IBM 3270
display station or a PC with 3270 emulation) the LOGOS editor runs in full
screen mode. It also allows you to use program function keys.

Invoking the editor on an object is called opening an object for editing. You
can invoke the editor using the edit command or the V command. These two
commands are synonymous. The edit command takes a list of names or
pathnames as its argument. These names can refer either to existing objects or
to new objects that you want to create.

For example, to edit the object !nodules.chart, type:

edit nwdules.chart

Patterns are not allowed in the argument, because they have no meaning if you
are defining a new object. But you can use the list command to resolve a
pattern against objects that already exist in LOGOS:

edit (list !J.r? * [fJ)

Here, the edit command opens the definition of all the functions in your
working directory that begin with !J.r.

You can edit objects in your active workspace by prefacing the name of the
object with =. For example:

edit =table

Using the Editor 6-3

Editing Attributes

Editing Versions

Executing Commands as
You Open an Object

6-4 Using the Editor

If the object was opened from the workspace, the edit command saves it back
there by default

To edit an object attribute (its compilation directives, documentation, journal,
note, or tag) specify an extended pathname indicating the attribute. For
example, to edit the documentation attribute of the path john.modules.chart,
type:

edit john.modules.chart[: dJ

When you are already editing an object and want to access another attribute of
the same object, you can omit the name and provide only the bracketed
qualification; the editor assumes you are referring to the current path. For
example, to edit the journal attribute of the current object, use:

v[:jJ

To edit a particular version of an object, specify an extended pathname
indicating the version. For example, to edit the second version of path
john.modules.chart, type:

edit john.modules.chart[2J

When you are already editing an object and want to access another version of
the same object, you can omit the name and provide only the bracketed
qualification; the editor assumes you are referring to the current path. For
example, to edit the third version of the current object, type:

'V[3]

Here, version 3 of the object is opened for editing.

On 3270 devices, function key F12 is defined to move you among the source,
journal, and documentation attributes of an object. This makes it especially
convenient to record changes made to an object at the same time as you alter
the object itself.

You can pass a series of commands to be executed by the editor before it
solicits input from the keyboard using the +cofnmand modifier. For example,
to begin editing modules.chart with the reference line at the first occurrence of
the string title..... , you could use:

edit modules.chart +colnnUlnd=/ocate/title.....

The following example shows how multiple commands can be passed to the
editor.

edit modules. chart +conlmand=' /ocate/tit/e-t-u add3'

Registering Objects Out

Overriding Registration

The quotes are required so that LOGOS does not interpret the u within the
line as the beginning of a new command. You could also accomplish this by
providing an alternate separator character. For example:

edit modules.chart +command== c locate/title-t-c add3

Use of the registration facility with the editor can be implicit or explicit. If an
object has registration potential set, the editor will automatically register the
object out when opening it; no special action is required on the part of the
person editing the object.

Alternatively, you can explicitly request that an object be registered out during
your editing session, by using the +register modifier to edit. For example:

edit John.modules.chart +register

In either case, LOGOS prints a message reminding you that the object is
registered. For example:

John.nwdules.chart: *now registered

You can use the +override modifier to override registration set on an object by
another user. This allows you to save a new version of an object, even if it's
registered by someone else. For example:

edit john.nwdules.chart +override

When the original registrant next accesses the object, he or she is immediately
notified that you overrode the registration.

Looking at Objects in the Editor

When you open llil object for editing, each line is given a line number. If you
open a variable or a script, the first line is 1. Functions begin on line O.

By default~ the first line of the object is the reference line. You use the
reference line to manipulate the object during editing.

The status line displays:

• the name of the object opened

• the version of the object opened

• the type of the object opened

• a browse indicator to let you know whether you arc in browse mode

Using the Editor 6-5

Objects In Line Mode

6-6 Using the Editor

It appears on the screen automatically when you edit in full screen mode.
When you are editing in line mode, you can display it using an editor
command.

When you invoke the editor in line mode, the system returns the pathname and
version of the object you have opened and enters edit mode. For example:

edit john.practice.createfile

The system returns the message:

function: .john.practice.createfile [2]

vu

vU is the editor command prompt. The u indicates your current separator
character.

To display the object, type:

[OJ

The object scrolls on your terminal. Stop the scrolling by pressing Ctrl-S. Start
it again by pressing Ctrl ..Q.

When the object finishes scrolling, the cursor rests on the next blank line under
the object, where you can use other editor commands.

.. Display the status line by typing:

status

A status line might look as follows:

john.nwdules.chart[4J type: f mod

The f indicates that the object you are edi ting is a func tion, and mod indicates
that you have modified the object.

.john.modules.opt[2J rank: 1 type: vc cd

This status line shows that you are editing a character variable (vc). The
variable is a vector because its rank is 1. The absence of the mod flag indicates
that you have not modified the object. The letters cd at the end of the status
line tell you that this object has non-default compilation directives and
documentation.

Objects in Full Screen
Mode

When you open an object using full screen mode, the system enters the editor
screen:

.john.modules.chart [0]

[0] chart

new function: .john.modules.chart[O]

u

type: f

--- logos r2.0 editor ---

Changing the Editor
Command Separator

The top line of the screen is the status line. Beneath the status line is the input
area containing the object. At the bottom of the input area is the editor
separator character u, and beside it rests the cursor. This is the command line,
where you enter editor commands.

You can specify a different separator character by beginning the line with it.
For example:

U !change/u/n

This makes it possible to use the default separator character in a command
argument.

Using the Editor 6-7

Using Editor Commands

Command Output

Using Commands with the
Reference Line

Entering LOGOS
Commands

6-8 Using the Editor

Like LOGOS commands, editor commands can be abbreviated to a few
characters. Each command has a minimum number of characters that must be
entered for it to be recognized. For example, the again command can be
abbreviated to Q.

In line mode, command output is displayed directly on your tenninaI. In full
screen mode, output is displayed in a small window at the bottom of the editor
screen. The window appears only when it is required. OthelWise, the display
area expands to fill the space.

Several commands, such as add, use the reference line as a starting point. For
example, if you move the reference line to line 20 and use the command add
5, the editor inserts the new lines after line 20.

Several editor commands also have an up version that reverses the direction of
the command. For example, to tell the editor to add 5 blank lines above the
reference line, rather than below the reference line, use the command:

addup 5

Many commands move the location of the reference line.

To change the reference line to a specific line number, use the command [0]
where n is the line nurnber. For example, to move it to line 6, type:

[6J

To move the reference line a number of lines up or down from the current
location, use the up or down commands. For example, to move the line down 5
lines, type:

down 5

The locate command moves the reference line to the next line containing a
given string or pattern.

While the editor environment is distinct from the LOGOS environment, it is
possible to issue LOGOS commands from within the editor. You can do this
using the logos command.

The logos command takes a LOGOS command line as its argument, and
executes it as if you had typed it at the cOlnmand prompt outside the editor.
For example:

logos list .john.modules +colulnn

Using Function Keys

You can invoke any command or script, with the exception of the edit or exit
commands, in this manner. If you are using a 3270 device, output from the
command is displayed in the editor window.

• To make the editor logos command easy to type, you can use) as a surrogate
for it. For example:

) list john.modules +column

This is equivalent to:

logos list .john.modules +column

In full screen mode you can also use function keys. Function keys have the
following definitions.

Table 6.1 Function Key Definitions

Getting Help

Key

F1
F2
F3
F4
F5
F6
F7
Fa
F9
F10
F11
F12

Function

Invokes help.
Toggles line number protection on/off.
Closes a window, or saves the object and exits the editor.
Enters input mode after the reference line or the current line.
Switches to the next object in the edit stack.
Makes the current line the reference line.
Scrolls backward one page.
Scrolls forward one page.
Recalls the last command line.
Splits the current line at the cursor position.
Moves the cursor to the end of the current line.
Switches between source, journal, and documentation attributes.

The editor help system provides a detailed explanation of all editor commands.
You can display a summary of editor commands by simply typing help. This
lists each editor command, its short form, and its function.

You can get help for individual commands by typing help followed by a
command. For example:

help add

Using the Editor 6-9

You see the message:

The <add> command adds one or more lines to an object. If you do not
provide an argument, <add> inserts one line. If you provide the first
argument, a positive integer, <add> inserts that number of lines below
the reference line. If you provide a second argument, a string of text,
<add> places the text on the added lines.

To insert the new lines before the reference line, use the <up> variant of
<add>.

Examples:

Insert two empty lines following the reference line:

add 2

Addfive empty comment lines above the reference line:

add5 R

Full Screen Help In full screen mode, pressing Fl produces a list of topics. For example:

select help topic
pf keys
line number commands
utility interface
the <again> command
the <aplw> command
the <browse> command
the <copy> command
the <diamond> command
the <down> command
the <end> command
the <get> command
the <help> command
the <input> command
the <join> command
the <locate> command
the <move> command
the <next> command
the <putnum> command
the <renum> command
the <resequence> command
the <setname> command

7=up 8=down --------------------------

command summary
keywords
separator characters
the <add> command
the <apl> command
the <bottom> command
the <change> command
the <delete> command
the <display> command
the <edit> command
the <format> command
the <header> command
the <highlight> command
the <insert> command
the <lastline> command
the <logos> command
the <names> command
the <put> command
the <quit> command
the <replace> command
the <sepchar>

-----------------------------3=back

To choose a topic, type any character beside the topic and press Enter. The
help message appears on the screen.

6-10 Using the Editor

Using the help command produces a split screen. The help message appears in
a window on the bottom half of the screen. This allows you to look at the help
message and the object you are editing at the same time. For example:

help add

The following screen appears.

• john.modules.chart [0]

[0] chart

The add command (has up variant)
Short form: ad
Parameters I [INTBGBR] [STRING]

type: f

The <add> command adds one or more line to an object. If you do
not provide an argument, <add> inserts one line. If you provide the
first argument, an integer, <add> inserts that number of lines
below the reference line. If you provide a second argument, a
string of text, <add> places the text on the added lines.
To insert the new lines before the reference line, use the <up>
help add
u

--- logos r2.0 editor ---

To scroll through a help message using F7 and F8, you must move the cursor
inside the display window. By default, help messages appear in a window of
twelve lines. You can change the size of the display window using the window
command. For example, to changelhe window to 20 lines, move the cursor to
the command line and type:

window 20

The maximum window size is 12 lines less than the maximum number of lines
your terminal can display.

Using the Editor 6-11

Exiting the Editor

Saving your changes to an object and exiting the editor is called closing an
object. You can do this using the end or 'l command. For example:

end

If you are using an IBM 3270 device, you can also exit by pressing F3.

NOTE: If you are using the full screen version of the editor and you have something
displayed in the window, you must press F3 twice to close the object. The
editor closes the window first, and then the object.

These methods have the same effect: the object you are editing is saved and
then removed from the current editing stack.

If you have more than one object open, the editor moves to the next object;
otherwise, it tenninates and returns you to the LOGOS command prompt.

Changing Object Name

6-12 Using the Editor

II To save an object without incrementing its version number, type:

endEO]

You may sometimes want to save an object in a different path or under a
different name from the one you started with. There are two ways to do this.

• You can specify the new name as the argument to the end command. The
argument can be a pathname or a simple name. For example, to save the
current object under the name comp.linedit, use:

end comp./inedit

If linedit is a function or a script, the name linedit must agree with the name in
the object's header. For example, you can change the name in the object's
header from pool to loop and then use the command:

end loop

The copy associated with the original name is unaffected by the operation.

II You can also change the name of an object without exiting the editor with the
setname command. For example:

setname comp.linedit

This command changes the pathname under which the object will be saved,
and if the object is a function or script, automatically updates its header to
reflect the change.

NOTE:

IMPORTANT:

Changing Object
Destination

If the object is a function or script, typing over its name in the header line will
not cause the name to change.

The object is not saved yet. You must still use the end or ~ commands to save
it.

You can change the destination of an object by changing its name using the
setname or end commands. Thus, an object opened for editing from the
LOGOS file system can be resaved in your workspace.

Changing Object Type

Discarding Changes

Registering Objects In

II To save the object into the workspace under a new name using setname.
precede the object name with =. For example:

setname =complinedit

When you press F3 or type end, the object will be saved in the workspace.

The datatype and rank of an object can be changed with the settype command.
For example, if you are editing a function and you want to convert it to a
script, you can type:

settype s

For example, to convert an object to a character vector (even if it were, for
example, a numeric matrix), type:

settype vc 1

The first argument, vc, indicates a variable of character type; the second
argument, 1, indicates an object of rank 1 (vector).

If you decide not to save your changes, you can use the quit command to
discard them and exit without saving a new version of the object. To protect
you from inadvertently discarding important work, the quit command refuses
to exit if the current object has been modified in any way.

II To discard modifications to the object and. if there are no other objects open,
exit the editor, type:

quit invn

II To discard modifications to several objects and exit the editor, type:

quit all

If the object has rcgistrat ion potential set, it's automatically registered back in
again when you close it. But if the object was already registered by you,
registration potential is ignored.

Using the Editor 6-13

Overriding Registration

Using Editor Tools

Importing and Exporting
Blocks of Text

6-14 Using the Editor

You can register the object in yourself using the +register modifier to the
editor end or V command. For example:

end +register

The end and V commands also support a +override modifier to override
registration. This modifier is more convenient than the parallel modifier to the
edit command. To override registration, type:

end +override

The editor contains its own set of tools to help accelerate the program
development process. For details on the commands, and all other editor
commands, see the LOGOS Reference Manual. Be careful not to confuse the
editor commands with the LOGOS commands of the same names.

The editor uses two commands to move blocks of text in, out, and around an
object: get and put.

The put command writes all or part of the object being edited to the editor
clipboard, or to a variable in your workspace as a character matrix. The vput
command is similar, except that it writes the variable as a character vector
with embedded carriage returns delimiting lines.

For example, to put the reference line and two lines after it into the editor
clipboard, type:

put 3

To put the reference line and all lines after it into the clipboard, type:

put *

To put the reference line and two lines after it into a variable in your
workspace, specify the variable name after the number. For example:

put 3 foo

The get command extracts text from the editor clipboard, an object in your
workspace, or a LOGOS path, and inserts it into the object you are editing.

To fetch the contents of the editor clipboard and insert it after the reference
line, type:

get

To fetch the value of a variable or the canonical representation of a function
that exists in your workspace, and insert it into your object, specify the
variable or function name. For example:

getfoo

The get command recognizes abbreviated pathname syntax. To fetch the
contents of a path and insert it into your object, supply the pathname. For
example:

get .john.tools.report

You can also copy all or a number of lines from the cursor on, and insert them
after the reference line. This allows you to copy text from a window into your
object. For example, to copy all lines from the cursor on, type:

get *

To copy a specific number of lines from the cursor position down, for example
5, and insert them after the reference line, type:

get * 5

The cursor may be located in either the editor window or the display window.

Locating Strings In Objects The editor locate command searches for a given string and positions the editor
reference line at the next occurrence of the string. This command is an

enhanced version of the locale command available in the DEL editor. There
are two major improvements: the command accepts an optional syntactic
search qualifier, and it supports regular expression patterns.

The syntactic search qualifier modifies the action of the locate command, so
that it takes context into consideration when searching for a string. When
searching syntactically, names and numbers are treated as units and either
match fully or not at all.

To illustrate, a simple locate of tr, as in:

loeateltr

will find tr in strings such as trails/ate or control. However, if we include the
syntactic search qualifier _, only the name tr is sought:

locate_Itr

This distinction is very important when editing functions or scripts.

Using the Editor 6-15

HIghlighting What You
Locate

Cross-referencIng an
Object

6-16 Using the Editor

The use of regular expressions enhances the utility of the locate command
significantly. For example, to search for strings such as /0:,11 :, and so on,
you could use:

locate/{/CO-9J+: }

See Chapter 12: Software Development Tools and Appendix A: Using Regular
Expressions for a detailed description of regular expressions.

The locate command finds only the next occurrence of a string or pattern; it
does not find all occurrences. The highlight command identifies all
occurrences of a pattern.

On an asynchronous tenninal, the highlight command simply displays all lines
that contain the specified string. On a 3270 device, the highlight command
allows you to specify the screen attributes (colour, intensity, and highlight) to
be used to identify matches. For example, to highlight all instances of the
name beta in inverse red, use:

highlighclbetalir

Here, the syntactic flag is used to limit the context of the search. The
highlight command is particularly effective when searching for a regular
expression. For example, you can highlight all branching statements in a
program, and thereby reveal its control flow, using the command:

highlightl{"7 *} Iw

The resulting matches are highlighted in white.

You can have different patterns highlighted on the screen concurrently, each
with its own distinct attributes. Suppose you are debugging a function and
want to identify all references and assignments to the variable ctl. You can
highlight references in yellow and assignments or indexed assignments in red
with the following:

highlight_lctlly U highlight_/{crl("[I'*"J)-+- }Ir

To cancel all highlighting. type:

highlightl

The editor xrejcommand produces a cross-reference of the function currently
open; it is very similar to the LOGOS command of the same name. Careful
examination of the cross-reference of an object can be extremely helpful in
avoiding and tracking errors.

On 3270 devices, the cross-reference is displayed in the window.

Locating Suspicious Names
In Headers

Formatting Objects

Resequencing Line Labels

NOTE:

Sorting the Header's
Locals List

The header command automates some of the duties normally performed with a
cross-reference table. The xref command is commonly used to detect
identifiers that are unintentionally global, or identifiers that are localized but
not referenced. The header command isolates these identifiers and asks you on
a name-by-name basis if you want the name added to or removed from the
header. On 3270 devices, the list of suspicious names is presented as a full
screen menu. If the header is altered, it is also sorted automatically.

The formnt command puts an object into its canonical display format. It also
ensures that the object can be defined (has a valid header) and renumbers its
lines. Use the format command to clean up a function or script that you have
changed extensively, and verify that it can be saved. If the object you are
working on is a numeric army, thejornUlt command validates the array's
contents and regularizes its spacing.

The resequence command is useful if you use program line labels such as 10,
11 , and so on. When you insert new labels into a function and disrupt their
numeric order, you can use resequence to restore the sequence. For example, if
you insert a line labelled 199 between two lines labelled 11 and 12, resequence
will rename 11, /99, and /2 to 11, /2, and 13, respectively. If you have
inadvertently assigned a particular line label twice, resequence prints an error
message. All references to the labels are altered also to match the new
sequence, unless the reference is inside quotes.

The +preftx modifier to this command controls which labels in a function or
script are resequenced. The default value is I OJ and causes labels of the form In
to be processed. When +prefix is specified OJ its value is used in lieu of I. For
example:

resequence +preftx=err

would cause line labels of the form erlll to be resequenced.

You can optionally specify the starting label number (the default is 0) and
increment (the default is 1) as arguments to the command.

The resequence command does not affect line labels that are enclosed within
quotation marks, as often occurs in OtrajJ statements. You might consider
rewriting traps to put the line label outside of quotes. For example:

Dtrap'" , 'V 2 e -+' ,T log 11error

The sort command helps keep the header of a function or script well-ordered.
Many programmers find it convenient to organize local names in alphabetical
order, as it simplifies locating a particular n~lInc in a long header. You can use
the sort command to achieve this; it sorts the contents of the header's locals
list and removes any duplicate entries.

Using the Editor 6-17

Searching and Replacing

Displaying Objects

6-18 Using the Editor

The change command is the editor's general purpose find-and-repIace
primitive; it allows you to replace one string or pattern with another. Like the
locate command, change supports the syntactic search qualifier _'

For example, to change all occurrences of the identifier title to subtitle from
the reference line to the end of the object, type:

change_/title/subtitle/* *

The characters * * indicate that all occurrences on all lines following the
reference line will be changed. For more information on the third field
containing * *, see the LOGOS Reference Manual.

The ability to use regular expression patterns as arguments makes this
command very flexible and powerful. For more information, see Chapter 12:
Software Development Tools.

The display command displays the source of an object stored in LOGOS or in
your active workspace. If you are using a 3270, the object is displayed in the
window.

You may find yourself in a situation where you are editing an object and need
to consult the source of another object. For example, you might be writing a
line that invokes a function whose calling conventions you don't recall. Or,
you might need to check a piece of online documentation. The display
command makes these operations very simple and straightforward.

The display command recognizes the abbreviated pathname notation discussed
earlier, which sets the command apart from using logos display or) display.
For example, to display the change journal for the object you are presently
editing, you can type:

display [:1]

To display the previous version, type:

display Cl]

If you have made changes to the source of an object and want to examine a
copy of the object as it was before your changes. you can display the latest
version using:

display [J

CHAPTER 7: USING AUXILIARY TASKS

StMting an Auxiliary Task 7-3
Specifying a Task Nmne 7-3
Obtaining a Clear Workspace 7-4
Lifespan of an Auxiliary Task 7-4

Communicating with an Auxiliary Task 7-5
The send CommaIld 7-5

Signalling Break or Attention 7-6
Getting into Immediate Execution 7-6
Freeing up Your Terminal 7-6
Running a Task Autonomously 7-6
Retrieving Pending Output 7-7
Interrupting an Auxiliary Task 7-7

The talk Command 7-7
Using LOGOS Commands in a talk Session 7-8
Leaving the talk Session 7-8

Sample talk Session 7-10

Monitoring Auxiliary Tasks 7-11

Transferring Objects between Workspaces 7-12
Protecting Objects from Overwrites 7-13
Ignoring Errors if Transfer Fails 7-13

Using Auxiliary Tasks with other Commands 7-14
Sample Sessions 7-14

Using Auxiliary Tasks in Scripts 7-15
The lib Script 7-15
The drop Script 7-15
The startgen Script 7-16
The savewss Script 7-16

Tables

Table 7.1 Commands You Can Enter at the Warning Prompt in send 7-7

Table 7.2 Commands You Can Enter at the Warning Prompt in talk 7-9

Using Auxiliary Tasks 7-1

7-2 Using Auxiliary Tasks

Sta.rting an Auxiliary Task

An auxiliary task is an S-task started by you under the auspices of LOGOS. It
can be thought of as a logical extension of your LOGOS session. There are a
number of auxiliary task commands in LOGOS; these enable you to initiate an
auxiliary task, communicate with it interactively or under program control, and
inquire upon its status. Other commands, such as get and save, support options
that allow you to reference objects in an auxiliary task workspace as easily as
you reference objects in your active workspace.

Auxiliary tasks are initiated using the signon command. To initiate an auxiliary
task, type:

signon

Each task has a task name associated with it. You can have more than one
auxiliary task signed on at a time, and the task name is used to differentiate
among them.

By default, auxiliary tasks are signed on to the account associated with your
alias, with a task name of aux. For example:

auxiliary task 4110 <aux> signed on 11apr86 20:25

The signon command can also take an argument, specifying the alias or user
number under which the auxiliary task is to run~ and possibly a password. For
example:

signon proj:secret

If you supply an alias as the argument~ LOGOS determines the primary
account associated with that alias~ and signs the task onto that number.

Specifying a Task Name To specify a task name other than aux, use the +task modifier. All of the
auxiliary task commands accept an argument or modifier that specifies the
name of the task you want to reference. For example:

signon proj:secret +task=inst
auxiliary task 4118 <inst> signed on J1apr86 20:26

Here, an auxiliary task named inst is deployed under the alias pro} (which has
a lock of secret). If +task is specified without a value, it always refers to the
default auxiliary task, aux.

Using Auxiliary Tasks 7-3

Obtaining a Clear
Workspace

Lifespan of an Auxiliary
Task

7-4 Using Auxiliary Tasks

If you provide an alias that is not your own and do not specify the alias'
signon lock, LOGOS asks for it with a protected prompt:

signon proj +task=inst
password:
auxiliary task 4118 <inst> signed on 11apr86 20:26

It is generally important that an auxiliary task start off in a known state. The
signon command guarantees that the newly-spawned task is in immediate
execution in a clear workspace when the command completes. However, in
some cases, the S-task may be forced into a Profile or continue workspace left
.by a previous session.

If LOGOS finds the task in immediate execution in another workspace, it
issues a) clear command to obtain a clear workspace. If the task is not in
immediate execution, LOGOS attempts to get the task into that slate for you.

The signon command tells you of any actions it took in attempting to obtain a
clear workspace. For example, if 1234567 has a continue workspace, the
following might occur:

signon 1234567:secret +task=slave
<continue> loaded, cleared
auxiliary task 7812 <slave> signed on 12apr86 03:58

If the signon command is not able to obtain a clear workspace, the command
itself fails. Therefore, if signon completes without producing an error report
and terminating abnormally, you are guaranteed that the auxiliary task has a
clear active workspace.

The signon command returns as its result the name of the task created.
Normally, this result is not displayed. You can see it using O+-, or capture it
using assignment to a variable.

An auxiliary task has the same properties as any other S-task. LOGOS uses a
global shared variable for each active auxiliary task. If you retract any of these
shares by erasing one of the variables, loading another workspace, or by using
Osvr, the associated task terminates.

The signon command supports a +retract modifier that allows you to request
retract pennission for the S-task. This permits you to retract the share without
terminating the auxiliary task. However, even with retract permission granted,
the task will tenninate if it requests input while the share is retracted.

You can also use the send command (described below) to request retract
permission.

LOGOS uses a temporary workfile to keep track of auxiliary task information
across sessions. This workfile is named ~Ologostemp; it is created on your
account when you issue a signon command. If a workfile already exists on
your account, it is simply tied and reused.

When you exit LOGOS, the workfile is erased if you don't have any active
auxiliary tasks. If you do have active auxiliary tasks, a reminder message is
displayed and the workfile is preserved. You can always erase the workfile
yourself, but if you do so, you will lose information regarding any active
auxiliary tasks and will not be able to re..establish communications with them.

The workfile is also used by the transfer command, and can be put to further
use in future releases of LOGOS. As a safeguard against accidental erasure,
LOGOS ties the workfile with a passnumber of - 1.

Communicating with an Auxiliary Task

Two commands are provided for communication with auxiliary tasks: send and
talk. The send command is most useful for managing an auxiliary task as a
brief interactive session, or under the control of a script. The talk command
initiates a true interactive session, creating the illusion that you are signed onto
the auxiliary task as an asynchronous T..task.

The send Command "The send command transmits one line of input to an auxiliary task and returns
the output generated by it as its result. To transmit a line of input using send,
type:

send input +task=task

For example:

send ' (1 Oli'S 2) [15 ;] ' +task=insl
comms
control
file
menu
snap

Here, the names of the first five variables in the active workspace of the
auxiliary task inst are returned as the result of the command. The argument is
enclosed in quotes so that the parentheses around lOws 2 are not evaluated by
LOGOS, but rather are evaluated by APL in the auxiliary task.

The result of the send command is all of the output generated by the S-task, up
to the next request for input. Normally, an input prompt is returned as part of
the result. However, if the next request for input is an immediate execution
prompt (carriage return followed by six blanks), this prompt is not included in
the result of the send command.

Using Auxiliary Tasks 7..5

Signalling Break or
Attention

Getting Into Immediate
Execution

Freeing up Your Terminal

Running a Task
Autonomously

7-6 Using Auxiliary Tasks

The send command fails if the expression transmitted to the task fails. If the
expression is an APL statement, an error occuning during the execution of the
line is considered a failure.. If the expression is a system command, any
response other than a completely successful one is considered a failure. For
example, incorrect command is always an error, and anything other than a
timestamp from) save indicates an error.

If you want send to ignore errant conditions, you can specify the +suppress
modifier. +suppress causes the send command to return its result without
inspecting it for error messages, allowing execution of your command line or
script to continue even if the argument to send fails.

You can signal Break or Attention to an auxiliary task by using the +break
modifier with the send command.

Break is sent before the line itself is transm itted. If the task is in input mode,
+break tries to interrupt the input request using 0 bs u bs t.

When you are sending a system command or an expression that must be
evaluated in immediate execution, you can include the +immex modifier to
specify that the task be in the desired state:

send) copy reports subtotal +imtnex +task=inst
saved 1986-04-09 19:39:32

If the auxiliary task is not already in immediate execution, the send command
tries to get it into that state by transmitting break or 0 bs u bs t. The command
fails without transmitting the line if LOGOS cannot get the task into
immediate execution.

Auxiliary tasks are often used as slave tasks for lengthy operations. For
example, you may want to begin a long update without tying up your terminal
waiting for completion. To free up your terminal, use the +asynch modifier in
your send command.

With +asynch, the send command transmits the line without waiting for a
response. To receive output at a later time, issue the send command again. If
you don't provide an argument to the send command, it simply returns any
pending output from the task.

You can sever your connection with an auxiliary task and let it run
autonomously by specifying +relract with the send command.

If you have specified +retract, you can load another workspace or sign off
without affecting the task, as long as it is processing. The task will continue to
run until it requests input, returns to immediate execution, or explicitly signs
itself off. If none of these has happened, you can re-enter LOGOS and
re-establish communications with the task.

Retrieving Pending Output

Interrupting an Auxiliary
Task

The retract option is useful only while your auxiliary task is in a pure
processing state. If the task requests input or enters immediate execution after
the share has been retracted, it will terminate even with +retract set.

You can check on the processing within the auxiliary task by using the send
command with no argument.

This retrieves pending output generated by the task.

To interrupt an auxiliary task, signal an interrupt by pressing Break or
Attention while waiting for the send command to produce output.

LOGOS prompts you with:

abandon. resume. or break:

Enter one of the following (each of which can be shortened to the first
character):

Table 7.1 Commands You Can Enter at the Warning Prompt in send

Command

abandon
resume
break

Result

Terminates the send command immediately.
Resumes execution of the send command and ignores the interrupt.
Propagates the interrupt to the auxiliary task.

The talk Command The talk command allows you to carryon an interactive session with an
auxiliary task. The argument to the talk command is the name of the task with
which you wish to communicate. It is optional, and as with the other auxiliary
task commands, defaults to aux.

• To initiate an interactive session with auxiliary task flUX, type:

talk

II To initiate an interactive session with another auxiliary task, type:

talk name

The talk command issues an immediate execution prompt (carriage return
followed by six blanks) when the auxiliary task is awaiting input. You can
change the prompt so that sessions look a little different from ordinary APL
sessions.

Using Auxiliary Tasks 7-7

II To initiate an interactive session with an auxiliary task, and change the
immediate execution prompt, use the +prompt modifier. For example:

talk +prompr=prompt

Your session continues as if you were signed on to the auxiliary task rather
than to the spawning task. You can do anything you would in an ordinary
terminal task, including starting another LOGOS session.

NOTE:

Using LOGOS Commands
In a talk Session

Leaving the talk Session

If you are signed on using a terminal that supports a status line, and you have
the full status line enabled, the second line displays a message reminding you
that you are communicating with an auxiliary task.

The) logos command allows you to perform LOGOS commands directly from
your talk session. Type:

) logos command

) logos executes the command issued in your primary task, not in the auxiliary
task. Here is an example showing use of the) logos pseudo-system command.
The 0 character is used as a statement separator in the second entry:

) logos workdir
john.modu/es.chartsub
) logos 0 edit verify 0 delete oldverify

A shorthand for) logos is available. If the character following the) is a valid
separator character, the remainder of the line is treated as a LOGOS command.
For example, the second entry shortens to the following:

) 0 edit verify 0 delete oldverify

To recall the last LOGOS command you executed from talk mode, type:

))

There are three ways to exi t a talk session:

• using the)disconnect command

• pressing Break or Attention

• signing off the auxiliary task

Each method is described in more detail below.

II To exit using) disconnect, type:

)disconnect

7-8 Using Auxiliary Tasks

The) disconnect pseudo-system command results in an immediate exit from
the talk session. The auxiliary task itself is not affected, and you can resume
your session with it by executing talk again.

• To exit using Break or Attention, press the appropriate key. Either key causes
the prompt:

abandon, reswne, or break:

To exit at this prompt, type:

abandon

LOGOS immediately exits your talk session.

Table 7.2, below, summarizes the effect of each response to the warning
prompt

Table 7.2 Commands You Can Enter at the Warning Prompt in talk

Command

abandon
resume
break

Result

Exits your talk session, but leaves the task connected.
Returns to your talk session and ignores the interrupt.
Propagates the interrupt to the auxiliary task.

• To exit by signing off your auxiliary task, type:

)off

Using Auxiliary Tasks 7-9

Sample talk Session

7-10 Using Auxiliary Tasks

Here is a sample session using the talk command. The session:

• investigates a workspace

• fixes an error by changing the source in LOGOS

• ends by sending a MAILBOX message infonning someone of the change

u signon u talk
auxiliary task 7160 <aux> signed on 21mar86 19:02

) load 1234567 crashws
saved 1986-03-21 17:40:44

oer
6 value error

picktitle[16J title4-fread tn, -] +2 xcn
1\

)si
picktitle[16J *
reports[]]
getcommand[3J
start[SJ
.t.

) logos replace tit/e4-fread title+-l1fread picktitle
.budget.repfmt.picktitle[5]

) load 666 box
saved 1985-01-07 23:50:04

unread
no messages for fixit

1470214 t Dprof
send

to bdev
text:
I jusl fixed the bug in the <crash'H's> workspace. it \-vas
caused by a slight typing error in the fUllctioll
<.budget.repfmt.picktitie>. I have not generated a new
copy of the ws yet. thill
Space Enter
action: send
no. 2621440 filed 19.07.34 frj 21 mar 1986
to Space Enter
mail service complete

)disconnect
u +-send) off
auxiliary task <aux> ler/nina/ed

Monitoring Auxiliary Tasks

The tasks command is used to obtain infornlation about your auxiliary tasks.

• To return a list of the names of all active auxiliary tasks you created, type:

tasks

• To rCJXlrt detailed information on ta<;ks, supply an argument of one or more
task names. For example:

task one two

The report includes:

• the APL msk id

• user number

• sign-on time

• CPU time

• connect time

• an indication of whether or not retract permission has been granted

• To display headings above each column of the report, use the +heading
modifier. For example:

tasks aux +headings

You see a message such as:

name--id----account--signon time----cpu-connect-retract
aux 4110 mde lJapr8620:25 105 257 yes

• To report on tasks running on the accounts of particular users, use the +users
modifier and provide a list of aliases with it. For example:

tasks aux +users=mde dpn1 rbk

• To get a report on all your tasks, type:

tasks (tasks)

Using Auxiliary Tasks 7-11

You see a message such as:

aux 4110 mde
pfask 4118 mde

11apr86 20:25 105 290 yes
11apr86 20:26 86 25J no

Transferring Objects between Workspaces

The transfer command makes it possible for you to copy objects from one
active workspace to another. Objects can be transferred between the active
workspaces of any two tasks you have initiated, in either direction, using the
+to and +from modifiers.

The argument to the transfer command specifies a list of objects to be
transferred. You can use a +from modifier to specify the task whose active
workspace is the source for the transfer. You can use a +to modifier to specify
the task whose workspace is the destination. Both the +from and +to modifiers
take a task name as an optional argument.

If you specify only one of these modifiers, the other workspace involved in the
transfer is assumed to be your current active workspace. If you specify a
modifier without an argument, the default task aux is assumed for that modifier.

WARNING! The transfer command assumes that any auxiliary tasks involved in a transfer
operation are in immediate execution mode. The transfer command operates
by sending APL expressions to the auxiliary tasks to be executed. If a task is
not in immediate execution, the expression cannot be evaluated, and the
transfer command will fail.

• To transfer objects from the current workspace to the active workspace of a
task, specify a value for the +to modifier.

For example, to transfer the objects rcat and verify from the current workspace
to the active workspace of the inst task, type:

transfer rcat verify +to=inst

• To transfer an object from the current workspace to the active workspace of
the aux task, do not specify a value for the +10 modifier.

For example, to transfer the object report from the current workspace to the
active workspace of the aux task., you could type:

transfer report +to

7-12 Using Auxiliary Tasks

• To transfer objects from the active workspace of a task to the current
workspace. specify a value for the +from modifier.

For example, to transfer the objects compact and table from the active
workspace of the inst task to the current workspace, type:

transfer compact table +from=inst

• To transfer an object from the active workspace of the aux task, to the active
workspace of another task, specify a value for the +to modifier and do not
specify a value for the +from modifier.

NOTE:

Protecting Objects from
Overwrites

Ignoring Errors if Transfer
Fails

If you specify both the +from and +10 modifiers, the current active workspace
is not involved in the operation at aIL

For example, the command below transfers the object vlonl from the active
workspace of the aux task to the active workspace of the inst task:

transfer vtoln +froln +to=inst

You can ensure that an object never overwri tes one of the same name in the
destination workspace by specifying the +protect modifier with the transfer
command.

When you specify +protect, the behaviour of this command is similar to the
behaviour of the APL)pcopy system cOlnmand.

Nonnally, the transfer command fails if it is unahle to transfer any of the
requested objects. If you are anticipating this condition, you can cause the
error to be ignored by using the +suppress modifier.

The +suppress modifier is often used in conjunction with the +protect
modifier, so that failure of the command is avoided if any of the objects are
already defined in the destination workspace.

Using Auxiliary Tasks 7-13

Using Auxiliary Tasks with other Commands

Commands you can use with auxiliary tasks are build, distribute, edit, get,
save, shell, and wssave. Specify them with the +task modifier to identify the
auxiliary truik involved.

LOGOS also has a global environment task parameter, set using the
environment command, that can be used to precondition these other
commands. The default value of this environment parameter is *. By
convention, * is the user's T-task (the one that originally began running
LOGOS itselO. Although these commands normally deal with the active
workspace by default, you can change their default behaviour by setting the
environment task parameter to the desired task name. For more information on
the environment command, see Chapter 14: Profiles and Environments.

When the build or get command is directed to use an auxiliary task (through
either its +task modifier or the global task parameter), it fetches objects from
the LOGOS hierarchy and deposits them directly into the active workspace of
the named auxiliary task. In a similar fashion, the save command, if so
directed, fetches objects from the active workspace of the named auxiliary task
and saves them as LOGOS paths in the hierarchy.

Sample Sessions

7-14 Using Auxiliary Tasks

The short session below illustrates how commands work with auxiliary tasks.

First, an auxiliary ta..'ik named proj is created. Then, the task loads a workspace
called uti!. Finally, it saves all of the functions and variables in that workspace
into the directory .mabra.tools.ulil. Note the use of the send command to
obtain the list of function and variable names in the auxiliary task.

u signon +task=pro}
auxiliary task 9198 <pro}> signed on 12apr86 12:02
u send) load uti!
saved J986-04-08 J3:00 :28
U save (send 1 Dws 3 +lask=proj) +workdir=.rnabra./ools.util
+task=pro}

Here is the same example, using the environment task parameter:

U signon +task=proj
auxiliary task 9198 <proj> signed on 12apr86 12 :02
u environment task proj
u send) load uti!
saved 1986-04-08 13:00:28
u save (send lOws 3) +workdir=.nUlbra.lools.util

Now you can use the get command issued from within a talk session to fetch a
function namedfaccess from the LOGOS hierarchy into the active workspace
of the auxiliary task. Because of the global task environment parameter, you
do not need to specify the destination for get.

U talk proj
)fns

ascan convert model rcat vtom
) logos get tools.uti/faccess

.mabra.tools.utillaccess[4]
)fns

ascan convert faccess model rcat vtom

Like the transfer command, the build. get, and save commands require that the
auxiliary task be in immediate execution. If it is not, the behaviour of the
command is unpredictable.

Using Auxiliary Tasks in Scripts

Auxiliary tasks are very useful in scripts; they let you write scripts that install
workspaces or perfonn general library management functions with ease.
Several examples are presented in this section.

The lib Script

The drop Script

The lib script returns as its result the workspace library of the specified user. If
the argument User is not specified, it defaults to the user number of the caller.

[1] z+-lib (+User) =
[2]) signon \User +task=libtask R sign on task
[3 J) z+-send) lib +task=libtask R fetch library
[4J)send) off +task=libtask += R sign off task

The drop script uses the signon, with, and send commands to drop a list of
workspaces from a specified librnry. An optional +user modifier selects the
alias or user number of the librnry; if not specified, the user number of the
caller is assumed. The script has long scope, so that multiple workspace names
can be provided without the need for quotes. At the completion of the script,
the auxiliary task is signed off.

[1 J drop [IJ +Wslist= (+user) =
[2 J)signon \user +task=drop A sign on task
[3J)[]+-with 'send) drop a +task=drop' \Wslist A drop wss
[4J)send)off+task=drop R sign off task

Using Auxiliary Tasks 7.. 15

The startgen Script

The savewss Script

7-16 Using Auxiliary Tasks

The startgen script uses an auxiliary task to begin the execution of a script that
generates a large system. After the generation script has been started, the
auxiliary task is disconnected and the generation continues autonomously. The
script that actually perfonns the generation is called maint.gensys.

[1] startgen
[2J)signon +task=gen A sign on task
[3J) send) copy 1 logos +task=gen A copy <logos> fn into clear ws
[4J) send logos +task=gen R enter logos
[5J R invoke script asynchronously and request retract permission
[6J) send maint.gensys +asynch +retract +task=gen

The savewss script saves the contents of one or more workspaces into similarly
named LOGOS directories. It starts an auxiliary task on the user number or
alias indicated by the +user modifier (which defaults to the caIler's number if
not specified). Then, the script loads each workspace specified in its argument.

Note how the send command is used on line 17 to obtain a list of object names
to save. The objects in each workspace are saved in a directory whose name is
formed by appending the workspace name to the working directory given in
the +workdir modifier. After the last workspace is processed, the auxiliary task
is signed off. The script's result is all of the pathnames that it saved.

[1J savewss[IJ +Wss= (+user)= (+workdir)=;Dio;tiwsid
[2 J A save a list of workspaces into logos file system.
[3J A

[4J A parameters:
[5J R

[6J A Wss : list of ws names (no library numbers)
[7J A +user : user number owning workspaces
[8J A +workdir: working directory to prepend to ws
[9J A

[10J Oio+-1 A set local origin
[11]) signon \user +task=sw A sign on dedicated task
[12]) environment task sw +stack R set task parameter
[13J) workdir \workdir A set working directory
[14J lp:-+(pWss+-(v\Wsst' ')/Wss) ~end A any wss left?
[15J wsid+-(-1+t+-WSSl' ') p Wss <> Wss+-t +Wss A get next ws
[16J) send)xload (~wsid) A load it
[17J) output (save (send10ws3) +workdir=(~wsid)

+makedir) +result A save contents of ws
[18J ~lp A go backfor nwre
[19J end:) send)off A sign off task

CHAPTER 8: BUILDING APPLICATIONS WITH
LOGOS

End Environments 8-5

The get Commartd 8-7

A Simple Approach to Building Workspaces 8-8

Building a Simple File 8-9

Improving Upon the Simple Approach 8-11

Clusters and the build Command 8-12
Clusters 8-12
The build Command 8-13
Tree Analysis 8-14
Using the build Command 8-15

Audit Files 8-16
Specifying Audit Files 8-17
Using and Maintaining Audit Files 8-17

Tools for Building Workspaces 8-18
The wssave Command 8-18
The wsbackup Script 8-19

Building Files 8-22
Generating Foreign Paging Files 8-23

Shells 8-25
Arguments to shell 8-26
Anatomy of a Shell Around a Package 8-27
Options with shell Used on Packages 8-28

+compile 8-28
+header 8-28
+lock 8-28
+qlx 8-28
+skelelon 8-28
+task 8-29
+variant 8-29

Building Applications with LOGOS 8-1

Paging Files - A New End Environment 8-29
Paging File Structure 8-29

Paging Areas 8-29
Nodes 8-30
Paging Concepts 8-30

What is Paging? 8-30
Page-in 8-30
Page-out 8-31

Designing a Paged System 8-31
Selection of Paging Areas 8-31

Explicit Selection 8-32
Implicit Selection 8-32

Page-in of Nodes 8-34
DemaIld Paging 8-34
Request Paging 8-34

Page-out of Nodes 8-35
Explicit Page-out 8-35
Implicit Page-out 8-35

Heuristics for Implicit Page-out 8-36
Least Recently Used (LRU) 8-36
Least Recently Paged (LRP) 8-37
Largest Objects First (LOF) 8-37
Paging Priority 8-37

Paging Utilities 8-38
Structuring a Paged System 8-38

Isolating Subtrees 8-38
Controlling Behavior through Paging 8-39
Explicit Page-in 8-39
Implicit Page-in 8-40

Generating a Paged System 8-40
Defining Nodes Using build 8-40
Generating the Paging File withftlesave 8-42
Identifying the Paging Area ~ 8-42
Exclusion by Inference 8-43
Specifying Keep-in Priority 8-44
Specifying Node Size 8-44
Overwriting and Updating a Paging File 8-45
Building Paging Files With a Script 8-46
Diagnostics 8-47

Using Shells with Pagefile Nodes 8-47
Anatomy of a Page File Shell 8-48
Options With shell 8-49

A Method for Maintaining and Generating Applications with
LOGOS 8-50

A Prototype Application 8-51
Generation Script Checklist 8-60

8-2 Building Applications with LOGOS

Tables

Table 8.1 File Utility Functions 8-10
Table 8.2 shell Command Sources and Destinations 8-26
Table 8.3 Paging Utility Functions 8-38
Table 8.4 Diagnostic Tools 8-47

Figures

Figure 8.1 General Structure of an Application 8-6
Figure 8.2 The Parts of a Shell 8-27
Figure 8.3 Overlaying Paging Files and Working Directories 8-33
Figure 8.4 Parts of a Page File System 8-48
Figure 8.5 Utility Directory Hiemrchy 8-53
Figure 8.6 Sample Directory Structure 8-54

Building Applications with LOGOS 8-3

8-4 Building Applications with LOGOS

End Environments

You have seen how LOGOS can be used to organize and manage the objects
that form the building blocks of an application. At this point, you should be
familiar with the techniques necessary to get an object into LOGOS, to
manipulate it within the hierarchy, to edit it, to delete it, and so forth. These
capabilities are pointless, however, unless there is a means for assembling
these objects into the workspaces and files that comprise application systems.
The term end environment is used to describe these workspaces and files.

This chapter will show you how to use LOGOS to build applications. Some
familiar tools will be used in new ways and some new tools, designed
specifically for application building, will be introduced. As with many other
aspects of LOGOS, there are a variety of alternative approaches to application
building. This chapter explores several of these techniques. The chapter ends
with a detailed discussion of a methodology for establishing and generating
applications in LOGOS.

Probably the ideal execution environment for an APL system is a single saved
workspace, containing all of the functions and variables the system needs. Few
large-scale systems achieve this ideal in practice, for more often than not, the
use of files to store or transport data becomes an important part of the system '5

design. But every APL system has at least some components which are stored
in a saved workspace. This part of the application is workspace resident.
Workspace-resident systems face three important limitations:

• Sharing. Communicating information through saved workspaces is usually
awkward. Files facilitate the sharing of information. Changes are
immediate, and all users can take advantage of them instantly.

• Permanence. Data changes which must be preserved are better handled with
files. Workspaces require an explicit)save operation, whereas any change
made to a file is taken by the SystCITI to be permancnt without further
action.

• Workspace size. Because many applications are too large to fit entirely in
one workspace and still leave sufficient working storage for the application
to perform reliably, many systems keep a miniature databa,;e of functions
and variables in a file.

To work around these limitations, parts of the system are usually stored in a
file, brought into the workspace when needed, and then either written back to
the file or expunged when no longer required. These systems have file-resident
component,;, and they represent most applications written in APL. Even a
system that will fit in a workspace and is not shared ITIay keep data on file for
permanence, or progralTIs on file to prevent or exploit name contlicts.

The general structure of an application is ill ustrated in Figure 8.1.

Building Applications with LOGOS 8..5

At the center is a workspace, containing functions, variables, and system
variables (such as Dio). The worlcspace and its contents may entirely compose
a small system. A more complex application may use data and program files,
and one or more paging files. A paging me can contain arbitrary application
data, as well as multiple independent areas from which objects may be paged.
These multiple areas allow you to control a system's behavior, when there are
similar objects in several areas, one set can be used in preference to another, or
several sets can "overlay" to produce in the workspace exactly the combination
of functions and variables you need.

Shells provide another means of running a large system in a small workspace.
A shell is a function that acts as a data "umbrella", and materializes required
objects as locals beneath it. When the work of the function is complete, the
materialized objects disappear. Shells are also useful for avoiding name
conflicts in the workspace. See the section on shells later in this chapter.

Figure 8.1 General Structure of an Application

Paging l..~~~~y
Utilities

8-6 Building Applications with LOGOS

Workspace

System
Variables

t
Page File

Area B

The get Command

The get command provides a basic transport mechanism between the LOGOS
hierarchy and the workspace. Given a list of paths~ get will materialize them in
the workspace. Example:

)clear
clear ws

) copy 1 10gos
saved 1987-07-27 12:46:00

logos
logos r2.0
u get inventory genera/.Ops IDpw +compile=x,d,p

All objects directly subordinate to the inventory directory, and the user's
standard values of Dps and Dpw, are compiled and materialized into a clear
workspace. In this example~ the entire workspace-resident system is defined by
a single LOGOS path, inventory.

inventory is a directory which contains only functions, variables, and links -­
and no subordinate directories. Organizing the directory this way makes
system generation easy.

The +protect modifier prevents overwriting of objects of the same name in the
target environment:

u get inventory
u get general.l1?* [fJ +protect
unable to define: general.~help general.~qi

In this example, the first command materializes all objects one level below
inventory; the second materializes all functions in general whose names begin
with t::. except those already defined by inventory. If inventory is a directory
containing other directories below it, the +recursive modifier may be used to
specify the levels from which objects will be fetched.

To define objects at all levels below inventory, use:

u get inventory +recursive

The +workdir modifier establishes a temporary set of working directories, for
just the single command:

u get inventory genera/.Ops IOpw util.? * [fJ +tvorkdir=.invent.reI3

Building Applications with LOGOS 8-7

Specifying multiple working directories allows you to overlay one directory's
contents with another:

u get inventory genera/.Ops IOpw util.?* [fJ +workdir=.invent.reI3 (workdir)

This establishes a working directory list of .invent.reI3 followed by the current
working directolies. Since the directories are searched in the order of their
specification, objects found in the earlier directories shadow objects of the
same names in the subsequent ones.

A Simple Approach to Building Workspaces

The get command provides enough functionality to build a workspace.
Consider a simple application consisting of a single end environment: a
workspace containing a handful of functions. Here is a manual procedure for
building the workspace using only tools discussed thus far:

1 Obtain a clear workspace.

2 Copy the logos function from] logos into the workspace and execute it.

3 Set the working directory to the directory containing the source for the
workspace.

4 Issue one or more get commands to bring 'the required objects into the
workspace.

5 Exit LOGOS.

6 Erase the LOGOS function.

7 Save the workspace with an appropriate workspace-ide

While this manual procedure would accomplish the job, it's very crude. An
obvious improvement would be to encapsulate the workdir and get commands
within a script. This would save some typing and would guarantee consistent
results. The)copy and)save steps would still have to be executed manually.
These steps can be automated as well through the use of an auxiliary task. The
following script illustrates these techniques:

[]] z+-genreportlws
[2J)signon +task=genreport]
[3])workdir .plan.wss.reportl +stack
[4]) get runrepl format] calc] totals +task=genreportl
[5 J) z....send) save report] +task=genreportl
[6J) send) off +task=genreportl

8-8 Building Applications with LOGOS

This script signs on an auxiliary task~ establishes a set of working directories,
defines the relevant objects into the active workspace of the auxiliary task,
saves the workspace by transmitting a save command to the task, and then logs
the task off. Maintenance of the workspace has been simplified greatly, since a
single LOGOS command (script) will now create a new copy of the workspace
containing the latest versions of all objects.

Building a Simple File

A similar technique can be used to build a file. The following script builds a
file named report2 which has a character vector file description in component
1 and a package containing the function surn and the variables accumtab and
6aee from the directory .p/anjiles.report2 in component 2:

[1] genreport2jile;accumtab;sunl;tn;6acc;.public.utilfiles.6jstie 16jappend
[2J) get .plan.jiles.report2.accumtab lfiledesc Isurn 16acc
[3J In-+-' report2' 6fstie 0
[4J jiledesc 6jappend tn
[5] (Dpack' accumtab sum 6acc') 6jappend tn
[6] Duntie tn

Building Appli~alions with LOGOS 8-9

The file utility functions in .public.util files are quite useful for writing scripts
of this nature. The utilities are summarized below (see Appendix B: File
Utilities for full details):

Table 8.1 File Utility Functions

Function

Afappend

Afbackup

Afcopy

Afcreste

Afcwrite

Affirst

!!atlast

Afmappend

Afname

Afopsn

Afreplace

Afstie

Attie

6fwrite

8-10 Building Applications with LOGOS

Description

Appends data to a file.

Backs up a file by copying it to another file.

Copies all or specific components from one file to another, filling
components if necessary.

Creates a file.

Conditionally writes data to a particular file component (if the
component doesn't already exist), appending components if the
file is not long enough.

Drops components from a file so that a particular component
number is the first in the file.

Appends or drops components so that a particular component
number is the last in the file.

Appends data to a file a specified number of times.

Returns a file identifier in the canonical 22-character format.

"Opens" a file; that is, the file is share·tied or, if necessary,
created.

Replaces data into a specified location.

Share-ties a file.

Exclusively ties a file.

Writes data to a particular file component, appending
components if the file is not long enough.

Improving Upon the Simple Approach

The techniques presented so far work well in limited situations. LOGOS
provides additional functionality that makes it possible to improve these
techniques. What are the restrictions of the simple approach just described?

• The contents of an end environment must be static.

That is, the items generated into the environment come from a fixed list
which must be maintained by the developer. This list may be a constant
within a script or it may be represented by the contents of a directory. The
composition of the list must be arrived at through detailed analysis.

If a function is edited so that it references a new object, care must be taken
to update the list. Likewise, if all references to an object are removed from
a system, the object must be manually deleted from the list or it will
continue to appear in the end environment. This bookkeeping can become
tedious and error-prance As applications grow larger, this approach becomes
unmanageable.

• Most real-world applications are not as structurally simple as the examples
presented so fare

Many consist of numerous interrelated workspaces and files with
overlapping members. A great number of modern applications use files to
page code and data into workspaces. Quite a few applications are built
around a single visible function which localizes all the objects in the system
and pages them in when needed. The silnple techniques discussed so far do
not effectively deal with these architectural issues.

• Questions such as "in which end environments is this function used?" must
be answered through analysis of the scripts which generate the
environments.

This analysis is difficult and cannot answer more complex questions such as
"which version of function calel is in workspace report]?"

It is often desirable to build testbed versions of an application where new
features can be evaluated in isolation from production users. This requires
the ability to retarget the results of a generation into an alternative end
environment as well as facilities for identifying and processing I1 tesf' versus
I1production" code.

A simplistic approach docs not provide the flexibility required to generate
multiple end environments of this nature. The features and techniques
described in the remainder of this chapter overcome these shortcomings and
provide the flexibility and power required to generate real-world applications
conveniently.

Building Applications with LOGOS 8.. 11

Clusters and the build Command

LOGOS includes facilities for almost totally automating the maintenance of
the list of objects to be placed in an end environment. The key component in
this automation is the build command. Given a minima1list of important
objects and a working directory list, build will perform static calling tree
analysis and deduce the names of all of the objects required by the application
to any specified depth in the application calling tree.

Think about the manner in which you might generate this list yourself. You
would:

• run off a WSDOC listing of all of the code you knew or even suspected
might be part of the application.

• start with the top-level function or functions in the application and examine
the source or more conveniently, the cross reference listing.

• record the names of the global variables and functions referenced.

• examine each of the referenced functions and add any globals it referenced
to your list.

• continue in this manner until you processed the entire calling tree.

LOGOS perfonns its calling tree analysis in an similar manner. But instead of
running off a WSDOC of all of the suspect objects, you provide build with a
list of directories containing those objects. This is both more convenient and
more powerful, since a few directory names can encompass hundreds or
thousands of objects.

There are two commands in LOGOS that perform calling tree analysis: build
and calls. The primary difference between the two is the form of output they
generate. The calls command produces a character vector list of pathnames
that belong in the calling tree of the object named in the argument. The build
command actually produces a package containing the members of the calling
tree. This package is called a cluster.

Clusters Clusters are simply packages constructed by the LOGOS build commnnd. You
can direct build to place a cluster in anyone of a number of different
locations. You can have build place the cluster in your active workspace or in
the active workspace of an auxiliary task. You can also request that a cluster
be placed in a specified component of a named file. The build command can
also write a cluster to a LOGOS paging file. Finally, build can save a cluster
in the LOGOS file system. "Cluster" is a valid LOGOS datatype. Each of these
variations, except for paging files, will be described in this section. Paging
files are covered in the section, Paging Files.

8..12 Building Applications with LOGOS

The build Command The build command is a very flexible command and has many options
associated with it. Let's examine the syntax of the build command and explore
some of these options. The basic syntax of build is:

build [destination] [source]

The source argument is used to provide a list of pathnames from which the
cluster is to be built If tree analysis is enabled (see the section Tree Analysis
in this chapter), only the objects at thc root of the calling tree must be included
in the list The destination argument detcrmines where the resultant cluster is
to be placed. This argument has several forms:

• If you provide a name in angle brackets as the first argument, build creates
a package with the specified name and places it in the active workspace or
the active workspace of an auxiliary task. If you omit the name in the angle
brackets, the objects in the cluster are dispersed in the workspace. For
example:

build <utilpkg> .public.util.?* [jJ
build <> .public.util.?* [fJ

• If you provide a palhname, LOGOS creates the cluster and saves it in the
LOGOS file system with the type llcluster ll

• Any name which includes a dot
is considered a pathname; if necessary .. a trJiling dot may be included in the
name to indicate that it is a pathname. For exa,nplc:

build .cb.src.util.utilcluster .public.util.?* [jJ

• You can instruct build to write the resultant cJuster to a file component by
providing an argument consisting of a component number in angle brdckcts.
The file name is specified through the argument to the +file modifier. The
cluster is written to the file component as a package. For example:

build <3> .cb.srcfiles.diifns.? * +j71e=report2

• In some cases you may want to write the contents of a single path to a file
component without placing it in a cluster (pacIGlge). This can be done by
providing an argument consisting of a component number without angle
brackets. If the second argument yields a single object, the value of this
object will be written directly to the specified component. If a cluster with
more than one object is generated, the cluster is written to the file as a
package. For example:

build 1 .cb.srcfiles.dilfllsfiledesc +jile=report2

Building Applications with LOGOS 8-13

Tree Analysis

If the destination argument is a simple (non-path) name, or the symbol *, it is
treated as the name of a node in a LOGOS paging file. Paging is discussed in
the section LOGOS Paging. The build command has a large number of
modifiers. Some of these will be described in this section. For a full discussion
of all of build's options, refer to the LOGOS Reference Manual.

The +depth modifier controls build's tree analysis capabilities. The optional
argument to +depth must be an integer or the keyword all. This integer
determines the depth to which the calling tree is computed. An argument of 0
or all stipulates that the tree is to be computed down to the leaves. An
argument of 1 causes build to include only the objects included in the source
argument. This is equivalent to eliding +depth altogether. If you specify
+depth but elide its argument, the default argument is all.

Tree analysis works by fetching each function named in the source argument
and examining it for global references. Each of these global references is
searched for in your global work directories or those set with the +workdir
modifier. If an object matching the reference is found, it is added to the
cluster. If the object is a function, it is examined for global references in an
identical manner. This continues until the calling tree is generated to the
requested depth or no unresolved references remain.

It is important to understand how LOGOS identifies global references. LOGOS
considers any name within the body of a function which is not part of a
comment or a quoted string an identifier. For an identifier to be considered
global, it must not appear in the header of the function or be used as a label.
There are circumstances in which tree analysis is unable to detect a reference.
A name appearing in a quoted string may be a legitimate global reference if
the string is used as an argument to .t or Dpdej. A "hidden" name such as this
can cause a discontinuity in the calling tree LOGOS generates.

Fortunately, the system provides a means for dealing with these identifiers.
You can alert LOGOS to their presence by declaring them in a RVU code mg.
Example:

[2J .t ('flag' , Tn) , ''-bj7gAsum' AV U [lagO flag} [lag2 [lag3

The code tag on this line will cause LOGOS to act as if[lagO,flagl ,j1ag2, and
[lag3, appeared outfiidc comments and quotes on line 2. Note that other
facilities, such as the xref command, the calls command, and WSDOC also
recognize these references. It is a good idea to acquire the habit of adding a
A 'V u code tag to the end of any line of code you write which contains a hidden
reference. This includes references passed in name lists to system functions
such as Dsvo and q,fd. Variants of this code tag make it possible to create
references to names stored in tables or in LOGOS paths (see the section Using
Code Tags in Chapter 10: Using the Conlpiler or the LOGOS Reference
Manual for details.

8-14 Building Applications with LOGOS

Using the build Command The following script is a modified version of the script used earlier to generate
a workspace called report1. This script is almost identical, except for the use
of build rather than get. Note that the argument list to build includes only one
object, that tree analysis is turned on with the +depth modifier, and that build
supports a +task modifier. In this simple example, tree analysis removes the
need to remember the names of the handful of objects called by runrepl. In a
real-world application, the savings could be considerably larger.

[1 J z+-genreport1ws
[2 J) signon +task=genreportl
[3J) environment workdir .plan.wss.reportl +stack
[4J)build runrep1 +depth +task=genreport1
[5 J)z+-send) save report1 +task=genreportl
[6J)send) off +task=genreportl

Note that tree analysis has another important benefit: even if significant
changes are made to the calling structure of the application the script will
continue to work without modification. Using build to generate a file is also
straightforward. Here is a modified version of the script developed earlier:

[1 J genreport2file
[2 J) environment workdir .planfiles.report2 +stack
[3J) build +ftle=report2
[4J) build 1 jiledesc
[5J) build 2 sum +depth

Note that this script is considerably simpler than the original version. LOGOS
takes care of several tasks that the original script had to deal with manually:
tying the file, detennining the ancillary objects called by sum, and updating the
file. Note the use of build with no arguments on line 3. This is a special
feature: when build is invoked with only modifiers and no arguments, it
establishes those modifiers as default settings. Setting the file name on line 3
relieves the script of the responsibility of specifying a file name on subsequent
lines that call the build command.

Building Applications with LOGOS 8-15

Audit Files

While the build command addresses many of the shortcomings of the
simplified approach discussed earlier, it leaves several problems unresolved.
The tools discussed so far do not help with questions about the use of objects
within application environments. Clearly, to provide answers to such questions,
some kind of database containing object usage information must be
established. LOGOS provides these databases in the form of audit files.

An audit file is an APL file in which LOGOS records information about the
placement of objects within end environments. Each audit file contains a series
of individual audit records. Each record describes a generation of the
application and contains a list of the end environments built, the objects placed
within them, and, in some cases, their interrelationship.

Information is kept on the way objects were compiled, and on the version of
each object used. Symbol table information is kept for functions, indicating
which objects are the results, left arguments, right arguments, locals, labels,
and so on. Time, date, and alias information is kept when audit file records are
created. Multiple instances of a single object are tracked by audit files. An
instance is defined as a unique combination of version number and compilation
directives.

For example, suppose you have two versions of a function named scan. The
first version is used in a workspace in an uncompiled form. The second
version is in two different paging files. In one file, scan[2] is decommented,
and in another file, scan[2] is decommented and diamondized. An audit file
would track three unique instances of scan: scan[I], scan[2] decommented,
and scan[2] decommented and diamondized.

For every pathname involved in the application, the audit file makes possible
the rapid determination of where it is used, and what version was picked up
during a particular generation. The references command, described in the
section Registering Out Objects in Chapter 11: Maintaining System, reports on
audit file information and can be used to analyze a system generation.

Audit files are an important record-keeping tool when they accompany the
generation of a large system. They contain extensive usage information beyond
that which LOGOS keeps in its file system, and they allow parts of a system to
be regenerated without rebuilding the entire application. When an audit file has
been used, the distribute command can place changed objects into the specific
end environments in which they are used (see the section Distributing Changes
in Chapter 11: Maintaining Systems for details on the distribute command).

8-16 Building Applications with LOGOS

Specifying Audit Files

Using and Maintaining
Audit Files

Commands such as build, which have the propensity to update audit files, have
a +audit modifier. You specify an audit file by providing a file name as the
argument to the +audit modifier. You can use the fact that build sets defaults
if it is invoked with no arguments to establish an audit file for the duration of
a script. Example:

[4J) build +audit=8221210 cbaudit +deprh

This line sets the default audit file to 8221210 cbaudit and turns on calling tree
analysis with infinite depth (remember that +depth is equivalent to
+depth=all). If the audit file does not exist, LOGOS automatically creates it
for you, providing the command is executed on the file owner's account.

Despite the fact that audit files are stored in SHARP APL files, you should
never access one directly from APL; always usc LOGOS commands or scripts
to access audit files. Tampering with audit files can lead to trouble. To help
you avoid accidentally damaging an audit file, LOGOS always uses a
passnumber when creating or accessing an audit file. If it becomes necessary
to erase an audit file, you may do so by tying the file yourself outside of a
LOGOS session, then erasing it.

Chapter 11: Maintaining SystenlS describes how you can use the distribute
command in conjunction with audit files to update end environments. The
LOGOS Reference Manual documents the audit file utility scripts available in
the public script library. Some of the tasks you can perfonn using these scripts
are:

• display fonnatted reports containing detailed information from audit files

• delete references to obsolete objects from audit files

• share audit files with other users

• generate end-environment/pathname cross reference listings

Building Applications with LOGOS 8-17

Tools for Building Workspaces

The wssave Command The simple examples presented so far have used the)save system command to
save workspaces. LOGOS provides a more convenient and powerful
alternative to)save: the wssave command. This command saves 'the active
workspace using a specified name. Example:

U wssave inventory
1989-04-12 11 :61 :10 inventory

If you call wssave without an argument, the workspace will be saved under its
current name. When using this method, remember that you're in LOGOS, and
that the logos function will be present in the saved workspace. This can be
avoided by running the generation in an auxiliary task. The wssave command
maintains reference entries for the workspace, noting the functions and
variables from LOGOS used to build it. The references command (see Chapter
11 : Maintaining Systems) can then easily track the use of the objects6

Audit files will retain even more information about the placing of objects; the
+audit modifier to the command specifies that an audit file should be used to
record infonnation about a saved workspace generation. Use of the +user=
modifier with the wssave command will save an active workspace in another
user's workspace library. The owner's alias (or user number) and his password
must be supplied. For example:

U wssave '501 budget' +user=bmaint :jellybean
1989-04-21 10:06:10 501 budget

Here, the active workspace is saved under the name 501 budget. The name
must be enclosed in quotes to be treated as a single argument. The workspace
owner is the user number associated with the LOGOS alias bmaint, whose
signon password is jellybean. If the password is needed but not provided,
LOGOS will issue a secure prompt for it. When you use a script to generate a
workspace, you may specify [he +in[orfnafioll modifier to wssave. The newly
saved workspace will then contain a variable called f:!LINFO which holds the
name of the script.

8-18 Building Applications with LOGOS

The wsbackup Script

For example:

u locate wssave .bmaint.cb.maint.genbudws +disp/ay
.bmaint.cb.maint.genbudwsCs14] (1 occurrence)
) wssave '501 budget' +user=invent +information
1 occurrence found.
U .bmaint.cb.maint.genbudws
generating budget system
password:
system generated
u exit

) load 501 budget
saved 1986-02-14 14:01 :37

f:!LINFO
.bmaint.cb.maint.genbudws

The benefit of using the +information modifier is that the /J.LINFO variable it
generates saves maintenance time by documenting the name of the generating
script. The wssave command supports auxiliary tasks through a +task modifier.
Using wssave with an auxiliary task is the preferred method of saving a

workspace, since it allows workspace construction to begin with a truly clear
workspace, free from the overhead incurred by the LOGOS function. (For
more information, see the checklist itenl "If you arc generating a workspace,
will you need an auxiliary task?" in the section Generation Script Checklist.)

This script, located in the LOGOS directory .public./ogos.cnuls, backs up a
saved workspace:

U wsbackup utilities oldutils
saved 1989-02-01 09:29:17
1989-01 -13 11 :22:14 oldutils

In this example, the current version of the workspace utilities is saved as
oldutils. The wsbackup script starts an S-task which loads the specified
workspace (without triggering the latent expression, Dlx) and saves it with the
new name. You may use wsbackup to back up a workspace owned by another
user if you specify that user's priluary alias or user number and signon
password. If you omit the password~ LOGOS will issue a secure prompt for it.
Now the original workspace can be modified safely:

u get utilities generaI.D??
u wssave utilities
1989-02-14 14:34 :08 utilities

Building Applications with LOGOS 8-19

To illustrate the utility of this script, suppose a copy of the budget system had
been saved before regenerating it:

u wsbackup' 501 budget' cb14feb bmaint :jel/ybean
saved 1989-02-13 19:44:08
1989-02-14 13:07:29 cb14feb

Now, if the budget workspace which was subsequently generated had to be
backed off, the workspace cb14feb could be used:

) load 501 budget
saved 1989-02-13 19:44:08
value error
Qlx[}J ~

"
) load 1 logos

logos r2.0
U wsbackup '50} budget' badcheck bnlainl:je//ybean
saved 1989-02-13 19:44:08
1989-02-14 14:06:27 badcheck
u wsbackup cb14feb '501 budget' bmainl:je//ybeall
saved 1989-02-14 13:07:29
1989-02-14 14:06:43 501 budget

The frrst call to wsbackup saves the defective copy of budget as badcheck for
later investigation. The second call saves the backup copy as the primary copy.

8·20 Building Applications with LOGOS

The genbudws script is a good example of a script that uses most of the
workspace generation features discussed here:

U display .bmaint.cb.maint.genbudws
.bmaint.cb.maint.genbudws[sl] :
[1 J genbudws (+production) ; audit; wsid ;savews
[2 J A generate the budget system workspace
[3J A

[4J A if +production is specified, a production system is
[5J A generated. otherwise a test system is generated.
[6J A

[7J A step 1: initiate an auxiliary task
[8J A

[9J)signon bmaint +task=genbudws
[10] A

[11 J A step 2: Establish working directories and
[12J A defaults Ixlsed on test/production status
[13J A

[14J "productionpprod
[15J)environment workdir .bmaint.budget.src.dev .bmaint.budget.src.utill input Ireport +stack A test

workdirs
[16J audit+-' 2231840 tbudaudit' A test audit file
[17J wsid+-' 2231840 clxiev' A test wsid
[18J) build +audit=(~audit) +compile=e,p +depth
[19] ..10
[20J prod:) environment workdir .bmaint.budget.src.uti/ Iinput Ireport +stack A production workdirs
[21] audit+-' 2231840 pbudaudit' A production audit file
[22J wsid+-' 501 budget' A production wsid
[23J) build +audit= (~audit) +compile=d,e,r,p,x +depth
[24J A

[25J A step 3: lxlck up the production budget workspace
[26J A

[27] savews+-wsid" 'zi2' armt Dis [1 2 p Dio+1 2]
[28J) wslxlckup (t-wsid) (.t.savews) bmaint
[29J A

[30J /O:A step 4: fetch objects in calling tree of rool [unction <startbud>
[31J A

[32]) build <> startbud + task=genbudws
[33J A

[34J A step 5: save the workspace
[35J A

[36J) wssave (~wsid) +oudit=(~audit) +tQsk=genblldws
[37J)send) off +task=genbudws

Note that this script uses a +production modifier to choose between two sets
of workspace configuration data. The workspace name, audit file, compilation
options, and working directory list used to generate the file are all detennined
by the absence or presence of this modifier when the script is invoked.

Building Applications with LOGOS 8-21

Building Files

The reasons for using files as part of a large APL system were discussed in the
introduction to this chapter. Examples of data which are better stored on file
are:

• data used by the system (for example, a directory of the system '8 users)

• data written or read by the system's users

• functions and constants that can be materialized in the active workspace.

A file used for this purpose is often called a program file. The program file
may be built from objects stored in LOGOS, or elsewhere.

LOGOS supports a special kind of program file called a paging file. These
files are discussed in detail in the section Paging Files - A New Environment.
An example was given earlier to demonstrate a simple way of building a file
with a LOGOS script. Here is that sample script once again:

[] J genreport2file;accumtab;sum;tn;~acc;.public.utilfiles.~jstie I ~jappend
[2J) get .plan.files.report2.accumtab ljiledesc Isunll ~acc
[3] tn+-' report2 r ~jstie 0
[3J jiledesc !J.jappend tn
[4] (Dpack' accumtab sum ~acc') 6fappend tn
[5J Ountie tn

Using the file-generating capabilities of build, this can be rewritten as:

[1 J genreport2file
[2 J) environment workdir .planfiles.report2 +stack
[3J)build +file=report2
[3J)build 1 jiledesc
[4J) build 2 sum +depth

Note that build simplifies matters noticeably. It is no longer necessat)', for
instance, to localize the list of objects or define them in the workspace. Nor is
it required that the script know the name of every object in the calling tree of
sum, build's calling tree analysis takes care of this automatically.

8-22 Building Applications with LOGOS

Generating Foreign Paging
Files

Sometimes it is desirable to move a paging-based system into LOGOS without
changing the paging mechanism. It may be, for example, that the system is
being migrated into LOGOS gradually, and that a switch to LOGOS paging is
not possible until the entire system has been migrated. This problem is usually
solved easily, since generation scripts can be written to generate any file
fonnat. As an illustration, suppose an application is maintained using a paging
system that uses a file with the following format:

Component

1
2
3
4-10
11- n

Contents

File format description
Paging directory
Package containing system start-up code
Unused
Packages containing objects to be paged

Further suppose that the paging directory is a complex data structure, and that
the function builddir, which is part of the maintenance system, builds this
directory by scanning the file. Now suppose that it is necessary to move this
application into LOGOS while maintaining the existing paging mechanism.
Given that the file structure is well-documented, the only additional
information that must be gathered is a list of names of the root functions of
each package. Presumably, the mechanism used to generate the file in the
foreign system contains this information.

Building Applications with LOGOS 8-23

With this information in hand. the following script can be written:

[1] genfpjile (+production);tn;!psys.maint/ile.builddir;.public.utiljiles.t1fstie I t>.freplace
[2] R generate foreign paging file
[3J A

[4] R step 1: Establish working directories and
[5] R defaults
[6J A

[7]) environment workdir !psys.app.src.utill drivers Iask Iplot Icalc
[8]) build +audit=2231840!paudit +compile=e.p +depth +file=2231840!page
[9] R

[10] R step 2: put the file description variable in component 1
[11] A

[12]) build 1 jiledesc
[13J R

[14] R step 2: build each package using calling tree analysis
[15] A

[16J) build <3> start
[17J) build <11> init~task

[18])build <12> scan
[19J)build <13> plot
[20])build <14> select!:ldriver
[21])build <15> menu
[22J) build <16> shutdown
[23] A

[24] A step 3: build a directory and place i/ in component 2
[25J A

[26] tn+-' 2231840 fpage' !:lfstie 0
[27J (builddir In) 6freplace tn,2

8-24 Building Applications with LOGOS

Shells

A shell is an APL function that defines a package or a cluster from a file and
executes the root function of the cluster or some expression that you specify.
The objects that have been defined from the file are localized in the header of
the shell, so when the work of the shell function is complete, the functions and
variables used in the shell disappear from the workspace. The source may be a
package that resides in an ordinary APL file, or it may be a node of a LOGOS
paging file. The sections following Arguments to shell describe the use of
shells with packages that are components of an ordinary APL file. Using shells
with LOGOS paging files is discussed later, in the section Using Shells with
Pagefile Nodes.

Shells are useful for two different kinds of systems. In an open system with a
finite (if large) set of commands, establishing these commands as shells creates
the illusion of a clean, workspace-resident system. The)fns system command
displays the names of the shells, but not of their many subfunctions. Shells are
also useful at the top of a large closed system that you must be able to copy.
LOGOS is itself such a system, and lhe logos function is a shell.

Shells are a very efficient way to encapsulate all or a portion of an application,
because the analysis required to build them is performed at the time you
generate them, not at the time the application is run. The shell command is
used to build a shell and to place it in a workspace or a file. The resulting shell
can include all subfunctions and variables that are part of the package or
LOGOS paging file node around which the shell is built.

Building Applicalions with LOGOS 8..25

Arguments to shell The shell command takes two arguments, destination and source. The source
may be either a LOGOS paging file node, or it may be a package in a
component of an ordinary APL file. The valid destinations depend on the
source, as shown in the following table:

Table 8.2 shell Command Sources and Destinations

If the source is:

a paging file node

an APL file component

The destination
may be:

the same node

<>

another component
number

a LOGOS pathname

The source and destination node names must be the same.
In fact, only the destination need be specified; the source
will be assumed. Use +name if you want to give the shell
function a different name from that of the node's root
function.

This combination must be used in conjunction with the
build and filesave commands that create the node.

The shell function will be placed into the workspace - either
your active workspace, or in that of an auxiliary task.

Requires +name to provide the name of the shell function,
unless +skeleton is specified. Requires +fil9 to specify the
name of the source file.

When the destination is another component number, the
shell function will be placed into that component. The two
numbers must be different.

Requires +name to provide the name of the shell function,
unless +skeleton is specified. Requires +fil9 to specify the
name of the file that is both the source of the package and
the destination for the shell.

If the destination is a LOGOS pathname, the shell function
is stored in that path.

Requires +name to provide the name of the shell function,
and this name must match the terminal segment of the
pathname. Requires +file to specify the source file.

8-26 Building Applications with LOGOS

Anatomy of a Shell Around
a Package

Figure 8.2 shows the definition of a shell created around a package stored in
component 15 of an APL file, divided into its individual segments.

Figure 8.2 The Parts of a Shell

V start ;decode;show;menu;ask;run;DATA;OPTIONS;~97

[1] ~(p~97~(DnamesA.=' 1234567 fnsfile ')/Dnums)p2 ¢

'1234567 fnsfile'Dstie ~97~((1p~97) €~97~0 ,Dnums) 10

[2] DpdefDread~97,15

[3] start

1 - Function name
2 - Locals list, objects in the package
3 - File tie logic
4 - Page in statement
5 - Execution of root object

This shell could have been generated by the following command:

U shell <> 15 +file=fnsfile +lIame=start

Part 1 is the shell function's name and is taken from your argument to the
+lIame modifier (in this example, start). It is important to note that shell
functions built around packages from :m ordinary APL file assume by default
that the root function in that package (your argument to +lIame) does not take
any arguments and does not return a result. If you want to create a shell
function that returns a result, or accepts arguments, then use +skeletoll to
provide the pathname of a function with the appropriate syntax and definition
to which shell can add the locals list.

Part 2 is the computed locals list. In its simplest form, it is the names of all the
objects that were in the package at the time the shell function was created. If
you alter the contents of this package at some later time, you will need to
recreate the shell function so it can rellect those changes. When you create the
shell function, you may use the +header modifier to add names to the locals
list that are not in the package, or to remove names from the locals list that are
part of the package.

Building ApplicJrions wirh LOGOS 8-27

Options with shell Used on
Packages

+compile

+header

+/ock

+q/x

+skeleton

Part 3 is the logic that either ties the file or determines the tie number if it is
already tied. The local variable created in this step, ~97 , is automatically
localized in the shell function header.

Part 4 defines the contents of the package from the component specified as the
source when the shell command was executed.

Part 5 executes the root function of the package. By default, this is taken to be
the same as the argument provided to the +name modifier, so it matches the
shell function's name. If you wish to specify a different name, or some APL
expression to be executed instead, provide that name or expression as the
argument to the +q/x modifier and it will appear in part 5 instead.

In addition to the +name and +file modifiers that are required when building
shells around packages in an APL file, several other modifiers may also be
used in that situation.

With +compile, you can specify compilation directives to be applied to the
pathname provided as an argument to the +skeleton modifier. See below for
more information on using +skeleton.

Use +header to alter the locals list of the shell function. There may be some
objects in the source package whose names you do not want localized in the
shell's header. Use, for example, +header=/describe driver to remove the
names describe and driver from the shell header. Similarly, there may be
objects that are not a part of the package whose names you want to have added
to the shell's locals. Then use, for example, +header=,narne who to add the
objects name and who to the list of locals. These may be combined in the same
argument:

+header= , name who/describe driver

If the file in which the package resides requires a paltisnumber for access,
specify it as the argument to the +/ock modifier.

Normally, the startup function in the package is assumed to be the same as the
name used for the shell. If you want to provide a different startup function
name, or simply an APL expression to be executed by the shell, use the
alternate name or the expression as the argument to this modifier. This
modifier is ignored if +skeleton is specified.

The argument to +skeleton must be the pathname of a function whose
definition fOnTIS the complete shell function. File tie logic, page-in logic and
execution of the correct root function must all be included in the skeleton
function. When +ske/etoll is specified, the shell command only adds the names
of objects in the package to any locals already specified in the skeleton
function's header. Use a skeleton function if you want to build a shell that
accepts arguments or returns results. The skeleton function is subject to

8-28 Building Applications with LOGOS

+task

+variant

compilation according to any directives used as arguments to the +compile
modifier.

If the destination of the shell is specified as <>, meaning to place the shell in
the active workspace, you can direct LOGOS to put the resulting shell function
into the workspace of an auxiliary task by using this modifier.

The only variant that may be used when building shells around packages from
an APL file is the e variant. This causes the shell function to be created with
Dec localized in its header. This is ignored if +skeletoll is specified.

Paging Files - A New End Environment

As APL applications have grown more ambitious in scope over the years, the
resources of the APL workspace have been strained. One approach to this
limitation has been to provide virtual workspaces that can be stretched to
accommodate expanding applications. While this solution requires a minimum
of preparation to use, it often has unfortunate consequences with respect to
performance because virtual workspaces are a brute-force approach to the
problem. At any given time, it is quite likely that a large part of the workspace
is consumed by objects that are not required by the process in execution.

Another approach to this problem is paging. Paged systems store organized
collections of related objects in files and bring these collections into and out of
the workspace as required. Objects are maintained in the workspace only when
it makes sense for them to be there. We have seen how generation scripts can
be used to populate arbitrary file structures from the contents of a LOGOS
hierarchy. LOGOS also provides native support for an efficient paging system
of its own. You can use this paging system to create paged systems from your
own applications. This section describes paging in detail and demonstrates how
the paging file end environment is built and maintained.

Paging File Structure

Paging Areas

A LOGOS paging file is an ordinary SHARP APL file distinguished only by
the nature of its contents. It may have any valid file name you find appropriate
and any access matrix you wish to establish. Paging requires only Dread
permission to the file. For the purposes of operating as a LOGOS paging file,
it is divided into paging areas. Each paging area is further subdivided into
nodes (or pages).

A paging area is a set of contiguous components in a LOGOS paging file. An
area is referred to by its starting component nunlber within the paging file, as
in cbpage 40. A paging file may contain as many areas as you wish, and those
areas may be used by entirely different applications. In the application's
workspace, a particular paging area is selected by using the tJ./pagefi/e
function, by executing, for example, !J./pagejile ' chpage 40' .

Building ApplicLllions wilh LOGOS 8-29

Nodes

Paging Concepts

What is Paging?

Page-in

The first component of each paging area contains information describing the
area. The second component is the base node. The third and following
components in a paging area contain the rest of the nodes.

Each paging area within a LOGOS paging file is divided into nodes. A node is
a collection of objects from the LOGOS hierarchy and is created as a result of
using the build andfilesave commands. Nodes are referred to by name, which
usually corresponds to the name of the function used as the root for the build
command that created the node. Each paging area may have a special node
called the base node (or base page). The contents of this node are brought
into the application's workspace when the pagefile is ini tialized with the
~lpagefile function. The contents of this node are never paged out of the
workspace. See the section Generating a Paged System for more information
on building nodes and the base page.

The fundamental idea behind paging is simple: instead of storing all of the
parts of an application in the active workspace simultaneously, objects are
maintained in secondary storage (the paging file) and brought into the
workspace as they are needed. When an object is no longer required, it is
removed from the workspace, freeing space for other objects. During paging,
objects move from a paging file into a workspace. LOGOS allows you to
define multiple paging areas within a single file.

Every paging area has a special page (the first one), called the base page,
associated with it. This page contains objects that must remain in the
workspace at all times. The top-level functions and global variables that drive
a system are usually stored in the base page.

It is important that the paging process be an efficient one. It is also important
that the paging mechanism be transparent as possible, so that only minhnal
effort will be needed to set up or convert a paged application. The tools
provided with LOGOS help the LOGOS paging system achieve both of these
goals. The paging utilities are located in the directory .public.logos.paging;
these functions are summarized later in this section, and described fully in
Appendix C.

There are two types of paging: demand paging and request paging. The basic
difference between these types is the manner in which a paging event is
triggered. As its name implies, demand paging is demand-driven; paging takes
place when a type '6 i' event trap is triggered by a value error in the
application code. The expression invoked by the trap calls the ~/pagein utility.
61pagein searches the paging area for a node whose name matches the object
that triggered the value error. If such a node is found, then il'i contents are
materialized within the workspace. As the 'i' event trap action code dictates,
execution resumes at the point where the value error occurred. This is
completely transparent to the user and makes it appear as if the missing object
was in the workspace all along. Note that a workspace funning a

8-30 Building Applications with LOGOS

Page-out

demand-paged system might initially contain only a single function (the
LOGOS paging initialization utility) invoked from D/x.

Request paging is less spontaneous, occWTing only when a call to ll/pagein is
deliberately made by the application. A request paging system might have a
structure, for example, where an outer-level menu prograITI waits for a user to
select an item from the menu. When a choice is made, the program would call
the paging utility to bring in the relevant collection of objects and then execute
the appropriate function.

Note that, in general, the adoption of demand paging requires fewer changes to
existing code, since missing nodes can be brought in automatically through the
action of the trap. Request paging, on the other hand, necessitates the insertion
of calls to llipagein into application code at critical points. Usually, the only
code that must be added to an application to utilize demand paging is the
initialization procedure. An exception to this is an application that uses event
traps that interfere with the global "6 i' trap that demand paging employs.

The other critical facet of a paging system is the page·out mechanism. It docs
little good to conserve space by storing objects outside the workspace,
bringing them in only when required, if there is no mechanism to dispose of
these objects when they are no longer needed. The function ~/pageout handles
page-out activities. There are several circumstances that might warrant the
paging out of one or more nodes:

• The amount of free workspace in the application has fallen below a critical
level.

• An operation which requires as ITIuch free workspace as possible is about to
be executed.

• A "workspace full" event has occurred. ~/jJageoul can handle each of these
circumstances.

As with page-in, page-out may be demand driven based on the occurrence of a
workspace full or insufficient free workspace. or it may be request driven by
explicit calls to f)./pageout.

Designing a Paged System When you design a system to use paging. there arc three operational
characteristics to consider: What paging areas are to be selected, and in what
order? What nodes are to be paged in, and when? What nodes are to be
paged out, and by what criteria?

Selection of Paging Areas The selection of paging areas is done with the ~/pagejile function, usually at
the time the application is initialized. An application can use the selection of
paging areas or their nodes to control its behavior. For example, you can
explicitly page in one node or select one paging area. Alternately, you can
establish an implicit precedence of nodes by selecting more than one paging

Building Applications with LOGOS 8·31

area, so that nodes in the latter areas are shadowed by nodes of the same name
in the fanner.

Explicit Selection

Explicit selection is useful when you have a repertoire of similar nodes, only
one of which is to be selected. For instance, a system might use explicit
selection to bring in the appropriate terminal driver for a particular session,
where the system can be certain which is to be used. Suppose you have a
different display function in each of several nodes. One of these nodes is
paged in, based upon a known or computed terminal type:

/)/pagefile '501 budgetpage'
61pagein Termtyp

Instead of just paging in one node, a system might select a terminal-dependent
paging area at system startup:

[1 J R system startup function

[7J R select paging area
[8J 111pagefile t 501 inventory' , • 500 600 700 800

500 [('typewriter t:J , hdsl08 t:J , ap124 t:J 'ibm3279 t) l

TermtypeJ

This selects a paging area beginning at component 500, 600, 700, or 800,
depending on the terminal type. The base node of the selected paging area,
which is materialized by 111pagefile, may contain all the needed objects; if so,
a separate ~lpagein isn't required.

Implicit Selec'!ion

Implicit selection allows a system to fully customize its behavior for the user.
Through selection of paging areas, radically different objects can be
materialized for different users. One user might receive the production
software; another a semi-public test version; and still another a private
development version. The choice affects only the initial !1/pagefile invocation,
and not any other part of the system. The rest of the system need not be aware
that paging is occurring, or from where. The paging files themselves might be
built by overlaying multiple working directories, as shown in Figure 8-3.

8-32 Building Applications with LOGOS

Here, the directories overlay to produce one or more paging files during the
building of the system. When a user starts the application, multiple paging files
overlay to produce a unique selection of objects to be materialized in the
workspace. Paging files follow the same ordered precedence scheme as
working directories, in that those which are specified flfst are used first, and
objects in earlier paging files shadow the same objects in later ones. This
layering makes it possible to control what objects a specific user sees.

Figure 8.3 Overlaying Paging files and Working Directories

WORKSPACE

PAGE FILES

•
WORKING DIRECTORIES

A fragment of an application's initialization routine below illustrates what is
involved in specifying multiple paging areas:

[I) A system startup junction.

[8) Mpagejile (dev,test,J) /' 501 invellloryd 100' ~ '501 inventory ll()(J' ~ '501 inventory 100'

dev and test are two flags, which the program has presumably computed. If the
development flag dev is on, any required node is first sought in the
development area (components 100 and onward of the file 501 inventoryd). If
the test flag test is on, any required node is sought in the test area
(components 1100 and onward of the Iile 501 inventory).

Building Applications with LOGOS 8-33

Finally, nodes are always sought in the production area (components 100 and
onward of the file 501 inventory). With a system like this, the developer need
put only those objects he's working on in the development and test areas. He
can do a complete integration test at the same time as his development testing,
and he can allow other users to access his test system. Moreover, the user of
the production version doesn't suffer any performance degradation or
instability, because he isn't affected by any unreleased code.

Page-In of Nodes

Demand Paging

Demand paging is based on the premise that the commands being entered by
the user are arbitrarily chosen from the repertoire of operations in the
application. To use demand paging, you need a global value error trap that
executes !:llpagein to resolve the error in the immediate environment:

Otrap"" 0 6 i 6/pagein Der[Dio+3;J '

Request Paging

Request paging is based on at least some advance knowledge of the likely
order of processing. In a request-paged system, a single user command usually
triggers a requirement for processing of many modules of the application,
which may be brought in all at once. Request paging is particularly applicable
to closed, prompting systems where the issuing of one command is statistically
unrelated to, or biases against, subsequent issuing of the same command.
However, even demand paging can be readily applied to such systems.

To use request paging, your application need invoke only the fllpagein
function with specific node names; the application is expected to know (or
compute) the nodes to page in. For example, your system might proceed
through a series of operations, one after another, following a well-defined and
invariant procedure. As it moves through these operations, it might page in the
required nodes explicitly, and then reference a function brought in with the
node:

[1 J ~ workspace documentation systenz -- nUlin driver . ..

[35J 6/pageout 1 sums 1 R finished ""jth sumnwries
[36] !:llpagein 'defs' R object definitions
[37J l:::t.fndef R contained in <defs>
[38J livardef R also contained in <defs>

8-34 Building Applications with LOGOS

Alternatively, several commands in your system might be invoked in the same
way, but require different programs to execute them. Here, you can use request
paging to select the command node:

[13] A now, <CMD> is validated command name.
[14J 61pagein 'CMD' , cmd R page in command node
[15J doit R execute main function -- which differs according 10 the node paged in

Page-out of Nodes Objects can be paged out explicitly by the tJ.lpageoul utility, or implicitly by
the page-in mechanism when Dwa has fallen below a certain threshold.
Although we talk of "paging out", the objects that make up paged-out nodes
are in fact expunged from the active workspace.

Consequently, suspended or pendant functions cannot be "paged out". An
alternative technique for removing objects from a workspace is to use shells.
With a shell, the contents of a node are defined locally to the root function of
the node. When the function ends, everything local to it disappears, leaving
only the shell itself. The shell can be paged out as an ordinary object. The
contents of the base node are never paged oul.

Explicit Page-out

Some systems -- typically closed systems that use request paging -- page out
unneeded nodes deterministically. Before the system pages in a node for the
next operation, it pages out the node from the previous one; this is illustrated
in the example in the preceding section. Generally. explicit page-out is used
with explicit page-in (request paging). A system might use explicit page-out to
expunge objects that would confuse a user issuing the)fns command. Explicit
page-out might also be used to avoid name conflicts.

Implicit Page-out

You may, if you prefer, leave page-out to LOGOS. In a system that uses
demand paging, implicit page-out is really the only viable choice, but you can
use this form of page-out with request paging as well. Implicit page-out can be
triggered in two ways: when your application pages a node into a fairly full
workspace, or when your application encounters a ws full. What constitutes
"fairly full?" Every time a node is paged in. LOGOS automatically pages out
some nodes if the available storage is less than a value known as the trigger
threshold. Page-out continues until the available storage rises above a second
value, known as the storage margin. .

Building Applications with LOGOS 8-35

Heuristics for Implicit
Page-out

Both of these values are attributes of your application; you can set these
attributes with the utility function 6/pageset. Settings of less than 1.00 are
interpreted as a percentage of maximum workspace size. If not explicitly set,
values for these parameters are assumed by the LOGOS paging utilities. By
default, the trigger threshold is one third of the maximum workspace size; the
storage margin is one half of the maximum workspace size.

If you condition your application appropriately, page-out can also occur when
the application encounters a ws full. To enable this, you need a global trap for
ws full that executes -..tJ.lpwsfull 0:

Dtra~' ole -"61pwsfull 0 '

A typical demand-paged system combines both the value error and wsfull
traps, giving:

DTRAP+-' 0 6 i tJ.lpagein DerCDio+3;] 0 J e -.tJ./pwsfull 0'

Any other traps you need can be appended to the end of this set. By default,
LOGOS also keeps track of the reference count for each object it has paged in.
If a node that contains a particular object is paged out, the object is
nonetheless exempt from page-out until its reference count falls to O.

You can use 6/pageset to disable tracking of reference counts. Reference
counts are important if any of your nodes has objects in common with any
other. Without these counts, paging out a node might expunge an object
expected to be present by another node that is already paged in. With them,
only when all nodes that use an object have been paged out, does the object
actually disappear.

There are a number of theoretical approaches to page-out heuristics. An
application using LOGOS to perform implicit page-out may choose from least
recently used, least recently paged, largest objects first, or paging priority.

Least Recently Used (LRU)

A node is increasingly liable to page-oul as the real-time interval since it was
last used increases. LRU paging requires setting the q compilation directive
for each function subject to it. This option causes LOGOS to introduce a
subroutine call at the start of the first unlabelled line of the program. The
subroutine efficiently maintains information on the time the function was last
called. LRU paging is capable of noting only the call to a function, not the exit
from it. Consequently~ the algorithm may not perform optimally if a long
period of real time is spent in a particular function.

8-36 Building Applications with LOGOS

Least Recently Paged (LRP)

A node is increasingly liable to page-out as the real-time interval since it was
paged in increases. LRP paging is less complicated than LRU, but is also less
optimal because time of page-in and time of last use may be very different.

Largest Objects First (LOF)

A node is increasingly liable to page-out as the amount of workspace it
occupies increases relative to that of other pageable objects in the workspace.
LOF paging is the simplest scheme, but the likeliest to cause excessive page
movement.

Paging Priority

A node is increasingly liable to page-out as its priority decreases relative to
that of other pageable nodes in the workspace. A node's priority is set with the
+keepin modifier to the build command.

When the page-out logic is activated, the order in which nodes are expunged is
based upon some or all of the following factors, in decreasing order of
importance:

• Paging ptiority

• Time of last use

• Node size

• Time paged in

If priority has not been set for any of the nodes, it has no effect on page-out
liability. If the q compilation directive has not been specified for any function,
time of last use has no effect on page-out liability.

Building Applications with LOGOS 8-37

Paging Utilities The LOGOS directory .public.logos.paging contains the paging utility
functions. Table 8-2 presents a brief synopsis of each. See Appendix C: Paging
Utilities for a more detailed description.

Table 8.3 Paging Utility Functions

Functions

/!/fnstop

/!Nntrace

l!ilkeepin

/!/page

l!iJpagefi/e

Pilpagein

fJ./pageout

l!/pageset

fl/pagestop

lJ./pagetrace

lJ./pcmprs

Pi/prestan

lJ./pwsfull

Description

Sets stop controls on paged functions.

Sets trace controls on paged functions.

Prohibits page-out of specified nodes.

Returns a specified node as a package.

Initializes paging from a specified area.

Pages a specified node into the workspace.

Expunges a specified node from the workspace.

Defines paging attributes.

Sets stop controls on specified nodes.

Sets trace controls on specified nodes.

A subfunction used by li/pagein and t-./pageout. You must insure this
function is in the workspace if you intend to call PiJpagein or
lJ./pageout. but you should not invoke this function directfy.

Reties paging files after an interrupted session resumes.

Expunge nodes from workspace based on page-out heuristics in
effect.

Structuring a Paged
System

Isolating Subtrees

The design of a paging area is similar, in some ways, to the design of a
LOGOS hierarchy: both involve the grouping of APL objects into logically
related collections. However, unlike the hierarchical structure of the LOGOS
file system, the nodes in a paging file form a rectangle, the two dimensions
being paging areas and nodes. That is, you can split objects among separat.e
paging areas, or among nodes within a paging area. Splitting the objects
among separate paging areas is better suited to controlling the system's
behavior; splitting the objects among nodes in one paging area is better suited
to reducing the amount of code in the active workspace at one time.

To reduce a system's workspace requirements, split the system's objects within
a given paging area into separate nodes. This is accomplished by isolating
subtrees of the system's calling tree, and putting each subtree in a sepamte
node. The calls command can help you to examine and assess subtrees that

8-38 Building Applications with LOGOS

might be candidates. The build command splits off a subtree into a node when
generating a paging file. Deciding which subtrees deserve to be separate nodes
involves a trade-off between workspace size and processing time.

When fewer subtrees are isolated, the nodes in a paging area will be larger,
and the likelihood of filling the workspace during execution is increased.
When more subtrees are isolated, the system must page that many more nodes
in and out. These are guidelines to keep in mind:

The external modular structure of your system -- such as its individual
commands -- is a good place to start dividing your system into subtrees.

Subtrees whose use is infrequent -- such as initialization routines that are
always used, but only once -- are also good candidates for separate nodes.

Subtrees which are used by many nodes may be appropriate for separate
nodes. The code in these subtrees can then remain in the workspace, while the
callers are being paged in and out.

Any subtree in the system's calling tree that may not be required during a
session is a good candidate for a separate node. A rare path in a com man
operation may be such a subtree.

Controlling Behavior through Paging

Both explicit and implicit paging can be used to control a system's behavior.
This section discusses design considerations for each.

Explicit Page-in

Many applications have modules that exhibit different but related behaviors,
depending on circumstances. The example discussed earlier in this chapter in
which a system must support different tcrrninal drivers, is a C,L-';C for explicit
page-in. You could structure this pml of your systc'TI this way:

• Isolate the section of code required for cach behavior.

• Define a common interface between the application and these groups. For a
tennina] driver, you might have a general io function, which is given
arguments to display information, and to prompt for input.

• Define different nodes for each terminal supported, and include the
associated io function in each, along with any required subfunctions.

• Have the application determine at startup the terrninal type in usc, and
explicitly page in the required node using ~'pageill.

Building Applications with LOGOS 8-39

Genera'ling a Paged
System

Another case for the above technique is the support of different languages. The
common interface would be a table of messages; separate nodes would contain
this table in different languages. Using separate nodes for separate states is
advantageous because the required node can be paged in at the beginning of
the session. If the interfaces are well defined, the rest of the application need
not be concerned with special cases. This technique applies to paging area
selection as well. The code required for each state can be split into a separate
paging area, and the application can then select the desired one.

Implicit Page-In

You can alter the behaviour of a system by altering the selection of paging
areas. Two different paging areas may contain nodes with the same name.
When a node is to be paged in, selected paging areas are searched for that
node, in the order that they were specified to fllpagein. The node found in the
first paging area searched is used, and nodes with the same name in following
paging areas are shadowed from use.

As mentioned earlier, shadowing is useful when a system has several different
available versions. It's also applicable to software that supports different
languages, if the language tables are too extensive to be located in a single
node. In the latter instance, you can set up the system so that it is built from
parallel paging areas, each of which reflects the text segments for a different
language. The nodes across areas contain objects of the same name, whose
values are the language parts in different tongues. When the application is
initialized, it selects the appropriate language tables by specifying the related
paging area to ~lpagefile. From then on, the system's activities can proceed
oblivious to the actual language in use.

A paging area is built by a series of build and shell commands, followed by a
fiiesave command. By default, every root object of a node and its associated
calling tree are excluded by inference from other nodes in the paging area.

Defining Nodes Using build

The build command generates a cluster and places it into a specified end
environment. For a detailed description of build and clusters, see the section,
Clusters and the build ConlnUlnd, earlier in this chapter. This section
concentrates on the use of build as it applies to paging files. Once you've
decided on the structure for your paged system, you can use the build
command to analyze the system's calling tree and to assemble a node from
each root.

8-40 Building Applications with LOGOS

When generating a paging file, the build and shell commands you enter are
buffered and are not executed immediately. They are recorded and acted upon
only when you issue afilesave command. Build assumes that you are building
a node of a paging file if the command's first argument -- the destination -- is
a simple name. Thus:

[5J) build startup

specifies a node name, whereas:

[5 J)build <startup>
[5J) build <10>

and

[5]) build 10

do not.

For example:

[10J) build startup +depth=all

This builds (or more accurately, buffers a request to build) node startup from
the LOGOS file system object of the same name. The node contains all objects
needed by the function startup except those whose trees form other nodes in
the paging area. (See the section Exclusion by Inference for more detaiL)
+depth=all specifies that startup's calling tree is to be analyzed to its farthest
branches for objects to include. The name of the node and the name of its root
function need not be the same.

To build the startup node based upon the tree of a function called init, you
may use:

[11 J) build startup init +depth =all

A special node you can specify is the base node, identified by *. The contents
of the base node are never expunged from the workspace. You can force
objects to be included in the base node by use of the A fJ u code tag in any
function which is in the node's calling tree. AVU is described in the section
Tree Analysis. Here is a possible specification for the construction of the base
node:

[4J) build * qlx +depth=all

If you supply a single pathname argument to build, the terminal segment of the
pathname becomes the node, and the full pathname is used as the root. This is
particularly useful if the pathname you give is a pattern; you can select and
build many nodes with one command this way.

Building Applications with LOGOS 8-41

Another way to build more than one ncxle with a single command is to specify
multiple node names as the first argument.. To do this, you must enclose the
argument in quotes. If you specify multiple roots in the second argument, the
node is built so that each root can cause it to be paged in. This is useful in
cases where a node has two or more logical entry points.

A build command is the same regardless of the paging method the system will
use. What is likely to differ is the ncxle name. For request paging, the nodes
will probably be paged only by your program code, and so can have names
which are meaningless outside the context of your programs. For demand
paging, however, the node names must match the names of the programs that
reference them because the trap statement looks for a node that has the smne
name as the object causing the value error; usually, a node has the same name
as the root function of the node.

Most modifiers of build work for node clusters exactly as they do for clusters
built to workspaces or files. When you're building a paging file, it's
particularly advantageous to specify an audit file; this allows generation to
proceed more rapidly and also allows efficient updates to be performed. Audit
files are specified using +audit, as described in the section Audit Files.

Because the generation of a paging file usually involves a series of similar
build statements, it's handy to first set global defaults using build without
arguments, and then to issue the stntements necessary to define the nodes.

Generating the Paging File with filesave

The fiiesave command executes the buffered build and shell commands. It
creates the paging file (if necessary), writes the paging area header, and
assembles and writes the nodes to the paging area. The remainder of this
section relatesfilesave to build, shell, and the other aspects of paging file
generation.

Identifying the Paging Area

The paging area may be specified either in the +file modifier to the build
command or in the argument to thefilesave command. In either case, the
paging area identification may include the library number, the file name, the
starting component number, and the ending component number. For example,
501 inventory 100 indicates the area beginning at component 100 of the file
501 inventory, and 501 inventory 100 499 specifies an upper bound on the size
of that area. The upper bound is useful if you plan to have multiple paging
areas in the same file, or to include some of your application's own data in the
paging file.

8-42 BUilding Applications with LOGOS

If you do not specify a starting component number, the first component of the
file is assumed. If you omit the ending component number, the paging area is
extended as far as necessary. You may specify a passnumber to the paging file
with the +lock modifier to the build or filesave command. If you omit +lock, 0
is assumed (that is, no passnumber).

Exclusion by Inference

For a paging file, the various node definitions are reconciled at the time of the
filesave command. Each cluster deposited in the paging area contains the root
object and every object needed by the root object, subject to four factors:

• the depth of tree analysis

• the size of the node

• exclusion by specification

• exclusion by inference

The depth of tree analysis is controlled by the build command's +depth
modifier. The size of a node is controlled by the +size modifier, described in
the section Specifying Node Size. Specific objects can be excluded if you name
them in the +exclude modifier. Exclusion by inference is a property of clusters
that applies only to paging files. When you're building a paging file, inference
causes each node to be built without subtrees whose roots form another node.
The analysis required to do this is performed at the time of the filesave
command.

The exclusion by inference process structures a system as you would expect:
each node in the paging area is essentially a different portion of the system's
calling tree, and no node is wholly contained within another. Without
exclusion by inference, nodes near the "top" of your system's structure would
contain all nodes beneath it.

Let's look at a simple example to see how exclusion by inference works.
Suppose several nodes require the menu function. This sequence will exclude
menu from all nodes but the one of which it is the root:

[5J) build read
[6J) build compose
[7J) build menu

A (Requires tnenu)

R (As does this)

Building Applications with LOGOS 8·43

The nodes read and compose are built without the calling tree of menu. When,
during execution, the function menu is needed, its node is paged in separately
(and is thus eligible to be paged out separately). You can tum off exclusion by
inference by specifying +injerence=/lo in a build command. If you do, then
every object needed by the root will be included (subject to tree analysis
depth, and specific exclusion).

Specifying Keep-In Priority

Keep-in priority is the most significant page-out characteristic of a node. The
priority is a relative measure of how important it is that a node remain in the
workspace. All other things being equal, the node with the highest keep-in
priority will be paged out last. Keep-in priority is specified with the +keepin
modifier to the build command.

To build a node called input with priority 100, you may use:

[10J) build input +keepin=100

The priority values you choose are meaningful only as they compare with
other values in your application. Often, selecting three or four discrete
priorities for the application is sufficient. Think about 'those nodes that are
heavily used, and set their priorities accordingly. For nodes of less importance,
set somewhat lower priorities.

Leave the priority of the bulk of your nodes unassigned, so that they will all
have the same priority of O. It is very important that you apply priorities
consistently and thoughtfully across your application. Otherwise, you may end
up with a system that pages excessively.

Specifying Node Size

It is sometimes necessary to limit the size of a node. If you know that a
particular node is large, or is likely to be paged in when the active workspace
is inescapably crowded, you'll want to make sure that the node is not so large
that it can't be paged in. You can specify a size limit to a particular node with
the +size modifier to the build command. To ensure that the node input is at
most 10000 bytes, type:

[10J) build input +size=JOOOO

If the construction of the node exceeds the size you've specified, LOGOS will
automatically split the calling tree for you. This will occur as many times as
necessary. You may set a general size limit with the +size modifier to the
filesave command, or with the +size modifier to a build command without
arguments. These limits apply to nodes for which no specific size wa'i set.

8-44 Building Applications with LOGOS

For example:

[10]) build input
[11])filesave 501 inventory +size=15000

Overwriting and Updating a Paging File

When you regenerate a paging area, you must indicate that the existing paging
area can be overwritten. For example:

[12])filesave 501 inventory +audit=invaudit +ovelWrite

This causes the audit file and the paging area to be overwritten. If you omit
+oveIWrite, nothing is overwritten and the entire existing paging area is
rebuilt. You may specify the +overwrite modifier in either a build command or
afilesave command. +ovelWrite=audit limits the overwriting to the audit file,
while +ovelWrite=dest limits it to the destination paging area.

In a build command, you may also enter +overwrite=buffer. This causes all of
the buffered but unexecuted build and shell commands to be discarded.
Typically, you will include this only if a paging area generation has ended
abnormally, to avoid duplicate specifications for nodes when you retry the
generation. You may make changes to only certain nodes in a paging area by
specifying the +updale modifier to the build or jllesave command. For more
information on updating files, see Chapter 11: Maintaining Systems.

Building Applications with LOGOS 8-45

Building Paging Files With a Script

Here is a script that might be used to build a paging file for an inventory
system:

U display .invent.cmds.gen.invpage
.invent.cmds.gen.invpage[s5J:
[1 J invpage
[2J R generate inventory system paging file.
[3]) build +audit=invaudit +compile=x,d.p +depth=all

+overwrite +recursive +size=10000 +l'vorkdir= (list .invent.src Cd]
+full +recursive)

[4J R

[5 J) build * startup R define base node
[6]) build CMD?* +keepin=20 R+ all commands
[7J) build cmdparse +keepill=30 R define other nodes
[8J)build init
[9J) build grreq
[10J) build update +keepin=10
[11]) build 11 lang .english
[12J)build /2 langfrench
[13J R

[14J) shell CMDreporr
[15J) shell CMDprint
[16J R

[17J)filesave 501 inventory 100 499

The first build command, on line 3, establishes new default values for
subsequent build commands. It identifies an audit file; specifics compilation
directives and tree-analysis depth; indicates that the audit file, the build buffer,
and the paging area are to be overwritten (via +ovelwrite without an
argument); specifies that all subordinate objects are to be included in any
node; defines the maximum size of any node, and specifies the working
directories.

The next build command, on line 5, defines the base node. This node is paged
in when the paging area is selected and is never paged out. Line 6 builds each
command as a separate node, using a single build statement with a pattern.
These nodes have a medium keep-in priority. Lines 7 through 12 build other
nodes, with varying priorities. The commands on lines 11 and 12 define nodes
whose roots differ from their names. Lines 14 and 15 specify that two nodes
are to be shells.

Finally, line 17 issues the filesave command that actually generates the paging
file. Here, the paging area begins at component 100 and ends at component
499 (or earlier) of the file SOl inventory.

8-46 Building Applications with LOGOS

Diagnostics

You might think that it would be almost impossible to debug a system that
uses paging, especially a demand-paged one, since objects materialize and
dematerialize in the workspace transparently. How can you use the traditional
tools of the APL programmer, stop and trace vectors, when the function you
want to observe is not yet in the workspace? Fortunately, LOGOS furnishes a
set of diagnostic tools that let you use familiar concepts to debug paged
systems.

These tools allow you to set stop and trace vectors on paged functions as well
as paging file nodes themselves. Facilities are also provided for monitoring
paging activity and for optionally recording this information in files. These
tools are described fully in Appendix D: Stop and Trace Controls as well as in
their documentation attributes. Here is a synopsis of each which will help you
identify the tools you are interested in. Each of these functions is stored in the
directory .public.logos.paging:

Table 8.4 Diagnostic Tools

Function

~/fnstop

~lfntrace

~/pagestop

~/pagetrace

~/pageset

Using Shells with Pagefile Nodes

Description

seVclear a trace vector on a paged function

seVclear a stop vector on a paged function

seVclear a stop on a node

set/clear a trace on a node

set/clear monitoring of paging activity

Any node of a paging file (but not the base page) can be turned into a shell,
using the shell command.

To build the node startup as a shell, you may use:

[7J) shell startup

Building Applications wilh LOGOS 8-47

Anatomy of a Page File
Shell

Because both build and shell commands are buffered, you may issue the shell
command before or after the build command associated for the node.
Aesthetically, it may be desirable to group all build statements together, and
then perform the shell commands afterward. By default, a shell contains every
object referenced by the root function or its calling tree. You may use the
+exclude modifier to specify particular nodes to be excluded from the header's
composition.

The resultant shell will no longer define the entire calling tree local to it, but
this behaviour may be desirable if the shell is being used in a paged
environment where part of the calling tree is already in the workspace. By
allowing part of the calling tree to be global, you avoid having two copies of it
in the workspace.

Figure 8.4 shows the definition of a shell created for a node in a LOGOS
paging file, broken into its five individual segments.

Figure 8.4 Parts of a Page File Shell

CD
~

[1]

[2]

[3]

~98+-~98 submit ~991 jaddjdestsjsubmitjvalidate

Iilpagein
-

5616636="submit'

"'(Dnc '~98') p3 <> ~98+-submi t ~99 <> ..0

~98+-~98 submi t ~99

1 - Function name and syntax
2 - Computed locals list
3 - Page-in logic
4 - Ambivalence
5 - Bootstrap logic

This shell was generated by the command:

u shell submit +variant=a

8-48 Building Applications with LOGOS

Op'tions With shell

Part 1 is the shell's header, and is based on the root function's calling tree. The
shell has the same name as the root function by default, and the same syntax.
However, the arguments and result are renamed to avoid name conflicts with
your function; specifically, the result and the left argument are named ~98,

and the right argument is nnmed ~99. For the same reason, absolute line
numbers are used in the shell where branching is required.

Part 2 is the computed locals list. It identifies the other objects in the cluster
which are local to the shell. You can use the +header modifier to add or delete
names from the locals list.

Part 3 is the page-in logic -- in this case, a call to the f!:alpagein function, with a
precomputed node hash. This shell is not self-contained, as it requires the
presence of tJ.lpagein in the workspace. If you want a shell to be
self-contained, specify +variant=s.

Part 4 tests for the presence of a left argument and contains the code which is
executed if the shell is called with only one argument. You may incorpomte
such ambivalence code by specifying +variant=a. By default, shells assume
the strict syntax of their root function.

Part 5 contains the code which is executed if the shell is called with two
arguments.

Normally, a shell takes its name from its root function. You can use the
+name modifier to alter that. For examplc, to create a shell named input
around a root function named Input, you Inay use:

u shell Input +name=input

With the +header modifier, you cnn add or delete names from the locals list.
For example, +header=,ask l:iqi adds two names to the shell's header, while
+header=/tJ.qi deletes one. As the example in the previous section showed, a
basic shell does very little; it brings in the required node, and calls the root
function, ambivalcntly if necessary.

A more complex shell can be generated, if you wish. With the +qlx modifier,
you can replace the bootstrap logic by any code fragnlcnt For example, if you
generate submit wi th:

+q!x=/d9S..../d98 submit]:;, td99

That expression will replace the fifth part of the shell. The ambivalency
specification is ignored when +qlx is specified. Three variants handle common
cases of errors arising within the shell. +varianf=e causes the shelI to behave
as a primitive function (via localizing and not setting Dec). +varialll=r causes
result error to be trapped and ignored, for shells which do not return a result in
all circumstances. +varianl=t indicates that errors arc to be signalled to the
shell's caller, as if the shcll itself were transparent

Building Applications with LOGOS 8-49

A shell created around a node of a LOGOS created paging file depends on the
presence of the LOGOS paging utilities (specifically ~lpagein) to page in the
required code. You can make such a shell self-contained, and thus can copy it
from one workspace to another, using +varianl=S. With this variant, the shell
is built with all the bootstrap code in it, and without reference to any global
objects. A shell created around a package in an ordinary function file is always
self contained.

If you want the shell to be locked, specify +variant=/. You can combine more
than one variant, as in +variant=1st.

The +skeleton modifier allows you to specify a pathname to be used as a
frame for the shell. The pathname identifies a function. If you use this
modifier, the computed locals list is added to your function header, and your
function becomes the shell. This allows you to write your own custom page-in
and bootstrap logic, and still let LOGOS worry about handling the local names.

A Method for Maintaining and Generating Applications with LOGOS

Clearly, LOGOS provides a great deal of flexibility in terms of generating end
environments. There are many approaches to structuring application source
code within LOGOS and to writing generdtion scripts to build end
environments. Chapter 9: Generating End Environments discusses in detail
some strategies for organizing source within LOGOS. This section describes a
method for getting a system into LOGOS and for creating the scripts necessary
to build end environmenlfli. This approach has been used successfully on
several projects and is general enough to be easily tailored to special
situations.

The major steps in the method are:

1 Understand the structure of the application.

2 Decide on a LOGOS directory structure and populate it.

3 Create references to objects already established in the LOGOS hierarchy.

4 Introduce naming conventions where appropriate to group objects based on
regular expressions.

5 Thread together the calling tree of the application using code tags.

6 Use code tags and compilation directives to handle special cases such as
locked functions and configuration dependencies.

7 Build generation scripts.

8-50 Building Applications with LOGOS

A Prototype Application The following scenario will be used to illustrnte the practical application of the
method:

Janice, an experienced LOGOS user, has been given a new assignment: the
ongoing maintenance of an operational checkbook balancing system. This
application is not currently maintained with LOGOS. Janice has been asked to
move it into LOGOS, to fix several bugs that hnve been reported by users, and
to effect a general clean-up of the code. Janice has been told that she will be
asked to make some major enhancements to the system in the near future.
Each step of the method will be discussed in terms of general principles and
will be illustrated by observing Janice as she performs her job.

1 Understand the structure of the application

You must have a grasp of the structure of the application if you are to make
intelligent decisions about maintaining it in LOGOS. Obviously, you must read
the code carefully. It is often useful to generate a WSDOC listing including a
global cross-reference and a calling tree listing, especially if you are not the
original author of the application. This is invaluable in helping you to identify
the modules in a system and to classify individual objects by the modules to
which they belong.

Pay particular attention to special architectural features of the application, such
as the use of functions stored in files, the use of Dload or Oq/oad to chain
workspaces, or the use of server tasks. Try to undcrst,uld }vhy as well as how
these features are used. Often, you will find that you can improve the
performance of the system through the judicious use of LOGOS features.

For example, if an application brings functions in from a file because it
requires as much free workspace as possible, you may be able to free even
more workspace by compiling functions or by using the dcmand-b~L~ed paging
system provided with LOGOS. If an application uses several workspaces to
hold production, test, and steward versions of a system, you can employ a
paging file with multiple areas and an intelligent initialization program to run
everything from one workspace without resorting to the usc of Oload.

How does Janice go about understanding the checkbook system? The first
thing she does is generate a full WSDOC listing of the workspace (if your site
docs not have a copy of WSDOC, there arc usually similar tools available).
She examines the listing and discovers that the root function of the application
is a function named ch. She suspected this, since she noticed earlier that this
function is invoked from D/x, and thc trce section of the WSDOC listing
confinns that it is indeed at the root of the largest calling tree. Janice also
makes note of the fact that there arc several suspicious functions that are not
part of any calling tree.

Building Applications with LOGOS 8·51

Next~ she inspects the global cross-reference listing looking for references to
system functions such as Dread, CYd, Qfx, Dpdef, and Dload which indicate the
use of features that might have an impact upon the architecture of the
application. She examines any functions which contain references to these
facilities and learns about the general structure of the system. At the close of
her investigation Janice concludes that this is an architecturally straightforward
application, that all of the code resides in the workspace, and that no paging or
auto-loading of workspaces takes place.

2 Decide on a LOGOS directory structure and populate it.

You must decide if you are going to duplicate the existing application
architecture or if you are going to use the opportunity to restructure things.
LOGOS can be used to build any application architecture, even those based on
foreign paging systems. In either case, you must map out the structure you
plan to build. Note that you don ~t have to concern yourself with the specific
contents of every end environment, since calling tree analysis can do most of
this work for you.

To make the most effective use of LOGOS you will want to do more than
simply copy workspaces and files to LOGOS directories on a one-to-one basis.
You will want to take advantage of the hierarchical nature of LOGOS and
organize objects at a finer level of granularity than the workspace. Decide if
you are going to build multiple environments for tcst versus production
versions of an application.

This is a very powerful feature of LOGOS and does not require much effort to
set up. Nevertheless, it is best if you make the decision before you get too far
into the process of putting the system in LOGOS. Your decision will affect
subsequent steps~ particularly those related to putting code tags in source and
defining generation scripts. If you are moving the first of a suite of
applications into LOGOS, you will want to give some thought to a
superstructure for the entire suite. If the applications share several utility
functions you may want to set up a utility directory to service the entire set.

Often~ when developing large systems, you will find you want to access a
hierarchy of utilities. For example, at the most global level you might use the
utilities found in .public.uti!. You share these with all users of LOGOS at
many installations. At the next levee your organization may have established a
company-wide utility library. Your projeclleam may have a project library.
Finally ~ if you are generating a test version of a system, you may have private
debugging utilities you wish to include.

8-52 Building Applications with LOGOS

Figure 8.5 Utility Directory Hierarchy

LOGOS DIRECTORIES
TEST

WORKSPACE PRIVATE PROJECT COMPANY PUBLIC

Copying the contents of a workspace or file into a LOGOS directory is a
simple task. There are several ways of accomplishing this using the save or
snap commands or thejiletologos script. Refer to the documentation for these
commands for examples. Often, it is more productive to move all of the code
from workspaces or files into one holding directory and then use LOGOS
commands to copy objects to their ultimate destination within the hierarchy.
After copying each object, delete the copy in the holding directory.

Using this approach, you know every object has been accounted for when the
holding directory is empty. For example, if you have snapped a workspace
with many functions into a directory and you want to move every function
whose name begins with tif into a directory namedfileutils, you can do this
with the command sequence:

u copy (d+-list ~f?*) jileutils
U delete (1.d)

In this example, the objects to be moved could be easily classified by
matching their names against a pattern. A useful variant of this technique is to
use the editor as a lIfilterll. That is, you list the holding directory and save the
output of the list command in a variable, as above. Then, use the editor to edit
the variable, retaining only the names you wish to move into a given directory.

Building Applications with LOGOS 8-53

Mter you have finished editing the variable, you can pass it to copy and delete,
as was done in the preceding example. Using techniques like this, you can
quickly migrate a large number of objects into a directory structure. After
some careful consideration, Janice decides that she is going to make a change
in the operational environment of the application. She decides that she is going
to add a test workspace to serve as an environment for evaluating bug fixes
and future enhancements. Taking this into consideration, she develops the
following directory structure:

Figure 8.6 Sample Directory Structure

SVSLIB

CB

SRC MAINT

DEV INPUT REGISTER REPORT SHELL UTIL

The maint directory is designed to contain scripts used to maintain the system,
for example the script which generates the workspaces associated with the
system. The dev directory holds development versions of objects until they
have been debugged. Janice's plan is to copy a function she needs to work on
from its original directory into the dev directory.

The generation script will place dev at the beginning of the working directory
list whenever the test version of the workspace is to be generated. This means
that the development version of the function will appear only in the test
workspace. When the function has been debugged, it will be copied back into
its original directory and the copy in dey will be deleted. The register, report.
input, and shell directories contain code unique to the check register, report
generator, data input.. and command shell modules of the system, respectively.

8-54 Building Applications with LOGOS

The purpose of the util directory is to hold utilities used throughout the system.
Janice moves the application code into a temporary holding directory named
.syslib.cb.src.tmp, by signing an auxiliary task, instructing the task to load the
application workspace, and using the save command:

u signon
u send) load 510 checkbook
u save (send Onl 2 3) +task +workdir=.syslib.cb.src.tmp +nwkedir

She then selectively moves objects out of the tmp directory and into their
proper directories using the techniques described above. She finds, however,
that there are a number of anomalous objects. Two of these arc locked
functions with the suspicious names del and xref She remembers that each of
these objects appeared in the WSDOC listing outside any calling tree.

A check of the cross-reference listing confirms that these functions are not
called by any other functions in the application. It would appear that these are
development tools that were inadvertently left in the production workspace.
Janice knows, however that it is possible to fool WSDOC by calling a function
in an indirect manner, for instance by using ~ to execute a row of a character
matIix.

As a check, she uses the LOGOS locate command to search for the strings
"xreft and ttdel tt throughout all the objects in the application. She find,; a
match for tldel" in a character matrix n~uncd frzenucnuls. Further investigation
reveals that the function ~,nenu, uses .t to invoke functions. Therefore, this is
a legitimate reference and del is indeed part of the application. Janice deletes
xref and uses the same technique to investigate the other suspicious objects.

3 Create references to objects already established in the LOGOS hierarchy.

One of the most important reLL~ons for using LOGOS is to re-use and share
code. You will want to eliminate redundancy wherever possible. If you are the
developer of an important utility used by many progralnmers in your
organization, it is in your bcst interest and the best intcrest of the organization
to maintain one central copy of the utility. This means that when you copy a
workspace or file into LOGOS, you must identify objects that already exist
within the LOGOS file system and replace the new copies with references to
the existing code.

There are three ways to create such a reference to an external object. The first
is to explicitly reference the object by pathname in the generation script. The
second is to use build's calling tree analysis capability and include the
directory the utility appears in within the list of working directories used by
the script. The third is to actually create a link in your application directories
that points at the object in question.

Building Applications with LOGOS 8-55

Each approach has its own advantages and disadvantages. Before you can
create such a reference, you must first identify those objects that appear
elsewhere in the LOGOS hierarchy. The script .public./ogos.cmds.matchobj is
a useful tool for accomplishing this. If you present this script with a list of
objects in LOGOS and a list of utility directories, the script will identify
objects in the list which also appear somewhere in the utility directories.

The script works by first using .public.logos.cmds. search to identify objects in
the directories with identical names and then by calling the compare command
to verify that the objects are indeed identical. The script allows you to specify
a +flags modifier to be used with compare. This allows you to match objects
without regard to comments, local identifier names, etc. by specifying the s
(syntactic) flag.

Janice plans to use two public utility libraries to generate the checkbook
application: .public.uti/ and .public.cameo.uti! The former directory is the
familiar utility library distributed with LOGOS, the latter is a utility library
Janice's company has established. To identify any objects she recently added
to the .syslib.cb.src hierarchy that might also appear in one of these utility
libraries, she uses the following call to malehobj:

u D+-d....public./ogos.cmds.matchobj .syslib.cb.src .public.camco.util .public.util +/lags=s
.syslib.cb.src.irtput.h.prompt
.syslib.cb.src.reportfmlcols
.syslib.cb.src.uti/.rcat
.syslib.cb.src.uti/.vtom

Janice is going to use build and tree analysis, so she knows that the public
versions of these objects will be picked up automatically if she includes the
proper utility directories in the working directory list set up by her generation
script. Therefore, the pathnames produced by rnalchobj can be deleted. She
does this with the command:

U delete (i.d)

4 Introduce naming conventions where appropriate to group objects based on
regular expressions

Regular expression text patterns are a useful means for identifying and
organizing collections of object') within a LOGOS hierarchy. For example, you
might be working with a system that contains a dozen primary commands. A
likely hierarchical structure for such a system might include a directory for
each command, with each directory containing the root function for the
command and all of the objects referenced only by that command. Objects
referenced by marc than one command would be placed in a directory
dedicated to the kind of processing performed by the object, or simply in a
utility directory. This is a logical structure easily navigated by a developer
looking for a particular object.

8-56 Building Applications with LOGOS

Suppose, however, for purposes of generating an end environment through tree
analysis, you need to identify the root function in each directory. A frequently
used technique for doing this is to give each command function a name that
fits a defined pattern. For example, you might precede each command function
name with tJ.c. Using this technique, the command:

u list tJ.c?*

will yield the names of all command functions. From her examination of the
checkbook system code, Janice knows that the "command" functions in this
system are all called from a driver function named ~mellu. ~,nenu solicits
input from the user and then executes a row of the character matrix
MENUCMDS, based on this input. She observes that most of these function
begin with the word do. for example doprillt. There are a few exceptions
however. She also notes that there is a function in the system named doslink
that is not a command function. This name will produce an undesirable match
the pattern do'? *.

Janice decides that she will rename all commands functions so that their names
begin with ~do. This will address the exceptions and will establish a name
prefix that is not likely to collide with other function names.

5 Thread together the calling tree of the application using code tags.

If you plan to use calling tree analysis to generate any part of your application,
you must insure that LOGOS can deduce the calling tree by ex~unining the
application'5 code. The use of specinl features such as .t. and q[d to fix
functions dynamically, can introduce discontinuities in the calling trec.
Fortunately, LOGOS provides a means for you to identify these
discontinuities: R 'V u code tags.

This was discussed earlier in the section entitled I'ree Analysis. This code tag
allows you to declare simple names as well as reference regular expression
patterns and objects such as name tables stored in LOGOS. Sometimes you
will be faced with a different situation: references to names that you do not
want LOGOS to treat as global references.

For example, you might call a public utility function called prilltde! that ties a
file, selects a component based on your terminal type, and then defines a print
function stored in a package in the selected component. This print function is
outside your control and you do not want LOGOS to try to find it in the
hierarchy during generation.

You can instruct the calling tree analysis process to ignore the name by using
the R \7; code tag:

[4] prin/de! 0 print A 'V; print

Building Applications wilh LOGOS 8-57

The mechanism used by the checkbook application's ~menu function to invoke
command functions is one place where Janice needs to tie together the calling
tree. Janice uses the LOGOS locate command to find the line containing the
execute construct and adds a code tag:

[10J i.MENUCMDSC;ndex;] AVU ~.syslib.cb.src.shel/.MENUCMDS

This construct causes tree analysis to fetch the MENUCMDS table, to examine
it for identifiers, and to generate a global reference to each of these identifiers.
This will provide linkage between limenu and the functions it invokes
indirectly through MENUCMDS.

6 Use code tags and compilation directives to handle special cases such as
locked functions and configuration dependencies.

Generally, if you plan to compile any of your application, you will want
specify this globally, in your generation script. You do this by using the
+compile directive with the build or gel commands in your script or you use
the environment compile command. This is preferable to setting the
compilation directive attributes of individual objects because it allows you to
use the same function in other applications with different compilation
directives in effect.

There are some cases, however, where you will want to control compilation on
an object-by-object basis through compilation directive attributes or code tags.
A few situations that warrant this treatment arc:

• Objects that contain constructs that differ depending upon the configuration
of the end environment into which they are generated. A good example of
this is a function that must behave differently in a tcst and production
environments. You use the R fJE code tag to mark these lines. Chapter 10:
Using the Compiler contains more information on this technique.

• Functions that should not be processed by certain compilation directives
under any circumstances. For example, you may know that a function will
not operate properly if its local identifiers are processed by the r (rename)
compilation directive because it uses .t. and q[d. You can inhibit this by
including the directive -R in the function's [: cJ (compilation directive)
attribute.

• Functions that can be processed by certain compilation directives with some
local exceptions. For example, if you use the d (diamondize) directive
globally, you must add RfJo directives to any function lines that cannot be
joined to adjacent lines.

8-58 Building Applications with LOGOS

• Functions that you wish to lock in the end environment. By specifying the I
(lock) compilation directive, you can insure that get and build always place
locked versions of the function in end environments. If you restrict other
developers' access to the object to just x (execute), only you will be able to
examine or modify the function's source.

Janice has already detennined that she will be generating both a production
and a test environment for the checkbook application. To support this she
makes several changes to the objects in the .syslib.cb.src hierarchy. One
important change she makes is to add a second line to the 6menu function to
reference a test copy of the MENUCMDS matrix stored in the dev directory:

[10J ;..MENUCMDS[index;] RfJU ~.syslib.cb.src.shell.MENUCMDSR'VE: prod
[11J ;..MENUCMDS[index;J R\7U J..syslib.cb.src.dev.MENUCMDS RtJ€ test

Janice intends to set her generation script up so that functions will be compiled
with the directive i=prod when the production environment is being generated
and compiled with the directive i=test when the test environment is being
generated. Therefore, line [10J will not appear in test versions of the system,
and line [11 J will not appear in production versions. Each version will
include the correct MENUCMDS table.

If Janice were to use either the r (rename) or y (relabel) directories, she would
also have to look for occurrences of local variables or line labels inside quoted
strings. In those instances, LOGOS would not rename that occurrence, so,
when that line was executed, there would no longer be a local variable or line
label of that name, and a value error would occur.

Trap statements are particularly likely to contain line labels inside the quoted
trap expression. Janice could use the locate command to find trap expressions
so she could examine them to see if the form should be changed.

For example, she might change a typical trap statement from:

[3 J Otrap+-' 0 3 e -+error'

to:

[3J Otrap"" 0 3 e -+' , Terror

so the line label error occurs outside of the quoted string. LOGOS would now
appropriately change the label if the r or y directives were used.

Building Applications with LOGOS 8-59

Another situation that may require adding code tags arises when a function
makes a global reference to a variable that is localized in a higher level
function. Using the r compilation directive would cause that variable to be
renamed in the higher level function, where it is localized, but not in the later
subroutine where it appears to be a global object.

Janice could include a R V....., code tag on a line in the higher level function
where the variable is localized to indicate that the variable whose name she
includes after the code tag should not be renamed. In this way, the later global
reference would still be valid.

7 Build generation scripts

Now you are ready to write scripts that will generate the end environments
required by your application. Several examples of this kind of script were
presented earlier in this chapter. The following checklist will serve as a review
of the important principles discussed there.

Generation Script Checklist

o Is your application best served by a single generation script or a collection of
scripts?

If your application consists of a single end environment, you probably only
need one generation script. If your application architecture is more complex
however, and it is comprised of several environments, you may want to write
scripts for each of the environments. This gives you the flexibility to
regenerate one part of the system without the necessity of rebuilding
everything. You can write a "master" script which i.nvokes the other scripts for
situations where you do want to rebuild the entire application.

o Which aspects of the end environment do you want to make usoft"?

There are a number of aspects of an end environment that you may want to
customize at the time you generate the environment. Usually, the best way of
specifying these parameters is through arguments and modifiers to the
generation script. You can use script syntax to provide default values for these
parameters.

8-60 Building Applications with LOGOS

Some features of end environments that are commonly given this kind of
treatmentare:

• the end environment name

• audit file names

• the test or production status of the end environment

• compilation directives

• the value of global variables interpolated into source via the R V.t. code tag
(for example, file names, account nurnbers, etc.)

• global flags which control the inclusion of debugging code via the R V€

code tag

• global flags which control the inclusion of special features via the R'VE

code tag (for example, does a workspace genef3ted for a given user include
interfaces to special steward code?)

Note that you do not always need a separate script parameter for each aspect
of the end environment you wish to control. For example, it is common
practice for scripts to determine audit file names, compilation directives and
other global flags based on the setting of the tcst/production flag.

o Will you be using audit files? Will you want to use multiple files?

Audit files make application maintenance much easier by providing linkage
between LOGOS source and application code. You will want to usc audit files
in all but the smallest applications. Many developers find it convenient to use
different audit files for different versions (e.g. test vs. production) of their end
environments. This makes it possible to easily update only one set of
environments when using maintenance commands such 3..") distribute.

o If you are generating a workspace, will you need an auxiliary t3..'ik?

Although you can generate and save workspaccs using the active workspace
and the wssave command without an auxiliary task, it is generally preferable to
use the task approach. This is because the task starts out with a completely
clear workspace, whereas the active workspace always has a copy of LOGOS
in it.

LOGOS places demands upon the resources of the workspace in terms of
working area and symbol table space. If you Inove objects into the active
workspace during generation and then save that workspace without using an
auxiliary task, the saved workspace will usually have a larger symbol table
overhead associated with it than necessary.

Building Applications with LOGOS 8-61

o What kind of compilation will you use?

Compilation can provide very tangible benefits in end applications. Some very
large applications would not run at all without the space-savings compilation
affords them. You must use some compilation directives with caution,
however. The r (rename), y (relabel), and d (diamondize) directives can be
particularly dangerous if used indiscriminately.

o If you are generating a paged environment, what kind of paging will you usc,
demand or request?

If you use request paging, you must predetermine the contents of each node
and include calls to the LOGOS paging utilities at critical points in your
application code. If you decide to use demand paging, you need to identify the
root functions of each page and amend your application's start-up code so that
the proper call to the paging initialization utility and Dtrap assignment take
place.

o Do you want to be able to perform "update" generations?

If you are building a paged environment, most likely you will want to provide
a modifier to the generation script that will alJow you to specify a node or
nodes to be regenerated during an update generation. The value of this
parameter, the node names, can be passed to the +update parameter in your
call to the fiiesave command.

o Does your environment require any special features, such as shells?

If you want to include any shells in your application, you will need to identify
the contents of each shell and include a caB to the shell command in your
generation script. In some cases, you will also need to provide a skeleton for
the shell (see the section Shells in this chapter).

8-62 Building Applications with LOGOS

Janice writes the following script for generating the checkbook system
workspace:

[]] z+-gencbws (+compile=p,r,) (+production); wsid
[2] R generates the "checkbook" workspace used by the
[3J R checkbook system.
[4J R

[5J "productionp/O
[6J) environment workdir .syslib.cb.src.dev

.syslib.cb.src.utill report Iinput Iregister Ishell

.public.cameo.uti! .public.uti! +stack R establish test working directories
[7J) environment audit 4949321 tcbaudit R establish test aUllit file
[8J wsid+-' 4949321 checkbook' R establish test l1'sid
[9J compi/e+-compile,' i=test'
[10J -+11
[]]] 10:) environment workdir .syslib.cb.src.utill report I input Iregister Ishell

.public.camco.util .public.uti! +stack R establish production working directories
[12 J) environment audit 4949321 pcbaudit R establish production audit file
[13J wsid+-' 510 checkbook' R establish production tvsid
[14 J compile+-compile, 'i=prod'
[15J 11:) output generating workspace (~Y\'sid) R infornl user of our intentions
[16J)signon +task=gencbws R we will need an aux task 10 generate the workspace, sign

it on now
[17J) env task gencbl-vs R make it the default task
[18J) build <> start +depth +compile=x)\compile
[19J)z+-wssave (~wsid) R save the workspace
[20J) send) off R dispose of aux task

Make note of the following: Janice wants to be able to build both the test and
production environments using the same script. To accomplish this, she
provides the script with a +productioll modifier. The branch on line 5 uses the
local variable established by the script from the para,neler to control which
block of initialization code gets executed. Each block defines a set of ~orking
directories, an audit file, a target workspace id, and augments the compile
modifier.

Note that the list of development working directories begins with
.syslib.cb.src.dev. This means that any test objects Janice places in this
directory will be placed into the end environment rather than their production
counterparts. An auxiliary task is used to huild the workspace. This task is
signed off when the generation has completed. Tree analysis is used to
detennine the contents of the workspace.

Building Applicafions with LOGOS 8-63

All Janice needed to know was the name of the root function (start) and the
list of working directories where referenced objects could be found. A
+compile modifier controls how objects are compiled. By default, the x
(decomment), p (parent pathname tag), and r (rename) directives are in effect.
The p and r directives can be overridden by providing a different value to the
modifier when invoking the script.

Janice knows that some of the functions contain voluminous comments and
that the application will be severely constrained by the working space these
comments will consume unless they are removed when the application is
generated. Therefore, she embeds the x directive directly in the build command
on line 18, enabling it pennanently.

In the future, Janice would like to generate the application using the
diamondize compilation directive as well. She knows however, that doing so
now would jeopardize the restartability of some of the functions. What she
plans to do at a latcr date, is examine these functions and either add R 'YO code
tags to protect sensitive lines, or in exlrclne cases, add the -D directive to the
compilation directive attribute of functions that should not be diamondized at
all.

The build command is used to generate a cluster using calJing tree analysis and
to disperse the contents of this cluster into the active workspace of the
auxiliary task. The inclusion of the +depth modifier with no arguments
specifies that calling tree analysis is to be carried out to infinite depth.

8-64 Building Applications with LOGOS

CHAPTER 9: GENERATING END ENVIRONMENTS

Designing a Hiernrchy 9..3
Principles of Choosing a Structure 9..3
Types of Structures 9-3

Flat Structure 9-4
Module Stl-ucture 9-4
Common Structure 9-5

Maintaining Multiple Versions of a System 9-5

Putting Your System Into LOGOS 9-6
Saving Large Workspaces 9-6
Saving Systems Stored on File 9-7
Creating New Objects 9-8

Snapping a Workspace 9-8
Using the sna/J Command 9-9

Snapping Compiled Objects 9-9
Snapping Attributes 9-9
Excluding Objects From the Snap 9-9
Confinning the Snap 9-10
Previewing the Snap 9-10
Snapping Changed Objects 9-10
Rebuilding a Snapped Workspace 9-11

How the snap Command Works 9.. 12
How the snap Command Determines Relationships 9-13

Information in the Tracking Table , 9-13
Infonnationin the Parent Pathname Comment 9-13
Information in Working Directories 9-14
Determining Whether Objects Have Changed 9-14

Using This Information To YOUf Advantage 9-15

Generating End Environments 9-1

9-2 Generating End Environments

Figures

Figure 9.1 Flat Structure 9-4
Figure 9.2 Module Structure 9-4
Figme 9.3 Common Structure 9-5
Figme 9.4 Operation of the snap Command 9-14

Tables

Table 9.1 Fonns of Hierarchies 9-3
Table 9.2 Keywords Available when Confinning a Snap 9-10

Designing a Hierarchy

The hierarchy is the vehicle for organizing data in LOGOS. It allows you to
keep together related information such as the objects belonging to individual
users, the applications they use, and the data associated with a specific project.

Principles of Choosing
a Structure

Types of Structures

A hierarchy should make your system easy to maintain. Several factors
influence how you should organize your hierarchy. They are:

• the number of objects involved

• the number of people who require access, and to what parts

• whether parts of the system are common to other systems

• whether parts of the system can be functionally isolated

If the system you are storing in LOGOS consists of a large number of objects,
avoid putting them all in the same directory. Isolate functional units (or
modules) and store them in separate directories.

If parts of your system contain subsystems (one or more modules) that are
common to another system, isolate the subsystems from the rest of your
system. Store any group of objects that receives similar treatment (because
they are conceptually related, or accessible to the same users, or exported as a
unit) in its own directory.

There are three basic forms of hierarchical organization:

Table 9.1 Forms of Hierarchies

Form

Flat Structure

Module Structure

Common Structure

Description

Stores all objects under a single directory.

Separates functional units of a system into individual directories.

Groups objects based upon some common characteristic.

These forms can be employed alone or in combination, to yield an effective
systemic structure.

Generating End Environments 9-3

Flat Structure

Module Structure

The simplest organization, aflat structure, has all objects stored under a single
directory. This reflects the "flatU fannat of a normal APL workspace. It is
sufficient for storing a small, self-contained systems.

Figure 9.1 Flat Structure

SYSTEM

('functions and variables)

A module structure separates functional units of a system into individual
directories. For example, if your system consists of subsystems that add
records to a database, change records, delete records, and produce reports, you
might store each of these modules in a separate directory. These, in tum,
would be stored under a single directory unifying the entire system.

Figure 9.2 Module Structure

SYSTEM

ADD

~
CHANGE

~
DELETE

~
REPORT

~

9-4 Generating End Environments

(functions and variables)

Common Structure A common structure groups objects based upon some common characteristic,
such as related functionality or operation on common data structures. For
example, you might segregate general utilities, device handlers, data
compression functions, and command routines, each in its own directory.
These directories are unified by a single parent directory for the system as a
whole.

Figure 9.3 Common Structure

SYSTEM

COMMANDS

~
COMPRESS

~
DEVICE

~
UTILITY

~

Maintaining Multiple
Versions of a System

CRT PRINT

(functions and variables)

With critical software, you can maintain two parallel versions of a system: a
production version, which is the "official" system, and a development
version, in which changes are tested and evaluated.

There are at least two ways to accommodate multiple versions in your
system's hierarchy.

• Keep parallel hierarchies if the system is widely distributed: one for the
distribution version of the system, and one for the development version. This
technique involves duplication and the concomitant use of additional file
space, but can be the simplest approach if you arc maintaining the distributed
version while developing the new one.

• Save changes to development directories. Have the same directory structure for
development, but have these directories be empty initially.

Generating End Environments 9-5

When you save changes to development directories, you can then perform the
following activities.

1 As you change a program or a piece of data, save the changed copy into the
development directories.

2 When you generate the test version of your system, use multiple working
directol;es to overlay the production versions with the test versions.

3 When a change is finally ready for release, simply copy the appropriate objects
to the production directories and delete the development versions.

Putting Your System Into LOGOS

Once you have designed a hierarchy, you can put your system into LOGOS.
You can use the save command, described in Chapter 3: Using the File
System, to create your hierarchy of directories.

For example, to store your entire system in a single directory (a flat structure),
you could type:

save ("'Onl 2 3) +makedir +~vorkdir=systen1

This creates a directory called systern and stores all functions and variables in
your active workspace beneath it. (This method of storing a system is similar
to use of the snap command, described in the section Snapping a Workspace in
this chapter).

Saving Large Workspaces If your workspace is large, you can use the auxiliary task facility to save it in
LOGOS.

1 Sign on an auxiliary task.

2 Load the appropriate workspace under that task.

3 Save the objects in the auxiliary task's workspace in LOGOS. For example:

save (send onl 2 3) +nulkedir +task=aux +~vorkdir=system

NOTE:

9-6 Generating End Environments

The +task modifier is not specified with the send command; it assumes the
target is the default auxiliary task. Nonnally, however, the save command
stores objects from the workspace in which LOGOS is running, so you must
use +task to alter its behaviour. Alternatively, you could set the environment
task parameter to aux, as described in Chapter 14: Profiles and Environments.
This eliminates the need to specify the task name to save, or to any other
command that works with auxiliary tasks.

Saving Systems Stored on
File

There are several ways to store a system that is partially or completely
file-resident in LOGOS.

• The most straightforward technique is to bring a group of objects into the
workspace, use save as described in the previous section, and erase the objects.
You can automate this process using a script.

• You can use the disperse script in .public./ogos.cmds to save the contents of a
SHARP APL package as separate paths in LOGOS. (See Chapter 15: Using
the Utility Library for details about this public directory.) For example:

disperse +value=Oread 1 2

The argument to +value is an expression that must produce a package when
executed. In this example, disperse saves the contents of the package found in
component 2 of the file tied to 1, as objects in your primary working directory.

• You can transfer an entire program file to LOGOS by using the disperse script
in combination with the ~vith command. For example:

with 'disperse +value=Dread 1 a' (.t ((1PDsizc 1) - Dio) + t - - /2 pDsize 1)

Here, all components of the file are saved as objects in your primary working
directory.

• Systems written before packages were available can have functions stored on
file as character vectors or matrices. You can move these into LOGOS using
the +value modifier to the save command. For example:

save device.print.page [fJ +value=A!.Dread 2 J

Normally, if +value is specified, save assumes that a variable is being saved.
In this example, the extendcd pathnamc, [fJ, tells LOGOS to save the path as
a function.

Gcncrating End Environments 9...7

Creating New Objects

Snapping a Workspace

9-8 Generating End Environments

You can create new objects by:

• establishing variables in the workspace, then transferring these new objects
to LOGOS with the save or snap command. For more information on
creating new objects with save, see Chapter 3: Using the File System. For a
discussion on the snap command, see the section, Snapping a Workspace, in
this chapter.

• editing functions. For more information on creating new objects with the
editor, see Chapter 6: Using the Editor.

• using the save command with the +value modifier to directly specify an
object to be saved. This method is appropriate whenever you are saving
something that is derived from a calculation or a value on file. For a
discussion on save +value, see Chapter 3: Using the File System.

To illustrate the last method, suppose your application is one that allows
configuration based upon user load, workspace size, and other similar
parameters. You can use a simple script to automate storing the parameters for
the application, and letting the user change them. The script might look like
this:

[1] config[IJ +Wa= +U/= +/ntro=
[2] R set modern configuration paranleters.
[3J) save config.Wa +value=.t.Wa R v.'orkspace size
[4]) save config.UI +va!ue=1UI R expected rnax user load
[5 J) save config .intra +value=\./ntro A lrVelCOnle lnessage

You can run this script whenever the parameters need to be altered. You can
regenerate your system whenever you like using the values stored by the most
recent execution of the script.

The snap command is another means of interaction between LOGOS and a
workspace. It examines the contents of the workspace, and stores in LOGOS
all objects that are new or have changed since they were last stored. Changed
objects are resaved in the directories [rOITI which they were fetched, while new
ones are stored in your primary working directory.

The snap command can also save a script from which the workspace can be
recreated, and can build an audit file (see Chapter 8: Building Applications
with LOGOS) so LOGOS can autolnatically update the workspace.

Using the snap Command To store the contents of your active workspace in your current working
directory, type:

snap

LOGOS prints the list of paths saved.

If you do not want to store the entire workspace, you can supply an argument.
For example, to pick up changes to G, b, or c only, type:

snap abc

To select all objects beginning with either ~ or ~,type:

snap 6?* I~?*

Snapping Compiled Objects The snap command ignores compiled objects. (A compiled object has been
altered by compilation. Inclusion of the parent pathname comment in an object
does not make the object a compiled object.)

This is normally not a problem, but if an object has neither a parent pathname
comment nor a referent in the tracking table, the sllap command cannot tell if
compilation occurred and stores a new version of the object. If you plan to use
the snap command, try to avoid using compilation except where absolutely
necessary.

Snapping Attributes

Excluding Objects From
the Snap

The snap command ignores attributes you bring into the workspace as
variables, such as documentation or tags. However, if snap finds these objects
by searching your working directories, it may inappropriately save the
attributes as the source for the objects. You can use the command's argument,
or modifiers such as +confirm and +exclude, to help control this.

You can exclude some objects from being saved in LOGOS. For example, if
commands in your system begin with a nonnal alphabetic character,
subroutines begin with ~, and global variables begin with ~, you can store
each of these groups in a separate directory with the following commands:

u snap +exclude=I1?* /d?* +makedir +workdir=commands
u snap 11? * +makedir +workdir=subroutines
U snap /J?* +makedir +workdir=globals

The first command uses the +exclude modifier to remove objects beginning
with ~ or td from consideration. This is often more convenient than itemizing
what to save in the argument to the snap command, as is done in the second
and third commands. For more complex control, you can use the selection list
of the argument and the exclusion list of +exclude at the same time.

Gencraling End Environments 9-9

Confirming the Snap If you are not sure that you want everything the snap command selects to be
saved, you can use the +confirm modifier. As with the delete command, this
modifier selects a confirmation mode in which you are prompted with each
object about to be saved. For example:

snap ~f?* +confirm

LOGOS then prompts you before snapping each object. For example:

save <.mde.tools.util.~fread>? yes
save <.mde.tools.util.tifver>? no
save <.mde.tools.util.~fwrite>? y
.mde.tools.util·/)freadlflJ
.mde.tools.util·/)fwritelf2J

While you are in this mode, the following keywords can be entered in
response to the prompts:

Table 9.2 Keywords Available when Confirming a Snap

Keywords

yes (or y)
no (or n)
back
continue
stop

Description

Saves this object.
Does not save this object.
Returns to the previous prompt.
Saves all selected objects without further prompting.
Aborts the snap command.

Previewing the Snap You can preview the effects of the snap command by using the +view
modifier. For example:

snap object +view

The snap command returns a list of pathnames, but does not actually move any
objects into LOGOS. This is also useful for determining which objects in your
workspace have changed.

Snapping Changed Objects If you work with objects that are already stored in LOGOS, snap and other
commands maintain information that allows LOGOS to determine where they
came from and whether you have changed them in the workspace.

For example, if you have a workspace containing only the logos function, you
can use the get command to materialize some object~:

u get .public.utilfiles.lifappend I !1fcreate util.copyfile
.public.utilfiles·tifappend[flJ
.public.utilfiles·!1fcreate [fl]
.john.modules.util.copyjile[j2J

9-10 Generating End Environments

Rebuilding a Snapped
Workspace

If you invoke the snap command at this point, it would not save any
workspace objects because the versions currently in LOGOS are identical to
those in the workspace. However, if you edit copyfile, the snap command
picks up the copy in the workspace and saves it as version 3 of
john.moduies.utii.copyfile.

The snap command's ability to determine what has changed in your workspace
can save you time after a complicated editing session. For example, if your
system is largely or completely stored in LOGOS, you can change and debug
many objects directly in the workspace without using LOGOS, and the snap
command will find the objects you changed and store them back wherever
they came from.

If you want to rebuild the workspace you snap, include the +script modifier in
your snap command, and supply a pathname as its argument. The snap
command builds and stores an image of the workspace in the form of an
executable script. When you run the script, it recreates the workspace exactly
as it was when you snapped it.

The following example shows how to use the snap command to capture the
workspace in which you changed the object copyfile, and display the script
produced by the operation.

u workdir
john.modules
u snap +script=gen
.john.modules.utiI. copyfiIe [f3 J
john.nwdules.gen [sl J
U display gen
john.modules.gen [s1] :
[1] gen
[2J I=t logos-generated script
[3J R

[4J R compiled or unchanged objects
[5J R

[6J) get ~fappend !1fcreate +w=.public.utiljiles
[7J R

[8J R newly saved objects
[9J R

[10J) get copyftle +w=john.nuJdules.util
[11] R

[12 J R re-save the workspace
[13J R

[14J) wssave ' ,

Generating End Environments 9- I 1

The snap command saves version 3 of .john.modules.util.copyfile and saves
the script gen under the current working directory. The generated script is
broken into several sections, with different get commands for objects that were
not saved by snap (those that were unchanged or compiled), and objects that
were saved by snap (those that were new or changed). Finally, the wssave
command saves the workspace (because this workspace was clear, no
workspace name is saved).

A script generated by the snap command should be considered a working
document. It is not necessarily suitable for a real workspace generation, but
instead provides a solid starting point for editing and revision. In this script,
for example, you would probably want to include a proper workspace name as
the argument to wssave.

Subsequent use of snap with the same script specified will add lines to the
script for any new or changed objects.

How the snap Command Works

The snap command is a process that:

1 Relates workspace objects to LOGOS pathnames.

2 Determines whether objects present in both environments have been changed
in the workspace.

3 Confirms through user interaction that each new or modified object should be
saved.

4 Stores changed objects in the directories in which they had previously been
saved.

5 Stores new objects in the primary working directory.

6 Builds and stores a script capable of regenerating the workspace.

7 Stores an audit from which the workspace can be updated.

Steps 3, 6, and 7 of this process are optional, and are controlled through the
selection of the modifiers +confirln, +scrip', and +audit, respectively.

9-12 Generating End Environments

How the snap Command
Determines Relationships

Information in the
Tracking Table

Information in the Parent
Pathname Comment

The snap command relates workspace objects to their counterparts stored in
LOGOS. It determines these relationships from three sources:

• the tracking table

• parent pathname comments

• your working directories

The tracking table is a variable, ~LTRACKJ that is put into your workspace
by the get and build commands. It contains information on every object
fetched from LOGOS, including:

• the directory from which the object came

• the type of object

• the version number of the object

• an indication of whether the object wa<i modified by compilation

• a cyclic redundancy check (eRe), which is used to determine whether the
object was modified by you since fetched from LOGOS.

The tracking table is stored and referenced only in the workspace in which
LOGOS is running. Even if you are defining objects in another workspace
using get via an auxiliary task, the tracking entries for the objects are added to
the tracking table in the active workspace.

The snap command does. not interact with an auxiliary task, so it cannot take
advantage of these tracking entries. (You can use the APL command) copy or
the LOGOS command transfer to move ~LTRACK from the active workspace
to the auxiliary workspace, save that workspace, load it from your active
session, and then use snap.) Also, if you copy objects from workspace to
workspace, the tracking table relnains unaware of the derivation of those
objects.

A parent pathname comment is a special comment affixed to the end of the
last line of a function by the LOGOS compiler (see Chapter 10: Using the
Compiler). If you have selected the p compilation directive, functions fetched
contain such a comment, distinguished by the prefix A*. Parent pathname
comments include the same information as entries in the tracking table, in a
fonn that is easy to understand. If both a parent pathname comment and an
entry in the tracking table are present, the former takes precedence.

Generaling End Environments 9-13

Information In
Working Directories

Determining Whether
Objects Have Changed

Parent pathname comments have limitations. They are generated only if you
request it by specifying the p compilation directive. If you plan to use snap
frequently, consider setting this directive in your global environment compile
directive list when you generate workspaces or within the scripts that do the
generation for you (see Chapter 14: Profiles and Environments).

Unlike tracking table information, parent pathname comments stay with your
functions even if they are copied from workspace to workspace, or if they are
saved in a file. They are automatically updated by the snap and save
commands, and they provide a valuable visual tracking tool for the
programmer. However, they exist only in functions and don't apply to
variables.

If the snap command cannot deduce an object's pathname from either the
tracking table or parent pathname comments, it searches your working
directories for an object with the same name. If it finds one, it assumes the
workspace object is a version of the LOGOS object.

If the snap command does not find an object pathname by searching the
tracking table, the parent pathname comment, or the working directories, it
considers the object new and stores it in your primary working directory.

Figure 9·4. Operation of the snap Command

MADRA. TOOLS.lJTll

... OICKTEMPA__o+-

DICK TEMPe --0+-

OBJECT
DATABASE

OICK1B.tP

NEW OR
MODIFIED
OBJECTS

w x Y N W

WORKING
DIRECTORIES

9-14 Generating End Environments

Using This Information
To Your Advantage

Figure 9-4 illustrates how snap uses the tracking table and your working
directories to update the LOGOS object database. a. b, c, w. x, y, and z are
objects that have been modified in the workspace. new is an object not yet
stored in LOGOS. a, b, and c are found in the tracking table, and are therefore
stored in the directories so implied. The working directories .dick.temp and
.mabra.tools.util are then searched for the remaining objects. w, x, y, and z are
located and are detennined to have been modified; these objects are saved.
new has no current referent, so it is stored in the primary working directory.

If the snap command does find an object's pathnames, it uses one of two
techniques to detennine whether an object found both in LOGOS and in the
workspace has been changed.

If the object has an entry in the tracking table or a parent pathname comment,
the snap command compares the object's CRC from the tracking table or its
parent pathname comment, with a eRe computed from the version in the
workspace. If they are the same, the object is considered unmodified and is not
stored by snap.

If no CRC is available, the snap command searches the working directories for
an object of the desired name in the working directories. If it finds one, snap
compares it with the version in the workspace. If they are the same, the object
is not resaved.

You can use the snap command more effectively if you know how it works.
For example, if you have designed an extensive hierarchy and stored your
workspace-resident system in LOGOS, and then discover that a later version of
the workspace is available, you can use the snap command and avoid repeating
much of the work you had just completed. Sct your working directolies to
reflect your hierarchy, and perhaps include a catch-all directory at the front of
the list (for new objects), and you can capture the updated version of the
workspace and have it stored in the appropriate directories, with a single
command.

Gcncrat.ing End Environments 9-15

9-16 Generating End Environments

CHAPTER 10: USING THE COMPILER

About the Compiler 10-3
Compilation Directives and Code Tags 10-3
When Does LOGOS Compile Objects? 10-3

Using Compilation Directives 10-4
Precedence of Directives 10-5
Turning Off Directives 10-5

Specifying a User-defined Prologue (a) 10-5
Displaying a Context for Evaluation (c) 10-5
Diamondizing Objects (d) 10-6
Evaluating Expressions (c) 10-6
Fonnatting Variables (f) 10-7
Controlling the Inclusion of Source Lines (i) 10-7
Locking a Function or Script (I) 10-7
Including the Parent Directory Name (p) 10-7
Including the LRU Page-out Statement (q) 10-8
Renaming Locals (r) 10-8
Specifying Working Directories (w) 10-9
Decommenting Functions (x) 10-9
Removing Line Labels (y) 10-9
Specifying a User-defined Epilogue (z) 10-10

Overriding Compilation Directives 10-10
Preventing Overriding of Directives 10-10
Prohibiting Others from Overriding Directives 10-11

Using Code Tags 10-12
Specifying Code Tags 10-13
Interpretation of Names in Code Tags 10-13

Writing User-defined Conlpilation Directives 10-14
Prologue versus Epilogue Directives 10-14
Creating a Compilation Directive 10-14

Syntax of the Left ArguIncnt. 10-15
The Compilation Environment 10-15
Sample Compilation Directive 10-16

Gathering Statistics 10-16
Adding a Timestamp Comment 10-16
Initializing the STAT Variable 10-17

Using the Compiler Utility Function 10-17

Applications of User-defined Directives 10-18
Example 10-19

Using [he Compiler 10.. 1

10-2 Using the Compiler

Tables

Table 10.1 Compilation Directives 10-4
Table 10.2 Code Tags 10-12
Table 10.3 Interpretation of Code Tags 10-13
Table 10.4 Rules for Creating a Compilation Directive 10-14
Table 10.5 Parts of a Left Argument 10-15

About the Compiler

Compilation Directives
and Code Tags

When·Does LOGOS
Compile Objects?

Whenever LOGOS deposits an object into an end environment, it passes the
object through a filter. This filter, the LOGOS compiler, may take no action at
all, or it may transfonn the object in a prescribed manner. LOGOS then places
the transfonned object into the end environment.

The original object is called the source form of the object, while the
transfonned version is called the object form. Much of the time, the compiler
does nothing and these two forms are identical. In certain cases, however, the
ability to alter an object before saving it in an end environment is extremely
useful.

You could remove the comments from a function to make it run faster or to
save space. You could customize an object for each environment in which it is
placed. For example, you might have a function to tie an application system
file whose name varies from installation to installation. If you write the
function with a placeholder substituted for each occurrence of the file name,
the compiler can fill in the blanks with the correct file name whenever the
function is placed into an end environment.

The compiler also allows you to store the source in a form that is more easily
maintained than the object form, and let LOGOS format it for you whenever
the object is fetched.

The actions taken by the compiler are controlled through compilation
directives and code tags. Compilation directives specify in a general way the
actions you want the compiler to take; they can be applied to a single object or
to arbitrary groups of objects.

Code tags are special comments that appear in the body of an object; they
qualify or fine tune the actions specified by the compilation directives.
Because code tags appear in the source of an object, they are processed object
by object. To the APL interpreter, code tags are ordinary comments beginning
with RV.

The source form of an object is compiled whenever it is processed by the
build, distribute, or get commands. Unless you have specified compilation
directives, compilation does not change the object; the source form and the
object form are identical. Objects are transformed by compilation when you:

• save compilation directives with the object

• establish temporary environmental compilation directives

• specify compilation directives in the appropriate command

Using the Compiler 10-3

LOGOS generally saves the compiled form of an object automatically. This
avoids the cost of recompiling the object the next time it is fetched.

LOGOS does not save the compiled form when:

• the use of special user-defined compilation directives inhibits saving of the
compiled fonn of an object

• the e compilation directive is in effect

The e compilation directive causes specially delimited expressions in the
source form of the object to be executed. The results of these expressions are
interpolated into the source

Using Compilation Directives

Compilation directives enable or disable the various options provided by the
compiler. The following table lists the tasks you can perfonn with directives;
the directives you use to perform each task; the name of each directive; and
the types of objects with which you can use each directive.

Table 10.1 Compilation Directives

Tasks You Can Perform

Specify a user-defined prologue
Define a context for evaluation
Diamondize objects
Evaluate expressions marked by A 'V.t. code tags
Format variables
Control the inclusion of specially marked source lines
Lock a function or script
Include the Parent Pathname
Include the LRU Page-out Statement
Rename locals
Specify a set of working directories
Decomment a function
Remove Hne labels
Specify a user-defined epilogue

Directive

a
c
d
e
f
i
I
p
q
r
w
x
y
z

Full Name

User-defined prologue
Context
Diamondize
Evaluate
Format
Inclusion
Lock
Parent Pathname tag
Implant tracking statement
Rename locals
Working directory
Excise comments
Remove labels
User-defined epilogue

Object Type

function, script, variable
function, script, variable
function
function, script, variable
variable
function
function, script
function
function
function
function, script
function
function
function, script, variable

The directives are explained later in this chapter.

In general, a compilation directive list has the syntax:

directive[=value],directive[=value], directive[=value],...

For example:

l~,z=.mabra.tools.tscom,d

10-4 Using the Compiler

Precedence of Directives

Turning Off Directives

Specifying a User-defined
Prologue
(a)

Displaying a Context for
Evaluation (e)

The order in which you specify directives has no effect on the order in which
they are evaluated. LOGOS evaluates compilation directives in the following
order:

a, i, c, w, e, x, d, y, r, f, q, p, z, I

You can specify a list of compilation directives in any of three places:

• as the object's : c attribute

• with the environment compile command

• as a modifier to a command (for example, get .john.modules.chart
+compile=dfl=2,y)

LOGOS computes the set of effective directives using the following
precedence rules (listed in order of most donlinant to least):

• a strong directive (a directive in the second alphabet) saved with the object

• a strong directive in the user's profile

• a strong directive passed as a command parameter

• a weak directive (an ordinary directive) saved with the object

• a weak directive in the user's profile

• a weak directive passed as a command parameter

You can turn off directives by specifying them in their negative form; that is,
"'-IX, or "'-IX. The strong negative directive takes precedence over the weak
negative directive.

A user-defined prologue is a function or cluster to be executed immediately
before compilation of the object begins. To specify one, use the a directive.
The syntax of the a compilation directive is:

a=pathname

Using this directive, you can write your own custom compilation filter, as
described in the section Writing User-defined Compilation Directives, later in
this chapter.

To define a context for evaluation (the objects to be available for use during
compilation), use the c directive. The syntax of the compilation directive is:

c=pathname

Using the Compiler 10-5

The argument pathname must be a cluster. It indicates the objects to be
available for use during compilation. Specifically, these objects are visible
during the processing of the a, e, and z directives. They are also visible when
names preceded by .t. within code tags are evaluated.

For more information, refer to the description of the e directive and to the
section, Writing User-defined Compilation Directives, later in this chapter.

Dlamondizing Objects (d) To diamondize an object (merge each line with the next, separated by 0), use
the d (diamondize) compilation directive. A line is not merged with its
successor if:

• it contains a comment

• the following line is labelled

• either line contains the R vo code tag

For this reason, the d directive is most effective when used in conjunction with
the x (excise comments) directive.

Because there is a fixed overhead for each line of a function, use of d can save
space.

NOTE: This directive can adversely effect the restartability of a function. You can use
the R 'iJ <> code tag to suppress diamondization on specific lines that must
remain intact if restartability is to be preserved. Before you apply the d
directive to a group of functions, be sure to consider the effect upon each
individual function.

Evaluating Expressions (e) To evaluate expressions marked by R V... code tags, use the e directive. To
mark an expression for evaluation, specify a character to be used as a delimiter
after the .t. in the code tag. Then sWTound the expression with a pair of
delimiters. LOGOS executes marked expressions and replaces them with their
results. For example, on the following line, the character ! is used as a
delimiter:

1 ! sysfilename! 1 Dstie tn R 'V~!

The string ! sysftlenanle! is replaced by the value of the APL expression
sysfilename. For this to work properly, the expression sysfilename must be a
variable or function available at the time of compilation. It may be resident in
lhe workspace at the time of compilation, or you can use the c directive to
materialize the execution environment automatically. Typically, c is used to
supply the pathname of a cluster, built by the build command. The cluster is
composed of objects referenced within expressions marked by R 'V.t..

NOTE:

10-6 Using the Compiler

You can use the e directive to compile character vector variables, as well as
functions or scripts.

Formatting Variables (I)

Controlling the Inclusion of
Source Lines (I)

Locking a Function or
Script (I)

Including the Parent
Directory Name (p)

To fonnat a variable (which must be a character vector) with the SHARP APL
text editor (from workspace 4 edit), use the f (fonnat) compilation directive.

This directive allows you to maintain formatted text variables, such as describe
or how, in unformatted form.

To control the conditional inclusion of specially marked source lines, use the i
directive. The syntax of the tag is:

i=name

Each line of source code can potentially have an inclusion tag, indicated by
A fJ e:name (see the section Using Code Tags in this chapter). The i directive
controls which of these tagged segments appear in the compiled object. A
tagged line is included in the compiled object if any of the words in the tag
appears in name, or if name is empty, or if no i directive was specified.

There are many applications for this directive. You might, for instance, include
certain lines of code only in the development version of a system, or only in a
particular level of the development version.

To lock a function or script, use the 1(lock) compilation directive.

To include the parent directory name, use the p (parent pathname tag)
compilation directive. A comment beginning with R* is appended to the last
line of a function. The comment contains the parent directory name from the

root, and the object's version number in brackets.

Use p=O to add the parent directory at the end of the last line.

Use p=l to add the parent directory name on a new line by itself at the end of
the function.

For example:

R*. public.logos.paging. [3J -----

The segments do the following:

.public.logos.paging.

[3J

Identifies the directory. (Note the terminal dot, implying extension
of the path.)

Is the source's version number.

Is a cyclic redundancy check (CRC) for the snap command.

Using the Compiler 10-7

Including the LRU Page-out
Statement (q)

Renaming Locals Ct)

NOTE:

10..8 Using the Compiler

This directive provides visual tracking information, and improves the operation
of the snap command. You should use it if you plan to develop or maintain a
workspace using snap.

To include the least-recently-used (LRU) page-out statement, use the q
(implant tracking statement) compilation directive. This statement generates a
record of a function's use for page-out control.

When each function is placed in its end environment, it is automatically altered
to include a call to the function !J./pagelru. This is placed at the beginning of
the first line of the function.

To rename local variables and line labels, use the r (rename locals)
compilation directive.

The syntax of the directive is:

If you specify _ at the beginning or end of the value, names beginning with
letters in the second alphabet are not changed.

r=O indicates that locals and labels are to be renamed ~99, ~98, fJ.97, ... , f:!OO,
fJ.199, This is also the scheme used if you specify just r.

r=1 indicates that locals and labels are to be renamed a, b, c, ... , aa, ab,

r=2 indicates that locals and labels are to be given random seven-character
names.·

Local renaming can reduce the total number of symbols in an application
workspace, reducing the requirement for symbol table space. If you use
renaming schemes 0 or 2, the compiled functions use unlikely local names.
This is an important benefit for utilities that need to reference objects in their
caller's environment. For example, suppose you have a function whose
purpose is to define the contents of a package it reads from a file globally.
Using the r directive reduces the likelihood of a name that is local to the
function conflicting with the name of one of the objects in the package.

References to labels that occur inside of a quoted string, such as a Dtrap
statement, or after -t., are not altered. Such expressions could be changed to a
form like this, for example:

Otrap~ ''iJ 1 e ... r , T L5

Specifying Working
Directories (w)

To specify a set of working directories, use the w compilation directive.
Working directories are used when searching for objects to be included in a
composite script, and when evaluating pathnames in code tags.

The syntax of the directive is:

w=workdirs

workdirs is the list of directories to be used as working directories.

Decommenting Functions (x) To decomment a function, use the x (excise) compilation directive. To remove
all comments (the default behaviour), specify X= or simply x.

NOTE: If a comment in a function starts with ~¥, LOGOS never removes these
symbols. LOGOS recognizes them as an APL indication of proprietary code.

To retain the opening ~ of whole-line comments, use x=l. This prevents
renumbering of function lines. End-of-line comments are still removed in their
entirety. When you are dealing with functions that contain branching
statements with references to absolute line numbers, use x=l.

Removing Line Labels (y)

• To remove all LOGOS code tags, use x=V.

This leaves regular comments intact.

This directive allows you to make extensive use of comments in your source,
without sacrificing space or execution speed in your production application
workspace.

To remove line labels and replace all references to line labels with constants,
use the y (remove labels) compilation directive.

The syntax of the directive is:

Specifying y=_ causes line labels beginning with letters in the second alphabet
to be left untouched.

Removing labels can reduce the number of symbols in your workspace, and
thereby conserve symbol table space.

NOTE: References to constants consume marginally more workspace than do
references to labels. They are also slightly less efficient in terms of processing
speed. Be careful if you edit a function that was compiled with the y directive,
because branching statements may be incorrect if you insert new lines into the
function or delete existing ones. In practice, this is not a problem because
generally it is the source form that is edited, not the object form.

Using the Compiler 10-9

NOTE:

Specifying a User-defined
Epilogue (z)

Overriding Compilation
Directives

References to labels that occur inside of a quoted string, such as a Otrap
statement, or after .t., are not altered. Such expressions could be changed to a
form like this, for example:

Otrap"" ''7 1 e -+' ,T L5

A user-defined epilogue is a function or cluster to be executed at the end of
compilation of the object. To specify one, use the z (user-defined epilogue)
compilation directive. The syntax of the directive is:

z=pathname

Using this directive, you can write your own custom filter.

The environment compile parameter (described in Chapter 14: Profiles and
Environments) lets you temporarily override some of the directives set by a
script or stored with an object. You can do this using strong directives
(compilation directives in the second alphabet) without having to modify the
script or the object.

Preventing Overriding
of Directives

10-10 Using the Compiler

• To override compilation directives, type:

environment compile directives

The directives parameter is a list of compilation directives you want to use to
override the defaults, specified in the second alphabet.

For example, suppose you have a function you want to decomment, and have
saved it with the directive x set. This indicates a desire for that directive to
occur (or not occur, in the case of a preceding "').

To run a test generation of the application with nothing decommented, specify:

environment compile "'x

This overrides any directives whose letters are in the first aJphabet. The
function with the x directive will be commented. If you had used "'x as your
environment compilation directive, the higher precedence of the directive
bound to the function itself would have caused it to be decommented despite
the global directive.

To prevent a compilation directive from ever being overridden, save it with the
object's compilation directives in the second alphabet.

For example, suppose you have a function that will not run if it is
diamondized. Save the function wi th a directive of "'D. The function will
never be diamondized.

Prohibiting Others from
Overriding Directives

Then you can set a global directive of d and run a test generation of an
application, with the code diamondized. Your function is generated
undiamondized; even a global directive of D cannot override this. Functions
that are diamondized are those with:

• no mention of the d directive in any form

• d or D set locally (the fanner indicates a desire to be diamondized, the
latter a requirement)

If you use a global value of D J functions djamondized are those above, plus
those with:

• "-'d set locally, indicating a desire not to be diamondized

Compilation directives attached to an object cannot be overridden unless a user
has read or write access to the source of the object. If you have a public
function that you would like locked for most users, you need only save it with
directive I, and give general execute access to the object. Users cannot fetch
the unlocked copy of the object, no matter what global compilation directives
they set.

Using the Compiler 10-11

Using Code Tags

A code tag is a special comment, distinguished by its opening R\J. R marks it
as an APL comment, and 'l as a code tag. A symbol immediately following A\J

identifies the tag's type.

Table 10.2 Code Tags

Name Tag Argument Description

Union A'IIU namelist Treats the names in namelist as if they were explicitly
referenced in this line. This allows them to appear in
cross-references or be involved in calling-tree analysis,
even if they are quoted or computed via a table look-
up.

Local A'll; namelist Treats the names in namelist as local to this function
so that calling-tree analysis is not performed on them.

Exclude AV'V namelist Excludes names in namelist from the actions of the r
(rename) and y (excise labels) directives. Effects of
this code tag are not limited to the line on which it
appears.

Inclusion Set AVE name Includes the entire line on which this code tag occurs
only if name has any values in common with the
set defined by the i directive.

Evaluate expressions AV~ dim dim is the e~aluated expression delimiter for the line
on which the code tag appears; expressions appearing
between pairs of delimiters are executed and their
results replace the original expressions in the source.
Objects referenced within the derimiters must exist
either in the workspace or in a path specified by the
c compilation directive.

Non-diamondize AVO Does not dian10ndize this line; it is not to be
merged with the preceding or succeeding line.

User-defined Ava text These are reserved for use in user-defined compilation
AVW text directives. The compiler does not process these tags,

except to remove them at the conclusion of compilation
if the x directive has been set.

Names included in these code tags will appear in the output of the xref
command.

NOTE:

10-12 Using the Compiler

The xref command will report the line num ber of the line on which the code
tag appears. For this reason, it is a good idea to place the code tag on the same
line as the indirect (quoted) reference.

Specifying Code Tags

Interpretation of Names in
Code Tags

Code tags can appear in:

• functions

• scripts

• character vector variables

A line can contain more than one tag and an ordinary comment as well. The
ordinary comment must appear last; otherwise, tags following the comment are
interpreted as part of the comment and ignored. For example, two code tags
are recognized in the line:

i+-i+1 R 'Q <> R V U j R increment index

However, when the following line is compiled, the R'V u tag is considered part
of the comment and is ignored:

i+-i+1 R 'Q <> R increment index R 'V U j

The namelist arguments provided in the R'Q u, R'V;, and R'V"J code tags can be
interpreted in several ways, depending upon the format of the names. The
following general foons illustrate (x can be anyone of u, ;, or "J):

Table 10.3 Interpretation of Code Tags

Format of Argument

AVX name

AVX name~

AVX .t..name
AVX .t..name.

Interpretation of Code Tag

Interprets a name literally.

Fetches and interpolates LOGOS paths. (Any name that includes dot
(.) indicates that name is a LOGOS path or a regular expression.)

Uses the value of the object name. The argument name must
be in either the active workspace, or the path specified by the
c compilation directive. If the argument name contains a dot, it is
interpreted as a LOGOS path or a regular expression; the values of
the implied paths are used.

All forms of a name can be used in the same code tag. For example:

R'V; l:::.tie .t.cmdtab i..mabra.tools .locals.draw

Using the Compiler 10-13

Writing User-defined Compilation Directives

The a and z directives enable you to write your own compilation filters. You
do this by providing the pathname of an explicit, dyadic function (or a cluster
with an explicit, dyadic function as its root) as an argument to the a or z
directives. When the object is compiled, the compiler fetches and invokes your
function, passing the object's source and some ancillary information to it.
LOGOS expects you to return the processed source as the filter's result.

Prologue versus Epilogue
Directives

Creating a Compilation
Directive

The prologue and epilogue directives have different characteristics. If you
invoke a function as a prologue directive (a), you are given source that has not
yet been edited by the compiler. This means you can reliably scan the source
for comments, labels, and so forth, without interference from other directives.

On the other hand, any modifications you make to the source in an a directive
are subject to further processing by other directives. For instance, if you were
to add a comment to the object, and the x directive were in effect, your
comment would be removed before compilation completed.

This is where the epilogue (z) directive is useful; it allows you to examine the
edited source and to make final modifications to it before it is disbursed.

For example, suppose you are generating a workspace and you want to gather
statistics on the number of lines and comments in each function. You also
want to add a comment containing a timestamp to the end of each function.
Use both directives. The prologue directive gathers the sL.1tistics (before
comments and labels are removed by x and y directives). The epilogue
directive adds the timestamp comment (after x h(l'i removed existing
comments).

The user-defined directive functions are expected to be dyadic and explicit.
Source is passed to your function as its right argument.

Table 10.4 Rules for Creating a Compilation Directive

If the object is:

a function or script

a variable

then the source is:

a character vector without bracketed
line numbers and a carriage return
terminating each line but the last

the variable

and the result you return:

must be in the same format

can be a different datatype

You cannot compile a function or script into a variable, but you can compile
an integer variable into a package or an array.

10-14 Using the Compiler

Syntax of the Left Argument The left argument passed to your function is a vector of enclosures in the
following fonnat:

pathname cdtype Itype masks

The parts of the arguments are described in the following table.

Table 10.5 Parts of a Left Argument

Part

pathname

cdtype

Itype

masks

Description

A character vector representing the full pathname of the object
being compiled.

A character scalar, a or z, indicating the type of compilation directive.

A character scalar representing the LOGOS datatype of the object
being compiled. It can be one of function, script, or variable.

A Boolean matrix with four rows, and as many columns as there are
characters in the source. If the source is not a character vector,
masks has no columns.

masksCO;]
masks[1;]
masks[2;]
masks[3;]

Marks carriage returns with 1'5.

Marks comments and quoted strings with 0'5.
Marks comments with 0'5.
Marks LOGOS code tags with 1'5.

The Compilation
Environment

The Boolean masks can help when scanning an object's sourcc. For example,
if you have used the R'Va or R'\lW user-defined code tags, most of the work
required to locate the code tags is already done for you.

The pathname provided as an argumcnt to the a or z directive can represent a
function or a cluster. If a cluster is used, it must have a suitable function as its
root.

When the directive is evaluated, the root function is fetched and executed in an
environment where alI of the other objects in the cluster have been localized
and defined. This provides a convenient means of including all of the ancillary
objects required by the directive function.

The execution environment also includes the objects contained in the
environment specified by a c directive.

Using the Compiler 10-15

Sample Compilation
Directive

Gathering Statistics

Adding a Timestamp
Comment

10-16 Using the Compiler

The following sample application shows you how to count lines and comments
in functions as they are compiled, and add a timestamp comment to the end.

First, you need a function to gather statistics:

display .mabra.tools.stats
.mabra.tooIs.statsCfl] :

'V s+-m stats s; Dio
[1] R user-defined 'a' directive for gathering
C2 J R function statistics
C3J R

C4J R counts the number of lines and adds this
C5J R number to first element of the global
C6J R integer vector <Stat>. also counts the
C7J R number of comments and adds this number to
C8J ~ the second element of <Stat>
[9J R

[10J Dio+-O
[11 J ('f' =>mC2J) .0 R exit immediately if not afn
C12J m+->mC3J R disclose mask array
C13J StatCOJ+-Stat[OJ++/m[O; J ,1 R count lines
[14 J State]] +-Stat [1] ++/m [2; J <-1.1 , m C2;] R 'count remarks
'V

Next, you need a function to add the timestamp comment:

display .mabra.tools.tscom
.mabra.tools.tscomCflJ :

V s+-m tscom s
[1 J R user-defined 'z' directive that adds a
[2] R comment containing a timestamp to the
[3J R end of each compiled function.
[4J R

[5] R CALLS: <datefmt> - timestamp formatting fn
[6J R

[7J R GLOBALS: CR - carriage return character
[8J R

[9J -.('f'=>mCDio+2J).0 R exit imnlediately if not afn
[10J s+-s f CR, , R compiled: '" datefmt DiS A append remark

V

Notice that this function references two global objects: a function named
datefmt and a variable named CR. You must ensure that these objects are
defined whenever tscom is executed. These two objects are part of the public
utilities. Therefore, you can build a cluster with (scorn ill) its root:

U build .mahra.tools.tscomdir .mabra.tools.tscom +d +w=.public.util
.public.util.ls

Initializing the STAT
Variable

Finally, initialize the Stat variable, used by stats:

....Stat~O 0

To dernonstrate the effect of these directives, you can compile the following
object:

U display .public.util.vtom
.public.util.vtom[fl J :

V z~dlm vtom a ; b
[1 J A form a left-justified matrix from a character vector.
[2J R <dim> ~-+ hard-delimiter. adjacent delinuters are treated as a single one.
[3J A eg:' I' vtom 'topltolIbottom'
[4J A ~-+ 'top
[5J A to
[6J A bottom'
[7J z~a€dlm ¢ b~(b, Qio+pa) - Dio, l+b~zl1 PZ 0 b~(b;f.O) Ib R lengths of each row
[8J z~(pb) P (, b~bo • > IQio- 1 r10, b) \('"vZ) la R jlll and shape into a matrix
'V

U Stat ~O 0
U get .public.util.vtom +compile=a=.mabra.tools.stats,x,Z=.mabra.tools.tscomdir
.public.util.vtomC1 J
u ~1 [ifd 'vtom'

V z~dlm vtom a; b
[1J z~a€dlm ¢ b~(b,Dio+pa)- Dio,l+b'-z/lpz <> b+-(b;t.O)/b
[2 J z+- (Pb) P (, b+-b 0 • > IOio- 1 riO, b) \ ('"vz) / a
[3J R compiled: 13 jan 1986 19:42:37

V

UStat
98

Using the Compiler Utility Function

The function lilcomputil in .public.logos.uti! provides an interface between the
compiler and user-defined compilation directives. By calling lilcomputil from
within a user-defined directive function, you can effect changes in the
compilation process. The right argument to lJlcornputil must be a character
vector command name.

Currently, one command is supported. The save command causes the compiler
to retain the compiled version for future use. By default, the compiler does not
retain the compiled version whenever the a, z, or e directives are in force.
Executing this command overrides this behaviour.

The result is always a Boolean scalar 1. If you P~l'iS an invalid argument,
LOGOS signals an error.

Using the Compiler 10-17

Typically, you use the build command to build a cluster containing your
user-defined directive function, /).!computil, and any other object required by
your function. You then specify the pathname of this cluster as the argument to
the a or z directive when defining the [: cJ attribute of the object you want to
compile.

Applications of User-defined Directives

This section suggests some ways you might use user-defined compilation
directives. The last of these is illustrated with an example.

• Generating statistics

You can generate statistics describing a given system. The statistics might
include:

• the number of functions and variables

• the number of variables of each datatype

• the counts of lines, comments, and labels

• Enforcing programming standards

You can enforce programming standards by scanning source code and noting
exceptions to the standards. As examples, you might look for such things as:

• uncommented functions

• branches to constant line numbers

• duplicate line labels

• syntax errors

• Writing functions in direct-definition fonnat

You can write functions using direct-definition fonnat, and compile them into
executable APL.

10-18 Using the Compiler

Example

II Replacing inefficient constructs

You can replace handy but inefficient constructs by more efficient ones. For
example, if your programming style includes the use of branching functions
such as if and unless, you can write a directive that compiles these into
expressions without function calls. (-+Iabel if expression becomes
-+(expression)plabel, and -+Iabel unless expression becomes
-+expression +label.) This allows you to make use of these programming aids
without sacrificing execution speed in the application workspace.

• Defining language extensions

You can define your own language extensions, and compile them into
executable APL.

• Defining a datatype

You can define your own user-defined datatype. The following example
illustrates this.

Suppose you have an application that uses a full-screen display device. The
device is driven by an auxiliary processor (AP), and the application issues
commands to the AP. You describe the format of a screen to the AP using an
integer matrix table. The columns of this table describe the position, size,
colour, and attributes of each field on the screen.

While this integer matrix representation can be efficienLly processed by an
APL function, it is an unwieldy representation. If you want to change the
colour of a given field from green to red, you must scan the columns
describing the fields' positions, locate the correct field, recall the proper
integer code for red and make the change. You can improve this situation by
defining your own language for describing a screen. For example:

position(2,2),size=(J ,80),colour=red,attr=reverse

Using the Compiler 10-19

10-20 Using the Compiler

Next, you write a function, compilescreen, that compiles these descriptions
into their integer counterparts. Once you have saved this function in LOGOS,
you can maintain all of your screen fonnat variables as descriptive character
vectors. LOGOS will automatically compile these variables into
machine-readable fonn whenever an application is constructed:

U display .invent.src.screens.inpjmt
.invent.src.screens.inpjmtej2J :
home(1,1) ,size (1,79) ,colour=red
home(2,1) ,size(31 ,39) .co[our=green.attr=reverse.type=char
home (2.41) .size(31 ,39) .colour=blue,attr=reverse.type=char
U display .invent.src.screens.inpfmt e:cJ
.invent.src.screens.inpjmtev2: cJ :
a=.invent.src.util.compilescreen
u get .invent.src.screens.inpjmt
.invent.src.screens.inpjmte2]
u ~inpjmt

111792120001
2 1 31 39 0 1 4 0 2 0 1
2 41 31 39 0 1 1 0 2 0 1

CHAPTER 11: MAINTAINING SYSTEMS

About Registration 11-3

Registering Out Objects 11-3
Overriding Registration 11-4
Displaying Results 11-4

Registering In Objects 11-5

Setting Registration Potential 11-5

Registration with Other Commands 11-6

Tracking References to Objects 11-7
Examples 11-8

Distributing Changes 11-10
Displaying Output 11-11
Inquiring on End Environments to be Affected 11-11
Replacing Objects 11-11
Setting Compilation Directives 11-12
Using distribute in a Script 11-12

Using the Application Debugging Assistant 11-13

Updating Paging Areas 11-15
Example 11-16

Tables

Table 11.1 Commands Supporting Registration 11-6
Table 11.2 Infonnation Returned by the references Command 11-8
Table 11.3 Rules Determining the Update Process of the distribute

Command 11-10
Table 11.4 Differences between Using the distribute and fil esave

Commands 11-17

Maintaining Systems 11 .. 1

\\-2 Maintaining Systems

About Registration

Registration allows you to signal to other users that an object is in use. While
an object is registered as being out, other users are prevented from altering it,
and are notified that you have the object registered. For example, if Bob
registers the object, chart, before working on it, then Joe's attempt to change
the same object produces the message:

modules.chart:*registered by bob (20jan86 18:36)

The warning displays for any reference to the object, including those by the
display, get, save, and edit commands. This means that registration applies
universally; not just to those individuals accessing the object by a particular
means.

The warning message looks much like the message produced by a broadcast
note. However, the warning message produced by registration contains the
character * immediately after the :.

Registration infonnation is displayed only for those users with write access to
an object.

Unlike the broadcast note, which produces a warning only, registration blocks
access to objects.

Registering Out Objects

You can register out objects with the register out command or with the
+register modifier to the edit command. If the object is already registered out
by someone else, you can override the registration using the edit command.

When you apply either registration or registration potential to a directory, any
objects that you subsequently create below that directory automatically inherit
the registration status of their parent. This allows the registration status of
objects within the same application to remain consistent.

The following examples illustrate ways you can register out objects.

• To register out the object nwdules.chart with the register out command~ type:

register out nwdules.chart

You see the message:

1 object registered out

Maintaining Systems 11-3

Overriding Registra'Uon

• To register out the object modules.chart using edit +register, type:

edit modules.chart +register

• To register out all objects below the directory modules.char/sub
simultaneously, type:

register out nwdules.chartsub +recursive

If you must change an object while someone else has it registered, you can
override registration by specifying the +override modifier to the register
command. For example:

register out modules.chart +override

The following message appears:

1 object registered out

• To override someone else's registration using the edit command, type, for
example:

edit modules.chart +override

The next time the other user references the object, the following message
appears:

modules.chart:*registratioll overridden by joe (21jan86 02:12)

NOTE:

Displaying Results

11-4 Maintaining Systems

The +data, +long, +summary, and +versions forms of the list command
remind you that an object is registered out by the presence of r in the atttibutes
column. The +long form also tells you by whom.

The result of the register command is a list of pathnames whose registration
was changed. To display this result, use D+- before the command.

Registering In Objects

When changes to the object are complete, you can register it back in with the
register in command. You might do this just after finishing your changes; you
might test them first; or you might even wait until they have run for some time
without difficulty. For example, to register in the object nwdules.chart, type:

register in nwdules.chart

You see the message:

1 object registered in

• If you changed more than one object, you can register them all in (or out) with
a single command. For example:

register in modules. chart utils.mtov

You see the message:

2 objects registered in

Setting Registration Potential

LOGOS recognizes that people can forget to use the register command.
Therefore, you can set the registration potential of an object.

Registration potential works with the edit command. If a path hrui registration
potential on, then any time the object is opened via the edit command, it is
automatically registered for the duration of the editing session. When the
object is closed, it is registered back in but its registration potential remains in
effect for the next time it is modified.

NOTE: Registration potential does not affect whether the object is registered in or out.
You can register out a group of objects even if they have registration potential
set. In fact, this is quite useful if you arc going to be changing an object or a
series of object'i over an extendcd pcriod of time.

II To set registration potential on, use the register on command. For example:

register on nwdules.chart

You see the message:

1 object registered on

Maintaining Systems 11-5

.. To set registration potential off, use the register off command. For example:

register off nwdules.chart

You see the message:

1 object registered off

The registration potential of an object is displayed by the +data , +/ong,
+summary and +versions options of the list command, as the flag p.

Registration with Other Commands

Registration options appear on commands other than register. The following
commands recognize registration potential, and support modifiers to facilitate
registration activities.

Table 11.1 Commands Supporting Registration

Command Modifiers

copy +override
+in

delete +override

distribute +override

edit +register
+override

export +override

replace +override

save +override
+in

Allows you to:

Copy over objects registered by others.
Reset the registration of objects as you copy them.

Delete registered objects.

Distribute registered objects.

Register objects while editing.
Edit objects registered by others.

Export registered objects.

Perform search and replace operations on registered objects.

Copy over objects registered by others.
Reset the registration of objects as you save them.

11-6 Maintaining Systems

Tracking References to Objects

LOGOS maintains a used list for every object stored in the file system. The
used list is a record of where each object in the file system is used. It is
primarily to help developers locate systems that contain specified objects. You
can interrogate the used list using the references command.

If changes to utilities or public objects can affect other people's systems, you
can detennine who they will affect. You can find problems relating to a
particular version of an object, and find the systems that include it.

For example, to interrogate the path .john.uti!. vtom, type:

references .john.util.vtom

You see a message such as:

.john.util.vtom .john.util.modules.vtom
s .mabra.tools.search
w 1234567 uti!
w 1234567 syslog 1234567logaudit
f 1234567functions 23
p 7654321 sysbase 10 7654321 audit
p 7654321 sysbasetest 10 7654321 auditdev

For each pathname argument you supply, the references command checks the
used list for every entity that refers to:

• the pathname

• the pathname's type

• the component location (if a file)

• an audit file (if there was one)

Maintaining Systems 11-7

The letters indicate the type of infonnation the command is returning,
summarized in the following table.

Table 11.2 Information Returned by the references Command

Type Meaning End Environment Command that Created the Object

c Cluster Pathname build
f File Filename build
I Link Pathname link
p Page file Filename build, filesave
s Script Pathname edit, save
w Workspace Workspace name snap, wssave

User files and page files have a component offset associated with them. For a
user file, this value is the component number in which the object resides. For a
page file, it is the start of the paging area.

Each data type except a link or a script can also have an audit file associated
with it, if the operation that produced the reference specified one. Where an
audit file was specified, LOGOS retains its name, and shows it in the
references report.

NOTE: If you don't have write access to an object, LOGOS doesn't necessarily
display all references to it. When you query workspaces, files, and page files,
LOGOS displays only references made by you or by an application in the
public libraries. This keeps usage information away from people who are not
authorized to see it, even if they have execute or read permission to it and can
use it. The amount of reference information disclosed about links and scripts is
governed by the LOGOS access controls.

Examples You can use the +headings modifier displays the columns of the report. For
example:

u references John.util.vtom +headings

This displays a report similar to the following:

123456710gaudit

7654321 audit
7654321 auditdev

23
10
10

------... -pathname---------- typ --------end environment------ ----loe---- -----audit file-----
john.util.vtom I .john.util.nwdules.vtom

s .mahra.tools.search
w 1234567 uti!
w 1234567 syslog
f 1234567 functions
p 7654321 sysbase
p 7654321 sysbaselest

11-8 Maintaining Systems

john.util.vtom

version =25
pages=*

version=27
pages=*

The references command nonnally resolves links in its arguments. You can
disable link resolution by specifying [I] at the end of the pathname. If
util.vtom is a link, references util.vtom lists the references to the object to
which the link refers, and references util.vtom[IJ lists the references to the
link itself.

If you specify the +audit modifier to the references command, infonnation
from audit files is included in the report. For example:

U references john.util.vtom +audit

This displays a report such as the following:

john.util.modules.vtom
s .mabra.tools.search
w 1234567 util
w 1234567 syslog 1234567 logaudit
f 1234567 functions 23
p 7654321 sysbase 10 7654321 audit

references=7 saved=14jan86 11:08
allocate deleterow error match runline zebra

p 7654321 sysbasetest 10 7654321 auditdev
references=7 saved=15jan86 14:51

allocate deleterow error match runline zebra

Additional detail is given for each end environment found within each audit
file, including:

• the type of object

• the version number of the object

• the directives used to compile the object

• the total number of references to the object by all end environments in the
audit

• the timestamp of the audit record and the alias that saved the object

• the names of the nodes in which the object appears (if the record is for a
page file)

Each paging area counts as one end environment. A node name of * refers to
the base node of the paging area.

Maintaining Systems 11-9

Distributing Changes

If you built your application with the assistance of an audit file, LOGOS
allows you to move changes from LOGOS into the end environments that use
them with the distribute command. You can distribute changes to your
application and other people's applications without rebuilding the application
from scratch, or having to determine where the objects need to go.

To use the distribute command, you must specify the names of objects in
LOGOS, and the name of the audit file used to record the original generations.
(The audit file was built by earlier build,filesave, snap, and wssave operations.)

The distribute command searches the audit file for all end environments that
reference the objects, and updates them one by one. The update process
depends upon the type of end environment, described in the following table:

Table 11.3 Rules Determining the Update Process of the distribute Command

If:

the environment is a file,

the environment is a page file,

the environment is a workspace,

Then:

the distribute command introduces the changes into the
component.

the distribute command introduces the changes into the
node.

the distribute command loads the workspace, materializes
the objects, and then saves the workspace. To accomplish
this, you need an auxiliary task (created using the signon
command) that is signed on to the user number that owns
the workspace.

NOTE: If you don't have an audit file describing where the object belongs, you can't
use the distribute command. Instead., you can regenerate your application using
the same commands or script that you used to build it originally.

11-10 Maintaining Systems

• To use the distribute command, type:

distribute pathname +audit=audit

The pathname argument is the object you want to distribute, and the value
audit is its audit file name.

For example, to release a new version of the object .john.util.vlom, type:

distribute .john.util.vtom +audit=7654321 audit

Displaying Output

Inquiring on End
Environments to be
Affected

Replacing Objects

You see a message such as:

1 object distributed to 7 end environments

The distribute command works on various types of end environments. For
example, if the same function is tied to a workspace and a file by virtue of the
audit file 123456710gaudit, one command can update both. Because a
workspace is involved, you first need to sign a task onto the owner's number:

u signoR 1234567
password:orange
auxiliary task 1729 <aux> signed on 11jan86 15:20

U distribute john.util. vtom +audit=1234567 logaudit +show +task=aux
.john.util.vtom to workspace: 1234567 syslog
.john.util.vtom to jIle: 1234567 functions, 23
1 object distributed to 2 end environments

You can display the end environments affected by the distribute command
using the +show modifier. For example:

distribute .john.util.vtom +audit=7654321 audit +show

You see the message:

john.util.vtom to file: 7654321 sysbase, 10; page: *
john. uti!. vtom to file: 7654321 sysbase, 10; page: allocate
john.util.vtom to file: 7654321 sysbase, 10; page: deleterow
john.util.vtom to file: 7654321 sysbase, 10; page: error
john.util.vtom tofile: 7654321 sysbase, 10; page: nwtch
john.util.vtom to file: 7654321 sysbase, 10; page: runline
john. uti!. vtom to file: 7654321 sysbase, 10; page: zebra
1 object distributed to 7 end environn-lents

You can see where an object will go before distributing it using the reference
command. Type:

references pathname +audit

Sometimes, a change made to an object might affect the calling tree of the
object. Suppose vtom were changed to reference the variable CR, which it
previously did not use. With the +replacen1ent modifier, you can insert both
objects anywhere vtom is used. The example below uses the earlier audit file
again:

distribute john.util.vtom +audit=7654321 audit
+replacenlent= john .utiI. vtom john.utiI.CR

Maintaining Systems 11·11

Setting Compilation
Directives

Using distribute In a Script

11-12 Maintaining Systems

You see a message such as:

2 objects distributed to 7 end environments

LOGOS updates the used lists of new objects so that the references command
will reflect the changes caused by the distribute command. If one object is
replaced by another with the same name but from a different directory, the
used list entries are removed from the old path's used list and added to the
new path's used list. The audit file associated with the original generation of
the end environment is updated to reflect the new objects placed into it.

If you use the +replacement modifier with +show, the distribute command also
reports which versions of the replacement objects were picked up and inserted
into the end environments.

The distribute command supports a +compi/e modifier that allows you to set
compilation directives for objects before they are distributed. If you specify
+compile without a value, the objects are compiled in the same way as the last
time they were placed into their end environments. You must supply directives
for new objects or objects saved into workspaces.

Because the distribute command always needs an audit file, you can embed it
within a script that provides one. For example, suppose that:

• a cover for the distribute command is being prepared for the application
built around the audit file 7654321 audit

• there is an identical development copy of the application audited by the file
7654321 auditdev

• the compilation evaluation environment (for objects that need one) is either
john.nwdules.util.prod.evalor .john.modules.util.dev.eval, depending upon
the system being generated

• functions that need an evaluation environment have a compilation directive
of c=e attached to them

• all functions are to be decommented and, if the production system is being
generated, locked as well

A script to do this might look like this:

[1 J put[lJ (+Pathnames=) (+production) (+replacement=) (+task=); c

[2J R distributes a set of palhnames to <audit> or <auditdev>.
[3J c... , c=.john.1YUJdules.util. ' ,3 - 4 [Dio+productionJ t 'devprod'
[4J c"'c,', e,x' , production/ ' t l' R compilation directives
[5 J)distribute '\Pathnames +audit= (.t.> ('7654321 auditdev':J

'7654321 audit') [Dio+productionJ) +compile=(.i-c)
\+replacement +show \+task

When called with the +production modifier, the put script updates the
production version of the application. When called without it, the script
updates the development version. Lines 3 and 4 set up the compilation
directives to be applied to the objects. Line 5 does the distribute operation,
first selecting the appropriate audit file, and including the computed
compilation directives in the command's modifiers.

Using the Application Debugging Assistant

When you open an object in the workspace for editing while the Application
Debugging Assistant is active, LOGOS attempts to locate the source of the
object within the LOGOS hierarchy. If it is successful, LOGOS opens the
source version for editing instead of the copy in the workspace. When you
finish editing and close the object, LOGOS compiles it and distributes the
compiled copy to the relevant end environments, including the active
workspace. You can resume execution of the application using the edited code
now in the workspace.

For example, suppose you have generated a system and in the process of
testing it, discover an error in the function tJ.Test. To correct the error, you
would:

1 Copy LOGOS to your workspace. For example:

) copy 1 logos

2 Stnrt LOGOS. For example:

logos

3 Tell LOGOS which audit file is in use for this application using the
environment audit parameter. For example:

environment audit 1234567 n'lyaudit

Maintaining Systems 11·13

For more information on the environment audit parameter, see the LOGOS
Reference Manual.

4 If you have more than one end environment to be tracked in your audit file,
you can select particular end environments to update using the environment
update parameter. For example:

environment update /w 1234567 myws/p 7* ?*

For more information on the environment update parameter, see the LOGOS
Reference Manual.

NOTE: You must set the environment audit and update parameters every time you
invoke the Application Debugging Assistant for the first time in a workspace.
Like the environment task parameter, audit and update are workspace session
properties that are not saved with your profile. If you find you are using a
particular set of audit and update parameters frequently, you may want to
write a sClipt to set these up for you.

5 If you want the object to be distributed to your current active workspaces, or
to any other workspace in which it resides, then you must sign on an auxiliary
task to be used for the workspace distributions. For example:

signon +t=wsupdate

6 Open the object for editing. If you signed on a task in step 5, then specify the
task name as the argument to the +disttask modifier. For example:

edit =f1Test +disttask=wsupdate

NOTE:

11-14 Maintaining Systems

The editor opens the source from LOGOS rather than the object in the
workspace. The editor deduces the source pathname of the object in the
workspace by executing a series of searches:

• First, the editor searches the object in the workspace for a parent pathname
comment generated by the parent pathname (P) compilation directive.

• If none exists, the editor then searches the LOGOS tracking tables in the
workspace to see if it can find entries for the object. From this tracking
table, the editor deduces the source palhname of the object.

• If still unsuccessful, the editor searches the LOGOS paging table for audit
files that can be searched for references to the object.

• Last, the editor examines each audit file in use for references to the object.

If the object name is duplicated elsewhere, LOGOS will find more than one
object by the name you specified. In this case, the editor presents a menu of
objects it found, and prompts you to select the correct object.

7 Edit and close the object.

The editor redistributes the new version of the object, including to the active
workspace if the +disttask modifier was specified. Unless you set new
compilation directives with the edit command, the editor uses the same
compilation directives used the last time the object was distributed, using the
specified audit file.

You'll see the new version saved into the LOGOS file system followed by a
list of the distribution activities as they progress. For example:

.myaJias.myfile.directory. test.lY1Test [Ill]
6Test to workspace 1234567 myws
6Test to file 1234567 pagelile 100; 6testshell
1 object distributed to 2 end environments.

The object is also redefined in the active workspace. Now you can exit
LOGOS and resume execution of the application where it stopped, using the
changed version.

Updating Paging Areas

If you have changed or added nodes within your paging system, you can
update them without rebuilding the nodes that have not changed. This is called
an update generation. Use thelilesave command with the +update modifier
to do this.

• To uselilesave. type:

lilesave filename component +audit=audit +updale=pathnames

The +update modifier specifics the names of the nodes to be regenerated, and
signals that this generation is to overlay the previous generation of the paging
area.

NOTE: The system must have been generated initially using an audit file. You must
specify the name of the audit file when you issue the jllesave command with
+update.

You can run update generations just like ordinary ones. All of the build and
shell calls originally used to generate the system arc still required, so that
LOGOS can fe-analyze parts of the system in their proper context. In addition,
if you have added any new nodes, you must specify build and possibly shell
commands for them.

Maintaining Systems 11·IS

Example

11 .. 16 Maintaining Systems

LOGOS first finds where in your application each node included in the value
given to +update is referenced. If the node is new, include both the node's
name and the names of any that call it. If a new node is not called by any
other node, it is assumed to be called from the base node.

After each new or changed node has been located in the application's system ic
structure, LOGOS recomputes its calling tree. This takes into account the
depth setting you requested for the node in its build statement, and the location
of other nodes in the application. For example, if you requested +depth=all,
the trees of all objects referenced by the node (except those parts that arc
separate nodes) are included in it.

Because an update requires the same information as the original generation
did, the best way to accommodate updates is to provide for them in your
standard generation procedure. The script below shows how a system might be
generated from scratch, or as an update to the last generation, with minimal
operational difference:

[1 J gen (+update=)
[2J A builds <sysbasetest> paging area, with update capability.
[3J) build +depth=all +workdir= (list .john.modules Cd] +full +recursive) A establish tkfaults
[4J A

[5J) build * start
[6J) build allocate
[7]) build change
[• J
[. J
[. J
[•]) shell change
[. J)filesave 7654321 sysbasetest 10 +audit=7654321 auditdell \+update

To perform an ordinary generation, call the script .john.modules.util.gen
directly.

To perform an update generation, call the script with the +updale modifier. For
example:

.john.modules.util.gen +updale=allocate change

You see the message:

updating 2 nodes of 16 in paging area 7654321 sysbasetcJ(, 10
2 nodes (including 1 shell) generated using 9 objects
generation 12. update 1 0[7654321 sysbasetest, 10 saved 15jan89 18:36 by john

The following table lists the differences between this operation and perfonn ing
the distribute command on the page file.

Table 11.4 Differences between Using the distribute and filesave Commands

The distribute Command

Moves the objects you specify into
the pages that reference them.

Does not perform calling tree analysis.

Does not rebuild shells.

The filesave Command

Performs the same kind of structure analysis
that the original filesave did to generate the
system.

Rebuilds calling trees.

Rebuilds shells. Does not include objects that are no
longer referenced. Includes objects that are new
to the calling trees.

NOTE: If you create a new shell around a new node, this will result in two nodes in
the paging file rather than one (see Chapter 8: Building Applications with
LOGOS).

If you specify a small enough node size using the +size modifier, the jl/esave
command may split a single node being updated into two.

During an update generation, the value of the +ovetwrite modifier to fiiesave
is partially ignored. To allow you to discard prior build statements that you
might not want processed, +ovenvrite=buffer is honoured. However,
+ove1Write=destination or audit is not honoured. These settings contradict the
notion of an update, and would destroy information required for the filesave
command to function meaningfully.

Maintaining Systems 11-17

11 .. 18 Maintaining Systems

CHAPTER 12: SOFTWARE DEVELOPMENT TOOLS

Displaying and Summarizing Objects 12-3
Displaying Objects 12-3
Summarizing Objects 12-5

Locating and Replacing Strings or Patterns 12-6
Using Pattern Matching 12-6

Using Metacharacters 12-6
Using Non-metacharacters 12-7

Specifying Locator Templates 12-7
Specifying Action Templates 12-7
Examples 12-9

Cross-Referencing Functions 12-10

Looking at Calling Trees 12-11

Documenting Objects with WSDOC 12-13

Using the syntax Command 12-14

Using the compare Command 12-16

Software Development Tools 12-1

12-2 Software Development Tools

Displaying and Summarizing Objects

The display and summarize commands provide you with information about
objects in the LOGOS file system to which you have read permission. The
display command shows you the object's value or definition, or the value of
any of its attributes. The summarize command returns identifying information
about an object, such as type, syntax, size, number of lines, shape, rank and so
on.

Displaying Objects The display command takes a single argument: the pathname(s) of the
object(s) whose source or attribute is to be displayed. The display command
may be used to test the effects of various compilation directives on an object.

• Display the source of the function elemreplace:

U display .public.util.elemreplace
.public.util.eiemrepiace[fl J :

'J result+-vector elemreplace eiemstring;b;c,'j;n
[1 J A replace, in <vector>, all occurrences of] t elemstring by
1 ... elemstring. Dio-independent.
[2 J C-+-, vector€] t elemstring
[3J i+-c/ t PC

[4J n-+--2+1r x/pelemstring
[5J b+-((x/pvector)+nxpi) pO
[6] b [(i+nx (1 pi) -Di0) 0 • +(1 n+1) -Oi0 J ...J
[7J result+-C "vb) \ ("vc) /vector
[8J result[b/ 1 pb] +-(+/b) pI +elernstring

V

• Display the object with compilation directives specified:

U display .public.util.elemreplace +c=x,p=] ,r=O
.public.util.elemreplaceCfl J :

V tJ.99+-~98 elemreplace fj97; (J96 ; tJ.95 ; ~94 ; ~93
[J J tJ.95-+-, ~98E] t (J97
[2J tJ.94+-(d95/1P~95

[3J ~93+--2+1 r x/p(d97
[4J tJ.96-+-((x/ptJ.98)+~93xpId94) pO
[5J 1d96 [(Id94+ td93 x (t p ~94) -Oio) 0 • +(1~93+1) -OioJ-+-1
[6J !d99+-(--tJ.96) \ (--~95) / tJ.98
[7J ~99[tJ.96/1 ptJ.96J-+-(+/ tJ.96) pl-t 1d97
[8J P. *.public.util: [1] --ugd

Software Development Tools 12-3

• Display an object attribute:

U display .public.util.elemreplace [: dJ
.public.util.elemreplaceCfl :dJ :

result ~ vector elemreplace elemstring

replaces, in <vector>, all occurrences of 1 t elemstring by 1+elemstring.
<vector> may be character or numeric; it should not contain enclosures.

examples:

etc....

• Display a variable with a surrogate substituted for the Carriage Return
character:

U display .public.uti/.elemreplace C: dJ +s=c
.public.util.elemreplaceCfl :dJ :

result ~ vector elemreplace elenlslring····replaces, in <vector>, all
occurrences of 1 telen1Slring by 1+elelnsfring:·<vector> may be
character or numeric; it should not contain enc!osures:···examples:

etc....

On some tenninals, those that can display it, the surrogate will consist of a
dieresis character C) overstruck with one of the following symbols
representing the character being replaced:

b

c

n

backspace

carriage return

idle character

linefeed

null

OavCOio+J58J

Oav[Oio+156J

DavCDioJ

[]av[[]io+159]

DavCDio+JJ

Some tenninals will display only the dieresis characters, others will display a
"squish-quad. tt

12-4 Software Development Tools

Summarizing Objects The summarize command displays a variety of information about objects in the
LOGOS hierarchy. For all objects, the result includes the object's name, type,
version number and size. Additional information is returned depending on the
type of object. For functions and scripts, the result includes the syntax and the
number of lines. For variables, the result includes an indication of the type of
variable (character, boolean, package and so on), its rank, and shape. If a
vm;able is a package or a cluster, summarize includes a count of the number of
objects it contains. The objects may be individually listed by using the
+expand modifier.

• Summarize objects in .public.util beginning with the letter a, and include a
heading line:

u summarize .public.util.a?* +headings
----------pathname---------- type ver aUr size shape
.public.utiJ.ah fred) 1 [2J 124
.public.util.alf v (ch) 1 (1) 64 64
.public.util.alloceq fred) 1 [3J 252
.public.util.allocfifo fred) 1 [3J 220
.public.uti/.assert f(nd) 2 [3J 172

• Display a summary of some scripts:

u summ .public.logos.cfnds.t?* +headings
----------pathnafne---------- type ver allr size shape
.public./ogos.cmds.tom s (ep) 3 /2J 76
.public.logos.cmds.tree s (ep) 8 /18J 1268
.public./ogos.cnuls.type s (ep) 1 [5/ 172

• Display a summary of a cluster that contains 4 objecL~ and expand the contents
of the cluster to display infonnation about those objects:

u summ .public.logos.cmds.util.ctlcluSI +headings +expand
----------pathname---------- type ver aUr size shape
.public.logos.cmds.util.ctlclust

c (pk) 2 <4> 972
.pub/ic ./0gos. cnuls. u1it. C1leiusto eII fnsg

v (ch) 2 (2) 288 J3 22
.pub lie .10gos. cnuls. utiI. ct /cIus toe(1porm

v (ch) 2 (2) 120 13 9
.publie .10gos. cnuts.utiI. ctleiusto et/qfi

v(bl) 2 (1) 4 J3

.public./ogos.cmds.ufil.ctlclusto cl[valid

v (ar) 2 (1) 472 13

Software Development Tools 12-5

Locating and Replacing Strings or Patterns

The editor lets you search for a string in a function and change it Using the
locate and replace commands with pattern matching, you can make more
sweeping changes to a system that are tedious with the editor. You can find
and replace strings in any collection of LOGOS objects.

Using Pattern Matching

Using Metacharacters

LOGOS supports a shorthand, called a regular expression, for generating a
series of names or strings which match a particular pattern.

There are two kinds of regular expression:

• Limited regular expressions. which can appear only in pathnames.

• Full regular expressions, which cannot appear in pathnames but are useful
in commands such as locate and replace.

Full regular expressions consist of a locator tenlplate_which specifies the
pattern to be sought~ and an optional action template, which defines an action
to be performed when a match to the locator template is found. The action
template comes into play only in replacement operations.

You can use the following metacharacters (and several others) in full regular
expressions as special searching characters:

? Matches any character.

* Performs an action as many times as possible.

Denotes alternation.

Unless these characters are escaped, they are interpreted literally and have no
special properties in the regular expression.

• To escape one or more characters (and enable their special searching
properties), enclose the characters in braces, as in {str7 * }.

Full regular expressions in command lines must be enclosed in braces.

NOTE: The dieresis () escapes the character which immediately follows it. You can
use it as an alternative to braces to enable searching properties. If you use a
dieresis within braces~ it robs the character which foHows it of its special
properties.

12..6 Software Development Tools

Using Non-metacharacters Not all characters are special. The letters of the alphabet and the digits, for
example, are not metacharacters. These characters are treated literally whether
or not they are escaped. For example, consider the following pattern:

If * and + are metacharacters, the + is treated as a metacharacter, and the * is
not. The converse is true in the pattern:

This last pattern is equivalent to the shorter pattern:

The letter b is treated literally in all cases.

Specifying Locator
Templates

Specifying Action
Templates

The locator template specifies the pattern of strings you are searching for. You
can express families of strings using:

• special single-character patterns

• alternation, elision

• closure

• certain other special metacharacters

By combining these single-character patterns, complex patterns can be created.
For more information on each of these patterns, see the LOGOS Reference
Manual.

An action template specifies the processing to like place when a locator
template encounters a match of the pattern. It can be used to define complex
replacement strings for the replace command and for the editor's change
command.

You can use the following metacharacters the same way you would in a
locator template:

{ Enables escaping of characters.

} Disables escaping of characters.

Complements escaped or literal treatment of next character.

-I Carriage return character.

Soflware Development Tools 12-7

If an action template contains only normal text, then that text simply replaces
the matched substring in the object string.

An action template provides three important capabilities:

• Allows references to be made to parts of the action template.

• Allows expressions to be evaluated and optionally inserted into the text.

• Provides infonnation about where the match occurred.

II A portion of matched text can be marked and referred to in an action template.
You do this by enclosing the relevant portion of the locator pattern in the
metacharacter pair c :;).

These "tagged" strings can then be referenced in the action template by
referring to them as cn:;), where n is an integer. For each locator template
match, each tag in the action template is replaced by the text that matched the
nth tagged pattern.

For example, with the locator template { c? *:;) , c? * :;) , c? *:;) } and the action
template {c3:;) , c2:;), c}:;)}, the object textfirst,nliddle,last becomes
las t ,middlelirst.

NOTE: Pattern tags may be nested in a locator ternplate, as in {cjan Ifeb cw::>:>}, but
not in an action template. A particular tag may be referenced any number of
times in an action template, or not at all.

• You can specify that parts of an action template are APL expressions to be
executed when a match to a locator template is found. Indicate that an
expression is to be evaluated by enclosing it in dels ('7).

Optionally, the result of the evaluation can be included in the replacement
template if the opening '7 is immediately followed by an assignment arrow.
For example, the action template {file '7+-Dav [CfU......cnt+]] '7} causes all
matches to be replaced by file followed by a different letter from Dav. (ent is
assumed to be a global variable, initialized before the template is used in a
command.) Pattern tags in evaluated strings are replaced by the appropriate
text before the string is executed.

• Strings in evaluated mode can also reference three template descriptor
variables, called Din, Dcp, and Dell.

These variables are integer scalars which contain information about the relative
location of the current match within the object string.

Din (line number) is the line number on which the match was found.

12-8 Software Development Tools

Examples

NOTE:

Dcp (cursor position) is the origin-O index of the first character of the match
relative to the beginning of the line.

Dcn (character number) is the origin-O index of the first character of the match
relative to the beginning of the searched text

These are not true APL system variables, but mther are special names which
are recognized by the pattern matching processor.

For a formal summary of the full regular expression notation, see the LOGOS
Reference Manual.

1 Suppose you've wlitten a function that references a global integer vector
named State. When the function was originally written, Stale had nine
elements. Now you want to add a tenth element, but you want to insert it in
the fifth position rather than append it to the end of the vector. The difficulty
is that this will invalidate many of the indexed references to the variable in the
function.

Even if the indices that reference the variable are constants (normally the
difficult ca'ic), a single command can be used to correct all of them at once:

rep/ace State [{ CW:J }] State [{V+- C]:J + C}:J ~5'1 } J .syslib.cb.src

Here, a pattern is used to locate all indexed references to the variable, and
another pattern is used to increment the index by one if it's 5 or more.

As another example, suppose you have character vector objects, or attributes of
objects, in which you want to capitalize the first Ictter following periods or
carriage returns. The problem is complicated by the fact that a period may be
followed by one or more blanks, or one or more clliTiage returns, which might
also be followed by blanks. The following sequence of commands will
perform the replacement.

First, create two character vectors that contain the upper and lowerca<;e
alphabets:

u ...upper'-Oav[(-}+Oav1 'A')+126J
u "'/ower+-Oav[(-J+OaVl 'a') + 126J

Then, perform the replacement, for eX3lnple, on the documentation attribute of
the object start:

U rep/ace {. c(+) I (~+ *);:)c[a-z];:)}

{ • C}:J V+-C , c2:J , =/ower) /upperrv} start [: dJ

Software Development Tools 12-9

In the first regular expression, the locator template has two pattern groups, as
indicated by the two pairs of c and:), and matches a period (.) followed by
those groups. The first pattern group, c(+) 1(-t+ *):J , indicates either one
or more spaces or (indicated by the I character) one or more carriage returns
followed by zero or more spaces (see the LOGOS Reference Manual for a
discussion of the closure concepts represented by the symbols + and *). The
second pattern group, c[a-z]::J , matches any single character from the
sequence: abc ... y z.

In the second regular expression, the action template refers to each of the
pattern groups by number. The first reference, c}::J, simply inserts the pattern
that was matched by the first pattern group - whatever j t was. The second
reference occurs in an expression to be evaluated:

V~(, c2:) '=lower) /upperV

The lower case character matched by the second pattern group is substituted
into the expression where c2:) occurs, then the expression is evaluated.
Because of the V+-, the result (a selection from the vector of uppercase
characters,) is placed into the object and the capitalization is complete.

3 Suppose you wanted to add a Avo code tag at the end of any line that used Ole
in a branch statement, like:

[5J -+(options75) /1 +Dlc 0 dowork

The following replace command would add the code tag to statements like the
example above:

replace {c-+?*··+Dlc ··01'*;:) c(R 1-t):J} {cl~ A ··V··o c2;:)}

.syslib.cb.src

The dieresis characters are used so that each character following the dieresis is
interpreted literally, not as a special character.

Cross-Referencing Functions

A function cross-reference is a powerful aid to program development,
debugging, and documentation, as it allows quick identification of all uses of
certain function and variable names within the functions of a system. The xref
command computes and displays a cross-reference table for functions stored in
LOGOS, which gives the location and type of each reference to each identifier
used in each named program.

12-10 Software Development Tools

Looking at Calling Trees

The xref command takes a pathname argument, and returns a cross-reference
table as the result:

U xref .public.util.vtom +s= 1 Ep r I
.public.util.vtom[j2J :
Dio * 7 7 8
a ra 0 7 7 8
b Iv 0 7+- 7 7..- 7..- 7 7 8 8
c Iv 0 8..- 8 8
dim fa 0 7
z rs 0..- 7..- 7 7 8.... 8
1 * 7 8
E * 7
p * 7 7 8 8
r * 8
I * 8

As shown above, you may include any APL sylnbols in the cross reference by
using them as arguments to the +synlbols modifier. Cross references wilJ tell
you of line labels that are in the function but are never brdnched la, possibly
alerting you to the presence of "dead" code in a function. It will also indicate
variables that are localized in the header of the function but never referenced.
Suspicious references such as these are indicated by a ? in a column following
the indication of the reference type, left argument, right argument and so on.

The calls command performs calling tree analysis on a function and returns the
names of functions and variables that arc referenced, either directly or
indirectly, by the function being analyzed. While performing the analysis, the
command searches for objects in your work directories, and informs you of
any that cannot be found in the CUJTent set of working directories. You can
instruct the command to return only a list of objects not found, to enahle you
to track down the missing objects. The depth to which the analysis is clliTied
out is determined by the +depth Inodificr.

For example, to detcnnine the functions and global variables referenced
directly by the function start, use the following LOGOS command:

U calls start
ask
nlenu
run
Loc/able
Options

Software DcYcloprncnt Tools 12- 11

To examine the next level, include the +depth modifier with an argument:

u calls start +d=2

ask
check~access

input
menu
run
share
etl
Loctable
Options
Res

To examine the complete calling tree for start, include +depth with no
argument, +depth=all, or +depth=O.

You may exclude objects from being scanned during the analysis, so that
objects they reference are not included in the result~ and you may specify a set
of working directories that are to be searched for the referenced objects:

u calls start +exc!ude=menu +w=.sys.cb.\,vs +(/=2

ask
input
run
share
Loctable
Options

The calling tree analysis that LOGOS performs during execution of the calls
command is responsive to the presence of A \I u code tags in a function to
create a reference to objects that would otherwise be hidden inside quoted
strings and executed expressions. calls docs not analyze quoted strings, and
could not analyze expressions such as i.Opfions [ndx;] for identifiers.

Code such as the execute statement above creatc breaks in the calling tree.
These can be threaded together, howevec by using A \I U code tags to create the
references that LOGOS need'i to complete the analysis. For instance, you
might have a variable, say, .sys.cb.y.,Js.OptioflS, that contains the names of
several functions that the user might execute:

U display Options
.sys.cb.ws.Options[v4] :
calculate
report
enter
change
reset

12-12 Software Development Tools

You might also have a line of code in the menu function that executes a row of
that mat:I;x:

.t.OplionsCndx;]

There are several ways in which you could add a code tag to this line to keep
the calling tree intact. You could edit menu to explicitly list each function in
Options:

C5J .t.OplionsCndx;] R V' U calculate report enter change reset

Now the calling tree analysis can continue correclly, since the LOGOS will
detect the reference to each of the functions that wa.;; previously hidden by the
execute statement.

However, if you should change Options to add new function names, or remove
some, you would have to edit the nlenu function to correct your code lag. A
better method for creating the references is to use the pathname of the option
matrix itself in the tag:

[5J i..Options[ndx;] R V' Usys.cb."'s.Options

Now, whenever the calling tree needs to be analyzed, LOGOS will exanline
the variable .sys.cb.ws.Options, for possible identifiers. If changes arc made to
Options, you will not have to edit the code tag. The new references will be
picked up any time you perform calling tree analysis.

Documenting Objects with WSDOC

The wstofile command allows you to build a source file suitable for input to
the SHARP APL Workspace Documentation Facility (WSDOC). This
command also allows you to document other LOGOS attributes, such as
compilation directives, documentation, etc.

IMPORTANT: You must be using version 2.2 (or later) of WSDOC to use the ~vstofile

command.

To use the command, specify:

wstofile pathnames

The argument pathnames specifies the objects to be incorporated in the
WSDOC source file.

Software DcveloplTIcnt Tools 12-13

For example:

wstofile test.wsfns +attributes +pathnames +wsid=wsfns
srcfile 20 - 1234567 wsfns
28 functions
20 variables

This command creates a WSDOC file. When processed by WSDOC, the
summary and definition reports contain the full LOGOS pathnames, a LOGOS
header line, and any attributes associated with the objects.

For example:

wstofile test +attributes=dj +recursive
srcfile 21 - 1234567 clearws
145 functions
42 variables (including 11 scripts)

This command creates a WSDOC file from all objects below test. Eleven
scripts found arc included as variables. When processed by WSDOC, the
definition reports will contain a LOGOS header line and the documentation
and journal attributes of the objects, if set.

For more infonnation on using the wstofile command, see the LOGOS
Reference Manual. For more information on using WSDOC, see the WSDOC
User's Guide.

Using the syntax Command

The syntax command computes a report describing static errors within a
program. It tests conditions such as illegal characters, symbol juxtaposition
problems, mismatched parentheses, brackets, or quotes, and suspicious use of
names .. The syntax command does not actually execute the program;
consequently, a tool such as this command should be used to supplement but
not replace careful program and system testing.

The syntax of the command is:

syntax pathnames

The pathnames argument is a list of objects on which you want to compute
reports.

12-14 Software Development Tools

Errors are classified into a number of categories. If you specify the +Unes
modifier, the category is represented by a symbol following the line number on
which the error was detected. If you specify the +show modifier, the category
is represented by the symbol under the location where the error was detected.
(For more infonnation on the modifiers you can use with the syntax command,
see the LOGOS Reference Manual.)

The syntax command reports:

• Generic syntax errors, which include most incorrect uses of symbols. For
example, a dyadic symbol used monadicalJy; an improper outer product; an
improperly labelled line; use of branch not as the root function of a
statement; or redundant use of a diamond, all constitute syntax errors.

• Parentheses, bracket, and quote errors. For example, mismatched instances
of the paired delimiters (•••), [••• J, and 1 ••• 1 , respectively.

• Domain errors from apparent use of a character argument where a numeric
one was expected. As the syntax command does not execute the program,
only a limited number of such cases is detected.

• Constant errors, which are illegal formation of numeric constants. For
example, 4..1 and 8je4 arc illegal constants, whereas 4.1 and 8j8E4 arc
legal ones.

• Suspicious references, or names which arc unusual but mayor may not be
erroneous in the running application. For exanlple, a local variable which is
not assigned a value, or a name which is used to define a line-label more
than once, is considered suspicious.

For example:

u syntax .sys.cb.ws.test +s
.sys.cb.ws.testCf6J: (5 errors)
[5] 13: x+-53 + 1 ndx) +Oio

1\

[8J y"'3j.]5

[14J x+-90
1\

[15J -+L7:
1\

[22 J r.... 1 the anSlver is: ,'x
/\

Software Development Tools 12-15

Using the compare Command

The compare command compares two versions of the same object or directory,
or two distinct objects or directories in LOGOS. The syntax of the compare
command is:

compare primaries [secondaries]

The argument primaries is a list of pathnames to be used as the reference in
perfonning the comparison. The argument secondaries is a list of pathnames
which are compared against the primaries. The differences shown by the
compare command describe the changes that would need to be made to the
secondary paths to attain the primary definitions.

The arguments to the compare command can be specified in several ways for
several types of comparisons. For example, to compare an object with the
previous version of the same object, type:

U compare object

This command is equivalent to:

U compare object CO] objectC-]]

To compare one object to another:

u compare objectl object2

In this case, only one object or directory can be specified for both primary and
secondary arguments. If the names of the objects do not match, the types must.

You can also compare each object in a directory to its previous version. For
example:

U compare directory

This command is equivalent to:

U compare directory. ? * [OJ directory.? * [-1]

If you use the +recursive modifier, you can compare all of the objects in a
hierarchy to their previous versions:

U compare directory +recursive

To compare two hierarchies, type:

U compare directory1 directory2

12-16 Software Development Tools

The directories are compared as well as the objects within the directories. If
used with the +recursive modifier, this command compares entire structures.

To compare an object with any object of the same name in a particular
directory, type:

U compare object directory

More generally, the first argument can be a list of objects and directories,
quoted if necessary. There must be at least one object in the list. The second
argument can also be a list of objects and directories. The objects in the
primary list, including the objects within each directory in the list, arc
compared to the objects with the same name in the secondary list. Entries in
the primary list that do not have matching objects in the secondary list are
reported as not found in secondaries. Entries in the secondary list that are not
found in the primary list are ignored. For more information on the modifiers
you can use with compare, see the LOGOS Reference Manual.

Software Development Tools 12-17

12-18 Software Development Tools

CHAPTER 13: MOVING DATA BETWEEN SYSTEMS

About Export Files 13-3

Exporting Data 13-3
Creating an Export File 13-3

Importing Data 13-5
Importing a File 13-5
Ch3Jlging the Filena.rne 13-5
Retrieving a File Never Exported 13-6
Installing New Software 13-6

Dispersing Objects 13-7

Exporting for Archival 13-7

Moving Data Between Systems 13-1

13-2 Moving Data Between Systems

About Export Files

Exporting Data

Creating an Export File

In LOGOS, you move data between systems using a special kind of file, called
an export file. Export files are ordinary LOGOS files, but can also be
transported to other machines and connected to other LOGOS file systems. An
export file can be dumped to tape, transferred, and then retrieved at the
receiving site using the standard SHARP APL file utilities.

Export files are created and built using the export command, which copies a
list of pathnames to a specified export file. The export command differs from
the copy command in two important ways:

• The destination path must be a LOGOS export file, rather than any LOGOS
directory. Because it represents a file, the destination must be a two-level
pathname, as in john. transfer.

• The copied paths have the same name as the original paths, with the
addition of the export file name as a prefix.

You can create an export file using the export command with the +makedir
modifier. Type:

export path path +nwkedir

The +makedir modifier allows the export command to create any directories
that don't already exist as it copies the paths.

For example, to export the path. vp.sys.install to the as yet non-existent export
file .john. transfer, type:

export. vp.sys.install .john.transfer +makedir

You see a message such as:

john.transfer[d]]
.john.transfer.vpCdlJ
.john. transfer. vp.sysCdl]
.john.transfer.vp.sys.instaIICf1]

The first three paths arc newly-created directories (including the export file
it<ielf, .john.transfer). Version I of the object install is copied.

Moving Data Between Systems 13-3

NOTE:

By using the export file name as a prefix, the export command essentially
preserves the original names of the paths. The first two levels of a source path
become the third and fourth directory levels of the export file. Therefore, the
object .vp.sys.install exported to the file john. transfer becomes
john.transfer.vp.sys.install.

You can export entire directories. For example:

export .vp.sys.newrel .john.transfer +makedir

You see a message such as:

john. transfer.vp .sys.newrel[dl]
john. transfer.vp.sys.newrel.baseCdI]
john. transfer.vp .sys.newrel.base.appendr[fl]
john. transfer.vp .sys.newrel.base.checklimi[s[fl]
john. transfer. vp.sys.newrel.base.checkquotas[f1]
johm. transfer. vp .sys.newrel.baseJetchhelp [f1]
john. transfer.vp .sys.newrel.baseIretie [fl]
.john. transfer.vp .sys.newrel.base.initCfl]

If the directories already exist, you don't need the +makedir modifier. To
export a new version of the object init into the file, you need only type:

export .vp.sys.newrel.base.init .john.transfer

Any LOGOS operation, not just the export command, works on an export file.
For example, you can save objects into the file using the copy or save
commands, and you can modify objects using the edit command. To display
the contents and structure of the file, use the list command.

After the export file has been set up satisfactorily, ask your operations staff to
dump it from the system. You can then move it to another machine and
retrieve it.

13-4 Moving Data Between Systems

Importing Data

Importing a File

Changing the Filename

Once attached to LOGOS, an export file becomes an ordinary LOGOS file.
The import command doesn't move any data out of the file being imported. To
do this, you can use the copy command to distribute the file's contents
elsewhere in the file system. You may want to do this after the new software
has been vetted by generating and experimenting with test versions of the
affected programs or applications.

Once the export file has been retrieved at the receiving site, the import
command attaches it to the LOGOS file system. For example:

import .john.transfer

You see a message such as:

.john.transfer inlported

If you know the name of the file, you can use it as the argument to the import
command. For example:

import' 1234567 !J.transfer'

You see a message such as:

.john. transfer imported

(The!J here is optional; LOGOS will provide it if necessary.) These examples
assumelhat the alias and filename on both the sending and receiving sites arc
the samc. That needn't be the case; the file Inight have been renamed during
either of the dump or retrieve operations.

The import command allows you to change the n~lIne of the file by specifying
the new name as the second argument.

For example, if you retrieve the export file to another account as J234567
!J.transfer, and your alias on the current account is dave, you could import the
file as .dave.new by typing:

inlport '1234567 !J./rallsfer f .dave.ne\·v

You see a message such as:

John. transfer ifnported as .dave.new

Moving Data Between Systems 13-5

Retrieving a File Never
Exported

When you are importing a file that was never exported (the file might have
been retrieved from an archive tape, for example), you must also specify the
original name of the file, if it is different from its retrieved name. Type:

import pathl path2 path3

The arguments are:

path!

path2

path3

the file's retrieved name

the name you want the file to have in LOGOS

the file's original name on the archive tape

For example, suppose you retrieve the LOGOS file 1234567 ~transfer as
1234567 trans2feb. You can import the file as .johll.lransold by typing:

import .johll.tralls2feb .johfl.trallsold .johll.lransjer

The arguments are:

.john.trans2feb

.john.transold

.john.transfer

the file's retrieved name

the name you want the file to have in LOGOS

the file's original name on the archive tape

Installing New Software If the file's retrieved name is the same as the name you want it to have in
LOGOS, that is, path! is the same as path2, you can use' , instead of
specifying path2.

If your export file is designed to install or upgrade an application, include a
script called install at the level just below the export file name. (Use the copy
or edit commands to save the script there.) The receiving site can simply run
this script after the file is transferred.

The script .public./ogos.cnuls.illsta// does the imparl operation for you, and
then runs the script called ills/all within the imported file. Here'5 what
.public.logos.cmds.installlooks like:

[1 J install +Pathname= +NewpathnGlne= +OldpathIlQlne=; pn
[2J)pn+-import \Pathname \Ne}l'pathname \Oldpathnalne ~ ifnport file
[3 J) (i.pn) .install (i.pn) A pelforlJ1 CUStO!Jl installation

13-6 Moving Data Between Systems

Dispersing Objects

Exporting for Archival

The install script within the imported file can be arbitrarily complex. As its
argument, it takes the name you chose for the file just imported. This allows
the script to deduce the directories within the file to permit the rebuilding of
applications using those directories instead of (or on top of) the application's
production directories. If you write an installation script for use with
.public.logos.cmds.insta/l, remember to allow it to take an argument.

At some point, possibly as part of the installation script itself, you will
probably want to disperse the objects within the export file elsewhere into your
directories. Selective use of the copy command can do this. If you are moving
everything, you can use a single copy command to perform the inverse of all
export commands used to build the file in the first place.

For example:

copy .john.transfer .

This copies all paths within jollll.traJlsj'er (for example,
john.transfer.vp.sys.instalf) to the target path (for example, .vp.sys.install).

If all directories do not exist, incJudethc +Inakedir modifier with the copy
command. Be sure you are satisfied with the contents of the file you imported
before issuing the command.

Export files are useful for archiving applications kept in LOGOS. An export
file can be built, dumped to tape, and then deletcd froln the LOGOS file
system using the delete command. Then, if the need arises, this tape can be
retrieved and the file imported back into the active LOGOS system.

Archiving provides two ilnportant facilities. It allows you to:

• move inactive applications from expensive, online storage to cheaper,
offline storage

• back up critical applications independently and store them in a secure
location

LOGOS files are backed up as part of ordinary system procedures, but you
might want to archive an application separately. If you require a LOGOS file
that was not exportcd, you can still use the irnport command to attach it to the
hierarchy. If you have changed the name of the file, you nlay need to provide
the third argument to the irnport comlnand. as shown in the preceding section,
Retrieving a File Never Exported.

Moving Data Bctwcen Systems 13-7

13-8 Moving Data Between Systems

CHAPTER 14: PROFILES AND ENVIRONMENTS

Environment Parameters aa ••••••••••••••••••••••• a •• 14-3
Default Pammcters 14-4
Displaying Parameters 14-4
Setting Pam.meters aa ••• 14-4
Resetting Parnmeters 14-5
Saving Pammeters 14-5

Stacking Environments a ••• 14-5

Tables

Table 14.1 Environment Parameters 14-3
Table 14.2 Default Environment Parameters 14-4

Profiles and Environments 14-1

14-2 Profiles and Environments

Environment Pa,ra,meters

Many aspects of LOGOS are controlled by environment parameters that are a
part of your session. For example, your command separator character and your
terminal type are values you can set.

Collectively, you can save most of these parameters as your LOGOS profile so
they automatically take effect each time you begin a new session. A few are
parameters are workspace session properties; they cannot be saved in your
profile. They are indicated in the following table of environment pammeters
and their functions:

Table 14.1 Environment Parameters

Parameter

audit
cmddir
compile
debug
entry
exit
field
keyword
sepchar
status
task
terminal
track
update
workdir

Full Name Workspace Session
Properties

Audit file X
Command directories
Compilation directives
Debug setting
Entry command line
Exit command line
Screen field attributes
Keyword definitions
Command separator character
Status line detail
Task identity X
Terminal type
Tracking setting
End environment X
Working directories

For a complete description of c3ch of these parameters, sec the LOGOS
Reference Manual.

Profiles and Environments 14-3

Default Parameters Every new LOGOS user has a set of default parameters. These are shown in
the following table:

Table 14.2 Default Environment Parameters

Parameter

environment sepchar
environment cmddir
environment workdir
environment compile
environment debug
environment track
environment task
environment entry
environment exit
environment terminal
environment status
environment field

DefauIt Setting

v
.public.logos.cmds
t

off
on

*

unspecified
full
status=yellow high, title=white high.
message=red high,command=green.frame=bl us.
input=green, output=turquoise

t

Displaying Parameters

Setting Parameters

14-4 Profiles and Environments

Users' alias is the default working directory.

You can display your current environment parameters, which may not be the
same as your default parameters. If you change any parameters during your
LOGOS session, this command shows the current values.

To display all of your parameters, type:

environnlent

LOGOS returns a list of yoW' current environment parameters.

To display a single parameter, specify the paralneter. For example, to display
your debug setting, type:

environment debug

You set environment parameters with the environrnenl command. To set a
parameter, type:

environment parameter value

The new value of the parameter is immediately set and, unless you change it
again, remains at that value for the rest of your session. The new setting is not
maintained across sessions unless it is a parameter you can save into your
profile. (See the section, Saving Pararneters, in this chapter.)

NOTE:

Resetting Parameters

Saving Parameters

Stacking Environments

For example, to set your debug parameter on, type:

environment debug on

If you exit LOGOS and re-enter in the same workspace, your environment
parameters (and your alias) are maintained across those sessions.

If you change any environment parameters during your session, you can
change back to values saved in your profile. To reset all parameters, type:

environment +reset

To reset a single parameter, specify the parameter. For example, to reset your
debug parameter, type:

environment debug +reset

You can change the default of an environment parameter by changing the
parameter during a LOGOS session and saving it to your profile. Type:

environment parameter value +projife

For example:

environment workdir .rnde.util +projile

This command will not affect the settings of any other parameters.

LOGOS can maintain copies of your environment in the environment stack.
This is so you can make tcmporary changcs to your environment parameters.
For example, you can change your working directory, task, or compilation
directives tcmporarily. You can make a local modification to your environment
from within a script and when the script completcs execution, revert to the
original environment, or the previous enVirOnlTIent on the stack.

You stack an environment using the envirOlln1ent command with the +stack
modifier. To stack an environment, type:

ellVirOl11nent +stack

This puts your current environmcnt parameters (L~ide~ and allows you set new
ones. You can proceed to change the environment parameters. For exaJnple,
you might change your working directory:

environnlent l'vorkdir .blue.blue

Profiles and Environments 14-5

14-6 Profiles and Environments

To stack an environment and change your working directory at the same time,
type:

environment workdir .blue.blue +stack

The environment is stacked first, then the working directory is changed.

When a script completes execution, it destacks automatically. To destack
environments manually, type:

environment +destack

You can also stack multiple environments. See Chapter 5: Using Scripts for
more infonnation on stacking different environments from several scripts.

CHAPTER 15: USING THE UTILITY LIBRARY

About the Utility Library 15-3

Structure of the Utility Library 15-3

Using Objects from the Utility Library oe 15-4
Library Objects in End Environments 15-4

Using Working Directories 15-4
Using Links 15-4
Using Explicit Referencing 15-5

Library Objects with Scripts 15-5
Library Objects and Compilation 15-5
Library Objects in a LOGOS Session 15-6

Contents of the Utility Library 15-7

Documentation for Library Objects 15-8
Using Tag Attributes 15-8

Figures

Figure 15.1 LOGOS Utility Library 15-3

Tables

Table 15.1 Contents of the Utility Library 15-7
Table 15.2 Utility Tags 15-9

Using the Utility Library 15-1

15-2 Using the Utility Library

About the Utility Library

The primary purpose of the utility library is to provide a central location for
objects that may be useful to many different programmers working on many
different applications. Most of the utilities are fast. efficient functions that you
can use in most applications.

Many objects in the utility library are related to the SHARP APL system.
Examples are the hsp function from workspace J hsprint. the clearoUi function
from workspace J wsfns, and the Backspace. Linefeed. and Carriage Return
characters. These objects are brought together in one place. to make it easier
for you to include them in an application.

Structure of the Utility Library

The following diagram illustrates the structure of the public directories.

Figure 15.1 LOGOS Utility Library

Virtually every object in the utility library. including directories. functions.
variables. scripts. and clusters. is documented in its documentation attribute.
Several subroutines of scripts. located in public.logos.cmds.Ulil are not
documented because they are not intended to be used directly.

For a description of each directory in the utility library. see the section
Contents of the Utility Library in this chapter.

Using the Utility Library 15-3

Using Objects from the Utility Library

You can use objects from the utility library:

• in end environments

• during compilation of objects

• dUling a LOGOS session

Descriptions and examples of these are presented below. To include the logos
function itself in an application, you'll find it through the path
.public .10gas.10gos.

Library Objects In End
Environments

Using Working Directories

Using Links

15-4 Using the Utility Library

To use objects from the utility library in end environments, you can:

• include the utility directories in your list of working directories

• establish links from your working directory to the objects you want to use

• explicitly reference the objects you w,ml to use via the get or build
commands

When generating an application system, you can include the utility library
directories in your list of working directories, and access any of the objects
contained in them.

For example, while generating a system with references to file functions such
as 6fstie and t3fappend or more esoteric ones such as tifcopyand t3jmappend,
you can specify the .public.uti!files directory in your argument to the workdir
command. A subsequent build command (with calling tree analysis) will then
make the required functions available to your system.

Links are appropriate when you need the occasional object from a directory.

For example, suppose the working directories for your generation are
.invent.src.general and .public.util. There is a function prompt in the
.public.uti! directory that you know you'll call several times. Instead of having
LOGOS first look in .invent.src.general and then search .public.util, you can
specify a link to the object:

link .invent.src.general.prompt .public.util.protnpt

Using Explicit Referencing

Now, you can set your working directories to just .invent.src.general. When
LOGOS perfonns tree analysis, it locates the prompt link in .invent.src.general
and resolves it to the function in .public.uti!. You could also copy the function
directly into your own directory, but by linking to an object, you are always
accessing the latest version of it. This is especially relevant when using objects
from public directories.

Another common technique for accessing needed objects in the utility library
is to make an explicit reference to the objects, using the get or build
commands. For example:

get .public.uti/.cr +task=genws

or

build <def> .public.util.default

Library Objects with Scripts A script can include pathnames in its header. When you execute the script, it
fetches the objects specified in these pathnames. For example, if the functions
sqz and vtom, and the variable CR were required by the script COlnpose, its
header might look like this:

[1] txt+-compose (+output=) ; .public.util.sqz Ivtom ICR

You can also specify an object with a relative pathname. These are resolved
from the working directories set with the w compilation directive. For
example, with a working directory of .public.uti!, all of the objects needed to
execute the following script are available during its compilation:

[1 J z+-tom +Vector=; cr.; defau/l.OpS
[2] z+-T<, -j·o·<cr,Vector

Library Objects and
Compilation

The source Conn of an object is compiled whenever it is processed by the
build, distribute, or get commands. The LOGOS cOlnpilcr allows the
specification of pathnames as arguments to the c compilation directive, so that
certain objects can be guaranteed to be available for use during compilation.
For example, objects that are required during execution of ~ V.i. code L1gS must
exist either in the workspace or, more conveniently, in a path specified by the
c directive.

Utilities are often useful when evaluated expressions are compiled. To
illustrate, suppose the following line appears in a secure function:

[3J 'sysfile' I1fstie 0 fE' ',pronlpt 'passno? 'ill ~ V.i.ill

Using the Utility Library 15-5

If the function's compilation directives (or those specified through
environment compile, or the +compile modifier to the relevant command)
include c=.public.util.prompt, the compilation of the object prompts for the file
passnumber and includes it directly in the program. Suitable compilation
directives might be as follows:

+compile=e,c=.public.uti/.prompt,I

The e directive requests evaluation of RV.t code tags; the c directive specifies
the evaluation context; and the I directive locks the function.

Library Objects In a LOGOS The scripts in .public.logos.cnuJs provide an extension to the LOGOS
Session commands. You can include the directory itself in your list of command

directories using the cmddir command. (It is there by default.) You can use the
scripts ~ if they are ordinary LOGOS commands. For example, you could use
the .public.logos.cmds.submit script like this:

submit 12 +specs=erase +delivery=deliver to john +type=hsprint

This line submits the file tied to 12 for printing with the processing
specifications and delivery instructions as specified by the appropriate modifier.

If the script is not accessible through your command directories, you can still
call it directly:

.pub/ic./ogos.ctrUls.subI11it 12 +specs=erase +delivery=deliver to john
+type=hsprint

15-6 Using the Utility Library

Contents of the Utility Library

The table below summarizes the contents of the directories in .public.

Table 15.1 Contents of the Utility Ubrary

Directory

.public.logos

.public. logos. cmds

.public.logos.cmds.util

.public.logos.paging

.public. logos.paging. table

.public.logos. util

.public. util

.public. util. default

.public. util. files

.public. uti/.part

.public. uti/.profile

.public. uti/.sys

.public. util.sys. ctlmsg

.public. util. ts

Contents

The logos and 6./og05 functions, and the two directories cmds and
paging.

Scripts that extend or supplement LOGOS commands and scripts
that supply system interface, session manager, or general capabilities.
One directory, util, is located at this level.

Subroutines and auxiliary objects for use by the scripts in cmds.

Utility functions for use with LOGOS paging applications. These
functions are discussed in detail in Appendix C. One directory, table.
is located at this level.

A single variable, LPT, which is a prototype of the one used by the
LOGOS paging utilities to control and monitor paging. It is not
necessary to include this variable in a user application, as it is
dynamically generated whenever paging is used. It is included here
mainly for the user's information.

Three utility functions: 6.lcomputlJ, 1'1 Iedutil, and ~/reclaim .

The majority of the objects in the LOGOS utility library. There is also
a series of directories at this leve', which subdivide specialized
utilities into separate categories.

The default values for all APL system variables .

Utility functions useful in the generation and manipulation of
SHARP APL files. Most of the functions extend the concept of an
existing file system primitive. These functions are discussed in detail
in Appendix B: File Utilities.

Functions that are useful for dealing with partitioned vectors .

Functions and variables necessary to implement and use an APL
profile function in a workspace.

APL system constants and utilities. many of which are interfaces to
other facilities such as the B-task scheduler, hsprint, hcprint, and
filesort. One directory, ctlmsg, is also located at this level.

Functions used to append control messages to APL files. These
messages are most frequently used with the hsprint and hcprint
facilities.

Utility functions and variables used to manipulate system timestamps.

Using the Utility Librmy 15-7

Documentation for Library Objects

The documentation for a directory describes the purpose of the directory, and
summarizes the objects within it (including subordinate directories). When you
are searching for a utility, check the documentation on the likely parent
directory.

The documentation for an object other than a directory specifies general usage
information about the object (such as its syntax if a function, or its
characteristics if a variable); describes how the object is used; and often gives
an example.

Using Tag Attributes

15-8 Using the Utility Library

Many of the objects in the public directories have a tag (: t) attribute. This tag
is a character vector describing features or side-effects of the utility. The tag is
analogous to a keyword (or a series of them), but is designed so that it can be
analysed by a program.

You can search for utilities with a specific tag using the locale command. For
example, to find all utilities under .public.uti! that have side effects, use:

locate side .public.uti! [: tJ +recursive

The table below summarizes the interpretation of each utility tag used. Utilities
to which more than one characteristic apply have a tag that includes all
relevant characteristics, separated by blanks, in alphabelical order.

Table 15.2 Utility Tags

Tag

Dio-resp

restartabJe

conflict

global

input

output

side

sv

term

Significance

The utility is Dio responsive. It may return an origin· sensitive result, or it
may have an outcome that is directly affected by the value of Dio in the
calling environment. Such utilities assume that DiD has a valid setting.

The utility can be safely restarted with the expression ""0Ie.

The utility may be susceptible to name conflicts. For example, it may need
to refer to an object in the caller's environment by name, or it may need
to execute an expression that is passed to it. For such utilities, the chance
of conflict is generally reduced through the use of local names such as 099.

The result or effect of the utility is, or can be, affected by aspects of the
caller's environment (other than system variables). Any utility that uses the
file system or requires the value of Dts (not given as an argument) is
lagged with global.

The utility may stop for input from the user (including full screen reads).

The utility may produce output (including full screen writes).

The utility may have side effects. For example, the clearout function
has the side effect of giving a clear ws the next time the session returns
to immediate execution mode.

The utility requires the shared variable processor to be available. Possible
effects of this are failure due to inability to obtain a unique clone id, and
possible waits on the shared variable processor. Utilities tagged with sv
likely also have a global tag, because there is generally an external partner
upon whom the program depends.

The utility may take advantage of special features of the device on which
it is running, or may fail if the device is deficient.

Using lhe Utility Library 15-9

15-10 Using the Utility Library

APPENDIX A: USING REGULAR EXPRESSIONS

About Regular Expressions A-3

Using Limited Regular Expressions A-3

Using Full Regular Expressions A-4
Locator Templates A-4
Single-character Pattern Components A-5
Alternation, Grouping, and Elision A-5
Closure A-5
Miscellaneous Components A-6
Action Templates A-6
Examples of Using Full Regular Expressions A-7
Template Metalanguage Summary A-8

Tables

Table A.I Summary of Template Metalanguage A-8

Using Regular Expressions A-I

A-2 Using Regular Expressions

About Regular Expressions

LOGOS supports a shorthand for generating a series of names or strings which
match a particular pattern. This shorthand is called a regular expression,
because the patterns are built of simple expressions which obey a small and
simple set of rules. While the components of a regular expression are
straightforward, the resulting pattern can have tremendous power. For
example, a simple pattern might allow the matching of all names beginning
with the same prefix, or of all words containing the same sequence of letters
anywhere within them.

You may specify a regular expression in an argument or in the value of a
modifier to a Logos command. The use of regular expressions saves typing,
and also makes possible the selection of families of strings which would
otherwise be awkward to express. It encourages systematic naming of
directories and objects, and allows scts of namcs to be processed as easily as
single ones.

There are two kinds of regular expression:

• Limited regular expressions, which can appear only in pathnamcs.

• Full regular expressions, which cannot appear in pathnames but are uscful
in commands such as locale and replace.

Using Limited Regular Expressions

Limited regular expressions are used in pathnames to generate a sequence of
names which match a particular pattern. The nu!tacharaclers ? , *, and I
combine with partial pathnamcs to creatc these expressions. For example, list
temp?* lists those names in the currcnt working directory that begin with
temp. Here, ? stands for "match any character," and * means lias many times
as possible."

To find all two-letter names in .dick.uti!, you would type:

list .dick.util.??

This returns a result such as:

.dick.util.ah

.dick.Ufil.sh

You may also use I to specify altenlatives. For example, to list all names
beginning with the string uti I or fool, type:

list ulil?* I tool?*

Using Regular Expressions A-3

To display the source fonn of the objects device.io.utils and device.io.tools,
type:

display device.io.utils I tools

Using Full Regular Expressions

Full regular expressions are more general and, correspondingly, more powerful
than limited ones. They can be used in the arguments to the locate and replace
commands, as wel1 as within the LOGOS editor when performing string
searches or replacements. Full regular expressions are not presently pennitted
for selecting pathnames.

Full regular expressions consist of a locator template J which specifies the
pattern to be sought, and an optional action tenlplate, which defines an action
to be performed when a match to the locator template is found. The action
template comes into play only in replacement operations.

Metacharacters such as ? , *, and I, and several others which will be discussed
below, can be used in full regular expressions to represent special searching
characters. Unless these characters are escaped, they are interpreted Iitemlly
and have no special properties in the regular expression.

To escape one or more characters, and thereby enable their special searching
properties, enclose the characters in braces, as in {sIr? * }. Full regular
expressions in command lines must be enclosed in braces.

Dieresis C·) has the effect of escaping the character which immediately
follows it, and may be used as an alternative to braces to enable searching
properties. If dieresis is used within braces, it has the effect of robbing the
character which follows it of its special properties.

Not all characters are special. The letters of the alphabet and the digits, for
example, are not metacharacters. These characters are treated literally whether
or not they are escaped. For example, if * and + are metacharacters, then in
the pattern a*{b+ }c, + is treated as a mctacharactcr and * is not. The
converse is true in the pattern a··*{b··+ } c. This last pattern is equivalent to
the shorter pattern a··*b+c. Of course, lib" is treated literally in all cases.

In the sections which follow, regular expression is intended to mean full
regular expression.

Locator Templates

A-4 Using Regular Expressions

The locator template specifies the pattern of strings you are searching for. You
can express families of strings using special single-character patterns,
alternation, elision, closure, and certain other special metacharacters. By
combining these single-character patterns, complex patterns can be created.

Single-character Pattern
Components

Alternation, Grouping,
and Elision

Closure

The metacharacter ? matches any character except CARRIAGE RETURN.
Thus the pattern {t? n} matches the strings tan, tbn, ten, and so on. When
searching a function, {? } matches any character except statement end or line
end.

The CARRIAGE RETURN character is represented by the metacharacter -i,

and is used to locate occurrences of a pattern at the extreme of a line. For
example, { -Il10} matches occurrences of 110 which begin a line, and
{house. -i} matches occurrences which end a line.

The pattern [eel] specifies any character from the character class represented
by eel. For example, {t Caeio Jn} matches the strings tan, ten, tin, and tOll.

{tC"-'aeioJn} matches any three-character strings beginning with t and ending
with n other than those listed. You can also specify a range of characters in a
class, as in { [a-e] } which matches the first five letters of the alphabet, or
{ [a-~J } which matches any letter. { [a-z67J } matches any lettcr of the
standard alphabet or the digits 6 or 7. Ranges are based on the following
ordered set:

abcdefghijklmnopqrstuvwzyzfj
ABCDEFGHUKLMNOPQRSTUVWXY~

0123456789

Finally, { [a-9""'()]] } matches any letter of the extended alphabet or any digit,
except 0 or 1.

The metacharactcr I denotes alternation. For example, the pattern component
{up Idown} matches the string up a~ well as the string dO"Jn. Parentheses may
be used to group expressions, as in {frowC sty Izy) }.

A component followed by the metacharacter - denotes an optional expression.
For example, {the Cold) -dog} matches the string the old dog a~ well as the
string the dog. Note that, unless the optional phrase is a single-character
component, it must be grouped inside parentheses.

The metacharacter * specifies closure, and matches the phrase it follows any
number of times (including zero). For example, the pattern {the (old) *dog}
matches the strings the dog, the old dog, the old old dog, and so on. One
particularly valuable closure is {? *}, which matches a string of
non-CARRIAGE RETURN characters.

The metacharacter + specifies a different kind of closure, called positive
closure, and matches the phrase it follows one or more times.

A closure pattern matches the longest possible scquence of characters. For
example, with the pattern {ab*} and the string abbb, the closure component
matches all three bs, and not just the first onc.

Using Regular Expressions A-5

Miscellaneous Components Several regular expression metacharacters have been specifically designed to
facilitate processing of APL functions.

The metacharacter <> is the statement delimiter character, and matches the
beginning or end of an APL statement.

The underscore _ is used as the context delimiter character. A pattern bordered
by _ is treated as a syntactic element, and the context in which a potential
match appears detennines if it is an acceptable match. For example, the pattern
{_yes_} matches the word yes, but not yesterday or eyes. If _ appears on only
one side of a phrase, only the left or right context of a potential match is
checked. For example, {_yes} would match yes and yesterday, but not eyes.
The context delimiter works in a similar manner with numeric strings.

The a metacharacter matches any identifier, and is functionally similar to the
pattern {--al--wl ([a- ~J [a-9J*)} for valid names. Also, {w} matches
any numeric string, and is sim ilar to the pattern { [-0-9] [- .ejO-9] *} for
valid numbers.

Action Templates

A-6 Using Regular Expressions

An action template specifies the processing to take place when a locator
template encounters a match of the pattern. It can he used to define complex
replacement strings for the rep/ace command and for the editor's change
command.

The escaping metacharacters {, }, and .. , and the CARRIAGE RETURN
character -1, have the same meaning in an action template as they do in a
locator template. If an action template contains only nonnal text, then that text
simply replaces the matched substring in the object string.

What does an action template do that is special? It provides three important
capabilities:

• Allows references to be made to parts of the action template.

• Allows expressions to be evaluated and optionally inserted into the text.

• Provides information about where the match occurrcd.

A portion of matched tcxt can be marked and referred to in an action template.
You do this by enclosing the relevant portion of the locator pattern in the
mctacharacter pair C :J. These "tagged" strings may then be referenced in the
action template by referring to them as en::J, where n is an integer. For each
locator template match, each tag in the action tcmplnte is replaced by the text
that matched the nth tagged pattern. For example, with the locator template
{ c? *:J , c?* =' , C?*::J } and the action template {c3=' , c2:J, cj::J}, the
object text/irst,middle ,last becomes /ast,fniddle first. pattern tags may be
nested in a locator template, as in {cjan Ifeb cW:J::>}, but not in an action
template. A particular tag may be referenced any number of times in an action
template, or not at all.

Examples of Using Full
Regular Expressions

You may specify that parts of an action template are APL expressions to be
executed when a match to a locator template is found. Indicate that an
expression is to be evaluated by enclosing it in dels (V). Optionally, the result
of the evaluation can be included in the replacement template if the opening V

is immediately followed by an assignment arrow. For example, the action
template {file~+{]av[ent""ent+1] V} causes all matches to be replaced by file
followed by a different letter from []av. (cnt is assumed to re a global variable,
initialized before the template is used in a command.) Pattern tags in evaluated
strings are replaced by the appropriate text before the string is executed.

Strings in evaluated mode may also reference three template descriptor
variables, called DIn, Dcp, and Den. These variables are integer scalars which
contain infonnation about the relative location of the current match within the

object string. Din (line number) is the line number on which the match was
found. Ocp (cursor position) is the origin-O index of the first character of the
match relative to the beginning of the line. Finally, Den (character number) is
the origin-O index of the first character of the match relative to the beginning
of the searched text. Note that these are not true APL system variables, but
rather are special names which are recognized by the pattern matching
processor.

U locate I{ [0-9J +}: .john.uti!

This expression locates all line labels of the fonn lxx, where xx is nny integer.

U locate '.i. (, { ? * } ,) / ' '-J>o' .john.util

This expression would find any executed statement that is used to activate a
branch.

u replace {c Dtrap"'" ?*::>-J>oc(X::J'} {c}::J-+' ,'c2::J} .john.uti! +s

This expression converts occurrences of simple Dtrap statements like
Dtrap"'" V 1 e -+ WJfull' to the fonn Dtrap.... ' Vie -+' ,• wsful/.

When using full regular expressions to make significant changes to objects in
your hierarchy, test their effectiveness on a copied subset of your hierarchy
before applying the expression to all the objects.

For additional examples, see Chapter 12: Soft 1yvare Development T'ools.

Using Regular Expressions A-7

Template Metalanguage
Summary

This section provides a formal summary of the full regular expression notation.

Table A.1 Summary of Template Metalanguage

Type

Locator template components

Escape mechanisms

Single-character components

Alternation. grouping, elision
and closure

Miscellaneous components

Action template components

A-8 Using Regular Expressions

language

rx
rrx

cp

c
?

[clc2c3]
[c1-c2]

[csl-cs2]

[-cs2]

rxll rx2
(rx)
cp- (rx)­
cp* (rrx)*
cp+ (rrx)+

o

a
w
rx?

--1

en::>

V

Description

Any regular expression
Restricted regular expression: any regular expression not
containing a closure component
Any single-character pattern

Enable escaping of metacharacters
Disable escaping of metacharacters
Complement escaped or literal treatment of next character

The character specified by c
Any character except CARRIAGE RETURN (or statement
end if searching function text)
Any of the characters cl c2 c3
Any letter of the alphabet or digit between and including
eland c2 (character range)
All characters in set cs1 which do not appear in set cs2
(csl and cs2 may include a character range)
All characters in the global character set which do not
appear in character set cs2

Either of the regular expressions rxl or rx2 (alternation)
Groups the regular expression
Zero or one occurrences (elision)
Zero or more occurrences (closure)
One or more occurrences (positive closure)

Statement delimiter
Line delimiter
Context delimiter
Any identifier
Any number
Pattern tag

CARRIAGE RETURN
String matching pattern tag n in locator template
Evaluated string delimiter
Replace string with evaluated expression (recognized only
when appearing immediately after the first of a pair of v·s).

r+- time t

ts+-timen 18

COO data tifappend to

ent sre t::.fbackup dest

ent sre ~fcopy dest

APPENDIX B: FILE UTILITIES

The file utility functions are used to assist in the creation and manipulation of
SHARP APL files, particularly in scripts. The functions described are in the
LOGOS public directory .public.uti/files, and may be accessed by any user of
LOGOS.

Formats a single Drdci style timestamp as mm/dd/yy hh:mm:ss:ms

Formats one or more Ordci style timestamps to Dts fannat:

yyyy mm dd rom hh 5S ms

The result is a seven column matrix if more than one timestamp is provided as
an argument.

Appends data to the file tied to tn. tn may be a two-element vector, whose
second element is the file's passnumber.file full is trapped and recovered
from. coo is the nUITlber of the new component in the file.

Backs up the file tied to src into the file tied to dest. Either argument may be
a two-element vector whose second element is the file's passnumber.jilefull is
trapped and recovered from. After copying, the last component of the
destination file is an additional component containing the access matrix of the
source file. ent is the number of components actually copied. For cxalnple:

101 6fbackup 202
284

This backs up all of the file tied to 101 into the file tied to 202.

Copies the file data specified by src into the file area specified by dest. src is
a vector containing the source file tie number, starting component, ending
component plus 1, and passnumber; only the first clement must be given. dest
is a vector containing the destination file tie number, starting component, and
passnumber; only the first element must be given. In either argument, zeroes
may be used to indicate elided elements. dest may be enclosed, and linked to
the fill element for appends. If a fill value is required but not specified, ' , is
used. cot is the number of components actually copied. file full is trapped and

recovered from. For example:

101 ~fcopy202

284

This copies all of the file tied to 101 into the file tied to 202.

File Utilities B-1

atoo +- fileid ~fcreate dtno

data 6.fcwrite locn

coo +- IJ.ffirst first

B-2 File Utilities

101 200 I1fcopy 202
84

This copies all components of file 101 from 200 onward to file 202.

101 200 /).fcopy 202 300:J 0
84

This copies all components of file 101 from 200 onward to file 202, starting at
component 300. File 202 is padded, if necessary, with components containing
numeric scalar O.

Creates the file identified by fileid, tied to dtno, if possible. If dtoo is 0, the
lowest available tie number is used. dtno may be a two-element vector whose
second element is the file's passnumber. If you specify a passnumber, an
access matrix is set for the file giving you -1 permission with that
passnumber. atoo is the tie number the file is actually tied to. For example:

'501 inventory' I1fcreate 1 +r /O,Dnums
203

Creates file 501 inventory, tied to one number greater than the highest current
tie number.

Conditionally writes data to a particular file component, appending
components to make the file the required length. If the specified component
already exists, it is not replaced. locn is a two- or three-element integer vector
containing the destination file's tie number, component number, and
(optionally) passnumber; locn may be enclosed and followed by the fill
element for padded components. If no fill element is specified, , , is used. file
full is trapped and recovered from.

For example:

items IJ.fcwrite 101 301

This writes items to component 301 of file 101. Any padded components
contain ' , .

items /).fcwrite 101 301 :J 0

This writes items to component 301 of file 101. Any padded components
contain numeric scalar O.

Drops components from a file so that a particular component number is the
first in the file. first is a two- or three-element vector containing the file's tie
number, the component number to be first, and, if necessary, the file's
passnumber. coo is the number of the first component in the file when the

CD()+' [fill] 6flast last

eno data !:J.fmappend control

cid 6fname fileid

program is finished. The program fails if the file has a first component greater
than that requested.

!:J.ffirst 101 200
200

This drops components 1 through 199 of file 101; the first component in the
file is number 200.

Appends or drops components so that a particular component number is the
last in a file. fill specifies the value to be appended to the file, if necessary; if
you omit fill, ' , is used. last is a two- or three-element integer vector
containing the file's tie number, the component number to be last, and, if
necessary, the file's passnumber. eno is the number of the last component in
the file when the program is done.

h.flast 101 300
300

This appends or drops componcnt~ so that component 300 is the last
component in file 101.

o!:J.flast 101 300
300

As above; but any appended components contain numeric scalar O.

Appends data to a file, a specified number of times. control is a two- or
three-element integer vector containing the file tie number, count (number of
times to append the data), and, if necessary, passnumber. coo is the number of
the last component in the file when the program is done. file full is trapped and
recovered from.

'reserved' 6fmappend 101 10
310

This appends reserved ten ti mes to file 101. The last component in the file is
now 310.

Returns the file identifier in fileid in the canonical 22-character fonnat. If
fileid does not identify a file, cid is empty.

pD+-!ifnarne r 501 inventory'
501 Inventory

22

pO.... f),fnan1e '501 r

o

File Utilities B-3

atno fileid l:!t.fopen dtno

data l:!t.freplace locn

atno fileid IJ.fstie dtDo

atno fileid l:!t.ftie dtno

data IJ.fwrite locn

B-4 File Utilities

"Opens" file fileid, tied to dtno, if possible; that is, the specified file is
share-tied or~ if necessary, created. dtno may be a two-element vector whose
second element is the file's passnumber. If you specify a passnumber and the
file is created, an access matrix is set for the file giving you -1 permission
with that passnumber. If dtno is 0, the lowest available tie number is used.
atoo is the actual tie number of the file.

, test' l:!t.fopen 0
2

This ties (or creates) file test tied to the lowest tie number available, which
was 2 in this case.

Replaces data into a specified location. locD is a two- or three-element integer
vector containing the file tie number, component number, and, if necessary,
passnumber.file full is trapped and recovered from.

Share-ties file fileid to tie number dtno. dtno may be a two-element vector
whose second element is the file's passnumber. If dtno is 0, the lowest
available tie number is used. atoo is the actual tie number of the file. For
example:

'501 inventory r l:!t.fstie 0
3

Exclusively ties file fileid to tie num her dtno. dtno may be a two-element
vector whose second element is the file's passnumber. If dtno is 0, the lowest
available tie number is used. atno is the actual tie number of the file. For
example:

'501 inventory' IJ.ftie 0
4

Writes data to a particular file component, appending components if the file is
not long enough. loen contains the tie number, component number, and
optional pa~snumber. loen can be enclosed and followed by the fill element for
padded components. If no fill element is specified, , , is used. For example:

items tJ.fwrite 101 300

This writes items to component 300 of file 101. Any padded components
contain' , ..

items tJ.fwrite JOJ 300 ::> 0

This writes itenlS to component 300 of file 101. Any padded components
contain numeric scalar O.

APPENDIX C: PAGING UTILITIES

The paging utility functions are used to assist in the running and debugging of
applications which use LOGOS paging. The functions described below are in
the public directory .public.logos.paging, and may be accessed by any user of
LOGOS.

linenumberlist+- [linenumberlistJ 6lfnstop '? ' Ifnnamelist

Sets stop vectors for the specified functions whenever they are paged in. If a
function already exists in the workspace, its stop vector is set immediately. ?
indicates that the names of functions which already have stop control set are to
be returned. fnnamelist specifies the functions on which stop control is to be
displayed or set; it may be a partitioned vector or a matrix. linenumberlist
may be a simple vector (for one function) or a vector of enclosures (for more
than one function); if you omit it, the current stop vectors are returned.

linenumberlist+- [linenumberlistJ l:::.lfntrace '? ' Ifnnamelist

Sets trace vectors for the specified functions whenever they arc paged in. If a

function already exists in the workspace, its trace vector is set immediately.
? indicates that the names of functions which already have trace control set are
to be returned. fnnamelist specifies the functions on which trace control is to
be displayed or set; it may be a partitioned vector or a matrix. Iinenumberlist
may be a simple vector (for one function) or a vector of enclosures (for more
than one function); if you omit it, the current trace vectors are returned.

l:::./keepin nodelist Indicates that the specified nodes are to be exempt from paging out. The nodes
in nodelist need not be in the workspace; if they are not, they become exempt
when they are paged in.

package+- [arealistJ fjlpage nodelist

Returns a package containing a composite of the contents of the nodes
specified in the right argument. If you omit arealist, the page areas specified
by the l:::./pageflle function are searched. Objects that are returned by l:::./page
are not considered paged in, and hence are not subject to page-out.

Paging Utilities C-l

[table....] [nags] 61pagefile arealist

Specifies the page areas to be used by your application, causes the base nodes
of the specified areas to be paged into the active workspace, and sets up the
global paging table in a variable named LPT. If object names from several
base nodes conflict, the objects first paged in take precedence. Page areas are
searched in the order that they are specified. This function is usually present in
the application workspace in order to start the paging process.

arealist is in the Conn areaname::Jareaname::J ...; if you specify only one
areaname, it needn't be enclosed.

areaname is in the form fileid [cn [po]], where cn is the component
number which corresponds to the start of the page area, and po is the file's
passnumber.

nags is a two-element Boolean vector. The first element indicates whether the
base node is to be materialized; 1 indicates that it is, 0 indicates that it is not.
If you omit nags, the base node is materialized.

The second element indicates whether the page table is to be defined as a side
effect, or if 61pagefile is to return the page table as a result; 1 indicates that the
function is to return a result. If you omit nags, the page table is defined as a
global variable in the workspace, and the function has no result.

Some examples:

~lpagefile '501 inventory'

This selects the (presumably only) page area in page file 501 inventory.

!Jlpagefile '501 inventory 1100'

This selects the page area in 501 inventory which begins at component 1100.

6/pagefi/e '501 inventory 1100 88981'

This selects the page area in 501 inventory which begins at component 1100
and is accessed with the passnumber 88981.

~lpagefi/e '501 inventory 1100':::J 'SOl inventory 100'

This selects two page areas in 501 inventory, giving preference to the area that
begins at component 1100.

61pagefi/e '501 inventoryd':J '501 inventory'

This selects page areas in two page files, giving preference to the area in 501
inventoryd.

C-2 Paging Utilities

6./pagein nodelist

61pageout nodelist

Defines in the workspace the objects contained in the specified nodes. If the
objects (or objects with the same names) are already in the workspace, they
are not paged in again. The use of 6./pagein may result in the paging out of
some objects, to make room in the workspace. See Chapter 9: Generating End
Environments for details on page-out control. As well, tilpagein may have the
side-effect of assigning stop and trace controls to paged functions, displaying
page stop and trace messages, displaying paging activity messages, appending
paging activity messages to file, or maintaining object reference counts. (See
also the description of /)./pageset.)

Expunges from the workspace the objects contained in the specified nodes.
Suspended or pendent functions are not expunged. Paged-out objects are not
written to the page area where they originated; any changes made to the
objects are lost.

By using object reference counts, l:1/pageout recognizes subtrees that are
common to different paged-in objects. Paging out a root that is superordinate
to a subtree required by another root does not expunge the common suhtree.

currentvalue+-[newvalueJ 61pageset attribute

Sets or displays the paging control attributes. If attribute is empty, the list of
keywords is displayed .. If attribute is a simple character vector, it specifies
one attribute to be set or displayed; if it is a vector of enclosed character
vectors, it specifies several attributes. newvalue may he a scalar, or a vector
with the same number of elements as attribute. If you omit newvalue, the
current values are displayed without change. The valid attributes arc as follows.

Attribute

threshold
margin
refcounts
debug
audit

Default

(ws size)+3
(ws size)+2
on
off
o

Description

Page-out threshold
Page-out storage margin
Object reference count control
Display paging activity
Write paging activity to file; value is tie number

For more information about these pararnetcrs, see Chapter 9: Generating End
Environments.

Paging Utilities C-3

currentvalue+- [-11 0 11] 6/pagestop '?' 1nodelist

Indicates whether to set stop control on a node when it is about to be paged in.
Because this operation occurs before a node is paged in, setting a page stop on
a node is not quite the same as setting a function stop on the root of the node.
If you specify a nodelist of ?, the list of nodes with stop control is returned. If
you omit the left argument, the stop control on the specified nodes is returned.
In the left argument, -1 indicates that the specified nodes are to have stop
control removed; 0 indicates that the specified nodes are to be the only nodes
with stop control set; 1 indicates that the specified nodes are to be added to the
nodes with stop control set.

currentvalue+- [-110 11] 6./pagetrace '?' Inodelist

Indicates whether to set trace control on the specified nodes. If you specify a
nodelist of ?, the list of nodes with trace control is returned. If you omit the
left argument, the trace control on the specified nodes is returned. In the left
argument, -1 indicates that the specified nodes are to have trace control
removed; 0 indicates that the specified nodes are to be the only nodes with
trace control set; 1 indicates the specified nodes are to be added to the nodes
with trace control set.

~lprestart

/1/pcmprs

[linenumber+-] ~lpwsfull 0 11

C-4 Paging Utilities

Reties paging files upon recovery from a crash. This function should be
incorporated into an application '5 restart sequence before processing is
restarted.

Is a subfunction used by ~lpagein and lJ.lpageout. This function should not be
called directly by your application.

Pages out nodes according to the general page-out controls, until the storage
margin is reached or exceeded. If the right argument is 0, the program returns
the number of the function line from which it was called; this is typically used
in a ws full trap to expedite recovery. With a right argument of 1, the program
has no result.

APPENDIX D: STOP AND TRACE CONTROL

Stop and trace controls can be set on a function whether or not it is in the
workspace. Once the function is paged in, the control works in the same way
as APL stop and trace.

To display, set, or release LOGOS stop control on a function, use the tJ./fnstop
function. To display all the functions with stop control set (not just the
functions currently in the workspace), usc:

~lfnstop '? '

You may display the stop control for specific functions as follows:

!J./fnstop I input output'

If you specify a left argument to !J./fnstop, it becomes the new stop vector for
the functions on the right:

1 3 4 tJ.lfnstop 1 input'

This sets stop control for input to lines 1, 3, and 4. You may also set different
controls for different functions:

1 3 4 :J 1 2 3 tJ.lfnstop 'input output'

Here, the stop control for input is set as before, and the stop control for output
is set to lines 1, 2, and 3.

To release stop control from Input and output, use:

o tJ.lfnstop I input outpu(

Function trace control works exactly the same way, using the utility !'J./fntrace.

You may set stop or trace control on one or more nodes. When stop control is
set on a node, the page-in program is suspended just before the node is
actually dispersed into the active workspace. Notice how this differs from
setting stop control on the root function of a node, where the conLeol takes
effect after page-in has occurred.

To display, set, or release stop control on a node, usc the !'J./pagestop function.
To display all the nodes with stop control set usc:

!J.lpagestop '? 1

Stop and Trace Control D- I

Monitoring PagIng Activity

D-2 Stop and Trace Control

A left argument to 6/pagestop governs how stop control is to be changed: 1
sets stop control, -1 removes it, and 0 removes stop control from all nodes and
then sets it on the node specified in the right argument. For example:

o6/pagestop 'input output'

This removes stop controls from all nodes, and then enables it on the input and
output nodes.

Page trace control works in exactly the same way, using the utility 6/pagetrace.

6/pageset can be used to monitor the flow of pages into and out of your
application. For example, to indicate that the names of the nodes being paged
in or out are to be displayed, use:

'on' 6/pageset 'debug'

A left argument of off turns monitoring off.

In addition to or instead of displaying this information on your terminal, you
may log it to a file for later perusal. When you log the paging diagnostic
messages without local display, you avoid having these messages interspersed
with your application's output. To write paging activity information to the file
tied to 10, use:

, audit' 6/pageset 10

A right argument of 0 turns this behaviour off.

access

account number

action template

active workspace

alias

alias level directory

alternation

Application Debugging
Assistant

argument

argument scope

GLOSSARY

The privileges a user has to an object or an audit file. Also called permission.
See also: permission

See: user number

A regular expression defining an action to be taken when a match to a locator
template is found. See also: locator temp/ale, regular expression

The active execution environment.

A name that identifies a user enrolled in LOGOS. Any account can own any
number of aliases. The alias under which your account was first enrolled in
LOGOS is called your primary alias. Any alias other than your primary alillii is
a secondary alias. See also: user nun1ber

A special directory in the LOGOS file system immediately below t.he root
which contains an entry for each user in LOGOS.

A pattern-matching construct that matches anyone of a list of alternate
patterns. The vertical bar denotes alternation. For example~ a' be Id matches a
or be or d.

A tool that automates several steps in debugging applications constructed using
LOGOS.

A positional parameter passed to a LOGOS command. Also see: rrwdifier,
parameter

A syntactic characteristic of every LOGOS command or script. Scope
influences how a command identifies its arguments. A command can have
short scope~ long scope, or unprocessed scope.

A command with short scope recognizes all unescaped blanks as argument
delimiters and displays an error message if it encounters too many arguments.

A command with long scope only recognizes blanks as argument delimiters
until it has scanned the expected number of arguments. Additional
blank-delimited fields at the end of the argument list are considered part of the
last argument.

A command with unprocessed scope takes only one argument and does not
recognize any special characters other than the command separator.

Glossary G-l

attribute

audit file

audit record

auxiliary task

A component of the object implied by the pathname. Attributes include source
form, compilation directives, documentation, journal, note, and tag. See also:
compilation directives, documentation, journal, note, source form, tag

A file that stores detailed tracking information about environments constructed
by LOGOS. This infonnation includes:

• the full pathname and version of each object used

• the names and types of the environments in which the object has been
placed

• the object's exact locations within those environments

A series of individual records inside an audit file, each describing a generation
of an application. Each record contains a list of end environments built, the
objects placed within them, and in some cases, their interrelationships.

An S-task initiated and controlled through LOGOS.

auxiliary task commands Commands that enable you to initiate an auxiliary task, communicate with it
interactively or under program control, and inquire upon its status.

auxiliary ~k workspace The workspace in which an auxiliary task executes commands passed to it.

base node

base page

broadcast note

calling tree

calling tree analysis

capturing a workspace

G-2 Glossary

The first node in a paging file. There are several characteristics of the base
node that distinguish it from other nodes. During generation, the base node is
referred to by an asterisk (*) rather than by a nnlne. The base node is
automatically brought into the workspace when a paging file is opened via the
/1/pagejile function. Finally, the contents of the base node are always present
in the workspace of a paged application. See also: inference, exclusion by,
paging

See: base node

See: note

A hierarchy that represents the relationships between a program and the other
programs and data it references. This is a recursive definition; references can
be direct (in the program itself) or indirect (through a referenced program) to
an arbitrary depth.

A process by which some LOGOS commands (for example, build) determine
the functions referenced by a specific root function. The analysis can be done
to any depth.

See: snapping a workspace

change count

change journal

clipboard

closing an object

closure

cluster

code tag

command

command directory

command output

command processor

command prompt

command results

command separator

A counter that increases each time you save an object, despite whether the
version number increases. You can display the change count of an object using
the list +sunvnary +long or +date modifiers with the list command.

See: journal

Temporary storage used by some editor commands, such as put, to hold data
that may be retrieved later by another command, such as get.

Ending the editing of an object

The metacharacter * denotes closure. Used when searching for strings, the
metacharacter allows you to match the phrase you are looking for any number
of times, including none. See also: positive closure, elision

A SHARP APL package assembled by the build command from objects stored
within LOGOS. The contents of a cluster can be explicitly enumerated in the
argument to build, or cal1ing tree analysis can be invoked and build will
automatically include referenced objects in the cluster. Clusters can be stored
in LOGOS paths or placed in workspaces, files, or p~ging files.

A special comment beginning with R'Y and used to convey specific information
about a function or variable to the compiler. For example: the R 'YO code tag is
used to indicate to the compiler that the line on which it appears is never to re
joined to another line by the diamondize compilation directive.

There are two types of commands: LOGOS commands and editor commands.
LOGOS commands are a sequence of letters or symbols that direct the actions
of LOGOS. Editor commands are a sequence of letters or symboIs that direct
the actions of the LOGOS editor. Although sOlne LOGOS and editor
commands have the same name, they do not have the same command syntax.

A directory or list of directories that is searched whenever LOGOS does not
recognize a command name. If a script with a matching name is found in the
command directory, it is executed. The cOITIlnand directory is set and enquired
upon with the cmddir command. See also: scrip!

See: output

The part of the LOGOS system that scans, validates, and executes commands
entered by a user.

See: conlnland separator

See: output

A character that can be used to separate LOGOS commands entered on the
same line. The default character is the LOGOS com mand prompt, u. It can be
changed using the environrnent sepchar paraITIelcr.

Glossary G-3

command syntax

common structure

compilation

compilation directives

compiler

complementary
indexing

composite script

confinnation mode

context

control permission

creator

cyclic redundancy
check (CRC)

G-4 Glossary

The composition of a command. Commands have several parts, the
arrangement of which is called the syntax. LOGOS cOffilnands and editor
commands have a different syntax.

A fonn of hierarchical organization that groups objects based upon some
common characteristic, such as related functionality or operation on common
data structures. You might segregate general utilities, device handlers, data
compression functions, and command routines. These directories are stored
under a single directory unifying the entire system.

The process of transfonning an object stored in LOGOS into an alternate form
according to prescribed rules. This alternate form is usually more suitable for
use in an end environment (it may be more compact, more efficient, etc.). For
example, the compiler can be used to remove the comments from a function
before it is placed into a workspace. Compilation is controlled through
compilation directives. See also: compilation directives, user-defined
compilation directive

A list of options that specify the transformations the compiler is to make to an
object before the object is placed into an end environment. These can be stored
as an object attribute [: c] ~ provided through the +compiIe modifier supported
by severnl commands, or included as p~U't of a LOGOS session environment.

The part of the LOGOS system that carries out the process of compilation.

References to versions of an object using negative numbers, -1, -2, etc. For
example, .public.util.vtomC-J] means the next to Ja..'it version of the function
vtom.

A script and a collection of objects referenced by the script that have been
melded into a single object. This is accomplished by localizing the pathnames
of the ancillary objects in the header of the script. When the script is invoked,
the objects are materialized as local functions and vmiables. See: script

A mode that issues a separate prompt for each object pending deletion. You
can invoke it with the delete +confirm modifier.

The execution environment (workspace), or a LOGOS pathname (which must
be a cluster) in which expressions subject to the evaluate modifier of a
compilation directive are evaluated.

The privilege that enables a user to modify the access others have to an object.
See also: permission

The alias that saved the initial version of an object.

A check used in the tracking table to determine whether an object was
modified by you since fetched from LOGOS.

database

datatype

debugging mode

decomment

del editor

demand paging

See: file system

See: type

A mode controlled by the environment debug parameter. When it is set off and
an error is encountered while running a script, execution is abandoned and you
return to the LOGOS prompt. When it is set on, execution is not abandoned,
instead, debugging mode is enabled, and you are placed into immediate
execution of a sort. You can:

• branch to any line of the script

• enter a naked branch arrow to terminate the script and return to the u

prompt

• use -+-Dle to resume running the script

• execute LOGOS commands by preceding them with a right parenthesis

• use the) si command to examine the execution stack using the LOGOS edit
command.

• edit the script to correct the error using the the LOGOS edit command

For example:

) edit scriptname

will update the script in the hierarchy and in the workspace.

A procedure that removes all comillents fronl a function. It is invoked as a
compilation directive.

The editor in SHARP APL in workspace 7 del. which is based upon the VS
APL Extended Editor and Full Screen Manager, enabled by VS APL's xedit on
command. See the docuillenl VS APL Extended Editor and Full Screen
Manager (IBM publication SH20-2341-1). See also: editor

An operation triggered by the absence of an object whose name has been
referenced in a running prograITI. To usc demand paging in LOGOS, you need:

• a global value error trap that executes the tJ./pagein function to resolve the
error in the immediate environment

• a global trap for "'S full that executes -+tJ./P'tvsj'u/l O.

The paging utilities are available in the public directory .public.logos.paging.
Sec also: page-in, paging, paging utilities, request paging

Glossary G-5

diamondize

directory

display potential

distribution

documentation

editing stack

editor

editor reference line

editor status line

editor window

elision

end environment

G-6 Glossary

A procedure that merges each line of an object with the next, when possible,
before saving the object in an end environment. It is invoked as a compilation
directive.

An object or a ncxle in a LOGOS hierarchy that can have descendants.

The property of a command or script that determines whether its result
displays. The result of a command or script displays only if display potential is
on. Commands have default display potential settings. The list command, for
example, displays its result by default. The display potential of a command can
be forced on by using O+-cmd. It can be forced off by using var+-cmd or +-cmd.

The dispersion of changed objects into end environments. The distribute
command will place all specified objects into their appropriate end
environments, if an audit file was used in the original generation. distribute
finds all end environments in the audit file that reference any of the objects
specified, and updates them one by one. The actual update process depends on
the type of end environment. A different kind of distribution is described under
export file.

An object attribute that contains the description of the object as supplied by
the object's owner.

The list of objects that are currently open for editing.

The LOGOS editor used to create and edit LOGOS objects. The LOGOS
editor can be used in full screen or line mode, depending on your tcnninal
type. It is based on the editor in SHARP APL workspace 7 del. See: del editor

A line in the editor, highlighted when used in full screen mode, that functions
as a starting point for several editor commands.

A single line appearing at the top of the editor screen in full screen mode. It
displays the name of the object being cdited<t an indication of whether or not
you have modified it, and if it is an object from a LOGOS hierarchy, a list of
its non-default attributes.

The editor window appears when you are using the editor in full screen mode.
It displays output from editor commands and occupies a small area on the
leoninal screen below the display of the object being edited. The window does
not always appear on the screen. When it is not required, the object display
area expands to fill the rest of the screen. You can control the size of the
window with the editor \,vindotv command.

The metacharacter - specifies a kind of closure and matches the phra..'ie it
follows 0 or 1 time.

A workspace, file, or paging file that is part of an application system generated
by LOGOS.

entry command line

entry expression

environment

See: entry expression

An expression stored in a LOGOS profile that is automatically executed every
time the owner of the profile enters LOGOS. See also: environment, exit
expression, profile

The tenn environment is used to talk about four different things:

• end environment

• environment command

• environment selection expression

• context (for example, execution environment)

End environment. A collection of values that influence the operation of
LOGOS commands. They are set and enquired upon by the environment
command.

environment command. The command you use to set and enquire upon values
determining the end environment.

Environment selection expression. An expression which determines to what
environments certain commands will apply. The environments selected may be
workspaces, files, clusters. For example:

/w 1234567 myws/p 7654321 fJagefilel:il 450,reports!f my/ife 20

would select 3 environments: the workspace J234567 myws; the LOGOS
paging file 7654321 pagejilefil, paging area starting at component 450 and the
node named reports within that area; component 20 of the file myfile.

Context. When you use the execute compilation directive to evaluate objects
enclosed within delimiters and flagged with the ~ Vi. code lag, you may
specify the contcxt within which those ohjects are to be evaluated. This is
specified as the pathname for a LOGOS-built cluster that contains thc values
for the objects being evaluated.

Glossary G-7

environment parameters Parameters you can specify with the environment command to change aspects
of your LOGOS environment. These include:

• command separator

• command directories

• working directories

• compilation directives

• setting of debugging mode

• auxiliary task identity

• entry command line

• exit command line

• teffilinal type

• status line detail

• screen fields

• screen attributes

• keyword definitions

• audit files

• update environments

environment settings

environment stack

error output

G-8 Glossary

The settings of certain aspects of your environment. See: environment
parameters

A means of saving and restoring environments to remove the burden of saving
environment values before aJteri.ng them. Allows you to stack multiple
snapshots of the environment settings, and restore them at will.

A type of result output prcxluced by a LOGOS command or script.

In a command, the error output describes error conditions arising from the
arguments or modifiers, or values implied bylhem.

evaluated argument

In a script, you can generate error output for any condition you choose.
Specifying that output as error output also causes a script's execution to be
abandoned. See also: message output, output, result output, script output,
status output

A LOGOS command that is evaluated and whose result is passed as an
argument to another LOGOS command. This is done by enclosing the
argument command in parentheses. For example:

edit (locate Oreplace)

performs a search for the string Dreplace in the current working directories and
then passes any pathnames in which a match was found to the edit command.

execute permission The privilege that allows a user to execute a function or script, but not to see
it. See also: permission

execution environment The workspaces in which a system is executed.

exit command line See: exit expression

exit expression An expression stored in a LOGOS profile that is executed evcry time the
owner of the profile exit-; LOGOS. See also: entry expression, environment.
profile

explicit page-in Page in of a node explicitly done by a function's code by calling the lilpagein
function.

explicit page-out Page out of a node explicitly done by a function's code by calling the
l1/pageout function.

explicit selection When sclecting paging areas, you explicitly page in one node or select one
paging area. This is useful when you have a repertoire of similar nodes, only
one of which is to be selected.

export file LOGOS files that can be transported to other machines and connected to other
LOGOS file systems. They are created and built using the export command,
which copies a list of pathnames to a specified export file. See also: import file

extended pathname A pathname that includes explicit reference to a version of an object and/or to
one of its attributes.

file A storage medium external to an APL workspace. Files can contain one or
more collections of defined functions, variables, or unnamcd data objects.

file level directory A special directory immediately beneath the alias level in which you must
store other dircctories only.

Glossary 0-9

file-resident Components of a system that are stored in a file, brought into the workspace
when needed, and then either written back to the file or expunged when no
longer required.

file system The part of the LOGOS system that stores LOGOS objects and their attributes.

file utilities Functions that are used to assist in the creation and manipulation of SHARP
APL files, particularly in scripts. They are found in the LOGOS public
directory .public.utilfiles. and can be accessed by any user of LOGOS.

flat structure The simplest form of hierarchical organization, which has all objects stored
under a single directory. This reflects the flat format of a normal APL
workspace.

full regular expression Used to express search and replacement strings within the LOGOS editor, and
for commands such as locate and replace. They consist of a locator template
that specifies the string to be sought, and an optional action template that
defines the action to be performed when a match to the locator template is
found. See also: action template, locator tenlplate, patterns, regular
expression, ? *

generated environment The workspaces, files, and page files built by LOGOS in which resides all of
the code necessary to execute an APL system.

generation The process that constructs end environments (workspaces, files, and paging
files) from objects stored in the LOGOS file system. See also: end
environment, paging file

global permission Identical privileges to everyone for everything in a particular directory. Set
global permission by setting permission at the alias level. Pennission is then
inherited by all subordinate directories created under the alias level.

group A named collection of related aliases. The primary renefit of groups is that
they can be used to conveniently administer access privileges.

For example, the aliases of all people working on the invent project might be
enroIled in a group called inventdev. If inventdev has access to all the LOGOS
paths pertaining to the project, the task of keeping access information up to
date involves only the maintenance of the mCITlbership of the group. When
group membership changes, new members have access to all the paths while
former members no longer have access.

header

hierarchy

identifiers

G-10 Glossary

The first line of a function or script. It defines the syntax, arguments,
modifiers, and locals as appropriate. See also: script header

A graded or ranked series of things. Both the LOGOS file system and the
calling tree are hierarchies. See also: calling tree, file system

Global or local names used in functions or scripts.

immediate execution

immediate execution
prompt

implicit page-in

implicit page-out

implicit selection

import file

inference, exclusion by

journal

keep-in priority

keyword

limited regular
expression

link

The state during which you can enter APL expressions and see the results
immediately.

The prompt that indicates that you are in immediate execution mode. In
LOGOS, the immediate execution prompt is .t.rJ.

The process of paging-in a node of a LOGOS paging file, triggered indirectly
by a value area trapped by a suitable event trap.

The process of expunging a page from a workspace, triggered by a WSFULL
event trap or a page-in activity.

When selecting paging areas, you can establish an implicit precedence of
nodes by selecting more than one paging area, so that nodes in the latter areas
are shadowed by nodes in the former. Implicit selection allows a system to
fully customize its behaviour for the user.

A file created by the export command that consists of a LOGOS hierarchy. It
can be imported directly into LOGOS. See also: export file

A property of the generation process that excludes objecl~ from nodes if they
represent the root of another node or if they appear in the base node. Inference
by exclusion is controlled by the build +inference modifier. By default,
inference by exclusion is turned on. Sec also: base node, paging

A LOGOS object attribute in which LOGOS users can record information
about the changes they have made to an object.

A measure of how important it is that a node remain in the workspace. All
other things being equal, the node with the highest keep-in priority will be
paged out last. Keep-in priority is specified with the build +keepin modifier.

Used to store frequently used phrases. A keyword is set with the keyword
command or the environrnent key~vord parameter, ,uld is referenced by
preceding its name with a backslash (\). A keyword can be shortened to any
abbreviation that is unique. The phrase or exprcssion is substituted directly
into the command in place of the \keyword.

Used in palhnames to generate a sequcnce of names that match a particular
pattern. The use of regular expressions saves typing, and also makes possible
the selection of families of strings that would otherwise be awkward to
express. The metacharacters?, *, and I con1bine with partial pathnamcs to
create these expressions. See also: patterns, regular expression, ? *

A LOGOS object that is a pointer to another object. Links can be used to
create the illusion that an object resides in many places in a hierarchy, when in
reality, there is only one central copy of the object. This provides the
convenience of easy access, yet retains the advantages of single source
maintenance.

Glossary 0-11

local environment

localize

locator template

LOF

long scope

LRP

LRU

message output

metacharacter

modifier

module structure

nested command

node

non-tenninal node

0-12 Glossary

Includes your working directories, command directories, separator character,
status area control, and other dynamic properties of a session.

To include an object name in the header of a function or script.

A text pattern that specifies a class of strings to be searched for. For example,
the pattern a?* matches all strings that begin with the letter a. See also: action
ten1plate, ten1plate

See: page-out strategy

See: argument scope

See: page-out strategy

See: page-out strategy

Text generated by a LOGOS command that is ancillary in nature. As an
example, suppose the display command is used to display an object that has a
broadcast note associated with it. The note is considered message output. See
also: error output, output t result output, status output

See: reserved characters

A parameter that modifies the action of a command. Modifiers always begin
with a plus sign (for example, +sumnUlry), and are specified after any
appropriate arguments. See also: argument, parameter

A fonn of hierarchical organization that separates functional units of a system
into individual directories. For example, if your system consists of subsystems,
you might have a separate directory for each subsystem. These would be
stored under a single directory unifying the entire system.

A command enclosed in parentheses whose result is interpolated into a
command line.

Node has two definitions:

• A collection of objects in a paging file that are treated as a unit for the
purposes of materialization in or expulsion from the workspace.

• A level in the LOGOS hierarchy. Non-terminal nodes have other nodes
beneath them. Terminal nodes do not. Sec also: non-terminal node, terminal
node

A node in the LOGOS file system with subordinate nodes. See also: node

note

object

object attribute

object fonn

object header

object type

output

overlay

A LOGOS object attribute that is used to attach an informative message to an
object. The message is displayed whenever the source or other attribute of the
object is referenced.

A complete entity stored within the LOGOS file system. Each object has a
type (function, variable, script, cluster, directory, link) and a number of
attributes (compilation directives, documentation, journal, note, source, tag).

See: attribute

The compiled version of an object (for example, a function after all comments
have been removed from it). See: source form

See: header

See: type

LOGOS commands and scripts can produce output. LOGOS command
produce two kinds:

• result output, which is essential information generated by a command

• message output, which is ancillary infonnation. such a~ a warning or an
error

Scripts can produce:

• result output

• message output

• error output

• status output

• quadprime output

Script output is controlled by the output command. which takes a textual
message as its argument, and uses the modifiers +error, +rnessage,
+quadprime, +result, and +status to determine what to do with it.

See also: display potential, error output, rnessage output, result output, status
output

The "threading" effect produced by the use of nlultiplc working directories.
Production versions of objects can be overlain by tcst versions to enable
convenient testing of new or changed objects in an otherwise running
production system.

Glossary 0-13

page

page file

page-in

page-out

page-out strategy

paged system

paging

paging area

paging area header

G-14 Glossary

See: node

See: paging file

The movement of objects from a SHARP APL file into the workspace.
LOGOS supports both demand and request paging. To use paging, a paging
area containing the objects for page-in must be specified and built. See also:
demand paging, page-out, paging utilities, request paging

The removal of objects from the workspace. Objects can be explicitly paged
out by the 61pageout utility (found in the public directory
.public.logos.paging), or implicitly by the page-out mechanism when Dwa has
fallen below a certain threshold. The contents of the base node are never paged
out. See also: demand paging, page-in, paging utilities. request paging

There are three page-out algorithms for selecting objects for page-out first.
They are:

• Largest objects first (LOp), which selects the largest objects in the
workspace for page-out first.

• Least recently paged (LRP) which selects the least recently paged objects
for page-out first.

• Least recently used (LRU) which selects the least recently paged objects for
page-out first.

An application in which some or all of the functions are stored in a function
file or a LOGOS paging file, and are brought into the workspace when
required.

An application architecture in which software is organized into functional
groups or "nodes" that are brought into a workspace by an application as they
are needed. Using this technique, extremely large applications can run in a
smaller workspace, even though the size of the application code may be many
times that of the workspace. See also: base node, demand paging,
inference (exclusion by), paging file, request paging

A set of contiguous components in a LOGOS paging file containing any
number of nodes. The paging area is referred to by a file name and a starting
component number.

Components at the beginning of the paging area containing information about
the area (for example, time and date of last generation, alias of the user
performing the generation, number of updates, ctc.).

paging file

paging priority

paging utilities

parameter

parent directory

parent node

parent pathname
comment

password

path

pathname

patterns

An end environment constructed by LOGOS consisting of a SHARP APL file
organized into nodes. Each node is a LOGOS cluster containing functions
and/or variables that are moved into the workspace when required. The
LOGOS commands build and[i/esave will create paging files for you based on
the calling tree of a root function you specify.

See: keep-in priority

Functions used to assist in the running and debugging of applications that use
LOGOS paging. They are found in the public directory .public.logos.paging,
and can be accessed by any user of LOGOS. See also: defnand paging,
page-in, page-out, request paging

A collective term for a value (argument or modifier) passed to a LOGOS
command or script. See also: argument, modifier

The directory above any particular node in the LOGOS hierarchy. Many
attributes of the parent directory (such as retention) Jfe passed on to the
objects or directories created below it.

See: parent directory

A special comment affixed to the end of the last line of a function by the
LOGOS compiler. If you have selected the p cOlnpilation directive, functions
fetched contain such a comment, distinguished by the prefix R *. The parent
pathname comment is used by the snap command to detcnnine relationships
between workspace objects and their countcllJarts stored in LOGOS.

A personalized key that can be attached to an alias/user number pair.

See: pathname

A name identifying an object in a LOGOS hierarchy. A pathname is formed
by enumerating the directories lying along the path to the object, separating
each by a dot (.). A rooted pathname always hegins with a dot, indicating that
the path begins at the very root of the hierarchy.

A pathname that does not begin with a dot is called a relative pathn~une. Such
pathnames are resolved relative to the current working directory or conlmand
directory. See also: qualified pathnafne, relative pathllame, rooted pathname,
working directory

Patterns are built of expressions that obey a sinall and simple set of rules, and
are used to generate a sClics of names or strings that match them. Sec also: full
regular expression, lifnited regular expression, regular expression, '1*

Glossary G-15

pennission

positive closure

primary alias

primary user number

primary working
directory

priority

profile

program file

program line labels

public directory

public library

public path

qualified pathname

rank

read permission

reference count

0-16 Glossary

The access privileges a given user has to an object or to an audit file. Also
called access. Object permissions include control, execute, read, and write.
Audit permissions include control, read, and write. See also: control
permission, execute permission, read pernussion, write permission

The metacharacter + specifies a kind of closure and matches the phrase it
follows one or more times. See also: closure

See: alias

See: user number

See: working directory

See: keep-in priority

A collection of values associated with an alias and established whenever the
alias begins a LOGOS session. Profiles are created using the environment
+proftle modifier. See also: entry expression, environment, exit expression

A file used to store functions and constants that can be materialized in the
active workspace. It can be built from objects stored in LOGOS or elsewhere.

(10, 11, 12).

See: public path

See: utiIity library

A path rooted under .public, the LOGOS public directory.

LOGOS metacharacters, used in regular expressions to indicate match any
character (7), and do so as many times as possible (*). See also: full regular
expression, /i,nited regular expression, patterns

A pathname that is qualified by a suffix providing additional information. This
suffix consists of a pair of brackets surrounding version, attribute, and type
information. See also: pathname

A characteristic of a LOGOS object.

The privilege that allows a user to fetch the source form of an object. See also:
permission, source form

A count maintained for each paged-in object that indicates the number of
paged-in nodes that the ohject belongs to. If a node that contains a particular
object is paged-out, the object is nonetheless exempt from page-out until its
reference count falls to O.

reference line

reference type

references

registration

registration potential

regular expression

relative pathname

request paging

reserved characters

result output

See: editor reference line

Cluster, file, link, page file, script, workspace.

Workspace and file cross-references that LOGOS stores automatically for each
path in the system, so you can determine where your objects are being used.

Objects in the LOGOS file system can be registered out when you are making
changes to them. Anyone else who accesses that object during that time will
receive a warning that it is being modified by you. When you have finished
with the changes, the object can be registered back in. Registration is
controlled by the register command, with an argument of in or out.

Registration potential causes an object to be automatically registered out when
the edit command calls that object, and to be registered in when the object is
closed.. Set by the register command with an argument of on or off.

A shorthand for generating a series of names or strings that match a particular
pattern. See also: full regular expressioll, lifnited regular expression, patterns,
7*

A pathname that is not specified from the rool of the LOGOS hierarchy. Sec
also: pathname, rooted pathnalne

Based on some advance knowledge of the likely order of processing, and
particularly applicable to closed prompting systems where the issuing of one
command is statistically unrelated to, or hiased against, subsequent issuing of
the same command. The tJlpagein function is used for request paging, and can
be found in the LOGOS public directory .public.logos.paging. See also:
denUlnd paging, page-out, paging, paging utilities

Special characters, also called metacharacters, that are of two kind,;:

• Those which signify some special action on the part of the command
processor and must be quoted if they arc used in an argument to a command.

• All of the characters in the first group, plus those that are part of the syntax
of pathnames (for example, .), plus a few others that cannot be used as
command separator characters (for example, \7).

There are different reserved characters in different contexts (the LOGOS
command language, the editor, and regular expressions).

The primary display generated by a LOGOS comnland or script. This excludes
output such as error messages, broadcast notes, and so on. Sec also: error
output, message output, output, status output

Glossary 0-17

result potential Each native LOGOS command has the potential for returning an explicit
result. For some of these commands, such as list, the result potential is 'on' so
that, by default, a result is displayed. The result may be suppressed by using
the assignment arrow but not specifying a variable. For example:

+-env +profile

For others, such as delele, the result potential is 'off' so no explicit result is
returned unless specifically requested when the comment is used. For example

O+-de/ete .dick.util.vtom

For user written scripts, explicit result may be declared by the form of the
script's header, or by using the output command with the +result modifier. In
both cases, the result may be suppressed by using the technique mention above.

retention A value associated with every LOGOS object that detennines how many
historical versions of the object are to be maintained. This value is set via the
retain command. See also: version

retention count See: retention

retract pennission Pennission to retract the global shared variable for an active task without
terminating the task. Controlled by the LOGOS send command.

root The "top" of the LOGOS file system. The focal point of the file system
through which all nodes can communicate with all othcr nodes.

rooted pathname A pathname that begins at the top of the hierarchy and begins with a dot (.).
See also: pathname. relative pathnafne

scope See: argufnent scope

screen attributes Attributes of the terminal screen, including colour, intensity, and highlight.

screen fields Fields on the screen. You can display or establish the colour and highlighting
of these fields during your LOGOS session using the environnlent field
parameter.

script A user-defined LOGOS command. Scripts can contain a mixture of APL
expressions and LOGOS commands. See also: cornmand composite, script
directory

script debugging mode See: debugging nwde

script header A header line resem bling the headcr line of an APL user-defined function. A
script's header is line 1 (unlike a function). Sce also: header

script output See: display potential, output

G-18 Glossary

secondary alias

secondary user
number

separator character

shadowing

shell

short scope

signon lock

snapping a workspace

software life cycle

source attribute

source form

static tree analysis

status line

status output

stop control

storage margin

See: alias

See: user number

See: comnwnd separator

In APL, shadowing refers to a local concealing a more local value. In LOGOS,
shadowing can also refer to page file shadowing and directory shadowing.

An APL function that brings in a cluster from a file, localizes the contents of
the cluster, and executes the root function of the cluster (or another expression
you specify).

See: argument scope

See: password

Examining the objects in a workspace and storing in LOGOS all objects that
are new or have changed since they were last stored. Use the snap command.

The overall process of developing software. Life cycle phases arc:
specification, design, coding and testing, integration and testing, distribution,
and maintenance.

See: source form

The definition of an object as it is stored in the LOGOS file system, unaltered
by compilation directives. See: object forn'l

See: calling tree analysis

Consists of zero, one, or two lines of status output at the top of the screen on
3270-type devices. The status area output includes the ali~L'\ you are using, the
current working directory, and information on the comrnand that is running.
HDS 108 devices can have only one line of status infonnation, but you can set
the line that displays. The amount of status area is controlled with the
environment status parameter.

The output of a LOGOS command (or script) that is written to the status line
on the terminal. See also: error output, tnessage output, output, result output

For debugging a paged system. Stop control can be set on a function whether
or not it is in the workspace. Once the function is paged in, this works the
same as APL stop control.

Used during implicit page-out to control when nodes are removed from the
workspace. An attribute of your application that you can set with the utility
function I1lpageset.

Glossary G-19

syntactic flags

syntactic search
qualifier

syntax

tag

task

task name

template

tenninal node

tenninal type

trnce control

tracking table

tree analysis

trigger threshold

G-20 Glossary

A flag specified via +j7ags=s that qualifies the actions of the LOGOS locate,
replace, and compare commands.

The locate and replace commands take context into consideration when
searching for a string, treating names and numbers a~ units that either match
fully or not at all.

The compare command disregards the spelling of names local to the function
being compared. The compmison is based upon consistent use of a name set
within each function, and the name sets across functions being compare need
not be the same.

Qualifies the action of the editor locate, change, and highlight commands, so
that it takes context into consideration when searching for a string. When
searching syntactically, names and numbers are treated as units and either
match fully or not at all.

See: command syntax

A LOGOS object attribute that has no particular semantics ascribed to it by
LOGOS. It can be thought of as a "user-defined attribute. II

See: auxiliary task

A name associated an auxiliary task, to differentiate it from other auxiliary
tasks.

Expressions that specify patterns to be sought, and actions to be taken once
found. See also: action template, locator ten1plate

A node in the LOGOS hierarchy without any subordinate nodes. See also: node

The type of terminal you are using with LOGOS. You can tell LOGOS the
tenninal type of your device using the environn1enl terminal parameter.

For debugging a paged system. Can be set on a function whether or not it is in
the workspace. One the function is paged in, the control works like APL trace
control.

A variable in your workspace that LOGOS uses to maintain a mapping
between the objects in a workspace and their locations in the LOGOS file
system. This table is used by the snap, ~vssave, get, and build commands.

See: calling tree analysis

Used during implicit page-out. An attribute of your application that you can set
with the utility function 6./pageset.

type A characteristic of a LOGOS object. Types of objects are clusters, directories,
functions, links, scripts, and variables. Pathname output of commands includes
a designation of type in square brackets after the pathname. For example, [fJ
for function, [cJ for cluster, and so on.

update generation An incremental paging file generation invoked by using filesave +updale
modifier.

unprocessed scope See: argument scope

UP version A version of an editor command that causes the command to work in the
opposite direction from the direction it usually works in. For example, the up

version of the add command (addup or upad(1) causes the editor to add a line
above, rather than below the reference line.

used list A list maintained with every LOGOS path that records where the a'isociated
object is used. The references command uses the information in used lists to
relate paths to end environments and audit filcs.

user Anyone enrolled in LOGOS.

user-defined command See: script

user-defined compilation A user-supplied function or cluster called by the LOGOS compiler to process
directive an object's source. There arc two varieties of user-defined directives:

• a directives, which are executed before any of the built-in directives.

• z directives, which are executed after all of the built-in directives (except
for "lock").

user number

utility library

version

version number
qualification

A SHARP APL signan nUlnbcr that identifies a LOGOS alias. A given alias
can have several accounts associatcd with it. The main account associated with
an alias is the primary user number for that alias. Other user numbers with the
same alias are called secondary user numhers.

A set of directories containing APL functions and variables, and LOGOS
scripts and clusters. The library provides a central location for objects that may
be useful to many different programrners, and avoids re-invention of wheels.
The utility directories have paths that begin with .public, and can be accessed
by any user of LOGOS.

A numbered representation of an object in the LOGOS file system. An
arbitrary number of versions can be retained for each object. See also: retention

See: version qualifier

Glossary G-21

version qualifier

VS APL editor

working directory

write pennission

WSDOC

G-22 Glossary

A particular version specified in the pathname of an object. For example, in
the path chart[4J, the version qualifier [4] indicates version 4 of the object.

The VS APL Extended Editor and Full Screen Manager. See the document VS
APL Extended Editor and Full Screen Manager (IBM publication
SH20-2341-1).

A directory or list of directories used to resolve pathnames that are not
specified from the root (relative pathnames). The primary working directory is
the first directory in the list. See also: pathname

The privilege that allows a user to modify the source fonn of an object. See
also: permission, source form

IPSA workspace documentation facility. This is a package for generating
descriptions of the contents of a workspace, including cross reference
information, calling tree, etc. For more infonnation, see the WSDOC User's
Manual. WSDOC can be used to document LOGOS objects through the use of
the LOGOS wstofile command.

entering LOGOS commands with, 6-9
recalling a command line with, 2-6, 5-26

* in pattern matching, 6-18, A-3
+ arguments and modifiers in scripts with, 5-9

LOGOS command modifiers with, 2-6, 4-7
+= empty modifier, 4-9
= editing objects in active workspace with, 6-3
? in pattern matching, A-3
\ arguments and modifiers in scripts with, 5-12

replacement rules for, in a script, 5-13
\+ arguments and modifiers in scripts with, 5-12

replacement rules for, in a script, 5-13
in pattern matching, A-6
syntactic search qualifier, 6-15

_ syntactic search qualifier, 6-18
Dtrap in sClipt debugging mode, 5-27
I in pattern matching, 3-21, A-3
u command separator, 2-3, 4-3
c:> in pattern matching, A-6
V command

editing objects with, 6-3
exiting the editor with, 6-12

V in pattern matching, A-7
V u editor command separator, 6-6
C1 in pattern matching, A-6
..... command

entering complex arguments with, 4-6
scope of, 4-6

~ command
scope of, 4-6
simple example of, 2-5

t::.logos, 2-10
t::./reclaim, running scripts with, 5-31

Abbreviating commands, 4-3
Abbreviating keywords, 4-9
Abbreviating modifiers, 4-7
Access

automatically extending, 3-34
controlling, 3-33
granting, 3-35

INDEX

inquiring about, 3-34
revoking,3-37
types of, 3-33

Accessing objects, 3-19
Action template, A-4

main, paltern matching, A-6
Alias

inquiring about, 2-4
primary, 2-4
types of, 2-4

ALIAS command, 2-4
Alias level directories, description of, 3-8
Alternation, pattern matching, A-5
APL commands, in script debugging mode, 5-27
Application debugging assistant, 11-13
Applications

maintaining and generating, 8-50
structure of, 8-6

Argument scope
long,4-5
script, 5-14
short, 4-5
unprocessed, 4-6

Argument substitution character
changing, 4-12
WITH command with, 4-11

Arguments
script definitions with, 5-9

APL expressions in scripts with, 5-11
description oL 2-5
LOGOS com'nands in scripts with, 5-12
quotes ill, 4-4
reserved characters in, 4-5
scope of, 4-5
, in, 4-6

Arguments to cO'TI'TIands, description of, 4-4
Attributes

editing, 6-4
kinds of, 3-6
saving, 3-12
toggling between, in the editor, 6-4

Index I-I

Audit files
specifying, 8-17
using and maintaining, 8-17

Audit files, description of, 8-16
Audit records

description of, 8-16
Auxiliary tasks

checking processing in, 7-7
communicating with, using SEND, 7-5
communicating with, using TALK, 7-7
default task name, 7-3, 7-7
description of, 7-3
entering immediate execution, 7-6
freeing your terminal while talking to, 7-6
how LOGOS keeps track of, 7-5
initiating, 7-3
interrupting, 7-6 - 7-7
lifespan of, 7-4
monitoring, 7-11
naming, 7-3
obtaining a clear workspace, 7-4
other commands with, 7-14
reporting on, 7-11
requesting retract permission, 7-4, 7-7
result of, 7-4
running autonomously, 7-6
saving large workspaces with, 9-6
using LOGOS commands in, 7-8
using, in scripts, 7-15

BUILD command
auxiliary tasks with, 7-14
building a file with, 8-15
building a workspace with, 8-15
defining nodes with, 8-40
description of, 8-13

Calling trees, 12-11
Capturing

an environment, 5-21
command output, 4-8

CHANGE command, in the editor, 6-18
Closure, pattern matching, A-5
Clusters, 3-5

construction in scripts, 5-20
description of, 3-5, 8-12

CMDDIR command, 5-5

1-2 Index

Code tags
description of, 10-3, 10-12
interpretation of names in, 10-13
list of, 10-12
specifying, 10-13

Command directories
adding, 5-5
description of, 5-4
inquiring about, 5-5
linking to, 5-6
saving, 5-6

Command line, recalling, 2-6
Command names, abbreviating, 4-3
Command separator, 4-3

editor, 6-6
Command syntax, 4-3
COMPARE command, 12-16
Compilation directive attribute, 10-5

descliption of, 3-6
compilation directives, 3-6

context for evaluation with, 10-5
decomment functions with, 10-9
descliption of, 10-3
diamondizing objects with, 10-6
evaluate expressions with, 10-6
format variables with, 10-7
in scripts, 5-19
include LRU page-out statement with, 10-8
include parent pathname tag with, 10-7
inclusion of source lines with, 10-7
list of, 10-4
locking a function or script with, 10-7
order of eva!uation of, 10-5
overriding, 10-10
overriding, preventing others from, 10-11
precedence of, 10-5
remove line labels with, 10-9
rename locals with, 10-8
setting, for a distribute, 11-12
specifying, 10-4
syn tax of, 10-4
turning off, 10-5
user-defined, 10-14
user-defined epilogue with, 10-10
user-defined prologue with, 10-5
working directories with, 10-9
writing, 10-14

Compilation environment, 10-15

Compiler
description of, 10-3
use of, 10-3

Compiler utility function, 10-17
Complementary indexing, 3-15
Composite scripts

description of, 5-18
sample, 5-18

Confinnation mode, enabling, 3-32
Context compilation directive, specifying, 10-5
Control pennission, description of, 3-33
COpy command, 3-25

registration option with, 11-6
Copying

a group of paths, 3-26
a single path, 3-25
limiting a directory copy, 3-28
one directory to another, 3-28
selected versions of paths, 3-27

Creating
a simple system, 3-21
directories, 3-15, 3-22
links, 3-16
objects, 3-11
scripts, 5-6

Cross-referencing
functions, 12-10

Cross-referencing, objects in the editor, 6-16
Cyclic redundancy check (CRe)

description of, 9-13
SNAP and, 9-15

Debugging scripts
See Script debugging mode

Decomment compilation directive, 10-9
DELETE command, 3-29
Deleting

all versions of a path, 3-29
displaying results while, 3-31
in multiple directories, 3-30
obsolete versions, 3-30
specific versions of a path, 3-29
the latest version of a path, 3-30
unreferenced objects, 3-31
warning prompts while, 3-31

Demand paging
description of, 8-30
page-in of nodes and, 8-34

Descriptor variables, pattern matching, A-7
Designing a hierarchy, 9-3
Destacking environments, 5-22
Diamondize compilation directive, 10-6
Dieresis, pattern matching, A-4
Directories

alias level, 3-8
command. See also Command directories, 5-4
copying, 3-25
creating, 3-15, 3-22
deleting, 3-29
description of, 3-5
displaying structure of, 3-18
file level, 3-8
listing contents of, 3-17
non-tenninal nodes in, 3-9
terminal nodes in, 3-9
working. See also Working directory, 3-10

DISCONNECT command, 7-8
DISPERSE script, 9-7
DISPLAY command, 12-3

displaying objects using, 3-19
in the editor, 6-18

Displaying
objects, 12-3

DISTRIBUTE command, 11-10
displaying output from, 11-11
FILESAVE command, compared to, 11-17
inquiI;ng on end environments with, 11-11
replacing objects with, 11-11
rules governing, 11-10
scripts using, 11-12
setting compilation directives with, 11-12

Distributing changes, 11-10
documentation, 3-6

creating, for scripts, 5-7
Documentation attribute

description of, 3-6
sample of, 3-7

EDIT command
creating scripts with, 5-6
editing objects with, 6-3
patterns with, 6-3
registering out objects with, 11-4

Editing a command line, 2-6
Editing attributes, 6-4

Index 1-3

Editing objects, 6-3
cross-referencing while, 6-16
discarding changes when, 6-13
displaying status line while, 6-6
displaying while, 6-18
executing commands as you open an object, 6-4
formatting while, 6-17
highlighting strings while, 6-16
in your active workspace, 6-3
locating strings while, 6-15
locating suspicious names in headers while, 6-17
resequencing line labels in, 6-17
searching and replacing while, 6-18
sorting header's locals-list while, 6-17

Editing versions of objects, 6-4
Editor

clipboard, 6-14
clipboard, fetching text from, 6-14
command separator, 6-6
command separator, changing, 6-7
commands, output of, 6-8
entering LOGOS commands in, 6-8
exiting, 6-12
full screen, 6-7
line mode, 6-6
looking at objects in, 6-5
reference line in, 6-8
terminal support by, 6-3
tools, 6-14
window, changing size of, 6-11

Elision, pattern matching, A-5
END command

changing destination of objects with, 6-13
closing objects with, 6-12

End environments
description of, 8-5
inquiring on, before a distribute, 11-11
updating. See also DISTRIBUTE command,

11-10
Entering LOGOS commands, 4-3

abbreviated, 4-3
in the editor, 6-8
multiple, 4-3
simple, 2-5

1-4 Index

ENVIRONMENT command
+STACK with, 5-21
displaying parameters with, 14-4
resetting parameters with, 14-5
saving parameters with, 14-5
setting compilation directives with, 10-5
setting debugging mode with, 5-25
setting parameters with, 14-4

Environment parameters
defaults, 14-4
displaying, 14-4
list of, 14-3
resetting, 14-5
saving, 14-5
setting, 14-4

Environmen t stack
description of, 14-5
inquiring about, 5-26

Environtnent st~ck. See also Stacking
environments, 5-21
Environments

capturing, 5-21
controlling, for scripts, 5-21
destacking, 5-22, 14-6
stacking, 14-5

Epilogue compilation directive
See User-defined compilation directives

Error message output, displaying script, 5-16
Escaping characters, in pattern matching, A-4
Escaping metacharacters, pattern matching,
main, A-6
Evaluate compilation directive, 10-6
Evaluate expressions code tag, 10-12
Excise compilation directives, 10-9
Exclude code tag, 10-12
Exclusion by inference, 8-43
Execute pcnnission, description of, 3-33
Exiting a TALK session, 7-8
Exiting LOGOS, 2-9

loading a workspace while, 2-9
temporarily, 2-8

Exiting the editor, 6-12
Explicit selection, paging areas, 8-32
EXPORT command, 13-3

exporting entire directories with, 13-4
exporting pathnames with, 13-3

Export file
archiving with, 13-7
attaching, to LOGOS, 13-5
creating, 13-3
description of, 13-3
distributing contents of, 13-5
installing software with, 13-6
retrieving, 13-4

Exporting text in the editor, 6-14
Expressions, evaluating compilation directives
for, 10-6
Extended pathname

accessing, 3-19
description of, 3-9

File level directories, description of, 3-8
File system

accessing objects with, 3-19
description of, 3-8
root of, 3-8

Files
building, 8-22
building simple, 8-9
building with the build command, 8-15
data stored on, 8-22
export, 13-3
retrieving, from archive tape, 13-6

FILESAVE command
DISTRIBUTE command, compared to, 11-17
generating paging files with, 8-42
updating paging areas with, 11-15

FORMAT command, in the editor, 6-17
Format compilation directive, specifying, 10-7
Full regular expressions, A-4
Full screen editor

function keys in, 6-9
getting help in, 6-10
objects in, 6-7

Function, 3-5
Function keys, editor, 6-9
Functions

cross-referencing, 12-10
decommenting, 10-9
description of, 3-5
file utility, 8-10
locking, compilation directive for, 10-7

GET command
auxiliary tasks with, 7-14
description of, 8-7
moving text in the editor with, 6-14

Getting help, 2-7
in the editor, 6-9

Grouping, pattern matching, A-5
Groups, definition of, 2-4

Header
locating suspicious names in, 6-17
pathnames in script, 5-19
simple script, 5-7
sorting locals list in, 6-17

HEADER command
in the editor, 6-17

Help
getting, 2-7
getting, in the editor, 6-9
writing, for scripts, 5-7

HELP comm,uld, 2-7
in the editor, 6-9

Hierarchy
common structure, 9-5
designing a, 9-3
flat structure, 9-4
modulc structurc, 9-4

HIGHLIGHT cOlnmand, in the editor, 6-16

Immediate execution
entering, from an auxiliary task, 7-6
entering, from LOGOS, 2-8

Inlplant tracking statement compilation
directive, specifying, 10-8
Implicit selection, paging areas, 8-32
IMPORT command

changing filename with, 13-5
importing a file with, 13-5
retrieving archived files, 13-6

Importing text in the cditor, 6-14
Inclusion compilation directives, 10-7
Inclusion set code tag, 10-12
Input interrupt, signalling, from LOGOS, 2-8
Interactive session, with an auxiliary task, 7-7
Introduction to LOGOS, 1-3

Index 1-5

Journal attribute
description of, 3-6
sample of, 3-7

Keep-in priority, description of, 8-44
Keywords

abbreviating, 4-9
defining, 4-10
deleting, 4-11
description of, 4-9
displaying, 4-10
saving, 4-10

Least-recently-used (LRU) page-out statement,
compilation directive for, 10-8
Leaving LOGOS

See Exiting LOGOS
Limited regular expressions, A-3
Line labels

removing, compilation directive for, 10-9
resequencing, in the editor, 6-17

Line mode editor
displaying status line in, 6-6
objects in, 6-6

Line, recalling a, 2-6, 5-26
Link, 3-5
LINK command, 3-16
Link resolution

description of, 3-16
disabling, 3-16

Links
creating, 3-16
description of, 3-5, 3-15
establishing, to command directories, 5-6
resolving, 3-16
when to usc, 3-16

LIST command, 3-17
resolving patterns with, 6-3

Loading LOGOS, 2-3
without access, 2-4

Local code tag, 10-12
Local variables

assigning values to, in scripts, 5-11
renaming, compilation directive for, 10-8

LOCATE command, in the editor, 6-15
Locator template, A-4

main, A-4
Lock compilation directive, 10-7
Logging LOGOS session output, 5-30

1-6 Index

LOGOS
a strategy for learning, I-viii
getting out of, 2-8
introduction to, 1-3
loading, 2-3
objects in, 3-5
requirements for using, I-viii
structural overview of, 1-5

LOGOS command, 6-8
LOGOS command separator

arguments containing, 4-4
changing, temporarily, 4-4
separating commands with, 4-3

LOGOS commands
abbreviating,4-3
arguments with 9 4-4
entering, 2-5, 4-3
entering multiple, 4-3
entering, in a TALK session 9 7-8
entering, in the editor, 6-8
executing, as you open an object, 6-4
modifiers with, 2-6
processing sequences of, 4-11
producing output for. See Output, 4-7
syntax of, 4-3
using arguments with, 2-5
using modifiers with, 4-7
using, from APL functions, 2-10

LOGOS file system
Sec File system

Long argument scope, 4-5
advantages of, in scripts, 5-14

LRECLAIM, running scripts with, 5-31

Message output
command, capturing, 4-8
command, discarding, 4-9
command, displaying, 4-9
script, displaying, 5-16

Metacharacters, 12-6
Metacharacters, pattern matching, A-3
Modifiers

abbreviating,4-7
abbreviating, in scripts, 4-7
APL expressions in scripts with, 5-11
description of, 2-6, 4-7
LOGOS commands in scripts with, 5-12
script definitions with, 5-9
specifying values for, 4-7

Nodes
defining, with the build command, 8-40
defining, with the shell command, 8-47
page-in of, 8-34
page-out of, 8-35
paging priority of, 8-37
specifying size of, 8-44

Non-metacharacters, 12-7
Nondiamondize code tag, 10-12
Note attribute, description of, 3-6

Objects
accessing, 3-19
attributes of, 3-6
changing destination of, 6-13
changing name of, 6-12
changing type of, 6-13
copying. See also Copying, 3-25
creating, with SAVE, 3-11
deleting. See also Deleting, 3-29
diamondizing, compilation directive for, 10-6
displaying, 12-3
distIibuting changed, 11-11
editing. See also Editing objects, 6-3
registering. See also Registeling objects, 6-5
saving, 3-23
saving several, into one directory, 3-24
saving, in the editor, 6-12
setting retention. See also Retention, 3-13
summarizing, 12-5
tracking references to, 11-7
transferring, between workspaces, 7-12
types of, 3-5

Output
command, captlling, 4-8
command, discarding, 4-9
command, displaying captured, 4-8
command, types of, 4-7
in editor, 6-8
LOGOS session, logging, 5-30
scripts, types of, 5-16

OUTPUT command, 5-16

Page-in
demand paging and, 8-34
explicit, 8-39
implicit, 8-40
request paging and, 8-34

Page-out
description of, 8-31
explicit, 8-35
heuristics for implicit, 8-36
implicit, 8-35
specifying keep-in priority, 8-44

Paged system
generating, 8-40
structuring, with exclusion by inference, 8-43

Paged system, structuring, 8-38
Paged systems

debugging, 8-47
Paging

areas, 8-30
concepts, 8-29 - 8-30
demand, description of, 8-30, 8-34
description of, 8-29
designing a paged system, 8-31
files, 8-29
page-out mechanism, 8-31
priority, 8-37
requcsC description of, 8-30, 8-34
utility functions, 8-38

Paging areas
description of, 8-30
explicit selection of, 8-32
identifying, 8-42
implicit selection of, 8-32
updating, 11-15

Paging file
building, 8-42
building foreign, 8-23
building, with a script, 8-46
description of, 8-29
overwriting and updating, 8-45
paging areas within, 8-30

Parent pathn~lIne comment, how SNAP uses,
9-13
Parent pathn[une tag compilation directive, 10-7
Pathnames

information stored with, 3-10
segments of, 3-9
types of, 3-9

Index 1-7

Pattern matching, 3-20, 12-6
action templates, main, A-6
alternation, A-5
closure, A-S
context delimiter, A-6
descriptor variables, A-7
dieresis, A-4
elision, A-5
escaping characters, A-4
escaping metacharacters, main, A-6
executing APL expressions, A-7
grouping, A-5
metacharacters, A-3
multiple working directories with, 3-21
positive closure, A-5
separating patterns, 3-21
statement delimiter, A-6
using metacharacters, 12-6

Pattern-matching
using non-metacharacters, 12-7

Patterns
EDIT with, 6-3
locating, 12-6
resolving, with LIST, 6-3
single-character, A-5

Permission, access, 3-1
Positive closure, pattern matching, A-5
Prologue compilation directive

See User-defined compilation directives
Prompt character

See Command separator
Public path, creating a, 3-37
PUT command, 6-14

Quadprime prompt, generating, in a script, 5-17
QUIT command, leaving editor with, 6-13
Quotes, arguments with, 4-4

Read pennission, description of, 3-33
Recalling a line, 2-6, 5-26

in a TALK session, 7-8
Recursion, 3-18
Reference line, description of, 6-8
REFERENCES command, 11-7

information returned by, 11-8

1-8 Index

References to objects, tracking, 11-7
REGISTER command, 11-3
Registering objects

displaying results from, 11-4
in, 6-13, 11-5
out, 6-5, 11-3
overriding registration, 6-5, 6-14, 11-4

Registration
commands supporting, 11-6
description of, 11-3

Registration potential
description of, 6-5
resetting, 11-6
setting, 11-5

Regular expressions, A-3
full, A-4
limited, A-3
quotes in, 4-4
using, 3-20

Relative pathname, description of, 3-9
Remove labels compilation directive, 10-9
Rename locals compilation directive, 10-8
Request paging

description of, 8-30
page-in of nodes and, 8-34

RESEQUENCE command, in the editor, 6-17
Reserved characters, quoting, in arguments, 4-5
Resetting your workspace, 2-9
Resolving links, 3-16
Result output

command, capturing, 4-8
command, discarding, 4-9
command, displaying, 4-8
script, displaying, 5-17

RETAIN command, setting retention using, 3-13
Retention

default,3-13
inheriting, 3-13
setting, 3-13

Retrieving files, from export, 13-4
Root, file system, 3-8
Rooted pathname, description of, 3-9
Running scripts, 5-31

SAVE command
+VALUE with, 3-12, 9-8
auxiliary tasks with, 7-14
creating directories with, 3-15
creating objects with, 3-11,9-8
creating scripts with, 5-7
putting systems in LOGOS with, 9-6 - 9-7
registration option with, 11-6

Saving
attributes, 3-12
command directories, 5-6
directories, 3-15
objects, 3-11, 3-23
objects from file system to workspace, 6-13
objects in the editor, 6-12
objects into one directory, 3-24
objects under a new name, 6-12
versions, 3-14

Scope flags, script, 5-14
Script debugging mode

Dtrap in, 5-27
APL system commands in, 5-27
description of, 5-24
editing in, 5-26
editing suspended or pendant scripts in, 5-27
enabling, 5-25
entering LOGOS commands in, 5-26
invoking a script in, 5-27
working in, 5-25

Script definitions
arguments and modifiers in, 5-9
fonns of parameters for, 5-10

Scripts
\ in, 5-13
\+ in, 5-13
abbreviating modifiers in, 4-7
APL expressions in, 5-11
argument scope for, 5-14
arguments and modifiers in, 5-11
assigning values to local variables in, 5-11
calling, 5-3
clusters in, 5-20
compilation directives in, 5-19
composite, 5-18
creating, with the EDIT command, 5-6
creating, with the SAVE command, 5-7
description of, 3-5, 5-3
DISTRIBUTE command in, 11-13

documentation for, creating, 5-7
examining simple, 5-7
headers in, 5-7, 5-19
improving simple, 5-8
invoking, in script debugging mode, 5-27
locking, compilation directive for, 10-7
LOGOS commands in, 5-12
naming, 5-3
precedence of LOGOS commands over, 5-3
predefined, 5-4
running, with adequate room, 5-31
sample, 5-27
special constructs in, 5-12
stacking environments in, 5-21
using auxiliary tasks in, 7-15

Searching and replacing in the editor, 6-18
Searching for strings in objects, 6-15
SEND command

result of, 7-5
suppressing error conditions, 7-6
transmitting input to auxiliary tasks with, 7-5
when it fails, 7-6

SETNAME cOlnmand
changing destination of objccts with, 6-13
changing object name with, 6-12

Setting up a simple system, 3-21
SETfYPE command, 6-13
SHARE comnland, 3-33
SHELL cOlnmand

defining node shells with, 8-47
Shells

defining, 8-47
description oC 8-25

Short argulnent scope, 4-5
SI command, inquiring on scripts on the stack
with, 5-26
SIGNON cOlnlnand, 7-3
Single-character patterns, A-5
SNAP command

attributes with, 9-9
changed objects with, 9-10
compiled objects with, 9-9
confinning,9-10
excluding objects from, 9-9
explanation of, 9-12
previewing, 9-10
rebuilding a snapped workspace with, 9-11
saving objects in LOGOS with, 9-8

Index 1-9

Software lifecycle, 1-3
breakdown of, 1-4
phases in the, 1-4

SORT command, in the editor, 6-17
Source attribute, description of, 3-6
Stacking environments

in a script, 5-23
Stacking environments. See also Environment
stack, 5-21
Status line

description of, 6-5
displaying in line mode editor, 6-6

Status line output, displaying script, 5-17
SUMMARIZE command, 12-5
Summarizing objects, 12-5
Syntactic search qualifier, 6-15, 6-18
SYNTAX command, 12-14
Systems

creating a simple, 3-21
in LOGOS, putting, 9-6
maintaining multiple versions of, 9-5
stored on file, saving, 9-7

Tag attribute
description of, 3-6
sample of, 3-7

TALK command, 7-7
TALK session

entering a, 7-7
leaving a, 7-8
recalling a line in, 7-8
sample of, 7-10
using LOGOS commands in, 7-8

Tasks
See Auxiliary tasks

TASKS command, 7-11
Templates

action, 12-7
locator, 12-7

Tracking references to objects, 11-7
Tracking statement compilation directive, 10-8
Tracking table, how SNAP uses, 9-13
TRANSFER command

transferring objects with, 7-12
when it fails, 7-13

Transferring objects between workspaces, 7-12
avoiding overwriting, 7-13
ignoring errors, 7-13

1-10 Index

Tree analysis, description of, 8-14
Types of objects, 3-5

Union code tag, 10-12
Unprocessed argument scope, 4-6
Unprocessed scope, pros and cons in scripts,
5-15
Update generations, description of, 11-15
Updating end environment, 11-10
Updating paging areus, 11-15
User number, primary, 2-4
User-defined code tag, 10-12
User-defined compilation directives

applications of, 10-18
epilogue, description of, 10-10
epilogue, use of, 10-14
left argument syntax for, 10-15
prologue, description of, 10-5
prologue, use of, 10-14
sample, 10-16
writing, 10-14

Utility library
compilation, usc during, 15-5
contents of, 15-7
description of, 15-3
documentation for objects in, 15-8
information with objects in, 15-8
linking to, 15-4
LOGOS session, use during, 15-6
referencing objects in, 15-5
script execution, use during, 15-5
structure of, 15-3
working directories and, 15-4

Variables
compilation directive for, 10-7
description of, 3-5
local. See also Local variables, 10-8

VERSION command, simple example of, 2-5
Version numbers, saving without incrementing,
3-14, 6-12
Versions of objects

editing, 6-4
saving, 3-14

Warning prompts
controlling, 3-32
responding to, 3-32
types of, 3-31

WHOIS command, simple example of, 2-5
WINDOW command, in the editor, 6-11
WITH command

ex. with, 4-11
specifying a sWTogate for, 4-12
surrogates for, 4-12
the DISPERSE script with, 9-7
using, 4-11

WORKDIR command, 3-10
Working directory

changing current, 3-11
compilation directive for, 10-9
default, 3-10
description of, 3-10
displaying current, 3-10
how SNAP uses, 9-14
multiple, 3-11
resetting, 3-11
setting multiple, 3-11

Working directory compilation directive, 10-9
Workspace

backing up, with WSBACKUP, 8-19
building a, with the BUILD command, 8-15
obtaining a clear, 7-4
resetting your, 2-9
saving objects to, 6-13
saving, with WSSAVE, 8-18
simple approach to building, 8-8
tools for building, 8-18

Workspaces, transferring objects between, 7-12
Write permission, description of, 3-33
WSBACKUP command, 8-19
WSDOC

documenting objects with, 12-13
WSSAVE command, 8-18

XREF command, in the editor, 6-16

Index I-II

	Front Cover
	LOGOS UG 1
	LOGOS UG 2
	LOGOS UG 3

